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1 Abstract  

REDD+ is a climate change mitigation mechanism for tropical forests presently being negotiated 

under the UNFCCC. It aims to attribute economic value to the carbon stored in forests, and thereby 

integrates forest protection into economic and political decision making processes. REDD+ embraces 

five activities that show a mitigating effect on climate change. One of these activities is reducing 

emissions from forest degradation.  

Although forest degradation is an intrinsic part of REDD+, only rough estimates are available for the 

total of emissions from forest degradation. Nevertheless, these estimates show the importance of 

grappling with forest degradation in REDD+, if significant emission reductions are envisaged. 

Currently, however, REDD+ lacks access to scientifically sound, applicable and cost-efficient methods 

for reporting on forest degradation on a large scale.  

The present case study analyzed high-resolution active remote sensing data to determine its 

suitability for reporting on forest degradation within the scope of REDD+. In the process it developed 

a method involving TerraSAR-X data to detect patterns of selective logging. Then, based on an 

accuracy assessment, it identified and quantified the influences of three stand characteristics, i.e. 

aboveground tree biomass, tree crown area, and social position and dominance, on the reliability of 

the developed method. Finally, the study demonstrates how the developed method could be 

implemented into the setup of an operational, robust, and transparent MRV-system.  

The study proved that space-born RADAR can be used for monitoring patterns of forest degradation 

in tropical moist forests. Combined with appropriate methods, it enables the collection of unbiased 

activity data and thereby serves as a suitable tool for reporting on forest degradation within the 

scope of REDD+.  
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2 Introduction  

“The United Nations Framework Convention on Climate Change and the Kyoto Protocol explicitly 

recognize the important role of forests in global climate change and, therefore, commit all Parties to 

protect them and manage them sustainably.” (FAO, 2007)  

 

 

Figure 1: Map of land cover classification from the MODIS instrument aboard the satellite 

Terra. Forests (green) cover 30% of the Earth’s land; from Simmon (2011).  

 

2.1 Role of forests in climate change  

Forests, in particular tropical forests, play a critical role in climate change as it emerges to be perhaps 

the greatest environmental challenge of the twenty-first century (FAO, 2012a). The exchange of 

carbon dioxide (CO2) as a key greenhouse gas (GHG) in the global carbon cycle between the 

atmosphere and terrestrial ecosystems occurs through processes of photosynthesis, respiration, 

decomposition and changes in land use and land cover. Since the beginning of the last century, 

human-induced emissions from fossil fuel use and large-scale land use have greatly increased the 

concentration of CO2 in the atmosphere (Schimel, 1995).  
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This widely accepted increase of evidence for a link between atmospheric GHGs and climate change, 

promotes the importance of the reduction of anthropogenic emissions of GHGs, in order to cope 

with internationally negotiated climate change goals. The economic aspects of climate change were 

intensively examined by Stern (2007), thus depicting four ways of contributing to the mitigation of 

climate change. One concentrates on non-energy emissions and highlights the cost-effectiveness of 

curbing deforestation as a way of reducing greenhouse gas emissions “if the right policies and 

institutional structures are put in place.” (cf. Stern (2007))  

The world’s forests store a vast amount of carbon, 289 gigatonnes (Gt), in their biomass alone, i.e. 

more than one tenth of the total carbon of the Earth’s terrestrial ecosystems (FAO, 2010b; UNEP-

WCMC, 2008). The Food and Agriculture Organization of the United Nations (FAO) estimates that the 

human-induced overuse of the global forests results in the release of about one-sixth of the 

anthropogenic global carbon emissions (FAO, 2012b). A significant impact on the increased release of 

GHGs in the atmosphere can be attributed to the occurring process of deforestation, i.e. the 

unsustainable management of forests and, as such, the permanent conversion of forested to non-

forested lands, in tropical forests (Achard et al., 2002; Fearnside and Laurance, 2003, 2004; 

Houghton, 1991, 2003; UNFF, 2009).  

Despite many endeavors to reduce this trend’s alarmingly high momentum, by slowing or even 

halting the deforestation rate for example through programs set up by the international community 

in the negotiations on forest and environmental policy, as of yet any success in combating the 

destruction of tropical forests has been limited. A key message from FAO’s Global Forest Resource 

Assessment (FRA) in 2010 was that, “the rate of deforestation and loss of forest from natural causes 

was still alarmingly high” from 2000-2010 (cf. FAO (2011b)). FAO (2011b) furthermore states that the 

net decrease of global forest area had only slowed down from estimated 16 million hectares per year 

in the 1990s to around 13 million hectares per year in the last decade.  
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The first World Climate Conference (WCC) was held in 1979 (WMO, 1979). Until the Stern Report in 

2007, the economic dependencies of climate change had never been confirmed in such a holistic 

view, however, the global debate on climate change and the discussion on the role of sustainable 

management of the world’s forests began in the early 1990s (UN, 1997). Since 1992, international 

negotiations on mitigating climate change under the United Nations Framework Convention on 

Climate Change (UNFCCC) have taken place. In 1995, the first session of the Conference of the Parties 

(COP) was held in Berlin. While the Kyoto Protocol, adopted in 1997 and entered into force 2005, 

“sets binding emission reduction targets for 37 industrialized countries and the European community 

in its first commitment period” (cf. UNFCCC (2011a)), it was only in Montreal in 2005 when the 

submission of the governments of Papua New Guinea and Costa Rica and eight other Parties 

requested that the UNFCCC secretariat adds an item entitled “Reducing emissions from deforestation 

in developing countries: approaches to stimulate action” to the provisional agenda (UNFCCC, 2005). 

In doing so, they augmented the climate change negotiations by including an appropriate path for 

the important field of tropical forests.  

2.2 REDD+  

Since the climate change conference in Bali 2007, the Reduction of Emissions from Deforestation and 

forest Degradation (REDD) has been officially negotiated as a climate change mitigation mechanism 

for tropical forests under the Ad-Hoc Working Group on Long-term Cooperative Action under the 

Convention (AWG-LCA) and Subsidiary Body for Scientific and Technological Advice (SBSTA).  

Although, REDD has yet to have much impact on either the scientific community or international 

negotiations, its potential influence on climate change mitigation is undeniable and particularly 

impressive given its relative simplicity as a concept.   Basically it aims to attribute economic value to 

the carbon stored in forests, and thereby integrating forest protection into economic and political 

decision making processes.  
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Regarding international negotiations the following four key decisions are of importance in describing 

the progress of REDD under the UNFCCC:  

 Decision 1/CP.13 (Bali Action Plan),  

 Decision 2/CP.13, both from COP13 in Bali (UNFCCC, 2008),  

 Decision 4/CP.15 from COP15 in Copenhagen (UNFCCC, 2010), and  

 Decision 1/CP.16 from COP16 in Cancun (UNFCCC, 2011b)  

While at the beginning a process to “avoid deforestation” was discussed, nowadays a global 

mechanism is negotiated that embraces the five national activities: (i) reducing emissions from 

deforestation, (ii) reducing emissions from forest degradation, (iii) sustainable management of forest, 

(iv) conservation of forest carbon stocks, and (v) enhancement of forest carbon stocks; and holds a 

multitude of social, ecological and governmental safeguards, that have to be respected. All this is 

subsumed in the term REDD+. Mostly, the implementation of REDD+ is outlined in a phased 

approach, moving in a step-wise fashion from pilot activities to full, results-based REDD+ 

implementation (Meridian Institute, 2009; UNFCCC, 2011b).  

Facing the fact that politicians see the red(d) light regarding the role of tropical forests in climate 

change, not only the above mentioned political negotiations are necessary, but also the existence of 

suitable methods for REDD+ or their development by the scientific community are essential. Fuller 

(2006) even relates these methods for REDD+ to a new era of transparency in forest governance.  

Given the present state of the negotiations on REDD+, countries aspiring to generate benefits herein 

need to consider several components. They must implement, among other things, sound systems for 

measuring, reporting and verification (MRV) of carbon stocks and carbon stock changes (UNFCCC, 

2012a). These systems must allow for the identification of all processes leading to deforestation and 

forest degradation and for the sensible quantification of emissions hereof. In addition to the MRV-

system an efficient implementation of the potential REDD+ mechanism requires, a system for 

identifying and quantifying local and regional drivers of deforestation and forest degradation, and 
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adapting incentive schemes to manage with these drivers. Both preceding components allow for the 

definition of a forest reference (emission) level, against which the reduced emissions can be 

measured and benefits can be considered. Finally, an incentive scheme has to be set up offering 

different regionally or locally adapted options that en masse sustainably contribute on a national 

scale to the set of five REDD+ activities. Experiences from holistic, national REDD+ pilots show the 

interdependencies of these components (Baldauf et al., 2010) and give an idea of future workloads 

for national and regional REDD+ programs (BMZ, 2012; GIZ, 2011).  

Official guidelines for MRV within the scope of REDD+ are yet to be established (UNFCCC, 2012b). 

The revisions of the Guidelines for National Greenhouse Gas Inventories (IPCC, 1996, 2006) and the 

revisions of the Good Practice Guidance (GPG) (IPCC, 2000, 2003b) of the Intergovernmental Panel 

on Climate Change (IPCC) provide a summary of methodologies that can form the basis for how 

developing countries1 can estimate and monitor emission reductions from deforestation and forest 

degradation, and changes in forest carbon stocks. Already, various additional guiding reports and 

guidelines for Annex I Parties2, identifying methods for the quantification of activities in the Land 

Use, Land-Use Change and Forestry (LULUCF) sector leading to emissions, have been published 

(Patenaude et al., 2005; Rosenqvist et al., 2003). Especially for the process of deforestation IPCC 

methods can be adapted or redeveloped in order to suit for REDD+ MRV-systems’ requirements.  

IPCC defines two target variables, (i) changes in forest area over time (activity data, AD), and (ii) 

changes in the average carbon stock per unit area over time (emission factors, EF) (IPCC, 2000, 

2003b, 2006). IPCC advises that both AD and EFs have to be estimated in a statistically sound 

manner. To ensure the quality on all steps of the inventory design, IPCC proposes following the five 

principles: consistency, comparability, completeness, accuracy and transparency (cf. IPCC (2006)).  

 

                                                            
1 In this context developing countries are Non-Annex I Parties; See UNFCCC (2012c)  
2 See UNFCCC (2012d)  
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The 2006 IPCC Guidelines provide guidance on estimation methods ”at three levels of detail“, i.e. tier 

1 to tier 3 (cf. IPCC (2006)). As such, a tier represents a level of methodological complexity. The IPCC 

(2006) provides a framework of tier structure for the methods of the sector of Agriculture, Forestry 

and Other Land Uses (AFOLU):  

 The simplest to use alternative is offered by tier 1. It utilizes globally-available activity data 

(e.g. on deforestation rates), and makes use of equations and default values (e.g. emission 

and stock change factors) that are directly provided by IPCC. FAO shows, that there are about 

50-70% uncertainties associated with tier 1 estimates (UNFCCC, 2009).  

 Tier 2 utilizes country- or region-specific data for the most important land-use categories. 

Emission factors and activity data show a higher temporal and spatial resolution than those 

used for Tier 1.  

 Tier 3 uses high order methods including models and inventory measurement systems that 

are tailored for the country specific circumstances.  

(cf. IPCC (2006)) 

Generally spoken, if the estimation methods are applied appropriately, firstly all tiers provide 

unbiased estimates, and secondly accuracy and precision improves for higher tiers. Designing an 

inventory of the different tiers facilitates the utilization of methods consistent with the available 

resources and capacities of the respective country. Furthermore, those categories of emissions and 

removals with the most significant contribution to national emission totals and trends can be 

brought to focus (IPCC, 2006). Taking note of these national circumstances, which include the 

availability of required data, capacities and in the end nationally available, finite financial resources, 

aims at ensuring a most effective inventory design, and anticipates that the inventory results can be 

reported and verified in a transparent manner (IPCC, 2006).  

In the “Tropical Forestry Handbook” edited by Pancel (1993), Köhl (1993) provides in-depth insight 

into methods of forest inventories, how to gather data and obtain information on tropical forests in a 

statistically sound and reliable manner. In respect of forest inventories, as the “data supplier” for the 
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MRV component, these methods could qualify for a full implementation of all MRV requirements. 

Though, Holmgren and Thuresson (1998) stated that pure terrestrial based methods of forest 

inventories are expensive, cost-effectiveness, as already specified by Stern (2007) and van der Werf 

et al. (2009), is an important issue both in any of the above named REDD+ components and in REDD+ 

as an international mechanism. Accordingly, Wertz-Kanounnikoff and Verchot (2008) identified a 

trade-off between costs and accuracy for potential MRV-systems, and thus sees “the quest for cost-

effective solutions […] at the centre of the MRV debate”.  

In a further work, Köhl et al. (2006) additionally discusses contemporary data sources, i.e. data from 

remote sensing and geographic information systems (GIS), and their appropriate incorporation into 

so called “integrated forest inventory systems”. For this present study, these integrated approaches 

differ from combined forest inventory approaches, the latter being further described in Mandallaz 

(1993). On the whole, integrated forest inventory approaches have the potential to provide higher 

cost-efficiency than pure terrestrial inventories alone (Achard et al., 2002; Bowden et al., 1979; Scott 

and Köhl, 1994), a fact that is especially valid for remote and hard to access areas (Plugge et al., 

2010).  

It has been shown that cost of inventory systems can play a crucial role in the realization of the 

potential REDD+ mechanism (Köhl et al., 2009). Murdiyarso et al. (2008) saw the cost of such systems 

highly dependent on national circumstances. Moreover, Böttcher et al. (2009) discussed the subject 

of opportunity costs that “represent the highest alternative land-use of the area under deforestation 

threat, including net revenue from the conversion itself”. As a consequence, Plugge et al. (2012) 

elaborated on country specific breakeven-points that define the optimal setting of a forest inventory 

in relation to its costs. Moreover, Köhl et al. (2011) stated that different sampling designs have direct 

implications on the expected cost, and hence may provide enormous financial advantages. As a result 

they maintained, “if expensive remote sensing alternatives are suggested”, a suitable MRV-system 

can be justified “as an investment that aims to generate financial benefits” (cf. Köhl et al. (2011)).  
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Therefore, when commencing considerations on a REDD+ MRV-system, the careful planning of forest 

inventory options for all its particular stages is needed, to find an optimal design under the specific 

national conditions. This circumstance has implications on the advice of IPCC concerning the 

estimation of AD and EFs. While the derivation of respective national EFs for all five major carbon 

pools, i.e. (i) aboveground biomass, (ii) belowground biomass, (iii) dead wood, (iv) litter, and (v) soil 

organic matter, needs intensive terrestrial investigations for higher tiers (GOFC-GOLD, 2011), 

terrestrial inventory based estimation of country-specific AD can be complemented with the use of 

appropriate remote sensing techniques in order to improve the cost-efficiency of the respective 

inventory (Achard et al., 2008; Baldauf et al., 2009; DeFries et al., 2007; Herold and Johns, 2007).  

In 2003, two significant studies enlightened the role of remote sensing in the monitoring of tropical 

forest environments, i.e. Foody (2003) and Rosenqvist et al. (2003). The first concluded that to realize 

the potential of remote sensing technologies “developments in mapping and monitoring land cover 

change […] are […] required” (cf. Foody (2003)). The second reviewed existing remote sensing 

technologies and stated that “techniques for detecting and spatially quantifying types of 

deforestation […] activities […] are reasonably well established” (cf. Rosenqvist et al. (2003)). 

However, purely estimating deforestation, or in other words changes in forest area over time, and 

thereby neglecting the menace from forest degradation is not sufficient for REDD+.  

Even though forest degradation is seen by Simula and Mansur (2011) as “one of the major sources of 

greenhouse gas (GHG) emissions”, there is a tremendous lack of information regarding its 

significance and quantification on a global scale. With a slightly different definition of forest 

degradation than it is generally understood in the REDD+ context, ITTO (2002) used various sources 

to compile an estimation of the extent of degraded and secondary forests worldwide: 850 million 

hectares. This value equals the total area of Brazil or twice the area of all current 27 member states 

of the European Union, and thereby explains the significance of the subject. Other sources, like e.g. 

Gaston et al. (1998), specify the estimates of carbon emissions from forest degradation in tropical 

Africa to be more than twice as much than those from deforestation  
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On the whole, this shows the urgent need for methods that are scientifically sound, applicable in 

praxis, and cost-efficient, to report on forest degradation on large scales within the scope of REDD+.   

2.3  The scope of the present study  

Since 2007 REDD has been on the international agenda as a potential mechanism to mitigate climate 

change, and since 2010 UN-parties have been in negotiations on the five activities of REDD+, one 

being “reducing emissions from forest degradation”. The significance of forest degradation as an 

environmental, social and economical problem cannot be overestimated. Hitherto, scientifically 

sound, applicable and cost-efficient methods to report on forest degradation on large scale have not 

been at hand.  

Forest degradation can be seen as an action that results in no change of forest area as such, but as a 

change in quality of the forest’s condition (Lanly, 2003). Respective attributes to measure this change 

can be more general such as health and vitality, the production capacity of market or non-market 

goods and services, or more specified such as the species composition, distribution of diameter at 

breast height (dbh, 1.30m), tree height, standing volume, biomass, or mortality. Any method to 

report on forest degradation needs to approach the question, how to quantify this change in quality 

of the forest’s condition. The change can be assessed at different spatial scales for different 

purposes. While the aggregation of small scale effects to national values and significances is an 

appropriate path, the other way round is impossible. Monitoring changes in forest quality on small 

scales, however, has proven to be very costly. In other fields, remote sensing technologies have 

provided valuable cost-efficiency for large scale monitoring. Thus, it has to be investigated, if the use 

of remote sensing data would provide capabilities for reporting on forest degradation. If so, an 

approach needs to be developed that can be embedded in national MRV-systems thereby making it 

possible to overcome the hitherto existing obstacles to reporting on forest degradation within the 

scope of REDD+.  
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The present study is intended to provide contributions to the development of scientifically sound and 

operational methods for reporting on forest degradation within the scope of REDD+, and thus 

focuses on the following hypothesis:  

High-resolution active remote sensing data is a suitable tool to report on forest 

degradation within the scope of REDD+. 

 

The present study investigates four objectives to verify this hypothesis3:  

Objective (A) Different remote sensing techniques are reviewed to compile a method to 

report on forest degradation within the scope of REDD+.  

Objective (B) Develop an approach to detect forest degradation in tropical moist forests using 

high-resolution Radio Detection and Ranging (RADAR) data.  

Objective (C) Quantify influences of stand characteristics on the reliability of the developed 

approach.  

Objective (D) Quantify the accuracy of this approach.  

 

  

                                                            
3 Figure 39 on page 148 shows a flowchart identifying the single processes of the four objectives to verify this 
hypothesis  
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3 Background 

At the United Nations Conference on Sustainable Development in Rio de Janeiro, Brazil, on June 21st, 

2012 Christiana Figueres, the Executive Secretary of the UNFCCC, re-confirmed that “Under the 

UNFCCC, they [Governments] have set the goal of a maximum 2 degrees Celsius temperature rise, 

with a view to considering 1.5 degrees Celsius.”. She continued with “There is no doubt that the 

scope and speed of action urgently needs to be stepped up, and that holds true for all three 

Conventions." (cf. UN (2012))  

This two degrees Celsius global warming goal is nothing really new. To avert the worst consequences 

of global warming, the leaders of the Group of the eight wealthiest nations (G8) reaffirmed in 

L’Aquila on July 8th, 2009 the work of IPCC and principally agreed to limit global warming to two 

degrees Celsius, among other ways,  by cutting their greenhouse gas emissions (cf. G8 (2009)). At the 

COP15 in Copenhagen in 2009 the Parties recognized “the scientific view that the increase in global 

temperature should be below 2 degrees Celsius”, to achieve the essential objective of the 

Convention (cf. UNFCCC (2010)).  

The role of REDD+ in reaching this goal was addressed by Angelsen (2008), who added that REDD 

“must be included in the next global climate regime”, if the efforts to combat climate change and the 

goal are taken serious.  

Accordingly, at its 36th session, SBSTA continued its work inter alia on methodological guidance 

relating to modalities for MRV, and a possible draft decision on these matters is expected to be 

finalized “for consideration and adoption by the Conference of the Parties at its nineteenth session” 

(cf. UNFCCC (2012b)). The above cited statement by Christina Figueres leaves no doubt that apart 

from political will and effort, the scientific community is asked to make its contribution. So, 

additional developments of inter alia modalities for measuring, reporting and verifying 

anthropogenic forest-related emissions need the particular attention of the scientific community. 

Particularly, the scientific community is expected to work on methods to MRV the implementation of 
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the five activities of REDD+, one being “Reducing emissions from forest degradation” (cf. UNFCCC 

(2011b)).  

As stated in the Introduction, scientifically sound, applicable and cost-efficient methods are 

necessary for reporting on forest degradation over large scales within the scope of REDD+. Herein 

integrated forest inventories play an import role in finding an optimal path that combines the three 

characteristics above. In chapter 0, different techniques are reviewed that can be used in a 

compilation process to develop a method that enables reporting on forest degradation within the 

scope of REDD+.  

