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Introduction

Le savant n’étudie pas la nature parce que cela est utile; il

l’étudie parce qu’il y prend plaisir et il y prend plaisir parce qu’elle

est belle. Si la nature n’était pas belle, elle ne vaudrait pas la

peine d’être connue, la vie ne vaudrait pas la peine d’être vécue.

Henri Poincaré, Science et méthode, 1908

In the past century, within the framework of the dynamical systems theory,

a great scientific effort has been directed in introducing a great variety of

tools useful to characterize the dynamics. They have been named dynamical

indicators of stability due to the fundamental role that stability plays in de-

termine chaotic or regular behaviours.

In the meanwhile, the fast growth of computer facilities has allowed for di-

rectly simulating complex natural phenomena. Nowadays, engineering soft-

ware allows for saving money and time in the design of industrial objects, fi-

nancial models help in taking real time decisions in the stock market, weather

forecasts - practically impossible only fifty years ago - are used in the every-

day life to plan agriculture and social activities. In most of the applications

relying on the dynamical systems theory, the main focus has been reserved

to an accurate simulation of the trajectories of the system in order to make

them look coherent with the observed phenomena. Instead, less effort has

usually been reserved in detecting and understanding the dynamical proper-

ties by looking at the stability of the solutions and at the geometry of the

trajectories in the phase space. Moreover, most of the dynamical indicators

introduced so far lack of versatility and cannot be computed by using the
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trajectory of the dynamical systems but require accessory tools which can

be practically inaccessible for high dimensional dynamical systems. In many

cases, these indicators provide information only about the behaviour of the

systems around their mean state whereas they are usually blind in detecting

properties of events which happen with a very small probability: the so called

extreme events which can be instead very relevant for characterizing several

phenomena that may have a huge social or economical impact.

Nowadays, it is becoming clearer and clearer that, to advance in the un-

derstanding of complex natural phenomena, a deeper understanding of the

dynamical properties of complex systems is needed. The results contained

in this dissertation try to give a methodological and practical way for under-

standing relevant properties of dynamical systems by applying and devising

new dynamical indicators. These indicators mainly rely on the results ob-

tained for the so called Extreme Value Theory that can be used to deduce

general and local properties of the physical measures associated to the trajec-

tories in the phase space. The work of thesis is here presented as a collection

of the articles [1, 2, 3, 4, 5, 6, 7, 8] which are reported in Chapters 2-9.

A first straightforward dynamical indicator - the Reversibility Error - is intro-

duced in [1]. It relies on the ability of discerning between chaotic and regular

behaviour of a system for which the dynamic is time-reversible. Although

time reversibility is clearly a non-general properties of dynamical systems,

the results shows how the numerical error grow in a different way for regular

and chaotic dynamics giving an insight on the reliability of numerical simula-

tions in several situations in which stability properties play a prominent role.

The results described in [2, 3, 4, 5, 6, 7, 8], rely instead on the indicators

built up for studying extreme events.

The Extreme Value Theory, originally introduced for series of independent

variables, has been extended to dynamical systems in a nice theoretical frame-

work which allows to infer stability and geometrical properties of the or-
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bits. In the last decade a renewed interest in the Extreme Value Theory has

emerged because of new mathematical tools recently developed to connect

the classical theory of extremes of independent and identically distributed

variables (i.i.d.) to the output of dynamical systems. The traditional Ex-

treme Value theory states a sort of central limit theorem for extreme values:

under rather general assumptions about the tail decay of the data parent

distribution, the maxima (minima) extracted from a series of i.i.d. variables

converge to the so-called Generalized Extreme Value (GEV) distribution [9].

The selection of maxima (minima) is made through the so-called Block Maxi-

mum approach procedure, which consists in taking partial maxima in subsets

of the original series obtained by dividing it into bins of equal length. A new

mathematical theory has been developed to show that extreme values re-

lated to the output of a dynamical systems may have as limiting distribution

a GEV if it fulfils chaotic constraints [10]. The series of i.i.d. variables is

here replaced by the time series of some observable defined on the attractor.

In a totally new fashion, the theory then allows to connect the properties of

extremes to geometrical properties, e.g. the local dimension of the attractor,

and dynamical properties of the system, such as the hitting time statistics

which connects the return times of a trajectory in a subset of the phase space

with the chaotic properties of the system [10].

The mathematical theory developed so far ensures that such properties exist

when the asymptotic behaviour is considered: we expect to observe conver-

gence when both the number of maxima and the length of the bin in which the

maxima are taken, approach infinity. Naturally, when moving from theory

to practice, the first question to answer is whether this asymptotic behaviour

can be observed even at finite time. The need of building a bridge between

the abstract statements of the theory and the world of practical applications

has triggered my research activity on Extreme Value Theory in dynamical

systems during my PhD program in the SICSS graduate school at Klimacam-

pus - Institute of Meteorology, University in Hamburg1. First of all we have

1The Phd program started in October 2010 at Reading University - Department of
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explored the existence of a limiting extreme value distribution at finite times

for simple low-dimensional discrete maps [2]. We compared the analytical

results computed using the theory with numerical experiments in which we

studied the convergence to the GEV limiting distribution using the block-

maxima approach, pointing out in which cases we obtain a robust estimation

of parameters. In particular we found that a good agreement between theo-

retical and experimental parameters is achieved when the number of maxima

is order or 1000, and each maximum is taken over more than 1000 observa-

tions. Even though we have tested the algorithm on a restricted selection of

low-dimensional chaotic maps, these properties seem quite robust and they

can be interpreted as lowest numerical boundaries needed to obtain a reli-

able numerical inference of extremes behaviour in dynamical systems. These

ranges have been first proposed in investigation performed on intermidiate

complexity models featuring several degrees of freedom [11]. In regular maps,

for which mixing properties do not hold, we showed that the fitting procedure

to the classical Extreme Value Distribution fails as expected. However, the

empirical distributions we have obtained can be explained starting from an-

alytical results valid for finite time on quasi-periodic orbits [12]. The robust-

ness of the algorithm just described has allowed us to extend the simulations

to classical chaotic discrete maps that possess singular invariant measures

[4]. In these systems, for selected observables, a GEV distribution has been

observed as the best continuous approximation to the histograms obtained

numerically and can be theoretically justified by linking the parameters of

the fitted distribution to the local dimension exponent characterizing the

attracting set. By connecting the results obtained for chaotic and regular

dynamics, we have also used the Extreme Value Theory results as indica-

tors of stability by studying systems that feature the coexistence of regular

and chaotic motions: by excluding the regular orbits which do not show a

GEV distribution for extremes, we have been able to depict the dynamical

structure of the Standard map [3].

Mathematics and Statistics and have been transferred to Hamburg in September 2011.
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Besides the extreme events already described, complex dynamical systems,

ranging from ecosystems to financial markets and the climate, can have tip-

ping points at which a sudden shift to a contrasting dynamical regime may

occur [13]. In dynamical systems theory there is a clear distinction between

what we have defined as an extreme event and the so called tipping points or

critical transitions. A whole branch of dynamical system theory is dedicated

to the study of these kind of phenomena and it is known as bifurcation theory.

Unfortunately, understanding critical transitions associated with bi-stability

in noisy high-dimensional systems remains a tough scientific challenge: such

transitions are difficult to classify or even model with the theoretical or nu-

merical tools that have been proven successful in low-dimensional systems [7].

In the past decades a renewed interest in this topic has emerged and many

“indicators of criticality” have been developed to identify early warnings of

abrupt transitions to different dynamical states: some of these indicators are

based on the modifications of the auto-correlation properties of particular

observables when the system is pushed towards a transition, others on the

fact that an increase of the variance is observed when moving towards tip-

ping points[13, 14]. Although the variance is a very straightforward quantity

to compute, it does not provide all the information that we are able to ex-

tract by analysing the complete data distribution. In particular it does not

reveal whether fluctuations increase towards maximum or minimum values,

or whether the right and the left tails of the distribution are symmetrical

or not. All these properties can be explored via Extreme Value analysis as

explained in [8].

This dissertation is organized as follows: in the first chapter is presented a

wide outline of the theoretical and numerical tools used in the papers en-

closed: we introduce some elements of the extreme value theory for i.i.d.

variables, the indicators of stability already introduced in the literature such

as Recurrences, Hitting Time Statistics, Correlation function. We end the

outline by stating the main theorem which connects the Hitting Time Statis-
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tics to the emergence of extreme value laws in dynamical systems. In Chapter

2-9 the papers are attached, whereas in the last pages conclusions and sug-

gestions for extending the results presented in this dissertation are drawn.
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Chapter 1

Outline of the research

1.1 Traditional Extreme Value Theory

The study of extreme events is of great interest in different disciplines. It

has been applied successfully to the study of extreme floods [15], amounts of

large insurance losses [16], extreme earthquake, meteorological and climate

events ( see [17] for an extended review on extremes and climate).

The extreme value theory originates to find up methods to model and mea-

sure events which occur with very small probability. In this section we ex-

plain the classical theory, devised to study the stochastic behaviour of the

extremes of independent and identical distributed (hereinafter i.i.d.) vari-

ables. Traditionally, two approaches have been used to study the Extreme

Value Theory:

• The Block Maxima approach: the distribution of a series of maxima

(minima) converges to the so-called Extreme Value Laws for extremes

taken by dividing the data series into an asymptotically infinite number

of bins each containing an asymptotically infinite number of observa-

tions.

• The Peak over Threshold approach: the distribution of excesses over a

given threshold converge to the so called Generalized Pareto distribu-

tion in the limit of an infinitely high (or low) threshold.

1



2 1. Outline of the research

1.1.1 The Extreme Value laws

Let X1, X2, Xn be i.i.d. variables with the same cumulative distribution

function:

F (x) =

∫ x

−∞
f(t)dt (1.1)

being f(t) the associated probability density function. DefineMn = max{X1, ..., Xn}.
We are interested in studying if it exists an asymptotic distribution G(x) such

that:

G(x) = Pr[Mn ≤ x]

For example Xi can be a dataset of independent observations taken daily for

n years. In the ith year we will extract the year maximum Mi, assuming

that the block sizes are quite large and the maxima in different blocks are

independent realisations [18]. For any finite value x , the maximum will

exceed x as N increases, with 1 − [F (x)]N tends to unit if F (x) < 1 or to

zero if F (x) = 1. In principle we obtain a degenerate distribution for [F (x)]N

as N →∞ unless we introduce some sequences of transformed and reduced

values an and bn so that (anMn + bn) is renormalized for each n [19] . By

denoting G(x) this reduced distribution, it follows that G(x) must satisfy:

[G(x)]N = G(aNx+ bN). (1.2)

Gnedenko [20] showed that, under general assumptions on the nature of F (x),

the series of Mx,n converges to one of the three Extreme Value Laws (EVLs):

• Gumbel cumulative distribution (type 1):

G1(x) = exp {−e(x−µ)/σ} (1.3)

• Frechet cumulative distribution (type 2):



G2(x) = 0 x < µ

G2(x) = exp
{
−
(
x−µ
σ

)−1/ξ
}

x ≥ µ
(1.4)
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• Weibull cumulative distribution (type 3):




G3(x) = exp

{
−
(
−x−µ

σ

)−1/ξ
}

x ≤ µ

G3(x) = 1 x > µ
(1.5)

where µ, σ > 0, ξ ∈ R are parameters.

It is possible to represent the three types distributions using a single family

of generalized distribution called Generalized Extreme Value distribution:

G(x) = exp

{
−
[
1 + ξ

(
x− µ
σ

)]−1/ξ
}

(1.6)

which holds for:

1 + ξ(x− µ)/σ > 0 (1.7)

and where:

• µ ∈ R is the location parameter

• σ > 0 the scale parameter

• ξ ∈ R the shape parameter. also called the tail index, indicates the

thickness of the tail of the distribution.

When ξ → 0, the distribution G(x) corresponds to a Gumbel type (Eq. 1.3)

. When the index is negative, it corresponds to a Weibull (Eq. 1.5); when

the index is positive, it corresponds to a Frechet (Eq. 1.4).

The leading idea in extreme value theory is analogous to the one used in

central limit theorem: here, nonetheless, we are dealing with two different

limits as we require at the same time the selection of authentic extremes and

a sufficient amount of maxima to compute the statistics. This issue is widely

described in the dynamical system framework in [2].
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1.1.2 Obtaining the limiting distributions

We give an intuitive idea of how the EVLs can be obtained by direct com-

putation, dedicating the next section to the theoretical statements.

Using condition 1.2 it is possible to obtain Gumbel distribution by taking

aN = 1. We report the proof in the case of type 1. Since aN = 1 equation

1.2 becomes:

[G(x)]N = g(x+ bN) (1.8)

the latter equation must satisfy Eq. 1.2 so that:

[G(x)]NM = [G(x+ bN)]M = G(x+ bN + bM) (1.9)

[G(x)]NM = G(x+ bNM) (1.10)

Using Eqs. 1.9-1.10 we can see that:

bNM = bN + bM (1.11)

so that:

bn = σ log(N), with σ costant (1.12)

By taking logarithms of Eq. 1.9 twice we have:

logN + log{− logG(x)} = log{− logG(x+ bN)} (1.13)

plugging Eq. 1.12 in the latter we obtain:

logN + log{− logG(x)} = log{− logG(x+ σ logN)} (1.14)

Let us introduce:

h(x) = log{− logG(x)} (1.15)

then:

h(x) = h(0)− x

σ
(1.16)
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Now, since h(x) decreases as x increases, σ is positive:

− logG(x) = exp

[
−x− σh(0)

σ

]
(1.17)

Eventually, by denoting µ = σ log(− logG(0)):

− logG(x) = exp

(
−x− µ

σ

)
(1.18)

which demonstrates our statement since it is the logarithm of the type 1

distribution in Eq. 1.3.

Types 2 and 3 can be obtained by taking aN 6= 1. In this case

x = aNx = bN if x = bN(1− aN)−1 (1.19)

See [21] for a complete proof.

1.1.3 Gnedenko’s results

We state here the well known theoretical results originally framed by Gne-

denko [20] under the assumptions described in Section 1.1.1. By rewriting

P{an(Mn − bn) ≤ x} as P{Mn ≤ un} = F n(un) = {1− (1− F (un))}n where

un = un(x) = x/an + bn is a normalized sequence. Such type of normalized

sequence converges to one of the three types of distribution described in Eqs

1.3-1.5 (where µ = 0 and σ = 1 as they have already being renormalized by

using an and bn) if one of the following necessary and sufficient conditions

established by [20] is satisfied:

Let us define the right endpoint xF of a cumulative distribution function

F (x) as:

xF = sup{x : F (x) < 1} (1.20)
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Theorem (Gnedenko): Necessary and sufficient conditions for the dis-

tribution function F of the random variables of the i.i.d. sequence {ξn} to

belong to each of the three types are:

• For the Frechet (type 2) distribution, xF =∞:

lim
t→∞

1− F (tx)

1− F (t)
= x−α, α > 0,∀x > 0. (1.21)

• For the Weibull (type 3) distribution, xF <∞:

lim
x→0−

1− F (xF − xh)

1− F (xF − h)
= xα, α > 0,∀x > 0 (1.22)

• For the Gumbel (type 1) distribution, there exists some positive function

G(t) such that:

lim
t→XF

1− F (t+ xG(t))

1− F (t)
= e−x, ∀x ∈ R (1.23)

It may in fact be shown that
∫∞

0
(1−F (u))du <∞ when a type 1 limit

holds, and one appropriate choice of g is given by

G(t) =

∫ xF

1

1− F (u)

1− F (t)
du, t < xF

Gnedenko [20] has shown that these conditions are necessary and sufficient

to obtain the asymptotic EVLs. It is evident that, using these , different

asymptotic EVLs may hold when maxima and minima are taken into ac-

count. Besides the theorem, the following corollary is useful to determine

the normalizing sequences an and bn to be used:

Corollary (Gnedenko): The normalizing sequences an and bn in the con-

vergence of normalized maxima P{an(Mn − bn) ≤ x} → G(x) may be taken

as:

• Type 2: an = γ−1
n , bn = 0;
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• Type 3: an = (xF − γn)−1, bn = xF ;

• Type 1: an = [g(γn)]−1, bn = γn;

with γn = F−1(1− 1/n) = inf{x;F (x) ≥ 1− 1/n}.

The complete proof of both the theorem and the corollary can be found in

[9].

As we have already pointed out, the shape parameters has a very impor-

tant role in discriminating the type of distribution observed. In the next

paragraphs is given a brief overview of the different limiting EVLs

The Gumbel distribution (type 1)

From Eq. 1.6, we obtain a Gumbel distribution (equation 1.3) whenever

ξ → 0. The Gumbel probability density function has a shape skewed to the

left and, therefore, the location parameter µ is equal to the mode but it differs

from median and mean. As σ increases, the probability density function

spreads out and becomes shallower. According to the condition stated in

Eq. 1.23, the Gumbel distribution is the asymptotic EVLs if the parent

distribution shows an exponential tail decay which includes the normal, log-

normal, gamma or exponential types. Since the data of flood, earthquake

occurrences and many other shows an asymptotic Gumbel distribution, it is

often named in the scientific literature as the ”extreme value distribution“.

This prominent role will be motivated in the dynamical systems set up by

showing why the Type 1 distribution is more likely to be observed than the

others [3, 4].

The Frechet distribution (type 2)

To obtain an asymptotic Frechet EVL (Eq. 1.4) the parent distribution must

be a so called fat-tailed distribution which means that the tail decay is a

power law (like it happens for Cauchy or T-Student distributions). It is usu-
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ally observed for dataset which have a lower threshold such as precipitations,

winds, incomes, whose series cannot assume negative values.

The Weibull distribution (type 3)

When the tail index is negative (ξ < 0) the GEV distribution is a type 3 of

Weibull. In this case the parent distribution has a a finite upper endpoint

xup = µ+σ/(−ξ). It is also called a ”reversed” Weibull distributions pointing

out that it was first defined in a specular way with a finite lower endpoint.

The Weibull distribution is widely used to fit minima distribution, temper-

ature and sea-level data and whenever the observations used have bounded

value in the direction of the tail considered.

In table 1.1.3 we summarize the limiting Extreme Value distribution (where

µ → 0 and σ → 1 which is obtained starting from a different standardized

initial distribution.

Parent Dist. Lim. Dist.for Maxima Lim. Dist.for Minima

Exponential Gumbel (Type 1) Weibull (Type 3)

Gamma Gumbel (Type 1) Weibull (Type 3)

Normal Gumbel (Type 1) Gumbel (Type 1)

Log-normal Gumbel (Type 1) Gumbel (Type 1)

Uniform Weibull (Type 3) Weibull (Type 3)

Pareto Frechet (Type 2) Weibull (Type 3)

Cauchy Frechet (Type 2) Frechet (Type 2)

1.1.4 GEV inference criteria

We present here some methods used in order to infer the GEV distribution

parameters. We focus our attention on the maximum likelihood criteria and

the L-moments estimation since they have been applied to all the numerical

investigations carried out in the enclosed papers.
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As pointed out in Section 1.4.1 we can construct a sequence of maxima

(minima) by subdividing the available data X into N bins of equal length L

and by extracting the maximum from each bin i: MN,i. The block length is a

critical parameter to choice fairly between bias and variance in the parametric

estimates.

The procedure relies on the maximization of the log likelihood function:

l(µ, σ, ξ) =
L∏

i=1

ln(G′(MN,i;µ, σ, ξ)) (1.24)

where G′(x;µ, σ, ξ)) is the derivative of G(x;µ, σ, ξ)). Using Eq. 1.6, the log

likelihood function can be rewritten as:

−m ln(σ)−
(

1 +
1

ξ

) L∑

i=1

{
ln

[
1 + ξ

(
MN,i − µ

σ

)]
−
[
1 + ξ

(
MN,i − µ

σ

)]− 1
ξ

}

(1.25)

if ξ 6= 0, and as:

−m ln(σ)−
L∑

i=1

{(
MN,i − µ

σ

)
− exp

[
−
(
MN,i − µ

σ

)]}
(1.26)

if ξ = 0. We can obtain a profile likelihood of µ, ξ or σ by setting the other

two parameters to their maximum likelihood estimates µ̃, ξ̃, σ̃ in Eqs. 1.25

or 1.26. For example, to compute the profile likelihood for the parameter ξ,

we can construct the graph:

(x, y) = (ξ, l(µ̃, σ̃, ξ)) (1.27)

giving a section of the likelihood surface as viewed from the axis. The in-

tersections of the horizontal line with the profile likelihood graph allows for

estimatng a confidence interval:

y = ξ̃ − 0.5q0.95 (1.28)
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where q0.95 is the 95% quantile of the χ2 distribution with 1 degree of freedom.

In our numerical analysis we have used the Matlab function gevprobability

density function and gevcdf which return 95% confidence intervals for the

parameter estimates.

Whenever the probability density function is not absolutely continuous the

maximum likelihood estimation may fail as the minimization procedure may

be not well defined causing unexpected divergences of the parameters. In all

these situation is better to rely on a L-moments estimation , which, being

based upon the computation of integrals rather than upon the solution of

a variational problem, is more robust. The L-moments are analogous to

ordinary moments, but are computed from linear combinations of the data

values, arranged in increasing order. For a random variable X, the r th

population L-moment is:

λr = r−1

r−1∑

k=0

(−1)k
(
r − 1

k

)
EXr−k:r, (1.29)

where Xk:n¿ denotes the kth order statistic ( kth smallest value) in an in-

dependent sample of size n from the distribution of X and E denotes the

expected value. In particular, the first four population L-moments are

λ1 = EX (1.30)

λ2 = (EX2:2 − EX1:2)/2 (1.31)

λ3 = (EX3:3 − 2EX2:3 + EX1:3)/3 (1.32)

λ4 = (EX4:4 − 3EX3:4 + 3EX2:4 − EX1:4)/4. (1.33)

The first two of these L-moments have conventional names:

λ1 = mean, L-mean or L-location, (1.34)
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λ2 = L-scale. (1.35)

The L-scale is equal to half the mean difference.

Asymptotic approximations to sampling distributions are better for L-moments

than for ordinary moments [22]. Whenever we have used this inference, we

have computed the 95% confidence intervals of the parameters using a boot-

strap procedure.

1.1.5 The Kolmogorov-Smirnov test

There exist many methods to check the goodness of fit to the GEV distri-

bution. In our numerical investigation we have often used the Kolmogorov-

Smirnov test [23] because it avoids the discretization of the null hypothesis

unlike the χ2 which instead requires to group the data and consider a weaker

discretized null hypothesis.

We start with a sample of variable X1, ..., Xn belonging to some distribution

P and we test the hypothesis that P is equal to a particular distribution P0

obtained, for example, by a fit of data. There are two possible hypotheses:

H0 : P = P0 H1 : P 6= P0 (1.36)

Let us denote, as usual, by F (x) the true underlying distribution function of

data. While F (x) is defined in Eq. 1.6, we can also define an empirical cdf

by:

Fn(x) = Pn(X ≤ x) =
1

n

n∑

i=1

I(Xi ≤ x) (1.37)

that counts the proportion of the data Xi whose value is less than x. The

Kolmogorov-Smirnov test [23] uses a law of large numbers result which im-

plies that:

Fn(x) =
1

n

n∑

i=1

I(Xi ≤ x)→ P(X1 ≤ x) = F (x) (1.38)

It can be shown that this approximation holds uniformly over all x ∈ R:
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sup
x∈R
|Fn(x)− F (x)| → 0 (1.39)

To use the Kolmogorov-Smirnov test, we will need another weaker result

which we formulate using the central limit theorem:

√
n(Fn(x)− F (x))→dist N (0, F (x)(1− F (x))) (1.40)

where N is the Normal distribution, →dist denotes the convergence in distri-

bution and F (X)(1− F (x) is the variance of I(X1 ≤ x). Using the previous

observation we can state the following result:

P(
√

(n) sup
x∈R
|Fn(x)− F (x)| ≤ t)→ H(t) = 1− 2

∞∑

i=1

(−1)i−1e−2i2t (1.41)

where H(t) is the cdf of Kolmogorov-Smirnov distribution.

and by reformulating the hypotheses 1.36 in terms of F (x):

H0 : F = F0 H1 : F 6= F0 (1.42)

where F0 is the cdf of P0.

Let us introduce the statistics:

Dn =
√
n sup
x∈R
|Fn(x)− F0(x)| (1.43)

Using Eq. 1.36, if the null hypothesis is true, the Dn distribution can be

tabulated as it will depend only on n and it is approximated by H if n→∞.

If the null hypothesis fails, Fn will converge but it will not approximate F0:

sup
x
|Fn(x)− F0(x)| > δ (1.44)

with a small δ ∈ R. If we now multiply by
√
n:

Dn =
√
n sup
x∈R
|Fn(x)− F0(x)| > √nδ (1.45)
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if H0 fails then Dn >
√
nδ →∞ as n→∞.

It is possible to use the following decision rule:

δ =




H0 : Dn ≤ c

H1 : Dn > c
(1.46)

c is a threshold tabulated under H0. The level of significance α can be related

to c by:

α = P(δ 6= H0|H0) = P(Dn ≥ c|H0) (1.47)

and if n is large the we can use the H distribution to compute c since:

α = P(Dn ≥ c|H0) ≈ 1−H(c) (1.48)

1.1.6 The Peak over Threshold approach:

The Gnedenko-Pickands-Balkema-de Haan (hereinafter GPBH) theorem states

that the distribution of large events conditioned to be larger than some

threshold may be characterized by using the Generalized Pareto Distribu-

tion GPD.

The GPD can be derived from the GEV distribution in Eq. 1.6 by taking

the G(x, ξ) of the largest value given by:

H(x/ξ, s) = 1 + ln(G(x/s, ξ) = 1− (1 + ξx/s)−1/ξ (1.49)

where s = s(u) is a positive function.Nonetheless, the usual way to obtain the

GPBH theorem is related to the definition of the excess distribution Fu(x):

Fu(x) = P{X − u < x|X > u}, x ≥ 0 (1.50)

Let F (x) be a distribution function with excess distribution Fu(x), u > 0.

Then, for −∞ < ξ < +∞, F (x) ∈ D(x, ξ) maximum domain of attraction

of G(x, ξ) if and only if there exists a positive function s(u) such that:
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lim
u→xF

sup
0≤x≤xF−u

|F̄u(x)− H̄(x/ξ, s(u))| = 0 (1.51)

F̄ (x) indicates the complementary cumulative of the distribution F (x):

F̄ (x) = 1− F (x) (1.52)

This results is due to Pickands [24] and Balkema de Haan [25]. In the class

of distributions for which this result holds may be further subdivided into

three groups according to the value of the parameter ξ in the limiting GPD

approximation to the excess distribution. For a complete derivation see, for

example, Theorem 3.4.13 in [26].

The importance of the GPBH theorem resides in the statement which is not

only valid for the largest value of a data set, as in the case of the Extreme

Value Theory, by making a full use of all the data presents in the tail.

The Block Maxima approach uses only a part of the parent distribution tail

discarding a significant part of the data. This is the reason why the Peak

over Threshold approach is usually preferred in the applications as it requires

generally smaller datasets [27].

1.1.7 Maximum likelihood estimation for the GPD

Let us denote by Nu the number of observation above a threshold u and as

y1, ..., yNu the observations such that:

u : yi = xj(i) − u;xj(i) > u (1.53)

The GPBH theorem yields an approximation to the tail F̄ (x) using the Pareto

distribution as estimator:

F̄ (x+ u) ' H̄(x/ξ̂, ŝ)× (Nu/N) (1.54)
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As for the GEV distribution we can infer the estimates of the two parameters

ξ̂, ŝ through the Maximum Likelihood Estimation (MLE). Here the log-

likelihood l must equals:

l = −Nu ln s− (1 + 1/ξ)
Nu∑

1

ln(1 + ξyi/s) (1.55)

The q-quantile estimator xq, which denotes the value of the random variable

not overpassed with probability q, can be written as:

xq = u+ (ŝ/ξ̂)(N/Nu(1− q)−ξ̂ − 1) (1.56)

While the scale parameter s = s(u) depends on the threshold value u, the

shape parameter ξ is, in theory, independent on it and uniquely determined

by the distribution function F (x) of the dataset. In other words, a very

simple way to assess if the threshold value is high enough is to look at the

fluctuations of the shape parameter: whenever no appreciable changes of ξ

are observed when rising the value of the threshold, the asymptotic regime

is reached [28].

1.2 Recurrences and Hitting time statistics

In this section we present the basic theory of Return Time Statistics (also

known as Poincaré recurrences) showing the well known results obtained for

a wide class of dynamical systems. In the past years both strong numerical

evidences and theoretical results indicate that this theory is deeply connected

with diffusion processes, correlation and not only for mixing dynamical sys-

tems but also for integrable maps [29], [30], [31]. For the understanding of

the papers enclosed, these results are useful to establish a connection between

the Hitting time statistics and the Extreme Value Theory that is widely used

in [2, 3, 4, 5, 6].
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1.2.1 Poincaré Recurrence Theorem.

Let us consider a standard probability space (Ω,F , ν):

1. Ω is a sample space, the set of all possible outcomes.

2. F is a σ-algebra, the collection of all events which characterize groups

of outcomes.

3. ν is a standard probability measure.

and let f : Ω→ Ω be a measure preserving map:

ν(f−1A) = ν(A), ∀A ∈ F (1.57)

Then, for any A ∈ F , the set of those points x of A such that fn(x) /∈ A

for all n > 0 has zero measure, that is almost every point returns infinitely

often. i.e

ν{x ∈ A : fnx ∈ A, for some n > 0} = ν(A) (1.58)

Proof: Let us introduce An = ∪∞k=nf
−kA Then, A ⊂ A0 and Ai ⊂ Aj

when j ≤ i. Also, Ai = f j−iAj, so that ν(Ai) = ν(Aj) for all i, j ≥ 0, by the

f -invariance of ν. Now for any n > 0 we have A− An ⊂ A0 − An, so that

ν(A− An) ≤ ν(A0 − An) = ν(A0)− ν(An) = 0.

Hence ν(A−An) = 0 for all n > 0, so that ν(A−∩∞n=1An) = ν(∪∞n=1A−An) =

0. But A− ∩∞n=1An is precisely the set of those x ∈ A such that for some n

and for all k > n we have fk(x) /∈ A [32]. A proof of theorem which follows

the original Poincaré formulation can be found in [33]. 2

First Visiting Time and Kac’s Theorem

In the following we will assume that ν is ergodic for f :

6 ∃A ∈ F , 0 < ν(A) < 1, such that ν(A∆f−1A) = 0 (1.59)
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where 4 denotes the symmetric difference. This is equivalent to say that

ν-almost every point in the whole space visits A; using the ergodicity we can

introduce the concept of visiting time to a fixed set A of positive measure for

ν-almost every point in Ω [34].

Let us fix A ∈ F with ν(A) > 0, we define τ : Ω→ N as:

τ = inf{n > 0 : fnx ∈ A} (1.60)

first visiting time of A (note that τ(x) <∞ almost everywhere).

The smaller the set, the more time we have to wait in order to observe a

return in A. This result is stated formally by the following theorem:

Kac’s Theorem.

Let (Ω,F , ν, f) be an ergodic dynamical system and let A ∈ F be a set of

positive measure, then

EA(τ) =
1

ν(A)

∫

A

τ(x)dν =
1

ν(A)
(1.61)

In accordance with this theorem one then looks at the return times which

are normalized by the measure of the return set.

To prove Kac’s Theorem we follow [34], [35] and [36].

First we introduce Rokhlin Tower definition:

In a dynamical system (Ω,F , ν, f) we define Rokhlin Tower a finite family

of measurable sets.

Ψ = (B, fB, ..., fh−1B) (1.62)

where f jB are two-by-two disjoint sets. The set B represents the tower base,

f jB is a floor and h is the height.

It is possible to partition the set A as follows. Let us define
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Ai = {x ∈ A : τ(x) = i} i ≥ 1 (1.63)

then:

ν(A) = ν

(⋃

i≥1

Ai

)
. A =

∞⋃

i=1

Ai (1.64)

and we consider the Rokhlin Tower of height k:

(Ak, fAk, ..., f
k−1Ak) (1.65)

Eventually, we introduce a lemma which is useful to prove Kac’s Theorem:

Rokhlin’s Lemma. Let (Ω,F , ν, f) be an aperiodic dynamical system.

Then ∀ε > 0,∀n ∈ N,∃B measurable such that:

• f iB, 0 ≤ i ≤ n are two-by-two disjoint

• ν(
⋃n−1
i=0 f

iB) > 1− ε

We can eventually prove Kac’s theorem as follow. ν is ergodic and ν(A) > 0

then:

ν

(⋃

n≥0

fnA

)
= 1 (1.66)

We have seen that A is a disjoint union of Ak and then
⋃
n≥0 f

nA is composed

by the whole f jAk in a separate way: on the one hand for the Ak definition,

on the other, by the injectivity of T , we know that fAj, f
2Aj, ..., f

j−1Aj

cannot join fAk, f
2Ak, ..., f

k−1Aj with k 6= j, then:

+∞∑

k=0

k−1∑

j=0

ν(f jAk) = 1 (1.67)

and with the invariance measure we obtain:

+∞∑

k=0

kν(Ak) = 1 (1.68)
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and
+∞∑

k=0

kν(Ak) =

∫

A

τ(x)dν(x) (1.69)

2.

1.2.2 Return Time Statistics

Kac’s theorem suggests that for every set B of positive measure, the expec-

tation value of τ is equal to 1/ν(B). For a wide class of dynamical systems

an exponential behaviour of first return times is observed when ν(B) → 0.

We are interested in finding out which are the suitable conditions in order

to obtain this kind of distribution. This property is once again linked to the

existence of mixing properties for the system considered, as stated in [37]. In

order to frame rigorously the exponential decay of first return times we have

at first to introduce some useful definitions:

Conditional Measure: Let (Ω,F , ν) be an ergodic dynamical system.

We define conditional measure of the set A:

νA(B) =
ν(A ∩B)

ν(A)
B ⊆ Ω (1.70)

Weak convergence We say that a sequence of distribution functions

Fn n = 1, 2, ...

weakly converges to a function F (which might not be a distribution itself) if

F is non-strictly increasing, right continuous and satisfies:

lim
n→∞

Fn(t) = F (t) (1.71)

at every point t of continuity of F .
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Return times spectrum: Let τA be the first return time over a set A

and E(τ) its expectation value, we define Return times Spectrum F̃A(t)

F̃A(t) = νA

(
x ∈ A :

τA(x)

τA
≤ t

)
(1.72)

Let us consider a neighbourhood sequence AK(x) of a point x ∈ Ω so that

ν(Ak(x)) → 0 as k → +∞, we define Limiting Spectrum or Return Time

Statistics F̃ (t):

F̃ (t) = lim
k→+∞

F̃Ak(x)(t) (1.73)

if the limit exists.

1.2.3 Mixing Systems

There exist a great variety of mixing definitions which can be used to char-

acterize this fundamental property of dynamical systems. We start by in-

troducing an intuitive point of view, leaving the formalism for the following

section.

Strong mixing system: Let (Ω, f, ν) be a dynamical system, ν an in-

variant probability measure ν(f−1A) = ν(A). It is said to be strongly mixing

if ∀ϕ, ψ ∈ L2(Ω):

lim
k→∞

∫

Ω

ϕ(f−k(x))ψ(x)dν =

∫

Ω

ϕ(x)dν

∫

Ω

ψ(x)dν (1.74)

For the special case of characteristic functions whose value is 1 at points of

A (B) and 0 at points of Ω − A (Ω − B), we have that χA and χB of sets

A,B ∈ Ω:

lim
k→∞

∫

Ω

χA(f−k(x))χB(x)dν =

∫

Ω

χA(x)dν

∫

Ω

χB(x)dν (1.75)

lim
k→∞

ν(f−kA ∪B) = ν(A)ν(B) (1.76)
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and in the last passage we have used measure invariance.

Following Arnold, we present a simple physical example of mixing: the Cuba

libre: suppose that a glass initially contains 20% rum (the set A) and 80%

cola (the set B) in separate regions. After stirring the glass, any region of

the glass contains approximately 20% rum. Furthermore, the stirred mix-

ture is in a certain sense inseparable: no matter where one looks, or how

small a region one looks at, one will find 80% cola and 20% rum [38]. In

physics, a dynamical system is said to be mixing if the phase space has a

coarse-graining structure. Every mixing transformation is ergodic, but there

are ergodic transformations which are not mixing. An heuristic argument

can be framed as follows:

Let us consider the set A>t . It contains all the points which have a recurrence

time greater than t · E(τA). Calling Ac the complementary set with respect

to the relative measure, it is evident that ∀x ∈ A>t holds:

x ∈ A>T ⇐⇒ fk(x) ∈ Ac, k = τA, τA + 1, ..., t · E(τA) (1.77)

When ν(A)→ 0 then τA � 1. If we apply the strong mixing condition (Eq.

1.74) and measure invariance, then:

ν
(
f−k(Ac) ∩ f−n(Ac)

)
= ν(f−kAc)ν(Ac) = ν(Ac)

2 (1.78)

which holds for n� 1. Now we can write:

νA(A>t) = ν
(
f−τA(Ac) ∩ f−τA−1(Ac) ∩ ... ∩ f−tE(τA)(Ac)

)
(1.79)

Since some sets is contained in the others, we obtain:

νA(A>t) = ν (Ac)
tE(τA)−τA (1.80)

It follows that:

νA(A>t) = (1− ν(A))tE(τA)−τA (1.81)
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νA(A>t) = exp [(tE(τA)− τA) log(1− ν(A))] (1.82)

Eventually, taking the limit ν(A)→ 0, we obtain:

F̃ (t) = lim
ν(A)→0

νA (A>t) = e−t (1.83)

1.2.4 Hitting Time Statistics

We have just introduced the Return Time Statistics F̃ (t) but we may also

study the Hitting Time Statistics F (t) that differ by F̃ (t) since τA is defined

on the whole of Ω and not simply restricted to A:

FA(t) = ν

(
τA(x)

τA
≤ t

)
(1.84)

F (t) = lim
k→+∞

FAk(x)(t) (1.85)

To state rigorous results about Hitting Time Statistics, we focus our attention

to the class of functions A and Ã which have the following properties [39]:

• A = {F : R→ [0, 1], F ≡ 0 on ]−∞, 0], F (non strictly) increasing,

continuous, concave on [0.+∞[, F (t) ≤ t for t ≥ 0}

• Ã = {F̃ : R→ [0, 1], F ≡ 0 on ]−∞, 0], F (non strictly) increasing,

right-continuous,

∫ +∞

0

(1− F̃ (s))ds ≤ 1}

Hitting time statistics

Following the work of [40], we introduce their mixing definitions and then

proof the exponential spectral decay of recurrence times:

We say that (Ω,F , ν, f) is, for all integers n ≥ 1 and l ≥ 0,
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• γ-mixing (or uniform mixing) if

sup
B∈F{0,...,n},C∈F{n≥0}

∣∣ν(B ∩ f−(n+l+1))− ν(B)ν(C)
∣∣ = γ(l) (1.86)

• α-mixing if

sup
B∈F{0,...,n},C∈F{n≥0}

∣∣ν(B ∩ f−(n+l+1))− ν(B)ν(C)
∣∣

ν(B)
= α(l) (1.87)

• φ-mixing if

sup
B∈F{0,...,n},C∈F{n≥0}

∣∣ν(B ∩ f−(n+l+1))− ν(B)ν(C)
∣∣

ν(B)ν(C)
= φ(l) (1.88)

where F{0,...,n} are finite or countable measurable σ-algebra.

Following [40], we state a general implication verified by the preceding types

of mixing:

Remark: φ-mixing implies α-mixing which implies uniform mixing:

γ(n) ≤ α(n) ≤ φ(n) ∀n ∈ N

We now state a fundamental theorem which connects the Return Time Statis-

tics with the Hitting Time Statistics, showing that, if one converges the same

applies to the other. This theorem prepares to the main results obtained by

Freitas et al. [41] reported in Section 1.4.

Theorem (Haydn-Lacroix-Vaienti) Let (Ω, f, ν) be an ergodic system and

consider a sequence {An ∈ Ω : n ≥ 1} a sequence of positive measure mea-

surable subsets. Then the sequence of functions F̃An converges weakly if and
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only if the functions FAn converge weakly. Moreover, if the convergence holds,

then:

F (t) =

∫ t

0

(1− F̃ (s))ds, t ≥ 0 (1.89)

where F̃ and F are the corresponding limiting (sub-probability) distributions

The only previous result in this direction was obtained by [40] where it

is shown that F̃ (An) → F̃ and F̃ (t) = 1 − e−t for t ≥ 0 if and only if

F (An) − F̃ (An) → 0 in the supremum norm on the real line. The Haydn-

Lacroix-Vaienti Theorem shows that the exponential distribution is the only

distribution which can be asymptotic to both return and hitting times, as

it is clearly the only fixed point of 1.89. Linking this two theorems one can

obtain:

F (t) =

∫ t

0

(1− F̃ (s))ds =

∫ t

0

(1− (1− e−s))ds = 1− e−t (1.90)

Proof: Let us denote:

Bk = {x ∈ A : τA(x) = k}

Ak = {x ∈ Ω : τA(x) = k}

Then, a set of zero measure over Ω can be written as a disjoint union of:

k−1⋃

j=0

f jBk, k = 1, 2, ...

On the other hand we can write:

Ak =
+∞⋃

j=0

f jBk+j

which implies:

ν(Ak) =
+∞∑

j=k

ν(Bk) (1.91)
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FA(t) = ν




[t/ν(A)]⋃

k=1

Ak


 =

[t/ν(A)]∑

k=1

FA is the partition function of a discrete aleatory variable so that it is a

simple function : more exactly it is constant over the intervals

[kν(A), (k + 1)ν(A)[

and its value is established by the precedent sum.

It has a jump discontinuity of height ν(Ak) at the point kν(A).

Let us define F̄A the piecewise linear function which has the same values of FA

for all point kν(A), and that is linear over the intervals [kν(A), (k+ 1)ν(A)].

Using Eq. 1.91, all the jump discontinuities of FA are decreasing which

implies that F̄A is concave. On the other hand it is continue and increasing

and its right derivative for a point t ∈ [kν(a), (k+ 1)ν(A)[ can be written as:

F̃ ′A(t) =
ν(Ak + 1)

ν(A)
(1.92)

in the same way, the return

F̃A(t) =
1

ν(A)

[t/ν(A)]∑

k=1

ν(Bk) (1.93)

is constant over [kν(a), (k+1)ν(A)[ and has a jump of height ν(Bk)
ν(A)

in kν(A).

∀t ≥ 0 we can write:

F̄ ′A(t) = 1− F̃A(t) (1.94)

By the definition of F̄A we get:

||FA − F̄A||∞ ≤ ν(A) (1.95)

Let (An)n a sequence of measurable sets so that ν(An)→ 0 and F̃An ⇒ F̃ (in

this case F̃ ∈ Ã). Since F̃ is increasing and ∈ [0.1] then F̃An → F̃ a.e. over
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[0,+∞[. Now, by applying the dominated convergence theorem over [0, t] for

t ≥ 0 and by using Eq. 1.94 we have:

F̄An(t) =

∫ t

0

(1− F̃An(s))ds→
∫ t

0

(1− F̃ (s))ds =: F (t) (1.96)

Posing F (t) = 0 if t > 0, then F̃ ∈ Ã and F ∈ A. On the other hand,

by using Eq. 1.95, FAn(t) → F (t),∀t ∈ R. Eventually, if F̃An ⇒ F̃ then

FAn ⇒ F previously defined.

1.3 Reversibility Error and Correlations

Important statistical properties of dynamical systems can be inferred also

studying the behaviour of the so called reversibility error and of the cor-

relations functions. The former is a very well known tool in the scientific

community for its versatility - it can be computed for a general class of ob-

servables - and it has also been widely used in the study of critical transition.

The latter is widely commented in [1]. In this section we present the theory

used to describe the asymptotic decay of correlations which is strictly con-

nected to recurrences statistics and extreme value theory as we show through

the papers enclosed.

The decay of correlations plays a very important role in non-equilibrium

statistical mechanics. It is essential in the studies of relaxation to equilib-

rium. Correlations and autocorrelations functions are explicitly involved in

the formulas for transport coefficients, such as heat conductivity, electrical

resistance, viscosity, and the diffusion coefficient [42].

1.3.1 Reversibility Error

It is possible to introduce the reversibility error after n iteration of a map f

as:

∆n = dist(f−n(fn(~x)), ~x) (1.97)
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This is clearly a quantity obtained only numerically. In a pure analytical

set-up ∆n = 0 always.

Using this definition [43] have investigated numerically the role of numerical

round-off. In a regular region ∆n is about of the same order of magnitude of

the machine precision 10−13 − 10−16 while it is orders of magnitude greater

in chaotic regions.

For this reason, by using this indicator it is possible to distinguish chaotic

from regular region with a great detail. In [1] we present some examples of

map with different kind of regions depicted using reversibility error.

1.3.2 Correlations function

Let (Ω,F , ν, f) be a dynamical system and let us denote by fn the dynamical

evolution on the phase space Ω with ergodic measure ν, then, for any choice

of ϕ, ψ ∈ L2(Ω, ν), we define the correlation function as:

Cϕ,ψ(n) =

∫

Ω

ϕ(fnx)ψ(x)dν(x)−
∫

Ω

ϕ(x)dν(x) ·
∫

Ω

ψ(x)dν(x) (1.98)

The key property for analysing the dynamics of a system is the speed at

which the correlation function decay.We will distinguish the cases for which

the correlations function Cϕ,ψ(n) decays exponentially with n - for suitable

ϕ, ψ -, from other cases we will observe a power law decay:

• decay exponentially if |Cϕ,ψ(n)| < const · e−cn for some c > 0.

• decay polynomially if |Cϕ,ψ(n)| < const · n−α for some α > 0.

One way to obtain analytical results for simple dynamical systems is to con-

sider the Fourier transform of the correlations function:

Ĉϕ,ψ(ω) =
∑

n∈Z
einωCϕ,ψ(n) (1.99)

By substituting einω with z in the expression above, we obtain an equation

in form of a power series in z. We know the first n coefficients up to the
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maximum correlation time. In [31] and [44] the authors have shown that the

exponential decay is associated to the analyticity of Ĉϕ,ψ(ω): if it has a pole

in ω∗ = α + iβ, its contribution to the correlation function is written as:

exp(−β · n+ iα · n)

The analyticity of Ĉϕ,ψ(ω) regards a strip centred around the real axis. The

properties of the Fourier transform of the correlations function have been

studied in [45] and [46] showing that the behaviour of the system is connected

to its analyticity properties.

1.3.3 Correlations and Recurrences

To show the connections between correlations decay and Poincaré Recur-

rences, we follow Young’s method for hyperbolic dynamical systems [47]. We

recall that hyperbolic dynamics is characterized by the presence of expand-

ing and contracting directions for the derivative. This stretching and folding

typically gives rise to complicated long-term behaviour in these systems (see

[48] for a comprehensive description).

We describe the basic idea of Young’s method shown in [49], skipping math-

ematical and technical details which can be found in the original papers.

Let f : Ω→ Ω be an hyperbolic map acting on Ω and ν an absolute continue

ergodic measure. We are looking for sufficient conditions under which cor-

relations for the map f have a summable decay. Young constructs a set ∆0

with a hyperbolic structure obtained by intersection of a family of unstable

manifolds with a family of stable manifolds similar to an ’horseshoe’. We

iterate points x ∈ ∆0 using the map f until they make return to ∆0.

We can now construct a tower, ∆, with base ∆0, where the induced map f∆

moves every points one floor up until they hit the ceiling, eventually falling

onto the base again. The tower ∆ is identified with Ω, and f∆ with f . Now,

we can introduce the first return time defined in Eq. 1.60 which in this case,

for x ∈ ∆, can be written as:
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τ∆0(x) = inf{k > 0 : fk∆(x) ∈ ∆0} (1.100)

that is the first return time of the point X to the base of the tower ∆0. Since

the tower has infinitely many levels, τ is unbounded. As in Eqs. 1.72 and

1.73, we can introduce the Hitting Times statistics:

F (x ∈ ∆ : τ∆0(x) > n).

Young proves both that if the Hitting Time Statistics is exponential (that is

exponentially small probability of long returns), then correlations function

decays exponentially and that correlations decay polynomially for systems

with slower mixing rates:

Theorem (Young) Let f : Ω → Ω be an hyperbolic map acting on Ω and

ν an absolute continue ergodic measure, if

• The Hitting Time Statistics shows an exponential decay:

F (x ∈ ∆ : τ∆0(x) > n) ≤ const · θn ∀n ≥ 1 (1.101)

where θ < 1 is a constant, then

|Cϕ,ψ(n)| < const · e−cn for some n > 0 (1.102)

• The Hitting Time Statistics shows a power law decay:

F (x ∈ ∆ : τ∆0(x) > n) ≤ const · n−α ∀n ≥ 1 (1.103)

where α > 0 is a constant, then

|Cϕ,ψ(n)| < const · n−α (1.104)

To verify directly the tail bound in specific systems, we have to iterate the

map f and construct a ∆0, an approach that might be quite difficult.
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To overcome this problem, we can use another approach, which allows for

avoiding the computation of Young’s tower. Imagine that one can localize,

on the Ω manifold, a set M ⊂ Ω having a strong hyperbolic behaviour. Con-

sider the hitting time statistics F : M → M , then there exists an horseshoe

∆O ⊂M which return times are exponentially bounded under the map f .

We state now the main theorem for the power law decay of correlations. It

will be useful to better understand the results presented in [8], where we use

extensively the summable decay of correlations.

Theorem (Markarian): Let f : Ω→ Ω a non-uniformly hyperbolic map.

