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Abstract

In all gauge theories, including general relativity, parallel transporters are of
fundamental importance. They are unitary maps between vector spaces at
different space time points. It is proposed to abandon unitarity as a general
requirement. The proposal is motivated by the fact that in discrete calculus
and differential geometry unitarity is not a natural requirement, and by a
desire to interpret Higgs fields geometrically.

The present thesis discusses gauge theories with nonunitary parallel
transport both in the continuum and on a graph.

Vierbein fields can be identified as parts of nonunitary parallel trans-
porters in the conventional four space time dimensions. Assuming invert-
ibility of the parallel transporters it is shown how general relativity fits into
this framework. Metricity is obtained automatically without need to assume
it.

Going to the lattice, Higgs fields can be interpreted as associated with
nonunitary parallel transport in extra dimensions. A gauge theoretic model
based on joint work with C. Lehmann and G. Mack is presented which
can explain how quarks of different flavor can acquire different masses by
spontaneous symmetry breaking and what is the difference between colour
and flavor.

Zusammenfassung

In allen Eichtheorien einschließlich der Allgemeinen Relativitätstheorie sind
Paralleltransporter von grundlegender Bedeutung. Dabei handelt es sich
um unitäre Abbildungen zwischen Vektorräumen an verschiedenen Punkten
der Raum-Zeit. Es wird vorgeschlagen, die allgemeine Forderung nach Uni-
tarität fallenzulassen. Der Vorschlag wird motiviert durch den Umstand,
dass im Rahmen eines diskreten Kalküls und einer diskreten Differenzialge-
ometrie Unitarität keine natürliche Forderung ist, und durch den Wunsch
Higgsfeldern eine geometrische Interpretation zu geben.

Die vorliegende Arbeit behandelt Eichtheorien mit nichtunitärem Para-
lleltransport sowohl im Kontinuun als auch auf Graphen.

Vierbeinfelder können als Teil eines nichtunitären Paralleltransporters in
den herkömmlichen vier Raum-Zeit Dimensionen identifiziert werden. Unter
der Annahme invertierbarer Paralleltransporter wird gezeigt, wie die Allge-
meine Relativitätstheorie sich in diesen Rahmen einfügt. Metrizität ergibt
sich automatisch.

Auf dem Gitter ist es möglich, Higgsfelder als verknüpft mit einem nicht-
unitären Paralleltransport in zusätzlichen Dimensionen aufzufassen.

Basierend auf gemeinsamer Arbeit mit C. Lehmann und G. Mack wird
ein eichtheoretisches Modell vorgestellt, das erklärt, wie Quarks unterschied-
lichen Flavors verschiedene Massen durch spontane Symmetriebrechung er-
langen und das eine Erklärung für den Unterschied zwischen Colour and
Flavor liefert.



Contents

1 Introduction 1

2 Geometry of gauge theories 4
2.1 Naheinformationsprinzip . . . . . . . . . . . . . . . . . . . . . 4
2.2 Equivalence principle . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Critique of the standard formalism . . . . . . . . . . . . . . . 8

3 Nonunitary parallel transport and gravity 10
3.1 A priori assumptions of the standard formalism . . . . . . . . 11
3.2 Parallel transporters and their polar decomposition . . . . . . 15
3.3 Holonomy groups . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4 Generalized metricity . . . . . . . . . . . . . . . . . . . . . . . 23
3.5 Nonunitary parallel transport of Dirac spinors . . . . . . . . . 24
3.6 Einstein-Hilbert action . . . . . . . . . . . . . . . . . . . . . . 27
3.7 Matter action . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.8 Classical equations of motion . . . . . . . . . . . . . . . . . . 32
3.9 Parallel transport of Weyl spinors . . . . . . . . . . . . . . . . 34

3.9.1 Metricity . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.9.2 Einstein-Hilbert action . . . . . . . . . . . . . . . . . . 36

3.10 Conformal gravity . . . . . . . . . . . . . . . . . . . . . . . . 36

4 Discrete differential calculus 40
4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2 Universal differential calculus on a directed graph . . . . . . . 42
4.3 Simplices and integrals . . . . . . . . . . . . . . . . . . . . . . 48
4.4 Calculus on pseudographs and singular simplices . . . . . . . 51
4.5 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.5.1 Proof of Stokes law . . . . . . . . . . . . . . . . . . . . 53

5 Gauge theories on graphs 57
5.1 Infinitesimal approach . . . . . . . . . . . . . . . . . . . . . . 57
5.2 Endomorphism-valued forms . . . . . . . . . . . . . . . . . . . 60

5.2.1 Exterior covariant derivative of EndA(V)-valued forms 60
5.3 Parallel transport . . . . . . . . . . . . . . . . . . . . . . . . . 64

i



ii CONTENTS

5.4 Nonunitary parallel transport . . . . . . . . . . . . . . . . . . 69
5.4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . 69
5.4.2 Hermitian structures over modules . . . . . . . . . . . 70
5.4.3 Nonunitary parallel transporters . . . . . . . . . . . . 72
5.4.4 Holonomy groups . . . . . . . . . . . . . . . . . . . . . 73
5.4.5 Polar decomposition . . . . . . . . . . . . . . . . . . . 73
5.4.6 Principle of equivalence . . . . . . . . . . . . . . . . . 77

6 Geometry of Higgs fields 80
6.1 Symmetric lattice . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.2 Generalized Yang-Mills action . . . . . . . . . . . . . . . . . . 85
6.3 Geometry of Higgs fields . . . . . . . . . . . . . . . . . . . . . 86

6.3.1 2-brane system . . . . . . . . . . . . . . . . . . . . . . 90
6.4 Reinterpretation of the standard model . . . . . . . . . . . . 93

6.4.1 The bilayered membrane . . . . . . . . . . . . . . . . . 93

7 Origin of quark masses and CKM-matrix 97
7.1 Lessons from renormalization group . . . . . . . . . . . . . . 97
7.2 Model description . . . . . . . . . . . . . . . . . . . . . . . . . 100
7.3 Kinetic term for the Higgs . . . . . . . . . . . . . . . . . . . . 104

8 Summary and outlook 109

A Nonunitary parallel transport on differentiable manifolds 111

B Generalized metricity II 114

C Dirac algebra 117

Bibliography



Chapter 1

Introduction

The aim of fundamental physics is to describe and explain a variety of phe-
nomena by using a minimum of basic principles and concepts. In this way
nature becomes understandable and its complexity can be reduced. Every
physical theory is built on a set of primary principles. This provides a cri-
terion to distinguish between more and less fundamental theories. A theory
will be the more fundamental the less structure is assumed a priori. The
a priori structure consists of the basic principles and all the axioms of the
mathematical theories that are used to formulate the theory.

One of the major developments of twentieth-century physics has been
the recognition that all known fundamental interactions are governed by
gauge theories. The power of gauge theories results from their poor a priori
structure. General relativity is built on two principles only, the principle
of relativity, or general covariance, and the equivalence principle. When
appropriately interpreted these principles are also operative in the gauge
theories of elementary particle physics. These principles strongly constrain
equations of motion.

It is important to note that the principle of relativity is in fact a state-
ment of absence of a priori structure. Before general relativity emerged it
was assumed that space is equipped with an a priori structure which defines
the notion of a straight line. This is equivalent to the assumption that it is
a priori possible to compare directions at different points in space. This a
priori structure is eleminated in general relativity and in gauge theory. To
compare vectors it is necessary to parallel transport vectors from one point
to the other. The result is given by a map U(C), called parallel transporter,
which is dynamically determined.

However, the principle of relativity is not pushed to its logical conclu-
sion. Since one assumes a differentiable manifold the a priori definition of a
straight line persists in the infinitesimally small. Therefore we follow Mack
[29, 30] and propose to push Einsteins principle to the extreme, i.e. we
suggest the strategy of lessening what is assumed as a priori structure.

1



2 1. Introduction

As a first step, we replace the differentiable manifold by a discrete one
which has less a priori structure. It turns out not to be necessary to impose
a differentiable structure (which determines what is a straight line in the
infinitesimal small in the continuum) in addition to the topology. In the
framework we will use, conventional notions of locality and the notion of
a point retain their meaning. This is important, because without locality
complexity of nature becomes unmanageable.

The corresponding gauge theory is similar to that in the continuum,
nevertheless there is a profound difference.

In the classical case, the parallel transporters are unitary in an appro-
priate sense. Given a path C, let −C be the path traversed in the opposite
direction. One demands that

U(−C)U(C) = 1. (1.1)

i.e. parallel transport back ◦ forth = identity. In the algebraic approach
to the discrete case, unitarity in the sense of (1.1) cannot be required in
a natural way. Therefore we permit nonunitary parallel transporters. In
this way one is led to a theory which involves additional degrees of freedom.
We shall show how these additional degrees of freedom associated with a
nonunitary parallel transport along an extra dimension can describe Higgs
fields.

It turns out that also in the continuum the concept of nonunitary par-
allel transport is useful. General relativity appears as gauge theory of a
special type, due to the appearance of tetrads and of the particular form of
the action. In our framework the tetrads can be interpreted as associated
with nonunitary parallel transporters along the conventional four space time
dimensions.

There is another reason why one might want to generalize the notion of
gauge theories. As discussed, the purpose of physics is complexity reduction.
The concept of renormalization group enables one to manage complexity by
construction of simplified models, also known as effective theories, which live
on coarser scales. Higgs fields are associated with parallel transporters along
extra directions. If one were to use unitary parallel transporters for this
purpose both in the theory from which one starts and for all effective theories
deduced from it by real space renormalization group transformations, then
one would end up with a nonrenormalizable 4-dimensional effective theory,
a gauged nonlinear σ-model. This suggests to admit renormalization group
transformations which lead to nonunitary block-parallel transporters.

Because of the peculiar behaviour of parallel transporters under gauge
transformations, the Higgs potential will possess a characteristic biinvariance
property. It will be exploited to point out a mechanism by which quarks of
different generations may aquire different masses, and to propose a model
wherein also the Cabbibo Kobayashi Maskawa matrix can be computed in
principle.
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The outline of this thesis is as follows. In the next chapter we briefly re-
view conventional gauge theories from a geometrical point of view. Chapter
3 introduces the basic concepts of gauge theories with nonunitary parallel
transport. We employ the developed tools to deal with gravity.

In chapter 4 and chapter 5 we will leave the continuum and review the
formalism of Dimakis and Müller-Hoissen. We extend it and introduce the
concepts and tools of nonunitary parallel transport in the framework of
semicommutative differential geometry on a graph.

In chapter 6 the tools and the language described in chapter 4 and 5 will
be employed to reveal the geometry of Higgs fields.

Finally, chapter 7 presents a gauge theoretic model which can explain
how quarks of different flavor can acquire different masses by spontaneous
symmetry breaking. The masses depend exponentially on the positions of
minima of a Higgs potential.

We conclude with a summary of our results and an outlook.



Chapter 2

Geometry of gauge theories

In this chapter we give a brief review of gauge theories from a geometrical
point of view. We focus on the structural assumptions which are made in
the standard formulation to motivate possible generalizations.

The power of Yang-Mills theories stems from the fact that they are built
on two general principles only which appear as true principles of nature.
They are the Naheinformationsprinzip and the equivalence principle. When
appropriately interpreted, they are the same principles which are also oper-
ative in general relativity. Therefore gauge theories provide a unified geo-
metric framework which allows to deal with all fundamental interactions.

Nevertheless we know that conventional gauge theories are not sufficient
to describe nature. In gauge theories of elementary particles one is forced
to add Higgs fields in an ad hoc manner. Their introduction increases the
number of free parameters considerably. This comes as no surprise, since
they lack a geometric meaning, reflecting the fact that Higgs fields are not
required by basic principles of the standard theory. As a consequence many
features of the standard model cannot be explained.

2.1 Naheinformationsprinzip

A crucial feature of gauge theories, including general relativity, is the validity
of the Naheinformationsprinzip, which forbids direct exchange of informa-
tion at a distance.

More precisely, in gauge theories one deals with bundles of vector spaces
Vx attached to the points x of a space time manifold M. The content of the
Naheinformationsprinzip was clearly formulated in the pioneering paper of
Yang and Mills. It asserts that there is no a priori way of comparing vectors
in different vector spaces Vx and Vy, x 6= y. Instead one needs parallel
transporters

U(C) : Vx → Vy (2.1)

4



2.1. Naheinformationsprinzip 5

along paths C in M from x to y. They are linear maps. The following
properties are assumed

i.) Parallel transport along the empty path : x→ x is trivial,

U(C) = 1. (2.2)

ii.) Composition rule: If a path is composed from two paths, C = C2 ◦C1,
then the parallel transporter is similarly composed,

U(C2 ◦ C1) = U(C2)U(C1). (2.3)

The right hand side involves the composition of two maps.

Assuming that each nonempty path can be composed from basic small
pieces, C = bn ◦ . . . ◦ b1, it follows that

U(C) = U(bn) . . .U(b1), (2.4)

and only the parallel transporters U(b) are needed. A connection is an
assignment of a parallel transporter U(C) to every path C in such a way
that (2.2) and (2.3) holds.

Denoting by −C the path C traversed in the opposite direction, we may
define an algebraic ∗-operation which maps parallel transporters into parallel
transporters in the opposite direction,

U(C)∗ := U(−C). (2.5)

As usual for a ∗-operation, it interchanges factors,

(U(C2)U(C1))
∗ = U(C1)∗U(C2)∗. (2.6)

Traditionally, one makes the assumption

U(C)∗ = U(C)−1. (2.7)

In other words, U(−C)U(C) = 1, or back ◦ forth = identity.
The existence of parallel transporters is a consequence of the Naheinfor-

mationsprinzip. However, in the standard formulation additional structure
is assumed. The vector spaces Vx come equipped with a positive definite
scalar product 〈 , 〉, whereas in general relativity the fibers carry an indefi-
nite scalar product. Furthermore, one requires that the parallel transporters
preserve the length of vectors v in Vx, i.e.

〈v, w〉x = 〈U(C)v,U(C)w〉y (2.8)

for v, w ∈ Vx. Note that (2.8) follows from (2.7) if the ∗-operation is at
the same time the adjoint map with respect to the scalar product 〈 , 〉x.



6 2. Geometry of gauge theories

Additionally we see that U(C) is a unitary map from Vx to Vy. Therefore
we call such parallel transporters unitary parallel transporters.

There are further requirements. The fundamental physical laws relate
only physical quantities at infinitesimally close points of space time. The no-
tion of infinitesimally close requires a topology. Moreover, since the dynam-
ical equations of motion are differential equations, one needs a differential
structure, i.e. a smooth manifold M.

In the continuum one deals with vector potentials rather than with par-
allel transporters. Their definition depends on a choice of moving frame,
besides the parallel transporters. A moving frame furnishes orthonormal
bases e(x) = (e1(x), . . . , eN (x)) in Vx with

〈eα(x), eβ(x)〉x = δαβ . (2.9)

The Naheinformationsprinzip requires that there are no preferred moving
frames.

The orthonormal bases e(x) form the fibers of a principal fiber bundle
whose structure group is the gauge group G. Parallel transport of vectors
induces parallel transport of bases and thereby a connection on a principal
fiber bundle.

Gauge transformations are determined by matrices S(x) ∈ G. A (pas-
sive) gauge transformation is a change of moving frame

eα(x) → eα(x)′ = eβ(x)Sβ
α(x). (2.10)

This transformation preserves orthonormality.
The moving frame allows one to convert maps into matrices. In this way,

parallel transporters get converted to parallel transport matrices U(C) :=
(Uα

β(C))
U(C)eα(x) = eβ(y)Uβ

α(C). (2.11)

The parallel transport matrix along infinitesimal paths C from a point x
with coordinates xµ to x+ δx with coordinates xµ + δxµ defines the vector
potentialAµ(x) = (Aα

βµ(x)). When differentiability assumptions are made,
one can write

U(C) = 1−Aµ(x)δxµ. (2.12)

The parallel transport matrices take values in the gauge group G, whereas
Aµ(x) ∈ LieG.

Under a change of moving frame the parallel transport matrices U(C)
change according to

U(C) → U(C)′ = S(y)−1U(C)S(x). (2.13)

Consequently, the vector potentials transforms as follows,

Aµ(x) → Aµ(x)′ = S(x)−1Aµ(x)S(x) + S(x)−1∂µS(x). (2.14)
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Given x ∈M, the holonomy groupHx consists of all parallel transporters
U(C) around closed paths C : x→ x. If M is connected, then the holonomy
groups are independent of x modulo isomorphism. Their equivalence class
is called the holonomy group of the connection.

Parallel transporters can be used to define covariant derivatives in a
standard way. Let b be a straight infinitesimal path from x to x+ δx and ψ
a field taking values ψ(x) in Vx. Then the covariant derivatives are defined
by

Dµψ(x)δxµ = U(C)−1ψ(x+ δx)− ψ(x). (2.15)

Combining (2.12) and (2.15), one gets

Dµeα(x) = eβ(x)Aβ
αµ(x). (2.16)

If we expand ψ(x) = eα(x)ψα(x) then it follows that

Dµψ(x) = (Dµψ(x))αeα(x) (2.17)

with
(Dµψ(x))α = ∂µψ

α(x) +Aα
βµ(x)ψβ(x). (2.18)

In matrix notation the last equation may be rewritten as

Dµψ(x) = (∂µ +Aµ(x))ψ(x). (2.19)

The curvature tensor Fµν(x) : Vx → Vy can be obtained by considering
parallel transport around an infinitesimal quadrangle � in the µν plane

U(�) =: 1−Fµν(x)δxµδxν . (2.20)

The curvature matrix F µν(x) = (Fα
βµν(x) is given by

Fµν(x)eα(x) = eβ(x)Fα
βµν(x), (2.21)

where
F µν(x) = ∂µAν(x)− ∂νAµ(x) + [Aµ(x),Aν(x)]. (2.22)

It transforms under gauge transformations according to

F µν(x) → S(x)−1F µν(x)S(x). (2.23)

2.2 Equivalence principle

Let us now turn to the second fundamental principle, i.e. the principle of
equivalence. It demands that the free field equation for the components ψ
is valid at an arbitrary space time point x if a suitable moving frame is
chosen in a neighbourhood of x. This requirement fixes the equations of
motion uniquely. For a general moving frame one has to write down the
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free field equation and to replace ∂µ by ∂µ +Aµ. This procedure is known
as the ”minimal coupling” recipe in textbooks. Under a change of moving
frame, i.e. passive gauge transformations, Aµ changes according to (2.14).
By choosing it properly one can transform the vector potential to zero at
the chosen point x and the principle of equivalence is satisfied.

It is important to note that the principle of equivalence is very restric-
tive. In fact it singles out minimal coupling to gauge fields as only form
of interaction in nature. In particular, Higgs models involving fundamental
scalar fields which have self-interactions through some potential are ruled
out. Also Yukawa interactions are forbidden.

2.3 Critique of the standard formalism

The structural assumptions of gauge theories give rise to criticism. Firstly,
we saw that space time is treated as a differentiable manifold. As discussed
in the introduction, the notion of a differentiable structure requires an a
priori definition of a straight line in the infinitesimally small.

However, it is widely believed that a differentiable manifold becomes an
empty concept when it comes to physics at the Planck scale.

In general relativity, general covariance demands that there should be
no preferred coordinate system. However, an a priori defined preferred class
of coordinate systems is assumed. We propose to push the principle of gen-
eral covariance to its logical conclusion and postulate that the fundamental
physical equations should make sense without any reference to coordinates
whatever.

The first step in this direction is to replace a differentiable manifold
by an arbitrary directed graph [13, 14, 15, 33]. In this way the a priori
definition of a straight line in the infinitesimally small is eliminated. The
notion of infinitesimally close is replaced by nearest neighbour relations.
More precisely, certain relations between vertices of the graph are singled
out as direct relations, called links, and all others are obtained from them
by composition. In this way, the links of a graph provide a substitute for
topology.

In order to formulate gauge theories on graphs one needs a differential
calculus. Surprisingly it turns out that the links already specify a differen-
tial structure. The corresponding differential geometry is compatible with
conventional locality properties, particularly the notion of a point retains
its meaning.

Müller-Hoissen and Dimakis showed that the infintesimal approach em-
ploying vector potentials can also be used for arbitrary directed graphs
[14, 11, 12]. The familiar formulae of continuum gauge theory can be re-
tained literally on the lattice.

In spite of all this, a profound difference between the continuum case
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and the discrete case exists. In either case a vector potential is only defined
upon specifying a moving frame. We saw that in the continuum the vector
potential takes its values in a Lie algebra of matrices, which is naturally a
vector space. In the discrete case, the vector potential must also take values
in a vector space, because it specifies elements of an algebra. When the
parallel transport matrices take their values in a group, the vector potential
will be in the group algebra.

In the algebraic approach to the discrete case, there is no natural way
to impose the unitarity condition as a requirement on the vector potential.
Although an antihermiticity property A(x) = −A∗ can be formulated, it
does not imply unitarity of U(b) any more. Therefore it is natural in this
context to admit nonunitary parallel transporters. There are two stages to
the generalization:

i.) T (b) are invertible, but T (b)∗ 6= T (b)−1

ii.) T (b) is noninvertible, i.e. T (b)−1 does not exist at all.

A comprehensive examination of step ii.) is beyond the scope of this thesis.
Under appropriate conditions, one can write down a polar decomposition

of the parallel transporters. The unitary factor represents a conventional
gauge field. We will discuss in this work how the selfadjoint factor (or
its generalization) can accomodate Higgs fields and the tetrads of general
relativity.

Thus, by lessening the a priori structure we shall arrive at a generaliza-
tion of gauge theories which can cover a much wider range of phenomena
than conventional ones.



Chapter 3

Nonunitary parallel
transport and gravity

In the literature the question has been repeatedly asked, whether Einstein’s
general relativity is a ”true” gauge theory. From the point of view of the
present work, the crucial and defining property of a gauge theory is the
validity of the Naheinformationsprinzip. Undoubtedly Einstein’s general
relativity satisfies this principle. But although general relativity and the
gauge theories governing the dynamics of elementary particles obey very
much the same basic principles, they are different both in their variables
and in their action. More precisely, apart from the vector potential a vier-
bein field appears, which has no analogue in Yang-Mills theories, and the
Einstein-Hilbert action is linear in the curvature, while the Yang-Mills action
is quadratic in the field strength.

Thus one might be motivated to generalize the notion of gauge theories.
We proceed in the spirit of the Einsteinian principle of minimal a priori
structure and first give up the requirement that the parallel transporters
should be unitary. In addition we abandon the second standard requirement
that there should exist a bilinear or sesquilinear form on fibers Vx which is
invariant under parallel transport. In the context of general relativity, with
Vx = the tangent space TxM to the manifold M at x, this amounts to
abandoning the postulate that the connection is metric.

When one or the other of these assumptions is violated, we speak of
nonunitary parallel transporters.

In this chapter we show how to recover general relativity without these
assumptions, provided the parallel transporters remain invertible. There is
a canonical way of constructing a metric and a metric connection (which
involves unitary parallel transporters) in the more general framework of
nonunitary gauge theories. Following Palatini, the further condition of van-
ishing torsion is thought to arise from variation of the action.

Assuming invertibility of parallel transporters, there will be in general

10



3.1. A priori assumptions of the standard formalism 11

two holonomy groups, the holonomy group H generated by all parallel trans-
porters along loops and their inverses, and the unitary gauge group G which
is generated by the unitary parallel transporters. They will be considered in
section 3.3. It is not obvious at this stage that G ⊂ H, but this will follow
from the fact that they must be Lie groups. The field strength and vector
potential take their values in the Lie algebra of H, and matter fields must
transform according to representations of H. Nevertheless only G admits
an interpretation as a local symmetry.

For general relativity, G = SO(1, 3) and the holonomy groups H are the
de Sitter groups SO(1, 4) or SO(2, 3) (or rather their simply connected cov-
ering groups). The second possibility SO(2, 3) is distinguished by admitting
chiral fermions.

Vierbein and spin connection become identifyable pieces of a single de
Sitter vector potential. The resulting de Sitter field strength can be used to
cast the Einstein Hilbert action in quasi-Maxwellian form.

We show that, somewhat surprisingly, also classical massive bodies can
be treated within the de Sitter theory and that their equation of motion is
de Sitter covariant.

Finally we study an extension of general relativity by considering a con-
formal holonomy group.

3.1 A priori assumptions of the standard formal-
ism

Let us review the structural assumptions which are made in the standard
formalism.

In classical general relativity one deals with a four-dimensional differ-
entiable space time manifold M and a dynamically determined geometry
on M. The geometry provides a connection in the tangent bundle, which
specifies the parallel transport of tangent vectors along a path C from x to
y

U(C) : TxM→ TyM. (3.1)

Furthermore there is a Lorentzian metric g(x) : TxM× TxM → R on M.
The connection is compatible with g(x) in the sense that the metric is invari-
ant under parallel transport. Following Palatini, the dynamical equations of
motion for both the metric and the connection are derived from a variational
principle. The vanishing of the torsion is one of these field equations.

In the vierbein approach, general relativity becomes more similar to
gauge theories. The connection in the tangent bundle can be thought to be
constructed in two steps:

i.) The dynamics determine a connection in a vector bundle V over M.
The fibers Vx are isomorphic to the fourdimensional real representation
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space of the Lorentz group SO(1, 3), Vx ≈ V ( 1
2
, 1
2
) ≈ R4. In addition,

there is a Lorentz invariant bilinear form 〈 , 〉x of signature (+−−−)
on the fibers. The connection provides parallel transporters. They are
linear maps which leave the bilinear form invariant

U(C) : Vx → Vy, (3.2)
〈U(C)v,U(C)w〉y = 〈v, w〉x (3.3)

for all v, w ∈ Vx. In general relativity one wants to parallel trans-
port not just vectors in an abstract vector space Vx, but also tangent
vectors. In order that U(C) can do that, a second step has to be
performed.

ii.) The fibers Vx need to be identified with the tangent spaces TxM. The
identification is provided by a vierbein field, which is not a priori given,
but also determined dynamically. It specifies an invertible map from
the tangent space to the internal vector space

e(x) : TxM→ Vx (3.4)

for every x ∈ M. Since Vx is equipped with a bilinear form, a length
can be assigned to tangent vectors through the vierbein field. In other
words, the bilinear form on the abstract fibers becomes a Lorentz
metric on M via

g(x)(X,Y ) := 〈e(x)X, e(x)Y 〉x (3.5)

for all X,Y ∈ TxM. Since the bilinear form is invariant under parallel
transport, the metric tensor is also invariant under parallel transport

g(y)(U(C)TMX,U(C)TMY ) = g(x)(X,Y ), (3.6)

with

U(C)TM : TxM→ TyM, (3.7)
U(C)TM := e(y)−1 ◦ U(C) ◦ e(x). (3.8)

In this way, general relativity may be considered as a special kind of a
gauge theory with gauge group SO(1, 3), and with an additional vierbein
field, which does not appear in gauge theories of elementary particles.

The Einstein-Palatini action is a functional of the vector potential asso-
ciated with U(C) and of the vierbein.

Fundamental matter is described by wave functions for spin 1
2 parti-

cles rather than by fourvectors. Thus one is forced to consider the parallel
transport of spinors. Because of the structural assumptions of standard
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differential geometry, the parallel transport of vectors in an arbitrary rep-
resentation space of the gauge group determines the parallel transport of
vectors in any representation space. Actually, it suffices to consider the rep-
resentation spaces of left- and right-handed Weyl spinors as internal spaces,
since others can be constructed as sums or tensor products.

For Weyl spinors, the fibers are isomorphic to 2-dimensional complex
representation spaces of SL(2,C)

V +
x ≈ V ( 1

2
,0) ≈ C2 and V −x ≈ V (0, 1

2
) ≈ C2. (3.9)

V ( 1
2
,0) is equipped with an antisymmetric bilinear (symplectic) form

〈 , 〉 : V ( 1
2
,0) × V ( 1

2
,0) → C. (3.10)

It is required to be invariant under parallel transport, like the bilinear form
in V ( 1

2
, 1
2
) was. A basis in the vector space V ( 1

2
,0) is called ”orthogonal”, or

admissible, if
< ea(x), eb(x) >= εab, (3.11)

where ε = (εab) is the 2-dimensional antisymmetric tensor with ε12 = +1. A
moving frame provides an admissible basis in V +

x for every x. The matrices
S of the corresponding gauge group have to satisfy

ε−1Stε = S−1. (3.12)

It follows that the gauge group is the quantum mechanical Lorentz group,
i.e. the two fold cover of SO(1, 3), G = Spin(1, 3) = SL(2,C).

As mentioned above, Dirac spinors, fourvectors and arbitrary tensors
can be formed as sums and tensor products.

Fourvectors are elements of V ( 1
2
,0) ⊗ V (0, 1

2
). More precisely, V ( 1

2
, 1
2
) is

a real subspace of the complex representation space V ( 1
2
,0) ⊗ V (0, 1

2
). This

identification can be used to construct a moving frame in V ( 1
2
, 1
2
). A basis is

given by the linear combinations

eα(x) := (σα)aḃea(x)⊗ eḃ(x), (3.13)

where σi are the Pauli matrices for i = 1, 2, 3 and σ0 = 1. The real vector
space V +

x contains vectors

v(x) = vα(x)eα(x) (3.14)

with real coefficients vα(x).
A choice of moving frame converts parallel transporters U(C) into par-

allel transport matrices U(C). The parallel transport matrices U(C)W ∈
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SL(2,C) for vectors in V +
x ≈ V ( 1

2
,0) and U(C) ∈ SO(1, 3) for vectors in

Vx ≈ V ( 1
2
, 1
2
) are related by the fundamental formula of spinor calculus

SσαS
† = σβΛβ

α(S) forS ∈ SL(2,C), (3.15)
Xσα + σαX

† = σβΛβ
α(X) forX ∈ sl(2,C), (3.16)

where † is the Hermitian adjoint of a matrix. This formula yields the Lorentz
transformation Λ(S) which is associated with S ∈ SL(2,C), and similarly
for elements of the Lie algebra sl(2,C). As a consequence the parallel trans-
port matrices U(C)W and the the spinorial field strength matrix F µν(x)
obey the following relations

U(C)WσαU(C)W † = σβU(C)β
α (3.17)

F µνσα + σαF
†
µν = σβR

β
αµν , (3.18)

where Rβ
αµν are the anholonomic components of the Lorentz field strength.

