
Searching for Generic Chemical Patterns in
Combinatorial Chemical Spaces

Dissertation

zur Erlangung des akademischen Grades

Dr. rer. nat.

an der Fakultät für Mathematik, Informatik und Naturwissenschaften

der Universiät Hamburg

eingereicht beim Fach-Promotionsausschuss Informatik von

Hans-Christian Ehrlich

aus Berlin

Februar 2013



Erstgutachter: Prof. Dr. Matthias Rarey

Zweitgutachter: Prof. Dr. Wolfgang Menzel

Tag der Disputation: 28. August 2013



Zusammenfassung

Bestehende Ansätze einen chemischen Raum nach Molekülen mit

vordefinierten Strukturelementen zu durchsuchen, repräsentieren diesen

Raum als eine Menge von expliziten Molekülen. Diese Moleküldatenbanken

werden sequenziell oder parallel durchsucht, wobei jedes Molekül auf

die Anwesenheit der Teilstruktur getestet wird. Leider ist der so

durchsuchte chemische Raum begrenzt durch die Speicherkapazitäten

heutiger Datenbanken. Um diese, auch zukünftig bestehende, Begrenzung zu

umgehen, wurden in den letzten Jahrzehnten alternative Speicherkonzepte

entwickelt, so genannte Fragmenträume. Diese Räume bestehen aus

molekularen Fragmenten und Regeln, wie diese Fragmente zu Produkten

oder Molekülen verknüpft werden können. Eine so geartete kombinatorische

Beschreibung erlaubt es große chemische Räume mit wenigen Fragmenten

und Regeln darzustellen. Leider sind bestehende Methoden auf eine solche

Beschreibung in der Regel nicht anwendbar und müssen unter großem

Aufwand angepasst werden.

In dieser Arbeit wird ein Verfahren zur Suche nach Molekülen mit

vordefinierten chemischen Mustern in Fragmenträumen vorgestellt. Das

Verfahren basiert auf einem Teilen und Herrschen Ansatz, der Fragmente

und Verknüpfungsregeln direkt verarbeitet und somit die kostenintensive

Aufzählung von kompletten Molekülen vermeidet. Das Ergebnis ist eine

vollständige, minimale Menge von Fragmenten, die nach Verknüpfung das

gesuchte Muster enthalten. Eine solche Suche nach Molekülen ist von

zentralem Interesse in der frühen Phase des Medikamentenentwurfes.

Die hier präsentierte Methode hat sich in mehreren ausgewählten

Szenarien, die Prozessen aus dem Wirkstoffentwurf nachempfunden sind, als

hilfreich und zuverlässig erwiesen.



Abstract

Standard approaches to search molecules for user-defined chemical patterns

scan huge databases in which the chemical space is represented as a set of

explicitly stored molecular structures. Regardless of the employed search

algorithm, the storage capacities of modern database systems limit the

covered chemical space. Alternative storage concepts such as fragment

spaces emerged over the last decades to circumvent this limitation. These

spaces consist of molecular fragments and rules that describe their possible

connections. The combinatorial nature of fragment spaces allows the

description of large chemical spaces with only a few fragments and connection

rules. Unfortunately, existing methods need major modifications to work on

these spaces.

This thesis presents a novel method to search for chemical patterns in

fragment spaces. It is based on an algorithm that uses a divide and conquer

strategy to directly process fragments and connection rules to avoid the

costly enumeration of molecules encoded by the fragment space. As a result,

the method produces a complete, minimal set of fragments that includes the

user-defined pattern after their connection to molecules. The method is of

major interest during the early stage of drug discovery. This is demonstrated

by conducting multiple tests designed to mimic real world drug discovery

scenarios.
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Clemens Kühn for proof-reading this thesis. Over the last four years, many

people have left and joined the ZBH: Patrick Maaß, Juri Pärn, Axel Griewel,
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1 Introduction

The search for new drugs constitutes one of the most challenging problems of the 21st century.

The enormous financial investments and the time span required for drug discovery campaigns

reflect their complexity and the high rate of failure [1]. One of the key reasons for this is

the complexity of biochemical processes. Drugs are usually small molecules that interact with

disease-associated macromolecules in the organism. The prediction of such interactions itself

entails a high level of uncertainty. Adding the plethora of influences that the human organism

exerts on the drug molecule on its way to the interaction site renders simplistic approaches

useless.

A detailed understanding of the interaction between substances and proteins is fundamental

for the drug discovery process. In the year 1894, Fischer postulated the central principle for

molecular interaction. His Lock-and-Key concept [2] states that an enzyme and its substrate

are complementary in their physico-chemical and steric properties. Based on that concept,

P. Ehrlich developed the notion of a drug selectively binding to a receptor [3] and Langley

postulated the idea that such an interaction can lead to a molecular activation or suppression

of the receptor’s function [4]. The Lock-and-Key principle was extended by the introduction of

Koshland’s induced fit model [5] which describes the change in protein structure upon binding

to a ligand. In accordance, the conformational selection paradigm describes the ligand selecting

a protein conformation that is compatible with binding and shifts the protein configuration

towards this state [6–8]. These and other advances in biology, chemistry and pharmacology

have lead to the introduction of rational drug design in which drugs are no longer discovered in

a trial-and-error process but from systematic exploration of available data sources on the basis

of well-founded biological models.

The evolution in drug design and the advances in computer hardware have led to the

development of computational methods to assist the experimental drug discovery process.

Computational and experimental methods are complementary in nature. Computational

methods allow the processing and management of large data sources and supply a mechanism

for large scale predictions of molecular processes. In contrast, experimental processes are more

exact in their results and therefore used to validate the virtual predictions in detail. Nowadays,

computational methods are established in pharmaceutical research and are mainly used during

the early stages of drug discovery.

1.1 The drug discovery pipeline

Modern drug discovery is a complex multi-stage process that can be divided into the gathering

of biological information, clinical testing and the final admission to the market followed by

long-term studies. The following section introduces the beginning of the drug discovery pipeline

which consists of the identification of macromolecular targets, the generation of biological active
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Figure 1: The drug discovery pipeline. In early-stage research phase a protein target is identified
and validated. In addition, lead structures are generated and optimized. Preclinical studies
assess the general safety of the potential drug in animal models and clinical phases are conducted
on human probands. In clinical phase I, safety, dosage and side effects are evaluated. Studies
performed in clinical phase II test the effectiveness of the drug. In clinical phase III, effectiveness
is confirmed, side effects are monitored and the drug is compared to known treatments. After
an admission to the market, long term studies are conducted to evaluate treatment risk, benefits
and optimal usage.

structures and their optimization to preclinical drugs. In this stage, in-silico and in-vitro

technologies are applied side-by-side. Figure 1 shows an overview of the drug discovery pipeline.

• Target identification and validation

The first step is dedicated to the identification of a target protein associated with the

disease. When such a target is found and validated, the determination of the protein

structure, the substrates and interactions in the organism are beneficial for the following

lead generation process. Knowledge about the protein structure and substrates allow for

the prediction of the protein druggability and its interactions in the biological system.

Finally, the protein is either confirmed or rejected as a suitable target.

• Lead generation

After the identification of a target protein, the generation of lead structures begins. A

lead structure is a molecule that interacts with the target protein and allows structural

modifications without losing its activity. In screening campaigns, large sets of substances

are experimentally tested for their biological activity. This process is supported by in-silico

methods, e.g., for the selection of suitable screening compounds or the prediction of

preferred binding modes in order to identify key interactions. Generated lead structures

are validated in further screening experiments to assess their biological activity and reduce

possible side effects.

• Lead optimization The optimization of lead structures improves their binding affinity

and selectivity as well as their absorption, distribution, metabolism, excretion, and

toxicology (ADMET) properties. In order to achieve such a change in molecular properties,

lead compounds are structurally modified. The result of this stage is a set of potential

drugs for the following preclinical studies.
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1.2 Screening in drug discovery

Screening is an experimental technology to identify lead structures for a target protein. The

idea is to increase the probability of finding an active compound by testing a large number

of substances. This requires special hardware that guarantees a fully automated testing of

thousands of compounds in a short time. These compound libraries are acquired by collecting

previously tested substances in databases or through combinatorial chemistry that allows the

generation of large chemical libraries with simple chemical reactions that describe the alternative

linkage of reagents to products. The advances in automated hardware technologies and the

available compound libraries led to a systematic testing of millions of compounds, the high

throughput screening (HTS). Even though HTS is an established procedure in drug discovery, a

number of problems are known. The large amount of collected data and the low signal-to-noise

ratio make results difficult to interpret. In the end, only a limited number of compounds, usually

below a million, can be tested in an HTS run. Estimations of the chemical space range from

1018 to 10200 with a general agreement at 1060 molecules [9–11]. Therefore, the selection of

compounds is critical.

Virtual screening (VS) is the application of computational models to select compounds by

evaluating their desirability as a lead structure [12]. It permits to evaluate millions of compounds

with respect to a target protein in a short period of time at almost no costs. In general, VS is

applied during the lead generation phase to select suitable compound libraries for experimental

testing or to directly screen compounds. In addition, VS is used to optimize generated lead

structures. The utilized technologies can be split into structure-based and ligand-based methods.

Structure-based virtual screening is applied when the protein structure and preferably the

binding site of a substrate or ligand are known. Advances in X-ray crystallography and nuclear

magnetic resonance (NMR) technologies have lead to reliable protein structure determination

techniques that often allow for a co-identification of the protein ligand’s structure [13]. The key

challenge of structure-based methods is the prediction of interactions between a ligand and a

protein. This molecular docking problem [14, 15] can be separated into three sub-problems:

the generation of ligand conformations to account for ligand flexibility, the prediction of

a protein-ligand complex with regard to the protein flexibility and the estimation of the

corresponding binding affinity.

Ligand-based virtual screening is the search for potentially active compounds based on

known ligands when no structural information about the target protein is available. If

only information about the substrate or other active compounds is available, ligand-based

methods scan the chemical space for similar molecules. The comparison of molecules based on

their physico-chemical and steric properties lead to molecules with similar functional groups

and shape. Therefore, they are expected to show similar biological activity. One way to

compare molecules is to superimpose their structures. Since a superposition calculation is

computationally demanding, the method is only applicable to screen small sets of compounds.

In order to obtain a scalable comparison, molecular descriptors were established. A molecular
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descriptor [16–18] captures the molecular physico-chemical and steric profile and allows a

comparison without the need for a superposition. Substructure search is a method between

a two dimensional superpositioning and a molecular similarity search. The hypothesis is that

molecules that share a molecular core with known ligands have similar biological activities

[19]. Two other similarity techniques are pharmacophor modeling [20] which obtains the

key interactions between ligand and protein from known active molecules and quantitative

structure activity/property relation (QSAR/QSPR) calculations [21] that correlate the biological

activity/property of a compound with the experimentally measured biological activities.

1.3 Research goal and organization

The aim of this thesis is to present a novel algorithm named SubSubSearch that searches

fragment spaces (FSs) for chemical patterns that describe molecular substructures. A fragment

space describes a possibly large chemical space with molecular fragments and connection rules

that specify the alternative linkage of fragments to products. Today, almost every major

software used in drug discovery supports the search for patterns in molecules. Several decades

of research regarding the corresponding mathematical problem [22,23] have led to a number of

subgraph isomorphism algorithms [24–34]. Unfortunately, little effort was spent on evaluating

the different algorithms regarding their applicability to molecular data or to further develop

those methods to work on fragment spaces. The first publication of this thesis [A1] evaluates

two commonly used subgraph isomorphism algorithms on a large set of chemical patterns and

molecules. On the basis of the obtained results, a subgraph isomorphism algorithm was chosen

as basic component of SubSubSearch. The second publication of this thesis [A2] describes

and evaluates the basic functionality of searching fragment spaces for molecules including a

user-defined chemical pattern. The chemical pattern language used in SubSubSearch allows

a generic description of patterns including the specification of the chemical surrounding of

an atom, a feature commonly used by chemists. The third publication of this thesis [A3]

explains the algorithmic advances needed to process such atomic environments. In addition, two

cooperations are presented that led to the development of a visualization concept for chemical

patterns [A4] and the analysis of conformational spaces regarding small molecules [A5].

The application field of SubSubSearch in the drug discovery pipeline lies in the lead

generation and optimization phase. When structural knowledge about the substrate or known

active compounds is accessible, the method allows to search combinatorial chemical spaces for

new lead structures. Possible positions and variations for lead optimization are annotated

on found compounds. Therefore, the method can be used to generate possible structural

modifications during the lead optimization stage. The search in fragment spaces is especially

attractive since the covered chemical space often includes substances that are not present in

common compound databases.

In the following course of this thesis, Section 2 introduces the preliminaries on graph

theory, molecular representation, chemical pattern language and chemical fragment spaces.
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Section 3 reviews the algorithms for subgraph isomorphism and their use in molecular database

systems. This section also includes an overview of the concept of Markush structures and their

representation in database systems. Section 4 presents the published work and describes a

method to optimize fragment spaces regarding the physico-chemical properties of their covered

molecules. Section 5 summarizes the work of this thesis and provides an outlook of the future

work.
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2 Preliminaries

The following section supplies the graph theoretical background and its application to molecular

data. In addition, chemical pattern languages and the concept of fragment spaces are

introduced. Readers with a strong background in cheminformatics are recommended to continue

with the literature review of chemical pattern search methods and applications in Section 3.

2.1 Graph theoretical background

A graph G = (V,E) is a pair of nodes V and edges E in which each edge e ∈ E connects two

adjacent nodes v1, v2 ∈ V . A graph is connected if every node is reachable by a path of adjacent

nodes from every other node. A labeled graph holds arbitrary labels for the nodes and/or edges.

A graph is simple if the edges are unweighted and undirected. In an unweighted, undirected

graph, the edges are uniformly weighted and have no orientation between their adjacent nodes.

A general graph is not restricted in the graph’s structure. In the following, all graphs are

connected, labeled, simple and general, except when stated otherwise.

Two graphs G1 = (V1, E1) and G2 = (V2, E2) are isomorphic if a one-to-one mapping

between their nodes V1 and V2 exists and nodes v1, v2 ∈ V1 are connected if and only if their

images w1, w2 ∈ V2 are connected. If graphs G1 and G2 are labeled, the label of mapped nodes

v1 ∈ V1 and edges (v1, v2) ∈ E1 must agree on an arbitrary compatibility criteria to the labels

of the corresponding images w1 ∈ V2 and (w1, w2) ∈ E2, respectively. An induced subgraph of

G = (V,E) is a graph G′ = (V ′, E′) in which the nodes V ′ ⊂ V and edges E′ ⊂ E are a subset

of the original graph. An edge e = (v1, v2) ∈ E connecting two nodes v1, v2 ∈ V are in E′ if and

only if v1, v2 ∈ V ′. An induced subgraph isomorphism between a query graph G1 and a target

graph G2 exists if G1 is isomorphic to an induced subgraph of G2, i.e., G1 is contained in G2.

The problem of detecting a subgraph isomorphism between two general graphs is known

to be NP-complete [22, 23]. Yet, the problem on restricted graphs, e.g., planar graphs, can be

computed in polynomial time [35,36].

A closely related problem is the detection of a maximal common subgraph (MCS) between

two graphs. A common subgraph of two graphs G1 and G2 is a graph G12 that is isomorphic

to a subgraph of G1 and a subgraph of G2. Hence, the MCS of two graphs is the largest

of the common subgraphs. The term MCS is mostly used to refer to the Maximal Common

Induced Subgraph (MCIS) which is the largest common subgraph with regard to the number of

common nodes. Closely related to the MCIS is the Maximal Common Edge Subgraph (MCES).

A MCES is the largest common subgraph with respect to the number of edges both graphs

have in common. The differences between MCIS and MCES, the algorithms that solve the

problem and the applications in drug discovery are reviewed in [A6]. Even though the concept

of MCS detection between molecular structures was reviewed at the beginning of my research,

the development of a search routine in fragment spaces was focused on the detection of subgraph

isomorphisms.
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2.2 Molecular representation and comparison

A molecule is a group of atoms held together by covalent chemical bonds. Modeling molecules

as graphs results in a molecular graph in which nodes represent atoms and edges donate bonds.

A molecular graph is labeled to account for atom and bond properties. The degree, that is the

number of edges attached to a node, is limited by the number of bonds an atom can form. The

number of edges in a molecule linearly depends on the number of atoms. Therefore, a molecular

graph is a graph of bounded degree. In order to account for the spatial arrangement of atoms,

additional information can be annotated to a molecular graph. However, the graphs considered

in the following only refer to the two dimensional molecular topology.

Two molecules are equal if and only if a one-to-one mapping of their atoms and bonds exists,

i.e., the two molecular graphs are isomorphic. In order to map two nodes or edges, they must

be identically labeled. If no unique mapping exists, a molecule can be a substructure of another

molecule. In that case, a subgraph isomorphism between the two molecules exists.

In a graph-based comparison of molecules, some problems arise. Mesomeric structures

have different bond localizations, e.g, aromatic systems. Therefore, their molecular graphs are

not isomorphic, even though they represent the same molecules. In stereoisomeric structures,

additional information regarding the relative arrangement of bonds around an atom must

be annotated and compared to differentiate between them. Furthermore, molecules exist in

different tautomeric forms that result from the migration of hydrogen atoms accomplished by

a switch of adjacent single and double bonds. Mesomeric and tautomeric structures enforce a

standardized construction of the molecular graphs for a correct comparison.

2.3 Chemical pattern languages

A chemical pattern generically defines a substructure of a molecule. A chemical pattern

language defines a pattern using a formal language like SMiles Arbitrary Target Specification

(SMARTS) [37], Molecular Query Language (MQL) [38], or Sybyl Line Notation (SLN) [39].

These languages specify a pattern in a textual line notation similar to the chemical formula of

a molecule. The textual string defines the topology of the pattern and the properties of atoms

and bonds, e.g., element symbol, charge or bond order. In addition, the SMARTS language

allows an alternative logical description of atoms and bonds and the specification of an atomic

environment that defines the chemical surrounding of an atom. The interpretation of a pattern

description results in a pattern graph in which the nodes and edges hold a generic description

of atoms and bonds, respectively. In SMARTS, an atomic environment is a node property that

is modeled as an addition pattern graph. In the following, the SMARTS language is used to

define chemical patterns and their visualizations are generated using the SMARTSviewer [A4].
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Figure 2: The construction of a product from a fragment space. a) A methyl-sulfone and
a propanamine fragment. b) The connection rules allow the construction of sulfonamides by
joining linkers L2 and L12. c) A sulfonamide product allowing the attachment of further
fragments at linker L2. d) A sulfonamide molecule obtained by saturating L2 with hydrogen.

2.4 Chemical fragment spaces

A fragment space (FS) is a compact, combinatorial description of a possibly large chemical

space. It consists of fragments that are molecules with open valences and a set of rules defining

their alternative linkage to products. The concept of fragment spaces was introduced by Lewell

et al. [40] with the REtro-synthetical Combination Analysis Procedure (RECAP). The RECAP

describes chemical motifs that are easily formed by combinatorial chemistry. These rules define

how molecules can be retro-synthetically cleaved to obtain fragments and, at the same time,

how fragments can be combined to form products. The combinatorial nature of FSs allows the

construction of novel products that were not present prior to the retro-synthetical cleavage.

Figure 2 shows an example of the construction of an sulfonamide product.

Fragment spaces can be classified according to their source and application. Generic FSs

are designed to cover the diversity of the chemical universe suitable for drug discovery [41,42].

They are obtained from retro-synthetical cleavage of molecular libraries. Their coverage of

novel molecules has shown to be a valuable source of information during lead generation and

optimization [43–47]. Often, these molecules must be further modified to be synthetically

accessible or new synthesis routes need to be established. In combinatorial FS, the fragments

and connection rules directly follow chemical synthesis steps [48, 49]. Usually, a central core

fragment can be decorated with different terminal groups to obtain products. A combinatorial

FS is preferably used during lead generation and optimization. The application of generic and

combinatorial FSs has shown that an unspecific coverage of chemical space can lead to the

generation of molecules with undesired physico-chemical properties that are not suited as lead

structures [50]. A focused FS tries to circumvent these problems [51–53]. It is constructed

by a retro-synthetical cleavage of known bioactive molecules. The cleavage rules are designed

to conserve bioactivity. Products obtained from such a space are likely to show comparable

bioactivity with higher selectivity and optimized ADMET properties. A focused FS is a valuable

source of novel molecules in lead optimization.

In the following, the developed FS methods are tested and validated on generic FSs, e.g.,

Breaking of Retro-synthetically Interesting Chemical Substructures (BRICS) [42]. The results
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obtained from a search utilizing SubSubSearch are used in [A2] and [A3] to generate focused

FSs.
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Chemical pattern 
search

Figure 3: Chemical pattern search example. A pattern describing sulfonamides (left-top) is
searched in a set of molecules (left-bottom). Sulfonamide pattern matches (right).

3 Chemical pattern search

This section gives an introduction to the algorithmic concepts of searching for chemical patterns

in molecules and their application in molecular database systems. After a review of the search

algorithms the concept of Markush structures which is a molecular description similar to

fragment spaces is introduced. This introduction includes an overview of the development

of Markush database systems and the algorithms to search these databases.

3.1 Chemical pattern search algorithms

The identification of patterns in molecules is used in virtually every field of cheminformatics.

The applications include the filtering of compound sets in High Throughput Screening (HTS)

[54], the detection of functional [55] or reactive groups [56] in molecules, the identification

of unspecific binding molecules in protein-protein interaction assays [57], the prediction of

molecular ADMET properties [58–60], and the profiling of biological activity [61]. Merlot et

al. [62] and Villar et al. [63] give a detailed review of the applications for substructure search

in drug discovery. Most algorithms detecting chemical patterns in molecules work on a graph

representation of patterns and molecules. Therefore, the problem of searching for patterns can

be solved by detecting subgraph isomorphisms between a pattern graph and a molecule graph.

The following section summarizes the exact subgraph isomorphism algorithms with regard to

chemical pattern recognition. Since the subgraph isomorphism problem is NP-complete, a

number of heuristic approaches approximate the solution [64–68] and retrieve many molecules

that include a substructure similar to the query pattern. Since SubSubSearch is designed to find

an exact solution, approximative algorithms are not further considered in this section. Attias

and Dubois [69], Barnard [70] and Willett [71] reviewed the algorithmic concept and the field

of application for pattern searching in molecules and molecular databases. In the following,
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the terms nodes and edges are used for chemical patterns and atoms and bonds to describe

molecules.

3.1.1 Backtracking

Backtracking is a strategy applied to detect a subgraph isomorphism between a query pattern

and a target molecule. It is used to iteratively generate a one-to-one mapping between a query

Q and a target T . The starting point is an arbitrary node-atom pair (q, t) with q ∈ Q and

t ∈ T which are compatible according to an arbitrary criteria, e.g., equal element symbols.

A backtracking procedure subsequently extends a current partial assignment M by adding

compatible node-atom pairs that are adjacent to nodes and atoms in M . During this extension,

the procedure assures the same connectivity between nodes from Q and atoms from T , i.e.,

nodes that are connected in Q must be assigned to atoms that are also connected in T . If all

query nodes are assigned to the target structure, a subgraph isomorphism between Q and T is

found. If, at any point, no extension for M can be found, the procedure back-tracks to return

to a previous partial assignment. Thereby, the last extension (q, t) is discarded and the process

continues with an alternative assignment (q, t′). If all alternatives have been explored, the

algorithm backtracks again. If the backtracking reaches the starting atom pair, no alternative

starting positions are left and no subgraph isomorphism was found, the algorithm stops and the

query pattern is reported to be not present in the molecule.

The first and most simple backtracking algorithm to calculate subgraph isomorphisms was

described in 1957 by Ray and Kirsch [24]. Although it is extremely slow, it was the fundamental

basis for modern pattern search systems that allow chemists to access millions of molecules

stored in databases in retrieval times of a few seconds. Early advancements have been made

by Jun et al. [28], Dengler et al. [29] and Xu [30]. They examined the number of connections

present at query nodes and target atoms. If query node q has a higher degree than target

atom t, the extension (q, t) is not explored because t has an insufficient number of neighbors

to map all adjacent nodes of q. This leads to a pruning of the search tree and reduces the

number of search paths that need to be explored. The most recent advancement in the field of

backtracking-based subgraph isomorphism algorithms was made by Cordella et al. [31, 32, 34]

in 2004. Their algorithm named VF and the optimized version VF2 are designed to work on

directed graphs and employ a number of pruning strategies during the search. Publication [A1]

describes a modified VF2 algorithm for undirected graphs including the pruning techniques in

detail.

Furthermore, additional optimization can be achieved by more informative node or atom

labeling, e.g., including information about an atom’s neighborhood, and by rearranging the

order in which pattern nodes are processed. For instance, starting or continuing with an unusual

heteroatom with many bonds reduces the number of possible starting positions or increases the

chances for an early backtracking, respectively. In both cases, the number of overall partial

assignments is reduced and consequently the search time decreases [A1]. A clear advantage of
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procedures employing backtracking strategies is the direct exploration of the structure topology.

In case a small structure is assigned to a large one, the algorithm does not need to examine

target atoms that are topologically too far away from the arbitrary start atom.

3.1.2 Partition and relaxation

An addition to backtracking procedures for determining the presence of a subgraph isomorphism

is the technique of partition and relaxation. The nodes of a pattern and atoms of a molecule are

arbitrarily partitioned into potentially compatible subsets and then the subsets are iteratively

refined. The purpose of partitioning is the reduction of the number of possible mappings which

have to be investigated during the search. In each iteration, a partition and relaxation algorithm

reduces the possible assignments of query nodes to target atoms until a one-to-one mapping

is established. If the algorithm encounters a stage in which at least one query node has no

possible mapping left, it backtracks to the last stage. If backtracking is impossible it stops and

no subgraph isomorphism between the two graphs exists. The refinement step uses a relaxation

technique in which the node and atom descriptions are modified to include information about

their direct neighbors. Thereby, information regarding further distant neighbors is iteratively

collected in each node and atom description. A prominent example of such a strategy is the

Morgan algorithm [72] for unique labeling of a molecular structure. Uniquely labeled molecules

are easily compared for equality since the one-to-one correspondence is directly present by their

atom labels.

In 1965, Sussenguth [25] presented the first partitioning algorithm for subgraph isomorphism

and many followed during the 1960s and 1970s [73–76]. Sussenguth’s algorithm encodes the bond

type information as property of the attached atoms. This can lead to the false identification

of isomorphisms. In 1972, Figueras [26] presented an advancement of Sussenguth’s partition

procedure that explicitly addresses bond types. Nodes and atoms of the query and target

are characterized by a coding scheme retrieved from atom properties. For each query node, the

algorithm generates two characteristic bit vectors: One from the comparison of node descriptions

to possible mappings of target atoms. The other one by inspecting query nodes and target

atom neighborhoods with respect to the edge and bond types. Both vectors are combined

by logical multiplication to reduce the set of possible assignments. If an empty vector is

encountered, no subgraph isomorphism is present. Also, if the set of query nodes is larger

than the set of target atoms, the algorithm stops, since, at that point, a one-to-one mapping

is impossible. The method uses ’higher order’ connectivity to avoid false identification of

isomorphic structures. The information about further distant nodes is included in the generation

of the second characteristic set. In rare cases, the algorithm still finds false isomorphisms. A

backtracking step would suffice to detect those cases but the author consciously chose to avoid

the backtracking in order to reduce the search time and point out that false identifications only

occur in rare cases [26].
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Even though Ullmann [27] published his depth-first matrix-based partition algorithm in

1976, it is still one of the most extensively used subgraph isomorphism algorithms for molecular

structure comparison [77, 78]. Studies by Willet et al. conducted prior to the development of

the VF2 algorithm suggest that it is the best suited algorithm for chemical structures [70]. The

Ullman algorithm works on the adjacency matrices of the query pattern and target molecule.

In addition, it uses a n × m compatibility matrix M of bit values where n is the number of

query nodes and m the number of target atoms. A non-zero entry at (i, j) ∈ M indicates

the correspondence of query node i with target atom j according to an arbitrary compatibility

criteria. The procedure processes the matrix top-down. In each iteration, it choses a non-zero

entry (i1, j1) in a row and sets all other row entries (i1, x) with x = (1, 2, 3, ..., n), x 6= j1 to zero.

A refinement step relaxes the rest of the matrix by iteratively removing all mappings that became

invalid. The algorithm inspects the immediate neighborhood of a possible correspondence

between node x and atom y to determine if the mapping (x, y) became impossible by the

assignment (i1, j1). For each node x′ adjacent to x, a correspondence to an atom y′ adjacent to

atom y must exist, i.e, the matrix must have a non-zero entry at (x′, y′). If not, the mapping

(x, y) is invalid and the corresponding matrix entry is set to zero. If the algorithm encounters

a row of all zero entries indicating a query atom that has no corresponding target atom to be

assigned to, the algorithm backtracks and explores an alternative assignment. If no alternative

exists, the algorithm backtracks again. If no backtracking is possible, the algorithm stops and

no subgraph isomorphism exists. If the process reaches the nth row, a matrix is produced

with only one non-zero entry in every row and column. Therefore, a subgraph isomorphism

is detected and the one-to-one correspondence is given by the current matrix. The Ullman

algorithm is well suited for internal parallelization of the partition step and external data

parallelization when more than one target structure is searched. Wiepke and Rogers [79] first

explored the parallelization of pattern search. Willet et al. [80] studied an internal and external

parallelization of the Ullman algorithm on a AMT Distributed Array Processor (DAP). A DAP is

a single-instruction-multiple-data-architecture. Experiments showed a small overall superiority

of the internal over the external approach with regards to advantages for either of the two

approaches depending on the input data. It was suggested to use a mixed approach for an overall

good performance. Other hardware solution include an Ullmann algorithm implementation on

field programmable gate arrays (FPGAs) [81–85]. A FPGA is an integrated circuit that can be

custom-configured using a hardware description language. The program description is loaded

prior to program execution to ’wire’ the FPGA. Experiments indicated that the search speed is

dominated by the program transfer overhead up to a query size of 16 atoms. For larger queries,

the FPGA approach is faster than a comparable desktop computer.

In general, partition and relaxation algorithms are particularly well suited for internal

parallelization over the partitions and external parallelization when more than one target

structure is processed. An additional advantage is the ability to process nodes and atoms

in an arbitrary order. This advantage is at the same time a major drawback since in the case

of a small query and a large target, e.g., searching a functional group in a protein, many target
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atoms have to be examined that are topologically too far apart. Nevertheless, optimization

strategies exploring the rearrangement of nodes and atoms are not restricted in any way. A

detailed evaluation of the rearrangement and an external parallelization is given in [A1].

The above backtracking and partition and relaxation algorithms solve the problem of

assigning one query pattern to one target structure. Both must be explicit in their description

and topology. However, a generic node description, leaving the topology explicit, can be

processed with appropriate compatibility criteria allowing the assignment of generic nodes to

explicit atoms, e.g., a generic query node describing all halogens is allowed to be assigned to a

chlorine atom.

SubSubSearch is based on a backtracking procedure, since a one-to-one subgraph

isomorphism step is utilized during the search for chemical patterns in fragment spaces. To

be more specific, SubSubSearch uses a modified VF2 algorithm [A1] to detect parts of a pattern

in fragments of a fragment space.

3.2 Molecule database systems

The number of chemical structures either purchasable or synthetically accessible has been

constantly growing over the past decades [86, 87]. These structures must be organized such

that an easy and fast retrieval of molecules with specific properties is possible. Database

technologies offer such an advanced organization of molecular data even though the structural

representations are manifold and a standard format is missing [88]. Detailed reviews regarding

molecular databases are given by Stobaugh [89], Wagener [90], Hicks [91, 92], Bardor and

Lardy, [93], Barnard [70], Paris [94] and Miller [95]. The following gives a general overview

of the main concepts and reviews the most recent developments as well as some historical and

quite successful systems.

A database usually stores explicit chemical structures in the form of connection tables and

annotated additional information, e.g., molecular properties, coordinates, solvent, counter ions,

or synthesis protocols. The underlying mechanisms to search a database are far from trivial.

The most simple search query from a users perspective is an exact match, in which the search

probes the database for the presence of a fully specified structure. A closely related scenario

is a substructure or pattern search in that a query explicitly or generically specifies a part

of a structure, e.g., a functional group, and the system retrieves molecules that contain the

query. Today’s molecular databases provide many different queries such as similarity searches,

physico-chemical range searches or chemical name searches. Nevertheless, probing a database

for the presence of a substructure or chemical pattern is one of the most challenging tasks

since it usually requires a subgraph isomorphism calculation between the query structure and

database molecules. Since the graph isomorphism comparison is a time consuming process, most

database systems perform a screening step [96–99] prior to the actual isomorphism calculation.

Screening is a technique to quickly identify structures that can not match the query. Most
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screening steps use molecular descriptors [18] that encode features or fragments of the chemical

structures and allow a fast comparison, e.g., via bit-operations. Often, the database entries are

pre-processed such that the full screening information for each entry is annotated and thereby

the screening performance is enhanced.

In the 1970s, two systems emerged that use a hierarchical tree structure for fragment-based

screening. The Chemical Information System (CIS) developed at the National Institute of

Health (NIH) [100,101] supports an atom-centered fragment as well as a ring perception screen.

The fragment search processes a hierarchical tree description starting at a central atom and

evaluating directly adjacent neighbor atoms with respect to the atom types and bond orders.

Once all fragments are processed, the method retrieves the database structures incorporating the

atom centered fragments. As a second screening, CIS searches for the presence of ring structures

based on ring properties such as a ring hash code, ring size, atom types, hetero atom position and

ring substitution pattern. The actual substructure search is a simple backtracking procedure to

determine an atom-by-atom correspondence between the query structure and database molecule.

The system does not allow generic queries and requests a manual invocation of the two screening

steps prior to the substructure search. CIS also offers to search the database for molecular

properties, e.g., molecular weight, atom and ring count and frequency. In 1984, CIS was stopped

as a government service and it is unclear to what extend the service is still offered as part of

commercial products.

The Description, Acquisition, Retrieval and Correlation (DARC) system [102–105] uses the

Fragments Reduced to an Environment which is Limited (FRELs) descriptor that describes

two concentric atom layers around a central atom. DARC stores the database molecule in a

hierarchical tree structure with a generalized form called fuzzy FRELs at each level of the tree.

Fuzzy FRELs incorporate generic bond partners and are annotated to allow a fast comparison

to fuzzy FRELs generated from a query. The use of fuzzy FRELs is essential since the query

pattern only specifies a part of the structure in which not all bonding partners are known.

During the search, the FREL screen is followed by a bit screen match focused at ring systems

and a backtracking atom-by-atom search. The DARC system supports the specification of

generic queries by allowing the specification of alternative atom and bond types, number of

adjacent atoms, atoms in rings, and disconnected structures. Today, the DARC system, at

least the Markush version, is offered by Questel as a commercial product.

The same year in which CIS was transfered to the private sector, von Scholley [106]

introduced a system using reduced graphs and hyper structures to represent database molecules.

In reduced graphs, multiple atoms are collapsed to single nodes resulting in smaller graphs.

Nodes may represent cyclic or acyclic pieces of the molecule or repetitive groups of carbon and

heteroatoms. A method utilizing reduced graphs must account for the loss of information as a

result of the reduction. Hyper structures represent more than one molecule in a single structure

and are constructed by joining structures based on their common parts. Often, the origin

of hyper structures is unknown after their construction and therefore hyper structures may

include ’ghost’ structures that were not present in the original sources. Both, reduced graphs
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and hyper structures, are less demanding on the storage requirements and due to their reduced

description allow a faster search. Generic queries must be formulated in a system-specific

language that directly describes reduced graphs since the language offers such constructs as

’C(n)’ describing a chain of n carbon atoms. The search, preceded by a limited-environment

fragment bit string screen, is a partition and relaxation backtracking procedure without an

atom-by-atom assignment. Since an explicit subgraph isomorphism step is missing and the

information problems in reduced graphs and the ghost structures in hyper structures are not

explicitly addressed, the method generates false-positive isomorphism matches [70]. Therefore,

it can only be used as a screening step.

The S4 system [91, 92] was developed in 1990 by Softron GmbH in cooperation with the

Beilstein institute and is used in-house by Beilstein and in the DIALOG online system [107]

provided by ProQuest. Unfortunately, not much information about the detailed function of the

system is available. As can be surely obtained from Hicks’ system evaluation [92], S4 stores all

permutation of a connection table for a database molecule in one hierarchical tree. Most likely,

they account for a common labeling between query and database molecules and accomplish a

structure search by traversing the tree. Substructure matches are presumably retrieved by a

partial tree traversal starting inside the tree and returning results when the complete query

was found, though not necessarily reaching the leafs of the trees. Storing all permutation of

a connection table is similar to the approach by Messmer and Bunke described later in this

section.

Another hyper structure model was developed at the University of Sheffield by Brown et

al. [108–110]. In a database pre-processing step, the molecules are superimposed to generate

hyper structures which are stored in an hierarchical tree structure. The superpositioning of

molecules is based on the Maximal Overlapping Set which is a technique similar to the Maximal

Common Subgraph. A screening step using a subset of the Chemical Abstract Service (CAS)

[111] structure dictionary obtains structures from the query and compares them to dictionary

structures present in hyper structures. The screening procedure accounts for ghost structures

and therefore detects structures not present prior to the hyper structure construction. Hyper

structures passing the screen are submitted to a parallel subgraph isomorphism calculation

based on the Ullmann algorithm.

In 1993, Christine et al. [112] presented a system using database long bit strings for a

screening step. Predefined structural features are encoded by bit strings in which each bit

represents the presence of a feature in a database molecule. The method retrieves all relevant

structural features from a query and screens the database by combining all corresponding feature

bit strings by logical multiplication. The resulting bit string holds a non-zero entry for all

molecules that pass the screen. An atom-by-atom search verifies the presence of the query

in each remaining molecule. Unfortunately, the subgraph isomorphism algorithm used for the

atom-by-atom assignment is not specified in detail and experiments showing the capabilities of

the method are missing.
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In the late 1990s, Messmer and Bunke [113–115] presented a direct lookup method based

an a decision tree approach. The system allows a polynomial search time when discarding the

time needed to construct the database. Database molecules are represented as connectivity

matrices and preprocessed such that all permutations of a connectivity matrix are obtained.

The database stores permuted matrices in one decision tree structure for all molecules. Queries

are found by traversing the tree without the need for a backtracking step. If a tree leaf is

reached, the query structure is present in the database. Substructure queries are performed

by traversing the tree until the complete substructure is processed, not necessarily starting at

the root or reaching a leaf. Even though such a traversal is possible in polynomial time, the

decision tree itself and its construction is exponential in size and, of course, the listing of all

present substructures is also exponential. The authors report different strategies for pruning

the search tree that either restrict the search to graph isomorphism in which only structures

equal to the query can be detected or will lead to an exponential search time, though reducing

the memory demands to a fraction.

In 1997, a substructure search system [116] based on circular fragment codes emerged that

supposably circumvents the need for an atom-by-atom search. Database molecules are encoded

by their atom-centered circular fragments. These fragments encode the atomic environments

present in circular layers around a center atom. A search request compares the fragments present

in a query with those fragments present in database molecules. The system reports a match if a

molecule contains the exact set of circular fragments present in the query. Since a substructure

only encodes a part of a molecule, a circular fragment obtained from a substructure might miss

bonding partners that are present in corresponding molecules. Therefore, a direct comparison

of substructure and molecule fragment codes is problematic. The authors describe that missing

substructure parts are indicated by dummy atoms but it remains unclear how these dummy

atoms are generated during the computation of fragment codes. In addition, a description of

the comparison between generic and explicit fragment codes is missing. The authors state that

there is no prove that the correct subgraph isomorphism is obtained and if an atom-by-atom

search for further verification is necessary.

OrChem [117], presented in 2009, is an open-source chemistry front-end for Oracle databases.

In addition to other functionalities, OrChem allows to search molecules for the presence of

substructures in a two-step procedure. Fingerprint screening uses a modified subset of PubChem

fingerprints [118] and is accomplished by a parallel subgraph isomorphism search using the VF2

algorithm. The VF2 search was enhanced by employing a primary sorting step based on the

frequency of atoms present in the database and a secondary sorting step ordering the atoms by

their bond degree. Therefore, the VF2 processes unusual atoms first, which reduces the search

space and consequently the search time.

At the same time, Golvin and Hendrick [119] developed a database design which allows a

substructure search to be conducted as a single SQL query. The system stores molecules in

a relational database with a database scheme directly encoding atoms and bonds. An SQL

query of the form ”SELECT ... FROM ... WHERE ...” is suited to select molecules with
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compatibility constraints specified in the WHERE clause. A substructure search is a two-step

procedure: the method generates an SQL query from an input substructure and retrieves the

molecules performing the query. The SQL generation is accomplished by building a spanning

tree over the query and filling the FROM and WHERE clauses by traversing the tree from the

root to the leaves.