Suppose M ⊂ Ω is a subset such that the Hitting time statistic F : M → M

satisfies Eq. 1.101 for τ∆0(x) to a rectangle ∆0 ⊂ M . If the return times

τM(x) satisfies the bound :

F (x ∈ Ω : τM(x) > n) ≤ const · n−α ∀n ≥ 1 (1.105)

then

|Cϕ,ψ(n)| < const · (lnn)α+1n−α (1.106)

Proof: For every n ≥ 1 and x ∈ Ω define:

rM(x) = {1 ≤ i ≤ n : f i(x) ∈M} (1.107)

and

An = {x ∈ Ω : τ∆0(x) > n}
Bn,b = {x ∈ Ω : rM(x) > b lnn}

(1.108)

where b is a constant to determine. Using equation 1.101:

ν(An ∩Bn,b) ≤ const · nθb lnn

Choosing b large enough makes this bound less than const · n−α.

We have to bound ν(An\Bn,b) noting that points x ∈ An\Bn,b return to M
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at most b lnn times during the first n iterates of f . There are less or almost

b lnn time intervals between successive returns to M and the longest such

interval I has length ≥ n/(b lnn). By applying equation to the interval I we

obtain:

ν(An\Bn,b) ≤ const · n(lnn)α+1

nα+1

Note that Markarian includes the extra factor n because the interval I may

appear anywhere within the interval [1, n], and the measure ν is invariant.

Returning to Young’s tower ∆, we obtain:

F (x ∈ ∆ : τ∆0(x) > n) ≤ const · (lnn)α+1n−α n ≥ 1 (1.109)

and this bound differs from Young’s by the extra factor (lnn)α+1. A similar

argument can be used to prove a bound for the power law decay.

1.4 Hitting time statistics and Extreme Value

Theory

In this section we explore the link between Extreme Value Laws presented in

the first section and the Hitting Time Statistics, described in section three,

following the paper by Freitas et al. [10]. Their main finding has been

showing the deep connection between the two theories for dynamical systems

which exhibit an exponential return time statistics.

The results presented in this section are widely used among the enclosed

papers. We wish to rephrase them here in a less technical language that can

be useful to access the results presented in the subsequent chapters.

Uniform mixing conditions

We have introduced the statistics of maxima Mn = max{X0, ..., Xn−1} for

i.i.d variables X0, X1.. and we have already observed in 1.1.3 that exists a

limit distribution under certain conditions.
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The same limit laws apply to stationary stochastic processes, under certain

conditions on the dependence structure, which allows for the reduction to the

independent case. Freitas et al. [10] associate to a given stochastic process

X0, X1, ... an i.i.d. sequence Y0, Y1, ... whose distribution function is the same

as that of X0, and whose partial maximum is defined as:

M̂n = max{Y0, ..., Yn−1}

In the dependent context, the general strategy is to prove that if X0, X1, ..

satisfies some conditions, then the same limit law for M̂n applies to Mn with

the same normalizing sequences an and bn. See [50] for the complete proof.

This is equivalent to showing that the following mixing conditions hold.

Condition D2(un). We say that D2(un) holds for the sequence X0, X1, ... if

for any integers l, t and n

|ν({X0 > un}∩{max{Xy, ..., Xt+l−1}})−ν({X0 > un})ν({Ml ≤ un})| ≤ γ(n, t)

where γ(n, t) is non-increasing in t for each n.

Condition D′(un). We say that D′(un) holds for the sequence X0, X1, ... if

lim
k→∞

lim sup
n→∞

n

[n/k]∑

j=1

ν({X0 > un} ∩ {Xj > un}) = 0

The main result states that ifD2(un) andD′(un) hold for the processX0, X1, ...,

then the following limits exists:

lim
n→∞

ν(M̂n ≤ un) = lim
n→∞

ν(Mn ≤ un) (1.110)

Before stating the main results, we recall the Lebesgue’s differentiation the-

orem which will have a key role in the subsequent proofs.
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Lebesgue’s Differentiation Theorem Let us consider a Lebesgue inte-

grable real or complex-valued function f on Rn, the indefinite integral is a set

function which maps a measurable set A to the Lebesgue integral of f · χA,

where χA denotes the characteristic function of the set A. We can write it

as:

∫

A

f dνLeb

with νLeb the n-dimensional Lebesgue measure.

The derivative of this integral at x is defined to be

lim
B→x

1

|B|

∫

B

f dνLeb,

where |B| denotes the volume (i.e., the Lebesgue measure) of a ball B centred

at x, and B → x means that the diameter of B tends to zero. Then this

derivative exists and is equal to f(x) at almost every point x ∈ Rn.

The points x for which this equality holds are called Lebesgue points.

1.4.1 Freitas-Freitas-Todd Theorem

Let (Ω,F , ν, f) be a dynamical system where ν is absolute continuous in-

variant probability measure (that is ν(f−1(A)) = ν(A)) for all A ∈ Ω, a

d-dimensional Riemannian Manifold . We introduce:

• Bδ(ζ) = {x ∈ Ω : dist(x, ζ) < δ} is the ball of radius δ centred in ζ

• νLeb is Lebesgue measure on Ω.

• ρ = dν
dνLeb

is a measure density.

• ’dist’ a Riemannian metric on Ω.

Consider the stationary stochastic process X0, X1, ... which is given by:

Xn(x) = g(dist(fnx, ζ)) ∀n ∈ N (1.111)
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Define the partial maxima as:

Mn = max{X0, ...., Xn−1} (1.112)

As in subsection we are interested in knowing if there are normalizing se-

quences {an}n∈N and {bn}n∈N such that:

ν({x : an(Mn − bn) ≤ y}) = ν({x : Mn ≤ un})→ G(y) (1.113)

where un = un(x) = x/an + bn.

Observable functions gi and normalizing sequences

Following Freitas et al. [41] we now describe the three types of observable

gi i = 1, 2, 3. which are suitable to obtain a GEV distribution for normalized

maxima according the Gnedenko’s theorem stated in subsection 1.1.3:

Observation 4.1: Let ζ be a chosen point in the phase space Ω and consider

the function:

g(dist(x, ζ)) : Ω→ R (1.114)

g is such that 0 is a global maximum. g : V → W is a strictly decreasing

bijection and it has one of the following behaviour:

• Type 1: There exists some positive function p : W → R such that for

all y ∈ R
lim

s→g1(0)

g−1
1 (s+ yp(s))

g−1
1 (s)

= e−y (1.115)

• Type 2: g2(0) = +∞ and there exists β > 0 such that ∀y > 0

lim
s→+∞

g−1
2 (sy)

g−1(s)
= y−β (1.116)

• Type 3: g3(0) = D < +∞ and there exists γ > 0 such that for all y > 0

lim
s→0

g−1
3 (D − sy)

g−1
3 (D − s) = yγ (1.117)
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gi conditions are just translations in terms of the shape of g−1 of the condi-

tions on the tail of F , since the distribution function F is given by:

F (u) = ν(X0 ≤ u)

Note that in this case the dynamic of the system is not introduced in F

definition.

1− F (u) = 1− ν(X0 ≤ u) (1.118)

It follows from X0 definition that:

1− F (u) = 1− ν(g(dist(x, ζ) ≤ u)) (1.119)

using Lebesgue Differentiation Theorem:

1− F (u) = 1− ν(dist(x, ζ) ≥ g−1(u)) (1.120)

If we observe that:

ν(dist(x, ζ) ≥ g−1(u)) = 1− ρ(ζ)|Bg−1(u)(ζ)|

Then we obtain:

1− F (u) ∼ ρ(ζ)|Bg−1(u)(ζ)|

dist(f jx, ζ) ≤ g−1(u) (1.121)

It is now possible to apply the corollary in subsection 1.1.3 in order to obtain

the normalizing sequences an e bn:

Observation 4.2: Let {δn}n∈N be such that δn → 0 if n → ∞, for each

ζ ∈ Ω and define k ∈]0,∞[ such that |Bδn(ζ)| ∼ k · δdn, then:

• Type g1: y ∈ R un = g1((kρ(ζ)n)−1/d) + p(g1((kρ(ζ)n)−1/d))y
d

• Type g2: y > 0 un = g2((kρ(ζ)n)−1/d)y

• Type g3: y < 0 un = D − (D − g3((kρ(ζ)n)−1/d))(−y)
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We are now ready to state the main result obtained by Freitas et al. which

links the extreme value laws presented in Section 1.1 with the hitting time

statistics widely presented in Section 1.2.4.

Theorem (Freitas-Freitas-Todd): Let (Ω,F , ν, f) be a dynamical sys-

tem where ν is an absolute continue invariant probability measure, and con-

sider ζ ∈ Ω for which Lebesgue’s Differentiation Theorem holds.

• If we have an exponential Hitting Time Statistics F (t) = e−t (defined

in Eq. 1.85) to balls centred on ζ ∈ Ω, then we have an Extreme

Value Law for Mn which applies to the observables gi (described in

Observation 4.1) achieving a maximum at ζ.

• If we have an exponential Hitting Time Statistics to balls at ζ ∈ Ω, then

we have an Extreme Value Law for Mn which coincides with that of M̂n

(meaning that Eq. 1.110 holds). In particular, this Extreme Value Law

must be one of the 3 classical types described in Eq. 1.3 for observables

g1, in Eq. 1.4 for observables g2 and in Eq. 1.5 for observables g3

where, in all the cases considered, µ = 0 and σ = 1 since normalizing

sequences an and bn are used.

Proof: We outline the part of the proof which demonstrate the theorem

for the observable class g1. The complete proof for all the observables gi can

be found in [10]. Let us denote gi simply as g. The outline is divided into

two parts:

• Part 1 For n sufficiently large we have:

{x : Mn(x) ≤ un} =
n−1⋂

j=0

{x : g(dist(f jx, ζ)) ≤ un} (1.122)

We now apply the Lebesgue Differentiation Theorem:
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n−1⋂

j=0

{x : g(dist(f jx, ζ)) ≤ un} =
n−1⋂

j=0

{x : dist(f jx, ζ) ≥ g−1(un)}

(1.123)

note the change in the inequality sign. The last equation allow us to

introduce the hitting time statistics over the ball Bg−1(un):

n−1⋂

j=0

{x : dist(f jx, ζ) ≥ g−1(un)} = {x : τBg−1(un)
(x) ≥ n} (1.124)

From Eq. 1.115 we can write:

g−1(un) = g−1
[
g1((kρ(ζ)n)−1/d) + p(g1((kρ(ζ)n)−1/d))

y

d

]

∼ g−1
[
g1((kρ(ζ)n)−1/d)

]
e−y/d =

(
e−y

kρ(ζ)n

)1/d (1.125)

Thus:

g−1(un) ∼
(

e−y

kρ(ζ)n

)1/d

(1.126)

As said before, since Lebesgue’s Differentiation Theorem holds for ζ ∈
Ω, we have ν(Bδ(ζ)

|Bδ(ζ)| → ρ(ζ) as δ → 0. Consequently, since it is obvious

that g−1(un)→ 0 as n→∞, then:

ν(Bg−1un)(ζ)) ∼ ρ(ζ)|Bg−1(un)(ζ)| ∼ ρ(ζ)k(g−1(un))d (1.127)

and the last passage is obtained by using the relation 1.121.

ρ(ζ)k(g−1(un))d = ρ(ζ)k
e−y

kρ(ζ)n
=
e−y

n
(1.128)

We can now express n as:
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n ∼ e−y

ν(B
g−1(un)(ζ))

(1.129)

Now, by substituting Eq. 1.129 in Eq 1.124 and taking the limit, we

have:

lim
n→∞

ν

({
x : τBg−1(un)

(x) ≥ e−y

ν(B
g−1(un)(ζ))

})
= F (e−y) = e−e

−y

(1.130)

Eventually it is possible to write:

lim
n→∞

ν({x : Mn(x) ≤ un}) = e−e
−y

(1.131)

which is Eq. 1.3 with µ = 0 and σ = 0 obtained using the normalizing

sequences as stated by Gnedenko (see Section 1.1.3).

• Part 2: We use the exponential Hitting Time Statistics hypothesis

F (t) = e−t (1.132)

to proof the second part. It follows by Eqs. 1.131 and 1.110 that also:

lim
n→∞

ν({x : M̂n(x) ≤ un}) = e−e
−y

(1.133)

which means that the Extreme Value Laws applies to Mn (rather than

M̂n). In the case of observable g1 which we have considered this is true

∀y ∈ R.

1.5 Methodological notes and informatics tools

The numerical analysis contained in the enclosed paper have required to

devise and write several codes and involved the use of hundreds and hun-

dreds CPU hours, producing several GB of data. Some of the results have
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been presented by using MATLAB Statistics Toolbox function such as gevfit

and gevcdf. These functions returns maximum likelihood estimates of the

parameters for the generalized extreme value (GEV) distribution and 95%

confidence intervals for the parameter estimates [51].

The basic code have been devised to follow a well defined algorithmic proce-

dure which consists in iterating the map, dividing the series into n bins each

containing m observation, extracting the maxima or the minima in each bin

and fitting them to the GEV distribution. Other self written codes have

been used to complete the analysis. Further explanations may be found in

the individual papers.
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1. Introduction

The discrete time dynamical systems are widely
used because they present a rich structure (regular,
chaotic, intermittent and other types of orbits) in
one or two dimensions and because the numerical
evaluation of the orbits is straightforward. A large
number of dynamical tools known as indicators
of stability allow us to improve our understand-
ing of dynamical systems: Lyapunov Character-
istic Exponents (LCEs) are known from a long
time [Wolf et al., 1985; Rosenstein et al., 1993;
Skokos, 2010] as well as Return Times Statistics
[Kac, 1934; Gao, 1999; Hu et al., 2004; Buric et al.,
2005]. In the recent past, many other indicators
have been introduced not only to address the same
problem of quantifying the degree of chaoticity of
an orbit but also to perform the task fast. The
Smaller Alignment Index (SALI), widely described
in [Skokos et al., 2002, 2004], allows to discrimi-
nate regular from chaotic orbits. Similarly, the Gen-
eralized Alignment Index (GALI), introduced in
[Skokos et al., 2007], is a family of highly efficient
algorithms. Besides, the Mean Exponential Growth
factor of Nearby Orbits (MEGNO) discussed in
[Cincotta et al., 2003; Goździewski et al., 2001] is
a quantity that gives a fast identification of the
chaoticity of the orbit while its average slope esti-
mates the maximum LCE (mLCE), see [Maffione
et al., 2011] for a test of the MEGNO. Fidelity and
correlation decay are also tools that can be suc-
cessfully used to characterize stability properties as
explained in [Vaienti et al., 2007; Turchetti et al.,
2010b] as well as Frequency Map Analysis [Laskar,
1999; Robutel & Laskar, 2001].

As it is already known, in any numerical com-
putation of a given trajectory, there is a round off
error, and it would be interesting to study its rela-
tion with the chaoticity of the orbit and if possible,
determine its effect with the help of some dynamical
indicator.

The error between an exact and a numerical
orbit is due to the finite precision used to repre-
sent real numbers and to the arithmetics with round
off. This is unavoidable because the length of the
binary strings representing real numbers must not
change after arithmetic operations. The shadowing
lemma is often invoked to state the existence of a
true orbit close to a numerical orbit for chaotic sys-
tems [Katok & Hasselblatt, 1997; Hammel et al.,
1987; Chow & Palmer, 1992, 1991]. However, it
does not provide information on error growth for

a given numerical orbit and the case of regular
numerical orbits is not covered by such a lemma.
The global error between the exact and the numer-
ical orbit is unknown because the first one is not
computable. Nevertheless, an estimate can be pro-
vided by replacing the exact orbit with another one
having very high accuracy. If the map is invert-
ible, the reversibility error can be computed with-
out any reference to the exact orbit. Both errors
have a similar behavior, namely an average linear
growth for regular orbits and an average exponen-
tial growth for chaotic orbits and consequently can
be used as dynamical indicators. Due to the cor-
relation between the single step errors, there is a
substantial difference with respect to the case in
which the exact system is perturbed with random
uncorrelated noise. This difference has been ana-
lyzed in [Turchetti et al., 2010b] by using the fidelity
which measures the deviation of the orbits of a given
map and its perturbation by integrating over all the
initial conditions with the appropriate measure. In
the case of regular orbits with random perturba-
tions, the decay of fidelity is exponential whereas
with round off errors the decay follows a power
law. In the case of chaotic orbits the asymptotic
limit is approached super-exponentially for both
situations (random uncorrelated perturbations and
round off). The symplectic maps of physical inter-
est are generally provided by the composition of
a linear map with another one whose generating
function is the identity plus a function of position
or momentum only. In this case, the inversion is
immediately obtained in analytic form. As most of
the symplectic maps used in the literature are of
this kind, the condition of invertibility of the map
is not too restrictive. In addition, the reversibility
error can also be applied to time-reversible systems
of differential equations.

Here, we present an analysis of the reversibil-
ity error and its comparison with the divergence
of orbits due to round off and other dynamical
indicators of stability such as SALI, MEGNO and
a finite time numerical estimation of the mLCE.
Moreover, we talk about the similarities and dif-
ferences between an irreversibility due to the single
precision round off and one due to the application of
uncorrelated random noise in an orbit iterated with
double precision. For two-dimensional area preserv-
ing maps the reversibility error for a fixed number of
iterations detects the various regions of phase space
with different stability properties quite effectively
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as well as other dynamical indicators. Besides,
the reversibility error allows to study the struc-
ture of the resonance web of a four-dimensional
symplectic map.

2. Round Off Error Methods

In a computational device a real number x can
be represented by a floating-point number x∗, that
according to Goldberg [1991] and working with base
2, can be written as

x∗ = ±d0.d1 · · · dp−1 × 2e = ±
p−1∑

k=0

dk2
e−k (1)

where d0.d1 · · · dp−1 is called the significand and has
p binary digits dk, whose value is 0 or 1, and where
the exponent is an integer that satisfies emin ≤ e ≤
emax. The IEEE 754 standard states that for single
precision p = 24, emin = −126 and emax = 127
while for double precision p = 53, emin = −1022
and emax = 1023.

Consequently, a floating point number x∗ dif-
fers from the real number it represents and the
relative error rp, defined by x∗ = x(1 + rp), sat-
isfies |rp| ≤ ε ≡ 2−p, as analyzed by Goldberg
[1991] and Knuth [1973]. Therefore, according to
IEEE 754 we have that ε = 2−24 and ε = 2−53

for single and double precision which roughly corre-
spond to seven and 16 decimal digits, respectively.
The arithmetic operations such as sums or multi-
plications imply a round off, which propagates the
error affecting each number. Round off algebraic
procedures are hardware dependent as detailed in
[Knuth, 1973]. Unlike the case of stochastic per-
turbations, the error strongly depends on x. Sup-
pose we are given a map M(x) then the error with
respect to the numerical map M∗(x) after the first
step is defined by:

δ1 ≡ εξ1 = x∗1 − x1 ≡ M∗(x)−M(x). (2)

Analogously, we define the local error produced
in the nth step by δn ≡ εξn = M∗(x∗n−1)−M(x∗n−1)
where ξn = ξn(x

∗
n−1).

The global error

Gn = Mn
∗(x)−Mn(x) (3)

accumulates all the local errors and explicit expres-
sions can be written at first order in ε. In the exam-
ple of a regular map we take the translation on the
torus T1 defined as:

M(x) = x+ ω mod 1, (4)

so M∗(x) = x∗ + ω∗ mod 1 and the global error,
which includes also the error to the mod 1 opera-
tion, becomes:

Gn = ε

n∑

k=1

ξk = ε(nξ + wn), (5)

where εξ is a time average defined as the limit of
Gn/n for n → ∞ and wn is a bounded fluctuation.

For the chaotic Bernoulli map

M(x) = qx mod 1, (6)

we have thatM∗(x) = qx∗ mod 1 and that the single
step and global error satisfy, respectively, |δ1| ≤ Cεq
and |Gn| ≤ Cεqn.

In order to compute the global error we need
the knowledge of the exact map, which is usually
precluded. A practical way to overcome this diffi-
culty is to replace the exact map with a map com-
puted with an accuracy 2−P where P � p. For
instance, as p = 24 corresponds to single preci-
sion one might choose P = 53 corresponding to
double precision. If p = 53 then one might choose
P = 100 and so forth. There are available libraries
which allow to compute with any fixed number of
bits or significant decimal digits. The computation
of the reference orbit is expensive if high precision
is used, but there is no other way to evaluate the
global error. As a consequence, the “exact” orbit is
achievable for a definite number of iterations which
depends on P and the nature of the map. Taking
into account what we have just mentioned, in the
forthcoming numerical experiments, we will use the
divergence of orbits, defined by:

∆n = Mn
S(x)−Mn

D(x), (7)

where MS and MD stand for single and double pre-
cision iterations, respectively.

If the map is invertible there is another option
to overcome the difficulty of not possessing the true
map. We define the reversibility error as

Rn = M−n
∗ ◦Mn

∗(x)− x (8)

which is nonzero since the numerical inverse M−1
∗

of the map is not exactly the inverse of M∗ namely
M−1

∗ ◦M∗(x) �= x. Obviously the reversibility error
is much easier to compute than the divergence of
orbits (if we know explicitly the inverse map) and
the information it provides is basically the same
as the latter. Both quantities give an average lin-
ear growth for a regular map together with an
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exponential growth for a chaotic map having posi-
tive Lyapunov exponents and strong mixing prop-
erties. When computing Rn we will set M∗ = MS

in order to compare with ∆n.

3. Variational Methods

In the forthcoming sections, we will compare the
performance of the indicators presented above with
three well known and widely accepted dynamical
indicators that are based on the behavior of the
solution of the variational equations of the system.
These are the finite time mLCE, the cumulative
moving time average of MEGNO and SALI.

Let us briefly state them for discrete time
dynamical systems of the form:

xn+1 = f(xn), (9)

where xn is the state vector at time n and f is a
vector valued function.

The concomitant discrete time variational
equations, also called tangent map dynamics, asso-
ciated to a given orbit {xn}n∈N are the following:

vn+1 = Df(xn) · vn, (10)

where Df (x) is the Jacobian matrix of the function
f and vn is a deviation vector at time n.

Skokos [2010] presented a historical review
of the definition of the LCEs and its connection
with the divergence of nearby orbits. He also stated
the theorems that guarantee the existence of the
spectrum of LCEs and, in particular, the current
definition of the mLCE in terms of the solution of
the variational equations:

mLCE ≡ lim
n→∞

1

n
ln

‖vn‖
‖v0‖

, (11)

with ‖ · ‖ some norm. For a chaotic orbit the mLCE
is positive and this implies an exponential diver-
gence of nearby orbits. On the other hand, for
regular orbits mLCE is zero.

In order to have a numerically computable
quantity we define the finite time mLCE at time
n as

mLCE(n) ≡ 1

n
ln

‖vn‖
‖v0‖

=
1

n

n∑

k=1

ln
‖vk‖
‖vk−1‖

, (12)

so that Eq. (11) can be reformulated as

mLCE = lim
n→∞

mLCE(n). (13)

Cincotta et al. [2003] defined a biparametric
family of MEGNO indicators:

Ym,j(n) = (m+ 1)nj
n∑

k=1

km ln
‖vk‖
‖vk−1‖

, (14)

where m and j are integer numbers. They made
experiments with Y2,0, Y3,1 and Y1,−1 and concluded
that the last one allows both a fast classification
between chaotic and regular orbits, and a clear iden-
tification of stable and unstable periodic orbits. Due
to this fact, we will use Y ≡ Y1,−1 throughout
the rest of this article. In order to reduce the fast
oscillations that the time evolution of the MEGNO
presents, in [Cincotta et al., 2003] they used a time
average of this quantity, namely:

Y (n) =
1

n

n∑

k=1

Y (k). (15)

Theoretically, the asymptotic evolution of Y (n)
for any dynamical regime can be put into a single
expression:

Y (n) ≈ mLCE

2
n+ c, (16)

where c ≈ 0 and 2 for chaotic and regular motion,
respectively.

We also compare our results with the SALI,
introduced by Skokos [2001], that measures the
degree in which a pair of initially linear indepen-
dent deviation vectors tend to become aligned. The
underlying principle is that, for a chaotic orbit, a
deviation vector under the tangent map dynamics
changes in order to become aligned with the instan-
taneous most unstable direction. In other words, for
almost every pair of initial deviation vectors (v0,
u0), the more chaotic the orbit the faster the angle
between them will reduce to zero. In the case of reg-
ular orbits, the behavior depends strongly on the
dimensionality of the map: in maps with dimen-
sion ≥ 4 the deviation vectors generally remain
unaligned so the SALI tends to a positive nonzero
value, while in 2D maps the two deviation vectors
tend to align with a time rate that follows a power
law. See [Skokos et al., 2004, 2007] for numerical
tests of the SALI and its generalization, the GALI
family. Denoting the Euclidean norm with ‖ · ‖ the
SALI is defined as:

SALI(n)

= min

{∥∥∥∥
vn

‖vn‖
+

un

‖un‖

∥∥∥∥,
∥∥∥∥

vn

‖vn‖
− un

‖un‖

∥∥∥∥
}
.

(17)
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To control the exponential increase of the norm
of the vectors and avoid overflow problem, Skokos
et al. [2004] have normalized them, at every time
step, keeping their norm equal to 1. Defined like
this, SALI(n) ∈ [0,

√
2] and SALI = 0 if and only if

the two normalized vectors have the same direction,
being equal or opposite.

4. Error Behavior on Simple Maps

From the linear and exponential bounds on the
errors it follows that the numerical orbit remains
close to the exact one for a number of iterations pro-
portional to 1/ε in the regular case and to ln(1/ε)
in the chaotic one.

We consider two types of models where the
error grows linearly and exponentially, respectively.
The first one is the translation on the torus T1

defined by Eq. (4).
This is equivalent to the rotations on the unit

circle defined by the map

Rx =

(
cos(2πω) −sin(2πω)

sin(2πω) cos(2πω)

)(
cos(2πx)

sin(2πx)

)
.

(18)

The correspondence between the sequences
xn = M(xn−1) and xn = Rxn−1 is evident after
writing xn = (cos(2πxn), sin(2πxn)). In spite of
the rigorous mathematical equivalence between the

translations on the torus and the rotations on the
unit circle, there is not such similitude in the numer-
ical evaluation of these maps, as will be explained
in the following paragraph.

For map (4) the divergence of orbits and the
reversibility error have a linear growth, basically
due to the fact that ω∗ �= ω, as shown theo-
retically for the global error in Eq. (5). However
there are architectures and/or compilers in which
the reversibility error may be zero for this simple
map that only requires the computation of sums
and modulus operations. Without knowing the pre-
cise implementation of these peculiar operations,
it is impossible to establish a priori with which
compiler and in which architecture we may obtain
this result. We believe this anomaly is due to the
peculiar arithmetic operations involved and that
it does not occur for a generic map. To support
this claim we have checked that the reversibility
error never vanishes for the map (18) which involves
multiplications and the evaluation of trigonometric
functions.

In Fig. 1(a), we compare the divergence and
reversibility error for the torus translation with
ω =

√
2 − 1 and x0 = 0.7. We can see that both

errors approximately satisfy the same expression: in
log–log scale it is close to a straight line with unitary
slope. This implies that both quantities are linear
functions of time. We have checked that the behav-
ior is similar for almost every initial condition and
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Fig. 1. Comparison between divergence (red) and reversibility (green) for both (a) torus translations and (b) rotations, using
a frequency ω =

√
2 − 1 and initial condition x0 = 0.7. In all four cases, the average slope in log–log scale is nearly one.
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frequency but in some cases the fluctuations around
the average linear growth have a larger amplitude.
Figure 1(b) shows that for the map (18) there is
an analogous behavior. However, in this case the
straight line that corresponds to orbit divergence
is a bit shifted upwards with respect to the one
of reversibility errors. This implies that the orbit
divergence’s linear growth has a bigger slope.

The fluctuations wn have variance 〈w2
n〉 com-

puted with respect to an ensemble of initial
conditions x0 which first grow linearly, but rapidly
saturates to a constant value with small oscilla-
tions (see Fig. 7 in [Turchetti et al., 2010b]). In
this respect, it is quite different with respect to
a random perturbation εξn where ξn are indepen-
dent variables, since in this case we have wn =
ξ1 + · · · + ξn and the variance is given by 〈w2

n〉 =
n〈ξ2〉 for any value of n. This different behavior
is reflected in the decay of fidelity [Vaienti et al.,
2007] which follows a power law for round off errors
and an exponential law for random perturbations
[Turchetti et al., 2010a, 2010b]. This shows that the
round off errors decorrelate very slowly unlike the
random errors which are uncorrelated.

For chaotic maps, characterized by an exponen-
tial increase in the distance between two nearby
orbits, the reversibility error due to round off has
the same growth. Bounded two-dimensional chaotic

maps, like the cat map, exhibit this behavior during
a short time before reaching saturation.

5. The Case of the Standard Map

As an example of generic 2D map we have chosen
the standard map in a torus:

yn+1 = yn + λ sin(xn) mod 2π;

xn+1 = xn + yn+1 mod 2π.
(19)

For very low values of λ the divergence of orbits
has an average growth linear with n as for the trans-
lations on the torus and they depend weakly on the
initial condition. As λ is increased, a power law nα

with α > 1 is observed and the dependence on the
initial conditions becomes appreciable. Reversibility
error also shows this behavior for λ � 1.

For λ approaching one, we see the coexistence
of regular and chaotic regions so that the domain
is split into several islands of stable orbits and a
chaotic sea. In Figs. 2–6 we show, respectively, the
value of the reversibility error (8), the orbit diver-
gence (7), the finite time mLCE (12), the time aver-
age of the MEGNO (15) and the SALI (17) obtained
iterating Eq. (19).

The standard map with λ = 0.971635 was iter-
ated n = 103 times to compute all the dynamical
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Fig. 2. ln(R103) displaying the dynamical structure of the phase space of (a) the Standard Map and (b) for torus section
y = 0.3.
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Fig. 3. ln(∆103) displaying the dynamical structure of the phase space of (a) the Standard Map and (b) for torus section
y = 0.3.

indicators. Even if n < 103 might be used to
describe the chaotic region, the chosen value n =
103 allows to highlight differences within regular
regions where the growth is very slow.

The pictures on the left side (a) show the
value of the dynamical indicators in a chromatic
scale for a grid of 500 × 500 initial conditions

in the two-dimensional torus whereas the right
pictures (b) show the corresponding graph for a
fixed value of the action variable (y = 0.3) corre-
sponding to the horizontal line in the left figures.
Except for mLCE we have used the natural loga-
rithm of the absolute value for all the dynamical
indicators.
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Fig. 4. mLCE(103) displaying the dynamical structure of the phase space of (a) the Standard Map and (b) for torus section
y = 0.3.
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Fig. 5. ln(Y (103)) displaying the dynamical structure of the phase space of (a) the Standard Map and (b) for torus section
y = 0.3.

Figures 2 and 3 were obtained by taking into
account the error only in the action variable. It is
evident that both the reversibility error and the
orbits divergence (with respect to the exact one)
discriminate regular from chaotic orbits. Minor dif-
ferences exist within the islands of stability: the

orbit divergence approaches the minimum value
close to the center, whereas the minimum of the
reversibility error occurs on a line crossing the
islands possibly due to a mechanism similar to
the one reported by Barrio et al. [2009] which ana-
lyzed spurious errors for variational methods.
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Fig. 6. ln(SALI(103)) displaying the dynamical structure of the phase space of (a) the Standard Map and (b) for torus section
y = 0.3.
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The plots obtained for mLCE and the MEGNO
(Figs. 4 and 5, respectively) show no structure
within the resonance islands whereas variations and
fluctuations appear in the chaotic regions as for the
previous indicators.

Figure 6 shows the logarithm of the SALI value.
Due to the fact that this indicator converges to zero
extremely fast for chaotic orbits, we have used a cut
off value at SALI = 10−16. The presence of this cut-
off erases any structure within the strongly chaotic
region.

To summarize, all the indicators discriminate
regular and chaotic regions but their sensitivity in
these regions is different.

Another aspect to consider when comparing
the efficiency of chaos indicators is the computa-
tional cost. Each variational method needs to iter-
ate both the map and the tangent map forward
for n steps. The tangent map is the computation-
ally most expensive since it needs the evaluation of
the Jacobian matrix at every step. When comput-
ing SALI, two deviation vectors must be simultane-
ously computed. We also use two deviation vectors
in evaluating MEGNO, selecting at every step the
one that stretches more, in order to reduce the prob-
ability of having a vector almost orthogonal to the
most unstable direction. In the case of the computa-
tion of the mLCE, we have used the orthogonaliza-
tion algorithm developed by Benettin et al. [1980].
On the other hand, we notice that the reversibility

error method requires only the iteration of the map
whereas the orbit divergence method requires the
iteration of the single and double precision (or dou-
ble and higher precision) maps. As a consequence,
the computationally most economic method is the
one based on the reversibility error which does
not require any algorithm except the evaluation
of the map itself. Typically, the relevant informa-
tion can be extracted from a computation in single
precision.

From now on, within this section, we will focus
on some ensemble quantities in order to compare
the effect of round off errors with the effect of ran-
dom perturbations in the standard map. For the
standard map with λ = 10−4 all the orbits are
regular and we follow the evolution of an ensem-
ble of 10 001 initial conditions randomly chosen in
(x, y) ∈ [1.5, 1.5 + 10−3] × [π, π + 10−3]. For each
iteration we compute the variance of Rn in action
(σy

2) and angle (σx
2) variables [see in Fig. 7(a)] and

compare it against the same quantities of a double
precision orbit stochastically perturbed with a uni-
form uncorrelated noise of amplitude 10−7 [shown
in Fig. 7(b)]. In the latter case, we have found that
σy

2 and σx
2 grow according to a power law with

exponents one and three respectively up to numer-
ical uncertainties.

It is interesting to compare the two pictures in
Fig. 7 with each other. For n large we see that the
behaviors of variances due to round off and random
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Fig. 7. Evolution of the variance of a distribution of reversibility errors in action (red) and angle (green) variables for the
standard map with λ = 10−4. (a) Round off error, (b) stochastic uncorrelated perturbations of amplitude 10−7.

1250215-9

51



October 3, 2012 18:19 WSPC/S0218-1274 1250215

D. Faranda et al.

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

1

 100

1  10  100

σ y
2

,
σ x

2

n

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

1

 100

1  10  100

σ y
2

,
σ x

2

n

(a) (b)

Fig. 8. Evolution of the variance of a distribution of reversibility errors in action (red) and angle (green) variables for
the standard map with λ = 10. There is evident equivalence between (a) round off error and (b) stochastic uncorrelated
perturbations of amplitude 10−7.

perturbations are similar. The presence of a tran-
sient for the reversibility case is very likely due to
the initial presence of correlation.

In the fully chaotic regime for the standard map
λ � 1 the random perturbation produces very sim-
ilar results to the round off error as shown in Fig. 8
for λ = 10 since in the presence of chaotic dynamics
the round off error correlations are lost.

The results for the standard map in the small
λ regime can be compared to the variances for the
skew map:

yn+1 = yn mod 1;

xn+1 = xn + yn+1 mod 1.
(20)

to which the standard map in Eq. (19) reduces for
λ = 0. If the skew map is randomly perturbed:

yn+1 = yn + εξn mod 1;

xn+1 = xn + yn+1 + εχn mod 1,
(21)

where ξn and χn are random uncorrelated variables,
the growth of the variances σ2

y and σ2
x follows a

linear and cubic law, respectively [Turchetti et al.,
2006]. The random perturbation of a standard map
with a small value of λ [shown in Fig. 7(b)] shows
exactly the same growth.

In the case of the round off error, the behavior
of the skew map with respect to the standard map
with a small value of λ is quite different. Indeed,
the round off error affects the skew map just as the

translation on the 1D Torus: it was observed that
the global error grows linearly and the variance sat-
urates at a very small value with respect to the size
of the torus (see Fig. 7 in [Turchetti et al., 2010a]).
For the standard map, the coupling between action
and angle, even for very small λ, causes a growth of
the variance of the fluctuations due to round off as
shown in Fig. 7(a). As a consequence, the effect of
round off in a very weakly perturbed standard map
is similar to a random perturbation.

6. A 4D Map

In this section, we show how either the reversibil-
ity error or the divergence of orbits can be used to
analyze the resonance structure of four-dimensional
nonintegrable maps. As an example, we consider a
symplectic nearly integrable map extensively used
in the literature (see [Guzzo & Lega, 2004]). This
map is defined as:

θn+1 = θn + In

φn+1 = φn + Jn

In+1 = In − µ
∂V (θn+1, φn+1)

∂θn+1

Jn+1 = Jn − µ
∂V (θn+1, φn+1)

∂φn+1
;

(22)
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Fig. 9. (a) ln(R103) and (b) ln(∆103) for map (22) using c = 2 and µ = 0.6.

where V ≡ 1/(cos(θ) + cos(φ) + 2 + c), with c > 0
and µ is the perturbation parameter. We have taken
a grid of 1146× 1146 initial conditions with actions
(I, J) ∈ [0, 3.6]× [0, 3.6] and a fixed pair of angles,
namely (θ, φ) = (0.5, 0.5) and computed Rn, ∆n,
mLCE(n), Y (n) and SALI(n) for n = 103. Associat-
ing these values to each initial condition while using
a chromatic scale, we have performed Figs. 9–11,
where the parameter values c = 2 and µ = 0.6 have
been used. As we did in the previous section, in all

except for the mLCE we have used the natural loga-
rithm of the absolute value of the concomitant indi-
cator and again we have used a cut off value at SALI
= 10−16. Figure 9 was done taking into account
the Euclidean error in only the action plane. As it
happened for the standard map, both reversibility
error and orbit divergence present the same order
of magnitude. The resonance web appears in every
figure and its structure is the same. From a qualita-
tive viewpoint, no substantial differences are found
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Fig. 10. (a) mLCE(103) and (b) ln(Y (103)) for map (22) using c = 2 and µ = 0.6.
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Fig. 11. SALI(103) for map (22) using c = 2 and µ = 0.6.

and one might conclude that the dynamical infor-
mation extracted from the reversibility error is the
same as for the other four dynamical indicators we
have considered. In the case of mLCE, the highest
values are located on the diagonal I = J even if
they are not well visible in the plot. This is anyway
coherent with the fact that on the diagonal we find
the highest instability.

The frequency map analysis was not presented
for comparison because it is computationally heav-
ier. The error reaches its highest values in small
neighborhoods of single resonance lines, because it
detects the perturbed separatrices of the pendu-
lum models that one could associate with the reso-
nances, and in relatively large neighborhoods of the
intersections of resonances, where the dynamics are
widely nonintegrable, as shown by the computation
of the interpolating Hamiltonian. These results are
certainly not exhaustive but show that the behav-
ior of the reversibility error is strictly related to the
divergence of orbits and consequently it is very weak
in the integrable regions where it does not have a
diffusive character as for a random error.

7. Conclusions

We have examined the orbit divergence and the
reversibility error in order to determine the effect
of round off error for invertible maps. The knowl-
edge of the exact map is not required to compute
the reversibility error and the results obtained are

about the same with respect to the case in which
we compute the orbit divergence.

By choosing an ensemble of initial data we
have examined the statistics of the fluctuations
due to round off with respect to the time average
of the error. There are different behaviors accord-
ing to the degree of chaoticity that characterizes
the ensemble. For chaotic orbits the variances have
an exponential growth similar to the one observed
for random perturbations and correspondingly the
decay of fidelity is super-exponential in both cases.
For regular or quasi-regular orbits differences are
observed between the effects generated by round
off errors and random perturbations. For a quasi-
integrable map the random perturbations produce
a growth of variances, linear and cubic, for actions
and angles, respectively. On the other hand, the
round off errors produce an initial transient that
possibly lasts the time that the round off errors of
the ensemble orbits need to decorrelate. After this
initial transient, the behavior of variances affected
by round off and noise are similar to each other.
Finally, for a regular map such as the translation of
the 1D torus, the round off variance, after a linear
growth, saturates before the distribution of errors
fills all the torus, unlike in the randomly perturbed
case where the growth is always linear until satu-
ration of the full torus. The fidelity has a power
law decay for round off whereas it decays exponen-
tially for random perturbations. This is a clear sig-
nature of the correlation between the errors due to
round off.

To conclude, the reversibility error provides
basically the same information as the divergence of
orbits and it is easily accessible from a computa-
tional view point. This is due to the fact that it does
not require the solution of the variational equations
and that both the forward and backward orbits can
be computed using single precision. When the ini-
tial point is varied and the number of iterations
is kept fixed the reversibility error due to round
off provides an insight into the dynamical structure
of the map. For the standard map the reversibility
error provides a picture of the dynamical behavior
of the map where not only large scale features but
also small scale details can be detected. In the case
of a 4D symplectic map the reversibility error in
action space provides a similar picture where the
resonance web and the nearby regions of weakly
chaotic motions can be easily highlighted.

1250215-12

54



October 3, 2012 18:19 WSPC/S0218-1274 1250215

Analysis of Round off Errors with Reversibility Test as a Dynamical Indicator

Even if no really new information with respect
to the standard indicators is provided by the
reversibility error, we point out that this type of
analysis takes into account not only the dynamics
of the map but also the unavoidable effect of finite
accuracy due to round off. Moreover, by increasing
the accuracy of numerical computations, the time
for which the reversibility test is computed can be
increased and finer details on the phase space struc-
ture can be detected.
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1 Introduction

Extreme Value Theory (EVT) was first developed by Fisher and Tippett [21] and formalized
by Gnedenko [29] which showed that the distribution of the block-maxima of a sample of
independent identically distributed (i.i.d.) variables converges to a member of the so-called
Extreme Value (EV) distribution. It arises from the study of stochastical series that is of great
interest in different disciplines: it has been applied to extreme floods [30, 50, 56], amounts of
large insurance losses [6, 14]; extreme earthquakes [8, 13, 55]; meteorological and climate
events [1, 19, 20, 48, 54, 60]. All these events have a relevant impact on socioeconomic
activities and it is crucial to find a way to understand and, if possible, forecast them [34, 39].

The attention of the scientific community to the problem of modeling extreme values is
growing. An extensive account of recent results and relevant applications is given in Ghil
et al. [27]. Such an interest is mainly due to the fact that this theory is also important in
defining risk factor in a wide class of applications such as the modeling of financial risk
after the significant instabilities in financial markets worldwide [18, 28, 45], the analysis of
seismic and hydrological risk [8, 47]. Even if the probability of extreme events decreases
with their magnitude, the damage that they may bring increases rapidly with the magnitude
as does the cost of protection against them Nicolis et al. [49].

From a theoretical point of view, extreme values represent extreme fluctuations of a sys-
tem. Very recently, many authors have shown clearly how the statistics of global observables
in correlated systems can be related to EV statistics [5, 15]. Clusel and Bertin [9] have shown
how to connect fluctuations of global additive quantities, like total energy or magnetization,
by statistics of sums of random variables in such a way that it is possible to identify a class
of random variables whose sum follows an extreme value distributions.

The so called block-maxima approach is widely used in EVT since it represents a very
natural way to look at extremes. It consists of dividing the data series of some observable
into bins of equal length and selecting the maximum (or the minimum) value in each of them
[11]. When dealing with climatological or financial data, since we usually have limited data-
set, the main problem in applying EVT is related to the choice of a sufficiently large statistics
of extremes provided that each bin contains a suitable number of observations. Therefore a
smart balance between number of maxima and observations per bin is needed [19, 40–42].

Recently a number of alternative approaches have been studied. One consists in looking
at exceedance over high thresholds rather than maxima over fixed time periods. While the
idea of looking at extreme value problems from this point of view is very old, the develop-
ment of a modern theory has started with Todorovic and Zelenhasic [57] that have proposed
the so called Peaks Over Threshold approach. At the same time there was a mathematical
development of procedures based on a certain number of extreme order statistics [36, 52]
and the Generalized Pareto distribution for excesses over thresholds [16, 17, 53].

Since dynamical systems theory can be used to understand features of physical systems
like climate and forecast financial behaviors, many authors have studied how to extend EVT
to these field. When dealing with dynamical systems we have to know what kind of proper-
ties (i.e. stability, degree of mixing, correlations decay) are related to Gnedenko’s hypotheses
and also which observables we must consider in order to obtain an EV distribution. Further-
more, even if the convergence is achieved, we should evaluate how fast it is depending on
all parameters and properties used. Empirical studies show that in some cases a dynamical
observable obeys to the extreme value statistics even if the convergence is highly dependent
on the kind of observable we choose [58–60]. For example, Balakrishnan et al. [3] and more
recently Nicolis et al. [49] and Haiman [33] have shown that for regular orbits of dynamical
systems we don’t expect to find convergence to EV distribution.
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The first rigorous mathematical approach to extreme value theory in dynamical systems
goes back to the pioneer paper by P. Collet in 2001 [12]. Collet got the Gumbel Extreme
Value Law (see below) for certain one-dimensional non-uniformly hyperbolic maps which
admit an absolutely continuous invariant measure and exhibit exponential decay of corre-
lations. Collet’s approach used Young towers [61, 62] and his suggestion was successively
applied to other systems. Before quoting them, we would like to point out that Collet was
able to establish a few conditions (usually called D and D′) and which have been introduced
by Leadbetter [43] with the aim to associate to the stationary stochastic process given by the
dynamical system, a new stationary independent sequence which enjoyed one of the clas-
sical three extreme value laws, and this law could be pulled back to the original dynamical
sequence. Conditions D and D′ require a sort of independence of the stochastic dynamical
sequence in terms of uniform mixing condition on the distribution functions. Condition D

was successively improved by Freitas and Freitas [22], in the sense that they introduced a
new condition, called D2, which is weaker than D and that could be checked directly by
estimating the rate of decay of correlations for Hölder observables.1 We notice that condi-
tions D2 and D′ allow immediately to get Extreme Value Laws for absolutely continuous
invariant measures for uniformly one-dimensional expanding dynamical systems: this is the
case for instance of the 1-D maps with constant density studied in Sect. 3 below. Another
interesting issue of Collet’s paper was the choice of the observables g’s whose values along
the orbit of the dynamical systems constitute the sequence of events upon which we suc-
cessively search for the partial maximum. Collet considered a function g(dist(x, ζ )) of the
distance with respect to a given point ζ , with the aim that g achieves a global maximum
at almost all points ζ in the phase space; for example g(x) = − logx. Using a different g,
Freitas and Freitas [23] were able to get the Weibull law for the family of quadratic maps
with the Benedicks-Carleson parameters and for ζ taken as the critical point or the critical
value, so improving the previous results by Collet who did not keep such values in his set of
full measure.

The latter paper [23] strongly relies on condition D2; this condition has also been in-
voked to establish the extreme value laws on towers which model dynamical systems with
stable foliations (hyperbolic billiards, Lozi maps, Hénon diffeomorphisms, Lorenz maps
and flows). This is the content of the paper by Gupta, Holland and Nicol [32]. We point out
that the observable g was taken in one of three different classes g1, g2, g3, see Sect. 2 below,
each one being again a function of the distance with respect to a given point ζ . The choice of
these particular forms for the g’s is just to fit with the necessary and sufficient condition on
the tail of the distribution function F(u), see next section, in order to exist a non-degenerate
limit distribution for the partial maxima [24, 37]. The paper Gupta et al. [32] also covers
the easier case of uniformly hyperbolic diffeomorphisms, for instance the Arnold Cat map
which we studied in Sect. 3.2.

Another major step in this field was achieved by establishing a connection between the
extreme value laws and the statistics of first return and hitting times, see the papers by

1We briefly state here the two conditions, we defer to the next section for more details about the quantities
introduced. If Xn, n ≥ 0 is a stochastic process, we define Mj,l ≡ {Xj ,Xj+1, . . . ,Xj+l} and we put M0,m =
Mm. Moreover we set am and bm two normalizing sequences and um = x/am +bm , where x is a real number,
cf. next section for the meaning of these variables. The condition D2(um) holds for the sequence Xm if for
any integer l, t,m we have |ν(X0 > um,Mt,l ≤ um) − ν(X0 > um)ν(Mt,l ≤ um)| ≤ γ (m, t), where γ (m, t)

is non-increasing in t for each m and mγ (m, tm) → 0 as m → ∞ for some sequence tm = o(m), tm → ∞.

We say condition D′(um) holds for the sequence Xm if limk→∞ lim supm m
∑[m/k]

j=1 ν(X0 > um,Xj >

um) = 0. Whenever the process is given by the iteration of a dynamical systems, the previous two conditions
could also be formulated in terms of decay of correlation integrals, see Freitas and Freitas [22], Gupta [31].
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Freitas, Freitas and Todd [24, 26]. They showed in particular that for dynamical systems
preserving an absolutely continuous invariant measure or a singular continuous invariant
measure ν, the existence of an exponential hitting time statistics on balls around ν almost
any point ζ implies the existence of extreme value laws for one of the observables of type gi ,
i = 1,2,3 described above. The converse is also true, namely if we have an extreme value
law which applies to the observables of type gi , i = 1,2,3 achieving a maximum at ζ , then
we have exponential hitting time statistics to balls with center ζ . Recently these results have
been generalized to local returns around balls centered at periodic points [25]. We would
like to point out that the equivalence between extreme values laws and the hitting time
statistics allowed to prove the former for broad classes of systems for which the statistics of
recurrence were known, for instance for expanding maps in higher dimension.

In this work we consider a few aspects of the extreme value theory applied to dynamical
systems throughout both analytical results and numerical experiments. In particular we an-
alyze the convergence to EV limiting distributions pointing out how robust are parameters
estimations. Furthermore, we check the consistency of block-maxima approach highlight-
ing deviations from theoretical expected behavior depending on the number of maxima and
number of block-observation. To perform our analysis we use low dimensional maps with
different properties: mixing maps in which we expect to find convergence to EV distribu-
tions and regular maps where the convergence is not ensured.

The work is organized as follows: in Sect. 2 we briefly recall methods and results of
EVT for independent and identical distributed (i.i.d.) variables and dynamical systems. In
Sect. 3 we explicitly compute theoretical expected distributions parameter in respect to the
observable functions of type gi , i = 1,2,3 for map that have constant density measure.
Numerical experiments on low dimensional maps are presented. In Sect. 4 we show that it
is possible to derive an asymptotic expression of normalizing sequences when the density
measure is not constant. As an example we derive the explicit expressions for the Logistic
map. Eventually, in Sect. 5 we repeat the experiment for regular maps showing that extreme
values laws do not follow from numerical experiments.