Let Aµ(x) = (Aα
βµ(x)) be the so(1, 3) valued vector potential which cor-

responds to an orthonormal moving frame (eα(x)) in Vx ≈ V ( 1
2
, 1
2
). By

introducing matrices σ̃i := −σi and σ̃0 := σ0 obeying

σασ̃β + σβσ̃α = 2ηαβ , (3.19)

with (ηαβ) = diag(+1,−1,−1,−1), one defines

AW
µ (x) :=

1
4
Aαβ

µ (x)(σασ̃β − σβσ̃α). (3.20)

AW
µ (x) enables one to construct parallel transporters UW (C) for Weyl spinors,

which preserve the symplectic form (3.10). Conversely, if the parallel trans-
port of Weyl spinors is given, fourvectors which can be made from Weyl
spinors can also be parallel transported.

In the same manner, the parallel transport of fourvectors determines
parallel transport of Dirac spinors. Now the fibers V D

x are isomorphic to
the direct sum V D

x ≈ V ( 1
2
,0) ⊕ V (0, 1

2
) ≈ C4. The corresponding vector

potential is defined by

AD
µ (x) :=

1
4
Aαβ

µ(x)[γα,γβ ] (3.21)

where Dirac γ-matrices are employed, which satisfy standard anticommuta-
tion relations

{γα,γβ} = 2ηαβ . (3.22)

The vector potential AD
µ (x) can be used to define parallel transporters

UD(C) for Dirac spinors. There is a scalar product (sesquilinear form) on
V D

x

〈Ψ,Φ〉Dx := Ψ̄(x)Φ(x) := Ψ†(x)βΦ(x), (3.23)

cp. appendix C, which is left invariant by UD(C).
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3.2 Parallel transporters and their polar decom-
position

Above we saw that in all gauge theories, including general relativity, parallel
transporters

U(C) : Vx → Vy (3.24)

along paths C between points x, y of the space time manifold play a basic
role. We further saw that traditionally one assumes that

U(−C)U(C) = 1, (3.25)

i.e.
U(−C) = U(C)−1. (3.26)

We propose to abandon this requirement and to permit also parallel trans-
porters which violate the unitarity condition (3.25). In the case of a discrete
manifold, (3.25) appears actually as no natural requirement. However, in
the continuum, the situation is quite different. Actually, in this case the
parallel transporters must satisfy (3.25), as one can easily show by using
vector potentials. In appendix A we will see how this can be overcome.

In the following we assume that there are nonunitary parallel trans-
porters on a differentiable manifold.

Let us restrict our attention to a nonunitary gauge theory where all
parallel transporters are invertible.

The vector potential and its split into two pieces Eµ(x) and Aµ(x) is
defined by considering infinitesimal paths b from x to x+δx and its opposite
−b,

T (±b) = 1− (Eµ(x)±Aµ(x))δxµ. (3.27)

Especially, it follows that

T (−b)T (b) = 1− 2Eµ(x)δxµ 6= 1. (3.28)

The unitary parallel transport matrices along infinitesimal paths are now
defined by

U(b) = 1−Aµ(x)δxµ. (3.29)

The corresponding maps U(b) satisfy U(b)∗ = U(b)−1.
The formulae (3.27), (3.29) define a polar decomposition of the parallel

transporters along infinitesimal paths b, cp.[10].

Theorem 3.1 (Polar decomposition of vector potentials) The split of
the vector potential Bµ(x)

Bµ(x) = Eµ(x) +Aµ(x) (3.30)
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defines a polar decomposition of the parallel transporters along infinitesimal
paths b,

T (b) = U(b)P(b) (3.31)
P (b) = 1−Eµ(x)δxµ. (3.32)

The first factor is self adjoint in the sense that P(b)∗ ≡ P(−b) = P(b) :
Vx → Vx for our ∗-operation, and the second factor is unitary, i.e. it satisfies
U(b)∗ = U(b)−1.

The proof is obvious.
There is also a generalization of the polar decomposition of parallel trans-

porters along finite paths C

T (C) = U(C)P(C), (3.33)
U(C) : Vx → Vy, (3.34)
P(C) : Vx → Vx, (3.35)

but for finite paths C : x → y the factor P(C) satisfies neither P(C)∗ =
P(C) nor the composition law P(C2)P(C1) = P(C2 ◦ C1). Instead, we de-
mand that P(C) is selfadjoint for infinitesimal paths b : x→ x+δx, and the
unitary parallel transporters U(C) obey the composition law U(C2)U(C1) =
U(C2 ◦ C1). This fixes the decomposition. A general formula for P(C) will
be presented below.

The unitary factor U(C) is defined by reference to the vector potential
Aµ(x)

U(C) = T exp
(
−
∫

C
Aµ(x)dxµ

)
, (3.36)

where T is ordering with respect to the parameter τ . The following theorem
states a formula for P (C) [32].

Theorem 3.2 Given the path C parametrized by τ ∈ [τf , τi], write U [τ2, τ1]
for the unitary parallel transporters along the piece of C from C(τ1) to C(τ2).
Define the covariant line integral∫

C
Eµ(x)Dxµ :=

∫ τf

τi

U [τf , τi]−1Eµ(x(τ))U [τf , τi]dτ. (3.37)

Then

P (C) = T exp
(
−
∫

C
Eµ(x)Dxµ

)
. (3.38)

Proof 3.1 The path C can be decomposed into infinitesimal pieces C =
bN ◦ . . . b1, N → ∞. Inserting the polar decomposition for the infinitesimal
pieces, one obtains the formula

T (C) = U(bN )P (bN ) . . .P (b2)U(b1)P (b1), (3.39)
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in the limit N → ∞. The P -factors can be pushed to the right, using
PU = UP ′, where P ′ := U−1PU . As a result one arrives at formula
(3.38).

Let us now turn our attention to gauge transformations. Local gauge
transformations S(x) are linear transformations of moving frames,

eα(x) → e′α(x) = eβ(x)Sβ
α(x). (3.40)

Parallel transport matrices T (C) along paths C from x to y transform ac-
cording to

T (C) → T (C)′ = S(y)−1T (C)S(x). (3.41)

The transformation behaviour of the pieces of the vector potential is given
by the next theorem.

Theorem 3.3 (Tranformation laws) Under a local gauge transformation
S(x) ∈ G = SL(2,C) the pieces of the vector potential Bµ(x) transform ac-
cording to

Eµ(x) → E′µ(x) = S−1(x)Eµ(x)S(x), (3.42)

Aµ(x) → A′µ(x) = S−1(x)Aµ(x)S(x) + S(x)−1∂µS(x). (3.43)

Proof 3.2 Combining formula (3.41) and (3.27), we arrive at (3.42).

We note that Eµ(x), which will later be identified with the spinorial form
of the vierbein, transforms homogeneously.

3.3 Holonomy groups

Consider a gauge theory with possibly nonunitary parallel transporters T (C).
In this case two gauge groups arise. Given x ∈ M, the holonomy group
Hx consists of all invertible parallel transporters T (C) around closed paths
C : x→ x and their inverses, which do not need to be parallel transporters.
If M is connected and all parallel transporters T (C), C : x→ x are invert-
ible, then the holonomy groups for different x are isomorphic. Select x̂, write
H := Hx̂, and call this the holonomy group for short. In the continuum, i.e.
for space time manifolds, H must be a Lie group.

Let us mention that a gauge theory involving noninvertible parallel trans-
porters does not lead to holonomy groups at all, but to semigroups which
may, moreover, depend on x̂.

Definition 3.1 Let H be a holonomy group. A ∗-operation in H is defined
as a map H → H which takes T (C) 7→ T (C)∗ := T (−C).
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Note that the ∗-operation is an involutive antiautomorphism of H, i.e. g∗∗ =
g and (g1g2)∗ = g∗2g

∗
1.

The unitary parallel transporters U(C) of section 3.2 around closed loops
C : x̂ → x̂ form the unitary gauge group G. They obey U(C)∗ = U(C)−1.
Again, G is independent, modulo isomorphisms, of the choice of x̂.

It is not obvious that G ⊂ H, but under weak conditions it is true, as
we shall show in theorem 3.5. To prepare for it, we introduce yet another
group L which we call the loop group. Its elements are composed of parallel
transporters, either U(Ci) or T (Ci) along pieces C1, . . . , Cn of a closed path
C = Cn ◦ . . . ◦C1 : x̂→ x̂. Clearly one has G ⊆ L and H ⊆ L. Theorem 3.5
asserts that under certain conditions H = L and therefore G ⊆ H. Let us
assume that this is the case. Then the Lie algebra of G can be characterized
as a subalgebra of the Lie algebra of H as follows.

The ∗-operation T (C) → T (C)∗ = T (−C) induces an automorphism of
the holonomy group

Θ : H → H

g → Θ(g) := g∗−1. (3.44)

Actually Θ is an involutive automorphism, i.e.

Θ(g1g2) = Θ(g1)Θ(g2) and (3.45)
Θ2 = 1. (3.46)

This automorphism passes to an involutive automorphism, also denoted by
Θ of the Lie algebra h of H. Due to (3.46) Θ induces a split

h = u + p (3.47)

where u consists of elements X of h with Θ(X) = +X and p consists of
those elements with Θ(X) = −X. As a result we find that u is a subalgebra
of the Lie algebra of the holonomy group, i.e.

[u, u] ⊂ u (3.48)

and that ad(u) leaves p invariant, i.e.

[u, p] ⊂ p. (3.49)

Since
[p, p] ⊂ u, (3.50)

we see that u is actually a symmetric subalgebra of h with respect to Θ.
The elements g of the subgroup with Lie algebra u satisfy Θ(g) = g, i.e.

they are unitary in the sense that

g∗ = g−1. (3.51)
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Thus, u is the Lie algebra of G.
Later, when we shall consider gauge theory on a graph, we need a de-

composition on the group level. It is provided by the next theorem [34].

Theorem 3.4 (Polar decomposition) Let T (C) ∈ N ⊂ H, where N is
a sufficiently small neighbourhood of the identity in H. Suppose that there is
an involutive antiautomorphism g → g∗ of H, which passes to an involutive
antiautomorphism of the Lie algebra of H.

Then T (C) can be uniquely represented in the form

T (C) = U(C)P(C), (3.52)

where U(C) and P(C) satisfy

U(C)∗ = U(C)−1 (3.53)
P(C)∗ = P(C), (3.54)

i.e. the first factor U(C) is unitary, the second factor P(C) self adjoint, and
both are close to the identity.

The restriction to a neighbourhood of the identity may be unwelcome. Con-
ditions for the existence of polar decomposition in a general system theoretic
context were examined in [10].

Proof 3.3 Let N be a sufficiently small neighbourhood of the identity in H
such that for T (C) ∈ N we have a unique representation T (C)∗T (C) =
eX , X ∈ h small. Then also T (C)∗T (C))1/2 = eX/2 and within N there are
uniquely determined elements

P(C) := (T (C))∗T (C))1/2 (3.55)
U(C) := T (C)(T (C))∗T (C))−1/2 (3.56)

with T (C) = U(C)P(C). Clearly, one finds P(C)∗ = P(C) and U(C)∗ =
U(C)−1.

Let us consider an example.

Example 3.1 Let H = SL(n,C),Θ(g) := g†−1, where † denotes the Her-
mitian adjoint of a matrix. Then, Θ is an automorphism, and Θ2 = 1.

g ∈ G if g = g†−1, i.e. g−1 = g†, i.e. g is unitary in the conventional
sense. Hence, G = SU(n).

Suppose g satisfies

Θ(g) = g−1, i.e. g† = g. (3.57)

As a consequence, the P factor is a positive-definite Hermitian matrix.
Thus, our polar decomposition is then just the ordinary polar decomposi-
tion of a matrix.
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We shall use this example in chapter 7, where we interpret the Higgs as a
parallel transporter along an extra dimension.

Note that in the example the involution is just the well-known Cartan
involution, i.e. an involution whose fixed point set is the Lie algebra of the
maximal compact subgroup SU(2) of H.

We emphasize that in general our involution is not equal to the Cartan
involution. For instance, when we treat gravity, the unitary gauge group is
the noncompact Lorentz group.

Definition 3.2 Let H be a group which is equipped with an involutive au-
tomorphism Θ and let g∗ := Θ(g)−1. A ∗-representation of H is a represen-
tation of H given by operators τ(g) : V → V where V is a real or complex
vector space which is equipped with a nondegenerate bilinear or sesquilinear
form 〈 , 〉 such that

〈v, τ(g)w〉 = 〈τ(g∗)v, w〉. (3.58)

Unitary representations are the special case associated with the trivial auto-
morphism Θ(g) = g.

Our ∗-operation is an algebraic operation T (C)∗ = T (−C). We are
interested in situations where this is at the same time the adjoint map
between vector spaces with a bilinear or sesquilinear form, respectively.

Theorem 3.5 Suppose that M is connected. Given parallel transporters
T (C) in a vector bundle V over M with fibers Vx ≈ V = Vx̂, suppose that
the induced representation of the holonomy group H on V can be made into
a ∗-representation by a choice of a bilinear or sesquilinear form on V . Then,

i.) if G ⊂ H then the fibers can be equipped with bilinear or sesquilinear
forms 〈, 〉x, respectively, such that

〈U(C)v,U(C)w〉y = 〈v, w〉x (3.59)

for all x, y ∈M, v, w ∈ Vx and all paths C : x→ y.

ii.) If H and G are simply connected Lie groups, then L = H and G ⊂ H.
Moreover,

〈v, T (C)w〉y = 〈T (C)∗v, w〉x (3.60)

for all paths C : x → y between abritary sites x, y ∈ M and all v ∈
Vy, w ∈ Vx.

Note that eq. (3.59) is a special case of (3.60).
In general relativity we are mainly interested in real vector spaces with

an indefinite bilinear form. We shall use the theorem with the following
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Lemma 3.1 Suppose the real vector space V carries a representation of the
holonomy group H with automorphism g → Θ(g) = g∗−1. Let V ′ be the dual
space. Then V ⊗ V ′ can be equipped with a bilinear form to make it into a
∗-representation space.

Proof 3.4 Proof of theorem 3.5:
Given x, choose a path C : x → x̂. Define the bilinear or sesquilinear

form 〈, 〉x in Vx by
〈v, w〉x := 〈U(C)v,U(C)w〉x̂, (3.61)

where U(C) are unitary parallel transporters introduced in section 3.2. First
we show that the scalar product does not depend on the choice of the path
C. To see this let C ′ be another path from x to x̂. Then L = C ◦ (−C ′) :
x̂ → x̂ is a closed path, therefore U(L) is an element of the unitary gauge
group with U(L)∗ = U(L)−1. As U(−C)U(C) = 1 it follows that U(C) =
U(C)U(−C ′)U(C ′) = U(L)U(C ′). Consequently,

〈U(C)v,U(C)w〉x̂ = 〈U(L)U(C ′)v,U(L)U(C ′)w〉x̂
= 〈U(C ′)v,U(C ′)w〉x̂. (3.62)

due to the ∗-property of the representation of the holonomy group and the
unitarity of the parallel transporters. This proves independence of the choice
of C.

To show property (3.59) consider a path C : x→ y and let C ′ be a path
from x to x̂. Then Cy = C ′ ◦ (−C) is a path from y to x̂. By the definition
of the scalar product it follows that

〈U(C)v,U(C)w〉y := 〈U(Cy)U(C)v,U(Cy)U(C)w〉x̂
= 〈U(C ′)v,U(C ′)w〉x̂ =: 〈v, w〉x. (3.63)

This proves part i.
Proof of part ii.
Next we prove the first assertion G ⊂ H. Let N be a sufficiently small neigh-
bourhood of the identity in H such that for T (C) ∈ N we have a unique rep-
resentation T (C)∗T (C) = eX , X ∈ h small. Then also (T (C)∗T (C))−1/2 =
e−X/2 ∈ H and therefore U(C) = T (C)(T (C)∗T (C))−1/2 ∈ H. This shows
that LieG ⊂ LieH. Since simply connected Lie groups are uniquely deter-
mined by their Lie algebra, this implies G ⊂ H.

To prove the remaining assertions, we choose a radial gauge. It suffices
to restrict attention to a neighbourhood of x̂. For every x in it, choose a path
Cx from x to x̂, and identify Vx together with its bilinear (or sesquilinear)
form with Vx̂ and its bilinear or sesquilinear form. Thereby parallel trans-
porters T (C) and U(C) get identified with elements of the holonomy group
and unitary gauge group, respectively. Since G ⊂ H, arbitrary products, as
appear in the loop group, also become elements of H. Therefore L ⊂ H,
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hence L = H. Finally, by the identification of parallel transporters T (C)
for arbitrary paths C with elements of the holonomy group H, the statement
(3.60) follows from the assumption that we deal with a ∗-representation of
H. This completes the proof of theorem 3.5.

Proof 3.5 (Lemma 3.1) We show that the bilinear form

〈v ⊗ ξ, w ⊗ χ〉 := ξ(w)χ(v) v, w ∈ V, ξ, χ ∈ V ′ (3.64)

on V ⊗ V ′ possesses the ∗-property, i.e. we have to show that

〈v ⊗ ξ, (τ⊗(g))(w ⊗ χ)〉 = 〈(τ⊗(g∗))(v ⊗ ξ), w ⊗ χ〉, (3.65)

where the representation τ⊗(g) : V ⊗ V ′ → V ⊗ V ′ is given by

(τ⊗(g))(v ⊗ ξ) := τ(g)v ⊗ τ ′(g)ξ, (3.66)

and τ ′ denotes the representation carried by the dual space V ′, which is
defined as

(τ ′(g)ξ)(v) := ξ(τ(g∗)v), v ∈ V, ξ ∈ V ′. (3.67)

A simple calculation yields

〈v ⊗ ξ, (τ⊗(g))(w ⊗ χ)〉 = 〈v ⊗ ξ, τ(g)w ⊗ τ ′(g)χ〉
= ξ(τ(g)w)χ(τ(g∗)v)
= 〈τ(g∗)v ⊗ τ ′(g∗)ξ, w ⊗ χ〉
= 〈(τ⊗(g∗)(v ⊗ ξ), w ⊗ χ〉. (3.68)

q.e.d.

We saw above that parallel transporters T (C) and U(C) can be identified
with elements of the holonomy group H and unitary gauge group G, respec-
tively. Therefore the polar decomposition of vector potentials (3.30) may
be restated by using the antiautomorphism of definition 3.1 which passes to
the Lie algebra of H

Bµ(x) = Eµ(x) +Aµ(x) (3.69)

with

Eµ(x)∗ = +Eµ(x) (3.70)
Aµ(x)∗ = −Aµ(x). (3.71)
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3.4 Generalized metricity

Traditionally, one demands in general relativity that parallel transport of
tangent vectors preserves a metric.

In the approach based on nonunitary parallel transporters T (C) there is
no such demand.

Instead one defines the ∗-operation on parallel transporters by T (C)∗ =
T (−C) and one uses this to define a metric connection.

We assume that the parallel transport T (C) on some space of spinors
Vx 3 ψ(x) is defined. We write V ′x for the space of real-linear maps

f : Vx → C, v → f(v). (3.72)

Both complex linear and antilinear maps will be of interest later on. Parallel
transport of fibers Vx passes to parallel transport of fibers V ′x in a canonical
way,

(T (C)f)(v) := f(T (−C)v) (3.73)

for C : x→ y, and therefore also to Vx ⊗ V ′x.
Given a choice of moving frame, the piece Eµ(x) of the vector potential

determined by T (C) according to eq.(3.27) defines a linear map Vx → Vx.
The space End(Vx) of such linear map is canonically isomorphic to Vx⊗V ′x,
because u⊗ f defines a map v → uf(v). Therefore we may regard Eµ(x) as
an element

Eµ(x) ∈ Vx ⊗ V ′x. (3.74)

Now we proceed to construct a possibly degenerate metric on complexi-
fied tangent space CTxM. In the general context in which we are working
so far, there is no guarantee that it will have the right signature for general
relativity, nor that it defines parallel transport of real tangent vectors. To
ascertain this, the spinor space and the holonomy group will have to be
chosen appropriately, as we shall see in detail.

Combining theorem 3.5 and lemma 3.1, Vx ⊗ V ′x gets equipped with a
nondegenerate bilinear form such that the ∗-property (3.60) holds. The
same holds therefore for the unitary factors U(C) in the generalized polar
decomposition. Unitarity reads U(C)∗ = U(C)−1, consequently

〈U(C)w,U(C)z〉y = 〈w, z〉x, (3.75)

where 〈 , 〉x denotes the bilinear form on Vx ⊗ V ′x.
Since Eµ(x) ∈ End(Vx) ≈ Vx⊗V ′x, the 1-form E(x) := Eµ(x)dxµ defines

a map
E(x) : TxM→ Vx ⊗ V ′x (3.76)

from the tangent space of M to the space of vectors v ∈ Vx ⊗ V ′x. This
furnishes a bilinear form on TxM, i.e. a metric, via

gµν(x) := 〈∂µ, ∂ν〉x := 〈E(∂µ),E(∂ν)〉x. (3.77)
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If the range of the map obeys

E(x) [TxM] = Vx ⊗ V ′x, (3.78)

then E identifies Vx⊗V ′x with the tangent space TxM and parallel transport
in the space of vectors passes to a metric preserving parallel transport of
tangent vectors. In general relativity, the condition (3.78) is satisfied.

It is of interest to study the case

E(x) [TxM] =: Wx ⊂ Vx ⊗ V ′x. (3.79)

This will be done in appendix B.

3.5 Nonunitary parallel transport of Dirac spinors

Let us now apply our general formalism developed so far to parallel transport
of Dirac spinors. We saw in section 3.1 that parallel transport of four-vectors
determines the parallel transport of Dirac spinors. Conversely, if the parallel
transport of Dirac spinors is given, four-vectors which can be made from
Dirac spinors can also be parallel transported. But to obtain the parallel
transport of tangent vectors ∂µ to M, tangent vectors need to be identified
with four-vectors v = (vα). This requires the vierbein eαµ. Its square yields
the metric gµν(x) = eαµ(x)eβν (x)ηαβ .

We propose to incorporate the vierbein into the connection, defining a
new vector potential

Bµ(x) :=
1
2l
eαµ(x)γα +

1
8
Aαβ

µ(x)[γα,γβ ] (3.80)

=: ED
µ (x) +AD

µ (x), (3.81)

cp. (3.21). As a difference of two vector potentials, the eαµ-term transforms
homogeneously under Lorentz gauge transformations, as it must be. The
matrices 1

2γα and 1
4 [γα,γβ] furnish a representation of the generators Mα4

and Mαβ of the Lie algebra so(1, 4)

[Mab,Mcd] = ηbcMad − ηacMbd − ηbdMac + ηadMbc (3.82)

with a, b, c, d = 0, . . . , 4 and η44 = −1. Defining

Pα := Mα4/l, (3.83)

where l has dimensions of length, the de Sitter algebra takes the form

[Mαβ ,Mγδ] = ηβγMαδ − ηαγMβδ − ηβδMαγ + ηαδMβγ (3.84)
[Mαβ , Pγ ] = ηβγPα − ηαγPβ (3.85)

[Pα, Pβ] =
1
l2
Mαβ . (3.86)
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If we introduce

P α :=
1
2l
γα and Mαβ :=

1
4
[γα,γβ] (3.87)

the vector potential can be rewritten as

Bµ(x) = eαµ(x)P α +
1
2
Aαβ

µ(x)Mαβ . (3.88)

We note that the incorporation of the vierbein necessitates the introduction
of a length scale.

The vector potential Bµ(x) is associated with a connection whose holon-
omy group is the two fold cover Spin(1, 4) of a de Sitter group. To identify
the two pieces of the vector potential we introduce an involutive antiauto-
morphism,

Φ : so(1, 4) → so(1, 4),
X → Φ(X) := βX†β−1, (3.89)

where β is defined by (3.23). Obviously we have

Φ2 = 1 and Φ([X1,X2]) = [Φ(X2),Φ(X1)]. (3.90)

Since Φ(γα) = γα, cp. appendix C, the generators of the Lorentz group
have negative eigenvalues and the ”momentum” generators1 positive ones.
This leads to a split of the vector potential

Φ(ED
µ (x)) = +ED

µ (x) (3.91)

Φ(AD
µ (x)) = −AD

µ (x). (3.92)

The antiautomorphism Φ passes to an involutive antiautomorphism, also
denoted by Φ of the two fold cover of the de Sitter group Spin(1, 4) with
Φ((g1g2)) = Φ(g2)Φ(g1) for g1, g2 ∈ Spin(1, 4). Due to (3.91) and (3.92) one
concludes

Φ(g) = g−1 ⇔ g ∈ SL(2,C) = Spin(1, 3). (3.93)

Using the vector potential (3.80) one can construct a de Sitter paral-
lel transport of Dirac spinors along paths C : x → y. Furthermore, the
antiautomorphism Φ enables one to define a ∗-operation T D(C) → T D(C)∗

T D(C)∗ : V D
y → V D

x (3.94)

T D(C)∗ea(y) : = eb(x)Φ
(
T (C)D

)b
a (3.95)

where TD(C) is the de Sitter parallel transport matrix along a path C :
x→ y.

1Note that P α is not a generator of a space time symmetry, but acts on an internal
vector space only.
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Due to (3.93) the parallel transporters constructed by the Lorentz part
of the vector potential satisfy the unitarity condition

UD(C)∗ = UD(C)−1. (3.96)

However, in general the parallel transporters constructed from the de Sitter
vector potential are not unitary

T D(C)∗ 6= T D(C)−1, (3.97)

but permit a decomposition in two factors. More precisely, let T D(b) be a
de Sitter parallel transporter along an infinitesimal path b : x → x + δx.
Then it splits into a self adjoint factor

PD(b)ea(x) = eb(x)[δb
a − (ED

µ (x))b
aδx

µ] (3.98)

= eb(x)Φ(P (b))b
a = PD(b)∗ea(x) (3.99)

involving the vierbein and a unitary part UD(b)∗ = UD(b)−1 involving the
spin connection, respectively:

T D(b) = UD(b)PD(b). (3.100)

Moreover we have

〈T (C)∗ψ(y), φ(x)〉x = 〈ψ(y), T (C)φ(x)〉y, (3.101)

where 〈 , 〉x is the indefinite scalar product in V D
x , cp. (3.23). Note that the

scalar product is not invariant under de Sitter parallel transport. Due to
(3.100) and (3.101) it follows that 〈 , 〉x is invariant under Lorentz parallel
transport, as it should be.

We see that in our approach there is no demand of a metric connection.
Instead one defines a ∗-operation on parallel transporters. In this way a
scalar product is singled out which obeys (3.101). As a consequence of
(3.100) and UD(b)∗ = UD(b)−1, the scalar product is invariant under unitary
parallel transport.

Let us mention that there is an alternative to the de Sitter group SO(1, 4).
Actually, it is also possible to choose

ED
µ (x) :=

1
2l
eαµ(x)γαγ5. (3.102)

This choice leads to the (anti)-de Sitter group with Lie algebra so(2, 3),
which offers some advantages. First, the Majorana condition on Dirac
spinors is left invariant under anti- de Sitter parallel transport, while it
is not under de Sitter parallel transport. Later it will turn out that Weyl
fermions can only be accomodated with a holonomy group H = Spin(2, 3).
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Let us remind ourselves that the Majorana condition on Dirac spinors is
defined as

ψC := Cψ̄t = Cβtψc.c. != ψ, (3.103)

where C denotes the charge conjugation matrix and c.c means complex
conjugation.

Invariance under parallel transport requires

(T (C)ψ)C = T (C)ψC . (3.104)

(3.104) can only be satisfied if

CβtEDc.c.
µ (x) = ED

µ (x)Cβt. (3.105)

Using the relations of the appendix C, it turns out that (3.104) is only
satisfied for the choice (3.102), since we have

Cβt(γαγ5)
c.c. = γαγ5Cβ

t (3.106)

but
Cβt(γα)c.c. = −γαCβ

t. (3.107)

3.6 Einstein-Hilbert action

We shall use the language of forms and write the vector potential asB(x) :=
Bµ(x)dxµ.

Next, let us compute the field strength associated with the nonunitary
parallel transporters T (C). The general formula is

F T = dB +B ∧B =
1
2
F Tµν dx

µ ∧ dxν , (3.108)

where F Tµν is given by

F Tµν = ∂µBν(x)− ∂νB(x) + [Bµ(x),Bν(x)] (3.109)

=
1
2

(
∂[µe

α
ν](x) +Aα

β[µ(x)eβ ν](x)
)
P α + (3.110)

+
1
2

(
∂[µA

α
βν](x) +Aα

γ[µ(x)Aγ
βν](x) +

1
l2
eα [µ(x)eβ ν](x)

)
Mαβ .

We find that the field strength associated with the de Sitter parallel
transport decomposes in two different parts. Apart from the unitary field
strength, i.e. the Lorentz curvature Rαβ

µν(x)

FUαβ
µν := ∂[µA

α
βν](x) +Aα

γ[µ(x)Aγ
βν](x) =: Rαβ

µν(x), (3.111)
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it includes the torsion tensor

F T α4
µν(x) =

1
l
Tα

µν(x) =
1
l
(∂[µe

α
ν](x) +Aα

β[µ(x)eβ ν](x)), (3.112)

which appears as the coefficient of the momentum generator. We can rewrite
F T (x) as

F Tµν(x) = F Uµν(x) + F e
µν(x) + T µν(x), (3.113)

where we have defined F e
µν := 1

l2
eα [µ(x)eβ ν](x)Mαβ .