WebCSD [120], presented in 2010, is an online portal to the Cambridge Structural Database

(CSD) [121] of the Cambridge Crystallographic Data Center (CCDC). The portal supports

two-dimensional queries on the three-dimensional structures. The system employs simple

screens working on chemical information obtained from the query, e.g., elements and bond

types. An early version of the system used the Ullmann algorithm for subgraph isomorphism

comparison and was recently replaced by a custom breadth-first search backtracking procedure.

In general, the system supports explicit substructure queries. The only generic property allowed

to be specified is the size of the smallest ring that an atom or bond is contained in.

The ABCD Chemical Cartridge [122–124] was developed at Johnson & Johnson

Pharmaceutical Research & Development, L.L.C., starting in 2007. The system supports

fully generic pattern queries using the SMARTS language. In order to employ an effective

screening step database, molecules are indexed using structural keys developed in-house that

encode atom and bond properties, rings of up to eight atoms, paths with a length of up to four

atoms, and clusters that are atoms with more than three bonds. Additionally, the index scheme

captures combinations of atomic properties which frequently occur in SMARTS queries, e.g.,

’[cH]’ represents an aromatic carbon with exactly one hydrogen attached. An enhanced version

of the Ullmann algorithm performs the atom-by-atom verification between SMARTS queries

and database molecules. Optimizations include the ordering of query atoms based on their

frequency in the database and the optional restriction to retrieve only one mapping opposed to

all possible atom-by-atom mappings.

AMBIT-SMARTS [125] is a recent development and represents and extension of the open

source Chemical Development Kit (CDK) [126]. The CDK supports the SMARTS language with

various extensions. A SMARTS pattern search follows the conventional two step procedure of a

screening step followed by an atom-by-atom verification. The screening phase uses a dictionary

of circular-fragment keys that are pretested to occur in approximately 50% of the database

molecule. The threshold is motivated from the fact that structural keys included in too many

molecules result in a poor screening performance and keys that are too rare are also rare in

queries. A second screen utilizes hashed keys (Daylight fingerprint approach [37]) that encode

paths of up to 7 atoms. Since SMARTS queries can include generic atom and bond descriptions

which interfere with the calculation of explicit keys and hash codes, the method trims all

generic parts and calculates the screening information from the resulting query description.

In addition, the method compares ’skeleton’ keys retrieved from a query to keys precalculated

from molecules. A skeleton key only captures topological information by discarding all atom and

bond descriptions. The system performs a final verification on molecules passing the screening

using the backtracking algorithm of Ray and Kirsch [24].
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Today, database systems are one of the major components in storing and organizing large

data sources for biological, chemical and pharmaceutical research. They all use concepts

of preprocessing, screening and searching to allow chemists to browse through millions of

molecules with response times in the order of seconds. These techniques are designed to process

explicit molecules and require major modifications to be applied to combinatorial descriptions

of chemical spaces such as fragment spaces. In SubSubSearch, a search for molecules including

user-defined chemical patterns was realized to scan alternative molecule storage concepts such

as fragment spaces.
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R1: any halogen
R2: alkyl of 3-6 carbons, or aryl
R3: OH, any thioalkyl, or 2-pyridyl

Figure 4: An example of a Markush structure. R-groups indicate variable attachment points.
At R1, any halogen atom can be attached. A variable chain of three to five carbons or an
aryl-group which is any aromatic ring can be attached at R2. Valid substituents for R3 are OH,
any thioalkyl and 2-pyridyl.

3.3 Markush database systems

Markush structures define a series of homologous molecules by a molecular core that describes

the essential central structure with attached R-groups for which series of alternative substituents

are specified. Figure 4 shows an example. Markush structures are used in combinatorial

chemistry, for the description of QSAR/QSPR analysis and to protect intellectual property

in the form of chemical patent claims. The techniques to store, retrieve, search and compare

Markush structures are the same in all three areas of application. In contrast, the Markush

descriptions differ substantially. In combinatorial chemistry and QSAR/QSPR analyses the

Markush structures are well defined and mostly follow general conventions. On the other

hand, a patent text offers a compact and generic description by a mix of textual and graphical

elements. In general, a drawn structure depicts one or more molecular cores. A textual and

graphical description further characterizes the substituents. A patent text usually includes

a definition of variations on substituents, indicates multiple positions for their attachment,

describes repetitions of structural parts, and formulates generic expressions to represent a class

of substituents. Additionally, the text covers logical relations or restrictions between attachment

points, i.e., the substitution at one point enforces or reduces the possible substitutions at another

point. Unfortunately, the patent literature language is not standardized and patent claims

show a broad variation in terminology, grammar and style. Therefore, the concepts of Markush

database systems to store chemical patent information are the most advanced in the application

fields. Even though the following is focused on patent information, the described concepts are

also applicable when handling Markush structures in combinatorial chemistry or QSAR/QSPR

analysis.

The early Markush systems used fragment codes for indexing and searching a database.

These codes are small groups of connected atoms and bonds that characterize the different

chemical structures. The lack of overall structural information and the problem of different

structures sharing the same fragment codes resulted in an overall poor precision of retrieval.

Topological systems emerged that cover the structural relation by explicitly modeling atoms and

connecting bonds. Today, Markush databases often use reduced graphs to describe the covered

molecules. A reduced graph stores single atoms, explicit structures or generic descriptions in its
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nodes and incorporates the overall topological information in its edges. The concept of fragment

codes is still used as a screening step prior to the actual search. In the following, three major

Markush database systems for chemical patent information are introduced.

Downs and Barnard [127] recently reviewed chemical information systems including the

automated text analysis of chemical patents. Simmons [128] gives a historical overview of

Markush systems. More details on the problems of Markush structures and the difficulties

encountered in searching a Markush database for structural components are discussed by Leland

et al. [129] and Welford et al. [130], respectively.

The GENeric Structure LAnguage (GENSAL) project [131–145] conducted from 1979 to

1995 at Sheffield University was concerned with the substantial problems of representing,

storing and searching the information present in chemical patents. Reviews of the project

are given by Lynch and Holliday [146], Downs and Barnard [147] and Bishop et al. [148].

The GENSAL pattern language [149] formalizes the textual, visual and descriptive information

typically found in patents. A GENSAL query is converted into a logic tree structure [150] that

describes the relation between common and variable parts as present in Markush structures.

The database holds Markush information in a reduced graph description and annotates the

alternative connections between these components. In the system, a reduced graph holds cyclic

structures in single nodes and, therefore, allows Markush components to be represented as trees.

Neither the query nor the database description allow repetitions of structural parts even though

they are present in most patents. A three stage search system first uses a dictionary-based

fingerprint screen, in which fingerprint fragments can span over multiple Markush components,

followed by a reduced graph screen that matches graph nodes to query nodes. The second step

is considered a screen since reduced graph nodes might have more than one correspondence. A

one-to-many correspondence occurs for cyclic parts because their reduced graph representation

is a single node with additional parameters, e.g., a six-membered ring containing five carbons

and one hetero atom. The final refined search based on an adapted Ullman algorithm resolves

ambiguities and accomplishes an atom-by-atom or group-by-group assignment.

MARPAT [151,152] was developed by the Chemical Abstract Service (CAS) and launched in

1988. The system is still offered online by STN international. In MARPAT, a Markush structure

description is modeled as a multiple connectivity node (SnMCN) representation which is a

graph that connects all Markush components. The SnMCN representation includes a logical

description of connectivity conditions at multiple-used attachment points that includes the

constraints textually described in a patent. From the SnMCN representation a generic MCN

(GnMCN) representation is derived and both are overlayed to form a composite MCN (CpMCN)

representation that allows a switch between explicit and generic description of Markush

components. The GnMCN description incorporates a predefined hierarchical description of

abstraction for generic nodes, e.g., a pyridine is labeled as 6-membered N-heterocycle which

itself is a heterocycle and so on. The order allows a shift between the levels of abstraction

which is essential for the assignment between generic components. In addition, generic nodes

are attributed with group properties, e.g., charge, element counts, ring size, which would provide
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a more discriminant matching but is reported to be discarded during the search [153,154]. Even

though Fisanick [152] explicitly states that repetitions of structural parts variations are handled

by a comparison of range attributes stored in GnMCNs, it seems that at that time, the system

supported the storage of attributes, representing a base for a following attribute comparison

but that comparison was never implemented as part of the search. In a search, the system

generates a CpMCN for the query which is compared to the CpMCN of the database. In

order to reduce the retrieval time, a screening step is conducted based on explicit fragments

that are generated from SnMCNs. A backtracking procedure accomplishes an atom-by-atom or

group-by-group assignment. The assignment procedure compares (more) explicit and generic

nodes on the abstraction level of the more generic structure. For that final comparison, the

system allows to define a Match LEvel (MLE) to control the assignment between generic query

nodes (GnMCNs) and explicit (SnMCNs) or generic (GnMCNs) Markush components. If the

MLE is set to ’class’ as opposed to ’atom’, explicit query nodes are ’changed’ into their more

generic representation and compared to generic nodes in the database. The feature allows the

retrieval of approximate matches to the query.

Markush DARC [155, 156] is a commercial system based on the DARC software originally

developed by Dubious [103]. Part of the DARC project was a collaboration with Telesystems to

develop Generic DARC that allowed generic queries on explicit database structures. A further

development of Generic DARC conducted by Telesystems, Derwent Publications Ltd. and the

French Patent Office (INPI) resulted in Markush DARC, a system to place generic queries on

Markush databases and the Merged Markush Service (MMS) now offered by Thomson Reuters,

which is a unification of the Markush Pharmasearch [157] database started in 1986 by INPI and

the WPI Markush database developed by Derwent Publications Ltd.. Markush DARC stores

the Markush components as reduced graphs in which nodes can hold complete substructures

or generic group expressions (or homologous series), e.g., CHK identifies an alkyl. The system

requires a graphic query specification that allows the same degree of abstraction as present in

the Markush components, i.e., allows to define super nodes that specify substructures or generic

groups. The input is converted to an internal graph representation and matched against the

database as present in the DARC system. The fundamental screening step in DARC is based on

FRELs and reused as generic FRELs [104] in Markush DARC. A bit screen based on molecular

attributes, e.g, element symbol, bonds or ring systems, complete the screening procedure which

is followed by an atom-by-atom assignment. For such an assignment generic parts are translated

based on a structure dictionary to explicit structures and matched atom-by-atom. The early

version of the system was limited to only a subset of generic expression used in patents and

lacked transparency on the translation between generic and explicit nodes. Therefore, the user

had either to deal with missing matches, e.g., ethyl would not match an alkyl, or had to manually

define the translation between nodes. The majority of these limitation were later resolved [156]

to allow full transparency on the node translation process. Today, Markush DARC is still offered

by Questel and is part of the MMS database.
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The three systems were reviewed and compared from an end-user perspective [158,159] and

with regard to the database content [160] as well as technical concepts [153]. The most recent

publications are a detailed comparison between Markush DARC and MARPAT [154] and a

historic overview concerning all three systems [161].

Many chemical software packages allow the management of Markush structures using

databases. Domine and Merlot [162] give an overview of the different systems. ChemAxon in

cooperation with Thomson Reuters supports Markush database searches based on a screening

step using two-dimensional structural keys followed by an atom-by-atom matching of the query

against all enumerated products that pass the screen. MDL Central Library allows the storage

of Markush description and offers a Markush space search that is a conventional molecule

search on the full set of enumerated products. The RS3 database system by Accelrys stores and

searches Markush structures and returns a result as a generic description of virtual matches

and, unfortunately, does not offer the enumeration of complete products. Daylight supports

virtual libraries in their Monomer Toolkit. Libraries are described in the Daylight CHUCKLES

and CHORTLES notations and generic searches are formulated in the CHARTS language. A

non-enumerated search is sometimes impossible, e.g., when the query is a branching structure

and the stored structures are made of monomers. In that case, the search procedure works on

enumerated products.

Markush database systems, regardless of the field of application, allow to search generic

combinatorial descriptions of chemical spaces. They are directed at handling the generic

information present in Markush structures. In fragment spaces, structural building-blocks are

explicit and constrained repetitive descriptions are not allowed. Therefore, the algorithmic

concepts, especially the central concept of comparing reduced graphs with varying degrees of

abstraction, can not directly be transfered to fragment spaces. In addition, the search facilities

provided by the different database systems seem to not support an explicit substructure or

chemical pattern query. At least, the found molecules are not guaranteed to include the exact

query.
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3.4 Substructure search in fragment spaces

Over the last 15 years, very little academic attention was spent on searching fragment spaces.

In 2007, Domine and Merlot submitted the Patent Application US 2007/0260583 A1 [162] for

fast substructure searching in non-enumerated chemical libraries. The method searches an

explicit query substructure in a combinatorial chemical space description similar to a fragment

space. In order to retrieve combinations of fragments including a user-defined substructure, the

method uses a modified Ullmann algorithm that allows many-to-one correspondences between

query substructure nodes and target fragment atoms. The algorithm assigns the query to

each fragment such that fragment link atoms are assigned to multiple query nodes. Therefore,

the query is partially assigned to a fragment with missing query parts assigned to fragment

linkers. The assignment to fragment linkers indicates that the missing substructure part must

be part of a fragment that can be connected at the used link atom. After partially assigning

the query to each fragment, the method explores link compatibilities to construct combinations

of fragments that lead to products including the query substructure. Therefore, the algorithm

finds substructures that span over multiple fragments. Unfortunately, the patent lacks a detailed

description of the modified Ullmann search and the product reconstruction. According to

personal communication, the method was only used as part of an in-house system at Serono.
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4 Method

In this section, the published work on pattern search algorithms and fragment spaces is

summarized. First, an empirical study is presented that characterizes the algorithmic behavior

of two subgraph isomorphism algorithms when applied to search for chemical patterns in

molecular data. As a conclusion, one algorithm was incorporated in SubSubSearch as basic

pattern search component. Further on, the section describes the search strategy employed by

SubSubSearch to detect recursively defined chemical patterns in fragment spaces. In addition to

the published work, the section includes a method to automatically optimize fragment spaces to

exclude the formation of chemical patterns in the encoded products. The methods developed to

realize a search in fragment spaces were also applied in the fields of structure visualization and

molecular space analysis. The end of the section covers cooperations that led to a visualization

concept for SMARTS patterns and an analysis of the conformational space of small molecules.

4.1 Chemical pattern search in molecules

A first step towards the development of a pattern search method for fragment spaces was to

obtain a deep understanding of subgraph isomorphism algorithms and their behavior when

applied to molecular data. In drug development, such algorithms are frequently applied

to browse molecular databases. These databases store millions of compounds [86, 87] and

allow chemists to retrieve molecules that obey predefined structural and physico-chemical

properties. One of the central requirements of these databases is the retrieval of compounds

with user-defined functional groups or molecular cores. Provided that query pattern and target

molecules are donated as graphs, a comparison can be realized via subgraph isomorphism

techniques. Ullman introduced one of the oldest, yet frequently applied algorithm. A number

of other methods followed with the most recent being the VF2 algorithm. These algorithms

are applicable on general graphs and, therefore, do not pose restrictions on the graph structure

in any way. Some comparisons between these algorithms have been conducted on general

graphs of medium to large size [33, 34, 163, 164]. However, molecular graphs are small and

by no means general. They usually comprise less than 100 atoms and are restricted in their

degree by the linear number of bonds an atom can form. In addition, nodes and edges are

always labeled to describe atom and bond properties which must be addressed during graph

comparison. Therefore, the conducted tests give little insights into the algorithms’ behavior

when applied to molecular data. One of the main reasons why such a comparison was not

performed in the past was the lack of suitable benchmark data sets. The focus of my work

was, therefore, set on the introduction of various such benchmark sets and the discussion of the

differences between the Ullmann and the VF2 subgraph isomorphism algorithm.

The major difference between the Ullmann and the VF2 algorithm is the way they process

the topology of the pattern. The Ulmann algorithm constructs a compatibility matrix which

represents all possible mappings of pattern nodes to molecule atoms. It processes the matrix
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top-down and in every step fixes one node-atom mapping and checks all other entries for validity.

Therefore, it processes pattern nodes in an arbitrary, non-topological order. The VF2 algorithm

starts at an arbitrary node-atom assignment and iteratively adds node-atom pairs until all

pattern nodes have a correspondence in the molecule. Therefore, it directly explores the topology

of the pattern and molecule.

The benchmark sets are designed to obtain insights into the algorithms’ behavior with regard

to the pattern and molecule size, the type of the pattern, the order in which pattern nodes are

processed, and the symmetry often present in molecules. The sets comprise various SMARTS

patterns collected from literature [42, 54–56, 165–169] and molecules selected from the public

ZINC database [86].

The results show that both algorithms are applicable to molecular data with an average

pair-matching time below 1 millisecond. In direct comparison, the topological exploration of

the VF2 algorithm is orders of magnitudes faster in all cases and more robust against outliers.

The impact of pattern and molecule size on the runtime of both algorithms was found to be

exponential and linear, respectively. This result is in accordance with a theoretical analysis of

the subgraph isomorphism problem [30, 170]. The SMARTS language allows the definition of

atomic environments which require an additional subgraph isomorphism step during the actual

comparison. As can be expected, the inclusion of such a definition in a pattern description

leads to an exponential increase in the runtime. The Ullmann algorithm was much more

sensitive to the inclusion of atomic environments. An overall analysis of data-separation-based

parallelization showed good scaling behavior for both algorithms. A similar result was obtained

in an evaluation of the Ullman algorithm conducted by Willett et al [80]. An interesting finding

of the study was the sensitivity of the VF2 algorithm concerning the order in which it processes

the nodes of the pattern. The development of a re-arrangement scheme that conserves the

topology of the pattern and places ’unusual’ pattern nodes first led to a reduction in runtime

of up to 13-fold compared to the original order. A detailed description of the benchmark data

sets and the summarized experiments can be found in [A1].

As a conclusion of this study, a modified version of the VF2 algorithm [A1] was incorporated

in SubSubSearch for subgraph isomorphism search.

4.2 Chemical pattern search in fragment spaces

Although conventional databases cover large numbers of molecules, their storage capacity is

limited. Estimations of the chemical space relevant for drug discovery average around 1060

molecules. Since the largest present databases cover up to a billion compounds [171], they

obviously miss many relevant structures. Provided that a chemical space is represented by a

fragment space, current algorithms support similarity search procedures [44,172], exploration of

novel molecules by de-novo design [47,173–175] and the creation of focused libraries [48,176,177].

The central algorithmic problem any fragment space processing method must address is the
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Figure 5: An example of the SubSubSearch processing a sulfonamide pattern with three
alternative atomic environments in three main steps: the global search scans the fragment space
for the global pattern that is the query pattern without the atomic environment information.
The obtained global result is subsequently modified by the atomic environment search to obey
the atomic environment information. From each recombination tree of the global result, the
atomic environment search creates a modified fragment space. A local search scans this modified
space for the presence of one atomic environment. Each obtained local recombination tree
is combined with the current global recombination tree. The atomic environment search is
repeated until all three environments are processed. From the final result, the enumeration
procedure generates products containing the query pattern and the atomic environments.

combinatorial nature of such spaces. A search that only considers fragments and neglects their

possible connections will almost always fail. For example, a pattern that spans over multiple

fragments can only be found when the complete product space is scanned. Since a search for

molecules containing a user-defined pattern is essential in drug development and a method to

perform such a search in fragment spaces was missing at the time, the focus of this thesis was

the development of an algorithm to search non-enumerated fragment spaces under structural

constraints.
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Figure 6: An example of the generic search. The procedure processes a sulfonamide pattern
in three main steps: the search separates a pattern into all possible sub-patterns (SPs) and
searches these SPs in fragments of the fragment space. The procedure reconstructs the pattern
to obtain a set of recombination trees that describe sulfonamide products.

A search has to find the combination of fragments leading to products that include the query

pattern. Since the SMARTS language allows the definition of recursive atomic environments,

SubSubSearch is split in three parts: a global search, an atomic environment search and an

enumeration of products as illustrated in Figure 5. Both searches use a generic search procedure.

The generic search shown in Figure 6 and explained in detail in [A2] is used by the global and

the atomic environment search. It scans for patterns without recursive atomic environments.

In order to avoid a costly enumeration during the search, the method separates the initial query

into sub-patterns (SPs). An SP is a connected part of the initial pattern in which cyclic parts

are fully contained. For that purpose, the algorithm identifies cyclic and non-cyclic parts using a

bi-connected component algorithm summarized in Appendix C.1.2 and assigns cut-positions to

all non-cyclic connections. Sub-patterns are generated by enumerating all possible combinations

of cut-positions as described in Appendix C.1.3. Missing pieces are indicated with dummy link

nodes allowing a reconnection of SPs into the initial pattern. Figure 7 shows an example of

the separation process. The SPs are searched inside fragments using a modified VF2 subgraph

isomorphism algorithm [A1]. During the search, dummy nodes are assigned to fragment linkers

to avoid an exploration of fragment connections. The algorithm records a list of matching

fragments for each SP. For the construction of products containing the complete query pattern,

these lists are used as nodes to build recombination trees. In such a tree, two nodes are connected

if and only if their SPs can be connected and the fragment link atoms are compatible with regard

to the connection rules of the fragment space. The lists are split prior to the tree construction
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Figure 7: A sulfonamide query pattern is separated into sub-patterns (SPs). In a first
step, the algorithm identifies cyclic and non-cyclic parts and assigns cut-positions to all
non-cyclic connections. Sub-patterns are generated by enumerating all possible combinations of
cut-positions and attaching dummy link nodes that indicate missing parts of the pattern. Note
that only a subset of the enumerated SPs is shown.

such that each list only stores fragments with the same linker assigned to a dummy node.

Therefore, the tree construction process must only compare the link compatibility once for

every node connection. This comparison is independent of the number of fragments stored

in each node and, therefore, the number of link compatibility comparisons is reduced. The

resulting recombination trees describe different separations of the initial pattern and allow the

enumeration of products containing this pattern of interest. Figure 8 illustrates an example of

a recombination tree.

The atomic environment search subsequently extents recombination trees to include atomic

environment definitions. An atomic environment is a pattern that defines the chemical

neighborhood of an atom and can again contain atomic environments. When searching molecule

databases, such an environment is either present in a molecule and can be detected, or the

molecule does not contain the environment. In fragment spaces, an environment is either present

in fragments itself and can be directly found, or it can be indirectly detected by attaching

additional fragments, or the space does not contain products including the environment. In

order to differentiate between these cases, SubSubSearch starts with a global search utilizing

the generic search to detect combinations of fragments that include the global pattern which

is the query pattern neglecting the atomic environment information. This global result is

a collection of recombination trees. The result is iteratively refined to include the initially

neglected environment information. For each modification of a tree, the atomic environment

search constructs a modified fragment space. The space contains the fragments and connection

rules of the initial space and is enriched with modified fragments from the global tree under

consideration. For each fragment, the link atoms are renamed and connection rules are added

that only allow the connection of these fragments to form products described by the global

tree. Unmatched link atoms are also renamed and rules are added that prohibit connections
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Figure 8: A recombination tree of a sulfonamide search. The sulfonamide pattern was separated
into three parts shown as three nodes (top). Each node contains the sub-pattern (SPs) (box-top)
and the corresponding matching fragments (box-bottom). The original pattern is reconstructed
by joining the SPs at dummy link nodes R1 and R2, respectively. The enumeration procedure
creates two sulfonamide products (bottom), by connecting one fragment from each node of the
recombination tree at link atoms L1 and L2, respectively.

of matched fragments that do not form the global pattern. In addition, these rules allow the

attachment of unmatched fragments with regard to the original link atom. Figure 9 shows an

example of a modified fragment space creation.

The local search using the generic search scans the modified space for the presence of atomic

environments. Since an environment defines the surrounding of an atom, the local search is

restricted to start at the corresponding atom in fragments added from the global recombination

tree. The result of the local search is a set of recombination trees describing combinations

of fragments that include the atomic environment. The atomic environment is not present if

the set of local recombination trees is empty. In that case, the global recombination tree is not

modified. Otherwise, each of these trees either describes the environment present in a connection

of fragments only using previously matched linkers, in which the environment is directly present

in the global tree or the local tree connects fragments using previously unmatched linkers.

In that case, the additional fragments need to be attached to the global tree to also match

the atomic environment. If an atomic environment includes other atomic environments, the

procedure recursively modifies the current local tree to include the additional environments

before the global tree is modified. SubSubSearch repeats the atomic environment search with

the modified global recombination tree until all atomic environments are included in the result.
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Figure 9: The procedure creates a modified fragment space from a single recombination tree
obtained from a sulfonamide search. The modified space contains the complete initial space and
is enriched with three fragments from the recombination tree. The matched linkers L1 and L2

are renamed to L′
1 and L′

2 and connection rules are added that only allow an assembly of these
fragments to a sulfonamide product. Unmatched linker L2 is renamed to L′′

2 such that a linkage
with matched fragments is prohibited and an attachment of new fragments is still allowed, e.g.,
if L2 is compatible to L1, the new linker L′′

2 allows a connection to L1 but not L′
1.

The final result of the search is a collection of recombination trees describing the assembly

of fragments that incorporate the initial pattern including the complete atomic environment

information. A detailed description of the procedure, especially the combination process of the

global and local trees and the logical combination of atomic environments, are given in [A3].

For enumeration purposes as shown in Figure 8, the algorithm processes each recombination

tree from the search result. For each tree, it selects one fragment from each node and connects

the fragments as dictated by the tree. During this process, the same products can be created by

connecting different fragments, e.g., from different recombination trees. SubSubSearch utilizes

a database in which products are stored using a unique string representation of the product as

primary keys. Therefore, equal products are neglected. A product describes a minimal set of

connected fragments that include the pattern of interest. It might still contain open valences

that allow the attachment of further fragments or can be saturated with hydrogens to obtain a

complete molecule. In lead optimization, these attachment points can be directly explored to

alter the physico-chemical properties of the obtained products.

The general applicability and usefulness of the method has been demonstrated in various

use-case scenarios that mimic the search for analogues compounds, the optimization of fragment

spaces to reduce their coverage of toxic substances and the extraction of large macromolecules

under structural constraints. A critical factor to decide whether such a method is applicable
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in a drug discovery process is the runtime required to obtain results from a search. A large

scale evaluation with 738 SMARTS patterns [A1] and three fragment spaces [42, 178] revealed

reasonable and robust search times. An explicit description of the experiments is given in [A2]

and [A3].

Some limitations restrict the current search options. The algorithm enforces a tree-like

connection of fragments into products and therefore prohibits a search for macromolecular

cycles. This restriction is in agreement with most fragment space processing methods and

currently available spaces. Nevertheless, in special scenarios, such a search might be interesting

but would require major modification to SubSubSearch. Mesomeric, stereoisomeric and

tautomeric structures place an exceptional challenge on any fragment space processing method.

Mesomeric and tautomeric structures allow a different bond or hydrogen localization to describe

the same molecule. The SMARTS language with its support for recursive atomic environments

is well suited to formalize alternative mesomeric and tautomeric structures. Provided that the

query definition includes at least one form present in the fragment space, SubSubSearch finds

the desired products. The assignment of stereo centers in fragment spaces is difficult because

a potential center assigned in a single fragment might vanish when fragments are connected

to form symmetric products. Even if complete products are obtained by a search, they often

contain open valences prohibiting an assignment of stereo centers. Therefore, a final assessment

of the stereoisomeric nature can only be done on complete molecules. Since SubSubSearch

primarily provides products, such an assignment must be part of a post-processing step.

A problem of the current implementation of fragment spaces is the handling of hydrogen

atoms. As mentioned earlier, a product retrieved from a space may contain open valences

that can be saturated with hydrogens to obtain a valid molecule. This termination process

is currently separated from the fragments and connection rules of the fragment space, i.e.,

the hydrogen groups used to terminate the linkers are not in the set of fragments. Since

SubSubSearch only processes fragments and linking rules, some products that correspond to

the query after termination to molecules might be missed. This problem can be addressed by

modeling the terminal hydrogen fragments as part of the fragment space. In addition, hydrogens

are problematic in the SMARTS language. SMARTS allows the expression of explicit hydrogen

atoms and the definition of implicit hydrogen bonding partners as a node property. When

hydrogens are defined as a property, the search procedure might incorrectly identify or discard

matches because the saturation of linkers with hydrogen atoms is not addressed. A solution

to this problem is to enrich the fragment space with partially terminated fragments, i.e., a

fragment with one linker would be present with and without an attached hydrogen.

In conclusion, SubSubSearch is to my knowledge the first method that allows to efficiently

search fragments spaces for user-defined chemical patterns. The method finds products

containing a desired pattern even if these span over multiple fragments. The search is not

limited in the size of the query or in the number of fragments contained in a product. The ability

to process atomic environments enable chemists to precisely define chemical patterns including

local alternatives such as mesomeric and tautomeric forms. The conducted experiments show
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that the procedure is able to quickly identify novel molecules which can be a valuable source in

today’s drug discovery processes.

4.3 Chemical pattern exclusion from fragment spaces

The application of SubSubSearch to optimize the properties of products contained in fragment

spaces was pursued in parallel to the development of the recursive search procedure. The

analyses in [A3] has shown that fragment spaces can contain products with reactive groups

that are not suited for drug development process. The modification of fragment spaces to

exclude such products is a tedious task when done manually. Therefore, a prototypical tool was

developed [B1] that generates new fragment spaces in which formation of products containing

a user-defined pattern is prohibited. A major requirement was that these fragment spaces are

usable by any fragment space processing method, i.e., such a modification must be done on the

basis of fragments, linkers and connection rules only.

The algorithm to exclude patterns from fragment spaces, here named SubSubExclusion,

works in a four step procedure as depicted in Figure 10. It utilizes SubSubSearch to obtain a

set of recombination trees that describe the products to be excluded from the space. The trees

are subsequently processed in the following order: trees that consist of one node, trees that

contain two nodes and trees that incorporate more than two nodes. Fragment removal : Trees

consisting of a single node store fragments that fully include the pattern. These fragments are

removed from the new space. Exclusion over one linker : The recombination trees that contain

two nodes represent products that are composed of two fragments. The formation of these

products is excluded by renaming the linkers of the corresponding fragments and generating

new connection rules that prohibit the connection of these fragments, yet allow the connection

to all other fragments that are compatible to the original linkers. Exclusion over multiple linker :

If trees include more than two nodes, they describe products with more than two fragments. A

direct exclusion of the connection of these fragments would lead to the loss of products that do

not contain the pattern of interest, e.g., if a tree describes the connection of fragment A, B and

C, the products A-B and B-C would be lost. Therefore, SubSubExclusion removes the fragments

from the new space and adds enumerated partial products. These products allow to apply the

same exclusion strategy as for products composed of two fragments. In the above example, the

method enumerates the partial products A-B and B-C and excludes the connection of A-B with

C and A with B-C. In general, SubSubExclusion generates new recombination trees in which

one terminal node is removed. From these trees, all partial products are enumerated to create

larger fragments. The connection of these fragments with fragments from removed terminal

nodes would lead to products that include the user-defined pattern. In such a combination

of fragments, the pattern spans over exactly one linker and this connection is prohibited in

the new space. In order to assure that all products that contain fragments of the match and

do not incorporate the pattern can be created in the new space, the algorithm enumerates

partial products from the center of the recombination tree and excludes the connection to
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Figure 10: The SubSubExclusion algorithm generates a new fragment space without sulfonamide
products in four steps. SubSubSearch: The sulfonamide pattern is searched in the input
fragment space. The result is a set of three recombination trees describing sulfonamide products.
Fragment removal : The first tree consists of a single node that describes fragments completely
including the pattern. These fragments are excluded from the new space. Exclusion over
one linker : The second tree incorporates two nodes representing a match that spans over
one linker. The linkers are renamed and corresponding connection rules are generated that
exclude the connection to a sulfonamide product. Exclusion over multiple linker : The algorithm
excludes the matches over two linkers by enumerating partial products and excluding the direct
connection rule between partial products. The result is a new fragment space in which the
connection of fragment to sulfonamide products is prohibited.
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Smarts Time Matches New fragment space
1 Frag. 2 Frag. 3-6 Frag. Fragments Linkers Rules

ea
sy

PAINS 1 5.52 s 1192 0 0 4799 18 66
PAINS 4 5.82 s 56 0 0 4785 16 64
PAINS 7 5.04 s 0 0 0 4799 16 64
PAINS 9 6.36 s 0 904 0 4799 17 63
PAINS 10 5.22 s 0 452 0 4799 17 64

h
a
rd

PAINS 3 9.3 h 2 1944 2.6 ∗ 108 4.8 ∗ 106 106 215
PAINS 6 10.1 m 0 2202 9.0 ∗ 107 5.9 ∗ 106 85 334
PAINS 8 9.3 s 3 10 530 2.2 ∗ 107 2.8 ∗ 104 47 161
PAINS 11 7.2 m 0 3180 7.0 ∗ 106 2.2 ∗ 105 765 232

cr
it

ic
al PAINS 2 30.5 h 4 57 808 4.7 ∗ 109 3.0 ∗ 106 244 150

PAINS 5 30.5 m 0 0 4.9 ∗ 108 1.0 ∗ 106 279 1418
PAINS 12 4.2 s† 0 312 1.3 ∗ 109‡ - - -

Table 1: Results for the generation of new fragment spaces excluding the formation of PAINS
patterns. Shown are the runtimes in seconds (s), minutes (m) and hours (h) needed to generate
new fragment spaces. The number of matches are shown with regard to the number of fragments
incorporated in the individual products. New fragment spaces are characterized by the number
of contained fragments, linkers and connection rules. († matching time only, enumeration time
of more than 2 days. ‡ containing matches of six fragments.)

fragments in adjacent tree nodes. The center is a subtree in which all terminal nodes are

removed. The method generates subtrees that describe partial products by enumerating all

connected subtrees of the center. Partial products are created by enumerating the products

described by the generated subtrees. For example, if a match describes a linear connection of

five fragments A-B-C-D-E, the subtree B-C-D describes the center and the products B-C and

C-D are enumerated. To assure that the new fragment can not be linked to form the pattern,

the connection of A and D with B-C and B and E with C-D are excluded in the new space.

The method was tested in two experiments using the BRICS 4k fragment space. The BRICS

space includes 4799 fragments, 16 linkers and 64 connection rules and allows the generation

of 7 809 670 products with exactly two fragments and about 1016 constructed of up to five

fragments. In the first experiment, the formation of 28 smaller patterns describing reactive

groups are subsequently excluded from BRICS 4k. The time to generate a new fragment

space was 32.33 s on a single Intel(R) Xeon(R) CPU E5630 @ 2.53 GHz core. The new space

included 5340 fragments, 24 linkers, 71 connection rules and 7 392 254 pair-products. The rise

in fragments is due to the enumeration of partial products for a few patterns that span over

multiple fragments. The higher number in linkers and connection rules results from the exclusion

of pair-connections. The number of pair-connections is slightly lower, which indicates that the

space contains less products spanning over one linker. The new fragment space allows the

application of fragment space processing methods, e.g., similarity search, and guarantees that

such methods will not retrieve products that include one of the excluded patterns.
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The patterns used in the first experiment are small and simple. They describe a few atoms

and are mostly linear. To explore the limitations of SubSubExclusion, the second experiment

tests 12 patterns with increased complexity including rings and multiple branches. The

patterns describe compounds similar to ones that show an unspecific binding in protein-protein

interaction assays [57]. From these Pan-Assay INterference compoundS (PAINS), a subset

was excluded from the BRICS 4k space. At the time the experiments were conducted,

SubSubSearch did not support patterns with an explicit hydrogen description or atomic

environment specifications. Therefore, the selected PAINS were re-written by hand. Appendix

C.2 shows depictions of the patterns. The results in Table 1 show that the patterns are grouped

into three sets: easy, hard and critical patterns. The first section of the table shows easy

patterns for which a new space can be generated in seconds. These patterns only occur in

products with one or two fragments and, therefore, their formation can be directly excluded.

The center section shows patterns for which the runtime increases up to hours, the number of

excluded products is large and the generated spaces include a large number of fragments. The

large number of products leads to an extensive enumeration of partial products which generates

many new fragments and increases the runtime. These fragment spaces are difficult to process

for subsequent methods due to the large number of fragments. The bottom section of the table

shows the results for patterns that describe the limits of SubSubExclusion. For PAINS 2, the

number of products is over one billion which lead to a runtime of one and a half days which was

deemed too long for a single exclusion. An exclusion of PAINS 5 was accomplished in half an

hour but the resulting space contained 106 fragments and 1418 connection rules. Such a high

number of fragments and rules is most likely a problem when further processing such a space.

In the last example, a new fragment space could not be generated because the runtime exceeded

two days. The reason for such a long runtime is the number and complexity of found products.

These products include up to six fragments leading to a high number of possible partial products.

In addition, the number of slightly over one billion products places exceptional demands on the

computation. This example illustrates the problem of enumerating partial products during the

exclusion.

In conclusion, the presented SubSubExclusion prototype is a novel method that demonstrates

the possibility to automatically optimize fragment spaces in regard to the structural properties of

contained products. The method is applicable for small to medium patterns with low complexity.

The exclusion of unspecific and complex patterns leads to long runtimes and complex fragment

spaces that are critical in their number of fragments, linkers and connection rules.

4.4 Chemical pattern visualization

The communication of molecular structures via two dimensional diagrams has a long tradition

in chemistry. These diagrams offer chemists an intuitive representation of molecules and a

quick identification of structural features that are often essential for molecular optimization or

chemical synthesis. The two dimensional representation of molecules as graphical structure
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diagrams is often referred to as the ’language of chemists’. However, such an intuitive

visualization of chemical patterns has never emerged. The chemical pattern languages used to

describe structural parts of molecules are often cryptic line notations designed for computational

use and, are therefore, hard to read for humans. Existing tools often use a hybrid visualization

in which pattern features are annotated as text of atoms and bonds. These visualizations only

represent a small advantage over the corresponding line representation. In order to overcome

this lack of usability, we developed the SMARTSviewer, a tool that converts generic chemical

patterns formulated in SMARTS language into two dimensional diagrams.

For an intuitive visualization, three components had to be realized: the development of

appropriate graphical representations for SMARTS properties, a layout closely related to the

form of structural diagrams and a conversion of SMARTS strings into a computer processable

structure. For the visualization of pattern features, new graphical elements had to be developed.

In the SMARTSviewer, atoms are depicted as colored cycles. The colors code the most common

elements in organic chemistry. Atom properties are annotated at these cycles, e.g., small

numbers preceded with a plus or minus sign represent the charge. A complete overview of

all graphical elements to represent SMARTS language components can be found in [A4]. The

SMARTSviewer also visualizes logical expressions by coding a NOT in red and an OR in blue,

e.g., an atom that is not carbon is depicted as a dark gray circle surrounded by a red frame.

Chemical atomic environments are shown in numbered boxes and their location is indicated

with the corresponding number pointing at the described atom. Again, the color coding for

logical relations is applied. The SMARTSviewer shows bonds as lines between the atoms. Each

diagram is accompanied by a dynamic legend that gives a textual explanation of the different

components. Figure 11 shows an example.

In order to obtain an intuitive representation, we based the overall layout on the structure

diagram representation for molecules and included recommendations from the International

Union of Pure and Applied Chemistry (IUPAC) for structure diagram drawing of variable

structures. For an automated generation of a graphical depiction from the input of a SMARTS

string, the string must be parsed and analyzed for its syntactic and semantic content. A

context-free grammar [179] was developed that models the SMARTS language. Such a grammar

is used in two ways: it allows the assessment of the correct syntax of a SMARTS string and

it transfers the line representation into an abstract syntax tree (AST). An AST represents the

semantic content in a computer processable form that can be easily processed to obtain a visual

representation.

The SMARTSviewer was tested on 762 SMARTS patterns that included between 2 and 1008

characters and in 247 cases also recursive atomic environments. A diagram was successfully

generated for each pattern in the set. The details are given in [A4].

In the SMARTSviewer project, my part was the engineering of the context-free grammar to

convert SMARTS string into the corresponding AST representation. In addition, I contributed

to the development of the concept for visualizing SMARTS language components.
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Figure 11: Visualization of a SMARTS pattern (top) created with the SMARTSviewer.