2 Background on EVT

Gnedenko [29] studied the convergence of maxima of i.i.d. variables

X0,X1, . . . ,Xm−1

with cumulative distribution (cdf) F(x) of the form:

F(x) = P {am(Mm − bm) ≤ x}

Where am and bm are normalizing sequences and Mm = max{X0,X1, . . . ,Xm−1}. It may
be rewritten as F(um) = P {Mm ≤ um} where um = x/am + bm. Such types of normalizing
sequences converge to one of the three type of Extreme Value (EV) distribution if neces-
sary and sufficient conditions on parent distribution of Xi variables are satisfied [43]. EV
distributions include the following three families:

• Gumbel distribution (type 1):

F(x) = exp{−e−x} x ∈ R (1)
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• Fréchet distribution (type 2):

{
F(x) = 0 x ≤ 0

F(x) = exp{−x1/ξ } x > 0
(2)

• Weibull distribution (type 3):

{
F(x) = exp{−(−x)1/ξ } x < 0

F(x) = 0 x ≥ 0
(3)

Let us define the right endpoint xF of a distribution function F(x) as:

xF = sup{x : F(x) < 1} (4)

then, it is possible to compute normalizing sequences am and bm using the following corol-
lary of Gnedenko’s theorem:

Corollary (Gnedenko) The normalizing sequences am and bm in the convergence of nor-
malized maxima P {am(Mm − bm) ≤ x} → F(x) may be taken (in order of increasing com-
plexity) as:

• Type 1: am = [G(γm)]−1, bm = γm;
• Type 2: am = γ −1

m , bm = 0 or bm = c · m−ξ ;
• Type 3: am = (xF − γm)−1, bm = xF ;

where

γm = F−1(1 − 1/m) = inf{x;F(x) ≥ 1 − 1/m} (5)

G(t) =
∫ xF

t

1 − F(u)

1 − F(t)
du t < xF (6)

and c ∈ R is a constant. It is important to remark that the choice of normalizing sequences
is not unique [43]. For example for bm of type 2 distribution it is possible to choose either
bm = 0 or bm = c · m−ξ . In particular, we will use the last one since it is a more general
choice that ensure the convergence for a much broader class of initial distributions [4].

Instead of Gnedenko’s approach it is possible to fit unnormalized data directly to a single
family of generalized distribution called GEV distribution with cdf:

FG(x;μ,σ, ξ) = exp

{

−
[

1 + ξ

(
x − μ

σ

)]−1/ξ}

(7)

which holds for 1 + ξ(x − μ)/σ > 0, using μ ∈ R (location parameter) and σ > 0 (scale
parameter) as scaling constants in place of bm, and am [51]. ξ ∈ R is the shape parameter
also called the tail index: when ξ → 0, the distribution corresponds to a Gumbel type. When
the index is negative, it corresponds to a Weibull; when the index is positive, it corresponds
to a Fréchet.
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In order to adapt the extreme value theory to dynamical systems, we will consider the
stationary stochastic process X0,X1, . . . given by:

Xm(x) = g(dist(f m(x), ζ )) ∀m ∈ N (8)

where ‘dist’ is a Riemannian metric on �, ζ is a given point and g is an observable function,
and whose partial maximum is defined as:

Mm = max{X0, . . . ,Xm−1} (9)

The probability measure will be here an invariant measure ν for the dynamical system.
As we anticipated in the Introduction, we will use three types of observables gi , i = 1,2,3,
suitable to obtain one of the three types of EV distribution for normalized maxima:

g1(x) = − log(dist(x, ζ )) (10)

g2(x) = dist(x, ζ )−1/α (11)

g3(x) = C − dist(x, ζ )1/α (12)

where C is a constant and α > 0 ∈ R.
These three type of functions are representative of broader classes which are defined,

for instance, throughout (1.11) to (1.13) in Freitas et al. [24]; we now explain the reasons
and the meaning of these choices. First of all these functions have in common the following
properties: (i) they are defined on the positive semi-axis [0,∞] with values into R ∪ {+∞};
(ii) 0 is a global maximum, possibly equal to +∞; (iii) they are a strictly decreasing bijection
in a neighborhood V of 0 with image W . Then we consider three types of behavior which
generalize the previous specific choices:

Type 1: there is a strictly positive function p : W → R such that ∀y ∈ R we have

lim
s→g1(0)

g−1
1 (s + yp(s))

g−1
1 (s)

= e−y

Type 2: g2(0) = +∞ and there exists β > 0 such that ∀y > 0 we have

lim
s→∞

g−1
2 (sy)

g−1
2 (s)

= y−β

Type 3: g3(0) = D < +∞ and there exists γ > 0 such that ∀y > 0 we have

lim
s→0

g−1
3 (D − sy)

g−1
3 (D − s)

= yγ

The Gnedenko corollary says that the different kinds of extreme value laws are deter-
mined by the distribution of F(u) = ν(X0 ≤ u) and by the right endpoint of F , xF . We will
see in the next section that the local invertibility of gi , i = 1,2,3 in the neighborhood of
0 together with the Lebesgue’s differentiation theorem (which basically says that whenever
the measure ν is absolutely continuous with respect to Lebesgue with density ρ, the measure
of a ball Bδ(x0) of radius δ centered around almost any point x0 scales like δρ(x0)), allow
us to compute the tail of F , in fact we have

1 − F(u) ∼ ρ(ζ )|Bg−1(u)(ζ )|,
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where g is any of the three types of functions introduced in (10) to (12) and |A| denotes the
diameter of the set A. As we said above the tail of F determines the three limit laws for
partial maximum of i.i.d. sequences. In particular Th. 1.6.2 in Leadbetter et al. [43] specifies
what kind of conditions the distribution function F must verify to get one specific law: the
above type 1, 2, 3 assumptions are just the translation in terms of the shape of gi of the
conditions on the tail of F .

3 Distribution of Extremes in Mixing Maps with Constant Density Measure

Our goal is to use a block-maxima approach and fit our unnormalized data to a GEV dis-
tribution; for that it will be necessary to find a linkage among am, bm, μ and σ . At this
regard we will use Gnedenko’s corollary to compute normalizing sequences showing that
they correspond to the parameter we obtain fitting directly data to GEV distribution.

We derive the correct expression for mixing maps with constant density measure and the
asymptotic behavior for logistic map that is a case of non-constant density measure.

3.1 Asymptotic Sequences

In this section we will consider the case of uniformly hyperbolic maps which preserve the
Lebesgue measure (the density ρ = 1) and satisfy the conditions D2 and D′, sufficient to get
extreme valuers distributions. For the second map, the algebraic automorphisms of the torus
better known as the Arnold cat map, the existence of extreme value laws follows from the
theory developed in Gupta et al. [32]. Starting from the definitions provided by Gnedenko
we derive as a novel result the exact expression for the normalizing sequences am and bm.

Case 1 (g1(x) = − log(dist(x, ζ ))) By (8) and (9) we know that:

1 − F(u) = 1 − ν(g(dist(x, ζ )) ≤ u)

= 1 − ν(− log(dist(x, ζ )) ≤ u)

= 1 − ν(dist(x, ζ ) ≥ e−u) (13)

and the last line is justified by using Lebesgue’s Differentiation Theorem. Then, for maps
with constant density measure, we can write:

1 − F(u) � ν(Be−u(ζ )) = �de
−ud (14)

where d is the dimension of the space and �d is a constant. To use Gnedenko corollary it is
necessary to calculate uF

uF = sup{u;F(u) < 1}

in this case uF = +∞.
Using Gnedenko (6) we can calculate G(t) as follows:

G(t) =
∫ ∞

t

1 − F(u)

1 − F(t)
du =

∫ ∞

t

e−ud

e−td
du = 1

d

∫ ∞

td

e−v

e−td
dv = 1

d
(15)
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According to the Leadbetter et al. [43] proof of Gnedenko theorem we can study both am

and bm or γm convergence as:

lim
m→∞m(1 − F {γm + xG(γm)}) = e−x

lim
m→∞m�de

−d(γm+xG(γm)) = e−x
(16)

then we can use the connection between γm and normalizing sequences to find am and bm.
By (5) or using relation (16):

γm � ln(m�d)

d

so that:

am = d bm = 1

d
ln(m) + ln(�d)

d

Case 2 (g2(x) = dist(x, ζ )−1/α) We can proceed as for g1:

1 − F(u) = 1 − ν(dist(x, ζ )−1/α ≤ u)

= 1 − ν(dist(x, ζ ) ≥ u−α)

= ν(Bu−α (ζ )) = �du
−αd (17)

in this case uF = +∞.

γm = F−1(1 − 1/m) = (m�d)
1/(αd) (18)

and, as discussed in Sect. 2, using Beirlant [4] choice of normalizing sequences we expect:

bm = c · m−ξ

where c ∈ R is a constant.

Case 3 (g3(x) = C −dist(x, ζ )1/α) Eventually we compute am and bm for the g3 observable
class:

1 − F(u) = 1 − ν(C − dist(x, ζ )1/α ≤ u)

= 1 − ν(dist(x, ζ ) ≥ (C − u)α)

= ν(B(C−u)α (ζ )) = �d(C − u)αd (19)

in this case uF = C.

γm = F−1(1 − 1/m) = C − (m�d)
−1/(αd) (20)

For type 3 distribution:

am = (uF − γm)−1 bm = uF (21)
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3.2 Numerical Experiments

Since we want to show that unnormalized data may be fitted by using the GEV distribution
FG(x;μ,σ, ξ) we expect to find the following equivalence:

am = 1/σ bm = μ

where, clearly, μ = μ(m) and σ = σ(m). This fact can be seen as a linear change of variable:
the variable y = am(x − bm) has a GEV distribution FG(y;μ = 0, σ = 1, ξ) (that is an
EV one parameter distribution with am and bm normalizing sequences) while x is GEV
distributed FG(x;μ = bm,σ = 1/am, ξ).

As we said above we now apply the previous considerations to two maps which enjoy
extreme values laws and have constant density: we summarize below the theoretical results
we obtained for all three type of observables. We have obtained the results in terms of m

but, since we fix k = n · m, the previous results can be translated in terms of n as follows:
For g1 type observable:

σ = 1

d
μ ∝ 1

d
ln

(
k

n

)

(22)

For g2 type observable:

σ ∝ n−1/(αd) μ ∝ n−1/(αd) (23)

For g3 type observable:

σ ∝ n1/(αd) μ = C (24)

Following Freitas et al. [24] we obtain the expression for the shape parameters: ξ = 0 for
g1 type, ξ = 1/(αd) for g2 type and ξ = −1/(αd) for g3 type.

In order to provide a numerical test of our results we consider a one-dimensional and a
two dimensional map. The one dimensional map used is a Bernoulli Shift map:

xt+1 = qxt mod 1 q > 1 ∈ N (25)

with q = 3.
The considered two dimensional map is the famous Arnold’s cat map defined on the

2-torus by:

[
xt+1

yt+1

]

=
[

2 1
1 1

][
xt

yt

]

mod 1 (26)

A wide description of properties of these maps can be found in Arnold and Avez [2] and
Hasselblatt and Katok [35].

We proceed as follows. For each map we run a long simulation up to k iterations starting
from a given initial condition ζ . Note that the results—as we tested—do not depend on
the choice of ζ . From the trajectory we compute the sequence of observables g1, g2, g3
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Fig. 1 Left: g1 observable empirical histogram and fitted GEV pdf. Right: g1 observable empirical cdf and
fitted GEV cdf. Logistic map, n = 104, m = 104

as follows dividing it into n bins each containing m = k/n observations. Then, we test
the degree of agreement between the empirical distribution of the maxima and the GEV
distribution according to the theoretical values presented above. A priori, it is reasonable to
assume GEV as a suitable family of statistical models. For some selected values of n, the
maxima are normalized and fitted to GEV distributions FG(x;μ,σ, ξ) using a maximum
likelihood method which selects values of the model parameters that produce the distribution
most likely to have resulted in the observed data.

All the numerical analysis contained in this work has been performed using MATLAB
Statistics Toolbox functions such as gevfit and gevcdf. These functions return maximum
likelihood estimates of the parameters for the generalized extreme value (GEV) distribution
giving 95% confidence intervals for estimates [46].

As in every fitting procedure, it is necessary to test the a posteriori goodness of fit. We
anticipate that in every case considered, fitted distributions passed, with maximum confi-
dence interval, the Kolmogorov-Smirnov test described in Lilliefors [44]. For illustration
purposes, we present in Fig. 1 an empirical pdf and cdf with the corresponding fits.

Once k is set to a given value (in our case k = 107), the numerical simulations allow us
to explore two limiting cases of great interest in applications where the statistical inference
is intrinsically problematic:

1. n is small (m is large), so that we extract only few maxima, each corresponding to a very
extreme event.

2. m is small (n is large), so that we extract many maxima but most of those will not be as
extreme as in case (1).

In case (1), we have only few data—of high quality—to fit our statistical models whereas
in case (2) we have many data but the sampling may be spoiled by the inclusion of data not
giving a good representation of extreme events. We have in general that in order to obtain a
reliable fit for a distribution with p parameters we need 10p independent data [19] so that
we expect that fit procedure gives reliable results for n > 103. As the value of m determines
to which extend the extracted bin maximum is representative of an extreme, below a certain
value mmin our selection procedure will be unavoidably misleading. We have no obvious
theoretical argument to define the value of mmin. We expect to obtain good fits throughout
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Fig. 2 (Color online) g1 observable, ζ � 0.51. (a) ξ VS log10(n); (b) σ VS log10(n); (c) μ VS log10(n).
Left: Bernoulli Shift map. Right: Arnold Cat Map. Dotted lines represent computed confidence interval, red
lines represent a linear fit, blue lines are theoretical values

the parametric region where the constraints on n, m are satisfied. Therefore, our flexibility
in choosing satisfying pairs (n,m) increases with larger values of k.

For a g1 type observable function the behavior against n of the three parameters is pre-
sented in Fig. 2. According to (22) we expect to find ξ = 0. For relatively small values of n

the sample is too small to ensure a good convergence to analytical ξ and confidence inter-
vals are wide. On the other hand we see deviations from expected value as m < 103 that is
when n > 104. For the scale parameter a similar behavior is achieved and deviations from
expected theoretical values σ = 1/2 for Arnold Cat Map and σ = 1 for Bernoulli Shift are
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Fig. 3 (Color online) g2 observable, ζ � 0.51. (a) ξ VS log10(n); (b) log10(σ ) VS log10(n); (c) log10(μ)

VS log10(n). Left: Bernoulli Shift map. Right: Arnold Cat Map. Dotted lines represent computed confidence
interval, red lines represent a linear fit, blue lines are theoretical values

found when n < 103 or m < 103. Location parameter μ shows a logarithm decay with n as
expected from (22). A linear fit of μ in respect to log(n) is shown with a red line in Fig. 2.
The linear fit computed angular coefficients K∗ of (22) well approximate 1/d : for Bernoulli
Shift map we obtain |K∗| = 1.001 ± 0.001 while for Arnold Cat map |K∗| = 0.489 ± 0.001.
We find that ξ values have best matching with theoretical ones with reliable confidence in-
terval when both n > 103 and m > 103. These results are confirmed even for g2 type and
g3 type observable functions as shown in Figs. 3(a) and 4(a) respectively. We present the fit
results for α = 3 but we have done tests for different α and for fixed n and different α.
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Fig. 4 (Color online) g3 observable, ζ � 0.51. (a) ξ VS log10(n); (b) log10(σ ) VS log10(n); (c) log10(μ)

VS log10(n). Left: Bernoulli Shift map. Right: Arnold Cat Map. Dotted lines represent computed confidence
interval, red lines represent a linear fit, blue lines are theoretical values

For g2 observable function we can also check that μ and σ parameters follow a power
law as described in (23). In the log-log plot in Fig. 3(b), 3(c), we can see a very clear linear
behavior. For the Bernoulli Shift map we obtain |K∗| = 0.330 ± 0.001 for μ series, |K∗| =
0.341 ± 0.001 for σ in good agreement with theoretical value of 1/3. For Arnold Cat map
we expect to find K∗ = 1/6, from the experimental data we obtain |K∗| = 0.163±0.001 for
μ and |K∗| = 0.164 ± 0.001 for σ .

Eventually, computing g3 as observable function we expect to find a constant value for μ

while σ has to grow with a power law in respect to n as expected from (24). As in g2 case we
expect |K∗| = 1/(αd) and numerical results shown in Fig. 4(b), 4(c) are consistent with the
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theoretical one since |K∗| = 0.323±0.006 for Bernoulli shift map and |K∗| = 0.162±0.006
for Arnold Cat map.

In all cases considered the analytical behavior described in (23) and (24) is achieved and
the fit quality improves if n > 103 and m > 103. The g3 type observable constant has been
chosen C = 10. The nature of these lower bound is quite different.

4 Distributions of Extremes in Mixing Map with Non-constant Density Measure

4.1 Asymptotic Sequences

The main problem when dealing with maps that have absolutely continuous but non-constant
density measure ρ(ζ ) is in the computation of the integral:

ν(Bδ(ζ )) =
∫

Bδ(ζ )

ρ(x) dx (27)

where Bδ(ζ ) is the d-dimensional ball of radius δ centered in ζ .
We have to know the value of this integral in order to evaluate F(u) and, therefore, the

sequences am and bm.
As shown in the previous section δ is linked to the observable type: in all cases, since we

substitute u = 1 − 1/m, δ → 0 means that we are interested in m → ∞.
In this limit, a first order approximation of the previous integral is:

ν(Bδ(ζ )) � ρ(ζ )δd + O(δd+1) (28)

that is valid if we are not in a neighborhood of a singular point of ρ(ζ ).
As an example we compute the asymptotic sequences for a logistic map:

xt+1 = rxt (1 − xt ) (29)

with r = 4. This map satisfies hypothesis described in the analysis performed for Benedicks-
Carleson maps in Moreira Freitas and Freitas [23].

For this map the density of the absolutely continuous invariant measure is explicit and
reads:

ρ(ζ ) = 1

π
√

ζ(1 − ζ )
ζ ∈ (0,1) (30)

So that:
∫

Bδ(ζ )

ρ(ζ ) dζ = 2

π

[
arcsin(

√
ζ + δ) − arcsin(

√
ζ − δ)

]
(31)

where ζ + δ < 1 and ζ − δ > 0. Since Extreme Value Theory effectively works only if n,m

are large enough, the results in (31) can be replaced by a series expansion for δ → 0:

2

π

[
arcsin(

√
ζ + δ) − arcsin(

√
ζ − δ)

] = 1

π

2δ√
ζ(1 − ζ )

[1 + δ2P (ζ ) + · · ·] (32)
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up to order δ3, where:

P (ζ ) = 1

8ζ 2
− 2

ζ(1 − ζ )
+ 2

ζ 2(1 − ζ )
+ 6

ζ 2(1 − ζ )2
(33)

Using the last two equations we are able to compute asymptotic normalizing sequences
am and bm for all gi observables.

Case 1 (g1(x) = − log(dist(x, ζ ))) For g1 observable functions we set δ = e−ud . In case of
logistic map d = 1. First we have to compute G(t) using (15) and the expansion in equation:

G(t) =
∫ ∞

t
du(e−u + e−3uP (ζ ))

e−t + e−3tP (ζ )
� 1 − 2

3
e−2tP (ζ ) (34)

We can compute γm, if m � 1, as follows:

F(γm) � 1 − 1

m
(35)

At the first order in (32) we get

1

m
� 1

π

2e−γm

√
ζ(1 − ζ )

(36)

so that:

γm � ln(m) + ln

(
2

π
√

ζ(1 − ζ )

)

(37)

Therefore, the sequences am and bm if m � 1 are:

am � [G(γm)]−1 � 1 + 2

3

π2

4m2
ζ(ζ − 1)P (ζ ) (38)

bm � γm � ln(m) + ln(2ρ(ζ )) (39)

Case 2 (g2(x) = dist(x, ζ )−1/α) We can proceed as for g1 setting δ = (αu)−α , computing
γm we get at the first order in (32):

1

m
� 1

π

2γ −α
m√

ζ(1 − ζ )
= 2ρ(ζ )(αγm)−α (40)

γm = 1

α

(
1

2mρ(ζ )

)−1/α

(41)

We can respectively compute am and bm as:

am = γ −1
m bm = (2mρ(ζ ))−ξ (42)
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Case 3 (g3(x) = C − dist(x, ζ )1/α) As in the previous cases, we compute γm up to the first
order setting δ = [α(C − γm)]α :

1

m
� 1

π

2[α(C − γm)]α√
ζ(1 − ζ )

= 2ρ(ζ )[α(C − γm)]α (43)

γm = C − 1

α

(
1

2mρ(ζ )

)1/α

(44)

For type 3 distribution:

am = (uF − γm)−1 bm = uF ; (45)

where uf = C.

4.2 Numerical Experiment on the Logistic Map

Following the same procedure detailed in Sect. 3.2, we want to show the equivalence be-
tween EV computed normalizing sequences am and bm and the parameters of a GEV dis-
tribution obtained directly fitting the data even in case of logistic map that has not constant
density measure. Using (38)–(39) for g1, we obtain the following theoretical expression:

σ(m, ζ ) � 1 + 2

3

π2

4m2
ζ(ζ − 1)P (ζ ) μ(m, ζ ) � ln(m) + ln(2ρ(ζ )) (46)

From (39), for g2 observable type, we write:

σ(m, ζ ) � 1

α
(2mρ(ζ ))

1
α μ(m, ζ ) � (2mρ(ζ ))

1
α (47)

and in g3 case using (45), we expect to find:

σ(m, ζ ) � 1

α
(2mρ(ζ ))−1/α μ(m, ζ ) � C = uF (48)

Values of ξ are independent on density and, as stated in Freitas’ ξ = 0 for g1 type, ξ =
1/(αd) for g2 type and ξ = −1/(αd) for g3 type.

In Figs. 5, 6, 7 we presents a numerical test of the asymptotic behavior described in
(46)–(48) on logistic map for d = 1, a = 3, C = uF = 10, ζ = 0.3 against the variable n.
As shown in previous section, block maxima approach works well with maps with constant
density measure when n and m are at least 103: In fact, regarding ξ parameter. Significant
deviations from the theoretical value are achieved when n < 1000 or m < 1000 even in the
case of the Logistic Map.

Regarding μ and σ , for g1 observable a linear fit of μ in respect to log(n) give us
|K∗| = 0.999 ± 0.002, while σ shows the same behavior of ξ since the best agreement
with theoretical value σ = 1 is achieved when n,m > 103. In the log-log plots of Fig. 6(b),
6(c) for g2 observable, we can observe again the expected linear behavior for μ and σ with
|K∗| corresponding to 1/(αd). From numerical fit we obtain |K∗| = 0.3334 ± 0.0007 for μ

series and |K∗| = 0.337 ± 0.002 for σ in good agreement with theoretical value of 1/3. By
applying a linear fit to the log-log plot in Fig. 7(b), the angular coefficient corresponding to
σ series is |K| = 0.323 ± 0.003 again consistent with the theory.
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Fig. 5 (Color online) g1 observable, ζ = 0.31. (a) ξ VS log10(n); (b) σ VS log10(n); (c) μ VS log10(n).
Logistic map. Dotted lines represent computed confidence interval, red lines represent a linear fit, blue lines
are theoretical values

For a logistic map we can also check the GEV behavior in respect to initial conditions.
If we fix n∗ = m∗ = 103 and fit our data to GEV distribution for 103 different ζ ∈ (0,1)

an asymptotic behavior is reached as shown from the previous analysis. For g1 observable
function we have observed that the first order approximation works well for all three pa-
rameters. Deviation from this behavior are achieved for ζ → 1 and ζ → 0 as the measure
become singular when we move to these points and we should take in account other terms
of the series expansion. Numerically, we found that deviations from first order approxima-
tion are meaningful only if ζ < 10−3 and ζ > 1 − 10−3. Averaging over ζ both ξ and σ we

75



D. Faranda et al.

Fig. 6 (Color online) g2 observable, ζ = 0.3. (a) ξ VS log10(n); (b) log10(σ ) VS log10(n); (c) log10(μ)

VS log10(n). Logistic map. Dotted lines represent computed confidence interval, red lines represent a linear
fit, blue lines are theoretical values

obtain 〈ξ 〉 = 1.000 ± 0.009 and 〈σ 〉 = 1.00 ± 0.03 where the uncertainties are computed
with respect to the estimator. Since we expect ξ = 0 and σ = 1 at zero order approximation,
numerical results are consistent with the theoretical ones; furthermore, experimental data
are normally distributed around theoretical values.

Asymptotic expansion also works well for g2 observables: we obtain 〈ξ 〉 = 0.334±0.001
in excellent agreement with theoretical value ξ = 1/3. Eventually, in g3, averaging ξ over
different initial conditions we get 〈ξ 〉 = −0.334±0.002 that is again consistent to theoretical
value −1/3.
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Fig. 7 (Color online) g3 observable, ζ = 0.3. (a) ξ VS log10(n); (b) log10(σ ) VS log10(n); (c) log10(μ)

VS log10(n). Logistic map. Dotted lines represent computed confidence interval, red lines represent a linear
fit, blue lines are theoretical values

5 The Case of Regular Maps

Freitas and Freitas [22] have posed the problem of dependent extreme values in dynamical
systems that show uniform quasi periodic motion. Here we try to investigate this problem
numerically. We have used a one-dimensional and a bi-dimensional discrete map. The first
one is the irrational translation on the torus defined by:

xt+1 = xt + β mod 1 β ∈ [0,1] \ Q. (49)
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And for the bidimensional case, we use the so called standard map:

yt+1 = yt + λ

2π
sin(2πxt ) mod 1 xt+1 = xt + yt+1 mod 1 (50)

with λ = 10−4. For this value of λ, the standard map exhibits a regular behavior and it
is not mixing, as well as torus translations. This means that these maps fail in satisfying
hypothesis D2 and D′ and moreover they do not enjoy as well an exponential hitting time
statistics. About this latter statistics, it is however known that it exists for torus translation
and it is given by a particular piecewise linear function or a uniform distribution depending
on which sequence of sets Ak is considered [10]. In a similar way, a non-exponential Hitting
Time Statistics (HTS) is achieved for standard map when λ � 1 as well as for a skew map,
that is a standard map with λ = 0 [7]. Therefore we expect not to obtain a GEV distribution
of any type using gi observables.

We have pointed out that the observable functions choice is crucial in order to observe
some kind of distribution of extreme values when we are dealing with dynamical systems
instead of stochastic series. Nicolis et al. [49] have shown how it is possible to obtain an
analytical EV distribution which does not belong to GEV family choosing a simple observ-
able: they considered the series of distances between the iterated trajectory and the initial
condition. Using the same notation of Sect. 2 we can write:

Ym(x = f tζ ) = dist(f t ζ, ζ ) M̂m = min{Y0, . . . , Ym−1}

For this observable they have shown that the cumulative distribution F(x) =
P {am(M̂m − bm) ≤ x} of a uniform quasi periodic motions is not smooth but piecewise
linear (Nicolis et al. [49], Fig. 3). Furthermore slop changes of F(x) can be explained by
constructing the intersections between different iterates of (49). F(x) must correspond to a
density distribution continuous obtained as a composition of box functions: each box must
be related to a change in the slope of F(x).

The numerical results we report below confirm that for the maps (49) and (50) the dis-
tributions of maxima for various observables cannot be fitted with a GEV since they are
multi modal. We recall that the return times into a sphere of vanishing radius do not have a
spectrum, if the orbits have the same frequency, whereas a spectrum appears if the frequency
varies continuously with the action, as in the standard map for λ close to zero [38]. Since the
EV statistics refers to a single orbit, no change due to the local mixing, which insures the
existence of a return times spectrum [38], can be observed. Considering that the GEV exists
when the system is mixing and does not when it is integrable, one might use the quality of fit
to GEV as a dynamical indicator, for systems which exhibit regions with different dynami-
cal properties, ranging from integrable to mixing as it occurs for the standard map when λ

is order 1. Indeed we expect that in the neighborhood of a low order resonance, where the
homoclinic tangle of intersecting separatrices appears, a GEV fit is possible. Preliminary
computations carried out for the standard map and for a model with parametric resonance
confirm this claim, that will be carefully tested in the near future.

Using the theoretical framework provided in Nicolis et al. [49] we check numerically the
behavior of maps described in (49)–(50) analyzing EV distributions for gi observable func-
tions. Proceeding as in Sect. 3 for mixing maps, we try to perform a fit to GEV distribution
starting with different initial conditions ζ , a set of different α values and (n,m) combina-
tions. In all cases analyzed the Kolmogorov-Smirnov test fails and this means that GEV
distribution is not useful to describe the behavior of this kind of statistics. This result is in
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agreement with Freitas et al. [26] but we may find out which kind of empirical distribution
is obtained.

Looking in details at Mm histograms that correspond to empirical density distributions,
they appear always to be multi modal and each mode have a well defined shape: for g1 type
observable function modes are exponential while, for g2 and g3, their shape depends on
α value of observable function. Furthermore, the number of modes and their positions are
highly dependent on both n,m and initial conditions.

Using Nicolis et al. [49] results it is possible to understand why we obtain this kind of
histograms: since density distribution of M̂m is a composition of box functions, when we
apply gi observables we modulate it changing the shape of the boxes. Therefore, we obtain
a multi modal distribution modified according to the observable functions gi .

An example is shown in Fig. 8 for standard map: the left figures correspond to the his-
togram of the minimum distance obtained without computing gi observable and reproduce a
composition of box functions. The figures in the right show how this distribution is modified
by applying g1 observable to the series of minimum distances. We can see two exponential
modes, while the third is hidden in the linear scale but can be highlighted using a log-
scale. The upper figures are drawn using n = 3300, m = 3300, the lower with n = 10000,
m = 1000.

6 Concluding Remarks

EVT was developed to study a wide class of problems of great interest in different disci-
plines: the need of modeling events that occur with very small probability comes from the
fact that they can affect in a strong way several socioeconomic activities: floods, insurance
losses, earthquakes, catastrophes. A very extensive account of EVT applications has been
recently given in Ghil et al. [27]. EVT was applied on limited data series using the block-
maxima approach facing the problem of having a good statistics of extreme values retaining
a sufficient number of observation in each bin. Often, since no theoretical a priori values of
GEV parameters are available for this kind of applications, we may obtain a biased fit to
GEV distribution even if tests of statistical significance succeed. The recent development of
an extreme value theory in dynamical systems give us the theoretical framework to test the
consistency of block-maxima approach when analytical results for distribution parameters
are available. This theory relies on the global properties of the dynamical systems consid-
ered (such as the degree of mixing or the decay rate of the Hitting Time Statistics) but also
on the observable functions we chose.

Our main finding is that a block-maxima approach for GEV distribution is totally equiv-
alent to fit an EV distribution after normalizing sequences are computed. To prove this we
have derived analytical expressions for am and bm normalizing sequences, showing that μ

and σ of fitted GEV distribution can replace them. This approach works for maps that have
an absolutely continuous invariant measure and retain some mixing properties that can be
directly related to the exponential decay of HTS. Since GEV approach does not require the
a priori knowledge of the measure density that is instead require by the EV approach, it is
possible to use it in many numerical applications.

Furthermore, if we compare analytical and numerical results we can study what is the
minimum number of maxima and how big the set of observations in which the maximum
is taken has to be. To accomplish this goal we have analyzed maps with constant density
measure finding that a good agreement between numerical and analytical value is achieved
when both the number of maxima n and the observations per bin m are at least 103. We re-
mark that the fits have passed Kolmogorov-Smirnov test with maximum confidence interval
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Fig. 8 Histogram of maxima for g1 type observable function, standard map, x0 = y0 = √
2 − 1. Left:

series of min(dist(f t ζ, ζ )). Right: series of g1 = − log(min(dist(f t ζ, ζ ))). (a) n = 3300, m = 3300.
(b) n = 10000, m = 1000

even if n < 103 or < m < 103 so that parametric or non-parametric tests are not the only
thing to take in account when dealing with extreme value distributions: if maxima are not
proper extreme values (which means m is not large enough) the fit is good but parameters are
different from expected values. The lower bound of n can be explained using the argument
that a fit to a 3-parameters distribution needs at least 103 independent data to give reliable
informations.

Therefore, we checked that in case of non-constant absolutely continuous density mea-
sure the asymptotic expressions used to compute μ and σ works when we consider n and
m of order 103. For logistic map the numerical values of parameters we obtain averaging
over different initial conditions are totally in agreement with the theoretical ones. In regu-
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lar maps, as expected, the fit to a GEV distribution is unreliable. We obtain a multi modal
distribution, that, for the analyzed maps, is the result of a composition of modes in which
the shape depends on observable types. This behavior can be explained pointing out that
this kind of systems have not an exponential HTS decay and therefore have no EV law for
observables of type gi .

To conclude, we claim that we have provided a reliable way to investigate properties of
extreme values in mixing dynamical systems which may satisfy mixing conditions (like D2

and D′), finding an equivalence among am, bm, μ and σ behavior for absolutely continuous
measures. In our future work we intend to address the case of singular measure. Recently the
theorem was generalized to the case of non-smooth observations and therefore it holds also
with non-absolutely continuous invariant probability measure [26]. In this case we expect
the same for all the procedure described here. Understanding the extreme values behavior for
singular measures will be crucial to apply proficiently this analysis to operative geophysical
models since in these case we are always dealing with singular measures. In this way we
will provide a complete tool to study extreme events in complex dynamical systems used in
geophysical or financial applications.
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UMR-6207, Centre de Physique Théorique, CNRS, Universités d’Aix-Marseille I,II.

Université du Sud Toulon-Var and FRUMAM.
(Fédération de Recherche des Unités de Mathématiques de Marseille);

CPT, Luminy, Case 907, 13288 Marseille Cedex 09, France.
vaienti@cpt.univ-mrs.fr

We introduce a new dynamical indicator of stability based on the Extreme Value statistics
showing that it provides an insight on the local stability properties of dynamical systems. The
indicator performs faster than others based on the iteration of the tangent map since it requires
only the evolution of the original systems and, in the chaotic regions, gives further information
about the local information dimension of the attractor. A numerical validation of the method is
presented through the analysis of the motions in the Standard map.

1. Introduction

The analysis of stability for discrete and continuous time dynamical systems is of fundamental importance
to get insights in the dynamical structure of a system. The distinction among regular and chaotic orbits can
be easily made in a dissipative case whereas for conservative systems it is usually an hard task especially

1
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when we are dealing with many degrees of freedom or when the phase space is spitted into chaotic regions
and regular islands. A large number of tools known as indicators of stability have been developed to accom-
plish this task: Lyapunov Characteristic Exponents (LCEs) [Wolf et al., 1985], [Rosenstein et al., 1993],
[Skokos, 2010] and the indicators related to the Return Time Statistics [Kac, 1934], [Gao, 1999], [Hu et al.,
2004], [Buric et al., 2005] have been used from a long time as efficient indicators. Nevertheless, in the recent
past, the need for computing stability properties with faster algorithms and for systems with many degrees
of freedom resulted in a renewed interest in the technique and different dynamical indicators have been
introduced. The Smaller Alignment Index (SALI) described in Skokos et al. [2002] and Skokos et al. [2004],
the Generalized Alignment Index (GALI), introduced in Skokos et al. [2007] and the Mean Exponential
Growth factor of Nearby Orbits (MEGNO) discussed in Cincotta et al. [2003], Goździewski et al. [2001] are
suitable to analyse the properties of a single orbit. They are based on the divergence of nearby trajectories
and require in principle the knowledge of the exact dynamics. Another class of indicators is based on the
round off error properties and has been discussed in Faranda et al. [2011c]: the divergence between two
trajectories starting from the same initial condition but computed with different numeric precision can be
used to illustrate the dynamical structure. The so called Reversibility Error that measures the distance
between a certain initial condition and the end point of a trajectory iterated forward and backward for the
same number of time steps give basically the same informations.
Other tools such as Fidelity and Correlations decay can be successfully used to characterize stability prop-
erties of ensemble of orbits as explained in Liverani et al. [2007] and Turchetti et al. [2010]. Eventually,
Frequency Map Analysis has been used to provide informations about the resonance structure of a system
[Laskar, 1999], [Robutel & Laskar, 2001].

Although these indicators have been developed to accomplish the same task, each of them presents
specific features and limitations and often it is necessary to combine a certain number of indicators to get
quantitative information about the dynamics. Another aspect to consider when comparing the efficiency
of chaos indicators is the computational cost: each variational method (SALI, MEGNO, mLCE) needs to
iterate both the map and the tangent map forward during n steps. The latter map, although linear, is
the computationally most expensive due to the fact that it needs the evaluation of the Jacobian matrix at
every step. On the other hand the Round off error methods are the computationally less expensive as they
require only the iteration of the dynamics. Fidelity and Correlations decay are usually computed using
Monte Carlo simulations and therefore they are inaccessible for systems with many degrees of freedom
[Turchetti et al., 2010]. Therefore, it is clear that there is still the need to introduce versatile indicators
that distinguish regular from chaotic behaviors and possibly give further informations on the dynamics.
The purpose of this paper is to use the series of extrema of some specific observable computed using the
orbits of dynamical systems as a new indicator of stability.

Extreme Value Theory was originally introduced by Fisher & Tippett [1928], Gnedenko [1943] to study
the maxima of a series of independent and identical distributed variables: under very general hypothesis a
limiting distribution called Generalised Extreme Value (GEV) distribution exists for the series of extremes.
An extensive account of recent results and relevant applications is given in Ghil et al. [2011]. In the recent
past this theory has been adapted to study the output of dynamical systems. As we will explain in detail
in the next section it is not trivial to observe the asymptotic GEV distribution in dynamical systems:
some sort of independence of maxima must be recovered by requiring certain mixing conditions on the
orbits. Furthermore, we need to introduce some peculiar observables that satisfy the condition proposed
by Gnedenko on the parent distribution of data: they are related to the closest return of a trajectory in a
ball centered around the starting point and therefore allow a very detailed description of the dynamics in
the neighborhood of the initial condition.
If all these requirements are satisfied it is possible to observe an Extreme Value (EV) statistics that con-
verges to the GEV distribution family. The parameters of the distribution are intimately related with some
relevant dynamical quantities such as the local dimension of the attractor [Freitas et al., 2009], [Faranda
et al., 2011a]. We will use these features to show the reliability of GEV distribution parameters to dis-
criminate regular from chaotic behaviors pointing out the further information that is possible to extract
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regarding the dynamics.
The paper is organised as follows: in section 2 we explain how to introduce an EV statistics in dynamical
systems pointing out the difference between regular and chaotic orbits. In section 3 we describe the nu-
merical algorithm and procedure used to compute the parameters of the GEV distribution. Eventually, in
section 4 we perform some tests on the Standard Map to validate numerically the use of GEV parameters
as dynamical indicators.

2. Extreme Statistics as dynamical indicator

2.1. Extreme Value Theory in dynamical systems

Gnedenko [1943] studied the convergence of maxima of i.i.d. variables

X0, X1, ..Xm−1

with cumulative distribution function (cdf) F (x) of the form:

F (x) = P{am(Mm − bm) ≤ x}
Where am and bm are normalizing sequences and Mm = max{X0, X1, ..., Xm−1}. It may be rewritten as
F (um) = P{Mm ≤ um} where um = x/am + bm. Under general hypothesis on the nature of the parent
distribution of data, Gnedenko [1943] showed that the cdf of maxima F (x), up to an affine change of
variable, converges to one of the following three limit laws Ei(x), i = 1, 2, 3:

• Type 1 (Gumbel).

E1(x) = exp(−e−x), −∞ < x <∞ (1)

• Type 2 (Fréchet).

E2(x) =

{
0, x ≤ 0

exp(−x−ξ), for some ξ > 0, x > 0
(2)

• Type 3 (Weibull).

E3(x) =

{
exp(−(−x)ξ), for some ξ > 0, x ≤ 0

1, x > 0
(3)

Let us define the right endpoint xF of F (x) as:

xF = sup{x : F (x) < 1}, (4)

then, it is possible to compute normalizing sequences am and bm using the following corollary of
Gnedenko’s theorem :
Corollary (Gnedenko): The normalizing sequences am and bm in the convergence of normalized maxima
P{am(Mm − bm) ≤ x} → F (x) may be taken (in order of increasing complexity) as:

• Type 1: am = [G(γm)]−1, bm = γm;
• Type 2: am = γ−1m , bm = 0;
• Type 3: am = (xF − γm)−1, bm = xF ;

where

γm = F−1(1− 1/m) = inf{x;F (x) ≥ 1− 1/m}; (5)

G(t) =

∫ xF

t

1− F (u)

1− F (t)
du, t < xF ; (6)

In Faranda et al. [2011b] we have shown that this approach is equivalent to fit unnormalized data
directly to a single family of generalized distribution called GEV distribution with cdf:
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FG(x;µ, σ, ξ′) = exp

{
−
[
1 + ξ′

(
x− µ
σ

)]−1/ξ′}
; (7)

which holds for 1 + ξ′(x − µ)/σ > 0, using µ ∈ R (location parameter) and σ > 0 (scale parameter)
as scaling constants in place of bm, and am [Pickands III, 1968], in particular, in Faranda et al. [2011b] we
have shown that the following relations hold:

µ = bm σ =
1

am
.

ξ′ ∈ R is the shape parameter also called the tail index: when ξ′ → 0, the distribution corresponds to
a Gumbel type ( Type 1 distribution). When the index is positive, it corresponds to a Fréchet (Type 2
distribution); when the index is negative, it corresponds to a Weibull (Type 3 distribution).

In the last decade many works focused on the possibility of treating time series of observables of
deterministic dynamical system using EVT. For example, Balakrishnan et al. [1995] and more recently
Nicolis et al. [2006] and Haiman [2003] have shown that for regular orbits of dynamical systems we do not
expect to find convergence to EV distribution.
The first rigorous mathematical approach to extreme value theory in dynamical systems goes back to
the pioneer paper by Collet [2001]. Important contributions have successively been given by Freitas &
Freitas [2008], Freitas et al. [2009], Freitas et al. [2010] and by Gupta et al. [2009]. The goal of all these
investigations was to associate to the stationary stochastic process given by the dynamical system, a new
stationary independent sequence: when the latter sequence satisfies one of the classical three extreme value
laws it is possible to show that the same result also holds for the original dynamical sequence.

Let us consider a dynamical system (Ω,B, ν, f), where Ω is the invariant set in some manifold, usually
Rd, B is the Borel σ-algebra, f : Ω→ Ω is a measurable map and ν a probability f -invariant Borel measure.
In order to adapt the extreme value theory to dynamical systems, we will consider the stationary stochastic
process X0, X1, ... given by:

Xm(x) = g(dist(fm(x), ζ)) ∀m ∈ N, (8)

where ’dist’ is a distance on the ambient space Ω, ζ is a given point and g is an observable function,
and whose partial maximum is defined as:

Mm = max{X0, ..., Xm−1}. (9)

The probability measure will be here an invariant measure ν for the dynamical system. We will also
suppose that our systems verify the condition D2 and D′ which will allow us to use the EVT for i.i.d.
sequences. Hereinafter we will use three types of observables gi, i = 1, 2, 3 that are suitable to obtain one
of the three types of EV distribution for normalized maxima:

g1(x) = − log(dist(x, ζ)), (10)

g2(x) = dist(x, ζ)−1/α, (11)

g3(x) = C − dist(x, ζ)1/α, (12)

where C is a constant and α > 0 ∈ R [Collet, 2001], [Freitas et al., 2009].

90



November 21, 2011 15:26 FLTV˙generalised

5

Using these observables we can obtain convergence to the Type 1,2,3 distribution if one can prove two
sufficient conditions called D2 and D′ which we briefly explain here: these conditions basically require a
sort of independence of the stochastic dynamical sequence in terms of uniform mixing condition on the
distribution functions. In particular condition D2, introduced in its actual form by Freitas & Freitas [2008],
could be checked directly by estimating the rate of decay of correlations for Hölder observables.
If Xm,m ≥ 0 is our stochastic process, we can define Mj,l ≡ max{Xj , Xj+1, · · · , Xj+l} and we put M0,m =
Mm.
The condition D2(um) holds for the sequence Xm if for any integer l, t,m we have

|ν(X0 > um,Mt,l ≤ um)− ν(X0 > um)ν(Mt,l ≤ um)| ≤ γ(m, t),

where γ(m, t) is non-increasing in t for each m and mγ(m, tm)→ 0 as m→∞ for some sequence tm = o(m),
tm →∞.
We say condition D′(um) holds for the sequence Xm if

lim
l→∞

lim sup
m

m

bm/lc∑

j=1

ν(X0 > um, Xj > um) = 0.

Here bm/lc indicates the integer part of m/l.
Instead of checking the previous conditions, we can use another results that established a connection
between the extreme value laws and the statistics of first return and hitting times, see the papers by
Freitas et al. [2009] and Freitas et al. [2011]. We will use the this result instead of checking directly the
mixing conditions D′ and D2. To introduce the Hitting Time Statistics (hereinafter HTS) we need first to
define the recurrence time τA in a measurable set A ∈ Ω, as

τA(x) = inf
t≥1

{
x ∈ A : f t(x) ∈ A

}
,

and the average recurrence time < τA > as

< τA >=

∫
τA(x)dµA(x) µA(B) =

µ(A ∩B)

µ(A)
,

Following Hirata et al. [1999] and Buric et al. [2003], we define the HTS as the following limit (whenever
it exists):

H(t) = lim
µ(A)→0

µA(A>t) A>t ≡
{
x ∈ A :

τA(x)

< τA >
> t

}
. (13)

In particular, Freitas et al. [2009] and Freitas et al. [2011] showed that for dynamical systems preserving
an absolutely continuous invariant measure or a singular continuous invariant measure ν, the existence of
an exponential hitting time statistics on balls around almost any point ζ implies the existence of extreme
value laws for one of the observables of type gi, i = 1, 2, 3 described above. The converse is also true, namely
if we have an extreme value law which applies to the observables of type gi, i = 1, 2, 3 achieving a maximum
at ζ, then we have exponential hitting time statistics to balls with center ζ. Recently these results have
been generalized to local returns around balls centered at periodic points [Freitas et al., 2010].

2.2. Extreme Value Statistics in mixing and regular maps

In Faranda et al. [2011b] and Faranda et al. [2011a] we have analised both from an analytical and numerical
point of view the Extreme Value distribution in a wide class of low dimensional maps showing that, when
the conditions D′ and D2 are verified, the block maxima approach can be used to study extrema. It consists
of dividing the data series of length k of some observable into n bins each containing the same number m
of observations, and selecting the maximum (or the minimum) value in each of them [Coles et al., 1999].
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Using gi observable functions we have shown that a first order approximation of the GEV parameters in
mixing maps can be written in terms of m (or equivalently n) and the local dimension of the attractor d:

For g1 type observable:

σ =
1

d
µ ∼ 1

d
ln(k/n) ξ′ = 0 (14)

For g2 type observable:

σ ∼ n−1/(αd) µ ∼ n−1/(αd) ξ′ =
1

αd
(15)

For g3 type observable:

σ ∼ n1/(αd) µ = C ξ′ = − 1

αd
(16)

while the higher order terms contain explicit dependence on the density measure.

For regular maps independently on the observable chosen, for periodic or quasi-periodic orbits we do
not observe convergence to the GEV distribution. The HTS is not exponential and therefore, according to
Freitas et al. [2009], we do not expect convergence to the GEV distribution. In Faranda et al. [2011b] we
have analysed what happens when the observables gi are used to study empirical maxima distribution in
regular maps: Nicolis et al. [2006] have shown how it is possible to obtain an analytical EV distribution
which does not belong to GEV family choosing a simple observable: they considered the series of distances
between the iterated trajectory and the initial condition:

Ym(x = f tζ) = dist(f tζ, ζ) M̂m = min{Y0, ...Ym−1}
For this observable they have shown that the cumulative density function F (x) = P{am(M̂m−bm) ≤ x}

of a uniform quasiperiodic motion is not smooth but piecewise linear (Nicolis et al. [2006], Figure 3). F (x)
must correspond to a probability density function (pdf) obtained as a composition of Heaviside step func-
tions: each box must be related to a change in the slope of F (x). Even if this result is not proven rigorously
for the asymptotic regime, this is exactly what we observed numerically in Faranda et al. [2011b].
By applying the observable gi we just remodulate this piecewise linear F (x) but it is clear that we do not
obtain any kind of convergence to the GEV distribution. In terms of density functions, we can observe
multimodal distributions and the number of modes and their positions are highly dependent on both n,m
and initial conditions Faranda et al. [2011b].
In the case of pure periodic motion this kind of extreme value distribution must asymptotically be a Dirac
delta as we pick up always the same Yi.

3. The numerical algorithm

As we have already said to observe a GEV distribution of maxima orbits must satisfy D′ and D2 conditions
or an exponential decay of the HTS whereas for periodic or quasi-periodic motions we have different
distributions but never a GEV. This gives us a way to discriminate the kind of motion simply looking at
the extreme value statistics. From a practical point of view we can introduce a simple algorithm to perform
this task:

(1) Compute the orbit of the dynamical system for k iterations.
(2) Compute the series Xm(x) = g(dist(fm(x), ζ)) where ζ is the initial condition that must be chosen on

the attractor [Faranda et al., 2011a].
(3) Divide the series in n bins each containing m data.
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(4) Take the maximum in each bin and test if this empirical distribution gives the parameters expected
by the theory.

