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Abstract

This work gives an overview over existing and novel numerical methods for the solution of the
micromagnetic equations. A large part is dedicated to the computation of the demagnetiza-
tion field. This subproblem accounts for the dipole—dipole interaction in magnetic materials.
It is particularly interesting due to its nonlocal character, which results in a high computational
complexity. A class of FFT-accelerated Fourier-space algorithms and a finite-element method
with shell-transformation are described and compared to each other. Moreover, the numerical
integration of the Landau-Lifshitz-Gilbert equation is investigated. The focus is put on a linear
and implicit finite-element scheme. This scheme is extended such that it integrates not only
the exchange field but also the demagnetization-field contribution implicitly. The open-source
three-dimensional finite-element code magnum.fe is presented that implements the proposed
methods. Finally, the domain-wall structure of tail-to-tail domain walls in nanorods is investi-

gated with magnum.fe.



Zusammenfassung

Diese Arbeit gibt einen Uberblick liber existierende und neue numerische Methoden zur L6-
sung der mikromagnetischen Gleichungen. Ein groRer Teil der Arbeit ist der Berechnung des
Demagnetisierungsfeldes gewidmet. Dieses Teilproblem beschreibt die Dipol-Dipol Wechsel-
wirkung in magnetischen Materialien. Durch den nichtlokalen Charakter hat das Demagne-
tisierungsproblem eine hohe algorithmische Komplexitat. Ein Klasse von FFT-beschleunigten
Fourierraum-Methoden und die Finite-Elemente-Methode mit AuRenraumtransformation wer-
den beschrieben und miteinander verglichen. Weiterhin wird die numerische Integration der
Landau-Lifshitz-Gilbert Gleichung untersucht. Der Schwerpunkt liegt hierbei auf einem linea-
ren, impliziten Verfahren. Dieses Verfahren wird derart erweitert, dass nicht nur das Austausch-
feld, sondern auch der Demagnetisierungsfeld-Beitrag implizit integriert werden. Die quelloffe-
ne Finite-Elemente Software magnum.fe, die die eingefiihrten Methoden implementiert, wird
vorgestellt. Abschliefend wird die Domanenwandstruktur von tail-to-tail Domanenwanden in

Nanostdabchen mit magnum.fe untersucht.
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CHAPTER 1

Introduction

Magnetism plays an essential role in our day-to-day life not only through the earth’s magnetic
field that protects us from solar winds. A large number of technical applications exploit the
properties of magnetic materials and fields. Famous applications include electrical generators
and motors as well as magnetic hard-disk drives. In order to understand geomagnetic processes
or to develop novel magnetic applications, a solid theoretical understanding of magnetism is
required. Since magnetic ab-initio calculations are usually too involved for the description of
macroscopic systems, various models have been established in order to approximately describe
magnetism on different length scales. For the micron scale, the micromagnetic theory has

proved to be a reliable model.

The micromagnetic theory was applied successfully to a great variety of problems such as the
development of magnetic storage media. It is used to describe and improve classical hard-disk
drives by optimization of the write head as well as the magnetic medium itself, see [1-3]. More-
over, the development of novel magnetic storage techniques like MRAM, see [4, 5], and the
magnetic racetrack memory, see [6], benefit from the micromagnetic model. Beside its use in
the development of storage media, the micromagnetic theory is also used for the investigation
of hard magnetic materials, see [7]. More applications include the description of geophysical

processes, see [8], or even the destruction of cancer cells, see [9].

The micromagnetic model describes magnetic processes in terms of a continuum theory gov-
erned by partial differential equations. Due to the lack of an analytical solution, many particular
problems can only be solved approximately by discrete methods. Although not entirely new,
this field of research is still very active. One reason is the rapid increase of computing power and
memory in recent years. On the one hand this development allows the use of existing methods
for a new class of more complex problems. On the other hand new classes of problems might
also require new algorithms in order to be solved accurately. For example a faster processor

allows the dynamical simulation of a longer time span, but the result is only meaningfull if the
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time-integration scheme is stable over long times.

Another aspect is the rise of new hardware architectures. Due to the finite speed of electrical
signals, the clock rate of modern processors hits the physical limits. Hence, in recent years not
the clock rate but the number of parallel processing units is subject to increase. A highly parallel

system architecture, however, calls for algorithms that perform well in parallel.

In this work an overview over existing discrete methods is given and novel methods are intro-
duced. In Chapter 2 the theory of micromagnetism is introduced and motivated by first principle
physics. Chapter 3 and 4 discuss discrete methods for the computation of the demagnetization
field and the Landau-Lifshitz-Gilbert equation respectively. These chapters form the core of the
work. The following Chapter 5 describes the finite-element micromagnetic code magnum.fe
that was developed as part of this work. In Chapter 6 this code is used to perform actual com-
putations on a realistic problem case. Chapter 7 concludes the work and gives an outlook to

the ongoing work on this subject.

The mathematical notation throughout this work is written along the lines of physical publi-
cations. If not stated differently, all functions are assumed to be sufficiently smooth for the
applied operations and all regions fulfill the requirements for the application of the integral
theorems. Integrals and differential equations, if not defined on a certain region, are assumed
to be defined on R3.
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Micromagnetism

Ferromagnetic materials from the viewpoint of theoretical physics are most accurately described
by the theory of quantum mechanics. In this theory the ferromagnet is described by a N-body
problem whose complexity grows exponentially with the number of involved bodies N [11].

Thus analytical calculations in this framework are restricted to very small systems.

Different models have been proposed in order to approximately describe ferromagnetic materi-
als on a macroscopic scale. Depending on the simplifications introduced by a particular model it
is able to describe the system accurately only under certain assumptions and on a certain length
scale. Table 2.1 gives an overview of established models for the description of ferromagnets on

different length scales.

For the description of ferromagnetism on the micron scale the theory of micromagnetism has
proved to be a reliable tool. In contrast to domain theory it is able to resolve the inner structure
of domain walls. On the other hand the micromagnetic equations can be solved numerically

for relatively large system compared to atomistic approaches.

This chapter is organized as follows. In Sec. 2.1 the assumptions and simplifications of the mi-
cromagnetic model are discussed. Section 2.2 provides an overview over the different energy
contributions of a ferromagnetic body. In Sec. 2.3 the Landau-Lifshitz-Gilbert equation is intro-

duced, which describes the magnetization dynamics in micromagnetism. Section 2.4 and 2.5

Model Description Length Scale

Atomic level theory Quantum mechanical ab initio calculations < 1lnm
Micromagnetic theory Continuous description of the magnetization 1 — 1000 nm
Domain theory Description of domain structure 1 — 1000 pm

Phase theory Description of ensembles of domains > 0.1mm

Table 2.1: Established models for the description of ferromagnetism on different length scales.
The table is based on Fig. 1.5 in [10].
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discuss extensions, limits and solutions of the micromagnetic equations.

2.1 Assumptions in Micromagnetism

Magnetic matter basically consists of magnetic dipoles called elementary magnets. These dipoles
can be identified with spins and orbital angular momentum of charges on the atomic level.
Macroscopic magnetic properties are consequently derived from the interaction and superpo-

sition of these dipoles.

Inthe special case of ferromagnetic materials, electrons with overlapping wave functions favor a
parallel spin alignment due to the so-called exchange interaction, see Sec. 2.2.1. The alignment

of elementary magnets m; at places r; can thus be assumed to be locally almost parallel
m;~m; for |ri—r| <A\ (2.1.1)

where )\ is a measure for the range of the exchange interaction, called the exchange length.
Further a homogeneous density of elementary magnets is assumed. Taking into account these
assumptions the discrete distribution of magnetic moments m; can be well approximated by a

continuous vector density M(r) such that
/ M(r)dr ~ Z Lo(r))m; (2.1.2)
Q i

holds approximately for volumes Q of the size A3 and bigger. It is important to understand that
the existence and the range of the exchange interaction is crucial for a good approximation in
Egn. 2.1.2. The vector field M is called magnetization. Due to the homogeneous density of

elementary magnets it has a constant norm
M(r) = M- m(r) with |m(r)| =1 (2.1.3)

where M is called the saturation magnetization. In the following the unit vector field m which

should not be confused with the moments m; will often be used instead of M.

The continuous magnetization field is a common parameter in classical electrodynamics [12].
Micromagnetism extends the classical field theory by non classical effects such as the exchange
interaction. These effects are expressed in the framework of a continuum theory, see Sec. 2.2.
Moreover, micromagnetism describes the dynamics of the magnetization field by the Landau-
Lifshitz-Gilbert equation, see Sec. 2.3. Due to this combination of classical field theory and

guantum mechanics, micromagnetism is often referred to as semi-classical continuum theory.
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2.2 Energetics of a Ferromagnet

The total energy of a ferromagnet with respect to the magnetization is influenced by a multitude
of physical effects. While some of these effects have a classical description, like the demagne-
tization energy and the Zeeman energy, others have a quantum mechanical origin and have to
be adapted to the continuum theory of micromagnetism, e.g. the exchange energy and the
anisotropy energy. By finding local minima of the energy functional, stable magnetization con-
figurations can be obtained. However, the total energy does also play an important role for the

dynamics of a ferromagnet as will be seen in Sec. 2.3.

2.2.1 Exchange Energy

The characteristic feature of ferromagnetic materials is the existence of spontaneous magneti-
zation. From classical electrodynamics it is known that neighboring spins energetically favor an
antiparallel alignment [12]. Consequently macroscopic magnetic bodies are expected to avoid

a uniform magnetization, which in fact is the case for paramagnetic and diamagnetic materials.

However, the elementary magnets in ferromagnetic materials are subject to the so-called ex-
change interaction. This quantummechanical effect leads to an energetically favored parallel

alignment of neighboring spins and thus to macroscopic uniform magnetization configurations.

The exchange energy is derived from the Coulomb energy of two indistinguishable particles
with overlapping wave functions. A two-particle system of fermions features an antisymmetric
overall wave function. For a singlet spin configuration this leads to a symmetric orbital wave-
function, whereas a triplet spin configuration leads to an antisymmetric orbital wave function.
The expectation value of the two-particle distance is larger for antisymmetric orbital wave func-
tions. Hence the triplet spin configuration leads to a lowered Coulomb energy and is thus en-
ergetically favored. In the classical picture the triplet configuration corresponds to a parallel
alignment of spins. A detailed discussion of the exchange interaction can be found in any text-

book on quantummechanics, e.g. [13].

Here we will use the classical Heisenberg Hamiltonian for two neighboring spins as starting

point to derive a micromagnetic expression for the exchange energy

E,"J' =-JS;- Sj (2.2.1)

where J is the so-called exchange integral and S; and S; are two neighboring classical spins.

With the magnitude of the spins S = |S;| = |S;| und the unitvectors n; = S;/Sand n; = S;/S
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this can be written as

E,"j =—J 52 n;-n; (2.2.2)

1
= —JS%[1— 5(mi = n;)?] (2.2.3)
The exchange energy of a magnetic body is calculated by summing up

1
E=) —J;S°[1— 5(mi = n;)?] (2.2.4)
ij
where Jj; is the exchange integral for spins i and j. That means J;; # 0 only for exchange cou-
pled, usually neighboring, spins. In the theory of micromagnetism this expression has to be
adapted to the continuous magnetization field m. The scalar product in Eqn. 2.2.2 is analo-

gously given by
m(r)-m(r+Ar) =1— %[m(r) — m(r+ AR (2.2.5)

where Ar is chosen as distance vector between two exchange coupled magnetic moments.

Expanding m(r 4+ Ar) in Ar up to first order and inserting into Eqn. 2.2.5 yields
1
m(r)-m(r+ Ar)~1— = Z(Ar -V mj)?. (2.2.6)
245
The energy for a magnetic body is obtained by summing up contributions from different dis-

tance vectors Ar; depending on the crystal structure and integration over the magnetic body
E= / Z Aim r+ Ar;)dr (2.2.7)

where A; are called exchange constants and include the exchange integral and the magnitude

of the spins involved. Inserting Eqn. 2.2.6 yields the general expression

om;j Gm,
E= C+/ ZAJk o axk (2.2.8)

for the exchange energy. The constant C results from the integration of the constant term of
Eqn. 2.2.6 and can be omitted without changing the physics of the system. Here Aj is a matrix

of exchange constants. By rotation of the coordinate system this matrix can be diagonalized

[14] which yields
E= /ZA <8m,> dr. (2.2.9)

In the case of cubic and isotropic materials the exchange constant does not depend on the

spatial dimension und thus Eqgn. 2.2.9 further reduces to

_ )2 _ 2
E= A/inj(vm,) dr = A/Q(Vm) dr. (2.2.10)
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This expression turns out to accurately describe most materials and is usually used in micro-

magnetics. The exchange constant A is determined experimentally.

Note that this result was derived from the classical Heisenberg model that assumes localized
spins. In metallic ferromagnets the spins are not localized and the Heisenberg model does not
apply. However, Egn. 2.2.10 still describes the exchange interaction phenomenologically up to
first order [10].

2.2.2 Demagnetization Energy

The demagnetization energy, also called magnetostatic energy or stray-field energy, is the en-
ergy of the magnetization in the magnetic field created by the magnetization itself. This means
that this energy contribution accounts for the dipole—dipole interaction of the elementary mag-

nets.

The demagnetization energy can be derived from classical electromagnetics. Maxwell’s equa-

tions for electrostatics, assuming a vanishing current J, are given by

V-B=0 (2.2.11)
VxH=0 (2.2.12)

where the magnetic flux B is connected to the magnetic field H via the magnetization M
B = (H+ M). (2.2.13)

Equation 2.2.12 is equivalent to the magnetic field H being the gradient of a scalar potential w.

Hence the demagnetization-field is the solution to the system

Au=V-M (2.2.14)
H=-Vu. (2.2.15)

The boundary condition to this system is given in an asymptotical fashion by
u(r) = O(1/|r|) for |r| — occ. (2.2.16)

This condition states that the potential drops to zero at infinity. It is often referred to as open
boundary condition. Equation 2.2.14 is Poisson’s equation and can be solved with the well
known Green’s function of the Laplacian, which naturally satisfies the boundary condition 2.2.16,
see [12]

1 VM)
u(r) = /]r 7 dr (2.2.17)
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Qq Q Qq

Figure 2.1: Sketch of the limiting procedure used for the derivation of the boundary term in
the integral solution of the scalar potential. The discontinuity of the magnetization
across the sample boundary 02 is smoothed out in a region €4 surrounding the

sample.

where the integration is carried out over the whole space. In the case of an ideal magnetic body
the magnetization is only defined on a finite region 2

M, ifreQ

IM(r)| = ? (2.2.18)

0 else
which leads to a discontinuity of M on the boundary 992. In this case the solution of Eqn. 2.2.17
can be obtained by a limiting process. Consider a finite region €4 that surrounds the magnetic
body . Further we assume a smooth decay of the magnetization within €, see Fig. 2.1. With
the magnetization and its divergence vanishing in the outside region ]R3\Q U Qq Eqgn. 2.2.17

can be written as

1 /. M / /!, M /
u(r) = —— [/ vi-M(r) dr’ +/ wdr’ . (2.2.19)
Ar L [r—r| Q |r—r|
Applying Green’s theorem to the integral over 4 yields
V/ . M / M AW .
/ 7(/’) dr’ = / L," ds’ — M(r) -V’ —dr’ (2.2.20)
Q [r—r]| o |r—r| Q lr—r|

where ds’ is the area measure to r’ and n is the unit outward normal. In the limit of a rapidly
decaying magnetization M the region €4 can become infinitely small without changing the
result of Eqn. 2.2.20. In this case the right-hand side of Eqn. 2.2.20 reduces to the boundary
integral since the volume integral has a finite integrand and is carried out over an infinitely
small volume. The boundary 0€24 consists of an inner and an outer boundary. The integral over
the outer boundary vanishes, because of a vanishing magnetization M. The inner boundary
coincides with the boundary of the magnetic body 92 except for the orientation. Thus the
boundary integral can be replaced by an integral over 92 with opposite sign. Inserting into

Egn. 2.2.19 results in

1 v -M(r M(r') -
u(r) = —— U VM) o —/ M(r)-n ds’} . (2.2.21)
Ar |Ja |r—r| oq |r—r|
The expressions p = —V M and ¢ = M - n are often referred to as magnetic volume charges

and magnetic surfaces charges respectivly. An alternative expression to Eqn. 2.2.21 can be
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obtained by applying Green’s theorem

u(r) I/QM(r’)-V/ ! dr’ (2.2.22)

T ar r—r|

The demagnetization field Hyemag is calculated as negative gradient of the potential v with re-
specttor

Hoemag(r) =~V u(r) = /Q N(r — F)M(r') dr’ (2.2.23)

with the so-called demagnetization tensor N given by

~ 1 1
N(r—r)=—-—VV’ : 2.2.24
(r=r) 47 lr —r'| ( )
According to classical electrodynamics the energy is given by

E= —@/ M - Hgemag dr (2.2.25)

2 Ja
= —% // M(r)N(r — ¥ YM(r') drdr’ (2.2.26)

Q

where the factor 1/2 accounts for the fact that the field is generated by the magnetization itself.
Due to the integration over r and r’ every dipole—dipole interaction between M(r) and M(r’)

contributes twice to the result, which is corrected by this prefactor.

