
Design and Evaluation of Tool Extensions for

Power Consumption Measurement in Parallel

Systems

Dissertation

zur Erlangung des akademischen Grades
Dr. rer. nat.

an der Fakultät für Mathematik, Informatik und Naturwissenschaften
der Universität Hamburg

eingereicht beim Fachbereich Informatik von

Timo Minartz

aus Aachen

März 2013

Gutachter:
Prof. Dr. Thomas Ludwig

Prof. Dr. Winfried Lamersdorf

Datum der Disputation: 13.06.2013

Kurzfassung

In den letzten Jahren wurden viele innovative Ansätze verfolgt, um die Leistungsauf-
nahme und die daraus resultierenden Kosten für Hoch- und Höchstleistungsrechnens zu
senken. Einer dieser Lösungsansätze ist – basierend auf Ansätzen in den Gebieten der
eingebetteten und batteriebetriebenen Systeme – Komponenten bestimmter Hardware-
gruppen einzeln abzuschalten oder in einen Modus mit verringerter Leistungsaufnahme
zu versetzen. Zur detaillierten Analyse dieses Ansatz wird ein energiekontrollierbarer
Rechencluster aufgebaut, der die Erfassung des Verhaltens des Rechnersystems im Hin-
blick auf den Energieverbrauch zulässt. Bereits existierende Mechanismen auf der Ebene
des Betriebssystems können zwar bereits die Leistungsaufnahme absenken, führen aller-
dings oft zu verlängerten Applikationslaufzeiten und somit zu einem erhöhten Energie-
verbrauch. In dieser Arbeit wird eine Werkzeugumgebung entwickelt, die die Identifikati-
on erfolgsversprechender Applikationsphasen zur Energiesenkung ermöglicht. Durch die
Korrelation der Applikation mit weiteren, energierelevanten Metriken wird es ermöglicht,
die Qualität von Energiesparansätzen in parallelen Rechnerumgebungen zu bewerten.
Anhand eines synthetischen Benchmarks und mehreren parallelen Applikationen aus
dem Produktsbetrieb werden vielversprechende Applikationsphasen exemplarisch iden-
tifiziert. Durch den gezielten Einbau von Steuersequenzen in den Programmcode können
so in diese Phasen Energiesparmechanismen ein- und ausgeschaltet werden, eine entspre-
chende Programmierschnittstelle wird bereitgestellt. Alle untersuchten Applikationen
bestehen aus mehreren, unterschiedlich rechenintensiven Phasen in denen die Ausnut-
zung der Energiesparmechanismen die Leistungsaufnahme absenkt. Abhängig von der
Dauer der einzelnen Phasen geschieht dies ohne die Laufzeit signifikant zu verlängern,
somit kann effektiv Energie eingespart werden.

Abstract

In an effort to reduce the energy consumption of high performance computing centers,
a number of new approaches have been developed in the last few years. One of these
approaches is to switch hardware to lower power states in promising parallel application
phases. A test cluster is designed with high performance computing nodes supporting
multiple power saving mechanisms comparable to mobile devices. Each of the nodes is
connected to power measurement equipment to investigates the power saving potential
under different load scenarios of the specific hardware. However, statically switching the
power saving mechanisms usually increases the application runtime. As a consequence,
no energy can be saved. Contrary to static switching strategies, dynamic switching
strategies consider the hardware usage in the application phases to switch between the
different modes without increasing the application runtime. Even if the concepts are al-
ready quite clear, tools to identify application phases and to determine impact on perfor-
mance, power and energy are still rare. This thesis designs and evaluates tool extensions
for power consumption measurement in parallel systems with the final goal to charac-
terize and identify energy-efficiency hot spots in scientific applications. Using offline
tracing, the metrics are collected in trace files and can be visualized or post-processed
after the application run. The timeline-based visualization tools Sunshot and Vampir are
used to correlate parallel applications with the energy-related metrics. With these trac-
ing and visualization capabilities, it is possible to evaluate the quality of energy-saving
mechanisms, since waiting times in the application can be related to hardware power
states. Using the energy-efficiency benchmark eeMark, typical hardware usage pattern
are identified to characterize the workload, the impact on the node power consumption
and finally the potential for energy saving. To exploit the developed extensions, four
scientific applications are analyzed to evaluate the whole approach. Appropriate phases
of the parallel applications are manually instrumented to reduce the power consumption
with the final goal of saving energy for the whole application run on the test cluster.
This thesis provides a software interface for the efficient management of the power sav-
ing modes per compute node to be exploited by application programmers. All analyzed
applications consist of several, different calculation-intensive compute phases and have
a considerable power and energy-saving potential which cannot be exhausted by tradi-
tional, utilization-based mechanisms implemented in the operating system. Reducing
the processor frequency in communication and I/O phases can also gain remarkable
savings for the presented applications.

Acknowledgements

One of the joys of completion is to look over the journey past and remember all the
colleagues, friends and family who have helped and supported me.
Undertaking this PhD has been a truly life-changing experience for me and it would not
have been possible to do without the support and guidance that I received from many
people.
I would like to first say a very big thank you to my supervisor Prof. Thomas Ludwig
for all the support and encouragement. Without your guidance and constant feedback,
this PhD would not have been achievable.
This thesis was co-funded by the German ministry for education and research (BMBF)
and the German research foundations (DFG), and I would like to thank both organi-
zations for their generous support and especially my co-workers Daniel, Stephan and
Michael for all the contributed results during the eeClust project.
As a member of the University of Hamburg and the DKRZ, I have been surrounded by
friendly, inspirational and supportive colleagues which were always available for a chat
or support during the day, evening or night.
Special thanks to the research group founding members Michael and Julian, who kept
things ticking over and let me focus on the fun stuff!
But also thanks to the additional group members, especially to Petra for supporting my
work with GETM and to my (frequently changing) officemates Gerald, Javier, Raul and
Konstantinos. I really enjoyed spending time with you.
I particular, I want to thank Florian, Marius, Christian and Jolene for all their work
allowing me to complete this thesis.
To the staff and students at DKRZ, I am grateful for the chance to be a part of the
center. Thank you for so many lunch breaks, inspiring talks and memorable conference
trips. Especially, I would like to thank Michaele for being such a supportive and wise
friend.
I would not have contemplated this road without the support of my family and wife.
To my parents and siblings, thank you for everything. Isabell, thank you for your
amazing personality. Not only that you accepted several long-distance relationships and
relocations, you unburdened our daily life with your uncomplicated character and lovable
nature. I am excited about our joint future.

Contents

1. Introduction 11
1.1. Individual Approach . 18

2. Hardware Mechanism 25
2.1. Component Overview . 25

2.1.1. Central Processing Unit . 26
2.1.2. General Purpose Graphic Processing Unit 29
2.1.3. Main Memory . 29
2.1.4. Input/Output System . 30
2.1.5. Interconnection Systems . 31

2.2. Interfaces . 33
2.3. Durability Issues . 34

3. Power and Energy Saving Potential 37
3.1. Test Infrastructure . 37
3.2. Evaluation of Hardware Power Saving Modes 41

4. Strategies for Reducing Parallel Application Power Consumption 53
4.1. Application Phases of Interest . 53
4.2. Hardware-centric Approach . 55

4.2.1. Sampling Utilization . 55
4.2.2. Sampling Performance Counters 58

4.3. Application-centric Approach . 58

5. Management of Power Saving Modes 63
5.1. Server Design . 64

5.1.1. Map Processes to Hardware Devices 64
5.1.2. Switching Hardware Device States 65
5.1.3. Runtime Overhead . 67
5.1.4. Resource Management . 67
5.1.5. Server configuration . 68

5.2. Application interface . 70
5.3. Software package . 71

6. Correlating Applications and Energy-Related Metrics 73
6.1. Tracing Approach . 73

6.1.1. HDTrace . 74

6.1.2. VampirTrace . 76
6.1.3. Intrinsic Tracing Tool Problems 76

6.2. Integration of Energy-Related Metrics . 77
6.2.1. Power . 79
6.2.2. Device Utilization and Hardware States 80
6.2.3. Performance Counters . 81
6.2.4. eeDaemon Decisions . 82

6.3. Visualization of Trace Files . 83
6.3.1. Sunshot . 84
6.3.2. Vampir . 90

7. Evaluation 95
7.1. Synthetic Benchmark . 95

7.1.1. Reference Run . 97
7.1.2. Memory-bound Instrumentation 98
7.1.3. Operation-based Instrumentation 103
7.1.4. Energy-Performance Tradeoff . 106

7.2. Application Benchmarks . 108
7.2.1. Jacobi PDE Solver . 109
7.2.2. Shallow Water Modeling . 112
7.2.3. Max-Planck-Institute Ocean Model 115
7.2.4. General Estuarine Transport Model 120

7.3. Appraisal of Results . 124

8. Related Work and State-of-the-Art 129
8.1. Assessing Application Power Consumption 129

8.1.1. System Analysis . 129
8.1.2. Application Analysis . 130

8.2. Exploiting Hardware Power Saving Mechanism 132
8.2.1. Application Power Management 132
8.2.2. System Power Management . 133

9. Conclusion 135
9.1. Future Work . 140

A. Appendix I

10

1. Introduction

Supercomputers combine the performance of several thousands of desktop computers to
tackle problems which can not be solved on normal desktop computers or workstations
within adequate time. High performance computing (HPC) is an important tool in
science and industry to analyze questions in silico. Instead of time consuming and
expensive real-life experiments (like car crash tests), HPC scientists model and simulate
experiments within the computer system which provides a well-defined environment.
Scientific models from weather systems to protein folding and nanotechnology are built
and run leading to new observations and understanding of phenomena which are too
fast or too expensive to grasp in vitro [MMK+12, KS92]. By increasing computing
performance, the model granularity can be increased. This is desirable for almost all
conducted experiments because new and more detailed results can be achieved which
are transferred to knowledge gain. One metric for computing performance is to measure
the performed Floating Point Operations per Second (FLOPS). Today’s supercomputers
are in the range of several Petaflops, which corresponds to 1015 floating point operations
per second. However, since larger scientific problems ask for more computing power,
the next three orders of magnitude, Exascale-Computing (1018 floating point operations
per second) is targeted for 2019. Recently, the European Union decided to double its
investments in high performance computing1.
As performance of these supercomputers is the crucial factor, there are several methods
to speed up systems [MMK+12]. The processing speed of a single processor can be
increased, or the number of processors can be increased – either by fusing more chips
into a single machine or by interconnecting multiple machines into a cluster system.
In the past, the performance of applications was improved by packing more function-
ality into a single chip and increasing the clock frequency of this processor. However,
the processor power consumption is proportional to the square of its clock frequency.
Thus, doubling the processing count is more power-efficient than doubling the processing
frequency [Sey11]2[RMM+01].
The disadvantage of these multi-processor or multi-core chips is the decreased pro-
grammability: to fully exploit the hardware parallelism, the work has to be parallelized,
too.
The resulting performance boost by adding N more processing units is called speedup S.
It is ideally measured with the time TN using N processing units against the time T1
using one processing unit. How well the speedup is in regard to the used processing
units is measured by the efficiency E.

1http://www.hpcwire.com/hpcwire/2012-02-15/eurpean_commission_announces_plan_to_

double_hpc_investments.html, last checked: March 2, 2013
2The bachelor thesis has been supervised in conjunction with this thesis

11

http://www.hpcwire.com/hpcwire/2012-02-15/eurpean_commission_announces_plan_to_double_hpc_investments.html
http://www.hpcwire.com/hpcwire/2012-02-15/eurpean_commission_announces_plan_to_double_hpc_investments.html

1. Introduction

S =
T1
TN

< N E =
S

N
< 1

There are two established laws concerning the prediction of scalability, whereas P
is the part of the program that is actually affected by the parallelization, Amdahl’s
Law [Amd67] and Gustafson’s Law [Gus88]:

Amdahl’s Law S = 1
(1−P)+ P

N

Every program has parts which cannot be split onto several processing units or which
have to be done by every single processing unit (e.g. initialization and communication
phases). This overhead is the reason why E is really smaller than 1. The actual speedup
now consists of the overhead (1 − P) and the parts which are processed faster P

N
.

Gustafson takes another approach, because the part of a program causing the overhead
is usually not consuming a high percentage of the total runtime. The main purpose
costing the most time of the program—the calculation—will be parallel, so P is actually
1 while calculating.

Gustafson’s Law S = N − (1 − P) · (N − 1)

 0

 5

 10

 15

 20

 1 4 16 64 256 1024 4096 16384 65536

Sp
ee

du
p

Number of Processors

50%
75%
90%
95%

(a) Amdahl’s law

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100 120

Sp
ee

du
p

Number of Processors

50%
75%
90%
95%

(b) Gustafson’s law

Figure 1.1.: Amdahl’s law and Gustafson’s law with different efficiencies [Sey11].

As Figure 1.1 shows, Amdahl’s law always predicts a possible upper limit, whereas
Gustafson’s law does not. The reason is the different opinion about the used problem
size. Problem size actually means the amount of data that has to be processed. Amdahl

12

implies a fixed problem size, so the calculating/communication ratio for every processing
unit decreases when more processing units are used.
Gustafson predicts that the users will usually process more data (greater problem size)
when they have more machines, mainly for getting more accurate results in the same
amount of time. Both laws are valid, as they target slightly different fields under different
assumptions. However, significant effort has to be put into the design and implementa-
tion of parallel applications to reach a high efficiency.
Consequently, the complexity of designing and implementing parallel applications is
even higher than for their sequential versions. Scientific applications intended to run on
supercomputers already use multiple programming concepts to get the most performance
out of the hardware. Today, in the era of multi-core and multi-socket processors, the
challenge is almost the same for developers of desktop and server applications because
the independent processors and/or cores must exchange intermediate results by means of
communication. This communication process incurs additional latency and might cause
idle processors waiting for new data to process. Consequently, careful attention must be
given to balance the work evenly among the resources.
There are several programming concepts worth mentioning in this context [MMK+12].
These can be roughly separated into concepts for shared and distributed memory com-
puter architectures. On shared memory architectures (all parts of the parallel program
can access the same memory), programs are usually implemented using lightweight pro-
cesses, so called threads. POSIX and other standardized interfaces – like Boost Threads –
provide ways to use threads manually. These usually involve programming on a very low
abstraction level. Additionally, more abstract concepts are available. The Open Multi-
Processing (OpenMP) standard provides semi-automatic parallelization using compiler
pragmas and library functions. The GNU Compiler Collection provides full OpenMP
support as of version 4.4. More advanced approaches include the Intel’s Threading Build-
ing Blocks and Microsoft’s Parallel Patterns Library. On distributed memory architec-
tures the de-facto standard is to use some kind of message passing, most prominently
via the Message Passing Interface (MPI). MPI provides a standardized interface which
enables parallel programs to send messages over the network in an efficient manner. Ob-
viously, depending on the network technology used, this introduces even more latency.
For this reason, supercomputing vendors often provide implementations tuned for their
specific architecture. MPICH and OpenMPI provide open source implementations of
the MPI standard. Additionally, version 2 of the MPI standard provides an interface for
efficient parallel I/O.
Using these concepts, some numerical algorithms are capable to utilize computing re-
sources on a parallel computer to a high degree. But unfortunately, most applications
exploit only a few percent of peak performance [OCC+07]. A highly optimized and par-
allel algorithm that can saturate the theoretical peak performance to about 60% is the
LINPACK benchmark [DLP03], which solves a system of linear equations.
With increasing supercomputer sizes, low efficiencies of applications increase the wasted
energy in terms of unused or not fully utilized processing units.
This leads to the observation that energy costs are more and more becoming a limiting
factor to supercomputing-based science and engineering. The increase in energy con-

13

1. Introduction

sumption in modern supercomputers is driven by the increasing density of the hardware
components and the decrease of the price for hardware [Mud00]. Compared with these
factors, the improvement in energy efficiency thus the reduction of energy consumption
in an HPC system develops with a slower pace. As a consequence, steadily increasing
costs for energy in HPC systems can be noticed due to constantly increasing absolute
power consumption. This phenomenon is also referred to as Jevons’ paradox, as the
English economist William Stanley Jevons observed in 1865 that technological improve-
ments that increased the efficiency of coal use led to increased consumption of coal in a
wide range of industries [Jev66]. Thus, in economics, the Jevons’ paradox is the proposi-
tion that technological progress that increases the efficiency with which a resource is used
tends to increase (rather than decrease) the rate of consumption of that resource [Alc05].
In high performance computing, this paradox increases the Total Costs of Ownership
(TCO) and shifts the relation between the TCO and the acquisition costs into the di-
rection of the TCO. Consequently, operating a supercomputer becomes more expensive
than buying it.
This has direct implications on the way research will be conducted in the near future.
With the increasing price per experiment3 it is reasonable to ask: Is the knowledge
gain worth the financial investment in terms of electricity costs? And, if the answer
is yes: How can this trend be slowed down without affecting the scientific value of the
experiments?
These questions recently opened a new field of science – Green High Performance Com-
puting. The additional raising political and social awareness of green topics attracted
many scientists motivated to reduce the ecological footprint of typical supercomputing.
Nowadays, individual approaches on different abstraction levels in the complex HPC
environments are evaluated. However, there is no integrated approach yet that presents
how to operate an HPC environment in an energy-efficient way.
Taking a look at the currently top-ranked system from the TOP500 List4 of super-
computers, it has a peak power consumption of more than 8 megawatts. This power
consumption results in electricity costs of several millions of euros (based on European
electricity costs about 8 million Euro per year).
To understand this trend, the following paragraph exemplary analyzes the development
of the compute infrastructure of the German climate computing center (DKRZ). The
DKRZ was established in Germany as a central service facility to meet the rapidly
growing computational demands of the climate research community in 19875. Major
investment for the facility were provided by the Federal Ministry of Education and
Research (BMBF). The operations were funded jointly by BMBF and the company’s
shareholders, the Max-Planck-Society for the Advancement of Sciences, the University
of Hamburg, the GKSS Research Centre and the Alfred-Wegener-Institute for Polar and
Marine Research.
Table 1.1 gives an overview of the DKRZ’s computer history from 1988 to 2012. Some

3system power of multiple MW multiplied with the experiment runtime multiplied with the electricity
price

4http://www.top500.org/, last checked: March 2, 2013
5http://www.dkrz.de/about-en/aufgaben/dkrz-geschichte/, last checked: March 2, 2013

14

http://www.top500.org/
http://www.dkrz.de/about-en/aufgaben/dkrz-geschichte/

Table 1.1.: DKRZ supercomputer history from 1988 to 2012.

Installation Operating time CPUs Performance Memory
From To GFlops GB

CDC Cyber 205 01/88 03/89 1 0.2 0.032
CRAY 2S 11/88 05/94 4 2 1

CRAY YMP 05/91 05/95 3 1 0.512
CRAY C916 04/94 06/01 16 16 6
CRAY T3D 09/94 09/95 32 4.8 2
CRAY T3D 04/97 06/00 128 19.2 8
NEC SX 4 10/01 03/02 16 32 32

NEC SX 6 (1st stage) 03/02 10/02 64 512 512
NEC SX 6 (2nd stage) 11/02 03/03 128 1,024 1,024
NEC SX 6 (3rd stage) 04/03 05/09 192 1,536 1,536

IBM Power6 04/09 04/14 8,448 158,000 20,000

of the acquisitions are split (NEC SX 6 supercomputer), which means that the super-
computer was upgraded during its operating time. In detail, the NEC machine was
upgraded twice and operated in total from 2002 until 2009. Additionally, some of the
installations ran in parallel to minimize non-operational times.
The development in terms of peak performance, main memory and number of CPUs is
visualized in Figure 1.2. Naturally, the peaks in all graphs result from new installations
starting operation.

1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
0.01

0.1

1

10

100

1000

10000

100000

1000000
Number of CPUs Main memory size

Peak Performance

Time (Year)

P
ea

k
P

er
fo

rm
an

ce
 (

G
F

lo
p/

s)
 a

nd

T
ot

al
 M

em
or

y
(G

B
)

Figure 1.2.: DKRZ supercomputer history in terms of peak performance, main memory and
total number of CPUs.

But the drawback of this fast increase in calculation power is the increase of the annual
center electricity costs as visualized in Figure 1.3. Even though the efficiency in terms of
performance per annual electricity costs (Flops/Euro) is increasing, the evolution cannot
outweigh the total increase of the electricity costs. Of course, the annual center electricity

15

1. Introduction

cost do not solely consists of the supercomputer electricity cost, several small-sized
cluster, workstations and desktop computers are included as well as costs for compute
room cooling, building heating, lights, etc.. However, these costs are not significant and
can be considered as indirect operating costs.

1988
1989

1990
1991

1992
1993

1994
1995

1996
1997

1998
1999

2000
2001

2002
2003

2004
2005

2006
2007

2008
2009

2010
2011

2012

0

500000

1000000

1500000

2000000

2500000

1

10

100

1000

10000

100000

1000000

10000000

100000000
Annual Electricity Costs

Performance / Annual Electricity Costs

Time (Year)

E
ur

o

F
lo

ps
 /

E
ur

o

Figure 1.3.: Increasing efficiency (Flops per Euro annual electricity costs) and electricity costs
at the DKRZ from 1988 to 2012.

Based on the average previous industry electricity prices6 and the electricity costs, the
average computing center power consumption is calculated in Figure 1.4. Thus, the
increasing electricity costs are not only due to the electricity price, but also due to the
increase of the power needs by high performance installations.

1988
1989

1990
1991

1992
1993

1994
1995

1996
1997

1998
1999

2000
2001

2002
2003

2004
2005

2006
2007

2008
2009

2010
2011

2012

0

0.02

0.04

0.06

0.08

0.1

0.12

0

0.5

1

1.5

2

2.5

3
Energy price
Average Power

Time (Year)

E
ur

o
/ k

W
h

M
W

Figure 1.4.: Increasing power consumption of the DKRZ from 1988 to 2012.

Several components in an HPC environment contribute here. Starting with the power
consumption of the processing unit (which is usually the lion’s share), additional energy
is needed to operate memory, network and I/O system in a computing node. Further-
more, the generated heat by the electrical components has to be exchanged, which results
in further costs for cooling. The whole infrastructure of larger supercomputing centers
consumes a considerable amount of energy: In addition to the cooling, power has to be

6provided by the Federal Ministry of Economics and Technology

16

converted, distributed, and sometimes even buffered, which all introduces further power
losses.
The efficiency problem of the infrastructure is not restricted to HPC centers, also bigger
datacenter or smaller computing centers are confronted with these problems. This prob-
lem resulted in broad initiatives like the GreenGrid7 which tries to consolidate knowledge
in this area. One first outcome of this initiative is the Power Usage Effectiveness (PUE)
metric, which divides the total power by the IT power to evaluate infrastructure effec-
tiveness.
Especially large HPC- and datacenter focus on decreasing the PUE since this approach is
an engineering approach and does not affect the performance of the scientific application
itself.
One further approach to reduce the power consumption and costs is the change of
the computing architecture [Bar05]. Nowadays, special accelerator hardware, like
General-Purpose Graphic Processing Units (GPGPUs) or Field Programmable Gate
Array (FPGA)-based designs are commonly used in high performance systems [ARH10,
AHA+11, AHR+11]. Additionally, the move to low-power (and low-cost) processing de-
vices is considered in various projects – the advantageous performance per cost ratio
over x86 based processors motivates this step. For instance, wimpy nodes (slower, but
efficient nodes) have been analyzed in the FAWN project for data-intensive comput-
ing [AFK+09, VFA+09]. The Green Flash project also builds a supercomputer with
low-power embedded microprocessors [WOS08], the Mont-Blanc project8 uses the ARM
architecture. However, the mechanisms cannot easily be used efficiently since the differ-
ent hardware architecture needs a special adaptation of the application software which
often requires a complete rewrite of the application to exploit the full possible perfor-
mance. The co-development of software and hardware is referred to as Co-design and
goal of the CoDEX (Co-design for Exascale) project9.
Besides to the cost factor, all approaches try to exploit either the Time-to-Solution
(TTS) or Energy-to-Solution (ETS). The relation between Time-to-Solution and Energy-
to-Solution is visualized in Figure 1.5 on Page 18. The application needs time t1 with a
power consumption of P2 on platform A and time t2 with a much lower power consump-
tion P1 on platform B. For both cases, the total energy (time multiplied with power,
thus the rectangle area) is the same. Thus energy optimization is possible in both ways:
Either decrease the runtime and increase power, or increase the runtime and decrease
power.
This approach can take place at each step of the design of the scientific application:

• Different mathematical or numerical description of the same problem can result in
different runtime and energy behavior on different hardware platforms.

• Design and implementation of the algorithm itself.

7http://www.thegreengrid.org/, last checked: March 2, 2013
8http://www.montblanc-project.eu/, last checked: March 2, 2013
9http://www.nersc.gov/research-and-development/exascale-computing/codex-project/, last

checked: March 2, 2013

17

http://www.thegreengrid.org/
http://www.montblanc-project.eu/
http://www.nersc.gov/research-and-development/exascale-computing/codex-project/

1. Introduction

Power

Time

P
2

t
1

P
1

t
2

Figure 1.5.: Relation between Time-to-Solution and Energy-to-Solution.

• Selection of the appropriate hardware platform for the algorithm.

• Adaptation of the software implementation to the underlying hardware.

Due to hardware power saving mechanisms like Dynamic Voltage and Frequency Scaling
(DVFS) of the traditional x86 processor10, the application can be modified to take
advantage of different speed and power settings, too. For example, single processing
threads can be slowed down or accelerated to minimize waiting times due to scheduling.
This approach can take place fine-granularly (on process level for each processing core)
or coarse-granularly (on job level for each computing node). The fine-granular approach
is summarized by the term Application Optimization or Application Tuning, while the
coarse-granular approach is classified under the term Scheduling. This thesis focuses
on the fine granular approach, which is described in the following section as individual
approach.

1.1. Individual Approach

Exploiting hardware power saving mechanisms on traditional x86 high performance com-
puting architectures has a strong motivation from the software side. Most software uti-
lizes only a low percentage of the available hardware resources – either the software does
not need the resources to perform the task or the software does not handle the resources
in an efficient manner [MMK+12]. This is the case for server applications [BH07] as well
as for desktop applications [KHLK09]. The problem is exemplarily demonstrated in Fig-
ure 1.6a, which plots the processor utilization against the measured relative node power
usage. The processor has the highest power consumption when under full load. If the
load decreases, the hardware still consumes a considerable amount of power. Thus, low
utilization is problematic because the utilization and power consumption of the hard-
ware are not proportional. The additional graph visualizes the power efficiency, which
is defined as the utilization divided by the relative power usage. Correspondingly, the
node is most power efficient if under full load. If the load decreases, the efficiency also
decreases.

10originally developed for mobile computing

18

1.1. Individual Approach

To deal with unneeded resources the hardware vendors implement low-power idle states,
which can be activated when the hardware is idle, meaning zero utilization. But this
solves the problem only partially, because low and inefficiently utilized hardware still
consumes a high percentage of the maximum power. Additionally, few components
(e.g. the processor and the network interface card) support different performance states.
The performance can be decreased, and thus can the power consumption. Figure 1.6b
visualizes the relative node power usage with disabled and enabled performance states
of the processor.

100 90 80 70 60 50 40 30 20 10 0
0

20

40

60

80

100

120
Relative Power
Power Efficiency

Utilization (%)

%

(a) Relative power usage and power efficiency for
different utilization levels.

100 90 80 70 60 50 40 30 20 10 0
0

20

40

60

80

100

120
Power saving disabled
Power saving enabled

Utilization (%)

P
ow

er
 U

sa
ge

 (
%

)

(b) Relative power usage corresponding to perfor-
mance state settings.

Figure 1.6.: Relative power measurements for different utilization levels on an Intel Xeon
X5560 dual-socket node.

The relative power consumption decreases more with enabled power saving mechanisms
and thus the power efficiency is increased. Unfortunately, there is no power proportional
hardware available yet [MKL10]. But with every new processor generation, the power
efficiency usually increases compared to the the predecessor.
The low-utilization problem may be disregarded in single personal desktop computers,
but as the number of computers vastly increases the energy wastage increases too. This
is the case for larger offices using various numbers of desktop computers, and even more
important for data centers housing larger numbers of servers or centers built to operate
supercomputers.
Supercomputing centers deal with large energy bills, thus there is a bunch of tools
available to measure the performance and power consumption of individual components.
However, these tools can also be used to investigate the efficiency of server and desktop
systems.
Hardware power consumption depends heavily on the utilization which means the uti-
lization has to be improved to increase the efficiency. But near-optimal utilization of
all resources provided on one single chip (or processor) is already a challenging task to
developers, compilers and middle-ware. This list includes the operating system as well,
which manages the low-level hardware and schedules tasks to the available resources.
For real applications, the efficiency is usually in the range of 1-10 % of the peak perfor-
mance of a given system. Therefore, tuning and optimization of applications to exploit
more of the available resources is an important task to improve performance and effi-

19

1. Introduction

ciency of the facility. It is important to optimize from the most promising performance
or energy boosting bottleneck to the least.
Often, performance and energy are directly correlated: more efficient and high perfor-
mance codes finish earlier, causing less energy consumption. In many cases, using less
resources with a higher efficiency is more energy efficient. However, a fast execution is
mandatory for the scientist to deliver results. Therefore, the focus is on the execution
time. If reducing the executing time by one minute, several Euros11 can be saved. Run-
times of hours, days and even months are common – correspondingly, huge monetary
savings can be reached by application improvements (often referred to as performance
engineering).
To evaluate not only the performance, but also the energy efficiency of applications, the
application contribution to the total power consumption has to be analyzed to quantify
improving potential.
As scientific programs usually require a huge amount of resources, one could expect
these are especially designed for performance. However, in most cases the performance
optimization is performed after the program output is validated. At this late stage a
version of the code exists which is tested to some extend. A complete redesign is usually
out of reach.
A schematic view of the typical iterative optimization process is shown in Figure 1.7.

Figure 1.7.: Closed loop of optimization and tuning [MMK+12].

In general, the closed loop of optimization is not limited to source code, the loop can
be applied to any system. To measure performance and power consumption, hardware
and software configurations must be selected including the appropriate input in terms
of problem statements. It might happen that optimizations made for a particular con-
figuration degrade performance or increase energy consumption on a different setup.
Therefore, multiple experimental setups should be measured to increase the validity.
Often, the measurement itself influences the system by degrading performance, which
must be kept in mind. Picking the appropriate measurement tools helps to reveal the
real behavior of the system and applications.

11Assuming annual costs of 2,000,000e, one minute uptime costs about 3.80e for the whole system.

20

1.1. Individual Approach

In the next step, obtained empirical data is analyzed to identify optimization potential
in the source code and on the system. As execution of each instruction requires some
resources, the code areas must be rated. First, code regions requiring a significant
portion of the run-time (or system resources and resulting energy consumption) are
identified. Once the issues are identified, alternative realizations are developed which
tend to mitigate the problems. Then, tuning potential of those hot spots is assessed
based on possible performance gains/power reductions considering the time to modify
the application code. Changing a few code lines of the main execution base to improve
performance is more efficient than to recode whole processes which might be active for
only a small percentage of the total runtime. From the viewpoint of the computing
facility, already optimizing a program by 1 % increases the benefit of the hardware
(because it runs 24 hours a day for months).
At the end of a loop the current source code gets modified to verify the improvement
of the new design. The systems gets re-evaluated in the next cycle until potential gains
are either too small because the results are already near-optimal, or the time to change
the source code outweighs the improvements.
During the optimization process, several points have to be addressed:

• the improvement of algorithmic and/or programming inefficiencies,

• the quality of system or third-party software libraries,

• the match of the software environment and the hardware system itself to maximize
the efficiency.

Therefore, the analysis process is often complex and requires a sophisticated set of
methodologies and tools.
The goal of this thesis is to design and evaluate tool extensions for power and energy
analysis in addition to the already existing performance engineering approaches in par-
allel systems. The tool extensions must be able to measure the impact of different
algorithms or implementation choices in terms of power. According to Figure 1.6b, the
node power consumption is highly dependent on the utilization of the different devices.
Thus, the first step is to classify different hardware usage pattern and their impact on
the power consumption. Most high performance computing applications utilize different
devices in phases due to the parallelization scheme. In general, phases can be classified
as

• compute intensive, mainly the processing unit is utilized

• communication intensive, mainly the interconnection is utilized

• and I/O intensive, mainly the I/O subsystem is utilized.

Typically, the application phase intensity does not result in the utilization of only one
device type. Consider Ethernet as interconnection type: The TCP/IP packages have
to be packed and unpacked, which is usually done by the main processing unit. Addi-
tionally, compute phases can be further classified as memory-bound, if the calculation

21

1. Introduction

has to move large amounts of data from or to the main memory. The memory speed
is normally slower than the processor speed, thus it is possible that the processing unit
has to wait for the memory subsystem.

The different phases result in different utilization of the devices – usually not all devices
are utilized at the same time. This motivates the investigation of hardware power saving
modes as known from mobile or desktop computing. In detail, application phases have
to be identified where the usage of hardware power saving modes reduces the power
consumption without significant impacts on the application runtime. Otherwise, it is
possible that the total energy for the application increases due to the definition of energy
(see equation 1.1): If the runtime increase outweighs the power decrease, the total energy
increases.

E = P ∗ t (1.1)

This tradeoff is known as Energy-Performance-Tradeoff and has to be considered care-
fully for every optimization. In addition to the application slow-down by lowering the
operating speed, the transition between the power saving modes itself has to be con-
sidered, too. Depending on the specific device and mode, the transition induces costs
in terms of time (the device may become unavailable) and energy (disk platters have
to be spun up, which needs a non-negligible amount of energy). Out of this, mode
requirements from different application processes have to be consolidated to avoid fast
transitions between power saving modes of (shared) resources. Additionally, it is not
possible to switch the hardware power saving modes from within the application with-
out running the application itself in root context. Due to these issues, the design and
implementation of a framework for switching hardware power saving modes from within
parallel applications is necessary.

Analyzing the tradeoff between energy and performance requires correlation of the appli-
cation details, the hardware usage, the power saving modes and the power consumption.
This correlation promises significant knowledge improvement about the tradeoff through
all software layers. There already exist several tools for performance engineering which
cover at least the performance aspects. Thus, for these tools extensions will be designed
and implemented for the correlation of additional, energy-related, metrics.

The resulting tool set enables us to measure performance and energy-related character-
istics to localize performance and power issues in parallel applications. Additionally,
the framework allows us to increase the energy efficiency of parallel applications
with manual code instrumentation. This is, in particular, interesting for widely used
applications, libraries and operating system middleware.

The rest of this thesis is structured as follows.

Chapter 2 researches fundamental power saving modes of high performance hardware.
The component breakdown includes the Central Processing Unit, the General Purpose
Graphic Processing Unit, the main memory, the Input/Output system and the intercon-
nect system between the computing nodes. To adjust the power saving modes of these
components, available interfaces including the Advanced Configuration and Power In-

22

1.1. Individual Approach

terface are discussed in detail. Additionally, durability issues due to the fast transitions
between the power saving modes are briefly discussed.

Using hardware supporting several power saving mechanisms a test infrastructure which
consists of five AMD and five Intel nodes is described in Chapter 3. Each of these nodes
is connected to power measurement equipment which makes it possible to investigate
the power saving potential of the specific test hardware. For this investigation, several
idle and load measurements are performed for the two different architectures in dif-
ferent power saving modes. The impact of operating system mechanisms like processor
governors or processor idle states are analyzed with the SPECPower benchmark12. Addi-
tionally, different types of load are evaluated in terms of power and energy consumption
dependent on different power saving modes of all different hardware devices.

Based on the demonstrated potential for energy saving, Chapter 4 introduces dynamic
switching strategies for reducing parallel application power consumption. Since stati-
cally switching the power saving mechanisms usually increases the application runtime,
dynamic switching strategies are required. Appropriate application phases that result
in idle or partly utilized hardware components are classified in this chapter. These soft-
ware patterns resulting in these phases are used to describe the hardware-centric and the
application-centric strategy, respectively, for exploiting the power saving mechanisms.
For the first strategy, the decisions are based on sampled hardware characteristics like
the component utilization or processor performance counters. This enables automatic
phase detection using various heuristics as implemented in the Linux ondemand governor
based on the utilization. The second strategy takes advantage of the specific applica-
tion phases resulting in characteristic hardware utilization to switch the power modes.
Following this approach, the different phases can be executed in different power modes
via application instrumentation with the advantage of knowing the future utilization of
the component.

To provide a software interface to instrument application phases, Chapter 5 describes
the design of the eeDaemon software. This software consists of an application interface
which can be linked to the scientific application. The phase information is communicated
to a server daemon, which runs on each computing node and performs the mode switches.
This is necessary for two reasons. On the one hand, the power mode for shared resources
has to be negotiated by the different processes. On the other hand, the adjustment of the
power modes requires more administrative privileges – thus only the eeDaemon server
has to run in root context.

Chapter 6 describes tool extensions to correlate the scientific application with energy-
related metrics. This includes metrics like hardware utilization or processor performance
counters to identify and classify application phases of interest, but also the hardware
power saving modes to evaluate the application instrumentation and the result on the
device performance. Additionally, the power consumption is correlated with the appli-
cation since the power consumption is essential for the identification as well as for the
evaluation. Furthermore, the chapter describes the chosen tracing approach followed
by the exemplary post-mortem visualization of the traced metrics. In detail, the HD-

12http://www.spec.org/power_ssj2008/, last checked: March 2, 2013

23

http://www.spec.org/power_ssj2008/

1. Introduction

Trace and VampirTrace tracing environments are extended to provide these kinds of
measurements. For visualization of the trace files, Sunshot and Vampir are used.
Exploiting the developed extensions, several scientific applications are analyzed in Chap-
ter 7 to evaluate the whole approach of this thesis. Using an energy-efficiency bench-
mark, typical hardware usage patterns are identified to characterize the workload and
the impact on the power consumption. Furthermore, the tradeoff between energy and
performance is evaluated in detail. Based on this analysis, four parallel applications are
examined using the developed tool extensions:

• partdiff-par, a partial differential equation solver,

• swim, a Shallow Water modeling for weather prediction,

• MPIOM, the Max-Planck-Institute Ocean Model,

• and GETM, the General Estuarine Transport Model.

Appropriate application phases are instrumented using the eeDaemon interface to reduce
the power consumption with the final goal to save energy for the whole application run
on the test cluster.
Finally, Chapter 8 summarizes related work in the field of Green HPC while Chapter 9
concludes this thesis, including the description of future work.

24

2. Hardware Mechanism

High performance computing hardware supports multiple power saving mechanisms com-
parable to mobile devices which can be exploited if not fully utilized. This chapter breaks a
typical high performance computing cluster down into its components and discusses the
power saving mechanisms for each manageable device. Components with a low power
consumption and/or no manageable power saving mode are only briefly discussed. Fur-
thermore, only components on node level are discussed, additional infrastructure like
cooling environment is out of the scope of this chapter. The main goal is to introduce all
power consuming components of a high performance computing system including their
interfaces to existing power saving mechanisms for future exploitation.