The ∗-operation enables one to identify both parts of the nonunitary
field strength. More precisely, we have(

F Uµν(x) + F e
µν(x)

)∗
= −(F Uµν(x) + F e

µν(x)) (3.114)

T µν(x)∗ = +T µν(x). (3.115)

In this way, the case of vanishing torsion can be expressed as the van-
ishing of the even part of the nonunitary field strength

T µν(x) = 0 =
1
2
(
F Tµν + F T ∗µν

)
. (3.116)

The odd part of the field strength,

F µν(x) :=
1
2
(
F Tµν − F T ∗µν

)
, (3.117)

contains the unitary field strength, i.e. the Lorentz field strength and an
additional term F e

µν , steming from the nonunitary piece of the de Sitter
vector potential.

It is important to note that unitary gauge transformations do not mix
even and odd part of the field strength. In this way it is possible to write
down gauge invariant actions by using the odd part of the field strength
only.

Let FUµν := (FUαβ
µν) and F e

µν := (F eαβ
µν). Then the Einstein-Hilbert

action can be cast in a quasi Maxwellian form.

SE−H =
1
2

∫
d4x

√
−ggµρgνσ tr(FUµνF

e
ρσ) (3.118)

= − 1
16πk

∫
d4x

√
−gR, (3.119)

if we identify
1

16πk
=

1
l2
. (3.120)

Thus the length scale l appears to be associated with the gravitational cou-
pling constant.
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Let us prove (3.118) by a quick calculation

gµρgνσ tr(FUµνF
e
ρσ) =

1
l2
gµρgνσRα

βµν

(
eβρeσα − eβσeρα

)
= − 2

l2
Rρσ

ρσ = − 2
l2
R. (3.121)

It is interesting to note that also a cosmological constant can be included
by a different choice of action. Let F := (FUαβ

µν + F eαβ
µν). Since

gµρgνσ tr(F e
µνF

e
ρσ) =

1
l4
gµρgνσ (−eα µeνβ + eα νeµβ)

(
−eβρeσα + eβσeρα

)
=

2
l4

(
ηαβηβα − δα

αδ
β

β

)
= −24/l4, (3.122)

we get

1
2

∫
d4x

√
−ggµρgνσ tr(FµνF

e
ρσ) = −

∫
d4x

√
−g
(

1
l2
R− 2Λ

)
, (3.123)

where the cosmological constant Λ is

Λ := − 6
l4
. (3.124)

Of course, such a large cosmological constant is unacceptable. One might
speculate that quantum fluctuations will cancel Λ almost completely such
that a very small cosmological constant is left.

It is interesting to note that Einstein gravity including a cosmological
constant can be obtained in two other ways. In fact, either one can start
from a Yang-Mills type action∫

tr(F ∧ ?F ), (3.125)

where ? denotes the Hodge-operator and F = 1
2(F Tµν − F T ∗µν ) the odd part

of the nonunitary field strength, or from an action which is similar to that
of a topological field theory, i.e. an action involving no Hodge operator,∫

tr(D ∧ F ), (3.126)

where D is defined as D := Fγ5 and tr denotes a trace over Dirac indices.
Let us first focus on the Yang-Mills formulation. Using the well-known

formulae

dxµ ∧ dxν ∧ dxρ ∧ dxσ = εµνρσdx0 ∧ dx1 ∧ dx2 ∧ dx3 = εµνρσd4x, (3.127)

? dxρ ∧ dxσ = det(e)gρρ′gσσ′ερ′σ′τυdx
τ ∧ dxυ (3.128)
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and
tr(γαγβγγγδ) = (ηαβηγδ − ηαγηβδ + ηαδηβγ) (3.129)

we arrive at ∫
tr(F ∧ ?F ) ∝

∫
d4x

√
−ggµρgνσtr(FµνFρσ) (3.130)

where on the right hand side tr means tr(FµνFρσ) = Fα
βµνF

β
αρσ. The

Yang-Mills action splits in three different parts∫
tr(F ∧ ?F ) ∝

∫
d4x

√
−ggµρgνσtr

(
FUµνF

U
ρσ +

+ 2FUµνF
e
ρσ + F e

µνF
e
ρσ

)
. (3.131)

We have already shown that the mixed term FUµνF
e
ρσ leads to the Einstein-

Hilbert action and the last term to a cosmological constant, respectively.
The third term is quadratic in the Lorentz curvature. Such actions have

been discussed in the literature as corrections to Einstein gravity. In the
low energy regime its influence can be neglected.

Let us now return to the topological formulation. Using

tr(γ5γαγβγγγδ) = −4iεαβγδ (3.132)

and again (3.127) we obtain∫
tr(D ∧ F ) ∝

∫
d4x εµνρσεαβγδ

(
FUαβ

µνF
Uγδ

ρσ+

+2FUαβ
µνF

eγδ
ρσ + F eαβ

µνF
eγδ

ρσ

)
.

(3.133)

Now the first term is a topological invariant, more precisely it is the inte-
grand of the Gauss-Bonnet topological invariant and therefore it does not
contribute to the dynamics, at least classically. The third term can be read-
ily identified with a cosmological constant, wheras the second term again
yields the Einstein-Hilbert action.

3.7 Matter action

For a massless Dirac field, the Lagrangian is

Lmatter =
1
2
(ψ̄eµαγ

αDµψ −Dµψ̄e
µ
αγ

αψ), (3.134)

where Dµ denotes the the ordinary covariant derivative defined as

Dµ = ∂µ +
1
8
Aαβ

µ[γα,γβ ]. (3.135)
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In a gauge theory with nonunitary parallel transporters it comes as no
surprise that two different covariant derivatives appear. First there is the
covariant derivative associated with the nonunitary parallel transporters,
which is defined as

T (C)eα(x) =: eα(x+ δx)−DT
µ eα(x)δxµ. (3.136)

Using (3.80), we obtain

DT
µ = ∂µ +

1
2l
eαµγα +

1
8
Aαβ

µ[γα, γβ ]. (3.137)

DT
µ is covariant under H-transformations.

In addition, we have the covariant derivative associated with unitary
parallel transport

U(C)eα(x) = eα(x+ δx)−DU
µ eα(x)δxµ, (3.138)

with
DU

µ = ∂µ +
1
8
Aαβ

µ [γα,γβ ]. (3.139)

DU
µ is just the ordinary covariant derivative (3.135), as it should be. Obvi-

ously, it is covariant under G- but not H- transformations.
Invoking the involutive automorphism Θ defined in section 3.3, (3.44),

the unitary covariant derivative appears as the even part of the H-covariant
derivative

D+
µ =

1
2
(DT

µ + Θ(DT
µ )) = DU

µ . (3.140)

This motivates to introduce another kind of covariant derivative, which is
odd under the automorphism

D−
µ =

1
2
(DT

µ −Θ(DT
µ )) =

1
2l
eαµγα =: De

µ. (3.141)

The three different derivatives can be employed to express the different
pieces of the de Sitter field strength, analogously to the standard formal-
ism, i.e. [DU

µ , D
U
ν ] and [D−

µ , D
−
ν ] yield F Uµν and F e

µν , respectively, whereas
DU

[µ, D
−
ν] gives T µν .

We saw that the Einstein-Hilbert action could be written schematically
as FUF e. The matter action can be cast in an analogous form

Lmatter =
l

2
(ψ̄De µDU

µψ −DU
µ ψ̄D

eµψ). (3.142)

Especially, we see that the Dirac operator is the product of the odd and
even part of the covariant derivative associated with nonunitary parallel
transport.
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Let us remind ourselves that an FF e term yields the Einstein-Hilbert
action and a cosmological constant. This might motivate to consider as a
matter action term

lψ̄DeµDT
µ ψ + . . . . (3.143)

A short calculation shows that in this way apart from the ordinary Dirac
action one obtains a ”geometric” mass term, which appears in a purely
geometric theory. Obviously, this mechanism cannot explain the mass gen-
eration of known elementary particles, since it is of order l−1, i.e. the Planck
mass. Nevertheless it is an amusing fact that the geometric mass term and
the cosmological constant have the same origin.

Let us emphasize that there is another possibility to rewrite the Dirac
matter action. Write D := Dµdx

µ and E(x) := 1
2le

α
µ(x)γαdx

µ, then we
have ∫

d4xdet(eαµ)ψ̄eµαγαDµψ ∝ l3
∫
ψ̄E ∧E ∧Eγ5 ∧Dψ. (3.144)

(3.144) can be shown by using

εµνρσeαµe
β
νe

γ
ρ ∝ εαβγδeσδ det(e), (3.145)

γ5γ
δ = −i/3!εαβγδγαγβγγ , (3.146)

and (3.127).
It is a remarkable fact that both the Einstein-Hilbert action and the

matter action are polynomial in eαµ and Aα
βµ. This might motivate to

reconsider the issue of renormalizability of gravity, see also [25].

3.8 Classical equations of motion

Up to now our discussion was based on the parallel transport of Dirac
spinors. It turns out, somewhat surprisingly, that also classical massive
particles can be treated within the de Sitter framework.

Let us recall that in general relativity a classical point particle is de-
scribed by its four-vector uα(τ) := dxα(τ)

dτ , where (uα) are the components
with respect to an orthonormal basis. The equation of motion is(

D

dτ
u(τ)

)α

:=
d

dτ
uα +Aα

βµu
βuµ = 0. (3.147)

Equivalently, the dynamic is determined by

(U(C)u(τ))α = u(τ + δτ)α. (3.148)

It is interesting that within the de Sitter framework the same equation de-
scribes the motion, one has just to replace U(C) by T (C)

(T (C)u(τ))α = u(τ + δτ)α. (3.149)
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To see this, one has to define the de Sitter parallel transport of four-vectors.
We exploit the fact that the four-velocity is a future-directed, timelike four-
vector, i. e. u0 > 0 and η(u, u) := ηαβu

αuβ > 0. We identify u with an
equivalence class of future-directed, lightlike five-vectors and define their de
Sitter parallel transport.

Let (vα) be the components of a future-directed, timelike four-vector,
i.e.

(vα) ∈ C+ := {(wα)|w0 > 0 and η(w,w) > 0}. (3.150)

Define
v4 := ||v||1,3 = (vαη

αβvβ)
1
2 and η44 = −1. (3.151)

Now we can define a future-directed, lightlike five-vector (vα, v4)

(vα, v4) ∈ C(1,4)
+ := {(wα, w4)|w0 > 0, ||(vα, v4)||1,4 := vαη

αβvβ+v4 η44 v4 = 0}.
(3.152)

Evidently, multiplication with a positive real number yields again an element
in C(1,4)

+ . The resulting equivalence classes are elements (”rays”) of a real
projective space

P1,3 := {[v]|v ∈ C1,4
+ }, (3.153)

where
[v] := {w|w = λv, λ > 0}. (3.154)

u satisfies ||u||1,3 = 1. Every four-velocity determines uniquely a ray.
Since every ray contains a vector with u4 = 1, the converse is also true.

Elements of SO(1, 4) act as pseudorotations in R5 and map lightlike
vectors to lightlike ones. The parallel transport of rays can be defined as

T (C)[v] := [T (C)v]. (3.155)

Let us now define the de Sitter parallel transport of five-vectors. The de
Sitter vector potential can be compactly rewritten as

Bµ(x) =
1
2

dSΓab
µ(x)Mab, a, b = 0, . . . , 4 (3.156)

with
Mαβ :=

1
4
[γα,γβ] and Mα4 :=

1
2
γα. (3.157)

Comparison with (3.80) leads to

dSΓαβ
µ(x) := Aαβ

µ(x) (3.158)
dSΓα4

µ(x) := l−1eαµ(x). (3.159)

Now the parallel transport of five-vectors may be defined as

(T (b)v)a := va(x+ δx)− [∂µv(x)a +dS Γa
bµv(x)b]δxµ (3.160)

=: v(x+ δx)a − (DT
µ v(x))

aδxµ. (3.161)
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This may be rewritten

(T (b)v(τ))α = v(τ + δτ)α −
(
DT

dτ
v

)α

δτ

= v(τ + δτ)α −
(
d

dτ
vα +Aα

βµv
βuµ −

eαµ
l
v4uµ

)
δτ

= v(τ + δτ)α −
(
DU

dτ
v

)α

+
1
l
v4u(τ)αδτ. (3.162)

Since uα is a four-vector, we have uαη
αβuβ = 1, and u can be identified

with the five-vector (uα, 1). Due to (3.147) and (3.162) it follows that

(T (C)u(τ))α = u(τ + δτ)α(1 +
1
l
δτ). (3.163)

Since (1 + 1
l δτ) > 0 we get

T (C)[u(τ)] = [u(τ + δτ)]. (3.164)

As a result, the equation of motion takes the form

DT

dτ
[u(τ)] = 0. (3.165)

For a representative of the equivalence class, the equation of motion is(
DT

dτ
u(τ)

)a

= u(τ)a. (3.166)

Obviously, (3.166) is de Sitter covariant.
Recall that the energy-momentum tensor of a classical point particle is

determined by its four-velocity

Tµν(x) = m

∫
dτ (−g(x))−1/2δ4(x− C(τ))uµ(τ)uν(τ). (3.167)

Thus, also the de Sitter parallel transport of Tµν is defined.

3.9 Parallel transport of Weyl spinors

Up to now we assumed that matter was described by Dirac spinors. However,
it is possible to define nonunitary parallel transport also for Weyl spinors,
assuming H = Spin(2, 3). These parallel transporters will be real linear but
not complex linear. In the following we shall consider lefthanded spinors
ξ ∈ V + for definiteness sake.
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Let C be the operator of complex conjugation, and define the following
real linear transformations of V +

ρα := σαεC/l (3.168)
ραβ := σασ̃β − σβσ̃α, (3.169)

where ε is the antisymmetric tensor in two dimensions. They are Lorentz
covariant in the sense that

SραS
−1 = ρβΛβ

α(S) (3.170)

for S ∈ SL(2,C), and satisfy the same commutation relations as γαγ5 and
[γα,γβ], in particular

[ρα,ρβ] = −l−2ραβ . (3.171)

Therefore they generate the Lie algebra so(2, 3). The vector potential asso-
ciated with the nonunitary prallel transport of Weyl spinors is

Bµ(x) :=
1
2
eαµρα +

1
8
Aαβ

µ(x)ραβ (3.172)

=: EW
µ (x) +AW

µ (x). (3.173)

Note that ρα involves the operator of time-inversion T = εC

ρα = σαT. (3.174)

In place of eq.(3.168), (3.169) one could define

ρα := iσαεC/l (3.175)
ραβ := σασ̃β − σβσ̃α. (3.176)

They satisfy the same commutation relations. Apparently, it is not possible
to accomodate the Lie algebra so(1, 4) here.

The ∗-operation is given by the involutive anti-automorphism

Φ(X) := ε−1Xtε (3.177)

for X ∈ so(2, 3). It can be used to identify the two pieces of the vector
potential

Φ(EW
µ (x)) = +EW

µ (x) (3.178)

Φ(AW
µ (x)) = −AW

µ (x). (3.179)

The anti-automorphism passes to an involutive anti-automorphism of the
two fold cover of the anti-de Sitter group. The elements of the unitary
gauge group G = SL(2,C) are characterised by

Φ(g) = g−1 ⇔ g ∈ SL(2,C). (3.180)
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Due to (3.178), (3.179) the polar decomposition of parallel transporters along
infinitesimal paths is

T (C) = 1−Bµ(x)δxµ, (3.181)
P (C) = 1−Eµ(x)δxµ, (3.182)
U(C) = 1−Aµ(x)δxµ. (3.183)

So far, everything looks very similiar to the Dirac case. But beware: Only
the unitary parallel transporters are C-linear. This fact requires some care
in certain calculations. For details of the ”Weyl-formalism”, see the diploma
thesis of F. Neugebohrn [34].

3.9.1 Metricity

We saw in section 3.4 that the metric tensor can be constructed in the
following way

g(∂µ, ∂ν) := tr(E(∂µ)E(∂ν)). (3.184)

In the above formalism one has

E(x) = eαµ(x)σαεCdxµ. (3.185)

Therefore we arrive at

tr(E(∂µ)E(∂ν)) = tr(eαµ(x)eβν (x)σασ̃β) (3.186)

= 2eαµ(x)eβν (x)ηαβ (3.187)
= 2gµν(x). (3.188)

As expected, we get the metric tensor of general relativity.

3.9.2 Einstein-Hilbert action

Let us finally mention that also in the ”Weyl-formalism” the Einstein-Hilbert
action can be obtained quite analogously to the Dirac case. One gets

SE−H = = tr

∫
M

(F e ∧ F U ) = = tr

∫
M

(E ∧E ∧ F U ). (3.189)

The complete action takes again a polynomial form and can serve as a
starting point to study Einstein gravity on a simplicial reduced irregular
graph, see [34].

3.10 Conformal gravity

Finally, let us sketch a possible generalization of general relativity.
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4× 4 Dirac gamma matrices furnish a representation of the Lie algebra
so(2, 4) of the conformal group. This allows us to consider a conformal
holonomy group.

The conformal connection incorporates an additional vector field κµ(x)
and an axial vierbein 5eαµ(x):

Bµ :=
1
2
κµ(x)γ5 +

1
2
eαµ(x)γα +

1
2

5eαµ(x)γαγ5 +
1
8
Aαβ

µ (x)[γα,γβ]. (3.190)

The resulting theory involves additional dynamical variables and is no
longer equivalent to Einstein gravity.

The matrices γα and γαγ5, respectively, do not correspond to ”physical”
transformations. Actually it turns out to be convenient to introduce new
fields corresponding to the generators of translations and special conformal
translations:

1
2
eαµ(x)γα +

1
2

5eαµ(x)γαγ5 =: ReαµγαPR +L eαµ(x)γαPL. (3.191)

where the left-and righthanded vierbein are defined by

Leαµ =
1
2
(eαµ − 5eαµ) (3.192)

Reαµ =
1
2
(eαµ + 5eαµ), (3.193)

and PL,R denote the chiral projectors 1
2(1 ∓ γ5). Note that the left-and

righthanded vierbein are associated with the generators of translations and
special conformal translations, respectively.

The antiautomorphism on the conformal Lie algebra is defined as in the
de Sitter case. Since Φ(γ5) = −γ5 and Φ(γαγ5) = +γαγ5 it follows that

Eµ(x) = ReαµγαPR +L eαµ(x)γαPL, (3.194)

Aµ(x) =
1
2
κµ(x)γ5 +

1
8
Aαβ

µ(x)[γα,γβ]. (3.195)

Consequently, the unitary gauge group is G = Spin(1, 3)×D(1), where D(1)
denotes the noncompact dilatation group which is isomorphic to the positive
real numbers.

It is important to note that the appearance of two distinct vierbein
fields implies a deep modification of general relativity. Now there are three
different ”metrics”

LLgµν := Leαµ
Leαν (3.196)

RRgµν := Reαµ
Reαν (3.197)

LRgµν := Leαµ
Reαν (3.198)
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with different behaviour under scale transformations. In particular, it fol-
lows that LRg is invariant under γ5-scale transformations. It is important
to note that as a result of (3.196) and (3.197) one is faced with a theory
involving two different lightcones.

The odd piece of the nonunitary field strength associated with the vector
potential (3.190) is

1
2
(F Tµν(x)− F T ∗µν (x)) =

1
2
(F T αβ

µν(x)Mαβ + F T 45
µν(x)D), (3.199)

where Mαβ and D denote the generators of the Lorentz group and the Di-
latation group, respectively. The corresponding components of the nonuni-
tary field strength are

F T αβ
µν = Rαβ

µν + 2 Leα[µ
Reβν] − 2 Reα[µ

Leβν], (3.200)

and

F T 45
µν = ∂[µκν] + 2 Leγ[µ

Reγν] =: fµν + 2 Leγ[µ
Reγν] = fµν + LRg[µν].

(3.201)

κµ can be interpreted as the Weyl vector field and fµν as the length curva-
ture (Weyl’s ”Streckenkrümmung”), [17], see also [37, 38]. Note that these
components are invariant under scale transformations.

The even part of F Tµν is

1
2
(F Tµν(x) + F T ∗µν (x)) =

1
2
( LTα

µν(x)Kα + RTα
µν(x)P α), (3.202)

where Kα and P α denote the generators of special conformal translations
and translations, respectively. The components

LTα
µν = ∂[µ

Leαν] +Aα
γ[µ

Leγν] + Leα[µκν] (3.203)
RTα

µν = ∂[µ
Reαν] +Aα

γ[µ
Reγν] −

Reα[µκν] (3.204)

can be considered as a ”left-and righthanded” torsion, respectively. Actually
we can write

LTα
µν = D[µ

Leαν] (3.205)

and
RTα

µν = D[µ
Reαν], (3.206)

where Dµ is the Weyl-covariant derivative

Dµ
L,Reαν := ∂µ

L,Reαν +Aα
βµ

L,Reβν ∓ L,Reαµκν . (3.207)
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We find that the nonunitary field strength describes generalizations of
pseudo-Riemannian spaces which are known as Weyl spaces [17]. Further-
more, there are two torsion tensors. Their physical interpretation is not
clear. For fµν = 0 a Weyl space is equivalent to a pseudo-Riemannian
space.

A natural generalization of the Einstein-Hilbert action is∫
d4x

√
det( Leαµ)det( Reβν ) Leµ α

Reνβ[Rαβ
µν + ηαβfµν ]. (3.208)

For Leαµ → eαµ, Reαµ → eαµ and fµν = 0 we get back general relativity.
The field equations are not determined yet. A complete understanding

of this theory with its ”exotic” features is still missing.



Chapter 4

Discrete differential calculus

On any associative algebra over C or R a differential calculus can be de-
fined, which generalizes the calculus of differential forms on a differentiable
manifold. This structure has been studied for noncommutative algebras in
many applications [1]. Noncommutative differential calculus was originally
invented to give up the notion of a point. However, we are interested in the
case, where the algebra of functions remains commutative. In this ”semi-
commutative” framework conventional notions of locality and the notion of
a point retain their meaning.

In this chapter we briefly review a differential calculus on arbitrary di-
rected graphs which was developed by Dimakis and Müller-Hoissen [14, 33].
In addition we shall construct an integral calculus which is as close as pos-
sible to the classical simplicial calculus on triangulated manifolds and prove
Stokes law. For compatibility and proper covariance under noninjective
maps, the differential calculus has to be adjusted by simplicial reduction
and extended to pseudographs.

4.1 Motivation

In classical differential geometry the exterior derivative d is characterized
by three properties:

• nilpotence
d2 = 0 (4.1)

• alternating Leibniz rule

d(ω ∧ ξ) = dω ∧ ξ + (−1)nω ∧ dξ (4.2)

for all n-forms ω and arbitrary forms ξ

• covariance
Φ? ◦ d = d ◦ Φ? (4.3)

40
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where Φ : M→M′ is a homeomorphic map of manifolds and
Φ? : Ω(M′) → Ω(M) is the pull-back.

One fundamental difficulty in formulating a differential calculus on ar-
bitrary directed graphs Γ is the breakdown of Leibniz rule. Actually it is a
well-known fact that the Leibniz rule is not obeyed by the ordinary finite
difference derivative on the lattice. This can be rectified by changing the
commutation relations of 1-forms with functions. The algebra of functions
however remains commutative.

To be more explicit, consider the D-dimensional unit lattice M := ZD.
Its sites can be labelled by integers {xµ}, µ = 1 . . . D. Let A be the com-
mutative algebra of real or complex functions on M, with pointwise mul-
tiplication. The coordinates xµ are functions on M. The finite difference
derivative is defined by1

∂µf(x) = f(x+ µ̂)− f(x), (4.4)

where x + µ̂ denotes the nearest neighbour of x in µ̂ direction. Instead of
the Leibniz rule, ∂µ satisfies

∂µ(fg)(x) = (∂µf(x))g(x) + f(x+ µ̂)∂µg(x). (4.5)

However, it turns out that the exterior derivative d, which acts on functions
according to

df(x) =
∑

µ

dxµ∂µf(x), (4.6)

will indeed satisfy the Leibniz rule if the usual commutativity of functions
with 1-forms will be replaced by the relation

f(x)dxµ = dxµf(x+ µ̂). (4.7)

Using algebraic notation, eq. (4.7) can be rewritten as

fµdx
µ = dxµf, (4.8)

where fµ is the translated function defined by fµ(y) := f(y − µ̂).
Now consider the value dxµ(z) := eyz of the 1-form dxµ at z as associated

with the edge of Γ from z to y = z+ µ̂. Specializing to the function f = ez,
supported only at z, we have fµ = ey and consequently arrive at the relation

eyeyz = eyzez. (4.9)

We will see in the next section that (4.9) generalizes to arbitrary directed
graphs without need for a preferred coordinate system.

1Note that here f(x) := f ◦ x is a function.
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Furthermore we shall discuss the remarkable fact that directed graphs
behave like discrete manifolds. It is obvious that their links specify a substi-
tute for topology, but it is surprising that one does not need an additional
specification of a differential structure. It turns out that the corresponding
exterior derivative d satisfies (4.1)-(4.3) if Φ is assumed to be bijective. How-
ever, covariance under noninjective maps requires to extend the calculus to
pseudographs.

4.2 Universal differential calculus on a directed
graph

First we recall the definition of a differential calculus over an associative not
necessarily commutative algebra.

Definition 4.1 Let A be an associative unital Algebra. A differential cal-
culus (Ω(A), d) on A consists of a Z-graded associative algebra over R, re-
spectively C

Ω(A) =
⊕
n≥0

Ωn(A) (4.10)

and a ( R− respectively C-) linear map

d : Ωn(A) → Ωn+1(A) (4.11)

which is nilpotent
d2 = 0 (4.12)

and obeys the graded Leibniz rule

d(ω1ω2) = (dω1)ω2 + (−1)nω1dω2 (4.13)

for all ω1 ∈ Ωn(A), ω2 ∈ Ω(A).
(Ω1(A), d) will be called first order differential calculus.

Let A = Ω0(A). By definition, Ω(A) is a bimodule for A, i.e. multiplication
with elements f ∈ A from the right and left is defined.

Definition 4.2 If d generates the spaces Ωn(A) for n > 0 in the sense that

Ωn(A) = AdΩn−1(A)A (4.14)

the differential calculus will be called minimal.

Using the Leibniz rule, every element of Ωn(A) can be written as a linear
combination of monomials a0da1da2 . . . dan, ai ∈ A. The action of d is then
given by

d(a0da1da2 . . . dan) = da0da1da2 . . . dan. (4.15)
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Associated with any A there is a ”largest” differential calculus (Ω̃, δ) on
A. It can be constructed explicitly in terms of tensor products. Consider
the submodule of A⊗C A given by

ker(m : A⊗C A → A), m(a⊗C b) := ab. (4.16)

This submodule is generated by elements of the form 1⊗C a− a⊗C 1 with
a ∈ A. Then the map

δ : A → ker(m : A⊗C A → A) (4.17)

defined by
δa := 1⊗C a− a⊗C 1 (4.18)

obeys the graded Leibniz rule (4.13) for ω1, ω2 ∈ A.
Now let Ω̃1 := ker(m : A⊗C A → A). Define the space of n-forms as

Ω̃n := Ω̃1 ⊗A Ω̃1 ⊗A . . .⊗A Ω̃1︸ ︷︷ ︸
n−times

⊂ Ω̃1 ⊗C Ω̃1 ⊗C . . .⊗C Ω̃1︸ ︷︷ ︸
(n+1)−times

, (4.19)

cp. [24]. The linear operator δ can be extended to the whole differential
algebra using the Leibniz rule with respect to the product ⊗A. The result-
ing differential algebra is universal in the sense that every other minimal
differential calculus can be derived from it as a quotient Ω̃/J , where J is
a differential ideal, i.e. a two-sided ideal in Ω̃ with the property δJ ⊂ J .
More precisely, we have

Theorem 4.1 Each differential algebra Ω is the image of a homomorphism
π of differential algebras

π : Ω̃ → Ω, (4.20)

where Ω̃ is the univesral differential algebra. Therefore Ω is the quotient
Ω = Ω̃/kerπ, where the kernel of π is a two-sided differential ideal in Ω̃.

In the following we will be interested in the case where A is the commu-
tative algebra of all R- or C-valued functions on a discrete set M of points
x, y, z . . ., which shall be identified with the vertices of a directed graph Γ.
A natural basis of A consists of functions ex, x ∈M, defined by

ex(y) = δxy for all x, y ∈M. (4.21)

They satisfy the multiplication law

exey = δxye
x. (4.22)

The algebra A has a unit,
1 =

∑
x

ex. (4.23)
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Each f ∈ A can then be written as

f =
∑
x∈M

f(x)ex, f(x) ∈ C. (4.24)

Let us introduce the 1-forms

exy =
{

exdey for x 6= y
0 otherwise.

(4.25)

Their importance arises from the following

Lemma 4.1 (exy)x,y∈M is a basis over C of the space Ω̃1 of universal 1-
forms.

The basis 1-forms (exy) can be used to obtain reduced differential calculi
in a convenient way.

Lemma 4.2 All first order differential calculi are obtained from the univer-
sal one by setting some of the exy to zero.

Proof 4.1 The proof uses theorem (4.1), for details see [33].

Let us now regard the elements of M as vertices, henceforth called sites,
of a directed graph Γ and associate with each nonvanishing exy an arrow
from the point x to y. In this way a first order differential calculus on
a discrete set can be represented by a directed graph. In particular, the
universal differential algebra corresponds to the complete graph, i.e. all the
vertices are connected pairwise by arrows in both directions. Deleting some
of the arrows leads to a graph which represents a reduction of the universal
differential algebra.

Conversely, given a digraph, it determines uniquely a differential calculus
ΩΓ generated by the algebra of functions defined on the set of vertices and
1-forms attached to the directed edges of Γ. Thus, in a differential calculus
on the directed graph Γ, exy 6= 0 if and only if Γ contains a directed edge
from y to x.

