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1. Introduction

This first chapter introduces relevant definitions related to diffusion processes in Rd
and notions from nonparametric statistics and empirical process theory. For Section
1.1, the main references are Stroock and Varadhan (1979), Revuz and Yor (1999),
Ledoux (2000) and Bakry (2008). Main sources for Section 1.4.1 are Tsybakov (1998),
Nussbaum (2006) and Tsybakov (2009), and for Section 1.4.2, we refer to Chapter 14
in Ledoux and Talagrand (1991) and the books of van der Vaart and Wellner (1996)
and Dudley (1999), respectively.

1.1. Diffusion processes

Diffusions present a particularly important class of stochastic processes. There is a long standing
theoretical interest in these processes as illustrated, for example, by the seminal books by Itō
and McKean (1965) and Stroock and Varadhan (1979). In addition, diffusions are of substantial
practical importance as they can be used to model many natural phenomena arising in biology,
physics, or mathematical finance. Loosely speaking, a diffusion is a continuous Markov process
which is characterized by its local infinitesimal drift b and variance a. At a more rigorous level,
assume that a : Rd → Sd and b : Rd → Rd are Borel measurable maps, with Sd denoting the
set of symmetric non-negative definite d× d real matrices. Let A be the following second-order
differential operator associated with (a, b),

A := 1
2

d∑
i,j=1

aij(·)
∂2

∂xi∂xj
+

d∑
i=1

bi(·) ∂

∂xi
, (1.1.1)

where, for any g : Rd → Rd, gj denotes the j-th component, j ∈ {1, . . . , d}. Let C∞c (Rd) denote
the class of all infinitely differentiable functions on Rd with compact support.

Definition 1.1.1 (Revuz and Yor (1999), Definition VII.2.1). A Markov process X, defined on
a filtered probability space

(
Ω,F , (Ft)t≥0,Px

)
, with state space Rd is called a diffusion process

with generator A if it has continuous paths and if, for any x ∈ Rd and any f ∈ C∞c (Rd),

Exf (Xt) = f(x) + Ex
(∫ t

0
Af (Xu) du

)
,

where Ex denotes expectation under the initial value x at time t = 0. The diffusion X thus
defined has diffusion coefficient a and drift b.

Diffusions appear in many different situations, and depending on the context, it might be con-
venient to emphasize different aspects. Classically, a diffusion is described as a strong Markov
process associated with a Markov semigroup with a specific infinitesimal generator. The Itô
approach is to view it as a strong solution of an (Itô) stochastic differential equation (SDE),
and Stroock and Varadhan advocate the approach to diffusions as solutions of the corresponding
martingale problem. The topic of this thesis are two specific questions related to nonparametric
estimation theory and weak convergence properties of diffusion processes in Rd, namely

• sharp adaptive estimation of the drift of a diffusion process, given as a solution of an Itô
SDE, from continuous-time observations, and
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1. Introduction

• the formulation of (necessary and sufficient) conditions for uniform central limit theorems
for ergodic diffusions, thus providing an extension of the classical central limit theorem for
additive functionals of continuous Markov processes.

While the first question is concerned with diffusions arising as solution of some Itô SDE, the
second question will be dealt with by means of Markovian semigroup theory. Before we turn to
some further explanation of the two questions, let us briefly introduce the respective frameworks
and some basic assumptions.

1.1.1. Diffusions and Itô processes

It is beyond the scope of this thesis to treat multidimensional diffusion processes in full genera-
lity, and it is also common practice to restrict attention to the class of diffusion processes which
can be described by stochastic differential equations. In the sequel, we will deal exclusively with
homogeneous diffusions.

Definition 1.1.2 (Stroock and Varadhan (1979), Section 4.3). Let
(
Ω,F , (Ft)t≥0,P

)
be a

filtered probability space, and let X : Ω → Rd, a : Ω → Sd and b : Ω → Rd be locally bounded
progressively measurable functions. If, for each (t, q) ∈ [0,∞)× Ω and any f ∈ C∞c (Rd),

f (Xt)−
∫ t

0
(Af) (Xu) du

is a martingale relative to (Ω,F ,Ft,P) for t ≥ 0, then X is called an homogeneous Itô process
on
(
Ω,F , (Ft)t≥0,P

)
with covariance a and drift b, and we write X ∼ Id(a, b).

Itô processes can be expressed as stochastic integrals. Let W be an (Ft)-Brownian motion,
defined on a probability space

(
Ω,F , (Ft)t≥0,P

)
, and let σ : Ω → Rd×d and b : Ω → Rd be

locally bounded progressively measurable functions. Any process X satisfying

Xt −X0 =
∫ t

0
σ (Xu) dWu +

∫ t

0
b (Xu) du, t ≥ 0, (1.1.2)

is an Itô process with covariance a(·) = σσt(·) and drift b(·); cf., e.g., Theorem 4.3.8 in Stroock
and Varadhan (1979) or Proposition VII.2.6 in Revuz and Yor (1999). Conversely, if X ∼
Id(a, b) on (Ω,F ,Ft,P), then there exist a predictable process σ and a Brownian motion W ,
possibly on an enlargement of the probability space, such that (1.1.2) holds (see Theorems 4.5.1
and 4.5.2 in Stroock and Varadhan (1979) or Theorem VII.2.7 in Revuz and Yor (1999)).

1.1.2. Diffusions and Markovian semigroups

Let (E,B(E)), E ⊆ Rd, be a Borel measurable space, and let X = (Xt)t≥0 be an E-valued
Markov process with invariant probability measure µ. Its transition semigroup is denoted
(Pt)t≥0, acting on the bounded measurable functions f on E by

Ptf(x) =
∫
E
f(y)pt(x, y)dy, x ∈ E, (1.1.3)

where pt(·, ·) are the corresponding transition densities. Denote the center of the semigroup by
B0, that is,

B0 :=
{
f ∈ C0(Rd) : ‖Ptf − f‖∞ → 0 as t→ 0

}
,

where C0(Rd) is the space of continuous functions f : Rd → R with f(x) → 0 as x approaches
the boundary of E. The domain DA of the infinitesimal generator A of (Pt)t≥0 is defined as the

2



1.1. Diffusion processes

set {
f ∈ B0 :

∥∥∥∥Ptf − ft
− g

∥∥∥∥
∞
→ 0 for some g ∈ B0, as t→ 0

}
,

and the infinitesimal generator A is given by

Af = lim
t→0

1
t

(Ptf − f) .

It will be assumed throughout that the transition probabilities pt(·, ·) admit an invariant pro-
bability measure µ. In this case, (Pt) defines a contraction semigroup on L2(E,µ) =: L2(µ)
(cf. Bhattacharya (1982)). Slightly abusing notation, the infinitesimal generator of (Pt) will
also be denoted by A (although it is actually an extension of A on L2(µ)), with corresponding
domain DA ⊂ L2(µ). It can be equipped with the topology given by

‖f‖DA = ‖f‖L2(µ) + ‖Af‖L2(µ). (1.1.4)

The generator A and its domain DA completely determine (Pt)t≥0, that is, there exists a unique
semigroup (Pt)t≥0 of bounded operators on L2(µ) satisfying (1.1.3) for all functions of the domain
DA. Conversely, if Pt is a Feller semigroup on Rd and the corresponding process has continuous
paths, then its infinitesimal generator on C2

c (Rd) is given by (1.1.1) (cf. Theorem VII.1.13 and
the subsequent remark in Revuz and Yor (1999)). We shall not deepen the presentation of
Markov semigroups at this point but will introduce further details when needed.

1.1.3. Basic assumptions

Throughout, we consider some diffusion process X with invariant measure µ, given as a solution
of (1.1.2) or described by the associated transition semigroup (Pt)t≥0. The measure µ is related
to (Pt)t≥0 by different properties. Since µ is supposed to be invariant with respect to (Pt)t≥0,
it holds for any f ∈ L1(µ), ∫

Ptfdµ =
∫
fdµ.

Furthermore, it will be assumed throughout that (Pt)t≥0 is ergodic with respect to µ in the sense
that

lim
t→∞

Ptf =
∫
fdµ µ-a.e.

Here and throughout the sequel, Pµ(·) :=
∫

Px(·)µ(dx), such that ((Xt)t≥0,Pµ) is a stationary
ergodic process.

We now list some additional conditions on µ and (the transition semigroup (Pt)t≥0 associated
with) X which will be important in our investigation.

(D1) (Symmetry.) The measure µ is said to be reversible with respect to (Pt)t≥0, or (Pt)t≥0 is
symmetric with respect to µ, if for every f, g ∈ L2(µ),∫

fPtgdµ =
∫
gPtfdµ.

The generator A of a symmetric diffusion is self-adjoint, and it holds
∫
fAfdµ ≤ 0.

(D2) (Poincaré’s inequality.) There exists some constant cP such that, for any smooth enough
function f : Rd → R,

Varµ(f) :=
∫
f2dµ−

(∫
fdµ

)2
≤ c−1

P

∫
|∇f |2dµ. (PI)

3



1. Introduction

For symmetric diffusions, Poincaré’s inequality is commonly referred to as spectral gap
inequality since (PI) is then equivalent to the existence of a spectral gap,

λ1 := sup {λ ≥ 0 : Eλ − E0 = 0} = 1
cP

> 0,

where −
∫∞

0 λ dEλ denotes the spectral decomposition of A, and c = cP appears to be
the smallest possible constant in (PI). Furthermore, (PI) is equivalent to the exponential
decay of Pt to the invariant measure µ in L2(µ) (see, e.g., Theorem 1.3 in Bakry et al.
(2008)),

∀f ∈ L2(µ), Varµ (Ptf) ≤ exp
(
− 2t
cP

)
Varµ(f).

(D3) (Bound on the transition densities.) There exists some C0 > 0 such that, for any u ≥ t > 0
and for any pair of points x, y ∈ Rd satisfying ‖x− y‖2 ≤ u, we have

pt(x, y) ≤ C0
(
t−d/2 + u3d/2). (1.1.5)

(D4) (Uniform ellipticity.) There exists some positive constant 0 < a∗ < ∞ such that the
diffusion matrix a satisfies the uniform ellipticity condition,

ζta(y)ζ ≥ a∗‖ζ‖2 for all ζ ∈ Rd \ {0} and for all y ∈ Rd.

(D5) (Boundedness of the invariant density.) The invariant measure µ is Lebesgue continuous
with density ρ which is bounded away from zero and uniformly bounded in x ∈ Rd.

At times, we require the following more specific upper bound on the invariant density.

(D6) (Exponential decay of the invariant density.) The invariant measure µ is Lebesgue conti-
nuous with density ρ which satisfies for some positive constants C1, C2,

ρ(x) ≤ C1 exp
(
−C2‖x‖2

)
, x ∈ Rd.

We shall comment on the above assumptions in the sequel. For the moment, we merely note
that – although the theory for multidimensional diffusion processes in general is less satisfactory
than for scalar diffusions, – the above conditions equip us with tools powerful enough to carry
out an in-depth analysis. We proceed by describing an important class of diffusion processes
satisfying the above conditions.

Example: Kolmogorov diffusions with at most linear growth of the drift

Let V ∈ C2(Rd), and consider the so-called Kolmogorov process

Xt = X0 −
∫ t

0
∇V (Xu) du+Wt, (1.1.6)

where W is a d-dimensional Brownian motion and the initial value X0 is independent of W . If
there exist constants K1,K2 ∈ R such that

∀ ‖x‖ ∈ Rd, 〈∇V (x), x〉 ≥ −K1‖x‖2 −K2,

then the equation (1.1.6) has a unique continuous solution t 7→ Xt(ω) defined on R+ (Theorem
2.2.29 in Royer (2007)). If V is such that e−2V ∈ L1(Rd), then the probability measure µ defined
by dµ(x) = ρ(x)dx with

ρ(x) := c−1(V ) exp (−2V (x)) , for c(V ) :=
∫
Rd

e−2V (u)du <∞, (1.1.7)
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1.2. Adaptive estimation

is an invariant measure for X. In addition, µ is reversible for X (see, e.g., Lemma 2.2.3 in Royer
(2007)). Denoting by Nt the semigroup which acts on the bounded measurable functions f on
Rd as

Ntf(x) = Exf (Xt) =
∫
pt(x, y)f(y)dy,

where X is the solution of (1.1.6), this can also be stated by saying that Nt induces a strongly
continuous semigroup of self-adjoint operators on L2(µ). Poincaré’s inequality holds whenever
there exist constants K3,K4 such that

∀ ‖x‖ ≥ K3, 〈∇V (x), x〉 ≥ K4‖x‖ (K1)

(cf. Bakry et al. (2008), p. 747). If there exists some constant K5 > 0 such that, for any x ∈ Rd,

‖b(x)‖ ≤ K5 (1 + ‖x‖) , (K2)

then Theorem 3.2 in Qian and Zheng (2004) entails that (1.1.5) holds.

1.2. Adaptive estimation

The minimax theory of adaptive estimation of functions in various statistical models has been
studied intensively in the last decades. For setting the scene, consider the Gaussian white noise
model

dY (t) = f(t)dt+ ε dW (t), t ∈ [0, 1], (1.2.1)
where W (·) is a standard Wiener process and 0 < ε < 1 is the noise level. A classical issue in
nonparametric statistics is to estimate the function f on the interval [0, 1] from the observation
(Y (t))t∈[0,1], assuming that f belongs to Fν , where {Fν , ν ∈ N} is a collection of functional
classes. To evaluate the quality of an estimator f̃ , introduce its maximal risk for a given loss
function l(·, ·) as

Rε,ν(f̃ , ψν) := sup
f∈Fν

Ef
(
ψ−pν (ε) lp(f̃ , f)

)
, p > 0 fixed,

where Ef denotes expectation with respect to the distribution Pf of the observation satisfying
(1.2.1), and ψν(ε) is a normalizing factor satisfying ψν(ε) > 0 and ψν(ε) →ε→0 0 for every ν.
For the case of the L2 loss, one obtains the mean-integrated squared error

Ef‖f̃ − f‖2L2([0,1]) = Ef
∫ 1

0

(
f̃(x)− f(x)

)2dx, (1.2.2)

and the goal is to understand the asymptotics as ε→ 0 of the minimax risk

inf
f̃

sup
f∈Fν

Ef
(
ψ−2
ν (ε)

∥∥f̃ − f∥∥2
L2([0,1])

)
,

the infimum being taken over all estimators f̃ of f . Typically, Fν is given as

Fν = {f : [0, 1]→ R : ηβ(f) ≤ L} , ν = (β, L),

where ηβ(·) is a given functional (e.g., a seminorm), β > 0 is some smoothness parameter, and
L > 0 is the radius of the ball Fν . If ν is known, the functional class Fν is fixed, and in many
situations one can construct an estimator f̂ν which achieves the optimal asymptotic minimax rate
of convergence on Fν , that is, there exist some normalizing factor ψ∗ν(ε) and positive constants
c, C such that

c ≤ lim inf
ε→0

inf
f̃

Rε,ν
(
f̃ , ψ∗ν

)
≤ lim sup

ε→0
Rε,ν

(
f̂ν , ψ

∗
ν

)
≤ C.

Denote the set of all optimal rates of convergence ψ∗ν(·) for fixed ν by
{
ψ∗ν(·)

}
.

Two obvious severe obstacles have stipulated research in nonparametric estimation theory.
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1. Introduction

(I) Results on the convergence rate have only a limited significance and do not provide further
insight into the specific nature of the estimation problem at hand. Furthermore, exact
results are of avail in order to be able to compare estimators on the level of constants. The
interest therefore is in finding an estimator f̂ν satisfying the equality

lim
ε→0

inf
f̃

Rε,ν(f̃ , ψ∗ν) = lim
ε→0

Rε,ν(f̂ν , ψ∗ν).

(II) The parameter ν is usually unknown, and due to dependence of the estimator on the
parameter, the minimax approach is of limited use in practice. The next step is to construct
optimally rate adaptive estimators on N , that is, estimators f∗ which do not depend on ν
and which achieve the optimal rate uniformly over ν ∈ N ,

lim sup
ε→0

sup
ν∈N

Rε,ν (f∗,Ψν) ≤ C,

where Ψν(ε) = ψ∗ν(ε) is any optimal rate of convergence on Fν for the loss l, and C is a
positive constant. A priori, it is not clear whether such estimators exist or whether one
can only achieve a rate slower than the optimal one when the parameter ν is not known.
In cases where rate optimal estimators exist, it is moreover of interest whether there is
a loss of efficiency under adaptation which is reflected in a worsening of the asymptotic
constant.

As concerns (I), the pioneering result in nonparametric estimation theory on exact minimax
asymptotics is due to Pinsker (1980) who considers filtering problems over ellipsoids in Hilbert
space with respect to mean-integrated squared error criteria. There exists a canonical map of
the sequence model considered in Pinsker (1980) to the Gaussian white noise model (1.2.1).
Given m ∈ N and M > 0, denote by W̃m,2(M) the periodic L2-Sobolev class of order m and
radius M on [0, 1], that is,

W̃m,2(M) :=
{
f : f =

∞∑
j=1

θjφj ,
∞∑
k=1

(2πk)2m
(
θ2

2k + θ2
2k+1

)
≤M

}
,

where (φj)j≥1 is the trigonometric orthonormal basis in L2[0, 1], and θj :=
∫
φj(t)f(t)dt, j ≥ 1,

are the Fourier coefficients of f . Pinsker’s theorem states that

lim
ε→0

ε−
4m

2m+1 inf
f̃

sup
f∈W̃m,2(M)

Ef
∥∥f̃ − f∥∥2

L2(Rd) = (L(2m+ 1))
1

2m+1

(
m

π(m+ 1)

) 2m
2m+1

. (1.2.3)

The minimax linear filtering estimate constructed in Pinsker (1980) which attains the exact
bound depends on the ellipsoid via the set of the coefficients describing it. Efroimovich and
Pinsker (1984) give an algorithm of adaptive estimation which allows to attain the exact bound
for periodic Sobolev classes by an estimator which does not depend on the degree of smoothness
m and on the boundM . As concerns item (II), it thus has been shown that optimal rate adaptive
estimators exist and that there is no loss of efficiency in the “Pinsker case,” that is, in the setting
of nonparametric function estimation in the Gaussian white noise model over the scale of L2

Sobolev classes with respect to mean-integrated squared error criteria. Put differently, this
means that asymptotically exact adaptive estimators on the Sobolev scale for the L2 risk exist,
in the sense of the following

Definition 1.2.1 (Tsybakov (1998), Definition 1). An optimal rate adaptive estimator f∗ε is
called asymptotically exact adaptive on the scale of classes

(
Fν
)
ν∈N for the loss l if it satisfies

lim
ε→0

inf
f̃

sup
ν∈N

Rε,ν(f̃ ,Ψν) = lim
ε→0

sup
ν∈N

Rε,ν(f∗ε ,Ψν), (1.2.4)

where Ψν(ε) ∈
{
ψ∗ν(·)

}
for every fixed ν.
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1.2. Adaptive estimation

One further crucial result on exact asymptotics is due to Korostelev (1993) who studies the
behavior of the minimax risk in Gaussian nonparametric regression. Instead of Sobolev-type
smoothness assumptions, he considers estimation over the scales of Hölder classes H(β, L), given
as

H(β, L) :=
{
f : |f(x)− f(y)| ≤ L|x− y|β, x, y ∈ [0, 1]

}
, β ∈ (0, 1], L > 0,

and the squared L2 loss in (1.2.2) is substituted with the sup-norm loss. Donoho (1992) extends
the result to signal estimation in Gaussian white noise and establishes a relation to the optimal
recovery problem. Lepski (1992) shows that adaptive minimax estimators do not exist in the
“Korostelev case,” that is, for nonparametric estimation over the scale of Hölder classes of
smoothness β ∈ (0, 1) with respect to sup-norm loss. The loss of efficiency, defined as the
maximal over ν ∈ N ratio of the risk of the best adaptive estimator to the minimax nonadaptive
risk, is asymptotically strictly greater than one.

Instead of using the L2 risk defined in (1.2.2) or sup-norm losses, one might be interested in
nonparametric estimation of f in some fixed point x ∈ [0, 1], and in this case accuracy of an
estimator f̃ is conveniently measured by the mean-squared error

Ef |f̃(x)− f(x)|2.

The investigation of the problem of pointwise adaptive estimation in the minimax framework
was pioneered by Lepski (1991). In particular, it is shown that there are no optimal rate adaptive
estimators on the scale of Hölder classes. The best adaptive estimators are proven to achieve
only a rate which is slower than the optimal one in a logarithmic factor. To distinguish them
from optimal rate adaptive estimators, such estimators are called rate adaptive.

Definition 1.2.2 (Tsybakov (1998), Definition 3). The sequence Ψν(ε) is an adaptive rate of
convergence on the scale of classes

(
Fν
)
ν∈N for the loss l if the following two conditions are

satisfied:

• There exists an estimator f∗ which is optimal rate adaptive on
(
Fν
)
ν∈N , that is, for

Ψν(ε) = ψ∗ν(ε), it holds
lim sup
ε→0

sup
ν∈N

Rε,ν(f∗,Ψν) ≤ C,

where ψ∗ν(ε) is any optimal rate of convergence on Fν for the loss l;

• if the rate of convergence Sν(ε) > 0 satisfies for some estimator f∗∗

lim sup
ε→0

sup
ν∈N

Rε,ν(f∗∗, Sν) ≤ C

and if, in addition, there exists some ν ′ ∈ N such that Sν′(ε)/Ψν′(ε) → 0 as ε → 0, then
there exists ν ′′ ∈ N such that

Sν′(ε)
Ψν′(ε)

· Sν
′′(ε)

Ψν′′(ε)
→ε→0 +∞.

For the scale of Hölder classes and under the pointwise risk, Lepski and Spokoiny (1997) find
the best among all rate adaptive estimators in the sense of exact risk asymptotics. The exact
asymptotics of minimax adaptive risks on the scale of L2 Sobolev classes for estimation under
the sup-norm risk and for pointwise estimation are studied in Tsybakov (1998). In both works,
the Gaussian white noise model is considered. Further references will be given in the sequel.

There exists indeed a large variety of situations of nonparametric estimation in between and
beyond the classical “Pinsker case” and the “Korostelev case” mentioned above. Typical situa-
tions are smoothness assumptions of Hölder, Besov or Sobolev type, combined with pointwise,
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1. Introduction

uniform or Lp risk criteria. We already noted that the results may differ substantially when
passing from one risk criterion to another, and a similar remark holds, e.g., for the case of point-
wise estimation over Hölder classes as compared to pointwise estimation over Sobolev classes.
As concerns the choice of the statistical model, it is folklore that estimators proposed for one
specific model usually can be modified for other types of observations. It has become accepted to
develop results first in a Gaussian white noise model in the spirit of (1.2.1) as it “approximates”
common models with discrete observations such as nonparametric regression or nonparametric
density estimation. Arguments based on the concept of asymptotic statistical equivalence al-
low to extend results on exact estimation which are available for one specific model to another
equivalent model.

Asymptotic statistical equivalence for the drift estimation experiment. Dalalyan and
Reiß (2007) develop asymptotic equivalence of experiments in the Le Cam sense for inference
on the drift in multidimensional ergodic Kolmogorov diffusions, given as a strong solution of the
SDE

dXt = b(Xt)dt+ dWt, X0 = ξ, t ∈ [0, T ]. (1.2.5)

Denote by Σ (M1,M2) the set of all functions b = −∇V : Rd → Rd satisfying for all x, y ∈ Rd
the following conditions,

‖b(x)‖ ≤M1 (1 + ‖x‖) , 〈b(x)− b(y), x− y〉 ≤ −M2 ‖x− y‖ .

The main result of Dalalyan and Reiß (2007) establishes local equivalence of the diffusion ex-
periment with an accompanying Gaussian shift experiment. It is instructive to consider the
corresponding models in detail.

Definition 1.2.3. (i) (Diffusion experiment) Let Σβ(L,K) be the set of functions b ∈ Σ(K)
such that all d components bi of b belong to the isotropic Hölder smoothness class of
regularity β > 0 and radius L > 0. Given some fixed b0 ∈ Σβ(L,K), let

Σ (b0, ε, η, A) =
{
b ∈ Σβ(L,K) : |b(x)− b0(x)| ≤ ε 1A(x), x ∈ Rd, (1.2.6)

|ρb(x)− ρb0(x)| ≤ η ρb0(x), x ∈ A
}
.

Suppose Σ ⊂ Σ(K) for some K > 0. For any T > 0, let E(Σ, T ) be the statistical
experiment of observing the diffusion defined by (1.2.5) with b ∈ Σ.

(ii) (Gaussian shift model) For b ∈ L2 (µb0), denote by Qb,T the Gaussian measure on the
measurable space

(
C(Rd;Rd),B(C(Rd;Rd))

)
, induced by the d-dimensional process Z sa-

tisfying
dZ(x) = b(x)

√
ρb0(x) dx+ 1√

T
dB(x), Z(0) = 0, x ∈ Rd,

where B(x) =
(
B1(x), . . . , Bd(x)

)
and B1(x), . . . , Bd(x) are independent d-variate Brow-

nian sheets.

Following the methodology developed by Nussbaum (1996), one may determine exact asymptotic
constants for the case of bounded loss functions, but this approach is of limited use in our setting.
One limitation is due to the fact that the main local equivalence result of Dalalyan and Reiß
(2007) on equivalence with the Gaussian shift model holds for regularity

β >

(
d− 1 +

√
2(d− 1)2 − 1

)
/2 ∼

(1
2 + 1√

2

)
d, as d→∞,
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1.2. Adaptive estimation

while asymptotic equivalence with heteroskedastic Gaussian regression is established for

β > max
{
d2

4 − 1,
(
d− 2 +

√
(d− 2)2 + 4d2

)
/4
}
.

As mentioned by the authors, it is not clear whether for Hölder classes of smaller regularity
asymptotic equivalence holds or not. Even if equivalence would fail, the minimax risk asymp-
totics could possibly still hold in the diffusion model for substantially smaller smoothness index
β. This conjecture is supported by the work of Korostelev and Nussbaum on the exact constant
of the risk asymptotics in the sup-norm for density estimation. The constant for nonparametric
regression (the “Korostolev case”) and for signal estimation in Gaussian white noise (Donoho
(1992)) was already known before, and a concise argument based on asymptotic equivalence in
the Le Cam sense allows to derive the exact constant for density estimation under the additional
assumption that the densities are uniformly bounded away from zero and that the smoothness
index β > 1/2 (cf. Korostelev and Nussbaum (1995)). This last restriction is due to the fact that
asymptotic equivalence is known to fail for Hölder smoothness β ≤ 1/2. The direct approach
in Korostelev and Nussbaum (1999) gives the sup-norm constant for density estimation for all
β > 0 and without any further conditions on the density. The asymptotic equivalence approach
to determine exact risk bounds thus clearly has its limitations. We prefer the approach to prove
results in the spirit of (1.2.4) by verifying an upper bound and the corresponding lower bound
on the risk directly.

1.2.1. Lower bounds

A convenient strategy to prove lower bounds for the maximum risk over a functional class(
Fν
)
ν∈N of the form

lim inf
ε→0

inf
f̃

sup
ν∈N

sup
f∈Fν

Ef
(
ψ−pν (ε) lp(f̃ , f)

)
≥ 1, p > 0, (1.2.7)

consists in bounding it from below by

• the Bayes risk over a parametric subfamily indexed by a continuous parameter, or

• the maximum or the average risk over a finite family of members of the class.

In the sequel, we shall briefly introduce two useful auxiliary results related to these ideas. A
concise introduction, many concrete devices for proving lower bounds and references to the
literature are given in Chapter 2 of Tsybakov (2009).

Van Trees’ inequality. As noted in Tsybakov (2009), van Trees’ inequality applies only to
squared loss functions, but in this setting, it can lead in some cases to asymptotically exact
lower bounds. Gill and Levit (1995) were apparently the first to use a version of van Trees’
inequality for estimation of functionals, and Belitser and Levit (1995) show that the inequality
can be applied for deriving the Pinsker constant. The general version below is given in Tsybakov
(2009), Section 2.7.3. Let T := [t1, t2] ⊂ R such that −∞ < t1 < t2 < +∞, and let (Pt)t∈T be
a family of probability measures on some measurable space (X ,A ). Assume that there exists a
σ-finite measure ν on (X ,A ) such that Pt � ν for all t ∈ T , introduce a probability distribution
with Lebesgue density µ(·) on T , and, given any estimator t̂, consider the Bayes risk with respect
to µ, defined by

Rµ(t̂) :=
∫
T
Et
(
t̂− t

)2
µ(t)dt.

9



1. Introduction

Assume that the density p(x, t) is measurable in (x, t) and absolutely continuous in t for almost
all x with respect to ν, and that the prior density µ� λλ on T and such that µ(t1) = µ(t2) = 0.
Introduce the Fisher informations

I(t) :=
∫ (

p′(x, t)
p(x, t)

)2
p(x, t)ν(dx), J (µ) :=

∫
T

(µ′(t))2

µ(t) dt,

and assume that I(t) <∞ for all t ∈ T ,
∫
I(t)dt <∞ and J (µ) <∞. In this set-up, van Trees’

inequality states that, for any estimator t̂(X),∫
T
Et
(
t̂(X)− t

)2
µ(t)dt ≥ 1∫

I(t)µ(t)dt+ J (µ) .

Another important auxiliary result. Another tool which will be notedly useful in the
sequel was developed by Tsybakov (1998) for proving lower bounds in the Gaussian white noise
model (1.2.1). It has been used, e.g., in Butucea (2001), Klemelä and Tsybakov (2001) and
Klemelä and Tsybakov (2004) for proving exact lower bounds on the pointwise risk. In order to
prove a (sharp) lower bound for estimating functions f ∈ Fν at some fixed x0 ∈ (0, 1), ν ∈ N
is some smoothness parameter, consider two hypotheses f = f0 and f = f1. Denote by Pfi the
distribution of observations satisfying (1.2.1) for the hypothesis f = fi, and denote by Efi the
expectation with respect to Pfi , i = 0, 1. Then, if f0 ∈ Fν0 and f1 ∈ Fν1 for some ν0, ν1 ∈ N , it
holds for any p > 0

inf
f̃

sup
ν∈N

sup
f∈Fν

Ef
(
ψ−pν (ε)

∣∣f̃(x0)− f(x0)
∣∣p)

≥ inf
f̃

max
{
Ef0

(
ψ−pν0 (ε)

∣∣f̃(x0)− f0(x0)
∣∣p), Ef1

(
ψ−pν1 (ε)

∣∣f̃(x0)− f1(x0)
∣∣p)} .

For suitably chosen hypothesis f0 and f1, this last term is bounded from below by

inf
f̃

max
{
Qp Ef0D

p(f̃ , 0), Ef1D
p(f̃ , 1)

}
,

where, for any fixed δ ∈ (0, 1/2), D(u, v) := (1 − δ)|u − v|, u, v ∈ R, and Q := ψν0/ψν1 . If
Pf0 � Pf1 and, for fixed τ > 0 and α ∈ (0, 1),

Pf1

(
dPf0

dPf1

≥ τ
)
≥ 1− α,

then, for any p > 0, Theorem 6(i) in Tsybakov (1998) states that

inf
f̃

max
{
QpEf0D

p(f̃ , 0),Ef1D
p(f̃ , 1)

}
≥ (1− α)τ(Qδ)p(1− 2δ)p

(1− 2δ)p + τ(Qδ)p . (1.2.8)

If δ can be chosen such that the right-hand side of (1.2.8) tends to 1 (for ε→ 0), then a result
in the spirit of (1.2.7) follows.

1.2.2. Upper bounds

There exists a large variety of methods to construct adaptive estimators, and the principle of
unbiased risk estimation is at the bottom of many of them. A different idea is due to Oleg
Lepski and is based on implicit bias-variance comparison schemes. For further information, see
Tsybakov (2009).
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1.3. Weak convergence and empirical processes

1.3. Weak convergence and empirical processes

In the classical theory of empirical processes based on independent observations, one considers
extensions of classical limit results such as law of large numbers, central limit theorem or law
of the iterated logarithm. Let X1, . . . , Xn be independent and identically distributed (i.i.d.)
random variables, defined on some probability space (Ω,A ,P) and taking values in some space
S. Denote the corresponding empirical measure by

Pn(ω) := 1
n

n∑
i=1

δXi(ω), ω ∈ Ω, n ≥ 1.

Let F be a countable class of functions on (S,B(S)) such that supf∈F |f(x)| <∞ for all x ∈ S.
The empirical process (Gn(f))f∈F based on P and indexed by F ⊂ L1(P) is defined as

Gn(f) :=
√
n

(
1
n

n∑
i=1

f (Xi)−
∫
fdP

)
, f ∈ F , n ≥ 1. (1.3.1)

The object of empirical process theory is to study the properties of the approximation of the
expectation of functions by their empirical measures, uniformly in F . A class F is said to be a
(strong) Glivenko–Cantelli class for P if, a.s.,

lim
n→∞

sup
f∈F

∣∣∣∣∫ f (dPn − dP)
∣∣∣∣ = lim

n→∞
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f (Xi)−
∫
fdP

∣∣∣∣∣ = 0.

F is called a Donsker class for P, or P is said to satisfy a CLT uniformly over F , if

Gn =
√
n (Pn − P) G in `∞(F), (1.3.2)

where the limit G is a tight, Borel measurable element in `∞(F). Here and in what follows,  
denotes convergence in law of random elements in the generalized sense of Hoffmann-Jørgensen
(cf. Dudley (1999), Chapter 3). By the finite-dimensional CLT, the limit process (G(f))f∈F
must be a centered Gaussian process with covariance given by

EG(f)G(g) = P (f − Pf) (g − Pg) = P(fg)− PfPg.

It is well-known that the limit exists as tight map into `∞(F) if and only if (G(f))f∈F admits
a version with bounded sample paths which are continuous on F with respect to the intrinsic
semimetric induced by the limiting process G, given by

$(f, g) := ‖(f − Pf)− (g − Pg)‖L2(P) , f, g ∈ F .

A class F of measurable functions is called P-pregaussian if the tight limit process in (1.3.2)
exists. While a P-Donsker class is necessarily P-pregaussian, the reverse assertion does not hold.
The first example of a pregaussian class which is not Donsker is attributed to Strassen and
Dudley (1969). A class F is a P-Donsker class if and only if the empirical processes Gn satisfy
an asymptotic equicontinuity criterion.

1.4. The problems

1.4.1. Sharp adaptive drift estimation for ergodic diffusions in higher dimension

In the first part of the thesis, we are concerned with nonparametric estimation of the drift of
an ergodic stationary diffusion X with invariant measure µ. We study the problem under the
following assumptions:

11
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• (stationarity) X is strictly stationary, that is, X0 ∼ µ.

• (continuous observations) A continuous record of observations XT := (Xt)0≤t≤T is availa-
ble.

• (long-time asymptotics) The process X is observed over [0, T ], and T →∞.

Subject to these constraints, we obtain a framework which presents a suitable starting point for
providing as precise understanding of the drift estimation problem as possible. In particular,
it allows to prove exact results which can be considered as a benchmark, e.g., for the case of
discrete observations or finite-sample results.

Global drift estimation

For ease of presentation, let us restrict attention to the case of Kolmogorov diffusions introduced
in Section 1.1.3. The relation

b(x) = (2ρ(x))−1∇ρ(x) (1.4.1)

suggests to decompose the drift estimation problem by estimating the invariant density ρ and its
gradient separately. The same approach has been used by Dalalyan and Kutoyants (2002) who
consider the problem of nonparametric estimation of the derivative of the invariant density and
of the drift coefficient for scalar ergodic diffusion processes over weighted L2 Sobolev classes. The
construction of the asymptotically efficient estimator in Dalalyan and Kutoyants (2002) requires
the knowledge of the smoothness and the radius of these weighted Sobolev balls. On the basis
of these results, Dalalyan (2005) develops an adaptive procedure which does not depend on the
characteristics of the Sobolev ball and which is asymptotically minimax simultaneously over a
broad scale of Sobolev classes. The adaptive procedure relies on the principle of unbiased risk
estimation and is inspired by Cavalier et al. (2002). We already mentioned that a real satisfactory
theory only for one-dimensional diffusion processes is available, and the same assertion holds
true for the statistical theory. The concept of local time and related tools such as the occupation
times formula are frequently used in the works of Dalalyan and Kutoyants (2002) and Dalalyan
(2005). One task to be solved in the sequel therefore consists in extending these results to the
multidimensional setting and to identify a class of diffusion processes for which exact asymptotics
can be described.

Pointwise drift estimation

To the best of our knowledge, exact results for pointwise drift estimation are not available. To
construct an adaptive estimator of the drift at some fixed point x0 ∈ Rd, we again use the relation
(1.4.1) and decompose the problem into the separate questions of estimating the invariant density
and its gradient. Klemelä and Tsybakov (2001) consider the problem of estimating a linear
functional T (f), where f is an unknown function observed in the multidimensional Gaussian
white noise model

dY (t) = f(t)dt+ ε dB(t), t ∈ Rd, (1.4.2)

where B denotes the standard Brownian sheet in Rd and ε ∈ (0, 1). A connection between sharp
adaptation and optimal recovery is established, and asymptotically sharp adaptive estimators
on various scales of smoothness classes are proposed. As an application, Klemelä and Tsybakov
(2001) consider the problem of estimating the partial derivatives of f under Sobolev smoothness
assumptions. In their follow-up article Klemelä and Tsybakov (2004), nonparametric estimation
of a multivariate function and its partial derivatives at a fixed point for observations of the
Riesz transform in Gaussian white noise is investigated. The Lepski-type adaptation procedure
proposed there serves as a source for our drift estimation scheme. One further reference is
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Butucea (2001) who considers the problem of exact adaptive estimation of a density f at a fixed
point x0 ∈ R on the Sobolev classes. In the density model, the value of the unknown density
at the estimation point appears in the exact normalization. This requires to use a preliminary
estimator of f (x0), and the same is to be expected in the adaptive drift estimation procedure.

1.4.2. Donsker theorems for multidimensional diffusions

The second part of the thesis is devoted to the investigation of infinite-dimensional extensions of
the CLT for additive functionals, that is, the investigation of so-called Donsker theorems. The
chapter is based on the preprint “Uniform central limit theorems for multidimensional diffusions”
which is a joint work with Angelika Rohde. All results which are taken from the preprint into
this chapter are marked.

Let (Xt)t≥0 be an ergodic diffusion process on E ⊂ Rd with invariant measure µ. A strong law
of large numbers for additive functionals of (Xt)t≥0 is available. Precisely, if X0 ∼ µ, then it
holds for any f ∈ L1(µ), a.s. and in L1,

lim
t→∞

(1
t

∫ t

0
f (Xu) du

)
=
∫
fdµ.

Assume that X0 ∼ µ, and consider 0 6≡ f ∈ L2(µ) with
∫
fdµ = 0. The additive functional( ∫ t

0 f (Xu) du
)
t≥0 is said to satisfy a central limit theorem (CLT) if

1√
t

∫ t

0
f (Xu) du⇒ N (0, 1). (1.4.3)

Such limit results can be proven under mild assumptions; we refer to Chapter VII in Jacod and
Shiryaev (2002) and to Cattiaux et al. (2012) for an account of situations where the CLT for
additive functionals of ergodic diffusions holds. The goal in the sequel is to find uniform versions
of (1.4.3). Results of Glivenko–Cantelli or Donsker type for one-dimensional diffusions are given,
e.g., in van Zanten (2003) and van der Vaart and van Zanten (2005), respectively. Precisely, van
Zanten (2003) considers a regular scalar diffusion process X with finite speed measure m and
invariant measure µ. The uniform law of large numbers

lim
t→∞

sup
f∈F

∣∣∣∣1t
∫ t

0
f (Xu) du−

∫
fdµ

∣∣∣∣ = 0

is shown to hold for any class F which either has an µ-integrable envelope function or which is
bounded in Lp(µ) for some p > 1. The main result of van der Vaart and van Zanten (2005) is
that, whenever the limit G exists as a tight, Borel measurable map, it holds Gt ⇒ G in `∞(F).
In contrast with uniform laws of large numbers and uniform CLTs for i.i.d. random variables, no
conditions on the “size” of the function class F in terms of bracketing or covering numbers are
required. The results on empirical processes of one-dimensional diffusions are a consequence of
a number of asymptotic properties of diffusion local time and therefore restricted to the scalar
case.

For some countable function class F ⊂ L2(µ) of measurable functions, define the empirical
diffusion process in analogy to (1.3.1) as

Gt(f) :=
√
t

(1
t

∫ t

0
f (Xu) du−

∫
E
fdµ

)
, f ∈ F , t > 0. (1.4.4)

The motivation for investigating empirical diffusion processes as in (1.4.4) is two-fold. First, we
aim at contributing to the theory of empirical processes of multidimensional diffusions. Various
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methods have been developed to prove Donsker properties, for example, bracketing conditions,
arguments from probability in Banach spaces, Vapnik–Chervonenkis type arguments or random
entropy criteria. With a view towards statistical applications, it is of interest to learn which
of the classical techniques and tools work well and can be used for establishing Donsker-type
theorems in the context of empirical diffusion processes. On a more abstract level, the goal is
to establish uniform CLTs (or modified versions thereof) for multidimensional diffusions under
necessary and sufficient conditions.

1.5. Outline of the thesis

As measured by their substantial importance and in view of the well-developed statistical theory
for scalar diffusions, only few theoretical results on multidimensional diffusions are available.
This is at least partially due to the lack of local time in the multidimensional framework. Both
the work of Dalalyan (2005) on sharp adaptive drift estimation and the result of van der Vaart
and van Zanten (2005) on Donsker theorems for scalar regular diffusions rely on the concept of
local time.

The goal of the first part of the thesis (Chapter 2) is to investigate the exact asymptotics of
minimax adaptive risks under reasonable smoothness assumptions on the drift and to construct
sharp adaptive estimators, that is, adaptive estimators which do not only achieve the best
possible rate of convergence but the best asymptotic constant associated to it. Two situations
will be considered, namely

• global estimation, that is, estimation with respect to some global distance measure, and

• pointwise estimation, that is, estimation of b in some fixed x0 ∈ Rd.

From the outset, it is neither clear whether optimal rate adaptive estimators exist nor how the
exact constants look like. We further have to carve out “reasonable” smoothness assumptions on
the drift, taking care of its implications on the existence of a solution of the associated Itô SDE,
existence of the invariant measure and regularity properties of its invariant density. Dalalyan
and Kutoyants (2002) and Dalalyan (2005) advocate the use of a local minimax approach for
global estimation of the drift of scalar diffusion processes. We shall explore the implications of
this approach in the multidimensional diffusion framework. One reference point is the work of
Dalalyan and Reiß (2007) who establish asymptotic statistical equivalence between the diffusion
experiment and the Gaussian shift model. Their results hold for Kolmogorov diffusions under
rather restrictive Hölder smoothness assumptions on the drift. Exact asymptotic findings for
smoothness classes of smaller regularity could serve as an indication that statistical equivalence,
at least in some reduced sense, still holds. Leaving aside the case of Kolmogorov diffusions, it is in
particular interesting to describe the influence of the diffusion coefficient on the drift estimation
problem. We assume that a continuous record of observations (Xt)0≤t≤T =: XT is available,
and this implies that the diffusion coefficient σσt can be identified using the semimartingale
quadratic variation of the diffusion X. Although it is identifiable at any point visited by XT , it
is to be expected that the diffusion coefficient still influences the drift estimation procedure.

In the second part of this work (Chapter 3), Donsker-type theorems for empirical processes of
multidimensional diffusions are studied. The proof of such results requires verifying asymptotic
tightness and convergence of the marginal distributions. We will use results in the spirit of
the (functional) CLT due to Bhattacharya (1982) for establishing marginal convergence. Ex-
plicit criteria which ensure asymptotic tightness will be given. The results of van der Vaart and
van Zanten (2005) reflect the fact that the empirical measure of scalar diffusions is substan-
tially smoother than the empirical measure based on i.i.d. observations. Such a phenomenon
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is known in a less distinctive degree for multidimensional diffusions which satisfy suitable func-
tional inequalities. In order to establish increased regularity, we study smoothed versions of the
empirical diffusion process. This allows in particular to establish uniform CLTs for smoothed
empirical processes of Kolmogorov diffusions with very fast bandwidths under only pregaussian
conditions, thus verifying the exceptional regularity of empirical processes of multidimensional
ergodic diffusions.

A short selective overview of central results obtained in the thesis is given in Chapter 4. In
addition, we sketch possible extensions and questions which might be tackled in the future. For
the convenience of the reader, some of the auxiliary results which were used in Chapters 2 and
3 are summarized in the Appendix.
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Auch wenn ich es in der letzten Zeit nicht immer genügend zum Ausdruck gebracht habe: Ich
weiß genau, wem ich etwas zu verdanken habe!

The chapter “Donsker theorems for multidimensional ergodic diffusions” is based on the preprint
“Uniform central limit theorems for multidimensional diffusions” (arXiv:1010.3604) which
arose in joint work with Angelika Rohde. All results in this dissertation which are borrowed
from the preprint are marked as take-overs.
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2. Sharp adaptive drift estimation for ergodic diffusions in
higher dimension

Let X be an ergodic multidimensional diffusion process with drift function b. We
consider the problem of adaptive estimation of b. Exact data-driven procedures both
for global and pointwise estimation are proposed, attaining the optimal constant
under natural smoothness conditions on the drift. Both a connection to the classical
Pinsker result on estimation with respect to L2 risk over Sobolev classes and to the
problem of optimal recovery are established. The sharp results in particular allow
to evaluate the influence of the diffusion matrix.

2.1. Introduction and overview of the results

The setting. Consider the diffusion process X which is given as a strong solution of the
stochastic differential equation

dXt = b(Xt)dt+ σ(Xt) dWt, X0 = ξ, t ≥ 0, (2.1.1)

where b : Rd → Rd and σ : Rd → Rd×d are the unknown characteristics, W = (Wt)t≥0 is a
d-dimensional Brownian motion and the initial vector ξ ∈ Rd is independent of W . Given a
continuous record of observations (Xt)0≤t≤T =: XT , T > 0, the aim is to estimate the drift
vector b. We restrict attention to ergodic diffusions with unique invariant probability measure
µ which is absolutely continuous with respect to Lebesgue measure. Denote by ρ the invariant
density of µ. The initial value ξ is assumed to follow the invariant law such that the process X
is strictly stationary. Throughout, we consider the case of continuous-time observations of the
diffusion process, thus laying the foundation and providing benchmarks for the more involved
setting of (possibly low-frequency) discrete-time data. In the continuous-time framework, the
diffusion matrix a := σσt is identifiable by means of the semimartingale quadratic variation,
and the problem of its estimation does not arise. Nevertheless, it is to be expected that the
characteristics of the diffusion coefficient have an impact on the drift estimation problem, and
one focus in the sequel will be on identifying the influence of the diffusion matrix.

The estimators. Let K : Rd → R be a fixed function satisfying
∫
Rd K(x)dx = 1. Given a

bandwidth h > 0, the invariant density ρ can be estimated by a kernel estimator of the form

ρ̂T (x) := 1
Thd

∫ T

0
K

(
Xu − x
h

)
du = 1

T

∫ T

0
Kh(Xu − x)du, x ∈ Rd, (2.1.2)

where Kh(·) := h−dK(·/h). There exist several approaches to motivate drift estimators. A
kernel estimator of b which is suggested by analogy to the model of regression with random
design is given by

bT (x) := T−1 ∫ T
0 Kh(Xu − x)dXu

ρ̂T (x) ∨ ρ∗(x) , x ∈ Rd, (2.1.3)

for some a priori lower bound ρ∗(x) > 0 on ρ(x). If such a lower bound ρ∗ is not available, an
additional carefully chosen term may be included in the denominator for ensuring that it does
not vanish too rapidly.
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2. Sharp adaptive drift estimation for ergodic diffusions in higher dimension

Alternatively, one may use an analytical approach for suggesting a drift estimator. Under specific
smoothness conditions on the coefficients of the diffusion X, the j-th component bj of the drift
vector b can be expressed as follows,

bj(x) = (2ρ(x))−1
d∑

k=1
∂k
(
ajk(x)ρ(x)

)
, j ∈ {1, . . . , d}, x ∈ Rd, (2.1.4)

where a := σσt is the diffusion matrix with entries
(
ajk
)
. This suggests the following kernel

estimator for the drift vector b(·),

b̂T (x) := T−1h−d
∫ T

0 a(Xu)∇Kh(Xu − x)du
2 (ρ̂T (x) ∨ ρ∗(x)) , x ∈ Rd. (2.1.5)

Further details on the definition of drift estimators are given in Section 2.2.3.

The problem. The central problem in any kernel-based estimation procedure is the selection
of an appropriate bandwidth. Two different approaches to the question of bandwidth selection
will be considered, depending on the concrete statement of the problem. First, the drift function
b is estimated globally, and the goal is to find estimators b̃T which are optimal with respect to
the weighted L2 risk

Rglob
(
b̃T , b

)
:= Eb,σ

∫
Rd

∥∥b̃T (x)− b(x)
∥∥2

2 ρ
2(x)dx, (2.1.6)

where Eb,σ is the expectation with respect to the invariant measure associated with the coeffi-
cients b and σ, and ‖ · ‖p denotes the p-norm,

‖x‖p :=
( d∑
i=1
|xi|p

)1/p
, p ≥ 1, x ∈ Rd.

The use of the squared density as a weight function presents one difference to the definition of
the mean integrated squared error commonly employed in the classical statistical models. In
combination with growth conditions on the drift coefficient, it allows to formulate clear results for
drift estimation on Rd. As an alternative to global criteria, one might be interested in estimating
the drift in some fixed x0 ∈ Rd in which case the quality of an estimator b̃T is measured by its
pointwise risk,

Rpoint
(
b̃T , b

)
:= Eb,σ

∥∥b̃T (x0)− b(x0)
∥∥2

2.

The goal in both settings is to define minimax adaptive estimators b∗T , b∗∗T satisfying

Rglob
(
b∗T , b

)
= inf

b̃T

sup
b∈B
Rglob

(
b̃T , b

)
and Rpoint

(
b∗∗T , b

)
= inf

b̃T

sup
b∈B
Rpoint

(
b̃T , b

)
,

respectively. The infimum is taken over all estimators b̃T of the drift b, and the supremum
extends over a given class of functions B. Typically, B is a class of smooth functions, for
example of Sobolev type. In practice, the smoothness parameters usually are unknown, and
this necessitates the usage of data-driven estimation procedures. This chapter is devoted to the
development of such procedures for estimating the drift vector of SDEs in the Itô sense. Let us
point out the following:

• We propose exact adaptive procedures for global and pointwise estimation of the compo-
nents of the drift vector over L2 Sobolev classes, and we provide Pinsker-type results and
findings on the relation between optimal recovery and nonparametric pointwise estimation
in the diffusion framework.

• The exact results apply to a broad class of ergodic reversible diffusion processes which
satisfy the Poincaré hypothesis. We do not explicitly use mixing properties by referring
to decoupling results but rely on analytical tools related to the Markovian semigroup
character of the diffusion.
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2.1. Introduction and overview of the results

The agenda. Recall that b : Rd → Rd denotes the drift vector with components bj , j ∈
{1, . . . , d}, and a := σσt is the diffusion matrix with entries aij , i, j ∈ {1, . . . , d}. Provided
that (2.1.4) is satisfied, both numerators of (2.1.3) and (2.1.5) can be considered as consistent
estimators of the vector

div(aρ) =


∑d
k=1 ∂k

(
a1kρ

)
...∑d

k=1 ∂k
(
adkρ

)
 .

The estimators defined in (2.1.3) and (2.1.5), respectively, thus suggest to decompose the pro-
blem of drift estimation into the separate questions of estimating the invariant density ρ and the
divergence div(aρ). In many cases, the invariant density of the diffusion can be estimated faster
than the numerators in (2.1.3) and (2.1.5), so the main focus is on finding exact asymptotics for
estimating div(aρ).

There is a substantial difference between the problem of minimax adaptive estimation with
respect to L2 risk on the one hand and with respect to pointwise loss on the other hand. The
classical result on nonparametric function estimation in the Gaussian white noise model for L2

risk is due to Efroimovich and Pinsker (1984) who have shown that there is no loss of efficiency for
adaptation over the scale of L2 Sobolev classes. Concerning the question of pointwise adaptive
estimation on the scale of L2 Sobolev classes, Tsybakov (1998) proves that optimal rate adaptive
estimators do not exist but that there is a loss of efficiency under adaptation. We recover
the same situation for estimating the components of the vector div(aρ) under reasonably mild
conditions on the diffusion.

(i) As will be explained in Section 2.3.1, the asymptotically efficient divergence estimator in
the global minimax sense does not fit well to the problem of drift estimation. We therefore
adopt the local minimax approach considered in Dalalyan (2005). Fix j ∈ {1, . . . , d}. Given
some fixed (sufficiently regular) central function b0 : Rd → Rd, some set Σj(β) ⊂ Cβ(Rd),
β ∈ N, and δ > 0, define the neighborhood

U jδ (b0) :=
{
b : Rd → Rd : b ∈ Σj(β); ∀k ∈ {1, . . . , d}, sup

x∈Rd

∣∣bk(x)− bk0(x)
∣∣ ≤ δ} . (2.1.7)

Under the assumption that div(ajρ) belongs to the intersection Σj
δ of U jδ (b0) and an

(isotropic) Sobolev ball of unknown integer regularity β > 1 with radius L > 0, we find
the constant P ∗j (σ, β, L) such that

lim inf
δ→0

lim inf
T→∞

inf
ĝjT

sup
div(ajρ)∈Σj

δ

T
2β

2β+d Eb

∫
Rd

∣∣ĝjT (x)− div(ajρ)(x)
∣∣2dx = P ∗j (σ, β, L), (2.1.8)

the infimum being taken over all estimators ĝjT of div(ajρ). The adaptive estimator defined
in (2.3.72) in Section 2.3 asymptotically attains the infimum in (2.1.8).

(ii) In the pointwise adaptive procedure, we consider the scale (β, L) ∈ [β∗, βT ] × [L∗, L∗] of
Sobolev classes S(β, L), for fixed positive numbers β∗, L∗, L∗, and some sequence βT →∞
slowly enough. We find the normalizing factor ψT (β, L; ρ, σ) which cannot be improved
in the rate and in the constant, and we construct an adaptive estimator g̃jT (cf. (2.5.22))
satisfying this upper bound.

The proof of the results stated in (i) and (ii) mainly relies on developing analogues of classical
statistical procedures in the diffusion setting. Due to the complexity of the diffusion model, the
extension is not always straightforward. Let us briefly sketch central points of the proof of lower
bounds and the construction of adaptive procedures for estimation of the components of the
vector div(aρ) in the respective settings. For ease of presentation, it is assumed in the sequel
that a is constant.
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2. Sharp adaptive drift estimation for ergodic diffusions in higher dimension

Lower bounds. In the global setting, we reduce the proof of the lower bound for estimating
the components div(ajρ) = ∑d

k=1 ajk ∂kρ, j ∈ {1, . . . , d}, to proving a lower bound for the
Bayes risk over some conveniently chosen parametric subfamily. The Bayes risk is dealt with
by means of van Trees’ inequality which was already introduced in Section 1.2.1. The idea is
classical and has been used before, e.g., in Golubev and Levit (1996) who consider the problem of
distribution function estimation from i.i.d. observations. Dalalyan and Kutoyants (2002) modify
the approach for proving a lower bound for estimating the derivative of the invariant density
of scalar ergodic diffusions. In particular, they exploit the fact that the relation between the
invariant density of scalar ergodic diffusions and the drift coefficient is explicit. We start the
proof of the lower bound for estimating div(ajρ) by defining a parametric family of invariant
densities ρθ, motivated by the respective definitions in Golubev and Levit (1996). The drift
function is then suitably defined to ensure that div(ajρθ) = 2bjρθ.

The proof of the lower bound for pointwise estimation of div(ajρ) relies on suitable modifications
of the proof of lower bounds in Tsybakov (1998), Butucea (2001), Klemelä and Tsybakov (2001)
and Klemelä and Tsybakov (2004). The basic idea is to reduce the proof of a lower bound over
Sobolev-type smoothness classes to verifying a lower bound for the risk of two suitably chosen
hypotheses. Our definition of the invariant density hypotheses ρ0 and ρ1 is motivated by the
choice of Butucea (2001) who considers pointwise density estimation over Sobolev classes from
i.i.d. observations. The drift vector and the divergence are then defined such that div(ajρi) =
2bjiρi, i ∈ {1, 2}.

The adaptive estimation procedures. In the global framework, we suggest a multidimensional
version of the approach proposed in Dalalyan (2005) for estimating div(aρ). It relies on the
empirical risk minimization method. The local time techniques used at several places in the
scalar case do not extend to the multivariate setting. Assuming that Poincaré’s inequality holds,
sharp adaptivity can be proven with alternative tools. The adaptive procedure for estimating
the components of div(aρ)(x0) pointwise is inspired by the schemes in Klemelä and Tsybakov
(2001) and Klemelä and Tsybakov (2004) who use a version of Lepski’s method. In contrast
to the Gaussian white noise setting considered in these works, the complexity of the diffusion
model requires uniform exponential inequalities. These can be proven by chaining techniques,
starting, e.g., from a Bernstein-type deviation inequality for reversible Markov processes.

We will see below that – under mild auxiliary conditions – the results on exact adaptive es-
timation of div(ajρ) in (i) and (ii) allow to derive results on exact adaptive component-wise
estimation of the drift vector, both in the L2 risk and in the pointwise case.

Outlook and one first resume. We will establish minimax results for estimating the drift
for a class of multidimensional ergodic diffusion processes. Having regard to the fact that the
actual smoothness of the drift coefficient is typically unknown, adaptive estimation procedures
are proposed. In particular, these schemes are asymptotically exact, that is, they attain the
lower bounds and converge with the best possible rate to the best possible constant.

In correspondence to the use of the weighted L2 risk criterion in (2.1.6) for quantifying the
global risk of drift estimators, it appears appropriate to consider adaptation over weighted
Sobolev balls of order β ∈ N. The global adaptive rate of convergence is given as T−2β/(2β+d).
Denoting by Sd := 2πd/2/Γ(d/2) the surface of the unit sphere in Rd, where Γ(·) is the Gamma
function, the asymptotically exact constant for estimating one component of the drift of some
Kolmogorov diffusion with σ ≡ Idd×d is identified as

(L(2β + d))
d

2β+d

d

(
β Sd

(2π)d(β + d)

) 2β
2β+d

, β > 1, L > 0. (2.1.9)
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2.2. Preliminaries

For d = 1, the constant in (2.1.9) coincides with Pinsker’s constant (see, e.g., Tsybakov (2009),
p. 138), and, for d ≥ 1, it equals the constant obtained in Rigollet and Tsybakov (2007).

For pointwise adaptive estimation of the components of the drift vector, we consider some scale
of Sobolev classes (Π(β, L))(β,L)∈BT , where, for β∗ > d/2 and 0 < L∗ < L∗ <∞,

BT := {(β, L) : β∗ ≤ β < βT , L∗ ≤ L ≤ L∗} , βT = (log log T )δ, δ ∈ (0, 1) fixed.

The exact constant for estimating one component of the drift of Kolmogorov diffusions with
respect to the pointwise mean-squared error is given as

L
d

2β

ρ(x0)
2β
d

(
d2 ρ(x0)
β(2β − d)

)β−d/2
2β

Iβ, β >
d

2 , L > 0. (2.1.10)

Here, with B(·, ·) denoting the Beta function,

I2β := 1
2βB

(
1 + d

2β , 1−
d

2β

)
(2π)−dSd = 1

(2π)d
∫
Rd

‖λ‖2β

(1 + ‖λ‖2β)2 dλ.

For d = 1, the expression in (2.1.10) coincides with the constant obtained by Butucea (2001)
for exact adaptive estimation of some density ρ at the point x0 ∈ R under Sobolev smoothness
assumptions from i.i.d. observations. In dimension d ≥ 1, (2.1.10) equals the constant for
(classical) estimation of some density ρ which is to be conjectured from the results obtained in
Klemelä and Tsybakov (2004).

The accordance of the constants in the exact asymptotics mentioned above reflects the statistical
folklore that different statistical models such as Gaussian white noise, nonparametric regression
or density estimation show similar behavior, at least from an asymptotic point of view. Dalalyan
and Reiß (2007) prove asymptotic statistical equivalence in the sense of Le Cam for inference
on the drift in multidimensional ergodic (Kolmogorov) diffusions. Their results hold only for
large enough Hölder smoothness of the drift coefficient which is substantially larger than the
lower bound of d/2 which would correspond to the results of Brown and Zhang (1998). Our
exact asymptotic results on drift estimation indicate that asymptotic equivalence – at least in
some reduced sense – also holds under smoothness assumptions less severe than those imposed
in Dalalyan and Reiß (2007).

Outline of the chapter. Basic assumptions on the diffusion processes are summarized in
Section 2.2. We further recall essential ideas for nonparametric estimation of the drift coefficient
and the invariant density of diffusions. The exact adaptive estimation procedures are described
in Section 2.3 (global case) and Section 2.5 (pointwise setting). The proofs of lower and of the
upper bounds for the adaptive estimation procedure are deferred to Section 2.4 (global setting)
and Section 2.6 (pointwise case), respectively.

2.2. Preliminaries

This section subsumes preliminaries and general material from nonparametric statistics for dif-
fusion processes which are needed in the sequel.

2.2.1. General definitions and notation

For g : Rd → Rd, denote by gj its j-th component. For a smooth function f : Rd → R, let
∂jf := ∂f/∂xj , ∂2

jkf := ∂2f/(∂xj∂xk), and denote its gradient by ∇f = (∂jf)j . For smooth
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2. Sharp adaptive drift estimation for ergodic diffusions in higher dimension

g : Rd → Rd, denote by div g = ∑
j ∂jg

j its divergence. The map a : Rd → Rd ⊗Rd is viewed as
d× d matrices whose rows are denoted by aj , and div a denotes the vector (div aj)j . Let φf be
the Fourier transform of f ∈ L2(Rd), that is,

φf (λ) :=
∫
Rd
f(x) exp(iλtx)dx, λ ∈ Rd.

For f ∈ Lp(µ) := Lp(Rd, µ), p ≥ 1, set ‖f‖Lp(µ) := (
∫
Rd |f |pdµ)1/p. The Euclidean norm for

x ∈ Rd is denoted by ‖x‖2 =: ‖x‖, and bac is the largest integer strictly smaller than a ∈ R. For
any multi-index α ∈ Nd and x ∈ Rd, set |α| := ∑d

i=1 αi, xα := ∏d
i=1 x

αi
i , and

Dαf := ∂|α|f

∂xα1
1 . . . ∂xαdd

, f ∈ C |α|(Rd).

For β, L > 0, the isotropic Hölder class H(β, L) is defined as

H(β, L) :=


{
f : Rd → R : |f(x)− f(y)| ≤ L‖x− y‖β

}
, β ≤ 1,{

f ∈ Cbβc(Rd) :
∣∣∣f(x)− P (f)

y (x)
∣∣∣ ≤ L‖x− y‖β}, β > 1,

(2.2.1)

where P (f)
y is the Taylor polynomial of f at the point y up to order bβc. The isotropic Sobolev

class S(β, L) is given as

S(β, L) :=
{
f ∈ L2(Rd) : 1

(2π)d
∫
Rd
‖λ‖2β |φf (λ)|2 dλ ≤ L2

}
. (2.2.2)

For integer β > 0, it holds

S(β, L) =
{
f ∈ L2(Rd) :

∑
|α|≤β

∫
Rd
|Dαf |2 ≤ L2

}
,

where
Dαf(x) = i|α|

∫
Rd
λαφf (λ) e−iλtxdλ, x ∈ Rd.

More generally, for p, r ∈ N, denote by W p,r(Rd) the Sobolev class of functions that belong to
Lp(Rd), together with their partial weak derivatives up to order r. For integer l ≥ 1, a function
K : Rd → R will be called kernel of order l if the functions u 7→

(
ui
)j
K(u), j = 0, 1, . . . , l,

i = 1, . . . , d, are integrable and satisfy
∫
Rd K(u)du = 1 and∫

Rd

(
ui
)j
K(u)du = 0, i = 1, . . . , d, j = 1, . . . , l.

2.2.2. Diffusion processes: Notation and basic assumptions

Basic assumptions on diffusion processes which allow for an in-depth analysis were already
introduced in Section 1.1.3. Some care is required indeed in order to define a class of diffusion
processes as broad as possible for which results on exact adaptive estimation of the drift function
can be derived.

