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Chapter 1

Introduction

To mitigate or to adapt? Policymakers concerned with climate change face a highly
complex risk management problem. The ultimate objective of climate risk management
is to avert climate-induced loss of livelihood and economic damage. This objective can be
achieved by two major strategies: one is mitigation, aimed at reducing the probability
of climate damage; the other is adaptation, aimed at reducing the severity of climate
damage. It is recognized that “effective climate policy [. . . ] involves a portfolio of diverse
adaptation and mitigation actions” (Klein et al., 2007, p. 747). It is, however, often
overlooked that the optimal composition of this portfolio not only depends on immediate
costs and benefits, but also on the strategic interdependencies between mitigation and
adaptation.

My dissertation seeks to shed light on the strategic relevance of adaptation in an
international policy context. The key finding is that the possibility to adapt to climate
change aggravates the social dilemma associated with reducing greenhouse gas emissions.
The dissertation consists of three single-authored papers. The first paper proposes a
game-theoretic model of the climate risk management problem, based on the particular
economic characteristics of mitigation and adaptation. The model reveals that the pos-
sibility to adapt can cause a negative strategic effect on welfare. The size of this effect
depends on the number of countries involved, the relative marginal cost of adaptation,
and the severity of climate damage. The second and third paper are empirical works.
In two economic computer lab experiments, I collected data to test the validity of the
theory and to estimate the size of the strategic effect. The empirical results support the
model-based theoretical predictions. All three papers are closely connected; yet every
single one is fully self-contained and can be read on its own. This introduction defines
the key concepts and provides the technical foundations and economic premises upon
which the model is based. It concludes with an overview that shortly summarizes the
three papers and relates them to each other.

Risk and risk management are concepts covered by various disciplines; accordingly,
numerous definitions refer to the respective context -e.g. economics, finance, engineering,
health, ecology- and sometimes collide, which causes “Babylonian Confusion” (Thywissen,
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1. Introduction

2006). In the context of this work, climate risk is defined as the combination of an extreme
weather event -occurring with a certain probability- and a system that is susceptible to
damage caused by this impact. The degree to which a system is susceptible to damage
depends on the exposure of the system to the impact, its vulnerability, and its resilience.

Extreme weather events have occurred at all ages, as historical and paleoclimatological
record establishes. At least since biblical times, people’s livelihoods have time and again
been severely affected by floods, droughts, storms, heat waves and cold spells. In the
recent past, however, the climate is changing. It is generally acknowledged that the main
driver of climate change is the high concentration of greenhouse gases in the atmosphere,
caused by anthropogenic greenhouse gas emissions (IPCC, 2007b; Rogner et al., 2007),
and that continued emissions at or above the current rates will further accelerate climate
change (Hegerl et al., 2007). Climate is a stochastic concept; thus, climate phenomena
are inherently associated with probabilities and risk. Climate risk, however, does not
manifest itself in averages such as the often-quoted global mean temperature. Instead,
climate change is potentially hazardous because it incurs changes in the frequency, in-
tensity, spatial extent, duration, and timing of extreme weather events (IPCC, 2012).
Since the mid-20th century, these changes have become evident in several observations:
heat waves and heavy precipitation events have occurred more often, droughts have be-
come heavier and more frequent, the tropical cyclone activity has increased, and sea level
extremes have risen. (IPCC, 2007c; Trenberth et al., 2007; IPCC, 2012). Model-based
projections of future climate change indicate that these trends are likely to continue.
In particular, even if the changes in temperature and precipitation means are relatively
small, climate scientists expect considerable changes in the tails of the climatic distri-
butions, which will most likely lead to more and unprecedented extreme weather events
(Meehl et al., 2007; IPCC, 2012, p. 783).

An extreme weather event, e.g. the persisting absence of rain, is not per se good or
bad, nor does it necessarily trigger risk. “Nature is neutral, and [..] the environmental
event becomes hazardous only when it intersects with man” (Burton 1993, p. 232). A
system is potentially at risk only if it is exposed to the physical impact. Exposure is
defined as the “presence of people; livelihoods; environmental services and resources;
infrastructure; or economic, social, or cultural assets in places that could be adversely
affected.” (IPCC, 2012, p. 5). For example, a storm surge that floods an uninhabited
island, no matter how frequently, does not create risk. In a different place, however, the
same event hits an urban area and thus leads to risk. Exposure is first and foremost a
matter of geographical location; however, it is also influenced by land use and by the
built environment, e.g., the distribution of urban areas in low elevation coastal zones
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1. Introduction

(Martine, 2013).
Exposure is necessary but not sufficient to put a system at risk. The second important

constituent of climate risk is the system’s vulnerability, denoted as the “propensity of
exposed elements such as human beings, their livelihoods, and assets to suffer adverse
effects when impacted by hazard events” (Cardona et al., 2012, p. 69). The vulnerability
of an element depends on its characteristics, which can be immanent features of the
element or external conditions. Consider crop farming as an example: on the one hand,
vulnerability can refer to the robustness of plants, such as natural pest resistance and
drought tolerance. On the other hand, vulnerability depends on external conditions such
as pesticide use and irrigation technology. The internal and external conditions that
make a system vulnerable are manifold; thus, vulnerability can be viewed as “a result
of diverse historical, social, economic, political, cultural, institutional, natural resource,
and environmental conditions and processes” (Lavell et al., 2012, p. 32).

The third critical factor for a system’s susceptibility to damage is resilience, defined
as “the ability of a system and its component parts to anticipate, absorb, accommodate,
or recover from the effects of a potentially hazardous event in a timely and efficient
manner, including through ensuring the preservation, restoration, or improvement of its
essential basic structures and functions.” (Lavell et al., 2012, p. 34). While vulnerability
relates to loss prevention, resilience describes an entity’s capability to recover after it has
experienced a harmful event and suffered a loss. Yet, the determinants of resilience are
similar to those of vulnerability. In particular, resilience depends on economic resources,
e.g. the amount and type of wealth and income; social resources, e.g. nature and extent
of social networks, gender, culture, caste, and class; and institutional characteristics,
e.g. stability of the political and legal system, market liquidity, access to insurance, and
coverage of social security.

To sum up, climate risk arises if a probabilistic climate impact hits a system that is
susceptible to climate-induced damage. According to the two main constituents of risk,
there exist two distinct major forms of climate risk management: The first is mitigation,
aimed at reducing the size and frequency of climate impacts. The second is adaptation,
aimed at reducing the system’s exposure and vulnerability to a given impact, or at
enhancing its resilience.1

Mitigation is defined in the IPCC Fourth Assessment Report as “an anthropogenic
intervention to reduce the anthropogenic forcing of the climate system; it includes strate-

1My notion of adaptation is somewhat different from IPCC (2012), who view adaptation as the goal to
be advanced and extreme event and disaster risk management as methods for supporting and advancing
that goal.
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1. Introduction

gies to reduce greenhouse gas sources and emissions and enhancing greenhouse gas sinks.”
(IPCC, 2007a, p. 878). It is widely recognized that mitigation is necessary to prevent
future climate change, and that mitigation requires concerted effort on an international
level because the global climate system is affected by the aggregate greenhouse gas con-
centration in the atmosphere, while the point of emission is irrelevant. In economic
terms, mitigation is a global public good: a country that reduces its greenhouse gas
emissions bears the mitigation costs in private, whereas all countries enjoy the benefits
from mitigation. This private-cost, public-benefits constellation raises the problem of
free riding and results in a social dilemma. The mitigation dilemma is hard to overcome
because there is no ‘world authority’ that could enforce cooperation. Nevertheless, the
world community seeks to reach agreement, as evident in the United Nations Framework
Convention on Climate Change (UNFCCC). The objective of the treaty is to “stabilize
greenhouse gas concentrations in the atmosphere at a level that would prevent danger-
ous anthropogenic interference with the climate system” (UNFCCC Article 2). Countries
have developed various mitigation policies to turn the UNFCCC objectives into action.
Examples include policies to reduce the demand for high-carbon goods such as cap-and-
trade schemes, requirements, bans and rules; CO2 sequestration with carbon capture and
storage; subsidies for the development of low-carbon technologies such as wind energy or
solar power; and, though still in its infancy, geoengineering projects such as the release
of stratospheric aerosols or ocean iron fertilization.2

Adaptation is defined as an “adjustment in natural or human systems in response to
actual or expected climatic stimuli or their effects, which moderates harm or exploits
beneficial opportunities.” (IPCC, 2007a, p. 869). As explicated above, adaptation refers
to the various conditions and predispositions of a system affected by a climatic impact;
accordingly, adaptation strategies are much more multi-faceted than mitigation strate-
gies. Adaptation strategies can be categorized in several dimensions, e.g. by spatial
scale, by sector, by actor, by timing. Some adaptation strategies reduce the exposure
of a system, for example migration (Black et al., 2011) and land use planning (Martine,
2013). Other adaptation strategies reduce the vulnerability of a system, for example
coastal protection, adjustments of crop and livestock variety and irrigation. Yet other
adaptation strategies enhance the resilience of a system, for example disaster manage-
ment and climate risk insurance. In contrast to mitigation, adaptation typically works
on the scale of the impacted system (Klein et al., 2007), i.e., at a local or at most re-

2Many researchers treat geoengineering as a third climate change policy measure distinct from miti-
gation and adaptation (e.g. Barrett, 2008b; Lenton and Vaughan, 2013). This distinction is useful and
sensible, particularly in the context of regulation. For the mechanisms described in this work, subsuming
geoengineering under mitigation is an acceptable simplification.
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1. Introduction

gional level. Both costs and benefits of adaptation accrue to those who adapt. Some
anticipative, large-scale adaptation measures such as e.g. coastal protection benefit the
inhabitants of whole areas; they can thus be regarded as regional public goods. Yet, on
a highly aggregated level that treats countries as rational unitary agents, adaptation is
a private good, provided that externalities arising between individuals within a country
can be internalized by means of taxation. Due to its private good character, there are
no immediate external effects from adaptation.

There is broad consent that even the most stringent mitigation effort cannot prevent
climate change from happening; neither can adaptation alone cover all expected damages
arising from unmitigated climate change (Klein et al., 2007). Hence follows that mitiga-
tion and adaptation are not perfect substitutes. On the other hand, there is good reason
to consider mitigation and adaptation as imperfect substitutes: “the more mitigation is
undertaken, the less adaptation is necessary and vice versa” (Klein et al., 2007, p. 753).
Moreover, mitigation and adaptation strategies are costly and thus compete for scarce
resources: investing in one policy reduces the budget left for the other. This view can
be challenged by the fact that some responses to climate change are ‘technical comple-
ments’ that foster both mitigation and adaptation. Afforestation, for example, has a
double effect: trees sequester carbon (mitigation), and their roots prevent soil erosion
(adaptation) (Klein et al., 2005). Yet other responses are ‘technical substitutes’ that
put adaptation and mitigation in conflict. A prominent example is air conditioning (Tol,
2005): it alleviates heat stress (adaptation), but also causes greenhouse gas emissions.
Most responses are indeed ‘technically neutral’, i.e., they neither contain an inherent
synergy nor an inherent antagonism. Ingham et al. (2005) systematically address the
substitutes-vs.-complements debate by stepwise extending a simple basic model. The
analysis shows that it is basically appropriate to consider adaptation and mitigation
as substitutes. Two exemptions may suggest a complementary relationship of the two.
First, adaptation costs may depend on the amount of mitigation. Second, the marginal
effectiveness of mitigation may depend on an exogenous increase in risk as described by
Kane and Shogren (2000). In due consideration of the debate, I treat mitigation and
adaptation as substitutes.

Finally, special attention must be paid to the institutional environment in which inter-
national climate policy decisions are made. Following microeconomic tradition, I model
countries as rational, self-interested agents who choose from a set of possible alternatives
in order to maximize the utility function which represents its preference relations. This
implies that countries do not cooperate unless doing so is in their self interest. Moreover,
even if countries are willing to cooperate, the absence of strong international institutions
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1. Introduction

and the lack of enforcement capacity make it difficult to establish binding agreements
(Gerber and Wichardt, 2009). This being the case, I consider international climate
change policy to take place in a non-cooperative, non-institutional environment. It may
seem overly cautious or even pessimistic to presume noncooperation as a basic principle;
however, the presumption of non-cooperation does not exclude the possibility of cooper-
ation. In particular, the rational choice approach is flexible enough to model preferences
and utility functions beyond immediate material interests, e.g. equity preferences and
reciprocity.

The first paper “The Strategic Interdependencies of Mitigation and Adaptation” is a
theoretical work. It has been presented at the AURÖ Nachwuchsworkshop “Umwelt-
und Ressourcenökonomie” of the Verein für Socialpolitik in Bern in Feb 2012 and at
the EAERE 19th Annual Conference in Prague in June 2012. Basing on the economic
characteristics of mitigation and adaptation, the paper features a novel game-theoretic
model that explains how the possibility to adapt to climate change affects a country’s
position in non-cooperative strategic interactions. The model is set up in general terms
with the levels of mitigation and adaptation as individual decision variables. I explicitly
model the particular structure of expected utilities under climate risk by applying an
endogenous probability distribution over different states of nature. Adaptation alleviates
the individual damage suffered if an extreme weather event occurs, whereas aggregate
mitigation reduces the probability of an extreme weather event to occur. I find that
the additional possibility to invest in adaptation can cause a welfare loss in the Nash
equilibrium. Two opposite effects account for this phenomenon: on the one hand, a single
country substitutes mitigation by adaptation in order to increase its individual benefit
(positive direct effect); on the other hand, this same substitution lowers the aggregate
mitigation level and thereby increases the probability of an extreme weather event for all
countries (negative strategic effect). The model predicts that the strategic effect tends to
outweigh the direct effect if (i) the number of countries involved is large, (ii) the damage
from climate change is large, and (iii) the relative marginal costs of adaptation are high.

The second paper “The Impact of Adaptation Costs and Group Size on Mitigation
and Adaptation” has been presented at the PhD Seminar in Economics in Hamburg in
July 2012 and at the 3rd Young Scientists Excellence Cluster Conference in Kiel in Oct
2012. The aim of the paper is to empirically test the strategic impact of adaptation on
investment decisions regarding mitigation and adaptation and on the resulting expected
payoffs. The data were collected in a controlled computerized laboratory experiment
conducted in Hamburg in June 2012. The experimental design derives from the theoret-
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1. Introduction

ical model presented in the first paper. The experiment is set up as a non-cooperative,
symmetric, one-shot game with homogeneous players. Six treatments were played in
order to independently set three treatment variables: (i) possibility to adapt (yes/no),
(ii) unit cost of adaptation (low/high), and (iii) group size (small/large). The experi-
mental results yield qualitative support for the hypotheses derived from the theoretical
model: adaptation decreases and mitigation increases as adaptation costs increase. Pay-
offs behave non-monotonically; they are lower for medium high adaptation cost than for
low adaptation cost, but higher for prohibitively high adaptation cost than for medium
high adaptation cost. The positive direct effect of substitution outweighs the negative
strategic effect for smaller groups, and the negative strategic effect outweighs the positive
direct effect for larger groups.

The third paper “Mitigation and Adaptation with Heterogeneous Unit Cost of Adap-
tation” empirically tests the implications of adaptation cost heterogeneity for investment
decisions regarding mitigation and adaptation. A particular focus is set on interpersonal
differences in expected payoffs. The data were collected in a controlled computerized
laboratory experiment conducted in Hamburg in April 2013. As in the second paper, the
experiment is designed as a non-cooperative one-shot game, based upon the theoretical
model presented in the first paper; however, this experiment features heterogeneous adap-
tation cost. I define three cost types differing with respect to their unit cost of adaptation.
Subjects are assigned to these cost types and split into groups of four according to nine
treatments covering different group compositions. Subjects respond to their co-players’
cost type as predicted by the model: mitigation decreases as the co-players’ adaptation
cost increase, adaptation remains unchanged, and the average expected payoff increases.
Within heterogeneous groups, the higher-cost type contributes a bigger share to the ag-
gregate mitigation level than the lower-cost type. Beyond these confirmative results,
we observe some interesting quantitative deviations from the model predictions. In the
heterogeneous games, the type-specific proportional shares of group aggregate mitigation
are less divergent than predicted, which leads to more equitable payoffs, but also entails
an efficiency loss. I attribute this behavior to inequity aversion.

This dissertation makes three key contributions to the economic research on interna-
tional climate change policy. First, it provides a model of international climate policy
that uniquely reflects the idea of climate policy as climate risk management. Second,
the model enables us to clearly separate direct from strategic effects of adaptation, and
to disentangle the determinants that account for either effect. Third, the validity of the
theoretical model is successfully tested in two experiments. Besides the validity test, the
third paper exhibits some interesting behavioral findings regarding belief formation and
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1. Introduction

inequity aversion. In future research, the model could probably be used to analyze exist-
ing climate treaties; moreover, it may enhance our understanding about treaty formation
and negotiation in particular with respect to heterogeneous positions, threat points, and
outside options determined by adaptation possibilities.

8



Chapter 2

The Strategic Interdependencies of
Mitigation and Adaptation

Abstract Besides immediate costs and benefits, policymakers concerned with
climate change have to consider the strategic interdependencies of mitigation
and adaptation when acting internationally. This paper proposes a non-
cooperative game-theoretic model that incorporates both policies as deci-
sion variables. By comparing the equilibrium outcomes of the mitigation-
adaptation model and the established mitigation-only model, we find that
the additional opportunity to invest in adaptation increases welfare in the
social optimum, but can cause a welfare loss in the Nash equilibrium. This
happens because countries replace mitigation by adaptation whenever doing
so is individually beneficial (direct effect); however, this same substitution
lowers the aggregate level of mitigation and thus deprives all other countries
of the positive externalities from mitigation (strategic effect). The strategic
effect tends to prevail if (i) the number of countries involved is large, (ii) the
damage from climate change is large, and (iii) the relative marginal costs of
adaptation are high. The theoretical results are illustrated by means of a
numerical example.

Keywords climate change, mitigation, adaptation, social dilemma, public
good, risk
JEL Classification C72, Q54, H41
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2. The Strategic Interdependencies of Mitigation and Adaptation

2.1 Introduction

For a long time, international climate change policy focused solely on the mitigation
of climate change by reducing greenhouse gas emissions. Adaptation to climate change
was treated as a side issue. In recent years, the agenda has changed: adaptation is
now an integral part of climate change policy. In 2010, the parties to the United Nations
Framework Convention on Climate Change (UNFCCC) adopted the “Cancun Adaptation
Framework”, by which they affirmed that adaptation must be addressed with the same
level of priority as mitigation.

Despite this development, policymakers as well as economic researchers dealing with
international climate change policy miss out on the strategic interdependencies of miti-
gation and adaptation. To close this gap, this work proposes a generic game-theoretic
model that incorporates both policy options as decision variables. I compare this novel
mitigation-adaptation model with the conventional mitigation-only model and find that
incorporating adaptation as an additional climate policy alternative increases global so-
cial welfare as could be achieved under full cooperation, whereas it may actually decrease
the aggregate welfare in a non-cooperative environment.

Climate Risk and Climate Risk Management. Since pre-industrial times, the concen-
tration of greenhouse gases in the atmosphere has increased significantly, mainly due
to anthropogenic emissions (IPCC, 2007d; Rogner et al., 2007). The high concentra-
tion of greenhouse gases is most likely the main driver of climate change, and continued
emissions at or above current rates will further accelerate climate change (Hegerl et al.,
2007). Since the mid-20th century, climate change has already become evident in several
phenomena such as increased average air and ocean temperatures, more frequent heat
waves, more frequent heavy precipitation events, more and heavier droughts, increased
tropical cyclone activity and rising sea level extremes (IPCC, 2007c; Trenberth et al.,
2007). Predictions made on the basis of climate models indicate that these trends are
likely to continue. Even if temperature and precipitation means change only slightly, it
is still expected that the type, frequency and intensity of extreme weather events change
considerably (Meehl et al., 2007, p. 783). Extreme weather events have significant im-
pacts on many geophysical and biological systems, with direct or indirect consequences
for economic welfare: cyclones and hurricanes cause physical damage and loss of life;
droughts lead to crop failure, famine and water stress; floods and storm surges threaten
coastal areas. The consequences of an impact for people’s livelihood and economic wel-
fare, however, not only depend on the severity and probability of the impact itself, but
also on the exposure of the affected system, its vulnerability, and its resilience. Take

10



2. The Strategic Interdependencies of Mitigation and Adaptation

river flooding as an example. With a certain probability, continuing heavy rainfall (im-
pact) is experienced by a low-lying riverside area (exposure). Dikes and flood barriers
can prevent damage (vulnerability); once damage has occurred, insurance benefits and
emergency relief can foster recovery (resilience).

Climate change impacts are inherently probabilistic, and the combination of an impact
and its consequences -determined by exposure, vulnerability and resilience- constitutes
what is best described as climate risk. Thus, a risk management approach is the appro-
priate way to economically assess risk determinants and climate policies, as proposed by
Jones (2004), Carter et al. (2007), and IPCC (2012). According to the two constituents
of climate risk, we can distinguish between two major forms of climate risk management:
one is mitigation, which aims at reducing the size and frequency of climate impacts; the
other is adaptation, which aims at reducing the damage caused by an impact (Jones,
2004).

Mitigation is defined as “an anthropogenic intervention to reduce the anthropogenic
forcing of the climate system; it includes strategies to reduce greenhouse gas sources and
emissions and enhancing greenhouse gas sinks.” (IPCC, 2007a, p. 878). A broad range
of mitigation policies has been developed over the last decades. Some measures aim at
reducing the demand for high-carbon goods, others aim at fostering low-carbon tech-
nologies such as wind power or solar power, yet other measures relate to geoengineering
technologies. 1

Adaptation is defined as an “adjustment in natural or human systems in response to
actual or expected climatic stimuli or their effects, which moderates harm or exploits
beneficial opportunities.” (IPCC, 2007a, p. 869). After it became apparent that several
climate change impacts have already occurred, and acknowledging the inertia inherent
in the climate system (Adger et al., 2007), political decision makers attach increased
importance to adaptation. Adaptation comes in many different forms, as elaborated by
Smit et al. (2000) in their excellent anatomy of adaptation based on three key questions:
“Adaptation to what?”, “Who or what adapts?” and “How does adaptation occur?”.
In the context of international climate policy discussed here, the primary focus is on
big-scale anticipatory adaptation that is carried out or funded by governments as a
policy measure, e.g. coastal protection, urban planning, water resource management,
and relocation plans.

For the analysis of the strategic interrelations between mitigation and adaptation, it

1Many researchers treat geoengineering as a third climate change policy measure distinct from miti-
gation and adaptation (e.g. Barrett, 2008b; Lenton and Vaughan, 2013). This distinction is useful and
sensible, particularly in the context of regulation. For the mechanisms described in this work, subsuming
geoengineering under mitigation is an acceptable simplification.
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2. The Strategic Interdependencies of Mitigation and Adaptation

is crucial to be clear about their economic characteristics.

Substitutes vs. Complements. There is some disagreement in the literature whether
mitigation and adaptation are substitutes or complements. Mitigation reduces the proba-
bility of extreme weather events, whereas adaptation moderates losses caused by extreme
weather events: although through different channels, both strategies ultimately aim at
reducing the expected damage from climate change. Mitigation and adaptation may thus
rightly be regarded as substitutes: “the more mitigation is undertaken, the less adapta-
tion is necessary and vice versa” (Klein et al., 2007, p. 753).

This argument is disputable, since some responses to climate change are ‘technical
complements’ that foster mitigation and adaptation. Afforestation, for example, provides
shade and protects the soil against erosion (adaptation); at the same time, trees provide
a natural carbon storage (mitigation) (Klein et al., 2005). Other responses are ‘technical
substitutes’, where adaptation and mitigation may conflict. This is the case with air
conditioning (Tol, 2005): it alleviates heat stress (adaptation), but consumes energy at
the same time. Most responses, however, are neither technical complements nor technical
substitutes; yet, adaptation and mitigation can be regarded as substitutes because they
compete for scarce resources: investing in one policy measure reduces the budget left for
the other.

Using a systematic approach, an analysis by Ingham et al. (2005) suggests that adapta-
tion and mitigation should fundamentally be considered as substitutes. Two exemptions
may suggest a complementary relationship: first, adaptation costs may depend on the
amount of mitigation; second, the marginal effectiveness of mitigation may depend on
an exogenous increase in risk as described by Kane and Shogren (2000).

It remains to be said that a good deal of confusion arises from a blurred notion of
complementarity and substitutability in everyday language as opposed to the more precise
economic concept referring to the cross elasticity of demand. For example, Easterling
et al. (2004) state that “Adaptation actions and strategies present a complementary
approach to mitigation.” (p. iii); by this statement, they merely intend to say that
both mitigation and adaptation are indispensable elements of an efficient climate change
policy. Similar claims can be found in large parts of the literature; yet, these statements
refer to complementarity at the margin, indicating that there can be no full replacement
of one policy alternative by the other. In economic terms, these limit properties are
mostly a matter of prohibitively high costs at the margin and can be incorporated in a
substitutes model by carefully setting the cost parameters. In due consideration of the
exceptions discussed above, mitigation and adaptation are treated as substitutes in this
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paper.

Public vs. Private Goods. There is general consensus that the economics of climate
change in one way or another relate to the provision of a global public good. However,
most scholarly work is not very clear in what exactly constitutes this good. Some remain
entirely silent, others attribute the global public good property to different concepts, e.g.,
“Control of the climate system” (Bradford, 2004, p. 4); “The environment”, “International
regimes” (Kaul et al., 1999, p. 13); “Cutting [...] CO2 emissions” (Barrett, 1999, p. 197);
“Action to address global climate change” (Barrett, 2007, p. 5); “Global climate change
mitigation” (Barrett, 2007, p. 74); or “Global warming” (Nordhaus, 2006, p. 32).

To be precise in the analysis, I consider mitigation and adaptation as two distinct
intermediate goods or production factors. Both mitigation and adaptation contribute
to our want to be free of damage from climate change, but do so in different ways:
mitigation produces a low probability of extreme weather events; adaptation produces a
low damage in the event of extreme weather.

Mitigation is a pure global public good: a single country that reduces its greenhouse gas
emissions or enhances greenhouse gas sinks has to bear the cost of mitigation in private,
while all countries benefit from its mitigation effort. No country can be excluded from
the climatic effect of mitigation; nor does one country’s benefit reduce the availability of
mitigation for the other countries. These public-good features give rise to the problem
of free riding and may lead to an underprovision of mitigation if cooperation fails due to
weak institutions.

Adaptation is a private good: its effects are typically limited to the scale of the im-
pacted system (Klein et al., 2007). Indeed, some anticipatory adaptation projects intend
to benefit whole areas, as for example large-scale coastal protection plans. These mea-
sures can well be regarded as regional public goods. Yet, from an international policy
point of view, we suppose that both costs and benefits of adaptation arise to the country
that invests in adaptation. Due to its private good character, there are no immediate
external effects from adaptation.

The public vs. private good property explains why, to date, research on strategic
issues in climate change policy is primarily concerned with the global public good miti-
gation, whereas the strategic dimension of the private good adaptation has largely been
overlooked.
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2.2 Literature Review

The most commonly applied framework to analyze the strategic interaction of countries
making climate change policy focuses on greenhouse gas emissions. The typical model
provides a setting of n countries, where country i’s (i = 1, ..., n) welfare Pi consists of its
benefits Bi generated by aggregate global abatement M ≡

∑n
j=1mj less cost Ci of its

own individual abatement mi. The basic structure is

Pi = Bi(M)− Ci(mi)

(e.g. Barrett, 1992, 1994b; Hoel, 1991). In a parallel model set-up, country i’s welfare
Pi consists of benefits Bi generated by its own individual emissions, ei, less damages Di

caused by the aggregate emissions released by all countries, E ≡
∑n

j=1 ej :

Pi = Bi(ei)−Di(E)

(e.g. Carraro and Siniscalco, 1993; Finus, 2002). It is easy to show that both approaches
are equivalent: the level of abatement is just the amount of emissions not released;
thus, the benefit from individual emissions can be interpreted as the opportunity cost of
abatement, i.e.,

−Bi(ei) = Ci(mi).

Likewise, the damage averted by not releasing a certain amount of global emissions
equates to the benefit from aggregate global abatement:

−Di(E) = Bi(M).

Kane and Shogren (2000) pioneered research on the interdependencies of mitigation
and adaptation. Their endogenous-risk model differentiates between self-protection ef-
forts that reduce the likelihood of a bad state to occur (mitigation), and self-insurance
efforts that reduce the damage realized once the bad state has occurred (adaptation).
The research scope lies on the impact of an increased variability in climate change threats
on the optimal mix of mitigation and adaptation. Strategic interactions between coun-
tries are not considered. My model presented in Section 2.3.2 transfers the concept of
endogenous risk to a strategic context.

Barrett (2008a) introduces a parametric mitigation-adaptation model to investigate
the effect of adaptation on efforts to overcome free-rider incentives in international cli-
mate treaties. The structure is similar to Barrett’s earlier mitigation-only models with
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benefits from global mitigation and individual mitigation costs (Barrett, 1992, 1994b).
The benefits from mitigation and adaptation are interdependent: an increase in adapta-
tion leads to a decrease in the marginal benefit from mitigation and vice versa. In an N
symmetric countries setting, Barrett analyses the non-cooperative Nash equilibrium, the
full cooperative outcome and different treaty equilibria for various parameter scenarios.

There are, however, some limitations to the model proposed by Barrett (2008a). First,
adaptation and mitigation are treated as binary choice variables, which limits the strat-
egy space to four strategies only. Consequently, the equilibrium outcomes exhibit discrete
jumps at certain parameter-given thresholds. Second, the results depend on the partic-
ular benefit and cost functions employed, on the benefit and cost parameters, and on
additional parameters such as the degree of substitutability and the inherited concentra-
tion of greenhouse gases. The model presented in this paper overcomes these limitations
and offers an analytical solution.

Another recent strand of research addresses mitigation and adaptation policies in a
dynamic game-theoretic context with a particular focus on timing issues, although from
different perspectives. Zehaie (2009) proposes a dynamic two-stage game setting where
adaptation works as a commitment device chosen in stage 1, followed by the choice
of mitigation in stage 2. He finds that proactive adaptation has strategic advantages
as it enables a country to shift the responsibility for mitigation to others. Based on
Zehaie (2009), De Bruin et al. (2011) present an enhanced three-stage dynamic model
to investigate the coalition effects from proactive adaptation. A similar approach is
employed by Auerswald et al. (2011), whose analysis focuses on the impact of a country’s
risk attitude on the optimal mix of mitigation and adaptation. Buob and Stephan (2011),
in contrast, propose a dynamic two-stage game setting with the level of mitigation chosen
in stage 1 and adaptation chosen in stage 2. Utility depends positively on consumption
and environmental quality, where environmental quality can be improved by investing
in mitigation and/or in adaptation (modeled as perfect substitutes), and investments in
mitigation and adaptation cut the budget left for consumption. The authors describe
the impact of initial endowments with income and environmental quality on the optimal
mix of adaptation and mitigation.

2.3 Models

2.3.1 The Mitigation-Only Model

Although they slightly vary in structure, all mitigation-only models mentioned in the
previous section yield the same results regarding the social and the individual optimum.
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This section presents an augmented mitigation-only model that exactly reproduces the
mechanisms, specifications and results of this model class but uses a different conception
of payoffs in line with the endogenous-risk approach suggested by Kane and Shogren
(2000). The mitigation-only model will later serve as a benchmark to compare and
assess the results of the mitigation-adaptation model.