Because of the bijective correspondence between first order differential
calculi and directed graphs, the latter behave like discrete manifolds in the
sense that Γ contains already all the information about the differential cal-
culus without the need of an additional specification.

Let us add that the described differential calculus on a directed graph is
also appropriate to deal with complex systems, cp. [28].

We stress that the differential calculus on a directed graph may be still
too large. Again we can reduce it by division by a differential ideal. More
precisely, we have
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Theorem 4.2 (Universal minimal differential algebra on a directed graph)
[Dimakis and Müller-Hoissen]
There exists a minimal differential calculus (ΩΓ, d) on Γ which is universal
in the sense that any other minimal differential calculus on Γ is obtained
from it by dividing ΩΓ by a differential ideal J .

Set
ρ =

∑
x,y

exy. (4.26)

Then
1. ezexy = δzxe

xy, exyez = δyze
xy.

2. The generators exy satisfy the following relations. Whenever there is
no edge from y to x in Γ then

eyρ2ex =
∑

z

eyzezx = 0. (4.27)

3. For functions f ∈ A,

df =
∑
xy

[f(y)− f(x)]exy = ρf − fρ. (4.28)

In particular, d1 = 0.
4.

dexy = ρexy − exρ2ey + exyρ. (4.29)

Proof 4.2 Part 1: ezexy = δzxe
xy follows from the definition of exy and the

multiplication law (4.22).
Let x 6= y and consider the quantity exyez = ex(dey)ez = ex(d(eyez) −

eydez). The second term vanishes because of the multiplication law (4.22),
and the first is equal to exd(δyze

y) = δyze
yz. q.e.d.

Part 3: First we show that d1 = 0. This follows from the Leibniz rule
since d1 = d(11) = (d1)1 + 1d1 = 2d1.

From eq.(4.23) and the definition of exy it follows then that ezdez =
−
∑

x e
zx. Because of C-linearity, this implies df =

∑
z f(z)dez =∑

z f(z)
∑

x e
xdez =

∑
z f(z)[ezdez +

∑
x 6=z e

xdez] =
∑

x

∑
z f(z)[−ezx +

exz]. Assertion 3 follows from this by a change of summation variable.
Part 4: dexy = d(exdey) = dexdey because of the Leibniz rule and d2 = 0.

Inserting dex = [ρ, ex] from part 3, one obtains the reult.
Part 2: If there is no link fro y to x, exy = 0 and therefore dexy = 0.

Inserting the result of part 4 yields the assertion.

Concatenation of the 1-forms exy leads to the n-forms

exn...x0 := exnxn−1exn−1xn−2 . . . ex1x0 , (4.30)
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which can be rewritten as follows

exn...x0 = exnρexn−1ρ . . . ρex0 . (4.31)

They satisfy the relations

eyn...y0exn...x0 = δy0xne
yn...y1xn...x0 (4.32)

and especially

fexn...x0 = f(xn)exn...x0 , exn...x0f = exn...x0f(x0) (4.33)

for f ∈ A. Starting with the universal first order differential calculus, the
n-forms exn...x0 constitute a basis of Ω̃n over C. In the case of a differential
calculus on an arbitrary directed graph Γ, where some of the exy are zero,
the possibilities to build nonvanishing higher forms are obviously restricted.
Moreover, constraints are imposed on them, cp. part 2. of theorem 4.2.
Note that the 1-forms (exy) provide also in this case a basis of Ω1

Γ.
Generally, if the algebra A has an involution, i.e. an C-antilinear map

? : A → A, f → f? (4.34)

such that
f?? = f, (fh)? = h?f? for all f, h ∈ A, (4.35)

one can also make Ω an involutive algebra by defining

(df)? = −df? (4.36)
(ω1ω2)? = ω?

2ω
?
1 (4.37)

for all f ∈ A, ω1, ω2 ∈ Ω.
In the present case, the involution in A is just given by complex conju-

gation
f?(x) := f(x), f ∈ A. (4.38)

When there is an edge from x to y whenever there is an edge from y
to x we call the graph bidirectional. In the case of a bidirectional graph,
there is a ?-operation on the graph (reversal of direction of edges), and a
corresponding ?-operation in the algebra ΩΓ,

(exy)? = eyx. (4.39)

Using (4.36), (4.37) and

d(exey) = 0 ⇒ dexey = −exdey, (4.40)

one finds that the ?-operation in ΩΓ can be identified with the involution.
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Note that for a bidirectional graph the 1-form ρ is self adjoint in the
sense that

ρ? = ρ. (4.41)

We retain a ?-operation for graphs which are not bidirectional by adjoin-
ing adjoints of edges where necessary, distinguishing them as virtual edges.
The virtual edges are not counted among the edges proper.

Let us now repeat the explicit construction of the differential algebra
for the case that the algebra is given by the complex-valued functions on
M. This will be needed for the definition of an integral calculus in the next
section.

One can identify A⊗C . . .⊗C A︸ ︷︷ ︸
(n+1)−times

with the C-vector space of maps from

M× . . .×M︸ ︷︷ ︸
(n+1)−times

→ C. If f ∈ A the action of d is given by

df(x0, x1) := (1⊗C f − f ⊗C 1)(x0, x1) = f(x1)− f(x0). (4.42)

In this way, the space of 1-forms Ω1 can be identified with the space of
functions of two variables vanishing on the diagonal. Analogously, Ωn is
identified with the space of functions of n + 1 variables vanishing on any
subset of Mn+1 which contains a two-dimensional diagonal

f(x0, . . . , xi−1, x, x, xi+2, . . . , xn) = 0. (4.43)

For f ∈ Ωn the differential df ∈ Ωn+1 is defined by

df(x0, . . . , xn+1) =
n+1∑
i=0

(−1)if(x0, . . . , x̂i, . . . , xn+1). (4.44)

One introduces a product between elements of A and Ωn

(gf)(x0, . . . , xn) := g(x0)f(x0, . . . , xn) (4.45)
(fg)(x0, . . . , xn) := f(x0, . . . , xn)g(xn) (4.46)

for all g ∈ A, f ∈ Ωn such that Ωn becomes an A-bimodule. The multipli-
cation law (4.45) can be extended to a product of a n-form with a m-form

(fg)(x0, . . . , xn+m) := f(x0, . . . , xn)g(xn, . . . , xn+m). (4.47)

Finally, the involution is given by

(f?)(x0, . . . , xn) := (−1)nf(xn, . . . , x0). (4.48)

Consequently, one finds (df)? = (−1)nd(f?) for f ∈ Ωn.
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4.3 Simplices and integrals

Obviously, the introduction of an integral calculus requires the definition
of appropriate objects, which can be integrated over. This shall be done
in a way which is as close as possible to the classical simplicial calculus on
triangulated manifolds.

Given an edge b, we denote by −b the edge in the opposite direction,
if it exists. It may actually be absent form Γ. If it is present, we call b
a bidirectional edge. The following simplicial constructions are of interest
mainly for graphs whose edges are all bidirectional. A path C of length
n shall be a sequence bn−1, . . . , b0 of n edges bi : xi → xi+1, xi ∈ M, i =
0, . . . , n− 1. A possibly overcomplete basis {ωC} of Ωn

Γ may be labelled by
paths C of length n,

ωC = exnxn−1 . . . ex1x0 . (4.49)

Note that ezωC = ωC if z = xn and 0 otherwise. Using (4.21), (4.42)
and (4.47), one can associate with any n-form ωC a function of n+ 1 sites,
also denoted by ωC , via

ωC(yn, . . . , y0) = δynxn . . . δy0...x0 . (4.50)

Given C, we denote by −C the path in the opposite direction. It may involve
virtual edges if the graph is not bidirectional.

Definition 4.3 (Simplices in a graph) Given the directed graph Γ, an
oriented n-simplex is an equivalence class ∆ = [x0, . . . , xn] of sequences of
n + 1 distinct sites xi ∈ M modulo even permutations, with the property
that for every i, j, 0 ≤ i 6= j ≤ n, 〈xi, xj〉 is an edge of Γ. If π is an odd
permutation, then [xπ0, . . . , xπn] is the oriented simplex obtained from it by
reversing the orientation. It is also denoted by −[x0, . . . , xn]. The boundary
∂∆ is defined as a formal sum of oriented (n − 1) simplices with integer
coefficients (i.e. as a (n-1)-chain) in the standard way,

∂∆ =
n∑

i=0

(−1)i[x0, . . . x̂i, . . . xn] (4.51)

Subsets of xn, . . . , x0 with k + 1 elements define simplices which are called
k-faces of ∆.

Now we are ready to integrate n-forms ω ∈ ΩΓ over domains which are
formal sums of oriented simplices with integer coefficients (chains).

Definition 4.4 (Integration) The integral of n-forms ω over oriented n-
simplices is defined by ∫

∆=[x0,...,xn]
ω := Sω(x0 . . . xn) (4.52)
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where S is antisymmetrization, viz.

Sω(x0 . . . xn) =
1

(n+ 1)!

∑
π

sign(π)ω(xπ0 . . . xπn), (4.53)

where sum over all permutations π of 0, . . . , n is understood.

Let us state some properties of integrals.

Theorem 4.3 (Stokes law)∫
∆
dω =

∫
∂∆

ω for ω ∈ ΩΓ. (4.54)

At this stage we are still not as close to the classical calculus as possible.
Typically there exist n-forms ω such that

∫
∆ ω = 0 for all ∆; therefore the

pairing of forms and chains is degenerate. This can be remedied in part as
follows by imposing further relations on forms.

We say that C ⊂ ∆ if the path C visits only 0-simplices of ∆.

Theorem 4.4 (Ideal) 1. The forms ωC for C such that there exists no
simplex ∆ with C ⊂ ∆ span a differential left and right ideal J of ΩΓ.
2. Ω′ = ΩΓ/J is a differential algebra spanned by ωC with C : x → y such
that C ⊂ ∆ for some simplex ∆.

Let us say that a path C meanders if there is no oriented simplex ∆ with
C ⊂ ∆. A path of length 0 never meanders.

The construction of Ω′ enables one also to introduce the notion of a di-
mension of a graph. Actually, considering a bidirectional edge 〈y, x〉, one
can build arbitrary high forms like eyxexy . . .. Consequently, Ωn

Γ 6= ∅ for ar-
bitrary high n. Ω′ however is spanned by ωC associated with nonmeandering
paths. Therefore we find the following remark

Remark 4.1 There is m ∈ N such that Ω
′r = ∅ for all r > m.

Proof 4.3 Let Sn
Γ := {∆|∆is n-simplex of Γ} denotes the set of all n-

simplices of a graph Γ. Then we have by definition of simplices that for
some m ∈ N Sr

Γ = ∅, r > m. As Ω′ is spanned by ωC with C ⊂ ∆, the
assertion follows.

Note that if the graph Γ consists of n vertices one has

Sr
Γ = ∅ for all r > n. (4.55)

Remark 4.1 suggests the following definition

Definition 4.5 (Dimension of a graph) The dimension D of a finite graph
Γ is defined by

D := max{n |Ω′n 6= ∅}. (4.56)
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Given a path C = (xn, . . . , x0) from x0 to xn, such that x0, . . . , xn are
the 0-faces of a n-simplex ∆, and a permutation π of 0 . . . n with π(0) =
0, π(n) = n, then

πC := (xπ(n), . . . , xπ(0)) (4.57)

is also a path from x0 to xn. Let J n
∆ be the set of n-forms

J n
∆ := {ωπC − signπωC |ωC ∈ Ω′, C ⊂ ∆} (4.58)

with π as above. Furthermore let J n be the subbimodule of Ωn, which is
generated by all J n

∆. Then we have

Theorem 4.5 J ′ :=
⊕

n=3 J n is a differential left and right ideal of Ω.

Note that J 0 = J 1 = J 2 = ∅. Now we may impose the following relation
on basis elements

ωπC − signπωC = 0. (4.59)

The resulting differential algebra Ω′′ is obtained by dividing Ω′ by J ′

Ω′′ =
∑

Ω
′′n := Ω′/J ′. (4.60)

More precisely, one has

Theorem 4.6 (Duality) Given 0-faces x, y of the oriented n-simplex ∆ =
[x0, . . . , xn], with x 6= y if n > 0, define the n-form ω∆,x,y ∈ Ω

′′n by

ω∆,x,y = signπωC (4.61)

where ∆C : x→ y is an arbitrary path of the form

C = (xπ0 = y, xπ1 . . . , xπ(n−1), xπn = x). (4.62)

Then
1. ω∆,x,y span Ω

′′n.
2.
∫
∆ ω∆′,x,y = δ∆,∆′.

Remark 4.2 Define ω∆ =
∑

x,y ω∆,x,y. Then
1. ω∆,x,y = eyω∆e

x.
2. Sums of ω∆ with coefficients in A span Ω

′′n.
3.
∫
∆ ω∆′ = cnδ∆,∆′

with cn = n(n+ 1) if n > 0, and c0 = 1.
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4.4 Calculus on pseudographs and singular sim-
plices

In the classical theory, if f : M→M′ is a homoeomorphic map of manifolds,
and ω′ is a n-form on M′, the pullback f?ω

′ is defined as a n-form on M
and

df?ω
′ = f?dω

′. (4.63)

Let us emphasize, that it is not required that f is an immersion, i.e. two
distinct points in a small neighbourhood may be mapped into the same
point in M′ by f . Moreover, simplices on M may be mapped into singular
simplices in M′, i.e. the vertices of the simplex need not be assigned to
distinct points on M′.

The differential calculus on graphs we have considered so far does not
admit either possibility.

Maps of graphs map edges from x to y into edges from f(x) to f(y).
Since a graph has no edges from x to x, two distinct points x, y are always
mapped into distinct points f(x) and f(y). Moreover, it is essential in the
proof of Stokes theorem that there are edges between any two vertices of a
simplex. Therefore its vertices must be distinct sites.

These limitations are unwelcome when one wishes to do multiscale anal-
ysis. The idea is that space time points are only distinguished when they
can be separated by a detector whose resolution determines a length scale.
When the length scale is increased, two formerly distinct sites may become
identified. An important special case of multiscale analysis is dimensional
reduction. It occurs when the extension of space time in some extra dimen-
sion falls below the length scale.

This motivates the desire to extend the calculus to pseudographs Γ.
They are more general than graphs by admitting edges from x to x. We are
mainly interested in pseudographs with (up to) two directed edges from x
to x, which are mapped one into the other by the ?-operation (reversal of
direction), and corresponding generators exx and exx? of Ω1

Γ. The resulting
calculus is not minimal in the sense of definition 4.2 because exx 6= exdfex

for any f ∈ A.

Theorem 4.7 (Calculus on pseudographs) Let Γ′ be the pseudograph
with ∗-operation obtained from a directed graph Γ by adding for some or all
sites x pairs of adjoint edges from x to x. Retain the notation

ρ =
∑
y 6=x

exy, (4.64)

and the definitions of df and dexy, y 6= x (part 3 and part 4 of theorem4.2 ).
1. The calculus (ΩΓ, d) can be extended to a calculus (ΩΓ′ , d) on the pseu-
dograph by adding generators exx and exx? subject to the relations

(exx)2 = 0 = (exx?)2, exxexx∗ 6= 0, eyexx = δyxe
xx. (4.65)
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and setting

dexx = ρexx − exρ2ex + exxρ+ exxexx? + exx?exx (4.66)
dexx? = ρexx? − exρ2ex + exx?ρ+ exxexx? + exx?exx. (4.67)

2. For homeomorphisms f : Γ → Γ′of pseudographs define the pullback f?

as follows. For n-forms ω′ =
∑

C′ αC′ωC′ on Γ′,

f?ω
′ =

∑
C′

αC′
∑

C:f(C)=C′

ωC . (4.68)

Then
df?ω

′ = f?dω
′. (4.69)

Singular simplices in a pseudograph Γ′ are constructed as maps of the
graph Γn associated with the unit n-simplex ∆n to Γ′, for all nonnegative
integers n.

We recall that ∆n consists of the points (x0, . . . , xn) of Rn+1 satisfying∑n
i=0 xi = 1, xi ≥ 0, i = 0, . . . , n. For each integer i = 0, 1, . . . , n, the point

vi = (δi0, . . . , δin) of Rn+1 is a point of ∆n and will be referred to as its i-th
vertex. ∆n is the convex hull of the set of its vertices. Its 1-faces consist of
convex linear combinations x = tvi+(1−t)vj , 0 ≤ t ≤ 1, i 6= j of two distinct
vertices. They can be given an orientation in two ways. The orientation is
reversed by the ?-operation. The vertices and the oriented 1-faces of ∆n

form the graph Γn associated with ∆n.

Definition 4.6 (Singular Simplices) A singular n-simplex in a pseudo-
graph Γ′ is a map ξ of the graph Γn to Γ′ whose restriction to edges b =<
x, y > obeys

−(ξb) = ξ(−b). (4.70)

Chains are formal sums of singular simplices with integer coefficients.
The integral of a n-form ω′ on Γ′ over a singular n-simplex ξ is defined by∫

ξ
ω′ =

∑
π

1
(n+ 1)!

sign(π)ξ?ω(vπ0, . . . , vπn). (4.71)

The sum is over the (n+ 1)! permutations of integers 0, 1, . . . , n.

Since ξ?ω′ is a n-form on a graph Γn, the definition (4.50) applies.
The word singular refers to the fact that the map ξ need not be injective.

When it is not, we call ξ a truely singular simplex. We emphasize that the
integral of a n-form over a truely singular n-simplex does not have to vanish.

One verifies, that the definitions are equivalent to the old ones for graphs
Γ′.
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Theorem 4.8 (Covariance) Let f : Γ → Γ′ be a map of pseudographs, ω′

a n-form on Γ′, and ξ a singular simplex in Γ. Then∫
ξ
f?ω

′ =
∫

fξ
ω′, (4.72)

where fξ is the singular simplex in Γ′ obtained by composing maps ξ and f .

4.5 Proofs

4.5.1 Proof of Stokes law

We will need a formula for the exterior derivative of elements of the basis
ωC of the space Ωn

Γ of n-forms.

Proposition 4.1 (Exterior derivative of basic n-forms) Let Θxy = 1
if there is an edge Γ from y to x, and Θxy = 0 otherwise, and let C =
(x0, . . . , xn), n ≥ 1. Then

dωC(y0, . . . , yn+1) = Θy1y0ωC(ŷ0, y1 . . . , yn+1)

+
n∑

j=1

(−1)jΘyj−1yjΘyjyj+1ωC(y0, . . . , ŷj , . . . , yn+1)

+ (−1)n+1ωC(y0, . . . , yn, ŷn+1). (4.73)

Hatted arguments ŷj are to be omitted.

We will also need a basic combinatorial lemma.

Lemma 4.3 Let Sn+2 be the group of permutations of integers 0, . . . , n+ 1
and 0 ≤ k ≤ n+ 1. Then

n+1∑
j=0

∑
π∈Sn+2:πj=k

(−1)jsign(π)ω(yπ0, . . . ŷπj . . . yπ(n+1)) =

(n+ 2)!(−1)kSω(y0, . . . ŷk . . . , yπ(n+1)). (4.74)

This lemma will be a corollary of another lemma,

Lemma 4.4 Given k,∑
π∈Sn+2:πj=k

(−1)jsign(π)ω(yπ0, . . . , ŷπj , . . . , yπ(n+1)) (4.75)

is independent of j = 0, . . . , n+ 1.
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Proof 4.4 lemma 2: It suffices to show that the expression remains un-
changed when j + 1 is substituted for j. Replace j by j + 1 and make a
variable transformation on π by multiplying it with the transposition of j
and j + 1. Then (−1)j and sign(π) both change by a factor (−1), and the
whole expression remains unchanged. q.e.d.
lemma 3: Since the summand of the j-summation is independent of j by
lemma 2, it may be evaluated for j = k. The assertion follows then from
the fact that there are n + 2 equal terms in the sum over j, and from the
definition of S. q.e.d.

Proof 4.5 (Proof of Proposition 1) By definition,

ωC = ex0x1ex1x2 . . . exn−1xn . (4.76)

Applying the Leibniz rule yields

dωC = (dex0x1)ex1x2 . . . exn−1xn − ex0x1(dex1x2) . . . exn−1xn

± . . .− (−1)nex0x1ex1x2 . . . dexn−1xn (4.77)

Inserting assertion 4 of theorem 4.2, we obtain

dωC = (ρex0x1 − ex0ρ2ex1 + ex0x1ρ)ex1x2 . . . exn−1xn

− ex0x1(ρex1x2 − ex1ρ2ex2 + ex1x2ρ)ex2x3 . . . exn−1xn ± . . .

− (−1)nex0x1 . . . exn−2xn−1(ρexn−1xn − exn−1ρ2exn + exn−1xnρ) (4.78)

Because the sum ρ =
∑
exy runs only over x 6= y, and the multiplication

law (1.) of theorem 4.2 holds, terms exi−1xiρexixi+1 vanish. Hence

dωC = ρωC+
n−1∑
i=0

(−1)iex0ex0x1 . . . exi−1xiρ2êxixi+1 . . . exn−1xnexn−(−1)nωCρ

=
′∑
x

ω(x,x0,...,xn) +
n−1∑
i=0

(−1)i
′∑
x

ω(x0,...,xi,x,xi+1,...,xn) − (−1)nω(x0,...,xn,x),

(4.79)

where it is understood that the sums
∑′

x run only over such x that the
subscripts of the summands are actually paths.

This can be made explicit with the help of the Θ-symbols, viz.

dωC =
∑

x

{
Θxx0ω(x,x0,...,xn) −

n−1∑
i=0

(−1)iΘxixΘxxi+1ω(x0,...xi,x,xi+1,...xn)

− (−1)nΘxnxω(x0...xn,x)

}
(4.80)
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Inserting the definition (4.50) we evaluate

dωC(y0, . . . , yn+1) =
∑

x

{
Θxx0δxy0ωC(y1, . . . , yn+1)

−
n−1∑
i=0

(−1)iΘxixΘxxi+1δxyi+1ωC(y0, . . . , ŷi+1, . . . , yn+1)

− (−1)nΘxnxδxyn+1ωC(y0, . . . , yn)
}
. (4.81)

The sum over x can be executed. Remembering the Kronecker δs in the defi-
nition (4.50), the x subscripts of Θ-symbols may be replaced by y-subscripts.
After a change of variable i+1 = j we finally obtain the assertion of propo-
sition 4.1. q.e.d.

Proof 4.6 (Stokes Theorem) We wish to show∫
∆
dω =

∫
∂∆

ω (4.82)

for (n+1)-simplices ∆ = [y0, . . . , yn+1]. Using the definition of the integral,
and proposition 4.1, the left hand side evaluates to∫

∆
dω =

1
(n+ 2)!

∑
π∈Sn+2

sign(π) dω(yπ0, . . . , yπ(n+1))

=
∑

π∈Sn+2

sign(π)
{
Θyπ1yπ0ω(ŷπ0, yπ1 . . . , yπ(n+1))

+
n∑

j=1

(−1)jΘyπ(j−1)yπjΘyπjyπ(j+1)
ω(yπ0, . . . , ŷπj , . . . , yπ(n+1))

+ (−1)n+1Θyπnyπ(n+1)
ω(yπ1, . . . , yπn, ŷπ(n+1))

}
(4.83)

By definition of simplices, there are links from yi to yk for any j 6= k.
Therefore the Θ-factors are all equal to 1 and we arrive finally at∫

∆
dω =

∑
π∈Sn+2

sign(π)
n+1∑
j=0

(−1)jω(yπ0, . . . , ŷπj . . . , yπ(n+1)) (4.84)

Next we consider the right hand side. Inserting the definition of the bound-
ary, we get∫

∂∆
ω =

n+1∑
i=0

(−1)i

∫
[y0,...ŷi...yn+1]

ω

=
n+1∑
i=0

(−1)iSω(yπ0, . . . , ŷπi, . . . , yπ(n+1)). (4.85)

Lemma 1 asserts that the left hand side and the right hand side are equal.
q.e.d.
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Proof 4.7 (Theorem 4.4) part 1: Let J be spanned by forms ωC asso-
ciated with paths C : x → z which meander. Let C ′ : z → w be arbitrary
paths. We must show that ωCωC′ ∈ J and ωC′ωC ∈ J for all paths C ′. If
w 6= x then ωCωC′ = 0 and otherwise

ωCωC′ = ωC◦C′ . (4.86)

Similarly, if y 6= z, then ωC′ωC = 0 and otherwise

ωC′ωC = ωC′◦C . (4.87)

We must therefore show that whenever C meanders, then C1 = C ′ ◦ C me-
anders for arbitrary paths C ′ such that the decomposition is defined, and
similarly for C ◦ C ′. If C = (xn, . . . , x0) then C ′ ◦ C = (xm, . . . , xn, . . . , x0)
with m ≥ n. The meandering condition on C means that for some i, j with
i 6= j, 0 ≤ i, j ≤ n, < xj , xi > is not an edge of Γ. But then it is a forteriori
true that for some i, j with i 6= j, 0 ≤ i, j ≤ m, < xj , xi > is not an edge of
Γ. Therefore C ′ ◦C meanders. Similarly, C ◦C ′ meanders. This completes
the proof that J is a left and right ideal.

part 2: Since ΩΓ is spanned by ωC with C arbitrary paths, and the divi-
sion by J sets ωC = 0 for meandering paths, Ω′ = ΩΓ/J is spanned by ωC

for nonmeandering paths C.

Proof 4.8 (Theorem 4.5) Let J n be spanned by n-forms ξC := ωπC −
sign(π)ωC , where ωC ∈ Ω

′n and C is a path from x to y with C ⊂ ∆ for
some n-simplex ∆. Let C ′ : z → w be paths with C ′ ⊂ ∆ for some m-
simplex ∆′. We have to show that ξCωC′ ∈ J n+m and ωC′ξC ∈ J n+m for
all nonmeandering paths C ′ of length m. If w 6= x then ξCωC′ = 0 and
otherwise

ξCωC′ = ωπC◦C′ − sign(π)ωC◦C′ . (4.88)

Similarly, if y 6= z, then ωC′ωC = 0 and otherwise

ωC′ξC = ωC′◦πC − sign(π)ωC′◦C . (4.89)

We have therefore to show that there is a permutation π′ such that

ωC′◦πC − sign(π)ωC′◦C = ωπ′(C′◦C) − sign(π′)ωC′◦C . (4.90)

and π′(0) = 0 and π′(m + n) = m + n. If C = (xn, . . . , x0) and C ′ =
(xm+n, . . . , xn), then C ′ ◦ C = (xm+n, . . . , x0). Define

π′(xi) :=
{

π(xi) for 0 ≤ i ≤ n
xi for n < i ≤ m+ n.

(4.91)

Obviously, ωC′ξC can be written as the right hand side of eq.(4.87), thus
ξC ∈ J n+m. Similarly, ξCωC′ ∈ J n+m. This completes the proof that J ′ is
a left and right ideal of Ω′.



Chapter 5

Gauge theories on graphs

In this chapter a generalization of gauge theory and differential geometry
on directed graphs will be considered. As the semicommutative calculus
of chapter 4 forms the basis, it is possible to deal with non-abelian gauge
theories without being forced to give up conventional locality properties, in
sharp contrast to Connes’ version of differential geometry [1, 18].

Classically, there are two different possible approaches to differential
geometry on manifolds: the infinitesimal approach using vector potentials
and the global approach employing parallel transporters. It was shown by
Dimakis and Müller-Hoissen [11, 12] that the infinitesimal approach can also
be used for discrete sets. We shall discuss both approaches and extend them
to the case where the fibers do not have constant dimensions.

We argue that in the algebraic approach to the discrete case it is quite
natural to admit nonunitary, possibly even noninvertible parallel trans-
porters. Further we will consider a polar decomposition of parallel trans-
porters. Finally, a discrete analogue of the principle of equivalence shall be
discussed.

5.1 Infinitesimal approach

In the classical theory, the infinitesimal approach defines connections by ref-
erence to covariant derivatives (or Cartan Ehresmann connection forms) and
proceeds to introducing vector potentials and computing field strength or
curvature forms. One proves that a connection in this sense defines parallel
transporters [23].

The covariant derivative acts on smooth sections ψ ∈ Γ∞(M,V) of vector
bundles V. Products ψf of sections and elements f ∈ C∞(M) of the algebra
of smooth functions are pointwise defined. Therefore the space of smooth
sections is a right C∞(M)-module.

For convenience, let us recall some basic definitions.

Definition 5.1 (Module) A right module V over an algebra A is finitely

57
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generated if there is a finite number of elements (Eα)α=1...n in V such that
every ψ ∈ V can be written as

∑n
α=1Eαψ

α for some ψ1, . . . , ψn in A.
The elements (Eα)α=1...n form a basis of V if 0 =

∑n
α=1Eαψ

α implies
ψα = 0, for all α = 1, . . . , n.
The right module V is called free if it has a basis; it is called projective if it
is a submodule of a free module W, i.e., there exists a free module W and a
submodule U such that W = U⊕V.

The prototype of a free module is An := Cn ⊗C A. Any of its elements
can be thought of as an n-dimensional vector with entries in A and can be
written uniquely as a linear combination

∑n
α=1Eαψ

α.
Actually, the fact that a vector bundle V is completely characterised by

the space of its smooth sections, thought of as a right module, is the origin
of the algebraic analogue of vector bundles. More precisely, the Serre-Swan
theorem [18] asserts that locally trivial, finite-dimensional complex vector
bundles over a compact Hausdorff spaceM correspond canonically to finitely
generated, projective modules over the algebra C∞(M). Conversely, if V

is a finitely generated, projective module over C∞(M), the fiber Vx of the
associated bundle V over the point x ∈M is

Vx := V/VIx, (5.1)

where the ideal Ix corresponding to the point x is given by

Ix = {f ∈ C∞(M)|f(x) = 0}. (5.2)

The above considerations suggest that in a noncommutative setting the
notion of a vector bundle has to be replaced by a finitely generated, projec-
tive module over a noncommutative algebra. In this case, as the notion of a
point ceases to be meaningful, also the interpretation as a ”bundle of fibers
over points” clearly makes no sense, reflecting the loss of locality.

