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Summary 

Summary 

The presented work examines the carbonate system in the southern North Sea and its sensitivity 

to river input, anaerobic total alkalinity (TA) generation in the Wadden Sea and internal 

processes by using the ecosystem model ECOHAM. Furthermore, it is aimed to reproduce 

observations of high TA concentrations in the German Bight that could not be reproduced in 

former model studies. The study consists of three main parts that examine the TA production in 

the southern North Sea, the impact of riverine inputs on TA in the southern North Sea and the 

impact of TA and DIC exported from the Wadden Sea. 

The TA production in the southern North Sea was examined in the first main chapter. A 

prognostic treatment of TA was implemented into ECOHAM that enables the calculation of TA 

concentration changes due to the uptake and release of nutrients into the water column as well 

as calcification and decalcification. It was shown that the internal processes that produced TA 

irreversibly were mainly driven by the uptake of allochthonous nitrate and its subsequent 

denitrification. In the year 2008, about 76 Gmol TA yr-1 (228 mmol TA m-2 yr-1) was produced 

in the entire model domain (332,050 km²). Thereof, 13 Gmol TA yr-1 (221 mmol m-2 yr-1) were 

produced in the validation area (59,338 km²). TA production in shelf seas on annual scales was 

also derived from denitrification rates in former studies. Therefore, the internal turnover of TA 

calculated in the study at hand was compared to simulated denitrification in the validation area 

and in the whole model domain in 2008. A total amount of 80 Gmol N yr-1 (241 mmol N m-2   

yr-1) was denitrified in the whole model domain, whereas 22 Gmol N yr-1 (370 mmol N m-2 yr-1) 

was denitrified in the southern North Sea. The deviation of denitrification from TA production 

was also examined for the years 1977 – 2009. Denitrification exceeded the TA production in the 

whole model domain / southern North Sea by 13 Gmol yr-1 / 11 Gmol yr-1 on average. 

Furthermore, it was shown that TA production correlates with nutrient supply from rivers in the 

southern North Sea but observed high TA concentrations could even not be reproduced in years 

with high river loads of TA. 

In the second main chapter it was examined whether observed high TA concentrations in the 

German Bight could originate from rivers. River loads of TA and DIC used in former studies 

were based on daily observations of freshwater discharge and on one concentration for TA and 

DIC for each river. Thus, these data lacked seasonal variability that can occur due to changes in 

riverine concentrations. Therefore, new data of river input of TA, DIC and nitrate were 

introduced for the main continental rivers. The level of TA concentration in the German Bight 

could be increased due to the increased loads of the river Rhine, but it was not possible to 

reproduce the observed high TA concentrations in the German Bight. Furthermore, the effective 

river load (Riveff) was introduced in this chapter in order to take freshwater discharges of rivers 
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into account and to obtain a quantity that enables a comparison with TA production in the North 

Sea. As a result it was shown that concentration changes caused by river inputs in the German 

Bight were comparable with a TA consumption of 3 Gmol yr-1 in 2008. Thus, the effect of 

dilution due to freshwater discharge dominated there. This was in contrast to the Riveff of the 

river Rhine, which was comparable with a TA production of 24 Gmol TA yr-1. 

In the third main chapter the impact of Wadden Sea exchange rates of TA and DIC on 

concentrations in the German Bight was examined. Therefore, sources and sinks of TA and DIC 

were implemented into the model that indentified the dynamic behaviour of the Wadden Sea as 

an area of effective production and decomposition of organic material. The respective exchange 

rates were calculated by using measured pelagic DIC and TA concentrations in the Wadden Sea 

and modelled tidal water mass exchange. It was possible to bring the simulations significantly 

closer to observations in summer due to the implementation of the Wadden Sea. About 40 Gmol 

TA yr-1 were exported from the Wadden Sea into the North Sea, which was lower than the first 

estimate by Thomas et al. (2009) who calculated about 73 Gmol TA yr-1 originating from the 

Wadden Sea. Furthermore, the interannual variabilities of TA and DIC concentrations were 

examined for the years 2001 – 2009, which was mainly driven by hydrodynamic conditions. It 

was shown that the occurrence of weak meteorological blocking situations can lead to enhanced 

accumulation of simulated TA in the German Bight. 

In summary, it was found that the Wadden Sea was an important driver of the carbonate system 

variability in the southern North Sea. 68% of all TA concentration changes in the German Bight 

were caused by Wadden Sea export of TA, 23% were caused by the internal production of TA 

in the model and 9% caused by effective river loads. 
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Zusammenfassung 

Zusammenfassung 

Die vorliegende Arbeit untersucht den Einfluss von Flusseinträgen, anaerober Produktion von 

Alkalinität (TA) im Wattenmeer und interner Prozesse auf das Karbonatsystem in der südlichen 

Nordsee mit Hilfe des Ökosystemmodells ECOHAM. Des Weiteren ist es das Ziel, beobachtete 

erhöhte TA Konzentrationen in der Deutschen Bucht mit dem Modell zu reproduzieren, was 

bisher in noch keiner Modellstudie gelang. Die Arbeit gliedert sich in drei Hauptteile, in denen 

es um die TA Produktion in der südlichen Nordsee geht, sowie um den Einfluss von 

Flusseinträgen auf die dortigen TA Konzentrationen und TA Exportmengen aus dem 

Wattenmeer. 

Die TA Produktion in der südlichen Nordsee wurde im ersten Hauptkapitel behandelt. Dazu 

wurde eine prognostische Behandlung der TA in das Modell eingebaut, die die Berechnung von 

TA Konzentrationsänderungen aufgrund von Aufnahme und Abgabe von Nährstoffen aus der 

Wassersäule sowie Kalzifizierung und Dekalzifizierung ermöglicht. Es wurde gezeigt, dass die 

internen Prozesse die irreversibel TA produzieren, hauptsächlich durch die Aufnahme von 

allochthonem Nitrat und anschließender Denitrifizierung angetrieben werden. Ca. 76 Gmol TA 

yr-1 (228 mmol TA m-2 yr-1) wurden im gesamten Modellgebiet (332.050 km²) produziert, davon 

wurden ca. 13 Gmol TA yr-1 (221 mmol m-2 yr-1) im Validationsgebiet produziert. Jährliche TA 

Produktionsraten wurden in früheren Studien auch von Denitrifizierungsraten abgeleitet, daher 

wurden in der vorliegenden Studie auch die produzierte TA mit simulierten 

Denitrifizierungsraten im Validationsgebiet und im gesamten Modellgebiet in 2008 verglichen. 