In the next section we will describe how to use it operationally in a meaningful example of a dynamical
systems that present coexistence of regular and chaotic motions and therefore allow to test the validity of
our indicator: the Standard map. Before presenting the results, we need to clarify the numerical inference
procedure that we use to obtain the parameters of the GEV distribution. In Faranda et al. [2011b] we
have used a Maximum Likelihood Estimation (MLE) procedure working both on pdf and cdf, since our
distributions were absolutely continuous and the minimization procedure was well defined. In a general
case, when we are dealing also with singular measures, we may have a cdf which is not anymore abso-
lutely continuous and consequently the fitting procedure via MLE could give wrong results [Faranda et al.,
2011a]. To avoid these problems we have used an L-moments estimation as detailed in Hosking [1990]. This
procedure is completely discrete and can be used both for absolutely continuous or singular continuous cdf.
The L-moments are summary statistics for probability distributions and data samples. They are analogous
to ordinary moments which mean that they provide measures of location, dispersion, skewness, kurtosis,
but are computed from linear combinations of the data values, arranged in increasing order (hence the
prefix L). Asymptotic approximations to sampling distributions are better for L-moments than for ordi-
nary moments [Hosking [1990], Figure 4]. The relationship between the moments and the parameters of
the GEV distribution is described in Hosking [1990], while the 95% confidence intervals has been derived
using a bootstrap procedure.
We have explained in Faranda et al. [2011a] the issues of applying directly a Kolmogorov Smirnov or a
Chi-square test to see if the data really belongs to the GEV distribution when the measure is singular:
even if both tests fail the GEV model is reasonable as it is the closest continuous representation of the
empirical discrete distribution we get.
Therefore, instead of using as a dynamical indicator the goodness of the fit to the continuous GEV model,
we will check the deviations of the parameters with respect to the theoretically expected values for chaotic
orbits.

Our results will be studied against the Divergence of two nearby trajectories and the Reversibility
error. In Faranda et al. [2011c] we have shown that these indicators give insights into the structure of a
dynamical system as well as others such as SALI, MEGNO and mLCE with which these indicators have
been compared.
We briefly recall here the definitions and we refer to Faranda et al. [2011c] for further clarifications.

The arithmetic operations such as sums or multiplications imply a round off, which propagates the
error affecting each number. Round off algebraic procedures are hardware dependent as detailed in Knuth
[1973]. Unlike the case of stochastic perturbations, the error strongly depends on x. Suppose we are given
a map f t(x) then we will indicate with f t∗(x) the correspondent numerical map both evaluated at the t-th
iteration. The Divergence of orbits is defined as:

∆t = dist(f tS(x), f tD(x)), (17)

where f tS and f tD stand for single and double precision iterations respectively, and ’dist’ is a suitable metric.
If the map is invertible we can also define the Reversibility error as

Rt = dist(f−t∗ ◦ f t∗(x), x) (18)

which is non zero since the numerical inverse f−1∗ of the map is not exactly the inverse of f∗ namely
f−1∗ ◦ f∗(x) 6= x. Obviously the reversibility error is much easier to compute than the divergence of orbits
(if we know explicitly the inverse map) and the information it provides is basically the same as the latter.
Both quantities give an average linear growth for a regular map together with an exponential growth for a
chaotic map having positive Lyapounov exponents and strong mixing properties. When computing Rt we
will set f∗ = fS in order to compare with ∆t.
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4. A Case-study: the Standard Map

The Standard map (also known as the Chirikov-Taylor map or the Chirikov standard map) is an area-
preserving chaotic map defined on the bidimensional torus. It can be thought as a stick that is free of the
gravitational force, which can rotate frictionless in a plane around an axis located in one of its tips, and
which is periodically kicked on the other tip. This mechanical system is usually called a kicked rotator. It
is defined by:

{
yt+1 = yt − K

2π sin(2πxt) mod 1

xt+1 = xt + yt+1 mod 1
(19)

Standard map is one of the most widely-studied examples of dynamical chaos in physics. It can be
regular or chaotic, depending on the strength of the impulses: stronger kicks lead to chaotic behaviors. The
variables y and x respectively represent the angular position and angular momentum of the stick at the
t-th kick.
For K << 1 the motion follows quasi periodic orbits for all initial conditions, whereas if K >> 1 the
motion turns to be chaotic and irregular. An interesting behavior is achieved when K ∼ 1: in this case we
have coexistence of regular and chaotic motions depending on the initial conditions chosen.
Buric et al. [2003] studied the HTS of the standard map for different values of the parameter K showing
that if K >> 1, then H(t) = e−t, whereas a power law decay is obtained if K << 1. In the intermediate
regime K ∼ 1, the HTS exhibits a superposition of exponential and power law decay. Buric et al. [2003]
proved analytically the existence of the HTS for the Standard Map and checked it numerically for different
value of the parameter K. Following this paper in figure 1 we report the HTS for certain parameter values
that we use in the numerical simulations: as we have already said Freitas et al. [2009] proved that a GEV
distribution as Extreme Value statistics can only be obtained when the HTS is exponential, therefore we
will refer to these results to check the consistency between the results provided by HTS and the GEV
based indicators. To evaluate the HTS, we use the set A = [0, ε]× [0, ε] with ε = 0.01 but the behavior is
qualitatively the same when we change the location of the set A.
First of all, for the Extreme value analysis we have taken an ensemble of 500 initial conditions centered
around x0, y0 in a small subset of the bidimensional torus. After iterating the map for k = 106 iterations,
we have selected n = 103 maxima each in m = 103 observations. These values are in agreement with what
emerged from the numerical study presented in Faranda et al. [2011b] and guarantee a reliable statistics
when chaotic orbits are considered. Once computed the parameters of GEV distribution for each realiza-
tion, we have averaged them over the different initial conditions checking their convergence towards the
expected theoretical values when K is varied from K = 10−4 up to K = 102. As indicators, looking at the
equations 14-16, we have selected the shape parameters for the three type observables ξ′(g1), ξ′(g2), ξ′(g3)
and the scale parameter for the type 1 observable σ(g1). From all the parameters set, these are the ones
that have a dependence on the local dimension of the attractor d but do not have a dependence of m,
therefore, once we are in the asymptotic regime, the results are independent on the number of observations
in each bin. Results are presented in figure 2. In this example we set α = 3 for the observables g2 and g3 .
For each parameter, the averaged value is represented with a solid line whereas the dotted lines represent
one standard deviations of the ensemble. It is clear that for K > 1 the parameters converge towards the
theoretical values whereas for regular motions, the computed parameters are not representative of a GEV
distribution and exhibit a spread that is more than five times bigger with respect to the chaotic counter-
part. The results are similar if we change the initial conditions and the value of α.

Let us now fix the value of K = 6.5. We want to show that we can depict the structure of the Standard
map with the indicators presented above starting from 500×500 initial conditions uniformly distributed
on the bidimensional torus. The number of iterations k = 106, n = m = 103 and α = 3 are fixed as
before. Results are shown in figure 3 where we compare the four parameters of GEV distribution (top
and middle panels) with the Reversibility Error and Divergence of orbits in logarithm scale (lower panel).
The number of iterations for the round off indicators is t = 100. It is evident that the structure of the

94



November 21, 2011 15:26 FLTV˙generalised

9

Standard Map is well highlighted by all the indicators based on GEV distribution. For g1 the empirical
values agree with the theoretical ones ξ′ = 0 and σ = 1/2 expected in the chaotic regions, whereas in the
small regular islands we observe significant deviation from the expected values. Similar results hold for g2
and g3 for which the expected theoretical values are ξ′ = 1/6 and ξ′ = −1/6 respectively. The Round off
based indicators highlight the same structure: in the chaotic sea the exponential growth of these quantities
lead to a saturation at a value comparable with the size of the torus, whereas in the regular region their
values remain order of magnitude lower. For this value of the parameter the HTS - shown in figure 1 -
shows no significant deviations from the exponential behavior: this means that the chaotic part strongly
dominates the dynamics with the exceptions of the small stable islands highlighted in figure 3. All the
indicators are comparable in terms of speed of convergence towards the theoretically expected values.

Eventually, we repeat the same analysis changing only the parameter K and fixing it to the value
K = 4.5. In this case the HTS is a superposition of an exponential statistics and a power law: this is due
to the fact that the structure of the orbits in the standard map is now quite different with the presence
of major regions of stable orbits surrounded by a layer of variable thickness where Cantori are present.
Orbits starting in the chaotic sea intersects this region with evident effects not only on the HTS behavior
but also on the statistic of extremes: even if the HTS statistics for K = 4.5 is still dominated by an
exponential component, its decay is clearly slower if compared with the K = 6.5, K = 10 cases, all
shown in figure 1. This corresponds also to a slower convergence of the partial maxima series to the GEV
distribution: choosing again n = m = 103, the convergence of the parameters to the theoretical ones is
slower with respect to the case analysed before for K = 6.5. Nonetheless, although slower, the HTS decay
is still exponential so a better convergence must be observed if we increase the observations in each bin to
m = 104 as the selection of the extreme values is less affected by the regular motions: this is exactly what
is shown in figure 4: in the top panel ξ′(g1) is compared for the case m = 103 (Left-hand side) and m = 104

(Right-hand side): clearly the convergence to the expected theoretical values ξ′ = 0 improves when the
number of observations in each bin increases. Similar results hold for the others GEV parameters: as a
further example ξ′(g2) is presented in the middle panel of figure 4. The structure of the map is again well
highlighted by GEV indicators if we compare them with the logarithm of Rt, ∆t shown in the lower panel
for t = 100. For this value of t the effect of the superimposition of regular and chaotic it is not appreciable
for both the Reversibility error and the Divergence of the orbits as in the chaotic sea they already saturates
at a value comparable with the size of the torus.

5. Conclusions

Nowadays there exists a large family of dynamical indicators of stability that can be used to obtain
informations about the stability of orbits in dynamical systems. Nonetheless, the numerical algorithm to
compute many of them can be computationally expensive as it usually require the solution of variational
equations or a Monte Carlo simulation. Moreover each indicator is specialized in detecting differences
either in the chaotic regions or in the regular ones. In this framework we have introduced the parameters
of the GEV distribution for some special class of observables to show that they effectively work as other
dynamical indicators. As shown in Freitas et al. [2009], Faranda et al. [2011b] and Faranda et al. [2011a] a
GEV like distribution can be observed only if the dynamical system satisfies certain mixing conditions or
exhibit an exponential decay of the Hitting Time Statistics.
We selected the parameters that do not depend explicitly on the number of observations in each bin m, so
that our results only depend on the local dimension of the attractor d. We illustrated the effectiveness of
the indicators testing them on the Standard Map. First we showed that, varying the parameters K that
regulate the chaoticity of the map, the parameters of the GEV fitted distribution for a small ensemble of
initial conditions approach the theoretical values when K >> 1 that corresponds to chaotic motions. We
have also showed numerically that GEV parameters are able to distinguish regular islands in chaotic sea
for Standard Map parameter K = 6.5 and K = 4.5. In the latter case we have experienced the effect of
superimposition of regular and chaotic motions that prevented us from obtaining the theoretically expected
parameters for the chaotic regions when m was not big enough.
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To conclude, the GEV parameters provide basically the same informations as other indicators such as the
Divergence of orbits and the Reversibility error and they are easily accessible from a computational view
point as they do not require the solution of the variational equations. With respect to the other indicators
they highlight other relevant informations on the dynamics: the parameters are dependent on the local
dimension of the attractor that can be derived from a fit to the empirical distribution once we are sure
that we are dealing with a chaotic orbit. Furthermore, the extreme value distribution is itself interesting
from both practical and theoretical point of view: as far as the observable are concerned it gives detailed
informations about the closest return near a certain initial condition.
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Fig. 1. Hitting time statistics on the Standard Map for the set A = [0, ε] × [0, ε] for different K, ε = 0.01, in semilog scale
(upper panel) and in log-log scale (lower panel).
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Fig. 2. Standard map: GEV parameters averaged over 500 different initial condition centered in x0 = 0.305, y0 = 0.7340 VS
K. a) ξ′(g1), b) ξ′(g2), c) ξ′(g3), d) σ(g1).
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Fig. 3. Structure of the Standard Map for K = 6.5. a) ξ′(g1) for m = n = 103, theoretical value for chaotic orbits ξ′(g1) = 0;
b) ξ′(g2) for m = n = 103, theoretical value ξ′(g2) = 1/6; c) ξ′(g3) for m = n = 103, theoretical value ξ′(g3) = −1/6; d)
σ(g1) for m = n = 103, theoretical value σ(g1) = 1/2; e) log10(Rt=100); f) log10(∆t=100)
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Fig. 4. Structure of the Standard Map for K = 4.5. a) Left-hand side: ξ′(g1) for m = n = 103, Right-hand side: ξ′(g1) for
m = 104, n = 103, in both cases the theoretical value for chaotic orbits is ξ′(g1) = 0; b) Left-hand side: ξ′(g2) for m = n = 103,
Right-hand side: ξ′(g2) for m = 104, n = 103, theoretical value: ξ′(g2) = 1/6; c) Left-hand side: log10(Rt=100), Right-hand
side: log10(∆t=100)
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In this paper, we perform an analytical and numerical study of the extreme values of specific

observables of dynamical systems possessing an invariant singular measure. Such observables are

expressed as functions of the distance of the orbit of initial conditions with respect to a given point

of the attractor. Using the block maxima approach, we show that the extremes are distributed

according to the generalised extreme value distribution, where the parameters can be written as

functions of the information dimension of the attractor. The numerical analysis is performed on a

few low dimensional maps. For the Cantor ternary set and the Sierpinskij triangle, which can be

constructed as iterated function systems, the inferred parameters show a very good agreement with

the theoretical values. For strange attractors like those corresponding to the Lozi and Hènon maps,

a slower convergence to the generalised extreme value distribution is observed. Nevertheless, the

results are in good statistical agreement with the theoretical estimates. It is apparent that the

analysis of extremes allows for capturing fundamental information of the geometrical structure of

the attractor of the underlying dynamical system, the basic reason being that the chosen

observables act as magnifying glass in the neighborhood of the point from which the distance is

computed. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4718935]

The existence of extreme value laws for dynamical sys-

tems preserving an absolutely continuous invariant mea-

sure or a singular continuous invariant measure has been

recently proven if strong mixing properties or exponen-

tial hitting time statistics on balls are satisfied. In this

context, in a previous work, we have proposed an algo-

rithmic way to study extrema by using a block-maxima

approach for the time series of specific observables of dy-

namical systems possessing an absolutely continuous

invariant measure. Such observables boil down to func-

tions of the distance of the trajectory of the dynamical

system from a given point of the attractor. In this work,

we test our algorithm for maps that do not have an abso-

lutely continuous invariant measure and show that the

parameters of the cumulative distribution function of

maxima, which is in all cases described by a member of

the family of the generalised extreme value (GEV) distri-

butions, can be related to the scaling exponent of the

measure of a ball centered around the point from which

the distance is computed. Such a scaling exponent turns

out to be the Hausdorff dimension of the measure (also

known as information dimension). Even if we cannot esti-

mate analytically the asymptotic behavior of the measure

of the balls, the agreement with the numerical simula-

tions we have carried out for different maps suggests the

validity of our proposed scaling in terms of the informa-

tion dimension. Our conjecture has been tested with

numerical experiments on different low dimensional

maps such as the Cantor ternary set, the Sierpinskij tri-

angle, iterated function system (IFS) with non-uniform

weights and strange attractors such as Lozi and Hénon.

In all cases considered, there is a good agreement

between the theoretical parameters and the inferred ones

although, in the case of strange attractors which exhibit

multifractal structures, the convergence is slower.

Extremes can be thought as geometric indicators of the

local properties of the attractor. As a side note, we

emphasize that the statistical inference of the GEV

parameters has been performed using the L-moments

procedure, which, as opposed to more common maximum

likelihood method, allows for overcoming the problem of

dealing with a singular continuous invariant measure.

I. INTRODUCTION

A. Classical extreme value theory

The extreme value Theory (EVT), first developed by

Fisher and Tippett (1928) and formalized by Gnedenko

(1943) with the goal of studying the maxima of series of in-

dependent and identically distributed stochastic variables,

has progressively attracted a wider and wider interest in
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many different scientific fields and in many practical applica-

tions as robust statistical model for understanding and possi-

bly forecasting events that occur with very small probability

but can be extremely relevant in terms of impacts (Coles,

2001). We mention the case of floods (Gumbel, 1941;

Sveinsson and Boes, 2002; and Friederichs and Hense,

2007), insurance losses (Brodin and Kluppelberg, 2006 and

Cruz, 2002); earthquakes (Sornette et al., 1996; Cornell,

1968; and Burton, 1979); meteorological and climate events

(Smith, 1989; Katz and Brown, 1992; Felici et al., 2007;

Vitolo et al., 2009b; and Altmann et al., 2006). An extensive

review of the techniques and applications related to the EVT

is presented in Ghil et al. (2011). The power of the EVT and

its seamless applicability in a large variety of fields lies in

the fact that it defines in a universal way what an extreme is,

as opposed to adopting somewhat subjective definitions of

an extreme as something which is very large. The actual

analysis of the extremes of a data series is usually performed

by adopting either one of two conceptually complementary

strategies, the peak-over-threshold (POT) or the block-

maxima (BM) approach. The former consists in looking at

exceedances over asymptotically higher and higher thresh-

olds (Todorovic and Zelenhasic, 1970) and takes into consid-

eration the generalized Pareto distribution (GPD) as

statistical model (Smith, 1984; Davison, 1984; and Davison

and Smith, 1990). The BM approach represents a very natu-

ral way to look at extremes realized within fixed time inter-

vals: it is based on dividing the data series of some

observable into bins of equal length and on selecting the

maximum (or the minimum) value in each of them (Coles,

2001; Felici et al., 2007; Katz and Brown, 1992; Katz, 1999;

and Katz et al. 2005). In this case, the statistical model for

the BM is the GEV distribution (Coles, 2001). A strong con-

nection exists between the two methodologies, as we have

that if BM obeys the GEV distribution, then exceedances

over some high threshold will have an associated GPD, and,

moreover, the parameters of the GEV and GPD feature a

very close connection. As a result, several practical methods

(e.g., Hill and Pickands estimators) (Leadbetter et al., 1983)

developed for estimating the parameters of the GEV distribu-

tion of the extremes of a given time series are actually based

upon comparing the GPD fits at various thresholds.

In this paper, we will focus on the GEV approach and

refer to it when discussing EVT. Let us first briefly review

the Gnedenko (1943) fomalisation of the theory of

extremes. We study the convergence of the maxima of i.i.d.

variables

X0;X1; ::Xm�1

by looking at the cumulative distribution function (cdf) F(x)

of the form

FðxÞ ¼ PfamðMm � bmÞ � xg;

where am and bm are normalizing sequences and Mm

¼ maxfX0;X1; :::;Xm�1g. The previous definition of the

cdf may be rewritten as FðumÞ ¼ PfMm � umg, where

um ¼ x=am þ bm. Under general hypotheses on the nature of

the parent distribution of the Xj’s, Gnedenko (1943) showed

that the cdf of the maxima, up to an affine change of vari-

able, adheres to one of the following three laws:

• Type 1 (Gumbel).

EðxÞ ¼ expð�e�xÞ;�1 < x <1 (1)

• Type 2 (Fréchet).

EðxÞ ¼ 0; x � 0

expð�x�nÞ; for some n > 0; x > 0

�
(2)

• Type 3 (Weibull).

EðxÞ ¼ expð�ð�xÞ�nÞ; for some n < 0; x � 0

1; x > 0:

�
(3)

Defining the right endpoint xF of a cdf F(x) as

xF ¼ supfx : FðxÞ < 1g; (4)

it is possible to compute the normalizing sequences am and

bm using the following corollary:

Corollary (Gnedenko): The normalizing sequences am

and bm to be used to achieve the convergence of the cdf nor-
malized maxima PfamðMm � bmÞ � xg ! FðxÞ as m!1
may be taken as follows:

• Type 1: am ¼ ½GðcmÞ��1; bm ¼ cm;
• Type 2: am ¼ c�1

m ; bm ¼ 0;
• Type 3: am ¼ ðxF � cmÞ�1; bm ¼ xF;

where

cm ¼ F�1ð1� 1=mÞ ¼ inffx; FðxÞ � 1� 1=mg; (5)

and

GðtÞ ¼
ðxF

t

1� FðuÞ
1� FðtÞ du; t < xF: (6)

In (Faranda et al., 2011a) we have shown that this approach

is equivalent to fitting the distribution of unnormalized val-

ues of Mm to the GEV distribution, whose cdf can be written

as

FGðx; l; r; n0Þ ¼ exp � 1þ n0
x� l

r

� �h i�1=n0
� �

; (7)

which holds for 1þ n0ðx� lÞ=r > 0. For all values of m,

the fitted values of l 2 R (location parameter) and r > 0

(scale parameter) are related to the scaling constants bm, and

am as follows:

l ¼ bm; r ¼ 1

am
:

Instead, n0 2 R is the shape parameter, also known as the

tail index, and is related to the parameter n given above as

n0 ¼ 1=n, except for the limiting case n0 ¼ 0. When n0 ! 0,
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we have a type 1 (Gumbel) distribution, when n0 is positive,

we have a type 2 (Fréchet) distribution, and, when n0 is nega-

tive, we have a type 3 (Weibull) distribution.

B. Extreme value theory for dynamical systems

The classical EVT lays the foundation for constructing

and inferring the statistical properties of the extremes of time

series generated as a result of stochastic processes. Obvi-

ously, it is of crucial relevance, for both mathematical rea-

sons and for devising a working framework to be used in

applications, to understand under which circumstances the

time series of observables of deterministic dynamical sys-

tems can be treated using the EVT. Empirical studies show

that in some cases, the extremes of dynamical observables of

chaotic systems obey up to a high degree of precision the

GEV statistics, even if it is apparent that the asymptotic con-

vergence is highly dependent on the considered observables

(Felici et al., 2007; Vannitsem 2007; and Vitolo et al.,
2009a; 2009b). Instead, Balakrishnan et al. (1995) and, more

recently, Nicolis et al. (2006) showed that when considering

a dynamical system featuring a regular (periodic or quasi-

periodic) motion, the extremes of a generic dynamical

observable do not obey any statistics compatible with those

of GEV distributions.

The first rigorous mathematical approach aimed at

extending EVT in the context of dynamical systems goes

back to the pioneering paper (Collet, 2001). Along this line,

relevant contributions have subsequently come from Freitas

and Freitas (2008), Freitas et al. (2010a; 2010b), and Gupta

et al. (2011). The bottom line of all of these investigations

is based upon constructing from the stationary stochastic

process given by the dynamical system and by the chosen

observable a new stationary independent sequence whose

maxima can be proved to obey one of the classical three

extreme value laws. Subsequently, it is obtained that the

original sequence of maxima obeys the same extreme value

law.

We briefly recapitulate this approach and introduce the

notation relevant for our analysis. We consider a dynamical

system ðX;B; �; f Þ, where X is the invariant set in some

manifold, usually Rd;B is the Borel r-algebra, f : X! X is

a measurable map, and � is a probability f-invariant Borel

measure. The stationary stochastic process given by the dy-

namical system is of the form Xm ¼ g�f m, for any m 2N,

where the observable g has values in R [61 and achieves

a global maximum at the point f 2 X. We therefore study the

partial maxima Mm ¼ maxfX0;…;Xm�1g, and, in particular,

we look for the normalising sequences famg; fbmg 2
Rþ;m 2N such that �fx; amðMm � bmÞ � tg ¼ �fx; Mm �
umg ¼ �ðMm � umÞ converges to a non-degenerate distribu-

tion function. Here um ¼ t
am
þ bm is such that

m�ðX0 > umÞ ! s, for some positive s depending eventually

on t. We refer to (Leadbetter et al., 1983) for a clear and com-

plete description of this construction.

Our goal is now to associate to our process a new i.i.d.

sequence ~X0;…; ~Xm�1, whose cdf is the same as that of X0

and consider the partial maxima ~Mm ¼ maxf ~X0;…; ~Xm�1g.

The idea is to prove that, after suitable normalization, the cdf

of such a maximum converges to one of the three laws in

Eqs. (1)–(3). In this case, the cdf of the original partial max-

ima Mm obeys Eqs. (1)–(3), if we are able to prove that

lim
m!1

�ð ~Mm � umÞ ¼ lim
m!1

�ðMm � umÞ:

This construction is successful if the original stochastic

process Xm obeys two sufficient conditions called D2 and D0.
(We briefly state here the two. If Xm;m � 0 is the

considered stochastic process, we can define Mj;l �
maxfXj;Xjþ1;…;Xjþlg and we put M0;m ¼ Mm. The condi-

tion D2ðumÞ holds for the sequence Xm if for all integers l, t,
m we have j�ðX0 > um;Mt;l � umÞ � �ðX0 > umÞ� ðMt;l �
umÞ j � cðm; tÞ, where cðm; tÞ is non-increasing in t for each

m and mcðm; tmÞ ! 0 as m!1 for some sequence

tm ¼ oðmÞ; tm !1. Instead, the condition D0ðumÞ holds for

the sequence Xm if liml!1 lim supm m
P½m=l�

j¼1 �ðX0 > um;Xj

> umÞ ¼ 0. These conditions basically require a sort of inde-

pendence of the stochastic dynamical sequence in terms of

uniform mixing condition on the distribution functions. In

particular, the condition D2, introduced in its actual form by

Freitas and Freitas (2008), can be checked directly by esti-

mating the rate of decay of correlations for general Hölder

observables.

Another crucial aspect of the sequence of papers men-

tioned above is the careful selection of the g observables.

The observables are expressed as functions g ¼ gðdistðx; fÞÞ,
whose argument is the Euclidean distance of x from a given

point f. Moreover, the functional shape of the g’s is such that

g achieves a global maximum at x ¼ f for almost all points

f 2 X. It is especially convenient to define three classes of

observables g1; g2; g3. The gi’s, i¼ 1, 2, 3 observables are

constructed so that they ensure the existence of a non-

degenerate limit distribution for the partial maxima (Freitas

et al., 2010b and Holland et al., 2012) and, at the same time,

lead to establishing extreme value laws of type i, respec-

tively, for the normalised sequences of maxima. This will be

described accurately in Sec. II.

Recently, a major advance in this field has been obtained

through the establishment of a connection between the

extreme value laws and the statistics of first return and hitting

times, see the papers by Freitas et al. (2010b) and Freitas

et al. (2011). In particular, they showed that for dynamical

systems preserving an absolutely continuous invariant mea-

sure or a singular invariant measure �, the existence of an

exponential hitting time statistics on balls around �-almost

any point f implies the existence of extreme value laws for

the same observables of type gi; i ¼ 1; 2; 3 mentioned above.

The converse is also true, namely, if we have an extreme

value law which applies to the observables of type gi; i ¼
1; 2; 3 achieving a maximum at f, then we have exponential

hitting time statistics to balls with center f. Recently, these

results have been generalized to local returns around balls

centered at periodic points (Freitas et al., 2010a). These new

results are especially promising because the study of the

extremes of suitable observables of dynamical systems

bypasses the investigation of the cumbersome D2 and D0
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conditions on the underlying dynamical systems, while the

possibility to apply the EVT is linked to properties that have

a more intuitive appeal and that can be readily checked from

the numerical outputs.

C. This work

In a previous work (Faranda et al., 2011a), we have pro-

posed analytic results and algorithms for studying, using the

BM approach, EVT on dynamical systems which possess an

absolutely continuous invariant measure and satisfy the mix-

ing properties given by conditions D2 and D0, or, equiva-

lently, obey an exponential hitting time statistics. We have

established the best experimental conditions to observe con-

vergence to the analytical results by highlighting how the

deviations from theoretical behavior depend on the number

of maxima and on the size of the bin of observations over

which each maximum is selected. In another work of

(Faranda et al. 2011b), reversing the arguments described

here, we have shown that extremes can be used as dynamical

indicators of whether or not the underlying dynamical sys-

tem has regular or non-regular motion by checking to what

extent the extremes of the gi i¼ 1, 2, 3 observables obey the

EVT.

We now present an outline of some aspects of the

methodology and main results presented here, in order to

help the reader to follow the subsequent discussions, deriva-

tions, and analyses of numerical results. In this work, we

take on from (Faranda et al., 2011a) and test our methodol-

ogy for maps possessing a singular invariant measure �. We

remind that in the context of dynamical system, the invari-

ant measure plays the role of the probability measure on the

space of events. In this respect, the general theory of

extremes will continue to apply no matter whether such a

probability is absolutely continuous or singular with respect

to Lebesgue.

Nonetheless, an interesting additional point emerges

when the invariant measure is singular. In order to get the val-

ues of n and of am and bm for finite m one should know how

the measure of the ball BrðfÞ behaves as a function of r and of

f. Choosing the usual observables gi, the cumulative distribu-

tion function F of the extremes will be related to the scaling

of the measure �ðBrðfÞÞ of a ball BrðfÞ of radius r and cen-

tered at almost �-all points f. We note that for absolutely con-

tinuous measure such a scaling is often available, and we

refer to our previous paper (Faranda et al., 2011a). Instead,

when singular measures are considered, we are not aware of

any analytic result allowing to derive rigorously the expansion

of �ðBrðfÞÞ for small values of r. This will prevent us from

computing rigorously the normalising sequences am for type 1

observables g1. Instead, we will be able to get the limiting

values of bm for type 1 and the limiting values of am for types

2 and 3. Moreover, it is not possible to compute rigorously

the exponent n. Our heuristic estimates for the constants

and the parameters are obtained by simply approximating

�ðBrðfÞÞ as � rDðfÞ, where DðfÞ is the local dimension of

the measure � at the point f. Whenever this limit holds for

�-almost any choice of the point f, the corresponding limit is

proved to be equal to the Hausdorff dimension of the measure

�;HDð�Þ, defined as the infimum of the Hausdorff dimension

of the measurable sets of full � measure, see Young (1982).

This limit is also called the information dimension (which

we refer to as D in Eckmann and Ruelle (1985)). It is inter-

esting to note that the existence of the above-mentioned

limit �-almost everywhere could be proved for a large class

of dynamical systems, especially hyperbolic, and it could be

expressed in terms of suitable ratios of the entropies and of

the Lyapunov exponents of the measure �, see Kaplan and

Yorke (1979) and Young (1982), for the two-dimensional

case and Ledrappier and Young (1985a; 1985b), for the mul-

tidimensional case. A good survey of this matter, which also

contains the references to the 1-D case investigated by sev-

eral people, is in the already quoted Eckmann and Ruelle

(1985). The agreement with the numerical simulations sug-

gests that the scaling argument is indeed a good choice and

implies the possibility of providing a direct proof of the

EVT for our observables. Therefore, from the fitted parame-

ters of the GEV distributions, it is possible to deduce DðfÞ,
and so, for all practical purposes, also D. Therefore, the

extremes can be thought of as geometric indicators of the

local properties of the attractor.

In order to understand whether the dynamical system we

are considering admits an EVT theory, as explained before,

we can either check whether that either the conditions D2

and D0 apply or the existence of an exponential return time

statistics.

The latter property is easy to prove in the case of the

IFSs considered in Sec. III B. These systems, in fact, corre-

spond to expanding maps (since they verify the so-called

open set condition). In this case, the validity of the expo-

nential return time statistics for balls can be obtained using

the technique proposed in Bessis et al. (1987). This is the

case also for the attractor of the Hénon system when the pa-

rameters studied by Benedicks and Carlesson are chosen:

Chazottes and Collet have recently established the existence

of a Poissonian statistics for the number of visits in balls

around generic points with respect to the Sinai-Ruelle-

Bowen (SRB) measure (Ruelle, 1989). Our numerical com-

putation will instead concern the usual Hénon attractor, but

we conjecture that the same behavior is found also in this

case. Finally, we consider the Lozi attractor, for which

Gupta et al. (2011) proved the existence of the extreme

value distributions for the observables constructed with the

functions gi and for balls around almost any point with

respect to the SRB measure. As a final remark, we stress

that the results by Freitas-Freitas and Todd have been

proved under the assumption that �ðBrðfÞÞ is a continuous

function of r. This is indeed valid for all the examples con-

sidered here.

This paper is organized as follows: in Sec. II, we present

the analytical results for the EVT in maps with singular

measures and derive the asymptotic behavior of normalising

sequences, as well as their link with GEV parameter fitted

from finite datasets. In Sec. III, we present the numerical

experiments that we have carried out for both singular meas-

ures generated with IFSs and for invariant singular measures

corresponding to the attractors of the Baker transformation

and of the Hènon and Lozi maps, and describe the numerical
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procedures used for the statistical inference of the GEV pa-

rameters. Eventually, in Sec. IV, we present our conclusion

and perspectives for future work.

II. EXTREME VALUE THEORY FOR MAPS WITH
SINGULAR MEASURES

A. Definitions and remarks

Let us consider a dynamical system ðX;B; �; f Þ, where

X is the invariant set in some manifold, usually Rd;B is the

Borel r-algebra, f : X! X is a measurable map, and � a

probability f-invariant Borel measure. As anticipated in

Sec. I, we consider the stationary stochastic process X0;X1;
::: given by

XmðxÞ ¼ gðdistðf mðxÞ; fÞÞ 8m 2N; (8)

where “dist” is a distance on the ambient space, f 2 X is a

given point and g is an observable function. We define the

partial maximum Mm as

Mm ¼ maxfX0; :::;Xm�1g: (9)

The invariant measure � of the dynamical system plays the

role of the probability measure. We also suppose that our sys-

tem verifies the conditions D2 and D0, or, that obeys and expo-

nential hitting time statistics, as briefly described in the

introduction. Therefore, the statistical properties of Mm con-

verge asymptotically, after suitable rescaling, to what pre-

scribed by EVT. We can define three types of observables gi,

i¼ 1, 2, 3 for which it is straightforward to derive the

corresponding Type i extreme value law for the normalized

maxima

g1ðxÞ ¼ �logðdistðx; fÞÞ; (10)

g2ðxÞ ¼ distðx; fÞ�1=a; (11)

g3ðxÞ ¼ C� distðx; fÞ1=a; (12)

where C is a constant and a > 0 2 R.

We highlight the main properties of these observables.

The functions (10)–(12) share the following properties: (i)

they are defined on the positive semi-axis ½0;1� with values

into R [ fþ1g; (ii) the global maximum can be found in 0,

and its value is possibly equal to þ1; (iii) in a neighborhood

V of 0, they are strictly decreasing bijections, whose image

we denote as W.

The Gnedenko corollary says that the different kinds of

extreme value laws are determined by the distribution of

FðuÞ ¼ �ðX0 � uÞ (13)

and by the right endpoint of F, xF. Therefore, we need to

compute and to control the measure �ðBrðfÞÞ of a ball of ra-

dius r around the point f. At this regard we invoke, and

assume, the existence of the following limit:

lim
r!0

log �ðBrðfÞÞ
log r

¼ DðfÞ; for f for � � a:e: (14)

Moreover, we assume that �ðBrðfÞÞ is a continuous function

of r (see Freitas et al. (2011) for a discussion of this condi-

tion which shows that all the examples considered in the

present paper comply with this requirement). When the

limit (14) exists on a metric space equipped with the Borel

r-algebra and a probability measure �, it gives the Hausdorff

dimension of the measure or information dimension D, and

one can prove that it is also the infimum of the Hausdorff

dimension taken over all the set of � measure 1 (Young,

1982). Note that, in some cases, the information dimension

D can be explicitly computed. For a very general class of

one-dimensional maps with positive metric entropy, D is

equal to the ratio between the metric entropy and the (posi-

tive) Lyapunov exponent of � (Ledrappier, 1981). For two

dimensional hyperbolic diffeomorphisms, D is equal to the

product of the metric entropy times the difference of the

reciprocal of the positive and of the negative Lyapunov

exponents (Young, 1982). The information dimension is a

lower bound of the Hausdorff dimension of the support of

the measure � and is an upper bound of the correlation

dimension (Pesin, 1998; Hentschel and Procaccia,1983;

Grassberger, 1983; Bessis et al., 1988, Bessis et al., 1987;

and Cutler and Dawson, 1989).

B. Limiting behavior of the extreme value theory
parameters

We summarize the three basic assumptions for the

next considerations, and refer to an orbit with initial condi-

tion in the attractor and a point f also belonging to the

attractor.

• Assumption 1a: Our orbit obeys to conditions D2 and D0;
or

• Assumption 1b: We have an exponential HTS in the

neighborhood of f;
• Assumption 2: The measure of the ball BrðfÞ is a continu-

ous function of r for �-almost all points f and has no

atoms;
• Assumption 3: The limit (14) exists (and its value is called

DðfÞ ¼ D) at �-almost all points f.

It is now possible to compute rigorously a few of the

expected parameters for the three types of observables.

1. Case 1: g1(x) 5 2log(dist(x, f))

Substituting Eq. (8) into Eq. (13), we obtain that

1� FðuÞ ¼ 1� �ðgðdistðx; fÞÞ � uÞ
¼ 1� �ð�logðdistðx; fÞÞ � uÞ
¼ �ðdistðx; fÞ < e�uÞ ¼ �ðBe�uðfÞÞ (15)

xF ¼ supfu; FðuÞ < 1g:

In order to use Gnedenko corollary, we need to compute xF.

In this case, xF ¼ þ1 as we will explain in the proof below.

According to Corollary 1.6.3 in Leadbetter et al. (1983) for

type 1 am ¼ ½GðcmÞ��1
and bm ¼ cm ¼ F�1ð1� 1

mÞ. We now
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show how to get the limiting value of cm; a similar proof will

hold for types 2 and 3.

Proposition 1. Let us suppose that our system verifies

assumptions 1–3 above and let us consider the observable

g1; then

lim
m!1

log m

cm

¼ D

Proof. Given the choice of the observable, we have: 1

�FðcmÞ ¼ �ðBe�cm ðfÞÞ ¼ 1
m. Since the measure is not atomic

and it varies continuously with the radius, we have necessar-

ily that cm !1 when m!1. We define d > 0 and d small

enough so that there is md;f depending on d and on f, such

that for any m � md;f we have

�dcm � log �ðBe�cm ðfÞÞ þ Dcm � dcm: (16)

Thanks to the fact that log m� Dcm ¼ �½log �ðBe�cm ðfÞÞ þ
Dcm� and thanks to the bounds (16), we derive

�dcm � log m� Dcm � dcm;

which proves the Proposition.

The previous proposition does not allow us to derive the

values of cm and of bm, which is equal to cm for type 1

observables. Instead, we obtain rigorously a limiting behav-

ior, so that we can derive

cm ¼ bm �
1

D
log m:

The exact results for finite values of m could be obtained

only by knowing the functional dependence of �ðBrðfÞ on

the radius r and the center f. We have been able to perform

this derivation in the case of non-trivial absolutely continu-

ous invariant measure in our previous paper (Faranda et al.,
2011).

Moreover, we are not able to derive a rigorous limiting

behavior for am ¼ ½GðcmÞ��1
. The only rigorous results we

can derive is that GðcmÞ ¼ oðcmÞ. This can be proved by

adapting the previous proof of the Proposition 1 to another

result (see Leadbetter et al. (1983)), which says that for type

1 observables one has limm!1 mð1� Ffcm þ xGðcmÞgÞ ¼
e�x for all real x. By choosing x¼ 1, we derive the previous

domination result. In the following and again for numerical

purposes, we will take

am ¼ ½GðcmÞ��1 � 1

D
:

This follows easily by replacing in formula (6) �ðBrðfÞÞ � rD

for small values of r.

2. Case 2: g2(x) 5 dist(x, fÞ �1=a

In this case, we have

1� FðuÞ ¼ 1� �ðdistðx; fÞ�1=a � uÞ
¼ 1� �ðdistðx; fÞ � u�aÞ
¼ �ðBu�aðfÞÞ; (17)

and xF ¼ þ1. Since bm ¼ 0, we need to compute only am,

which is the reciprocal of cm ¼ F�1ð1� 1=mÞ. By adapting

Proposition 1, we derive that

lim
m!1

log m

log cm

¼ aD:

This allows us to use the approximation am � 1

m
1

aD
. The expo-

nent n for type 2 observables is given by the following limit

(see Leadbetter et al., 1983, Theorem 1.6.2):

lim
t!1
ð1� FðtxÞÞ=ð1� FðtÞÞ ¼ x�n; n > 0; x > 0:

The approximation �ðBrðfÞÞ � rD gives that n � aD. This

result is crucial for estimating the exponent n0 ¼ 1=n appear-

ing in the definition of GEV cdf.

3. Case 3: g3(x) 5 C-dist(x, fÞ 1=a

We have

1� FðuÞ ¼ 1� �ðC� distðx; fÞ1=a � uÞ
¼ �ðBðC�uÞaðfÞÞ: (18)

In this case xF ¼ C <1 and am ¼ ðC� cmÞ�1
; bm ¼ C. The

previous proposition leads us to derive that limn!1
log m

�a logðC�cmÞ
¼ D, which gives the asymptotic scalings

cm � C� 1

m
1

aDðfÞ
; am � m

1
aD; bm ¼ C. Finally, the exponent n is

given again following Theorem 1.6.2 in Leadbetter et al.
(1983) by the formula:

lim
h!0
ð1� FðC� hxÞÞ=ð1� FðC� hÞÞ ¼ xn; n < 0; x < 0;

which, considering our usual approximation, results into

n � �aD.

C. Generalised observables of type i, i 5 1, 2, 3

The prototypical observables gi, i¼ 1, 2, 3 previously

introduced allow for computing explicitly the EVT of mixing

dynamical systems. Nonetheless, those results can be gener-

alised by considering a broader class of observables, the ba-

sic reason being that we are only interested in asymptotic

properties. Whereas in the rest of the paper, we will consider

explicitly only the observables given in Eqs. (10)–(12), it is

worth mentioning the properties required to extend the

theory beyond such a rather limited set of observables. Fol-

lowing Freitas et al. (2010b), we state below which is the

property required to a gi-observables so that the statistical

properties of its maxima are described by an EVT type i
distribution:

• Type 1: There is a strictly positive function p : W ! R

such that 8y 2 R we have

lim
s!g1ð0Þ

g�1
1 ðsþ ypðsÞÞ

g�1
1 ðsÞ

¼ e�y:
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• Type 2: g2ð0Þ ¼ þ1 and there exists b > 0 such that

8y > 0 we have

lim
s!1

g�1
2 ðsyÞ

g�1
2 ðsÞ

¼ y�b:

• Type 3: g3ð0Þ ¼ D < þ1 and there exists c > 0 such that

8y > 0 we have

lim
s!0

g�1
3 ðD� syÞ

g�1
3 ðD� sÞ ¼ yc:

III. NUMERICAL EXPERIMENTS

A. Procedure for statistical inference

In this paper, we consider numerical experiments per-

formed on several maps featuring a singular invariant mea-

sure. The methodology followed here mirrors what described

in Faranda et al. (2011a). For each map, we run a long simu-

lation up to k iterations starting from a given initial condition

on the attractor, as experimentally defined by a preliminary

long integration. Then, at each iteration step, we compute

the observables g1; g2; g3 defined in Eqs. (10)–(12) and

divide the k-long time series into n bins each containing

m¼ k/n observations. We then select for each bin the maxi-

mum, thus ending up with a series of n maxima, which pro-

vides the basis for our statistical inference. At this stage, we

fit the n-maxima to the statistical model provided by the

GEV family of distributions and compare the best fit to the

theoretical results presented in the previous sections.

In Faranda et al. (2011a), the fitting procedure was

based on the classical method of maximum likelihood esti-

mation (MLE). Unfortunately, this method is not efficient

when dealing with singular measures. Therefore, in this pa-

per, we resort to an L-moments estimation procedure, which,

being based upon the computation of integrals rather than

upon the solution of a variational problem, is more robust.

The L-moments are analogous to ordinary moments, but are

computed from linear combinations of the data values,

arranged in increasing order. Asymptotic approximations to

sampling distributions are better for L-moments than for or-

dinary moments (Hosking 1990). We have derived from the

L-moments the best estimates of the GEV parameters as

described in Hosking (1990), while we have computed the

95% confidence intervals of the parameters using a bootstrap

procedure. In order to double-check the procedure adopted

here, we have recomputed the results presented in Faranda

et al. (2011a) with the L-moments method (not shown), find-

ing that the MLE and L-moments method have comparable

precision.

In principle, using the L-moments procedure, we could

fit the data to any kind of known cdf. In order to validate the

use of the GEV model, we have proceeded as follows:

• A priori: The choice of a GEV model arises naturally if

the assumptions presented in Sec. II are satisfied.
• A posteriori: We can verify the goodness of fit to the GEV

family by applying some parametric or non-parametric

tests commonly used in statistical inference procedures.

Using the Kolmogorov Smirnov test (Lilliefors 1967), we

have quantified the deviation between the empirical cdf and

the fitted GEV cdf, obtaining in all cases a positive outcome.

We summarize below what are the implications of the

conjecture proposed above in terms of fits of GEV parame-

ters obtained from numerical experiments. Since we consider

a fixed length of the time series k ¼ n 	 m, the following

relationships can be obtained by simply replacing m¼ k/n in

the equations derived in Sec. II. By replacing m with n
we are just rewriting the relationship in terms of k which is

the constant total length of the series. This does not affect

in any way the results that have been checked both

against n and against m (not shown in the figures), see the

discussion in Faranda et al. (2011). For the g1-type observ-

able, we have

r ¼ 1

D
; l � 1

D
lnðk=nÞ; n0 ¼ 0: (19)

For the g2-type observable

r � n�1=ðaDÞ; l � n�1=ðaDÞ; n0 ¼ 1

aD
: (20)

Note that, as discussed in Beirlant et al. (2004), two suitable

choices for the suitable normalising sequence bm are, in

principle, possible, given by bm ¼ 0 or bm ¼ c 	 m�n0 where

c 2 R is a positive constant. We obtain that in all cases,

the experimental procedure we use automatically selects

bm � c 	 m�n0 , hence the m-dependence of l given above.

Finally, for the g3-type observable, we have

r � n1=ðaDÞ; l ¼ C; n0 ¼ � 1

aD
: (21)

B. Iterated function systems and Cantor sets

A Cantor set can be obtained as an attractor of a suitable

defined IFS. An IFS is a finite family of contractive maps

ff1; f2; :::; fsg acting on a compact normed space X with norm

j 	 j and possessing a unique compact limit set (the attractor)

K 2 X which is non-empty and invariant by the IFS, namely

K ¼
[s

i¼1

fiðKÞ:

We will put a few restrictions on the IFS in order to see it as

the inverse of a genuine dynamical system; we will shortly

explain why this change of perspective will help us to com-

pute observables on fractal sets. We refer to the seminal pa-

per by Barnsley and Demko (1985) for a comprehensive

outlook on the concepts and results we are going to use here.

First, we assume that all the fi’s are strict contractions, i.e.,

there is a number 0 < k < 1 such that 8i ¼ 1;…; s we have

that jfiðxÞ � fiðyÞj < kjx� yj8x; y 2 X. Furthermore, we sup-

pose that each fi is one-to-one on the attractor K and that

8i ¼ 1;…; s we have fiðKÞ \ fjðKÞ ¼ ;; i 6¼ j. This is the

crucial open set condition. Therefore, we can define one

measurable map T : K ! K by TðxÞ ¼ f�1
i ðxÞ for x 2 fiðKÞ:

the attractor K will be the invariant set for T. Therefore,
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the transformation T plays the role of a usual dynamical

system.

In order to attain a complete statistical description of a

dynamical system we need to construct an invariant proba-

bility measure. In particular, we require such a measure be

ergodic, if we want to meaningfully compute the maxima of

the time series constructed with the observables gi. The time

series of the observables come from a forward orbit of an ini-

tial point chosen according to the invariant measure.

The construction of the invariant ergodic measure goes

as follows. First, we associate to each map fi a positive

weight pi in such a way that
Ps

i¼1 pi ¼ 1. Then, it is possible

to prove the existence of a unique measure � (called bal-
anced) which enjoys the following properties:

• the measure � is supported on the attractor K and is invari-

ant for the map T associated the considered IFS;
• for any measurable set B in X we have

�ðBÞ ¼
Xs

i¼1

pi�ðf�1
i ðBÞÞ:

• Defining ðSgÞðxÞ ¼
Ps

i¼1 pigðfiðxÞÞ for a continuous func-

tions g on X and for any point x 2 X, then we have

lim
n!1

SngðxÞ ¼
ð

X
gd�:

The last property is especially important: it holds also for

the characteristic function of a set, provided that the bound-

ary of this set has zero �-measure. Moreover, it corresponds

to a sort of ergodic theorem, as it states that the backward

orbit constructed by applying to any point in X the maps fi

with weights pi will populate the attractor K as the forward

orbit according to the transformation T associated with the

IFS of a point chosen almost everywhere according to � in

K. Some examples relevant for our discussion are presented

below.

1. Uniform weights

We consider the Cantor ternary set, which can be con-

structed as the attractor K1 of the IFS ff1; f2g defined as

f1ðxÞ ¼ x=3 with weight p1

f2ðxÞ ¼ ðxþ 2Þ=3 with weight p2

;

�
(22)

where x 2 ½0; 1�, and we set p1 ¼ p2 ¼ 1=2. Therefore, at

each time step, we have the same probability to iterate f1ðxÞ
or f2ðxÞ. Equivalently, the previous IFS can be written as

xtþ1 ¼ ðxt þ bÞ=3; (23)

where, at each time step, we select randomly with equal

probability b to be either 0 or 2. Instead, the so-called Sier-

pisnkij triangle can be constructed as the attractor K2 of the

following IFS:

xtþ1 ¼ ðxt þ vp;1Þ=2

ytþ1 ¼ ðyt þ vp;2Þ=2
;

�
(24)

where, at each iteration, we assign to the number p with

equal probability 1/3 one of the values 1,2, or 3, and, subse-

quently, iterate the map 24 substituting the elements vp;1 and

vp;2 of the following matrix:

v ¼
1 0

�1 0

0 1

2
4

3
5:

As well known, the information dimension is D ¼ logð2Þ=
logð3Þ for the Cantor ternary set and D ¼ logð3Þ=logð2Þ for

the Sierpinskij triangle (Sprott, 2003).

In order to obtain a suitable center f belonging to the

fractal attractor, we proceed as follows. We take a point x 2
X and we consider f as one of the preimages f�tðxÞ, with t
much larger than the sequence of observed events. By con-

struction, f�tðxÞ is closer and closer to the invariant Cantor

set and approaches a generic point with respect to the bal-

anced measure �.

We start by considering the empirical cdf F(u) of the

extrema for a g3-observable. An example is shown in Fig. 1.

The histogram is obtained iterating the map in Eq. (22) for

k ¼ 5
 107 iterations, f ’ 0:775; a ¼ 4, C¼ 10. In this

case, we have divided the time series of k data into bins, each

containing m¼ 5000 data, so that we obtain a total of

n¼ 10 000 maxima. As claimed in Sec. II, the empirical cdf

is a singular continuous function, and this is due to the struc-

ture of the Cantor set, and the fitted GEV cdf is an excellent

continuous approximation which averages out the holes of

the Cantor set. The results are qualitatively similar for the

other observables and other initial conditions on the attractor.