In the case of the semicommutative calculus on graphs the situation
is different. Also in this case the analogue of vector bundles is provided
algebraically by modules over an algebra A. However, as the algebra of
functions on a graph is commutative, the notion of a fiber remains valid.
More precisely, if V is a right A-module, then Vex =: Vx is a finite dimen-
sional complex vector space for every x. It can be considered as the fiber
over x. As a vector space, Vx is spanned by a basis (Eα(x))α=1...n with
Eα(x) := Eαe

x. Because of eq. (4.23) one obtains a right A-module basis
by setting

V 3 Eα =
∑
x∈M

Eα(x)ex (5.3)

We are interested in the case, where n may depend on x, n = n(x). Thus
we admit the possibility that the fibers may have different dimensions. This
might be considered as a consequence of the Naheinformationsprinzip: the
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dimension of the fibers is no longer globally defined, but becomes a local
concept. Then the notion of a moving frame has to be adjusted by the
following

Definition 5.2 (Moving frame) Let n := maxxdimVx. A moving frame
E = (Eα)α=1...n is a basis for V which is constructed as follows:
For every x one chooses a basis Eα(x) ∈ Vx, α = 1 . . . dimVx. Setting
Eα(x) = 0 for α > dimVx, one obtains

Eα =
∑

x

Eα(x)ex. (5.4)

Let us now turn to the central notion of a connection [1, 18], which can be
used as a starting point for both the infinitesimal and global approach to
differential geometry on abritrary graphs.

Definition 5.3 A connection on a right A-modul V is a C-linear map

∇ : V → V⊗A Ω1, (5.5)

such that
∇(ψf) = ∇(ψ)f + ψ ⊗A df (5.6)

for all f ∈ A and ψ ∈ V.

∇ is also called the exterior covariant derivative. It extends uniquely as a
C-linear operator on the space of V-valued forms

∇ : V⊗A Ω → V⊗A Ω, (5.7)

by requiring that

∇(ψ ⊗A ω) = ∇(ψ)ω + ψ ⊗A dω (5.8)

for all ψ ∈ V and ω ∈ Ω. This can be rewritten as a graded Leibniz rule:

∇(Ψω) = ∇Ψω + (−1)rΨdω (5.9)

for all Ψ ∈ V⊗A Ωr and all ω ∈ Ω.

Definition 5.4 The curvature F of a connection ∇ is a right A-module
homomorphism

F : V → V⊗A Ω2 (5.10)

defined by
F(E) = ∇2E. (5.11)

It extends to a map
F : V⊗A Ω → V⊗A Ω (5.12)

with the property
F(ψ ⊗A ω) = F(ψ)ω. (5.13)
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The definitions (5.3) and (5.4) are generally valid in differential geometry.
However, we specialize to semicommutative differential geometry and turn to
the consideration of vector potentials, which are only defined upon choosing
a moving frame. Actually the situation is similar to that in the classical
case.

Definition 5.5 (Vector potential) Given a moving frame, the vector po-
tential is defined as a matrix-valued 1-formA = (Aα

β) =
∑

x,yAyxe
yx, α, β =

1 . . . n by
∇Eα = Eβ ⊗A Aβ

α. (5.14)

Sums over repeated indices are understood. The field strength
F =

∑
x,y,z F zyxe

zyx is a matrix-valued 2-form defined in terms of the cur-
vature by

F(Eα) = Eβ ⊗A F β
α. (5.15)

Theorem 5.1 1.) Let ψ = Eαψ
α ∈ V. Then

∇ψ = Eα ⊗A (dψα +Aα
βψ

β). (5.16)

2.) The field strength is given by

F = dA+AA. (5.17)

Proof 5.1 see reference [33].

5.2 Endomorphism-valued forms

In conventional gauge theory endomorphism-valued forms play an important
role [6]. We shall now introduce this concept in the context of semicommu-
tative differential geometry. In chapter 6 we will use the exterior covari-
ant derivative d∇ of endomorphism-valued forms to formulate and study a
generalized Yang-Mills action. Also the Bianchi identity takes an elegant
form, if it is formulated with the help of d∇. Moreover, in [34] the use of
endomorphism-valued forms is necessary to get a discrete version of torsion.
First we start with some preparatory considerations.

5.2.1 Exterior covariant derivative of EndA(V)-valued forms

Let V be a right A-module. Then the conjugate or dual space

V′ := {α′ : V → A|α′(ψf) = α′(ψ)f, ψ ∈ V, f ∈ A} (5.18)

is a left A-module with

(fα′)(ψ) := f(α′(ψ)) (5.19)
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for all α′ ∈ V′, ψ ∈ V, f ∈ A.
The basis of V′ is denoted by (Eα)α=1...n and it satisfies

Eα(Eβ) = δα
β1. (5.20)

A basis Eα of the dual module provides a basis Eα(x) := exEα, α = 1, . . . , n
of the dual vector space V ′x for every x. Again, because of eq. (4.23) one has

V′ 3 Eα =
∑
x∈M

exEα(x). (5.21)

If V = An, then the entries of V′ can be regarded as row vectors.
In order to identify V⊗AV′ with EndA(V) = HomA(V,V), we use the

following result from module theory [21].

Theorem 5.2 Let E,F be two right A-modules. Define a map

ΦE,F : F⊗A E′ → HomA(E,F) (5.22)

by
ΦE,F(ψ ⊗A α′)(φ) := ψα′(φ) (5.23)

for all α′ ∈ E′, φ ∈ E, ψ ∈ F. Then ΦE,F is an isomorphism from F⊗A E′ to
HomA(E,F) iff E is finitely generated and projective.

Proof 5.2 see [21].

If we set E = V and F = V, we see that in the cases we are interested
in one can identify V ⊗A V′ with EndA(V) = HomA(V,V). If we set
F = V ⊗A Ωn one can also write vector potential and field strength as an
endomorphism-valued 1-form and 2-form, respectively

A = Eα ⊗A Aα
β ⊗A Eβ ∈ V⊗A Ω1 ⊗A V′ (5.24)

F = Eα ⊗A Fα
β ⊗A Eβ ∈ V⊗A Ω2 ⊗A V′. (5.25)

Note that the representation (5.24),(5.25) is not unique, nevertheless it is
often useful. For example, it allows us to define a trace of an endomorphism-
valued r-form.

Definition 5.6 (Trace) The trace of an endomorphism-valued r-form is a
map

Tr : V⊗A Ωr ⊗A V′ → Ωr (5.26)

defined by

Tr(Ψ) = Tr(Eα ⊗A Ψα
β ⊗A Eβ) := Eβ(Eα)Ψα

β = Ψα
α (5.27)

for all Ψ ∈ V⊗A Ωr ⊗A V′.
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The space of endomorphisms EndA(V) becomes an algebra, if a multi-
plication is introduced by

(ψ ⊗A α′) ◦ (φ⊗A β′) := ψ ⊗A α′(φ)β′ = ψα′(φ)⊗A β′. (5.28)

Now we can regard V also as an left EndA(V)-module, actually it is an
EndA(V)-A-bimodule.

Endomorphism-valued 0-forms induce endomorphisms of the fibers in
the sense that

Eα ⊗A Eβ = Eα ⊗A
∑

x

exE
β = Eα

∑
x

ex ⊗A Eβ =
∑

x

Eα(x)⊗A Eβ(x).

(5.29)

Definition 5.7 A connection ∇′ on the dual left A-modul V′ is a map

∇′ : V′ → Ω1 ⊗A V′ (5.30)

and defined by
d(α′(ψ)) = (∇′α′)(ψ) + α′(∇ψ). (5.31)

We extend the duality contraction with an element in Ω⊗A V′ and V⊗A Ω
by defining

ω ⊗A α′(ψ) := ωα′(ψ) α′(ψ ⊗A ω) := α′(ψ)ω (5.32)

for all ω ∈ Ω, α′ ∈ V′, ψ ∈ V.

Theorem 5.3 Given a moving frame the vector potenial A′ = (A′α β) of
the dual connection ∇′ is

A′α β = −Aα
β. (5.33)

Proof 5.3 If we set α′ = Eα and ψ = Eα, we get from (5.31)

∇′Eα(Eβ) = −Eα(∇Eβ). (5.34)

Because of (5.32) we conclude that

∇′Eα = A′α β ⊗A Eβ = −Aα
β ⊗A Eβ. (5.35)

Now we are ready to introduce the exterior covariant derivative of endo-
morphisms.

Definition 5.8 The exterior covariant derivative of endomorphisms d∇ is
a C-linear map

d∇ : V⊗A V′ → V⊗ Ω1 ⊗V′ (5.36)

defined by
d∇(ψ ⊗A α′) := ∇ψ ⊗A α′ + ψ ⊗A ∇′α′ (5.37)

for all α′ ∈ V′, ψ ∈ V.
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It extends uniquely as a C-linear operator on the space of EndA(V)-valued
r-forms

d∇ : V⊗A Ωr ⊗A V′ → V⊗A Ωr+1 ⊗A V′ (5.38)

by requiring that

d∇(ψ⊗A ω⊗A α′) = ∇ψ⊗A ω⊗A α′+ψ⊗A dω⊗α′+(−1)rψ⊗A ω⊗A∇′α′
(5.39)

for all ψ ⊗A ω ⊗A α′ ∈ V⊗A Ωr ⊗A V′.
The exterior covariant derivative can be rewritten as a graded commutator

d∇κ = [∇, κ] := ∇ ◦ κ− (−1)rκ ◦ ∇. (5.40)

for all κ ∈ V⊗ Ωr ⊗V′.
To see this, let κ := ψ ⊗ ω ⊗ α′ and φ ∈ V. By definition we have

(d∇κ)(φ) = (∇ψ)ωα′(φ) + ψ ⊗A dωα′(φ) + (−1)rψ ⊗A ω∇′α′(φ). (5.41)

Using (5.31) it follows that

(d∇κ)(φ) = ∇ψωα′(φ) + ψ ⊗A dωα′(φ) +
+ (−1)rψ ⊗A ωd(α′(φ))− (−1)rψ ⊗A ωα′(∇φ)
= ∇((ψ ⊗A ω ⊗A α′)(φ))− (ψ ⊗A ω ⊗A α′)(∇φ)
= (∇ ◦ κ)(φ)− (κ ◦ ∇)(φ). (5.42)

With the help of d∇ the Bianchi identity can be written in an elegant way,
further the proof becomes almost trivial.

Theorem 5.4 (Bianchi identity) The field strengh F fulfills the Bianchi
identity

d∇F = 0. (5.43)

This can be rewritten in terms of F =
∑
F zyxe

zyx:

d∇F := dF + [A,F ] = 0. (5.44)

Proof 5.4 Proof of eq.(5.43) is trivial, ∇3 − ∇3 = 0. For proof of (5.44)
we employ matrix notation: (Eα) := E, (Eα) := E′

d∇F = ∇E ⊗A F ⊗A E′ +E ⊗A dF ⊗A E′ +E ⊗A F ⊗A ∇′E′

= E ⊗A AF ⊗A E′ +E ⊗A dF ⊗A E′ −E ⊗A FA⊗A E′

= E ⊗A (dF + [A,F ])⊗A E′ = 0. (5.45)

q.e.d.

Similar to the classical case, a change of moving frame will be referred
to as a (passive) gauge transformation.
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Definition 5.9 A gauge transformation G is a n×n invertible matrix val-
ued function G =

∑
xG(x)ex which is obtained from g(x) ∈ GL(dimVx,C)

by setting

Gα
β(x) =

{
gα

β(x) if α, β = 1, . . . , dimVx

δα
β otherwise.

(5.46)

Gauge transformations act on moving frames according to

Eα → Eα = EβG
β

α =
∑
x∈M

Eβ(x)Gβ
α(x). (5.47)

Later we shall distinguish between unitary and nonunitary gauge transfor-
mations. Only the group of unitary gauge transformations will be a local
symmetry.

Theorem 5.5 (Transformation Laws) Under a gauge transformation

A→ G−1AG+G−1dG (5.48)

Ayx → G−1(y)AyxG(x) +G−1(y)[G(x)−G(y)] (5.49)

F → G−1FG (5.50)

F zyx → G−1(z)F zyxG(x). (5.51)

Proof 5.5 see [34, 35].

Note the locality properties of the field strength. ezF ex 6= 0 does not imply
z = x, cp. (2.23)

5.3 Parallel transport

Now we turn to the global approach to semicommutative differential geome-
try. Here the crucial objects are parallel transporters. Classically, the global
approach starts from parallel transporters U(C) : Vx → Vy along paths C
from x to y which map the fiber Vx at x to the fiber Vy at y. Covariant
derivatives are introduced by reference to parallel transporters. In a non-
commutative setting the notion of a parallel transporter becomes invalid. In
the semicommutative case the notion of a parallel transporter remains valid
and appears naturally. Again the starting point is the connection.

In fact, any connection induces a map

U : V → V⊗A Ω1 (5.52)

which is defined by
U(Eα) := Eα ⊗A ρ+∇Eα, (5.53)
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where ρ =
∑

x,y e
xy, cp. theorem 4.2, eq. (4.26). As a consequence of (5.6)

and (4.28) one finds that U is a right A-homomorphism

U(ψf) = U(ψ)f (5.54)

for all ψ ∈ V, f ∈ A. U is called the parallel transport 1-form associated
with the connection ∇. Using (5.54), we obtain

U(Eα(x)) = U(Eα)ex. (5.55)

Thus U(Eα(x)) can be expressed as follows

U(Eα)ex =

(∑
y,z

EβU
β

yzα ⊗A eyz

)
ex

=
∑

y

Eβ(y)Uβ
yxα ⊗A eyx, (5.56)

where the matrix Uyx = (Uα
yxβ) will be called the parallel transport matrix

associated withe link 〈y, x〉 from x to y. Further we see that via

Eα(x) → UyxEα(x) := Eβ(y)Uβ
yxα (5.57)

the parallel transport 1-form defines a C-linear map between the fibers of
the right module

Uyx : Vx → Vy. (5.58)

Uyx shall be called parallel transporter along the edge 〈y, x〉. It can be
regarded as the analogue of the parallel transporters used in classical differ-
ential geometry.

As Uyx ∈ HomC(Vx, Vy) = Vy ⊗C V
′
x it can be written in the following

form

Uyx = Eβ(y)Uβ
yxα ⊗C E

α(x) =: Eβ(y)Uβ
yxαE

α(x), (5.59)

We will often suppress the tensor product over C. Note that the parallel
transporter would vanish if one used in (5.59) the tensor product over A.
As U ∈ HomA(V,V⊗AΩ1), the parallel transport 1-form U can be written
as an element in V⊗A Ω1 ⊗A V′

U =
∑
y,x

Eβ(y)Uβ
yxα ⊗A eyx ⊗A Eα(x). (5.60)

Our previous considerations are collected in the following definition

Definition 5.10 (Parallel transport) Given a moving frame (Eα) and a
connection the parallel transport 1-form

U : V :→ V⊗A Ω1 (5.61)
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is defined by
U(Eα) := Eα ⊗A ρ+∇Eα. (5.62)

The parallel transporter along an edge 〈y, x〉

Uyx : Vx → Vy (5.63)

is defined by
U(Eα) =

∑
x,y

Uyx(Eα(x))⊗A eyx, (5.64)

where
Uyx = Eα(y)⊗C U

α
yxβE

β(x). (5.65)

The matrix Uyx with entries Uα
yxβ defined by (5.56) will be called the par-

allel transport matrix.

Let ψ =
∑

xEα(x)ψα(x) ∈ V. Then we have

U(ψ) =
∑

x

U(Eα(x)ψα(x)) =
∑
y,x

Eβ(y)Uβ
yxα ⊗A eyxψα(x) (5.66)

=
∑
y,x

Eβ(y)⊗A (Uyxψ(x))βeyx. (5.67)

Treating the elements ψ ∈ V as column vectors ψ := (ψα), one can employ
the following matrix notation for the parallel transport 1-form

ψ → Uψ =
∑
y,x

Uyxψ(x)eyx, U :=
∑
yx

Uyxe
yx. (5.68)

This notation is often used by Dimakis and Müller-Hoissen.
We have started with a connection and used it to introduce parallel

transport 1-forms. Conversely, any right A-homomorphism

U : V :→ V⊗A Ω1 (5.69)

allows one to define a connection

∇ψ := −ψ ⊗A ρ+ U(ψ) (5.70)

in the sense of definition 5.3, as can easily be shown. More precisely, we
have the following

Theorem 5.6 Let U be a right A-homomorpism

U : V :→ V⊗A Ω1. (5.71)

Then the map
∇ : V :→ V⊗A Ω1 (5.72)

defined by
∇ψ := −ψ ⊗A ρ+ U(ψ) (5.73)

for all ψ ∈ V satisfies (5.6).
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Proof 5.6

∇(ψf) = −ψf ⊗A ρ+ U(ψf)
= ψ ⊗A df − ψ ⊗A ρf + U(ψ)f
= ψ ⊗A df +∇ψf. (5.74)

The relation between vector potential and parallel transport 1-form is
given by

Theorem 5.7 i.)Given a moving frame (Eα), the parallel transport matrix
and the vector potential are related by 1

U =
∑
y,x

Uyxe
yx = ρ+A =

∑
y,x

eyx(1 +Ayx) (5.75)

ii.) Let ψ = Eαψ
α ∈ V. Then the covariant derivative can be written as

∇ψ = Eα ⊗A (Uα
βψ

β − ψαρ), (5.76)

with Uα
β =

∑
y,x U

α
yxβe

yx.
iii.)The field strength is

F zyx =
∑
z,y,x

(U zyUyx −U zx) (5.77)

Proof 5.7 see [34, 35, 33].

Recall that gauge transformations are changes of moving frames. Vector
potentials depend on a choice of moving frame, in contrast with parallel
transport 1-forms.

Theorem 5.8 The parallel transport form U is gauge invariant and there-
fore independent of a choice of moving frame.

Corollary 5.1 i.) The parallel transport matrix (Uyx) along the edge from
x to y transforms under gauge transformations according to

Uyx → G(y)−1UyxG(x) (5.78)

and the corresponding matrix 1-form

U =
∑
x 6=y

Uyxe
yx (5.79)

transforms according to
U → G−1UG. (5.80)

ii.) The difference B −A of two vector potentials transforms under gauge
transformations like a parallel transport matrix 1-form.

1Note the different signs in 5.75 and 2.12. By choosing appropriate basic 1-forms eyx

one can obtain a minus sign in the discrete case also. But then other formulae change,
and for our purpose it is more convenient to work with (5.75), cp. [35, 2, 34].
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Proof 5.8 We employ matrix notation. The dual basis will be denoted by
E′. Further we will repeatedly use identities following from exezy = δxze

zy

and ezyex = δyxe
zy, in particular G(y)eyx = Geyx, and eyxG(x) = eyxG,

and similarly for E and E′.
Given a parallel transport 1-form U , the gauge transformed parallel trans-

port 1-form is

U ′ =
∑
xy

E(y)G(y)⊗A [eyx +G−1AG−G−1dG]⊗A G−1E′(x)

=
∑
xy

EG⊗A [eyx +G−1AG−G−1(G(y)−G(x))eyx]⊗A G−1E′

= E ⊗A A⊗A E′ +
∑
yx

E ⊗A eyx ⊗A E′

= U . (5.81)

Proof 5.9 (Corollary) Part i.) is an immediate consequence of the theo-
rem.
Part ii.): In the difference of two vector potentials the inhomogeneous term
in the transformation law cancels out. Comparing with eq. (5.80) we see
that the resulting transformation law is the same as for the parallel transport
matrix.
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5.4 Nonunitary parallel transport

5.4.1 Motivation

In the previous section we frequently encountered situations within the semi-
commutative framework, which are very similiar to those in the classical
case. Nevertheless, there is a profound difference between the continuum
and the discrete case.

In either case, given a connection, a vector potential is only defined
upon specifying a moving frame. Therefore the vector potential is a matrix
valued 1-form Aα

βµe
µ, where eµ, which substitutes for dxµ, is attached to

links µ = 〈y, x〉 from x to y. But in the continuum, Aµ takes its values in
a Lie algebra of matrices, which is naturally a vector space. In the discrete
case, the vector potential must also take values in a vector space, because it
specifies elements of an algebra. When the parallel transport matrices take
their values in a group, the discrete vector potential will be in the group
algebra. To illustrate these points, let us consider the familiar case of lattice
gauge theory.

In lattice gauge theory the gauge fields are provided by parallel trans-
porters sitting on the links of the lattice. The parallel transporters are
connected with the vector potentials Aµ(x) in the continuum by

Uµ(x) = e−aAµ(x), (5.82)

where a is the lattice constant. But unlike the continuum case, the vec-
tor potential Aµ(x) is not the vector potential used to define a covariant
derivative. To see this let us define a covariant derivative of the form

Dµψ(x) = ∂µψ(x) +Bµ(x)ψ(x+ aµ) +Cµ(x)ψ(x)

=
1
a
(ψ(x+ aµ)− ψ(x)) +Bµ(x)ψ(x+ aµ) +Cµ(x)ψ(x).

Bµ(x) and Cµ(x) are supposed to compensate for the lack of gauge co-
variance of the lattice derivative. Under gauge transformations G(x), the
covariant derivative has to satisfy

D′
µψ(x)′ = G(x)Dµψ(x) (5.83)

Consequently we have

1
a (G(x+ aµ)ψ(x+ aµ)−G(x)ψ(x)) +
+ Bµ(x)′G(x+ aµ)ψ(x+ aµ) +C ′

µ(x)G(x)ψ(x)

= G(x)
(1
a
(ψ(x+ aµ)− ψ(x)) +Bµ(x)ψ(x+ aµ) +Cµ(x)ψ(x)

)
.
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Comparing coefficients of ψ(x+ aµ) and ψ(x) gives

Cµ(x)′ = G(x)Cµ(x)G(x)−1, (5.84)

Bµ(x)′ = G(x)Bµ(x)G(x+ aµ)−1 +
1
a
(G(x)G(x+ aµ)−1 − 1)

= G(x)Bµ(x)G(x+ aµ)−1 +G(x)∂µG(x)−1. (5.85)

It is consistent to set Cµ(x) = 0. For Bµ(x) we then find a transformation
rule quite similiar to the transformation behaviour of the continuum vector
potentials.In order to be consistent with the transformation rule (5.85), the
vector potential has to be related to the parallel transporter by

Bµ(x) =
1
a
(Uµ(x)− 1). (5.86)

As the parallel transporters take values in the gauge group, eq. (5.86) shows
that the vector potential Bµ(x) takes values in the group algebra. The con-
nection with the Lie algebra valued vector potentialsAµ(x) in the continuum
is given by

Uµ(x) = e−aAµ(x) = 1 + aBµ(x). (5.87)

Here Aµ(x) denotes the smooth vector potentials in the continuum being
evaluated at the lattice points xµ = nµa. Then aAµ(x) → 0 as a → 0 and
consequently one finds

−Bµ(x) −→
a→0

Aµ(x). (5.88)

Eq. (5.87) shows that the continuum vector potential Aµ(x) and the vector
potential Bµ(x) are quite different as Bµ(x) includes all higher order terms
with respect to the lattice constant and is clearly not Lie algebra valued. In
particular, unitarity of the parallel transporters does not appear as a nat-
ural requirement on the vector potential Bµ(x). This observation can be
generalized to the case of gauge theories on graphs. So one is faced with the
following situation: Classically, unitarity of the parallel transporters follows
from antihermiticity of the vector potential. However, in the algebraic ap-
proach to the discrete case there is no natural way to impose unitarity as a
requirement on the vector potential. Actually we will see that an antiher-
miticity property does not imply unitarity of the parallel transporters any
more. Therefore it is natural in this context to admit nonunitary, possibly
even noninvertible parallel transporters.

5.4.2 Hermitian structures over modules

To proceed with our discussion concerning nonunitary parallel transport,
we have to introduce Hermitian structures over modules. In particular, a
Hermitian structure will allow us to formulate a discrete analogue of the ”∗-
property” of the parallel transporters considered in section 3.3, cp. eq.(3.60).
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Classically, any complex vector bundle can be endowed with a Hermitian
structure. The conventional practice is to define a positive definite sesquilin-
ear form 〈 , 〉 on each fiber of the bundle, which has to vary smoothly with
x. The noncommutative point of view is to eliminate the notion of a point.
Consequently, what remains is a pairing V ×V → A on a finite projective
right A-module with values in the algebra A. However, we will see that in
the semicommutative setting a Hermitean structure induces a Hermitian in-
ner product on each fiber Vx = Vex of the module over the discrete manifold.
So again we find a situation being quite similar to its classical counterpart.

The properties of a Hermitian structure are collected in the following
definition.

Definition 5.11 (Hermitian Structure) A Hermitean structure over a
complex vector bundle V is a sesqui-linear map

V×V → A (5.89)

such that for all f ∈ A and all ψ, φ, ϕ ∈ V

i.)〈ψ, φ+ ϕ〉 = 〈ψ, φ〉+ 〈ψ,ϕ〉
ii.) 〈ψ, φf〉 = 〈ψ, φ〉f
iii.) 〈ψ,ψ〉 > 0, 〈ψ,ψ〉 = 0 ⇔ ψ = 0
iv.) 〈ψ, φ〉 = 〈φ, ψ〉.

As a consequence one has 〈fψ, φ〉 = f〈ψ, φ〉 The dual module V′ can be
used to express a condition of non degeneracy of an Hermitian structure.

Definition 5.12 A Hermitian structure over V is called non degenerate if
the map

V → V′, α→ 〈α, 〉 (5.90)

is an isomorphism.

In this sense, the map can be regarded as metric on V. Thus a Hermitian
structure enables one to identify the module in a basis independent way with
its dual module.

For the case of a free module An there is a canonical Hermitean structure
given by

〈ψ, φ〉 := ψ†φ =
n∑

i=1

ψiφ
i (5.91)

where ψ = (ψ1, . . . , ψn),φ = (φ1, . . . , φn) ∈ An.
As already mentioned, a Hermitian structure also gives rise to an inner

product on each fiber. Since 〈 , 〉 is A-valued it can be expressed as follows

〈 , 〉 =
∑

x

〈 , 〉xex, (5.92)
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where 〈 , 〉x denotes a C-valued map on V × V. Actually, as the notation
indicates, it is a map defined defined on Vx × Vx, as can easily be seen

〈ψ, φ〉 =
∑
x,y

〈ψ(x)ex, φ(y)ey〉

=
∑
x,y

ex〈ψ(x), φ(y)〉ey

=
∑

x

〈ψ(x), φ(x)〉ex =
∑

x

〈ψ(x), φ(x)〉xex. (5.93)

So we have the following theorem

Theorem 5.9 A Hermitian structure over a semicommutative complex vec-
tor bundle V induces on each fiber Vx a Hermitian inner product

〈 , 〉x : Vx × Vx → C (5.94)

such that for all f, g ∈ C and all ψ(x), φ(x), ϕ(x) ∈ Vx

i.)〈ψ(x), φ(x) + ϕ(x)〉x = 〈ψ(x), φ(x)〉x + 〈ψ(x), ϕ(x)〉x
ii.) 〈ψ(x), gφ(x)〉x = 〈ψ(x), φ(x)〉xg
iii.) 〈ψ(x), ψ(x)〉x ≥ 0,
iv.) 〈ψ(x), φ(x)〉x = 〈φ(x), ψ(x)〉x.
It is called non degenerate if the map

Vx → V ′x, ψ(x) → 〈ψ(x), 〉x (5.95)

is an vector space isomorphism.

Let us finally emphasize that we shall also be interested in bilinear structures
inducing bilinear inner products. This case can be treated in a similar way,
see reference [34].

5.4.3 Nonunitary parallel transporters

We saw in section 5.3 that in the context of semicommutative differential
geometry a parallel transporter 2 Tyx along 〈y, x〉 is a map

Tyx : Vx → Vy, (5.96)

where Vx := Vex. Further we argued that in this context it is natural to
admit nonunitary parallel transporter

1 6= TxyTyx : Vx → Vx. (5.97)

2Changing notation, we reserve the letter U for unitary parallel transporters, denoting
more general ones by T . Further we write B for the vector potential associated with T
and A for the vector potential associated with the unitary parallel transporters U .
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We restrict attention to the situation where all fibers Vx have the same
dimension and all parallel transporters are invertible. The case of non-
invertible parallel transporter is much more complicated and will not be
considered.

If all parallel transporters are invertible, the situation is similar to that
in the continuum. More precisely, a unique polar decomposition exists and
there are two different holonomy groups.

5.4.4 Holonomy groups

Consider a gauge theory on a graph with possibly nonunitary parallel trans-
porters. We assume that all parallel transporters are invertible. For each
site x consider loops C : x→ x composed of links
〈x0, xn〉, 〈xn, xn−1〉, . . . 〈x1, x0〉, with xi 6= xi−1. Define parallel transporters
along these loops

T (C) := Tx0xnTxnxn−1 . . . Tx1x0 : Vx → Vx. (5.98)

Then we have

Theorem 5.10 Let Txy be the possibly nonunitary parallel transporters. As-
sume that the graph or pseudograph is connected. Then

The groups Hx generated by the parallel transporters T (C) : x→ x and
their inverses are independent of x modulo isomorphism. Their equivalence
class is called the holonomy group of the connection and will be denoted by
H.

The proof is trivial.
Next, we define a ∗-operation in the holonomy group H.