Remark 2.2.1 (The one-dimensional case). Properties of scalar diffusions are often verified
straightforwardly. Indeed, consider some one-dimensional diffusion process satisfying the SDE

dXt = b(Xt)dt+ σ(Xt) dWt, X0 = ξ, t ≥ 0,
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2.2. Preliminaries

where Wt is a standard Wiener process on a probability space (Ω,A,P) and the initial value
ξ ∈ R is independent of W . If

lim
|x|→∞

∫ x

0

b(y)
σ2(y)dy =∞ and N(b) :=

∫ ∞
−∞

σ−2(x) exp
(

2
∫ x

0

b(y)
σ2(y)dy

)
dx <∞,

then the diffusion X is positive recurrent (cf. Chapter IV.2 in Mandl (1968)), and the invariant
density is given as

ρb(x) := 1
N(b)σ2(x) exp

(
2
∫ x

0

b(y)
σ2(y)dy

)
. (2.2.3)

It is immediately verified that(
σ2(x)ρb(x)

)′
= d

dx

{ 1
N(b) exp

(
2
∫ x

0

b(y)
σ2(y)dy

)}
= 2b(x)ρb(x),

that is, (2.1.4) holds.

We proceed with introducing a set of assumptions which will play an important role in our
subsequent investigation in the multidimensional framework. For fixed j ∈ {1, . . . , d} and given
some β ∈ N, denote by Σj(β) the set of drift functions satisfying assumptions (C0

j )–(C2) below.

(C0
j) The SDE

dXt = b(Xt)dt+ σ dWt, (2.2.4)

where b ∈ Cβ(Rd) and σ : Rd → Rd×d is non-degenerate, admits a strong solution with
Lebesgue continuous invariant measure dµ(x) = ρ(x)dx which satisfies the relation

2bjρ = div(ajρ) =
d∑

k=1
ajk ∂kρ. (2.2.5)

Here and throughout the sequel, a = σσt denotes the diffusion matrix associated to the
dispersion coefficient σ.

(C1) For some c1 ∈ (0,∞], it holds

lim sup
‖x‖→∞

〈
b(x), x

‖x‖2
〉

= −c1. (2.2.6)

(C2) For some constant c2 > 0, it holds ‖b(x)‖ ≤ c2(1 + ‖x‖) for all x ∈ Rd.

Some comments on the above conditions are in order. The assumption of ergodicity of the
diffusion in (C0

j) is crucial for our analysis. Classical conditions for ensuring the existence of
invariant measures are due to Khasminskii and involve Lyapunov-type functions for the gene-
rator of the diffusion. For a concise general treatment of the question of existence of invariant
measures, we refer to Section 8.1 in Lorenzi and Bertoldi (2007). The condition (C1) is related
to the existence of Lyapunov functions and ensures integrability of functions with respect to
the invariant measure. Together with the growth condition on the drift term in (C2), it further
entails exponential bounds on the invariant density. The following result due to Metafune et al.
(2005) will be used frequently in the sequel.

Lemma 2.2.2 (Metafune et al. (2005)). Assume that the diffusion X is ergodic with Lebesgue
continuous invariant measure dµ(x) = ρ(x)dx, and suppose that X satisfies conditions (C1) and
(C2). Then there exist positive constants C1, C2 such that the invariant density ρ satisfies the
following upper bound,

ρ(x) ≤ C1 exp
(
−C2‖x‖2

)
, x ∈ Rd. (2.2.7)
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2. Sharp adaptive drift estimation for ergodic diffusions in higher dimension

Proof. The lemma is an immediate consequence of the results of Metafune et al. (2005) who
study global regularity properties of invariant measures of divergence-form operators. Their
results also hold in our specific framework since we restrict attention to the case of constant,
uniformly elliptic diffusion part. Denote by λmax the largest eigenvalue of a. Due to Corollary
2.5 in Metafune et al. (2005), (C1) implies that exp

(
η‖x‖2

)
∈ L1(µ) for η < c1 (2λmax)−1. Since

‖b(x)‖ ≤ c2(1 + ‖x‖) . exp(‖x‖), Theorem 6.1 in Metafune et al. (2005) applies and yields the
assertion. Here and subsequently, . means less or equal up to some constant which does not
depend on the variable parameters in the expression.

Throughout this chapter, Eb,σ (Varb,σ) denotes expectation (variance) with respect to the in-
variant measure µ related to the diffusion process solution of (2.2.4). For constant σ, we write
Eb = Eb,σ and Varb = Varb,σ. Analogue to the introductory remarks in Section 1.1.3, denote by
(Pt)t≥0 the transition semigroup of the diffusion (Xt)t≥0 on L2(µ), that is,

Ptf(x) = Eb,σ (f(Xt)|X0 = x) , f ∈ L2(µ).

Denote by A the infinitesimal generator associated with the diffusion process satisfying (2.2.4),
for every C2 function f on Rd defined by

Af(x) :=
d∑
j=1

bj(x)∂jf(x) + 1
2

d∑
j,k=1

ajk∂
2
jkf(x). (2.2.8)

The above conditions are similar to the conditions which are typically imposed for estimating the
drift of scalar diffusions; compare in particular assumptions C1 and C2 in Dalalyan (2005). We
already noted that the investigation of multidimensional processes is substantially more involved
and thus often requires to formulate additional assumptions. This remark applies in particular
to the relation (2.2.5).

Remark 2.2.3. The validity of the relation (2.2.5) is related to the reversibility property of
diffusion processes. For ease of presentation, we restrict attention to the case of constant diffusion
matrix a, but the following exposition extends to the general case of non-constant diffusion
part; cf. Section 6.2 in Bovier (2012). Consider some Lebesgue continuous reversible measure,
µ(dx) = exp(F (x))dx =: ρ(x)dx, say. The formal adjoint of A in (2.2.8) is given by

A∗g(x) = −
d∑
j=1

∂j
(
bj(x)g(x)

)
+ 1

2

d∑
j,k=1

ajk∂
2
jkg(x).

The reversibility property of µ implies that

A∗(g exp(F ))(x) = exp(F (x))Ag(x). (2.2.9)

On the other hand, straightforward algebra gives

A∗
(
geF

)
(x) = eF (x) 1

2
∑
j,k

ajk∂
2
jkg(x) + eF (x)∑

j,k

ajk∂jg(x)∂kF (x)

+ eF (x) 1
2
∑
j,k

ajkg(x)
(
∂2
jkF (x) + ∂jF (x)∂kF (x)

)
g(x)

− eF (x)∑
j

bj(x)
(
∂jF (x)g(x) + ∂jg(x)

)
− eF (x)∑

j

∂jb
j(x)g(x).

(2.2.9) thus only holds true if, for any j ∈ {1, . . . , d},

2bj(x)ρ(x) =
d∑

k=1
ajk∂kρ(x),

that is, (2.2.5) is satisfied.
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2.2.3. Estimation and regularity properties of the drift coefficient

We turn to the question of asymptotically exact adaptive drift estimation in Sections 2.3 and
2.5. Before doing so, we briefly recall essential ideas for constructing a non-adaptive rate-
optimal estimator of the drift of multidimensional ergodic diffusions under Hölder smoothness
assumptions.

Motivation of drift estimators. Consider the SDE (2.2.4), and suppose we are interested
in estimating b(x) in some fixed x ∈ Rd. We first deliver justifications of the form of the two
kernel estimators suggested in Section 2.1.

The estimator bT in (2.1.3) is motivated by the regression type-structure of the drift in Section
4.2.3 in Prakasa Rao (1999), and the basic idea is as follows: Assume that the diffusion process
solution of (2.2.4) is stationary, and consider fixed ∆ > 0. Introduce the discrete drift and
diffusion coefficients b∆ and d∆, satisfying for any t > 0,

Xt+∆ = E (Xt+∆ | Xt = x) +
√

cov (Xt+∆ | Xt = x) εt+∆

= Xt + b∆(Xt) + d∆(Xt) εt+∆,

where E (εt+∆|Xs, s ≤ t) = 0 and E
(
εt+∆ε

t
t+∆|Xs, s ≤ t

)
= Idd×d. If the discrete drift coeffi-

cient b∆ is constant in some neighborhood U of x, then, for any j ∈ N such that Xj∆ ∈ U ,

Xj∆+∆ −Xj∆ = b∆(x) + d∆(Xj∆) εj∆+∆.

Letting
I :=

{
j : Xj∆ ∈ U, 1 ≤ j ≤ n

}
,

a natural estimator of b∆ is given by

1
card I

∑
j∈I

(
Xj∆+∆ −Xj∆

)
=
∑n
j=1

(
Xj∆+∆ −Xj∆

)
1
{
Xj∆ ∈ U

}∑n
j=1 1

{
Xj∆ ∈ U

} .

For non-constant b∆(·), one considers a shrinking neighborhood

U = Un = {y : (y − x)/hn ∈ B(0)} ,

where B(0) is some neighborhood of 0 and hn ↘ 0. Denoting K(·) := 1{· ∈ U}, this yields the
estimator

b∆,n(x) =
∑n
j=1

(
Xj∆+∆ −Xj∆

)
K
(
Xj∆−x

h

)
∑n
j=1K

(
Xj∆−x

h

) .

The passage to the case of continuous-time observations is obvious and explains the form of the
estimator defined in (2.1.3).

An alternative interpretation of this estimator as an approximated MLE is sketched in Section
4.3 in Dalalyan and Kutoyants (2002). For the sake of completeness, we also repeat their
arguments. Consider the SDEs

dXt = b(Xt)dt+ σ(Xt) dWt, dYt = b0(Yt)dt+ σ(Yt) dWt,

and assume that the law of the initial values is independent of the respective drift coefficients.
Similarly to (A.1.3), one obtains the following expression for the log-likelihood ratio under the
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2. Sharp adaptive drift estimation for ergodic diffusions in higher dimension

measure Pb associated with the drift coefficient b,

log dP(T )
b

dP(T )
b0

(
XT ) =

∫ T

0
(b− b0)t(Xu)(σσt)−(Xu)dXu (2.2.10)

− 1
2

∫ T

0
(b− b0)t(Xu)(σσt)−(Xu)(b+ b0)(Xu)du

(cf. pp. 296–297 in Liptser and Shiryaev (2001)). To extend the maximum likelihood approach
to the nonparametric framework, one might use local approximations of the log-likelihood ratio
in (2.2.10) by polynomials of order n ∈ N. For ease of presentation, we consider the case d = 1.
The arguments extend to the multidimensional framework with d ≥ 2 with only formal changes.
Given two sufficiently regular kernel functions Q,P ∈ L2(R) and some bandwidth sequence
hT →T→∞ 0, such an approximation is given by

Lapprox
T

(
θ, x,XT ) := σ−2(x)

∫ T

0

n−1∑
r=0

θr(Xu − x)rQ
(
Xu − x
hT

)
dXu

− 1
2σ2(x)

∫ T

0

(
n−1∑
r=0

θr(Xu − x)r
)2

P

(
Xu − x
hT

)
du.

The maximum likelihood approach then suggests to estimate the value b(x) by the first coordi-
nate of θ∗, where

θ∗ = arg maxθ∈RnL
approx
T

(
θ, x,XT ). (2.2.11)

To shorten notation, for r ∈ {0, 1, 2}, let

µr(h, T, x) := 1
T

∫ T

0

(
Xu − x
h

)r
P

(
Xu − x
hT

)
du,

νr(h, T, x) := 1
T

∫ T

0

(
Xu − x
h

)r
Q

(
Xu − x
hT

)
dXu.

For n = 1, the ML approach gives an estimator of the same form as in (2.1.3), namely

θ̂T (x) := ν0(h, T, x)
µ0(h, T, x) =

∫ T
0 Q

(
Xu−x
hT

)
dXu∫ T

0 P
(
Xu−x
hT

)
du

, x ∈ Rd.

Spokoiny (2000) suggests local linear smoothers for pointwise estimation of the drift. Estimators
of this form arise as the solution of the maximization problem (2.2.11) for n = 2 and can be
written as

ν0(h, T, x)µ2(h, T, x)− ν1(h, T, x)µ1(h, T, x)
µ0(h, T, x)µ2(h, T, x)− µ2

1(h, T, x) . (2.2.12)

The alternate estimator b̂T defined in (2.1.5) is a multidimensional analogue of the drift esti-
mator pioneered by Banon (1978). The author studies real-valued diffusion processes satisfying
the Itô SDE

dXt = b(Xt)dt+ σ(Xt) dWt, (2.2.13)
for uniformly Lipschitzian coefficients b and σ which grow at most linearly. The basic assump-
tion is that the unique solution of (2.2.13) admits a stationary transition density pXt|X0=a which
fulfills Kolmogorov’s forward equation and which tends to a limiting density p. Banon (1978)
proposes a nonparametric procedure for pointwise estimation of b(·). The central idea for es-
timating the drift is to construct estimators of p(·) and its derivative p′(·) and to exploit the
relation

1
2
(
σ2p′

)
= bp. (2.2.14)
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The estimator b̂T in (2.1.5) is based on the relation (2.1.4) which can be viewed as a multi-
dimensional generalization of (2.2.14). Given some compactly supported, symmetric kernel K
satisfying

∫
Rd K(x)dx = 1, denote

ĝjT,h(x) := 1
Thd

∫ T

0

d∑
k=1

ajk(Xu) (∂kK)
(
Xu − x
h

)
du. (2.2.15)

Integration by parts gives

Ebĝ
j
T,h(x) = h−d

∫
Rd

d∑
k=1

ajk(y) ∂kK
(
x− y
h

)
ρ(y)dy

= h−d+1
∫
Rd
K

(
x− y
h

)∑
k

∂k(ajk(y)ρ(y))dy

=
∫
Rd
K(v) div(ajρ)(x− hv)dv. (2.2.16)

(The boundary terms vanish since K has compact support.) Provided the relation (2.1.4) is
valid, it holds

lim
h→0

Ebĝ
j
T,h(x) = lim

h→0

∫
Rd
K(v) div(ajρ)(x− hv)dv = div(ajρ)(x) (2.1.4)= 2bj(x)ρ(x).

Consequently, given some consistent estimator ρ̂T of the invariant density ρ, the estimator b̂T
as defined in (2.1.3) is a reasonable estimator of the drift vector.

The agenda. We work under the standing assumption that the relation (2.1.4) is satisfied.
The strategy for analyzing the drift estimation problem is

(i) to derive asymptotic results for estimating 2bjρ = div(ajρ), and

(ii) to transfer these results to the problem of drift estimation.

At this point, we shall briefly highlight particular challenges to be tackled in the sequel, on the
one hand due to the dependence structure of the data, and, secondly, due to our wish to identify
the optimal constant appearing in the normalizing factor.

Exemplarily, consider the estimator bT defined in (2.1.3), and denote

gjT,h(x) := 2
T

∫ T

0
Kh(Xu − x)dXj

u, j ∈ {1, . . . , d}, x ∈ Rd.

The j-th component of the estimator bT defined in (2.1.3) can then be written as

b
j
T (x) = b

j
T,h(x) =

gjT,h(x)
2 (ρ̂T (x) ∨ ρ∗(x)) , j ∈ {1, . . . , d}, x ∈ Rd. (2.2.17)

(Recall that ρ̂T is an estimator of the invariant density ρ and ρ∗ > 0 denotes some a priori lower
bound such that ρ(x) ≥ ρ∗(x), x ∈ Rd.)

In order to analyze the mean-squared error of gjT,h, we use the classical bias-variance decompo-
sition, that is,

Eb

∣∣gjT,h(x)− div(ajρ)(x)
∣∣2 =

∣∣Ebg
j
T,h(x)− div(ajρ)(x)

∣∣2 + Varb
(
gjT,h(x)

)
. (2.2.18)

If
bjρ ∈ Cβ(Rd), β ∈ N, (2.2.19)
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2. Sharp adaptive drift estimation for ergodic diffusions in higher dimension

the bias of gjT,h is shown to be of the order hβ in the standard way by choosing a smooth kernel
K : Rd → R of order β − 1 satisfying

∫
Rd |K(u)|‖u‖βdu <∞. Indeed, it holds

∣∣∣Ebg
j
T,h(x)− 2bj(x)ρ(x)

∣∣∣ =
∣∣∣∣2 ∫

Rd
K(u)

(
bj(x− uh)ρ(x− uh)− bj(x)ρ(x)

)
du
∣∣∣∣

≤ 2hβ
∫
Rd
|K(u)|‖u‖βdu . hβ. (2.2.20)

The investigation of the variance term differs from the case of independent data as there appear
additional covariances in the dependent case. Under suitable conditions on the precise depen-
dence mechanism governing the observations however, one can show that there exists some
positive constant C such that

Varb
(∫ T

0
f(Xu)du

)
≤ CT

∫
Rd
f2(y)dµ(y), f ∈ L2(µ), T ≥ 0. (2.2.21)

In this case, a rough upper bound on the variance term in (2.2.18) is given by

Varb
(
gjT,h(x)

)
≤ 8

T 2 Varb
(∫ T

0
Kh(Xu − x)bj(Xu)du

)

+ 8
T 2 Varb

(∫ T

0
Kh(Xu − x)

d∑
r=1

σjrdW r
u

)

= 8
T 2 Varb

(∫ T

0
Kh(Xu − x)bj(Xu)du

)
+ 8ajj

T

∫
Rd
K2
h(y − x)ρ(y)dy

(2.2.21)
≤ 8

T

∫
Rd
K2
h(y − x)

(
C(bj)2(y) + ajj

)
ρ(y)dy

= 8
Thd

∫
Rd
K2(v)

(
C(bj)2(x+ hv) + ajj

)
ρ(x+ hv)dv ∼ 1

Thd
. (2.2.22)

In view of (2.2.18), this allows to deduce the rate of convergence of estimators of div(ajρ).

As concerns item (ii) in our above agenda, that is, the question of transferring the results to the
original question of drift estimation, note that

∣∣bjT,h − bj∣∣ (2.2.17)=
∣∣∣∣ gjT,h
2
(
ρ̂T ∨ ρ∗

) − bj∣∣∣∣
=

∣∣∣∣
(
gjT,h − 2bjρ

)
ρ+ 2bjρ

(
ρ− ρ̂T ∨ ρ∗

)
2
(
ρ̂T ∨ ρ∗

)
ρ

∣∣∣∣
≤ ρ−1

∗

(∣∣∣12gjT,h − bjρ
∣∣∣+ ∣∣∣bjρ−1

∗
(
ρ̂T − ρ

)∣∣∣). (2.2.23)

The above steps have certain shortcomings in view of the goal of extending the results on exact
estimation in the classical statistical models to the drift estimation problem. Precisely, they
raise the following new issues:

1. The smoothness assumption in (2.2.19) refers to bjρ = div(ajρ)/2 and appears as a natural
starting point for estimating div(ajρ). For the original goal, that is, for nonparametric
estimation of the drift coefficient, it is desirable to formulate a result under regularity
assumptions on the drift coefficient itself. Weighted Sobolev smoothness conditions turn
out to give an adequate description of the regularity of the drift.
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2. It remains to specify preferably general assumptions on the dependence structure of the
data which guarantee that (2.2.21) is satisfied. Given any ergodic stationary diffusion X
with invariant measure µ, the study of the variance of integral functionals of X of the form

Varb
(∫ T

0
f(Xu)du

)
, f ∈ L2(µ),

requires to study covariances of the form Eb (f(Xu)f(Xv)), u, v ∈ [0,∞). Using stationa-
rity and the Cauchy–Schwarz inequality, one obtains

Eb (f(Xu)f(Xv)) = Eb

(
f(X0)f(X|u−v|)

)
= Eb

(
f(X0)Eb

(
f(X|u−v|)|X0

))
= Eb

(
f(X0)P|u−v|f(X0)

)
≤
(
Ebf

2(X0)
)1/2 (

Eb

(
P|u−v|f

)2(X0)
)1/2

. (2.2.24)

In the scalar diffusion framework, Banon (1978) uses the “condition G2” to evaluate the
second term in the last display. Dalalyan and Reiß (2007) consider multidimensional Kol-
mogorov diffusions, and they bound this quantity by means of the spectral gap inequality.

3. The decomposition in (2.2.23) is too crude in view of the wish to identify exact constants
for drift estimation. It involves the inverse of the lower bound which typically is such that
ρ−1
∗ � 1. A more careful decomposition will be shown to give exact results.

2.2.4. Estimation of the invariant density

The previous section clearly shows that the investigation of the drift estimators suggested there
involves us in an analysis of invariant density estimators. It is worth recalling that, in contrast
to the classical setting of nonparametric density estimation based on i.i.d. observations, there
is a gap between the minimax optimal rates occurring in the scalar and the multidimensional
case, respectively. If the invariant density ρ ∈ Cβ(R) is continuous in x, the so-called local-time
estimator ρ̂0

T (x) achieves the parametric rate T−1/2 for pointwise estimation. It is defined as

ρ̂0
T (x) := 1

σ2(x)T

∫ T

0
sgn(x−Xu)dXu + |XT − x| − |X0 − x|

σ2(x)T ,

and the naming is due to the following representation of ρ̂0
T ,

ρ̂0
T (x) = 2`T (x)

σ2(x)T .

Here, `T (x) is the local time of the diffusion process X at time T and point x (see, e.g., Section
3.7 in Karatzas and Shreve (1988)). The phenomenon of nonparametric estimation with a
parametric rate of convergence is related to the existence of local time and does not transfer to
dimension d ≥ 2.

Note that the drift b appears in the invariant density ρb (2.2.3) in an integrated form. In
particular, this implies some “increase of regularity” of the invariant density estimation problem
as compared to the classical i.i.d. setting. Roughly speaking, the problem of estimating the
invariant density of an ergodic diffusion as in (2.2.3) is to be compared with the problem of
nonparametric estimation of a distribution function from i.i.d. observations. In turn, the drift
estimation problem is similar to nonparametric density estimation in the classical setting.

We now formulate the first auxiliary result in this section. Later on, we shall investigate drift
estimators b̃T of the form

b̃T (x) = g̃T (x)
ρ̂T (x) + cT (x) ,
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2. Sharp adaptive drift estimation for ergodic diffusions in higher dimension

where g̃T and ρ̂T are estimators of div(aρ)/2 = bρ and the invariant density ρ, respectively. The
additional term cT is included in order to prevent the denominator of b̃T from vanishing. For
transferring the results on estimation of div(aρ) to the problem of drift estimation, we require
exponential inequalities for the risk of ρ̂T in order to guarantee integrability of certain functions.
Such estimates are given in the following

Lemma 2.2.4. Consider some ergodic diffusion process X with Lebesgue-continuous invariant
measure dµ(x) = ρ(x)dx, and assume that X fulfills conditions (C1), (C2) and the relation
(2.2.21).

1) If ρ ∈ H(β + 1, L), for some β ∈ N and L > 0, then there exist positive constants K1,K2
and some invariant density estimator ρ̂T,1 satisfying, for any q ≥ 1,

Eb

∣∣ρ̂T,1(x)− ρ(x)
∣∣2q ≤ K1 T

− 2q(β+1)
2(β+1)+d exp (−K2q‖x‖) , x ∈ Rd. (2.2.25)

2) If ρ ∈ S(β′ + 1, L′), for some β′ > d/2 and L′ > 0, then there exist positive constants
K ′1,K

′
2 and some invariant density estimator ρ̂T,2 such that, for any q ≥ 1,

Eb

∣∣ρ̂T,2(x)− ρ(x)
∣∣2q ≤ K ′1 T− q(β′+1−d/2)

β′+1 exp
(
−K ′2q‖x‖

)
, x ∈ Rd. (2.2.26)

The above remark on the formal correspondence between the problems of estimating the in-
variant density and the classical distribution function applies to scalar diffusions. For multi-
dimensional diffusions which satisfy the relation 2bρ = div(aρ), a similar formal analogy holds
true. This explains in particular the setting considered in Lemma 2.2.4: Later on, we will impose
smoothness assumptions of order β on the drift function b, and thus it is of interest to investigate
the case ρ ∈ Cβ+1(Rd).

Proof of Lemma 2.2.4. Let K : Rd → R be some kernel and h = hT ↘ 0 be some bandwidth,
both to be specified later, and define

ρ̂T,i(x) := 1
Thd

∫ T

0
K

(
Xu − x
h

)
du, i ∈ {1, 2}. (2.2.27)

We use the classical decomposition∣∣ρ̂T,i(x)− ρ(x)
∣∣ ≤ ∣∣Ebρ̂T,i(x)− ρ(x)

∣∣+ ∣∣ρ̂T,i(x)−Ebρ̂T,i(x)
∣∣, i ∈ {1, 2}.

For bounding the stochastic error, note that, for i ∈ {1, 2},

Eb

∣∣ρ̂T,i(x)−Ebρ̂T,i(x)
∣∣2 = 1

T 2h2d Varb
(∫ T

0
K

(
Xu − x
h

)
du
)

(2.2.21)
≤ C

Th2d

∫
Rd
K2

(
y − x
h

)
ρ(y)dy.

We now apply the multidimensional version of Theorem 1A in Parzen (1962) (cf. Lemma A.1.4
in the appendix with m = 1). Assume that supx∈Rd |K(x)| < ∞,

∫
K2(x)dx < ∞ and that

lim‖x‖→∞
(
‖x‖K2(x)

)
= 0. Then∣∣∣∣ 1

hd

∫
Rd
K2

(
y − x
h

)
ρ(y)dy

∣∣∣∣
≤
∣∣∣∣ 1
hd

∫
Rd
K2

(
y − x
h

)
ρ(y)dy − ρ(x)‖K‖2L2(Rd)

∣∣∣∣+ ∣∣∣ρ(x)‖K‖2L2(Rd)

∣∣∣
≤ max
‖u‖≤δ

|ρ(u+ x)− ρ(u)|‖K‖2L2(Rd) + 1
δ

sup
‖u‖>δh−dT

(
‖u‖K2(u)

) ∫
Rd
|ρ(y)|dy

+|ρ(x)|
∫
‖y‖>δh−dT

K2(y)dy +
∣∣∣ρ(x)‖K‖2L2(Rd)

∣∣∣ .
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Consequently, for i ∈ {1, 2},

Eb

∣∣ρ̂T,i(x)−Ebρ̂T,i(x)
∣∣2 ≤ C

Thd
ρ(x)‖K‖2L2(Rd)(1 + oT (1)).

It remains to treat the bias term.

Case 1). Assume that K is of order β and satisfies
∫
Rd ‖y‖β+1|K(y)|dy < ∞. Denote by P (ρ)

x

the Taylor polynomial of ρ at the point x up to order β, and let R(ρ)
x,y := ρ(y) − P (ρ)

x (y) be the
corresponding remainder term. Since

∣∣Ebρ̂T,1(x)− ρ(x)
∣∣ =

∣∣∣∣∣h−d
∫
Rd

(ρ(y)− ρ(x)) K
(
y − x
h

)
dy
∣∣∣∣∣

=
∣∣∣∣∣h−d

∫
Rd

(
P (ρ)
x (y)− ρ(x) +R(ρ)

x,y

)
K

(
y − x
h

)
dy
∣∣∣∣∣

and K is of order β, it follows
∣∣Ebρ̂T,1(x)− ρ(x)

∣∣ =
∣∣∣h−d ∫

Rd
R(ρ)
x,y K

(
y − x
h

)
dy
∣∣∣.

The smoothness assumption on ρ entails by the definition of the Hölder class H(β + 1, L)
(cf. (2.2.1)) that

sup
‖x−y‖≤h

∣∣∣R(ρ)
x,y

∣∣∣ = sup
‖x−y‖≤h

∣∣∣P (ρ)
x (y)− ρ(x)

∣∣∣ ≤ Lhβ+1.

Balancing the upper bounds on the bias and the stochastic error suggests to select a bandwidth

h = hT ∼
(
Cρ(x)
L2T

) 1
2(β+1)+d

.

In combination with the exponential upper bound from Lemma 2.2.2, (2.2.25) follows.

Case 2). Define ρ̂T,2 according to (2.2.27), for the kernel K = Kβ′+1 with Fourier transform

φKβ′+1(λ) =
∫
Rd

eiλtyKβ′+1(y)dy = 1
1 + ‖λ‖2(β′+1) , λ ∈ Rd.

Thus, using Cauchy–Schwarz,

∣∣Ebρ̂T,2(x)− ρ(x)
∣∣ =

∣∣∣∣∣h−d
∫
Rd
Kβ′+1

(
y − x
h

)
ρ(y)dy − ρ(x)

∣∣∣∣∣
= (2π)−d

∣∣∣∣∫
Rd
φρ(λ)

(
φKβ′+1(hλ)− 1

)
e−iλtxdλ

∣∣∣∣
= (2π)−d

∣∣∣∣∣
∫
Rd
φρ(λ) ‖hλ‖2(β′+1)

1 + ‖hλ‖2(β′+1) dλ
∣∣∣∣∣

≤ hβ′+1
(

(2π)−d
∫
Rd
|φρ(λ)|2 ‖λ‖2(β′+1)dλ

)1/2

×
(

(2π)−d
∫
Rd

‖hλ‖2(β′+1)(
1 + ‖hλ‖2(β′+1))2 dλ

)1/2

≤ L′hβ′+1−d/2 (2π)−d/2
(∫
‖y‖≤1

dy
(1 + ‖y‖2β′)2 +

∫
‖y‖>1

dy
‖y‖2β′

)1/2

≤ L′′hβ′+1−d/2,
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for some positive constant L′′. Specifying

h = hT ∼
(
Cρ(x)
(L′′)2T

) 1
2(β′+1)

and using again the upper bound from Lemma 2.2.2, we obtain (2.2.26).

Remark 2.2.5. The rate of convergence for the pointwise mean-squared error (MSE) in Lemma
2.2.4 corresponds to the results for nonparametric density estimation from i.i.d. observations over
Hölder classes. For multidimensional Kolmogorov diffusions, Dalalyan and Reiß (2007) prove
a substantially better convergence rate for the pointwise MSE, assuming Hölder smoothness
of ρ. The improvement is due to a smaller bound on the variance term in the bias-variance
decomposition of the MSE of the invariant density estimator ρ̂T ,

Eb |ρ̂T (x)− ρ(x)|2 = Varb (ρ̂T (x)) + |Ebρ̂T (x)− ρ(x)|2 .

The smaller bound on the variance term is obtained by applying the spectral gap inequality
(SG). For the purpose of transferring results on invariant density estimation to the question of
estimating the drift coefficient, the result in (2.2.25) suffices.

2.3. Global sharp adaptive estimation on L2 Sobolev classes

For some sufficiently regular b : Rd → Rd, consider the diffusion process which is given as a
solution of the SDE

dXt = b(Xt)dt+ σ dWt,

where σ : Rd → Rd×d is some constant, non-degenerate dispersion matrix. Given a continuous
record of observations XT = (Xt)0≤t≤T , T > 0, the aim is to estimate the drift function b and
to quantify the quality of an estimator b̂T with respect to the weighted global L2 risk

Eb

∫
Rd

∣∣b̂jT (x)− bj(x)
∣∣2ρ2(x)dx, j ∈ {1, . . . , d}.

The drift estimation problem is a classical issue in statistics of stochastic processes. For an
account on this question, we refer to Chapter 4.5 in Kutoyants (2004) and references to the
literature therein. The closest points of reference for our investigation of drift estimation with
respect to global risk criteria are Dalalyan and Kutoyants (2002) and Dalalyan (2005). Like a
majority of the literature on nonparametric statistics of diffusion processes, these works con-
sider the case of scalar diffusions. Since local time techniques and specific properties of one-
dimensional diffusions are heavily used, the results do not admit a straightforward extension to
the multidimensional setting.

The section is organized as follows. We start by introducing the local minimax framework.
Section 2.3.2 contains a lower bound for estimating the components of the vector div(aρ) which
readily entails a lower bound for estimating the drift function. In part (I) of Section 2.3.3, we
construct an asymptotically efficient estimator of div(ajρ), j ∈ {1, . . . , d} fixed, which attains the
lower bound for the minimax risk. This estimator can be used for defining an asymptotically
efficient estimator of the j-th component of the drift vector. We translate the smoothness
conditions on div(ajρ) into conditions on the weighted Sobolev regularity of the drift coefficient b.
This in particular yields Corollary 2.3.12 which presents the most convenient formulation of our
result on asymptotically efficient global drift estimation. The explicit form of the optimal kernel
and the optimal bandwidth of the asymptotically efficient estimator of div(ajρ) are obtained by
minimizing the maximum of the asymptotically exact upper risk bound over the Sobolev ball of
(known) smoothness β and (known) radius L. The optimal kernel and the optimal bandwidth
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2.3. Global sharp adaptive estimation on L2 Sobolev classes

thus depend on β and L. In part (II) of Section 2.3.3, we consider the important special case
of Kolmogorov diffusions, and we propose an adaptive estimator of the entire vector ∇ρ which
relies on data-driven approximations of the parameters.

2.3.1. The local minimax setting

Recall the definition of Σj(β) introduced in Section 2.2.2, fix some b0 ∈ Σj(β), and denote by
ρ0 the invariant density of the diffusion process solution of the SDE

dXt = b0(Xt)dt+ σ dWt. (2.3.1)

Consider the neighborhood U jδ (b0) as defined in (2.1.7), that is,

U jδ (b0) :=
{
b : Rd → Rd : b ∈ Σj(β); ∀k ∈ {1, . . . , d}, sup

x∈Rd

∣∣bk(x)− bk0(x)
∣∣ ≤ δ} .

We require some additional smoothness of the central function b0 and some bound on the tran-
sition densities pb0t (·, ·) of the diffusion process solution of the SDE (2.3.1), namely:

(C3) There exists some τ > 0 such that
∫
Rd ‖λ‖2β+2τ+2|φ0(λ)|2dλ <∞, where φ0 is the Fourier

transform of ρ0;

(C4) there exist some κ > 0 and some q > 1 such that

sup
t>κ

Eb0

∣∣∣ sup
y∈Rd

(
pb0κ (Xt−κ, y)

)q ∣∣∣ <∞.
The above conditions present multidimensional analogues of conditions C3 and C4 in Dalalyan
(2005). Condition (C3) is satisfied whenever the central function b0 is chosen a bit more regular
than the other drift functions in its neighborhood. Sufficient criteria which ensure that (the one-
dimensional version of) condition (C4) is satisfied are given in Section 4.4 in Dalalyan (2005).

For fixed j ∈ {1, . . . , d}, define Σj
δ = Σj

δ(β, L; b0, σ) as

Σj
δ :=

{
b ∈ U jδ (b0) :

∑
|α|≤β

∫
Rd

∣∣Dα (div(ajρ)− div(ajρ0))
∣∣2 ≤ 4L

}
. (2.3.2)

For the problem of nonparametric drift estimation, it is natural to impose smoothness conditions
on the components bj of the drift vector, while the results on exact adaptive estimation of the
sums div(ajρ) rely on smoothness conditions on div(ajρb) = 2bjρb. The local minimax approach
allows to formulate results under more natural smoothness conditions imposed on the drift
coefficient itself.

Proposition 2.3.1. Fix b0 ∈ Σj(β), β ∈ N, and consider the neighborhood

U
j
δ (b0) :=

{
b : Rd → Rd : b ∈ Σj(β);∀k ∈ {1, . . . , d}, α ∈ Nd with |α| ≤ β − 1,

sup
x∈Rd

∣∣Dαbj(x)−Dαbj0(x)
∣∣ ≤ δ}.

Define the Sobolev ball Σj
δ = Σj

δ(β, L; b0, σ) as

Σj
δ :=

{
b ∈ U jδ(b0) :

∑
α∈Nd:|α|≤β

∫
Rd

∣∣Dα(bj − bj0)∣∣2ρ2
b ≤ L

}
. (2.3.3)
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2. Sharp adaptive drift estimation for ergodic diffusions in higher dimension

Assume that the central function b0(·) satisfies for some positive constants M,κ and for all
x ∈ Rd,

max
α∈Nd:|α|≤β

∣∣Dαbj0(x)
∣∣ ≤M (1 + ‖x‖κ) . (2.3.4)

Then, for any β ∈ N, L > 0 and δ > 0, it holds

Σj
δ

(
β, L; b0, σ

)
⊆ Σj

δ

(
β, L+ oδ(1); b0, σ

)
.

Proof. To shorten notation, denote Db = Dibj , D2b = Di
(
Djbk

)
, i, j, k ∈ {1, . . . , d}, and so

forth. For any β ∈ N, Dβb thus denotes partial derivatives of the components of b of order β.
Taking into account the form of the invariant density ρ = ρb associated with b ∈ U jδ(b0), one
might verify that, for any multi-index α ∈ Nd of order |α| = β ∈ N,

Dαρb(x) = P
(
b,Db, . . . , Dβ−1b

)
ρb(x), β ∈ N, x ∈ Rd,

where P (x0, x1, . . . , xβ−1) is some real-valued polynomial. For any j ∈ {1, . . . , d} and any multi-
index α ∈ Nd of order |α| ≤ β, it thus holds∥∥Dα (div(ajρb)− div(ajρ0))

∥∥
L2(Rd)

= 2
∥∥Dαbjρb + bjDαρb −Dαbj0ρ0 − bj0ρ0

∥∥
L2(Rd)

≤ 2
∥∥Dα(bj − bj0)ρb

∥∥
L2(Rd) + 2

∥∥Dαbj0(ρb − ρ0)
∥∥
L2(Rd) (2.3.5)

+ 2
∥∥ (P (b,Db, . . . , Dβ−1b

)
− P

(
b0, Db0, . . . , D

β−1b0
))
ρb
∥∥
L2(Rd)

+ 2
∥∥P (b0, Db0, . . . , Dβ−1b0

)
(ρb − ρ0)

∥∥
L2(Rd).

The pointwise upper bound on the invariant density ρb associated to b in (2.2.7) implies that,
for any γ′ > 0,

lim
δ→0

sup
b∈Σδ

∫
Rd
‖x‖2γ′

(
ρb − ρ0

)2(x)dx = 0;

this can be shown analogously to the proof of Theorem 4 in Dalalyan and Kutoyants (2002). In
view of condition (2.3.4) and the decomposition (2.3.5), the assertion follows.

2.3.2. Lower risk bound for global drift estimation

The lower bound in the following Theorem is proven by a version of van Trees’ inequality which
was introduced in its general form in Section 1.2.1. It has been applied for proving asymptotically
exact lower bounds in different statistical models. Belitser and Levit (1995) study the filtration
problem of estimating the mean θ of an observed infinite-dimensional Gaussian vector with
independent components. They consider the model

Yk = θk + ε σk ξk, k = 1, 2, . . . ,

where the values σk ≥ 0 are given, ξk are independent standard Gaussian random variables,
and ε > 0 is a small noise parameter. The unknown infinite-dimensional parameter of interest,
θ = (θ1, θ2, . . .), is assumed to belong to some ellipsoid

Θ = Θ
(
Q, (ak)k∈N

)
=
{
θ :

∞∑
k=1

a2
kθ

2
k ≤ Q

}
, Q > 0,

where (ak)k∈N is a nonnegative sequence tending to infinity. Belitser and Levit (1995) enhance
the approach of Pinsker (1980) by describing the second-order behavior of the minimax esti-
mators and the quadratic minimax risk for the filtration problem in Gaussian noise. Similarly,
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2.3. Global sharp adaptive estimation on L2 Sobolev classes

Golubev and Levit (1996) study the problem of second-order minimax estimation of distribution
functions over R. This question is more involved than the classical first-order minimax density-
type estimation problems. The authors give the exact asympotics of the properly normalized
second-order minimax risk over Sobolev balls in the class of distribution functions. Dalalyan
and Kutoyants (2002) use the scheme of the proof of the lower bound in Golubev and Levit
(1996) for proving lower bounds for the problem of estimating the derivative ρ′b of the invariant
density ρb of a scalar ergodic diffusion with drift b. For proving a lower bound on the minimax
risk

inf
ĝT

sup
b∈Σ

Eb

∫
R

(
ĝT (x)− ρ′b(x)

)2 dx, (2.3.6)

where Σ is a Sobolev-type ellipsoid, Dalalyan and Kutoyants (2003) first minorate the minimax
risk in (2.3.6) by the minimax risk over a properly chosen parametric family. As the scheme
of the proof, the parametrization is inspired by the proof of Golubev and Levit (1996). The
constrained minimax risk is then bounded from below by the Bayesian risk plus an additional
term which can be shown to be small in order. The next step is to find a lower bound for
the Bayesian risk corresponding to a prior distribution, and this is where van Trees’ inequality
comes in. An appropriate choice of the prior then yields the lower bound.

Our proof of the lower bound in the multidimensional diffusion framework follows the same
scheme. In particular, it heavily relies upon the application of some multivariate extension of
the van Trees inequality due to Gill and Levit (1995). For any j ∈ {1, . . . , d}, define

Pj(σ, β, L) := (L(2β + d))
d

2β+d

d

(
ajjβ Sd

(2π)d(β + d)

) 2β
2β+d

, β, L > 0. (2.3.7)

Theorem 2.3.2. For any N 3 β > 1 and j ∈ {1, . . . , d}, it holds

lim inf
δ→0

lim inf
T→∞

T
2β

2β+d inf
g̃jT

sup
b∈Σj

δ

Eb

∫
Rd

(
g̃jT (x)− div(ajρ)(x)

)2dx ≥ 4 Pj(σ, β, L). (2.3.8)

For any drift function b ∈ Σj(β), (2.3.8) readily entails a lower bound for the drift estimation
problem.

Theorem 2.3.3. For any N 3 β > 1 and fixed j ∈ {1, . . . , d}, it holds

lim inf
δ→0

lim inf
T→∞

T
2β

2β+d inf
b̂jT

sup
b∈Σj

δ

Eb

∫
Rd

∣∣b̂jT (x)− bj(x)
∣∣2ρ2(x)dx ≥ Pj(σ, β, L).

The proofs of Theorem 2.3.2 and Theorem 2.3.3 are deferred to Section 2.4.

2.3.3. Upper risk bounds for global drift estimation

The importance of specific conditions on the precise dependence mechanism governing the dif-
fusion process was already mentioned in the introductory remarks in Section 2.2.3. From a
statistical point of view, it is particularly interesting to derive lower bounds under comparably
strong assumptions on the dependence of the data as such results show whether prior infor-
mation on the underlying dependence structure allows to improve the quality of estimation as
compared to the case of independent observations. As concerns the proof of upper risk bounds,
the principal goal is to establish results under preferably general assumptions. It is however be-
yond the scope of the present work to identify the most general framework possible for proving
exact upper risk bounds. Instead, we will impose the following condition,
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2. Sharp adaptive drift estimation for ergodic diffusions in higher dimension

Assumption (SG). The carré du champs associated with the infinitesimal genera-
tor of the diffusion satisfies the spectral gap inequality, that is, for some constant cP
and any f ∈ L2(µ), ∥∥∥Ptf − ∫

Rd
fdµ

∥∥∥
L2(µ)

≤ e−t/cP ‖f‖L2(µ). (SG)

In this case, for any f ∈ L2(µ) and T > 0, there exists some constant CP > 0 such
that

Eb

[( ∫ T

0
f(Xu)du

)2]
≤ CPT‖f‖2L2(µ). (SG’)

The proof of (SG’) is straightforward. Arguing as in Section 2.2.3 and analogous to the proof
of Proposition 1 in Dalalyan and Reiß (2007) (also see the proof of Lemma 2.8 in Cattiaux et al.
(2012)), it holds

Eb

[( ∫ T

0
f(Xu)du

)2]
= 2

∫ T

0

∫ v

0
Eb (f(Xu)f(Xv)) du dv

= 2
∫ T

0

∫ v

0
Eb

(
f(X0)Eb (f(Xv−u)|X0)

)
du dv

= 2
∫ T

0

∫ v

0
〈f, Pv−uf〉L2(µ) du dv

= 2
∫ T

0

∫ v

0
〈f, Puf〉L2(µ) du dv

= 2
∫ T

0
(T − w) 〈f, Pwf〉L2(µ) dw

≤ 2T
∫ T

0
〈f, Pwf〉L2(µ) dw.

The last term is upper-bounded by applying the Cauchy–Schwarz and the spectral gap inequality
such that

Eb

[( ∫ T

0
f(Xu)du

)2]
≤ 2T

∫ T

0
‖f‖L2(µ)‖Pwf‖L2(µ)dw

≤ 2T‖f‖2L2(µ)

∫ T

0
e−w/cP dw

= 2cPT
(
1− e−T/cP

)
‖f‖2L2(µ).

Dalalyan and Reiß (2007) prove asymptotic statistical equivalence for Kolmogorov diffusions
under the following enhanced condition.

Assumption (SG+). The carré du champs associated with the infinitesimal gene-
rator of the diffusion satisfies (SG), and there exists some C0 > 0 such that, for any
u ≥ t > 0 and for any pair of points x, y ∈ Rd satisfying ‖x− y‖2 ≤ u, it holds

pt(x, y) ≤ C0
(
t−d/2 + u3d/2). (2.3.9)

Under Assumption (SG+), Proposition 1 in Dalalyan and Reiß (2007) provides an upper bound
on the variance of additive functionals of multidimensional diffusions. This bound in particular
allows to prove convergence rates for the pointwise risk of invariant density estimators for d-
dimensional ergodic diffusions which are considerably smaller as the standard convergence rates
for density estimation based on i.i.d. observations; see also Remark 2.2.5. For the proof of exact
results for drift estimation, we require the following slightly modified version of their result.
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2.3. Global sharp adaptive estimation on L2 Sobolev classes

Lemma 2.3.4 (Proposition 1 in Dalalyan and Reiß (2007)). Grant Assumption (SG+), and let
G : Rd → R be a compactly supported kernel function. Given any bandwidth h = hT > 0, denote
Gh(·) := h−dG(·/h). Then there exists some positive constant C such that, for any y ∈ Rd,

Varb
(∫ T

0
Gh(Xu − y)du

)
≤ CT sup

z∈[y−h,y+h]
ρ(z)×

max
{

1,
(
log(h−4)

)2}
, d = 2,

h2−d, d ≥ 3.

Proof. Analogue to the proof of Proposition 1 in Dalalyan and Reiß (2007), taking into account
the shift of the kernel function.

In view of the results of Dalalyan and Reiß (2007) on asymptotic statistical equivalence for the
drift estimation problem mentioned in Section 1.2, it is to be expected (and will be shown in the
sequel) that upper risk bounds analogue to those in the case of independent observations can
be established under the conditions imposed in Lemma 2.3.4. Note however that the results of
Dalalyan and Reiß (2007) are established under rather restrictive (Hölder) smoothness assump-
tions. Precisely, the critical regularity for proving asymptotic equivalence with the Gaussian
shift model grows like (1/2 + 1/

√
2)d as d→∞. The authors refer to the question whether for

Hölder classes of smaller regularity asymptotic equivalence fails as “a challenging open problem.”
The upper risk bounds in this section will be derived for (Sobolev-type) smoothness β > 1 which
suggests that asymptotic equivalence (at least in a reduced sense) still holds beyond the critical
bounds of Dalalyan and Reiß (2007).

(I) Asymptotically efficient global drift estimation: The non-adaptive set-up

For constructing the drift estimator, we proceed stepwise and, similarly to the proof of the
lower bound, we start again with considering the question of estimating (the components of)
div(aρ). A lower bound for this problem has been stated in Theorem 2.3.2, and the next step
is to propose an estimator attaining this lower bound. It is instructive to assume first that
div(ajρ) ∈ Σj

δ(β, L; b0, σ) for known values β > 0 and L > 0.

(A) Component-wise estimation of div(aρ). To construct an estimator of the j-th com-
ponent

div(ajρ) =
d∑

k=1
ajk∂kρ, j ∈ {1, . . . , d} fixed,

consider the following estimator,

gjT (x) := g
j,(α,β)
T (x) := 2

T

∫ T

0
KT (x−Xu)dXj

u, x ∈ Rd, (2.3.10)

where the kernel KT (·) is chosen such that its Fourier transform φKT is given as

φKT (λ) :=
∫
Rd
KT (x)eiλtxdx =

(
1− ‖αλ‖β+γ

)
+
, λ ∈ Rd, (2.3.11)

for some R+ 3 α = αT → 0 and γ = γT := (log log T )−1. The inverse Fourier transform can be
applied to define the kernel KT .

Remark 2.3.5 (Choice of the kernel). The kernel KT defined via (2.3.11) belongs to the family
of Pinsker kernels. Dalalyan and Kutoyants (2002) use the following one-dimensional version of
KT for defining asymptotically efficient estimators of the drift of scalar ergodic diffusions,

KT (x) = 1
π

∫ 1

0

(
1− uβ+γ

)
cos(ux)du, x ∈ R.
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2. Sharp adaptive drift estimation for ergodic diffusions in higher dimension

Multidimensional Pinsker kernels are used in Rigollet and Tsybakov (2007) for proving sharp
optimality properties of aggregate density estimators over scales of Sobolev classes of densities.

The aim in the sequel is to derive an upper bound on the mean-integrated squared error of the
estimator gjT , and this will be done by means of Fourier methods. Using Fubini’s theorem for
stochastic integrals, the formula for the Fourier transform of a convolution entails for any λ ∈ Rd
that

φ
gjT

(λ) =
∫
Rd

2
T

∫ T

0
KT (x−Xu)dXj

u eiλtxdx

= 2
T

∫ T

0
eiλtXudXj

u

∫
Rd
KT (y)eiλtydy (2.3.12)

such that the Fourier transform of gjT can be written as φ
gjT

= 2φjTφKT , where

φT (λ) := 1
T

∫ T

0
eiλtXudXu, λ ∈ Rd. (2.3.13)

The expectation of the stochastic integral vanishes such that, for any λ ∈ Rd,

2EbφT (λ) = 2Eb

(
1
T

∫ T

0
eiλtXub(Xu)du

)
= 2

∫
Rd

eiλtyb(y)ρ(y)dy

=
∫
Rd

eiλty div(aρ)(y)dy = φdiv(aρ)(λ).

In view of the above relations, Plancherel’s theorem implies that

Eb

∫
Rd

∣∣gjT (x)− div(ajρ)(x)
∣∣2dx

= (2π)−d Eb

∫
Rd

∣∣φ
gjT

(λ)− φdiv(ajρ)(λ)
∣∣2dλ

= (2π)−d Eb

∫
Rd

∣∣2φKT (λ)φjT (λ)− φdiv(ajρ)(λ)
∣∣2dλ

= (2π)−d Eb

∫
Rd

∣∣2φKT (λ)
(
φ
j
T (λ)−Ebφ

j
T (λ)

)
+ φdiv(ajρ)(λ)

(
φKT (λ)− 1

)∣∣2dλ

= (2π)−d
∫
Rd

(
4
∣∣φKT (λ)

∣∣2 Varb
(
φ
j
T (λ)

)
+
∣∣φKT (λ)− 1

∣∣2∣∣φdiv(ajρ)(λ)
∣∣2)dλ. (2.3.14)

Let
ζT (λ) := 1√

T

∫ T

0
eiλtXuσ dWu, λ ∈ Rd, T > 0.

The following lemma provides an upper bound on the first part of the integrand appearing in
(2.3.14).

Lemma 2.3.6. Suppose that the diffusion X satisfies Assumption (SG+), and consider the
function φT (·) defined in (2.3.13). Then, for any function h̃T : Rd → R satisfying |h̃T | ≤ 1,

‖h̃T ‖2L2(Rd) = O
(
T

d
2β+d

)
and

∫
Rd
‖λ‖2βh̃2

T (λ)dλ = O(T ), (2.3.15)

it holds ∫
Rd
h̃2
T (λ) Varb

(
φ
j
T (λ)

)
dλ ≤ 1

T

∫
Rd
h̃2
T (λ)dλ

(
ajj + oT (1)

)
. (2.3.16)

The assertion is a multidimensional analogue of the statement in Lemma 1 in Dalalyan and Ku-
toyants (2002). Their proof uses the occupation times formula and the martingale representation
of local time and is therefore restricted to the scalar setting.
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Proof. Throughout the proof, C1, C2, . . . denote positive constants. The basic idea in our set-up
is to regularize by convolution with some compactly supported kernel. Precisely, consider some
symmetric kernel G of order β − 1 with compact support, satisfying∫

Rd
‖z‖βG(z)dz <∞ (2.3.17)

and
∫
Rd G(z)dz = 1. Denote Gh(·) := h−dG(·/h) for some bandwidth h = hT ↘ 0 to be specified

later. Fix j ∈ {1, . . . , d}. The definition of φT entails that, for any T > 0, λ ∈ Rd,

φ
j
T (λ)−Ebφ

j
T (λ)

= 1
T

∫ T

0
eiλtXudXj

u −
∫
Rd

eiλtybj(y)ρ(y)dy

= 1√
T

[{ 1√
T

∫ T

0
eiλtXubj(Xu)du−

√
T

∫
Rd

eiλtybj(y)ρ(y)dy
}

+ 1√
T

∫ T

0
eiλtXu

d∑
m=1

σjmdWm
u

]

= 1√
T

(
mb(λ,XT ) + ζjT (λ)

)
, (2.3.18)

where

mb(λ,XT ) := 1√
T

∫ T

0
eiλtXubj(Xu)du−

√
T

∫
Rd

eiλtybj(y)ρ(y)dy.

For λ ∈ Rd, T > 0, write

mb(λ,XT ) = m1(λ,XT ) +m2(λ,XT ) +m3(λ,XT ),

where

m1(λ,XT ) := 1√
T

∫ T

0

(
eiλtXu −

∫
Rd

eiλtyGh(Xu − y)dy
)
bj(Xu)du,

m2(λ,XT ) :=
√
T

∫
Rd

eiλty
(

1
T

∫ T

0
Gh(Xu − y)bj(Xu)du−

∫
Rd
bj(z)Gh(z − y)ρ(z)dz

)
dy,

m3(λ,XT ) :=
√
T

∫
Rd

(∫
Rd

eiλtyGh(z − y)dy − eiλtz
)
bj(z)ρ(z)dz.

Due to Assumption (SG) (precisely, its consequence (SG’)), and by means of Cauchy–Schwarz,
it holds ∫

Rd
Eb

∣∣m1(λ,XT )
∣∣2h̃2

T (λ)dλ

≤ CP
∫
Rd

∥∥∥(eiλt· −
∫
Rd

eiλtyGh(y − ·)dy
)
bj
∥∥∥2

L2(µ)
h̃2
T (λ)dλ

≤ CP ‖bj‖2L4(µ)

∫
Rd

∥∥∥eiλt· −
∫
Rd

eiλtyGh(y − ·)dy
∥∥∥2

L4(µ)
h̃2
T (λ)dλ. (2.3.19)

In order to evaluate the integrand in (2.3.19), note first that, for any λ, z ∈ Rd,∣∣∣∣ ∫
Rd

eiλtyGh(y − z)dy − eiλtz
∣∣∣∣ =

∣∣∣∣h−d ∫
Rd

(
eiλty − eiλtz

)
G

(
y − z
h

)
dy
∣∣∣∣

=
∣∣∣∣ ∫

Rd

(
eiλt(z+hu) − eiλtz

)
G(u)du

∣∣∣∣.
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2. Sharp adaptive drift estimation for ergodic diffusions in higher dimension

Using a Taylor expansion of the characteristic function eix, x ∈ R, up to order β − 1 with
remainder term around a ∈ R, one obtains

eix = eia +
β−1∑
k=1

eia

k! (i(x− a))k + iβ
(β − 1)!

∫ x

a
(x− t)β−1 eitdt.

Furthermore, for x ≥ a,∣∣∣∣∣ iβ
(β − 1)!

∫ x

a
(x− t)β−1 eitdt

∣∣∣∣∣ ≤ 1
(β − 1)!

∫ x

a

∣∣(x− t)β−1∣∣ ∣∣eit∣∣dt
≤ 1

(β − 1)!

∫ x

a
(x− t)β−1dt = (x− a)β

β! .

Consequently, since G is of order β− 1 and satisfies (2.3.17), there exists some positive constant
C1 such that∣∣∣∣ ∫

Rd
eiλty Gh(y − z)dy − eiλtz

∣∣∣∣
=
∣∣∣∣ ∫

Rd

β−1∑
k=1

eiλtz

k!
(
i(λt(hu))

)k
G(u)du

+
∫
Rd

iβ
(β − 1)!

∫ λt(z+hu)

λtz

(
λt(z + hu)− t

)β−1
eitdt G(u)du

∣∣∣∣
≤
∫
Rd

(
λt(hu)

)β
β! G(u)du ≤ C1‖λ‖βhβ. (2.3.20)

Taking into account (2.3.19) and since

‖bj‖2L4(µ) =
(∫

Rd

(
bj
)4

(x)ρ(x)dx
)1/2

≤ C2,

we obtain ∫
Rd

Eb

∣∣m1(λ,XT )
∣∣2h̃2

T (λ)dλ ≤ C3h
2β
∫
Rd
‖λ‖2βh̃2

T (λ)dλ ≤ C3h
2βO(T ). (A)

We turn to the second term. Denoting

1
T

∫ T

0
Gh(Xu − y)bj(Xu)du =: F (XT , y), T > 0, y ∈ Rd,

it holds (since |h̃T | ≤ 1 and by Plancherel’s formula)∫
Rd

Eb

∣∣m2(λ,XT )
∣∣2h̃2

T (λ)dλ

≤ T
∫
Rd

Eb

∣∣∣∣∫
Rd

eiλty
(
F (XT , y)−EbF (XT , y)

)
dy
∣∣∣∣2 dλ

= T

∫
Rd

Eb

∣∣F (XT , y)−EbF (XT , y)
∣∣2dy.

Lemma 2.3.4 then entails that∫
Rd

Eb

∣∣m2(λ,XT )
∣∣2h̃2

T (λ)dλ ≤ C4h
2−d

∫
Rd

sup
z∈[y−h,y+h]

ρ(z)dy = C5h
2−d. (B)
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2.3. Global sharp adaptive estimation on L2 Sobolev classes

It remains to consider∫
Rd

Eb

∣∣m3(λ,XT )
∣∣2h̃2

T (λ)dλ = T

∫
Rd

∣∣∣∣∫
Rd

eiλtzF̃ (λ, z)bj(z)ρ(z)dz
∣∣∣∣2 h̃2

T (λ)dλ,

where
F̃ (λ, z) :=

∫
Rd

eiλt(y−z)Gh(z − y)dy − 1, λ, z ∈ Rd.

The upper bound (2.3.20) implies that, for any λ, z ∈ Rd,∣∣∣F̃ (λ, z)
∣∣∣ =

∣∣∣h−d ∫
Rd

(
eiλt(z−y) − 1

)
G

(
z − y
h

)
dy
∣∣∣ ≤ C1‖λ‖βhβ.

Consequently, for any λ ∈ Rd,∣∣∣∣∫
Rd

eiλtzF̃ (λ, z)bj(z)ρ(z)dz
∣∣∣∣2 ≤ C6h

2βφ2
bjρ(λ)‖λ‖2β.

Recall that bjρ = div(ajρ)/2 ∈ Σδ(β, L; b0, σ). Thus,∫
Rd

Eb

∣∣m3(λ,XT )
∣∣2h̃2

T (λ)dλ ≤ Th2β
∫
Rd
φ2
bjρ(λ)‖λ‖2βdλ ≤ C7Th

2β. (C)

Balancing the upper bounds in (A), (B) and (C) suggests to select a bandwidth h = hT ∼
T−1/(2(β−1)+d), and this choice entails∫

Rd
Eb

∣∣m`(λ,XT )
∣∣2h̃2

T (λ)dλ . T
d−2

2(β−1)+d = o
(
T

d
2β+d

)
, ` ∈ {1, 2, 3}. (2.3.21)

To complete the proof of (2.3.16), note that

Varb
(
φ
j
T (λ)

) (2.3.18)= 1
T

Eb

(
mb(λ,XT ) + ζjT (λ)

)2

= 1
T

(
Eb

∣∣mb(λ,XT )
∣∣2 + ajj

)
≤ 1

T
Eb

(
4

3∑
`=1

∣∣m`(λ,XT )
∣∣2 + ajj

)
.

The last line relies on the rough upper bound (a+ b+ c)2 ≤ 4(a2 + b2 + c2). Thus,

∫
Rd
h̃2
T (λ) Varb

(
φ
j
T (λ)

)
dλ ≤ 1

T

∫
Rd
h̃2
T (λ) Eb

(
4

3∑
`=1

∣∣m`(λ,XT )
∣∣2 + ajj

)
dλ,

and since ‖h̃T ‖2L2(Rd) = O
(
T

d
2β+d

)
, the assertion follows from (2.3.21).

Remark 2.3.7 (Comparison to classical nonparametric density estimation). The approach to
use Fourier analysis for investigating the MISE of kernel estimators is classical; see Section 1.3
in Tsybakov (2009). For pointing out the subtlety arising in the multidimensional diffusion
framework, let us consider the problem of estimating a probability density p ∈ L2(Rd) from
i.i.d. Rd-valued observations X1, . . . , Xn. Given some symmetric kernel K ∈ L2(Rd), define the
kernel density estimator

p̂n(x) := 1
nhd

n∑
i=1

K

(
x−Xi

h

)
, h > 0, n ≥ 1.

41



2. Sharp adaptive drift estimation for ergodic diffusions in higher dimension

Let φ̂n(λ) := 1
n

∑n
j=1 eiλtXj , λ ∈ Rd, be the (classical) empirical characteristic function, and

denote by Ep expectation with respect to p. Analogue to the proof of Theorem 1.4 in Tsybakov
(2009), the following exact expression of the MISE of p̂n can be derived,

Ep

∫
Rd

(
p̂n(x)− p(x)

)2dx

= (2π)−d Ep

∫
Rd

∣∣φp̂n(λ)− φp(λ)
∣∣2dλ

= (2π)−d Ep

∫
Rd

∣∣φ̂n(λ)φK(hλ)− φp(λ)
∣∣2dλ

= (2π)−d Ep

∫
Rd

∣∣(φ̂n(λ)− φp(λ)
)
φK(hλ)−

(
1− φK(hλ)

)
φp(λ)

∣∣2dλ

= (2π)−d
∫
Rd

(∣∣φK(hλ)
∣∣2Ep

∣∣φ̂n(λ)− φp(λ)
∣∣2 +

∣∣1− φK(hλ)
∣∣2∣∣φp(λ)

∣∣2)dλ.

Since

Ep

∣∣φ̂n(λ)− φp(λ)
∣∣2 = Ep

∣∣φ̂n(λ)
∣∣2 − ∣∣φp(λ)

∣∣2 = Ep
(
φ̂n(λ)φn(−λ)

)
−
∣∣φp(λ)

∣∣2
= Ep

( 1
n

∑
j,k:k 6=j

exp
(
iλt
(
Xj −Xk

)))
+ 1
n
−
∣∣φp(λ)

∣∣2
= n− 1

n
φp(λ)φp(−λ) + 1

n
−
∣∣φp(λ)

∣∣2 = 1
n

(
1−

∣∣φp(λ)
∣∣2),

one obtains in the i.i.d. setting the following exact expression for the MISE,
1

(2π)d
∫
Rd

(
|φK(hλ)|2 1

n

(
1− |φp(λ)|2

)
+ |1− φK(hλ)|2 |φp(λ)|2

)
dλ. (2.3.22)

While the computation of (2.3.14) in the multidimensional diffusion framework is analogue to
the i.i.d. case, the manipulation of this relation to derive an analogue of (2.3.22) is more involved
due to dependence of the data.

Letting h̃T := φKT , we obviously have∣∣φKT (λ)
∣∣ =

(
1− ‖αλ‖β+γ)

+ ≤ 1.

Assume for the moment that α is such that the conditions in (2.3.15) are satisfied. In this case,
Lemma 2.3.6 can be applied. Plugging (2.3.16) into (2.3.14) then gives

Eb

∫
Rd

∣∣gjT (x)− div(ajρ)(x)
∣∣2dx ≤ 1

(2π)dT ∆̃j
T (α, β) (1 + oT (1)), (2.3.23)

where

∆̃j
T (α, β) := 4ajj

∫
Rd

∣∣φKT (λ)
∣∣2dλ+ T

∫
Rd

∣∣φKT (λ)− 1
∣∣2∣∣φdiv(ajρ)(λ)

∣∣2dλ. (2.3.24)

We continue with deriving an upper bound on the second term appearing on the RHS of (2.3.24).
Note first that, for the kernel KT defined via (2.3.11), it holds∫

Rd

∣∣φKT (λ)− 1
∣∣2∣∣φdiv(ajρ)(λ)− φdiv(ajρ0)(λ)

∣∣2dλ

=
∫
‖λ‖>α−1

∣∣φdiv(ajρ)(λ)− φdiv(ajρ0)(λ)
∣∣2dλ (2.3.25)

+
∫
‖λ‖≤α−1

α2β‖λ‖2β
∣∣φdiv(ajρ)(λ)− φdiv(ajρ0)(λ)

∣∣2‖αλ‖2γdλ

≤
∫
Rd
α2β‖λ‖2β

∣∣φdiv(ajρ)(λ)− φdiv(ajρ0)(λ)
∣∣2dλ

≤ (2π)d 4L α2β.
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2.3. Global sharp adaptive estimation on L2 Sobolev classes

The last line follows from the assumption that the components of the vector div
(
aρ − aρ0

)
belong to the Sobolev ball Σδ of regularity β with radius 4L (see the definition in (2.3.2)) such
that ∫

Rd
‖λ‖2β

∣∣φdiv(ajρ)(λ)− φdiv(ajρ0)(λ)
∣∣2dλ ≤ 4L (2π)d.