Consider a world consisting of n countries. Each country i = 1, ..., n behaves as a
rational unitary player who aims at maximizing her expected utility. The strategies
available to the countries are the different levels of mitigation they might produce. Thus,
each country i’s strategy space is represented as Si = [0,∞),, and a typical strategy
si is a mitigation level mi. Each country i has an expected utility function Eui,m0,
determined by its own mitigation level mi and the aggregate mitigation of all other
countries except i, hereafter denoted asM−i =

∑n
j=1
j 6=i

mj . There are two states of nature:
in the “bad” state, an extreme weather event occurs; in the “good” state, the event
does not occur. The good-state utility of country i is denoted as ugi (mi); the bad-state
utility of country i is denoted as ubi(mi). Country i faces the bad state with probability
pi(M) ∈ (0, 1), where M =

∑n
j=1mj is the aggregate mitigation level, and the good

state with probability 1 − pi(M). In total, country i’s expected utility is expressed by
the von-Neumann-Morgenstern expected utility function

Eui,m0 = pi(M) · ubi(mi) + (1− pi(M)) · ugi (mi). (2.1)

Assume that all functions pi, ubi , u
g
i are twice continuously differentiable and that the

following specifications hold:
dpi
dM

< 0 ; (2.2)

d2pi
dM2

> 0 ; (2.3)

ugi (mi)− ubi(mi) > 0 ; (2.4)

dugi
dmi

=
dubi
dmi

< 0 ; (2.5)

d2ugi
dm2

i

=
d2ubi
dm2

i

≤ 0 ; (2.6)

By specification (2.2), pi is decreasing in M . We assume that a lower level of global
aggregate greenhouse gas emissions reduces the probability of extreme weather events,
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irrespective of where mitigation takes place. By (2.3), the marginal effect of mitigation on
the probability distribution is decreasing. Specification (2.4) describes country i’s utility
loss caused by an extreme weather event. Specification (2.5) indicates that country i’s
utility is decreasing in mi in both states, which reflects i’s cost of mitigation. The
marginal cost of mitigation are assumed to be constant or increasing, as specified by
(2.6).

To verify that the model just introduced represents the class of mitigation-only models
mentioned in the previous section, let Di denote the (constant) difference between u

g
i and

ubi , i.e., the damage occurring in the bad state. Using (2.4), (2.5), and (2.6), the original
expected utility function (2.1) can be simplified to

Eui,m0 = ugi (mi)− pi(M) ·Di. (2.7)

Both functions are decreasing in m. Note that the first term on the right-hand side
captures the cost of mitigation, whereas the second term captures the expected damage.
Considering the fact that the amount of mitigation equates to the amount of emissions
not released, the structure is equivalent to the commonly applied mitigation-only models
mentioned in Section 2.2.

2.3.2 The Mitigation-Adaptation Model

I now introduce a new model variant that allows for investments in mitigation and adap-
tation. Country i’s set of feasible strategies is enlarged: it contains any combination of
non-negative levels of mitigation mi ≥ 0 and/or adaptation ai ≥ 0. Country i’s expected
utility function Eui,ma is determined by its own adaptation level ai, its own mitigation
level mi, and the global aggregate mitigation level M =

∑n
j=1mj . The good-state utility

of country i is denoted as ugi (ai,mi). The bad-state utility of country i is denoted as
ubi(ai,mi). As in the mitigation-only model, country i faces the bad state with probabil-
ity pi(M) ∈ (0, 1) and the good state with probability 1 − pi(M). In total, country i’s
expected utility is expressed by the von-Neumann-Morgenstern expected utility function

Eui,ma = pi(M) · ubi(ai,mi) + (1− pi(M)) · ugi (ai,mi). (2.8)

It is assumed that all functions pi, ubi and ugi are twice continuously differentiable and
that the following specifications hold:

dpi
dM

< 0 ; (2.9)
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d2pi
dM2

> 0 ; (2.10)

∂ugi
∂mi

=
∂ubi
∂mi

< 0 ; (2.11)

∂2ugi
∂m2

i

=
∂2ubi
∂m2

i

≤ 0 ; (2.12)

∂ugi
∂ai

< 0 ; (2.13)

∂2ugi
∂a2

i

≤ 0 ; (2.14)

∂ubi
∂ai

>
∂ugi
∂ai
∀ai (2.15)

∂2ubi
∂a2

i

≤ 0 ; (2.16)

∂2ubi
∂mi∂ai

=
∂2ugi
∂mi∂ai

≤ dpi
dM
· (
∂ugi
∂ai
− ∂ubi
∂ai

) (2.17)

ugi (ai,mi) > ubi(ai,mi) ; (2.18)

By specification (2.9), we assume that a lower level of global aggregate greenhouse
gas emissions reduces the probability of an extreme weather event, no matter where
mitigation takes place. By (2.10), the marginal benefit of mitigation is decreasing.

Specifications (2.11), (2.12), (2.13), and (2.14) reflect the assumption that the marginal
cost of mitigation in the good state and the marginal cost of adaptation in the good state
are constant or increasing. By specification (2.15), it is made explicit that adaptation
compensates for damages suffered in the bad state. Note that adaptation affects the bad-
state utility in two respects: on the one hand, adaptation comes at cost, which decreases
utility; on the other hand, adaptation partially or fully compensates for the loss, which
increases utility. The marginal compensation power of adaptation is decreasing. The
overall impact of adaptation on the bad-state utility depends on the relative size of costs
and benefits. We do not prescribe a particular sign for the first derivative of ubi with
respect to ai; yet we assume by (2.16) that the marginal net benefit of adaptation is
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decreasing. Specification (2.17) is necessary to qualify mitigation and adaptation as
substitutes. Finally, specification (2.18) describes the “bad-stays-bad” condition, stating
that losses cannot be overcompensated: the good-state utility always exceeds the bad-
state utility.

A simple example that satisfies specifications (2.9) - (2.18) is made up of the following
additively separable functions with constant marginal costs:

pi =
1

M + 1
;

ugi = yi − kiai − limi;

ubi = zi − kiai − limi + ln(ai + 1);

with yi, zi, ki, li ∈ R+ if ai is restricted to the set of ai such that yi − zi > ln(ai + 1).
These particular functions will be used in the numerical example in Section 2.4.3.

Implicit Assumptions, Strengths and Weaknesses. The model implies that mitigation
and adaptation are (imperfect) substitutes: adaptation reduces the marginal benefit of
mitigation, and mitigation reduces the marginal benefit of adaptation. An increase in
adaptation makes mitigation less profitable and vice versa. Technically speaking, the
cross partial derivatives of the expected utility function are negative:

∂2Eui,ma

∂mi∂ai
=
∂2Eui,ma

∂ai∂mi
=
dpi
dM
· (∂u

b
i

∂ai
−
∂ugi
∂ai

) +
∂2ugi
∂mi∂ai

≤ 0.

We implicitly assume that mitigation and adaptation are homogeneous goods that can
be aggregated. This assumption is contestable since, in reality, climate change impacts
are diverse, and so are the responses to these impacts. With CO2 equivalents serving
as a metric, it is rather easy to measure and aggregate mitigation levels (Rogner et al.,
2007). Adaptation practices, however, are much more diverse. Different systems adapt to
different stimuli in different ways (Smit et al., 2000); thus, it is difficult to aggregate all
adaptation efforts into one single good (see Tol, 2005). In particular, it is hardly possible
to express the benefits of adaptation in a single metric (Klein et al., 2007, p. 750).

Unlike other models, my model explicitly accounts for the particular structure of ex-
pected utilities in the face of extreme weather events caused by climate change. An
endogenous probability distribution is applied over different states of nature. Adap-
tation alleviates the damage suffered in the bad state, whereas mitigation reduces the
probability of the bad state to occur. This structure is a more differentiated portrait
of reality than models that only consider costs and residual damages, thereby mixing
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up different effects. Another feature of my model is the generalized setup. There is no
particular function involved; instead, the functions are only specified in general terms.
Other than in Barrett (2008a), who treats the choices of adaptation and mitigation as
binary variables, adaptation and mitigation are continuous here, which is a more realistic
image that allows for a better understanding of the mechanisms at work. Finally, the
model is reduced to the immediate effects of mitigation vs. adaptation without consider-
ing the time dimension or other determinants such as initial wealth, risk attitude, degree
of substitutability, inherited greenhouse gas concentration etc.

2.4 Results

2.4.1 Social Optimum

If there were a “world authority”, in the sense of a benevolent social planner who could
decide in place of individual countries, what would be its optimal choices? In this section,
we determine the socially optimal choices in a world of n countries for both models. The
social optima will later serve as a first-best benchmark to evaluate the non-cooperative
outcomes resulting from the strategic interaction of countries behaving as self-interested
rational players. Consider at first the optimal choices formi in the mitigation-only model.
The social planner’s objective function is the sum of individual utilities:2

max
(mi)i=1,...,n

n∑
i=1

Eui,m0 = max
(mi)i=1,...,n

n∑
i=1

(
pi(M) · ubi(mi) + (1− pi(M)) · ugi (mi)

)
,

where the n first-order-conditions are

dpi
dM
· ubi(mi) + pi ·

dubi(mi)

dmi
− dpi
dM
· ugi (mi) + (1− pi) ·

dugi (mi)

dmi

+
n∑

j=1
j 6=i

(
dpj
dM
· ubj(mj)−

dpj
dM
· ugj (mj)) = 0

⇔
dugi
dmi

=
dubi
dmi

=
dpi
dM
· (ugi − u

b
i) +

n∑
j=1
j 6=i

dpj
dM
· (ugj − u

b
j). (2.19)

The social optimum requires that country i’s marginal cost of mitigation, represented
by the left-hand side terms of (2.19), equal the sum of all countries’ individual marginal

2For the sake of practicability, we assume a sort of Utilitarian social welfare function and leave the
problems of cardinally measuring and interpersonally comparing individual utilities aside.
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benefits from country i’s mitigation. The first term on the right-hand side of (2.19)
depicts country i’s own marginal benefit from its own mitigation effort. The summation
at the end of (2.19) represents the marginal benefit from country i’s mitigation effort to
all other countries except i, i.e., the external effect. This result reflects the Samuelson
condition (Samuelson, 1954) for the efficient provision of public goods.

To prove the existence of a solution to the optimization problem, it is necessary to show
that the set of mutually dependent first-order conditions can be solved simultaneously:

Proof. We assume ∂Eui,m0

∂mi
< 0 for sufficiently largeM . Then, with Eui,m0 being strictly

concave inmi, there exists a unique maximizer m̄i for anyM−i, i.e., a continuous function
m̄i(M−i). To determine the slope of this function, we rewrite (2.19) as

∂pi(m̄i(M−i) +M−i)

∂M
·(ugi −u

b
i)+

n∑
j=1
j 6=i

dpj(m̄i(M−i) +M−i)

dM
·(ugj −u

b
j)−

∂ubi
∂mi

= 0 (2.20)

Differentiating (2.20) with respect to M−i and rearranging yields

dm̄i

dM−i
= −

d2pi
dM2 · (ugi − ubi) +

∑n
j=1
j 6=i

d2pj
dM2 · (ugj − ubj)

d2pi
dM2 · (ugi − ubi) +

∑n
j=1
j 6=i

d2pj
dM2 · (ugj − ubj)−

∂2ub
i

∂m2
i

,

i.e., −1 ≤ ∂m̄i
∂M−i

< 0. Since m̄i is decreasing in M−i and non-negative, the range Ci of
m̄i(M−i) is non-empty, convex and compact. Let C = ×n

i=1Ci, and let m̄(m1, ...,mn) =

(m̄1(M−1), ..., m̄n(M−n)) with m̄ : C → C . Since m̄ is a continuous function, and C is
a non-empty, convex and compact set, it follows by Brouwer’s fixed point theorem that
there exists a fixed point m+ where m̄(m+) = m+. By definition, m+ simultaneously
solves all n first-order conditions (2.19) and hence constitutes a social optimum. �

Next, consider the social planner’s optimal choices for mi and ai in the mitigation-
adaptation model. The optimization problem can be written as

max
((ai,mi))i=1,...,n

n∑
i=1

Eui,ma = max
((ai,mi))i=1,...,n

n∑
i=1

(
pi(M)·ubi(ai,mi)+(1−pi(M))·ugi (ai,mi)

)
The socially optimal values (m+

i , a
+
i )i=1,...,n must satisfy a set of 2n first-order conditions:

dpi
dM
· ubi + pi ·

∂ubi
∂mi

− dpi
dM
· ugi + (1− pi) ·

∂ugi
∂mi

+

n∑
j=1
j 6=i

(
dpj
dM
· ubj −

dpj
dM
· ugj ) = 0
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⇔
∂ugi
∂mi

=
∂ubi
∂mi

=
dpi
dM
· (ugi − u

b
i) +

n∑
j=1
j 6=i

dpj
dM
· (ugj − u

b
j) (2.21)

and

pi ·
∂ubi
∂ai

+ (1− pi) ·
∂ugi
∂ai

= 0 ∀i = 1, ..., n

⇔
∂ugi
∂ai

= pi · (
∂ugi
∂ai
− ∂ubi
∂ai

) ∀i = 1, ..., n. (2.22)

As in the mitigation-only model, social optimality requires that the individual marginal
cost of mitigation equal the sum of individual marginal benefits from mitigation (2.21).
Furthermore, social optimality requires that country i’s individual marginal cost of adap-
tation equal country i’s individual marginal benefit from adaptation, as given by (2.22).

To prove the existence of a solution, I use a similar approach as in the mitigation-only
case. The proof is slightly more complex because of the reciprocal effects at work. It
needs to be shown that (1) the first-order conditions can be solved simultaneously and
that (2) this simultaneous solution constitutes a maximum.

Proof. We assume that ∂Eui,ma

∂mi
< 0 and ∂Eui,ma

∂ai
< 0 for sufficiently large M . Consider

i’s reaction (m̄i(M−i), āi(M−i)) to an increase inM−i. The reaction is twofold: on the one
hand, since the marginal benefit of mitigation decreases inM−i as given by specifications
(2.9) and (2.10), m̄i decreases in M−i. This part of i’s best response corresponds to the
mitigation-only case discussed earlier. On the other hand, considering that the marginal
benefit of adaptation also decreases in M−i as given by (2.9) and (2.15), āi decreases
in M−i. This, in turn, leads to an increase in m̄i as given by specification (2.17). It
follows that monotonicity of m̄i(M−i) cannot be guaranteed as it was the case in the
mitigation-only model. However, this ambiguity only exists for āi(M−i) > 0. Given
the above assumption that ∂Eui,ma

∂ai
< 0 for large M−i, the optimal adaptation level for

such M−i is zero; consequently, the mitigation-increasing effect eventually disappears
while the mitigation-diminishing effect remains. Thus, although there may exist an
interval of M−i where ∂m̄i

∂M−i
is positive, ∂m̄i

∂M−i
is definitely negative as M−i becomes

sufficiently large. This implies that the range Ci of the continuous function υi(M−i) =

(m̄i(M−i), āi(M−i)) is non-empty, convex and compact. Let C = ×n
i=1Ci with υ : C → C

given by υ
(

((mi, ai))i=1,...,n

)
= (υi(M−i))i=1,...,n. With υ being a continuous function

and C being a non-empty, convex and compact set, it follows by Brouwer’s fixed point
theorem that there exists a fixed point (m+

i , a
+
i ) where υ((m+

i , a
+
i )) = (m+

i , a
+
i ). By

definition, this pair simultaneously solves all 2n first-order conditions. In order for this
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solution to constitute a social optimum, it is furthermore assumed that the second-order
conditions are met. This is in particular the case if

∂2Eui
∂m2

i

· ∂
2Eui
∂a2

i

−
( ∂2Eui
∂mi∂ai

)2
≥ 0. �

A first conclusion can be drawn immediately by comparing the optimization problems
based on the two models. The mitigation-adaptation model grants the social planner the
additional option to invest in adaptation, which she will exercise as long as doing so is
more profitable than investing in mitigation. In this case, mitigation is to some extent
substituted by adaptation. However, if the relative cost of adaptation are so high that
adaptation does not add to social welfare, the social planner is free to abandon the option
to invest in adaptation, which leaves him at worst with a choice situation identical to
the mitigation-only model.

Proposition 1 In the social optimum, the aggregate expected utility is at least as high
in the mitigation-adaptation model as it is in the mitigation-only model (here and in the
following, superscript + designates the social optimum):

n∑
i=1

Eu+
i,m0 ≤

n∑
i=1

Eu+
i,ma

Next, I show by comparison how country i’s socially optimal level of mitigation changes as
adaptation comes into play. For simplicity, let the world consist of n identical countries,
i.e., pi ≡ p, ubi ≡ ub, and ugi ≡ ug ∀i = 1, ..., n. In this case, there exists a symmetric
interior solution with mi = m and ai = a ∀i = 1, ..., n. We use the fact that a is set to
zero by default in the mitigation-only model and apply the implicit function theorem.
Define f(m, a) as follows:

f(m, a) :=
∂ub(a,m)

∂m
− n

(dp(n ·m)

dM
(ug(a,m)− ub(a,m))

)
(2.23)

For given a, let m(a) solve f(m(a), a) = 0. By definition of optimality, this equation
holds for any given a, which implies that its total differential df is always zero. Since
∂f
∂m 6= 0, the function m(a) is implicitly defined by equation (2.23). By the implicit
function theorem,

df = 0 =
∂f

∂a
+
∂f

∂m
· dm
da
⇔ dm

da
= −

∂f
∂a
∂f
∂m

;
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i.e.,considering (2.11),

dm

da
= −

∂2ub

∂m∂a − n ·
∂p
∂M · (

∂ug

∂a −
∂ub

∂a )
∂2ub

∂m2 − n · ∂2p
∂M2 · (ug − ub)

.

To determine the sign of dm
da , we use specifications (2.9), (2.10), (2.12), (2.13), (2.15),

(2.17), and (2.18). It follows that m is non-increasing in a.

Proposition 2 In the social optimum, the level of mitigation is at least as high in the
mitigation-only model as it is in the mitigation-adaptation model:

m+
m0 ≥ m

+
ma.

2.4.2 Nash Equilibrium

In a world of sovereign countries, there is no such institution as a social planner. Even if
countries multilaterally agree to reduce their greenhouse gas emissions, the world com-
munity lacks supranational authority to enforce compliance with the agreement. In this
section, I determine the Nash equilibrium choices in a non-cooperative version of the
two models. As before, the analysis starts with the mitigation-only model and is then
extended to the mitigation-adaptation model.

Consider a situation where n countries engage in a one-stage, non-cooperative game.
In the mitigation-only game, the set of feasible strategies available to country i = 1, .., n

consists of any choice of mitigation mi ≥ 0. Country i’s expected utility function is given
by

Eui,m0 = pi(mi +M−i) · ubi(0,mi) + (1− pi(mi +M−i)) · ugi (0,mi).

In the Nash Equilibrium, for each country i, m∗
i is country i’s best response to the

strategies chosen by the n − 1 other countries, (m∗
1, ...,m

∗
i−1,m

∗
i+1, ...,m

∗
n); that is, for

all mi,

Eui,m0(m∗
1, ...,m

∗
i−1,m

∗
i ,m

∗
i+1, ...,m

∗
n) ≥ Eui,m0(m∗

1, ...,m
∗
i−1,mi,m

∗
i+1, ...,m

∗
n).

In the Nash equilibrium, all countries i simultaneously choose m∗
i to solve

max
mi

Eui,m0 = pi(mi +M∗
−i) · ubi(0,mi) + (1− pi(mi +M∗

−i)) · u
g
i (0,mi), (2.24)

where M∗
−i = m∗

1 + ...+m∗
i−1 +m∗

i+1 + ...+m∗
n denotes the aggregate mitigation by all
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countries except i. The Nash equilibrium satisfies a set of n first-order conditions:

∂ugi (0,m∗
i )

∂mi
=
∂ubi(0,m

∗
i )

∂mi
=
dpi(m

∗
i +M∗

−i)

dmi
· (ugi (0,m∗

i )− ubi(0,m∗
i )). (2.25)

Proof. (Existence of a Nash equilibrium). We assume that ∂Eui,m0

∂mi
< 0 for sufficiently

large M . Given, in addition, that Eui,m0 is strictly concave in mi, there exists a unique
maximizer m̄i for any M−i, i.e., a continuous best-response function m̄i(M−i). In order
to determine the slope of this function, consider the first-order condition

dpi(m̄i(M−i) +M−i)

dmi
·
(
ugi (0, m̄i(M−i))− ubi(0, m̄i(M−i))

)
− ∂ubi
∂mi

= 0. (2.26)

Differentiating (2.26) with respect to M−i and rearranging yields

dm̄i

dM−i
= −

d2pi
dm2

i
· (ugi − ubi)

d2pi
dm2

i
· (ugi − ubi)−

∂2ub
i

∂m2
i

,

, i.e., −1 ≤ ∂m̄i
∂M−i

< 0. Since m̄i is decreasing in M−i and non-negative, the range Ci of
m̄i(M−i) is non-empty, convex and compact. Let C = ×n

i=1Ci, and let m̄(m1, ...,mn) =

(m̄1(M−1), ..., m̄n(M−n)) with m̄ : C → C . Since m̄ is a continuous function, and C is
a non-empty, convex and compact set, it follows by Brouwer’s fixed point theorem that
there exists a fixed point m∗ where m̄(m∗) = m∗, which, by definition, constitutes a
Nash equilibrium. �

In the mitigation-adaptation game, the set of feasible strategies available to country
i = 1, .., n consists of all affordable combinations of mitigation and adaptation, i.e., all
pairs (ai,mi), ai ≥ 0 and mi ≥ 0. Country i’s expected utility function is given by

Eui,ma = pi(
n∑

j=1

mj) · ubi(ai,mi) + (1− pi(
n∑

j=1

mj) · ugi (ai,mi).

In the Nash equilibrium, for each country i, (a∗i ,m
∗
i ) is country i’s best response to the

strategies chosen by the n− 1 other countries,
((a∗1,m

∗
1), ..., (a∗i−1,m

∗
i−1), (a∗i+1,m

∗
i+1), ..., (a∗n,m

∗
n)); thus, all countries i simultaneously

choose (a∗i ,m
∗
i ) so as to solve

max
ai,mi

Eui,ma = pi(mi +M∗
−i) · ubi(ai,mi) + (1− pi(mi +M∗

−i)) · u
g
i (ai,mi) (2.27)
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The Nash equilibrium satisfies the 2 · n first-order conditions

dpi(m
∗
i +M∗

−i)

dM
ubi+pi(m

∗
i +M∗

−i)
∂ubi
∂mi

−
dpi(m

∗
i +M∗

−i)

dM
ugi +(1− pi(m∗

i +M∗
−i))

∂ugi
∂mi

=0

⇔
∂ugi
∂mi

=
∂ubi
∂mi

=
dpi(m

∗
i +M∗

−i)

dM
· (ugi − u

b
i) (2.28)

and

pi(m
∗
i +M∗

−i) ·
∂ubi
∂ai

+ (1− pi(m∗
i +M∗

−i)) ·
∂ugi
∂ai

= 0

⇔
∂ugi
∂ai

= pi(m
∗
i +M∗

−i) · (
∂ugi
∂ai
− ∂ubi
∂ai

). (2.29)

The existence proof for the mitigation-adaptation social optimum, as explicated above,
applies analogously to the Nash equilibrium.

Unlike in the social optimum, countries do not consider the positive externalities
from mitigation. In the Nash equilibrium, optimality requires that each country i’s
marginal cost of mitigation (represented by the left-hand side of (2.28)) equal its indi-
vidual marginal benefits from its own mitigation effort given that the other countries
provide best-response levels of mitigation (right-hand side of (2.28)). A comparison of
(2.21) and (2.28) reveals that the aggregate level of mitigation M is lower in the Nash
equilibrium than in the social optimum. Thus, if cooperation fails, countries have an
incentive to free-ride, which results in an underprovision of mitigation.

Next, as in the analysis of social optima, I compare the Nash equilibrium levels of
mitigation in the mitigation-adaptation model, m∗

i,ma, to the Nash equilibrium levels of
mitigation in the mitigation-only model, m∗

i,m0 by using the implicit function theorem.
Again, it is assumed that countries are identical so that there exists a symmetric Nash
equilibrium with mi = m and ai = a ∀i = 1, ..., n. Using the same approach as in the
social optimum comparison, define function g(m, a) as follows:

g(m, a) :=
∂ub(a,m)

∂m
− dp(n ·m)

dM
· (ug(a,m)− ub(a,m)). (2.30)

For given a, let m(a) solve g(m(a), a) = 0. By definition of optimality, this equation
holds for any given a, which implies that its total differential dg is always zero. Since
∂g
∂m 6= 0, the function m(a) is implicitly defined by equation (2.30). By the implicit
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function theorem,

dg = 0 =
∂g

∂a
+
∂g

∂m
· dm
da
⇔ dm

da
= −

∂g
∂a
∂g
∂m

;

i.e., with (2.11),
dm

da
= −

∂2ub

∂m∂a −
dp
dM · (

∂ug

∂a −
∂ub

∂a )
∂2ub

∂m2 − d2p
dM2 · (ug − ub)

.

In consideration of specifications (2.9), (2.10), (2.12), (2.13), (2.15), (2.17) and (2.18), it
follows that m∗ is non-increasing in a.

Proposition 3 In the Nash equilibrium, the mitigation level is at least as high in the
mitigation-only model as it is in the mitigation-adaptation model:

m∗
m0 ≥ m∗

ma, (2.31)

This result is not surprising because, just as in the social optimum, countries substitute
mitigation by adaptation to increase their individual utility.

The more interesting question is: how does the Nash equilibrium expected utility, here-
after denoted as φi, change as adaptation comes into play? The answer is not straight-
forward as in the social optimum case. In the following comparative statics analysis, the
levels of adaptation are treated as parameters, denoted by the vector a = (a1, ..., an),
to account for the effects of exogenous variation in a. The strategy set of country i is
thus reduced to i’s choice of mi(a). It is again assumed that countries are identical, i.e.,
ai = a ∀i and mi = m∀i.

In the Nash equilibrium, given parameter a, (m∗
i (a)) is each country i’s best response

to the strategies chosen by the n−1 other countries, (m∗
1(a)), ..., (m∗

i−1(a)), (m∗
i+1(a)), ...

..., (m∗
n(a))); thus, all countries i simultaneously choose (m∗

i (a)) to solve

φi(a)≡ max
mi

Eui,m(a)=pi(mi+M
∗
−i(a))·ubi(mi, a)+(1−pi(mi+M

∗
−i(a))·ugi (mi, a).

Under consideration of the first-order condition (2.28), differentiating with respect to
a and rearranging yields

dφi(a)

da
=
∂ugi
∂a

+ pi · (
∂ubi
∂a
−
∂ugi
∂a

)−
n∑

j=1
j 6=i

dpi
dm∗

j

dm∗
j

da
· (ugi − u

b
i) (2.32)

The first term on the right-hand side reflects country i’s marginal cost of adaptation.
By specification (2.13), this term is negative. The second term reflects the probability-
weighted damage averted through adaptation, i.e., country i’s marginal net benefit of
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adaptation. By specifications (2.13) and (2.15), this term is positive. The last term
reflects the change in country i’s expected damages caused by the impact of all other
countries’ mitigation on country i’s probability distribution. By specifications (2.9),
(2.18) and (2.31), this term is negative.

To sum up, introducing adaptation into the model causes two separate effects. The
first one is the direct effect, expressed by the first two terms on the right-hand side of
(2.32). The direct effect results from the explicit appearance of a in country i’s expected
utility function and the consequent partial substitution of m by a up to the point where
the new optimality conditions are met. As discussed earlier, the direct effect is greater
than or equal to zero because the possibility to invest in adaptation enlarges country i’s
strategy space. The second effect is the strategic effect, expressed by the last term of
(2.32). The strategic effect results from the substitution of m by a by the other countries,
leading to a lower global aggregate level of mitigation. The strategic effect is smaller than
zero because less aggregate mitigation increases the probability of the bad state to occur
for country i.

Proposition 4 Depending on the relative size of the two opposite effects, three cases
may occur:

Case 1. φi,m0 < φi,ma if the direct effect exceeds the strategic effect;

Case 2. φi,m0 = φi,ma if the effects cancel out;

Case 3. φi,m0 > φi,ma if the strategic effect exceeds the direct effect.

Case 3 is most remarkable: unlike in the social optimum, the additional opportunity to
adapt may actually decrease the countries’ expected utility. This is due to the fact that,
in the mitigation-only model, countries are forced to invest in the public good mitigation,
thereby exerting positive externalities on all other countries. In the mitigation-adaptation
model, however, mitigation is partly substituted by the private good adaptation, which is
beneficial for the country itself but deprives all other countries of the positive externality
resulting from mitigation.

The derivative (2.32) suggests that case 3 is likely to occur when (i) the number of
countries involved is large; (ii) the damage suffered in the bad state is large; (iii) the
marginal costs of adaptation are relatively high in comparison to the marginal costs of
mitigation.
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2.4.3 Numerical Example

To illustrate the analytical results, consider a numerical example. The functions are
defined as follows:

pi(M) =
1

M + 1
(2.33)

ugi (ai,mi) = yi − kiai − limi (2.34)

ubi(ai,mi) = zi − kiai − limi + ln(ai + 1) (2.35)

The parameter ki ≥ 0 denotes country i’s marginal cost of adaptation. The parameter
li ≥ 0 denotes country i’s marginal cost of mitigation. The parameter yi ≥ 0 denotes the
initial good-state utility of country i. The parameter zi ≥ 0 denotes the initial bad-state
utility of country i. As required by specification (2.18), the domain of ai ≥ 0 is restricted
by yi − zi > ln(ai + 1). It is assumed that countries i = 1, ..., n are identical and thus
share the same parameters yi, zi, ki, li. The total expected utility function of country i
is given by

Eui =
1

M + 1
· (zi − kiai − limi + ln(ai + 1)) +

M

M + 1
· (yi − kiai − limi).

Variation of Group Size. First, we analyze the impact of n, the number of countries
involved. Table 2.1 shows the values for mi, ai, and Eui for variations of n in the social
optimum and in the Nash equilibrium.

In the social optimum, the country-average level of mitigation is decreasing in n in
both models. Although the socially optimal aggregate level of mitigation M increases
with the number of countries involved, each single country’s share in the aggregate level
of mitigation is reduced. Adaptation is also decreasing in n because, as the aggregate
level of mitigation rises, the probability for the bad state to occur becomes smaller;
thus, there is less need for adaptation. For n < 4, the expected utility is higher in the
mitigation-adaptation model than in the mitigation-only model because it is profitable
to substitute some mitigation by adaptation. For n ≥ 7, the aggregate level of mitigation
is already so high that the social planner does not invest in adaptation anymore at all;
thus, the models coincide.