3.1 The phenomenon “forest degradation”  

There is a multitude of studies regarding the process of defining the term ‘forest’. Lund (1999) 

identified no fewer than 133 different definitions of `forest', eight based on administrative units, 66 

on land cover and 59 on land use. All of which define the status of an area. Köhl et al. (2000) 

questioned whether the harmonization or standardization of the term forest is a “mission 

impossible”. Most often a forest is defined according to FAO as:  

“Land with tree crown cover (or equivalent stocking level) of more than 10 percent and area of more 

than 0.5 hectares (ha). The trees should be able to reach a minimum height of 5 meters (m) at 

maturity in situ.” (cf. FAO (1998))  

Even more complex are definitions of processes like, e.g. afforestation, reforestation, or 

deforestation, as illustrated by Lund (1999). The International Union of Forest Research 

Organisations (IUFRO) tried to get involved in the debate with the question: “How to Get Society to 

Understand Forest Terminology?” (IUFRO, 2000). Moreover, when comparing definitions of 

processes or development stages, it must be understood that many definitions are “esoteric and, 

from a resource inventory stand point, difficult to classify in the field” (cf. IUFRO (2000)).  
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Definitions of ‘forest degradation’ can be found in a huge number of publications (Achard et al., 

2007; Achard et al., 2002; Avitabile et al., 2011; Baldauf et al., 2009; FAO, 2007; Grainger, 1993; 

Guariguata et al., 2009; IPCC, 2003a; ITTO, 2002; Lanly, 2003; Lund, 1999; Simula, 2009; Simula and 

Mansur, 2011; UNFCCC, 2006).  

For instance, Grainger (1993) finds appropriate the definition: “a degraded forest may be defined as 

the temporary or permanent reduction in the density, structure, species composition or productivity 

of vegetation cover” (cf. Grainger (1993)). However, due to their reduced productivity this definition 

would classify old-growth forests as degraded forests (IUFRO, 2000), a fact, which certainly is hard to 

get society and even foresters to understand.  

Simula and Mansur (2011) see the general problem herein as the fact that “one person’s degraded 

forest is another person’s livelihood” (cf. Simula and Mansur (2011)). In other words, forest 

degradation has to be seen as a relative concept linked with the respective objectives.  

In consequence, it is important, not only from a scientific point of view, that a specific definition of 

‘forest degradation’ be developed as part of the activities to be considered under REDD+ (UNFCCC, 

2010). Especially since, as Achard et al. (2007) point out, "forest degradation can also be a precursor 

to deforestation". (cf. Achard et al. (2007))  

Distinguishing forest degradation from other processes like deforestation is straightforward. 

Deforestation can be defined as the conversion from forest land to other land uses, i.e. a decrease in 

the area covered by forest (FAO, 2003). Consequently, forest degradation could be seen as “a 

process within forests that leads to a significant reduction in either tree density or proportion of 

forest cover” (cf. Achard et al. (2002)). Although, the concepts of these approaches were formulated 

before any REDD+ negotiations took place, some ideas could still be used for REDD+.  

Originally compiled for use in the context of the Kyoto Protocol, IPCC (2003a) stated that ‘forest 

degradation’ relates to direct human-induced changes in carbon stocks and thus a particular 

definition “should at least include carbon stock changes in all relevant pools” (cf. IPCC (2003a)) 
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Furthermore, several possible definitions of ‘forest degradation’ and respective methodological 

implications were presented (cf. IPCC (2003a)). Moreover, the following definition was agreed upon 

that still provides room for national adaptation in terms of three variables:  

‘A direct, human-induced, long-term loss (persisting for X years or more) of at least Y% of forest 

carbon stocks [and forest values] since time T and not qualifying as deforestation’4.  

(cf. IPCC (2003a)) 

 

In addition, FAO has initiated a particular study to define issues related to REDD+ and to identify the 

elements of ‘forest degradation’ as well as the best practices for their assessment (FAO, 2007). In this 

context, Simula (2009) provided a review of the existing international and national definitions for 

‘forest degradation’ and analyzed their elements and parameters. He concludes that as an option for 

further action one should consider expanding “efforts to measure and assess forest degradation” (cf. 

Simula (2009)).  

Regarding REDD+, UNFCCC organized a workshop on reducing emissions from deforestation in 

developing countries5 where pertinent definitions based on decisions of UNFCCC and on reports by 

IPCC are assembled:  

–         {

                                
                              

                          
} 

–                
{                                                                                              } 

–                     
{                                                                                           } 

 
(cf. UNFCCC (2006)) 

 

Following the above definitions, the process of ‘forest degradation’ appears as a more complex 

change in land cover than deforestation. This circumstance was recognized by Baldauf et al. (2009) 

                                                            
4 Where X, Y and T are undefined  
5 Held in Rome, Italy on August 30th to September 1st, 2006  
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when they illustrated the differentiation of the processes of deforestation and forest degradation 

(see Figure 2). While in the left-most column the IPCC definitions for forest and open forest, and no 

forest are used as land-cover (LC) classes, the right column “Status” is further classified into 

undisturbed, disturbed and removed. The graph itself illustrates various processes of deforestation, 

i.e. change from forest to no forest, and of forest degradation, i.e. forest to forest or forest to open 

forest, over time (cf. Baldauf et al. (2009)). Although reverting processes such as changes from open 

forest to forest, are occurring, they are not displayed in the figure for the sake of clarity. Figure 2 

illustrates that forest degradation takes place within the land-cover class forest. In other words, this 

means that without any alteration in forest area, the carbon stocks in forests may change.  
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Figure 2: This figure shows an illustration of the differentiation of deforestation and forest 

degradation. In the left column IPCC definitions (forest, open forest and no forest) are used 

as land-cover (“LC”) classes, in the right column “Status” is classified in “undisturbed”, 

“disturbed” and “removed”. The graph on the right shows various single processes of 

deforestation, i.e. changes from forest to no forest, and of degradation, i.e. forest to 

forest/open forest over time; from Baldauf et al. (2009).  
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The role of forest degradation in climate change  

Although, Simula and Mansur (2011) see forest degradation as “one of the major sources of 

greenhouse gas (GHG) emissions”, in 2003 IPCC (2003a) identified that none of the existing 

international reporting instruments incorporate “activities similar to those described as forest 

degradation” (cf. IPCC (2003a)).  

In addition to ITTO’s compilation of an estimation of the worldwide extent of degraded and 

secondary forests, i.e. 850 million hectares (cf. ITTO (2002)), Houghton (2005) and Bucki et al. (2012) 

collected data sources on estimates of carbon emissions from forest degradation in addition to the 

emissions from deforestation:  

 Humid tropics, +5%, (Achard et al., 2004) 

 Brazilian Amazon, Peruvian region, +25–47%, (Asner et al., 2005) 

 Tropical regions, +29%, (Houghton, 2003)  

 Tropical Asia, +25–42%, (Flint and Richards J.F, 1994; Houghton and Hackler, 1999; Iverson et 

al., 1994)  

 Tropical Africa, +132%, (Gaston et al., 1998)  

While these data sources explicitly show the importance of forest degradation and its resulting 

emissions of carbon, their range, i.e. from 5% to 132%, shows the uncertainty attached to their 

quantification. The latter circumstance underlines the need for respective monitoring methods.  

Causes of forest degradation  

As can be concluded by the careful distinction between deforestation and forest degradation in 

Figure 2, the underlying causes of these two processes can both be similar or divergent (Lanly, 2003). 

ITTO (2002), although having a different perspective and objective on forest degradation, identified 

one of the main common cause of deforestation and forest degradation, i.e. seek for agricultural land 

(see Figure 3).  
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Figure 3: The different land-use types and forest conditions in a schematized tropical 

landscape (cf. ITTO (2002)). The forest conditions in the third row can also be seen as stages 

in the deforestation and forest degradation process, i.e. Primary forest to Secondary forest 

to Degraded forest land to Permanent Agriculture.  

 

Already in 1995, the concerns regarding population pressures and their growing demand for 

agricultural land was omnipresent “in literature on deforestation, soil degradation, loss of 

biodiversity, threats to future peace and stability, food scarcities, global warming and 

underdevelopment” (cf. Agrawal (1995)).  

Specific causes for forest degradation were presented by Lanly (2003) (i.e. selective felling, fuel 

wood, and grazing), Fearnside and Laurance (2004) (i.e. selective logging, surface fires, habitat 

fragmentation, and edge effects), Peres et al. (2006) (i.e. low-intensity timber harvesting, fuel wood 

collection, small-scale mining, and understory thinning) and Wertz-Kanounnikoff and Verchot (2008) 

(i.e. selective logging, forest fires, over-exploitation of fuel wood, and mining). While this catalogue is 

far from being complete, it is obvious that, in terms of occurrence, selective logging plays an 

important role as a cause of forest degradation.  

Linke et al. (2007) investigated forest disturbances in ecosystem management and described the 

impact of anthropogenic and natural processes on landscape- and stand-level forest structures. They 
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also explained the spatial patterns of the above processes, whereas temporal and spatial scale, as 

well as disturbance severity and rate play an important role for their characterization. Applying the 

characterization by Linke et al. (2007) on the causes of forest degradation as listed above shows that, 

of them all, selective logging entails the least disturbance per unit of area and is thereby expected to 

be most difficult to monitor.  

Remaining problems  

Forest degradation does not implicate a reduction of the forest area, but rather a change of quality in 

the forest’s condition (Lanly, 2003). Reporting on this change may be achieved by monitoring quite 

general attributes, such as health and vitality and the production capacity of market or non-market 

goods and services, or more specific attributes like species composition, distribution of dbh, tree 

height, standing volume, biomass, or mortality. Within the scope of REDD+, where emissions from 

forest degradation are to be estimated, biomass and its respective change over time is of main 

interest. The estimation of forest biomass is further investigated in chapter 3.2.  

In terrestrial inventories the changes in number of trees per hectare can give an indication of the 

degree of forest degradation, whereas in remote sensing based investigations, spatial patterns of 

changes in crown cover can be used for this purpose (Culvenor, 2003; Healey et al., 2007; Hudak et 

al., 2007). The monitoring of forest degradation is investigated more in detail in chapter 3.3.  

In this regard a problem remains since anthropogenic processes, forest degradation and sustainable 

forest management (SFM) all share the process of selective logging. While SFM embraces 

methodological and planned management of forest resources, forest degradation, as stated in 

chapter 3.1, comprises unmanaged forms of forest resource utilization that can be considered non-

sustainable, uncontrolled and unplanned. In respect to climate change matters, the sustainable use 

of forest resources entails a positive mitigation effect, as on the one hand remaining forests still fulfill 

multiple functions, and on the other hand the extracted timber can substitute a variety of non-wood 

products, e.g. for building purposes, and as part of a cascading use system substitute fossil fuels. On 
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the contrary, forest degradation leads to reasonable amounts of carbon emissions6. A further issue is 

the threshold of a forest's resilience. Due to its unsustainable nature, areas of forest degradation 

reach a point at which they are unable to return to an original stable state earlier than areas of 

sustainable forest management.  

The spatial pattern of selective logging within forest degradation, however, corresponds to the 

spatial pattern of selective logging within sustainable forest management (Coops et al., 2007). The 

distinction between forest degradation and SFM in remote sensing alone can only be undertaken 

within in-direct methods with the use of proxies7. This approach is based on labor-intensive manual 

interpretations and thus a successful large-scale application is highly questionable.  

3.2 Estimation of forest biomass  

As reflected in the proposed definition of forest degradation by IPCC (2003a), the estimation of the 

extent of the sources and sinks of carbon dioxide through changes in the cover, use, and 

management of forests, requires reliable estimates of the biomass of forest lands. Examples of 

human activities that change the forest biomass density are silviculture, harvesting, and forest 

degradation. This field has been intensively studied in the past decades. Negative changes in forest 

biomass indisputably lead to emissions of carbon. Nevertheless, direct methods to monitor the 

emissions from forest degradation can fall short when addressing the issue of cost-efficiency, an 

issue that, as stated above, is very important for the successful implementation of REDD+.  

The direct measurement of biomass of forests can only be accomplished by destructive sampling 

(Houghton, 1991). This procedure, however, is based on intensive tree felling and is therefore 

unquestionably time-consuming, and thus nearly impossible on large scale. Consequently, the 

quantification of biomass in forests is realized by the estimation of aboveground biomass based on 

direct measurements such as tree diameter and height, in combination with the use (i) of models 

converting diameter to biomass by means of biomass expansion factors (BEF) (Brown and Lugo, 

                                                            
6 See chapter 2.1 on page 2  
7 See chapter 3.3.1 on page 23  
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1992; Schroeder et al., 1997) or (ii) of allometric equations from individual tree measurements 

(Brown, 1997; Segura and Kanninen, 2005).  

Most notably, Brown (1997) supplied a relevant base in a primer for the estimation of tree biomass 

and respective changes for tropical forests. Brown (1997) not only compiles a list of species specific 

wood densities for all tropical forests, but also develops biomass regression equations for estimating 

the biomass of tropical trees for the three climatic zones “dry”, “moist” and “wet”. Further work, e.g. 

by Chave et al. (2005), used the same categories, due to the fact that for tropical forests species 

specific regression models can be viewed as inapplicable. However, Segura and Kanninen (2005) and 

Vieilledent et al. (2011) stated that universal equations by broad ecological zones may not accurately 

reflect the tree biomass in a specific area or region, further work is needed in the development of 

biomass regression equations on regional and national scale.  

A promising approach for further development was described by Hildebrandt and Iost (2012). They 

use a terrestrial laser system for automated high-resolution tree volume estimation. Accordingly, this 

method has potential to improve the estimation of forest biomass in temperate forests and possibly 

in tropical forests, as well.   

3.3 Monitoring of forest degradation 

The identification of causes of deforestation and forest degradation, both direct causes and 

underlying causes, are of importance for all components of REDD+. Direct implications exist for 

definition of a forest reference (emission) level, and for development of an incentive scheme. 

However, indirect implications for the MRV-system arise, as well. Both Peres et al. (2006) and Wertz-

Kanounnikoff and Verchot (2008) confirmed an impact of causes of forest degradation on monitoring 

feasibility. This means that for each cause of forest degradation, a suitable method for monitoring 

the specific AD and EF must be available, in order to estimate the total emissions from forest 

degradation within the scope of REDD+. Figure 4 and Figure 5 show two prominent causes of 

deforestation, i.e. seek for agricultural land and fire. While both these processes embody patterns of 
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deforestation that can be classified as “highly detectable” by present remote sensing devices, Peres 

et al. (2006) render, e.g. selective logging “marginally detectable” and understory forest practices 

“almost undetectable”. Moreover, they consider the detectability of the different causes classified as 

“marginally detectable” “expensive, technically challenging to implement and available only for 

limited or specific areas” (cf. Peres et al. (2006)). Herold et al. (2011) proactively proposed focusing 

present efforts on monitoring forest degradation based on the main causes that provoke the 

degradation of forest lands, i.e. selective logging, forest fires, over-exploitation of fuel wood, and 

mining.  

The subsequent chapters of the present study focus on forest degradation patterns of selective 

logging within the scope of REDD+. 

 

Figure 4: Deforestation patterns in the federal state of Rondônia in western Brazil; from 

NASA (2009). 
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Figure 5: Fire is commonly used to clear forested land in the tropics. An astronaut aboard 

the International Space Station captured this photograph of burning in Brazil on August 14, 

2010; from NASA (2010).  

3.3.1 Direct and in-direct methods  

Methods that have been proposed to specifically monitor the emissions from forest degradation can 

be grouped into (i) direct and (ii) in-direct methods (Bucki et al., 2012; Gibbs et al., 2007; Goetz et al., 

2009; Mollicone et al., 2007; Wertz-Kanounnikoff and Verchot, 2008). While (i) make use of directly 

addressing specific causes, (ii) use proxies like, e.g. proximity of settlements or roads (Bucki et al., 

2012; GOFC-GOLD, 2011), or stratification of forest lands into, e.g. intact and non-intact (Laestadius 

et al., 2011; Mollicone et al., 2007). Both groups, i.e. (i) and (ii), allow for the estimation of areas of 

forest degradation, however, the direct quantification of emissions from forest degradation can only 

be estimated using (i). The application of a stratification matrix allows for derived quantification of 

emissions from forest degradation (Bucki et al., 2012; Gibbs et al., 2007; Mollicone et al., 2007). 

Regarding the above described tiered approach of IPCC8 in-direct methods can deliver information 

for tier 1 and partly for tier 2, while a country applying for tier 3, without doubt, needs to implement 

                                                            
8 See 2.2 on page 4  
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direct methods (IPCC, 2003b, 2006). Groups (i) and (ii) can generally be complemented with the use 

of remote sensing data. In this respect, a multitude of hitherto existing experiences exist, some of 

which address the issue of forest degradation.   

3.3.2 Remote sensing as an additional data source for monitoring forest degradation  

Since the 1950s, remote sensing data has been acquired by a variety of airborne and space-borne 

sensors (Rosenqvist et al., 2003). Available remote sensing sensors can be classified into active and 

passive sensors. The latter are sometimes also called optical sensors.  

For the fields of forestry Malingreau (1993) considered remote sensing applicable in the 

identification and analysis of forest lands, i.e. their location and size, and the level of human pressure 

visible through deforestation, fires and agroforestry.  

Regarding the role of forests in climate change Rosenqvist et al. (2003) identified four key fields 

where remote sensing data could make significant contributions:  

 Provision of systematic observations of relevant land cover; 

 Support to the establishment of carbon stock baselines; 

 Detection and spatial quantification of change in land cover; 

 Quantification of aboveground vegetation biomass stocks and associated changes therein. 

(cf. Rosenqvist et al. (2003)) 
 

In contrast to these positive views on the role of remote sensing within the scope of forestry in 

general, the perception of its role in operational applications for monitoring forest degradation is less 

enthusiastic. For the most part, the prevailing opinion published in literature on methods to monitor 

deforestation and forest degradation highlights that deforestation patterns are much more straight 

forward to detect than those of forest degradation (Achard et al., 2007; Achard et al., 2002; DeFries 

et al., 2007; Eliasch, 2008; Gibbs et al., 2007; Herold et al., 2011; Houghton, 2005; Köhl et al., 2009; 

Lambin, 1999; Lanly, 2003; Rosenqvist et al., 2003).  
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In 2003, Rosenqvist et al. (2003) provided a general review of remote sensing technology in support 

of the Kyoto Protocol, and gave insight into adequate remote sensing techniques. They evaluated 

forest degradation as generally more difficult to detect by remote sensing than deforestation, and 

expressed the need for longer time series of remote sensing data in this respect. Furthermore, 

Rosenqvist et al. (2003) highlighted the requirement for in situ data, meaning an integration of 

remote sensing technology in terrestrial inventory methods.  

More specifically on forest degradation Houghton (2005) addressed that carbon stocks in forests may 

change without a change in forest area. Optical remote sensing data was assumed to rather detect 

changes in forest area and, however, fall short when “more subtle shifts in carbon stocks, especially 

after canopy closure” occur (cf. Houghton (2005)). DeFries et al. (2007) found that in some cases 

visual interpretation of high-resolution data can detect small-scale canopy damage. Furthermore, 

they recognized that for assessing the dynamics associated with forest degradation “annual 

monitoring may be needed” (cf. DeFries et al. (2007)). Similarly, Herold et al. (2011) saw this 

frequency of observations as a limiting factor, if methods for monitoring forest degradation use 

direct methods based on optical sensors.  

In addition, Gibbs et al. (2007) considered unlikely for current optical sensors to detect all types of 

forest degradation without the application of innovative methods and ground-based observations. 

More specifically, Eliasch (2008) averred that “some types of degradation do not create gaps in the 

canopy”, e.g. activities in the understory vegetation layers. For this, he saw that “further research 

should be undertaken” (cf. Eliasch (2008)).  

The quality of data from optical sensors depends on their spatial, spectral, radiometric and temporal 

resolutions. The wide set of optical remote sensing sensors and their specific characteristics have 

been classified by DeFries et al. (2007) for the particular needs of REDD. But the use of this 

classification is rather limited more to monitoring applications for deforestation than forest 

degradation.  
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Meneses-Tovar (2011) reported on positive results in a large-scale approach that used the 

Normalized Difference Vegetation Index (NDVI) as an indicator of forest degradation. However, NDVI 

being based on phenological analysis requires huge data bases and careful selection of remote 

sensing data.  

Already in 2003 Rosenqvist et al. (2003) pointed out that space-borne Synthetic Aperture RADAR 

(SAR) data could be of use for detecting land cover change and quantifying canopy closure. Regarding 

such active remote sensing data, DeFries et al. (2007) saw opportunities in the use of RADAR data, as 

they “can potentially detect degradation”. Likewise, Saatchi et al. (2011) considered active sensors 

such as LiDAR (Light Detection And Ranging) and RADAR (Radio Detection And Ranging) suitable to 

estimate biomass at different spatial scales. Whereas Herold et al. (2011) rendered processes that 

affect only the forest understory undetectable through optical remote sensing, Baldauf et al. (2009) 

clarified the conceptual differences of passive and active remote sensing sensors. After this, passive 

sensors record reflections rather of the objects surface, the X- and C- Band of RADAR is sensitive to 

small twigs and leaves, and the L-Band with its long wavelength is reflected by larger structures. This 

circumstance allows RADAR- and LiDAR-data to show remote sensed information about the 

structures even beneath the forest canopy9. Further details on the technologies of RADAR and LiDAR 

are given in chapter 3.4.310.  

When reviewing practical experiences in using remote sensing as an additional data source for 

monitoring forest degradation, the detectability of forest degradation by remote sensing data has to 

be seen as a critical issue. Regarding the cost-efficiency of approaches including high temporal 

frequency, like annual monitoring, the cost for data procurement, image analysis and classification 

accuracies with respect to spectral, geometric and spatial image corrections can be obstacles for 

practical applications in national MRV-systems. Especially in natural forest stands in the tropics and 

subtropics, mostly characterized by contiguous canopy covers and heterogenic vertical stand 

                                                            
9 see Figure 15 on page 47 
10 See 3.4.3, LiDAR and RADAR, on the pages 44ff  
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structures, the detection of forest degradation by optical remote sensing sensors can only be made 

operational, if the formerly closed canopy cover is dissolved (see Figure 6).  