Eine Gesamtmenge von 80 Gmol N yr-1 (241 mmol N m-2 yr-1) wurde im gesamten 

Modellgebiet denitrifiziert, wohingegen 22 Gmol N yr-1 (370 mmol N m-2 yr-1) im 

Validationsgebiet denitrifiziert wurden. Die Abweichung der Denitrifizierung von der 

produzierten TA wurde auch für die Jahre 1977 bis 2009 untersucht. Die Denitrifizierung 

überstieg die TA Produktion im gesamten Modellgebiet / im Validationsgebiet im Durchschnitt 

um 13 Gmol yr-1 / 11 Gmol yr-1. Des Weiteren wurde gezeigt, dass die TA Produktion mit der 

Menge an Nährstoffen korreliert, die über die Flüsse in die südliche Nordsee eingetragen 

werden. Allerdings konnten die beobachteten hohen TA Konzentrationen auch in Jahren mit 

hohem Nährstoffeintrag nicht reproduziert werden. 

Im zweiten Hauptkapitel wurde untersucht, ob die beobachteten hohen TA Konzentrationen in 

der Deutschen Bucht von Flüssen stammen können. Flussfrachten, die in früheren Studien 

verwendet wurden, basierten auf täglichen Beobachtungen von Abflussmengen und jeweils 

einem Wert für TA und DIC Konzentrationen für jeden Fluss. Daher werden Variationen der 

Flussfrachten auf Grundlage von Konzentrationsänderungen in diesen Studien vernachlässigt. 

Aus diesem Grund wurden in diesem Kapitel neue Flussfrachten für die größten kontinentalen 
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Flüsse eingeführt. Das Niveau der TA Konzentration in der Deutschen Bucht wurde mit den 

neuen Flussfrachten des Rheins erhöht, allerdings war es nicht möglich die beobachteten hohen 

TA Konzentrationen in der Deutschen Bucht zu reproduzieren. Des Weiteren wurden die 

effektiven Flussfrachten (Riveff) in diesem Kapitel eingeführt, um auch Abflussmengen von 

Süßwasser aus den Flüssen zu berücksichtigen, und um eine Größe zu erhalten mit der es 

möglich ist die internen Prozesse mit Flussfrachten von TA zu vergleichen. Es konnte für das 

Jahr 2008 gezeigt werden, dass der Einfluss von Flusseinträgen in der Deutschen Bucht 

vergleichbar ist mit einer Abnahme von TA um 3 Gmol yr-1 und damit der Verdünnungseffekt 

durch den Abfluss von Süßwasser dominiert. Im Gegensatz dazu ist der Einfluss des effektiven 

Flusseintrags von TA des Rheins vergleichbar mit einer TA Produktion von 24 Gmol yr-1. 

Im dritten Hauptkapitel wurde der Einfluss von TA und DIC Exportraten aus dem Wattenmeer 

auf die Deutsche Bucht untersucht. Dazu wurden Quellen und Senken von TA und DIC in das 

Modell eingebaut, die das dynamische Verhalten des Wattenmeeres als ein Gebiet von 

effektiver Produktion und Abbau von organischem Material darstellen. Die entsprechenden 

Austauschraten wurden auf Grundlage von gemessenen pelagischen TA und DIC 

Konzentrationen im Wattenmeer und modellierten Tidenprismen berechnet. Es war möglich die 

Simulationen signifikant näher an die beobachteten TA Konzentrationen zu bringen. Ca. 40 

Gmol TA yr-1 wurden aus dem Wattenmeer in die Nordsee exportiert, weniger als die erste 

Abschätzung über 73 Gmol TA yr-1 von Thomas et al. (2009). Weiterhin wurden die 

zwischenjährlichen Variabilitäten von TA und DIC Konzentrationen für die Jahre 2001 – 2009 

untersucht, die hauptsächlich aufgrund von unterschiedlichen hydrodynamischen Bedingungen 

hervorgerufen wurden. Es wurde in den Modellrechnungen gezeigt, dass das Aufkommen von 

schwachen meteorologischen Blocksituationen zu einer erhöhten Akkumulierung von TA in der 

Deutschen Bucht führt. 

Zusammengefasst wurde herausgefunden, dass das Wattenmeer eine wichtige Triebkraft des 

Karbonatsystems in der südlichen Nordsee war. 68% aller Änderungen in den TA 

Konzentrationen in der Deutschen Bucht wurden durch das Wattenmeer hervorgerufen, 23% 

durch interne Prozesse im Modell und 9% durch effektive Flusseinträge. 
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1 Introduction 

1 Introduction 

 

 

 

Since the industrial revolution the consumption of fossil fuels increases steadily. The additional 

release of CO2 into the atmosphere might lead to changes in the global heat budget und hence in 

the climate system of the earth (IPCC, 2001). Today about 30% of current CO2 emissions are 

taken up by the oceans (Sabine et al. 2004), which corresponds to about 2.2 GtC yr-1 on an 

average. Thus, the world’s oceans help to moderate climate change but the consequently rising 

oceanic CO2 concentrations causes an ongoing acidification of the marine environment 

(Jacobsen, 2005). Up to now, the pH of surface ocean waters has fallen by approximately 0.1 

pH units representing an increase of almost 30% in H+ concentration. If CO2 emissions continue 

to rise, the resulting changes in seawater chemistry, namely in the carbonate system, will expose 

marine organisms to conditions never experienced before during their evolutionary history 

(Raven et al., 2005). Especially calcifying organisms like corals or coccolithophores are 

expected to be affected (Kleypas et al., 2006). Furthermore, it was observed by Ilyina et al. 

