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Introduction

We investigate linear-quadratic parabolic optimal control problems on evolving material hy-

persurfaces in Rn+1, n ∈ N. In addition, we consider elliptic state equations on stationary

surfaces. The state equations can be seen as models for diffusion-driven processes taking place

on surfaces, such as evolving bio-membranes. Primarily however, they are but academic ex-

amples, employed in order to investigate the changes an optimal control problem undergoes

as we substitute its stationary euclidean domain by a curved and moving one.

Following [DE07], we consider parabolic state equations in their weak form

d

dt

�

Γ(t)

y ϕdΓ(t) +

�

Γ(t)

∇Γy∇Γϕ+ b y ϕdΓ(t) =

�

Γ(t)

y ϕ̇ dΓ(t) +

�

Γ(t)

uϕdΓ(t) , y(0) = y0 ,

where Γ =
�
Γ(t)

�t∈[0,T ]
is a family of C2-smooth, compact n-dimensional surfaces in Rn+1,

evolving smoothly in time with velocity V , and ϕ̇ = ∂tϕ+V∇ϕ denotes the material derivative

of a smooth test function ϕ. We define unique weak solutions for the state equation under low

regularity assumptions on the data u, y0. In particular we allow for y0 ∈ L2(Γ(0)). The idea

is to introduce distributional material derivatives in the sense of [LM68] and a W (0, T )-like

solution space.

The stationary diffusion equation on a fixed surface Γ reads

�

Γ

∇Γy∇Γϕ+ c y ϕdΓ =

�

Γ

uϕdΓ , ∀ϕ ∈ H1(Γ) .

Both in the stationary and the instationary case each surface is approximated by a triangula-

tion Γh on which a finite element scheme for the state equation is formulated along the lines of

[Dzi88] and [DE07], respectively. Here we assume n = 1, 2, 3 in order that the interpolation be

well defined. The approximation error of this discretization of the state equation decomposes

into a finite element error, arising from the projection onto a finite dimensional Ansatz space,

and a geometrical part which is due to the approximation of Γ by Γh. We prove convergence

results for the parabolic equations under weak regularity assumptions.

The state equations define linear control-to-state operators. Using these, we formulate control

constrained optimal control problems along with their necessary optimality conditions where

the adjoint state equations appear. The optimal control problems are subjected to variational

discretization, see [Hin05], by replacing Γ and the state equation by their finite dimensional

approximations. The variationally discretized problems are amenable to an implementable

v



vi INTRODUCTION

semismooth Newton algorithm. In both cases we prove convergence of the discretized optimal

controls.

In the elliptic case we also discuss in some detail the implementation of a globalized semi-

smooth Newton algorithm for the control problem, involving a new merit function. In the

parabolic setting a suitable scalar product is formulated in order to arrive at an easily com-

putable discrete adjoint scheme.

Our analytical findings are complemented with numerical examples.

This work is structured as follows. We begin with a very short introduction into the setting in

Chapter 1, introducing some basic concepts for hypersurfaces such as signed distance functions

and Sobolev spaces. We then investigate elliptic optimal control problems on stationary

hypersurfaces in Chapter 2 along with their numerical treatment rounding up the chapter

with some numerical examples.

It follows a detailed study of the properties of the parabolic equation in Chapter 3. In order

to formulate well posed optimal control problems, we proof the existence of an appropriate

weak solution in Section 3.4, complementing the existence results from [DE07]. Afterwards,

we examine the space- and time-discretization of the state equation in Sections 3.6 and 3.7

and prove optimal L2-error bounds.

Finally, Chapter 4 is devoted to parabolic optimal control. Using the results from Section

3.4 we formulate control constrained optimal control problems. We then apply variational

discretization in the sense of [Hin05] to achieve fully implementable optimization algorithms

and end the work with some numerical examples.



Chapter 1

Some facts on compact embedded
hypersurfaces

The purpose of this chapter is to collect a number of results that are used in later chapters.

Among other things, the existence of sufficiently smooth distance functions will be proved

and we investigate properties of piecewise smooth functions.

Consider a connected compact n-dimensional abstract manifold M of class Ck, k ≥ 2. Sup-

pose now that M is embedded into Rn+1, i.e., it exists an injective Ck-map f : M → Rn+1

such that its differential DMfm : TmM → Rn+1 is injective for all m ∈ M. Its image

Γ = f(M) is then a compact hypersurface in Rn+1.

What is more, the hypersurface Γ is closed and connected and by the Jordan-Brouwer sepa-

ration theorem it divides Rn+1 \Γ in exactly two open connected components. Those are the

bounded interior Ω of Γ and its unbounded exterior Rn+1 \Ω. Hence the exterior unit normal

vector field ν : Γ → Rn+1 induces a natural orientation on Γ.

A proof of the Jordan-Brouwer theorem that extends to the C2-case can be found in [Lim88];

there it is assumed that M is orientable which is true for any such surface, compare [Bre97,

Ch. VI, Cor. 8.9]. Also [Bre97, Ch. VI, Cor. 8.8] ,while being more difficult to read, includes

a stronger, purely topological version of the Jordan-Brouwer theorem.

Throughout this work we regard the tangential spaces TγΓ as subsets of Rn+1, i.e.,

Tf(m)Γ = DMfm(TmM) .

The surrounding space Rn+1 determines a Riemannian metric on M via the identity

g(·, ·) = �DMf(·), DMf(·)�Rn+1 . Instead of (Γ, �·, ·�Rn+1) we simply write Γ. For notational

convenience we often write

v1v2 instead of �v1, v2�Rn+1 and �v1� instead of �v1�Rn+1 , ∀v1, v2 ∈ TγΓ . (1.0.1)

In Section 1.1 we introduce the signed distance function d : Rn+1 → R for Γ, as well as the

projection ΠΓ : Rn+1 → Γ onto Γ and investigate their regularity.

In Section 1.2 we do the same for a family of surfaces Γ(t) = Φ0
t (Γ0) evolving from an initial

surface Γ0 under a flow Φ.

1



2 CHAPTER 1. SOME FACTS ON COMPACT EMBEDDED HYPERSURFACES

Section 1.3 is devoted to Sobolev spaces on manifolds. Finally, a loose collection of results that

are more or less linked to Sobolev spaces, such as uniform elliptic H2(Γ)-stability estimates,

can be found in the Appendices 1.A-1.C. The notation in Section 1.3 and the Appendices 1.A-

1.C differs slightly from that in the rest of the work, as it is only here that local representations

and maps are explicitly used.

1.1 Signed distance function and projection

The distance of a point x ∈ Rn+1 to the surface Γ

distΓ : Rn+1 → R , distΓ(x) = inf
γ∈Γ

�γ − x�

is Lipschitz continuous with Lipschitz constant 1. This fact, which holds true for any subset

A ⊂ Rn+1, is easily shown using minimizing sequences.

Nevertheless, in order to analyze the quality of approximations of Γ, it will turn out to be

more convenient to work with a signed version of distΓ, the so-called signed distance function

d(x) =

�
−distΓ(x), if x ∈ Ω

distΓ(x), if x /∈ Ω

with Ω as above. The function d exhibits additional regularity in a tubular neighborhood of

Γ with radius � > 0

N� =
�
x ∈ Rn+1 | |d(x)| < �

�
.

Closely linked to d are the unique projection onto Γ

ΠΓ : N� → Γ , x �→ argmin
γ∈Γ

�γ − x� ,

and the exterior unit normal field.

Definition 1.1.1. An exterior unit normal vector or outwards-pointing unit normal vector

of the Ck-surface Γ ⊂ Rn+1, k ≥ 1, at γ ∈ Γ is the uniquely defined unit vector ν ∈ Rn+1

which is perpendicular to TγΓ and for which there exists δ > 0 such that for t ∈ (0, δ)

γ + tν ∈ Rn+1 \ Ω
γ − tν ∈ Ω .

The exterior normal field of Γ is the map ν : Γ → Rn+1 that associates each point γ ∈ Γ with

its respective exterior unit normal direction.

The regularity of d, ν and ΠΓ as well as the well-definedness of the latter are the subject of

the current section.

Using the defining properties of ν, i.e., the orthogonality relation and �ν� = 1, one can

conclude by the implicit function theorem that ν ∈ Ck−1(Γ).

Regarding ΠΓ, observe that from standard optimization theory it follows that for

y ∈ argmin
γ∈Γ

�γ − x�
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the vector x− y is perpendicular to the tangent space TyΓ. Hence we have

x = y ± ν(y)�x− y� = y + ν(y)d(x) . (1.1.1)

Also, since Γ is compact, the set argminγ∈Γ �γ − x� is not empty.

Theorem 1.1.2 ([DZ94, Thm. 5.6]). Let Γ denote the Ck-smooth boundary of a bounded

domain Ω in Rn+1, k ≥ 2. Then there exists � > 0 such that d ∈ Ck(N�) and for x ∈ N� the

set argminγ∈Γ �γ − x� is a singleton. Further one has ΠΓ ∈ Ck−1(N�,Γ).

Proof. By [DZ94, Thm. 5.6] there exists a ball B�(γ)(γ), �(γ) > 0 for each γ ∈ Γ such that

the assertions of the theorem hold inside B�(γ)(γ). One can assume w.l.o.g. that the radii

�(γ) ∈ (0,∞] are maximized, i.e., one of the three properties stated in the theorem does

not hold on Bδ(γ) if δ > �(γ). Now, Γ being closed and bounded, a common compactness

argument proves that the �(γ) are bounded away from zero, thus establishing the theorem:

Assume �(γ), γ ∈ Γ are not bounded away from 0. Then there exists a convergent sequence

γk → γ̄, such that �(γk) → 0. But for some k ∈ N the ball B�(γk)(γk) lies entirely in B 1
2 �(γ̄)

(γ̄),

contradicting the maximality of �(γk). �

Inside N� the distance d has the important property

∇d(x) = ν(ΠΓ(x)) . (1.1.2)

This relation, apart from complying with intuition, is also easy to prove. For x ∈ N� (1.1.1)

reads

x = ΠΓ(x) + ν(ΠΓ(x))d(x) ,

which we can derive for x to obtain

idRn+1 = DΠΓ(x) + d(x)DΓν(ΠΓ(x))DΠΓ(x) + ν(ΠΓ(x))∇d(x)T .

Multiply by ν(ΠΓ(x))T from the left to get (1.1.2). Observe that ν(ΠΓ(x)) is orthogonal on

the columns of DΠΓ(x), and that ν(γ)TDΓν(γ) =
1
2

d
dγ �ν(γ)�2 = 0.

1.2 Time dependent signed distance function and projection

In the context of evolving surfaces we require signed distance functions that also exhibit a

certain time regularity as well as tubular neighborhoods N� whose radius � does not depend

on the time variable t ∈ [0, T ], T > 0.

We will consider hypersurfaces Γ(t) that evolve from an initial connected compact hyper-

surface without boundary Γ(0) = Γ0 of class Ck, k ≥ 2. To this end consider an open set

U ⊂ Rn+1 and a velocity field V ∈ Ck(U × R,Rn+1). Let further U0 ⊂ U denote an open,

bounded, and connected neighborhood of Γ0. Then by compactness of U0 there exists some

T, δ > 0 such that the initial value problems

y(0; 0, x0) = x0 ∈ U0 , ∀t ∈ (−δ, T + δ) :
d

dt
y(t; 0, x0) = V (y(t; 0, x0), t)
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admit unique solutions y( · ; 0, x0), compare [Wal98, §12, Thm. VI]. Hence for all initial times

s ∈ (−δ, T + δ) the problems

y(s; s, xs) = xs ∈ Us , ∀t ∈ (−δ, T + δ) :
d

dt
y(t; s, xs) = V (y(t; s, xs), t)

with Us = y(s; 0,U0) are uniquely solvable for y(t; s, xs). The map

Φ : D → Rn , (t, s, xs) �→ Φs

t (xs) = y(t; s, xs)

which acts on the open domain

D = (−δ, T + δ)×
�

s∈(−δ,T+δ)

{s} × Us ⊂ Rn+3

satisfies Φ ∈ Ck(D,Rn+1), compare [Wal98, §12, Cor. XI] and is called the flow of the vector

field V . Moreover, by definition of the maps Φs
t : Us → Ut there holds

Φs

t ◦ Φr

s = Φr

t , and Φt

t = idUt
,

in particular all Φs
t are C

k-diffeomorphisms. Now Γ(t) = Φ0
t (Γ0) is the translation of Γ0 along

the velocity field V , and by Φs
t we synonymously denote the restriction Φs

t : Γ(s) �→ Γ(t).

For all t ∈ [0, T ] the surface Γ(t) is closed and divides Rn+1 \ Γ(t) into two open connected

sets, again by the Jordan-Brouwer separation theorem. Those are the bounded interior Ωt of

Γ(t) and its unbounded exterior Rn+1 \ Ωt. Because Φs
· is a homotopy between the surfaces

Γ(s) and Γ(t) it seems natural that Φs
t maps the interior Ωs of Γs to the interior Ωt of Γt.

Lemma 1.2.1. For all s, t ∈ [0, T ] there holds Φs
t (Ωs ∩ Us) = Ωt ∩ Ut.

Proof. We show that the property holds in a small environment around any fixed s ∈ [0, T ]

and thus globally.

Because Γ(s) is compact, there exists xs ∈ Us such that �xs� > maxγ∈Γ(s) �γ�. In particular

the half-line L = {txs | t ∈ [1,∞)} lies entirely in Rn+1 \Ωs, which is the unbounded one of

the two connected components of Rn+1\Γ(s). Now choose �s > 0 such that for t ∈ (s−�s, s+�s)

both xs ∈ Ut and �xs� > maxγ∈Γ(t) �γ� holds. Hence L also lies entirely in the unbounded

component Rn \ Ωt. Because there are only two connected components, one concludes

Φs

t (Ωs ∩ Us) = Ωt ∩ Ut .

Suppose the property does not hold globally. Then there exists t ∈ [0, T ] such that t =

inf
�
τ ∈ [0, T ]

�� Φ0
τ (Ω0 ∩ U0) �= Ωτ ∩ Uτ

�
. Apply the local result at t to get a contradiction.

�

As a consequence one gets the following Lemma.

Lemma 1.2.2. Assume s, t ∈ [0, T ] and x ∈ Ωs ∩ Us such that x ∈ Rn+1 \ Ωt ∩ Ut. Then for

some θ ∈ (min(s, t),max(s, t)) one has x ∈ Γ(θ).
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Proof. By Lemma 1.2.1 we can rewrite the relation x ∈ Rn+1 \ Ωt ∩ Ut as Φt
s(x) ∈ Rn+1 \

Ωs ∩ Us. The curve Φt
·(x) is a path connecting x = Φt

t(x) and Φt
s(x) which hits Γ(s) because

those points are lying in different connected components. �

Next let us mention that we can express the outer unit normal field νt of Γ(t) through that

of Γ(0).

Lemma 1.2.3. Let ν0 denote the outer unit normal field of Γ0. Then for t ∈ [0, T ], γ ∈ Γ0

the outer unit normal field of Γ(t) at Φ0
t (γ) is given by

νt(Φ
0
t (γ)) =

(DΦ0
t (γ))

−T ν0(γ)

�(DΦ0
t
(γ))−T ν0(γ)�

∈ Ck−1(Γ0 × [0, T ],Rn+1) .

Note that at this point we do not prove that νt continues to point outwards throughout the

interval [0, T ]. This is done in the proof of Theorem 1.2.4.

Proof. The image of DΦ0
t (γ))TγΓ(0) is the tangential space of Γ(t) and since

�(DΦ0
t (γ))

−T ν0(γ), DΦ0
t (γ))v�Rn+1 = ν0(γ)

T (DΦ0
t (γ))

−1DΦ0
t (γ))v = 0

for all tangential vectors v ∈ TγΓ(0) of Γ0 we conclude the orthogonality of νt on TΦ0
t
(γ). �

We can now proceed to prove the main result of this section, the smoothness of the signed

distance function of Γ(t)

d(x, t) =

�
−distΓ(t)(x), if x ∈ Ωt

distΓ(t)(x), if x /∈ Ωt

. (1.2.1)

Theorem 1.2.4. There exists � > 0 such that the signed distance function

d : Rn+1 × [0, T ] → R

is Ck-smooth in the space-time domain

N� =
�
(x, t) ∈ Rn+1 × [0, T ]

�� distΓ(t)(x) < �
�

and ΠΓ(·)(·) ∈ Ck−1(N�,Rn+1).

Parts of the proof have been inspired by that of [BG88, Thm. 2.7.12].

Proof. Consider the Riemannian Ck-manifold N = Γ0×R×(−δ, T+δ) and the Ck−1-mapping

E : N → Rn+2 , (γ, d, t) �→ (Φ0
t (γ) + νt(Φ

0
t (γ))d, t)

T ,

which has the following two important properties:

1. E(·, 0, ·) : Γ0 × [0, T ] → Rn+2 is injective,

2. DNE is invertible everywhere on Γ0 × {0} × [0, T ] ⊂ N .
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The first follows immediately from our assumptions on Φ0
t ; in order to perceive the second

property we compute the differential of E

DNE(γ, 0, t) =

�
DΓ0Φ

0
t (γ) νt(Φ0

t (γ)) 0

0 0 1

�
,

which is a surjective mapping due to the orthogonality of νt on the image of DΓ0Φ
0
t . Hence,

because of dim(N ) = dim(Rn+2), it is also bijective.

Thus we have that E is a local diffeomorphism at each point of Γ0 × {0} × [0, T ], and DNE

is invertible on some tube Γ0 × (−�̃, �̃) × [0, T ]. By compactness we now can argue that for

some 0 < � ≤ �̃ the map E constitutes a diffeomorphism between Γ0 × (−�, �)× [0, T ] and its

image N�:

Assume that there exist two sequences (γk, dk, tk), (γ̃k, d̃k, tk) ∈ Γ0 × R × [0, T ] such that

dk, d̃k → 0 while E(γk, dk, tk) = E(γ̃k, d̃k, tk). Then we can extract subsequences converging

towards (γ, 0, t) and (γ̃, 0, t) and by continuity of E we get E(γ, 0, t) = E(γ̃, 0, t). But by

property 1. the map E is injective on Γ0 × {0} × [0, T ]. Thus γ = γ̃ contradicting E being a

local diffeomorphism around (γ, 0, t).

Now we know that for any (x, t) ∈ N� the pre-image (γ0(x, t), d1(x, t), t) is a singleton, and

the component functions

γ0(x, t) : N� → Γ0 , d1(x, t) : N� → (−�, �) , as well as Π1
Γ(t)(x, t) = Φ0

t ◦ γ0 : N� → Γ(t)

are Ck−1-smooth.

Next we show the identities d1 = d and Π1
Γ(·) = ΠΓ(·) on N�. Observe that as in the argument

preceding (1.1.1) the necessary optimality conditions for y ∈ argminγ∈Γ(t) distΓ(t)(x) are

x− y = λνt(y) for some λ ∈ R .

But since E is bijective on Γ0 × (−�, �)× [0, T ], the only (y, λ) ∈ Γ(t)× (−�, �) that satisfies

this condition is (Π1
Γ(t)(x), d

1(x, t)). Because of |λ| = �x − y� all y that might satisfy this

relation for larger λ /∈ (−�, �) clearly do not lie in argminγ∈Γ(t) distΓ(t)(x). Hence we proved

Π1
Γ(t)(x) = ΠΓ(t)(x) for (x, t) ∈ N�.

Also we immediately get that

either d1(x, t) = d(x, t) or d1(x, t) = −d(x, t) . (1.2.2)

Now we show that νt(ΠΓ(t)(x)) remains an outward-pointing vector for all t ∈ [0, T ]. It suffices

to prove that for any fixed s ∈ [0, T ] there exists some �s > 0 such that νt(ΠΓ(t)(x)) does not

change its orientation on (s− �s, s+ �s). Pick any (x, s) ∈ N� with d(x, s) = �

2 . There exists

�s such that the �

4 < d(x, ·) < � on [s− �s, s+ �s]. Since by Lemma 1.2.2 the only way for x to

pass from the inside to the outside or vice versa is by the surface Γt passing through it, i.e.,

d(x, t) = 0 for some t, the point x remains on the same side of Γt for all t ∈ (s − �s, s + �s).

As a consequence, choosing 0 < δ ≤ �

4 in Definition 1.1.1 ,we see that the vector

νt(ΠΓ(t)(x)) =
x−ΠΓ(t)(x)

d1(x, t)
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retains its orientation throughout (s− �s, s+ �s).

Considering (1.2.2) it follows that d1 is the restriction to N� of the signed distance function

d from (1.2.1).

The additional regularity of d follows from the identities ∇xd(x, t) = νt(ΠΓ(t)(x)) ∈ Ck−1(N�),

compare (1.1.2), and

∂td(x, t) = �νt(ΠΓ(t)(x)), ∂tΦ
0
t (γ0(x, t))� ∈ Ck−1(N�) . (1.2.3)

The second relation is proved similarly to the first one. Starting with

x = ΠΓ(t)(x) + d(x, t)νt(ΠΓ(t)(x)) ,

we differentiate for t and multiply by νt(ΠΓ(t)(x))
T to derive (1.2.3) using

νt(ΠΓ(t)(x))
TDΓ0Φ

0
t (γ0(x, t))∂tγ0(x, t) = 0 , d(x, t)

1

2

d

dt
�νt(ΠΓ(t)(x))�2 = 0 ,

in the process, i.e., the orthogonality relation and the fact that νt is normalized. �

Remark 1.2.5. All results of this section also generalize to the case of a Hölder continuously

differentiable flow Φ ∈ Ck,γ(D,Rn+1), k ≥ 2 and a compact, closed Ck,γ-hypersurface Γ0.

One then gets d ∈ Ck,γ(N�,R) and ΠΓ(·)(·) ∈ Ck−1,γ(N�,Rn+1).

1.3 Sobolev spaces on manifolds

The standard way to introduce Sobolev spaces on an abstract manifold is by completion of

the Ck-functions with respect to the respective Sobolev norm. This may also be the reason

for that the W k,∞-spaces are usually omitted since they cannot be constructed in this way.

We follow this approach and in addition give a definition for W k,∞ on an n-dimensional

Riemannian manifold (M, g) of class CK , k ≤ K.

Through the Riemannian metric tensor g we can define the length of curves and the dis-

tance dist(·, ·) of two points of M, turning (M, dist) into a metric space that is topologically

equivalent to M.

The notation in this section differs from that in the rest of this work. This is because,

excepting the Appendices 1.A-1.C, this is the only section where we actually work with local

charts. Apart from naming these charts we need to label the components of tensors such as

the metric tensor. From the viewpoint of later chapters these local objects are not visible;

the metric then arises from the embedding of TmM into Rn+1 and is just referred to as ·
or as �·, ·�Rn+1 . Also, the definition of Sobolev spaces of course does not rely on M being a

hypersurface in an euclidean space. Hence, a more general notation seems appropriate.

The Riemannian structure of (M, g) gives rise to the kth covariant Levi-Civita derivative

∇ku of a function u ∈ Ck(M). The derivative ∇ku is then a tensor field of type (k, 0), i.e.,

k-times covariant and 0-times contravariant. Following [Heb00] let us define the norm of a

(k, 0)-tensor T

|T | =




n�

i1...ik=1

n�

j1...jk=1

gi1j1 . . . gikjkTi1...ikTj1...jk





1
2

(1.3.1)
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where gij = g( ∂

∂xi
, ∂

∂xj
) and Ti1...ik = T ( ∂

∂xi1
, . . . , ∂

∂xi
k

) are the components of the tensors g

and T in local coordinates ∂

∂xi
, and gij are chosen such that

�
n

j=1 gijg
jk = δik, where δij

denotes Kronecker’s delta. In other words the matrix (gij) is the inverse of the matrix (gij).

In particular for the gradient ∇u of a function u one has

�∇u�g = (g(∇u,∇u))
1
2 = |∇1u| ,

because in local coordinates it’s components read (∇u)i =
�

n

j=1 g
ij(∇1u)j . Remember that

the gradient is defined through the relation

g(∇u,
∂

∂xi
) = ∇1u(

∂

∂xi
) , i = 1, . . . , n .

Now for 1 ≤ p < ∞ the W k,p-norm of some smooth function u ∈ Ck(M) is

�u�k,p =




k�

i=0

�

M

|∇iu|p dv(g)





1
p

,

where v(g) =
�

det(g)dx1∧· · ·∧dxn is the volume form associated with g. Observe that while

det(g) = det(gij) does depend on the local basis the 1-form v(g) does not. Let us mention

that in later parts of this work, where we deal with hypersurfaces on which metric tensor and

volume form are prescribed by the surrounding space, we will just denote integrals as
�

Γ
dΓ.

Now for k ≤ K let

Ck,p =
�
u ∈ Ck(M) | �u�k,p is finite

�
.

Let us define Sobolev spaces and state some fundamental properties, compare [Heb00, Prop.

2.1-2.3].

Lemma and Definition 1.3.1. Let 0 ≤ k ≤ K and 1 ≤ p < ∞. By W k,p(M) ⊂ Lp(M) we

denote the completion of Ck,p with respect to the norm � · �k,p. W k,p(M) is a Banach space.

On compact manifolds the W k,p-spaces do not depend on the metric g.

Let further p ∈ (1,∞), then W k,p(M) is reflexive. The spaces W k,2(M) are Hilbert spaces

and often are referred to as Hk(M). By H−k(M) we denote the completion of L2(M) with

respect to the dual norm of Hk(M).

One has the usual compact embeddings, see [Heb00, Thm 2.9].

Lemma 1.3.2. Let M be compact. For integers k ≥ 0 and l ≥ 1, such that k + l ≤ K, and

real numbers p, q ≥ 1 with p < nq/(n− lq) the embedding W k+l,q(M) ⊂ W k,p(M) is compact.

For q > n the space W 1,q(M) is a compact subspace of the space of Hölder continuous

functions C0,γ(M) for any Hölder exponent γ ∈ (0, 1) such that (1− γ)q > n.

While it is possible to define a scalar product on (k, 0)-tensors, that induces the norm | · | from
(1.3.1), we content ourselves with pointing out that for k = 1 the scalar product associated

with the W 1,2-norm can be written as

�u,w�1,2 =
�

M

uw dv(g) +

�

M

g(∇u,∇w) dv(g) .
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In order to facilitate some of the following proofs we make some technical assumptions on

(M, g), which are met in many practical cases, among those all surfaces considered in this

work.

Assumption 1.3.3. For (M, g) there exists an atlas (Ui, φi)i∈I with subordinate partition

of unity {ηi}i∈I , such that the pullbacks of g via φ−1
i

are uniformly positive definite and

bounded, i.e., for any tangential vector v =
�

n

i=1 vi
∂

∂xi
there holds

2
n�

i=1

v2i ≥
n�

i,j=1

vigijvj ≥
1

2

n�

i=1

v2i . (1.3.2)

Observe that for the inverse matrix (gij) Equation (1.3.2) implies also

2
n�

i=1

v2i ≥
n�

i,j=1

vig
ijvj ≥

1

2

n�

i=1

v2i . (1.3.3)

In particular Assumption 1.3.3 is satisfied for all compact Riemannian manifolds (M, g), as

can be seen by choosing normal coordinates at every point m ∈ M in a sufficiently small

neighborhood Um and then passing to finitely many Um covering M.

We are now going to make use of these assumptions in order to interpret the concept of weak

derivatives on manifolds. Unlike in a vector space, here the partial derivatives of a function

as well as the components of tensors are local objects.

Lemma and Definition 1.3.4. Let Assumption 1.3.3 hold for (M, g). An element u ∈
W k,p(M) possesses weak covariant derivatives ∇lu, l = 1 . . . k. In a local chart (Ui, φi), i ∈ I,

the components of ∇lu are the Lp(Ui)-limits of the components of ∇lϕr, where {ϕr}r∈N ⊂
Ck,p(M) tends to u in the W k,p-norm. For a.e. m ∈ M the object ∇lu(m) is an (l, 0)-tensor.

Also there exist weak partial derivatives ∂i1...ilu ∈ Lp(Ui), l ≤ k, that are the Lp-limits of

∂i1...ilϕr.

Proof. Consider a W k,p Cauchy sequence {ϕr}r∈N ⊂ Ck,p(M) converging by definition to-

wards its W k,p-limit u ∈ W k,p(M). Let (U , φ) denote a local chart as by Assumption 1.3.3.

Using the Cholesky decomposition gij =
�

n

r=1 c
ircjr we can rewrite the tensor norm from

(1.3.1) as

|T | =




n�

i1j1=1

n�

r2...rk=1

gi1j1 T̃i1r2...rk T̃j1r2...rk





1
2

(1.3.4)

with T̃i1r2...rk =
�

n

i2...ik=1 c
i2r2 . . . cikrkTi1i2...ik .

Now one can apply (1.3.3) to the expression (1.3.4). Iterating this argument over the indices

i1 . . . ik and j1 . . . jk one proves the estimate

|∇l(ϕr − ϕs)|2 ≥
1

2l

n�

i1...il=1

|∇l(ϕr − ϕs)i1...il |2 . (1.3.5)

The components of ∇lϕr, l ≤ k, are thus Lp(Ui) Cauchy sequences converging to a limit

denoted (∇lu)i1...il ∈ Lp(Ui).
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For a.e. m ∈ M the (∇lu)i1...il are the components of a (l, 0)-tensor, because the transfor-

mation rule for coordinate changes (∇lϕr)i1...il �→ �(∇lϕr)j1...jl is a linear mapping and thus

holds a.e. after passing to the Lp-limit.

By the definition of the covariant derivative one has

∂

∂xα
(∇lϕr)i1...il = (∇l+1ϕr)αi1...il +

l�

m=1

n�

β=1

Γβ

αim
(∇lϕr)i1...im−1 β im+1...il

, (1.3.6)

the n3 Christoffel symbols Γi

jk
being CK functions. In view of (1.3.6) the Lp(Ui)-convergence

of the covariant derivatives of ϕr implies Lp(Ui)-convergence of the partial derivatives
∂

∂xα
(∇lϕr)i1...il in Lp(Ui), given that l + 1 ≤ k. Successively differentiating (1.3.6) with

respect to α2 . . . αk−1, one shows by induction over the number of partial derivatives that

∂α1...αs
(∇l)i1...ilu ∈ Lp(Ui) for l + s ≤ k. Hence the weak partial derivatives exist. �

Next, we also want to properly define W k,∞(M).

Lemma and Definition 1.3.5. Let Assumption 1.3.3 hold for (M, g), and additionally

assume
�

M
dv(g) < ∞. Equipped with the norm

�u�k,∞ = max
l=0...k

�|∇lu|�L∞(M,g)

the space

W k,∞(M) =
�
u ∈ W k,1 | �u�k,∞ is finite

�

is a Banach space.