 

Figure 6: Different states of forest and forest degradation in terms of their biomass stocks, 

and the potential of detection by optical remote sensing techniques (left = undisturbed, 

middle = stealthy degradation, right = detectable degradation); from Baldauf et al. (2009).  

 

In spite of the obstacles in monitoring forest degradation as described above, FAO (2011a) 

emphasized the need of policy makers and forest managers “to know where forest degradation is 

taking place, what causes it and how serious the impacts are” (cf. FAO (2011a)). All these issues are 

necessary to prioritize the allocation of finite human and financial resources used to counteract the 

process of forest degradation. Additionally, Bucki et al. (2012) identified the problematic issue that, if 

a country only monitors and reports on deforestation, harvesting patterns are adapted from clear-

cutting towards unmonitored and unreported forest degradation. This however would have a 

dangerous influence on reaching the anticipated emissions reduction targets.  

3.3.3 Error and uncertainty considerations  

As already agreed upon by the Parties at the COP15 in Copenhagen in 2009, monitoring systems, that 

have to be established for REDD+ purposes, are to “Provide estimates that are transparent, 

consistent, as far as possible accurate, and that reduce uncertainties, taking into account national 

capabilities and capacities” (cf. Decision 4/CP.15, 1. (d) (ii) in UNFCCC (2010)).  

Clear definitions of the above terms are specified in IPCC’s Good Practice Guidance of 2000 (IPCC, 

2000) and IPCC’s Good Practice Guidelines of 2003 (IPCC, 2003b). In summary, transparency aims at 

facilitating replication and assessment of inventories, consistency refers to the use of equivalent 
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methodologies over a period of years. Accuracy is a measure employed to guarantee that results do 

systematically neither over- nor underestimate true values. Uncertainty is a parameter associated 

with the results of measurements that comprises the dispersion of respective values originating from 

errors in inventory components.  

Regarding these errors, estimation of AD and EF involve two major error types: sampling errors and 

non-sampling errors. Both of which can be summarized in a total survey error. Köhl et al. (2009) 

provided a valuable illustration on the theoretical composition of errors for a set of input data in 

respective surveys (see Figure 7).  

 

Figure 7: The composition of errors types and the total survey error; from Köhl et al. (2009).  

 

Accordingly, Köhl et al. (2006) clarified that sampling errors arise from the circumstance that only a 

subset from a whole population is examined and the samples “may deviate from true population 

values” (cf. Köhl et al. (2006)). Both the sample size and the survey design can be used to control the 

size of sampling errors. Non-sampling errors embody all other sources of errors involved in a survey, 
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like, e.g. “faulty application of definitions, classification errors, measurement errors, errors arising 

from the application of functions and models, calculation errors, or frame errors” (cf. Köhl et al. 

(2009)). Köhl et al. (2006) concluded that the quantification of different types of errors can be 

realized by means of precision, accuracy, and bias. In this context, the difference of accuracy and 

precision is of further use and was most easily explained by Vanclay (2001) and adapted by Köhl et al. 

(2006).  

 

Figure 8: Theoretical examples for the concept of accuracy and precision of an estimator; 

from Köhl et al. (2006).   

 

As a last definition of terms in these fields, bias is directly related to the accuracy of an estimate and 

refers to systematic errors that affect any sample with the same constant error. 

From a statistic point of view these error and uncertainty considerations are “business-as-usual” 

(Congalton, 1991; Czaplewskyi, 2003; Köhl et al., 2006; Scott and Köhl, 1993) and their application 

within forest inventories and monitoring studies is beyond question. Henceforth, Patenaude et al. 

(2005) stated that cost in forest inventory is always related to meet specific requirements. Stehman 

and Czaplewski (1998) highlighted the design and analysis of accuracy assessment as “Fundamental 

Principles”. All three, Achard et al. (2007), Jones et al. (2004), and Eliasch (2008), emphasized the 

importance of accurate and precise estimates in forest inventories or specifically in greenhouse gas 

related forest assessments. However, in fields of climate change negotiations and REDD+ awareness 

for such sensitivities are not always guaranteed.  
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In an extensive pan-tropical study on monitoring of deforestation Achard et al. (2007) found that a 

main necessity in large-scale monitoring of deforestation is verification, i.e. that used methods are 

“reproducible, provide consistent results when applied at different times, and meet standards for 

assessment of accuracy" (cf. Achard et al. (2007)). As shown by Köhl et al. (2009) and also by Plugge 

et al. (2011) even small assessment errors are able to outweigh successful efforts to reduce 

deforestation and forest degradation. Thus, monitoring cost render important, as an MRV-system 

might be seen as an investment that aims to generate financial benefits (Köhl et al., 2011). Stern 

(2007), Wertz-Kanounnikoff and Verchot (2008), and van der Werf et al. (2009) together identified 

cost-effectiveness as an important issue in REDD+. Wertz-Kanounnikoff and Verchot (2008) even see 

“the quest for cost-effective solutions […] at the centre of the MRV debate”.  

Generally, methodological considerations on monitoring forest degradation involve a compromise 

between certainty and investment (Köhl et al., 2011). This circumstance adds further limitations in 

reporting on forest degradation to those obstacles of pure technical capacity to sense and record the 

qualitative change of forests as described in chapter 3.3.2.  

Gibbs et al. (2007) listed benefits and limitations of different methods that are available to estimate 

national-level forest carbon stocks. More concrete, Goetz et al. (2009) realized a comparison of two 

methods for estimation of biomass densities by land cover types, and thereby estimated the impact 

of respective differences (see Table 1). For forest land cover types these differences show relative 

values between -79% and 81%. The huge differences between different methods that were used 

show the necessity of accuracy and error considerations.    
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Table 1: Land cover classes derived from the GLC2000
11

, average AGB (tons ha-1) derived 

from the two approaches "direct remote sensing" (DR) and "combine and assign" (CA). The 

column labeled Δ indicates the difference between approaches (CA-DR); (adapted from 

Goetz et al. (2009)).  

Land cover types DR 
[t/ha] 

CA 
[t/ha] 

Δ 
[t/ha] 

Δ  
[%] 

Closed evergreen lowland forest 216 274 57.2 21% 

Degraded evergreen lowland forest 121 172 50.3 29% 

Submontane forest (900 – 1500 m) 238 187 -51.4 -27% 

Montane forest (>1500 m) 170 94.6 -75 -79% 

Swamp forest 251 347 96.2 28% 

Mangrove 48.3 101 52.6 52% 

Mosaic Forest/Croplands 91.5 96.6 5.1 5% 

Mosaic Forest/Savanna 77.4 91.9 14.5 16% 

Closed deciduous forest 84.9 81.8 -3.1 -4% 

Deciduous woodland 35.2 89.4 54.2 61% 

Deciduous shrubland with sparse trees 11.5 61 49.5 81% 

Open deciduous shrubland 12.8 61.6 48.8 79% 
 

Murdiyarso et al. (2008) addresses the high dependency of the cost of MRV-systems on national 

circumstances. Within a study on deforestation rates, Jones et al. (2004) plotted the total error 

against its corresponding quantification of change (see Figure 9). Decision lines in the graph give 

respective information on spatially explicit priority areas of actions. Furthermore, Böttcher et al. 

(2009) discussed the subject of opportunity costs that represent the most profitable “alternative 

land-use of the area under deforestation threat, including net revenue from the conversion itself” (cf. 

Böttcher et al. (2009)). In consequence Plugge et al. (2012) elaborated on country specific breakeven-

points that define the optimal setting in terms of minimum error requirements of a forest inventory 

in relation to its specific costs.   

                                                            
11 GLC2000 is a result from the Global Land Cover 2000 Project of the European Commission; for further details 
see JRC (2010)  
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Figure 9: Total error is plotted against its corresponding quantification of change; The red 

lines indicate decision boundaries for priority areas of action due to the classes High and 

Low, for both errors and quantification of change; This results in priority areas of action: 

High Error / Low Change = Medium Update Priority; High Error / High Change = High Update 

Priority; Low Error / Low Change = Low Update Priority; Low Error / High Change = Medium 

Update Priority; adapted from Jones et al. (2004).  

 

Grassi et al. (2008) proposed the use of the principle of conservativeness in order to "address the 

potential incompleteness and high uncertainties of REDD estimates" (cf. Grassi et al. (2008)) and sees 

both, uncertainties and incompleteness, obligatory for quantifying carbon stock changes in a REDD 

regime including the monitoring of forest degradation.  

Already in 2003, the IPCC suggested in its GPG the use of the Reliable Minimum Estimate (RME) to 

address uncertainties (IPCC, 2003b). Introduced by Dawkins (1957) the RME is the minimum quantity 

to be expected with a given probability thus serving as a substitute for the lower bound of a 

confidence interval. Köhl et al. (2009) explained that the expansion of the principle of RME from an 

ordinary sampling error perspective to a concept of total survey errors would render possible the 

transfer to assessing forest carbon stock changes, and thus be used in reporting on forest 

degradation.  

The involvement of remote sensing techniques requires special attention on uncertainties embedded 

in estimating changes between two points in time. Influences by map accuracies at both occasions 
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and the degree of changes exist. Fuller et al. (2003) presented a statistical approach providing 

quantification of the reliability of change estimates. Results of their study suggested that a sensitive 

detection of area changes by multi-temporal analysis of remote sensing data is rather unfeasible. On 

the contrary, Congalton and Green (2007) stated that present scientific methods and technical 

requirements exist that provide change detection approaches incorporating remote sensing 

technologies. Obviously, they propose to identify and quantify the sources of errors involved, and 

presented a respective theoretical example that seems rather complex (see Figure 10).  

 

Figure 10: Error sources in a multi-date change detection analysis using remote sensing 

techniques; from Congalton and Green (2007).  
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Plugge et al. (2010) proposed a methodology that uses a top-down approach for the assessment of 

REDD activities and employs a bottom-up approach for aggregation of the emissions from 

deforestation and forest degradation including respective errors. The results of this integrated 

method showed that capabilities of producing reliable results on a national level exist.  

Nevertheless, Köhl et al. (2011) observed the importance to include cost-efficiency aspects in the 

selection of the remote sensing alternatives to be used and concludes that special justification is 

needed “if expensive remote sensing alternatives are suggested” (cf. Köhl et al. (2011)).  

To minimize error impacts, FAO (2011a) highlighted the need of further work on identification and 

description of appropriate criteria and indicators for measuring forest degradation (cf. FAO (2011a)). 

As such, Penman (2008) emphasized that further work on the proposed definition on forest 

degradation, i.e. the thresholds X years and Y% change and time T, “could take ages” (cf. Penman 

(2008)). In this respect, Plugge and Köhl (2012) explained the implication of uncertainties for both 

corresponding area and forest degradation intensities, i.e. Y% change.  

As Köhl and Baldauf (2012) assured, methodological developments in active remote sensing 

technologies and in innovative change detection methods promise to overcome many deficiencies of 

former remote sensing systems, to open new perspectives for operational application, and to provide 

approaches for overcoming hitherto existing obstacles in monitoring forest degradation. Hence, 

further reviews of these methodological developments and of their application are shown in chapter 

3.4.  
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3.4 Methodological developments  

The following sub-chapters show important methodological developments in the three areas 

“change detection”, “object-based image analysis”, and “remote sensing sensor concepts”. All three 

form the basis of the present study, and are therefore reviewed with special emphasis.  

3.4.1 Change detection  

Detection of changes in remote sensing has a long history and is sometimes seen as one of its most 

successful applications (Anderson, 1977; Carmel et al., 2001; Singh, 1989). It involves the use of 

multi-temporal data sets to discriminate areas of change (Lillesand et al., 2004) or to identify 

differences in the state of an object or phenomenon (Singh, 1989) between dates of imaging. For 

both processes a variety of portfolios of methods exist (Canty, 2010; Coppin et al., 2004; Kennedy et 

al., 2009; Lu et al., 2004; Mas, 1999). Most of which can be grouped into algebraic methods, post-

classification comparisons, principal components analyses, decision thresholds and unsupervised 

classifications of changes.  

However, it must be clearly stated that all methods are subject to certain errors (Foody and Boyd, 

1999). Carmel et al. (2001) identify two major sources of error, i.e. location error and classification 

error, with the used types of spatial data sets. Hence, van Oort (2007) proposes the use of the 

common error matrix for change detection, which has been refined by Congalton and Green (2007). 

This subject is covered in more detail in chapter 3.5.  

For the field of forestry, Hame (1988) presented ways to interpret “forest changes from satellite 

scanner imagery”. In 2001, operational methods for tropical deforestation mapping were 

implemented (Achard et al., 2001; Hayes and Sader, 2001). The detection methods for vegetation or 

forest land cover changes, working with various vegetation indices, have been widely used for coarse 

to medium resolution data, e.g. for Moderate Resolution Imaging Spectroradiometer (MODIS) or 

SPOT 4’s VEGETATION sensor (Borak, 2000; Bucha and Stibig, 2008; Stibig and Bucha, 2005; Zhan et 

al., 2002), or for Landsat products (Hilker et al., 2009; Leckie et al., 2002; Sader et al., 2003; Santos et 
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al., 2008). Occurring disadvantages have been solved by specific model based approaches 

(Berberoglu and Akin, 2009; Chen et al., 2008; Im et al., 2007; Kennedy et al., 2009; Mayaux et al., 

2005; Morisette et al., 1999).  

Despite these achievements, not only the developments in the fields of sensor technologies, making 

available higher resolution remote sensing data12 (Lillesand et al., 2004; Wulder and Franklin, 2003; 

Wulder et al., 2008), but also the request for further, medium to fine scale applications, as shown by 

Wulder and Franklin (2007), demanded different, more advanced digital change detection techniques 

that utilize, e.g., multivariate statistical approaches. These could also overcome past deficiencies, 

that were identified by, e.g., Fuller et al. (2003) when stating that the “measurement of small to 

medium scale changes over large areas requires levels of precision in mapping which are near 

impossible to achieve with satellite image classification alone” (cf. Fuller et al. (2003)). One of these 

promising approaches is Multivariate Alteration Detection (MAD). MAD is based on canonical 

correlation analysis13, which itself “measures the relationships between the observed values of two 

sets of variables” (cf. Clark (1975)). Canonical correlation analysis uses cross-covariance matrices for 

two sets of variables to find linear combinations of these sets, which have maximum correlation with 

each other. Clark (1975) detected that “canonical correlation analysis has received comparatively 

little attention” (cf. Clark (1975)) and listed relevant geographical studies using canonical correlation 

analysis. However, the concept was further improved and MAD was presented by Nielsen et al. 

(1998) in 1998 within the scope of change detection studies. Additional developments were realized 

by Coppin et al. (2004). At this time, MAD uses two sets of multivariate observations, e.g. digital 

image data assessed at two different points in time, and transforms them into a difference between 

linear combinations of the original variables.  

GOFC-GOLD (2011) concludes that due to its superior features for land-cover change detection MAD 

deserves more attention in the future.  

                                                            
12 The subjects of spatial resolution and scale level are further discussed in chapter 3.4.2.  
13 Originally presented before the American Mathematical Society and the Institute of Mathematical 
Statisticians at September 12th, 1935 and published as “Relations between two sets of variates” (cf. Hotelling 
(1936))  
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3.4.2 Context and object based image analysis  

Another important development is the use of methods involving context and object based image 

analysis (COBIA) for change detections. Fisher (1997) states that most traditional pixel-by-pixel image 

analysis and classification methods assume that real land cover can be perfectly represented by a 

number of quadratic pixels and furthermore these pixels form a homogeneous land surface.  

In general, these methods examine the values of single pixels only in an isolated way disregarding the 

spatial neighborhood of each pixel. However, in the majority of cases a decision on the membership 

of a pixel to a class bears a consideration of the individual adjacencies. This applies to high resolution 

images in particular. As within these the desired data objects, like e.g. tree crowns, are composed of 

a number of pixels shaping separate sub-objects, and according to Guindon (1997) therefore require 

the consideration of their individual neighborhood. In this respect pure pixel based methods are 

limited. As a result of the above described problems conventional classification methods applied to 

high resolution data often leads to dispersed and isolated objects within the classification results. 

Stuckens et al. (2000) describes these pixels being differently classified than their neighbors with the 

term “Salt-and-Pepper effect”. This effect can be attenuated by filters, but cannot be entirely 

avoided.  

Bähr and Vögtle (2005) conclude that the considerable difference between conventional 

classification methods and object oriented ones is the work either with pixels or with object 

primitives, i.e. spectral homogenous regions, in order to define significant objects, which thereby 

play an important role in COBIA. Thus, methods using COBIA do not examine pixels in an isolated 

mode, but use the environment and observe the spatial neighborhood.  
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Figure 11 illustrates an exemplary workflow of a COBIA based method. Apart from processing steps, 

which are usually used in remote sensing approaches, Guindon (1997) additionally identifies two 

steps for COBIA based methods:  

 Analysis of objects instead of isolated pixels through segmentation, i.e., segregating an image 

into spectral homogenous regions, and  

 Image understanding, i.e., information about the inherent structural properties of real 

objects and their expected relationships.  

 

Figure 11: Exemplary workflow of a COBIA based method; adapted from Schiewe et al. 

(2001).  

Blaschke (2010) delivers insight into a multitude of COBIA based studies on environmental 

monitoring from 2000 to the present. Object-level change detection (OLCD) instead of the traditional 

pixel-based algorithms was first introduced by Coppin et al. (2004) and Desclée et al. (2004). 

Nackaerts et al. (2005) presented an OLCD approach for forestry and Desclée et al. (2006) finds OLCD 

“to be very efficient to identify forest land cover changes” in temperate forests (cf. Desclée et al. 

(2006)). Bontemps et al. (2008) successfully applied OLCD with a multi-temporal segmentation 
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technique for the short period of only 3 years in combination with SPOT data in a tropical forest in 

Brazil based on findings of INPE (2006).  

There exist several “ready to use” software solutions for COBIA purposes, e.g. ENVI FX’s Feature 

Extraction Tool, ERDAS’s IMAGINE Objective or Trimble’s eCognition®. The software eCognition® can 

be understood as a system containing a combination of the COBIA methods described above and 

providing a platform for among other things the development of OLCD-approaches. eCognition® 

which was used for this study.  

Spatial resolution and scale level  

Research, e.g. from Marceau and Hay (1999), typically showed that changes in spatial resolution of 

remote sensing data and scale directly influence the classification quality. In this context it is 

important to establish the term minimum mapping unit (MMU). It represents the smallest entity in 

an image that can be displayed as a discrete object and can be calculated by the squared length of 

the resolution of a data source. According to the sensor characteristics for Landsat Thematic Mapper 

714, this is 0.09 ha for QuickBird-215 about 6m² for multispectral, and 0.4 m² for panchromatic data. In 

this regard, Herold (2011) sees a marked difference between the technically possible and the reality 

based upon the methods and techniques. This difference generally enlarges the MMUs. Different 

scales can considerably change the displayed land cover. Saura (2002) reveals that the larger the 

MMU, the more fragmented or sparsely distributed objects are repelled, and the more connected 

classes of a large area become dominant. This means that selecting a specific MMU directly 

influences the degree of detail of a classification and the complexity of an image. The verification of a 

correlation between scale and spatial variance of pixels was already shown by Woodcock and 

Strahler (1987) by contrasting the spatial resolution with the local variance in multiple tests. Thereby 

they were able to notify the highest possible level of information. As an example, the composition of 

a tree is represented by fewer pixels if the MMU is increased. At the same time, the probability that 
                                                            
14 Satellite with optical sensors with a highest multi-spectral spatial resolution of 30m. For further details see 
NASA (2012).  
15 Satellite with optical sensors with a highest multi-spectral spatial resolution of 2.44m and a maximum 
panchromatic spatial resolution of about 0.6m. For further details see chapter 4.3. 
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these pixels bear a resemblance with adjacent ones decreases. According to Woodcock and Strahler 

(1987), this results in an enlargement of the variance.  

As a conclusion, relevant objects for analysis can change dependent on the thematic background 

used to examine the data and the purpose of the data. However, objects being important for a 

research can be examined on different scales, at the same time. This could then be identified with 

the term “multi-scale approach”.  

Segmentation  

As briefly introduced above, segmentation processes images into homogenous regions, or so called 

image objects. Information on these image objects are mostly collected in a database. This 

information can be evaluated in the subsequent classification process, either rule based or through a 

statistical classifier. For this, the user employs semantic information, in order to improve image 

analysis. This information is characterized by meaningful image objects and their mutual relations. 

The process of segmenting can be realized by different approaches. Haralick and Shapiro (1985) 

differentiate six groups of segmentation methods:  

 Measurement space guided spatial clustering:  

Similar to an unsupervised classification or clustering method  

 Single linkage region growing schemes:  

Compares pixels with their neighbors, whereas similar ones are connected, i.e., region 

growing algorithm; Similarity is defined through the difference between two single pixels   

 Hybrid linkage region growing schemes:  

Compares pixels with their neighbors, whereas similar ones are connected, i.e. region 

growing algorithm; Similarity is defined through the difference between a number of pixels 

defining a vector of properties for each pixel  

 Centroid linkage region growing schemes:  

Region growing method that scans the image from starting points on, and compares pixel 

values with mean values of regions  
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 Spatial clustering:  

Both histogram- and region growing methods are used to recognize peak values in the 

feature space, compare them with the nearest lower values, and possibly merge them to 

regions  

 Split and merge schemes or Quadtree-method:  

These split and merge schemes use the entire image as initial segment, which is then divided 

by the difference of pixel values; this process is repeated until only homogenous regions 

most of diverse sizes exist. Well-known is the Quadtree-method, which produces four 

segments per pass  

Segmentation starts with pixel sized segments. The method fuses the segments through the 

appliance of criteria of homogeneity. This process is repeated until the heterogeneity of the 

segments is minimized, which is a condition that is defined through thresholds and parameters of 

tolerance at the beginning of segmentation through the user. The distribution of the starting points 

and the synchronized growing of the segments assure objects of comparable sizes. The formerly 

mentioned thresholds and parameters in the segmentation process define size and shape of desired 

objects by calculating the heterogeneity between adjacent pixels, where “Scale” is one main input 

parameter. In this respect, the “Scale” parameter is a theoretical, abstract term that controls the 

maximum allowed heterogeneity for the resulting image objects. This means that for rather 

heterogeneous data, the resulting image objects for a given scale parameter tend to be smaller than 

in more homogeneous data. Modifying the “Scale” parameter controls the size of the image objects. 