(2010) that the propagation of noise in the ocean is also affected by ocean acidification, because 

of the ability of seawater to absorb sound decreases with decreasing pH values. This may 

influence the communication of marine mammals. As a consequence, there is an increasing risk 

of losses in biodiversity and significant ecological and functional shifts (Fabry et al., 2008; 

Kroeker et al., 2010). In addition to these ecological threats, recent findings suggested that the 

ocean’s capacity of further CO2 uptake is weakening (Doney et al., 2009; Sabine & Tanhua, 

2010) and thus the ability to mitigate climate change. Therefore, it is essential to understand the 

biogeochemical processes that affect the further evolution of the carbonate system in the ocean. 

 

1.1 The carbonate system 

A detailed description of the carbonate system is given in the textbook of Zeebe & Wolf-

Gladrow (2001) but some aspects should be briefly explained here: The carbonate system is 

defined by six variables: CO2, HCO3
-, CO3

2-, H3O+, dissolved inorganic carbon (DIC) and total 

alkalinity (TA). If there are any two variables given (together with temperature and salinity), 

one may calculate the others (Deffeyes, 1965, Park, 1969). DIC and TA are conservative with 

respect to mixing and changes in temperature and pressure, and are thus most qualified to 

calculate the remaining variables of the carbonate system (Wolf-Gladrow, 2007). CO2 uptake by 
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seawater depends on the buffering capacity, which is defined as the Revelle factor (Revelle & 

Suess, 1957). It is linked to the ratio of DIC and TA (Broecker & Peng, 1982). The CO2 partial 

pressure (pCO2) is determined as the balance between DIC and TA (Frankignoulle, 1994; 

Millero, 2001; Egleston et al., 2010) and the pCO2 gradient controls the direction of CO2 flux. 

In general, CO2 dissolves in seawater if the partial pressure in the atmosphere is higher than the 

partial pressure in seawater, which can be reduced by biological drawdown and increased by 

respiration. The additionally dissolved CO2 changes the chemical equilibrium of the carbonate 

system and lowers pH. This is expressed by the two equations describing the equilibrium of the 

carbonate system: 

+−−

+−

+⇔+

+⇔+

OHCOOHHCO
OHHCOOHCO

3
2
323

3322 2
 

The equilibrium is also temperature-, pressure- and salinity-dependent. Altogether, DIC and TA 

are the most important parameters of the carbonate system with respect to ocean acidification 

and buffering CO2 emissions. DIC and TA are also suitable for biogeochemical tracers in 

numerical models due to their conservative characteristics. 

The definition of DIC as the sum of CO2, HCO3
- and CO3

2- is easy to understand compared to 

the definition of TA. The historical development of the TA concept was discussed by Dickson 

(1992). The alkaline characteristic of seawater and its large amounts of DIC that could be 

released in the form of CO2 by titration with a strong acid was already known in the 19th 

century. A connection between salt and DIC was already supposed e.g. by Jacobsen (1873) but 

a clear concept of TA was still missing due to the lacks of knowledge of the form of salts in 

aqueous solutions (ions) and of advanced concepts of acids and bases (Bronsted, 1923). 

Rakestraw (1949) was the first whose expression of TA considered bicarbonate, carbonate ion 

and borate. Before then, alkalinity was defined operationally without knowledge of the chemical 

species that are responsible for the observed neutralization during titration. Nevertheless, 

Rakestraw’s expression was only a first estimate of the recent definition given by Dickson 

(1981). He defined TA as the excess of proton acceptors over proton donors with respect to a 

certain zero level of protons for each acid-base system (see chapter 2 for a further description). 

It could be written for seawater as follows: 

[ ] [ ] ( )[ ] [ ] [ ]
[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]434

343
3
4

2
44

2
33

2

2

POHHFHSOH
HSNHSiOHPO

HPOOHOHBCOHCOTA

−−−−

++++

++++=

−+

−−−

−−−−−

 

However, several different definitions of TA can still be found in textbooks, which may lead to 

confusion (Wolf-Gladrow, 2007). 
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Several processes lead to changes of TA in the ocean. TA is closely related to salinity and the 

corresponding processes such as precipitation, evaporation, fresh water input and formation and 

melting of sea ice (Zeebe & Wolf-Gladrow, 2001). Additionally, there are also biogeochemical 

processes that change TA. The impact of calcium carbonate precipitation and dissolution on 

alkalinity can be directly explained by Dickson’s expression due to changes in carbonate and 

bicarbonate ions: 

OHCOCaCOHCOCa 2233
2 2 ++⇔+ −+

 

3
2
3

2 CaCOCOCa ⇔+ −+

 

Changes of TA due to the assimilation of nitrate and ammonia by plants were investigated by 

Brewer & Goldman (1976) and Goldman & Brewer (1980). In contrast to calcium carbonate 

related processes, the impact of changes in nutrient concentrations on TA has to be explained by 

the ‘nutrient-H+-compensation principle’ that was introduced by Wolf-Gladrow et al. (2007). 

Although nitrate and ammonium are no part of Dickson’s TA definition their uptake or release 

by algae results in changes of TA in the respective environment. The absorbing cell has to 

maintain electroneutrality so e.g. an uptake of one molecule of nitrate is accompanied with the 

uptake of one proton (symport) or a release of one hydroxide ion (antiport) that both are part of 

Dickson’s definition. Wolf-Gladrow et al. (2007) introduced an equivalent expression to 

Dickson’s definition of TA that is called ‘the explicit conservative form of total alkalinity’ 

(TAec). It enables to explain changes of TA due to nutrient assimilation and other 

biogeochemical processes in a simple way. The foundation of this expression is the assumption 

of electroneutrality of aqueous solutions, so that the sum of all charges is zero. If the equation of 

Dickson’s expression is rearranged the expression for TAec reads as follows (see chapter 2 for a 

further description): 

[ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ]

ecTA
THNOTHFTSOTNH
TPONOBrCl

SrKCaMgNa

=
−−−+

−−−−

+++++
−−−

+++++

243

43

222

2
...