Proof. A W k,∞-Cauchy sequence {ϕi}i∈N possesses a W k,1-limit ϕ ∈ W k,1(M, g).

Now let 0 ≤ l ≤ k. Since countable unions of null sets are again of measure 0, there exists a

set N of v(g)-measure 0 which does not depend on l, such that for all m ∈ M \ N we have

|∇lϕi(m) − ∇lϕj(m)| ≤ � for i, j ≥ c� independent of m. Since the space of (l, 0) tensors is

complete we obtain the pointwise limit ∇lϕi(m) → T l(m) with

�|T l|�L∞(M,g) ≤ �|∇lϕc� |�L∞(M,g) + � .

Note that |T l| is measurable since it is the pointwise a.e. limit of measurable functions.

Finally the uniform bound

|∇lϕi(m)− T l(m)| = lim
j→∞

|∇lϕi(m)−∇lϕj(m)| ≤ �

implies uniform convergence on M \ N . In particular �|∇lϕi − T l|�L∞(M,g) → 0 implies

∇lϕ = T l and thus ϕ ∈ W k,∞(M) and �ϕi − ϕ�k,∞ → 0. �
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1.3.1 Manifolds with boundary and Stokes’ formula

In order to work with partitions of smooth surfaces that arise from finite element methods it

is useful to consider manifolds with boundary. Since the patches those partitions consist of

usually exhibit a certain lack of regularity at the boundary let us also allow for corners.

Definition 1.3.6. An n-dimensional manifold with boundary is a Hausdorff space M that is

locally homeomorph to the half space {x ∈ Rn | x1 ≥ 0}. The set of points that are mapped

onto {x ∈ Rn | x1 = 0} are called the boundary ∂M of M.

An n-dimensional C2-smooth manifold with corners M is locally diffeomorph to sets

Hi = {x ∈ Rn | xj ≥ 0, for 1 ≤ j ≤ n− i} , 0 ≤ i ≤ n .

More precisely M is a manifold with boundary such that

1. for every m ∈ M there exists a neighborhood Um ⊂ M and a homeomorphism

ϕm : Um → Him ∩ Vm ,

with ϕm(m) = 0 and Vm an Rn-neighborhood of 0.

2. the changes of coordinates ϕm1 ◦ϕ−1
m2

are C2-diffeomorphisms wherever Um1 ∩Um2 �= ∅.

Each point m ∈ M is then called a corner of dimension im, and the boundary is characterized

by ∂M = {m ∈ M | dimension of m is not n}. Note that because of the second condition

the dimension im does not depend on the choice of the chart ϕm.

Note that since the boundary of a Riemannian manifold has v(g)-measure 0 its presence does

not change the preceding definitions of an lemmata on Sobolev spaces.

On manifolds with corners Stokes’ formula holds, compare [Tay11, Ch. 1,Prop. 13.4].

Theorem 1.3.7 (Stokes’ formula). On an oriented C2-manifold M of dimension n with

corners, whose boundary ∂M is equipped with its natural orientation, there holds
�

M
dβ =

�

∂M
β

for every compactly supported n-form of class C1.

A consequence of this is the divergence theorem for vector fields. The divergence of a differ-

entiable vector field F

divMF =
1�

det(g)

n�

i=1

∂i
��

det(g)Fi

�

is a measure of the change of a volume under the flow of F .

Theorem 1.3.8 (Divergence theorem). If (M, g) is a compact oriented Riemannian C2-

manifold with corners and F a C1-vector field, then
�

M

divMF dv(g) =

�

∂M

g(F, µ) dv∂(g) ,

where µ is the outward pointing normal to ∂M, and v∂(g) denotes the volume induced by g

on ∂M.
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Proof. The proof preceding [Tay11, Ch. 2, Thm. 2.1] applies. �

For u ∈ C2(M) the Laplace-Beltrami operator is defined as

∆Mu = divM∇Mu .

as a consequence of the divergence theorem one has
�

M

ϕ(−∆Mu) dv(g) =

�

M

g(∇Mϕ,∇Mu) dv(g)−
�

∂M

g(∇Mu, µ) dv∂(g) , (1.3.7)

for a smooth test function ϕ ∈ C1(M), which gives rise to the weak formulation of elliptic

problems.

The main result of this section is fairly easy to prove in euclidean space, whereas on a manifold

M its proof is rather technical. It says that a piecewise smooth, globally continuous function

on M is an element of W 1,∞(M) and Lipschitz continuous.

Lemma 1.3.9. Consider a compact n-dimensional orientable C2-manifold M =
�

j∈J Mj

with or without boundary. ∂M is assumed to be C2-smooth.

The partition {Mj}j∈J , J finite, consists of n-dimensional orientable compact C2-manifolds

Mj with corners such that

Mi ∩Mj ⊂ ∂Mi ∩ ∂Mj ⇔ i �= j ,

and the exterior normals µi of Mi and µj of Mj, i �= j satisfy µj = −µi a.e. on the

submanifold ∂Mi ∩ ∂Mj. In particular ∂Mi ∩ ∂Mj ∩ ∂Mk for pair-wise distinct indices

i, j, k is a set of ∂Mi ∩ ∂Mj-measure zero.

A function u ∈ C(M,R) that is piecewise smooth (u ∈ C1(Mj ,R), j ∈ J) lies in W 1,∞(M)

and is Lipschitz continuous.

Proof. Because M is compact, Assumption 1.3.3 holds with a finite index set I, and we have

a uniformly positive definite atlas (Ui, φi)i∈I with subordinate partition of unity {ηi}i∈I . We

show that ηiu is in W 1,∞(M) and Lipschitz; this proves the assertion since I is finite.

We proceed by showing the existence of weak partial derivatives of ũ = (ηiu
√
det g) ◦ φ−1

i
in

L∞({x ∈ Rn | x1 ≥ 0}). Let ϕ ∈ C∞(Rn) with compact support in {x ∈ Rn | x1 > 0} and

denote ϕ̃ = ϕ ◦ φ−1
i

. Then one applies Theorem 1.3.8 and makes use of the assumptions on

the partition {Mj}j∈J to get

�

j∈J

�

φi(Ui∩Mj)

∂αũϕ+ ũ∂αϕ dx =
�

j∈J

�

φi(Ui∩Mj)

div (ũϕeα) dx

=
�

j∈J

�

Mj

divM

�
ηiuϕ̃

∂

∂xα

�
dv(g)

=
�

j∈J

�

∂Mj

ηiuϕ̃ g(
∂

∂xα
, µj) dv(g) =

�

∂M

ηiuϕ̃ g(
∂

∂xα
, µ) dv(g) = 0 .
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Hence ũ ∈ W 1,∞({x ∈ Rn | x1 ≥ 0}). But then (ηiu) ◦ φ−1
i

is, too, because 1√
det(g)

◦ φ−1
i

∈
C1({x ∈ Rn | x1 ≥ 0}). Observe that since the boundary {x ∈ Rn | x1 = 0} of the domain of

(ηiu) ◦ φ−1
i

is smooth this also implies Lipschitz continuity

(ηiu) ◦ φ−1
i

∈ C0,1({x ∈ Rn | x1 ≥ 0}) .

First let us argue the W 1,∞-smoothness of ηiu. By convolution with smoothing functions one

obtains a sequence (ϕk)k∈N in C2(φi(Ui)) approximating (ηiu) ◦ φ−1
i

in the W 1,1-norm. By

Assumption 1.3.3 this implies convergence of ϕk ◦ φi towards ηiu in the W 1,1(M)-norm. We

already proved the boundedness of the weak gradient of (ηiu)◦φ−1
i

; boundedness of the weak

gradient ∇(ηiu) hence follows again by Assumption 1.3.3.

As to the Lipschitz continuity of ηiu note that for m1,m2 /∈ supp(ηiu) the relation

|ηiu(m1)− ηiu(m2)| ≤ d(m1,m2)

holds trivially. Hence let us consider m1 ∈ supp(ηiu) and m2 ∈ Ui. Observe that a shortest

path connecting m1 with m2 or, more general, connecting paths may leave the set Ui. We

make use of the fact that the support of ηi is a compact set. Hence let δ > 0 denote its

distance from the boundary of Ui. Then the length of each path between m1 and m2 that

leaves Ui is bounded from below by δ.

On the other hand there holds (1.3.2), and thus the lengths of all paths not leaving Ui are

bounded from below by 1
2�φi(m1)− φi(m2)�. Using the Lipschitz constant Li of (ηiu) ◦ φ−1

i

one obtains

min(δ,
1

2Li

|ηiu(m1)− ηiu(m2)|) ≤ d(m1,m2) .

Now |ηiu| ≤ C for some bound C ≥ 0 which finally leads to

|ηiu(m1)− ηiu(m2)|min(
δ

2C
,

1

2Li

) ≤ d(m1,m2) ,

yielding the possibly quite large Lipschitz constant (min( δ

2C ,
1

2Li
))−1 for ηiu. �

The Lipschitz constants constructed in the proof of Lemma 1.3.9 are by no means optimal.

In many situations one obtains better results by using local convexity results, that facilitate

the previous proof. As a drawback their standard form requires a little more regularity.

Lemma 1.3.10 (Local convexity). Consider a manifold without boundary M of class

C3. Then for each m ∈ M there exists δ > 0 such that the geodesic ball Bδ(m) =

{m̃ ∈ M | dist(m̃,m) < δ} is convex, i.e., that every two points in Bδ(m) can be joined by a

shortest path that lies entirely in Bδ(m).

Proof. A proof that generalizes to our case can be found in [Aub82, Thm. 1.36]. �

Corollary 1.3.11. Consider a compact manifold without boundary M of class C3. Then

Assumption 1.3.3 holds with the additional property that the index set I is finite and that all

Ui, i ∈ I are convex.

Another possibility to improve the estimates on the Lipschitz constants consists in the appli-

cation of [MMV98], the assumptions of which are a bit harder to check, in particular in the

setting with boundary.
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1.A The parabolic tube Γ × [0, T ]

In this appendix we investigate the practically relevant case where (M, g) is a hypersurface

of Rn+2, namely the product M = Γ × [0, T ] of a compact hypersurface of Rn+1 without

boundary and the compact interval [0, T ], T > 0, equipped with the Rn+2 scalar product

g(·, ·) = �·, ·�Rn+2 .

Let us verify that Assumption 1.3.3 holds with finite index set I and thus prove the following

corollary to Lemma 1.3.9.

Corollary 1.A.1. On the parabolic tube (Γ× [0, T ], �·, ·�Rn+2) any continuous function that is

piecewise smooth on a partition that satisfies the prerequisites of Lemma 1.3.9 lies in W 1,∞(Γ×
[0, T ]) and is Lipschitz continuous.

The Corollary is due to the fact that starting from an atlas (Ui, φi)i∈I for Γ one obtains a

canonical one for Γ× [0, T ], namely (Ui × [0, T ], (φi, idR))i∈I . If (Ui, φi)i∈I fulfills the require-

ments of Assumption 1.3.3 so does (Ui × [0, T ], (φi, idR))i∈I .

Let gΓ(·, ·) = �·, ·�Rn+1 denote the Riemannian tensor on Γ. Condition (1.3.2) holds for the

metric tensor g

gij =

�
δij if i = n+ 1 or j = n+ 1

gΓ
ij

1 ≤ i, j < n+ 1
(1.A.1)

because it does for gΓ
ij
:

2
n+1�

i=1

v2i ≥
n+1�

i,j=1

vigijvj = v2n+1 +
n�

i,j=1

vig
Γ
ijvj ≥

1

2

n+1�

i=1

v2i .

Using the structure (1.A.1) of the components of g one can show that the geodesics on Γ×[0, T ]

decompose into (αc(t), βt), α, β ∈ R, where c(t) is a geodesic in Γ. Hence if the Ui are convex

then the sets Ui × [0, T ] are convex, too. We have thus the following variant of Corollary

1.3.11 allowing for better Lipschitz constants in Lemma 1.3.9.

Corollary 1.A.2. Consider a compact hypersurface without boundary Γ of class C3. Then

Assumption 1.3.3 holds for the tube Γ× [0, T ] with the additional property that the index set

I is finite and that all Ui, i ∈ I are convex.

1.B Uniform stability of elliptic problems on a moving surface

In the situation of Section 1.2 we will require interior regularity estimates for the following

elliptic state equation. For y ∈ L2(Γ(t)) find z ∈ H1(Γ(t)) such that
�

Γ(t)

g(∇Γz,∇Γϕ) + µzϕdΓ(t) = �y, ϕ�L2(Γ(t)) , ∀ϕ ∈ H1(Γ(t)) . (1.B.1)

where µ ∈ C1(Γ(t)) and µ ≥ 1. Here, the metric g is given by the Rn+1 scalar product.

Problem (1.B.1) admits a unique solution and it is easy to see that �z�H1(Γ(t)) ≤ �y�H−1(Γ(t)).

But, as shows the next Lemma, the solution z even lies in H2(Γ(t)).
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Lemma 1.B.1. Let Γ(t) = Φ0
t (Γ0) as in Section 1.2. For the solution z of (1.B.1) there

holds

�z�H2(Γ(t)) ≤ C�y�L2(Γ(t)) ,

and C does not depend on t ∈ [0, T ].

Observe that the lemma easily adapts to the case µ ≡ 0. The estimate then reads

�z�H2(Γ(t)) ≤ C�y�L2(Γ(t)) + �z�H1(Γ(t)) ,

and the solution z of (1.B.1) is not unique.

Proof. For Γ0 there exists a finite atlas (Ui, φi)i∈I , I finite, with subordinate partition of

unity {ηi}i∈I as in Assumption 1.3.3. Hence (Φ0
t (Ui), φi ◦ Φt

0)i∈I is an atlas for Γ(t) with

subordinate partition of unity (ηi ◦ Φt

0)i∈I . Now choose Ωi ⊂ φi(Ui) compact, such that the

support Ω0
i
= supp(η̃i) of the pulled-back function η̃i = ηi ◦ φ−1

i
lies in the interior of Ωi.

Due to the smoothness of the flow Φ the components gij(x, t) of the metric of Γ(t) are C2-

smooth. Because [0, T ], the unit sphere in Rn, and the Ωi are compact sets there exist bounds

c, c ∈ R such that

0 < c ≤
�
det(g(x, t)) ,

n�

i,j=1

vigij(x, t)vj ,
n�

i,j=1

vig
ij(x, t)vj ≤ c (1.B.2)

for all x ∈ Ωi, t ∈ [0, T ] and v ∈ Rn with �v�Rn = 1. For every H1(Ω)-function ϕ with

support in Ωi the variational problem (1.B.1) can be rewritten as
�

φi(Ui)

(∇Rn z̃(x)G(x, t)∇Rnϕ(x) + µ̃(x)z̃(x)ϕ(x))
�
det(g(x, t)) dx = �ỹ, ϕ�L2(φi(Ui)) .

Here G denotes the matrix with entries gij and

z̃ = z ◦ (φi ◦ Φt

0)
−1 , µ̃ = µ ◦ (φi ◦ Φt

0)
−1 , ỹ = y ◦ (φi ◦ Φt

0)
−1 .

Because of (1.B.2) we are in the position to apply an interior regularity estimate like [GT98,

Thm 8.8] and exploit µ ≥ 1 to get

�z̃�
H2(Ω0

i
) ≤ c�ỹ�L2(Ωi) , (1.B.3)

with C independent of t ∈ [0, T ]. Now we use (1.B.2) again to bound the right hand side of

(1.B.3) through √
c �ỹ�L2(Ωi) ≤ �y�

L2(Φ0
t
(Ui)) .

A short computation yields �η̃iz̃�H2(Ω0
i
) ≤ C�z̃�

H2(Ω0
i
). It remains to show that �ηiz�H2(Γ(t)) ≤

C�η̃iz̃�H2(Ω0
i
). Using convolution, η̃iz̃ can be approximated in the H2(Ω0

i
)-norm by C2(Ωi)-

functions (ϕk)k∈N, that vanish outside Ωi. Now let ϕ ∈ C2(φi(Ui)) whose support lies inside

Ωi and ϕ̃ = ϕ ◦ φi ◦ Φt

0 ∈ C2(Γ(t)). One has

(∇1ϕ̃)i1 =
∂

∂xi1
ϕ̃ , (∇2ϕ̃)i1i2 =

∂2

∂xi1∂xi2
ϕ̃−

n�

m=1

Γm

i1i2

∂

∂xim
ϕ̃ . (1.B.4)
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Because of (1.B.2) we can estimate � ∂
l

∂xi1 ...∂xi
l

ϕ̃�L2(Γ(t)) ≤
√
c � ∂

l

∂xi1 ...∂xi
l

ϕ�L2(Ωi) for l = 0, 1, 2.

The Christoffel symbols Γm

i1i2
∈ C1(Γ(t)) are uniformly bounded with respect to t ∈ [0, T ].

Hence, due to (1.B.4), the components of the covariant derivative can be estimated through

the partial derivatives.

We used the Cholesky decomposition of (gij) to prove (1.3.5). A similar argument, involving

(1.B.2) instead of (1.3.3), yields

|∇lϕ|2 ≤ cl
n�

i1...il=1

|∇lϕi1...il |2 ,

and ends up with

�ϕ̃�H2(Γ(t)) =




2�

i=0

�

Γ(t)

|∇iϕ̃|2 dΓ(t)





1
2

≤ c
�
�ϕ�H2(Ωi) + n3C�ϕ�H1(Ωi)

�
.

Hence, ϕk being a Cauchy sequence in H2(Ωi), the pulled-back functions ϕ̃k form a Cauchy

sequence in H2(Γ(t)) whose limit is ηiz (because its L2(Γ(t))-limit is ηiz), and we have

�ηiz�H2(Γ(t)) ≤ C�η̃iz̃�H2(Ω0
i
) ≤ C

√
c �y�L2(Γ(t)) .

Summing up over i ∈ I we obtain the desired estimate. �

1.C Semismoothness on manifolds

Let us make sure that the Newton methods applied in later chapters do converge locally

superlinearly. In the situation of Section 1.1, assume that we want to compute the solution

ū of the equation

G(u) = u− P[a,b]

�
Q(u)

�
= 0 ∈ L2(Γ) , (1.C.1)

where P[a,b] is the point-wise projection onto the interval [a, b] and Q : L2(Γ) → H1(Γ) a

continuous linear operator.

For the fast local convergence of Newton’s method in L2(Γ) we require that

sup
M∈∂G(ū+δu)

�G(ū+ δu)−G(ū)−Mδu�L2(Γ) = o(�δu�L2(Γ)) as �δu�L2(Γ) → 0 ,

for some set-valued mapping ∂G : Γ ⇒ L(L2(Γ), L2(Γ)). An operator G : L2(Γ) → L2(Γ)

with this property is called semismooth at ū with generalized derivative ∂G if in addition it

is continuous at ū and ∂G is non-empty in a neighborhood of ū, compare [Ulb11, Def 3.1].

If G is semismooth, a Newton algorithm for (1.C.1) converges locally superlinearly if there

exists C > 0 such that in a neighborhood of the solution ū each set ∂G contains at least one

element M with �M−1�L(L2(Γ),L2(Γ)) ≤ C.

One way to prove semismoothness of (1.C.1) is now to prove a generalization of [Ulb11, Thm.

3.49] on compact surfaces. This, while being more time consuming, will in general lead to
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better constants than the following approach. Here we satisfy ourselves with a short argument

using local charts.

One has �v�Lp(Γ) ≤ C�v�H1(Γ) with p > 2 depending on n, see Lemma 1.3.2. In order to apply

results known for Euclidean space, one locally prolongates the operator G via pull-backs onto

L2(φi(Ui)), i ∈ I, using a finite atlas as in Assumption 1.3.3. As a consequence of (1.3.2) one

has equivalence of the norms

cp�v�Lp(φi(Ui)) ≤ �v ◦ φi�Lp(Ui) ≤ cp�v�Lp(φi(Ui)) , p ≥ 2 ,

and thus the pull-back φ∗
i
: Lp(φi(Ui)) → Lp(Ui), v �→ v ◦ φi is a linear homeomorphism with

inverse

φ∗
i

−1 = φ−1
i

∗
: Lp(Ui) → Lp(φi(Ui)) , v �→ v ◦ φ−1

i
.

Consider further the linear continuous restriction operator

r : Lp(Γ) → Lp(Ui) , v �→ v
��
Ui

and its Lp-Lq-adjoint p = r∗ : Lq(Ui) → Lq(Γ) which is the prolongation by zero. Note that

we can consider p a continuous operator from Lp(Ui) into Lp(Γ).

Now the operator

G̃i = φ−1
i

∗ ◦ r ◦G : L2(Γ) → L2(φi(Ui)) , u �→ φ−1
i

∗
r(u)− P[a,b]

�
φ−1
i

∗
r(Q(u))

�

is semismooth everywhere, because the operator φ−1
i

∗ ◦ r ◦ Q maps L2(Γ) continuously into

Lp(φi(Ui)) for some p > 2, compare [Ulb11, Thm. 3.49], and one has

∂G̃i(u) = φ−1
i

∗ ◦ r− ∂P[a,b]

�
Q(u)) ◦ φ−1

i

∗ ◦ r ◦Q .

The pull-back φ∗
i
, the prolongation p and the point-wise multiplication with the smooth func-

tion ηi from the partition of unity are linear continuous operators and do not affect semis-

moothness. Hence ηiG = ηipφ∗
i
φ−1
i

∗
rG = ηi

�
p ◦ φ∗

i
◦ G̃i

�
: L2(Γ) → L2(Γ) is semismooth.

Finally, the sum G =
�

i∈I ηiG of semismooth operators is again semismooth.

The generalized differential ∂P[a,b]

�
Q(u)) consists of point-wise multiplications with L∞-

functions, among those the indicator function of the inactive set, compare Section 2.2. Since

it is a point-wise operation one has

∂G(u) =
�

i∈I
ηipφ

∗
i ∂G̃i(u) = idL2(Γ) − ∂P[a,b]

�
Q(u)) ◦Q .





Chapter 2

Elliptic optimal control on
stationary surfaces

The following chapter is devoted to the numerical treatment of the following linear-quadratic

optimal control problem on a n-dimensional, sufficiently smooth compact hypersurface with-

out boundary Γ ⊂ Rn+1, n = 1, 2, 3.

min
u∈L2(Γ), y∈H1(Γ)

O(u, y) =
1

2
�y − yd�2L2(Γ) +

α

2
�u�2

L2(Γ)

subject to u ∈ Uad and
�

Γ

∇Γy∇Γϕ+ cyϕ dΓ =

�

Γ

uϕ dΓ , ∀ϕ ∈ H1(Γ)

(P)

with Uad =
�
v ∈ L2(Γ) | a ≤ v ≤ b

�
, a < b ∈ R . For simplicity we will assume Γ to be

compact without boundary and c ≡ 1. In Section 2.4 we briefly investigate the case c ≡ 0, in

Section 2.5 we give an example on a surface with boundary.

It follows by standard arguments that (P) admits a unique solution u ∈ Uad with unique

associated state y = y(u) ∈ H2(Γ).

Our numerical approach uses variational discretization applied to (P), see [Hin05] and

[HPUU09], on a discrete surface Γh approximating Γ. A globalized semismooth Newton

strategy is proposed, inspired by results from [Grä08]; [GK09], compare also [HV12b].

The discretization of the state equation in (P) is achieved by the finite element method

developed in [Dzi88], where a priori error estimates for finite element approximations of the

Poisson problem for the Laplace-Beltrami operator are provided. Let us mention that uniform

estimates are presented in [Dem09], and steps towards a posteriori error control for elliptic

PDEs on surfaces are taken by Demlow and Dziuk in [DD07].

For alternative approaches for the discretization of the state equation by finite elements see,

e.g., the work of Burger [Bur08] and the references therein.

We assume that Γ is of class C3. The surface Γ ⊂ Rn+1, as a compact hypersurface without

boundary, is orientable with an exterior unit normal field ν and hence the zero level set of a

19
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signed distance function d such that |d(x)| = dist(x,Γ) and ν(x) = ∇d(x)
�∇d(x)� for x ∈ Γ, compare

Chapter 1. Further, there exists an neighborhood N ⊂ Rn+1 of Γ, such that d is also of class

C3 on N and the projection

ΠΓ : N → Γ , ΠΓ(x) = x− d(x)∇d(x) (2.0.1)

is unique, see Theorem 1.1.2. Note also that ∇d(x) = ν(ΠΓ(x)).

As in (1.0.1) we denote the metric tensor simply as v1v2, for v1, v2 ∈ TγΓ, considering TγΓ a

subset of Rn+1.

We use the Laplace-Beltrami operator −∆Γ = −divΓ∇Γ, compare (1.3.7), in its weak form

i.e. −∆Γ : H1(Γ) → H1(Γ)∗

y �→
�

Γ

∇Γy∇Γ( · ) dΓ ∈ H1(Γ)∗ .

Let S denote the prolongated, restricted solution operator of the state equation

S : L2(Γ) → L2(Γ) , u �→ y −∆Γy + cy = u ,

which is compact and for c ≡ 1 constitutes a linear homeomorphism onto H2(Γ), compare

Appendix 1.B.

By standard arguments we get the following necessary (and here also sufficient) conditions

for optimality of u ∈ Uad

�∇uO(u, y(u)), v − u�L2(Γ) = �αu+ S∗(Su− yd), v − u�L2(Γ) ≥ 0 , ∀v ∈ Uad . (2.0.2)

We rewrite (2.0.2) as

u = PUad

�
− 1

α
S∗(Su− yd)

�
, (2.0.3)

denoting by PUad
the L2-orthogonal projection onto Uad.

2.1 Discretization

We now discretize (P) by use of polyhedral approximations Γh for Γ. Following Dziuk, we

consider surfaces Γh =
�

i∈Ih T
i

h
consisting of triangles T i

h
with corners on Γ whose maximum

diameter is denoted by h. With finite element error bounds in mind we assume the family of

triangulations Γh to be regular in the usual sense that the angles of all triangles are bounded

away from zero uniformly in h.

In the following we assume h > 0 sufficiently small such that Γh ⊂ N . In addition we assume

that ΠΓ from (2.0.1) constitutes a homeomorphism between Γh and Γ. In order to compare

functions defined on Γh with functions on Γ we use ΠΓ to lift a function y ∈ L2(Γh) to Γ

yl(ΠΓ(x)) = y(x) ∀x ∈ Γh ,

and for y ∈ L2(Γ) we define the inverse lift

yl(x) = y(ΠΓ(x)) ∀x ∈ Γh .
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The lift operation (·)l : L2(Γ) → L2(Γh) then defines a linear homeomorphism with inverse

(·)l. Moreover, there exists cint > 0 such that

1− cinth
2 ≤ �(·)l�2L(L2(Γ),L2(Γh)), �(·)

l�2L(L2(Γh),L2(Γ)) ≤ 1 + cinth
2 , (2.1.1)

as shows the following lemma.

Lemma and Definition 2.1.1. Denote by δh the Jacobian of ΠΓ|Γh : Γh → Γ which is defined

in the relative interior of each triangle. One has δh = dΓ
dΓh

= |det(M)| where M ∈ Rn×n

represents the Derivative DΠΓ(γ) : TγΓh → TΠΓ(γ)Γ with respect to arbitrary orthonormal

bases of the respective tangential space. For small h > 0 there holds

sup
Γ

|1− δh| ≤ cinth
2 .

Now δ−1
h

= |det(M−1)|, and by the change of variable formula we have

������

�

Γh

vl dΓ
h −

�

Γ

v dΓ

������
=

������

�

Γ

vδ−1
h

− v dΓ

������
≤ cinth

2�v�L1(Γ) .

Proof. see [DE07, Lemma 5.1] �

Problem (P) is approximated by the following sequence of optimal control problems

min
u∈L2(Γh), y∈Yh

O(u, y) =
1

2
�y − (yd)l�2L2(Γh) +

α

2
�u�2

L2(Γh)

subject to u ∈ Uh

ad
and

y = Shu ,

(Ph)

with the admissible set Uh

ad
=

�
v ∈ L2(Γh) | a ≤ v ≤ b

�
and the discretized state space

Yh =
�
ϕ ∈ C0

�
Γh

� ��� ∀i ∈ Ih : ϕ|
T

i

h

∈ P1(T i

h
)
�

of piecewise linear, globally continuous functions on Γh. Let us avoid the issue of defining

H1(Γh) on the non-smooth surface Γh and instead endow Yh with the norm

�ϕ�2Yh
=

�

Γh

∇Γhϕ∇Γhϕ+ ϕ2 dΓh .

Problem (Ph) may be regarded as the extension of variational discretization introduced in

[Hin05] to optimal control problems on surfaces.

In [Dzi88] it is explained, how to implement a discrete solution operator Sh : L2(Γh) → L2(Γh),

mapping L2(Γh) onto Yh, such that

�(·)lSh(·)l − S�L(L2(Γ),L2(Γ)) ≤ CFEh
2 , (2.1.2)
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which we will use throughout this chapter. See in particular [Dzi88, Equation (6)] and [Dzi88,

7. Lemma]. The method works as follows. Let u ∈ L2(Γ), and solve
�

Γh

∇Γhyh∇Γhϕ+ cyhϕ dΓh =

�

Γh

ulϕ dΓh , ∀ϕ ∈ Yh

for yh ∈ Yh in order to compute yl
h
= (·)lSh(·)lu .

We choose L2(Γh) as control space, because in general we cannot evaluate
�

Γ
v dΓ exactly,

whereas the expression
�

Γh

vl dΓh for piecewise polynomials vl can be computed up to machine

accuracy. Also, the operator Sh is self-adjoint, while ((·)lSh(·)l)∗ = (·)l∗Sh(·)l
∗
is not. The

adjoint operators of (·)l and (·)l have the shapes

∀v ∈ L2(Γh) : ((·)l)∗v = δ−1
h

vl , ∀v ∈ L2(Γ) : ((·)l)∗v = δhvl , (2.1.3)

hence evaluating (·)l∗ and (·)l∗ requires knowledge of the Jacobians δ−1
h

and δh which may

not be known analytically.

Similar to (P), problem (Ph) possesses a unique solution uh ∈ Uh

ad
which satisfies

uh = P
U

h

ad

�
− 1

α
ph(uh)

�
. (2.1.4)

Here P
U

h

ad

: L2(Γh) → Uh

ad
is the L2(Γh)-orthogonal projection onto Uh

ad
and for v ∈ L2(Γh)

the adjoint state is ph(v) = S∗
h
(Shv − (yd)l) ∈ Yh.

Observe that the projections PUad
and P

U
h

ad

coincide with the pointwise projection P[a,b] on

Γ and Γh, respectively, and hence

�
P
U

h

ad

(vl)
�l

= PUad
(v) (2.1.5)

for any v ∈ L2(Γ).