In the Nash equilibrium, the aggregate level of mitigation M is constant in n in both
models; accordingly, the country-average level of mitigation is inversely proportional to n.
Due to the possibility to substitute mitigation by adaptation in the mitigation-adaptation
model, we observe m∗

i,ma < m∗
i,m0 and, accordingly, M∗

ma < M∗
m0 . For large values of
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Table 2.1: Variation of n

Parameter values: yi = 25, zi = 10, ki = 0.1, li = 1 ∀i = 1, ..., n

Social optimum Nash equilibrium
n m+

i,m0 m+
i,ma a+

i Eu+
i,m0 Eu+

i,ma m∗
i,m0 m∗

i,ma a∗i φi,m0 φi,ma

2 2.239 2.181 0.865 20.02 20.05 1.437 1.372 1.671 19.69 19.72

3 1.903 1.872 0.512 20.86 20.87 0.958 0.915 1.671 20.17 20.17

4 1.687 1.669 0.303 21.38 21.38 0.718 0.686 1.671 20.41 20.40

5 1.532 1.523 0.161 21.74 21.74 0.575 0.549 1.671 20.55 20.54

6 1.415 1.412 0.056 22.00 22.00 0.479 0.457 1.671 20.65 20.63

7 1.321 1.321 0 22.22 22.22 0.410 0.392 1.671 20.72 20.70

8 1.244 1.244 0 22.39 22.39 0.359 0.343 1.671 20.77 20.75

n, m∗
i,m0 and m∗

i,ma converge to zero. The adaptation levels chosen by the individual
countries are independent of n. For small n, in particular, for n ≤ 3, expected utilities
are higher in the mitigation-adaptation-model than in the mitigation-only model: each
country has to contribute a high amount to mitigation, and there is only little scope
to free-ride on the other countries’ mitigation efforts. Thus, the positive direct effect
from the possibility to invest in adaptation outweighs the negative strategic effect from
the cutback in mutually beneficial mitigation. For larger n, in particular, for n ≥ 4,
the reverse is true: φi,m0 > φi,ma, which corresponds to case 3. The aggregate level of
mitigation is now shared by more countries so that each single country’s contribution is
rather small. Consequently, the opportunity to free-ride on the joint mitigation effort
increases, which causes an overall welfare loss: the negative strategic effect from the
cutback in mutually beneficial mitigation outweighs the positive direct effect from the
possibility to invest in adaptation.

Variation of Initial Damage. The second analysis illustrates the effect of changes in
the initial damage, described by yi − zi. Since only the difference matters, the variation
of yi with a constant zi, as depicted in Table 2.2, is inversely equivalent to the variation
of zi with a constant yi. A high value for yi corresponds to a high utility loss occurring
in the bad state.

In the social optimum, adaptation is decreasing and mitigation is increasing in yi in
the mitigation-adaptation model. Mitigation is also increasing in yi in the mitigation-
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Table 2.2: Variation of yi

Parameter values: n = 4, zi = 10, ki = 0.1, li = 1 ∀i = 1, ..., n

Social optimum Nash equilibrium
yi m+

i,m0 m+
i,ma a+

i Eu+
i,m0 Eu+

i,ma m∗
i,m0 m∗

i,ma a∗i φi,m0 φi,ma

20 1.331 1.293 0.621 17.09 17.10 0.541 0.491 2.374 16.30 16.31

25 1.687 1.669 0.303 21.38 21.38 0.718 0.686 1.671 20.41 20.40

30 1.986 1.980 0.121 25.78 25.79 0.868 0.845 1.284 24.66 24.65

only model. This is due to the fact that the marginal net benefit of mitigation increases
in yi, whereas the marginal net benefit of adaptation is constant in yi, i.e., independent
of the potential loss. Accordingly, the marginal rate of substitution of mitigation for
adaptation, MRSm,a, increases as yi increases. For small values of yi, adaptation is still
relatively profitable, so the socially optimal expected utility is significantly higher in
the mitigation-adaptation model than in the mitigation-only model. As yi increases,
however, adaptation is more and more substituted by mitigation. For large yi, the level
of adaptation is so low that expected utilities are merely slightly higher in the mitigation-
adaptation model than in the mitigation-only model.

In the Nash equilibrium, we observe the same interdependencies as in the social op-
timum: also here, adaptation is decreasing and mitigation is increasing in yi in the
mitigation-adaptation model, induced by the increasing MRSm,a. As the potential loss
yi increases, adaptation becomes comparatively unprofitable, which implies that the pos-
sibility to invest in adaptation becomes less and less advantageous.

Mitigation is also increasing in yi in the mitigation-only model. However, due to the
lack of opportunity to invest in adaptation, the Nash-optimal aggregate level of mutually
beneficial mitigation is always higher in the mitigation-only model than it is in the
mitigation-adaptation model. This gap is narrowing as yi increases; thus, the negative
strategic effect of the possibility to invest in adaptation is becoming less pronounced. The
results suggest that for small yi, e.g., yi = 20, the positive direct effect predominates the
negative indirect effect so that expected utilities are higher in the mitigation-adaptation-
model than in the mitigation-only model; for large yi, the reverse is true: φi,m0 > φi,ma,
which again corresponds to case 3.

Variation of Adaptation Cost. The third analysis (Table 2.3) illustrates the effects of
changes in the price of adaptation, ki.
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Table 2.3: Variation of ki

Parameter values: n = 4, yi = 25, zi = 10, li = 1 ∀i = 1, ..., n

Social optimum Nash equilibrium
ki m+

i,m0 m+
i,ma a+

i Eu+
i,m0 Eu+

i,ma m∗
i,m0 m∗

i,ma a∗i φi,m0 φi,ma

0.05 1.687 1.622 1.671 21.38 21.42 0.718 0.662 4.485 20.41 20.47

0.1 1.687 1.669 0.303 21.38 21.38 0.718 0.686 1.671 20.41 20.40

0.2 1.687 1.687 0 21.38 21.38 0.718 0.710 0.303 20.41 20.39

In the social optimum, adaptation is decreasing in ki and mitigation is increasing in
ki in the mitigation-adaptation model (obviously, a variation of ki does not affect the
m0-values in the mitigation-only model). This result reflects the positive cross price
elasticity which characterizes substitute goods. For small ki, i.e., when adaptation is
relatively cheap, the benefit from the possibility to invest in adaptation is high, so that
expected utilities are significantly higher in the mitigation-adaptation model than in the
mitigation-only model. As ki increases, adaptation becomes less profitable. A value of
ki = 0.2 is already above the prohibitive price of adaptation: the social planner does not
invest in adaptation anymore at all; thus, the models coincide.

In the Nash equilibrium, adaptation is also substituted by mitigation in the mitigation-
adaptation model as ki increases. For small values of ki, e.g., ki = 0.05, the additional
possibility to invest in adaptation is very advantageous, which leads to higher expected
utilities in the mitigation-adaptation model than in the mitigation-only model. When
ki rises, this positive effect is diminishing. The opposite effect, as in the previous ex-
ample, results from the lower aggregate level of mutually beneficial mitigation in the
mitigation-adaptation model compared to the mitigation-only model. Although the neg-
ative strategic effect is particularly high for small ki and becomes less pronounced as
ki increases, it predominates for sufficiently high values of ki. For ki = 0.2, we have
φi,m0 > φi,ma, which reflects case 3 again.

Variation of Mitigation Cost. The fourth analysis (Table 2.4) illustrates the effect of
changes in the price of mitigation, li.

In the social optimum, adaptation is increasing in li and mitigation is decreasing in
li in the mitigation-adaptation model. As in the previous example, this result reflects
the positive cross price elasticity. Mitigation is also decreasing in li in the mitigation-
only model, which reveals that its own price elasticity is negative; however, for lack
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Table 2.4: Variation of li

Parameter values: n = 4, yi = 25, zi = 10, ki = 0.1 ∀i = 1, ..., n

Social optimum Nash equilibrium
li m+

i,m0 m+
i,ma a+

i Eu+
i,m0 Eu+

i,ma m∗
i,m0 m∗

i,ma a∗i φi,m0 φi,ma

0.5 2.489 2.489 0 22.39 22.39 1.119 1.091 0.865 21.70 21.69

1 1.687 1.669 0.303 21.38 21.38 0.718 0.686 1.671 20.41 20.40

2 1.119 1.091 0.865 20.02 20.05 0.435 0.403 2.827 18.65 18.68

of a substitute, the decrease is less substantial. For small li, i.e., when mitigation is
relatively cheap, the social planner has no incentive to invest in adaptation at all; thus,
the models coincide. The higher li, the more profitable it is to replace some mitigation
by adaptation; thus, for large values of li, expected utilities are significantly higher in
the mitigation-adaptation model than in the mitigation-only model.

In the Nash equilibrium, as in the social optimum, mitigation is substituted by adapta-
tion in the mitigation-adaptation model when li increases. Consequently, the possibility
to invest in adaptation yields a substantially positive contribution for large li, i.e., when
adaptation is comparatively profitable. The substitution advantage is less pronounced
for small li. In the mitigation-only model, mitigation is also decreasing in li; yet, due
to the lack of alternatives, the level of mutually beneficial mitigation is still higher than
in the mitigation-adaptation model for any value of li. As in the previous examples,
this mitigation gap accounts for the negative strategic effect of adaptation. When li is
sufficiently small, e.g., for li = 2, this effect predominates the positive direct effect so
that φi,m0 > φi,ma, which again corresponds to case 3.

The findings from the numerical example confirm that, depending on the parameter
setting, cases 1 and 3 from Proposition 4 may indeed occur.

2.5 Conclusion

To mitigate or to adapt? The model presented in this work suggests that, besides imme-
diate costs and benefits, adaptation is also strategically relevant in international climate
change policy. By using comparative statics, I could show that the additional opportunity
to adapt increases welfare in the social optimum, but can cause an overall welfare loss
when cooperation fails. This happens because countries individually benefit from sub-
stituting mitigation by adaptation (positive direct effect); however, the resulting deficit
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in aggregate mitigation increases the probability for an extreme weather event to occur
for all countries (negative strategic effect). The theoretical results are supported by the
outcomes of a numerical example. Parameter variations show that, ceteris paribus, the
welfare-diminishing strategic effect of adaptation tends to outweigh the welfare-enhancing
direct effect if and when (i) the number of countries involved is large; (ii) the damage
suffered in the bad state is large; and (iii) the relative marginal costs of adaptation versus
mitigation are high.

The findings deepen our understanding of how adaptation possibilities relate to mit-
igation efforts. Admittedly, due to the fundamental uncertainties inherent in climate
predictions as well as in climate impact assessment, it is virtually impossible to per-
form empirical studies based on field data in order to confirm the theoretical results and
to quantify the effects. Yet, the model allows for a systematic analysis of qualitative
mitigation-adaptation interdependencies. In particular, we can derive some important
implications for international climate change policy:

Considering that countries can and do invest in both adaptation and mitigation, the
potential overall welfare under full cooperation is actually higher, and the non-cooperative
outcome is probably lower, than what is predicted by mitigation-only models. Thus,
allowing for adaptation widens the welfare gap between the social optimum and the
Nash equilibrium, which constitutes an additional incentive to achieve the full cooperative
outcome, e.g. by means of a treaty.

Considering that countries can and do substitute mitigation by adaptation, the optimal
level of mitigation is actually lower than predicted by mitigation-only models. This holds
for the social optimum achievable under full cooperation as well as for the non-cooperative
Nash equilibrium. Consequently, it is recommended to reassess mitigation targets in due
consideration of adaptation possibilities.

Considering that countries differ with respect to their adaptive capacity, relative adap-
tation costs and vulnerability, some countries will substitute more mitigation by adapta-
tion than others. Those who have a comparative advantage in adaptation are less likely
to adopt mitigation policies and less ambitious to sign a mitigation treaty than those who
have not. The mitigation-adaptation model can be applied to assess which countries are
likely to join a treaty, and whether or not their mitigation commitments are credible.

Finally, the mitigation-adaptation model might give valuable indications to a more
accurate design of international climate policy treaties, e.g. regarding the determination
of mitigation targets and the allocation of subsidies and side payments.
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Chapter 3

The Impact of Adaptation Costs and
Group Size on Mitigation and Adaptation

Abstract Even though the immediate effect of adaptation to climate change is
spatially limited, adaptation is strategically relevant in international climate
change policy. This empirical work tests the validity of a model proposed by
Probst (2011) which describes the strategic interdependencies of mitigation
and adaptation in a non-cooperative setting with endogenous risk. According
to the model, the possibility to adapt to climate change has two opposite
effects on welfare: first, a positive direct effect that results from substituting
mitigation by adaptation; second, a negative strategic effect that results from
the lower aggregate level of mutually beneficial mitigation. By means of a
computer lab experiment, I test the impact of adaptation costs and group size
on investments in mitigation and adaptation and on the resulting expected
payoffs. The results support the model hypotheses based on Nash equilibrium
predictions. Adaptation increases and mitigation decreases as adaptation
costs decrease. Payoffs behave non-monotonically: they are lower for medium
high adaptation cost than for low adaptation cost, but higher for prohibitively
high adaptation cost than for medium high adaptation cost. The positive
direct effect of substitution outweighs the negative strategic effect for smaller
groups, and the negative strategic effect outweighs the positive direct effect
for larger groups.

Keywords climate change, mitigation, adaptation, public good, experiment,
risk
JEL Classification C91, Q54, H41
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3.1 Introduction

The adaptation to climate change has become an important priority in international
climate change policy and has initiated a strand of economic research; however, the
strategic interdependencies of mitigation and adaptation are not very well analyzed so
far. One of the few studies on this issue is Probst (2011) who introduces a generic game-
theoretic model of mitigation and adaptation choices in an international climate change
policy environment.

The aim of this work is to test a number of hypotheses derived from the Probst
(2011) model. Due to the long-term nature of climate change and the high degree of
uncertainty, reliable field data on the cost and benefits of mitigation and adaptation are
currently not available; thus, the empirical tests are conducted with data collected in
a controlled computer lab experiment. The empirical results suggest that, in line with
the hypothetical predictions, mitigation is substituted by adaptation as the unit cost of
adaptation decrease. We observe a u-shaped payoff pattern: initially, payoffs decrease as
adaptation costs increase from low to medium high; however, they increase as adaptation
costs further increase from medium high to prohibitively high.

Theoretical Background. This section summarizes the key arguments that motivate
the theoretical climate risk model used in this work as postulated by Probst (2011).
Changes in the global climate system have already become evident in several phenom-
ena such as increased average air and ocean temperatures, more frequent heat waves,
more frequent heavy precipitation events, more and heavier droughts, increased tropical
cyclone activity and rising sea level extremes (IPCC, 2007c; Trenberth et al., 2007). It
is expected that climate change will continue in the future (Hegerl et al., 2007), with
significant impacts on many geophysical and biological systems. The consequences of
these impacts for people’s livelihood and economic welfare depend on the exposure of the
affected system, its vulnerability, and its resilience (IPCC, 2012).

Climate change impacts are inherently probabilistic, and the combination of an impact
and its consequences constitute what can best be described as climate risk. We therefore
adopt a risk management approach for economically assessing impacts, consequences and
climate policies, as proposed by Carter et al. (2007) and Jones (2004).
According to the two constituents of climate risk, we can distinguish two major forms
of climate risk management: mitigation and adaptation. Mitigation is defined as “an
anthropogenic intervention to reduce the anthropogenic forcing of the climate system; it
includes strategies to reduce greenhouse gas sources and emissions and enhancing green-
house gas sinks.” (IPCC, 2007a, p. 878). Adaptation is defined as an “adjustment in
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natural or human systems in response to actual or expected climatic stimuli or their ef-
fects, which moderates harm or exploits beneficial opportunities.” (IPCC, 2007a, p. 869).
Mitigation aims at reducing the size and frequency of climate impacts, whereas adapta-
tion aims at reducing the system’s exposure and vulnerability to a given impact or at
enhancing its resilience to a given impact. Using the lingo of risk management, mitiga-
tion reduces the probability of a loss event. Adaptation reduces the damage in case the
loss event actually occurs.

Two economic characteristics are crucial to understanding the strategic interdepen-
dencies of mitigation and adaptation: (1) the public vs. private good property; (2) the
substitutability of the two (see Probst (2011) for a detailed discussion of these charac-
teristics).

Mitigation is a pure global public good: the costs of mitigation are borne by the
individual or entity that curtails greenhouse gas concentrations, whereas the benefits of
mitigation are global. This cost-benefit constellation leads to free-riding and thus to
an underprovision of mitigation if cooperation fails. In contrast, adaptation is a private
good. The effects of adaptation are spatially limited to the impacted system (Klein et al.,
2007), i.e., adaptation works at a local or at most regional level.

Mitigation and adaptation are substitutes. Both contribute to the same final end,
namely, being free of damage from climate change, and one policy can at least partly
replace the other. Moreover, mitigation and adaptation compete for scarce resources:
investing in mitigation reduces the budget left for adaptation and vice versa.

Finally, climate change policymaking is a global challenge. Even if countries are will-
ing to cooperate, the absence of strong institutions makes it difficult to establish binding
agreements (Gerber and Wichardt, 2009). Moreover, informal sanctions such as reci-
procity or retaliation are not applicable to the climate change issue (Guzman, 2008).
This being the case, the non-cooperative setting chosen for the experiment appears well
suited to mimic the real-world international climate change policymaking process.

Literature Review. Most previous empirical and experimental research on the eco-
nomics of climate change bases on variants of a public goods game where players volun-
tarily contribute to the global public good “climate protection”. The voluntary contri-
bution game has emerged as the standard design for a great number of experiments on
different aspects related to climate change (for a survey, see Sturm and Weimann, 2006).
An alternative setting introduced by Milinski et al. (2008) captures the idea of endogenous
risk that is also part of my model: in successive rounds, players voluntarily contribute to
reach a group mitigation target that pays safe; if the target is missed, all group members
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suffer a loss with a certain probability.
Hasson et al. (2010) made -to my knowledge- so far the only contribution that incorpo-
rates adaptation into an economic experiment. The authors introduce a one-shot game
where players face an all-or-nothing binary choice between mitigation and adaptation.
Treatments differ with respect to vulnerability, where “adapt” is the weakly dominant
strategy for all treatments. Following Berger and Hershey (1994), Hasson et al. incen-
tivize the participants’ investment decisions with stochastic returns.

Apart from climate change research, some basic features of my model can be found in
other fields. The idea of an individually beneficial private good that crowds out a public
good and thereby causes negative externalities is reflected in Peltzman (1975). Peltz-
man empirically investigates the effects of automobile safety regulation. He analyzes
time-series and cross-sectional field data and finds that the positive effects of automobile
safety devices is offset by more risky driving. This being the case, automobile safety reg-
ulation has not affected the highway death rate. A number of empirical examples support
Peltzman’s “offset hypothesis”, e.g. from road transport (Sagberg et al., 1997; Winston
et al., 2006), winter sports (Shealy et al., 2005), and children’s injury-risk behavior (Mor-
rongiello et al., 2007). In the insurance literature, the determination of endogenous risk
is known as ex ante moral hazard (Rees and Wambach, 2008). There exists a strand of
research on self-insurance (equivalent to adaptation) vs. self-protection (equivalent to
mitigation) based on the theoretical work by Ehrlich and Becker (1972). Shogren (1990)
investigates the impact of self-protection and self-insurance on individual response to
risk in an experiment where different risk management mechanisms are offered to play-
ers in an auction. The experiment presented in this paper is one of the first attempts
to systematically and empirically analyze the strategic interrelations of mitigation and
adaptation in a non-cooperative setting. In particular, I assess the effects of changes in
relative adaptation costs and in group size on the levels of adaptation and mitigation as
well as on the resulting payoffs.

3.2 Model

3.2.1 Theoretical Model

The experiment bases on a simplified specific variant of the generic mitigation-adaptation
model with endogenous damage probabilities described by Probst (2011). Probst sets up
an n-player game with von-Neumann-Morgenstern expected utility functions

Eui,ma = pi(M) · ubi(ai,mi) + (1− pi(M)) · ugi (ai,mi),
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where ai denotes the level of adaptation for country i = 1, ..., n, mi denotes the level of
mitigation for country i, and M =

∑n
j=1mj represents the global aggregate mitigation

level of all countries including i. There are two states of nature, “bad”, in which an
extreme weather event occurs, and “good”, in which no extreme weather event occurs.
The good-state utility of country i is denoted as ugi (ai,mi), the bad-state utility of country
i is denoted as ubi(ai,mi). u

g
i (ai,mi) − ubi(ai,mi) > 0 ∀i denotes the loss caused by the

extreme weather event. Country i faces the bad state with probability pi(M) ∈ (0, 1)

and the good state with probability 1− pi(M).
Probst (2011) specifies the functions such that the following properties apply: (i) global

aggregate mitigation, irrespective of its origin, lowers the probability for the loss event to
occur; (ii) adaptation partially or fully compensates for the individual loss suffered in the
bad state; (iii) the marginal benefits of mitigation and adaptation are decreasing; (iv) the
costs of mitigation and adaptation are private and the the marginal costs of mitigation
and adaptation are non-decreasing. Provided that certain assumptions are satisfied, a
Nash equilibrium exists. Probst compares the Nash outcome of a model with mitigation
and adaptation to the Nash outcome of a model where adaptation is not available, e.g.
due to prohibitive costs. The formal analysis identifies a crowding-out reaction resulting
in an ambiguous welfare effect: countries substitute mitigation by adaptation whenever
doing so is individually beneficial (positive direct effect); however, this substitution causes
a lower global aggregate level of mitigation and thus increases the loss probability for
all countries (negative strategic effect). In a numerical example, the author shows that
the negative strategic effect tends to outweigh the positive direct effect if (i) the number
of countries involved is large, (ii) the damage from climate change is large, and (iii) the
relative marginal costs of adaptation compared to marginal costs of mitigation are high.

3.2.2 Model Variant Used in the Experiment

The theoretical model does not prescribe any particular functions; instead, the functions
are only specified in general terms. Both continuous and discrete functions may be used;
for the purpose of the experiment, however, it was crucial to reduce complexity and
to minimize the cognitive burden for the participants. Therefore, I chose a particular
variant of the model with discrete choice variables.

Subjects participate in a non-cooperative n-player decision game. Each player i =

1, ..., n receives an initial endowment yi which she can spend on non-negative integer
units of mitigation mi ∈ N0 at a price of li > 0 and/or on non-negative integer units
of adaptation ai ∈ N0 at a price of ki > 0. Players are also free to keep (i.e., not to
invest) all or part of their endowment. Their total investment is limited by the budget
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constraint kiai + limi ≤ yi. The expected payoff function for player i is defined as

Eui = pi(M) · (1− Li(ai)) · (yi − kiai − limi) + (1− pi(M)) · (yi − kiai − limi)

⇔ Eui = (1− pi(M) · Li(ai)) · (yi − kiai − limi).

pi(M) ∈ (0, 1] denotes the probability of loss for player i depending on the group aggre-
gate level of mitigation, M =

∑n
j=1mj . Li(ai) ∈ (0, 1] denotes the loss rate of player i.

The loss probability function pi(M) and the loss rate function Li(ai) are defined on N0

as listed in Table 3.1. The parameters yi (initial endowment of player i) and li > 0 (unit
cost of mitigation for player i) are fixed for all treatments and identical for all subjects
with yi = 100 Taler and li = 10 Taler.

Within each treatment, the marginal cost of mitigation and adaptation are constant;
thus, the price per unit of mitigation and adaptation is also constant. The marginal ben-
efit of mitigation and the marginal benefit of adaptation are decreasing. This framework
is more demanding than the standard linear public goods framework frequently used in
experiments. In the linear public goods framework with constant marginal per capita
returns, the size of marginal per capita returns determines on which side of a binary
scale the system ends up. My non-linear model, in contrast, allows for interior Nash
equilibria which are necessary to detect the size of differences between treatments (for
a detailed analysis of public goods experiments with interior Nash equilibria, see Laury
et al. (1999); Laury and Holt (2008)).

3.3 Experiment

3.3.1 Treatments

The experiment is designed to cover three treatment variables: (i) model (mitigation
only (m0) vs. mitigation and adaptation (ma)); (ii) group size n (5 vs. 3 subjects in
one group); (iii) unit cost of adaptation ki (15 Taler (high) vs. 5 Taler (low)). The
mitigation-only treatments can best be interpreted as a special case of the mitigation-
adaptation model with prohibitively high unit cost of adaptation, i.e., ki > 100 Taler.
In order to avoid confusion, this economically meaningful interpretation was not made
explicit to the subjects. Instead, adaptation was a priori unavailable in the mitigation-
only treatments. Varying all treatment variables independently requires a total of 6
treatments as summarized in Table 3.2.
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Table 3.1: Parameters pi(M), Li(ai)

M pi(M)

0 1

1 0.7

2 0.5

3 0.4

4 0.3

5 0.25

6 0.2

7 0.18

8 0.16

9 0.14

10 0.12

11 0.10

12 0.09

13 0.08

14 0.07

15 0.06

≥ 16 0.05

ai Li(ai)

0 1

1 0.6

2 0.4

3 0.3

4 0.25

5 0.21

6 0.18

7 0.16

8 0.14

9 0.12

≥ 10 0.1

3.3.2 Theoretical Predictions

Consider a game (S,Eu) with n players. Let xi = (ai,mi) be a strategy profile of player
i and let x−i = (a−i,m−i) be a strategy profile of all players except i. Si denotes the
strategy set for player i, S = S1 × S2... × Sn denotes the set of strategy profiles, and
Eu = (Eu1(x), ..., Eun(x)) denotes the profile of payoff functions for x ∈ S. When each
player i chooses strategy xi yielding strategy profile x = (x1, ..., xn), then player i’s payoff
is Eui(x). A strategy profile x∗ ∈ S is a Nash equilibrium if no player can benefit from
her unilateral deviation, i.e. if, for all i,

xi ∈ Si, xi 6= x∗i : Eui(x
∗
i , x

∗
−i) ≥ Eui(xi, x∗−i).

For the experimental game, there exist a number of Nash equilibria in pure strategies
as described in Table 3.3 (the table contains only one representative Nash equilibrium
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Table 3.2: Treatments

Treatment Model Adaptation cost ki Group size n

m03 mitigation only – 3

m05 mitigation only – 5

mal3 mitigation and adaptation 5 Taler 3

mal5 mitigation and adaptation 5 Taler 5

mah3 mitigation and adaptation 15 Taler 3

mah5 mitigation and adaptation 15 Taler 5

of each type; all other permutations of the explicitly listed strategy profiles together
with the resulting payoffs constitute Nash equilibria as well). The Nash equilibria were
identified with Mathematica by testing all possible combinations of strategy profiles
for being mutual best responses. As a reference, I also calculated the socially optimal
strategy combinations with the resulting payoffs as listed in Table 3.4. Social optimality
requires that each group member choose her ai and mi such that the group sum of
expected payoffs is maximized.1

It becomes apparent that there exists a single Nash equilibrium value for M for each
level of adaptation cost. The Nash equilibrium value for M =

∑
m∗

i is 0 in the mal-
setting, 2 in the mah-setting, and 4 in the m0-setting, i.e., for prohibitively high unit cost
of adaptation. The Nash optimal M is independent of the group size n, which implies
that the averagem∗

i is smaller in the n = 5 treatments than in the n = 3 treatments. The
Nash equilibrium value for adaptation a∗i is 4 in the low-cost treatments mal3 and mal5,
and 1 in the high-cost treatments mah3 and mah5 . Based on these theoretical insights, I
propose the following hypotheses to be tested in the experiment:

In a non-cooperative environment,

(H1a) adaptation increases as the unit cost of adaptation (ki) decreases.

(H1b) the adaptation level is independent of the group size (n).

(H2) mitigation decreases as ki decreases: the average m∗
i level is highest in

the m0-treatments, medium high in the mah-treatments and lowest in the
mal-treatments.

1For simplicity, we assume a sort of Utilitarian social welfare function and suppose that an individual’s
utility solely depends on her expected payoff.
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(H3) the group aggregate mitigation level M is constant in n; thus, for given
ki, the individual mitigation level m∗

i is higher for n = 3 than for n = 5.
The difference is largest for m0-treatments, smaller for mah-treatments
and smallest for mal-treatments.

(H4) payoffs respond non-monotonically to an increase of ki: the payoffs ob-
tained in the mal-treatments are higher than those obtained in the mah-
treatments; whereas the mah-payoffs are lower than the m0-payoffs.

(H5) the positive group size effect on payoffs diminishes as ki decreases: while
the payoff Eui(m05) is distinctly higher than Eui(m03), the group-size
specific difference in payoffs is smaller but still positive for mah-treatments
and even smaller for mal-treatments.

3.3.3 Experimental Design

The experiment was programmed with the software z-Tree (Fischbacher, 2007) and con-
ducted in June 2012 in the Laboratory for Experiments in Economics at the University
of Hamburg. It consisted of four identical sessions with 30 participants each. Using the
recruitment system ORSEE (Greiner, 2004), 120 undergraduate and graduate students
were recruited from the University of Hamburg student body. The group of participants
represented a variety of majors including economics and finance/business administra-
tion (57% of the subjects), but also other majors such as law, sociology, history, and
natural sciences. The average age of the participants was 24.7 years; 56% were female.
Most students had already participated in other economic experiments at the laboratory
before.

Each session started with subjects entering the laboratory. After signing a consent
form, subjects were randomly assigned to curtained computer cubicles. They were not
allowed to communicate before and during the experiment. All subjects were provided
with a copy of the experiment instructions (Appendix 3.A), which the experimenter also
read aloud. Within the instructions, the language was kept neutral in order to avoid
uncontrollable suggestive influences and/or biases caused by emotional and/or political
attitudes regarding climate change policy. Expressions related to climate change and cli-
mate change policy like “mitigation”, “adaptation”, “extreme weather event” were avoided.
Instead, subjects made decisions on “probability reduction” and “loss reduction” in order
to manage a “loss event”. In this respect, I diverge from previous works such as Hasson
et al. (2010) and Milinski et al. (2008) who explicitly framed their experiments with
reference to climate change policy. The subjects were then asked to answer a number
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3. The Impact of Adaptation Costs and Group Size on Mitigation and Adaptation

of control questions via computer. The answers were checked automatically so that sub-
jects entered the next stage only after they had answered the control questions correctly.
The instruction phase ended with a trial run which mimicked the real experiment but
used different parameter values. In the trial run, unlike in the real experiment, subjects
were not matched to groups. Instead, the contributions of the other group members
were simulated by a random number generator to prevent anchoring. The subjects were
instructed that the trial run would not affect their earnings.

In the decision stage of the experiment, all subjects performed all six choice tasks
covering the six treatments. By this method, we automatically control for unobservable
personal idiosyncrasies (Friedman and Sunder, 1994, p. 25; Friedman and Cassar, 2004,
p. 35-7). Moreover, we acquire a large number of independent within-subject datasets.
Indeed, the within-subject differences were of particular interest for us, since all hypothe-
ses put to test refer to comparisons and not mere absolute values.

At the beginning of each choice task, subjects were individually informed about the
treatment. They learned about the number of subjects per group in this particular
round, the availability of adaptation in this round, and -where available- the unit price
of adaptation. Every subject was endowed with a budget of 100 Taler, which they could
invest in probability reduction (mitigation) and/or loss reduction (adaptation). They
were also free to retain all or part of their budget. Based on this information, subjects
made their investment decision by entering the desired units of mitigation and/or -if
available- adaptation. The computers were equipped with a payoff calculator so that
subjects could preview the payments they would receive in the good state and the bad
state respectively. Before making their final choice, subjects could try out different
combinations of mitigation and adaptation.

To control for order effects such as practice, fatigue or boredom (Friedman and Cas-
sar, 2004, p. 35-7), the sequence of the six treatments was randomized for each subject.
During the whole decision stage, the choices of the other subjects were kept secret. I
refrained from providing any feedback in order to minimize learning effects and reputa-
tional effects. Acknowledging the risk that, due to lack of feedback, subjects may fail to
fully grasp the effects of their decisions, I attached great importance to the instruction
phase with very detailed experiment instructions and a dry run with simulated data in
lieu of a real group matching.