2.2.3 Anisotropy Energy

Depending on the crystal structure of a ferromagnetic material, it energetically favors the align-
ment of the magnetization parallel to certain axes. This energy contribution results from spin-
orbitinteractions [10] and is referred to as anisotropy energy. The energetically favored axes are
called easy axes. These axes are undirected which means that a local minimum of the energy

at my,;, implies a local minimum at —my,;, with
E(mmin) = E(_mmin) (2.2.27)

Depending on the lattice structure, a material may have one or more of these easy axes. In the

simplest case a material has a single easy axis. This uniaxial anisotropy energy is given by
E= —/ [Kur(m - e))? + Kia(m - e,)*] dr (2.2.28)
Q

where e, is a unit vector pointing in the direction of the easy axis and K,; and K, are called
anisotropy constants. This phenomenological expression is the result of a Taylor expansion
up to fourth order. Only even powers are considered in order to fullfill the symmetry con-
dition 2.2.27. Uniaxial anisotropy occurs in materials with a hexagonal or tetragonal crystal

structure, e.g. cobalt.
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Materials with a cube-symmetric lattice structure naturally feature three easy axes e; which are

pairwise orthogonal

€ € = 6’] (2.2.29)

The energy of such a cubic anisotropy is the result of an expansion in the magnetization com-

ponents along the easy axes
E= /Q[Kcl(m%mg + m3m3 + mim?) + Komimsm3]dr (2.2.30)

where m; = e; - mis the magnetization component in direction of the anisotropy axis e;. Again
terms which violate the symmetry condition 2.2.27 are neglected. Moreover, only contribu-
tions which are constant under permutation of magnetization components m; are considered
in order to comply with the cubic symmetry. Cubic anisotropy occurs in materials such as iron

which has a body-centered cubic structure or nickel which has a face-centered cubic structure.

Although the expressions for the anisotropy energy in Eqn. 2.2.28 and 2.2.30 have a pure phe-
nomenological origin, they are able to describe anisotropy effects with a high accuracy. In prac-

tical applications the energy expressions are often reduced to the lowest order term.

2.2.4 Zeeman Energy

The Zeeman energy of a ferromagnetic body is the energy of the magnetization in an external

field H,eeman given by
E= —HO/QM « Hyeeman dr. (2.2.31)

2.3 Landau-Lifshitz-Gilbert Equation

The central equation in micromagnetism for the description of magnetization dynamics is the
Landau-Lifshitz-Gilbert equation, which was originally proposed in [15]. In this work from 1935
by Landau and Lifshitz the motion of the magnetization is described by a precessional term and
a damping term. While the precessional term is physically derived in this work, the damping
term is purely phenomenological. In 1955 Gilbert derived an equivalent expression for the
Landau-Lifshitz-Gilbert equation from a Lagrangian formulation, where the damping is treated

more strictly, see [16] and [17].

In the following a classical Lagrangian method as well as a quantum mechanical approach are
presented briefly to derive the Landau-Lifshitz-Gilbert equation. Both approaches give insight
to different aspects of the micromagnetic model and are thus of interest for the application of

this theory.

10
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2.3.1 Lagrange Approach

With an appropriate Lagrange functional the Landau-Lifshitz-Gilbert equation can be obtained
by the Lagrangian formalism. Since the magnetization M is assumed to be normalized, see
Egn. 2.1.3, its motion may locally be well described by the rotation of a rigid body. The angular

velocity of a rigid body in terms of the Euler angles reads

dsin(B) sin(v) + 0 cos(1))
Q = | $sin(8) cos(v)) + fsin(v)) (2.3.1)
¢ cos(B) + 1

where the shorthand notation f = 0:f is used. Note that the angular velocity €2 as well as the
angles 6, ¢ and v have to depend on the location r in order to describe the magnetization field
m(r). Without loss of generality the rotation axes can be chosen such that the r3-axis points

into the direction of the magnetization in every point and thus
0
m=|0]. (2.3.2)
1

In the rigid-body picture the magnetization is described by a rotationally symmetric stick. Since
the angle v describes the rotation of the stick around its symmetry axis it may be set to ) = 0
without loss of generality [18]. Thus Egn. 2.3.1 reduces to
0
Q=| ¢sin(d) |- (2.3.3)
¢ cos(6) + 1

The Lagrangian of a dynamical system in general is given by
L£=T(q.q9) - V(q) (2.3.4)

where T is the kinetic energy and V is the potential energy of the system and g and q are the
generalized coordinates and their time derivatives respectively. In micromagnetics the potential
energy is given by the energy contributions discussed in Sec. 2.2. The kinetic energy however
has no classical explanation since the magnetization does not have inertia in the classical sense.

In [16] Gilbert proposed the Lagrangian

L= —Afy’sqécos(e) — U(b, ¢). (2.3.5)

As shown by Wegrowe et al. in [19] this expression is equivalent to
L= %/[Q.S cos(0) + ] — U(6, ) (23.6)
= %Iﬂg — U(, ) (2.3.7)

11
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which describes a classical rotation energy with / being the moment of inertia. However, in this
energy only the rotation around the symmetry axis of the magnetization is considered. From a
classical point of view it is not clear why Q; and €, may be neglected. In [19] this choice of £

is discussed in detail.

In the following we will stick with the Lagrangian 2.3.5 as proposed by Gilbert. According to
the Lagrangian formulation, the equation of motion in terms of the generalized coordinates

q = (0, ¢) is given by
doL 6L 6D _

dtdq; g + 5q;

where §/df denotes a functional derivative and D is an additional dissipative Rayleigh function

0 (2.3.8)

that accounts for energy losses of the system. Inserting Eqgn. 2.3.5 into Egn. 2.3.8 yields

= v [eU oD
j___ 7 |9V 9D
6 = ~ Wesin(@) l5¢ + 595] . (2.3.10)

These equations of motion describe the dynamics of the magnetization by the Euler angles ¢(r)
and 6(r). In order to obtain a description in cartesian coordinates, the time derivative of the

magnetization in cartesian coordinates is considered

sin(6)
om=Qx m= -0 ) (2.3.11)
0
Furthermore, since the magnetization is a unit vector field |[m| = 1, variations of the Euler
angles ¢ and 6 are given by
dmy = sin(0)do (2.3.12)
dmy = 46. (2.3.13)
Hence Eqn. 2.3.9 and 2.3.10 can be written as
v [dU oD ]
0 =—|— 4+ — 2.3.14
£ MS l:tsmz 6m2 ( )
v [oU 6D }
0 = |— 4+ — 2.3.15
tm2 MS l:(;ml 5m1 ( )
or equivalently
~y ou 5D>
= —— —+—. 2.3.16
Orm Msmx<6m+5n'1 ( )

Choosing the reasonable dissipative function D = a*(9;m)? with a* > 0O results in the Landau-

Lifshitz-Gilbert equation
Orm = —y(m X Heg) + a(m x 0ym) (2.3.17)

12



2.3 Landau-Lifshitz-Gilbert Equation

where Hc¢ is the so-called effective field given by

Y
;Lo/\/ls om’

Hos = (2.3.18)

and o > 0 is a damping constant.

2.3.2 Quantum Mechanical Approach

InSec. 2.3.1itis shown that the Landau-Lifshitz-Gilbert equation can be obtained by application
of the classical Lagrange formalism. However, this method is based on a particular choice of the

Lagrangian, which is not completely justifiable by classical theory.

In this section a quantum mechanical approach is discussed to derive the Landau-Lifshitz-Gilbert
equation. As described in Sec. 2.1 the continuous magnetization field approximates a discrete
distribution of spins. In quantum mechanics the components of the spin are described by the
spin operators 3,-. In the Heisenberg picture the time development of the spin operators are

given by
ds; 1
dt  in
The contributions to the Hamiltonian in the context of micromagnetics will depend on the spin.

{?1-, H} . (2.3.19)

Thus it is reasonable to expand the Hamiltonian in the spin operators

S OH r~ ~
k
=ihy ggejk,fs, + O(1?). (2.3.20)
k,l k

Inserting into Egn. 2.3.19 and using the vector notation S= (31 32, §3) yields

g = -§x gg + O(h). (2.3.21)
In the classical limit the spin operators may be replaced by the continuous magnetization vector
M = M,m. Further the second term can be neglected since 7 — 0. Identifying 8@/83 with
the effective field Hef in Eqn. 2.3.18 leads to

9rm = —'(m x Heg). (2.3.22)

This equation describes the precession of the magnetization around the effective field without
any loss of energy. According to the original work of Landau and Lifshitz [15] a phenomeno-
logical damping term is added in order to account for these losses. This damping term is con-
structed such that it is perpendicular to the precessional term. Further it should conserve the

magnetization norm leading to

Orm = —'(m X Her) — a'm x (m x Heg). (2.3.23)

13



CHAPTER 2: Micromagnetism

(b) (c)
Heff Heff

Figure 2.2: Time evolution of a single magnetic moment as described by the Landau-Lifshitz-
Gilbert equation. The motion can be divided into a precessional and a damping
part. (a) Precessional motion around the effective field. (b) Damped motion. The
magnetization relaxes towards the effective field. (c) Resulting motion including

precession and damping.

This is the explicit form of the Landau-Lifshitz-Gilbert equation. It can be shown that this form
is equivalent to the implicit form in Eqn. 2.3.17. This is done by inserting Eqn. 2.3.17 for 0;m
on the right-hand side of Eqn. 2.3.17 and using the vector identity a x (b x ¢) = (a- ¢c)b —
(a- b)c. The coefficients of the different versions of the Landau-Lifshitz-Gilbert equation satisfy

the relations

v =~/(1+a?) (2.3.24)
o = ay/(1+ a?). (2.3.25)

A full quantum mechanical description of a spin subject to exchange interaction, anisotropy
and Zeeman field is given in [20] where the Landau-Lifshitz-Gilbert equation is also obtained in

a limit case.

2.3.3 Effective Field

The Landau-Lifshitz-Gilbert equation describes the motion of the magnetization in an effective
field defined by Eqn. 2.3.18. This motion can be described as the sum of a precessional term
and a damping term. Figure 2.2 illustrates these two terms for the explicit formulation of the

Landau-Lifshitz-Gilbert equation 2.3.23.

Inthe case of the Zeeman energy and the demagnetization energy, the effective field is an actual
field in the classical sense. The Zeeman field is directly given by H,eeman, the demagnetization

field is computed via Eqn. 2.2.23.

However, the exchange field as well as the anisotropy field have to be calculated via the vari-

14



2.3 Landau-Lifshitz-Gilbert Equation

Figure 2.3: A so-called Gaussian pillbox €, on the outer boundary of the sample Q. The dis-
continuity of the magnetization m across the sample boundary 02 is smoothed
out within the pillbox, as sketched on the right-hand side. Properties of the dis-

continuous system are obtained by considering the limit d — 0.

ational derivative in Egn. 2.3.18. The exchange energy density is given by the integrand of

Egn. 2.2.10. Applying the chain rule of variational calculus yields
A 9

He,(r) = ~oH %(me (2.3.26)
S
2A
= Am 2.3.27
NOMS ( )

Analogously the effective fields for uniaxial and cubic anisotropy are obtained by computing

the variational derivative of Eqn. 2.2.28 and 2.2.30 respectively

2Ky 4Ky

H,(r) = e,(e,-m e.(e, - m)® 2.3.28

u(r) oM. u(ey )+M0Ms u(ey - m) ( )
oK mlm% + m1m§ oK mlm%mg

Ho(r) = — 24 | o m2 4 mom? 2\ m2mom? | . (2.3.29)
7 | T o | T
m3mi + m3mj mim;ms

2.3.4 Boundary Conditions

Due to the first derivate in time the Landau-Lifshitz-Gilbert equation is an initial value problem.

In order to find a solution m(r, t) for t > ty the initial magnetization m(r, tp) has to be known.

Depending on the effective field, additional boundary conditions are required in order to find a
unique solution of the Landau-Lifshitz-Gilbert equation. In fact, even with given boundary con-
ditions the uniqueness of solutions to the Landau-Lifshitz-Gilbert equation could only be shown
for special cases, see [21-23]. From the effective field contribution discussed in Sec. 2.3.3, the
exchange field is the only one that adds the need of boundary conditions due to its second

order in space.

If this so-called exchange boundary condition is applied on the boundary of an ideal magnetic
body, i.e. a boundary where the magnetization rapidly drops to zero, it is uniquely defined.
Consider the Landau-Lifshitz-Gilbert equation without damping and with the exchange field as
effective field.

Orm = —ym x Am. (2.3.30)
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CHAPTER 2: Micromagnetism

Since at the boundary of an ideal magnetic body the Laplacian of the magnetization Am is
not defined, a limiting procedure is used to obtain the boundary condition. Like in Sec. 2.2.2
the magnetization is considered to decay continuously in a finite interval d. Equation 2.3.30
is integrated over a so-called Gaussian pillbox as sketched in Fig. 2.3. Application of Green'’s
theorem yields

8tm,-dr:/ e,-jkmjAmkdr (2.3.31)
Qp Q

p
8mk
= EiifkMmi—— dr—/ € Vm; - Vmygdr. 2.3.32
/an M o, BV M k ( )

The second integral on the right-hand side of Egn. 2.3.32 vanishes due to the skew-symmetric
Levi-Civita tensor €. The boundary of the pillbox 9€2, coincides with the boundary of the mag-
netic body €2 on one side except for the orientation. The other side of the pillbox is outside the

magnetic body where |m| = 0. Hence Eqn. 2.3.32 reads

om
Ormdr = — mx —dr (2.3.33)
Q 90 on
In the limit d — 0 the volume integral on the left-hand-side of Eqn. 2.3.31 vanishes. Since the
faces of the pill box can be chosen arbitrarily the boundary condition
0
mx 2" _ (2.3.34)
on
must hold in every boundary point. Further since |m| = 1 the normal derivative of the magne-
tization is perpendicular to the magnetization in every point 9m/9n L m and thus
om
on
This is the so-called exchange boundary condition, which is the right choice if the boundary of

0. (2.3.35)

the computational domain €2 coincides with the boundary of an ideal magnet as shown above.
Equation 2.3.35 was originally derived by Rado and Weertman in [24]. Before, it was shown by
Brown that the same boundary condition has to hold in energetic equilibrium [25]. Depend-
ing on further contributions to the effective field, such as surface anisotropy, this boundary

condition changes accordingly, see [10].

2.3.5 Properties of the Landau-Lifshitz-Gilbert Equation
Preservation of Modulus

As mentioned in Sec. 2.1 the magnetization m is assumed to be normalized everywhere. This
feature is preserved by the Landau-Lifshitz-Gilbert equation. Consider the time derivative of

the squared magnetization
c“9t|m|2 = 0¢(m-m) =20:m - m. (2.3.36)

Inserting Eqn. 2.3.17 immediately yields 9;|m|?> = 0 and thus also 9;|m| = 0.
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Lyapunov Structure

If the energy functional of a magnetic system does not explicitly depend on the time, i.e. if the

external field is constant in time, the time derivative of the energy density may be written as

0
o:U = 7U -0rm (2.3.37)
om

Replacing 9, m with Eqn. 2.3.23 and spatial integration yields

O:E = ,uOMS/ Heit[Y'm x Het + o - m x (m x Heg)] dr (2.3.39)
Q
= —qusa’/ \m x H|>dr (2.3.40)
Q
<0. (2.3.41)

This means that the energy of a magnetic system is always a non increasing function in time.

The Landau-Lifshitz-Gilbert equation is said to have Lyapunov structure [26, 27].

Hamiltonian Structure

In the special case of no damping o« = 0 the right-hand side of Eqn. 2.3.40 vanishes
O.E = 0. (2.3.42)

In this case the energy of the system ist preserved and the Landau-Lifshitz-Gilbert equation has

Hamiltonian structure.

2.4 Limits and Extensions of the Micromagnetic Model

As discussed in Sec. 2.1 the micromagnetic model introduces a set of simplifications to the
guantum mechanical description of magnetism. While justified for a broad range of applica-
tions, these simplifications may be inappropriate in some cases. The successfull application of
micromagnetism to physical problems requires a solid understanding of the origin of this model.
Itis crucial to consider its underlying assumptions and simplifications in order to predict the va-
lidity of simulation results for specific physical problems. Without claiming to be complete,
this section discusses a number of limits and extension to the basic micromagnetic model as

introduced in the preceding sections.
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CHAPTER 2: Micromagnetism

Bloch Points

The central assumption in micromagnetics is the homogeneous saturation magnetization M.
This assumption is justified by the fact that ferromagnetic materials are subject to exchange

coupling which leads to locally almost perfectly aligned magnetic moments.

However, certain magnetic processes involve the creation of magnetic singularities called Bloch
points. At these Bloch points the magnetization changes rapidly in space, which is inconsistent
with the basic assumption of a homogeneous M in micromagnetics. Despite this fact it was
shown in [28] that micromagnetic simulations involving the creation of Bloch points are able
to describe the corresponding processes in accordance with experiments, although the energy

density at the Bloch point is underestimated.

Temperature

Another example for the violation of the micromagnetic assumption of a locally homogeneous
magnetization is given by thermal effects. Thermal effects are most naturally reflected by local
perturbation of magnetic moments. Perturbation of a single magnetic moment, however, ob-
viously breaks the homogeneity of the magnetization. In the framework of classical micromag-
netics a possible approach for consideration of finite temperature is the reduction of the satu-
ration magnetization according to a mean-field approximation, see [29]. Another approach is to
add a fluctuating field to the effective field, which converts the Landau-Lifshitz-Gilbert equation
into a stochastic differential equation, see [30]. Both of these techniques do not account for
local changes in the saturation magnetization and as a result both methods fail to describe the
magnetization dynamics correctly when approaching the Curie temperature. This deficiency
is overcome by the Landau-Lifshitz-Bloch equation, which extends the Landau-Lifshitz-Gilbert
equation not only by a fluctuating field, but also by a term that allows the change of the mag-

netization modulus [31].

Spin Polarized Current

Other successfull extensions to the micromagnetic model include the description of spin polar-
ized currents and its interactions with the magnetization configuration [32]. A famous applica-
tion for this interaction is the magnetic racetrack memory proposed by Parkin et al. in [6].