Let us now investigate the relation between the optimal control problems (P) and (Ph).

Theorem 2.1.2 (Order of Convergence). Let u ∈ L2(Γ), uh ∈ L2(Γh) be the solutions of (P)
and (Ph), respectively. Then for sufficiently small h > 0 there holds

α
��ul

h
− u

��2
L2(Γ)

+
��yl

h
− y

��2
L2(Γ)

≤ 1 + cinth2

1− cinth2

�
. . .

1

α

���
�
(·)lS∗

h
(·)l − S∗

�
(y − yd)

���
2

L2(Γ)
+
���
�
(·)lSh(·)l − S

�
u
���
2

L2(Γ)

�
,

(2.1.6)

with y = Su and yh = Shuh.

The following proof along the lines of [HPUU09, Thm. 3.4] can be found in [HV12a].

Proof. From (2.1.5) it follows that the projection of −
�
1
α
p(u)

�
l
onto Uh

ad
is ul

ul = P
U

h

ad

�
− 1

α
p(u)l

�
.
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We insert uh into the corresponding variational inequality to obtain

�− 1

α
p(u)l − ul, uh − ul�L2(Γh) ≤ 0 .

On the other hand one plugs ul into the variational inequality corresponding to (2.1.4) and

gets

�− 1

α
ph(uh)− uh, ul − uh�L2(Γh) ≤ 0 .

Adding these inequalities yields

α�ul − uh�2L2(Γh) ≤�(ph(uh)− p(u)l) , ul − uh�L2(Γh)

= �ph(uh)− S∗
h
(y − yd)l, ul − uh�L2(Γh) + �S∗

h
(y − yd)l − p(u)l, ul − uh�L2(Γh) .

The first addend is estimated via

�ph(uh)− S∗
h
(y − yd)l, ul − uh�L2(Γh) = �yh − yl, Shul − yh�L2(Γh)

= −�yh − yl�2L2(Γh) + �yh − yl, Shul − yl�L2(Γh)

≤ −1

2
�yh − yl�2L2(Γh) +

1

2
�Shul − yl�2L2(Γh) .

The second addend satisfies

�S∗
h
(y − yd)l − p(u)l, ul − uh�L2(Γh) ≤

α

2
�ul − uh�2L2(Γh) +

1

2α
�S∗

h
(y − yd)l − p(u)l�2L2(Γh) .

Together this yields

α�ul − uh�2L2(Γh) + �yh − yl�2L2(Γh) ≤
1

α
�S∗

h
(y − yd)l − p(u)l�2L2(Γh) + �Shul − yl�2L2(Γh)

The claim follows using (2.1.1) for sufficiently small h > 0. �

Because both S and Sh are self-adjoint, quadratic convergence follows directly from (2.1.6).

For operators that are not self-adjoint one can use

�(·)l∗S∗
h
(·)l∗ − S∗�L(L2(Γ),L2(Γ)) ≤ CFEh

2 . (2.1.7)

which is a consequence of (2.1.2). Equation (2.1.3) and Lemma 2.1.1 imply

�((·)l)∗ − (·)l�L(L2(Γh),L2(Γ)) ≤ cinth
2 , �((·)l)∗ − (·)l�L(L2(Γ),L2(Γh)) ≤ cinth

2 . (2.1.8)

Combine (2.1.6) with (2.1.7) and (2.1.8) to prove quadratic convergence for arbitrary linear

elliptic state equations.

2.2 Implementation

In order to solve (2.1.4) numerically, we proceed as in [Hin05] using the finite element tech-

niques for PDEs on surfaces developed in [Dzi88] combined with the semismooth Newton

techniques from [HIK03] and [Ulb03] applied to the equation

Gh(uh) = uh − P[a,b]

�
− 1

α
ph(uh)

�
= 0 . (2.2.1)

Since the operator ph continuously maps v ∈ L2(Γh) into Yh, Equation (2.2.1) is semismooth

and thus is amenable to the Newton method that converges locally superlinearly.
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Remark 2.2.1. Although the considerations of Appendix 1.C do not apply directly they

show that the operator (·)l ◦ Gh ◦ (·)l is semismooth; use (2.1.1) for the L2-stability of (·)l
and Lemma 3.6.5(1.) for the H1-stability of (·)l on Yh. The semismoothness of Gh is then a

consequence of (2.1.1).

A representative of the generalized derivative ∂Gh of Gh at v ∈ L2(Γh) is given by

DGh(v) =

�
I +

1I(pv
h
)

α
S∗
h
Sh

�
.

Here and in the following let 1I(pv
h
) : Γ

h → {0, 1} denote the indicator function of the inactive

set

I
�
− 1

α
ph

�
=

�
γ ∈ Γh

���� a < − 1

α
ph(v)[γ] < b

�
,

which – in an abuse of notation – we will refer to as I(pv
h
) most of the time. Thus

1I(pv
h
) =

�
1 on I(− 1

α
ph(v)) ⊂ Γh

0 elsewhere on Γh
,

although the endomorphism of L2(Γh) defined through the pointwise multiplication with the

function 1I(pv
h
) will also be denoted as 1I(pv

h
) : L

2(Γh) → L2(Γh).

A semismooth Newton step for (2.2.1) at v ∈ L2(Γh) reads

DGh(v)δv =

�
I +

1I(pv
h
)

α
S∗
h
Sh

�
δv = −v + P[a,b]

�
− 1

α
ph(v)

�
= −Gh(v) . (2.2.2)

Reformulating the equation by means of the next iterate v+ = v + δv

�
I +

1I(pv
h
)

α
S∗
h
Sh

�
v+ = P[a,b]

�
− 1

α
ph(v)

�
+
1I(pv

h
)

α
S∗
h
Shv , (2.2.3)

we see that v+ lies in the following finite dimensional subspace of L2(Γh)

Y +
h

=
�
1I(pv

h
)ϕ1 + 1Â(pv

h
)ϕ2 + 1Ǎ(pv

h
)ϕ3

�� ϕ1, ϕ2, ϕ3 ∈ Yh
�
,

with the indicator functions of the active sets

Ǎ (pv
h
) =

�
γ ∈ Γh

�� �− 1

α
ph(yh(v))

�
[γ] ≤ a

��
and Â (pv

h
) =

�
γ ∈ Γh

�� �− 1

α
ph(yh(v))

�
[γ] ≥ b

��
.

One can represent the 1-functions in a computer program by resolving the borders of the

inactive set I(pv
h
), which are level sets of piecewise linear functions. Hence, although the

algorithm operates in L2(Γh) the iterates v+ can be represented with about constant effort.

The Newton algorithm applied to Equation (2.2.1) now reads

1. Choose a starting point v ∈ L2(Γh) that lies sufficiently close

to the solution uh of (2.2.1).

2. Do until convergence: Solve (2.2.3) for v+; set v := v+.
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Here Equation (2.2.3) is solved for the next iterate v+ by performing three steps

1. Set 1Ǎ(pv
h
)v

+ = a and 1Â(pv
h
)v

+ = b.

2. Solve

�
I +

1I(pv
h
)

α
S∗
h
Sh

�
1I(pv

h
)v

+ =
1I(pv

h
)

α

�
S∗
h
(yd)l − S∗

h
Sh

�
1Ǎ(pv

h
) + 1Â(pv

h
)

�
v+

�

for 1I(pv
h
)v

+ by CG iteration over L2(I(pv
h
)).

3. Set v+ = 1I(pv
h
)v

+ + 1Ǎ(pv
h
)v

+ + 1Â(pv
h
)v

+ .

Observe that step 2. is possible since
�
I + 1

α
1I(pv

h
)S

∗
h
Sh

�
1I(pv

h
) constitutes a positive definite

endomorphism of L2(I(pv
h
)). Note also that all parts of the preceding algorithm can be

implemented; in order to do so one has to keep track of the active and inactive sets. Details

can be found in [HV11] and [HV12b] .

Remark 2.2.2. Considering how we solved (2.2.3), i.e., step 1. and 2., we conclude

�DG−1
h

(v)�L(L2(Γ),L2(Γ)) ≤ 1 +
�Sh�2L(L2(Γ),L2(Γ))

α
, ∀v ∈ L2(Γ) .

2.3 Globalization

In order to formulate a globally convergent algorithm, we want to apply inexact Armijo

line-search along the lines of [HV12b]. For this purpose we construct in the present section

a sufficiently smooth merit function which is inspired by [Grä08]; [GK09]. There, a merit

function was proposed in a finite dimensional setting, relying on S−1 rather than S, which

turned out to be an obstacle when trying to carry over the results to an infinite dimensional

setting, compare [Grä08, Rem. 3].

In addition we want the algorithm to be mesh-independent in so far as the number of Newton

steps does not increase if h → 0. Mesh-independent behavior of the algorithm can only be

expected if already the operator Gh is mesh-independently semismooth. Here, we make a

slightly stronger but nevertheless reasonable assumption in order to ensure fast local con-

vergence of the algorithm. The W 1,∞-convergence estimates from [Dem09, Thm. 3.2] can

be used to prove mesh independent differentiability as in Assumption 2.3.1 under additional

reasonable assumptions on the adjoint state p(u). Those are

• p(u) ∈ C2(Γ) and

• ∇Γp(u) �= 0 along the set {γ ∈ Γ | p(u)[γ] = a ∨ p(u)[γ] = b}.

For a proof on open sets Ω ∈ R2 see [HV12b].
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Assumption 2.3.1. There exists h0, η > 0, such that for 0 ≤ h ≤ h0 the operator

Gh : L2(Γh) → L2(Γh) is uniformly strictly Fréchet differentiable with 1
2 -Hölder continu-

ous derivative on the L2(Γh)-ball Bη(uh), i.e., there exists C > 0, independent of h, such that

for u1, u2 ∈ Bη(uh)

�Gh(u1)−Gh(u2)−DGh(u2)(u1 − u2)�L2(Γh) ≤ C�u1 − u2�
3
2

L2(Γh)
, (2.3.1)

and

�DGh(u1)−DGh(u2)�L(L2(Γh),L2(Γh)) ≤ C�Sh(u1 − u2)�
1
2

L2(Γh)
(2.3.2)

To begin with, following [Grä08]; [GK09], we introduce a multiplier w ∈ L2(Γh) associated

with the equality constraints and formulate a damping strategy by means of the Lagrange

dual function �h : L2(Γh) → R, which will serve as the merit function

�h(w) = − inf
u,y∈L2(Γh)

�
1

2
�y − yh

d
�2
L2(Γh) +

α

2
�u�2

L2(Γh) + χ
U

h

ad

(u)− �w, y − Shu�L2(Γh)
� �� �

L(u,y,w)

�
,

where yh
d
is the L2(Γh)-orthogonal projection of yd onto Yh. By

χ
U

h

ad

=

�
0 on Uh

ad

∞ on L2(Γh) \ Uh

ad

we denote the characteristic function of the set Uh

ad
in the sense of convex analysis.

It turns out that �h is differentiable with Lipschitz continuous derivative and strongly convex.

Note that all results from this section hold for h ≥ 0 with

Γ0 = Γ , S0 = S : L2(Γ) → L2(Γ) , U0
ad

= Uad ,

except that, in general, Algorithm 2.3.3 cannot be implemented for h = 0.

Lemma 2.3.2 (Lagrange dual function). The function �h : L2(Γh) → R is strongly convex

and Fréchet differentiable with Lipschitz continuous L2(Γh)-gradient

∇�h(w) = y(w)− Shu(w) ,

where y(w) = w + yh
d
and u(w) = P[a,b]

�
− 1

α
S∗
h
w
�
are the unique minimizers of the Lagrange

function L(u, y, w) for any given w ∈ L2(Γh).

Proof. The proof is inspired by the one given in [GK09, Thm. 2.1], compare also [HV12b,

Lem. 4.1] . First we note that the minimization problem in the definition of �h(w) can be

rewritten as

�h(w) = − min
y∈L2(Γh)

�
1

2
�y − yh

d
�2
L2(Γh) − �w, y�L2(Γh)

�
. . .

− min
u∈L2(Γh)

�α
2
�u�2

L2(Γh) + χ
U

h

ad

(u) + �w, Shu�L2(Γh)

�
,
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with unique minimizers u(w) and y(w), respectively. For y(w) this is obvious. The necessary

condition for the problem in u

�αu(w) + S∗
h
w, v − u(w)�L2(Γh) ≥ 0 , ∀v ∈ Uh

ad

looks very much like (2.0.2) and likewise guarantees a unique solution u(w) = P[a,b]

�
− 1

α
S∗
h
w
�
.

Note that from the viewpoint of convex analysis this condition reads

− αu(w)− S∗
h
w ∈ ∂χ

U
h

ad

(u(w)) , (2.3.3)

because the subdifferential ∂χ
U

h

ad

is the Fréchet normal cone of the convex set Uh

ad
.

As to the smoothness of �h observe

�h(w) = −1

2
�w�2

L2(Γh) + �w,w + yh
d
�L2(Γh) + ψ∗(−S∗

h
w) ,

ψ∗ : L2(Γh) → L2(Γh) being the polar function of the convex functional ψ : L2(Γh) → L2(Γh),

ψ(u) = α

2 �u�2L2(Γh) + χ
U

h

ad

(u) defined as

ψ∗(v) = sup
u∈L2(Γh)

�
�v, u�L2(Γh) − ψ(u)

�
.

Since ψ is convex and lower semicontinuous we have the property v ∈ ∂ψ(u) ⇔ u ∈ ∂ψ∗(v),

see [ET99, Cor. 5.2]. Just like (2.3.3) the equation

v ∈ αu(w) + ∂χ
U

h

ad

(u(w))

admits a unique solution u = P[a,b](
1
α
v) for any v ∈ L2(Γh) and we conclude that ∂ψ∗(v) is

single valued, thus ψ∗ is Gâteaux differentiable, compare [ET99, Prop. 5.3]. Since ∂ψ∗(v) =

P[a,b]

�
1
α
v
�
the function ψ∗ is even Lipschitz continuously Fréchet differentiable. Hence

D�h(w)v = �w + yh
d
, v�L2(Γh) +

�
P[a,b]

�
− 1

α
S∗
h
w

�
, (−S∗

h
)v

�

L2(Γh)

,

and the formula for the gradient follows.

The strong convexity now is a consequence of the monotonicity of the derivative

�∇�h(w1)−∇�h(w2), w1 − w2�L2(Γh) = �w1 − w2�2L2(Γh) . . .

+

�
P[a,b]

�
− 1

α
S∗
h
w1

�
−P[a,b]

�
− 1

α
S∗
h
w2

�
,−S∗

h
(w1 − w2)

�

L2(Γh)

≥ �w1 − w2�2L2(Γh)

(2.3.4)

which again follows by a short computation from the definition of the orthogonal projection

P[a,b] = P
U

h

ad

. �

The gradient ∇�h is semismooth, compare Remark 2.2.1, and we are now in the position to

apply a semismooth Newton strategy to the dual problem

min
w∈L2(Γh)

�h(w) . (P�
h
)
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Due to strong convexity problem (P�
h
) admits a unique solution w∗ satisfying ∇�h(w∗) = 0.

Hence u(w∗) solves (2.1.4) and thus also (Ph), compare Lemma 2.3.2; there is no duality gap.

A semismooth Newton step for (P�
h
) reads

�
I +

1

α
Sh1S

∗
h
wS

∗
h

�
δw = −(w + yh

d
) + ShP[a,b]

�
− 1

α
S∗
h
w

�
= −∇�h(w) . (2.3.5)

Equation (2.3.5) can be obtained by applying Sh to both sides of Equation (2.2.2), if we think

of w as a function of the iterate v, i.e.

w = w(v) = Shv − yh
d
, (v-w)

and take into account that S∗
h
yd = S∗

h
yh
d
. Thus both Newton iterations are equivalent because

the next iterate v+ in (2.2.3) only depends on the adjoint state ph(yh(v)) = S∗
h
w(v).

Step (2.3.5) is implementable since beginning with the first iteration there holds w+ ∈ Yh.

Observe also that the generalized Hessian on the left hand side of (2.3.5) is a self-adjoint and

positive definite endomorphism of L2(Γh). Finally, �h is easy to evaluate since by Lemma

2.3.2 we have

�h(w) =
1

2
�w�2

L2(Γh) −
α

2
�u(w)�2

L2(Γh) + �w, yh
d
− Shu(w)�L2(Γh) .

Thus �h is a suitable as merit function for a globalized Newton algorithm.

Algorithm 2.3.3 (Damped Newton-Algorithm). w := w0 ∈ L2(Γh), β ∈ (0, 1) given.

Do until convergence

i) Solve Equation (2.3.5) for δw. Set λ := 1.

ii) If �h(w + λδw) > �h(w) +
1
3λ �∇�h(w), δw�L2(Γh)� �� �

≤0 by (2.3.5)

, set λ := β λ and return to ii).

iii) Set w := w + λδw. Return to i).

As mentioned above, in the sense of (v-w) we can interpret Algorithm 2.3.3 as a Newton

algorithm with respect to v, but working exclusively on w(v).

Since �h is sufficiently smooth the number of damping steps in the line search algorithm is

bounded, and Algorithm 2.3.3 converges for any initial value w0.

Lemma 2.3.4 (Global convergence). Let L = 1+ �Sh�2
α

denote the Lipschitz constant of ∇�h
and β ∈ (0, 1) as in Algorithm 2.3.3. Let uh and w∗ denote the solutions of (Ph) and (P�

h
),

respectively. Then we have

i) A step with damping parameter λ ≤ βK(L,β) is always accepted, where

K(L, β) =
log(2)− log(3L)

log β
.

ii) Hence Algorithm 2.3.3 converges for arbitrary initial data w0 ∈ L2(Γh), in the sense

that w → w∗, u(w) → uh and v → uh in L2(Γh).



2.3. GLOBALIZATION 29

iii) The stopping criterion �∇�h(w)�L2(Γh) ≤ Tol is reasonable since

�∇�h(w)�L2(Γh) ≥ �w − w∗�L2(Γh) .

Proof. i) By the mean value theorem one has Θ ∈ (0, 1) such that

�h(w + λδw) = �h(w) + λ�∇�h(w +Θλ δw), δw�L2(Γh)

≤ �h(w) + λ
�
�∇�h(w), δw�L2(Γh) + λL�δw�2

L2(Γh)

�
.

Using (2.3.5), standard arguments deliver that sufficient descent is achieved for βkL ≤ 2
3 .

ii)+iii) Denoting by λk the damping parameter generated in step ii) of Algorithm 2.3.3 with

associated iterates wk the descend condition reads

−1

3
λk�∇�h(wk), δwk�L2(Γh) ≤ �h(wk)− �h(wk+1)

Because �h is bounded from below by �h(w∗), summation over k yields

�h(w0)− �h(w
∗) ≥ �h(w0)− lim inf

k→∞
�h(wk) ≥ −

∞�

k=1

λk

3
�∇�h(wk), δwk�L2(Γh)

≥
∞�

k=1

2β

9L
�δwk�2L2(Γh) ,

(2.3.6)

where we again use (2.3.5) in the last estimate. Hence δwk → 0 and thus ∇�h(wk) → 0.

Inserting ∇�h(w∗) = 0 into the strong convexity relation (2.3.4) we arrive at the estimate

�∇�h(w)�L2(Γh) ≥ �w − w∗�L2(Γh) and thus finally at w → w∗. u(w) → uh follows by

continuity and the fact that uh = u(w∗).

Finally, because ph(v) = S∗
h
w → ph(uh) and Shδv = δw → 0, we conclude from (2.2.2) that

v+ → uh. Since in addition 1 ≥ λ > 2β
3L , the damped sequence v also converges towards uh.

�

Remark 2.3.5. One can continue the estimate (2.3.6) by

�h(w0)− �h(w
∗) ≥

∞�

k=1

2β

9L3
�∇�h(wk)�2L2(Γh) ≥

∞�

k=1

2β

9L3
�wk − w∗�2

L2(Γh) ,

the left-hand side of which is bounded independently of h. As an immediate consequence we

can bound the number of steps ending outside of any ball B�(w∗) by 5L3

β�2
(�(w0)− �(w∗)).

Until now we made no use of Assumption 2.3.1. Its purpose is to ensure that the damping

steps generated by Algorithm 2.3.3 do not affect the fast local convergence of the Newton

iteration.

Lemma 2.3.6 (Transition to fast local convergence). Let (P) satisfy Assumption 2.3.1 and

denote the solution of (Ph) by uh. Given β ∈ (0, 1) there exists η̃ > 0, independent of h > 0,

such that the Algorithm 2.3.3, upon reaching the ball Bη̃(uh) ⊂ L2(Γh), proceeds with full

Newton steps, i.e. with λ = 1.
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Proof. As a consequence of (2.3.1) and the boundedness of DG−1
h

, see Remark 2.2.2, there

holds

�v+ − uh�L2(Γh) ≤ CNewt�v − uh�
3
2

L2(Γh)

for v ∈ Bη(uh).

Upon reaching a ball Bη̃(uh), η̃ ≤ min(η, 1
C

2
Newt

), there holds �v+−uh�L2(Γh) ≤ �v−uh�L2(Γh)

and thus

�δv�L2(Γh) ≤ 2�v − uh�L2(Γh) , (2.3.7)

and the undamped Newton iteration hence converges 1
2 -superlinearly.

Lemma 2.3.4 ensures that this happens after finitely many steps, compare Remark 2.3.5.

The function v �→ �h(w(v)) is C
2, 12 -smooth in the ball Bη(uh) from Assumption 2.3.1. Hence,

using Taylor expansion and (2.3.5) together with the improved Hölder continuity from (2.3.2)

we get

�h(Sh(v + δv)) = �h(Shv) + �∇�h(Shv), Shδv�L2(Γh) . . .

+
1

2
�Shδv,

�
I +

1

α
Sh1ph(v+Θδv)S

∗
h

�
Shδv�L2(Γh)

≤ �h(Shv)−
1

2
�Shδv,

�
I +

1

α
Sh1I(pv

h
)S

∗
h

�
Shδv�L2(Γh) + C�Shδv�

5
2

L2(Γh)
.

decrease η̃ > 0 if necessary such that by (2.3.7) δv becomes sufficiently small to conclude

�h(Sh(v + δv)) ≤ �h(Sh(v))−
1

3
�Shδv,

�
I +

1

α
Sh1I(pv

h
)S

∗
h

�
Shδv�L2(Γh) .

�

If, after sufficiently many iterations, the choice λ = 1 is always accepted, locally super-linear

convergence occurs with respect to both v and w = w(v).

Note that one could compute the next full-step iterate v+ = v+ δv following a full step from

w by solving (2.2.3) at any time during the iteration, whereas v+λδv, λ �= 1 is not so readily

accessible.

Another possible globalization for our semismooth Newton method was described in [Ulb11,

Alg. 7.27]. The trust-region algorithm proposed there uses a merit function based either on a

Fisher-Burmeister function or on the objective O itself. For a number of other trust-region

approaches that are not directly linked to our method we refer to the references in [Ulb11].

It is not difficult to see, that the fixed-point equation for problem (Ph)

uh = P[a,b]

�
− 1

α
S∗
h
(Shuh − yd)

�

can be solved by fixed-point iteration that converges globally for α > �Sh�2L(L2(Γh),L2(Γh)),

see [Hin03]; [Hin05]. A similar global convergence result holds for the undamped Newton

algorithm.
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Lemma 2.3.7. Consider Algorithm 2.3.3 without damping, i.e., λ := 1 in every step. The

undamped algorithm converges globally if h > 0 is sufficiently small and

α >
4

3
�S�2L(L2(Γ),L2(Γ)) .

Proof. See [Vie07]. �

Similar results have been published in [BIK99].

2.4 The case c ≡ 0

In this section we investigate the case c ≡ 0 which corresponds to a stationary, purely

diffusion-driven process. Since Γ has no boundary, in this case total mass must be con-

served, i.e., the state equation admits a solution only for controls with mean value zero. For

such a control the state is uniquely determined up to a constant. Thus the admissible set Uad

has to be changed to

Uad =
�
v ∈ L2(Γ) | a ≤ v ≤ b

�
∩ L2

0(Γ) , where L2
0(Γ) :=




v ∈ L2(Γ)

������

�

Γ

v dΓ = 0




 ,

and a < 0 < b. Problem (P) then admits a unique solution (u, y) and there holds
�

Γ
y dΓ =

�

Γ
yd dΓ. W.l.o.g we assume

�

Γ
yd dΓ = 0 and therefore only need to consider states with mean

value zero. The state equation now reads y = S̃u with the solution operator S̃ : L2
0(Γ) →

L2
0(Γ) of the equation −∆Γy = u,

�

Γ
y dΓ = 0.

Using the injection L2
0(Γ)

ı→ L2(Γ), S̃ is prolongated as an operator S : L2(Γ) → L2(Γ) by

S = ıS̃ı∗. The adjoint ı∗ : L2(Γ) → L2
0(Γ) of ı is the L2-orthogonal projection onto L2

0(Γ).

The unique solution of (P) is again characterized by (2.0.3), where the orthogonal projection

now takes the form

PUad
(v) = P[a,b] (v +m)

with m ∈ R such that �

Γ

P[a,b] (v +m) dΓ = 0 .

If for v ∈ L2(Γ) the inactive set I(v + m) = {γ ∈ Γ | a < v[γ] +m < b} is non-empty, the

constant m = m(v) is uniquely determined by v ∈ L2(Γ). Hence, the solution u ∈ Uad satisfies

u = P[a,b]

�
− 1

α
p(u) +m

�
− 1

α
p(u)

��
,

with p(u) = S∗(Su − ı∗yd) ∈ H2(Γ) denoting the adjoint state and m(− 1
α
p(u)) ∈ R is

implicitly given by
�

Γ
u dΓ = 0. Note that ı∗ı is the identity on L2

0(Γ).
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In (Ph) we now replace Uh

ad
by Uh

ad
=

�
v ∈ L2(Γh) | a ≤ v ≤ b

�
∩L2

0(Γ
h). Similar as in (2.1.4),

the unique solution uh then satisfies

uh = P
U

h

ad

�
− 1

α
ph(uh)

�
= P[a,b]

�
− 1

α
ph(uh) +mh

�
− 1

α
ph(uh)

��
, (2.4.1)

with ph(vh) = S∗
h
(Shvh − ı∗

h
(yd)l) ∈ Yh and mh(− 1

α
ph(uh)) ∈ R the unique – excepting

the cases Ǎ (pv
h
) = Γ and Â (pv

h
) = Γ – constant such that

�

Γh

uh dΓh = 0. Note that

mh

�
− 1

α
ph(uh)

�
is semismooth with respect to uh and thus Equation (2.4.1) is amenable

to a semismooth Newton method.

The discretization error between the problems (Ph) and (P) now decomposes into two com-

ponents, one introduced by the discretization of Uad through the discretization of the surface,

the other by discretization of S.

For the first error component we need to investigate the relation between P
U

h

ad

(ul) and

PUad
(u), which is now slightly more involved than Equation (2.1.5).

Lemma 2.4.1. There exists a constant Cm > 0 depending only on Γ, |a| and |b| such that

for all v ∈ L2(Γ) with
�

I(v+m(v))

dΓ > 0, and for 0 < h < hv sufficiently small, the value of

mh(vl) is unique and

|mh(vl)−m(v)| ≤ Cm�

I(v+m(v))

dΓ
h2 ,

where hv > 0 depends on v.

Proof. For v ∈ L2(Γ), � > 0 choose δ > 0 and h > 0 so small that the set

Iδ

v =
�
γ ∈ Γh | a+ δ ≤ vl(γ) +m(v) ≤ b− δ

�

satisfies
�

Iδ
v

dΓh(1 + �) ≥
�

I(v+m(v))

dΓ. Decreasing h further if necessary ensures

Ch2�

Iδ
v

dΓh
≤ (1 + �)

Ch2�

I(v+m(v))

dΓ
≤ δ ,

with C = cintmax(|a|, |b|)
�

Γ
dΓ. Because of

�

Iδ
v

dΓh > 0, the monotonous functionMh
v : R → R

Mh

v (x) =

�

Γh

P[a,b] (vl + x) dΓh ,

is strictly monotonous near m(v). Since
�

Γ
P[a,b] (v +m(v)) dΓ = 0, Lemma 2.1.1 yields

|Mh

v (m(v))| ≤ cint�P[a,b] (v +m(v)) �L1(Γ)h
2 ≤ Ch2 .
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Let us assume w.l.o.g. −Ch2 ≤ Mh
v (m(v)) ≤ 0. Due to (strict) monotonicity of Mh

v (·) this

implies m(v) ≤ mh(vl) where, for the time being, we consider mh(vl) a set-valued function.

Then again, since Ch
2�

Iδ
v

dΓh
≤ δ, we conclude

Mh

v



m(v) +
Ch2�

Iδ
v

dΓh



 ≥ Mh

v (m(v)) +

�

Iδ
v

Ch2�

Iδ
v

dΓh
dΓh = Mh

v (m(v)) + Ch2 ≥ 0 ,

and again by strict monotonicity of Mh
v (·) it follows mh(vl) ≤ m(v) + Ch

2�

Iδ
v

dΓh
. Altogether we

get 0 ≤ mh(vl)−m(v) ≤ Ch
2�

Iδ
v

dΓh
≤ (1+�)C�

I(v+m(v))

dΓ
h2. This proves the claim.

Finally, mh(vl) is single-valued since the inactive set I(vl +mh(vl)) contains Iδ
v and is thus

of positive measure. �

Because �
P
U

h

ad

(vl)
�l

− PUad
(v) = P[a,b] (v +mh(vl))− P[a,b] (v +m(v)) ,

we get the following corollary.

Corollary 2.4.2. Let v ∈ L2(Γ) with
�

I(v+m(v))

dΓ > 0. With Cm and hv > 0 as in Lemma

2.4.1 there holds for 0 < h < hv

����
�
P
U

h

ad

(vl)
�l

− PUad
(v)

����
L2(Γ)

≤ Cm

��
Γ dΓ�

I(v+m(v)) dΓ
h2 .

Note that since for u ∈ L2(Γ) the adjoint p(u) is a continuous function on Γ, the corollary is

applicable for v = − 1
α
p(u).

The following theorem can be proved along the lines of Theorem 2.1.2.

Theorem 2.4.3. Let u ∈ L2(Γ), uh ∈ L2(Γh) be the solutions of (P) and (Ph), respectively,

in the case c ≡ 0. Let ũh =
�
P
U

h

ad

�
− 1

α
p(u)l

��l

. Then there holds for � > 0 and 0 ≤ h < h�

α�ul
h
− ũh�2L2(Γ) +

��yl
h
− y

��2
L2(Γ)

≤ (1 + �)

�
1

α

���
�
(·)lS∗

h
(·)l − S∗

�
(y − yd)

���
2

L2(Γ)
. . .