In addition to the “Shape” factor, which distinguishes the ratio between color and shape, and spatial 

properties, and which can be discriminated by the “Compactness” ratio, further variables are used to 

define homogeneity of object primitives.  

Segmentation can also be used to derive meaningful image objects on different scale levels; in this 

case it is called multi-resolution segmentation. Multi-resolution segmentations are used, if 

subsequent classifications on various scales, like, e.g. change detection of forest degradation 

processes, need to be performed. The results of a multi-resolution segmentation are summarized in a 
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hierarchical network of inter-connected image objects. The image objects are made available 

through segmentation of different resolutions and characterize information on various scale levels. 

The modification of the value of tolerance alters the respective object primitives in the scale level. 

The connection of the image objects permits each object to recognize its neighbor, and its sub- and 

super- objects, i.e., the lower and higher scale level. Topology of the network guarantees that the 

borders are consistent, i.e., edges of image objects and their relevant sub- or super- objects 

correspond. A new level can be constructed on its sub- or super-objects, which are then fused or split 

based on the threshold for tolerance and on the criteria of homogeneity. An object database is 

created through the segmentation that consists of spectral characteristics.  

Image understanding  

The process of “Image understanding” generates information about the inherent structural 

properties of real objects and their expected relationships. In contrast to pure pixel based methods, 

information on size, shape, perimeter, and texture of each object are summarized in object 

databases. Furthermore, topology attributes and other spatial information, like, e.g., relationships to 

neighboring and relevant sub- or super- objects, can be included.  

Information on image objects are generally applied to generate a body of rules defining object 

classes and are used in subsequent classification processes. As already shown in Figure 1116 this 

information is based on expert knowledge. The user describes and expresses this information 

through combinations of characteristics or even functions of characteristics. These expressions are 

developed either from one-dimensional membership-functions or from a minimum-distance 

classification of the nearest neighbor.  

The first approach uses thresholds for memberships in the classification. Figure 12 shows a 

membership function, which generally spoken is showing the probability of an object belonging to a 

                                                            
16 See page 38  
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class. In other words: If the condition is fulfilled for an image object, it is assigned to the respective 

class. Functions can be associated among each other to improve the results of classifications.  

The second approach renders a free definable, multi-dimensional feature space, being composed of 

object characteristics, and is used to describe and define object classes.  

 

Figure 12: Example of a membership function dialog in eCognition®; the numbered red 

frames are: (1) name of the feature, (2) avialable types of membership functions, (3) used 

type of membership function, (4) left and (5) right thresholds.   

 

In order to increase semantic flexibility in complex land cover categories, according to Binaghi et al. 

(1999), an exact definition and classification of objects to classes proves to be a hindrance. Another 

approach would be the technique of fuzzy-logic, where image objects can be classified with certain 

likelihood to a class. In order to distinguish the opposite of a class, e.g. “no change”, a method can be 

used, which is called “masking technique”. This technique assigns the likelihood of the class “change” 

using one or several certain thresholds, whereas the class “no change” can be defined by the 
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inverted function. A subsequent ranking process reassigns definite classes based on the 

aforementioned likelihood to particular objects for export of the classification results.  

In conclusion, context and object based image analysis could provide image objects, which 

furthermore are used in an enhanced land-cover change detection approach based on multivariate 

alteration detection.  

3.4.3 Remote sensing sensor concepts  

A final field of essential methodological developments in the last two decades has lately gained 

increasing attention, i.e., different sensor concepts, in particularly those of active remote sensing 

systems. Active remote sensing systems utilize instruments that send a pulse of energy to the Earth’s 

surface. Materials such as leaves, branches, stems and soil, reflect the energy pulse and this energy is 

received and recorded by the instrument. For the fields of forest applications, RADAR and LiDAR 

techniques have been described. LiDAR, also called laser scanning or laser altimeter, uses pulses of 

laser light while RADAR uses electromagnetic waves of different wavelengths. Aspired forest 

attributes are calculated from these data mainly by means of regression estimates.  

LiDAR  

The use of LiDAR has proven to be a valuable method for deriving forest stand characteristics 

relevant to forest management (see Figure 13). Particularly for estimating tree and canopy height for 

both forest stands and individual trees a reliable suite of techniques exist (Parker et al., 2004; Saatchi 

et al., 2011; Simard et al., 2008; St-Onge et al., 2008; Zhang and et al., 2008). Different studies report 

successful synergies of LiDAR and RADAR data to estimate forest biomass (Clark et al., 2011; Hyde et 

al., 2007; Næsset et al., 2011; Sun et al., 2011). However disadvantageous for operational 

applications of LiDAR remote sensing is, the fact that most LiDAR systems studied in the context of 

forest assessments are not space-borne, but instead flown at low altitudes. The Geoscience Laser 

Altimeter System (GLAS) instrument was once stationed  aboard the Ice, Cloud, and land Elevation 
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(ICESat) satellite17, yet after seven years in orbit, ICESat's science mission ended due to the failure of 

its primary instrument (NSIDC, 2013), leaving its suitability for the detection of forest degradation 

unproven. On the whole, LiDAR data are costly for frequent data acquisition, and thus the suitability 

of airborne LiDAR systems for extensive areas is highly limited (Parker et al., 2004).  

 

Figure 13: LiDAR pulse (here called Lidar beam) recording multiple returns as various 

surfaces of a forest canopy and soil are hit; from Lillesand et al. (2004).  

RADAR  

The potentials of imaging RADAR in ecological applications have already been reviewed by Kasischke 

et al. (1997). The wavelengths used with RADAR are about four to five orders of magnitude longer 

than those used in optical remote sensing (see Figure 14).  

                                                            
17 The ICESat satellite was launched by NASA (National Aeronautics and Space Administration) on January, 12th,  
2003.  
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Figure 14: Spectral characteristics of common RADAR systems used in remote sensing; the 

systems are grouped regarding their respective wave bands L (23.5cm wavelength), S (12cm 

wavelength), C (5.7cm wavelength), and X (3.1cm wavelength); adapted from Richards 

(2009).  

In contrast to optical sensors, which record reflections of the objects’ surface, RADAR is sensitive to 

small twigs and leaves (X-and C-Band), and its long wavelength (L-Band) is only reflected by larger 

structures (see Figure 15). These conditions theoretically allow RADAR-data to provide information 

about structures beneath the forest canopy (Sun et al., 1991; Wulder and Franklin, 2003). Kasischke 

et al. (1997) showed that polarization of RADAR signals in a vertical (V) or a horizontal (H) direction, 

i.e., VV, VH, HV, or HH, is an additional feature of these sensors that can be used for accentuating the 

backscatter from objects with particular orientations, such as tree boles in recent clear-cuts. 

Furthermore, Luckman et al. (1998) describes the advantages of RADAR systems and their frequent 

application in the tropics and mountainous regions. Since the platforms carry their own active energy 

source and only few atmospheric constituents, i.e., no clouds or other air-borne particles, interfere 

with detection at the wavelengths used for RADAR remote sensing, they can be used at any time of 

day and under nearly any weather condition.  
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Figure 15: Conceptual differences of remote sensing technologies and their respective 

penetration depths into the forest canopy; from Lefsky and Cohen (2003).  

 

Recent forest inventory experiments with profiling radar have shown to provide valuable data for 

stand-level forest inventories (Carleer and Wolff, 2004; Coops, 2002; Hyyppä et al., 2000; Kugler et 

al., 2006; Wang and Dong, 1997). Neeff et al. (2003) provided a convincing basis for the monitoring 

of forest structure over huge areas at low cost using RADAR data.  

SAR P-, L-, C-band and AGB 

In addition to the above described RADAR characteristics, like e.g. the polarization, synthetic 

aperture RADAR (SAR) as a specific RADAR system parameter plays an important role in RADAR-

based forest applications. In contrast to other imaging RADAR systems, Henderson and Lewis (1998) 

clarify that SAR “…preserves the inter-pulse phase structure of the received signals”, which allows 

the parameterization for specific purposes. One of these is the ability to directly estimate and model 

forest biomass, which was shown in many studies in the 1990s that report the proportionality of the 

intensity in SAR images of the P-, L- and C-bands to the aboveground biomass of forest stands 

(Beaudoin et al., 1994; Bergen and Dobson, 1999; Foody et al., 1997; Kasischke et al., 1994; Le Toan 

et al., 1992; Luckman et al., 1998; Luckman et al., 1997; Ranson et al., 1997; Wang et al., 1995). This 

proportionality could be found by further studies in tropical forests, as well (Castel and et al., 2002; 
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Kuplich et al., 2000; Kuplich et al., 2005; Mitchard et al., 2009; Pulliainen et al., 2003; Romshoo and 

Shimada, 2001; Santos et al., 2003; Santos et al., 2006). Le Toan et al. (2004) and Neeff et al. (2005) 

used C- and L-Band of various SAR sensors, in order to model forest carbon budgets. In an interesting 

study Mitchard et al. (2011) tried to measure biomass changes due to deforestation in central Africa 

using multi-temporal L-band radar backscatter from ALOS18.  

Biomass saturation level in RADAR data  

In 1995, Imhoff (1995b) described the occurrence of the effect of saturation within RADAR data and 

stated “…the predictive capability of the relationships are not useful past certain biomass levels”, 

although the correlation coefficients were acceptable (cf. Imhoff (1995b)). He subsequently 

estimated the biomass saturation levels for the forest data of SAR C-band (20 tons/ha), L-band (40 

tons/ha), and P-band (100 tons/ha) (cf. Imhoff (1995b)). Most of the aforementioned studies in this 

chapter perceived the same effect, but partly valued different absolute levels. On the whole, this 

effect negatively affects the application of the direct estimation of forest biomass for three out of 

five IPCC’s ecological zones of the tropical domain, i.e., dry, moist and rain forests, where on all four 

continents between 100 to 680 tons of dry matter per hectare aboveground biomass would to be 

expected (IPCC, 2006).  

A recent study showed that, among other things, the effect of saturation within RADAR data limits 

the use for direct forest biomass estimation within the scope of REDD+. The authors “believe it is at 

best unhelpful, […] to suggest that radar intensity provides a direct measurement of forest 

aboveground biomass” (cf. Woodhouse et al. (2012)).  

TerraSAR-X  

In June 2007 the German radar satellite TerraSAR-X was launched to provide very high resolution X-

band synthetic aperture radar data in three imaging modes for scientific and commercial purposes 

(DLR, 2005). Further details on TerraSAR-X are given in the Basic Product Specification Document by 

                                                            
18 Advanced Land Observing Satellite “Daichi” (ALOS) is a Japanese Earth observation satellite that carries an 
array type L-band SAR. For further details see JAXA (2012)  
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DLR (2010), and on its specific design in Pitz and Miller (2010). While initial studies concentrated on 

urban areas (Eineder et al., 2009; Esch et al., 2005; Roth et al., 2005), Baghdadi et al. (2008) and Leyk 

et al. (2002) demonstrated the sensitivity of TerraSAR-X data in environmental and forestry studies. 

Kuntz (2010) highlighted the potential of space borne SAR for monitoring tropical environments. 

Furthermore, Englhart et al. (2011) used TerraSAR-X data for direct biomass estimation and biomass 

regression modeling. The respective findings show the limitation of this method evoked by the 

saturation effect of X-Band radar signals at biomass values higher than 80t/ha, whereas others give 

reason to expect lower relevant values (Imhoff, 1995b; Luckman et al., 1997).  

Change detection with RADAR  

Apart from direct biomass estimation, Rosenqvist et al. (2003) views space-borne SAR data as a 

useful tool, for detecting land cover changes. They affirm that textural changes, such as burn scars, 

provoked by fire and causing substantial change to the structure of a forest, can be detected from 

SAR for several years after the incident. Texture-analysis methods on various SAR data were used to 

successfully identify deforestation patterns, even in tropical forests (Huang, 2008; Mesquita Jr. et al., 

2008). Thiel et al. (2006) utilized multi-image segmentation and object-based classification of L-band 

SAR data for detection of deforestation.  

Using TerraSAR-X data Baldauf and Köhl (2009) were able to detect harvesting of individual trees in a 

vast tropical forest land and concluded that this approach could be used for monitoring forest 

degradation purposes in tropical forests.  

  



3 Background  50 
 

3.5 Error analysis strategies for change detection  

Lillesand et al. (2004) considers classifications in general “not complete until its accuracy is assessed” 

(cf. Lillesand et al. (2004)).  

 

Typically, studies using remote sensing focus the error analysis strategies on the comparison 

between results and reference data. It would be an enormous, and thus expensive, method to 

compare the classification results at every pixel with the reference basis, and thus render them 

impracticable on a large scale. Hence, such data can be acquired from sample areas, which Lillesand 

et al. (2004) describe as intended to be “representative, uniform land cover” being “withheld for the 

postclassification accuracy assessment” and consequently not implemented in the classification 

process. In this context, sampling can again be defined as the process of achieving information on an 

entire population by choosing single observations, where different statistical methods can be 

discerned. A register of statistically sound sampling techniques can be found in Köhl et al. (2006).  

In most cases, the aforementioned comparison is realized using error matrices, where a comparison 

of the relationship between reference data and equivalent classification results is carried out in a 

category-by-category manner. The correctly categorized classes are aligned in the upper left to lower 

right diagonal of the error matrix, as to be seen in Figure 16.  
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Figure 16: Example for an error matrix; from (Czaplewskyi, 2003).   

 

The errors that occurred in the classification can be grouped to omissions and commissions. The first 

refer to those pixels or image objects that are incorrectly classified in one category and are shown in 

the column fields which do not belong to the above mentioned diagonal. In contrast, commission 

errors describe pixels or image objects, which are classified as one class, but according to the 

reference data belong to another, and can respectively be seen in the non-diagonal row fractions. In 

addition, overall accuracy and the accuracies of the single classes are normally shown in an error 

matrix, as well. The producer’s accuracy specifies, how well training areas are classified, and the 

user’s accuracy indicates the probability of the actual representation of a classified pixel or image 

object to a class in reality.  
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According to Congalton and Green (2007) these three accuracy parameters can be established as 

follows:  

 Overall accuracy:   
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Along with the analysis through the error matrix, there are examinations of classification results by 

the Kappa index of accuracy that is described by Campbell (2007) as a scalar statistic quantifying the 

agreement between the reference and map classifiers in a multivariate error matrix. Definitions and 

notations for these accuracy parameters are explained by Magnussen (2009). Considering the errors 

of omission and errors of commission mentioned above, Congalton and Green (2007) sees the Kappa 

value as a review of the information of the error matrix. It catches a value of 0 to 1, whereas 0 shows 

no conformity, and 1 stands for full conformity. Czaplewskyi (2003) sees values of Kappa larger than 

0.6 as an indication for good consistency in forestry research. Within the scope of these so called 

“hard classifiers”, problems of evaluations may arise as they are unable to correctly represent 

nature’s indistinct transitions. Foody (2002) states that, if pixels are assigned to just one class, it will 

be assumed, that an image consists of just pure, unmixed pixels. This, however, will not occur in most 

cases in the natural world.  

The statistical evaluation of classification methods is illustrated in the above schemes of error 

analysis. However, soft classifiers such as the fuzzy approach produce classification results, which can 

only be exercised within these conventional methods after performing some additional processing, 
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e.g. after transferring the results of soft classifiers into distinct classes. This process is known as de-

fuzzyfication and, according to Binaghi et al. (1999), comprises a high loss of information. An 

alternative can be adapting the method of error analysis to the characteristics of the soft 

classification. Binaghi et al. (1999) tried to estimate the accuracy of corresponding memberships 

between classification and reference data. This is realized by modifying the ordinary method in such 

way as to compare the degree of membership to a certain class with the reference data, resulting in 

the degree of correlation. In contrast, Trimble (2011) makes it possible to directly use the degree of 

membership to a class as quantification of error. The higher an object’s degree of membership, the 

higher the object’s assured classification. Additionally, the minimal and the maximal degree of 

membership and the mean value and standard deviation are calculated. Comparing the best with the 

second best membership expresses the severability of classes.  
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4 Data and methods  

The illustration of the Caracaraí forest project, where the present study was carried out, forms the 

first step of this chapter. In a second step, both the in-situ data and the data from remote sensing 

that have been used in the study are described. Subsequently, explanations of the used methods 

follow, i.e., methods to detect forest degradation using RADAR, methods to identify influences of 

stand characteristics on the detection of forest degradation, and methods to quantify the accuracy of 

the results.  

4.1 Caracaraí forest project  

The project site is located in northern Brazil in the federal state Roraima. Roraima’s landscape is 

indicated as Northern Amazonia, whereas the north-east is marked by savannas, and the south and 

the west are characterized by high forest cover proportion (see Figure 17). Evident periods of rain 

and dry seasons exist. Vast areas of Roraima’s soils are degraded through extensive stock farming 

and continuous slash and burn. However, the project site was a restricted and controlled area 

without these effects.  
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Figure 17: The map shows the federal state Roraima in Brazil. The capital Boa Vista and the 

municipal Caracaraí, where the project area (red outline) is located, are indicated on the 

map. In the background a Landsat7 ETM+ scene from 2004 is shown in false color. Green 

areas show forest lands, pink areas show deforested spots.  

 

The project site, covered with approximately 30,000 ha of natural moist forests, is located about 

130km to the south of Roraima’s capital Boa Vista near the city Caracaraí and is found on the Guyana 

Shield, an area that is part of a global biodiversity hotspot. Apart from some areas of clearing most of 

the project site is completely comprised of forests. Alongside streams the height above sea level is 

about 60m and ascends to 100m in the interior. Exceptions are some hills which hold an elevation of 

up to 280m. The vegetation can be denominated as “evergreen tropical lowland rainforest”, being a 

form of alternation between the rainforests of central Amazonia and the dry forests of northern 
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Roraima. Figure 18 shows the coarse outline of this forest area. There are no legal settlements within 

the boundaries of the project site.  

The forest lands of the project are comprised in various Forest Management Units (FMU). The FMUs 

have been managed according to the principles of sustainable forest management, as defined by the 

Principles, Criteria, and Indicators for well-managed forests, developed by the Forest Stewardship 

Council (FSC, 2002) and holds the FSC certificate ‘GFA-FM/COC-001250, 2008-01-18’. In this regard, 

Haas (2006) gives a detailed insight into past activities in the project area and the FMUs.  

 

Figure 18: Map of the Caracaraí forest project; the red outline shows the coarse project area 

of about 30,000ha; the grey lines indicate the planned Forest Management Units (FMU). The 

FMUs 5 (light blue) and 6 (light red) have been used in this study. In the background a 

Landsat7 ETM+ scene from 2004 is shown in false color. Green areas show forest lands, 

pink areas show deforestation spots. In the upper left corner the Caracaraí forest project 

directly adjoins the stream Rio Branco (dark blue).  
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4.2 Data from in-situ assessment  

In 2004 and 2005, Haas and Glauner (2005) conducted an initial, coarse forest inventory, identifying 

334 tree species, belonging to 54 families and 135 genera. Ten compartments were established, 

covering an area of 17,303 ha. Starting in 2006 detailed inventories were made as a total tally of each 

of the compartments, and these were further compiled to annual operational plans, e.g. for the 

FMUs 5 and 6 in the season 2008 (Haas, 2009c). These plans show inventory data of the in-situ 

assessments that include tree specific spatial information, tree species, and dendrometric data, such 

as dbh, height and crown parameters. Furthermore, auxiliary data on the quality of the trees, and the 

structure and status of the forest and its topographic characteristics as well as on possible human 

induced impacts were collected.  

 

Figure 19: Photo of an example for the durable unique identification on a tree bole for the 

tree number “002838”.  

The inventory system was developed by Haas (2007) and consists of squares of 50m by 50m across 

the whole compartment, in which all trees, i.e., large emergent trees, medium sized trees and 

understory trees with a dbh of at least 35cm, are taken into account and are marked with a durable 
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the FMUs 5 and 6  (Haas, 2009a). Data on  the chain of custody  (Haas, 2009b) and  the  tree specific 

identifications, as shown  in Figure 19, allowed for a detailed spatial planning and reconstruction of 

the locations of all the trees, i.e., 42,478 remaining trees and 5,663 harvested trees, in a Geographic 

Information System (GIS) (see Figure 21). During the  logging process relevant parts of the tree,  i.e., 

stump and all parts of the tree bole, were marked with the same  identification as was done within 

the  inventory  (see  Figure 19). This allowed  cross‐validation of  the  felled  trees as  they were being 

hauled away.  

 

Figure 21: Map showing the distribution of trees (green) inside the squares (grey) next to the 

Base line (dashed red line) within the project area; exemplary the referencing of a tree 

(Tree_ID= 26235) in respect to the dot grid point (15m east, 19m north) of the Square 74/1 is 

illustrated.  