4.5 Molecular conformation analysis

Understanding the nature of small molecules is essential to create computational models for

drug discovery. The conformation of a molecule is defined as the three dimensional spacial

arrangement of atoms. In general, a conformation represents an energetic state of a molecule

because attractive and repulsive forces act between parts of the structure. These forces rearrange

a molecule into a stable conformation in which the energy is as small as possible. There may

be multiple stable low-energy conformations and a molecule will undergo a transition between

these states when it absorbs enough energy to pass over energy barriers in-between states. The

understanding and generation of low-energy conformations are indispensable in today’s drug

discovery. For example, an accurate pose prediction in protein-ligand docking highly depends

on the conformation of the docked ligand. Unfortunately, the knowledge about small molecule

conformations only partially covers the chemical space relevant for the drug discovery processes.

We addressed this lack of knowledge with a systematical analysis of different crystal structure

databases regarding the conformations observed in crystallized ligands. Our approach employs a

hierarchical classification of torsion patterns. These patterns, formulated in SMARTS, describe

the dihedral angle in a chain of four atoms. The hierarchy defines successively more complex and

specific chemical motives to obtain a unique classification for each torsion angle. We analyzed

a number of databases by assigning the torsion patterns to rotatable bonds in ligands via a

pattern search algorithm. A collection of the recorded angles for each pattern is represented as
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a histogram to describe their distribution. Peaks in the histograms show frequently observed

torsion angles and correspond to local energy minima. The histogram obtained from analyzing

the Cambridge Structure Database [121] and the Protein Data Bank [180] as well as an

estimation of the covered chemical space and comparison to similar approaches are presented

in [A5].

The development and adaption of the central SMARTS-based pattern search algorithm was

my contribution in the development of the torsion analysis procedure. The SMARTS language

was extended to describe the hybridization state of an atom and the lone pair of a nitrogen

atom. The pattern search procedure was adapted to account for these changes.
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5 Conclusion & Outlook

This thesis presents a novel algorithm to search for recursively defined patterns in

non-enumerated fragment spaces. In a prototypical way, this algorithm was extended to

automatically optimize fragment spaces regarding the physico-chemical properties of contained

products. The search method allows to completely scan the chemical space covered in a fragment

space description. The general applicability was achieved by placing no initial restrictions

on the complexity of the user-defined pattern or the intricacy of the fragment space. The

algorithm addresses the combinatorial nature of fragment spaces with a divide and conquer

strategy that allows a search without the costly enumeration of products. The method has

proven to be applicable in different drug discovery scenarios such as searches for analogues

compounds, exploration of molecular cores, detection of toxic products, and the extraction of

macromolecular structures. The obtained results are further processable in multiple ways, e.g.,

lead optimization, focused analysis and fragment space optimization. The experiments show

that the algorithm retrieves desired products in runtimes that are considered applicable in a drug

discovery pipeline. This was a major concern during the development since enumeration-based

methods require a large amount of computational resources and runtime which renders them

inapplicable.

At the current stage, the implementation has some deficiencies as described in Section 4.2.

Stereoisomeric differences and hydrogen substitution patterns are not fully resolved. These

problems can be addressed with modifications to the fragment space implementation or with

additional post-processing steps. The prototypical algorithm to optimize fragment spaces has

shown that such an automatic modification is possible but additional work is required to obtain

an applicable tool. Especially the generation of new fragment spaces with a lower number of

fragments, linkers and connection rules need to be realized.

The future work addresses these limitations and will exploit the opportunities to adapt

the method to other problems. For example, the separation and reconstruction procedure to

search parts of the pattern in fragments could be modified to not only detect the query as

pattern in products, but to also obtain products that share a common subgraph with the

query. For such a maximal common subgraph calculation, the separation phase would not

only generate those sub-patterns that indicate all missing pattern parts with dummy nodes but

also all possible sub-patterns in which the dummy nodes are removed. Therefore, a pattern

search could terminate at any point in a fragment. The reconstruction phase would return the

partial reconstruction that includes the maximal number of query nodes. Thereby, products

would share a maximal common subgraph with the query. Since a maximal common subgraph

comparison detects a common structural part between two graphs, the retrieved products would

be structurally similar to the query. Therefore, a similarity comparison between the query and

products of the fragment space would be possible.

The intermediate results supplied by SubSubSearch as recombination trees have proven to

be valuable for the construction of a focused fragment space [A2] and the optimization of a
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space regarding the physico-chemical properties of the products. The tree represents products

that share a common structural feature in a very compact form. It might be suited to realize

a comparison between different fragment spaces regarding the structural features contained in

products. Even an extension to allow mathematical operations such as set intersection or set

exclusion on fragment spaces could be possible. A set intersection would detect the common

products contained in two or more fragment spaces. This would be especially useful when

fragment spaces represent patent information. When two patents claim the same molecule, the

younger patent is invalid which is a major concern in pharmaceutical research. In the same way

would a set exclusion be useful when new patents are written.

In summary, this thesis presents novel algorithmic techniques that extent the scope of

algorithms processing fragment spaces and enable chemists to access compounds that are hidden

in the combinatorial nature of these spaces.
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C Supplementary information

C.1 Chemical pattern search in fragment spaces

This section supplies additional information on algorithms used in SubSubSearch that exceeded

the scope of publications [A1], [A2] and [A3].

C.1.1 SMARTS grammar

The SMARTS language is used to describe chemical patterns throughout this thesis and in all

publications. In order to translate a SMARTS string expression into a computer-processable

structure a context-free grammar was developed that defines the syntax and detects the

semantics of SMARTS expressions. Table C.1, C.2 and C.3 describe the grammar. In addition

to the language specifications defined by Daylight [37], this grammar supports SYBYL types,

e.g., ’{C.3}’, amide bonds ’-ˆ’, hybridization states ’*<number>’, link atoms ’[?<name>?]’

or ’[*<number>]’, nitrogens with an attached lone pair ’n lp’, and a smaller relation ’<’ for

the charge. Note, that the usage of Sybyl types is not supported by the matching routine for

SMARTS and will cause an error.

Even though the SMARTS language is relatively well defined to be modeled as context-free

grammar, some problems are known. The language allows the use of chemical element

abbreviation, e.g., ’C’ for a carbon. The abbreviation can lead to an ambiguous grammar,

e.g, the abbreviation for strontium is ’Sr’. A SMARTS expression describing a strontium atom

is ’[Sr]’. That expression can also be interpreted as an aliphatic sulfur ’S’ that is present in at

least one ring ’r’. The element abbreviation for strontium ’Sr’, chromium ’Cr’, rhodium ’Rh’,

radon ’Rn’, radium ’Ra’, and praseodymium ’Pr’ were therefore excluded. Fortunately, these

elements rarely occur in organic chemistry and are therefore of minor relevance in the field of

drug discovery.
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Rule Production

input: smarts or reaction

reaction: smarts reactionbond smarts

smarts: grouping or
branch open disconnected branch close or
branch open atomconnection branch close or atomconnection

grouping: grouping disconnectedbond atomconnection or
grouping disconnectedbond branch open atomconnection branch close or
atomconnection disconnectedbond atomconnection or
branch open atomconnection branch close disconnectedbond
branch open atomconnection branch close

disconnected: disconnected disconnectedbond atomconnection or
atomconnection disconnectedbond atomconnection

recursion: recursion start branch open smarts branch close

atomconnection: atomconnection bondchain atom or
atomconnection bondchain atom ring or
atomconnection bondchain integer or
atomconnection atom or atomconnection branch or
atomconnection atom ring or atomconnection integer or
atom

atom: bracket open atompropchain bracket close or symbol

atompropchain: atomprop lowand

atomprop lowand: atomprop lowand low and atomprop or or
atomprop lowand labelexpr or atomprop or

atomprop or: atomprop or or atomprop highand or
atomprop or or massexpr atomprop highand or
atomprop highand or massexpr atomprop highand

atomprop highand: atomprop highand high and atompropexpr or
atomprop highand atompropexpr or atompropexpr

atompropexpr: not atomprop or atomprop

labelexpr: label integer

atom ring: ring identifier integer

atomprop: degree or degree integer or
implicit hydrogen or implicit hydrogen integer
or hydrogen or hydrogen integer or
ring member or ring member integer or
ring size or ring size integer or
valence or valence integer or
connectivity or connectivity integer or
ring connectivity or ring connectivity integer or
charge or charge digit or
smaller charge or smaller charge digit or
chiral or chiral integer or
chiral maybe or chiral chiralclass or
chiral chiralclass maybe or chiral chiralclass integer or
chiral chiralclass integer maybe or atomnumber integer or
hybridisation integer or isolink integer or
link or nlp or symbol or recursion

Table C.1: Part 1 of SMARTS context-free grammar.
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symbol: aliphatic or aromatic or sybyl or atomwildcard

massexpr: not mass or mass

mass: integer

charge: negcharge or poscharge

branch: branch open bondchain atomconnection branch close or
branch open atomconnection branch close

bondchain: bond lowand

bond lowand: bond lowand low and bond or or bond or

bond or: bond or or bond highand or bond highand

bond highand: bond highand high and bondexpr or bond highand bondexpr or bondexpr

bondexpr: not bond or bond

bond: singlebond or doublebond or triplebond or aromaticbond or amidbond or

upbond or upbond maybe or downbond or downbond maybe or
anyringbond or anybond

aliphatic: ALIPHATIC WILDCARD=’A’ or ALIPHATIC=(’B’ or ’C’ or ’N’ or
’O’ or ’P’ or ’S’ or ’F’ or ’Cl’ or ’Br’ or ’I’ or ’Si’ or ’As’ or ’Se’ or ’Te’
or ’Li’ or ’Na’ or ’K’ or ’Rb’ or ’Cs’ or ’Be’ or ’Mg’ or ’Ca’ or ’Ba’ or ’Sc’
or ’U’ or ’La’ or ’Ti’ or ’Zr’ or ’Hf’ or ’V’ or ’Nb’ or ’Ta’ or ’Mo’ or ’W’
or ’Mn’ or ’Tc’ or ’Re’ or ’Fe’ or ’Ru’ or ’Os’ or ’Co’ or ’Ir’ or ’Ni’ or ’Pd’
or ’Pt’ or ’Cu’ or ’Ag’ or ’Au’ or ’Zn’ or ’Cd’ or ’Hg’ or ’Al’ or ’Ga’ or ’In’
or ’Tl’ or ’Ge’ or ’Sn’ or ’Pb’ or ’Sb’ or ’Bi’ or ’Po’ or ’At’ or ’Fr’ or ’Ac’
or ’Ce’ or ’Nd’ or ’Pm’ or ’Sm’ or ’Eu’ or ’Gd’ or ’Tb’ or ’Dy’ or ’Ho’ or ’Er’
or ’Tm’ or ’Yb’ or ’Lu’ or ’Th’ or ’Pa’ or ’U’ or ’Np’ or ’Pu’ or ’Am’ or ’Cm’
or ’Bk’ or ’Cf’ or ’Es’ or ’Fm’ or ’Md’ or ’No’ or ’Lr’)

aromatic: AROMATIC WILDCARD=’a’ or AROMATIC=(’b’ or ’c’ or ’n’ or ’o’ or ’p’
or ’s’ or ’si’ or ’as’ or ’se’ or ’te’)

atomnumber: POUND=’#’

atomwildcard: STAR=’*’

chiral: ATSIGN=’@’ or ATATSIGN=’@@’

sybyl: SYBYL=(’C.3 ’ or ’C.2 ’ or ’C.1 ’ or ’C.ar ’ or ’C.cat ’ or ’N.3 ’ or ’N.2 ’ or
’N.1 ’ or ’N.ar ’ or ’N.am ’ or ’N.pl3 ’ or ’N.4 ’ or ’O.3 ’ or ’O.2 ’ or
’O.co2 ’ or ’O.spc ’ or ’O.t3p ’ or ’S.3 ’ or ’S.2 ’ or ’S.O ’ or ’S.O2 ’ or
’P.3 ’ or ’F ’ or ’Cl ’ or ’Br ’ or ’I ’ or ’H ’ or ’H.spc ’ or
’H.t3p ’ or ’LP ’ or ’Du ’ or ’Du.C ’ or ’Any ’ or ’Hal ’ or ’Het ’ or
’Li ’ or ’Na ’ or ’Mg ’ or ’Al ’ or ’Si ’ or ’K ’ or ’Ca ’ or
’Cr.th ’ or ’Cr.oh ’ or ’Mn ’ or ’Fe ’ or ’Co.oh ’ or ’Cu ’ or ’Zn ’
or ’Se ’ or ’Mo ’ or ’Sn’)

integer: INTEGER=’[0-9]+’

digit: DIGIT=’[0-9]+.[0-9]+’ or INTEGER=’[0-9]+’

recursion start: RECURSION START=’$’

branch open: BRANCH OPEN=’(’

branch close: BRANCH CLOSE=’)’

singlebond: MINUS=’-’

doublebond: DOUBLEBOND=’=’

triplebond: POUND=’#’

aromaticbond: AMIDBOND=’-ˆ’

anyringbond: ATSIGN=’@’

anybond: ANYBOND=’˜’

Table C.2: Part 2 of SMARTS context-free grammar.
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upbond: UPBOND=’/’

downbond: DOWNBOND=’\’
chiralclass: THETRAHEDRAL=TH” or ALLENELIKE=’AL’ or

SQUAREPLANAR=’SP’ or TRIGONALBOPYRAMIDAL=’TB’ or
OCTAHEDRAL=’OH’

degree: DEGREE=’D’

implicit hydrogen: IMPLICIT HYDROGEN=’h’

hydrogen: HYDRO=’H’

ring member: RING MEMBER=’R’

ring size: RING SIZE=’r’

ring identifier: RING IDENTIFIER=’%’

valence: VALENCE=’v’

connectivity: CONNECTIVITY=’X’

ring connectivity: RING CONNECTIVITY=’x’

negcharge: MINUS negcharge or MINUS=’-’

poscharge: POS CHARGE poscharge or POS CHARGE=’+’

label: COLON=’:’

high and: HIGH AND=’&’

low and: LOW AND=’;’

or: OR=’,’

not: NOT=’!’

maybe: MAYBE=’?’

bracket open: BRACKET OPEN=’[’

bracket close: BRACKET CLOSE=’]’

disconnectedbond: DISCONNECTEDBOND=’.’

reactionbond: REACTION=’>>’

hybridisation: HYBRIDISATION=’ˆ’

link: LINK=’?’

nlp: NLP=’n lp’

isolink: STAR=’*’

smaller: SMALLER=’<’

Table C.3: Part 3 of SMARTS context-free grammar.



C.1 Chemical pattern search in fragment spaces 67

C.1.2 Bi-connected component algorithm

In publication [A2] an algorithm is used to calculate the bi-connected components (BCCs) of a

graph. The BCCs are used to separate a graph representing a chemical pattern into subgraphs or

sub-patterns in which cyclic parts are conserved. In that tree, nodes represent the components

and an edge connects two components if and only if the components share an articulation point

that is a common node. The BCC of a graph G = (V,E) is a subgraph G′ = (V ′, E′) such that

V ′ ⊂ V and E′ ⊂ E that is connected even if one edge e ∈ E′ is removed. The algorithm shown

in Algorithm 1 and 2 follows the idea of Tarjan to calculate BCCs [73]. Tarjan’s algorithm

employs a depth-first search strategy that records the depth d of each node and the low point

low that is the lowest recorded depth of all descendants. The key to compute BCCs from

assigned depth and low points is that any non-root node v for which a child node u exists such

that low[u] ≥ d[v] separates two BCCs. This condition to identify articulation points is checked

after the depth and low points for each descendant are calculated. Therefore, the algorithm

assigns edges to different BCCs.

Algorithm 1 Calculate bi-connected components of a graph.

1: input graph G = (V,E)
2: output array bcc assigning each edge to a BCC (each index represents one edge, array entry

is the edge’s BCC)
3: procedure CalcBCCs(G = (V,E))
4: time ← 0
5: bccNum ← 0
6: stack ← ∅
7: for all v ∈ V do
8: d[v] ← 0 . discovery time
9: low[v] ← 0 . low point

10: for all e ∈ E do
11: bcc[e] ← 0 . bi-connect component number

12: for all v ∈ V do
13: if d[v] = 0 then
14: CalcBCCsVisit( &v, &bccNum, &stack )

15: return G



68 C SUPPLEMENTARY INFORMATION

Algorithm 2 Recursive sub-routine of CalcBCCs.

1: input node u, BCC number bccNum, stack S
2: output array bcc assigning each edge to a BCC (each index represents one edge, array entry

is the edge’s BCC)
3: procedure CalcBCCsVisit(v, *bccNum, *S)
4: time ← time + 1
5: d[v] ← time
6: low[v] ← d[v]
7: for all uv ∈ Adj[v] do
8: if d[u] <d[v] then
9: push(S, e = (v, u)) . discovered back-edge

10: if d[u] = 0 then . tree edge
11: CalcBCCsVisit( v, bccNum, S )
12: low[v] ← min(low[v], low[u]) . minimum value over all descendants
13: if low[u] ≥ d[v] then . new BCC discovered
14: repeat . assign edges to bi-connected component
15: e← pop(S)
16: bcc[e] ← bccNum
17: until e 6= (v, u)
18: bccNum gets bccNum + 1

19: else . undiscovered back-edge
20: low[v] gets min(low[v],low[u]) . minimum value over all back-edges

C.1.3 Subgraph or sub-pattern enumeration algorithm

In order to enumerate subgraphs, the BCC algorithm is used to generate a BCC tree. As

input for the algorithm an ordered BCC tree is represented as array in which the array index

represents the BCC tree nodes and an entry the corresponding parent node. In order to

enumerate all connected subgraphs, the BCC tree must be depth-first search (DFS) ordered

starting at an arbitrary node. A ’NULL’ entry in the input array marks the root. Algorithm

3 and 4 show the enumeration algorithm. The algorithm follows a strategy to enumerate all

subsets based on a lexicographical order [181, 182]. The DFS order of components is essential

such that no subgraphs are missed and all enumerated subgraphs are connected. The condition

to ensure the complete enumeration of all subgraphs is that no component of higher order

connects two components of lower order. In addition, the algorithm avoids the enumeration of

disconnected subgraphs by only removing components such that a component of higher order

is not removed when the removal separates two components of lower order. In each iteration,

the algorithm choses the highest order component that is part of the current subgraph as root.

New components i are chosen top-down the order until a component is found that is smaller

than the root or that is connected to the current subgraph. Components of higher order than

i are removed. Figure C.1 shows an enumeration example. The strategy was adapted from

Mass [182].
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Algorithm 3 Enumerate all connected subgraphs of a graph.

1: input array describing the BCC tree of a graph
2: output arrays indicating which BCC nodes belong to a subgraph
3: procedure EnumerateSubgraphs(A)
4: allSubgraph ← ∅
5: nextSubgraph gets Array[length[A]] . create the first subgraph array
6: for all a ∈ nextSubgraph do
7: a← 0
8: finalSubgraph gets Array[length[A]] . create the final subgraph array
9: for all b ∈ finalSubgraph do

10: b← 1
11: while nextSubgraph 6= finalSubgraph do
12: nextSubgraph = calcNextSubgraph(nextSubgraph)
13: push(allSubgraph, nextSubgraph)

14: return allSubgraphs

Algorithm 4 Subroutine of EnumerateSubgraphs to calculate the next subgraph.

1: input array of the previous subgraph (chosen components have a non-zero entry)
2: output arrays of the next subgraph
3: procedure calcNextSubgraph(lastSubgraph)
4: nextSubgraph gets lastSubgraph
5: nextSgLength = length[nextSubgraph] - 1
6: rootIdx = nextSgLength
7: for i← nextSgLength→ 0 do . determine index of root node
8: if nextSubgraph[i] = 1 then
9: rootIdx = i

10: for i← nextSgLength→ 0 do
11: if nextSubgraph[i] = 0 then . component i is not chosen
12: if root < i and nextSubgraph[A[i]] = 0 then . component i can not be a

root of a new subgraph and
the parent of i is not part of
the current subgraph

13: continue . component i can not be part
of the subgraph

14: nextSubgraph[i] ← 1 . add component i to subgraph
15: for j ← i + 1→ length[nextSubgraph] do
16: nextSubgraph[j] ← 0 . remove all components > i

17: return nextSubgraph
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Figure C.1: Enumeration of a subgraph. The algorithm converts the graph into a depth-first
search ordered bi-connected component (BCC) tree (top). Below the conversion of the first
ten enumeration step are shown. A bit array indicates with a non-zero entry which BCCs are
chosen. From the previous subgraph the next subgraph is calculated as described by Algorithm
3 and Algorithm 4.
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C.2 Chemical pattern exclusion from fragment spaces

The Figures C.2, C.3 and C.4 depict the PAINS patterns used in the exclusion experiments

presented in Section 4.3.

Figure C.2: Visualization of PAINS 1-4 SMARTS pattern (top-left to bottom-right).
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Figure C.3: Visualization of PAINS 5-8 SMARTS pattern (top-left to bottom-right).
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Figure C.4: Visualization of PAINS 9-12 SMARTS pattern (top-left to bottom-right).
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D Developer & User information

This section provides information regarding the implementation and user interface of the

SmartsFs software library which is part of the Flex software suit. The library functionalities

are also usable through a command-line tool.

D.1 About SmartsFs library

The SmartsFs library is written in C/C++ and provides the algorithms and data structures to

search for SMARTS patterns in fragment spaces. The algorithm avoids a costly enumeration of

molecules during the search and is designed to minimize the number of explored link connections.

In general, the algorithm follows a four step procedure: The query SMARTS pattern is separated

into sub-patterns (SPs) in which cyclic parts are conserved and missing pattern parts are

indicated with linker nodes. These SPs are searched inside fragments assuring that linker nodes

are only assigned to link atoms. For each SP a list of matching fragments is recorded. These

lists are combined to form a set of recombination trees that describe how SPs are connected

to form the original pattern and how fragments need to be assembled to obtain products that

contain the query pattern. From the recombination trees, products or molecule are enumerated

by connecting the fragments according to a tree’s topology. The algorithm supplies products or

molecules that represent a minimal connection of fragments such that they include the query

pattern. Products may contain open linkers that allow to attach further fragments. Molecules

are products in which all open linkers are saturated with terminal groups.

The search times range from seconds to minutes for small and complex fragment spaces. In

rare cases, a runtime of several days are possible. The enumeration of products or molecules

needs a few milliseconds per product/molecule.

D.2 SmartsFs library organization

The following section describes the dependencies of the SmartsFs library on other libraries of

the Flex software suit. The libraries often support a large spectrum of functionality, here, only

the functionality used by SmartsFs is mentioned.

SmartsFs depends on the fragment space library, the molecule database library and the

SMARTS library. The dependencies are shown in Figure D.1. The fragment space (FragSpace)

library provides the functionality to read fragment spaces from file and to handle fragments

and connection rules as needed by SmartsFs. The molecule database (MolDb) library provides

the functionality to store molecules and fragments out-of-memory and to compare fragments

by their unique SMILES identifier. These features are essential during the enumeration of

products from recombination trees. Often the number of products is too large to be kept in

main memory for a unique SMILES comparison. The SMARTS library handles the conversion
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Figure D.1: Internal SmartsFs library dependencies.

of SMARTS strings into advanced data structures and provides algorithms to search for patterns

in molecules. This search is used by SmartsFs during the search for SPs in fragments. The Base

library is used in the fragment space library and also in SmartsFs (connection not shown). In

general, it supplies functions and macros to handle the amount of information displayed during

the software runs.

D.3 Dependencies on external libraries and programs

SubSubSearch uses functions and data structures from the external Boost and Qt libraries. The

SMARTS grammar depends on the bison/flex software for context-free grammars. The libraries

as well as the bison/flex software must be available when compiling the SmartsFs library.

D.4 Important limitations

At the current stage, the search algorithm has some limitations regarding terminal groups,

hydrogen substitution patterns, stereoisomeric structures and products constructed by a cyclic

connection of fragments. The search algorithm separates the query pattern such that cyclic

parts are conserved which allows a tree-like connection of fragments. Therefore, macro-cyclic

structures that require a connection of fragments into cycles are not found. Terminal groups

are used to saturate open valences of products converting them into complete molecules.

These terminal groups are not considered during the search. When terminal groups are

a hydrogen atom, the algorithm may mismatch nodes that describe atoms with a specific

hydrogen substitution pattern. For example, an atom of a fragment that has two hydrogens

and one link atom attached, can have three hydrogens after termination. The change in

hydrogen substitution pattern is not addressed during the search. Another problem regarding

the attachment at open valences arises when stereoisomeric structures are of interest. The

assignment of stereo centers in products is impossible, since an attachment of further fragments

might result in a symmetric product which causes the stereo center to vanish. Stereo centers are
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therefore not addressed during the search and must be checked after the construction of complete

molecules in a post-processing step. Additional strategies to circumvent these problems are

described in Section 4.2.

D.5 Search and enumeration interfaces

The interface to the search algorithm in SmartsFs is a single function of the

form SubSubMatcher( sg, fspace, maxNofFrags, premapping, uinfo, explicitH ). The

parameter sg is a subgraph structure obtained from parsing a SMARTS pattern using the

SMARTS library. Parameter fspace is a fragment space that is obtained from a fragment

space fsf-file using the FragSpace library. The maximal number of fragments a product is

composed of is controlled by the parameter maxNofFrags. The user info supplied by uinfo

allows to control the amount of information output during a run of the SubSubMatcher

function. The matcher differentiates between an implicit hydrogen matching explicitH=false

and an explicit hydrogen matching explicitH=true. When hydrogens are implicitly matched,

SMARTS language symbols for generic atoms such as ’*’ for any atom or ’A’ for any aliphatic

atom are only assigned to heavy atoms. In contrast, these generic symbols are also assigned to

hydrogen atoms when an explicit matching of hydrogens is activated. When a SMARTS pattern

includes explicitly defined hydrogen atoms, e.g, ’C=C([H])[H]’, the parameter explicitH

must be set true, otherwise no matches are found. The function returns a solution in the

form of recombination trees describing products that include the query pattern. The set of

fragments described by each recombination tree is minimal in the sense that a combination

of these fragments result in a product that include the query pattern and often have open

valences where further fragments can be attached. The attachment of further fragments

obviously results in a different product that also includes the pattern. The interface for

the enumeration of products from a recombination tree is smfsSubSubEnumAsMolDb(sol,

fspace, dbname, uinfo, maxNofProducts, minNofFrags, maxNofFrags). Parameter sol

is a solution obtained from calling SubSubMatcher. The fragment space in which the pattern

was searched is given by fspace. During the enumeration, the algorithm removes duplicate

products. For that purpose, a molecule database of the MolDb library is utilized and temporarily

stored at dbname. The information level is defined by uinfo. The parameters maxNofProducts,

minNofFrags and maxNofFrags define the maximal number of enumerated products and the

minimal and maximal number of fragments in a product. The default for these parameters is

that all products described by the solution are enumerated with no limitation to their size.

D.6 Search tool

The command-line tool SmartsFsMatcher allows the search for patterns

in fragment spaces. A command-line call has the form SmartsFsMatcher

<smarts string/file><fsf-file><outfile><num products>. The command line
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Figure D.2: Data flow in SmartsFs command-line tool.

parameters are smarts string that is a SMARTS expression as string, smarts file a file

that holds multiple SMARTS string, fsf-file a fragment space file in fsf-format, outfile

the prefix for the file to which the products and molecules are written, and num products the

number of products at which the enumeration is stopped. If num products is supplied, the

first num products are enumerated. If num products is not supplied, the tool enumerates all

products. Figure D.2 shows the data flow.

D.7 File formats

The following section specifies the input and output formats for SMARTS strings and files,

fragment spaces and the file output.

D.7.1 SMARTS input files

SMARTS strings must follow the SMARTS specification provided by Daylight [37]. The

specification was extended to support SYBYL types, amid bonds, hybridisation states, link

atoms, nitrogens with a lone pair, and smaller relations for the charge. These extensions are

described in the SMARTS grammar given in Section C.1.1. A SMARTS file holds line-separated

SMARTS strings followed by an space-separated identifier. The following shows an example.
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#SMARTS id

C-!@C bajorath.smarts_0

C=@A[I] bajorath.smarts_2

C-@C bajorath.smarts_3

S-!@S bajorath.smarts_4

a-[Cl] bajorath.smarts_5

C=!@C bajorath.smarts_6

S-@S bajorath.smarts_7

D.7.2 Fragment space input files

Fragment spaces must follow the fsf-format. The following listing defines the format and shows

part of the BRICS 4k fragment space [42] as an example. Supported molecule file types are

MOL2, SDF and SMILES [183]. Details regarding the chemical model and the file types are

described in [184].

# syntax description:

# @link_types <nof links>

# <link name 1> <link name 2> ...

# <link name k> <link name k+1> ... <link name <nof links>>

#

# @fragment_files <nof files>

# < frag file 1>

# < frag file 2>

# :

# < frag file <nof files>>

#

# @link_terminal_groups

# <link name 1> <group> [<atom type> <bond type> <bond length> <torsion angle>]

# <link name 2> <group> [<atom type> <bond type> <bond length> <torsion angle>]

# :

# <link name <nof links>> <group> [<atom type> <bond type> <bond length> <torsion angle>]

#

# @link_compatibility_matrix

# <name of> <name of> [<aatom type> <aatom type>] <bond> <bond> [<torsion>]

# link_1 link_2 for_link_1 for_link_2 type length angle

# :

@link_types 16

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16

@fragment_files 1

brics_2008_4k.mol2

@link_terminal_groups



80 D DEVELOPER & USER INFORMATION

link group aatom bond blen torsion

R1 [CH3] * 1 1.507 *

R2 C(=O)C * 1 1.337 180

R3 [CH3] * 1 1.429 *

R4 [H] * 1 1.090 *

R5 [CH3] * 1 1.398 *

R6 [CH3] * 1 1.507 *

R7 [CH2] * 2 1.316 180

R8 [H] * 1 1.090 *

R9 [CH3] * 1 1.465 *

R10 [CH3] * 1 1.465 *

R11 [CH3] * 1 1.815 *

R12 [CH3] * 1 1.816 *

R13 [H] * 1 1.080 *

R14 [H] * 1 1.080 *

R15 [H] * 1 1.080 *

R16 [H] * 1 1.080 *

@link_compatibility_matrix

link1 link2 aatom1 aatom2 bond blen torsion

R1 R2 * * 1 1.355 180

R1 R3 * * 1 1.362 *

R1 R10 * * 1 1.355 180

R2 R12 * * 1 1.656 *

R2 R14 * * 1 1.398 *

R2 R16 * * 1 1.398 *

R3 R4 * * 1 1.452 *

R3 R13 * * 1 1.429 *

R3 R14 * * 1 1.362 *

R3 R15 * * 1 1.429 *

R3 R16 * * 1 1.362 *

# (following linkers not shown)

D.7.3 Output files

The prefix defined by outfile is used to generate two files: outfile.products.smi and

outfile.molecules.smi. The file outfile.products.smi contains all enumerated products

in SMILES format in the form <SMILES string><identifier> in each line. The file

outfile.molecules.smi is in the same format and contains the corresponding molecules

obtained by saturating the open valences at products with the corresponding terminal groups.

Both files are in the same order and therefore products and corresponding molecules can be

found in the same line number.
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RESEARCH ARTICLE Open Access

Systematic benchmark of substructure search
in molecular graphs - From Ullmann to VF2
Hans-Christian Ehrlich and Matthias Rarey*

Abstract

Background: Searching for substructures in molecules belongs to the most elementary tasks in cheminformatics
and is nowadays part of virtually every cheminformatics software. The underlying algorithms, used over several
decades, are designed for the application to general graphs. Applied on molecular graphs, little effort has been spend
on characterizing their performance. Therefore, it is not clear how current substructure search algorithms behave on
such special graphs. One of the main reasons why such an evaluation was not performed in the past was the absence
of appropriate data sets.

Results: In this paper, we present a systematic evaluation of Ullmann’s and the VF2 subgraph isomorphism
algorithms on molecular data. The benchmark set consists of a collection of 1235 SMARTS substructure expressions
and selected molecules from the ZINC database. The benchmark evaluates substructures search times for complete
database scans as well as individual substructure-molecule pairs. In detail, we focus on the influence of substructure
formulation and size, the impact of molecule size, and the ability of both algorithms to be used on multiple cores.

Conclusions: The results show a clear superiority of the VF2 algorithm in all test scenarios. In general, both
algorithms solve most instances in less than one millisecond, which we consider to be acceptable. Still, in direct
comparison, the VF2 is most often several folds faster than Ullmann’s algorithm. Additionally, Ullmann’s algorithm
shows a surprising number of run time outliers.

Keywords: Substructure search, Subgraph isomorphism, Algorithm, Benchmark, SMARTS, Chemical pattern search

Background
Today’s drug discovery faces a constantly growing num-
ber of commercially available or synthetically accessible
compounds maintained in large databases [1,2]. In order
to efficiently search such databases, computational search
strategies comprising various search criteria have been
developed over more than four decades [3-14]. Search
criteria range from retrieving the one exact compound
over selecting compounds via substructure features to the
application of various similarity measures. In the follow-
ing, we focus on methods that test compounds for the
presence of certain functional groups or substructures.
Modeling molecular structures as labeled graphs has a

long tradition and gives the basis for modern cheminfor-
matics methods. A graph-based representation is chemi-
cally intuitive and forms a solid theoretical foundation for

*Correspondence: rarey@zbh.uni-hamburg.de
Center for Bioinformatics, University of Hamburg, Bundestraße 43, 20146
Hamburg, Germany

computer-aided processing. Furthermore, graphs allow
the substructure search problem to be solved by graph iso-
morphism techniques, i.e., searching molecules for sub-
structures is equivalent to testing two labeled graphs for
subgraph isomorphism. The subgraph isomorphism prob-
lem is well studied [15-17] and one of the oldest and most
applied algorithms [18-22] was introduced by Ullmann in
1976 [7]. Over the years that followed, only a few sub-
graph isomorphism methods were introduced [11,16,23],
the most recent being the VF2 algorithm [12].
Until now, each comparison of (sub-)graph isomor-

phism algorithms [16,17] only employs synthetic graph
data. The data is most often constructed to show the
algorithms’ behavior on medium to large graphs. There-
fore, it is unclear how these algorithms behave on
rather small graphs like molecular data. To our knowl-
edge, no subgraph isomorphism comparison directly
addresses the problem of searching chemical substruc-
tures in molecules. One of the main reasons why such a

© 2012 Ehrlich and Rarey; licensee Chemistry Central Ltd. This is an Open Access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.
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benchmark was not performed in the past was the lack of
suitable and publicly available benchmark data sets.
This article describes such various data sets and dis-

cusses the differences between the Ullmann and the VF2
subgraph isomorphism algorithm applied on substruc-
tures and molecules. In the following, we introduce the
graph theoretical concepts, summarize the two algorithms
of interest, introduce different benchmark data sets and
compare the algorithms’ performance in various molecu-
lar modeling scenarios.

Preliminaries
For almost 150 years, chemists have used chemical and
structural formulas to represent molecules. A structural
formula is closely related to the mathematical concepts of
graphs which makes graph theory and algorithms directly
applicable in cheminformatics.

Graph theoretical background
A graph G = (V , E) is defined by a set of nodes V and
a set of connecting edges E. The edges of an undirected
graph have no fixed orientation and if labels are assigned
to nodes or edges the graph is denoted as labeled. If a path
from each node to every other nodes exists, the graph is
called connected. In the following, all graphs are labeled,
undirected and connected except when stated otherwise.

Subgraph isomorphism
Two graphs G1 = (V1, E1) and G2 = (V2, E2) are isomor-
phic if a bijective projection between nodes V1 and nodes
V2 exists such that two nodes from V1 are connected by
an edge from E1 if and only if their image nodes in V2 are
connected by an edge from E2. An induced subgraph of
a graph G = (V , E) is defined as a graph G′ = (V ′, E′)
whose nodes V ′ are a subset of V and whose edges E′ are
all possible edges from E that connect two nodes in V ′.
An induced subgraph isomorphism between a query graph
G1 and a target graph G2 exists if G1 is isomorphic to
an induced subgraph of G2, i.e., the query graph G1 is a
subgraph of the target graph G2.
The problem of finding an isomorphic induced sub-

graph is believed to be a problem for which no efficient
solution exists, i.e., it belongs to the class of NP-complete
problems [5,24]. Therefore, every subgraph isomorphism
algorithm will show exponential run times with respect to
the input graph size.

Molecular graphs
A molecular graph is given by nodes and edges that rep-
resent atoms and bonds, respectively. Often nodes and
edges are labeled with atom and bond properties. Obvi-
ously, molecular graphs are undirected. The number of
edges connecting each node is limited by the number of

covalent bonds an atom can form. Therefore, the number
of edges in a molecular graph linearly depends on the
number of nodes.
Molecules are equal or isomorphic if their molecular

graphs are isomorphic and the labels of the atoms and
bonds are equal to the labels of their mapped atoms and
bonds respectively.When twomolecules differ in size, one
can be a substructure of the other, i.e., a subgraph iso-
morphism between the two molecules exists. The small
number of atoms and the linear atom degree allow for a
fast subgraph isomorphism test on molecules.

Substructuregraphs
A substructure graph can be a molecule fragment, e.g.,
a functional group, or a more generalized construct. For
example, a single halogen node might represent a fluo-
rine, chlorine, bromine or iodine atom. The same applies
to edges, e.g., an edge is either a single or a double bond. In
the following, we will use substructure graphs with such
general labels. Figure 1 shows an example.
Substructure graphs are compared with molecules to

detect subgraph isomorphisms. The goal is to determine
the presence or location of a functional group or a spe-
cific molecular structure. Nodes and edges are mapped
to atoms and bonds in accordance with their labels.
Since edges are explicitly assigned to bonds, the detected
isomorphic subgraph might not be induced, i.e., non-
circular substructures can bemapped to circular molecule
parts.
For a clear differentiation, we will use the terms atoms

and bonds for molecular target graphs and nodes and
edges for query substructure graphs.

Substructure pattern languages
A substructure graph can be formulated by using a sub-
structure pattern language like SMILES Arbitrary Target
Specification (SMARTS) [25], Sybyl Line Notation (SLN)
[26] or Wiswesser Line Notation (WLN) [27]. All lan-
guages define a substructure graph in a textual line nota-
tion similar to a molecule’s chemical formula. They allow
the definition of a substructure’s topology and node and
bond properties, including logical alternatives. SMARTS
even provides the opportunity to specify additional infor-
mation like a chemical environment. In this study, all
substructures are formulated as SMARTS expressions.

Figure 1 Carboxylic acid pattern and heptonic acid. A carboxylic
acid pattern (left) with ‘*’ indicating any atom. Heptonic acid (right).
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Methods
The Ullmann and the VF2 algorithms are two algo-
rithms that solve the subgraph isomorphism problem.
Applied to substructure and molecular graphs, they can
be used to detect substructures in molecules. Both algo-
rithms calculate an exact solution, i.e., the exact sub-
structure must be present, and their application is not
restricted to a special class of graphs, i.e., is not limited to
molecular graphs.

Ullmann algorithm
The Ullmann algorithm [7] is a backtracking procedure
that employs a relaxation-based refinement step to reduce
the search space. It operates on a n × m matrix M of
boolean values, where n is the number of substructure
nodes and m the number of molecule atoms. An entry
at position (i, j) marks the compatibility of labels for sub-
structure node i and molecule atom j. Additionally, it
uses a boolean vector f of length m marking mapped
atoms. Algorithms 1 and 2 show Ullmann’s match and
refinement procedure. Figure 2 illustrates one step of
the algorithm.
The refinement is the crucial step of the algorithm. It

evaluates the surrounding of every possible node-atom
mapping. For a valid mapping, every neighbor node must
have a compatible atom as illustrated in Figure 3. Other-
wise, themapping is invalid which is marked by setting the
corresponding matrix entry to zero. The evaluation takes
place for every possible mapping downstream the current
row and is repeated until all remainingmappings are valid.
Although the refinement procedure is the key for an

efficient reduction of the search space it does not take

full advantage of topological constraints. For example, in
the case of a small substructure and a large molecule, it
evaluates entries topologically too far away from already
mapped node-atom pairs.