We need to provide a more robust quantitative evalua-

tion of the suitability of the approach proposed here. In order

to check that, effectively, the parameters of the GEV distri-

bution obtained by L-moments estimation are related to the

information dimension of the Cantor ternary set and of the

Sierpinskij triangle, we have considered an ensemble of 104

different realizations of Eqs. (22) and (24), each one of

FIG. 1. Empirical (blue) and fitted GEV (red) cdf for the IFS that generates

a Cantor ternary set, f ’ 0:775; g3 observable function.
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length k ¼ 107, and each one starting from the same initial

condition. In order to check the effectiveness of the inference

algorithm, we have considered different values of n, number

of extracted maxima, and m, length of the bins, keeping in

mind that k ¼ n 	 m. As discussed in Faranda et al. (2011),

we need to ensure that, at the same time, we are dealing with

true extremes (m must be large enough) and that we have a

sample of extremes sufficiently large to perform effectively

the statistical inference (n must be large enough). Rather

general considerations suggest a good convergence is

observed when n;m > 1000. We take into account these

(soft) bounds and consider only (n, m) pairs that satisfy

them.

In Figs. 2–4, we present the results of the fits of the

GEV parameters for the extremes of the observables g1; g2,

and g3, respectively. In each figure, from top to bottom, we

present the estimates for n0; r, and l as a function of n,

respectively. On the left (right) hand side, the plots refer to

the outputs of the IFS that generate the Cantor ternary set

(Sierpisnkij triangle). In all the cases considered, the numeri-

cal results agree to a high degree of accuracy with the analyt-

ical estimates given in Eqs. (19)–(21). The results shown

here refer to the initial conditions (and centers of the balls)

f ¼ 1=3 for Cantor ternary set and f ’ ð0:02; 0:40Þ for Sier-

pinskij triangle, but we have verified that, as expected, the

choice of the initial conditions is immaterial as long as it is

chosen on the attractor. The black lines correspond to the

mean value of the estimate of the parameter over the differ-

ent realizations of the map, while the black dotted lines rep-

resent one standard deviation over such ensemble.

When considering a g1 observable function, we expect

to find n0 ¼ 0, see Eq. (19). The numerical outputs are in

excellent agreement with this prediction for both IFS consid-

ered, as shown in Figure 2(a). For the scale parameter r, a

similar agreement is achieved with respect to the theoreti-

cally derived values. In fact, we have that r ¼ 1=D. This

implies that r ¼ logð3Þ=logð2Þ ’ 1:5850 for the Cantor terti-

ary set and that r ¼ logð2Þ=logð3Þ ’ 0:6309 for the Sierpin-

skij triangle. These values are represented in Fig. 2(b) with a

green line. Eventually, the experimental values for the loca-

tion parameter l agree convincingly with the logarithm

decay with n given in Eq. (19). A linear fit of l in respect to

logðnÞ is shown with a red line in Figure 2(c) for both IFSs.

The agreement between the theoretical results and the

numerical evidences is confirmed also for g2-type and

g3-type observables, as shown in Figs. 3 and 4, respectively.

Results are presented for the case a ¼ 4 for both

for Sierpinskij triangle and Cantor ternary set IFSs and,

FIG. 2. g1 observable. (a) n0 vs log10ðnÞ; (b) r vs log10ðnÞ; (c) l vs logðnÞ.
Left: Cantor ternary set. Right: Sierpinskij triangle. The dashed lines repre-

sent one standard deviation from the mean values (black solid lines), the red

lines represent the logarithmic linear fit, the green lines are the theoretical

values.

FIG. 3. g2 observable (a) n0 vs log10ðnÞ; (b) log10ðrÞ vs log10ðnÞ; (c)

log10ðlÞ vs log10ðnÞ. Left: Cantor ternary set. Right: Sierpinskij triangle.

The dashed lines represent one standard deviation from the mean values

(black solid lines), the red lines represent he power law fits, green lines are

the theoretical values.
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additionally, in the case of g3-type observables, we choose

C¼ 10.

For both g2-type and g3-type observables, we find an

excellent agreement between the experimental and theoreti-

cal values for the n0-values given in Eqs. (20) and (21),

respectively, as shown by the fact that the green lines in

Figs. 3(a) and 4(a) lie well within the confidence interval of

the inferred parameters’ values. Similarly, the inferred val-

ues for the parameter l in the case of the g3-observable are

weakly dependent on n, so that we find—see Fig. 4(c)—an

excellent agreement with the theoretical prediction given in

Eq. (21) of finding for all values of n the constant value

l ¼ C ¼ 10.

In Figs. 3(b), 3(c), and 4(b), a log-log scale is used to

highlight the agreement between the inferred values and the

power-law behavior described by Eqs. (20) and (21). The

uncertainty is in all cases given as one standard deviation of

parameters’ estimates over the ensemble of realizations. The

best power-law fits of the experimental data are shown by

the red lines, which are almost exactly overlapping with the

green lines, corresponding to the theoretical values. Equa-

tions (20) and (21) imply that the angular coefficients j of

the green lines are such that for all Figs. 3(b), 3(c), and 4(b)

we have that jjj ¼ 1=ðaDÞ.

Interestingly, by using Eqs. (19)–(21), we can estimate

in multiple ways the information dimension D of the attrac-

tors from the inferred values of the GEV distributions

parameters, plus, in the case of g2 and g3 observables, from

the choice of a. In Table I we report our results: we find an

overall excellent agreement of the estimates among them-

selves and with the theoretical values. This suggests the

rather relevant fact that analysing the extremes of the observ-

ables gi for a mixing dynamical system provides a way to

study the geometrical properties of its attractor, the funda-

mental reason being that the looking at the maxima of the

observables gi amounts to using a magnifying glass in the

neighborhood of the center of the ball f, because we select

the close recurrences of the orbit nearby f.

As a side note, we wish to underline that other tests have

been done computing the statistics using parameter a ¼
5; 6; 7; 8 for g2 and g3 observables for both the Cantor terti-

ary set and the Sierpinskij triangle IFSs, with no notable

deviation from what given in Eqs. (19)–(21). Instead, serious

problems in terms of numerical convergence arise for the

Cantor tertiary set IFS when using a ¼ 2 and a ¼ 3 for the

observables g2 and g3. This issue is possibly due to the

fact that L-moments method works efficiently only if

n0 2 ½�0:5; 0:5�, while for a � 3, the theoretically expected

value for the shape parameter jn0j > 0:5.

2. IFS with non-uniform weights

Let us now generalize the problem discussed in Sec. III

B 1 by considering the case of the IFS

fkðxÞ ¼ ak þ kkx x 2 ½0; 1� k ¼ 1; 2; :::; s; (25)

where each fi is iterated with (different) probability wi. In this

case, it is possible to compute the information dimension as

the ratio between the metric entropy and the Lyapunov expo-

nent of the associated balanced measure (Barnsley 2000)

D ¼ w1 log w1þ…þ ws log ws

w1 log k1 þ…þ ws log ks
: (26)

We hereby generalize the Cantor tertiary set IFS by consider-

ing the following IFS:

f1ðxÞ ¼ x=3 with weight w

f2ðxÞ ¼ ðxþ 2Þ=3 with weight 1� w
;

�
(27)

where the weight w is varied between 0.35 and 0.65 with

steps of 0.01. For w¼ 0.5, we obtain the same results shown

in Sec. II, while for different weights we can check Eq. (26).

Note that, in this general case, the value of D can be more

efficiently obtained by taking the average of DðfÞ over many

different f belonging to the attractor of the system (27) dis-

tributed, asymptotically, according to the physical measure.

Equations (19)–(21) and Table I suggest various differ-

ent and, in principle, equivalent ways to estimate D also in

the more complex context of a multifractal set. In Fig. 5, we

present the estimates for the dimension D obtained from

Eq. (19) as

FIG. 4. g3 observable. (a) n0 vs log10ðnÞ; (b) log10ðrÞ vs log10ðnÞ;
(c) log10ðlÞ vs log10ðnÞ. Left: Cantor ternary set. Right: Sierpinskij triangle.

The dashed lines represent one standard deviation from the mean values

(black solid lines), the red lines represent the power law fits, the green lines

are the theoretical values.
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Dðrðg1ÞÞ ¼
1

hrðg1Þi
; (28)

as well as from Eqs. (20) and (21) as follows:

Dðn0ðgiÞÞ ¼
1

ajhn0ðgiÞij
; i ¼ 2; 3 (29)

where in all expressions above the brackets h�i indicate an

average on different sample points f taken in the attractor of

the IFS (asymptotically) according to the balanced measure.

For the rest of the numerical computations, we set a ¼ 5.

The parameters have been estimated using 1000 different ini-

tial conditions on the support of the attractor, and for 30 real-

izations of each sample point f. Finally, the block-maxima

approach is implemented by choosing with n¼m¼ 1000,

which, as described above, is within the range of robustness

of the inference procedure, and the error bars, which repre-

sent the standard deviation of the mean, are computed using

the standard error propagation rules.

The agreement between the theoretical information

dimension D (blue line) and the experimental data is clear for

all the values of the weight w and, quite consistently, for all

the inference procedures given in Eqs. (28) and (29). The

uncertainty increases the more w departs from 0.5, the reason

being that the larger the difference between w and 0.5, the

harder it is to compute precisely DðfÞ, as the multifractal

nature of the attractor is more pronounced. For all values of

w, the best agreement between the inferred and theoretical

value of D is obtained by deriving D from the estimates of the

r parameter for the ðg1Þ-type observable. It is not clear why

for finite samples the convergence is better for this specific

estimator of D, possibly because the logarithm modulation of

the distance highlights proper extrema while weighting less

possible outliers. Nevertheless, we remark again that all the

estimators are in agreement with the theoretical estimate.

C. Non-trivial singular measures

In Sec. III B, we have analysed the relatively simple

cases of Cantor sets generated with IFSs. In order to provide

further support to our conjectures, we now present some

application of our theory to the output of dynamical systems

possessing less trivial singular measures. We analyze three

relevant examples of two-dimensional maps: the Baker map,

the Hènon map, and the Lozi map.

1. The Baker map

The Baker map is defined as follows:

xtþ1 ¼
(

caxt mod 1 if yt < a;

1=2þ cbxt mod 1 if yt � a;

ytþ1 ¼

yt

a
mod 1 if yt < a;

yt � a
1� a

mod 1 if yt � a;

8><
>:

(30)

where we consider the classical values for the parameters:

a ¼ 1=3; ca ¼ 1=5 and cb ¼ 1=4. Rigorous analytical results

are available for the estimate of the information dimension D
(Kaplan and Yorke,1979). For the parameters’ values consid-

ered here, we have that D ’ 1:4357.

We have performed the same analysis detailed in Sec. III

B, but taking into account an important difference. This map

is invertible and its invariant set is an attractor given by the

Cartesian product of a segment, along the y-axis, and a one-

dimensional Cantor set, along the x-axis. The system pos-

sesses an invariant SRB measure, which can practically be

constructed by taking ergodic sums for any point sitting on

the basin of attraction. In order to compute the center of the

balls on the attractor, we proceed in a similar manner as

described for IFS, namely, we take any point x in the basin of

attraction and we iterate it t times with t much bigger than

the sequence of observed events. Then, we take the point

f tðxÞ as f: as t get larger, f tðxÞ is closer and closer to the

attractor and distributed according to the SRB measure. In

our set-up, we choose a ¼ 4 for g2 and g3, and C¼ 10 for g3.

The results are shown in Figs. 6–8: the black continuous lines

represent the parameter average over different initial condi-

tions and the black dashed lines represent the standard

deviation of the distribution of the estimated parameters.

The expected theoretical values for n0 are within one

standard deviation of the results obtained from the fits of the

tail parameter for all the three observables gi’s. The agreement

seems to be better when we increase n, even if this, in our ex-

perimental set-up, corresponds to a decrease of m. Such a

behavior is quite interesting as it seems that we obtain a much

better convergence to theoretical values if n ’ 104, while in

all the other examples, there is no such a difference between

n ¼ 103 and n ¼ 104. A similar consideration can be made

for the dependence on n of the parameter r inferred from a

g1-type observable, shown in Fig. 6(b), while Fig. 8(c) shows

that the parameter l obtained from the g3-type observable

closely approximates C¼ 10 for all the values of n explored

here.

FIG. 5. Estimates of D for the modified Cantor tertiary set IFS given in

Eq. (27) as a function of the weight parameter w. The inferred results are

obtained using the estimates of the GEV parameters for gi observables. See

text for further details.
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A semilog-linear plot clearly depicts the dependence on

n of the estimates of l of a g1-type observable in Fig. 6(c),

while log-log plots of the GEV inferred parameters against n
are shown in Figs. 7(b), 7(c), and 8(b). Along the lines of the

discussion following Figs. 2–4, we have that on the average

(with respect to the choice of the points f) the theoretical

results given in Eqs. (19)–(21) and the best fits to those law

obtained with the experimental data have a truly outstanding

agreement. Obviously, the uncertainties are larger than in the

case of the IFS attractors because in the case of the Baker

map self-similarity is not exactly obeyed in the attractor,

while local properties are relevant. Along the lines of

Table I, we can invert the expressions given in Eqs.

(19)–(21) and derive various independent estimates of the in-

formation dimension D from the GEV parameters estimates

extremes of the observables gi, suitably averaged over many

centers f along the lines of Eqs. (28) and (29). The agree-

ment between the theoretical value of D and the experimen-

tally retrieved estimates is fairly good enough for all the

options given in Table II, with the value for D deduced from

the expression of l in Eqs. (19) and (20) faring best.

2. The Hènon and Lozi maps

The Hènon map is defined as

xtþ1 ¼ yt þ 1� ax2
t

ytþ1 ¼ bxt;
(31)

while in the Lozi map the term ax2
t is substituted with the

term ajxtj

xtþ1 ¼ yt þ 1� ajxtj
ytþ1 ¼ bxt:

(32)

We consider the classical set of parameter a¼ 1.4, b¼ 0.3

for the Hènon map and a¼ 1.7 and b¼ 0.5 for the Lozi map.

Young (1985) proved the existence of the SRB measure for

the Lozi map, whereas for the Hènon map no such rigorous

proof exists, even if convincing numerical results suggest its

existence (Badii and Politi, 1987). Note that Benedicks and

Young (1993) proved the existence of an SRB measure for

the Hènon map with a different set of parameters using the

approach outlined in Benedicks and Carleson (1991). Using

the classical Young results, which makes use of the Lyapu-

nov exponents, we obtain an exact result for D for the Lozi

attractor

D ’ 1:40419:

Instead, in the case of the Hènon attractor, we consider the nu-

merical estimate provided by Grassberger and Procaccia (1983)

FIG. 6. g1 observable. (a) n0 vs log10ðnÞ; (b) r vs log10ðnÞ; (c) l vs logðnÞ.
Baker map. The dashed lines represent one standard deviation from the

mean values (black solid lines), the red line represents the logarithmic linear

fit, the green lines give the theoretical values.

FIG. 7. g2 observable (a) n0 vs log10ðnÞ; (b) log10ðrÞ vs log10ðnÞ; (c)

log10ðlÞ vs log10ðnÞ. Baker map. The dashed lines represent one standard

deviation from the mean values (black solid lines), the red lines represent

the power law fits, the green lines give the theoretical values.
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D ¼ 1:25826 6 0:00006:

As in the previous cases, the GEV distribution is computed

with L-moments methods by varying n and m and averaging

the distribution parameters over 1000 different sample points

f chosen with the same strategy as described before for the

Baker map. The results are presented in Figs. 9–11, with the

plots on the left-hand side referring to the Hènon map, while

those on the right-hand side refer to the Lozi map. In general,

the performance of these two maps is rather similar in terms

of agreement between the theoretical values and the experi-

mental estimates.

When considering n0, the numerical results are in good

agreement with the theoretical estimates. Nevertheless, the

parameters have a rather large spread, comparable with that

observed for the Baker map, which indicates a slower con-

vergence towards the expected values with respect to what is

observed for the IFS case. The estimates of n0, though, are

more stable with respect to different choices of n with

FIG. 8. g3 observable. (a) n0 vs log10ðnÞ; (b) log10ðrÞ vs log10ðnÞ; (c)

log10ðlÞ vs log10ðnÞ. Baker map. The dashed lines represent one standard

deviation from the mean values (black solid lines), the red lines represent

the power law fits, the green lines give the theoretical values.

TABLE I. Estimates for the information dimension D for the Cantor tertiary

set and Sierpinskij triangle obtained through Eqs. (19)–(21) via the inferred

values of the GEV distributions. The g2 and g3 observables are specified by

a ¼ 4; for the g3 observable the value C¼ 10 is also selected.

Parameter [gi] Cantor Sierpinskij

Theory logð2Þ=logð3Þ ’ 0:6309 logð3Þ=logð2Þ ’ 1:5850

r [g1] 0:635 6 0:006 1:57 6 0:03

l [g1] 0:64 6 0:01 1:59 6 0:01

n0 [g2] 0:628 6 0:007 1:56 6 0:02

r [g2] 0:63 6 0:01 1:56 6 0:02

l [g2] 0:64 6 0:01 1:59 6 0:01

n0 [g3] 0:642 6 0:008 1:60 6 0:02

r [g3] 0:64 6 0:01 1:62 6 0:01

TABLE II. Estimates for the information dimension D for the Baker, Hènon

and Lozi maps obtained through Eqs. (19)–(21) via the inferred values of the

GEV distributions. The g2 and g3 observables are specified by a ¼ 4; for the

g3 observable the value C¼ 10 is also selected.

Parameter [gi] Baker map Hènon map Lozi map

Theory 1.4357 1.2582 1.4042

r [g1] 1:43 6 0:03 1:21 6 0:02 1:39 6 0:01

l [g1] 1:48 6 0:03 1:23 6 0:02 1:40 6 0:01

n0 [g2] 1:41 6 0:02 1:24 6 0:02 1:41 6 0:01

r [g2] 1:39 6 0:04 1:35 6 0:07 1:38 6 0:02

l [g2] 1:47 6 0:02 1:24 6 0:01 1:40 6 0:01

n0 [g3] 1:45 6 0:02 1:28 6 0:02 1:43 6 0:01

r [g3] 1:56 6 0:08 1:15 6 0:07 1:42 6 0:01

FIG. 9. g1 observable. (a) n0 vs log10ðnÞ; (b) r vs log10ðnÞ; (c) l vs logðnÞ.
Left: Hènon map, Right: Lozi map. The dashed lines represent one standard

deviation from the mean values (black solid lines), the red lines represent

the logarithmic linear fits, the green lines give the theoretical values.
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respect to the Baker map. The same applies for the other two

parameters, r for a g1-type observable (see Fig. 9) and l for

a g3-type observable (Fig. 11), whose theoretical values

given in Eqs. (19) and (21) do not depend on n.

Analogously to the case of the Baker map, the agree-

ment between the experimentally inferred and the theoretical

dependence on n of the other parameters is excellent. The

estimates of l of a g1-type observable given in Fig. 9(c) fea-

ture a very pronounced linearity with the logarithm of n, with

the angular coefficient matching almost exactly the theoreti-

cally predicted value given in Eq. (19). Moreover, the log-log

plots of the GEV inferred parameters vs. n given in Figs.

7(b), 7(c), and 8(b) clarify the presence of an excellent agree-

ment between the experimental value and the theoretical pre-

dictions of power-law dependence presented in Eqs.

(19)–(21). All of this applies when we consider the averages

estimates with respect to many points f distributed according

to the invariant measure. The signature of the local fluctua-

tions is reflected in the presence of relatively large uncertain-

ties around the average values. Table II contains the

estimates of the information dimension D for the attractors of

the Hènon attractor and Lozi maps obtained by inverting the

expressions given in Eqs. (19)–(21) as discussed before for

the Baker map. While the agreement is fairly good for most

independent estimates of D, the best results are obtained, just

as in the case of the Baker map, starting from the parameter l
in the case of g1-type and g2-type observables.

While overall more than satisfactory, the agreement

between the true D and its estimates in clearly worse for

the three maps considered here than in the case of the IFS sys-

tems. The slower convergence for these maps may be related

to the difficulties experienced computing the dimension with

all box-counting methods, as shown in Grassberger and Pro-

caccia (1983) and Badii and Politi (1987). In that case, it has

been proven that the number of points that are required to

cover a fixed fraction of the attractor support diverges faster

than the number of boxes itself for this kind of non-uniform

attractor. In our case, the situation is similar since we consider

balls around the initial condition f. As pointed out, the best

result for the dimension is achieved using the parameters pro-

vided by g1 observable since the logarithm modulation of the

distance captures actual extremes while weighting less possi-

ble outliers.

IV. FINAL REMARKS

Extreme value theory is attracting a lot of interest both

in terms of extending pure mathematical results and in terms

of applications to many fields of social and natural science.

As an example, in geophysical applications, it is crucial to

FIG. 11. g3 observable. (a) n0 vs log10ðnÞ; (b) log10ðrÞ vs log10ðnÞ; (c)

log10ðlÞ vs log10ðnÞ. Left: Hènon map, Right: Lozi map. Dotted lines repre-

sent one standard deviation from the mean values (black solid lines), the red

lines represent he power law fits, the green lines give the theoretical values.

FIG. 10. g2 observable (a) n0 vs log10ðnÞ; (b) log10ðrÞ vs log10ðnÞ; (c)

log10ðlÞ vs log10ðnÞ. Left: Hènon map, Right: Lozi map. Dotted lines repre-

sent one standard deviation from the mean values (black solid lines), the red

lines represent he power law fits, the green lines give the theoretical values.
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have a tool for quantifying, understanding, and forecasting

climatic extremes and events such as strong earthquakes

and floods see Coles (2001); Kotz and Nadarajah (2000); and

Beirlant et al. (2004); see also the recent informative review

by Ghil et al., 2011.

Whereas the classical EVT deals with stochastic proc-

esses, it is of obvious relevance to understand, whereas it

could rigorously be used to study the outputs of deterministic

dynamical systems. Recently, the existence of extreme value

laws for dynamical systems preserving an absolutely contin-

uous invariant measure or a singular invariant measure has

been proven if strong mixing properties or exponential hit-

ting time statistics on balls are satisfied. An extensive sum-

mary of the main theoretical results, detailed numerical

investigations in this directions, as well as the explanation of

the fundamental reason why these results do not apply for

regular dynamical systems, have been recently given by

Faranda et al., 2011.

Nonetheless, it is crucial to consider the case of dynami-

cal systems, whose invariant measure is not absolutely con-

tinuous with respect to Lebesgue, as this is the general case

of many models of non-equilibrium, forced and dissipative

systems (Ruelle, 1989). In this work, we have extended the

results presented in Faranda et al. (2011) to this class of dy-

namical systems using the BM approach. Note that in

another paper, we have shown that using the POT method,

which leads to the GPD family of distributions rather than

to the GEV’s, the difference between regular and mixing sys-

tems is immaterial (Lucarini et al., 2012).

In this paper, we have showed that it is indeed possible to

formulate an EVT for this kind of systems when special

observable functions of the distance between the iterated orbit

and the initial condition are chosen. The three classical

extreme value types for the limit distribution laws for maxima

and the GEV distributions are absolutely continuous functions.

We show that GEV models can be used to study the distribu-

tion of maxima, whose empirical cdf, in general, is singular

continuous and has plateaux just in correspondence of the

holes of the Cantor set, whenever this one is featured in the

invariant set. This could be easily explained by the very nature

of our observables which measure the distance with respect to

a given point: there are distances which are not allowed when

such distances are computed from points in the holes. It should

be stressed that such a cumulative distribution function, which

is a sort of devil staircase and therefore a singular continuous

function, in any way could converge to a GEV distribution.

The strength of our approach relies in the possibility of

inferring the values of the normalising constants needed for

the EVT theory and the qualitative properties of the distribu-

tion (e.g., whether it belongs to the type 1, type 2, or type 3

family) by a GEV fitting procedure on the unnormalized

data. This method, whose strength has been emphasized in

Faranda et al. (2011a) in the case of a.c.i.m., works also for

singular measures, provided we keep in mind that in this

case the fitting procedure contains a sort of extrapolation

needed to smooth out the gaps of the Cantor sets.

The observables studied in the context of EVT for dy-

namical systems are related to distances between the orbit and

its initial condition, where such condition must be generic. It

is interesting to observe that on Cantor sets the notion of

generic point is not so obvious as for smooth manifolds which

support Lebesgue measure: in this latter case, in fact, one

could suppose that each point accessible for numerical itera-

tions is generic with respect to an invariant measure which is

in turn absolutely continuous. This notion of genericity is

restored on a singular attractor by considering the SRB mea-

sure. In the case of iterated function systems, where uncount-

ably many measures are available, we have a precise manner

to identify them and this will be reflected in the different

dimensions produced by the numerical computation of the pa-

rameters of the GEV. The possibility to discriminate among

different singular measures having all the same topological

support is another indication of the validity and of the effi-

ciency of our approach.

We have also shown that the parameters of the distribu-

tion are intimately related to the information dimension of

the invariant set. Actually, there are several independent

ways to deduce the information dimension of the attractor

from the estimates of the GEV parameters. We have tested

our conjecture with numerical experiments on different low-

dimensional maps such as: the Cantor ternary set, the Sier-

pinskij triangle, IFS with non-uniform weights, and non-

trivial strange attractors such as those pertaining to the

Baker, Lozi, and Hènon maps. The estimates of D are in

agreement with the theoretical values in all cases considered.

It is interesting to observe that the algorithm described with

the selection of maxima acts like a magnifying glass on the

neighborhood of the initial condition. In this way, we have

both a powerful tool to study and highlight the fine structure

of the attractor (in particular deriving the local dimension

DðfÞ around a generic point f), but, on the other hand, we

can obtain global properties averaging on different initial

conditions. Therefore, the extremes can be thought of as geo-

metric indicators of the local properties of the attractor. Even

if we are dealing with very simple maps for which many

properties are known, it is clear from numerical experiments

that it is not so obvious to observe a good convergence to the

GEV distribution. Even if we are able to compute very large

statistics and the results are consistent with theoretical val-

ues, the error range is wide if compared to the experiment

for maps with a.c.i.m. measures that we have carried out in

Faranda et al. (2011a). This should be taken into considera-

tion each time this statistics is applied in a predictive way to

systems, whose attractor has multifractal properties. To com-

pute the errors, we have taken into account the uncertainty

on the fits and the uncertainty on the ensemble.

In the case of an experimental temporal series, for which

the underlying dynamics is unknown, a classical problem is

to obtain the dimensionality of the attractor of the dynamical

systems which generated it. This can be achieved through

the so called Ruelle-Takens delay embedding where, starting

from the time series of an observable O(n), we can construct

the multivariate vectors in a P-dimensional space

/ðnÞ ¼ ½OðnÞ;Oðnþ 1Þ; :::;Oðnþ P� 1Þ�

and study the geometrical properties using the recurrence

qualification analysis (Marwan et al., 2007). The minimum
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value of P needed to reconstruct the actual dimension d� is

given by P ¼ ½2d�� þ 2. Using the procedure described in

this paper, we could increase P until the value of the dimen-

sionality of the reconstructed system stabilizes. In this way,

we could get d�. Otherwise, by starting with a large embed-

ding dimension P, we could directly determine d�, thus

deducing the minimum value of P to be used in the recur-

rence quantification analysis. We will test this strategy in a

future publication.

The theory and the algorithm presented in this work and

in Faranda et al. (2011a) allow to study in detail the recur-

rence of an orbit around a point: this is due to the particular

choice of the observables that require to compute distances

between initial and future states of the system. Understand-

ing the behavior of a dynamical system in a neighborhood of

a particular initial condition is of great interest in many

applications. As an example, in weather forecast and climate,

it is important to study the recurrence of patterns (the so

called analogues). In principle, applying the extreme value

statistics to the output of meteorological models, will make

it possible to infer dynamical properties related to the closest

return towards a certain weather pattern. EVT will give in-

formation not only about the probability distribution of the

extrema but also about the scaling of the measure of a ball

centered on the chosen initial condition providing an insight

to the dynamical structure of the attractor.
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Abstract The main results of the extreme value theory developed for the investigation of
the observables of dynamical systems rely, up to now, on the block maxima approach. In this
framework, extremes are identified with the block maxima of the time series of the chosen
observable, in the limit of infinitely long blocks. It has been proved that, assuming suitable
mixing conditions for the underlying dynamical systems, the extremes of a specific class
of observables are distributed according to the so called Generalised Extreme Value (GEV)
distribution. Direct calculations show that in the case of quasi-periodic dynamics the block
maxima are not distributed according to the GEV distribution. In this paper we show that
considering the exceedances over a given threshold instead of the block-maxima approach
it is possible to obtain a Generalised Pareto Distribution also for extremes computed in sys-
tems which do not satisfy mixing conditions. Requiring that the invariant measure locally
scales with a well defined exponent—the local dimension—, we show that the limiting dis-
tribution for the exceedances of the observables previously studied with the block maxima
approach is a Generalised Pareto distribution where the parameters depend only on the local
dimensions and the values of the threshold but not on the number of observations considered.
We also provide connections with the results obtained with the block maxima approach. In
order to provide further support to our findings, we present the results of numerical experi-
ments carried out considering the well-known Chirikov standard map.

1 Introduction

Extreme value theory was originally introduced by Fisher and Tippett [1] and formalised by
Gnedenko [2], who showed that the distribution of the maxima of a sample of independent
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identically distributed (i.i.d.) stochastic variables converges under very general conditions to
a member of the so-called Generalised Extreme Value (GEV) distribution. The attention of
the scientific community to the problem of understanding extreme value theory is growing,
as this theory is crucial in a wide class of applications for defining risk factors such as those
related to instabilities in the financial markets and to natural hazards related to seismic, cli-
matic and hydrological extreme events. Even if the probability of extreme events decreases
with their magnitude, the damage that they may bring increases rapidly with the magnitude
as does the cost of protection against them. From a theoretical point of view, extreme values
of observables are related to large fluctuations of the corresponding underlying system. An
extensive account of recent results and relevant applications is given in [3].

The traditional block-maxima (BM) approach for the statistical inference of extremes is
related to the original results by Gnedenko [2]: we partition the experimental time series
into bins of fixed length, we extract the maximum of each bin, and fit the selected data to
the GEV distribution family using methods such as maximum likelihood estimation (MLE)
or L-moments. See [4] for a detailed account of this methodology. The selection of just
one maximum in a fixed period may lead to the loss of relevant information on the large
fluctuations of the system, especially when there are many large values in a given period
[5]. This problem can be taken care of by considering several of the largest order statistics
instead of just the largest one. For such maxima distributions we expect convergence to the
Generalised Pareto Distribution (GPD), which was adopted by Pickands III [6] and Balkema
and De Haan [7] in order to model the exceedances over a given threshold. This is usually
referred to as the peak over threshold (POT) approach. Also this approach has been widely
adopted for studying empirically natural extreme phenomena such as those related to waves,
winds, temperatures, earthquakes and floods [8–10].

Both the BM and POT approaches were originally designed to study extreme values for
series of i.i.d. variables. In this case it is well known that a strong connection exists between
the two methodologies, as we have that if block maxima obey the GEV distribution, then
exceedances over some high threshold will have an associated GPD. Moreover, the shape
parameter of the GPD and that of the corresponding GEV distribution are identical [11].
As a result, several practical methods (e.g. Hill’s and Pickands’ estimators) developed for
estimating the shape parameter of the GEV distribution of the extremes of a given time series
are actually based upon comparing the GPD fits at various thresholds [12, 13]. In practical
terms, it appears that, while the BM and POT approaches provide equivalent information in
the asymptotic limit of infinitely long time series, the GPD statistics is more robust when
realistic, finite time series are considered (see, e.g., [14]).

In recent years, especially under the influence of the rapid development of numerical
modelling in the geophysical sciences and of its applications for the investigation of the
socio-economic impacts of extreme events, it has become of great relevance to understand
whether it is possible to apply the extreme value theory on the time series of observables of
deterministic dynamical systems. Several papers have addressed this issue at a general level.
A first important result is that when a dynamical system has a regular (periodic of quasi-
periodic) behaviour, we do not expect, in general, to find convergence to GEV distributions
for the extremes of any observable. These results have been presented by Lacroix [15].
Numerical experiments on climate models of various degrees of complexity have shown
that the speed of convergence (if any) of the statistical properties of the extremes definitely
depends on the chosen climatic variable of interest [4, 16–18].

A mathematical approach to extreme value theory in dynamical systems was proposed in
the landmark paper by Collet [19], which has paved the way for the recent results obtained
in the last few years [20–23]. The starting point of all of these investigations has been to as-
sociate to the stationary stochastic process given by the dynamical system, a new stationary
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independent sequence which obeys one of the classical three extreme value laws introduced
by Gnedenko [2]. The assumptions which are necessary to observe a GEV distribution in
dynamical systems rely on the choice of suitable observables (specific functions of the dis-
tance between the orbit and the initial condition, chosen to be on the attractor) and the
fulfillment of particular mixing conditions that guarantee the independence of subsequent
maxima. Recent studies have shown that the resulting parameters of the GEV distributions
can be expressed as simple functions of the local (around the initial condition) dimension of
the attractor, and numerical investigations have clarified the conditions under which conver-
gence to the theoretical GEV distributions can be satisfactorily achieved when considering
finite time series [24–26].

In this paper, we wish to attempt to present a new angle on the extreme value theory for
dynamical systems by using the POT rather than the BM approach. We choose the same class
of observables presented in [20–26] and show that, assuming that locally the measure scales
with a local (or point-wise) dimension [27], it is possible to obtain by direct integration a
GPD for the threshold exceedances when considering a generic orbit of a dynamical system.
The parameters will depend only on the choice of the threshold and, more importantly, on
the local dimension, regardless of the nature of the flow, be it chaotic or regular. We will also
discuss why in our set-up the POT approach is more efficient than the BM for estimating
extreme value properties for a finite time series. Note that Castillo and Hadi [5] had already
pointed out that in the case of periodic or quasi-periodic motion the BM approach to the
evaluation of the extreme value statistics is inefficient, basically because in the limit of
very large blocks, we tend to observe always the same maximum in all bins. To support
our analytical results we provide numerical experiments that we carry out considering the
classic Chirikov standard map [28].

This paper is organised as follows. In Sect. 2 we recapitulate the extreme value theory
for dynamical systems obtained using the BM approach. In Sect. 3 we present our general
results obtained using the POT approach. In Sect. 4 we provide support to our investigation
by examining the results of the numerical simulations performed on the standard map. In
Sect. 5 we present our final remarks and future scientific perspectives.

2 Block Maxima Approach: Generalised Extreme Value Distributions in Dynamical
Systems

Gnedenko [2] studied the convergence of maxima of i.i.d. variables X0,X1, . . . ,Xm−1 with
cumulative distribution function (cdf) F(x) = P {Mm ≤ x} where

Mm = max{X0, . . . ,Xm−1}. (1)

Under general hypothesis on the nature of the parent distribution of data, Gnedenko [2]
showed that the asymptotic distribution of maxima belongs to a single family of generalised
distribution called GEV distribution whose cdf can be written as:

FGEV(x;μ,α,κ) = e−t (x) (2)

where

t (x) =
{

(1 + κ(
x−μ

α
))−1/κ if κ �= 0,

e−(x−μ)/α if κ = 0.
(3)
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This expression holds for 1 + κ(x − μ)/α > 0, where κ ∈ R is the shape parameter (also
called the tail index), μ ∈ R is the location parameter and α > 0 the scale parameter. In
Faranda et al. [25] we have shown that the parameters μ and α are such that bm → μ and
am → 1/α, for m large enough, where bm and am are the normalising sequences described
in Freitas et al. [21]. When κ → 0, the distribution corresponds to a Gumbel type (Type 1
distribution). When the index is positive, it corresponds to a Fréchet (Type 2 distribution);
when the index is negative, it corresponds to a Weibull (Type 3 distribution).

Let us consider a dynamical system (�,B, ν, f ), where � is the invariant set in some
manifold, usually Rd , B is the Borel σ -algebra, f : � → � is a measurable map and ν an
f -invariant Borel measure. Among the invariant measures that a dynamical systems possess
we will always refer to the natural (invariant) measure which can be thought as the one
really accessible when numerical experiments are performed. In order to adapt the extreme
value theory to dynamical systems, following [20–23], we consider the stationary stochastic
process X0,X1, . . . given by:

Xm(x) = g
(
dist

(
f m(x), ζ

)) ∀m ∈ N (4)

where ‘dist’ is a distance in the ambient space �, ζ is a given point and g is an observable
function. The partial maximum in the BM approach is defined as in Eq. (1). Defining r =
dist(x, ζ ), we consider the three classes of observables gi, i = 1,2,3:

g1(r) = − log(r), (5)

g2(r) = r−β, (6)

g3(r) = C − rβ (7)

where C is a constant and β > 0 ∈ R. Using the observable gi we obtain convergence of
the statistics of the block maxima of their time series obtained by evolving the dynamical
system to the Type i distribution if one can prove two sufficient conditions called D2 and
D′, which imply a type of independence of the series of extremes resulting from the mixing
of the underlying dynamics [20, 29]. The conditions cannot be simply related to the usual
concepts of strong or weak mixing, but are indeed not obeyed by observables of systems
featuring a regular dynamics.

A connection also exists between the existence of extreme value laws and the statistics of
first return and hitting times, which provide information on how fast the point starting from
the initial condition ζ comes back to a neighbourhood of ζ , as shown by Freitas et al. [21]
and Freitas et al. [30]. In particular, they proved that for dynamical systems possessing an
invariant measure ν, the existence of an exponential hitting time statistics on balls around
ν-almost any point ζ implies the existence of extreme value laws for one of the observables
of type gi, i = 1,2,3, described above. The converse is also true, namely if we have an
extreme value law which applies to the observables of type gi, i = 1,2,3, achieving a max-
imum at ζ , then we have exponential hitting time statistics to balls with center ζ . Recently
these results have been generalised to local returns around balls centered at periodic points
[22] by requiring conditions reminiscent of D2 and D′, but taking into account the fact that
some trajectories stay close to the periodic trajectory.

In Faranda et al. [24–26] we analysed both from an analytical and numerical point of
view the extreme value distribution in a wide class of low dimensional maps. We divided
the time series of length k of the gi observables into n bins each containing the same number
m of observations, and selected the maximum (or the minimum) value in each of them [31].
We showed that at leading order (the formulas are asymptotically correct for m,k → ∞),
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the GEV parameters in mixing maps can be written in terms of m (or equivalently n) and
the local dimension of the attractor D. We have:

• g1-type observable:

α = 1

D
, μ ∼ 1

D
ln(k/n), κ = 0; (8)

• g2-type observable:

α ∼ n− β
D , μ ∼ n− β

D , κ = β

D
; (9)

• g3-type observable:

α ∼ n
β
D , μ = C, κ = − β

D
. (10)

Moreover, we clearly showed that other kinds of distributions not belonging to the GEV
family are observed for quasi-periodic and periodic motions.

3 The Peak over Threshold Approach: Generalised Pareto Distributions in
Dynamical Systems

We define an exceedance as z = X−T , which measures by how much X exceeds the thresh-
old T . As discussed above, under the same conditions under which the block maxima of the
i.i.d. stochastic variables X obey the GEV statistics, the exceedances z are asymptotically
distributed according to the Generalised Pareto Distribution [11]:

FGPD(z; ξ, σ ) =
{

1 − (1 + ξz

σ
)−1/ξ for ξ �= 0,

1 − exp(− z
σ
) for ξ = 0,

(11)

where the range of z is 0 ≤ z ≤ −σ/ξ if ξ < 0 and 0 ≤ z < ∞ if ξ ≥ 0. We consider
the same set up described in the previous section and take into account the observables
g = g(dist(x, ζ )) = g(r), such that g achieves a maximum gmax for r = 0 (finite or infi-
nite) and is strictly decreasing bijection in a neighbourhood of 0. We study the exceedance
above a threshold T defined as T = g(r∗). We obtain an exceedance every time the distance
between the orbit of the dynamical system and ζ is smaller than r∗. Therefore, we define
the exceedances z = g(r) − T . By Bayes’ theorem, we have that P (r < g−1(z + T )|r <

g−1(T )) = P (r < g−1(z + T ))/P (r < g−1(T )). In terms of ν, an invariant measure of the
system, we have that the probability Hg,T (z) of observing an exceedance of at least z given
that an exceedance occurs is given by:

Hg,T (z) ≡ ν(Bg−1(z+T )(ζ ))

ν(Bg−1(T )(ζ ))
. (12)

Obviously, the value of the previous expression is 1 if z = 0. In agreement with the condi-
tions given on g, the expression contained in Eq. (12) monotonically decreases with z and
vanishes when the radius is given by g−1(gmax). Note that the corresponding cdf is given by
Fg,T (z) = 1 − Hg,T (z). In order to address the problem of extremes, we have to consider
small radii. At this regard we will invoke, and assume, the existence of the following limit

lim
r→0

logν(Br(ζ ))

log r
= D(ζ), for ζ chosen ν-a.e., (13)
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where D(ζ) is the local dimension of the attractor [27]. Whenever this limit holds for
ν-almost any choice of the point ζ , the corresponding limit is proved to be equal to the
Hausdorff dimension of the measure, defined as the infimum of the Hausdorff dimension
of the measurable sets of full ν measure, see [32]. This limit is also called the information
dimension in [33]. It is interesting to notice that the existence of the previous limit ν-almost
everywhere could be proved for a large class of dynamical systems, especially hyperbolic,
and it could be expressed in terms of suitable ratios of the entropies and of the Lyapunov
exponents of the measure, see again [32], for the two dimensional case and [34, 35], for the
multidimensional case. Therefore, we rewrite the following expression for the tail probabil-
ity of exceedance:

Hg,T (z) ∼
(

g−1(z + T )

g−1(T )

)D

(14)

where we have dropped the ζ dependence of D. By substituting g with specific observable
we are considering, we obtain explicitly the corresponding extreme value distribution law.

By choosing an observable of the form given by either g1, g2, or g3, we derive as extreme
value distribution law one member of the Generalised Pareto Distribution family given in
Eq. (11). Results are detailed below:

• g1-type observable:

σ = 1

D
, ξ = 0; (15)

• g2-type observable:

σ = Tβ

D
, ξ = β

D
; (16)

• g3-type observable:

σ = (C − T )β

D
, ξ = − β

D
. (17)

The previous expressions show that there is a simple algebraic link between the parameters
of the GPD and the local dimension of the attractor around the point ζ . This implies that
the statistics of extremes provides us with a new algorithmic tool for estimating the local
fine structure of the attractor. These results show that it is possible to derive general proper-
ties for the extreme values of the observables g1, g2, or g3 independently on the qualitative
properties of the underlying dynamics, be the system periodic, quasi-periodic, or chaotic.
Therefore, by taking the POT instead of the BM approach, we are able to overcome the mix-
ing conditions (or the requirements on the properties of the hitting time statistics) proposed
in [19–23]. In [24–26] we had proposed that the link between the extreme value theory and
the local properties of the invariant measure in the vicinity of the point ζ can be explained by
the fact that selecting the extremes of the observables g1, g2, or g3 amounts to performing a
zoom around ζ . The detailed analysis of the extremes using the BM approach allows to un-
derstand whether the underlying dynamics is mixing or not. Instead, the POT approach does
not provide such dynamical information, but it rather gives a very efficient way to estimate
the local dimension in all cases, including for systems that do not satisfy mixing conditions.
The reason of this is clear if we observe that in the POT approach the cdf depends only on
the properties of the natural measure in the neighbourhood of ζ (technically, on the proper-
ties of X0 only) and on the threshold, whereas in the BM approach the cdf depends on the
time evolution of the system as it results by Eq. (1). This restricts the class of systems whose
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maxima converge to a GEV distribution to those satisfying the mixing conditions detailed
in Freitas et al. [21].

3.1 Relationship Between the BM and POT Approaches

The relation between GEV and GPD parameters have been already discussed in literature in
case of i.i.d. variables [13, 14, 36, 37]. Coles [13] and Katz et al. [36] have proven that the
cdf of the GEV defined as FGEV(z;μ,α,κ) can be asymptotically written as that of GPD
under a high enough threshold as follows:

FGEV(z;μ,α,κ) ∼ FGPD(z;T ,σ, ξ)

= 1 −
[

1 − ξ

(
z − T

σ

)]1/ξ

(18)

where ξ = κ , σ = α + ξ(T − μ), and T = μ + σ
ξ
(λ−ξ − 1), with ln(α) = ln(σ ) + ξ ln(λ).

In the present case, we have to compare Eqs. (8)–(10) for GEV with Eqs. (15)–(17) for
GPD, keeping in mind that the GEV results hold only under the mixing conditions discussed
before. While it is immediate to check that κ = ξ , the other relationships are valid in the limit
of large n, as expected.

4 Numerical Investigation

The standard map [38] is an area-preserving chaotic map defined on the bidimensional torus,
and it is one of the most widely-studied examples of dynamical chaos in physics. The cor-
responding mechanical system is usually called a kicked rotator. It is defined as:{

yt+1 = yt − K
2π

sin(2πxt ) mod 1,

xt+1 = xt + yt + 1 mod 1.
(19)

The dynamics of the map given in Eq. (19) can be regular or chaotic. For K  1 the mo-
tion follows quasi periodic orbits for all initial conditions, whereas if K � 1 the motion
turns to be chaotic and irregular. An interesting behaviour is achieved when K ∼ 1: in this
case we have coexistence of regular and chaotic motions depending on the chosen initial
conditions [39].

We perform for various values of K ranging from K = 10−4 up to K = 102 an ensemble
of 200 simulations, each characterised by a different initial condition ζ randomly taken
on the bidimensional torus, and we compute for each orbit the observables gi , i = 1,2,3.
Choosing as point ζ exactly the initial condition ensures that the orbit is really passing
through the point ζ which is desirable for quasi-periodic and periodic motions. In each
case, the map is iterated until obtaining a statistics consisting 104 exceedances, where the
threshold T = 7 · 10−3 and β = 3. We have checked that all the results are indeed robust
with respect to the choice of the threshold and of the value of β . For each orbit, we fit the
statistics of the 104 exceedances values of the observables to a GPD distribution, using a
MLE estimation [5] implemented in the MATLAB© function gpdfit [40]. The results are
shown in Fig. 1 for the inferred values of ξ and σ and should be compared with Eqs. (15)–
(17). When K  1, we obtain that the estimates of ξ and σ are compatible with a dimension
D = 1 for all the initial conditions: we have that the ensemble spread is negligible. Similarly,
for K � 1, the estimates for ξ and σ agree remarkably well with having a local dimension
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Fig. 1 GPD parameters for the observables gi , i = 1,2,3, computed over orbits of the standard map, for
various values of the constant K . For each value of K , results refer to an ensemble of 200 randomly chosen
initial conditions ζ . The notation p(gi) indicates the parameter p computed using the extreme value statistics
of the observable gi . (a) ξ(g1) VS K , (b) ξ(g2) VS K , (c) ξ(g3) VS K , (d) σ(g1) VS K , (e) σ(g2) VS K ,
(f) σ(g3) VS K . Black solid lines: ensemble-average value. Black dotted lines: ensemble spread evaluated as
one standard deviation of the ensemble. Green lines: theoretical values for regular orbits. Red lines: theoretical
values for chaotic orbits (Color figure online)

D = 2 for all the initial conditions. In the transition regime, which occurs for K � 1, the
ensemble spread is much higher, because the scaling properties of the measure is different
among the various initial conditions. As expected, the ensemble averages of the parameters
change monotonically from the value pertaining to the regular regime to that pertaining to
the chaotic regime with increasing values of K . Basically, this measures the fact that the so-
called regular islands shrink with K . Note that in the case of the observable g1, the estimate
of the ξ is robust in all regimes, even if, as expected, in the transition between low and
high values of K the ensemble spread is larger. These results can also be compared with
the analysis presented in Faranda et al. [24], where we used the BM approach. In that case,
the values obtained in the regular regions were inconsistent with the GEV findings, the very
reason being that the dynamics was indeed not mixing. Here, it is clear that the statistics can
be computed in all cases, and we have a powerful method for discriminating regular from
chaotic behaviours through the analysis of the inferred local dimension.
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5 Conclusions

The growing attention of the scientific community in understanding the behaviour of ex-
treme values have led, in the recent past, to the development of an extreme value theory for
dynamical systems. In this framework, it has been shown that the statistics of extreme value
can be linked to the statistics of return in a neighbourhood of a certain initial conditions
by choosing special observables that depend on the distance between the iterated trajectory
and some fixed point of the phase space. Until now, rigorous results have been obtained as-
suming the existence of an invariant measure for the dynamical systems and the fulfillment
of independence requirement on the series of maxima achieved by imposing D′ and D2

mixing conditions, or, alternatively, assuming an exponential hitting time statistics [20–23].
The parameters of the GEV distribution obtained choosing as observables the function gi ,
i = 1,2,3, defined above depend on the local dimension of the attractor D and numerical
algorithms to perform statistical inference can be set up for mixing systems having both
absolutely continuous and singular invariant measures [25, 26, 41, 42].

Taking a complementary point of view, in this paper we have studied the statistics of ex-
ceedances for the same class of observables and derived the limiting distributions assuming
only the existence of an invariant measure and the possibility to define a local dimension D

around the point ζ of interest. To prove that the limiting distribution is a GPD we did not use
any further conditions. In particular no assumptions on the mixing nature of the maxima se-
quence have been made. This means that a GPD limiting distribution holds for the statistics
of exceedance also for non-mixing dynamical systems and it depends only on the threshold
value and on the local dimension once we choose the observables gi , i = 1,2,3, but not on
the number of observations. Other functions can converge to the limiting behaviour of the
GPD family if they asymptotically behave like the gi ’s (compare the discussion in [21]).
Nonetheless, this requires, analytically, to perform separately the limit for the threshold T

going to gmax and that for the radius of the ball going to zero. In practical terms, this requires,
potentially, much stricter selection criteria for the exceedances when finite time series are
considered.