Using the same decomposition as in (2.3.25), it can be shown that, for sufficiently large T , there
exists some positive constant C such that∫

Rd

∣∣φKT (λ)− 1
∣∣2∣∣φdiv(ajρ0)(λ)

∣∣2dλ ≤
∫
Rd
‖αλ‖2(β+γ)∣∣φdiv(ajρ0)(λ)

∣∣2dλ

≤ α2(β+γ)
∫
Rd
‖λ‖2β+τ ∣∣φdiv(ajρ0)(λ)

∣∣2dλ

≤ Cα2(β+γ),

where the last line follows from condition (C3). Summing up, ∆̃j
T (α, β) as defined in (2.3.24) is

bounded from above by{
4ajj

∫
Rd

(
1− ‖αλ‖β

)2
+dλ+ 4T (2π)dLα2β

} (
1 +Kα2γ), (2.3.26)

K some positive constant. Later on, α will be chosen such that α2γ = oT (1). The expression in
braced brackets is minimized by the bandwidth αjT satisfying

ajj

∫
Rd
‖λ‖β

(
1−

∥∥αjTλ∥∥β)+dλ =
(
αjT
)β
T (2π)dL,

and plugging this relation into (2.3.26) gives

∆̃j
T

(
αjT , β

)
≤ 4ajj

∫
Rd

(
1−

∥∥αjTλ∥∥β)+{(1− ∥∥αjTλ∥∥β)+ +
∥∥αjTλ∥∥β}dλ. (2.3.27)

Recall that Sd = 2πd/2/Γ(d/2) denotes the surface of the unit sphere in Rd. Since∫
Rd
‖λ‖β

(
1− ‖αλ‖β

)
+dλ = α−(β+d)

∫
Rd
‖λ‖β

(
1− ‖λ‖β

)
+dλ

= α−(β+d)
∫ 1

0
rβ
(
1− rβ

)
rd−1Sddr

= α−(β+d) βSd
(β + d)(2β + d) ,

straightforward algebra yields

αjT =
(

βajjSd
T (2π)dL(β + d)(2β + d)

) 1
2β+d

. (2.3.28)

In particular, the specific choice α = αjT implies that there exist positive constants C1, C2 such
that ∫

Rd
‖λ‖2β

∣∣φKT (λ)
∣∣2dλ =

∫
Rd
‖λ‖2β

(
1− ‖αjTλ‖

β)2
+dλ

=
(
αjT
)−2β−d

∫
‖ω‖≤1

‖ω‖2β
(
1− ‖ω‖β

)2dω

≤ C1
(
αjT
)−2β−d = C2T.
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2. Sharp adaptive drift estimation for ergodic diffusions in higher dimension

Consequently, Lemma 2.3.6 is applicable indeed. Denote by
(
gjT
)∗ := g

j,(αjT ,β)
T the estimator

defined via (2.3.11) and (2.3.28). In view of (2.3.23) and (2.3.27), it holds

Eb

∫
Rd

∣∣(gjT )∗(x)− div(ajρ)(x)
∣∣2dx

≤ 4ajj
(2π)dT

∫
Rd

(
1− ‖αjTλ‖

β)
+
((

1− ‖αjTλ‖
β)

+ + ‖αjTλ‖
β)dλ (1 + oT (1)

)
= 4ajj

(2παjT )dT

∫
Rd

(
1− ‖λ‖β

)
dλ

(
1 + oT (1)

)
= 4ajjSd

(2παjT )dT

∫ 1

0
rd−1(1− rβ)dr (1 + oT (1)

)
= 4Pj(σ, β, L) T−

2β
2β+d . (2.3.29)

(B) Estimation of the vector div(aρ). As an alternative to component-wise estimation of
div(aρ), consider the following vector-valued estimator,

ǧT (x) := ǧα,βT (x) := 2
T

∫ T

0
KT (x−Xu)dXu, x ∈ Rd,

where the kernel KT is defined via its Fourier transform

φKT (λ) =
(
1− ‖αλ‖β+γT )

+, λ ∈ Rd, γT = (log log T )−1. (2.3.30)

Denote

Σδ :=
{
b ∈

d⋂
k=1

Ukδ (b0) :
d∑

k=1

∑
|α|≤β

∫
Rd
|Dα (div(akρ)− div(akρ0))

∣∣2 ≤ 4Ld
}
. (2.3.31)

In contrast to the estimators g1
T , . . . , g

d
T whose respective bandwidths are chosen individually,

the sequence R+ 3 α = αT → 0 for estimating the components of div(aρ) is now always the
same. To derive an upper bound on the MISE of ǧT , note that (2.3.23) implies that

Eb

∫
Rd
‖ǧT (λ)− div(aρ)(λ)‖2 dλ ≤ 1

(2π)dT ∆̃T (α, β) (1 + oT (1)),

where, with ‖σ‖S2 denoting the Frobenius norm of the matrix σ,

∆̃T (α, β) := 4‖σ‖2S2

∫
Rd

∣∣φKT (λ)
∣∣2dλ+ T

∫
Rd

∣∣φKT (λ)− 1
∣∣2∥∥φdiv(aρ)(λ)

∥∥2dλ.

It is straightforward to show that the optimal bandwidth αvec
T is characterized by the equation

‖σ‖2S2

∫
Rd
‖λ‖β

(
1− ‖αvec

T λ‖β
)

+
dλ = (αvec

T )β T (2π)dLd,

and, similarly to (2.3.27), one obtains

∆̃T

(
αvec
T , β

)
≤ 4‖σ‖2S2

∫
Rd

(
1− ‖αvec

T λ‖β
)

+

{(
1− ‖αvec

T λ‖β
)

+
+ ‖αvec

T λ‖β
}

dλ.

The optimal bandwidth αvec
T is thus identified as

αvec
T =

(
β‖σ‖2S2

Sd
T (2π)dLd(β + d)(2β + d)

) 1
2β+d

. (2.3.32)

Denote by ǧ∗T := ǧ
αvec
T ,β

T the estimator defined via (2.3.30) and (2.3.32). Taking into account
Theorem 2.3.2, the above reasoning gives
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2.3. Global sharp adaptive estimation on L2 Sobolev classes

Theorem 2.3.8. Suppose that Assumption (SG+) is satisfied.

(A) The estimator
(
gjT
)∗ defined via (2.3.11) and (2.3.28) satisfies, for any N 3 β > 1,

lim
δ→0

lim
T→∞

sup
b∈Σj

δ

T
2β

2β+d Eb

∫
Rd

∣∣(gjT )∗(x)− div(ajρ)(x)
∣∣2dx = 4 Pj(σ, β, L).

(B) For any β ∈ N, the estimator ǧ∗T defined via (2.3.11) and (2.3.32) satisfies

lim
δ→0

lim
T→∞

sup
b∈Σδ

T
2β

2β+d Eb

∫
Rd

∥∥ǧ∗T (x)− div(aρ)(x)
∥∥2dx ≤ 4 P (σ, β, L),

where

P (σ, β, L) := (L(2β + d))
d

2β+d

(
‖σ‖2S2

β Sd
(2π)dd(β + d)

) 2β
2β+d

. (2.3.33)

Remark 2.3.9. Part (A) of Theorem 2.3.8 in particular implies that

lim
T→∞

d∑
j=1

sup
b∈Σj

δ

T
2β

2β+d Eb

∫
Rd

∣∣(gjT )∗(x)− div(ajρ)(x)
∣∣2dx ≤ 4

d∑
j=1

Pj(σ, β, L).

Jensen’s inequality entails that

d∑
j=1

Pj(σ, β, L) = (L(2β + d))
d

2β+d

(
β Sd

(2π)d(β + d)

) 2β
2β+d 1

d

d∑
j=1

a
2β

2β+d
jj

≤ (L(2β + d))
d

2β+d

(
β Sd

(2π)d(β + d)

) 2β
2β+d

1
d

d∑
j=1

ajj


2β

2β+d

= P (σ, β, L).

Notably, this shows that the approach of component-wise estimation is to be preferred to im-
plementing a vector-wise estimator of div(aρ). Comparison of the quantities

1
d

d∑
j=1

a
2β

2β+d
jj and

(
‖σ‖2S2

d

) 2β
2β+d

further allows to assess the difference between estimating the drift vector component-wise or by
one single (vector-valued) function.

Two steps in our development of an asymptotically efficient global non-adaptive drift estimator
still have to be carried out, namely

(i) the definition of an asymptotically efficient estimator of the drift vector (which will rely
on the asymptotically efficient estimator of div(aρ)), and

(ii) the translation of the smoothness assumption on div(aρ) into (weighted) Sobolev smooth-
ness of the drift vector b.

As concerns item (i), note that the estimators (2.1.3) and (2.1.5) suggested in the introduction
involve an a priori lower bound ρ∗(x) > 0 on the invariant density ρ. In the current framework,
we are interested in estimating the drift of diffusions with exponentially fast decreasing invariant
density over the entire Rd. The invariant density thus is not bounded away from zero. For
defining a reasonable drift estimator in such situations where no lower bound is available, one
may replace the denominator ρ̂T (x)∨ρ∗(x) by the expression ρ̂T (x)+ cT (x), for some additional
term cT (x) included in order to prevent the denominator of the drift estimator from vanishing.
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2. Sharp adaptive drift estimation for ergodic diffusions in higher dimension

The idea is classical and has been used in the scalar setting, e.g., in Banon (1978), Dalalyan
and Kutoyants (2002) and Dalalyan (2005). We restrict attention to the multidimensional case
d ≥ 2.

Theorem 2.3.10. In the setting of Theorem 2.3.8, define an invariant density estimator ρ̂T,1
according to Lemma 2.2.4, and let

c∗T (x) := T
− β+1

2(β+1)+d εT (x), for εT (x) := exp
(√

log T − ‖x‖log T

)
, x ∈ Rd.

Define the estimator
(
gjT
)∗ according to (2.3.11) and (2.3.28), and set

(
bjT
)∗(x) :=

(
gjT
)∗(x)

2 (ρ̂T,1(x) + c∗T (x)) , x ∈ Rd. (2.3.34)

Then
lim
δ→0

lim
T→∞

sup
b∈Σj

δ

T
2β

2β+d Eb

∫
Rd

∣∣(bjT )∗(x)− b(x)
∣∣2ρ2(x)dx = Pj(σ, β, L). (2.3.35)

Remark 2.3.11 (Comparison to classical nonparametric density estimation). In the classical
i.i.d. framework, Rigollet and Tsybakov (2007) consider the problem of nonparametric density
estimation over Sobolev classes of densities p on Rd, satisfying the smoothness condition∫

Rd
‖λ‖2β |φp(λ)|2 dλ ≤ Q, Q > 0, β > 0.

Recall that our smoothness assumption for component-wise estimation reads∑
|α|≤β

∫
Rd

∣∣Dα(bjρ− bj0ρ0
)∣∣2 = (2π)−d

∫
Rd
‖λ‖2β

∣∣φ
bjρ−bj0ρ0

(λ)
∣∣2dλ ≤ L. (2.3.36)

Replacing Q in the definition of the optimal constant for nonparametric density estimation
obtained in Rigollet and Tsybakov (2007) with (2π)dL yields the constant

(L(2β + d))
d

2β+d

d

(
βSd

(2π)d(β + d)

) 2β
2β+d

= Pj(Idd×d, β, L) = P (Idd×d, β, L)
d

.

We now turn to formulating the result under conditions on the weighted Sobolev regularity of
b, that is, we replace (2.3.36) with the criterion in Proposition 2.3.1, namely,∑

α∈Nd:|α|≤β

∫
Rd

∣∣Dα(bj(x)− bj0(x)
)∣∣2 ρ2

b(x)dx ≤ L. (2.3.37)

Combining Proposition 2.3.1 and Theorem 2.3.10, we finally obtain

Corollary 2.3.12. Assume that b0 satisfies (2.3.4). Then, in the setting of Theorem 2.3.10, it
holds

lim
δ→0

lim
T→∞

sup
b∈Σjδ

T
2β

2β+d Eb

∫
Rd

∣∣(bjT )∗(x)− b(x)
∣∣2ρ2(x)dx = Pj(σ, β, L).

The inclusion Σj
δ(β, L; b0, σ) ⊂ Σj

δ(β, L+oδ(1); b0, σ) which is proven in Proposition 2.3.1 actually
presents an important motivation for considering a local minimax framework and for analyzing
the behavior of the drift estimator over a shrinking neighborhood of the central function b0. In
the classical statistical models of signal recovery in Gaussian white noise, density or regression
function estimation from i.i.d. observations, the Pinsker-type bounds are obtained for Sobolev
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balls centered at the origin, that is, for some centering function f0 ≡ 0. The choice b0 ≡ 0 however
is not appropriate in our setup. Even in the one-dimensional setting, additional conditions
are needed in order to ensure ergodicity of the associated process. The case of null-recurrent
diffusions has to be excluded since the rates of convergence for drift estimation are significantly
worse than for ergodic processes; see Section 4.3 in Dalalyan (2005) for further explanation.
The situation in higher dimension is even more difficult as the d-dimensional Brownian motion
is known to be transient in dimension d ≥ 3.

(II) Asymptotically efficient global drift estimation: The sharp adaptive procedure

The estimators described in Theorem 2.3.8 depend on the smoothness parameter β and the radius
L of the Sobolev ball which are usually not available, and the question considered now is how
to choose the parameters optimally in a completely data-driven way. Given the observations
XT = (Xt)0≤t≤T , the aim is to select the real parameters α and β such that the associated
estimator of div(aρ) has asymptotically minimax risk. For ease of presentation, we restrict
attention to the case of Kolmogorov diffusions, that is, we consider the case σ ≡ Idd×d. In this
case, it means no loss of generality to restrict attention to the approach of estimating the entire
drift vector by selecting one common bandwidth.

Dalalyan (2005) investigates the global estimation problem of the drift function for a class of
scalar ergodic diffusion processes. The unknown drift is supposed to belong to a nonparametric
class of smooth functions of unknown order β ≥ 1. The author proves adaptivity of the procedure
up to an optimal (Pinsker) constant, for the integrated squared error criterion, weighted by the
square of the invariant density. The proposed data-driven procedure of estimating the drift
function relies on the estimated risk minimization method as it is developed in Cavalier et al.
(2002). As explained in Dalalyan (2005), it is not desirable in the adaptive setup to use an
estimator which involves a stochastic integral such that an estimator of the form of gT defined
in the previous section (cf. (2.3.10)) is not convenient. The reason is that one obtains an
anticipative stochastic integral if the bandwidth is chosen in a data-driven way such that it
depends on the observations XT = (Xt)0≤t≤T . The manipulation of such integrals is rather
involved. To circumvent this obstacle, the adaptive estimator of ∇ρ will have the following
form,

ĝT (x) := 1
T

∫ T

0
∇K∗T (x−Xu)du, T > 0, x ∈ Rd,

for some Pinsker kernel KT : Rd → R. This alternative type of kernel estimator of ∇ρ has been
motivated already in Section 2.2.3; see in particular (2.2.15). Following Cavalier et al. (2002)
and Dalalyan (2005), the parameters which characterize the Fourier transform φKT of KT (and
thus KT ) will be chosen now according to the principle of unbiased risk estimation. A heuristic
motivation of Mallows’ Cp criterion is given in Cavalier et al. (2002) (pp. 846–847). In the
current context, the basic idea can be explained as follows.

Similarly to (2.3.24), it will be shown that

Eb

∫
Rd

∥∥ĝT (x)−∇ρ(x)
∥∥2dx ≤ 1

(2π)dT ∆T

(
1, φKT , φρ

)
(1 + oT (1)) ,

where, for some positive parameter α ∈ R and some function h,

∆T

(
α, h, φρ

)
:= T

∫
Rd
|1− h(αλ)|2 ‖φ∇ρ(λ)‖2 dλ+ 4d

∫
Rd
|h(αλ)|2dλ. (2.3.38)

If the function h is parametrized by some β ∈ R, the optimal choice of the parameters (α, β) are
the values (α∗, β∗) which minimize the functional ∆T

(
α, hβ, φρ

)
. The basic idea of the method
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2. Sharp adaptive drift estimation for ergodic diffusions in higher dimension

of adaptation via unbiased risk estimation is to replace ∆T

(
α, h, φρ

)
(whose minimizers depend

on the unknown drift function b) by some good estimator ∆̂T (h) = ∆̂T (h,XT ). To minimize
∆T

(
α, hβ, φρ

)
, or, equivalently,

∆T

(
α, hβ, φρ

)
− T

∫
Rd
‖φ∇ρ(λ)‖2 dλ

= T

∫
Rd

(
h2
β(αλ)− 2hβ(αλ)

)
‖φ∇ρ(λ)‖2 dλ+ 4d

∫
Rd
|hβ(αλ)|2 dλ

with respect to α and β, we thus replace ‖φ∇ρ‖2 by some suitable estimator. A classical strategy
in such situations is to resort to the “plug-in approach,” that is, to estimate ∆T

(
α, h, φρ

)
by

replacing φρ(λ) with φ̂T (λ), where

φ̂T (λ) := 1
T

∫ T

0
eiλtXudu, λ ∈ Rd, (2.3.39)

denotes the empirical characteristic function. It was noted by Dalalyan (2005) in the scalar
setting that it is not convenient to use the plug-in approach in the given framework since plug-
in estimators of quadratic functionals are heavily biased. Since the same remark applies in the
multidimensional situation, we introduce the functional

∆̂T (h) := T

∫
Rd

(
h2(λ)− 2h(λ)

){∥∥λφ̂T (λ)
∥∥2 − 4dT−1

}
dλ+ 4d

∫
Rd
h2(λ)dλ (2.3.40)

= T

∫
Rd

(
h2(λ)− 2h(λ)

) ∥∥λφ̂T (λ)
∥∥2dλ+ 8d

∫
Rd
h(λ)dλ

which depends only on the observed path XT . The definition of ∆̂T is formally justified as
follows. Similarly to (2.3.12), one obtains, for any λ ∈ Rd,

φĝT (λ) =
∫
Rd

1
T

∫ T

0
∇KT (x−Xu)du eiλtxdx

= 1
T

∫ T

0
eiλtXudu

∫
Rd
∇KT (y)eiλtydy

= (−i)λφ̂T (λ)φKT (λ), (2.3.41)

where we used that∫
Rd
∇KT (y)eiλtydy = −i

∫
Rd
KT (y)λ eiλtydy = (−i)λφKT (λ).

Furthermore, by Plancherel’s formula,

Eb

∫
Rd

∥∥ĝT (x)−∇ρ(x)
∥∥2dx

= (2π)−d Eb

∫
Rd

∥∥φĝT (λ)− φ∇ρ(λ)
∥∥2dλ

(2.3.41)= (2π)−d Eb

∫
Rd

∥∥λ(φ̂T (λ)φKT (λ)− φρ(λ)
)∥∥2dλ

= (2π)−d Eb

∫
Rd

∥∥λ{φKT (λ)
(
φ̂T − φρ

)
(λ)− φρ(λ)

(
1− φKT (λ)

)}∥∥2dλ. (2.3.42)

Comparing this last display to the expression of the MISE of the estimator

gT (x) = 1
T

∫ T

0
KT (x−Xu)dXu

investigated in Section 2.3.3, two substantial differences appear, namely,
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2.3. Global sharp adaptive estimation on L2 Sobolev classes

• the function φT (λ) = T−1 ∫ T
0 eiλtXudXu is replaced by the product λφ̂T (λ), where φ̂T (λ) =

T−1 ∫ T
0 eiλtXudu is the empirical characteristic function, and

• the Fourier transform φKT of the kernel KT is random due to the adaptive choice of the
bandwidth.

The following lemma shows that these differences do not entail substantial modifications in
the subsequent analysis. It can be viewed as some multidimensional analogue of Lemma 1 in
Dalalyan (2005). Slightly abusing notation, let

ζT (λ) := 1√
T

∫ T

0
eiλtXudWu. (2.3.43)

Lemma 2.3.13. Assume that b ∈ Σδ(β, L; b0, Idd×d), and consider the function φ̂T (·) defined
in (2.3.39). Then, for any random bounded function h̃T : Rd → R satisfying

|h̃T | ≤ 1 a.s., and
∫
Rd
‖λ‖2β Ebh̃

2
T (λ)dλ = O(T ), (2.3.44)

it holds, for any λ ∈ Rd,

iλ
(
φ̂T (λ)− φρ(λ)

)
= 1√

T

(
mb(λ,XT )− 2ζT (λ)

)
, (2.3.45)

where mb(λ,XT ) is a measurable Cd-valued function, satisfying∫
Rd

Eb

∥∥mb(λ,XT ) h̃T (λ)
∥∥2dλ = o

(
T

d
2β+d

)
. (2.3.46)

We start with sketching the basic idea of the proof. An important role in the investigation of the
asymptotically exact behavior of the drift estimators for scalar diffusions considered in Dalalyan
(2005) is taken on by the martingale representation of the local time estimator developed in
Kutoyants (1999). Let X be a scalar ergodic diffusion solving the SDE

dXt = b(Xt)dt+ dWt,

and denote its invariant density by ρ. The occupation times formula implies that

1
T

∫ T

0
eiλXudu−

∫
R

eiλyρ(y)dy =
∫
R

eiλy
( 1
T
`T (y)− ρ(y)

)
dy, λ ∈ R, (2.3.47)

where `T (x) is the local time of X at x ∈ R and time T . Tanaka’s formula states that

`T (x) = |XT − x|+ |X0 − x| −
∫ T

0
sgn(Xs − x)dXs, T ≥ 0 (2.3.48)

(see, e.g., pp. 428–429 in Kallenberg (2002)). In particular, (2.3.48) allows to prove a represen-
tation of `T as a sum of the local martingale T−1 ∫ T

0 eiλXudWu and an asymptotically negligible
integral with respect to time.

In the proof of Lemma 2.3.13, we consider an auxiliary estimator which admits a similar repre-
sentation as the local time `T (x) in (2.3.48). The basic idea in the multidimensional framework
is to approximate the empirical characteristic function φ̂T by an auxiliary estimator φ̃T,h of the
form

φ̃T,h(λ) := 1
T

∫ T

0

∫
Rd

eiλtyGh(Xu − y)dy du, h, T > 0, λ ∈ Rd,
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2. Sharp adaptive drift estimation for ergodic diffusions in higher dimension

where Gh := h−dG(·/h) for some radially symmetric kernel G : Rd → R. The approximation
error between φ̂T and φ̃T,h vanishes for suitably chosen bandwidths h↘ 0, while the difference
φ̃T,h − φρ admits a representation similar to (2.3.47), namely

φ̃T,h(λ)− φρ(λ) =
∫
Rd

eiλty
(

1
T

∫ T

0
Gh(Xu − y)du− ρ(y)

)
dy, λ ∈ Rd.

In order to obtain a representation involving an integral of the form given in (2.3.43), the next
step is to express

∫ T
0 Gh(Xu − y)du via the Newtonian potential. Throughout the sequel, the

Newtonian potential is denoted by N , that is,

N(x) :=

(2π)−1 log ‖x‖, d = 2,
1

(2−d)Sd ‖x‖
2−d, d ≥ 3,

x ∈ Rd \ {0}. (2.3.49)

The Newtonian potential is the fundamental solution of the Laplace equation (see (2.3.52) be-
low). For

Ñh(x) := Gh ∗ (2N)(x) = 2
∫
Rd
N(x− y)Gh(y)dy, x ∈ Rd, (2.3.50)

it thus holds
∆Ñh = ∆ (Gh ∗ (2N)) = Gh ∗ 2∆N = 2Gh.

Furthermore, since Ñh ∈ C∞b (Rd), Itô’s formula gives for x ∈ Rd, T > 0,

Ñh(XT − x) = Ñh(X0 − x) +
∫ T

0

(
∇Ñh(Xu − x)

)t
dXu +

∫ T

0
Gh(Xu − x)du. (2.3.51)

This last equation in particular allows to derive a decomposition as in (2.3.45).

To verify (2.3.46), results from classical potential theory prove useful. We now briefly collect
some of them. For any d ≥ 2, the Newtonian potential N is locally integrable over Rd, that is,∫
K |N(x)|dx <∞ for any compact K ⊂ Rd. Furthermore,

∇N(x) = x

Sd‖x‖d
and ∆N(x) = 0 for x ∈ Rd \ {0}. (2.3.52)

Given any compactly supported f ∈ C2(Rd), the function

u(x) := (N ∗ f)(x) =
∫
Rd
N(x− y)f(y)dy

defines a C2 function satisfying the Poisson equation ∆u = f in Rd (see, e.g., Theorem 2.2.1 in
Evans (2010)). For later purposes, we note that, for any j, k ∈ {1, . . . , d} and x ∈ Rd \ {0},∣∣∂jN(x)

∣∣ ≤ C‖x‖1−d, (2.3.53)∣∣∂2
jkN(x)

∣∣ ≤ C‖x‖−d. (2.3.54)

The estimate in (2.3.53) in particular implies the absolute convergence of the integral∫
B(0,1)

∣∣∂jN(x)
∣∣dx ≤ C ∫

B(0,1)
‖x‖1−ddx = C ′

∫ 1

0
r1−drd−1dr <∞.

The second derivatives ∂2
jkN , j, k ∈ {1, . . . , d}, are not integrable over the unit ball B(0, 1). The

following result helps to circumvent this obstacle.
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Lemma 2.3.14 (Theorem 1.I.7 in Doob (2001)). Let G : Rd → R be a radially symmetric,
Lipschitz-continuous bounded kernel function with compact support, and define Ñh according to
(2.3.50). Then, for any j, k ∈ {1, . . . , d}, x ∈ Rd, h > 0, it holds

∂jÑh(x) = 2
∫
Rd
∂jN(x− y)Gh(y)dy, (2.3.55)

∂2
jkÑh(x) = 2

∫
Rd
∂2
jkN(x− y) (Gh(y)−Gh(x)) dy − 2δjkGh(x). (2.3.56)

Proof. Under the given assumptions, the assertions follow immediately from Theorem 1.I.7
(pp. 8–10) in Doob (2001).

Note in particular that (2.3.54) and the Lipschitz property of the kernel G imply that the
integrand in (2.3.56) for x in a neighborhood of y is majorized by ‖x − y‖1−d such that the
integral converges absolutely.

Proof of Lemma 2.3.13. Throughout the proof, C1, C2, . . . denote positive constants. For fixed
j ∈ {1, . . . , d}, we aim at a representation

iλj
(
φ̂T (λ)− φρ(λ)

)
= 1√

T

(
mb(λ,XT )− 2√

T

∫ T

0
eiλtXudW j

u

)
, λ ∈ Rd, (2.3.57)

where the remainder term mb(·, ·) satisfies∫
Rd

Eb

∣∣mb(λ,XT ) h̃T (λ)
∣∣2dλ = o

(
T

d
2β+d

)
. (2.3.58)

We carry out the idea sketched above and derive (2.3.57) by means of approximation with
suitable convolutions (which provide a solution of the Poisson equation) and Itô’s formula. To
account for the factor iλj appearing on the LHS of (2.3.57), the definition of the convolution
differs from (2.3.50).

Let G : Rd → R+ be a kernel of order β−1 with compact support, satisfying
∫
Rd ‖z‖β|G(z)|dz <

∞ and
∫
Rd G(z)dz = 1. For h = hT = c0T

−1/(2(β−1)+d), c0 some positive constant, define
Gh(z) := h−dG(z/h) and

Nh(x) := ∂jGh ∗ (2N)(x) = 2
∫
Rd
∂jGh(y) N(x− y)dy, (2.3.59)

where N denotes the Newtonian potential introduced in (2.3.49). Write

iλj
(
φ̂T (λ)− φρ(λ)

)
= iλj

(
φ̂T (λ)− φ̃T,h(λ)

)
+ iλj

(
φ̃T,h(λ)− φρ(λ)

)
,

where
φ̃T,h(λ) = 1

T

∫ T

0
gh(λ,Xu)du,

for
gh(λ, v) :=

∫
Rd

eiλtyGh(v − y)dy, λ, v ∈ Rd, h > 0.

Integration by parts gives

iλjgh(λ, v)

=
∫
Rd−1

eiλtyGh(v − y)dy1 . . . dyj−1dyj+1 . . . dyd
∣∣∣
|yj |→∞

−
∫
Rd

eiλty∂j (Gh(v − y)) dy

= −
∫
Rd

eiλty∂j (Gh(v − y)) dy. (2.3.60)
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2. Sharp adaptive drift estimation for ergodic diffusions in higher dimension

Applying Itô’s formula to Nh ∈ C2
0 (Rd), we obtain

Nh(XT − x) = Nh(X0 − x) +
∫ T

0
(∇Nh)t (Xu − x)dXu + 1

2

∫ T

0
∆Nh(Xu − x)du. (2.3.61)

It then follows
√
T iλj

(
φ̃T,h(λ)− φρ(λ)

)
= 1√

T

∫ T

0
iλjgh(λ,Xu)du−

√
T iλj

∫
Rd

eiλtyρ(y)dy

(2.3.60)= − 1√
T

∫ T

0

∫
Rd

eiλty∂j (Gh(Xu − y)) dy du+
√
T

∫
Rd

eiλty∂jρ(y)dy

(2.3.61)= − 1√
T

∫
Rd

eiλty(Nh(XT − y)−Nh(X0 − y)
)
dy (I)

+ 1√
T

∫
Rd

eiλty
∫ T

0
(∇Nh)t (Xu − y)dXu dy + 2

√
T

∫
Rd

eiλtybj(y)ρ(y)dy. (II)

The treatment of the term in (II) turns out to be the central part of the proof. Lemma 2.3.14
implies that∫ T

0
∂kNh(Xu − y)dXk

u =
∫ T

0
∂2
kjÑh(Xu − y)dXk

u

= 2
∫ T

0

∫
Rd
∂2
kjN(Xu − y − z) (Gh(z)−Gh(Xu − y)) dz dXk

u

−2 · 1{j = k}
∫ T

0
Gh(Xu − y)dXj

u.

Therefore, we may write

(II) = (II1) + (II2) + (II3)− 2√
T
ζjT (λ),

for

(II1) := 2
√
T

∫
Rd

eiλty
(
bj(y)ρ(y)− 1

T

∫ T

0
Gh(Xu − y)bj(Xu)du

)
dy,

(II2) := 2√
T

(∫ T

0
eiλtXudW j

u −
∫
Rd

eiλty
∫ T

0
Gh(Xu − y)dW j

u dy
)
,

(II3) := 2√
T

∫
Rd

eiλty
∫ T

0

d∑
k=1

∫
Rd
∂2
kjN(Xu − y − z) (Gh(z)−Gh(Xu − y)) dz dXk

u dy.

In particular, (2.3.57) holds for

mb(λ,XT ) := (I) + (II1) + (II2) + (II3) +
√
T iλj

(
φ̂T (λ)− φ̃T,h(λ)

)
.

We turn to verifying (2.3.58). Note first that the assumption that |h̃T | ≤ 1, Plancherel’s formula
and stationarity of X entail that∫

Rd
Eb

∣∣(I) h̃T (λ)
∣∣2dλ ≤ 1

T

∫
Rd

Eb

(
Nh(XT − y)−Nh(X0 − y)

)2dy

≤ 4
T

∫
Rd

Eb

(
Nh(X0 − y)

)2dy.
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Since Nh as defined in (2.3.59) can be rewritten as Nh = ∂j(Gh ∗ 2N) = ∂jÑh, Lemma 2.3.14
implies that, for any y ∈ Rd,

Eb (Nh(X0 − y))2 =
∫
Rd

(
∂jÑh(z − y)

)2
ρ(z)dz

(2.3.55)= 4
∫
Rd

(∫
Rd
∂jN(z − y − x)Gh(x)dx

)2
ρ(z)dz

= 4
∫
Rd

(∫
Rd
∂jN(w − x)Gh(x)dx

)2
ρ(w + y)dw

≤ 4
∫
Rd

(∫
Rd
∂jN(w − x)Gh(x)dx

)2
e−‖w‖2dw e−‖y‖2 .

Cauchy–Schwarz and the inequality (2.3.53) entail that(∫
Rd
∂jN(w − x)Gh(x)dx

)2
≤

∫
Rd

(∂jN(w − x))2 dx
∫
Rd
G2
h(x)dx

≤ C1h
−d
∫
Rd
‖w − x‖2−ddx.

Consequently,

Eb (Nh(X0 − y))2 ≤ 4C1h
−d
∫
Rd

∫
Rd
‖w − x‖2−ddxe−‖w‖2dw e−‖y‖2 ,

and ∫
Rd

Eb

∣∣(I) h̃T (λ)
∣∣2dλ ≤ 4C2h

−dT−1
∫
Rd

e−‖y‖2dy

∼ T−
2(β−1)

2(β−1)+d = o
(
T

d
2β+d

)
. (A)

We turn to (II1). Letting

g̃T (y) := 1
T

∫ T

0
Gh(Xu − y)bj(Xu)du, T > 0, y ∈ Rd, (2.3.62)

the condition that |h̃T | ≤ 1, Plancherel’s formula and the usual bias-variance decomposition
imply that∫

Rd
Eb

∣∣(II1) h̃T (λ)
∣∣2dλ ≤

∫
Rd

Eb

∣∣(II1)
∣∣2dλ

= 4T
∫
Rd

Eb

(
bj(y)ρ(y)− g̃T (y)

)2
dy

= 4T
(∫

Rd

(
bj(y)ρ(y)−Ebg̃T (y)

)2dy +
∫
Rd

Varb (g̃T (y)) dy
)
.

The integrated bias is treated as in the case of independent observations. Using Plancherel’s
formula, one obtains∫

Rd

(
bj(y)ρ(y)−Ebg̃T (y)

)2dy = (2π)−d
∫
Rd

(
φbjρ(λ)− φEbg̃T (λ)

)2
dλ

= (2π)−d
∫
Rd

∣∣∣φbjρ(λ)
∣∣∣2 (1− φG(hλ))2 dλ

≤ (2π)−d
∫
Rd

∣∣∣φbjρ(λ)
∣∣∣2 ‖hλ‖2βdλ

≤ C3

∫
Rd

(∣∣∣φ∂jρ(λ)− φ∂jρ0(λ)
∣∣∣2 +

∣∣∣φ∂jρ0(λ)
∣∣∣2) ‖hλ‖2βdλ

≤ C4h
2β.

53



2. Sharp adaptive drift estimation for ergodic diffusions in higher dimension

For the integrated variance term, Lemma 2.3.4 gives∫
Rd

Varb (g̃T (y)) dy ≤ C5T
−1h2−d.

Thus, ∫
Rd

Eb

∣∣(II1) h̃T (λ)
∣∣2dλ ≤ C6T

(
h2β + T−1h2−d

)
∼ T

d−2
2(β−1)+d = o

(
T

d
2β+d

)
. (B)

We turn to the term involving (II2). It follows from Cauchy–Schwarz that∫
Rd

Eb

∣∣(II2) h̃T (λ)
∣∣2dλ ≤

∫
Rd

(
Eb|(II2)|4

)1/2 (Eb|h̃T (λ)|4
)1/2dλ. (2.3.63)

Using the Burkholder–Davis–Gundy and the Cauchy–Schwarz inequality, we obtain

Eb|(II2)|4 = 16
T 2 Eb

(∫ T

0

(
eiλtXu −

∫
Rd

eiλty Gh(Xu − y)dy
)

dW j
u

)2


≤ C7T
−2 Eb

(∫ T

0

(
eiλtXu −

∫
Rd

eiλty Gh(Xu − y)dy
)2

du
)2

≤ C7 Eb

[(
eiλtX0 −

∫
Rd

eiλty Gh(X0 − y)dy
)4
]
.

Arguing as in the proof of (2.3.20), it can be shown that, for any λ, z ∈ Rd,∣∣∣∣eiλtz −
∫
Rd

eiλtyGh(z − y)dy
∣∣∣∣ ≤ C8‖λ‖βhβ.

Thus, (
Eb|(II2)|4

)1/2
≤ C9‖λ‖2βh2β,

and plugging this into (2.3.63), we obtain∫
Rd

Eb

∣∣(II2) h̃T (λ)
∣∣2dλ ≤ C9

∫
Rd
‖λ‖2β

√
Eb|h̃T (λ)|4dλ h2β

= O
(
T

d−2
2(β−1)+d

)
= o

(
T

d
2β+d

)
. (C)

As concerns (II3), note that, using once again the estimate |h̃T | ≤ 1 and Plancherel’s formula,∫
Rd

Eb

∣∣(II3) h̃T (λ)
∣∣2dλ

≤ 4
T

∫
Rd

Eb

(∫ T

0

d∑
k=1

∫
Rd
∂2
kjN(Xu − y − z) (Gh(z)−Gh(Xu − y)) dz dXk

u

)2

dy

≤ 8
∫
Rd

Eb

(
d∑

k=1

∫
Rd
∂2
kjN(X0 − y − z) (Gh(z)−Gh(X0 − y)) dz bk(X0)

)2

dy

+ 8
∫
Rd

d∑
k=1

Eb

(∫
Rd
∂2
kjN(X0 − y − z) (Gh(z)−Gh(X0 − y)) dz

)2
dy.
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2.3. Global sharp adaptive estimation on L2 Sobolev classes

The first term in the last sum satisfies, for any y ∈ Rd,

∫
Rd

(
d∑

k=1

∫
Rd
∂2
kjN(x− y − z) (Gh(z)−Gh(x− y)) dz

)2 (
bk(x)

)2
ρ(x)dx

=
∫
Rd

(
d∑

k=1

∫
Rd
∂2
kjN(w − z) (Gh(z)−Gh(w)) dz

)2 (
bk(w + y)

)2
ρ(w + y)dw

≤ C10

∫
Rd

(1 + ‖w + y‖)2 exp
(
−‖w + y‖2

)
dw ≤ C11‖y‖e−‖y‖

2
,

where the last line follows from (C2) and (2.2.7). Analogous arguments show that

∫
Rd

d∑
k=1

Eb

(∫
Rd
∂2
kjN(X0 − y − z) (Gh(z)−Gh(X0 − y)) dz

)2
dy ≤ C12e−‖y‖2 .

Thus, ∫
Rd

Eb

∣∣(II3) h̃T (λ)
∣∣2dλ ≤ C13

∫
Rd
‖y‖e−‖y‖2dy ≤ C14. (D)

We finally consider the term

√
T iλj

(
φ̂T (λ)− φ̃T,h(λ)

)
= 1√

T
iλj
(∫ T

0

(
eiλtXu −

∫
Rd

eiλtyGh(Xu − y)dy
)

du
)
.

First, the Cauchy–Schwarz inequality yields∫
Rd

Eb

∣∣h̃T (λ) iλj
(
φ̂T (λ)− φ̃T,h(λ)

∣∣2dλ

≤
∫
Rd

(
Eb|h̃T (λ)|4

)1/2 (
Eb

∣∣iλj(φ̂T (λ)− φ̃T,h(λ)
)∣∣4)1/2

dλ.

Hölder’s inequality implies that

Eb

∣∣∣∣∣ 1T
∫ T

0
iλj
(

eiλtXu −
∫
Rd

eiλtyGh(Xu − y)dy
)

du
∣∣∣∣∣
4


≤ Eb

∣∣∣∣iλj (eiλtX0 −
∫
Rd

eiλtyGh(X0 − y)dy
)∣∣∣∣4 ≤ C15‖λh‖4(β−1),

where the last estimate follows from arguments similar to those in the derivation of (2.3.20).
Summing up, ∫

Rd
Eb

∣∣h̃T (λ) iλj
(
φ̂T (λ)− φ̃T,h(λ)

∣∣2dλ

≤ C16

∫
Rd
‖λ‖2β

√
Eb

(
h̃4
T (λ)

)
dλ h2β = o

(
T

d
2β+d

)
.

In view of (A), (B), (C) and (D), this last assertion completes the proof of (2.3.58).

Remark 2.3.15 (Comparison to the one-dimensional case). Consider an ergodic scalar diffusion
solving the SDE dXt = b(Xt)dt+ dWt, denote by ρ(1) its invariant density, and let

φ̂
(1)
T (λ) := 1

T

∫ T

0
eiλXudu, ζ

(1)
T (λ) := 1√

T

∫ T

0
eiλXudWu, λ ∈ R.
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2. Sharp adaptive drift estimation for ergodic diffusions in higher dimension

Lemma 1 in Dalalyan (2005) states that, for any λ ∈ R,

λ
(
φ̂

(1)
T (λ)− φρ(1)(λ)

)
= 1√

T

(
2iζ(1)

T (λ) +m
(1)
b (λ,XT )

)
, (2.3.64)

for some measurable function m(1)
b (λ,XT ) satisfying∫

R
Eb

∣∣m(1)
b (λ,XT )

∣∣2dλ < C. (2.3.65)

The above estimate is obviously stronger than the upper bound in (2.3.46). The crux about
(2.3.65) however is that it allows to conclude that, under appropriate conditions on the random
function ĥT ,

1
2π Eb

∫
R
|λ|2

∣∣∣(φ̂(1)
T (λ)− φρ(1)(λ)

)
ĥT (λ)− φρ(1)(λ)

(
1− ĥT (λ)

)∣∣∣2 dλ

' 1
2π Eb

∫
R

∣∣∣2iT−1/2ζ
(1)
T (λ) ĥT (λ) + λφρ(1)(λ)

(
1− ĥT (λ)

)∣∣∣2 dλ,

where aT ' bT means that the ratio aT /bT →T→∞ 1, uniformly in all parameters which are
involved in the definitions of these functions. For the purpose of deriving an equivalent relation
in the multidimensional framework, the assertion proven in Lemma 2.3.13 suffices.

Similarly to the non-adaptive set-up (cf. (2.3.11)), the optimal estimator is defined via some
function

h : x 7→ hβ(αx) :=
(
1− ‖αx‖β

)
+
, x ∈ Rd.

For hβ(α ·) thus defined, it obviously holds 0 ≤ hβ(αx) ≤ 1. Furthermore, for any β > d/2,
there exist positive constants K1 and K2, independent of β, such that

K1α
−d ≤

∥∥hβ(α·)
∥∥2
L2(Rd) ≤ K2α

−d. (2.3.66)

Indeed, it holds ∥∥hβ(α·)
∥∥2
L2(Rd) =

∫
Rd

(
1− ‖αλ‖β

)2

+
dλ

= α−d
∫
‖ω‖≤1

(
1− ‖ω‖β

)2
dω

= α−d Sd
∫ 1

0

(
1− uβ

)2
ud−1du

= α−d Sd
(1
d
− 2
β + d

+ 1
2β + d

)
, (2.3.67)

and, for any β > d/2,
1
6d ≤

1
d
− 2
β + d

+ 1
2β + d

≤ 1
d
.

Since ∫
Rd
‖λ‖2βh2

β(αλ)dλ =
∫
Rd
‖λ‖2β

(
1− ‖αλ‖β

)2

+
dλ

= α−2β−d
∫
‖ω‖≤1

‖ω‖2β
(
1− ‖ω‖β

)2
dω

= α−2β−d Sd
∫ 1

0
u2β

(
1− uβ

)2
ud−1du

= α−2β−d Sd
( 1

2β + d
− 2

3β + d
+ 1

4β + d

)
,
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2.3. Global sharp adaptive estimation on L2 Sobolev classes

there also exists some positive constant K3, not depending on β, such that∫
Rd
‖λ‖2βh2

β(αλ)dλ ≤ K3α
−2β−d. (2.3.68)

Let us summarize the adaptive procedure for estimating ∇ρ. Consider the set

HT :=
{
h : x 7→ hβ(αx) :=

(
1− ‖αx‖β

)
+

: α ∈
[
T−γT , (log T )−1

]
, β > d/2

}
. (2.3.69)

Direct numerical minimization over the entire set HT is time consuming such that it is convenient
to restrict attention to a finite subset HNT , approximating well the weights in HT . For this
purpose, we require another auxiliary result which is due to Cavalier et al. (2002). In this article,
the authors consider a sequence space model of statistical linear inverse problems, and the aim
is to estimate a function f from indirect noisy observations. They provide a nonasymptotic,
asymptotically exact oracle inequality which can be applied to obtain sharp minimax adaptive
results. Similarly to our framework, the inequality is then used to prove that minimax adaptation
on ellipsoids (even in the multivariate anisotropic case) can be achieved by minimization of
an unbiased risk estimator without any loss of efficiency with respect to optimal nonadaptive
procedures. The arguments of the proof of Lemma 5 in Cavalier et al. (2002) imply that, for
any h ∈ HT , there exists some h̃ ∈ HNT such that

∆̂T (h̃) ≤ (1 + δN ) ∆̂T (h),

for δN not depending on h, h̃ and b ∈ Σδ with δN →N→∞ 0. (For the sake of completeness, we
include a rephrased version of their result in Section 2.4.2.)

The adaptive procedure for estimating ∇ρ starts by considering discrete values αi, βj ∈ HNT and
selecting

ĥT = arg min
h∈HNT

∆̂T (h). (2.3.70)

Denote the values of αi and βj corresponding to ĥT by α̂T and β̂T , respectively. The kernel K̂T

is chosen such that
φ
K̂T

(λ) = ĥT (λ) =
(

1− ‖α̂Tλ‖β̂T
)

+
, (2.3.71)

and the adaptive estimator of ∇ρ finally is defined as

ĝT (x) := 1
T

∫ T

0
∇K̂T (x−Xu)du. (2.3.72)

Theorem 2.3.16. Assume that b0 satisfies, for any j ∈ {1, . . . , d}, the conditions (C0
j) –(C4).

Then, for any β > d/2 and the set Σδ introduced in (2.3.31), it holds

lim sup
T→∞

sup
b∈Σδ

T
2β

2β+d Eb

∫
Rd

∥∥ĝT (x)−∇ρ(x)
∥∥2dx ≤ 4 P (Idd×d, β, L).

The principle idea for implementing a sharp adaptive estimator of the drift vector is the same
as in the non-adaptive setup. In order to obtain a data-driven correspondent of (2.3.34), the
estimators g∗T , ρ∗T and the sequence c∗T need to be replaced by data-dependent counterparts.
Since it does not contribute to the understanding of the drift estimation problem, we do not
deepen the question of how to estimate ρ and its smoothness in order to obtain a data-driven
truncation sequence cT . The results on adaptive estimation of the derivatives indicate that
existing adaptive methods can be suitably modified without any substantial problems under the
given assumptions. Let us emphasize that we do not need an estimator of ρ which is efficient
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2. Sharp adaptive drift estimation for ergodic diffusions in higher dimension

up to the constant to define an exact estimator of the drift. Note further that the problem
of bandwidth selection for invariant density estimators does not arise in the one-dimensional
setting, since the invariant density can be estimated with the rate

√
T by kernel estimators with

a “universal” bandwidth hT ∼ T−1/2.

As concerns the definition of the term cT (·), the basic idea is to define it in such a way that it
converges faster than the numerator (which achieves the classical nonparametric rate T−β/(2β+d))
but not faster than the invariant density estimator ρ̂T and that it is, in addition, bounded away
from zero.

2.4. Proofs for Section 2.3

2.4.1. Proof of lower bounds

Proof of Theorem 2.3.2. Preliminaries: A modified version of van Trees’ inequality.
There exist different versions of the van Trees inequality; cf. Section 1.2.1. Below we state a
multivariate extension due to Gill and Levit (1995), tailored to our diffusion setting. It will be
applied for estimating a real-valued function of a vector parameter.

The multidimensional diffusion framework is as follows: Define the drift vector bθ(x) as a function
of x ∈ Rd and θ ∈ Θ, Θ some D-dimensional rectangle, D ≥ 1. For any value of the unknown
parameter θ, the functions bθ(·) are such that there exists an ergodic solution of the SDE

dXt = bθ(Xt)dt+ σ dWt (2.4.1)

which admits a Lebesgue continuous invariant measure with density ρbθ =: ρθ.

Assume that some prior distribution of the form dΛ(θ) = p(θ)dλλ is defined on Θ, denote by Pθ

(Eθ) the distribution (expectation) of a continuous record XT = (Xt)0≤t≤T of observations of
X solving (2.4.1), and denote by E expectation with respect to dPθ(XT )× dΛ(θ). Suppose we
are interested in estimating some Rs-valued functional ψ(θ), s ∈ N. Later on, we will specify
to the case s = 1. Partial derivatives with respect to the components of θ are arranged in rows
such that ∂ψ/∂θ =: ∂θψ is an s × D matrix. In the formulation of the lemma, a “smooth”
real-valued function r(θ) is assumed to be absolutely continuous in θj for almost all values of
the other components of θ, and its partial derivatives ∂θjr are supposed to be measurable in θ.

Lemma 2.4.1 (van Trees inequality; cf. Theorem 1 in Gill and Levit (1995)). In the above
framework, assume that the following conditions are satisfied:

(a) The Radon–Nikodym density L(θ, θ0;XT ) of Pθ with respect to Pθ0, θ0 ∈ Θ some fixed
value, is smooth;

(b) the Fisher information matrix

I(θ) := Eθ

((
∂θ logL(θ, θ0;XT )

)t (
∂θ logL(θ, θ0;XT )

))
, θ ∈ Θ, (2.4.2)

exists and
√

diag(I(θ)) is locally integrable in θ;

(c) the prior density p is smooth, positive on the interior of Θ and zero on its boundary;

(d) the components of the functional ψ(θ) are smooth.
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Under the above conditions, it holds for any estimator ψ̂T = ψ̂T (XT ) and any constant s × d
matrix C,

E
∥∥ψ̂T − ψ(θ)

∥∥2 =
∫

Θ
Eθ

∥∥ψ̂T − ψ(θ)
∥∥2
p(θ)dθ ≥

( ∫
Θ tr

(
C(∂θψ(θ))t

)
p(θ)dθ

)2∫
Θ tr (CI(θ)Ct) p(θ)dθ + J(p) , (2.4.3)

where tr(a) = ∑d
k=1 akk denotes the trace of the matrix a and

J(p) =
∫

Θ
tr
(∑
i,k,l

∂θk (Cikp(θ)) ∂θl (Cilp(θ))
) 1
p(θ) dθ. (2.4.4)

Proof. We include the short and elementary proof which is analogue to the proof of Theorem 1
in Gill and Levit (1995). Let U := ψ̂T − ψ(θ) and

Vi :=
s∑
j=1

Cij
∂θj
(
L(θ, θ0;XT )p(θ)

)
L(θ, θ0;XT )p(θ) , i = 1, . . . , d.

Integrating by parts, we obtain

E(U tV ) =
∫
Rd

∫
Θ

d∑
i=1

(
ψ̂iT − ψi(θ)

) s∑
k=1

Cik∂θk
(
L(θ, θ0;XT )p(θ)

)
dθ dx

=
∫

Θ

∫
Rd

d∑
i=1

s∑
k=1

∂θkψ
i(θ) CikL(θ, θ0;XT )p(θ)dx dθ =

∫
Θ

tr
(
C
(
∂θψ

)t)
p(θ)dθ.

Furthermore, since Eθ∂θ
(
logL(θ, θ0;XT )

)
= 0,

E(V tV ) = E
d∑

i,j=1

s∑
k,l=1

Cik
(
p ∂θkL+ L ∂θkp

)
Lp

×
Cjl
(
p ∂θlL+ L ∂θlp

)
Lp

= E
d∑

i,j=1

s∑
k,l=1

Cik
(
∂θk logL+ ∂θk log p

)
× Cjl

(
∂θl logL+ ∂θl log p

)
=
∫

Θ
tr
(
CI(θ)Ct

)
p(θ)dθ = J(p).

Finally, by Cauchy–Schwarz,

E(U tU) = E
∥∥ψ̂T − ψ(θ)

∥∥2 ≥
(
E(U tV )

)2
E(V tV ) .

Outline of the proof. We proceed analogously to the proof of the lower bound for estimating
the derivative of the invariant density of a scalar ergodic diffusion in the local minimax setting
in Theorem 1 in Dalalyan and Kutoyants (2002). The scheme of the proof is originally due to
Golubev and Levit (1996). In our framework, the essential steps are as follows:

• Restriction to the problem of estimating div(ajρ), j ∈ {1, . . . , d} fixed, for b belonging to
some properly chosen parametric family essentially concentrated on the set Σj

δ defined in
(2.3.31), with dimension increasing to infinity as T →∞;

• minorization of the minimax risk by the Bayesian risk with respect to any prior distribution
plus an asymptotically negligible term;
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2. Sharp adaptive drift estimation for ergodic diffusions in higher dimension

• determination of the least favorable prior and evaluation of the corresponding minimax
risk.

Main part of the proof. The first step is to approximate the infinite-dimensional classes
Σj
δ of components of the drift of unbounded support by appropriately chosen finite-dimensional

subclasses with bounded support. To do so, fix some interval [−A,A], with A = AT = log(T+1),
and define

ar := 2rAT−γ , r ∈ Z, where γ := 1
2β + d

.

Let
M = MT := max

{
r ∈ Z :

[
ar −AT−γ , ar +AT−γ

]
⊂ [−A,A]

}
,

and subdivide the interval [−A,A] into closed intervals by considering the partition points

a−M −AT−γ < a−M +AT−γ = a−M+1 −AT−γ < · · ·
· · · < aM−1 +AT−γ = aM −AT−γ < aM +AT−γ .

Given any multi-index m = (m1, . . . ,md) with components

mj ∈ {−M,−M + 1, . . . ,M − 1,M}, j = 1, . . . , d,

denote by Am the sub-cube centered at the vector am := (am1 , . . . , amd)
t, that is,

Am := "dj=1

[
amj −AT−γ , amj +AT−γ

]
.

Denote by P the set of all sub-cubes Am = Am1,...,md , and note that

P ⊂ "dj=1[−A,A] =: A.

(I) The parametric subfamily and its properties. Let ϕ`(x) := exp(πi〈x, `〉), for ` =
(`1, . . . , `d) ∈ Nd, be the trigonometric basis on [−1, 1]d, and consider the following scaled and
shifted versions of the trigonometric basis functions,

φ`,m(x) =
√
T dγA−d ϕ`

(
T γA−1(x− am)

) d∏
j=1

U
(
A− |xj − amj |T γ

)
,

where the function U is (β + 1)-times differentiable, increasing and satisfies U(x) = 0 for x ≤ 0
and U(x) = 1 for x ≥ 1.

Thus, ∏d
j=1 U(A − |xj − amj |T γ) is a smooth approximation of 1{x ∈ Am}. For fixed positive

integers M and R which are to be specified later, consider the parametrization

ρθ(x) := ρ0(x) exp
( ∑
|m|∞≤M

√√√√(2AT−γ)d

ρ0(am)
∑

1≤|`|∞≤R

∫ 1

0
φ`,m(tx)θt`,mxdt− n(θ)

)
,

where

• ρ0 is the invariant density associated with the diffusion process solution of the SDE dYt =
b0(Yt)dt+ σ dWt and, in addition, satisfying b0 = a∇ log ρ0,

• the Rd-valued parameters θ`,m are to be specified later, and

• n(θ) is a normalizing factor.
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Let

bθ(x) := b0(x) + ab−θ (x), (2.4.5)

where, for l ∈ {1, . . . , d},

(
b−θ
)l(x) :=

∑
|m|∞≤M

√√√√(2AT−γ)d

ρ0(am) (2.4.6)

×
∑

1≤|`|∞≤R
θl`,m

(
φ`,m(x)−

∫
Rd
φ`,m(y)dy

)
· 1{l = j},

and define

glθ(x) := 2
d∑

k=1
ajk∂kρθ(x) · 1{l = j}. (2.4.7)

The functions bθ defined in (2.4.5) are β-times continuously differentiable and coincide with b0
outside of the cubeA. In addition, they satisfy conditions (C0

j) –(C2). This implies in particular
that the SDE (2.4.1) associated with bθ admits a strong solution which is ergodic with invariant
density ρθ.

Define the parametric space ΓjT as containing all finite Rd-valued sequences

(θ`,m)1≤|`|∞≤R, |m|∞≤M

such that, for any multi-indices ` and m,
∣∣θj`,m∣∣ ≤ G√ςj` (ε),

where

ςj` (ε) = ςj`,T (ε) := 1
(2A)dT 2βγ

(αj(1− ε)
‖`‖

)β
− 1


+

,

for

αj := 2A
(
L(β + d)(2β + d)
βajjSd(2π)2β

)1/(2β+d)

,

ςj0 := 0 and R = Rj :=
[
αj
]
. The positive numbers G, ε are to be defined later.

The following lemma describes properties of the parametrized densities ρθ. In particular, it gives
an upper bound on the Fisher information associated with the likelihood ratio L(θ, θ0;XT ), for
bθ defined in (2.4.5). Denote

I`,m(θ) := Eθ

((
∂θ`,m logL(θ, θ0;XT )

)t (
∂θ`,m logL(θ, θ0;XT )

))
, θ ∈ ΓjT .

Plugging in the explicit formula for the likelihood ratio given in (A.1.3), we obtain

Eθ

[(
∂
θj
`,m

logL(θ, θ0;XT )
)2
]

= Eθ

[(
∂
θj
`,m

log ρθ(X0) + ∂
θj
`,m

(∫ T

0
bθ(Xu)ta−1dXu

)
(2.4.8)

− 1
2 ∂

θj
`,m

∫ T

0

(
bθ(Xu)ta−1bθ(Xu)

)
du
)2]

.
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The dependence on the parameter θ in the definition of bθ is linear such that the differential
operator ∂θk

`,m
and the stochastic integral with respect to X in (2.4.8) may be interchanged.

Consequently, for any k ∈ {1, . . . , d},

∂θk
`,m

(∫ T

0
bθ(Xu)ta−1dXu

)
− 1

2

∫ T

0
∂θk
`,m

(
bθ(Xu)ta−1bθ(Xu)

)
du

=
∫ T

0
∂θk
`,m

(
bθ(Xu)ta−1

) (
bθ(Xu)du+ σ dWu

)
−1

2

∫ T

0

(
∂θk
`,m

(
bθ(Xu)t

)
a−1bθ(Xu) + bθ(Xu)ta−1∂θk

`,m
bθ(Xu)

)
du

= 1
2

∫ T

0
∂θk
`,m

(
bθ(Xu)t

)
a−1bθ(Xu)du+

∫ T

0
∂θk
`,m

(
bθ(Xu)t

) (
σ−1

)t
dWu

−1
2

∫ T

0
bθ(Xu)ta−1∂θk

`,m
bθ(Xu)du

(2.4.5)= 1
2

∫ T

0
∂θk
`,m

(
b−θ (Xu)t

)
bθ(Xu)du+

∫ T

0
∂θk
`,m

(
b−θ (Xu)t

)
σ dWu

−1
2

∫ T

0
bθ(Xu)t∂θk

`,m
b−θ (Xu)du

=
∫ T

0
∂θk
`,m

(
b−θ (Xu)

)t
σ dWu.

Denote
Ij`,m(θ) := Eθ

(
∂
θj
`,m

log ρθ(X0) +
∫ T

0
∂
θj
`,m

(
b−θ (Xu)

)t
σ dWu

)2
.

Lemma 2.4.2. (a) For any x ∈ Am, ρ0(x) = ρ0(am)(1 + oT (1)), and, for any x ∈ Rd and
θ ∈ ΓjT , ρθ(x) = ρ0(x)(1 + oT (1)), where oT (1) is uniform in x and θ.

(b) For any θ`,m ∈ ΓjT , it holds

Ij`,m(θ) ≤ (2A)dT 2βγajj
(
1 + oT (1)

)
, (2.4.9)

where oT (1) again is uniform in θ.

Proof. Taking into account that b0 = a∇ log ρ0, the first assertion in (a) follows immediately
from the continuity (and thus boundedness) of b0 on the subcube Am. The dimension of the
space ΓjT increases with speed

(
ATT

γ
)d as T → ∞ such that only CT γAT components of the

parameter vector θ ∈ ΓjT do not vanish. The second assertion in (a) thus holds since each of the
non-vanishing components is smaller than CT−βγAβT .

We proceed with proving (b). The triangular inequality implies that
√
Ij`,m(θ) ≤

(
Eθ

(
∂
θj
`,m

log ρθ(X0)
)2)1/2

+
(

Eθ

(∫ T

0
∂
θj
`,m

(
b−θ (Xu)

)t
σ dWu

)2)1/2
. (2.4.10)

Plugging in the definition of b−θ (·) and using Fubini’s theorem and stationarity of X, one obtains

Eθ

(∫ T

0
∂
θj
`,m

(
b−θ (Xu)

)t
σ dWu

)2
= (2AT−γ)d

ρ0(am)

∫ T

0
ajj Eθ

(
φ2
`,m(Xu)

)
du

= (2AT−γ)d
ρ0(am) Tajj

∫
Am

φ2
`,m(x)ρθ(x)dx

= (2A)dT 2βγajj
(
1 + oT (1)

)
.
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The definition of ρθ implies that there exists some positive constant C such that

∂
θj
`,m

(log ρθ(x)) ≤ C.

Consequently, (2.4.10) gives√
Ij`,m(θ) ≤ C +

(
(2A)dT 2βγajj

(
1 + oT (1)

))1/2
,

and, since T 2βγ →∞ and for large enough T , (2.4.9) follows.

(II) Bayesian framework. Define

Wj
T :=

{
ĝT : Eb0

∫
Rd
|ĝT (x)− div(ajρ0)(x)|2 dx < 1

}
.

Theorem 2.3.8 guarantees that there exists an asymptotically efficient estimator
(
gjT
)∗ of

div(ajρ0) such that Wj
T is not empty. For proving the lower bound, it suffices to restrict

attention to the set Wj
T .

The minimax risk is bounded from below by the Bayesian risk. Given any probability distribution
Λ with density p on ΓjT , denote by Rj(Λ) the Bayes risk with respect to the prior distribution
Λ for the problem of estimating div(ajρθ) on the parameter set ΓjT , that is,

Rj(Λ) := inf
ĝT∈Wj

T

E
∫
Rd
|ĝT (x)− div(ajρθ)(x)|2 dx

= inf
ĝT∈Wj

T

∫
ΓjT

∫
Rd

Eb |ĝT (x)− div(ajρθ)(x)|2 dx dΛ(θ).

For any prior Λ on ΓjT , it holds

inf
ĝT∈Wj

T

sup
b∈Σj

δ

Eb

∫
Rd
|ĝT (x)− div(ajρ)(x)|2 dx

≥ inf
ĝT∈Wj

T

sup
b∈Σδ∩ΓjT

Eb

∫
Rd
|ĝT (x)− div(ajρ)(x)|2 dx

≥ inf
ĝT∈Wj

T

∫
ΓjT

Eb

∫
Rd
|ĝT (x)− div(ajρθ)(x)|2 dx dΛ(θ)−Rc

j(Λ)

= Rj(Λ)−Rc
j(Λ), (2.4.11)

where
Rc
j(Λ) := sup

ĝT∈Wj
T

∫
ΓjT \Σδ

Eb

∫
Rd
|ĝT (x)− div(ajρθ)(x)|2 dx dΛ(θ). (2.4.12)

(III) Reduction to functional estimation. As in Golubev and Levit (1996) and Dalalyan
and Kutoyants (2002), the proof of the lower bound is now further reduced to that of estimating
a sequence of linear functionals. For bounding the Bayesian risk Rj(Λ) from below, consider
the orthonormal sequence

e`,m(x) :=
√
T dγA−d ϕ`

(
T γA−1(x− am)

)
1{x ∈ Am},

and let

ψj`,m,θ :=
∫
Am

gjθ(x)e`,m(x)dx and ψ̂j`,m,T :=
∫
Am

ĝT (x)e`,m(x)dx (2.4.13)
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be the Fourier coefficients of gjθ and the estimator ĝT with respect to e`,m, respectively. By
means of Parseval’s formula, it follows

Rj(Λ) = inf
ĝT

E
∫
Rd

∣∣ĝT (x)− div(ajρθ)(x)
∣∣2dx

≥ inf
ĝT

E
∫
A

∣∣ĝT (x)− div(ajρθ)(x)
∣∣2dx

≥ inf
ĝT

∑
|m|∞≤M

∑
1≤|`|∞≤R

E
∣∣ψ̂j`,m,T − ψj`,m,θ∣∣2.

We now apply the version of van Trees’ inequality in (2.4.3), letting C the transposed j-th
unit vector, that is, C = (0, . . . , 0, 1, 0, . . . , 0) ∈ R1×d, where all entries apart from the j-th
component vanish. It then follows that

Rj(Λ) ≥
∑

|m|∞≤M

∑
1≤|`|∞≤R

(∫
ΓjT
∂
θj
`,m
ψ`,m,θp(θ)dθ

)2

∫
ΓjT
Ij`,m(θ)p(θ)dθ + J j`,m(dΛ)

, (2.4.14)

where J`,m(dΛ) is the Fisher information matrix of the prior density p (cf. (2.4.4)). Lemma
2.4.2 yields an upper bound on

∫
ΓjT
I`,m(θ)p(θ)dθ. For evaluating the numerator appearing on

the right-hand side of (2.4.14), we use the following

Lemma 2.4.3. For the Fourier coefficients ψj`,m,θ defined in (2.4.13), it holds

∂
θj
`,m
ψj`,m,θ = 2ajj

√
(2AT−γ)d ρ0(am)

(
1 + oT (1)

)
, (2.4.15)

where oT (1) goes to zero uniformly in `,m and θ ∈ ΓjT .