4.3 Data	from	remote	sensing		

Various  remote  sensing datasets of  the  area of  investigation were  available  in  the project.  In  the 

study the following three remote sensing datasets have been used (i) panchromatic Quickbird‐2 data 

from 2004 (see Table 2 and Figure 22), (ii) TerraSAR‐X data from 2008 and (iii) TerraSAR‐X data from 

2009 (see Table 3, Figure 23 and Figure 24).   	
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Federal Research Institute for Rural Areas, 
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Institute for World Forestry, Thomas Baldauf 
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Metadata	on	Quickbird‐2	data		

Table 2: Metadata on panchromatic Quickbird-2 data; Metadata is roughly describing 

significant facts about the QuickBird-2 satellite scene delivered by DigitalGlobe®.  

 
Dataset (i):  

Panchromatic Quickbird‐2 data  

Acquisition date  18.03.2004 

Cloud cover  5% 

Catalog ID  1010010002CA8201 

Spatial resolution  0.64 meters 

Environmental 
quality 

90 ‐ Excellent 

OFF‐NADIR  14 degrees 

Image Location 

Vertex  Latitude  Longitude 

southwest  1,8036  ‐61,0709 

northwest  1,9539  ‐61,0707 

northeast  1,9517  ‐60,9108 

southeast  1,8026  ‐60,9104 

center  1.878  ‐60,9907 

 

 

Figure 22: Map showing the obtained QuickBird-2 image in the west; the red outline shows 

the coarse project area.  	

QuickBird-2

0 5.000

Meters¹
Legend

Outline of project area



4 Data and methods  61 
 

Metadata on TerraSAR-X data  

Table 3: Metadata on the two TerraSAR-X datasets; Metadata is roughly describing 

significant facts about the TerraSAR-X satellite scenes delivered by Infoterra/Astrium GmbH.  

 
Dataset (ii):  

„TerraSAR-X 2008“19 
Dataset (iii):  

„TerraSAR-X 2009“20 

Acquisition 20.04.2008  09:48:40 17.08.2009  09:48:51 

itemName Level 1B Product Level 1B Product 

missionInfo 
mission: TSX-1 
orbitDirection: DESCENDING 

mission: TSX-1 
orbitDirection: DESCENDING 

 
acquisitionInfo 

 
sensor: SAR 
imagingMode: HS 
lookDirection: RIGHT 
antennaReceiveConfiguration: SRA 
polarisationMode: SINGLE  
polLayer: VV 
elevationBeamConfiguration: spot_064  
imagingMode: spotLight 

 
sensor: SAR 
imagingMode: HS 
lookDirection: RIGHT 
antennaReceiveConfiguration: SRA 
polarisationMode: SINGLE  
polLayer: VV 
elevationBeamConfiguration: spot_064  
imagingMode: spotLight 

 
productVariantInfo 

 
productType: EEC_SE_HS_S 
productVariant: EEC 
projection: MAP 
mapProjection: UTM 
resolutionVariant: SE 
radiometricCorrection: CALIBRATED 

 
productType: EEC_SE_HS_S 
productVariant: EEC 
projection: MAP 
mapProjection: UTM 
resolutionVariant: SE 
radiometricCorrection: CALIBRATED 

 
imageDataInfo  

 
imageDataDepth: 16 

 
imageDataDepth: 16 

sceneInfo 
sceneID: 
C29_N35_D_HS_spot_064_R_2008-04-
20T09:48:40.441944Z 

sceneID: 
C73_N35_D_HS_spot_064_R_2009-08-
17T09:48:51.625996Z 

Image Location sceneCoords sceneCoords 

  Latitude Longitude Latitude Longitude 

southwest 1,853 -60,910 1,852 -60,912 

northwest 1,872 -61,009 1,872 -61,010 

northeast 1,825 -61,018 1,825 -61,019 

southeast 1,806 -60,919 1,806 -60,921 

center 1,839 -60,965 1,839 -60,966 

 

  

                                                            
19 See 9.2 on page 149 for further detail  
20 See 9.3 on page 149 for further detail  



4 Data and methods  62 
 

In the following, the dataset (ii) is named “TerraSAR-X 2008”, and the dataset (iii) is named 

“TerraSAR-X 2009”.  

 

Figure 23: Data set (ii); TerraSAR-X data from 2008, TerraSAR-X 2008.   

 

 

Figure 24: Data set (iii); TerraSAR-X data from 2009, TerraSAR-X 2009:  



4 Data and methods  63 
 

4.4 Methods to detect forest degradation using RADAR  

In the present study contributions to scientifically sound and operational methods for reporting on 

forest degradation within the scope of REDD+ are developed. Chapter 3.1 identifies selective logging 

as a major cause of forest degradation. Simultaneously, selective logging entails the slightest 

disturbance per unit of area of all causes of forest degradation listed in chapter 3.1. Chapter 3.3 

showed that some approaches for reporting on forest degradation exist; however, sound and 

operational methods incorporating the detection of spatial patterns of selective logging are non-

existent, yet. Consequently, in chapter 4.4 methods are developed to detect spatial patterns of 

selective logging as forest degradation in tropical moist forests using high-resolution RADAR data. 

Figure 39 on page 148 shows a flowchart identifying the single methodological processes of the four 

objectives to verify the hypothesis of the present study.  

4.4.1 Pre-processing stages  

In April 2010 intense fieldwork was carried out, in order to co-register both the three sets of remote 

sensing data and the in-situ assessment data. It was possible to use the design of the inventory by 

Haas (2006), and perform a re-measurement of relevant identifiable spots within the inventory area. 

For this re-measurement a high-accuracy global positioning system (GPS), the Trimble GeoExplorer 

XH with an external Zephir antenna, was used. This setting theoretically allows for a location 

accuracy of decimeters. However, in most cases this value cannot be achieved in tropical forests 

especially under tree crowns. Regarding the objective of the study, a location accuracy of less than 

two meters was seen as sufficient and could be reached for each ground-control point (GCP). Careful 

planning based on expected values of positional dilution of precision (PDOP) for each measurement 

session proved valuable. The PDOP value is a numerical measure for the theoretical, possible error in 

the accuracy of the GPS’s position to specify the additional multiplicative effect of GPS satellites 

geometry (Pawlowicz, 2007). PDOP values from 1 to 5 theoretically may produce good results; higher 

values are of limited use only. In this manner, 16 GCPs, each with a PDOP value lower than 4, were 

used for an affine transformation process for co-registration of the above named four data sets, i.e. 
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the two TerraSAR-X scenes, the Quickbird2 scene and the in-situ data. As the RADAR data sets are 

syndetic co-registered, they could be taken as spatial registration basis.  

Apart from these spatial corrections, atmospheric correction can be necessary (Kennedy et al., 2009; 

Tomppo et al., 2008; Vermote et al., 1994). Although according to inter-alia Song et al. (2001) optical 

remote sensing data can be affected by atmospheric effects, no respective correction was carried-

out. This was due to the fact that the optical data was only used for visual interpretations, which 

could be performed without any limitation.  

A bi-temporal stack of the above described TerraSAR-X scenes, i.e. TerraSAR-X 2008 and TerraSAR-X 

2009, was generated (see Figure 25). Thus, the two scenes TerraSAR-X 2008 and TerraSAR-X 2009 are 

incorporated in one image stack as two bands. This was accomplished in ERDAS IMAGINE and 

realized in order to facilitate the subsequent processes of the context based image analysis including 

the development of an object-level change detection method. These two processes were completed 

using the software eCognition21. This product can be understood as a system containing a 

combination of diverse methods, both iterative manual and automated ones, of image 

understanding. The software uses information implemented in semantics, in order to improve image 

analysis. Meaningful image objects and their mutual relations characterize this information. For each 

of these objects, information is collected in a database, and can be evaluated either rule based or 

through a statistical classifier.  

                                                            
21 The versions that were used are Definiens® eCognition® Developer 8, Definiens eCognition Developer 8.64, 
and Trimble eCognition Developer 8.7 64bit.  
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Figure 25: Example of the bi-temporal stack of the TerraSAR-X scenes: TerraSAR-X 2008 and 

TerraSAR-X 2009; The stack is displayed as RGB (Red = TerraSAR-X 2008, Green = 

TerraSAR-X 2009, Blue = TerraSAR-X 2009); from Baldauf and Köhl (2009).  

4.4.2 Bi-temporal segmentation  

Common to methods using COBIA, prior to the actual classification a segmentation was carried out. It 

processes the used remote sensing data into meaningful, homogenous regions, also called image 

objects. The image objects contain a set of pixels. This set of pixels of an image object   is denoted as 

  .  

This primer step is a significant and influential stage in COBIA, as all further processes use these 

image objects. In this study, the segmentation approach “centroid linkage region growing schemes” 

was used to segment the bi-temporal stack (TerraSAR-X 2008 and TerraSAR-X 2009). This approach is 

named multi- or bi-temporal segmentation, and respects the subsequent change detection purposes.  
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Seeing that the automated possibilities of influencing parameters for segmentations are limited, they 

have to be empirically controlled. The main influencing parameter is the “Scale” parameter, a 

theoretical and abstract term that controls the maximum allowed heterogeneity for the resulting 

image objects. By modifying the “Scale” parameter the size of image objects is controlled. In the 

segmentation process two “scale levels” are generated to safeguard the detection of changes on 

various scales. 

4.4.3 Image understanding and object-level change detection  

Using the generated image objects of the segmentation process, the actual change detection is 

realized by the processes of image understanding and object-level change detection. Hereby, the 

image objects from the bi-temporal segmentation form the spatial basis for the change detection 

methods. The so called object-level change detection associates the segments of the image objects 

to the location of the trees in the project area. The alteration detection within these image objects is 

based on differences of spectral and structural characteristics between the image objects of the two 

points in time, i.e., 2008 and 2009. This chapter identifies the methods, how these differences are 

evaluated.  

On the whole, image understanding guides the user through a multitude of intermediate results. 

These intermediate results must be verified and where appropriate the image objects must be 

improved until they correspond with the visual impression of objects in reality, i.e., in this study 

correspondence with trees and tree crowns.  

Theoretical deduction and observations  

Firstly, preliminary image understanding was achieved by theoretical deduction of observations in 

the bi-temporal stack in Figure 25: The stack shows differences of pixel values between the two 

points in time, represented in image bands by the scenes TerraSAR-X 2008 and TerraSAR-X 2009, in 

the colors red and cyan. This circumstance results from the assignation of the three colors red, green 

and blue (RGB) to the two bands (Red = TerraSAR-X 2008, Green = TerraSAR-X 2009, Blue = TerraSAR-
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X 2009). If in theory a tree was harvested between the two points in time, when the two TerraSAR-X 

scences were recorded, the image stack shows the reflection of this tree in red (as the tree is existent 

at the recording time April 20, 2008) and does not show the respective reflection in green or blue (as 

the tree is not existent on August 17, 2009). This theoretical case results in a R-G-B assignation of 1-

0-0. Thus, a red spot can be seen in this case. Reversely, cyan spots can be perceived, if a new tree 

grows into a formerly uncovered spot (a R-G-B assignation of 0-1-1). Table 4 shows all theoretical 

cases that are possible for RGB assignation of the used image stack.   

Table 4: The four theoretical cases for differences between the two scenes TerraSAR-X 2008 

and TerraSAR-X 2009 in the image stack
22

 as RGB (Red = TerraSAR-X 2008, Green = 

TerraSAR-X 2009, Blue = TerraSAR-X 2009).   

Theoretical cases  TerraSAR-X 2008 TerraSAR-X 2009 Color in image stack  

1 (no change) Reflection Reflection  White  

2 (object extracted) Reflection  No reflection  Red  

3 (new object) No reflection  Reflection  Cyan  

4 (no object) No reflection  No reflection  Black  

 

Evaluating the image objects’ characteristics  

Secondly, further image understanding was accomplished by evaluating the image objects’ spectral 

characteristics. Accordingly, the following two spectral characteristics23, in OLCD also often named 

features, were calculated for all the image objects for both bands of the image stack (TerraSAR-X 

2008 and TerraSAR-X 2009):   

  

                                                            
22 See Figure 25 on page 65  
23 Based on Trimble (2011)  
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Firstly, the mean intensity of all pixels forming an image object (Mean):  

  ̅      ̅     
 

   
∑            

            

 
Eq. (4) 

Where:  

-   ̅    is the mean intensity of image layer   of an image object   

-    is the set of pixels of an image object   with    = {(x;y;z;t) : (x;y;z;t)   v}  

-     is the total number of pixels contained in    

-             is the image layer intensity value at pixel (x;y;z;t) 

-   ̅  is the mean intensity of image layer  . 

The two resulting features are:  

  ̅                (Mean of TerraSAR-X 2008)  

  ̅                (Mean of TerraSAR-X 2009) 

 

Secondly, the amount that a given image layer contributes to the total brightness (Ratio): 

   
  ̅   

∑   
     ̅   

 
Eq. (5) 

Only valid if   
    and       .  

Where:  

-    is the amount that a given image layer   contributes to the total brightness 

-  ̅     is the mean intensity of image layer   of an image object    

-  ̅    is the brightness of an image object    

-   
  is the brightness weight of image layer  .  

 

The two resulting features are:  

                  (Ratio of TerraSAR-X 2008)  

                  (Ratio of TerraSAR-X 2009) 
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The two features “Mean of TerraSAR-X 2008” and “Mean of TerraSAR-X 2009” can comprise values 

between 0 and 2,04824, while the values of the two features “Ratio of TerraSAR-X 2008” and “Ratio of 

TerraSAR-X 2009” are between 0 and 1. Higher values in each of the four features show the existence 

of an object, speaking of forests, this means a tree.  

Translation of the observations into object-level change detection  

Thirdly, due to changes of the spatial patterns of crown cover in time, i.e. between the two recording 

times of “TerraSAR-X 2008” and “TerraSAR-X 2009”, the theoretical examples shown in Table 4 can 

be observed throughout the image stack generated in 4.4.1. This observation was translated into two 

object-level change detection equations using the features of Eq. (4) and Eq. (5):  

Algebraic difference of the mean intensities for each of the image objects:  

  ̅                 ̅                 

(Mean of TerraSAR-X 2008) - (Mean of TerraSAR-X 2009) > x  Eq. (6) 

 

Quotient of the ratios for each of the image objects:   

                

                
   

(Ratio of TerraSAR-X 2008) / Ratio of TerraSAR-X 2009) > y Eq. (7) 

Where x and y are thresholds for the latter change detection.  

While no further limitations exist for Eq. (6), Eq. (7) is valid only for values of “Ratio of TerraSAR-X 

2009” > 0. The two equations (6) and (7) for object-level change detection can be classified as 

Multivariate Alteration Detection (MAD)25 based methods.  

                                                            
24 The range of values originates from the image data depth of the original satellite data, i.e. 16bit (binary digit). 
One bit can have the value of either 1 or 0, thus 16bit equals 216 = 65,536 possible values. In spite this 
theoretical image depth, data of TerraSAR-X actually shows values of 0 to 2,048 (i.e. 11bit), only.  
25 See 3.4.1 on page 35  
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The development of an operational method for the detection of forest degradation in forms of 

patterns of selective logging using RADAR data, focuses on the detection of the theoretical case  

“2 (object extracted)“26. However, an overestimation of such changes has to be limited, resulting in a 

careful control of misinterpretations of the theoretical cases 1, 3 and 4 (“no change”, “new object” 

and “no object”) of Table 4. These theoretical cases can be classified by defining the threshold for “x” 

or “y”. For a better understanding, Table 5 incorporates possible values for the features of Eq. (6) and 

Table 6 for Eq. (7). Additionally, for all exemplary values a classification of respective “Theoretical 

cases” is given in Table 5 and Table 6.   

Table 5: Possible values for the features of equation (6) show the influence on the threshold 

“x”. This value of “x” can be further used for the classification into the four theoretical 

cases introduced in Table 4.   

 

  

                                                            
26 See Table 4 on page 67  

Possible value for „Mean 

of TerraSAR-X 2008” 

Possible value for “Mean 

of TerraSAR-X 2009” 
„x“ in equation (6) Theoretical cases 

2000 2100 -100 1 (no change) 

2000 200 1800 2 (object extracted) 

500  1500 -1000 3 (new object) 

150 200 -50 4 (no object) 
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Table 6: Possible values for the features of equation (7) show the influence on the threshold 

“y”. This value of “y” can be further used for the classification into the four theoretical 

cases introduced in Table 4.   

 

The examples in Table 5 show that for image objects where an object, like a tree, was extracted 

(Theoretical case = “2 (object extracted)”), high values of the threshold “x” for Eq. (6) can be 

observed. The same holds true for high values of the threshold “y” in Table 6 for Eq. (7). However, it 

can be observed that within the range of above values only for threshold “y” a decisive break can be 

deduced, i.e. the value y=1. If y>=1 is valid for an image object, it can be classified as of Theoretical 

cases = “2 (object extracted)”. This general validity of Eq. (7) is supportive of the transferability of the 

applied approach. Consequently, Eq. (6) is not pursued in further stages of this study, but the 

classification algorithms are based on Eq. (7).  

Classification rule set and OLCD classification  

The classification rule set consists of three sections: “Class Hierarchy”, the “class descriptions” and 

interim results (see Figure 26). The first two sections can be subsumed as the actual classification 

process.  

The use of two “scale levels” to improve the classification results safeguards the detection of changes 

on various scales. Thus, image objects of each “scale level” are assigned to separate classes. Or in 

other words, for each “scale level” of the segmentation a class with respective sub-classes is defined. 

Possible value for “Ratio 

of TerraSAR-X 2008” 

Possible value for “Ratio 

of TerraSAR-X 2009” 
„y“ in equation (7) Theoretical cases 

0.90 0.95 0.95 1 (no change) 

0.90 0.05 18 2 (object extracted) 

0.10 0.90 0.11 3 (new object) 

0.10 0.15 0.66 4 (no object) 
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Figure 26 shows, how such classes can be grouped in a hierarchical structure, i.e., “Class Hierarchy”, 

allowing child classes to inherit attributes from parent classes. These parent classes are also called 

“super-objects”, the child classes “sub-objects”. The definition of the classes is realized in the “class 

description”, containing simplistic one-dimensional membership functions. Eventually, the 

application of a classification achieves interim results.  

In this study, the one-dimensional membership functions are used to describe the classification 

threshold “y”. Thereby, the classes for the two events, i.e., “change” and “no change”, are defined, 

which in the end, are expected to detect areas that show patterns of forest degradation in the study 

area.  
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Figure 26: Classification rule set for object-level change detection. In this example, the class hierarchy consists of the two classes “Scale-level 1” and 

“Scale-level 2”. Each class is defined by the class description that consists of one-dimensional membership functions. This example returns the interim 

results “Result 1” and “Result 2” that can be deduced by each class on the respective scale.  

Scale-level 
1

Class descriptionClass hierarchy

Classification rule set for object-level change detection 

yes Function 2yes

One dimensional 
membership function

Result 1yes

Result2no

yes

yes

Result 2no

Result 1

Interim result

Scale-level 
2

Function 1

One dimensional 
membership function

Function 5

One dimensional 
membership function

Function 3 yes Result 1

no

Function 4 Function 5yes yes
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4.5 Methods to analyze the accuracy of the object-level change detection  

Following the approaches described in chapter 3.5, the accuracy of the object-level change detection 

is assessed. Hence, after the de-fuzzyfication of the classification results each class is quantified using 

tables comparing absolute and relative figures of the respective classes. Finally, an error matrix is 

assembled that shows the relationship between reference data and equivalent classification results 

for both events “change” and “no change”, and furthermore gives the following statistical measures 

introduced in chapter 3.527:  

 Overall accuracy:  






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1  (see Eq. (1)) 

 Producer’s accuracy:   
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(see Eq. (2)) 

 User’s accuracy:   
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(see Eq. (3)) 

 

  

                                                            
27 See Eq. (1), Eq. (2) and Eq. (3) on page 52 
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4.6 Methods to identify influences of stand characteristics on the 

reliability of the detection of forest degradation   

In order to identify and quantify influences of stand characteristics on the reliability of detecting  

forest degradation in tropical moist forests using RADAR remote sensing techniques, the following 

three attributes are investigated:  

 Tree biomass  

 Tree crown area  

 Social position and dominance  

All three attributes are expected to have an influence on the detectability of the extraction of the 

single trees. This influence can be quantified by evaluating their respective role in the above 

described accuracy assessment of the classification process. In the end, for each of the three 

attributes, particular accuracy assessments are determined and analyzed. For this all three attributes 

are evaluated with individual methods and then accumulated in a geodatabase28.  

4.6.1 Tree biomass  

In order to estimate the particular aboveground tree biomass, the use of the in-situ data described in 

4.2 of all individual trees was used with the regression model of Chave et al. (2005):  

〈   〉         (                         (       )
 

       (       )
 
) Eq. (8) 

where  

- AGB is the total aboveground biomass in kg  

- p is the wood specific gravity in g/cm³; this study uses the default value of 0.5g/cm³  

- dbh is the diameter at breast height in cm  

                                                            
28 The used geodatabase is implemented in ArcSDE and was already used for importing the in-situ data. In 
addition, this environment allows for further interactions, e.g. by SQL-based queries, from all software 
programs used in this study, i.e. Trimble’s eCognition, ESRI’s ArcGIS and IBM’s SPSS.  
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By means of Eq. (8) and the dbh measurements from the in-situ data the aboveground tree biomass 

can be estimated for all trees in the project area.  