Interfaces

The micromagnetic model was designed to describe the energetics and dynamics in a homo-

geneous material. Thus the description of interfaces between different materials gives rise to
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another limit of the model. The magnetic coupling at these interfaces is often not entirely clear
and can be subject to quantum mechanical effects that are not covered by the micromagnetic
model. These effects include the Ruderman-Kittel-Kasuya-Yosida interaction (RKKY) [33] and the
Dzyaloshinskii-Moriya Interaction (DMI) [34]. Work has been done on the integration of these
effects into micromagnetic theory and computations, see [35-37]. A common simplification for
the description of thin multilayer materials however is the assumption of a bulk material with

efficient material constants. These efficient material constants are determined by experiments.

2.5 Solving the Micromagnetic Equations

The Landau-Lifshitz-Gilbert equation with effective field contributions as introduced in the pre-
ceding sections is a non-linear partial differential equation in space and time. Apart from some
simplified edge cases the arising system of equations cannot be solved analytically. This work is
dedicated to the numerical solution of the micromagnetic equations. In the following chapters
the discrete solution of the different subproblems is discussed in detail. An overview over exist-
ing methods is given and novel methods are introduced. Finally the open-source finite-element

micromagnetic simulation code magnum.fe is presented.
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CHAPTER 3

Demagnetization Field

The effective field contributions introduced in Sec. 2.3.3 can be classified by their spatial range
with respect to the magnetization. The Zeeman field and the anisotropy field are local contri-
butions. While the Zeeman field does not depend on the magnetization at all, the anisotropy
field at a certain point r only depends on the magnetization m(r) at that point. The exchange
field depends on the Laplacian of the magnetization. In order to compute the exchange field
at position r the magnetization has to be considered at least in a small area around r so its
Laplacian can be computed. The demagnetization field is the only long-range contribution with
respect to the magnetization. At every point r the demagnetization field Hyemag(r) depends

on the magnetization at every point in the magnetic region.

This long-range property leads to a high computational complexity of the discrete demagnetiza-
tion-field calculation, which makes it an interesting topic for performance optimization. While
the local and short-range fields are computed with at most O( V), a naive demagnetization-field
algorithm scales with O(N?) where N is the total number of simulation cells. Several methods
have been proposed to reduce this complexity. These methods can be divided into the group
of integral methods and the group of variational methods. While the integral methods rely on
the integral expressions in Eqn. 2.2.22 and 2.2.23, the variational methods solve the Poisson

equation 2.2.14 directly.

Integral methods include Fourier-transform methods on regular grids [38—40] as well as on ir-
regular grids [41], fast-multipole methods [42, 43], nonuniform grid methods [44], and the re-
cently developed tensor-grid methods [45—48]. Variational methods include variations of the
finite-element method and boundary-element method [49, 50]. In the following the Fourier-
space methods as well as the finite-element methods are discussed in detail. Note that the

demagnetization field Hyemag is abbreviated as H throughout this chapter.
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3.1 Fourier-Space Methods

3.1 Fourier-Space Methods

Consider an arbitrary partitioning of the magnetic body 2 into simulation cells Q;
Q=JQ with QnNQ=0 if i#j. (3.1.1)
i

In the presented discretization scheme the magnetization is assumed to be constant in every
simulation cell 2;

m(r)=m; Y recQ, (3.1.2)

Thus the magnetization is represented by 3/ real values, where N is the number of simulation
cells. According to Eqn. 2.2.23 the demagnetization field is the result of a three-dimensional

convolution. With the discretization 3.1.1 and 3.1.2 it is given by

H(r) = /Q N(r — F)M(r') dr’ (3.1.3)

— I\/ISZ l/ﬂ N(r— r’)dr’} m. (3.1.4)
J J

The demagnetization field is usually computed using the same discretization as the magnetiza-
tion. In order to retrieve a single representative value of the demagnetization field per simula-

tion cell, the average value of the field H; over each cell 2; is computed
1 -
H;, = I\/ISZ —/ / N(r—r')drdr'| m; (3.1.5)
 LViJai o
=Y Ajm; (3.1.6)
J

where V; is the volume of the simulation cell /. The demagnetization-field operator A is a dense
3N x 3N matrix that only depends on the spatial discretization of the problem. This expression
can readily be used for the discrete computation of the demagnetization field. However, this
method scales with (’)(Nz) for both storage requirements and computational complexity and

is thus not suited for large-scale problems.

By choosing a periodic spatial discretization the convolution structure of the problem can be
exploited on the discrete level. Using a periodic discretization, every simulation cell ; has the

same shape as a reference cell Qef
Io,(r) = 1q,.(r — ). (3.1.7)

where i is a multiindex adressing the simulation cell £2; and the spatial offset of ; to the ref-
erence cell Q. is given by r;, see Fig. 3.1. Furthermore the offset from an arbitrary simulation

cell Q; to another simulation cell ©; is the multiple of a cell offset Ar in every spatial dimension

ri—rp= Z(ik —jk)Ark. (3.1.8)
k
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(a) (b)

Q ref
A r A rn

Ar1 AI‘]_
Q

i i

Q;

ri

Figure 3.1: Examples for periodic meshes in two dimensions as required by Fourier-space
methods. (a) A curved reference cell with periodicity along non-orthogonal axes.
(b) The common rectangular/cubic mesh is a special case of a general periodical

mesh.

With Egn. 3.1.7 and 3.1.8 the integrals in Eqn. 3.1.6 can be converted into integrals over the

reference cell Qe

1 _
H; = M ZJ: [Vi //Qref N (;(ik — jk)Arc+r— r’) dr dr’] mj. (3.1.9)

This expression has the form of a three-dimensional discrete convolution

H,' = Ms Z KI,-,J-mj (3.1.10)

J
~ 1
N =7 fl,

since it only depends on the difference of the multiindices i and j. Here KI,-_J- denotes the

N (Z(ik — jk)Are+r— r’) drdr’ (3.1.11)
K

ref

discrete demagnetization tensor. Note that KI,-_j has entries for every possible cell distance
which amounts to [[,(2Nx — 1) = 29N, where N, denotes the number of cells in spatial
dimension k and d denotes the number of dimensions. This reduces the storage requirements
from O(N?) for the demagnetization operator A to O(N) of the demagnetization tensor N;_;.
However, the naive implementation of the convolution in Egn. 3.1.10 still has a computational

complexity of O(N?).

3.1.1 Convolution Theorem

This complexity can be reduced by application of the convolution theorem. The discrete con-
volution theorem states that the convolution can be expressed as a cell-wise multiplication in
Fourier space

F(f«g)=F(f)F(g) (3.1.12)
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where F denotes the discrete Fourier transform and f x g is the discrete convolution given by

(Fxg)i=> fgij. (3.1.13)

J
The formulae in Egn. 3.1.12 and 3.1.13 are defined for one-dimensional sequences f and g.
However, the convolution in Eqn. 3.1.10 is multidimensional in two ways. First the convolution
is defined between a tensor N and a vector m. Due to the linearity of the convolution, the

tensor—vector multiplication can be exchanged with the convolution operation which yields
Hii = MsY > Niij myj. (3.1.14)
I

Furthermore the convolution is defined on a three-dimensional grid that is addressed by the

multiindices i and j. Writing these indices as triples of scalars i = (i1, i, i3) yields

Hiciiis = Ms D Nidiv—jio—jois—js Miji s s (3.1.15)

Lj12.J3
By processing each index j, separately this expression can be written as nested sums of one-
dimensional convolutions. Starting with the index j; yields an outer sum over one-dimensional

convolutions

Hk,i1,i2,f3 = M; Z Z Nk/,f1*j1,i2*jzvi3*j3 My ji.jo.j3 (3.1.16)
Ljvg2 13
= M Z Nk/yil_jly’.%__b * My (3.1.17)
112

where the convolution operator * acts on the free indices i3 —j3 and j3 respectively. Consider the
corresponding Fourier-transform operator F that applies the Fourier transform of an object
ai,,iris IN ix-direction for all possible tuples of the remaining indices. With this operator the

convolution in Egn. 3.1.17 can be written as

Hk’il'i2’i3 = MSZ‘F:’»_l Z‘F3(Nk/)i1—j1.i2—j2 F3(m/)j1,j2 (3.1.18)
! Li1.J2 i
=M F5H D Fa(Ni)i—j * Fs(mi)j, (3.1.19)
! | J1 s
=My FHF(Nw) F(m)l, (3.1.20)
I

where F = FiF»F3 is the three-dimensional Fourier transform. The exchange of Fourier
transform and summation as used in Eqn. 3.1.18 is possible due to the linearity of the Fourier

transform. This algorithm is often referred to as row-column algorithm [51].
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As mentioned above the convolution reduces to a cell-wise muliplication in Fourier space lead-
ing to a computational complexity of O(N). This complexity however does not account for
the additional computational costs due to the Fourier transform. The fast Fourier transform
algorithm (FFT) by Cooley and Tukey [52] has a complexity of O(N log N) which superseeds
the complexity of the multiplication and thus gives a measure for the overall complexity of the

convolution computation.

3.1.2 Discrete Demagnetization Tensor

The presented convolution method for the computation of the demagnetization field is applica-
ble for arbitrary discretizations as long as they are periodic in the sense described in Egn. 3.1.7
and 3.1.8. However, the computation of the discrete demagnetization tensor Rli,j for compli-

cated reference cells as shown in Fig. 3.1a might be unfeasible.

For cuboid cells as shown in Fig. 3.1b the discrete tensor KI,-_J- given by Egn. 3.1.11 was com-
puted analytically by Newell et al. [53]. According to Newell the diagonal element Ny ; of the
tensor is given by
1 L
val(r, AI’) - - Z (_1)ZX ix+jx

o 47TAI‘1AI‘2AI’3 i,jE{O,l}

flrn+ (in — j1)An, 2 + (i — jo)Ar2, 13 + (i3 — j3)Ar3]  (3.1.21)

where the function f is defined by

f(r,r, )= ’;2’(@32 — rf)sinh ! (‘Q’ )

NGEEG
+ 7(r22 — r?)sinh~1 B L/
\/rl2 +r22

— |r1r2r3|tan_1 ‘r2r3’
rn/r12+r22+r32

1
+ 6(2r12 — =W+ (3.1.22)

The elements No 5 and N3 3 are obtained by circular permutation of the coordinates

Nao(r, Ar) = Ny1[(r2, 13, 1), (Ar2, Arz, Ary)] (3.1.23)
N33(r, Ar) = Ny1[(r3, r1, r2), (Ars, Ar, Ar)]. (3.1.24)

The off-diagonal element Nj 7 is given by
1 -
Nio(r Ar) = g 3 (1)t

47TAF1AI’2AI’3 ije{0,1}

gln + (i — j)Ar, n+ (2 — j2)Ar, 3+ (i3 — j3)Ars] (3.1.25)
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where the function g is defined by

glr,rm,m)= (f1f2r3)sinh*1 (G)

\/r12+r22

rn

\/ 3+ 2
rn 2 2N - -1 ra

+ —(3r3 — r{)sinh —_
0 i+

3 2
I _ nr rsr. _ rri
— 3 tant — 2 tan?!

6 r3\/r12+r22+r32 2 rzq/r12+r22+r32
2 oy ré+ré+r2
rar rr 124/
- %tan_l 213 - ! : 23 (3.1.26)
nyré+r+r:

Again other off-diagonal elements are obtained by permutation of coordinates

rn

¢ (3r3 — r3)sinh 1

+

N1’3(I‘, Ar) = N1,2[(r1, rs3, r2), (Arl, Ar3, Arz)] (3.1.27)
N2’3(I’, Ar) = leg[(rz, rs, rl), (Arz, Ar3, Al’l)]. (3.1.28)

Like the continuous tensor Kl(r — r') the discrete tensor KI,-_j is symmetric
Njj = Nj;. (3.1.29)
Thus the above definitions of Ny 2, Nj 3 and N, 3 can be used to obtain the remaining off-

diagonal elements.

Instead of this analytical expression, Eqn. 3.1.11 can also be integrated numerically in order to
retrieve the entries of the discrete demagnetization tensor. As shown by Lebecki et al. in [54]
and Kriiger et al. in [55] numerical integration leads to more accurate results in some cases,

especially for large cell distances r.

3.1.3 Scalar Potential

Inthe preceding sections the demagnetization field is directly computed as the result of a convo-
lution. An alternative approach is the computation of the field as gradient of the scalar potential

u. With Eqn. 2.2.22 the demagnetization field is given by

H(r)=-Vu (3.1.30)
= —MSV/ S(r—r)-m(r)dr (3.1.31)
Q
S(r—r')= iv’# (3.1.32)

At~ |r—r'|
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Assuming again a discretized magnetization as in Eqn. 3.1.2 that is constant per cell £; yields

u(r) = MSZ [/Q S(r— r’)dr'] - mj (3.1.33)

for the scalar potential at an arbitrary point r. For a periodic spatial discretization that fulfills

Egn. 3.1.7 and 3.1.8 this expression can be turned into a discrete convolution

uj = Ms Z S,',j - mj (3.1.34)
j
Si_j= / S(ri—r')dr (3.1.35)
Q;

_ /Q s (Z(ik RN r’) dr’ (3.1.36)
ref k

where S;_; does only depend on the difference of the multiindices i and j. For cuboid simula-
tion cells this integral can be calculated analytically. First the volume integral is converted into

a surface integral with the divergence theorem

1 1

Sij= —/ V——dr (3.1.37)
4t Jo; i — |
L L (3.1.38)

= — —ds’.
47 0Q; |ri — 1’|

Consider the r3-component of the vector field S. For cuboid regions 2;, which are aligned with
the three principal axes, only the planes perpendicular to the r3-direction contribute to the

surface integral

S (r Ar) Z n 1 /Ar1/2 /Ar2/2 dr{drﬁ (3 1 39)
J(r, _ = d.
— 4AmJ-an2)-nn)2 \/(fl — )2+ (n—r)2+ (s FAr/2)?

where r denotes the distance to the center of the cuboid and Ar denotes the dimensions of

the cuboid. The indefinite surface integral can be evaluated as

F(ri,r r):]'//drldr2
1,712,173 - /7,‘]?—1_,'22—1—(%

1 { rnr
= —<¢ — rzarctan

4 r\/r2 +r3+r3
+ rin <r1+ \/r12+r22+r32>

+rln (rg + rl2 + r22 + r‘% } (3.1.40)

Assembling the definite integrals in Egn. 3.1.39 yields

S3(r, Ar) = Z —ijkF(r + i%, ra —|—j%, r3+ k%). (3.1.41)
ij.ke{-11}
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(a) (b)

AR\
A

Figure 3.2: Evaluation of the scalar potential generated by a source cell. The source cell is

colored gray. (a) Evaluation at cell centers. (b) Evaluation at cell vertices.

The remaining components of the vector field S are obtained by cyclic permutation

Si(r, Ar) = Z—iij(rg—i—i%,rg +j%,r1+k%) (3.1.42)
ij.k

So(r, Ar) =" —ijkF(rs + i82, r + jAE, r + kBR). (3.1.43)
ij.k

By application of the convolution theorem the potential u is thus computed by

up =Y FHF(Sk)F(mi)li. (3.1.44)
k

In contrast to the direct calculation of the demagnetization field, the potential is not averaged
over a cell, but computed at distinct points. These sampling points have the same periodicity
as the spatial discretization. However, their relative position in a cell can be chosen by adding

an offset to the computation of S.

In order to obtain the actual demagnetization field, the gradient of the potential has to be com-
puted. Onacuboid grid the approximation of the gradient is naturally given by finite differences.
A possible choice for the sample points of the potential are the cell centers, see Fig. 3.2a. How-
ever, in order to compute the gradient per cell in a symmetric fashion, the potential difference

from the neighboring cells has to be evaluated. For the r;-component this reads

Ujy+1,ip,i3 — Ui —1,ip,i3
Hy;~ ) 3.1.45
Li 2An ( )

For boundary elements the value for at least one of the neighboring cells might not be available.
In particular it is not possible to retrieve the finite-difference approximation if the region is

discretized by a single cell in one dimension.

This problem can be avoided by choosing the sample points at the vertices of the cuboid mesh,

see Fig. 3.2b. With this choice the averaged demagnetization field can be computed up to first
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order by the averaged finite-differences of the cell vertices

Z Uy 4+1/2,i04+ 20,3+ 03 = Ui —1/2,i4+0,i3+ A3 (3.1.46)

Hl P~
! An

Ay, Aze{—1/2,1/2}
The method described by Egn. 3.1.44 and 3.1.46 was introduced in [40] and is referred to as

scalar-potential method for the demagnetization-field computation.

3.1.4 Performance Considerations

Both the direct computation of the demagnetization field, in the following referred to as de-
magnetization-tensor method, and the scalar-potential method have an asymptotic computa-
tional complexity of O(N log N). However, a close look at the operation counts shows that the

scalar-potential method has certain advantages over the demagnetization-tensor method.