We note that, as the parameter ξ is inversely proportional to D, one can expect that each
time we analyse systems of intermediate or high dimensionality, the distributions for g2 and
g3 observables will be virtually indistinguishable from what obtained considering the g1

observable: the ξ = 0 is in this sense an attracting member of the GPD family. This may
also explain, at least qualitatively, why the Gumbel (k = 0 for the GEV family) distribution
is so efficient in describing the extremes of a large variety of natural phenomena [3].

The universality of this approach allows to resolve the debate on whether there exists or
not a general way to obtain information about extreme values for quasi-periodic motions
where the GEV limit does not apply [15]. This is due to the fact that considering several of
the largest order statistics instead of just the largest one we can study orbits where numerous
exceedance are observed in a given block, as it happens for systems with periodic or quasi-
periodic behaviours. As an example, one may consider a system with multiple commen-
surable frequencies: choosing a block length larger than or equal to the smallest common
period, we select always the same value for any considered observable. On the other hand
for mixing maps we find, as expected, an asymptotic equivalence of the results obtained via
the BM and via the POT approach.

Whereas the BM approach allows to reconstruct dynamical features of the dynamical
systems discriminating between chaotic and regular behaviour, the POT approach provides a
way to reconstruct local properties of invariant measures for any kind of dynamical systems:
once a threshold is chosen and a suitable exceedance statistics is recorded, we can compute
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the local dimension for different initial conditions taken on the attractor. This is true also
in the opposite direction: if the knowledge of the exact value for the local dimension is
available, once we chose a small enough radius (threshold), it is possible to compute a priori
the properties of extremes without doing any further computations. In fact, the expression for
the parameters (15)–(17) do not contain any dependence on the properties of the dynamics
except the local dimension.

Besides the analytical results, we have proved that POT approach is easily accessible for
numerical investigations. The algorithm used to perform numerical simulations is versatile
and computationally accessible: unlike the BM algorithm that requires a very high number
of iterations to obtain unbiased statistics, using the POT approach we can fix a priori a value
for the threshold and the number of maxima necessary to construct the statistics. With the
simulations carried out on the standard maps, we obtain meaningful results with a much
smaller statistics with respect to what observed when considering the BM approach.

We hope that the present contribution may provide a tool that is not only useful for
the analysis of extreme events itself, but also for characterising the dynamical structure of
attractors by giving a robust way to compute the local dimensions, with the new possibility
of embracing also the case of quasi-periodic motions.

Future investigations will include the systematic study of the impact on the extreme value
statistics of adding stochastic noise to regular and chaotic deterministic dynamical systems,
and the use of the Ruelle response theory [43, 44] to study the modulation of the statistics of
extremes due to changes in the internal or external parameters of the system, especially in
view of potentially relevant applications in geophysics such as in the case of climate studies
[45, 46].
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EXTREME VALUE STATISTICS FOR DYNAMICAL SYSTEMS WITH
NOISE

DAVIDE FARANDA, JORGE MILHAZES FREITAS, VALERIO LUCARINI, GIORGIO TURCHETTI,
AND SANDRO VAIENTI

Abstract. We study the distribution of maxima (Extreme Value Statistics) for sequences
of observables computed along orbits generated by random transformations. The underly-
ing, deterministic, dynamical system can be regular or chaotic. In the former case, we will
show that by perturbing rational or irrational rotations with additive noise, an extreme
value law will appear, regardless of the intensity of the noise, while unperturbed rotations
do not admit such limiting distributions. In the case of deterministic chaotic dynamics,
we will consider observables specially designed to study the recurrence properties in the
neighbourhood of periodic points. The exponential limiting law for the distribution of
maxima is therefore modified by the presence of the extremal index, a positive parameter
not larger than one, whose inverse gives the average size of the clusters of extreme events.
The theory predicts that such a parameter is unitary when the system is perturbed ran-
domly. We perform sophisticated numerical tests to assess how strong is the impact of
noise level, when finite time series are considered. We find agreement with the asymptotic
theoretical results but also non-trivial behaviour in the finite range. Finally, we focus on
a prototypical dissipative system such as the Hénon map with standard values for the
parameters. In a previous paper, we showed that it is possible to relate the parameters
describing the type of the limiting extreme value laws with the local dimension of the
attractor of the system. Here, we find that while it is well known that adding an arbitrary
weak noise results into smoothing the invariant measure, it is far from trivial to detect
such an effect. Our results suggest that in many applications where finite datasets can be
produced or analysed one must be careful in assuming that the smoothing nature of noise
prevails over the underlying deterministic dynamics.
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2 D. FARANDA, J.M. FREITAS, V. LUCARINI, G. TURCHETTI, AND SANDRO VAIENTI

1. Introduction

The main purpose of this paper is to study the extremal behaviour of randomly perturbed
dynamical systems. By extremal behaviour we mean its statistical performance regarding
the existence of Extreme Value Laws (EVLs), or in other words, the existence of distribu-
tional limits for the partial maxima of stochastic processes arising from such systems. In
many aspects of natural and social sciences and engineering, the statistical properties of
the extremes of a system are usually relevant tied with actual risk assessment. This is an
element of why the theory of extremes has received such a great deal of attention over the
years. The motivation for considering randomly perturbed systems follows from the fact
that, very often, dynamical systems are used to model human activities or natural phenom-
ena and the fact that errors made by observations usually take a random character which
can be well described by the random perturbation formalism. On the other hand, random
noise is often added in numerical modelling in order to represent the lack of knowledge on
(or practical impossibility of representing) some of the processes taking place in the sys-
tem of interest, often characterised by small spatial and/or temporal scales, whose explicit
representation is virtually impossible. See [31] for a comprehensive discussion on this issue
in a geophysical setting. Also, noise is often considered as a “good” component to add
when performing numerical simulations, because of its ability to smoothen the invariant
measure and basically remove unphysical solutions [28].

Very recently, in [2], the authors proved the first results (up to our knowledge) regarding
the existence of EVLs for piecewise expanding systems which are randomly perturbed by
additive noise. They observed that adding noise has a “smoothing” effect in terms of elim-
inating all possible clustering of exceedances. The distributional properties of the maxima
of stationary sequences is driven by the appearance of exceedances of high thresholds. For
independent and identically distributed (i.i.d.) processes, the exceedances appear scattered
through the time line. For dependent processes this may not necessarily hold and clustering
of exceedances may occur. The Extremal Index (EI), which we will denote by 0 ≤ θ ≤ 1, is
a parameter that quantifies the amount of clustering. No clustering means that θ = 1 and
strong clustering means that θ is close to 0. For deterministic hyperbolic systems, it has
been shown, in [17, 12, 19, 2], that a dichotomy holds: either an EI 0 < θ < 1 is present
at the (repelling) periodic points, or the EI is always 1 at every other point. We remark
that Hirata [18] had already observed the two types of behaviour but not the dichotomy.
Coming back to the “smoothing” effect of adding noise, to be more precise, in [2], the
authors show that, for the randomly perturbed systems considered, the EI is always 1.
The main tool used there was decay of correlations against L1 observables, which held for
the unperturbed and perturbed systems considered. We remark that this property implies
an excellent mixing behaviour of both systems.

One of the main achievements of this paper is the extension of the results in [2], by
showing that adding noise still has a smoothing effect when the unperturbed system is not
mixing at all, or even worse: when the system is actually periodic. To be more precise,
for unperturbed systems, we consider rotations on the circle (irrational or not) and show
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EXTREME VALUE STATISTICS FOR DYNAMICAL SYSTEMS WITH NOISE 3

that by adding absolutely continuous noise with respect to the Haar measure, we can
always prove the existence of EVLs with the EI being 1 everywhere. The analysis of these
systems will be made using Fourier transforms to compute decay of correlations of specific
observables. Observe that for the original unperturbed systems the lack of mixing does
not allow to prove EVLs in the usual sense. Hence, here, we have a more drastic transition
which motivates the question of whether it is possible to distinguish numerically the real
nature of the underlying (unperturbed) systems when we look at the extremal statistics of
the randomly perturbed data.

Another main goal of this paper is to support the analytical discussion with numerical
simulations devised to show how, for finite samples, the extremal behaviour may or not
follow the asymptotic results. This has obvious relevance in terms of applications. One
of the key aspects surfacing from the numerical analysis of extremes that we carried out
is that the estimation of some dynamical and geometrical properties of the underlying
physical measure strongly depends on a combination of the intensity of the noise and the
length of the data sample.

There are two main experimental issues deriving from stochastic perturbations. The first
concerns with the general claim that the addition of noise has a “smoothing” effect over the
physical measure and enhances the chaoticity of the underlying deterministic dynamical
systems. As we have mentioned, we expect to see this in terms of extremal behaviour, at
least asymptotically. This claim will be weighed up against the simulations showing that
we may need to integrate the system for a very long time to observe any changes in the
measure structure. Moreover, for higher dimensional systems featuring stable and unstable
manifolds, the stochastic perturbations should be directed on the stable direction so that
the “smoothing” effect of the measure is more effective.

The second issue is related to the level of noise needed to modify the deterministic prop-
erties and, in this case in particular, the sensitivity of the extremal type behaviour to the
the noise level.

To discuss this latter issue we will use the fact that the numerical round off is comparable
to a random noise on the last precision digit [20]. This observation will allow us to claim
that, for systems featuring periodic or quasi periodic motions (as the rotations on the
circle), such a noise level is not sufficient for producing detectable changes regarding the
observed extremal behaviour.

On the other hand, the analysis for generic points of chaotic systems, such as the full shift
on three symbols, will show that the intrinsic chaotic behaviour of the map dims the effect
of the noise and makes the perturbed system indistinguishable from a deterministic one.
If, instead, the analysis is carried out at periodic points, the effect of the perturbation
will be easily noticeable in the disruption of periodicity and its consequent clustering of
exceedances, which can be detected by estimation of the EI.

The disruption of periodicity will be further analysed through simulations on the quadratic
map. We will show, for finite sample behaviour, how the EI depends on the intensity of
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the noise. We will conclude the analysis suggesting a way to analyse the disruption of
periodicity in general systems where the nature of the noise may be unknown.

We will also present some numerical simulations on the Hénon map, which features a sta-
ble and an unstable directions, homoclinic tangencies and the coexistence of two different
attractors. In a previous paper we have shown that it is possible to relate the EVL pa-
rameters to the local dimension of the attractor of a system possessing a singular invariant
physical measure [29]. This latter experiment will be the gateway to go beyond the maps
presented in this paper and to suggest a general procedure to analyse issues related to
the stochastic perturbations of dynamical systems in order to frame the analysis carried
out here in a more general setup. In fact, we find that it is far from trivial to detect the
smoothing effect of noise on the invariant measure when finite time series are considered.

We would like to remark that such considerations have great relevance in the context of
Axiom A systems and having statistical mechanical applications in mind when addressing
the problem of the applicability of the fluctuation-dissipation theorem (FDT). While in the
deterministic case the non-smooth nature of the measure along the stable manifold makes
it impossible to apply straightforwardly the FDT (see discussion in [33, 34, 35, 27, 30]), the
addition of even a very small amount of random forcing in principle “cures” the singularities
of the measure and makes sure that in principle the FDT can be used to related forced
and free motions (see [1, 21]). Our results suggest that one must be careful in assuming
that such a desirable effect is really detectable when finite datasets are analysed.

2. Extreme values, the system and the perturbation

Our main purpose is to study the extremal behaviour of randomly perturbed dynamical
systems. This will be done by analysing the partial maxima of stationary stochastic pro-
cesses arising from such systems. We will start by presenting the main concepts regarding
the extreme values on a general framework of stationary stochastic processes. Then we
will turn to the construction of stationary stochastic processes deriving from dynamical
systems and their random perturbations by additive noise, which will be the object of our
study.

2.1. Extreme values – definitions and concepts. Let X0, X1, . . . be a stationary sto-
chastic process. We denote by F the cumulative distribution function (d.f.) of X0, i.e.,
F (x) = P(X0 ≤ x). Given any d.f. F , let F̄ = 1− F and uF denote the right endpoint of
the d.f. F , i.e., uF = sup{x : F (x) < 1}. We say we have an exceedance of the threshold
u < uF whenever

U(u) := {X0 > u} (2.1)

occurs.

We define a new sequence of random variables M1,M2, . . . given by

Mn = max{X0, . . . , Xn−1}. (2.2)
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Definition 1. We say that we have an Extreme Value Law (EVL) for Mn if there is a
non-degenerate d.f. H : R → [0, 1] with H(0) = 0 and, for every τ > 0, there exists a
sequence of levels un = un(τ), n = 1, 2, . . ., such that

nP(X0 > un)→ τ, as n→∞, (2.3)

and for which the following holds:

P(Mn ≤ un)→ H̄(τ), as n→∞. (2.4)

where the convergence is meant in the continuity points of H(τ).

The motivation for using a normalising sequence un satisfying (2.3) comes from the case
when X0, X1, . . . are independent and identically distributed (i.i.d.). In this i.i.d. setting,
it is clear that P(Mn ≤ u) = (F (u))n, where F is the d.f. of X0, i.e., F (x) := P(X0 ≤ x).
Hence, condition (2.3) implies that

P(Mn ≤ un) = (1− P(X0 > un))n ∼
(

1− τ

n

)n
→ e−τ , (2.5)

as n→∞. Moreover, the reciprocal is also true (see [24, Theorem 1.5.1] for more details).
Note that in this case H(τ) = 1− e−τ is the standard exponential d.f.

When X0, X1, X2, . . . are not independent but satisfy some mixing condition D(un) intro-
duced by Leadbetter in [22] then something can still be said about H. Let Fi1,...,indenote
the joint d.f. of Xi1 , . . . , Xin , and set Fi1,...,in(u) = Fi1,...,in(u, . . . , u).

Condition (D(un)). We say that D(un) holds for the sequence X0, X1, . . . if for any inte-
gers i1 < . . . < ip and j1 < . . . < jk for which j1 − ip > m, and any large n ∈ N,

∣∣Fi1,...,ip,j1,...,jk(un)− Fi1,...,ip(un)Fj1,...,jk(un)
∣∣ ≤ γ(n,m),

where γ(n,mn) −−−→
n→∞

0, for some sequence mn = o(n).

If D(un) holds for X0, X1, . . . and the limit (2.4) exists for some τ > 0 then there exists
0 ≤ θ ≤ 1 such that H̄(τ) = e−θτ for all τ > 0 (see [23, Theorem 2.2] or [24, Theorem 3.7.1]).

Definition 2. We say that X0, X1, . . . has an Extremal Index (EI) 0 ≤ θ ≤ 1 if we have
an EVL for Mn with H̄(τ) = e−θτ for all τ > 0.

The notion of the EI was latent in the work of Loynes [26] but was established formally by
Leadbetter in [23]. It gives a measure of the strength of the dependence of X0, X1, . . ., so
that θ = 1 indicates that the process has practically no memory while θ = 0, conversely,
reveals extremely long memory. Another way of looking at the EI is that it gives some
indication on how much exceedances of high levels have a tendency to “cluster”. Namely,
for θ > 0 this interpretation of the EI is that θ−1 is the mean number of exceedances of a
high level in a cluster of large observations, i.e., is the “mean size of the clusters”.

In the dependent case, as shown in [22], if D(un) holds and in addition an anti clustering
condition D′(un) (see definition below) also holds, one can show that the EI is 1, which
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means that H̄(τ) = e−τ , as in the independent case. However, since the rates of mixing
for dynamical systems are usually given by decay of correlations of observables in certain
given classes of functions, it turns out that condition D(un) is too strong to be checked for
chaotic systems whose mixing rates are known only through decay of correlations. For that
reason, motivated by Collet’s work [8], in [14] the authors suggested a condition D2(un)
which together with D′(un) was enough to prove the existence of an exponential EVL
(H̄(τ) = e−τ ) for maxima around non-periodic points z. In fact, [14, Theorem 1] states
that if the following conditions hold for X0, X1, . . . then there exists an EVL for Mn and
H(τ) = 1− e−τ .
Condition (D2(un)). We say that D2(un) holds for the sequence X0, X1, . . . if for all `, t
and n

|P (X0 > un ∩max{Xt, . . . , Xt+`−1 ≤ un})− P(X0 > un)P(M` ≤ un)| ≤ γ(n, t), (2.6)

where γ(n, t) is decreasing in t for each n and nγ(n, tn) → 0 when n → ∞ for some
sequence tn = o(n).

Now, let (kn)n∈N be a sequence of integers such that

kn →∞ and kntn = o(n). (2.7)

Condition (D′(un)). We say that D′(un) holds for the sequence X0, X1, X2, . . . if there
exists a sequence {kn}n∈N satisfying (2.7) and such that

lim
n→∞

n

bn/knc∑

j=1

P(X0 > un, Xj > un) = 0. (2.8)

Condition D2(un) is much weaker than the original D(un), and it is easy to show that it
follows easily from sufficiently fast decay of correlations (see [14, Section 2]).

In the results mentioned above, condition D′(un) prevented the existence of clusters of
exceedances, which implies for example that the EVL was a standard exponential H̄(τ) =
e−τ . However, when D′(un) does not hold, clustering of exceedances is responsible for the
appearance of a parameter 0 < θ < 1 in the EVL which now is written as H̄(τ) = e−θτ .

In [17], the authors established a connection between the existence of an EI less than
1 and periodic behaviour. This was later generalised for rare events point processes in
[16] . Under the presence of periodic phenomena, the inherent rapid recurrence creates
clusters of exceedances which makes it easy to check that condition D′(un) fails (see [17,
Section 2.1]). This was a serious obstacle for the application to dynamical systems since the
theory developed up to [17] was based on Collet’s important observation that D′(un) could
be used not only in the usual way as in Leadbetter’s approach, but also to compensate
the weakening of the original D(un), which allowed the application to chaotic systems
with sufficiently fast decay of correlations. To overcome this difficulty, in [17], the authors
considered the annulus

Qp(u) := {X0 > u, Xp ≤ u} (2.9)
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resulting from removing from U(u) the points that were doomed to return after p steps,
which form the smaller ball U(u) ∩ f−p(U(u)). In [17, 16], the occurrence of Qp(u) was
named an escape since it corresponds to the realisations escaping the influence of the
underlying periodic phenomena and exit the ball U(u) after p iterates. Then, the main
crucial observation in [17] is that the limit law corresponding to no entrances up to time
n into the ball U(un) was equal to the limit law corresponding to no entrances into the
annulus Qp(un) up to time n (see [17, Proposition 1]). This meant that, roughly speaking,
the role played by the balls U(u) could be replaced by that of the annuli Qp(u), with the
advantage that points in Qp(u) were no longer destined to return after just p steps.

Based in this last observation and motivated by the behaviour at repelling periodic points,
in [17], the authors proposed certain general conditions (for general stationary stochastic
processes) designed to prove the existence of an EI less than 1 under the presence of some
sort of underlying periodic phenomenon. The first one establishes exactly the type of
periodic behaviour assumed, namely:

Condition (SPp,θ(un)). We say that X0, X1, X2, . . . satisfies condition SPp,θ(un) for p ∈ N
and θ ∈ [0, 1] if

lim
n→∞

sup
1≤j<p

P(Xj > un|X0 > un) = 0 and lim
n→∞

P(Xp > un|X0 > un)→ (1− θ) (2.10)

and moreover

lim
n→∞

[n−1
p

]∑

i=0

P(X0 > un, Xp > un, X2p > un, . . . , Xip > un) = 0. (2.11)

Condition (2.10), when θ < 1, imposes some sort of periodicity of period p among the
exceedances of high levels un, since if at some point the process exceeds the high level
un, then, regardless of how high un is, there is always a strictly positive probability of
another exceedance occurring at the (finite) time p. In fact, if the process is generated by
a deterministic dynamical system f : X → X and f is continuous then (2.10) implies that
z is a periodic point of period p, i.e., fp(z) = z.

The next two conditions concern to the dependence structure of X0, X1, . . . and can be
described as being obtained from D2(un) and D′(un) by replacing balls by annuli. Let
Qn(un) :=

⋂n−1
j=0 f

−j(Q(un)c). Note that while the occurrence of the event {Mn ≤ un}
means that no entrance in the ball {X0 > un} has occurred up to time n, the occurrence
of Qn(un) means that no entrance in the annulus Q(un) has occurred up to time n.

Condition (Dp(un)). We say that Dp(un) holds for the sequence X0, X1, X2, . . . if for any
integers `, t and n

|P (Qp,0(un) ∩Qp,t,`(un))− P(Qp,0(un))P(Qp,0,`(un))| ≤ γ(n, t),

where γ(n, t) is non increasing in t for each n and nγ(n, tn) → 0 as n → ∞ for some
sequence tn = o(n).
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This condition requires some sort of mixing by demanding that an escape at time 0 is an
event which gets more and more independent from an event corresponding to no escapes
during some period, as the time gap between these two events gets larger and larger. The
main advantage of this condition when compared to Leadbetter’s D(un) (or others of the
same sort) is that it follows directly from sufficiently fast decay of correlations as observed
in Section 3.3 of [17], on the contrary to D(un).

Assuming Dp(un) holds let (kn)n∈N be a sequence of integers such that

kn →∞ and kntn = o(n). (2.12)

Condition (D′p(un)). We say that D′p(un) holds for the sequence X0, X1, X2, . . . if there
exists a sequence {kn}n∈N satisfying (2.12) and such that

lim
n→∞

n

[n/kn]∑

j=1

P(Qp,0(un) ∩Qp,j(un)) = 0. (2.13)

This last condition is very similar to Leadbetter’s D′(un) from [23], except that instead of
preventing the clustering of exceedances it prevents the clustering of escapes by requiring
that they should appear scattered fairly evenly through the time interval from 0 to n− 1.

In [17, Theorem 1], it was proved that if a stationary stochastic process satisfies conditions
SPp,θ(un), Dp(un) and D′p(un) then we have an EVL for Mn with H̄(τ) = e−θτ .

2.2. Stochastic processes arising from randomly perturbed systems. To simplify
the exposition we will consider one dimensional maps f on the circle S1 or on the unit
interval I (from now on we will use I to identify both spaces), provided, in the latter case,
that the image f(I) is strictly included into I. We will perturb them with additive noise,
namely, we introduce the family of maps

fω(x) = f(x) + ω

where we have to take the mod-1 operation if the map is considered on the circle. The
quantity ω is chosen on the interval Ωε = [−ε, ε] with distribution ϑε, which we will take
equivalent to Lebesgue on Ωε. Consider now an i.i.d. sequence ωk, k ∈ N taking values
on the interval Ωε and distributed according to ϑε. We construct the random orbit (or
random transformation) by the concatenation

fnω (x) = fωn ◦ fωn−1 ◦ · · · ◦ fω1(x). (2.14)

The role of the invariant measure is now played by the stationary measure µε which is
defined as ∫∫

φ(fω(x)) dµε(x) dϑN
ε (ω) =

∫
φ(x) dµε(x),
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for every φ ∈ L∞ (L∞ to be intended with respect to the Lebesgue measure Leb)1. The
previous equality could also be written as

∫
Uεφ dµε =

∫
φ dµε

where the operator Uε : L∞ → L∞, is defined as (Uεφ)(x) =
∫

Ωε
φ(fω(x))dϑε and it is called

the random evolution operator.
The decay of correlations of the perturbed systems could be formulated in terms of the
random evolution operator. More precisely, we will take two non-zero observables, φ and
ψ and we will suppose that φ is of bounded variation with norm || · ||BV and ψ ∈ L1

m
2 Then

the correlation integral is

Corε(φ, ψ, n) :=
1

‖φ‖BV ‖ψ‖L1
m

∣∣∣∣
∫
Unε φ ψ dµε −

∫
φ dµε

∫
ψ dµε

∣∣∣∣

In the following we will use the product measure P := µε × ϑN
ε .

We are now in condition of defining the time series X0, X1, X2,. . . arising from our system
simply by evaluating a given observable ϕ : I → R∪{+∞} along the random orbits of the
system:

Xn = ϕ ◦ fnω , for each n ∈ N, (2.15)

We assume that ϕ achieves a global maximum at z ∈ I; for every u < ϕ(z) but sufficiently
close to ϕ(z), the event {y ∈ I : ϕ(y) > u} = {X0 > u} corresponds to a topological
ball “centred” at z and, for every sequence (un)n∈N such that un → ϕ(z), as n → ∞, the
sequence of balls {Un}n∈N given by

Un := {X0 > un} (2.16)

is a nested sequence of sets such that
⋂

n∈N
Un = {z}. (2.17)

As explained in [14] the type of asymptotic distribution obtained depends on the chosen
observables. In the simulations, we will cover the observables such that

ϕ(·) = g(dist(·, z)), (2.18)

where dist denotes a certain metric chosen on I and g is of one of the following three types:

(1) g1(y) = − log(y) to study the convergence to the Gumbel law.
(2) g2(y) = y−1/a a ∈ R a > 0 for the Fréchet law.
(3) g3(y) = C − y1/a a ∈ R a > 0 C ∈ R for the Weibull distribution.

1This choice is dictated by the fact that the stationary measure will be equivalent to Lebesgue in all
the examples considered below

2Of course we could do other choices, but this two spaces will play a major role in the subsequent theory.
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The sequences of real numbers un = un(τ), n = 1, 2, . . ., are usually taken to be as one
parameter linear families like un = y/an + bn, where y ∈ R and an > 0, for all n ∈ N. In
fact, in the classical theory, one considers the convergence of probabilities of the form

P(an(Mn − bn) ≤ y). (2.19)

In this case, the Extremal Types Theorem says that, whenever the variables Xi are i.i.d, if
for some constants an > 0, bn, we have

P(an(Mn − bn) ≤ x)→ G(x), (2.20)

where the convergence occurs at continuity points of G, and G is non degenerate, then G
belongs to one of three extreme values types (see below). Observe that τ depends on y
through un and, in fact, in the i.i.d. case, depending on the tail of the marginal d.f. F , we
have that τ = τ(y) is of one of the following three types (for some α > 0):

τ1(y) = e−y for y ∈ R, τ2(y) = y−α for y > 0 and τ3(y) = (−y)α for y ≤ 0. (2.21)

In [24, Theorem 1.6.2], it were given sufficient and necessary conditions on the tail of the
d.f. F in order to obtain the respective domain of attraction for maxima. Besides, in
[24, Corollary 1.6.3] one can find specific formulas for the normalising constants an and bn
so that the respective extreme limit laws apply. We used these formulas to perform the
numerical computations in this paper.

Remark 1. We emphasise that, for i.i.d. sequences of random variables, the limiting dis-
tribution type of the partial maxima is completely determined by the tail of the d.f. F .
For the stationary stochastic processes considered here, if an EI θ > 0 applies, then the
same can still be said about the limiting distribution type of the partial maxima: namely,
it is completely determined by the tail of the d.f. F . This statement follows from the
equivalence between (2.3) and (2.5) and the definition of the EI. However, we also quote
[24, Corollary 3.7.3] because we will refer to it later:

If for X0, X1, . . . we have an EI θ > 0, then if we considered an i.i.d. sequence Z0, Z1, . . .
so that the d.f. of Z0 is F , the same as that of X0, and let M̂n = max{Z0, . . . , Zn−1}, then
the existence of normalizing sequences (an)n∈N and (bn)n∈N for which

lim
n→∞

P(an(M̂n − bn) ≤ y) = G(y)

implies that

lim
n→∞

P(an(Mn − bn) ≤ y) = Gθ(y),

and the reciprocal is also true. Moreover, since by [24, Corollary 1.3.2] Gθ is of the same
type of G, we can actually make a linear adjustment to the normalizing sequences (an)n∈N
and (bn)n∈N so that the second limit is also G.

Remark 2. From Remark 1, in order to determine the type of extremal distribution G
(recall that G(y) = eτ(y), where τ(y) is of one of the three types described in (2.21)) which
applies to our stochastic processes X0, X1, . . ., one needs to analyse the tail of the d.f. F .
The choice of the observables in (2.18) implies that the shape of g determines the type of
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extremal distribution we get. In particular, for observables of type gi we get an extremal
law of type eτi , for i = 1, 2, 3. (See [15, Remark 1] for more details on this correspondence).
While the type of the extremal distribution is essentially determined by the shape of the
observable, in the cases when types 2 and 3 apply, i.e., the Fréchet and Weibull families of
distributions, respectively, the exponent α is also influenced by other quantities such as the
EI and the local dimension of the stationary (invariant) measure µε (µ). In particular, when
such measure is absolutely continuous with respect to Lebesgue and its Radon-Nikodym
derivative has a singularity at z, then the order of the singularity also influences the value
of α.

3. Numerical experiments

For the numerical computations we will use the approach already described in [9]. It
consists in considering unnormalised maxima selected using the block Maxima approach.
Once computed the orbit of the dynamical systems, the series of the gi observables are
divided intom blocks of length n observations. Maxima of the observables gi are selected for
each blocks and fitted to a single family of generalised distribution called GEV distribution
with d.f.:

FG(x; ν, σ, κ) = exp

{
−
[
1 + κ

(
x− ν
σ

)]−1/κ
}

; (3.1)

which holds for 1 + κ(x − ν)/σ > 0, using ν ∈ R (location parameter), σ > 0 (scale
parameter) and κ ∈ R is the shape parameter also called the tail index: when κ → 0,
the distribution corresponds to a Gumbel type ( Type 1 distribution). When the index is
positive, it corresponds to a Fréchet (Type 2 distribution); when the index is negative, it
corresponds to a Weibull (Type 3 distribution). In this fitting procedure, as we have seen
in [9], the following relations hold:

for type 1, κ = 0, ν = bn, σ = 1/an; (3.2)

for type 2, κ = 1/α, ν = bn + 1/an, σ = κ/an; (3.3)

for type 3, κ = −1/α, ν = bn − 1/an, σ = −κ/an. (3.4)

For the discrete maps like fω(x), we select a value for z and repeat the following operations
for various values $ε of the noise intensity:

(1) We construct an empirical physical measure of the system by performing a long
run and saving the obtained long trajectory. The realisations fωn−1 , · · · , fω1 are
constructed by taking the ωk with the uniform distribution in Ωε.

(2) We select 500 initial conditions according to the physical measure described above;
such initial conditions will be used as initial conditions (x variables) to generate
500 realisations of the stochastic process.
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(3) For each of the 500 realisations, we obtain an orbit containing r = m · n = 106, 107

data.

(4) We split the series in m = 1000 bins each containing n = 1000 (or n = 10000) ob-
servations. These values are chosen in agreement with the investigations previously
carried out in [9], since they provide enough statistics to observe EVL for maps
which satisfy the D2 and D′ conditions.

(5) We fit the GEV distribution for the gi, i = 1, 2, 3 observables and the maxima and
minima and study the behaviour of selected parameters.

In the forthcoming discussion we will present the results for the shape parameters κ(gi)
and for the location parameter σ(g1). This choice is convenient, as explained in [29, 10],
since these parameters do not depend on the number of observations n and therefore their
asymptotic expected value does not change when r is modified. For the one dimensional
maps considered we expect to obtain the following asymptotic parameters for systems
satisfying the mixing conditions described in the former sections (see [10]):

κ(g1) = 0 κ(g2) = 1/a κ(g3) = −1/a σ(g1) = 1 (3.5)

The inference procedure follows [9] where the authors have used a Maximum Likelihood
Estimation (MLE) that is well defined when the underlying physical measure is absolutely
continuous. In the applications described in [29, 10] an inference via a L-moments proce-
dure has been preferred as it provides reliable values for the parameters even when the d.f.
corresponds to fractal or multi fractal measures. However, since the L-moments procedure
does not give information about the reliability of the fit3, hereby we exploit the MLE pro-
cedure since it helps to highlight the situations where the fitting does not succeed because
of the poor data sampling.

The following numerical analysis is constructed in a strict correspondence with the theo-
retical setup: the role of the simulations is to follow step-by-step the proofs of the theorems
trying to reproduce the analytical results. Whenever it occurs, the failure of the numerical
approach is analysed in relation to the length of the sample and the intensity of the noise,
just to highlight which parameters are crucial for the convergence procedure.

We focus on simple discrete maps as they already contain interesting features regarding the
convergence issues. We start by analysing the rotations on the 1-D torus where the condi-
tions D2(un) and D′(un) are not satisfied, but they could be restored under perturbation.
In the case of expanding maps of the interval, for which the existence of EVL has been
already shown both analytically and numerically, we show that the computation of the EI
reveals to be crucial to discriminate whether the system was randomly perturbed or not.

3The L-moments inference procedure does not provide any confidence intervals unless these are derived
with a bootstrap procedure which is also dependent on the data sample size [6]. The MLE, on the other
side, allows for easily compute the confidence intervals with analytical formulas [32].
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Eventually, the analysis of the Hénon map, shows how the presence of another basin of
attraction (infinity in this case) may affect the EVL regardless the initial condition chosen.

Besides the convergence issues, one of the main problems that we face regarding the esti-
mation of the EI during the realisation of the numerical simulations is the fact that the
fitting procedure used in [9], “hides” the EI. This is the case because, as we mentioned
in Remark 1, when quoting [24, Corollary 3.7.3], the normalizing constants an and bn can
be chosen (after a simple linear rescaling) so that we get exactly the same limit law G
of the corresponding i.i.d. process instead of Gθ. This prevents the detection of an EI
0 < θ < 1. Basically, our original procedure simply selects the best fitting constants from
the sample of maxima available, which means that the EI does not surface at all. In order
to overcome this difficulty, instead of applying a blind fitting, we use relations (3.2)–(3.4)
(more specifically (3.2)), the knowledge about the stationary measure of the particular
systems we considered and the information provided by [15, 17, 2] to compute a priori
the normalizing sequences so that we can capture the value of the EI. This adjustment to
the procedure revealed also very effective and the results met completely the theoretical
predictions.

4. Rotations on the circle

In this section we will study the rotations of the circle and show that the effect of adding
noise is enough to create enough randomness in order to make EVLs appear when they do
not hold for the original system. This will be the content of Theorem 1 below. Because
this nice statistical behaviour appears solely on account of the noise, it is not surprising
that the numerical simulations show that for very small noise one needs a large amount of
data to the detect the EVLs.

4.1. Analytical results. In [2, Theorem C], the following result has been proved essen-
tially for piecewise expanding maps randomly perturbed like above.

To be more precise, let us suppose that the unperturbed map f is continuous on the circle
and that 4:
(i) the correlation integral Corε(φ, ψ, n) decays at least as n−2;
(ii) un satisfies: nP(X0 > un)→ τ, as n→∞;
(iii) Un = {X0 > un} verifies

⋂
n∈N Un = {z};

(iv) There exists η > 0 such that d(f(x), f(y)) ≤ η d(x, y), where d(·, ·) denotes some
metric on I,
then the process X0, X1, · · · satisfies D2(un) and D′(un), and this implies that the EVL
holds for Mn so that H̄(τ) = e−τ . The proof strongly relies on the decay of correlations for
L1(Leb) observables.

4The result is even more general and applies to multidimensional maps too, but for our concerns,
especially for rotations, the 1-D case is enough. We will discuss later on about generalisation to piecewise
continuous maps
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In this section we show that such a result holds also for rotations (irrational or not),
perturbed with additive noise. The key observation is that in the proof of [2, Theorem C],
the observables entering the correlation integral are characteristic functions of intervals
(see also [2, Remark 3.1]) and for such observables it is possible to prove an exponential
decay of correlations for perturbed rotations by using the Fourier series technique.

In what follows we identify S1 = R/Z.

Theorem 1. Let f : S1 → S1 be a rotation of angle α ∈ R, i.e., f(x) = x + α mod 1.
We perturb f additively so that the random evolution evolution of an initial state x ∈ S1

is given by (2.14), with ϑε denoting the uniform distribution on [−ε, ε]. Let X0, X1, . . . be
a stationary stochastic process generated by the random evolution of such f , as in 2.15.
Let (un)n∈N be a sequence such that items (ii) and (iii) above hold. Then, the process
X0, X1, . . . satisfies conditions D2(un) and D′(un) which implies that there exists an EVL
for Mn with EI equal to 1, i.e., H̄(τ) = e−τ .

For ease of exposition, we will change slightly the notation for the random perturbation of
f . We write them in this way:

fεξ(x) = x+ α + εξ mod1 (4.1)

where ξ is a random variable uniformly distributed over the interval [−1, 1] and therefore
of zero mean.5 Let us observe that

f j
εξ̄

(x) = x+ jα + ε(ξ1 + · · ·+ ξj) (4.2)

In this case, it is straightforward to check (just by using the definition), that the stationary
measure coincides in this case with the Lebesgue measure, Leb, on [0, 1] and it is therefore
independent of ε.

Let us first establish that the correlation of the right functions decays exponentially fast
under the random evolution of the system.

Lemma 4.1. Under the assumptions of Theorem 1, if φ = χA and ψ = χB, where χ
denotes the characteristic function, B = ∪`l=1Bl, for some ` ∈ N and A,B1, . . . , B` ⊂ S1

are connected intervals, then

Cj,ε :=

∣∣∣∣
∫ 1

0

U jε (ψ)φdx−
∫ 1

0

ψdx

∫ 1

0

φdx

∣∣∣∣ ≤ 4e−jε
2 log(2π), (4.3)

as long as ε2 < 1− log 2/ log(2π).

Proof. We begin by writing the modulus of the correlation integral, Cj,ε, as follows:

Cj,ε =

∣∣∣∣
∫ 1

0

dx
1

2j

∫ 1

−1

dξ1 · · ·
∫ 1

−1

dξjψ(f j
εξ̄

(x))φ−
∫ 1

0

ψdx

∫ 1

0

φdx

∣∣∣∣

5With respect to the previous notations, we changed Ωε into [−1, 1], ω = εξ, with ξ ∈ [−1, 1] and finally
ϑε becomes dξ over [−1, 1].
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We express φ and ψ in terms of their respective Fourier series:

ψ(x) =
∑

k∈Z
ψk e2πikx φ(x) =

∑

k∈Z
φke

2πikx

Note that given A = [a, b] and Bl = [al, bl], l = 1, . . . , `, we have

φk =

∫ 1

0

χA e−2πikxdx =
e−2πika − e−2πikb

2πik
,

and also

ψk =

∫ 1

0

χBe−2πikxdx =

∑`
l=1 e−2πikal − e−2πikbl

2πik
,

which implies that

|ψk|, |φk| ≤ 1/|k|. (4.4)

Plugging the Fourier series of φ, ψ into Cj,ε, we obtain

Cj,ε =

∣∣∣∣∣∣
∑

k∈Z/{0}
ψkφ−k

e2πikjα

2j

∫ 1

−1

dξ1e2πikεξ1 · · ·
∫ 1

−1

dξje
2πikεξj

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

k∈Z/{0}
ψkφ−kS

j(kε)

∣∣∣∣∣∣

where S(x) = sin(2πx)
2πx

. For this quantity we have the bounds: |S(x)| ≤ e−x
2 log(2π), |x| < 1,

and |S(x)| ≤ 1
2π|x| , |x| ≥ 1.

We now continue to estimate Cjε as

Cjε ≤ 2

1/ε∑

k=1

|ψ|k|φ−k|e−k
2ε2j log(2π) +

∞∑

k=1/ε

|ψ|k|φ−k|
1

(2πkε)j
(4.5)

Using (4.4), we have

Cjε ≤ 2e−ε
2j log(2π)

1/ε∑

k=1

1

k2
+

2

(2π)j

∞∑

k=1/ε

1

k2

Using the inequality
∑B

k=A
1
k2
≤ 2

A
− 1

B
, we finally have

Cj,ε ≤ 2(2− ε)e−ε2j log(2π) + 4εe−j log(2π) ≤ 4e−jε
2 log(2π)

which is surely verified when e−jε
2 log(2π) > 2e−j log(2π), namely ε2 < 1− log 2/ log(2π). �

Proof of Theorem 1. We now check the conditions D2(un) and D′(un) using the previous
estimate for the exponential decay of random correlations for characteristic functions. We
will use a few results established on the afore mentioned paper [2]. We begin with D2(un)
and we consider, with no loss of generality, the observable g(x) = − log(d(x, z)), where
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d(·, ·) is the distance on the circle and z is a given point on the circle. The event Un :=
{g > un} = {X0 > un} will be the ball Be−un (z). We now introduce the observables

φ(x) = χ{X0>un} = χ{g>un},

ψ(x) =

∫
χ{g, g◦fεξ1 , ... , g◦f

`−1
εξ ≤un}

dξl−1.

It has been shown, in [2, Sect. 4.1], that proving condition D2(un) can be reduced to
estimating the following correlation

∣∣∣
∫
µε
(
g > un, g ◦ f tεξ ≤ un, . . . , g ◦ f t+`−1

εξ ≤ un
)
dξN−

∫
µε(g > un) dξN

∫
µε
(
g ≤ un, g ◦ fεξ1 ≤ un, . . . , g ◦ f `−1

εξ ≤ un
)
dξN
∣∣∣

Since all the maps fεξ are globally invertible and linear, the events (g > un) and (g ◦ f tεξ ≤
un, . . . , g ◦ f t+`−1

εξ ≤ un) are a connected interval and a finite union of connected intervals,

respectively. Therefore we can apply directly formula (4.3) with an exponential decay
in t so that any sequence tn = nκ, with 0 < κ < 1, will allow to verify the condition
nγ(n, tn)→ 0, when n→∞.
The computation of D′(un) is a bit more lengthy. Let us fix a sequence αn → ∞ so that
αn = o(kn). Next, we introduce the quantity Rξ(A) as the first return of the set A into
itself under the realisation ξ. As in [2, Sect. 4.1, just before eq. (4.5)], we have:

n

bn/knc∑

j=1

P(Un ∩ f−jξ (Un)) ≤ n

bn/knc∑

αn

P({(x, ξ) : x ∈ Un, f jξ (x) ∈ Un, Rξ(Un) > αn})

+ n

bn/knc∑

j=1

P({(x, ξ) : x ∈ Un, Rξ(Un) ≤ αn}) (4.6)

It can be shown that the measure of all the realisation such that Rξ(Un) ≤ αn is bounded
by a constant times Leb(Un) times αn (we use here the fact that η in item (iv) above is 1
in our case). Therefore the second term in (4.6) is bounded by a constant times:

n2

kn
Leb(Un)2αn.

This reduces to τ 2 αn
kn

, whose limit is 0, as n → ∞, given our choices for αn and kn. We

now consider the first term on the right hand side of the inequality (4.6). We can obtain
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the following result:

n

bn/knc∑

αn

P({(x, ξ) : x ∈ Un, f jξ (x) ∈ Un, Rξ(Un) > αn}) ≤ n

⌊
n

kn

⌋
Leb(Un)2 + n

b nkn c∑

j=αn

|Cjε|

(4.7)
where the correlation integral is computed with respect to the characteristic function of
Un. Next we use the decomposition (4.5) for Cjε; we also observe that the product of the
modulus of the k-Fourier coefficient of χUn for itself gives

1

2π2k2
(1− cos 2πkLeb(Un)).

Using the notation |Un| = Leb(Un), we obtain (note that we discard the first term in (4.7)
since it goes to zero because n2|Un|2 ∼ τ 2):

(4.7) ≤ n

b nkn c∑

j=αn

{
2

1/ε∑

k=1

1

2π2k2
(1− cos 2πk|Un|)e−k

2ε2j log(2π)

+ 2
∞∑

1/ε

1

2π2k2
(1− cos 2πk|Un|)

1

(2πkε)j

}
.

We consider the first term into the bracket: an upper bound can be defined as follows:

n|Un|
b nkn c∑

j=αn

2e−ε
2j log(2π)

1/ε∑

k=1

1

2π2k2

(
1− cos 2πk|Un|

|Un|

)
,

When n→∞, n|Un| ∼ τ and the inner series goes to zero. The second piece in (4.7) could
be bounded as before by

n|Un|
b nkn c∑

j=αn

2

(2π)j

∞∑

1/ε

1

2π2k2

(
1− cos 2πk|Un|

|Un|

)

which converges to zero as well. �

4.2. Numerical Investigation. In this section we describe the results obtained from the
numerical investigation of the stochastically perturbed rotation map following the proce-
dure describe in Sect. 3. The results are displayed in Fig.1 where the green lines correspond
to experiments where we have chosen a bin length n = 104 , whereas the blue lines refer
to experiments where the chosen bin length is n = 103. The red lines indicate the values
of the parameters predicted by the theory for a 1-D map satisfying the mixing conditions
described above. We set ε = 10−p to analyse the role of the perturbations on scales ranging
from values smaller than those typical for the numerical noise to O(1) [11].
The solid lines display the values obtained by averaging over the 500 realisations of the
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stochastic process, while the error bars indicate the standard deviation of the sample. Fi-
nally, with the dotted lines we indicated the experiments where less than 70% of the 500
realisations produce a statistics of extremes such that the empirical d.f. passes success-
fully the non-parametric Kolmogorov-Smirnov test [25] when compared to the best GEV fit.

Even though the theory guarantees the existence of EVL for the rotations perturbed with
an arbitrarily weak noise (e.g. when compared with the numerical noise), the simulations
clearly show that EVLs are obtained when considering small but finite noise amplitudes
only when very long trajectories are considered. The quality of the fit improves when larger
bins are considered (compare blue and green lines in Fig.1). This is in agreement with the
idea that we should get EVL for infinitely small noises in the limit of infinitely long sam-
ples. In our case, EVLs are obtained only for ε > 10−4, which is still considerably larger
than the noise introduced by round-off resulting from double precision, as the round-off
procedure is equivalent to the addition to the exact map of a random noise of order 10−7

[20, 11].
This suggests that is relatively hard to get rid of the properties of the underlying determin-
istic dynamics just by adding some noise of unspecified strength and considering generically
long time series: the emergence of the smoothing due to the stochastic perturbations is
indeed non-trivial when considering very local properties of the invariant measure as we
do here. It is interesting to expand the numerical investigation discussed here in order to
find empirical laws connecting the strength of the noise perturbations with the length of
the time series needed to observe EVLs.

5. Expanding Maps

In [2] it is proved that expanding maps on the circle admit EVLs when they are perturbed
with additive noise (see, in the just quoted reference, Corollary 4.1 for smooth maps and
Proposition 4.2 for discontinuous maps on I). The proof is completely different of the one
we produced for rotations in Theorem 1. The proof there relies on the fact that expand-
ing maps have exponential decay of correlations for BV-functions against L1 observables.
Moreover, as we already anticipated, the proof is not limited to continuous expanding
maps, but it also holds for piecewise expanding maps with a finite number of discontinu-
ities, provided that the map is topologically mixing. It is interesting to point out that
under the assumptions (items (i)-(iv)) in the beginning of Subsection 4.1, we could prove
convergence to the e−τ law with the observables gi previously introduced independently of
the choice of the point z. We should remind that for deterministic systems and whenever z
is a periodic point of prime period p, then the limit law is not e−τ any more, but rather e−θτ ,
where 0 < θ < 1 is the extremal index discussed above. Therefore, obtaining experimen-
tally an extremal index with unitary value for an observable ϕ(·) computed with respect
to a periodic point z definitely points to the fact that the system is stochastically perturbed.
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If a non-periodic point z is considered, it seems relevant to investigate whether stochastic
and deterministic systems exhibit any sort of differences when looking in detail into the
resulting EVLs. We consider the following map:

fεξ(x) = 3x+ εξ mod1 (5.1)

perturbed with additive noise as in the rotation case discussed above. The stationary mea-
sure for such a map is the uniform Lebesgue measure on the unit interval independently
of the value of ε. The numerical setup is the same as in the case of the rotations: we
begin by taking a non-periodic point as the center of our target set; the results are shown
in picture 2. It is clear that the stochastic perturbations do not introduce any changes in
the type of statistical behaviour observed for a non-periodic point z and no differences are
encountered even if the number of observations in each bin is increased. This is compatible
with the idea that the intrinsic chaoticity of the map overcomes the effect of the stochastic
perturbations. Summarising, extremes do not help us in this case to distinguish the effect
of intrinsic chaos and the effect of adding noise.

It seems more promising the problem of the form of the EVLs for periodic points. As
discussed above, we cannot use the usual fitting procedure for the GEV, since it always
renormalises in such a way that the extremal index seems to be one (see discussion above).
Instead, in order to observe extremal indices different from one, we have to fit the series of
minimum distances to the exponential distribution by normalising a priori the data. The
inference of the extremal index θ (here already the extremal index) has been obtained via
MLE. The normalisation applied consists only in multiplying the distances by the factor
2n as we deal with a constant density measure. In Fig. 3 we present the results for the
extremal index obtained taking the periodic point z = 1/2 of prime period 1 for which
θ = 2/3 6. The results clearly show that we are able to recognise the perturbed dynamics
as the extremal index goes to one when ε increases. Interestingly, the rupture with the
values expected in the purely deterministic case is observed only for relatively intense
noise. Moreover, when longer time series are considered (green experiment), the stochastic
nature of the map becomes evident also for weaker perturbations. Finally, it is clear that
the numerical noise (corresponding to ε ' 10−7) is definitely not sufficiently strong for
biasing the statistics of the deterministic system.

6. Quadratic map

Following the analysis on the extremal index carried out in the previous section, we study
numerically the quadratic map

fεξ(x) = 1− ax2 + εξ

6We recall that θ = θ(z) = 1 − |detD(f−p(z)|, where z is a periodic point of prime period p, see [17,
Theorem 3].
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in the two cases a = 0.014 and a = 0.314. For these values of a, the deterministic dynamics
is governed by the existence of an attracting fixed point (whose value depends on a); for
both choices of a the fixed point is taken as z in the experiments. The stationary measure
of such perturbed quadratic maps is absolutely continuous with respect to Lebesgue [3].
Extremes of this map have been already studied in the unperturbed case in [13], but
for chaotic regime (a belonged to the Benedicks-Carleson set of parameters). Here, we
proceed exactly as described in the previous section, by fitting the series of minimum
distances to an exponential distribution after normalizing the data using the factor 2n.
From the theoretical point of view, the choice of this normalisation comes from assuming
that, in the presence of strong noise, the measure becomes smooth in the neighbourhood
of the periodic point and therefore it is locally not different with respect to the ternary
shift already analysed. We believe that the EI computed with respect to this normalising
constant seems to be the relevant one for the simulations in perturbed systems since it
does not depend on the intensity of the noise but only on parameters that are known from
the set up of the experiment.