Proof. Note first that, for any x ∈ Rd,

2ρθ(x)bjθ(x) = 2ρθ(x)
d∑

k=1
ajk∂k (log ρθ(x)) = 2

d∑
k=1

ajk∂kρθ(x) = gjθ(x)

such that
∂
θj
`,m
gjθ(x) = 2ρθ(x) ∂

θj
`,m
bjθ(x) + 2∂

θj
`,m
ρθ(x) bjθ(x).

Exploiting the definition of ρθ, it can be shown that

sup
‖x‖≤Ad

(
2bjθ(x) ∂

θj
`,m
ρθ(x)

)
= A−2d oT (1).

Thus,

∂
θj
`,m
gjθ(x) = 2

d∑
l=1

ajl∂θj
`,m

(
b−θ

)l
(x)ρθ(x) +A−2d oT (1)

= 2ajjρθ(x)
(

(2AT−γ)d

ρ0(am)

)1/2 (
φ`,m(x)−

∫
Rd
φ`,m(y)ρ0(y)dy

) (
1 + oT (1)

)
,

and it holds

∂
θj
`,m
ψj`,m,θ =

∫
Am

∂
θj
`,m
gjθ(x)e`,m(x)dx

(
1 + oT (1)

)
= 2ajj

∫
Am

ρ0(x)
(

(2AT−γ)d

ρ0(am)

)1/2

e2
`,m(x)dx

(
1 + oT (1)

)
.

In view of Lemma 2.4.2 and since
∫
Am

e2
`,m(x)dx = 1, the assertion follows.
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(IV) Least favorable priors. The estimates (2.4.14), (2.4.9) and (2.4.15) and entail that
there exists some T0 = T0(ε) ∈ R+ such that, for any T ≥ T0,

Rj(Λ) ≥
∑

|m|∞≤M

∑
1≤|`|∞≤R

4a2
jj (2AT−γ)d ρ0(am)

(1 + ε)(2AT−γ)dajjT + J j`,m(dΛ)
(
1 + oT (1)

)

=
∑

|m|∞≤M

∑
1≤|`|∞≤R

4ajj (2AT−γ)d ρ0(am)
(1 + ε)(2A)dT 2βγ + J j`,m(dΛ)a−1

jj

(
1 + oT (1)

)
. (2.4.16)

Proceeding analogue to Golubev and Levit (1996) and Dalalyan and Kutoyants (2002), we now
consider the “asymptotically least favorable prior distribution”: The choice of the prior Λ is
motivated by the attempt to maximize the Bayesian risk asymptotically. Furthermore, it should
be essentially concentrated on the set

{
θ ∈ ΓjT : bθ(·) ∈ Σj

δ

}
. Consider i.i.d. random vectors ξk

with common density f(x) satisfying∫
Rd
xf(x)dx = 0,

∫
Rd
x2f(x)dx = a−1

jj , max
j=1,...,d

∣∣ξjk∣∣ < G

and ∫
Rd

(∂xj log f(x))2 dx = (1 + ε)ajj .

In particular, the above definitions entail that ε vanishes as G tends to infinity. Define the prior
distribution Λ as the product measure

dΛ(θ) =
∏

|m|∞≤M

∏
1≤|`|∞≤R

λ`,m(θ`,m) dθ`,m,

where
λ`,m(u) = λ`(u) :=

(
ςj`
)−1/2(ε) f

(
u/
√
ςj` (ε)

)
.

J j`,m(dΛ) then satisfies

J j`,m(dΛ) = (1 + ε)ajj
ςj` (ε)

. (2.4.17)

Convergence of the Riemann sums implies that∑
|m|∞≤M

(
2AT−γ

)d
ρ0(am) =

∫
A

ρ0(x)dx (1 + oT (1)) = 1 + oT (1),

and plugging this last relation and (2.4.17) into (2.4.16), one obtains

Rj(Λ) ≥ 4ajj
1 + ε

∑
1≤|`|∞≤R

ςj` (ε)
(2A)dT 2βγςj` (ε) + 1

(
1 + oT (1)

)

= 4ajj
(1 + ε)(2A)dT 2βγ

∑
1≤|`|∞≤R

1−
∥∥∥∥∥ `t

αj(1− ε)

∥∥∥∥∥
β
 (

1 + oT (1)
)

= 4ajj
(1 + ε)(2A)dT 2βγ

∫
A

(
1−

∥∥∥∥ λ

αj(1− ε)

∥∥∥∥β
)

dλ
(
1 + oT (1)

)
=

4ajj
(
αj
)d(1− ε)d

(1 + ε)(2A)dT 2βγ

∫
A

(
1− ‖ω‖β

)
dω

(
1 + oT (1)

)
=

4ajjSd
(
αj
)d(1− ε)d

(1 + ε)(2A)dT 2βγ

∫ 1

0
rd−1

(
1− rβ

)
dr
(
1 + oT (1)

)
≥ 4ajj

(
αj
)d(1− ε)d+1Sd(2A)−dT−2βγ β

d(β + d)
(
1 + oT (1)

)
= 4(1− ε)d+1T−2βγPj(σ, β, L)

(
1 + oT (1)

)
.
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Combining (2.4.11) and the last display gives

inf
ĝT

sup
b∈Σδ

Eb

∫
Rd
|ĝT (x)− div(ajρ)(x)|2 dx

≥ 4(1− ε)d+1T−2β/(2β+d)Pj(σ, β, L)
(
1 + oT (1)

)
−Rc

j(Λ). (2.4.18)

(V) Evaluation of Rc
j(Λ) and conclusion of the proof. To conclude the proof, it needs

to be shown that

Rc
j(Λ) = sup

ĝT∈Wj
T

∫
ΓjT \Σ

j
δ

Eb

∫
Rd
|ĝT (x)− div(ajρθ)(x)|2 dx dΛ(θ)

tends to zero faster than the first term appearing in (2.4.18). To do so, it is shown first that

CjT :=
{
θ ∈ ΓjT : V j

T (θ) < L(1− ε)
}
⊆
{
θ : bθ ∈ Σj

δ

}
,

for
V j
T (θ) := a2

jj

(
2AT−γ

)d ∑
|m|∞≤M

ρ0(am)
∑

1≤|`|∞≤R

∣∣θj`,m∣∣2 (πT γA−1)2β‖`‖2β.
Since CjT ⊆ ΓjT , it only needs to be verified that

sup
θ∈CjT

∫
Rd

∑
|α|≤β

∣∣Dα(gjθ(x)− gj0(x)
)∣∣2dx ≤ 4L.

In view of the relations gjθ = 2bjθρθ and gj0 = 2bj0ρ0 and exploiting the definitions of bθ and b0,
it is shown analogously to the proof of Proposition 2.3.1 (also cf. the arguments used in the
respective scalar setting on pp. 99–100 in Dalalyan and Kutoyants (2003) and p. 10 in Dalalyan
and Kutoyants (2002)) that, for any multi-index α ∈ Nd of order |α| = β ∈ N,∫

Rd

∣∣Dα(gjθ(x)− gj0(x)
)∣∣2dx = 4

∫
Rd

∣∣Dα(bjθ(x)ρθ(x)− bj0(x)ρ0(x)
)∣∣2ρ2

0(x)dx

= 4
∫
Am

∣∣Dα(bjθ(x)− bj0(x)
)∣∣2ρ2

0(x)dx+ oT (1).

Note that

bjθ − b
j
0 =

d∑
k=1

ajk
(
b−θ
)k = ajj

(
b−θ
)j
.

Since all derivatives of U up to order β are bounded and vanish for x /∈ Am, it holds, for any
k ∈ {1, . . . , d},

∂β
(
b−θ
)j(x)

∂
(
xk
)β =

∑
|m|∞≤M

√√√√(2AT−γ)d
ρ0(am)

∑
1≤|`|∞≤R

θj`,m
(
iπT γA−1)β (`k)β.

Consequently, it can be shown that∑
|α|≤β

∫
Rd

∣∣Dα(gjθ(x)− gj0(x)
)∣∣2dx

≤ 4a2
jj

∑
|m|∞≤M

(
2AT−γ

)d
ρ0(am)

∑
1≤|`|∞≤R

∣∣θj`,m∣∣2 (πT γA−1)2β ‖`‖2β ρ2
0(am)

(
1 + oT (1)

)
= 4V j

T (θ)
(
1 + oT (1)

)
.
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Thus, for any θ ∈ CjT , ∑
|α|≤β

∫
Rd

∣∣Dα(gjθ(x)− gj0(x)
)∣∣2dx ≤ 4L(1− ε) ≤ 4L.

To shorten notation, denote αε := αj(1−ε). The definition of V j
T (·) entails that, for any θ ∈ ΓjT ,

EbV
j
T (θ) = a2

jj

(
2AT−γ

)d ∑
|m|∞≤M

ρ0(am)
∑

1≤|`|∞≤R
a−1
jj ς

j
` (ε)

(
πT γA−1)2β‖`‖2β

= ajj

(
πT γ

A

)2β ∑
1≤|`|∞≤R

1
(2A)d

((
αε
‖`‖

)β
− 1

) (
1 + oT (1)

)
= ajj

(
π

A

)2β α2β+d
ε

(2A)d
∑

1≤|`|∞≤R
α−dε

(‖`‖
αε

)2β (( αε
‖`‖

)β
− 1

) (
1 + oT (1)

)
= ajj

(
π

A

)2β α2β+d
ε

(2A)d Sd
∫ 1

0
rd−1

(
rβ − r2β

)
dr
(
1 + oT (1)

)
= ajj

( 2π
2A

)2β (2A)2β+d

(2A)d
L(β + d)(2β + d)
β ajjSd(2π)2β

Sd β
(β + d)(2β + d) (1− ε)2β+d(1 + oT (1)

)
= L(1− ε)2β+d(1 + oT (1)

)
.

Hoeffding’s inequality implies that, for some positive constant C,

Λ
(
θ /∈ CjT

)
≤ Λ

(
V j
T (θ)−EbV

j
T (θ) ≥ Lε(1− ε)

)
≤ exp

(
−L

2ε2(1− ε)2

CT−2βγ

)
,

that is,
Λ
(
θ /∈ CjT

)
= o

(
T−1).

Since
Rc
j(Λ) ≤

(
8 sup
θ∈ΓjT

∫
Rd

∣∣gjθ(x)
∣∣2dx+ 2

)
Λ
(
bθ /∈ Σδ

)
and

∫
Rd
∣∣gjθ(x)

∣∣2dx is bounded uniformly for θ ∈ ΓjT , we obtain Rc
j(Λ) ≤ o

(
T−1). Plugging the

upper bound on Rc
j(Λ) into (2.4.18), we obtain

inf
ĝT

sup
b∈Σj

δ

Eb

∫
Rd

∣∣ĝT (x)− div(ajρ)(x)
∣∣2dx ≥ 4(1− ε)d+1T−2β/(2β+d)Pj(σ, β, L)

(
1 + oT (1)

)
such that

lim inf
δ→0

lim inf
T→∞

T
2β

2β+d inf
g̃jT

sup
b∈Σj

δ

Eb

∫
Rd

∣∣g̃jT (x)− div(ajρ)(x)
∣∣2dx ≥ 4Pj(σ, β, L) (1− ε)d+1.

Since ε > 0 can be chosen arbitrarily small, the assertion follows.

Proof of Theorem 2.3.3. Under the given assumptions, it holds 2bjρ = div(ajρ). For any es-
timator b̂jT of the j-th component of the drift b ∈ Uδ(b0), denote ĝjT := 2b̂jT ρ̂T,1, where the
invariant density estimator ρ̂T,1(·) is defined according to Lemma 2.2.4 and satisfies

Eb |ρ̂T,1(x)− ρ(x)|2 ≤ K1 T
− 2(β+1)

2(β+1)+d exp (−K2‖x‖) , x ∈ Rd.
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The inverse triangle inequality then entails that

Eb

∫
Rd

∣∣b̂jT (x)− bj(x)
∣∣2ρ2(x)dx

= Eb

∫
Rd

∣∣b̂jT (x)ρ(x)− b̂jT (x)ρ̂T (x) + 1
2 ĝ

j
T (x)− 1

2 div(ajρ)(x)
∣∣2dx

≥
(√

1
4Eb

∫
Rd

∣∣ĝjT (x)− div(ajρ)(x)
∣∣2dx−

√
Eb

∫
Rd

∣∣b̂jT (x)
∣∣2 (ρ(x)− ρ̂T,1(x))2 dx

)2

.

The growth condition on the drift term in (C2) implies that, for any x ∈ Rd and T large enough,

sup
b∈Uδ(b0)

∣∣bj(x)
∣∣ ≤ c2(1 + ‖x‖) . log T exp

( ‖x‖
log T

)
.

If the estimator b̂jT satisfies

∣∣b̂jT (x)
∣∣ ≤ log T exp

( ‖x‖
log T

)
, x ∈ Rd, (2.4.19)

the risk of b̂jT ∧ log T exp (‖x‖/ log T ) is smaller than the risk of b̂jT such that the lower bound
needs to be proven only for estimators b̂jT fulfilling (2.4.19). In this case, there exists some
positive constant C such that

Eb

∫
Rd

∣∣b̂jT (x)
∣∣2 (ρ(x)− ρ̂T (x))2 dx ≤ K1

∫
Rd

(log T )2 exp
( 2‖x‖

log T −K2‖x‖
)

dx T−
2(β+1)

2(β+1)+d

≤ C(log T )2 T
− 2(β+1)

2(β+1)+d .

Consequently,

lim inf
T→∞

T
β

2β+d
(

inf
b̂jT

sup
b∈Σj

δ

Eb

∫
Rd

∣∣b̂jT (x)− bj(x)
∣∣2ρ2(x)dx

)1/2

≥ lim inf
T→∞

(
T

2β
2β+d inf

g̃jT

sup
b∈Σj

δ

Eb

∫
Rd

∣∣g̃jT (x)− div(ajρ)(x)
∣∣2dx/4

− C(log T )2 T
− d

(2(β+1)+d)2(β+1)
)1/2

≥
√
Pj(σ, β, L),

where the last line follows from Theorem 2.3.2.

2.4.2. Proof of upper bounds

Proof of Theorem 2.3.10. We now show that

(
bjT
)∗(x) =

(
gjT
)∗(x)

2 (ρ̂T,1(x) + c∗T (x)) , x ∈ Rd,

is an asymptotically efficient estimator of the j-th component of the drift vector. Throughout
the proof, C1, C2, . . . denote positive constants. Recall that

c∗T (x) := T
− β+1

2(β+1)+d εT (x), for εT (x) := exp
(√

log T − ‖x‖log T

)
, x ∈ Rd,
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and consider the event

TT (x) :=
{
ω : ρ(x)− ρ̂T,1(x) < c∗T (x)

}
=
{
ω : ρ(x) < ρT (x)

}
, x ∈ Rd,

where ρT := ρ̂T,1 + c∗T . Recall once again that Lemma 2.2.4 implies that the invariant density
estimator ρ̂T,1(·) satisfies, for any q ≥ 1,

Eb |ρ̂T,1(x)− ρ(x)|2q ≤ K1 T
− 2q(β+1)

2(β+1)+d exp (−K2q‖x‖) , x ∈ Rd. (2.4.20)

Chebychev’s inequality entails that, for T large enough,∫
Rd

Pb

(
T c
T (x)

)
dx =

∫
Rd

Pb

(
ρ(x)− ρ̂T,1(x) ≥ c∗T (x)

)
dx

≤
∫
Rd

(
c∗T (x)

)−2q Eb

∣∣ρ̂T,1(x)− ρ(x)
∣∣2qdx

≤ K1 T
2q(β+1)

2(β+1)+d

∫
Rd
ε−2q
T (x) exp (−K2q‖x‖) dx T−

2q(β+1)
2(β+1)+d

≤ C1 exp
(
− 2q

√
log T

)
.

Thus,∫
Rd

Eb

(∣∣(bjT )∗(x)− bj(x)
∣∣2ρ2(x)1 {T c

T (x)}
)

dx

≤ 2
∫
Rd

Eb

(∣∣(bjT )∗(x)
∣∣2ρ2(x)1 {T c

T (x)}
)

dx+ 2
∫
Rd
|bj(x)|2ρ2(x) Pb

(
T c
T (x)

)
dx

≤ 2
∫
Rd

(
Eb

∣∣(bjT )∗(x)
∣∣4)1/2

ρ2(x)
(
Pb

(
T c
T (x)

))1/2
dx+ C1 exp

(
−2q

√
log T

)
. (2.4.21)

Recall that
(
gjT
)∗(x) = 2T−1 ∫ T

0 K∗T (x−Xu)dXj
u, where K∗T is defined via (2.3.11) and (2.3.32).

Since (a+ b)4 ≤ 8a4 + 8b4, it holds for the fourth moment of
(
gjT
)∗,

Eb

∣∣(gjT )∗(x)
∣∣4 ≤ 128T−4Eb

∣∣∣ ∫ T

0
K∗T (x−Xu)bj(Xu)du

∣∣∣4
+ 128T−4Eb

∣∣∣ ∫ T

0
K∗T (x−Xu)

d∑
k=1

σjkdW k
u

∣∣∣4.
As concerns the first summand, Hölder’s inequality implies that

T−4Eb

∣∣∣ ∫ T

0
K∗T (x−Xu)bj(Xu)du

∣∣∣4 ≤ Eb

((
K∗T (x−X0)

)4∣∣bj(X0)
∣∣4).

The second term is upper-bounded by means of the Burkholder–Davis–Gundy inequality and
Cauchy–Schwarz such that

Eb

∣∣∣ ∫ T

0
K∗T (x−Xu)

d∑
k=1

σjkdW k
u

∣∣∣4 ≤ C2 Eb

(∫ T

0
ajj

∣∣K∗T (x−Xu)
∣∣2du

)2

(2.4.22)

≤ C2 a
2
jj T

2Eb

((
K∗T (x−X0)

)4)
.

The Fourier inversion formula entails that

sup
y∈Rd

|KT (y)| ≤ C3

∫
Rd

(
1− ‖αλ‖β+γ

)
+

dλ

≤ C4α
−d
∫
Rd

(
1− ‖ω‖β+γ

)2

+
dω ≤ C5α

−d.
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Thus,
sup
y∈Rd

|K∗T (y)| ≤ C6 T
d/(2β+d). (2.4.23)

Taking into account (2.4.23) and since the moments of bj are uniformly bounded on Σj
δ (recall

the at-most-linear growth of b), it holds for any x ∈ Rd and any b ∈ Σj
δ,

Eb

∣∣(gjT )∗(x)
∣∣4 ≤ C7 T

κ, for κ := 4d
2β + d

.

Consequently,∫
Rd

(
Eb

(
bjT
)∗(x)

)1/2
ρ2(x)

(
Pb (T c

T (x))
)1/2

dx

≤ C8 T
κ/2
∫
Rd

(c∗T (x))−2 ρ2(x)dx exp
(
− q

√
log T

)
≤ C8 T

κ/2+ 2(β+1)
2(β+1)+d exp

(
− q

√
log T

)
. (2.4.24)

Choosing
q =

(
κ

2 + 2(β + 1)
2(β + 1) + d

+ 1
) √

log T ,

it follows from (2.4.21) and (2.4.24) that∫
Rd

Eb

(∣∣(bjT )∗(x)− bj(x)
∣∣2ρ2(x)1 {T c

T (x)}
)
≤ C9 T

−1.

On the event TT , it holds ρ < ρT , and, using relation (2.1.4), one obtains∫
Rd

Eb

(∣∣(bjT )∗(x)− bj(x)
∣∣2ρ2(x)1 {TT (x)}

)
dx (2.4.25)

≤
{(∫

Rd
Eb

(∣∣(bjT )∗(x)− bj(x)ρ(x)/ρT (x)
∣∣2ρ2(x)1 {TT (x)}

)
dx
)1/2

+
(∫

Rd
Eb

(∣∣bj(x)ρ(x)/ρT (x)− bj(x)
∣∣2ρ2(x)1 {TT (x)}

)
dx
)1/2}2

≤
{√

1
4

∫
Rd

Eb

∣∣∣(gjT )∗(x)− div(ajρ)(x)
∣∣∣2 dx+

√
Eb

∫
Rd
|bj(x)|2 (ρ(x)− ρT (x))2 dx

}2

=:
(√

T1 +
√

T2
)2
.

(2.4.20) entails that

Eb

∣∣ρ(x)− ρT (x)
∣∣2 ≤ 2Eb

∣∣ρ̂T,1(x)− ρ(x)
∣∣2dx+ 2 (c∗T (x))2

≤ 2K1T
− 2(β+1)

2(β+1)+d

{
exp (−K2‖x‖) + exp

(
2
√

log T − 2‖x‖
log T

)}
,

and in view of the growth condition on the drift term, it follows that, for any b ∈ Σj
δ,

T2 ≤ T−
2(β+1)

2(β+1)+d exp
(
2
√

log T
)
.

Thus, for any δ > 0,

lim
T→∞

sup
b∈Σj

δ

T
2β

2β+d Eb

∫
Rd

∣∣(bjT )∗(x)− bj(x)
∣∣2 ρ2(x)dx

≤ lim
T→∞

sup
b∈Σj

δ

{
T

2β
2β+d

(1
4Eb

∫
Rd

∣∣(gjT )∗(x)− div(ajρ)(x)
∣∣2dx

)1/2
+ oT (1)

}2

≤ Pj(σ, β, L),
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that is, the upper bound part of relation (2.3.35) holds true.

Proof of Theorem 2.3.16. The principle scheme of the proof of Theorem 2.3.16 is analogue to the
proof of Theorem 1 in Dalalyan (2005). For the sake of completeness and since not all arguments
carry over unmodified, we explicate the complete proof in the multidimensional framework.
Before coming to the details, let us briefly sketch the basic idea for verifying sharp adaptivity
of the estimator ĝT defined in (2.3.72).

In the proof below, we refer to the result on asymptotically efficient estimation of div(aρ). It
was shown in Section 2.3.3 that the asymptotically efficient estimator g∗T of ∇ρ satisfies

Eb

∫
Rd

∥∥g∗T (x)−∇ρ(x)
∥∥2dx ≤ 1

(2π)dT ∆̃T

(
α∗T , β

)
(1 + oT (1))

(cf. (2.3.23)), where

∆̃T

(
α∗T , β

)
:= T

∫
Rd

(1− h∗T (λ))2 ‖φ∇ρ(λ)‖2 dλ+ 4d
∫
Rd

(h∗T (λ))2 dλ,

for α∗T defined in (2.3.28) and
h∗T (λ) :=

(
1− ‖α∗Tλ‖

β
)

+
. (2.4.26)

Recall the definition of the functionals ∆T and ∆̂T in Section 2.3.3,

∆T

(
α, h, φρ

)
= T

∫
Rd
|1− h(αλ)|2 ‖φ∇ρ(λ)‖2 dλ+ 4d

∫
Rd
|h(αλ)|2dλ,

∆̂T (h) = T

∫
Rd

(
h2(λ)− 2h(λ)

) ∥∥∥λφ̂T (λ)
∥∥∥2

dλ+ 8d
∫
Rd
h(λ)dλ,

and note that

∆T

(
1, h∗T , φρ

)
= T

∫
Rd
|1− h∗T (λ)|2 ‖φ∇ρ(λ)‖2 dλ+ 4d

∫
Rd
|h∗T (λ)|2dλ,

= ∆̃T

(
α∗T , β

)
. (2.4.27)

The basic idea for the proof of Theorem 2.3.16 is to show that ĝT as defined in (2.3.72) satisfies

Eb

∫
Rd

∥∥ĝT (x)−∇ρ(x)
∥∥2dx ≤ 1

(2π)dT Eb∆T

(
1, ĥT , φρ

)
(1 + oT (1)) (2.4.28)

= 1
(2π)dT Eb∆̂T

(
ĥT
)

(1 + oT (1)) .

Provided that
Eb∆̂T

(
ĥT
)
≤ Eb∆̂T

(
h∗T
)
,

(2.4.28) implies in particular that

Eb

∫
Rd

∥∥ĝT (x)−∇ρ(x)
∥∥2dx ≤ 1

(2π)dT ∆T

(
1, h∗T , φρ

)
(1 + oT (1))

(2.4.27)= 1
(2π)dT ∆̃T

(
α∗T , β

)
(1 + oT (1)) .

The asymptotic behavior of the supremum of (a suitably normalized version of) ∆̃T

(
α∗T , β

)
over

the Sobolev ball Σδ has been analyzed already in Section 2.3.3.
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Preliminaries. We start with giving two auxiliary results which will be important in the
sequel. The first lemma contains multidimensional analogues of Lemma 2 and Lemma 3 in
Dalalyan (2005) and will be useful later for verifying (2.4.28). In particular, the upper bounds
in (2.4.29) and (2.4.31) allow to eliminate the dependence on the random term

ζT (λ) = 1√
T

∫ T

0
eiλtXudWu

(cf. the expression obtained in Lemma 2.3.13).

Lemma 2.4.4. (a) Let f̃ be some random bounded Rd-valued function, taking values in some
finite set {f1(·), . . . , fN (·)} of functions fi : Rd → Rd. Then there exists some constant C,
depending only on β, L, b0, such that

Eb

∣∣∣∣∫
Rd
ζtT (λ)f̃(λ)dλ

∣∣∣∣ ≤ C (NEb

∫
Rd

∥∥f̃(λ)
∥∥2dλ

)1/2
. (2.4.29)

(b) Assume that h̃ is some random real-valued function, taking values in the finite set of
functions {h1(·), . . . , hN (·)}. If

‖hi‖2L2(Rd) ≤ T, i = 1, . . . , N, (2.4.30)

then, for εT = T 1/
√

log T and some constant C = C(β, L, b0),

sup
b∈Σδ

Eb

∫
Rd
h̃(λ)

(
‖ζT (λ)‖2 − ‖σ‖2S2

)
dλ ≤ C

(
NεTEb

∫
Rd
h̃2(λ)dλ

)1/2
. (2.4.31)

Proof. Throughout the proof, C,C ′, C ′′ denote positive constants whose value may change from
line to line. Part (a) is proven analogously to Lemma 2 in Dalalyan (2005), p. 254. First note
that, for

z
f̃

:=
(∫

Rd

∥∥f̃(λ)
∥∥2dλ

)−1/2 ∫
Rd
ζtT (λ)f̃(λ)dλ,

it holds by Cauchy–Schwarz

Eb

∣∣∣∣∫
Rd
ζtT (λ)f̃(λ)dλ

∣∣∣∣ = Eb

((∫
Rd

∥∥f̃(λ)
∥∥2dλ

)1/2 ∣∣z
f̃

∣∣)

≤
(

Eb

∫
Rd

∥∥f̃(λ)
∥∥2dλ

)1/2 ( N∑
j=1

Eb

∣∣zfj ∣∣2)1/2
. (2.4.32)

Recall that ζT (λ) = T−1/2 ∫ T
0 eiλtXudWu. Thus, for any j ∈ {1, . . . , N},

Eb

∣∣∣∣ ∫
Rd
ζtT (λ)fj(λ)dλ

∣∣∣∣2 = T−1 Eb

∣∣∣∣ ∫
Rd
f tj (λ)

∫ T

0
eiλtXudWu dλ

∣∣∣∣2
= T−1 Eb

∣∣∣∣ ∫ T

0

∫
Rd

eiλtXuf tj (λ)dλ dWu

∣∣∣∣2
=

d∑
k=1

Eb

∣∣∣∣ ∫
Rd

eiλtX0fkj (λ)dλ
∣∣∣∣2 =

d∑
k=1

Eb

∣∣∣φfkj (X0)
∣∣∣2

≤ sup
b∈Σδ

sup
x∈Rd

ρb(x)
d∑

k=1

∫
Rd

∣∣∣φfkj (z)
∣∣∣2 dz

= sup
b∈Σδ

sup
x∈Rd

ρb(x)
∫
Rd
‖fj(λ)‖2 dλ.
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Consequently, for C := supb∈Σδ supx∈Rd ρb(x) and for any j ∈ {1, . . . , N},

Eb

∣∣zfj ∣∣2 ≤ C(∫
Rd
‖fj(λ)‖2 dλ

)−1 ∫
Rd
‖fj(λ)‖2 dλ = C.

In view of (2.4.32), the assertion (2.4.29) follows.

As regards the proof of part (b), the main idea in the scalar setting is to express the square of
the scalar analogue of ζT via some linear stochastic integral and to apply the same method as in
the proof of (a). The strategy also works in the multidimensional framework as will be sketched
in the sequel. Define the Rd-valued martingales

Mu(λ) :=
∫ u

0
cos

(
λtXs

)
dWs, Nu(λ) :=

∫ u

0
sin
(
λtXs

)
dWs, u > 0, (2.4.33)

such that, for any u > 0, λ ∈ Rd,

ζu(λ) = 1√
u

∫ u

0
eiλtXsdWs = 1√

u

(
Mu(λ) + i Nu(λ)

)
.

Applying Itô’s formula to the martingales M and N and the function f(x) := ‖x‖2 = ∑d
k=1(xk)2,

it follows

‖MT (λ)‖2 = ‖M0(λ)‖2 +
d∑
i=1

2
∫ T

0
Mi
u(λ)d Mi

u +
d∑
i=1

∫ T

0
d〈Mi(λ),Mj(λ)〉u

= 2
∫ T

0
cos

(
λtXu

)
Mu(λ)dWu + d

∫ T

0
cos2

(
λtXu

)
du

and

‖NT (λ)‖2 = 2
∫ T

0
sin
(
λtXu

)
Nu(λ)dWu + d

∫ T

0
sin2

(
λtXu

)
du.

Consequently,

‖ζT (λ)‖2 = 1
T

(
‖MT (λ)‖2 + ‖NT (λ)‖2

)
= 2
T

∫ T

0
Yu(λ)dWu + d, (2.4.34)

where

Yu(λ) = cos
(
λtXu

) ∫ u

0
cos

(
λtXs

)
dWs + sin

(
λtXu

) ∫ u

0
sin
(
λtXs

)
dWs

= Re eiλtXu
∫ u

0
e−iλtXsdWs = Re eiλtXu√uζu(λ).

Thus,

Eb

∣∣∣∣ ∫
Rd
h̃(λ)

(
‖ζT (λ)‖2 − d

)
dλ
∣∣∣∣2 (2.4.34)= 4

T 2 Eb

∣∣∣∣ ∫
Rd
h̃(λ)

∫ T

0
Yu(λ)dWu dλ

∣∣∣∣2
= 4

T 2 Eb

∣∣∣∣ ∫ T

0

∫
Rd
Yu(λ)h̃(λ)dλ dWu

∣∣∣∣2
= 4

T 2 Eb

∫ T

0

∥∥∥∥ ∫
Rd
Yu(λ)h̃(λ)dλ

∥∥∥∥2
du

= 4Ub
(
h̃
)
, (2.4.35)

where
Ub
(
h̃
)

:= 1
T 2

∫ T

0
u Eb

∥∥∥∥∫
Rd

eiλtXuζu(λ)h̃(λ)dλ
∥∥∥∥2

du.
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For
z
h̃

:=
(∫

Rd
h̃2(λ)dλ

)−1/2 ∫
Rd
h̃(λ)

(
‖ζT (λ)‖2 − d

)
dλ,

Cauchy–Schwarz implies that

Eb

∫
Rd
h̃(λ)

(
‖ζT (λ)‖2 − d

)
dλ = Eb

((∫
Rd
h̃2(λ)dλ

)1/2
z
h̃

)

≤
(

Eb

∫
Rd
h̃2(λ)dλ

)1/2( N∑
i=1

Eb

∣∣zhi ∣∣2
)1/2

.

Since the above estimates hold uniformly in b ∈ Σδ, (2.4.31) is proven once we have shown that,
for any b ∈ Σδ and i ∈ {1, . . . , N},

Eb

∣∣zhi ∣∣2 (2.4.35)= 4
(∫

Rd
h2
i (λ)dλ

)−1
Ub(hi) ≤ C ′εT . (2.4.36)

The subsequent manipulations are nearly analogue to the steps in the proof of Lemma 3 in
Dalalyan (2005). For the sake of completeness, we sketch the entire line of reasoning. We will
repeatedly use the estimate

α−2d
i

(2.3.66)
≤

(∫
Rd
h2
i (λ)dλ

)2
= ‖hi‖4L2(Rd)

(2.4.30)
≤ ‖hi‖2L2(Rd)T.

Denote by κ the constant introduced in condition (C4), and assume that T is large enough to
ensure T > κ ∨ κ2. Given any hi ∈ HNT , write

Ub(hi) = 1
T 2

(∫ κ

0
+
∫ T

κ

)
u Eb

∥∥∥∥∫
Rd

eiλtXuζu(λ)hi(λ)dλ
∥∥∥∥2

du.

Note that, for any k ∈ {1, . . . , d},∫ κ

0
u Eb

∣∣∣∣∫
Rd

eiλtXuζku(λ)hi(λ)dλ
∣∣∣∣2 du

=
∫ κ

0
u Eb

∣∣∣∣ 1√
u

∫ u

0

∫
Rd

eiλt(Xu+Xs)hi(λ)dλ dW k
s

∣∣∣∣2 du

≤ κ2
(∫

Rd
hi(λ)dλ

)2
= κ2

(∫
‖λ‖≤α−di

hi(λ)dλ
)2

≤ Cκ2α−2d
i ≤ C ′κ2‖hi‖2L2(Rd)T

and ∫ T

κ
Eb

∣∣∣∣∫
Rd

eiλtXuhi(λ)
∫ u

u−κ
eiλtXsdW k

s dλ
∣∣∣∣2 du

≤
∫ T

κ
Eb

∣∣∣∣∣
∫
‖λ‖≤α−di

∫ u

u−κ
eiλtXsdW k

s dλ
∣∣∣∣∣
2

du

≤ Cα−2d
i κT ≤ C ′κ‖hi‖2L2(Rd)T.

Thus,

Ub(hi) = 1
T 2

∫ T

0
u Eb

∥∥∥∥∫
Rd

eiλtXuζu(λ)hi(λ)dλ
∥∥∥∥2

du (2.4.37)

≤ C‖hi‖2L2(Rd) + T−2Ũb(hi),
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for
Ũb(h) :=

∫ T

κ
Eb

∥∥∥∥∫
Rd

eiλtXuh(λ)
∫ u−κ

0
eiλtXsdWs dλ

∥∥∥∥2
du.

Plugging (2.4.37) into (2.4.36) yields

Eb

∣∣zhi ∣∣2 ≤ ‖hi‖2L2(Rd)

(
C‖hi‖2L2(Rd) + T−2Ũb(hi)

)
,

and the proof of (2.4.36) is reduced to verifying that there exists some constant C such that

Ũb(hi) ≤ CεTT 2‖hi‖2L2(Rd). (2.4.38)

Taking into account (C4) and denoting

η
(
Xu−κ, λ

)
:=
∫ u−κ

0
eiλtXsdWs, λ ∈ Rd,

Q
(
Xu−κ, y

)
:=
∣∣∣∣∫

Rd
eiλtyη

(
Xu−κ, λ

)
hi(λ)dλ

∣∣∣∣ , y ∈ Rd,

it can be shown that

Ũb(hi) =
∫ T

κ
Eb

(∫
Rd

∥∥∥∥∫
Rd

eiλtyη
(
Xu−κ, λ

)
hi(λ)dλ

∥∥∥∥2
pκ
(
Xu−κ, y

)
dy
)

du

≤
∫ T

κ

(
D1(u) + T−2(D2(u))1/2

)
du,

where

D1(u) := εTEb

(
sup pb0κ

(
Xu−κ, y

) ∫
Rd

∥∥∥∥∫
Rd

eiλtyhi(λ)η
(
Xu−κ, λ

)
dλ
∥∥∥∥2

dy
)

and

D2(u) := Eb

(∫
Rd
Q4(Xu−κ, y

)
pbκ
(
Xu−κ, y

)
dy
)
.

For D1, Parseval’s identity and Hölder’s inequality imply that

D1(u) = (2π)dεTEb

(
sup pb0κ

(
Xu−κ, y

) ∫
Rd

∥∥hi(λ)η
(
Xu−κ, λ

)
dλ
∥∥2 dλ

)
≤ CεT (T − κ)

(
Eb

(
sup pb0κ

(
Xu−κ, y

))q)1/q ∫
Rd
h2
i (λ)dλ

≤ C ′εT (T − κ)‖hi‖2L2(Rd).

For D2, it holds by means of the same arguments as in the scalar setting

D2(u) ≤ C‖hi‖4L2(Rd)α
−2d
i ≤ C ′‖hi‖8L2(Rd) ≤ C

′′u2T 2‖hi‖4L2(Rd)

such that (2.4.38) is satisfied.

The second auxiliary result is due to Cavalier et al. (2002) and was already mentioned in Section
2.3.3. It allows to restrict attention to minimizing the functional ∆̂T (·) over a finite-dimensional
subset HNT ⊂ HT .

Lemma 2.4.5. For HT defined in (2.3.69), there exists a finite set HNT ⊂ HT of cardinality N
such that, for any h ∈ HT , there exists a filter h′ ∈ HNT such that

∆̂T

(
h′
)
≤ (1 + δN ) ∆̂T (h),

where δN →N→∞ 0 and does not depend on h, h′, b ∈ Σδ.
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Main part of the proof. Note first that, for any β > d/2 and T sufficiently large,

∫
Rd
‖λ‖2βĥ2

T (λ)dλ
(2.3.68)
≤ K3 α

−(2β+d)
i ≤ K3 T

2β+d
log logT ≤ K3 T.

Thus, Lemma 2.3.13 applies and gives

λ
(
φ̂T (λ)− φρ(λ)

)
= 2i√

T
ζT (λ)− i√

T
mb(λ,XT ),

where mb(λ,XT ) satisfies

∫
Rd

Eb

∥∥mb(λ,XT ) h̃T (λ)
∥∥2dλ = o

(
T

d
2β+d

)
.

Taking into account (2.3.42), it thus follows

Eb

∫
Rd

∥∥ĝT (x)−∇ρ(x)
∥∥2dx

= (2π)−dEb

∫
Rd

∥∥∥λ(ĥT (λ)
(
φ̂T (λ)− φρ(λ)

)
− φρ(λ)

(
1− ĥT (λ)

))∥∥∥2
dλ

= (2π)−dEb

∫
Rd

∥∥∥∥ 2i√
T
ζT (λ)ĥT (λ)− i√

T
mb(λ,XT )ĥT (λ)−

(
1− ĥT (λ)

)
λφρ(λ)

∥∥∥∥2
dλ

= (2π)−dEb

∫
Rd

∥∥∥∥ 2i√
T
ζT (λ)ĥT (λ)−

(
1− ĥT (λ)

)
λφρ(λ)

∥∥∥∥2
dλ

+ 1
(2π)dT Eb

∫
Rd

∥∥mb(λ,XT ) h̃T (λ)
∥∥2dλ

+ 2
(2π)dT Eb

∫
Rd

∣∣2ζtT (λ)h̃2
T (λ)(1− h̃T (λ))mb(λ,XT )λφρ(λ)

∣∣dλ
= 4

(2π)dT Eb

∫
Rd

∥∥∥ζT (λ)ĥT (λ)
∥∥∥2

dλ+ (2π)−dEb

∫
Rd

∥∥∥ (1− ĥT (λ)
)
λφρ(λ)

∥∥∥2
dλ

− 4i
(2π)d

√
T

Eb

∫
Rd

∣∣∣ĥT (λ)
(
1− ĥT (λ)

)
ζtT (λ)λφρ(λ)

∣∣∣ dλ+ o
(
T
− 2β

2β+d
)

such that

Eb

∫
Rd

∥∥ĝT (x)−∇ρ(x)
∥∥2dx

= 1
(2π)dT

(
Eb∆T

(
1, ĥT , φρ

)
+A1 − ImA2

)
+ o

(
T
− 2β

2β+d
)
, (2.4.39)

where

A1 := 4Eb

∫
Rd
ĥ2
T (λ)

(
‖ζT (λ)‖2 − d

)
dλ,

A2 := 4
√
TEb

∫
Rd
ĥT (λ)

(
1− ĥT (λ)

)
ζtT (λ) λφρ(λ)dλ.
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The definition of ∆̂T (cf. (2.3.40)) entails that

∆̂T (h) = 8d
∫
Rd
h(λ)dλ+ T

∫
Rd

(
h2(λ)− 2h(λ)

)
‖λφρ(λ)‖2 dλ

+ T

∫
Rd

(
h2(λ)− 2h(λ)

) ∥∥∥λ(φ̂T (λ)− φρ(λ)
)∥∥∥2

dλ

+ 2T
∫
Rd

(
h2(λ)− 2h(λ)

) ∣∣∣λtλφρ(λ)
(
φ̂T (λ)− φρ(λ)

)∣∣∣ dλ
= ∆T

(
1, h, φρ

)
− T

∫
Rd
‖φ∇ρ(λ)‖2 dλ

+ T

∫
Rd

(
h2(λ)− 2h(λ)

)∥∥∥∥ 2i√
T
ζT (λ)− i√

T
mb(λ,XT )dλ

∥∥∥∥dλ
+ 2T

∫
Rd

(
h2(λ)− 2h(λ)

) ∣∣∣∣λtφρ(λ)
( 2i√

T
ζT (λ)− i√

T
mb(λ,XT )

)∣∣∣∣ dλ.
Define

A3 := 4
√
TEb

∫
Rd

(
ĥ2
T (λ)− 2ĥT (λ)

)
φρ(−λ)ζtT (λ)λdλ

= 4
√
TEb

∫
Rd

(
1− ĥT (λ)

)2
φρ(−λ)ζtT (λ)λdλ, (2.4.40)

A4 := 4Eb

∫
Rd

(
ĥ2
T (λ)− 2ĥT (λ)

) (
‖ζT (λ)‖2 − d

)
dλ

= 4Eb

∫
Rd

(
1− ĥT (λ)

)2
 d∑
j=1

∣∣∣ζjT (λ)
∣∣∣2 − d

 dλ, (2.4.41)

where the representations in (2.4.40) and (2.4.41) hold since, for any k ∈ {1, . . . , d},

Eb

(
ζkT (λ)

)
= 0 and Eb

(
‖ζT (λ)‖2 − d

)
= 0.

Consequently,

Eb∆̂T

(
ĥT
)

= Eb∆T

(
1, ĥT , φρ

)
− T

∫
Rd
‖φ∇ρ(λ)‖2 dλ

+ ImA3 +A4 + o
(
T

d
2β+d

)
. (2.4.42)

The terms A1 to A4 are now shown to be asymptotically smaller than Eb∆T

(
1, ĥT , φρ

)
. Indeed,

by means of Lemma 2.4.4(a), one obtains

A2 ∨A3 ≤ C1
√
T

(
NEb

∫
Rd

(
1− ĥT (λ)

)2
‖λφρ(λ)‖2 dλ

)1/2

≤ C2
√
N
(
Eb∆T

(
1, ĥT , φρ

))1/2
.

Part (b) of Lemma 2.4.4 implies for εT := T 1/
√

log T that

A1 ∨A4 ≤ 4Eb

∫
Rd
ĥT (λ)

(
‖ζT (λ)‖2 − d

)
dλ

≤ C3

(
NεTEb

∫
Rd
ĥ2
T (λ)dλ

)1/2

≤ C4εT
(
Eb∆T

(
1, ĥT , φρ

))1/2
.
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2. Sharp adaptive drift estimation for ergodic diffusions in higher dimension

The relation (2.4.39) can thus be rewritten for some constant C > 0 as

Eb

∫
Rd

∥∥ĝT (x)−∇ρ(x)
∥∥2dx ≤ 1

(2π)dT

((
Eb∆T

(
1, ĥT , φρ

))1/2
+ CεT

)2
+ o

(
T
− 2β

2β+d
)
.

The value ĥT minimizes the functional ∆̂T (·) over HNT such that, by means of Lemma 2.4.5,

Eb∆̂T

(
ĥT
)

= min
h∈HNT

Eb∆̂T (h) ≤ (1 + δN ) min
h∈HT

Eb∆̂T (h) ≤ (1 + δN )Eb∆̂T

(
h∗T
)
,

where h∗T is defined as in (2.4.26). Consequently,

Eb∆̂T

(
ĥT
)

+ T

∫
Rd
‖φ∇ρ(λ)‖2 dλ ≥

((
Eb∆T

(
1, ĥT , φρ

))1/2
− CεT

)2
+ o

(
T

d
2β+d

)
and

Eb∆̂T

(
h∗T
)

+ T

∫
Rd
‖φ∇ρ(λ)‖2 dλ ≤

((
∆T

(
1, ĥT , φρ

))1/2
+ CεT

)2
+ o

(
T

d
2β+d

)
.

Summing up,

Eb

∫
Rd

∥∥ĝT (x)−∇ρ(x)
∥∥2dx ≤ 1

(2π)dT
((

∆T

(
1, h∗T , φρ

))1/2 + CεT
)2

+ o
(
T
− 2β

2β+d
)
.

In particular, (
T

2β
2β+d Eb

∫
Rd

∥∥ĝT (x)−∇ρ(x)
∥∥2dx

)1/2

is asymptotically bounded by the square-root of the following expression,

(2π)−dT−d/(2β+d)∆T

(
1, h∗T , φρ

) (2.4.27)= (2π)−dT−d/(2β+d)∆̃T

(
α∗T , β

)
, (2.4.43)

plus residual terms of order T 1/
√

log T−d/(4β+2d) and oT (1). It was already shown in Section 2.3.3
that the supremum of (2.4.43) over the Sobolev ball Σδ defined in (2.3.31) tends to the constant
4P (σ, β, L) (see in particular (2.3.23) and (2.3.29)). This observation completes the proof.

2.5. Pointwise sharp adaptive estimation on L2 Sobolev balls

Our aim in the sequel is to analyze the asymptotically exact behavior of the pointwise risk
for estimating the drift of a diffusion which is given as a solution of the stochastic differential
equation

dXt = b(Xt)dt+ σ dWt, X0 = ξ, t ∈ [0, T ], (2.5.1)

whereW is a d-dimensional standard Wiener process and the initial value ξ ∈ Rd is independent
of W . Analogous to the investigation of the global drift estimation problem, we exploit the
representation of the drift at a point x0 as an algebraic function of the diffusion matrix a = σσt,
the invariant density ρ and its partial derivatives, for j ∈ {1, . . . , d} given as

bj(x0) = div(ajρ)(x0)
2ρ(x0) =

∑d
k=1 ajk∂kρ(x0)

2ρ(x0) , x0 ∈ Rd. (2.5.2)

The remaining section is organized as follows: Section 2.5.1 introduces the framework and basic
assumptions and contains a short review of articles which are directly related to our investigation
of pointwise drift estimation: Spokoiny (2000) considers pointwise estimation of the drift of
scalar diffusions and suggests a locally linear smoother with data-driven bandwidth choice. His
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2.5. Pointwise sharp adaptive estimation on L2 Sobolev balls

procedure is based on Lepski’s method and provides a conditional non-asymptotic result. We
suggest asymptotically exact adaptive drift estimators, and the adaptation scheme we propose is
inspired by the procedures in Klemelä and Tsybakov (2001) and Klemelä and Tsybakov (2004)
who modify Lepski’s approach in order to perform exact adaptive estimation of linear functionals
over L2 Sobolev classes.

As done in the previous section, we start with considering estimation of 2bjρ = div(ajρ), j ∈
{1, . . . , d}, assuming that div(ajρ) belongs to some Sobolev class of regularity β ∈ I, I some
given interval of the form

[
β∗, βT

]
, where the upper bound βT depends on T and satisfies

βT →T→∞ ∞ (slowly enough). Similar arguments as in the global framework allow to infer
results for estimating the components of the drift vector. Section 2.5.2 contains lower bounds
for pointwise estimation of div(ajρ) and bj , and an adaptive procedure for estimating div(ajρ)
which asymptotically attains the respective infimum is introduced in Section 2.5.3. Section 2.5.4
addresses the approach of vector-wise estimation of div(aρ), that is, all components div(ajρ) are
estimated with one common bandwidth. Some short discussion of our findings and central
auxiliary results for the proof of upper and lower bounds are given in Section 2.5.5. The great
majority of the proofs is deferred to Section 2.6.

2.5.1. Introduction and motivation

The problem of pointwise drift estimation is interesting both from the practical and the theo-
retical point of view. In view of the interpretation of the drift function as the instantaneous
mean of the diffusion (cf. Section 2.2.3), the value of b(x), given the observation (Xt)0≤t≤T ,
can be taken as the value of b at time T + δ, for δ > 0 small. As concerns the theoretical
problem of pointwise adaptive drift estimation, it is to be expected from the results on pointwise
adaptation in the classical models that the results on the speed of convergence in the adaptive
case differ significantly from the global estimation setup investigated in the previous section.
It is well-known for the classical statistical models and has been verified for drift estimation
in multidimensional ergodic diffusion models in Section 2.3 that adaptive estimation of some
unknown function for integrated losses is possible without loss in the rate of convergence and
without loss of efficiency. In other settings however, estimation without payment for adaptation
is not possible. One typical example is the problem of estimating a function f at a given point
x0. It was shown in Lepski (1990) that adaptive pointwise estimation leads to a nearly minimax
rate, which is worse than a minimax one within an extra logarithmic factor. Lepski (1990) in-
vestigates the classical Gaussian white noise model, and subsequently similar results have been
obtained in other classical statistical models.

In direct relation to the present work, Spokoiny (2000) considers the problem of pointwise adap-
tive drift estimation and develops a locally linear smoother with data-driven bandwidth choice.
The use of local polynomial smoothing methods in nonparametric statistics is classical and goes
back to Katkovnik (1985) and Tsybakov (1986). The form of the locally linear smoothers sug-
gested in Spokoiny (2000) was already motivated in Section 2.2.3 (cf. (2.2.12)). His method
is derived in a scalar setting but generalizes to the multidimensional framework. The focus of
Spokoiny (2000) clearly differs from ours. He provides nonasymptotic results which do not re-
quire stationarity, ergodicity or mixing properties of the observed diffusion process. His adaptive
procedure is based on some deviation inequality which describes the behavior of an estimator
b̃h(·), h some bandwidth, restricted to some random set Ah. In principle, an unconditional
asymptotic risk bound for the risk of the estimators b̃h(·) can be derived from this deviation
inequality; cf. Remark 3.4 in Spokoiny (2000). Theorem 4.1 in Spokoiny (2000) describes pro-
perties of the adaptive estimator b̃(x), restricted to the set A∗ = ⋂

h∈H Ah, for a fixed family
H of bandwidths h. Assuming that the drift is twice continuously differentiable, the proposed
method is fully adaptive and rate optimal up to a log log factor. The logarithmic payment
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2. Sharp adaptive drift estimation for ergodic diffusions in higher dimension

for adaptation – which has been shown to be inevitable for the case of power loss functions
`(x) = |x|p, p > 0, in the classical statistical models such as Gaussian white noise, density
estimation or nonparametric regression – is reduced to a log log factor. This improvement is due
to the fact that the adaptive choice of the bandwidth h is restricted to those h for which the
observed path (Xt)0≤t≤T belongs to the random set Ah. As a consequence, the cardinality H of
the collection of estimators the adaptive estimator is chosen from satisfies H ∼ log T , and the
adaptive choice of the bandwidth then leads to a worsening in the accuracy by factor logH at
some power.

We have already seen in Section 2.3 that the definition of asymptotically sharp adaptive esti-
mators does not only require a data-dependent choice of the smoothing parameter but also a
data-driven selection of the kernel. Klemelä and Tsybakov (2001) (subsequently, abbreviated as
[KT01]) show that exact adaptive estimators of linear functionals can be constructed by means
of a Lepski-type selection procedure over families of estimators with optimal recovery kernels.
They consider the Gaussian white noise model

dYε(x) = f(x)dx+ ε dB(x), x ∈ Rd, (2.5.3)

where f : Rd → R is an unknown function to be estimated, B is the standard Brownian sheet
in Rd and 0 < ε < 1 is a small noise parameter. [KT01] suggest sharp adaptive estimators of f
and its partial derivatives on scales of Sobolev classes.

The framework for pointwise estimation of the components of the drift vector is similar to the
global setting. Let β > d/2, and define the Sobolev seminorm ηβ(·) by

ηβ(f) :=
( 1

(2π)d
∫
Rd
‖λ‖2β

∣∣φf (λ)
∣∣2dλ

)1/2
, f ∈ L2(Rd). (2.5.4)

The following condition is central for our subsequent investigation.

(C̊0
j) The SDE

dXt = b(Xt)dt+ σ dWt,

where σ : Rd → Rd×d is a constant non-degenerate dispersion matrix, admits a strong
solution with Lebesgue continuous measure dµ(x) = ρ(x)dx. The invariant density ρ
satisfies the relation

2bjρ = div(ajρ) =
d∑

k=1
ajk∂kρ.

Furthermore, for some β > d/2 and some L′ > 0, it holds η2
β+1(ρ) ≤ (L′)2.

Denote by Πj(β) the set of measurable drift functions b : Rd → Rd satisfying (C̊0
j) and conditions

(C1) and (C2) introduced in Section 2.2.2. Given any β > d/2 and L > 0, let

Πj(β, L) = Πj
ε(β, L; ρ, σ) :=

{
b ∈ Πj(β) : ηβ(div(ajρ)) ≤ 2L, ρ(x0) ≥ ε

}
, (2.5.5)

where ε > 0 is an a priori lower bound on ρ(x0).

Remark 2.5.1. The explicit knowledge of an a priori lower bound is not necessarily required
for defining an exact adaptive estimator of div(ajρ). As noted by Butucea (2001), one should
exclude the case of an invariant density ρ with ρ(x0) → 0 too fast as T → ∞. To do so,
one may assume that ρ(x0) ≥ ρ∗T , where ρ∗T is a sequence of positive real numbers such that
limT→∞ ρ

∗
T = 0 and lim infT→∞ (ρ∗T log T ) > 0. Using the same arguments as Butucea (2001),

our results can be transferred to this setting where one considers estimation over classes of the
form {

b ∈ Πj(β) : ηβ(div(ajρ)) ≤ 2L, ρ(x0) ≥ ρ∗T
}
.
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2.5. Pointwise sharp adaptive estimation on L2 Sobolev balls

Remark 2.5.2. In order to get a rough idea of how to define an asymptotically exact procedure
for estimating the drift coefficient, one might exploit the fact that different statistical models
often exhibit a comparable asymptotic behavior. Spokoiny (2000) remarks that his results on
pointwise drift estimation are similar to those that can be obtained in the regression context.
[KT01] consider the Gaussian white noise model (2.5.3), but they also indicate extensions of
their procedure to other types of observations, and they conjecture that the modified estimators
have sharp optimality properties. In dimension d = 1, Butucea (2001) investigates the problem
of estimating a density f from i.i.d. observations at a fixed point x0 on Sobolev classes and thus
extends the pointwise adaptive result of Tsybakov (1998) for the Gaussian white noise model to
the problem of density estimation. The exact asymptotical constant for the minimax adaptive
risk is identified as

L
1

2β (2β)
(

f(x0)
β(2β − 1)

)β−1/2
2β 1

2π

∫
R

|u|2β(
1 + |u|2β

)2 du, β >
1
2 , L > 0, (2.5.6)

and it is noted that this constant is “obviously similar” to the constant found in the Gaussian
white noise model in Tsybakov (1998). (In fact, one obtains the constant for the Gaussian white
noise model by multiplying the expression in (2.5.6) with 2(β−1/2)/2β.) This similarity can be
explained by means of the results of Nussbaum (1996) who establishes asymptotic equivalence
of the experiments given by the observations

yi, i = 1, . . . , n, i.i.d. with density f,

and, for some standard Wiener process Wt on the unit interval,

dy(t) =
√
f(t) dt+ 1

2
√
n

dWt, t ∈ [0, 1].

It is mentioned in Klemelä and Tsybakov (2004) (subsequently, abbreviated as [KT04]), too, that
the proposed adaptive procedure for estimating a multivariate function whose Riesz transform
is observed in Gaussian white noise can be adapted to the (classical) nonparametric density
or regression estimation problem (see their Remark 4 on p. 450). We shall transform this
procedure for the purpose of adaptive drift estimation. The results of Dalalyan and Reiß (2007)
on asymptotic statistical equivalence mentioned in Section 1.2 give a description about the
relation between the Gaussian shift model and the drift estimation problem. Loosely speaking,
the transfer of the procedures due to Klemelä and Tsybakov to the problem of estimating the
j-th component of the drift requires to define estimators ρ̂T of the invariant density ρ and to
implement their procedure with appropriately modified noise level.

2.5.2. Lower bound for pointwise estimation

It has been shown by Lepski (1990) and Brown and Low (1996) that estimators which are
optimally rate adaptive with respect to the pointwise risk over the scale of Hölder classes do
not exist. Tsybakov (1998) proves an analogous result for adaptation over the scale of Sobolev
classes. The above articles consider the Gaussian white noise model. Although our findings
are to some extend analogous and the principle ideas of the proof basically rely on techniques
developed in the classical framework, the analysis involves some subtleties. It therefore appears
instructive to start with considering the bare problem of finding a lower bound on the pointwise
rate of convergence for estimating the function div(ajρ), j ∈ {1, . . . , d} fixed, assuming that
b ∈ Πj(β, L), for some β > d/2, L > 0.
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2. Sharp adaptive drift estimation for ergodic diffusions in higher dimension

Lemma 2.5.3. Fix j ∈ {1, . . . , d}. For any β > d/2, L > 0, there exists some positive constant
c <∞ such that, for any x0 ∈ Rd fixed,

lim inf
T→∞

inf
ĝT

sup
b∈Πj(β,L)

T
β−d/2
β Eb

∣∣ĝT (x0)− div(ajρ)(x0)
∣∣2 ≥ c, (2.5.7)

where the infimum is taken over all estimators ĝT of div(ajρ) = ∑d
k=1 ajk∂kρ.

The proof of Lemma 2.5.3 is given in Section 2.6.

Remark 2.5.4 (The renormalization argument). The role of the notion of renormalization for
determining optimal rates of convergence for estimating functionals over various smoothness
classes has been investigated in Donoho and Low (1992). Precisely, they consider the problem
of recovering a linear functional of an unknown function f : Rd → R, assuming that f belongs
to a certain convex class of functions. In order to calculate optimal rates of convergence, they
suggest a procedure which consists in identifying the renormalization exponent s in relations
of the form J(af(b ·)) = absJ(f(·)), for three homogeneous functionals J associated with the
estimation problem at hand. The rate of convergence is then obtained as a combination of the
three exponents.

Note that the Fourier transform φf is a homogeneous functional satisfying, for a, b > 0,

φaf(b ·)(λ) =
∫
Rd

eiλtxaf(bx)dx = ab−d
∫
Rd

eiλtb−1yf(y)dy = ab−d φf (b−1λ), λ ∈ Rd.

This implies in particular that

ηβ(af(b ·)) =
(

(2π)−d
∫
Rd
‖λ‖2β

∣∣φaf(b ·)(λ)
∣∣2dλ

)1/2

=
(

(2π)−da2b−d+2β
∫
Rd
‖λ‖2β

∣∣φf (λ)
∣∣2dλ

)1/2
= abβ−d/2 ηβ(f),

that is, the Sobolev seminorm ηβ is homogeneous with dilation exponent s = β − d/2.

The renormalization argument implies that the optimal pointwise rate for estimating a density
f : Rd → R from n i.i.d. observations is given by n−(β−d/2)/(2β), provided that f satisfies, for
fixed β > d/2 and L > 0, the smoothness assumption ηβ(f) ≤ L. Very likely, the result for
pointwise estimation of div(ajρ) stated in Lemma 2.5.3 can also be proven by renormalization
arguments in the spirit of Donoho and Low (1992). Instead, we decided to include a much longer,
constructive proof of the lower bound which is based on Theorem 2.2 in Tsybakov (2009). A
suitable modification of the hypotheses defined in the proof will be applied later for verifying the
exact adaptive lower bound. For what it’s worth, a comparison of both proofs nicely illustrates
the additional efforts required to prove exact results.

We now state the exact lower bound for estimating div(ajρ) adaptively, assuming that b ∈
Πj(β, L) for some β ∈ [β∗,∞) and L ∈ [L∗, L∗]. Here, β∗ ∈ (d/2,∞) and 0 < L∗ < L∗ <∞ are
fixed values. For any β > d/2, L > 0, let

κ = κ(β) :=
β − d

2
2β , ψT,β :=

( log T
T

)κ(β)
. (2.5.8)

Theorem 2.5.5. Fix β∗ > d/2 and δ ∈ (0, 1), denote

BT := [β∗, βT ]× [L∗, L∗] , for βT := (log log T )δ, (2.5.9)

and let

Cj(β, L; ρ, σ) := 2L
d

2β
2β
d

(
d2ajjρ(x0)
β(2β − d)

)β−d/2
2β

Iβ. (2.5.10)
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Then, for any x0 ∈ Rd and j ∈ {1, . . . , d} fixed,

lim inf
T→∞

inf
ĝjT

sup
(β,L)∈BT

sup
b∈Πj(β,L)

(ψT,β Cj(β, L; ρ, σ))−2 Eb

∣∣ĝjT (x0)− div(ajρ)(x0)
∣∣2 ≥ 1, (2.5.11)

where the infimum is taken over all estimators ĝjT of div(ajρ).

Remark 2.5.6. Theorem 2.5.5 implies that there exists no smaller constant than Cj(β, L; ρ, σ)
when the rate of convergence is chosen equal to ψT,β. To complete the lower bound, it still has
to be shown that ψT,β is the adaptive rate of convergence on the scale of Sobolev classes in the
sense of Definition 3 in Tsybakov (1998) (see Definition 1.2.2 in Section 1.2). A more complete
result, showing that the normalization cannot be improved in the rate (and, by the above result,
not even in the constant), is stated in Theorem 2.5.10 below.

The basic (and classical) idea of the proof of Theorem 2.5.5 is to reduce the proof of the lower
bound in (2.5.11) to proving a lower bound on the risk of two hypotheses which are chosen to
be distant enough. A lower bound on the latter risk is deduced by means of Theorem 6(i) in
Tsybakov (1998) as it was also done by Butucea (2001), [KT01] and [KT04]. The verification
of the conditions of Tsybakov (1998)’s result in the current diffusion framework requires tools
which differ from those used in the references mentioned above. Denoting by P0 and P1 the
probability measures associated to the two different hypotheses, it needs to be shown that, for
some fixed τ and for any α ∈ (0, 1/2),

P1

(dP0
dP1
≥ τ

)
≥ 1− α. (2.5.12)

In the Gaussian white noise framework considered in [KT01] and [KT04], (2.5.12) is verified
directly for suitably chosen hypotheses due to the Gaussian nature of the model. For nonpara-
metric density estimation from i.i.d. observations, Butucea (2001) uses Lyapunov’s CLT. The
lower bound in (2.5.11) is proven by defining distant enough hypotheses g0, g1, motivated by
the proof of the lower bound for classical density estimation in Butucea (2001). In particular,
the hypotheses are chosen such that the Radon–Nikodym density of the associated diffusion
processes is well-defined. The condition (2.5.12) is then verified by means of the martingale
CLT.

Theorem 2.5.7 (Exact constant for pointwise adaptive estimation of the components of the
drift vector: Lower bound). Define BT as in Theorem 2.5.5, let

C̃j(β, L; ρ, σ) := L
d

2β

ρ(x0)
2β
d

(
d2ajjρ(x0)
β(2β − d)

)β−d/2
2β

Iβ.

Then, for any x0 ∈ Rd and j ∈ {1, . . . , d} fixed,

lim inf
T→∞

inf
b̂jT

sup
(β,L)∈BT

sup
b∈Πj(β,L)

(
ψT,β C̃j(β, L; ρ, σ)

)−2 Eb

∣∣b̂jT (x0)− bj(x0)
∣∣2 ≥ 1,

where the infimum is taken over all estimators b̂jT of the j-th component bj of the drift vector.

The proofs of Theorem 2.5.5 and Theorem 2.5.7 are deferred to Section 2.6.

2.5.3. Construction of sharp adaptive estimators

To define an asymptotically exact adaptive estimator of the drift coefficient, the estimation
problem is again decomposed into estimating the divergences div(ajρ) and the invariant density
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2. Sharp adaptive drift estimation for ergodic diffusions in higher dimension

ρ appearing in the denominator (cf. (2.5.2)) separately. We will use a two-staged procedure
in the spirit of Lepski’s method, constructing first a collection of admissible estimators and
selecting then an estimator with minimal variance among them.

Many of the procedures proposed in the literature deal with scalar estimation problems. The
extension of (Lepski-type) methods based on bias-variance comparison schemes to a higher-
dimensional setting may cause some difficulties since monotonicity of the bias and variance with
respect to the bandwidth do not hold in general in the multidimensional case. Throughout this
section, we restrict attention to an isotropic framework where this problem does not arise.