For the latter the Fourier transform has to be applied to the components of the demagnetization-
tensor and the magnetization. Then a tensor-field—vector-field multiplication and an inverse
Fourier transform on the components of the resulting field is carried out. Due to the symmetry
of the demagnetization tensor, its Fourier transform is calculated by six FFT computations. Since
this tensor does only depend on the choice of the spatial discretization it has to be computed
only once for the solution of a time dependent problem. The following computations have to

be carried out in every timestep:

e three 3D FFTs to transform the magnetization field
¢ one tensor-field—vector-field multiplication in Fourier space

e three inverse 3D FFTs to transform the resulting demagnetization field

The setup of the scalar potential method requires the Fourier transform of the field S. For every

timestep the following operations are required:

e three 3D FFTs to transform the magnetization field
¢ one vector-field—vector-field multiplication in Fourier space
e one inverse 3D FFT to transform the resulting potential

¢ one finite-difference computation of the demagnetization-field

Note that the scalar-potential method requires only four FFTs in total per timestep whereas the
demagnetization-tensor method requires six. Since the FFT is the operation with the highest
complexity it is expected that the overall computation time for a single timestep can be reduced
to approximately 2/3 by the scalar-potential method. Furthermore the tensor-field—vector-field
multiplication is reduced to a vector-field—vector-field multiplication. Also note that the mem-
ory required to store the demagnetization-tensor field N is two times the memory required to

store the vector-field S.
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3.2 Finite-Element Methods

The downside of the scalar-potential method is the additional gradient computation. This adds
another O(N) operation to the procedure, which is not significant due to the leading O(N log )

complexity of the FFT. However, it introduces another approximation error.

3.2 Finite-Element Methods

An alternative formulation of the Poisson problem 2.2.14 is given by
V- (Vu—- Mym)=0. (3.2.1)

Opposed to the original Poisson problem this expression is defined in the whole space even if
the magnetization M is discontinuous which is the case at the boundary of an ideal magnet. In

this case the discontinuity is compensated by the field H = -V u.

Consider the following formulation arising from multiplication of Eqn. 3.2.1 with a so-called test

function v and integration over a region Q2
/ V- (Vu—- Msm)vdr=0. (3.2.2)
Q
Integration by parts yields
/ Vu-Vvdr = I\/ls/ m‘Vvdr+/ n-(Vu— Msm)vds. (3.2.3)
Q Q oQ
Restriction of the test functions v to the Sobolev space H& defined by
H} = {ve HY(Q): v =00n0Q}. (3.2.4)

leads to a vanishing boundary term in Eqn. 3.2.3. Demanding Eqn. 3.2.3 forall v € H& thus
yields
/Vu-Vvdr:Ms/m-VvdrvveHg. (3.2.5)
Q Q

This expression can be written as
a(u,v) =L(v)VveH (3.2.6)
with the bilinear form a(u, v) and the linear form L(v) defined by
a(u,v) = /QVu -Vvdr (3.2.7)
L(v) = M, /Q m-Vvdr. (3.2.8)

According to the Lax-Milgram theorem this problem has a unique solution v when restricting
the solution to H3, since the bilinear form a(u, v) is coercive [56]. If the original problem 3.2.1

with Dirichlet boundary condition u = 0 on 9€2 has a classical solution, this solution coincides
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(a) (b)

Figure 3.3: Discrete function space of first order Lagrange functions in two dimensions. (a) A
single basis function, often referred to as hat function. (b) Example function from

the span of the hat-function basis.

with the solution of Eqn. 3.2.5 as can be shown by integration by parts. However, in general
the requirements on the solution of Eqn. 3.2.5 are weaker than on the solution of the original
problem 3.2.1. The original solution has to be twice differentiable whereas the solution of
Eqgn. 3.2.5 has to be only once weakly differentiable. Thus Eqn. 3.2.5is called a weak formulation

of the problem and the solution v is called a weak solution.

In order to solve Eqn. 3.2.1 with inhomogeneous boundary conditions, we have to seek for
the solution in the function space H!. In particular it can be shown that there exists a unique

u € H! to the problem

a(u,v) =L(v)VveH (3.2.9)

where ug € H' is an arbitrary function that satisfies the Dirichlet boundary condition.

The finite-element method is also capable of solving the Poisson equation for given Neuman
boundary conditions. The Poisson equation with Neuman boundary conditions determines the
solution only up to a constant. Hence the solution is usually restricted to a function space
V = {v € HY(Q); /o vdr = 0}. Since the function space for the test and trial functions is a
subspace of H!, the boundary integral in Eqn. 3.2.3 does not vanish. The Neuman boundary
conditions are thus naturally included in the weak formulation. It can be shown that the re-
sulting bilinear form is coercive on V and thus a unique solution can be found according to the

theorem of Lax Milgram [56].
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3.2 Finite-Element Methods

3.2.1 Discretization

The weak formulation 3.2.5 can be discretized by choice of a suitable finite dimensional function
space Vj, C H!. This function space is usually constructed using a polyhedral mesh. The cells
of this mesh along with the construction rules of the function space are called finite elements.

Following Ciarlet [57] a finite element is defined by the triple T, V, L, where

T isthe domain of a cell;
V is a finite dimensional function space on the domain T;

L is the set of degrees of freedom £ = {h, b, ..., I}, which is a basis for the dual space V'

Additionally a mapping from the local degrees of freedom per cell to the global degrees of
freedom is defined. This mapping couples the cells and ensures that the global discrete func-
tion space satisfies the continuity requirements of V). For actual computations the degrees of

freedom /; are usually used to construct a basis of }V by

li(#;) = 0y (3.2.11)
where ¢; denote the basis functions.

The simplest choice of a finite element is the so-called Lagrange element of first order. The
domain T is usually given as a triangle in two dimensions and a tetrahedron in three dimensions
and the function space V(T) is that of first order polynomials P;. The degrees of freedom

represented by the functionals /; are given as point evaluations on the vertices of the mesh
I,'(V) = V(l‘,‘) (3.2.12)

where r; denotes the ith vertex of the cell. This results in a straightforward local-to-global
mapping since neighboring cells share certain vertices. The corresponding basis functions ¢;
are according to Eqn. 3.2.11 given by ¢;(r;) = d;; with r; being the jth vertex of the mesh. Fig-
ure 3.3 shows the basis functions of the Lagrange element of first order for a two-dimensional
triangulation. As reference to their shape in two dimensions, which is shown in Fig. 3.3a, the

first-order Lagrange basis functions are often referred to as hat functions.

The first-order Lagrange elements are generalized to higher-order elements by piecewise poly-
nomial, globally continuous functions. In this case the mesh nodes are complemented by aux-
iliary nodes in order to construct a suitable dual basis. The support of the basis functions of
any order is given by the corresponding cell domains. The number of nodes per cell, however,
is increased for higher order. This leads to a loss a sparsity of the system matrices, which is the

main drawback of higher-order methods.

The general definition of a finite element by Ciarlet allows for a great variety of finite elements
that differ mainly in polynomial order and continuity properties, see [57]. However, this work

mainly focuses on the standard Lagrange elements.
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CHAPTER 3: Demagnetization Field

Using the finite dimensional function space V}, each function uy is described by a tuple of

coefficients u;

up =Y Ui (3.2.13)

1

where ¢; are the global basis functions. The discrete weak form 3.2.5 reads
/ Vuy -Vvydr = MS/ m-Vv,drVY v, € V, (3.2.14)
Q Q

with up, € Vj,. Due to the linearity in v, it is sufficient to test Eqn. 3.2.14 with the basis functions

¢;. Inserting Egn. 3.2.13 and exchanging summation with integration yields
Zu,-/ Vi Vo;dr= I\/IS/ m - Vg;dr. (3.2.15)
; Q Q
This system can be written as a matrix—vector multiplication
> Ajui = b; (3.2.16)
i
with the matrix A and the vector b given by

A,'J' = / V(b,’ : V(bj dr (3.2.17)
Q
b; = MS/ m-V¢;dr. (3.2.18)
Q

The matrix A is symmetric positive definite and thus the system 3.2.16 has a unique solution.
Furthermore the discrete solution uy satisfies certain optimality conditions and error bounds
depending on the spatial discretization can be computed. For a detailed analytical treatment

of this method the reader is referred to standard finite-element literature [56, 58].

The matrix entries A;; are zero for non-overlapping basis functions ¢; and ¢;. Depending on
the used finite element and the mesh, a large number of matrix entries is zero. In case of the
first-order Lagrange functions Aj; is nonzero for neighboring vertices i and j. Thus the matrix
A is sparse and has an asymptotic storage requirement of O(N). The sparsity of the system

matrix is an important feature of the finite-element method.

However, solving the problem 3.2.16 usually requires the inverse of A to be computed, which
results in a dense matrix. This procedure can be avoided by application of iterative methods for
the solution of linear systems [59]. These methods usually require a matrix—vector multiplica-

tion per iteration, which can be computed with O(N) for the given sparse matrices.

3.2.2 Open-Boundary Problem

In order to solve dynamic micromagnetic problems, the demagnetization field has to be com-
puted only within the magnetic sample. The finite-element method is well suited for the so-

lution of the Poisson equation arising from the demagnetization-field problem. However, the
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3.2 Finite-Element Methods

boundary conditions have to be known for this method. For the demagnetization-field problem
the boundary conditions are given at infinity by Eqn. 2.2.16. Several methods have been pro-
posed to compute the demagnetization field on a finite mesh with the finite-element method.
In the following the simple truncation method and the popular boundary-element coupling
method are briefly discussed. In Sec. 3.2.3 the so-called shell-transformation method is dis-

cussed in detail.

Truncation

A simple approach for the solution of the open-boundary problem is the truncation method.
The mesh of the magnetic sample is extended by a large but finite exterior region. The Dirichlet

condition is applied to the surface of the exterior region.

This method adds a large overhead due to the additional elements, but the exterior space is
still not described accurately, since the boundary condition is applied at finite distance to the

sample.

Hybrid FEM-BEM Method

A popular method for the solution of the demagnetization-field problem in the framework of
the finite-element method is a hybrid method proposed by Fredkin and Koehler involving the
boundary-element method. In the following the main idea of this method is sketched. For a

detailed description the reader is referred to the original publication [49].

Beside the open boundary condition 2.2.16 the following jump conditions at the sample bound-

ary of an ideal magnet can be derived for the demagnetization problem

Ut — Pt =0 (3.2.19)

(V"= Vi) -n=m-n (3.2.20)

where ™ denotes the value of the potential in the sample whereas u°'t denotes the corre-

sponding value outside. Consider the following splitting of the potential u
u=ui+ uo. (3.2.21)

Let u; be the solution to the following system

Auy=-V - -m (3.2.22)
% =n-mon 0f2 (3.2.23)
on
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in the sample and zero outside. This solution satisfies the continuity condition 3.2.20, but vio-

lates condition 3.2.19. Thus us has to fix Eqn. 3.2.19 while preserving Eqn. 3.2.20

Ut ggHt — i (3.2.24)
8u12” ous™t

N —0 3.2.25
on on ( )

From potential theory it is known that these requirements are met by a double layer potential

given by
0 1

up————dr. 3.2.26
o) 1(‘?n\r—r’| ( )

uy =

This expression can be evaluated in order to compute u; in the whole sample. However, the
computational complexity of this step amounts to O(NZ). Hence this expression is usually only
used to compute the values of u, on the boundary 92 with the boundary-element method. The
values of up within the sample are computed with the finite-element method, where Dirichlet

boundary conditions are taken from the boundary-element calculation.

An alternative coupling approach was presented by Garcia-Cervera and Roma in [60]. For this
approach a homogeneous and an inhomogenous Dirichlet problem have to be solved with the
finite-element method and the boundary-element method is used to retrieve a single-layer

potential.

For both coupling approaches the boundary-element method provides a linear system of size
M x M, where M is the number of boundary nodes. In contrast to the matrices arising from the
finite-element discretization, the boundary-element matrices are dense. A common approach
to handle systems with a large number of boundary nodes is the use of hierachical matrices for

the compression of the dense systems [61].

3.2.3 Shell-Transformation Method

In the preceding section two methods for the solution of the open-boundary problem with
the finite-element method were briefly discussed. The truncation method replaces the in-
finitely large exterior region with a finite region whereas the boundary-element coupling deliv-
ers boundary conditions at the sample boundary for finite-element computations. In this work
a so-called shell-transformation method was applied for the demagnetization-field computa-
tion [50, 62, 63]. This method outperforms the truncation method by considering the whole
exterior space, but it leads to a single sparse and linear problem in contrast to the boundary-

element coupling.

Consider a region Qsphere that is spherical and includes the magnetic region s3mpie. This region

is surrounded by a spherical shell Qqnen, see Fig. 3.4. The finite spherical shell Qqpe is mapped
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(a) (b)

e T(r)

Qext .
or

Qair
Qsphere = R Ry

Qsample U Qair (0, O"O)

Figure 3.4: Spherical shell transformation method in two dimensions. (a) Definitions of in-

volved regions. (b) Sketch of transformation.

onto the infinite exterior region Qe € R3\Qsphere via a bijective transformation T (r)
T : Qshell — Qext- (3.2.27)
Integration over Qe = T(Qshen) can be replaced by integration over Qqpe via substitution

FIT-H(F)] dr' = / £(r)|det[DT(r)]| dr. (3.2.28)

Qext Qshell

The function £(r’) = f[T~1(r')] is a ‘stretched’ version of f(r) which is defined on Qey:. This
method can be used to turn the weak formulation 3.2.5 on the finite region €2 to an effective
weak formulation on the whole space R3 by ‘stretching’ the test and trial functions. However,
the integrand of the left-hand side of Eqn. 3.2.5 does not depend on the test and trial functions,
but on their gradients. By using Eqn. 3.2.28 the gradients in the integrand still apply to the
untransformed variables r rather than to the transformed variables ' = T(r). The gradient

V with respect to r is connected to the gradient V' with respect to r’ by

g ar]  dry  0r o8
on aT% 37% 371/ or]
—|% | =91 92 95| fo|_ vy

Vg - arz - arZ 8"2 afz arzl —_— J V g (3229)

Og or ory 0r] og

ors drs  Or3  0On ar;

and hence

[V'gl(r) =4 Vel(r) (3.2.30)

with J = DT (r) being the Jacobian of the transformation. Thus the shell-transformed weak

formulation reads

/ Vu-Vvdr+/ (Vu)Tg Vvdr = Ms/ m-VvdrVveV (3.2.31)
Qsphere QsheII Q

sample
with the metric tensor g given by

g=)T |detJ) st (3.2.32)
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(a) (b)
~ ~
S Qspell 5] Qext
r T(r)

Figure 3.5: Distorsion of test and trial functions due to the transformation. (a) Linear decay
of the potential v in the untransformed shell. (b) The same function mapped onto

the exterior region by a suitable transformation.

Since the integral over the shell C2¢e) represents the integration over the exterior region Qey:
the open-boundary conditions can be applied as regular Dirichlet boundary conditions u(r) = 0

at the outer boundary of the shell 952.

The metric tensor g is symmetric positive definite, hence the symmetric bilinear form on the
left-hand side of Eqn. 3.2.31 is also positive definite. Thus by the right choice of the subspace
V C H&, problem Eqn. 3.2.31 has a unique solution.

Choice of Transformation

A reasonable choice for the transformation on a spherical shell is the radial mapping

T(r) = t(|r|)‘%| (3.2.33)

The scalar function t(r) € C°°(Qshen) is strictly increasing and fulfills

t(Rl) =R (3.2.34)
t(r) — ooforr — Ry. (3.2.35)

Thus the transformation T (r) is bijective and fulfills Eqn. 3.2.27 as required. Obviously there
are many possible choices for t(r) that meet these requirements. A suitable transformation
distorts the basis functions used for discretization in a way that the decay of the potential u
may be approximated accurately, see Fig. 3.5. From Eqgn. 2.2.22 it is known that the potential u

decays with u oc 1/|r|? in the far-field approximation.

Consider the radial part of an affine basis function
o(r) =a—+ br (3.2.36)

in the untransformed space. In order to obtain a function decaying with l/r’2 in the trans-
formed space, the scalar function t(r) has to fulfill

1
[£(r)]?

r=a +b

(3.2.37)
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and thus

t(r) =/ f/a, (3.2.38)

Furthermore the function t has to fulfill Eqn. 3.2.34 and 3.2.35, which leads to

b/
1/t(Rs) = 1| sz_, o (3.2.40)

R — Ry
t = Ry —— 3.2.41
(r) = Ruy/ Ry 1 ( )

as suitable mapping for linear basis functions. The metric tensor g of the transformation T (r)

This immediately results in

is computed by inserting Eqn. 3.2.41 into Egn. 3.2.33 and 3.2.32 which yields

RivV Ry — R1(4R§ ,-2 — 8R2r,-2|r| + 3|r\2r,-2 + |r|4)

» - 3.2.42
RivVRy — Ririrj(4R3 — 8Ry|r| + 3|r|?) .

» - fi 3.243

gJ(r) 2’[“4(R2— ’r‘)3/2 Or’#.j ( )

With this expression the demagnetization-field can be computed by discretization of the weak
formulation 3.2.31. The discretization is applied as described in Sec. 3.2.1. In contrast to the
basic Poisson problem, the computation of the system-matrix entries involves integration over
the metric tensor g. In order to compute these integrals, the metric tensor g is interpolated
onto a high-order polynomial space. This process is equivalent to the numerical integration

with Gaussian quadrature.

In order to obtain a smooth transition from the untransformed to the transformed region, the
Jacobian Jis required to equal the identity matrix 1 on the inner boundary of the shell 92sphere-
This is exactly the case for Ry /R> = 2/3. Hence the shell is always constructed according to
this ratio and the accuracy of the transformation method is entirely controlled by the resolution

of the mesh within the shell.