...222

 

On a global scale, calcium carbonate dissolution and precipitation are the dominant processes 

with respect to TA inventory (e.g. Chung et al., 2003; Berelson et al., 2007). TA production can 

be related to carbonate dissolution in shallow and deep sea calcareous sediments (e.g. Jahnke et 

al., 1994; Berelson et al., 1996; Martin & Sayles, 1996). 
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1.2 The impact of ocean margin anaerobic processes on alkalinity 

budget 

Shelf seas are highly productive and the interface between the anthropogenically influenced 

coastal areas and the global ocean. They represent only about 7.6% of the global ocean’s area, 

but current estimates assume that they contribute approximately 21% of total global ocean CO2 

sequestration (Borges, 2011). The uncertainties of these estimates are high due to the lack of 

data on a global scale but some studies investigated the carbon cycles on regional scales in more 

detail (Thomas et al., 2009; Artioli et al., 2012; Lorkowski et al., 2012). Besides that, pH 

variations in coastal- and shelf regions can be up to an order of magnitude higher than in the 

open ocean (Provoost et al, 2010). The nearshore effects of acidification and CO2 uptake are 

difficult to determine, because of the shallow water column and the tight coupling to the benthic 

environment. Strong variations in fluxes of TA exist in association with inflow of nutrients from 

rivers and from pore water exchange in sediments. 

Berner et al. (1970) were one of the first who investigated elevated TA in anoxic pore water 

sediments due to sulphate reduction. Further studies were also conducted in the 1990s in 

Tomales Bay at the Californian coast (Dollar et al., 1991; Smith & Hollibaugh, 1993; Chambers 

et al., 1994). In this area, the observed enhanced TA export was related to the burial of reduced 

sulphur compounds (pyrite). Other studies conducted in the Satilla and Altamaha estuaries and 

the adjacent continental shelf found nonconservative mixing lines of TA versus salinity, which 

was attributed to anaerobic TA production in nearshore sediments (Wang & Cai, 2004; Cai et 

al., 2010).  

The ocean’s ability to buffer ocean acidification and its capacity to absorb atmospheric CO2 

provoked recent discussions about the magnitude of ocean margin TA production due to 

anaerobic processes. Chen (2002) suggested that TA is produced at a rate of 16 – 31 Tmol yr-1 

due to anaerobic processes in ocean margins. He also stated that this amount of anaerobically 

produced TA may contribute to upper ocean excess TA, whereas this was previously related to 

biology-mediated carbon dissolution (Milliman et al., 1999). Nevertheless, the estimations of 

Chen (2002) were based on incomplete redox cycles of nitrogen, sulphur and metals and their 

internal cycling. Hence, it is likely that they overestimated the TA production in global ocean 

margins. In this context, Hu & Cai (2011) stated that irreversible anaerobic TA production and 

consumption can only be attributed to the permanent loss of anaerobic remineralisation 

products. These are nitrogen gas from denitrification and reduced sulphur buried as pyrite. 

However, denitrification does only contribute to irreversible net TA production if it is fuelled by 

allochthonous nitrate (Hu & Cai, 2011). Hu & Cai (2011) recalculated the TA production in 

global ocean margins and estimated about 4 – 5 Tmol yr-1 that included continental shelves and 
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oxygen minimum zones near the continental margins. The latter contribute to net TA production 

due to anaerobic ammonia oxidation (anammox), which removes fixed nitrogen in addition to 

the canonical denitrification (Hulth et al., 2005; Lam et al., 2009). Furthermore, pyrite burial in 

coastal habitats (salt marshes, mangroves, seagrass meadows) contribute another 0.1 – 1.1 Tmol 

yr-1 to the TA production rate calculated by Hu & Cai (2011), resulting in a total TA production 

of about 4 – 6 Tmol yr-1. 

 

1.3 The North Sea as study site 

The focus of the study at hand is on the southern North Sea located on the Northwest European 

Shelf. The general circulation pattern is shown in Fig. 1.1. Atlantic water enters the North Sea 

in the northern part and to a lesser extent in the south via the English Channel. The circulation 

pattern is anticlockwise in general. The shallower southern part of the North Sea is dominated 

by Channel water, continental coastal water and to a lesser extent by southern North Sea water. 

A strong tidal forcing (M2 tide) enhances the mixing in the southern North Sea, which is nearly 

always well mixed (Otto et al., 1990) in contrast to the northern part, which is exposed to 

seasonal stratification. The Wadden Sea system of the southern North Sea extends from Den 

Helder (Netherland) in the west to Esbjerg (Denmark) in the north covering an area of about 

9500 km2 (Ehlers, 1994). Barrier islands form a boundary between the Wadden Sea and the 

open North Sea and deep inlet channels between them enable water and material exchange with 

the open North Sea. The entire Wadden Sea system is characterised by semidiurnal tides with a 

tidal range between 1.5 m in the most westerly part and 4 m in the estuaries of the rivers Weser 

and Elbe (Streif, 1990). The North Sea is intensely used by humans for energy production, as a 

recreational area or as a food source. Especially the latter economic interest relies on a healthy 

ecosystem that might be threatened by climate change and ocean acidification. 
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Fig. 1.1: Schematic diagram of general circulation pattern in the North Sea after Turrell 

et al. (1992). Source: OSPAR (2000). 

The North Sea was subject to some recent studies of the carbonate system. Lorkowski et al. 

(2012) focused on the interannual variability of the air-sea flux of CO2 between the ocean and 

atmosphere and on the carbon shelf pump in the North Sea in the period of 1970 to 2006. The 

latter transports CO2 that was taken up from the atmosphere into deeper waters of the adjacent 

ocean via mixing and lateral advection. Lorkowski et al. (2012) stated that the North Sea acts as 

a sink for atmospheric CO2 and absorbs in the mean about 1.31 mol C m-2 yr-1. Artioli et al. 