VF2 Algorithm
The VF2 algorithm [12] iteratively extends a partial solu-
tion using a set of feasibility criteria to decide whether
to extend or backtrack. It operates on an intermediate
algorithm state s which is composed of a partial solu-
tion M(s) and adjacency sets T1(s) and T2(s). A pair
(n,m) ∈ M(s) represents an atom-node mapping of the
partial solution. M1(s) and M2(s) describe the atoms and
nodes, respectively, that belong to the partial solution.
T1(s) and T2(s) hold atoms and nodes adjacent to atoms
in M1(s) and nodes in M2(2), respectively. The algorithm
modifies the state s in two steps. From the sets T1(s) and
T2(s), it creates a candidate set P(s) of atom-node pairs
with compatible labels. Then, it explores every candidate
(n,m) ∈ P(s) that fulfills the feasibility rules Fsyn or back-
tracks if P(s) is empty. Figure 4 graphically depicts one
step of the algorithm.
Fsyn(s, n,m) (Equation 1) describes the feasibility of can-

didates (n,m) in state s. It is composed out of two terms,
Radj (Equation 2) and Rinout (Equation 3). The first fea-
sibility rule Radj guarantees that each atom n′ and node
m′ adjacent (Adj) to the atom n and node m of a candi-
date pair (n,m) are mapped to each other in the partial
solution (n′,m′) ∈ M(s). The second rule Rinout per-
forms a 1-look-ahead in the search procedure based on
the nodes’ cardinality (Card) and allows an early pruning

Algorithm 1

1: input compatibility matrix M, row index k, mapped atoms vector f
2: output permutation matrix that represents a one-to-one mapping of nodes to atoms
3: procedureMATCH(M, k, f )) � first call: Match(M,−1; f = 0)
4: if k = n then � complete mapping of substructure to molecule
5: returnM
6: else
7: for l ← 0 to m − 1 do � go over the complete row
8: ifM(k+1,l) = 1 and fl = 0 then � look for a possible mapping
9: Msave← M � save state for backtracking
10: fsave← f
11: for j = 0 tom− 1 do
12: M(k+1,j) ← 0 � remove all possible mappings of current node
13: M(k+1,l) ← 1 � fix one node-atom mapping
14: fl ← 1 �mark atom as used
15: if Refine(M, k + 1) then � refine rest of the matrix
16: Match(M, k + 1, f ) � continue with the next row
17: M← Msave � restore previous solution for backtracking
18: f ← fsave
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Algorithm 2

1: input reference to compatibility matrix M, row index k
2: output true when all substructure nodes still have an option to be mapped onto the molecule
3: procedure REFINE(&M,k )
4: repeat
5: changed ← false � flag that marks matrix changes
6: for allM(i,j) with i > k andM(i,j) = 1 do � check all possible mappings (i,j )
7: valid ← true � flag that marks the valid mapping of a neighbor node
8: for all x adjacent to i ∈ G1 do � check all nodes adjacent to node i in substructure G1
9: found ← false
10: for all y adjacent to j ∈ G2 do � check all atoms adjacent to atom j in molecule G2
11: ifM(x,y) = 1 then � possible mapping of compatible pair (x,y)
12: if edge [i,x] = edge [j,y] then � edge type is compatible to bond type
13: found ← true � valid mapping of neighbor found
14: break � leave loop over adjacent atoms
15: if found = false then � adjacent node has no possible mapping
16: valid ← false
17: break � leave loop over adjacent nodes
18: if valid = false then � at least one adjacent node can not be mapped
19: M(i,j) ← 0 �mark mapping of node i to atom j invalid
20: changed ← true �mark matrix as changed
21: ifM(i,h) = 0 for 0 ≤ h ≤ m− 1 then � check if node i can not be mapped anymore
22: return false � induce backtracking in match procedure
23: until changed = false � repeat refinement because mapping(s) became invalid
24: return true

of the search tree. Figure 5 and Figure 6 give an illustration
of the feasibility rules.
The problem of reaching the same state, i.e., the same

partial solution M(s), via different paths is handled by
imposing an arbitrary total order ≺ onto the subgraph
nodes and processing only smallest feasible candidates
with regard to that order. Therefore, feasible candidates
(ni,mj) in P(s) are not processed ifmk ≺ mj ∈ P(s).

The main difference between the two algorithms is
the way they account for the topology of the sub-
structure. The Ullmann algorithm processes a com-
patibility matrix top-down. In every step it fixes one
node-atom mapping and checks all other possible assign-
ments for validity. Therefore, it processes substructure
nodes in an non-topological, arbitrary order. In contrast,
the VF2 iteratively adds node-atom pairs to a current

Fsyn(s, n,m) = Radj ∧ Rinout (1)

Radj = (∀n′ ∈ M1(s) ∩ Adj(G1, n))∃m′ ∈ Adj(G2,m)|(n′,m′) ∈ M(s))

∧(∀m′ ∈ M2(s) ∩ Adj(G2,m))∃n′ ∈ Adj(G1, n)|(n′,m′) ∈ M(s)) (2)

Rinout = Card(Adj(G1 , n) ∩ T1(s)) ≥ Card(Adj(G2,m) ∩ T2(s)) (3)

Figure 2 Iteration of Ullmann algorithm. One step of the Ullmann algorithm. The initial compatibility matrix (left) shows carboxylic acid
substructure nodes as rows and heptonic acid molecule atoms as columns. A non-zero entry indicates the compatibility of a node-atom pair. Zero
entries are not shown. In the current row, indicated in gray, the algorithm choses one compatible node-atom mapping (middle) and refines all
unprocessed rows (right). The algorithm continues with the next row. Figure 3 illustrates the refinement.
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Figure 3 Refinement of Ullmann algorithm. Ullmann refinement
step. For a mapping of node i to atom j, all adjacent nodes xmust
have at least one valid mapping y. If this condition is not fulfilled, the
mapping (i, j) is invalid and the corresponding matrix entry at (i, j) is
set to zero.

solution and therefore directly explores the substructure’s
topology.

Substructure pattern formulation for efficient computation
The formulation of substructure patterns is a tedious task.
Most pattern languages are difficult to read and evenmore
difficult to write, especially when defining isomeric or tau-
tomeric structures. As a result, substructure formulations
are focused on a correct chemical representation of a pat-
tern. That formulation might be suboptimal for computa-
tional processing. Therefore, we present simple guidelines
to optimize patterns for the search in molecules.
For an optimal formulation, the substructure must be

in an order that allows an early processing of unusual
nodes and edges, rare fragments and functional groups.
Obviously, certain elements are more common than oth-
ers. The same applies for substructure nodes that define
a high number of atom properties or are part of an
aromatic system. Unusual edges define aromatic bonds

or those with a high bond order. Therefore, we write
optimized substructures such that nodes with the rarest
element, highest property specification and aromaticity
as well as high order or aromatic bond definitions occur
first. Additionally, we place substructure parts that are
rather common or difficult to process at the end of the
formulation. Nodes that specify generic atoms, hydrogen
atoms, carbon atoms, and ring atoms are common. Chem-
ical environments are difficult to process for most search
algorithms, since they enforce an additional search step.
In the followingwe perform every pattern reformulation

by hand. Nevertheless, both algorithms are well suited for
an automated optimization process. Ullmann’s algorithm
processes substructure nodes according to their row num-
bers in the compatibility matrix. Since row numbers are
assigned arbitrarily, they can resemble the order employed
by applying the given optimization rules. The VF2 uses an
arbitrary node relation to obtain a total order. Therefore,
the optimized order can be directly used.

Data sets
Both algorithms are tested in different application setups
like complete database scans, substructure-based filter
scenarios and individual substructure-molecule searches.
The tests show the dependency of the algorithm run
times on substructure formulation, substructure size and
molecule size.
The data sets comprise 1336 SMARTS from the liter-

ature [28-37] and molecules out of ZINC lead-like and
ZINC everything database [1]. All data sets are provided
in Additional file 1.

Substructure search set
Molecule size is a crucial factor with respect to the
algorithmic search time. To explore the influence of
molecule size, we select a subset from the initial 1336

Figure 4 Iteration of VF2 algorithm. One VF2 iteration. The algorithm extends the current solution M(s) of state s by one candidate (1, a) chosen
from P(s). T1(s) and T2(s) show the nodes adjacent to mapped atoms and nodes.
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Algorithm 3

1: input intermediate state s; first call with M(s0) = (n,m)

2: outputmapping M of substructureG2 = (N2,B2) onto molecule G1 = (N1,B1)
3: procedureMATCH(s)
4: if | M(s) |=| G2 | then � all substructure nodes are mapped onto the molecule
5: returnM(s)
6: else
7: m← mi | ∀mj ∈ T2(s)\{mi} : mi ≺ mj � choose smallest node m according to relation ‘≺’
8: for all n ∈ T1(s) do � process all ordered atoms adjacent toM1(s)
9: ifm and n are compatible then � check if node-atom labels agree
10: P(s) ∪ (n,m) � P stores compatible pairs adjacent toM
11: for all p = (n,m) ∈ P(s) do � process all possible extensions
12: if Fsyn(s, n,m) then � check if node-atom pair is feasible
13: ssave← s � save state for backtracking
14: M(s)← M(s) ∪ p � extend partial solution by one node-atom mapping
15: T1(s)←⋃

n∈M1(s) Adj(G1, n) \M1(s) � update atoms adjacent to the partial solution
16: T2(s)←⋃

m∈M2(s) Adj(G2,m) \M2(s) � update nodes adjacent to the partial solution
17: Match(s) � continue with the next extension
18: s← ssave � backtrack

SMARTS. All duplicate expressions, expressions with
errors, extensions and those that define isotopes or
are disconnected are removed. The resulting set com-
prises 1235 SMARTS whose property overview is given
in the Additional file 2: Table S1. SMARTS allows the
explicit formulation of hydrogen atoms and the defi-
nition of atom environments. When explicit hydrogen
atoms are used a search procedure must evaluate all
hydrogen atoms, which roughly doubles the number of
atoms to be evaluated. Atom environments induce an

Figure 5 VF2 feasibility rule for node cardinality. VF2 feasibility
rule for node cardinality. The rule guaranties a one-to-one mapping
of edges in the current solutionM(s). For a candidate mapping (n,m),
all atoms (n′ and n” inM1(s)) adjacent to nmust be mapped to the
corresponding nodes (m′ andm” in M1(s)) adjacent tom. Otherwise
the candidate mapping is not feasible.

additional search step during the actual search pro-
cedure. In order to circumvent misinterpretations of
the results, we group the SMARTS patterns by the
presence/absence of explicit hydrogens and recursive
environments into individual sets. The Additional file 2:
Table S2 – S19 give detailed statistics on SMARTS prop-
erties for every set.
The final sets contain all SMARTS patterns for which

100 molecules containing the pattern could be randomly
selected from ZINC lead-like and ZINC everything.

Figure 6 VF2 feasibility rule for node cardinality (1-look-ahead).
VF2 feasibility rule for node cardinality (1-look-ahead). The rule
prohibits an extension of the current solution M(s) by candidates
with a substructure cardinality that can not be fully mapped onto the
graph. In the given example, nodem has one edge into T2(s) and is
mapped to atom n with a cardinality of two. Therefore, the mapping
is feasible.
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Table 1 shows the number of SMARTS for which the
selection process was successful. The molecular property
distribution of each set is similar to the correspond-
ing ZINC database as shown in the Additional file 2:
Table S23 – S24.

Molecule search set
Substructure size is the second major factor regarding
pattern matching time. A set to measure its impact is
composed by randomly selecting molecules from ZINC
lead-like containing all-in-all 80 different substructures of
various size. The presence of so many substructures in a
single molecule is rather rare but selecting molecules with
less patterns gives poor results. A selection was only pos-
sible for the set of SMARTS having no explicit hydrogen
nodes and no recursive environments. The other three
sets contain patterns of much higher complexity which
are rarely present in one molecule or patterns that are
designed to be complementary to each other, e.g., PAINS.

PAINS substructure set
For a detailed case study, we choose 16 PanAssayINter-
ferenceStructures(PAINS) described by Baell et al. [38] as
‘filter family A’. The PAINS substructures should describe
unspecific binders in protein-protein interaction assays.
PAINS were originally given in SLN and converted to
SMARTS by Rajarshi Guha using Cactvs [39]. The con-
verted PAINS patterns include hydrogen atoms and recur-
sive environments. The PAINS’s property distribution is
shown in the Additional file 2: Table S20 and Additional
file 3: Figure S2 – S5 depict each substructure.

Worst-case test
Since highly symmetric molecules impose a challenge
for substructure search algorithms, we test a phenylring
query against a fulleren target as a worst-case search
scenario.

Database subset
The database subset comprises the first 100.000molecules
from ZINC lead-like as of February 12th, 2011 and is
designed to resemble a complete database. Its property
distribution is similar to that of the full ZINC lead-like
database as shown in Additional file 2: Table S25.

Results and discussion
Search speed is measured on a single Intel(R) Xeon(R)
CPU E5630 2.53GHz core. Each matching is repeated 400
times and average values are recorded. Average matching
times are raw matching times excluding File I/O, molecule
initialization and post-processing of search results, i.e.,
matching time only.
We are aware of the fact that the evaluation is done

with an example implementation of both algorithms that
most likely has some room for optimization. Neverthe-
less, we believe that our results allow general conclusions
regarding the algorithms’ behavior on molecular data.

Overall search speed
An overview of the VF2 and Ullmann matching times
is shown in Figure 7. The times are measured on the
46900 substructure-molecule pairs of the Substructure
Search Set. Both substructure algorithms search for all
occurrences of each substructure. The histograms show
that both algorithms have most match times in a range
below 1 milliseconds (ms) (92.3% VF2, 73,4% Ullmann)
with a median of 0.04ms for the VF2 and 0.1ms for the
Ullmann, respectively. While the maximum VF2 match-
ing time is below 30ms, the Ullmann shows times of more
than 100ms for 1.12% (5352 pairs) and more than 1000ms
for 0.22% (104 pairs) of the data set. Interestingly, the
Ullmann search times do not change drastically in the case
where the search is constrained to the first occurrence of
each substructure. In contrast, the VF2 outlier times drop
down by one half. In conclusion, both algorithms can solve
most instances in reasonable time and the median run
times differ by a factor of 2.5 betwenn VF2 and Ullmann’s
algorithm. In rare cases, the Ullmann algorithm is up to
1000 times slower than the VF2.

Explicit vs. implicit hydrogens
A closer analysis of Ullmann and VF2 matching times
reveals a slight increase in run times for SMARTS patterns
with explicit hydrogens, which is documented by the his-
tograms in Figure 8. The median search times of the VF2
are 0.08ms for substructures with only implicit hydrogens
and 0.19ms with explicit hydrogens, 0.22ms and 1.09ms
for the Ullmann, respectively. In accordance, the max-
imum run time of the VF2 doubles, while that of the

Table 1 SMARTS, ZINC lead-like, ZINC everything test sets

all SMARTS ZINC lead-like set ZINC everything set

no H nodes H nodes no H nodes H nodes no H nodes H nodes

no recursion 504 432 347 56 400 43

recursion 234 65 48 18 106 39

All processable SMARTS split by the presence/absence of explicit hydrogen nodes and recursive environment specifications and the subsets used in the ZINC lead-like
and ZINC everything set.
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Figure 7 Overall run time histogram. Histogram over VF2 (top) and Ullmann (bottom) matching times on the Substructure Search Set. The
algorithms search for the first (left) and all (right) occurrence(s) of the substructure. All plots are double logarithmic and times are given in
milliseconds (ms).

Ullmann algorithm is roughly four times larger. The rea-
son for an increase in run times is twofold. About 50% of
atoms in a small molecule are hydrogens. Therefore, when
matching patterns with explicit hydrogens, in contrast to
patterns with only implicit hydrogens, all hydrogen atoms
have to be evaluated. This doubles the number of evalu-
ated atoms during the search, and hence, increases the run
time. Additionally, for every hydrogen node, an explicit
placement must be found, as opposed to the comparison
of the sheer number of hydrogens attached to an atom.
This raises the number of evaluated atoms as well as the
number of found mappings, and therefore increases the
run time.

Recursion vs. no recursion
An interesting aspect of the SMARTS pattern language
is the ability to recursively define the chemical environ-
ment of an atom. To match a pattern that includes one or
more nodes with atom environments, a subgraph search
algorithm has to recursively perform a subgraph isomor-
phism test during the actual search. Figure 9 shows the
impact on matching times when recursive environments
are defined. Median run times for the VF2 are 0.04ms

for SMARTS without and 0.35ms for SMARTS with
environment specifications, 0.15ms and 4.87ms for Ull-
mann’s algorithm, respectively. Surprisingly, the Ullman
algorithm is much more sensitive to recursive patterns.
The presence of environment specifications can lead to a
30 times increase in Ullmann matching times while VF2
times maximal rise by a factor of two. The sensitivity is
due to the fact that Ullmann’s algorithm creates a matrix
that represents all possible mappings of nodes to atoms.
Since most recursive environments are rather small, the
construction and evaluation of such a matrix represents a
computational overhead that is reflected in an increase of
the overall search time.

Molecule size
In order to explore the influence of molecule size we
examine 469 substructure-molecule pairs from the Sub-
structure Search Set. As almost all results are similar,
we chose only some representative substructure-molecule
pairs shown in Figure 10. All figures, given in Additional
file 1, show a significantly smaller matching time for the
VF2 and a linear influence of the molecule size on the
matching time. The difference between VF2 and Ullmann
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Figure 8 Explicit vs. Implicit hydrogens run time histogram. Histogram of VF2 (up) and Ullmann (down) matching times with (left) and without
(right) explicit hydrogens on the Substructure Search Set. The algorithms search for all occurrences of the substructure. All plots are double
logarithmic and times are given in milliseconds (ms).

matching times becomes even more prominent when
examining the cases where explicit hydrogens (Figure 11
top-left), recursive environments (Figure 11 bottom-right)
or both (Figure 11 bottom-left) are present. The linear
impact of the molecule size on the run time is explained
by the constant number of bonds an atom can form as can
be obtained from a theoretical analysis of backtracking
algorithms for subgraph isomorphism [40,41].

Subgraph size
The impact of subgraph size regarding the matching time
was evaluated with a meaningful test set for substructures
with only implicit hydrogens and no recursive environ-
ments. Unfortunately, a suitable test set could only be
constructed for SMARTS patterns without explicit hydro-
gens and recursive environments. From observing 100
molecules in which at least 80 substructures with dif-
ferent size could be matched, we assume an exponential
run time development with increasing subgraph size for
both algorithms. The exponential increase seems to be
slower for the VF2 in all cases. An example is given in
Figure 12 and all plots are provided in Additional file 1.
The difference in matching times drastically decreases
when only the presence of a substructure, rather than all

occurrences, is of interests. The exponential match time
of both algorithms regarding the substructure size is again
in agreement with a theoretical analysis of the subgraph
isomorphism problem [40,41].

Worse-case test
As a worse-case substructure search scenario, we test
a phenyl-ring query against a C70 fullerene target. The
Ullmann finds the first occurrence in 51.11ms and all
matches in 106.94ms. The VF2 is about 130 times
faster when it solves the problem for the first occur-
rence (0.39ms) and about 5 times when searching for all
matches (21.67ms). Clearly, the phenyl-fullerene example
is not the worse-case when considering SMARTS sub-
structures. Substructures with explicit hydrogen nodes
or recursive atom environments yield much higher run
times. Nevertheless, the phenyl-fullerene experiment
gives good guidance on how the Ullmann and VF2 algo-
rithms behave on highly symmetrical structures.

Complete database search
Often substructure search algorithms are used in database
search scenarios in which a database is scanned for all
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Figure 9 Recursion vs. no Recursion run time histogram. Histogram of VF2 (up) and Ullmann (down) matching times with (left) and without
(right) recursive environments on the Substructure Search Set. The algorithms search for all occurrences of the substructure. All plots are double
logarithmic and times are given in milliseconds (ms).

molecules that contain a given query structure. Even
though most database search systems are able to elimi-
nate a large number of molecules from the actual sub-
graph isomorphism search using screening techniques
[10,22,41,43-46], a remarkable number of molecules
might remain. The following test simulates a sequential
subgraph isomorphism test over a large set of molecules.
We search all 1235 patterns from the Substructure Search
Set against the Database Subset and measure the com-
plete time to identify all molecules which contain such
a substructure. Since the majority of the first 100.000
molecules of the ZINC lead-like database do not contain
a given pattern, the search time is dominated by the algo-
rithm’s ability to quickly identify the non-occurrence of
a substructure in a molecule. A good screening method
would of course enrich the molecules submitted to the
isomorphism test withmolecules containing the substruc-
ture of interests. Nevertheless, testing both algorithms
for the ability of quickly detecting molecules without a
given pattern will reveal further insights into the algorith-
mic behavior. This test is only performed once, as minor
changes in run time do not affect the order of magnitude.
From the two histograms in Figure 13, it is clear that

the VF2 algorithm is much faster in sequentially scanning

a large number of molecules. The median search time of
the VF2 is 2.84 s and 38.7 s for the Ullmann. The VF2
algorithm finishes 53.06% of the search queries below 10s
and 97.61% below 102 s, while the Ullmann completes
3.73% below 10s, 54.24% below 102 s, 92.36% below 103 s
(16.6 min), 98.76% below 104 s (2.78 h) and 99.85% below
105s (27.78 h). All in all, in rare instances a database search
system that uses the Ullmann algorithm might need over
a day to give results for a single query, even though, most
of the molecules might be eliminated from the subgraph
isomorphism test.

Parallelization scaling
The subgraph isomorphism problem is nearly perfectly
suited for parallel computing when matching one query
structure against many target structures. One simple but
effective solution is a parallelization by data separation
of the target structures. An alternative is an algorithm
level parallelization based on the algorithms’ recursion.
Since most substructure searches are below 1ms and most
molecules consist of less than 100 atoms, a paralleliza-
tion of one substructure against one target search is most
likely not as efficient as searching in parallel on the data
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Figure 10Molecule size experiment patterns. Depiction of SMARTS pattern with no explicit hydrogens and no recursion (top-left), explicit
hydrogens and no recursion (top-right), no explicit hydrogens and recursion (middle) and with explicit hydrogens and recursive atom environments
(bottom). The legend can be found in the Additional file 3: Figure S1. Depictions are created by SMARTSViewer [42].

level. The situation might change when searching large
query substructures against large target structures, e.g.,
searching for motifs in proteins.
In order to evaluate the efficiency of data level paral-

lelization, we test both algorithms with the same data
separation strategy on the PAINS Substructure Set against
the complete ZINC lead-like database on different num-
bers of CPU cores. The target structures are split into
equal blocks such that each core gets the query structures
and a the same number of molecules. The measurement
on one core is performed in sequential and parallel mode
so that the computational overhead for parallelization
becomes directly present. Detailed tables on the match-
ing times and scaling factors on different numbers of cores
can be found in Additional file 2: Table S26 – S27.

Both algorithm show good scaling behavior on all
instances. On 8 cores the search times are decreased by an
average factor of 5.6 for the VF2, and 6.92 for Ullmann’s
algorithm respectively. The overall slightly better scal-
ing of the Ullmann algorithm can be explained by the
longer matching times. Longer matching times reduce the
parallelization overhead relative to the matching time.

SMARTS pattern case studies
To explore the possibility of reducing search speed by
rearranging the subgraph formulation we created three
different formulations for each substructure of the PAINS
Substructure Set. The original substructure formulation
as created by Cactvs, an optimized version by applying
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Figure 11Molecule size search example. Run time comparison between Ullman and VF2 searching for all substructure occurrences with various
molecule sizes. The different plots show a linear increase in run time with respect to the molecule size. The top-left pattern does not include explicit
hydrogens nor recursive environments. The top-right pattern does include explicit hydrogens but not recursive environments. The bottom-left
pattern does not include explicit hydrogens but recursive environments. The bottom-right pattern includes explicit hydrogens and recursive
environments. Figure 10 shows a graphical depiction of all four patterns. Times are given in milliseconds (ms).

Figure 12 Subgraph size search example. Run time comparison between Ullman and VF2 searching for all (left) and the first (right) substructure
occurrence(s) with varying subgraph size. The plots show an exponential increase in run time with respect to the substructure size. Times are given
in milliseconds (ms).
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Figure 13 Database scan run time histogram. Run time histogram for the VF2 (left) and Ullmann (right) when searching the first 100.000
molecules from ZINC lead-like for the first substructure occurrences. Both plots are double logarithmic and times are given in seconds(s).

the re-formulation guidelines described in the “Substruc-
ture Pattern Formulation” section, and an anti-optimized
version by applying the rules in reverse. All three formu-
lations are searched against the complete ZINC lead-like
database.
As can be observed from the two most extreme cases

shown in Table 2, the VF2 algorithm shows run time
decreases of up to 13.37 times for the optimized substruc-
ture formulations. In accordance, the run time increases
up to 15.64 times for the anti-optimized formulation.
Surprisingly, the Ullmann algorithm shows no significant
change in run time, neither for the optimized nor for the
anti-optimized version in all test cases.

Ullman faster than VF2
In almost all test-cases, we see a superior matching per-
formance of VF2 compared to Ullmann’s algorithm. In
order to exclude the possibility of errors in our time mea-
surements, we re-calculate the benchmarks for all cases in
whichUllmann’s algorithm shows a smaller matching time
than the VF2. The number of repetitions for each search
call is increased to 100.000 to increase the time mea-
surement accuracy. Table 3 shows the re-measurement
for 10 examples. Clearly, the first measurements were

sufficiently accurate and in all these cases the Ullmann
outperformed the VF2. To investigated if the subgraph
formulation might be unfortunate for the VF2 algorithm,
the test is repeated with optimized substructure formu-
lations. The matching times given in Table 3 show that
the VF2 is faster in all cases when given an optimized
substructure formulation.

Conclusions
We presented, to our knowledge, the first comparison
between Ullmann and VF2 subgraph isomorphism algo-
rithm on molecular data and the first data set to per-
form such a benchmark. Using SMARTS as molecular
substructure language, we explored the influence of sub-
structure andmolecular size as well as the usage of explicit
hydrogen nodes and recursive environment specification
on the matching time. Both algorithms where addition-
ally tested for the use in complete database scans and their
ability for data-based parallelization. Additionally, we pre-
sented an optimization strategy to reduce matching times
by substructure pattern reformulation.
In conclusion, the VF2 algorithm outperforms the

Ullman in all test cases when supplied with a favorable

Table 2 Optimization run time examples

Ull. time [s] Ull. speedup VF2 time [s] VF2 speedup matches

PAINS 4

original 157139.71 1.00 170.42 1.00 11699

optimized 157027.63 1.00 168.56 1.01 11699

anti-opt. 154195.33 1.02 2664.49 -15.64 11699

PAINS 12 original 3119.04 1.00 1698.42 1.00 9056

optimized 2142.41 1.46 142.28 11.94 9056

anti-opt. 3077.34 1.01 1675.40 1.01 9056

Two examples of searching the PAINS Substructure Set against the complete ZINC lead-like database. Ullmann and VF2 times in seconds and speed ups are shown.
Results for all 16 PAINS are given in the Additional file 2: Table S28 – S29 and the re-formulated PAINS in Additional file 2: Table S30.
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Table 3 Ullmann faster than VF2without optimization examples

SMARTS Ullmann time VF2 time

[ms] [ms]

[#6]C(=[O,SX2])[CX4]C(=[O,SX2])[#6] 0.868 0.948

[O,SX2]=C([#6])[CX4]C(=[O,SX2])[#6] 0.654 0.271

[#6]C(=[O,SX2])C(=[O,SX2])[#6] 0.938 1.046

[O,SX2]=C([#6])C(=[O,SX2])[#6] 0.668 0.203

[a]˜*˜*-[CH3] 0.479 0.601

[CH3]-*˜*˜[a] 0.209 0.074

[C](=O)([C,c,O,S])[C,c,O,S] 0.400 0.558

O=[C]([C,c,O,S])[C,c,O,S] 0.403 0.144

[CD3H0,R](=[SD1H0])([ND2H1,R])([ND2H1,R]) 0.251 0.510

[SD1H0]=[CD3H0,R]([ND2H1,R])([ND2H1,R]) 0.242 0.076

[nD3H0,R](˜[OD1H0])(a)a 0.290 0.435

[OD1H0]˜[nD3H0,R](a)a 0.290 0.091

[R](-*(-*))˜*˜*˜*˜[a] 2.082 2.774

[a]˜*˜*˜*˜[R](-*(-*)) 1.764 0.906

c([OH])c([OH])c([OH]) 0.581 0.708

[OH]cc([OH])c([OH]) 0.581 0.274

c1([OH])c(O[CH3])cccc1 0.805 0.947

[OH]c1c(O[CH3])cccc1 0.797 0.169

c1([OH])ccc(O[CH3])cc1 0.74 0.922

[OH]c1ccc(O[CH3])cc1. 0.734 0.193

Examples for SMARTS without explicit hydrogens and recursive environments for which the Ullmann algorithm shows a superior run time compared to the VF2. Time
measurements are averages over 100.000 search repetitions in milliseconds. Times are shown for the original SMARTS formulation (top) and an optimized version
(bottom) according to our guidelines.

substructure formulation and seems to be more robust
in terms of run time outliers. Even though the VF2
is generally faster, both algorithms perform most sin-
gle substructure-molecule searches in times below one
millisecond, which seems acceptable for most cheminfor-
matics applications. Nevertheless, we recommend using
theVF2 algorithm formolecular substructure searching in
cheminformatics software because it shows a general run
time superiority of about one order of magnitude.
The syntactic formulation of a substructure in terms

of arrangement might be a critical point for the under-
lying subgraph isomorphism algorithm. Our experiments
show that the VF2 algorithm is sensitive to the substruc-
ture’s formulation while the Ullmann algorithm is not.
Therefore, other subgraph isomorphism algorithmsmight
show the same sensitivity and need to be experimentally
tested.
Fortunately, the subgraph reformulation rules as shown

here have not to be done by hand. The VF2 algorithm
is based on a precalculated node order which can be
manipulated following the reformulation rules. Due to the
sensitivity of the VF2 algorithm for node rearrangements,
the algorithm has further room for optimization.

Additional files

Additional file 1: Additional data (Additional file 1).
/datasets/smarts/literature Hs noRec.smarts. SMARTS substructures
with hydrogens and no recursion.
SMARTS substructure patterns with hydrogens and no recursive atom
environments.
/datasets/smarts/literature Hs rec.smarts. SMARTS substructures
with hydrogens and recursion.
SMARTS substructure patterns with hydrogens and with recursive atom
environments.
/datasets/smarts/literature noHs noRec.smarts. SMARTS
substructures without hydrogens and no recursion.
SMARTS substructure patterns without hydrogens and no recursive atom
environments.
/datasets/smarts/literature noHs rec.smarts. SMARTS substructures
without hydrogens and with recursion.
SMARTS substructure patterns without hydrogens and with recursive atom
environments.
/datasets/smarts/pains p m150 antioptimized.txt. PAINS
substructures anti-optimized. PAINS substructures as SMARTS in
anti-optimized formulation.
/datasets/smarts/pains p m150 antioptimized.txt. PAINS
substructures anti-optimized.
PAINS substructures as SMARTS in anti-optimized formulation.
/datasets/smarts/pains p m150 original.txt. PAINS substructures
original.
PAINS substructures as SMARTS in original formulation as obtained from
the literature.
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/datasets/substructure search set/literature Hs noRec.smarts.
everything.benchmarkset. Substructure Search Set, explicit
hydrogens and no recursion, ZINC everything
Search set to test the run time influence of the molecule size. Substructures
are in SMARTS and do contain explicit hydrogens but no recursive atom
environments. For each substructure pattern 100 molecules that contain
the pattern were selected at random from ZINC everything. Substructures
and molecules are given as space separated SMARTS and SMILES.
/datasets/substructure search set/literature Hs rec.smarts.everything.
benchmarkset. Substructure Search Set, explicit hydrogens and with
recursion, ZINC everything.
Search set to test the run time influence of the molecule size. Substructures
are in SMARTS and do contain explicit hydrogens and recursive atom
environments. For each substructure pattern 100 molecules that contain
the pattern were selected at random from ZINC everything. Substructures
and molecules are given as space separated SMARTS and SMILES.
/datasets/substructure search set/literature noHs noRec.smarts.
everything.benchmarkset. Substructure Search Set, no explicit
hydrogens and no recursion, ZINC everything.
Search set to test the run time influence of the molecule size. Substructures
are in SMARTS and do not contain explicit hydrogens or recursive atom
environments. For each substructure pattern 100 molecules that contain
the pattern were selected at random from ZINC everything. Substructures
and molecules are given as space separated SMARTS and SMILES.
/datasets/substructure search set/literature noHs rec.smarts.
everything.benchmarkset. Substructure Search Set, no explicit
hydrogens and with recursion, ZINC everything.
Search set to test the run time influence of the molecule size. Substructures
are in SMARTS and do not contain explicit hydrogens but recursive atom
environments. For each substructure pattern 100 molecules that contain
the pattern were selected at random from ZINC everything. Substructures
and molecules are given as space separated SMARTS and SMILES.
/datasets/substructure search set/literature Hs noRec.smarts.lead-
like.benchmarkset. Substructure Search Set, explicit hydrogens and
no recursion, ZINC lead-like.
Search set to test the run time influence of the molecule size. Substructures
are in SMARTS and do contain explicit hydrogens but no recursive atom
environments. For each substructure pattern 100 molecules that contain
the pattern were selected at random from ZINC lead-like. Substructures
and molecules are given as space separated SMARTS and SMILES.
/datasets/substructure search set/literature Hs rec.smarts.lead-
like.benchmarkset. Substructure Search Set, explicit hydrogens and
with recursion, ZINC lead-like.
Search set to test the run time influence of the molecule size. Substructures
are in SMARTS and do contain explicit hydrogens and recursive atom
environments. For each substructure pattern 100 molecules that contain
the pattern were selected at random from ZINC lead-like. Substructures
and molecules are given as space separated SMARTS and SMILES.
/datasets/substructure search set/literature noHs noRec.smarts.lead-
like.benchmarkset. Substructure Search Set, no explicit hydrogens
and no recursion, ZINC lead-like.
Search set to test the run time influence of the molecule size. Substructures
are in SMARTS and do not contain explicit hydrogens or recursive atom
environments. For each substructure pattern 100 molecules that contain
the pattern were selected at random from ZINC lead-like. Substructures
and molecules are given as space separated SMARTS and SMILES.
/datasets/substructure search set/literature noHs rec.smarts.lead-
like.benchmarkset. Substructure Search Set, no explicit hydrogens
and with recursion, ZINC lead-like.
Search set to test the run time influence of the molecule size. Substructures
are in SMARTS and do not contain explicit hydrogens but recursive atom
environments. For each substructure pattern 100 molecules that contain
the pattern were selected at random from ZINC lead-like. Substructures
and molecules are given as space separated SMARTS and SMILES.
/datasets/substructure search set/literature noHs rec.smarts.lead-
like.benchmarkset. Substructure Search Set, no explicit hydrogens
and with recursion, ZINC lead-like.
Search set to test the run time influence of the molecule size. Substructures
are in SMARTS and do not contain explicit hydrogens but recursive atom
environments. For each substructure pattern 100 molecules that contain

the pattern were selected at random from ZINC lead-like. Substructures
and molecules are given as space separated SMARTS and SMILES.
/datasets/molecule search set/literature noHs noRec.smarts.
everything.80.benchmarkset. Molecule Search Set ZINC everything.
Search set to test the run time influence of the substructure size.
Substructures are in SMARTS and do not include explicit hydrogen nodes
or recursive atom environments. For each molecule 80 substructures that
are contained in the molecule were selected at random from ZINC
everything. Molecules and substructures are given as space separated
SMILES and SMARTS.
/datasets/worst case.benchmarkset. Worst Case Set.
A worst-case substructure search scenario of searching for a phenyl-ring in
a highly symmetrical fullerene. Substructure and molecule are in SMARTS
and SMILES. /datasets/zinc lead-like 2011-02-12 first100k.smi. First
100k Molecules of ZINC lead-like.
The first 100.000 molecules of the ZINC lead-like database. Molecules are in
SMILES.
/results/molecule/allPlots.lead-like.all.eps. Molecule Search
Experiment ZINC lead-like.
Experiment to test the run time influence of the substructure size. Plots are
box plots showing subgraph size vs. run time for Ullmann and VF2. Both
algorithms are set to find all occurrences of a substructure. Molecules were
chosen at random from ZINC lead-like.
/results/molecule/allPlots.lead-like.first.eps. Molecule Search
Experiment ZINC lead-like.
Experiment to test the run time influence of the substructure size. Plots are
box plots showing subgraph size vs. run time for Ullmann and VF2. Both
algorithms are set to find first occurrences of a substructure. Molecules
were chosen at random from ZINC lead-like.
/results/subgraph/allPlots.lead-like.all.eps. Subgraph Search
Experiment ZINC lead-like.
Experiment to test the run time influence of the molecule size. Plots are
box plots showing molecule size vs. run time for Ullmann and VF2. Both
algorithms are set to find all occurrences of a substructure. Molecules were
chosen at random from ZINC lead-like.
/results/subgraph/allPlots.lead-like.first.eps. Subgraph Search
Experiment ZINC lead-like.
Experiment to test the run time influence of the molecule size. Plots are
box plots showing molecule size vs. run time for Ullmann and VF2. Both
algorithms are set to find first occurrences of a substructure. Molecules
were chosen at random from ZINC lead-like.

Additional file 2: Supplementary Information (Additional file 2).
Table S1. Profile over the number of property occurrences of all 1235
SMARTS sub-structures.
Table S2. Profile over the number of property occurrences of 738 SMARTS
substructures without explicit hydrogens.
Table S3. Profile over the number of property occurrences of 497 SMARTS
substructures with explicit hydrogens.
Table S4. Profile over the number of property occurrences of 936 SMARTS
substructures without recursive atom environments.
Table S5. Profile over the number of property occurrences of 299 SMARTS
substructures with recursive atom environments.
Table S6. Profile over the number of property occurrences of 504 SMARTS
substructures without hydrogen atoms and without recursion.
Table S7. Profile over the number of property occurrences of 234 SMARTS
substructures without hydrogen atoms and with recursion.
Table S8. Profile over the number of property occurrences of 432 SMARTS
substructures with hydrogen atoms and without recursion.
Table S9. Profile over the number of property occurrences of 65 SMARTS
substructures with hydrogen atom and with recursion.
Table S10. Profile over the number of property occurrences of 469
SMARTS substructures used in ZINC lead-like benchmark set.
Table S11. Profile over the number of property occurrences of 347
SMARTS substructures with no hydrogen atoms and no recursion in ZINC
lead-like benchmark set.
Table S12. Profile over the number of property occurrences of 48 SMARTS
substructures with no hydrogen atoms and recursion in ZINC lead-like
benchmark set.
Table S13. Profile over the number of property occurrences of 56 SMARTS
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substructures with hydrogen atoms and no recursion in ZINC lead-like
benchmark set.
Table S14. Profile over the number of property occurrences of 18 SMARTS
substructures with hydrogen atoms and recursion in ZINC lead-like
benchmark set.
Table S15. Profile over the number of property occurrences of 588
SMARTS substructures used in ZINC everything benchmark set.
Table S16. Profile over the number of property occurrences of 400
SMARTS substructures with no hydrogen atoms and no recursion in ZINC
everything benchmark set.
Table S17. Profile over the number of property occurrences of 106
SMARTS substructures with no hydrogen atoms and recursion in ZINC
everything benchmark set.
Table S18. Profile over the number of property occurrences of 43 SMARTS
substructures with hydrogen atoms and no recursion in ZINC everything
benchmark set.
Table S19. Profile over the number of property occurrences of 39 SMARTS
substructures with hydrogen atoms and recursion in ZINC everything
benchmark set.
Table S20. Profile over the number of property occurrences of 16 PAINS
patterns.
Table S21. Profile for all 2516375 from ZINC lead-like.
Table S22. Profile for all 14059666 form ZINC everything.
Table S23. Profile 61500 molecules selected from ZINC lead-like for the
substructure search set.
Table S24. Profile 76800 molecules selected from ZINC everything for
substructure search set.
Table S25. Profile first 100000 molecules selected from ZINC lead-like.
Table S26. Ullmann search times in seconds for PAINS substructures as
SMARTS in optimized formulation against the complete ZINC lead-like.
Scaling factors (SFs) represent the speed up in comparison to the
sequential time.
Table S27. VF2 search times in seconds for PAINS substructures as SMARTS
in optimized formulation against the complete ZINC lead-like. Scaling
factors (SFs) represent the speed up in comparison to the sequential time.
Table S28. Ullmann match times in seconds of the PAINS Substructure Set
against the complete ZINC lead-like database. All 16 PAINS are given in the
original, an optimized, and an anti-optimized substructure formulation in
the SI.
Table S29. VF2 match times in seconds of the PAINS Substructure Set
against the complete ZINC lead-like database. All 16 PAINS are given in the
original, an optimized, and an anti-optimized substructure formulation in
Table 30.
Table S30. SMARTS expressions used in optimization experiment given as
taken from literature (original), optimized by the given rule set (optimized)
and anti-optimized applying the rule set in reverse (anti-optimized).