Higher Order Functions

The quality of the discrete solution can be significantly improved by the use of higher-order
polynomials as test and trials functions. For test and trial function of order higher than one the

transformation
Ro— Ry

t(r) = Rlﬁ- (3.2.44)
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(a) (b)

Qshell 4\

Qair
"
/

2/1

2

Figure 3.6: Cuboid shell transformation method. (a) The involved regions in two dimensions.
(b) Cuboid shell patches in three dimensions. The coordinate origin (0, 0, 0) is lo-
cated at the center of the cuboid. The length vector I is defined by the edges of
Qair-

instead of Egn. 3.2.41 is used. With this transformation, second and third order polynomial

functions transform like

1 1
a+ br+cr® — a+b—-+cd— (3.2.45)
r r
2 3 / /1 /1 /1
a+br+cr —|—dr _>a+b7/+CTZ+dT3 (3246)
r r r

The additional terms 1/r’ and 1/r’3 facilitate a much better approximation of the decaying
scalar potential u. The resulting metric tensor g for the spherical shell transformation is given
by

Ri(R> — R1)(R3r? — 2Ror?|r| + |r|*)

gi(r) = (R — 1)) (3.2.47)
oy RiRe(Re = Ryri(Re = 2|r]) . ., .
gii(r) = TRy — |r])? fori+#j (3.2.48)

Cuboid Shell Transformation

The spherical shell transformation is a natural choice for spherical samples. For non-spherical
samples this method might still be a good choice if the untransformed non-magnetic region i,
as defined in Fig. 3.4ais small compared to the sample region. However, for certain geometries,
such as magnetic thin films, the region €, is much larger than the magnetic sample Qgample.
This leads to a large overhead in the discrete problem, because Q,;; has to be meshed as well

as Qsample-

In [50] the use of a cuboid shell is proposed. Figure 3.6a shows the regions for this cuboid shell
transformation. When using a spherical shell, the inner radius of the shell is the only parameter
available to minimize the region €2,i,. In contrast, the cuboid shell offers the three side-lengths

as parameters, see Fig. 3.6b. Furthermore the relative rotation of the sample to the shell may

38



3.2 Finite-Element Methods

(a) (b) o
T(r)e
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Figure 3.7: Sketch of the cuboid transformation method in two dimensions. The transforma-
tion of the upper shell patch is visualized. (a) Transformation for positive a;. In this
case the origin of the transformation is fixed at a single point. (b) Transformation
for negative a;. In this case the origin of the transformation is moving on the mid-
dle plane of the magnetic region. This construction ensures continuity across patch
borders since the transformation of the narrow patch and the wide patch share the
same origin on the border. (c) In contrast to the spherical shell transformation the

parameters R; and R, vary with r.

be adjusted to minimize €2,;,. Hence the cuboid shell-transformation method offers a greater

flexibility regarding sample shapes.

The scalar mappings from Eqgn. 3.2.41 and 3.2.44 can be reused for the cuboid shell tansforma-
tion. However, the origin of the transformation as well as the parameters R; and R, have to be
adapted depending on the position r within the shell. The shell is divided into six cuboid shell
patches of equal thickness as shown in Fig. 3.6b. The transformation T (r) is constructed per
shell patch with the same requirements as the spherical version. Points on the inner bound-
ary of the shell have to be mapped onto itself while points on the outer boundary of the shell
are mapped to infinity. An additional requirement is the continuity of the transformation T'(r)

across patch borders.

The construction of origin and direction of the transformation depending on the position r
within the shell is depicted in Fig. 3.7. In general the transformation origin O is a function of r
in order to obtain continuity across shell-patch borders. In contrast to the mapping described
in [50], the transformation in this work is designed such that the origin O(r) always resides

within the magnetic sample. Consider the following auxiliary constants for the transformation
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(a) (b) (c)

<V %Z

Figure 3.8: Transformation origins in three dimensions. The blue area marks the set of possi-
ble origins for a specific shell patch. (a) Special case of square shaped patch where
a; = ap > 0. The transformation origin is fixed for the whole patch. (b) Rectangu-
lar patch shape with a; > 0. The transformation origin moves on a line. (c) Rect-
angular path shape with a; < 0 and a, < 0. The transformation origin moves on

the middle plane of the magnetic region.

of the shell patch in the positive r3-half-space
aa=hk—~h (3.2.49)
a=hk—bh. (3.2.50)
The third component of the transformation origin Os is given by
O3 = max(ay, az,0). (3.2.51)

This component does obviously not depend of the position r. The choice of O3 in two dimen-
sions is depicted in Fig. 3.7. Figure 3.7a sketches the transformation for a positive a;, whereas
Fig. 3.7b and 3.7c refer to a negative a;. The possible positions for the origins O(r) are marked
as blue points and lines. A three-dimensional visualization of O(r) is shown in Fig. 3.8. The

remaining components of O(r) are obtained by application of the intercept theorem

O; — Os — T
O(r) = (rl A O3> : (3.2.52)
r3—ar r3—a
With the distance vector p(r) = r — O(r), the parameters R; and R» as depicted in Fig. 3.7b
are given by
- O3
R = 3.2.53
(1) = (0] 2 (3.253)
4+ d)— O
Ru(r) = |p(r)| B9~ 05 (3.2.54)
r3 — O3

Similar to the spherical method, the actual transformation of the shell patch in the positive

r3-half-space T3 is defined in terms of a scalar mapping t(r)

Tsi(r) = O(r) + t(r) “’;E:;'. (3.2.55)
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The scalar mapping is chosen similar to Eqn. 3.2.41 and 3.2.44

Ra(r) — Rl(f)r (3.2.56)

10 = RO | ) i)

where nis set to 1/2 for linear basis functions and to 1 otherwise. In the following sections the
analytical expressions for the metric tensor for linear as well as higher order basis functions are

presented.

Similar to the spherical shell-transformation method, the thickness of the shell d is chosen such
that the Jacobian J is the identity on the inner boundary of the shell. This is exactly the case
ford = min(/1, /2, /3).

Metric Tensor for Linear Basis Functions

According to Egn. 3.2.32 the metric tensor g is determined by the Jacobian determinant | det J|
and the inverse Jacobian matrix J~1 of the transformation T(r). For improved readability

consider the following auxiliary constants

2 2
. w,g o+ (rl B n<—01+03>> . (Q B rz<—02+os>> (3.2:57)

—-01+n -0+ n3
B — M (3.2.58)
r3 — 03
dA
C = 3.2.59
r3 — 03 ( )
D= —(-2B+3C)(—h+r3)(—h+ 03) (3.2.60)
E = —-2Bl3+ Cl + 2Br; — COs. (3.2.61)

Setting n = 1/2 in Egn. 3.2.56 and inserting into Eqn. 3.2.55 yields the following expressions
for |det J3| and J;j for T3,

|det J31|(r) =

C(k— 03)(—Bh + (=B + C)(—h + 03))(—Bh + (—B + C)(—/ + 03))
2B3(d + B —r3)(h — b+ 13)(h = +13)

(3.2.62)
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B(—/l + kB — r3)

J3+11(r) T Bh+ (-B+ C)(—h + 03)

J3+,12(r) =0

J3+,13(r) =0

J3+,21(r) =0

J34.22(r) ~ZBh fé:;i /2)2—33)4— 03)

J3+,23(r) =0

Ja431(r) = — dri(—h + k — r3)B3(D + hE +2d(—Bh + (=B + C)(—h + 03))

)

(d + I3 — r3)(l1 — kK + r3)2(/3 — O3)C3(—B/1 + (—B + C)(—/3 + 03))

J (r) _ drz(—/g + k3 — r3)B3(D + hE + 2d(—B/2 + (—B + C)(—/3 + 03)))
IR T T @4 = 13)(h — s+ 13)2(ls — 03)C3(—Bh + (—B + C)(—k + 03))

2dB3
J3+,33(r) “(5-05)C3

(3.2.63)

These expressions apply for the shell patch lying in the positive r3-half-space. Due to symmetry
the transformation for the patch in the negative r3-half-space is obtained by point mirroring the

position r in the origin

r ifr3 >0
g =] &) & (3.2.64)
g3+(—r) if r3 < 0
where g3 is defined by
g3 = (J51) 7| det S5y |5} (3.2.65)

The transformations for the remaining shell patches are obtained by cyclic permutation of the
coordinates
_ T ’
r| = r, r,r 3.2.66
gilrl = gl(r2 r3.1) 7] I=(h,l3,h)7,0=(0,,03,01)7 ( )

— T
g[r] = gsl(rs. r1, 12) ]’I:(l3,/1,/2)T,o:(o3,ol,oz)T' (3.2.67)

Note that not only the coordinates of the position r are permuted, but also the coordinates of

the side-length vector I and the origin O.

Metric Tensor for Higher Order Basis Functions

Setting n = 1 in Eqn. 3.2.56 and inserting into Eqn. 3.2.55 yields the following for the transfor-

mation T3, (r) for higher order basis functions

|det J3|(r) =

d(b— 03)(dh + (b —r3)(h — h+ 03))(dh + (K — r3)(h — 5+ 03))

3.2.68
(d+h—r)*(h—h+n)h—hK+r) ( )

42



3.2 Finite-Element Methods
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Figure 3.9: Scalar potential calculation of a homogeneously magnetized cuboid with the spher-
ical shell transformation method. (a) Sketch of the setup in two dimensions. The
cuboid sample with edge lengths (2,2, 6) is surrounded by a sphere with radius
Ry = 4. (b) Results of the potential computation on the r3 axis u[(0, 0, r3)T]. The
results of a truncation approach and the spherical transformation are compared to

the analytical potential. The different regions are marked with background colors.

_]71 (r) _ (d =+ /3 — r3)(/1 — /3 —+ r3)
3+11 d/1 + (/3 — I‘3)(/1 — /3 + 03)

J3_+1,12(") =0
J3_+1,13(r) =0

J3_+1,21(") =0
Jil (r) _ (d + /3 — I’3)(/2 — /3 =+ r3)
3+.22 d/2 + (13 — I’3)(/2 — /3 + 03)

J3T+1,23(") =0

_ d+hk5—nr3 1
1 — —
Siialr) = nld+h—rs) (d(/1 “htr)h-03) di+(h-r)(h—bk+ 03)>
_ d+hk—n; 1
1 _ _ _
Jira(r) = rald + 1= rs) (d(/z —h+4+nr)(h—03) db+(h—r)(h—h+ O3)>

(d+/3— r3)

J3+ 33(r) = m (3.2.69)

Similar to the transformation for linear basis functions, the metric tensor g for a particular shell

patch is obtained by Egns. 3.2.64-3.2.67.
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Figure 3.10: Relative error Ju of the potential computation for a homogeneously magnetized
cuboid, see also Fig. 3.9. The result of the truncation approach is compared to
the result of the transformation method. The different regions are marked with

background colors.

3.2.4 \Validation and Numerical Experiments

As a first validation of the transformation methods presented in the preceding section, the
scalar potential 1 is computed for a homogeneously magnetized cuboid. This problem is well
suited as a functional test, since the analytical solution for u is known, see Sec. 3.1.3. Fur-
thermore both the approximation of the cuboid sample geometry with tetrahedra as well as
the approximation of the constant magnetization with piecewise polynomial functions is exact.
Figure 3.9a shows the configuration in two dimensions. The side lengths of the cuboid are cho-
senas L = (2,2, 6)T and the radii of the spherical shell are chosenas R; = 4and R, = 6. The
homogeneous magnetization within the sample is set to M = (0, 0, 1). The computation of
the potential u is done with the spherical shell-transformation method described in Sec. 3.2.3
with linear basis functions. For comparison a simple truncation approach on the same mesh is

implemented, where the metric tensor in Egn. 3.2.31 is replaced by the identity.

The computed potential on the rs-axis u[(0, 0, r3) "] is plotted in Fig. 3.9b along with the an-
alytical solution. For both methods Dirichlet conditions u = 0 are applied on the outer shell
boundary, which is reflected in the potential values at z = {—6,6}. In contrast to the trun-
cation method, the transformation method features a steeper ascend of the potential in the
shell region Qqnenl, such that the deviation of the computed potential in the untransformed area
Qair U Qsample is smaller than the deviation of the truncation method. Figure 3.10 shows the er-
ror to the analytical computation in the the different regions. While the error of the truncation

method linearly varies with the distance to the center of the sample, the error of the transfor-
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Figure 3.11: Equipotential lines of the computed scalar potential u of a homogeneously mag-
netized cube at the middle plane. (a) Result computed with a truncation ap-
proach. The shape of the contour lines is close to that of a magnetic dipole.
(b) Result computed with the cuboid shell-transformation method. The contour
lines show a clear distorsion due to the transformation. Furthermore the density

of contour lines is higher compared to the truncation method.

mation method almost drops to zero on the boundary between the regions Qshe and €2,ir. This

is the expected result, since the transformation method simulates the complete exterior space.

This fact is also reflected by the equipotential lines of the potential u. Figure 3.11 shows the
equipotential lines for the cuboid shell transformation applied on a uniformly magnetized unit
cube with M = (0,0, 1)T. Compared to the truncation method, the potential lines of the
transformation method show a higher density in the shell region Qgnei. The spatial distorsion of
the shell region, that is effectively applied by the transformation method by mapping the cuboid

shell region on the complete exterior space, leads to distorted potential lines in Fig. 3.11b.

As explained in Sec. 3.2.3, the cuboid shell transformation superseeds the spherical shell trans-
formation in terms of flexibility. Hence the rest of this work is dedicated to the cuboid shell
transformation only. However, the presented findings of the cuboid method usually also apply
to the spherical method. Figure 3.12a shows the energy of a uniformly magnetized unit cube,
calculated with different polynomial degree of test and trial functions along with the analyti-
cal solution. The demagnetization energy is computed according to Eqn. 2.2.25, the analytical
solution for a uniformly magnetized unit cube is given by E, i = 1/6,uol\/ls2. The methods are
compared with respect to the number of nonzero matrix entries of the linear systems resulting
from the discretization of Eqn. 3.2.31. This is considered a good measure for comparsion since

both the storage requirements and the computational complexity of matrix—vector multiplica-
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Figure 3.12: Numerical experiments with the cuboid shell-transformation method. (a) Energy
calculations for a homogeneously magnetized cube with different polynomial de-
gree. Matrix entries denotes the number of nonzero entries of the sparse system
matrix. The analytical solution is denoted by E,n. (b) Number of iterations of
the conjugate-gradient solver for different polynomial degree. (c) Relative error
of the energy J E for a uniformly magnetized cube. The mesh size h accounts for
the auxiliary nodes introduced by higher-order methods. (d) Experimental con-
vergence rates for different polynomial degree, computed from the results of plot
(c). Modified from [64].
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tions scale linearly with the number of matrix entries. Since the linear systems are solved with
iterative solvers, the matrix—vector multiplication gives a good measure for the complexity of
the solution of the system. The plot shows that the transformation method gains accuracy with
higher polynomial order. Particularly the method of first order performs poorly compared to
the higher-order methods. The reason is the additional 1/r’ term that is present only in the
higher-order methods as shown in Sec. 3.2.3. This term enables a much better approximation

of the decaying potential u.

This qualitative difference between the first-order method and the higher-order methods is
also found in the convergence behaviour, shown in Fig. 3.12c and Tab. 3.12d. The second and
third-order method have a convergence rate of approximately 2 while the first-order method
converges only with a rate of approximately 1.6. Furthermore the plot shows, that the error of
the first-order method is an order of magnitude higher than for the higher-order methods for
the same mesh size h. Note that the auxiliary mesh-nodes for the higher-order methods are

taken into account for the computation of h.

The linear system arising from the weak formulation 3.2.31 is symmetric positive definite. Hence
it is solved with the conjugate gradient method [59] as iterative solver. An algebraic multigrid
preconditioner is used, which leads to a small number of iterations. Figure 3.12b shows the
number of iterations for the methods of different polynomial degree. Linear fits yield a N4
dependence of the iterations on the number of matrix entries . A single iteration basically
consists of a matrix—vector multiplication that has a computational complexity of O(N). This

leads to an overall asymptotic complexity of O(N4).

Crouzeix-Raviart Elements

In [65] and [66] it is stated that the computation of the demagnetization potential v with con-
forming piecewise polynomial functions leads to unstable behaviour in the context of energy
minimization. The authors propose the use of Crouzeix-Raviart elements for the discretization
of u to stabilize the solution. Figure 3.13 shows the results for the demagnetization-potential
calculation with Crouzeix-Raviart elements compared to the computation with standard La-
grange elements. Obviously the application of the transformation method with Crouzeix-Raviart
elements leads to errors on the boundary of the sample. Using a simple truncation approach
yields smoother results, however this method suffers from the bad approximation of the exte-
rior space. For the dynamical computations carried out in this work, the conforming method
did not yield any instabilities, see Sec. 4.3.4. Thus the conforming method is used throughout

this work.
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(b)

Figure 3.13: Demagnetization potential u of a homogeneously magnetized unit cube at one
side, computed with different elements and methods. Red color marks posi-
tive values and blue color marks negative values. (a) Transformation method
using conforming Lagrange elements of second order. (b) Truncation method
using Crouzeix-Raviart elements of first order. (c) Transformation method using

Crouzeix-Raviart elements of first order.

3.3 Comparison

This section is dedicated to the comparison of the demagnetization-field methods introduced
in the preceding sections. The presented numerical experiments and the comparsion of the re-
sults for the presented methods are taken from [67]. Here, only the contributions of the author
are described. For further details and the additional comparison to the tensor-grid methods de-

veloped by Lukas Exl, the reader is referred to this publication.

The relative errors in energy and field are computed for different geometries and magneti-
zation configurations. Each computation is carried out with the previously described meth-
ods, namely with the demagnetization-tensor method (DM) introduced in Sec. 3.1, the scalar-
potential method (SP) introduced in Sec. 3.1.3 and the finite-element method (FE) introduced in
Sec. 3.2. If the analytical solution to a problem is not known, a reference solution is computed
with the demagnetization-tensor method. The reference solution is computed on a refined

mesh with quadruple resolution in every spatial dimension.