After all subjects had run through the whole sequence of choice tasks, one treatment
was randomly drawn as the paying period. For this definite treatment, subjects were
randomly matched into groups. For each group, the computer calculated the group ag-
gregate level of mitigation and -based thereon- the group-specific probability distribution
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3. The Impact of Adaptation Costs and Group Size on Mitigation and Adaptation

for the occurrence of the loss event. Then, for each group, a random number was drawn
from the group probability distribution to determine whether or not the loss event had
occurred to the group. If “no loss” was realized, group members kept their retained bud-
get, i.e., the share of their initial endowment that was not spent on mitigation and/or
adaptation. If “loss” was realized, they received their retained budget minus a loss which
depended on their individual level of adaptation. This payment scheme was aimed at
creating a monetary incentive most suitable to the one-shot, “all-or-nothing” character of
the underlying climate change issue (see also Andreoni and Croson, 2008). Moreover, I
chose a payment structure with an initial endowment at the risk of loss that reflects the
real-world climate change policy decision, acknowledging that factors such as loss aver-
sion and the endowment effect might influence decision behavior as most prominently
described by Kahneman and Tversky (1979); Tversky and Kahneman (1992). In this re-
spect, the current experiment is in line with previous experiments on mitigation and/or
adaptation such as Milinski et al. (2008) and Hasson et al. (2010).

The session ended after all subjects had filled out a final computerized questionnaire
containing socio-economic and personality items as well as questions on framing and
strategy (Appendix 3.B). The participants were called up for payment individually and
anonymously. The average session duration was 1h 20 m including instruction time.
Each participant was paid a show-up fee of 7 Euro plus the individual earnings of the
paying period at a conversion rate of 8 Taler = 1 Euro. Payments (including show-up
fee) ranged between 7.00 Euro and 19.5 Euro with an average of 15.95 Euro over all
sessions which is slightly above usual earnings in student jobs.

3.4 Data and Methods of Analysis

3.4.1 Data Description

The descriptive statistics of the average choices and the resulting expected payoffs are
summarized in Table 3.5. The mean values for mi and ai are reported directly from
the observations. To calculate the average expected payoffs (EU_avi), I use the indi-
vidual loss rates of the subjects (depending on ai) and the residual budgets (depending
on mi and ai). The loss probabilities pi(M) are first determined group-wise for each
treatment using the group aggregate M and then averaged over all groups. In order to
eliminate noise caused by the group effect, I use these treatment-specific, group-average
loss probabilities for the calculation of average expected payoffs. To check for robust-
ness, however, all statistical analyses reported in this section are also conducted with
the actual expected payoffs (EUi) resulting from one particular randomly chosen group
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Table 3.5: Summary statistics

Treatment Variable Mean Std. Dev. Min. Max. N

m03 m 2.217 0.954 0 5 120

a 0 0 0 0 120

EU 62.025 6.507 42 75.6 120

EU_av 62.306 7.639 40.025 80.05 120

m05 m 1.633 0.925 0 4 120

a 0 0 0 0 120

EU 70.138 7.176 51.6 90 120

EU_av 70.315 7.776 50.425 84.042 120

mal3 m 0.9 1.032 0 8 120

a 2.933 1.228 0 6 120

EU 63.529 8.285 9.6 78 120

EU_av 63.233 8.894 8.05 72.569 120

mah3 m 1.317 0.953 0 4 120

a 1.058 0.748 0 2 120

EU 56.038 6.809 36.9 72 120

EU_av 55.075 6.228 35.759 67.545 120

mal5 m 0.683 0.733 0 3 120

a 2.817 1.202 0 5 120

EU 67.456 6.465 45 80.75 120

EU_av 67.166 6.643 47.233 75.255 120

mah5 m 1.075 0.945 0 3 120

a 1.008 0.750 0 3 120

EU 60.709 8.819 36 84 120

EU_av 60.226 7.549 35.547 72.167 120
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3. The Impact of Adaptation Costs and Group Size on Mitigation and Adaptation

matching. The results are very similar.
By means of the post-experimental questionnaire (see Appendix 3.B), I gathered

subject-specific data on the following treatment-invariant control variables: (1) personal-
ity items: extraversion (Extra), agreeableness (Agree) , conscientiousness (Consc), neu-
roticism (Neuro) , openness (Open), risk aversion (RiskAv) (data source: self-reported
in the questionnaire on a 1-5 scale as proposed in Rammstedt and John, 2007); (2) so-
cioeconomic variables: age (Age), sex (Female), experimental experience (Experience),
major subject (Econ), job, and income (data source: self-reported in the questionnaire).
Finally, I create dummy variables for periodit and session to control for order effects and
sessions effects.

My hypotheses refer to within-subject differences between treatments. I thus treat
the dataset as a panel with the SubjectID as the panel variable and the treatment as
the time variable. yit denotes the level of y for subject i in treatment t.

3.4.2 Analytical Methods

Linear Regressions. In the first step of the analysis, I run a random-effects GLS regres-
sion based on a multiple linear regression model with treatment dummy variables. The
model is described by

(R1) yit = αi + β0 + β1treatmentst + εit.

The dependent variables vector yit consists of the individual treatment-specific levels of
mitigation(mit), adaptation (ait), and average expected payoff (Eu_avit). The treat-
ments vector contains a set of three treatment dummy variables: adapt (player can
adapt; yes=1, no=0), low (unit cost of adaptation; low=1 (5 Taler), high=0 (15 Taler)),
and size (number of players per group; small=0 (3 group members), large=1 (5 group
members)). The interaction effects of these three dummies are included as adapt×size,
and adapt×low×size. Based on the reference treatment m03, all treatment effects can
be explained independently by the dummy and interaction variables as summarized in
Table 3.6. The time effects not captured by the treatment variables are negligible. The
idiosyncratic variance is represented by the error term uit = αi + εit.

In a second linear regression, I add a control vector indi to the model:

(R2) yit = αi + β0 + β1treatmentst + β2indi + εit.
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Table 3.6: Treatment dummy variables

Treatment adapt size low a×s a×l×s

m03 0 0 0 0 0

m05 0 1 0 0 0

mal3 1 0 1 0 0

mal5 1 1 1 1 1

mah3 1 0 0 0 0

mah5 1 1 0 1 0
adapt (a) = player can adapt (0=no, 1=yes)
size (s) = group size (0=small (3 group members), 1=large (5 group members))
low (l) = unit cost of adaptation (0=high (15 Taler), 1=low (5 Taler))

The majority of control variables proved insignificant and small-sized. By backward
elimination, I removed most of them; the only variables left in the final ind i vector are
Open and Experience. The session and periodit dummies could also be dropped from the
final model due to insignificance. As before, εit captures the unexplained variance.

Poisson Regressions. Aware of the fact that the subjects’ choices for mit and ait are
counts (i.e., non-negative integers), I set up a second regression series based on the
assumption that m and a are Poisson distributed. As recommended by Cameron and
Trivedi (2009, chap. 17.3), I employ Poisson regression models with robust standard errors
to deal with complications that can occur when count data are estimated with linear
models. These complications result from heteroscedasticity, the small mean property of
the dependent variable and truncations in the observed distribution of the dependent
variable. The Poisson models are specified as

(P1) yit = exp (αi + β0 + β1treatmentst + εit)

and
(P2) yit = exp (αi + β0 + β1treatmentst + β2indi + εit).

Robustness Checks. As an additional check for robustness, I run both the GLS and the
Poisson regressions again with subject fixed effects. Since the time effects not captured
by the treatment variables are negligible, the results of the fixed effect model are qualita-
tively identical to those of the first random effects regression model R1; moreover, after
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conversion, the GLS and Poisson fixed effects regression results are identical in terms
of coefficients and exhibit only minor differences in significance levels. The fixed effects
regression results are listed in Appendix 3.C.

I also conduct paired difference tests on the within-subject differences of any two vari-
ables. Since it could not with certainty be assumed that the differences are interval and
normally distributed, I use the non-parametric Wilcoxon signed rank test for this pur-
pose. Paired t-tests are conducted as well and yield very similar results. All calculations
for the statistical analysis are performed using Stata v12.1.

3.5 Results

The estimation results from the GLS random effects regressions are listed in Table 3.7.
The estimation results from the Poisson random effects regressions are listed in Table 3.8.
After conversion, the coefficients of both model types are identical, with only very minor
differences in significance levels, which is an indicator for robustness. For the sake of
convenience, unless noted otherwise, I refer in the following analysis to the results from
the GLS regression model R1 (Table 3.7). Without individual effects, the regression
outcomes can easily be compared with the benchmarks: the constants from model R1
equate to the expected means of the dependent variables for the reference case m03, and
the expected means for the other treatments can easily be computed by just adding the
respective coefficients.

3.5.1 Treatment Effects

Adaptation. Adaptation increases as the unit cost of adaptation decrease. Obviously,
adaptation is zero in the m03 and the m05 treatments. In the high-cost mah treatments,
the average adaptation level is approx. 1; in the low-cost mal-treatments, the average
adaptation level is approx. 2.9, which is almost three times as high. The coefficient for
the low dummy is positive and highly significant. On the basis of Wilcoxon signed ranks
tests, the null hypotheses H0: ai(mal3) = ai(ma

h
3) and H0: ai(mal5) = ai(ma

h
5) can be

rejected with (p = 0.0000). These observations support (H1a).
Adaptation levels do not depend on the group size. The size coefficient is negligible;

there is no significant difference in adaptation levels between treatments with equal unit
cost of adaptation that differ in group size only. On the basis of Wilcoxon signed ranks
tests, the null hypotheses H0: ai(mal3) = ai(ma

l
5) and H0: ai(mah3) = ai(ma

h
5) cannot

be rejected at any meaningful significance level (p = 0.3356 and 0.5560, respectively).
These observations support (H1b).
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Table 3.7: Treatment effects: m, a and EU_av (GLS random effects regression)

regressand m a EU_av

model R1 R2 R1 R2 R1 R2

adapt -0.900*** -0.900*** 1.058*** 1.058*** -7.231*** -7.231***
(0.102) (0.102) (0.0922) (0.0922) (0.793) (0.793)

size -0.583*** -0.583*** 2.23e-14 -3.61e-14 8.009*** 8.009***
(0.102) (0.102) (0.0922) (0.0922) (0.793) (0.793)

low -0.417*** -0.417*** 1.875*** 1.875*** 8.158*** 8.158***
(0.102) (0.102) (0.0922) (0.0922) (0.793) (0.793)

a×s 0.342** 0.342** -0.0500 -0.0500 -2.859** -2.859**
(0.144) (0.144) (0.130) (0.130) (1.121) (1.121)

a×l×s 0.0250 0.0250 -0.0667 -0.0667 -1.217 -1.217
(0.144) (0.144) (0.130) (0.130) (1.121) (1.121)

Open 0.115** -0.0198 -1.147**
(0.0537) (0.0487) (0.452)

Experience -0.238*** -0.0130 2.016***
(0.0784) (0.0712) (0.661)

_cons 2.217*** 2.526*** -1.94e-14 0.0944 62.31*** 60.18***
(0.0847) (0.284) (0.0752) (0.258) (0.685) (2.386)

N 720 720 720 720 720 720

R2 0.2313 0.2647 0.6775 0.6777 0.2975 0.3355
Robust standard errors in parentheses
* p < 0.10, ** p < 0.05, *** p < 0.01
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Table 3.8: Treatment effects: m and a (Poisson random effects regression)

regressand m a

model P1 P2 P1 P2

adapt -0.521*** -0.521***
(0.100) (0.100)

size -0.305*** -0.305*** -0.0484 -0.0484
(0.0941) (0.0941) (0.127) (0.127)

low -0.380*** -0.380*** 1.019*** 1.019***
(0.125) (0.125) (0.104) (0.104)

a×s 0.103 0.103
(0.151) (0.151)

a×l×s -0.0726 -0.0726 0.00781 0.00781
(0.189) (0.189) (0.148) (0.148)

Open 0.0871** -0.0153
(0.0412) (0.0376)

Experience -0.154*** -0.00999
(0.0546) (0.0544)

_cons 0.796*** 0.950*** 0.0567 0.129
(0.0667) (0.207) (0.0899) (0.210)

lnalpha
_cons -2.497*** -2.840*** -3.672*** -3.684***

(0.351) (0.444) (0.865) (0.873)

N 720 720 480 480
Robust standard errors in parentheses
* p < 0.10, ** p < 0.05, *** p < 0.01
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Mitigation. Mitigation decreases as the unit cost of adaptation decrease. Without con-
sideration of group size, the average level of mitigation is highest in the m0-treatments,
i.e., where adaptation is not available or prohibitively costly. The average level of mit-
igation is by 0.9 units lower in the mah-treatments than in the m0-treatments (coef-
ficient for adapt), and by 0.417 units lower in the mal-treatments than in the mah-
treatments (coefficient for adapt×low). The regression results indicate that decreasing
adaptation costs have a strongly negative and significant effect on mitigation on a 99%

confidence level. The significance is further confirmed by a series of Wilcoxon signed rank
tests on the treatment-specific (cost-induced) mitigation differences: the null hypotheses
H0: mi(m03) = mi(ma

h
3), H0: mi(m05) = mi(ma

h
5), H0: mi(m03) = mi(ma

l
3), H0:

mi(m05) = mi(ma
l
5), H0: mi(ma

h
3) = mi(ma

l
3) and H0: mi(ma

h
5)−mi(ma

l
5) can all be

rejected with p = 0.0000. These observations support (H2).
The average level of mitigation decreases as the group size increases. Without consid-

eration of adaptation cost, the average level of mitigation for n=3 treatments exceeds
the average level of mitigation for n=5 treatments by 0.583 units. The group-size in-
duced differences are highly significant on the basis of the regression analysis as well
as based on the Wilcoxon signed rank tests (H0: mi(m03) = mi(m05) can be rejected
with p = 0.0000, H0: mi(ma

h
3) = mi(ma

h
5) can be rejected with p = 0.0008, and

H0: mi(ma
l
3) = mi(ma

l
5) can be rejected with p = 0.0013). The difference is largest

(1.52 units) for m0-treatments, slightly smaller (1.43 units) for mah-treatments and
smallest (0.72 units) for mal-treatments. These observations support (H3).

Other than hypothesized, the average group aggregate level of mitigation M is not
constant in n. (H3) implies that the average individual level of mitigation is 0.6 times
lower for n=5 treatments than for the corresponding n=3 treatments; however, the actual
factors are 0.74 for m0-treatments, 0.76 for mal-treatments and 0.82 for mah-treatments.

Payoffs. Payoffs respond non-monotonically to an increase in unit cost of adaptation.
The regression analysis shows that, without consideration of group size, the average
expected payoffs are by 8.158 Taler higher in the mal-treatments than in the mah-
treatments, and by 7.231 Taler lower in the mah-treatments than in the m0-treatments.
These results are highly significant, as additionally confirmed by a series of Wilcoxon
signed rank tests on the cost-induced payoff differences: the null hypotheses of the dif-
ference tests H0: Eui(mal5) = Eui(ma

h
5), H0: Eui(mal3) = Eui(ma

h
3), H0: Eui(mah5) =

Eui(m05) and H0: Eui(mah3) = Eui(m03) can all be rejected with p = 0.0000, which
yields support for (H4).

The positive group size effect on payoffs diminishes as the unit cost of adaptation
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decrease. Irrespective of adaptation cost, average payoffs are significantly higher for n=5

than for n=3. The size effect is largest in the m0-treatments (size coefficient of 8.009).
It is by 2.859 Taler smaller in the mah-treatments (adapt × size coefficient, significant
on a 95% confidence level) and even smaller -yet not significant- for mal-treatments as
indicated by the adapt×low×size coefficient of -1.217.
The significance of the differences-in-differences is confirmed by the according Wilcoxon
signed rank tests: H0: (Eui(m05)−Eui(m03)) = (Eui(ma

h
5)−Eui(mah3)) can be rejected

with p = 0.0001, H0: (Eui(m05)−Eui(m03)) = (Eui(ma
l
5)−Eui(mal3)) can be rejected

with p = 0.0000, and (Eui(ma
h
5)−Eui(mah3)) = (Eui(ma

l
5)−Eui(mal3)) can be rejected

with p = 0.0031. This result supports (H5).

3.5.2 Benchmark Comparison: Nash Equilibrium and Social Optimum

Qualitatively, the experimental results corroborate all hypotheses that were derived from
the theory. By comparing our observations with the corresponding Nash equilibria (see
Table 3.3) and social optima (see Table 3.4), we can make some statements about quan-
tities as well. Figures 3.1 to 3.6 provide an additional summary of the benchmark com-
parison.

Adaptation. Figures 3.1 and 3.2 visualize the impact of group size and adaptation
cost on the level of adaptation. In the mal-treatments, the average observed level of
adaptation is 2.9, which is approx. one unit below the Nash equilibrium level. Both the
Nash equilibrium level of adaptation and the observed level of adaptation are independent
of the group size n. In contrast, the socially optimal level of adaptation decreases in n:
it ranges about 1.3 units below the average observed level of adaptation for n = 3 and
even 2 units below the average observed level of adaptation for n = 5.

In the mah-treatments, the average observed level of adaptation is 1, which is approx-
imately equal to the Nash equilibrium level of adaptation. As in the low-cost treatments,
both the Nash equilibrium level of adaptation and the observed level of adaptation are
independent of the group size n. The socially optimal level of adaptation in the mah-
treatments is zero.

Mitigation. Figures 3.3 and 3.4 visualize the impact of group size and adaptation cost
on the level of mitigation. In the mal− and mah−treatments, the average observed level
of mitigation ranges between the Nash equilibrium level and the social optimum level.
In the m0-treatments, i.e., where adaptation is not available, the average observed level
of mitigation approximately equals the social optimum level for n=5 and even slightly
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Figure 3.1: Adaptation levels depending on group size n
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Figure 3.2: Adaptation levels depending on adaptation cost ki
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exceeds it for n= 3. Unlike predicted by the Nash equilibrium, the observed group
aggregate level of mitigation is higher for n=5 than for n=3 for all levels of adaptation
cost.

Payoffs. Figures 3.5 and 3.6 visualize the impact of group size and adaptation cost
on the average expected payoff. As predicted by the Nash equilibrium, the average
expected payoff calculated from the observations (for simplicity, hereafter denoted as
observed payoff) responds non-monotonically on variations of ki. In all six treatments,
the observed payoff ranges between the Nash equilibrium payoff (lower bound) and the
socially optimal payoff (upper bound). The subjects performed best in them0-treatments
and almost hit the social optimum in them05-treatment. The observed payoffs are widest
off the social optimum in the mah-treatments. The lowest payoff can be observed in the
mah3 -treatment, where it approximately equals the Nash equilibrium payoff.

3.5.3 Effects of Socioeconomic Data and Order Effects

As already discussed, I chose a within-subject design for this experiment in order to
control for unobservable idiosyncrasies. Moreover, I randomized the order of treatments
to minimize order effects. Beyond these design elements, I tested for effects of socioeco-
nomic characteristics and for session- and order effects. I did not find any evidence that
the results depend on the order in which the tasks were performed.

The GLS and the Poisson regressions finally reported contain those variables that
contribute discernibly to the R2; all other variables such as number of siblings or monthly
income were omitted as they proved irrelevant in previous regression runs. The between-
subjects effect is small compared to the treatment effect. Two variables have a relatively
small yet significant impact on mitigation and on the resulting payoffs: first, openness
(subjects who reported themselves as more open contributed more to the public good
mitigation and thus received a lower payoff in comparison to subjects who claimed to
be less “open”); second, experimental experience (subjects who previously participated
in economic experiments contributed significantly less to the public good mitigation and
thus received a higher payoff due to free riding).

In addition to the treatment-average analysis, I also let the individual variables interact
with the treatment dummies. By regressing m and a on the interaction terms, I tested
for the effects of the individual variables conditional on treatments in order to find
out whether they apply universally or depending on the context. Indeed, we find that
the effects only occur in certain treatments. A high openness score goes along with a
significantly higher level of mitigation in treatments m05 and mal3, which we cannot
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Figure 3.3: Mitigation levels depending on group size n
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Figure 3.4: Mitigation levels depending on adaptation cost ki
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Figure 3.5: Payoffs depending on group size n
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Figure 3.6: Payoffs depending on adaptation cost ki

54

59

64

69

74

5 15 >100

Eu
 

n=5 

SO_EU NE_EU Exp_Euav

54

59

64

69

74

5 15 >100

Eu
 

n=3 

SO_EU NE_EU Exp_Euav

SO=Social Optimum, NE=Nash Equilibrium, Exp=Experimental Results (mean values)

62



3. The Impact of Adaptation Costs and Group Size on Mitigation and Adaptation

interpret in a meaningful way. Interestingly, however, more experience goes along with
significantly lower mitigation levels only in the treatments where adaptation was available
but not in the m0 treatments. This indicates that more experienced players are more
inclined to free riding than less experienced players.

3.6 Conclusion

The analysis suggests that the theoretical model proposed by Probst (2011) is suitable
to explain the observations made in the laboratory.

Qualitatively, the experimental results provide substantial empirical support for the
hypotheses stated on the basis of the model. In particular, the non-monotonic reaction of
payoffs on variations of adaptation cost is even more evident in the experimental results
than predicted by the Nash equilibrium.

In the m0-treatments, free riding on other group members’ mitigation is not an issue:
the average observed mitigation levels and thus the average observed payoffs are very
close to the social optimum and thus well above the predictions made on the basis of the
Nash equilibrium. Mitigation is even higher than socially optimal in the m03-treatment.

However, these socially optimal investment choices can only be observed in the absence
of adaptation. As soon as adaptation becomes available, inefficiencies due to free riding
arise. Although the socially optimal levels of mitigation and adaptation and the highest
achievable payoffs are identical in the mah-treatments and the m0-treatments, subjects
chose to substitute some mitigation by adaptation in both mah-treatments, which results
in a considerably lower average observed payoff than in the correspondingm0-treatments.
The average observed mah payoffs range at the Nash equilibrium level far below the
social optimum. This is due to the negative strategic external effect which outweighs the
comparatively small positive direct effect of substitution.

In the mal-treatments, the total effect of investments in adaptation is less clear-cut
because the positive substitution effect is more pronounced: according to the regression
results, the average observed payoff is by 0.927 Taler higher in mal3 than in m03, whereas
it is by 3.149 Taler lower in mal5 than in m05. This indicates that the positive direct
effect of substitution outweighs the negative strategic effect for smaller groups (n=3),
and that the strategic effect outweighs the direct effect for larger groups (n=5).

Quantitatively, we observe that subjects systematically over-contribute to mitigation
in all treatments. Such positive deviations from Nash equilibrium public good levels
have previously been observed in many experimental studies (see, for example, Andreoni
(1995); Croson (2008); Fischbacher and Gächter (2010); Fischbacher et al. (2001); Palfrey
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and Prisbrey (1997); Goeree et al. (2002)). The behavioral economics literature proposes
different explanations for voluntary contributions to public goods (Holt and Laury, 2008),
some of which (such as e.g. reciprocity and learning) only apply to repeated games. In
our one-shot context, the above-Nash contributions to mitigation could possibly be traced
back to non-monetary utility components like altruism or inequity aversion as modeled
by Fehr and Schmidt (1999) and, similarly, Bolton and Ockenfels (2008).
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3.A Experimental Instructions

1 
 

Experimentanleitung 

 

Allgemeine Informationen 

Herzlich Willkommen! Sie werden gleich an einem Experiment teilnehmen. Die Durchführung 
des Experiments wird ca. 90 Minuten in Anspruch nehmen. Alle Teilnehmerinnen und 
Teilnehmer befinden sich in derselben Entscheidungssituation und haben dieselben 
Entscheidungsmöglichkeiten. Das Experiment besteht aus 6 voneinander unabhängigen Spielen. 
Ihre Entscheidungen in einem Spiel haben also keinen Einfluss auf die anderen Spiele.  

Für Ihre Teilnahme erhalten Sie eine Basisvergütung (Fixbetrag) von 7 Euro. Abhängig von Ihren 
Entscheidungen, den Entscheidungen der anderen Teilnehmer und einem gewissen Maß an 
Zufall können Sie zusätzliches Geld verdienen. Zur Ermittlung Ihres Verdienstes wird am Ende 
des Experiments aus den 6 gespielten Spielen ein Spiel ausgelost. Sie erhalten zusätzlich zur 
Basisvergütung die in diesem Spiel erzielte Auszahlung. Im Experiment werden alle Zahlungen 
in Talern berechnet, die am Ende in Euro umgerechnet und in bar an Sie ausgezahlt werden, 
ohne dass andere Teilnehmerinnen und Teilnehmer erfahren, wie viel Geld Sie erhalten. Der 
Umrechnungskurs der Spielwährung beträgt 

8 Taler = 1 Euro. 

Alle Entscheidungen im Experiment bleiben anonym, d.h. keine andere Teilnehmerin und kein 
anderer Teilnehmer erhält Informationen über ihre Identität, weder während noch nach dem 
Experiment. Genauso erhalten Sie keine Information über die Identität der anderen 
Teilnehmerinnen und Teilnehmer. 

Es ist wichtig, dass Sie die Anleitung zu dem Experiment vollständig verstehen. Bitte lesen Sie 
sich die folgenden Seiten deshalb gründlich durch. Wenn Sie Fragen haben, dann heben Sie bitte 
die Hand und der Experimentleiter wird ihre Fragen beantworten. Um sicherzustellen, dass Sie 
die Anleitung verstanden haben, bitten wir Sie, im Anschluss an die Instruktionsphase einige 
Kontrollfragen zu beantworten. Es folgt noch eine Proberunde, bevor dann das eigentliche 
Experiment beginnt. 

Nach Abschluss des Experiments gibt es noch einen Fragebogen, den Sie bitte am Computer 
ausfüllen. 

 

Während des Experiments ist es nicht gestattet, mit den anderen Teilnehmern zu 
kommunizieren. Mobiltelefone müssen während des gesamten Experiments 
ausgeschaltet sein. Außerdem dürfen Sie am Computer nur diejenigen Funktionen 
bedienen, die für den Ablauf des Experiments bestimmt sind. Kommunikation oder 
Herumspielen am Computer führen zum Ausschluss vom Experiment und zum Verlust 
aller Einnahmen. 
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Experimentbeschreibung 

Zu Beginn des ersten Spiels werden alle Teilnehmerinnen und Teilnehmer zufällig in gleich 
große Gruppen eingeteilt. Die Gruppengröße kann von Spiel zu Spiel variieren; Ihnen wird vor 
Spielbeginn mitgeteilt, wie viele Personen in Ihrer Gruppe sind. Vor jedem weiteren Spiel 
werden die Gruppen neu eingeteilt, und zwar so, dass in jedem neuen Spiel andere Mitspieler 
aufeinandertreffen. Sie werden also während des gesamten Experiments in einem Spiel niemals 
wieder auf Mitspieler treffen, mit denen Sie zuvor schon einmal in einer Gruppe waren. Die 
Gruppeneinteilung erfolgt anonym, d.h. weder während noch nach dem Experiment erfahren Sie, 
wann Sie mit welchen anderen Personen in einer Gruppe sind oder waren.  

Zu Beginn eines jeden Spiels erhalten Sie 100 Taler als persönliches Guthaben. Mit einer 
bestimmten Wahrscheinlichkeit tritt ein Ereignis ein, durch welches Sie diese 100 Taler ganz 
oder teilweise verlieren. Sie haben zwei Möglichkeiten, diesem Risiko zu begegnen:  

(1.) Wahrscheinlichkeitsreduktion. Diese Möglichkeit haben Sie in allen 6 Spielen. 
(2.) Verlustreduktion. Diese Möglichkeit haben Sie in einigen der 6 Spiele, in anderen nicht.  

Sie können Ihr Guthaben ganz oder teilweise in Wahrscheinlichkeitsreduktion und/oder in 
Verlustreduktion (sofern im Spiel verfügbar) investieren. Ob Sie die Möglichkeit zur 
Verlustreduktion haben oder nicht, erfahren Sie zu Beginn eines jeden Spiels. Alle 
Gruppenmitglieder treffen ihre Entscheidung geheim und anonym. Einmal getroffene 
Entscheidungen können nicht rückgängig gemacht werden. 

(1.) Wahrscheinlichkeitsreduktion.  Wenn Sie und/oder andere Mitglieder Ihrer Gruppe in 
Wahrscheinlichkeitsreduktion investieren, reduziert sich die Wahrscheinlichkeit für den Eintritt 
des Verlustereignisses für alle Gruppenmitglieder (einschließlich Ihnen). In welchem Maße die 
Wahrscheinlichkeit abnimmt, hängt von der Gesamtanzahl der in der Gruppe gekauften 
Einheiten Wahrscheinlichkeitsreduktion ab. Es ist dabei unerheblich, durch welches 
Gruppenmitglied/welche Gruppenmitglieder die Investition erfolgt. 

Ob das Verlustereignis für Ihre Gruppe eintritt oder nicht, entscheidet ein Zufallsgenerator, der 
eine Kugel aus einem (virtuellen) Behälter mit 100 Kugeln zieht. Ist die gezogene Kugel rot, so ist 
das Verlustereignis eingetreten; ist sie weiß, so ist das Verlustereignis nicht eingetreten. 
Zunächst sind alle 100 Kugeln im Behälter rot, d.h., es ist zu 100% sicher, dass das 
Verlustereignis eintritt. Durch den Kauf von Wahrscheinlichkeitsreduktion können Sie und die 
anderen Gruppenmitglieder rote Kugeln durch weiße Kugeln ersetzen. Jede Einheit 
Wahrscheinlichkeitsreduktion kostet 10 Taler. Die durch Ihre Gruppe gekaufte Wahrscheinlich-
keitsreduktion verringert die Wahrscheinlichkeit für das Verlustereignis wie folgt: 

Wahrscheinlichkeitsreduktion  
Gruppe gesamt (in Einheiten) 

Anzahl Kugeln weiß Anzahl Kugeln rot 
=Verlustwahrscheinlichkeit in % 

0 0 100 
1 30 70 
2 50 50 
3 60 40 
4 70 30 
5 75 25 
6 80 20 
7 82 18 
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Wahrscheinlichkeitsreduktion  
Gruppe gesamt (in Einheiten) 

Anzahl Kugeln weiß Anzahl Kugeln rot 
=Verlustwahrscheinlichkeit in % 

8 84 16 
9 86 14 

10 88 12 
11 90 10 
12 91 9 
13 92 8 
14 93 7 
15 94 6 

16 … 50 95 5 

Ab der 17. Einheit Wahrscheinlichkeitsreduktion verringert sich die Verlustwahrscheinlichkeit 
nicht mehr weiter. Die Restwahrscheinlichkeit für den Eintritt des Verlustereignisses beträgt 
dann 5% (d.h., 5 rote Kugeln bleiben immer im Behälter). 

 
(2.) Verlustreduktion.  Wenn das Verlustereignis eintritt (d.h. der Zufallsgenerator zieht eine 
rote Kugel), verlieren Sie Ihr gesamtes Guthaben. Durch Investition in Verlustreduktion können 
Sie Ihren persönlichen Verlust begrenzen. Die Verluste der anderen Gruppenmitglieder bleiben 
davon unberührt. Der Preis für eine Einheit Verlustreduktion wird Ihnen zu Beginn eines jeden 
Spiels bekanntgegeben. Er kann von Spiel zu Spiel variieren.  

Die von Ihnen gekaufte Verlustreduktion verringert Ihre persönliche Verlustquote wie folgt: 

Ihre Verlustreduktion (in Einheiten) Ihr Verlust bei Eintritt des Verlustereignisses  
(in % des nicht ausgegebenen Guthabens) 

0 100 % 
1 60 % 
2 40 % 
3 30 % 
4 25 % 
5 20 % 
6 18 % 
7 16 % 
8 14 % 
9 12 % 

10 … 20 10 % 

Ab der 11. Einheit Verlustreduktion verringert sich die Verlustquote nicht mehr weiter. Die 
Rest-Verlustquote beträgt dann 10 %. 