+
���(·)lSh(·)lũh − y

���
2

L2(Γ)

�
.

Using Corollary 2.4.2 we conclude from the theorem

�ul
h
− u�L2(Γ) ≤C

�
1

α

����

�
(·)lS∗

h
(·)l − S∗

�
(y − yd)

����
L2(Γ)

+
1√
α

���
�
(·)lSh(·)l − S

�
u
���
L2(Γ)

. . .

+

�
1 +

�S�L(L2(Γ),L2(Γ))√
α

� Cm

��
Γ dΓh

2

�
I(− 1

α
p(u)+m(− 1

α
p(u))) dΓ

�
,
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the latter part of which is the error introduced by the discretization of Uad. Hence one has

h2-convergence of the optimal controls.

Equation (2.4.1) is amenable to a semismooth Newton method as described in Section 2.2.

The algorithm however needs to take the scalar quantity mh

�
− 1

α
ph(v)

�
into account for

each iterate v ∈ L2(Γh). The functional mh

�
− 1

α
ph(·)

�
can be shown to be semismooth with

generalized derivative 1�

Γh

1I(pv
h
) dΓh

�

Γh

1I(pv
h
)

α
S∗
h
Sh dΓh and is evaluated by performing a Newton

algorithm on �

Γh

P[a,b]

�
− 1

α
ph(v) +mh

�
dΓh = 0 .

2.5 Numerical examples

The figures show some selected Newton steps v+. Note that jumps of the color-coded function

values are well observable along the border between active and inactive set. For all examples

Newton’s method is initialized with u0 ≡ 0.

The meshes are generated from a macro triangulation through congruent refinement, new

nodes are projected onto the surface Γ. The maximal edge length h in the triangulation is

not exactly halved in each refinement, but up to an error of order O(h2). Therefore we just

compute our estimated order of convergence (EOC) according to

EOCi =
ln �uhi−1 − ul�L2(Γhi−1 ) − ln �uhi

− ul�L2(Γhi )

ln(2)
.

For different refinement levels, the tables show relative errors, measured in L2- and L∞-norms,

and the corresponding EOCs along with the number of Newton iterations before the desired

accuracy of 10−9 with respect to w is reached.

The stopping criterion is that of Lemma 2.3.4(iii).

The theoretical findings from Section 2.3 are confirmed by our examples that exhibit mesh-

independent behavior in terms of Newton steps.

We had showed that there is a mesh-independent upper bound to the number of Newton

iterations before the desired accuracy is reached, compare Remark 2.3.5. Under certain

conditions on the adjoint state p(u) the behavior of the damped Newton algorithm is also

mesh-independent in the sense that it transitions into the undamped iteration and converges

superlinearly towards the solution uh of (Ph), see Lemma 2.3.6. These assumptions are met by

all our examples, since the surface gradient of the (here) smooth function − 1
α
p(u) is bounded

away from zero along the border of the inactive set.

Accordingly for all examples the damping is not active during the last few Newton steps.

Example 2.5.1 (Sphere I). We consider the problem

min
u∈L2(Γ), y∈H1(Γ)

O(u, y) subject to −∆Γy + y = u− r, −1 ≤ u ≤ 1 (2.5.1)

with Γ the unit sphere in R3 and α = 10−7. We choose yd = 52αx3(x21 − x22) , to obtain the

solution

u = r = min
�
1,max

�
− 1, 4x3(x

2
1 − x22)

��
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Figure 2.1: Selected full Steps v+ computed for Example 2.5.1 on the twice refined sphere.

reg. refs. 0 1 2 3 4 5

L2-error 2.3789e-01 5.1804e-02 1.2326e-02 2.9491e-03 7.0647e-04 1.7358e-04

L2-EOC - 2.38 2.11 2.07 2.06 2.03

L∞-error 3.4918e-01 9.2848e-02 2.6760e-02 1.1637e-02 2.3391e-03 5.0757e-04

L∞-EOC - 2.06 1.83 1.21 2.32 2.21

# Steps 5 18 16 13 14 14

Table 2.1: L2-error, EOC and number of iterations for Example 2.5.1.

of (2.5.1).

The presented theory can be extended to include surfaces with boundary, [Dzi88, §6], given
that the boundary is piecewise C1-smooth and ΠΓ|Γh : Γh → Γ is surjective. Both conditions

are satisfied in the following example; in particular there holds ∂Γh = ∂Γ.

Example 2.5.2. Let Γ =
�
(x1, x2, x3)T ∈ R3 | x3 = x1x2 and x1, x2 ∈ (0, 1)

�
and α = 10−6.

For

min
u∈L2(Γ), y∈H1(Γ)

O(u, y) subject to −∆Γy = u− r, y = 0 on ∂Γ − 0.5 ≤ u ≤ 0.5 ,

by proper choice of yd (via symbolic differentiation), we get the unique solution

u = r = max
�
− 0.5,min

�
0.5, sin(πx1) sin(πx2)

��
.

reg. refs. 0 1 2 3 4 5

L2-error 4.2746e-01 7.9834e-02 1.9234e-02 4.3798e-03 1.0638e-03 2.6082e-04

EOC - 2.42 2.05 2.13 2.04 2.03

L∞-error 5.0171e-01 1.8055e-01 4.1925e-02 1.1035e-02 2.8747e-03 7.1757e-04

L∞-EOC - 1.47 2.11 1.93 1.94 2.00

# Steps 7 7 7 8 8 8

Table 2.2: L2-error, EOC and number of iterations for Example 2.5.2.
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Figure 2.2: Selected full Steps v+ computed for Example 2.5.2 on the thrice refined grid.

Figure 2.3: First four full Steps v+ computed for Example 2.5.3 with α = 10−2 on once refined

sphere.

Example 2.5.2, although c ≡ 0, is also covered by the theory in Sections 2.1-2.3, as by the

Dirichlet boundary conditions the state equation remains uniquely solvable for u ∈ L2(Γ). In

the last two examples we apply the variational discretization to optimization problems, that

involve zero-mean-value constraints as in Section 2.4.

Example 2.5.3 (Sphere II). We consider

min
u∈L2(Γ), y∈H1(Γ)

O(u, y) subject to −∆Γy = u , −1 ≤ u ≤ 1 ,

�

Γ

y dΓ =

�

Γ

u dΓ = 0 ,

reg. refs. 1 2 3 4 5 6

L2-error 1.2035e-02 3.0743e-03 7.7422e-04 1.9401e-04 4.8531e-05 1.1441e-05

EOC - 2.01 2.00 2.00 2.00 2.08

# Steps 2 2 2 2 2 2

L2-error 2.0121e-01 5.7649e-02 1.5928e-02 4.2907e-03 1.1039e-03 2.6252e-04

EOC - 1.84 1.86 1.89 1.96 2.07

# Steps 16 16 15 16 15 16

Table 2.3: L2-error, EOC and number of iterations for Example 2.5.3, first for α = 10, second

for α = 10−5.
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Figure 2.4: Selected full Steps v+ computed for Example 2.5.4 on the once refined torus.

reg. refs. 0 1 2 3 4 5

L2-error 1.7903e-01 5.2558e-02 1.4498e-02 3.7472e-03 9.4760e-04 2.3754e-04

EOC - 1.90 1.96 1.98 1.99 2.00

# Steps 6 6 5 2 2 2

L2-error 1.2100e-01 3.2415e-02 7.6855e-03 1.8145e-03 4.4676e-04 1.0955e-04

EOC - 2.04 2.20 2.11 2.03 2.03

# Steps 66 62 45 27 22 18

Table 2.4: L2-error, EOC and number of iterations for Example 2.5.4, first for α = 1, second

for α = 10−6.

with Γ the unit sphere in R3. Set α = 10, 10−5 and

yd(x1, x2, x3) = 4αx3 +






ln(x3 + 1) + C , if 0.5 ≤ x3
x3 − 1

4arctanh(x3) , if −0.5 ≤ x3 ≤ 0.5

−C − ln(1− x3) , if x3 ≤ −0.5

,

where C is chosen for yd to be continuous. The solution according to these parameters is

u = min
�
1,max

�
− 1, 2x3

��
.

Example 2.5.4 (Torus). Let α = 1, 10−6 and

Γ =




(x1, x2, x3)
T ∈ R3

������

�

x23 +

��
x21 + x22 − 1

�2

=
1

2






the 2-torus embedded in R3. By symbolic differentiation we compute yd, such that

min
u∈L2(Γ), y∈H1(Γ)

O(u, y) subject to −∆Γy = u− r, −1 ≤ u ≤ 1 ,

�

Γ

y dΓ =

�

Γ

u dΓ = 0

is solved by

u = r = max
�
− 1,min

�
1, 5x1x2x3

��
.

As the presented tables clearly demonstrate, the examples show the expected convergence

behavior.





Chapter 3

Parabolic equations on moving
surfaces

In this chapter parabolic state equations on evolving hypersurfaces in Rn+1 are investigated.

In order to formulate well-posed optimal control problems in the next chapter, we prove

existence and uniqueness of weak solutions for the state equation, in the sense of vector-

valued distributions. In the process, dealing with time-varying domains and function spaces,

we introduce spaces that are simple cases of measurable Hilbertian sums.

The state equation is then discretized in space using the surface finite element method pro-

posed in [DE07]. The time discretization is carried out through a discontinuous Galerkin

scheme. In order to obtain a scheme the adjoint of which is computable, we provide the

control space with an equivalent norm that can be evaluated using only a finite number of

surfaces (Γ(tm))M
m=0.

We prove convergence of both the spatial and the time-discretization under weak regularity

assumptions. In particular we allow for initial data y0 ∈ L2(Γ(T )).

Following [DE07], we consider the state equation in its weak form

d

dt

�

Γ(t)

y ϕdΓ(t) +

�

Γ(t)

∇Γy∇Γϕ+ b y ϕdΓ(t) =

�

Γ(t)

y ϕ̇ dΓ(t) +

�

Γ(t)

uϕdΓ(t) , (3.0.1)

with y(0) = y0. Here, Γ =
�
Γ(t)

�t∈[0,T ]
is a family of C2-smooth, compact n-dimensional

surfaces in Rn+1, evolving smoothly in time with velocity V , as described in Section 1.2.

Further assume u sufficiently smooth and let ϕ̇ = ∂tϕ+ V∇ϕ denote the material derivative

of a smooth test function ϕ.

We start by defining unique weak solutions for the state equation. The idea is to to introduce

distributional material derivatives in the sense of [LM72] and a W (0, T )-like solution space.

As a consequence, a large part of the theory developed around W (0, T ) for fixed domains

applies, compare for example [LM68], [LM72], and [Lio71]. In order to define integrability

and (weak) differentiability we use the flow Φ of the velocity field V to pull back functions

from the varying domain Γ(t), t ∈ [0, T ] onto a fixed surface Γ(s).

39
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The reason for our interest in W (0, T )-like spaces is that W (0, T ) and more regular variants,

such as H1((0, T ), H2(Ω)), have long since been recognized as the suitable framework for

optimal control, compare for example [Trö05, Thm. 3.10] and preceding commentary.

An alternative approach to prove existence of weak solutions along the lines of [LSU68] is

taken in [Sch10], that entirely avoids the notion of vector-valued distributions. As a result

this approach does not yield weak time-derivatives nor a bijective state-to-control mapping.

It is also harder to prove uniqueness of the solutions and useful embedding theorems such as

[LM72, Thm. 3.1] are not accessible.

In the second part of this chapter we assume n = 1, 2, 3 and prove optimal L2-error bounds for

a discretization of (3.0.1). For the spacial discretization we apply the surface finite element

approach from [DE07] . The time-discretization is achieved through a discontinuous Galerkin

finite element approach.

Recent works also deal with the discretization of (3.0.1), both in space, compare [DE10], and

time, see [DLM11] and [DE11]. A finite volume method for evolving surfaces was introduced

in [LNR11].

In [DE10] order-optimal error bounds in terms of the norm supt∈[0,T ] � · �L2(Γ(t)) are derived

for the discretization of the state equation, assuming a slightly higher regularity of the state

than we require in Section 3.6 and 3.7, where we derive
��

T

0 � · �2
L2(Γ(t))dt

� 1
2
-like bounds.

A class of Runge-Kutta methods to tackle the space-discretized problem is investigated in

[DLM11], assuming among other things that one can evaluate f in a point-wise fashion, i.e.

that f(t) ∈ L2(Γ(t)) is well defined. For a fully discrete approach and the according error

bounds see [DE11]. There a backwards Euler method is considered for time discretization

whose implementation resembles our discontinuous Galerkin approach in Section 3.7. Yet

while the approach in [DE11] ultimately leads to supt∈[0,T ] � · �L2(Γ(t))-convergence, we allow

for non-smooth right-hand sides and thus cannot expect to obtain such strong convergence

estimates.

This chapter is structured as follows. After giving a brief overview of the setting we start

with a very short introduction into vector-valued distributions. We then prepare in Section

3.2 and 3.3 the setting in which to look for a solution of (3.0.1).

The proof of existence of an appropriate weak solution is conducted in Section 3.4, comple-

menting the existence results from [DE07] and [Sch10].

In Sections 3.6 and 3.7 we examine the space- and time-discretization of the state equation.

Before we can properly formulate (3.0.1), let us summarize the results of Section 1.2 and our

assumptions regarding the family
�
Γ(t)

�
t∈[0,T ]

.

Assumption 3.0.5. The hypersurface Γ0 = Γ(0) ⊂ Rn+1 is C2-smooth and compact without

boundary. Γ evolves along a C2-smooth velocity field V : Rn+1 × [0, T ] → Rn+1 with flow

Φ : Rn+1 × [0, T ]2 → Rn+1, such that its restriction Φs
t ( · ) : Γ(s) → Γ(t) is a diffeomorphism

for every s, t ∈ [0, T ].

The assumption gives rise to a second representation of Γ(t) as the level set

Γ(t) =
�
x ∈ Rn+1 | d(x, t) = 0

�
,
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of a continuous signed distance function d : Rn+1 → R with |d(x, t)| = dist(x,Γ(t)).

Also Γ(t) is orientable with a smooth unit normal field ν(·, t).
Further, we have d(·) ∈ C2(N�) for some neighborhood N� of

�
t∈[0,T ] Γ(t) × {t} in Rn+2 as

defined in Theorem 1.2.4; there holds ∇d(γ, t) = ν(γ, t) for γ ∈ Γ(t).

Using d we can define the projection

ΠΓ(t) :
�
x ∈ Rn+1 | dist(x,Γ(t)) < �

�
→ Γ(t) , ΠΓ(t)(x) = x− d(x, t)∇d(x, t) . (3.0.2)

We consider the surface gradient an element of Rn+1 and denote the metric tensor like in

(1.0.1). In the following we will write ∇Γ instead of ∇Γ(t) wherever it is clear which surface

Γ(t) the gradient relates to.

3.1 Vector-valued distributions

We are going to exploit results on vector-valued distributions, which we recall here for

completeness. In order to define weak derivatives consider D((0, T )), the space of real

valued C∞-smooth functions with compact support in (0, T ). Fix s ∈ [0, T ]. Each

y ∈ L2((0, T ), H1(Γ(s))) defines a vector-valued distribution Ty : D((0, T )) → H1(Γ(s))

through the H1(Γ(s))-valued integral
�

[0,T ]

y(t)ϕ(t) dt.

Its distributional derivative is said to lie in L2((0, T ), H−1(Γ(s))) iff it can be represented by

w ∈ L2((0, T ), H−1(Γ(s))) in the following sense

T �
y (ϕ) =

�

[0,T ]

y(t)ϕ�(t) dt = −
�

[0,T ]

w(t)ϕ(t) dt ∈ H1(Γ(s)) , ∀ϕ ∈ D((0, T )) , (3.1.1)

and we write y� = w. Note that by H−1 we denote the representation of the dual (H1)∗ which

arises from L2 ⊃ H1 by completion.

Lemma and Definition 3.1.1. For s ∈ [0, T ], the space

Ws(0, T ) =
�
v ∈ L2((0, T ), H1(Γ(s)))

�� v� ∈ L2((0, T ), H−1(Γ(s)))
�

with scalar product
�
T

0 �·, ·�H1(Γ(s)) + �(·)�, (·)��H−1(Γ(s))dt is a Hilbert space.

1. Ws(0, T ) is compactly embedded into C([0, T ], L2(Γ(s))), the space of continuous L2-

valued functions.

2. Denote by D([0, T ], H1(Γ(s))) the space of C∞-smooth H1(Γ(s))-valued test functions

on [0, T ]. The inclusion D([0, T ], H1(Γ(s))) ⊂ Ws(0, T ) is dense.

3. For two functions v, w ∈ Ws(0, T ) the product �v(t), w(t)�L2(Γ(s)) is absolutely continuous

with respect to t ∈ [0, T ] and

d

dt

�

Γ(s)

v(t)w(t) dΓ(s) = �v�, w�H−1(Γ(s)),H1(Γ(s)) + �v, w��H1(Γ(s)),H−1(Γ(s)) ,
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a.e. in (0, T ), and as a consequence there holds the integration by parts formula
�

[r,t]

�v�, w�H−1,H1 dτ = �v(t), w(t)�L2(Γ(s)) − �v(r), w(r)�L2(Γ(s)) −
�

[r,t]

�v, w��H1,H−1 dτ .

For a proof of the lemma, see [LM68, Ch. I,Thms. 3.1 and 2.1]. Assertion 3. follows from

2. by approximation with smooth functions. One can also use the integration by parts

formular to prove the embedding into C((0, T ), L2(Γ(s))), see [Eva98, Ch. 5,Thm. 3]. For

further references see [Trö05, Thm. 3.10].

Our approach to weak material derivatives relies on the following equivalent formulation of

condition (3.1.1)

∀ϕ ∈ D((0,T ), H1(Γ(s))) :
�

[0,T ]

�y(t), ϕ�(t)�L2(Γ(s)) + �w(t), ϕ(t)�H−1(Γ(s)),H1(Γ(s)) dt = 0 , (3.1.2)

which defines the weak derivative y� = w of a function y ∈ L2((0, T ), H1(Γ(s))) via its

L2((0, T ), L2(Γ(s)))-scalar product with elements of D((0, T ), H1(Γ(s))).

The identity (3.1.2) follows from (3.1.1) by Lemma 3.1.1[3.]. On the other hand (3.1.1) is

a consequence of (3.1.2). To see this, test (3.1.2) with ψv ∈ D((0, T ), H1(Γ(s))), where

ψ ∈ D((0, T )) and v ∈ H1(Γ(s)).

3.2 Preliminaries

The scope of this section is to provide the technical background for the definitions in the

following section.

We start by defining the strong material derivative for smooth functions f ∈ C1(Rn+1×[0, T ]),

namely the derivative

ḟ(x, t) =
d

ds

���
s=t

f(Φt

s(x), s) = ∇f(x, t)V (x, t) + ∂tf(x, t) , (3.2.1)

along trajectories of the velocity field V . The material derivative has the following properties.

Lemma 3.2.1. Let f be sufficiently smooth. Then

d

dt

�

Γ(t)

f dΓ(t) =

�

Γ(t)

ḟ + f div ΓV dΓ(t),

and

d

dt

�

Γ(t)

�∇Γf�2 dΓ(t) =
�

Γ(t)

2∇Γf∇Γḟ − 2∇Γf(DΓV )∇Γf + �∇Γf�2 div ΓV dΓ(t) ,

with div Γ(t)V =
�

n+1
i=1 ∇i

Γ(t)V
i and (DΓ(t)V )ij = ∇j

Γ(t)V
i. The components ∇i

Γ(t) denote the

components of the gradient as a vector in Rn+1 conforming to our notation.
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A proof and details can be found in the Appendix of [DE07]. Note that the surface divergence

div Γ(t) from the Lemma generalizes the one introduced in Section 1.3.1 which only applied

to tangential vector fields.

Lemma and Definition 3.2.2. Denote by Js
t ( · ) = detDΓ(s)Φ

s
t ( · ) the Jacobian determinant

of the restricted flow Φs
t : Γ(s) → Γ(t), meaning that Js

t ( · ) is the determinant of the matrix

representation of DΓ(s)Φ
s
t ( · ) with respect to orthonormal bases of the respective tangent space.

By Assumption 3.0.5 Js
t ∈ C1([0, T ] × Γ(s)) and there exists CJ > 0, such that for all

s, t ∈ [0, T ]
1

CJ

≤ min
γ∈Γ(s)

Js

t (γ) ≤ max
γ∈Γ(s)

Js

t (γ) ≤ CJ .

Given Assumption 3.0.5, consider the family
�
L2(Γ(t))

�
t∈[0,T ]

. Then for v ∈ L2(Γ(t)) we

introduce the pull-back

φs

tv = v
�
Φs

t ( · )
�
∈ L2(Γ(s)) ,

which is a linear homeomorphism from L2(Γ(t)) into L2(Γ(s)) for any s, t ∈ [0, T ]. Moreover

φs
t is a linear homeomorphism from H1(Γ(t)) into H1(Γ(s)). Thus finally the adjoint oper-

ator, φs
t

∗ : H−1(Γ(s)) → H−1(Γ(t)) is also a linear homeomorphism. There exist constants

CL2(Γ), CH1(Γ) independent of s, t, such that for all v ∈ L2(Γ(t)), or v ∈ H1(Γ(t)) respectively,

and for all s, t ∈ [0, T ]

�φs

tv�H1(Γ(s)) ≤ CH1(Γ)�v�H1(Γ(t)) , �φs

tv�L2(Γ(s)) ≤ CL2(Γ)�v�L2(Γ(t)) ,

and thus finally �φs
t

∗�L(H−1(Γ(s)),H−1(Γ(t))) ≤ CH1(Γ).

Furthermore there holds ∂tJs
t = φs

t ( div Γ(t)V )Js
t .

Proof. As to the smoothness of Js
t it is a consequence of

Js

t =

�
det(gt

ij
)

�
det(gs

ij
)
,

where gs
ij

= � ∂

∂xi
, ∂

∂xj
�Rn+1 and gt

ij
= �DΦs

t

∂

∂xi
, DΦs

t

∂

∂xj
�Rn+1denote the metric tensors in

corresponding local charts.

For s, t ∈ [0, T ] we have �

Γ(t)

v2 dΓ(t) =

�

Γ(s)

(φs

tv)
2Js

t dΓ(s)

and thus �φs
tv�L2(Γ(s)) ≤ CL2(Γ)�v�L2(Γ(t)), with CL2(Γ) = C

1
2
J
.

For H1 equivalence consider ϕ ∈ H1(Γ(t)). Now
�

Γ(t)

∇Γϕ∇Γϕ dΓ(t) =

�

Γ(s)

(∇Γφ
s

tϕ)
TDΦs

t (DΦs

t )
T∇Γφ

s

tϕJ
s

t dΓ(s) .

Because DΦs
t is regular one has vTDΦs

t (DΦs
t )

T v > 0 for all s, t ∈ [0, T ] and v ∈ Rn+1 \ {0},
and a compactness argument yields vTDΦs

t (DΦs
t )

T v > CDΦ�v�2Rn+1 > 0. Thus there holds

�φs

tϕ�H1(Γ(s)) ≤ CH1(Γ)�ϕ�H1(Γ(t)) . (3.2.2)
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with CH1(Γ) =
�
max{CJ ,

CJ

CDΦ
}. By a density argument one proves that (3.2.2) holds for all

ϕ ∈ H1(Γ(t)): an H1(Γ(t)) Cauchy sequence {ϕk}k∈N translates into an H1(Γ(s)) Cauchy

sequence φs
tϕk and one easily shows (3.2.2) for their limits.

Now � · �H1(Γ(t)) and �φs
t ( · )�H1(Γ(s)) are two equivalent norms on H1(Γ(t)). Hence also their

dual norms are equivalent. The norm of f ∈ H−1(Γ(s)) can now be expressed by means of

H1(Γ(t)) as

sup
w∈H1(Γ(s))

�f, w�H−1(Γ(s)),H1(Γ(s))

�w�H1(Γ(s))
= sup

v∈H1(Γ(t))

�φs
t

∗f, v�H−1(Γ(t)),H1(Γ(t))

�φs
t
v�H1(Γ(s))

, (3.2.3)

and the bound on the norm of φs
t

∗ follows from the equivalence of said H1-norms.

The last assertion is a by-product of the proof of Lemma 3.2.1, compare [DE07]. �

We need to state one more Lemma concerning continuous time-dependence of the previously

defined norms.

Lemma 3.2.3. Let s ∈ [0, T ]. For v1 ∈ H1(Γ(s)), v2 ∈ L2(Γ(s)), v3 ∈ H−1(Γ(s)) the

following expressions are continuous with respect to t ∈ [0, T ]

�φt

sv1�H1(Γ(t)) , �φt

sv2�L2(Γ(t)) , �φs

t

∗v3�H−1(Γ(t)) .

Proof. By the change of variables formula we have

�φt

sv1�2H1(Γ(t)) =

�

Γ(s)

�
∇Γv1(DΓ(s)Φ

s

t )
−1(DΓ(s)Φ

s

t )
−T∇Γv1 + v21

�
Js

t dΓ(s) , (3.2.4)

which is a continuous function due to the regularity of Φ stated in Assumption 3.0.5. Similarly

we conclude the continuity of the L2-norm.

Moreover, since (DΓ(s)Φ
s
s)

−1(DΓ(s)Φ
s
s)

−T = idTΓ(s), J
s
s = 1, and Φs

(·)(·) ∈ C2(Γ(s) × [0, T ])

Equation (3.2.4) yields

|�φt

sv1�2H1(Γ(t)) − �v1�2H1(Γ(s))| ≤ C|t− s|�v1�2H1(Γ(s)) ,

for all v ∈ H1(Γ(s)). Regarding (3.2.3) this allows us to estimate

1

(1 + C|s− t|) 1
2

�v3�H−1(Γ(s)) ≤ �φs

t

∗v3�H−1(Γ(t)) ≤
1

(1− C|s− t|) 1
2

�v3�H−1(Γ(s)) .

�

The results from Lemma 3.2.2 and 3.2.3 can be extended to apply for Hk(Γ(t)) given that

both Γ0 and the flow Φ are of class Ck+1.
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3.3 The space WΓ

In this section a weak material derivative is proposed that is appropriate for the Equation

(3.0.1). Also, function spaces are formulated in order to prove the existence of unique weak

solutions of (3.0.1) for quite weak right-hand sides u in the next section.

As far as Lemma 3.2.1 is concerned, for a family of functions {y(t)}t∈[0,T ], y(t) : Γ(t) → R,
one can define ẏ at γ = Φ0

tγ0 simply by

ẏ(t)[γ] = φt

0
d

dt
(φ0

t y(t))[γ0, t] = φt

0
d

dt
[y(t)(Φ0

tγ0)] . (3.3.1)

If {y(t)} can be smoothly extended, this is equivalent to (3.2.1). However, observe that for

functions whose derivatives lie in L2 Equation (3.3.1) may be rewritten as

ẏ(t) = φ0
t

∗
�
J0
t

d

dt
(φ0

t y(t))

�
, (3.3.2)

which, as opposed to (3.3.1), we can hope to generalize to H−1-derivatives.

The following lemmas lead to the definition of a weak material derivative of y that translates

into a weak derivative of the pull-back φ0
t y(t).

Lemma and Definition 3.3.1. Consider the vector bundle BL2 =
�

t∈[0,T ] L
2(Γ(t)) × {t}.

The set of sections y : [0, T ] → BL2, t �→ (v, t) inherits a canonical vector space structure from

the spaces L2(Γ(t)) (addition and multiplications with scalars). Given Assumption 3.0.5, for

s ∈ [0, T ] we define

L2
L2(Γ) :=

�
v̄ : [0, T ] → BL2 , t �→ (vt, t)

�� φs

tvt ∈ L2((0, T ), L2(Γ(s)))
�
.

Abusing notation, now and in the following we identify v̄(t) = (vt, t) ∈ L2
L2(Γ) with v(t) = vt.

Endowed with the scalar product

�v, w�
L
2
L2(Γ)

=

�

[0,T ]

�vt, wt�L2(Γ(t)) dt .

L2
L2(Γ) becomes a Hilbert space.

In the same manner we define the space L2
H1(Γ). For L2

H−1(Γ) use φt
s

∗ instead of φs
t . All three

spaces do not depend on s.

For ϕ ∈ φ(·)
s D((0, T ), H1(Γ(s))) =

�
ϕ ∈ L2

L2(Γ)

�� φs
tϕ ∈ D((0, T ), H1(Γ(s))

�
, it is clear how

to interpret ϕ̇, namely ϕ̇ = φt
s(φ

s
tϕ)

� ∈ H1(Γ(t)). We say that y ∈ L2
H1(Γ) has weak material

derivative ẏ(t) ∈ L2
H−1(Γ) iff there holds

�

[0,T ]

�ẏ, ϕ�H−1(Γ(t)),H1(Γ(t)) dt = −
�

[0,T ]

�y, ϕ̇�L2(Γ(t)) dt−
�

[0,T ]

�

Γ(t)

yϕ div ΓV dΓ(t) dt (3.3.3)

for all ϕ ∈ φ(·)
s D((0, T ), H1(Γ(s))), and the definition does not depend on s.
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Proof. In order to define the scalar product of L2
L2(Γ), we must ensure measurability of

�v, w�L2(Γ(t)) : [0, T ] → R. Since �v, w� = 1
2(�v + w�2 − �v�2 − �w�2) it suffices to show

measurability of �v�2
L2(Γ(t)) for all v ∈ L2

L2(Γ). By definition of the set L2
L2(Γ) we have

φs
tv ∈ L2([0, T ], L2(Γ(s))). Hence, there exists a sequence of measurable simple functions

ṽi that converge pointwise a.e. to φs
tv in L2(Γ(s)). Each ṽi is the finite sum of measur-

able single-valued functions, i.e. ṽi =
�

Mi

j=1 vi,j1Bj
, Mi ∈ N, vi,j ∈ L2(Γ(s)), on measurable

disjoint sets Bj ⊂ [0, T ]. By Lemma 3.2.3 the function

�φt

sṽi�L2(Γ(t)) =
Mi�

j=1

�φt

svi,j�L2(Γ(t))1Bj

is the finite sum of measurable functions and thus measurable. Using the continuity of the

operator φt
s, as stated in Lemma 3.2.2, one infers pointwise convergence a.e. of �φt

sṽi�L2(Γ(t))

towards �v�L2(Γ(t)) which in turn implies measurability of �v�L2(Γ(t)).

Again by Lemma 3.2.2 we now conclude integrability of �v�L2(Γ(t)) and at the same time

equivalence of the norms




�

[0,T ]

�v�2
L2(Γ(t)) dt





1
2

and




�

[0,T ]

�φs

tv�2L2(Γ(s)) dt





1
2

.