The highly parallel infrastructure of high performance computing environments works
well for highly scalable applications with a high degree of parallelism. Unfortunately,
the higher the count of processing units or the less efficient the resource usage, the data
transfer between the different resources increases. Data needs to be transferred between
different processing cores, between a processing core and the main memory or, in the
worst case, between two computing nodes. This data transfer is expensive in terms of
waiting times – corresponding resources have to wait for the completion of each data
transfer.

Additionally, typical high performance applications do not need all hardware devices at
the same time: Most applications operate in phases utilizing only a subset of devices.

This issue is originally addressed by the Advanced Configuration and Power Interface1

(ACPI) specification. The ACPI specification describes the structures and mechanisms
necessary to design directed power management and to make advanced configuration
architectures possible. In other words, the device performance and power consumption
is adjusted to the current device utilization.

2.1. Component Overview

To adjust the device performance and power consumption, most hardware devices in a
high performance computing system support various power saving states. This section
provides a brief overview of the mechanisms, more details of design techniques for system-
level dynamic power management can be found here [BBDM00].

1http://www.acpi.info/spec50.htm/, last checked: March 2, 2013

25

http://www.acpi.info/spec50.htm/

2. Hardware Mechanism

2.1.1. Central Processing Unit

The central processing unit (CPU) usually consumes the lion’s share of the power con-
sumption in a high performance computing system. Correspondingly, the processor has
the most hardware mechanisms for reducing the power consumption on the one hand,
on the other hand most research focuses on the efficient exploration of these modes.
Before studying the hardware mechanisms in detail, Equation 2.1 breaks down the total
power consumption (Ptotal) of a multi-core processor into its components [Sey11].

Ptotal = #cores (Pdyn + Pleak + Pshort) + uncore (2.1)

Pshort is the power caused by a short-circuit current which flows from the supply to
the ground during a transition period of input signals. [HOT96]. However, Pshort only
occurs during signal transitions and is negligible for the total chip power consump-
tion [MFMB02]. Pleak on the other hand is the gradual loss of energy from charged
capacitors or when current leaks out of the intended circuit. It is possible that leakage
power drains up to 20 % of Ptotal [BAEP08]. Even if this is a high percentage, Pleak

can be considered as constant and can thus be disregarded for dynamic power saving
modes. On the contrary, Pdyn is the power used to actually charge and discharge the
capacitance, composed of gate and interconnect capacitance. The higher this dynamic
switching current is, the faster capacitive loads can be charged and discharged, enabling
a better performing circuit [Sey11]. Additionally, recent processors include more and
more components being formerly part of the mainboard. Those components moved to
the uncore area of the chip next to the computing cores. The main reasons are la-
tency reduction (integration of the memory controller), power efficiency (separate power
control unit) and better scalability with many cores. The uncore area can include the
memory-controller, the L3 cache or several interconnection links. Based on the concrete
architecture (especially the number of cores), the uncore components can consume a
considerable amount of the total power consumption.
However, nowadays Pdyn dominates the processor power consumption, but it is possible
that Pleak will grow strongly in the future due to further miniaturization [LHL05]. Pdyn

consists of several factors: The frequency f , the voltage V , the level of chip activity α and
a factor C dependent on the capacitance of the chip as stated in Equation 2.2 [MKL10].

Pdyn = α C V 2 f (2.2)

To reduce Pdyn, two approaches are feasible: Reducing the frequency and reducing the
voltage. The minimum voltage is dependent on the frequency – high frequencies re-
quire higher voltages and low frequencies lower voltages. Correspondingly, for a fixed
frequency the definition of the voltage is crucial for power consumption, because the
voltage goes quadratically into the equation. The needed voltage depends on several
circumstances like chip design and temperature. The reduction of the voltage to the
minimum threshold is also known as Near-Threshold Computing (NTC).
Besides to these design principles, there exist two main power saving mechanisms. The
first mechanism introduces a set of frequencies for different performance requirements,

26

2.1. Component Overview

thus these states are named processor performance states. Each frequency is associated
with a voltage requirement resulting in several operating states with the goal to reduce
the power loss through leakage. On the processor side, this mechanism is named Dynamic
Frequency and Voltage Scaling (DVFS) and is explained in the following section. The
second mechanism disables the clock (clock gating) or interrupts the power consumption
(power gating) which results in sleep states named processor power states.

Processor Performance States

Coming originally from the mobile area with varying processing workload and increased
focus on power consumption, DVFS is now implemented in almost all desktop and
server processors. Because the lower frequency also decreases the performance, these
frequency states are named Processor Performance States (P-States) by the ACPI stan-
dard [HIM+11]. The maximum performance state is labeled P0, the next lower one P1
and so on. Intel named this mechanism Enhanced Intel SpeedStep R© Technology (EIST),
while AMD named it Power NOW. According to Intel [Int09b], the key features of the
technology is to provide multiple voltage and frequency operating points for optimal per-
formance at the lowest power. The voltage and frequency selection is software controlled
by writing to processor Machine Specific Registers (MSRs): If the target frequency is
higher than the current frequency, the voltage is ramped up in steps and the Phase
Lock Loop (PLL) then locks to the new frequency. If the target frequency is lower than
the current frequency, the PLL locks to the new frequency and the voltage is changed.
Software transitions are accepted at any time. If a previous transition is in progress, the
new transition is deferred until the previous transition completes. The processor controls
voltage ramp rates internally to ensure smooth transitions. Low transition latency and
large number of transitions possible per second, the processor core (including shared
cache) is unavailable for less than 2µs during the frequency transition. In conclusion, it
takes time (and energy) to switch to another operating point. Consequently, wrong de-
cisions can either harm performance or power consumption. In addition to the reduction
of the nominal frequency, it is also possible to increase the frequency, which is named
Turbo Boost (for Intel [Int08], introduced with the Nehalem architecture) and Turbo
CORE (for AMD, introduced with the Bulldozer architecture), respectively. The im-
plementation varies with each processor generation, in general a temporarily frequency
increase is possible if electrical and thermal conditions are met. This is usually only pos-
sible for a subgroup of cores – providing higher performance for one group and reducing
performance for the rest which results in performance benefits for some workloads. As
exemplarily shown in figure 2.1, due to the processor architecture voltage and frequency
can not always be chosen freely for each single core. It is possible that cores share
frequency and voltage (Figure 2.1a), frequency but not voltage (Figure 2.1b) or do not
share either frequency or voltage (Figure 2.1c). Thus, it is not always possible to use dif-
ferent frequencies for different cores – the concrete implementation is heavily processor
and architecture dependent.

27

2. Hardware Mechanism

Core 0 Core 1

Freq

Vcore

(a) DualCore shared
Freq & Vcore

Core 0 Core 1

Core 2
Freq

Core 3
Freq

Vcore

(b) QuadCore half-split
Freq, shared Vcore

Core 0

Freq

Vcore

Core 1

Freq

Vcore

Core 2

Freq

Vcore

Core 3

Freq

Vcore

(c) QuadCore split Freq
& Vcore

Figure 2.1.: DVFS architectures in multicore-processors [Sey11]

Processor Power States

ACPI defines the power state of system processors as being either active (executing) or
sleeping (not executing) [HIM+11]. Processor Power States (C-States) are named C0,
C1, C2, C3, . . . Cn. The C0 power state is an active power state where the processor
executes instructions. The higher the number, the lower the power consumption and
the higher the latency to reach the active power state C0 again. For deeper sleep states,
the latency can reach the range of 3 to 245 nanoseconds for the Intel Xeon X5560
series [Int11, Int09b]. The C1 state defines a sleeping state entered when all threads
within a core execute a HLT instruction [MMK+12]. The processor transits to the C0
state upon occurrence of an interrupt. While in C1 state, the clock of the core is gated
and is thus able to maintain the context of the system caches. The following states offers
each improved power savings over the predecessor. Based on the current implementation
of the processor architecture, specific processor power states influence also the caching
behavior. If the state is deeper than C2, it is possible that the memory cache (level
3) is turned off or flushed, level 1 and 2 might be invalidated, too. Invalidation results
in further performance decrease since the caches have to be repopulated. Table 2.1 on
Page 29 gives a short overview over the implementation on the hardware side. Depending
on the architecture and the concrete power state, power states can be applied per core
or per socket.

Processor Throttling States

Besides to the already mentioned states, the processor supports Processor Throttling
States (T-States) [HIM+11]. The throttling state is one of the three execution states
that processors execute code in, the processors execution speed is reduced [MMK+12].
The purpose of the throttling states is to prevent the processor from overheating by
lowering its temperature. This is done by introducing idle cycles in the processor which

28

2.1. Component Overview

Table 2.1.: Processor power states overview based on [Tor08]. It is possible that different
processor vendors implement the processor power states slightly different.

State Name CPU implementation

C0 Operating State CPU fully turned on
C1 Halt Stops main internal clocks via software
C1E Enhanced Halt Stops main internal clocks via software and reduces voltage
C2 Stop Grant Stops main internal clocks via hardware
C2 Stop Clock Stops internal and external clocks via hardware
C2E Extended Stop Grant Stops main internal clocks via hardware and reduces voltage
C3 Sleep Stops all internal clocks
C3 Deep Sleep Stops all internal and external clocks
C3 AltVID Stops all internal clocks and reduces voltage
C4 Deeper Sleep Reduces voltage further
C5 Enhanced Deep Sleep Reduces voltage even more and turns off the memory cache
C6 Deep Power Down Reduces the internal voltage to any value, including 0 V

results in a reduced performance and temperature. Depending on the processor handling
of the idle cycles, no power saving is associated with the throttling states. If no power
saving can be reached with the throttling states, the states should be avoided if possible.

2.1.2. General Purpose Graphic Processing Unit

The General Purpose Graphic Processing Unit (GPGPU) is commonly used in today’s
HPC systems as accelerator. Similar to the central processing unit, the GPGPU has clock
scaling, voltage scaling and clock gating mechanisms implemented. Common GPGPUs
automatically reduces clock speed when running less demanding applications. This
allows the GPU to switch to different voltage levels in addition to throttling clocks.
Aggressive dynamic clock gating turns off unused blocks of the GPU to achieve the lowest
operating power when (at least partially) idle. For the NVIDIA GPU, the corresponding
power saving framework is named PowerMizer [NVI08]. This framework also include
On-Chip Thermal Management and PCI Express Bus Power Management, the latter
will be explained in Section 2.1.5.

2.1.3. Main Memory

For some HPC systems, main memory is a large contributor to the total power con-
sumption. This is mainly based on the system architecture in terms of memory amount
per processor core. The main memory power consumption is also dependent on the
frequency and the voltage. D(V)FS can also be applied for the main memory, but this
is usually not adaptable during the runtime. Supported operating points of frequency

29

2. Hardware Mechanism

and voltage can be only selected before the system startup (via BIOS settings). How-
ever, depending on the hardware architecture, the memory controller frequency (and
thus the memory frequency) is reduced when the processor adjust its frequency. Conse-
quently, this reduces also the performance (in terms of memory bandwidth) and power
consumption of the main memory.
In general, the server memory modules – usually Registered Dual In-line Memory Mod-
ules (RDIMMs) – support multiple electrical current levels (IDDs2) for different oper-
ations on the module. Multiplying this current with the voltage results in the DIMM
power consumption. However, these states are exploited by the memory controller. Thus
it is possible, to use only a subset of the memory ranks in a ready state, while the rest
goes to a sleep mode (but still refreshing the memory cells). Disabling the refreshing
of main memory (Partial Array Self Refresh, PASR) is only possible for mobile DRAM
which is used in power sensitive environments, e.g. mobile phones. In this environment,
the utilization is usually much lower and thus great power savings can be reached.

2.1.4. Input/Output System

Hard Disk Drives

Hard Disk Drives (HDDs) usually consume a lower percentage of the total power con-
sumption. But in storage system HDDs can consume a considerable amount of power
due to the increased number [CPB03]. Most expensive in terms of power consumption
is the movement of the plattern around the spindle, but also the electronic components
like the device cache consume a considerable amount of energy [HSRJ08]. However, the
angular velocity ω of the motor has a quadratic effect on the power consumption (see
Equation 2.3). Ke is the motor voltage constant and R is the motor resistance [GSKF03].

Pdisk =
K2

e ω
2

R
(2.3)

Additional contributors to the power consumption are the tracking of the read/write
head and the cache buffer of the disk.

Table 2.2.: Hard disk power saving modes overview [Tec09]. Active and idle mode do not
differ in terms of power saving modes (heads, spindle and buffer are in the same
state).

Power mode Heads Spindle Buffer

Active Tracking Rotating Enabled
Idle Tracking Rotating Enabled
Standby Parked Stopped Enabled
Sleep Parked Stopped Disabled

2defined by the JEDEC consortium, http://www.jedec.org/, last checked: March 2, 2013

30

http://www.jedec.org/

2.1. Component Overview

Typical hard disk drives provide programmable power management to provide greater
energy efficiency as summarized in Table 2.2. The active (reading, writing or seeking)
and idle mode do not differentiate in terms of power management. The first power saving
mode (standby) stops the spindle from rotating, thus the heads have to be parked. It
is also possible that the spindle just lowers its Revolutions per Minute (RPM). In both,
idle and standby mode, the drive accepts all commands and returns to active mode when
disc access is necessary. In the deeper sleep mode, the disk cache is also disabled. The
drive leaves the sleep mode after it receives a hard or soft reset from the host. Each step
reduces the power consumption, but also increases the wakeup latency of the device.
In addition to these sleep modes, it is also possible to optimize the access pattern to
the disk via Native Command Queuing (NCQ). This reduces the movement of the head
which results in a decreased power consumption since less accelerating and decelerating
is necessary in active mode.

Solid State Drives

Additional to traditional hard disks, Solid State Drive (SSD) usage increases in datacen-
ters. A Solid State Drive is a flash-based semiconductor memory device. Comparable
to main memory, an electrical cell stores the information. In opposition to typical main
memory, which is volatile and needs to be refreshed, flash cells are non-volatile. Based
on the organization of the flash’s transistors, the differentiation in NAND and NOR flash
is possible. Today, NAND flash is commonly used for storing large data amounts. Due
to the random access to the memory cells organized by the drive’s controller, SSDs can
achieve a multiple of the performance of traditional HDDs for reading operations. Fur-
thermore, since no moving parts are needed, the latency is much slower and the power
consumption is decreased. If no access to memory cells occur, the power consumed by
the flash memory is negligible (for almost all flash types). Hence, in today’s SSDs no
additional power saving mechanisms are implemented.

2.1.5. Interconnection Systems

Device Interconnection

For multi-socket systems, the interconnection between different processor sockets is cru-
cial for the total system performance. Thus, the interconnection type changes with
almost each new processor architecture. In the following, two interconnection types are
introduced used by Intel and AMD, respectively, the Quick Path Interconnect (QPI)
and HyperTransport (HT). HyperTransport also facilitates power management as it is
ACPI compliant. Changes in processor sleep states can signal changes in device states,
e.g. powering off disks when the processor goes to sleep. HyperTransport 3.0 added
further capabilities to allow a centralized power management controller to implement
power management policies. QPI on the other hand is a point-to-point interconnection,
usually including the processor sockets, the memory controller and the chipset. Several
QPI Link Power States (L-States) are available: L0, L0s and L1 [Int09a]. The power

31

2. Hardware Mechanism

states disable a subset of data channels – thus the (bi)directional transmission speed
is decreased. The further connection of peripheral components (like GPGPUs) to the
main processor is usually implemented via Peripheral Component Interconnect Express
(PCIe). PCIe supports the same power states named Active State Power Management
(ASPM) [Int02], but only L0s and L1 are used during active state power management,
at least by Intel. The power saving opportunities during the very low latency power
state L0s include most of the transceiver circuitry as well as the clock gating of at least
the link layer logic. For the low latency power state L1, the power saving opportuni-
ties include the shutdown of most of the transceiver circuitry, clock gating of most PCI
Express architecture logic, and finally the shutdown of the PLL. Configuration of at-
tached devices into Device States (D-States) will automatically cause the PCIe links to
transition to the appropriate L-States. Serial Advanced Technology Attachment (SATA)
is one of the possible interconnection of hard drives and the mainboard chipset. SATA
Link Power Management (LPM) switches the physical layer (PHY) of the connection
into one out of two energy saving states. These states are independent of possible power
saving mechanisms of the attached devices. The SATA-controller and the attached de-
vice negotiate the appropriate power saving mode, if no further transfer data is in the
corresponding queues. Usually, the usage of the LPM modes of the interconnect are
followed by the switching of the device power mode by the device itself – if no data is
ready to be transfered, both the link and the device can be switched to a power saving
mode.

Node-to-Node

In high performance computing systems, a broad variety of node interconnection types
exist. Most common types include Infiniband (fibre channel) and 10/40 Gbit Ethernet.
The best interconnection type is usually the most expensive one. This subsection focuses
only on Ethernet, since Ethernet will be used for all following experiments.

Ethernet devices can usually adjust the speed of the transmission of network packets.
Originally, this is a backward compatibility issue – to communicate at the least com-
mon denominator. This speed decrease reduces also the power consumption slightly. In
addition to the general slowdown of the network processing, the internal network proces-
sor can be slowed down (e.g. in phases with less network activity) to reduce the power
consumption. If the device is idle, it is further possible to use power gating for several
components (e.g. power gating the processor disables the (de-)coding of the signals).
This mechanism is in particular interesting if the device is unused (no cable connected)
and is replicated at switch side. The switch automatically detects which network ports
are connected to an active system (e.g. a computer that’s switched on compared to a
computer that’s switched off or in standby), and only provides power to the ports that
are active. Additionally, the switch can vary the amperage (signal intensity) depending
on the length of wire between the switch and another device on the network3. Unfor-
tunately, none if these power saving modes is applied in today’s server network cards

3D-Link named this technology Green Technology

32

2.2. Interfaces

except for the network speed reduction for compatibility reasons.

2.2. Interfaces

The exploitation of the aforementioned power saving modes of the different hardware
components requires a software interface which allows the programmer to interact with
the hardware power saving modes. In the following, the interface of each hardware
device is discussed briefly to allow manual interaction with the hardware. For the Linux
operating system the /proc and /sys interfaces, respectively, can monitor and manage
most of the hardware states. For the processor, the P-States, C-States and the T-
States are the main power saving mechanisms. All mechanisms can be disabled in the
Basic Input/Output System (BIOS) before the Operating System (OS) is loaded. Most
systems support the fine-granular adjustment of the modes such as disabling all C-States
deeper than C3 or disabling the turbo mode (as specific P-State). This is in particular
interesting for system administrators, who can control the global system behavior and
eliminate additional sources for defects. Since the decision about the specific C- and
T-States is based on load and temperature measurements of the processor chip itself,
no further management interface to the operating system exists. The decision about
the concrete P-State is software-based (e.g. user-specific decision to reduce the processor
power consumption on a mobile device to increase battery lifetime) and thus manageable
by the OS. To manage these processor states, the corresponding Linux kernel module has
to be loaded. In case of Intel processors, this is the cpufreq module, for AMD processors
the powernow module is needed. Using this interface, the operating system can manage
the states using multiple strategies. With the Linux commands cpufreq-info and
cpufreq-set the strategy and the frequencies can be monitored and changed for each
logical processor, respectively.

1 $ cpufreq -set -c 0-4 -f 2800000

The above example requests the frequency of processor cores 0,1,2,3 and 4 to be at
2,800,000 kHz. The turbo mode is referred to a special frequency +1 MHz: if 2,800 MHz
is the maximum frequency, 2,801 MHz indicates the turbo mode. Due to further hard-
ware constraints (e.g. shared frequency and voltage between cores, see Figure 2.1) it
might not be possible for the hardware to realize the request. The hardware always
picks the least common denominator out of all requests. The usage of the C- and T-
States is also reported to the operating system. But the C-States reported by the OS
are not necessarily the same as available at the hardware level – usually all hardware
states deeper or equal than the C3 state are summarized by the operating system.

Furthermore, both AMD/ATI and NVIDIA provide frameworks that allow the upper
limit on the frequency and voltage of the GPGPU to be scaled by the user.

The main memory voltage can be adjusted in the BIOS to reduce the power consumption,
but unfortunately no further interface (especially to the operating system) is available.
Furthermore, for some hardware architectures, the memory controller frequency (and
thus the memory frequency) is reduced when the processor adjust its frequency.

33

2. Hardware Mechanism

The hard disk power saving modes of the spinning drives can be adjusted via hdparm

which reads and writes the ATA parameters of the drive. The program allows to check
the drive state and to change to sleep and standby mode, respectively. Additionally, it
is possible to adjust the internal idle timeouts of the device – if no requests arrives for
a specified threshold, the devices transits to the next deeper power saving mode.

1 $ hdparm -C /dev/sda

2

3 /dev/sda:

4 drive state is: active/idle

5

6 $ hdparm -y /dev/sda

7

8 $ hdparm -Y /dev/sda

In the above example, the first command checks the drive state, while the second and
third command forces the drive to standby and sleep mode, respectively. hdparm is
available via SourceForge4.

The power saving modes for QPI, HT, PCIe and SATA as device interconnections are
only manageable via the BIOS and can be disabled or enabled, respectively.

The Ethernet power saving modes (speed and duplex mode) can be modified with the
ethtool program. Usually, the auto-negotiation mode decides about the network speed
and duplex mode.

1 $ ethtool -s eth0 speed 100 duplex full autoneg off

The above command disables the auto-negotiation mode on the one hand, on the other
hand the card speed is set to 100 Mbit and full duplex mode. ethtool is also available
via SourceForge5.

Each of the described commands needs administrator privileges.

2.3. Durability Issues

Besides to the positive impact on the power consumption, the power saving mechanisms
might also impact the durability of each device type. Reducing the processing frequency
and corresponding voltage also reduces the chip’s temperature, which should have pos-
itive impact on the durability since the chip is designed for higher temperatures. The
only possible influence might be the diverse temperature gradient when some cores run
at high temperature and others at low temperature. Furthermore, too frequent switch-
ing might harm the voltage regulator located on the mainboard – but this component is
designed for exactly this task. However, controlled switching of the P-States should not
harm the hardware at all.

The usage of the disk sleep and standby mode results into frequent decelerating and
accelerating of the spindle, which could result into a increased failure rate over a longer

4http://sourceforge.net/projects/hdparm/, last checked: March 2, 2013
5http://sourceforge.net/projects/gkernel/, last checked: March 2, 2013

34

http://sourceforge.net/projects/hdparm/
http://sourceforge.net/projects/gkernel/

2.3. Durability Issues

time frame. In a recent study realized by Google6, the impact after three years of
frequent switching was a increased failure rate of 2 %. After two years, no impact was
measurable. Thus, the impact of controlled switching should be negligible for the disk’s
lifetime.
Switching the network speed is the most critical issue, since the switching itself can take
several seconds. If the task is interrupted, the network card might stay in an undefined
state, which can only be resolved by (re-)setting the device parameters. No additional
implications on the network card’s durability occurred during this study.

High performance computing hardware – despite its name – supports a broad variety of
performance and sleep modes to be exploited by the system or the user. In detail, the
CPU, the hard disk and the interconnect provide several power saving mechanisms and
interfaces, mainly based on the ACPI standard. Furthermore, the impact of the power
saving mechanisms on the device durability is negligible if wisely used. Unfortunately, the
mechanisms for the power management of network devices are very limited in the server
space, even if promising research is conducted [NPI+08, GS07b, AHC+09, GS07a] and
will possible be available in the future. Additionally, the main memory has significant
potential for power saving as evaluated by several simulations [DGMB07, DFG+11].

6http://static.googleusercontent.com/external_content/untrusted_dlcp/research.

google.com/en//archive/disk_failures.pdf, last checked: March 2, 2013

35

http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en//archive/disk_failures.pdf
http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en//archive/disk_failures.pdf

3. Power and Energy Saving Potential

The last chapter described available hardware mechanisms to reduce the power consump-
tion. In this chapter, the focus is on the exploitation of these mechanisms to measure
the real power saving potential for various hardware devices. A research cluster is de-
signed using energy-efficient components supporting a broad range of the power saving
mechanisms. This cluster is attached to a sophisticated measurement infrastructure to
provide power measurements on node level. Using this infrastructure, the power saving
potential of different hardware components is evaluated under different load scenarios.

3.1. Test Infrastructure

The test infrastructure eeClust (energy-efficient Cluster Computing)1 consists of a small
HPC cluster and additional power measurement devices. The concrete test setup is
shown in Figure 3.1.

The HPC cluster consists of 10 compute nodes, 2 I/O nodes and one head node. The
nodes are connected via 1,000 Mbit Ethernet to exchange data between the nodes. In
addition to the communication and storage network, the nodes are connected via a
100 Mbit Intelligent Platform Management Interface (IPMI)2 network for administration
of the nodes. This network can also be used for reading out sensors connected to the
Baseboard Management Controller (BMC) of the node’s mainboard without interaction
of additional hardware components like the processor or the main network. Figure 3.2
visualizes the cluster in a physical view.

The compute node architecture itself is as follows: The 10 node compute part of the
cluster is split into 5 Intel Nehalem nodes (Xeon X5560) and 5 AMD Magny-Cours nodes
(Opteron 6168) with the goal to analyze the architecture dependent energy-saving mech-
anisms. The Xeon nodes have 2 sockets, each with 4 cores and a processing frequency
of 2.8 GHz. In addition to various C-States and P-States ranging from 1,600 MHz to
2,800 MHz, the X5560 processor also supports Turbo Boost in two steps, each with
133 MHz. Further, it is possible to enable throttling of the cores or to disable whole sub-
groups of cores in the system BIOS. Additionally, the Xeon nodes support Symmetric
Multithreading (SMT) which results in 16 logical cores per node.

The Opteron nodes do not support SMP, but have a higher physical core count of 12
cores per socket with a frequency of 1.9 GHz. The AMD nodes support also a various

1Founded by the german ministry of education and reasearch (BMBF) under grant number 01IH08008E
2http://www.intel.com/design/servers/ipmi/, last checked: March 2, 2013

37

http://www.intel.com/design/servers/ipmi/

3. Power and Energy Saving Potential

Figure 3.1.: Picture of test infrastructure eeClust with 10 computing nodes and 3 power mea-
surement devices highlighted with a red rectangle.

range of P-States, but no C-States except for the enhanced C1 mode (C1E). The P-
States range from 800 MHz to 1,900 MHz, no Turbo CORE mode is supported. Also for
the Opteron architecture, disabling of core groups in the system BIOS is possible.

To sum up, the cluster has a total compute capability of 120 processing cores split over
10 nodes and 2 architectures supporting various power saving modes.

Furthermore, the Intel and AMD nodes have a different memory setup. The Intel nodes
have a total memory of 12 GByte and 3 memory channels per socket, which results in
2 GByte per memory channel and 1.5 GByte per core (with disabled SMT). The AMD
nodes have 1.3 GByte of memory per core, which results in a total memory capacity
of 32 GByte. Each of the four channels per socket is populated with 4 GBytes. The
memory type is for both architectures DDR3 with 1,333 MHz. The additional hardware
is similar for both architectures: Both use a Seagate Barracuda 7200 hard disk and

38

3.1. Test Infrastructure

5 x Nehalem (intel1-5)

Switch 48 Port

Switch 24 Port

1 Gbit 100 Mbit

IPMI Network (red)

5 x Opteron (amd1-5) 2 x NAS (nas1-2)

3 x LMG 450

Communication and Storage Network (black)

Serial connections
 (grey)

Figure 3.2.: Physical view on the eeClust infrastructure.

Gigabit Ethernet provided by the Intel chipset. Both device types support various
power saving modes: The disk can be put into sleep and deep sleep mode, while the
network card can reduce its speed and change the duplex mode. The existing power
saving modes of the concrete hardware are only partially exploited by the operating
system or the hardware itself. In our test environment, each of the cluster nodes is
installed with openSUSE 11.2 using the 2.6.37-default kernel. Usually, the P-States of
the processor are adjusted to the system load, while the disk goes to sleep mode if idle
for a defined threshold. The network power saving modes are not exploited at all.

Additionally, power measurement devices are connected to the research cluster. In gen-
eral, two types of measurements are possible for measuring the power consumption: pri-
mary and secondary measurement [MMK+12]. Primary measurement means capturing
the power consumption of nodes or servers as a whole. For this purpose, usually power
measurement devices such as power meters are looped through between the Power Dis-
tribution Unit (PDU) and the power supply of the node. There exist a bunch of different
power meters, which mainly differ in the count of measurement channels, the accuracy
of the measurement, the interface to read the measurement values and, of course, the
price. Table 3.1 gives an short overview about some device types.

The costs per measurement channel for each device type scales with the accuracy and the
available interface types. While the external devices in general have a higher accuracy, in
most cases a further software API is needed to extract the measurement values from the
hardware interface. If the device supports some higher level protocols, like the Simple

39

3. Power and Energy Saving Potential

Table 3.1.: Example power measurement devices overview by type, internal accuracy, mea-
surement interval, measurement channels and data interface [MMK+12].

Device ZES LMG [ZES] WattsUp [Ele] PX-5528 [Rar10]

Type external external integrated
Accuracy High Low Mid-Range

(+/- 0.1 %) (+/- 1.5 %) (+/- 1.0 %)
Interval 10 ms 1 s 1 s
Channels 1-8 1 24
Interface Serial/Firewire USB/LAN Serial/LAN/SNMP

Network Management Protocol (SNMP), the fetching of the measurement data is in most
cases easier, but it is possible that the fetching interval and the measurement interval are
different. If using integrated measurement devices in the PDU or the power supply, the
advantage is the simple installation – the disadvantage the low measurement interval.

From a computer scientist’s point of view, the power meters work all the same way:
Every fixed timestep a measurement takes place, which results in discrete measurement
values (in general, an interpolation of device internal measurements). These measure-
ment values can be read from the device and can be further analyzed. The general
problem when interpreting the data is the problem of buffers, conversion losses and
load-dependency.

The relation of the input and the output power of the power supply (efficiency) of the
computing nodes ranges from 60 % up to over 95 % for a Switched-Mode Power Supply
(SMPS) [AH03]. However, the power supply efficiency depends on the concrete load.
Usually, the efficiency is better for low and high utilization than for medium utilization.
Additionally, the power supply has capacitive buffers to compensate for short term
variation. Thus a short increase of the power consumption of the node devices may be
unrecognized by a primary measurement device. Further the measurement device itself
may have a buffer for the measurement values, so the correlation of the measurement
data and the resources utilization has to be validated. In most cases, this is possible
with timestamps provided by the measurement device on the one hand and the node
on the other hand, potential communication delays have to be deducted. However, the
breakdown to the component power consumption is in most cases difficult.

With secondary measurement, each outlet of the power supply can be measured sepa-
rately. The simplest method are power supplies with integrated measurement devices
which distribute the data for example via the Power System Management Protocol (PM-
Bus)3 or the IPMI interface. Unfortunately, only few power supply vendors integrate
such capabilities.

Another approach is to use direct current sensor clamps and connect them to each outlet

3http://pmbus.org/, last checked: March 2, 2013

40

http://pmbus.org/

3.2. Evaluation of Hardware Power Saving Modes

of the power supply [MMK+12]. These sensors use the Hall Effect to measure the power
consumption contact-less. Each of these clamps has to be connected to further devices
like a power meter or oscilloscope. There are two main problems: On the one hand, the
general acceptable accuracy of about 2 % can not be guaranteed for low direct currents.
On the other hand, this results in a large number of measurement devices, which is less
practical for large-scale installations. Additionally, it is comparatively simple to measure
the power consumption of a disk, because each disk has its own power connection – for
the processors it is more difficult to determine the device power consumption. Some
connections are shared with other devices (like the ATX connector) and each processor
could be supplied by multiple connections. A possible solution are special system main
boards that provide interfaces to measure the power consumption of each device.

However, in this test infrastructure, the node power consumption is measured, since
the energy consumed between the power supply and the outlet is the energy which
is charged by the electricity company. Thus, the setup measures the real power and
includes potential inefficiencies in power conversion.

To measure the node power consumption to evaluate the potential of the power saving
mechanisms each node (except for the head node) is connected to a power measurement
channel. In detail, LMG 450 power meters are used with a measurement accuracy over
99.9 %. In Figure 3.1, the LMG 450 devices are highlighted with the red rectangle. The
maximum frequency of the measurement devices is 20 Hz, which means 20 measurements
per second (one measurement every 50 ms). Each LMG 450 has 4 measurement chan-
nels, thus 3 devices can measure the power of 12 cluster nodes. The power meters are
connected to the head node via the serial interface, a developed software component
called PowerTracer reads out the measurement values and saves them into a postgresql
database. The software interface is described in Section 6.2.1.

3.2. Evaluation of Hardware Power Saving Modes

Each of the mentioned hardware components contributes to the node power consump-
tion. For different system designs, the component breakdown might look very differ-
ent [MGW09]. In datacenters, the most power consuming component is usually the main
memory, because the nodes are used as virtualization hosts and need a large amount
of memory per processing core. On the contrary, for high performance computing the
focus is in almost every case on the processing power – thus the most energy is spend on
the processor. Due to the processor consuming usually the lion’s share of the power, the
focus is clearly on this component. However, the power consumption varies based on the
current load and the power saving mode of the specific component. In this section, each
power saving mode of each component will be analyzed under different load scenarios.

Table 3.2 shows the measured AMD node power consumption for different P-States
using the measurement infrastructure described in the last section. Additionally, the
average socket voltage is measured via IPMI. All measurements are performed for the idle
processor and the processor under load. For generating the load on all processing cores,
a parallel partial differential equation solver is used which is further described in Section

41

3. Power and Energy Saving Potential

7.2.1. If the P-State is increased, the processing frequency is decreased corresponding to
the ACPI specification. Correspondingly, the socket voltage as well as the node power
consumption decreases. Interestingly, the socket voltage for the idle scenario is higher
than under load – this can only be explained with an additional voltage supply which
is not covered by the IPMI measurement. However, for the load scenario, the power
consumption can be decreased from about 312 Watt to about 219 Watt (about 30 %)
while the power saving for the idle processor is only about 7 %.

Table 3.2.: Measured node power consumption and average socket voltage for AMD Opteron
6168 series.

P-State Frequency Socket Voltage (V) Node power (W)
(MHz) Load Idle Load Idle

P0 1,900 1.07 1.12 314.3 113.4
P1 1,500 1.03 1.07 278.7 111.2
P2 1,300 1.00 1.04 257.5 109.6
P3 1,000 0.98 1.02 235.8 105.9
P4 800 0.97 0.99 219.4 105.2

For the Intel nodes (see Table 3.3 on Page 43), the power consumption under load can
be decreased by almost 27 % if decreasing the frequency from 2,800 MHz to 1,600 MHz.
In opposition to the Opteron nodes, the Xeon nodes have a constant power consumption
if idle, the processing frequency seems to be disregarded. The reasons are the additional
C-States of the processor.

Table 3.4 refers to the corresponding manual of the processor and shows the difference
in processor power consumption for power gating as published by Intel. If the processor
transits into C6 state, the processor power consumption can be decreased by almost 90 %.
But power gating has also disadvantages: The state is only possible if the processor is
completely idle. Furthermore, the L3 cache of the processor is flushed which might
result in performance loss since the processor has to repopulate the caches again. To
better evaluate the DVFS mechanisms Table 3.5 visualizes the same measurements with
disabled C-States.

Now, the measured difference in power consumption is about 6 % and comparable to
the Opteron measurements. Under full load, the C-States do not influence the power
consumption (as expected). To sum up: If the processor is idle, power gating comes into
place and reduces the power consumption even more as DVFS.

Figures 3.3a and 3.3b on Page 44 visualize the measurements for the Opteron and
Xeon nodes, respectively. For both architectures, the DVFS power saving potential
under full load is much higher than without load. Of course this potential is highly
dependent on the kind of load (e.g. floating point or integer operations, divide or multiply
operations, . . .), but also on the concrete utilization level. One benchmark addressing

42

3.2. Evaluation of Hardware Power Saving Modes

Table 3.3.: Measured node power consumption and average socket voltage for Intel Xeon
X5560 series. The processor C-States are enabled in the system BIOS.

P-State Frequency Socket Voltage (V) Node power (W)
(MHz) Load Idle Load Idle

P0 (Turbo) 2,800-3,066 1.18 0.94 340.4 133.1
P0 2,800 1.06 0.94 288.5 133.1
P1 2,667 1.05 0.94 270.6 133.1
P2 2,533 1.03 0.94 257.7 133.0
P3 2,400 1.02 0.94 246.3 133.0
P4 2,267 1.00 0.94 237.2 132.9
P5 2,133 0.98 0.94 228.2 133.0
P6 2,000 0.97 0.94 219.3 133.0
P7 1,867 0.96 0.94 211.3 133.1
P8 1,733 0.94 0.93 203.7 133.1
P9 1,600 0.93 0.93 196.7 133.0

Table 3.4.: Processor package C-State power specifications for the Intel Xeon X5560 se-
ries [Int09b].

C-State Power (W)

C0 95
C1E 30
C3 26
C6 10

several utilization levels of a server workload is the SPECPower benchmark4 set up by
the Standard Performance Evaluation Corporation (SPEC). This benchmark consists of
only one subset of server workloads: the performance of server side Java. However, the
SPECPower benchmark is an industry-standard power-performance benchmark and thus
also used in high performance computing environments to measure the power efficiency
of computing nodes. Figures 3.4 and 3.5 on Page 45 show the benchmark results with
and without DVFS for different load levels, the utilization of the processor is decreased
in 10 % steps. The load is measured in ssj ops, the power consumption in Watt and
the power efficiency in ssj ops per Watt for each level.

For both architectures, enabling DVFS increases the power efficiency without any rec-
ognizable decreases in performance. Additionally, the C1E state of the Opteron node

4http://www.spec.org/power_ssj2008/, last checked: March 2, 2013

43

http://www.spec.org/power_ssj2008/

3. Power and Energy Saving Potential

Table 3.5.: Measured node power consumption and average socket voltage for Intel Xeon
X5560 series. The processor C-States are disabled in the system BIOS.

P-State Frequency Socket Voltage (V) Node power (W)
(MHz) Load Idle Load Idle

P0 (Turbo) 2,800-3,066 1.18 1.19 338.8 178.9
P0 2,800 1.06 1.08 285.4 166.5
P1 2,667 1.05 1.06 270.5 159.8
P2 2,533 1.03 1.05 257.9 158.2
P3 2,400 1.02 1.03 246.1 156.3
P4 2,267 1.00 1.02 236.5 154.9
P5 2,133 0.98 1.00 227.7 153.4
P6 2,000 0.97 0.99 219.0 152.1
P7 1,867 0.96 0.97 211.2 150.6
P8 1,733 0.94 0.96 203.3 149.6
P9 1,600 0.93 0.94 196.5 148.6

800 1000 1300 1500 1900
0

50

100

150

200

250

300

350
Load

Idle

MHz

W
a
tt

(a) Opteron nodes.