(2012) focused on the sensitivity of the carbonate system in the North Sea and on reproducing 

pH and pCO2 observations. They applied a semi-prognostic treatment of TA by calculating a 

diagnostic, salinity-dependent part of TA and a prognostic part of TA that depended on the 

uptake and release of nutrients, calcification and decalcification. This model approach was 

suitable for investigations of sensitivities of the carbonate system in terms of carbon uptake and 

acidification. Field measurements of the carbonate system in the North Sea were described by 

Thomas et al. (2009) for 2001 and 2002 and by Salt et al. (subm.) for 2008. Both measurements 

were part of the CANOBA program, where samples were taken at the same stations covering 

the whole North Sea. In comparison to the central and northern part of the North Sea, TA 

concentrations in the German Bight were significantly elevated in summer in both campaigns. 

Thomas et al. (2009) related the observed high TA concentrations in summer to TA originating 
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in the Wadden Sea. They calculated the annual TA export from the Wadden Sea into the North 

Sea to be about 73 Gmol TA yr-1 and related it to enhanced anaerobic degradation of organic 

material in summer. In this context, van Beusekom et al. (2012) recently stated that the 

eutrophication status of a tidal basin depends on its size. A wider tidal basin (distance between 

barrier island and mainland) has a lower eutrophication status than a narrower tidal basin due to 

“dilution” effects of the imported organic material in wider tidal basins. 

 

1.4 Research gaps 

The Wadden Sea TA export calculated by Thomas et al. (2009) was defined as closing term in 

the budget. However, three main inconsistencies arise upon closer inspection of the other TA 

sources mainly related to denitrification and riverine input of bulk TA. 

1. Thomas et al. (2009) considered the fact that only the permanent loss of anaerobic 

remineralisation products can contribute to net TA production. Thus, they derived 

annual TA production rates in the North Sea (without Wadden Sea) from simulated 

denitrification rates (Pätsch & Kühn, 2008). This approach may overestimate the annual 

TA production rate, because only denitrification of allochthonous nitrate changes net 

TA (Hu & Cai, 2011). In the North Sea (without the Wadden Sea), benthic 

denitrification is mainly fuelled by nitrate produced during nitrification in the upper 

layer of the sediment (Raaphorst et al., 1990; Seitzinger & Giblin, 1996; Pätsch & 

Kühn, 2008). This coupling of benthic nitrification and denitrification does not change 

TA in total (Hu & Cai, 2011). Hence, net TA is only produced by denitrification if it is 

fuelled by allochthonous nitrate either directly by pelagic nitrate invading the sediment 

or taken up by phytoplankton prior to denitrification. The overestimation of TA 

production caused by denitrification in the budgeting of Thomas et al. (2009) occurred 

mainly due to nitrogen entering the study site as total organic nitrogen (TON) e.g. via 

rivers. Furthermore, they included denitrification of atmospherically deposited nitrogen 

in their budgeting, which does not change net TA either (Hu & Cai, 2011). 

2. Another point is that Thomas et al. (2009) considered river input data that lack seasonal 

variability in their TA and DIC concentrations (Pätsch & Lenhart, 2008). That implies 

that temporally resolved riverine input may potentially explain the observed high TA 

concentrations in the German Bight in summer, because riverine seasonality of TA was 

neglected. 

3. The amount of Wadden Sea export TA calculated by Thomas et al. (2009) was also 

based on flushing times in the German Bight. They considered a mean value of six 
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weeks for their calculations (Lenhart et al., 1995) but neglected possible higher times in 

summer due to weaker currents in the German Bight in that time. Higher flushing times 

in their calculations would reduce the amount of calculated TA export rates. 

Altogether, there are substantial simplifications in the TA budgeting of Thomas et al. (2009) 

that need further investigations in order to estimate the impact of anaerobic processes on TA 

production and the carbonate system in the southern North Sea. Subsequent model studies by 

Lorkowski et al. (2012) and Artioli et al. (2012) could not yet reproduce the high TA 

concentrations that occurred in the German Bight. The model study of Lorkowski et al. (2012) 

lacked an appropriate treatment of TA because simulated TA concentrations were restored to 

prescribed interpolated values from observations in 2001 and 2002 (Thomas et al., 2009) with a 

relaxation time of two weeks. As a consequence, the impact of biogeochemical processes on TA 

was missed and thus an important driver of the carbonate system was neglected. Artioli et al. 

(2012) considered TA changes caused by the uptake and release of nutrients and calcite-related 

processes but they could not reproduce TA in the German Bight. Both model studies considered 

riverine TA and DIC loads based on the report of Pätsch & Lenhart (2008). As a consequence, 

seasonal variations in riverine TA and DIC concentrations were neglected in both studies. 

Finally, it has to be pointed out that no model study of the North Sea considered Wadden Sea 

TA and DIC exports yet. 

 

1.5 The contribution of this study 

The main aim of this study is to investigate the impact of anaerobic processes on TA in the 

southern North Sea and to calculate the amount of TA that is exported from the Wadden Sea 

into the North Sea. The above mentioned research gaps induce the following questions that will 

be answered in this study: 

- Which processes dominate the TA turnover (production – consumption) in the southern 

North Sea? 

- TA production was often derived from denitrification rates (e.g. Chen, 2002; Thomas et 

al., 2009). What are the temporal and spatial deviations between the amount of 

denitrification and actually produced TA? 

- At which spatial scales is it adequate to use denitrification rates as an estimate for TA 

production in the North Sea? 

- Can enhanced river loads of nutrients induce a significantly higher TA turnover that can 

explain the high TA concentrations observed in the German Bight? 
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- Can seasonal variations in river loads of bulk TA be the origin of high TA 

concentrations observed in the German Bight? 

- Do loads of the river Rhine affect TA concentrations or the TA turnover in the German 

Bight significantly? 

- What is the dominant driver of TA concentrations in the southern North Sea and what 

drives their interannual variability? 