To define adaptive estimators of the components of div(aρ)(x0), we act similar to [KT04]. The
advantage of their estimation scheme as compared to the one proposed in the preceding work
[KT01] is that it allows for a wider range of values of the smoothness parameter β. While
[KT01] work under the assumption that β ∈ [β∗, β∗] for some known fixed β∗, this condition
is dropped in [KT04] by replacing β∗ with an upper bound βT , with βT → ∞ slowly enough.
The construction of the estimator thus does not depend on the upper bound βT , and the upper
bound does not appear in the expression for the exact asymptotic constant.

We proceed by introducing another central assumption on the diffusion process X which is
required for proving sharp adaptivity of the proposed estimation scheme.

Assumption (BI). Consider the ergodic diffusion process solution of the SDE

dXt = b(Xt)dt+ σ dWt, (2.5.13)

and denote the invariant measure by µ. Then, for any bounded measurable function
f ∈ L2(µ) and for any r, T > 0 and j ∈ {1, . . . , d} fixed, there exists some positive
constant CB such that

Pb

(∣∣∣∣ 1T
∫ T

0
f(Xu)bj(Xu)du−

∫
Rd
f(y)bj(y)dµ(y)

∣∣∣∣ > r

)
(BI)

≤ 2 exp
(
− Tr2

2CB
(
ς(f) + r‖f‖∞

)) ,
where

ς2(g) := lim
T→∞

1
T

VarPb

(∫ T

0
g(Xu)du

)
, g ∈ L2(µ),

denotes the asymptotic variance appearing in the CLT.

The Bernstein-type deviation inequality (BI) in particular allows to prove uniform deviation
inequalities which are crucial tools for verifying sharp upper bounds on the pointwise squared
risk of the adaptive estimators. For a more detailed discussion of the importance of the above
assumption, we refer to Section 2.5.5. Notably, we state sufficient conditions on the diffusion
X for Assumption (BI) to hold, and we derive a uniform exponential inequality from (BI)
(cf. Lemma 2.5.13).

For implementing the adaptive procedure, consider a sufficiently fine grid G = GT on the interval
[β∗, βT ], with βT →∞. It is defined as

G = GT := {β1, . . . , βm} ,

where β∗ < β1 < . . . < βm = βT . Assume that there exist k2 > k1 > 0 and δ1 ≥ δ > 1 such that

k1(log T )−δ1 ≤ βi+1 − βi ≤ k2(log T )−δ, i = 0, 1, . . . ,m− 1, (2.5.14)

and set β0 := β∗ − d/2.
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2.5. Pointwise sharp adaptive estimation on L2 Sobolev balls

As in the case of density estimation (cf. Butucea (2001)), the optimal bandwidth for estimating
div(ajρ) (which is not available in practice) involves the unknown value of the invariant density
ρ at x0 ∈ Rd. The adaptive procedure for estimating div(ajρ) therefore starts with a preliminary
estimator %̂T (x0) of the value ρ(x0).

(0) Definition of the preliminary density estimator. Define

%̂T (x0) := 1
ThdT

∫ T

0
Q

(
Xu − x0
hT

)
du, (2.5.15)

where Q is a bounded positive kernel satisfying
∫
Rd ‖u‖|Q(u)|du <∞, and the bandwidth hT > 0

is such that
lim
T→∞

hT = 0, lim
T→∞

ThdT =∞, lim
T→∞

Th2d
T (log T )−3 =∞,

and, for some α0 ∈ (0, 1/2), lim supT→∞ hdTTα0 < ∞. Recall that ε denotes an a priori lower
bound on ρ(x0), and let

ρ̂T (x0) := max
{
%̂T (x0), ε

}
. (2.5.16)

(I) Main part of the procedure: Adaptive estimation of div(ajρ). For fixed j ∈
{1, . . . , d}, we now describe the procedure for defining an adaptive estimator of the j-th com-
ponent of the vector div(aρ). Recall that σ : Rd → Rd×d is the dispersion matrix and a = σσt

denotes the associated diffusion coefficient. The adaptive estimator will be selected among the
family of estimators ĝjT,β(x0), defined as

ĝjT,β(x0) := 2
T
(
ĥjT,β

)d ∫ T

0
Kβ

Xu − x0

ĥjT,β

dXj
u, (2.5.17)

where

ĥjT,β :=
(4dρ̂T (x0)ajj log T

βT

)1/(2β)
. (2.5.18)

Remark 2.5.8. The integral in (2.5.17) can be interpreted as a stochastic integral of some measu-
rable function of the path XT = (Xs)0≤s≤T and some fixed value h such that we consider some
function G(XT , h). Inserting any choice of h (in particular, ĥjT,β as defined in (2.5.18)), we obtain
a well-defined measurable object. The technical difficulties in the analysis of the stochastic
integral due to the adaptive choice of the bandwidth ĥjT,β are circumvented by investigating
estimators of the form

2
Thd

∫ T

0
Kβ

(
Xu − x0

h

)
dXj

u,

where h is deterministic and belongs to some specified set of bandwidths which are in certain
sense “close” to the original random bandwidth.

As in [KT01], the kernel Kβ is obtained as a renormalized version of the basic kernel

K̃β(x) := (2π)−d
∫
Rd

(
1 + ‖λ‖2β

)−1
exp(iλtx)dλ (2.5.19)

= (2π)−d‖x‖1−d/2
∫ ∞

0

td/2

1 + t2β
J(d−1)/2(t‖x‖)dt,

where Jn denotes the ordinary Bessel function of order n, that is,

Jn(x) = 1
π

∫ π

0
cos(nλ− x sinλ)dλ = 1

2π

∫ π

−π
e−i(nλ−x sinλ)dλ, x ∈ R.
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2. Sharp adaptive drift estimation for ergodic diffusions in higher dimension

Define
b = b(β) :=

(2β − d
d

)1/(2β)
, (2.5.20)

and let
Kβ(x) := bdK̃β(bx). (2.5.21)

Finally, introduce the thresholding sequence

η̂jT,β =
(4dρ̂T (x0)ajj log T

βT

)β−d/2
2β
‖Kβ‖L2(Rd).

The adaptive estimator g̃jT is defined as

g̃jT (x0) := ĝ
T,β̂jT

(x0), (2.5.22)

where

β̂jT := max
{
β ∈ GT :

∣∣ĝjT,γ(x0)− ĝjT,β(x0)
∣∣ ≤ η̂jT,γ ∀ γ ∈ GT , γ ≤ β}. (2.5.23)

We continue with the main result on adaptive pointwise estimation of

div(ajρ) =
d∑

k=1
ajk∂kρ, j ∈ {1, . . . , d}.

Recall the definition of the constant Cj(β, L; ρ, σ) in (2.5.10).

Theorem 2.5.9. Grant Assumptions (BI) and (SG+). Then, for fixed β∗ > d/2, 0 < L∗ <
L∗ <∞, δ2 ∈ (0, 1) and for

BT := [β∗, βT ]× [L∗, L∗] , where βT := (log log T )δ2 ,

the adaptive estimator g̃jT defined according to (2.5.22) satisfies, for any x0 ∈ Rd,

lim sup
T→∞

sup
(β,L)∈BT

sup
b∈Πj(β,L)

(
ψT,β Cj(β, L; ρ, σ)

)−2 Eb

∣∣g̃jT (x0)− div(ajρ)(x0)
∣∣2 ≤ 1. (2.5.24)

One obtains an adaptive drift estimator by defining a suitable invariant density estimator ρ̃T
and setting

b̃T (x0) := g̃T (x0)
2 (ρ̃T (x0) ∨ ε) , x0 ∈ Rd,

where ε > 0 is the a priori lower bound on ρ(x0). Similarly to the proof of Theorem 2.3.10, the
exact constant appearing in the upper bound for the pointwise squared risk of b̃jT (x0), assuming
that b ∈ Π̃j(β, L), is identified as

Cj(β, L; ρ, σ)
2ρ(x0) = C̃j(β, L; ρ, σ).

We now specialize to the important case of Kolmogorov diffusions. Taking into account Lemma
2.5.3, Theorem 2.5.5 and Theorem 2.5.9, we are ready to prove a result on sharp adaptive
estimation of the j-th partial derivative of the invariant density, j ∈ {1, . . . , d} fixed, at a fixed
point. To enlighten notation, let

CKol(β, L; ρ) := Cj(β, L; ρ, Idd×d) = 2L
d

2β
2β
d

(
d2ρ(x0)
β(2β − d)

)β−d/2
2β

Iβ, (2.5.25)

86
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where β > d/2, L > 0 and x0 ∈ Rd. We further introduce the maximal risk of an estimator ǧT
of ∂jρ, for β > d/2, L > 0, T > 0 and fixed x0 ∈ Rd defined as

RT,β,L

(
ǧT
)

:= sup
b∈Πjε(β,L;ρ,Idd×d)

Eb

∣∣ǧT (x0)− ∂jρ(x0)
∣∣2.

Theorem 2.5.10. Consider the SDE

dXt = b(Xt)dt+ dWt,

and assume that Assumptions (BI) and (SG+) are satisfied. Fix β∗ > d/2, δ2 ∈ (0, 1), denote
βT := (log log T )δ2, and let BT := [β∗, βT ]× [L∗, L∗]. Then the following holds true:

(a) For any x0 ∈ Rd and for CKol(β, L; ρ) defined in (2.5.25), the estimator g̃jT defined accor-
ding to (2.5.22) is sharp adaptive.

(b) If there exists an estimator ǧT such that, for some β0 ≥ β∗, L > 0,

lim sup
T→∞

(ψT,β0 CKol(β0, L; ρ))−2 RT,β0,L
(
ǧT
)
< 1, (2.5.26)

then there exists β′0 > β0 such that

RT,β′0,L

(
ǧT
)

RT,β′0,L

(
g̃jT
) ≥ ΨT

RT,β0,L
(
g̃jT
)

RT,β0,L
(
ǧT
) , (2.5.27)

where ΨT →T→∞ ∞. In particular, for any fixed β ≥ β∗, L > 0,

lim sup
T→∞

(
ψT,β CKol(β, L; ρ)

)−2
RT,β,L

(
g̃jT (x0)

)
= 1.

The statement in part (b) is to be interpreted in the sense that, whenever there exists an
estimator ǧT which performs better than the estimator g̃jT at least for one smoothness degree
β0, there exists another smoothness factor β′0 for which there is much greater loss of ǧT . The
assertion (and its respective proof) are to be compared with Theorem 2 in [KT04].

2.5.4. Extension: Estimation of div(aρ) with common bandwidth choice for all
components

The bandwidth ĥjT,β and the threshold η̂jT,β which are used for defining the adaptive estimators
of div(ajρ) introduced in the previous section depend on specific entries of the diffusion matrix
a and need to be chosen individually for any j ∈ {1, . . . , d}.

Similarly to the global setting, we shall now briefly address the question of vector-wise estimation
of the divergences (as a pre-stage for estimation of the drift vector). Given any vector-valued
function f : Rd → Rd with components f j ∈ L2(Rd), j ∈ {1, . . . , d}, and β > d/2, denote

η̃β(f) :=

 1
(2π)d

∫
Rd
‖λ‖2β

d∑
j=1

∣∣φfj (λ)
∣∣2dλ

1/2

. (2.5.28)

Recall the definition of the sets Πk(β) of measurable drift functions b : Rd → Rd, k ∈ {1, . . . , d},
as they were introduced in Section 2.5.1. For any β > d/2 and L > 0, define

Π(β, L) = Πε(β, L; ρ, σ) :=
{
b ∈

d⋂
k=1

Πk(β) : η̃2
β(div(aρ)) ≤ 4L2d, ρ(x0) ≥ ε

}
.
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2. Sharp adaptive drift estimation for ergodic diffusions in higher dimension

We proceed with describing the announced adaptive procedure for estimating the entire vector
div(aρ) at once. As in the case of component-wise estimation, the scheme starts with defining
a preliminary density estimator ρ̂T according to (2.5.15) and (2.5.16). The adaptive estimator
of div(aρ)(x0) is selected among the family of estimators ĝT,β(x0), defined as

ĝT,β(x0) := 2
T ĥdT,β

∫ T

0
Kβ

(
Xu − x0

ĥT,β

)
dXu,

where

• the kernel

Kβ(x) := bdK̃β

(
bx
)
, for b = b(β) :=

(2β − d
d

)1/(2β)
,

coincides with the kernel which is used for constructing the estimators of the components
of div(aρ),

• the bandwidth ĥT,β is defined as

ĥT,β :=
(

4ρ̂T (x0)‖σ‖2S2
log T

βT

)1/(2β)

,

and

• the thresholding sequence η̂T,β is taken as

η̂T,β := ĥ
β−d/2
T,β ‖Kβ‖L2(Rd).

The adaptive estimator g̃T of div(aρ) is finally defined as

g̃T (x0) := ĝ
T,β̂T

(x0), (2.5.29)

where

β̂T := max
{
β ∈ GT : ‖ĝT,γ(x0)− ĝT,β(x0)‖ ≤

√
d η̂T,γ ∀ γ ∈ GT , γ ≤ β

}
. (2.5.30)

A slight modification of the proof of Theorem 2.5.9 allows to formulate an upper bound on the
mean-squared error of the adaptive estimator g̃T . For any β > d/2, L > 0, denote

C(β, L; ρ, σ) := 2Ld/(2β) 2β√
d

(
d‖σ‖2S2

ρ(x0)
β(2β − d)

)β−d/2
2β

Iβ. (2.5.31)

Theorem 2.5.11. Grant Assumptions (BI) and (SG+). Then, for fixed β∗ > d/2, 0 < L∗ <
L∗ <∞, δ2 ∈ (0, 1) and for

BT := [β∗, βT ]× [L∗, L∗] , where βT := (log log T )δ2 ,

the adaptive estimator g̃T defined according to (2.5.29) satisfies, for any x0 ∈ Rd,

lim sup
T→∞

sup
(β,L)∈BT

sup
b∈Π(β,L)

(
ψT,β C(β, L; ρ, σ)

)−2 Eb

∥∥g̃T (x0)− div(aρ)(x0)
∥∥2 ≤ 1. (2.5.32)

For the proof of Theorem 2.5.11, we refer to Section 2.6.2.
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2.5.5. Discussion and central ingredients of the proof of Theorem 2.5.9

Let us first arrange the constants identified in the previous sections and relate it to known
results on asymptotically exact adaptive estimation with respect to pointwise risk over the
scale of Sobolev classes. Tsybakov (1998) considers the problem of nonparametric function
estimation in the Gaussian white noise model (in the one-dimensional case), assuming that
the unknown function belongs to some Sobolev class with unknown regularity parameter. The
question of density estimation at a fixed point x0 ∈ R is investigated by Butucea (2001). Since
the variance of the proposed kernel estimator is proportional to the value of the unknown density
f at x0, the value f(x0) appears in the exact normalization. [KT04] deal with nonparametric
estimation of a multivariate function and its partial derivatives at a fixed point when the Riesz
transform is observed in Gaussian white noise. In particular, [KT04] find the exact constant
for nonparametric estimation of a function f : Rd → R, observed in Gaussian white noise and
satisfying η2

β(f) ≤ L2. In combination with the results of Butucea (2001) on classical density
estimation (in dimension d = 1), the exact constant involving the value of the unknown density
f(x0) to be estimated is then identified as

L
d

2β
2β
d

(
d2 f(x0)
β(2β − d)

)β−d/2
2β

Iβ. (2.5.33)

For the case of Kolmogorov diffusions (σ ≡ Idd×d), C̃j(β, L; ρ, Idd×d) coincides with the constant
in (2.5.33). The more general problem of estimating div(ajρ), j ∈ {1, . . . , d}, further depends
on the form of the diffusion coefficient. This dependence is reflected by the appearance of the
j-th diagonal entry of the diffusion matrix a = σσt in the optimal constants C̃j(β, L; ρ, σ) (for
estimation of the drift component bj) and Cj(β, L; ρ, σ) (for estimating div(ajρ)). Comparing the
latter value to the constant appearing in the upper bound which is found for the vector-valued
adaptive estimator g̃T defined in Section 2.5.4, we obtain by means of Jensen’s inequality

d∑
j=1

C2
j (β, L; ρ, σ) =

L d
2β

4β
d

(
d2ρ(x0)
β(2β − d)

)β−d/2
2β

Iβ


2

1
d

d∑
j=1

a
β−d/2
β

jj

≤

L d
2β

4β
d

(
d2ρ(x0)
β(2β − d)

)β−d/2
2β

Iβ


2 1

d

d∑
j=1

ajj


β−d/2
β

= C2(β, L; ρ, σ).

This again shows that the approach of component-wise estimation in principle is to be preferred
to implementing one single vector-valued estimator.

The above estimation procedure is inspired by the method of [KT01] and [KT04], and the problem
of pointwise drift estimation considered in this section was investigated before by Spokoiny
(2000). We shall now briefly point out differences to these works, and we will introduce some
important auxiliary results required for the proof of the upper bounds in (2.5.24) and (2.5.32).

The optimal recovery kernel and some of its properties. Spokoiny (2000) suggests a
data-driven choice of the bandwidth for defining estimators of the drift of a diffusion at some
fixed point x0 ∈ R. His non-asymptotic results apply to arbitrary smooth, nonnegative kernel
functions which are bounded by 1 and vanish outside of [−1, 1]. In contrast, the asymptotically
exact procedures suggested in Butucea (2001), [KT01] and [KT04] specify the type of kernel
involved in the definition of the estimators. It is conjectured by [KT01] (see their Remark 3)
that, for attaining optimal estimators, not only the smoothing parameter but also the kernel
function should be chosen in a data-driven way.
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2. Sharp adaptive drift estimation for ergodic diffusions in higher dimension

The kernel Kβ which is used for defining the estimators ĝjT,β (see (2.5.17)) is given as a solution
of an optimal recovery problem. Let us briefly recall the general framework. Consider some
functional T which is assumed to be linear on

D ⊂
{
f : Rd → R, ζβ(f) <∞

}
,

where ζβ(·) denotes a seminorm, and suppose that there exists some r ≥ 0 such that

∀ a ≥ 0, b > 0, f ∈ D, T (af(b ·)) = abrT (f(·)).

In addition, the modulus of continuity is supposed to be well-defined, that is, for all β > r,
L > 0, ε > 0,

ωβ,L(ε) := sup
{
T (f) :

∫
Rd
f2(x)dλλ(x) ≤ ε, ζβ(f) ≤ L

}
<∞.

Under the given assumptions on the functional T , there exist

• a function gβ,L,ε such that
T (gβ,L,ε) = ωβ,L(ε), (2.5.34)

and

• some function Kβ ∈ L2(Rd), solving the optimal recovery problem

sup
ζβ(f)≤1,

‖f−g‖
L2(Rd)≤1

∣∣∣∣∫
Rd
Kβg − T (f)

∣∣∣∣ = inf
K

sup
ζβ(f)≤1,

‖f−g‖
L2(Rd)≤1

∣∣∣∣∫
Rd
Kg − T (f)

∣∣∣∣ =: E(β)

and, at the same time, satisfying

E(β) = T (gβ,1,1) = sup
ζβ(f)≤1

∣∣∣∣∫
Rd
Kβf − T (f)

∣∣∣∣+ ‖Kβ‖L2(Rd). (2.5.35)

For the corresponding references, we refer to [KT01], p. 1571. For the Sobolev seminorm, the
extremal function gβ,1,1 in dimension d = 1 is given in Taikov (1968). We use results of [KT01]
who consider the multidimensional case d ≥ 1.

Lemma 2.5.12. Let β > d/2, and, for K̃β(·) and b = b(β) defined according to (2.5.19) and
(2.5.20), respectively, let

K∗β(x) := I−1
β b−β+d/2 K̃β(bx) (2.5.36)

=
( 1

2β B

(
1 + d

2β , 1−
d

2β

)
(2π)−dSd

)−1/2
b−β+d/2 K̃β(bx).

(a) (cf. Proposition 1 in [KT01]) Consider the Sobolev seminorm ηβ defined in (2.5.4). For the
functional T (f) = f(0), the extremal function gβ,1,1 is given as gβ,1,1 = K∗β. Furthermore,

K̃β(0) = (2π)−d
∫
Rd

(
1 + ‖λ‖2β

)−1
dλ = 2β

d
I2β, (2.5.37)

and, for Kβ(x) = bdK̃β(bx),

∥∥Kβ

∥∥
L2(Rd) = Iβ

(2β − d
d

)β+d/2
2β

= Iβ bβ+d/2. (2.5.38)

In particular,
gβ,1,1(0) =

∥∥Kβ

∥∥
L2(Rd) + bβ,β , (2.5.39)

where

bβ,β := (b(β))d/2−β̃
(

(2π)−d
∫
Rd

‖λ‖2β

(1 + ‖λ‖2β)2 dλ
)1/2

.
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(b) For fixed δ ∈ (0, 1), there exists some compactly supported modification Kβ of K∗β which
enjoys the following properties,

(k1)
∥∥Kβ

∥∥
L2(Rd) ≤ 1− δ/2,

(k2) ηβ(Kβ) ≤ 1− δ/2, and

(k3) (1− δ/2)K∗β(0) ≤ Kβ(0) ≤ K∗β(0).

Proof. For the proof, we refer to the proofs of Proposition 1 in [KT01] and of Lemma 10 Tsybakov
(1998).

The relation (2.5.35) is crucial for the proof of the upper bound of the adaptive procedures in
[KT01] and [KT04]. In particular, it allows to prove a decomposition of the normalizing factor
into its bias and variance components (cf. Lemma 2(ii) in [KT01] and Section 4.1.2 in [KT04]).
A respective decomposition of the normalizing factor ψT,β Cj(β, L; ρ, σ) which appears in the
upper bound (2.5.24) in Theorem 2.5.9 is given in Lemma 2.6.6 below.

Exponential bounds for the stochastic error. It was already noted in connection with
the proof of the lower bound for pointwise estimation of the components of div(aρ) that the
complexity of the ergodic diffusion model requires a rather involved analysis. The same remark
applies to the proof of exact adaptivity of the procedure for which exponential bounds on the
stochastic error are needed. In the Gaussian white noise framework, the derivation of such
exponential bounds is straightforward due to the Gaussian nature of the model. Indeed, letting
Kβ,h := h−dKβ(·/h) and denoting by Zβ := ε

∫
Rd K(x)dB(x) the stochastic part of the kernel

estimator Tβ,ε :=
∫
Rd Kβ,h(x)dYε(x) in the Gaussian white noise model (2.5.3) considered in

[KT04], it holds for any u > 0,

E
(∣∣Zβ∣∣2 1{∣∣Zβ∣∣ ≥ u}) ≤ 2

(
σ2
β + u2) exp

(
− u2

2σ2
β

)
,

where σβ is the standard deviation of the linear estimator Tβ,ε.

An additional complication arises in the (classical) pointwise density estimation problem con-
sidered in Butucea (2001). The value of the unknown density f at the estimation point x0
appears in the exact constant since the variance is proportional to f(x0), and the optimal
density estimators involve an estimator of this value. Consequently, one has to bound uniform
risks of the adaptive estimator. To do so, Butucea (2001) uses the classical Bernstein inequality
and a uniform exponential inequality due to van de Geer (2000). The Bernstein inequality for
sequences of i.i.d. random variables (cf., e.g., Lemma 2.2.9 in van der Vaart and Wellner (1996))
is of substantial importance in probability theory and its applications. In particular, it provides
a description of the tail behavior of stochastic processes which can be used to initiate chaining
procedures and to extend deviation inequalities to uniform deviation inequalities.

Similarly to the pointwise density estimation problem, the bandwidths used for defining the
estimators in our selection procedure for estimating div(ajρ) involve an estimator ρ̂T (x0) of the
(unknown) value of the invariant density at x0. The basic idea is to consider random events on
which the bandwidths ĥjT,β, j ∈ {1, . . . , d}, as defined in (2.5.18) are close to their deterministic
counterparts (4dρ(x0)ajj log T

βT

)1/(2β)
, j ∈ {1, . . . , d},

and to show that the probability of the complement of these events is asymptotically negligi-
ble. Consequently, one also has to derive risk bounds which hold uniformly over deterministic
counterparts of the above random events.
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The stochastic error of the estimators in the diffusion model involves a stochastic integral which
requires a slightly different approach for proving uniform exponential inequalities. We shall
decompose the stochastic integral into the sum of an additive functional of the diffusion and a
continuous martingale. Diverse works on generalizations of the classical Bernstein inequality to
(additive functionals of) Markov processes or to the case of weakly dependent observations exist.
For a recent account on this question, we refer to Section 1.1 in Gao et al. (2010). Combined with
chaining arguments and conditions on the size of function classes in terms of bracketing numbers,
(BI), together with Bernstein’s inequality for continuous martingales, allows to derive a uniform
exponential inequality which is comparable to Theorem 5.11 in van de Geer (2000). Denote by
N[ ]

(
ε,F , L2(µ)

)
the ε-entropy with bracketing, that is, the smallest number of ε-brackets (in

L2(µ)) which are required to cover F (cf. van der Vaart and Wellner (1996), Definition 2.1.6).

Lemma 2.5.13. (a) Consider the ergodic diffusion process solution of the SDE (2.5.13), as-
sume that X is symmetric with respect to µ, and suppose that the associated carré du
champs satisfies Poincaré’s inequality. Let f ∈ L2(µ) be some bounded measurable func-
tion, fix j ∈ {1, . . . , d}, and assume that there exists some positive constant B such that

max
{

sup
x∈supp(f)

|bj(x)|, sup
x∈supp(f2)

|bj(x)|2
}
≤ B. (2.5.40)

Then Assumption (BI) is satisfied. Furthermore, it holds, for any T, r > 0,

Pb

(∣∣∣∣ 1T
∫ T

0
f(Xu)bj(Xu)du−

∫
Rd
f(y)bj(y)dµ(y)

∣∣∣∣ > r

)

≤ 2 exp
(
− T

4BcP
min

{
r2

‖f‖2L2(µ)
,

r

‖f‖∞

})
.

(b) Let F ⊂ L2(µ) be some class of measurable functions f : Rd → R, and assume that, for
some positive constants K and M , it holds

sup
f∈F
‖f‖∞ ≤ K, sup

f∈F
‖f‖L2(µ) ≤M.

Grant Assumptions (BI) and (SG). Then, for arbitrary T > 0 and any positive r satisfy-
ing, for some positive constants K1 and K2,

K1√
T

∫ 1

0
max

{√
logN[ ](ε,F , L2(µ)), 1

}
dε ≤ r ≤ K2 M

2

K
,

there exist some positive constants C1 and C2 such that

Pb

(
sup
f∈F

∣∣∣ 1
T

∫ T

0
f(Xu)dXj

u −
∫
Rd
f(y)bj(y)dµ(y)

∣∣∣ > r

)
≤ C1 exp

(
−C2Tr

2

M2

)
. (BI+)

The proof of Lemma 2.5.13 is given in Section 2.6.2.

Remark 2.5.14 (Exponential inequalities for the Euclidean norm of vector-valued additive func-
tionals). For the proof of the upper bound in Theorem 2.5.11, we require exponential inequali-
ties for the Euclidean norm of the stochastic error of vector-valued estimators. In the setting of
Lemma 2.5.13, such inequalities follow immediately by applying (BI) component-wise. Grant
Assumptions (BI) and (SG). Given any F ⊂ L2(µ) satisfying the assumptions of Lemma
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2.5.13(b), it holds for any fixed r, T > 0 and some positive constants CB(k), k = 1, . . . , d,

Pb

(∥∥∥∥ 1
T

∫ T

0
f(Xu)b(Xu)du−

∫
Rd
f(y)b(y)dµ(y)

∥∥∥∥ > r

)

= Pb

(
d∑

k=1

∣∣∣∣ 1T
∫ T

0
f(Xu)bk(Xu)du−

∫
Rd
f(y)bk(y)dµ(y)

∣∣∣∣2 > r2
)

≤
d∑

k=1
Pb

(∣∣∣∣ 1T
∫ T

0
f(Xu)bk(Xu)du−

∫
Rd
f(y)bk(y)dµ(y)

∣∣∣∣ > r√
d

)

≤ 2
d∑

k=1
exp

(
− Tr2/d

2CB(k)
(
cPM2 +Kr/

√
d
)) = 2d exp

(
− Tr2

C ′B
(
M2 +Kr

)) ,
for some positive constant C ′B depending only on B, σ, cP and d.

2.6. Proofs for Section 2.5

2.6.1. Proof of lower bounds

Proof of Lemma 2.5.3. The lower bound in (2.5.7) is proven by bounding it from below by the
average error by means of (the Kullback version of) Theorem 2.2 in Tsybakov (2009). For
x0 ∈ Rd fixed and functions f, g : Rd → R, set d(f, g) := |f(x0) − g(x0)|. Fix β > d/2, L > 0,
and denote

ψT,β := T
−β−d/22β , α :=

(
d∑

k=1
a2
jk

)1/2

.

Using the standard general reduction scheme (cf. pp. 79–80 in Tsybakov (2009)), the proof of
the lower bound in (2.5.7) reduces to verifying that

inf
ĝT

max
g∈{g0,g1}

Pg

(∣∣ĝT (x0)− g(x0)
∣∣ ≥ A ψT,β

)
≥ c′ > 0,

where

• the infimum extends over all estimators ĝT of g ∈ Πj(β, L),

• the hypotheses g0, g1 satisfy for some positive constant A the relation

d(g0, g1) ≥ 2A ψT,β, (2.6.1)

• Pg0 ,Pg1 are the probability measures associated with g0 and g1, respectively, and

• c′ is independent of T .

(I) Construction of the hypotheses. Consider some positive density function

ρ ∈ C∞c
(
Rd
)
∩ S

(
β + 1, L/α

)
. (2.6.2)

For small δ ∈ (0, 1/2) fixed, define

ρ0(x) := δ1/(β+3/2) ρ
(
xδ1/(β+3/2)

)
, (2.6.3)

g0(x) := 2
d∑

k=1
ajk∂kρ0(x). (2.6.4)
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2. Sharp adaptive drift estimation for ergodic diffusions in higher dimension

Let K : Rd → [0,∞) be some compactly supported kernel function satisfying ηβ+1(K) ≤ α−1.
For hT,β := c0T

−1/(2β), where c0 is some positive constant to be specified later, set

gT,β(x) := (1− δ) L h
β+1−d/2
T,β K

(
x− x0
hT,β

)
. (2.6.5)

Define
ρ1(x) = ρT,1(x) := ρ0(x)

(
1−

∫
Rd
gT,β(y)dy

)
+ gT,β(x),

and consider the hypothesis

g1(x) = gT,1(x) := 2
d∑

k=1
ajk ∂kρ1(x) (2.6.6)

=
(

1−
∫
Rd
gT,β(y)dy

)
2

d∑
k=1

ajk∂kρ0(x) + 2
d∑

k=1
ajk∂kgT,β(x)

=
(

1−
∫
Rd
gT,β(y)dy

)
g0(x) + 2

d∑
k=1

ajk∂kgT,β(x). (2.6.7)

Define the vector-valued functions b0, b1 as

b0 := a∇ log ρ0, b1 = bT,1 := a∇ log ρT,1. (2.6.8)

(II) Properties of the hypotheses. By the very definition of the respective quantities, it
holds

2bjiρi = 2
d∑

k=1
ajk∂k(log ρi)ρi = 2

d∑
k=1

ajk∂kρi = gi, i ∈ {0, 1}.

The Fourier transform of ρ0 at the point λ ∈ Rd is given by

φρ0(λ) =
∫
Rd

eiλtxρ0(x)dx =
∫
Rd

exp
(
iλtyδ−1/(β+3/2)

)
ρ(y)dy

= φρ
(
λδ−1/(β+3/2)

)
, (2.6.9)

and, using integration by parts, one obtains

φg0(λ) = 2
d∑

k=1
ajk

∫
Rd

eiλtx∂kρ0(x)dx = −2i
d∑

k=1
ajk

∫
Rd

eiλtxλkρ0(x)dx

= −2i
d∑

k=1
ajkλkφρ0(λ). (2.6.10)

Thus, applying Cauchy–Schwarz,

η2
β(g0) (2.5.4)= (2π)−d

∫
Rd
‖λ‖2β

∣∣φg0(λ)
∣∣2dλ

(2.6.10)= 4(2π)−d
∫
Rd
‖λ‖2β

∣∣ d∑
k=1

ajkλkφρ0(λ)
∣∣2dλ

≤ 4(2π)−dα2
∫
Rd
‖λ‖2(β+1)

∣∣∣∣φρ(λδ−1/(β+3/2))∣∣∣∣2dλ

= 4δ2α2(2π)−d
∫
Rd
‖λ‖2(β+1)∣∣φρ(λ)

∣∣2dλ

(2.5.4)= 4δ2 α2 η2
β+1(ρ)

(2.6.2)
≤ 4(Lδ)2 ≤ 4L2. (2.6.11)
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Furthermore,∫
Rd
gT,β(y)dy = L (1− δ) hβ+1−d/2

T,β

∫
Rd
K

(
y − x0
hT,β

)
dy

= L (1− δ) hβ+1+d/2
T,β

∫
Rd
K(u)du = O

(
T
−β+1+d/2

2β
)
. (2.6.12)

For any λ ∈ Rd, the Fourier transform of ∑d
k=1 ajk∂kgT,β can be written as

φ∑d

k=1 ajk∂kgT,β
(λ) =

d∑
k=1

ajk

∫
Rd

eiλtx∂kgT,β(x) dx

= −i
d∑

k=1
ajkλk

∫
Rd

eiλtx gT,β(x) dx

= −iL (1− δ) hβ+1−d/2
T,β

d∑
k=1

ajkλk

∫
Rd

eiλtxK

(
x− x0
hT,β

)
dx

= −iL (1− δ) hβ+1+d/2
T,β eiλtx0

d∑
k=1

ajkλk

∫
Rd

eiλtzhT,βK(z)dz

= −iL (1− δ) hβ+1+d/2
T,β eiλtx0

d∑
k=1

ajkλkφK(hT,βλ)

such that

η2
β

( d∑
k=1

ajk∂kgT,β

)
= (2π)−d

∫
Rd
‖λ‖2β

∣∣φ∑d

k=1 ajk∂kgT,β
(λ)
∣∣2dλ

= (2π)−d
∫
Rd
‖λ‖2β

∣∣ iL (1− δ) hβ+1+d/2
T,β eiλtx0

d∑
k=1

ajkλkφK(hT,βλ)
∣∣2dλ

≤ L2 (1− δ)2 α2 (2π)−d
∫
Rd
‖λ‖2(β+1) |φK(λ)|2 dλ

≤ L2 (1− δ)2 α2 η2
β+1(K) ≤ L2 (1− δ)2.

Thus,

ηβ(gT,1) ≤
(

1−
∫
Rd
gT,β(y)dy

)
ηβ(g0) + 2ηβ

( d∑
k=1

ajk∂kgT,β

)
≤ 2Lδ + 2L(1− δ) = 2L. (2.6.13)

Furthermore,

d (g0, gT,1) =
∣∣g0(x0)− gT,1(x0)

∣∣
≥
∣∣∣∣∣∣∣2 d∑

k=1
ajk∂kρ0(x0)

∫
Rd
gT,β(y)dy

∣∣∣− ∣∣∣2 d∑
k=1

ajk∂kgT,β(x0)
∣∣∣∣∣∣∣.

In view of (2.6.12) and since

d∑
k=1

ajk∂kgT,β(x0) = L (1− δ) hβ−d/2T,β

d∑
k=1

ajk ∂kK(0) = C1 ψT,β,

for C1 := c
β−d/2
0 L (1 − δ)∑d

k=1 ajk ∂kK(0), it follows that there exists some positive constant
A such that (2.6.1) is satisfied.

95



2. Sharp adaptive drift estimation for ergodic diffusions in higher dimension

(III) Application of Theorem 2.2 in Tsybakov (2009). For b0, bT,1 defined in (2.6.8),
consider the SDEs

dXt = b0(Xt)dt+ σ dWt, dYt = bT,1(Yt)dt+ σ dWt,

and assume that the initial values X0, Y0 follow the respective invariant measures dµ0 := ρ0dλλ
and dµT,1 := ρT,1dλλ. Denote by Ei = Ebi expectation under the measure Pi = Pbi associated
with the hypothesis b = bi, i ∈ {0, 1}. Letting XT :=

(
Xt
)
0≤t≤T , the log-likelihood ratio

log (dP0/dP1) (XT ) under P0 is given by

1
2

∫ T

0
(b0 − bT,1)t(Xu)a−1(b0 − bT,1)(Xu)du

+
∫ T

0

(
σ−1(b0 − bT,1)

)t
(Xu)dWu + log

(
ρ0
ρT,1

(X0)
)

such that the Kullback–Leibler divergence KL(P0,P1) between the probability measures P0 and
P1 associated to b0 and bT,1, respectively, can be written as

KL(P0,P1) := E0

(
log dP0

dP1
(XT )

)
= E0

(
log ρ0

ρT,1
(X0)

)
+ T

2 E0
∥∥∥σ−1(b0 − bT,1)(X0)

∥∥∥2

= E0

(
log ρ0

ρT,1
(X0)

)
+ T

2 E0
∥∥∥σt∇(log ρ0

ρT,1
(X0)

)∥∥∥2
.

The assertion (2.5.7) will be proven by means of the following

Lemma 2.6.1 (Theorem 2.2 in Tsybakov (2009), p. 90). Let P0,P1 be two probability measures
on some measurable space (X ,A ). If P0 � P1 and

KL(P0,P1) =
∫
X

log dP0
dP1

dP0 ≤ α <∞,

then
inf
Ψ

max
j∈{0,1}

Pj
(
Ψ 6= j

)
≥ max

{
e−α/2, (1−

√
α/2)/2

}
.

Plugging in the specific definitions of ρ0 and ρT,1, it follows

log ρ0
ρT,1

= log
(

1− gT,β
ρT,1

)
− log

(
1−

∫
Rd
gT,β(y)dy

)
. (2.6.14)

Note that, for any k ∈ {1, . . . , d},∣∣∣∣∣∂k log
(

1− gT,β
ρT,1

)∣∣∣∣∣ =
∣∣∣∣∣ρT,1 ∂kgT,β − gT,β ∂kρT,1ρT,1 (ρT,1 − gT,β)

∣∣∣∣∣
=
(

1−
∫
Rd
gT,β(y)dy

) ∣∣∣∣∣ ρ0 ∂kgT,β − gT,β ∂kρ0
ρT,1 ρ0 (1−

∫
Rd gT,β(y)dy)

∣∣∣∣∣
=
∣∣∣∣∣∂kgT,β − gT,β ∂k(log ρ0)

ρT,1

∣∣∣∣∣ . (2.6.15)
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Consequently,

E0
∥∥∥σt∇ log ρT,0

ρT,1
(X0)

∥∥∥2

(2.6.14)= E0

d∑
k=1

(
d∑
l=1

σlk∂l

(
log

(
1− gT,β

ρT,1

)
(X0)− log

(
1−

∫
Rd
gT,β(y)dy

)))2

≤ E0

d∑
k=1

(
d∑
l=1

σ2
lk

) d∑
m=1

(
∂m log

(
1− gT,β

ρT,1

)
(X0)

)2


(2.6.15)= ‖σ‖2S2E0

d∑
m=1

(
gT,β∂m (log ρT,0)

ρT,1
− ∂mgT,β

ρT,1

)2

≤ 2‖σ‖2S2

{
E0

(
g2
T,β(X0)
ρ2
T,1(X0)

∥∥∇(log ρT,0)(X0)
∥∥2
)

+ E0

(
‖∇gT,β(X0)‖2
ρ2
T,1(X0)

)}
.

The definition of gT,β entails that

E0

(
‖∇gT,β(X0)‖2
ρ2
T,1(X0)

)
=

∫
Rd
‖∇gT,β(y)‖2 ρT,0(y)

ρ2
T,1(y)dy

(2.6.5)= L2 (1− δ)2 h
2(β+1)−d
T,β

∫
Rd

d∑
i=1

(
∂iK

(
y − x0
hT,β

))2
ρ0(y)
ρ2
T,1(y)dy

= L2 (1− δ)2 h2β−d
T,β

∫
Rd

d∑
i=1

(∂iK)2
(
y − x0
hT,β

)
ρ0(y)
ρ2
T,1(y)dy

(A.1.4)= L2 (1− δ)2 h2β
T,β

ρ0(x0)
ρ2
T,1(x0)

∫
Rd

d∑
i=1

(∂iK)2(y)dy (1 + oT (1))

≤ L2 (1− δ2)2 h2β
T,β ρ

−1
0 (x0) ‖∇K‖2L2(Rd) (1 + oT (1)), (2.6.16)

where we used a modification of Bochner’s lemma (Lemma A.1.4 in Section A.1). (2.6.16) follows
from the fact that, for T large enough,

ρ0(x0)
ρT,1(x0) ≤

ρ0(x0)
ρ0(x0) (1−

∫
Rd gT,β(y)dy) ≤

√
1 + δ/2.

It is shown by similar arguments that

E0

(
g2
T,β(X0)
ρ2
T,1(X0)

∥∥∇(log ρ0)(X0)
∥∥2
)

=
∫
Rd

g2
T,β(y)
ρ2
T,1(y)

d∑
m=1

∂m(log ρ0(y))2ρ0(y)dy = O
(
h2β+2
T,β

)
.

This implies that there exists some positive constant α such that

KL(P0,P1) = E0 log ρ0
ρT,1

(X0) + T

2 E0
∥∥∥σ−1(b0 − bT,1)(X0)

∥∥∥2

≤ αTh2β
T,β = α <∞.

Lemma 2.6.1 then gives

inf
ĝT

sup
b∈Πj(β,L)

Pb

(∣∣ĝT (x0)− g(x0)
∣∣ ≥ A ψT,β

)
≥ inf

ĝT

max
`=0,1

P`

(∣∣ĝT (x0)− g`(x0)
∣∣ ≥ A ψT,β

)
≥ max

{
e−α/4, (1−

√
α/2)/2

}
.

This yields the assertion.
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Proof of Theorem 2.5.5. The proof is similar to the preceding proof of Lemma 2.5.3 but relies on
an application of Theorem 6.1 in Tsybakov (1998) instead of Theorem 2.2 in Tsybakov (2009).
To shorten notation, let ψjβ,L := ψT,β Cj(β, L; ρ, σ), for ψT,β and Cj(β, L; ρ, σ) defined in (2.5.8)
and (2.5.10), respectively.

(I) Construction of the hypotheses. Denote αj :=
(∑d

k=1 a
2
jk

)1/2
. Let L ∈ [L∗, L∗],

consider some positive density function

ρ ∈ C∞c
(
Rd
)
∩ S

(
βT + 1, 2L/αj

)
∩ S

(
β∗ + 1, L/αj

)
, (2.6.17)

fix δ ∈ (0, 1/2), and assume that ρ is such that the function

ρT,0(x) := δ1/(β∗+3/2) ρ
(
xδ1/(β∗+3/2)

)
, x ∈ Rd,

satisfies ρT,0(x0) ≥ ε, and, for

bT,0(x) := a/2∇ log ρT,0(x), x ∈ Rd,

the SDE dXt = bT,0(Xt)dt + σdWt, t ≥ 0, admits a strong solution with Lebesgue continuous
invariant measure and invariant density ρT,0. Define further

gjT,0(x) :=
d∑

k=1
ajk∂kρT,0(x).

For β > d/2, consider K̃β and b = b(β) as defined in (2.5.19) and (2.5.20), respectively, and let

K∗β(x) := I−1
β b−β+d/2 K̃β(bx). (2.6.18)

Lemma 2.5.12 implies that

K∗β(0) = I−1
β b−β+d/2 K̃β(0) = 2β

d

(
d

2β − d

)β−d/2
2β

Iβ (2.6.19)

and ∥∥K∗β‖L2(Rd) = I−1
β b−β+d/2

(∫
Rd
K̃2
β(bx)dx

)1/2
= 1.

Denote by Kβ the compactly supported modification of K∗β from Lemma 2.5.12 satisfying (k1),
(k2), and (k3). Define the function gT,β∗ : Rd → R such that, for any k ∈ {1, . . . , d},

∂kgT,β∗(x) = 2La−1
jj

(
hjT,β∗

)β∗−d/2 Kβ∗

x− x0

hjT,β∗

 1{k = j}, (2.6.20)

where

hjT,β∗ :=
(
dρT,0(x0)ajj log T

β∗L2T

)1/(2β∗)
. (2.6.21)

Let
ρT,1(x) := ρT,0(x)

(
1−

∫
Rd
gT,β∗(y)dy

)
+ gT,β∗(x),

and consider the hypothesis gjT,1, defined as

gjT,1(x) :=
d∑

k=1
ajk ∂kρT,1(x) (2.6.22)

=
(

1−
∫
Rd
gT,β∗(y)dy

)
gjT,0(x) +

d∑
k=1

ajk∂kgT,β∗(x).
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The function bT,1 : Rd → Rd is taken as

bT,1(x) := a/2 ∇(log ρT,1(x)). (2.6.23)

(II) Properties of the hypotheses. First of all, the above definitions of the hypotheses
imply that

2bjT,iρT,i =
d∑

k=1
ajk∂k(log ρT,i)ρT,i =

d∑
k=1

ajk∂kρT,i = gjT,i i ∈ {0, 1}.

Furthermore, for T large enough,

ρT,0(x0)
ρT,1(x0) ≤

ρT,0(x0)
ρT,0(x0) (1−

∫
Rd gT,β∗(y)dy) ≤ 1 + δ/2. (2.6.24)

Similarly to the proof of Lemma 2.5.3, it holds

η2
βT

(
gjT,0

) (2.5.4)= (2π)−d
∫
Rd
‖λ‖2βT

∣∣φ
gjT,0

(λ)
∣∣2dλ

= (2π)−d
∫
Rd
‖λ‖2βT

∣∣∣ d∑
k=1

ajkλkφρT,0(λ)
∣∣∣2dλ

≤ α2
j (2π)−d

∫
Rd
‖λ‖2(βT+1)

∣∣∣∣φρ(λδ−1/(β+3/2)
)∣∣∣∣2dλ

= α2
j δ

2(2π)−d
∫
Rd
‖λ‖2(βT+1)∣∣φρ (λ)

∣∣2dλ

= α2
j δ

2 η2
βT+1(ρ)

(2.6.17)
≤ (2L δ)2 ,

such that gjT,0 ∈ S(βT , 2L). Analogously,

η2
β∗

(
gjT,0

)
≤ α2

j δ
2 η2

β∗+1(ρ)
(2.6.17)
≤ (Lδ)2 . (2.6.25)

For any λ ∈ Rd, the Fourier transform of ∑d
k=1 ajk∂jgT,β∗ is given by

φ∑d

k=1 ajk∂jgT,β∗
(λ) = φajj∂jgT,β∗ (λ)

= 2L
(
hjT,β∗

)β∗−d/2 ∫
Rd

eiλtxKβ∗

x− x0

hjT,β∗

 dx

= 2L
(
hjT,β∗

)β∗−d/2eiλtx0φKβ∗

(
hjT,β∗λ

)
.

Consequently, taking into account property (k2),

η2
β∗

( d∑
k=1

ajk∂kgT,β∗

)
= (2π)−d

∫
Rd
‖λ‖2β∗

∣∣φajj∂jgT,β∗ (λ)
∣∣2dλ

≤ 4L2(hjT,β∗)2β∗+d(2π)−d
∫
Rd
‖λ‖2β∗

∣∣φKβ∗

(
hjT,β∗λ

)∣∣2dλ

≤ (2L (1− δ/2))2 . (2.6.26)

For gjT,1, it thus follows from (2.6.25) and (2.6.26),

ηβ∗
(
gjT,1

) (2.6.22)
≤

(
1−

∫
Rd
gT,β∗(y)dy

)
ηβ∗
(
gjT,0

)
+ ηβ∗

(
2

d∑
k=1

ajk∂kgT,β∗

)
≤ Lδ + 2L (1− δ/2) = 2L.
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(III) A version of Theorem 6(i) in Tsybakov (1998). The central ingredient of the proof is
a special case of Theorem 6(i) in Tsybakov (1998) whose original formulation is given in Section
1.2.1. It will be applied in the following situation: Denote by Ei = Ebi expectation under the
measure Pi = PbT,i associated with the hypothesis b = bT,i, i ∈ {0, 1}, and note that

inf
ĝjT

sup
(β,L)∈BT

sup
b∈Πj(β,L)

(
ψjβ,L

)−2 Eb

∣∣ĝjT (x0)− div(ajρ)(x0)
∣∣2

≥ inf
ĝjT

max
{

sup
b∈Πj(βT ,L)

(
ψjβT ,L

)−2 Eb

∣∣ĝjT (x0)− div(ajρ)(x0)
∣∣2,

sup
b∈Πj(β∗,L)

(
ψjβ∗,L

)−2 Eb

∣∣ĝjT (x0)− div(ajρ)(x0)
∣∣2}

≥ inf
ĝjT

max
{

E0
((
ψjβT ,L

)−2 ∣∣ĝjT (x0)− gjT,0(x0)
∣∣2) ,E1

((
ψjβ∗,L

)−2 ∣∣ĝjT (x0)− gjT,1(x0)
∣∣2)}

= inf
T̂ jT

max
{

E0
∣∣QjT T̂ jT ∣∣2,E1

∣∣T̂ jT − θj1∣∣2} , (2.6.27)

where

QjT := ψjβ∗,L
(
ψjβT ,L

)−1
, T̂ jT :=

(
ψjβ∗,L

)−1 (
ĝjT (x0)− gjT,0(x0)

)
, (2.6.28)

and

θj1 :=
(
ψjβ∗,L

)−1(
gjT,1(x0)− gjT,0(x0)

)
(2.6.29)

=
(
ψjβ∗,L

)−1
d∑

k=1
ajk

(
∂kgT,β∗(x0)− ∂kρT,0(x0)

∫
Rd
gT,β∗(y)dy

)
.

Lemma 2.6.2 (Theorem 6(i) in Tsybakov (1998)). Consider QjT , T̂
j
T and θj1 defined in (2.6.28)

and (2.6.29), respectively, and assume that θj1 ∈ R satisfies

∣∣θj1∣∣ ≥ 1− δ. (A1)

If P0,P1 are such that P0 � P1 and, for τ > 0 and α ∈ (0, 1) fixed,

P1

(dP0
dP1

≥ τ
)
≥ 1− α, (A2)

then

inf
T̂ jT

max
{

E0
∣∣QjT T̂ jT ∣∣2,E1

∣∣T̂ jT − θj1∣∣2} ≥ (1− α)τ(1− 2δ)2(QjT δ)2
(1− 2δ)2 + τ

(
QjT δ

)2 ,

where the infimum is taken over all T̂ jT as defined in (2.6.28).

Proof. The proof is completely along the lines of the proof of Theorem 6(i) in Tsybakov (1998).
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We proceed with verifying (A1) and (A2). Note first that

∣∣∣ d∑
k=1

ajk∂kgT,β∗(x0)
∣∣∣ = 2Lhβ∗−d/2T,β∗

Kβ∗(0)

(k3)
≥ 2Lhβ∗−d/2T,β∗

(1− δ/2) K∗β∗(0)

(2.5.37)= (1− δ/2) 2L
(
d2ajjρT,0(x0) log T
β∗(2β∗ − d)L2T

)β∗−d/2
2β∗ 2β∗

d
Iβ∗

= (1− δ/2) 2L
d

2β∗

(
d2ajjρT,0(x0)
β∗(2β∗ − d)

)β∗−d/2
2β∗ 2β∗

d
Iβ∗

( log T
T

)β∗−d/2
2β∗

= (1− δ/2) Cj(β∗, L; ρT,0, σ) ψT,β∗ = (1− δ/2) ψjβ∗,L.

Since, for T large enough, (
ψjβ∗,L

)−1
∫
Rd
gT,β∗(y)dy ≤ δ

2 ,

this implies ∣∣θj1∣∣ =
(
ψjβ∗,L

)−1∣∣gjT,1(x0)− gjT,0(x0)
∣∣

≥
(
ψjβ∗,L

)−1
∣∣∣∣ d∑
k=1

ajk

(
∂kgT,β∗(x0)− ∂kρT,0(x0)

∫
Rd
gT,β∗(y)dy

)∣∣∣∣
≥ 1− δ. (2.6.30)

In order to verify (A2), note that the specifications on pp. 296–297 in Liptser and Shiryaev
(2001) (also see Remark A.1.2 in Section A.1) imply that the likelihood ratio under P1 is given
by

dP0
dP1

(Y T ) = ρT,0
ρT,1

(Y0) exp
(
− 1

2

∫ T

0
(bT,0 − bT,1)t(Yu)a−1(bT,0 + bT,1)(Yu)du

+
∫ T

0
(bT,0 − bT,1)t(Yu)a−1dYu

)

= ρT,0
ρT,1

(Y0) exp
(
− 1

2

∫ T

0
(bT,0 − bT,1)t(Yu)a−1(bT,0 − bT,1)(Yu)du (2.6.31)

+
∫ T

0

(
σ−1 (bT,0 − bT,1)

)t
(Yu)dWu

)
.

To proceed, set

Mt :=
∫ t

0

(
σ−1 (bT,0 − bT,1)

)t
(Yu)dWu, t ≥ 0,

denote

g(x) := (bT,0 − bT,1)t(x) a−1 (bT,0 − bT,1)(x), x ∈ Rd,

and consider the following stationary sequence of random variables,

Zk :=
∫ kt

(k−1)t
g(Yu)du, k ≥ 1.
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2. Sharp adaptive drift estimation for ergodic diffusions in higher dimension

Since g ∈ L1(P1), it follows from the ergodic theorem (see, e.g., Theorem 59.1 in Gnedenko
(1968)) that, for any t > 0,

1
n

n∑
k=1

Zk = 1
n

∫ nt

0
g(Yu)du = 1

n
〈M〉nt

a.s.−→n→∞ tc,

where

c := E1
(
(bT,0 − bT,1)t(Y0)a−1(bT,0 − bT,1)(Y0)

)
= E1

∥∥∥σ−1(bT,0 − bT,1)(Y0)
∥∥∥2
. (2.6.32)

In particular, this implies by means of the martingale CLT (Lemma A.1.3 in Section A.1) that,
for some standard Brownian motion W ,

Mnt√
n

P1=⇒n→∞
√
c Wt. (2.6.33)

Denoting by [s] the integer part of s and considering an arbitrary sequence γ(s) →s→∞ 0, it
holds

γ(s)
∫ s

[s]
g(Yu)du P1−→s→∞ 0.

Choosing t ≡ 1 in (2.6.33) and passing to the continuous-time case, we obtain

MT√
T

P1=⇒T→∞ Z ∼ N (0, c).

Similarly to (2.6.15), the definition of the hypotheses bT,0 and bT,1 entails that

σ−1 (bT,0 − bT,1) = 1
2σ

t∇
(

log ρT,0
ρT,1

)
= 1

2

(
1− gT,β∗

ρT,1

)
σt∇

(
1− gT,β∗

ρT,1

)

= gT,β∗σ
t∇ρT,1 − ρT,1σt∇gT,β∗

2ρT,1 (ρT,1 − gT,β∗)

= (1−
∫
Rd gT,β∗(y)dy) gT,β∗σt∇ρT,0 + (gT,β∗ − ρT,1)σt∇gT,β∗

2ρT,1 (ρT,1 − gT,β∗)

= gT,β∗σ
t∇ρT,0 + ρT,0σ

t∇gT,β∗
2ρT,1ρT,0

= (2ρT,1)−1 (gT,β∗σt∇ (log ρT,0) + σt∇gT,β∗
)
.

The definition of gT,β∗ further implies that

E1

(∥∥σt∇gT,β∗(Y0)
∥∥2

4ρ2
T,1(Y0)

)
=

∫
Rd

∥∥σt∇gT,β∗(y)
∥∥2

4ρT,1(y) dy

= ajj

∫
Rd

(
∂jgT,β∗(y)

)2
4ρT,1(y) dy

(2.6.20)= a−1
jj L

2 (hjT,β∗)2β∗−d ∫Rd K2
β∗

y − x0

hjT,β∗

 dy
4ρT,1(y)

(A.1.4)= a−1
jj L

2 (hjT,β∗)2β∗ ∫Rd K2
β∗(y)dy

(
1 + oT (1)

)
ρT,1(x0)

(k1)
≤ (1− δ/2)2 a−1

jj L
2 (hjT,β∗)2β∗

(
1 + oT (1)

)
ρT,1(x0) .

102



2.6. Proofs for Section 2.5

Thus, plugging in the definition of hjT,β∗ (see (2.6.21)),

E1

(∥∥σt∇gT,β∗(Y0)
∥∥2

4ρ2
T,1(Y0)

)
≤ (1− δ/2)2 L2

(
dρT,0(x0)ajj log T

β∗L2T

) (
1 + oT (1)

)
ajjρT,1(x0)

(2.6.24)
≤

(
1− δ2/4

)2 d

β∗

log T
T

(
1 + oT (1)

)
.

It can be shown by analogous arguments that the terms

E1

(
g2
T,β∗

(Y0)‖σt∇(log ρT,0)(Y0)‖2

4ρ2
T,1(Y0)

)

and

E1

(
gT,β∗(Y0) (∇(log ρT,0)(Y0))t a∇gT,β∗(Y0)

2ρ2
T,1(Y0)

)

are asymptotically negligible. Thus, for c defined in (2.6.32) and whenever δ is small and T is
large enough,

c ≤
(
1− δ2/4

)2 d

β∗

log T
T

(
1 + oT (1)

)
.

Consequently, for

τ := exp
(
−
(
1− δ2/4

)
d log T

2β∗

)
,

it holds a.s.

log τ − log ρT,0(Y0) + log ρT,1(Y0) + 1
2〈M〉T√

Tc
≤ −δ

2

8

√
d log T
β∗

+ oT (1)→ −∞.

The verification of (A2) is accomplished by means of a tightness argument. Consider some
sequence of probability measures (Pn)n≥1 on some measurable space, converging weakly to
some probability measure P. Tightness of Pn implies that, for any sequence γn → −∞,

lim
m→∞

max
{

P ((−∞, γm)) , sup
n∈N

Pn ((−∞, γm))
}

= 0.

Thus, limm→∞ supn∈N Pn ((−∞, γm)) = 0 and limm→∞ infn∈N Pn ((−∞, γm)) = 1. In parti-
cular, limm→∞Pm ((γm,∞)) = 1. In the current framework, this last assertion implies that,
for

γT :=
log τ − log ρT,0(Y0) + log ρT,1(Y0) + 1

2〈M〉T√
Tc

→ −∞,

it holds

lim
T→∞

P1

(dP0
dP1

≥ τ
)

(2.6.31)= lim
T→∞

P1

(
ρT,0
ρT,1

(Y0) exp
(
MT −

1
2〈M〉T

)
≥ τ

)

= lim
T→∞

P1

(
MT√
Tc
≥ γT

)
= 1.

For large enough T and fixed τ > 0 (where δ ∈ (0, 1) can be chosen arbitrarily small), we thus
obtain

P1

(dP0
dP1

≥ τ
)
≥ 1− δ. (2.6.34)
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(VI) Completion of the proof. In view of (2.6.30) and (2.6.34), Lemma 2.6.2 gives

inf
ĝjT

sup
(β,L)∈BT

sup
b∈Πj(β,L)

Eb

∣∣ĝjT (x0)− div(ajρ)(x0)
∣∣2(ψjβ,L)−2

(2.6.27)
≥ inf

T̂ jT

max
{

E0
∣∣QjT T̂ jT ∣∣2,E1

∣∣T̂ jT − θj1∣∣2}

≥
(1− δ)τ(1− 2δ)2(QjT δ)2

(1− 2δ)2 + τ
(
QjT δ

)2 .

Since, for Cj := Cj(β∗, L; ρT,0, σ)/Cj(βT , L; ρT,0, σ),

QjT =
ψjβ∗,L

ψjβT ,L
= Cj exp

(
− d

4β∗βT
(β∗ − βT ) (log T − log log T )

)
,

we have

τ
(
QjT
)2 = C2

j exp
((
−
(
1− δ2/4

)
d

2β∗
− d (β∗ − βT )

2β∗βT

)
log T

)
× exp

(
d (β∗ − βT )

2β∗βT
log log T

)

= C2
j exp

(
d
(
δ2βT /4− β∗

)
2β∗βT

log T
)
× exp

(
d (β∗ − βT )

2β∗βT
log log T

)
.

As T →∞, τ
(
QjT
)2 →∞. Choosing δ > 1/A for A large enough to ensure δ < 1/2, it holds

(1− δ)τ(1− 2δ)2(QjT δ)2
(1− 2δ)2 + τ

(
QjT δ

)2 = (1− δ)(1− 2δ)2δ2

(1−2δ)2

τ(QjT )2 + δ2
→T→∞ (1− δ)(1− 2δ)2.

Taking now A→∞, the assertion follows.

Proof of Theorem 2.5.7. The lower bound for estimating the j-th component of the drift is
derived from the lower bound on estimating div(ajρ) similarly to the proof of Theorem 2.3.3.
For any estimator b̃jT of the j-th component of the drift b ∈ Πj(β, L), j ∈ {1, . . . , d} fixed, denote
g̃jT := 2b̃jT ρ̂T,2, where the invariant density estimator ρ̂T,2 is defined according to Lemma 2.2.4
and satisfies

Eb

∣∣ρ̂T,2(x0)− ρ(x0)
∣∣2 ≤ K ′1 T−β+1−d/2

β+1 exp
(
−K ′2‖x0‖

)
.

The inverse triangle inequality entails that(
ψT,β

Cj(β, L; ρ, σ)
2ρ(x0)

)−2
Eb

∣∣b̃jT (x0)− bj(x0)
∣∣2

= 4
(
ψT,β Cj(β, L; ρ, σ)

)−2

×Eb

∣∣b̃jT (x0)ρ(x0)− b̃jT (x0)ρ̂T,2(x0) + 1
2 g̃

j
T (x0)− 1

2 div(ajρ)(x0)
∣∣2

≥ 4
(
ψT,β Cj(β, L; ρ, σ)

)−2

×
(√

1
4Eb

∣∣g̃jT (x0)− div(ajρ)(x0)
∣∣2 −√Eb

(∣∣b̃jT (x0)
∣∣2(ρ(x0)− ρ̂T,2(x0)

)2))2

.

As in the proof of Theorem 2.3.3, we may assume without loss of generality that

∣∣b̃jT (x0)
∣∣ ≤ log T exp

( ‖x0‖
log T

)
.
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Consequently,

Eb

(∣∣b̃jT (x0)
∣∣2(ρ(x0)− ρ̂T,2(x0)

)2) ≤ K ′1(log T )2 exp
(2‖x0‖

log T −K
′
2‖x0‖

)
T
−β+1−d/2

β+1 .

Since ψ−2
T,β T

−β+1−d/2
β+1 → 0 and in view of (2.5.11), the assertion follows.

2.6.2. Proof of upper bounds

Proof of Lemma 2.5.13. (a) Letting, for r, T > 0,

p(r) := Pb

(∣∣∣∣ 1T
∫ T

0

(
f(Xu)bj(Xu)−

∫
Rd
f(y)bj(y)dµ(y)

)
du
∣∣∣∣ > r

)
, (2.6.35)

Theorem 1.1 in Lezaud (2001) (also see Proposition 2.5 in Gao et al. (2010)) implies that

p(r) ≤ 2 exp
(
− Tr2

2 (ς2(fbj) + cP ‖fbj‖∞r)

)
. (2.6.36)

Using the spectral gap assumption, we get, for any T > 0, g ∈ L2(µ),

1
T

VarPb

(∫ T

0
g(Xu)du

)
≤ 2

∫ T

0

〈
Ptg, g

〉
µ
dt ≤ 2‖g‖2L2(µ)

∫ T

0
e−2t/cP dt ≤ cP ‖g‖2L2(µ).

Consequently, in view of (2.5.40),

ς2(fbj) ≤ cP ‖fbj‖2L2(µ) ≤ cPB‖f‖
2
L2(µ)

and ‖fbj‖∞ ≤ B‖f‖∞. Plugging these estimates into (2.6.36), and considering separately the
cases

r <
‖f‖2L2(µ)
‖f‖∞

and r ≥
‖f‖2L2(µ)
‖f‖∞

,

we obtain

p(r) ≤ 2 exp

− Tr2

2cPB
(
‖f‖2L2(µ) + ‖f‖∞r

)


≤ 2 exp
(
− T

4cPB
min

{
r2

‖f‖2L2(µ)
,

r

‖f‖∞

})
.

(b) Under the given assumptions, Bernstein’s inequality for continuous martingales can be used
to show that there exists some constant C̃B such that, for any r, T > 0,

q(r) := Pb

(∣∣∣∣ 1T
∫ T

0
f(Xu)dXj

u −
∫
Rd
f(y)bj(y)dµ(y)

∣∣∣∣ > r

)
(2.6.37)

≤ 2 exp

− Tr2

2C̃B
(
‖f‖2L2(µ) + ‖f‖∞

)
 .