The methods are compared with regard to the total energy and the field. The relative field error

is computed as

1 : ; 2
O0H = \/N Z |Ha'|nalytical - Hrl1umerical| (3'3'1)
i

where N denotes the total number of cells and H' is the field value of cell i. Additionally the
angular deviation of the computed field to the analytical field is given as average d H,ng and as

maximum 0 Hangmax. The field values for the finite-element solution are computed via projec-
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Figure 3.14: Magnetization configurations in a cube used for numerical experiments. (a) Ho-

mogeneous magnetization (b) Flower state (c) Vortex state. From [67].

Method N SE oH SHang [°] S Hangmax [°]
DM 40 x 40 x 40 2.9-107° 0 0 0
Sp 40 x40x40 1.1-1073 1.1-1073 23.107° 5.0
FE 7.2-10% 8.6-107% 22.1073 3.2.107° 5.2

Table 3.1: Results of demagnetization-field computations for a uniformly magnetized unit
cube. Modified from [67].

tion of the gradient
/ Hdemag-vdr:—/ Vu-vdrVvev. (3.3.2)
Q Q

The solution of this projection is transferred to the regular cuboid grid used by the Fourier-space

methods via a simple oversampling method.

Unit Cube Geometry

The demagnetization field for three different magnetization configurations in a unit cube is com-
pared. The different configurations are depicted in Fig. 3.14. The first test is the uniformly
magnetized unit cube that was already used in Sec. 3.2.4 for the validation of the finite-element
algorithm. The configuration is depicted in Fig. 3.14a. The computational results are presented
in Tab. 3.1 and Fig. 3.15a. The demagnetization-tensor method plays a special role for this test
problem, since its discretization scheme assumes uniformly magnetized cuboid cells. Thus the
energy and the field computed with the demagnetization-tensor method are exact even when
discretizing with a single cell. Both the finite-element method and the scalar-potential method
approach the energy from below, however, the latter converges faster. Deviations in the field

computation are of the same order of magnitude.
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Figure 3.15: Energy calculations for different geometries and magnetization configurations.
The energy for each configuration is computed with the demagnetization-tensor
method (DM), the scalar-potential method (SP) and the finite-element method
with shell transformation (FE). For the Fourier-space methods N denotes the
number of simulation cells, for the finite-element method N denotes the num-
ber of degrees of freedom. (a) Uniformly magnetized unit cube. The analytical
solution is denoted by E,,;. (b) Flower state in unit cube (c) Vortex state in unit

cube (d) Uniformly magnetized sphere. The analytical solution is denoted by E;.

Modified from [67].

50



3.3 Comparison

Method N SE §H SHang [°] S Hangmax [°]
DM 40 x 40 x 40 1.30-107% 1.6-107> 1.1-107° 4.0-1072
Sp 40 x40 x 40 1.20-1073 1.8-107% 50-10> 7.2.-10%0
FE 7.2-10% 1.47-1073 25.107% 6.1-10> 6.8-101°

Table 3.2: Results of demagnetization-field computations for a flower state in a unit cube.
Modified from [67].

Method N SE 6H SHang [°] S Hangmax [°]
DM 40 x 40 x 40 4.08-1073 92.107* 29-.107*% 1.1-10%!
Sp 40 x 40 x 40 8.08-1073 23.107% 21-10> 3.4.10%0
FE 7.2.10% 944-.1073% 21.1072 6.1-1072 1.8-10%?

Table 3.3: Results of demagnetization-field computations for a vortex state in a unit cube.
Modified from [67].

The second test problem is a so-called flower state, which is depicted in Fig. 3.14b. This magne-
tization configuration is a local minimum of the energy landscape of small cubic particles. The

normalized version of the parametrization

inn
m(r) = %r2r3 + %rg’rg’ (3.3.3)
1

is used for the numerical experiments with the center of the cube located at (0,0,0). The
parameters are chosen as a = ¢ = 1 and b = 2. Results for the flower state are summarized
in Tab. 3.2 and Fig. 3.15b. The results of the scalar-potential method and the finite-element
method are similar to those of the uniformly magnetized cube. The demagnetization-tensor

method shows the fastest convergence.

The third magnetization configuration defined on a unit cube is the so-called magnetic vortex,
depicted in Fig. 3.14c. Like the flower state, the vortex state is a local energetical minimum

for cubic particles of a certain size. The following parametrization is used for the numerical

—Q\/l — exp (—4522>
r2 R2
m(r)= | w o (_ 4 ) (3.3.4)

I‘2
exp (—2,%?)

with o = 1/r? + r2 where the radius of the vortex core R. is set to 0.14 for the numeical

experiments. The results are shown in Tab. 3.3 and Fig. 3.15c. Again, the demagnetization-

experiments

Nl
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Figure 3.16: Magnetization configurations in a thin film used for numerical experiments.

(a) Homogeneous magnetization (b) Vortex state. From [67].

Method N SE oH SHang [°] S Hangmax [°]
DM 80 x80x8 294-107° 0 0 0
SP 80x80x8 1.02-1073 1.7-107% 26-107° 45
FE 49-10* 1.05-1072 55-1073 1.9-107° 5.0

Table 3.4: Results of demagnetization-field computations for a homogeneous magnetization
in a thin square. Modified from [67].

tensor method performs best, followed by the scalar-potential method and the finite-element

method.

Thin Square Geometry

Since a broad number of applications of micromagnetism involve ferromagnetic thin films, a
thin square of size (1,1,0.1) is investigated. A homogeneous magnetization configuration as
well as a vortex configuration are computed, see Fig. 3.16. The results are summarized in

Tab. 3.4 and 3.5.

The most notable difference to the computations for the cubic geometry is the error of the
finite-element method that is an order of magnitude higher than the error of the Fourier-space
methods. The flat geometry has a high surface-to-volume ratio which leads to a large number
of shell elements. Thus the computation is dominated by the simulation of the exterior space,

which leads to larger errors within the sample when keeping the total number of elements

constant.
Method N SE SH SHang [°] I Hangmax [°]
DM 80x80x8 637-107% 23-100* 28-10° 6.8-1071
SP 80x80x8 847-1073 25-1073 46-10"°> 3.6-1010
FE 49.10* 459-1072 6.1-1073 66-107* 2.1-10™1

Table 3.5: Results of demagnetization-field computations for a vortex state in a thin square.
Modified from [67].
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(a)

Figure 3.17: Discretization of a circle (a) with a regular cuboid grid (b) with an irregular mesh

of triangles.

Spherical Geometry

The geometries featured in the preceding sections are perfectly approximated by both the reg-
ular cuboid meshes used by the Fourier-space methods and the tetrahedral meshes used by the
finite-element method. Irregular tetrahedral meshes however are able to approximate curved
geometries better than regular cuboid meshes, see Fig. 3.17. The finite-element method is thus
expected to superseed the Fourier-space methods for curved geometries. As a test problem,
demagnetization energy and field of a homogeneously magnetized sphere with radius R = 0.5
and M = (0,0, 1)T are computed. The sphere was approximated on the regular grid by testing

the cell centers r; against the sphere condition

T 5
M:{m@n if |ri| < R 5.35)

0 else

where M; is the magnetization in cell i. The irregular mesh used for the finite-element cal-
culation was created such that the discrete volume coincides with the analytical volume V =
4/37R3.

In Fig. 3.15d the results of the energy calculations are presented. As expected the finite-element
method converges faster than the Fourier-space methods. A comparison of the field computa-
tion is given in Fig. 3.18. On the regular grid, the field computation shows strong artifacts that
obviously result from the bad approximation of the surface. The finite-element result on the

other hand features a perfectly homogeneous demagnetization-field as predicted by theory.
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(b)

Figure 3.18: Demagnetization field of a uniformly magnetized sphere.

The component

Hs is shown on the middle plane of the sphere. (a) Computed with the

demagnetization-tensor method on a 50 x 50 x 50 grid. (b) Computed with the

finite-element method on a mesh of 9429 tetrahedra including the shell elements.

From [67].
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Figure 3.19: Convergence comparison of the different demagnetization-field methods. (a) The

relative error in the energy d E of a flower state in a unit cube is plotted against

the cell size h. The auxiliary nodes from the third order finite-element method

are taken into account for the determination of h. (b) Experimental convergence

rates computed from the results of plot (a). Modified from [67].



3.3 Comparison

3.3.1 Convergence

Figure 3.19 shows the convergence rates for the flower state in the unit cube as described in
Sec. 3.3. Both the Fourier-space methods and the finite-element method feature a convergence

rate of approximately 2.

3.3.2 Conclusion

Three different methods for the demagnetization-field computation were discussed in detail
and compared to each other. The demagnetization-tensor method and the scalar-potential
method compute the demagnetization-field by a fast-convolution technique. The scalar-poten-
tial method is faster than the demagnetization-tensor method by a factor of 1.5 and requires
about 30% less memory, see [40], but it is also less accurate due to the additional numerical

computation of the gradient.

In contrast to the Fourier-space methods, the finite-element method is able to handle irregular
grids. This makes it a good choice for computations on curved geometries, which is confirmed

by numerical experiments on a sphere.

However, due to the very efficient fast Fourier-transform algorithm, the demagnetization-tensor

method and the scalar-potential method are still the better choice for cuboid domains.
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CHAPTER 4

Time Integration of the

Landau-Lifshitz-Gilbert Equation

The Landau-Lifshitz-Gilbert equation as introduced in Sec. 2.3 is a nonlinear differential equa-
tion that describes the motion of the magnetization field m(r) in an effective field He(r). For
a constant effective field, the Landau-Lifshitz-Gilbert equation is an ordinary differential equa-
tion in every point. However, the exchange field and the demagnetization field add a spatial
coupling of the magnetization, see Sec. 2.3.3, and turn the ordinary differential equation into a

partial differential equation in space and time.

This chapter is dedicated to the numerical solution of the Landau-Lifshitz-Gilbert equation. The
challenge is to find an integration scheme that is both stable and efficient. Furthermore it is
considered beneficial if the integration scheme conserves important properties of the Landau-

Lifshitz-Gilbert equation, see Sec. 2.3.5.

In the following a brief overview of available integration methods is given and their suitability
for micromagnetism is discussed. We distinguish between collocation methods, see Sec. 4.1,
and weak methods, see Sec. 4.2 and 4.3. For a more detailed review on integration schemes

for the Landau-Lifshitz-Gilbert equation, the reader is referred to the work by Cimrak [27].

A weak implicit scheme based on the work of Alouges [68] is described in greater detail in
Sec. 4.3. This scheme is combined with the shell-transformation method for the demagneti-
zation-field computation. Along with the description of this method, numerical tests for its

validation are presented.
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4.1 Collocation Methods

4.1 Collocation Methods

This section gives an overview of different collocation methods for the numerical integration.
These methods solve the Landau-Lifshitz-Gilbert equation pointwise. For the finite-difference
discretization scheme used in Sec. 3.1 these methods can be applied per simulation cell. For
finite-element methods with Lagrange functions, the collocation methods are applied per mesh

node.

4.1.1 Explicit Integration

The most basic explicit integration scheme is the so-called Euler method. Consider the time

derivate of the magnetization at time t
orm = f(t, m(t)) (4.1.1)

and the initial value my = m(ty). A single step of the Euler method is given by

—m

= f(t,, m") (4.1.2)
i
where mk = m(ty) and 7 = ty1 — tx is the step size. Thus from a given magnetization m*
the subsequent magnetization m**1 is computed by
mtl = mf 4+ TF(t, mk). (4.1.3)

The magnetization at an arbitrary time m(t) is obtained by performing a number of integration

steps starting from the known initial value mg. The Euler method is a first order method. It is

k

usually very easy to implement since it is always linear in the solution m**! regardless of the

form of the right-hand side f(t, m).

Explicit methods are usually applied to the explicit form of the Landau-Lifshitz-Gilbert equation

as given by Eqn. 2.3.23
Orm = —' (M X Hegt) — o/m x (m x Heg). (4.1.4)
which leads to a right-hand side f(t, m) of the form
f(t,m)=m x A(t, m). (4.1.5)

In Sec. 2.3.5 it was shown that the Landau-Lifshitz-Gilbert equation preserves the modulus

of the magnetization d;|m| = 0. This property is violated by the Euler method. Inserting
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Egn. 4.1.5 into Eqn. 4.1.2 and scalar multiplication with 7(m**1 + m*) yields

MR k2 = m < A(te, m)] - (m<H 4 mb) (4.1.6)
= 7[m* x A(t,, m¥)] - (m*t1 — m¥) (4.1.7)
= [rm* x A(ty, m")|? (4.1.8)
> 0. (4.1.9)

The modulus is only preserved if m x A(ty, m*) = f(t, m*) = 0. This is the case for local
energy minima only in which case m* = m**. Obviously Eqn. 4.1.9 implies a monotonically
increasing modulus of m, which leads to unrealistic solutions for long integration times. A com-
mon variation of the Euler method is the application of an additional normalization

kil mk + 7F(ty, mk)
~mk + Tf(t, mk)|

m (4.1.10)

However, due to its low order this method requires very small time steps in order to deliver
accurate results. A more general scheme is given by the explicit Runge-Kutta method [69]. A
single integration step of the Runge-Kutta method involves the evaluation of s intermediate
results k;. The solution of a complete integration step m**! is given as a linear superposition

of the intermediate results k; by

S
m*tl = mk 4 TZ bik; (4.1.11)

i—1
ki=f|tc+71c, m"+7Y° ajk (4.1.12)
j

where the coefficients aj;, b; and ¢; are given by a so-called Butcher tableau [69] that specifies a
particular Runge-Kutta method. The resulting method is of order s. Higher order methods usu-
ally allow for a larger time step without loss of accuracy. In practical applications the additional
effort required for the computation of the intermediate results is often more than compensated
by the larger time step. Due to its explicit nature the calculation of an intermediate result k;
does only depend on the results of previous results k;;. Thus the Runge-Kutta method like the
Euler method only involves problems linear in the intermediate solutions k;. In fact the Euler

method is a special case of the Runge-Kutta method.

Runge-Kutta methods can be used with a fixed time step like the Euler method. However, a
common practice is the adaptive step-size control. The error of an integration step of order
n is estimated by a computation of order n + 1. The step size is then adapted such that the
error remains in certain error bounds. Examples for adaptive Runge-Kutta methods are the

Runge-Kutta-Fehlberg method [70] and the Cash-Karp method [71].

Explicit methods turn out to deliver good results for many applications in the framework of

finite-difference discretization [72]. However, the time step 7 has to be scaled with the quadratic
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mesh size h? in order to keep the time integration scheme stable [73]. For irregular meshes as
used in the finite-element framework, h is derived from the smallest cell. This often leads to
impractically small time steps. Another difficulty is the stiffness of the problem under consid-
eration, see [73]. It is a well known fact that implicit methods are unconditionally stable and

outperform explicit algorithms regarding the solution of stiff problems [74].

4.1.2 Implicit Integration

The implicit counterpart of the Euler method is the so-called backward Euler defined by

k+1 _ gk
= f(t, + 7, mkt1). (4.1.13)
Depending on the form of the right-hand side f(t, m), the computation of a single integration
step can be very costly. In the case of micromagnetics the right-hand side is at least quadraticin

m, see Eqn. 4.1.4. The resulting equations are usually solved with an iterative Newton method.
Like the explicit Euler method, the backward Euler suffers from the violation of the preservation
of modulus. By a similar procedure as shown in Eqn. 4.1.9 one obtains

Im* 112 — 1mk? <o. (4.1.14)

In contrast to the explicit method, here the modulus is always decreased. The same normal-
ization procedure as in Eqn. 4.1.10 can be used in order to preserve the modulus of the mag-
netization. An alternative approach is the reduction from 3/ values for the representation of
the magnetization to 2/ as proposed in [75]. This approach reduces the size of the nonlinear
problem. The third component of the magnetization is reconstructed after each step by the

normalization condition |m| = 1.

4.1.3 Midpoint Scheme

A collocation scheme that turns out to be very suitable for micromagnetics is the so-called

midpoint rule given by

= F(tx +7/2, mF+1/?) (4.1.15)

where the magnetization at the midpoint is defined as m*+1/2 = (m**1 + m¥)/2. Consider

again the general form of the Landau-Lifshitz-Gilbert equation
f(t,m) =m x A(t, m) (4.1.16)
as introduced in Egn. 4.1.5. Inserting into Eqn. 4.1.15 and multiplication with mk+1/2 yields
|m*+12 — \mk\z = 2rm<t1/2. {mk“/z x A (tk +7/2, mk+1/2>} =0. (4.1.17)
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The midpoint method naturally preserves the modulus of the magnetization. Moreover, this
method also preserves the Liapunov structure of the Landau-Lifshitz-Gilbert equation for a finite
damping a > 0 and the Hamiltonian structure for vanishing damping o = 0, see Sec. 2.3.5. The
proof of these properties along with detailed numerical investigations of the midpoint method

is given in [26].

As mentioned in [27] there are no analytical convergence results for any of the above described
collocation methods. However, collocation methods are successfully applied and deliver reli-

able results for many real world problems.

4.2 Weak Method by Bartels and Prohl

If the finite-element method is used for spatial discretization, then a natural choice for the
time-integration is a method that does also rely on the finite-element method. An implicit
method that solves the Landau-Lifshitz-Gilbert equation in a weak sense was introduced by
Bartels and Prohlin [76]. The method is based on the implicit form of the Landau-Lifshitz-Gilbert
equation given by Egn. 2.3.17. A time step is performed by seeking for the next magnetization

configuration my ! given by

(5m,’§+1, (bh)h +a (m,’f x omyth, ¢>h)h
— (m,’j+1/2 x Heg [t +7/2, m,f“/z] ,¢,,)h VoneV, (421)

where m,’j and mf“ are elements of the discrete finite-element function space V},. Further-
k+1/2 k+1

more m, and dmy "~ are defined as
k+1 k
k+1/2 m +m
m 2 = ”fh (4.2.2)
k+1 k
m -m
omy = —h——4 (4.2.3)

and (-, -), denotes the reduced L, scalar product

(a, b)y — /Q To((a, b)) dr (4.2.4)

where 7, is the nodal interpolation operator on V). The second term of the left-hand side of

Egn. 4.2.1 is motivated by the equality

(m,’j x dmfTL, d)h)h = (m,’jﬂ/2 x dmfL, d)h) (4.2.5)

.
The underlying construction principle is a midpoint scheme similar to Egn. 4.1.15. Thus the

modulus of the magnetization is preserved at least on the nodes of the finite-element mesh.