Completeness of L2
L2(Γ) follows, since L

2
L2(Γ) and L2((0, T ), L2(Γ(s))) are isomorph. Again be-

cause of Lemma 3.2.2, φs
tvt ∈ L2((0, T ), L2(Γ(s))) is equivalent to φr

tvt ∈ L2((0, T ), L2(Γ(r))),

thus the definition does not depend on the choice of s. For L2
H1(Γ) and L2

H−1(Γ) we proceed

similarly.

We show that the definition of the weak material derivative does not depend on s ∈ [0, T ].

On Γ(s) Equation (3.3.3) reads
�

[0,T ]

�φt

s

∗
ẏ, ϕ̃�H−1(Γ(s)),H1(Γ(s)) dt =

−
�

[0,T ]

�

Γ(s)

�
φs

tyϕ̃
�(t) + φs

t

�
y div Γ(t)V

�
ϕ̃
�
Js

t dΓ(s) dt
(3.3.4)

for all ϕ̃ ∈ D([0, T ], H1(Γ(s))). For r ∈ [0, T ], we now transform the relation into one on Γ(r),

using φr
s, (φ

s
r)

∗ and φr
t = φr

s ◦ φs
t

�

[0,T ]

�φt

r

∗
ẏ, φr

sϕ̃�H−1(Γ(r)),H1(Γ(r)) dt =

−
�

[0,T ]

�

Γ(r)

�
φr

ty (φ
r

sϕ̃(t))
� + φr

t

�
y div Γ(t)V

�
φr

sϕ̃
�
Jr

t dΓ(r) dt,

and because φr
s : H

1(Γ(s)) → H1(Γ(r)) is a linear homeomorphism, it also defines an isomor-

phism between D([0, T ], H1(Γ(s))) and D([0, T ], H1(Γ(r))). �
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Remark 3.3.2. Strictly speaking the elements of L2
X(Γ) are equivalence classes of sections

coinciding a.e. in [0, T ], just like the elements of L2((0, T ), X(Γ(s))).

The definition of the weak derivative of y ∈ L2
H1(Γ) in (3.3.3) translates into weak derivatives

of the pullback φs
ty. In order to make the connection between the two, we state the following

Lemma 3.3.3. Let w ∈ Ws(0, T ) and f ∈ C1([0, T ] × Γ(s)). Then fw also lies in Ws(0, T )

and

(fw)� = ∂tfw� �� �
∈L2([0,T ],L2(Γ(s)))

+fw� ,

where fw� is to be understood as �fw�, ϕ�H−1(Γ(s)),H1(Γ(s)) = �w�, fϕ�H−1(Γ(s)),H1(Γ(s)).

Proof. We show that for ϕ ∈ D
�
(0, T ), H1(Γ(s))

�
the function fϕ lies in Ws(0, T ). The claim

then follows by integration by parts in Ws(0, T ).

1. Because f ∈ C([0, T ]×Γ(s)) and the strong surface gradient∇Γ(s)f ∈ (C([0, T ]× Γ(s)))n+1

are continuous and thus uniformly continuous on the compact set [0, T ] × Γ(s), we infer

f ∈ C([0, T ], C1(Γ(s))). Note that dist((t, γ), (t + k, γ)) = k in the metric of [0, T ]× Γ(s),

compare Appendix 1.A. Let � > 0, then for sufficiently small k� > k > 0 one has

�f(t+ k, ·)− f(t, ·)�∞ +
n+1�

i=1

�∇i

Γ(s)f(t+ k, ·)−∇i

Γ(s)f(t, ·)�∞ ≤ � .

2. As to the distributional derivative of fϕ, we show that f ∈ C1([0, T ], C(Γ(s))). Observe

that the uniform continuity of the strong derivative ∂tf on [0, T ]×Γ(s) allows us to estimate

�f(t+ k, ·)− f(t, ·)− ∂tf(t, ·)k�∞ = �k
�

[0,1]

∂tf(t+ τk, ·)− ∂tf(t, ·) dτ�∞ ≤ k�

for k� > k > 0 sufficiently small. Again by uniform continuity of ∂tf we conclude ∂tf ∈
C([0, T ], C(Γ(s))). All told, taking into account the continuity of the pointwise multiplication

between the respective spaces, we showed

fϕ ∈ C([0, T ], H1(Γ(s))) ∩ C1([0, T ], L2(Γ(s))) ⊂ Ws(0, T ) .

3. Consider now an arbitrary w ∈ Ws(0, T ). Since fϕ ∈ Ws(0, T ), by integration by parts as

in Lemma 3.1.1[3.] it follows
�

[0,T ]

�w�, fϕ�H−1(Γ(s)),H1(Γ(t))s dt =−
�

[0,T ]

�w, (fϕ)��H1(Γ(t))s,H−1(Γ(s)) dt

=−
�

[0,T ]

�w, ∂tfϕ�L2(Γ(s)) dt−
�

[0,T ]

�w, fϕ��L2(Γ(s)) dt .

Reordering gives
�

[0,T ]

�fw, ϕ��L2(Γ(s)) dt = −
�

[0,T ]

�∂tfw + fw�, ϕ�H−1(Γ(s)),H1(Γ(t))s dt
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for any ϕ ∈ D
�
(0, T ), H1(Γ(s))

�
. Hence condition (3.1.2) holds for fw. Using the den-

sity property stated in Lemma 3.1.1[2.], we can approximate w and thus fw by continuous

H1(Γ(s))-valued functions and infer fw ∈ L2((0, T ), H1(Γ(s))). The same argument yields

∂tfw + fw� ∈ L2((0, T ), H−1(Γ(s))). �

Finally we can define our solution space.

Lemma and Definition 3.3.4. The solution space WΓ is defined as follows

WΓ =
�
v ∈ L2

H1(Γ)

��� v̇ ∈ L2
H−1(Γ)

�
.

WΓ is Hilbert with the canonical scalar product
�
T

0 �·, ·�H1(Γ(t)) + � ˙(·), ˙(·)�H−1(Γ(t))dt. Also y ∈
WΓ iff φs

ty ∈ Ws(0, T ) for (every) s ∈ [0, T ]. In particular one has φs
ty ∈ C([0, T ], L2(Γ(s))).

For all ϕ̃ ∈ D((0, T ), H1(Γ(s))) there holds

�

[0,T ]

�φt

s

∗
ẏ, ϕ̃�H−1(Γ(s)),H1(Γ(s)) dt =

�

[0,T ]

�((φs

ty)
� , Js

t ϕ̃�H−1(Γ(s)),H1(Γ(s)) dt . (3.3.5)

One has

cW �φs

ty�Ws(0,T ) ≤ �y�WΓ ≤ CW �φs

ty�Ws(0,T ) ,

and cW , CW > 0 do not depend on s ∈ [0, T ].

Proof. For y ∈ WΓ, observe that Js
t φ

s
ty ∈ L2([0, T ], H1(Γ(s)) and rewrite (3.3.4) as

�

[0,T ]

�
Js

t φ
s

ty, ϕ̃
��
L2(Γ(s))

dt = −
�

[0,T ]

�φt

s

∗
ẏ, ϕ̃�H−1(Γ(s)),H1(Γ(s)) dt . . .

−
�

[0,T ]

�∂tJs

t φ
s

ty, ϕ̃�L2(Γ(s)) dt ,
(3.3.6)

for ϕ̃ ∈ D((0, T ), H1(Γ(s))). Hence Js
t φ

s
ty ∈ Ws(0, T ), and from Lemma 3.3.3 it fol-

lows that also φs
ty ∈ Ws(0, T ), because 1

J
s

t

∈ C1([0, T ] × Γ(s)). Note that we used

∂tJs
t = φs

t ( div Γ(t)V )Js
t , see Lemma 3.2.2. On the other hand, for any ỹ ∈ Ws(0, T ) one

has Js
t ỹ ∈ Ws(0, T ) and thus y = φt

sỹ ∈ WΓ. Hence φs

(·) constitutes an isomorphism between

WΓ and Ws(0, T ).

Apply Lemma 3.3.3 a second time to obtain (Js
t ϕ̃)

� = ∂tJs
t ϕ̃ + Js

t ϕ̃
� and because of ϕ̃(0) =

ϕ̃(T ) = 0 ∈ H1(Γ(s)) by integration by parts there follows from (3.3.6)

�

[0,T ]

�φt

s

∗
ẏ, ϕ̃�H−1(Γ(s)),H1(Γ(s)) dt =

�

[0,T ]

�((φs

ty)
� , Js

t ϕ̃�H−1(Γ(s)),H1(Γ(s)) dt ,

compare Lemma 3.1.1[3.]. This proves the second claim.

The claim of WΓ being Hilbert now follows. Observe that point-wise multiplication with Js
t

constitutes a linear homeomorphism in H1(Γ(s)) whose inverse is the multiplication by 1
J
s
t

.
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One easily checks �Js
t ϕ�H1(Γ(s)) ≤ c�Js

t �C1(Γ(s))�ϕ�H1(Γ(s)) ≤ C�ϕ�H1(Γ(s)). This together

with Lemma 3.2.2 yields the equivalence of the two norms on WΓ

�

[0,T ]

�y�2
H1(Γ(t)) + �ẏ�2

H−1(Γ(t)) dt and

�

[0,T ]

�φs

ty�2H1(Γ(s)) + �(φs

ty)
��2

H−1(Γ(s)) dt .

Completeness of Ws(0, T ) then implies completeness of WΓ. �

Remark 3.3.5. Formula (3.3.5) can be seen as a generalization of the following relation.

Assume φs
ty ∈ D((0, T ), H1(Γ(s))). Then

�

[0,T ]

�φt

s

∗
ẏ, ϕ̃�H−1(Γ(s)),H1(Γ(s)) dt =

�

[0,T ]

�ẏ, φt

sϕ̃�L2(Γ(t)) dt =

�

[0,T ]

�(φs

ty)
� , Js

t ϕ̃�L2(Γ(s)) dt ,

which is the situation indicated in (3.3.2).

Using Lemma 3.3.3 and 3.1.1, it is now easy to proof

Lemma 3.3.6. For two functions v, w ∈ WΓ the expression �vt, wt�L2(Γ(t)) is absolutely con-

tinuous with respect to t ∈ [0, T ] and

1

dt

�

Γ(t)

vw dΓ(t) =�v̇, w�H−1(Γ(t)),H1(Γ(t)) + . . .

�v, ẇ�H1(Γ(t)),H−1(Γ(t)) +

�

Γ(t)

vw div Γ(t)V dΓ(t) ,

a.e. in (0, T ), and there holds the integration by parts formula

�

[s,t]

�v̇, w�H−1(Γ(τ)),H1(Γ(τ)) dτ =�v, w�L2(Γ(t)) − �v, w�L2(Γ(s)) . . .

−
�

[s,t]

�
�v, ẇ�H1(Γ(τ)),H−1(Γ(τ)) +

�

Γ(τ)

vw div ΓV dΓ(τ)
�
dτ .

3.4 Weak solutions

We can now give a weak formulation of (3.0.1). Let

b = φt

0b̃ , b̃ ∈ C1([0, T ]× Γ0) .

We look for solutions y ∈ WΓ that satisfy y(0) = y0 ∈ L2(Γ0) and for u ∈ L2
H−1(Γ)

d

dt

�

Γ(t)

y ϕdΓ(t) +

�

Γ(t)

∇Γy∇Γϕ+ byϕ dΓ(t) = �ϕ̇, y�H−1(Γ(t)),H1(Γ(t)) . . .

+�u, ϕ�H−1(Γ(t)),H1(Γ(t)) ,

(3.4.1)
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for all ϕ ∈ WΓ and a.e. t ∈ (0, T ). One may equivalently write (3.4.1) as

ẏ +∆Γ(t)y + y
�
div Γ(t)V + b

�
= u in H−1(Γ(t))

for a.e. t ∈ (0, T ). We apply known existence and uniqueness results for the pulled-back

equation to prove

Theorem 3.4.1. Let u ∈ L2
H−1(Γ), y0 ∈ L2(Γ0). There exists a unique y ∈ WΓ, such that

(3.4.1) is fulfilled for all φ ∈ WΓ and a.e. t ∈ (0, T ). There holds

�y�WΓ ≤ C

�
�y0�L2(Γ0) + �u�

L
2
H−1(Γ)

�
.

Proof. Let us relate equation (3.4.1) to the fixed domain Γ(s) via

d

dt

�

Γ(s)

ỹ ϕ̃Js

t dΓ(s) +

�

Γ(s)

�
∇Γỹ(DΓ(s)Φ

s

t )
−1(DΓ(s)Φ

s

t )
−T∇Γϕ̃+ b̃ỹϕ̃

�
Js

t dΓ(s) . . .

= �ϕ̃�, Js

t ỹ�H−1(Γ(s)),H1(Γ(s)) + �ũ, Js

t ϕ̃�H−1(Γ(s)),H1(Γ(s)) ,

with ỹ = φs
ty, b̃ = φs

tb, and ũ = 1
J
s

t

φt
s

∗u ∈ L2((0, T ), H−1(Γ(s)) and for all φs
tϕ = ϕ̃ ∈

Ws(0, T ). This again is equivalent to

�ỹ�, ϕ̃Js

t �H−1(Γ(s)),H1(Γ(s)) +

�

Γ(s)

ỹ ϕ̃
�
φs

t (divΓ(t)V ) + b̃

�
Js

t dΓ(s) + . . .

+

�

Γ(s)

∇Γỹ(DΓ(s)Φ
s

t )
−1(DΓ(s)Φ

s

t )
−T∇Γϕ̃J

s

t dΓ(s) = �ũ, Js

t ϕ̃�H−1(Γ(s)),H1(Γ(s)) .

With ψ = Js
t ϕ̃ one gets for all ψ ∈ Ws(0, T )

�ỹ�, ψ�H−1(Γ(s)),H1(Γ(s)) + as(ỹ, ψ; t) = �ũ, ψ�H−1(Γ(s)),H1(Γ(s)) , (3.4.2)

with a bilinear form

as(ỹ,ψ; t) =

�

Γ(s)

∇Γỹ(DΓ(s)Φ
s

t )
−1(DΓ(s)Φ

s

t )
−T∇Γψ dΓ(s) . . .

+

�

Γ(s)

ỹ
�
φs

t (divΓ(t)V ) + b̃

�
ψ dΓ(s)−

�

Γ(s)

∇Γỹ(DΓ(s)Φ
s

t )
−1(DΓ(s)Φ

s

t )
−T∇ΓJ

s

t

ψ

Js
t

dΓ(s) .

By Assumption 3.0.5 the bilinear form (DΓ(s)Φ
s
t )

−1[γ](DΓ(s)Φ
s
t )

−T [γ] is positive definite on

the tangential space TγΓ(s) uniformly in s, t ∈ [0, T ] and γ ∈ Γ(s). Thus, there exists c > 0

such that for some k0 ≥ 0 one has as(ψ, ψ; t) + k0�ψ�L2(Γ(s)) ≥ c�ψ�H1(Γ(s)). We are now

in the position to apply for example [Lio71, Ch. III, Thm. 1.2], to obtain a unique solution

ỹ ∈ Ws(0, T ) to equation (3.4.2) for initial data φs

0y0 ∈ L2(Γ(s)). Moreover the solution map

is continuous

�ỹ�Ws(0,T ) ≤ C
�
�ũ�L2((0,T ),H−1(Γ(s))) + �φs

0y0�L2(Γ(s))

�
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Note again that �ũ�L2((0,T ),H−1(Γ(s))) ≤ C�u�
L
2
H−1(Γ)

, since the multiplication with Js
t is a

globally bounded linear homeomorphism in H1(Γ(s)), as stated in the proof os Lemma 3.3.4.

The transformation of (3.4.1) into (3.4.2) works both ways, hence the uniqueness of y ∈ WΓ.

The norms can be estimated as in Lemma 3.2.2 and Lemma 3.3.4 and the theorem follows.

�

With regard to order-optimal convergence estimates, sometimes a slightly higher regularity

than y ∈ WΓ is required. Assuming u ∈ L2
L2(Γ), y0 ∈ H1(Γ0), and both Γ0 and Φ of class

C3, one can apply a Galerkin approximation argument, see [DE07, Thms. 4.4 and 4.5] for

manifolds or [Eva98] for open sets, to obtain

�ẏ�2
L
2
L2(Γ)

+ sup
t∈[0,T ]

�∇Γ(t)y�2L2(Γ(t))+

�

[0,T ]

�y�2
H2(Γ(t)) dt ≤ C

�
�y�2

H1(Γ(0)) + �u�2
L
2
L2(Γ)

�
. (3.4.3)

Note that from [LM68, Ch. I,Thm. 3.1] it then follows that φs
ty ∈ C([0, T ], H1(Γ(s))).

3.5 Triangulation of the moving surface

We now discretize Γ using an approximation Γh

0 of Γ0 which is globally of class C0,1 just like

in Chapter 2. For the sake of convenience let us assume n = 2, i.e. Γ(t) is a hypersurface in

R3. Nevertheless, our results hold for n = 1, 2, 3.

Following [Dzi88] and [DE07], we consider Γh

0 =
�

i∈Ih T
i

h
consisting of triangles T i

h
with

corners on Γ0, whose maximum diameter is denoted by h. With FEM error bounds in mind

we assume the family of triangulations {Γh

0}h>0 to be regular in the usual sense that the

angles of all triangles are bounded away from zero uniformly in h.

As detailed in [DE10] and [DE07] an evolving triangulation Γh(t) of Γ(t) is obtained by

subjecting the vertices of Γh

0 to the flow Φ. Hence, the nodes of Γh(t) reside on Γ(t) for all

times t ∈ [0, T ], the triangles T i

h
being deformed into triangles T i

h
(t) by the movement of the

vertices. Let mh denote the number of vertices {X0
j
}mh

j=1 in Γh

0 . Now Xj(t) solves

d

dt
Xj(t) = V (Xj(t), t) , Xj(0) = X0

j . (3.5.1)

Consider the finite element space

Yh(t) =
�
ϕ ∈ L2(Γh(t))

��� ϕ ∈ C(Γh(t)) and ∀i ∈ Ih : ϕ
��
T

i

h
(t)

∈ Π1(T i

h
(t))

�

of piecewise linear, globally continuous functions on Γh(t), and its nodal basis functions

{ϕj(t)}mh

j=1 that are one at exactly one vertex Xi(t) of Γh(t) and zero at all others. While

on Γh(t) the notion of the space H1 is a little bit more involved than in the smooth case,

compare Chapter 2, we can still provide Yh(t) with an appropriate norm, i.e., for ϕ ∈ Yh(t)

let

�ϕ�2
Yh(t)

=

�

Γh(t)

∇Γhϕ∇Γhϕ+ ϕ2 dΓh(t) .
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For the finite element approach, it is crucial for the triangles T i

h
(t) not to degenerate while

Γh(t) evolves, which leads us to the following assumption.

Assumption 3.5.1. The angles of the triangles T i

h
(t) are bounded away from zero, uniformly

w.r.t. h, i and t. Also assume ΠΓ(t)(Γ
h(t)) = Γ(t), with the restriction of ΠΓ(t) to Γh(t) being

a homeomorphism between Γh(t) and Γ(t). Denote by

h = hmax = max
t∈[0,T ],i∈Ih

diam
�
T i

h
(t)

�
and hmin = min

t∈[0,T ],i∈Ih
diam

�
T i

h
(t)

�

the largest and the smallest diameter of all faces of the Γh. There holds hmax

hmin
≤ C and C > 0.

In order to ensure optimal approximation properties of the discretization of the surface, we

require some additional regularity for d.

Assumption 3.5.2. d ∈ C3(N�). Let h > 0 sufficiently small such that one has Γh(t) ⊂ N�

for all t ∈ [0, T ].

This can be achieved if Φ and Γ0 are of class C3. For the rest of this chapter we assume that

Assumption 3.5.1 and 3.5.2 hold.

Let us summarize some basic properties of the family {Γh(t)}t∈[0,T ].

Lemma and Definition 3.5.3. Let Φs

·,h : Γh(s)× [0, T ] → R3 denote the flow of Γh, i.e. the

unique continuous map, such that Φs

t,h
(T i

h
(s)) = T i

h
(t) and Φs

t,h
is affine linear on each T i

h
(s).

There holds Φr

t,h
= Φs

t,h
◦ Φr

s,h
and thus Φt

s,h
◦ Φs

t,h
= idΓh(s). The velocity Vh = ∂tΦ0

t,h
is the

piecewise linear interpolant of V on each triangle T i

h
(t).

As in Lemma 3.2.2 we define the pull-back φs

t,h
: L2(Γh(t)) → L2(Γh(s)), φs

t,h
v = v ◦ Φt

s,h
.

The piecewise constant Jacobian Js

t,h
of Φs

t,h
satisfies for all s, t ∈ [0, T ]

1

Ch

J

≤ min
γ∈Γ(s)

Js

t,h
(γ) ≤ max

γ∈Γ(s)
Js

t,h
(γ) ≤ Ch

J , (3.5.2)

for some constant Ch

J
> 0 that does not depend on h > 0.

Moreover Js

t,h
and DΓh(s)Φ

s

t,h
: TΓh(s) → TΓh(t) ⊂ R3 are differentiable with respect to time

in the interior of each T i

h
(s).

The nodal basis functions have the transport property

ϕ̇i = φt

0,h
d

dt
φ0
t,h
ϕi ≡ 0 , 1 ≤ i ≤ mh . (3.5.3)

Let νh(t) denote the normals of Γh(t), defined on each T i

h
(t).

Proof. Consider a Triangle T i

h
(s), s ∈ [0, T ]. W.l.o.g. let X1(s), X2(s), X3(s) denote its

vertices. Then, using matricesXi(t) = (X2(t)−X1(t), X3(t)−X1(t)), we can write γ ∈ T i

h
(s)

in reduced barycentric coordinates as λγ(s) = (Xi(s)TXi(s))−1Xi(s)T (γ −X1(s)). On T i

h
(s)

the transformation Φs

t,h
is uniquely defined by λΦs

t,h
γ(t) = λγ(s) and thus

Φs

t,h
(γ) = Xi(t)(Xi(s)TXi(s))−1Xi(s)T (γ −X1(s)) +X1(t) .
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In the relative interior of T i

h
(s) the map Φs

t,h
: T i

h
(s) → T i

h
(t) is differentiable and its derivative

D
T

i

h
(s)Φ

s

t,h
: R3 ⊃ TT i

h
(s) → TT i

h
(t) ⊂ R3 can be represented in terms of the standard basis

of R3 by the matrix Di
s,t = Xi(t)(Xi(s)TXi(s))−1Xi(s)T .

A short computation shows that the angle condition in Assumption 3.5.1 ensures the existence

of c > 0 such that

λTXi(s)TXi(s)λ ≥ c min(�X2(s)−X1(s)�2, �X3(s)−X1(s)�2)�λ�2 ,

for all λ ∈ R2, s ∈ [0, T ].

Hence, �(Xi(s)TXi(s))−1�2 ≤
�
c min(�X2(s)−X1(s)�2, �X3(s)−X1(s)�2)

�−1
, and since

�Xi(t)�22, �Xi(s)T �22 ≤ 2maxτ∈[0,T ](�X2(τ)−X1(τ)�2, �X3(τ)−X1(τ)�2) we get

�D
T

i

h
(s)Φ

s

t,h
�2 ≤ C

hmax

hmin

Using again Assumption 3.5.1 one concludes that the quotient of edge lengths is uniformly

bounded.

Also, one easily verifies for r, t ∈ [0, T ]

Φr

t,h
γ = (Φs

t,h
◦ Φr

s,h
)γ and Φt

s,h
Φs

t,h
= idΓh(s) . (3.5.4)

We have Js

t,h

���
T

i

h
(s)

=

�
det

�
B(s)TD

T
i

h
(s)Φ

s

t,h
)TD

T
i

h
(s)Φ

s

t,h
B(s)

�
on the triangle T i

h
(s), where

the derivative is represented with respect to an orthonormal basis B(s) of TT i

h
(s). As per

above considerations the spectral radius of D
T

i

h
(s)Φ

s

t,h
is uniformly bounded. Hence, there

exists Ch

J
> 0 such that Js

t,h
≤ Ch

J
. Because we can switch s and t and since by (3.5.4) we

have (Φs

t,h
)−1 = Φt

s,h
and thus 1

J
s

t,h

= J t

s,h
≤ Ch

J
we conclude

∀s, t ∈ [0, T ] : ∀γ ∈ Γh

s

1

Ch

J

≤ Js

t,h
(γ) ≤ Ch

J .

The trajectories Φs

t,h
γ, γ ∈ Γh(s), the Jacobians Js

t,h
, and the entries of D

T
i

h
(s)Φ

s

t,h
are differ-

entiable for t, because the trajectories Xj(t), 1 ≤ j ≤ mh are, compare (3.5.1). Hence also

DΓh(s)Φ
s

t,h
is differentiable as a map into R3. The velocity Vh(γ, s) = ∂tΦs

t,h
γ equals V at the

vertices and depends linearly on the coordinates λγ . As for the transport property (3.5.3), it is

a consequence of the piecewise linear transformations of the piecewise linear Ansatz functions

ϕi which implies φ0
t,h
ϕi(t) = ϕi(0), compare [DE07, Prop. 5.4]. �

In order to compare functions defined on Γh(t) with functions on Γ(t), for sufficiently small

h > 0 we proceed like in Chapter 2. The projection ΠΓ(t) from (3.0.2) allow us to lift a

function y ∈ L2(Γh(t)) to Γ(t)

yl(ΠΓ(t)(x)) = y(x) ∀x ∈ Γh(t) ,

and for y ∈ L2(Γ(t)) we define the inverse lift

yl(x) = y(ΠΓ(t)(x)) ∀x ∈ Γh(t) .
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For small mesh parameters h the lift operation (·)l : L2(Γ(t)) → L2(Γh) defines a linear

homeomorphism with inverse (·)l. Moreover, there exists cint > 0 such that

1− cinth
2 ≤ �(·)l�2L(L2(Γ(t)),L2(Γh(t))), �(·)

l�2L(L2(Γh(t)),L2(Γ(t))) ≤ 1 + cinth
2 , (3.5.5)

as shows the following lemma which generalizes Lemma 3.5.4.

Lemma and Definition 3.5.4. The restriction of ΠΓ(t) to Γh(t) is a piecewise diffeomor-

phism. Denote by δh the Jacobian of ΠΓ(t)|Γh(t) : Γh(t) → Γ(t), i.e. δh = dΓ
dΓh

= |det(M)|
where M ∈ R2×2 represents the Derivative DΠΓ(t)(γ) : TγΓh(t) → TΠΓ(t)(γ)Γ(t) with respect

to arbitrary orthonormal bases of the respective tangential space. For small h > 0 there holds

sup
t∈[0,T ]

sup
Γ(t)

|1− δh| ≤ Ch2 .

In particular ΠΓ(t)|Γh(t) is a diffeomorphism on each triangle T i

h
(t). Now 1

δh
= dΓh

dΓ =

|det(M−1)|, so that by the change of variable formula
�������

�

Γh(t)

vl dΓ
h(t)−

�

Γ(t)

v dΓ(t)

�������
=

�������

�

Γ(t)

v
1

δl
h

− v dΓ(t)

�������
≤ cinth

2�v�L1(Γ) .

Also there exist constants C > 0, independent of t ∈ [0, T ], such that

1. supt∈[0,T ] �δ̇h(t)�L∞(Γh(t)) ≤ Ch2, where the material derivative is to be understood in

the sense of Φ0
t,h

and

2. supt∈[0,T ] �P(I −Rl

h
)P�L∞(Γ(t)) ≤ Ch2, where

Rh =
1

δl
h

�
I − dHd

�
Ph

�
I − dHd

�
,

with the Hessian Hd

ij
= ∂xixj

d, and the orthogonal projection P = {δij − νiνj}n+1
i,j=1 and

Ph = {δij − νh
i
νh
j
}n+1
i,j=1 onto the respective tangential space.

The property from Lemma 3.5.4[2.] is important when it comes to comparing H1-norms on

Γ(t) and Γh(t).

Proof. We summarize the proof given in [DE07, Lemma 5.1] to extend it for the 1. assertion.

A similar proof can be found in [DE10, Lemma 5.4]. Following [DE07], we use local coordinates

on a triangle e := T i

h
(s) . W.l.o.g. one can assume e ∈ R2×{0}. Since both d and ḋ = d

dtφ
s

t,h
d

equal zero at the corners, the linear interpolates Ihd, Ihḋ vanish on e thus, using standard

finite element approximation results, we get

�d�L∞(e) = �d− Ihd�L∞(e) ≤ ch2�d�H2,∞(e) ≤ ch2�d�C1,1(N�)

and similarly �ḋ�L∞(e) ≤ ch2�d�C2,1(N�). Also one has

�∂xi
d�L∞(e) ≤ ch�d�C1,1(N�) and �∂xi

ḋ�L∞(e) ≤ ch�d�C2,1(N�) (3.5.6)
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for i = 1, 2 at any point (x1, x2, 0) ∈ e.

Consider the basis B(t) = {∂x1Φ
s

t,h
, ∂x2Φ

s

t,h
, νh(t)} of R3, whose first two members span the

tangential space of T i

h
(t). Let (ν1(t), ν2(t), ν3(t))T represent νl(t) = ∇d(·, t) with respect to

B(t). We have

(ν1(t), ν2(t))
T = M−1

t
(D(x1,x2)Φ

s

t,h
)T∇d ,

with the uniformly positive definite matrix Mt = (D(x1,x2)Φ
s

t,h
)TD(x1,x2)Φ

s

t,h
. Using this

relation and the estimates from (3.5.6) we deduce

O(h) = D(x1,x2)ḋ = D(x1,x2)
d

dt
φs

t,h
d =

d

dt
D(x1,x2)φ

s

t,h
d =

d

dt
(φs

t,h
∇dTD(x1,x2)Φ

s

t,h
)

=
d

dt
(φs

t,h
(ν1, ν2)Mt) = (ν̇1, ν̇2)Mt + (ν1, ν2)

d

dt
Mt

� �� �
O(h)

,

because νi(γ, s) = ∂xi
d(γ, s). We subsume

�νi�L∞(e), �ν̇i�L∞(e) ≤ ch�d�C2,1(NT ) .

One has

DΠΓ(t) = Id−∇d(∇d)T − d∇2d

and with ∇d(·, s) = (ν1(s), ν2(s), ν3(s))T we compute (see [DE07])

δh = �∂x1ΠΓ(t) × ∂x2ΠΓ(t)�

= |ν3|+ dR(ν, ∂x1ν, ∂x2ν) =
�

1− ν21 − ν22 + dR(ν, ∂x1ν, ∂x2ν) = 1 +O(h2)

with some smooth remainder function R and thus, using |d|, |ḋ| ≤ Ch2 and |νi|, |ν̇i| ≤ Ch,

i = 1, 2 one gets

�δ̇h�L∞(e) =

�����
−ν1ν̇1 − ν2ν̇2�
1− ν21 − ν22

+O(h2)

�����
L∞(e)

≤ Ch2 ,

For a proof of 2. see [DE07, Lemma 5.1]. �

The next Lemma concerns the continuity of the lift operations between L2
L2(Γh) and L2

L2(Γ).