This general equation is applicable for moist forest stands and has been evaluated in relevant test-

sites in Brazil (Chave et al., 2005). Chave et al. (2005) acknowledge that an overestimation of the tree 

biomass values for larger trees may occur. Although better equations may exist, e.g. using tree height 

as an additional predictive variable, resulting in more accurate estimations of the actual AGB, this 

common approach has been used with the intention of evaluating the influence of AGB of single 

trees in the detection of forest degradation patterns. For this, the exact tree biomass value is not of 

main importance.  

4.6.2 Tree crown area  

The in-situ data do not provide measurements of individual tree crown areas. However, the high-

resolution panchromatic Quickbird scene allows for the visual detection of tree crowns, filling this 

gap. The delineation of tree crowns was performed for a subset of ten percent of the relevant trees 

using ESRI ArcGIS 10. Subsequently, the tree crown areas of these trees were calculated and saved as 

the variable Shape_Area.  

In a further step, a model based on these digitized trees, i.e., the variable Shape_Area, and their 

respective dbh was developed in IBM SPSS Statistics 20 to estimate all tree crown areas. This 

approach has already been widely used in temperate forests (Bechtold, 2003, 2004; Hann, 1997) and 

tropical forests (Mugo et al., 2011). Table 7 shows possible models and their parameter estimates as 

interim results from the analysis in SPSS.  
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Table 7: Model summary and parameter estimates. Dependent variable is Shape_Area, which 

is based on the areas of the tree crowns in square meters and originated from the 

delineation of 10% of the total tree crowns in the project area.  

Equation 

Model Summary Parameter Estimates 

R²  F df1 df2 Sig. Constant b1 b2 b3 

Linear .531 635.263 1 561 .000 -21.145 1.383   

Logarithmic .508 578.735 1 561 .000 -584.536 157.501   

Inverse .383 348.533 1 561 .000 262.976 -11640.931   

Quadratic .541 330.061 2 560 .000 -58.511 2.104 -.002  

Cubic .542 220.203 3 559 .000 -42.478 1.667 .001 -6.534E-6 

Compound .374 335.587 1 561 .000 23.542 1.011   

Power .406 382.835 1 561 .000 .159 1.380   

S .346 296.440 1 561 .000 5.681 -108.397   

Growth .374 335.587 1 561 .000 3.159 .011   

Exponential .374 335.587 1 561 .000 23.542 .011   

Logistic .374 335.587 1 561 .000 .042 .989   

 

As expected the R²-values of all of the models are rather low. This is due to the fact that the 

development of tree crowns is very complex and can only partially be described by the dbh alone. 

Since instead of the exact value of the tree crown area, it is the influence of this attribute of stand 

characteristics on the detectability of the respective tree that is of importance, these low values 

were accepted and the quadratic model  

(R² = 0.541) was used. Thus, the resulting crown area model used in this study is shown in Eq. (9):  

                                 Eq. (9) 

Where:  

- eCA = estimated Crown Area in sqm 

- dbh = diameter at breast height in cm  
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Using Eq. (9) and the dbh measurements from the in-situ data an estimation of the tree crown area 

for all trees in the project area can be implemented.  

Furthermore, a classification of the estimated tree crown area values was implemented. This 

classification comprises of five classes due to their respective tree crown area in square meters (sqm) 

(see Table 8). These classes are used for evaluating the influence of the tree crown areas in the 

detection of forest degradation patterns.  

Table 8: Classification of tree crown area estimates into five classes.  

Classes Tree Crown area 

Class 1  <= 100sqm  

Class 2 > 100sqm AND <= 200sqm  

Class 3 > 200sqm AND <= 300sqm 

Class 4 > 300sqm AND <= 400sqm 

Class 5 > 400sqm  

 

4.6.3 Social position and dominance  

Already in 1884 Kraft (1884) described a scheme for the social position of individual trees that has 

been used ever since. At the IUFRO congress in 1956, Leibundgut (1956) presented a similar method 

for tree classification based on their social position. This approach was revised in 1978 (Leibundgut, 

1978) and further developed by Lamprecht (1980) in 1980. These early approaches are still applied 

for cultivation processes in forest management systems for forest compartments (Kennel, 1966; 

Pancel, 1993). Conversely, these two approaches can also be used for the individual classification of 

one single tree, in order to evaluate its respective social position and dominance in relation to its 

neighboring trees.   

Figure 27 exemplary illustrates the four classes for the evaluation of tree-specific social position and 

dominance based on Kraft (1884).   
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Figure 27: Classes for the evaluation of tree-specific social position and dominance; based 

on Kraft (1884).  

 

These approaches by Kraft and by Leibundgut are used for the present purpose, i.e., to evaluate 

influences on the reliability of the detection of forest degradation using RADAR remote sensing 

techniques. Herein they expose information for social position and dominance on single tree basis.  

Evaluation rule sets for „Kraft” (see Table 9) and for “Leibundgut” (see Table 10) are developed. 

These define how each individual tree is classified in respect to all surrounding trees in a distance of 

40m. The two evaluation rule sets form the basis of a developed script29 that ranks each tree in the 

classes of Kraft (1884) and Leibundgut (1956) as listed in Table 9 and Table 10.   

 

                                                            
29 See Annex 9.2 on page 149  
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Table 9: Evaluation rule set “Kraft” with a description of the respective classes of Kraft 

(1884).  

Evaluation rule set “Kraft” Description 
Classification (adapted from 

Kraft (1884)) 

KR_1.  There is no tree within a distance of 40m Pre-dominant 

KR_2.  The tree heights of all trees within a 
distance of 40m is smaller than the 
individual tree height 

Dominating 

KR_3.  The maximum tree height of all trees within 
a distance of 40m is larger than the 
individual tree height 

Dominated 

KR_4.  The mean tree height of all trees within a 
distance of 40m is larger than the individual 
tree height 

Understory 

 

Table 10: Evaluation rule set “Leibundgut” with a description of the respective classes of 

Leibundgut (1956).  

Evaluation rule set 
“Leibundgut” 

Description 
Classification (adapted from 

Leibundgut (1956)) 

LG_1.  The individual tree height is larger than 2/3 
of the dominant height  

Upper stratum 

LG_2.  The individual tree height is larger than 1/3 
and lower or equal than 2/3 of the 
dominant height  

Middle stratum 

LG_3.  The individual tree height is lower than 1/3 
of the dominant height  

Lower stratum 

 

Thus, single tree information by the evaluation rule sets “Kraft” consist of the classes “pre-

dominant”, “dominating”, “dominated”, and “understory”. The information on the evaluation rule 

set “Leibundgut” entails the classes "upper stratum", "middle stratum", and "lower stratum". Both 

can be used for evaluating the influence of the social position and dominance of individual trees in 

the detection of forest degradation patterns. This developed script is based on the programming 
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language Python30. The application of the two rule sets from Table 9 and Table 10 can provide 

information on the social position and dominance for all trees in the project area.  

4.7 Methods to quantify influences of stand characteristics on the 

reliability of the detection of forest degradation  

To analyze and quantify influences of stand characteristics on the reliability of the developed object-

level change detection method, the three attributes aboveground tree biomass, tree crown area, and 

social position and dominance were evaluated and three additional accuracy assessments were 

conducted.  

These assessments show for each of the three stand characteristics the specific producer’s 

accuracies31 of the object-level change detection method in respect to the overall results. The 

following diagram (see Figure 28) is used as a template for the illustration of these assessments. It 

shows the evaluation of both the distribution of the producer’s accuracies for sub-classes of the 

stand characteristics32, in this template i.e. sub-class 1, sub-class 2, and sub-class 3, and the 

distribution of the number of extracted trees in relation to the overall results of all sub-classes.  

This evaluation focuses on the influences of the attributes tree biomass, tree crown area, and social 

position and dominance, on the accuracy of the object-level change detection. Therefore, only the 

producer’s accuracies for the event “Change” are of interest. In other words, only the correct and 

incorrect detection of extracted trees must be evaluated. The template is used to show for each 

attribute the correct detection of the event “Change” as “detected” (blue) and the incorrect 

detection of the event “Change” as “not detected” (red).  

  

                                                            
30 Python v2.6.5 is installed with ESRI’s ArcGIS 10 ordinary installation and was used in this study. The site-
package ArcPy extends Python with additional functionality for interrogating GIS data. Using the spatial analyst 
module and functions renders possible the necessary direct access and interaction with the used geodatabase.  
31 See Eq. (3) on page 52  
32 The respective sub-classes are described in 4.6 on pages 75ff  
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Figure 28: This diagram is used as a template for the illustration of the quantification of the 

influences of each of the three stand characteristics; In the red box labeled with “1” the 

producer’s accuracy summed for all classes is shown. In the red box labeled with “2” the 

number of extracted trees summed for all classes is presented. As both the numbers for “1” 

and “2” correspond for all three stand characteristics they are the same in all respective 

diagrams. In the red box “3” the producer’s accuracies of each sub-class are listed for the 

results “not detected” and “detected” of the event “Change”. The correct detection of the 

event “Change” is represented as “detected” (blue) and the incorrect detection of the event 

“Change” as “not detected” (red). In the red box “4” the number of the extracted trees in 

each sub-class is shown.   
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5 Results  

This chapter discloses the results of the developed methods from the previous chapter. Thus, it first 

illustrates the results of the developed methods to detect forest degradation using RADAR. This is 

followed by the presentation of the results of the accuracy analysis of the object-level change 

detection. In a last step, the results of the analysis of the influences of the three stand characteristics 

on the reliability of the object-level change detection of forest degradation are revealed and 

explained in respective accuracy assessments. 

5.1 Results of the developed methods to detect forest degradation using 

RADAR  

5.1.1 Pre-processing stages 

As stated in 4.2, the study area comprises 1,585 ha of tropical moist forests with 48,141 trees in 

total, whereas 5,663 trees were harvested between 2008 and 2009. Based on the results of the 

forest inventory and the fieldwork carried out in April 2010, all the above trees are geo-located in a 

GIS and stored with their respective forest inventory attributes in a geodatabase, and are used in the 

following evaluation as in-situ data. Table 11 shows ten exemplary datasets that are also used 

throughout the following chapters.  
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Table 11: Results of the pre-processing stages are depicted for ten exemplary datasets.   

Tree_No Latitude33 Longitude33 dbh 
Tree 

height34 

4109 725461.46 204075.93 338.7 14 

5817 724774.85 204407.26 240.0 22 

6233 724579.46 203882.12 180.0 20 

12105 723731.31 203047.65 55.0 13 

12250 723704.42 203081.33 54.3 19 

12251 723700.30 203076.23 52.9 17 

12253 723694.37 203079.09 97.2 20 

12254 723676.35 203077.67 62.0 20 

12256 723679.83 203055.77 56.0 18 

12264 723700.95 203019.30 73.2 18 

 

Figure 2535 shows a subset of the bi-temporal stack of the two TerraSAR-X scenes, i.e. TerraSAR-X 

2008 and TerraSAR-X 2009. This stack forms the basis of remote sensing data used in the 

development of methods to detect forest degradation.  

5.1.2 Bi-temporal segmentation  

The multi-resolution, bi-temporal segmentation is performed with the aim of being able to 

accomplish a change detection analysis based on image objects in the study area. For this, image 

objects are generated that are later on used for classification. After empirical examination of the 

available parameters for the segmentation process, the factors in Table 12 show a strong visual 

correlation with the tree crowns of the in-situ data. All three parameters, i.e., “Scale parameter”, 

“Shape” and “Compactness” are theoretical, abstract terms that control the maximum allowed 

heterogeneity for the resulting image objects, and do not express direct measures.   

                                                            
33 Universal Transverse Mercator (UTM), Grid Zone 20N, Northern Brazil, South American Datum 1969 
(SAD_1969_UTM_Zone_20N)  
34 The forest inventory only gathered data on the commercial tree height.  
35 See 4.4.1 on page 65  
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Table 12: Parameters for the multi-resolution segmentation on pixel level of the used data 

into two “scale levels”, i.e. L25 and L50.  

 Scale levels 

L25 L50 

Scale parameter: 25 50 

Shape: 0.9 

Compactness: 0.9 

 

The two levels of this segmentation incorporate compatible image objects for the further object-level 

change detection. Figure 29 shows exemplary results of the segmentation process indicating the two 

scale levels, i.e. L25 and L50.  

 

Figure 29: Image objects of the scale levels L25 and L50 derived through multi-resolution 

segmentation; black outlines signifies image objects of level L50, blue lines show image 

objects of level L25 that further subdivides the image objects of L50, in the background the 

bi-temporal stack of the TerraSAR-X scenes is displayed; The stack is displayed as RGB 

(Red = TerraSAR-X 2008, Green = TerraSAR-X 2009, Blue = TerraSAR-X 2009).  
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5.1.3 Image understanding and object-level change detection  

The development of the object-level change detection method for the detection of patterns of 

selective logging uses classification algorithms that analyze image objects according to defined 

criteria and assign them to a class that best meets them. Preliminary image understanding identified 

two approaches for these classification algorithms, i.e., firstly the algebraic difference of the mean 

intensities for each of the image objects36, and secondly the quotient of the ratios for each of the 

image objects37. Both approaches were tested for the image objects generated by the bi-temporal 

segmentation. The observation stated in chapter 4.4.3 that only for Eq. (7) a decisive break for the 

threshold “y” can be deduced, holds true, as a strong visual correlation between the extracted trees 

of the in-situ data and the respective image objects for y >= 1 exists. Thus, the development of the 

OLCD method for the detection of patterns of selective logging is based on Eq. (7).  

Figure 30 illustrates the classification rule set for the applied object-level change detection. In the 

Annex38 Figure 40, Figure 41 and Figure 42 show particular examples of the classification settings. 

Furthermore, a stepwise description of each setting is shown in the annex39.  

 

                                                            
36 See Eq. (6) on page 69  
37 See Eq. (7) on page 69  
38 See Annex chapter 9.5 on page 150  
39 See Annex chapter 9.6 on page 151 
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Figure 30: The classification rule set for object-level change detection shows the processing steps incorporating the class hierarchy, the class 

descriptions with its membership functions, the interim results and the final result.  

Scale-level: 
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Classification rule set for object-level change detection 
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One dimensional 
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change_L50yes

no_change_L50no
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no_change_L25no

change_L25yes

Change changeyes

Interim result Final result
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(Ratio of TerraSAR-X 
2008) / (Ratio of TerraSAR-

X 2009) > 2.0
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One dimensional 
membership function

Area >100

One dimensional 
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The segmentation resulted in two “Scale levels”, i.e., L25 and L50. Both were defined as classes in the 

“class hierarchy”, to safeguard the detection of changes on various scales. For each class, i.e., “L50” 

and “L25” two sub-classes were created, incorporating areas of change, i.e. “change_L50” and 

“change_L25”, and areas of no change, i.e., “no_change_L50” and “no_change_L25”. The two classes 

incorporating areas of change were defined by one-dimensional membership functions. Firstly, an 

area threshold of 200sqm for image objects of the “Scale level” “L50”, respectively 100sqm for image 

objects of “L25”, were defined, in order to filter out small speckles. Secondly, for each subclass 

membership functions based on Eq. (7) were defined to detect areas of changes. For the sub-class 

“change_L50” the threshold was set to y = 1.5. The respective threshold for the sub-class 

“change_l25” was y = 2.0. The two classes for no change, i.e. “no_change_L50” and 

“no_change_L25”, were defined by the respective inverted functions. Additionally, the areas of 

change from “change_L50” were inherited by “change_L25” as super-objects.  

Finally, the class “change” is used to assemble the intermediate results of the two classes 

“change_L50” and “change_L25”. Thus, it incorporated the final classification results and, for further 

evaluation, is exported to the geodatabase.  

Export results from eCognition to GIS  

Figure 31 shows one sample location on three maps. Map (a) displays a subset of “TerraSAR-X 2008“ 

and map (b) a subset of “TerraSAR-X 2009”. Differences between (a) and (b) in terms of areas of 

dissimilar patterns correspond to changes between April 20th 2008 and August 18th 2009, and 

originate from the extraction of trees in this specific time period and spatial location. These 

differences are detected as areas of change by the developed change detection algorithm. In map (c) 

these areas of change in the multi-temporal TerraSAR-X data are shown as polygons with lined 

patterns, in the background “TerraSAR-X 2009“ is displayed. The specific colors of the lined areas 

correspond to the change detection in respective scale levels, i.e., “L50”, “L25”, and their particular 

classes and sub-classes, i.e., “change_L50”, and “change_L25”.  
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(a) 

 

 

  

(b) 
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(c) 

 

Figure 31: Screenshots exemplary showing three maps of the same location. In (a) „TerraSAR-X 2008“, in (b) “TerraSAR-X 2009” is displayed. Differences between (a) 

and (b) in terms of areas of dissimilar patterns are changes between April 20, 2008 and August 18, 2009, and originate from the extraction of trees in this time periode. 

These differences have been detected by the change detection algorithm and are displayed in (c). In (c) the background shows “TerraSAR-X 2009”. Polygons with 

lined patterns are areas of change detected in the multi-temporal TerraSAR-X data. The specific colors of the lined areas correspond to the change detection in 

respective scale levels, i.e. “L50”, “L25”, and their particular classes and sub-classes, i.e. “change_L50” and “change_L25”.  
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In order to portray different scenarios that can be found during the classification process, Figure 32 

shows three example maps that oppose the results of the developed change detection algorithm as 

polygons with lined patterns and the in-situ data as points, whereas the optical remote sensing data 

is used for visualization purposes in all three maps, only. The dark green triangles correspond to tree 

locations, the light green circles to locations of extracted trees. Both these point layers are based on 

the in-situ data.  

Thus, map (a) in Figure 32 shows the area of two extracted trees, which are detected whereas for the 

remaining trees no change is recognized. One tree has a dbh of 51cm the other one of nearly 69cm. 

Map (b) displays two extracted trees with a dbh of 179cm and 84cm. Their respective areas are 

detected by the developed algorithm. While three large extracted trees with a dbh of between 193 

to 292cm in map (c) are correctly identified as change by the algorithm, one smaller tree with a dbh 

of 52cm is falsely classified as area of “no change”. One tree that was not extracted was standing 

beneath the crown of the large tree with a dbh of 292cm. Nevertheless, this area is subject to change 

in reality and identified as change by the algorithm.  
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(a) 

 

 

(b) 

 

(c) 

Figure 32: Screenshots showing map results of the object-level change detection for three examples, i.e., 

(a), (b), and (c). The legend is valid for all three maps. The background shows the optical remote sensing 

data that is used for visualisation. Polygons with lined patterns are areas of change detected by the 

classification of the multi-temporal TerraSAR-X data. According to the legend, the specific colors of the 

lined areas correspond to the change detection in respective scale levels. Taken from the in-situ data, the 

dark green triangles correspond to tree locations, light green circles to locations of extracted trees.  
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5.2 Results of the accuracy analysis of the object-level change detection 

Although the previous chapter allows some insights, the subsequent analysis using an error matrix 

gives more detailed information about the applied methods and their outcomes. Hence, the results 

of the above classification, which is applied to detect areas of change using corresponding  

TerraSAR-X data of 2008 and 2009, are also presented as statistics, after comparing reference data 

and classification data. The reference data is taken from the in-situ data consisting of the total 

number of trees, i.e., 48,141 trees, and covering both all remaining trees, i.e., 42,478 individuals, and 

all extracted trees, i.e., 5,663 individuals, in the study area. The classification data contains all areas 

of change detected by the developed object-level change detection. An accuracy assessment 

provided the results of this one-to-one comparison. The statistics cover all scenarios. The results of 

the comparison are shown in an error matrix in Table 13; the specific statistics are compiled in Table 

14.  

Table 13: Error matrix showing the comparison of reference data and classification data. The 

reference data is based on the in-situ data. The classification data contains all locations of 

change and no change detected by the developed object-level change detection.  

 

Reference Data 

Sum 

no_Change Change 

C
la

ss
if

ic
at

io
n

 

D
at

a 

no_Change 42,429 793 43,222 

Change 49 4,870 4,919 

Sum 42,478 5,663 48,141 

 

Table 13 shows that out of 48,141 trees in total, 42,429 trees are correctly identified as 

“no_Change”, whereas areas of change are incorrectly detected for only 49 trees. In-situ data shows 

that 5,663 trees were extracted from the study area, whereas for 4,870 individuals show areas of 

change and are correctly detected. However, for 793 extracted trees the developed object-level 

change detection identifies no change in the RADAR scenes. This figure is reconsidered in subsequent 

chapters.  
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Besides these actual numbers, estimated accuracies of the classification render higher importance. 

Firstly, the producer's accuracy measures how well a certain area is classified. It takes into account 

the error of omission, which refers to the proportion of observed features on the ground that is not 

classified in the map. The class “change” has the lowest producer’s accuracy. This means that areas 

of extracted trees are classified with a probability of approximately 86%, i.e., are correctly detected. 

In reverse, 14% of all extracted trees will not be mapped. Again, this figure is reconsidered in 

subsequent chapters. 

Secondly, the user's accuracy is a measure of the reliability of the map. It informs the user how well 

the map represents, what is really on the ground. The incorrectly identified classes in the map are 

referred to as errors of commission. Here, the class “no_Change” is important. Due to a user's 

accuracy of about 98%, in 1.9% of the visits in the field no “no_Change” will be found on the specific 

place marked on the map. This figure is, as well, reconsidered in subsequent chapters.  

Table 14: Estimated accuracies for the classification results.  