Convergence analysis and numerical experiments for the case of the exchange field being the
only effective-field contribution are given in [76]. Like for the midpoint-collocation method, a

nonlinear system of equations has to be solved for every time step.
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4.3 Weak Method by Alouges

Another weak formulation of the Landau-Lifshitz-Gilbert equation was proposed by Alouges
in [68]. The proposed scheme is a two-step method. In a first step the time derivative of the
magnetization J;m is computed. A weak formulation of this problem is obtained by multiplying

the implicit form of the Landau-Lifshitz-Gilbert equation 2.3.17 with test functions ¢

/(v—amxv)-¢dr+/'y(mxHeﬁ)-qbdr:OVq’)e V. (4.3.1)
Q Q

where the solution v of this system solves for 9;m in a weak sense. The individual terms of the
Landau-Lifshitz-Gilbert equation are pointwise perpendicular to the magnetization m. For the
terms m x v and m x Hgg this follows from the properties of the cross product. As a sum of
the latter terms this does also hold for the solution v. Thus it is sufficient to test Eqn. 4.3.1 with

functions from the tangent space 7, defined by
Tm = {x € H}(Q); x - m = 0}. (4.3.2)

Instead of testing with ¢ directly it is hence possible to test with m x w € T, where w are
the new test functions. While the cross-product terms m x v and m x He¢g always fulfill the
tangent-space constraint by definition, the solution v does not. Hence the restriction of test
functions to the tangent space 7,, requires the explicit restriction of the solution v to 7,,. An
equivalent formulation of Egn. 4.3.1 is thus given by seeking a solution v € 7, that fulfills

/Qv-(mxw)dr—a/Q(mxv)~(m><w)dr

—_————
|

—|—7/Q(m>< Heit(m)) - (m x w) dr =0Y w € V. (43.3)

This formulation can be significantly simplified by application of vector identities and the prop-

erties of the magnetization [m| = 1 and m - v = 0. The individual terms read

) v-(mxw) = —w-(mxv) (4.3.4)
M (mxv)-(mx w) = v-w (4.3.5)
) (m X Heg) - (m x w) = Heg- w— (m- w)(Hegs - m). (4.3.6)

The system is further simplified by restricting the test funtions w to the tangent space 7.
This does not affect the validity of Eqn. 4.3.3 since the cross product m x w cancels the non-
tangential part of w in any case. With the restriction of w € 7, the second term on the
right-hand side of Eqn. 4.3.6 vanishes. The problem of finding v = 9;m is reduced to seeking
v € Tn, given by

/(av+m>< v)~wdr—’y/ He(m) -wdr =0V w € Tp,. (4.3.7)
Q Q
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The most notable difference between Eqn. 4.3.7 and Eqgn. 4.3.1 is the term including the effec-
tive field. In Egn. 4.3.7 this term depends on the magnetization only through the effective field
in contrast to Eqn. 4.3.1.

The solution v can be used to construct an explicit integration scheme. After discretization a
single time step is carried out by

k
k+1 m,- +TV,'

; = 4.3.8
! |m," + Tvi| ( )

where T is the time step and m; and v; denote the corresponding field values at computation
node i [77]. Note that due to the normalization, this scheme preserves the modulus of the
magnetization node-wise. Obviously it is not possible to preserve the norm everywhere due to
the choice of discrete function space. However, this explicit scheme can be simply converted
into an implicit theta-scheme by replacing m by m + 67v in Eqn. 4.3.7. The weak formulation

then reads
/(av—i—mx v)-wdr—y/ He(m+07v) -wdr=0vYw € T, (4.3.9)
Q Q

with 6 € [0, 1]. The advantage of the presented scheme over the weak formulation in Eqn. 4.3.1
is revealed when taking the exchange field, given by Eqn. 2.3.27, as effective field. Inserting
Egn. 2.3.27 in Egn. 4.3.9 and performing integration by parts yields

27A
Ko Ms

/(av+m>< v) - wdr+ / V(im+0rv)Vwdr=0Yw e 7T, (4.3.10)
Q Q

where the exchange boundary condition from Eqn. 2.3.35 was taken into account, which leads
to a vanishing boundary integral. Since the exchange field is linear in the magnetization, the
resulting integration scheme is linear in the solution v and implicit. Adding nonlinear contribu-
tions to the effective field, e.g. higher-order anisotropy terms, obviously breaks the linearity of
the scheme. But even the inclusion of the linear demagnetization field leads to problems, be-
cause the computation of the dense linear operator is often avoided by variational computation

of the connected Poisson problem, see Sec. 3.2.

Thus it was proposed in [78, 79] to treat only the exchange contribution implicitly. This method
is justified by the fact that the exchange contribution has the highest order due to its second
spatial derivative and is the main cause for the stiffness of the problem. This results in the weak

formulation

2vA
/(av+m><v)-wdr—|— i /V(m+07'v)der
Q MOMS Q
— ’y/ Hexpi(m) -wdr=0vw e 7, (43.11)
Q

where Hg,p includes all contributions to the effective field except the exchange field.
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4.3.1 Discretization

The discretization of Eqn. 4.3.10 is done component-wise with Lagrange functions of first order,
resulting in the discrete vector-function space V. A challenge specific to the method proposed
by Alouges is the restriction of test functions and solution to the tangential space 7,,. In general
itis not possible to construct a subspace V}, C Tp,. Thus the tangent-space restriction has to be
relaxed. This can either be done by requiring this restriction on the computation nodes or in an
integral sense. The actual implementation of the restrictions is done with a Lagrange-multiplier
ansatz as suggested in [78]. Consider the following short-hand notation of the original problem

defined on the tangent space
a(v,w)=L(w)VweTywithv e T, (4.3.12)

where a(v, w) is a bilinear form and L(w) is a linear form given by

2vA0
a(v, w) :/(av+ mxv) -wdr+ i T/ VvVwdr (4.3.13)
Q MOMS Q
29A
L(w)=— / VmVwdr+ 7/ Heyxpi(m) - wdr. (4.3.14)
HoMs Ja Q

Applying the Lagrange-multipier ansatz yields the system
a(v, w)+/ Am-wdr = L(w) VweV, (4.3.15)
Q
/v-modrzO VoeV, (4.3.16)
Q

Here the solution is explicitly restricted to the tangent space in an integral sense by Eqn. 4.3.16.
The Lagrange multiplier field in Eqn. 4.3.15 is crucial to relieve the tangent-space constraint on

the test functions. This formulation leads to the following block system of equations

A BT\ (v b
= (4.3.17)
B 0 A 0

which is a saddle-point problem. The 3N x 3N matrix A results from discretization of the
bilinear form a(v, w) and the vector b results from discretization of the linear form L(w). The
3N x N matrix B and its transpose arise from discretization of the constraintin Eqn. 4.3.16 and

the Lagrange-multiplier term in Eqn. 4.3.15.
An alternative Lagrange-multiplier approach applies the tangent-space restriction exactly on
the computation nodes. In this case the integrals in Eqn. 4.3.15 and Eqn. 4.3.16 are replaced by
node-wise computations
a(vi, wj) + A\im; - w; = L(w;) vVjie{1,2,..,N} (4.3.18)
v -mgo; =0 V/€{1,2,...,N} (4.3.19)
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where f, denotes the value of a function f at node x, e.g. m; denotes the value of the magneti-
zation m at node j. The resulting block system has the same structure as Eqn. 4.3.17. However,
the off-diagonal blocks have only contributions of degrees of freedom belonging to the same

computation node. Hence BT B is diagonal.

Unique Solution

Consider the splitting of the bilinear form a = b + ¢ into a symmetric form b(v, w) and a
skew-symmetric form c(v, w)

2vA0T
toMs
c(v,w) = /Qm X v-wdr. (4.3.21)

b(v,w) = a/ v-wdr+ / VvVwdr (4.3.20)
Q Q

The symmetric form b consists of a mass and a stiffness contribution, both scaled with positive
constants. Thus b is positive definite and so is the matrix A. Furthermore, the matrix B has
full rank. In the case of a node-wise constraint this is directly given due to the nonzero mag-
netization |[m| > 0. For a weak constraint the magnetization additionally has to be sufficiently

smooth.

The block matrix is singular if and only if there exists a nonzero vector (x, y)T that solves
A BT X 0
= (4.3.22)
B 0 3% 0

Ax+ BTy =0 (4.3.23)

or equivalently

Bx = 0. (4.3.24)

Equation 4.3.24 immediately yields x € ker B. If there exists a nonzero x that fulfills Eqn. 4.3.23
then it also has to fulfill
XTAx+XTBTy =0. (4.3.25)

The second term vanishes since x” BT = 0 by the choice of x € ker B. Since A is positive
definite, as shown above, it follows x = 0. Inserting into Eqn. 4.3.23 yields BTy = 0 which
results in y = 0 due to the full rank of B. Hence the block matrix is invertible and Eqn. 4.3.17

has a unique solution.

4.3.2 Implicit Integration of the Demagnetization Field

The numerical stability of the method presented in the preceding section can be further im-

proved by treating the demagnetization field implicitly. Application of the shell-tansformation
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method according to Eqn. 3.2.31 for the implicit demagnetization-potential computation yields

/ Vu-Vw dr+/ (Vu) g Vw, dr =
chboid QsheII

I\/IS/ (m+07rv) - VwidrVw, € V (4.3.26)
Q

sample
where the right-hand side is now coupled to the solution v in contrast to the explicit computa-
tion. Vice versa the solution v of Eqn. 4.3.11 is coupled to the potential u by the effective-field
term. This bidirectional coupling together with the Lagrange multiplier ansatz discussed in the

previous chapter leads to the block system

A BT 0 v b
B 0 D||x|l=1]o0 (4.3.27)
0 E C u c

Here the matrices A, B and the vector b are the same as introduced in Eqn. 4.3.17. The matrix
C is the modified stiffness matrix arising from discretization of the left-hand side of Eqn. 4.3.26.

The off-diagonal matrices D and E arise from the coupling integrals
_ ’Y/ YVu-wdr (4.3.28)
Q

and
971\/15/ V-V dr (4.3.29)
Q

sample

respectively. Finally the vector c is given by the explicit right-hand side of the demagnetization-
field problem
MS/ m-Vwdr. (4.3.30)
Q

sample

4.3.3 Numerical Treatment

Since the linear system given by Eqn. 4.3.27 is sparse, an iterative solver is favored over a di-
rect solver. However, the system is indefinite and asymmetric which forbids the use of the
fast conjugate-gradient method. Methods capable of solving such systems are the generalized
minimal residual method (GMRES) developed by Saad, see [59], and the biconjugate gradient
stabilized method (BICGSTAB) developed by van der Vorst et al., see [80]. It shows, however,
that ignoring the block structure and applying an iterative method to the system as a whole

leads to bad convergence behaviour.

Thus a Schur-complement ansatz with block preconditioning for the subsystems is applied.

Cz=c (4.3.31)

-
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where S is the Schur complement of the block C defined by

T _ pc-1 T
= (A 5 ) - (D) c'(e 0)= (A bcE B ) . (4.3.33)
B 0 0 B 0

Equation 4.3.31 is exactly the demagnetization problem as introduced in Sec. 3.2.3. Thus it
is efficiently solved by a preconditioned conjugate-gradient method. Equation 4.3.32 is the
saddle-point problem introduced in Eqn. 4.3.17 complemented by couling terms of the demag-
netization potential. Thus this problem is also indefinite and asymmetric. A BICGSTAB method
for the solution of this saddle-point problem is used. For the preconditioning consider the fol-

lowing decomposition of the original block problem 4.3.17

A BT 1 0\ (A BT
= . (4.3.34)
B 0 BA™l 1 0 —BA1BT

Due to the identity blocks on the diagonal, the iterative solver is expected to converge faster for
the first matrix on the right-hand side than for the original matrix on the left-hand side. Since
the Schur complement S in Eqn. 4.3.32 differs from the original saddle-point problem only in
a coupling term, the second matrix of the right-hand side of Eqn. 4.3.34 is considered to be a

suitable preconditioner. Instead of the original problem Ax = b the preconditioned problem

AP ly =b (4.3.35)
x =P 1y (4.3.36)

is solved, where P is given by an approximate inverse
-1
1 A BT
P = ) (4.3.37)
0 —BA BT

The coupling term in the 1, 1-block of Eqn. 4.3.33 contains the inverse of the demagnetization
matrix C. This inverse is not computed explicitly, but solved iteratively for every iteration of
the outer iterative solver. This combination of Schur complement and block preconditioning

proved both reliable and efficient for a variety of problems.

4.3.4 Validation and Numerical Experiments

The presented algorithm is validated with different numerical tests. The first test is taken from
the original publication of Alouges [68]. In order to make the results comparable to those pub-
lished in [68], the following dimensionless system is solved with the method described in the

preceding sections

/(av —mxv)-wdr=—(1+ a2)/ V(m+ 0rv)Vwdr. (4.3.38)
Q Q
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(a) (b)
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Figure 4.1: Total energy of an exchange coupled system with different damping. (a) For a back-

ward Euler-like scheme (@ = 1). (b) For a Crank-Nicholson-like scheme (6 = 0.5).

Note the missing material parameters and the changed sign on the left-hand side which leads
to a reversed direction of precession. The initial value for the magnetization is given by the

parameterization

m(r)=| Lsin (m) (4.3.39)

with o = \/’12 + r22. The time evolution of the total energy of this nonphysical but mathe-
matically equivalent system is computed with a backward Euler-like scheme (6 = 1) and with
a Crank-Nicholson-like scheme (# = 0.5). Figure 4.1 shows the results of the computation
that are in good agreement to the results presented in [68]. As expected the energy decreases
faster with a higher damping «. For a low damping the Crank-Nicholson scheme shows a lower

diffusion than the backward Euler which is also expected as shown in [68].

In a next test the computation of the time derivative of the magnetization v = 0;m for an
exchange coupled system is compared to the analytical solution. The geometry used for this
test is a cuboid of size 2 x 2 x 0.2 um with material parameters chosen similar to permalloy,

i.e.

A=13-10""1/m (4.3.40)
M, = 8.0 - 10° A/m (4.3.41)
Ki = K> =0. (4.3.42)

Further the damping constant was chosen as & = 0.02 and the gyromagnetic ratio as v =

2.211 - 10° m/As. The vector v is computed once for a magnetization configuration defined by
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(a) (b)
9.10°
0
-0.8 —9.10°
() (d)
9.10° 9.10°
_9.10° -9-10°

Figure 4.2: Validation problem for the computation of the time derivative of the magnetiza-
tion v(m). (a) r;-component of the magnetization configuration m. (b) Analytical
solution of the time derivative v. (c) Numerical solution of v, computed with node-
wise tangent-space constraint and a single-layer spatial discretization. (d) Numeri-
cal solution of v, computed with node-wise tangent-space constraint and a spatial

discretization with 5 layers.

the normalized version of
sin(2.5 - 1087n)
m(r) = 1 (4.3.43)
0

where the center of the cuboid geometry coincides with the coordinate origin (0, 0, 0).

In order to compare the solution to the analytical result 9;m(t, m) the parameter 6 was chosen
as zero which corresponds to an explicit scheme and thus solves for time derivative at time t
instead of time t + 7. The magnetization configuration m and the analytical solution of v as
well as the solution computed with node-wise constraints according to Eqn. 4.3.18 and 4.3.19
are depicted in Fig. 4.2. A comparison of the solution computed with weak constraints and
node-wise constraints is presented in Fig. 4.3. It shows not only a very good agreement be-
tween analytical and numerical solution, but also a good agreement of the solutions computed
with weak constraints and with node-wise constraints. Deviations of the numerical solutions
occur especially at the boundaries. Figure 4.4 shows the deviations of analytical and numer-

ical solutions at the sample boundaries. Obviously the errors can be significantly reduced by
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Figure 4.3: The rp-component of the time derivative of the magnetization on the r; axis
vi(r1,0,0). The analytical solution is compared to the numerical solution with

weak tangent-space restriction and node-wise tangent-space restriction.
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Figure 4.4: The rp-component of the time derivative of the magnetization on the rj-axis

vi(r1, 0, 0) at the boundary of the magnetized region. The computation was per-

formed with a different number of simulation cells in the r3-direction. (a) Weak

tangent-space constraint. (a) Node-wise tangent-space constraint.
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Figure 4.5: In-plane magnetization of a magnetic s-state on the middle plane of a thin film. The
out-of-plane magnetization for this configuration is approximately zero. Modified
from [64].

finer discretization. The errors at the boundaries can be explained by the violation of the ex-

change boundary condition Eqn. 2.3.35. Although the chosen magnetization parameterization

Eqgn. 4.3.43 analytically fulfills the boundary condition, the discretized magnetization in general

does not.

nMag Standard Problem #4

The validation of the time stepping as well as the coupling to the demagnetization field is done

via the UMAG standard problem #4, see [81]. It describes the switching process of a magnetic

thin-film element under the influence of an external Zeeman field. This problem was designed

as validation problem and as such it is sensitive to all vital parts of dynamical micromagnetics.

Another reason for the choice of the standard problem #4 as validation problem is the avail-

ability of a large number of reference solutions.