Definition 5.13 A ∗-operation in the holonomy group H is defined as a
map H → H which takes

T (C) 7→ T (C)∗ := T (−C). (5.99)

It has the standard properties

(T (C2)T (C1))∗ = T (C1)∗T (C2)∗ and T (C)∗∗ = T (C). (5.100)

Furthermore, we define.
T ∗yx := Txy (5.101)

5.4.5 Polar decomposition

If H is a Lie group, we can employ theorem 3.4 to make a polar decompo-
sition of the discrete parallel transporter Txy

Txy = UxyPxy (5.102)
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with a unitary factor

Uyx : Vx → Vy, U∗yx = U−1
yx , (5.103)

and a self-adjoint factor

Pyx : Vx → Vx, P∗yx = Pyx. (5.104)

But beware: We saw in theorem 3.4 that both factors are close to the identity
of H. Therefore, in general one needs extra assumptions, cp. [34, 10]. Upon
introducing a moving frame the maps Tyx,Uyx,and Pyx are converted to
matrices and the polar decomposition (5.102) is translated into a matrix
decomposition

T xy = UxyP xy. (5.105)

Note that in general (5.105) is not the standard polar decomposition of
matrices.

The parallel transport matrices are associated with vector potentials via

T yx = 1 +Byx (5.106)
Uyx = 1 +Ayx. (5.107)

The polar decomposition (5.105) yields a polar decomposition of the corre-
sponding vector potentials

Theorem 5.11 (Polar decomposition of vector potentials) The vec-
tor potentials introduced above are related by

Byx = Uyx(P yx − 1) +Ayx. (5.108)

Proof 5.10

Byx = UyxP yx − 1

= UyxP yx −Uyx +Uyx − 1

= Uyx(P yx − 1) +Ayx. (5.109)

Let us now turn to the unitary gauge group.

Theorem 5.12 The groups Gx associated with the vector potential Ayx and
generated by the parallel transporters U(C) : x → x are independent of x
modulo isomorphism. Their equivalence class is called the Unitary Gauge
Group and shall be denoted by G.

The proof is trivial.
Note that in applications only the unitary gauge group is a local symme-

try, because the action involves the scalar product, which is preserved only
by the elements of the unitary gauge group. Nevertheless, matter fields must
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make up representation spaces of the holonomy group, since they cannot be
parallel transported otherwise. By construction, these representation spaces
are at the same time representation spaces for the unitary gauge group, but
irreducible representations may become reducible. This is a mechanism
whereby fields may be required to make up larger multiplets than required
by local symmetry. The construction principle ”local from global symmetry
via vector potentials” is thereby transcended.

Let us assume that the vector spaces Vx come equipped with a nonde-
generate bi- or sesquilinearform. We are again interested in situations where
the algebraic ∗-operation Tyx 7→ T ∗yx yields at the same time the adjoint map
between vector spaces with a bi- or sesquilinearform.

Here we focus on a Hermitian structure. For later convenience we intro-
duce also for matrix-valued forms M :=

∑
x,yMyxe

yx a ∗-operation defined
by

M∗ :=
∑
x,y

M †
yxe

yx? =
∑
x,y

M †
yxe

xy, (5.110)

where † denotes the Hermitian adjoint of a matrix.
In the literature about noncommutative geometry, one finds the following

standard definition of a unitary connection [1, 18].

Definition 5.14 A connection ∇ on V is said to be unitary or to be com-
patible with the Hermitian structure if

d〈ψ, φ〉 = −〈∇ψ, φ〉+ 〈ψ,∇φ〉. (5.111)

In (5.111) the Hermitian structure has to be extended to A-linear maps

〈 , 〉 : V⊗A Ω1 ×V → A, 〈ψ ⊗A ω, φ〉 := ω?〈ψ, φ〉 (5.112)

〈 , 〉 : V×V⊗A Ω1 → A, 〈ψ, φ⊗A ω〉 := 〈ψ, φ〉ω (5.113)

for all ψ, φ ∈ V and all ω ∈ Ω1.
Definition 5.14 is in general use, both in the classical and in the noncom-

mutative framework. Classically, a connection satisfying condition (5.111)
leads indeed to unitary parallel transporters in our sense. In the noncom-
mutative setting an interpretation is more difficult as the notion of a parallel
transporter ceases to be meaningful. Nevertheless one can show that (5.111)
results in an (anti)-hermiticity property of the vector potential.

It is a remarkable fact that in the semicommutative framework condition
(5.111) does not force the parallel transporters to be unitary, although it im-
plies also in the semicommutative case an (anti)-hermitian vector potential.
Instead, the parallel transporters associated to a connection obeying (5.111)
have only to satisfy

〈 Tyxψ(x), φ(y)〉y = 〈ψ(x), Txyφ(y)〉x, (5.114)

cp. theorem 3.5, eq.(3.60)



76 5. Gauge theories on graphs

Theorem 5.13 Let ∇ be a connection on a bidirectional graph.
Then,
1.) ∇ satisfies condition (5.111) ⇔ the associated parallel transporters fulfill

〈 Tyxψ(x), φ(y)〉y = 〈ψ(x), Txyφ(y)〉x. (5.115)

2.) ∇ satisfies condition (5.111) ⇔ the associated vector potential is Her-
mitian

B∗ = B ⇔ B†
yx = Bxy (5.116)

Proof 5.11 part 1.)

〈∇ψ, φ〉 = −〈ψ ⊗A ρ, φ〉+ 〈T (ψ), φ〉

= −ρ?〈ψ, φ〉+
∑
x 6=y

〈Tyxψ(x)⊗A eyx, φ〉

= −ρ〈ψ, φ〉+
∑
x 6=y

eyx∗〈Tyxψ(x), φ〉

= −ρ〈ψ, φ〉+
∑
x 6=y

exy〈Tyxψ(x), φ(y)〉y (5.117)

A similar calculation leads to

〈ψ,∇φ〉 = −〈ψ, φ〉ρ+
∑
x 6=y

〈ψ(y), Tyxφ(x)〉yeyx. (5.118)

Using d〈ψ, φ〉 = [ρ, 〈ψ, φ〉] and d〈ψ, φ〉+ 〈∇ψ, φ〉 = 〈ψ,∇φ〉, one arrives at∑
x 6=y

〈Tyxψ(x), φ(y)〉yexy =
∑
x 6=y

〈ψ(x), Txyφ(y)〉xexy. (5.119)

Taking into account that the basis 1-forms are linearly independent for any
reduced differential calculus, we can finally conclude that

〈 T ∗xyψ(x), φ(y)〉y = 〈ψ(x), Txyφ(y)〉x, (5.120)

with T ∗xy = Tyx.
part 2.) Eq (5.120) leads to∑

x 6=y

(Byxψ(x))†φ(y)exy =
∑
x6=y

ψ(x)†Bxyφ(y)exy (5.121)

It follows that ∑
xy

B†
xye

yx =
∑
xy

Bxye
xy ⇒ B∗ = B. (5.122)
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Note that it is crucial that the graph is assumed to be bidirectional. Other-
wise eyx? may vanish and ρ may not be self-adjoint ρ? 6= ρ.

The polar decomposition of vector potentials and parallel transporters,
respectively leads to a polar decompostion of the connection. Indeed we
know from theorem 5.6 that parallel transporters determine a connection.
Thus in the nonunitary case there are two connections.

Definition 5.15 Given a moving frame and a polar decomposed vector po-
tential, consider the possibly nonunitary connection

∇T Eα := Eβ ⊗A Bβ
α. (5.123)

The unitary connection is defined by

∇UEα := Eβ ⊗A Aβ
α. (5.124)

As a consequence, two kinds of field strength arise, associated with ∇T and
∇U respectively.

Definition 5.16 The nonunitary field strength is defined by

FT := ∇T ◦ ∇T . (5.125)

The unitary field strength is defined by

FU := ∇U ◦ ∇U . (5.126)

Now it is crucial that the field strength FT describes additional degrees
of freedom. In reference [34] it is shown that these additional degrees of
freedom can accomodate vierbein fields. In the next chapter we shall see
that they also describe Higgs fields in theories with extra dimensions.

5.4.6 Principle of equivalence

One of the corner stones of conventional gauge theories is the principle of
equivalence. Naturally the question arises, if a principle of equivalence can
be formulated within the framework of nonunitary parallel transporters on
discrete manifolds. To answer the question, let us recall the content of the
classical principle of equivalence. It asserts that the free field equation for
matter fields is valid at one point x, if a suitable moving frame is chosen
in a neighbourhood of x. Consequently, it is always possible to make the
vector potential Aµ vanish at any one point by a suitable choice of a moving
frame.
However, in general it is not possible to choose a moving frame to make
Aµ vanish in a finite region. Otherwise it would be in general possible to
transform the field strength away.
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To analyse the situation in the discrete case, we have to consider the
transformation law of the vector potential or more conveniently, of the par-
allel transport matrices (5.78). At first we shall restrict our attention on
unitary parallel transport.

It is obvious that
Uyx = 1 ⇔ Ayx = 0. (5.127)

So a gauge transformation G(x) making Uyx = 1 also forces the vector
potential to vanish. By inspection of (5.78) we see that, given a parallel
transport matrix Uyx, G(x) has to satisfy

Uyx = G(y)G(x)−1 (5.128)

in order to transform Ayx to zero. In this way we find that for any point x
all the vector potentials (Ayx)y∈M can be transformed to zero.

What is about the field strength? Consider as an example a bidirectional
graph consisting of three points x, y, z and the field strength component
F zyx. Theorem 5.7 tells us that

F zyx = U zyUyx −U zx. (5.129)

If the field strength could be gauged away, the gauge transformation would
have to satisfy

U zy = G(z)G(y)−1, (5.130)

Uyx = G(y)G(x)−1, (5.131)

U zx = G(z)G(x)−1. (5.132)

Note that in general it is not possible to find gauge transformations satisfying
(5.130)-(5.132) simultaneously. For example, if the gauge transformation
satisfies (5.130) and (5.131), then G(z)G(x)−1 is already fixed.

We conclude that also in the discrete case a principle of equivalence is
valid in the sense that by a choice of a suitable moving frame the vector
potentials (Azx)z∈M belonging to unitary parallel transport can be trans-
formed to zero for any chosen point x. However, in general this is not
possible for (Azx)z,x∈M, preventing that the field strength can be gauged
away.

There are important exceptions, as in the discrete case there are compo-
nents of the field strength which posess no classical counterpart, for example

F xyx = T xyT yx − 1. (5.133)

Clearly, F xyz vanishes anyway if the parallel transporters are unitary, T yx =
T−1

xy . Thus we have to reconsider our arguments for the nonunitary case.
Actually, there is a profound difference.
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Eq (5.128) shows that in general even locally, i.e. for fixed x, the vector
potential Byx associated with the nonunitary parallel transporters can not
be transformed away, if one permits only G ∈ G. Instead one has to employ
gauge transformations which take values in the holonomy group H. But we
have argued that only the unitary gauge group is a local symmetry. In this
sense, a gauge theory involving nonunitary parallel transporters violates the
principle of equivalence.

Let us finally mention that also gauge transformations taking their value
in H do not enable one to gauge the field strength F xyx away, as they would
have to satisfy

T yx = G(y)G(x)−1 (5.134)

T xy = G(x)G(y)−1. (5.135)

Obviously, this would only be possible if T yx = T−1
xy , in contradiction with

our assumptions.



Chapter 6

Geometry of Higgs fields

In this chapter our aim is to reveal the geometry of Higgs fields. We will use
the language and tools developed in chapter 4 and 5 to study gauge theories
on a symmetric lattice in arbitrary dimensions. It was shown by Dimakis
and Müller-Hoissen [11, 12, 14] that in the particular case of unitary parallel
transporters one obtains in this way conventional lattice gauge theory.

However, we are interested in constructing a gauge theory, which auto-
matically includes a Higgs potential and kinetic terms for Higgs fields. This
can be achieved by specializing the n-dimensional symmetric lattice theory
to a 5-dimensional theory, where the gauge fields along the extra dimension
are assumed to be nonunitary. We will compute the generalized Yang-Mills
action and show that it can be expressed entirely in terms which have a
geometric meaning. Further we point out that our tools provide a suitable
starting point for extensions of the standard model, which have been pro-
posed by C. T. Hill and others [20, 8, 9]. In these models the transverse
lattice slices appears as branes and every brane carries a 3+1 dimensional
gauge theory.

Since we shall be interested in a reinterpretation of the standard model,
it will be necessary to thin the degrees of freedom and to arrive in this way
at a 2-brane system. This may be thought of as a result of a real space
renormalization group flow.

In the 2-brane picture the matter fields live on the branes and the dif-
ferent chiralities communicate via a nonunitary Higgs parallel transporter
connecting left and right handed matter.

6.1 Symmetric lattice

The involution introduced in chapter 4 is defined in a natural way on the uni-
versal differential algebra. Also it was found to be crucial to study nonuni-
tary parallel transport, for example in the formulation of the ∗-property of
the parallel transporters, cp. theorem 5.13.

80
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However, the involution is in general not consistent with reductions of
the universal algebra, as it requires that with exy = 0 one must also have
eyx = 0. Such a reduction possessing this property is called symmetric [14].

A particular example of a symmetric reduction is the symmetric lattice.
It is obtained by choosing M := Zn = {x = (xµ)|µ = 0, . . . n − 1, xµ ∈ Z}
and by imposing the relations

exy 6= 0 ⇔ y = x+ µ̂ or y = x− µ̂ for someµ, (6.1)

where 1 µ̂ := (µν) := (δν
µ). The resulting graph is a hypercubic lattice with-

out distinguished directions, i.e. both arrows are present between connected
vertices.

It turns out to be convenient to introduce a variable ε, which takes values
in {±1}. In addition, we define eεµx := ex+εµ,x and, more generally,

eε1µ1...εrµr
x := eε2µ2...εrµr

x+ε1µ1
eε1µ1
x . (6.2)

In particular, eεµε′ν
x = ex+εµ+ε′ν,x+εµ,x.

It is important to realize that as a consequence of (6.1) there are relations
between higher forms, especially 2-forms. Acting with d on the identity

ex+εµ+ε′ν,x = 0, (6.3)

yields
ex+εµ+ε′ν,x+εµ,x = −ex+εµ+ε′ν,x+ε′ν,x (6.4)

for εµ + ε′ν 6= 0. These relations are supplemented with corresponding
relations for the case εµ+ ε′ν = 0:

ex,x+µ,x = −ex,x−µ,x. (6.5)

The relations (6.4) and (6.5) can be considered as a discrete analogue of
the classical relations

dxµ ∧ dxν = −dxν ∧ dxµ. (6.6)

They are important for the calculation of the field strength of the symmetric
lattice. Actually it was found that within the framework of the symmetric
lattice calculus it is possible to recover ordinary lattice gauge theory [14].

Nevetheless there is a profound difference. In fact, classically, expres-
sions like dxµ∧dx−µ are meaningless. Therefore in those cases a component
F µ,−µ(x) of the field strength makes no sense at all. But in the case of the
symmetric lattice calculus non-vanishing 2-forms eµ,−µ

x naturally appears.
As a consequence the resulting field strength also contains components like

1In the following we shall often omit the hat over µ.
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F µ,−µ(x), which do not have to vanish, since also nonunitary parallel trans-
porters are admitted.

In this way the resulting gauge theory is able to describe additional
degrees of freedom, which can be interpreted as a Higgs field.

To calculate the field strength for the symmetric lattice, let us start
from the general formula for the generalized field strength associated with
possibly nonunitary parallel transporters, cp. theorem 5.7:

F T =
∑
i,j,k

ekji(T kjT ji − T ki) .

Inserting j = x+ εµ and k = x+ εµ+ ε′ν yields

F T =
∑

x,ε,µ,ε′,ν

ex+εµ+ε′ν,x+εµ,x(T x+εµ+ε′ν,x+εµT x+εµ,x − T x+εµ+ε′ν,x)

=
1
2

∑
x,ε,µ,ε′,ν

ex+εµ+ε′ν,x+εµ,x(T x+εµ+ε′ν,x+εµT x+εµ,x − T x+εµ+ε′ν,x)

+
1
2

∑
x,ε,µ,ε′,ν

ex+εµ+ε′ν,x+ε′ν,x︸ ︷︷ ︸
=−ex+εµ+ε′ν,x+εµ,x

(T x+εµ+ε′ν,x+ε′νT x+ε′ν,x − T x+εµ+ε′ν,x)

=
1
2

∑
x,ε,µ,ε′,ν

ex+εµ+ε′ν,x+εµ,x(T x+εµ+ε′ν,x+εµT x+εµ,x −

+ T x+εµ+ε′ν,x+ε′νT x+ε′ν,x)

=:
1
2

∑
x,ε,µ,ε′,ν

eεµ,ε′ν
x F Tεµ,ε′ν(x). (6.7)

The geometric information encoded in F T can be revealed by employing the
exterior covariant derivative of endomorphism-valued forms. We find, cp.
5.40,

Theorem 6.1

F T =
1
2
d∇T =

1
2

∑
x,ε,µ,ε′,ν

eεµ,ε′ν
x DT

εµT ε′ν(x), (6.8)

where DT
εµT ε′ν(x) is defined as

DT
εµT ε′ν(x) := T ε′ν(x+ εµ)T εµ(x)− T εµ(x+ ε′ν)T ε′ν(x). (6.9)

Note that we have introduced the notation T εµ(x) := T x+εµ,x.

Proof 6.1 By definition,

d∇T = dT +BT + TB (6.10)



6.1. Symmetric lattice 83

Now we use 4.29

dT = d
∑
x,εµ

T x+εµ,xe
x+εµ,x = ρT + T ρ−

∑
x,εµ

T x+εµ,xe
x+εµρ2ex

= ρT + T ρ, (6.11)

because ex+εµρ2ex has to vanish for a symmetric lattice. Furthermore, we
have

B = T − ρ. (6.12)

Consequently, we arrive at

d∇T = ρT + T ρ+ T 2 − ρT + T 2 − T ρ
= 2T 2. (6.13)

T 2 =
∑

x,ε,µ,ε′,ν

ex+εµ+ε′ν,x+εµ,xT x+εµ+ε′ν,x+εµT x+εµ,x

=
1
2

∑
x,ε,µ,ε′,ν

ex+εµ+ε′ν,x+εµ,xT x+εµ+ε′ν,x+εµT x+εµ,x

+
1
2

∑
x,ε,µ,ε′,ν

ex+εµ+ε′ν,x+ε′ν,x︸ ︷︷ ︸
=−ex+εµ+ε′ν,x+εµ,x

T x+εµ+ε′ν,x+ε′νT x+ε′ν,x

=
1
2

∑
x,ε,µ,ε′,ν

ex+εµ+ε′ν,x+εµ,x(T x+εµ+ε′ν,x+εµT x+εµ,x −

+ T x+εµ+ε′ν,x+ε′νT x+ε′ν,x)
= F T . (6.14)

q.e.d.

Unfortunately, (6.8) is not right for general graphs.

Remark 6.1 In general,

F T 6= 1
2
d∇T , (6.15)

because ekρ2ei does not have to nanish. Thus one gets

d∇T = 2T 2 −
∑
k,i

T kie
kρ2ei

=
∑
k,j,i

(
2T kjT ji − T ki

)
ekji

6=
∑
k,j,i

(
T kjT ji − T ki

)
ekji = 2F T . (6.16)
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Since
DT

εµT ε′ν(x) = −DT
ε′νT εµ(x), (6.17)

the components F Tεµ,ε′ν(x) of the field strength are antisymmetric. For later
use we note that

(DT
εµT ε′ν(x))† = DT

−εµT−ε′ν(x+ εµ+ ε′ν). (6.18)

We saw that in the framework of nonunitary parallel transport there are
two different connections. Therefore we can define a second kind of covariant
derivative associated with unitary parallel transport

DU
εµT εµ(x) := T ε′ν(x+ εµ)U εµ(x)−U εµ(x+ ε′ν)T ε′ν(x). (6.19)

Notice that DU
εµ is only covariant under unitary gauge transformations, in

contrast to DT
εµ.

The field strength associated with the unitary connection can be written
as

F Uεµε′ν(x) = DU
εµU ε′ν(x). (6.20)

According to the two possibilities

εµ+ ε′ν 6= 0 and εµ+ ε′ν = 0, (6.21)

the field strength splits in two qualitatively different parts

F T =
1
2

∑
x,εµ6=−ε′ν

eεµ,ε′ν
x

(
T ε′ν(x+ εµ)T εµ(x)− T εµ(x+ ε′ν)T ε′ν(x)

)
+

1
2

∑
x,ε,µ

eεµ,−εµ
x (T−εµ(x+ εµ)T εµ(x)− T εµ(x− εµ)T−εµ(x))

=:
1
2

∑
x,µ 6=ν

eεµ,ε′ν
x F Tεµ,ε′ν(x) +

1
2

∑
x,ε,µ

eεµ,−εµ
x F Tεµ,−εµ(x). (6.22)

Formula (6.22) shows explicitly that the field strength F T involves addi-
tional degrees of freedom due to the existence of F Tεµ,−εµ(x). Therefore
a nonunitary gauge theory is richer than a conventional gauge theory and
opens the possibility to adress issues which are not known to ordinary gauge
theories.

In fact, we shall see that these additional degrees of freedom lead to a
suitable Higgs potential.

If all parallel transporters are unitary T εµ(x) = U εµ(x), the second part
of the field strength has to vanish, as is easily seen

DU
εµU−εµ(x) = U−εµ(x+ εµ)U εµ(x)−U εµ(x− εµ)U−εµ(x) (6.23)

= U−εµ(x+ εµ)U−1
−εµ(x+ εµ)−U εµ(x− εµ)U εµ(x− εµ)−1 = 0. (6.24)
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6.2 Generalized Yang-Mills action

To write down a Yang-Mills action, one has to introduce an appropriate
inner product on the space of differential forms. We follow [14] and define a
map 〈 , 〉Ω : Ω× Ω → C, which is defined by〈

eε1µ1,...,εrµr

i , e
ε′1ν1,...,ε′sνs

j

〉
Ω

:= (2l2)−rδr,sδi,jδ
ε′1ν1,...,ε′rνr
ε1µ1,...,εrµr , (6.25)

where l ∈ R+ and

δ
ε′1ν1,...,ε′rνr
ε1µ1,...,εrµr := δ

ε′1ν1

[ε1µ1
· · · δε′rνr

εrµr] =
r∑

k=1

(−1)k+1δ
ε′1ν1
εkµkδ

ε′2ν2,...,ε′rνr

ε1µ1,...,êkµ̂k,...,εrµr
. (6.26)

For 2-forms one gets〈
eε1µ1,ε2µ2
i , e

ε′1ν1,ε′2ν2

j

〉
Ω

= (4l4)−1δi,jδ
ε′1ν1,ε′2ν2
ε1µ1,ε2µ2 (6.27)

Finally the inner product on Ω has to be extended to matrix-valued
forms by

〈ψ,φ〉Ω =
∑

i1...irj1...js

ψ†i1...ir
〈ei1...ir , ej1...js〉Ωφj1...js

. (6.28)

Now we are ready to write down a generalized Yang-Mills action. It is
defined by

SY M := tr〈F T ,F T 〉Ω. (6.29)

Note that the action is only invariant under unitary gauge transformations,
but not under H-transformations, according to our general theory in chapter
5.

Using (6.25) and (6.28), we arrive at

SY M =
1

8l2
tr

∑
x,εµ,ε′ν

F T †εµε′ν(x)F
T
εµε′ν(x) (6.30)

=
1

8l2
tr

[ ∑
x,εµ6=ε′ν

DT
εµT

†
ε′ν(x)D

T
εµT ε′ν(x) +

+ tr
∑
x,εµ

DT
εµT

†
−εµ(x)DT

εµT−εµ(x)
]
. (6.31)

We see that the Yang-Mills action can be written in a kinetic type form.
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More explicitly, we have

SY M =
1

4l2
tr

[ ∑
x,εµ6=ε′ν

{
T−εµ(x+ εµ)T−ε′ν(x+ εµ+ ε′ν)T ε′ν(x+ εµ)T εµ(x) +

− T−ε′ν(x+ ε′ν)T−εµ(x+ εµ+ ε′ν)T ε′ν(x+ εµ)T εµ(x)
}

+

+
∑
x,εµ

{
T−εµ(x+ εµ)T εµ(x)T−εµ(x+ εµ)T εµ(x) +

− T εµ(x− εµ)T−εµ(x)T−εµ(x+ εµ)T εµ(x)
}]
. (6.32)

We emphasize that the described formalism includes conventional lattice
gauge theory. More precisely, in the special case that all parallel trans-
porters are unitary we recover the ordinary Wilson action of conventional
lattice gauge theory. In this case we have already seen that the diagonal
components F Tεµ,−εµ(x) of the field strength has to vanish and so we are left
with

SWilson = tr〈F U ,F U 〉Ω =
1

8l2
tr

∑
x,εµ,ε′ν

(DU
εµU ε′ν(x))†DU

εµU ε′ν(x)

=
1

8l2
tr

∑
x,εµ,ε′ν

(DU
−εµU−ε′ν(x+ εµ+ ε′ν)DU

εµU ε′ν(x)

=
1

4l2
tr

∑
x,εµ,ε′ν

[
1−

+ U−ε′ν(x+ ε′ν)U−εµ(x+ εµ+ ε′ν)U ε′ν(x+ εµ)U εµ(x)
]
.

This is the Wilson action of conventional lattice gauge theory.

6.3 Geometry of Higgs fields

Up to now we have constructed general nonunitary gauge theories in ar-
bitrary dimensions. To obtain theories being more close to the standard
model, we specialize to a 5-dimensional theory with a finite lattice describ-
ing the extra dimension. Furthermore we assume that only the gauge fields
propagating along the extra dimension are nonunitary.

The model lives on the discrete manifold Z4 ×N , where
N = {0, . . . , N − 1} shall be considered as a subset of Z equipped with the
induced differential calculus. Z4 ×N may be viewed as a N-brane system,
where the N transverse lattice slices are the branes. Recently such multi-
brane systems have received considerably interest. It was shown that they
can be used to study extra-dimensional extensions of the standard model.
Note that the choice Z4 ×N corresponds to a model with free boundary
conditions, known as aliphatic model. Another possibility is to consider
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Z4×ZN . This choice leads to a periodic model in which the zeroth and Nth
brane are linked together with an additional nonunitary parallel transporter.

To deal with a theory living on Z4 ×N it is convenient to change our
notation slightly. Let x = (xµ) ∈ Z4, µ = 0, . . . 3 and define xi := x + i5̂ ∈
Z4 ×N , i = 0, 1, . . . N − 1.

Z4 × N is a symmetric graph, but is no longer a symmetric lattice.
In particular, the 1-forms ex0,xN−1 , exN−1,xN−1+5 and ex0,x0−5 vanish. In
contrast, Z4×ZN corresponds to a reduction exy 6= 0 ⇔ y = x+µ modN or
y = x+µ modN . Therefore in this case the 1-forms ex0,xN−1 , exN−1,x0 exist.

As a consequence of the vanishing “boundary 1-forms”, the correspond-
ing field strength of the N-brane system has to be modified sligthly. Using
the additional constraint

exi+εµ+5,xi = 0 ⇒ exi+εµ+5,xi+εµ,xi = −exi+εµ+5,xi+5,xi , (6.33)

the calculation of the field strength is very similar to the symmetric lattice
case

Starting again from the general formula an easy but tedious calculation
yields 2

F T =
1
2

N∑
i=0

∑
x,εµ,ε′ν,

exi+εµ+ε′ν,xi+εµ,xiF Uεµ,ε′ν(xi) +

+
1
2

N−1∑
i=1

∑
x,εµ,ε′ν,

exi+εµ+ε′5,xi+εµ,xiDU
εµT ε′5(xi) +

+
1
2

∑
x,εµ

ex0+εµ+5,x0+εµ,x0DU
εµT 5(x0) +

+
1
2

∑
x,εµ

exN+εµ−5,xN+εµ,xNDU
εµT−5(xN ) +

+
1
2

N−2∑
i=2

∑
x,ε,ε′,

exi+ε5+ε′5,xi+ε5,xiF Uε5,ε′5(xi) +

+
∑

i=0,N−1

∑
x

exi,xi+5,xi
[
T−5(xi + 5)T+5(xi)− 1

]
+
∑

i=1,N

∑
x,εµ,ε′ν,

exi,xi−5,xi
[
T+5(xi + 5)T−5(xi)− 1

]
(6.34)

Note that by assumption we have F Tεµ,ε′ν = F Uεµ,ε′ν . At this point it is worth
digressing a little and reviewing the work of C.T. Hill and others.

Recently there has been considerable interest in theories of extra dimen-
sions emerging not far from the weak scale. The motivation arises from

2For later convenience we consider a (N+1)-brane system.
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string theories which admit an arbitrary hierarchy between the compactifi-
cation scale of the extra dimensions and the fundamental string scale.

Extra dimensions can not be observed directly, but rather they appear in
accelerator experiments as new particles, which are known as Kaluza-Klein
(KK) modes. These are the excited modes of existing fields that propagate
in the compact extra dimension.

As KK-modes begin to appear in accelerator experiments, one may ask
how are they to be described in an effective 4-dimensional Lagrangian, with-
out an a priori knowledge of the existence of the extra dimensions themselves.
Asking this question has led to a new class of KK models known as decon-
struction. Independently, the ”Harvard group” of Arkani-Hamed, Cohen
and Georgi [4, 5, 3] and the ”Fermilab group” of Hill, Pokorski, Wang and
Cheng [20, 8, 9] have employed a lattice to describe the extra dimensions.
More precisely, the 3+1 dimensions of space-time are considered to be con-
tinuos, while the extra compact dimensions are latticized. This construction
is known as a transverse lattice [7]. By using the lattice technique, the ex-
tra dimensions can be integrated out and so one obtains a gauge invariant
effective 4-dimensional Lagrangian describing KK-modes.

To get a flavor for deconstruction, let us consider as an example an
extension of QCD with N + 1 gauge groups SU(3)i. The 3+1 dimensional
Lagrangian is

L = −1
4

N∑
i=0

F a
iµνF

iaµν + tr
N∑

n=1

DµΦ†iD
µΦi (6.35)

There are N Higgs fields Φi and the kth field transforms as an (3̄i,3i−1) rep-
resentation. The covariant derivative is defined as Dµ = ∂µ+ig

∑N
i=0A

a
iµL

a
i .

g is a dimensionless gauge coupling constant being common to all of the
SU(3)i gauge groups. La

i are the generators of the ith SU(3)i, where a de-
notes the color index. One has [Li, Lj ] = 0 for i 6= j and when the covariant
derivative acts upon Φi one has a commutator of the gauge part with Φi,
i.e. La†

i acts on the left and La
i−1 on the right.