1600 1733 1867 2000 2133 2267 2400 2533 2667 2800 2801 (T)
0

50

100

150

200

250

300

350
Load

Idle

MHz

W
a

tt

(b) Xeon nodes.

Figure 3.3.: Power consumption for Opteron and Xeon nodes depending on P-State and uti-
lization. The Intel Xeon C-States are disabled in the system BIOS.

reduces the power consumption further if idle (referring to Active [Idle] in the corre-
sponding figure).

Unfortunately, the SPECPower workload does not really reflect a typical high perfor-
mance computing workload. For HPC, especially the ratio between compute-intensive
and memory-intensive operations is interesting. This ratio can be measured in processor
operations per byte transferred from the memory (operations per Byte, OPB). If the ra-
tio is small, the workload is considered memory-bound (the processor waits for data from

44

3.2. Evaluation of Hardware Power Saving Modes

(a) P-States disabled. (b) P-States enabled.

Figure 3.4.: SPECPower Measurements for AMD Opteron nodes with and without P-
States [Min09].

(a) P-States disabled. (b) P-States enabled.

Figure 3.5.: SPECPower Measurements for Intel Xeon nodes with and without P-States. The
Intel Xeon C-States are disabled in the system BIOS [Min09].

the memory). Correspondingly, a high ratio is considered cpu-bound (less interaction
with the main memory).

45

3. Power and Energy Saving Potential

In Figure 3.6, the energy is measured which is needed to perform workloads with dif-
ferent OPB values for the multiplication of two double values with different processing
frequencies.

1600 1733 1867 2000 2133 2267 2400 2533 2667 2800 2933
0

5

10

15

20

25

30

35

40

1 2 4 6 8 12 16 20 24 28 32

Frequency (MHz)

E
n

e
rg

y
(k

J)

(a) Intel Xeon.

800 1000 1300 1500 1900
0

10

20

30

40

50

60

70

80

90

100

1 2 4 6 8 12 16 20 24 28 32

Frequency (MHz)

E
n

e
rg

y
(k

J)

(b) AMD Opteron.

Figure 3.6.: Energy consumption of the Intel Xeon and AMD Opteron nodes for different
workloads. Each workload is executed with different processor frequencies (X-
axis). The workloads differ in terms of OPB values (memory-boundness) for the
multiplication of two double values. Each specific workload is represented by one
line in the plot [MMKK12].

For the Intel nodes, increasing the processing frequency results in lower energy measure-
ments for high OPB values. Due to the higher processing frequency, more multiplications
can be processed in a smaller amount of time – thus the energy decreases. For lower OPB
values, the energy remains constant or even increases with the frequency. The benefit
of increasing the processing frequency is negligible – the processor has to wait for the
memory most of the time and thus the increased power consumption affects the total
energy in a negative way. Interestingly, the AMD nodes show a different behavior: Inde-
pendent of the operation per Byte, the energy decreases with increasing the frequency.
In terms of energy efficiency, it only makes sense to reduce the core frequency where
the memory bandwidth remains high. Of course, this is only possible if the memory
bandwidth is independent from the socket voltage – the memory subsystem has to have
its own voltage regulator which does not seems to be the case for the AMD nodes. More
in detail, Figure 3.7 displays the memory scaling with different processor frequencies for
both architectures.
These measurements clearly show the different hardware implementation for the two
architectures. For the concrete Opteron architecture, reducing the processing frequency
for memory-bound workloads does not improve the energy efficiency, while it does for
the Xeon architecture.
In addition to pure computation, the processor can also be utilized in communication or
I/O phases. In general, the distinction between the type of I/O (local or distributed) and
communication (intra- oder inter-node) is necessary to assess the power saving potential.
For the test infrastructure, distributed I/O results in inter-node communication, because
all data is sent via the standard network interface card to the NFS server.
In the following, the DVFS potential for point-to-point and collective communication is
analyzed in addition to local file input and output.

46

3.2. Evaluation of Hardware Power Saving Modes

800 1000 1200 1400 1600 1800 2000
0

30

60

90

120

150

180
L3 RAM

Frequency (MHz)

B
a

n
d

w
id

th
 (

G
B

/s
)

(a) AMD Opteron.

1600 1800 2000 2200 2400 2600 2800 3000 3200
0

30

60

90

120

150

180
L3 RAM

Frequency (MHz)

B
a

n
d

w
id

th
 (

G
B

/s
)

(b) Intel Xeon.

Figure 3.7.: Memory and L3 cache scaling with different processor frequencies for the Intel
Xeon and AMD Opteron nodes [MMKK12].

Figures 3.8a and 3.8b visualize the power saving potential for point-to-point commu-
nication using MPI Send/MPI Recv. Plotted are the relative values for runtime, power
and energy for the minimum frequency setup using the maximum frequency setup as
baseline. Further, different data sizes resulting in a different durations of measurements
are plotted. The shortest setup with a data size of 4 MB has a absolute runtime for
the maximum frequency setup of 0.8 s on the AMD nodes and 0.3 s on the Intel nodes.
Doubling the data size means also doubling the runtime.

4 8 16 24 32 48 64 96 128 192 256 352
-35

-30

-25

-20

-15

-10

-5

0

5

Runtime Energy Mean Power

Datasize (MB)

R
el

at
iv

e
R

un
tim

e,
 E

ne
rg

y
an

d
P

ow
er

 (
%

)

(a) AMD Opteron.

4 8 16 24 32 48 64 96 128 192 256 352
-30

-25

-20

-15

-10

-5

0

5

Runtime Energy Mean Power

Datasize (MB)

R
el

at
iv

e
R

un
tim

e,
 E

ne
rg

y
an

d
P

ow
er

 (
%

)

(b) Intel Xeon.

Figure 3.8.: Relative runtime, energy and power for point-to-point communication using
MPI Send/MPI Recv of the Intel Xeon and AMD Opteron nodes with varying
data sizes. The baseline is the highest frequency setup for each architecture.

For both architectures, the power decrease is significant (up to 25 % for Intel and 30 %
for AMD). In general, the longer the communication phase, the higher the power saving
potential. The impact on the benchmark runtime is not significant (below 2 %), thus
the energy-saving potential increases, too.
For the collective case visualized in Figure 3.9, the power decreases with the increase
of the data size, but the runtime and thus the energy decreases slower. A data size of
16 MB results for the maximum frequency setup in an absolute runtime of 0.5 s and 0.3 s
on the AMD and Intel nodes, respectively. For the Intel nodes, energy saving can be
reached with a data size greater or equal 128 MB (2 s), while a data size of 256 MB (8 s)

47

3. Power and Energy Saving Potential

is still not big enough to reach savings on the AMD nodes. But for both architectures,
the general trend is comparable. The explanation for the slower development on the
AMD nodes might be the higher core count resulting in more processes.

16 24 32 48 64 96 128 192 256
-40

-20

0

20

40

60

80

Runtime Energy Mean Power

Datasize (MB)

R
el

at
iv

e
R

un
tim

e,
 E

ne
rg

y
an

d
P

ow
er

 (
%

)

(a) AMD Opteron.

16 24 32 48 64 96 128 192 256
-40

-20

0

20

40

60

80

Runtime Energy Mean Power

Datasize (MB)

R
el

at
iv

e
R

un
tim

e,
 E

ne
rg

y
an

d
P

ow
er

 (
%

)

(b) Intel Xeon.

Figure 3.9.: Relative runtime, energy and power for collective communication using
MPI Allreduce on the Intel Xeon and AMD Opteron nodes with varying data
sizes. The baseline is the highest frequency setup for each architecture.

In addition to the communication behavior, file input and output power saving potential
is analyzed. For the local I/O test cases, data is read or written from/to the local file
system by each process. The amount of data is chosen to fill the main memory to
avoid caching mechanisms during the measurements (700 MB and 650 MB for AMD
and Intel, respectively). The granularity value decides about the amount of operations
generated by the benchmark: Each operation has the size of granularity and is repeated
until the data size is reached. Unfortunately, the results are not really trustworthy due
to the complex structure of the I/O stack and the simplicity of the tests. However,
Figures 3.10 and 3.11 on Page 49 indicate clear power and also energy-saving potential
for read and write operations, respectively. Only the write measurements for AMD with
a granularity of 700 MB do not show any energy-saving potential, indeed the energy is
increased by almost 200 %. Anyway, a clear power saving potential is indicated by these
first measurements and will be further analyzed in the following chapters.
Furthermore, the Xeon nodes of our cluster are equipped with Intel 82574 Gigabit
Ethernet adapters5, while the Opteron nodes are equipped with the 82576 adapters6.
The power consumption for the various network speeds is displayed in Table 3.6 on
Page 49(only the 82574 adapter, the values for the 82576 adapter are similar).
Unfortunately, varying the speed and the duplex mode of the network card under load
does not result into any energy saving at all due to the significantly increased runtime.
Table A.4 on Page VIII in the appendix summarizes several measurements on the Intel
nodes, AMD measurements are comparable due to the similar network card.
However, power saving can be reached by exploiting the disk’s power saving mechanisms.
Table 3.7 on Page 50 shows the corresponding power saving potential.

5http://download.intel.com/design/network/datashts/82574.pdf, last checked: March 2, 2013
6http://download.intel.com/design/network/datashts/82576_Datasheet.pdf, last checked:

March 2, 2013

48

http://download.intel.com/design/network/datashts/82574.pdf
http://download.intel.com/design/network/datashts/82576_Datasheet.pdf

3.2. Evaluation of Hardware Power Saving Modes

100 350 700
-30

-25

-20

-15

-10

-5

0

5

10

Runtime Energy Mean Power

Granularity (MB)

R
el

at
iv

e
R

un
tim

e,
 E

ne
rg

y
an

d
P

ow
er

 (
%

)

(a) AMD Opteron.

50 325 650
-30

-25

-20

-15

-10

-5

0

5

10

Runtime Energy Mean Power

Granularity (MB)

R
el

at
iv

e
R

un
tim

e,
 E

ne
rg

y
an

d
P

ow
er

 (
%

)

50 325 650
-30

-25

-20

-15

-10

-5

0

5

10

Runtime Energy Mean Power

Granularity (MB)

R
el

at
iv

e
R

un
tim

e,
 E

ne
rg

y
an

d
P

ow
er

 (
%

)

(b) Intel Xeon.

Figure 3.10.: Relative runtime, energy and power for disk read operations of the Intel Xeon
and AMD Opteron nodes with varying granularities. The baseline is the highest
frequency setup for each architecture.

100 350 700
-30

-25

-20

-15

-10

-5

0

5

10

Runtime Energy Mean Power

Granularity (MB)

R
el

at
iv

e
R

un
tim

e,
 E

ne
rg

y
an

d
P

ow
er

 (
%

)

(a) AMD Opteron.

50 325 650
-30

-25

-20

-15

-10

-5

0

5

10

Runtime Energy Mean Power

Granularity (MB)

R
el

at
iv

e
R

un
tim

e,
 E

ne
rg

y
an

d
P

ow
er

 (
%

)

(b) Intel Xeon.

Figure 3.11.: Relative runtime, energy and power for disk write operations of the Intel Xeon
and AMD Opteron nodes with varying granularities. The baseline is the highest
frequency setup for each architecture.

Table 3.6.: Network interface card power consumption of the Intel 82574 Gigabit Ethernet
controller family.

Speed (Mbit/s) Power active (mW) Power idle (mW)

1,000 878 642
100 351 190
10 416 167

no link - 44

Interesting is the decrease in power consumption when switching from idle to standby
or sleep of about 83 %. This potential can only be exploited if the disk is idle, the disk
has no power saving mechanism when under load. Figure 3.12 summarizes the different
modes of the devices and their impact on the power consumption.

49

3. Power and Energy Saving Potential

Table 3.7.: Hard disk power consumption of the Seagate Barracuda ST3500418AS [Tec09].

Mode Power (W)

Idle 5.00
Operating 6.57
Standby 0.79

Sleep 0.79

CPU Max Freq CPU Min Freq CPU Min Freq +
NIC 100 Mbit

CPU Min Freq +
NIC 100 MBit +
Disk sleep

0

20

40

60

80

100

120

140

160

180
AMD Opteron

Intel Xeon

Power saving mode

W
at

t

Figure 3.12.: Idle power consumption for Opteron and Xeon nodes depending on the increas-
ing count of device power saving modes. The Intel Xeon C-States are disabled
in the system BIOS.

This chapter described the used infrastructure for all following power and energy mea-
surements. Besides to the description of the test setup including hardware components
and measurement devices, the power saving potential of various power saving mecha-
nisms is evaluated. In detail, processor DVFS measurements are performed for different
strong memory-bound computation, communication and I/O. Remarkable is the archi-
tecture difference between the Intel Xeon and Opteron AMD nodes: While the Opteron
processors scale the memory bandwidth with the core frequency, the Xeon processors
do not. Thus the energy-saving potential for the Opteron processors is negligible for
memory-bound phases. However, a significant power and energy-saving potential could
be measured for longer communication and I/O phases. Also in these phases, the behav-
ior of the two processor architectures is slightly different, but mainly due to the different

50

3.2. Evaluation of Hardware Power Saving Modes

core count and memory setup. Unfortunately, the energy-saving potential of the network
card under load is negligible, too. But the power saving potential of disk and network
card in idle phases are significant.

51

4. Strategies for Reducing Parallel
Application Power Consumption

After evaluating the power saving potential of single devices, this chapter introduces
strategies for reducing parallel application power consumption. As static switching of
power saving mechanisms for the whole application run usually increases the runtime,
specific application phases have to be defined. In these phases, several dynamic switching
strategies can be applied to reduce the power consumption. The strategies can roughly be
divided into hardware-centric approaches and application-centric approaches. Hardware-
centric approaches make the decision about the concrete hardware power state dependent
on the hardware usage. Operating systems usually implement several heuristics for ex-
ploiting these approaches. On the other hand, the application-centric approach starts the
analysis at the application layer which allows considering future behavior.

4.1. Application Phases of Interest

Application phases of interest from a power saving perspective are application phases,
where hardware components

• are only partially utilized or even completely idle,

• are utilized, but not directly contributing to problem solution.

Figure 4.1 exemplary visualizes application phases and resulting hardware component
utilization. In this schematic sketch, two application processes first enter a compute
phase, followed by a communication phase where Process 1 sends data to Process 0.
The data is than written to disk by Process 0. Process 0 runs on Core 0 while Process 1
runs on Core 1.

The compute phase means moving data from main memory to the processor core, oper-
ating on data and moving data from processor core to main memory. This phase utilizes
processor and main memory, disk and network are for now unused. In general, more
complex setups involve e.g. the network card during memory operations, as it is the case
for a distributed memory system with global address space. However, corresponding to
the measurements in the last chapter, the power saving potential varies with the con-
crete workload. A further differentiation in memory-bound and cpu-bound workloads is
necessary. From a utilization point of view, no differentiation is possible. In both cases,

53

4. Strategies for Reducing Parallel Application Power Consumption

H
ar

d
w

ar
e

 U
til

iz
a

tio
n

A
pp

lic
at

io
n

IO
Phase

Communication
Phase

Compute
Phase

Send

RecvProcess 0

Process 1

Core 0

Core 1

NIC

Disk

Write

Figure 4.1.: Schematic application phases and resulting hardware utilization.

the processor cores are fully utilized, but for the memory-bound workload a higher per-
centage of processor wait cycles occur, e.g. due to memory bandwidth limitation or cache
misses.

The communication phase is a term for the inter-process communication (sending and
receiving data between processes). The component utilization in this phase is very
dependent on the concrete communication library implementation. Process 0 could be
sent to sleep or also busy-waiting for the data to be sent from Process 1, this is indicated
by the hatched utilization. Clearly, sending and receiving involves the corresponding
core, at least for TCP/IP, since the network packets have to be (un)packed. This
usually results in a lower processor load. Nevertheless, Process 1 might be busy-waiting
until Process 0 fully received the data – depending on the the type of communication
(blocking/non-blocking) and again the implementation. If the network card is involved
depends also on the type of communication: If the processes are running on different
nodes (inter-node communication), the network card has to take care of sending the
data over the network. Otherwise, for intra-node communication, it again depends
on the communication library implementation which could use Direct Memory Access
(DMA) here for inter-process communication on the same node.

The File Input/Output (I/O) phase consists of data write of Process 0 to the I/O sub-
system. I/O can be differentiated in local (POSIX, MPI with local file system) and
distributed (global file system with distributed server and clients) I/O. Therefore, lo-
cal I/O only involves the local I/O subsystem and does not require additional network
communication as it might be required in the distributed case. Figure 4.1 visualizes the
local case, the network is not utilized. The corresponding Process 0 might be slightly
utilized (depends on the usage of DMA). Again, based on the implementation of the

54

4.2. Hardware-centric Approach

parallel I/O library, Process 1 might be actively waiting for Process 0 to finish the I/O
activity.

In summary, the classification of different phases in terms of compute phase, communica-
tion phase and I/O phase is straight forward. More difficult is the concrete classification
of the resulting hardware workload and utilization which is specific for each environ-
ment. However, the greater the overlap of the different phases on the hardware side,
the better is also the performance. Considering again the example in Figure 4.1: If
there is no data dependency (different data calculated than exchanged than written) all
phases could overlap theoretically and thus significantly decrease the application run-
time. Nevertheless, in the majority of cases the specific problem or the parallelization
schema introduces data dependency and thus overlapping phases is not possible even if
it would be also the best solution in terms of energy efficiency. The resulting hardware
utilization pattern introduces a clear potential for reducing the power consumption of
parallel applications:

• The processor frequency can be reduced if idle, busy-waiting or memory-bound,

• the disk can be sent to sleep if unused,

• and the network card can reduce its speed if unused.

4.2. Hardware-centric Approach

The hardware-centric approach as strategy for reducing parallel application power con-
sumption does not include any application knowledge in the decision-making. Conse-
quently, the decision-making is independent of any user interaction and thus predestined
for implementation in the background, e.g. by the Operating System (OS). Usually, the
hardware-centric approach is fully automatic, only manual calibration and/or disabling
is possible. Furthermore, the decisions are made online – thus while the application
is running. In the following, two different sampling-based approaches are discussed in
detail.

4.2.1. Sampling Utilization

The most common approach to detect device idle times is utilization sampling. A device
is considered idle if the utilization is lower as a specified threshold for a specified time.
Based on this historic knowledge, the device is considered idle for the near future and
its hardware state is changed. Thus, the power consumption can decrease significantly
in idle times.

Utilization sampling is commonly used for the main processor and the hard disk. While
the strategy for the hard disk is quite simple (if idle for a specified time, go to sleep), the
main processor offers more operating points and thus different strategies. These different
strategies are named governors in the Linux operating system and implemented in the

55

4. Strategies for Reducing Parallel Application Power Consumption

cpufreq module. Governors are the power management policies that decide when/if to
change the processor frequency.
The following governors are merged into the kernel and offer two policies to chose
from [Sey11, PS06, PLB07]:

• The ondemand governor aggressively sets the processor speed depending on the
current utilization, it mainly switches to the highest frequency in order to com-
plete the task and then switches stepwise to the lowest available frequency. This
strategy is also called race-to-idle. The ondemand governor is the standard gov-
ernor (see Algorithm 1) which further adds tunables (UP THRESHOLD and
DOWN THRESHOLD) to the strategy.

• The conservative governor, much like the ondemand governor, sets the processor
depending on the current usage, but it also increases the processor speed step-wise.

Algorithm 1 Original Ondemand algorithm [PS06]

for for every CPU in the system do
get utilization since last check
if utilization > UP THRESHOLD then

increase frequency to MAX
else if utilization < DOWN THRESHOLD then

decrease frequency by 20 %
end if

end for

For the sake of completeness: three more governors exist, but these essentially disable
dynamic strategies by locking the frequency:

• The performance governor sets the processor statically to the highest frequency
scaling max freq.

• The powersave governor sets the processor statically to the lowest frequency
scaling min freq.

• The userspace governor allows the user, or any userspace program running with
administrative privileges, to set the processor to a specific supported frequency by
making a sysfs file scaling setspeed available.

The performance and powersave governor, respectively, are more suitable for mobile
devices to switch the strategy due to further environment changes. For example, if a
mobile device plugged into wall switch to the performance governor with the highest
frequency, otherwise use the powersave governor for power capping. The userspace
governor is especially interesting for manual instrumentation and will be further explored
in the following chapter.

56

4.2. Hardware-centric Approach

As the cpufreq module exploits the processor performance states, the cpuidle module
is the generic kernel subsystem managing the processor power states reported by ACPI.
The following governor are merged into the kernel [Sey11, PLB07]:

• The ladder governor works fine with periodic tick-based kernels. It checks every
tick if it can go in a deeper idle state or not. This step-wise model works not very
well with tick-less kernels, because without a periodic timer tick it may not get a
chance to use a deeper idle state whenever it goes idle.

• The menu governor on the other hand looks at different parameters like what the
expected sleep time is (as provided by the tick-less kernel), latency requirements,
previous C-state residency and maximum C-State requirement and then picks the
deepest possible idle state straight away.

Figure 4.2 gives a simple overview over the two frameworks, pointing out the general
similarity. Up to now, these two frameworks are working absolutely independent from
each other [PS07].

driver interface

governor interface

cpuidle infrastructure

ladder

step-wise

menu

latency-based

governors

driveracpi-cpuidle

ACPI driver

halt idle

(a) cpuidle

driver interface

governor interface

cpufreq infrastructure

ondemand

aggressive

conservative

battery-fair

userspace

acpi-cpufreq speedstep

ACPI driver

(b) cpufreq

Figure 4.2.: Design overview cpuidle and cpufreq [Sey11].

More details of the implementation and the tunables can be found in [Sey11].
The advantages of utilization sampling is the low overhead in terms of system perfor-
mance and also user interaction. Additionally, no special kinds of sensors are needed,
the statistics can be collected by the operating system itself.
However, the usage of the aforementioned power saving strategies can decrease the sys-
tem performance due to wake-up latencies. Especially for frequent behavior changes, this
approach introduces significant performance drawbacks. Furthermore, the utilization it-
self is not classified – it is thus not possible to detect busy-waiting or memory-bound
application phases. As a result, the processor performance states, the processor power
states and the device power states are usually disabled on high performance computing
systems.

57

4. Strategies for Reducing Parallel Application Power Consumption

4.2.2. Sampling Performance Counters

In addition to the pure utilization of the device, some devices offer further informa-
tion about their usage, named Performance Counters. Nowadays, almost all processor
vendors implement performance counters in their devices. These are special purpose
registers on the hardware, which count hardware-related events in terms of floating
point operations or cache misses. This sophisticated set of metrics allows to classify the
processor utilization in more detail. Using the provided interface via the Machine Spe-
cific Registers (MSRs) of the operating system, these values can be exploited for usage
analysis. This information is currently only available for processors.
However, performance counters can be sampled as base for processor performance states
decisions. This approach can also be used to detect idle phases, but performance coun-
ters are widely used to detect memory-bound application phases. If the underlying
architecture does not scale down the memory bandwidth with the processor frequency,
the processor frequency can be reduced in phases where the memory bandwidth is a
bottleneck. In addition to the ondemand governor, the performance counter approach
allows a better categorization of utilization. This significantly increases the power saving
potential, since the power saving mechanism is not only dependent on device idle times.
Nevertheless, both hardware-centric approaches have the high potential for wrong deci-
sions resulting from changing hardware usage pattern. To avoid wrong decisions, it is
common to predict the future pattern using machine learning or additional statistics (see
Chapter 8 for more details). However, in worst-case scenarios the switching overhead
and wrong decisions result in an energy-efficiency decrease.

4.3. Application-centric Approach

Instead of using the hardware usage as base for decision-making, the application-centric
approach focusses on the application, or better the application code phases. As visualized
in Figure 4.1, different application phases result in different hardware usage patterns.
Corresponding to the previous sections, the following classification of application phases
will be used:

• Compute phases with high load on the processor and/or main memory, further
distinction in

– Cpu-bound, mainly processor load and

– Memory-bound, mainly operating on main memory, processor has high num-
ber of waiting cycles.

• Communication phases due to inter-process communication, further distinction in

– Intra-node, communicating processes are on the same node and

– Inter-node, communication processes are on different nodes.

• I/O phases with high load on the I/O subsystem, further distinction in

58

4.3. Application-centric Approach

– Local I/O, subsystem is in the same node and

– Distributed I/O, subsystem is (at least partially) on different nodes.

The advantage of this approach is the application knowledge about the future behavior
of application phases. For the hardware-centric approach, the hardware state can only
be changed after the usage pattern has already changed. Consider the following pseudo
code in Listing 2 as simple example.

Algorithm 2 Example pseudo code of a simple matrix update followed by writing a
checkpoint.

for i=0; i < 1000; ++i do
for j=0; j < 1000; ++j do

update matrix cell [i][j]
end for

end for
write matrix to disk
for i=0; i < 1000; ++i do
for j=0; j < 1000; ++j do

update matrix cell [i][j]
end for

end for
write matrix to disk

The nested loops simply update a 1, 000×1, 000 matrix, followed by a checkpoint (write
the whole matrix to disk) and update the matrix again. The matrix update only utilizes
the processor and the main memory, while the checkpointing utilizes mainly the disk. If
the power saving mechanisms are disabled (e.g. for performance reasons), all devices are
active independent of the hardware utilization. If the operating system takes care of the
power saving modes, the processor is, independent of the application phase, active, even
if the processor utilization is low during the checkpointing phase. The disk is in sleep
mode during the matrix update if the duration of the matrix update is higher than the
specified disk idle threshold. Unfortunately, this results into a delay for checkpointing,
since the disk has to wake up and reach the ready state again. To avoid this delay,
the disk can be enabled before it is used again by inserting corresponding calls in the
application code. Furthermore, the processor can reduce its frequency during the check-
pointing phase, which only introduces a small delay due to the low transition time for
P-States.

Figure 4.3 gives a schematic overview of all three scenarios.

While the OS power saving scenario decrease the application runtime significantly (two
times the disk wake-up time), in the application-centric scenario the runtime increase
is negligible. Of course, the impact on the total consumed energy (and thus the saving
potential) varies based on the concrete device power consumption, wake-up latencies
and phase durations.

59

4. Strategies for Reducing Parallel Application Power Consumption

Algorithm 3 Instrumented pseudo code of a simple matrix update followed by writing
a checkpoint.

for i=0; i < 1000; ++i do
for j=0; j < 1000; ++j do

update matrix cell [i][j]
end for
if i = 900 then

wake up disk
end if

end for
Reduce processor frequency
write matrix to disk
Increase processor frequency
for i=0; i < 1000; ++i do
for j=0; j < 1000; ++j do

update matrix cell [i][j]
end for
if i = 900 then

wake up disk
end if

end for
Reduce processor frequency
write matrix to disk

60

4.3. Application-centric Approach

Matrix Update Matrix UpdateCheckpoint

Processor

Disk

Active

Sleeping
Wake

up
ActiveSleeping

Matrix Update Matrix UpdateCheckpoint

Processor

Disk

Active

Sleeping
Wake

up
Active

Processor

Sleeping

Sleeping Wake
up Active

Application

Application

Matrix Update Matrix UpdateCheckpoint

Processor

Disk

Active

Active

Processor

Application Checkpoint

Checkpoint

Wake
up

Active

Checkpoint

Wake
up

Active

Sleeping

No
Power
Saving

OS
Power
Saving

APP
Power
Saving

Figure 4.3.: Schematic application and device phases for different power saving scenarios.

However, several options are possible for the information flow from the application to
the hardware. All of the options require a processing of the application code at differ-
ent stages of compiling, linking and running. These different kinds of instrumentation
are distinguished in offline instrumentation (before running the application) and online
instrumentation (while running the application). The simplest and native way of offline
instrumentation is the manual instrumentation of the application itself. Inserting calls
to switch the hardware power saving modes can be done statically or also conditionally,
latter requires preprocessing of the application code. Using already existing interfaces
for phase annotations, the complexity of manual instrumentation can be decreased. Fur-
thermore, additional libraries (like the message passing library) can be instrumented to
automatically switch the hardware power saving modes during specific operations, e.g.
collective communication. Additionally, the compiler can detect phases in the assembler
code and insert calls to switch the hardware power saving mode correspondingly. The
online instrumentation concept works similar: The automatic pattern detection during
the application run can trigger the hardware power saving mode changes.

Nevertheless, to optimize each of the approaches a post-mortem (after the application
run) analysis of the application is helpful to evaluate the result and to tune the instru-
mentation further. Especially due to phase overlapping the classification of application
phases is not always straight forward. Additionally, the compiler may reorganize code in-
structions which results in different, for the application developer unexpected, hardware
utilization.

Comparing the hardware-centric approach with the application-centric approach, the
hardware-centric approach is much easier to realize without user interaction. But also
the energy-saving potential due to the higher risk of wrong decisions and resulting wake-
up latencies is lower. Consequently, in the following the application-centric approach will
be explored using manual code instrumentation in combination with hardware-centric
metrics. Even if manual code instrumentation requires a high degree of user interaction,
the further analysis of the approach and especially the development of the tools paves
the road for future work in terms of automatic offline or online instrumentation.

61

4. Strategies for Reducing Parallel Application Power Consumption

Dynamic switching strategies considering the hardware usage in application phases allow
to adjust the power consumption in a fine-granular way. It is for example possible, to
reduce the processing frequency and thus the power consumption for memory-bound ap-
plication phases. Automatic detection of appropriate phases using heuristics as already
exploited by the operating system has a high potential for wrong decisions due frequent
changing hardware usage pattern. The application-centric approach seems to be better
suitable, since the analysis starts at the application layer and allows to consider fu-
ture hardware usage pattern. However, for a well-founded decision a correlation of the
application, the power saving modes and the power consumption is necessary for both
approaches.

62

5. Management of Power Saving
Modes

This chapter focuses on the efficient management of the power saving modes on a per
node base. Each of the nodes has a fixed set of resources (processor cores, hard disks
and network interface cards) and each of the resources various power saving modes with
different performance and power characteristics which have to be managed efficiently.
The requirements, the design and the implementation of the management daemon are
discussed in the following sections.

Usually, the operating system manages the device states based on historical knowledge
about the corresponding device utilization. If a device is not utilized for a defined
threshold, the device switches to a deeper ACPI mode and consumes less power. From
the performance point of view, this procedure is critical due to the fact that the future
utilization is unknown. Thus if a device just switched to a deeper sleep mode and is
immediately used, the calling process has to wait until the device is in the ready state
again. This is very critical in high performance computing clusters, typically all power
saving modes are disabled by the system administrator. On the contrary, user processes
have detailed knowledge about the future utilization, but no privileges to change the
power saving modes.
In the following, the idea of forwarding this usage information from the application
running in user space to a server daemon in root context is explored. Based on this
knowledge, the server daemon is able to switch the power saving modes efficiently. This
concept is visualized in Figure 5.1: A user library called eeClient is linked to each
parallel application running on a computing node and forwards the usage information
to the eeDaemon (single instance per node).
The daemon has to take care of selecting the right mode for each resource, based on
the different requirements from the running applications. This is especially necessary
for shared resources: Hard disk and network interface card. But also the processor
sockets, if the core frequency is only manageable per socket. If the core frequency is
only manageable per socket, each core requirement has to be considered. For all shared
resources, the least common denominator is selected (the highest, most performant mode
wins). If a device is considered unused by the application for a specified timespan, the
daemon has to take care to bring it up in time to be ready again after the considered
timespan. For this approach, the different device transition times have to be known by
the daemon. This guarantees minimal impact on the application performance.
Correspondingly, the key design of the eeDaemon is to split the management process into
a node server process and a client library. The client library is linked to the application,

63

5. Management of Power Saving Modes

Figure 5.1.: eeDaemon mode control based on [MMK+11].

forwards the usage information via Unix sockets to the node-local server which allows an
immediate return to the application itself. Furthermore, the server saves the application
requests in a queue and updates the device states considering all requests for each device.

5.1. Server Design

This section focuses on the server design, while the following sections focus on the
application interface and the concrete implementation.

5.1.1. Map Processes to Hardware Devices

To allocate the corresponding resources on the server, each application client process
has to register itself at the server. The server registers a new user process for each
shared resource. A resource is considered shared, if multiple processes use it. For the
eeDaemon devices, the network interface card and the hard disk are considered shared
(each process on a node can send/receive and read/write data using the shared resource).
Because the server communicates only with the client located on the same node, the
allocation of the shared devices is trivial. Only the assignment of processor cores to

64

5.1. Server Design

the processes has to be coordinated. Due to the scheduling of the operating system,
each process can migrate between different cores. This migration can be stopped using
a pinning mechanism (which pins each application process to a processing core), which
is available at different levels. Pinning can be exploited programmatically (that means
each application is tuned for itself), but a more common use case is to let the execution
environment (e.g. mpiexec as part of the MPICH2 environment) pin the processes after
spawning them. Usually, high performance application codes are pinned anyway, since
pinning avoids cache misses and increases the performance. However, pinning of the
application in the eeDaemon library destroys the application or system process mapping
and results in performance decrease. Consequently, the application is assumed to be
already pinned. To avoid a fixed pattern for pinning (e.g. linear: Process 0 pinned to
Core 0, Process 1 pinned to Core 1, . . .), the client library destines the current core ID
and forwards it to the server process at the registration. Afterwards, the application
process is registered as a user of the core with the transmitted id. This straight-forward
mapping of the application processes makes it possible to switch the hardware device
states under consideration of possible interferences due to different process requirements.

5.1.2. Switching Hardware Device States

Even if the future hardware device usage is known for each application process, the
daemon has to find the optimal operating policy out of all requests for a shared re-
source. To enable this decision, the usage patterns are abstracted to the internal modes
MODE UNUSED, MODE MIN, MODE MED, MODE MAX and MODE TURBO.
Based on the different modes requested for a specific hardware device by different pro-
cesses, the highest mode (with the least impact on the application performance) is
selected. Table 5.1 gives an overview over the implementation on device side.

Table 5.1.: eeDaemon modes and corresponding device mode.

Mode Processor core Hard disk Network card
Frequency Turbo mode Speed Duplex mode

TURBO Highest Enabled Active Highest Full
MAX Highest Disabled Active Highest Full
MED Medium Disabled Active Medium Full
MIN Lowest Disabled Powersave Lowest Full

UNUSED Lowest Disabled Sleep Lowest Half

Two different types of requests are supported by the daemon: Time and mode request.
The former request should be submitted if the application process starts an activity with
a defined duration. After the duration, the resource has to be in the requested mode.
The latter initiates an immediate resource switch (corresponding to setting the duration
in the time request to zero). The following example motivates the two different types: If

65

5. Management of Power Saving Modes

a communication phase has a duration of 10 s and all devices except for the network card
should be switched to a low-power mode for this duration, there are two scenarios. First,
the cores and hard disks can be switched to MODE UNUSED with a mode request. After
the phase, the devices have to be switched back again to MODE MAX – this should
be done before the communication phase ends to avoid performance decrease. Thus, a
second request has to be added within the communication phase. More practical is the
use of the time request with a duration of e.g. 9 s (considering a switch time of 1 s),
afterwards the devices are up again without the need for a second call. Of course, the
server needs for this operation the mode switch durations for each device – but these can
be measured once by the daemon itself and stored in a configuration file. Additionally,
the server process needs to check when to wake up which device, which is implemented
using a fixed interval. The main algorithm is described in Algorithm 4. This algorithm
is especially necessary to understand how to use the application interface to achieve the
desired behavior of the hardware devices.

Algorithm 4 Pseudo code for updating the eeDaemon server device mode

if no user registered for this resource then
return MODE UNUSED

end if
if no requests submitted then

return MODE MAX
end if
for iterate over all requests do
if is time request then

update the time
if request has to wake up now due to time request then

update request type to mode request
update consent mode to requested mode

end if
else

increase the mode occurrence array for the requested mode
end if

end for
if consent mode is MODE MAX then

return MODE MAX
end if
for iterate over the mode occurrence array do

determine minimal possible consent
end for
return consent mode

66

5.1. Server Design

5.1.3. Runtime Overhead

Switching the hardware device states using the eeDaemon results in some overhead: On
the one hand, the state switch itself results in a timespan, where the device is unusable.
On the other hand, the daemon design (especially the interval checking for requests)
results in overheads. Since the device switching overhead is constant, the focus is on the
daemon overhead itself.

Figure 5.2.: Instrumented application runtime dependent on eeDaemon interval time.

Figure 5.2 compares the runtime of an application instrumented using the eeDaemon
interface with different resource update intervals. An interval of zero corresponds to no
instrumentation (all requests are ignored), for all other values the value defines the up-
date cycle of the resource mode in microseconds. For small values (< 200 microseconds),
the duration is increased by about 5 seconds which corresponds to about 7 % perfor-
mance overhead. However, very fast mode switches usually do not improve the energy
efficiency due to the costs for the transition (see Chapter 3). For this reason, the re-
source update interval should be set to higher values. For larger values, the software
switching overhead is negligible. All following measurements use a interval time of
100,000 microseconds (= 100 ms).

5.1.4. Resource Management

One important requirement of the eeDaemon server design is to avoid undesired influ-
ences of the cluster system. This could happen due to the invalid usage of the instru-
mentation (e.g. missing ee finalize) or due to application crashes. In this case, it is
possible that not all devices are in the active mode again after the unclean application
exit. This case can be handled by interaction with the resource management system.
The resource management system, which takes care of the allocation of jobs to nodes
and the execution of the jobs itself provides a powerful environment. Amongst others,
scripts are provided which are executed before (prologue) and after (epilogue) execution
of the job.
Using this script environment, it is possible to avoid a undefined hardware state after
the execution of the application. The environment can be extended to switch all devices
into operating modes before executing the job itself and back into power saving mode
(independent of job exit state) afterwards. This procedure has the advantage, that the

67

5. Management of Power Saving Modes

devices are in power saving mode if no job is running – which saves further energy. The
disadvantage is the switching overhead before each job for a larger number of short jobs
which might decrease the performance. One alternative is to use the epilogue.precancel
script which is called in case of job errors to manually unregister all devices at the server
in the case the application does exit with an error code.
But still, the interaction of instrumented and uninstrumented application for power sav-
ing modes is undefined. In general, it is possible that several applications are started
(some instrumented, some not) and running in parallel on the computing nodes as visu-
alized in Figure 5.3.

Socket 0

Application 1 Application 2

Core 3Core 1

Core 2Core 0

Socket 1

Application 3 Application 4

Core 3Core 1

Core 2Core 0

Figure 5.3.: Scheduling of applications on processor cores: Instrumented applications are
green and uninstrumented applications are orange.