Achtung: In den Spielen ohne Möglichkeit zur Verlustreduktion können Sie Ihren persönlichen 
potenziellen Verlust nicht durch den Kauf von Verlustreduktion begrenzen. Bei Eintritt des 
Verlustereignisses (d.h., der Zufallsgenerator zieht eine rote Kugel) ist Ihr gesamtes Guthaben 
verloren. 
=====================================================================
Sie erhalten mit dieser Anleitung ein separates Blatt mit den Tabellen zur 
Wahrscheinlichkeits- und Verlustreduktion, dem Sie während des Experiments alle 
Angaben entnehmen können, ohne blättern zu müssen.   
===================================================================== 
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Experimentablauf im Detail 

Vor dem Start eines jeden Spiels erscheint folgender Eingangsbildschirm:  

 

Hier erfahren Sie, wie viele Mitglieder Ihre Gruppe in diesem Spiel hat, ob die Möglichkeit zur 
Verlustreduktion besteht und wie hoch der Preis für eine Einheit Verlustreduktion ist 
(sofern Verlustreduktion verfügbar ist). Das Spiel beginnt automatisch, sobald Sie auf „Spiel 
starten“ geklickt haben.  

(1.) Entscheidung. 

Ihre Aufgabe besteht nun darin, eine Kaufentscheidung zu treffen. Sie sehen auf dem Bildschirm: 
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Geben Sie im ersten Feld ein, wie viele Einheiten Wahrscheinlichkeitsreduktion Sie kaufen 
möchten. Geben Sie im zweiten Feld ein, wie viele Einheiten Verlustreduktion Sie kaufen 
möchten.  

In den Spielen ohne Möglichkeit zur Verlustreduktion sieht der Bildschirm so aus:  

 

Geben Sie ein, wie viele Einheiten Wahrscheinlichkeitsreduktion Sie kaufen möchten.  

Wenn Sie keine Wahrscheinlichkeitsreduktion und/oder keine Verlustreduktion kaufen 
möchten, geben Sie bitte „0“ in das/die jeweilige(n) Feld(er) ein. 

Klicken Sie anschließend auf „Berechnen“. Im unteren Teil des Bildschirms können Sie nun Ihre 
Ausgaben und Ihr verbleibendes Guthaben ablesen sowie Ihre Verlustquote und die Auszahlung, 
die Sie erhalten, wenn das Verlustereignis eintritt bzw. nicht eintritt. Solange Sie noch nicht auf 
„Entscheidung abgeschlossen“ geklickt haben, können Sie Ihre Kaufentscheidung beliebig oft 
revidieren. Wenn Sie eine oder beide Eingaben geändert haben, klicken Sie bitte anschließend 
auf „Berechnen“; dadurch werden die Informationen im unteren Teil des Bildschirms neu 
berechnet und aktualisiert.  

Wenn Sie Ihre endgültige Entscheidung getroffen haben, klicken Sie auf „Entscheidung 
abgeschlossen“, um dieses Spiel zu beenden. Ihre Eingaben sind jetzt gespeichert. 

Das nächste Spiel startet daraufhin automatisch - wiederum mit dem Eingangsbildschirm wie 
oben beschrieben.  

Wenn Sie alle 6 Spiele gespielt haben, erscheint ein Wartebildschirm (hier nicht gezeigt). 

  

69



3. The Impact of Adaptation Costs and Group Size on Mitigation and Adaptation

6 
 

(2.) Auslosung des zahlungsrelevanten Spiels und Ermittlung der Wahrscheinlichkeit.  

Wenn alle Teilnehmer die sechs Spiele durchlaufen und ihre Entscheidungen getroffen haben, 
erscheint folgender Bildschirm:  

 

Sie erfahren nun, welches der sechs Spiele für die Auszahlung ausgelost wurde und wie viele 
Einheiten Wahrscheinlichkeitsreduktion in diesem Spiel von Mitgliedern Ihrer Gruppe gekauft 
wurden. Der Gesamtumfang der Wahrscheinlichkeitsreduktion bestimmt, wie viele rote Kugeln 
durch weiße Kugeln ersetzt werden und damit die Wahrscheinlichkeit für den Eintritt des 
Verlustereignisses. 

Klicken Sie anschließend auf „Weiter“.  
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(3.) Zufall und Auszahlung.  

In der letzten Phase des Spiels wird per Zufallsgenerator aus den 100 Kugeln im Behälter eine 
Kugel gezogen. Sie sehen auf dem Bildschirm:  

 

Angezeigt werden die Nummer der gezogenen Kugel (Zahl zwischen 1 und 100) und die Farbe 
dieser Kugel entsprechend der von Ihrer Gruppe gekauften Wahrscheinlichkeitsreduktion. Ist 
die gezogene Kugel rot, so ist das Verlustereignis eingetreten und Sie erhalten als Auszahlung in 
Talern Ihr verbleibendes Guthaben nach Ausgaben für Wahrscheinlichkeits- und 
Verlustreduktion abzüglich des Verlustes. Die Höhe des Verlustes hängt in den Spielen mit 
Möglichkeit zur Verlustreduktion davon ab, wie viele Einheiten Verlustreduktion Sie gekauft 
haben. Ist die gezogene Kugel weiß, so ist das Verlustereignis nicht eingetreten und Sie erhalten 
als Auszahlung in Talern Ihr verbleibendes Guthaben nach Abzug der Ausgaben für 
Wahrscheinlichkeits- und Verlustreduktion. 

Die Auszahlung in EUR ergibt sich nach der Umrechnungsformel:  7 + 𝐴𝑢𝑠𝑧𝑎ℎ𝑙𝑢𝑛𝑔 𝑖𝑛 𝑇𝑎𝑙𝑒𝑟𝑛
8

 . 

 

-Ende des Spiels- 
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Beispiel 1: Verlustreduktion möglich. 

Ihre Gruppe besteht aus 3 Mitgliedern: Ihnen, Person B und Person C. Eine Einheit 
Verlustreduktion kostet 5 Taler. 

Entscheidung. 

Sie kaufen eine Einheit Wahrscheinlichkeitsreduktion und 2 Einheiten Verlustreduktion. Von 
Ihrem Anfangsguthaben bleiben also 80 Taler übrig (100 - 1*10 - 2*5 = 80). Gleichzeitig mit 
Ihnen treffen B und C ihre Investitionsentscheidungen. Weder Sie noch B noch C wissen, wie sich 
die beiden anderen Personen entschieden haben. 

Wahrscheinlichkeit.  

Nachdem alle Gruppenmitglieder ihre Entscheidung getroffen haben, wird die 
Wahrscheinlichkeit für den Eintritt des Verlustereignisses berechnet. Sie kauften eine Einheit 
Wahrscheinlichkeitsreduktion, B kaufte 2 Einheiten, und C kaufte 0 Einheiten. Insgesamt hat 
Ihre Gruppe also 3 Einheiten Wahrscheinlichkeitsreduktion gekauft. Von den ursprünglich 100 
roten Kugeln werden die Kugeln Nr. 1 bis 60 durch weiße Kugeln ersetzt. Im Behälter sind jetzt 
60 weiße Kugeln (Nr. 1 bis 60) und 40 rote Kugeln (Nr. 61 bis 100). Die Wahrscheinlichkeit für 
den Eintritt des Verlustereignisses beträgt also 40%. 

Zufall und Auszahlung.  

Aus den 100 Kugeln im Behälter wird zufällig eine Kugel gezogen. Wenn die gezogene Kugel rot 
ist, dann ist das Verlustereignis eingetreten; wenn sie weiß ist, dann ist das Verlustereignis nicht 
eingetreten. 

(Fall a): Der Zufallsgenerator hat die Kugel Nr. 27 gezogen. Diese Kugel ist weiß. Das 
Verlustereignis ist somit nicht eingetreten. Sie erhalten 80 Taler (Anfangsguthaben 100 Taler 
abzüglich 20 Taler Ausgaben für Wahrscheinlichkeitsreduktion und Verlustreduktion). 

(Fall b): Der Zufallsgenerator hat die Kugel Nr. 85 gezogen. Diese Kugel ist rot. Das 
Verlustereignis ist eingetreten. Sie haben 2 Einheiten Verlustreduktion gekauft. Von Ihrem 
verbleibenden Guthaben in Höhe von 80 Talern (Anfangsguthaben abzüglich 20 Taler Ausgaben) 
verlieren Sie 40% = 32 Taler. Sie erhalten 80 - 32 = 48 Taler. 
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Beispiel 2: Verlustreduktion nicht möglich. 

Ihre Gruppe besteht aus 3 Mitgliedern: Ihnen, Person B und Person C. 

Entscheidung. 

Sie kaufen 2 Einheiten Wahrscheinlichkeitsreduktion. Von Ihrem Anfangsguthaben bleiben also 
80 Taler übrig (100 - 2*10 = 80). Gleichzeitig mit Ihnen treffen B und C ihre 
Investitionsentscheidungen. Weder Sie noch B noch C wissen, wie sich die beiden anderen 
Personen entschieden haben. 

Wahrscheinlichkeit.  

Nachdem alle Gruppenmitglieder ihre Entscheidung getroffen haben, wird die 
Wahrscheinlichkeit für den Eintritt des Verlustereignisses berechnet. Sie kauften 2 Einheiten 
Wahrscheinlichkeitsreduktion, B kaufte ebenfalls 2 Einheiten, und C kaufte 1 Einheit. Insgesamt 
hat Ihre Gruppe also 5 Einheiten Wahrscheinlichkeitsreduktion gekauft. Von den ursprünglich 
100 roten Kugeln werden die Kugeln Nr. 1 bis 75 durch weiße Kugeln ersetzt. Im Behälter sind 
jetzt 75 weiße Kugeln (Nr. 1 bis 75) und 25 rote Kugeln (Nr. 76 bis 100). Die Wahrscheinlichkeit 
für den Eintritt des Verlustereignisses beträgt also 25%. 

Zufall und Auszahlung.  

Aus den 100 Kugeln im Behälter wird zufällig eine Kugel gezogen. Wenn die gezogene Kugel rot 
ist, dann ist das Verlustereignis eingetreten; wenn sie weiß ist, dann ist das Verlustereignis nicht 
eingetreten. 

(Fall a): Der Zufallsgenerator hat die Kugel Nr. 27 gezogen. Diese Kugel ist weiß. Das 
Verlustereignis ist somit nicht eingetreten. Sie erhalten 80 Taler (Anfangsguthaben 100 Taler 
abzüglich 20 Taler Ausgaben für Wahrscheinlichkeitsreduktion). 

(Fall b): Der Zufallsgenerator hat die Kugel Nr. 85 gezogen. Diese Kugel ist rot. Das 
Verlustereignis ist eingetreten. Sie erhalten 0 Taler. 
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3. The Impact of Adaptation Costs and Group Size on Mitigation and Adaptation

3.C Fixed Effects Regression Results

Table 3.9: Treatment effects: m, a, EU_av, EU (GLS fixed effects regression)

regressand m a EU_av EU

adapt -0.900*** . -7.231*** -5.987***
(0.120) . (0.803) (0.781)

size -0.583*** -0.0500 8.009*** 8.113***
(0.0754) (0.0641) (0.618) (0.662)

low -0.417*** 1.875*** 8.158*** 7.491***
(0.127) (0.136) (0.957) (0.971)

a×l . . . .
. . . .

a×s 0.342*** . -2.859*** -3.443***
(0.102) . (0.912) (1.278)

a×l×s 0.0250 -0.0667 -1.217 -0.744
(0.135) (0.114) (1.206) (1.391)

_cons 2.217*** 1.058*** 62.31*** 62.02***
(0.0771) (0.0668) (0.591) (0.522)

N 720 480 720 720
R2 0.334 0.657 0.432 0.372
Standard errors in parentheses
* p < 0.10, ** p < 0.05, *** p < 0.01
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3. The Impact of Adaptation Costs and Group Size on Mitigation and Adaptation

Table 3.10: Treatment effects: m and a (Poisson fixed effects regression)

regressand m a

adapt -0.521***
(0.0691)

size -0.305*** -0.0484
(0.0379) (0.0534)

low -0.380*** 1.019***
(0.112) (0.0670)

a×s 0.103
(0.0700)

a×l×s -0.0726 0.00781
(0.127) (0.0562)

N 7141 4722

Wald chi2 202.12 349.91
1 1 subject (6 obs.) dropped because of all zero outcomes
2 2 subjects (8 obs.) dropped because of all zero outcomes
Robust standard errors in parentheses
* p < 0.10, ** p < 0.05, *** p < 0.01
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Chapter 4

Mitigation and Adaptation with
Heterogeneous Unit Cost of Adaptation

Abstract The costs of adaptation are an important but widely overlooked
determinant for strategic climate change policy decisions in an international
context, as described by Probst (2011) by means of a non-cooperative game-
theoretic model with endogenous risk. Based on this model, I conducted a
computer lab experiment to empirically test for the effects of within-group
adaptation cost heterogeneity on investments in mitigation and adaptation
and on the resulting expected payoffs. A particular focus is put on the distri-
bution of mitigation efforts. The experimental evidence suggests that players
with low adaptation cost tend to free-ride on players with high adaptation
cost, which leads to payoff disparity; however, payoffs diverge less than the-
oretically predicted, which I attribute to inequity aversion. The analysis of
elicited beliefs about the co-players’ decisions reveals that both the beliefs
and the players’ actual decisions can partly be ascribed to idiosyncratic pref-
erences regarding risk and equity.

Keywords climate change, mitigation, adaptation, public good, experiment,
risk
JEL Classification C91, Q54, H41
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4. Mitigation and Adaptation with Heterogeneous Unit Cost of Adaptation

4.1 Introduction

Although the narrow focus on mitigation has widened in the recent past and the role of
adaptation has gained more attention both in climate change research and in political
decision making, the strategic relevance of adaptation in international climate change
policy is still widely ignored. The aim of this work is to test a number of hypotheses de-
rived from a non-cooperative game-theoretic model of mitigation and adaptation choices
introduced by Probst (2011). I use data from a laboratory experiment to analyze the
impact of adaptation cost heterogeneity on the levels of mitigation and adaptation and
on the resulting payoffs in a non-cooperative setting. Special attention is paid to ana-
lyzing how agents respond to different group constellations. I find that, when choosing
their level of mitigation, players not only consider their own adaptation cost, but also
on the adaptation cost of their co-players. In particular, players with low adaptation
cost tend to free-ride on players with high adaptation cost; that is, those players who are
already disadvantaged due to higher adaptation cost also contribute a higher share to the
aggregate mitigation effort. Yet, we also find evidence for inequity aversion. Moreover,
we can make some inferences about the formation and impact of beliefs.

Theoretical Background. This section recaps the climate-scientific and economic ra-
tionale that underpins the climate risk model used in this work as postulated by Probst
(2011). There is clear evidence that the global climate system has changed considerably
in the past 150 years. It is virtually certain that anthropogenic GHG emissions are the
main driver of this climate change, and that climatic impacts on geophysical and biolog-
ical systems will become more severe and more frequent in the future (Trenberth et al.,
2007; Hegerl et al., 2007; IPCC, 2007c). The size and frequency of climatic impacts, how-
ever, only partially explain the consequences for human livelihood and economic welfare.
The second constituent of climate risk is the vulnerability of the affected system, i.e.,
the degree to which it is susceptible to a given impact (Jones, 2004, p. 254). Accord-
ing to these two determinants of climate risk, there exist two distinct kinds of climate
risk management: one is mitigation, defined in the IPCC Fourth Assessment Report as
"an anthropogenic intervention to reduce the anthropogenic forcing of the climate sys-
tem; it includes strategies to reduce greenhouse gas sources and emissions and enhancing
greenhouse gas sinks." (IPCC, 2007a, p. 878). The other is adaptation, defined as an
"adjustment in natural or human systems in response to their actual or expected cli-
matic stimuli or their effects, which moderates harm or exploits beneficial opportunities"
(IPCC, 2007a, p. 869).

Mitigation addresses the cause of climate change: by curtailing GHG emissions, it
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4. Mitigation and Adaptation with Heterogeneous Unit Cost of Adaptation

seeks to reduce the size and frequency of climate impacts. Adaptation, on the other hand,
addresses the symptoms of climate change: while taking climate impacts as given, it seeks
to reduce the system’s vulnerability to these impacts. The strategic interdependencies of
the two policies can be explained by two economic characteristics: (1) the substitutability
of mitigation and adaptation; (2) the public vs. private good property (see also Probst
(2011) who discusses these features in detail). Mitigation and adaptation both contribute
to a common final end; moreover, they compete for shares in a common budget. This
being the case, the model treats both policies as substitutes. Mitigation is a global
public good, characterized by non-excludability and non-rivalry in consumption. The
costs of mitigation are private, whereas the benefits are universal in terms of individuals
and countries. These features give rise to the well-known free rider problem and lead
to an underprovision of mitigation. Adaptation, on the other hand, is a private good:
the benefits of adaptation are spatially limited to a certain region; thus, other countries
are automatically excluded. Due to its private good character, there are no immediate
external effects from adaptation; yet, adaptation inheres a strategic dimension which
results from the premise of being a substitute for mitigation.

Literature Review. Few attempts have been made to theoretically model the strategi-
cal interrelations of mitigation and adaptation. Barrett (2008a) investigates the effect
of the option to adapt on the extent of free-riding in international climate treaties in
a parametric mitigation-adaptation model. He uses an augmented version of his earlier
mitigation-only models (Barrett, 1992, 1994a,b) to analyse the non-cooperative Nash
equilibrium, the full cooperative outcome and different treaty equilibria for distinct pa-
rameter scenarios. In agreement with the theoretical and experimental results presented
in this work, Barrett (2008a) finds that asymmetries in the ability to adapt lead to severe
welfare disparity.

The empirical and experimental research on the economics of climate change mainly
focuses on voluntary contributions in a public goods game. This setting has turned out
to be the standard design for a variety of experiments on different aspects related to
climate change, as summarized in a survey by Sturm and Weimann (2006). The concept
of endogenous and collective risk which is also captured in the model used here was an
integral part of an experiment conducted by Milinski et al. (2008). In the experiment,
a group needs to reach a fixed mitigation target through successive monetary contri-
butions, while everyone loses their residual with a certain probability if they miss the
target. Hasson et al. (2010) were -to my knowledge- the first to analyze the strategical
impact of adaptation by means of an economic experiment. In a symmetric game, players
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4. Mitigation and Adaptation with Heterogeneous Unit Cost of Adaptation

can choose whether to invest their endowment in mitigation or in adaptation, where the
treatment variable is the degree of vulnerability.
The experiment I present here bases on a model proposed by Probst (2011) which
features a generalized non-linear set-up with endogenous damage probabilities. The
validity of this model has already been empirically supported in a previous experiment
with homogeneous players (Probst, 2012), which analyzes the effects of variations in
adaptation cost and group size on investment decisions.

The current experiment is the first one with an asymmetric design and heterogeneous
adaptation cost. My intention is to reflect the heterogeneity of actors on the global
political stage, e.g. in the encounter of developing countries and developed countries.
Developing countries are the least able to adapt to climate change due to their poor
financial and technical resources, their heavy reliance on subsistence agriculture, and
the lack of strong institutions; at the same time, their geographical exposure to climate
change impacts is relatively high. Although absolute economic losses from weather and
climate extremes are higher in developed countries, losses relative to countries’ GDP
and fatality rates are much higher in developing countries, most notably in the highly
vulnerable small island developing states (IPCC, 2012). An important aim of this work
is to empirically investigate whether agents with high adaptation costs are systematically
disadvantaged.

4.2 Model

4.2.1 Theoretical Model

The model I used to set up the empirically testable hypotheses is a variant of the generic
mitigation-adaptation model described by Probst (2011). Probst formulates an n-player
game with von-Neumann-Morgenstern expected utility functions

Eui,ma = pi(M) · ubi(ai,mi) + (1− pi(M)) · ugi (ai,mi).

ai denotes the level of adaptation for country i = 1, ..., n, mi denotes the level of miti-
gation for country i, and M =

∑n
j=1mj denotes the global aggregate level of mitigation

of all countries including i. Each country i faces a lottery over two states of nature:
a bad state, in which an extreme weather event occurs, and a good state, in which no
event occurs. The bad-state utility of country i, ubi(ai,mi), is realized with probabil-
ity pi(M) ∈ (0, 1), and the good-state utility of country i, ugi (ai,mi), is realized with
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4. Mitigation and Adaptation with Heterogeneous Unit Cost of Adaptation

probability 1 − pi(M). The difference ugi (ai,mi) − ubi(ai,mi) > 0 ∀i describes the loss
caused by the extreme weather event. The loss probability pi(M) is endogenous, i.e.,
it is decreasing in the level of global aggregate mitigation M , no matter which country
mitigates. By investing in adaption ai, each country can reduce the size of its own indi-
vidual loss, while the losses of other countries remain unchanged. A number of functional
properties are assumed in order to prove the existence of a Nash equilibrium. Then, the
Nash equilibrium outcome of a model with mitigation and adaptation is compared to
the Nash equilibrium outcome of a model without adaptation. The comparative analysis
shows that, under certain conditions, mutually beneficial mitigation is replaced by indi-
vidually beneficial adaptation, which results in an ambiguous welfare effect: a positive
direct effect due to a comparative cost advantage of adaptation over mitigation, and a
negative strategic effect due to the declining positive externalities from mitigation.

4.2.2 Model variant used in the experiment

Since the generic model by Probst (2011) only specifies the functions in general terms, it
was necessary to formulate a particular variant for the experimental set-up. The model
variant I employ here has already proven to be useful in a previous experiment (Probst,
2012).
It features discrete choice variables and simple functions that make it easily comprehen-
sible to the participants. As already described in Probst (2012), the experimental set-up
is a non-cooperative n-player decision game. Player i = 1, ..., n can spend her individual
initial endowment yi on non-negative integer units of mitigation mi ∈ N0 at a price of
li > 0 per unit and/or adaptation ai ∈ N0 at a price of ki > 0 per unit. There is no
obligation to invest. The upper limit of investments is given by the budget constraint
kiai + limi ≤ yi. In the good state, the payoff for player i is (yi − kiai − limi), i.e., her
residual budget. In the bad state, the payoff for players i is (1−Li(ai)) ·(yi−kiai− limi),
i.e., a fraction of her residual budget, where Li(ai) ∈ (0, 1] denotes player i’s loss rate.
The bad-state probability pi(M) ∈ (0, 1] negatively depends on the group aggregate level
of mitigation. The functions for loss probability pi(M) and for loss rate Li(ai) are defined
on N0 as listed in Table 4.1. The parameters yi (initial endowment) and li (unit cost
of mitigation) are fixed for all treatments and identical over all subjects with yi = 100

Taler and li = 10 Taler.
Within each treatment, and for each single player, the price per unit of mitigation

and adaptation is constant, and the marginal cost of mitigation and adaptation are also
constant. The marginal benefits of mitigation and adaptation are decreasing. This non-
linear framework provides the potential for interior Nash equilibria which enable us to
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Table 4.1: Parameters pi(M), Li(ai)

M pi(M)

0 1

1 0.7

2 0.5

3 0.4

4 0.3

5 0.25

6 0.2

7 0.18

8 0.16

9 0.14

10 0.12

11 0.10

12 0.09

13 0.08

14 0.07

15 0.06

≥ 16 0.05

ai Li(ai)

0 1

1 0.6

2 0.4

3 0.3

4 0.25

5 0.21

6 0.18

7 0.16

8 0.14

9 0.12

≥ 10 0.1

measure the size of differences between treatments, as noted by Laury et al. (1999) and
Laury and Holt (2008).

4.3 Experiment

4.3.1 Treatments

My intention is to analyze the behavior of agents in groups that are heterogeneous with
respect to the group members’ adaptation cost. For this purpose, I defined three player
types that differ in their unit cost of adaptation: type l (low) with ki = 5 Taler, type h
(high) with ki = 15 Taler, and type 0 (zero) with ki = 101 Taler. Type 0 can de facto
not invest in adaptation at all (zero adaptation), because her unit cost of adaptation
are prohibitively high. In order to avoid confusion, this economically meaningful inter-
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pretation was not made explicit to the subjects. Instead, adaptation was made a priori
unavailable for players of type 0. The subjects are divided into groups of four according
to the following group compositions that form the six games: 0000, llll, hhhh, 00hh, 00ll,
hhll. The homogeneous games 0000, llll and hhhh constitute reference cases. For the
heterogeneous games 00hh, 00ll and hhll, we match two players of the same type with
two players of another type. Each participant plays all six games. The heterogeneous
games are played twice, once for each cost type. In total, this makes nine treatments:
0_0000, h_hhhh, l_llll, 0_00hh, h_00hh, 0_00ll, l_00ll, h_hhll, and l_hhll (here and
in the following notation, the first character denotes a player’s own cost type, while the
four-digit string denotes the group composition of the respective game. For player i,
0_00hh describes the treatment in which i herself is of type 0 and encounters one other
player of type 0 and two other players of type h).

4.3.2 Theoretical Predictions

Consider a game (S,Eu) with n players. Si denotes the strategy set for player i. S =

S1 × S2... × Sn denotes the set of strategy profiles. Eu = (Eu1(x), ..., Eun(x)) denotes
the profile of payoff functions for x ∈ S. Let xi = (ai,mi) be a strategy profile of player
i and let x−i = (a−i,m−i) be a strategy profile of all players except i. When each player
i chooses strategy xi yielding strategy profile x = (x1, ..., xn), then player i’s payoff is
Eui(x). A strategy profile x∗ ∈ S is a Nash equilibrium if no player can benefit from her
unilateral deviation, i.e., for all i,

xi ∈ Si, xi 6= x∗i : Eui(x
∗
i , x

∗
−i) ≥ Eui(xi, x∗−i).

For each of the six games, there exists at least one Nash equilibrium in pure strategies.
All Nash equilibria are described in Tables 4.2 and 4.3 (only one representative Nash
equilibrium of each kind is explicitly listed; all other within-type permutations of the
listed strategy profiles together with the resulting payoffs constitute Nash equilibria as
well). In order to identify the Nash equilibria, I tested all possible combinations of
strategy profiles for being mutual best responses with Mathematica. As a reference,
I also calculated the social optima as listed in Tables 4.4 and 4.5. Social optimality
requires that each group member choose her ai and mi so as to maximize the group sum
of expected payoffs.1

1 I assumed a sort of Utilitarian social welfare function for the sake of simplicity; moreover, I assumed
that the expected payoff is the only determinant of an individual’s utility.
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Table 4.2: Nash equilibria

Game NE strategy profiles (ai,mi)i NE payoffs (Taler)

0000 ((0,0),(0,0),(0,0),(0,4)) (70,70,70,42)
((0,0),(0,0),(0,1),(0,3)) (70,70,63,49)
((0,0),(0,0),(0,2),(0,2)) (70,70,56,56)
((0,0),(0,1),(0,1),(0,2)) (70,63,63,56)
((0,1),(0,1),(0,1),(0,1)) (63,63,63,63)

hhhh ((1,0),(1,0),(1,0),(1,2)) (59.5,59.5,59.5,45.5)

llll ((4,0),(4,0),(4,0),(4,0)) (60,60,60,60)

hhll ((1,0),(1,2),(3,0),(3,0)) (59.5,45.5,72.25,72.25)
((1,1),(1,1),(3,0),(3,0)) (52.5,52.5,72.25,72.25)

hh00 ((0,0),(0,0),(0,0),(0,4)) (70,70,70,42)
((0,0),(0,0),(0,1),(0,3)) (70,70,63,49)
((0,0),(0,0),(0,2),(0,2)) (70,70,56,56)

ll00 ((2,0),(2,0),(0,0),(0,4)) (79.2,79.2,70,42)
((2,0),(2,0),(0,1),(0,3)) (79.2,79.2,63,49)
((2,0),(2,0),(0,2),(0,2)) (79.2,79.2,56,56)

Within the strategy profiles and resulting payoff vectors, cost types are ordered corresponding to
their position in the four-digit identifier of the game (e.g. hhll: first and second strategy pairs pertain
to type h, third and fourth strategy pairs pertain to type l).
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Table 4.4: Social optima

Game SO Strategy profiles (ai,mi)i SO Payoffs (Taler)

0000 ((0,0),(0,0),(0,0),(0,6)) (80,80,80,32)
((0,0),(0,0),(0,1),(0,5)) (80,80,72,40)

...
...

((0,1),(0,1),(0,2),(0,2)) (72,72,64,64)

hhhh ((0,0),(0,0),(0,0),(0,6)) (80,80,80,32)
((0,0),(0,0),(0,1),(0,5)) (80,80,72,40)

...
...

((0,1),(0,1),(0,2),(0,2)) (72,72,64,64)

llll ((0,6),(1,0),(1,0),(1,0)) (32,83.6,83.6,83.6)

hhll ((0,0),(0,6),(1,0),(1,0)) (80,32,83.6,83.6)
((0,1),(0,5),(1,0),(1,0)) (72,40,83.6,83.6)

...
...

((0,3),(0,3),(1,0),(1,0)) (56,56,83.6,83.6)

hh00 ((0,0),(0,0),(0,0),(0,6)) (80,80,80,32)
((0,0),(0,0),(0,1),(0,5)) (80,80,72,40)

...
...

((0,3),(0,3),(0,0),(0,0)) (56,56,80,80)

ll00 ((1,0),(1,0),(0,0),(0,6)) (83.6,83.6,80,32)
((1,0),(1,0),(0,1),(0,5)) (83.6,83.6,72,40)

...
...

((1,0),(1,0),(0,3),(0,3)) (83.6,83.6,56,56)

Within the strategy profiles and resulting payoff vectors, cost types are ordered corresponding to
their position in the four-digit identifier of the game (e.g. hhll: first and second strategy pairs pertain
to type h, third and fourth strategy pairs pertain to type l).
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4. Mitigation and Adaptation with Heterogeneous Unit Cost of Adaptation

The Nash equilibrium predicts that, irrespective of the group composition, type l never
invests in mitigation. In the homogeneous llll matching, each type l player buys 4 units
of adaptation. When matched with type h in the llhh matching, type l reduces her
adaptation to 3 units; when matched with type 0 in the 00ll matching, type l further
reduces her adaptation to 2 units. A type l player anticipates that the other group
members buy less adaptation and more mitigation as their unit costs of adaptation
increase. Due to the higher group aggregate level of mitigation, type l enjoys positive
external effects in terms of a lower loss probability, which in turn reduces her need for
adaptation. Consequently, for type l players, payoffs are highest in the ll00 game, medium
level in the llhh game and lowest in the llll game.

In the homogeneous hhhh matching, the average mitigation level of a type h player is
0.5. When a type h player encounters type l players in the hhll matching, she anticipates
that type l players would not contribute to mitigation; consequently, she rises her level of
mitigation to 1. In contrast, when matched with type 0 in the hh00 matching, type h does
not mitigate at all: she anticipates that, due to the lack of alternatives, 0 would have a
high propensity to mitigate. On average, type h players buy one unit of adaptation both
in the hhhh and the hhll matching and zero adaptation in the hh00 matching. Hence,
their payoffs are highest in the hh00 game, medium level in the hhhh game and lowest
in the hhll game.

Due to prohibitively high costs, adaptation is not available for type 0 players in any
game. In the homogeneous 0000 matching, the average mitigation level of a type 0 player
is 1. It doubles to 2 units when type 0 encounters type h in the 00hh matching or type l
in the 00ll matching. Consequently, payoffs are highest in the 0000 game and lowest in
games 00hh and 00ll.