- Are there regional differences in TA exported from the Wadden Sea into the North Sea? 

The ecosystem model ECOHAM (ECOlogical model HAMburg) (Lorkowski et al., 2012) is 

used and further developed in this study to answer these questions. The following chapters are 

stand-alone studies but also aspects of one single study. The first chapter deals with the internal 

turnover of TA induced by the uptake and release of nutrients out of and into the water column 

and calcite-related processes. Therefore, a prognostic treatment of TA is introduced in this 

chapter that enables the calculation of TA due to biogeochemical and physical processes. 

Denitrification rates are compared with produced TA in the period of 1977 to 2009 and 

especially in the year 2008. Only the river loads of nutrients and their impact on TA turnover in 

the German Bight are examined in this chapter. Additionally, an area for validation is 

introduced in that chapter that is used for validation in every chapter. 

River loads of bulk TA and their impact on TA concentrations in the southern North Sea are 

examined in chapter 3. In contrast to chapter 2, chapter 3 deals mainly with riverine bulk TA. 

New river loads of bulk TA and DIC are introduced into the model that are based on monthly 

mean concentrations of TA and DIC. An effective river load (Riveff) is defined in this chapter. 

This quantity incorporates the effect of dilution by freshwater discharge onto river inputs. 

Hence, it is possible to compare the impact of river loads and internal turnover of TA on TA 

concentration changes. 

In chapter 4, sources and sinks of TA are implemented into the model that identify the dynamic 

behavior of the Wadden Sea as an area of effective production and decomposition of organic 

material. The exchange rates are based on measured pelagic TA and DIC concentrations in the 

Wadden Sea and modeled tidal water mass exchange. The TA and DIC export rates from the 

Wadden Sea into North Sea are calculated in this chapter. Simulated scenarios of every chapter 

are validated with observations and it is assessed whether it is possible to reproduce the 

observations. Furthermore, seasonal and interannual variabilites of these scenarios are examined 

here. Finally, a seasonal TA budget for the year 2008 and an interannual budget in the period of 

2001 to 2009 are compiled for the scenario closest to observations. 
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2.1 Intoduction 

2 Turnover of total alkalinity in the southern 
North Sea and benthic denitrification 

 

 

 

2.1 Introduction 

Changes in TA concentrations in coastal environments underlie different biogeochemical 

processes such as calcification and decalcification as well as the uptake and release of nutrients 

into the water column (Wolf-Gladrow et al., 2007). Many of these processes are reversible on 

short to medium spatial and temporal scales and thus do not change the irreversible production 

of net TA that can get exported to the open ocean (Hu & Cai, 2011). Only the permanent loss of 

anaerobic remineralisation products could contribute to the production of net TA on larger 

scales. For that reason, former studies derived biogeochemical TA production on the shelf from 

denitrification rates (e.g. Chen & Wang, 1999; Chen, 2002; Thomas et al., 2009). This is an 

appropriate way if approximations of annual TA budgets are intended. 

Nevertheless, more precise calculations of TA concentrations during the course of a year can 

not be based on denitrification rates alone. For instance, a depletion of nutrients during 

phytoplankton blooms causes a rapid increase of TA production rates on relatively short time 

scales (Wolf-Gladrow, 2007). The organically bound nitrogen can be remineralised and nitrified 

either in the water column or in the benthos. In the North Sea, benthic denitrification is mainly 

fuelled by nitrate produced during nitrification in the upper layer of the sediment (Raaphorst et 

al., 1990; Seitzinger & Giblin, 1996; Pätsch & Kühn, 2008). This coupling of benthic 

nitrification and denitrification does not change TA in total because the ammonification of 1 

mol nitrogen increases TA by 1 mol, nitrification of 1 mol ammonium decreases TA by 2 mol 

and finally denitrification of 1 mol nitrate increases TA by 1 mol (Hu & Cai, 2011). 

Consequently, estimations of nitrogen-related North Sea TA budgets that only consider 

denitrification for TA changes reveal inconsistencies due to two main reasons: 

1. Only the denitrification of allochthonous nitrate (in small quantities also ammonium) 

can produce (consume) net TA irreversibly (Hu & Cai, 2011). The denitrification of 

organically bound nitrogen does not change TA if it enters the North Sea e.g. by river 
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input. Thus, annual TA budgets based on denitrification rates overestimate the net TA 

production. 

2. Benthic denitrification is mainly fuelled by nitrification in upper sediment layers. Most 

of the allochthonous nitrate was taken up by phytoplankton prior to denitrification. In 

fact, this means that most of net TA is already produced prior to denitrification. If only 

denitrification rates of small areas were examined it is likely that their contribution to 

the North Sea TA budget will be miscalculated because denitrification and TA 

production itself can take place separately. 

The first aim of this chapter is to have a closer look on TA production rates, the underlying 

processes and the resulting TA concentrations in the southern North Sea during the course of the 

year. Therefore, a prognostic treatment of TA was implemented into the biogeochemical model 

ECOHAM that enables calculations of TA concentrations due to calcification and 

decalcification as well as uptake and release of nutrients into the water column. The calculated 

turnover rates of TA were compared to denitrification rates in order to estimate their 

spatiotemporal deviations. It should be assessed at which spatial and temporal scales it is 

adequate to use denitrification rates as a shortcut for TA budgets in the southern North Sea. For 

this purpose, the year 2008 was examined exemplarily. Furthermore, annual budgets of internal 

TA turnover and denitrification rates were compared for the years 1977 to 2009. 

The second aim of this chapter is to examine the impact of different river loads of nitrate and 

ammonium on the TA turnover rate. Thomas et al. (2009) observed high TA concentrations in 

the German Bight in summer 2001 that could also be observed in summer 2008 (Salt et al., 

subm.). These findings could not be reproduced by this model setup in the respective years but 

it should be estimated if high river loads could induce high TA turnover rates that increase TA 

concentrations in the German Bight significantly. Therefore, three years simulated in the period 

of 1977 to 2009 with high river loads were examined as well as one year with low river loads. 
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2.2 Methods 
 

2.2.1 Model description 

 

Figure 2.1: Model domain of ECOHAM (red, 3.4°W 50.9°N – 9.2°E 57.2°N), the validation 

area (blue, 4.5°E 53.5°N – 9.2°E 55.5°N) and the positions of rivers 1 – 16 (see table 2.1). 