Because uninstrumented jobs do not indicate their device usage, the eeDaemon server
process cannot take these applications into account. For shared resources (hard disk
and network card) the solution is trivial – the prologue script can register the shared
resources and request the maximum mode for the whole application run to avoid perfor-
mance impact. But to get the exclusive resources (processor cores) per job, the resource
management system has to collaborate with the MPI library to provide this informa-
tion. Otherwise, the unregistered resources are considered to be idle. This collaboration
is not implemented yet – for the moment, the parallel running of instrumented and
uninstrumented applications on the same node is not supported.

5.1.5. Server configuration

As discussed in the last subsections, several settings for the eeClust server process in-
fluence the application logic on the one hand and the performance on the other hand.
To provide easy access to these settings, a configuration file is read once at the server
startup. This configuration file includes mainly the hardware specifications (e.g. the core
number) as well as device names to be associated with the internal IDs. The configu-
ration should be encapsulated from the application programmer, thus the configuration
is only accessible to the admin user. In detail, the file contains the following entries as
exemplary specified in Listing 5.1.

68

5.1. Server Design

Listing 5.1: Example eeDaemon server configuration file for the Intel Xeon nodes.

1 # Configuration for eeClust Intel nodes

2

3 # Processor group , in each line represents a core list for a socket

4 [Processor]

5 # List with cores located on Socket0 (e.g. 0;[1;...])

6 Socket0 =0;1;2;3;

7 # List with cores located on Socket1 (e.g. 0;[1;...])

8 Socket1 =4;5;6;7;

9

10 # Devices group , each line represents a device list for each type (

NIC and Disk)

11 [Devices]

12 # List with all network devices (e.g. eth0;[eth1 ;...])

13 NIC=eth0;

14 # List with all harddrives (e.g. /dev/sda;[/dev/sdb ;...])

15 Disk=/dev/sda;

16

17 # Settings for devices , needed for decision process

18 [Settings]

19 # Time in microseconds needed for a core to be in MODE_MAX (e.g.

100)

20 Processor State Change =53

21 # Time in microseconds needed for a network device to be in MODE_MAX

(e.g. 100)

22 NIC State Change =2587366

23 # Time in microseconds needed for a harddisk to be in MODE_MAX (e.g.

100)

24 Disk State Change =20000000

25 # If all cores on a socket can only have the same frequency (true/

false)

26 Core Shared Voltage Regulator=true

27 # Interval in microseconds for mode updates of the request per

device (e.g. 100)

28 Resource Update Interval =100000

This file can be generated by the daemon itself and adjusted afterwards. For this gen-
eration, all interesting devices of the operating system are included. Furthermore, the
power mode transition duration for each of these device change is measured. The only
setting which cannot be determined by the process itself is the one about cores sharing
a voltage regulator or not. For this setting, the power consumption has to be measured
for various processor frequency settings.

Providing all these information to the server process encapsulates the hardware setting
from the application programmer who just uses the provided application interface of the
daemon.

69

5. Management of Power Saving Modes

5.2. Application interface

From the perspective of the application, the eeDaemon interface is very simple. List-
ing 5.2 shows the concrete application interface for instrumentation of parallel applica-
tions written in the C programming language. An similar wrapper interface is provided
in the Fortran programming language [Ehm12]1.

Listing 5.2: eeDaemon application interface eed.c

1 /**

2 * Registers the process at the Daemon.

3 *

4 * @param argc Pointer to count of commandline args

5 * @param argv Pointer to commandline args

6 * @param tag Tag for this process

7 * @param rank Rank for this process

8 */

9 void ee_init(int * argc , char *** argv , int tag , int rank);

10

11 /**

12 * Request Mode for device

13 *

14 * @param device_id Id for this device

15 * @param mode_id Id for the desired mode

16 */

17 void ee_dev_mode(int device_id , int mode_id);

18

19 /**

20 * The device has to be in the specified mode in secs seconds

21 *

22 * @param device_id Id for this device

23 * @param mode_id Id for the desired mode

24 * @param secs Seconds afterwards this device should be in mode

25 */

26 void ee_dev_mode_in(int device_id , int mode_id , int secs);

27

28 /**

29 * Unregisters the process at the Daemon.

30 * Unregistering possibly triggers a mode change.

31 */

32 void ee_finalize ();

33

34 /**

35 * Unregisters all processes with tag (all processes within a job)

36 * Unregistering possibly triggers a mode change.

37 */

38 void ee_finalize_all(int tag);

First, each (MPI) process has to call the ee init function to register itself at the eeDae-
mon server. For the unique identification, each process submits a specific tag to identify
the application (e.g. the job ID of the workload manager) in addition to the MPI rank or

1The bachelor thesis has been supervised in conjunction with this thesis

70

5.3. Software package

thread id. This function should be called immediately after the MPI Init function. The
name of the application (included in argv), is not necessary for the identification of the
process, but allows to generate more meaningful debugging and information messages.
To register the right set of resources for each process, the current core ID is destined
via the sched getcpu function. This is especially necessary for the processor, since the
eeDaemon server decisions are dependent on the process core. However, this requires
the process to not migrate between processor cores – thus the application itself has to
be pinned to the processor core.
To communicate the usage pattern of each resource from the application to the eeDaemon
server, the two functions ee dev mode in and ee dev mode are available to the appli-
cation developer. The first function declares a specific device to be in a specific mode
in at least secs seconds. The corresponding device and mode IDs are specified in the
header file. To simplify the access, the environment variables MY CORE IDS, MY DISK IDS

and MY NIC IDS identify the corresponding set of resources for each process. The second
function behaves like the first function with a timespan of zero seconds – thus immediate
changes are required by the server process. To unregister a process from the eeDaemon,
the function ee finalize has to be called. This function releases all allocated resources
and this process is not considered anymore for mode decisions and possible existing
requests are discarded which might result in mode changes. The ee finalize all func-
tion unregisters all processes with a specified tag and should be called either by the
application itself or by the resource management system in case of application crashes.

5.3. Software package

The eeDaemon software is implemented in the C programming language and released
under the BSD open source license2. As well the server as the client are designed in
object-oriented, parallel data structures using the glib 2.0 library. The communication
and synchronization between server and client is done via g async queues. Using the
glib test environment, extensive unit tests, integration tests and system tests ensure
the software usability and functionality. The software package itself is documented
using Doxygen. To build, install and run the software including the test cases, the waf
build system is used. Additionally, init scripts are provided to integrate the eeDaemon
server process in Linux systems as well as epilogue and prologue scripts for the resource
management system.

In this chapter, the eeDaemon is designed to efficiently manage the device power saving
modes on a per node base without significant runtime overhead. The key design of
the eeDaemon is to split the management process into a node server process and an
application client library. The client library is linked to the application and forwards the
usage information via sockets to the node-local server. The server saves the application
requests and updates the device states considering all requests for each device. The design
of the daemon guarantees low additional software overhead.

2http://www.eeclust.de/software/eeDaemon-1.0.tar.gz, last checked: March 2, 2013

71

http://www.eeclust.de/software/eeDaemon-1.0.tar.gz

6. Correlating Applications and
Energy-Related Metrics

The correlation of the application and energy-related metrics is essential to identify hot
spots in the application. This chapter covers the collection and evaluation of the specific
application and hardware characteristics via the tracing approach. After introducing the
chosen tracing approach, the concrete extensions for recording energy-related metrics are
discussed. In detail, extensions are developed to correlate the parallel application with
the classified device utilization, the power saving mode and the node power consumption
with the final goal to identify application hot shots in terms of energy and performance.
The visual identification process is exemplarily illustrated with two tool environments,
originally developed for performance analysis of parallel applications.

6.1. Tracing Approach

The goal of this chapter is to collect and analyze data which characterizes the application
run and the system. This data can be generated by hardware devices or within software,
either the operating system, the application itself or additional tools [MMK+12].
One way of keeping the information is to store statistics, e.g. absolute values like the
number of function invocations, the average execution time of a function, or the per-
formed floating point operations. Application statistics represent the profile during the
application run. In contrast to a profile, a trace records states and events of a program
together with their timestamps. Traces allow to analyze temporal dependencies and
event specific information like the communication pattern between processes. Events
can be traced synchronously by tracing the entry and exit point or asynchronously by
checking in defined intervals which event is active.
For each way of aggregation, the data has to be correlated to the investigated application.
There are several approaches to measure the characteristics of a given application. In
general, a monitor is a system which collects data about the program execution. Moni-
tors mostly rely on software to measure the state of the system. Additionally, data from
available hardware sensors can be queried if possible and necessary. Popular methods
are different kind of instrumentations: Either alter source code, relink object files with
patched functions (library instrumentation) or modify machine code directly (binary
instrumentation) [SMAb01].
It is desirable to be able to learn about the relationship of certain events which happen
at different levels of the system. Thus, it may be useful to be able to tell which spe-

73

6. Correlating Applications and Energy-Related Metrics

cific processor activity on the computing node was triggered by which application code
sequence. Usually, this is impossible using a system tool, because of concurrent opera-
tions and complex optimizations on each level of the system. A common way for tracing
approaches to correlate different events with each other is to use timestamps. In some
cases for specific groups of events like data from external devices (e.g. a power meter)
it might be necessary to use timestamps. However, timestamps establish an implicit
relationship between events. The usage of timestamps can introduce additional need for
post-processing after the application itself finishes. For example, it may be necessary
to merge the different traces into one unified trace, which can then be used by trace
analysis tools.
However, users analyze the data recorded by the monitoring system to localize opti-
mization potential. The data is recorded during program execution and assessed after
the application finishes. This approach of post-mortem analysis is referred to as offline
analysis. The main advantage of this methodology is that data can be analyzed multiple
times and compared with older results.
Another approach is to gather and assess data online – while the application is running.
This way feedback is provided immediately to the user, who can adjust the application
code and the monitor environment based on the results.
Due to the vast amount of data, sophisticated tools are required to localize performance
and power issues of the system and correlate them with application behavior and finally
source code. Tools operate either manually, i.e. the user must inspect the data himself
or the tools try to assess data automatically. The tools could also give hints to the user
where abnormalities or inefficiencies are found (semi-automatic tools).
Tool environments, which localize and tune code automatically, without user interaction,
are on the wish list of all programmers. However, because of the system and application
complexity automatic tools are only applicable for a very small set of problems.
In this section, two offline tracing tools, namely VampirTrace and HDTrace, are intro-
duced with the focus on the capability of further integration of additional tracing sources
related to energy-efficiency analysis. In general, the scope of operations of VampirTrace
and HDTrace is similar for this purpose. However, a detailed comparison of the tools is
out of the scope of this work, both tool environments are used in this thesis to reach a
greater community on the one hand and to demonstrate the portability of the approach
on the other hand.

6.1.1. HDTrace

The HDTrace environment is a tracing environment developed under the GPL [MKL12,
MMK+12] at the University of Hamburg. HDTrace concentrates on the evaluation of
new ideas and thus new modifications are considered to be experimental. Figure 6.1
shows the components of the environment.
The application code itself has not to be modified. To generate the trace files, a wrapper
library for the MPI library (MPI-Wrapper) has to be linked to the application. Events
(like MPI function calls) are stored in XML trace files using the TraceWriting-C Library.
Additionally, statistics are periodically recorded and stored in a binary format with

74

6.1. Tracing Approach

TraceWriting-C Library

MPI-Wrapper

Sunshot

PowerTracer PIOsim

Trace files & Project Files Analysis

<Uses>

<Uses>

<Uses>

<Write>

TraceFormat-Java Library

<Uses>

<Visualizes>

<Read,W
rite

>

<Uses>

Figure 6.1.: HDTrace components [MMK+12].

XML description header. This statistic interface allows to easily add new information
sources for performance and energy analysis. The PowerTracer is an extension to the
trace environment, which periodically traces information about power usage from an
external power meter in statistic files [Kre09]. A project file links together all trace
and statistic files of multiple sources without conversion. Furthermore, PIOsim is a
event based simulator which reads the application event traces and allows to run them
in virtual cluster environments. The simulation generates trace files of the run and
internal components for further inspection, but this is out of the scope of this thesis.
Trace files of application or simulation runs are visualized by Sunshot (see Subsection
6.3.1).

To generate trace files for an application run the application has to be linked against
the HDTrace libraries. Upon execution the application will generate three types of
files [Ehm12]. Each MPI rank generates a trc file containing the synchronous MPI events
in XML format. The stat files contain external statistics in a binary format gathered
from external libraries or daemons. This data is collected periodically (asynchronously)
and upon visualization synchronized with the trc files via timestamps. Additionally,
info files contain structural information such as MPI data types.

After the application run, the python script project-description-merger.py has to
be called with the info files as input. The script creates the proj file to be further

75

6. Correlating Applications and Energy-Related Metrics

processed by Sunshot to visualize the trace.

6.1.2. VampirTrace

VampirTrace [MKJ+07, KBD+08] is an open source tracing tool developed by the Cen-
ter for Information Services and High Performance Computing (ZIH). This subsection
is partially based on [MMK+12]. It is used to instrument applications in order to gen-
erate trace files in the Open Trace Format1 (OTF) that can be analyzed using several
performance tools. Depending on the type of instrumentation, the trace files contain
events like function entries end exits, MPI messages send between processes, hardware
performance counters, etc. All events are stored with a timestamp, thus events of differ-
ent processes can be visualized with the correct timing behavior. To include additional
information about the hardware. the VampirTrace’s plugin counter interface [STHI10]
can be used.
Figure 6.2 shows the possible data sources that can be accessed using VampirTrace.

Source Code Executable

Runtime Information
- MPI

- Pthreads

- PAPI

- Resource usage

- Plugin Counters

Binary Instrumentation
- User functions instrumented

 by Dyninst

Source Instrumentation
- Compiler instrumentation

 (GNU, IBM, Intel, SUN,

 PathScale, NEC SX)

- Manual instrumentation

- OpenMP pragmas by OPARI

Application

result

Trace n

Trace 2

Trace 1

VampirTrace Library

(per process)Parallel run

Figure 6.2.: VampirTrace data sources [MMK+12].

In order to generate a trace file using VampirTrace the application has to be recompiled
using the provided wrappers. Afterwards the application generates trace files when it is
executed. Per process, a uctl and a z file is generated. After the trace unification, a otf

file is generated out of all uctl files to be visualized by Vampir. Additionally, during the
trace unification, the plugin counter interface integrates all post-mortem information.

6.1.3. Intrinsic Tracing Tool Problems

The tracing approach has system inherent problems because the device under test and
the measurement device is the same physical device. The influences of the measurement
on the device under test cannot be fully avoided. Correspondingly, the application per-
formance is usually decreased during measurement. However, to proof the performance

1http://www.tu-dresden.de/zih/otf/, last checked: March 2, 2013

76

http://www.tu-dresden.de/zih/otf/

6.2. Integration of Energy-Related Metrics

or energy improvement of the application, the original application version (without trac-
ing) has to be compared to the modified version (also without tracing).
Furthermore, the tracing approach has some drawbacks inherent to highly parallel ap-
plications. The inter-node communication of processes significantly impacts the per-
formance with increasing process count. Additionally, the tracing data to be stored
increases, too. This results in high requirements on the system architecture, some sys-
tems provide additional tracing infrastructure on the hardware side to reduce influences
of the running application. Nevertheless, the more processes the application uses and
the longer the application run, the more information has to be stored which results in
even larger trace files.
One common way to reduce the size of trace files is to reduce the information to be traced.
Typically, filters are used to be defined by the user or also generated automatically by
the environment. Additionally, redundant data like periodic events can be automatically
detected and stored only once. The usual way for larger applications is to start with
automatic instrumentation, then apply more and more filters until the trace file includes
just enough information for the analysis, and then instrument the remaining functions
manually to reduce the overhead at runtime.
However, saving the trace files to the local hard disk may influence the measurements in
several ways [MMK+12]. On the one hand, there may be an impact on the performance,
because – depending on the amount of the traced information – the disk may be busy
writing out the traces. On the other hand, writing the traces may inhibit the storage
system from using a power-saving idle mode. One way to circumvent this problem is to
use the main memory instead of the disk. But this solution also has drawbacks, traces
can use quite a large amount of space which lowers the total amount of main memory
available for other purposes.
Another way to deal with this is to store the traces on some kind of remote storage
system, but this requires the use of the network. Again, due to the utilization of the
network, this may have an impact on both the performance and the power consumption.
Overall, a solution based on the specific environment and problem must be used. For
example, if a – possibly slower – service network is available, it may be used for sending
the traces to a remote storage system. If most of the main memory is unused, it can be
utilized to temporarily store the traces.
Nevertheless, intrinsic tracing tool problems are out of the scope of this work. More
details can be found here [TDZ, Ehm12, MMK+12]. The integration of further energy-
related metrics to the tracing environments will definitely introduce additional overhead,
but it is ensured that this overhead is as low as possible.

6.2. Integration of Energy-Related Metrics

Further energy-related metrics can be integrated into the two tracing environments using
HDTrace’s statistics [MKL12] and VampirTrace’s Plugin Counter [STHI10] interfaces,
respectively. Both interfaces provide the capability of asynchronous tracing of further
metrics like the node power consumption. The values are synchronized via timestamps.

77

6. Correlating Applications and Energy-Related Metrics

The Plugin Counter interface supports also synchronous tracing – but to provide a
consistent setup, asynchronous tracing is used for both environments.

Database

PowerTracer
Daemon

RUT Daemon

.z

SunshotVampir

.stat .trc

Vampir
 Trace

 HDTraceMPI Application

M
P

I activitie
s

M
P

I a
ct

iv
iti

e
s

&
 f

un
ct

io
n

ca
lls

U
tiliza

tio
n, D

e
vice S

tates &
 P

e
rfo

rm
an

ce
 C

o
un

te
r

intelNintel1amdNamd1

LMG 450

Traces

Visualization

Power consumption

Likwid Daemon

Figure 6.3.: Trace environment with tool extensions for the integration of additional energy-
related metrics.

Figure 6.3 shows the integration of additional infrastructure in the existing two tracing
environments. All additional values are sampled asynchronously using several daemons
into a database. The database values are merged post-mortem into the correspond-
ing trace files of each environment. To provide a simple interface to the postgresql

78

6.2. Integration of Energy-Related Metrics

database2 for these tasks, the DBConnector is implemented in C. Additionally, each
tracing environment has to provide an interface for merging the database values into
the corresponding trace files. For VampirTrace, a plugin counter interface has been
developed for the specific test setup by the Center for Information Services and High
Performance Computing (ZIH) in the eeClust framework3 using the DBConnector which
has been adjusted for the daemons [MMK+11]. The corresponding software packages
can be found on the eeClust project website4. For HDTrace, the additional support is
added to the ResourceUtilizationTracing library [Kre09] which is further described in
Subsection 6.2.2.
The database itself can be stored on a dedicated node, e.g. the master node. This setup
requires the data to be sent via the network to the database host, but no further node
interaction like writing data directly to the trace files is required. The splitting of the
sampling task into several daemons allows to run the daemons on different nodes to
further minimize the impact on the running application. Furthermore, each daemon
can be tuned for its specific task. In detail, the following daemons and extensions are
implemented:

• The PowerTracer daemon, sampling the node power consumption,

• the Resource Utilization Tracing daemon, sampling the device utilization and hard-
ware power states,

• the Likwid Tracing daemon, sampling the processor performance counters,

• and the tracing extension of the eeDaemon to log the decisions about the hardware
power states.

In the following subsections, the different requirements, dependencies and designs are
discussed for each of the daemons.

6.2.1. Power

The PowerTracer daemon samples the node power consumption using the three
LMG 450 measurement devices. The daemon is a complete redesign of the correspond-
ing library implemented for HDTrace [Kre09]. Each of the measurement device has 4
channels, thus in total 12 values can be traced in every sampling iteration. As described
in Figure 3.2, the power measurement infrastructure is independent of the computing
notes.. Hence, the measurement values can be collected by a dedicated node without
interferences with the running application. Thus, there is no measurement overhead
for collecting the node power consumption in this setup. The serial ports of the power
measurement devices are connected to the master node, which also hosts the database.
To minimize the measurement impact, the daemon is implemented on the master node.

2http://www.postgresql.org/, last checked: March 2, 2013
3energy-efficient Cluster Computing, http://www.eeclust.de, last checked: March 2, 2013
4http://www.eeclust.de/downloads.en.html, last checked: March 2, 2013

79

http://www.postgresql.org/
http://www.eeclust.de
http://www.eeclust.de/downloads.en.html

6. Correlating Applications and Energy-Related Metrics

The measurement values are collected in a round-robin schema in a freely chosen interval
corresponding to the LMG 450 specification. The default interval time is 100 ms (10 Hz),
thus 10 values are collected per second per channel.
The daemon creates a database table for each measurement channel. Each table has two
columns for the timestamp in microseconds and the value in Watt. Since the timestamp
is unique, the column is created as a primary table key with index function. This
simple database structure allows to easily insert and select values from the tables. On
the one hand, the tables can be selected after each application run and merged into
the corresponding trace files. On the other hand the capability of running database
operations on the measurement values provides further knowledge (e.g. calculating the
average power consumption or the minimum/maximum power consumption).
However, due to this daemon implementation instead of the library implementation, the
sampling overhead of the daemon is insignificant since no interaction with the computing
nodes and thus the running application is necessary.
For HDTrace, the power tracing is automatically enabled if linked to the ResourceUti-
lizationTracing library. If values are available in the database, these are included into
the trace files. For VampirTrace, the environment variable VT PLUGIN CNTR METRICS has
to be set to eeClustPlugin <host> power (see Line 14 in Listing A.1 in the appendix).

6.2.2. Device Utilization and Hardware States

On the contrary, tracing the device utilization and the device power states influences
the application run. The corresponding ResourceUtilizationTracing daemon is based on
the ResourceUtilizationTracing library [Kre09] implemented for HDTrace. The library
traces already the processor utilization (on per core base), the used main memory and
network and hard disk activity using libgtop5. Originally, the library is linked with the
HDTrace environment to the application. Due to the incompatibility with the database
tracing environment, the library is partially rewritten to be a stand-alone daemon which
traces the measured values into the database. Corresponding to the PowerTracer, a
database table is created for each metric and each node, containing a timestamp and a
corresponding value.
Additionally, the daemon has been extended to trace the hardware power saving states.
The processor performance and sleep states are traced using the cpufreq and sysfs

interface, respectively [Sey11]. The cpufreq interface allows to trace the current pro-
cessor frequency in Kilohertz. The sysfs interface does not allow to trace the current
processor C-State, because the state changes are too frequent. But it is possible to
trace the interval usage of the different C-States in percent. More details about these
two interfaces are summarized in the related work (Chapter 8). However, the hard disk
power saving state is traced sending the ATA command CHECKPOWERMODE which returns
if the device is in standby, spinning up or down, idle or active. Furthermore, the network
interface card speed and duplex mode is checked using the ioctl interface.
The correlation of the current usage and power state decisions is especially interesting

5http://developer.gnome.org/libgtop/stable/, last checked: March 2, 2013

80

http://developer.gnome.org/libgtop/stable/

6.2. Integration of Energy-Related Metrics

to localize waiting times resulting from inefficient power saving mode usages. However,
also the localization of device idle times which are not exploited by the operating system
is possible.

To reduce the tracing influences to the compute node, it is possible to trace some power
data via IPMI. In general, it is possible to trace the socket voltage, the memory voltage
and several voltage lines to mainboard via IPMI. Unfortunately, not all mainboards
support the same data. Additionally, the interval time is limited (about 200 ms) and the
measured values are not always plausible without additional measurements. However,
via IPMI the measurement of the socket voltage is possible, which can be correlated to
the processor P-States (see Chapter 3). The main advantage is the non-existent tracing
overhead, since the IPMI communication is handled over the service network. If starting
the IPMI tracing daemon on the master node, no influences on the running application
are measurable.

For HDTrace, the device utilization and hardware state tracing is automati-
cally enabled if linked to the ResourceUtilizationTracing library. For Vam-
pirTrace, the environment variable VT PLUGIN CNTR METRICS has to be set to
eeClustPlugin <host> util <metric>, where metric could be for example mem free

for tracing the free main memory in gigabyte (see Line 16 in Listing A.1 in the appendix).

6.2.3. Performance Counters

In addition to the utilization tracing, it is essential to classify the type of utilization,
especially for the processing cores. Processor performance counters provide hardware
measurements about the utilization of different function units of the processor on event
level. Every time an event (like a floating point operation) occurs, the corresponding
event counter is increased.

VampirTrace natively supports performance counters via the Performance Application
Programming Interface (PAPI) [TJYD09, MMK+12]. According to the project website6,
PAPI provides the tool designer and application engineer with a consistent interface and
methodology for use of the performance counter hardware found in most major micropro-
cessors. Synchronous tracing of the hardware performance counters with VampirTrace
can be configured using the VT METRICS environment variable.

HDTrace experimentally supports performance counters via the likwid toolset [THW10].
Likwid stands for Like I knew what I am doing7. Amongst other command line tools for
Linux to support programmers in developing high performance multi threaded programs,
the likwid-perfctr tool allows to measure hardware performance counters on Intel and
AMD processors.

In the following, likwid will be used to sample performance counters due to the better
usability – no kernel patching is necessary and the program code is well written and
documented which allows to easily integrate support for the DBConnector. Likwid
samples the performance counters in predefined groups and derivates several performance

6http://icl.cs.utk.edu/papi/, last checked: March 2, 2013
7http://code.google.com/p/likwid/, last checked: March 2, 2013

81

http://icl.cs.utk.edu/papi/
http://code.google.com/p/likwid/

6. Correlating Applications and Energy-Related Metrics

metrics. For example, the memory group (MEM) provides the local memory bandwidth,
the remote memory bandwidth and the processor Cycles per Instruction (CPI).
For HDTrace, the performance counter tracing is automatically en-
abled if linked to the ResourceUtilizationTracing library. For Vampir-
Trace, the environment variable VT PLUGIN CNTR METRICS has to be set to
eeClustPlugin <host> likwid <metric> thread<no>, where metric could be for
example l3 miss rate thread0 for tracing the L3 cache miss rate of Socket 0 (see
Line 26 in Listing A.1 in the appendix). However, for both environment the tracing
daemon has to be started manually. The counter group, interval size and the processor
cores for the collecting the performance counters have to be specified (see Line 32 in
Listing A.1 in the appendix).

6.2.4. eeDaemon Decisions

If suitable application phases for power saving are identified, the eeDaemon enables ef-
ficient management of the power saving modes of the hardware. To support tracing
of the hardware power saving mode decisions by the eeDaemon, the daemon logs each
decision using the DBConnector. This is possible synchronously (each decision is logged
when completed) or asynchronously (the current mode is logged in a fixed interval time).
This correlation allows to identify application phases, where the provided user instru-
mentation is inaccurate. In general, the user instrumentation is inaccurate if the energy
efficiency in the identified application phase is decreased. This happens if the application
slowdown outbalances the power decrease, due to

• decreasing the processor frequency in a cpu-bound phase,

• one processor core keeping the voltage up for the whole processor socket,

• the latency introduced by the state switching significantly impacting the phase
duration,

• or the device not being ready when used again.

Depending on the eeDaemon toolset build environment, the daemon automatically
generates the database entries or the stat file for the device modes. For HDTrace,
the mode tracing is automatically enabled if the corresponding stat file exists. For
VampirTrace, the environment variable VT PLUGIN CNTR METRICS has to be set to
eeClustPlugin <host> eed <device> mode, where device could be for example core0

for tracing the mode decisions for processor Core 0 (see Line 38 in Listing A.1 in the
appendix).
To exemplarily quantify the additional tracing overhead by the eeDaemon, Figure 6.4
shows the application runtime and the trace file size (stat file) for various trace interval
sizes. The eeDaemon internal request update interval is set to one millisecond, the
tracing of all metrics is enabled. For a small trace interval time of 1,000 microseconds (=
1 ms), the application runtime is slightly increased by about 5 %, while for interval times
≥ 10, 000 microseconds the increase is not measurable. For all following measurements,

82

6.3. Visualization of Trace Files

0 1000 10000 100000 1000000
0

10

20

30

40

50

60

70

80

90

1

10

100

1000

10000

100000

Runtime Size

Trace interval (microseconds)

R
u

n
tim

e
 (

se
co

n
d

s)

T
ra

ce
 s

iz
e

 (
kB

)

Figure 6.4.: Application runtime and statistics file size dependent on HDTrace interval.

a trace interval of 100 ms corresponding to the power measurement is used. Naturally,
the trace file size linearly decreases with the increasing tracing interval.

1 100 1000 10000
0.1

1

10

100

1000

10000

100000

1000000
1 ms

10 ms

100 ms

Runtime (s)

F
ile

si
ze

 (
kB

)

Figure 6.5.: Statistics file size dependent on HDTrace interval and application runtime.

Additionally, Figure 6.5 visualizes the statistics file size dependent on the application
runtime for different tracing intervals. For a tracing interval of 100 ms, the file size in
kilobytes equals the application runtime in seconds. Of course, this correlation depends
on the set of enabled metrics.

6.3. Visualization of Trace Files

In this section the visualization tools are introduced that can be used to analyze the
traces generated by the tools discussed in the previous sections. Vampir and Sunshot are
used to visualize the trace files generated by VampirTrace and HDTrace, respectively.

Vampir and Sunshot are timeline-based tools which allow to navigate through the whole
sequence of events [MMK+12]. Both tools provide the capability of correlating the
parallel application on process level with the energy-related metrics to visually identify
the application phases. To demonstrate the phase identification, screenshots of Sunshot
and Vampir illustrate various examples.

83

6. Correlating Applications and Energy-Related Metrics

6.3.1. Sunshot

Sunshot is a Java-Swing application whose original design is based on Jump-
shot8 [MKL12, MMK+12]. The Jumpshot viewer is part of the MPI implementation
MPICH2, which allows to visualize the SLOG2 trace format of the MPI Parallel En-
vironment (MPE). The timeline-based visualization tool Sunshot provides additional
capabilities like trace profiles, histograms and user defined metrics. Sunshot allows the
programmer to analyze the chronology of activities in parallel processes or threads. Fig-
ure 6.6 on Page 85 shows a typical screenshot of Sunshot to analyze MPI applications.
The timelines show the sequence of events for all processes and threads. If function
groups where defined during the tracing, these are represented by different colors to
quickly identify program phases. Messages between processes can be represented by
black lines. A well balanced application usually shows a regular pattern of calculation
and communication phases. Load imbalances as well as abnormally behaving processes
can quickly be identified in the timelines.
The first 8 timelines represent the activities of the MPI library generated from the trc

files. Each process on each node has its own timeline, correspondingly one node with 8
processes is visualized. Below the MPI timelines the external statistics from the stat

files are shown. Hardware components like the processor cores, the network interface
cards or the hard disk can each have several timelines indicating their utilization or
power state at a certain point during the application execution. This example only
shows the average processor utilization and frequency, it is however possible to trace
and visualize the data for each core individually.
The elements in the MPI timelines offer a context view to show detailed information
(see Figure 6.7 on Page 86). Information like the exact duration, the timestamp when
the function call was executed, involved ranks and the function name is shown. For
functions like MPI File write it also shows the amount of data written, the file name
and the offset that was used for writing the file.
Figure 6.8 on Page 87 visualizes 8 MPI processes running into a barrier on one node, each
rank is pinned to the corresponding core of the processor [MKL12]. The upper three out
of eight rows in the figure display each rank over time and the different entry point in the
barrier9. The corresponding frequency for each core is visualized in the following 4 time-
lines9. The operating system uses the ondemand governor, the corresponding processor
frequency is sampled every second. The next row shows the corresponding node power
consumption in watts. With each rank entering the barrier, the power consumption is
increased because the corresponding processor core increases its utilization. The uti-
lization increase is specific to this MPI implementation – probably the implementation
uses busy-waiting to wait for a message to leave the barrier. However, the busy-waiting
phase results in an increase of the core frequency because the operating system can not
distinguish between the classifications of utilization (see Subsection 4.2.1).
Taking a look at Figure 6.9 on Page 88, the power consumption increase is not based on

8http://www.mcs.anl.gov/research/projects/perfvis/software/viewers/index.htm, last
checked: March 2, 2013

9For clearness, five out of the eight rows are omitted

84

http://www.mcs.anl.gov/research/projects/perfvis/software/viewers/index.htm

6.3. Visualization of Trace Files

Figure 6.6.: Main window of Sunshot.

85

6. Correlating Applications and Energy-Related Metrics

Figure 6.7.: Context view of HDTrace timeline elements [Ehm12].

86

6.3. Visualization of Trace Files

Figure 6.8.: Sunshot screenshot of MPI Barrier with ondemand governor for all
cores [MKL12].

the increased frequency; instead it is based on the changed C-State of the corresponding
cores. Figure 6.9 visualizes the same example with a fixed frequency of 2,800 MHz
per socket, but now the C-States are visualized (CPU IDLE X C0) exemplarily for the
same ranks. The C-State usage is also sampled per second. Opposed to the P-States in
Figure 6.8, the C-States are reported in percent. With each rank entering the barrier,
the C0 (active) state usage of the corresponding core increases to 100 % – which explains
the increased power consumption.

However, the per device sampling has the advantage of more detailed information; for
example, the time delay when switching device states can be visualized. In Figure 6.10
on Page 89, the power saving mode of devices has been manually switched using the
eeDaemon displayed as CPU MODE, DISK MODE and NIC MODE. The correspond-
ing state as reported from the hardware is sampled as DISK STATE and NIC STATE
(see the upper 5 timelines, the CPU STATE is not shown here in detail as already
discussed in Figures 6.8 and 6.9). The four timelines between the power consump-
tion and the device states show the utilization of the disk and the network interface
(HDD READ, HDD WRITE, NET IN and NET OUT). After the first MPI Barrier,
the disk is switched into a sleep state, which is instantly changed by the disk. The
reduction of the network interface card from 1,000 Mbit to 10 Mbit is initiated after the
second barrier, but it takes about 6 seconds until the device reaches the new operating
mode (the darker block in the timeline at the bottom). Further, the utilization of each
device could be displayed concurrently to detect performance issues, e.g. a wake-up of
the disk by writing to the device.

The insights which can be gained by the visualization of the device switching times are
valuable to avoid performance decreases when making wrong decisions about the device
state. Tracing related information, such as memory bandwidth per socket or the L3
cache misses, for example, is very helpful when deciding about the C-State and P-State

87

6. Correlating Applications and Energy-Related Metrics

Figure 6.9.: Sunshot screenshot of MPI Barrier at fixed maximum processing frequency for
all cores [MKL12].

88

6.3. Visualization of Trace Files

Figure 6.10.: Sunshot screenshot of MPI Barrier with manually switched device power
states [MKL12].

89

6. Correlating Applications and Energy-Related Metrics

of the processor. The higher sleep states can (depending on the implementation) flush
the cache and the lower performance states can also reduce the memory bandwidth.
Figure 6.11 on Page 91 visualizes the memory bandwidth of the Intel system. The fre-
quency of all eight cores is switched between the minimum frequency (1,600 MHz) and
the maximum frequency (2,800 MHz) sampled as CORE STATE. Additionally, the cor-
responding socket voltages are traced via IPMI as SOCKET0 BW and SOCKET1 BW,
respectively. The maximum internal measurement frequency of IPMI is about 200 mil-
liseconds, which explains the offset between the socket voltage and the other timelines.
As all cores are under full load, reducing the frequency results in reducing the node
power consumption and the socket voltage. But it is only reduced if all cores on the
socket are switched into the lowest frequency. For the specific hardware, the cores 0-3
and 4-7 are grouped on one socket. Due to this implementation issue (the cores on each
socket share the voltage regulator), switching single cores has almost no effect to the
power consumption. The node power consumption is only reduced if the socket voltages
drops since the highest core frequency dictates the socket voltage (see Chapter 3).
The application itself does not seem to be limited by the speed of the memory accesses,
because the reduced frequency also affects the socket bandwidth. In terms of energy
efficiency, it only makes sense to reduce the core frequency for phases of the applications
where the bandwidth remains high. In this case, slower processing does not increase the
duration of the phase at all since the data transfers to or from the memory subsystem
are the bottleneck. Of course, this is only true if the memory bandwidth is independent
from the socket voltage – the memory subsystem has to have its own voltage regulator
as is the case for the underlying architecture. Summing up, reducing the frequency in
this phase of the example application does not make sense in terms of energy saving
because the energy efficiency decreases due to the cpu boundness.

6.3.2. Vampir

Vampir [MKJ+07, KBD+08, MMK+12] is a performance analysis and optimization tool
developed by the Center for Information Services and High Performance Computing
(ZIH) of the Technical University of Dresden, Germany. The timeline-based tool visual-
izes trace files that have been generated with VampirTrace. In comparison to Sunshot,
Vampir is a commercial tool containing much more development effort resulting in better
distribution and accept in the HPC tool community. In general, the scope of operations
of Vampir and Sunshot is similar.
Figure 6.12 on Page 92 shows the main window of Vampir which consists of several
displays. The top bar shows the main timeline of the whole application run consolidating
all processes. It shows a histogram of the time spent per function group. The Function
Summary display summarizes the time per function group, in this example 97 seconds
are spent in functions of the application, 91 seconds in functions of the MPI library and
41 seconds in the VampirTrace library itself. The four graphs in the top left corner which
are named Process 0-3 and show timelines of the function calls of each process spawned
by the MPI library. Combining these two displays allows to identify code regions with a
high optimization potential (i.e. a significant portion of the runtime combined with low

90

6.3. Visualization of Trace Files

Figure 6.11.: Sunshot screenshot of correlation of memory bandwidth and processor perfor-
mance states. In detail, the timelines display the memory bandwidth, the pro-
cessor performance states, the socket voltage and the node power consumption
while the processor cores are under heavy processing load [MKL12].

91

6. Correlating Applications and Energy-Related Metrics

Figure 6.12.: Main window of Vampir [Ehm12].

92

6.3. Visualization of Trace Files

utilization of the hardware). The Counter Timeline below is used to display the node
power consumption which has been recorded using VampirTrace’s plugin interface for
external counters.

Figure 6.13.: Vampir screenshot of zoomed-in timeline [Ehm12].

It is possible to zoom in on an area of the main timeline which affects all other charts.
Figure 6.13 displaying the power consumption chart is now more precise and in the
process timeline the function names are shown. The areas representing function calls
can be clicked and then show information like call duration, interval, name and involved
processes in the Context View display on the right.
Figure 6.14 on Page 94 exemplarily displays the same example as Figure 6.9 for Sun-
shot including the processor C-States and the node power consumption in the counter
timelines.

To sum up, Vampir with VampirTrace and Sunshot with HDTrace provide similar ap-
proaches, at least for the correlation of the parallel application with additional asyn-
chronous metrics. With both tools, it is possible to correlate the application with the
energy-related metrics like device utilization, performance and sleep states, performance
counters, eeDaemon decisions and finally the node power consumption. This correlation
of the application and energy-related metrics is essential to identify performance and
energy hot spots in the application. The exemplary illustration of the visual identifica-
tion process confirms this statement, the complex environment has a need for analyzing
temporal dependencies and event specific information to decrease not only the power
consumption, but also the energy. However, a deep understanding of the application,
the system and especially the device power saving mechanisms is necessary to exploit the
approach.