Lemma and Definition 3.5.5. Using the pull-back φs

t,h
we can define L2

L2(Γh) as in Lemma

3.3.1. For sufficiently small h > 0 the lift operation (·)l constitutes a continuous isomorphism

between L2
L2(Γ) and L2

L2(Γh) with inverse (·)l. There holds

�����vl, wl�L2
L2(Γh)

− �v, w�
L
2
L2(Γ)

���� ≤ Tcinth
2|�v, w�

L
2
L2(Γ)

| .

Proof. Let L2
L2(T i

h
)
, according to the flow Φs

t,h
as defined in Lemma 3.3.1. We define L2

L2(Γh) =�
i∈Ih L

2
L2(T i

h
)
with the scalar product

�
T

0 �·, ·�L2(Γh(t))dt.
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Let Ψt = Φt

0 ◦ΠΓ(t) ◦ Φ0
t,h

denote the mapping between Γh

0 and Γ0 induced by the projection

ΠΓ(t). By Assumption 3.5.2 and by the construction of Φ0
t and Φ0

t,h
is follows that Ψt : Γh

0 → Γ0

is a diffeomorphism on each triangle T i

h
(0) and by Assumption 3.5.1 it is also globally one-

to-one and onto. Also Ψt and its spatial derivatives are continuous w.r.t. time t.

We will show that Ψ̄ : Γh

0×[0, T ] → Γ0×[0, T ], (γ, t) �→ (Ψt(γ), t) is a piecewise diffeomorphism

whose Jacobian is bounded away from zero. We already have that Ψ̄ is globally one-to-one

because Ψt is. Together this implies that the pull-back with Ψ̄ constitutes an isomorphism

between L2(Γ0 × [0, T ]) and L2(Γh

0 × [0, T ]). This again means that

φ0
t,h
vl ∈ L2([0, T ], L2(Γh

0)) ⇔ φ0
t v ∈ L2([0, T ], L2(Γ0)) .

As to Ψ̄ being al local diffeomorphism, the sets T̄ i

h
=

�
t∈[0,T ] T

i

h
(t) are a partition of Γh

0×[0, T ].

In the interior of each T̄ i

h
the map Ψ̄ is a diffeomorphism. In fact, let γ ∈ int(T i

h
) for some

1 ≤ i ≤ mh. Compute

DΓh

0×[0,T ]Ψ̄(γ) =

�
DΓh

0
Ψt(γ) ∂tΨt(γ)

0 1

�
,

in an appropriate (orthogonal) basis. We have DΓh

0
Ψt = DΓ(t)Φ

t

0 ◦DΓh(t)ΠΓ(t) ◦DΓh

0
Φ0
t,h
. Its

Jacobian is the product of the Jacobians J t

0, δh, and J0
t,h

that are each bounded away from

zero, uniformly in γ and t, compare (3.5.2), and the Lemmas 3.5.4 and 3.2.2. Hence the

Jacobian of Ψ̄ is bounded away from zero.

As to continuity of (·)l, by Lemma 3.5.4 we have that

�����vl, wl�L2
L2(Γh)

− �v, w�
L
2
L2(Γ)

���� =

�������

�

[0,T ]

�

Γ(t)

vw(
1

δl
h

− 1) dΓ(t) dt

�������
≤ Tcinth

2|�v, w�
L
2
Γ
| .

�

3.6 Finite element discretization in space

Now, instead of dealing with Problem (3.4.1) directly, w.l.o.g. we consider the equation

d

dt

�

Γ(t)

y ϕdΓ(t) +

�

Γ(t)

∇Γy∇Γϕ+ µyϕ dΓ(t) = �ϕ̇, y�L2(Γ(t)) + �u, ϕ�L2(Γ(t)) , (3.6.1)

with µ̄ ∈ R large enough to ensure µ := b + µ̄ ≥ 1. Note that y solves (3.6.1) iff eµ̄ty solves

(3.4.1) with right-hand side eµ̄tu. The restriction on µ is a technical one. All results of this

section and the next apply for µ ∈ R as shows Remark 3.7.10.

In order to formulate the space-discretization of (3.6.1), consider the trial space

H1
Yh

=

�
mh�

i=1

yi
h
(t)ϕi(t) ∈ L2

L2(Γh)

�� yi
h
∈ H1([0, T ])

�
� H1([0, T ])mh .

The following definition of weak material derivatives for functions in H1
Yh

exploits the fact

that H1
Yh

is isomorph to H1([0, T ])mh . It thus avoids the issue of extending the theory from

Section 3.4 for the smooth surfaces Γ(t) to our Lipschitz approximations Γh(t).
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Lemma and Definition 3.6.1. The weak material derivative of v =
�

mh

i=1 v̄i(t)ϕi(t) ∈ H1
Yh

is v̇ = φt

0,h(φ
0
t,h
v)� =

�
mh

i=1 v̄
�
i
(t)ϕi(t). Let further w ∈ H1

Yh
, then �v, w�L2(Γh(t)) is absolutely

continuous and

d

dt

�

Γh(t)

vw dΓh(t) =

�

Γh(t)

v̇w + vẇ + vw div Γh
Vh dΓ

h(t) .

Proof. Observe v̇ = φt

0,h(φ
0
t,h
v)� = φt

0,h (
�

mh

i=1 v̄i(t)ϕi(0))
� = φt

0,h (
�

mh

i=1 v̄
�
i
(t)ϕi(0)) because

(φ0
t,h
ϕ(t))�(γ) = d

dtϕi(0)(γ) = 0 for all γ ∈ Γh

0 , as in (3.5.3).

Apply Lemma 3.2.1 on each triangle to see that �ϕi(t), ϕj(t)�L2(Γh(t)) is smooth and

d

dt
�ϕi(t), ϕj(t)�L2(Γh(t)) =

�

Γh(t)

ϕiϕj div Γh
Vh dΓ

h(t) .

Now

�v, w�L2(Γh(t)) =
mh�

i,j=1

v̄i(t)w̄j(t)�ϕi(t), ϕj(t)�L2(Γh(t))

and the second assertion follows, since v̄i, w̄j ∈ H1([0, T ]), 1 ≤ i, j ≤ mh. �

We approximate (3.6.1) by the following semi-discrete Problem. Consider a piecewise smooth,

globally Lipschitz approximation µh of µl, such that µh ≥ 1. Find y ∈ H1
Yh

such that for all

ϕ ∈ H1
Yh

d

dt

�

Γh(t)

yh ϕ dΓh(t) +

�

Γh(t)

∇Γhyh∇Γhϕ+ µhyhϕ dΓh(t) =�ϕ̇, yh�L2(Γh(t)) . . .

+ �uh, ϕ�L2(Γh(t)) ,

(3.6.2)

and yh(0) = yh0 ∈ Yh(0). One possible choice would be µh = µl, uh = ul and yh0 = P h

0 ((y0)l)

with P h

0 the L2(Γh

0)-orthogonal projection onto Yh(0).

First of all let us state that (3.6.2) admits a unique solution in H1
Yh
. This is because for yh =�

mh

i=1 y
i

h
ϕi we can rewrite (3.6.2) as a smooth linear ODE with non-smooth inhomogeneity

for the coefficient vector yh = {yi
h
}mh

i=1 ∈ H1([0, T ])mh

d

dt
(M(t)yh(t)) + (Aµh

(t))yh(t) = U(t) , yh(0) = yh0 , (3.6.3)

with smooth mass and stiffness matrices

M(t) = {�ϕi, ϕj�L2(Γh(t))}mh

i,j=1 and Aµh
(t) =

� �

Γh(t)

∇Γhϕi∇Γhϕj + µhϕiϕj dΓ
h(t)

�mh

i,j=1
,

and right-hand side U(t) = {�ul, ϕi�L2(Γh(t))}mh

i=1 ∈ L2([0, T ],Rmh), compare also [DE07].

Observe that we used the continuity of the coefficients yi
h
∈ H1([0, T ]) as well as ϕ̇i = 0.

Existence of a solution yh ∈ H1([0, T ])mh of (3.6.3) can be argued by variation of constants

or, more generally, one can apply an existence result by Carathéodory, compare [CL55, Thms.

1.1+1.3]. Uniqueness of yh is a consequence of the following lemma.
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Lemma 3.6.2 (Stability). Let y0 ∈ L2(Γ0) and u ∈ L2
L2(Γ), and let yh solve (3.6.2) with

yh0 ∈ Yh(0) and uh = ul. There exists C > 0, such that for sufficiently small h > 0 the

solution satisfies

�yh�2L2(Γh(T )) +

�
T

0

�

Γh(t)

(∇Γhyh)
2 + µhy

2
h
dΓh(t)dt ≤ C

�
�yh0�2L2(Γh

0 )
+ �u�2

L
2
L2(Γ)

�
,

as well as

�ẏh�2L2
L2(Γh)

+ ess sup
t∈[0,T ]

�

Γh(t)

(∇Γhyh)
2 + µhy

2
h
dΓh(t) ≤ C

�
�yh0�2Yh(0)

+ �u�2
L
2
L2(Γ)

�
.

Proof. From the definition of M and Aµh
using Lemma 3.2.1 on each triangle T i

h
(t) there

follows M �(t) = {
�

Γh(t)

ϕiϕj div Γh(t)Vh dΓh(t)}mh

i,j=1 and

(
d

dt
Aµh

)ij =

�

Γh(t)

−∇Γhϕi

�
DΓhVh +DΓhV T

h

�
∇Γhϕj + µ̇hϕiϕj + . . .

+(∇Γhϕi∇Γhϕj + µhϕiϕj) div ΓhVh dΓ
h(t) .

Multiply (3.6.3) by y
�
h
to obtain

�ẏh�2
L2(Γh(t))� �� �

y
�
h
My

�
h

+
1

2

d

dt
(yhAµh

yh) = −y
�
h
M �

yh +
1

2
yhA

�
µh
yh + Uy

�
h

≤ C
�
�yh�2H1(Γ(t))� �� �
≤yhAµ

h
yh

+�ul�2L2(Γh(t))

�
+

1

2
�ẏh�2L2(Γh(t)) ,

and a Gronwall argument yields the second estimate. Multiply (3.6.3) by yh and proceed

similarly to prove the first. �

Obviously the material derivative depends on the evolution of the surface, i.e. different

derivatives arise according to whether φs
t or φs

t,h
is applied to pull back a function to a fixed

domain. In order to compare żl
h
with (żh)

l we need the following lemma.

Lemma 3.6.3. Let y =
�

mh

i=1 y
i

h
ϕi ∈ H1

Yh
. The lift yl lies in WΓ with ẏl ∈ L2

L2(Γ), and for

a.e. t ∈ [0, T ] there holds ���ẏl − (ẏ)l
��� ≤ Ch2�∇Γ(t)y

l�Rn+1 ,

a.e. on Γ(t).

Proof. We start by computing the material derivatives of ϕ̄i(x, t) : N� → R, ϕ̄i(x, t) =

ϕl

i
(ΠΓ(t)(x), t), i.e. the constant extension of the trial function ϕi, 1 ≤ i ≤ mh, along the

normal field of Γ(t), compare the proof of [DE07, Thm. 6.2]. Observe that ϕl

i
is not smooth

along the edges of patches ΠΓ(t)(T
j

h
(t)). However, ϕl

i
is smooth in the (relative) interior of all

ΠΓ(t)(T
j

h
(t)) .
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Differentiate ϕ̄i at γ ∈ relint(T j

h
(t)) to obtain

∇ϕ̄i(γ, t) = ∇ϕ̄i(ΠΓ(t)(γ), t)
�
IdRn+1 −∇d(γ, t)∇d(γ, t)T − d(γ, t)∇2d(γ, t)

�
(3.6.4)

∂tϕ̄i(γ, t) = ∂tϕ̄(ΠΓ(t)(γ), t) +∇ϕ̄i(ΠΓ(t)(γ), t) (−∂td(γ, t)∇d(γ, t)− d(γ, t)∂t∇d(γ, t)) .

By construction of ϕ̄i we have ∇ϕ̄i(ΠΓ(t)(γ))∇d(γ, t) = ∇Γϕl

i
(ΠΓ(t)(γ))ν(ΠΓ(t)(γ), t) = 0

since ϕ̄i is constant along orthogonal lines through Γ. Also, from d(Φ0
t (γ), t) ≡ 0 it follows

∂td = −∇dV . The (strong) material derivatives do not depend on the extension ϕ̄i, but only

on the values on Γ and Γh, respectively. One gets

ϕ̇l

i(ΠΓ(t)(γ), t) = ∂tϕ̄i(ΠΓ(t)(γ), t) +∇ϕ̄i(ΠΓ(t)(γ), t)V (ΠΓ(t)(γ), t)

ϕ̇i(γ, t) = ∂tϕ̄i(γ, t) +∇ϕ̄i(γ, t)Vh(γ, t) ,

which together with (3.6.4) leads us to

ϕ̇l

i = (ϕ̇i)
l +

�
V − Vh + d((∇2d)Vh + ∂t∇d)

�
∇Γ(t)ϕ

l

i , (3.6.5)

in the relative interior of the patches ΠΓ(t)(T
j

h
(t)), j ∈ Ih.

In order to prove that the pull-back ϕ̃ := φ0
tϕ

l

i
lies in C1([0, T ], L2(Γ0)) ∩ C([0, T ], H1(Γ0))

for all 1 ≤ i ≤ mh we proceed in four steps.

1. We show that ϕ̃ is globally Lipschitz on Γ0 × [0, T ]. Observe, that (3.6.4) implies that all

derivatives of ϕ̃ exist and are bounded on the interior of patches P i

h
(t) = Φt

0(ΠΓ(t)(T
i

h
(t))).

Since Ψt = Φt

0 ◦ ΠΓ(t) ◦ Φ0
t,h

: Γh

0 × [0, T ] → Γ0 smoothly maps the edges of Γh

0 into Γ0

the domains
�

t∈[0,T ] P
i

h
(t) × {t} ⊂ Γ0 × [0, T ] have piecewise C2-boundaries and fulfill the

assumptions on the partition in Lemma 1.3.9. Also, ϕ̃ is continuous and we are in the situation

to apply Corollary 1.A.1 to obtain ϕ̃ ∈ W 1,∞(Γ0 × [0, T ]) and ϕ̃ ∈ C0,1(Γ0 × [0, T ]).

2. Now as to the time derivative, fix � > 0 and t ∈ (0, T ). Let L > 0 denote the global

Lipschitz constant of ϕ̃ on Γ0 × [0, T ] and choose η > 0 sufficiently small such that

�

i∈Ih

meas(P i

h
(t) \ P i

h,η
(t)) ≤ �2/8L2 ,

where P i

h,η
(t) =

�
γ ∈ P i

h
(t)

�� Bη(γ) ⊂ P i

h
(t)

�
, the balls Bη(γ) being taken with respect to the

metric of Γ0. Now, as stated above, the patches P i

h
(t) = Ψ(t)(T i

h
) move continuously across

Γ0, and we can choose K sufficiently small such that for all i ∈ Ih and k ∈ (−K,K) we have

P i

h,η
(t) ⊂ P i

h
(t+ k). The derivative ∂tϕ̃(γ, t) = φ0

t ϕ̇
l

i
which is defined a.e. on Γ0 × [0, T ] then

is continuous on the compact set Kη =
�

i∈Ih P
i

h,η
(t)× [t−K, t+K] and we have

1

k2

�

Γ0

(ϕ̃(t+ k)− ϕ̃(t)− ∂tϕ̃(t)k)
2 dΓ0 =

1

k2

�

i∈Ih

� �

P
i

h,η

(ϕ̃(t+ k)− ϕ̃(t)− ∂tϕ̃(t)k)
2 dΓ0

+

�

P
i

h
\P i

h,η

(ϕ̃(t+ k)− ϕ̃(t)− ∂tϕ̃(t)k)
2 dΓ0

�
.
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Substituting ϕ̃(γ, t+ k)− ϕ̃(γ, t) = ∂tϕ(γ, t)k+
� 1
0 (∂tϕ(γ, t+ τk)− ∂tϕ̃(γ, t))kdτ on P i

h,η
like

in the proof of Lemma 3.3.3 we choose k small enough for

sup
τ∈[0,1]

�∂tϕ(t+ τk)− ∂tϕ̃(t)�2∞ ≤ �2

2meas(Γ0)
, (3.6.6)

which is possible by uniform continuity of ∂tϕ̃ on Kη. Estimating the second addend by

(2Lk)2
�

i∈Ih meas(P i

h
\ P i

h,η
) ≤ �2k2/2 yields

lim sup
k→0

1

k
�ϕ̃(t+ k)− ϕ̃(t)− ∂tϕ̃(t)k�L2(Γ0) ≤ � .

for every � > 0. Hence ϕ̃ is differentiable into L2(Γ0) with derivative ∂tϕ̃.

3. Thus in order to show ϕ̃ ∈ C1([0, T ], L2(Γ0)) it remains to prove that ∂tϕ̃ : [0, T ] → L2(Γ0)

is continuous. By (3.6.4) ∂tϕ̃ is essentially bounded on Γ0×[0, T ]. Let M = �∂tϕ̃�L∞(Γ0×[0,T ]).

For � > 0 choose η > 0 sufficiently small such that
�

i∈Ih meas(P i

h
\P i

h,η
) ≤ �2/8M2. As above,

choose K > 0 and Kη accordingly. Now, choosing k > 0 small enough such that (3.6.6) holds

one arrives at

�∂tϕ̃(t+ k)− ∂tϕ̃(t)�2L2(Γ0)
=

�

i∈Ih

� �

P
i

h,η

(∂tϕ̃(t+ k)− ∂tϕ̃(t))
2 dΓ0 . . .

+

�

P
i

h
\P i

h,η

(∂tϕ̃(t+ k)− ∂tϕ̃(t))
2 dΓ0

�
≤ �2 .

4. Continuity of ϕ̃ : [0, T ] → H1(Γ0) follows similarly. In fact, the spatial partial derivatives

of ϕ̃ exhibit the same piecewise smooth structure as ∂tϕ̃.

Finally, ϕ̃ = φ0
tϕ

l

i
∈ C1([0, T ], L2(Γ0)) ∩ C([0, T ], H1(Γ0)) implies yi

h
φ0
tϕ

l

i
∈ W0(0, T ), and we

conclude yl ∈ WΓ as well as ẏ ∈ L2
L2(Γ). The estimate now is a consequence of (3.6.5). �

3.6.1 Convergence results

Before we proceed to the main result of this section, let us summarize some properties of the

approximation of elliptic equations on Γ(t) by finite elements on Γh(t). The discretization of

the elliptic problem was investigated in detail in [Dzi88]. There, the following interpolation

estimate for continuous functions was proved for the H1-norm; a slight modification also

yields an estimate on the approximation error in the L2-norm.

Lemma and Definition 3.6.4 (Interpolation, [Dzi88, Lem. 5]). Let Ih : C(Γ(t)) → (Yh(t))l

denote the nodal interpolation. For a continuous function f ∈ C(Γ(t)) the interpolant Ihf is

uniquely defined by Ihf(Xj(t)) = f(Xj(t)), for 1 ≤ j ≤ mh and fl ∈ Yh(t). There holds

�Ihf − f�L2(Γ(t)) + h�Ihf − f�H1(Γ(t)) ≤ Ch2�f�H2(Γ(t)) .

This is where the restriction to n = 1, 2, 3 arises in order to ensure the embedding H2(Γ(t)) ⊂
C(Γ(t)). Also, hidden in the proof of the Interpolation Lemma 3.6.4 there lies the reason for
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our regularity Assumption 3.5.2, since a uniform bound for the third spatial derivatives of d

is used.

The next Lemma is a refined version of the convergence estimate 2.1.2 which, in particular,

states that the approximation is uniform with respect to time. It was proved in [Dzi88]. We

included a version of the proof which emphasizes the time-independence of the constants.

Lemma 3.6.5. For t ∈ [0, T ] and y ∈ L2(Γ(t)), yh ∈ L2(Γh(t)) consider

a(z, ϕ; t) :=

�

Γ(t)

∇Γz∇Γϕ+ µzϕdΓ(t) = �y, ϕ�L2(Γ(t)) , ∀ϕ ∈ H1(Γ(t)) (3.6.7)

and

ah(zh, ϕ; t) :=

�

Γh(t)

∇Γhzh∇Γhϕ+ µlzhϕ dΓh(t) = �yh, ϕ�L2(Γh(t)) , ∀ϕ ∈ Yh(t) (3.6.8)

with unique solutions z ∈ H1(Γ(t)) and zh ∈ Yh(t). The solution operators S(t) : L2(Γ(t)) →
L2(Γ(t)), y �→ z and Sh(t) : L2(Γh(t)) → Vh ⊂ L2(Γh(t)), yh �→ zh are self-adjoint. There

exists C independent of t ∈ [0, T ] such that

1. ∀ϕ, ψ ∈ Yh(t) : |�ϕl, ψl�H1(Γ(t)) − �ϕ, ψ�Yh(t)| ≤ Ch2�ϕl�H1(Γ(t))�ψl�H1(Γ(t)) < ∞ as well

as

2. �(·)lSh(t)(·)l
∗ − S(t)�L(L2(Γ(t)),L2(Γ(t))) ≤ Ch2 and

3. �(·)lSh(t)(·)l
∗ − S(t)�L(L2(Γ(t)),H1(Γ(t))) ≤ Ch.

Proof. The operators being well-defined and self-adjoint follows by standard arguments. Since

ϕl and ψl are continuous and piecewise smooth on Γ(t) and thus lie in H1(Γ(t)) (compare

Lemma 1.3.9) with

ah(ϕ, ψ; t) = a(ϕl, ψl; t) +

�

Γ(t)

∇Γϕ
l

�
Rl

h
− Id

�
∇Γψ

l + µϕl(
1

δl
h

− 1)ψl dΓ(t) . (3.6.9)

Assertion 1. now follows from Lemma 3.5.4[2.] and by setting µ ≡ 1. In order to prove 3.

consider the intermediate quantity z̃h ∈ (Yh(t))
l ⊂ H1(Γ(t)) which is the unique solution of

a(z̃h, ϕ
l; t) = �y, ϕl�L2(Γ(t)) , ∀ϕ ∈ Yh(t) , (3.6.10)

which in [DE10] is referred to as Riesz projection of z. We split the error into two components,

the dominant part �z̃h − z�H1(Γ(t)) and the asymptotically minor �zl
h
− z̃h�H1(Γ(t)).

For (3.6.10) there holds Cea’s Lemma, and using the interpolation Lemma 3.6.4 and the

uniform stability Lemma 1.B.1 we get

�z̃h − z�2
H1(Γ(t)) ≤ a(z̃h − z, z̃h − z; t) = a(z̃h − z, Ihz − z; t)

≤ Ch�z̃h − z�H1(Γ(t))�z�H2(Γ(t)) ≤ Ch�z̃h − z�H1(Γ(t))�y�L2(Γ(t)) .
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Now set yh = δhyl = (·)l∗y and test (3.6.10) and (3.6.8) with (z̃h)l − zh. Subtract both to get

a(z̃h − zl
h
, z̃h − zl

h
; t) + a(zl

h
, z̃h − zl

h
; t)− ah(zh, (z̃h)l − zh; t) = 0

which in view of (3.6.9) and Lemma 1.B.1 gives

�zl
h
− z̃h�H1(Γ(t)) ≤ Ch2�zl

h
�H1(Γ(t)) ≤ Ch2�y�L2(Γ(t)).

Assertion 2. is proved by a duality argument. For this let w ∈ H2(Γ(t)) solve

a(ϕ,w; t) = �zl
h
− z, ϕ�L2(Γ(t)) , ∀ϕ ∈ H1(Γ(t)) ,

and estimate

�zl
h
− z�2

L2(Γ(t)) = a(zl
h
− z, w; t) = a(zl

h
− z, w; t) + a(z, Ihw; t)− ah(zh, (Ihw)l; t)

= a(zl
h
− z, w − Ihw; t) + a(zl

h
, Ihw; t)− ah(zh, (Ihw)l; t)

≤ C�zl
h
− z�H1(Γ(t))�w − Ihw�H1(Γ(t)) + Ch2�zl

h
�H1(Γ(t))�Ihw�H1(Γ(t))

≤ Ch2�z�H2(Γ(t))�w�H2(Γ(t)) + Ch2�zl
h
�H1(Γ(t))�w�H2(Γ(t))

Finally, using Lemma 1.B.1 again we end up with �w�H2(Γ(t)) ≤ C�zl
h
− z�L2(Γ(t)) and

�z�H2(Γ(t)) ≤ C�y�L2(Γ(t)). Also one has �zh�Yh(t) ≤ �yh�L2(Γh(t)) = �y�L2(Γ(t)). Using (3.6.9)

again we conclude �zl
h
�H1(Γ(t)) ≤ C�y�L2(Γ(t)) and the Lemma is proved. �

Theorem 3.6.6. Let Assumption 3.0.5, 3.5.1 and 3.5.2 hold and let y ∈ WΓ solve (3.6.1)

for some u ∈ L2
L2(Γ), y0 ∈ H1(Γ0), such that (3.4.3) holds. Let yh solve (3.6.2) with µh = µl

and uh = ul and some approximation yh0 of (y0)l. There exists C > 0 independent of y and h

such that

�yl
h
− y�2

L
2
L2(Γ)

≤ C

�
�yl

h
(0)− y(0)�2

H−1(Γ0)
+ h4

�
�y0�2H1(Γ0)

+ �yh0�2Yh(0)
+ �u�2

L
2
L2(Γ)

��
.

Proof. Define z = S(t)
�
yl
h
− y

�
and zh = Sh(t) (δh (yh − yl)) with S(t) and Sh(t) as in Lemma

3.6.5. Now δh (yh − yl) = (·)l∗
�
yl
h
− y

�
and hence it follows from Lemma 3.6.5[2.] that

�zl
h
− z�L2(Γ(t)) = �((·)lSh(·)l

∗ − S)(yl
h
− y)�L2(Γ(t)) ≤ Ch2�yl

h
− y�L2(Γ(t)) , (3.6.11)

Observe now for zh =
�

mh

i=1 z̄iϕi using Lemma 3.6.3 we get

Y = {�yl
h
− y, ϕl

i�L2(Γ(t))}mh

i=1 ∈ H1([0, T ])mh , and thus z̄ = (Aµh
)−1Y ∈ H1([0, T ])mh .

Hence zh ∈ H1
Yh

and again by Lemma one has 3.6.3 zl
h
∈ WΓ as well as żl

h
(t) ∈ L2(Γ(t)).

We can now test (3.6.1) with zl
h
, using (3.6.7) in the process, to obtain

d

dt
�y, zl

h
�L2(Γ(t)) + �y, yl

h
− y�L2(Γ(t)) = �żl

h
, y�L2(Γ(t)) + �u, zl

h
�L2(Γ(t)) . . .

+�−∆Γy + µy, z − zl
h
�L2(Γ(t)) ,

(3.6.12)

and testing (3.6.2) with zh gives

d

dt
�yh, zh�L2(Γh(t)) + �yl

h
, yl

h
− y�L2(Γ(t)) = �żh, yh�L2(Γh(t)) + �ul, zh�L2(Γh(t)) . (3.6.13)
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Now, since the strong material derivative δ̇h exists and is continuous on each triangle T i

h
(t),

the scalar products �ϕi, ϕjδh�L2(Γh(t)), 1 ≤ i, j ≤ mh, are differentiable with

d

dt
�ϕi, ϕjδh�L2(Γh(t)) =

�

Γh(t)

δhϕiϕj div ΓhVh + δ̇hϕiϕj dΓ
h(t)

and we have

d

dt
�yl

h
, zl

h
�L2(Γ(t)) =

d

dt
�yh, zhδh�L2(Γh(t))

=
d

dt
�yh, zh�L2(Γh(t)) + �yh, żh(δh − 1)�L2(Γh(t)) + �yh, zhδ̇h�L2(Γh(t)) . . .

+ �ẏh, zh(δh − 1)�L2(Γh(t)) + �yh, zh div ΓhVh(δh − 1)�L2(Γh(t)) .

Hence, we can rewrite (3.6.13) by means of the L2(Γ(t))

d

dt
�yl

h
, zl

h
�L2(Γ(t)) + �yl

h
, yl

h
− y�L2(Γ(t)) = �(żh)l, ylh�L2(Γ(t)) + �u, zl

h
�L2(Γ(t)) +Rh , (3.6.14)

with

Rh =�yh, zhδ̇h�L2(Γh(t)) + �ẏh, zh(δh − 1)�L2(Γh(t)) + �yh, zh div ΓhVh(δh − 1)�L2(Γh(t)) . . .

+ �ul, zh(1− δh)�L2(Γh(t)) .

Subtracting (3.6.12) from (3.6.14) yields

d

dt
�yl

h
− y, zl

h
�L2(Γ(t)) + �yl

h
− y�2

L2(Γ(t)) = �(żh)l − żl
h
, y�L2(Γ(t)) + �żh, (yh − yl)δh�L2(Γh(t)) . . .

+Rh + �−∆Γy + µy, zl
h
− z�L2(Γ(t)) .

From (3.6.8) we know �żh, δh(yh − yl)�L2(Γh(t)) = z
�
h
Aµh

zh = 1
2

d
dt(zhAµh

zh)− 1
2zhA

�
µh
(t)zh, in

the notation of (3.6.3). Now, using (3.6.11) and

|Rh| ≤ Ch2�zh�L2(Γh(t))

�
�yh�L2(Γh(t)) + �ẏh�L2(Γh(t)) + �ul�L2(Γh(t))

�

we can estimate

1

2

d

dt
(zhAµh

(t)zh) + �yl
h
− y�2

L2(Γ(t)) ≤C
�
h2�y�L2(Γ(t))�∇Γh(t)zh�(L2(Γh(t)))n . . .

+�zh�2Yh(t)
+ h2�y�H2(Γ(t))�yh − yl�L2(Γh(t))

�
+ |Rh|

≤1

2
�yh − yl�2L2(Γh(t)) + C

�
zhAµh

(t)zh . . .

+h4
�
�yh�2L2(Γh(t)) + �ẏh�2L2(Γh(t)) + �ul�2L2(Γh(t)) + �y�2

H2(Γ(t))

��
.