Additional file 3: Supplementary Information (Additional file 3).
Figure S1. Depiction of SMARTS pattern with no explicit hydrogens and
no recursion (top-left), explicit hydrogens and no recursion (top-right), no
explicit hydrogens and recursion (bottom-left), and with explicit hydrogens
and recursive atom environments (bottom-right). Depictions are created
by SMARTSViewer [42].
Figure S2. Visual dipiction of PAINS patterns 1-4 created with
SMARTSViewer [42].
Figure S3. Visual dipiction of PAINS patterns 5-8 created with
SMARTSViewer [42].
Figure S4. Visual dipiction of PAINS patterns 9-12 created with
SMARTSViewer [42].
Figure S5. Visual dipiction of PAINS patterns 13-16 created with
SMARTSViewer [42].
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Searching for Substructures in Fragment Spaces
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ABSTRACT: A common task in drug development is the
selection of compounds fulfilling specific structural features
from a large data pool. While several methods that iteratively
search through such data sets exist, their application is limited
compared to the infinite character of molecular space. The
introduction of the concept of fragment spaces (FSs), which
are composed of molecular fragments and their connection
rules, made the representation of large combinatorial data sets
feasible. At the same time, search algorithms face the problem
of structural features spanning over multiple fragments. Due to
the combinatorial nature of FSs, an enumeration of all prod-
ucts is impossible. In order to overcome these time and storage issues, we present a method that is able to find substructures in
FSs without explicit product enumeration. This is accomplished by splitting substructures into subsubstructures and mapping
them onto fragments with respect to fragment connectivity rules. The method has been evaluated on three different drug
discovery scenarios considering the exploration of a molecule class, the elaboration of decoration patterns for a molecular core,
and the exhaustive query for peptides in FSs. FSs can be searched in seconds, and found products contain novel compounds not
present in the PubChem database which may serve as hints for new lead structures.

■ INTRODUCTION

Finding molecules that fulfill specific structural or physico-
chemical features is of high practical interest in drug development.
Due to the large and still growing number of commercially
available and synthetically accessible molecule structures, effi-
cient algorithms for searching large data sets are becoming
more and more vital.1,2 Traditionally, huge compound sets are
maintained in large databases. Different computational methods
have been developed to efficiently search through these data
sets.3−14 One major application is the retrieval of molecules
that include a defined molecular substructure.
To efficiently process large databases, molecules are described

as graphs, where nodes denote the atoms and edges the con-
necting bonds. With such a representation, search algorithms
can take advantage of known graph theoretical concepts allowing
for an efficient graph comparison. The applied methods range
from matrix-based7 and backtracking algorithms11,12 for (sub)graph
isomorphism, over branch-and-bound,15,16 maximal clique,17

and dynamic programming algorithms18 for maximal common
subgraph calculations, to path and radial fragment enumeration19

for graph similarity search. Nevertheless, since the number of
molecules in the chemical universe is almost infinite, databases
can reach a critical size where iterative search strategies reach
their limits.
Alternative storage principles have been introduced, e.g., Markush

structures used in chemical patents. A Markush structure is
usually given by a core fragment with open valences and a list of
corresponding decoration fragments. A complete molecule is
constructed by attaching these fragments to the core until all
open attachment points are saturated. A more general concept
of such a combinatorial space is a f ragment space (FS). An FS

follows the approach of the retrosynthetical combination analysis
procedure (RECAP).20 RECAP describes distinct rules that
model chemical motifs which can easily be formed by combi-
natorial chemists. An FS is created by applying these rules to
separate molecules into fragments. Therefore, an FS consist of
molecular fragments with open valences and a set of rules defining
their possible combinations to products. For example, the BRICS
4k21 space comprises 4800 fragments and 64 connection rules.
Alternatively, FS can be designed from combinatorial chemistry22,23

describing reaction schemes in which building blocks are con-
nected prohibiting the formation of cyclic products. Even
though the number of fragments in an FS is small, their combi-
natorial properties allow for the construction of many different
products, e.g, enumerating all possible products with up to five
fragments in BRICS 4k yields 1016 molecules. That is a number
which is difficult to handle with a conventional database.
A small number of algorithms to process FSs exist. They

solve classical problems in cheminformatics such as the search
for similar molecules,24,25 the novel design of molecules,26−29

and the creation of FSs focused around target molecules.30−32

While methods to search for substructures in molecules
exist,7,11,12 methods browsing through FSs under substructure
constraints are rare. Three database systems have been pub-
lished to search patents for query structures, GENSAL,33−35

Markush Darc,36 and MARPAT.37,38 All systems hold Markush
structures retrieved from patent information and store them as
reduced graphs. Markush Darc restricts a query to an explicit
substructure, whereas MARPAT allows for the occurrence of
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variable and generic groups. Both search methods employ a two
step strategy, a screening phase based on limited-environment
fragments which is followed by an iterative atom-by-atom search
on the remaining structures. The major drawback of both search
strategies is their limitation to only handle Markush structures.
In more detail, both methods are designed to search the description
of core fragments with varying decorations. Unfortunately, the
concepts for storing patent information can not, at least without
significant modifications, be applied to FSs. An FS consists of
rules that may allow for the combination of all fragments and
therefore the number of possible products is much higher than
when only decorating a core fragment. The main challenge for a
substructure search method that processes FSs arise from the
possible combination of fragments. A query substructure might
not be directly present in any of the fragments but can be
constructed by joining two or more fragments into a product.
Therefore, the exploration of possible fragment connections
leads to a combinatorial large number of products that exceeds
the scope of todays computational facilities. Even if a method is
able to avoid product enumeration, the search over fragment
borders while directly processing connection rules is still a
complex task. The only method handling this task is described
in a US patent application39 from 2007. The algorithm uses a
modified Ullmann subgraph isomorphism algorithm that assigns
parts of the query substructure onto fragments and allows frag-
ment linkers to be assigned to multiple substructure nodes.
Multiple node assignment is resolved with respect to the FS
connection rules to construct products that contain the full
query substructure. Though, the overall algorithmic strategy is
similar to our work, neither the modifications to the Ullmann
algorithm nor the reconstruction of final products are described
in detail.
Here, we present a method for searching substructures in

fragment spaces that avoids product enumeration by directly
processing fragments and their connection rules. The method
finds all products that include a given substructure even if the
substructure spans over multiple fragments. The algorithm is
designed to minimize the number of explored fragment con-
nections to accomplish reasonable search times. The presented
method is evaluated in three tests that mimic different drug
development scenarios: the recovery of sulfonamides, a search
for new substituents of a kinase inhibitor core, and the retrieval
of peptide structures. All three tests are conducted in different
FSs, BRICS 4k, BRICS 20k, and the KnowledgeSpace.40

■ PRELIMINARIES
The structural formula is closely related to the mathematical
concept of graphs which allows for the direct application of
graph theory and algorithms. Therefore, some graph theoretical
concepts are introduced in the following.
Graph Theoretical Background. An undirected graph G =

(V, E) is a set of nodes V and edges E. Each edge e ∈ E
connects two nodes v1, v2 ∈ V. Two graph G1 and G2 are
isomorphic if and only if a one-to-one mapping between their
nodes V1 and V2 exists such that a pair of nodes v1, v2 ∈ V1 is
only connected if their images w1, w2 ∈ V2 are connected. An
induced subgraph of graph G = (V, E) is a graph G′ = (V′, E′)
composed of a subset of nodes V′ ⊂ V and edges E′ ⊂ E such
that every edge e = (v1, v2) ∈ E connecting two nodes v1, v2 ∈ V
is in E′ if and only if v1, v2 ∈ V′. An induced subgraph
isomorphism between a query graph G1 and a target graph G2
exists if G1 is isomorphic to an induced subgraph of G2, i.e., G2
contains G1.

A molecular f ragment graph consist of nodes and edges
representing atoms and bonds, respectively. Each edge connects
two nodes if a bond connects the corresponding atoms. Nodes
are labeled with atomic properties, e.g., atomic symbols, charge,
aromaticity, or by an open valence. Two fragments can be com-
bined at open valences to form a larger fragment or a molecule
that is a fragment with no open valences. Edges are labeled with
bond orders. The number of bonds an atom can form is bound
by the atom's valence. Therefore, the node degree of a fragment
graph is linearly bound. Note that we will refer to molecular
fragment nodes as atoms and to edges as bonds.
A substructure graph describes a molecular substructure like

a functional group or a molecular core. The graph describes
atoms and their connecting bonds by labeled nodes and edges.
Again, the node degree is linearly bound by the number of
bonds an atom can form. Note that a substructure graph does
not allow for the definition of stereochemical centers or alternative
mesomeric or tautomeric forms.

■ METHODS
A method searching for substructures in FSs has to find all
combinations of fragments that include the substructure of
interest. The presented algorithm divides a query substructure
in all possible substructure parts. These subsubstructures (SSSs)
are searched inside fragments avoiding the combination of frag-
ments to products. From all matches a solution is constructed
that describes possible fragment combinations that lead to prod-
ucts incorporating the query substructure. Finally, the algorithm
enumerates these products. In the following, each step of the
algorithm is explained in detail, as illustrated in Figure 1.

Substructure Separation. A procedure that searches for
substructures in FSs faces the problem that substructures might
span over multiple fragments. Due to the large number of
possible products, the direct examination of fragment connec-
tions is undesired. The presented algorithm avoids the combina-
tion of fragments during the search phase. It divides the query

Figure 1. Workflow of matching substructures in fragment spaces
(FS). A substructure is separated into subsubstructures. These are
matched onto fragments of the FS. On the basis of these matches,
recombination trees are constructed which form the basis for product
enumeration.
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substructure into subsubstructures. Subsequently, these SSSs
are directly mapped onto fragments such that substructure
separation points are assigned to fragment linkers. In a first
step, the algorithm identifies cut positions that split the query
substructure in cyclic and acyclic parts. The following search
procedure does not connect fragments into cycles and therefore
cyclic substructure parts are not separated. The preservation of
cycles is encouraged, since ring formation reactions from
combinatorial chemistry usually form the same ring which can
be modeled as an independent fragment. The separation
algorithm detects cyclic and noncyclic substructure parts using
a modified biconnected component (BCC) algorithm.41 A
BCC is either the collection of edges in a cycle or a single
acyclic edge. Cut positions are assigned to all acyclic edges
except edges to terminal hydrogen nodes. The resulting BCC
tree is ordered by a breadth-first-search (BFS) traversal starting
from an arbitrary BCC node. On the basis of the BFS order, the
method enumerates all possible BCC subtrees using a subtree
enumeration algorithm.42 Since BCC subtree nodes contain
substructure edges, an SSS is constructed from the substructure
nodes adjacent to edges present in the BCC nodes. Such an SSS
represents a part of the original query substructure. Removed
substructure parts are indicated by dummy link nodes. Link
nodes are labeled such that SSSs can be recombined to the
original substructure. Thereby, the method separates the sub-
structure similar to the generation of fragments from molecules.
Figure 2 shows a fragmentation example.
Subgraph Isomorphism Search. Since the substructure

separation step divides the query substructure into SSSs, the
subgraph isomorphism search must be transferred onto the
subsubstructure level as well. An FS only allows for a noncyclic
connection of fragments. Therefore, a substructure edge that
spans over such a connection must also be noncyclic. Since the
substructure separation step guarantees that all possible SSSs
are generated by splitting the substructure at noncyclic edges,
a matching procedure must only find SSSs occurring inside
fragments. Later on, these matches are connected to products
including the complete query substructure. The modified sub-
graph isomorphism algorithm12 matches each SSS against all
fragments of the FS (see also Figure 3). According to the
described substructure separation procedure, each cut position
of an SSSs is marked with a dummy link node. During this
search step, SSS nodes are subsequently assigned to fragment
atoms until all nodes have a corresponding atom. Dummy nodes
are only mapped onto fragment link atoms. Assuming compatible
links, matched fragments can be connected at link atoms to form a
product in the same way that SSSs can be connected to form the
query substructure. The result of the matching phase is a list of
matching fragments for each SSS referred to as the SSS match list.
Substructure Reconstruction. For the reconstruction of

the substructure, the algorithm examines the connectivity of

SSSs and fragments to ensure that the matched fragments can
be combined to a product containing the query substructure. A
valid combination is described by a recombination tree. In such a
tree, nodes are represented by SSS match lists. Two lists are
connected by an edge if and only if the corresponding SSSs can
be connected at dummy nodes and, at the same time, the link
atoms matched to the dummy nodes are compatible. In order
to achieve a low number of link examinations, the algorithm
splits lists that hold fragments with different matched link
atoms so that each resulting list holds only fragments with the
same link atom types matched to the same dummy nodes. This
procedure has the advantage that the link compatibility has to be
examined only once, no matter how many fragments are contained
in each list. Figure 4 shows an example of a recombination tree
which consists of two lists.

Product Enumeration. Each recombination tree represents
a substructure separation pattern and holds the corresponding
SSSs and fragments in its nodes. The tree’s topology describes
how SSSs can be connected to form the original query substructure.

Figure 2. Separation of a query substructure into subsubstructures (SSSs). From the query substructure, cyclic and acyclic components are identified
via a biconnected component algorithm. The algorithm assigns cut positions (red) and retrieves SSSs by enumerating all possible cut combinations.
The figure only depicts a subset of all possible SSSs.

Figure 3. Subgraph isomorphism search example of an SSS that is
matched against fragments of the FS. SSS dummy link nodes, labeled
with R1, are matched on fragment link atoms labeled L1. In this
example, an SSS is matched against three fragments. The result is a
match list holding the SSS (top) and two matched fragments (bottom).
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Therefore, fragments from these nodes can be connected
accordingly, and the resulting product is guaranteed to include
the full query substructure. For enumeration purposes, the
algorithm picks one fragment per node and concatenates the
fragments according to the connectivity of tree nodes. To avoid
multiple enumeration of equal products, the method reduces
the fragment lists stored in each node of the recombination tree
such that each fragment is contained only once. Fragments are
compared with regard to their orientation using a unique num-
ber assigned during the FS construction. Additionally, for each
generated product the enumeration procedure compares unique
SMILES strings.43 Thereby, equal products arising from different
recombination trees are identified and deleted. Repeating this
procedure for each recombination tree, the method enumerates
the smallest combination of fragments resulting in products
including the query substructure. Figure 5 shows a simple
enumeration example.

■ DATA SETS

The efficiency and usefulness of the presented algorithm to
search for substructures in FSs is demonstrated in three test
scenarios using three publicly available FSs. BRICS 4k and
BRICS 20k21 are generic FSs retrieved from retrosynthetical
decomposition of molecules, and KnowledgeSpace40 is compiled
from various synthesis protocols.
The breaking of retrosynthetically interesting chemical

substructures (BRICS) approach follows the RECAP concept
by describing 16 chemical environments containing different
link atoms and 64 rules for connecting them. Figure 6 depicts
an example of fragment prototypes and their possible connections.
BRICS 4k contains 4800 fragments, and BRICS 20k represents an
enrichment of BRICS 4k with an additional 17 200 fragments to
include a total of 22 000 building blocks. The BRICS spaces allow
the construction of an arbitrary amount of products. A general

Figure 5. Enumeration of a product from a solution tree. One fragment from each match list of the solution is chosen, and fragments are connected
according to their matched link atoms. The result is a molecule or a larger fragment (not shown) that includes the query substructure.

Figure 4. Recombination tree with two SSS match lists. Each list holds an SSS and fragments including that subsubstructure. The original query
substructure is constructed by connecting the SSSs at dummy link nodes labeled R1. A product can be formed by connecting one fragment from each
list at the respective link atoms labeled L1.
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measure to describe the size of an FS is the number of possible
products that include up to five fragments, which is about 1016

for the BRICS 4k space and even more for BRICS 20k.
KnowledgeSpace is based on 82 synthesis protocols obtained

from the literature. The protocols cover compounds of specific
targets, e.g., GPRCs, proteases, and kinases, as well as purely
chemistry-driven substances. KnowledgeSpace comprises 10876
fragments with 488 distinct chemical environments and 7130
connection rules. The chemical space covered reaches about
12 × 109 possible products.

■ RESULTS
The presented algorithm is tested on three different FSs for its
ability to supply alternating molecules of a defined chemical
class, different decorations of an arbitrary core, and the extrac-
tion of large macromolecules. The measurements include the
number of products present in each FS and the search and
enumeration times needed on a single Intel(R) Xeon(R) CPU
E5630 2.53 GHz core with 64 GB RAM.

■ EXPLORATION OF A CHEMICAL CLASS
Sulfonamides are the basis for several groups of drugs such as
antibacterials, anticonvulsant, and diuretics. Typical sulfona-
mides are sulfamethoxazole, sulfadoxine, and sulfasalazine. Even
though many sulfonamides are known, the search in FSs may
reveal novel members with diverse physicochemical properties.
Therefore, a substructure search of a sulfonamide defining pattern
(Figure 7) against BRICS 4k, BRICS 20k, and KnowledgeSpace, is

performed. Table 1 gives an overview of the results. The number of
single fragments containing the sulfonamide substructure is
rather small, e.g., 280 in BRICS 20k. Nevertheless, the com-
binatorial properties of an FS allow for the construction of

almost 108 sulfonamides by combining up to three fragments
from BRICS 20k.
Due to the chemical environment definition of the respective

FSs the maximal product size is limited to three fragments. All
three FSs only contain fragments with complete sulfone groups
and linking rules that allow the connection of a nitrogen to a
sulfone. Furthermore, BRICS contains sulfones with two at-
tached linkers but no linking rule allows the formation of a
methyl-sulfone. Therefore, the sulfonamide substructure only
spans over three fragments, one of them containing a methyl-
sulfone group. KnowledgeSpace allows for the connection of
carbon and sulfone but does not contain a sulfone with two
attached linkers. Therefore, either the methyl-sulfone or the
sulfonamide part must be inside a single fragment. Since all
three FSs contain a large number of sulfonamides (Table 1),
the potential to find an interesting compound is large. Figure 8

depicts examples from each FS, including commercially available
molecules as well as sulfonamides not present in the PubChem
database. The second group represents the majority of the
retrieved products, showing the potential of the algorithm to
find new lead compounds.

Figure 6. Subset of the BRICS fragment space connection rules.
Chemical environments and the corresponding linkers (L) are shown.
Omitted parts of environments are indicated with R, and X marks
generic atoms. A dotted line between two linkers indicates their
compatibility.

Figure 7. Query substructure defining the class of sulfonamides.

Table 1. Search Times, Enumeration Times, and the Number of Products with One, Two, and Three Fragments for a Search of
Sulfonamides in BRICS 4k, BRICS 20k, and KnowledgeSpacea

products

search time [s] enum time [m] 1 fragment 2 fragments 3 fragments

BRICS 4k 5.82 2.84 26 3.2 × 104 6.3 × 105

BRICS 20k 31.60 120.08a 280a 1.3 × 106 a 9.3 × 107 a

KnowledgeSpace 18.31 49.60 33 3.3 × 104 8.6 × 106

aEnumerations stopped at 20 million products due to memory limitations and the number of products is calculated from recombination trees with
unique fragments per node (no deduplication by enumeration).

Figure 8. Sulfonamide product examples in BRICS 4k (top), BRICS
20k (middle), and KnowledgeSpace (bottom). Molecules on the left
side are present in the PubChem database. Products on the right side
are shown with open valences. Open valences allow the attachment of
further fragments.
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The substructure search takes between 5 and 32 s to find all
fragments that can be combined to a sulfonamide in the respec-
tive FS. Enumeration times last from 2.8 min for 63 000 to 2 h
for 20 million products. These numbers demonstrate the usability
of the search method, especially when considering the large
number of products. Enumeration times are 2 orders of magnitude
higher in comparison to the search times. An enumeration pro-
cedure must account for the possibility that the same product
might be generated out of different fragment combinations.
Therefore, each enumerated product is checked for uniqueness
which is computationally expensive. Nevertheless, the enumeration
of 20 million products takes about two hours, which we consider
to be acceptable.
The options on how to further process the found products

are manifold. They might be subject to further steps in a drug
development process, such as similarity queries or molecular
property or fingerprint filters. Another option is the construc-
tion of a focused FS which itself provides valuable opportunities
for lead generation, e.g., allows the use of FS algorithms. In the
presented example, a focused FS contains the fragments used in
products found during the substructure search and represents
a space focused on sulfonamides. For example, a constructed
sulfone FS from products found in BRICS 4k contains 2986
fragments, which is 1.6-fold smaller than the original FS and
allows an analysis that is more focused on sulfonamides. In
general, the large number of products an FS can incorporate
makes such an analysis impossible on the set of enumerated
products.

■ MOLECULAR CORE DECORATION
The presented algorithm is well suited for the structure−activity
relation exploration of molecular cores. Given the core as
substructure, the search procedure generates products contain-
ing the core with different decorations. In this experiment, we
search for alternatives of Afatinib, shown in Figure 9, developed

by Boehringer Ingelheim for the treatment of solid tumors.
Afatinib is a tyrosine kinase inhibitor. More precisely, it interacts
with the epidermal growth factor receptor (EGFR) and the
human epidermal growth factor receptor-2 kinases.44 Figure 10
shows our definition of the basic core of Afatinib. Table 2

shows that the search retrieves 3900 and 38 967 different core
decorations from BRICS 4k and BRICS 20k, respectively. A
closer examination of the results shows that the 38 967 prod-
ucts retrieved from BRICS 20k include all 3900 products from
BRICS 4k. This is an expected result, since BRICS 4k re-
sembles a subset of BRICS 20k. KnowledgeSpace does not
contain any product with the desired core structure. Figure 11

shows randomly selected examples from the BRICS fragment
spaces. Molecules on the left side are examples documented in
PubChem as active against EGFR kinases. A detailed visual
inspection of EGFR kinase inhibitors obtained from the
PubChem database shows a protonated nitrogen present at
R3 of the core definition. A search for a redefined query reveals
that 418 out of the 3900 products in BRICS 4k and 3703 from
the original 38 967 in BRICS 20k follow this substitution
pattern. A query explicitly missing such a protonated hydrogen
retrieves the other 3482 and 35 264 products. Therefore, the
second query confirms the ability of the search algorithm to
retrieve an exact set of products. Search times are in a similar
range to the sulfonamide query with 4−40 s and enumeration
times of 0.7−8 s are much lower due to the lower number of
retrieved products. Again, the found products can be further
processed as described in the sulfonamide experiment. For
example, a focused FS from BRICS 4k and BRICS 20k would
contain 3388 and 16 461 fragments, respectively.

Figure 9. Afatinib structure.

Figure 10. Basic core of Afatinib. The decoration pattern is indicated
by the R-groups.

Table 2. Search and Enumeration Times for Unique
Decoration of the Afatinib Core in BRICS 4k, BRICS 20k,
and KnowledgeSpace

products

search time
[s]

enum time
[s]

1
fragment

2
fragments

BRICS 4k 4.86 0.72 7 3893
BRICS 20k 39.27 7.93 7 38960
KnowledgeSpace 19.57 0.00 0 0

Figure 11. Examples of Afatinib core decorations in BRICS 4k (top)
and BRICS 20k (bottom). Molecules on the left side are marked as
active against EGFR (top) and EGFR kinases (bottom) in the
PubChem database. Products on the right side are shown with open
valences. Open valences allow the attachment of further fragments.
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■ EXTRACTION OF MACROMOLECULAR
STRUCTURES

Oligopeptides are short polymers of amino acids connected by
peptide bonds. They are used as inhibitors for kinases, proteases,
and HIV-1 assembly.45 In order to demonstrate the abilities of our
method, we search the three FSs for oligopetides with six peptide
bonds, shown in Figure 12, requiring an N-terminus and a

C-terminus for the oligopeptides. 13.3 million and 1.9 billion
peptides are found in BRICS 4k and BRICS 20k as shown in
Table 3. Figure 13 shows randomly selected examples. Search
times of 1.35 min and 9.04 min are achieved on the respective
FSs. KnowledgeSpace does not contain any peptide-like
products. Since the run time is below 10 min for a search in
BRICS 20k, we conclude that even large FSs can be searched
with large query substructures in a reasonable time. However, a
fingerprint or fragment-based screening step prior to the actual
search removing fragments that cannot be part of the final
solution would be beneficial for such complex queries.
Enumeration times are 3 h for 13 million products and 4.7 h
for 20 million products. Nevertheless, run times in the range of
hours from a query substructure and a FS to a list of enumerated
products render this method very useful. At this point, it should be

noted that queries can span over multiple fragments and are not
restrained by size limitations.
Interestingly, 45 and 102 fragments form the focused FSs

from the search in BRICS 4k and BRICS 20k (see examples in
Figure 13), respectively. The low number of fragments show
that peptides are formed from few building blocks into billions
of products. Therefore, we conclude that both FSs allow the
extraction of peptides with arbitrary size by further extending
the peptides with more fragments.

■ CONCLUSIONS
We have presented a novel method that is able to search for
substructures in FSs. The method finds all products containing
a desired substructure even if the query substructure spans over
multiple fragments. The search is not limited in the substructure
size or the number of fragments forming a product. The con-
ducted experiments show that the search procedure is fast,
below 10 min for a peptide query, especially with respect to the
number of matches found and the number of possible products
contained in an FS. The computationally most expensive step is
the enumeration of products in order to generate a unique set.
Regarding the fact that billions of products needed to be compared,
we consider a run time of a few hours on a single core acceptable.
Since our test products needed to be kept in memory for
comparison, memory limitations where encountered at 20 million
products. This limitation can be solved by using appropriate
database technologies to store and compare enumerated prod-
ucts based on their unique SMILES identifier. Nevertheless, the
general applicability and usefulness of the method in a drug
development scenario has been demonstrated. The possible

Figure 12. Peptide query substructure.

Table 3. Search Times, Enumeration Times, and the Number of Peptides with Six Amide Bonds in BRICS 4k, BRICS 20k, and
KnowledgeSpacea

products

search time [m] enum. time [h] 1−5 fragment(s) 6 fragments 7 fragments

BRICS 4k 1.35 3.03 0 5.9 × 105 1.3 × 107

BRICS 20k 9.04 4.72a 0 6.4 × 107a 1.9 × 109a

KnowledgeSpace 5.90 0.00 0 0 0
aEnumerations stopped at 20 million products due to memory limitations and the number of products calculated from recombination trees with
unique fragments per node (no deduplication by enumeration).

Figure 13. Examples of peptides extracted from BRICS 4k (top) and BRICS 20k (bottom).
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products of an FS might be a valuable source of interesting and
novel molecules not contained in publicly available databases.
With respect to the number of retrieved matches, products
might be visually inspected or subject to further steps in drug
development such as analog searches or molecular property
filters. A valuable option is the creation of a focused FS from
the search results which reduces the number of fragments and
focuses the FS for further investigation.
The substructure search method handles explicit substruc-

tures quite well. Unfortunately, chiral and generic expressions,
such as substructure nodes that match a set of different molecule
atoms, alternative tautomeric forms, or atomic properties,
e.g., atoms with a defined number of neighbors, are currently
not supported. Another limitation of the method is the restric-
tion of cyclic structures occurring only inside fragments. The
algorithm will therefore not find structures describing large macro-
molecular cycles. In most cases, however, the formation of such
cyclic structures can be circumvented by a careful FS design.
Our future work will extend the search procedure to handle
substructure queries with variable atom and bond type definitions
as well as logical alternatives, e.g., alternative tautomeric forms,
such as present in the Smiles arbitrary target specification
(SMARTS).46
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(26) Schneider, G.; Cleḿent-Chomienne, O.; Hilfiger, L.; Schneider,
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ABSTRACT: Retrieving molecules with specific structural
features is a fundamental requirement of today’s molecular
database technologies. Estimates claim the chemical space
relevant for drug discovery to be around 1060 molecules. This
figure is many orders of magnitude larger than the amount of
molecules conventional databases retain today and will store in
the future. An elegant description of such a large chemical
space is provided by the concept of fragment spaces. A
fragment space comprises fragments that are molecules with
open valences and describes rules how to connect these
fragments to products. Due to the combinatorial nature of
fragment spaces, a complete enumeration of its products is
intractable. We present an algorithm to search fragment spaces for generic chemical patterns as present in the SMARTS chemical
pattern language. Our method allows specification of the chemical surrounding of an atom in a query and, therefore, enables a
chemically intuitive search. During the search, the costly enumeration of products is avoided. The result is a fragment space that
exactly describes all possible molecules that contain the user-defined pattern. We evaluated the algorithm in three different drug
development use-cases and performed a large scale statistical analysis with 738 SMARTS patterns on three public available
fragment spaces. Our results show the ability of the algorithm to explore the chemical space around known active molecules, to
analyze fragment spaces for the presence of likely toxic molecules, and to identify complex macromolecular structures under
additional structural constraints. By searching the fragment space in its nonenumerated form, spaces covering up to 1019

molecules can be examined in times ranging between 47 s and 19 min depending on the complexity of the query pattern.

■ INTRODUCTION

Various in silico applications in drug discovery are confronted
with the exploration of molecular databases. Often, the
identification of specific query molecules or the filtering of
databases according to predefined structural properties is of
interest. Hence, most chemical software tools support database
searches employing molecule, substructure, or chemical pattern
matching algorithms. With increasing size of molecular
databases, conventional molecule and especially chemical
pattern search1−12 becomes demanding concerning storage
and search time requirements. With some exceptions, e.g., the
Chemical Universe Database GDB-13, which comprises around
970 million entries,13 molecular databases generally store only a
few million compounds.14,15 However, the size of the chemical
space is estimated to be much larger. Reported numbers range
between 1018 and 10200 with a consensus around 1060 possible
structures,16−18 amounts that by far exceed the critical limit of
storage capacities provided by conventional databases. In order
to allow a sampling of the chemical space, efficient storage and
search strategies are required. Two concepts for this exist:
fragment spaces19−22 (FS’s) and Markush structures.23−26 Both
allow a very compact description by an efficient graph-based
representation of a large chemical space. Moreover, they enable

the application of efficient graph-matching algorithms for
molecular search.27−31

Fragment spaces are described by molecular fragments and
connection rules. In this context, a molecular f ragment is a
graph composed of nodes and edges that represent atoms and
bonds. Nodes are labeled with atomic properties, e.g., chemical
symbol, charge, or open valence, whereas edges are labeled with
bond orders. The number of edges attached to one node is
linearly limited by the number of bonds an atom can form.
Fragments possess link atoms that indicate open valences.
Larger fragments, which we refer to as products, or molecules
can be built by linking fragments according to their connection
rules. Molecules are products without link atoms. The
connection rules of an FS define how link atoms of different
types can be combined and, thus, which products are encoded
by the FS. Fragment spaces are obtained by retrosynthetic
cleavage of complete molecules and forming a consensus on the
resulting fragments. They intend to reflect the knowledge about
reaction schemes of combinatorial chemistry. The combinato-
rial nature of FS’s allows description of a large number of
molecules with only a few fragments and rules; for example, the
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BRICS 4k space21 containing 4800 fragments and 64
connection rules encodes over 1016 molecules.
The concept of Markush structures is quite similar to that of

FS’s. Markush structures are designed to represent a series of
homologous molecules. They usually consist of a single core
fragment containing R-groups that are open attachment points.
For each group, a list specifies alternative fragments or generic
structures, e.g., any alkene. In general, it is undesired to
explicitly enumerate the space encoded by Markush structures.
Thus, database systems storing Markush structures, e.g.
GENSAL,29 Markush Darc,30 and MAPRAT,28 process and
search entries avoiding an explicit enumeration.
Even though both concepts are quite similar, there is still a

need for exact molecule, substructure, and chemical pattern
search methods on FS’s. Methods that process and search
databases of Markush structures are not transferable to FS’s.
The main reason is that algorithms on FS’s require completely
resolved atoms of the fragments. This is contradictory to the
concept of generic substituents in Markush structures, as they
do not always have an explicit structural counterpart in the
graph description. Current algorithms operating on FS’s
support mainly similarity searching,31,32 the design of novel
molecules,33−36 and the creation of focused compound
libraries37−39 for virtual screening campaigns. Procedures for
substructure search in FS’s are rare. Domine and Cedric applied
for a patent for substructure searches in nonenumerated
chemical spaces that use a modified Ullmann algorithm to
assign parts of the substructure to fragments which are
subsequently reassembled into products.40 However, the patent

description misses details of the algorithmic concepts. We
recently introduced a similar method for substructure search in
FS’s.41 It recognizes the fact that a substructure can span over
multiple fragments and avoids an explicit enumeration of
products during the search.
The SMiles ARbitrary Target Specification (SMARTS),42 as

well as other chemical pattern languages such as the Sybyl Line
Notation43 or the Molecular Query Language (MQL),44

defines properties of atoms and bonds and the topology of
chemical patterns. Provided that the query in the form of a
textual line notation is transferred to a graph, chemical pattern
searches can benefit from graph matching algorithms.5,9,10,45

Graphs describing such chemical patterns are further referred to
as pattern graphs. As opposed to graphs representing molecules
or substructures, the nodes and edges can be labeled with a
generic description of atoms and bonds. The generic
description accounts for a broader spectrum of atom and
bond properties which can be combined in logical expressions.
A useful and practical feature of the SMARTS language is its
ability to specify recursive atomic environments. They describe
the molecular surrounding of an atom, e.g., a nitrogen that is
part of a sulfonamide group, and they are well suited to describe
local alternatives such as mesomeric and tautomeric forms.
Chemical atomic environments can be modeled as pattern
graphs assigned to nodes of a higher level pattern graph. Due to
the recursive nature of atomic environments, chemical patterns
can be nested in patterns. As a result, an exact pattern search
has to recursively traverse nested patterns in order to identify
matching molecules.

Figure 1. Pattern search for sulfonamides under additional structural constraints. The method utilizes a global search that scans the FS for the
pattern neglecting all atomic environments. The algorithm subsequently adds all environments. In an iterative procedure, a modified FS is created for
each recombination tree obtained from the global search. These spaces are searched for an environment pattern in a local search. The global tree is
modified using the local search results, which generates multiple trees. The procedure is repeated for all trees until all recursive environments are
fulfilled. From the final result, molecular products are enumerated to obtain complete molecules. (Substructure depiction created with
SmartsViewer.47)
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In this paper, we introduce the extension of our substructure
search algorithm for nonenumerated FS's41 with regard to
SMARTS queries with recursive atomic environments. In order
to promote a profound understanding, we initially overview the
workflow of our new method and briefly describe the
terminology and the basic concept of our previously introduced
search procedure. We continue with a step-by-step explanation
of the adaptations and extensions necessary to account for
atomic environments. The method is evaluated by three use-
case studies that simulate different molecular modeling
scenarios. Each of them is conducted on the BRICS 4k, the
BRICS 20k,21 and the KnowledgeSpace46 FS's. The results
demonstrate that the method creates subspaces in which all
molecules contain a specific chemical pattern. Concluding
studies on two publicly available data sets finally reflect the run
time behavior of our new method. At the current stage, a cyclic
connection of fragments and stereoisomeric chemical patterns
is not addressed by the algorithm.

■ METHOD
The search strategy for patterns with recursive atomic
environments follows the workflow depicted in Figure 1. In a
first step, named global search, the algorithm processes the
global pattern which is the query pattern neglecting the atomic
environment information. The obtained global result is
subsequently modified by atomic environment searches. An
atomic environment is a pattern that defines the chemical
surrounding of an atom expressed as recursive SMARTS. In the
following, we will refer to such an atom as the reference atom of
the environment. When searching in FS's, such an atomic
environment either can be found in fragments itself or might be
present in a combination of fragments. In the latter case, the
atomic environment can only be indirectly identified by
attaching additional fragments. In order to determine whether
an atomic environment exists and which case occurs without an
enumeration of products, the atomic environment search
follows a recurring three step procedure: a modified FS is
created from the global result, the new space is scanned for the
atomic environment pattern, and the obtained results are
combined. The search is repeated until all atomic environments

are fulfilled or no acceptable combination of fragments can be
found. Both searches utilize the generic search strategy to scan
FS's for patterns without atomic environment information. At
the end, the method enumerates the actual products.

Generic Search Strategy. In FS's a pattern can span over
multiple fragments. To avoid a time-consuming exploration of
fragment connections during the pattern search, the generic
search follows the previously described strategy41 by separating
the query pattern into subpatterns (SP's), similarly to the
separation of molecules into fragments. An SP is a connected
part of the original pattern in which cyclic parts are fully
contained and missing pieces of the pattern are indicated by
dummy link nodes. The actual subgraph isomorphism step is a
search that matches SP's against fragments and assigns dummy
link nodes to fragment link atoms, avoiding the costly
exploration of fragment link connections. The method records
a list of matching fragments for each SP. Since the fragments of
a list might have different link types assigned to the same
dummy node, the lists are split to obtain smaller lists with
unique underlying fragment linkers. This procedure has the
advantage that the link compatibility has only to be checked
once, no matter how many fragments are stored in each list. In
preparation for the reconstruction process of molecules
containing the complete query pattern, these lists are used as
nodes to build a recombination tree. Each node stores fragments,
an SP, and its possible assignments to fragments. In a
recombination tree, two nodes are connected if and only if
their SP's can be connected according to the connectivity of the
query pattern and if the fragment link atoms are compatible
according to the connection rules of the FS. The nodes are
connected by two half edges. Each half is labeled with the
dummy node of the SP and the corresponding link atoms.
Therefore, a recombination tree describes a separation of the
pattern and the associated combination of fragments. Since a
pattern can be separated in various ways which lead to different
sets of SP's, the result of the search is a collection of
recombination trees describing a subspace of the searched FS.
Figure 2 shows an example of a recombination tree.

Global Search. The global search scans an FS for the
presence of the global pattern. It utilizes the generic search

Figure 2. Recombination tree gained from a sulfonamide query search. The tree contains three nodes, each holding an SP, corresponding fragments,
and the assignment of the SP to the fragments. The SP's are compatible at dummy link node R1, respectively R2, to form the sulfonamide query
pattern. Fragments can be connected via linker L1, respectively L2, to form a sulfonamide product.
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strategy to gain a set of global recombination trees that describe
combinations of fragments that include the global pattern but
omits the atomic environment information. The environments
of reference atoms are resolved by atomic environment
searches.
Atomic Environment Search. Atomic environments of

reference atoms occurring in the resulting trees are resolved by
a three-step iterative procedure: for each combination of an
atomic environment and a global recombination tree, a
modified FS is constructed. The new FS enforces the
combinations of fragments described by the tree. After the
creation, the space is scanned with the local search strategy for
the respective environment pattern. The result is a set of local
recombination trees. As described below, each local tree is
combined with the global tree to describe matches that include
the global pattern and obey the environment information. The
method repeats this process of FS creation, search, and result
combination until all atomic environments are processed. The
final result is a collection of recombination trees describing a
portion of the FS that includes products incorporating the
query pattern with regard to the environment information.
The SMARTS pattern language allows the use of atomic

environments in combination with logical expressions such as
logical NOT, AND, OR, and WEAK-AND. A logical WEAK-
AND is a SMARTS specific term that serves as a replacement
for a logical grouping of AND and OR terms; for example, the
term “AWEAK-AND B OR C” represents “A AND (B OR C)”.
Such a definition is internally resolved into a disjunctive normal
form (DNF) that only contains logical NOT, AND, and OR,
e.g., “A AND B OR A AND C”. In addition, each ANDed term
is sorted such that non-negated environments precede negated
environments. In the following, we describe the iteratively
performed modification of a single global recombination tree
depending on the logical markup given by the DNF. The other
trees of the global result are accordingly modified. Figure 4
gives a schematic example.
The highest logical level of a DNF is a logical OR that

combines logical terms in which negated and non-negated
atomic environments are exclusively ANDed. If logical terms
are ORed, they enforce the presence of an environment
described by at least one of the terms. For each ORed term, the
global recombination tree is duplicated and modified according
to the logical AND description of the term. Therefore, the
duplicated tree is updated to obey the atomic environments of
the term. The final result is a collection of recombination trees
describing the smallest combinations of fragments that include
the query pattern and fulfill the logical specification of all
atomic environments.
One level down in a DNF is a logical AND connecting,

potentially with logical NOT negated, atomic environments. If
environments are logically ANDed, the global recombination
tree must be modified to simultaneously obey multiple atomic
environments. The procedure processes environments in the
essential order of non-negated followed by negated environ-
ments. For every non-negated environment, the inclusion of a
single environment results in a modified global recombination
tree in which fragments that contradict the AND description
are removed from the nodes or additional fragments are
attached to ensure that the environment is present. This
inclusion modification is repeated on the resulting tree for each
non-negated environment. If environments are negated, they
have to be explicitly excluded from the recombination trees.
The exclusion of a single environment from a tree results in

multiple recombination trees. For each tree resulting from an
exclusion, the next environment is excluded until all negated
environments are processed. The result is a set of
recombination trees that describe products including the global
pattern and all logically ANDed environments.
In the following, we explain one iteration of the atomic

environment search for the modification of a recombination
tree to obey a single negated or non-negated environment
specification. Recursively defined environments that define the
surrounding of a reference atom with another atomic
environment enforce an additional search. In such a case, the
current local pattern is treated as the global pattern and the
additional environment pattern is subjected to the atomic
environment search.