By introducing a potential for each Higgs field by hand, they develop a
vacuum expectation value v and may be parameterized as

Φi → v exp(φa
iL

a
i /v). (6.36)

As a result, the kinetic terms of the Higgs fields lead to a mass matrix for
the gauge fields

1
2
v2g2

N∑
i=1

(Aa
(i−1)µ −Aa

iµ)2 (6.37)

By diagonalization one obtains the eigenvalues

Mn = 2vg sin
(

πn

2(N + 1)

)
, n = 0, . . . , N (6.38)
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Consequently, for small n one is faced with a KK tower of masses given by

Mn ≈
gvπn

N + 1
, n� N, (6.39)

where n = 0 corresponds to the zero-mode gluon. In order to match on to
the spectrum of the KK modes, one has to require

gvπ

N + 1
=
π

R
, (6.40)

where R is the size of the compactified extra dimension. In this way, the
3+1 dimensional theory given by (6.35) with N+1 gauge groups and N Higgs
fields Φi provides a gauge invariant description of the first n KK modes by
generating the same spectrum 3.

Now the point is that the described 3+1 dimensional gauge theory cor-
reponds to a transverse lattice description of a full 4+1 dimensional gauge
theory with lattice size R and lattice constant l. This construction describes
a foliation of branes, each spaced by the lattice cut-off l. The number of
branes is N + 1 = R/l + 1.

Now let us return to the nonunitary gauge theory on the discrete man-
ifold Z4 ×N . The short review presented above shows that our formalism
developed so far provides suitable tools to deal also with deconstruction
models. Actually, in the framework of nonunitary gauge theories it is quite
natural to place different gauge groups on different branes. The nonunitary
parallel transporters connecting the branes can be viewed as the described
Higgs fields Φi. In particular, they possess the ”right” transformation prop-
erties. In this way the action

SY M = tr〈F T ,F T 〉Ω, (6.41)

where F T is given by (6.34), provides a full lattice description of the trans-
verse lattice model.

Taking into account the orthogonality of the 1-forms, one gets

SY M =
1

8l2
tr

N∑
i=0

∑
x,εµ,ε′ν

F U†εµε′ν(xi)F Uεµε′ν(xi) +

+
1

8l2
tr

N−1∑
i=1

∑
x,εµ,ε′

(DU
εµT ε′5(xi))†(DU

εµT ε′5(xi) +

+
1

8l2
tr
∑
x,εµ

(DU
εµT 5(x0))†(DU

εµT 5(x0) +

+
1

8l2
tr
∑
x,εµ

(DU
εµT−5(xN ))†(DU

εµT−5(xN ) + . . . , (6.42)

3This is the spectrum assuming free boundary conditions. With periodic boundary
conditions one has N + 1 Higgs fields, because there is an additional field linking the first
gauge group to the last. As a consequence, the spectrum is changed. One gets a zero-mode
corresponding to Aa

5 and the KK modes are doubled.
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where the dots indicate further terms involving only nonunitary parallel
transporters.

We have repeatedly seen that
∑

x,εµ,ε′ν F
U†
εµε′ν(xi)F Uεµε′ν(xi) yields the

Wilson action, so in the continuum limit the first sum in (6.42) gives actually
N+1 copies of an ordinary 3+1 continuum gauge theory, cp. (6.35).

To see, whether the other terms in (6.42) yield the kinetic terms of the
Higgs fields, we write T 5(xi) =: Φi+1(x) and expand

T 5(xi + µ) = Φi+1(x+ µ) = Φi+1(x) + l∂µΦi+1(x) +O(l2) (6.43)
Uµ(xi) = 1− lAi

µ(x) +O(l2). (6.44)

Note that in (6.44) Ai
µ(x) means the Lie algebra valued vector potential.

With (6.43) and (6.44) we arrive at

DU
µT 5(xi) = l

(
∂µΦi+1(x) +A(i+1)µ(x)Φi+1(x)

− Φi+1(x)Aiµ(x)
)

+O(l2) (6.45)

= lDµΦi+1(x) +O(l2). (6.46)

Thus we recover also the kinetic terms for the Higgs fields in (6.35).

6.3.1 2-brane system

We have seen that a general N-brane system describes extensions of the
standard model. The standard model itself may be obtained if we start
from a N-brane system and thin the degrees of freedom, thus arriving at
a 2-brane system which can be pictured by the discrete manifold Z4 × 2
with 2 = {0, 1}. Again the gauge fields propagating along the fifth extra
dimension are assumed to be nonunitary. The resulting field strength is
easily obtained from our formula (6.34):

F T =
1
2

∑
i=L,R

∑
x,εµ,ε′ν,

exi+εµ+ε′ν,xi+εµ,xiF Uεµ,ε′ν(xi) +

+
1
2

∑
x,εµ,ε′ν,

exL+εµ−5,xL+εµ,xLDU
εµT−5(xL) +

+
1
2

∑
x,εµ,ε′ν,

exR+εµ+5,xR+εµ,xRDU
εµT 5(xR) +

+
∑

x,εµ,ε′ν,

exR,xR+5,xR
[
T−5(xR + 5)T+5(xR)− 1

]
+

+
∑

x,εµ,ε′ν,

exL,xL−5,xL
[
T+5(xL − 5)T−5(xL)− 1

]
. (6.47)

One finds that the field strength splits into three different parts. Since the
corresponding two forms are orthogonal to each other

〈eεµ,ε′ν
x , eεµ,5

x 〉 = 0 = 〈eεµ,ε′ν
x , e5,−5

x 〉 = 〈eεµ,5
x , e5,−5

x 〉, (6.48)
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the split of the field strength leads to a corresponding split of the generalized
Yang-Mills action into three qualitatively different parts.

SY M = tr〈F T ,F T 〉Ω

=
1

8l2
tr

[ ∑
i=L,R

∑
x,εµ6=ε′ν

F U†εµε′ν(xi)F Uεµε′ν(xi) +

+
∑
x,εµ

(DU
εµT−5(xL))†DU

εµT−5(xL) +
∑
x,εµ

(DU
εµT 5(xR))†DU

εµT 5(xR)
]

+

+
1

4l2
tr

[∑
x

[
T−5(xR + 5)T+5(xR)− 1

]2 +

+
∑

x

[
T−5(xL − 5)T−5(xL)− 1

]2]
. (6.49)

We find that the first part of the generalized action yields the Wilson actions
for two 3+1 dimensional ordinary gauge theories, one living on the ”left-
handed” brane, the other carried by the “right-handed”. The second part
is already written in a kinetic type form. Actually, we shall see in the next
chapter that these terms provide the usual kinetic terms of the standard
model Higgs. The third part gives a Higgs potential, which vanishes, if the
parallel transport in the fifth direction is unitary. Let us write T 5(xR) :=
Φ(x) and T−5(xL) := Φ†(x). Then we have

tr(
∑

x

[F T †5,−5(xL)F T5,−5(xL) + F T †−5,5(xR)F T−5,5(xR)]

= 2tr
∑

x

(Φ†(x)Φ(x)− 1)2 =:
∑

x

VHiggs(Φ). (6.50)

Note that by defining T xR,xR−5 = 1 = T xL,xL+5 also the Higgs potential
can be expressed as a covariant derivative, cp. (6.9)

F T5,−5(xL) = DT
5 T−5(xL) (6.51)

Thus again we find that the complete action can be recast in a kinetic type
form.

We discussed in chapter 4 that the emergence of pseudographs may be
viewed as a result of a multiscale analysis, which also includes dimensional
reduction. Therefore it is natural to apply our formalism of gauge theories
on pseudographs to our Higgs model considered in this subsection. Thus we
shall arrive at a 4-dimensional theory, where the Higgs fields are treated as
nonunitary gauge fields attached to the loops of the pseudograph.

The vector potential on a pseudograph can be decomposed as

B = Axye
xy + P xxe

xx + P †
xxe

xx? (6.52)
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The field strength is defined by

F T := dB +BB (6.53)

Using (4.66) one obtains

F T = dA+AA+
∑

x

[
(P xxP

†
xx − 1)exxexx? + (P †

xxP xx − 1)exx?exx
]
+

+
∑
x,y

[(P xx − 1) + (P †
xx − 1)]exyx +

+
∑
x,y

[
(UxyP yy −Uxy)exyeyy + (UxyP

†
yy −Uxy)exyeyy? +

+ (P xxUxy −Uxy)exxexy + (P †
xxUxy −Uxy)exx?exy

]
. (6.54)

Next, let us apply our general formula for the field strength to the sym-
metric lattice Z4 supplemented with loops attached to every point x ∈ Z4.
We obtain

F T = dA+AA+
∑

x

[
(P xxP

†
xx − 1)exxexx? + (P †

xxP xx − 1)exx?exx
]
+

+
∑
x,εµ

[(P xx − 1) + (P †
xx − 1)]ex,x+εµ,x +

+
∑
x,εµ

[
(Ux+εµ,xP xx −Ux+εµ,x)ex+εµ,xexx +

+ (Ux+εµ,xP
†
xx −Ux+εµ,x)ex+εµ,xexx? +

+ (P x+εµ,x+εµUx+εµ,x −Ux+εµ,x)ex+εµ,x+εµex+εµ,x +

+ (P †
x+εµ,x+εµUx+εµ,x −Ux+εµ,x)ex+εµ,x+εµ?ex+εµ,x

]
. (6.55)

To compute the Yang-Mills action we have to extend the inner product
(6.25) on forms involving exx and exx?, respectively. We define

〈exxexx?, exxexx?〉Ω = (2l)−2 = 〈exx?exx, exx?exx〉Ω (6.56)

and
〈exxexx?, exx?exx〉Ω = 0 = 〈exx?exx, exxexx?〉Ω. (6.57)

Furthermore we write

eεµ,0
x := ex+εµ,xexx, eεµ,0?

x := ex+εµ,xexx? (6.58)

and analogoulsy we define e0,εµ
x and e0?,εµ

x . Now we can apply (6.25) by
treating 0 and 0? in the same way as εµ and ε′ν. For example, we get

〈eεµ,0
x , e0,εµ

x 〉Ω = −(2l)−2. (6.59)
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With these definitions and assuming P †
xx = P xx we arrive at the follow-

ing action

SY M = SWilson +
1

4l2

[
2tr
∑

x

[P 2
xx − 1]2 + 4tr

∑
x

[P xx − 1]2 +

+ tr
∑
x,εµ

(DU
εµP (x))†DU

εµP (x)
]
, (6.60)

where we have defined P (x) := P xx. Note that we find now a true 4-
dimensional theory in the sense that there is no sum of several Wilson ac-
tions, in contrast to the N-brane models considered before. Nevertheless
the generalized Yang-Mills action contains a suitable Higgs potential, and a
kinetic type term, which is defined as

DU
εµP (x) := P (x+ εµ)U εµ(x)−Uµ(x)P (x). (6.61)

6.4 Reinterpretation of the standard model

In the last section it was shown that a generalized Yang-Mills action involv-
ing nonunitary parallel transporter automatically includes a Higgs potential
and kinetic Higgs terms. The present section is based on joint work with M.
Olschewsky and B. Angermann [35, 2].

We propose a reinterpretation of the standard model. More precisely, we
interpret the Higgs field as a nonunitary parallel transporter along an extra
dimension through a space time defect connecting left-and right handed mat-
ter. In this picture, the unitary gauge group is conventional. The holonomy
group H is generated by the unitary gauge group, the conventional Higgs
field, Kobayashi-Maskawa and mass matrix.

Matter fields must make up representation spaces of the holonomy group,
quarks of all three generations belong to a single irreducible representation
of the holonomy group H. These representation spaces are at the same time
representation spaces for the unitary gauge group, but irreducible represen-
tation spaces may become reducible. Thus the matter fields are forced to
make up larger multiplets than required by local symmetry.

6.4.1 The bilayered membrane

We assume that left and right handed matter fermions live on the opposite
boundaries of a domain wall. Equivalently, one can imagine that they sit on
two different 3 + 1 dimensional branes embedded in a 5-dimensional space,
similar to the models studied above. The space time domain between the
two boundaries will be called bulk later on. Here we look at an effective
theory, in which the distance between the two branes is one lattice spacing.

Such a scenario shall also be called bilayered membrane.
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We confine ourselfes to the quark sector of the standard model and ne-
glect color. In addition we imagine that all three generations of left handed
quarks belong to one irreducible representation space of the holonomy group
H. In the standard model the representation space of H is a six-dimensional
complex vector space VL ⊗ C3, where VL is the two dimensional represen-
tation space of the left handed gauge group GL = SU(2) × U(1) and C3

describes flavor. Similarly, the right handed quarks belong to an isomorphic
6-dimensional representation space (VR ⊕ ṼR)⊗C3 of H, where VR and ṼR

are 1-dimensional representation spaces of the right handed gauge group
GR = U(1)Y with hypercharge Y = +2/3 and Y = −1/3, respectively. The
unitary gauge group is GR = U(1)Y .

The Higgs fields in our sense map between them

Φ : (VR ⊕ ṼR)× C3 → VL ⊗ C3 (6.62)

Φ† : VL ⊗ C3 → (VR ⊕ ṼR)⊗ C3. (6.63)

It is well known that conventional gauge fields connect same chiralities, L
to L and R to R, respectively. Note that our Higgs is thought to be a
nonunitary parallel transport along an extra dimension connecting different
chiralities.

To make contact with the formalism developed above the vector spaces
(VR ⊕ ṼR)×C3 and VL ⊗C3 are considered as fibers of a right module over
the discrete manifold Z4 ×N . Let V denotes the module, then the fibers
are given by

VeR := VR := (VR ⊕ ṼR)⊗ C3, VeL := VL := VL ⊗ C3. (6.64)

The Higgs and its adjoint get identified with

Φ(x) := T+5(xR), Φ(x)† := T−5(xL), (6.65)

cp. section 6.3.1.
In chapter 7 we shall argue that nonunitary parallel transporters natu-

rally emerge after a renormalization group step, even if one starts from a
fundamental theory which involves unitary Higgs fields only. The bilayered
membrane may be viewed as the endpoint of a renormalization group flow.
There will be a Higgs potential which is to be determined as a result of the
renormalization group flow. We will see in chapter 7 that the quark masses
could be determined if the Higgs potential could be computed. The value of
Φ at the minimum of the Higgs potential will contain the information that
goes into the quark masses.

Writing ϕ for the conventional Higgs doublet,

ϕ =
(
ϕ0

ϕ+

)
ϕ̃ =

(
−ϕ̄+

ϕ̄0

)
, (6.66)
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with

ϕ : VR → VL (6.67)
ϕ̃ : ṼR → VL, (6.68)

the Higgs parallel transporter Φ through the defect will have the form

Φ = (ϕMU , ϕ̃MD) =
(
ϕ0MU −ϕ̄+MD

ϕ+MU ϕ̄0MD.

)
. (6.69)

Neglecting fluctuations of the Higgs field Φ around the minimum of the
Higgs potential, MU ,MD will be constant 3× 3 matrices

MU ,MD : C3 → C3. (6.70)

The mass matrices can be diagonalized through a biunitary transformation,

MU = A†LmUAR, mU = diag(mu,mc,mt) (6.71)

MD = B†LmUBR, mD = diag(md,ms,mb), (6.72)

where mu, ect. denotes the quark masses and AL, AR, BL, BR are unitary
3× 3 matrices. Note that the Kobayashi Maskawa matrix is

CCKM = ALB
†
L. (6.73)

Going to unitary gauge ϕ0 = ρ, ϕ+ = 0, and transforming away AR, BR

by a basis change, the Higgs parallel transporter Φ can be polar decomposed
as follows

Φ = ΦU

(
mU 0
0 mD

)
ρ =

(
A†LmU 0

0 B†LmD

)
ρ. (6.74)

The result of parallel transporting forth and back along the fifth dimension
through the defect is

Φ†Φ =
(
m2

U 0
0 m2

D

)
ρ. (6.75)

We find that if the Higgs was a unitary parallel transporter, all quark masses
would be equal.

Let us now consider the elements of the holonomy groupHtot of the whole
theory, including the boundaries of the defect. Its elements are the paral-
lel transporters along paths which may pass throught the defect, possibly
several times forth and back, and their inverses. The parallel transporters
along pieces of path below the defect will be of the form

U(C) = U(C)L ⊗ 13×3, (6.76)
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where

U(C)L =
(
U11 U12

U21 U22

)
∈ SU(2)× U(1) (6.77)

denotes standard parallel transporters. The parallel transporters along
pieces of path above the defect will be unitary matrices UR⊗13×3, where UR

are diagonal 2 × 2 matrices whose nonvanishing entries are representation
operators of U(1).

If we go to unitary gauge, the parallel transporter along a closed path
which passes once across the defect, forth and back, will be of the form

URΦ†ULΦ = UR

(
mU 0
0 mD

)(
U111 CCKMU12

C†CKMU21 U221

)(
mU 0
0 mD

)
ρ2.

(6.78)
Note that the Kobayashi-Maskawa matrix is involved. Furthermore we no-
tice that the difference of the quark masses is responsible for the fact that
the holonomy group H is larger than the unitary gauge group. It is impor-
tant to realize that since H involves nonunitary matrices in the conventional
sense, it has to be a noncompact group. Noncompact groups can have ex-
panding and compressing factors, respectively. This will be exploited in the
next chapter to explain the huge differences of the fermion masses.

Let us recall the Yukawa term of the standard model [22]

LY ukawa = qLϕMUqR + qLϕ̃MUqR + h.c.. (6.79)

Its underlying geometry can be revealed by employing the covariant deriva-
tives introduced in chapter 5, eq. (5.76). Let ψ(xL) := qL, ψ(xR) := qtot

R :=
(qR, q̃R)t and define

D5qL(x) := T+5(xR)ψ(xR)−Ψ(xL) = Φ(x)qtot
R (x)− qL(x) (6.80)

D−5q
tot
R (x) := T−5(xL)ψ(xL)−Ψ(xR) = Φ(x)†qL(x)− qtot

R (x),(6.81)

cp. (6.65). The Yukawa interaction now appears as a consequence of a
generalized minimal coupling principle, which has a geometric meaning. In
fact, due to q̄LqL = 0 = q̄tot

R qtot
R we find 4

LY ukawa = q̄LD5qL + q̄tot
R D−5q

tot
R , (6.82)

it takes the form of a Dirac matter Lagrangian.

4We regard qL as Dirac spinor with (1 + γ5)qL = 0.



Chapter 7

Origin of quark masses and
CKM-matrix

Up to now we have discussed the geometric interpretation of Higgs fields.
More precisely, we have shown that Higgs fields are associated with nonuni-
tary parallel transporters along extra directions.

If one were to use unitary parallel transporters for this purpose both in
the fundamental theory from which one starts and for all effective theories
deduced from it by real space renormalization group transformations, then
one would end up with a nonrenormalizable 4-dimensional effective theory,
a gauged nonlinear σ-model. This suggests to admit RG-transformations
which lead to nonunitary block parallel transporters in the linear span of
the gauge group.

When the parallel transporters become nonunitary there appears a Higgs
potential, which possesses a characteristic biinvariance property due to the
peculiar behaviour of parallel transporters under gauge transformations. Its
importance was first noticed in the study of the RG-flow of a 1-dimensional
model [27].

This chapter is based on joint work with G. Mack and C. Lehmann [26].
We propose a model which exploits these features to explain the origin of
the splitting of the masses of quarks of different flavors. If the theory is an
ordinary gauge theory to begin with and the nonunitary parallel transporter
and their potential appear only as a result of a RG-flow, then the quark
mass ratios and the Cabbibo-Kobayashi-Maskawa matrix are computable in
principle.

7.1 Lessons from renormalization group

The crucial feature of our model is a characteristic biinvariance property of
the Higgs potential. To understand its origin, one is led to the question how
Higgs fields come into an effective local theory at intermediate scales.

97
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Effective theories have an ultraviolett-cutoff M with the dimension of a
mass. M can be lowered by a renormalization group transformation. We
assume that the cutoff is introduced in the form of a lattice.

Our hypothesis is that Higgs fields make their appearance in higher di-
mensional field theories. At the level of effective theories, they are nonuni-
tary parallel transporters Φ along the links of the lattice in the extra direc-
tion(s). The Higgs fields take their values in a group H, which is typically
noncompact and larger than the unitary gauge group. They can arise from
unitary parallel transporters, i.e. ordinary gauge theories without Higgs
fields, through real space renormalization group transformations.

This mechanism can be illustrated in part by a 1-dimensional model
[27]. Let us discuss the effect of the conventional 4 space time dimensions
which have been ignored in the 1-dimensional model. We call these the
perpendicular directions.

In the 1-dimensional model, the ordinary gauge theory is a fix point.
So one needs a theory in which there are some, albeit arbitrarily small,
fluctuations of the length of Φ to start a nontrivial flow.

When the conventional four dimensions are taken into account, two
things are expected to happen.

Coarsening in the perpendicular directions, which is involved in the con-
struction of a block spin Φ from unitary parallel transporters u on the links
along the extra dimension will produce Φ in the linear span of the unitary
gauge group G. Noninvertible Φ will have measure zero.

At some scale one will be prevented from reducing to a ordinary gauge
theory by integrating out the length of Φ. More precisely, the selfadjoint fac-
tor p in the polar decomposition Φ = up can not be integrated out, because
otherwise the effective theory will become nonlocal in the perpendicular di-
rections. This will happen when the mass m determined by the curvature
at the minima of the Higgs potential falls below the cutoff scale M .

Consequently, there will be a domain of scales where the effective theory
needs a Higgs field for its locality.

When the parallel transporter Φ becomes nonunitary, a Higgs potential
V (Φ) with a biinvariance property arises. More precisely, under unitary
gauge transformations the parallel transporter Φ transforms as

Φ = φ(x, y) → g(x)φ(x, y)g(y)−1. (7.1)

Thus, gauge invariance requires that V is G-biinvariant in the sense that

V (g1Φg2) = V (Φ) (7.2)

for all g1, g2 ∈ G,Φ ∈ H.
Actually this biinvariance property is the essential feature, which will be

exploited by our model to explain how quarks of different flavor can aquire
different masses by spontaneous symmetry breaking. More precisely, their
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masses are determined by minima of the Higgs potential V (Φ). To give
a taste of this mechanism, let us assume that an element Φ ∈ H can be
factored as follows

Φ = ρg1d(η)g2 (7.3)

with g1, g2 ∈ G, ρ ∈ R∗, and with

d(η) =

 eη1

. . .
eηr

 (7.4)

from a maximal noncompact abelian subgroup T of the holonomy group H.
As a consequence of G-biinvariance the Higgs potential can be written as a
function which depends on ρ and (ηi) only

V (Φ) = V (ρd(η)) = V(ρ, (ηi)). (7.5)

Let us assume that G is the maximal compact subgroup of H. It follows
from standard group theoretical results [36] that there exists a group1 Wt

- the Weyl group of the pair (H,T ) - which consists of linear maps π :
η 7→ π(η) with π2 = 1 (reflections) such that there exists wπ ∈ G with the
property

wπd(η)w†π = d(π(η)). (7.6)

This Weyl group Wt is a discrete group of symmetries of the Higgs po-
tential

V(π(η)) = V(η), (7.7)

steeming from the G-biinvariance property.
Next, we consider a simple example to show that flavor mass splitting

occurs if the discrete symmetry under Wt is broken spontaneously, i.e. if the
orbits of of minima of V do not consist of a single point.

For definiteness consider H = SL(2,C) and G = SU(2). Matrices A ∈
SL(2,C) may be parameterized as A = g1d(η)g2 with g1, g2 ∈ G, η real
and d(η) = diag(e−η/2, eη/2). There is w ∈ G such that wd(η)w† = d(−η).
Consequently, V(η) = V (d(η)) obeys

V(η) = V(−η). (7.8)

Now suppose that the orbit of the minima under the discrete group Wt =
{1, w} is nontrivial, then the minima of V(η) are at ±η̂ 6= 0. Thus, the
interaction term becomes

ψ̄Φψ =
2∑

α=1

ψ̄′αmαψα (7.9)

1t := LieT
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with ψ̄′ = ψg1, ψ
′ = g2ψ, and masses

m1 = ρe−η, m2 = ρeη, η 6= 0. (7.10)

We have arrived at fermions of two flavors with different masses. Note the
exponential dependence of the mass ratio on the position ±η of the minima.
We see here a natural mechanism to produce large mass ratios.

7.2 Model description

We now consider a model living on a 5-dimensional space time, called bulk,
with two four dimensional boundaries R and L.

Right handed quarks qU
R = (uR, cR, tR) and qD

R = (dR, sR, bR) and all
right handed leptons live onR and lefthanded quarks qL = (dL, uL; sL, cL; bL, tL)
and left handed leptons live on L. There may be Dirac fermions in the bulk,
presumably equally many as there are chiral fermions on the boundaries.

Quarks of the same weak hypercharge but belonging to different gen-
erations are in the same irreducible representation space of the holonomy
group H. In the present model the irreducible representations of H remain
irreducible when restricted to G.

The unitary gauge group GR of R is U(1)× SU(3)c (weak hypercharge
and colour). It is shared by the bulk and by L. Since the photon interacts
equally with righthanded and lefthanded quarks and mediates interactions
between them, we need an abelian gauge field which propagates in the bulk
that separates them. In the following we will disregard colour except for
a comment at the end on the possibility of admitting nonunitary trans-
bulk colour parallel transporter. The elements uR = eiϑ/6 of GR are then
parameterized by an angle ϑ and act on right handed quarks according to(

qD
R

qU
R

)
7→ tR(uR)

(
qD
R

qU
R

)
,

tR(uR) =
(
uD

R 0
0 uU

R

)
=
(
e−iϑ/3 0

0 e2iϑ/3

)
(7.11)

and on left handed quarks as qL 7→ tL(uR)qL, tL(uR) = eiϑ/6, as in the
standard model. There will be no massless modes other than photons as we
shall see.

The unitary gauge group of L is GR × GL, with GL = SU(2). GL acts
on left handed quarks as in the standard model. It consists of matrices

uL =
(
u111 u121
u211 u221,

)
(7.12)

where 1 is the 3× 3 unit matrix.
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The unitary gauge group of the bulk is GR × G, G = GD × GU =
SU(3)×SU(3) or SO(3)×SU(3) or SU(3)×SO(3). We do not know which
of the two different groups is associated with U or D. The elements of G
are unitary 6× 6 matrices of the form

φ =
(
φD 0
0 φU

)
. (7.13)

At the level of effective theory, the parallel transporters Φ in the bulk are
nonunitary, and are elements of the bulk-holonomy group GR × H, with
H = R∗HD×R∗HU , where HD = SL(3,R) or SL(3,C), HU = SL(3,C), or
the other way round. R∗HD consists of positive-real multiples of matrices
in HD. Parallel transporters Φ have the form

Φ =
(
ρDφDuD

R 0
0 ρUφUuU

R

)
(7.14)

with φD ∈ HD etc., uD,U
R as in eq.(7.11), and ρD, ρU ∈ R∗. If H has two

factors, there will be two additional gauge coupling constants gD, gU .
At least one of the two groups GD, GU needs to be a group of complex

matrices. Otherwise there will be no CP -violation. The choice of two dif-
ferent groups would make it understandable why the mass splittings in the
D-family and in the U -family are different.

The salient feature of the model is that the elements of GL and of G
can both act on qL but do not commute. As a result, the local G-invariance
is broken by the L-boundary. This symmetry breaking is responsible for
the appearance of a Cabbibo-Kobayashi-Maskawa (CKM) matrix. It would
appear that also the GL-invariance on L is broken by interaction with the
bulk. But it turns out that this is just the customary Higgs mechanism.
How the standard model’s Higgs doublet emerges when one passes to a GL-
covariant description will be seen below.

Next we imagine that real space renormalization group transformations
have been applied to the theory in the bulk until a lattice spacing in the fifth
direction has been reached which equals the width d. Let us assume that
d is so small that the gauge theories on the boundaries can be discretized
to lattice gauge theories with lattice spacing d and with appropriate cou-
pling constants without further ado, using appropriate- e.g. domain wall-
lattice Dirac-Weyl operators. The resulting effective theory will describe
the physics at distances >> d. Except for the G-symmetry breaking by the
L-boundary, it is a defect model (bilayered membrane) of the type exam-
ined in chapter 6. There it was shown that the plaquette term involving
parallel transport along the extra dimension is a kinetic term for the Higgs
and possesses a natural differential geometric meaning. The effective theory
lives on a lattice with links connecting sites (x,R) on R and (x, L) on L. We
write x in place of (x,R) or (x, L) when it is clear from the context which
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site is meant. We denote by Φ(x) the parallel transporters across the bulk
along the aforementioned link.

Since the renormalization group transformations must preserve loclity,
the renormalization group calculations can be performed to a good approx-
imation in a 5-dimensional theory wit ∞ extension in the fifth direction.
Therefore the emerging Higgs potential V (Φ) for Φ = diag(ρDφD, ρUφU )tR(uR) ∈
H × GR will be G-invariant and independent of the factor tR(uR) ∈ GR.
Consequently it has the G-biinvariance property (7.2).

Apart from standard lattice gauge theory terms on the boundaries there
will be the following terms in the effective action Seff

SΦ =
∑

x

{
qL(x)Φ(x)qR(x). (7.15)

−
∑

µ

tr g−2
(
Pµ − Φ(x)†Φ(x)

)
+ V (Φ)

}
+ h.c.

Pµ = Φ(x+ µ)tR(uRµ(x))†Φ(x)†tL(uRµ(x, L))uLµ(x)

plus lepton mass terms, where µ̂ is the lattice vector in µ-direction on R or
L, and g−2 = diag(g−2

D , g−2
U ). The expression involves parallel transporters

uRµ(x), uLµ(x) from x+µ to x on R and L besides parallel transporters Φ.
The field Φ(x) parallel transports from (x,R) to (x, L). The Pµ-term will
be called the plaquette term for short (µ = 0...3).