 

The original model domain was first applied in the study of Pätsch et al. (2010) and adapted to 

the scientific questions in the work at hand. The model domain (ECOHAM) was scaled into a 

39 x 33 grid field with 21 layers at maximum depth and included the southern and central North 

Sea (Fig. 2.1). The surface layer had a time varying thickness (5 m on average) due to surface 

elevation. The longitudinal / latitudinal resolution of the model was 0.33° / 0.2°. The eastern 

edge of the English Channel was defined as the southern boundary. The northern boundary 

ranged from the British coast to the most northern tip of Denmark. As our investigations mainly 

focused on the area of the German Bight the corresponding relevant dynamics as the wind, tidal-

induced alongshore anti-clockwise current and the tidal dynamics itself were captured with this 
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choice of the simulation area. An area was chosen for model validations (validation area, Fig. 

2.1) that included the German Bight as well as parts of the Danish and the Dutch coast. It was 

located east of 4.5°E, north of 53.5°N and south of 55.5°N. Simulations were conducted in the 

period 1977 – 2009. High TA and DIC concentrations were observed in the eastern part of this 

area (east of 7°E), whereas lower values occurred in the western part (Thomas et al., 2009, Salt 

et al., subm.). 

 

2.2.2 The hydrodynamic module 

The physical parameters temperature, salinity, horizontal and vertical advection as well as 

turbulent mixing were calculated by the submodule HAMSOM (Backhaus, 1985), which was 

integrated in the ECOHAM model. Details were described by Backhaus & Hainbucher (1987) 

and Pohlmann (1996). The shallow water equations were applied for calculations of advection, 

the Boussinesq approximation was applied (Pohlmann, 1991) and vertical mixing was 

calculated after Kochergin (1987). The hydrodynamic model ran prior to the biogeochemical 

part. Daily result fields were stored for driving the biogeochemical model in offline mode. 

Surface elevation, temperature and salinity resulting from the Northwest European Shelf model 

application (Lorkowski et al., 2012) were used as boundary conditions at the southern and 

northern boundaries. 

Two main changes had to be done in order to enable the application of HAMSOM on the 

ECOHAM grid field in this study: 

1. Tides had to be considered for the lateral exchange at the southern boundary of the 

model domain. HAMSOM was used for larger model domains so far and exchange at 

model boundaries was applied with a three day relaxation to enable a smooth and 

realistic input if the flow direction turns towards the model domain. The southern model 

boundary in the study at hand was at the eastern edge of the English Channel, where 

strong tides occur. The flow direction changed with the frequency of tides, so a three 

day relaxation of boundary input would result in almost no boundary input. Therefore, 

the respective relaxation was reduced to 2.4 hours. 

2. River-induced horizontal transport had to be adapted on freshwater input. In former 

model setups the hydraulic gradient that was induced by freshwater discharge was too 

low or even neglected (Kühn et al., 2010). As a consequence, the horizontal advection 

at river mouths was underestimated. The hydrodynamic induced horizontal transport 

now corresponds to the amount of freshwater discharge. 
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2.2.3 Freshwater fluxes 

The freshwater discharges of 16 rivers were used to calculate salinity and the river induced 

horizontal transport. The data used for continental river discharges (Pätsch & Lenhart, 2008) 

based on daily observations. Climatological monthly mean data of runoff were used for the 

British rivers (pers. comm. Kieran O’Driscoll). These freshwater fluxes govern the salinity 

gradient from the coast toward the North Sea and enhance the advection from the river mouths 

into the sea. Fig. 2.2 illustrates the sea surface salinity (SSS) in February (left) and August 

(right) of 2008. It can be seen that the strong freshwater fluxes in winter (mean river Elbe 

discharge in February: 1420 m³ s-1) led to lower salinities in the German Bight than in summer 

(mean river Elbe discharge in August: 300 m³ s-1). 

 

Figure 2.2: Simulated salinity [PSU] in February (left) and August (right) 2008. 

 

2.2.4 Meteorological forcing 

The meteorological forcing was provided by NCEP Reanalysis (Kalnay et al., 1996) and 

interpolated on the model grid field. It consisted of six-hourly fields of air temperature, relative 

humidity, cloud coverage, wind speed, atmospheric pressure, and wind stress for every year. 2-

hourly and daily mean short wave radiation were calculated from astronomic insolation and 

cloudiness as already described by Lorkowski et al. (2012). 
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2.2.5 The biogeochemical module 

2.2.5.1 General remarks 

The respective biogeochemical processes and their parameterisations were described in 

Lorkowski et al. (2012) in detail. In general, the biogeochemical part of the model was kept as 

in that study and is briefly described here: The version of the model (ECOHAM4) used for the 

study at hand included four nutrients (nitrate, ammonium, phosphate and silicate), two 

phytoplankton groups (diatoms and flagellates), micro- and mesozooplankton, fast (10 m d-1) 

and slowly (0.4 m d-1) sinking detritus, bacteria, labile dissolved organic matter, semi-labile 

organic carbon, oxygen, calcite (pelagic and benthic), dissolved inorganic carbon (DIC) and 

benthic particulate organic matter (carbon, nitrogen, phosphorous and silicate). Mortality of 

both planktonic groups and fecal pellet production were the sources for the detritus. 85% of the 

produced detritus was assumed as slowly sinking, 15% was assumed as fast sinking. The 

sinking velocities and decay rates (to labile organic matter) mainly determined the ratio between 

pelagic and benthic remineralisation. Pelagic remineralisation of labile organic matter was 

induced by bacteria. Oxygen dynamics were formulated according to Neumann (2000) and 

Fennel et al. (2006). They were involved in the primary production, in the remineralisation 

process, in nitrification and denitrification. Fixed C:N:P ratios were used for the phytoplankton 

groups (C:N = 6.625 mol C mol-1 N, N:P = 20 mol N mol-1 P) (Quigg et al., 2003), both 

zooplankton groups (C:N = 5.5 mol C mol-1 N, N:P = 20 mol N mol-1 P) and bacteria (C:N = 4.0 

mol C mol-1 N, N:P = 10 mol N mol-1 P). Ratios of the two detritus fractions and DOM were 

freely varying. 