These theoretical insights constitute the basis for the following hypotheses to be tested
in the experiment:

(H1) The type average mitigation level is non-increasing in the other type’s unit
cost of adaptation.

(H2) The type average adaptation level is also non-increasing in the other type’s
unit cost of adaptation.

(H3) The type average payoff is non-decreasing in the other type’s unit cost of
adaptation.

(H4) Within the heterogeneous matchings, the type with lower adaptation cost
contributes a smaller percentage share to the group aggregate mitigation
level than the type with higher adaptation cost.
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(H5) The type average mitigation level is non-decreasing in the own type’s unit
cost of adaptation.

(H6) The type average adaptation level is non-increasing in the own type’s unit
cost of adaptation.

Hypotheses (H1) to (H4) have not been tested before. The assessment of the effects
that result from heterogeneous group compositions is in the focus of this paper. Hypothe-
ses (H5) and (H6) have already been empirically supported in an earlier experiment with
a design similar to the current one that based on the same model (Probst, 2012); however,
the previous experiment was restricted to cost-homogeneous groups.

4.3.3 Experimental Design

I conducted the computerized experiment in April 2013 in the Laboratory for Experi-
ments in Economics at the University of Hamburg as a series of five substantially identical
sessions. Sessions 1 to 4 were carried out with six groups of four = 24 participants each;
in session 5, one group had to be dropped due to no-shows such that the session was
conducted with five groups of four = 20 participants. The experiment was programmed
and conducted with the software z-tree (Fischbacher, 2007).

Aided by the recruitment system ORSEE (Greiner, 2004), 116 students were recruited
from the University of Hamburg undergraduate and graduate student body. Half of
the participants were economics and finance/business administration students, but other
majors such as law, sociology, natural sciences, and psychology were represented as well.
The average age of the participants was 24.9 years, 51.7% were female. Most students
had already participated in economic experiments at the Lab before.

After entering the lab, the participants were asked to sign a consent form and were
then randomly assigned to curtained computer cubicles. Throughout the experiment,
communication among subjects was not allowed. The experiment instructions (see Ap-
pendix 4.A) were read out aloud by the experiment leader; additionally, all participants
were provided with a hard copy. In the instruction, I used a neutral wording in order
to avoid uncontrollable bias due to emotional and/or political attitudes towards climate
change policy. Terms like “adaptation”, “mitigation”, “climate change”, or “disastrous
weather event” were avoided; instead, I described a decision situation where subjects
could invest in “probability reduction” and “loss reduction” to manage the risk of a “loss
event”. This neutral framing draws on the experience gained from the prior experiment
(Probst, 2012) and diverges from other experiments on climate change policy decisions
such as Hasson et al. (2010) and Milinski et al. (2008), who explicitly refer to climate
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change policy.
After they had received the instructions, the participants were asked to answer a

number of control questions. The answers were checked automatically so that subjects
could enter the next stage only after they had answered all control questions correctly.
The instruction phase ended with a trial run which mimicked the real experiment but
used different parameter values. Unlike in the real experiment, subjects were not matched
to groups in the trial run. To prevent anchoring, the contributions of the other group
members were instead simulated by a random number generator. The subjects were
instructed that the trial run would not affect their earnings.

In the actual experiment, every subject played nine rounds covering the nine treat-
ments: 0_0000, h_hhhh, l_llll, 0_00hh, h_00hh, 0_00ll, l_00ll, h_hhll, and l_hhll.
By this procedure, we automatically controlled for unobservable personal idiosyncrasies,
as suggested by Friedman and Sunder (1994, p. 25) and Friedman and Cassar (2004,
p. 35-7). In addition to that, we acquire a large number of independent within-subject
datasets. We are mainly interested in exactly these within-subject differences rather than
absolute values, since all hypotheses put to test refer to comparisons. In each round, ev-
ery player was endowed with a budget of 100 Taler, which she could invest in probability
reduction (mitigation) and/or loss reduction (adaptation). Players were also free to keep
(i.e., not to invest) all or part of their budget.

At the beginning of each round, all players received complete information about the
group composition, their own unit cost of adaptation and the other players’ unit cost
of adaptation. Each round consisted of two tasks: in the first task, players stated their
beliefs about the investments in mitigation and/or -if available- adaptation of the other
three group members in this particular round. They were asked to enter their belief about
how many units of mitigation/adaptation each of the other three group members would
buy. In the second task, players were asked to make their own investment decision by
entering the desired units of mitigation and/or -if available- adaptation. The computers
were equipped with a payoff calculator so that subjects could preview the payments they
would receive in the good state and the bad state respectively, and try out different
combinations before making their final choice and entering the next task.

To control for order effects such as practice, fatigue or boredom (Friedman and Cassar,
2004, p. 35-7), the sequence of the nine treatments was randomized for each subject. All
choices remained undisclosed during the whole decision stage, i.e., the participants did
not receive any feedback or information about any other players’ beliefs or actual invest-
ment decisions. This design was chosen for two reasons: first, it enabled us to perfectly
randomize the individual order in which the treatments were played; second, I intended
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to minimize learning effects and reputational effects. Acknowledging the risk that, due to
lack of feedback, subjects may fail to fully grasp the effects of their decisions, I attached
great importance to the instruction phase with very detailed experiment instructions and
a dry run with simulated data in lieu of a real group matching.

After all subjects had run through the whole sequence of games, one of the six games
was randomly drawn as the paying game. For this definite game, subjects were ran-
domly matched into groups of four according to the game-specific group composition.
For each group, the computer calculated the group aggregate level of mitigation and
-based thereon- the group-specific probability distribution for the occurrence of the loss
event. Then, for each group, a random number was drawn from the group probability
distribution to determine whether or not the loss event had occurred. If “no loss” was
realized, each group member kept her retained budget, i.e., the share of the initial en-
dowment that was not spent on mitigation and/or adaptation. If “loss” was realized,
she received her retained budget minus a loss which depended on her individual level of
adaptation.

This payment scheme was chosen to create a monetary incentive that is most suitable
to the one-shot, all-or-nothing character of the underlying climate change issue (see also
Andreoni and Croson, 2008). Moreover, I chose a payment structure with an initial
endowment at the risk of loss that reflects the real-world climate change policy decision,
acknowledging that factors such as loss aversion and the endowment effect might influence
decision behavior as most prominently described by Kahneman and Tversky (1979),
Tversky and Kahneman (1992). In this respect, the current experiment is in line with
previous experiments on mitigation and/or adaptation such as Milinski et al. (2008) and
Hasson et al. (2010).

Besides the payment from the actual game, players received an additional reward of
3 Taler for each of their stated beliefs that exactly matched the respective investment
decision of the other group members in the paying period. If the unit cost of mitigation
and adaptation were equal for two or all three other group members, both the beliefs
and the actual investments were averaged, i.e., the correctness of beliefs did not depend
on the group members’ identities but only on their cost type. I chose this incentive
scheme following Gächter and Renner (2010), who found, in the context of public good
experiments, that belief accuracy is significantly higher when beliefs are incentivized
compared to beliefs that are not incentivized.

The session ended after all subjects had filled out a computerized questionnaire con-
taining socio-economic and personality items as well as questions on motivation and
framing (Appendix 4.B). The participants were one by one and anonymously called up
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for payment. The average session duration was 1h 10m including instruction time. Each
subject was paid a show-up fee of 7 Euro plus the individual earnings as well as the
reward for correct beliefs of the paying period at a conversion rate of 10 Taler = 1 Euro.
Payments (including show-up fee) ranged between 7.00 Euro and 17.30 Euro with an
average of 13.52 Euro over all sessions which approximates usual earnings in student
jobs.

4.4 Data and Methods of Analysis

4.4.1 Data description

Table 4.6 summarizes the descriptive statistics of the participants’ choices and the result-
ing expected payoffs listed by treatment. The levels of mitigation (mi) and adaptation
(ai) are reported directly from the observations. The expected payoffs (EU_avi) are
calculated using the subject-individual loss rates Li(ai) and residual budgets (depending
on spendings for mi and ai). The loss probabilities p(M) are first determined group-wise
for each treatment based on the group aggregate M and then averaged over all groups.
I chose this procedure for the calculation of expected payoffs in order to eliminate noise
caused by the group effect. As a check for robustness, however, all statistical analyses
reported in this section are also conducted with the actual expected payoffs resulting
from one particular random group matching(EUi). The results are very similar.

Table 4.7 summarizes the descriptive statistics of the subjects’ beliefs about their
co-players’ choices of m and a which they had expressed prior to making their own
actual choices. The beliefs about the units of mitigation and adaptation bought by the
other three group members are calculated as per-capita averages by adaptation cost type
(own/other), which results in four explanatory variables: Bel_m_owni, Bel_m_otheri,
Bel_a_owni and Bel_a_otheri.

By means of the post-experimental questionnaire, I gathered subject-specific data on
the following variables: (1) preferences for investment decisions: high individual payoff
(MaxEUi), low individual risk (MinRiski), high payoffs for all group members (MaxAlli),
low probability of loss (MinRiskAlli), fair allocation of payoffs (Fairi), high individual
payoff in the event of loss (MaxMini), data source: self-reported in the questionnaire
on a 1-5 scale from 1=“not important for the decisions” to 5=“very important for the
decisions”; (2) personality traits: extraversion (Extra), agreeableness (Agree), conscien-
tiousness (Consc), risk aversion (Riskav), neuroticism (Neuro), openness (Open) (data
source: self-reported in the questionnaire on a 1-5 scale as proposed in Rammstedt and
John (2007); (3) socioeconomic variables: age (Age), sex (Female), experimental experi-
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ence (Exp), major subject (Econ), job (Job), income (Income) (data source: self-reported
in the questionnaire, see Appendix 4.B). Finally, I create dummy variables for periodit
and session to control for order effects and sessions effects.

My hypotheses refer to within-subject differences between treatments. The dataset is
thus treated as a panel with the Subject ID being the panel variable and the treatment
being the time variable. In the notation, yit denotes the y-level of the ith subject in
treatment t. On this panel, I conduct a number of regression analyses described in the
following sections.

4.4.2 Analytical methods

Linear regressions. We start the analysis with two random-effects GLS regressions
based on two consecutive multiple linear regression models with treatment dummy vari-
ables. The first linear regression model is described by

(R1) yit = αi + β0 + β1treatmentst + εit.

The dependent scalar yit contains the individual treatment-specific levels of mitigation
(mit), adaptation (ait), expected average payoff (EU_avit) and -as a check for robustness-
expected payoff in one particular group matching (EUit). For the estimation of ait, I
restrict the dataset to those treatments in which adaptation is actually available, i.e.,
treatments h_hhhh, l_llll, h_00hh, l_00ll, h_hhll, and l_hhll. The treatmentst vector
consists of a set of four individual-invariant treatment dummy variables: adapt (own
type can adapt; yes=1, no=0), low (own type’s unit cost of adaptation; low=1 (5 Taler),
high=0 (15 Taler)), withadapt (other type within group can adapt; yes=1, no=0), and
withlow (other type’s unit cost of adaptation; low=1 (5 Taler), high=0 (15 Taler)), as
well as the interaction dummies adapt×withadapt (a×wa), adapt×withadapt×withlow
(a×wa×wl), adapt× low×withadapt (a×l×wa) and adapt× low×withadapt×withlow
(a×l×wa×wl). Based on the reference treatment 0_0000, the treatment effects can be
separated and discerned by the dummy variables and interaction variables as described
in Table 4.8. All idiosyncratic variance is captured in the error term uit = αi + εit.

The second model contains an additional vector indi which contains subject-specific,
treatment-invariant control variables. The model is described by

(R2) yit = αi + β0 + β1treatmentst + β2indi + εit.

After by backward elimination removing all individual control variables that proved
insignificant and/or of minor importance, the relevant vector indi consists of the pref-
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Table 4.6: Summary statistics: decisions and payoffs

Treatment Variable Mean Std. Dev. Min. Max. N

0_0000 m 1.716 0.912 0 3 116
EU 67.038 6.857 52.5 84 116
EU_av 67.19 7.395 56.772 81.103 116

0_00hh m 2.086 1.154 0 6 116
EU 59.632 11.553 0 82 116
EU_av 60.295 8.792 30.476 76.19 116

0_00ll m 2.216 1.07 0 5 116
EU 58.307 8.58 27 82 116
EU_av 58.827 8.084 37.784 75.569 116

h_00hh m 0.888 0.902 0 4 116
a 1.06 0.794 0 3 116
EU 62.712 10.226 0 76.84 116
EU_av 63.22 8.537 32.5 76.19 116

h_hhhh m 1.233 0.99 0 4 116
a 1.078 0.866 0 4 116
EU 57.691 10.078 14.55 75.600 116
EU_av 57.154 9.302 13.67 70.448 116

h_hhll m 1.457 1.075 0 5 116
a 0.983 0.834 0 4 116
EU 52.788 10.646 9.5 77.86 116
EU_av 52.831 9.553 9.097 66.587 116

l_00ll m 0.629 0.84 0 4 116
a 2.784 1.171 0 6 116
EU 72.446 7.284 43.92 83.52 116
EU_av 72.656 7.666 42.801 81.205 116

l_hhll m 0.655 0.845 0 3 116
a 2.724 1.227 0 6 116
EU 68.704 7.761 30 82.8 116
EU_av 68.938 7.83 37.401 77.003 116

l_llll m 0.690 0.838 0 4 116
a 2.784 1.156 0 6 116
EU 65.562 7.502 27 80.41 116
EU_av 65.081 7.955 35.338 72.373 116
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Table 4.7: Summary statistics: beliefs

Treatment Variable Mean Std. Dev. Min. Max. N

0_0000 Bel_m_own 1.859 0.921 0.667 9 116

0_00hh Bel_m_own 2.190 0.884 0 5 116
Bel_m_other 1.224 0.861 0 5.5 116
Bel_a_other 1.159 0.693 0 3 116

0_00ll Bel_m_own 2.172 0.878 0 5 116
Bel_m_other 0.828 0.662 0 3 116
Bel_a_other 2.703 0.955 0 5 116

h_00hh Bel_m_own 0.922 0.759 0 3 116
Bel_m_other 2.030 0.667 0.5 4 116
Bel_a_own 1.233 0.838 0 5 116

h_hhhh Bel_m_own 1.368 0.688 0 4 116
Bel_a_own 1.121 0.723 0 4 116

h_hhll Bel_m_own 1.560 0.794 0 4 116
Bel_m_other 0.974 0.785 0 4 116
Bel_a_own 0.912 0.705 0 3 116
Bel_a_other 2.677 0.974 0.5 5 116

l_00ll Bel_m_own 0.741 0.924 0 5 116
Bel_m_other 1.996 0.715 0.5 5.5 116
Bel_a_own 2.845 0.974 1 6 116

l_hhll Bel_m_own 0.836 0.978 0 7 116
Bel_m_other 1.543 0.864 0 5.5 116
Bel_a_own 2.802 1.049 0 6 116
Bel_a_other 0.987 0.637 0 2.5 116

l_llll Bel_m_own 0.974 0.699 0 4 116
Bel_a_own 2.664 0.910 1 5 116
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erence factors MaxEUi, MinRiski, MinRiskAlli, and MaxMini. The initially included
periodit and session dummies are dropped in the final model due to insignificance.

Besides treatment effects and subject-specific control variables, I estimate the impact
of beliefs about m and a on actual decisions regarding m and a. I use a third multiple
linear regression model described by

(R3) yi = β0 + β1beliefsi + β2indi + εi.

The dependent scalar yi contains the individual levels of mitigation (mi) and adapta-
tion (ai). The vector beliefsi contains the beliefs about the co-players’ choices of m and
a, i.e., Bel_m_owni, Bel_m_otheri, Bel_a_owni and Bel_a_otheri. The individual
control vector indi contains the preference factors MaxEUi, MinRiski, MinRiskAlli, and
MaxMini; and the personality traits “risk aversion” (Riskav) and “neuroticism” (Neuro).
The error term εi represents the unexplained idiosyncratic variance.

Obviously, the beliefs strongly depend on the treatment they refer to; thus, in order to
avoid multicollinearity issues, I use between regressions on the cross-treatments subject
means of m and a. In addition, I run separate regressions for each single treatment.

Poisson regressions. In the next step of the analysis, I explicitly account for the fact
that the subjects’ choices for mit and ait are counts, i.e., non-negative integers. The
microeconometric literature warns about potential shortcomings of linear regression
models when the dependent variable is a count (see e.g. Winkelmann, 2008). Standard
complications include heteroscedasticity, the presence of unobserved heterogeneity, the
small-mean property of the dependent variable in the presence of many zeros, and trun-
cations in the observed distribution of the dependent variable (Cameron and Trivedi,
2009, p. 553 pp). Therefore, I set up an alternative series of Poisson regressions for
the estimation of mit and ait, based on the assumption that these data are Poisson
distributed, i.e., E(yit) = Var(yit). As recommended by Cameron and Trivedi (2009,
chap. 17.3), I use robust standard errors for the Poisson models. This procedure ensures
correct standard errors even in the event of overdispersion. The Poisson regression
models are specified as follows:

(P1) yit = exp (αi + β0 + β1treatmentst + εit)

(P2) yit = exp (αi + β0 + β1treatmentst + β2indi + εit)

(P3) yi = exp (β0 + β1beliefsi + β2indi + εi).
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Robustness checks. As another test for robustness, I run both the GLS and the Poisson
regressions again with subject fixed effects. Since the time effects not captured by the
treatment variables are of minor size, the results of the fixed effect model are qualitatively
identical to those of the first random effects regression model R1; moreover, the GLS and
Poisson fixed effects regression results are identical in terms of coefficients and exhibit
only minor differences in significance levels (for detailed results, see Appendix 4.C).

Finally, to double-check the regression results, I conduct paired difference tests on
the within-subject, between-treatment differences. Since it was not certain that the
differences are interval and normally distributed, I chose the non-parametric Wilcoxon
signed rank test method for this purpose. Paired t-tests are conducted as well and yield
very similar results. All calculations are performed with Stata v12.1.

4.5 Results

4.5.1 Treatment Effects

The estimation results for the GLS random effects regression models R1 and R2 are listed
in Tables 4.9 and 4.10. The estimation results for the Poisson random effects regression
models P1 and P2 are listed in 4.11. After conversion, the coefficients from the GLS and
the Poisson model types are identical, with only minor differences in significance levels,
which is an indicator for the robustness of the results. For the sake of convenience, unless
noted otherwise, all numerical results presented in this section refer to the GLS random
effects regression model R1 results as listed in the second columns of Tables 4.9 and
4.10. In model R1, the individual-specific effects are suppressed, so that the regression
results can easily be compared with the benchmarks: the constants from model R1 equate
to the expected means of the dependent variables for the reference treatment 0_0000,
and the expected means for the other treatments can easily be computed by adding the
coefficients for the respective treatment dummies and interaction variables.

Mitigation

As their co-players’ unit cost of adaptation decrease, agents buy more mitigation in some
constellations, while in other constellations their level of mitigation remains unchanged.
On average across all treatments, interacting with a type who can adapt increases in-
dividual mitigation by 0.37 units compared to interacting with type 0 (coefficient for
withadapt). This result is highly statistically significant in all regressions. If the other
type can adapt at low cost, the own treatment-average mitigation further increases by
another 0.13 units (coefficient for withlow); yet, this result is not significant.
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Table 4.9: Treatment effects: m and a (GLS random effects regression)

regressand m a
model R1 R2 R1 R2

adapt -0.828*** -0.828***
(0.0990) (0.0990)

low -0.259*** -0.259*** 1.685*** 1.685***
(0.0990) (0.0990) (0.0720) (0.0720)

withadapt 0.371*** 0.371*** -0.0216 -0.0216
(0.0990) (0.0990) (0.0720) (0.0720)

withlow 0.129 0.129
(0.0990) (0.0990)

a×wa -0.0259 -0.0259
(0.140) (0.140)

a×wa×wl 0.0948 0.0948 -0.0754 -0.0754
(0.140) (0.140) (0.0953) (0.0953)

a×l×wa -0.319** -0.319**
(0.140) (0.140)

a×l×wa×wl -0.190 -0.190 0.116 0.116
(0.140) (0.140) (0.125) (0.125)

MaxEU -0.386*** -0.258***
(0.0749) (0.0832)

MinRisk 0.0907 0.222***
(0.0718) (0.0797)

MinRiskAll 0.152** -0.227***
(0.0612) (0.0680)

MaxMin 0.0351 0.342***
(0.0698) (0.0775)

_cons 1.716*** 2.316*** 1.080*** 0.840*
(0.0896) (0.421) (0.0879) (0.465)

N 1044 1044 696 696
adj. R2 0.2695 0.3557 0.4172 0.5044
Standard errors in parentheses
* p < 0.10, ** p < 0.05, *** p < 0.01
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Table 4.10: Treatment effects: EU_av and EU (GLS random effects regression)

regressand EU_av EU
model R1 R2 R1 R2

adapt -3.970*** -3.970*** -4.326*** -4.326***
(0.813) (0.813) (0.999) (0.999)

low 9.436*** 9.436*** 9.734*** 9.734***
(0.813) (0.813) (0.999) (0.999)

withadapt -6.895*** -6.895*** -7.406*** -7.406***
(0.813) (0.813) (0.999) (0.999)

withlow -1.468* -1.468* -1.325 -1.325
(0.813) (0.813) (0.999) (0.999)

a×wa 0.829 0.829 2.385* 2.385*
(1.150) (1.150) (1.412) (1.412)

a×wa×wl -2.855** -2.855** -3.578** -3.578**
(1.150) (1.150) (1.412) (1.412)

a×l×wa 2.347** 2.347** 1.280 1.280
(1.150) (1.150) (1.412) (1.412)

a×l×wa×wl 0.466 0.466 1.761 1.761
(1.150) (1.150) (1.412) (1.412)

MaxEU 3.788*** 2.465***
(0.692) (0.691)

MinRisk -1.008 0.00962
(0.663) (0.662)

MinRiskAll -0.824 0.0923
(0.565) (0.565)

MaxMin -0.874 -1.930***
(0.645) (0.644)

_cons 67.19*** 61.27*** 67.04*** 63.43***
(0.778) (3.876) (0.844) (3.889)

N 1044 1044 1044 1044
R2 0.3331 0.4196 0.2962 0.3328
Standard errors in parentheses
* p < 0.10, ** p < 0.05, *** p < 0.01
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Table 4.11: Treatment effects: m and a (Poisson random effects regression)

regressand m a
model P1 P2 P1 P2

adapt -0.659∗∗∗ -0.659∗∗∗

(0.121) (0.121)

low -0.344∗ -0.344∗ 0.946∗∗∗ 0.946∗∗∗

(0.153) (0.153) (0.0748) (0.0748)

withadapt 0.196∗ 0.196∗ -0.0113 -0.0113
(0.0957) (0.0957) (0.0672) (0.0672)

withlow 0.0601 0.0601
(0.0896) (0.0896)

a×wa 0.132 0.132
(0.161) (0.161)

a×wa×wl 0.107 0.107 -0.0784 -0.0784
(0.145) (0.145) (0.118) (0.118)

a×l×wa -0.288 -0.288
(0.209) (0.209)

a×l×wa×wl -0.116 -0.116 0.0950 0.0950
(0.196) (0.196) (0.132) (0.132)

MaxEU -0.310∗∗∗ -0.150∗∗∗

(0.0562) (0.0435)

MinRisk 0.0934 0.120∗∗

(0.0598) (0.0430)

MinRiskAll 0.154∗∗ -0.121∗∗∗

(0.0497) (0.0356)

MaxMin 0.0307 0.210∗∗∗

(0.0539) (0.0453)

_cons 0.540∗∗∗ 0.771∗ 0.0723 -0.141
(0.0811) (0.315) (0.0762) (0.248)

lnalpha -1.713∗∗∗ -2.276∗∗∗ -2.561∗∗∗ -3.746∗∗∗

(0.203) (0.254) (0.307) (0.685)
N 1044 1044 696 696
Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Differentiating by the player’s own cost type (table 4.12), we find that players of type
h respond most sensitively to lower adaptation cost of co-players. If a type h player
encounters type h players rather than type 0 players, her average level of mitigation
increases by 0.34 units; if a type h player encounters type l players rather than type
h players, her average level of mitigation further increases by 0.22 units. Both results
are highly significant on a 99% confidence level in the GLS regression and on a 95%
confidence level in the Poisson regression. Players of type 0 respond less sensitively to
lower adaptation cost of co-players. If a type 0 player encounters type h players rather
than type 0 players, her average level of mitigation increases by 0.37 units (p = 0.0000);
if a type 0 player encounters type l players rather than type h players, her average level
of mitigation increases by 0.13 units; however, the increase is not statistically significant
(p = 0.17). Finally, type l players do not respond significantly to lower adaptation cost
of co-players.

The significance of these observations is further confirmed by a series of directional
(one-sided) Wilcoxon signed rank tests on the treatment-specific mitigation differences
induced by the other type’s adaptation cost: the null hypotheses H0: m0_0000 >
m0_00hh can be rejected with p = 0.0001; H0: m0_0000 > m0_00ll can be rejected
with p = 0.0000; H0: m0_00hh > m0_00ll can be rejected with p = 0.0239; H0:
mh_00hh > mh_hhhh can be rejected with p = 0.0002; H0: mh_00hh > mh_hhll can
be rejected with p = 0.0000; H0: mh_hhhh > mh_hhll can be rejected with p = 0.0134;
H0: ml_00ll = ml_hhll cannot be rejected (p > |z| = 0.3781); H0: ml_00ll = ml_llll
cannot be rejected (p > |z| = 0.1629); H0: ml_hhll = ml_llll cannot be rejected
(p > |z| = 0.4375). These observations support (H1), as visualized in Figure 4.1

As the own unit cost of adaptation decrease, the level of mitigation decreases. The
average mitigation level is highest in those treatments where adaptation is not available,
i.e., if the own cost type is 0. Mitigation is by 0.8 units lower if the own cost type is h
rather than 0 (coefficient for adapt), and by another 0.26 units lower if the own cost type
is l rather than h (coefficient for low). The regression results indicate that a decrease in
an agent’s own unit cost of adaptation significantly lowers this agent’s level of mitigation
on a 99% confidence level. The significance is further confirmed by a series of directional
Wilcoxon signed rank tests on differences in mitigation levels induced by the own unit
cost of adaptation (all tests confirm the regression results with p = 0.0000). This result
supports (H5). The result corroborates the findings from an earlier experiment with a
similar design (Probst, 2012).
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4. Mitigation and Adaptation with Heterogeneous Unit Cost of Adaptation

Figure 4.1: Mitigation levels depending on other type’s adaptation cost
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The level of mitigation observed in the experiment is consistently higher than pre-
dicted by the Nash equilibrium. In the 0_0000 treatment, the average observed level of
mitigation is 1.72 units. This value is well above the Nash equilibrium level of mitigation
(1 unit) and even exceeds the average social optimum level of mitigation (1.5 units). In
the 0_00hh treatment, the average observed level of mitigation is 2.09 units. This value
is very close to the optimal level of mitigation of 2 units both in the Nash equilibrium
and in the social optimum. In the 0_00ll treatment, the average observed level of
mitigation level (2.22 units) ranges between the Nash equilibrium level of mitigation (2
units) and the socially optimal level of mitigation (3 units). In the h_00hh treatment,
the average observed level of mitigation is 0.89 units, which is only slightly below the
social optimum level of mitigation (1 unit), but clearly above the Nash equilibrium level
of mitigation (0 units). In the h_hhhh treatment, the average level of mitigation is 1.23
units, which is also slightly below the average social optimum level of mitigation (1.5
units) and clearly above the average Nash equilibrium level of mitigation (0.5 units). In
the h_hhll treatment, the observed average level of mitigation is 1.46 units. This value
exceeds the Nash equilibrium level of mitigation (1 unit), but falls well below the social
optimum level of mitigation (3 units). For players of type l, the average observed level of
mitigation is almost constant at 0.66 units in all three group constellations. The social
optimum level of mitigation is 1.5 units in the l_llll treatment and zero in the l_hhll
and the l_00ll treatments. The Nash equilibrium level of mitigation for type l is zero in
all three group constellations.

Besides the absolute levels of mitigation, we also analyzed the effect of the group com-
position on the type-specific percentage shares in the group aggregate level of mitigation.
We find that, in the heterogeneous games, the higher-cost type contributes substantially
more to M than the lower-cost type.

For the analysis, we define the dependent variable shareMi as a subject’s own mitiga-
tion mi divided by the group aggregate mitigation M based on one particular random
group matching, and the dependent variable shareM_avi as mi divided by the average
game-specific M (averaged over all groups). In 20 out of 1044 observations, we found
M = 0; for these cases, shareMi was set to 0.25. shareM and shareM_av were then
regressed on the treatment dummy variables and interaction variables as described in
Table 4.8. The regression results are displayed in Table 4.13.

Quite obviously, all group members contribute the same share (0.25) to the group
aggregate mitigation level in the homogeneous games. In the heterogeneous games, how-
ever, shares are significantly different depending on the cost type. In the 00hh game, the
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Table 4.13: Per capita percentage shares in M, by treatment

regressand shareM shareM_av

adapt -0.107*** -0.101***
(0.0236) (0.0209)

low -0.0472** -0.0387*
(0.0236) (0.0209)

withadapt 0.107*** 0.101***
(0.0236) (0.0209)

withlow 0.0472** 0.0387*
(0.0236) (0.0209)

a×wa -9.63e-16 7.94e-16
(0.0334) (0.0295)

a×wa×wl 0.0645* 0.0562*
(0.0334) (0.0295)

a×l×wa -0.0645* -0.0562*
(0.0334) (0.0295)

a×l×wa×wl -2.08e-16 5.88e-17
(0.0334) (0.0295)

_cons 0.250*** 0.250***
(0.0167) (0.0148)

N 1044 1044
R2 0.172 0.182
Standard errors in parentheses
* p < 0.10, ** p < 0.05, *** p < 0.01
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two type 0 players together contribute 71% of the group aggregate mitigation, whereas
the two type h players together contribute only 29%. A similar distribution can be
observed in the hhll game, where type h players contribute 72% while type l players
contribute 28%. The imbalance is even more pronounced in game 00ll, where type 0
players contribute 81% and type l players contribute 19% of the group aggregate miti-
gation level (all results are significant). These observations support (H4). The observed
contributions to M are indeed heavily imbalanced at the expense of the higher-cost type
in the heterogeneous games; yet, they are less divergent than predicted by the Nash
equilibrium, where the type with lower unit cost of adaptation does not mitigate at all,
while the entire group aggregate mitigation level is provided by the type with higher unit
cost of adaptation. Figure 4.2 illustrates this comparison.

Figure 4.2: Shares in group aggregate mitigation, by cost type
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Adaptation

The level of adaptation does not depend on the other type’s unit cost of adaptation. In
all regressions we run on ait, the coefficients for withadapt and withlow were small-sized
and not significant. This indicates that an agent’s level of adaptation is not affected
by her co-players’ unit cost of adaptation. This observation holds for all cost types,
as shown in Table 4.12, columns 5 and 6. The two-sided Wilcoxon signed rank tests
confirm the regression results: none of the Null hypotheses we tested against could be
rejected. For H0: ah_00hh = ah_hhhh, p > |z| = 0.7019; for H0: ah_00hh = ah_hhll,

108



4. Mitigation and Adaptation with Heterogeneous Unit Cost of Adaptation

p > |z| = 0.2097; for H0: ah_hhhh = ah_hhll p > |z| = 0.1057; for H0: al_00ll =
al_hhll, p > |z| = 0.5653; for H0: al_00ll = al_llll, p > |z| = 0.4607; and for H0:
al_hhll = al_llll, p > |z| = 0.3939. Thus, we find support for (H2).