To see this, write q(r) ≤ p(r/2) + p′(r/2), for p(·) introduced in (2.6.35) and

p′(r) := Pb

(∣∣∣∣ 1T
∫ T

0
f(Xu)

d∑
k=1

σjk dW k
u

∣∣∣∣ > r

)
, r > 0.
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Letting

Mt(f) :=
∫ t

0
f(Xu)

d∑
k=1

σjk dW k
u , t ≥ 0, (2.6.38)

and denoting by 〈M〉· the quadratic variation of the martingale M , Bernstein’s inequality for
continuous martingales (see p. 154 in Revuz and Yor (1999)) gives

p′(r/2) = Pb

(∣∣MT (f)
∣∣ > Tr/2; 〈M(f)〉T ≤ Tr‖f‖∞/2

)
+ Pb

(
〈M(f)〉T > Tr‖f‖∞/2

)
≤ 2 exp

(
− Tr

4‖f‖∞

)
+ Pb

(
T−1

∫ T

0
f2(Xu)du > a−1

jj r‖f‖∞/2
)

︸ ︷︷ ︸
=:p′′

. (2.6.39)

Theorem 1.1 in Lezaud (2001) then can be used to show that

p′′ ≤ exp

− Tr2

8cPajj
(
ajj ‖f‖2L2(µ) + ‖f‖∞/2

)
 .

The inequality (2.6.37) now follows for C̃B := 4 max
{
2cPB, 2cPa2

jj , cPajj , 1
}
. In view of (2.6.37),

a uniform exponential inequality in the spirit of Theorem 5.11 in van de Geer (2000) is available.
Indeed, Theorem 5.11 in van de Geer (2000) appears as a special case of the uniform inequality for
martingales in Theorem 8.13, and the proof of Theorem 8.13 continues to hold in the diffusion
setting if the Bernstein inequality for martingales in Corollary 8.10 in van de Geer (2000) is
replaced with the Bernstein-type deviation inequality (BI).

Proof of Theorem 2.5.9. The basic idea of the proof is the same as in the classical article of
Lepski (1990). The main difficulties arising in the current diffusion framework were already
mentioned in Section 2.5.5. In order to deal with the specific problem due to the fact that
the variance of the estimators considered in the procedure is proportional to the value of the
unknown density at the point x0, we apply the same strategy as in Butucea (2001).

Let β ∈ [β∗, βT ], L ∈ [L∗, L∗], β′ ∈ (d/2, β], and fix j ∈ {1, . . . , d}. Denote by γT i, i ∈ N,
functions of T such that limT→∞ γT i = 0. For ψT,β and Cj(β, L; ρ, σ) introduced in (2.5.8) and
(2.5.10), respectively, recall that ψjβ,L = ψT,β Cj(β, L; ρ, σ). Denote by T̃ j(β) the effective noise
level under adaptation, defined as

T̃ j(β) :=
(4dρ(x0)ajj log T

βT

)1/2
.

Recall the definitions of the bandwidth ĥjT,β′ and the thresholding sequence η̂jT,β′ , namely

ĥjT,β′ =
(4dρ̂T (x0)ajj log T

β′T

)1/2β′

, (2.6.40)

η̂jT,β′ =
(4dρ̂T (x0)ajj log T

β′T

)β′−d/2
2β′ ∥∥Kβ′

∥∥
L2(Rd),

and consider their deterministic counterparts

hjT,β′ :=
(4dρ(x0)ajj log T

β′T

)1/2β′

=
(
T̃ j(β′)

)1/β′
(2.6.41)

and

ηjT,β′ :=
(4dρ(x0)ajj log T

β′T

)β′−d/2
2β′ ∥∥Kβ′

∥∥
L2(Rd) =

(
hjT,β′

)β′−d/2 ∥∥Kβ′
∥∥
L2(Rd).
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Set

β̃ = β̃(β, β′) :=
{
β′ + d

2 , if d2 ≤ β′ ≤
β
2 + d

4 ,

β, if β2 + d
4 < β′ ≤ β.

Define δT := (log T )−1, and introduce the random event

AjT,β′ :=
{∣∣∣(ĥjT,β′/hjT,β′)β̃′−d/2 − 1

∣∣∣ ≤ δT} (2.6.42)

and the associated deterministic set

HjT,β′ :=
{
h :
∣∣∣(h/hjT,β′)β̃′−d/2 − 1

∣∣∣ ≤ δT}.
Note that there exists a positive constant c0 such that

HjT,β′ ⊆
{
h :
∣∣∣(h/hjT,β′)− 1

∣∣∣ ≤ c0δT

}
=: Hj

T,β′ .

Denote the kernel estimator of div(ajρ)(x0) with deterministic bandwidth h ∈ HjT,β′ by

gjT,β′(x0, h) := 2
Thd

∫ T

0
Kβ′

(
Xu − x0

h

)
dXj

u, (2.6.43)

and set
gjT,β′(x0) := gjT,β′

(
x0, h

j
T,β′

)
. (2.6.44)

Define

sjT (β) := 2
(
hjT,β

)−d/2√ρ(x0)ajj
T

∥∥Kβ

∥∥
L2(Rd),

and let

dT (β) :=
√
d log T
β

(2.6.45)

such that sjT (β)dT (β) = ηjT,β. For β′ ≤ β, introduce the auxiliary sequence

τ jT (β′) := sjT (β′)
(√

d2
T (β′)− d2

T (β) +
( log T
βT

)1/4
)
.

Auxiliary results. The first auxiliary result concerns the performance of the preliminary
density estimator ρ̂T (x0) which is contained in the adaptive bandwidth (see (2.6.40)). The
following lemma states that weak regularity conditions on the bandwidth and the kernel used
for defining ρ̂T (x0) ensure that the usage of a random bandwidth does not substantially affect
the estimation procedure.

Lemma 2.6.3. Consider the estimator %̂T (x0) defined in (2.5.15), assume that the bandwidth
hT is such that

lim
T→∞

Th2d
T

(log T )3 =∞ and lim sup
T→∞

hdTT
α0 <∞,

for some fixed α0 ∈ (0, 1/2), and that the kernel Q is bounded, positive and such that∫
Rd ‖u‖|Q(u)|du < ∞. Then, for any β′ ∈ (d/2, β] and some sufficiently small constant α > 0
fixed,

Pb

((
AjT,β′

)c) ≤ 2 exp

−T
(
(1− α)hdT δT ε

)2

2‖Q‖2∞

 = oT (1).
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Proof. The proof is analogue to the proof of Lemma 3.2 in Butucea (2001). For the sake
of completeness, we include a brief sketch. Recall that δT = (log T )−1 such that the above
conditions imply that limT→∞ Th

2d
T δ

2
T (log T )−1 =∞ and hβ∗+1−d/2

T

(
δT
)−1 → 0. For α :=

(
β̃′ −

d/2
)
/(2β′) < 1, it holds, for any x, y > 0, |xα − 1| ≤ |x− 1| and |x ∨ ε− y ∨ ε| ≤ |x− y|. Thus,

since ρ(x0) ≥ ε,

Pb

((
AjT,β′

)c) (2.6.42)= Pb

(∣∣∣(ĥjT,β′/hjT,β′)β̃′−d/2 − 1
∣∣∣ > δT

)
= Pb

(∣∣∣( ρ̂T (x0)
ρ(x0)

)α
− 1

∣∣∣ > δT

)
≤ Pb

(∣∣∣ ρ̂T (x0)
ρ(x0) − 1

∣∣∣ > δT

)
≤ Pb

(∣∣%̂T (x0) ∨ ε− ρ(x0) ∨ ε
∣∣ > δT ε

)
≤ Pb

(∣∣%̂T (x0)−Eb%̂T (x0)
∣∣+ ∣∣Eb%̂T (x0)− ρ(x0)

∣∣ > δT ε

)
.

With arguments similar to those used in the proof of case 2) of Lemma 2.2.4, it can be shown
that there exists some positive constant C such that∣∣Eb%̂T (x0)− ρ(x0)

∣∣ ≤ Chβ∗+1−d/2
T = o

(
δT
)
.

Consequently, for small α > 0 fixed,

Pb

((
AjT,β′

)c) ≤ Pb

(∣∣%̂T (x0)−Eb%̂T (x0)
∣∣ > (1− α)δT ε

)
.

The Hoeffding-type specification of the Bernstein-type inequality (BI) entails, for any r > 0,

Pb

(∣∣%̂T (x0)−Eb%̂T (x0)
∣∣ > r

)
≤ 2 exp

(
−Th

2d
T r

2

2‖Q‖2∞

)
.

For r = (1− α)δT ε and since T
(
hdT δT

)2 →T→∞ ∞, the assertion follows.

Lemma 2.6.4 (Bound on the bias). Consider the estimator gjT,β′(x0, h) defined in (2.6.43), and
let

bβ,β′ := (b′)
d
2−β̃

(2π)−d
∫
Rd

‖λ‖4β′−2β̃

(1 + ‖λ‖2β′)2 dλ

 1
2

, where b′ := b(β′) =
(2β′ − d

d

) 1
2β′

.

For any HT,β′ 3 h > 0,

sup
b∈Πj(β,L)

∣∣∣Ebg
j
T,β′(x0, h)− div(ajρ)(x0)

∣∣∣ ≤ 2Lhβ̃−d/2bβ,β′ . (2.6.46)

Furthermore,

sup
d/2<β′≤β<∞

bβ,β′ <∞, lim sup
δ→0

sup
β,β′∈[β∗,∞):|β−β′|≤δ

bβ,β′
bβ,β

≤ 1. (2.6.47)

Proof. It follows from the definition of the estimators that∣∣∣Ebg
j
T,β′(x0, h)− div(ajρ)(x0)

∣∣∣ =
∣∣∣2 ∫

Rd
Kβ′,h(y − x0)bj(y)ρ(y)dy − div(ajρ)(x0)

∣∣∣
=
∣∣∣Kβ′,h ∗ div(ajρ)(x0)− div(ajρ)(x0)

∣∣∣.
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The Fourier inversion formula implies that

div(ajρ)(y) = (2π)−d
∫
Rd
φdiv(ajρ)(λ)e−iλtydλ, y ∈ Rd. (2.6.48)

Thus, applying (2.6.48) and the Fourier inversion formula to the convolution Kβ′,h ∗ div(ajρ),
one obtains ∣∣∣Kβ′,h ∗ div(ajρ)(x0)− div(ajρ)(x0)

∣∣∣
= (2π)−d

∣∣∣∣∫
Rd
φdiv(ajρ)(λ)

(
φKβ′,h(λ)− 1

)
e−iλtx0dλ

∣∣∣∣
= (2π)−d

∣∣∣∣∫
Rd
φdiv(ajρ)(λ)

((
1 + ‖hλ/b′‖2β′

)−1 − 1
)
e−iλtx0dλ

∣∣∣∣
= (2π)−d

∣∣∣∣∫
Rd
φdiv(ajρ)(λ)

∥∥hλ/b′∥∥2β′
(
1 +

∥∥hλ/b′∥∥2β′
)−1

dλ
∣∣∣∣

≤
(

(2π)−d
∫
Rd

∣∣∣φdiv(ajρ)(λ)
∣∣∣2 ‖λ‖2β̃dλ

)1/2 ( h
b′
)β̃

(2.6.49)

×

(2π)−d
∫
Rd

‖hλ/b′‖4β
′−2β̃(

1 + ‖hλ/b′‖2β′
)2 dλ

1/2

≤ 2Lbβ,β′ hβ̃−d/2. (2.6.50)

Here we used the scaling properties of Fourier transforms for evaluating φKβ′,h(λ) and Cauchy–
Schwarz to obtain (2.6.49). The remaining assertions are Lemma 1(ii), (iii) in [KT04].

The principal importance of exponential bounds on the stochastic error of estimators consi-
dered in the adaptive procedure was already indicated in Section 2.5.5. The Bernstein-type
deviation inequality (BI) and its implication, the basic uniform exponential inequality stated
in Lemma 2.5.13, will be applied now to derive more specific bounds on the stochastic error
of the estimators gjT,β defined according to (2.6.43). The following function classes are defined
analogously to Butucea (2001),

K1 :=
{
Kβ′,h(·) := h−dKβ′ ((· − x0)/h) : h ∈ Hj

T,β′

}
,

K2 :=
{
Kβ′,h −Kβ′,hT,β′

: h ∈ Hj
T,β′

}
.

Note first that there exists some positive constant Kmax such that, for any β > d/2,

∥∥Kβ

∥∥
∞ = sup

x∈Rd
|Kβ(x)| ≤ (2π)−d

(
1 +

∫
‖y‖>1

dy
1 + ‖y‖2β

)
≤ Kmax <∞.

Consequently,

sup
h∈Hj

T,β′

∥∥Kβ′,h

∥∥
∞ ≤

(
hjT,β′

)−d∥∥Kβ′
∥∥
∞ ≤

(
hjT,β′

)−d
Kmax. (2.6.51)

Bochner’s lemma implies that

sup
h∈Hj

T,β′

∫
Rd
K2
β′,h(y)dµ(y) =

(
hjT,β′

)−d∥∥Kβ′
∥∥2
L2(Rd)ρ(x0)

(
1 + oT (1)

)
, (2.6.52)
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where oT (1)→ 0 uniformly in β, β′. For h1 6= h2 ∈ Hj
T,β′ , it further holds∥∥Kβ′,h1 −Kβ′,h2

∥∥
L2(µ) ≤

∥∥Kβ′,h1 −Kβ′,h2

∥∥
L2(Rd)

= (2π)−d/2
∥∥φKβ′ (h1 ·)− φKβ′ (h2 ·)

∥∥
L2(Rd)

≤ (2π)−d/2
∫

Rd

∣∣h2β′
2 − h2β′

1
∣∣2‖y‖4β′

(1 + ‖h1y‖2β′)2 (1 + ‖h2y‖2β′)2 dy

1/2

≤ h2β′
2
∣∣1− (h1/h2)2β′ ∣∣ ((2π)−d

∫
Rd

‖y‖4β′

(1 + ‖h2y‖2β′)2 dy
)1/2

= h
−d/2
2

∣∣1− (h1/h2)2β′∣∣ ((2π)−d
∫
Rd

‖λ‖4β′

(1 + ‖λ‖2β′)2 dλ
)1/2

≤ O(1)
(
hjT,β′

)−d/2∣∣1− (h1/h2)2β′ ∣∣,
where the last line follows from assertion (2.6.47) in Lemma 2.6.4. As concerns K2, note that

sup
h∈Hj

T,β′

∥∥Kβ′,h −Kβ′,hT,β′

∥∥
∞

≤ sup
h∈Hj

T,β′

sup
λ∈Rd

(2π)−d/2
∣∣∣∣∫

Rd

(
φKβ′,h(y)− φKβ′,hT,β′ (y)

)
eiλtydy

∣∣∣∣
≤ sup

h∈Hj

T,β′

(2π)−d/2
∫
Rd

∣∣∣h2β′ −
(
hjT,β′

)2β′ ∣∣∣ ‖y‖2β′(
1 + ‖hy‖2β′

)2(1 + ‖hjT,β′y‖2β
′)2 dy

≤ O(1)
(
hjT,β′

)−d ∣∣∣1− (h/hjT,β′)2β′ ∣∣∣
≤ O(1)

(
hjT,β′

)−d
βT δT

and

sup
h∈Hj

T,β′

∥∥Kβ′,h −Kβ′,hT,β′

∥∥
L2(µ) ≤ O(1) sup

h∈Hj

T,β′

(
hjT,β′

)−d/2 ∣∣∣1− (h/hjT,β′)2β′∣∣∣
≤ O(1)

(
hjT,β′

)−d/2
βT δT . (2.6.53)

In particular, for i ∈ {1, 2},∫ 1

0
max

{√
logN[ ](ε,Ki, L2(µ)), 1

}
dε ≤

√
log T .

For h ∈ Hj
T,β, let

ZjT,β(h) := gjT,β(x0, h)−Ebg
j
T,β(x0, h) (2.6.54)

= 2
T

∫ T

0
Kβ,h(Xu)dXj

u −
∫
Rd
Kβ,h(y) div(ajρ)(y)dy.

Lemma 2.6.5. Grant Assumptions (BI) and (SG+). For any β′ > d/2, the stochastic error
ZjT,β′(·) defined according to (2.6.54) has the following properties:

(a) For any

u ∈
[
τ jT (β′), R1 sjT (β′)

√
log T

]
, R1 > 0 an absolute constant, (2.6.55)
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there exist some sufficiently small γ, independent of β′, and some universal constant c1 > 0
such that

Pb

(
sup

h∈Hj

T,β′

∣∣ZjT,β′(h)
∣∣ > u

)
≤ c1 exp

(
−1

2

(
u(1− γ)
sjT (β′)

)2)
+ o

(
T−1). (2.6.56)

(b) For any
u ∈

[
R1 sjT (β′)

√
log T , R2

]
, R1, R2 > 0 absolute constants,

it holds, for some constants c2, c3 > 0,

Pb

(
sup

h∈Hj

T,β′

∣∣ZjT,β′(h)
∣∣ > u

)
≤ c2 exp

(
−c3

(
u

sjT (β′)

)2)
. (2.6.57)

(c) Assume that β′ < β. Then, uniformly in β ∈ BT ,

sup
β′∈B, β′<β

m sup
b∈Πj(β,L)

(
ψjβ,L

)−2 Eb

((
sup

h∈Hj

T,β′

∣∣ZjT,β′(h)
∣∣)2

× 1
{

sup
h∈Hj

T,β′

∣∣ZjT,β′(h)
∣∣ > τ jT (β′)

})
→ 0,

sup
β′∈B, β′<β

m sup
b∈Πj(β,L)

(
ψjβ,L

)−2 Eb

((
sup

h∈Hj

T,β′

∣∣ZjT,β′(h)
∣∣)2

× 1
{

sup
h∈Hj

T,β′

∣∣ZjT,β′(h)
∣∣ > √sjT (β′) ψjβ,L

})
→ 0.

Proof. The assertions are analogue to the statements in Lemma 4.3, Lemma 4.5 and Theorem
4.6 in Butucea (2001). The inequalities in (a) and (b) follow from the Bernstein-type deviation
inequality (BI) and its implication (BI+) stated in Lemma 2.5.13. For deriving the inequality
(2.6.56) with the specific factor 1/2 in the exponent, we however have to go into greater detail.

We start with proving (2.6.56). Throughout the proof, D1, D2, . . . denote positive constants.
For fixed δ ∈ (0, 1) and arbitrary u, T > 0, write

Pb

(∣∣∣ZjT,β′(hjT,β′)∣∣∣ > u

)
≤ t1 + t2,

for

t1 := Pb

(∣∣∣ 1
T

∫ T

0

(
2K

β′,hj
T,β′

(Xu)bj(Xu)−
∫
Rd
K
β′,hj

T,β′
(y) div(ajρ)(y)dy

)
du
∣∣∣ > δu

)
,

and, denoting Mt(K) := 2
∫ t

0 K(Xu)∑d
r=1 σjr dW r

u , t > 0,

t2 := Pb

(∣∣MT

(
K
β′,hj

T,β′

)∣∣ > (1− δ)u
)
. (2.6.58)

For any u ≤ R1 sjT (β′)
√

log T , we have

u
∥∥K

β,hj
T,β′

∥∥
∞ ≤ u

(
hjT,β′

)−d
Kmax ≤ R1 sjT (β′)

(
hjT,β′

)−d√log T Kmax

≤ D1
(
sjT (β′)

)2
T
(
hjT,β′

)−d/2+β′
,
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such that, since β′ > d/2,
u‖Kβ,h‖∞(
sjT (β′)

)2
T

= oT (1).

Furthermore, the enhanced spectral gap assumption (SG+) gives

ς
(
2K

β,hj
T,β′

)
≤ D2

(
hjT,β′

)2−d
.

Thus, for T sufficiently large,

CB
(
ς
(
2K

β,hj
T,β′

)
+ δu

∥∥K
β,hj

T,β′

∥∥
∞

)
≤
(
sjT (β′)

)2
T.

The Bernstein-type deviation inequality (BI) therefore implies that

t1 ≤ 2 exp

− Tδ2u2

2
(
ς
(
2K

β,hj
T,β′

)
+ δu

∥∥K
β,hj

T,β′

∥∥
∞

)
 ≤ 2 exp

(
− δ2u2

2
(
sjT (β′)

)2
)
. (2.6.59)

In view of (2.6.52), there exists some sufficiently small δT0 > 0 such that

ajj ‖2Kβ′,h‖2L2(µ) =
(
sjT (β′)

)2
1− δT0

.

Consequently, Bernstein’s inequality for continuous martingales gives, for any h > 0,

Pb

(∣∣MT

(
Kβ′,h

)∣∣ > T (1− δ)u;
〈
M
(
Kβ′,h

)〉
T
≤ Tajjc−1

P ς
(
2Kβ′,h

))
≤ 2 exp

(
− T (1− δ)2u2

2ajj ‖2Kβ′,h‖2L2(µ)

)

≤ 2 exp
(
−(1− δ)2u2 (1− δT0)

2
(
sjT (β′)

)2
)
. (2.6.60)

For any h > 0, (BI) entails that

Pb

(〈
M
(
Kβ′,h

)〉
T
> Tajjc

−1
P ς

(
2Kβ′,h

))
= Pb

( 1
T

∫ T

0
K2
β′,h(Xu)du > c−1

P ς
(
Kβ′,h

))

≤ exp

− T c−2
P ς2(Kβ′,h

)
2CB

(
ς
(
K2
β′,h

)
+ c−1

P ‖K2
β′,h‖∞ ς

(
Kβ′,h

))
 .

Plugging in the specific choice h = hjT,β′ , it follows

Pb

(〈
M
(
K
β′,hj

T,β′

)〉
T
> Tajjc

−1
P ς

(
2K

β′,hj
T,β′

))
= o

(
T−1), (2.6.61)

using again that β′ > d/2. Adding the upper bounds (2.6.59), (2.6.60) and (2.6.61), we obtain,
for some small γ > 0,

Pb

(∣∣∣ZjT,β′(hjT,β′)∣∣∣ > u

)
≤ 2 exp

(
− u

2(1− γ)
2
(
sjT (β′)

)2
)

+ o
(
T−1). (2.6.62)

Consider the sequence

δT1 := βT δT
√

log T = (log log T )δ1(log T )−1/2 → 0,
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and note that, for any u > 0,

Pb

(
sup

h∈Hj

T,β′

∣∣ZjT,β′(h)
∣∣ > u

)
≤ Pb

(
sup

h∈Hj

T,β′

∣∣∣ZjT,β′(h)− ZjT,β′(h
j
T,β′)

∣∣∣ > uδT1

)

+ Pb

(∣∣∣ZjT,β′(hjT,β′)∣∣∣ > u(1− δT1)
)
.

Since u(1− δT1) ≤ u ≤ R1 sjT (β′)
√

log T , (2.6.62) gives an upper bound on the latter summand.
For T large enough, it further holds

[
τ jT (β′)δT1, R1δT1sjT (β′)

√
log T

]
⊆

 βT δT√log T
√
T
(
hjT,β′

)d/2 , βT δT
 .

Taking into account (2.6.53) and since∫ 1

0
max

{√
logN[ ](ε,K2, L2(µ), 1

}
dε ≤ D4

βT δT
√

log T(
hjT,β′

)d/2 ,

the uniform exponential inequality (BI+) implies that

Pb

(
sup

h∈Hj

T,β′

∣∣∣ZjT,β′(h)− ZjT,β′(h
j
T,β′)

∣∣∣ > uδT1

)
≤ C1 exp

−D5T
(
hjT,β′

)d(uδT1)2

(βT δT )2

 . (2.6.63)

Summing the upper bounds due to (2.6.62) and (2.6.63), we obtain (2.6.56).

The inequality stated in (b) follows as an application of (BI+) with

K :=
(
hjT,β′

)−d
Kmax and M2 :=

(
hjT,β′

)−d∥∥Kβ′
∥∥2
L2(Rd)ρ(x0).

Part (c) is proven similarly to Theorem 4.6 in Butucea (2001) by noting that there exists some
positive constant R3 such that

sup
h∈Hj

T,β′

∣∣ZjT,β′(h)
∣∣ ≤ R3

(
hjT,β′

)−d
and decomposing

Eb

((
sup

h∈Hj

T,β′

∣∣ZjT,β′(h)
∣∣)2

1

{
sup

h∈Hj

T,β′

∣∣ZjT,β′(h)
∣∣ > τ jT (β′)

})
≤ I1 + I2 + I3,

for

I1 :=
∫ R1sjT (β′)

√
log T

τ jT (β′)
Pb

(
sup

h∈Hj

T,β′

∣∣ZjT,β′(h)
∣∣ > u

)
du2,

I2 :=
∫ R2

R1sjT (β′)
√

log T
Pb

(
sup

h∈Hj

T,β′

∣∣ZjT,β′(h)
∣∣ > u

)
du2,

I3 :=
∫ R3

(
hj
T,β′

)−d
R2

Pb

(
sup

h∈Hj

T,β′

∣∣ZjT,β′(h)
∣∣ > u

)
du2.

This decomposition provides sufficiently tight upper bounds on the terms I1 to I3 by exploiting
the interplay of the interval length and uniform exponential bounds on the integrands as they
follow from parts (a) and (b) proven above.
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The next lemma contains a decomposition of the normalizing factor ψjβ,L and some relations
which are needed later in the proof. For hjT,β defined according to (2.6.41), denote

bjT,β′ := 2L bβ,β′
(
hjT,β′

)β̃−d/2
. (2.6.64)

Lemma 2.6.6. Let β ∈ [d/2,∞), L ∈ [L∗, L∗], and denote ν = (β, L). It then holds

ψjν = (2L)d/(2β)
(
ηjT,β +

(
hjT,β

)β−d/2 bβ,β
)
. (2.6.65)

Furthermore, there exist positive constants D1, . . . , D5, depending only on β∗, L∗, L
∗, d and σ,

such that
D1 ≤ ψjν/η

j
T,β ≤ D2, (2.6.66)

and, for β′ ∈ [d/2,∞), β′ < β,

D3
βT

( log T
T

)κ(β′)−κ(β)
≤
ψjβ′,L

ψjν
≤ D4T

κ(β)−κ(β′) (2.6.67)

and (
bjT,β′

)2 +
(
τ jT (β′)

)2(
ψjν
)2 ≤ D5 log T T 2κ(β)−2κ(β′). (2.6.68)

Proof. Recall that the extremal function gβ,L,ε as introduced in Section 2.5.5 satisfies

gβ,L,ε(0) (2.5.34)= sup
{
f(0) :

∫
Rd
f2(x)dλλ(x) ≤ ε, η2

β(f) ≤ L
}

= ωβ,L(ε),

for f := div(ajρ). It follows from renormalization arguments that, for any x ∈ Rd,

g
β,2L,T̃ j(β)(x) = a1gβ,1,1(b1x),

where b1 = (2L/T̃ j(β))1/β and

a1 = 2Lbd/2−β1 = (2L)d/(2β)(T̃ j(β)
)1−d/(2β) = (2L)d/(2β)(hjT,β)β−d/2.

Since
gβ,1,1(0) (2.5.36)= I−1

β b−β+d/2K̃β(0) (2.5.37)= Iβ b−β+d/2 2β
d
, (2.6.69)

this implies that

g
β,2L,T̃ j(β)(0) = (2L)d/(2β)(T̃ j(β)

)1−d/(2β)Iβ b−β+d/2 2β
d

(2.6.70)

= (2L)d/(2β)
(4dρ(x0)ajj log T

βT

)β−d/2
2β

(2β − d
d

)−β−d/22β
Iβ

2β
d

= ψjν .

The relation gβ,1,1(0) = ‖Kβ‖L2(Rd) + bβ,β from Lemma 2.5.12 thus yields the decomposition

ψjν
(2.6.70)= g

β,2L,T̃ j(β)(0) (2.6.69)= a1gβ,1,1(0)
(2.5.39)= a1

(
‖Kβ‖L2(Rd) + bβ,β

)
= (2L)d/(2β)

(
ηjT,β +

(
hjT,β

)β−d/2bβ,β
)
.

Assertions (2.6.66) and (2.6.67) follow analogously to the proof of the relations (44)–(46) in
Lemma 4 in [KT04] (pp. 453–454). Finally, for the proof of (2.6.68), we refer to the proof of
Lemma 3.5 in Butucea (2001).
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Main part of the proof of the upper bound. Define β− = β−(β) by

β− := β − β+
T

log T , (2.6.71)

where β+
T := (log log T )δ3 , for some δ3 ∈ (δ2, 1). We follow the standard approach and decompose

the risk successively. Let ν = (β, L), and set

R+
T,ν(j) := sup

b∈Πj(β,L)

(
ψjν
)−2 Eb

(∣∣g̃jT (x0)− div(ajρ)(x0)
∣∣2 1{β̂jT ≥ β−}) ,

R−T,ν(j) := sup
b∈Πj(β,L)

(
ψjν
)−2 Eb

(∣∣g̃jT (x0)− div(ajρ)(x0)
∣∣2 1{β̂jT < β−

})
.

(I) We first consider the case β̂jT ≥ β−, and we show that

lim sup
T→∞

sup
ν∈BT

R+
T,ν(j) ≤ 1. (2.6.72)

Define β = β(β) via the equation( log T
4L2T

)1/(2β)
=
( log T

T

)1/(2β)
. (2.6.73)

Let β+ ∈ G be the largest grid point ≤ β, and assume that T is large enough for ensuring

β− = β − β+
T

log T = β − (log log T )δ3
log T < β+. (2.6.74)

Denote

G1 = G1(β) :=
{
β′ ∈ G : β− ≤ β′ ≤ β+

}
, (2.6.75)

G2 = G2(β) :=
{
β′ ∈ G : β+ < β′ ≤ βT

}
, (2.6.76)

and rewrite

R+
T,ν(j) = sup

b∈Πj(β,L)

(
ψjν
)−2 Eb

(∣∣g̃jT (x0)− div(ajρ)(x0)
∣∣2 1{β̂jT ≥ β−})

= sup
b∈Πj(β,L)

(
ψjν
)−2 Eb

(∣∣g̃jT (x0)− div(ajρ)(x0)
∣∣2 1{β̂jT ∈ G1 ∪ G2

})
.

Let β′ ∈ G1 = G1(β) and b ∈ Πj(β, L), and assume that T is so large that β̃(β, β′) = β. It holds

sup
h∈Hj

T,β′

∣∣Ebg
j
T,β′(x0, h)− div(ajρ)(x0)

∣∣
≤ sup

h∈Hj
T,β′

(
2Lhβ̃−d/2bβ,β′

)
≤ 2L

(
hjT,β′

)β−d/2bβ,β′
(
1 + δT

)
= 2L

(4dρ(x0)ajj log T
β′T

)β−d/2
2β′

bβ,β′
(
1 + δT

)
≤ 2L

(4dρ(x0)ajj
β′

)β−d/2
2β′

( log T
T

)β−d/2
2β bβ,β′

(
1 + δT

)
= 2L

(4dρ(x0)ajj
β′

)β−d/2
2β′

( log T
4L2T

)β−d/2
2β

bβ,β′
(
1 + δT

)
= Λ(β, β′)(2L)d/(2β)(hjT,β)β−d/2bβ,β′

(
1 + δT

)
,
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where
Λ(β, β′) := (4dρ(x0)ajj)

β−d/2
2β′ −

β−d/2
2β (β′)−

β−d/2
2β′ β

β−d/2
2β .

We used Lemma 2.6.4, the facts that HjT,β′ ⊂ H
j
T,β′ , that β′ ≤ β and the definition of β to arrive

at the above upper bound.

We now argue analogously to the proof of the upper bound in [KT04] (see pp. 461–463). For
any β′ ∈ G1, there exists some positive constant C such that∣∣β − β′∣∣ ≤ Cβ+

T (log T )−1. (2.6.77)

Since Λ(β, β′) is uniformly continuous in β, β′ ∈ [β∗,∞), this implies that Λ(β, β′) ≤ 1 + γT1.
Furthermore, for any β′ ∈ G1, β ∈ [β∗, βT ], it holds bβ,β′ ≤ bβ,β (1 +γT2). Consequently, for any
β′ ∈ G1, b ∈ Πj(β, L),

sup
h∈Hj

T,β′

∣∣Ebg
j
T,β′(x0, h)− div(ajρ)(x0)

∣∣ ≤ (2L)d/(2β)(hjT,β)β−d/2bβ,β (1 + γT3).

Similar arguments (also see the derivation of line (54) on p. 1591 in [KT01]) yield

ηjT,β+ =
(
T̃ j(β+)

)β+−d/2
β+ ‖Kβ+‖L2(Rd)

≤
(4dρ(x0)ajj

β+

)β+−d/2
2β+

( log T
T

)β−d/2
2β ‖Kβ+‖L2(Rd) (1 + γT4)

=
(4dρ(x0)ajj

β+

)β+−d/2
2β+

( log T
T

)1/2 ( log T
4L2T

)−d/(4β)
‖Kβ+‖L2(Rd) (1 + γT4)

≤
(4dρ(x0)ajj log T

βT

)β−d/2
2β
‖Kβ‖L2(Rd)(2L)d/(2β) (1 + γT5)

= (2L)d/(2β)ηjT,β (1 + γT5). (2.6.78)

Recall the definition of the stochastic error ZjT,β(·), for any h ∈ Hj
T,β given as

ZjT,β(h) = gjT,β(x0, h)−Ebg
j
T,β(x0, h).

Whenever β̂jT = β′ ∈ G1 and the event AjT,β′ holds, the above arguments imply that∣∣g̃jT (x0)− div(ajρ)(x0)
∣∣

=
∣∣ĝjT,β′(x0)− div(ajρ)(x0)

∣∣
≤ sup

h∈Hj
T,β′

∣∣gjT,β′(x0, h)− div(ajρ)(x0)
∣∣

≤ sup
h∈Hj

T,β′

{∣∣gjT,β′(x0, h)−Ebg
j
T,β′(x0, h)

∣∣+ ∣∣Ebg
j
T,β′(x0, h)− div(ajρ)(x0)

∣∣}
≤ sup

h∈Hj
T,β′

∣∣ZjT,β′(h)
∣∣+ (2L)d/(2β)(hjT,β)β−d/2bβ,β (1 + γT3) (2.6.79)

≤ sup
h∈Hj

T,β′

∣∣ZjT,β′(h)
∣∣+ ψjν (1 + γT3). (2.6.80)

The last line holds true since HT,β′ ⊂ HT,β′ and in view of the decomposition of the normalizing
factor ψjν according to (2.6.65). If β̂jT ≥ β+, the definition of the estimator β̂jT according to
(2.5.23) implies that ∣∣ĝj

T,β̂jT
(x0)− ĝjT,β+(x0)

∣∣ ≤ η̂jT,β+ . (2.6.81)
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Therefore, if β̂jT = β′ ∈ G2, it holds on AjT,β+ ,∣∣g̃jT (x0)− div(ajρ)(x0)
∣∣

≤
(∣∣ĝjT,β′(x0)− ĝjT,β+(x0)

∣∣+ ∣∣ĝjT,β+(x0)− div(ajρ)(x0)
∣∣)

≤ η̂jT,β+ +
∣∣ĝjT,β+(x0)− div(ajρ)(x0)

∣∣
≤ sup

h∈Hj
T,β+

{
ηjT,β+

(
h/hjT,β

)β−d/2
+
∣∣gjT,β+(x0, h)−Ebg

j
T,β+(x0, h)

∣∣
+
∣∣Ebg

j
T,β+(x0, h)− div(ajρ)(x0)

∣∣}
(2.6.79)
≤ ηjT,β+

(
1 + δT

)
+ sup
h∈Hj

T,β+

∣∣ZjT,β+(h)
∣∣+ (2L)d/(2β)(hjT,β)β−d/2bβ,β (1 + γT3)

(2.6.78)
≤ sup

h∈Hj

T,β′

∣∣ZjT,β+(h)
∣∣+ (

(2L)d/(2β)ηjT,β (1 + γT6)

+(2L)d/(2β)(hjT,β)β−d/2bβ,β (1 + γT3)
)
.

In view of the decomposition (2.6.65), this last line implies that∣∣g̃jT (x0)−div(ajρ)(x0)
∣∣1{β̂jT = β′ ∈ G2

}
1
{
AjT,β+

}
≤ sup

h∈Hj

T,β′

∣∣ZjT,β+(h)
∣∣+ψjν (1+γT7). (2.6.82)

Thus, using (2.6.80) and (2.6.82),

(
ψjν
)−2 Eb

(∣∣g̃jT (x0)− div(ajρ)(x0)
∣∣2 1{β̂jT ∈ G1 ∪ G2

})

≤
∑
β′∈G1

Eb

((
1 + γT3 +

(
ψjν
)−1 sup

h∈Hj

T,β′

∣∣ZjT,β′(h)
∣∣)2

1
{
β̂jT = β′

}
1
{
AjT,β′

})

+
∑
β′∈G1

Eb

((
ψjν
)−2 ∣∣g̃jT (x0)− div(ajρ)(x0)

∣∣2 1{β̂jT = β′
}
1
{(
AjT,β′

)c})

+
∑
β′∈G2

Eb

((
1 + γT7 +

(
ψjν
)−1 sup

h∈Hj

T,β+

∣∣ZjT,β+(h)
∣∣)2

1
{
β̂jT = β′

}
1
{
AjT,β+

})

+
∑
β′∈G2

Eb

((
ψjν
)−2∣∣g̃jT (x0)− div(ajρ)(x0)

∣∣2 1{β̂jT = β′
}
1
{(
AjT,β+

)c})

=:
∑
β′∈G1

(
pj1(β′) + pj2(β′)

)
+
∑
β′∈G2

(
pj3(β′) + pj4(β′)

)
, say. (2.6.83)

The terms pj1(·), . . . , pj4(·) are now considered separately. Note first that, for any β′ ∈ G1,

pj1(β′) ≤
(

1 + γT3 +
√

sjT (β′)
(
ψjν
)−1

)2
Pb

(
β̂jT = β′

)
+ Eb

((
1 + γT3 +

(
ψjν
)−1 sup

h∈Hj

T,β′

∣∣ZjT,β′(h)
∣∣)2

(2.6.84)

× 1
{

sup
h∈HT,β′

∣∣ZjT,β′(h)
∣∣ > √sjT (β′)ψjν

})
.
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Since (2.6.77) holds for any β′ ∈ G1, (2.6.67) implies that

ψjβ′,L/ψ
j
ν ≤ D4 T

β−d/2
2β −β

′−d/2
2β′ ≤ D4 exp

(
Cβ+

T

)
.

Together with (2.6.66), this yields

ηjT,β′ ≤ D
−1
1 ψjβ′,L ≤ D

−1
1 D4 exp

(
Cβ+

T

)
ψjν .

Consequently,

sjT (β′)
ψjν

≤
D−1

1 D4 exp
(
Cβ+

T

)
sjT (β′)

ηjT,β′
≤
D−1

1 D4 exp
(
Cβ+

T

)
dT (βT )

≤ D−1
1 D4 exp

(
Cβ+

T

)√ βT
log T =: AT .

The summand in (2.6.84) is bounded from above by the sum of the terms

2 (1 + γT3)2 Pb

(
sup

h∈Hj

T,β′

∣∣ZjT,β′(h)
∣∣ > √sjT (β′)ψjν

)

(2.6.56)
≤ 2c1 (1 + γT3)2 exp

(
−ψ

j
ν(1− γT )2

2sjT (β′)

)

and

2
(
ψjν
)−2 Eb

((
sup

h∈Hj

T,β′

∣∣ZjT,β′(h)
∣∣)2

1

{
sup

h∈Hj

T,β′

∣∣ZjT,β′(h)
∣∣ > √sjT (β′)ψjν

})
.

Part (c) of Lemma 2.6.5 entails that the latter term tends to zero, uniformly in β′ ∈ G1.
Therefore,

pj1(β′) ≤
(
1 + γT3 +

√
AT
)2 Pb

(
β̂jT = β′

)
+O(1) exp

(
−(1− γT )2

2AT

)
+ oT (1).

Recall that the cardinality m of the grid G satisfies

m ≤ k−1
1 βT (log T )δ1 = k−1

1 (log T )δ1(log log T )δ2 .

By construction, β+ ∈ G1, such that pj3(β′) is upper-bounded analogously. Consequently,

∑
β′∈G1

pj1(β′) +
∑
β′∈G2

pj3(β′) ≤
(
1 + max

{
γT3, γT7

}
+
√
AT
)2

Pb

(
β̂jT ∈ G1 ∪ G2

)

+O(1)m exp
(
−(1− γT )2

2AT

)
+ oT (1)

≤ 1 + oT (1).

For pj2(·) and any β′ ∈ G1, there exists some constant c0 such that

pj2(β′) ≤
(
ψjν
)−2 Eb

(∣∣ĝjT,β′(x0)− div(ajρ)(x0)
∣∣2 1{(AjT,β′)c})

≤
(
ψjν
)−2 (Eb

(∣∣ĝjT,β′(x0)− div(ajρ)(x0)
∣∣4))1/2 (

Pb

((
AjT,β′

)c))1/2

≤ c0
(
Pb

((
AjT,β′

)c))1/2
.
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Lemma 2.6.3 then implies that pj2(β′) is exponentially small, for any β′ ∈ G1, such that∑
β′∈G1

pj2(β′)→ 0.

Analogously, it follows that ∑β′∈G2 pj4(β′)→ 0, completing finally the verification of (2.6.72).

(II) It is proven now that
lim
T→∞

sup
ν∈BT

R−T,ν(j) = 0. (2.6.85)

Recall that the estimators gjT,β(x0, h) and gjT,β(x0) are defined as

gjT,β(x0, h) = 2
Thd

∫ T

0
Kβ

(
Xu − x0

h

)
dXj

u, gjT,β(x0) = gjT,β(x0, h
j
T,β).

Let β′ ∈ GT , and assume that the event AjT,β′ holds. In view of the definition of the stochastic
error ZjT,β′ in (2.6.54) and taking into account Lemma 2.6.4, it holds, whenever b ∈ Πj(β, L),∣∣ĝjT,β′(x0)− div(ajρ)(x0)

∣∣
=
∣∣ĝjT,β′(x0, ĥ

j
T,β′

)
− div(ajρ)(x0)

∣∣
≤ sup

h∈Hj
T,β′

∣∣gjT,β′(x0, h)− div(ajρ)(x0)
∣∣

≤ sup
h∈Hj

T,β′

{∣∣gjT,β′(x0, h)−Ebg
j
T,β′(x0, h)

∣∣+ ∣∣Ebg
j
T,β′(x0, h)− div(ajρ)(x0)

∣∣}

≤ sup
h∈Hj

T,β′

{∣∣ZjT,β′(h)
∣∣+ 2Lhβ̃−d/2bβ,β′

}
.

Then, using the definition of bjT,β′ in (2.6.64),∑
β′∈G,β′<β−

sup
b∈Πj(β,L)

(
ψjν
)−2 Eb

(∣∣g̃jT (x0)− div(ajρ)(x0)
∣∣2 1{β̂jT = β′

}
1
{
AjT,β′

})

≤
∑

β′∈G,β′<β−
sup

b∈Πj(β,L)

(
ψjν
)−2 Eb

((
bjT,β′(1 + δT ) + sup

h∈Hj

T,β′

∣∣ZjT,β′(h)
∣∣)2

1
{
β̂jT = β′

})

≤ 2 (1 + δT )2 ∑
β′∈G,β′<β−

sup
b∈Πj(β,L)

(
ψjν
)−2(bjT,β′)2 Pb

(
β̂jT = β′

)

+ 2
∑

β′∈G,β′<β−
sup

b∈Πj(β,L)

(
ψjν
)−2 Eb

((
sup

h∈Hj

T,β′

∣∣ZjT,β′(h)
∣∣)2

1
{
β̂jT = β′

})

≤ 2
∑

β′∈G,β′<β−
sup

b∈Πj(β,L)

(
ψjν
)−2 ((bjT,β′)2(1 + δT

)2 +
(
τ jT (β′)

)2)Pb

(
β̂jT = β′

)
+ 2

∑
β′∈G,β′<β−

sup
b∈Πj(β,L)

(
ψjν
)−2

×Eb

((
sup

h∈Hj

T,β′

∣∣ZjT,β′(h)
∣∣)2

1
{

sup
h∈Hj

T,β′

∣∣ZjT,β′(h)
∣∣ > τ jT (β′)

})

=: gj1(ν) + gj2(ν). (2.6.86)

The term gj1(ν) is bounded from above by exploiting the fact that the probability to underesti-
mate the value of β by β̂jT substantially is small, whenever b ∈ Πj(β, L). Recall that m is the
cardinality of the grid G.
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Lemma 2.6.7 (Probability of undershooting). Let β ∈ [β∗,∞), β′ ∈ G, β′ < β−, L ∈ [L∗, L∗],
and ν = (β, L). Then there exists some constant K such that

sup
b∈Πj(β,L)

Pb

(
β̂jT = β′

)
≤ K m

(
T−d/(2β

′) + o(T−1)
)
. (2.6.87)

Proof. Throughout the proof, C,C ′, C1, C2, . . . denote positive constants which can depend only
on β∗, L∗, L

∗, d and σ. We first proceed analogously to the proof of Lemma 4.8 in Butucea
(2001).

Denote by β′ = β
′(β′) the smallest element of the grid G which is greater than β′. It follows from

the definition of β̂jT in (2.5.23) that, whenever β̂jT = β′, there exists at least one β′′, β′′ < β′ ≤ β′,
for which ∣∣ĝj

T,β
′(x0)− ĝjT,β′′(x0)

∣∣ > η̂jT,β′′ .

Consequently, and since G has cardinality m,

sup
b∈Πj(β,L)

Pb

(
β̂jT = β′

)
≤

∑
β′′∈G,β′′≤β′

sup
b∈Πj(β,L)

Pb

(∣∣ĝj
T,β
′(x0)− ĝjT,β′′(x0)

∣∣ > η̂jT,β′′

)

≤ m max
β′′∈G,β′′≤β′

sup
b∈Πj(β,L)

Pb

(∣∣ĝj
T,β
′(x0)− ĝjT,β′′(x0)

∣∣ > η̂jT,β′′

)
≤ m max

β′′∈G,β′′≤β′
sup

b∈Πj(β,L)

(
qj1(β′′) + qj2(β′′)

)
,

where

qj1(β′′) := Pb

({∣∣ĝj
T,β
′(x0)− ĝjT,β′′(x0)

∣∣ > η̂jT,β′′
}⋂{

Aj
T,β
′ ∩AjT,β′′

})
,

qj2(β′′) := Pb

({∣∣ĝj
T,β
′(x0)− ĝjT,β′′(x0)

∣∣ > η̂jT,β′′
}⋂{(

Aj
T,β
′
)c ∪ (AjT,β′′)c}).

The definition of the event AjT,β according to (2.6.42) entails that, whenever AjT,β′′ holds,

η̂jT,β′′ = ηjT,β′′
(
ĥjT,β′′/h

j
T,β′′

)β̃′′−d/2
≥ ηjT,β′′(1− δT )

which yields

qj1(β′′) ≤ Pb

({∣∣ĝj
T,β
′(x0)− ĝjT,β′′(x0)

∣∣ > ηjT,β′′(1− δT )
}⋂{

Aj
T,β
′ ∩AjT,β′′

})

≤ Pb

(
sup

h∈Hj
T,β
′

∣∣gj
T,β
′(x0, h)− div(ajρ)(x0)

∣∣
+ sup
h∈Hj

T,β′′

∣∣gjT,β′′(x0, h)− div(ajρ)(x0)
∣∣ > ηjT,β′′(1− δT )

)
.

Furthermore, Lemma 2.6.4 gives

sup
h∈Hj

T,β
′

∣∣gj
T,β
′(x0, h)− div(ajρ)(x0)

∣∣+ sup
h∈Hj

T,β′′

∣∣gjT,β′′(x0, h)− div(ajρ)(x0)
∣∣

(2.6.46)
≤ L

((
hj
T,β
′
)β̃−d/2b

β,β
′ +

(
hjT,β′′

)β̃−d/2bβ,β′′
) (

1 + δT
)

(2.6.88)

+ sup
h∈Hj

T,β
′

∣∣Zj
T,β
′(h)

∣∣+ sup
h∈Hj

T,β′′

∣∣ZjT,β′′(h)
∣∣.
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We continue with deriving an upper bound on the first summands in (2.6.88) in terms of the
threshold ηjT,β′′ , using arguments as in the proof of Lemma 5 in [KT04]. It can be seen from the
definition of the respective quantities that

ψjβ′′,L = ψT,β′′ Cj(β, L; ρ, σ) ≥ C1
(
T̃ j(β′′)

)1−d/(2β′′)
,

and therefore(
ψjβ′′,L

)−1(
hjT,β′′

)β̃−d/2 ≤ C−1
1
(
T̃ j(β′′)

) β̃−β′′
β′′ = C2T

− β̃−β
′′

2β′′ dT (β′′)
β̃−β′′
β′′

= C2 exp
(
− β̃ − β

′′

2β′′ (log T − C3 log log T )
)
. (2.6.89)

Since, as on p. 457 in [KT04],

β̃ − β′′ ≥ min
{
β − β′′, d/2

}
≥ min

{
β − β−, d/2

}
≥ β+

T (log T )−1,

(2.6.89) in particular gives, for some positive constants K1,K2,(
hjT,β′′

)β̃−d/2 ≤ δ1(T )ψjβ′′,L, where δ1(T ) := K1 exp
(
−K2β

−1
T β+

T

)
→ 0.

The same method as in (2.6.89) can be used for showing that
(
ψjβ′′,L

)−1(
hj
T,β
′
)β̃−d/2 ≤ C4δ1(T ).

Consequently,

L

((
hj
T,β
′
)β̃−d/2b

β,β
′ +

(
hjT,β′′

)β̃−d/2bβ,β′′
) (

1 + δT
)

≤ C5 ψ
j
β′′,L δ1(T )

(
1− δT

)
(2.6.66)
≤ C6 η

j
T,β′′ δ1(T )

(
1− δT

)
. (2.6.90)

Combining (2.6.88) and (2.6.90), we thus obtain

qj1(β′′) ≤ Pb

(
sup

h∈Hj

T,β′′

∣∣ZjT,β′′(h)
∣∣ > ηjT,β′′(1− 2C6δ1(T ))(1− δT )

)

+ Pb

(
sup

h∈Hj

T,β
′

∣∣Zj
T,β
′(h)

∣∣ > ηjT,β′′C6δ1(T )(1− δT )
)

=: qj1a(β′′) + qj1b(β
′′).

For some large enough constant R1, it holds

τ jT (β′′) ≤ sjT (β′′)
(
dT (β′′) +

( log T
βT

)1/4
)

≤ ηjT,β′′(1− 2C6δ1(T ))(1− δT ) ≤ R1sjT (β′′)
√

log T .

(2.6.56) in Lemma 2.6.5(a) then gives

qj1a(β′′) ≤ c1 exp

− (
ηjT,β′′

)2
2
(
sjT (β′′)

)2 (1− 2C6δ1(T ))2(1− δT )2(1− γT )

2

+ o(T−1)

≤ c1 exp
(
−d

2
T (β′′)

2 (1− 4C6δ1(T ))
)

+ o(T−1) ≤ O(1) T−
d

2β′′ + o(T−1).
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For the second term, Lemma 2.6.5(b) entails

qj1b(β
′′) ≤ c2 exp

(
−c3

(
ηjT,β′′/s

j
T (β′)

)2
C2

6 δ
2
1(T )

(
1− δT

)2(1− γT )2
)
. (2.6.91)

Note that  ηjT,β′′

sjT (β′)

2

=
(

sjT (β′′)dT (β′′)
sjT (β′)

)2

=

hjT,β′′
hj
T,β
′

−d ‖Kβ′′‖2L2(Rd)
‖K

β
′‖2
L2(Rd)

d2
T (β′′).

We now argue similarly to the proof of Lemma 5 in [KT04]. Since β′ > β′′, the definition of
the grid according to (2.5.14) implies that only two cases are of interest, namely (i) β′ − β′′ ≥
(log T )−1/2 and (ii) k1(log T )−δ1 < β

′ − β′′ < (log T )−1/2. In case (i), one obtainshjT,β′′
hj
T,β
′

d ‖Kβ
′‖2
L2(Rd)

‖Kβ′′‖2L2(Rd)
≤ C7 β

2
T exp

(
−C8
β2
T

√
log T

)
,

and in case (ii), it holds hjT,β′′/h
j

T,β
′ ≤ O(1) and

‖K
β
′‖L2(Rd)

‖Kβ′′‖L2(Rd)
≤
‖K

β
′ −Kβ′′‖L2(Rd)

‖Kβ′′‖L2(Rd)
+ 1 ≤ C9(log T )−1/2 + 1.

(For details, see [KT04], pp. 458–459.) Summing up,hjT,β′′
hj
T,β
′

d ‖Kβ
′‖2
L2(Rd)

‖Kβ′′‖2L2(Rd)
≤ D11 max

{
β2
T exp

(
−C4
β2
T

(log T )1/2
)
, C5(log T )−1/2 + 1

}
≤ δ2(T ) + 1

for δ2(T ) := max
{
β2
T exp

(
−C4β

−2
T (log T )1/2

)
, C5(log T )−1/2

}
. Thus,

 ηjT,β′′

sjT (β′)

2

≥ d2
T (β′′)

δ2(T ) + 1 ≥ d
2
T (β′)(1− δ2(T )),

such that (2.6.91) gives

qj1b(β
′′) ≤ 2 exp

(
−D7d

2
T (β′)δ2

1(T )(1− δ2(T ))(1− γT )
)
. (2.6.92)

In view of the definitions of δ1(T ) and δ2(T ), this last expression tends to zero faster than
T−d/(2β

′). Since Lemma 2.6.3 entails

qj2(β′′) ≤ Pb

((
Aj
T,β
′
)c)+ Pb

((
AjT,β′′

)c) ≤ 4 exp
(
−T ((1− α)hdT δTρ∗T )2

2‖Q‖2∞

)
, (2.6.93)

the same remark applies to qj2(β′′), completing the verification of (2.6.87).

Let β ∈ [β∗, βT ], β′ ∈ G, L ∈ [L∗, L∗], ν = (β, L). By means of Lemma 2.6.7 and using relation
(2.6.68) in Lemma 2.6.6, we obtain

gj1(ν) = 2
∑

β′∈G,β′<β−
sup

b∈Πj(β,L)

(
ψjν
)−2 ((bjT,β′)2(1 + δT

)2 +
(
τ jT (β′)

)2)Pb

(
β̂jT = β′

)
≤ 2D5 K m

∑
β′∈G,β′<β−

log T T−d/(2β)+d/(2β′) (T−d/(2β′) + o(T−1)
)
.
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The grid G = GT is defined such that

card(G) = m ≤ βTk−1
1 (log T )δ1 = k−1

1 (log T )δ1(log log T )δ2 .

Consequently,
lim
T→∞

sup
ν∈BT

gj1(ν) = 0,

and the first assertion in Lemma 2.6.5(c) immediately gives

lim
T→∞

sup
ν∈BT

gj2(ν) = 0.

Note finally that, for any β′ ∈ G, there exists some constant c′0 such that

sup
b∈Πj(β,L)

(
ψjν
)−2 Eb

(∣∣ĝjT,β′(x0)− div(ajρ)(x0)
∣∣2 1{β̂jT = β′

}
1
{(
AjT,β′

)c})
≤ sup

b∈Πj(β,L)

(
ψjν
)−2 (Eb

(∣∣ĝjT,β′(x0)− div(ajρ)(x0)
∣∣4))1/2 (

Pb

((
AjT,β′

)c))1/2

≤ c′0
(
Pb

((
AjT,β′

)c))1/2
.

Lemma 2.6.3 shows that the last term is exponentially small and independent both of β and β′
such that∑

β′∈G,β′<β−
sup

b∈Πj(β,L)

(
ψjν
)−2 Eb

(∣∣g̃jT (x0)− div(ajρ)(x0)
∣∣2 1{β̂jT = β′

}
1
{(
AjT,β′

)c}) = oT (1),

thus completing the proof of (2.6.85).

Proof of Theorem 2.5.10. It remains to verify (2.5.27). The proof of part (b) actually is along
the lines of the proof of Theorem 2 in [KT04]. For the sake of completeness, it is given here
at full length. For any β > d/2 and L > 0, denote ψKol

β,L := ψT,β CKol(β, L; ρ), for ψT,β and
CKol(β, L; ρ) defined in (2.5.8) and (2.5.25), respectively.

By assumption (2.5.26), there exists some δ ∈ (0, 1/2) such that, for T large enough,(
ψKol
β0,L

)−2
RT,β0,L

(
ǧT (x0)

)
≤ (1− 2δ)3.

Fix β1 ∈ (β0, βT ]. If the definitions of ρ (cf. (2.6.17)) and gjT,1 (cf. (2.6.22)) are suitably modified,
it is shown as in the proof of Theorem 2.5.5 that, for any β′0 ∈ (β1, βT ],

inf
ĝT

max
{(
ψKol
β1,L

)−2
RT,β′0,L

(
ĝT (x0)

)
,
(
ψKol
β0,L

)−2
RT,β0,L

(
ĝT (x0)

)}
≥ inf

ĝT

max
{

E0
((
ψKol
β1,L

)−2 ∣∣ĝT (x0)− gjT,0(x0)
∣∣2) ,

E1
((
ψKol
β0,L

)−2 ∣∣ĝT (x0)− gjT,1(x0)
∣∣2)}

≥ (1− δ)3.

For sufficiently large T , it thus holds, for any estimator ĝT of ∂jρ,

max
{(
ψKol
β1,L

)−2
RT,β′0,L

(
ĝT (x0)

)
, (1− 2δ)3

}
≥ max

{(
ψKol
β1,L

)−2
RT,β′0,L

(
ĝT (x0)

)
,
(
ψKol
β0,L

)−2
RT,β0,L

(
ĝT (x0)

)}
≥ (1− δ)3.
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Consequently, for T large enough,

RT,β′0,L

(
ĝT (x0)

)
≥ (1− δ)3 (ψKol

β1,L

)2
.

Lemma 2.5.3 (resp. its proof) implies that there exists some constant c′ > 0 such that

inf
ĝT

RT,β0,L
(
ĝT (x0)

)
≥ c′T−

β0−d/2
β0 .

Summing up, for any β′0 > β1 and some positive constant c′′,

RT,β′0,L

(
ǧT (x0)

)
RT,β′0,L

(
g̃T (x0)

) RT,β0,L
(
ǧT (x0)

)
RT,β0,L

(
g̃T (x0)

) ≥ (1− δ)3(ψKol
β1,L

)2(
ψKol
β′0,L

)2
c′T β0−d/2

β0(
ψKol
β0,L

)2


≥ c′′
( log T

T

) d(β1−β
′
0)

2β′0β1 (log T )−
β0−d/2
β0 →T→∞ ∞.

Proof of Theorem 2.5.11. The proof is similar to the proof of Theorem 2.5.9 as will be sketched in
the sequel. Let β ∈ [β∗, βT ], L ∈ [L∗, L∗], and β′ ∈ (d/2, β]. Denote again by γT i, i ∈ N, functions
of T such that limT→∞ γT i = 0. Let ψβ,L := ψT,β C(β, L; ρ, σ), for ψT,β and C(β, L; ρ, σ)
introduced in (2.5.8) and (2.5.31), respectively. Denote

T̃ (β) :=
(

4ρ(x0)‖σ‖2S2
log T

βT

)1/2

, hT,β :=
(

4ρ(x0)‖σ‖2S2
log T

βT

)1/(2β)

,

ηT,β := h
β−d/2
T,β

∥∥Kβ

∥∥
L2(Rd),

and define β̃, AT,β, HT,β and HT,β analogue to the proof of Theorem 2.5.9 as

β̃ = β̃(β, β′) :=
{
β′ + d

2 , if d2 ≤ β′ ≤
β
2 + d

4 ,

β, if β2 + d
4 < β′ ≤ β,

AT,β′ :=
{∣∣∣(ĥT,β′/hT,β′)β̃′−d/2 − 1

∣∣∣ ≤ δT},
HT,β′ :=

{
h :
∣∣∣(h/hT,β′)β̃′−d/2 − 1

∣∣∣ ≤ δT},
HT,β′ :=

{
h :
∣∣∣(h/hT,β′)− 1

∣∣∣ ≤ c0δT

}
,

for some positive constant c0 and δT := (log T )−1. Given h ∈ HT,β, let

gT,β(x0, h) := 2
Thd

∫ T

0
Kβ

(
Xu − x0

h

)
dXu,

define

gT,β(x0) := gT,β
(
x0, hT,β

)
, sT (β) := 2h−d/2T,β

√
ρ(x0)
T
‖σ‖S2

∥∥Kβ

∥∥
L2(Rd),

and

dT (β) := ηT,β
sT (β) =

√
log T
β

.
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Finally, let

τT (β′) := sT (β′)
((
d2
T (β′)− d2

T (β)
)1/2

+
( log T
βT

)1/4
)
.

Most of the auxiliary results which were used for proving Theorem 2.5.9 admit (more or less)
straightforward extensions to the present setting. In particular, the following analogue of Lemma
2.6.5 holds true.

Lemma 2.6.8. Grant Assumptions (BI) and (SG+). Let β > d/2, and denote

ZT,β(h) := gT,β(x0, h)−EbgT,β(x0, h), h ∈ HT,β. (2.6.94)

Then, for any β′ > d/2, it holds:

(a) For any

u ∈
[
τT (β′), R′1 sT (β′)

√
log T

]
, R′1 > 0 an absolute constant,

there exist some sufficiently small γ′, independent of β′, and some universal constant
c′1 > 0 such that

Pb

(
sup

h∈HT,β′

∥∥ZT,β′(h)
∥∥ > u

)
≤ c′1 exp

(
−u

2(1− γ′)
2s2
T (β′)

)
+ o

(
T−1).

(b) For any
u ∈

[
R′1 sT (β′)

√
log T , R′2

]
, R′1, R

′
2 > 0 absolute constants,

it holds, for some constants c′2, c′3 > 0,

Pb

(
sup

h∈HT,β′

∥∥ZT,β′(h)
∥∥ > u

)
≤ c′2 exp

(
− c′3u

2

s2
T (β′)

)
. (2.6.95)

(c) Assume that β′ < β. Then, uniformly in β ∈ BT ,

sup
β′∈B, β′<β

m sup
b∈Π(β,L)

(
ψβ,L

)−2 Eb

((
sup

h∈HT,β′

∥∥ZT,β′(h)
∥∥)2

× 1
{

sup
h∈HT,β′

∥∥ZT,β′(h)
∥∥ > τT (β′)

})
→ 0,

sup
β′∈B, β′<β

m sup
b∈Π(β,L)

(
ψβ,L

)−2 Eb

((
sup

h∈HT,β′

∥∥ZT,β′(h)
∥∥)2

× 1
{

sup
h∈HT,β′

∥∥ZT,β′(h)
∥∥ > √sT (β′) ψβ,L

})
→ 0.

Proof. The assertions follow from slight modifications of the proof of Lemma 2.6.5, taking into
account Remark 2.5.14.

For ν = (β, L) ∈ BT , define β− and β+
T as before as

β− := β − β+
T

log T , β+
T := (log log T )δ3 , for δ3 ∈ (δ2, 1).
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Set

R+
T,ν := ψ−2

ν sup
b∈Π(ν)

Eb

(∥∥g̃T (x0)− div(aρ)(x0)
∥∥2

1
{
β̂T ≥ β−

})
,

R−T,ν := ψ−2
ν sup

b∈Π(ν)
Eb

(∥∥g̃T (x0)− div(aρ)(x0)
∥∥2

1
{
β̂T < β−

})
.

(I) Some rather straightforward modifications of the proof of part (I) of Theorem 2.5.9 yield

lim sup
T→∞

sup
ν∈BT

R+
T,ν ≤ 1. (2.6.96)

Indeed, analogously to the proof of (2.6.65) in Lemma 2.6.6, it is shown that

ψν = (2L)d/(2β)√d
(
ηT,β + h

β−d/2
T,β bβ,β

)
. (2.6.97)

As in (2.6.73), define β = β(β) via the equation
( log T

4L2T

)1/(2β)
=
( log T

T

)1/(2β)
.

Let β+ ∈ G be the largest grid point ≤ β, and assume that T is large enough to ensure that
β− < β+ and that β̃ = β. Consider the sets G1 = G1(β) and G2 = G2(β) as defined in (2.6.75)
and (2.6.76), respectively. Since η̃β(div(aρ)) ≤ 2L

√
d, the same steps as in the proof of Lemma

2.6.4 imply that∥∥EbgT,β′(x0, h)− div(aρ)(x0)
∥∥

= (2π)−d
∥∥∥∥∫

Rd
φdiv(aρ)(λ)

(
φKβ′,h(λ)− 1

)
e−iλtx0dλ

∥∥∥∥
≤
(

(2π)−d
∫
Rd

∥∥∥φdiv(aρ)(λ)
∥∥∥2
‖λ‖2βdλ

)1/2 ( h
b′
)β

×
(

(2π)−d
∫
Rd

‖hλ/b′‖4β
′−2β(

1 + ‖hλ/b′‖2β′
)2 dλ

)1/2

≤ 2L
√
d bβ,β′ hβ−d/2. (2.6.98)

Therefore, whenever the event AT,β′ holds,

sup
h∈HT,β′

∥∥EbgT,β′(x0, h)− div(aρ)(x0)
∥∥

≤ 2L
√
d bβ,β′ sup

h∈HT,β′
hβ−d/2

≤ 2L
√
d bβ,β′

(
4ρ(x0)‖σ‖2S2

β′

)β−d/2
2β′ ( log T

4L2T

)β−d/2
2β (

1 + δT
)
.