Modifying the Fragment Space. A pattern that spans over
multiple linkers might define an atomic environment that also
spans over a number of fragments. A search method must
therefore detect the common set of fragments and link atoms
between trees obtained from the global and local search to
decide whether the atomic environment exists or if compatible
fragments need to be added to satisfy the atomic environment
specification. This problem is addressed by creating a modified
FS from a recombination tree. Such a space includes all
fragments and link rules from the original space. In addition,
the space contains all fragments of the tree in a modified
fashion: the matched link atoms of its matching fragments are
renamed, and connection rules are added that only allow the
combination of these fragments according to the recombination
tree. Unmatched link atoms are also renamed, and rules that
prohibit a linkage to other matched fragments are formulated. A
connection to unmatched fragments according to the original
link connections is still possible to allow the further attachment
of fragments. The renaming scheme allows a clear differ-
entiation between matched and unmatched linkers. Figure 3
illustrates the process of constructing a modified FS.

Local Search. After constructing the modified FS, the
method searches for the associated atomic environment pattern
in the modified space. For the atomic environment under
consideration, first all reference atoms have to be identified
using the recombination tree. The search starts at such an atom
in the corresponding fragment and proceeds using the generic
search to detect the atomic environment pattern in the
modified FS. The result is a set of local recombination trees
which can be empty, indicating that the environment was not
found. Otherwise, each local tree of the set contains modified
fragments from the global recombination tree or unmodified
fragments. If fragments from the global tree are identified, a
connection to other fragments is only possible via renamed
linkers. Since the renaming allows a clear differentiation
between matched and unmatched linkers, the common set of
fragments and linkers in the global and local recombination
trees can be detected, which allows the following combination
of results.

Combining Recombination Trees. From the global and the
local search the obtained matches are represented by a global
recombination tree and a set of local recombination trees. The
aim of the next step is to combine these recombination trees
such that they describe the matching of the global pattern
including the atomic environment represented by the local
trees. If the set of local recombination trees is empty and the
corresponding atomic environment is not negated, the global
tree is discarded because the atomic environment was not
found. If the environment is negated, the global tree is not
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modified. Otherwise, each local recombination tree is
subsequently superimposed with the global recombination
tree as follows: both trees share at least one common fragment,
the fragment containing the reference atom. Initially, the
associated pair of tree nodes are superimposed, and
subsequently, their incident edges are searched for equally
renamed linkers. This procedure ensures that both the global
and the local match use identical linkers to attach the same
fragments. The superimposition proceeds for adjacent nodes
containing fragments that can be attached by equally renamed
linkers. If linkers have no appropriate counterpart, the node is
not superimposed. Figure 4 shows an example for the
superimpositions of recombination trees.
For each superimposition of the global and a single local

recombination tree, the procedure modifies the global tree
depending on the logical markup of the atomic environment
pattern. If an environment is non-negated, the molecular
surrounding of the reference atom must be included in the
global recombination tree. An inclusion demands that the global
recombination tree is modified to describe combinations of
fragments that include the global pattern and the atomic
environment pattern at the same time. To generate such a tree,
the procedure intersects the set of matched fragments
associated with superimposed nodes and stores the resulting
set in the corresponding global tree node. If the resulting set is
empty, the global tree is discarded. Local tree nodes not
superimposed are attached to the global recombination tree in
order to add fragments that fulfill the atomic environment
specification.
If an atomic environment is negated, it must not exist around

the reference atom. In order to exclude it, multiple
recombination trees are generated. For each local tree node,

the global tree is duplicated. The procedure modifies this tree
copy according to the currently chosen local tree node: if it was
previously superpositioned, the set exclusion of the local
fragments from the global fragments is stored in the
corresponding node of the tree copy. If the exclusion generates
an empty set, the tree copy is discarded. Otherwise, the node
stores only fragments that include the global SP but do not
contain the atomic environment SP. Consequently, the full
environment is not formed when the fragments of the tree copy
are connected. To exclude the environment of a node that is
not superimposed, a new node is attached to the tree copy that
stores an inversion of the matched fragments present in the
current local tree node. A set of fragments is inverted by
excluding the set from all fragments of the FS that are
compatible with the current linker. Again, if the inversion
results in an empty set, the tree copy is not further considered.
If such a node is not directly attached to a superimposed node,
the path to this node is attached to the copy of the global tree
and the set of fragments of the node is inverted.
Creating a new tree for every node related to the excluded

atomic environment generates all trees that describe matches
that do not include the negated pattern. Even if additional
fragments are attached to these products, the environment is
guaranteed to not emerge around the reference atom.

Example: Atomic Environment Search. Figure 4 shows
four iterations of the atomic environment search. In this
example, the global search resulted in a global recombination
tree (white). This tree is extended to follow the logical
expression “X AND Y OR Z AND NOT W” that specifies the
environment of an atom. We assume this reference atom is
contained in fragments localized in the set A of the global tree.
In the first iteration, the atomic environment specification X is
detected utilizing the local search on a modified fragment space
and the search results in the blue tree. The white and the blue
trees are superimposed. The inclusion of the first environment
X (blue) in the global tree is realized by intersecting the
fragment sets A and D. The resulting set stores fragments that
simultaneously contain the global SP and the atomic environ-
ment SP of X. The fragments stored in E are attached to the
global tree, to complete the atomic environment X.
In the following two iterations, the resulting intermediate

tree (gray) is modified to include the atomic environment Y
(turquoise and yellow). Since the local search for the
environment Y gains two recombination trees, the intermediate
tree is duplicated and the copies are extended to include the
associated atomic environment in the second iteration: the first
turquoise environment is present in a subset of fragments
contained in the intermediate tree; therefore, the corresponding
sets of fragments are intersected. The second turquoise
environment is partially contained in the set A ∩ D and E.
These sets are intersected, and the fragments in set K are
attached. The two resulting green trees describe products that
obey the complete logical specification, since the second part of
the logical environment specification is ORed.
The third iteration processes the second part of the logical

OR term. The global recombination tree is duplicated and the
atomic environment Z represented by the purple tree is
included. The atomic environment W is negated; accordingly
the fourth iteration detects the combinations of fragments that
contain the atomic environment (red tree) and generates the
trees that exclude the respective environment. The result of the
exclusion is a set of four trees. In the first of these trees, the
atomic environment is excluded by removing the fragments in

Figure 3. Modification of an FS after a sulfonamide search. The
original FS is enriched with three fragments obtained from the
recombination tree. These fragments are modified such that the
matched link atoms L1 and L2 are renamed to L1′ and L2′ and a
connection rule is added that only allows a connection of the two
shown fragments to form a sulfonamide. The unmatched link atom L2
is renamed to L2″ such that a linkage to matched fragments is
prohibited and connections to other fragments are still allowed; for
example, if L2 is compatible to L1, the new FS allows a connection of
L2″ to L1 but not to L1′. Note that all products previously included in
the FS are still contained in the modified FS, since no fragments or
rules are removed.
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set O from the fragments in set A ∩ L. Therefore, any
fragments can be attached at fragments of set (A ∩ L)\O and
the atomic environment W will not emerge. In the second
exclusion tree, the inversion of set P is attached, which prohibits
the formation of atomic environment W. In the last two
exclusion trees, the modification attaches the path to tree nodes
and stores the inversion of sets N and Q. All green trees in
Figure 4 describe combinations of fragments that follow the
complete logical environment specification and depict the result
of processing the atomic environment for a reference atom. If
the overall query pattern includes additional atomic environ-
ments, these are processed in subsequent iterations similar to
the described example.
Enumeration of Products. In the final step of a pattern

search, the resulting recombination trees are converted into the
set of products containing the search pattern. A product is a
fragment or a molecule constructed by connecting fragments. A
recombination tree describes such a combination of fragments
and holds a list of fragments in each node. Moreover, each node
stores possible assignments of the SP to fragments. Since an SP
may be assigned to the same fragment in different ways which
would result in the enumeration of the same product, the
enumeration procedure discards such assignments and removes
duplicate fragments with regard to their orientation. Afterward,
nodes store only unique sets of fragments. For the enumeration

of products from each recombination tree, the algorithm
subsequently selects one fragment from every node and
connects these fragments according to the recombination tree
topology. Even though the fragment sets are unique during that
selection step, the combination of different fragments might
still lead to the same product, for example, fragments selected
from different recombination trees. In order to detect equal
products and to circumvent memory limitations, the products
are stored in a persistent database using unique SMILES as
database keys. A single product represents the smallest
fragment composition that contains the pattern of interest.
Such a product may still contain open valences that allow a
further attachment of fragments or that can be saturated with
hydrogen atoms to form a complete molecule.

■ DATA SETS

We evaluated our search method in three use-case examples
and additionally in a large scale experiment containing 738
SMARTS patterns.45 All four experiments were conducted on
three different FS's. The breaking of retrosynthetically
interesting chemical substructures (BRICS)21 follows the
RECAP19 approach and comprises 16 types of link atoms
and 64 connection rules. The number of fragments varies from
4800 for BRICS 4k to 22000 for BRICS 20k. Even though both
FS's contain a relatively small number of fragments, link types,

Figure 4. Example showing four iterations of the atomic environment search to include an atomic environment description of the form “X AND Y
OR Z AND NOTW”. The white tree shows the global recombination tree. The logical parts of the atomic environment descriptions are color-coded
in blue, turquoise, purple, and red (top). Intermediate trees are gray. Combined trees that represent the result of the four iterations are shown in
green. The letters A to Q represent the sets of fragments contained in nodes of recombination trees. Expressions such as A ∩ D indicate the set
resulting from intersecting the fragment sets A and D. Fragment sets such as all\P hold all fragments of the fragment space compatible at the current
linker without fragments of corresponding set P.

Journal of Chemical Information and Modeling Article

dx.doi.org/10.1021/ci400107k | J. Chem. Inf. Model. 2013, 53, 1676−16881681



and connection rules, the number of products that can be
created from theses spaces is arbitrarily large. A general
measure for an FS is the number of products that can be
created using up to five fragments. BRICS 4k and BRICS 20k
contain 1016 and 1019 of such products, respectively. The
KnowledgeSpace is a combination of 82 chemical synthesis
protocols and contains 10876 fragments, 488 link types, and
7130 connection rules. Due to its chemical source, the
KnowledgeSpace covers about 1.2 × 1010 products that are
presumably synthetically accessible.

■ RESULTS
The following experiments reflect drug development scenarios
in which a chemical pattern search is of central interest. In each
experiment, FS's are searched for molecules that include a user-
defined query pattern. We automatically verified that only
molecules including the query were retrieved. The tests reveal
insides on the algorithmic run time of our search method and
show its general applicability in drug development.
The measurements are intended to reveal dependencies on

the number of products contained in an FS and evaluate the
search and enumeration times on a single Intel(R) Xeon(R)
CPU E5630 2.53 GHz core. The recorded times only comprise
the search and the enumeration but exclude preprocessing, e.g.,
molecule and pattern initialization, and I/O times.
Exploration of Chemical Homologues. The search for

molecules that follow specific structural constraints is often
applied after a molecular core or chemical class of interest has
been experimentally identified. Since FS's contain many
molecules that are present neither in vendor catalogs nor in
in-house databases, a subsequent search can reveal novel
molecules.
We designed our first use-case example to reflect such a

screening and queried three different FS's for the presence of
two common sulfonamides, sulfachlorpyridazine and sulfa-
chlorpyrazine, as depicted in Figure 5. An initial exact search

revealed that both molecules are not contained in either of the
three spaces. Nevertheless, the FS's might encode homologue
compounds of interest. Therefore, we refined the query as
shown in Figure 6 to describe sulfonamides with specific ring
systems as present in sulfachlorpyridazine and sulfachlorpyr-
azine and queried the FS's again. Table 1 summarizes the
number of products obtained from the three searches. The two
BRICS spaces contain a small number of such sulfonamides, all
composed of two fragments joined at the bond between sulfur
and nitrogen of the sulfonamide group. This connection is
directly defined in the BRICS connection rules. Many of these
molecules are similar to sulfachlorpyridazine and sulfachlorpyr-
azine. Figure 7 shows examples of the extracted molecules and
products. The products still include open valences which allow
for the further attachment of fragments to obtain even larger
molecules and to forward them to lead optimization.

Search times ranged from 3.8 to 47.9 s and enumeration
times from 0.08 to 0.7 s. With regard to the large number of
possible products contained in each FS, 2.6 × 106 and 1.7 × 108

products with up to two fragments in BRICS 4k and BRICS
20K, respectively, the search times are below 1.5 ms for each
product. (The number of possible products with n fragments
was numerically calculated with respect to the link types and
connection rules. It describes all theoretically possible
combinations of up to n fragments, taking into account the
connection topology when more than three fragments are
connected.) Conventional database searches need around 0.04
ms per molecule,45 which is in comparison to our search times
about 27 times slower. However, a search only supplies a
combination of fragments and the corresponding connection of
link atoms. If explicit products are required, the relative search
times per product moreover include the enumeration and then
range around 1.6 ms per product. Nevertheless, an FS in
combination with the described search procedure enables a fast
pattern search of an arbitrarily large number of molecules in a
reasonable time.

Detection of Undesired Products. Since FS's cover a
large number of molecules, they might also include compounds
that are inappropriate for drug development. They might have
undesired physicochemical or structural properties, for example,
contain reactive functional groups. Figure 8 shows a pattern
that describes skin toxic molecules.48 A pattern search revealed
that both BRICS spaces in fact contain a large number of skin
toxic products while the KnowledgeSpace only contains 29
such molecules (Figure 9). Table 2 shows an overview of the
search results. The composition of the products with up to five
fragments retrieved from the BRICS spaces is due to the
generic pattern definition that constructs products involving
multiple connection rules. The KnowledgeSpace is much more
restricted on how fragments can be connected, and thus, the
query leads to a significantly smaller number of skin toxic
products. In addition, the KnowledgeSpace originates from
chemical synthesis protocols in which toxic products are rather
unlikely.
The search times are in accordance with the first experiment

and range from 2.0 s to 1.3 min. At the first sight, the
enumeration times, especially in BRICS 20k, are surprisingly
high with about 6.3 days for 2.3 × 108 products. However,
considering that the method enumerated over 200 million
products, the average enumeration time per product is 2.3 ms.
Therefore, the enumeration time is 1.4 times higher compared
to the first experiment, which is a result of the additional
demands on the persistent product database when millions of
products need to be compared.
Fragment spaces are often used to supply new directions in a

drug discovery process. Obviously, only molecules free of
reactive groups are suited for lead optimization, and therefore,
the number of reactive molecules should be as small as possible
in a utilized FS. Our method allows a quantification of products
contained in an FS's that include user-defined reactive groups.
Moreover, the results in the form of recombination trees
obtained from such a search reveal how such reactive products
are composed. This information can be used to optimize the FS
by modifying the connection rules to reduce the formation of
toxic products.

Extraction of Macromolecules under Structural
Constraints. Besides small molecules, FS's contain a number
of large macromolecules such as oligopeptides. Oligopeptides
are used as inhibitors for protein targets such as kinases,

Figure 5. Structure of sulfachlorpyridazine and sulfachlorpyrazine. The
ring systems used in the SMARTS query are indicated with A and B.
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proteases, and HIV-1 assembly.49 In order to show the ability of
our method to handle large query patterns including a number
of atomic environments, we searched each FS for the
occurrence of tripeptides. The search was restricted to identify
only tripeptides with specific hydrophobic side chains. Figure
10 depicts the associated query pattern. Table 3 and Figure 11
show that all three FS's contain such tripeptides: BRICS 4k
allows the construction of 6 unique peptides. As expected from
the higher number of fragments contained in BRICS 20k, the
number of found tripeptides rose to 88 products. The largest
number of tripeptides was identified in the KnowledgeSpace
with 256 molecules. The search times ranged between 45.58 s
and 19.03 min. Even though the number of retrieved products
was relatively small, the method indirectly considers all possible

products with up to five fragments, i.e., 2.3 × 1016 in BRICS 4k,
1.3 × 1019 in BRICS 20k, and 1.2 × 1010 products in the
KnowledgeSpace. Assuming that the search would be
performed in a fully enumerated space, a single product of
the FS was scanned in 1.98 fs in BRICS 4k, 0.09 fs in BRICS
20k, and 82.6 ns in the KnowledgeSpace.

Run Time Statistics. Besides the selected use-case
examples, we extensively evaluated the run time of our
algorithm with 738 additional searches on all three FS’s. The
employed SMARTS patterns comprise 504 patterns without
and 234 patterns with atomic environment definitions.45 An
overview of the search times in BRICS 4k, BRICS 20k, and
KnowledgeSpace is presented in Figure 12. Hydrogens are
implicitly contained in the patterns. The histograms show that
the algorithm finished 95% of the queries without atomic
environments in below 7 s in BRICS 4k, below 300 s in BRICS
20k, and below 200 s in KnowledgeSpace. The median search
times for a single query ranged between 0.06 and 3.2 s and the

Figure 6. Sulfonamide pattern with two different ring systems defined as recursive atomic environment. The sulfachlorpyridazine ring system is
marked with A and the sulfachlorpyrazine with B. The SMARTS string is given in the Supporting Information as “sulfonamides”. Figure created with
SmartsViewer.47

Table 1. Results Querying for Sulfonamides with Restricted
Ring Systems

products

search time
(s)

enum. time
(s)

1
fragment

2
fragments

BRICS 4k 3.84 0.08 0 49
BRICS 20k 47.90 0.70 0 446
KnowledgeSpace 17.81 0.00 0 0

Figure 7. Examples of sulfonamide molecules (left) and products
(right) retrieved from BRICS 4k (top) and BRICS 20k (bottom).

Figure 8. A SMARTS pattern describing skin toxic compounds.48 All
red atomic environments are forbidden at position 1. At least one of
the blue environments must be present at position 2 in the retrieved
products. The SMARTS string is given in the Supporting Information
as “skin toxic”. Figure created with SmartsViewer.47
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maximum between 8.7 and 27.9 min. The time needed to
retrieve the desired products drastically rose when atomic
environments were defined in the patterns. In these cases, 95%
of the queries were finished in 10 min in BRICS 4k and in 2.8 h
in BRICS 20k and 8.3 h in KnowledgeSpace. Four instances
were aborted after the time limit of 48 h of computational time
was reached in BRICS 20k and KnowledgeSpace. These
instances were excluded from the median and maximum search
time calculations. Median search times for a single query ranged
between 8.3 s and 3.6 min, and the maximum ranged between
12.4 and 21.2 h. The SMARTS expressions of the patterns that
exceeded the time limit are given in the Supporting Information
as Smarts1, Smarts2, Smarts3, and Smarts4. A detailed
inspection of Smarts1 and Smarts2 showed that these patterns
are of exceptional size and include an outstanding number of
atomic environments. In general, both features lead to a
dramatic increase in search time. The recursive definitions in
Smarts3 of the nitrogen nodes are unfortunate for the
algorithm, since they result in a lot of matches that all had to
be inspected. We rewrote the pattern (Smarts3′) with an
explicit specification of nitrogen nodes which drastically
reduced the search time. The pattern was then found in 21.5
min and in 1.2 h in BRICS 20k and KnowledgeSpace,
respectively. Smarts4 defines a small symmetric pattern with
equal atomic environment definitions in both nodes. The
atomic environments are quite generic and lead to over a billion
matches that have to be combined into a global match. As a
result, the run time exceeds the limit of 2 days.
Obviously, the search times strongly differ between BRICS

4k and the other two FS's. This result is not surprising since
BRICS 20k includes about five times more fragments and
allows the construction of 100 times more products. All of
these products had to be indirectly considered during the
search. KnowledgeSpace contains fewer products than BRICS
4k but uses about 30 times more link types and over 100 times
more connection rules. The results of KnowledgeSpace led to

the conclusion that not only the number of possible products
influences the run time but also the complexity of the FS in
terms of the number of link types and connection rules.

■ CONCLUSIONS

The presented algorithm allows an exact search of chemical
patterns in nonenumerated chemical spaces. The method
supports generic queries with a recursive definition of atomic
environments. These atomic environment specifications are
sometimes essential for a clear definition of desired chemical
patterns. The algorithm identifies the smallest combinations of
fragments in an FS for which the corresponding products
include the query pattern and obey the atomic environment
definitions. The conducted experiments show the applicability
of our method to explore chemical homologous, to sample an
FS for the occurrences of toxic molecules, and to search for
macromolecular structures under structural constraints. In
general, large chemical spaces can be searched to identify
molecules with desired structural features in reasonable times.
However, the search times depend on the complexity of the
patterns in terms of size and the number of atomic
environments. The complexity of the searched FS with regard
to the covered chemical space, the number of link types and
connection rules, and the number of products that follow the
query pattern has an impact on the search times, as well. In rare
cases, the search times exceed a critical limit. As shown in the
Supporting Information, such queries are complex and generic
and include a large number of atomic environments. However,
they are quite rare in practice.
At the current stage, the algorithm enforces a noncyclic

connection of fragments to products which is in agreement with
most FS processing algorithms and currently available FS's.
Nevertheless, in special cases the formation of macromolecular
cycles might be wishful. Stereoisomers are currently not
addressed by our algorithm. In general, the assignment of a
stereocenter is not possible during the connection of fragments,

Figure 9. Examples of skin toxic molecules and products retrieved from BRICS 20k. Parts matching the pattern are in color. Former fragment
boarders are indicated by purple lines.

Table 2. Results of a Query Describing Skin Toxic Compounds

products

search time (s) enum. time (h) 1 fragment 2−3 fragments 4−5 fragments

BRICS 4k 2.07 0.09 1 9.7 × 104 1.2 × 105

BRICS 20k 77.61 150.40 21 5.0 × 107 1.8 × 108

KnowledgeSpace 4.03 0.05 5 24 0
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since an additional fragment can create a molecular symmetry
that causes stereocenters to vanish. The assignment of
stereocenters is only possible on the basis of molecules. Since

the search method primarily supplies products, a final
correspondence between query and molecule stereocenters
can only be part of a postprocessing step.
The options to further process the search results are

manifold. Products retrieved from a search provide open
attachment points for a follow-up lead optimization. For direct
use of the products, the attachment points can be saturated
with hydrogen atoms to obtain explicit molecules. Moreover,
the intermediate result in the form of a set of recombination
trees is a valuable source to modify the corresponding FS. The
recombination trees represent the connection patterns of
fragments that lead to products following the query. With this
information it is possible to modify the connection rules and,

Figure 10. Tripeptide backbone pattern with the restriction to hydrophobic side chains. Atomic environment: (A) leucine; (B) valine; (C) alanine;
(D) methionine; (E) isoleucine; (F) phenylalanine; (G) tryptophan. The SMARTS string is given in the Supporting Information as “oligopeptides”.
Figure created with SmartsViewer.47

Table 3. Results of Querying for Tripeptides with
Hydrophobic Side Chains

products

search
time (m)

enum
time (s)

1
fragment

2−3
fragments

4−5
fragments

BRICS 4k 0.76 0.08 0 6 0
BRICS 20k 19.03 0.16 0 50 38
KnowledgeSpace 16.51 0.34 0 256 0
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thus, to focus or extend the underlying FS. The recombination
tree might even allow the detection of common products
encoded by multiple FS's.
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The intuitive way of chemists to communicate molecules is via two-dimensional structure diagrams. The
straightforward visual representations are mostly preferred to the often complicated systematic chemical
names. For chemical patterns, however, no comparable visualization standards have evolved so far. Chemical
patterns denoting descriptions of chemical features are needed whenever a set of molecules is filtered for
certain properties. The currently available representations are constrained to linear molecular pattern languages
which are hardly human readable and therefore keep chemists without computational background from
systematically formulating patterns. Therefore, we introduce a new visualization concept for chemical patterns.
The common standard concept of structure diagrams is extended to account for property descriptions and
logic combinations of chemical features in patterns. As a first application of the new concept, we developed
the SMARTSviewer, a tool that converts chemical patterns encoded in SMARTS strings to a visual
representation. The graphic pattern depiction provides an overview of the specified chemical features,
variations, and similarities without needing to decode the often cryptic linear expressions. Taking recent
chemical publications from various fields, we demonstrate the wide application range of a graphical chemical
pattern language.

INTRODUCTION

Countless applications in various chemical fields depend
on representations of molecular patterns. These extremely
powerful specifications of a set of chemical features range
in complexity from very simple substructure descriptions in
analyses of molecular similarity up to elaborate logical
combinations of functional groups in drug design approaches.
The two-dimensional (2D) depiction of molecules as structure
diagrams aids chemists to get a quick estimation on the
chemical characteristics of compounds despite apparent
complicated names. Structure diagrams are often called as
being the language of chemistry. However, no comparable
standard strategies for visualization of chemical patterns exist
so far. Our aim is to initiate a discussion within the chemical
society on the development of such a standard. Here we
introduce a new approach to a graphic representation of
patterns that is based on the recommendations of the IUPAC
for chemical structure diagram drawing.1 In order to dem-
onstrate the relevance of chemical patterns, we applied our
visualization concept to examples from recent chemical
publications.2-4

The most known and used employment of molecular
patterns is database searching, where they are used to filter
a set of molecules for compounds related to a query. Starting
compounds for organic synthesis with certain functional
groups can also be found this way. In drug design, known
active ligands for a target are analyzed, and the parts
presumed to be responsible for activity are mapped to a
molecular pattern for finding new active ligands in a
database.5 Compound filtering is another well-used applica-

tion of molecular patterns. Unwanted chemical properties,
like highly reactive functional groups, are excluded in
advance from compound libraries used in high-throughput
and virtual screenings6-8 or are avoided in denovo drug
design approaches.9 In combinatorial chemistry, patterns are
used for characterizing bonds of complete molecules that
are allowed to be broken.10 The groups of Lewell et al.11

and Vieth et al.12 successfully applied pattern-based rules
of breaking bonds for creating fragment libraries. Other
applications are the use of patterns as 2D molecular descrip-
tors13 and for pharamcophore matching.14 An exotic ap-
plication was published by Hou et al.,15 who used patterns
for describing functional groups of molecules in the course
of predicting their catabolic transformation in microbes. Not
to be forgotten is the use of molecular patterns in the form
of Markush structures in patents. These structures mostly
consist of a generic core with several variable but defined
R-group moieties. Markush notations are used to define a
set of structures that are covered by the patent.16 However,
most of the above-mentioned methods rely on much more
generic pattern representations and depend on chemoinfor-
matic tools and algorithms.

Therefore, the respective patterns are represented by
computationally processable molecular pattern languages.
The most prominent molecular pattern language is the
SMILES arbitrary target specifications (SMARTS) lan-
guage.17 It originates from the simplified molecular input
line entry system (SMILES),18 a linear notation of molecules,
and is an extension of its concept. In addition to the means
needed to describe a complete molecule, atoms and bonds
can be further specified with properties. Additionally, all
specifications can be connected logically by AND, OR, and
NOT. Other molecular pattern languages, including molec-

* Corresponding author. E-mail: rarey@zbh.uni-hamburg.de. Telephone:
+49-40-42838-7350.

J. Chem. Inf. Model. 2010, 50, 1529–1535 1529

10.1021/ci100209a  2010 American Chemical Society
Published on Web 08/26/2010



ular query language (MQL)19 and Sybyl line notation
(SLN)20 are built up comparably, differing mainly in the
syntax of the language and only slightly in the semantics.
In contrast to the traditionally used concept of varying
moieties and functional groups at an otherwise fixed com-
pound, these languages provide the means to construct more
elaborate chemical feature descriptions.

However, linear notations of molecules and the pattern
languages derived from them are designed for effective
computational processing. Molecular patterns more closely
resemble regular expressions of programming languages than
intuitive descriptions of chemical features. As a consequence,
the interpretation and the building of a pattern with one of
these languages demand a significant learning effort. Due
to the syntax of these languages, patterns may get hardly
interpretable by humans, even if they are very familiar with
the languages. The SMARTS pattern for a sulfonamide group
in ionic or neutral form is:

Although the pattern is not very complicated, the syntax
with many brackets leads to a hardly readable expression.
Therefore, a more suitable pattern representation is needed.
Similar to structure diagrams, a visual depiction of patterns
may support scientists in understanding the structural features
without much effort. By providing a way to convert this
visual depiction to the pattern languages needed for com-
putational methods, the immediate interference of users with
these languages can be avoided. The International Union of
Pure and Applied Chemistry (IUPAC) recommendations on
graphical representations of chemical structure diagrams1

apply an accepted standard on visualization of compounds
in 2D.

However, the recommendations are very limited with
respect to the visualization of chemical patterns. Figure 1
presents an assembly of the recommendations concerning
variable structures.

Some chemical structure editors offer the possibility of
drawing a substructure as a query for database searching.21-23

The recently developed PubChem chemical structure sketcher
can convert such an input to the SMARTS format and also
generate a structure out of a SMARTS input string.23

However, the graphical depiction of query properties is very
elementary in a way that the properties are simply written
at the concerned atom. For query bonds new symbols with
nonobvious denotations are introduced. Another editor that
allows the drawing of molecular substructures is the molec-
ular editor Symyx/Draw.22 Still, the capabilities for generat-

ing queries do not cover much of the power of molecular
pattern languages. The use of logic operators is not supported
for most of the features, and the graphical depiction of query
properties is comparable to that of the PubChem sketcher.
Since both editors are not capable of depicting recursive
SMARTS expressions, only one part of the SMARTS pattern
representing sulfonamides (see above) was used as input to
both editors (Figure 2).

The PubChem sketcher generates the depiction (Figure 2A)
automatically, for the depiction by Symyx/Draw (Figure 2B)
the pattern has to be drawn manually. Being very alike, both
show the limitations of the depiction concept by containing
textual overlap with the structure. The depictions are not of
great help to scientists not familiar with a pattern language
since they still have to figure out details like the meaning of
X<n> which denotes “the number of total connections of
the atom” (depicted by PubChem by the letter “X” next to
the atom and by Symyx/Draw by the letter “s”).

Due to the lack of existing methods for full depiction of
chemical patterns, we developed a visualization concept that
is capable of depicting patterns described by chemical
features as defined in the SMARTS language. The SMARTS
language was chosen as a basis, since it is the most prominent
among the linear molecular pattern languages. We considered
the following points crucial in developing the visualization
concept: First, the effort to learn the new concept has to be
significantly less than learning a molecular pattern language
itself. Therefore, we based our concept on the well-known
representation of molecules as structure diagrams. Second,
the depiction should be clear to users without knowledge of
molecular pattern languages. Addressing these points, special
effort was made to visualize the complete power of the
language but to stay consistent with the concept of structure
diagrams. Finally, the visualization concept should be
generically applicable to different pattern representations.
Although the developed visualization concept is based on
the SMARTS language, it can be appliedswith minor
adaptationssto other pattern languages like MQL or SLN,
since the semantics and the power of these languages differ
only slightly.

In a first application, the concept was realized in a tool
that automatically generates a visualization of a SMARTS
string named SMARTSviewer available on the Internet (see
http://smartsview.zbh.uni-hamburg.de). In the following, first
the visualization concept of graphic elements decoding the
SMARTS primitives and logic is presented proceeded by a
description of the SMARTSviewer implementation. Finally,
some exemplary visualizations are discussed.

Figure 1. Examples from the IUPAC recommendations on structure
diagram drawing for variable structures show graphic display of
bonds to unknown moieties (A, B), rings with unknown size (C,
D), and a list of variable substituents (E). The figures are adopted
from IUPAC recommendations.1

[#16;$([#16X4]([NX3])() [OX1])() [OX1])[#6]),
$([#16X4 + 2]([NX3])([OX1 - ])([OX1 - ])[#6])]

Figure 2. Graphical depiction of the molecular pattern of a sulfon-
amide (SMARTS: [SX4]([NX3])()[OX1])()[OX1])[!O]) generated
by the PubChem sketcher23 (A) and Symyx/Draw22 (B). The
property “total number of connections” (SMARTS: X<n>) is printed
in both depictions next to the atom element letter. The logic NOT
connected to the oxygen is once depicted by an exclamation mark,
which is the corresponding SMARTS symbol and once by the text
“NOT”.
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VISUALIZATION CONCEPT

In the SMARTS language, the concept of SMILES
specifying the molecule graph with symbols for atoms and
bonds is extended by logical operators and several additional
symbols specifying properties. Therefore, the visualization
concept of structure diagrams has to be extended to cover
these additional features in order to achieve a complete
visualization. In the concept presented here, the layout of
the coordinates of atoms is fully adopted from complete
molecules, meaning that, for example, the atoms of a benzene
ring are laid out on a hexagon. New graphic symbols are
introduced for the depiction of query features. However, all
these symbols are based on existing IUPAC recommenda-
tions, which are only slightly adapted.

Atoms and Atomic Properties. Additionally to the
element, query properties for specifying atoms in SMARTS
include features like aromaticity, number of connections,
mass, valency, number of connected hydrogens, and several
more. Table 1 shows how each of these properties is depicted
in the visualization concept. Atoms are drawn as circles that
are colored by element. Instead of the color coding, the
element can also be depicted by the element letters printed
into the circle. In both cases, the stroke of the circle encodes
the aromaticity. If none is specified, then no stroke is applied,
and if the atom is specified as aliphatic, then a black stroke
is applied, and in the case of an aromatic specification, this
stroke is dashed. Note that, although aromaticity is a property
of a group, most pattern languages consider it as an atom/
bond property in order to allow the partial specification of
aromatic systems. The value of a given charge is printed at
the upper right corner of the atom circle and the mass
into the middle of the circle. Several features are available
in the SMARTS language to describe the connectivity of an
atom. In general, for visualizing this property, a bond ending
in a waved line (similar to the IUPAC recommendation for
a moiety, see Figure 1A and B) is used. The value of the
connectivity given in the SMARTS is printed onto this
aborted bond. For the number of connections to nonhydrogen
atoms a red colored letter ‘H’, and for the connections that
are in a ring, a hexagon as a symbol for a ring is added

behind the waved line. A short bond leading to the letter
‘H’ subscripted with the value given in the SMARTS
indicates the number of connected hydrogen atoms. The
features of membership in a ring of a given size and
membership in a given number of rings are depicted very
similarly with a symbol based on the IUPAC recommenda-
tion for variable rings (see Figure 1C and D). While the
SMARTS language allows several values for the number of
rings an atom participates in (SMARTS primitive ‘R<n>’),
the visualization only covers two cases: “being in a ring”
(SMARTS primitive ‘R1’) and “not being in a ring”
(SMARTS primitive ‘R0’). Higher values of <n> are not
recommended since this property is defined over the smallest
set of smallest rings (SSSR) base, which is not unique24 and
therefore not considered in our visualization concept. The
valency is depicted by small dots drawn inside the atom
circle.

Bond Specifications. Bonds are illustrated by one, two
and three lines for single, double, and triple bonds, respec-
tively, and by a pair of solid and dashed lines for aromatic
bonds, concurring to structure diagram drawing. Wedged
bonds are used for depicting tetrahedral stereochemistry
(being intrinsically a feature of an atom in the SMARTS
language). Additionally, the SMARTS language allows bonds
to be specified as a ring or any bond. A bond specified as
“any” is depicted by a single line in a light gray color,
indicating the unspecified nature of it. For depicting a ring
bond, again the symbol of a hexagon for a ring is used and
printed onto the bond. Cis and trans configurations around
double bonds, being in SMARTS also a feature of bonds,
lead to a respective layout of the coordinates of the regarding
atoms. The Supporting Information contains a graphic display
of all bond types.

Logic Operators. The greatest challenge is the visualiza-
tion of the SMARTS language’s powerful concept of logic.
Features describing atoms or bonds can be combined by a
logic AND or a logic OR or can be excluded by the logic
NOT. In the presented concept, logic is encoded by color.
Red indicates the logic NOT and blue the logic OR. Table
2 shows logic combinations of elements, values for the
connectivity to non-hydrogen atoms, and bonds. Logical
combinations of elements for one atom are depicted by
dividing the circle among the elements. Bonds that are
connected by OR are placed into a box and colored blue.
The logic NOT is depicted by a red circle for elements, a
red colored value for connectivities, and a red colored bond.
A limitation of the concept is found in the depiction of many
elements combined by the logic OR. A division of the circle

Table 1. Visualization of Chemical Features That the SMARTS
Language Offers to Specify an Atom

Table 2. Visualization of the Logic Operators OR and NOT in
Chemical Patternsa

a Red codes the logic NOT. For depiction of the logic OR, the
given values are enumerated or the color blue is used.
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among more than four elements becomes indistinct. Conse-
quently, if this very rare case occurs, the elements are written
as a list in place of the circle (for an example see Supporting
Information, Figure 5B). Another special case occurs, if
several elements are logically connected to different feature
descriptions at one atom. Then an unambiguous assignment
of the features to the element is needed, and the features
cannot be depicted by their graphic elements. A so-called
property bubble is drawn containing the features in form of
SMARTS primitives with a connecting line to the respective
element fraction (for an example see Supporting Information,
Figure 5A).

Recursive Specifications. Recursive expressions, which
in SMARTS define the chemical environment of an atom,
can be connected by logic operators as well. These specifica-
tions are treated as independent molecular graphs and drawn
into boxes next to the main molecular graph of the pattern.
The color of the stroke of the boxes maps the logic.
Consistently, red codes for the logic NOT and blue codes
for the logic OR.

Dynamic Legend. The amplification of the visualization
concept with a legend serves the purpose to support users in
getting accustomed to the new concept. This obstacle is
addressed by the first part of the legend, which provides a
textual description of each distinct atom and bond. More
experienced computational chemists might be familiar with
the SMARTS language and therefore only have to get
acquainted with the meaning of the graphic symbols. This
need is addressed by the second part of the legend, which
maps graphic symbols to the respective SMARTS primitives.
Both parts of the legend are generated for each SMARTS
string individually and consequently contain only information
relevant for the depicted pattern.

COMPUTATIONAL METHODS

The presented visualization concept is realized in a first
application as a tool that automatically depicts a SMARTS
string (see http://smartsview.zbh.uni-hamburg.de). The imple-
mentation consists of three main steps which are outlined in
Scheme 1. A SMARTS string is processed by a parser which
retrieves the semantic information. An interpretation of the
semantic is followed by the layout generation and the legend
creation. The legend and the coordinates are then further
processed by the drawer to generate an image. These steps
are described in the following sections.

SMARTS Parsing. In the parsing routine, the input
SMARTS string is converted into a tree-like data structure
that represents the semantic of the pattern. For this purpose,
the SMARTS language is modeled as a context free

grammar.25 The grammar allows to check the correct syntax
of the SMARTS string and to extract the contained semantic
information. The resulting tree-like representation also
contains the precedence of logic operators of the SMARTS
language. Therefore, the relevant information, for example,
the exact specification of an atom of the pattern, can be
extracted easily.

SMARTS Trim. In addition to the syntax test performed
by the parser, the semantic is inspected by a procedure called
SMARTStrim. This routine is divided into three parts with
differing emphases. The SMARTStrim error-check part
removes semantic errors. An example is an impossible
connection of properties by a logic AND, like an atom that
is specified as being a carbon AND a nitrogen. The
SMARTStrim simplification part removes redundant infor-
mation from the SMARTS string, like combinations of
property specifications and wildcards. An example is a bond
that is specified as “any and ring bonds”, which is semanti-
cally the same as “ring bond”. The third part called
SMARTStrim interpretation identifies correlations in the
pattern structure and the specifications. An example is an
atom that is specified with the property of “being in a ring
of size six” but is structurally already in a six-membered
ring. All cases which apply to the three parts are listed in
the Supporting Information.

Legend Generation. For every atom and bond property
which is part of the SMARTS language, a descriptive word
or phrase is stored. In the legend creation procedure, the
distinct atoms and bonds are identified to avoid redundant
legend content. For creating a textual description of an atom
or a bond, the respective descriptive words are pieced
together with conjunctions concurring with the property and
logic specifications of the atom or bond.

Layout Generation. The general layout of a pattern as a
chemical graph is consistent with the layout of chemical
structure diagrams. Pattern descriptions consist of atoms and
bonds as well as any complete molecule, only the specifica-
tions of the atoms and bonds differ. Therefore, the assignment
of coordinates to the atoms of a pattern is the same problem
as that of complete molecules, called a structure diagram
generation problem.26 For every recursive expression in the
pattern, a separate chemical graph is created. The relative
coordinates are assigned to the atoms with the method of
structure diagram generation published by Fricker et al27 and
obey the IUPAC rules of 2D diagram drawing. Afterward,
the molecular graphs are placed absolutely with the recursive
diagrams next to the main diagram. In addition to structure
diagrams, graphic elements that depict specifications are
placed at atoms and bonds. In order to support recognition

Scheme 1. Flowchart of the SMARTSviewer Implementationa

a An input SMARTS string is parsed into a semantic representation. Before being further processed, the semantic is checked with the SMARTStrim
procedure. Then the layout generation provides atom coordinates, and the legend is put together out of a textual database. Both the legend and the
coordinates serve as input to a drawer which generates the image.