The level of adaptation increases as the own unit cost of adaptation decrease. Players
of type h buy approx. 1 unit of adaptation on average. Players of type l buy 2.77 units of
adaptation on average. The low coefficient is positive (approx. 1.7) and highly significant,
which is also confirmed by directional Wilcoxon signed rank tests: the Null hypotheses
of equal means H0: ah_hhhh = al_hhll and H0: ah_hhll = al_llll can be rejected with
p = 0.0000. The result supports (H6) and corroborates the findings from the experiment
in Probst (2012).

The observed average levels of adaptation are qualitatively in line with the Nash
equilibrium predictions. Yet, we do not observe the Nash-predicted increase in adaptation
as the other type’s adaptation cost decrease. The observed average level of adaptation
ranges well above the socially optimal level of adaptation, which is zero in all three
treatments for type h and 0.75 units (treatment l_llll) and 1 unit (treatments l_hhll and
l_00ll), resprectively, for type l. Figure 4.3 provides a summary and visualization of the
benchmark comparison.

Payoffs

The average expected payoff EU_av decreases as the other type’s unit cost of adaptation
decrease. Independent of the own unit cost of adaptation, the average expected payoff
decreases by 6.9 Taler if the other type can invest in adaptation (coefficient for with-
adapt, significant on a 99% confidence level as shown in Table 4.10). If the co-players’
cost type is l, the average expected payoff further decreases by 1.5 Taler (coefficient for
withlow, weakly significant on a 90% level). We run additional GLS fixed effects regres-
sion analyses differentiated by own cost types (see Table 4.12, columns 7-9): the average
expected payoff of type 0 is by 6.90 Taler lower in the 0_00hh treatment than in the
0_0000 treatment. It is by 1.47 Taler lower in the 0_00ll treatment than in the 0_00hh
treatment. Both coefficients are significant. The average expected payoff of type h is by
6.07 Taler lower in the h_hhhh treatment than in the h_00hh treatment. It is by 4.32
Taler lower in the h_hhll treatment than in the h_hhhh treatment. Both coefficients are
highly significant. Finally, the average expected payoff of type l is by 3.72 Taler lower
in the l_hhll treatment than in the l_00ll treatment. It is by 3.86 Taler lower in the
l_llll treatment than in the l_hhll treatment. Both coefficients are highly significant.
We conducted directional Wilcoxon signed-rank tests and one-sided paired t-tests on all
payoff differences induced by the other type’s unit cost of adaptation. In each of the tests,
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Figure 4.3: Adaptation levels depending on other type’s adaptation cost
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the Null hypothesis of equal means could be rejected with p = 0.0000. These findings
support (H3), as also depicted in Figure 4.4.

On average, players receive higher payoffs than the Nash equilibrium predicts in all
three cost-homogeneous games. In the 0000 game, the observed average payoff almost
hits the social optimum. In the llll game, the observed average payoff ranges halfway
between the Nash equilibrium and the social optimum. In the hhhh game, the observed
average payoff only exceeds the Nash equilibrium payoff by 1.15 Taler, while it falls almost
11 Taler below the social optimum. In the heterogeneous games, we observe that players
with comparatively high adaptation cost fare better in the experiment than the Nash
equilibrium predicts, while their co-players with comparatively low adaptation cost fare
worse. In all three heterogeneous games, the observed game-average sum of expected
payoffs within a group is lower than predicted by the Nash equilibrium. The largest
deviations from the socially optimal payoffs are born by those players who encounter
players of type h, irrespective of their own type.

4.5.2 Effects induced by other factors

As reported in the previous sections, we find sound empirical support for all hypotheses;
yet, in terms of quantities, we also observe some significant deviations from the pre-
dictions. The following step of our analysis scrutinizes the deviations. The hypotheses
are based upon the concept of Nash equilibrium, which presumes complete information
about the set-up of the game and common knowledge of rationality; moreover, we implic-
itly assume that players’ utility proportionally depends on their expected payoff. These
presumptions give rise to several objections. In particular, deviations of the empirical
data from the Nash equilibrium predictions may arise from (1) erroneous beliefs about
co-players’ investment decisions, and (2) deviating utility functions (e.g. due to risk
aversion, fairness preferences, inequity aversion, utility beyond the monetary payoff).2

Beliefs

We are interested in three questions: First, are the beliefs correct? Or do subjects
systematically over- or underestimate their co-players’ decisions? Second, how do players’
beliefs affect their actual investment decisions? Third, where do the beliefs come from?

2Even if all players had correct beliefs about their co-players’ investment decisions, and if we exactly
knew their utility functions, deviations from the Nash equilibrium could still arise, e.g. due to input data
error or due to strategically irrational behavior (decisions are not best responses to beliefs). I disregard
these effects for two reasons: first, they are virtually not detectable from the data; second, I consider
them as rather unimportant.
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Figure 4.4: Payoffs depending on other type’s adaptation cost
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Are they influenced by preferences and/or by personality traits? Are they universal or
do they depend on the context?

Accuracy of Beliefs. Subjects systematically overestimate mitigation levels, and hold
correct beliefs about adaptation levels. To assess the accuracy of beliefs, I calculate the
treatment-average actual decisions regarding the own type’s and the other type’s level
of mitigation (m_own and m_other), and the own type’s and the other type’s level
of adaptation (a_own and a_other) over all subjects for each single treatment. These
averages are put to comparison with the subjects’ beliefs about the respective decisions.
A summary of these data is provided in Table 4.14.

To assess the significance of over-/underestimations, I use a series of Wilcoxon signed
rank tests. I test the null hypotheses H0: Bel_m_own = m_own; H0: Bel_m_other
= m_other; H0: Bel_a_own = a_own; H0: Bel_a_other = a_other, both by average
across all treatments as well as for each single treatment. Across treatments, we find that
the own type’s and the other type’s level of mitigation are systematically over-estimated
(H0 rejected with p = 0.0022 for m_own and with p = 0.0476 for m_other). The mean
differences between the beliefs about adaptation and the actual levels of adaptation are
not significant (H0 is accepted in both cases).

The analysis by treatment shows significant overestimation of m_own for the treat-
ments h_00hh (H0 rejected with p = 0.0394), h_hhll (H0 rejected with p = 0.0000),
and l_llll (H0 rejected with p = 0.0062). Beliefs are found to be accurate for 0_0000,
0_00hh, 0_00ll, h_hhhh, and l_hhll. Finally, we find with weak significance (H0 re-
jected with p = 0.0802) that m_own is systematically underestimated in treatment
l_00ll. Regarding m_other, we observe beliefs that range significantly above the ac-
tual decisions in treatments 0_00hh (H0 rejected with p=0.0000), 0_00ll (p = 0.0129),
h_hhll (p = 0.0000), and l_hhll (p = 0.0629). Beliefs range significantly below the actual
decisions in treatments h_00hh (p = 0.0180) and l_00ll (p = 0.0022). For a_own, the
tests indicate overestimation in treatment h_hhll (H0 rejected with p = 0.0211) and un-
derestimation in treatment l_llll (H0 rejected with p = 0.0679). In all other treatments,
beliefs about a_own are accurate. For a_other, we find that beliefs range significantly
below the actual decisions in treatment 0_00ll (H0 rejected with p = 0.0366). In all
other treatments, beliefs about a_other are accurate.

Impact of Beliefs. Subjects’ own actual investment decisions and their beliefs about
the own type’s decisions exhibit a highly significant positive correlation. I infer that the
effects of beliefs on actual decisions are not strategically motivated.

For the analysis of how beliefs affect decisions, consider the between regression on
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Table 4.15: Impact of beliefs (between-effects regression)

m a EU_av

Est_m_own 0.625*** -0.00351 -5.847***
(0.206) (0.126) (1.860)

Est_m_other 0.155 -0.183 -1.241
(0.317) (0.198) (2.858)

Est_a_own -0.00267 0.653*** -1.749
(0.227) (0.143) (2.044)

Est_a_other -0.00292 0.437 -0.426
(0.330) (0.348) (2.978)

MaxEU -0.238*** -0.225*** 2.349***
(0.0652) (0.0679) (0.588)

MinRisk 0.123** 0.143** -1.171**
(0.0599) (0.0632) (0.540)

MinRiskAll 0.0290 -0.0946* 0.0656
(0.0540) (0.0558) (0.487)

MaxMin 0.00201 0.167*** -0.290
(0.0604) (0.0628) (0.545)

Riskav -0.0614 0.00627 0.556
(0.0586) (0.0610) (0.529)

Neuro 0.0741 0.0820 -0.642
(0.0570) (0.0592) (0.514)

Open 0.0865* -0.0287 -0.721*
(0.0479) (0.0504) (0.432)

_cons 0.344 0.511 73.08***
(0.479) (0.500) (4.319)

N 1044 696 1044
R2 0.513 0.588 0.532
Between regression: regressands are cross-treatment averages
Standard errors in parentheses
* p < 0.10, ** p < 0.05, *** p < 0.01
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subject-average, cross-treatment means based on the regression model R3 displayed in
Table 4.15. The regression results indicate that if the belief about the own type’s level
of mitigation Bel_m_own increases by one unit, the own level of mitigation increases
by 0.625 units. In consequence, the average expected payoff EU_av decreases by 2.6
Taler. If the belief about the own type’s level of adaptation Bel_a_own increases by
one unit, the own level of adaptation increases by 0.65 units. The beliefs about the other
type’s level of mitigation Bel_m_other and the belief about the other type’s level of
adaptation Bel_a_other have no significant impact on actual decisions or the resulting
payoff. The treatment-wise estimation results based on the regression models R3 and P3
confirm these findings (see Appendix 4.D, Tables 4.19, 4.20, 4.21, 4.22, and 4.23).

We find that beliefs and decisions are closely interrelated: there are highly significant
positive correlations between a subject’s m, her Bel_m_own, and her Bel_a_other ; as
well as between a subject’s a, her Bel_a_own, and her Bel_m_other. The former three
variables m, Bel_m_own, and Bel_a_other are negatively correlated with the latter
three variables a, Bel_a_own, and Bel_m_other. A correlation matrix is provided in
Appendix 4.E.

The results suggest that the effects of beliefs on actual decisions do not arise from
strategic behavior: if subjects reacted strategically rational, they would actually buy less
mitigation if they believed their co-players would buy more mitigation, which is due to
the decreasing marginal benefit of group aggregate mitigation M .3 In contrast, the co-
players’ level of adaptation is strategically irrelevant - we would not expect a strategical
change in a player’s level of adaptation in response to her belief about the co-players’
level of adaptation.

A possible explanation for our observations is that both the beliefs and the actual
decisions are partly determined by underlying preferences such as e.g. risk attitude or
non-monetary utility: subjects tend to hold their own preferences to be universal; thus,
they project them onto their co-players (Kelley and Stahelski, 1970; Neugebauer et al.,
2009). This conjecture is tested in the following.

Belief formation. The more importance a subject attaches to a high individual payoff,
the lower is her belief about her own type’s level of mitigation. The more importance a
subject attaches to a low probability of loss, the higher is her belief about her own type’s
and the other type’s level of mitigation. The more importance a subject attaches to a
high individual payoff in the event of loss, the higher is her belief about her own type’s
and the other type’s level of adaptation. Subjects with a high degree of risk aversion

3Schram et al. (2008) provide empirical evidence for a significant positive relationship between the
estimated probability of being pivotal and the inclination to contribute to a step-level public good.
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tend to overestimate the own type’s and the other type’s level of mitigation. Subjects
with a high degree of neuroticism tend to underestimate the own type’s and the other
type’s mitigation.

To enhance our understanding about belief formation, I treat the beliefs (Bel_ vari-
ables) as dependent variables and regress them on the preferences and the personality
traits reported in the questionnaire (I also controlled for order and session effects and for
socioeconomic variables but did not find any significant effects). The results are shown in
Table 4.16. I also let the preferences interact with the treatment dummies and regress the
beliefs on the interaction terms, i.e., I test for the effects of the preferences conditional
on treatments to check whether the preferences are universal or depend on the context.
The results are shown in Appendix 4.F, Tables 4.25 and 4.26.

Table 4.16: Belief formation (GLS random effects regression)

Est_m_own Est_m_other Est_a_own Est_a_other

MaxEU -0.186*** -0.134*** -0.0463 -0.0138
(0.0688) (0.0451) (0.0510) (0.0349)

MinRisk -0.0701 -0.0351 0.0740 0.0196
(0.0637) (0.0418) (0.0473) (0.0324)

MinRiskAll 0.156*** 0.110*** -0.104** -0.0738***
(0.0543) (0.0356) (0.0403) (0.0276)

MaxMin 0.0717 0.0385 0.133*** 0.0755**
(0.0632) (0.0415) (0.0469) (0.0321)

Riskav 0.131** 0.0902** 0.0127 0.0143
(0.0631) (0.0414) (0.0468) (0.0321)

Neuro -0.152** -0.114*** -0.00561 0.0115
(0.0603) (0.0396) (0.0448) (0.0307)

_cons 1.651*** 1.158*** 1.042*** 0.715***
(0.447) (0.293) (0.332) (0.227)

N 1044 1044 1044 1044
R2 0.141 0.172 0.104 0.075
Standard errors in parentheses
* p < 0.10, ** p < 0.05, *** p < 0.01

Since the preferences are measured on an ordinal scale, caution is advised when in-
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terpreting the absolute size of the coefficients; yet, we can make inferences about their
relative size and significance. We find that, as subjects attach more importance to a
high individual payoff (MaxEU ), the mitigation level they believe the own type would
choose (Bel_m_own) decreases. The effect is most pronounced for types 0, and smaller
in size and less significant for the types hand l. As subjects attach more importance to a
high individual payoff (MaxEU ), the mitigation level they believe the other type would
choose (Bel_m_other) decreases. The effect is considerable in size and at least weakly
significant (90% confidence level) for all six heterogeneous treatments. The beliefs about
adaptation levels do not significantly depend on MaxEU in the overall regression; yet,
for type h, there is a negative significant effect of MaxEU on Diff_a_own in treatments
h_hhhh and h_hhll. There is also a significant yet small negative effect of MaxEU on
Diff_a_other in all four heterogeneous treatments in which the other type can adapt.

A high importance attached to low individual risk (MinRisk) has no significant effect
in the overall regression. In the treatment-specific analysis, we can observe that type 0 ’s
beliefs about type h’s and type l ’s level of mitigation decrease in MinRisk, and that type
l ’s belief about her own type’s level of mitigation decreases in MinRisk.

As subjects attach more importance to a low probability of loss (MinRiskAll), the
mitigation level they believe the own type and the other type would choose increases.
The treatment-specific analysis reveals that the effect is significant for beliefs about type
h’s and type l ’s mitigation, but not for beliefs about type 0 ’s mitigation. As subjects
attach more importance to a low probability of loss (MinRiskAll), the adaptation level
they believe the own type and the other type would choose decreases. The effect is most
pronounced for the own-type beliefs of type l players. The effect is significant in all four
heterogeneous treatments in which the other type can adapt.

As subjects attach more importance to a high individual payoff in the event of loss
(MaxMin), the adaptation level they believe the own type and the other type would
choose significantly increases. The treatment-specific analysis shows that the increase
in beliefs about adaptation is largest and most significant in treatments h_00hh and
h_hhhh (Bel_a_own) and treatments h_hhll and l_hhll (Bel_a_other).

Finally, the regression results suggest that subjects with a high degree of risk aversion
tend to state high beliefs about the own type’s and the other type’s level of mitigation.
Subjects with a high degree of neuroticism tend to state low beliefs about the own type’s
and the other type’s level of mitigation.
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Preferences

We can identify a preference-dependent pattern in belief formation; moreover, the results
suggest that there is a significant interrelation of beliefs and actual investment decisions.
This indicates that both the beliefs and the actual decisions have their common origin in
the players’ preferences and personality traits. In the final step of the analysis, I discuss
the (direct) impact of preferences on the actual investment decisions. For this purpose,
I again refer to the results of the GLS regressions (see Tables 4.9 and 4.10, model R2).
In addition to the treatment-average analysis, I also let the preferences interact with the
treatment dummies as I did before when estimating the beliefs. The results are shown
in Appendix 4.F, Table 4.27. By regressing m and a on the interaction terms, I test
for the effects of the preferences conditional on treatments in order to find out whether
the preferences are universal or depend on the context. As in the beliefs regression, the
absolute size of the coefficients has to be interpreted with caution, because the preferences
are measured on an ordinal scale.

As subjects attach more importance to a high individual payoff (MaxEU ), the levels
of both mitigation and adaptation decrease. The effect occurs in all treatments. It is
more pronounced for mitigation than for adaptation and significant on a 99% confidence
level. The regression results show that a high motivation to maximize payoffs indeed
has a positive and highly significant effect on the average expected payoff EU_av. A
possible explanation is that payoff maximizers are less risk-averse and more willing to
free-ride, i.e., to contribute less to the public good mitigation.

As subjects attach more importance to a low individual risk (MinRisk), the levels
of both mitigation and adaptation increase, and the average expected payoff decreases.
The MinRisk coefficients are smaller in size and less significant than those for MaxEU.
A plausible interpretation is that risk minimizers sacrifice a larger share of their budget
for risk reduction and make use of both instruments. The treatment-specific analysis
suggests that a higher MinRisk score causes a higher level of mitigation in treatments
0_0000, 0_00hh and 0_00ll. In all other treatments, a higher MinRisk score leads to
an increase in adaptation, whereas the level of mitigation remains unchanged. We infer
that risk minimizers prefer to raise their level of adaptation, but resort to mitigation if
adaptation is not available.

As subjects attach more importance to a low probability of loss (MinRiskAll), the level
of mitigation increases, and the level of adaptation decreases in those treatments where
adaptation is available. Type 0 players are only marginally affected by MinRiskAll. We
reason that subjects who prefer to prevent a loss event rather than to deal with the
consequences of a loss shift their budget towards mitigation.
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Finally, as subjects attach more importance to a high individual payoff in the event of
loss (MaxMin), the level of adaptation is increasing whereas the level of mitigation does
not change. The increase in adaptation is considerable in size and significant on a 99%
confidence level in all six treatments where adaptation is available. Type 0 players with
a high MaxMin score increase their level of mitigation; yet the effect is not significant.

4.6 Conclusion

The analysis of the experimental data yields that all hypotheses on treatment effects are
qualitatively supported: as their co-players’ adaptation cost increase, agents respond by
reducing their own mitigation level, whereas the adaptation level remains unchanged.
The average expected payoff increases. Within heterogeneous groups, agents with higher
adaptation cost contribute a higher share to the aggregate mitigation level than agents
with lower adaptation cost.
Despite these confirmative results, the observed choices deviated from the Nash equi-
librium predictions in quantitative terms. The players in the experiment contribute
systematically more to the public good mitigation than predicted by the Nash equilib-
rium, whereas the investments in adaptation range around the Nash equilibrium level. In
the homogeneous games, above-Nash contributions to mitigation result in higher average
expected payoffs than predicted by the Nash equilibrium.

In the heterogeneous games, average expected payoffs critically depend on the relative
shares in M . The Nash equilibrium predicts that the type with higher adaptation cost
contributes 100% of the group aggregate level of mitigation, while the type with lower
adaptation cost contributes zero. In the experiment, we indeed observe some degree
of freeriding; yet, the divergence is less extreme than predicted (see Figure 4.2). In
consequence, the observed average payoff gap between the higher-cost type and the lower-
cost type is smaller than predicted by the Nash equilibrium (see Figure 4.5). However,
this distribution takes its toll: the game-average payoff across both types of players falls
below the Nash equilibrium level in all three heterogeneous games (see Figure 4.6).

I tested for two factors that could possibly explain these deviations: first, I conjectured
that subjects responded to erroneous beliefs; second, I conjectured that the investment
decisions are driven by utility components beyond the expected payoff, in particular (i)
risk aversion and (ii) inequity aversion.

By eliciting the beliefs about the other players’ decisions, I was able to control for
erroneous beliefs. The results indicate that subjects systematically overestimate their
co-players’ levels of mitigation; at the same time, the actual investments in mitigation are
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Figure 4.5: Payoff equity, by game
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higher than predicted by the Nash equilibrium. This runs contrary to the expectation of
strategically rational decisions; instead, we have good reason to attribute both the beliefs
about the co-players’ decisions and the actual own decisions to idiosyncratic preferences
regarding risk and equity.

To check whether the results are sensitive to changes in risk attitude, I re-calculate
the Nash equilibria on the alternative expected utility function

Eui = pi(M) · ((1− Li(ai)) · (yi − kiai − limi))
0.8 + (1− pi(M)) · (yi − kiai − limi)

0.8.

The Nash equilibrium strategies turn out to be quite robust to this variation: only in
treatment h_00hh, the Nash equilibrium value for a increases from 0 to 1; all other
equilibrium values remain unchanged. I repeat the robustness check assuming an even
more concave expected utility function

Eui = pi(M) · ((1− Li(ai)) · (yi − kiai − limi))
0.5 + (1− pi(M)) · (yi − kiai − limi)

0.5.

The Nash equilibriumm for type 0 increases by 0.5 units in all three treatments (0_0000,
0_00hh and 0_00ll); all other equilibrium values remain unchanged. These observations
are in line with the results of Dionne and Eeckhoudt (1985) and Briys and Schlesinger
(1990) who show in a model of choice under risk that the level of self-insurance (here:
adaptation) is monotonically increasing in an individual’s degree of risk aversion, whereas
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Figure 4.6: Payoff efficiency, by game
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the impact of risk aversion on the level of self-protection (here: mitigation) is ambiguous.
In the heterogeneous games, we observe that, while all players contribute more to the

aggregate level of mitigation than predicted by the Nash equilibrium, the excess (“above-
Nash”) contribution of players with lower adaptation cost is significantly higher than the
excess contribution of players with higher adaptation cost. As a result, the difference in
average expected payoffs between types is smaller than it is in the Nash equilibrium. A
possible explanation for this behavior is that subjects incorporate fairness in the sense
of self-centered inequity aversion into their utility function as described by Fehr and
Schmidt (1999) and, similarly, by Bolton and Ockenfels (2008). Their models explain
that, under certain conditions, people are ready to sacrifice monetary payoff in exchange
for a more equitable outcome in terms of relative payoffs. Lange and Vogt (2003) and
Lange (2006) apply the Bolton and Ockenfels (2008) model to the context of climate
change policymaking. They show that, under certain conditions, parties negotiating
climate treaties can reach higher cooperation rates if their utility functions contain an
element of inequity aversion. Our empirical results point in the same direction.

Equity considerations have been an inherent part of international negotiations on cli-
mate change policy: in article 3 of the UNFCCC framework, it is demanded that

(t)he Parties should protect the climate system for the benefit of present
and future generations of humankind, on the basis of equity and in accor-
dance with their common but differentiated responsibilities and respective
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capabilities. Accordingly, the developed country Parties should take the lead
in combating climate change and the adverse effects thereof.

My experiment shows that even if agents are equal in terms of endowment, mitigation
cost and marginal benefits from mitigation, payoffs can diverge substantially only because
of heterogeneous adaptation cost. The non-cooperative outcome favors those who profit
from low adaptation cost anyway, whereas those who do not have the opportunity to
adapt are even further disadvantaged because their co-players free ride on them. This
has important implications for negotiations on international climate change agreements:
an agent’s adaptive capacity and adaptation cost affect her outside option and thus the
threat point of the bargaining problem. It is therefore suggested that, in considerations
of equity, the parties to international climate change agreements pay particular attention
to differences in relative adaptation cost and adaptive capacities.
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4.A Experimental Instructions

1 
 

Experimentanleitung 

 

Allgemeine Informationen 

Herzlich willkommen! Sie werden gleich an einem Experiment teilnehmen. Die Durchführung 
des Experiments wird ca. 90 Minuten in Anspruch nehmen. Alle Teilnehmerinnen und 
Teilnehmer befinden sich in derselben Entscheidungssituation und haben dieselben 
Entscheidungsmöglichkeiten. Das Experiment besteht aus 9 voneinander unabhängigen Spielen. 
Ihre Entscheidungen in einem Spiel haben also keinen Einfluss auf die anderen Spiele.  

Für Ihre Teilnahme erhalten Sie eine Basisvergütung (Fixbetrag) von 7 Euro. Abhängig von Ihren 
Entscheidungen, den Entscheidungen der anderen Teilnehmer und einem gewissen Maß an 
Zufall können Sie zusätzliches Geld verdienen. Zur Ermittlung Ihres Verdienstes wird am Ende 
des Experiments aus den 9 gespielten Spielen ein Spiel ausgelost. Sie erhalten zusätzlich zur 
Basisvergütung die in diesem Spiel erzielte Auszahlung. Im Experiment werden alle Zahlungen 
in Talern berechnet, die am Ende in Euro umgerechnet und in bar an Sie ausgezahlt werden, 
ohne dass andere Teilnehmerinnen und Teilnehmer erfahren, wie viel Geld Sie erhalten. Der 
Umrechnungskurs der Spielwährung beträgt 

10 Taler = 1 Euro. 

Alle Entscheidungen im Experiment bleiben anonym, d.h. keine andere Teilnehmerin und kein 
anderer Teilnehmer erhält Informationen über ihre Identität, weder während noch nach dem 
Experiment. Genauso erhalten Sie keine Information über die Identität der anderen 
Teilnehmerinnen und Teilnehmer. 

Es ist wichtig, dass Sie die Anleitung zu dem Experiment vollständig verstehen. Bitte lesen Sie 
sich die folgenden Seiten deshalb gründlich durch. Wenn Sie Fragen haben, dann heben Sie bitte 
die Hand und der Experimentleiter wird ihre Fragen beantworten. Um sicherzustellen, dass Sie 
die Anleitung verstanden haben, bitten wir Sie, im Anschluss an die Instruktionsphase einige 
Kontrollfragen zu beantworten. Es folgt noch eine Proberunde, bevor dann das eigentliche 
Experiment beginnt. 

Nach Abschluss des Experiments gibt es noch einen Fragebogen, den Sie bitte am Computer 
ausfüllen. 

 

Während des Experiments ist es nicht gestattet, mit den anderen Teilnehmern zu 
kommunizieren. Mobiltelefone müssen während des gesamten Experiments 
ausgeschaltet sein. Außerdem dürfen Sie am Computer nur diejenigen Funktionen 
bedienen, die für den Ablauf des Experiments bestimmt sind. Kommunikation oder 
Herumspielen am Computer führen zum Ausschluss vom Experiment und zum Verlust 
aller Einnahmen. 
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2 
 

Experimentbeschreibung 

Sie spielen in Vierergruppen. Vor jedem Spiel werden die Gruppen neu eingeteilt, und zwar so, 
dass in jedem neuen Spiel andere Mitspieler aufeinandertreffen. Die Gruppeneinteilung erfolgt 
anonym, d.h. weder während noch nach dem Experiment erfahren Sie, wann Sie mit welchen 
anderen Personen in einer Gruppe sind oder waren.  

Zu Beginn eines jeden Spiels erhalten Sie 100 Taler als persönliches Guthaben. Mit einer 
bestimmten Wahrscheinlichkeit tritt ein Ereignis ein, durch welches Sie diese 100 Taler ganz 
oder teilweise verlieren. Sie haben zwei Möglichkeiten, diesem Risiko zu begegnen:  

(1.) Wahrscheinlichkeitsreduktion. Diese Möglichkeit haben Sie in allen 9 Spielen.  
Der Preis je Einheit Wahrscheinlichkeitsreduktion beträgt 10 Taler. 
(2.) Verlustreduktion. Diese Möglichkeit haben Sie in einigen der 9 Spiele, in anderen nicht. 
Der Preis je Einheit Verlustreduktion kann von Spiel zu Spiel variieren. 

Sie können Ihr Guthaben ganz oder teilweise in Wahrscheinlichkeitsreduktion und/oder in 
Verlustreduktion investieren. Zu Beginn eines jeden Spiels erfahren Sie, ob Sie die Möglichkeit 
zur Verlustreduktion haben und wie hoch der Preis je Einheit Verlustreduktion ist (sofern im 
Spiel verfügbar). Sie erfahren außerdem, ob und zu welchem Preis die anderen drei 
Gruppenmitglieder in Verlustreduktion investieren können. Alle Gruppenmitglieder treffen ihre 
Entscheidung geheim und anonym. Einmal getroffene Entscheidungen können nicht rückgängig 
gemacht werden. 

(1.) Wahrscheinlichkeitsreduktion.  Wenn Sie und/oder andere Mitglieder Ihrer Gruppe in 
Wahrscheinlichkeitsreduktion investieren, reduziert sich die Wahrscheinlichkeit für den Eintritt 
des Verlustereignisses für alle Gruppenmitglieder (einschließlich Ihnen). In welchem Maße die 
Wahrscheinlichkeit abnimmt, hängt von der Gesamtanzahl der in der Gruppe gekauften 
Einheiten Wahrscheinlichkeitsreduktion ab. Es ist dabei unerheblich, durch welches 
Gruppenmitglied/welche Gruppenmitglieder die Investition erfolgt. 

Ob das Verlustereignis für Ihre Gruppe eintritt oder nicht, entscheidet ein Zufallsgenerator, der 
eine Kugel aus einem (virtuellen) Behälter mit 100 Kugeln zieht. Ist die gezogene Kugel rot, so ist 
das Verlustereignis eingetreten; ist sie weiß, so ist das Verlustereignis nicht eingetreten. 
Zunächst sind alle 100 Kugeln im Behälter rot, d.h., es ist zu 100% sicher, dass das 
Verlustereignis eintritt. Durch den Kauf von Wahrscheinlichkeitsreduktion können Sie und die 
anderen Gruppenmitglieder rote Kugeln durch weiße Kugeln ersetzen. Jede Einheit 
Wahrscheinlichkeitsreduktion kostet 10 Taler. Die durch Ihre Gruppe gekaufte Wahrscheinlich-
keitsreduktion verringert die Wahrscheinlichkeit für das Verlustereignis wie folgt: 
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Wahrscheinlichkeitsreduktion  
Gruppe gesamt (in Einheiten) 

Anzahl Kugeln weiß Anzahl Kugeln rot 
=Verlustwahrscheinlichkeit in % 

0 0 100 
1 30 70 
2 50 50 
3 60 40 
4 70 30 
5 75 25 
6 80 20 
7 82 18 
8 84 16 
9 86 14 

10 88 12 
11 90 10 
12 91 9 
13 92 8 
14 93 7 
15 94 6 

16 … 50 95 5 

Ab der 17. Einheit Wahrscheinlichkeitsreduktion verringert sich die Verlustwahrscheinlichkeit 
nicht mehr weiter. Die Restwahrscheinlichkeit für den Eintritt des Verlustereignisses beträgt 
dann 5% (d.h., 5 rote Kugeln bleiben immer im Behälter).  

(2.) Verlustreduktion.  Wenn das Verlustereignis eintritt (d.h. der Zufallsgenerator zieht eine 
rote Kugel), verlieren Sie Ihr gesamtes Guthaben. Durch Investition in Verlustreduktion können 
Sie Ihren persönlichen Verlust begrenzen. Die Verluste der anderen Gruppenmitglieder bleiben 
davon unberührt. Der Preis für eine Einheit Verlustreduktion wird Ihnen zu Beginn eines jeden 
Spiels bekanntgegeben. Er kann von Spiel zu Spiel variieren.  