Overall accuracy  98.25% 

Kappa Index 91.07% 

 
Producer’s 
accuracy 

User’s accuracy 

no_Change 99.88% 98.17% 

Change 86.00% 99.00% 

 

These accuracy assessments are carried out in order to estimate the imperfections of the 

classification performed. On the whole, the analyses show that the classification can be used to 

proceed with further elements of this study.  
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5.3 Results of the identification of influences of stand characteristics on 

the reliability of the detection of forest degradation  

The identification of influences of stand characteristics on the reliability of the detection of forest 

degradation in tropical moist forests using RADAR remote sensing techniques was performed 

investigating the following three attributes:  

 Tree biomass  

 Tree crown area  

 Social position and dominance  

The tree specific results for these attributes are presented below. As the complete results comprise 

data on all 5,663 extracted trees, only a subset of ten example tree-datasets40 are directly depicted 

and shown in Table 16. The complete results are shown in the Annex41.  

5.3.1 Tree biomass  

The tree biomass estimation is implemented by means of Eq. (8) and the dbh values taken from the 

in-situ data. Thus, the aboveground tree biomass can be estimated for all trees in the project area.  

Subsequently, these biomass data are categorized into five equally numerous subsets, i.e., 5-

quantiles or quintiles. Thus, Quintile_1 incorporates the class with the lowest biomass values, 

Quintile_5 the class with the highest biomass values. The precise tree biomass ranges for each 

quintile is shown in Table 15.  

                                                            
40 These are the same ten datasets that have already been shown in Table 11 in chapter 5.1.1 on page 83  
41 See chapter 9.7 on page 152 
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Table 15: The categorization of the tree biomass estimation into quintiles results in the 

following minimum and maximum values of tree biomass for each class.  

 Tree biomass [kg] 

Minimum Maximum 

Quintile_1 1,076 3,266 

Quintile_2 3,281 4,334 

Quintile_3 4,351 5,987 

Quintile_4 6,008 8,674 

Quintile_5 8,699 198,360 

 

5.3.2 Tree Crown Area  

Estimates on tree crown areas are calculated by means of Eq. (9) and the dbh values taken from the 

in-situ data. Thus, an estimation of the tree crown area for all trees in the project area is 

accomplished.  

These estimates are further stratified into 5 classes based on their estimated tree crown area as 

shown in Table 842.  

5.3.3 Social position and dominance  

The results for social position and dominance for all trees in the project area are obtained using the 

evaluation rule sets “Kraft” and “Leibundgut”43. As a result, information on the social position and 

dominance for each tree is available.  

The results for the three attributes aboveground tree biomass, tree crown area, and social position 

and dominance for the ten example tree-datasets listed in Table 16 are based on the unique 

identification for the individual trees in the column Tree_No. The aboveground tree biomass 

estimation in kg is shown in the column Chave_moist_2. The respective 5-quantiles of the biomass 

data are displayed in the field Chave_moist_2_class. Estimates on tree crown areas are depicted in 
                                                            
42 See Table 8 on page 78. The tree crown area classes are as follows: Class 1 <= 100sqm; Class 2 > 100sqm AND 
<= 200sqm; Class 3 > 200sqm AND <= 300sqm; Class 4 > 300sqm AND <= 400sqm; Class 5 > 400sqm 
43 See Table 9 on page 80 and Table 10 on page 80 
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the column est_Crown _Area. The stratification of these crown area values into 5 classes is shown in 

column CrownAreaClass. In a final step, the results for social position and dominance for each tree 

using the classes of the evaluation rule set “Kraft” and the classes of the evaluation rule set 

“Leibundgut” are summarized in the columns Kraft and Leibundgut.  

Table 16: Results for ten exemplary datasets are depicted for tree specific estimation of 

aboveground tree biomass, tree crown area, and social position and dominance; The field 

Tree_No shows the unique identification for the individual trees, Chave_moist_2 lists the 

appropriate values for the single aboveground tree biomass values in kg, in 

Chave_moist_2_class these biomass data are categorized into respective quintiles. As in the 

field est_Crown _Area the results for the estimated tree crown area in square meters are 

given, these results are classified in CrownAreaClass. Lastly the fields Kraft and Leibundgut 

show the particular results for the social position and dominance for each depicted tree.  

Tree_No Chave 
_moist_2  

 
est. tree 

biomass [kg] 

Chave_moist 
_2_class 

 
Tree biomass 

quintile  

est_Crown 
_Area  

 
est. tree 

crown area 
[sqm]  

CrownArea 
Class 

 
Tree crown 
area class  

Kraft 
 

classes of the 
evaluation rule 

set “Kraft” 

Leibundgut 
 

classes of the 
evaluation rule 

set 
“Leibundgut” 

4109 79151 Quintile_5 425 5 dominated middle stratum 

5817 42670 Quintile_5 331 4 dominating upper stratum 

6233 24308 Quintile_5 255 3 dominated upper stratum 

12105 1670 Quintile_2 51 1 understory middle stratum 

12250 1618 Quintile_1 50 1 dominated upper stratum 

12251 1518 Quintile_1 47 1 dominated upper stratum 

12253 6438 Quintile_5 127 2 dominating upper stratum 

12254 2236 Quintile_3 64 1 dominating upper stratum 

12256 1745 Quintile_2 53 1 dominated upper stratum 

12264 3330 Quintile_4 85 1 dominated upper stratum 
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5.4 Results of the quantification of the influences of stand characteristics 

on the reliability of the detection of forest degradation  

The quantification of the influences of stand characteristics are of importance as they can provide 

further insight, regarding under which condition the developed object-level change detection serves 

as an operational tool to detect forest degradation activities. Therefore, a tree specific evaluation, 

based on all extracted trees, of the three attributes, i.e., aboveground tree biomass, tree crown area, 

and social position and dominance, and their influences on the reliability of the object-level change 

detection of forest degradation was conducted.  

Based on the findings of the preceding chapter, the influences of the three attributes are quantified 

for all extracted trees. In the following chapters, the quantification is visualized using the diagram 

template shown in Figure 2844 with the respective producer’s accuracy values for the specified 

classes of each attribute.  

  

                                                            
44 See Figure 28 on page 82  
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5.4.1 Tree biomass  

Figure 33 shows the producer’s accuracy values for the quintiles for the aboveground biomass of 

trees. The value for all extracted trees, i.e., in column “All classes”, corresponds to the final 

classification results presented in Table 14, however, splitting this overall value into quintiles shows 

different results for the producer’s accuracy according to its specific tree biomass. For example, for 

“Quintile_1” only about 76% of the areas of extracted trees are correctly detected, whereas about 

93% can be detected for “Quintile_5”. In reverse, only 7% of the trees that have been extracted are 

missed within this quintile.  

 

Figure 33: The diagram shows the influence of the attribute “aboveground tree biomass” on 

the reliability of the detection of forest degradation in quintiles. For each quintile the specific 

producer’s accuracy values for “not detected” (red) and for “detected” (blue), and the 

number of trees are depicted. The rightmost column shows the respective sum of values for 

all quintiles.   

 

Quintile_1 Quintile_2 Quintile_3 Quintile_4 Quintile_5 All classes

not detected 23,86% 16,56% 12,58% 9,81% 7,03% 14,00%

detected 76,14% 83,44% 87,42% 90,19% 92,97% 86,00%

number of
extr. trees
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5.4.2 Tree crown area  

As for the estimation of the tree crown area, Figure 34 presents the results of the evaluation of the 

five classes based on the field CrownAreaClass45 in respect to its specific the producer’s accuracy 

values in combination with the total number of extracted trees in these classes. According to the 

natural distribution in tropical forests, the majority of trees are situated in the lower classes 1 (4,507 

trees) and 2 (1,057 trees), steadily decreasing to class 5 with only five existing individuals.  

 

Figure 34: The diagram shows the influence of the attribute “tree crown area” on the 

reliability of the detection of forest degradation in five classes. For each class the specific 

producer’s accuracy values “not detected” (red) and “detected” (blue), and the number of 

trees are depicted. The rightmost column shows the respective sum of values for all 

classes.   

Furthermore, Figure 34 presents the producer’s accuracy values in relative numbers for each of the 

classes. Apart from class 3 the detection rates steadily ascend from about 84% to 100% 

corresponding to the stratification in the five classes based on the estimated tree crown area values. 

                                                            
45 See Table 8 on page 78. The tree crown area classes are as follows: class 1 <= 100sqm; class 2 > 100sqm AND 
<= 200sqm; class 3 > 200sqm AND <= 300sqm; class 4 > 300sqm AND <= 400sqm; class 5 > 400sqm.  

class 1 class 2 class 3 class 4 class 5 All classes

not detected 15,75% 7,00% 12,12% 3,57% 0,00% 14,00%

detected 84,25% 93,00% 87,88% 96,43% 100,00% 86,00%

number of
extr. trees

4507 1057 66 28 5 5663
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Corresponding to the final classification results, the right column shows the above described data for 

all classes. 

5.4.3 Social position and dominance  

The evaluation of tree specific information on social position and dominance is rendered possible by 

the application of rule sets “Kraft” and “Leibundgut”. Hence, both rule sets are separately shown in 

Figure 35 and Figure 36.  

In Figure 35, the results of the evaluation rule set “Kraft” in respect to its specific producer’s accuracy 

values are combined with the total number of extracted trees in these classes. The trees are 

distributed unequally in the classes “dominating” (KR_2), “dominated” (KR_3), and “understory” 

(KR_4). In respect to the results for the “Kraft” rule set, most of the 5,663 trees, i.e., 3,097, are 

classified “dominated”, 1,929 trees are “understory”, and only 637 are “dominating” trees. No tree is 

attributed to the class “predominant” (KR_1). While the producer’s accuracy for all trees, i.e., 86%, 

can again be found in the column “All classes ("Kraft")”, this value divides into values from about 83% 

(KR_4) to nearly 89% (KR_2) in the respective classes.  
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Figure 35: The diagram shows the influence of the attribute “social position and dominance” 

based on the evaluation rule set “Kraft” on the reliability of the detection of forest 

degradation in three classes. For each class the specific producer’s accuracy values “not 

detected” (red) and “detected” (blue), and the number of trees are depicted. The rightmost 

column shows the respective sum of values for all classes.   

The results of the evaluation rule set “Leibundgut” are set in respect to their specific producer’s 

accuracy values and are depicted in Figure 36 in combination with the total number of extracted 

trees in these classes. Like for the rule set “Kraft” the trees are unequally distributed in the classes 

for “Leibundgut”, i.e. “lower stratum” (LG_1), “middle stratum” (LG_2), and “upper stratum” (LG_3). 

Due to different definitions of the classes, the total numbers for “lower stratum”, “middle stratum”, 

and “upper stratum” differ to the aforementioned results for “Kraft”. Only 44 trees are found in the 

“lower stratum”, 1,515 trees in the “middle stratum” and 4,104 in the “upper stratum”. Regarding 

the producer’s accuracies for each of the classes, again a trend can be seen. Starting with a detection 

rate of about 81% for “lower stratum”, this rate increases for “middle stratum” to 83%, and trees 

classified as “upper stratum” are detected with a producer’s accuracy of nearly 87%.  
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Figure 36: The diagram shows the influence of the attribute “social position and dominance” 

based on the evaluation rule set “Leibundgut”  on the reliability of the detection of forest 

degradation in three classes. For each class the specific producer’s accuracy values “not 

detected” (red) and “detected” (blue), and the number of trees are depicted. The rightmost 

column shows the respective sum of values for all classes.  

  

lower stratum
(LG_1)

middle stratum
(LG_2)

upper stratum
(LG_3)

All classes
("Leibundgut")

not detected 18,18% 16,57% 13,01% 14,00%

detected 81,82% 83,43% 86,99% 86,00%

number of
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6 Discussion  

In the following sub-chapters the elements of present study are discussed.  

6.1 In-situ assessment  

The in-situ data forms one of the data bases used in this research project. Not only is the accuracy of 

the spatial location and measurement of high importance for any forest based change detection 

analysis but also the additional attributes of the trees, and errors and error sources have to be 

carefully controlled (Carmel et al., 2001; Congalton and Green, 2007; Foody and Boyd, 1999). As 

stated by Köhl et al. (2006), errors in forestry surveys can be classified to two types of errors, i.e., 

sampling errors and non-sampling errors. Due to the fact, that in this research the in-situ data is 

derived from a data acquisition based on a total tally of the inventory area46, the first type can be 

neglected. The second type however, has a critical meaning for this study. According to Köhl et al. 

(2006) non-observations and measurement errors, have to be kept under control, as they “can 

seriously compromise the quality and precision of a survey”. Hence, throughout the in-situ data 

assessment several accuracy considerations were taken in to account, with three described more in 

detail:  

Uncertainties due to non-observations  

The in-situ assessment was designed to observe all trees. Theoretically two possible scenarios can 

arise, (i) a tree, which is observed and planned for extraction, is not harvested, and (ii) a tree that is 

not observed is being harvested. The design of the in-situ assessment captures errors from both 

scenarios. Trees that are harvested are recognized with a UID being counterchecked when leaving 

the project area. If a tree was planned for harvesting, but has not been counterchecked for leaving, it 

has not been harvested, i.e., scenario (i). If a tree has not been inventoried, i.e. scenario (ii), it cannot 

leave the project without being captured at the check-out. This design renders uncertainties from 

non-observation of trees per-se impossible.  

                                                            
46 See chapter 4.2 on page 57  
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Uncertainty of spatial location  

The forest inventory in the project area is developed as a total tally of the inventory area and thus 

contains a full coverage of all trees within the respective area. Nevertheless, the spatial distribution 

of trees is based on measurements by several instruments, like e.g. compass or measurement tape. 

Errors that have a great influence on the change detection analysis can arise from these actions and 

processes.  

A compass deviation that is not taken into account can lead to high spatial errors. This is especially 

true if the inventory system is designed based on the theorem of intersecting lines, as in this study. 

There was only one compass used for the inventory, however, this had a magnetic deviation of nearly 

12° that had not been taken into account for the subsequent steps in the GIS-based planning stages. 

Nevertheless, this systematic error could be eliminated by the use of highly accurate GPS 

measurements from an intense fieldwork session that was carried out in April 2010. Counterchecks 

for individual trees throughout the whole project area were implemented and confirmed the 

elimination of the systematic error. This hardware intensive safeguarding guaranteed sufficient 

spatial location accuracy for this study.  

Uncertainty of measurement errors for tree attributes  

According to Köhl et al. (2006), this source of errors is most likely to occur, as “directly observed or 

compiled attribute values […] are rarely, if ever, completely free of errors or bias”. From the tree 

attributes used for further calculation in this study, i.e., the tree height and dbh, the tree height was 

counterchecked. The measured tree height from the in-situ assessment was verified to be equivalent 

to the sum of length of the tree boles with one UID. No further assessment of the error for the dbh 

measurement was undertaken.  
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6.2 Detection of patterns of forest degradation using RADAR  

6.2.1 Data pre-processing 

Additional to the uncertainty of spatial location of the terrestrial data used, the passive remote 

sensing data, i.e., the QuickBird-2 scene, demanded pre-processing with regard to its spatial 

registration. As stated by Lunetta and Elvidge (1998), this process helps "to ensure that each pixel 

faithfully records the same type of measurement at the same geographic location over time". As 

Kennedy et al. (2009) identifies this as a main prerequisite for any change detection approach, the 

process of spatial co-registration was of high importance in this study and was successfully realized 

by the use of the 16 ground control points47.  

Although, according to, among others, Song et al. (2001), optical remote sensing data can be affected 

by atmospheric effects, no respective correction was carried-out. This was due to the fact that the 

optical data was only used for visual interpretations, which could be performed without any 

limitation.  

Furthermore, Ortiz et al. (2012) identifies the influence of the quality of the used digital elevation 

model (DEM) on mapping accuracy of forests using TerraSAR-X images and proposes making use of 

pre-processing procedures of SAR data. However, as the present study area does not comprise any 

strong elevation variances, this approach was not applied.  

6.2.2 Segmentation   

The evaluation of the quality of the multi-resolution, bi-temporal segmentation process proves to be 

a complex procedure. At each single step an evaluation has to be made to determine which 

application is needed for the compiled objects. Up to now, the quality of this procedure can still not 

be directly measured. Ryherd and Woodcock (1996) report on approaches that compare different 

segmentations, and according to Marceau and Hay (1999) within a large-scale land use classification, 

objects simultaneously exist on various scale levels. These facts make the segmentation process one 

                                                            
47 See chapter 4.2 on page 57  
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of the main steps in the whole classification strategy. Simultaneously, segmentation is the process 

that can be influenced the least. For this reason, the parameters used in the segmentation process 

have to be determined empirically. The classification rule set applied should be formulated in such a 

way that it can be transferred to other datasets. This has to be kept in mind early on when 

determining the parameters for the segmentation process.  

The unique aspect of the present study is that it uses the TerraSAR-X datasets for both points in time, 

i.e., “TerraSAR-X 2008“ and “TerraSAR-X 2009“, in the segmentation process. This bi-temporal 

segmentation approach guarantees the existence of objects representing changes in time. Using this 

approach on multiple segmentation scales allows even small scale changes for representation in the 

specific objects. Hence, changes between TerraSAR-X datasets for both points in time, due to the 

extraction of single trees and thus the absence of the respective tree crowns, can be represented in 

the image objects gathered by the segmentation process.  

The process of segmentation is very demanding in regards of the used IT-hardware as it utilizes a 

huge amount of Random-Access Memory (RAM). The Workstation used was equipped with 24GB of 

RAM and 1.5TB of virtual memory, which both were entirely used up during the segmentation 

process. This circumstance limits the amount of data that can be processed in one run. Nevertheless, 

further solutions exist where tasks can be defined and subsequently be processed on the server side.  

6.2.3 Classification 

As indicated by Houhoulis and Michener (2000), the construction of the “class hierarchy” is rather a 

subjective process. The possibility of objects definition by diverse combinations of functions based on 

parameters is described, e.g. by Kok and Wever (2002). They see that they can all lead to the same 

final result. Thus, in order to be able to transfer the developed “class hierarchy” of the present study 

to another application, the functions applied are implemented by the easiest technique possible. 

Additionally, a compromise is made between a comprehensive knowledge base, on the one side, and 

a moderate performance and processing speed, on the other side..  
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Consistent with the statement of Hay et al. (2005) that landscape follows a definite hierarchical 

network, the present classification used a hierarchical approach in describing object classes in a rule 

base. Accordingly, Hay et al. (2005) recommend multi-scalar based methods and the use of scale 

levels, which were also applied in the present study.  

Generally, both the segmentation and the definition of objects within a “class hierarchy” are an 

essential step on the way to an automated classification. These processes are the most extensive and 

time-consuming part of the classification. They delivered important insights in discovering the 

relevant objects’ properties. Conclusions in literature, however, find the need for additional empirical 

tasks, when working with different scale levels, since images which are too large can restrict the 

possibilities due to generalization. Using objects that are too small, however, will result in very tiny 

objects, whereas closely neighboring ones are classified differently. The results could be described as 

“salt’n’pepper” effect (Schiewe et al., 2001). To avoid this effect, the present study uses thresholds 

which take image objects into account that have a minimum area of 100sqm for scale level “L25” and 

200sqm for “L50”.  

Curran and Atkinson (2002) affirm that objects are not represented the same way in different scales. 

While a human expert concurrently works over all scale levels, object-level change detection 

methods have to be supplied with expert knowledge for each single scale. The method used provides 

this knowledge base by physical and semantic rules on diverse remote sensing data.  

For this case study, the object definitions are developed in a way that makes them as simple and 

reproducible as possible. This technique is quite common, as even in more complex structures all 

steps can be followed and possible errors can be retraced. Accordingly, the expert knowledge was 

provided by the in-situ data assessment48, which had to be translated into simple but stable rules for 

the object-level change detection method. Subsequently, this reference material was used, in order 

to realize the accuracy assessment, an approach that follows the methodological basis of Congalton 

and Green (2007).  

                                                            
48 See chapter 4.2 on page 57  
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6.3 Results and accuracies of the object-level change detection  

Generally, the results of the classification show that the study’s hierarchical approach as described 

above performs quite well. The class hierarchies developed turn out to be stable and lead to 

consistent results.  

The developed classification rule set produces classification results and accuracies of high level of 

about 86% to 99% (see Table 14). These general results, however, have to be evaluated more in 

detail. According to Ginevan (1979) and Köhl et al. (2006), in a typical sample based inventory the 

evaluation of the results and their specific accuracies incorporate the three steps: estimating the 

population total, determining sample size, and determining confidence intervals for sample 

estimates. However, to analyze the detectability of forest degradation patterns, the present study 

uses reference data that is compiled from a data acquisition based on a total tally of the inventory 

area49. This inventory embraces all trees with a minimum dbh of 35cm and contains data on the 

harvested trees. Consequently, the total population, i.e., 48,141 trees, is used in both the 

classification and the evaluation processes superseding the application of analysis methods for 

typical sample based inventories.  

The overall accuracy of more than 98% suggests a high-performance classification approach. Though, 

given the objective to analyze the detectability of patterns found for selective logging, this case study 

focuses on the producer’s degree of accuracy for the event “change”. Table 14 shows that for the 

detection of forest degradation in tropical moist forests, the classification leads to an accuracy value 

of 86%. This means that the locations of extracted trees, and thereby their extraction itself, are 

correctly detected with a probability of approximately 86%, and, in reverse, 14% of all extracted trees 

are not. The number of extracted trees per area unit could be used as an indicator of the intensity of 

forest degradation. In general, this is a satisfying value for a remote sensing based classification 

(Congalton and Green, 2007; Lillesand et al., 2004; Wulder and Franklin, 2003, 2007).  