1532 J. Chem. Inf. Model., Vol. 50, No. 9, 2010 SCHOMBURG ET AL.



of the chemical structure of the pattern, the additional graphic
elements are placed without altering the chemical graph
layout.

SMARTSviewer Tool. The graphic elements that depict
the properties of the pattern are drawn with the open source
2D graphics library cairo.28 The SMARTSviewer tool can
be either used interactively with a Qt29 based graphical user
interface or accessed via a web interface at http://
smartsview.zbh.uni-hamburg.de. As input, it takes the pure
SMARTS string and generates either pixel- or vector-based
images. The user has several possibilities to influence the
generated image, among others choosing between color or
element letter coding of elements or showing/hiding the
legend.

Test Data. For testing the automated generation of the
visualization, SMARTS strings that are employed in real
applications are used. The SMARTS strings are collected
from publications5,7-9,13,30,31 and the daylight webpage;32

however, only SMARTS strings that are conform to the
Daylight SMARTS specifications are included in the test set.
The resulting test set of 762 SMARTS strings ranges from
simple patterns used in real applications to highly compli-
cated patterns with many recursions found in the examples
from the daylight webpage. The string length varies from 2
to 1008 characters, 247 strings of the set contain recursions.
More details on the particular string sets can be found in
the Supporting Information.

For showing the relevance of a visualization concept of
chemical pattern beyond the application of visualizing
SMARTS, some patterns occurring in recent organic chem-
istry publications2-4 are visualized according to the visual-
ization concept.

RESULTS AND DISCUSSION

The visualization concept was successfully applied to all
SMARTS strings of the test set. Figure 3 shows the
visualization of five exemplary chemical patterns automati-
cally generated with the SMARTSviewer. The first three
examples are rather simple patterns, representing an aldehyde
functional group (A), an acyl halide group (B), which may
be used as a filter for reactive components, and an aromatic
ring system with heteroatoms at specified positions (C),
which was taken from Vechorkin et al.,2 where the variable
parts of the structure are listed. These three examples
demonstrate the depiction of elements and aromaticity, while
the second example (B) highlights the handling of connec-
tivities. In the SMARTS string, the carbon atom is specified
as having three connections (SMARTS primitive ‘X3’. This
feature is depicted by a truncated line with the value of the
further connections placed onto it, meaning that the already
covered connections are subtracted and only the unsaturated
connections remain. In this case, two of the three connections
are already covered by the structure. The fourth pattern (D)
matches sulfonamide groups, which are the common func-
tional group of antibacterial “sulfa drugs”, either in the ionic
or neutral form. Here the visualization of recursive SMARTS
expressions in boxes next to the main graph is demonstrated
as well as the two parts of the legend. Since the two recursive
groups are connected by a logic OR, the borders of the boxes
are colored blue. For a better identification of the recursively
specified atom in the boxes, this atom is drawn with an
enlarged radius. The upper part of the legend describes each
distinct atom and bond with a short text, while the lower
part maps the SMARTS symbols used in the string to the
respective graphic elements. The fifth visualization example
(E) shows a pattern for an indoline with a variable chain

Figure 3. SMARTS expressions visualized by the SMARTSviewer. As the complexity ranges from a pattern describing an aldehyde group
(A), via a reactive acyl halide group (B), a pattern matching an aromatic ring system with heteroatoms (C), a sulfonamide group (D), to an
indoline group (E) with a chain of variable length to a carboxyl group also the visualization gets more complicated. The visualization of
the pattern for a sulfonamide is shown together with the dynamic legend.
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length to the carboxyl group. This example was taken from
Meguellati et al.,3 where two structures are drawn, one for
each chain length. The depiction in form of a pattern
highlights the common and variable parts of the structure.

A more complex pattern is shown in Figure 4. The pattern
representing benzothiazole derivatives being used in the
synthesis of inhibitors of a bacterial cell division protein was
adopted from Haydon et al.,4 where the various substituents
are listed in the form of abbreviations. An advantage of the
representation in the form of a visual pattern is the possibility
to take in all substituents at a glance instead of looking them
up and interpreting the abbreviations. Additionally, the
differences and similarities of the variations are emphasized
by the depiction.

The effect of the SMARTStrim procedure is highlighted by
the example in Figure 5. The visualization of the SMARTS
string [CR]@1@[CR]@[CR]@[CR]@[CR]@[NR]@1 with-
out applying the SMARTStrim procedure leads to an
unnecessarily complicated figure (A). However, the SMART-
Strim procedure recognizes that the pattern can be simplified
without changing its meaning. All bonds in this pattern are
specified as ring bonds, although the structure of the pattern
already satisfies this condition. The same is true for the atoms

of the ring, which are specified as “being in a ring”.
Therefore, the SMARTStrim procedure simplifies the visu-
alization significantly (B). While in all previous figures,
elements are depicted by color, Figure 5 C employs the
element letter viewing mode. Both depictions convey certain
advantages. The color coding supports a very quick recogni-
tion of the structure and highlights heteroatoms. The element
letter representation is the classic way of depicting elements
in 2D structure diagrams and may thus be easier to get
acquainted with, since not every scientist may be familiar
with the color code. In general, the choice will depend on
every scientist’s personal preferences, and therefore, both
viewing options are realized in the SMARTSviewer. Still,
both modes rely on the use of color for depicting logic
combinations. In principal, it is possible to create a pure black
and white depiction by introducing graphic elements for logic
expressions. However, we preferred the color depiction in
order to avoid introducing more graphic elements in addition
to the ones depicting features.

While the visualization concept could be evaluated con-
cerning the ability of visualizing the complex and powerful
SMARTS specifications, the real evaluation will be through
the chemical community. Since a visualization concept has
to evolve through the needs of science it represents, the
visualization concept shown here should be seen as a starting
point for the development of a unified chemical pattern
language. Current limitations of the concept that may be
addressed in future discussions concern extensions of the
drawing concept for pattern specifications that are not part
of the SMARTS language. Chemical pattern languages, such
as SMARTS, are extremely powerful. It is possible to
describe highly complex patterns, for example, due to the
extensive use of logic expressions. The graphic display of
such a pattern is obviously not simple, and, in some cases,
probably impossible. Therefore, the visualization concept
concentrates on depicting patterns that a scientist may come
across in real applications. In our opinion, one of the most
important characteristics of a visual pattern language is that

Figure 4. Visual representation of a chemical pattern that represents the starting compound in a synthesis of benzothiazole derivatives
active in bacterial cell division inhibition.4 The compound is substituted with a variable moiety. The recursive expressions show the differences
and similarities of the allowed substituents and provide an overview of all possibilities.

Figure 5. Visualization of the SMARTS pattern [CR]@1@[CR]@
[CR]@[CR]@[CR]@[NR]@1 without the SMARTStrim proce-
dure (A), with using the SMARTStrim procedure resulting in a
much simpler but with regards to the chemical meaning identical
visualization (B) and in the viewing mode of presenting elements
not by color but by element letters (C).
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simple patterns result in simple depiction, while more
complicated patterns may result in more complicated graphi-
cal representations. The examples generated with SMARTS-
viewer show that the visualization concept presented here
achieves this aim in most cases.

CONCLUSION

In summary, we have introduced a new visual representa-
tion of chemical patterns. The natural way of communicating
structures in the chemical society is via structure diagrams.
Therefore, a visual pattern representation must not diverge
extensively from the concept of structure diagram drawing.
For the full depiction of chemical features that may be used
to describe variable structures, this concept had to be
extended with several new graphic symbols. For providing
an easy way to get acquainted with these, the visualization
concept comprises a legend that depicts the meaning of the
pattern by a textual description. In a first application, the
visualization concept was realized as an automated depiction
of the often hardly interpretable SMARTS patterns. This new
visual pattern representation has to be seen as a starting point
in improving the communication of molecular patterns
among scientists. It responds to two problems of handling
chemical patterns: First, it offers a general representation of
chemical patterns, and second, it improves the usability of
computational molecular pattern languages by depicting the
linear form graphically.

ADDITIONAL INFORMATION

The SMARTSviewer tool can be accessed freely via the
Internet at http://smartsview.zbh.uni-hamburg.de.

Supporting Information Available: The complete visu-
alization concept covering the full power of the SMARTS
language and details of the SMARTStrim concept. This
material is available free of charge via the Internet at http://
pubs.acs.org.
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ABSTRACT: Crystal structure databases offer ample oppor-
tunities to derive small molecule conformation preferences,
but the derived knowledge is not systematically applied in drug
discovery research. We address this gap by a comprehensive
and extendable expert system enabling quick assessment of the
probability of a given conformation to occur. It is based on a
hierarchical system of torsion patterns that cover a large part of
druglike chemical space. Each torsion pattern has associated
frequency histograms generated from CSD and PDB data and,
derived from the histograms, traffic-light rules for frequently
observed, rare, and highly unlikely torsion ranges. Structures
imported into the corresponding software are annotated
according to these rules. We present the concept behind the
tree of torsion patterns, the design of an intuitive user interface for the management and usage of the torsion library, and we
illustrate how the system helps analyze and understand conformation properties of substructures widely used in medicinal
chemistry.

■ INTRODUCTION

The ability to both understand and generate accessible low-
energy conformers is indispensable for small molecule drug
discovery. Yet textbook knowledge on small molecule
conformations only partly covers druglike chemical space. For
structures involving heteroatoms and an interplay of steric and
electronic effects, the practitioner is often led to believe that
structure generators1−12 or force field minimizers will somehow
provide the right answers. There is a gap between what is in
principle known about conformation preferences and the
application of this knowledge in day-to-day decision making in
medicinal chemistry. Here, we are aiming at giving easy access
to this conformational preference information.
To a good first approximation, conformations differ in their

torsion angles only. Small rings are usually highly constrained,
the acyclic part of the molecule is, however, very flexible and
responsible for large conformational spaces. These torsions are
frequently independent from each other, allowing stepwise
construction processes widely used in methods for the
generation of conformers. Many computational approaches to
drug discovery are based on sets of diverse low-energy
conformations generated by such methods.13−18 Here we use
the same principles for the assessment rather than the
generation of conformations. Given a modeled or experimen-
tally determined 3D structure of a small molecule, typical
questions are the following: Does it contain strained parts?
How far does it deviate from a low-energy conformation? How

conformationally flexible is it? To address such questions, a
conformer generator is ill-suited, as the combinatorial nature of
conformer space creates far more data than necessary.
Information about preferred (=low-energy) regions of

individual torsion angles can be obtained from crystal structural
data. The growing number of entries in the Cambridge
Structural Database (CSD)19 and the Protein Data Bank
(PDB)20 allow derivation of more and more reliable and
specific rules, and efficient tools exist to do this.21,22 Here we
present a torsion library that covers a large part of druglike
chemical space. Our approach differs from previous ones23,24 in
that it is comprehensive, yet expert-driven: Instead of
automated enumeration of atom sequences and creation of
torsion histograms, each step of the process has been subjected
to manual curation. Torsion patterns are defined in a
hierarchical fashion for successively more complex and specific
chemical motives at either end of the rotatable bonds. More
specific rules were created whenever a more generic rule would
lead to ambiguous or contradictory results and where sufficient
data were available. We see this work as an extension of our
previous empirical compilations of conformation and inter-
action preferences.25−29

The article is structured as follows: First, we describe the
concept of storing torsion patterns and their preferred
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orientations in a hierarchical tree. We briefly present the
graphical user interface of a tool named Torsion Analyzer
designed to support both the management of the torsion library
and its application (technical details on these aspects can be
found in the section Materials and Methods). This is followed
by an analysis of how the current torsion library covers
chemical space relevant for medicinal chemistry. Finally we
compare torsion statistics derived from small molecule
crystallographic data with those derived from protein ligands
and discuss further applications of our methodology.

■ RESULTS AND DISCUSSION
Torsion Library Concept and Interface. A torsion

pattern is a molecular substructure that defines at least the
four atoms required to describe a torsion angle (Figure 1). The

chemical environment of the rotatable bond may be more
precisely defined by encoding further substructure elements
linked to this four-atom sequence. We consider each acyclic
single bond as a potentially rotatable bond.
The centerpiece of this work is the idea of creating a

comprehensive list of such torsion patterns associated with
typically observed torsion angle ranges and to organize this list
in a hierarchical fashion. This requires choices to be made both
regarding the detail of chemical environment to be encoded in
the torsion patterns and regarding the type of hierarchical
classification. As opposed to unsupervised rule extraction
approaches by others,23,24 we have opted for an expert-driven
process in establishing patterns and deriving rules.
At the highest level, our hierarchical system consists of one

generic class and six specific classes of torsion patterns. The
generic class only defines the two atoms linked by the rotatable
bond such that atoms 1 and 4 can be of any type. In addition,
the generic class contains one subclass with general rules on
rotatable bonds between multiple types of aromatic atoms,
independent of element specification. The generic class is used
as a fallback option in case no more specific rules have been

derived. The other six top-level classes encode more specific
patterns for the most important types of rotatable bonds. These
are CC, CN, CO, CS, NS, and SS bonds. Each of these classes
has multiple subclasses covering named functional groups or
substructures. Within these subclasses, torsion patterns are
sorted by decreasing specificity such that the more general
patterns are found below the more specific ones. As described
in the methods section below, this sorting order requires fewer
match attempts by the search algorithm.
Each torsion pattern in the library is associated with

histograms derived from small molecule crystal structure
information contained in the CSD and the PDB databases.
Histogram peaks represent the most frequently observed
torsion values and correspond to local minima of the torsion
distributions. We have used a simple automated process to
identify such minima: Histogram bins containing more than 4%
of the histogram entries are considered as peak candidates. Two
tolerance ranges around these minima were defined as a
function of the width of the peaks. This is done by a simple
waterline model; inner and outer tolerances reach the bins
where occupancy drops to 2.5% and 1.5%, respectively. All
automated rules generated in this fashion were visually checked
and in many cases slightly adjusted. The rule system we use
does not necessarily reflect the position of energetic minima; it
merely identifies torsion angles that have been frequently
observed. However, the relative energies of conformational
states are reflected in the histogram itself, which should serve as
an important visual aid in any application of the Torsion
Analyzer. It is important to note that being outside the
tolerance range is not necessarily a measure of the “quality” of a
conformation nor are they an accurate measure of strain energy.
They are rough indicators of the likelihood of a specific
conformation to be observed in a crystal structure.
Figure 2 is a snapshot of the user interface for managing and

applying the torsion library. A panel on the left allows browsing,
viewing, and editing of the torsion patterns. Classes can be
collapsed and expanded to view subclasses and their content.
Torsion patterns can be moved up or down within their class or
subclass. Each pattern can be switched on or off, indicated by
the little cross to the left of the pattern. Upon selection of a
torsion pattern in the tree view, the torsion data associated with
this pattern are shown on the right-hand side of the interface.
This includes the SMARTS pattern (top), a tabular view of
defined minima and tolerances (center), and the corresponding
torsion histogram (bottom). Histogram views can be adjusted
to display CSD data, PDB data, or both. Histograms either be
displayed from −180° to 180° or in condensed form where
only the absolute values of torsion angles are regarded. The
latter view is sufficient for the current version of the torsion
library because of the absence of chiral patterns. Rotatable
bonds of molecules loaded into the central 3D viewer are color-
coded on the fly by means of a traffic-light coloring scheme.
Torsion angles within the first tolerance value around a local
minimum are colored green. Those between the first and
second tolerance values are orange, and those exceeding the
second tolerance are red. Selection of a colored bond in the 3D
viewer highlights the four atoms used to measure the torsion
angle and the matching SMARTS pattern in the torsion library.
On the right, the matching torsion histogram is shown
including a marker indicating the value measured at the
selected bond.
A first application example illustrating the importance of

conformation energy is shown in Figure 3. The two potent

Figure 1. A torsion angle ϕ is defined by four consecutive covalently
bonded atoms. It is the angle by which atom 4 has to rotate
counterclockwise around the axis defined by the rotatable bond (atoms
2 and 3) to be in plane with atoms 1, 2, and 3. Note that the order of
atoms, 1−4 or 4−1, does not affect ϕ.
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factor Xa inhibitors,30 1 and 2, differ by one methyl group and a
factor of 4 in binding affinity. A look at the binding mode of
inhibitor 2 in PDB structure 1ksn31 reveals that the additional
methyl group is solvent exposed and does not form an
interaction with the protein. Could differences in conformation
preferences contribute to the increase in affinity? The
histogram for the torsion angle around the N substituent of
the secondary amide shows a single, broad peak at zero degrees.
The torsion angle of this bond, which plays a major role in
positioning S1 and S4 moieties relative to each other, is
therefore in an optimal range. The methyl group introduces a
conformational lock; the only accessible rotamer has the
hydrogen atom in a syn arrangement with the carbonyl group.
In contrast, the desmethyl analogue 1, whose binding mode has
been modeled in analogy to 1ksn, has a suboptimal torsion
value just between two minima at about 90° and 180°. This
suboptimal torsion angle setting could indeed contribute to the
slight loss of affinity. This example highlights how the
introduction of a substituent like a methyl group can have an
influence on affinity through effects different from a direct
molecular interaction.32 Note that the torsion patterns of 1 and
2 have been defined by means of different terminal atoms. This
switch cannot be avoided, since definition via one of the
enantiotopic atoms (H in 1 or C in 2) would lead to an
ambiguous assignment of the torsion pattern giving different
results depending on the choice of atom that is matched first.
The example can be continued by investigating further

modifications of the amide substituent. Conversion of the
tertiary carbon atom of 2 into a quaternary system, as
exemplified by the change of 3 to 4 in Figure 4, changes the
conformation preference from a single, broad minimum at 0° to
a system that avoids this syn arrangement. Instead, the three
substituents now adopt gauche or anti rotamers.

Torsion Hierarchy Illustrated. The torsion library concept
and its realization are best illustrated by an example (Figure 5).
The basic substructure of an aryl ether is an aromatic carbon
atom connected to a divalent oxygen atom. This pattern only
defines the central rotatable bond and is therefore stored in the
generic class. The corresponding CSD histogram shows peaks
at 0° and 180° and thus indicates a strong preference for the
ether substituent to be in plane with the aromatic ring system.
A second, less pronounced peak at 90° indicates that
orthogonal arrangements are also observed. The generic pattern
thus already gives a clear indication of the expected angle
ranges. More specific torsion patterns are required to
understand if steric or electronic effects of neighboring groups
and substituents can strongly shift the conformation preference
toward one of the observed angle ranges. Under which
circumstances are values of 0°, 90°, or 180° preferred?
The answer is provided in the patterns and histograms in the

lower half of Figure 5. Heteroatom substitutions and ortho
substituents eliminate one or two of the generic minima.
Patterns f−h appear at the bottom of the list; they cover the
cases of one, two, or zero ortho substituents that are not further
specified. Since the matching of these three patterns is mutually
excluding, their positions within the torsion library are
exchangeable. Patterns d and e more specifically encode oxygen
ortho substituents. They show the same conformational
preference as patterns f and g and are thus redundant in the
sense that they do not improve the torsion angle annotation of
compounds. However, they do add information: A comparison
between patterns d and f informs the user that lone pair
repulsion of the two neighboring ether oxygen substituents
does not change conformation preferences relative to the
general case of an undefined substituent. One caveat here is the
potentially biased sample space; it might be the case that a

Figure 2. Graphical user interface of the Torsion Analyzer: (left) tree view of the torsion library; (center) 3D panel; (right) assigned minima,
tolerances, and torsion histograms.
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more generic pattern is dominated by a single more specific
one. We have generally opted to retain more specific torsion
patterns where a significant number of examples exists, even if
the overall predictions are not altered.
In some cases, the location of minima is unaltered but the

shape of the histogram is, leading to tighter or broader
tolerances. A case in point is pattern (a) in comparison to (e)

and (h). Steric bulk at the ether substituent keeps the
substituent more strictly in the orthogonal position. Accord-
ingly, the assigned tolerances (tolerance 1/tolerance 2) are
different: 20°/30° for pattern (a), 30°/40° for pattern (e), and
30°/35° for pattern (h). For the pyridine derivative pattern c,
there is a single peak at 180° indicating that the oxygen and
nitrogen lone pairs avoid repulsion.33 For the pyrimidine
analogues pattern b, this repulsion is not avoidable in any
rotamer. Will such structures prefer in-plane or out-of-pane
conformations? In this case the histogram clearly shows a
preference for in-plane rotamers. Note that such questions
cannot be generally answered by simple reasoning taking into
account steric and electrostatic forces on top of some intrinsic
preference, because these factors cannot easily be weighed
against each other. For this reason force fields tend to fail for
such systems unless they are again specifically parametrized for
the case at hand. This illustrates the advantage of the expert
system approach.
Figure 6 shows a second example illustrating how changes in

the chemical environment can modify torsion preferences in a
nonobvious manner. Both substituents at anilinic nitrogen
atoms and conjugated double bond systems prefer to be in
plane with aromatic systems. There is, however, a significant
occupancy over the full range of torsion angle values from 0° to
180°. This is still the case for general anilide and benzamide
torsion patterns (pattern d), but the two distributions have a
clearly different shape. When only steric effects are separated
out as in pattern c, the 90 ± 30° out-of-plane conformations

Figure 3. Compounds 1 and 2 are potent factor Xa inhibitors that differ in a single methyl group. Frequency distributions for the torsion angles
indicated in red are derived from the CSD. Bottom right: Template for ligand conformation of 2 in PDB structure 1ksn. Bottom left: Modeled
binding mode of 1. The measured torsion angle values of the two ligands are indicated by arrows in the histograms.

Figure 4. Tertiary substituents of secondary amides have a single,
broad minimum equivalent to a syn arrangement between NH and
CO. Quaternary analogues have three accessible rotamers avoiding
this syn arrangement.
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disappear. Also, it becomes apparent that anilides and
benzamides have slightly different lowest energy rotamers;
while anilides tend to be fully in plane, benzamides tend to be
slightly out of plane with a twist angle of 30−40°.
The conformational effect of single ortho-F or -Cl

substituents on these two systems is quite striking. For the
fluorine atom there is a strong preference to be located in plane
and on the same side as the amide hydrogen atom. This is true
for anilides as well as benzamides (pattern b). CSD-derived

torsion preferences agree with calculated torsion profiles
(Maestro 9.1, relaxed coordinate scan, HF, 6-31G) super-
imposed on the histograms (Figure 6); almost all entries are
found in the calculated global minima. Interestingly, the
fluoroanilides and fluorobenzamides have additional local
minima at 120° and 45°, respectively, where one or two CSD
entries are found. The chloro-substituted anilides (pattern a)
tend to have an in-plane or almost in-plane (0 ± 45°)
conformation where the chlorine is preferentially located on the

Figure 5. Aryl ethers. The generic SMARTS pattern [cX3:2]!@[OX2:3] shown on top consists of any divalent oxygen atom linked to an aromatic
carbon atom. The aryl ether subclass within the top-level class C−O contains specific rules (a−h) for various aromatic ortho substituents as well as
ether substituents that have an influence on conformation. Selected structural examples from the CSD are shown. All displayed histograms are
derived from CSD data.
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side of the amide NH group. In the corresponding benzamide
case, an in-plane arrangement is no longer observed. Steric
strain seems to be the main driver here. The broad occupancy
of CSD entries between 30° and 150° nicely correlates with the
broad energetic minima in this range of torsion angle values.
The calculated torsion profiles in these four cases exemplarily
illustrate the reliability of the CSD-derived profiles and show
how rules can be further substantiated in case the number of
examples is too low for statistically reliable statements.
Coverage of Chemical Space. The current torsion library

consists of 97 generic and 393 specific patterns. We wished to
understand to what extent these close to 500 rules cover
druglike chemical space, whether there are systematic gaps, and
in which cases the system would resort to generic rules. For this
purpose we used a subset of the ChEMBL library (see Materials
and Methods) and counted the number of times each pattern
was matched. All rotatable bonds (>5 million) in this subset
could be matched to a SMARTS pattern. The majority of
96.3% was matched to a specific pattern; the remainder of 3.7%

was matched to a generic pattern. The most frequently used
specific patterns describe aliphatic chains, primary amides, aryl
ethers, and benzylic substructures (Figure 7). For many of
these, sharp peaks are observed, indicating strong conforma-
tional preferences. The pattern representing benzylic sub-
structures is somewhat unique, as it shows no conformational
preference at all. Some very specific patterns were not matched
onto any molecule of the ChEMBL subset, for example, a
pattern describing extreme steric bulk for an aryl ether
substructure (2-fold ortho substitution in combination with a
quaternary, aliphatic carbon ether substituent). The most
frequently matched generic pattern (0.6% of the ChEMBL
subset rotatable bonds or 757 matches) describes substructures
of aliphatic sp2 carbon atoms connected to aliphatic nitrogen
atoms. The corresponding histogram shows sharp peaks at 0°
and 180°; thus, a definition of more specific patterns was not
deemed necessary. The top 10 generic patterns are included in
the Supporting Information. These all show clear conforma-
tional preferences that could not be further refined by specific

Figure 6. Torsion patterns for nitrogen and sp2 carbon (both trivalent) bound to aromatic carbon. Both show preferences for in-plane
conformations. More specific patterns for the anilides and benzamides provide more detail on trends for more specific substructures. Patterns a and b
are overlaid with QM calculated torsion profiles (green dashed lines) scaled to fit the y axis.
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definitions, which leads us to conclude that the rule set covers
over 98% of the chemical space that is of interest in medicinal
chemistry.
Comparing CSD and PDB Histograms. We have not

found systematic differences between CSD- and PDB-derived
histograms. As has been demonstrated by others, conforma-
tional bias due to packing in small molecule crystals is a rare
event.34,35 The occasionally observed differences in conforma-
tion preferences are due to sampling bias in the PDB (see the
Supporting Information). However, histograms derived from
the PDB typically show broader peaks than CSD histograms.
This is due to the fact that small molecule conformation
preferences often play a subordinate role when macromolecular
X-ray structures are fitted to electron densities.36 Since
tolerance values were based on CSD data, this leads to
frequent “orange” or “red” torsions when analyzing PDB
structures. For the PDB subset approximately 66% of the

entries contain at least one rotatable bond that is outside the
second tolerance range. In contrast, this is true for only 25% of
the CSD entries. Typical candidates are ligands with long,
aliphatic carbon chains. Torsion angles along these chains have
the well-known minima at ±60° and 180°. The energy
difference of 0.9 kcal/mol in favor of the anti conformation is
reflected in the peak heights. The corresponding PDB
histogram shows a broad shoulder between 60° and 180°.
These represent eclipsed conformations that are associated with
high energetic penalties that cannot be compensated by typical
nonbonded interactions. Analysis of structures like 1cvu37

(Figure 8 top, resolution 2.4 Å), which displays several eclipsed
torsions, shows that a few steps of restricted minimization of
the ligand within the rigid binding site can relax these torsions
to gauche angles in such a way that the electron density is still
satisfied.
Other illustrative cases are ester conformations. Ester alkoxy

groups strictly adopt cis rotamers relative to the carbonyl
group, as evident from the CSD histogram in Figure 8. The
PDB distribution shows the same preference, but the peak
extends to angles even beyond 90°. The ligand in the high
resolution structure 3rxw38 may serve as a case in point. Around
the ester substituent, no electron density is defined and the
ligand seems to have been forced into a conformation that
accommodates two small, spherical spots of electron density.
The ester substituent is twisted out of plane by 73°. Inspection
of the complex structure reveals that this part of the ligand is
solvent-exposed and does not interact with the receptor. It is
thus doubtful whether the ligand model is a correct
interpretation of the electron density.
Like esters, primary amides have a pronounced preference

for a syn conformation as shown in the two CSD histograms in
Figure 8. It is striking that the PDB histogram for primary
amides much better resembles the CSD histogram than the one
for esters. This difference might be a direct consequence of
using typical force fields for fitting coordinates to electron
densities (e.g., the energy difference as calculated with
MMFF94 for a 90° out of plane amide is approximately
twice as high as that of an ester). PDB entry 3ke139 exemplifies
that many of the out of plane amide conformations can easily
be remodeled to a favorable syn conformation without violating
electron density.
We see the refinement of PDB structures as an important

application domain for the Torsion Analyzer, since the resulting
structural changes are often highly relevant when protein−
ligand complex structures are used as a basis for further drug
design efforts. We will discuss two examples in more detail
here. PDB entry 3tv740 has seven rotatable bonds, out of which
three have torsion angles outside the second tolerance range
(Figure 9): an amide bond in a urea substructure has an almost
orthogonal orientation; the neighboring CN bond is in an
eclipsed conformation; and the terminal methoxy group is
twisted out of plane of the phenyl ring. The measured torsion
angle values of the X-ray ligand conformation are located in
unpopulated regions in the histograms (red arrows in Figure 9).
The authors of the structure mention that the urea NH might
interact via a hydrogen bond with the side chain of Asp 216.
Closer inspection of the structure shows, however, that all
parameters are beyond an acceptable range for a hydrogen
bond (distance N···O, 3.4 Å (optimal at 2.8−3.1 Å); angle N−
H−O, 129° (optimal at >150°); and the NH group is
approximately 80° out of plane with the sp2 acceptor atom
(optimally in plane)). Manual optimization of the ligand

Figure 7. Five specific patterns that are most frequently used to
describe aliphatic chains (1 and 3), primary amides (2), aryl ethers (4),
and benzyl substructures with nitrogen or oxygen substitution (5). For
each pattern an example from the CSD is given with the
corresponding torsion angle highlighted and measured. The arrows
in the histograms indicate the actual values of measured torsion angles.
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conformation is possible without violating the experimental
electron density. The NH still does not interact with binding
site residues but is nicely solvent exposed now. The phenyl ring
remains in place and thus preserves critical hydrophobic
interactions. The only significant difference in shape is the
location of the methyl substituent at the tertiary carbon. For
this group, no electron density is observed. Altogether we
would thus propose a different binding mode for the ligand of
3tv7 that fits well to the experimental electron density, is low in
conformational energy, and also offers a favorable orientation
for the NH toward solvent-exposed space.
In the second example, the ligand of PDB entry 1gwx41 has

six bonds that are outside the second tolerance range (Figure
10). Manual structural modifications can relocate all of those

torsion angles to within the first tolerance range in such a way

that the experimental electron density is not violated. The two

torsion angles at the tertiary amide (substructure circled in

Figure 10) have torsion angle values of approximately 120°,

clearly out of range of the second tolerance (90° ± 20°). These

two values were manually set to 78° for the cis and 108° for the

trans substituent. Even though the modifications in this case are

only minor, this could not be accomplished by alternative

approaches like, for example, force field minimization, which

lead to antiperiplanar conformations for at least one of the

nitrogen substituents.

Figure 8. Three selected patterns for the comparison of CSD- and PDB-derived histograms. Conformational preferences from PDB histograms are
typically much broader. Each pattern is illustrated by a PDB example. (a) Flexible, aliphatic chains, PDB structure 1cvu (2.4 Å resolution). (b) Esters
and PDB structure 3rxw (1.26 Å resolution). There is no significant electron density around the ester substituent. (c) Primary amides, PDB structure
3ke1 (2.4 Å resolution). Twisted conformations can be converted to a fully planar conformation without violating the experimental electron density.

Figure 9. For the bound ligand of PDB entry 3tv7 three bonds are color-coded red (1−3, red arrows). Torsion values of red bonds are marked with
red arrows in the corresponding torsion angle value histograms. Rotation around these bonds until they are within the first tolerance interval retains
the experimentally determined electron density.
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■ MATERIALS AND METHODS
Here we describe technical aspects of the concept of torsion patterns.
We first explain the notation used to encode torsion patterns and how
these patterns are matched to molecular structures. Then we outline
the hierarchy concept of the torsion library, the generation of torsion
histograms from PDB and CSD subsets, and the derivation of torsion
rules from these histograms. We then list key technical aspects of the
Torsion Analyzer tool that manages all these individual steps.
Torsion Patterns. Torsion patterns are described by SMARTS line

notation.42 The central two atoms are linked by a rotatable bond,
which here is defined as any acyclic bond (defined by “!@”; the
restriction to a single bond is done in the matching process). In
addition to the four-atom sequence defining the torsion angle,
additional substructure elements may be encoded in the SMARTS
pattern. To increase flexibility, we made use of a SMARTS extension
that describes the hybridization state sp3, sp2, or sp by the expressions
∧3, ∧2, and ∧1, respectively.43,44 In addition, the primitive N_lp is
introduced to define torsion angles involving the lone pair of nitrogen
atoms. This allows us to unambiguously define torsions involving sp3-
hybridized, trivalent nitrogen atoms at rotatable bonds like they are,
for example, present in sulfonamides. Such systems would otherwise
require two separate matching steps of N substituent atoms. We
emphasize that the primitive N_lp is only valid for sp3-hybridized
nitrogen atoms.
The assignment of a torsion pattern to a specific torsion angle is

done by means of a SMARTS matching algorithm. Out of the many
approaches that have been published,45−49 we use a modified version

of the VF2 algorithm,49 since it is reported to be the fastest on
molecular data.50

Torsion Library. All torsion patterns are stored in a torsion library
and ordered in a hierarchical fashion. At the highest level, this
hierarchy classifies torsion patterns according to the elements of their
central bonds (atoms 2 and 3 in Figure 1). Only the elements C, N, O,
and S are taken into consideration for specific classes. Out of the 10
possible combinations, six were deemed to be sufficient to describe
rotatable bonds in druglike chemical space forming their own specific
class; these are the carbon bonds CC, CN, CO, and CS as well as the
heteroatom bonds NS and SS. A seventh class covers all generic
torsion patterns of the previous six classes as well as generic
descriptions of other heteroatom combinations and is abbreviated
with GG (each G represents one generically described atom at the
center of the rotatable bond; atoms 1 and 4 are defined by the
SMARTS primitive [*]). Class GG includes all possible pair
combinations between the elements C, N, O, S in their aliphatic
and aromatic versions as well as possible valence states, for example,
between aromatic carbon and aliphatic carbon with three and four
bonds, respectively ([cX3:2]!@[CX4:3]). It further contains the most
generic patterns described by hybridization states only, for example,
between any sp3 and sp2 hybridized atoms ([*∧3:2]!@[*∧2:3]) and, in
addition, a single subclass for rotatable bonds between two aromatic
ring systems [a:2]!@[a:3]. Class GG alone thus covers the entire
chemical space in a generic fashion; its rules are only applied when no
matching pattern exists in one of the specific classes.

Each of the six specific classes contains several subclasses covering
typical functional groups or frequently occurring substructures.
Currently the seven main classes contain 35 subclasses in total. The
class CO, for example, is further subdivided into an ester, ether, and
aryl ether subclass. Each subclass in turn can contain further subclasses.
In Figures 5 and 6 we have illustrated the hierarchy within the torsion
library system. Within each class or subclass, the torsion data are
ordered by decreasing specificity, with the most specific patterns
placed at the top. The hierarchical system has been structured and
labeled such that it can be easily understood and modified. At the same
time, it minimizes the time requirements for the actual SMARTS
matching process. To add visual support when creating or editing
SMARTS patterns, we incorporated the SMARTSviewer51 into the
Torsion Analyzer.

The matching process for a given molecule proceeds as follows: (1)
Atoms 2 and 3 of the torsion angle are used to identify the main class.
If none is found, the generic class GG is used. (2) The torsion patterns
in the class are probed from top to bottom. The search stops at the
first matching pattern. If no pattern is found, the search algorithm
looks for a matching subclass. If there is no matching subclass, the
search continues in the GG class. (3) If a matching subclass is found,
the search iteratively proceeds as in the previous step until a matching
pattern is identified; otherwise, the generic class GG is used. (4)
Probing in the generic class GG starts with probing against subclass
[a][a]. If this subclass does not match, torsion patterns are probed
from top to bottom until the first matching pattern is found. The
hybridization-only patterns ([*:1] [*∧3:2]!@[*∧3:3] [*:4], [*:1]
[*∧3:2]!@[*∧2:3] [*:4], [*:1] [*∧2:2]!@[*∧2:3] [*:4]) at the bottom
of this class ensure that every possible torsion angle can at least be
matched to one torsion pattern. If there is more than one way to
match a pattern onto a specific bond, for example, if atom 1 and/or
atom 4 in the pattern is defined as any atom ([*]), we need a process
to ensure a unique match with respect to the atoms 1−4. Therefore, all
possible matches are examined, corresponding torsion angles are
calculated, and the match resulting in a torsion angle nearest a
histogram peak is used as the unique match.

Generation and Analysis of Torsion Histograms. Each torsion
pattern in the library is associated with histograms derived from small
molecule crystal information contained in the CSD and the PDB
databases. The subsets of the CSD19 and the extraction of ligands from
the PDB20 used for this purpose will be described further below.

For each torsion pattern and for both CSD and PDB, frequency
distributions were generated in the form of histograms. Torsion values
were recorded from −180° to +180° in 10° bins, considering all

Figure 10. The bound ligand of PDB entry 1gwx (green) is
superimposed with a manually refined conformation of the ligand
(cyan). Six torsions of the original structure are strained (red arrows).
Minor adjustment of these torsions leads to a relaxed structure that
still fits the experimentally determined electron density. The terminal
carboxylic acid substituent (orange arrow) is left unchanged in order
to preserve its interactions in the binding site intact. Bottom:
Histogram for the substituents of the type -CH2R at the secondary
amide. There is a strong preference for torsion angles ϕ1 and ϕ2 to be
around ±90°.
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possible matches of a pattern for each molecule in the data set. In a
condensed view we also show folded histograms where only absolute
values are shown. Most of the torsion patterns are associated with
minima centered at 0° or multiples of 10°. We have defined bins such
that they are centered at these values, as this leads to sharper peaks
that can be readily analyzed. The central bin ranges from −5° to +5°.
As a consequence, terminal bins range from 175° to 185° and from
−175° to −185°, respectively. Since angles above an absolute value of
180° do not occur, this effectively halves the size of the terminal bins.
To account for this, we record angles from −180° to −175° in the
175−185° bin. Effectively, this process makes use of the cyclic nature
of the angle histograms. It is equivalent to cutting a cyclic histogram
between the two bins [−165°, −175°] and [−175°, 175°] (Figure 11).
As a consequence, histograms with peaks at 180° appear

unsymmetrical in a linear representation, and for display purposes,
we use histograms shifted by 5° or in a “folded” form for which
negative angle values were set to the corresponding positive ones. This
folding step is valid under the assumption that chirality does not play a
role, as is the case for all patterns of the current torsion library.
Histogram peaks, representing the most frequently observed torsion

values, were automatically extracted from histograms with more than
100 data points and defined as the local minima of the torsion
distributions. The total count of the histogram bins was converted to a
relative count (percent values). The central angles of all bins
containing more than 4% of the histogram data were defined as
minima for the respective torsion. Around these minima, two tolerance
intervals were defined, representative of the width of the peak.
Tolerances were assigned automatically for histograms with more than
100 data points. The inner tolerance interval was defined by
identifying the first neighboring histogram peaks to the left and to
the right of the minimum that contained less than 2.5% of the data and
calculating the distance of this bin’s central angle to the minimum
angle. Where these values differed, the smaller range was chosen. The
second tolerance interval was calculated in the same way but with a
lower cutoff of 1.5%. If the histogram data were evenly distributed over
all bins (variance of <0.1), a 30° grid from −180° to +180° was used as
a default set of minima, with 10° and 15° as the first and second
tolerance interval. The method we used to extract the most frequently
observed torsion values is similar to the one Sadowski and Boström
used to automatically generate torsion rules from crystal structures.24

These authors used histograms with 30° bins, a minimum of 20 hits
per histogram, and a minimum of 45% frequency for each bin.
Where no data points were available for a histogram, the torsion

pattern was kept in the library but set to inactive. For histograms with
more than 0 but less than 100 data points, torsion minima and
tolerance values were defined manually. If distinct peaks could be
identified, they were used to define the local minima of the torsion
distribution. For these minima, broader tolerance intervals between
20° and 30° were defined. If the data points were too scattered, either
a default 30° grid (10° and 15° as the first and second tolerance
interval) or the torsion pattern was set to inactive. About 15% of the

patterns in the current torsion library have histograms with less than
100 data points.