Arguing as in the derivation of (2.6.80) and (2.6.78), we obtain, for any β′ ∈ G1,

sup
h∈HT,β′

∥∥EbgT,β′(x0, h)− div(aρ)(x0)
∥∥ ≤ (2L)d/(2β)√d hβ−d/2T,β bβ,β (1 + γT1)

(2.6.97)
≤ ψν (1 + γT1)

and
ηT,β+ ≤ (2L)d/(2β)ηT,β (1 + γT2).
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Thus, whenever β̂T = β′ ∈ G1 and the event AT,β′ holds, one has∥∥g̃T (x0)− div(aρ)(x0)
∥∥ ≤ sup

h∈HT,β′
‖ZT,β′(h)‖+ ψν (1 + γT1).

Similarly, if β̂T = β′ ∈ G2 and the event AT,β+ holds,∥∥g̃T (x0)− div(aρ)(x0)
∥∥

≤
∥∥ĝ
T,β̂T

(x0)− gT,β+(x0)
∥∥+

∥∥gT,β+(x0)− div(aρ)(x0)
∥∥

≤
√
d η̂T,β+ + sup

h∈HT,β+

‖ZT,β+(h)‖+ (2L)d/(2β)√d hβ−d/2T,β bβ,β (1 + γT1)

≤ sup
h∈HT,β+

‖ZT,β+(h)‖+ (2L)d/(2β)√d
(
h
β−d/2
T,β bβ,β (1 + γT1) + ηT,β (1 + γT3)

)
≤ sup

h∈HT,β+

‖ZT,β+(h)‖+ ψν (1 + γT4).

Decomposing analogously to (2.6.83), it follows

ψ−2
ν Eb

(∥∥g̃T (x0)− div(aρ)(x0)
∥∥2

1
{
β̂T ∈ G1 ∪ G2

})
≤
∑
β′∈G1

Eb

((
1 + γT1 + ψ−1

ν sup
h∈HT,β′

∥∥ZT,β′(h)‖
)2

1
{
β̂T = β′

}
1
{
AT,β′

})
︸ ︷︷ ︸

=:p(β′)

+
∑
β′∈G1

Eb

(
ψ−2
ν

∥∥g̃T (x0)− div(aρ)(x0)
∥∥2

1
{
β̂T = β′

}
1
{
Ac
T,β′

})

+
∑
β′∈G2

Eb

((
1 + γT4 + ψ−1

ν sup
h∈HT,β+

∥∥ZT,β+(h)
∥∥)2

1
{
β̂T = β′

}
1
{
AT,β+

})

+
∑
β′∈G2

Eb

(
ψ−2
ν

∥∥g̃T (x0)− div(aρ)(x0)
∥∥2

1
{
β̂T = β′

}
1
{
Ac
T,β+

})
.

Exemplarily, we consider the term p(·). For any β′ ∈ G1, it holds

p(β′) ≤
(

1 + γT1 +
√

sT (β′)ψ−1
ν

)2
Pb

(
β̂T = β′

)
+ 2

(
1 + γT1

)2 Pb

(
sup

h∈HT,β′

∥∥ZT,β′(h)
∥∥ > √sT (β′)ψν

)
(2.6.99)

+ 2 ψ−2
ν Eb

((
sup

h∈HT,β′

∥∥ZT,β′(h)
∥∥)2

1
{

sup
h∈HT,β′

∥∥ZT,β′(h)
∥∥ > √sT (β′)ψν

})
. (2.6.100)

Lemma 2.6.8(b) entails that the term in (2.6.99) is bounded from above by some constant
multiple of

2 (1 + γT1)2 exp
(
−c′3

ψν(1− γT )
sT (β′)

)
.

Note that
ηT,β′ ≤ L2 exp(Cβ+

T )ψν
such that

sT (β′)
ψν

≤ L2 exp(Cβ+
T )sT (β′)

ηT,β′
= L2 exp(Cβ+

T )
√

β

log T =: A′T .
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Lemma 2.6.8(c) implies that the term in (2.6.100) tends to zero, uniformly in β′ ∈ G1. Similar
arguments yield upper bounds on the remaining parts of the above decomposition (also cf. the
conclusion of the proof of part (I) of Theorem 2.5.9). Summing up, we get

R+
T,ν ≤

(
1 + γT2 +

√
A′T

)2
Pb

(
β̂T ∈ G1 ∪ G2

)
+ Cm exp

(
− 2A′−1

T

)
+ oT (1).

Inserting the definition of A′T and m, we obtain (2.6.96).

(II) We now show that
lim
T→∞

sup
ν∈BT

R−T,ν = 0. (2.6.101)

Let β ∈
[
β∗, βT

]
, β′ ∈ G, β′ < β− = β − β+

T / log T , L ∈
[
L∗, L

∗]. Let b ∈ Π(β, L), ν = (β, L). It
was already noted that a straightforward modification of Lemma 2.6.4 implies that

sup
b∈Π(ν)

∥∥EbgT,β′(x0, h)− div(aρ)(x0)
∥∥ ≤ 2L

√
d bβ,β′ hβ̃−d/2

such that, for any T large enough,

sup
h∈HT,β′

(∥∥EbgT,β′(x0, h)− div(aρ)(x0)
∥∥ 1{AT,β′})

≤ 2L
√
d bβ,β′ sup

h∈HT,β′

(
hβ̃−d/2 1

{
AT,β′

})
≤ bT,β′

(
1 + δT

)
,

where bT,β′ := 2L
√
d bβ,β′ h

β̃−d/2
T,β′ . Consequently,∥∥ĝT,β′(x0)− div(aρ)(x0)

∥∥ 1{AT,β′}
≤ sup

h∈HT,β′

(∥∥EbgT,β′(x0, h)− div(aρ)(x0)
∥∥ 1{AT,β′}+

∥∥ZT,β′(h)
∥∥)

≤ bT,β′
(
1 + δT

)
+ sup
h∈HT,β′

∥∥ZT,β′(h)
∥∥,

where the stochastic error ZT,β′(·) is defined according to (2.6.94). Notably, we get

∑
β′∈G,β′<β−

sup
b∈Π(ν)

ψ−2
ν Eb

(∥∥ĝT,β′(x0)− div(aρ)(x0)
∥∥2

× 1
{
β̂T = β′

}
1
{
AT,β′

})
≤ g1(ν) + g2(ν),

for

g1(ν) := 2
∑

β′∈G,β′<β−
sup
b∈Π(ν)

ψ−2
ν

(
b2
T,β′

(
1 + δT

)2 + τ2
T (β′)

)
Pb

(
β̂T = β′

)
,

g2(ν) := 2
∑

β′∈G,β′<β−
sup
b∈Π(ν)

ψ−2
ν

× Eb

((
sup

h∈HT,β′

∥∥ZT,β′(h)
∥∥)2

1
{

sup
h∈HT,β′

∥∥ZT,β′(h)
∥∥ > τT (β′)

})
.

As in the proof of the upper bound for component-wise estimation of div(aρ), we proceed by
exploiting that the “probability of undershooting,” that is, the probability of underestimating
the value of the true smoothness parameter β by the estimator β̂T , is small, uniformly over
b ∈ Π(ν).
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Lemma 2.6.9. Let β ∈ [β∗,∞), β′ ∈ G, β′ < β−, L ∈ [L∗, L∗], and ν = (β, L). Then, for
m = card(G), there exists some constant K such that

sup
b∈Π(ν)

Pb

(
β̂T = β′

)
≤ K m T−d/(2β

′).

Proof. The proof is similar to the proof of Lemma 2.6.7. Note first that the definition of β̂T
according to (2.5.30) implies that

sup
b∈Π(ν)

Pb

(
β̂T = β′

)
≤

∑
β′′∈G,β′′≤β′

sup
b∈Π(ν)

Pb

(∥∥ĝ
T,β
′(x0)− ĝT,β′′(x0)

∥∥ > √d η̂T,β′′)
≤ m max

β′′∈G,β′′≤β′
sup
b∈Π(ν)

Pb

(∥∥ĝ
T,β
′(x0)− ĝT,β′′(x0)

∥∥ > √d η̂T,β′′)
≤ m max

β′′∈G,β′′≤β′
sup
b∈Π(ν)

(
q1 + q2

)
, (2.6.102)

where

q1 = q1(β′, β′′) := Pb

({∥∥ĝ
T,β
′(x0)− ĝT,β′′(x0)

∥∥ > √d η̂T,β′′}⋂{
A
T,β
′ ∩AT,β′′

})
,

q2 = q2(β′, β′′) := Pb

({∥∥ĝ
T,β
′(x0)− ĝT,β′′(x0)

∥∥ > √d η̂T,β′′}⋂{
Ac
T,β
′ ∪Ac

T,β′′
})
.

Consider the sequence

δT3 := exp
(
−k2(log T )1−δ

8β2
T

)
→ 0.

Plugging in the definition of the respective quantities, we obtain

bT,β′′
δT3ηT,β′′

=
L
√
dh

β̃′′−d/2
T,β′′ bβ,β′′
δT3sT,β′′

√
β′′

log T

≤ O(1)
√
βTh

β̃′′−β′′
T,β′′ δ−1

T3

≤ O(1)
√
βT exp

(
k2(log T )1−δ

8β2
T

−
(
β̃′′ − β′′

)
log T

2βT

)
= o(1).

Furthermore,

b
T,β
′

δT3ηT,β′′
=
L
√
dh

β̃
′−d/2
T,β′′ b

β,β
′

δT3sT,β′′

√
β′′

log T ≤ O(1)
√
βT

√√√√hT,β′′

h
T,β
′
δ−1
T3 = o(1).

Consequently, there exists some positive constant L3 such that, for T large enough,

(
b
T,β
′ + bT,β′′

) (
1 + δT

)
≤ L3

√
d δT3ηT,β′′

(
1− δT

)
.

129



2. Sharp adaptive drift estimation for ergodic diffusions in higher dimension

Therefore,

q1 ≤ Pb

(
sup

h∈H
T,β
′

∥∥g
T,β
′(x0, h)− div(aρ)(x0)

∥∥
+ sup
h∈HT,β′′

∥∥gT,β′′(x0, h)− div(aρ)(x0)
∥∥ > √d ηT,β′′(1− δT )

)

≤ Pb

((
b
T,β
′ + bT,β′′

) (
1 + δT

)
+ sup
h∈H

T,β
′

∥∥Z
T,β
′(h)

∥∥+ sup
h∈HT,β′′

∥∥ZT,β′′(h)
∥∥ > √d ηT,β′′(1− δT )

)

≤ Pb

(
sup

h∈H
T,β
′

∥∥Z
T,β
′(h)

∥∥+ sup
h∈HT,β′′

∥∥ZT,β′′(h)
∥∥ > (1− L3δT3)

√
d ηT,β′′(1− δT )

)
≤ q1a + q1b,

where

q1a = q1a(β′′) := Pb

(
sup

h∈HT,β′′

∥∥ZT,β′′(h)
∥∥ > (1− 2L3δT3)

√
d ηT,β′′

(
1− δT

))
,

q1b = q1b(β
′
, β′′) := Pb

(
sup

h∈H
T,β
′

∥∥Z
T,β
′(h)

∥∥ > L3δT3
√
d ηT,β′′

(
1− δT

))
.

Part (a) of Lemma 2.6.8 implies that

q1a ≤ c′1 exp
(
−

(1− 2L3δT3)2 d η2
T,β′′ (1− δT )2 (1− γ′)

2s2
T (β′′)

)

≤ c′1 exp
(
−(1− L5 δT3) d log T

2β′′
)
≤ L6 T

−d/(2β′′).

Lemma 2.6.8(b) entails that there exist some positive constants c′2, c′3 such that

q1b ≤ c′2 exp

−c′3 δ2
T3η

2
T,β′′

(
1− δT

)2
T

s2
T (β′)

 .
Since

δT3ηT,β′′

sT (β′)
= δT3sT (β′′)

sT (β′)

√
log T
β′′

≥
δT3h

−d/2
T,β′′ ‖Kβ′′‖L2(Rd)

h
−d/2
T,β
′ ‖Kβ

′‖L2(Rd)

√
log T
β′′

≥ O(δT3) T d/(4β′′)−d/(4β
′)
√

log T
β′′

→ +∞,

the upper bound on q1b is asymptotically negligible as compared to T−d/(2β′). Summing up,
q1 ≤ O(1)T−d/(2β′). Lemma 2.6.3 entails that q2 is also asymptotically negligible, and in view
of (2.6.102), we obtain the assertion.

Let β ∈ [β∗, βT ], β′ ∈ G, L ∈ [L∗, L∗], ν = (β, L). The very same arguments as in the conclusion
of the proof of part (II) of Theorem 2.5.9 entail that

lim
T→∞

sup
ν∈BT

g1(ν) = 0 and lim
T→∞

sup
ν∈BT

g2(ν) = 0.

In combination with another application of Lemma 2.6.3, we obtain (2.6.101).
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3. Donsker theorems for multidimensional ergodic diffusions

We study weak convergence of empirical processes of multidimensional ergodic dif-
fusions under the basic assumption that the underlying invariant measure satisfies
Poincaré’s inequality. Results from classical empirical process theory such as Os-
siander’s bracketing CLT and the Giné–Zinn CLT are revisited. We further prove
increased regularity for diffusions with finite invariant measure by investigating
smoothed versions of the empirical diffusion process.

3.1. Introduction

Let (Xt)t≥0 be an ergodic diffusion process on E ⊂ Rd with unique invariant probability measure
µ. Denote its infinitesimal generator on L2(E,µ) =: L2(µ) by A, assume that X0 ∼ µ, and
consider 0 6≡ f ∈ L2

0(µ). Recall that the additive functional(∫ t

0
f(Xu)du

)
t≥0

(3.1.1)

of the diffusion (Xt)t≥0 is said to satisfy a central limit theorem (CLT) if

1√
t

∫ t

0
f(Xu)du⇒t→∞ Z ∼ N (0, 1). (3.1.2)

Functional central limit theorems provide an extension of the CLT. For instance, the functional
CLT due to Bhattacharya (1982) states that, for any fixed t ≥ 0 and any fixed function f of the
form f = AF ,

1√
n

(∫ nt

0
f(Xu)du

)
t≥0
⇒n→∞ σ(f)W, (3.1.3)

where σ2(f) := −2
∫
E F (x)f(x)µ(dx) and W = (Wt)t≥0 is a standard Brownian motion. The

passage to a continuous-time result is obvious and allows to recover a CLT, namely

1√
t

∫ t

0
f(Xu)du⇒t→∞ Z ∼ N

(
0, σ2(f)

)
. (3.1.4)

The Cramér–Wold device immediately gives a multidimensional extension of (3.1.4). Given any
finite set of functions f1, . . . , fm of the form fi = AFi, i = 1, . . . ,m, the law of them-dimensional
process with components

1√
t

∫ t

0
fi(Xu)du, i = 1, . . . ,m,

converges weakly to an m-dimensional centered Gaussian distribution with asymptotic covari-
ances given by

−
∫
E
fi(x)Afj(x)µ(dx)−

∫
E
Afi(x)fj(x)µ(dx), i, j = 1, . . . ,m.

The aim in the sequel is to provide an extension of the CLT mentioned above in a different
direction and to describe classes of functions on which limit results in the spirit of (3.1.4) hold
uniformly. This question is the central issue of empirical process theory. Given i.i.d. random
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variables X1, . . . , Xn ∼ P and a class of functions F ⊂ L2(P), the empirical process indexed by
F is given as

(Gn(f))f∈F :=
(

1√
n

n∑
i=1

(f(Xi)−Ef(X1))
)
f∈F

. (3.1.5)

Lindeberg’s CLT gives convergence of the finite-dimensional marginals whenever the variance of
f(X1) is finite. In order to extend this result to a CLT in the space `∞(F) of uniformly bounded
functions z : F → R, the existence of a tight version of the limiting Gaussian process does not
suffice. Rather one has to verify additional side conditions related to the random geometry of
F in order to get a uniform CLT or so-called Donsker theorem.

For ergodic diffusion processes, one standard strategy for proving a (finite-dimensional) CLT
similar to (3.1.4) is to use a martingale representation and to decompose the additive functional
(3.1.1) into the sum of an L2 martingale and a remainder term which vanishes in the limit.
The proof of the CLT is then reduced to a CLT for martingales. The same strategy has been
applied by van der Vaart and van Zanten (2005) for proving their Donsker theorems for scalar
ergodic diffusions with finite speed measure. In particular, it is shown in their article that the
empirical process of a regular scalar diffusion on an interval I ⊆ R with finite speed measure
behaves substantially different as compared to the classical empirical process (3.1.5). In fact,
weak convergence of the empirical process takes place in `∞(F) if and only if the limit exists as a
tight, Borel measurable map. Contrary to the situation for i.i.d. random elements, no additional
(entropy) conditions restricting the size of the class F are required. The proof of this result
is heavily based on an analysis of diffusion local time and relies on the fact that the empirical
measure of a univariate regular diffusion is continuous with respect to Lebesgue measure. For
dimension d ≥ 2, diffusion local time does not exist. In particular, the empirical measure of
a multivariate diffusion is no longer Lebesgue-continuous. While some relation between the
empirical process of the diffusion to a family of local martingales can be established in the
multidimensional case, too, it is however not clear whether necessary and sufficient conditions
can be obtained in this way. There exist different possible origins for the formulation of Donsker
theorems:

(a) CLT via Poisson equation in L2;

(b) CLT from the existence of asymptotic variance in the reversible case.

The strategy in (a) starts by solving the Poisson equation for some fixed 0 6≡ f ∈ L2
0(µ). If

AF = f admits some regular enough solution F , Itô’s formula implies that, for every t ≥ 0 and
ε > 0, ∫ ε−1t

0
f(Xu)du = F (Xε−1t)− F (X0)−M ε

t ,

where (M ε
t )t≥0 is a local martingale. The functional CLT for L2 local martingales due to Re-

bolledo (1980) may then be applied to obtain convergence of the finite-dimensional marginal
laws. In the reversible setting, a similar approach allows to prove finite-dimensional weak con-
vergence whenever the Kipnis–Varadhan condition is satisfied (see Section 3.2.2 below). We first
show that Poincaré’s inequality can be used to verify an increment condition on the empirical
process of X and allows to state sufficient criteria for Donsker theorems. Furthermore, (PI)
implies a Bernstein-type deviation inequality which holds for any µ-integrable bounded function
h with µ(h) = 0, namely, for any t, r > 0,

Pµ

(1
t

∫ t

0
h (Xu) du > r

)
≤ exp

(
−tmin

{
r2

8cP Varµ(h) ,
r

2cP ‖h‖∞

})
(3.1.6)

(cf. Proposition 1.2 in Cattiaux and Guillin (2008); also see Theorem 3.1 in Guillin et al. (2009)).
Bernstein-type inequalities in this spirit are perfectly tailored to the application of techniques
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from empirical process theory. In particular, (3.1.6) allows to state a sufficient condition for
Donsker theorems in terms of bracketing metric entropy. The sharp Bernstein-type deviation in-
equality due to Lezaud (2001) applies to symmetric Markov processes, still under the assumption
that Poincaré’s inequality is satisfied. It replaces the variance term on the right-hand side of
(3.1.6) with the asymptotic variance of h appearing in the CLT, given as

lim
t→∞

1
t

VarPµ

(∫ t

0
h (Xu) du

)
,

and allows for a more refined analysis. In general, Bernstein-type deviation inequalities provide
some control of the Orlicz norm, and standard chaining techniques can be applied to derive
conditions for asymptotic equicontinuity. One obstacle is that both (3.1.6) and the inequality
due to Lezaud (2001) are restricted to bounded functions, and the question arises how unbounded
function classes might be treated in the highest possible generality. Bernstein’s inequality for
continuous martingales is one resort. The approach is conceptually different and relies on the idea
of martingale approximation as it is also used for proving finite-dimensional weak convergence.
Given any continuous local martingale M vanishing at 0, Bernstein’s inequality for continuous
martingales (see, e.g., Revuz and Yor (1999), p. 153) states that

∀ t, r > 0, Pµ

(
sup
s≤t

Ms ≥ rt; 〈M,M〉t ≤ ct
)
≤ exp

(
− tr

2

2c

)
, (3.1.7)

thus giving a subgaussian bound whenever some control of the form
1
t
〈M,M〉t ≤ c (3.1.8)

for all t is available. Here, 〈M,M〉t denotes the martingale quadratic variation of M at time t.
While (3.1.7) is not restricted to bounded functions, it however requires verifying a condition in
the spirit of (3.1.8). We shall investigate the different approaches in more detail in the sequel.

3.2. Preliminaries

3.2.1. Notation and definitions

Let (Xt)t≥0 be an ergodic Markov process on a Borel measurable space (E,B(E)), E ⊂ Rd,
with invariant measure µ as introduced in Section 1.1.2. Define the associated Markov semigroup
(Pt)t≥0 by (Ptf) (x) := Eµ (f (Xt) |X0 = x) , and denote by A the infinitesimal generator of (Pt)
with domain DA in L2(µ). Usually, only a dense subset of the domain DA is known, and so it is
convenient to assume that there exists an algebra A of bounded functions on E which is dense
in DA and in all Lp(µ) spaces and stable by A (cf. Ledoux (2000) and Bakry (2008)). The carré
du champ operator Γ is defined by

Γ(f, g) := A(fg)− fAg − gAf, f, g ∈ A.

In the current diffusion framework, where A is a second order differential operator (cf. (1.1.1)),
it holds

Γ(f)(x) := Γ(f, f)(x) = 〈a(x)∇f(x),∇f(x)〉 , f ∈ A.
Let A = −

∫+∞
0 λdEλ be the spectral decomposition of A on L2(µ). The Dirichlet form E(f, g)

is defined by

DE = D√−A =
{
h ∈ L2(µ) :

∫ +∞

0
λd 〈Eλh, h〉µ < +∞

}
,

E(f, g) =
〈√
−Af,

√
−Ag

〉
µ

=
∫ +∞

0
λd 〈Eλf, g〉µ , f, g ∈ DE .
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Inequalities which connect the Lp(µ) norms of some function f to Lq norms of the gradient√
Γ(f) will prove useful in the sequel. Recall that µ satisfies a Poincaré inequality if there exists

some constant cP such that

∀ f ∈ A, Varµ(f) :=
∫
f2dµ−

(∫
fdµ

)2
≤ cPE(f, f) = cP

∫
Γ(f, f)dµ. (PI)

3.2.2. Finite-dimensional weak convergence

Let F ⊂ L2
0(µ). It was already mentioned that convergence of the marginals of (Gt(f))f∈F can

be established in different situations and under different assumptions on F .

Case 1. Uniform CLT via Poisson equation in L2. Assume that F ⊂ DA−1 such that, for any
f ∈ F , there exists F ∈ DA with AF = f . By Dynkin’s formula, (Mf

t )t≥0, defined by

Mf
t := F (Xt)− F (X0)−

∫ t

0
(AF ) (Xu) du,

is a locally square-integrable martingale relative to Pµ, and if F 2 ∈ DA, it holds〈
Mf〉

t
=
∫ t

0
Γ(F, F ) (Xu) du.

Letting Mf
n,t := Mf

nt/
√
n, it follows from the law of large numbers that

〈
Mf
n,·
〉
t
→n→∞

∫
Γ(F, F )dµ.

Since, for any fixed t ≥ 0, F (Xnt) /
√
n →n→∞ 0 in probability, it follows from the martingale

CLT that (3.1.3) and (3.1.4) hold. In the case of an infinite-dimensional extension of a CLT
which is obtained via the Poisson equation in L2, the limiting process G in a Donsker theorem
must be centered Gaussian with covariance function

EµG(f)G(g) =
∫

Γ(A−1f,A−1g)dµ

= −
∫ ([

A−1f
]
g +

[
A−1g

]
f
)

dµ, f, g ∈ F . (3.2.1)

The pseudo-metric induced by G on F is given by

d2
G(f, g) =

∫
Γ(A−1(f − g))dµ

= −2
∫

(f − g)
[
A−1(f − g)

]
dµ, f, g ∈ F . (3.2.2)

Remark 3.2.1. The CLT for Markov processes via solution of the Poisson equation related to
the infinitesimal generator has been studied amply in the literature; cf. Section VIII.3f in Jacod
and Shiryaev (2002). One classical reference for continuous Markov processes is Bhattacharya
(1982). More recently, the approach has been extended to obtain CLTs for the Euler scheme with
decreasing step of Brownian diffusions (see Lamberton and Pagès (2002)) and for Lévy-driven
SDEs (Panloup (2008)).

Remark 3.2.2. It follows from results on the Poisson equation in a bounded domain that the
equation AF = f on Rd has a solution when f is compactly supported and the diffusion X
is uniformly elliptic. In the general case, Pardoux and Veretennikov (2001) solve the problem
under ellipticity conditions in specific Sobolev spaces and give upper bounds for F and its first
derivatives. Further explicit criteria for solving the Poisson equation in L2 are given in Cattiaux
et al. (2012).
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Case 2. Reversible setting: Uniform CLT from the existence of asymptotic variance. For
reversible µ, a CLT holds even if the Poisson equation cannot be solved. Given f ∈ L2

0(µ), the
Kipnis–Varadhan condition is satisfied if

V :=
∫ ∞

0

(∫
(Psf)2dµ

)
ds <∞. (3.2.3)

In this case, the CLT holds under Pµ with Varµ(Gt) ∼t→∞ 4V . Let F ⊂ L2
0(µ) be such that

any f ∈ F satisfies (3.2.3). It follows from the above that the pseudo-metric induced by the
limiting Gaussian process G on F reads

d2
G(f, g) =

∫ ∞
0

(∫
(Ps(f − g))2dµ

)
ds, f, g ∈ F . (3.2.4)

For functions f, g ∈ DA−1 , the expressions in (3.2.2) and (3.2.4) coincide.

3.2.3. Weak convergence of the empirical diffusion process

The classes of functions on E to be considered in the sequel will be countable families F of
(real-valued) measurable functions f on (E,B(E)) such that ‖f(x)‖F := supf∈F |f(x)| <∞ for
all x ∈ E. By restricting attention to countable classes, we circumvent the various measura-
bility questions that the study of empirical processes raises. A convenient condition however is
admissibility or, more precisely, Dudley’s notion of Suslin admissible classes; see Dudley (1999),
Chapter 5.

Definition 3.2.3. Let F ⊂ L1
0(µ) be a countable class of measurable functions, and define for

any t > 0 the random map

Gt(f) := 1√
t

∫ t

0
f(Xu)du, f ∈ F .

We say that F is a Donsker class (for µ) if Gt(f) `∞(F) G, where G is a tight, Borel measurable
element of `∞(F).

Weak convergence in `∞(F) to a tight Borel measurable limit is equivalent to finite-dimensional
weak convergence and (i) asymptotic tightness, or, equivalently, (ii) equicontinuity with respect
to a semimetric d such that (F , d) is totally bounded.

By definition, F can be Donsker only if there exists a version of the Gaussian process G which
is a tight Borel measurable map into `∞(F). Tightness of the Gaussian process G indexed by F
is equivalent to saying that F is pregaussian when we consider this term in the diffusion context
in accord with classical empirical process usage.

Definition 3.2.4. (i) We call F ⊂ L2(µ) pregaussian (for µ) if the centered Gaussian process
G appearing in the CLT admits a version with almost all sample paths bounded and
continuous on F with respect to the metric d2

G(f, g) := ς2(f − g), where

ς2(f) := lim
t→∞

Varµ (Gt(f)) = lim
t→∞

Varµ
( 1√

t

∫ t

0
f(Xu)du

)
(3.2.5)

is the asymptotic variance appearing in the CLT.

(ii) Given a separable, infinite-dimensional Hilbert space H, a set C ⊂ H is called a GC-set
if the restriction of the isonormal Gaussian process L on H can be chosen such that its
sample functions are uniformly continuous on C.
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A set
G ⊂ L2

0(P) :=
{
f ∈ L2(P) :

∫
fdP = 0

}
is pregaussian if and only if the corresponding set in L2

0(P) is a GC-set; here, as usual, L2
0(P)

denotes the set of all equivalence classes of elements of L2
0(P) for P-a.s. equality. In order to

make this definition useful in the current framework, we consider Case 1. Assume that the finite-
dimensional distributions (fidis) of the random maps Gt converge weakly to those of a centered
Gaussian random map G with covariance structure cov(G(f),G(g)) =

∫
Γ(A−1f,A−1g)dµ. De-

fine the norm ‖ · ‖DA on the domain of A as in (1.1.4), and assume that the carré du champ
associated with A satisfies Poincaré’s inequality. Then the couple (DA, ‖ · ‖DA) defines a sepa-
rable Hilbert space (see Lemma A.2.1 in the Appendix). This observation enables one to use
classical results on the continuity of Gaussian processes in order to verify pregaussianness as
defined above.

3.3. Approaches to uniform CLTs

Weak convergence in `∞(F) is equivalent to finite-dimensional weak convergence and asymptotic
uniform equicontinuity. The question of convergence of the fidis was briefly discussed in Section
3.2.2. In particular, it was pointed out that CLTs can be obtained via the Poisson equation
and, for reversible µ, from the existence of the asymptotic variance. There exists a wealth
of extensions and alternative approaches to proving CLTs for ergodic Markov processes. We
shall not further deepen this question but refer to Cattiaux et al. (2012) for a comprehensive
recent review of situations where finite-dimensional convergence can be established. For proving
uniform CLTs, asymptotic equicontinuity remains to be verified, and this is where the empirical
process machinery comes into play. In this section, we shall focus on the approach via solving
the Poisson equation in L2 such that the latter task reduces to showing that, for every ε, η > 0,
there exists some δ > 0 such that

lim sup
t→∞

Pµ

(
sup

dG(f,g)<δ
|Gt(f)−Gt(g)| > ε

)
< η, f, g ∈ F ⊂ DA−1 ,

where dG is given by (3.2.2).

3.3.1. Poincaré’s inequality and an Ossiander-type bracketing CLT

The first result is convenient for statistical applications as it permits to use known results on
bracketing numbers. Recall that N[ ]

(
ε,F , L2(µ)

)
denotes the ε-entropy with bracketing.

Proposition 3.3.1 (Rohde and Strauch (2010), Theorem 3.2). Let X be an ergodic stationary
diffusion process satisfying condition (D2), and let F ⊂ DA−1 be a countable class of bounded
functions. If F satisfies ∫ ∞

0

√
logN[ ](ε,F , L2(µ))dε <∞, (3.3.1)

then F is Donsker.

Proof. It remains to prove asymptotic equicontinuity. Ossiander’s result is about L2-bracketing.
The proof of this classical bracketing CLT as it is given in Dudley (1999), pp. 239–244, is
based on chaining arguments which are also valid when the pseudo-metric dG is used. The only
ingredient of the proof which does not apply in the diffusion context is the classical Bernstein-
inequality which can be replaced with the Bernstein-type inequality (3.1.6). Furthermore, by
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Cauchy–Schwarz and Poincaré’s inequality,

Varµ
(
Gt(Ag)

)
= 〈g,Ag〉µ ≤ ‖g‖L2(µ)‖Ag‖L2(µ) . ‖Ag‖2L2(µ),

hence dG(A−1f,A−1h) . ‖f − h‖L2(µ), so the bracketing entropy numbers with respect to dG
can be upper-bounded by L2(µ)-bracketing.

3.3.2. Applications of the sharp Bernstein-type inequality for symmetric Markov
processes

In this section, we require a sharper version of (3.1.6) due to Lezaud (2001). Using Kato’s
perturbation theory, he proved that for any h ∈ L1

0(µ), it holds

∀t, r > 0, Pµ

(∣∣∣∣1t
∫ t

0
h(Xu)du

∣∣∣∣ > r

)
≤ 2 exp

(
− tr2

2 (ς2(h) + cP r‖h‖∞)

)
, (3.3.2)

where ς2(h) is the asymptotic variance appearing in the CLT (cf. (3.2.5)). If ς2(h) . ‖h‖2∞
for all h as above, then the Bernstein-type concentration inequality (3.3.2) implies the Poincaré
inequality (PI) (cf. the comment below Theorem 1.2 in Gao et al. (2010) and the subsequent
remark), and (PI) can be seen as some kind of minimal assumption for (3.3.2) to hold for all
bounded functions h.

A sufficient condition for asymptotic tightness

We first consider the more general framework described in Theorem 1.2.7 in Talagrand (2005).
Definitions and relevant properties of the γα functionals are given in Appendix A.3. Let T be
a set equipped with two distances $1, $2, and consider a process (Zt)t∈T with EZt = 0 which
satisfies the following increment condition,

Pr (|Zs − Zt| ≥ u) ≤ 2 exp
(
−min

{
u

$1(s, t) ,
u2

$2(s, t)2

})
, s, t ∈ T.

Then, for all u, δ > 0, k ∈ N, the following inequality holds,

E sup
$2(s,t)<δ

|Zs−Zt| ≤ L

inf sup
t∈T

∑
n>k

2n∆1(An(t)) + inf sup
t∈T

∑
n>k

2n/2∆2(An(t)) + δ22k
 , (3.3.3)

where the infimum is always taken over all admissible sequences (An) of partitions of T . For
the proof, define the functionals

ζ1(k) := inf sup
t∈T

∑
n>k

2n∆1(An(t)), ζ2(k) := inf sup
t∈T

∑
n>k

2n/2∆2(An(t)), k ∈ N.

Fix k > 0. Theorem 1.3.6 in Talagrand (2005) states that γα(T, d) ≤ L(α) sup γα(F, d), where
the supremum is taken over all finite F ⊂ T . Thus, it is no loss of generality to assume that T
is finite. Inspection of the proof of Theorem 1.2.7 in Talagrand (2005) yields

E sup
t∈T

∣∣∣Zt − Zπk(t)

∣∣∣ ≤ L sup
t∈T

∑
n>k

(
2n$1(πn(t), πn−1(t)) + 2n/2$2(πn(t), πn−1(t))

)
≤ L (ζ1(k) + ζ2(k)) ,
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where πn(t) denotes the point in An(t) which is closest to t (in terms of the respective metric).
The remainder of the proof is along the lines of the proof of Theorem 11.14 in Ledoux and
Talagrand (1991). For the sake of completeness, we sketch the remaining steps here. Define

U := {(x, y) ∈ Ak ×Ak : ∃u, v ∈ T such that $2(u, v) < δ, πk(u) = x, πk(v) = y} .

For (x, y) ∈ U , fix ux,y, vx,y such that πk(ux,y) = x, πk(vx,y) = y, and $2(ux,y, vx,y) < δ. By
Lemma 11.3 in Ledoux and Talagrand (1991), it holds

E sup
x,y∈U

∣∣Zux,y − Zvx,y ∣∣ ≤ δ√cardU ≤ 22kδ.

Consider arbitrary s, t ∈ T with $2(s, t) < δ, and let x = πk(s), y = πk(t). It then follows that
(x, y) ∈ U and, since πk(ux,y) = πk(s) = x, πk(vx,y) = πk(t) = y,

|Zs − Zt| ≤ sup
x,y∈U

∣∣Zux,y − Zvx,y ∣∣+ 4 sup
t∈T

∣∣∣Zt − Zπk(t)

∣∣∣ .
This proves (3.3.3). Returning to the case of a symmetric Markov process (Xt)t≥0 whose carré du
champ satisfies (3.3.2), let F ⊆ L1

0(µ) be a class of bounded functions. Consider the collection
(Gt(f))f∈F of functionals Gt(f) := t−1/2 ∫ t

0 f(Xu)du, t > 0, indexed by F . Then the above
reasoning implies that, for all u, t, δ > 0, k ∈ N,

Pµ

(
sup

f,g∈F :dG(f,g)<δ
|Gt(f − g)| > u

)
≤ L

u

(
inf sup

f∈F

∑
n>k

2n/2∆2(An(f)) (3.3.4)

+ 1√
t

inf sup
f∈F

∑
n>k

2n∆∞(An(f)) + δ22k
)
,

where the infimum again is taken over all admissible sequences of partitions of F .

Proposition 3.3.2. Assume that µ satisfies (3.3.2). If F is pregaussian and if there exists an
admissible sequence (An)n≥0 of partitions of F such that

lim
k→∞

sup
f∈F

∑
n>k

2n∆∞(An(f)) = oP(1), (3.3.5)

then (Gt(f))f∈F is asymptotically dG-equicontinuous.

Proof. Since F is pregaussian, Theorem A.3.3 implies that there exists an admissible sequence
of partitions (An)n≥0 of F such that

lim
k→∞

sup
f∈F

∑
n>k

2n/2∆2(An(f)) = 0. (3.3.6)

Given η > 0, it follows from (3.3.4), the above condition (3.3.5) and (3.3.6) that δ > 0 can be
chosen such that

lim
t→∞

Pµ

(
sup

dG(f,g)<δ

1√
t

∣∣∣∣∫ t

0
(f − g)(Xs)ds

∣∣∣∣ > ε

)
< η.

Remark 3.3.3. Assume that h1, . . . , hm ∈ L1
0(µ) satisfy the increment condition (3.3.2), and that

maxi=1,...,m Varµ (Gt (hi)) ≤ ς2 and maxi=1,...,m ‖hi‖∞ ≤ M . Analogous to the proof of Lemma
2.2.10 in van der Vaart and Wellner (1996), it can be shown that, for any p ≥ 1,∥∥∥∥ max

i=1,...,m

1√
t

∫ t

0
hi (Xu) du

∥∥∥∥
Lp(µ)

.
√

log(1 +m)
(
ς + cPM√

t

√
log(1 +m)

)
. (3.3.7)
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The chaining method provides extensions of bounds on finite suprema as in (3.3.7) to the infinite-
dimensional case. For a class F ⊂ L1

0(µ) of functions satisfying (3.3.2), the generic chaining
technique immediately gives an upper bound of the form

Eµ sup
f∈F

∣∣∣∣ 1√
t

∫ t

0
f(Xu)du

∣∣∣∣ . γ2(F , dG) + γ1(F , d∞)√
t

.

Excursion: The effect of pregaussianness on the asymptotic equicontinuity
criterion

We now state a result similar in spirit to Theorem 3.2 in Giné and Zinn (1984) which describes
how pregaussianness bears on the equicontinuity condition. Their theorem states that a class F
of uniformly bounded functions on (S,B(S),P) is P-Donsker if and only if it is P-pregaussian
and it holds for any (or all) η > 0

sup
{

1√
n

n∑
i=1

εi(f − g) (Xi) : f, g ∈ F , ‖f − g‖L2(P) <
η√
n

}
→n→∞ 0

in probability, where (εi) denotes a Rademacher (randomizing) sequence. Symmetrization plays
a central role in the proof of this result (cf. also Ledoux and Talagrand (1991), pp. 405–407) which
essentially consists of applying Sudakov’s minoration principle and real exponential bounds
which follow from comparison of Rademacher averages to Gaussian averages. Since the sym-
metrization device is not directly applicable in the diffusion framework, we use a different idea
and decompose the function class F . The Bernstein-type inequality (3.3.2) shows that the
empirical process Gt exhibits a tail behaviour which is a mixture of a subexponential and a
sub-Gaussian part. The sub-Gaussian part is controlled by the pregaussian hypothesis while
the subexponential part can be dealt with by means of Sudakov’s minoration. Given a function
class F and any δ > 0, let

Fδ := {f − g : f, g ∈ F , dG(f, g) < δ} . (3.3.8)

Note that, while the original result due to Giné and Zinn (1984) is formulated in terms of the
L2(P) norm, Fδ in (3.3.9) is defined via dG rather than L2(µ).

Proposition 3.3.4 (Rohde and Strauch (2010), Theorem 3.1). Let F ⊂ L1
0(µ) be a counta-

ble class of uniformly bounded functions. The empirical process (Gt(f))f∈F is asymptotically
equicontinuous if and only if F is pregaussian and it holds for any η > 0,

Eµ

∥∥∥∥ 1√
t

∫ t

0
f (Xu) ds

∥∥∥∥
F(η/√t)1/2

→t→∞ 0. (3.3.9)

Proof. It is clear that the conditions on F are necessary for asymptotic equicontinuity of F . The
first part of the proof of sufficiency is along the lines of the proof of Theorem 3.2 in Giné and
Zinn (1984). Let η > 0 be fixed, and set δt := (η/

√
t)1/2, mt := N(δt/2, dG,F). Pregaussianness

of F implies by Sudakov’s minoration (cf., e.g., Corollary 3.18 in Ledoux and Talagrand (1991))
that

lim
t→∞

δt
√

logmt = 0. (3.3.10)

Furthermore, there exists a finite set G := G(η, t) = {g1, . . . , gmt} maximal in F such that
dG(gi, gj) > δt for all 1 ≤ i < j ≤ mt. Since G forms a δt-covering of F with respect to dG, the
triangle inequality yields ‖Gt‖Fη ≤ ‖Gt‖Fδt + ‖Gt‖Gη . In view of (3.3.9), it remains to bound

139



3. Donsker theorems for multidimensional ergodic diffusions

Eµ ‖Gt‖Gη from above. This is done by means of a slight modification of Lemma A.1 in van der
Vaart (1996). For any f ∈ (F − F), let σ2

f := EµΓ(f), cf := supx∈E |f(x)|, and consider the
decomposition

|Gt(f)| = |Gt(f)| · 1
{
|Gt(f)| ≤

σ2
f

cf

√
t

}
+ |Gt(f)| · 1

{
|Gt(f)| >

σ2
f

cf

√
t

}
. (3.3.11)

The sharp Bernstein-type inequality (3.3.2) then gives

Pµ

(
|Gt(f)| · 1

{
|Gt(f)| ≤

σ2
f

cf

√
t

}
> x

)
≤ 2 exp

(
− x2

4σ2
f

)
,

Pµ

(
|Gt(f)| · 1

{
|Gt(f)| >

σ2
f

cf

√
t

}
> x

)
≤ 2 exp

(
− x

4cf/
√
t

)
.

This implies (cf. the proof of Lemma A.1 in van der Vaart (1996)) that

Eµψ1

 |Gt(f)|1
{
|Gt(f)| > σ2

f

cf

√
t

}
Kcf/

√
t

 ≤ 1, Eµψ2

 |Gt(f)|1
{
|Gt(f)| ≤ σ2

f

cf

√
t

}
Kσf

 ≤ 1,

where K is a sufficiently large (universal) constant, not depending on cf and σf , and ψα are the
Young functions ψα(x) := exp (xα)− 1, α = 1, 2. Inequality (2.10) in Arcones and Giné (1993)
then gives for c′ := supf∈F cf ,

Eµ max
1≤i<j≤mt

|Gt(fi − fj)|1
{
|Gt(fi − fj)| >

σ2
fi−fj
cfi−fj

√
t

}
. log(mt)

c′√
t
.

For estimating the first term in (3.3.11), we use the generic chaining bound in Theorem 1.2.6 in
Talagrand (2005) to obtain

Eµ max
1≤i<j≤mt

|Gt(fi − fj)|1
{
|Gt(fi − fj)| ≤

σ2
fi−fj
cfi−fj

√
t

}
. γ2 (Gη, dG) .

Pregaussianness implies that limη→0 γ2 (Fη, dG) = 0, and combined with (3.3.10) this completes
the verification of the asymptotic equicontinuity condition.

Remark 3.3.5. An alternative result on the influence of pregaussianness on the Donsker proper-
ty can be derived from Theorem 2.6.2 in Talagrand (2005). Loosely speaking, it asserts that a
countable class F ⊂ L2(P) is P-Donsker if it can be decomposed into the sum of one class F1 for
which the random distances

(∑n
i=1 n

−1|f(Xi)|2
)1/2 are controlled by the pregaussian hypothesis

and another class F2 for which small L1(Pn) perturbations have their L2(Pn) distances bounded
by a fixed Gaussian distance.

The importance of the above results on the effect of pregaussianness is that they can be used
to formulate simplified conditions for asymptotic equicontinuity. In particular, they provide
a starting point for deriving (modified versions of) uniform CLTs under minimal conditions
(in the best case, reduced to pregaussianness). Versions of the Giné–Zinn result have been
applied in Giné and Nickl (2008) and Radulović and Wegkamp (2009) for proving Donsker-
type theorems for smoothed empirical processes under only pregaussian conditions; a detailed
discussion of their results will be given in Section 3.6. Mendelson and Zinn (2006) use the
alternative characterization sketched above (also cf. Theorem 1 in Talagrand (1987a), Theorem
3.1.3 in Giné and Zinn (1986), Corollary 14.9 in Ledoux and Talagrand (1991)) to construct a
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modified empirical process which converges under only pregaussian conditions. Their approach
is based on the generic chaining technique which is applied to build a modified empirical process
for which only the existence of the limiting Gaussian process is required to obtain both tail
estimates and the CLT for the modified process. The variant of the empirical process they
consider is based on almost admissible sequences and therefore only of limited use in practice.
Note however that, replacing Bernstein’s inequality for independent random variables with the
sharp Bernstein-type deviation inequality (3.3.2), the proof of Theorem 2.7 in Mendelson and
Zinn (2006) can be modified to construct a respective variant of the empirical diffusion process.

Beyond Poincaré’s inequality

Empirical process theory has matured over the last decades, and the theory now provides tools
for proving results known from the classical setting also in more general situations without too
much effort. Giné (2007) points out strategies to prove CLTs for classical empirical processes in
the following order,

(1) arguments from probability of Banach spaces,

(2) VC-type arguments,

(3) bracketing results, and

(4) conditions in terms of random entropies.

A bracketing result has already been stated in Section 3.3.1, and (1) and (4) will be investigated
in this section. As concerns (2), we merely note that it is possible to discretize the empirical pro-
cess and to work with the discretized version, exploiting some mixing properties. In particular,
the symmetrization device can be applied after suitable decoupling to the discretized version,
such that sufficient conditions ensuring asymptotic equicontinuity (such as Vapnik–Chervonenkis
type conditions) can be derived. We do not pursue this strategy here but refer the reader to
Rio (2000) for further results in this spirit.

Random entropy criteria

The proof of the result of van der Vaart and van Zanten (2005) on scalar empirical diffusion
processes comprises the following steps:

(1) Reduction to the natural scale case such that it suffices to prove the theorem for diffusions
X for which the identity is a scale function;

(2) asymptotic equivalence with uniform weak convergence of continuous local martingales;

(3) proof of convergence of the finite-dimensional marginals of the approximating martingales
by means of the martingale CLT;

(4) verification of asymptotic equicontinuity by means of a limit theorem for diffusion local
time.

While (2) and (3) have their counterparts in our previous analysis of weak convergence proper-
ties of the empirical processes of multidimensional diffusions, item (4) remains open. The first
part of the proof of asymptotic equicontinuity in the scalar diffusion case consists in applying
Bernstein’s inequality for continuous martingales, and this can be done in the multidimensional
setting, too. The approach gives a criterion for asymptotic tightness which does not rely on
Poincaré’s inequality.
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Proposition 3.3.6. Assume that µ is reversible, and define the pseudo-metric dG as in (3.2.4).
If F is pregaussian, if any f ∈ F satisfies the Kipnis–Varadhan condition (3.2.3), and if

sup
f,g∈F :

dG(f,g)>0

1
t

∫∞
0
∫ t
0(Ps(f − g))2(Xu)duds

4
∫∞

0 (
∫

(Ps(f − g))2dµ) ds = OP(1), (3.3.12)

then
(Gt(f))f∈F  `∞(F) (G(f))f∈F ,

where G is a centered Gaussian process with covariance structure

EµG(f)G(g) = 4
∫ ∞

0

∫
PsfPsgdµds.

Proof. Pregaussianness of F implies that (F , dG) is totally bounded. For fixed ε > 0 and f ∈ F ,
define the resolvent

gε := Rεf :=
∫ ∞

0
e−εsPsfds. (3.3.13)

Thus, gε ∈ DA, εgε −Agε = f , and∫ t

0
f(Xu)du = Mt(gε) + ε

∫ t

0
gε(Xu)du+ gε(X0)− gε(Xt),

where
Mt(gε) := gε(Xt)− gε(X0)−

∫ t

0
(Agε)(Xu)du

is a martingale. Since ε‖gε‖2 →ε→0 0 by (3.2.3), the finite-dimensional marginals of (Gt(f))f∈F
converge by means of the martingale CLT. Given f, f ′ ∈ F and any fixed ε > 0, define gε, g′ε
according to (3.3.13). By the preceding, it suffices to prove asymptotic equicontinuity of the
approximating martingalesMt(·). Bernstein’s inequality for continuous martingales (cf. (3.1.7))
implies that, for any η > 0 and all t > 0,

Pµ

( 1√
t

∣∣Mt(gε − g′ε)
∣∣ > η; 1

t
〈M(gε − g′ε)〉t ≤ K2d2

G(f, f ′)
)
≤ 2 exp

(
− η2

2K2d2
G(f, f ′)

)
,

that is, f 7→ t−1/2Mt(gε) ·1{t−1〈M(gε)〉t ≤ K2 ∫ (Psf)2dµ} is subgaussian with respect to KdG.
Since F is pregaussian, there exists an admissible sequence (An)n≥0 of partitions of F such that

lim
k→∞

sup
f∈F

∑
n>k

2n/2∆2(An(f)) = 0.

Now, for any ζ > 0, there exists δ > 0 such that, uniformly in t,

Eµ sup
dG(f,f ′)<δ

∣∣Mt(gε − g′ε)
∣∣ · 1{t−1〈M(gε − g′ε)〉t ≤ K2d2

G(f, f ′)
}
< ζ. (3.3.14)

Combining (3.3.12) and (3.3.14) then gives the assertion.

3.4. Smoothed empirical diffusion processes: Introduction and motivation

The aim is to obtain Donsker-type theorems under necessary and sufficient conditions, and the
strategy in the sequel is to study some modified version of the empirical diffusion process, the
smoothed empirical diffusion process. All of the above considerations are based on the preprint
Rohde and Strauch (2010) which arose in joint work with Angelika Rohde.
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3.4. Smoothed empirical diffusion processes: Introduction and motivation

When estimating a linear functional or a collection of linear functionals of the form
∫
E fdµ,

given a continuous record (Xu)0≤u≤t of observations of X up to time t > 0, a natural estimator
is based on the empirical measure µt := t−1 ∫ t

0 δXudu, namely

∫
E
fdµt = 1

t

∫ t

0
f (Xu) du. (3.4.1)

If the invariant measure µ admits a Lebesgue density ρ, a competing estimator is found by
constructing a kernel estimator ρ̂t,h of ρ and applying the plug-in rule. This approach yields the
estimator ∫

E
f(x)ρ̂t,h(x)dx =

∫
E
f(x)

( 1
thd

∫ t

0
K

(
x−Xu

h

)
du
)

dx, (3.4.2)

where K : Rd → R is some sufficiently smooth kernel and h = ht denotes the bandwidth. It is
a priori not clear whether one estimator dominates the other in some aspects or whether they
show different behavior when a large class of linear functionals is considered simultaneously.

In the sequel, we study the smoothed empirical diffusion process related to (3.4.2), for any
f ∈ L1(µ) defined as

St,h(f) :=
√
t

∫
E
f(x) (ρ̂t,h(x)− ρ(x)) dx

=
√
t

∫
E
f(x)

(1
t

∫ t

0
Kh (x−Xu) du− ρ(x)

)
λλ(dx) (3.4.3)

= 1√
t

∫ t

0

(
f ∗Kh (Xu)−

∫
E
fdµ

)
du,

where Kh(x) = h−dK
(
h−1x

)
and λλ denotes Lebesgue measure. The mean-squared error for

the estimation of a d-dimensional density at a fixed point in a Hölder ball with parameter β > 0
is known to be of order n−β/(2β+d), n being the number of i.i.d. observations. In contrast,
Corollary 1 in Dalalyan and Reiß (2007) states that the convergence rate for the mean-squared
pointwise risk of an estimator ρ̂t for the invariant density ρ of a diffusion X, based on the
observation (Xu)0≤u≤t, can be upper-bounded by t−1/2(log t)2 for d = 2 and t−(β+1)/(2β+d) for
d ≥ 3, respectively. As will be shown subsequently, this effect gets visible when studying the
smoothed version of the empirical diffusion process related to (3.4.2), based on some kernel
estimator ρ̂t,h of the invariant density ρ.

The form of the smoothed empirical diffusion process in (3.4.3) is similar to a representation
of empirical processes of scalar diffusions which is obtained by means of the occupation times
formula. Indeed, let X be a one-dimensional diffusion on an open interval I ⊆ R with speed
measure m which is assumed to be finite, m(I) <∞. The diffusion thus defined is ergodic, and
its invariant measure is given by µ := m/m(I). The occupation times formula implies that one
may write

1√
t

∫ t

0

(
f(Xu)−

∫
I
fdµ

)
du = 1√

t

∫
I
lt(x)f(x)m(dx)−

√
t

∫
I

f(x)
m(I)m(dx)

=
√
t

∫
I
f(x)

(
lt(x)
t
− 1
m(I)

)
m(dx), (3.4.4)

where lt(x) denotes diffusion local time of X at time t in the point x ∈ I. In view of the obvious
similarity of (3.4.3) and (3.4.4) and the results of Dalalyan and Reiß (2007), the hope is that one
can also establish increased regularity for the smoothed empirical diffusion process in (3.4.3).
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3. Donsker theorems for multidimensional ergodic diffusions

3.5. Modified empirical CLTs for Donsker classes and beyond

Assume that F ⊂ DA−1 such that any f ∈ F can be written as f = AF for some F ∈ DA,
and let G := A−1F . Without further mentioning, F and G will be assumed to be countable
classes of functions. The decomposition of the smoothed empirical process St,h into the centered
smoothed empirical process and the (inevitable) bias term reads

St,h(f) =
√
t

(1
t

∫ t

0
(f ∗Kh) (Xu) du−

∫
(f ∗Kh) dµ

)
+
√
t

∫
(Ag ∗Kh)dµ, (3.5.1)

where Kh(x) := h−dK(x/h) for some compactly supported kernel K on Rd with
∫
Kdλλ = 1.

Alternatively, one might decompose as follows,

St,h(f) = 1√
t

∫ t

0
(Ag ∗Kh −A(g ∗Kh)) (Xu) du+ 1√

t

∫ t

0
A(g ∗Kh)(Xu)du. (3.5.2)

The idea based on (3.5.2) is to prove asymptotic equicontinuity of the “intermediary process”

Ht,h(g) := Gt (A (g ∗Kh)) = 1√
t

∫ t

0
A (g ∗Kh) (Xu)du, (3.5.3)

and to show that, uniformly over g ∈ G,

Ht,h(g) = St,h(Ag) + oP(1).

This approach will be investigated in detail in the next section. The process Ht,h is well-defined
on any subspace of the domain DA which is locally translation-invariant; cf. Proposition A.2.2
in Appendix A.2.

The “standard” decomposition in (3.5.1) allows to state sufficient conditions for weak conver-
gence. In particular, an analogue of the theorem in van der Vaart (1994) on weak convergence
of smoothed empirical processes holds whenever the carré du champ of the diffusion X satisfies
Poincaré’s inequality.

Proposition 3.5.1. Let F ⊂ DA−1 be a translation-invariant countable Donsker class of measur-
able functions, and assume that µ satisfies (PI). Further assume that, for every t, F ⊂ L1(|mt|)
and

∫
Rd ‖f(· − y)‖2,µd|mt|(y) <∞ for all f ∈ F . If the following hypotheses hold,

sup
f∈F

Eµ

(∫
E

(f(·+ y)− f)Kht(y)dy
)2

= sup
f∈F

Eµ(f ∗Kht − f)2 →t→∞ 0; (H1)

sup
f∈F

√
t

∣∣∣∣Eµ

∫
E

(f(·+ y)− f)Kht(y)dy
∣∣∣∣ = sup

f∈F

√
t |Eµ(f ∗Kht − f)| →t→∞ 0, (H2)

then St,h(f) `∞(F) G, where G is the centered Gaussian random map with covariance structure
given by (3.2.1).

Proof. The proof is along the lines of the proof of the Theorem in van der Vaart (1994), taking
into account the slight correction due to Giné and Nickl (2008) and incorporating the modifi-
cations necessary due to the divergence from the i.i.d. setting. Precisely, letM be a collection
of signed measures of finite variation such that supm∈M ‖m‖TV <∞. By assumption, the func-
tions y 7→ f(x − y) and y 7→ ‖f(· − y)‖2,P are in L1(|m|) for all x ∈ Rd. Since (DA, ‖ · ‖DA) is
a separable Hilbert space (cf. Lemma A.2.1), one may extend Theorem 5.3 in Dudley and show
that the closure in ‖ · ‖DA for the coarsest topology of the symmetric convex hull of any Donsker
class is again Donsker; cf. the proof of Lemma 2 in Giné and Nickl (2008). It then follows
from Proposition A.2.2 in the Appendix that the class {f ∗m : f ∈ F ,m ∈M} is Donsker. The
remainder parts of the proof can be taken verbatim from the proof of the Theorem in van der
Vaart (1994).
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Entropy conditions and conditions on the order of the kernel K may be used for verifying (H1)
and (H2).

Lemma 3.5.2 (cf. Theorem 6.2 in Rohde and Strauch (2010)). Let β > d/2, and assume that
the invariant density ρ ∈ Cβ+1(Rd). If th2β → 0 and, in addition,

(a) K is a kernel of order bβc, then

lim
t→∞

√
t |Eµ (f ∗Kh)| = 0;

(b) the diffusion coefficient a(x) ≡ a is constant, G ⊂ C1(Rd) and{
δαg : g ∈ G, |α| ≤ 1, α ∈ {0, 1}d

}
⊂ Cβ+1(Rd),

then, for any kernel K of order 2bβc − 1,

lim
t→∞

Eµ sup
g∈G

1√
t

∣∣∣∣∫ t

0
(A (g ∗Kh)− (Ag) ∗Kh) (Xu) du

∣∣∣∣ = 0.

Proof. (a) Taylor expansion of ρ(y) and ρ(x) up to the order bβc gives the upper bound
√
t |Eµ(f ∗Kh)| =

√
t

∣∣∣∣∫ f(y)
(∫

(ρ(x)− ρ(y))Kh(x− y)dx
)

dy
∣∣∣∣ . √thβ = o(1).

(b) Denote by P (bi)
x and Q(∇g)i

x the Taylor expansion of bi of order bβc at x ∈ Rd and the Taylor
expansion of (∇g)i of order bβc−1 at x ∈ Rd, respectively. Since K is of order 2bβc−1, it
holds for the remainder terms R(bi)

x,y := bi(y)−P (bi)
x (y) and R(∇g)i

x,y := (∇g)i(y)−Q(∇g)i
x,y (y),∫ (

bi(y)− bi(x)
)
Kh(x− y)(∇g)i(y)dy

=
∫ (

P (bi)
x (y)− bi(x) +R(bi)

x,y

)
Kh(x− y)

(
Q(∇g)i
x (y) +R(∇g)i

x,y

)
dy

=
∫
R(bi)
x,yKh(x− y)

(
Q(∇g)i
x (y) +R(∇g)i

x,y

)
dy

+
∫ (

P (bi)
x (y)− bi(x)

)
Kh(x− y)R(∇g)i

x,y dy.

Hölder continuity of b and ∇g implies that

sup
x,y∈Cε:‖x−y‖≤h

∣∣∣R(bi)
x,y

∣∣∣ . hβ, sup
x,y∈Cε:‖x−y‖≤h

∣∣∣R(∇g)i
x,y

∣∣∣ . hβ−1.

The Taylor approximation Q(∇g)i
x (y) depends continuously on x, y and all partial deriva-

tives up to order bβc − 1 which are uniformly bounded in absolute value. Thus,

sup
g∈G

sup
x,y∈Cε

∣∣∣Q(∇g)i
x (y)

∣∣∣ <∞.
It remains to note that supx,y∈Cε:‖x−y‖≤h

∣∣∣P (bi)
x (y)− bi(x)

∣∣∣ . h. Summarizing, we obtain

Eµ sup
g∈G

1√
t

∣∣∣∣∫ t

0
((Ag) ∗Kh −A (g ∗Kh)) (Xu) du

∣∣∣∣
≤
√
t

∫
E

sup
g∈G

∣∣∣∣∫ (b(y)− b(x))t∇wg(y)Kh(x− y)dy
∣∣∣∣ dµ(x) .

√
thβ.

Assumption (H1) may be verified similarly to the i.i.d. setting. We will not deepen this question
but refer to Giné and Nickl (2008) for further results on this issue.
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3. Donsker theorems for multidimensional ergodic diffusions

3.6. Analyzing the smoothed empirical diffusion process

Our interest is in deriving uniform CLTs under minimal assumptions. The snag of Proposition
3.5.1 is that it only gives Donsker-type theorems for Donsker classes. It was however pointed
out by Radulović and Wegkamp (2000) in the i.i.d. setting that some smoothed version of the
empirical process may – in some cases – converge in law in `∞(F) to a tight limit if F itself is
not Donsker, under only the pregaussian hypothesis on F .

In the classical i.i.d. framework, uniform CLTs for smoothed empirical processes indexed by pre-
gaussian function classes were proven recently by Giné and Nickl (2008) (subsequently, [GN08],
for short) and Radulović and Wegkamp (2009) [RW09]. Let X1, . . . , Xn

i.i.d.∼ P for some law P
on Rd satisfying dP(x) = p0(x)dλλ(x). The smoothed empirical process Hn and the centered
smoothed empirical process H0

n are defined as

Hn(f) :=
√
n

(
1
n

n∑
i=1

(f ∗Khn)(Xi)−
∫
fdP

)
,

and
H0
n(f) :=

√
n

(
1
n

n∑
i=1

(f ∗Khn)(Xi)−
∫

(f ∗Khn)dP
)
,

respectively, where Kh(x) := h−dK((x − ·)/h) for some kernel K : Rd → R. Both [GN08] and
[RW09] adapt Theorem 3.2 in Giné and Zinn (1984) which characterizes the impact of pregaus-
sianness on the asymptotic equicontinuity criterion in order to prove uniform CLTs under only
pregaussian conditions. Theorem 3 in [GN08] finally reduces the problem of proving asymptotic
equicontinuity of the smoothed empirical process to verifying that, in outer probability,

lim
n→∞

∥∥∥∥∥ 1√
n

n∑
i=1

εif(Xi)
∥∥∥∥∥
H′
n−1/4

= 0,

where
Hδ :=

{∫
Rd

(f − g)(y)Kh(y − x)dy : f, g ∈ F , ‖f − g‖L2(P) ≤ δ
}

and (εi)∞i=1 denotes a Rademacher sequence. This condition is still difficult to verify in general,
and [GN08] suggest to use either uniform entropy bounds or bracketing entropy bounds for Hδ.
They prove that smoothed empirical processes indexed by some specific subset of the Besov space
Bs11(R), s < 1 – which is known to be P-pregaussian but not P-Donsker – satisfies a uniform
CLT. The proof uses the suggested bracketing entropy bound which results in the condition that
hnn

(2s−1)/(8s(s−1)) → ∞. [RW09] take a slightly different approach. Their general condition
implying asymptotic equicontinuity of the centered smoothed empirical process H0

n reads

E sup
Pf2≤η/

√
n

∣∣∣H0
n(f)

∣∣∣→ 0.

In the sequel, [RW09] use the decomposition by the Cauchy–Schwarz inequality,

E∗ sup
Pf2≤η/

√
n

∣∣∣∣√n ∫ f(x) (p̂n(x)−Ep̂n(x)) dx
∣∣∣∣

≤ E∗ sup
Pf2≤η/

√
n

(√
nPf2

)(∫ (p̂n(x)−Ep̂n(x))2

p(x) dx
)1/2

.
(√

n

∫ Var p̂n(x)
p(x) dx

)1/2
.
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This approach is not suitable for investigating the smoothed empirical diffusion process. Propo-
sition 3.3.4 is analogue to Giné and Zinn (1984)’s Theorem 3.2 in that it also characterizes the
impact of pregaussianness on the asymptotic equicontinuity criterion, but the constrained set
Fδ is defined in terms of dG, and Poincaré’s inequality only gives an upper bound of the form
‖A · ‖µ,2 on this metric. Moreover, the above approach needs that the variance decreases to zero
slightly faster than 1/

√
n. Our proof for the smoothed empirical diffusion process is conceptually

different.

3.6.1. The empirical diffusion process indexed by smoothed functions

Throughout this section, ((Xt) ,Pµ) is assumed to be a stationary ergodic diffusion, taking
values in some set E ⊂ Rd with non-void interior E \ ∂E, which satisfies the basic conditions
(D1)-(D5) introduced in Section 1.1.3. Assume that F ⊂ DA−1 is pregaussian and such that
G := A−1F ⊂ W 2,2(µ). Furthermore, suppose that G possesses an envelope G ∈ L1(µ) with
compact support C ⊂ E \ ∂E. If not explicitly stated otherwise, K ∈ C2

c (Rd) denotes some
kernel which admits the representation Kh,x(z) = h−dK̃ (‖x− z‖/h). Without loss of generality,
we assume that the support of K is the closed d-dimensional unit ball B0(1). Subsequently,
(G(f))f∈F denotes a centered Gaussian process with covariance structure as defined in (3.2.1).