93

6. Correlating Applications and Energy-Related Metrics

Figure 6.14.: Vampir screenshot of MPI Barrier at fixed maximum processing frequency for
all cores.

94

7. Evaluation

This chapter evaluates the strategies and tool extensions for reducing parallel application
power consumption. Using eeMark, an energy-efficiency benchmark for HPC clusters,
hardware usage patterns in terms of utilization and different performance counter shap-
ings are identified. This includes detailed analysis of memory-bound application phases
as well as various resource intensive application phases like communication and I/O
phases. Additionally, the tradeoff between energy and performance is evaluated for the
benchmark. Based on this analysis, four real parallel applications are examined using
the devloped tool extensions. Appropriate application phases are instrumented using the
eeDaemon interface to reduce the power consumption with the final goal of saving energy
for the whole application run on the test cluster. Finally, the synthetic and application
results are summarized and discussed.

7.1. Synthetic Benchmark

In this section eeMark – an energy-efficiency benchmark for HPC clusters, is used to
correlate different workloads under usage of different power saving mechanisms and the
hardware behavior. Large systems are often complex, therefore, application logic may
be reduced to the core of the algorithm – the application kernel. The application is
then implemented in a benchmark to show potential of system and modifications which
reduces complexity. The eeMark benchmark has been developed within the eeClust
project1 by the Center for Information Services and High Performance Computing (ZIH),
Technical University of Dresden. The following description of the benchmark and the
reference run is partially based on [MHS+11] and [Mol11].
A configurable source code generator is used to create various resource intensive kernels
that can be tailored. These kernels are combined with MPI communication and I/O
operations to create parallel workloads that provide the necessary scalability to be ex-
ecuted on HPC clusters. Amongst others, the PowerTracer infrastructure (see 3.1) is
supported which determines the power usage during the execution of the well-defined
workloads.
The performance and power consumption of HPC systems is strongly influenced by
the workload. Three classes of benchmarking kernels are available to stress different
components [MHS+11]:

• compute kernels that generate a high load on the CPUs and/or memory,

1Energy-efficient Cluster Computing, http://www.eeclust.de, last checked: March 2, 2013

95

http://www.eeclust.de

7. Evaluation

• communication kernels that stress the network between the compute nodes,

• I/O kernels that use the file system.

An in-depth description of all kernel classes can be found in [MHS+11].
The workload is specified in separate benchspec files that are passed to the benchmark
as argument. The benchspec defines:

• problem size (ps),

• data set sizes,

• number of iterations,

• group definitions and associated kernel sequences.

The problem size determines the amount of data that is processed by each kernel in a
single call. The data set size defines the size of the input and output buffers and has
to be a multiple of the problem size. Each rank performs its kernel sequence on the
complete data set multiple times as defined by the number of iterations. Within each
iteration, the kernel sequence is repeated for every memory block of size ps which allows
to send results of the first block to other ranks before all data is processed. Start and
end of each iteration are synchronized via MPI Barrier. Within the interval there is no
synchronization other than through message passing.
The compute kernel perform a variable amount of operations per byte in order to gener-
ate a cpu-bound or memory-bound workload. Each kernel defines in the corresponding
sequence how many operations are performed. The kernel perform simple vector oper-
ations using different arithmetic operations (add, mul, div, sqrt) on various data types
(32 and 64 Bit integer, single and double precision floating point). High performance
processors typically feature SIMD extensions (like SSE, Altivec, AVX) that increase
performance of such data parallel operations. Many compilers support automatic loop
vectorization to use such extensions. However, only basic loop forms can be covered by
this optimization.
The communication kernel allow to exchange data between ranks within a group and
between ranks in different groups. Available kernels are:

• global broadcast, reduce, and allreduce that involves all ranks in all groups,

• global broadcast, reduce, and allreduce that involve only the first rank of every
group,

• broadcast, reduce, and allreduce within a group,

• send and receive between groups that exchange data between ranks with the same
group rank,

• rotate up and down within a group.

96

7.1. Synthetic Benchmark

The I/O kernel use POSIX and MPI I/O functions to read and write files.
Especially the communication kernels depend heavily on the work placement on the
physical nodes – thus the placement can be influenced with distribution parameter.
The distribution compact results in continuous blocks, round-robin in round robin
distribution and fine in weighted round robin (depending on the group ratio).
The used eeMark configuration for the evaluation can be found in Listing A.2 in the
appendix.
The rest of this section includes detailed explanations of the eeMark reference run for
detailed analysis of memory-bound and operation-based manual instrumentation and an
analysis of the energy-performance-tradeoff.

7.1.1. Reference Run

The eeMark suite contains a reference benchset, which contains a broad set of kernels
to cover different applications [Mol11].
Running a benchset creates a summary with the individual benchmark results: runtime,
average power and total energy. The reference.benchset evaluates the efficiency for
different classes of applications:

• compute benchmarks,

• communication benchmarks,

• I/O benchmarks and

• combined workloads.

The compute benchmarks perform no or little I/O operations and do not communicate
between ranks. The three workloads have different ratios of arithmetic operations and
memory accesses. The compute1 benchspec performs many arithmetic operations with
every opperand thus it depends on high utilization of the ALUs or FPUs to achieve
high performance. The compute2 benchspec performs only a few calculations on every
operand thus it benefits from high memory bandwidth. The compute3 benchspec uses a
mix of cpu-bound and memory-bound kernels. Each workload is performed for different
data types.
The communication benchmarks perform no or little I/O operations. Data is exchanged
frequently between ranks which perform only a few calculations on the data. The comm1

benchspec uses two equally sized groups of ranks that bidirectionally exchange data with
MPI Send and MPI Recv. The comm2 benchspec has a single master rank that distributes
and collects data using MPI Bcast and MPI Reduce, respectively. The comm3 benchspec is
a producer-consumer scenario with 3 consumers for every producer. The measurements
are repeated for different distributions of ranks where it makes sense.
The I/O benchmarks perform mainly I/O operations on large files. The io1 benchspec
reads files, performs a single arithmetic operation on every element, and writes the result
into another file. The io2 benchspec only reads from files and tests every element for

97

7. Evaluation

abnormal values (NaN2 or infinite). The io3 benchspec writes random data to files.
Each I/O benchspec is available in an MPI I/O (reference.benchset) and POSIX I/O
(reference nompiio.benchset) variant. The MPI I/O variants use large files that are
shared between all ranks in a group, whereas the POSIX I/O versions use smaller files
for every rank.
The combined workloads use a mix of operations from the above three categories. The
combined1 benchspec uses MPI Send and MPI Recv to exchange data between ranks,
whereas the combined2 benchspec uses collective MPI operations. Each workload is
performed for different data types. The measurements are repeated for different distri-
butions of ranks where it makes sense.

7.1.2. Memory-bound Instrumentation

As analyzed in Chapter 3, memory-bound compute benchmark have a huge potential for
increasing the energy efficiency under usage of DVFS. In this subsection, the compute
benchspec files of the reference run are instrumented to switch the processor frequency
based on the degree of memory-boundness (OPB, processor operations per byte trans-
fered from the main memory). However, due to the outcomes of Section 3.2, the AMD
Opteron nodes are disregarded because the memory bandwidth scales with the proces-
sor frequency and thus the saving potential in memory-bound phases is negligible. For
each combination of arithmetic operation, datatype and OPB, the optimal processor
frequency can be identified using exhaustive experiments depending on the hardware
architecture. The term optimal processor frequency can be interpreted in various ways
– optimal in terms of:

• minimal Time-to-Solution (TTS) as metric for performance,

• minimal Energy-to-Solution (ETS) as metric for energy efficiency,

• and minimal Energy-Delay-Product (EDP) as example combined metric, the prod-
uct of energy and time.

In the following, the focus is on the frequency with the minimal Energy-to-Solution.
Since the OPB are well-known when generating the benchmark sources, it is straight-
forward to automatically instrument the routines using the eeDaemon interface described
in Chapter 5) with a predefined set of frequencies.
Due to the structure of the compute reference benchspecs, memory-bound and cpu-
bound phases are alternating, which results every time in frequency switches as shown
in Figure 7.1 on Page 99. Remarkable is the fact that the power consumption increase
in the figure results from the memory-bound phases – these consume more power than
the cpu-bound phases (226 Watt compared to 207 Watt).
For the problem- and dataset sizes of the references benchmark specifications, the
phase length is in almost all cases sufficient to hide the device latencies. The energy-
performance tradeoff is analyzed independently in Subsection 7.1.4.

2NaN is the abbreviation for Not a Number

98

7.1. Synthetic Benchmark

Figure 7.1.: Vampir screenshot of the instrumented compute3 reference run on one of the
Intel Xeon nodes. The first counter timelines display the utilization and average
frequency for processor core 0, while the last counter timeline displays the node
power consumption. The power consumption increases during the memory-bound
phases of the benchmark.

Figure 3.6 in Chapter 3 already exemplarily explained the correlation between different
strong memory-bound setups and the total energy for the test infrastructure. Since
only the Nehalem memory bandwidth does not scale with the processor frequency, the
Opteron infrastructure is disregarded in the following measurements.

Figures 7.2 and 7.3 on Page 100 visualize the measured relative runtime, energy and
power for the different instrumented benchmark specifications, the baseline is the on-
demand governor and the static 2,800 MHZ frequency, respectively. Compared to the
ondemand governor, the instrumented version improves every compute benchmark in
terms of power consumption. Because the influence on the performance is comparable

99

7. Evaluation

compute1_dp (compact)
compute2_dp (compact)

compute3_dp (fine)
compute1_sp (compact)

compute2_sp (compact)
compute3_sp (fine)

compute1_int (compact)
compute2_int (compact)

compute3_int (fine)

-20

-15

-10

-5

0

5

10

15
Runtime Energy Power

Benchspec (Distribution)

re
la

tiv
e

 R
u

n
tim

e
, E

n
e

rg
y

a
n

d
 P

o
w

e
r

in
 %

Figure 7.2.: Relative compute benchmarks of the eeMark reference run on the Intel Xeon
nodes. The benchmarks are instrumented for the minimal Energy-to-Solution.
The baseline is the non-instrumented run with enabled ondemand governor of
the operating system.

compute1_dp (compact)
compute2_dp (compact)

compute3_dp (fine)
compute1_sp (compact)

compute2_sp (compact)
compute3_sp (fine)

compute1_int (compact)
compute2_int (compact)

compute3_int (fine)

-15

-10

-5

0

5

Benchspec (Distribution)

re
la

tiv
e

 R
u

n
tim

e
, E

n
e

rg
y

a
n

d
 P

o
w

e
r

in
 %

Figure 7.3.: Relative compute benchmarks of the eeMark reference run on the Intel Xeon
nodes. The benchmarks are instrumented for the minimal Energy-to-Solution.
The baseline is the non-instrumented run with a fixed processing frequency of
2,800 MHz.

low (the maximum is about 11 %), the total energy is also decreased in every setup. This
clearly indicates that the ondemand governor is not the best choice – at least for the cpu-
bound setups (compute1 benchmarks) the improvements should be insignificant. The
better choice is the static frequency setup. Only the memory-bound setups (compute2
benchmarks) profit from the instrumentation. Here the improvement in terms of energy
is up to 14 %. The additional decreases in runtime for compute2 dp can be explained
with the usage of the Turbo Boost, which could be enabled by the instrumentation. In
contrast, for the mix of cpu-bound and memory-bound kernels (compute3 benchmarks)
the instrumentation does not bring any improvements. The phase transitions are too
frequent and the duration is too short to save any energy. Typical phase durations for
memory- and cpu-bound phases are 33 ms and 779 ms respectively (see Figure A.1 in
Appendix). If both sockets can reduce the frequency, the power consumption is de-
creased from 286 Watt to 212 Watt. For one socket, the power consumption accounts for

100

7.1. Synthetic Benchmark

227 Watt. Even if the power consumption savings are significant during the memory-
bound phases, the small runtime percentage (6 % of the total runtime) avoids energy
savings.
Comparing the benchmark scores in addition to the pure measurement values, the same
behavior is reflected: For the memory-bound benchmarks, the performance score remains
constant while the efficiency and thus the combined score increases (see Figure 7.4).

compute1_dp (compact)
compute2_dp (compact)

compute3_dp (fine)
compute1_sp (compact)

compute2_sp (compact)
compute3_sp (fine)

compute1_int (compact)
compute2_int (compact)

compute3_int (fine)

-4
-2
0
2
4
6
8

10
12
14

Performance Efficiency Combined

Benchspec (Distribution)

re
la

tiv
e

 S
co

re
s

in
 %

Figure 7.4.: Relative compute benchmark scores of the eeMark reference run on the Intel Xeon
nodes. The benchmarks are instrumented for the minimal Energy-to-Solution.
The baseline is the non-instrumented run with a fixed processing frequency of
2,800 MHz.

Even though the energy savings for the memory-bound benchmarks are significant, for
real applications the degree of memory-boundness is usually not known in advance.
Although there exist methods to estimate the processor operations based on the source-
code, a more convenient and reliable method is the analysis of hardware performance
counters.

Performance Counters Analysis

The well-defined workload of the benchmark makes it possible to analyze the effect of
different memory-bound or cpu-bound setups on the highly hardware specific processor
performance counters. In Figure 7.5 on Page 102, different sets of performance counters
and metrics are compared for a strict memory-bound (1 Operation per Byte) and a
rather cpu-bound (32 Operations per Byte) setup. Each setup is executed at different,
meaningful processor frequencies: 2,801 MHz (enabled Turbo Boost), 2,800 Mhz (maxi-
mum frequency), 2,267 MHz (medium frequency) and 1,600 MHz (minimum frequency).
The relative measurements compared to the maximum frequency setup are plotted.
For the cpu-bound setup, enabling the Turbo Boost results in an increase of the average
count of retired instructions (INSTR RETIRED ANY counter) per measurement interval
and thus the count of resource stalls (RESOURCE STALLS ANY counter). If decreasing
the frequency to the medium or the minimum frequency, the instruction count also
decreases which is reflected in the decreased stalls. In opposition to the cpu-bound
setup, the memory-bound setup profits from the frequency decreasing: The number of
retired instructions remains constant, while the number of stalls decreases significantly.
The explanation is the different ratio of useful work (retired instructions) to useless

101

7. Evaluation
2801000 2800000 2267000 1600000

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60
Instructions
Resource Stalls

2801000 2800000 2267000 1600000
0.00

5.00

10.00

15.00

20.00

25.00

30.00
L3 Misses
Memory Bandwidth

2801000 2267000 1600000
-60

-50

-40

-30

-20

-10

0

10

20

Instructions
Resource Stalls

Frequency (kHz)

R
e

la
tiv

e
 M

e
a

su
re

m
e

n
ts

 (
%

)

(a) Instructions and resource stalls, 32 OPB
workload.

2801000 2267000 1600000
-60

-50

-40

-30

-20

-10

0

10

20

Instructions
Resource Stalls

Frequency (kHz)

R
e

la
tiv

e
 M

e
a

su
re

m
e

n
ts

 (
%

)

(b) Instructions and resource stalls, 1 OPB
workload.

2801000 2267000 1600000
-60

-50

-40

-30

-20

-10

0

10

20

L3 Misses
Memory Bandwidth

Frequency (kHz)

R
e

la
tiv

e
 M

e
a

su
re

m
e

n
ts

 (
%

)

(c) L3 Cache misses and total memory band-
width, 32 OPB workload.

2801000 2267000 1600000
-60

-50

-40

-30

-20

-10

0

10

20

L3 Misses
Memory Bandwidth

Frequency (kHz)

R
e

la
tiv

e
 M

e
a

su
re

m
e

n
ts

 (
%

)

(d) L3 Cache misses and total memory band-
width, 1 OPB workload.

2801000 2267000 1600000
-60

-50

-40

-30

-20

-10

0

10

20

Instruction / Stall
Instruction / L3 Miss

Frequency (kHz)

R
e

la
tiv

e
 M

e
a

su
re

m
e

n
ts

 (
%

)

(e) Instructions per stall and instructions per
L3 miss rates, 32 OPB workload.

2801000 2267000 1600000
-60

-50

-40

-30

-20

-10

0

10

20

-9

26 84

Instruction / Stall
Instruction / L3 Miss

Frequency (kHz)

R
e

la
tiv

e
 M

e
a

su
re

m
e

n
ts

 (
%

)

(f) Instructions per resource stall and instruc-
tion per L3 miss rates, 1 OPB workload.

Figure 7.5.: Performance counters measurements for different processing frequencies of a cpu-
bound workload (32 OPB) and a memory-bound workload (1 OPB) on the Intel
Xeon nodes. The performance counters are averaged in 10 ms interval steps. The
baseline is a run with a fixed processing frequency of 2,800 MHz.

work (resource stalls) for the two setups. For the cpu-bound setup the portion of useful
work clearly outshines the useless work, for the memory-bound setup the opposite is
true. The useful work is highly dependent on the processing frequency, while the useless
work (like waiting for data transfered from the memory) is dependent on the memory
subsystem frequency, which is not dependent on the processing frequency on the Nehalem
architecture. To conclude, with a lower processing frequency the cpu-bound setup gets
less useful work done but remains constant for the memory-bound setup because less

102

7.1. Synthetic Benchmark

useless work is required in the same time interval.
Accordingly, the count of L3 cache misses and the total memory bandwidth is decreased
with the processing frequency for the cpu-bound setup. For the memory-bound setup the
count of L3 cache misses remains constant and the memory bandwidth even increases.
Figures 7.5 (e) and (f), respectively, are combining the performance counters measure-
ments to retired instructions per resource stall (IPS) and retired instruction per L3
cache miss (IPM). The Instruction/L3 Miss rate remains for both setups comparable in-
dependent of the processor frequency, while the Instruction/Stall rate increases with the
frequency decrease. While the latter rate increases with the minimum frequency setup
about 15 % for the cpu-bound setup, it increases nearly 85 % for the memory-bound
setup.
The outcome of this is: the lower the Instruction/Stall rate the higher is the energy-
saving potential for processor frequency switching. Tables 7.1 and 7.2 show the cor-
responding absolute values for the setups, more detailed tables are in the appendix
(Figures A.2 and A.3, respectively).

Table 7.1.: Measured runtime, energy, mean power and performance counters for the mem-
ory bandwidth, Instruction/Stall and Instruction/L3 Miss for different processing
frequencies of an cpu-bound workload (32 OPB) on the Intel Xeon nodes. The
performance counters are averaged in 10 ms interval steps.

Frequency Runtime Energy Power Bandwidth IPS IPM
MHz s kJ W MB/s

2,801 54.35 14.42 265 23.02 8.09 100.18
2,800 58.26 14.31 245 21.56 8.59 100.14
2,267 72.50 15.61 215 17.61 9.24 100.16
1,600 100.87 19.10 189 12.58 9.92 99.89

7.1.3. Operation-based Instrumentation

In addition to the power saving potential in memory-bound compute phases of applica-
tions, communication and I/O phases have a high power saving potential. In this sub-
section, the communication and I/O benchmarks of the reference run are instrumented
to decrease the processor frequency. As discussed in Chapter 3, the power saving poten-
tial is dependent on the type of I/O (local or distributed) and communication (inter- or
intra-node) and the amount of data to be transferred. The amount of data is predefined
by the blocksize which is known apriori. The type of I/O is dependent on the selection
of the benchset. In the following, the standard benchspec (reference.benchset) is se-
lected which uses MPI I/O. The type of communication is dependent on the placement
of the MPI processes to the machines, which is influenced by the distribution parameter
specified by the reference run.

103

7. Evaluation

Table 7.2.: Measured runtime, energy, mean power and performance counters for the mem-
ory bandwidth, Instruction/Stall and Instruction/L3 Miss for different processing
frequencies of an memory-bound workload (1 OPB) on the Intel Xeon nodes. The
performance counters are measured in 10 ms interval steps.

Frequency Runtime Energy Power Bandwidth IPS IPM
MHz s kJ W MB/s

2,801 42.02 10.44 248 17.90 0.16 10.95
2,800 41.99 10.08 241 21.52 0.18 10.77
2,267 41.98 9.00 214 23.52 0.23 10.10
1,600 42.05 8.62 205 24.00 0.33 10.47

The datasizes of the communication benchmarks are 128 MByte (comm1 and comm2)
and 96 MByte (comm3), respectively, which should result in noticeable savings in energy
under usage of DVFS for at least the inter-node communication. The datasize for the
I/O benchmarks is 256 MB, which is too small for 8 processes to avoid I/O caching in
the main memory – thus no remarkable results can be expected. The reference run is not
modified at this point, since I/O operations are analyzed in detail in real applications in
the next section. The type for each function is known when generating the benchmark
sources from the template files: If the type is I/O or communication, the processor
frequency is reduced via the eeDaemon interface to the minimum.

Figure 7.6 on Page 105 visualizes the relative runtime, energy and power consumption
for the communication and I/O benchmarks of the reference run.

The communication benchmark runtime decrease when decreasing the processing fre-
quency (comm3 with fine and roundrobin distribution) results from the fact that the
benchmarks are mainly working in different caches. The fine and roundrobin distri-
bution is used, which results in intra-node communication because the communicating
processes are located mostly on the same node. Therefore, runtime variations also occur
for these setups. However, to see the energy-saving potential for inter-node communi-
cation, the focus has to be on the compact distributed setups comm2 and comm3. The
results show an energy decrease of about 25 % and 20 %, respectively, with almost no
impact on the runtime. The benchmark comm3 does not perform any arithmetic oper-
ations between the communication calls in opposition to comm1 and comm2. Thus, the
frequency is decreased during the whole benchmark run and the runtime is not increased.
The comm2 benchmark consists of long communication operations and short arithmetical
operations (see Figure 7.7 on Page 105). This introduces a small overhead visible in the
runtime increase of about 3 %, but the total energy still decreases by 25 %.

As already discussed, the I/O benchmark datasize is too small to avoid caching, thus
runtime (and power, energy) variations occur for all benchmarks. For the io2 mpio

benchmark (reads from files and tests every element for abnormal values) the power and
energy even increases.

104

7.1. Synthetic Benchmark

comm1 (fine)
comm2 (compact)

comm3 (fine)
comm3 (compact)

comm3 (roundrobin)
io1_mpiio (compact)

io2_mpiio (compact)
io3_mpiio (compact)

-35

-30

-25

-20

-15

-10

-5

0

5

10
Runtime
Energy
Power

Benchspec (Distribution)

re
la

tiv
e

 R
u

n
tim

e
, E

n
e

rg
y

a
n

d
 P

o
w

e
r

 in
 %

Figure 7.6.: Relative runtime, energy and power measurements for the communication and
I/O benchmarks of the eeMark reference run. The benchmarks are operation-
based instrumented. The baseline is the non-instrumented run with a fixed pro-
cessing frequency of 2,800 MHz.

Figure 7.7.: Vampir screenshot of the operation-based instrumented comm2 benchmark.

The relative benchmark scores in Figure 7.8 on Page 106 underline these measurements,
even if some changes are hidden (e.g. comm3 (compact)) due to the low total values.

Figure 7.9 on Page 106 visualizes the results from instrumenting the combined bench-
marks which uses a mix of operations from the compute, communication and I/O bench-
marks. The fine distribution changes the communication type to intra-node communica-
tion, thus the duration of the communication phases are really short and no significant
differences are measureable. However, for all compact benchmark specifications sig-
nificant power and energy saving are reached. The difference between the combined1

and combined2 benchmarks is the impact on the runtime. The combined2 benchmarks
significantly increase the runtime, which also decreases the energy savings even if the
power savings are larger than for the combined1 benchmarks. The reason for this dif-
ferent behavior is the different type of used operations – the combined2 benchmark uses
collective MPI operations and mainly cpu-bound operations, whereas combined1 uses
point-to-point communication and mostly memory-bound operations. Accordingly, the
performance impact on the compute phases is smaller.

105

7. Evaluation

comm1 (fine)
comm2 (compact)

comm3 (fine)
comm3 (compact)

comm3 (roundrobin)
io1_mpiio (compact)

io2_mpiio (compact)
io3_mpiio (compact)

-10

0

10

20

30

40

50

60
Performance
Efficiency
Combined

Benchspec (Distribution)

re
la

tiv
e

 S
co

re
s

in
 %

Figure 7.8.: Relative scores for the communication and I/O benchmarks of the eeMark ref-
erence run. The benchmarks are operation-based instrumented. The baseline is
the non-instrumented run with a fixed processing frequency of 2,800 MHz.

combined1_dp (fine)
combined1_dp (compact)

combined2_dp (compact)
combined1_sp (fine)

combined1_sp (compact)
combined2_sp (compact)

combined1_int (fine)
combined1_int (compact)

combined2_int (compact)

-25

-20

-15

-10

-5

0

5

10

15

20

25
Runtime Energy Power

Benchspec (Distribution)

re
la

tiv
e

 R
u

n
tim

e
,E

n
e

rg
y

a
n

d
 P

o
w

e
r

in
 %

Figure 7.9.: Relative runtime, energy and power measurements for the combined benchmarks
of the eeMark reference run. The benchmarks are operation-based instrumented.
The baseline is the non-instrumented run with a fixed processing frequency of
2,800 MHz.

7.1.4. Energy-Performance Tradeoff

Dynamic Voltage and Frequency Scaling as dynamic power management approach for
processors has proven its usefulness in the last two sections. But it also introduces
performance overhead: The processor speed is decreased and the transition between the
different operating states creates overhead because the voltage has to be increased and

106

7.1. Synthetic Benchmark

decreased, respectively.

Equation 7.1 defines the minimum phase duration tmin for an energy-efficient state
transition. If the phase duration is longer than the sum of the transition energy divided
by the power difference and the transition time, the total phase energy is decreased.

tmin =
Etransition
Pdifference

+ ttransition (7.1)

Besides to the state transition itself, the performance decrease has to be considered, too.

For analyzing the practical tradeoff between energy and performance exemplary mea-
surements are conducted on memory-bound phases. A memory-bound and a cpu-bound
kernel are tailored and repeated in a row with varying datasizes, resulting in different
phase durations. The measurement environment described in Section 3.1 is not designed
to conduct this fine-granular measurements in the range of single milliseconds. With a
computesize of 2 GB each phase is executed 2,048 times for the 1 MB datasize setup with
a total runtime of 2, 048 ∗ (0.7 ms + 1 ms) ≈ 3.5 s. Each benchmark is repeated 10 times
and the average values are collected. The relative runtime, energy and performance
of the minimum frequency run compared to the maximum frequency run are shown in
Table 7.3 and Figure 7.10 on Page 108.

Table 7.3.: Relative runtime, energy and performance for a sequence of an instrumented
memory-bound (1 OPB) and an non-instrumented cpu-bound workload (32 OPB)
to evaluate the tradeoff between energy and performance. The length of the work-
loads is varyied with the datasize parameter. The computesize for each workload
is 2 GB, 10 iterations are performed. The baseline is the non-instrumented run
with a fixed processing frequency of 2,800 MHz.

Datasize (MB) Phase duration (ms) Runtime (%) Energy (%) Power (%)
1 OPB 32 OPB

1 0.7 1 2.44 8.94 6.34
2 1.4 2 1.43 1.92 0.47
4 2.8 4 24.04 1.55 -18.14

16 11.2 16 8.60 -5.49 -12.94
32 22.4 32 7.05 -12.37 -18.11
64 44.8 64 4.63 -10.93 -14.93

128 89.6 128 5.17 -17.34 -21.45

To conclude the measurements: If the phase duration is shorter than 10 ms, the total
energy does not profit from manual phase instrumentation. For longer phases, significant
energy savings can be reached.

107

7. Evaluation

1 2 4 16 32 64 128
-30

-20

-10

0

10

20

30
Runtime
Energy
Power

Datasize (MB)

R
el

at
iv

e
R

un
tim

e,
 E

ne
rg

y
an

d
P

ow
er

Figure 7.10.: Relative runtime, energy and performance for a sequence of an instru-
mented memory-bound (1 OPB) and an non-instrumented cpu-bound workload
(32 OPB) to evaluate the tradeoff between energy and performance. The data
is based on Table 7.3.

7.2. Application Benchmarks

This section focusses on realistic application benchmarks to accomplish the measure-
ments, while the synthetic benchmark is adressed in the last section. The goal is to
select a meaningful set of applications that reflect the different workload types identified
with eeMark. As analyzed in the last subsections, the applications should be classifi-
able in terms of compute intensive, communication intensive and I/O intensive. The
compute phases should be further classifiable in memory-bound (more memory accesses
per processor operation) and cpu-bound (more processor operations per memory acess).
Hence, each application should contain at least one out of the aforementioned phases.
Additionally, productive applications are preferred.
Four real applications have been selected for evaluation due to their characteristics:

• partdiff-par, an I/O-intensive3 partial differential equation solver in C,

• swim, a memory-bound Shallow Water modeling for weather prediction written in
Fortran,

• MPIOM, the compute-/communication-intensive Max-Planck-Institute ocean
model in Fortran,

• and GETM, the compute-/I/O-intensive General Estuarine Transport Model also
written in Fortran.

All applications are available in parallel MPI versions.
Table 7.4 gives a short overview of the applications. Except for partdiff-par, all appli-
cations are used in productive environments. Even if the first three applications are
already sufficient to reach the requirements, a fourth application (GETM) is selected
due to its very short and alternating application phases.

3Only valid for the used setup

108

7.2. Application Benchmarks

Table 7.4.: Application benchmarks overview.

Application partdiff-par swim MPIOM GETM

Lines of code ≈ 800 ≈ 400 ≈ 50.000 ≈ 40.000
Productive – + + +
Memory-bound phases – + + –
Communication phases + – + +
I/O phases + – + +

In the following subsections, each application is introduced and evaluated for itself.
Section 7.3 summarizes the measurements, and compares and analyzes the results.

7.2.1. Jacobi PDE Solver

Description

partdiff-par is a parallel partial differential equation solver implemented using the Mes-
sage Passing Interface [MKL10, Ehm12]. The algorithm uses the iterative Jacobi method
to solve the system of equations with a user-specified iteration count or result precision.
To update a matrix cell Mi,j, the directly neighbouring cells Mi−1,j,Mi+1,j,Mi,j−1 and
Mi,j+1 are needed for each calculation step.

The matrix is distributed block-wise (contiguous set of rows) among the MPI ranks.
For updating the boundary rows of each block, the boundary rows of the corresponding
ranks have to be exchanged. After updating the matrix using the stencil operator, the
termination condition is checked (count of iterations or result precision reached). The
latter includes additional communication to check the precision among all processes.

Thus, the application consists of the initialization phase, a communication phase and
a calculation phase. Additionally, the application can write parallel checkpoints which
results in an addional I/O phase. The checkpoint frequency can be specified separately
and results in a dump of the complete matrix to the I/O system. Every process writes
its share of the matrix into the checkpoint file. Figure 7.11 visualizes the different phases
for 8 processes on one Intel node.

Figure 7.11.: Sunshot screenshot of partdiff-par phases on one Intel Xeon node [Ehm12].

109

7. Evaluation

Due to the simple and variable structure of the application, particularly with regard to
the phase duration, the application is suitable for the manual instrumentation approach
as a realistic application benchmark.

Measurements

Figure 7.12 shows the average processor utilization during the phases on one of the Intel
nodes.

0

5

10

15

20

25

0

20

40

60

80

100

120
IPS Socket 0
IPS Socket 1
Average Utilization

Time

In
st

ru
ct

io
n

 p
e

r
S

ta
ll

U
til

iz
a

tio
n

 (
%

)

I/O phase

Figure 7.12.: Average processor utilization and socket instructions per resource stall of
partdiff-par phases on one Intel Xeon node.

During the iteration phases (communication and calculation), the average processor
utilization is high, but drops at the beginning of the I/O phase. In the I/O phase, the
utilization increases from about 5 % up to 100 %. Accordingly, the ondemand governor of
the operating system does not reduce the processor frequency. Additional performance
counters information (like instructions per stall per socket) shows a low rate in the
iteration phase and a high rate in the I/O phase. Generally, the iteration phase is not
memory-bound (instructions per stalls are smaller than one), in the I/O phase occur
less resource stalls. To conclude, the I/O phase has a high potential for operation-based
instrumentation.
Figure 7.13 on Page 111 shows an analysis of the setup with Sunshot.
The application spends a high percentage of the total runtime in the I/O phase, thus
the I/O phase results in a large block in the screenshot consisting of the two most time
consuming functions file write at and file close. The light blue bars reflect the
file write at operation, while the purple bars visualize the file close operation for
each process. Area 1 visualizes the reduced processor’s frequency during the I/O phase,
while Area 2 emphasizes the disk write activity. The phase of interest is the internal
synchronization in the file close operation, which seems to be implemented using
the busy-wait pattern and thus is predestined for manual instrumentation. Reducing
the processor’s frequency during this phase results in a reduced power consumption
visualized in Area 3.

110

7.2. Application Benchmarks

Figure 7.13.: Sunshot screenshot of an instrumented partdiff-par run on the Intel Xeon
nodes [Ehm12].

111

7. Evaluation

A rather long MPI Sendrecv call (that is used to exchange line data) has a duration of
about 100 ms on the Intel nodes [Ehm12]; the trace analysis turned out that manual
instrumentation does not improve the energy efficiency and thus only the I/O phase is
instrumented.
The relative measurement results for the Intel nodes are plotted in Figure 7.14a. The
energy savings with the I/O phase instrumentation reach about 8 % while increasing the
runtime by about 3 %. Statically reducing the frequency for the whole application or
using the ondemand governor (with and without Turbo Boost) is always worse than the
static setup with 2,800 MHz.

1600 MHz Ondemand Ondemand (Turbo) Instrumented
-30

-20

-10

0

10

20

30

Runtime
Energy
Power

Setup

R
el

at
iv

e
R

un
tim

e,
 E

ne
rg

y
an

d
P

ow
er

1600 MHz Ondemand Ondemand (Turbo) Instrumented Instrumented (Turbo)
-30

-20

-10

0

10

20

30
71

-6 -6 0 -7

30

16 15

0

14

Realistic, 4 nodes

Baseline = 2800 MHz

Runtime

Energy

Power

Setup
R

e
la

tiv
e

 R
u

n
tim

e
 /

E
n

e
rg

y
/ P

o
w

e
r

(a) Intel Xeon.

800 MHz Ondemand Instrumented
-30

-20

-10

0

10

20

30
82

0

3032

0

16

Runtime

Energy

Power

Setup

R
el

at
iv

e
R

un
tim

e,
 E

ne
rg

y
an

d
P

ow
er

(b) AMD Opteron.

Figure 7.14.: Relative runtime, energy and power measurements for different frequency setups
of partdiff-par. The baseline is the non-instrumented run with a fixed processing
frequency of 2,800 MHz.

The results for the AMD nodes visualized in figure 7.14b show that the frequency re-
duction during the I/O phase also significantly increases the runtime – which impinges
upon the total energy. This corresponds to the I/O write measurements in Chapter 3:
For larger block writes, the frequency reduction increases runtime and energy. Further
measurements with the application can be found in [Ehm12].

7.2.2. Shallow Water Modeling

Description

Shallow Water Modeling (swim) [Sad75, HSS88] is originally an application in the
meteorological field for weather prediction written in Fortran. The application has
been extensively used for comparing both the current and poast performance of su-
percomputers. Amongst others, the application found its way into the SPEC CPU2000
and SPEC OMP2001 benchmark suites as 171.swim and 312.swim, respectively. The
SPEC CPU200 version creates a 1, 335 × 1, 335 area array of data and iterates over 512
timesteps. It prints the diagonal elements of the velocity field. The reference run has
800 iterations.
The algorithm itself consists of five phases:

• INITIAL: just called once to setup data structures, etc.,

112

7.2. Application Benchmarks

• CALC1: part of the main loop, computes new values for U,V, z and h,

• CALC2: part of the main loop, computes new values for u,v and p,

• CALC3: part of the main loop, time smoothing and update for next cycle,

• CALC3Z: time smoothing for first iteration (only called once instead of CALC3).

The different phases of the main loop are visualized using Vampir in Figure 7.15.

Figure 7.15.: Vampir screenshot of the 312.swim main loop phases on one Intel Xeon node.
The CALC1 phase corresponds to the OMP loop in source code Line 276,
CALC2 to the loop in Line 331 and CALC3 to the loop in Line 415.

The 312.swim version used in SPEC OMP2001 is OpenMP parallelized and the refer-
ence run has an increased area (3, 801 × 3, 801) and increased iterations (1,200). The
following measurements focus on the 312.swim version, since all processes on a node
are synchronized with OpenMP. Otherwise, it has to be taken care of the placement
of the single-threaded applications in a Multiple-Program Multiple-Data style to adjust
processing frequencies in synchronized phases.

Measurements

Table 7.5 shows the detailed duration and various performance counters on phase base
for the reference run with the fixed processor frequency of 2,800 MHz on one Intel node.
Comparing the memory bandwidth, IPS and IPM to the memory-bound eeMark setup
(Table 7.2), the values are in the same order and thus all phases except for the initial
phase can be considered memory-bound. The phase length (per iteration) is also in a
range that manual processor frequency reduction should decrease the total energy for
the phases.
Figure 7.16 on Page 114 exemplarily shows the relative duration, retired instructions,
resource stalls and IPS for the CALC1 phase for the minimum core frequency and
the ondemand governor with enabled Turbo Boost; baseline is the maximum frequency
setup. For the minimum frequency setup, the duration and the retired instructions
remain constant, but the number of resource stalls decreases by about 55 %. This clearly
shows the memory-boundness of the phase and the potential for energy saving without
performance decrease.

113

7. Evaluation

Table 7.5.: Performance counters measurements of swim phases for the reference run on one
Intel Xeon node at a fixed processing frequency of 2,800 MHz.

Phase Duration Bandwidth IPS IPM
(ms) (GB/s)

CALC1 39.37 15.51 0.98 49.82
CALC2 48.42 15.48 0.85 38.99
CALC3 57.32 14.52 0.31 19.27

CALC3Z 52.22 14.37 0.14 10.47
INITIAL 247.69 2.14 1.18 188.06

Duration Instructions Stalls Instruction/Stall
-100

-50

0

50

100

150

200
1600 MHz
Ondemand (2801)

%

Figure 7.16.: Relative performance counters measurements of the CALC1 phase of swim on
one Intel Xeon node. The baseline is the non-instrumented run with a fixed
processing frequency of 2,800 MHz..

A detailed phase counter analysis shows that reducing the frequency for all phases ex-
cept for INITIAL to the minimum and INITIAL to the maximum is the best setting in
terms of total energy. Due to the fact that almost all phases are memory-bound, stat-
ically reducing the frequency for the whole application also saves energy. Figure 7.17
on Page 115 visualizes the runtime, energy and power measurements relative to the
maximum frequency setup.

With every frequency step, the total energy is decreased. The manual phase instru-
mentation achieves the lowest total energy and also small runtime decreases, but the
improvements are less significant compared with the minimum frequency setup.