Implementation Notes.We developed a new software library and
a graphical user interface to analyze small molecule conformations.
The software library is implemented in C and C++ and includes the
necessary components for handling a torsion library, generating and
analyzing torsion histograms, and analyzing conformations. Reading,
writing, and handling of molecule data are done with the NAOMI
software library.52 The torsion library including all defined and
extracted data (SMARTS pattern, torsion histograms, torsion minima,
and tolerances) is stored in an XML file. A specifically defined XML
scheme is used to validate the torsion library file. Reading and writing
of XML data are done using the libxml2 software library. The graphical
user interface (GUI) is implemented in C and C++ using the portable
Qt GUI toolkit. The choice of implementation language and GUI
toolkit ensures that the software can be compiled and run on a variety
of platforms, e.g., Linux or Microsoft Windows.

CSD Data Set. The CSD subset was generated by extracting all
entries with an associated 3D structure and at least one carbon atom
from the 2011 version of the CSD database (approximately 580 000
entries, ConQuest, version 1.14). Furthermore, entries with elements
other than H, C, N, O, F, Cl, Br, I, S, and P were removed. Ions,
powder structures, organometallic compounds, and structures with an
R-factor of less than 10% were omitted from the search. This resulted
in approximately 145 000 structures that were exported in mol2
format. These structures were further processed by Corina (version
3.46) with the driver options “no3d, newtypes, rs” to assign consistent
atom types. The output format was set to mol2. The final CSD subset
contains approximately 140 000 structures and represents 24% of all
CSD entries.

PDB Data Set. For the PDB histograms, we extracted
conformations of protein-bound ligands from Proasis2,53 a curated
version of the PDB. The ligand structures were taken from all HET
entries, except metals and commonly found small ions, in the PDB as
of December 8, 2008. Ligands with less than 5 or more than 100 atoms
were removed, excluding in particular large peptidic groups. This
resulted in a database of 77 065 ligands derived from 24 163 PDB
entries.

ChEMBL Data Set. A subset of ChEMBL (version 13) was derived
by querying for compounds with a molecular weight between 200 and
500 of the approximately 920 000 compounds. The subset was
converted with Corina (version 3.46) and flags “rs,wh” to 3D sdf
format.

■ SUMMARY AND OUTLOOK

We have presented an exhaustive collection of torsion patterns
associated with conformation rules in combination with a user
interface designed for efficient access to this information. The
traffic-light coloring scheme gives an immediate impression of
the likelihood of a given conformation to occur. For each

Figure 11. Left: Polar histograms for torsion angles can be interpreted like Newman projections. The red line indicates the cut for the linear
representation. Center: Histogram as used for automated analysis. Note that this shift introduces asymmetry of the linear representation. Right:
Histogram as displayed in the Torsion Analyzer.
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combination of torsion pattern and rule set, there is a direct link
to the underlying torsion angle distributions from the CSD and
PDB, allowing the user to understand the basis and reliability of
the rules, to judge an individual conformation within the
context of the entire rotameric profile, and to highlight
differences in data quality between the two data sources.
The expert system approach is a way of eliminating

difficulties and error sources that may arise from ad hoc rule
extraction from the CSD through its interfaces ConQuest22 or
its automated sister tool Mogul.21 Database searches with
ConQuest need to be set up such that substructures are specific
enough to tease out relevant conformation preferences but on
the other hand general enough to achieve significance of the
results. Mogul, in contrast, defines a chemical environment in
an automated fashion that cannot be modified by the user. Our
approach pre-encodes the expert’s approach to such searches
while maintaining full transparency about the relationship
between extracted knowledge and the underlying data. This
approach has the further advantage that rules can be added
from orthogonal sources of information, for example, from
quantum chemical calculations. Chemical space accessed and
utilized by medicinal chemists has been growing over the years
and has not been exhaustively explored yet. New chemical
substructures tend to appear in crystal structure databases with
some delay. An example is the use of the trifluoromethoxy
group. The first crystal structure with this substructure was
added to the CSD in 1987. Over the next 20 years
approximately one trifluoromethoxy-substituted molecule was
added to the CSD per year. Then submissions increased to
about eight per year such that today the 90° out of plane
conformation preference is clearly visible. In such cases,
calculated torsion profiles can bridge the gap until statistical
significance is reached.
The current torsion library has a number of limitations that

could be addressed by extensions of the way patterns are
defined and employed. First, our analysis is currently based on
the assumption of independent torsion angles. There are,
however, clear cases where two consecutive torsion angles need
to be looked at simultaneously for clear trends to emerge. The
most prominent examples of this type are aryl-X-aryl systems;25

an analogous one is the tertiary amides discussed above. This
extension will become part of a future release of the Torsion
Analyzer. Similarly, a full conformation analysis is not complete
without an analysis of ring systems. Rings of course contain
dependent torsion angles as well, and methods have been
published to classify the wealth of crystal structure information
for flexible rings.54 We have previously introduced the concept
of torsion fingerprints,55 which could be extended in this
regard.
All current torsion patterns have been defined as achiral

substructures. In many cases, chirality will not dramatically shift
torsion preferences, and in many cases, conformations of chiral
molecules can be analyzed by means of achiral patterns, as has
been done in the examples of Figures 3 and 4 above. In the
general case, neglecting chirality is of course a simplification of
reality. Interestingly, chirality plays a role in the definition of
torsion patterns even when the substructure at hand is not
chiral yet. Figure 12 shows this for patterns of increasing
complexity. While there is only one way of defining a torsion
angle of an aryl ether (a), unambiguous assignment of torsion
profiles to a sulfonamide (b) requires the choice of nitrogen as
the terminal atom. Picking one of the two prochiral oxygen
atoms as the terminal atom would lead to an introduction of

chirality into the pattern, and thus, the locations of the nitrogen
and the second oxygen atom to each other are not clearly
defined. For the substructure in Figure 12c a chiral SMARTS
pattern would be required to derive a torsion profile. This
profile cannot be folded, since it would be asymmetric with
respect to the origin. Finally, there is a notable difference
between Figure 12c and Figure 12d. The symmetry of the
phenyl ring in Figure 12d leads to the additional complication
that two alternative torsion angle matches are possible. Because
of the chirality of the substituent, these are no longer
equivalent, so a single torsion pattern is not sufficient anymore.
We have avoided such complications by always choosing the
smallest substituent of a chiral pattern as the terminal atom.
This leads to an optimum overlap of the two mirror image
histograms such that steric effects can be quite well accounted
for. Future versions of the Torsion Analyzer might deal with
chiral patterns in a more differentiated fashion.
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■ ADDITIONAL NOTE

A prototype of the Torsion Analyzer is available at http://www.
biosolveit.de/TorsionAnalyzer.
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(11) Kolossvaŕy, I.; Guida, W. C. Low Mode Search. An Efficient,
Automated Computational Method for Conformational Analysis:
Application to Cyclic and Acyclic Alkanes and Cyclic Peptides. J. Am.
Chem. Soc. 1996, 118, 5011−5019.
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Maximum common subgraph
isomorphism algorithms and their
applications in molecular science:
a review
Hans-Christian Ehrlich and Matthias Rarey∗

The intuitive description of small and large molecules using graphs has led to an
increasing interest in the application of graph concepts for describing, analyzing,
and comparing small molecules as well as proteins. Graph theory is a well-studied
field and many applications are present in various scientific disciplines. Recent
literature describes a number of successful applications to biological problems.
One of the most applied concepts aims at finding a maximal common subgraph
(MCS) isomorphism between two graphs. We review exact MCS algorithms, es-
pecially designed for graphs obtained from small and large molecules, and give
an overview of their successful applications. C© 2011 John Wiley & Sons, Ltd. WIREs Comput
Mol Sci 2011 1 68–79 DOI: 10.1002/wcms.5

INTRODUCTION

C hemical database systems are challenged with
the task of managing a rising number of molec-

ular entries.1,2 Especially, the fast and efficient stor-
age and retrieval of the database entries must be en-
sured. This requires a molecular description based
on a sophisticated chemical model. Depending on
the chemical question to be addressed, different
molecular representations ranging from simple de-
scriptions of physicochemical properties3 over bi-
nary fingerprints4,5 to graphs and reduced graphs6–8

are available. Modeling molecules as labeled graphs
have a long tradition9 and is a prerequisite for most
modern cheminformatic methods. The representation
of molecules by graphs has two major advantages:
Graphs are a very intuitive molecular representation
close to our elementary chemical understanding, and
they form a solid theoretical basis for computer-aided
processing. Furthermore, graphs enable a database re-
trieval via graph isomorphism techniques, i.e., com-
paring molecules becomes equivalent to comparing
labeled graphs. This review focuses on molecular
graph comparison techniques, especially addressing
the MCS problem. We introduce the graph theoret-

∗Correspondence to: rarey@zbh.uni-hamburg.de

Center for Bioinformatics, Computational Molecular Design,
Hamburg, Germany

DOI: 10.1002/wcms.5

ical background and summarize algorithms solving
the MCS problem. Finally, we provide an overview
of scientific applications that utilize MCS algorithms.

PRELIMINARIES

Around 1860, Kekule introduced a structural for-
mula, which is the foundation of modern chemistry.
The structural formula is a graph-like representa-
tion of molecules commonly used to formulate and
exchange chemical knowledge. The formula allows
chemists to visualize molecules and quickly identify
communalities and differences between them.

Graph Theoretical Background
A graph G is a pair (V, E)of vertices and edges. Each
edge e ∈ E connects two adjacent vertices (v1, v2) ∈
V. In a labeled graph, vertices (and/or edges) hold ar-
bitrary labels. A graph is simple if each of its edges is
undirected and unweighted. Undirected edges have
no orientation between the vertices they connect.
Unweighted edges have a uniform weight assigned
to them. In the following, we only consider simple
graphs, except when stated otherwise.

Two graphs G1 and G2 are isomorphic if there
exists a bijective (one-to-one) mapping between the
vertices of G1 and G2 such that two vertices in G1 are
connected by an edge, if and only if the correspond-
ing images in G2 are connected. An induced subgraph
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(a)

(b) (c)

FIGURE 1 | Maximal common induced subgraph (MCIS) versus
maximal common edge subgraph (MCES). (a) Molecular graph of
decalin (labels not shown). (b) Molecular graph of cyclodecane (labels
not shown). (c) MCIS of (a) and (b). (d) MCES of (a) and (b).

of G consists of a subset of vertices V′ ⊂ V and the
subset of all edges E′ ⊂ E connecting vertices in V′.
An induced subgraph isomorphism exists if G1 is a
subgraph of G2 (or vice versa), i.e., G1 is contained
in G2. Finally, a common induced subgraph of two
graphs G1 and G2 is a graph G12 that is isomorphic
to a subgraph of G1 and a subgraph of G2. Although
there are possibly many common subgraphs between
two graphs, we will focus on the largest common
induced subgraph or maximal common induced sub-
graph (MCIS). Related to the MCIS is the maximal
common edge subgraph (MCES). The MCES is a sub-
graph with the maximal number of edges common to
both G1 and G2. Figure 1 shows the difference be-
tween MCIS and MCES. Note that the MCIS as well
as the MCES of two graphs is not necessarily unique.
We will use the term MCS to refer to both, the MCIS
as well as the MCES.

Both MCS types can be connected or discon-
nected. In a connected MCS, each vertex is reach-
able from every other vertex by a path through the
MCS. A disconnected MCS is composed of two or
more disconnected components. Figure 2 illustrates
the connected and disconnected MCS for the same
molecular graph.

The complete MCS algorithm classification
scheme is illustrated in Figure 3.

Molecular Representation and Comparison
It is quite obvious that the atoms of a molecule can be
easily represented by vertices and bonds by edges. The
resulting molecular graph is often labeled to account
for atom and bond properties. The degree or number
of edges a vertex can have is limited by the num-
ber of covalent bonds an atom can form. Therefore,
the number of edges linearly depends on the num-
ber of atoms. To represent the orientation of atoms
in space, it is possible to add three-dimensional (3D)
information to a molecular graph.10,11 However, the
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(a)
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FIGURE 2 | Connected versus disconnected maximal common
subgraph (MCS). (a) Connected MCS (red). (b) Disconnected MCS (red).

MCS algorithms

Exact Approximate

Connected Disconnected Connected Disconnected

MCIS MCES MCIS MCES MCIS MCES MCIS MCES

FIGURE 3 | Classification of maximal common subgraph (MCS)
algorithms.

graphs considered herein refer to the molecular topol-
ogy only, except when stated otherwise.

Molecules are considered equal if a one-to-one
mapping between all atoms and bonds exists, i.e., the
two molecular graphs are isomorphic. To map a pair
of atoms or bonds, their labels must be identical. In
the case that two molecules are not exactly the same,
one molecule can be a substructure of the other. Then,
a subgraph isomorphism between the two molecular
graphs exists. Alternatively, two molecules share a
common substructure, and therefore the molecular
graphs share a common subgraph.

Some problems arise when using molecular
graphs. In mesomeric structures, e.g., aromatic com-
pounds, different bond localization result in noni-
somorphic labeled graphs, although the structures
represent the same molecule. For stereoisomeric
molecules, additional information, e.g., the relative
arrangement of bonds, must be annotated to differ-
entiate between them. Moreover, as molecules exist
in potentially many tautomeric forms, the construc-
tion of their molecular graphs in a standardized form
becomes especially challenging.
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FIGURE 4 | Line graphs. Panels (a) and (b) show the molecular
graph of cyclopentanone and epoxycylopentane. The highlighted
subgraphs in (a) and (b) become topological equivalent in the
corresponding line graphs (c) and (d). A differentiation is only possible
by their vertex and edge labels.

Relation between MCIS and MCES
Most of the algorithms described in literature calcu-
late the MCIS and only a few calculate the MCES
directly. However, Whitney12 proved that in cases
without trinode/triangle subgraphs, an MCIS can be
converted into an MCES. First, the molecular graphs
are converted into so-called line graphs that repre-
sent the adjacency between edges, which can then in
turn be converted in a compatibility graph. Figure 4
shows two molecular graphs: the corresponding line
graphs and a trinode/triangle example. The details,
especially the trinode/triangle problem, are discussed
by Raymond and Willett.13

ALGORITHMS

The problem of computing an MCS between two
graphs is NP-hard,14 meaning that no polynomial
time algorithm exists (unless P = NP). Nevertheless,
many attempts to obtain algorithms useful in prac-
tice have been made and most of them are present in
the field of computer vision and image recognition.15

Here, we focus on recent MCS algorithms in the field
of molecular science.

To obtain a clear classification of MCS algo-
rithms, we adopt the scheme from Raymond and
Willett13 that differentiates between algorithms cal-
culating exact or approximate, connected or discon-
nected, vertex-based (MCIS) or edge-based (MCES)
solutions. Unfortunately, some published algorithms
are not described in enough detail for a clear clas-
sification. Especially, the term MCS is often used as
a synonym for both, the MCIS and MCES. There-
fore, the algorithmic description leaves room for in-

terpretation and an adequate classification becomes
difficult.

Maximal Clique-based Algorithms
Calculation of an MCS between two graphs can be
reduced to the problem of finding the maximal clique
in a compatibility graph. A clique of a graph is a
complete subgraph in which each vertex is directly
connected to every other vertex. A maximal clique is,
therefore, a complete subgraph with the largest possi-
ble number of vertices. Note that a graph can incorpo-
rate more than one maximal clique. A compatibility
graph, also known as association graph,16,17 modular
product graph,18 or correspondence graph,19 of two
graphs G1 = (V1, E1) and G2 = (V2, E2) is defined as
the vertex set V1 × V2 in which two vertices (v1, v2)
and (u1, u2) are adjacent, if and only if (v1u1) ∈
E1and (v2u2) ∈ E2 or (v1u1) /∈ E1 and (v2u2) /∈ E2.
For molecular graphs, the compatibility between two
vertices or edges is additionally restricted by their la-
bels. The labels must agree according to some com-
patibility criteria, e.g., the same atom types or bond
orders. A maximal clique of a compatibility graph
corresponds to the MCIS of the two original graphs.
Figure 5 shows two molecular graphs: the compatibil-
ity graph and the correspondence between the maxi-
mal clique of the compatibility graph and the MCIS.

The approach to reduce the MCS problem to
the maximal clique problem is already known for
some time18,20,21 and one of the first applications to
chemical structures is described by Kuhl et al.22 and
Brint and Willett.19 The literature describes many dif-
ferent clique-detection algorithms,23–27 and Gardiner
et al.28 analyzed the performance of the most common
ones. Two widely used method for arbitrary graphs
are the algorithms by Bron and Kerbosch23 and
Carraghan and Pardalos.25 Although chemical graphs
are in general sparse, their compatibility graphs
tend to be dense. Therefore, the general clique-
detection algorithms, which do not use any chemical
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FIGURE 5 | Maximal clique in a compatibility graph. (a) Molecular
graph of 1,3,4-oxadiazole. (b) Molecular graph of 1,3,4-thiadiazole. (c)
Compatibility graph of (a) and (b). The graph has two maximal cliques
indicated with red and black lines. (d) Maximal common subgraph
(MCS) of 1,3,4-oxadiazole and 1,3,4-thiadiazole. Both cliques resemble
the same MCS.
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information, are often slow. Raymond et al.29,30

developed rapid similarity calculation (RASCAL),
a branch-and-bound procedure that uses multiple
chemically motivated heuristic strategies to improve
the efficiency of clique detection on molecular graphs.
RASCAL calculates the exact, disconnected MCES
by converting the MCES problem into the MCIS
problem.12 In RASCAL, the two input graphs are
transformed into line graphs from which the compat-
ibility graph is constructed. A maximal clique in that
compatibility graph corresponds to an MCES because
each vertex resembles an edge. The RASCAL proce-
dure was adapted to calculate the exact, disconnected
MCIS and MCES on a reduced version of molecular
graphs.31 In a reduced molecular graph, a vertex no
longer resembles a single atom but rather a group of
atoms, e.g., a functional group. A recent developed
branch-and-bound method32 based on the clique-
detection method of Carraghan and Pardalos25 is
described to detect all exact MCESs. Another branch-
and-bound clique-detection algorithm33 is an exten-
sion of Mehlhorn’s algorithm34 and uses a compati-
bility graph with a weakened edge definition such that
two vertices (v1, v2) and (u1, u2) are adjacent, if and
only if (v1u1) ∈ E1 or (v1u1) /∈ E1 and (v2u2) /∈ E2.
The result is an exact, disconnected MCS, in which
two vertices can be adjacent in the first graph and non-
adjacent in the second. Therefore, a circular structure
can be matched to a linear one.

The computing time of clique-detection algo-
rithms increases exponentially with the number of
vertices and edges in the compatibility graph. The
above-mentioned concept of chemical labeling, e.g.,
with atom types35 or bond orders,32 reduces the num-
ber of vertices and edges substantially. Often, only
because of chemical labeling, the MCS calculation
becomes feasible for an application in molecular sci-
ences. The methods described so far calculate the dis-
connected MCS; however, most clique-based MCS al-
gorithms can be modified to calculate the connected
MCS.36,37

Backtracking Algorithms
An MCS of two graphs is usually represented by a
bijective mapping of a subset of vertices of the first
graph to a subset of vertices of the second. If this
mapping is built-up sequentially vertex by vertex,
a tree structure is defined that can be searched by
classical backtracking algorithms (Figure 6 shows an
example). During the traversal, a current subsolution
is gradually extended to guide the search toward the
final solution. When an extension does not lead to
a valid or better solution, the underlying branch of
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FIGURE 6 | Backtracking search tree for 1,3,4-oxadiazole and
1,3,4-thiadiazole as shown in Figure 5(a) and (b). One solution is
highlighted. Cut branches are shown in gray.

the search tree gets pruned; therefore, reducing the
number of backtracking iterations needed to find the
MCS.

Two historical backtracking methods were
introduced by McGregor38 and Ullmann.39

McGregor38 appears to be the first who draws
a difference between an MCIS and MCES. The
Ullmann39 algorithm calculates subgraph isomor-
phism rather than an MCS but is worth mentioning
because it was the fastest algorithm at its time
and is the basis for other subgraph isomorphism
algorithms.40 Additionally, the algorithms and its
variations are widely used in today’s chemical
substructure search systems.41

Most recently, Cao et al.42 presented a back-
tracking procedure that calculates the exact, discon-
nected MCIS with control over the number of dis-
connected components. The algorithm works directly
on the molecular graphs and makes use of multi-
ple strategies to prune the search tree. One pruning
strategy excludes extensions that exceed the allowed
number of disconnected components. Another, the
induced subgraph heuristic, is derived from the def-
inition of an induced subgraph and identifies infea-
sible sets of vertex mappings in which the vertices
do not lead to an edge-compatible vertex assignment.
To further reduce the search tree, the algorithm ap-
plies a branch-and-bound strategy that uses a current
suboptimal solution to calculate an estimate of the
maximal possible MCIS and apply it as upper bound
on the final solution. If the estimate is worse than the
best solution found so far, the branch is not further
explored. To find large suboptimal solutions first, the
vertices are processed in decreasing order according
to their number of neighbors to the current common
subgraph. Therefore, the next processed vertex mostly
improves the upper bound, achieving a further accel-
eration of the search process.

Volume 1, January /February 2011 71c© 2011 John Wi ley & Sons , L td .



Advanced Review wires.wiley.com/wcms

Berlo et al.43 extended Cao et al.42 method to
calculate all exact, connected MCESs. Although the
induced subgraph heuristic uses the vertex connec-
tivity to identify vertices that do not result in a valid
one-to-one mapping, it cannot be applied when calcu-
lating an MCES. However, Berlo et al.43 use a similar
vertex ordering scheme and state that their method
reduces the search tree by adding multiple edges to
a current solution in one step. Unfortunately, it is
not proven that simultaneously adding multiple edges
always gives an exact MCES. A comparison shows
that Cao et al.42 algorithms are faster up to an MCS
of about 20 vertices and is then surpassed by Berlo
et al.43 method.

Dynamic Programming
Dynamic programming (DP)44 is a long-known math-
ematical technique for solving multistage decision
problems. The central element of DP algorithms is
the hierarchical division of problems into subprob-
lems, which are solved bottom-up storing and reusing
partial solution, a technique named memorization.
DP is most efficiently applied when subproblems can
be solved independently from each other. Depending
on the structure of subproblems, DP algorithms can
achieve polynomial runtime behavior.

Because of NP-hardness of the MCS problem,
it is extremely unlikely that a DP scheme results in a
polynomial-time MCS algorithm. However, the MCS
problem becomes easier to solve for certain graph
classes. Most importantly, the MCS between two trees
can be calculated in polynomial time using DP.45 De-
pending on the application, it is, therefore, worth-
while to carefully analyze the molecular graphs in-
volved. The reduced graph descriptor feature tree7

makes use of this concept by representing molecules
as trees such that an efficient algorithm for calcu-
lating the largest common subtree rather than an
exponential-time MCS algorithm can be applied.

Schietgat et al.46 developed a DP algorithm that
calculates a so-called block-and-bridge preserving ex-
act, connected MCIS. The algorithm is based on
Horvarth et al.47 and is specially designed for out-
erplanar graphs. Fortunately, most molecular graphs
are outerplanar. When molecules are compared, it is
often not desired to assign circular substructures to
noncircular ones. Therefore, during the construction
of an MCS, the algorithm only matches atoms of bi-
connected components (blocks) and edges connecting
blocks (bridges) to each other. This constraint and the
fact that the considered graphs are outerplanar make
a polynomial runtime for solving the MCS problem
possible.

Multiple MCS Isomorphism
The algorithms described so far always search for an
MCS between two graphs. Finding the MCS between
multiple graphs is an interesting problem when ap-
plied to molecules and has received comparatively
low attention in molecular science. Nevertheless, we
want to illustrate an example for multiple MCS cal-
culation. In cheminformatics, enumerated subgraphs
are frequently used as molecular descriptors. A mul-
tiple, connected MCES can be obtained by enumerat-
ing all possible subgraphs and extracting the largest
one common to all input graphs.48 The subgraphs
are retrieved from the full extended connectivity
fingerprint (ECFP),49 a common molecular descrip-
tor. The ECFP algorithm generates circular-growing
substructures using an adaptation of Morgan’s
algorithms50 for canonical labeling of molecular
graphs. Note that this approach is neither exact nor
it can be scaled up for larger graphs.

Benchmarking
Many MCS algorithms have been developed, but very
little effort has been made to create a uniform test en-
vironment to compare the algorithms with respect to
runtime and their field of application. Most often,
the algorithms are evaluated in a special experimen-
tal setting to show that they can outperform previ-
ous ones. The result is a number of evaluations that
are hard to compare. Conte et al.51 face the prob-
lem by assembling a diverse set of synthetical graphs
that is composed of randomly connected graphs, reg-
ular and irregular meshes, and regular and irregular
bounded valence graphs. Note that irregular bounded
valence graphs have properties similar to molecular
graphs. Three classical MCS algorithms were tested
with this benchmark set: McGregor’s38 backtrack-
ing procedure, and the algorithms of Durand et al.52

and Balas and Yu,24 both searching for the maxi-
mal clique. None of the three algorithms showed a
superior runtime behavior for all kinds of graphs.
McGregor’s38 algorithm performs well when graphs
are sparse and/or small. However, for irregular graphs
with bounded valence, Durand’s algorithm performs
best. The comparison shows that an appropriate ap-
plication of MCS algorithms strongly depends on the
considered problem.

APPLICATIONS

MCS algorithms have a variety of applications in
molecular science and the number is constantly ris-
ing. The complete scope of applications can certainly
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not be covered by this article. Nevertheless, we want
to give a broad overview of areas that use MCS
algorithms. In the following, we provide examples
for biological problems that are addressed by us-
ing MCS algorithms. The first part considers algo-
rithms applied to molecular graphs obtained from
small organic molecules such as drugs, whereas the
second part provides examples for applications on
graphs derived from large molecules such as pro-
teins. The two types of graphs are fundamentally
different. A small molecule graph is composed of
atoms and bonds or groups of atoms and topo-
logical distances. In proteins, complete amino acids
and the geometric distances between them are usu-
ally used to construct the graph. Also, the interpre-
tation of an MCS differs for small molecules and
proteins. An MCS of small molecules is often used
as structural similarity measure; whereas in proteins,
it resembles a common structure motif. It appears
that the algorithms only find little application for ri-
bonucleic acids (RNAs), even though common struc-
tural patterns are of major interest when studying
RNA.

Small Organic Molecules
MCS algorithms can be applied to identify ligand
families, predict ligand activity, or to analyze the
mechanism of reactions. Although the most com-
mon application of MCS algorithms is to retrieve
similarity values, the examples show in detail how
small molecules are transformed into graphs and how
to retrieve a measure of similarity from an MCS.
Other applications of MCS algorithms involve lig-
and alignment,53 the determination of quantitative
structure–property relationships (QSPR),54 and phar-
macophore modeling.55,56

Compound Classification
A central problem when dealing with small molecules
in pharmaceutical research is to group individual
compounds into structurally related families or clus-
ters. Manually grouping large databases is a tedious
task and automated procedures are, therefore, often
used. Automated clustering methods need a similar-
ity metric for pairwise comparison of structures and
a clustering algorithm for sorting compounds into
structurally related groups. An MCS can describe
common connected substructures or scaffolds as well
as a set of largest common fragments or functional
groups between two molecules. Stahl et al.35 ana-
lyzed the usability of different similarity metrics ob-
tained from disconnected MCESs for compound clus-
tering. The motivation to use a disconnected MCES

is to detect similarity between compounds that do
not share a large common substructure but rather
common functional groups that are disconnected. Six
different MCES algorithms (Rambin,57 an implemen-
tation of the Bron–Kerbosch algorithm,23 Dfmax and
Nmclique,58 Pardalos,59 Wood,60 and Rascal29) and
a variety of clustering methods were compared on a
set of 466 compounds known to bind to nine differ-
ent targets. From the number of vertices and edges
that comprise the MCS, a similarity between two
molecules is calculated according to29 the following
equation:

sim(A, B) = (|V(MCSA,B)| + |E(MCSA,B)|)
(|V(A)| + |V(B)|)(|E(A)| + |E(B)|) (1)

where MCSA,B is the MCS between molecules A
and B.

The similarity calculation is extended by two
correction terms. The first penalizes a different rela-
tive topological arrangement between the three largest
functional groups. The second raises the similar-
ity index if the largest MCES fragment comprises
more than 70% of one molecule indicating a com-
mon scaffold. A combination of the RASCAL–MCES
algorithm with the average linkage unweighted pair
group method with arithmetic mean (UPGMA)61

cluster method most accurately separates compounds
into their distinct classes while creating relatively pure
clusters and the least number of singletons.

Compound Activity Prediction
A key step in finding new drugs is the identification
of chemical compounds that shows activity in specific
biological processes. Virtual screening techniques try
to identify potential active compounds by large-scale
in silico activity prediction with the aim to reduce
the number of molecules that need to be experi-
mentally tested. The similarity principle in drug de-
sign states that, statistically, structurally similar com-
pounds tend to have similar activity.62 Rarey and
Dixon7 identify molecules that belong to the same
class of inhibitors on a set of 972 molecules63 from
the MACCS Drug Data Report database64 and pre-
dict binding geometries on 58 molecules65 taken from
the Brookhaven Protein Data Bank.66 Molecules are
reduced to acyclic graphs, feature trees, in which ver-
tices represent functional groups and edges resem-
ble the relative topological arrangement of groups. A
vertex describes steric features, e.g., van der Waals
volume, and chemical features such as possible inter-
actions a group can form with a potential receptor.
A weighted average over the similarity values of ver-
tex matches in the exact, disconnected MCIS of two
feature trees is used as the similarity between two
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molecules. Predictions of ligand-binding geometry
have an average root mean square derivation (RMSD)
under 4 Å in 61% of the 58 molecules. In a virtual
screening experiment, enrichment factors at 1% of
the 972 molecules screened are similar when using
feature trees and daylight fingerprints. Nevertheless,
50% of the top-ranking molecules obtained using fea-
ture trees differ from the ones found using daylight
fingerprints.

Schietgat et al.46 successfully perform a com-
pound activity prediction on the National Cancer In-
stitute (NCI) dataset containing about 70,000 active
and inactive compounds to treat human tumor cells.
The molecules are transformed into binary strings
that encode the occurrence of frequent substructure
patterns in a set of active compounds. A substructure
mining algorithm47 in combination with the block-
and-bridge preserving MCIS algorithm (see above)
calculates all patterns present in a ligand, and the
presence of a most frequent pattern is indicated by
setting the correspond bit. Finally, a support vector
machine classifies the compounds based on their bi-
nary description. A 10-fold cross-validation shows a
prediction performance comparable to other meth-
ods based on subgraph isomorphism,67 fingerprints,
or kernels.

Scaffold Hopping
A problem of similarity-based methods for virtual
screening is their tendency to only identify com-
pounds that are structurally very similar to the orig-
inal active molecules. However, it is of special phar-
maceutical interest to find novel molecules that are
built from different molecular scaffolds while pre-
serving activity against the same target protein. Dif-
ferent scaffold hopping methods successfully address
this task.68 Barker et al.31 investigate the scaffold-
hopping ability of different MCS-based molecular
similarity measures. The molecular graph is trans-
formed into a reduced graph with vertices resembling
functional groups and edges representing the topo-
logical distances between them. A reduced graph is
similar to a pharmacophoric description, which de-
scribes the structural features essential for the bio-
logical activity. Barker et al.31 adapted the similarity
formula from Eq. (1) and studied the influence on
the similarity value when using either an MCIS or
an MCES between two reduced graphs. A compari-
son with daylight fingerprints4 in a simulated virtual
screening experiment on a filtered version of the MDL
Drug Data Report indicates a similar enrichment abil-
ity at 1% of the database screened and only small
differences when using the MCIS or MCES, respec-
tively. The method retrieves about the same number

of unique scaffolds, but the scaffolds are complemen-
tary in terms of diversity to those found using daylight
fingerprints.

Reaction Mapping
Understanding the mechanism of enzymatically cat-
alyzed reactions is of major interest when study-
ing metabolic pathways of the cell. A chemical
reaction transforms the reactant molecule to the prod-
uct by deleting existing bonds and forming new
ones. These reaction centers can be experimentally
identified but only in a small scale. The works of
Korner and coworkers69,70 are aimed at automati-
cally determining reaction centers in high-throughput
applications. Each reactant and product is modeled
as a molecular graph in which vertices are atoms and
edges are bonds. An edge also holds a weight that
corresponds to the stability of the bond. A weighted
MCES (wMCES) that maximizes the sum of common
edge weights is used to determine the set of bonds that
are most likely conserved when a reactant is changed
to the product. All bonds not part of the wMCES
are either broken or formed during the reaction. The
sets of conserved bonds and reaction bonds allow an
identification of a bijective atomic mapping between
reactant and product. For the experiment, the RAS-
CAL algorithm was modified to calculate the wM-
CES and its automated application most often results
in a correct mapping of over 8000 manually mapped
chemical reactions obtained from Kyoto Encyclope-
dia of Genes and Genomes (KEGG)71 and BioPath
database.72

Quantitative Structure–Activity Relationships
The recently exponential growth in the number
of publications presenting quantitative structure–
activity relationship (QSAR) and QSPR shows the
importance of an accurate prediction of compound
activity/property in modern chemistry and biochem-
istry. The concept of QSAR/QSPR is to transform
chemical knowledge and intuition into mathemati-
cally derived equations that correlate the structure
with a known activity/property. With such a model,
it is possible to search any number of compounds,
even the ones that are not yet synthesized, for the
desired activity/property. Cuadrado et al.73 derive a
QSAR model to predict the blood–brain barrier per-
meability from a known set of 136 active compounds.
The QSAR model describes each ligand as a vector of
similarity values against all actives. In principle, any
measure that describes the similarity between two lig-
ands can be used. For a detailed review on molecular
similarity measures, see Refs 74 and 75. Cuadrado
et al.73 derive similarity values by approximating the
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van der Waals surface area76 of an extended MCIS
(EMCIS). The EMCIS contains information about
the position of substituents that are not part of the
original MCIS. The model is trained and tested us-
ing leave-one-out validation to guarantee a high pre-
diction performance. An independent test indicates
a prediction performance similar to previous QSAR
models and other approaches based on 3D methods
or neural networks.

Ribonucleic Acid
Structure comparison is one of the central tools used
for function prediction of novel RNAs. Often, a se-
quence comparison is sufficient for finding related
RNAs with known function from which a func-
tion prediction can be obtained. For some major
RNA families, such as transfer RNA and riboso-
mal RNA, sequence comparison fails due to the low-
sequence similarity between family members. Fortu-
nately, these families show a highly conserved fold.
Therefore, a direct comparison of the secondary struc-
ture can reveal similarities not present on the sequence
level. Chao32 compared RNA structures of different
complexity and searched for the presents of iron re-
sponse elements (IREs) in the untranslated region of
human messenger RNA (mRNA). The mRNA struc-
ture is modeled as a graph, with nucleotides form-
ing the vertices and edges resembling either covalent
bonds or hydrogen contacts between nucleotides. The
search for IREs in human mRNAs yield 26 genes from
which six are known to contain IREs. The comparison
of structures within different RNA families results in
the proposal of an extended vertex-encoding scheme.
Instead of labeling each vertex with the corresponding
nucleotide symbol, vertices are labeled according to
their secondary structure. The scheme is useful when
only the RNA structure, regardless of its sequence,
should be compared.

Proteins
The two main application fields of MCS algorithms
when studying proteins are protein alignment that
identifies global structural similarities between pro-
teins and pattern analysis in which the major interest
lies in local similarities.

Structural Alignment
Understanding the function and architecture of pro-
teins is a central problem in molecular biology. The
3D protein fold mainly determines the protein func-
tion, stability, and general behavior. Therefore, the
structural comparison of proteins can give valuable
insights into the nature of proteins. Jain and Lappe77

compare protein structures by approximately solving
the contact map overlap (CMO) problem78 in which
a protein structure is modeled as a contact graph
and the MCS of two proteins describes the similar-
ity between them. A contact graph consists of pro-
tein residues and two residues are connected by an
edge if their distance in space is small enough. To
obtain a solution to the CMO problem, the approxi-
mate MCES algorithm softassign79,80 maximizes the
number of common contacts between two proteins,
and a self-developed DP strategy ensures that the
order of residues forming the solution is the same
in both proteins. The algorithm computes almost
optimal matches on a CMO test set compiled by
Strickland et al.81 and shows running times around
minutes for proteins up to 1500 residues in size.
The results indicate that the method is faster than
other CMO algorithms, the runtime scales well with
increasing protein size, and that the algorithm is most
efficiently applied when comparing structurally simi-
lar proteins.

Structural Pattern Analysis
The identification of substructures or motifs in pro-
teins that are related to a specific function or fold gen-
erally leads to a hypothesis about the evolutionary ori-
gin or conducted function of the protein. The analysis
of complete databases for frequently occurring motifs
is an opportunity to identify conserved substructures.
Caboche et al.33 analyzed the NORINE database82

for structural commonalities between nonribosomal
peptides (NRPs). In contrast to regular proteins, their
structure can be partially or fully cyclic, branched,
or even polycyclic. The NORINE database provides
about 700 NRPs as molecular graphs. A vertex of
a graph corresponds to a monomer and an edge to a
chemical bond between two monomers. The database
is successfully analyzed for family-specific structural
features in NRPs, and an example application is given
to predict the product of NRP-producing proteins
from the protein structure.

Artymiuk et al.83 study common folding mo-
tifs between adenylyl cyclase and DNA polymerase 1
and between biotin carboxylase and adenosine dip-
phosphate (ADP)-forming peptide synthetases in de-
tail. The molecular graph representation of the ana-
lyzed proteins makes use of the fact that the spatial
arrangement of secondary structure elements (SSEs)
describes the protein’s fold. Although SSEs are ap-
proximately linear structures, they are modeled by
a vector drawn along their major axis. A molecu-
lar graph representing the protein structure is then
composed such that each vertex holds an SSE vec-
tor and each edge describes a geometric relationship
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between a pair of them. The Bron and Kerbosch23 al-
gorithm is modified to account for edge labels when
searching for the maximal clique. The resulting dis-
connected MCIS gives the structural relationship be-
tween two protein folds. Artymiuk et al.83 revealed
common folding modes between the proteins that in-
dicate similar function between adenylyl cyclase and
DNA polymerase 1 and homology between the fam-
ilies of biotin carboxylase and ADP-forming peptide
synthetases.

CONCLUSION

The aim of this review is to provide an overview of
current algorithms that solve the MCS problem for
molecular graphs and to show their general appli-
cations in the field of molecular science. Most algo-
rithms address MCS problem by solving the maximal
clique problem on a compatibility graph. However,
two of the most recently presented algorithms42,43

are backtracking procedures. Because of its good per-
formance on molecular graphs, RASCAL based on
clique detection belongs to the widely applied imple-
mentations.

One major application of MCS algorithms is
their use to determine similarity between small or-
ganic compounds. In contrast to fingerprint meth-
ods, the MCS captures topological relations between
atoms or functional groups. It, therefore, results
in a similarity concept well reflecting the synthetic
chemists understanding of molecular relationships.
The additional topological information can be of high
relevance when searching for alternative ligands with

similar biological activity. Applied to proteins, MCS
algorithms can accomplish the detection of global and
local similarities.

The special kind of MCS used to address a prob-
lem is of central importance for the application as well
as for algorithm design. We hope that future publi-
cations use the proposed classification scheme and
give a clear description of the algorithm’s intended
application field. New MCS algorithms need to be
compared with existing methods in a reproducible
environment, preferably on a generalized test set or
at least on a large number of varying graphs. The
number of test sets available, especially those that re-
semble the properties of molecular graphs, is small;
therefore, we encourage further research.

Because of NP-hardness, algorithms solving the
MCS problem in general will likely stay exponen-
tial in runtime requirement. Nevertheless, for a spe-
cific application, there are typically lots of options
to optimize. For performance, modeling vertex and
edge compatibility is critical. Moreover, some graph
classes such as trees and planar graphs allow much
faster methods for MCS calculation. For future appli-
cations of MCS in molecular science, time spent for
carefully modeling the problem as an MCS problem
is, therefore, well invested.

We hope that this review provides an entry point
into the current state of MCS algorithms and gives an
insight into the broad range of applications in molec-
ular science. A number of problems in molecular sci-
ence can be solved with MCS-based approaches and,
therefore, we encourage exploring new fields for their
broader application.
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und ohne Benutzung anderer als der angegeben Hilfsmittel angefertigt habe.
Die aus anderen Quellen oder indirekt übernommenen Daten und Konzepte
sind unter Angabe der Quelle gekennzeichnet. Die Arbeit wurde bisher weder
im In- noch im Ausland in gleicher oder ähnlicher Form in einem Verfahren
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