A magnetic cuboid with size 500 x 125 x 3 nm and the material parameters of permalloy, see

Egns. 4.3.40-4.3.42, is considered. The problem itself consist of two parts. In a first step the

magnetic region is relaxed in a specific local energy minimum called s-state. This is achieved by

performing a time integration with the following start value for the magnetization

cos (|mry - 1073)
m(r) = | sin (|7Tr1 . 10_3|) . (4.3.44)
0

The resulting s-state is pictured in Fig. 4.5. In a second step an external Zeeman field H,eeman

with a magnitude of 25 mT is applied with an angle of 170° to the sample

cos(170°)

Hieeman = 25 sin(170°) mT. (4.3.45)

0
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Figure 4.6: The time evolution of the averaged magnetization components {m;) for the stan-
dard problem #4. The results of the finite-element (FEM) method are compared
to results from the well tested finite-difference simulation code MicroMagnum
(FDM). Modified from [64].

For this part of the problem the previously calculated s-state is taken as initial magnetization.
Since the external field is directed opposite to the predominant magnetization direction, a
switching process is initiated. Figure 4.6 shows the simulation results for this switching pro-
cess in comparison to a reference result calculated with the finite-difference code MicroMag-
num [82]. Obviously the reference solution is well reproduced by the methods presented in the

preceding sections.
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CHAPTER 5

Implementation

The implementation of a simulation program for the solution of dynamical micromagnetic prob-
lems is a challenging task. On the one hand, a complete dynamical code has to solve several
subproblems, which naturally results in a high number of potential error sources. On the other
hand an efficient micromagnetic code should be both fast and capable of handling large prob-
lems. To achieve this goal the code should be highly optimized for the problem at hand and

high performance programming techniques such as parallel computing should be used.

This chapter is dedicated to the implementation of micromagnetic codes. Section 5.1 gives an
overview over existing codes. In Sec. 5.2 the micromagnetic finite-element code magnum.fe is

presented.

5.1 Existing Codes

The available codes can be roughly divided into finite-difference codes and finite-element codes.
A very popular and established open-source finite-difference code is OOMMEF [83]. Like almost
all finite-difference codes it uses a Fourier space method as introduced in Sec. 3.1 for the com-
putation of the demagnetization field. The exchange field is computed with finite differences
as described in [72] and the time integration is done with explicit Runge-Kutta methods, see
Sec. 4.1.1. In recent years the use of graphics processing units for highly parallel computa-
tions has gained much attention in the scientific computing community. The open-source codes
MicroMagnum [82] and MuMax [84] implement similar methods to OOMMEF and are able to
perform the simulations entirely on graphics processing units. A closed-source code of this
category is GPMagnet [36]. These codes provide a significant speedup compared to OOMMF,
which performs all computations on the central processing unit. Further finite-difference codes

include M3s [85], NMag finite difference [86] and Yamms [87] which is described in detail in [88].

Available open-source finite-element codes include magpar [89] and NMag [90]. Closed-source
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# Set up the bilinear form for the demagnetization problem
a = Dx(v, i) * Dx(u, i) * dx(@) # Omega_sample
a+= Dx(v, i) * Dx(u, i) * dx(1) # Omega_air

a+= Dx(v, i) * gi[i,j] * Dx(u, j) * dx(2) # Omega_shell, r_1 halfplane
a+= Dx(v, i) * g2[i,j] * Dx(u, j) * dx(3) # Omega _shell, r 2 halfplane
a+= Dx(v, i) * g3[i,j] * Dx(u, j) * dx(4) # Omega_shell, r_3 halfplane

# Create Dirichlet boundary conditions
bc = DirichletBC(VS, Constant(©.0), DomainBoundary())

# Assemble system matrix and apply boundary conditions
A = assemble(a)

bc.apply(A)

Listing 5.1: Weak form of the demagnetization-field problem as described in Sec. 3.2.3. In or-
der to handle the cuboid shell properly, the volume integral is split up into integrals
over different subdomains (dx(@) —dx(4)). The indices i and j are used to define

vector—vector and matrix—vector products.

finite-element codes are FEMME [91] and TetraMag [92]. The latter also makes use of graphics
processing units. To the knowledge of the author, these codes use the finite-element boundary-
element coupling described in Sec. 3.2.2 for the demagnetization-field computation and implicit
collocation methods for the integration of the Landau-Lifshitz-Gilbert equation as described in
Sec.4.1.2.

A micromagnetic code that implements the weak formulation introduced in Sec. 4.3 is FELL-
GOOD [79]. For the demagnetization-field computation this code uses a nonuniform fast-Fourier-

transform method.

5.2 magnum.fe

An integral part of the work presented in this thesis was the development of magnum.fe, a
finite-element micromagnetic simulation tool, see [64]. magnum.fe implements the transfor-
mation method for the demagnetization-field computation introduced in Sec. 3.2.3 and the
weak method for the integration of the Landau-Lifshitz-Gilbert equation introduced in Sec. 4.3.
The code is based on the recently published finite-element package FEniCS [93] and uses Gmsh

[94] for mesh creation.

FEniCS is written in C++ and features a Python scripting interface. The core component of FEniCS
is the so-called form compiler FFC [95]. This form compiler produces efficient C++ code for
the assembly of system matrices. It takes the description of a weak form in the unified form

language UFL [96] and produces assembly code that conforms to the unified form-assembly
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# Set up mixed function space

VW = VectorFunctionSpace(mesh, ”CG”, 1) # Solution

VS = FunctionSpace(mesh, *CG”, 1) # Lagrange Multipliers
V. =V * VS

# Set up test and trial functions
(v, lamb) = TrialFunctions(V)

(w, sigma) = TestFunctions(V)

# Prefactor for exchange field

f ex = (- 2.0 * Aex * gamma) / (mu@ * ms)
# Set up bilinear form
a = alpha * dot(v, w) *dx \
+ dot(cross(m, v), w) * dx \
+ sigma * inner(m, v) *dx \
+ lamb * inner(m, w) *dx \

- 0.5 * dt * f_ex * Dx(v[i],j) * Dx(w[i],j) * dx

# Set up linear form
L = f ex * Dx(m[i],j) * Dx(w[i],j) * dx

Listing 5.2: Weak form of the Landau-Lifshitz-Gilbert equation according to the method de-
scribed in Sec. 4.3. A mixed function space is used to implement the Lagrange-

multiplier ansatz. The constraints are fulfilled in a weak sense.

code UFC [97]. Sample codes for the weak forms of the demagnetization-field problem and the
Landau-Lifshitz-Gilbert equation are given in Listing 5.1 and 5.2 respectively. FEniCS provides a
just-in-time compiler that enables the compilation of form-assembly code at runtime. Further
bindings for a couple of established open-source linear-algebra libraries are provided. Thus the
entire problem definition and solution with FEniCS can be done in Python without suffering

from the usually poor performance of interpreted languages.

Beside the Python interface, FEniCS also provides an almost equivalent C++ interface. In fact
the Python interface is just a thin wrapping layer generated with the Simplified Wrapper and
Interface Generator (SWIG) [98]. Nonetheless the Python interface is much simpler to use while
adding only a small overhead. Hence magnum.fe uses the Python interface where possible.
However, the algorithms used by magnum.fe require some functionality that is not provided by
FENIiCS. Extending FEnICS at the level of the Python interface will usually lead to performance
issues when dealing with large problem sizes. The performance relevant extensions to FEniCS
are therefore written in C++. Like FEniCS, magnum.fe uses SWIG to exploit the functionality
of the C++ code to the Python interface. The dependencies of the different modules in both
Python and C++ are visualized in Fig. 5.1. In the following the most important extensions to

FENICS are presented in detail.
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magnum.fe FEniCS
Python ‘>E Python {
SWIG {SWIG
y Yy
C++ 44 C++ {

Figure 5.1: Dependencies between magnum.fe and FEniCS. Both magnum.fe and FEniCS have
a C++ module whose functionality is exposed to the Python code via SWIG. Fur-
thermore the C++ component of magnum.fe depends on the C++ component of
FENniCS and the Python module of magnum.fe depends on the Python module of
FENICS.

5.2.1 Mesh Generation

The application of the cuboid shell-transformation method as described in Sec. 3.2.3 requires
a mesh that properly represents the different regions Qsampie, Qair and Qgper. Furthermore the
cuboid shell is divided into six shell patches. The planar interfaces between the cuboid shell
patches and the region Qg can be perfectly approximated by tetrahedra. Thus the mesh is
required to accurately separate these regions. The meshing routine of magnum.fe is written in
C++ and uses libGmsh [94]. The resulting meshing data is used to create a mesh object that is

compatible with FEniCS.

Usually the user provides a mesh of the sample. The meshing routine of magnum.fe is able to
read a variety of mesh formats and to create the required shell regions of the mesh. Figure 5.2
shows an example mesh for a spherical sample. Note that the cuboid shell patches are meshed
in a regular fashion. The number of layers in the shell patches is configurable. This parameter

is vital in order to control the quality of the demagnetization-field approximation.

5.2.2 Node-Wise Operations

FENiCS supports a great variety of finite elements. Beside the standard Lagrange elements in
H' a number of elements in H(div) as well as in H(rot) is supported. As a consequence the
interface of FEnICS exhibits a very abstract notion of degrees of freedom. When dealing with
standard Lagrange elements, this means that there is no simple way to get a mapping between
nodes and degrees of freedom although such mapping exists in theory. Moreover FEniCS does
not provide a method to identify the degrees of freedom belonging to the same node when

using component-wise Lagrange vector functions. This is particularly problematic for the im-
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Figure 5.2: The mesh of a spherical sample surrounded by a cuboid shell as required by the
cuboid shell-transformation method for the computation of the demagnetization
field. The different regions are marked by colors: Qgmpie (blue), Qair (orange), Qshell
(green). (a) Explosion view of the different regions. (b) Cut through the composite
mesh. Modified from [64].

# Set up function space and function
vV = VectorFunctionSpace(mesh, ”CG”, 1)

m interpolate(some_expression, V)

# Compute node-wise normalized m
m_norm = DofAssembler.assemble(NormalizedVector(V, m))

Listing 5.3: Example usage of the DofAssembler class to perform node-wise normalization of

the function m.

plementation of the integration scheme introduction in Sec. 4.3 since this scheme requires the

node-wise renormalization of the magnetization after each time step.

In the style of the Assembler class in FEniCS which handles the assembly of matrices and vec-
tors, magnum.fe introduces the DofAssembler class. This class offers an assemble method
that is able to create matrices and vectors from instances of the DofForm class. By subclassing
DofForm, node-wise operations may be implemented. The fact that the local numbering of de-
grees of freedom per cell is constant is used to express the node-wise operations per cell. The
DofAssembler class uses the same level of abstraction as the original Assembler class. Thus it

fully supports different linear algebra backends and parallelization features.
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5.2.3 Conclusion

The micromagnetic code magnum.fe implements different finite-element methods for the so-
lution of dynamical micromagnetic problems. Due to the use of the high-level finite-element
package FEniCS, the code is both very readable and extendable. Performance relevant exten-
sions to the FENICS library were implemented in C++ and make use of the existing abstraction
layers where possible. magnum.fe is open-source, well documented and available for download
at [99].
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CHAPTER 6

A Physical Example

As a physical example, the domain-wall structure of a tail-to-tail wall in a magnetic nanorod
is investigated. The material parameters of the nanorods are chosen to be similar to those of
permalloy, see Eqns. 4.3.40-4.3.42, and the diameter of the rod is varied between 10 nm and
50 nm. The initial magnetization is chosen as an infinitely thin tail-to-tail wall. The resulting

discrete representation reads

0
m; =sgn(r3;) |0 (6.0.1)
1

where the cylindrical axis of the rod is chosen parallel to the r3-axis and the center of the rod
coincides with the coordinate origin (0, 0, 0). Figure 6.1 shows the tetrahedral mesh that was
created with Gmsh [94]. For the sake of comparability the same mesh is used for all different rod
diameters and scaled accordingly. The length of the rod is chosen to be 10 times the diameter,
which is much larger than the expected width of the domain wall. The high length guarantees
a low influence of surface effects at the rod faces on the domain wall, which is located in the

center of the rod.

The initial state is relaxed into an energetical minimum by computation of the time evolution
with a high damping o = 1. As discussed in [100] the domain-wall in a ferromagnetic rod is

expected to be of transverse type for small diameters, see Fig. 6.2a and 6.3a, and of vortex type
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Figure 6.1: Tetrahedral mesh used for the discretization of the nanorods. The mesh consists
of 7275 nodes and 39344 cells.
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(a)

10 nm

(b)

40 nm

Figure 6.2: Cutout of the simulated rod, showing the domain wall for different rod diameters.
The r3-component of the magnetization is color coded. (a) Diameter of d = 10 nm.
The energetically favored domain wall is of transverse type. (b) Diameter of d =

40 nm. The energetically favored domain wall is of vortex type.

for large diameters, see Fig. 6.2b and Fig. 6.3b. The critical diameter depends on the exchange

length of the material. For permalloy this critical diameter is expected to be at around 20 nm.

The change of domain-wall structure is explained by the competing exchange and demagne-
tizaion energy. As shown in Egn. 2.2.21 the demagnetization energy is generated by volume
charges and surface charges. The surface charges are given by the normal-component of the
magnetization at the boundary. Remember also that the exchange energy is basically given by

the squared gradient of the magnetization, see Eqn. 2.2.10.

In a transverse wall the magnetization is homogeneous in the rotation plane, which leads to
a low exchange energy of this wall type. The demagnetization energy of the transverse wall,
however, is large due to the generated surface charges. In contrast, the vortex wall does not

create any surface charges, but the inner curling structure leads to a high exchange energy.

A rod with a large diameter features a large surface, which leads to a high influence of the
demagnetization energy. Thus the vortex wall is the favored magnetization configuration in
large rods. A decrease of the diameter changes the ratio of exchange energy to demagnetization
energy, which ultimately results in an exchange dominated system that favors the transverse

wall over the vortex wall.

While the energy density of the demagnetization field does not depend on the spatial scaling

of a magnetization configuration, the exchange-energy density increases with decresing size
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CHAPTER 6: A Physical Example

Figure 6.3: Detailed view at the structure of the domain wall within the rod. A cutout of the
rod is shown, with the cut being chosen at the center of the domain wall. The
ri-component of the magnetization is color coded. (a) Transverse wall. (b) Vortex

wall.

due to its dependence on the gradient of the magnetization. This effect could be successfully
reproduced with the finite-element code magnum.fe. The critical diameter for the domain-wall
type was found to be between 24 nm and 25 nm, which is in good agreement to theoretical

results, see [100].
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CHAPTER 7

Conclusion and Outlook

Different discrete algorithms for the solution of the dynamical micromagnetic equations are
presented. The focus of this work is the application of the finite-element method. The micro-

magnetic code magnum.fe is written that implements the presented finite-element algorithms.

The computation of the demagnetization-field with Fourier-space techniques as well as with
finite-element techniques is described in detail. Within the class of Fourier-space methods
an alternative to the well-known convolution with the demagnetization tensor is presented.
For the solution with the finite-element method a transformation technique is described that
solves the open-boundary problem by a mapping of the exterior space to a finite shell. The
methods are validated and compared to each other. Fourier-space methods require a regular
grid, whereas finite-element methods are able to handle irregular meshes. Thus it comes as
no surprise that the finite-element method outperforms the Fourier-space methods on curved
geometries. On cuboid structures however, the Fourier-space methods are both fast and accu-

rate.

An overview over methods for the integration of the Landau-Lifshitz-Gilbert equation is given.
An implicit, weak formulation originally proposed by Alouges is discussed in detail and extended

by an implicit demagnetization-field computation.

Finally the implementation of the finite-element methods with the recently published library

FEniCSis described and the domain-wall structure of tail-to-tail walls in nanorods is investigated.

7.1 Extending magnum.fe

The finite-element code magnum.fe provides the functionality for full three-dimensional micro-
magnetic simulations including demagnetization-field and exchange field. In order to optimize
magnum.fe with respect to performance and versatility a number of improvements are planned

for the near future.
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In order to distribute the computation of large systems, magnum.fe is planned to make use of
the message passing interface (MPI). Most of the functionality of both FEniCS and magnum.fe
is already MPI capable und thus only a small set of functions have to be modified in order to

achieve this goal.

In order to support the best method for each particular problem, a number of alternative al-
gorithms should be integrated into the code. For example the implementation of the finite-
element—boundary-element coupling as introduced in Sec. 3.2.2 is planned to be integrated

into magnum.fe in the near future.

There are many further improvements of magnum.fe one could think of. The code is open
source and available at Github, see [99]. Github is a so-called social coding platform and sup-
ports collaboration through the version management system Git. In the recent publication [64]

the code is described and the readers are encouraged to contribute to magnum.fe.

7.2 Optimal Control

Based on magnum.fe an optimal-control code is currently developed by the Master-student
Jonas Hollander. The aim of this project is the retrieval of an optimal external field here called

u(r, t) for the minimization of the functional

_ K _ A
lm — 7720, + Sllm(T) — || 72(q) + EHUH%z(QT) (7.2.1)

N =

min J(u, m) =

with the magnetization m being subject to the Landau-Lifshitz-Gilbert equation including the
exchange field and an external field given by the control u. Here Q = (0, T)x 2, mis adesired
magnetization configuration and x and )\ are scalar parameters. The functional is designed such
that deviations from the magnetization m to the desired magnetization m are penalized. The
first term of Eqn. 7.2.1 penalizes these deviations at every time. The second term penalizes the
deviation at the end of the simulation T. The last term accounts for the costs of the control u.

By choice of k and X the relative influence of these terms on the functional can be tuned.

Jonas Hollander uses an adjoint method in order to construct a gradient descent method for

minimization of the functional J.
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