Furthermore, the analysis shows that the measurements are very sensitive to the selected
optimization flags of the used gcc compiler. Figure 7.18 on Page 115 visualizes the
saving potential for each optimization flag, where the total energy could be reduced in
the minimum frequency run. Indeed, the energy-saving potential is the heighest if all
flags are enabled (optimized flagset), but compared to the fastest run (O3), the absolute
runtime and energy is increased significantly. As a result, the settings are kept constant
for each application in this section.

114

7.2. Application Benchmarks

Ondemand (2801)
Ondemand (2800)

2801
2667

2533
2400

2267
2133

2000
1867

1733
1600

Instrumented

-15

-10

-5

0

5

10

15

20
Runtime Energy Power

Setup (Frequency in MHz)

R
el

at
iv

e
R

un
tim

e,
 E

ne
rg

y
an

d
P

ow
er

 in
 %

Figure 7.17.: Relative runtime, energy and power measurements of the swim reference run
for different frequencies setups on one Intel Xeon node. The baseline is the
non-instrumented run with a fixed processing frequency of 2,800 MHz.

O0
cprop-registers

dce
dse

guess-branch-probability
if-conversion

tree-ccp
tree-sra

align-labels
crossjumping

gcse-lm
regmove

reorder-functions
rerun-cse-after-loop

tree-pre
O2

O3
Optimized

-70

-60

-50

-40

-30

-20

-10

0

10

20

-17 -21 -22 -11 -8 -22 -14 -18 -14 -19 -13 -22 -2 -7 -16 -29 -25 -41

Duration Energy Power Instructions Stalls

GCC Compileflags

%

Figure 7.18.: Performance, energy and power saving potential of optimization flags of the gcc
compiler for swim reference runs on one Intel Xeon node. The baseline of each
optimization flag is the corresponding fixed processing frequency of 2,800 MHz
run. The optimized version (all flags that have power saving potential) has also
the highest energy-saving potential.

7.2.3. Max-Planck-Institute Ocean Model

Description

The Max-Planck-Institute ocean model (MPIOM) is the ocean-sea ice component of the
Max-Planck-Institute climate model4.

MPIOM is a primitive equation model (C-Grid, z-coordinates, free surface) with the
hydrostatic and Boussinesq assumptions made. It includes an embedded dynamic/ther-
modynamic sea ice model with a viscous-plastic rheology and a bottom boundary layer
scheme for the flow across steep topography. A detailed model description can be found
in [MHJ+03].

4http://www.mpimet.mpg.de/en/science/models/mpiom.html, last checked: March 2, 2013

115

http://www.mpimet.mpg.de/en/science/models/mpiom.html

7. Evaluation

The standard configuration (GR15) uses a curvilinear orthogonal bipolar grid with poles
over Greenland and Antarctica. The horizontal resolution is about 1.5 degrees and
therefore gradually varies between a minimum of 12 km close to Greenland and 150 km
in the tropical Pacific. It has 40 vertical levels, with 20 in the upper 600 m.
MPIOM is implemented in Fortran and parallelized using message passing for inter-
node and OpenMP for intra-node communication. The domain decomposition for MPI
is straight forward. The data is distributed to the processes by the matrix index, i.e.
M0,0 to Rank 0, M0,1 to Rank 1, etc. Additionally, several compute-intensive loops are
parallelized using OpenMP.
One model day is subdivided into 24 timesteps (each one model hour). For each timestep,
the matrix cell is updated and results are exchanged between the neighboring cells.
Based on the output frequency and the user setup, the result of the calculation step
is sent to Rank 0 which writes the data to the filesystem using serial NetCDF 5. This
implementation results in waiting times for all processes except for rank 0. Because
waiting times due to I/O phases are already analyzed with partdiff-par, the periodical
output of the calculation steps is disabled to focus on the compute phases.
MPIOM is optimized (in terms of scalability and performance) for blizzard, the workhorse
for the numerical experiments of the German climate researchers located in the German
Climate Computing Centre. However, the analysis is started on the eeClust test in-
frastructure, since blizzard has no applicable power saving modes and almost no power
measurement capabilities.
The maximum number of parallel processes in the Intel test environment is 40, thus
the standard configuration is increased as far as possible considering main memory con-
straints. This results in an increased horizontal and vertical resolution. For all mea-
surements, a processor dimension of 4 × 10 is used, since measurements for different
dimensions are comparable for a 1-day setup in the test environment (see Figure A.2 in
the appendix).
Figure 7.19 on Page 117 visualizes one model day with Vampir. Two MPIOM processes
on one Intel node are shown in detail, in addition to the retired instructions and L3
cache misses for core 0 and the node power consumption.

Measurements

Figure 7.20 on Page 118 shows the average processor utilization running MPIOM with
the ondemand governor. Additionally, the average system frequency and the resulting
power consumption is plotted. Due to the full utilization over almost the whole runtime,
power savings using the ondemand governor are insignificant.
Unfortunately, the application phase transition is very fast – communication and com-
pute phase have average durations of several microseconds up to a few milliseconds.
Out of this, the compute intensive phase are focused trying to allocate memory-bound
phases.

5the Network Common Data Form, a set of libraries and a (open, cross platform) file format to
exchange scientific data, http://www.unidata.ucar.edu/software/netcdf/, last checked: March
2, 2013

116

http://www.unidata.ucar.edu/software/netcdf/

7.2. Application Benchmarks

Figure 7.19.: Vampir screenshot of two MPIOM processes on one Intel Xeon node. The
counter timelines display the retired instructions, the L3 cache misses and the
node power consumption.

117

7. Evaluation

0

50

100

150

200

250

300

0

500

1000

1500

2000

2500

3000

Total Utilization
Average Core Frequency
Average Power

Time

U
til

iz
at

io
n

(%
)

an
d

P
ow

er
 (

W
at

t)

A
ve

ra
ge

 S
ys

te
m

 F
re

qu
en

cy
 (

M
H

z)

Figure 7.20.: Average processor utilization, node power and core frequency of MPIOM phases
on one Intel Xeon node using the ondemand governor.

Tracing the average instructions per miss rate over the whole application runtime results
in Figure 7.21 for the maximum frequency setup. The average instruction per miss rate
is � 500 but should be / 10 to classify the application as memory-bound.

0

100

200

300

400

500

600

700

800

900

1000

IPM Socket 0

IPM Socket 1

Time

In
st

ru
ct

io
n

/ M
is

s

Figure 7.21.: Average instruction per L3 cache miss rate of MPIOM phases on one Intel
Xeon node with a fixed processing frequency of 2,800 MHz.

A more detailed analysis using Vampir shows that the module occlit is one of the
modules with the lowest IPS and IPM. Results from the measurements with increased
time resolution on loop level are shown in Table 7.6 (more details in the appendix in
Table A.1).
But also on this fine-granular level, the memory bandwidth and IPS and IPM rates,
respectively, are still far above the classified threshold except for LOOP157, which un-
fortunately has a very small runtime (about 0.16 ms) for manual instrumentation.
Figure 7.22 on Page 119 compares the different frequency setups. With each frequency
step, the power consumption is decreasing, but the runtime increases (which corresponds
to previous analysis). This results in an increased total energy for the application. Also
for the instrumented version, the runtime increase compensates the power decrease and
thus the total energy increases. Summing up, the most energy-efficient setup on the
Intel nodes is the standard setup with the maximum frequency.

118

7.2. Application Benchmarks

Table 7.6.: Performance counters measurements for MPIOM occlit loop instrumentation on
one Intel Xeon node with a fixed processing frequency of 2,800 MHz.

Phase Duration Bandwidth IPS IPM
(ms) (GB/s)

LOOP49 76.50 4.49 34.64 560.53
LOOP105 17.71 5.23 7.53 412.01
LOOP141 26.05 3.88 11.59 423.23
LOOP157 0.16 5.00 4.22 3.79
LOOP212 49.83 6.39 18.38 233.95
LOOP279 18.30 6.80 7.84 278.31
LOOP329 27.28 3.67 12.89 524.17
LOOP369 32.40 3.54 11.46 452.64

Ondemand (2801)
Ondemand (2800)

2801
2667

2533
2400

2267
2133

2000
1867

1733
1600

Instrumented

-30

-20

-10

0

10

20

30

40

50

60
Runtime Energy Power

Setup (Frequency in MHz)

R
el

at
iv

e
R

un
tim

e,
 E

ne
rg

y
an

d
P

ow
er

 in
 %

Figure 7.22.: Relative runtime, energy and power measurements of the MPIOM run for dif-
ferent frequencies setups on five Intel Xeon nodes. The baseline is the non-
instrumented run with a fixed processing frequency of 2,800 MHz.

Production environment Because MPIOM is optimized to its production environment
(blizzard, IBM POWER6), the memory-boundness of the application is also analyzed
on this architecture. Due to the architectural changes, the total number of processes
is increased to 160, which results in 5 blizzard nodes (32 processes per node, without
SMT). Figure 7.23 on Page 121 visualizes the occlit module and the PM DATA FROM LMEM

counter in Vampir. The PM DATA FROM LMEM event describes the processor’s data cache
was reloaded with data from local memory due to a demand load. Second and third
level are remote and distant memory, but the corresponding counters are negligible
because these memory levels are not used by the application. The POWER6 ar-

119

7. Evaluation

chitecture has multiple levels in the memory hierachy; the local memory is the first
level. With this event, it is possible to calculate the memory bandwidth (to the lo-
cal memory) in MByte/s using PM DATA FROM LMEM ∗MEM LINE SIZE ∗
CACHE LINE SIZE/(1, 024 ∗ 1, 024)/total time. Also in this environment, the ap-
plication uses (in average) a small percentage of the available memory bandwidth.
It appears that the application is presumably L2-cache-bound (see Figure 7.24 on
Page 121) due to further brief analysis of the cache usage. L2-cache-bound means in
this context that data misses in the L2 cache are usually cought by the L3 cache, thus
only a low percentage of data lines resulting from L3 cache misses have to be fetched
from the local main memory. Additionally, using data access prediction (prefetching)
these waiting times can be minimized if the prefetching engine works well. Because the
L2 and L3 cache share the frequency with the core at least for the POWER6, AMD
Opteron and Intel Nehalem architectures, reducing the core frequency would also reduce
the cache bandwidth. This definitely reduces the applicability of DVFS corresponding
to Chapter 3.

7.2.4. General Estuarine Transport Model

Description

The General Estuarine Transport Model (GETM) is an open source model and widely
used within the geoscientific, oceanographic and operational maritime forecast commu-
nities as a regional ocean model6. A suite of nested setups of GETM is in operational
forecast use at the Danish Maritime Safety Administration (DaMSA) [Bü11]. It is well
etablished that the model results generally yield high-quality forecasts. GETM has been
sucessfully applied to several coastal, shelf sea and limnic scenarios [Han09].
GETM started in 1997 as a 3D numerical hydrodynamic model including flooding/dry-
ing, a k-ε turbulence closure model, momentum advection, mass conservation and the
general vertical coordinates. Nowadays, GETM is implemented in modular FOR-
TRAN90/95 code and is extended to a fully baroclinic model with transport of active
and passive tracers, calculation of density, internal pressure gradients and stratification,
surface heat and momentum fluxes and high-order advection schemes. Additionally,
horizontal curvilinear coordinates are implemented. A detailed model description can
be found in [Han12].
GETM is parallized using MPI and OpenMP. The domain decomposition is similar to
MPIOM. The underlying grid is composed into a set of rectangular areas, each process
owns one rectangular. For each project setup, the count of rectangulars is predefined,
thus the count of MPI processes, too. After each cell update, the boundary regions are
exchanged between the neighboring processes. The writing of the calculation results is
done by each process using serial netCDF and separate files.
In the following, the parallel version of the box cartesian setup is used. Due to the
static domain decomposition, four MPI processes are used. During all measurements,
the unused processor frequency is reduced to the minimum. The test runs the model for

6http://www.getm.eu/, last checked: March 2, 2013

120

http://www.getm.eu/

7.2. Application Benchmarks

Figure 7.23.: Vampir screenshot of the MPIOM occlit phase on blizzard. The counter timeline
displays the data from local memory counter.

121

7. Evaluation

Figure 7.24.: Vampir screenshot of the MPIOM run on blizzard. The counter timelines dis-
play the L2 and L3 cache misses, respectively.

10 days, each day consists of 8,640 timesteps. In total, 86,400 iterations are performed
with a runtime of about 223 seconds (≈ 387 iterations per second).

Measurements

Figure 7.25a on Page 123 visualizes the processor frequency of one core on the Intel
nodes and the resulting node power consumption using the ondemand governor. Both
counters are unsteady – fine-granular frequency changes by the governor result in varying
node power consumption. The frequency changes are triggered by the different processor
utilization caused by calling the save 2d ncdf and save 3d ncdf, respectively, several
times per second (see Figure 7.25b). Both subroutines contain a call to nf90 sync which
synchronizes the NetCDF data in the main memory with the data on the harddisk.
Due to the short duration of the I/O phases of in average 10 ms, manual processor
instrumentation increases the runtime significantly (by about 10 %) and thus the total
energy corresponding to Table 7.7.

Table 7.7.: Quantification of the instrumentation overhead of GETM on one Intel Xeon node.
The four remaining idle cores are set to the maximum frequency. Each setup is
executed 10 times [Ehm12].

Frequency Duration Power Energy
MHz s W J

2,800 222 221 48,524
instrumented 245 217 56,230

Profiling of the application to identify further power saving potential shows that all other
application phases are very short (in the range of several microseconds), which reduces

122

7.2. Application Benchmarks

(a) The counter timelines display the average processor frequency
of core 0 and the node power consumption.

(b) Iteration phase detail.

Figure 7.25.: Vampir screenshots of GETM using the ondemand governor [Ehm12].

123

7. Evaluation

the applicability of our approach. However, if the output frequency is decreased (it
might not be necessary to write the results to disk in every iteration), the total runtime
decreases significantly (see Table 7.8 compared to Table 7.7).

Table 7.8.: Quantification of the improved instrumentation overhead of GETM on one Intel
Xeon node. The output frequency of the model data is decreased to one ncdf sync

every 24 hours model time. The four remaining idle cores are set to the maximum
frequency. Each setup is executed 10 times [Ehm12].

Frequency Duration Power Energy
MHz s W J

2,800 64.6 195.6 12,612.2
instrumented 64.1 196.4 12,559.7

But even here the manual instrumentation does not gain any significant energy savings
due to the now low I/O to compute ratio in the application (see Vampir visualization in
Figures 7.26a and 7.26b on Page 125).
Further measurements with the application can be found in [Ehm12].

7.3. Appraisal of Results

The power saving potential using the appropriate hardware modes is promising as an-
alyzed in Chapter 3. With the introduced tool environment for tracing parallel ap-
plications (see Chapter 6) it is possible to identify application phases with power and
energy-saving potential. Due to the complex interaction of software and hardware lev-
els such complex tool environments are needed to evaluate power saving strategies. It
is essentially to correlate the parallel application with the following metrics to valuate
concrete approaches:

• utilization, to analyze the general usage of components and identify low-hanging
fruits (e.g. disable harddisk if not used),

• processor Performance Counters, to classify the processor activity and identify
especially memory-bound application phases,

• power consumption, to assess the effectiveness of the chosen approach,

• hardware states, to gain detailed knowledge about the usage of device power saving
mechanisms to evaluate the tradeoff between energy and performance.

The successfull analysis enables the application developer to monetarily evaluate the
economics of the application.

124

7.3. Appraisal of Results

(a) Counter timelines display the node power consumption and
the average processing frequency of core 0.

(b) I/O phase detail.

Figure 7.26.: Vampir screenshot of improved GETM version (ncdf sync every 24 hours
model time) [Ehm12].

125

7. Evaluation

The evaluation of the synthetic benchmark eeMark clearly indicates that trivial power
saving strategies like reducing the network card speed or putting the disk to sleep are
only limitedly applicable due to long transition times and small power saving potential
on device level. Additionally, the caching mechanisms aggravate the usage of power sav-
ing mechanisms – I/O and communication is usually shifted by e.g. the operating system
which worsens the phase detection on hardware level. Applying these simple power sav-
ing strategies is only useful if the devices are unused for almost the whole application
run. However, significant energy savings can be reached by reducing the processor fre-
quency in memory-bound application phases. Further, reducing the processor frequency
in busy-wait (communication and I/O) application phases can also gain remarkable
results. But also here the energy-saving potential depends strongly on the phase du-
ration and the level of memory-boundness. The application analysis using hardware
performance counter has been emphasized as suitable method to detect memory-bound
phases in applications. In particular, the ratio of retired processor instructions per re-
source stall (IPS) is appropriate to evaluate the level of memory-boundness and thus
the power saving potential.
The evaluation results of the application benchmarks are summarized in Table 7.9.

Table 7.9.: Evaluation results of the application benchmarks. Phase ratio is the instru-
mented phase duration compared to total application duration

partdiff-par swim MPIOM GETM

Memory-bound phases - + - -
Communication or I/O phases + - + +
Instrumented phase I/O Compute Compute I/O
Phase ratio 0.5 1 0.5 0.8
Average phase duration variable variable 300 ms 10 ms
Energy savings 8 % 13 % - -

partdiff-par, the partial differential equation solver is structured in clear compute, com-
munication and I/O phases. The compute phases are not suitable for processor frequency
reduction because this phase is strongly cpu-bound. Also the communication phases do
not show profitable results for processor frequency reduction due to their short duration.
But in the I/O phases processor frequency instrumentation using the eeDaemon results
in 8 % savings, mainly based on the busy-waiting in the MPI I/O library. Despite these
savings, the overall meaningfullness is not factual, because the I/O phase consumes
about 50 % of the total runtime.
In contrast, the I/O (and the communication) phases are negliable for the swim appli-
cation. The weather prediction application consists of multiple strongly memory-bound
compute phases. This results in significant energy savings (13 %) using manual appli-
cation instrumention, but due to the high phase ratio of almost 100 % memory-bound
code static frequency reduction reaches comparable results. However, the analysis shows

126

7.3. Appraisal of Results

that these measurements are very sensitive to the selected optimization flags of the gcc
compiler. The compile flag set with the highest energy-saving potential is not the most
energy-efficient setup because the profit from reducing the processing frequency results
from inefficient code generated by these special flags.
The Max-Planck-Institute ocean model turns out not to be memory-bound at all, at
least with our test infrastructure and the blizzard supercomputer. Additionally, the
communication phases are too short for manual instrumentation. However, there is still
potential in the serial I/O phases of the algorithm due to waiting times of the remaining
processes.
Similar results are obtained for the General Estuarine Transport Model. The model
consists of even shorter phases, but the approach to increase the output interval results
in significant performance (and thus energy) savings. Anyway, the compute phases of
the algorithm are cpu-bound and thus inapproriate for saving energy with processor
frequency reduction.
In summary, almost all analyzed applications contain phases of interest for manual
instrumentation, but every one has also disadvantages (in terms of phase duration etc.).
Applications which consist of several, different phases (e.g. memory-bound and cpu-
bound) have a huge power and energy-saving potential which cannot be exhausted by
the ondemand governor of the operating system. The ondemand governor decisions are
only based on the device utilization. The manual instrumentation during busy-wait
phases of the application has been proven to be useful. The potential even increases
when increasing the process count and thus longer wait times. Anyway, implementation
alternatives to the busy-wait pattern should be considered by application and library
developers. The busy-wait pattern is usually implemented using a spin-lock, which is
fast and keeps the overhead low for small waiting times. Interrupt-based approaches, in
contrast, introduce overhead for handling the interrupts, which usually results in context
switches, processor pipeline stalls and cache flushes. The right implementation choice is
– as always – dependent on the specific problem, the hardware and personal preferences.
In conclusion, a good library implementation should contain both implementations, for
example switchable using a compiler flag.

This chapter evaluated the strategies and tool extensions for reducing parallel application
power consumption. This includes detailed analysis of memory-bound application phases
as well as various resource intensive application phases like communication and I/O
phases. Appropriate application phases are instrumented using the eeDaemon interface
and discussed.

127

8. Related Work and State-of-the-Art

This chapter summarizes related work in the field of green high performance computing.
First, tools for assessing the power consumption on system and application level are an-
alyzed and differentiated from this work. Second, approaches for exploiting the hardware
power saving mechanisms in high performance computing are briefly summarized.

8.1. Assessing Application Power Consumption

Two common approaches to assess the application power consumption are used in high
performance computing environments. The first approach is based on the analysis of the
computing system itself, various statistics (like utilization or component power consump-
tion) are collected and analyzed and managed. A detailed correlation of these statistics
with the running applications is usually not possible, the focus is clearly on the overall
system behavior. In the second approach, the application is analyzed and correlated
to (more or less the same) metrics, but the capability to manage on the system level is
usually not provided. However, both approaches are very similiar since the same metrics
are collected – only the perception for interpretation differs.

8.1.1. System Analysis

Collecting various system statistics with the ability to analyze and manage these val-
ues is referred to as system analysis. For the Linux operating system, the /proc

and /sys interfaces, respectively, can monitor and manage the hardware states. The
cpufreq-stats module1 provides information about the usage of the different processor
performance and sleep state usage. For example, the time in state file located under
/sys/devices/system/cpu includes the amount of time spent in each of the frequen-
cies supported by the processor [MMK+12]. The output has a frequency and time pair
in each line, which means this processor spent time (in 10 ms) at the corresponding
frequency. The output has one line for each of the supported frequencies.

The main problem when monitoring P- and C-States are the fast transitions between
the states [Int11]. The time it takes for example for the Intel R© Xeon X5560 processor
to switch between two frequencies is about 10,000 nanoseconds, the C-States transition
time ranges from 3 to 245 nanoseconds [Int09b].

1http://www.mjmwired.net/kernel/Documentation/cpu-freq/cpufreq-stats.txt, last checked:
March 2, 2013

129

http://www.mjmwired.net/kernel/Documentation/cpu-freq/cpufreq-stats.txt

8. Related Work and State-of-the-Art

A feasible method for monitoring is collecting the data per time step; the smaller the time
step the greater the accuracy and the amount of data. This is exactly what PowerTOP
does [MMK+12]. PowerTOP is a Linux tool to diagnose issues with power consumption
and power management2. In addition to being a diagnostic tool, PowerTOP also has
an interactive mode where the user can experiment various power management settings
for cases where the Linux distribution has not enabled these settings. Additionally,
the user gets feedback about the usage of the different idle and performance states of
the hardware devices. The software lists the processes polling the devices and thus
preventing idle states. So it is possible to analyze the system behavior; for example
unnecessary frequent disk polling for journal writing. Furthermore, it is possible to
analyze own software to prevent active waiting for resources, which usually results in an
inadequate increase of the power consumption.
Further frameworks are available from hardware vendors; for example, the Active Energy
Manager Plugin for the IBM Systems Director [IBM09]. The plugin can measure and
record power and environmental statistics of IBM systems. Furthermore, thresholds on
power and thermal values and events can be created and monitored. Additionally, the
tool provides functions to control the system power states on node level.
The Intel R© Energy Checker 3 is a borderline case between system and application analysis
tool. On the one hand, the tool collects various system metrics with the additional
capability for integratation of external power meters [Int10a]. On the other hand, the
Intel R© Energy Checker API provides functions required for exporting and importing
counters from an application to measure the real work done by each application [Int10b].
In total, if each running application is instrumented to use the Energy Checker API,
the measurement suite provides a system overview correlated to the application work.
Consequently, the software faces the problem that all too often activity is measured by
how busy a server is while running an application rather than by how much work that
application completes. However, this tool is very valuable for accounting energy and
resource usage, but it is not possible to correlate application phases with energy-related
metrics for classification of utilization.

8.1.2. Application Analysis

Several tools exist for profiling energy usage by applications. These tools measure the
hardware power consumption on node or component level. Based on its main purpose,
each tool uses different methodologies for correlating the application and the energy-
related metrics.
For power-critical fields of computing (e.g. mobile computing), corresponding tools for
profiling the ene.g. usage of mobile applications exist. One of these tools is the Power-
Scope tool [FS99]. PowerScope maps the measured energy consumption to the applica-
tion structure, in much the same way that performance profilers map processor cycles
to specific processes and procedures. Postprocessing software maps the sampled system

2http://www.lesswatts.org/projects/powertop/, last checked: March 2, 2013
3http://software.intel.com/en-us/articles/intel-energy-checker-sdk, last checked: March

2, 2013

130

http://www.lesswatts.org/projects/powertop/
http://software.intel.com/en-us/articles/intel-energy-checker-sdk

8.1. Assessing Application Power Consumption

activity and power consumption to the application structure and produces a profile of
enery usage by process and procedure.

Chang et al. follow a similiar approach [CFR02] to detect software hotspots. They
describe a prototype implementation of this approach for the Itsy pocket computing
platform, their experimental results using the prototype show that energy measure-
ment tools that ignore system and kernel effects can give erroneous results about enery
hotspots.

Furthermore, PowerNet correlates power data with utilization statistics in a building
environment [KHLK09]. The deployment includes both wired and wireless sensors and
covers offices, networking closets, and server racks. Analyzing PowerNet data traces
identifies contexts where electricity consumption can be reduced without cost, and others
which call for rethinking system designs altogether.

However, even if these tools provide meaningful insights for its corresponding application
areas, the usability for high performance computing environments is very limited.

On the contrary, existing tools for performance analysis of high performance comput-
ing applications provide a solid analysis infrastructure. Binding performance and node
power analysis has been done for Vampir [MHS+11, MMK+12] and Sunshot [MKL12],
as discussed in detail in Chapter 6. VampirTrace supports multiple power meters, while
HDTrace supports only the ZES LMG450 power meter. Barreda et al. follow the same
approach with Paraver 4, developed at the Barcelona Supercomputing Center. They
combine the tracing framework with a component power measurement setup to perform
a visual analysis of the computational performance and the power consumption of tuned
implementations for several key dense linear algebra operations [BDM+12].

The component power measurement infrastructure Barreda et al. use is similar to Pow-
erPack. PowerPack [GFC05c, CGF05, GFS+09, SGFC09] is a tool to isolate the power
consumption of devices including disks, memory, NICs, and processors in a high per-
formance computing cluster and correlate these measurements to application functions.
Additonally, the PowerPack framework enables distributed systems to conserve energy
in scientific applications using DVFS [CGF05, GFS+09].

However, the performance analysis capabilities of the tool are not as sophosticated as
of Vampir or Sunshot. Indeed, PowerPack provides sophisticated power measurement
capabilities but comes with a much more expensive and complicated infrastructure.
When it comes to device power consumption, estimation based on performance events
is another, more practical approach.

Processor and memory power consumption estimation is mainly done by evaluating
processor performance counters [CM05, SBM09]. Additionally, Bircher et al. create
power models for the entire system based on processor performance events [BJ07].

This opened a new field for software power meters like SPAN [WCS10] and power simu-
lators like Wattch [BTM00]. These tools open up the field of power-efficient computing
to a wider range of researchers, since no additonal power measurement infrastructure is
needed.

4http://www.bsc.es/computer-sciences/performance-tools/paraver, last checked: March 2,
2013

131

http://www.bsc.es/computer-sciences/performance-tools/paraver

8. Related Work and State-of-the-Art

However, even if the aforementioned tools increase usability, first the power improve-
ments have to be evaluated at wall level to provide energy-efficiency evaluations and
guidelines.

8.2. Exploiting Hardware Power Saving Mechanism

Existing research in exploiting hardware power saving mechanisms in high performance
computing focuses mainly on exploiting DVFS to reduce the processor power consump-
tion. The approaches can be roughly subdivided in application and system power man-
agement. While the first approach takes place on application level, the second approach
is transparent on system level and requires no modifications to the running application.
However, especially the latter approach might decrease the application performance due
to insufficient information about future hardware utilization.

8.2.1. Application Power Management

Power management for scientific applications is exploited under the general term power
aware high performance computing. Ge et al. started to exploit parallel performance
inefficiencies characteristic of non-interactive, distributed scientific applications for con-
serving energy using DVFS [GFC05b, GFC05a, Ge07]. The authors analyze and optimize
distributed power-performance using various DVFS strategies and achieve application-
dependent overall system energy savings as large as 25% with as little as 2% performance
impact. The results of Freeh et al. also show that a power-scalable cluster has the po-
tential to save energy by scaling the processor down to lower energy levels [FPK+05].
Furthermore, Freeh et al. developed a model to predict the energy-performance tradeoff
of larger clusters estimating the idle times using regression to fit a curve to the measured
MPI communication.
Based on this first findings, MPI application profiles are built that can be divided into
phases. Free et al. divide the trace files offline into blocks whereat a block is a set
of executed statements demarcated by MPI operations and memory pressure changes,
indicated by L3 cache misses [FL05]. Two adjacent blocks are merged into a phase if
their corresponding memory pressure is within the same threshold. They execute each
phase with different DVFS settings and select the right setting based on a user-weighted
energy-time trade off. Rountree et al. try to find schedule that realizes energy bounds by
dividing the application trace into sections by its communication phases [RLF+07] using
a linear programming solver. These first approaches are continued in the Green Building
Blocks project [Nik09] – the power consumption is sampled to build an application
profile that can be divided into phases. Further components can than manage device
state based on these phases. Additionally, it is possible to divide traces into phases using
performance counters and calculating a solution with specific DVFS settings for program
phases via heuristics during execution (online) [HSK+06]. Furthermore, the MPI library
itself can be optimized for low power, e.g. exploiting busy-waiting during MPI collective
operations [DCY+08]. Using already existing interfaces for phase annotations like the

132

8.2. Exploiting Hardware Power Saving Mechanism

Adaptable I/O System (ADIOS)5 interface enables further power management of several
devices based on the application phases [KMKL11].

However, the detailed analysis of parallel applications is very promising for reducing
the total energy. For example, analysis and optimization of power consumption of
sparse [AHA+11, AHR+11] and dense [ADI+12, LLD12] linear algebra operations has
gained significant savings.

Additional approaches cover the exploitation of load balancing issues in large scale MPI
applications. Zong developed energy-aware load balancing algorithms with the goal to
minimize energy consumption while maintaining reasonably high performance by in-
corporating energy-aware resource management techniques to HPC platforms [Zon08].
Following this approach, Etinski et al. use a trace file as input for Dimemas (a perfor-
mance simulator) and scale the processors depending on their load (using DVFS and
over-clocking to prevent load imbalance) [ECL+09].

8.2.2. System Power Management

On system level, first collaborative efforts to exploit hardware power saving mechanisms
are OS-directed [LBM00, LDM01]. The operating system has information about tasks;
therefore, the operating system is able to identify hardware idleness and shutdown un-
used components. But system-level power management is a trade-off among several
factors, as this quantitative analysis shows [BBDM00, LDM01].

However, OS-directed power management is designed for a broad variety of workloads
and long idle times. For cluster computing systems, the workload is defined by several
applications scheduled to a set of computing nodes. A coarse-granular power-saving
approach is to completely turn off unused nodes [PBCH01, EKR02]. If new jobs are
entered into the workload queue, the necessary amount of nodes is powered on again.
This approach introduces comparable large latencies, which are usually only profitable
for low-utilized systems. However, through intelligent scheduling of the applications
node idle times can be avoided, additional profit is brought into datacenters through
virtualization techniques focussing on energy efficiency [RCP+10, VLR+11].

More HPC-specific is to exploit the overhead introduced by parallel applications such
as communication phases necessary to synchronize parallel processes and exchange data
between processes. Additionally, load imbalances can occur in high performance appli-
cations spread over a large number of computing nodes. These characteristics introduce
so-called slack times. In other words, some of the nodes arrive early at a synchronization
point, meaning that one or more (different) bottleneck nodes determine the program exe-
cution time. In such a situation, a non-bottleneck node will wait for a message (or other
event) from another node, which wastes energy. Exploiting this inter-node slack can
result in significant energy saving with insignificant impact on application performance.
Kappiah et al. present a system called Jitter, which reduces the frequency on nodes that
are assigned less computation and therefore have slack time [KFL05]. The system ex-
ploits PMPI, the profiling layer of MPI to calculate wait times in blocking MPI routines

5http://www.olcf.ornl.gov/center-projects/adios/, last checked: March 2, 2013

133

http://www.olcf.ornl.gov/center-projects/adios/

8. Related Work and State-of-the-Art

which works well for iterative algorithm. Lim et al. follow the same approach, but the
algorithm for detection is not limited to iterative algorithm, they designed several train-
ing algorithms that demarcate communication regions [LFL06]. This approach is further
enhanced by the Adagio framework, which focuses on a minimal performance decrease
through detection of resources on the critical path of MPI applications [RLS+09].
Besides to the interception of MPI library calls, non-compute intensive phases can
be identified by sampling processor performance counters for workload characteriza-
tion. Hsu et al. propose a power-aware algorithm that automatically and transparently
adapts its frequency and voltage settings based on off-chip accesses [HF05]. The same
approach is followed by [HF09] based on the processor stall cycles due to off-chip activi-
ties. More sophisticated metrics are exploited by Schoene et al. [SH11] and Spiliopoulos
et al. [SKK11] which both implemented performance counters based Linux governors,
pe-gov and Green Governors, respectively. The latter governor framework also predicts
the effect of frequency scaling in terms of performance loss and processor core energy.
Furthermore, the design of online prediction based on the processor performance counters
is possible for selecting the right DVFS setting [CMDAN06, LTF+12]. Dhiman et al.
propose a online-learning algorithm for system-level power management including DPM
and DVFS considering the processor cycles per instruction and miss events [DR09].
However, Nathuji observes the strong need for coordination in managing system power
saving modes due to the existence of multiple and independent system layers [Nat08].

Green high performance computing is a very active field of research since a few years
which spawned several conferences and workshops6. Especially the broad range of power
management approaches motivates the further research in tool environments being able to
correlate parallel applications with the hardware utilization and energy-related metrics.

6Including the Energy-Aware High Performance Computing conference (EnA-HPC), which was ini-
tiated by the research group Scientific Computing of the University of Hamburg: http://www.

ena-hpc.org, last checked: March 2, 2013.

134

http://www.ena-hpc.org
http://www.ena-hpc.org

9. Conclusion

The demand for high performance computing as a tool for science and industry further
increases due to the increasing quest for knowledge and optimization. The increasing
demand results in increasing operating costs mainly consisting of power and cooling
costs, further accelerated by the applied Jevron’s paradox for computing components.
In an effort to reduce the energy consumption of the HPC centers, a number of new
approaches have been developed in the last few years. One of these approaches is to
switch hardware to lower power states in phases of device idleness or low utilization.
Even if the concepts are already quite clear, tools to identify these phases in applications
and to determine impact on performance and power consumption are still missing. This
thesis designs and evaluates tool extensions for power consumption measurement in
parallel systems with the final goal to characterize and identify energy-efficiency hot
spots in scientific applications. Using offline tracing, the metrics are collected in trace
files and can be visualized or post-processed after the application run. The timeline-
based visualization tools Sunshot and Vampir are used to correlate Message Passing
Interface (MPI) applications with the energy-related metrics. With these new tracing
and visualization capabilities, it is possible to evaluate the quality of energy-saving
mechanisms, since waiting times in the application can be related to hardware power
states.
High performance computing hardware supports multiple power saving mechanisms com-
parable to mobile devices which are analyzed for its potential for exploitation. A typical
high performance computing node is broken down into its components and the fun-
damental power saving mechanisms for each manageable device are discussed. The
component breakdown of promising devices includes the Central Processing Unit, the
Input/Output system and the interconnect system between the computing nodes. To
adjust the power saving modes of these components, several interfaces including the Ad-
vanced Configuration and Power Interface (ACPI) are available. Components with a low
power consumption and/or no manageable power saving mode are only briefly discussed.
However, the power saving mechanisms of the manageable devices might have impact
on the device durability due to frequent mode switches. But the experienced impact is
negligible for the moderate count of mode switches.
Based on this first results, a test cluster is designed with 10 high performance comput-
ing nodes which support a variety of the introduced power saving mechanisms. Each
of these nodes is connected to power measurement equipment to investigate the power
saving potential of the specific hardware. Using this infrastructure, the power saving
potential of different hardware components is evaluated under different load scenarios.
For this investigation, several idle and load measurements are performed for the two dif-
ferent architectures (Intel Nehalem and AMD Magny-Cours) in different power saving

135

9. Conclusion

modes. The impact of operating system mechanisms like processor governors and pro-
cessor idle states are analyzed with the SPECPower benchmark. The measured power
saving potential significantly differs for different phases of the benchmark – mainly due
to the different utilization levels of the processor. Additional processor dynamic voltage
and frequency scaling (DVFS) measurements for different application phases result in a
coarse classification of memory-bound computation, cpu-bound computation, communi-
cation and I/O phases. The memory scaling of the two evaluation systems significantly
differs, which results in beneficial characteristics for the Intel nodes. While the evalu-
ated AMD processors scale the memory bandwidth with the core frequency, the Intel
processors do not. Thus the energy-saving potential of the Intel nodes in memory-bound
compute phases is advantageous.
However, statically switching the power saving mechanisms usually increases the appli-
cation runtime. On the contrary, dynamic switching strategies consider the hardware
usage in the application phases and switch between the different modes. The strate-
gies can roughly be divided into hardware-centric approaches and application-centric
approaches. Hardware-centric approaches make the decision about the concrete hard-
ware power state dependent on the hardware utilization. The operating system usually
implements several heuristics for a subset of devices like the processor or the hard drive.
The most common approach to detect device idle times is utilization sampling. A device
is considered idle if the utilization is lower as a specified threshold for a specified time.
Based on this historic knowledge, the device is considered idle for the near future and its
hardware state is changed. However, especially for scenarios where the device utilization
changes frequently, the sampling approach introduces significant performance drawbacks
due to device wakeup times. Furthermore, the utilization itself is not classified – it is
thus not possible to detect busy-waiting or memory-bound application phases. Even if
sampling additional sources for the classification of the utilization (e.g. processor perfor-
mance counters), the high potential for wrong decisions due to the changing hardware
usage pattern still exists. In comparison, the application-centric approach starts the
analysis at the application layer which allows decisions to be based on knowledge about
future application and system behavior. Following this approach, the different phases
can be executed in different power modes via application instrumentation with the ad-
vantage of knowing the future utilization of the component. For example, it is possible
to reduce the processing frequency and thus the power consumption for profitable (e.g.
memory-bound) application phases and increase the processing frequency for application
phases with a high demand for processing. If the mode transition is triggered before
the processor utilization changes, the mode transition overhead can be reduced to a
minimum.
To provide a software interface to instrument the application phases, the eeDaemon soft-
ware is developed. The device requirements are communicated from the application to a
server daemon, which runs on each computing node and controls its power modes. Each
of the nodes has a fixed set of resources and each of the resources various power saving
modes with different performance and power characteristics which have to be managed
efficiently. Additionally, the daemon interacts with the cluster resource management
system to ensure the undisturbed execution of uninstrumented applications with high

136

performance constraints. However, for a well-founded decision about the application
instrumentation a correlation of the application phases and the hardware is necessary.
This includes metrics like hardware utilization or processor performance counters to
identify and classify application phases of interest, but also the hardware power saving
modes to evaluate the application instrumentation and the result on the device perfor-
mance. The complex environment has a need for analyzing temporal dependencies and
event specific information to decrease not only the power consumption, but also the en-
ergy. In detail, the following asynchronous tracing extensions are developed to correlate
with the parallel application:

• The PowerTracer daemon, sampling the node power consumption,

• the Resource Utilization Tracing daemon, sampling the device utilization and hard-
ware power states,

• the Likwid Tracing daemon, sampling the processor performance counters,

• and the tracing extension of the eeDaemon to log the decisions about the hardware
power states.