We can now apply Gronwall’s lemma for

[zhAµh
(t)zh]

T

0 +

�

[0,T ]

�yl
h
− y�2

L2(Γ(t)) dt

≤ Ch4
�

[0,T ]

�yh�2L2(Γh(t)) + �ẏh�2L2(Γh(t)) + �ul�2L2(Γh(t)) + �y�2
H2(Γ(t)) dt ,

(3.6.15)
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and with the stability estimate (3.4.3) and the Lemmas 3.6.2 and 3.5.5 we finally arrive at

�

[0,T ]

�yl
h
− y�2

L2(Γ(t)) dt ≤C

�
=�yl

h
(0)−y(0),zl

h
�
L2(Γ0)� �� ��

Γh

0

�
∇Γh

0
zh
�2

+ µhz
2
h
dΓh

0 . . .

+ h4
�
�y0�2H1(Γ0)

+ �yh0�2Yh(0)
+ �u�2

L
2
L2(Γ)

��
.

(3.6.16)

Apply again (3.6.11) to prove the lemma. �

Remark 3.6.7. Depending on the regularity of y0, possible choices of yh0 yielding O(h2)-

convergence of yl
h
comprehend the interpolation (Ihy0)l, the Ritz projection or either the

L2(Γh

0)-orthogonal or the L
2(Γ0)-orthogonal projection of (y0)l onto Yh(0). For the latter, the

term involving zh in (3.6.16) vanishes completely, but it’s H1(Γ0)-stability requires further

investigation.

The order of convergence is lower, if the solution of (3.6.1) does not satisfy the additional

regularity estimate (3.4.3).

Theorem 3.6.8. Let Assumption 3.0.5, 3.5.1 and 3.5.2 hold and let y ∈ WΓ solve (3.6.1)

for u ≡ 0, and y0 ∈ L2(Γ0). There exists C > 0 independent of y and h such that for the

solution yh of (3.6.2) with yh0 = P h

0 ((y0)l) and uh ≡ 0 there holds

�yl
h
− y�2

L
2
L2(Γ)

≤ C

�
h2 + sup

t∈[0,T ]
�µh

l − µ�2
L∞(Γ(t))

�
�y0�2L2(Γ0)

.

Proof. We proceed as in the proof of Theorem 3.6.6 up to (3.6.12) which now reads

d

dt
�y, zl

h
�L2(Γ(t)) + �y, yl

h
− y�L2(Γ(t)) = �żl

h
, y�L2(Γ(t)) + �−∆Γy + µy, z − zl

h
�H−1(Γ(t)),H1(Γ(t)) ,

Analogously to (3.6.11) we can apply Lemma 3.6.5[3.] and estimate the last term through

|�−∆Γy + µy, zl
h
− z�H−1(Γ(t)),H1(Γ(t))| ≤ � −∆Γy + µy�H−1(Γ(t))�zlh − z�H1(Γ(t)) . . .

≤ � −∆Γy + µy�H−1(Γ(t))Ch�yl
h
− y�L2(Γ(t)) .

On the other hand (3.6.14) becomes

d

dt
�yl

h
, zl

h
�L2(Γ(t)) + �yl

h
, yl

h
− y�L2(Γ(t)) = �(żh)l, ylh�L2(Γ(t)) + �(µl − µh)yh, zh�L2(Γh(t)) +Rh .

Continue as in the proof of Theorem 3.6.6 to finally arrive at the analogue of (3.6.15)

[zhAµh
(t)zh]

T

0 +

�

[0,T ]

�yl
h
− y�2

L2(Γ(t)) dt ≤Ch2
�

[0,T ]

�y�2
H1(Γ(t)) + h2�ẏh�2L2(Γh(t)) dt . . .

+C(h4 + sup
t∈[0,T ]

�µh
l − µ�2

L∞(Γ(t)))

�

[0,T ]

�yh�2L2(Γh(t)) dt ,
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Note that due to Lemma 3.5.4

|zh(0)Aµh
(0)zh(0)| = |�yl

h
(0)− y(0), zl

h
�L2(Γ0)| ≤

=0 since y
h

0=P
h

0 ((y0)l)� �� �
|�yh(0)− yl(0), zh�L2(Γh

0 )
|+Ch2�y0�2L2(Γ0)

.

In view of Lemma 3.6.2 it remains to bound
�
T

0 h2�ẏh�2L2(Γh(t))dt. Again thanks to Lemma

3.6.2 we have �
T

0
�ẏh�2L2(Γh(t))dt ≤ C�yh0�2Yh(0)

.

But an inverse estimate, compare for example [CL91, Thm. 17.2], yields �yh0�Yh(0) ≤
C

h
�yh0�L2(Γh

0 )
, and because of the continuity of the lift (·)l and of the L2-projection P h

0 the

theorem follows. �

3.7 Implicit Euler dG discretization in time

In order to solve (3.4.1) we apply a vertical method of lines. Accordingly, having discretized

the space-dependency we now further discretize the semi-discrete scheme (3.6.2) with respect

to time. For the time-discretization we choose a discontinuous Galerkin (dG) - implicit Euler

approach in L2
L2(Γh).

Consider an equidistant partition Im = (tm−1, tm], 1 ≤ m ≤ M , of (0, T ] with M ∈ N, k = T

M
,

and tm = mk. The trial space for the discontinuous Galerkin method is the space of functions

that are piecewise constant in the following sense

W h

k
=

�
v ∈ L2

L2(Γh)

�� ∀1 ≤ m ≤ M : ∃vm ∈ Yh(tm) : v ≡ φt

tm,h
vm on Im

�
.

In the following we will omit the operators φs

t,h
when dealing with functions w ∈ W h

k
. Also,

to further simplify notation let again

ah(ψ,ϕ; t) =

�

Γh(t)

∇Γhψ∇Γhϕ+ µhψϕ dΓh(t)

as well as �·, ·�m = �·, ·�L2(Γh(tm)).

To motivate the dG method insert the Ansatz

yh,k(t) =
M�

m=1

φt

tm,h
ym
h,k
1Im ∈ W h

k

with ym
h,k

∈ Yh(tm) into (3.6.2).

If one understands the time-derivative in (3.6.2) in a distributional sense, integration over

time formally yields

�ym
h,k

− ym−1
h,k

, ϕ�m−1 +

�

Im

ah(y
m

h,k
, ϕ; t) + �ym

h,k
div ΓhVh, ϕ�L2(Γh(t)) dt =

�

Im

�uh, ϕ�L2(Γh(t)) dt ,



66 CHAPTER 3. PARABOLIC EQUATIONS ON MOVING SURFACES

for smooth test functions ϕ. Instead, apply test functions ϕ ∈ W h

k
and use ẏm = ϕ̇m = 0 to

obtain �

Im

�ym div ΓhVh, ϕ�L2(Γh(t)) dt = �ym, ϕm�m − �ym, ϕm�m−1 .

Finally, to arrive at a computable scheme, lump the Integral over ah(·, ·; t) and replace the

right-hand side appropriately. For arbitrary parameters yh0 ∈ Yh(0) and uh ∈ L2
L2(Γh) we

rewrite the scheme for yh,k ∈ W h

k
as

y0
h,k

= yh0 , ∀ϕ ∈ W h

k
, 1 ≤ m ≤ M :

�ym
h,k

, ϕm�m − �ym−1
h,k

, ϕm�m−1 + kam(ym
h,k

, ϕm) =

�

Im

�φtm

t,h
uh, ϕ

m�m dt , (3.7.1)

where yh0 , uh, and µh are the same as in (3.6.2). For the approximation of the integral am
we assume am(ψ,ϕ) = ah(φ

tm

t,h
ψ, φtm

t,h
ϕ; tm) + rm(ψ,ϕ), with a remainder term

|rm(ψ,ϕ)| ≤ Crk�ψ�Yh(tm)�ϕ�Yh(tm) . (3.7.2)

One possible choice is rm ≡ 0 for 1 ≤ m ≤ M , but we will want to choose r more freely, see

Remark 3.7.10.

In order to proof convergence of the scheme (3.7.1) in L2
L2(Γh) we make use of stability prop-

erties of the adjoint scheme for z ∈ W h

k

zM+1 = zT , ∀ϕ ∈ W h

k
, 1 ≤ m ≤ M :

�zm, ϕm�m − �zm+1, ϕm�m + kam(ϕm, zm) =

�

Im

�φtm

t,h
vh, ϕ

m�m dt . (3.7.3)

with vh ∈ L2
L2(Γh), zT ∈ Yh(T ). In Section 4.2 it will be important that given snapshots

{Γh(tm)}M
m=1 of the surface both (3.7.1) and (3.7.3) can be evaluated without any further

discretization errors for certain right-hand sides uh and vh, e.g. vh ∈ W h

k
.

Let us introduce the mean value of a function y ∈ L2
L2(Γh) over an interval Im.

Lemma and Definition 3.7.1. Let φs

t,h
denote the pullback operator associated with the

flow Φs

t,h
as in Lemma 3.2.2 and let s ∈ [0, T ]. The mean value of a function y ∈ L2

L2(Γh) is

defined as ȳm(s) = 1
k

�

Im

φs

t,h
y dt for s ∈ Im.

The mean value ȳm does not depend on s ∈ Im in the sense that

ȳm(s) =

�

Im

φs

t,h
y dt =

�

Im

φs

r,h
φr

t,h
y dt = φs

r,h

�

Im

φr

t,h
y dt = φs

r,h
ȳm(r) .

Similarly one could define the mean value of y ∈ L2
L2(Γ) if one were to investigate a horizontal

method-of-lines approach.

Now for y0 ≡ 0, zT ≡ 0 the schemes are adjoint in the sense

k
M�

m=1

�ūm
h
, z(vh)�m = k

M�

m=1

�v̄m
h
, yh,k(uh)�m ,
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i.e., the discrete solution operators uh �→ yh,k(uh) and vh �→ z(vh) are adjoint as operators

from (L2
L2(Γh), �·, ·�h,k) into itself, where L2

L2(Γh) is equipped with the scalar product

�v, w�h,k = k
M�

m=1

�

Im

�(φtm

t,h
v), (φtm

t,h
w)�m dt . (3.7.4)

The discretization of the scalar product is important as to the implementable adjoint scheme

(3.7.3). The adjoint with respect to the L2
L2(Γ)-scalar product looks like (3.7.3) but with the

slightly different right-hand side
�
Im

�vh, ϕm�L2(Γ(t))dt which is not, in general, computable

even for very simple functions vh such as vh ∈ W h

k
.

3.7.1 Convergence results

We now proceed to prove convergence of the scheme (3.7.1). First of all, let us check the

consistency of the discretized scalar product from (3.7.4).

Lemma and Definition 3.7.2. Let � · �h,k denote the norm induced by �·, ·�h,k. The norms

� · �
L
2
L2(Γh)

and � · �h,k on L2
L2(Γh) are equivalent and there holds

�����v, w�h,k − �v, w�
L
2
L2(Γh)

���� ≤ Ck

�����v, w�L2
L2(Γh)

���� .

Proof. The result follows from the identity

�

[0,T ]

�

Γh(t)

vw dΓh(t) dt =
M�

m=1

�

Im

�

Γh(tm)

(φtm

t,h
v)(φtm

t,h
w)J t

tm,h
dΓh(tm) dt ,

and J tm

t,h
being Lipschitz with J tm

tm,h
≡ 1. �

Note also that for z ∈ W h

k
, since żm = 0 on Im, we can apply the mean value theorem to

obtain for some t ∈ Im

|�zm�2
L2(Γh(t)) − �zm�2m| = k|�zm div Γh(Θm)Vh, z

m�L2(Γh(Θm))| ≤ Vk�zm�2
L2(Γh(Θm)) , (3.7.5)

with Θm ∈ (t, tm) and

V = sup
τ∈[0,T ]

� div Γh(τ)Vh�L∞(Γh(τ)) .

Apply (3.7.5) to itself to obtain for some Θ̃m ∈ (Θm, tm)

|�zm�2
L2(Γh(t)) − �zm�2m| ≤ Vk

�
�zm�2m +

�
�zm�2

L2(Γh(Θm)) − �zm�2m
��

≤ Vk
�
�zm�2m +Vk�zm�2

L2(Γh(Θ̃m))

�

≤ Vk
�
1 + CL2(Γh)Vk

�
�zm�2m .

(3.7.6)

A similar continuity assertion holds for the Yh(t)-norm, as shows the following lemma.
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Lemma 3.7.3. Let y, z ∈ H1
Yh
, µ̃h ∈ C(Γh(s)× [0, T ]), and µh = φt

s,h
µ̃h. There exists C > 0

such that for every s ∈ Im
����
�

Im

ah(φ
s

t,h
y, φs

t,h
z; s)dt−

�

Im

ah(y, z; t)dt

���� ≤ Ck

�

Im

�φs

t,h
y�Yh(s)�φ

s

t,h
z�Yh(s)dt ,

i.e. for z ∈ W h

k
we have

����kah(ȳ
m, zm; s)−

�

Im

ah(y, z; t)dt

���� ≤ Ck

�

Im

�φs

t,h
y�Yh(s)�z

m�Yh(s)dt .

In particular with µh ≡ 1 the estimates hold for ah(ϕ, ϕ; t) = �ϕ�2
Yh(t)

.

Proof. We abbreviate ∆̃(s, t) = DΓh(s)Φ
s

t,h
(DΓh(s)Φ

s

t,h
)TJs

t,h
. We have

|
�

Im

ah(φ
s

t,h
y, φs

t,h
z; s)dt−

�

Im

ah(y, z; t)dt| = . . .

=
���
�

Im

�

Γh(s)

∇Γhφs

t,h
y
�
∆̃(s, s)− ∆̃(s, t)

�
∇Γhφs

t,h
z + µhφ

s

t,h
y(Js

s,h
− Js

t,h
)φs

t,h
z dΓh(s)dt

��� .

The lemma follows from the fact that Φs

t,h
it linear on each T i

h
(s) and globally Lipschitz in

time, as by Lemma 3.5.3. �

In the process of proving stability estimates we will need the following useful discrete Gronwall

inequality, compare [Bee85].

Lemma 3.7.4 (Discrete Gronwall). Consider sequences {am}m∈N, {cm}m∈N ⊂ R and a non-

negative sequence {bm}m∈N ⊂ R+
0 . The inequality

cm ≤ am +
m−1�

i=1

bmcm

implies the estimate

cm ≤ am +
m−1�

i=1

aibi

m−1�

j=i+1

(1 + bj) ≤ am +
m−1�

i=1

aibi e
�

m−1
j=i+1 bj .

The lower of the two bounds is sharp.

Let us now formulate a crucial stability assertion for the adjoint scheme (3.7.3).

Lemma 3.7.5 (Adjoint stability). Let z ∈ W h

k
solve (3.7.3) with right-hand side v ∈ L2

L2(Γh)

and final state zM+1 = 0. For sufficiently small k > 0 there exists C > 0, depending only on

Γ, such that

1

k

M�

m=1

�zm+1 − zm�2m + k
M�

m=1

�zm�2
Yh(tm) ≤ C�v�2

h,k
.
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Proof. Apply (3.7.3) to zm to obtain

�zm − zm+1, zm�m + kam(zm, zm) =

�

Im

�φtm

t,h
v, zm�m dt .

This leads to

1

2

�
�zm�2m + �zm+1 − zm�2m − �zm+1�2m

�
+ kam(zm, zm) =

�

Im

�φtm

t,h
v, zm�m dt

≤
�

Im

�φtm

t,h
v�m dt�zm�m ≤ 1

2kV




�

Im

�φtm

t,h
v�m dt




2

+
kV

2
�zm�2m .

Sum up, omitting the �zm+1 − zm�2m term, and use (3.7.6) on �zm�2m − �zm�2
m−1 to obtain

�
1− Vk

2

�
�zm�2m +

M�

l=m+1

�
−Vk

�
1 +

1

2
CL2(Γh)Vk

�
�zl�2

l
+ kal(z

l, zl)

�
≤ 1

2V
�v�2

h,k
,

such that for 0 < k < min

�
1

2Cr
, 2
VC

L2(Γh)
, 1
V

�
we can apply the discrete Gronwall Lemma

3.7.4 with cl =
1
2�zM+1−l�2

M+1−l
and get

1

2
�z1�21 ≤

1 + 4VT

2V
e4VT �v�2

h,k
− k

M�

m=1

ah(z
m, zm; tm) + rm(zm, zm) .

And because µh ≥ 1, compare (3.6.1), we conclude

1

2
k

M�

m=1

�zm�2
Yh(tm) ≤

1 + 4VT

2V
e4VT �v�2

h,k
(3.7.7)

Now we test (3.7.3) with zm − zm+1 to get

�zm − zm+1�2m +
k

2

�
am(zm, zm) + am(zm+1 − zm, zm+1 − zm)− am(zm+1, zm+1)

�
= . . .

=

�

Im

�φtm

t,h
v, zm − zm+1�m dt ≤ 1

2




�

Im

�φtm

t,h
v�2m dt




2

+
1

2
�zm − zm+1�2m .

Summing up and using Lemma 3.7.3 on a as well as the estimate (3.7.2) on r we arrive at

k

2
ah(z

1, z1; t1) +
1

2

M�

m=1

�zm+1 − zm�2m

≤ 1

2
k�v�2

h,k
+

k

2

M�

m=2

ah(z
m, zm; tm−1)− ah(z

m, zm; tm) + rm−1(z
m, zm)− rm(zm, zm)

≤ 1

2
k�v�2

h,k
+

k

2

M�

m=2

Ck
�
�zm�2

Yh(tm) + �zm�2
Yh(tm−1)

�
.

Combine with (3.7.7) to conclude the lemma. �
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The following Lemma shows, that it is sufficient to bound the approximation error at the

points tm, 1 ≤ m ≤ M to prove convergence in L2
L2(Γh). Note thatH

1([0, T ],H) ⊂ C([0, T ],H)

for any Hilbert space H, compare [LM68, Thm. 3.1].

Lemma 3.7.6. Let r ∈ H1([0, T ],H), H a separable Hilbert space, then there holds for τ ∈ Im

�r − r(τ)�L2(Im,H) ≤ k�r��L2(Im,H) .

In our situation this implies for r ∈ H1
Yh

that

1. k�r(τ)− r̄m�2
L2(Γh(τ)) ≤ Ck2

�

Im

�ṙ�2
L2(Γh(t)) dt ,

2. and
�

Im

�r(t)− r̄m�2
L2(Γh(t)) dt ≤ Ck2

�

Im

�ṙ�2
L2(Γh(t)) dt .

Proof. For the fist assertion approximate r by ri ∈ D([0, T ],H) such that ri
H

1([0,T ],H)−→ r as

i → ∞. Use

�ri − ri(τ)�L2(Im,H) =




�

Im

����
�

t

τ

r�i(θ)dθ

����
2

H
dt





1
2

≤




�

Im

k

�

Im

��r�i(θ)
��2
H dθ dt





1
2

≤ k�r�i�L2(Im,H) ,

and the fact that H1([0, T ],H) compactly embeds into C([0, T ],H). Hence the first part of

the lemma follows by passing to the limit.

In our situation, because of φτ

t,h
r(t) ∈ H1([0, T ], Yh(τ)), this implies

�r̄m − r(τ)�2
L2(Γh(τ)) =

���
1

k

�

Im

φτ

t,h
r(t)− r(τ) dt

���
2

L2(Γh(τ))
≤ 1

k

�

Im

���φτ

t,h
r(t)− r(τ)

���
2

L2(Γh(τ))
dt

≤ k

�

Im

�
�
φτ

t,h
r(t)

���2
L2(Γh(τ)) dt ≤ kCh

J

�

Im

�ṙ�2
L2(Γh(t)) dt .

This proves 1., in order to get 2. integrate over Im. �

We are now prepared to prove the main result of this section.

Theorem 3.7.7. Let u ∈ L2
L2(Γ), and let yh and yh,k solve (3.6.2) and (3.7.1), respectively,

with yh0 ∈ L2(Γh

0) and uh = ul. There exists a constant C > 0 independent of h, k > 0 and of

u and yh0 such that

�yh − yh,k�L2
L2(Γh)

≤ Ck

�
�ẏh�L2

L2(Γh)
+ �u�

L
2
L2(Γ)

+ �yh0�L2(Γh

0 )

�
.
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Proof. The proof is inspired by [SD05, Thm. 5.2], compare also [Vie07, Thm 1.2.5] and

[MV08a, Thm 5.1]. As a first step, test (3.6.2) with the constant function φt

tm,h
ϕ ∈ H1

Yh
,

where ϕ ∈ Yh(tm). Integrate over Im to obtain

�yh(tm), ϕ�m − �yh(tm−1), ϕ�m−1 +

�

Im

ah(yh, ϕ; t) dt =

�

Im

�ul, ϕ�L2(Γh(t)) dt . (3.7.8)

Next, solve the adjoint equation (3.7.3) for z with right-hand side v =
�

M

m=1(ȳ
m

h
− ym

h,k
)1Im

and final value zM+1 = 0. Apply the test function ϕ = v to get
�

Im

�ȳm
h
− ym

h,k
�2m dt = �zm − zm+1, ȳm

h
− ym

h,k
�m + kam(ȳm

h
− ym

h,k
, zm) . (3.7.9)

Subtract (3.7.8) from (3.7.1). Tested with z this yields

�ym
h,k

− yh(tm), zm�m − �ym−1
h,k

− yh(tm−1), z
m�m−1 + kam(ym

h,k
− ȳm

h
, zm) = . . .

=

�

Im

ah(yh, z
m; t) dt− kam(ȳm

h
, zm) + k�ūm

l
, zm�m −

�

Im

�ul, zm�L2(Γh(t)) dt

Let ȳh =
�

M

m=1 ȳ
m

h
1Im . Add (3.7.9) and sum up over 1 ≤ m ≤ M to get

�ul, z�h,k − �ul, z�L2
L2(Γh)

+
M�

m=1

�

Im

�ȳh − yh,k�2m dt+

�

Im

ah(yh, z
m; t) dt− kah(ȳ

m

h
, zm; tm) =

M�

m=1

krm(ȳm
h
, zm) + �ȳm

h
− yh(tm), zm�m − �ym−1

h,k
− yh(tm−1), z

m�m−1 − �zm+1, ȳm
h
− ym

h,k
�m

=
M�

m=1

krm(ȳm
h
, zm) + �ȳm

h
− yh(tm), zm − zm+1�m ,

where we used zM+1 = 0 and y0
h,k

− yh(t0) = 0 to cast the sum in its final shape.

Finally, bringing to bear the estimates from Lemma 3.7.3 for a, the one from Lemma 3.7.2

for the L2-norms, and the bound on r from (3.7.2), we arrive at

�ȳh−yh,k�2h,k ≤
�
k

M�

m=1

�ȳm
h
− yh(tm)�2m

� 1
2
�
1

k

M�

m=1

�zm − zm+1�2m

� 1
2

+ . . .

+C



k
M�

m=1




�

Im

�φtm

t,h
yh�Yh(tm) dt




2



1
2 �

k
M�

m=1

�zm�2
Yh(tm)

� 1
2

+ Ck�u�
L
2
L2(Γ)

�zl�
L
2
L2(Γ)� �� �

≤C�z�h,k

.

Hence using Lemma 3.7.5 on z we can divide by �ȳh− yh,k�h,k. Thanks to the stability of the

space discretization (Lemma 3.6.2) we can estimate the Yh(t)-term, to finally arrive at

�ȳh − yh,k�L2
L2(Γh)

≤ C




�
k

M�

m=1

�ȳm
h
− yh(tm)�2m

� 1
2

+ k�u�
L
2
L2(Γ)

+ k�yh0�L2(Γh

0 )



 . (3.7.10)
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We now apply Lemma 3.7.6[2.] to the error ek = yh,k−yh and the averaged error ēk = yh,k−ȳh
and sum up to obtain �ek − ēk�L2

L2(Γh)
≤ Ck�ẏh�L2

L2(Γh)
. Combine with (3.7.10) and 3.7.6[1.]

to estimate

�ek�L2
L2(Γh)

≤ Ck�ẏh�L2
L2(Γh)

+ �ēk�L2
L2(Γh)

≤ Ck

�
�ẏh�L2

L2(Γh)
+ �u�

L
2
L2(Γ)

+ �yh0�L2(Γh

0 )

�
.

�

In view of the stability assertions from (3.4.3) and Lemma 3.6.2 and together with Theorem

3.6.6 we get the following Corollary.

Corollary 3.7.8. In the situation of Theorem 3.7.7 let in addition µh = µl and y0 ∈ H2(Γ0),

and choose yh0 as the piecewise linear interpolation of (y0)l. There exists a constant C > 0

independent of h, k > 0 and of u and y0 such that

�yl
h,k

− y�
L
2
L2(Γ)

≤ C(h2 + k)

�
�y0�H2(Γ0) + �u�

L
2
L2(Γ)

�
.

As addressed in Remark 3.6.7, it is possible to relax the condition on y0 into y0 ∈ H1(Γ0)

using an L2- or Ritz-like projection onto Yh(t0).

Even in the case of low regularity we still get a uniform estimate.

Corollary 3.7.9. In the situation of Theorem 3.7.7 let only y0 ∈ L2(Γ0) hold while u ≡ 0.

Let further yh0 = P h

0 ((y0)l). There exists a constant C > 0 independent of h, k > 0 and of y0
such that

�yl
h,k

− y�
L
2
L2(Γ)

≤ C

�
h+ sup

t∈[0,T ]
�µh

l − µ�L∞(Γ(t)) +
k

h

�
�y0�L2(Γ0) .

Proof. Regarding Theorem 3.6.8 and 3.7.7 it remains to bound �ẏh�L2
L2(Γh)

. Like in the

proof of Theorem 3.6.8, using Lemma 3.6.2 and an inverse estimate, we arrive at the desired

estimate. �

In particular, for κ > 0, choose k = κh2 and µh such that supt∈[0,T ] �µh
l − µ�L∞(Γ(t)) ≤ Ch

to get an O(h)-convergent scheme.

The restriction u ≡ 0 is one of notational convenience. It is easy to allow for u ∈ L2
H−1(Γ).

Remark 3.7.10. Note that our freedom in the choice of r now allows us to finally drop

the conditions on µh and µ, respectively, in (3.6.1) and (3.6.2). Let us assume we want to

approximate the solution y of (3.4.1) with, for instance, b ≡ 0, y0 = 0, and u ∈ L2
L2(Γ).

Now e−µhty solves

d

dt
(e−µhty) + ∆(e−µhty) + µhe

−µhty = e−µhtu ∈ L2
L2(Γ) ,

and choosing µh = µ ≡ 1 puts us into the situation of (3.6.1).
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The approximation yh,k ∈ W h

k
of y is the solution of

y0
h,k

= yh0 , ∀ϕ ∈ W h

k
, 1 ≤ m ≤ M :

�ym
h,k

,ϕ�m − �ym−1
h,k

, ϕ�m−1 + k

�

Γh(tm)

∇Γh(tm)y
m

h,k
∇Γh(tm)ϕ dΓh(tm) = k�ūm

h
, ϕ�m ,

which is equivalent to yh,k,µh
=

�
M

m=1 e
−µhtmym

h,k
1Im ∈ W h

k
solving

y0
h,k,µh

= yh0 , ∀ϕ ∈ W h

k
, 1 ≤ m ≤ M :

�ym
h,k,µh

, ϕ�m − �ym−1
h,k,µh

, ϕ�m−1 + k

�

Γh(tm)

∇Γh(tm)y
m

h,k,µh
∇Γh(tm)ϕ+ µhy

m

h,k,µh
ϕ dΓh(tm) . . .

+ krm(ym
h,k,µh

, ϕ) = k�e−µhtm−1 ūm
h
, ϕ�m ,

with

krm(ψ,ϕ) = (eµhk − 1− µhk)�ψ,ϕ�m + k(eµhk − 1)

�

Γh(tm)

∇Γh(tm)ψ∇Γh(tm)ϕ dΓh(tm) .

Taking into account that

�e−µhtut −
M�

m=1

e−µhtm−11Imut�L2
L2(Γ)

≤ Ck�u�
L
2
L2(Γ)

, (3.7.11)

we apply Corollary 3.7.8 to yh,k,µh
and infer �yl

h,k,µh
− e−µhty�

L
2
L2(Γ)

≤ C(h2 + k)�u�
L
2
L2(Γ)

.

Apply the argument (3.7.11) again, this time to yh,k, to conclude

�yl
h,k

− y�
L
2
L2(Γ)

≤ CeµhT (h2 + k)�u�
L
2
L2(Γ)

.





Chapter 4

Parabolic optimal control on
moving surfaces

We consider control-constrained linear-quadratic optimal control problems on evolving hy-

persurfaces in Rn+1. The results from Section 3.3 and Section 3.4 allow us to formulate

well-posed optimal control problems in Section 4.1. We then carry out and prove conver-

gence of the variational discretization of distributed optimal control problems in Section 4.2.

It turns out that, due to the time-dependency of the involved norms, discretizing Equation

(4.1.1) and taking the adjoint do not commute. We close this work with some numerical

examples in Section 4.3.

Basic facts on control constrained parabolic optimal control problems and their discretization

can be found for example in [Trö05] and [MV08b], respectively.

4.1 Control constrained optimal control problems

Using the existence result from Section 3.4, we can now formulate all kinds of control-

constrained optimal control problems known for stationary domains, see for example [Trö05].

As a first example, given an evolving surface as in Assumption 3.0.5, let ST : L2
L2(Γ) →

L2(Γ(T )) denote the solution operator u �→ y(T ), where y satisfies for a.e. t ∈ [0, T ]

d

dt

�

Γ(t)

y ϕdΓ(t) +

�

Γ(t)

∇Γy∇Γϕ dΓ(t) = �ϕ̇, y�H−1(Γ(t)),H1(Γ(t)) + �u, ϕ�
L
2
L2(Γ)

, (4.1.1)

for all ϕ ∈ WΓ, and with y(0) = 0 ∈ L2(Γ0). We know, that every function y ∈ WΓ has

a representation in C([0, T ], L2(Γ(s))) for any s ∈ [0, T ], compare Lemma 3.1.1, and the

inclusion φs

(·)WΓ = Ws(0, T ) ⊂ C([0, T ], L2(Γ(s))) is continuous (in fact compact). Thus ST

is a continuous linear operator. Consider the Control problem

(PT )

�
min

u∈L2
L2(Γ)

O(u) := 1
2�ST (u)− yT �2L2(Γ(T )) +

α

2 �u�2L2
L2(Γ)

s.t. a ≤ u ≤ b ,

75
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with α, a, b ∈ R, a < b , α > 0, and yT ∈ L2(Γ(T )). This is now a well posed problem. By

standard arguments, see for example [Trö05, Thm. 3.15], using the weak lower semicontinuity

of the objective function O(·), one can conclude the existence of a unique solution u ∈ L2
L2(Γ).