Die von Ihnen gekaufte Verlustreduktion verringert Ihre persönliche Verlustquote wie folgt: 

Ihre Verlustreduktion (in Einheiten) Ihr Verlust bei Eintritt des Verlustereignisses  
(in % des nicht ausgegebenen Guthabens) 

0 100 % 
1 60 % 
2 40 % 
3 30 % 
4 25 % 
5 20 % 
6 18 % 
7 16 % 
8 14 % 
9 12 % 

10 … 20 10 % 

Ab der 11. Einheit Verlustreduktion verringert sich die Verlustquote nicht mehr weiter. Die 
Rest-Verlustquote beträgt dann 10 %. 

Achtung: In den Spielen ohne Möglichkeit zur Verlustreduktion können Sie Ihren persönlichen 
potenziellen Verlust nicht durch den Kauf von Verlustreduktion begrenzen. Bei Eintritt des 
Verlustereignisses (d.h., der Zufallsgenerator zieht eine rote Kugel) ist Ihr gesamtes Guthaben 
verloren.  
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Experimentablauf im Detail  

(1.) Schätzrunde. 

Zu Beginn eines jeden Spiels bitten wir Sie zu schätzen, wie die anderen drei Mitglieder Ihrer 
Gruppe in diesem Spiel entscheiden werden. Jeder Spieler gibt seine Schätzungen ab, bevor 
er/sie seine/ihre eigenen Entscheidungen trifft. Pro Schätzung, die mit der tatsächlich gekauften 
Anzahl von Einheiten Wahrscheinlichkeits- und/oder Verlustreduktion übereinstimmt, erhalten 
Sie 3 Taler.      

Es  erscheint folgender Bildschirm: 

  

Hier erfahren Sie, wie viele Mitglieder Ihre Gruppe in diesem Spiel in Verlustreduktion 
investieren können und wie hoch der Preis für eine Einheit Verlustreduktion ist (sofern 
verfügbar).  

Für jeden der anderen drei Spieler in Ihrer Gruppe gibt es eine Tabellenzeile. Bitte geben Sie 
Ihre Schätzung darüber ab, wie viele Einheiten Wahrscheinlichkeitsreduktion und/oder 
Verlustreduktion die anderen Mitspieler kaufen werden. 

Wenn mehrere Gruppenmitglieder zu gleichen Kosten in Wahrscheinlichkeits- und 
Verlustreduktion investieren können, werden sowohl Ihre Schätzungen als auch die tatsächlich 
gekauften Einheiten gemittelt, d.h., es kommt nicht auf die Identität des Spielers an, sondern 
lediglich auf den Kostentyp. Beispiel: Sie schätzen die Wahrscheinlichkeitsreduktion für Spieler 
2 und 3 auf jeweils 2 Einheiten. Tatsächlich kauft Spieler 2 eine Einheit, Spieler 3 kauft 3 
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Einheiten. In diesem Fall ist Ihre Schätzung dennoch korrekt, da der Mittelwert 2 Einheiten 
beträgt. 

Wenn Sie Ihre Schätzung abgegeben haben, klicken Sie bitte auf OK. 

(1.) Entscheidungsrunde. 

Ihre Aufgabe besteht nun darin, Ihre eigene Kaufentscheidung zu treffen. Sie sehen auf dem 
Bildschirm:  

 
Geben Sie im ersten Feld ein, wie viele Einheiten Wahrscheinlichkeitsreduktion Sie kaufen 
möchten. Geben Sie im zweiten Feld ein, wie viele Einheiten Verlustreduktion Sie kaufen 
möchten. Wenn Sie keine Wahrscheinlichkeitsreduktion und/oder keine Verlustreduktion 
kaufen möchten, geben Sie bitte „0“ in das/die jeweilige(n) Feld(er) ein. 

Klicken Sie anschließend auf „Berechnen“. Im unteren Teil des Bildschirms können Sie nun Ihre 
Ausgaben und Ihr verbleibendes Guthaben ablesen sowie Ihre Verlustquote und die Auszahlung, 
die Sie erhalten, wenn das Verlustereignis eintritt bzw. nicht eintritt. Die ebenfalls angezeigte 
Wahrscheinlichkeit für den Eintritt des Verlustereignisses basiert auf der von Ihnen 
abgegebenen Schätzung sowie Ihrer Investitionsentscheidung. Sie entspricht also nicht 
unbedingt der tatsächlichen Eintrittswahrscheinlichkeit (diese hängt von den eigentlichen 
Kaufentscheidungen Ihrer Mitspieler ab), sondern dient lediglich zu Ihrer Orientierung. 

Solange Sie noch nicht auf „Entscheidung abgeschlossen“ geklickt haben, können Sie Ihre 
Kaufentscheidung beliebig oft korrigieren. Wenn Sie eine oder beide Eingaben geändert haben, 
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klicken Sie bitte anschließend erneut auf „Berechnen“; dadurch werden die Informationen im 
unteren Teil des Bildschirms neu berechnet und aktualisiert.  

Wenn Sie Ihre endgültige Entscheidung getroffen haben, klicken Sie auf „Entscheidung 
abgeschlossen“, um dieses Spiel zu beenden. Ihre Eingaben sind jetzt gespeichert. 

Das nächste Spiel startet daraufhin automatisch - wiederum mit der Schätzrunde wie oben 
beschrieben.  

Wenn Sie alle 9 Spiele gespielt haben, erscheint ein Wartebildschirm (hier nicht gezeigt). 

(2.) Auslosung des zahlungsrelevanten Spiels und Ermittlung der Wahrscheinlichkeit.  

Wenn alle Teilnehmer die neun Spiele durchlaufen und ihre Entscheidungen getroffen haben, 
erscheint folgender Bildschirm:  

 

Sie erfahren nun, welches der neun Spiele für die Auszahlung ausgelost wurde und wie viele 
Einheiten Wahrscheinlichkeitsreduktion in diesem Spiel von Mitgliedern Ihrer Gruppe gekauft 
wurden. Der Gesamtumfang der Wahrscheinlichkeitsreduktion bestimmt, wie viele rote Kugeln 
durch weiße Kugeln ersetzt werden und damit die Wahrscheinlichkeit für den Eintritt des 
Verlustereignisses. 

Klicken Sie anschließend auf „Weiter“.  

Als nächstes erfolgt die Auswertung der Schätzrunde. Es erscheint der folgende Bildschirm. Für 
jede richtige Schätzung (Durchschnitt aller Spieler mit gleichem Preisprofil) erhalten Sie 3 Taler.  
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 (3.) Zufall und Auszahlung.  

In der letzten Phase des Spiels wird per Zufallsgenerator aus den 100 Kugeln im Behälter eine 
Kugel gezogen. Sie sehen auf dem Bildschirm:  

 

Anzahl richtiger Schätzungen:  3 
Einkommen aus der Schätzrunde: 9 Taler 
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Angezeigt werden die Nummer der gezogenen Kugel (Zahl zwischen 1 und 100) und die Farbe 
dieser Kugel entsprechend der von Ihrer Gruppe gekauften Wahrscheinlichkeitsreduktion. Ist 
die gezogene Kugel rot, so ist das Verlustereignis eingetreten und Sie erhalten als Auszahlung in 
Talern Ihr verbleibendes Guthaben nach Ausgaben für Wahrscheinlichkeits- und 
Verlustreduktion abzüglich des Verlustes. Die Höhe des Verlustes hängt in den Spielen mit 
Möglichkeit zur Verlustreduktion davon ab, wie viele Einheiten Verlustreduktion Sie gekauft 
haben. Ist die gezogene Kugel weiß, so ist das Verlustereignis nicht eingetreten und Sie erhalten 
als Auszahlung in Talern Ihr verbleibendes Guthaben nach Abzug der Ausgaben für 
Wahrscheinlichkeits- und Verlustreduktion. 

Zusätzlich erhalten Sie, unabhängig vom Ausgang des Spiels, aus der Schätzrunde 3 Taler pro 
korrekte Schätzung. 

Die Auszahlung in EUR ergibt sich nach der Umrechnungsformel:  7 + 𝐴𝑢𝑠𝑧𝑎ℎ𝑙𝑢𝑛𝑔 𝑖𝑛 𝑇𝑎𝑙𝑒𝑟𝑛
10

 . 

 

-Ende des Spiels- 
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Beispiel 1: Verlustreduktion möglich. 

Ihre Gruppe besteht aus 4 Mitgliedern: Ihnen, Person B, Person C und Person D. Eine Einheit 
Verlustreduktion kostet 5 Taler. 

Entscheidung. 

Sie kaufen eine Einheit Wahrscheinlichkeitsreduktion und 2 Einheiten Verlustreduktion. Von 
Ihrem Anfangsguthaben bleiben also 80 Taler übrig (100 - 1*10 - 2*5 = 80). Gleichzeitig mit 
Ihnen treffen B, C und D ihre Investitionsentscheidungen. Weder Sie noch B noch C noch D 
wissen, wie sich die drei anderen Personen entschieden haben. 

Wahrscheinlichkeit.  

Nachdem alle Gruppenmitglieder ihre Entscheidung getroffen haben, wird die 
Wahrscheinlichkeit für den Eintritt des Verlustereignisses berechnet. Sie kauften eine Einheit 
Wahrscheinlichkeitsreduktion, B kaufte ebenfalls eine Einheit, C kaufte 0 Einheiten und D kaufte 
2 Einheiten. Insgesamt hat Ihre Gruppe also 4 Einheiten Wahrscheinlichkeitsreduktion gekauft. 
Von den ursprünglich 100 roten Kugeln werden die Kugeln Nr. 1 bis 70 durch weiße Kugeln 
ersetzt. Im Behälter sind jetzt 70 weiße Kugeln (Nr. 1 bis 70) und 30 rote Kugeln (Nr. 71 bis 
100). Die Wahrscheinlichkeit für den Eintritt des Verlustereignisses beträgt also 30%. 

Zufall und Auszahlung.  

Aus den 100 Kugeln im Behälter wird zufällig eine Kugel gezogen. Wenn die gezogene Kugel rot 
ist, dann ist das Verlustereignis eingetreten; wenn sie weiß ist, dann ist das Verlustereignis nicht 
eingetreten. 

(Fall a): Der Zufallsgenerator hat die Kugel Nr. 27 gezogen. Diese Kugel ist weiß. Das 
Verlustereignis ist somit nicht eingetreten. Sie erhalten 80 Taler (Anfangsguthaben 100 Taler 
abzüglich 20 Taler Ausgaben für Wahrscheinlichkeitsreduktion und Verlustreduktion). 

(Fall b): Der Zufallsgenerator hat die Kugel Nr. 85 gezogen. Diese Kugel ist rot. Das 
Verlustereignis ist eingetreten. Sie haben 2 Einheiten Verlustreduktion gekauft. Von Ihrem 
verbleibenden Guthaben in Höhe von 80 Talern (Anfangsguthaben abzüglich 20 Taler Ausgaben) 
verlieren Sie 40% = 32 Taler. Sie erhalten 80 - 32 = 48 Taler. 
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Beispiel 2: Verlustreduktion nicht möglich. 

Ihre Gruppe besteht aus 4 Mitgliedern: Ihnen, Person B, Person C und Person D.  

Entscheidung. 

Sie kaufen 2 Einheiten Wahrscheinlichkeitsreduktion. Von Ihrem Anfangsguthaben bleiben also 
80 Taler übrig (100 - 2*10 = 80). Gleichzeitig mit Ihnen treffen B, C und D ihre 
Investitionsentscheidungen. Weder Sie noch B noch C noch D wissen, wie sich die drei anderen 
Personen entschieden haben. 

Wahrscheinlichkeit.  

Nachdem alle Gruppenmitglieder ihre Entscheidung getroffen haben, wird die 
Wahrscheinlichkeit für den Eintritt des Verlustereignisses berechnet. Sie kauften 2 Einheiten 
Wahrscheinlichkeitsreduktion, B kaufte eine Einheit, C kaufte 0 Einheiten und D kaufte 2 
Einheiten. Insgesamt hat Ihre Gruppe also 5 Einheiten Wahrscheinlichkeitsreduktion gekauft. 
Von den ursprünglich 100 roten Kugeln werden die Kugeln Nr. 1 bis 75 durch weiße Kugeln 
ersetzt. Im Behälter sind jetzt 75 weiße Kugeln (Nr. 1 bis 75) und 25 rote Kugeln (Nr. 76 bis 
100). Die Wahrscheinlichkeit für den Eintritt des Verlustereignisses beträgt also 25%. 

Zufall und Auszahlung.  

Aus den 100 Kugeln im Behälter wird zufällig eine Kugel gezogen. Wenn die gezogene Kugel rot 
ist, dann ist das Verlustereignis eingetreten; wenn sie weiß ist, dann ist das Verlustereignis nicht 
eingetreten. 

(Fall a): Der Zufallsgenerator hat die Kugel Nr. 27 gezogen. Diese Kugel ist weiß. Das 
Verlustereignis ist somit nicht eingetreten. Sie erhalten 80 Taler (Anfangsguthaben 100 Taler 
abzüglich 20 Taler Ausgaben für Wahrscheinlichkeitsreduktion). 

(Fall b): Der Zufallsgenerator hat die Kugel Nr. 85 gezogen. Diese Kugel ist rot. Das 
Verlustereignis ist eingetreten. Sie erhalten 0 Taler. 
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4. Mitigation and Adaptation with Heterogeneous Unit Cost of Adaptation

4.C Fixed Effects Regression Results

Table 4.17: Treatment effects (GLS fixed effects regression)

regressand m a EU_av

adapt -0.828*** -3.970***
(0.118) (0.934)

low -0.259*** 1.685*** 9.436***
(0.0866) (0.109) (0.750)

withadapt 0.371*** -0.0216 -6.895***
(0.104) (0.0576) (0.807)

withlow 0.129 -1.468*
(0.102) (0.777)

a×wa -0.0259 0.829
(0.138) (1.099)

a×wa×wl 0.0948 -0.0754 -2.855***
(0.134) (0.0751) (1.008)

a×l×wa -0.319*** 2.347**
(0.102) (0.938)

a×l×wa×wl -0.190** 0.116 0.466
(0.0957) (0.107) (0.952)

_cons 1.716*** 1.080*** 67.19***
(0.0718) (0.0590) (0.601)

N 1044 696 1044
R2 0.400 0.597 0.503
Standard errors in parentheses
* p < 0.10, ** p < 0.05, *** p < 0.01
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4. Mitigation and Adaptation with Heterogeneous Unit Cost of Adaptation

Table 4.18: Treatment effects (Poisson fixed effects regression)

regressand m a

adapt -0.659***
(0.100)

low -0.344*** 0.946***
(0.112) (0.0614)

withadapt 0.196*** -0.0113
(0.0500) (0.0273)

withlow 0.0601
(0.0448)

a×wa 0.132
(0.0986)

a×wa×wl 0.107 -0.0784
(0.0746) (0.0635)

a×l×wa -0.288**
(0.115)

a×l×wa×wl -0.116 0.0950
(0.0900) (0.0675)

N 1017 684
Standard errors in parentheses
* p < 0.10, ** p < 0.05, *** p < 0.01
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4. Mitigation and Adaptation with Heterogeneous Unit Cost of Adaptation

4.D Impact of Beliefs on Decisions and Payoffs, by
Treatment

Table 4.19: Impact of beliefs on a, by treatment (GLS regression)

h_hhhh l_llll h_00hh l_00ll h_hhll l_hhll

Bel_m_own -0.0307 -0.257 -0.0473 -0.0926 -0.103 -0.0946
(0.0980) (0.156) (0.0860) (0.143) (0.0991) (0.130)

Bel_m_other 0 0 0.0175 -0.0341 0.155 -0.0876
(0) (0) (0.0892) (0.145) (0.137) (0.136)

Bel_a_own 0.601*** 0.720*** 0.338*** 0.641*** 0.341** 0.539***
(0.112) (0.110) (0.0922) (0.140) (0.133) (0.124)

Bel_a_other 0 0 0 0 0.127* 0.136
(0) (0) (0) (0) (0.0708) (0.178)

MaxEU -0.149 -0.213 -0.237** -0.383*** -0.0893 -0.409***
(0.0932) (0.160) (0.0931) (0.133) (0.0711) (0.138)

MinRisk 0.109 0.123 0.147** 0.101 0.187** 0.213*
(0.0793) (0.0935) (0.0705) (0.112) (0.0800) (0.114)

MinRiskAll -0.110 -0.0529 -0.0959* -0.117 -0.142 -0.185**
(0.0771) (0.0955) (0.0567) (0.103) (0.105) (0.0828)

MaxMin 0.258*** 0.151 0.272*** 0.321** 0.254*** 0.144
(0.0766) (0.100) (0.0781) (0.124) (0.0728) (0.132)

_cons 0.0634 1.163 0.392 1.553** -0.478 2.372**
(0.466) (0.948) (0.531) (0.783) (0.498) (0.924)

N 116 116 116 116 116 116
R2 0.423 0.402 0.348 0.393 0.283 0.343
Robust standard errors in parentheses
* p < 0.10, ** p < 0.05, *** p < 0.01
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4. Mitigation and Adaptation with Heterogeneous Unit Cost of Adaptation

Table 4.20: Impact of beliefs on a, by treatment (Poisson regression)

h_hhhh l_llll h_00hh l_00ll h_hhll l_hhll

Bel_m_own -0.0850 -0.0963* -0.102 -0.0366 -0.0411 -0.0536
(0.0713) (0.0529) (0.0676) (0.0520) (0.102) (0.0479)

Bel_m_other -0.0260 -0.0136 0.0684 -0.0327
(0.0734) (0.0494) (0.127) (0.0493)

Bel_a_own 0.488*** 0.234*** 0.258*** 0.211*** 0.381*** 0.183***
(0.0726) (0.0339) (0.0664) (0.0408) (0.134) (0.0411)

Bel_a_other 0.0852 0.0453
(0.0755) (0.0623)

MaxEU -0.235*** -0.0730 -0.314*** -0.143*** -0.146* -0.152***
(0.0894) (0.0589) (0.0844) (0.0499) (0.0822) (0.0476)

MinRisk 0.102 0.0523 0.148* 0.0489 0.204*** 0.0803*
(0.0849) (0.0341) (0.0827) (0.0425) (0.0774) (0.0416)

MinRiskAll -0.0984 -0.0261 -0.0834 -0.0518 -0.150 -0.0668**
(0.0781) (0.0345) (0.0523) (0.0369) (0.0925) (0.0299)

MaxMin 0.440*** 0.0651 0.424*** 0.131** 0.390*** 0.0662
(0.0944) (0.0454) (0.107) (0.0575) (0.102) (0.0575)

_cons -1.268*** 0.411 -0.815* 0.554** -1.879*** 0.839***
(0.454) (0.328) (0.465) (0.250) (0.545) (0.312)

N 116 116 116 116 116 116
Wald chi2 100.27 89.56 76.81 85.84 51.76 72.26
Robust standard errors in parentheses
* p < 0.10, ** p < 0.05, *** p < 0.01
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4. Mitigation and Adaptation with Heterogeneous Unit Cost of Adaptation
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4. Mitigation and Adaptation with Heterogeneous Unit Cost of Adaptation
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4. Mitigation and Adaptation with Heterogeneous Unit Cost of Adaptation
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4.E Correlation of Beliefs and Decisions

Table 4.24: Pairwise correlation matrix of beliefs and decisions

m B
el_

m
_
ow

n

B
el_

a_
other

a B
el_

a_
ow

n

B
el_

m
_
other

m 1

Bel_m_own 0.6343 1
(0)

Bel_a_other 0.3265 0.3227 1
(0) (0)

a -0.4883 -0.4694 -0.2497 1
(0) (0) (0)

Bel_a_own -0.4716 -0.5116 -0.2791 0.8566 1
(0) (0) (0) (0)

Bel_m_other -0.0503 -0.0318 -0.0065 0.1749 0.226 1
(0.1045) (0.3041) (0.8333) (0) (0)

p-values of correlation coefficients in parentheses.
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4.F Impact of Preferences on Beliefs and Decisions, by
Treatment
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Table 4.25: Belief formation: Bel_m_own and Bel_m_other, by treatment

regressand Bel_m_own Bel_m_other
Coeff. Std.Err. Coeff. Std.Err.

adapt 0.4187 (0.6949) 2.122*** (0.5338)
low -1.7908** (0.6949) -0.2906 (0.5338)
withadapt 0.3192 (0.6949) 1.9307*** (0.5338)
withlow -0.2269 (0.6949) -0.7124 (0.5338)
a×wa -0.3947 (0.9827) -4.0527*** (0.7549)
a×waXwl 0.0054 (0.9827) 1.6196** (0.7549)
a×l×wa 0.6072 (0.9827) 3.32*** (0.7549)
a×l×wa×wl 0.122 (0.9827) -3.9365*** (0.7549)

MaxEU×0_0000 -0.2477** (0.1075) 0 (0.0782)
MaxEU×0_00hh -0.2945*** (0.1075) -0.1853** (0.0782)
MaxEU×0_00ll -0.2025* (0.1075) -0.2485*** (0.0782)
MaxEU×h_00hh -0.2056* (0.1075) -0.1741** (0.0782)
MaxEU×h_hhhh -0.2387** (0.1075) 0 (0.0782)
MaxEU×h_hhll -0.1215 (0.1075) -0.3039*** (0.0782)
MaxEU×l_00ll -0.1337 (0.1075) -0.1425* (0.0782)
MaxEU×l_hhll -0.2281** (0.1075) -0.2737*** (0.0782)
MaxEU×l_llll -0.2013* (0.1075) 0 (0.0782)

MinRisk×0_0000 -0.0624 (0.1029) 0 (0.0749)
MinRisk×0_00hh 0.1510 (0.1029) -0.1770** (0.0749)
MinRisk×0_00ll 0.1166 (0.1029) -0.1348* (0.0749)
MinRisk×h_00hh -0.1612 (0.1029) 0.0570 (0.0749)
MinRisk×h_hhhh -0.0342 (0.1029) 0 (0.0749)
MinRisk×h_hhll -0.0393 (0.1029) -0.0172 (0.0749)
MinRisk×l_00ll -0.2778*** (0.1029) 0.0624 (0.0749)
MinRisk×l_hhll -0.1192 (0.1029) -0.0042 (0.0749)
MinRisk×l_llll -0.0523 (0.1029) 0 (0.0749)

MinRiskAll×0_0000 0.095 (0.0878) 0 (0.0639)
MinRiskAll×0_00hh 0.0131 (0.0878) 0.2791*** (0.0639)
MinRiskAll×0_00ll -0.018 (0.0878) 0.2376*** (0.0639)
MinRiskAll×h_00hh 0.1839** (0.0878) 0.0095 (0.0639)
MinRiskAll×h_hhhh 0.1252 (0.0878) 0 (0.0639)
MinRiskAll×h_hhll 0.1050 (0.0878) 0.2031*** (0.0639)
MinRiskAll×l_00ll 0.2735*** (0.0878) -0.0183 (0.0639)
MinRiskAll×l_hhll 0.2341*** (0.0878) 0.1186* (0.0639)
MinRiskAll×l_llll 0.1641* (0.0878) 0 (0.0639)

MaxMin×0_0000 0.2139** (0.1001) 0 (0.0729)
MaxMin×0_00hh 0.1296 (0.1001) -0.0640 (0.0729)
MaxMin×0_00ll 0.1460 (0.1001) 0.0839 (0.0729)
MaxMin×h_00hh -0.1624 (0.1001) 0.1027 (0.0729)
MaxMin×h_hhhh -0.0664 (0.1001) 0 (0.0729)
MaxMin×h_hhll -0.0668 (0.1001) 0.1745** (0.0729)
MaxMin×l_00ll 0.1985** (0.1001) 0.1541** (0.0729)
MaxMin×l_hhll 0.0682 (0.1001) -0.1841** (0.0729)
MaxMin×l_llll 0.0982 (0.1001) 0 (0.0729)

_cons 1.9900*** (0.596) 0 (0.4338)
* p < 0.10, ** p < 0.05, *** p < 0.01 145
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Table 4.26: Belief formation: Bel_a_own and Bel_a_other, by treatment

regressand Bel_a_own Bel_a_other
Coeff. Std.Err. Coeff. Std.Err.

adapt 0.5316 (0.6393) 0*** (0.5201)
low 1.7195*** (0.6393) 0 (0.5201)
withadapt 0 (0.6393) 1.2368*** (0.5201)
withlow 0 (0.6393) 1.8276 (0.5201)
a×wa 0.4571 (0.9041) -1.2368*** (0.7356)
a×waXwl 0.5782 (0.9041) 0.5918** (0.7356)
a×l×wa -0.6892 (0.9041) 0.4754*** (0.7356)
a×l×wa×wl -0.2535 (0.9041) -2.8948*** (0.7356)

MaxEU×0_0000 0 (0.0908) 0 (0.0708)
MaxEU×0_00hh 0 (0.0908) -0.1655** (0.0708)
MaxEU×0_00ll 0 (0.0908) -0.0097*** (0.0708)
MaxEU×h_00hh -0.1429 (0.0908) 0** (0.0708)
MaxEU×h_hhhh -0.2227** (0.0908) 0 (0.0708)
MaxEU×h_hhll -0.2206** (0.0908) -0.0893*** (0.0708)
MaxEU×l_00ll -0.0099 (0.0908) 0* (0.0708)
MaxEU×l_hhll 0.0353 (0.0908) -0.0946*** (0.0708)
MaxEU×l_llll 0.1142 (0.0908) 0 (0.0708)

MinRisk×0_0000 0 (0.0869) 0 (0.0678)
MinRisk×0_00hh 0 (0.0869) 0.0749** (0.0678)
MinRisk×0_00ll 0 (0.0869) 0.0275* (0.0678)
MinRisk×h_00hh 0.0769 (0.0869) 0 (0.0678)
MinRisk×h_hhhh 0.1133 (0.0869) 0 (0.0678)
MinRisk×h_hhll 0.0613 (0.0869) 0.0559 (0.0678)
MinRisk×l_00ll 0.1483* (0.0869) 0 (0.0678)
MinRisk×l_hhll 0.2012** (0.0869) 0.0432 (0.0678)
MinRisk×l_llll 0.0827 (0.0869) 0 (0.0678)

MinRiskAll×0_0000 0 (0.0742) 0 (0.0578)
MinRiskAll×0_00hh 0 (0.0742) -0.1867*** (0.0578)
MinRiskAll×0_00ll 0 (0.0742) -0.1979*** (0.0578)
MinRiskAll×h_00hh -0.1425* (0.0742) 0 (0.0578)
MinRiskAll×h_hhhh -0.106 (0.0742) 0 (0.0578)
MinRiskAll×h_hhll -0.1105 (0.0742) -0.1828*** (0.0578)
MinRiskAll×l_00ll -0.1125 (0.0742) 0 (0.0578)
MinRiskAll×l_hhll -0.2106*** (0.0742) -0.0975* (0.0578)
MinRiskAll×l_llll -0.271*** (0.0742) 0 (0.0578)

MaxMin×0_0000 0 (0.0846) 0 (0.0659)
MaxMin×0_00hh 0 (0.0846) 0.2703 (0.0659)
MaxMin×0_00ll 0 (0.0846) 0.0842 (0.0659)
MaxMin×h_00hh 0.3974*** (0.0846) 0 (0.0659)
MaxMin×h_hhhh 0.2686*** (0.0846) 0 (0.0659)
MaxMin×h_hhll 0.1249 (0.0846) 0.0871** (0.0659)
MaxMin×l_00ll 0.1193 (0.0846) 0** (0.0659)
MaxMin×l_hhll 0.1584* (0.0846) 0.2861** (0.0659)
MaxMin×l_llll 0.1342 (0.0846) 0 (0.0659)

_cons 0 (0.5034) 0 (0.3924)
* p < 0.10, ** p < 0.05, *** p < 0.01 146
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Table 4.27: Impact of preferences on m and a, by treatment

regressand a m
Coeff. Std.Err. Coeff. Std.Err.

adapt 0.4949 (0.7132) 0.9058*** (0.7576)
low 2.3814*** (0.7132) -1.4397 (0.7576)
withadapt 0 (0.7132) 1.1459*** (0.7576)
withlow 0 (0.7132) 0.1775 (0.7576)
a×wa 0.0908 (1.0086) -1.9089*** (1.0714)
a×waXwl -0.3005 (1.0086) 1.5572** (1.0714)
a×l×wa 0.1839 (1.0086) 0.5732*** (1.0714)
a×l×wa×wl -0.2692 (1.0086) -1.3592*** (1.0714)

MaxEU×0_0000 0 (0.1021) -0.3363 (0.1179)
MaxEU×0_00hh 0 (0.1021) -0.5322** (0.1179)
MaxEU×0_00ll 0 (0.1021) -0.5202*** (0.1179)
MaxEU×h_00hh -0.2785*** (0.1021) -0.3362** (0.1179)
MaxEU×h_hhhh -0.2751*** (0.1021) -0.4063 (0.1179)
MaxEU×h_hhll -0.1876* (0.1021) -0.4407*** (0.1179)
MaxEU×l_00ll -0.3716*** (0.1021) -0.3087* (0.1179)
MaxEU×l_hhll -0.3578*** (0.1021) -0.3045*** (0.1179)
MaxEU×l_llll -0.0795 (0.1021) -0.2866 (0.1179)

MinRisk×0_0000 0 (0.0978) 0.2074 (0.1129)
MinRisk×0_00hh 0 (0.0978) 0.2452** (0.1129)
MinRisk×0_00ll 0 (0.0978) 0.3719* (0.1129)
MinRisk×h_00hh 0.1818* (0.0978) -0.0387 (0.1129)
MinRisk×h_hhhh 0.1786* (0.0978) 0.0655 (0.1129)
MinRisk×h_hhll 0.2167** (0.0978) 0.0611 (0.1129)
MinRisk×l_00ll 0.22** (0.0978) -0.0602 (0.1129)
MinRisk×l_hhll 0.3393*** (0.0978) -0.0401 (0.1129)
MinRisk×l_llll 0.1957** (0.0978) 0.0043 (0.1129)

MinRiskAll×0_0000 0 (0.0834) 0.0845 (0.0963)
MinRiskAll×0_00hh 0 (0.0834) -0.0152*** (0.0963)
MinRiskAll×0_00ll 0 (0.0834) -0.0392*** (0.0963)
MinRiskAll×h_00hh -0.1525* (0.0834) 0.2833 (0.0963)
MinRiskAll×h_hhhh -0.1773** (0.0834) 0.3566 (0.0963)
MinRiskAll×h_hhll -0.1823** (0.0834) 0.0623*** (0.0963)
MinRiskAll×l_00ll -0.214** (0.0834) 0.2229 (0.0963)
MinRiskAll×l_hhll -0.3444*** (0.0834) 0.2363* (0.0963)
MinRiskAll×l_llll -0.2901*** (0.0834) 0.1778 (0.0963)

MaxMin×0_0000 0 (0.0951) 0.1423 (0.1098)
MaxMin×0_00hh 0 (0.0951) 0.2222 (0.1098)
MaxMin×0_00ll 0 (0.0951) 0.0899 (0.1098)
MaxMin×h_00hh 0.4159*** (0.0951) -0.2392 (0.1098)
MaxMin×h_hhhh 0.421*** (0.0951) -0.0588 (0.1098)
MaxMin×h_hhll 0.3413*** (0.0951) -0.1116** (0.1098)
MaxMin×l_00ll 0.3737*** (0.0951) 0.1112** (0.1098)
MaxMin×l_hhll 0.278*** (0.0951) 0.1274** (0.1098)
MaxMin×l_llll 0.2226** (0.0951) 0.0325 (0.1098)

_cons 0 (0.5663) 1.4649 (0.654)
* p < 0.10, ** p < 0.05, *** p < 0.01 147
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