The process of visual identification of application hot spots in terms of energy and
performance is exemplarily illustrated with two tool environments, Sunshot and Vampir.
To exploit the developed extensions, several scientific applications are analyzed to eval-
uate the whole approach. Using the energy-efficiency benchmark eeMark, typical hard-
ware usage patterns are identified to characterize the workload and the impact on the
power consumption. This includes detailed analysis of memory-bound application phases
as well as various resource intensive application phases like communication and I/O
phases. Additionally, the tradeoff between energy and performance is evaluated for the
benchmark. Based on this analysis, four parallel applications are examined:

• partdiff-par, a partial differential equation solver,

• swim, a Shallow Water modeling for weather prediction,

• MPIOM, the Max-Planck-Institute Ocean Model,

• and GETM, the General Estuarine Transport Model.

Appropriate application phases are instrumented using the eeDaemon interface to reduce
the power consumption with the final goal of saving energy for the whole application
run on the test cluster.
The evaluation of the synthetic benchmark eeMark clearly indicates that trivial power
saving strategies like reducing the network card speed or putting the disk to sleep are
only limitedly applicable due to long transition times and small power saving potential
on device level. Additionally, caching mechanisms limit the capability of power sav-
ing mechanisms – I/O and communication is usually shifted by additional software or

137

9. Conclusion

hardware layers which complicates the phase detection on hardware level. Neverthe-
less, applying these simple power saving strategies is useful if the devices are unused for
almost the whole application run. However, significant energy savings can be reached
by reducing the processor frequency in memory-bound application phases. But also
here the energy-saving potential depends strongly on the phase duration and the level
of memory-boundness. The application analysis using hardware performance counters
has been emphasized as suitable method to detect memory-bound phases in applica-
tions. In particular, the ratio of retired processor instructions per resource stall (IPS)
is appropriate to evaluate the level of memory-boundness and thus the power saving
potential.
To sum up, almost all analyzed applications contain appropriate phases for instrumenta-
tion, but almost every one has also disadvantages (mainly due to not sufficient phase du-
rations). Applications which consist of several, different phases (e.g. memory-bound and
cpu-bound) have a huge power and energy-saving potential which cannot be exhausted
by the ondemand governor of the operating system, which is based on the processor
utilization. Further, reducing the processor frequency in busy-wait (communication and
I/O) application phases can also gain remarkable results. However, implementation
alternatives to the busy-wait pattern should be considered by application and library
developers. But the right implementation choice is dependent on the specific problem
and hardware and performance requirements.
The best energy saving reached for the selected set of application benchmarks is 13 %
for a strong memory-bound application. But in general, the energy savings are varying
and highly dependent on the type of application:

• I/O bound, memory-bound, cpu-bound, communication-bound and

• phase duration and

• total runtime.

Considering one-digit savings (e.g. 5 %) as realistic for high performance computing
applications, this raises one question – is it worth the effort?
From the ecological point of view, the answer is definitely yes. Due to the reduced
application energy, less cooling is needed on datacenter level. Figure 9.1 on Page 139
visualizes the resulting CO2 savings for different PUE values for a HPC center with the
annual electricity bill of two million euros.
With a PUE of 2.0, the total CO2 savings are 1,180 t, which corresponds to a
3,687,500 km flight (about 92 times around the earth). For the best PUE of 1.0, its
still about 46 times around the earth.
In addition to the CO2 savings, Figure 9.1 visualizes the cost savings. The savings range
between 100,000e and 200,000e per year, which corresponds to 1-3 Full Time Equiva-
lents (FTEs), at least if the center is operated by the government. These amount of FTEs
is probably sufficient to reach the energy savings of 5 % via energy-efficiency tuning of
the applications. In general, this approach is not dedicated for energy-efficiency tuning,
the correlation of application tuning, FTEs and costs is also known as brainware [BaI12].

138

1 1.1 1.5 2
0

500

1000

1500

2000

2500

0

50000

100000

150000

200000

250000
Energy

Costs

CO2

PUE

E
ne

rg
y

(M
W

h)
 a

nd
 C

O
2

(t
)

E
ur

o

Figure 9.1.: Savings for energy, costs and CO2 for different PUEs of datacenters. The values
are based on an annual energy consumption of 20 GWh, 0.1e/kWh and 0.59 kg
CO2/kWh [Umw12].

0 1 3 5 7
0

5

10

15

20

25

30

35

40

45

50
0.16 Euro / kWh

0.12 Euro / kWh

0.10 Euro / kWh

Operating time (years)

R
el

at
iv

e
en

er
gy

 c
os

ts
 (

%
)

0 2.5 5 10 15 20
0

1

2

3

4

5

6

7
Example 1
Example 2
Example 3

Savings in energy costs (%)

A
qu

is
iti

on
 c

os
ts

 in
cr

ea
se

 (
%

)

Figure 9.2.: Relative increase of the acquisition costs based on energy savings without increas-
ing the total cost of ownership.

Furthermore, the hardware has to be selected carefully for different application types.
Even if the acquisition costs seems lower, the total costs of ownership might be higher
due to inefficiencies of the hardware or insufficient mechanisms to exploit power saving
methodologies. Figure 9.2 shows the relative increase of the acquisition costs based on
energy savings without increasing the total cost of ownership (see table 9.1). If saving
10 % of power during runtime, the acquisition costs can be increased by 3 %. To conclude,
the answer from the economical point of view is in general yes, but the potential has to
be evaluated for each use case.

From the social point of view, the answer should be yes. Revisiting the term cost of
science, high performance computing is an enabling tool and makes several fields of
science affordable. Hence, every approach lowering the costs of this tool (including
decreasing runtime costs) should be followed. Even more, the global race for exascale
computing requires further research in the green HPC area.

139

9. Conclusion

Table 9.1.: Composition of the total costs of ownership for three exemplary selected HPC
installations. Example 3 is based on the test infrastructure used for this thesis.

Name Acquisition costs Annual electricity costs Operating time
e e years

Example 1 35,000,000 2,000,000 5
Example 2 65,000,000 3,000,000 6
Example 3 32,000 3,000 3

The current rank 1 of the TOP500 list, namely the Titan supercomputer, has a power
efficiency of 2.1 Petaflops per Megawatt1. Interpolating the performance of Titan, a
factor of roughly 50 of the peak performance is required to reach the exascale goal, which
results in a power consumption of 400 MW. Keeping HPC as a tool affordable demands
for a maximum power consumption of 20 MW2 which requires a power efficiency of 50
Petaflops per Megawatt. Consequently, the power efficiency has to be improved by a
factor of 20. Again, to reach this ambitious goal, every approach has to be evaluated
and exploited.

9.1. Future Work

Following the approach of exploiting hardware power saving mechanisms in parallel com-
puting, several points can be addressed. In this thesis, the focus was on applications
of the field of climate science. This analysis should be extended to a broader range
of applications, covering different classes of applications and resulting resource utiliza-
tion profiles. Especially HPC centers with a broad range of applications with different,
changing behavior (in terms of resource usage) have a higher energy-saving potential
since the hardware is usually not perfectly suitable for all these different scenarios.
Porting this approach to typical datacenters might not be promising, since different ap-
plications classes run interfered (or even in parallel) on multiple subsets of nodes which
makes it difficult to detect and predict interesting hardware utilization phases (except
for the idle case, which is comparable trivial). Additionally, the aspect of distributed
I/O could be analyzed in more detail with a larger count of computing and dedicated
I/O nodes in realistic scenarios. Especially the waiting times due to collective operations
seems to be promising for power saving and energy reduction. Furthermore, fine-grained
measurement of the power consumption and performance characteristics at component
level should allow improved profiling and analysis of scientific applications. This mea-
surement approach enables the correlation of the software components of the scientific
application and the power consumption and thus makes it possible to evaluate inter-

1http://www.top500.org, last checked: March 2, 2013
2as stated by the U.S. Defense Advanced Research Projects Agency (DARPA) in 2007

140

http://www.top500.org

9.1. Future Work

ferences in detail. This ambition drives the first workpackage of the EXA2GREEN 3

project as continuation of this work.

In general, enhanced measurement capabilities and tool environments make it possible
to tune applications for energy efficiency. This includes as well the adaptation of algo-
rithm to specific hardware as also porting of applications to better suitable (in terms of
energy-efficient) hardware. The first step – evaluating of the energy efficiency on a given
platform via enhanced tool environments – is done is this thesis.

Even if hardware vendors are already improving the efficiency of each new generation
of devices, further developments are necessary. The provision of additional counters for
the hardware increases the insights for the application developer on the one hand, on
the other hand distributed decisions about hardware states could be enabled. Based on
different sets of performance counters, the processor could classify an application phase
(e.g. memory-boundness) independently and decrease/increase the processor frequency
or the memory bandwidth correspondingly. Additionally, modern processors consists of
sophisticated and partially dedicated units (like the prefetcher, out-of-order execution
unit, etc.), which could be disabled based on this phase detection and resulting usage
pattern. Increasing the granularity of the already used power gating would also fur-
ther decrease the idle power consumption of processor components. Similarly, unused
portions of the main memory could be sent to sleep mode for applications with small
memory footprints to improve the energy efficiency of the system for special application
demands. This could be done by disabling the self-refresh of the memory banks, of
course the memory management has to be adjusted to support these kind of resizing of
the physical address space.

On software side, the awareness for the green topic for application and especially library
developer has to be raised. With raising awareness, software energy-saving techniques
can be developed, exploited and distributed into well known libraries and applications.
Especially the evaluation of the busy wait pattern versus interrupts has to be discussed
for several use cases. In addition, energy-efficient sets of compile flags have to be evalu-
ated and tuned for several applications, compilers and hardware platforms to maximize
the energy efficiency and derive best practices and guidelines. To motivate these steps
in the scientific computing community, the resource management system could account
the energy on job level (in addition to the job runtime). Hence, the energy efficiency
of the whole application/job can be accounted and jobs can be prioritized based on
their energy efficiency or energy usage. Furthermore, the system can provide feedback
of the application behavior to the developer, especially about costs of the application
run or power consumption hot spots. Additional instrumentation of the HPC centers
and correlation with the running applications provides further information to the center
operator (e.g. room temperature increases during specific application runs). This ap-
proach further increases the awareness of the user, because the application costs become
transparent which might increase the willingness to optimize the applications for energy
efficiency.

Apart from the single cost reduction (cost-effectiveness of science), the ecology should

3funded by the EU within the FP7 framework, started in November 2012

141

9. Conclusion

be clearly kept in mind. The ecological impact of building and disposing of these large
installations can not be disregarded. At this point, the computing centers have to create
a demand for transparency of the whole product life cycle, which the hardware vendor
has to fulfill. Additionally, concepts like re-purposing of supercomputers (as introduced
by the PRObE 4) project have to be evaluated and possibly adapted to increase the usage
period5 and justify the huge investments, usually supported by the community.

4http://www.newmexicoconsortium.org/probe, last checked: March 2, 2013
5typically four years in Germany

142

http://www.newmexicoconsortium.org/probe

A. Appendix

Listing A.1: Example PBS run script for example application run instrumented with Vam-
pirTrace

1 ##### PBS OPTIONS ######

2 #PBS -q intel

3 #PBS -l nodes =1: ppn=8

4 #PBS -l walltime =01:00:00

5 ##### END PBS OPTIONS ######

6

7 # destinct hostname

8 host=‘cat $PBS_NODEFILE | sort -u‘

9

10 # setup libraries

11 export LD_LIBRARY_PATH =/sw/DBMetricConnector/lib:/sw/eeDaemon/lib:$LD_LIBRARY_PATH

12

13 # trace power consumption

14 export VT_PLUGIN_CNTR_METRICS=eeClustPlugin_${host}_power:${VT_PLUGIN_CNTR_METRICS}

15 # trace free memory

16 export VT_PLUGIN_CNTR_METRICS=eeClustPlugin_${host}_util_mem_free:${

VT_PLUGIN_CNTR_METRICS}

17

18 # for all sockets , trace likwid metrics

19 for i in ‘seq 0 1‘

20 do

21 #trace cpi

22 export VT_PLUGIN_CNTR_METRICS=eeClustPlugin_${host}_likwid_cpi_thread${i}:${

VT_PLUGIN_CNTR_METRICS}

23 #trace L3 request rate

24 export VT_PLUGIN_CNTR_METRICS=eeClustPlugin_${host}_likwid_l3_request_rate_thread$

{i}:${VT_PLUGIN_CNTR_METRICS}

25 #trace L3 miss rate

26 export VT_PLUGIN_CNTR_METRICS=eeClustPlugin_${host}_likwid_l3_miss_rate_thread${i

}:${VT_PLUGIN_CNTR_METRICS}

27 #trace L3 miss ratio

28 export VT_PLUGIN_CNTR_METRICS=eeClustPlugin_${host}_likwid_l3_miss_ratio_thread${i

}:${VT_PLUGIN_CNTR_METRICS}

29 done

30

31 # enable Likwid Tracing daemon with group L3Cache on cores 0 and 4 (socket 0 and 1)

32 /sw/likwid -2.3.0/ bin/likwid -perfctr -g L3CACHE -d 50ms -c 0,4 > /dev/null 2>&1 &

33

34 #trace core frequencies for all cores

35 for i in ‘seq 0 7‘

36 do

37 #trace eed core mode

38 export VT_PLUGIN_CNTR_METRICS=eeClustPlugin_${host}_eed_core${i}_mode:${

VT_PLUGIN_CNTR_METRICS}

39 #trace core frequency

40 export VT_PLUGIN_CNTR_METRICS=eeClustPlugin_${host}_util_cpu_freq_avg_${i}:$

{VT_PLUGIN_CNTR_METRICS}

41 done

42

43 # start trace unification manually after application run

44 export VT_UNIFY =0

45

I

A. Appendix

46 # enable Resource Utilization Tracing daemon

47 sudo /sbin/service rut start

48

49 # enable eeDaemon compiled with VampirTrace support

50 sudo /sbin/service eed -dbtrace start

51

52 # run application

53 ./ swim_eed_vt < ref.in 2>&1

54

55 # disable eeDaemon

56 sudo /sbin/service eed -dbtrace stop

57

58 # disable Resource Utilization Tracing daemon

59 sudo /sbin/service rut stop

60

61 # disable Likwid Tracing daemon

62 kill -s INT $LIKWID

63

64 echo "Waiting for processes $LIKWID (likwid) to terminate ..."

65 wait $LIKWID

66

67 # manual VampirTrace trace unification

68 mpiexec -ppn 8 vtunify -mpi swim_eed_vt -v

Listing A.2: Configuration file for eeMark evaluation

1 # ************************** Configuration file for eeMark

2 [general]

3 prefix=

4 energylib=powertracer

5 add_debug_messages=no

6 # ********************************* Instrumentation settings

7 # Sets processor eeDaemon mode in compute kernels based ops_per_byte , default = no

8 # This option needs the eeClust_intel_modes.cfg file containing the modes

9 #add_cpu_instrumentation=yes

10

11 # Instrumentation on kernel level , default = no

12 # This option puts all processors in MODE_MIN for IO and Communication kernels

13 # Further , the nic and disk are switched into the modes specified in the benchsets

14 #add_instrumentation=yes

15

16 # Sets the default mode for kernel level instrumentation , defaults to MODE_MAX

17 #ee_mode_cpu_default=MODE_MAX

18 #ee_mode_disk_default=MODE_MAX

19 #ee_mode_nic_default=MODE_MAX

20 # ********************************* Compiler settings

21 # cc: compiler (e.g. mpicc , vtcc -vt:cc mpicc for VampirTrace support)

22 # ccflags: compiler flags (e.g. -O3), use -std=c99 if available

23 # ldflags: linker flags , -lm is required

24 # defines: definitions , use -D_POSIX_C_SOURCE =199309L or greater if available

25 #

26 cc= mpicc

27 # ********************************** gcc parameters

28 ccflags= -O3 -funroll -loops -std=c99 -ftree -vectorizer -verbose =0 -ffast -math

29 ldflags= -lm

30 defines= -D_POSIX_C_SOURCE =199309L

31 # ********************************** icc parameters

32 #ccflags= -O3 -std=c99 -vec -report1

33 #ldflags= -lm

II

34 #defines= -D_POSIX_C_SOURCE =199309L

35

36 #ccflags= -O3 -std=c99

37 #ldflags= -lm

38 #defines= -D_POSIX_C_SOURCE =199309L

39

40 # *********************************** MPI parameters

41 #mpicmd= mpirun --bind -to -core

42 #np_param= -np

43 #np_default= ‘nproc --all ‘ #if creating a pbs script , this value has to be defined!

44

45 ## *********************************** mpich2 -1.3.1 parameters

46 mpicmd= mpirun -binding cpu:cores -print -rank -map

47 np_param= -ppn

48 np_default= 8

49

50 # ******************************** Batch system settings

51 create_pbs= yes

52 ## *********************************** PBS parameters

53 nodes= 5

54 queue= intel

55 walltime= 30:00:00

56 mpimodule= mpich2/mpich2 -1.3.1

57

58 # ************************** architecture dependent settings

59 # simd_width: length of vector registers in Byte (vectors will be aligned

accordingly)

60 # unroll: unroll loops to increase amount of independent operations

61 # blocksize: blocksize in KiB for workloads that perform multiple operations per

Byte

62 # - should be smaller than L1 cache

63 # [pragma]: add pragmas that will be added before loops

64 #

65 simd_width= 32

66 unroll= 4

67 blocksize= 8

68

69 [pragma]

70 PRAGMA_VECTOR_ALIGNED ="# pragma vector aligned"

71

72 # ********************************* usable functions

73 # the usable functions are omitted for volume reasons

III

A. Appendix

Figure A.1.: Vampir Screenshot of instrumented eeMark compute3 reference run. Power
consumption is increased during memory-bound phases.

IV

5 x 8 8 x 5 10 x 4 4 x 10 2 x 20 20 x 2 40 x 1 1 x 40
0

50

100

150

200

250

300

0

50000

100000

150000

200000

250000

300000

350000

400000
Runtime

Energy

Setup (nprocx x nprocy)

R
un

tim
e

(s
)

E
ne

rg
y

(J
)

Figure A.2.: Absolute measurements for different MPIOM tp04l80 setups with 40 processes
pinned on the Intel cores. I/O is disabled, the model time is one day. The
processor frequency is 2800 MHz.

V

A. Appendix

T
a
b

le
A

.1
.:

P
erfo

rm
a
n

ce
co

u
n

ters
m

ea
su

rem
en

ts
fo

r
M

P
IO

M
occlit

loo
p

in
stru

m
en

ta
tio

n
o
n

o
n

e
In

tel
X

eo
n

n
od

e
w

ith
a

fi
xed

p
ro

-
cessin

g
frequ

en
cy

o
f

2
8
0
0

M
H

z.
S

im
u

la
ted

is
o
n

e
d
a
y

in
a

4
×

10
p
rocess

setu
p
.

L
o
o
p

L
O

O
P

4
9

L
O

O
P

1
0
5

L
O

O
P

1
4
1

L
O

O
P

1
5
7

L
O

O
P

2
1
2

L
O

O
P

279
L

O
O

P
329

L
O

O
P

369

D
u

ra
tio

n
(m

s)
5
4.49

1
6
.3

2
2
3
.8

6
0
.1

5
4
6
.2

7
16.77

24.85
29.57

B
illio

n
In

stru
c
tio

n
s

S
o
cket

0
1.15

0
.3

5
0
.5

6
0
.0

1
1
.0

1
0.41

0.6
0.64

S
o
cket

1
1.17

0
.3

5
0
.5

4
0
.0

1
1
.0

6
0.39

0.59
0.67

M
illio

n
L

3
m

isse
s

S
o
cket

0
2.72

0
.9

5
1
.7

1
0
.8

6
4
.5

1
1.39

1.34
1.42

S
o
cket

1
2.68

0
.9

4
1
.0

6
0
.8

4
.3

4
1.53

0.96
1.49

In
stru

c
tio

n
/
M

iss
S

o
cket

0
4
22.68

3
6
9
.5

5
3
2
5
.7

2
5
.9

2
2
2
3
.5

293.27
449.5

448.76
S

o
cket

1
43

4
.6

3
7
5
.3

5
5
0
7
.5

2
6
.5

2
4
4
.0

1
252.58

614.11
453.45

B
a
n

d
w

id
th

(G
B

/s)
S

o
ck

et
0

4
.5

1
5
.2

5
4
.7

5
5
.1

7
6
.6

1
6.83

4.41
3.43

S
o
cket

1
4.47

5
.2

2
3
.0

2
4
.8

3
6
.1

8
6.78

2.94
3.65

M
illio

n
S

ta
lls

S
o
cket

0
4
4
.3

6
5
1
.7

4
5
0
.3

2
0
.7

5
5
6
.8

4
49.71

48.2
58.54

S
o
cket

1
4
3
.0

9
5
1
.3

1
4
5
.6

7
0
.7

4
5
5
.7

4
53.77

43.03
56.43

In
stru

c
tio

n
/
S

ta
ll

S
o
cket

0
3
3
.6

2
7
.4

5
1
1
.1

8
4
.1

6
1
7
.9

5
8.34

12.29
10.9

S
o
cket

1
3
5
.6

6
7
.6

1
1
2
.0

1
4
.2

8
1
8
.8

2
7.35

13.48
12.02

VI

Table A.2.: Measured runtime, energy, mean power and performance counters for the mem-
ory bandwidth, Instruction/Stall and Instruction/L3 Miss for different processing
frequencies of an cpu-bound workload (32 OPB) on the Intel Xeon nodes. The
performance counters are averaged in 10 ms interval steps.

Frequency (MHz) 2801 2800 2267 1600

Runtime (s) 54.35 58.26 72.5 100.87
Energy (kJ) 4.42 14.31 15.61 19.1
Power (W) 265 245 215 189
Billion Instructions 1.38 1.27 1.04 0.74
Billion Resource Stalls 0.17 0.15 0.11 0.07
Million L3 Misses 13.81 12.72 10.39 7.4
Memory Bandwidth (GB/s) 23.02 21.56 17.61 12.58
Instructions per Stall 8.09 8.59 9.24 9.92
Instruction per L3 Miss 100.18 100.14 100.16 99.89

Table A.3.: Measured runtime, energy, mean power and performance counters for the mem-
ory bandwidth, Instruction/Stall and Instruction/L3 Miss for different processing
frequencies of an memory-bound workload (1 OPB) on the Intel Xeon nodes. The
performance counters are measured in 10 ms interval steps.

Frequency (MHz) 2801 2800 2267 1600

Runtime (s) 42.02 41.99 41.98 42.05
Energy (kJ) 10.44 10.08 9 8.62
Power (W) 248 241 214 205
Billion Instructions 0.2 0.2 0.18 0.19
Billion Resource Stalls 1.18 1.05 0.81 0.56
Million L3 Misses 18.27 18.2 18.16 18.02
Memory Bandwidth (GB/s) 17.9 21.52 23.52 24
Instructions per Stall 0.16 0.18 0.23 0.33
Instruction per L3 Miss 10.95 10.77 10.1 10.47

VII

A. Appendix

Table A.4.: Relative runtime for point-to-point communication using MPI Send/MPI Recv on
the Intel Xeon nodes with varying data sizes and network interface card settings.
The baseline is the 1000 Mbit/s and Full Duplex setup.

Data size Speed Duplex Runtime
(Mbit/s) (%)

8 10 half 11277.15
8 10 full 10721.36
8 100 half 1115.23
8 100 full 5327.65
8 1000 half 0.17
16 10 half 11313.51
16 10 full 10772.81
16 100 half 1122.94
16 100 full 4387.91
16 1000 half 0.08
24 10 half 10706.00
24 10 full 10780.18
24 100 half 1133.43
24 100 full 4447.03
24 1000 half -0.44
32 10 half 10924.9
32 10 full 10825.48
32 100 half 1139.16
32 100 full 4714.10
32 1000 half 0.00

VIII

List of Figures

1.1. Amdahl’s law and Gustafson’s law. 12
1.2. DKRZ supercomputer history. 15
1.3. Increasing efficiency and electricity costs at the DKRZ. 16
1.4. Increasing power consumption of the DKRZ. 16
1.5. Relation between Time-to-Solution and Energy-to-Solution. 18
1.6. Power measurements for different node utilization levels. 19
1.7. Closed loop of optimization and tuning. 20

2.1. DVFS architectures in multicore-processors. 28

3.1. Picture of test infrastructure eeClust. 38
3.2. Physical view on the eeClust infrastructure. 39
3.3. Power consumption for eeClust nodes depending on load. 44
3.4. SPECPower Measurements for AMD Opteron nodes. 45
3.5. SPECPower Measurements for Intel Xeon nodes. 45
3.6. Energy consumption of the eeClust nodes for different workloads. 46
3.7. Memory and L3 cache scaling for the Intel Xeon and AMD Opteron nodes. 47
3.8. Point-to-point communication energy consumption of the eeClust nodes. 47
3.9. Collective communication energy consumption of the eeClust nodes. . . . 48
3.10. Disk read operations energy consumption of the eeClust nodes. 49
3.11. Disk write operations energy consumption of the eeClust nodes. 49
3.12. Idle power consumption for eeClust nodes. 50

4.1. Schematic application phases and resulting hardware utilization. 54
4.2. Design overview cpuidle and cpufreq. 57
4.3. Schematic application and device phases for different power saving scenarios. 61

5.1. eeDaemon mode control based on [MMK+11]. 64
5.2. Instrumented application runtime dependent on eeDaemon interval time. 67
5.3. Scheduling of (un)instrumented applications on processor cores. 68

6.1. HDTrace components. 75
6.2. VampirTrace data sources. 76
6.3. Trace environment with tool extensions. 78
6.4. Application runtime and statistics file size dependent on HDTrace interval. 83
6.5. Statistics file size dependent on HDTrace interval and application runtime. 83
6.6. Main window of Sunshot. 85

IX

List of Figures

6.7. Context view of HDTrace timeline elements. 86
6.8. Sunshot screenshot of MPI Barrier with ondemand governor. 87
6.9. Sunshot screenshot of MPI Barrier at fixed maximum processing frequency. 88
6.10. Sunshot screenshot of MPI Barrier and device power states. 89
6.11. Sunshot screenshot of correlation of memory bandwidth and processor

performance states. 91
6.12. Main window of Vampir. 92
6.13. Vampir screenshot of zoomed-in timeline. 93
6.14. Vampir screenshot of MPI Barrier at fixed maximum processing frequency. 94

7.1. Vampir screenshot of instrumented compute3 reference run. 99
7.2. Relative compute benchmarks of the eeMark reference run with ondemand

baseline. 100
7.3. Relative compute benchmarks of the eeMark reference run with maximum

frequency baseline. 100
7.4. Relative compute benchmark scores of the eeMark reference run. 101
7.5. Performance counters measurements for different workload types 102
7.6. Operation-based instrumented communication and I/O benchmarks of

the eeMark reference run. 105
7.7. Vampir screenshot of the operation-based instrumented comm2 benchmark. 105
7.8. Operation-based instrumented communication and I/O benchmark scores

of the eeMark reference run. 106
7.9. Operation-based instrumented combined of the eeMark reference run. . . 106
7.10. Evaluation of the tradeoff between energy and performance. 108
7.11. Sunshot screenshot of partdiff-par phases on one Intel Xeon node. 109
7.12. Average processor statistics of partdiff-par phases. 110
7.13. Sunshot screenshot of an instrumented partdiff-par run. 111
7.14. Relative runtime, energy and power measurements for different frequency

setups of partdiff-par. 112
7.15. Vampir screenshot of the 312.swim main loop phases. 113
7.16. Relative performance counters measurements of the CALC1 phase of swim.114
7.17. Relative runtime, energy and power measurements of the swim reference

run for different frequencies setups. 115
7.18. Performance, energy and power saving potential of optimization flags of

the gcc compiler. 115
7.19. Vampir screenshot of two MPIOM processes on one Intel Xeon node. . . 117
7.20. Average processor utilization, node power and core frequency of MPIOM

phases. 118
7.21. Average instruction per L3 cache miss rate of MPIOM phases. 118
7.22. Relative runtime, energy and power measurements of the MPIOM run for

different frequencies setups. 119
7.23. Vampir screenshot of the MPIOM occlit phase on blizzard. 121
7.24. Vampir screenshot of the MPIOM run on blizzard. 122
7.25. Vampir screenshots of GETM using the ondemand governor. 123

X

List of Figures

7.26. Vampir screenshot of improved GETM version. 125

9.1. Savings for energy, costs and CO2 for different PUEs of datacenters. . . . 139
9.2. Relative increase of HPC cluster acquisition costs. 139

A.1. Vampir Screenshot of instrumented eeMark compute3 reference run. . . . IV
A.2. Absolute measurements for different MPIOM setups. V

XI

List of Tables

1.1. DKRZ supercomputer history from 1988 to 2012. 15

2.1. Processor power states overview. 29
2.2. Hard disk power saving modes overview. 30

3.1. Example power measurement devices overview. 40
3.2. Power consumption and socket voltage for AMD Opteron 6168. 42
3.3. Power consumption and socket voltage for Intel Xeon X5560 (C-States

enabled). 43
3.4. Processor C-State power specifications for the Intel Xeon X5560. 43
3.5. Power consumption and socket voltage for Intel Xeon X5560 (C-States

disabled). 44
3.6. Network card power consumption of the Intel 82574. 49
3.7. Hard disk power consumption of the Seagate Barracuda ST3500418AS. . 50

5.1. eeDaemon modes and corresponding device mode. 65

7.1. Performance counters measurements of an cpu-bound workload. 103
7.2. Performance counters measurements of an memory-bound workload. . . . 104
7.3. Evaluation of the tradeoff between energy and performance. 107
7.4. Application benchmarks overview. 109
7.5. Performance counters measurements of swim phases. 114
7.6. Performance counters measurements for MPIOM occlit loop instrumen-

tation. 119
7.7. Quantification of the instrumentation overhead of GETM. 122
7.8. Quantification of the improved instrumentation overhead of GETM. . . . 124
7.9. Evaluation results of the application benchmarks 126

9.1. Composition of the total costs of ownership for HPC installations. 140

A.1. Detailed performance counters measurements for MPIOM occlit loop in-
strumentation . VI

A.2. Detailed performance counters measurements of a cpu-bound workload. . VII
A.3. Detailed performance counters measurements of an memory-bound work-

load. VII
A.4. Relative runtime for point-to-point communication for different NIC set-

tings. VIII

XIII

Bibliography

[ADI+12] Alonso, Pedro ; Dolz, Manuel F. ; Igual, Francisco D. ; Mayo, Rafael
; Quintana-Ort́ı, Enrique S.: DVFS-control techniques for dense linear
algebra operations on multi-core processors. In: Computer Science - Re-
search and Development 27 (2012), p. 289–298. http://dx.doi.org/10.

1007/s00450-011-0188-7. – DOI 10.1007/s00450–011–0188–7. – ISSN
1865–2034

[AFK+09] Andersen, David G. ; Franklin, Jason ; Kaminsky, Michael ; Phan-
ishayee, Amar ; Tan, Lawrence ; Vasudevan, Vijay: FAWN: A Fast
Array of Wimpy Nodes. In: Proc. 22nd ACM Symposium on Operating
Systems Principles (SOSP). New York, NY, USA : ACM Press, 10 2009
(SOSP ’09). – ISBN 978–1–60558–752–3, 1–14

[AH03] Aebischer, Bernard ; Huser, Alois: Energy efficiency of computer power
supplies. In: Proceedings of the 3rd International Conference on Energy
Efficiency in Domestic Appliances and Lighting, 2003

[AHA+11] Anzt, H. ; Heuveline, V. ; Aliaga, J.I. ; Castillo, M. ; Fernandez,
J.C. ; Mayo, R. ; Quintana-Orti, E.S.: Analysis and optimization of
power consumption in the iterative solution of sparse linear systems on
multi-core and many-core platforms. In: Green Computing Conference
and Workshops (IGCC), 2011 International, 2011, p. 1–6

[AHC+09] Agarwal, Yuvraj ; Hodges, Steve ; Chandra, Ranveer ; Scott, James
; Bahl, Paramvir ; Gupta, Rajesh: Somniloquy: Augmenting network
interfaces to reduce PC energy usage. In: Proceedings of the 6th USENIX
symposium on Networked systems design and implementation. Berkeley,
CA, USA : USENIX Association, 2009, 365–380

[AHR+11] Anzt, H. ; Heuveline, V. ; Rocker, B. ; Castillo, M. ; Fernandez,
J.C. ; Mayo, R. ; Quintana-Orti, E.S.: Power Consumption of Mixed
Precision in the Iterative Solution of Sparse Linear Systems. In: IEEE In-
ternational Symposium on Parallel and Distributed Processing Workshops
and Phd Forum (IPDPSW), 2011. – ISSN 1530–2075, p. 829 –836

[Alc05] Alcott, Blake: Jevons’ paradox. In: Ecological Economics 54 (2005),
No. 1, 9-21. http://dx.doi.org/10.1016/j.ecolecon.2005.03.020. –
DOI 10.1016/j.ecolecon.2005.03.020. – ISSN 0921–8009

XV

http://dx.doi.org/10.1007/s00450-011-0188-7
http://dx.doi.org/10.1007/s00450-011-0188-7
http://dx.doi.org/10.1016/j.ecolecon.2005.03.020

Bibliography

[Amd67] Amdahl, Gene M.: Validity of the single processor approach to achieving
large scale computing capabilities. In: Proceedings of the April 18-20,
1967, spring joint computer conference. New York, NY, USA : ACM, 1967
(AFIPS ’67 (Spring)), p. 483–485

[ARH10] Anzt, Hartwig ; Rocker, Björn ; Heuveline, Vincent: Energy efficiency
of mixed precision iterative refinement methods using hybrid hardware
platforms. In: Computer Science - Research and Development 25 (2010),
p. 141–148. http://dx.doi.org/10.1007/s00450-010-0124-2. – DOI
10.1007/s00450–010–0124–2. – ISSN 1865–2034

[BAEP08] Bao, M. ; Andrei, A. ; Eles, P. ; Peng, Z.: Temperature-Aware Voltage
Selection for Energy Optimization. In: Proceedings of the conference on
Design, automation and test in Europe. New York, NY, USA : ACM, 2008.
– ISBN 978–3–9810801–3–1, 1083–1086

[BaI12] Bischof, Christian ; an Mey, Dieter ; Iwainsky, Christian: Brainware
for green HPC. In: Computer Science - Research and Development 27
(2012), p. 227–233. http://dx.doi.org/10.1007/s00450-011-0198-5.
– DOI 10.1007/s00450–011–0198–5. – ISSN 1865–2034

[Bar05] Barroso, Luiz A.: The Price of Performance. In: Queue 3 (2005),
September, No. 7, p. 48–53. http://dx.doi.org/10.1145/1095408.