For another example let the linear continuous solution operator Sd : L2
L2(Γ) → L2

L2(Γ), u �→ y,

where y solves (4.1.1), and consider the problem

(Pd)

�
min

u∈L2
L2(Γ)

O(u) := 1
2�Sd(u)− yd�2L2

L2(Γ)

+ α

2 �u�2L2
L2(Γ)

s.t. a ≤ u ≤ b ,

with α, a, b as above and yd ∈ L2
L2(Γ). Again there exists a unique solution, see [Trö05, Thm.

3.16].

The first order necessary optimality condition for (Pd) reads (compare also (2.0.2))

�∇uO(u), v − u�
L
2
L2(Γ)

= �αu+ S∗
d
(Sdu− yd), v − u�

L
2
L2(Γ)

≥ 0 , ∀v ∈ Uad (4.1.2)

with Uad =
�
v ∈ L2

L2(Γ) | a ≤ v ≤ b
�
. The adjoint operator S∗

d
: L2

L2(Γ) → L2
L2(Γ) maps

v ∈ L2
L2(Γ) onto the solution p ∈ WΓ ⊂ L2

L2(Γ) of

− �ṗ, ϕ�H−1(Γ(t)),H1(Γ(t)) +

�

Γ(t)

∇Γp∇Γϕ dΓ(t) = �v, ϕ�L2(Γ(t)) , (4.1.3)

for all ϕ ∈ WΓ, and p(T ) = 0 ∈ L2(Γ(T )). This follows if one tests (4.1.1) with p and

(4.1.3) with y. Integrate over [0, T ] and use y(0) = 0 and p(T ) = 0 to arrive at �v, y�
L
2
L2(Γ)

=

�p, u�
L
2
L2(Γ)

, for u, v ∈ L2
L2(Γ) arbitrary.

Note that via the time transform t� = T − t Equation (4.1.3) converts into equation (3.4.1)

with bt = divΓ(t)V and that therefore the existence result from Section 3.4 applies to (4.1.3).

In order to see this consider the following reformulation of (4.1.3)

− d

dt
�p, ϕ�L2(Γ(t))+

�

Γ(t)

∇Γp∇Γϕ+pϕ divΓ(t)V dΓ(t) = −�p, ϕ̇�H1(Γ(t)),H−1(Γ(t))+�v, ϕ�L2(Γ(t)) ,

the material derivatives then change sign under the time transform.

The necessary condition (4.1.2) characterizes the optimum u as the orthogonal projection of

− 1
α
S∗
d
(Sdu−yd) onto the admissible set Uad. In our situation this is the pointwise application

of the projection P[a,b] : R → [a, b].

Lemma 4.1.1. Let PUad denote the L2
L2(Γ)-orthogonal projection onto Uad, which is defined

by

�u− PUad(u), v − PUad(u)�L2
L2(Γ)

≤ 0 ∀v ∈ Uad . (4.1.4)

Then for u ∈ L2
L2(Γ) one has for a.e. t ∈ [0, T ]

PUad(ut) = P[a,b](ut) .
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Proof. The pointwise projection P[a,b] is a continuous, bounded operator on L2(Γ(s)) and we

have

φs

tP[a,b](u) = P[a,b](φ
s

tu) ∈ L2([0, T ], L2(Γ(s))).

Let C =
�
t ∈ [0, T ]

�� PUad(ut) �= P[a,b](ut)
�
and assume meas(C) > 0. Now test (4.1.4) with

vt = P[a,b](ut) to arrive at

�

[0,T ]

�u− PUad(u), P[a,b](u)− PUad(u)�L2(Γ(t)) dt ≤ 0 . (4.1.5)

But now for a.e. t ∈ [0, T ] and a.e. γ ∈ Γ(t) one has

�
ut[γ]− PUad(ut)[γ]

��
P[a,b](ut)[γ]− PUad(ut)[γ]

�
≥ 0 ,

because PUad(ut)[γ] ∈ [a, b]. Moreover for t ∈ C we have

�
ut[γ]− PUad(ut)[γ]

��
P[a,b](ut)[γ]− PUad(ut)[γ]

�
> 0 ,

on a set of positive measure. Since meas(C) > 0 this contradicts (4.1.5). �

Introducing the adjoint state pd(u) = S∗
d
(Sdu− yd), let us now rewrite (4.1.2) as

u = P[a,b]

�
− 1

α
pd(u)

�
. (4.1.6)

Similarly the unique solution u of (PT ) is characterized by u = P[a,b]

�
− 1

α
pT (u)

�
, with pT (u) =

S∗
T
(STu−yT ). Note that however the adjoint state pT in general is less smooth than pd. This

is because the adjoint equation, i.e. the equation describing S∗
T
: L2(Γ(T )) → L2

L2(Γ), v �→ p,

reads

−�ṗ, ϕ�H−1(Γ(t)),H1(Γ(t)) +

�

Γ(t)

∇Γp∇Γϕ dΓ(t) = 0 ,

for all ϕ ∈ WΓ and with p(T ) = v ∈ L2(Γ(T )). While Theorem 3.4.1 applies, this is not the

case for the smoothness assertion (3.4.3), as long as yd ∈ L2(Γ(T )) \H1(Γ(T )).

4.2 Variational discretization

We now return to problem (Pd) which has the advantage over (PT ), that its adjoint equation

satisfies the regularity estimate (3.4.3). For (PT ) this is not the case iff yT ∈ L2(Γ(T )) \
H1(Γ(T )). In the spirit of [Hin05], let us approximate (Pd) by

(Ph

d
)

�
min

u∈L2
L2(Γh)

O(u) := 1
2�Sh

d
(u)− (yd)l�2h,k + α

2 �u�2h,k
s.t. a ≤ u ≤ b ,

with {Γh(t)}t∈[0,T ] as in Section 3.6 and Sh

d
: (L2

L2(Γh), �·, ·�h,k) → (L2
L2(Γh), �·, ·�h,k), uh �→ yh,k

is defined through the scheme 3.7.1 with µh ≡ 0 and yh0 ≡ 0. We choose the scalar product
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�·, ·�h,k defined in (3.7.4) in order to obtain a computable scheme to evaluate Sh

d

∗
, namely

(3.7.3) with zM+1 = 0. Given snapshots {Γh(tm)}M
m=0, the product �·, ·�h,k can be evaluated

exactly for functions ϕh ∈ W h

k
as well as for P[a,b](ϕh).

Let Uh

ad =
�
v ∈ L2

L2(Γh) | a ≤ v ≤ b
�
. As in (4.1.2) the first order necessary optimality con-

dition for an optimum uh of (Ph

d
) is

�αuh + Sh

d

∗
(Sh

d
uh − (yd)l), v − uh�h,k ≥ 0 , ∀v ∈ Uad . (4.2.1)

First, note that like in the continuous case the �·, ·�h,k-orthogonal projection onto Uh

ad coincides

with the pointwise projection P[a,b](v). Similar to (4.1.6) we get

uh = P[a,b]

�
− 1

α
ph
d
(u)

�
, ph

d
(u) = Sh

d

∗ �
Sh

d
u− (yd)l

�
. (4.2.2)

Equation (4.2.2) is amenable to a semismooth Newton method that, while still being im-

plementable, operates entirely in L2
L2(Γh). The implementation requires one to resolve the

boundary between the inactive set Iu(tm) =
�
γ ∈ Γ(tm)

�� a < − 1
α
ph
d
(u)[γ] < b

�
and the ac-

tive set Au(tm) = Γh(tm) \ Iu(tm) for 1 ≤ m ≤ M . For details on the implementation see

[Vie07], where the parabolic equations on fixed domains are discussed, or Chapter 2, [HV12a],

and [HV11] for elliptic problems. Note that in order to implement Sh

d
and Sh

d

∗
according to

(3.7.1) and (3.7.3) for right-hand sides in W h

k
, again one only needs to know the snapshots

{Γh(tm)}M
m=0. The solution of (Ph

d
) converges towards that of (Pd) and the order of conver-

gence is optimal in the sense that it is the same as the order of convergence of the operators

Sh

d
and Sh

d

∗
.

Theorem 4.2.1 (Order of Convergence for (Ph

d
)). Denote by u ∈ L2

L2(Γ) and uh ∈ L2
L2(Γh)

the solutions of (Pd) and (Ph

d
), respectively. Let C > 1. Then for sufficiently small h, k > 0

there holds

2α
��ul

h
− u

��2
L
2
L2(Γ)

+
��yl

h
− y

��2
L
2
L2(Γ)

≤ C

�
2
� �

(·)lSh

d

∗
(·)l − S∗

d

�
(y − yd), u− ul

h

�
L
2
L2(Γ)

. . .

+
���
�
(·)lSh

d
(·)l − Sd

�
u
���
2

L
2
L2(Γ)

�
,

with y = Sdu and yh = Sh

d
uh.

Proof. The proof is a modification of the one from [HPUU09, Thm. 3.4], compare also the

proof of Theorem 4.2.1. Let P
U

h

ad
(·) denote the �·, ·�h,k-orthogonal projection onto Uh

ad. We

have

ul = P[a,b]

�
− 1

α
pd(u)

�

l

= P[a,b]

�
− 1

α
pd(u)l

�
= P

U
h

ad

�
− 1

α
pd(u)l

�
.

Since uh ∈ Uh

ad, from the characterization of P
U

h

ad

(·) it follows

�− 1

α
pd(u)l − ul, uh − ul�h,k ≤ 0 .
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On the other hand we can plug ul into (4.2.1) and get

�αuh + ph
d
(uh), ul − uh�h,k ≥ 0 .

Adding these inequalities yields

α�ul − uh�2h,k ≤
� �

ph
d
(uh)− pd(u)l

�
, ul − uh

�
h,k

=�ph
d
(uh)− Sh

d

∗
(y − yd)l, ul − uh�h,k + �Sh

d

∗
(y − yd)l − pd(u)l, ul − uh�h,k .

The first addend is estimated via

�ph
d
(uh)− (Sh

d
)∗(y − yd)l, ul − uh�h,k = �yh − yl, S

h

d
ul − yh�h,k

= −�yh − yl�2h,k + �yh − yl, S
h

d
ul − yl�h,k

≤ −1

2
�yh − yl�2h,k +

1

2
�Sh

d
ul − yl�2h,k .

This yields

2α�ul − uh�2h,k + �yh − yl�2h,k ≤ 2�(Sh

d

∗
(·)l − (·)lS∗

d
)(y − yd), ul − uh�h,k + �Sh

d
ul − yl�2h,k .

The claim follows for sufficiently small h, k > 0, using the equivalence of the involved scalar

products stated in Lemma 3.7.2. �

For the problem

(Ph

T )

�
min

u∈L2
L2(Γh)

O(u) := 1
2�Sh

T
(u)− (yT )l�2L2(Γh(T )) +

α

2 �u�2L2
L2(Γh)

s.t. a ≤ u ≤ b ,

one can prove a similar result. Here the operator Sh

T
is the map uh → yM

h,k
, according to the

scheme (3.7.1) with µh ≡ 0.

Theorem 4.2.2 (Order of Convergence for (Ph

T
)). Denote by u ∈ L2

L2(Γ) and uh ∈ L2
L2(Γh)

the solutions of (PT ) and (Ph

T
), respectively. Let C > 1. Then for sufficiently small h, k > 0

there holds

2α
��ul

h
− u

��2
L
2
L2(Γ)

+
��yl

h
− y

��2
L2(Γ(T ))

≤ C

�
2
� �

(·)lSh

T

∗
(·)l − S∗

T

�
(y − yT ), u− ul

h

�
L
2
L2(Γ)

. . .

+
���
�
(·)lSh

T (·)l − ST

�
u
���
2

L2(Γ(T ))

�
,

with y = STu and yh = Sh

T
uh.

Now as to the convergence of
�
(·)lSh

d

∗
(·)l − S∗

d

�
, note that taking the adjoint does not com-

mute with the discretization. Indeed, apply the scheme (3.7.1) to the adjoint equation (4.1.3),

i.e. µh = ( div Γ(t)V )l to get

zM+1 = 0 , ∀ϕ ∈ W h

k
, 1 ≤ m ≤ M : (4.2.3)

�

Im

�φtm

t,h
vh, ϕ

m�m dt =�zm, ϕm�m − �zm+1, ϕm�m −
�

Im

�ϕm div Γh(t)Vh, z
m+1�L2(Γh(t)) dt . . .

+ k

�

Γh(tm)

∇Γh(tm)ϕ
m∇Γh(tm)z

m + ( div Γ(tm)V )lϕ
mzm dΓh(tm) ,
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instead of (3.7.3).

In the situation of (Ph

d
) however, this discrepancy can be remedied by Lemma 3.5.5 which

implies

�(·)l − (·)l∗�L(L2
L2(Γ)

,L
2
L2(Γh)

), �(·)l − (·)l∗�L(L2
L2(Γh)

,L
2
L2(Γ)

) ≤ Ch2 ,

compare also (2.1.3) and (2.1.8), and due to Lemma 3.7.2 which allows us to conclude

�(·)l − (·)l∗�L(L2
L2(Γ)

,(L2
L2(Γh)

,�·,·�h,k)), �(·)
l − (·)l∗�L((L2

L2(Γh)
,�·,·�h,k),L2

L2(Γ)
) ≤ C(h2 + k) , (4.2.4)

if we interpret (·)l, (·)l as operators into or on (L2
L2(Γh), �·, ·�h,k), respectively.

Hence we get the estimate
���(·)lSh

d

∗
(·)l − S∗

d

��� ≤
���((·)l − (·)l∗)Sh

d

∗
(·)l

���+
���(·)l∗Sh

d

∗
((·)l − (·)l∗)

���+
���(·)l∗Sh

d

∗
(·)l∗ − S∗

d

���
� �� �

�(·)lSh

d
(·)l−Sd�

≤ C(k + h2) ,

in the L(L2
L2(Γ), L

2
L2(Γ))-operator norm.

As opposed to problem (Ph

d
), in the case of (PT ) it is easier to proof the convergence of

Sh∗
T

than that of Sh

T
itself. In the sense of (3.7.3), consider the discretization of the adjoint

operator S∗
T

Sh

T

∗
: L2(Γh(T )) � zT �→ z ∈ W h

k
⊂ (L2

L2(Γh), �·, ·�h,k)
according to the primal scheme after the time-transform t� = T − t as in (4.2.3)

zM+1 = zT , ∀ϕ ∈ W h

k
, 1 ≤ m ≤ M :

�zm, ϕm�m − �zm+1, ϕm�m+1 . . .

+ k

�

Γh(tm)

∇Γh(tm)z
m∇Γh(tm)ϕ

m + div Γh(tm)Vhz
mϕm dΓh(tm) = 0 .

Corollary 3.7.9 applies an yields �(·)lSh

T

∗
(·)l − S∗

T
�L(L2(Γ(T )),L2

L2(Γ)
) ≤ C(h+ k

h
).

Now in addition to (4.2.4) we have (by Lemma 2.1.1)

�(·)l − (·)l∗�L(L2(Γ(T )),L2(Γh(T ))) ≤ Ch2 .

We conclude ���(·)lSh

T

∗∗
(·)l − ST

���
L(L2

L2(Γ)
,L2(Γ(T )))

≤ C(h+
k

h
) .

Hence, the operator Sh

T
= Sh

T

∗∗
: (L2

L2(Γh), �·, ·�h,k) → L2(Γh(T ))) is a discretization of ST .

Also, the mapping Sh

T
: uh �→ yh,k(T ) is implemented by the scheme

y0 = 0 , ∀ϕ ∈ W h

k
, 1 ≤ m ≤ M :

�ym, ϕm�m − �ym−1, ϕm�m . . .

+ k

�

Γh(tm)

∇Γh(tm)y
m∇Γh(tm)ϕ

m + ( div Γh(tm)Vh)ly
mϕm dΓh(tm) = k�ūm

h
, ϕm�m ,

as shows summation over 1 ≤ m ≤ M .



4.3. NUMERICAL EXAMPLES 81

Figure 4.1: Selected time snapshots of uh computed for Example 4.3.1 on the sphere after

four refinements.

Remark 4.2.3. It is also possible to prove convergence of the scheme (3.7.3) towards S∗
T
.

One way to achieve this is to rewrite Section 3.7 with the roles of the primal and dual schemes

reversed. An other involves the remainder

rn(ψ,ϕ) =

�

In

�ϕ div Γh(t)Vh, ψ�L2(Γh(t)) dt− k�ϕ div Γh(tn)Vh, ψ�L2(Γh(tn)) ,

as well as slight generalizations of Corollary 3.7.9 and Lemma 3.7.5.

If yT is more regular, such as yT ∈ H1(Γ(T )), then one might want to apply results from

[DE11] that state h2-convergence of the discretization Sh

T
, yet not in the L(L2

L2(Γ), L
2(Γ(T )))-

norm. In order to do so, it remains to ensure the regularity assumptions of [DE11, Thm. 4.4]

to be met by the optimal control u.

4.3 Numerical examples

Provided the results from [HIK03] and [Ulb03] hold on moving surfaces, compare also Ap-

pendix 1.C, Equation (4.2.2) is semismooth due to the smoothing properties of Sh∗
d
. These

are due to the stability ensured by Lemma 3.7.5 which a priori holds only in the case µh ≥ 1,

but can easily be extended for arbitrary µh, µ for example by rescaling, see Remark 3.7.10.

By Lemma 3.7.5 the operator φs

·,hS
h

d

∗
continuously maps (L2

L2(Γh), �·, ·�h,k) into

L∞([0, T ], H1(Γh(s))) ⊂ Lp([0, T ], Lp(Γh(s))) � Lp([0, T ]× Γh(s))

for every 2 < p < ∞. This would imply semismoothness of the operator

P[a,b]

�
− 1

α
φs

t,h

�
ph
d

�
φt

s,h
(·)

���
: L2([0, T ]× Γh(s)) → L2([0, T ]× Γh(s)) ,

compare [Ulb11, Thm. 3.49], and thus of equation (4.2.2).

We implemented a semismooth Newton Algorithm for (4.2.2), along the lines of [Vie07].

Example 4.3.1 (High Regularity: Sphere). Consider problem (Pd) with α = 1, a = −1
2 ,

b = 1
2 , T = 1, and Γ0 ⊂ R3 the unit sphere.
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R ERRL2 EOCL2 ERR∞ EOC∞ R ERRL2 EOCL2 ERR∞ EOC∞
0 1.68e-01 - 8.71e-01 - 5 6.78e-03 2.15 1.08e-01 2.01

1 5.40e-02 - 7.88e-01 - 6 3.15e-03 2.09 5.01e-02 1.97

2 4.13e-02 2.45 5.32e-01 0.86 7 1.72e-03 2.03 2.80e-02 1.99

3 2.60e-02 1.78 3.78e-01 1.79 8 7.92e-04 2.02 1.31e-02 1.97

4 1.24e-02 2.21 1.82e-01 1.97

Table 4.1: L2-error, L∞-error and the corresponding EOCs for Example 4.3.1.

Let Γ(t) = Φt

0Γ0 with Φt

0(x1, x2, x3) = (x1, x2, x3/ρt)T and ρt = e
sin(2πt)

4 . In coordinates

(x1, x2, x3) of R3 let

u = P[− 1
2 ,

1
2 ]
(x3 sin(2πt))

and yd := Sdu− ỹd where ỹd = (S∗
d
)−1x3 sin(2πt) = − ˙(x3 sin(2πt))−∆Γx3 sin(2πt), i.e.,

ỹd = −x3

��π
2
sin(2πt)− 2π

�
cos(2πt) +

sin(2πt)ρ2t
x21 + x22 + ρ4

t
x23

�
ρ2t + 1− x23

ρ6t − ρ4t
x21 + x22 + ρ4

t
x23

��
.

Then u solves (Pd).

Note that the construction of the desired state yd in Example 4.3.1 is facilitated by the fact

that the adjoint equation in its strong form lacks the div ΓV -term. The same holds for

Example 4.3.2.

In order to compute the solution uh of (Ph

d
) we construct triangulations of Γ0 from our

macro-triangulation R0
0. In the case of the sphere R0

0 is a cube whose nodes reside on Γ0

triangulated into 12 rectangular triangles. We generate Ri+1
0 from Ri

0 through longest edge

refinement followed by projecting the inserted vertices onto Γ0.

Table 4.1 shows the relative error in the L2
L2(Γh)-norm ERRi

L2 and the relative L∞-error

ERRi

∞ =
�φs

t,h
(uh − ul)�L∞([0,T ]×Γh(s))

�φs

t,h
ul�L∞([0,T ]×Γh(s))

,

on the ith refinement of the macro-triangulation as well as the corresponding experimental

orders of convergence

EOCi

L2 = ln
ERRi

L2

ERRi−q

L2

�
ln

Hi

Hi−q

�−1

, EOCi

∞ = ln
ERRi

∞
ERRi−q

∞

�
ln

Hi

Hi−q

�−1

,

where Hi denotes the maximal edge length of Ri

0, see Table 4.3. Throughout this section we

chose q = 2 for both EOCL2 and EOCL∞ , and the time step length is ki =
1
20H

2
i
.

Note that the L∞-error is estimated by the maximal error at the nodes of the triangulations

Γh(tm). Since Example 4.3.1 and 4.3.2 admit smooth solutions this procedure is correct of

order O(h2). The L2-errors are computed by triangle-wise Gaussian quadrature of order

O(h3) combined with Gaussian quadrature in time of order O(k3).

Figure 4.1 shows the solution of (Ph

d
) at different points in time. Note that the white lines

mark the borders between active and inactive sets. On the active parts, the optimal control

assumes the value a or b, respectively.
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Figure 4.2: Selected time snapshots of uh computed for Example 4.3.2 on the four times

refined torus.

For another Example consider the oscillating torus

Γ(t) = Im

�


cos(ϕ)

sin(ϕ)

0



+

�
1 +

1

2
sin(2πt) cos(2ϕ)

�



cos(ψ) cos(ϕ)

cos(ψ) sin(ϕ)

sin(ψ)





�
, (4.3.1)

with coordinates ϕ, ψ ∈ [0, 2π).

Example 4.3.2 (High Regularity: Torus). Consider problem (Pd) with α = 100, a = −1
4 ,

b = 1
4 , T = 1, and Γ(t) as in (4.3.1).

Let

u = P[− 1
4 ,

1
4 ]

�
1

2
sin(2πt) cos(2ϕ)

�

and the desired state yd = (−∂t −∆Γ)
1
2 sin(2πt) cos(2ϕ) + Sdu.

Then u solves (Pd).

Table 4.2 and Figure 4.2 illustrate the behavior of the discretization of Example 4.3.2.

Finally, let us conclude with an example for (Ph

T
) with a desired state yT that just barely lies

in L2(Γ(T )). In this situation we can only expect O(h)-convergence.

Example 4.3.3 (Low Regularity). Consider problem (PT ) with α = 1, a = −∞, b = ∞,

T = 1 and Γ(t) as in Example 4.3.1. Let yT = 1
(x+y)0.49 .

Since we do not know the exact solution of Example 4.3.3, we estimate the relative error by

ERRi

L2 � �ulh
i
− ui+2�L2

L2(Γh,i+2)
/�ui+2�L2

L2(Γh,i+2)
, where ui denotes the solution of (Ph

T
) on
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R H ERRL2 EOCL2 ERR∞ EOC∞ R H ERRL2 EOCL2 ERR∞ EOC∞
0 2.44 0.3202 - 1.2962 - 5 0.83 0.0157 3.4 0.1425 2.9

1 2.07 0.2335 - 1.2904 - 6 0.61 0.0089 2.1 0.0748 2.0

2 1.60 0.1093 2.6 0.8107 1.1 7 0.52 0.0065 1.8 0.0542 2.0

3 1.12 0.0451 2.7 0.3525 2.1 8 0.46 0.0051 2.0 0.0429 2.0

4 1.00 0.0252 3.1 0.2035 2.9

Table 4.2: L2-error, L∞-error and the corresponding EOCs for Example 4.3.2.

Figure 4.3: Selected time snapshots of uh computed for Example 4.3.3 on the sphere after

four refinements.

R 1 2 3 4 5 6 7 8 9

ERRL2 0.1899 0.1444 0.1140 0.0701 0.0484 0.0306 0.0215 0.0147 0.0104

EOCL2 - - 1.2414 1.3272 1.3709 1.2617 1.2030 1.0781 1.0520

H 1.1547 0.9194 0.7654 0.5333 0.4099 0.2769 0.2085 0.1398 0.1047

Table 4.3: L2-error and the corresponding EOC for Example 4.3.3. H is the maximal edge

length of Γh

0 (both examples).

the ith refinement {Γh,i(t)}t∈[0,T ] of {Γh(t)}t∈[0,T ]. The lift (·)lh is taken perpendicular to

the smooth surface Γ(t). Table 4.3 shows the estimated L2-errors and corresponding EOCs.

We computed the L2(Γh(T ))-projection P h

T
(yT )l analytically. Otherwise one would need to

take measures to prevent the error introduced by the numerical integration of the non-smooth

function yT from dominating the overall numerical error. It helps that all our triangulations

resolve the plane {x+ y = 0}.
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[Sch10] A. Schumacher. “Die Wärmeleitungsgleichung auf bewegten Oberflächen”. MA
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Summary

We investigate linear-quadratic parabolic optimal control problems on evolving material hy-

persurfaces in Rn+1, n ∈ N. In addition, we present a globalized Newton method for elliptic

optimal control problems on stationary surfaces.

Following [DE07], we consider parabolic state equations in their weak form

d

dt

�

Γ(t)

y ϕdΓ(t) +

�

Γ(t)

∇Γy∇Γϕ+ b y ϕdΓ(t) =

�

Γ(t)

y ϕ̇ dΓ(t) +

�

Γ(t)

uϕdΓ(t) , y(0) = y0 ,

where Γ =
�
Γ(t)

�t∈[0,T ]
is a family of C2-smooth, compact n-dimensional surfaces in Rn+1,

evolving smoothly in time with velocity V , and ϕ̇ = ∂tϕ+V∇ϕ denotes the material derivative

of a smooth test function ϕ. We define unique weak solutions for the state equation under low

regularity assumptions on the data u, y0. In particular we allow for y0 ∈ L2(Γ(0)). The idea

is to introduce distributional material derivatives in the sense of [LM68] and a W (0, T )-like

solution space.

The stationary diffusion equation on a fixed surface Γ reads
�

Γ

∇Γy∇Γϕ+ c y ϕdΓ =

�

Γ

uϕdΓ , ∀ϕ ∈ H1(Γ) .

Both in the stationary and the instationary case each surface is approximated by a trian-

gulation Γh on which a finite element scheme for the state equation is formulated along the

lines of [Dzi88] and [DE07], respectively. The approximation error of this discretization of

the state equation decomposes into a finite element error, arising from the projection onto a

finite dimensional Ansatz space, and a geometrical part which is due to the approximation

of Γ by Γh. We prove convergence results for the parabolic equations under weak regularity

assumptions.

The state equations define linear control-to-state operators. Using these, we formulate control

constrained optimal control problems along with their necessary optimality conditions where

the adjoint state equations appear. The optimal control problems are subjected to variational

discretization, see [Hin05], by replacing Γ and the state equation by their finite dimensional

approximations. The variationally discretized problems are amenable to an implementable

semismooth Newton algorithm. In both cases we prove convergence of the discretized optimal

controls.

In the elliptic case we also discuss in some detail the implementation of a globalized semi-

smooth Newton algorithm for the control problem, involving a new merit function. In the

parabolic setting a suitable scalar product is formulated in order to arrive at an easily com-

putable discrete adjoint scheme.

Our analytical findings are complemented with numerical examples.



Zusammenfassung

Wir untersuchen linear-quadratische Optimalsteuerungsprobleme auf sich bewegenden

Flächen in Rn+1, n ∈ N. Zusätzlich geben wir ein globalisiertes semiglattes Newtonverfahren

für elliptische Optimalsteuerungsprobleme auf stationären Flächen an.

Wie in [DE07] betrachten wir eine parabolische Zustandsgleichung in schwacher Form

d

dt

�

Γ(t)

y ϕdΓ(t) +

�

Γ(t)

∇Γy∇Γϕ+ b y ϕdΓ(t) =

�

Γ(t)

y ϕ̇ dΓ(t) +

�

Γ(t)

uϕdΓ(t) , y(0) = y0 ,

wobei Γ =
�
Γ(t)

�t∈[0,T ]
eine Familie von C2-glatten, kompakten n-dimensionalen Flächen in

Rn+1 bezeichnet, die sich gemäß des Geschwindigkeitsfeldes V verformen; der Ausdruck ϕ̇ =

∂tϕ+V∇ϕ steht hier für die Materialableitung einer hinreichend glatten Testfunktion ϕ. Wir

definieren eindeutige Lösungen der Zustandsgleichung unter geringen Regularitätsannahmen

an die Daten u, y0. Insbesondere berücksichtigen wir Anfangswerte mit niedriger Regularität

y0 ∈ L2(Γ(0)). Hierzu werden schwache Materialableitungen im Sinne von [LM68] und ein

W (0, T )-artiger Lösungsraum eingeführt.

Im elliptischen Fall beschreibt die Zustandsgleichung Diffusion auf einer kompakten Hy-

perfläche Γ �

Γ

∇Γy∇Γϕ+ c y ϕdΓ =

�

Γ

uϕdΓ , ∀ϕ ∈ H1(Γ) .

Sowohl im parabolischen als auch im elliptischen Fall wird die Zustandsgleichung mittels

eines Finite-Element Ansatzes auf Triangulierungen Γh der Flächen Γ diskretisiert, siehe

[Dzi88] und [DE07]. Der damit verbundene Approximationsfehler zerfällt in einen Finite-

Element Anteil, der aus der Projektion auf einen endlichdimensionalen Ansatzraum resultiert,

und einen geometrischen Anteil, der der Diskretisierung von Γ durch Γh Rechnung trägt.

Wir beweisen Konvergenzaussagen für die Diskretisierung der parabolischen Gleichung unter

schwachen Regularitätsannahmen.

Mit den Zustandsgleichungen lassen sich kontrollbeschränkte Optimalsteuerungsprobleme for-

mulieren. Diese diskretisieren wir variationell, vergleiche [Hin05], indem wir Γ und die Zu-

standsgleichung durch ihre jeweiligen diskreten Approximationen ersetzen. Das variationell

diskretisierte Problem kann dann mittels eines semiglatten Newtonalgorithmus gelöst werden.

In beiden Fällen werden optimale Konvergenzordnung für die Kontrollen bewiesen.

Im elliptischen Fall geben wir zudem eine Globalisierung des Newtonverfahrens an, die auf

einer neuen Bewertungsfunktion beruht. Im parabolischen Fall wird das L2-Skalarprodukt in

geeigneter Weise diskretisiert, um einen implementierbaren adjungierten Lösungsoperator zu

erhalten.

Die analytischen Betrachtungen werden durch numerische Beispiele ergänzt.
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