The extremal index for the two cases is presented in the Figs 4 and 5 for a = 0.014 and
a = 0.314, respectively. In both cases it is possible to see that θ grows exponentially and
the noise increases as ε for ε ≥ 10−6 while for very weak noise we obtain in both cases a
result for the EI that depends on the length of the bin. This is probably due to numerical
uncertainties intrinsic to operating in double precision. This effect can be clearly recognised
by repeating the same experiment in single precision - results not shown here - where θ
saturates for values of ε < 10−4 because the effect of the single precision numerical noise
becomes dominant.

7. Hénon attractor

Finally, we investigate the impact of a stochastic perturbation applied onto a prototypical
case of a map possessing a singular physical measure supported on an attractor whose
dimension is smaller than the dimension of the phase space, d. For such dynamical systems
in [29] we have shown numerically the convergence of maxima for the observables gi to the
three classical EVLs whose parameters (κ, σ, µ) depend on the scaling exponent of the
measure of a ball centred around the point z from which the distance is computed. Such
a scaling exponent turned out to be the local dimension dL(z) of the SRB-measure. For
this reason, the equations for the asymptotic parameters presented in Eq. 3.5 for the one
dimensional and absolutely continuous case, should be modified as follows:

κ(g1) = 0 κ(g2) = 1/(adL(z)) κ(g3) = −1/(adL(z)) σ(g1) = 1/dL(z). (7.1)

In [29] we have also shown that the dimension of the whole attractor can be recovered by
averaging over different points z the local dimensions dL(z) obtained inverting the relations
in Eq. (7.1).
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Hereby, we choose to investigate the properties of the Hénon map defined as:

xj+1 = yj + 1− ax2
j + εξj

yj+1 = bxj,
(7.2)

where we consider the classical parameters a = 1.4, b = 0.3 7. Recall that for the usual
Hénon attractor, points outside the basin of attraction escape to infinity. Hence, when
the system is perturbed, it is natural to expect that, after waiting enough time, the evo-
lution of every initial condition will escape to infinity since the noise lets the orbit explore
the whole d-dimensional phase space. Moreover, as we have already pointed out in the
introduction, since the physical measure is indeed smoothed by the action of the noise, so
that the resulting attractor has the same dimension d of the phase space. Therefore, the
EVLs’ parameters depending on the local dimension dL(z) of the attractor should change
value abruptly as soon as the noise is switched on. We have selected 500 different z on
the support of the physical measure, and a single realisation has been analysed for each of
these z. For the deterministic dynamics, such a set up has been used to reconstruct the
attractor’s dimension by averaging the local dimension dL(z) derived for each considered
z from the EVLs [29]. Although there are no rigorous results on this system, we will such
the numerical evidences and issues emerging from the analysis of Hénon to suggest how to
operate in a general case where theoretical results are - for some reasons - unavailable.

In the case of purely deterministic dynamics, the EVLs parameters agree with high pre-
cision with the theoretical predictions of [29]. The numerical experiments performed with
varying intensity of the noise forcing (see Fig. 6) suggest that, also in this case, the sig-
nature of the deterministic dynamics is pretty resilient. We need a rather intense noise to
obtain a detectable smearing of the measure, such that our indicators see an absolutely
continuous with respect to Lebesgue, invariant measure. Only when p ' 0.1 we observe the
escaping behaviour to infinity which causes a divergence of the EVL from the deterministic
one with unreliable parameters, whereas in all the other cases we recover quite well the
dependence on the dimension of the usual Hénon attractor. Again, when dealing with finite
data samples the correct reconstruction of the phase space and of the physical measure
depends on the intensity of the noise. The case of Hénon also calls the attention for the
fact that the balls of the perturbed systems keep scaling with the local dimension when
the system is weakly perturbed, instead of scaling with the dimension of the phase space.
This effect is explained in Collet’s paper [7] and is linked to the direction in which the
stochastic perturbation operates: we have already seen for the shift map that the addition
of noise in chaotic one dimensional maps does not affect much the system’s behaviour at

7We remind that Benedicks and Carleson [4] proved that there exists a set of positive Lebesgue measure
S in the parameter space such that the Hénon map has a strange attractor whenever a, b ∈ S. The value
of b is very small and the attractor lives in a small neighbourhood of the x-axis. For those values of a and
b, one can prove the existence of the physical measure and of a stationary measure under additive noise,
which is supported in the basin of attraction and that converges to the physical measure in the zero noise
limit [5]. It is still unknown whether such results could be extended to the ”historical” values that we
consider here.

159



22 D. FARANDA, J.M. FREITAS, V. LUCARINI, G. TURCHETTI, AND SANDRO VAIENTI

generic points. The effect of noise is negligible for the components parallel to the unstable
manifold, while the effect is definitely stronger along the stable manifold. Introducing a
noise acting as a forcing only along the stable manifold would indeed create a stronger
smoothing effect. We will try to investigate this possibility in a future publication. The
heuristic take-home message we learn from the case of the Hénon map is that the noise
is not an easy fix for the singularity of the invariant measure in the case of dissipative
systems, in the sense that its effect becomes noticeable only when its intensity is relatively
larger, unless we consider extremely long time series.

As discussed in the introduction, this is a delicate point related to the practical applicability
of the FDT in dissipative statistical mechanical systems. While it is clear that FDT does
not apply for systems possessing a singular invariant measure [34, 35, 27, 30], some authors
[1, 21] have advocated the practical applicability of the FDT thanks to the smoothing effect
of noise. It is clear that, while even an arbitrarily small noise indeed smooths the invariant
measure, one may need to accumulate an extraordinarily long statistics record in order to
observe it, and, therefore, to be able to apply for real the FDT. Obviously, this is a matter
worth investigating on its own.
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Figure 1. GEV parameters VS intensity of the noise ε = 10−p for the
circle rotations perturbed map. Blue: n = 103, m = 103, Green: n = 104,
m = 103. Red lines: expected values. z ' 0.7371. From the top to the
bottom: κ(g1), κ(g2), κ(g3), σ(g1).
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Figure 2. GEV parameters VS intensity of the noise ε = 10−p for the
ternary shift perturbed map. Blue: n = 103, m = 103, Green: n = 104,
m = 103. Red lines: expected values. z ' 0.7371. From the top to the
bottom: κ(g1), κ(g2), κ(g3), σ(g1).
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Figure 3. Extremal index θ VS intensity of the noise ε = 10−p for the
ternary shift perturbed map. Blue: n = 103, m = 103, Green: n = 104,
m = 103. Red line: theoretical θ for z = 0.5 of the unperturbed map.
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Figure 4. Extremal index θ (in log scale) VS intensity of the noise ε = 10−p

for the quadratic perturbed map with a=0.314, z ' 0.72. Blue: n = 103,
m = 103, Green: n = 104, m = 103.

Figure 5. Extremal index θ (in log scale) VS intensity of the noise ε = 10−p

for the quadratic perturbed map with a=0.014, z ' 0.98. Blue: n = 103,
m = 103, Green: n = 104, m = 103.
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Figure 6. GEV parameters VS intensity of the noise ε = 10−p for the
Hénon perturbed map. Blue: n = 103, m = 103, Green: n = 104, m = 103.
Red lines: expected values. z is different for each realisation. From the top
to the bottom: κ(g1), κ(g2), κ(g3), σ(g1).
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Abstract. The understanding of the statistical properties and
of the dynamics of multistable systems is gaining more and
more importance in a vast variety of scientific fields. This is
especially relevant for the investigation of the tipping points
of complex systems. Sometimes, in order to understand the
time series of given observables exhibiting bimodal distri-
butions, simple one-dimensional Langevin models are fit-
ted to reproduce the observed statistical properties, and used
to investing-ate the projected dynamics of the observable.
This is of great relevance for studying potential catastrophic
changes in the properties of the underlying system or reso-
nant behaviours like those related to stochastic resonance-
like mechanisms. In this paper, we propose a framework
for encasing this kind of studies, using simple box models
of the oceanic circulation and choosing as observable the
strength of the thermohaline circulation. We study the sta-
tistical properties of the transitions between the two modes
of operation of the thermohaline circulation under symmet-
ric boundary forcings and test their agreement with simpli-
fied one-dimensional phenomenological theories. We ex-
tend our analysis to include stochastic resonance-like ampli-
fication processes. We conclude that fitted one-dimensional
Langevin models, when closely scrutinised, may result to be
more ad-hoc than they seem, lacking robustness and/or well-
posedness. They should be treated with care, more as an
empiric descriptive tool than as methodology with predictive
power.

1 Introduction

An interesting property of many physical systems with sev-
eral degrees of freedom is the presence of multiple equilib-
ria (or, more in general, of a disconnected attractor) for a
given choice of the parameters. In such a case, the system

does not obey ergodicity and its asymptotic state depends on
what is the basin of attraction the initial condition belongs
to. Among the many interesting properties of multi-stable
systems, we may mention their possibility of featuring hys-
teretic behaviour: starting from an initial equilibriumx= xin
realized for a given value of a parameterP =Pin and increas-
ing adiabatically the value ofP so that the system is always
at equilibrium followingx = x′(P ), we may eventually en-
counter bifurcations leading the system to a new branch of
equilibria x = x′(P ) such that, if we revert the direction of
variation ofP , we may end up to a different final stable state
xfin = x′(Pin) 6= x(Pin)= xin. More generally, we can say
that the history of the system determines which of the stable
states is realized for a given choice of the parameters.

Whereas hysteretic behaviour has first been discussed in
the context of magnetism, climate dynamics offers some
outstanding examples where multistability is of great rele-
vance, such as the classical problem of the snowball/snow-
free Earth (Saltzman 2002; Lucarini et al., 2010; Pierrehum-
bert et al., 2011). In this context, the problem which has
probably attracted the greatest deal of interest in the last two
decades is that of the stability properties of the thermoha-
line circulation (THC). Since paleoclimatic evidences sug-
gest that the large scale circulation of the Atlantic Ocean
presents at least two, qualitatively different, stable modes
of operation (Boyle et al., 1987; Rahmstorf, 2002), theoreti-
cal and modellistic efforts have long been directed to under-
standing the mathematical properties of the circulation and
the physical processes responsible for switching from one to
the other stable mode and those responsible for ensuring the
stability of either equilibrium.

Interestingly, it has been possible to construct very sim-
ple models of the THC (Stommel, 1961; Rooth, 1982) able
to feature most of the desired properties, and models of
higher degrees of complexity have basically confirmed the
robustness of such properties of multistability, from simple
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two-dimensional convective equations models (Cessi and
Young, 1992; Vellinga, 1996; Lucarini et al., 2005, 2007) to
simplified climate models (Stocker and Wright, 1991; Rahm-
storf, 1995; Stocker and Schmittner, 1997). Whereas cli-
mate models of intermediate complexity now consistently
represent the THC as a multistable system (Rahmstorf et
al., 2005), results are not conclusive when full 3-D climate
models are considered (Stouffer and Manabe, 2003; Scott
et al., 2008). Nonetheless, recent simulations performed by
Hawkins et al. (2011) with a full 3-D climate model have suc-
cessfully reproduced the kind of bistability properties shown
by Rahmstorf et al. (2005). In the case of THC, the strength
of the hydrological cycle plays the role of dominant parame-
ter, whose variation can lead the system through bifurcations
(Sijp and England, 2006, 2011; Sijp et al., 2011). A detailed
account of these analyses can be found in Rahmstorf (1995),
Scott et al. (1999), and Titz et al. (2001, 2002). The mat-
ter is of great relevance for understanding climate variability
and climate change because, if the system is close to a bi-
furcation point, small changes in the parameters value could
have virtually irreversible effects, driving the climate system
a qualitatively different steady state. As evidenced in many
studies (see, e.g. Kuhlbrodt et al., 2007), a transition from the
present state of the THC to a state featuring weaker merid-
ional circulation would have very relevant climatic effects at
regional and global scale, as the northward ocean heat trans-
port in the Atlantic would be greatly reduced.

The potential of shut-off of the THC is considered a high
impact climate risk – even if its likelihood for the present
climate is considered very low (Rahmstorf, 2006) – and the
conditions under which such a transition can occur are prob-
ably the best example of a “climate tipping point” (Lenton et
al., 2008).

Since we are dealing in principle with a 3-D fluid with
complex thermodynamical and dynamical properties, a lot
of efforts have been directing at finding, using suitable scal-
ing and simplified theoretical setting, an approximate one-
dimensional ordinary differential equation equation of the
form q̇ =F(q,P ), whereq is the intensity of the THC andP
is a set of parameters of the system. Such an equation would
be able to represent at least in a semi-quantitative way the
evolution of the THC strength as a function of the strength
and some parameters only and, by solvingF(q,P ) = 0,
would provide the (in general) multiple equilibria corre-
sponding to a specific choice of the set of parametersP . An
excellent account of this methodology can be found in Di-
jkstra (2005). Note that, very recently, a related surrogate
one-dimensional dynamics for a salinity indicator has been
proposed to fit the output of a comprehensive climate model
(Sijp et al., 2011).

The dynamics of multistable systems becomes rather inter-
esting when stochastic forcing is considered. In the most ba-
sic case, such a forcing is represented in the form of additive
white noise. Noise introduces on one side small scale vari-
ability around each of the stable equilibria of the system,

and, on the other side, allows for jumps (large scale vari-
ability) driving the system across the boundaries separat-
ing the basin of attraction of the fixed points. See Friedlin
and Wentzel (1998) for a detailed mathematical treatment of
these problems. Since the landmark Hasselmann’s (1976)
contribution, it has become clearer and clearer in the cli-
mate science community that stochastic forcing components
can be treated as quite reliable surrogates for high frequency
processes not captured by the variables included in the cli-
mate model under consideration (Fraedrich, 1978; Saltzman,
2002). This has raised the interest in exploring whether tran-
sitions between stable modes of operation of the THC far
from the actual tipping points could be triggered by noise,
representing high-frequency (with respect to the ocean’s time
scale) atmospheric forcings, of sufficient amplitude (Cessi,
1994; Monahan, 2002). Along these lines, it has become es-
pecially tempting to interpret the dynamics of the THC in
presence of noise as resulting from an effective Langevin
equation of the formdq = F(q,p)dt + εdW – wheredW
is the increment of a Wiener process – as this opens the
way to approaching the problem in terms of one-dimensional
Fokker-Planck equation. Ditlevsen (1999) suggested the
possibility of considering more general stochastic processes
for accommodating the statistical properties of observational
data.

The Langevin equation approach has also led various re-
searchers to study whether the process of stochastic reso-
nance (Gammaitoni et al., 1998) – basically noise-enhanced
response amplification to periodic forcing – could explain
the strength of the climate response (in terms of actual THC
strength) in spite of the relative weakness of the Milankovic
forcing. Note that stochastic resonance, which has enjoyed
great success in fields ranging from microscopic physics to
neurobiology and perception, was first proposed in a climatic
context (Benzi et al., 1982; Nicolis, 1982; Benzi, 2010).
Velez-Belchi et al. (2001) provided the first example of a sim-
ple THC box-model featuring stochastic resonance, and later
Ganopolski and Rahmstorf (2002) observed a similar mech-
anism in action in a much more realistic climate model.

In this work we would like to examine critically the effec-
tiveness and robustness of using one-dimensional Langevin
equations to represent the dynamical and statistical proper-
ties of the THC strength resulting from models which fea-
ture more than one degree of freedom. This is methodologi-
cally relevant, in the context of recent efforts directed at un-
derstanding whether the transitions between different steady
states associated to the tipping points can be highlighted by
early indicators (Scheffer et al., 2008). In Sect. 2 we show
how to construct, from data, the form of the effective driv-
ing force and the intensity of noise, and propose tests for
investigating the robustness of the approach. In Sect. 3 we
describe the main properties of the simple box models of the
oceanic circulation analysed in this paper. In Sect. 4 we test
our methodology by studying, in various cases, whether it
is possible to represent consistently the statistical properties
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of the THC strength resulting from the stochastic forcing of
the models introduced in Sect. 3 using an one-dimensional
Langevin model. In Sect. 5 we further expand our analy-
sis by testing whether the matching conditions for observing
stochastic resonance are obeyed. In Sect. 6 we present our
conclusions.

2 Theoretical background

2.1 Modelling a bistable system

Let’s consider a one dimensional Langevin equation for the
variablex of the form:

dx=F(x)dt+εdW, (1)

whereF(x) is a smooth function ofx giving the drift term,
W is a standard Wiener process anddW is its infinitesimal
increment, so thatε parameterises the strength of the stochas-
tic forcing. As well known, the invariant probability density
function (pdf)π(x) can be written as:

π(x)=Ce
−2V (x)

ε2 (2)

whereV (x) is the effective potential such thatdV (x)/dx =

−F(x) andC is the normalisation constant. The local ex-
trema of the potential correspond to the fixed points of the
deterministic system obtained whenε= 0, and in particular
its local minima (maxima) giving the stable (unstable) equi-
libria. Quite intuitively, in the stochastic case, the peaks of
the invariant probability distribution correspond to the min-
ima of the potential.

In the prototypical situation of a confining double well po-
tential, where we refer to the position of the right and left
minimum ofV (x) asx+, x−, and to local maximum asx0,
the two peaks of theπ(x) are separated by a dip correspond-
ing to the local maximum of the potential, while for large
positive and negative values ofx theπ(x) approaches zero
asV (x) diverges for|x| →∞. The average rate of transition
r(+ → −) from the basin of attraction ofx+ to that ofx−

can be approximated using the Kramer’s formula:

r(+ →−)=
1

2π

√
V ′′(x+)V ′′(x0)e

−2
V (x0)−V (x+)

ε2 (3)

under the condition that the absolute value of the exponent
is larger than one, so thatV (x0)−V (x+)≥ ε

2/2. This cor-
responds to the physical condition that the noise is moderate
with respect to the depth of the potential well. The average
rate of transitionr(− → +) in the opposite direction can be
obtained by exchanging the sign plus with the sign minus
in the previous expression. The Kramer’s formula basically
expresses the general fact that at stationary state a detailed
balance conditions applies.

Let’s now consider the less idealised case where we ob-
serve a scalar output signaly(x) generated by a stochastic or
chaotic deterministic flow of the systemx living, in general,
in an N-dimensional phase space, and let’s assume that the
empirical pdfπ(y) is bimodal, so that two peaks are found
at y = y+, y = y−, separated by a local minimum aty = y0.
We wish to test the possibility of constructing a Langevin
equation for the scalary:

dy=Feff(y)dt+εeffdW (4)

so that the statistics generated by Eq. (4) closely resembles
the one deriving from the full system. Such a representa-
tion would bypass the details of the full dynamics of the sys-
tem and its construction can be approached by imposing con-
straints based upon the populations of the basin of attractions
of the two modes and upon the transition probability between
such basins. Basically, this amounts to defining an effective
projected dynamics.

The observation time of the variabley must be long
enough to allow for a robust estimate of the pdf and for ob-
serving many transitions between the two modes. From the
empirical pdf of the considered observableπ(y) we derive
the function(y)= −ln(π(y)). In order to achieve compati-
bility with Eq. (2), we define

2Veff(y)/ε
2
eff =U(y)+const. (5)

The functionU(y) contains information on both the effec-
tive potential of the system and on the effective intensity of
the noise. Substituting the expression ofVeff(y) in Eq. (3),
we can write, e.g. the average rater(+ →−) as follows:

r(+ →−)≈
ε2

eff

4π

√
U ′′(y+)U ′′(y0)e

−(U(y0)−U(y+)) (6)

By comparing this expression with the observed transition
rate, we can finally find the actual value ofεeff, because all
the other terms can be computed from the time series of the
y observable. Assuming that in the region between the two
minima and the local maximum the functionU(y) is smooth,
we obtain the following expression, which is numerically
more robust as the second derivatives disappear:

r(+ →−)≈

√
2ε2

eff

π

(U(y0)−U(y+))

(y+ −y0)2
e−(U(y0)−U(y+))

=
2
√

2

π

(V (y0)−V (y+))

(y+ −y0)2
e
−

(
2
V (y0)−V (y+)

ε2eff

)
(7)

where G(+ → −) =

√
2
π
(U(y0)−U(y+))

(y+−y0)
2 e−(U(y0)−U(y+)) is a

factor depending only on the observed probability. Note
that Eqs. (6)–(7) are valid under the condition thatU(y0)−

U(y+)& 1 or, equivalently, thatπ(y+)/π(y0)& e. By plug-
ging the obtained value ofεeff into Eq. (5) we deriveVeff(y).
We can then reconstruct the effective Langevin equation in
the form given in Eq. (4). It is crucial that the same value for
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εeff is obtained when using as benchmark the average rate
r(− →+), because otherwise we have that the reconstructed
dynamics does not obey detailed balance, or, equivalently,
there is a mismatch between time-scales of the transitions
and steady state populations of the two basins. Such an issue
is not relevant in the special case when the pdf of the system
is symmetric with respect toy0.

2.2 Robustness

Let’s now consider an N-dimensional Langevin equation of
the form:

dxi =Fi(x1,...,xN )dt+εijdWj (8)

where thedwj terms indicate increments of independent
Wiener processes and theFi(x1,...,xN ) are the (generally
nonlinear) drift terms. We can write the Langevin equation
for the observabley constructed as linear combination of the
system variablesy= cixi as follows:

dy= ciFi(x1,...,xN )dr+ciεijdWj

= ciFi(x1,...,xN )dt+ ε̄dW (9)

where, exploiting the independence of the Wiener processes,

we haveε̄ =

√
6Nj=1(ciεij )

2. If the deterministic part of

system (9) features two stable equilibriax+ andx−, when
stochastic noise is added, we will see hopping between the
basins of attraction of these two points. When looking at
the variabley = cixi as output of the system, we will see
a bimodal distribution where the two peaks are centred at
y+ = cixi,+ andy− = cixi,−, respectively, with a local mini-
mum in-between situated aty0.

The true dynamics of the observabley is indeed given in
Eq. (9), but, if we are provided only with the time series of
y, the best we can do in to try to derive the “best” approx-
imate equation – the one-dimensional Langevin model – of
the form given in Eq. (4), using the heuristic procedure de-
scribed above. Comparing Eqs. (4) and (9), we understand
that the difference in the drift termsciFi(x1,...,xN )−Feff(y)

describes the deterministic dynamics of they variable which
cannot be parameterised in terms of they variable alone. We
may expect that ify is a slow variable, which retains the long
term memory of the system, such a difference is small, and
the dynamics ofy is truly quasi-one-dimensional In there is
time-scale separation, one may expect that the impact of the
faster variables on its evolution can be effectively expressed
as noise, thus determining the value ofε̄ (Saltzman, 2002).
Therefore, the ratiōε/εeff gives an indirect measure of how
strong is this effect, being close to 1 if the dominant contri-
bution for comes from the direct stochastic forcing into the
system.

Since constructing an ad-hoc one-dimensional model from
a time-series is typically possible by following the lines de-
scribed above, we need to introduce some criteria to test
the robustness of the approach we have undertaken. This is

needed in order to check whether our methodology is solely
descriptive of the statistics of the chosen observable system
for a given choice of parameters, or, instead, has predictive
power, in terms of allowing one to understand how the sta-
tistical properties of the observable change when the param-
eters of the full system are altered. Obviously, as mentioned
above, choosing a suitable variabley will be crucial in en-
suring the effectiveness of this one-dimensional parameteri-
sation:

– As a first condition of robustness, we may ask that if
we multiply the noise intensity of the true system by a
factor α, so thatεij → αεij in Eq. (8), we obtain that
correspondinglyεeff → αεeff and the effective potential
Veff(y) is not altered in Eq. (4).

– Another condition of robustness is that if in Eq. (9) we
alter the noise matrixεij in such a way that̄ε is not
altered in Eq. (9), we would like that, correspondingly,
εeff andVeff are not altered in Eq. (4).

These conditions basically require that the reconstructed de-
terministic drift term is independent of the intensity of the
noise – so that an underlying deterministic dynamics is well
defined – and the reconstructed noise intensity scales linearly
with the actual noise applied to the system, so that we can
construct a relationship such asεeff(ε̄)≈ γ ε̄

3 Simple box models of the thermohaline circulation

3.1 Full model

We consider the simple deterministic three-box model of
the deep circulation of the Atlantic Ocean introduced by
Rooth (1982) and thoroughly discussed in Scott et al. (1999)
and Lucarini and Stone (2005a, b). The model consists of
a northern high-latitude box (box 1), a tropical box (box 2),
and a southern high-latitude box (box 3). The volume of the
two high-latitude boxes is the same and is 1/V times the vol-
ume of the tropical box, whereV is chosen to be equal to 2.
The physical state of the boxi is described by its temperature
Ti and its salinitySi ; the boxi receives from the atmosphere
the net flux of heatHi and the net flux of freshwaterFi ; the
freshwater fluxes globally sum up to 0, so that the average
oceanic salinity is a conserved quantity of the system. The
box i is subjected to the oceanic advection of heat and salt
from the upstream box through the THC, whose strength is
q. The dynamics of the system is described by the evolution
equation for the temperature and the salinity of each box. Af-
ter a suitable procedure of non-dimensionalisation (Lucarini
and Stone, 2005a), we obtain the following final form for
the temperature and salinity tendency equations for the three
boxes:

Ṫ1 =

{
q(T2−T1)+H1
|q|(T3−T1)+H1

(10a)
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Ṫ2 =

{ q
V
(T3−T2)+H2

|
q
V

|(T1−T2)+H2
(10b)

Ṫ3 =

{
q(T1−T3)+H3, q >0
|q|(T2−T3)+H3, q ≤ 0

(10c)

Ṡ1 =

{
q(S2−S1)−F1
|q|(S3−S1)−F1

(10d)

Ṡ2 = −
1

V
(Ṡ1+ Ṡ3) (10e)

Ṡ3 =

{
q(S1−S3)−F3, q >0
|q|(S2−S3)−F3, q ≤ 0

(10f)

whereq = k(ρ1 − ρ3) and ρi = ρ0(1−αTi +βSi), so that
q = k(β(S1−S3)−α(T1−T3)),α andβ are the usual thermal
and haline expansion coefficients,ρ0 is a baseline density,
andk is the hydraulic constant controlling the water trans-
port. Such a parameterisation was first introduced by Stom-
mel (1961) for a hemispheric box model, whereas the ap-
proximate linear relationship between the density difference
between the two high-latitude regions and the THC strength
has been confirmed by simplified yet realistic GCM simula-
tions (Rahmstorf, 1995; Scott et al., 2008).

The freshwater fluxesFi are considered given constants,
with F2 = −(F1+F3)/V , so thatS1+V S2+S3= (V +2)S0
at all times, whereS0 = 35 psu is a baseline salinity. Instead,
the heat fluxHi = λ(T̄i −Ti) is such that the box tempera-
ture is relaxed to a fixed target temperatureT̄i with the time
constantλ−1. Such a representation mimics the combined ef-
fect of radiative heat transfer and of a meridional heat trans-
port. This also implies that the spatial average of ocean tem-
peratureT̃ = (T1 +V T2 +T3)/(2+V ) obeys the evolution

equation˙̃T = λ(˜̄T − T̃ ), where˜̄T is the spatial average of the
target temperature, so that asymptotically (and, in practise,
after few units ofλ−1)T̃ is a conserved quantity. Therefore,
we practically haveṪ2 ≈ −(Ṫ1 + Ṫ3)/V . We usually have
that the internal time scale of the systemq−1 is much larger
thanλ−1, thus implying that the thermal relaxation is fast.

The water of the high latitude ocean box where down-
welling occurs is warmer and more saline that than situated
on the opposite side of the planet, since it receives advection
from the warm and saline equatorial box. Since the haline
contribution is stronger, the downwelling box is denser than
the upwelling box. The sign ofq is positive if downwelling
occurs in box 1, and negative if it occurs in box 3. The buoy-
ancy fluxes in the upwelling and downwelling boxes serve
different purposes in determining the dynamics of the sys-
tem. In fact, the strength of the circulation at equilibriumqref

depends only on the strength of the buoyancy fluxes in the
upwelling boxHu,eq andFu:

|qref| =

√
k(αHu,eq+βFu),

where the sign ofqeq is positive if u= 1 and negative if
u= 1. Instead, for a given value ofFu the realised pattern of
circulation is stable as long asFd . 3Fu, which implies that
Fd = 3Fu a bifurcation leading to an instability of the sys-
tem is found. Such an instability exchanges the role of the
upwelling and downwelling boxes. Therefore, if, e.g. in the
initial stateu= 3 andd = 1, andF3 is kept fixed, the sys-
tem features bistability for the following range of values of
F1 : 1/3F3.F1.3F3. These approximate relations become
exact in the limit of infinitely fast thermal relaxation.

Following Scott et al. (1999) and Lucarini and
Stone (2005a), we select for the constants of the sys-
tem the valuesk = 1.5× 10−6 s−1, α = 1.5× 10−4 K−1,
β = 8.0×10−4 (psu)−1, λ= 1.3×10−9 s−1, V = 2. When
symmetric boundary conditions are considered with
T̄1 = T̄3 = 0◦C, T̄3 = 30◦C, F1 = F3 = 9× 10−11 psu s−1,
we obtain at steady state|qref| = 1.47× 10−11 s−1. The
sign of q depends uniquely on the initial conditions of the
integration: we have 50 % probability of ending up in either
the northern or the southern downwelling state if random
initial conditions are chosen. Since the internal time scale
|qref|

−1
≈ 215y is much larger than the thermal time scale

λ−1
≈ 25y, we conclude that the thermal relaxation is a fast

process.
The physical valuẽq of the strength of the thermohaline

circulation can be found from the normalised value above
as q̃ = qVbox,1, whereVbox,1 = Vbox,3 = Vbox,2/V = 1.1×

1017 m3 is the volume of either high-latitude box. Instead,
the physical value of the net freshwater flux̃Fi into box i is
obtained as̃Fi =FIVbox,i/S0; its intensive value per unit sur-
face results to bẽFi =FiVbox,i/Abox,iS0 =FiDbox/S0 where
Dbox = 5000 m is the common depth of the three oceanic
boxes. Therefore, our base state features reasonable val-
ues for the net poleward transport of freshwater flux – about
2.8×105 m3 s−1

= 0.28 Sv, and for the THC strength – about
1.55×107 m3 s−1

= 15.5 Sv.

3.2 Simplified model

A simplified version of the model given in Eq. (10a–f) can
be derived by assuming that the thermal restoring constant
λ→ ∞ so that the time scale of the feedbackλ−1

→ 0. Thus,
the temperatures of the three boxes are such that at all times
Ti = T̄i , so that we obtain a reduced dynamical system with
only 2 degrees of freedom (d.o.f.):

Ṡ1 =

{
q(2S0−3/2S1−1/2S3)−F1 q >0
|q|(S3−S1)−F1 q ≤ 0

(11a)
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Ṡ3 =

{
q(S1−S3)−F3 q >0
|q|(2S0−3/2S3−1/2S1)−F3 q ≤ 0

(11b)

where the THC strength can be written asq = kβ(S3 −S1).
Note that, since the system (11a–b) has been obtained by per-
forming a singular perturbation to (10a–f), we need to renor-
malize the value of the hydraulic constantk in order to ob-
tain qref = 1.47× 10−11 s−1 at steady state when choosing
F1 = F3 = 9×10−11 psu s−1 as above. The resulting value
is k = 3.0×10−7 s−1, with |qref| =

√
kβFu =

√
kβF1. The

same physical scalings described above apply here. Such a
simplified model retains the most relevant elements of the
dynamics of the full model, even if the thermal dynamical
feedback (Scott et al., 1999) are missing.

4 Numerical experiments: fitting the dynamics from the
population and the transition rates

4.1 Symmetric forcing to the simplified model

We now modify the dynamical system (11a–b) by including
additive noise in both the evolution equations for bothS3 and
S1 so that we obtain the following system of stochastic dif-
ferential equations in the Ito form:

dS3 =

{
q(2S0−3/2S1−1/2S3)dt−F1dt+ε1dW1, q >0
|q|(S3−S1)dt−F1dt+ε1dW1 q ≤ 0

(12a)

dS3 =

{
q(S1−S3)dt−F3dt+ε3dW3, q >0
|q|(2S0−3/2S3−1/2S1)dt−F3dt+ε3dW3 q ≤ 0

(12b)

wheredW1,3 are the increments of two independent Wiener
processes. Note that Ditlevsen (1999) proposed the possi-
bility of considering more general noise processes to explain
the THC dynamics. Hereby, we stick to the more usual white
noise case.

We then perform a set of experiments by integrating
the stochastic differential Eq. (12a–b) using the numeri-
cal scheme proposed in Mannella and Palleschi (1989) for
values ofε1 = ε3 = ε ranging from 3.6× 10−10 psu s−1/2

to 6.2× 10−10 psu s−1/2. This corresponds to a range of
noise strength for the physical freshwater flux of 1.12×

106 m3 s−1/2 to 1.96×106 m3 s−1/2. In more concrete terms,
we are exploring stochastic perturbations to the freshwater
flux whose variability (standard deviation), over the charac-
teristic internal time scale|qref|

−1
≈ 215 yr, range between

27 % and 47 % of the baseline valueF1 = F3. Results are
presented for sets of 100 ensemble members for each value
of ε, with each integration lasting 106 yr. The chosen time
step is 1 yr.

We wish to study the possibility of defining up to a good
degree of precision a consistent stochastic dynamics for the
THC strengthq involving onlyq itself and noise. Following

Fig. 1. Empirical probability distribution function for the THC
strength in the 2 d.o.f. model for selected values of symmetrically
applied noise.

the procedure outlined in Sect. 2, for each value ofε1 = ε3 =

ε, where we have on purpose kept the system’s parameters
invariant with respect to exchanging the box 1 and the box 3,
we attempt the derivation of the deterministic drift term and
the stochastic noise defining the effective Langevin equation
for the THC strength:

dq =Feff(q,ε)dt+εeff(ε)dW (13)

where our notation accommodates for a noise-dependent ef-
fective drift term, which corresponds to an efficient poten-
tial Veff(q,ε), such thatFeff(q,ε)= −dVeff(q,ε)/dq. The
pdfs π(q) feature a very strong dependence on the inten-
sity of the noise, with, as expected, higher noise intensity
associated to flatter distributions (Fig. 1). We then derive
the normalised potentialU(q,ε)= −ln(π(q,ε)) (Fig. 2). By
matching the observed hopping rater(+ →−) (Fig. 3a) with
the right hand side of the formula given in Eq. (7) – in
Fig. 3b we present the values of the factorr(+ → −) – we
derive for each value ofε the corresponding value ofεeff.
Note that for each value of the noise we use only the ob-
served difference between the value ofU(q,ε) evaluated in
q = 0 and inq = |qref| and the value of|qref|, and the upper
bound ofε has been chosen so thatU(q0,ε)−U(q+,ε)=

U(q0,ε)−U(q−,ε)& 1.5. As shown in Fig. 3c, we obtain
that up to a high degree of precisionεeff ≈ γ

√
2kβε = γ ε̄,

whereγ ≈ 1 for all values ofε. Moreover, also is in agree-
ment with our expectations given at the end of Sect. 2, we
have thatVeff(q,ε)≈ Veff(q), so that the effect of adding
noise does not impact the deterministic drift term, or, in other
terms, a deterministic dynamics is well defined. Figure 4
shows that for all values of noise the obtained effective po-
tentials collapse into a single universal function, apart from
an additive constant of no physical significance.

Our experimental procedure has shown quite convincingly
that we can reduce the time evolution of the THC strength to
a one-dimensional Langevin equation. We wish now to in-
vestigate how to derive analytically the drift and the noise
term in Eq. (13) and an expression for the hopping rate
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Fig. 2. One-dimensional adimensional potentialU(q) obtained as
minus the logarithm of the pdf given in Fig. 1.

r(+ → −). Rewriting the system (10a–b) with respect to
the new variablesq = kβ(S1 − S3)= k(ρ1 − ρ3) andQ=

k(ρ1+ρ3), we obtain the following coupled evolution equa-
tions:

dq = q(2kρ̃−3/2q2/|q|−Q)dt+εqdWq (14a)

dQ= q(2kρ̃+1/2q2/|q|−Q)dt−kβ(F1+F3)dt+εQdWQ (14b)

whereρ̃ = ρ0(1−α(T̃1 +2T̃2 + T̃3)/4+βS0) is the average
density of the system, we have that, following Eq. (7),εq =

εQ = kβ

√
ε2

1 +ε2
3, anddWq , dWQ are increments of Wiener

processes. Note that the drift terms in both Eq. (11) is odd
with respect to theq→ −q transformation and the SDE for
the THC strength is in the form of Eq. (9), withεq − ε̄. We
assume that the system spends most of its time near the two
deterministic equilibria withq = ∓|qref|, and that over the
timescales of our interest the deterministic drift term of the
variableQ vanishes. Assuming that the random forcing onQ

has little impact onq, we derive the following approximate
Langevin equation for the evolution of the THC strength:

dq ≈ −2q(q2/|q|−|qref|)dt+εqdWq , (15)

where, the drift term is odd with respect to parity and is in-
dependent of the noise strength. The corresponding effec-
tive potentialVeff(q) is independent ofε and can be written
asVeff(q)= −q2

|qref|+2/3q2
|q|+ const. Note that this is

a not a quartic symmetric potential but has the same par-
ity properties and is twice differentiable everywhere. As
shown in Fig. 4, this functional form closely approximates
the experimental findings previously described, with discrep-
ancies where the probability density is exponentially van-
ishing and small deviations also forq ≈ 0 (where the den-
sity is also low). Moreover, ifε1 = ε3, we obtain that
εq = ε̄=

√
2kβε1 ≈ εeff, so that the agreement between our

experimental and theoretical findings for both the determin-
istic and stochastic part of the dynamics is quite satisfactory.
This suggests that in the experimental setting of Eq. (12a–b)

Fig. 3. Goodness of the one-dimensional approach for the reduced
2 d.o.f. model. (a) Average rate of hopping between the north-
ern and southern sinking equilibriar(+ → −)= r(− → +) (black
line). The theoretical value is shown with the red line. Data are in
units of s−1. (b) Geometrical factorG(+ → −)=G(− → +) of
the hopping rate computed from Eq. (7). Adimensional quantity.
(c) Value of the parameterγ giving the ratio betweenεeff (obtained
asa divided byb) and the theoretically derived expression

√
2kβε.

Adimensional quantity.

it is possible to project very efficiently the dynamics of the
system on the variableq alone, which seems to capture well
the slow manifold (Saltzman, 2002) of the system. Using
Eq. (15), we obtain the following approximate expression for
the average rate of transitionr(+ →−) between the northern
sinking and the southern sinking state,

r(+ →−)≈
2
√

2

3π
|qref|e

−
|qref|

2

a(kβε)2

=
2
√

2

3π

√
kβF1e

−
(F1)

3/2

a

√
kβε2 = r(− →+), (16)

where the last identity is due to the symmetry of the poten-
tial. This formula provides rates in excellent agreement with
the outputs of the numerical simulations, as can be seen by
comparing the red and the black line in Fig. 3a.

4.2 Asymmetric forcing to the simplified model

The obtained results suggest that the simplified model of the
THC with only 2 degrees of freedom allows for a robust treat-
ment of the one-dimensional stochastic dynamics of the THC
strength. Nonetheless, in the previous set of experiments we
have only verified the first condition for the robustness of
the one-dimensional representation (well-posedness for lin-
ear scaling on the forcings). In this section, we wish to test
how the system behaves when, following Eq. (9), we change
the noise matrixεij in such a way that the term noise strength
ε̄ for the considered observable is not altered. Therefore, we
perform a new set of experiments, where the stochastic forc-
ing is exerted only in one of the two boxes, e.g. box 1, so that
in Eq. (12a–b) we setε3 = 0 andε1 =

√
2ε for each value of

ε considered in the previous set of experiments. This choice
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16 V. Lucarini et al.: Bistable systems with stochastic noise

Fig. 4. One-dimensional efficient potentialVeff(q) controlling the
evolution of the THC strength in the 2 d.o.f. model with symmet-
ric noise. The results of some numerical experiments are shown
together with the analytical estimate.

Fig. 5. Empirical probability distribution function for the THC
strength in the 2 d.o.f. model with noise applied only in box 1.

guarantees that we have exact correspondence for the values

of εq = ε̄= kβ

√
ε2

1 +ε2
3 =

√
2kβε, so that Eq. (9) looks ex-

actly the same as in the previous set of experiments. Unfortu-
nately, as shown in Fig. 5, following the procedure described
in Sect. 2 we obtain for all values ofε an asymmetric prob-
ability distribution function, with the northern sinking equi-
librium being the most probable state. The prominence of
theq >0 conditions become stronger as we consider weaker
intensities for the noise. Therefore, the proposed stochastic
modelling is not as robust as one could have guessed.

At a second thought the presence of asymmetry in this
case becomes clearer. In this case the two sinking states
undergo different forcing, because whenq > 0 the stochas-
tic forcing is exerted only in the box where downwelling
occurs, whereas whenq ≤ 0 the stochastic forcing impacts
only the box where upwelling occurs. Since, as explained
at the beginning of Sect. 3 and discussed in Lucarini and
Stone (2005a), the impact of changing freshwater fluxes
is different in terms of destabilising the system depending
on whether the forcing is applied in the box where down-
welling or upwelling occurs, the two states are not equivalent

Fig. 6. Goodness of the one-dimensional approach for the non-
symmetric case.(a) Average hopping ratesr(+ → −) (blue line)
andr(− → +) (red line). Data are in units of s−1. (b) Geometrical
factorsG(+ → −) (blue line) andG(− → +) (red line) computed
from Eq. (7). Adimensional quantities.(c) Value of the parameter
rγ giving the ratio betweenεeff (obtained asa divided byb) and
the theoretically derived expression

√
2kβε. Adimensional quanti-

ties. The values obtained using the+ →− (blue) and− →+ (red)
processes are not compatible.

anymore. In the previous set of experiments, as opposed to
that, both boxes were equally (in a statistical sense) stochas-
tically forced, and so that the northern and southern sinking
states had equivalent forcings at all times. The more for-
mal mathematical reason why the statistical properties ofq

are different in the two sets of experiments even if Eq. (9)
is apparently the same can be traced to the differences in
the correlation between the stochastic forcings toq andQ
– compare Eq. (14a–b). In the case of symmetric stochas-
tic forcing in the freshwater fluxes into the two boxes with
ε1 = ε3, it is easy to see that the increments to the Wiener
processesdWq anddWQ are not correlated, whereas when
ε3 = 0 the two quantitiesdWq anddWQ are identical so that
their correlation is unitary.

We wish now to test whether, in such an asymmetric set-
ting of forcings, the pdfs of the THC strength scale with the
intensity of the noise in such a way to allow the possibility of
defining consistently an effective potentialVeff(q,ε) driving
the deterministic part of the one-dimensional stochastic evo-
lution of the THC strength. Given the asymmetry of the pdfs,
such an effective potential would, unavoidably, be different
from the one derived in the previous set of experiments, so
that in no way we can be satisfied in terms of robustness
of the one-dimensional Langevin approach. But, if we are
able to define such an effective potential, we can deduce that
each choice of the correlation matrix for the noise in the full
system determines a specific projected effective deterministic
dynamics, which is a weaker, but maybe still useful, result.

We follow the procedure described in Sect. 2, and for all
the chosen values ofε we have thatU(q0,ε)−U(q−,ε)&1.5
andU(q0,ε)−U(q=,ε)&1.5. In Fig. 6a we present the hop-
ping ratesr(+ → −) (blue) andr(− → +) (red). We see
that both values increase monotonically withε, as stronger
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noise favours transitions. Note that, quite unexpectedly, for
ε > 7× 10−10 psu s−1/2 (beyond the range where our full
analysis is performed, not shown),r(+ → −) becomes big-
ger. By simple population algebra, this implies that the frac-
tion of states withq < 0 is larger than 1/2, even if the most
probable state is given, in all cases, byq = qref>0. In Fig. 6b
we plot the factorsG(+ → −) andG(− → +). By match-
ing the rate of transition with the correspondingG factor,
one obtains for each value ofε the effective noise intensity
εeff such that the probability distribution of the states and the
transitions statistics are compatible. As mentioned before, in
order to have a consistent picture, we need to obtain the same
value ofεeff by either using the+ → − or the− → + path.
In Fig. 6c (compare with Fig. 3c) we show thatεeff does not
scale linearly withε (or, equivalently,γ is not a constant) as
found in the symmetric case, and, much more seriously, that
there is no consistency between its value as obtained using
the statistics of the+ → − and− → + transitions. Given
the mismatch between the time-scale of the transitions and
the populations in the two basins, we cannot reconstruct a
well-defined effective potentialVeff(q,ε), so that a consis-
tent one-dimensional Langevin representation of the dynam-
ics and statistics of the THC strength as proposed in Eq. (13)
is not possible here. This can be the case if noise can effec-
tively activate non-trivial dynamical processes allowing for
a transition between the neighbourhoods of the two steady
states withq = ±|qeff|, where by non-trivial we mean that
they cannot be represented even approximately as a function
of q only.

4.3 Symmetric forcing to the full system

We now revert to the full system described at the begin-
ning of Sect. 3 and consider the case of symmetric bound-
ary conditions. By adding stochastic perturbations to the
freshwater fluxes in a similar fashion as in Eq. (11a–b), so
that Fj → Fj = εjdWj/dt with j = 1.3 in Eq. (10a–f) we
obtain the following Langevin equations for the variables
q = k(ρ1−ρ3) andQ= k(ρ1+ρ3) :

dq = q(2̃q−3/2q2/|q|−Q)dt+

kαλ(T1−T3)dt+εqdWq , (17a)

dQ= q(2kρ̃+1/2q2/|q|−Q)dt−β(F1+F3)dt+

kαλ(T̃1−T1+ T̃3−T3)dt+εQdWQ, (17b)

where the same notation as in Eq. (14a–b) has been used.
Note that, as opposed to Eq. (11), the deterministic drift term
is not odd with respect to theq→ −q transformation, since
in this case explicit temperature dependent terms are present,
so that a negative parity is realised only when the signs of
both T1 −T3 and S1 − S3 are changed. Note that, follow-
ing the same derivation as in the case of the system with 2
d.o.f. and assuming that over time-scales of interest the drift

Fig. 7. Empirical probability distribution function for the THC
strength in the full model for some selected values of symmetrically
applied noise.

of Q is negligible, we end up writing the same approximate
autonomous Eq. (15) for the THC strength under the hypoth-
esis that the system spends most time near the two determin-
istic fixed pointsq = ±|qeq|. This suggests that also in this
case we might empirically derive a well-defined effective po-
tentialVeff(q) analogous to the one obtained for the 2 d.o.f.
model if considering stochastic forcing acting on both boxes
1 and 3.

Therefore, we follow the analysis of the previous subsec-
tion, and concentrate to stochastic perturbations to the fresh-
water flux having the same strengthε1 = ε3 = ε in both hemi-
spheres. We first observe that, as anticipated, for a given
value ofε the distribution of the THC strength is flatter than
in the case of the 2 d.o.f. model (Fig. 7). In order to ob-
tain a pdf analogous to what obtained in the 2 d.o.f. case,
in the full model we need to consider a stochastic forcing
smaller by about 25 %, which suggests that the full model is,
in some sense, less stable. We will discuss this below. As
before, we select values ofε such thatU(q0,ε)−U(q=,ε)=

U(qo,ε)−U(q−,ε)&1.5 in order to be able to use Kramers’
formula as a constraint to check the consistency of our data
with the one-dimensional Langevin model. In Fig. 8a we
report the hopping rates as a function of the intensity of
the noise. The behaviour is qualitatively analogous to what
shown in Fig. 3a for the 2 d.o.f. model, but, in agreement with
the discussion above, the hopping rate between theq >0 and
the q < 0 states are consistently higher for the full model
when the same stochastic forcing is considered. In Fig. 8b
we present the factorG(+ → −)=G(− → +) introduced
in Eq. (7), which depends uniquely on the ratio between
the probability density at the two maxima and at the local
minimum for q = 0. Figure 8c, similarly to Fig. 3c, shows
the proportionality constantγ between the value ofεeff and
the value ofε̄=

√
2kβε. The parameterγ should be close

to unity in the case the projection of the dynamics onq is
“trivial” (as in the case of the 2 d.o.f. model with symmetric
stochastic forcing), and, more importantly,γ should be ap-
proximately independent ofε. In the case analysed here both
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Fig. 8. Goodness of the one-dimensional approach for the full
model.(a) Average rate of hopping between the northern and south-
ern sinking equilibriar(+ →−)= r(− →+) (black line). The the-
oretical value is shown with the red line. Data are in units of s−1.
(b) Geometrical factorG(+ →−)=G(− →+) of the hopping rate
computed from Eq. (7). Adimensional quantity.(c) Value of the pa-
rameterγ giving the ratio betweenεeff (obtained asa divided byb)
and the theoretically derived expression

√
2kβε. The value ofγ ob-

tained if considering the renormalized value (referred to the 2 d.o.f.
model) fork can be read on the right hand side scale. Adimensional
quantities.

conditions are not satisfied. The first issue points to the fact
that we need to renormalize the constants when developing
a lower dimensional projected dynamics (which is exactly
what we did when constructing the 2 d.o.f. model from the
full model). In fact, if we consider as effectivek the one con-
sidered for the 2 d.o.f. model, the values ofγ are relatively
close to 1 (check the scale on the right hand side of Fig. 8c).
More critical is the presence of a nonlinear relation between
εeff andε, which is caused by the fact that in the full model
faster modes are excited by noise and impact in a nontriv-
ial way the effective surrogate noise acting on theq variable
taken as independent.