1095420. – DOI 10.1145/1095408.1095420. – ISSN 1542–7730

[BBDM00] Benini, L. ; Bogliolo, A. ; De Micheli, G.: A survey of design tech-
niques for system-level dynamic power management. In: IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems 8 (2000), June,
No. 3, p. 299 –316. http://dx.doi.org/10.1109/92.845896. – DOI
10.1109/92.845896. – ISSN 1063–8210

[BDM+12] Barreda, M. ; Dolz, M.F. ; Mayo, R. ; Quintana-Orti, E.S. ; Reyes,
R.: Binding Performance and Power of Dense Linear Algebra Operations.
In: 2012 IEEE 10th International Symposium on Parallel and Distributed
Processing with Applications (ISPA), 2012, p. 63 –70

[BH07] Barroso, Luiz A. ; Hölzle, Urs: The Case for Energy-
Proportional Computing. In: Computer 40 (2007), 33–37. http:

//dx.doi.org/http://dx.doi.org/10.1109/MC.2007.443. – DOI
http://dx.doi.org/10.1109/MC.2007.443

[BJ07] Bircher, W. L. ; John, Lizy K.: Complete System Power Estimation:
A Trickle-Down Approach based on Performance Events. In: ISPASS ’07:
Proceedings of the 2007 IEEE International Symposium on Performance
Analysis of Systems and Software. Washington, DC, USA : IEEE Com-
puter Society, 2007. – ISBN 1–4244–1082–7, 158–168

XVI

http://dx.doi.org/10.1007/s00450-010-0124-2
http://dx.doi.org/10.1007/s00450-011-0198-5
http://dx.doi.org/10.1145/1095408.1095420
http://dx.doi.org/10.1145/1095408.1095420
http://dx.doi.org/10.1109/92.845896
http://dx.doi.org/http://dx.doi.org/10.1109/MC.2007.443
http://dx.doi.org/http://dx.doi.org/10.1109/MC.2007.443

Bibliography

[BTM00] Brooks, David ; Tiwari, Vivek ; Martonosi, Margaret: Wattch: A
Framework for Architectural-Level Power Analysis and Optimizations. In:
ISCA ’00: Proceedings of the 27th annual international symposium on
Computer architecture. New York, NY, USA : ACM Press, 2000. – ISBN
1–58113–232–8, 83–94

[Bü11] Büchmann, Bjarne and Hansen, Carsten and Söderkvist, Jo-
han: Improvement of hydrodynamic forecasting of Danish waters: im-
pact of low-frequency North Atlantic barotropic variations. In: Ocean
Dynamics 61 (2011), p. 1611–1617. http://dx.doi.org/10.1007/

s10236-011-0451-2. – DOI 10.1007/s10236–011–0451–2. – ISSN 1616–
7341

[CFR02] Chang, Fay ; Farkas, Keith ; Ranganathan, Parthasarathy: Energy-
driven statistical profiling: Detecting software hotspots. In: Workshop on
Power-Aware Computer Systems, 2002

[CGF05] Cameron, Kirk W. ; Ge, Rong ; Feng, Xizhou: High-Performance,
Power-Aware Distributed Computing for Scientific Applications. In: Com-
puter 38 (2005), 11, 40–47. http://dx.doi.org/10.1109/MC.2005.380.
– DOI 10.1109/MC.2005.380

[CM05] Contreras, Gilberto ; Martonosi, Margaret: Power Prediction for
Intel XScale Processors using Performance Monitoring Unit Events. In:
Proceedings of the 2005 international symposium on Low power electronics
and design. New York, NY, USA : ACM Press, 2005. – ISBN 1–59593–
137–6, 221–226

[CMDAN06] Curtis-Maury, Matthew ; Dzierwa, James ; Antonopoulos, Chris-
tos D. ; Nikolopoulos, Dimitrios S.: On the Design of Online Pre-
dictors for Autonomic Power-Performance Adaptation of Multithreaded
Programs. In: Journal of Autonomic and Trusted Computing 1 (2006)

[CPB03] Carrera, Enrique V. ; Pinheiro, Eduardo ; Bianchini, Ricardo: Con-
serving disk energy in network servers. In: Proceedings of the 17th annual
international conference on Supercomputing. Boston, Massachusetts, USA
: ACM Press, 2003. – ISBN 1–58113–733–8, 86–97

[DCY+08] Dong, Yong ; Chen, Juan ; Yang, Xuejun ; Yang, Canqun ; Peng, Lin:
Low Power Optimization for MPI Collective Operations. In: International
Conference for Young Computer Scientists (2008), 1047–1052. http://

dx.doi.org/10.1109/ICYCS.2008.500. – DOI 10.1109/ICYCS.2008.500

[DFG+11] David, Howard ; Fallin, Chris ; Gorbatov, Eugene ; Hanebutte,
Ulf R. ; Mutlu, Onur: Memory power management via dynamic volt-
age/frequency scaling. In: ICAC ’11 Proceedings of the 8th ACM interna-

XVII

http://dx.doi.org/10.1007/s10236-011-0451-2
http://dx.doi.org/10.1007/s10236-011-0451-2
http://dx.doi.org/10.1109/MC.2005.380
http://dx.doi.org/10.1109/ICYCS.2008.500
http://dx.doi.org/10.1109/ICYCS.2008.500

Bibliography

tional conference on Autonomic computing. New York, NY, USA : ACM,
2011. – ISBN 978–1–4503–0607–2, 31–40

[DGMB07] Diniz, Bruno ; Guedes, Dorgival ; Meira, Wagner Jr. ; Bianchini,
Ricardo: Limiting the Power Consumption of Main Memory. In: ISCA
’07: Proceedings of the 34th annual international symposium on Computer
architecture. New York, NY, USA : ACM Press, 2007. – ISBN 978–1–
59593–706–3, 290–301

[DLP03] Dongarra, Jack J. ; Luszczek, Piotr ; Petitet, Antoine: The LIN-
PACK benchmark: Past, present, and future. Concurrency and Com-
putation: Practice and Experience. In: Concurrency and Computation:
Practice and Experience 15 (2003), p. 803––820. http://dx.doi.org/10.
1002/cpe.728. – DOI 10.1002/cpe.728

[DR09] Dhiman, Gaurav ; Rosing, Tajana Šimunic: System-level power man-
agement using online learning. In: IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 28 (2009), 05, 676–689.
http://dx.doi.org/10.1109/TCAD.2009.2015740. – DOI 10.1109/T-
CAD.2009.2015740. – ISSN 0278–0070

[ECL+09] Etinski, Maja ; Corbalan, Julita ; Labarta, Jesus ; Valero, Mateo
; Veidenbaum, Alex: Power-Aware Load Balancing of Large Scale MPI
Applications. In: IPDPS ’09: Proceedings of the 2009 IEEE International
Symposium on Parallel and Distributed Processing. Washington, DC, USA
: IEEE Computer Society, 2009. – ISBN 978–1–4244–3751–1, 1–8

[Ehm12] Ehmke, Florian: Energy-Aware Instrumentation of Parallel MPI Applica-
tions, University of Hamburg, Bachelor’s Thesis, 06 2012. http://edoc.

sub.uni-hamburg.de/informatik/volltexte/2012/180/, last checked:
March 2, 2013

[EKR02] Elnozahy, E.N. ; Kistler, Michael ; Rajamony, Ramakrishnan:
Energy-Efficient Server Clusters. In: In Proceedings of the 2nd Workshop
on Power-Aware Computing Systems, 2002, 179–196

[Ele] Electronic Educational Devices: Watt’s up internet enabled power
meters. https://www.wattsupmeters.com/secure/products.php, last
checked: March 2, 2013

[FL05] Freeh, Vincent W. ; Lowenthal, David K.: Using Multiple Energy
Gears in MPI programs on a Power-Scalable Cluster. In: Proceedings of
the tenth ACM SIGPLAN symposium on Principles and practice of parallel
programming. New York, NY, USA : ACM Press, 2005. – ISBN 1–59593–
080–9, 164–173

XVIII

http://dx.doi.org/10.1002/cpe.728
http://dx.doi.org/10.1002/cpe.728
http://dx.doi.org/10.1109/TCAD.2009.2015740
http://edoc.sub.uni-hamburg.de/informatik/volltexte/2012/180/
http://edoc.sub.uni-hamburg.de/informatik/volltexte/2012/180/
https://www.wattsupmeters.com/secure/products.php

Bibliography

[FPK+05] Freeh, Vincent W. ; Pan, Feng ; Kappiah, N. ; Springer, R. ; Lowen-
thal, David K.: Exploring the Energy-Time Tradeoff in MPI Programs
on a Power-Scalable Cluster. In: Proceedings of Parallel and Distributed
Processing Symposium. Washington, DC, USA : IEEE Computer Society,
04 2005. – ISBN 0–7695–2312–9

[FS99] Flinn, Jason ; Satyanarayanan, M.: PowerScope: A Tool for Profiling
the Energy Usage of Mobile Applications. In: WMCSA ’99 Proceedings
of the Second IEEE Workshop on Mobile Computer Systems and Appli-
cations. Washington, DC, USA : IEEE Computer Society, 1999. – ISBN
0–7695–0025–0, 2–9

[Ge07] Ge, Rong: Theories and Techniques for Efficient High-End Computing,
Virginia Polytechnic Institute and State University Blacksburg, VA, USA,
PhD Thesis, 2007

[GFC05a] Ge, Rong ; Feng, Xizhou ; Cameron, Kirk W.: Improvement of Power-
Performance Efficiency for High-End Computing. In: Proceedings of the
19th IEEE International Parallel and Distributed Processing Symposium.
Washington, DC, USA : IEEE Computer Society, 2005. – ISBN 0–7695–
2312–9

[GFC05b] Ge, Rong ; Feng, Xizhou ; Cameron, Kirk W.: Performance-
Constrained Distributed DVS Scheduling for Scientific Applications on
Power-Aware Clusters. In: Proceedings of the 2005 ACM/IEEE confer-
ence on Supercomputing. Washington, DC, USA : IEEE Computer Society,
2005. – ISBN 1–59593–061–2, 34–45

[GFC05c] Ge, Rong ; Feng, Xizhou ; Cameron, Kirk W.: Power and Energy Pro-
filing of Scientific Applications on Distributed Systems. In: Proceedings
of the 19th IEEE International Parallel and Distributed Processing Sym-
posium - Papers - Volume 01. Washington, DC, USA : IEEE Computer
Society, 2005 (IPDPS ’05). – ISBN 0–7695–2312–9, 34–44

[GFS+09] Ge, Rong ; Feng, Xizhou ; Song, Shuaiwen ; Chang, Hung-Ching ; Li,
Dong ; Cameron, Kirk W.: PowerPack: Energy Profiling and Analysis
of High-Performance Systems and Applications. In: IEEE Transactions
on Parallel and Distributed Systems 21 (2009), No. 99, 658–671. http:

//dx.doi.org/10.1109/TPDS.2009.76. – DOI 10.1109/TPDS.2009.76

[GS07a] Gupta, M. ; Singh, S.: Dynamic Ethernet Link Shutdown for Energy
Conservation on Ethernet Links. In: Proceedings of IEEE International
Conference on Communications IEEE, 2007. – ISBN 1–4244–0353–7,
6156–6161

XIX

http://dx.doi.org/10.1109/TPDS.2009.76
http://dx.doi.org/10.1109/TPDS.2009.76

Bibliography

[GS07b] Gupta, Maruti ; Singh, Suresh: Energy Conservation with Low Power
Modes in Ethernet LAN Environments. In: INFOCOM ’07: Proceedings
of IEEE INFOCOM IEEE, 2007

[GSKF03] Gurumurthi, Sudhanva ; Sivasubramaniam, Anand ; Kandemir,
Mahmut ; Franke, Hubertus: Reducing Disk Power Consumption in
Servers with DRPM. In: Computer 36 (2003), 59–66. http://dx.doi.

org/10.1109/MC.2003.1250884. – DOI 10.1109/MC.2003.1250884

[Gus88] Gustafson, John L.: Reevaluating Amdahl’s law. In: Commun. ACM
31 (1988), Mai, No. 5, p. 532–533. http://dx.doi.org/10.1145/42411.
42415. – DOI 10.1145/42411.42415. – ISSN 0001–0782

[Han09] Hans Burchard and Frank Janssen and Karsten Bolding and
Lars Umlauf and Hannes Rennau: Model simulations of dense bot-
tom currents in the Western Baltic Sea. In: Continental Shelf Research
29 (2009), No. 1, p. 205–220. http://dx.doi.org/10.1016/j.csr.2007.
09.010. – DOI 10.1016/j.csr.2007.09.010

[Han12] Hans Burchard and Karsten Bolding and Lars Umlauf: GETM
Source Code and Test Case Documentation. Version pre 2.4.x, 2012.
– http://www.getm.eu/data/doc/getm-doc-devel.pdf, last checked:
March 2, 2013

[HF05] Hsu, Chung-hsing ; Feng, Wu-chun: A Power-Aware Run-Time System
for High-Performance Computing. In: SC ’05: Proceedings of the 2005
ACM/IEEE conference on Supercomputing. Washington, DC, USA : IEEE
Computer Society, 2005. – ISBN 1–59593–061–2

[HF09] Huang, S. ; Feng, W.: Energy-Efficient Cluster Computing via Accurate
Workload Characterization. In: Proceedings of the 2009 9th IEEE/ACM
International Symposium on Cluster Computing and the Grid. Washing-
ton, DC, USA : IEEE Computer Society, 2009. – ISBN 978–0–7695–3622–4,
68–75

[HIM+11] Hewlett-Packard Corporation ; Intel Corporation ; Mi-
crosoft Corporation ; Phoenix Technologies Ltd. ; Toshiba
Corporation: Advanced Configuration and Power Interface Specifica-
tion, 12 2011. (5.0) . – http://acpi.info/DOWNLOADS/ACPIspec50.pdf,
last checked: March 2, 2013

[HOT96] Hirata, Akio ; Onodera, Hidetoshi ; Tamaru, Keikichi: Estimation
of Short-Circuit Power Dissipation and its Influence on Propagation Delay
for Static CMOS Gates. In: Proceedings of IEEE International Symposium
on Circuits and Systems, 1996, 751–754

XX

http://dx.doi.org/10.1109/MC.2003.1250884
http://dx.doi.org/10.1109/MC.2003.1250884
http://dx.doi.org/10.1145/42411.42415
http://dx.doi.org/10.1145/42411.42415
http://dx.doi.org/10.1016/j.csr.2007.09.010
http://dx.doi.org/10.1016/j.csr.2007.09.010
http://www.getm.eu/data/doc/getm-doc-devel.pdf
http://acpi.info/DOWNLOADS/ACPIspec50.pdf

Bibliography

[HSK+06] Hotta, Yoshihiko ; Sato, Mitsuhisa ; Kimura, Hideaki ; Matsuoka,
Satoshi ; Boku, Taisuke ; Takahashi, Daisuke: Profile-based Optimiza-
tion of Power Performance by using Dynamic Voltage Scaling on a PC
cluster. In: Proceedings of the 20th International Parallel and Distributed
Processing Symposium. Los Alamitos, CA, USA : IEEE Computer Society,
04 2006. – ISBN 1–4244–0054–6, 298–305

[HSRJ08] Hylick, Anthony ; Sohan, Ripduman ; Rice, Andrew ; Jones, Brian:
An Analysis of Hard Drive Energy Consumption. In: IEEE Interna-
tional Symposium on Modeling, Analysis and Simulation of Computers
and Telecommunication Systems IEEE, 2008. – ISBN 978–1–4244–2817–5,
1–10

[HSS88] Hoffman, G.R. ; Swarztrauber, P.N. ; Sweet, R.A.: Aspects of using
multiprocessors for meteorological modeling. Version: 1988. http://dx.

doi.org/10.1007/978-3-642-83248-2_10. In: Multiprocessing in Mete-
orological Models. Springer Berlin Heidelberg, 1988. – DOI 10.1007/978–
3–642–83248–2 10, p. 125–196

[IBM09] IBM: Implementing an IT energy management plan for real savings,
August 2009. – http://www-03.ibm.com/systems/software/director/

aem/, last checked: March 2, 2013

[Int02] Intel Corporation: PCI Express Architecture Power Management,
11 2002. – http://www.intel.com/content/dam/doc/white-paper/

pci-express-architecture-power-management-rev-1-1-paper.pdf,
last checked: March 2, 2013

[Int08] Intel Corporation: Intel R© Turbo Boost Technology in Intel R©
CoreTM Microarchitecture (Nehalem) Based Processors, 11 2008. – http:

//www.intel.com/content/www/us/en/io/quickpath-technology/

quick-path-interconnect-introduction-paper.html, last checked:
March 2, 2013

[Int09a] Intel Corporation: An Introduction to the Intel R© QuickPath Inter-
connect, 01 2009. – http://download.intel.com/design/processor/

applnots/320354.pdf?iid=tech_tb+paper, last checked: March 2, 2013

[Int09b] Intel Corporation: Intel R© Xeon R© Processor 5500 Series Datasheet,
03 2009. (1) . – http://www.intel.de/content/dam/www/public/

us/en/documents/datasheets/xeon-5500-vol-1-datasheet.pdf, last
checked: March 2, 2013

[Int10a] Intel Corporation: Intel R© Energy Checker - SDK Device Driver Kit
User Guide. 2.0, Dec. 2010. – http://software.intel.com/file/32935,
last checked: March 2, 2013

XXI

http://dx.doi.org/10.1007/978-3-642-83248-2_10
http://dx.doi.org/10.1007/978-3-642-83248-2_10
http://www-03.ibm.com/systems/software/director/aem/
http://www-03.ibm.com/systems/software/director/aem/
http://www.intel.com/content/dam/doc/white-paper/pci-express-architecture-power-management-rev-1-1-paper.pdf
http://www.intel.com/content/dam/doc/white-paper/pci-express-architecture-power-management-rev-1-1-paper.pdf
http://www.intel.com/content/www/us/en/io/quickpath-technology/quick-path-interconnect-introduction-paper.html
http://www.intel.com/content/www/us/en/io/quickpath-technology/quick-path-interconnect-introduction-paper.html
http://www.intel.com/content/www/us/en/io/quickpath-technology/quick-path-interconnect-introduction-paper.html
http://download.intel.com/design/processor/applnots/320354.pdf?iid=tech_tb+paper
http://download.intel.com/design/processor/applnots/320354.pdf?iid=tech_tb+paper
http://www.intel.de/content/dam/www/public/us/en/documents/datasheets/xeon-5500-vol-1-datasheet.pdf
http://www.intel.de/content/dam/www/public/us/en/documents/datasheets/xeon-5500-vol-1-datasheet.pdf
http://software.intel.com/file/32935

Bibliography

[Int10b] Intel Corporation: Intel R© Energy Checker - Software Developer Kit
User Guide. 2.0, Dec. 2010

[Int11] Intel Corporation: Intel R© 64 and IA-32 Architectures Optimization
Reference Manual, April 2011

[Jev66] Jevons, William S.: The Coal Question. In: Library of Economics and
Liberty [Online] (1866). http://www.econlib.org/library/YPDBooks/

Jevons/jvnCQ.html, last checked: March 2, 2013

[KBD+08] Knüpfer, Andreas ; Brunst, Holger ; Doleschal, Jens ; Jurenz,
Matthias ; Lieber, Matthias ; Mickler, Holger ; Müller, Matthias S.
; Nagel, Wolfgang E.: The Vampir Performance Analysis Tool-Set. In:
Resch, Michael (editor) ; Keller, Rainer (editor) ; Himmler, Valentin
(editor) ; Krammer, Bettina (editor) ; Schulz, Alexander (editor):
Tools for High Performance Computing. Berlin / Heidelberg, Germany
: Springer-Verlag GmbH, 2008. – ISBN 978–3–540–68564–7, 139–155

[KFL05] Kappiah, Nandini ; Freeh, Vincent W. ; Lowenthal, David K.: Just
In Time Dynamic Voltage Scaling: Exploiting Inter-Node Slack to Save
Energy in MPI Programs. In: SC ’05: Proceedings of the 2005 ACM/IEEE
conference on Supercomputing. Washington, DC, USA : IEEE Computer
Society, 2005. – ISBN 1–59593–061–2

[KHLK09] Kazandjieva, Maria A. ; Heller, Brandon ; Levis, Philip ;
Kozyrakis, Christos: Energy dumpster diving. In: Workshop on Power
Aware Computing and Systems (HotPower), 2009

[KMKL11] Kunkel, Julian ; Minartz, Timo ; Kuhn, Michael ; Ludwig, Thomas:
Towards an Energy-Aware Scientific I/O Interface – Stretching the ADIOS
Interface to Foster Performance Analysis and Energy Awareness. In: Com-
puter Science - Research and Development 27 (2011), p. 337–345. http:

//dx.doi.org/10.1007/s00450-011-0193-x. – DOI 10.1007/s00450–
011–0193–x

[Kre09] Krempel, Stephan: Design and Implementation of a Profiling Environ-
ment for Trace Based Analysis of Energy Efficiency Benchmarks in High
Performance Computing, Ruprecht-Karls-Universität Heidelberg, Master’s
Thesis, 08 2009

[KS92] Kaufmann, William J. ; Smarr, Larry L.: Supercomputing and the
Transformation of Science. New York, NY, USA : W. H. Freeman & Co.,
1992. – ISBN 0716750384

[LBM00] Lu, Yung-Hsiang ; Benini, Luca ; Micheli, Giovanni D.: Operating-
system directed power reduction. In: ISLPED ’00 Proceedings of the 2000

XXII

http://www.econlib.org/library/YPDBooks/Jevons/jvnCQ.html
http://www.econlib.org/library/YPDBooks/Jevons/jvnCQ.html
http://dx.doi.org/10.1007/s00450-011-0193-x
http://dx.doi.org/10.1007/s00450-011-0193-x

Bibliography

international symposium on Low power electronics and design. New York,
NY, USA : ACM, 2000. – ISBN 1–58113–190–9, 37–42

[LDM01] Lu, Yung-Hsiang ; De Micheli, Giovanni: Comparing System-Level
Power Management Policies. In: IEEE Des. Test 18 (2001), March,
No. 2, p. 10–19. http://dx.doi.org/10.1109/54.914592. – DOI
10.1109/54.914592. – ISSN 0740–7475

[LFL06] Lim, Min Y. ; Freeh, Vincent W. ; Lowenthal, David K.: Adaptive,
Transparent Frequency and Voltage Scaling of Communication Phases in
MPI Programs. In: SC ’06: Proceedings of the 2006 ACM/IEEE confer-
ence on Supercomputing. New York, NY, USA : ACM Press, 2006. – ISBN
0–7695–2700–0

[LHL05] Liao, Weiping ; He, Lei ; Lepak, Kevin M.: Temperature and Sup-
ply Voltage Aware Performance and Power Modeling at Microarchitecture
Level. In: IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 24 (2005), 07, 1042–1053. http://dx.doi.org/10.
1109/TCAD.2005.850860. – DOI 10.1109/TCAD.2005.850860

[LLD12] Ltaief, Hatem ; Luszczek, Piotr ; Dongarra, Jack: Profiling
high performance dense linear algebra algorithms on multicore architec-
tures for power and energy efficiency. In: Computer Science - Research
and Development 27 (2012), p. 277–287. http://dx.doi.org/10.1007/

s00450-011-0191-z. – DOI 10.1007/s00450–011–0191–z. – ISSN 1865–
2034

[LTF+12] Livingston, Kelly ; Triquenaux, Nicolas ; Fighiera, Thibault ;
Beyler, JeanChristophe ; Jalby, William: Computer using too much
power? Give it a REST (Runtime Energy Saving Technology). In:
Computer Science - Research and Development (2012), p. 1–8. http:

//dx.doi.org/10.1007/s00450-012-0226-0. – DOI 10.1007/s00450–
012–0226–0. – ISSN 1865–2034

[MFMB02] Martin, Steven M. ; Flautner, Krisztian ; Mudge, Trevor ; Blaauw,
David: Combined Dynamic Voltage Scaling and Adaptive Body Biasing
for Lower Power Microprocessors under Dynamic Workloads. In: Proceed-
ings of the 2002 IEEE/ACM International Conference on Computer-aided
Design. New York, NY, USA : ACM, 11 2002. – ISBN 0–7803–7607–2,
721–725

[MGW09] Meisner, David ; Gold, Brian T. ; Wenisch, Thomas F.: PowerNap:
Eliminating Server Idle Power. In: Proceedings of the 14th international
conference on Architectural support for programming languages and oper-
ating systems. New York, NY, USA : ACM, 2009 (ASPLOS ’09). – ISBN
978–1–60558–406–5, p. 205–216

XXIII

http://dx.doi.org/10.1109/54.914592
http://dx.doi.org/10.1109/TCAD.2005.850860
http://dx.doi.org/10.1109/TCAD.2005.850860
http://dx.doi.org/10.1007/s00450-011-0191-z
http://dx.doi.org/10.1007/s00450-011-0191-z
http://dx.doi.org/10.1007/s00450-012-0226-0
http://dx.doi.org/10.1007/s00450-012-0226-0

Bibliography

[MHJ+03] Marsland, S.J. ; Haak, H. ; Jungclaus, J.H. ; Latif, M. ; Röske,
F.: The Max-Planck-Institute global ocean/sea ice model with orthog-
onal curvilinear coordinates. In: Ocean Modelling 5 (2003), No. 2, p.
91–127. http://dx.doi.org/10.1016/S1463-5003(02)00015-X. – DOI
10.1016/S1463–5003(02)00015–X. – ISSN 1463–5003

[MHS+11] Molka, Daniel ; Hackenberg, Daniel ; Schöne, Robert ; Minartz,
Timo ; Nagel, Wolfgang E.: Flexible Workload Generation for HPC
Cluster Efficiency Benchmarking. In: Computer Science - Research
and Development 27 (2011), p. 235–243. http://dx.doi.org/10.1007/

s00450-011-0194-9. – DOI 10.1007/s00450–011–0194–9

[Min09] Minartz, Timo: eeClust Cluster Manual. Hamburg, Germany, 2009. –
Internal report B1.1 for BMBF project Energy-Efficient Cluster Computing
(Reference number: 01IH08008E)

[MKJ+07] Müller, Matthias S. ; Knüpfer, Andreas ; Jurenz, Matthias ; Lieber,
Matthias ; Brunst, Holger ; Mix, Hartmut ; Nagel, Wolfgang E.: Devel-
oping Scalable Applications with Vampir, VampirServer and VampirTrace.
In: Parallel Computing: Architectures, Algorithms and Applications, vol-
ume 15 of Advances in Parallel Computing. Amsterdam, Netherlands :
IOS Press, 2007. – ISBN 978–1–58603–796–3, 637–644

[MKL10] Minartz, Timo ; Kunkel, Julian ; Ludwig, Thomas: Simulation of
power consumption of energy efficient cluster hardware. In: Computer
Science - Research and Development 25 (2010), No. 3, 165–175. http://

dx.doi.org/10.1007/s00450-010-0120-6. – DOI 10.1007/s00450–010–
0120–6

[MKL12] Minartz, Timo ; Kunkel, Julian M. ; Ludwig, Thomas: Tracing and
Visualization of Energy-Related Metrics. In: 26th IEEE International
Parallel & Distributed Processing Symposium Workshops, IEEE Computer
Society, 2012

[MMK+11] Minartz, Timo ; Molka, Daniel ; Knobloch, Michael ; Krempel,
Stephan ; Ludwig, Thomas ; Nagel, Wolfgang E. ; Mohr, Bernd ; Fal-
ter, Hugo: eeClust - Energy-Efficient Cluster Computing. In: Wittum,
Gabriel (editor) ; Gabriel Wittum (organizer): Competence in High Per-
formance Computing (CiHPC). Berlin / Heidelberg, Germany : Springer-
Verlag GmbH, 2011

[MMK+12] Minartz, Timo ; Molka, Daniel ; Kunkel, Julian ; Knobloch,
Michael ; Kuhn, Michael ; Ludwig, Thomas: Tool Environments to
Measure Power Consumption and Computational Performance. In: Hand-
book of Energy-Aware and Green Computing. 6000 Broken Sound Parkway

XXIV

http://dx.doi.org/10.1016/S1463-5003(02)00015-X
http://dx.doi.org/10.1007/s00450-011-0194-9
http://dx.doi.org/10.1007/s00450-011-0194-9
http://dx.doi.org/10.1007/s00450-010-0120-6
http://dx.doi.org/10.1007/s00450-010-0120-6

Bibliography

NW, Boca Raton, FL 33487 : Chapman and Hall/CRC Press Taylor and
Francis Group, 2012. – ISBN 978–1–4398–5040–4, Chapter 31, p. 709–743

[MMKK12] Molka, Daniel ; Minartz, Timo ; Krempel, Stephan ; Knobloch,
Michael: eeClust Evaluation. Hamburg, Germany, 2012. – Internal report
B4.2 for BMBF project Energy-Efficient Cluster Computing (Reference
number: 01IH08008E)

[Mol11] Molka, Daniel: eeMark Manual. Dresden, Germany, 2011. – Internal
report for BMBF project Energy-Efficient Cluster Computing (Reference
number: 01IH08008E)

[Mud00] Mudge, Trevor: Power: A First Class Design Constraint for Future Ar-
chitectures. In: Computer 34 (2000), p. 52–57. http://dx.doi.org/10.

1.1.16.601. – DOI 10.1.1.16.601

[Nat08] Nathuji, Ripal: Mechanisms for coordinated power management with
application to cooperative distributed systems, Georgia Institute of Tech-
nology Atlanta, GA, USA, PhD Thesis, 2008

[Nik09] Nikolopoulos, D. S.: Green building blocks - Software Stacks for
Energy-Efficient Clusters and Data Centers. In: ERCIM News 79 (2009),
p. 29–30

[NPI+08] Nedevschi, Sergiu ; Popa, Lucian ; Iannaccone, Gianluca ; Rat-
nasamy, Sylvia ; Wetherall, David: Reducing network energy con-
sumption via sleeping and rate-adaptation. In: Proceedings of the 5th
USENIX Symposium on Networked Systems Design and Implementation.
Berkeley, CA, USA : USENIX Association, 2008 (NSDI 08). – ISBN 111–
999–5555–22–1, 323–336

[NVI08] NVIDIA Corporation: PowerMizer R© 8.0 Intelligent Power Manage-
ment Technology, 06 2008. – http://www.nvidia.de/attach/10153, last
checked: March 2, 2013

[OCC+07] Oliker, Leonid ; Canning, Andrew ; Carter, Jonathan ; Iancu, Costin
; Lijewski, Michael ; Kamil, Shoaib ; Shalf, John ; Shan, Hongzhang
; Strohmaier, Erich ; Ethier, Stéphane ; Goodale, Tom: Scien-
tific Application Performance on Candidate PetaScale Platforms. In: Pro-
ceedings of the International Parallel & Distributed Processing Symposium
(IPDPS), 2007

[PBCH01] Pinheiro, Eduardo ; Bianchini, Ricardo ; Carrera, Enrique V. ;
Heath, Taliver: Load Balancing and Unbalancing for Power and Perfor-
mance in Cluster-Based Systems. In: COLP ’01: Workshop on Compilers
and Operating Systems for Low Power, 2001

XXV

http://dx.doi.org/10.1.1.16.601
http://dx.doi.org/10.1.1.16.601
http://www.nvidia.de/attach/10153

Bibliography

[PLB07] Pallipadi, Venkatesh ; Li, Shaohua ; Belay, Adam: cpuidle—Do noth-
ing, efficiently... In: Proceedings of Linux Symposium, 2007, 119–126

[PS06] Pallipadi, Venkatesh ; Starikovskiy, A.: The ondemand governor:
past, present and future. In: Proceedings of Linux Symposium, 2006, 223–
238

[PS07] Pallipadi, Venkatesh ; Siddha, Suresh B.: Processor Power Management
features and Process Scheduler: Do we need to tie them together? In:
LinuxConf Europe 2007, 2007

[Rar10] Raritan Inc.: Dominion PX-5528 Tech Specs. http://www.raritan.

eu/px-5000/px-5528/tech-specs/. Version: October 2010, last checked:
March 2, 2013

[RCP+10] Rodero, I. ; Chandra, S. ; Parashar, M. ; Muralidhar, R. ; Se-
shadri, H. ; Poole, S.: Investigating the potential of application-centric
aggressive power management for HPC workloads. In: International Con-
ference on High Performance Computing (HiPC), 2010, p. 1 –10

[RLF+07] Rountree, Barry ; Lowenthal, David K. ; Funk, Shelby ; Freeh,
Vincent W. ; Supinski, Bronis R. ; Schulz, Martin: Bounding Energy
Consumption in Large-Scale MPI Programs. In: Proceedings of the 2007
ACM/IEEE conference on Supercomputing. New York, NY, USA : ACM
Press, 2007. – ISBN 978–1–59593–764–3, 1–9

[RLS+09] Rountree, Barry ; Lownenthal, David K. ; Supinski, Bronis R. ;
Schulz, Martin ; Freeh, Vincent W. ; Bletsch, Tyler: Adagio: Making
DVS Practical for Complex HPC Applications. In: ICS ’09 Proceedings
of the 23rd international conference on Supercomputing. New York, NY,
USA : ACM, 2009. – ISBN 978–1–60558–498–0, 460–469

[RMM+01] Ronen, Ronny ; Member, Senior ; Mendelson, Avi ; Lai, Konrad ; Lu,
Shih lien ; Pollack, Fred ; Shen, P. ; Shen, John: Coming challenges
in microarchitecture and architecture. In: Proceedings of the IEEE, 2001.
– ISSN 0018–9219, 325–340

[Sad75] Sadourny, R.: The Dynamics of Finite-Difference Models of
the Shallow-Water Equations. In: Journal of Atmospheric Sci-
ences 32 (1975), April, p. 680–689. http://dx.doi.org/10.1175/

1520-0469(1975)032<0680:TDOFDM>2.0.CO;2. – DOI 10.1175/1520–
0469(1975)032¡0680:TDOFDM¿2.0.CO;2

[SBM09] Singh, Karan ; Bhadauria, Major ; McKee, Sally A.: Real Time
Power Estimation and Thread Scheduling via Performance Counters.
In: ACM SIGARCH Computer Architecture News 37 (2009), 05, No.

XXVI

http://www.raritan.eu/px-5000/px-5528/tech-specs/
http://www.raritan.eu/px-5000/px-5528/tech-specs/
http://dx.doi.org/10.1175/1520-0469(1975)032<0680:TDOFDM>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1975)032<0680:TDOFDM>2.0.CO;2

Bibliography

37-2, 46–55. http://dx.doi.org/10.1145/1577129.1577137. – DOI
10.1145/1577129.1577137

[Sey11] Seyda, Christian: Estimation of Power Consumption of DVFS-Enabled
Processors, Ruprecht-Karls-Universität Heidelberg, Bachelor’s Thesis, 03
2011

[SGFC09] Song, Shuaiwen ; Ge, Rong ; Feng, Xizhou ; Cameron, Kirk W.: En-
ergy Profiling and Analysis of the HPC Challenge Benchmarks. In: Inter-
national Journal of High Performance Computing Applications 23 (2009),
08, 265–276. http://dx.doi.org/10.1177/1094342009106193. – DOI
10.1177/1094342009106193. – ISSN 1094–3420

[SH11] Schöne, Robert ; Hackenberg, Daniel: On-line analysis of hardware
performance events for workload characterization and processor frequency
scaling decisions. In: Proceeding of the second joint WOSP/SIPEW inter-
national conference on Performance engineering. New York, NY, USA :
ACM Press, 2011. – ISBN 978–1–4503–0519–8, 481–486

[SKK11] Spiliopoulos, Vasileios ; Kaxiras, Stefanos ; Keramidas, Georgios:
Green Governors: A Framework for Continuously Adaptive DVFS. In:
Proceedings of International Green Computing Conference and Workshops
2011, 2011

[SMAb01] Shende, Sameer ; Malony, Allen D. ; Ansell-bell, Robert: Instru-
mentation and Measurement Strategies for Flexible and Portable Empiri-
cal Performance Evaluation. In: International Conference on Parallel and
Distributed Processing Techniques and Applications (PDPTA 2001), 2001,
1150–1156

[STHI10] Schöne, Robert ; Tschüter, Ronny ; Hackenberg, Daniel ; Ilsche,
Thomas: The VampirTrace Plugin Counter Interface: Introduction and
Examples. In: PROPER 2010 Proceedings, 2010

[TDZ] TU Dresden, Center for Information S. ; (ZIH), High Performance C.:
VampirTrace 5.12.2 User Manual. 01062 Dresden, Germany

[Tec09] Technology, Seagate: Barracuda 7200.12 Serial ATA Product Man-
ual, 02 2009. – http://www.seagate.com/staticfiles/support/disc/

manuals/desktop/Barracuda%207200.12/100529369b.pdf, last checked:
March 2, 2013

[THW10] Treibig, Jan ; Hager, Georg ; Wellein, Gerhard: LIKWID: A
Lightweight Performance-Oriented Tool Suite for x86 Multicore Environ-
ments. In: Proceedings of the 2010 39th International Conference on Par-
allel Processing Workshops. Washington, DC, USA : IEEE Computer So-
ciety, 2010 (ICPPW ’10). – ISBN 978–0–7695–4157–0, p. 207–216

XXVII

http://dx.doi.org/10.1145/1577129.1577137
http://dx.doi.org/10.1177/1094342009106193
http://www.seagate.com/staticfiles/support/disc/manuals/desktop/Barracuda%207200.12/100529369b.pdf
http://www.seagate.com/staticfiles/support/disc/manuals/desktop/Barracuda%207200.12/100529369b.pdf

Bibliography

[TJYD09] Terpstra, Dan ; Jagode, Heike ; You, Haihang ; Dongarra, Jack:
Collecting Performance Data with PAPI-C. In: Tools for High Perfor-
mance Computing, Proceedings of the 3rd International Workshop on Par-
allel Tools. Berlin / Heidelberg, Germany : Springer-Verlag GmbH, 2009.
– ISBN 978–3–642–11261–4, 157–173

[Tor08] Torres, Gabriel: Everything You Need to Know About the CPU C-
States Power Saving Modes. Tutorial. http://tinyurl.com/atgtt99.
Version: 09 2008, last checked: March 2, 2013

[Umw12] Umweltbundesamt: Entwicklung der spezifischen Kohlendioxid-
Emissionen des deutschen Strommix 1990-2010 und erste Schätzun-
gen 2011, 2012. – http://www.umweltbundesamt.de/energie/archiv/

co2-strommix.pdf, last checked: March 2, 2013

[VFA+09] Vasudevan, Vijay ; Franklin, Jason ; Andersen, David ; Phan-
ishayee, Amar ; Tan, Lawrence ; Kaminsky, Michael ; Moraru, Iulian:
FAWNdamentally Power-efficient Clusters. In: Proceedings of the 12th con-
ference on Hot topics in operating systems. Berkeley, CA, USA : USENIX
Association, 2009

[VLR+11] Viswanathan, H. ; Lee, E.K. ; Rodero, I. ; Pompili, D. ; Parashar,
M. ; Gamell, M.: Energy-Aware Application-Centric VM Allocation for
HPC Workloads. In: IEEE International Symposium on Parallel and Dis-
tributed Processing Workshops and Phd Forum (IPDPSW), 2011. – ISSN
1530–2075, p. 890 –897

[WCS10] Wang, Shinan ; Chen, Hui ; Shi, Weisong: SPAN: A software power
analyzer for multicore computer systems. In: Sustainable Computing: In-
formatics and Systems 1 (2010), 11, 23–34. http://dx.doi.org/10.1016/
j.suscom.2010.10.002. – DOI 10.1016/j.suscom.2010.10.002

[WOS08] Wehner, Michael ; Oliker, Leonid ; Shalf, John: Towards Ultra-
High Resolution Models of Climate and Weather. In: International
Journal of High Performance Computing Applications 22 (2008), No. 2,
p. 149–165. http://dx.doi.org/10.1177/1094342007085023. – DOI
10.1177/1094342007085023

[ZES] ZES ZIMMER Electronic Systems GmbH: Precision Power
Analyzer. http://www.zes.com/english/products/index.html, last
checked: March 2, 2013

[Zon08] Zong, Ziliang: Energy-efficient resource management for high-
performance computing platforms, Auburn University Auburn, AL, USA,
PhD Thesis, 2008

XXVIII

http://tinyurl.com/atgtt99
http://www.umweltbundesamt.de/energie/archiv/co2-strommix.pdf
http://www.umweltbundesamt.de/energie/archiv/co2-strommix.pdf
http://dx.doi.org/10.1016/j.suscom.2010.10.002
http://dx.doi.org/10.1016/j.suscom.2010.10.002
http://dx.doi.org/10.1177/1094342007085023
http://www.zes.com/english/products/index.html

	Introduction
	Individual Approach

	Hardware Mechanism
	Component Overview
	Central Processing Unit
	General Purpose Graphic Processing Unit
	Main Memory
	Input/Output System
	Interconnection Systems

	Interfaces
	Durability Issues

	Power and Energy Saving Potential
	Test Infrastructure
	Evaluation of Hardware Power Saving Modes

	Strategies for Reducing Parallel Application Power Consumption
	Application Phases of Interest
	Hardware-centric Approach
	Sampling Utilization
	Sampling Performance Counters

	Application-centric Approach

	Management of Power Saving Modes
	Server Design
	Map Processes to Hardware Devices
	Switching Hardware Device States
	Runtime Overhead
	Resource Management
	Server configuration

	Application interface
	Software package

	Correlating Applications and Energy-Related Metrics
	Tracing Approach
	HDTrace
	VampirTrace
	Intrinsic Tracing Tool Problems

	Integration of Energy-Related Metrics
	Power
	Device Utilization and Hardware States
	Performance Counters
	eeDaemon Decisions

	Visualization of Trace Files
	Sunshot
	Vampir

	Evaluation
	Synthetic Benchmark
	Reference Run
	Memory-bound Instrumentation
	Operation-based Instrumentation
	Energy-Performance Tradeoff

	Application Benchmarks
	Jacobi PDE Solver
	Shallow Water Modeling
	Max-Planck-Institute Ocean Model
	General Estuarine Transport Model

	Appraisal of Results

	Related Work and State-of-the-Art
	Assessing Application Power Consumption
	System Analysis
	Application Analysis

	Exploiting Hardware Power Saving Mechanism
	Application Power Management
	System Power Management

	Conclusion
	Future Work

	Appendix