It turns out that the plaquette term is G-invariant. The only terms in the
action which are not G-invariant live on L, viz.

∑
qL(x+ µ̂)γµuLµ(x)†qL(x).

Our groups are such that elements of HD can be factored as

φD = AD†
L d(ηD)AD

R

with AD
R , A

D
L ∈ GD, and similarly for φU . Here η = (η1, η2, η3) ∈ t lives on

the plane
∑

i ηi = 0, ηi real, and

d(η) = diag(eη1 , eη2 , eη3).

Because of G-biinvariance, V does not depend on the A-factors, whence

V (Φ) = V(ρD, ρU ; ηD, ηU ). (7.16)

Diagonal matrices d(η) make up a maximal noncompact abelian subgroup
TD of HD and TUof HU . For the groups considered here, to every permu-
tation π of {1, 2, 3} there exists wD

π ∈ GD such that

wπd(η)w†π = d(πη), (7.17)

where π(η1, η2, η3) := (ηπ1, ηπ2, ηπ3), and similarly for TU . It follows from
G-biinvariance that

V(ρD, ρU ;πηD, π′ηU ) = V(ρD, ρU ; ηD, ηU ). (7.18)
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Pairs (wπ, wπ′) form the Weyl group Wt of the Lie algebra t of T = TD×TU ;
it is a discrete group of symmetries of V. The symmetry comes from G-
invariance. Minima of V form orbits under Wt. These minima will determine
the quark masses. The symmetry is spontaneously broken if the orbit con-
tains more than one point. If it is completely broken then the quark masses
{md,ms,mb} are all distinct, and so are {mu,mc,mt}. This is the situation
in the real world. If (ρD

0 , ρ
U
0 ; ηD, ηU ) is the minimum with ηD

1 < ηD
2 < ηD

3

etc., then

md = ρD
0 e

ηD
1 , ms = ρD

0 e
ηD
2 , mb = ρD

0 e
ηD
3 ,

mu = ρU
0 e

ηU
1 , mc = ρU

0 e
ηU
2 , mt = ρU

0 e
ηU
3 .

From the action S of eq.(7.15), we recover a discretized version of the
standard model under the assumption that fluctuations of Φ(x) away from
a x-independent value may be ignored except for fluctuations of ρU/ρU

0 and
ρD/ρD

0 around 1. In particular, the first term in the action eq.(7.15) produces
quark mass terms. The factors AD,U

R can be transformed away. Writing
qL = (qD

L , q
U
L )T ,

qL(x)Φ(x)qR(x) = qL(x)mDq
D′
R (x)ρD(x)/ρD

0

+qL(x)mUq
U ′
R (x)ρU (x)/ρU

0

with qD′
L = AD

L q
D
L , qU ′

L = AU
Lq

U
L , and mass matrices mD = diag(md,ms,mb)

etc..
The masses are determined by the minima of V (Φ). We will see later

how AD,U
L acquire definite values modulo action of the unbroken symmetry

Gdiag = GD∩GU . The lattice gauge field uR(x) ∈ U(1) attached to the links
across the bulk can be gauged away, and the minimization of the uR-factor
in the plaquette term constrains

uR(x,R, µ) = uR(x, L, µ). (7.19)

There will be fluctuations away from this equality. They are described by a
neutral massive vector boson Z ′ with lattice field

z′µ(x) = uR(x,R, µ)uR(x, L, µ)† . (7.20)

It is massive because a real multiple of the trans-bulk PT uR(x) acts as a
Higgs field for it.

After these fixations, the effective action reduces to a 4-dimensional ef-
fective action which is a lattice approximation of the standard model action
in unitary gauge, except that the gauge group is SU(2)L × U(1)L × U(1)R,
which is broken by a Higgs doublet ϕ and a complex scalar Higgs singlet
ξ. Accordingly there is a neutral massive vector meson Z ′ besides Z, and a
second Higgs particle (if it is not too heavy). We write

ρD(x) = σ(x)ρ(x) , (7.21)
ρU (x) = σ2(x)ρ(x) .
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ρ and σ are what remains of ϕ and ξ in unitary gauge.

7.3 Kinetic term for the Higgs

We expect that the term∑
x,µ

trg−2
[
Φ†(x)Φ(x)− Φ(x+ µ)tR(uRµ(x,R))†Φ†(x)uLµ(x)tL(uRµ(x, L))

]
yields the standard kinetic term for the Higgs. To see this the gauge fixing
has to be undone as follows. One introduces an interface g(x) ∈ SU(2) be-
tween bulk and L-boundary, setting g(x) = 1 initially, and replaces Φ(x) by
g(x)Φ(x). The action is now invariant under SU(2)-gauge transformations
v(x) which act on qL and uLµ as usual, and which take g(x) 7→ v(x)g(x).
Because of SU(2)-gauge-invariance, we may integrate over g(x). Given g(x)
and ρ(x), ρ(x) > 0, one can define a Higgs doublet field

ϕ(x) := ρ(x)ϕ̂(x) (7.22)

as follows. To every g ∈ SU(2) there is a complex 2-vector ϕ̂ := (ϕ+, ϕ0)t of
unit length such that g = L[ϕ̂] where L[ϕ̂] ∈ SU(2) is uniquely determined
by the requirement that

ϕ̂ = L[ϕ̂]ϕ̂0, (7.23)

where ϕ̂0 = (1, 0)t. Uniqueness holds because the little group of ϕ̂0 in SU(2)
is trivial,

gϕ̂0 = ϕ̂0 ⇒ g = 1, (7.24)

for g ∈ SU(2). As a result of (7.23) the interface L[ϕ̂] has to take the form

L[ϕ̂] =
(
ϕ+ ϕ̄0

ϕ0 −ϕ̄+

)
. (7.25)

Furthermore it follows from (7.23) that under SU(2) gauge transformations
v(x) which act on ϕ̂ as ϕ̂ 7→ vϕ̂ the interface L[ϕ̂] transforms according

L[ϕ̂] 7→ vL[ϕ̂]. (7.26)

For later use we note that

L[ϕ̂]†uL[ϕ̂′] =
(

ϕ̂†uϕ̂′ ϕ̂†uε−1ϕ̂
′†

ϕ̂ε−1uϕ̂′ ϕ̂εuε−1ϕ̂
′†

)
(7.27)

for u ∈ SU(2). Since εuε−1 = ε̄ it follows

(L[ϕ̂]†uL[ϕ̂′])11 = (L[ϕ̂]†uL[ϕ̂′])22, (7.28)

as it must be.
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Integrating over ϕ(x) is equivalent to integrating over g(x) and ρ(x).
The extra complex Higgs field is

ξ(x) = σ(x)uD
R (x), (7.29)

whence ρDφDuD
R = ξφDρ and ρUφUuU

R = ξ†2φUρ.
Let us consider the described procedure in more detail. After introducing

the interface, the plaquette term takes the form

Pµ = Φ(x+ µ)tR(uRµ(x,R))†Φ(x)†L[ϕ̂(x)]†tL(uRµ(x, L))uLµ(x)L[ϕ(x+ µ)].

Now we use
tL(v)L[ϕ̂] = L[tϕ(v)ϕ]tR(v) (7.30)

for v ∈ U(1) where tϕ is defined as

tϕ(v) := eiϑ/212. (7.31)

Using (7.31), (7.11) and (7.25), eq.(7.30) can be proved by a simple calcu-
lation. Note that tR(uRµ(x, L)) commutes with Φ(x + µ). In this way one
gets a plaquette term of uRµ parallel transporters

trPµ = tr
(
Φ(x+ µ)tR(uR(∂p))Φ(x)†L[ϕ̂(x)]†uLµ(x)L[ϕ(x+ µ)]

)
(7.32)

where tR(uR(∂p)) is defined as

tR(uR(∂p)) := tR(uRµ(x, L)uR(x+ µ)uRµ(x,R)†uR(x)†. (7.33)

(7.32) suggests to introduce a new field

wµ(x) = L[ϕ(x)]†uLµ(x)L[tϕ(uRµ(x))ϕ] (7.34)

Since under SU(2) gauge transformations

uLµ(x) → v(x)uLµ(x)v(x)† (7.35)

one finds that wµ(x) is a gauge invariant object.
Now the trace of the plaquette term can be written as

tr(Pµ(x)) = tr
(
tR(uRµ(∂p))Φ(x)†wµ(x)Φ(x+ µ)

)
. (7.36)

Next, we expand

tR(uR(∂p)) = 1 + [tR(uR(∂p))− 1] (7.37)

and

Φ(x)†wµ(x)Φ(x+ µ) = Φ(x)†Φ(x) + [Φ(x)†wµ(x)Φ(x+ µ)− Φ(x)†Φ(x)]
(7.38)
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and consider the second term of (7.37) and (7.38) to be small. As a result,
we arrive at∑

x,µ

trg−2[Φ(x)†Φ(x)− Pµ(x)] =
∑

x

trg−2

(
Φ(x)†Φ(x)[1− uR(∂p)] +

+ Φ(x)†Φ(x)− Φ(x)†wµ(x)Φ(x+ µ)
)
.

First, let us focus on

Kµ := tr g−2(Φ(x)†Φ(x)− Φ†(x)wµ(x)Φ(x+ µ)). (7.39)

The trace over 6× 6-matrices can be decomposed as

Kµ = g−2
D tr[φD(x)†φD(x) + φD(x)†wDDµ(x)φD(x+ µ)] +

+g−2
U tr[φU (x)†φU (x) + φU (x)†wUUµ(x)φU (x+ µ)], (7.40)

where tr on the right hand side denotes a trace over 3 × 3 matrices. To
recover the standard model, we make the assumption that only the scalar
factors of Φ(x) depend on x

φD(x) = ρD(x)AD†
L d(ηD)AD

R (7.41)

φU (x) = ρU (x)AU†
L d(ηU )AU

R. (7.42)

Thus we are lead to

Kµ = g−2
D tr d(ηD)[ρ2

D(x) + ρD(x)wDDµ(x)ρD(x+ µ)] +
+g−2

U tr d(ηU )[ρ2
U (x) + ρU (x)wUUµ(x)ρU (x+ µ)]. (7.43)

Furthermore we assume that

ρD(x) = ρ(x)〈ρD〉/ρ0

ρU (x) = ρ(x)〈ρU 〉/ρ0. (7.44)

Consequently we get

Kµ = g−2
D 〈ρD〉2/ρ2

0 tr d(η
D)[ρ2(x) + ρ(x)wDDµ(x)ρ(x+ µ)] +

+g−2
U 〈ρD〉2/ρ2

0 tr d(η
U )[ρ2(x) + ρ(x)wUUµ(x)ρ(x+ µ)]. (7.45)

Due to (7.27) and (7.22) one finds that

ρ(x)wDDµ(x)ρ(x+ µ) = ϕ(x)†uLµ(x)t1/2
ϕ (uRµ(x, L))ϕ(x+ µ). (7.46)

Note that
wDDµ(x) = wUUµ(x), (7.47)
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cp. (7.28). Eq. (7.46) and (7.47) show that ϕ(x) has the same hypercharge
and isospin assignments as the standard model Higgs field. Recall that the
kinetic term of a scalar field ϕ(x) on a lattice is

1
2a2

(
ϕ(x)†ϕ(x)− ϕ(x)†uµ(x)ϕ(x+ µ)

)
. (7.48)

Therefore we can conclude that (7.39) actually yields the kinetic terms of
the standard model Higgs.

Let us return to the first term on the right hand side of eq (7.48). We
have already mentioned that the lattice gauge field uR(x) ∈ U(1) attached to
the links across the bulk may be considered as part of an additional complex
scalar Higgs singlet ξ. Then we can write, cp.(7.20), (7.29)

Φ(x)†Φ(x)[1− uR(∂p)] = ρ(x)2tR(ξ(x))†[1− z′µ(x)]tR(ξ(x)), (7.49)

where tR(ξ(x)) := diag(ξ(x), ξ(x)†2). We see that the additional neutral
vector boson couples to the scalar Higgs field ξ. Therefore, when the gauge
group SU(2)×U(1)L×U(1)R is broken to the standard model one the extra
vector boson becomes massive.

The standard models Higgs potential VH is given by

VH(ρ, σ) = min V(ρσ, ρσ2; ηD, ηU ).

It depends on two arguments because we have two Higgs fields. By definition,
the minimum of VH is at ρ = ρ0, σ = σ0, where σ0 is the vacuum expectation
value of ξ. But beware: Conventional Higgs fields differ from our ϕ, ξ by
normalization factors.

In the presence of leptons one needs extra nonunitary parallel trans-
porter. To give mass to the charged leptons, one needs a parallel transporter
φl(x) ∈ SL(3,C) which enters into the charged leptons mass term ∝ eRφ

llL.
The most economical choice is

φl = φD. (7.50)

To give mass to neutrinos one needs still another PT φν and possibly a
Majorana mass term for right handed neutrinos, in order to invoke the
seesaw mechanism. We refrain from speculating what φν might be.

We add a comment on colour [29]. Because GR gauge transformations
on R and L are independent, there is a colour group SU(3)cL × SU(3)cR

to begin with which is broken to the diagonal SU(3)c because the SU(3)c

factor in the cross-bulk PT acts as a Higgs field for it. As a result there will
be an axigluon [16].

Let us consider the possibility of admitting nonunitary cross-bulk colour
PT χ(x) in a noncompact colour holonomy group Hc which substitutes for
the factor SU(3)c multiplying H. χ enters as a factor in Φ. Therefore V (Φ)
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depends on it. It is a complex 3 × 3 matrix and admits a decomposition
χ = ru1d(ηc)u2 with u1, u2 ∈ SU(3)c; let us assume that the factor r is real.
Under a gauge transformation (v1, v2) ∈ SU(3)c × SU(3)c, χ 7→ v1χv

†
2. If

the symmetry is to be broken down to the diagonal subgroup, the minimum
of V , considered as a function of χ, must be at ηc = 0, i.e. d(ηc) = 1 and
χ ∈ R∗SU(3)c. The expectation value of the factor r, which occurs in the
hadronic PT φD but not in its leptonic brother φl, will determine the ratio
between charged lepton masses and D-quark masses if the economical choice
(7.50) of the leptonic PT is adopted.

In conclusion, consider V as a function of η in a maximal noncompact
abelian subalgebra t of LieH. The difference between colour and flavor is
that the orbits of the minima of V under the Weyl group Wt of t are trivial
for colour and nontrivial for flavor. In other words the Wt-symmetry is
spontaneously broken for flavor, but not for colour.

Let us finally turn to the CKM matrix. Assuming there are really two
independent factors GD, GU in G, the CKM matrix C could be transformed
away if it were not for the breaking of G-invariance by the L-boundary. C
is therefore not determined by the minima of V but could be obtained as
follows.

AD
L (x) and AU

L (x) are dynamical fields of the effective theory, because
Φ(x) depends on them. Let W (AD

L , A
U
L ) be the effective action for these

fields alone obtained by integrating out the quark-fields and gauge fields
associated with GR and GL, as well as AD

R , A
U
R and the fluctuations of ηD, ηU

and of ρD, ρU away from the minimum of V . The quark masses determined
by minimization of V enter as parameters into W . The CKM field

C(x) = AD
L (x)AU†

L (x)

is invariant under global Gdiag-transformations, and so is W . The CKM
matrix C is determined by the ground state of the theory with action W . In
tree approximation (which may be accurate enough or not), it is determined
by the minimum of the restriction of W to constant fields C; this is a
calculation essentially within the standard model. It would be interesting
to deal with the full effective action by numerical means.

Finally, let us comment on a GUT extension of our model. The assign-
ment of fermions to boundaries is compatible with the action of the Pati-
Salam subgroup SU(4)c × SU(2)L × SU(2)R of the GUT group SO(10),
but not with the action of SO(10) itself. One may speculate that on scales
shorter than the GUT scale, SO(10) is an unbroken local symmetry of the
bulk and light fermions migrate to the boundary when SU(2)L × SU(2)R

breaks in the bulk, surviving temporarily on the boundaries. Our model
is supposed to be valid at still larger scales, where SU(2)R is also broken
on R. Migration of modes from bulk to branes have been discussed in the
literature [19].



Chapter 8

Summary and outlook

In this thesis we have discussed gauge theories with nonunitary parallel
transport both on a graph and in the continuum.

Starting from the proposal to abandon unitarity of paralleltransporters,
we introduced the basic concepts of nonunitary gauge theories in the con-
tinuum in chapter 3. We showed that the vierbein can be interpreted as
part of a de Sitter parallel transport in the conventional four space time
dimensions.

We learned how general relativity can be recovered within the developed
framework. A quasi-Maxwellian form of the Einstein-Hilbert action was
presented, and it turned out that the complete action, including the matter
action, can be written in a form which is polynomial both in the vierbein
and in the spin connection.

Using polar decomposition of the nonunitary parallel transporter it was
shown that there is a canonical way of constructing a metric and a metric
connection with unitary parallel transporters in the general framework.

Finally we sketched a generalization of Einstein’s theory of gravity.
In chapter 4 and chapter 5 we introduced the basic concepts and lan-

guage of nonunitary parallel transport in the context of semicommutative
differential geometry on a graph. We followed Dimakis and Müller-Hoissen,
adding an integral calculus and the concept of endomorphism-valued forms.

Employing the tools of chapter 4 and 5, the geometry of Higgs fields
was investigated in chapter 6. The Higgs was interpreted as associated with
a nonunitary parallel transport in extra dimension(s). It turned out that
generalized Yang-Mills actions automatically include a Higgs potential and
kinetic terms for the Higgs fields. We argued that the framework of nonuni-
tary gauge theories on a graph also provides tools to deal with deconstruction
models. Finally, a reinterpretation of the standard model was discussed.

In chapter 7 we proposed a gauge theoretic model which explains how
quarks of different flavor can acquire different masses by spontaneous sym-
metry breaking and what is the difference between colour and flavor.
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Let us discuss at the end of this thesis a loose list of open questions that
arise from the obtained results.

• First one would like to extend the model of chapter 7. Color and the
leptonic sector has to be included. Are there GUT-extensions of the
proposed model? It would be interesting to deal with the full effective
action by numerical means. The dream is to compute quark masses
and the CKM-matrix.

• The polynomial form of the gravity gravity served as a starting point
for discretization. One may want to develop a “real space” renormal-
ization group for graphs to calculate the flow of the discretized action.
The issue of renormalizability of gravity might be reconsidered. Can
the flow explain a tiny cosmological constant?

• It would be interesting to investigate the generalization of gravity as-
sociated with a conformal holonomy group.

• The model in chapter 7 might be combined with our formulation of
gravity. For instance, one might consider a de Sitter group both on
the left- and righthanded boundary, and a conformal holonomy group
in the bulk. Can the Higgs field be interpreted as fifth component of
a vielbein?

• There is a correspondence between string and gauge theories. Does a
stringy description of nonunitary gauge theories exist?

• . . .



Appendix A

Nonunitary parallel
transport on differentiable
manifolds

We saw that vector potentials are defined after a choice of moving frame
has been made. It furnishes bases (eα(x)) in Vx. In this way, maps T (C)
are converted to matrices T (C) via

T (C)eα(x) = eβ(y)T (C)β
α (A.1)

and similarly for U(C). We also saw that parallel transport along infinites-
imal paths b : x→ x+ δx determines the vector potential

T (C)eα(x) = 1−Bµ(x)δxµ. (A.2)

Consider an infinitesimal path from x to x+ δx. The inverse path −b goes
from x+ δx to x. As a consequence, the parallel transport matrix is

T (−C) = 1 +Bµ(x+ δx)δxµ

= 1 +Bµ(x)δxµ +O((δx)2))
= T (C)−1. (A.3)

Therefore, as long as only differentiable paths C are permitted, all paral-
lel transporters are forced to be unitary in the sense of (3.25) and (3.26),
respectively.

But there is a third possibility, which lies between the case of differen-
tiable paths and the case of a discrete manifold. We propose to consider
parallel transport along continous paths which are no longer differentiable.
More precisely, the paths possess one-sided derivatives, which need not be
equal. In reference [31] it will be shown that a sufficiently large class of
paths possessing this property actually exists.
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Let C be a path which is parameterized by t. The left-handed derivative
is defined as

d+

dt
C(t) := lim

s→0,s>0

C(t+ s)− C(t)
s

, (A.4)

the right-handed is defined as

d−
dt
C(t) := lim

s→0,s>0

C(t)− C(t− s)
s

, (A.5)

respectively. Now one can introduce two kind of ”velocities” which transform
differently under t→ −t

v(t) :=
1
2

(
d+

dt
C(t) +

d−
dt
C(t)

)
, (A.6)

u(t) :=
1
2

(
d+

dt
C(t)− d−

dt
C(t)

)
. (A.7)

Due to the definitions (A.4) and (A.5) we find that under t → −t the
velocities tranform as follows

v(−t) = −v(t) (A.8)
u(−t) = u(t). (A.9)

Only v(t) transforms like an ordinary velocity. In fact, in the special case
that C is differentiable, i.e. left- and right-handed derivative are equal, u(t)
vanishes and v(t) becomes the ordinary velocity.

Consider an infinitesimal piece b : x→ x+ δx of a continous path which
is parameterised in the following way

b : [−δτ/2, δτ/2] →M (A.10)

with
b(−δτ) = x and b(δτ) = x+ δx. (A.11)

The inverse path −b : x+ δx→ x is given by

−b : [−δτ/2, δτ/2] →M (A.12)

with
−b(t) = b(−t). (A.13)

Corresponding with the split of the forward derivative d+

dt C into two pieces
u and v, the deviation from 1 of the parallel transport matrix along such a
path splits into two pieces

T (b) = 1−Aµ(−δτ/2)v(−δτ/2)µδτ −Eµ(−δτ/2)u(−δτ/2)µδτ (A.14)
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The parallel transport matrix along the inverse path −b becomes

T (−b) = 1 +Aµ(δτ/2)v(−δτ/2)µδτ −Eµ(δτ/2)u(−δτ/2)µδτ

= 1 +Aµ(−δτ/2)v(−δτ/2)µδτ −Eµ(−δτ/2)u(−δτ/2)µδτ +O((δτ)2)

As a result, T (−b) ◦ T (b) 6= 1.
Let us discuss the appearance of nonunitary parallel transport in the

continuum from a slightly different point of view. We saw in chapter 2
that parallel transporters are a consequence of the Naheinformationsprinzip.
According to this principle, information has to be transferred by exchange
of signals which propagate in space time along a path C. Assume that a
signal has arrived at an observer at y which wishes to send the information
back to x along exact by the inverse path −C. However, this is impossible.
There are a lot of paths which cannot be distinguished physically, but which
differ by a certain small amount.

The validity of (3.25) depends on the exact space time paths chosen.
Clearly, if the actual path chosen deviates from −C, the parallel transporter
will be nonunitary.

In this way, the appearance of nonunitary parallel transporters might
be viewed as a residual effect of the small scale structure of space time.
They are the effective description which encodes the unknown physics on
the Planck scale.



Appendix B

Generalized metricity II

We saw in chapter that the vierbein defines a map

E(x) := Eµ(x)dxµ : TxM→ Vx ⊗ V ′x. (B.1)

Furthermore we saw that if

E(x) [TxM] = Vx ⊗ V ′x, (B.2)

one arrives at general relativity.
Now we assume that E(x) is not surjective, i.e.

E(x) [TxM] =: Wx ⊂ Vx ⊗ V ′x. (B.3)

The underlying idea is as follows. We discussed that the internal space of
gravity gets identified with the tangent space of space time only dynam-
ically. On the other hand, traditionally it is assumed that there is an a
priori distinction between the internal spaces of gravity and gauge theory.
It might appear more natural to assume instead that also this distinction is
of dynamical origin. In this appendix we sketch first steps towards such a
theory , but a lot of work remain to be done.

As a result of (B.3) the ”inverse” vierbein is only pseudoinverse. There-
fore we can define a projector

π(x) := E(x) ◦E−1(x) : Vx ⊗ V ′x →W, π2 = π. (B.4)

Consequently, the space Vx ⊗ V ′x decomposes as follows

Vx ⊗ V ′x = π[Vx ⊗ V ′x] + (1− π)[Vx ⊗ V ′x] =: Wx + Zx (B.5)

Similarly, the unitary vectorpotentialAµ(x) : Vx⊗V ′x → Vx⊗V ′x decomposes

Aµ(x) = π(x)Aµ(x)π(x) + π(x)Aµ(x)(1− π) +
+(1− π(x))Aµ(x)π(x) + (1− π(x))Aµ(x)(1− π(x)).(B.6)
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The covariant derivative Dµ := ∂µ +Aµ acting on w ∈ Wx splits into two
parts

∇µw = (∂µ + πAµπ + (1− π)Aµπ)w. (B.7)

This suggests decomposing the covariant derivative into a tangent and nor-
mal coponent, analogously to the ADM formalism [6]

Dµw =
(

(1− π)(∂µ +Aµ) + π(∂µ +Aµ)
)
w

= : (Dµw)⊥ + (Dµw)‖. (B.8)

Notice that (Dµw)‖ provides a connection in the sense that

(Dµ(fw))‖ = (∂µf)w + (∇µw)‖, (B.9)

for f ∈ C∞(M).
Furthermore the connection is metric with respect to the bilinear form

in Wx, which is induced by the bilinear form in Vx ⊗ V ′x

〈 , 〉Vx⊗V ′
x

= 〈 , 〉Wx + 〈 , 〉Zx

:= 〈π •, π •〉Vx⊗V ′
x

+ 〈(1− π) •, (1− π) •〉Vx⊗V ′
x
. (B.10)

To see this, let v, w ∈Wx and Dµ = ∂µ +Aµ. Then,

∂µ〈v, w〉Vx⊗V ′
x

= 〈∇µv, w〉Vx⊗V ′
x

+ 〈v,∇µw〉Vx⊗V ′
x

= 〈(∇µv)⊥, w〉Vx⊗V ′
x

+ 〈v, (∇µw)⊥〉Vx⊗V ′
x

+
+ 〈(∇µv)‖, w〉Vx⊗V ′

x
+ 〈v, (∇µw)‖〉Vx⊗V ′

x

= 〈(∇µv)‖, w〉Wx + 〈v, (∇µw)‖〉Wx = ∂µ〈v, w〉Wx .(B.11)

πAµπ describes gravity, but Zx appears as an internal space. Conse-
quently, (1−π)Aµ(1−π) may be viewed as a gauge field, whereas (1−π)Aµπ
is analogous to the extrinsic curvature in the ADM analysis of gravity.

Let (eα(x))α, (ei(x))i be a basis in Wx and Zx, respectively. The field
strength is

F(∂µ, ∂ν)eα(x) = [Dµ, Dν ]eα(x) (B.12)
= eβ(x)F β

αµν + ej(x)F j
αµν . (B.13)

In components we have

F β
αµν = ∂[µA

β
αν] +Aβ

γ[µA
γ

αν] +Aβ
i[µA

i
αν] (B.14)

=: Rβ
αµν + T β

αµν , (B.15)

where Rβ
αµν = ∂[µA

β
αν] + Aβ

γ[µA
γ

αν] denotes the Riemann curvature
tensor, and

F j
αµν = ∂[µA

j
αν] +Aj

γ[µA
γ

αν] +Aj
i[µA

i
αν], (B.16)
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with

(Aα
βµ) := πAµπ (B.17)

(Ai
βµ) := (1− π)Aµπ (B.18)

(Ai
jµ) := (1− π)Aµ(1− π) (B.19)

Note that the components Fα
βµν can be used to construct a generalized

Ricci tensor and Ricci scalar, respectively.
Furthermore we have

F(∂µ, ∂ν)ei(x) = [Dµ, Dν ]ei(x) (B.20)
= ej(x)F j

iµν + eα(x)Fα
iµν (B.21)

with

F j
iµν = ∂[µA

j
iν] +Aj

k[µA
k

iν] +Aj
γ[µA

γ
iν] (B.22)

=: Y MF j
iµν +Kj

iµν , (B.23)

where Y MF j
iµν denotes the Yang-Mills field strength,Kj

iµν is the last term
in (B.22), and

Fα
iµν = ∂[µA

α
iν] +Aα

k[µA
k

iν] +Aα
γ[µA

γ
iν]. (B.24)



Appendix C

Dirac algebra

Let us recall some basic facts about Dirac matrices. We restrict our con-
siderations to spinors associated to 4-dimensional Minkowski space with
ηαβ = diag(+1,−1,−1,−1). The basic theorem asserts that a complex
spinor space V together with a quadruple of linear operators γα acting ir-
reducibly on V and satisfying {γαγβ} = 2ηαβ is uniquely determined up to
equivalence and that dimV = 4.

Since the quadruples−γt
α, γ

†
α,−γ̄α act irreducibly on the dual V ′, complex-

conjugate V̄ ′ and complex vector space V̄ , and satisfy the same anticom-
mutation relations, it follows that there exists equivalence maps B : V →
V ′, β : V → V̄ ′, C : V → V ′, such that

−γt
α = BγαB

−1, γ†α = βγαβ
−1, −γ̄α = CγαC

−1. (C.1)

β,C, ect. denote the corresponding matrix representations.
One can show that β,C and B define on V a Hermitian form, a real

structure, and a symplectic form. The adjoint and charge-conjugate spinor
are defined by

ψ̄ = ψ†β, ψC := Cψ̄t = Cβψc.c (C.2)

for ψ ∈ V . Furthemore one defines

γ5 := iγ0γ1γ2γ3, {γ5,γα} = 0, γ2
5 = 1. (C.3)

Let us add some properties of β and C (more precisely, of their matrix
representations) which are needed in chapter 3

β† = β, C = −Ct, (C.4)
(βγα)† = βγα, (γαC)t = γαC, (C.5)

βγ5β
−1 = γ†5, C−1γ5C = γt

5. (C.6)
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