                                                            
49 See chapter 4.2 on page 57 
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Limiting the focus on the producer’s accuracy for the event “change” is not sufficient in a binary 

classification system (Congalton and Green, 2007). Additionally, the producer’s accuracy for 

“no_Change”, in this case 99.88%, has to be considered. This indicates that no relevant 

overestimation of the event “change” takes place and consequently affirms the reliability of the 

developed object-level change detection method for the detection of patterns of selective logging 

and the accuracy level of 86%. According to Czaplewskyi (2003), the value of Kappa for the 

classification of about 0.91 is an indication of a very good consistency in forestry research.  

The specific results are only valid for this case study. Technically the methods and standards used can 

be applied to other areas, since general transferability is one of the main characteristics of all COBIA- 

and OLCD-approaches (Kartikeyan et al., 1994; Leukert et al., 2004). Region specific adaptations 

might be necessary, but can be implemented in much shorter time as the general structure of 

developed ”class hierarchies“ can be maintained and only the parameters have to be adjusted. 

Nevertheless, the transferability to other projects could not be tested, and  the possibility of a 

universal rule base is very unlikely. Consequently, the developed methods and standards can be seen 

as a semi-automatic workflow for object extraction with a high level of automation.  

Regarding the needs of a MRV-system for REDD+, the results of the case study are of high 

importance. The developed object-level change detection method is able to detect patterns of forest 

degradation in moist tropical forests, as shown in this case study. The accuracy value of 86% 

promises that the developed method can be applied with appropriate accuracy in other regions, as 

well.  

6.4 Identification and quantification of the influences of stand 

characteristics on the reliability of the detection of forest degradation  

Identifying and quantifying the influences of the three attributes aboveground tree biomass, tree 

crown area, and social position and dominance on the reliability of the developed object-level 

change detection method, is of significant importance. Doing so can provide further insight regarding 
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under which condition the developed object-level change detection serves as an operational tool to 

detect forest degradation patterns or activities. Thus, the three tree specific results for the attributes 

tree biomass, tree crown area, and social position and dominance are expected to disclose 

information on their influences on the detectability of extracted trees. In general, the interest lies in 

examining how much these attributes influence the final classification results. These influences were 

quantified by evaluating their respective role in the accuracy assessment of the classification 

process50.  

6.4.1 Tree biomass  

As stated in chapter 3.4.3, many previous studies showed a sensitivity of RADAR remote sensing data 

to forest biomass. Additionally, alterations in forest structure, e.g. by management practices, have an 

effect on remote sensing data (Castel et al., 2002; Hayes and Sader, 2001; Imhoff, 1995a). The 

present findings confirm that this effect can also be perceived by object-level change detection 

methods, as the final classification results show that the extraction of a single tree can be observed 

and verified with an accuracy of 86%, presented previously in Table 14 and in the column “All 

classes” in Figure 33.  

In 5.4.1, the results of the tree biomass estimation based on Eq. (8) are presented and categorized 

into quintiles. For each of these classes Figure 33 shows the results of the accuracy assessment. 

Thereby, the influence of tree biomass is identified by the producer’s accuracy values for each of the 

quintiles. Table 15 gives an overview of the class widths of the quintiles. The accuracy values of 

“Quintile_1” to “Quintile_5”, indicating low to high tree biomass values, for the detection of patterns 

of forest degradation are continuously increasing. Although for “Quintile_1” a still reasonable 

accuracy level of 76% can be reached, for “Quintile_5” findings of the study show that only 7% of the 

trees which have been extracted are missed.  

In other words, the detectability of the extraction of a tree is correlated with its specific biomass 

value. The planning and the extent of the applied reduced impact logging in the study area 

                                                            
50 See 5.4 on page 98 
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concentrated on economically interesting trees with high biomass values. Under these conditions, 

tree biomass cannot be identified as a limiting factor in the present study. Nevertheless, tree 

biomass can be a limiting factor in cases with more intense forest degradation activities.  

6.4.2 Tree crown area  

In general, spatial scale is identified as a crucial point in understanding forest disturbances; 

consequently Coops et al. (2007) states that changes on single tree basis have to be respected in the 

selection of remotely sensed imagery. Nevertheless, the adaption of a respective accuracy 

assessment has to comply with these circumstances and be extended to single tree evaluation, as 

well.  

In opposition to the tree biomass values, the tree specific estimates for crown area are not classified 

into quintiles but into five classes of an exact width of 100sqm. Class 5, however, is an unconfined 

class that comprises all values above 400sqm51. Similar to the previous evaluation of tree biomass, 

this classification allows for evaluating the influence of the single tree crown areas in the detection of 

forest degradation patterns.  

Figure 34 shows that the natural distribution of tree crown area is also valid within the extracted 

5,663 trees. The majority of trees are collected in the class of less than 100sqm. The extraction of 

trees in this class is detected with an accuracy of 84%. With the exception of class 3, the higher 

classes exceed the level of accuracy of 90%. As the class sizes in class 3 to class 5 are very small, 

spikes can intensively contribute to the levels of accuracy. Nevertheless, all but one extracted tree 

with tree crown areas of above 300sqm, i.e., class 4 and class 5, are correctly detected in the 

classification process.  

On the whole, the findings of this case study show that tree crown area has an influence on the 

detectability of the extraction of a tree. Even so, trees belonging to the lowest class, i.e., tree crown 

areas of below 100sqm, are detected with an equitable accuracy level of about 84%.  

                                                            
51 See Table 8 on page 78  
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In this context, previously remote sensing based studies made use of forest canopy structures or 

specific elements of these (Bongers, 2001; Lefsky and Cohen, 2003; Lillesand et al., 2004). Regarding 

the detection of forest degradation in tropical moist forests, the evaluation of tree crown variables 

surely is of importance. Nonetheless, Bongers (2001) sees tree crown area, as such, as a highly 

dependent measure. Especially in tropical moist forests, forest canopy texture and structure, and the 

tree crown itself incorporate a multitude of other variables associated to it. A more detailed study of 

forest canopy structures that incorporates both vertical and horizontal structure parameters 

opposed with very high resolution 3D RADAR imagery would certainly provide a more in-depth 

evaluation of the inherent limitations. This requires very high resolution 3D RADAR imagery like 

TanDEM-X data. However, at the beginning of this case study TanDEM-X was still in planning phase 

and respective data was not available.  

6.4.3 Social position and dominance  

The study on social position and dominance of individual trees is by far the most complex and 

challenging approach in this case study. While the previously discussed issues on tree biomass and 

tree crown area are based on the attributes related to individual trees, this approach uses tree 

specific data in relation to neighboring trees. Information on spatial distribution of one tree and its 

neighborhood, both in vertical and horizontal sphere are deducted and processed, in order to 

oversee a more holistic view, and thereby understand the process of small scale forest disturbance 

and spatial pattern on a large scale.  

Two schemes52 for the social position and dominance of individual trees are developed in the 

evaluation rule sets “Kraft” and “Leibundgut”. “Kraft” uses the four classes “Pre-dominant”, 

“Dominating”, “Dominated”, and “Understory”. “Leibundgut” works with “Upper stratum”, “Middle 

stratum”, and “Lower stratum”.  

                                                            
52 See chapter 4.6.3 on page 78 
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Kraft  

In a nearly undisturbed natural forest, as it is examined in the case study, it is less surprising that the 

definition of the class “Pre-dominant”, however correct, result in no tree being classified as such. 

Having a look at the distribution of trees in total numbers between the classes in Figure 35, one 

would expect that the quantities of individuals would decline from “understory” to “dominating”. 

However, the results show that fewer trees remain in the class “understory”, i.e., only 1,929, than in 

the class “dominated”, i.e., 3,097. A likely explanation may be that only trees with a minimum dbh of 

35cm are included in the study. In an undisturbed tropical moist forest, however, the majority of 

trees would to be expected to have dbh values of less than this threshold.  

While Bongers (2001) raised the issue of small scale disturbance patches that “are difficult to assess 

using space-born optical systems”, Hoekman and Varekamp (1999) found that high-resolution RADAR 

data can be used to detect logging of large emergent tree individuals. The results of the case study 

supports Hoekman and Verkamp’s statement since these emergent trees, classified here as 

“dominating”, are detected with an accuracy of 89%. Conversely, using the developed object-level 

change detection method, not only the extraction of these dominating trees, but also the logging of 

dominated and understory individuals are detected with an accuracy of 87% and 83% respectively. 

Both values indicate acceptable values for the application of this method for REDD+. This unique 

feature is possible due to the application of object-level change detection methods including 

innovative multivariate alteration detection approaches in combination with very high resolution 

active remote sensing data. TerraSAR-X first started to provide this kind of RADAR data of 1m spatial 

resolution in 2007 thereby making it possible to effectively study forest canopy structures in order, 

for example, to monitor forest degradation processes (Baldauf and Köhl, 2009).  

Leibundgut  

The second scheme shows results similar to those for “Kraft”. Again, the distribution of trees 

between the classes differs from that which would be expected in a nearly undisturbed natural 

forest. The respective explanations are equivalent to those for “Kraft” in the previous chapter.  
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The accuracy levels for the three classes, i.e., “lower stratum”, “middle stratum”, and “upper 

stratum” increase from 81% to 87%, all being acceptable results for the developed method and its 

application for REDD+. Remarkable again are the accuracy values for the lower and the middle strata 

of Leibundgut’s classification. These confirm the results for the scheme “Kraft”.  

In other words, this developed method and its application allows for the detection of changes 

beneath the top canopy layer, a process that has been described as stealthy degradation (Baldauf et 

al., 2009). This object-level change in stealthy degradation can still be detected with a sufficient 

accuracy level of more than 80%. This means that the developed method can be seen as a step 

towards overcoming the obstacles and hindrances in monitoring forest degradation.  

6.5 Reporting on forest degradation within the scope of REDD+ 

The present study is intended to provide contributions to the development of scientifically sound and 

operational methods for reporting on forest degradation within the scope of REDD+. Thus, it must be 

feasible to implement the developed method into a MRV-system for REDD+ and at the same time 

keep the costs for this implementation within reasonable limits.  

While the developed method could only be tested in a case study, Table 17 offers an exemplary 

estimate of the data costs for a national approach for the implementation of the developed method 

for Brazil and Madagascar. As stated by Köhl et al. (2006), scientifically sound inventory planning 

considers a range of methodological issues, e.g. how to select samples from the population, and 

thereby obtains parameters for the optimization of the inventory in this specific region, like, e.g. the 

best sampling design, or the optimal sample size. For this, generalities suitable for all forest 

inventories are not common. Nevertheless, the estimation of the expected data costs in Table 17 

uses the general assumption that monitoring activities leading to forest degradation on 1% of the 

total forest area meets the accuracy requirements of a MRV-system for REDD+.  
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Table 17: Estimates of data costs for a national approach. Figures on land area and forest 

area in 2010 are based on data of FAO’s Global Forest Resource Assessment 2010 (FAO, 

2010a). With a size of 5000ha per TerraSAR-X scene the amount of scenes and the 

respective data costs are estimated.  

  Brazil Madagascar 

Land area [1000ha] 845,651 58,154 

Forest area [1000ha] 519,522 12,553 

Amount of scenes for 1% coverage 1,039 25 

Data costs53 for 1% coverage 7,013,547 €  169,466 €  

 

According to MMA (2009) Brazil expends about 166 million € for monitoring and control of 

deforestation activities. Compared to this figure, the estimated 7 million € for TerraSAR-X data for a 

1% coverage of the total forest area in Brazil, seems comparatively small. Nonetheless, the issue of 

costs has to be kept in mind, as the sustainability of a future REDD+ mechanism is partly founded on 

the simple equation that is shown in Figure 37. 

 

Figure 37: A simplified equation for a future REDD+ mechanism. REDD+ will only work 

sustainably on the ground, if the costs for the three components on the left (CP1, CP2, and 

CP3) are less than the benefit from the incentives component (CP4) on the right; adapted 

from (Baldauf and Köhl, 2012).  

 

                                                            
53 Based on the Astrium International Price List for TerraSAR-X Services (Astrium, 2011).  
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Figure 37 illustrates that, apart from forest governance issues and general support by official 

development assistance, REDD+ will only work if the costs of the three essential REDD+ 

components54 (i.e., a system for measuring, reporting, and verification (MRV) of carbon stocks and 

carbon stock changes and a national forest monitoring system (NFMS); a system to identify and 

quantify local and regional drivers of deforestation and forest degradation; and a forest reference 

(emission) level, against which the reduced emissions can be measured) are smaller than the amount 

that can be generated by REDD+ units, e.g. carbon credits, and delivered by adapted incentive 

schemes.  

In return, this means that the methods applied for REDD+ for MRV, NFMs, Drivers, and Baselines 

need to be highly cost-efficient. The development of operational methods for REDD+ need to be 

based on a sound optimization process that compares different data sources and sampling designs 

with respect to their cost-efficiency. This helps to reduce the uncertainties related with the 

quantification of carbon stocks and carbon stock changes, and to increase the financial benefits from 

adopting a nationally applied REDD+ regime. Köhl et al. (2011) see MRV-systems “as an investment 

that aims to generate financial benefits” (cf. Köhl et al. (2011)), and proposes an optimization process 

to compare the implications of different data sources and sampling designs with respect to their 

cost-efficiency.  

Table 17 proposes that, if monitoring activities leading to forest degradation on 1% of the total forest 

area are sufficient for Madagascar, it would need to use 25 TerraSAR-X scenes, each with a scene size 

of 5000ha, for the implementation of the developed method to detect forest degradation. Based on 

the price list from Astrium (2011), this would mean an investment for the data of about 170,000€ per 

period.   

                                                            
54 See also 2.2 on page 4  



6 Discussion  118 
 

 

Figure 38: Map of Madagascar showing forest areas (green) and a possible systematic 

sample grid. The rectangular boxes show grid points, which intersect with forest areas, the 

crosses indicate grid points that do not contain forest areas.  

 

Figure 38 shows a map of Madagascar with remnant forests and a grid that can be used for 

systematic sampling. After a pre-stratification into forested and non-forested land, e.g. by an 

appropriate remote sensing study, the sound distribution of the 25 TerraSAR-X scenes is conducted. 

In this way the developed method could be used to nationally complement, e.g. the approach for an 

operational REDD+ MRV-system by Plugge et al. (2010), and to provide necessary activity data for 

forest degradation activities within the scope of REDD+. Thereby, the developed method proves to 

be a suitable tool to report on forest degradation for REDD+.  
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7 Conclusions  

REDD+ is a climate change mitigation mechanism for tropical forests presently being negotiated 

under the UNFCCC. It aims to attribute economic value to the carbon stored in forests, and thereby 

integrates forest protection into economic and political decision making processes.  

In present negotiations, REDD+ embraces five activities that show a mitigating effect on climate 

change. One of these activities is reducing emissions from deforestation; an additional activity is 

reducing emissions from forest degradation. On the one hand, methods to quantify emissions from 

deforestation on local, national and pantropical scales exist and consensus regarding the amount of 

emissions caused by deforestation can be achieved (Harris et al., 2012). On the other hand, only 

rough estimates for the total amount of emissions from forest degradation are available (cf. Bucki et 

al. (2012); Houghton (2005)). Nevertheless, these estimates, ranging from 5-132% of those from 

deforestation, demonstrate the importance of grappling with forest degradation in REDD+, if 

significant emission reductions are envisaged. Currently, however, REDD+ lacks access to scientifically 

sound, applicable and cost-efficient methods of reporting on forest degradation on a large scale.  

Existing, purely terrestrial-based methods for quantifying IPCC’s two target variables, i.e., activity 

data and emission factors, for forest degradation can provide robust estimates on forest 

degradation. However, although optimization processes for these methods do improve their cost-

efficiency, in the end, pure in-situ assessments turn out to be quite expensive when applied on 

national scale. The combination of terrestrial inventories and remote sensing based methods makes 

it possible to  implement forest inventory designs that generally yield much higher cost-efficiencies 

on large scales (Köhl et al., 2009). Besides these cost-efficiency concerns, REDD+ aims to protect 

tropical forests, including remote forest lands, where the application of purely terrestrial based 

methods, especially for the estimation of accurate activity data, is highly questionable, due to the 

sheer restrictions of accessibility.  
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Forest degradation is an intrinsic part of REDD+. A multitude of causes exist that lead to forest 

degradation comprising small scale activities (Fearnside and Laurance, 2004; Lanly, 2003; Peres et al., 

2006; Wertz-Kanounnikoff and Verchot, 2008). These small scale activities have an influence on the 

detection of their specific patterns or even render them technically invisible for optical remote 

sensing based change detection (Baldauf et al., 2009).  

In the fields of active remote sensing technology, LiDAR has been reported to provide valuable 

information for forest biomass estimation (Clark et al., 2011; Hyde et al., 2007; Næsset et al., 2011; 

Sun et al., 2011). Applications of present LiDAR remote sensing sensors for the detection of forest 

degradation, however, fall short in cost-efficiency. Thus, suitable LiDAR systems within the scope of 

REDD+ do currently not exist. Regarding RADAR systems, the effect of biomass saturation makes 

RADAR unsuitable for the direct quantification of carbon emissions from land use changes in tropical 

forests (cf. Woodhouse et al. (2012)). Consequently, the development of emission factors for forest 

degradation activities from RADAR technologies is presently not possible.  

Accurate activity data for the estimation of forest degradation is, however, of great importance 

within the scope of REDD+. Plugge and Köhl (2012) proved that the size of the area where forest 

degradation occurs has a crucial “impact on the accountable emission reductions” in any REDD+ 

regime (cf. Plugge and Köhl (2012)).  

The present case study analyzed high-resolution active remote sensing data to determine its 

suitability for reporting on forest degradation within the scope of REDD+. As part of the case study a 

method was developed using TerraSAR-X data to detect patterns of selective logging. This object-

level change detection based method identified areas undergoing forest degradation with an 

accuracy of 86%. While the specific results are only valid for this case study, the accuracy value of the 

detection promises that the developed method can be applied with appropriate accuracy to other 

regions as well.  
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Furthermore, the influences of the three attributes (aboveground tree biomass, tree crown area, and 

social position and dominance) on the reliability of the developed method were quantified. These 

influences on the results were investigated on the basis of all extracted trees in the case study. 

Firstly, a correlation was found between the detectability of the extraction of a tree and its specific 

biomass value. Secondly, tree crown area disclosed an influence on the detectability of the extraction 

of a tree, even if trees with tree crown areas below 100sqm are still detected with an accuracy level 

of about 84%. Thirdly, the investigation of social position and dominance showed that the extraction 

of understory tree individuals can still be detected with an accuracy of 83% by the developed 

method.  

Finally, the implementation of the developed method into the setup of an operational, robust, and 

transparent MRV-system was indicated. In conclusion, the case study proved that space-born RADAR 

allows for monitoring patterns of forest degradation in tropical moist forests. Combined with 

appropriate methods, it enables the collections of unbiased activity data and thereby serves as a 

suitable tool for reporting on forest degradation within the scope of REDD+.  
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9.1 Processes of the four objectives to verify the hypothesis  

 

Figure 39: A flowchart shows the single processes of the four objectives to verify the hypothesis.  
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9.2 Metadata for „TerraSAR-X 2008“  

Metadata is available on enclosed DVD:  

\metadata\TSX1_SAR__EEC_SE___HS_S_SRA_20080420T094840_20080420T094841.xml  

 

9.3 Metadata for „TerraSAR-X 2009“ 

Metadata is available on enclosed DVD:  

\metadata\TSX1_SAR__EEC_SE___HS_S_SRA_20090817T094851_20090817T094852.xml  

 

9.4 Script for social position and dominance  

Script text is available on enclosed DVD:  

\Script\Script.py  
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9.5 Class hierarchy, class descriptions and membership functions of the 

applied object-level change detection  

 

Figure 40: Screenshot showing the “Class 

Hierarchy” of the used classification.   

 

 

(a) 

 

(b) 

Figure 41: Screenshots showing the “Class Description” for (a) the class "change_L50" in scale 

“L50” and (b) the class "change_L25" in scale “L25”.  
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(a) 

 

 

(b) 

Figure 42: Screenshots exemplary showing the “Membership Functions” for (a) the feature "Area" in 

scale “L50”, and for (b) the feature "ratio_08/ratio_09" in scale “L25”. 

 

9.6 Stepwise description of settings for the classification rule set  

- Class description “L50” [Class active]:  

o Sub-Class “change_L50” [Class active]:  

 Member ship Function “Area” [Function active]: “AND” Expression  

 Function form: “larger than”  

 Left border: 190  

 Right border: 210  

 Member ship Function “ratio_08/ratio_09” [Function active]: “AND” 

Expression  

 Function form: “larger than”  

 Left border: 1.4  

 Right border: 1.6  

- Class description “L25” [Class active]:  

o Sub-Class “change_L25” [Class active]:  

 Member ship Function “Area” [Function active]: “AND” Expression  

 Function form: “larger than”  

 Left border: 90  
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 Right border: 110  

 Member ship Function “ratio_08/ratio_09” [Function active]: “AND” 

Expression  

 Function form: “larger than”  

 Left border: 1.9  

 Right border: 2.1  

 Member ship Function “Existence of super objects ‘change_L50’” [Function 

active]: “AND” Expression  

 Function form: “Singleton”  

 Left border: 0  

 Right border: 2  

o Sub-Class “no_change_L25” [Class active]:  

 Member ship Function “” [Function active]:  

 Function form: “Invert Expression”  

 Sub-Class “change_L25”  

- Class description “change” [Class active]:  

 Member ship Function “Classified as change_L25” [Function active]:  

 Function form: “Singleton”  

 Left border: 0  

 Right border: 2  

 

9.7 Results for all extracted trees for the estimation of aboveground 

biomass, the crown area, and the social position and dominance  

Table is available on enclosed DVD:  

\Tables\All_extracted_trees_AGB-CrownArea-SocPositionDom.xls  
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