Convergence of the marginals. Let G := A−1F ⊂ DA. Since (Pt) is a strongly continuous
semigroup, we have C2

c ⊂ DA such that, by Proposition A.2.2, g ∗Kh ∈ DA for any g ∈ G and
h sufficiently small. In particular, EµA (g ∗Kh) = EµAg = 0. Dynkin’s formula implies that
(Mg

t )t≥0 with Mg
t := g (Xt)− g (X0)−

∫ t
0(Ag) (Xu) du is a martingale, and letting

Mg
t,h := g ∗Kh (Xt)− g ∗Kh (X0)−

∫ t

0
A (g ∗Kh) (Xu) du,

the collection
(
t−1/2Mg

t,ht
(s)
)

0≤s≤t
is a triangular array of martingales.

Let g1, . . . , gm be any finite set of functions from G, and let ε > 0 be fixed. Note that

Pµ

(
max

i=1,...,m

∣∣∣∣ 1√
t
Mgi
t,ht
− 1√

t
Mgi
t

∣∣∣∣ > ε

)
≤ m max

i=1,...,m
Pµ

(∣∣∣∣ 1√
t
Mgi
t,ht
− 1√

t
Mgi
t

∣∣∣∣ > ε

)
≤ m

ε2 max
i=1,...,m

Eµ

∣∣∣∣ 1√
t

(
Mgi
t,ht
−Mgi

t

)∣∣∣∣2
= −2m

ε2 max
i=1,...,m

∫
(gi − gi ∗Kht)

tA (gi − gi ∗Kht) dµ (3.6.1)

= m

ε2 max
i=1,...,m

∫
∇w (gi − gi ∗Kht)

t (y)a(y)∇w (gi − gi ∗Kht) (y)dµ(y)

= m

ε2 max
i=1,...,m

∫
(∇wgi − (∇wgi) ∗Kht)

t (y)a(y) (∇wgi − (∇wgi) ∗Kht) (y)ρ(y)dy

= o(1)

as t → ∞, since (Kht) is a Dirac sequence and supy∈C ‖a(y)ρ(y)‖S2 is bounded. Here, ‖ · ‖S2

denotes the Frobenius norm. The expression for the variance in (3.6.1) is deduced from Bhat-
tacharya (1982), and we then used subsequently Lemmata A.2.3 and A.2.4 from the Appendix.
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Furthermore,

Eµ sup
g∈G

∣∣∣∣Ht,ht(g)− 1√
t
Mg
t,ht

∣∣∣∣ = 1√
t
Eµ sup

g∈G
|g ∗Kht (Xt)− g ∗Kht (X0)|

≤ 2√
t
Eµ sup

g∈G
(g ∗ |Kht | (X0))

≤ 2√
t

∫
E

∫
|Kht(y)|dydµ(z)→t→∞ 0,

and therefore, as t→∞ and for h = ht ↘ 0,

1√
t

∫ t

0
A(gi ∗Kht)(Xu)du = 1√

t
Mgi
t + oP(1), i = 1, . . . ,m. (3.6.2)

Convergence of the finite-dimensional distributions now follows from the martingale CLT for
triangular arrays.

Asymptotic equicontinuity. It follows from (3.6.2) that it suffices to prove asymptotic
equicontinuity of the triangular array of approximating martingales

(
t−1/2Mg

t,ht

)
g∈G

. Define

‖Mt,ht‖dG := sup
g,g′∈G:dG(g,g′)>0

√
〈Mg
·,h· −M

g′

·,h·〉t
dG(g, g′) .

For any fixed K > 0, ε > 0,

lim sup
t→∞

Pµ

(
sup

dG(g,g′)≤δ

1√
t

∣∣∣Mg
t,ht
−Mg′

t,ht

∣∣∣ > ε

)

≤ lim sup
t→∞

Pµ

(
sup

dG(g,g′)≤δ

1√
t

∣∣∣Mg
t,ht
−Mg′

t,ht

∣∣∣ > ε; ‖Mt,ht‖dG ≤ K
)

(3.6.3)

+ lim sup
t→∞

Pµ

(
‖Mt,ht‖dG > K

)
.

For the first term, it follows from Bernstein’s inequality for continuous local martingales (3.1.7)
that

Pµ

( 1√
t

∣∣∣Mg
t,ht
−Mg′

t,ht

∣∣∣ > ε; ‖Mt,ht‖dG ≤ K
)
≤ 2 exp

(
− ε2

2K2dG(g, g′)

)
,

that is, the random map
f 7→ 1√

t
MA−1f
t,ht

1
{
‖Mt,ht‖dG ≤ K

}
is sub-Gaussian with respect to KdG. Thus, by pregaussianness, the first term on the right-hand
side of (3.6.3) vanishes as δ ↘ 0. It remains to be shown that the second term in (3.6.3) vanishes
asymptotically. Itô’s formula yields the following expression for the quadratic variation,

1
t

〈
Mg
·,h·

〉
t

= 1
t

∫ t

0
((∇wg) ∗Kht)

t (Xu) a (Xu) (∇wg) ∗Kht (Xu) du

= 1
t

∫
C

∫ t

0
((∇wg) (y)Kht (y −Xu))t a (Xu) (∇wg) (y)Kht (y −Xu) dudy.

By Hölder’s inequality, the last expression can be bounded from above by some constant multiple
of ∫

C
(∇wg)t(y)

(1
t

∫ t

0
a(Xu) |Kht | (y −Xu)du

)
(∇wg)(y)dy.
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3.6. Analyzing the smoothed empirical diffusion process

Hence, using the definition of dG, in order to prove asymptotic equicontinuity, we are left with
the task of showing that

sup
g∈G

∫
C (∇wg)t (y)

(
1
t

∫ t
0 a (Xu) |Kht | (y −Xu) du

)
(∇wg) (y)dy∫

E (∇wg)t a∇wgdµ
= OP(1).

The last equation is true whenever

sup
y∈C

∥∥∥∥1
t

∫ t

0
a (Xu) |Kht | (y −Xu) du

∥∥∥∥
S2

(3.6.4)

≤ sup
y∈C

∥∥∥∥∫ a(z) |Kht | (y − z)ρ(z)dz
∥∥∥∥
S2

+ sup
y∈C

∥∥∥∥1
t

∫ t

0
a (Xu) |Kht | (y −Xu) du−

∫
a(z) |Kht | (y − z)ρ(z)dz

∥∥∥∥
S2

= OP(1).

Let x1, . . . , xNht be an ht-net of C with respect to the Euclidean distance. Since C is compact,
it holds Nht ∼ h−dt . The first term on the right-hand side of (3.6.4) can be bounded from above
by

sup
y∈C

∥∥∥∥∫ a(z)h−dt 1By(2ht)(y − z)ρ(z)dz
∥∥∥∥
S2

. sup
y∈C
‖a(y)‖S2h

−d
t ,

and it only remains to treat the second term. This will be done by applying the bound on the
variance of integral functionals of diffusion processes due to Dalalyan and Reiß (2007) which
was already employed in Chapter 2. It will be used now in the following version.

(Dalalyan and Reiß (2007), Proposition 1) Let C ⊂ E ⊂ Rd be bounded and assume
that µ ≤ κλλ on C for some positive constant κ. Then, for some constant % depending
only on cP , C0, d and κ,

Varµ
( 1√

t

∫ t

0
δ−d1By(δ) (Xu) du

)
≤ %δ−2dλλ (By(δ))2 ζ2

d (λλ (B1(δ))) ,

with

ζd(x) :=
{

max
{
1, log(1/x))2} , if d = 2,

x1/d−1/2, if d ≥ 3.

We first note that
ζd (λλ (Bx (ht))) . ζd

(
hdt

)
. (3.6.5)

For fixed i, j ∈ {1, . . . , d}, define for x ∈ C and t, h > 0,

Zhtx,t :=
√
t

(1
t

∫ t

0
aij (Xu)h−dt 1Bx(2ht) (Xu) du−Eµaij (X0)h−dt 1Bx(2ht) (X0)

)
.

Plugging (3.6.5) into the above variance inequality gives for any x ∈ C and t > 0

Varµ
(
Zhtx,t

)
. sup

z∈C
|aij(z)|2 ζ2

d

(
hdt

)
.

With
σ2

2,h(x) := lim
t→∞

VarPµ

(
Zhx,t

)
. sup

z∈C
|aij(z)|2 ζ2

d

(
hd
)

and
c∞,h := sup

z∈C

∣∣∣aij(z)h−d1Bx(2h)(z)
∣∣∣ . sup

z∈C
|aij(z)|h−d,
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3. Donsker theorems for multidimensional ergodic diffusions

Lezaud’s Bernstein-type inequality (3.3.2) yields the exponential tail bounds

Pµ

(∣∣Zhtx,t∣∣ > u
)
≤ 2 exp

(
− u2/2
σ2

2,ht(x) + cP c∞,htu/
√
t

)
∀u > 0.

By means of Pisier’s maximal inequality (cf. (3.3.7)), it follows

Eµ sup
k=1,...,Nht

1√
t

∣∣Zhtxk,t∣∣ . sup
z∈C
|aij(z)|

1√
t

ζd (hdt )+

√
log

(
eh−1

t

)
hdt
√
t


√

log
(
eh−1

t

)
.

We have proved

Theorem 3.6.1 (Rohde and Strauch (2010), Theorem 4.3). Let ((Xt),Pµ) be a stationary,
ergodic, strongly continuous diffusion in E ⊆ Rd with non-void interior E \ ∂E, satisfying the
conditions (D1)-(D5) in Section 1.1.3. Assume that A−1F is a countable subset of measurable
functions in W 2,2(µ), with compact support C in the interior of E, and let h̃(d)

t := t−1/d log(et).
If F is pregaussian, then( 1√

t

∫ t

0
A
((
A−1f

)
∗Kht

)
(Xu)du

)
f∈F
 (G(f))f∈F in `∞(F),

provided that ht = h
(d)
t ↘ 0 and h̃(d)

t = O
(
h

(d)
t

)
.

3.6.2. Example

Theorem 3.6.1 gives uniform CLTs for Kolmogorov processes as introduced in Section 1.1.3. For
any convex set I ⊂ Rd, let H(β, L; I) denote the isotropic Hölder smoothness class, defined in
analogy to the isotropic Hölder balls H(β, L) ≡ H(β, L;Rd) introduced in (2.2.1), that is,

H(β, L; I) :=


{
f : I → R : |f(x)− f(y)| ≤ L‖x− y‖β

}
, β ≤ 1,{

f ∈ Cbβc(I) :
∣∣∣f(x)− P (f)

y (x)
∣∣∣ ≤ L‖x− y‖β} , β > 1,

Theorem 3.6.2 (Rohde and Strauch (2010), Corollary 6.1). Let V ∈ H(β+1, L) for some L > 0,
β > d/2. Suppose b = −∇V satisfies the at-most-linear-growth condition, exp ◦(−2V ) ∈ L1(Rd)
and

max
i=1,...,d

max
α:|α|≤bβc

∂αbi(0)
 ≤ γ (3.6.6)

for some γ > 0. Assume that G = A−1
|N⊥A∩DA

F satisfies the requirement of Theorem 3.6.1, where
C ⊂ E is convex, G ⊂ C1(Rd) and{

∂αg : g ∈ G, |α| = 1, α ∈ {0, 1}d
}
⊂ H(β − 1, L;C)

for β > d/2. Let h(d)
t := t−1/d log(et). Then

(St,ht(f))f∈F  (G(f))f∈F in `∞(F),

provided that the involved kernel K is of order 2bβc − 1.
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3.6. Analyzing the smoothed empirical diffusion process

Proof. It follows from the arguments in Section 1.1.3 that conditions (D1)-(D5) are satisfied. In
view of Theorem 3.6.1, it suffices to prove that

(Ht,ht(g))g∈G = (St,ht(Ag))g∈G + oP(1).

The assumption that V ∈ H(β + 1, L) and (3.6.6) together imply that ρ is Hölder continuous of
order β + 1 on every bounded set D ⊂ Rd. Lemma 3.5.2 then gives

√
t |Eµ (f ∗Kht)| →t→∞ 0

and
lim
t→∞

Eµ sup
g∈G

1√
t

∣∣∣∣∫ t

0
(A (g ∗Kh)− (Ag) ∗Kh) (Xu) du

∣∣∣∣ = 0.

151



3. Donsker theorems for multidimensional ergodic diffusions

152



4. Extensions, concluding remarks and outlook

Two classical questions concerning nonparametric estimation theory and weak con-
vergence properties of diffusion processes in Rd were investigated in the present work.
We identified classes of ergodic diffusion processes for which results similar profound
as in the classical i.i.d. framework or for scalar diffusions can be obtained. To con-
clude, we give a selective overview of results obtained in the previous two chapters.
Furthermore, we sketch possible extensions.

4.1. Sharp adaptive estimation for ergodic diffusion processes

The problem of estimating the drift of a multidimensional diffusion process is somewhat com-
plex. A common approach to estimate the drift of scalar ergodic diffusions is to exploit the
representation of the drift via the invariant density of the diffusion and its derivative. We opted
for a similar strategy which in particular led us to restricting attention to ergodic diffusion
process solutions of the SDE dXt = b(Xt)dt + σ dWt whose invariant density ρ satisfies the
relation

2bjρ = div(ajρ) =
d∑

k=1
∂k (ajkρ) , j ∈ {1, . . . , d}.

Under reasonable assumptions, the invariant density ρ can be estimated faster than the diver-
gences div(ajρ). The main part of our investigation of the drift estimation problem thus focuses
on analyzing the performance of kernel estimators of the divergences div(ajρ). Sharp results for
estimating the components of the vector div(aρ) are obtained under general assumptions such
as ergodicity, stationarity, and the condition that the carré du champs of the diffusion satisfies
Poincaré’s inequality. At a later stage, conditions on the growth of the drift coefficient and on
its radial behavior (which in particular imply exponential bounds on the invariant density of
the associated diffusion process) allow to transfer the results on estimating the components of
div(aρ) to the original drift estimation problem.

From a practical point of view, the results on exact asymptotics allow to distinguish between
competing estimators. The drift estimators studied in the literature typically attain the minimax
optimal rate but, at least for moderate sample size T , the influence of the constant may be
substantial. The results also deliver insight into the matter of the problem of drift estimation.
Recall that Sd = 2πd/2/Γ(d/2) denotes the surface of the unit sphere in Rd. Theorem 2.3.3
and Theorem 2.3.10 state that the asymptotically exact constant for the (adequately weighted)
global L2 risk for estimating the j-th drift component over (weighted) L2 Sobolev classes with
integer smoothness index β > 1 and radius L > 0 is given by

(L(2β + d))
d

2β+d

d

(
ajjβ Sd

(2π)d(β + d)

) 2β
2β+d

.

As compared to the optimal constant for density estimation from i.i.d. observations which is
developed in Rigollet and Tsybakov (2007), the constant also depends on the j-th diagonal
entry ajj = ∑d

k=1 σ
2
jk of the diffusion matrix a = σσt.

For pointwise adaptive estimation of the j-th drift component of ergodic diffusions with non-
degenerate diffusion coefficient over L2 Sobolev classes of smoothness β > d/2 with radius L > 0,
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4. Extensions, concluding remarks and outlook

the asymptotically exact constant for the squared pointwise risk is identified as

L
d

2β

ρ(x0)
2β
d

(
d2ajjρ(x0)
β(2β − d)

)β−d/2
2β

Iβ,

where

Iβ :=
√

1
2βB

(
1 + d

2β , 1−
d

2β

) Sd
(2π)d .

As in the white noise setting, the constant involves the value of an optimal recovery problem.
Additionally, the value of the invariant density ρ(·) at the point x0 ∈ Rd and the j-th diagonal
entry of the diffusion matrix appear. Taking into account the shift in the smoothness assumption,
the dependence on the diffusion matrix appears to be of the same form as for estimation with
respect to the integrated L2 risk.

The results on exact drift estimation hold for integer Sobolev smoothness β > 1 (global setting)
and (possibly noninteger) Sobolev smoothness β > d/2 (pointwise case). This finding admits
different interpretations. On the one hand, it suggests that asymptotic equivalence of the drift
estimation problem for ergodic Kolmogorov diffusions may hold for smaller regularity than
considered in Dalalyan and Reiß (2007). The authors do not provide a counterexample to show
that asymptotic equivalence fails below the critical regularity they identified (which is of order
(1/2 + 1/

√
2)d for d ≥ 2). Rather they describe the question whether for (Hölder) smoothness

classes of smaller regularity asymptotic equivalence fails as a “challenging open problem.” The
accordance of the exact asymptotic behavior for substantially smaller smoothness indices as
obtained in Dalalyan and Reiß (2007) can however also be seen as an indication of the limits of
the asymptotic equivalence approach. This last interpretation was suggested in Korostelev and
Nussbaum (1999) who study the exact constant of the risk asymptotics in the uniform norm
for density estimation from i.i.d. observations. They consider estimation over Hölder classes of
arbitrary smoothness index β > 0 on the unit interval, and they explicitly prove upper and
lower asymptotic risk bounds. It is noted that a more concise argument based on asymptotic
equivalence of experiments in the Le Cam sense works only in the case β > 1/2, and under
the additional assumption that the densities are uniformly bounded away from 0. Asymptotic
equivalence between density estimation and continuous regression is known to fail for β ≤ 1/2,
but the minimax risk asymptotics hold for any β > 0 in the density model and for continuous
regression. Korostelev and Nussbaum (1999) establish from this gap the need to deepen the
study of reduced equivalence.

The precise form of the risk function for global drift estimation differs from those commonly
considered in the framework of density or regression function estimation from independent ob-
servations. Instead of investigating the classical mean-integrated squared error of an estimator
f̃ of some density f , say, and considering

Ef

∫
Rd

∣∣f̃(z)− f(z)
∣∣2dz,

we analyze for global estimation of the drift b : Rd → Rd the weighted L2 risk

Eb

∫
Rd

∥∥b̃T (z)− b(z)
∥∥2
ρ2(z)dz.

The weighting by the squared invariant density ρ2 ensures integrability of the drift vector b. This
allows to describe the exact asymptotics for drift estimation over Rd, imposing merely growth
conditions on the drift function. In particular, we do not restrict attention to estimation on
compact sets or under boundedness assumptions on the drift.
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4.1. Sharp adaptive estimation for ergodic diffusion processes

The problem of drift estimation for ergodic non-degenerate diffusions, assuming isotropic Sobolev
smoothness of the drift function, is classical in some sense. Results on exact adaptive drift esti-
mation with respect to local minimax weighted L2 risk criteria and on sharp adaptive pointwise
estimation mark the beginning of a deeper nonparametric estimation theory for multidimensional
ergodic diffusion processes. Of natural interest are the questions of

• extending the multidimensional estimation procedures to anisotropic situations;

• adaptation to unknown smoothness/ unknown dimension under structural assumptions;

• investigating exact asymptotics for drift estimation of discretely observed diffusions;

• identifying exact asymptotics for more general stochastic processes (degenerate diffusions,
processes with jump),

to mention just a few. In the sequel, we shall briefly comment on some of these issues.

Alternative smoothness assumptions and complementary lower bound results. It
was explicitly noted that the approach of component-wise estimation of div(aρ) is to be pre-
ferred to estimating the complete vector div(aρ) in one step (which is more convenient from the
practical point of view). Notably, the component-wise access also allows to consider estimation
under inhomogeneous regularity assumptions on the components of the drift vector. Indeed, the
upper bounds in Theorem 2.3.8(B) and Theorem 2.5.11 assume isotropic homogeneous Sobolev
smoothness of div(aρ), namely

d∑
k=1

∑
|α|≤β

∫
Rd
|Dα (div(akρ)− div(akρ0))

∣∣2 ≤ 4L d, β ∈ N, L > 0,

and
d∑

k=1
(2π)−d

∫
Rd
‖λ‖2β

∣∣φdiv(akρ)(λ)
∣∣2dλ ≤ 4L2 d, β > d/2, L > 0. (4.1.1)

The above smoothness conditions may prove arbitrarily rough, and thus it appears more appro-
priate to estimate the vector component by component, replacing, e.g., the Sobolev constraint
(4.1.1) with the assumption that, for some values βi > d/2 and Li > 0,

ηβi(div(aiρ)) =
(

(2π)−d
∫
Rd
‖λ‖2βi

∣∣φdiv(aiρ)(λ)
∣∣2dλ

)1/2
≤ 2Li, i = 1, . . . , d. (4.1.2)

An interesting open question is to establish lower bounds for estimating the vector div(aρ)
under some component-wise smoothness constraint in the spirit of (4.1.2), assuming that the
drift vector b and the invariant density ρ satisfy for any j ∈ {1, . . . , d} the relation

2bjρ = div(ajρ) =
d∑

k=1
∂k (ajkρ) . (4.1.3)

Both the minimax lower bound in Theorem 2.3.2 (global case) and the lower bound in Theorem
2.5.5 (pointwise setting) consider the case where the relation (4.1.3) holds for one fixed j ∈
{1, . . . , d}. Inspection of the respective proofs shows that the hypotheses constructed therein
indeed satisfy (4.1.3) for precisely one j ∈ {1, . . . , d}. We conjecture however that suitable
modifications of the hypotheses defined in the proofs of Theorem 2.3.2 and Theorem 2.5.5 allow
to extend the results to this situation. Precisely, for the case of pointwise estimation and any
i ∈ {1, . . . , d}, define the sets Πi(·) and BT according to (2.5.5) and (2.5.9), respectively. Given
any values βi > d/2, Li > 0, i = 1, . . . , d, denote

Ci(βi, Li; ρ, σ) := 2Ld/(2β)
i

2β
d

(
d2 aii ρ(x0)
βi(2βi − d)

)βi−d/2
2βi

Iβi ,
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and

Π̃i(βi, Li) = Π̃i(βi, Li; ρ, σ) :=
{
b ∈

d⋂
k=1

Πk( min
j=1,...,d

βj
)

: ηβi(div(aiρ)) ≤ 2Li
}
.

We conjecture that the vector of data-driven estimators g̃1
T , . . . , g̃

d
T defined according to (2.5.22)

is sharp adaptive and satisfies, for any x0 ∈ Rd,

lim sup
T→∞

d∑
i=1

sup
(βi,Li)∈BT

sup
b∈Π̃i(βi,Li)

(
ψT,β Ci(βi, Li; ρ, σ)

)−2 Eb

∣∣g̃iT (x0)− div(aiρ)(x0)
∣∣2 ≤ 1

and

lim inf
T→∞

d∑
i=1

inf
ĝiT

sup
(βi,Li)∈BT

sup
b∈Π̃i(βi,Li)

(
ψT,β Ci(βi, Li; ρ, σ)

)−2 Eb

∣∣g̃iT (x0)− div(aiρ)(x0)
∣∣2 ≥ 1,

where inf ĝiT denotes the infimum over all estimators of div(aiρ).

One further step would be to assume anisotropic smoothness of the components of div(aρ) and
to work under the condition that, for some values βi1, . . . , βid > d/2 and Li > 0,

(
(2π)−d

∫
Rd

d∑
k=1

∣∣λk∣∣2βik ∣∣φdiv(aiρ)(λ)
∣∣2dλ

)1/2

≤ Li, i = 1, . . . , d.

The problem of nonparametric estimation becomes rather delicate when functions with anisotropic
regularities are considered. Even results on minimax rates of convergence in the classical sta-
tistical models are relatively scarce; cf. the references on pp. 137–138 in Kerkyacharian et al.
(2001). For the moment, we merely note that the generalization of the Lepski-type procedure
as used in Section 2.5 to an anisotropic setting is a non-trivial task due to the lack of natural
ordering of the bandwidths.

The degenerate case. It was assumed throughout that the diffusion matrix a = σσt is
uniformly elliptic. The sharp results on adaptive estimation over isotropic Sobolev classes in
Chapter 2 reveal that the geometry of non-degenerate diffusion matrices does not change the
rate of convergence but is only reflected in the constant. (Of course, the geometry and smooth-
ness properties of σ affect the rate of convergence in an indirect manner by determining the
smoothness properties of the invariant density.) No attempts have been made to derive lower
bounds under Sobolev smoothness assumptions for the degenerate case. The reason for this is
that we are interested in formulating results on exact drift estimation under smoothness condi-
tions on the drift, and in the degenerate case it seems appropriate - instead of assuming that the
invariant density belongs to some finite smoothness class such as those of Hölder, Sobolev, or
Besov type - to focus on estimating the drift of diffusion processes under the basic assumption
that the parabolic Hörmander condition is satisfied. For such processes the invariant density ρ
belongs to C∞(Rd).

The exact adaptive results on pointwise estimation of functions f ∈ C∞(R), observed in Gaussian
white noise of small intensity ε, in Lepski and Levit (1998) may serve as a motivation for deve-
loping exact estimation procedures in this framework. To quantify the difficulty of estimating
C∞(R) functions, the authors introduce a scale of functional classes AK which represents a large
portion of C∞(R), in terms of the rate of decrease of the corresponding Fourier transforms. An
essential feature of their model is that the rate of convergence in estimating f(x), for ε→ 0, may
vary, over the whole scale AK , from extremely fast to extremely slow, up to situations where
no consistent estimation is possible. Their follow-up paper Lepski and Levit (1999) provides
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4.1. Sharp adaptive estimation for ergodic diffusion processes

a multivariate generalization and studies adaptive pointwise estimation of smooth functions
f : Rd → R, corrupted by white Gaussian noise. The functional classes considered in the
multivariate setting are narrower than in Lepski and Levit (1998) in that the assumption of
a rapidly vanishing Fourier transform φf is replaced by an exponential decline of φf . The Lp
norm oracle inequalities obtained in this work allow to derive minimax results on (anisotropic
versions of) such functional spaces but do not lead to sharp adaptive findings.

Estimation in structural models. Little surprisingly, the result on nonparametric estima-
tion of the drift under Sobolev smoothness assumptions is subject to the curse of dimensionality.
This is reflected in the fact that the accuracy of estimators, even for moderate dimension d, is very
poor unless for unreasonably large sample size T . If the d-dimensional drift function b however
has a simple structure such that it is effectively m-dimensional with m < d, the dimensionality
reduction principle due to Stone asserts that the quality of estimation should correspond to the
effective dimensionality m.

One important feature for nonparametric estimation of Itô processes is the fact that regularity
assumptions enter the scene just in order to ensure existence of a (strong) solution of the associ-
ated SDE. This observation may affect the estimation philosophy. For example, there exist cases
where it is more appropriate to adapt to the unknown effective dimension instead of adapting to
the unknown smoothness. Samarov and Tsybakov (2007) consider the problem of nonparametric
density estimation from i.i.d. observations in a modification of the projection pursuit density
estimation model. Precisely, they assume that the unknown density p has the form

p(x) = ϕd(x) g(Btx), x ∈ Rd, (4.1.4)

where B in an unknown d×m matrix with orthonormal columns, g : Rm → [0,∞) is an unknown
function such that, for all z ∈ Rm, max

{
g(z), |∇g(z)|, ‖∇2g(z)‖

}
≤ L, and ϕd(·) is the standard

d-variate normal density. The authors propose an aggregate estimator which adapts to the
unknown index space of unknown dimension m. For the suggested aggregate estimator, they
show that the MISE is of order n−4/(m+4). In the context of drift estimation, it is reasonable to
assume minimal Hölder smoothness of order β = 2. Using an adaptation scheme which adapts
to the unknown smoothness, the MISE rate T−2β/(2β+d) can be attained. In comparison to the
rate T−4/(4+m) which is attainable for β = 2 and adaptation to the effective dimension m, it
thus appears more appropriate to adapt to m whenever the drift vector has intrinsic dimension
m < 2d/β. It is therefore of interest to develop alternative adaptive procedures under reasonable
structural assumptions in the spirit of (4.1.4) which adapt to the unknown effective dimension
of the drift vector.

A central question in this connection is to identify “reasonable structural assumptions” on the
drift coefficient. In search of a general structural model which does not lead to inadequate
modeling but still allows to weaken the curse of dimensionality, Goldenshluger and Lepski (2009)
advocate the use of an additive multi-index model which includes as special cases the more
classical models of single-index, additive, projection pursuit and multi-index structure. They
study the problem of minimax adaptive estimation of an unknown function f : Rd → R in the
multidimensional Gaussian white noise model

dY (t) = f(t)dt+ ε dW (t), t = (t1, . . . , td) ∈ D,

for an open interval D ⊃ [−1/2, 1/2]d, the standard Brownian sheet W in Rd and noise level
ε ∈ (0, 1). Lp-norm oracle inequalities which allow to derive minimax adaptive results are
established. The proposed estimation procedure is based on the same rule for selection of
estimators from a large parametrized collection as in Goldenshluger and Lepski (2008). In the
latter article, a pointwise adaptive estimation procedure in the single index model is proposed.
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The selection rule presents one possible blueprint for an adaptive estimation scheme of the drift
function in structural models.

Density estimation and study of plug-in properties. The question of estimating the in-
variant density of a diffusion was only addressed on the side. Proposition 1 in Dalalyan and Reiß
(2007) shows that the invariant density of ergodic diffusions in certain cases can be estimated
considerably faster with respect to pointwise squared error criteria than in the classical statis-
tical models based on independent observations. Their result is based on Assumption (SG+)
and involves in particular the spectral gap assumption. To the best of our knowledge, exact
results on invariant density estimation for diffusions satisfying specific functional inequalities do
not exist.

One possibility to extend the L2 framework in Dalalyan and Reiß (2007) is to quantify accuracy
of an invariant density estimator ρ̂T in terms of the Ls-risk,

Rs
(
ρ̂T , ρ

)
:=
[
Eµ

( ∫
Rd

∣∣ρ̂T (x)− ρ(x)
∣∣s)]1/s

, s ∈ [1,∞).

Generalizations of Poincaré’s inequality are available and might serve as tools for bounding the
stochastic error. In particular, Theorem 11 in Roberto and Zegarlinski (2007) states conditions
which ensure that the Orlicz–Sobolev inequalities introduced there imply an exponential decay
to the associated semigroup. This is a generalization of the well-known equivalence of Poincaré’s
inequality and spectral gap inequality.

In connection with invariant density estimation, it is of interest to know whether there exist
cases where an invariant density estimator ρ̂T achieves the optimal MISE and L1 error, and, at
the same time, satisfies

√
T sup
f∈F

∣∣∣∣∫ f(x)ρ̂T (x)dx−
∫
f(x)ρ(x)dx

∣∣∣∣ = OP(1)

for certain classes of functions F ⊂ L1(µ). This question is related to the work of Bickel and
Ritov (2003) who introduce the notion of the “plug-in property” (PIP) and consider different
perspectives thereof. Given i.i.d. observations X1, X2, . . . , Xn, Xi ∼ Pθ, θ ∈ Θ, a subset of a
linear space of functions, assume that r−1

n is the stochastic minimax rate for estimating θ ∈ Θ.
An estimator θ̂n of θ is called a weak plug-in estimator (PIE) for a set T of functionals if

sup
θ∈Θ

sup
T

Eθ
(
r−2
n

∥∥θ̂n − θ∥∥2 + n
(
τ(θ̂)− τ(θ)

)2)
<∞.

It is shown in Bickel and Ritov (2003) for the Gaussian white noise model that the concept of
weak PIE and minimaxity in this sense are not compatible for very large T and nonparametric Θ.
For other sets such as indicators of all quadrants (that is, distribution functions), appropriate
constructions of efficient estimators exist. The study of the PIP of various types of density
estimators has been continued by Nickl (2007) (for the nonparametric MLE), Giné and Nickl
(2008) (kernel density estimators) or Giné and Nickl (2009) (wavelet density estimators), to
mention just a few. All of these results are obtained in the classical i.i.d. framework. It is
indicated to accomplish a systematic study of the invariant density estimation problem for
ergodic diffusions with an investigation of the PIP. We shall come back to this question in
Section 4.2 below.

4.2. Uniform CLTs for multidimensional diffusions

Infinite-dimensional extensions of the classical (functional) CLT for ergodic continuous Markov
processes due to Bhattacharya (1982) and under the Kipnis–Varadhan condition were studied in
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the second part of the work. We found different explicit criteria for establishing uniform CLTs
for multidimensional ergodic diffusions satisfying functional inequalities such as the Poincaré hy-
pothesis. In principle, there exist different approaches to deal with empirical diffusion processes.

With a view towards statistical applications, it is often convenient to exploit mixing properties of
the diffusion such that results from the well-investigated setting of empirical processes based on
independent observations are available. Various parallels between classical empirical processes
and empirical processes of ergodic diffusions which satisfy Poincaré’s inequality were already
depicted. Results in this spirit can also be deduced from the mixing properties of the diffusion.
Proposition 3.4 in Cattiaux and Guillin (2008) states that, whenever the semigroup Pt satisfies

Varµ (Ptf) ≤ η(t)
∥∥∥∥f − ∫ fdµ

∥∥∥∥2

∞
,

the stationary process is strongly mixing with mixing coefficient α(t) ≤
√
η(t). We found it

convenient to use Poincaré’s inequality rather than working with mixing coefficients as this allows
to use fine results from Markovian semigroup theory. One such example is the sharp Bernstein-
type deviation inequality (3.3.2) due to Lezaud (2001). For recent results on Bernstein-type
deviation inequalities under mixing conditions, we refer to Merlevède et al. (2009), Merlevède
et al. (2011) and references therein.

From the theoretical point of view, it is of interest to scrape out differences in the behavior of
empirical processes based on diffusions and independent observations, respectively. One motiva-
tion for our investigation indeed was the Gaussian characterization of the Donsker property of
scalar regular diffusions with finite speed measure due to van der Vaart and van Zanten (2005).
Their result reflects regularity properties specific to scalar diffusions, and their proof is heavily
based on local time techniques. We took an alternative approach. In order to formulate uni-
form CLTs under minimal assumptions, we studied smoothed versions of the empirical diffusion
process. The idea was to establish exceptional regularity of the modified empirical diffusion
process by stating Donsker theorems under pregaussian conditions and minimal assumptions on
the bandwidth involved in the smoothed empirical diffusion process

St,h(f) =
√
t

(∫
f(x)

(
ρ̂t,h(x)− ρ(x)

)
dx
)
. (4.2.1)

One such result is given in Theorem 3.6.2, and the proof of the preceding Theorem 3.6.1 differs
from the classical i.i.d. case. In particular, we do not use explicitly closeness of ρ̂t,h to the
Lebesgue density ρ of the invariant measure in a mean squared sense. The arguments instead
are based on martingale approximation and theory of Markovian semigroups, carried out for
some auxiliary intermediary process. The analysis requires the combination of different types of
tail estimates for additive functionals under the Poincaré hypothesis as well as sharp variance
bounds of Dalalyan and Reiß (2007). Notably, the bandwidths h involved are too small for
ensuring consistency of the kernel estimator ρ̂t,h for the invariant density ρ.

We turn to sketching some potential further developments.

Characterization of uniform Donsker classes. In statistical applications, the underlying
probability measure ν usually is unknown, and therefore it is of interest to know which classes
are Glivenko–Cantelli or Donsker for every ν. A function class F which is Donsker for any
probability measure ν is called universal Donsker, and for many universal Donsker classes, the
CLT holds even uniformly in ν. There exist different formal definitions of so-called uniform
Donsker classes. We follow Giné and Zinn (1991). Let

BLF1 = BL1(`∞(F)) :=
{
g : `∞(F)→ R, ‖g‖∞ ≤ 1, sup

x,y∈`∞(F)

|g(x)− g(y)|
‖x− y‖F

≤ 1
}
.
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For measures P,Q, defined on sub-sigma algebras of the Borel sets of `∞(F), let

dBL1(P,Q) := sup
g∈BLF1

∣∣∣∣∫ g d(P−Q)
∣∣∣∣ .

It is well-known that dBL1 metrizes weak convergence in Rd, and it can be shown as in the
classical setting that F is Donsker (in the sense of Definition 3.2.3) if and only if both F is
pregaussian (in the sense of Definition 3.2.4) and

lim
t→∞

dBL1 (Lµ,F (Gt),LF (Gµ)) = 0,

where Lµ,F (Gt) denotes the law of the empirical process Gt indexed by F under Pµ. Similarly,
LF is the law of the limiting Gaussian process Gµ indexed by F . As argued by Giné and Zinn
(1991), uniformity in all probability measures is useful only in combination with uniformity
of Gµ, and therefore one considers uniformly pregaussian classes of functions. We adopt the
terminology from the classical framework.

Definition 4.2.1. Let (E,B(E)) be a measurable space, let P(E) be the set of all probability
measures on (E,B(E)), and let F be a collection of real-valued measurable functions on E.

• F is called uniformly pregaussian if both supµ∈P(E) E‖Gµ‖F <∞ and

lim
δ→0

sup
µ∈P(E)

E sup
f,g∈F : dGµ (f,g)<δ

|Gµ(f − g)| = 0, (4.2.2)

where Gµ is a centered Gaussian process indexed by F with covariance structure deter-
mined by the finite-dimensional CLT (cf. Section 3.2.2), and dGµ is the intrinsic metric on
F induced by Gµ.

• F is called a uniform Donsker class if both F is uniformly pregaussian and

lim
t→∞

sup
µ∈P(E)

dBL1(Lµ,F (Gt),LF (Gµ)) = 0.

Theorem 2.3 in Giné and Zinn (1991) gives a sharp characterization of the uniform Donsker
property for classical empirical processes based on independent observations and states that
F is uniform Donsker if and only if F is uniformly pregaussian. The proof of their Theorem
comprises several steps and uses symmetrization at crucial points, but we conjecture that the
connection between uniform pregaussianness and the uniform Donsker property still holds in
the diffusion framework. It remains to work out minimal assumptions on the diffusion processes
which are required to establish this relation.

Verifying pregaussianness. Seen individually, results on Donsker properties under pregaus-
sian conditions in the spirit of Theorem 3.6.1 are of certain interest from a theoretical point of
view, but they still leave one with the task of verifying that the function class F is pregaussian.
Let us consider the approach to uniform CLTs via solution of the Poisson equation. In this case,
the pseudo-metric induced by the limiting Gaussian process G appearing in the CLT is given by

d2
G(f, g) = −2

∫
(f − g)

[
A−1(f − g)

]
dµ, f, g ∈ F ⊂ DA−1 .

Cauchy–Schwarz and Poincaré’s inequality imply that

−2
〈
f,A−1f

〉
µ
≤ 2‖f‖µ,2‖A−1f‖µ,2 . ‖f‖2µ,2. (4.2.3)
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The above straightforward estimate was already used for establishing the bracketing result in
Section 3.3.1. The idea of bracketing is easily proved and understood, with the obstacle that
the condition is nowhere close to being necessary. By contrast, the entropy estimates considered
first by Vapnik and Chervonenkis are known to be essential in determining whether a class of
functions is a (uniform) Glivenko–Cantelli or Donsker class (in the classical sense). Under the
Poincaré hypothesis, it is straightforward to state a condition for (uniform) pregaussianness in
terms of the combinatorial dimension. This approach again makes (implicit) use of the mixing
properties of the diffusion. More interesting results are to be expected when the form of the
limiting Gaussian process G appearing in the CLT can be exploited more directly, but this issue
is open for further investigation.

Study of plug-in properties (ctd.). Our focus in the study of the smoothed empirical diffu-
sion process St,h (cf. (4.2.1)) was on stating minimal assumptions on the bandwidth h in order to
scrape out remarkable regularity properties of (the modified version of) the empirical diffusion
process. When investigating the problem of invariant density estimation for multidimensional
ergodic diffusions (assuming, e.g., the availability of certain functional inequalities) and with a
view towards statistical applications, it is certainly also of interest to address the PIP, a question
which is different in spirit. The statistically most relevant version of the PIP is the so-called
efficient PIP. Adapted to our framework and using the usual quadratic loss function notions, a
formal definition might be stated as follows.

Definition 4.2.2 (cf. Definition 4.1 in Bickel and Ritov (2003)). Let
∥∥ρ̃T−ρ∥∥2 = OP(r2

T ), where
rT is the (stochastic) minimax rate of convergence for estimating ρ ∈ P. For each τ ∈ T , T a
set of functionals, let τ̃T be an efficient estimator of τ (in the sense of Definition 5.2.7 in Bickel
et al. (1998)). An estimator ρ̂T is called an efficient PIE if

∥∥ρ̂T − ρ∥∥2 = OP(r2
T )

and √
T sup
τ∈T

∣∣τ(ρ̂T )− τ̃
∣∣ = oP(1).

As pointed out by Giné and Nickl (2008), the proof of the PIP consists of two parts, namely the
use of the right uniform CLT for the variance term, and, more severely, the treatment of the bias
term. While Theorem 3.6.1 allows for very fast bandwidths ht ↘ 0 with O(ht) = t−1/d log(et),
Lemma 3.5.2 which is used for proving that, uniformly in g ∈ G,

∣∣∣St,h(Ag)−Ht,h(g)
∣∣∣ = 1√

t

∣∣∣ ∫ t

0
(A (g ∗Kh)− (Ag) ∗Kh) (Xu) du

∣∣∣ = oP(1),

requires that th2β → 0. In particular, this excludes the use of the choice h ∼ t−1/(2β+d) which
gives the optimal rate of the MSE (cf. Corollary 1 in Dalalyan and Reiß (2007)). In the classical
i.i.d. framework, Giné and Nickl (2008) suggest to combine the information on the underlying
density and on the function class. Similar ideas may be suitable for obtaining sharper bounds on
St,h(Ag)−Ht,h(g), but this still has to be investigated in more detail. Let us finally remark that
explicit regularity conditions on the local characteristics of the SDE associated to the diffusion
might be formulated for bounding the approximation error.

Uniform CLTs for ergodic diffusions observed along Euler schemes. In order to con-
tribute to the theory of empirical processes of multivariate ergodic diffusions, we studied the
empirical diffusion process Gt and the smoothed empirical diffusion process St,h, based on the
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empirical measure and some weighted empirical measure related to some kernel density esti-
mator, respectively. The investigation can be extended in a different direction by considering
(weighted) empirical measures based on approximation schemes for SDEs.

This problem is interesting both from the theoretical and the practical point of view. Consider
the SDE

dXt = b (Xt) dt+ σ (Xt) dWt, (4.2.4)

where b : Rd → Rd, σ : Rd → Rd×q are continuous mappings, W is a q-dimensional standard
Brownian motion, and assume that the diffusion process solution X of (4.2.4) is stationary and
ergodic with invariant measure µ. In typical applications, the coefficients b are σ are given by
some physical model, and the interest is, e.g., in computing

∫
fdµ for some given f ∈ L1(µ). To

do so, one may use numerical approximation schemes or, alternatively, PDE methods for solving
the stationary Fokker–Planck equation. It is however known (cf. Pagès and Panloup (2009))
that probabilistic methods are superior in terms of efficiency in higher-dimensional settings
(dimension d ≥ 3) or in degenerate cases.

The problem of approximation of the invariant distribution for Brownian diffusions by means of
an adapted Euler scheme with decreasing step (γk)k has been addressed, e.g., by Lamberton and
Pagès (2002) and Pagès and Panloup (2009). Lamberton and Pagès (2002) suggest to compute
the Euler discretization of (4.2.4), given as

Xn+1 = Xn + γn+1b (Xn) +√γn+1σ (Xn)Un+1, n ≥ 0,

where (Un)n≥1 is an Rq-valued white noise defined on a probability space (Ω,A ,P), independent
of X0 ∈ L0(Ω,A ,P), and γ := (γn)n≥1 is a step sequence vanishing to 0. In a second step, a
weighted empirical measure νηn is formed, using a weight sequence η := (ηn)n≥0,

νηn(ω,dx) := 1∑n
k=1 ηk

n∑
k=1

ηkδXk−1(ω), ω ∈ Ω, n ≥ 1.

Under certain Lyapunov-type stability assumptions and under conditions on the step sequence
γ, it is shown in Theorem 9 in Lamberton and Pagès (2002) that, for every C2 function F with
D2F bounded and Lipschitz, the following CLT holds√√√√ n∑

k=1
γn ν

γ
n(AF )⇒ Z ∼ N

(
0, σ2

F

)
, (4.2.5)

where σ2
F :=

∫
Rd
∣∣σt∇F (x)

∣∣2 µ(dx). The result in (4.2.5) is similar to the CLT in (3.1.4) which
was a starting point for our uniform CLTs in Chapter 3. More recently, Pagès and Panloup
(2012) obtained results in the spirit of (3.1.4) for the case of functionals of the path process and
its associated Euler scheme with decreasing step. With a view toward applications, it is certainly
of interest to establish uniform CLTs for ergodic diffusions observed along Euler schemes and
for functionals of the entire path process. Finite-dimensional results as in (4.2.5) may provide
an origin for the investigation.
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A.1. Auxiliary results from nonparametric statistics and statistics of random
processes

This section summarizes different auxiliary results which were used in the proof of the upper and
lower bounds presented in Chapter 2. We start with stating results on the question of absolute
continuity of probability measures induced by different diffusion processes. Recall that we had
to deal with this question for proving lower bounds in the diffusion model (see, e.g., Lemma
2.6.2 in Section 2.6.1). For the proof of the following result and many more related material, we
refer to Chapter 7 of Liptser and Shiryaev (2001).

Theorem A.1.1 (Liptser and Shiryaev (2001), Section 7.6.4, pp. 296–297). Let b1, b2 : Rd → Rd
and σ : Rd → Rd×r, d, r ∈ N, be such that the SDEs

dXt = b0(Xt)dt+ σ(Xt) dWt, X0 = x, (A.1.1)
dYt = b1(Yt)dt + σ(Yt) dWt, Y0 = y, (A.1.2)

admit a unique strong solution. Assume further that the system of equations

σ(x)α(x) = b1(x)− b2(x)

has a solution for any x ∈ Rd, and denote by a− the pseudo-inverse of the matrix a = σσt.
Consider the laws induced by the solutions of (A.1.1) and (A.1.2), and denote their restrictions
to (C[0, T ],B(C[0, T ])) by P(T )

x,b0
and P(T )

x,b1
, respectively. If x = y and

P
(∫ T

0

(
bt1(Xu)a−(Xu)b1(Xu) + bt2(Xu)a−(Xu)b2(Xu)

)
du < +∞

)
= 1,

then P(T )
x,b1
� P(T )

x,b2
, and the Radon–Nikodym density of P(T )

x,b1
with respect to P(T )

x,b2
is given by

dP(T )
x,b1

dP(T )
x,b2

(Y T ) = exp
(∫ T

0
(b1 − b2)t(Yu)a−(Yu)dYu

− 1
2

∫ T

0
(b1 − b2)t(Yu)a−(Yu)(b1 + b2)(Yu)du

)
.

If, in addition,

P
(∫ T

0

(
bt1(Yu)a−(Yu)b1(Yu) + bt2(Yu)a−(Yu)b2(Yu)

)
du < +∞

)
= 1,

then P(T )
x,b1
∼ P(T )

x,b2
and

dP(T )
x,b2

dP(T )
x,b1

(XT ) = exp
(∫ T

0
(b1 − b2)t(Xu)a−(Xu)dXu

+ 1
2

∫ T

0
(b1 − b2)t(Xu)a−(Xu)(b1 + b2)(Xu)du

)
.
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Remark A.1.2. Assume now that the diffusion process solutions X and Y of (A.1.1) and (A.1.2),
respectively, are ergodic and admit invariant measures with Lebesgue density ρ1 = ρσ,b1 and ρ2 =
ρσ,b2 , respectively. Suppose that the initial values x and y follow the respective invariant measure
such that the processes X and Y are strictly stationary. Consider the laws induced by the
stationary solutions of (A.1.1) and (A.1.2), and denote their restrictions to (C[0, T ],B(C[0, T ]))
by P(T )

b1
and P(T )

b2
, respectively. It then follows from Theorem A.1.1 that

dP(T )
b1

dP(T )
b2

(Y T ) = ρ1
ρ2

(Y0) exp
(∫ T

0
(b1 − b2)t(Yu)a−(Yu)dYu (A.1.3)

− 1
2

∫ T

0
(b1 − b2)t(Yu)a−(Yu)(b1 + b2)(Yu)du

)

= ρ1
ρ2

(Y0) exp
(∫ T

0
(b1 − b2)t(Yu)σ−(Yu)dWu

− 1
2

∫ T

0
(b1 − b2)t(Yu)a−(Yu)(b1 + b2)(Yu)du

)
.

For proving the lower bound for pointwise estimation of the components of the divergence
vector (precisely, for verifying the conditions of Lemma 2.6.2 in Section 2.6.1), we also require
the following result.

Lemma A.1.3 (martingale CLT; Theorem VIII.3.11 in Jacod and Shiryaev (2002)). Assume
that X is a continuous Gaussian martingale with characteristics (0, C, 0), and that each Xn is a
local continuous martingale. If D is a dense subset of R+, then it holds Xn ⇒ X if and only if

〈Xn,i, Xn,j〉t
P→ Cij(t) for all t ∈ D.

The next lemma proves useful in deriving upper bounds on the L2 risk of pointwise kernel
estimators. It is a modification of Theorem 1A in Parzen (1962) who contributes the result to
Bochner.

Lemma A.1.4 (Bochner; Parzen (1962)). Let Ki : Rd → R, i = 1, . . . ,m, m ∈ N, be kernel
functions which satisfy the following conditions,

sup
x∈Rd

|Ki(x)| <∞,
∫
Rd
K2
i (x)dx <∞, lim

‖x‖→∞

{
‖x‖K2

i (x)
}

= 0,

and assume that g : Rd → R satisfies
∫
Rd |g(x)|dx <∞. For hT ↘ 0 and

gT (x) := 1
hdT

∫
Rd

m∑
i=1

K2
i

(
y − x
hT

)
g(y)dy,

it holds at every continuity point x0 of g(·),

lim
T→∞

gT (x0) = g(x0)
∫
Rd

m∑
i=1

K2
i (y)dy. (A.1.4)

Proof. The proof is brief and along the lines of the proof of Theorem 1A in Parzen (1962). By
definition, it holds

gT (x)− g(x)
∫
Rd

m∑
i=1

K2
i (y)dy =

∫
Rd

m∑
i=1

h−dT K2
i

(
u

hT

)
(g(u+ x)− g(x))du.
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Consequently,

∣∣gT (x0)− g(x0)
∫
Rd

m∑
i=1

K2
i (y)dy

∣∣
≤ max
‖u‖≤δ

∣∣g(u+ x0)− g(x0)
∣∣ ∫
‖y‖≤δhdT

m∑
i=1

K2
i (y)dy

+
∫
‖u‖>δ

|g(u+ x0)|
‖u‖

‖u‖
hdT

m∑
i=1

K2
i

(
u

hT

)
du+ |g(x0)|

∫
‖u‖>δ

h−dT

m∑
i=1

K2
i

(
u

hT

)
du

≤ max
‖u‖≤δ

∣∣g(u+ x0)− g(x0)
∣∣ ∫

Rd

m∑
i=1

K2
i (y)dy

+ 1
δ

sup
‖u‖>δh−dT

{
‖u‖

m∑
i=1

K2
i (u)

}∫
Rd
|g(u)|du+ |g(x0)|

∫
‖y‖>δh−dT

m∑
i=1

K2
i (y)dy.

Letting T →∞ and then δ → 0, the assertion follows.

A.2. Auxiliary results for Chapter 3

All of the following results are taken from the preprint Rohde and Strauch (2010).

Lemma A.2.1 (Rohde and Strauch (2010), Lemma 4.2). Let A satisfy the Poincaré inequality.
Then (DA, ‖ · ‖DA) is a separable Hilbert space.

Proof. It is clear that (DA, ‖ · ‖DA) is pre-Hilbert. In order to prove completeness, let (gn)n∈N
be a Cauchy sequence in (DA, ‖ · ‖DA). Then (gn)n∈N and (Agn)n∈N are Cauchy sequences
with respect to ‖ · ‖L2(µ). Completeness of L2(µ) implies that there exist some g such that
‖g − gn‖L2(µ) → 0 and some G such that ‖G−Agn‖L2(µ) → 0. Since A is closed, it follows
G = Ag, and, in particular, g ∈ DA. It remains to prove separability. Note that RA ⊂ L2(µ) is
separable as a subset of a separable metric space. Let (fn)n∈N be a dense subset of RA, and let
(gn)n∈N be a dense subset in DA ∩NA, where NA denotes the null-space of A which is a closed
subset of L2(µ), since A is closed. For any set S ⊂ DA, let A|S denote the restriction of A to S.
Then the set (

A−1
|N⊥A∩DA

(fn)
)
n∈N

⋃
(gn)n∈N

is countably dense in (DA, ‖ · ‖DA). For the proof, let g ∈ DA be arbitrary. Such g can be written
as g = g⊥ + g0 for some g⊥ ∈ DA ∩ N⊥A and some g0 ∈ NA. It holds ‖Ag⊥‖L2(µ) = ‖Ag‖L2(µ).
Now let

g⊥k ⊂
{
A−1
|N⊥A∩DA

(fn) : n ∈ N
}

with ‖A(g⊥k − g⊥)‖L2(µ) → 0. Poincaré’s inequality then gives ‖g⊥k − g⊥‖L2(µ) → 0. Further-
more, let g0

k ⊂ {gn : n ∈ N} such that
∥∥g0
k − g0

∥∥
L2(µ) → 0. Thus,

(
g⊥k + g0

k

)
is the desired

approximation.

Proposition A.2.2 (Rohde and Strauch (2010), Proposition 4.1). Assume that g(·+ uh) ∈ DA
for h ∈ [0, h0], u ∈ Sd−1, such that ‖g(· + uh)‖DA is uniformly bounded in h ≤ h0, u ∈ Sd−1.
Then g ∗ Kh ∈ DA for h ∈ [0, h0], and the convolution is contained in the ‖ · ‖DA-closure of
‖K‖TV times the symmetric convex hull of {g(· − y) : ‖y‖2 ≤ h0}.
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Proof. By Lemma A.2.1, (DA, ‖ · ‖DA) is a separable Hilbert space. This implies in particular
that DA is closed under finite convex combinations. The arguments given in the proof of Lemma
1 in Giné and Nickl (2008) show that g ∗Kh is contained in the closure in ‖ ·‖DA of ‖K‖TV times
the symmetric convex hull of

{
g(· − y) : y ∈ Rd

}
. Since (DA, ‖ · ‖DA) is complete, the above

closure in ‖ · ‖DA is again contained in DA.

Lemma A.2.3 (cf. the proof of Theorem 4.3 in Rohde and Strauch (2010)). For all g ∈W 2,2(µ)
of compact support in E \ ∂E, it holds

−2
∫
gAgdµ =

∫
(∇wg)t a(·)∇wgdµ. (A.2.1)

Proof. Let g ∈W 2,2(µ) of compact support in the interior of E. We regularize g by convolution
in a standard way. Denote by φh(·) := h−dφ(·/h) a Dirac sequence, where φ ∈ C∞c (Rd). Thus,
for sufficiently small h, g∗φh ∈ C2

c (Rd), and (A.2.1) holds for g∗φh. Since the diffusion coefficient
a is locally bounded, the coordinate of a are uniformly bounded on compacts. Thus,∫

(∇w (g − g ∗ φh))t a (∇w (g − g ∗ φh)) dx

=
∫

(∇wg − (∇wg) ∗ φh)t (x)a(x) (∇wg − (∇wg) ∗ φh) (x)dx

= o(1) as h↘ 0,

since φh is a Dirac sequence.

Lemma A.2.4 (Rohde and Strauch (2010), Lemma A.1). Assume that g ∈W 1,2(µ) and Kh is
symmetric. Then it holds µ-a.s.

∂αw (g ∗Kh) = (∂αwg) ∗Kh for all α ∈ {0, 1}d with |α| = 1.

Proof. By definition of the weak derivative, it holds for all φ ∈ C∞K ,∫
∂α(g ∗Kh)(x)φ(x)dλλ(x) = −

∫
(g ∗Kh) (x)∂αφ(x)dλλ(x)

= −
∫∫

g(y)Kh(x− y)dy ∂αφ(x)dλλ(x)

= −
∫∫

∂αφ(x)Kh(x− y)dx g(y)dλλ(y)

= −
∫

(∂αφ ∗Kh) (y)g(y)dλλ(y)

= −
∫
∂α (φ ∗Kh) (y)g(y)dλλ(y) (A.2.2)

=
∫
∂αwg(y) (φ ∗Kh) (y)dλλ(y)

=
∫

(∂αwg) ∗Kh(x)φ(x)dλλ(x),

where the identity ∂α(φ ∗Kh) = (∂αφ) ∗Kh in (A.2.2) is proved, for instance, in Lemma 5 a) in
Giné and Nickl (2008).

Lemma A.2.5 (Rohde and Strauch (2010), Lemma A.2). Let A be the generator of an Itô–
Feller diffusion in E ⊆ Rd with continuous drift and diffusion coefficient, b and σ, respectively.
Then any g ∈W 2,2(µ) of compact support in E \ ∂E belongs to DA, and

Ag(·) = 1
2

d∑
i,j=1

aij(·)
∂2
wg

∂wxi∂wxj
(·) +

d∑
i=1

bi(·)
∂wg

∂wxi
(·).
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A.3. Continuity and boundedness of Gaussian processes

Proof. Let g ∈ W 2,2(µ) be of compact support in E \ ∂E. Let φh(·) = h−dφ(·/h) be a Dirac
sequence with some twice continuously differentiable, symmetric kernel φ. Then g ∗ φh is twice
continuously differentiable and of compact support, hence g ∗ φh ∈ DA for sufficiently small h,
and it holds by Lemma A.2.4 that

∂αw(g ∗ φh) = (∂αwg) ∗ φh for all multi-indices α ∈ {0, 1, 2}d with |α| ≤ 2.

Therefore,

A(g ∗ φh)(x) = 1
2

d∑
i,j=1

aij(x)
(

∂2
wg

∂wxi∂wxj
∗ φh

)
(x) +

d∑
i=1

bi(x)
(
∂wg

∂wxi
∗ φh

)
(x).

Since φh defines a Dirac sequence, ‖g − g ∗ φh‖L2(µ) → 0 as h↘ 0 (cf. Theorem 8.14 in Folland
(1999)). Let

G(x) := 1
2

d∑
i,j=1

aij(x) ∂2
wg

∂wxi∂wxj
(x) +

d∑
i=1

bi(x) ∂wg
∂wxi

(x).

Denote the union of the supports of g and g ∗ φh by Ch. Then

‖A(g ∗ φh)−G‖L2(µ) ≤
1
2

d∑
i,j=1
‖aij1Ch‖sup

∥∥∥∥∥ ∂2
wg

∂wxi∂wxj
∗ φh −

∂2
wg

∂wxi∂wxj

∥∥∥∥∥
L2(µ)

+
d∑
i=1
‖bi1Ch‖sup

∥∥∥∥ ∂wg∂wxi
∗ φh −

∂wg

∂wxi

∥∥∥∥
L2(µ)

−→ 0 as h↘ 0,

because (φh) is a Dirac sequence, g ∈W 2,2(µ) and a(·) and b(·) are continuous, hence uniformly
bounded on a decreasing sequence of compacts. But this implies G = Ag, since A is closed.

A.3. Continuity and boundedness of Gaussian processes

This section contains a brief summary of results on continuity and boundedness of Gaussian
processes. Further references may be found, e.g., in Chapter 2 of Dudley (1999) or Chapter
6 of Marcus and Rosen (2006) The importance of this question is based on the fact that the
existence of a bounded and dG-uniformly continuous version of the Gaussian limit G is necessary
for F to be Donsker. Throughout the sequel, denote by (νt)t∈T a centered Gaussian process,
and endow T with the L2 metric given by the covariance structure of the process, denoted by d.
Two stochastic processes Xt and Yt, defined on the same probability space with the same index
set T , are said to be modifications of each other if, for each t, Xt = Yt with probability 1. The
well-known metric entropy criterion due to Dudley states that there exists a modification ν ′ of
ν with bounded, uniformly continuous sample paths on (T, d) if

∫ diam(T )

0

√
logN (ε, T, d)dε <∞. (A.3.1)

The entropy condition in (A.3.1) is only necessary for boundedness and continuity of Gaussian
processes with stationary increments; it is not necessary in general. Sharp characterizations of
centered Gaussian processes having sample-bounded modifications may be expressed via ma-
jorizing measures and the γα functionals.
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A. Supplementary results

Definition A.3.1 (Dudley (1999), p. 59). Let (T, d) be a metric space and P(T ) the set of all
Borel probability measures on T . For m ∈P(T ), let

γm(T ) := sup
x∈T

∫ ∞
0

√
log 1

m (Bx(r))dr,

where Bx(r) := {y : d(x, y) < r} is the open ball of center x and radius r. If γm(T ) < ∞, then
m is called a majorizing measure for (T, d). Let γ(T ) := γ(T, d) := inf {γm(T ) : m ∈P(T )} .

It then holds γ(T, d) < ∞ if and only if there exists a majorizing measure on (T, d). Corollary
2.7.30 in Dudley (1999) gives a sufficient condition for the GC property of sets C ⊂ H, H a
Hilbert space. Namely, if there exists a probability measure µ on C such that

lim
ε↘0

sup
x∈C

∫ ε

0

√
log 1

µ (Bx(r))dr = 0,

then C is a GC-set in H.

The generic chaining method due to Talagrand gives an alternative characterization which is
conceptually less difficult than the majorizing measures approach. In addition, it is closer related
to the facts based on metric entropy numbers.

Definition A.3.2 (Definitions 1.2.3 and 1.2.5 in Talagrand (2005)). For a metric space (T, d),
an admissible sequence of T is an increasing sequence (An) of partitions of T such that, for every
n ≥ 1, cardAn ≤ 22n and cardA0 = 1. Denote by An(t) the unique element of An that contains
t. For α > 0, the γα functional is defined as

γα(T, d) := inf sup
t∈T

∑
n≥0

2n/αd (t, An) ,

where the infimum is taken with respect to all admissible sequences of T and d (t, An) :=
infu∈An d(t, u).

A very concise summary of relevant properties and their importance is given in Section 2 in
Mendelson (2011). The following result is crucial.

Theorem A.3.3 (Theorem 1.3 in Talagrand (2005)). Under measurability conditions, the fol-
lowing are equivalent:

1. The map t 7→ νt(ω) is uniformly continuous on T with probability 1.

2. limδ→0 E supd(u,t)≤δ |νu − νt| = 0.

3. There exists an admissible sequence of T such that

lim
s0→∞

sup
t∈T

∞∑
s=s0

2s/2d(t, πs(t)) = 0.

The above is an analogue of Theorem 1.3 in Talagrand (2005) which is only formulated but not
proven there. As Mendelson (2011) notes, the continuity theorem from Talagrand (1987b) can
be converted to obtain Theorem 1.3. This proof is carried out on pp. 31–35 in Kuelbs et al.
(2013).
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Zusammenfassung

In dieser Dissertation werden zwei Problemkreise für multivariate ergodische Diffusionsprozesse
betrachtet.

Zunächst untersuchen wir die Frage der scharf adaptiven Schätzung der Driftfunktion einer Dif-
fusion, die als starke Lösung einer stochastischen Differentialgleichung gegeben ist. Auf der
Grundlage einer stetigen Aufzeichnung von Beobachtungen werden exakte, datenbasierte Ver-
fahren für die globale und für die punktweise Schätzung vorgeschlagen, die die optimale Grenz-
konstante unter natürlichen Glattheitsannahmen an den Driftkoeffizienten erreichen. Es wird
sowohl eine Verbindung zum klassischen Resultat von Pinsker zur Schätzung über Sobolev-Klas-
sen bezüglich des L2-Risikos als auch zum “optimal recovery”-Problem hergestellt. Die exakten
Ergebnisse ermöglichen insbesondere eine Abschätzung des Einflusses der Diffusionsmatrix auf
das Problem der Driftschätzung.

Im zweiten Teil der Promotionsschrift studieren wir unendlichdimensionale Erweiterungen des
zentralen Grenzwertsatzes für additive Funktionale ergodischer Diffusionen. Zunächst werden
die Begriffe der Donsker-Klasse und der prä-Gauß’schen Eigenschaft im Diffusionskontext einge-
führt, um dann klassische Resultate aus der Theorie empirischer Prozesse aufzugreifen. Ver-
schiedene Parallelen zum klassischen, auf unabhängigen und identisch verteilten Beobachtungen
beruhenden empirischen Prozess werden für Diffusionen, die einer Poincaré-Ungleichung genü-
gen, aufgezeigt. Ferner wird eine gesteigerte Regularität für multivariate ergodische Diffusionen
mit endlichem invarianten Maß nachgewiesen. Dieser Effekt wird durch die Untersuchung geglät-
teter Versionen des empirischen Diffusionsprozesses aufgedeckt.





Lebenslauf

Entfällt aus datenschutzrechtlichen Gründen.