When reconstructing fromU(q,ε) the actual effective po-
tentialVeff(q,ε) using Eq. (5), we obtain that the effective po-
tential is a function ofq only, so thatVeff(q,ε)=Veff(q) (see
Fig. 9) so that it is possible to disentangle completely the drift
term from the stochastic forcing. Moreover, such potential is
very similar to what obtained in the reduced model with 2
d.o.f., as can be seen by comparing Figs. 4 and 9. The height
of the potential barrier between the two minima is slightly
lower in the case of the full model analysed here, in agree-
ment with the argument of the destabilising feedback due
to the thermal restoring process presented by Lucarini and
Stone (2005a). This can be explained as follows: since per-
turbations in the value ofq−|qeq| are positively correlated
to perturbationsT1−T3 thanks to advection, the contribution
kαλ(T1−T3) in Eq. (17a) weakens the force driving the sys-
tem towards the nearby deterministic fixed point, thus en-
hancing its instability. Overall, the good agreement between
Figs. 4 and 9 implies that the deterministic dynamics of the
THC strength is robustly consistent between the full and re-
duced model.

Fig. 9. One-dimensional efficient potentialVeff(q) controlling the
evolution of the THC strength in the 5 d.o.f. model with symmetric
noise. The results of some numerical experiments are shown to-
gether with the analytical estimate. The results are rather similar to
what shown in Fig. 4.

5 Numerical experiments: stochastic resonance

Stochastic resonance (Benzi et al., 1982; Nicolis 1982; Gam-
maitoni et al., 1998) is an exceedingly interesting process
whereby noise amplifies the response of the system at the
same frequency of a periodic forcing. Typically, it is realised
when we consider a Langevin equation of the form:

dx=F(x)dt+Asin(ωt+φ)dt+εdW (18)

where the drift termF(x)= −dV (x)/dx derives from a
(symmetric, but necessarily so) potentialV (x) with a double
well-structure like those considered in this study. We can as-
sociate the time dependent driftG(x,t)=F(x)+Asin(ωt+
φ) to a time dependent potentialW(x,t)= −

∫
dxF(x)−

Asin(ωt +φ)= V (x)−Axsin(ωt +φ). The periodic forc-
ing modulates the bistable system, so that one stable state
corresponding to one of the two minima results to be less
stable than the other every half a period of the forcing, so
that every period the populations of the neighbourhoods of
these points are, alternatively, exponentially increased and
suppressed by a factor exp(±2A(|x= − x0|)/ε

2). As accu-
rately discussed in Gammaitoni et al. (1998), when we tune
the noise intensityε so that the inverse of the hopping rate
given in Eq. (7) for the unperturbed system is approximately
equal to half of the periodπ/ω, the system is in a condi-
tion where there is maximum probability for leaving the less
stable state into the more stable one, before, randomly, the
system switches back. In this case, the system attains a high
degree of synchronisation with the input periodic signal, so
that the output is basically a square wave with constant phase
difference with the sinusoidal forcing.

Interestingly, even if the stochastic resonance is apparently
a highly nonlinear process, it can be accurately described us-
ing linear response theory, whereby one studies the ampli-
tude of the output signal at the same frequency of the peri-
odic forcing for various values of the noise. Such amplitude,
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Fig. 10.Response to linear periodic perturbation as a function of the
background noise for five experimental settings. Case 1 and 2 are
indicative of stochastic resonance. The value of noise realising the
approximate matching conditionr(+ →−)= r(− →+)=π/ω0 is
indicated.

in the weak field limit, is proportional to the amplitude of the
periodic forcingA (Gammaitoni et al., 1998).

Along these lines, we consider the 2 d.o.f. model, and
take into account a periodic modulation to the freshwa-
ter fluxes, so thatF1 → F2 +φ1F sin(ωt) andF3 → F3 +

ψ1F sin(ωt), with symmetric background forcingF1 =F3.
Assuming that the stochastic forcing acts with equal strength
ε1 = ε3 = ε on both boxes 1 and 3, as analysed in Sect. 4.1,
we obtain that Eq. (15), which satisfactorily describes the
one-dimensional stochastic dynamics ofq, is modified as fol-
lows:

dq ≈ −2q(q2/|q|−|qref|)dt+kβ(φ−ψ)1F sin(ωt)+εqdWq , (19)

which is exactly in the form of Eq. (15). As we see, for a
given value of1F , the strength of the periodic forcing toq
depends only on the absolute value of the difference(φ−ψ),
and not separately on the values ofφ andψ . If the dynamics
of q is accurately described by a one-dimensional Langevin
equation, we expect to be able to observe the process of
stochastic resonance whenω and εq are suitably matched.
In order to test this, we set the periodω=ω0 = 2π/19 000 yr
– where the period of 19 000 yr has been chosen because it is
long compared to the internal time scale|qref|

−1
≈ 215 yr and

has paleoclimatic relevance in conjunction to Milankovitch
theory (Velez-Bechi et al., 2001; Saltzman, 2002) – choose
a moderate value for the amplitude of the sinuisodal mod-
ulation1F = 9×10−12 s−2 and study the amplitude of the
ω0 frequency component of the times series ofq as a func-
tion of ε, and create an ensemble of 100 members for each
considered setting. We can state that the phenomenology
of stochastic resonance is well reproduced if (a) we find
the characteristic peak for the response in the vicinity of a
value ofε such that the corresponding hopping rate for the
unperturbed system given in Fig. 3a is close toπ/ω0, and
(b) such response depends, for all values ofε, on (φ−ψ)

only. We refer to the scenario whereφ= −ψ = 1/2 as case
1, and the scenario whereφ = 1,ψ = 0 as case 2. Note that

the caseφ = 0,ψ = −1 is identical to case 2 by symmetry.
The results are reported in Fig. 10, with the black line corre-
sponding to case 1 and the red line corresponding to case 2.
The obtained curves for the amplitude of the response agree
very accurately, especially considering the rather small un-
certainty, and feature exactly the right shape as presented in
Gammaitoni et al. (1998). We observe a relatively broad res-
onance for values of noise comparable to those inducing in
the unperturbed system transitions with average rate similar
to the semiperiod of the forcing. Finding quite accurately the
signature of stochastic resonance is a further proof that in the
special setting of the unperturbed system considered here the
dynamics ofq is indeed quasi-one dimensional.

We want to contrast this positive outcome with what one
obtains by adding periodic perturbations of the same form
as above to an “unperturbed” state featuring stochastic forc-
ing acting on box 1 only, described in Sect. 4.2. We choose
exactly the same forcing parameters as above and repeat the
experiments using the same ensemble size. We refer to the
scenario whereφ = −ψ = 1/2 as case 3, and the scenario
whereφ = 1,ψ = 0 as case 4, and to the scenario where
φ = 0,ψ = −1 as case 5. Note that here case 4 and case
5 are not equivalent. We obtain (see Fig. 10) that in the
three cases, whereas we obtain qualitatively and quantita-
tively analogous results for the normalised amplitude of the
response of the output at the same frequency of the forcing,
the curves are distinct with high statistical significance and
differ also from what obtained for cases 1 and 2. Such dis-
crepancy would not be possible if the dynamics ofq were ac-
curately described with a one-dimensional effective potential
plus stochastic noise plus periodic forcing. The fact that the
three curves 3, 4, and 5 are not superimposed (and disagree
with 1 and 2) further supports the fact that the dynamics ofq

is not quasi-one dimensional. Nonetheless, an obvious pro-
cess of resonance (not strictly one-dimensional) is obviously
still in place.

6 Conclusions

In this work we have re-examined the classic problem of
trying to reconstruct the effective stochastic dynamics of
an observable from its time series in the special case of a
clearly bimodal empirical probability density function. This
issue is especially relevant in climatic and paleoclimatic re-
search, where it is very tempting to try to deduce the large
scale, qualitative properties of the climate system, their mod-
ulation with time, the potential presence of tipping points
through the observations of long time series of proxy data
(Livina and Lenton, 2007; Livina et al., 2009). Furthermore,
since amplifying mechanisms such as stochastic resonance
have been proposed to explain enhanced low frequency vari-
ability of the oceanic circulation as a result of slow mod-
ulations of some parameters (Ganopolski and Rahmstorf,
2002), such empirically reconstructed statistical/dynamical
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properties may be interpreted as starting points to deduce
special “sensitivities” of the climate system. Therefore, an
important question is to understand how accurate and robust
these procedures of reconstruction are.

From this work it is apparent that from the statistical prop-
erties of the time series of an observable featuring a sym-
metric bimodal pdf it seems relatively easy to construct the
corresponding one-dimensional Langevin equation by deter-
mining the drift term and the intensity of the white noise
by basically imposing a self-consistent population dynam-
ics. Assuming that the observable is a function of the phase
space variables of a stochastic dynamical systems, it is an ob-
vious temptation to interpret the obtained equation as the de-
scription of the projected dynamics for the observable, where
the impact of the other (in general, many) neglected degrees
of freedom of the system contributes to defining the effec-
tive deterministic dynamics and to creating a surrogate white
noise term. Nonetheless, if the pdf of the observable is not
symmetric, the possibility of constructing a meaningful sur-
rogate stochastic dynamics relies on the fact that one should
be able to describe consistently the hopping process and be-
tween the two attraction basins and their steady state popula-
tions.

In this work we have considered two very simple box mod-
els of the oceanic circulation (Rooth, 1982; Scott et al., 1999;
Lucarini and Stone, 2005a, b), comprising two high latitude
and a low latitude boxes with time-dependent temperature
and salinity as testbeds for these methodologies. These mod-
els are able to reproduce the bistability properties of the ther-
mohaline circulation, by featuring two possible asymmetric
circulations (one mirror image of the other) in presence of
symmetric external heat and freshwater forcings. In both
models the circulation strength is parameterised as propor-
tional to the difference between the densities of the two high-
latitude boxes. The simpler 2 d.o.f. model is suitably derived
from the full, 5 d.o.f. model by imposing a fixed temperature
for the boxes.

We first impose stochastic forcing of the same intensity
on the freshwater forcings to the two high-latitude boxes and
observe that the resulting pdf of the thermohaline circulation
strength is bimodal and symmetric. More importantly, for
both models the dynamics ofq can be accurately described
with a Langevin equation with a drift term derived from a
one-dimensional effective potential plus stochastic noise. An
excellent approximation to the true dynamics (as well as to
the hopping rates) can be obtained in an explicit form by im-
posing that the sum of the densities of the two high-latitude
boxes is a slow variable. The main difference between the
two is that in the full model the nonlinear feedbacks acting
on the variable we are neglecting alter in a nontrivial, non-
linear way the effective surrogate noise acting on theq vari-
able. In other terms, in the case of the full model a careful
tuning of the noise allows for taking care very accurately –
in a statistical sense – of the effect of all the variables we
are neglecting. Our results are obtained for a specific value

of the background freshwater forcingF1 = F3, but the fol-
lowing scaling allow to extensively generalise our findings:
q ∼ (F1)

1/2,Veff(q)∼ (F1)
3/2,εeff ∼ (F1)

3/4. Things change
dramatically when considering the case of stochastic forcing
acting only on one of the two high-latitude boxes. We tune
our experiments in such a way that, apparently, the Langevin
equation for theq variable is not altered with respect to the
previous case. Not only we obtain a non-symmetric pdf,
but, moreover, it is not possible to reconstruct an approxi-
mate but consistent stochastic dynamics for theq variable
alone. Therefore, there is no ground for achieving a satis-
factory projection of the dynamics, and a one-dimensional
Langevin equation cannot be derived.

Finally, we test the possibility of observing the mechanism
of stochastic resonance in the simplified 2 d.o.f. model by
superimposing a slow periodic modulation on the freshwater
fluxes in the two high-latitude boxes to the acting stochas-
tic forcings. Whereas in the scenario where the noise acts
with equal strength in both boxes we obtain numerically out-
puts in close agreement with the theory stochastic resonance
for one dimensional systems, thus supporting the idea that
a projected dynamics is indeed a good approximation when
attempting a description of the properties ofq, the opposite
holds in the scenario where the noise acts only on one box.
This further supports the fact that in this case the dynamics
of q is not trivially quasi-one dimensional, and transitions
occur through processes that cannot be written precisely as a
function ofq only.

Our results support the idea that deducing the approximate
stochastic dynamics for an observable of a multidimensional
dynamical system from its time series is definitely a non-
trivial operation. The reconstructed drift term and the noise
forcing depend, in general, in a non-trivial way on the inten-
sity and correlation properties of the white noise of the true
system. This implies that a “true” projected dynamics can-
not be defined. Therefore, in practical applications, it seems
tentative to assume that from the pdf of a bimodal observ-
able obtained with a given level of noise it is possible to un-
derstand how the bistability property of the full system will
change when the level of the input noise is altered. In particu-
lar, it seems difficult to be confident on obtaining information
on how the rate of transition between the two equilibria will
change and on the characteristics of tipping points. This also
suggests that recent claims of the possibility of detecting ro-
bustly early warning signals for critical transitions at tipping
points from time series as proposed in Scheffer (2008) must
be carefully checked.

A better understanding of the properties of multistable
models can be reached only by going beyond a simplified
description of the statistical properties of the observables we
are mostly interested into. In order to address these points,
we will attempt the kind of critical analysis proposed in this
paper on more complex models but still idealised models
of the thermohaline circulation, such as that considered in
Lucarini et al. (2005, 2007). We will test to what extent a
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simple one-dimensional Langevin model for the evolution of
the THC strength can be defined and in which range of the
parameters determining the boundary conditions, and how
the drift and noise terms of the Langevin model – if it can
be defined – are related to the internal parameters of the full
system. At a more theoretical level, we will try to propose ap-
proximate ways for dealing with the transitions between high
occupations regimes in multidimensional gradient flows, at-
tempting to derive a markovian description of transitions be-
tween discrete states.
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Early warning of critical transitions have been extensively used to detect abrupt changes of dy-
namical regimes. In this paper we introduce new indicators based on the extreme value statistics of
observables of the system. The indicators are based on quantitative modifications in the properties
of extremes for chaotic systems which possess extreme value laws when far from bifurcation points.
By measuring the deviation from these expected laws is possible to detect the approaching critical
transitions. Moreover, relations and connections between traditional and extreme value indicators
are explained and commented in detail. Numerical experiments have been performed on a stochas-
tic differential equation describing the motion of a particle in an asymmetric double well potential
under the effect of noise. The results meet the theoretical expectations and the example provide a
gateway for using operatively the method described in other systems or data series analysis.

I. INTRODUCTION

An astonishing variety of complex systems ranging
from finance to climate can experience abrupt changes at
which a sudden shift of dynamical regime occurs. These
so called “critical transitions” or “tipping points” can be
formally seen as bifurcations in the dynamical systems
terminology [1]. There is currently a great interest in
understanding the dynamical behaviour in the proximity
of a tipping point mainly for its importance in analysing
and forecasting events of extreme social and economic
relevance [2, 3]. To accomplish this task in the past
decades a growing interest in this topic has emerged and
many indicators of criticality have been developed to
identify early warnings of abrupt transitions to different
dynamical states: the most used indicators are based
on the modifications of the auto-correlation properties
of particular observables when the system is pushed
towards a transition, usually accompanied by an increase
of the variance and the skewness of the distribution of
the observable analysed [2–4]. Although for specific
systems such techniques successfully highlight approach-
ing tipping points, several difficulties prevent to extend
these results to general cases. In particular, for high
dimensional and complex systems featuring oscillations
and intricate bifurcation patterns, early warning signals
may be misleading. The main issue for these systems
concerns the accessibility of dynamical and geometrical
properties of the physical measure (i.e. the attractor)
in the proximity of tipping points and the difficulties
in recognizing the nature of the bifurcation involved.
Moreover, since all the early warnings indicators rely on
the knowledge of asymptotical statistical properties of
the systems, so called “false alarms” - wrongly identified
bifurcations - may arise when considering finite dataset
and model outputs [3].
In this context it is highly desirable to build early

∗davide.faranda@zmaw.de

warnings indicators which provide themselves some
estimations of dynamical and geometrical properties
of the system in the asymptotic regime so that false
alarms can be discriminated from real early warnings.
The main achievement of this paper is to introduce
a new indicator of criticality based on the extreme
value analysis which features the possibility to explore
the asymptotic properties of the system and connect
the fluctuations of maxima and minima of physical
observables to the ongoing critical transition. Hereby we
exploit the theoretical results obtained so far for extreme
values of dynamical systems to study the behaviour of
a prototypical stochastic model in the proximity of a
tipping point, showing analytically and numerically the
capabilities of the new indicators.
Although our aim is to provide a general tool to analyse
tipping points, the motivation for the research presented
here originates mainly from the analysis of the data
series of turbulent energy in the so-called plane Couette
flow, i.e. the flow of a viscous fluid between two parallel
plates, one of which is moving relative to the other [5].
In this system the control parameter is the Reynolds
number whose value determines either turbulent or
laminar flow regimes. We observed that, when the
Reynolds number approaches the threshold at which
the turbulence decays, the probability of observing a
very low minimum of turbulent energy increases. As
a consequence, maxima and minima exhibit an asym-
metric behaviour that can be quantified by applying
the tool provided by the extreme value theory. This
experimental result has been the starting point to devise
a heuristic approach for more general scenarios, which
is the subject of this paper. The results on the ongoing
analysis of the breakdown of turbulence in the plane
Couette flow will be reported in forthcoming papers.

The distribution of the largest or smallest values of cer-
tain observables has been widely studied as it is of great
interest in many practical applications (e.g. the analy-
sis of environmental extreme events). In the past years,
this interest has led to a fast development of a so-called
extreme events theory [6–9]. The traditional approach
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introduced by Gnedenko [6] is based on the analysis of
extremes obtained dividing the considered dataset into
bins of fixed length and choosing the maximum for each
bin. There, statistical inference is performed on such
a reduced dataset by considering as model the Gener-
alized Extreme Value (GEV) distribution family, which
includes, as members, the Weibull, Gumbel and Frechet
distributions, which greatly differ in terms of mathemat-
ical properties. Besides the block maxima approach, the
so called peak over threshold is also widely used to tackle
the problem of extremes. The extreme values are se-
lected as exceedances over a certain threshold, fitted to
the Generalized Pareto (GP) distribution. The asymp-
totic convergence to the GP model is then guaranteed by
the Pickands-Balkema-de Haan theorem [7, 10].

Whereas the theory has been originally designed for
the study of extremes for series of independent and
identically distributed (i.i.d.) variables, in the last
decade the existence of asymptotic laws has been proven
for maxima of observable computed on the orbits of
dynamical systems . From the first rigourous paper by
Collet [11], in the period of a few years relevant new
results have been obtained [12–17]. The starting point
of all these investigations has been associating to the
stationary stochastic process given by the dynamical sys-
tem a new stationary independent sequence distributed
according to the GEV model, and then pulling back
the obtained statistical laws to the original sequence
extracted from the dynamical system. The assumptions
necessary to observe a GEV distribution in dynamical
systems rely on the choice of suitable observables and the
fulfilment of particular mixing conditions. These results
can also be used to study extremes of stochastically
perturbed dynamical system as recently shown in [18, 19].

In order to construct robust indicators of criticality,
able to discern when the underlying system is close to a
bifurcation, from the extreme value analysis we will take
two complementary points of view:

1. The classical approach of looking at the autocor-
relation properties of the time series of the consid-
ered variable is replaced with the investigation of
the appropriateness of GEV for the extremes of the
time series: the presence of long time-correlations
in in antithesis with the fulfilment of the mixing
conditions mentioned above.

2. The search for changes in the skewness of the
bulk statistics is substituted with the analysis of
whether parametric modulations to the system lead
to changes in the qualitative properties of the ex-
tremes, i.e. whether we observe transitions among
the three kinds of distributions included in the
GEV family.

The capabilities of these new indicators will be anal-
ysed for probably the simplest conceivable dynamical
model featuring multi-stability, i.e. the overdamped 1D

motion of a stochastically forced particle in a double well
potential. The choice of this model naturally relies on
the fact that, even for complex and chaotic dynamical
systems which feature tipping points, a reduction to
the Langevin model is often attempted as it opens
the way to approaching the problem in terms of the
one-dimensional Fokker-Planck equation [20], even if one
must handle with care the construction of a surrogate,
stochastic dynamics, as discussed in [21] regarding a
relevant example of geophysical relevance. Moreover
this model can be easily explored numerically and
analytically. In future papers we will test the indicators
in complex systems arising from fluid dynamics.

This work is organised as follows: in Section 2 we
present some basic notions of extreme value theory for
independent and identically distributed variables and dy-
namical systems. In Section 3 we introduce the new indi-
cators and describe their properties. Section 3 is devoted
to explaining the theoretical and numerical results for
the motion of a particle in an asymmetric double well
potential under the effect of noise. Finally in Section 4
we review the results obtained for the system analysed
and propose an algorithm to extend the analysis to other
dynamical systems or time series drawing our conclusions
and more suggestions for further work.

II. ELEMENTS OF EXTREME VALUE
THEORY FOR DYNAMICAL SYSTEMS

A. Traditional Extreme Value Theory

Gnedenko [6] studied the convergence of maxima of
i.i.d. variables

X0, X1, ..Xm−1

with cumulative distribution (cdf) F (x) of the form:

F (x) = P{am(Mm − bm) ≤ x}

Where am and bm are normalizing sequences and Mm =
max{X0, X1, ..., Xm−1}. Under general hypothesis on
the nature of the parent distribution of data, it has been
shown that the distribution of maxima, up to an affine
change of variables, converges in the limit for m → ∞
to a single family of generalized distribution called GEV
distribution with probability density function:

hG(x;µ, α, κ) =
1

α
t(x)κ+1e−t(x) (1)

where

t(x) =

{(
1 + κ(x−µα )

)−1/κ
if κ 6= 0

e−(x−µ)/α if κ = 0
(2)
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which holds for 1 + κ(x − µ)/α > 0, using µ ∈ R (lo-
cation parameter) and α > 0 (scale parameter) as scal-
ing constants in place of bm, and am [7, 19]. κ ∈ R is
the shape parameter also called the tail index and dis-
criminate among the classical EVLs: when κ → 0, the
distribution corresponds to a Gumbel type ( Type 1 dis-
tribution). When the index is positive, it corresponds to
a Fréchet (Type 2 distribution); when the index is neg-
ative, it corresponds to a Weibull (Type 3 distribution).
The type of distribution observed is very important as
it discriminates the kind of tail decay of the parent dis-
tribution. A Gumbel distribution is typically observed
when the parent distribution features an exponential tail,
whereas Fréchet and Weibull laws are typical associated
to power law tails: a Weibull is usually observed when
the tail is limited above by a certain threshold whereas a
Fréchet when the tail is limited below. In order to com-
pare the properties of maxima and minima distributions,
they should both be threaten as they correspond to right
or left tails of the parent distribution. In the forthcom-
ing analysis, we will always change sign to the minima
distribution [22].
Gnedenko’s results are related to a precise way of select-
ing extremes, the so called block maxima approach: it
consists of dividing the data series of length k of some
observable into n bins each containing the same number
m of observations, and selecting the maximum (or the
minimum) value in each of them [22]. The extremes are
then fitted to the GEV distribution. In Section 4.A we
will give a detailed description of the inference method
used to extract the parameters of the EVLs.

B. Extremes of Dynamical Observables

Let us consider a dynamical system (Ω,B, ν, f), where
Ω is the invariant set in some manifold, usually Rd, B is
the Borel σ-algebra, f : Ω→ Ω is a measurable map and
ν a probability f -invariant Borel measure.
In order to adapt the extreme value theory to dynam-
ical systems, we will consider the stationary stochastic
process X0, X1, ... given by:

Xm(x) = g(dist(fm(x), ζ)) ∀m ∈ N (3)

where ’dist’ is a distance on the ambient space Ω, ζ is
a given point and g is an observable function. As we said
above, we will use three kinds of observables gi, i = 1, 2, 3,
defined as:

g1(x) = − log(r) g2(x) = r−β g3(x) = C − rβ (4)

where r = dist(x, ζ), C is a constant and β > 0 ∈ R.
Using these observables we can obtain convergence to
the type 1,2,3 distribution if one can prove two sufficient
conditions called D2 and D′ that the dynamical system

obeys. These conditions require the presence of a suf-
ficiently fast decays of correlation for the stochastic dy-
namical sequence and limit the possibility of having clus-
tered extremes. Another way to approach the problem
of extremes for the gi observables relies on studying the
statistics of first return and hitting times, which provide
information on how fast the point starting from a certain
initial conditions return in its neighbourhood, see the
papers by [13] and [23]. They showed in particular that
for dynamical systems preserving an absolutely continu-
ous invariant measure or a singular continuous invariant
measure ν, the existence of an exponential hitting time
statistics on balls around ν almost any point ζ implies
the existence of extreme value laws for one of the observ-
ables of type gi, i = 1, 2, 3 described above. The converse
is also true, namely if we have an extreme value law which
applies to the observables of type gi, i = 1, 2, 3 achieving
a maximum at ζ, then we have exponential hitting time
statistics to balls with center ζ. Recently these results
have been generalized to local returns around balls cen-
tred at periodic points [15].
Since it is difficult to check the exponential decay of
hitting time statistics as recurrences are hard to tackle
analytically or numerically in more than three dimen-
sions, it is highly desirable to connect the theory ex-
plained above to a more straightforward dynamical indi-
cator computable for a wide class of observables as well
as in high dimensional dynamical systems. A key ob-
servation is that condition D2, introduced in its actual
form by Freitas-Freitas [12], could be checked directly by
estimating the rate of decay of correlations for Hölder
observables. Starting from this observation, Aytaç et
al. proved the existence of EVLs for dynamical systems
whose correlations decay is at least summable [18]. In
the following discussion, instead of checking on the mix-
ing conditions D2 and D′, we will refer exclusively to
the results described in [18] since correlations or auto-
correlations functions are well known tools in the study
of dynamical systems properties and they are extensively
used to model critical transitions.
In [24] and [25] we have verified the convergence to the
classical EVL and the relations wit the GEV family from
both an analytical and numerical point of view in a wide
class of mixing low dimensional maps. Using gi observ-
able functions we have shown that GEV parameters in
mixing maps can be written in terms of m (or equiva-
lently n) and the local dimension of the attractor (ζ):

For g1 type observable:

α =
1

δ(ζ)
µ ∼ 1

δ(ζ)
ln(m) κ = 0 (5)

For g2 type observable:

α ∼ n−
β
δ(ζ) µ ∼ n−

β
δ(ζ) κ =

β

δ(ζ)
(6)

For g3 type observable:
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α ∼ n
β
δ(ζ) µ = C κ = − β

δ(ζ)
(7)

In [26] we have clearly shown that a GEV distribution
can be fitted only if the mixing conditions are fulfilled
whereas other kind of distributions not belonging to the
GEV family are observed for quasi-periodic and periodic
motions. The theory has been extended to stochasti-
cally perturbed dynamical systems in [18]: in particular,
systems whose deterministic dynamics is governed by a
finite number of fixed points possess EVLs when per-
turbed with additive noise. In these cases, the extreme
value parameters depend on the phase space dimension
instead on the local dimension as the noise help the per-
turbed system to explore the neighbour of a fixed point
in a ball which scale exactly with the dimension of the
phase space. In [19], the authors define some guidelines to
effectively observe such EVLs in numerical simulations,
pointing out the range of noise to be used. These results
will be particularly useful for describing the behaviour of
the stochastic differential equation whose deterministic
part is driven by a double well potential dynamics which
will be extensively analysed in Section 4.
In the next section we will describe what we expect to
happen in a general case. The notations will refer to a
deterministic dynamical systems which feature at least
two disjoint attractors but - under the conditions pre-
viously described - the conditions are valid also in the
stochastically perturbed case.

III. TIPPING POINTS AND EXTREMES

Let us suppose that f : Ω → Ω is a measurable map
with ν (f -invariant Borel measure) its physical measure.
In fact, since a dynamical systems may have several
different invariant measures, we will always refer to
the physical measure as the one arising naturally in
any numerical simulations. We will also assume that
for a given initial condition x0, the physical measure
ν(x0) is unique but it is not the same for all the initial
conditions in the phase space, i.e. there are at least
two disjoint attractors. Let us perturb the dynamics
introducing a parameter λ such that f = f(x0, λ) and
ν = ν(x0, λ). We define λc as the critical value of λ such
that if 0 ≤ λ < λc varies smoothly, the same happens
also to the physical measure ν(x0, λ) but whenever
λ ≥ λc the system undergoes a bifurcation such that
the corresponding physical measure cannot be smoothly
obtained by ν(x0, λ < λc) and corresponds to another
disjoint attractor of the phase space. For f(λ < λc),
the system has a summable decay of correlations and
therefore the block maxima of the observables of the
form gi(·) asymptotically obeys one of the Extreme value
laws described above. We have already mentioned in the
introduction that the behavior of the system changes
in the limit λ → λc as the correlations in the system

increases [2, 27]. Therefore, if the decay of correlations
gets slower and slower the order of extreme statistics -
in practise, the minimum length of our experimental bin
from which we extract the maximum - needed to observe
convergence to the predicted EVLs becomes higher.
In the limit, the bin length needed to decorrelate the
data tends to infinity and this prevents from obtaining
EVLs. At finite time, this effect gives rise to increasing
deviations from the theoretical behaviour that can be
explored numerically whenever the asymptotic expected
values for µ, α and κ are known. This condition is easily
met when dealing with systems whose physical measure
is absolutely continuous with respect to Lebesgue. In
this case the EVL parameters given in Eqs. 5-7 only
depend on the phase space dimension, since the physical
measure of the system is absolutely continuous. For
stochastically perturbed dynamical systems this is also
true provided that we choose a suitable noise amplitude
as explained in [19]. Moreover, once found the bin length
needed to obtain the asymptotic results for λ such that
in the perturbed system we do not observe any critical
transition, we can fix it to study the convergence to
EVLs when approaching λc.

In high dimensional systems, the theoretical frame-
work described above is still valid even though it may
be difficult to perform numerical simulations and control
the variables in the phase space. In this case, critical
transitions are highlighted by specific physical observ-
ables that experience abrupt changes when the system
crosses a tipping point. These observables undergo
greater amplitude deviations in the direction of the
state they are destined to shift to, than in the opposite
direction, often showing an increase in the skewness of
the distribution. Recently, the skewness increase near
a tipping point has been proposed as an early warning
indicator by Guttal [28]. However, the method does
not allow for having a quantitative estimation of the
threshold value to be recognized as λc. An extreme value
analysis on the maxima and on the minima of the distri-
bution is capable to overcome this problem and highlight
the critical transition by providing a quantitative way
to determine the value of λc. Let us call the physical
observable φ, for λ < λc, the extreme fluctuations of the
observable are bounded in the direction of the minima
and of the maxima giving rise to a Weibull distribution
typically observed when fluctuations are bounded by an
upper threshold. Instead, when λ → λc the fluctuations
feel the presence of the other attractor in the direction
of the state it is destined to shift to and this is reflected
by a change in the extreme distributions from a Weibull
one to a Gumbel one. This mechanism also allow to un-
derstand in which direction the transition will take place
if the goal is to use the early warnings in a predicting way.

The critical indicators introduced so far using the
EVT results can be divided into two classes: dynami-
cal indicators based on the divergence of the classical
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EVLs in the proximity of tipping points for the max-
ima of gi i = 1, 2, 3 and physical indicators based on
the changes in the distributions of maxima and “reversed
minima” of a certain relevant physical observable φ near
the critical transitions. In the next section we will show
an example in which the behaviour for the critical indica-
tors introduced in this section can be derived analytically
and observed numerically, defining guideline for the ap-
plication in other systems in Section 5.

IV. A CASE STUDY

The model considered in the following analysis is
widely used for modelling several natural phenomena fea-
turing a bistable behaviour. It consists on the following
stochastic differential equation (SDE):

dx = −V ′(x)dt+ εdW, (8)

under the effect of the potential V (x) = 1
4x

4 − ax2 + cx
with a, c > 0. The potential is represented for some spe-
cific values of the parameters a and c in Fig. 1. The
stochastic forcing consists of a Wiener process W whose
amplitude is modulated by the parameter ε > 0. By let-
ting ε = 0 the system is completely deterministic and fea-
tures two stable fixed points (x̄1 < 0 and x̄2 > 0 ) and one
unstable fixed point. It is trivial to check that extremes
of any observables extracted from the deterministic dy-
namics do not obey any of the classical EVLs. Instead, as
soon as noise is switched on by setting a non-zero stochas-
tic forcing, the physical measure becomes absolutely con-
tinuous with respect to Lebesgue so that, starting from
any initial conditions x0, asymptotic EVL exists at any
point ζ. In fact, when c is small, the probability distri-
bution for the variable x can be computed by solving the
Fokker Planck equation and considering a steady solu-
tion [29]. The result is obeyed in general and it is known
as the Boltzman factor:

ρε(x;x0 ' x̄2) = Cε exp

{
−2V (x)

ε

}
(9)

When also the effect of the linear term is considered,
the behaviour of Eq. 8 can be understood by computing
the mean exit time for the basin of attraction of x̄2 > 0
as in [30]:

〈τ(x̄2)〉 =
π

23/2a
exp

(
2a2

ε2

(
1− 4c

(2a)3/2

))
. (10)

while the mean exit time of the basin of attraction of x1
is obtained by changing c to −c.
For c = 0 the mean exit time from the negative and
positive basin are the same. Instead for c > 0 , fixing the
initial condition in x0 = x̄2, we notice immediately that

the mean exit time decrease sensibly when 4c
(2a)3/2

→ 1.

Once fixed 0 < ε � a, the average exit time can be
controlled by modulating c.

Let us now analyse the behaviour of the dynamical
indicators described in the previous section when c is
changed. When Eq. 9 holds, the indicators converge
towards the EVL as described in Eqs. 5-7 with δ(ζ) = 1
for all ζ since it has been proven for the double well sym-
metric potential that the correlation decay is a stretched
exponential ( see Eqs. 47,48 in [31]) when noise intensity
is low and a local equilibrium approximation is used.
As pointed out in the previous section, such a decay
of correlations is enough to prove that gi extremes
have classical EVLs as proven by [18]. Instead, when
〈τ(x̄2)〉 → 0, the correlations decay becomes slower and
slower (compare Fig. 4 and Fig. 5 in [31]). Extremes
may still posses a classical EVLs but it becomes virtually
impossible to observe in a finite time series: this points
at the importance of looking not only at the asymptotic
statistics of processes, but also at the pace at which the
asymptotic behaviour is obtained.

As physical indicator we simply examine the maxima
and reversed minima distribution of φ(x) = x which here
represents the position of the particle in the right well of
the potential V (X) being the initial condition x0 = x̄2.
We remind that in a general case the analysis can be
carried out analysing the series of any relevant observ-
ables of the systems whose expectation value is different
in the two basins of attraction. When c → 0, ε � a, an
harmonic expansion of the potential around x̄2 holds
and the particle is confined in both the direction of
the minima and the maxima. In terms of extremes
distributions we observe in both cases a Weibull type
for the reasons described in the previous section. For
increasing c the harmonic expansion of the potential
does not hold any more and we have to consider the full
expression of V (x): the maxima are still bounded by
the quartic term but, towards the minima, the particle
“feels” the presence of the other well experiencing a
change of the distribution from Weibull to a Gumbel
type.

A. Numerical experiments

The numerical experiments, performed on the one
dimensional SDE described in Eq. 8, are devised to
follow exactly the theoretical set-up described in the
previous sections. An ensemble of 100 realisations of
the systems is produced starting from x0 = x̄2(c = 0),
once set the noise amplitude ε = 0.5, dt = 0.1 under the
potential V (x) = 1/2x4 + 1/2x2 + cx represented in Fig.
1. For each realisation, n = 1000 extremes are selected
with two different bin length: m = 1000,m = 2000 -
for a total number of iterations s = 106 and s = 2 · 106
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respectively - in order to show that the method work
independently of the choice of m provided that is large
enough to guarantee convergence when c = 0. Approach-
ing the critical transition, whenever the particle falls in
the left well we interrupt the realisation reinitialising the
initial condition x0 counting, among all the realisations,
the number of transitions experienced which provides
itself an indication on how likely a transition will be
experienced during the time interval considered. Even
if we expect our indicators to be effective as soon
as transitions are observed, the reinitialisation helps
in studying the behaviour of the indicators in the
interval of c values for which the jump to the other
basin of attraction is probable but not certain. This
may help whenever only a realisation of the system
is considered or when dealing with experimental data set.

The inference procedure follows [32, 33] where the
authors have used a L-moments estimation as it provides
reliable values for the GEV parameters even when the
cdf corresponds to fractal or multi fractal measures [34].
In fact, since the nature of the extremes distributions
is unknown when approaching the tipping points, this
procedure is more reliable than the Maximum Likelihood
Estimation (MLE), which is well defined only if the
underlying physical measure is absolutely continuous,
as described in [24]. Nonetheless, we tested both the
inference methods founding comparable results. The
L-moments inference procedure does not provide any
confidence intervals unless these are derived with a
bootstrap procedure which is also dependent on the data
sample size [35]. The MLE, on the other side, allows for
easily compute the confidence intervals with analytical
formulas [36] so it may be preferred if only a realisation
of the system is available.

Let us first analyse what happen for the dynamical
indicators for which results are shown in Fig. 2 where
the shape parameters κ for the gi observable are dis-
played against the values of c. The left plots correspond
to the case m = 103, the right ones to the case m = 104,
β = 1/3. Substituting the value of the parameters
chosen for the simulation in Eq.10, the exponential
term vanishes when c → 0.25 = ccrit. Nonetheless, the
value of c for which the system experiences at least one
transition from one basin of attraction to another and
a reinitialisation from the initial condition is needed
is about ccrit ' 0.21 in both the experiments. The
difference between the theoretical and experimental
value of ccrit is due to the fact that the noise has a
finite size. The divergence is far more evident for the
observable g1 and g3 whereas it seems slower for the
g2. This is due to the different weight assigned by g2
to the minimum distances: in fact, with respect to the
observables g1 and g3, g2 weights more the points which
come closer to ζ. Since spurious extremes are located
relatively far away from ζ, they do not contribute
sensibly to the divergence of the shape parameter of g2.

This asymmetry with respect to the other observables
may be removed by choosing a smaller β so that farther
extremes are weighted more. Repeating the experiment
setting β = 1/10 for g2 we obtain an estimation of
ccrit consistent with the other observables. Repeating
the experiment setting β = 1/10 for g2 we obtain an
estimation of ccrit consistent with the other observables.
a way As expected from the theory, the indicators for
the three observable behave in a similar way and they
diverge approaching ccrit. The divergent behaviour
appears at lower values of c in the case m = 1000 with
respect to the other case. In fact, by stretching the bin
length the problem of lower decay of correlations appears
at higher c than in the case m = 1000 as we improve
the convergence by selecting more “authentic” extremes.
Encouragingly, also in the m = 2000 experiment, the
critical transition can be highlighted well before the
probability of jumping to the other attracting states
is higher than the 20%. From this example it is clear
that is impossible to univocally define a threshold that
indicates the tipping point. This is an intrinsic problem
of the critical transitions in systems driven by the noise
and it is directly related to the time scales on which we
observe our system. Therefore the divergence obtained
by the use of different gi should be critically analysed
to detect the approaching tipping point. Instead, in
a modelling framework, one can test the system’s
behaviour with changing levels of noise. As discussed
in [21] when looking at average transitions rates, in a
non 1D dimensional system, one should expect the same
scaling properties of ccrit and ε is the same as in the
simple 1D model analysed here.

The results for the physical indicators are shown in
Fig.3. The upper plots represent the shape parameter
for the maxima of φ(x) = x, the middle plot the same
but for the reversed minima whereas the lower plot is
the same of Fig. 1 repeated here for convenience. The
set-up is exactly the same as for the dynamical indica-
tors. In this case, the MLE procedure always succeed
and what we observe is a change in the type of distri-
bution only in the direction of the minima. Remarkably,
the transition happens at different c values for the two
different cases. This is explainable by observing that an
increase the bin length, the probability of observing a
very low minimum within a single bin increases and this
reflects in the overall distribution. In the case m = 2000
we observe even a Fréchet law but for the values of the
system for which the system has experienced a critical
shift at least in the 20% of the realisations. In this case
it seems indeed possible to define ccrit as the value for
which the GEV distribution of the minima or of the max-
ima changes sign. For more CPU demanding experiments
or for experimental datasets an ensemble of realisations
is usually unavailable. In these cases the switching be-
tween different types of distribution for only the minima
- or the maxima - may be still interpreted as a signal of
an approaching tipping point using confidence intervals
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as uncertainty for the parameters instead of the standard
deviation of the sample. This is exactly what we did for
analysing the data of the turbulent energy in the plane
Couette flow and will be reported elsewhere.

V. FINAL REMARKS

This paper has addressed the problem of using
extremes statistics to define robust indicators for ap-
proaching tipping points of dynamical systems. The
indicators have been grouped into two categories:
dynamical indicators and physical indicators. For the
formers, by knowing some properties of the physical
measure it has been possible to identify the asymptotic
EVLs when the system is well away from bifurcation
points and thereby detect approaching tipping points
by the divergence from the expected EVLs. Similarly,
for the physical indicators built up using extremes of
relevant observables of the system, a comparison between
maxima and reversed minima asymptotic EVL param-
eters provide a straightforward way to identify critical
transitions. From the numerical results, described in
the previous section, we suggest some guidelines to
implement the indicators presented in an algorithmic
way as described in Fig.4:

• The dynamical indicators are mainly devised for
applications in low dimensional systems as the tra-
jectories must be explicitly computed. For de-
terministic dynamical systems the local dimension
should be known at the point ζ whereas for stochas-
tic dynamical systems the asymptotic EVLs depend
only on the phase space dimension. The algorithm,
represented schematically in the upper panel of Fig.
4, begins by setting λ = 0 and the computation of
the length of the series s needed to obtain theo-
retical parameters consistent with the asymptotic
EVLs. Once s is determined, λ is increased and the
fitting procedure repeated until the GEV parame-
ters diverge from the theoretical expected one. The
critical λ may be recognized when the experimental
parameters are not consistent with the theoretical
ones.

• The physical indicators algorithm is described in
the bottom panel of figure 4. It can be applied to a
series of observables φ(x) originating from dynami-
cal systems or to an experimental dataset. The first
step, as in the previous case, is to chose a suitable
s in order to obtain a Weibull law for maxima and
reversed minima of φ(x) in the unperturbed sys-
tem. Once the length of the data series s is fixed,
the critical λ is the one for which the shape param-
eter of the distribution either of the minima or of
the maxima changes sign - provided that the other
remains negative.

The extreme values indicators present some noticeable
advantages with respect to the indicators commonly used
to highlight critical transitions: the knowledge of the
asymptotic EVLs provide itself a robust indication of the
order statistics needed to profit from an extreme value
analysis. In other terms, we have the exact statistical
model to conform to (under given conditions on the
dynamical system’s properties), and we can correctly
infer that if the statistics does not obey the GEV model,
then the conditions are not obeyed. This gives a much
stronger mathematical framework to our analysis than
in most previous investigations. In many applications
this information is not available and this cause the
identification of early warning signal as false tipping
points. For the physical indicators, the interesting
intuition that the skewness of the distribution changes
when approaching the transition [28] can be related to
modifications in the EVLs quantifiable with a change of
sign of the shape parameters corresponding to a different
type of extreme value distribution. Clearly, results will
improve choosing observables whose values change more
in percentage crossing the tipping point. The strict
connection between the dynamical indicators and the
recurrences in a point suggest that we are able to high-
light critical transitions only looking at the behaviour of
the systems in the neighbour of a specific point ζ which
can be located in any point of the attractor. This could
help in all the situations for which the dynamic may
be better represented or analysed in a sub-domain of
the phase space. Moreover these indicators themselves
provide interesting information on events which happen
with very small probability but that are usually relevant
in ecosystems, climate and financial models. Certainly
the methods based on extreme value statistics require
a great availability of good quality data and/or the
possibility to perform time consuming simulations
capable to extract authentic extremes. This problem is
especially relevant for applications in climate science and
in finance since the models involved are very demanding
in terms of CPU time and long-term data availability is
poor. However, such data will be more and more avail-
able in the next future and not only for simplified models.

The numerical tests, carried out on a SDE represent-
ing a material point in a double well potential, exploit
the possibility of operatively using the method described
in practical applications. Although the results meet the
theoretical set-up and provide a net description of the
tipping point, it is indeed evident that other tests should
be carried out to assess the general validity of this ap-
proach. Since the statistical tools used to study extreme
values are commonly distributed with scientific software,
the algorithm can be easily checked and compared to
other methods. Our aim is to test the indicator on com-
plex systems arising from fluid dynamical studies which
feature tipping points whose nature remain not well un-
derstood and on other theoretical low dimensional mod-
els. One must bear in mind that, as discussed in [21],
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great caution must be paid when trying to extend con-
siderations valid for 1D models onto higher dimensional
systems: the operation of defining a 1D effective pro-
jected dynamics is far from being trivial.
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FIG. 1. Potential V (x) = 1/2x4 + 1/2x2 + cx for different values of parameter c.
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FIG. 2. Extreme value shape parameter κ vs the potential asymmetry parameter c for an ensemble of 30 trajectories starting
in x0 = x̄2 of the system described in Eq. 8. (a): g1 observable, (b): g2 observable with β = 1/3, (c): g3 observable with
β = 1/3, C = 1, (d): number of runs for which the particle jump at least once in the left% well. Left: n = 1000, m = 1000.
Right: n = 1000, m = 2000. The errorbars represent a standard deviation of the sample, the red bars represent theoretical
expected parameters for c = 0 case.
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FIG. 3. Extreme value shape parameter κ vs the potential asymmetry parameter c for an ensemble of 30 trajectories starting
in x0 = x̄2 of the system described in Eq. 8. (a): maxima for the observable φ(x) = x (b): reversed minima for the observable
φ(x) = x; (c): number of runs for which the particle jump at least once in the left% well. Left: n = 1000, m = 1000.
Right: n = 1000, m = 2000. The errorbars represent a standard deviation of the sample, the red bars represent the Gumbel
distribution (κ = 0).
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FIG. 4. Schematic representation of the numerical procedure to be used to infer the critical transition happening at λ = λc.
Upper panel: dynamical indicators. Lower panel: physical indicators
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Conclusions

The scientific material presented in this work of thesis highlights the pos-

sibility of using the Extreme Value Theory as a powerful tool to under-

stand geometrical and dynamical properties of low dimensional dynamical

systems. By observing for the first time the emergence of EVLs for dynam-

ical systems, we have practically shown which order of statistics is required

to observe the asymptotic laws. The investigations carried out have always

supported theoretical results by the direct verifications of them through nu-

merical experiments devised to exactly follow the proofs of the theorems.

The simulations have supported conjectures that produced new theoretical

advancements hard to achieve starting from scratch with a pure theoretical

set-up. In particular, the possibility of extending results initially devised for

absolutely continuous measures to singular continuous measures is the gate-

way for applying the theory in geophysically relevant systems. The material

presented for the extreme value theory allows for considering the parame-

ters related to the EVLs as reliable indicators for dynamical systems. It is

clear that an intimate connection exist among all the indicators introduced

through the papers. They somehow resemble musical instruments: even if

any object that produces sound can serve as a musical instrument, only few

of them are used to reproduce a particular orchestral partition. In a similar

way, several dynamical indicators can be constructed using the information

provided by the knowledge of the trajectory but only few of them provide

real insight into the dynamics of the system analysed.
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It is evident that the results presented are not exhaustive and have now to

be tested for complex dynamical systems such as the ones currently used

in the study of climate or meteorology. In this case the amount of CPU

time needed for a meaningful statistics of extremes is enormous since a large

number of extrema, each of them representing a proper extreme value, is re-

quired. Whereas for low dimensional systems the computational cost of pro-

ducing such long orbits is affordable with the capabilities of a standard PC,

when high dimensional models are used, having the computer time needed

to provide sufficient data becomes a crucial issue. Appropriately choosing

the physical system to analyse becomes relevant since it has to feature an

interesting dynamic behaviour, coexistence of stable and unstable trajec-

tories, but it has to produce time series long enough to permit a robust

inference of the extreme value statistics. In this respect, our attention has

now been focussed on the study of fluid systems that display laminar and

turbulent regimes with a coexistence of both regimes under certain particu-

lar conditions controlled by the Reynolds number and more specifically on

plane Couette flow [52]. We are currently carrying on experiments in this

direction and we hope that the results contained in this thesis will arouse

more and more interest in application to geophysical systems. In fact, even

if extreme value theory is extensively used in the analysis of climate-related

dataset, due to the intrinsic computational difficulties, there is still an evi-

dent lack of estimation of robust extremes from the output of climate models.

The scientific results presented in this dissertation will be part of the book

”Extremes and Recurrence in Dynamical Systems“, edited by Wiley and

written together with Valerio Lucarini, Jeroen Wouters (U. Hamburg, Ger-

many); Jorge Freitas, Ana Moreira Freitas (U. Oporto, Portugal); Mark Hol-

land (U. Exeter, UK); Matthew Nicol (U. Houston, USA); Mike Todd (U.

St. Andrews, UK); S. Vaienti (U. Toulon, France). The book will present a

common perspective on recent advances in the theory of extreme values, aris-

ing from the investigation of dynamical systems. Hopefully it will support
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further investigations in this field and in geophysically relevant systems.
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Abstracts

Abstract (english)

Nowadays, it is becoming clearer and clearer that, to advance in the un-

derstanding of complex natural phenomena, a deeper understanding of the

dynamical properties of complex systems is needed. The results contained

in this dissertation try to give a methodological and practical way for under-

standing relevant properties of dynamical systems by applying and devising

new dynamical indicators. These indicators mainly rely on the results ob-

tained for the so called Extreme Value Theory that can be used to deduce

general and local properties of the physical measures associated to the tra-

jectories in the phase space.

Abstract (german)

Heutzutage wird es immer deutlicher, dass nur ein tieferes Verständnis der

dynamischen Eigenschaften komplexer Systeme, das Verständnis komplexer

natürlicher Phänomene verbessern kann. Die Ergebnisse dieser Disseratation

geben einen methodischen und praktischen Zugang mittels der Ausarbeitung

und Anwendung neuer dynamischer Indikatoren, um relevanten Eigenschaften

dynamischer Systeme zu verstehen. Diese Indikatoren beziehen sich hauptsächlich

auf Erkenntnisse der sogenannten Extremwerttheorie, welche benutzt wer-

den können um allgemeine und lokale Eigenschaften physikalischer Maße der

Bahnen im Phasenraum abzuleiten.
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