Dry and wet depositions of oxidized and reduced nitrogen onto the North Sea were also 

included into the model (see also Pätsch & Kühn, 2008; Lorkowski et al. 2012). Data were 

adapted given by EMEP (Cooperative program for monitoring and evaluation of the long-range 

transmissions of air pollutants in Europe) and interpolated on the model domain. 

The production of calcium carbonate was simulated in a simplified way (Kühn et al., 2010; 

Lorkowski et al. 2012). Flagellates produced calcite in proportion to organic matter, so a fixed 

POC:PIC ratio of 40:1 mol C mol-1 C was assumed for this group in the present study, according 

to lower estimates by Chung et al. (2003) and Langer (2008). The carbonate shells had a sinking 

velocity of 10 m d-1 and can be dissolved in the water column or in the sediment as a function of 

the calcium carbonate saturation state (Ω). 

So far, in former model setups TA was restored to prescribed values derived from observations 

(Thomas et al., 2009) with a relaxation time of two weeks (Kühn et al., 2010; Lorkowski et al., 

2012). The changes in TA treatment for the study at hand will be described below. Results from 

the Northwest European Shelf model application (Lorkowski et al., 2012) were used as 
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boundary conditions for the recent biogeochemical simulations at the southern and northern 

boundaries (Fig. 2.1). To continue the time interval to 2009 the same model setup was used as 

in Lorkowski et al. (2012). Model results were calculated daily. 

2.2.5.2 Benthic remineralisation and denitrification 

Van Beusekom et al. (1999) estimated that 10 – 20% of the carbon produced in the German 

Bight is remineralised in the sediment, which is a considerable fraction. Therefore, a simplified 

approach to simulate sedimentary remineralisation processes was introduced into ECOHAM 

with the model development by Pätsch & Kühn (2008): The sinking material was collected 

below the deepest pelagic layer by a layer without vertical extension (Moll, 1998). A similar 

approach for benthic remineralisation was applied as used by Fennel et al. (2006). The benthic 

oxygen consumption reduced the oxygen concentration in the lowest pelagic layer and also the 

remineralisation products were released there. Benthic denitrification was calculated following 

the suggestion by Seitzinger and Giblin (1996) of a tight coupling between benthic nitrification 

and denitrification. The latter depended on the benthic oxygen consumption. Therefore, a ratio 

of 0.116 mol N mol-1 O (Seitzinger and Giblin, 1996) was applied. Additionally, pelagic 

denitrification was also included but it did not occur in the model area. 

 

2.2.6 River input 

River load data for the main continental rivers were taken from a report by Pätsch & Lenhart 

(2008) that was kept up to date continuously so that data for the years 2007 – 2009 were also 

available. They calculated daily loads of nutrients and organic matter based on data provided by 

the different river authorities. They also calculated data of TA and DIC loads for the rivers Elbe, 

Ems, Rhine (both river mouths: Nieuwe Waterweg and Haringvliet) and Scheldt. According to 

the study of Lorkowski et al. (2012) the TA and DIC concentrations of the river Rhine were 

used to calculate loads of the remaining Dutch river outlets Noordzeekanaal and Ijsselmeer (east 

and west) in the study at hand. Mean values for TA and DIC concentrations of the rivers Elbe 

and Ems were used to calculate loads of the river Weser. Loads of the river Eider were 

calculated according to Johannsen et al. (2008). Nutrient loads of the British rivers were 

calculated after Heath et al. (2002) together with climatological data of river runoff developed 

by Kieran O’Driscoll (personal communication) that represented the year 1990. TA and DIC 

river concentrations used for river load calculations were obtained by measurements carried out 

by Neal (2002) in either the same rivers or in rivers with similar catchment areas. 
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Table 2.1: River numbers in Fig. 1, their positions and source of data for simulations. 

Number in Fig. 1 Name River mouth position Data source 
1 Elbe 53° 53' 20" N  08° 55' 00" E Pätsch & Lenhart, 2008 
2 Ems 53° 29' 20" N  06° 55' 00" E As above 
3 Noordzeekanaal 52° 17' 20" N  04° 15' 00" E As above 
4 Ijsselmeer (east) 53° 17' 20" N  05° 15' 00" E As above 
5 Ijsselmeer (west) 53° 05' 20" N  04° 55' 00" E As above 
6 Nieuwe Waterweg 52° 05' 20" N  03° 55' 00" E As above 
7 Haringvliet 51° 53' 20" N  03° 55' 00" E As above 
8 Scheldt 51° 29' 20" N  03° 15' 00" E As above 
9 Weser 53° 53' 20" N  08° 15' 00" E As above 
10 Firth of Forth 56° 05' 20" N  02° 45' 00" W Based on Neal, 2002 
11 Tyne 55° 05' 20" N  01° 25' 00" W As above 
12 Tees 54° 41' 20" N  01° 05' 00" W As above 
13 Humber 53° 41' 20" N  00° 25' 00" W As above 
14 Wash 52° 53' 20" N  00° 15' 00" E As above 
15 Thames 51° 29' 20" N  00° 55' 00" E As above 
16 Eider 54° 05' 20" N  08° 55' 00" E Johannsen et al, 2008 
 

 

2.2.7 Concept of Alkalinity and the carbonate system 

The carbonate system is defined by six variables: CO2, HCO3
-, CO3

2-, H+, DIC and TA. If there 

are any two variables given, one may calculate the others (Deffeyes, 1965, Park, 1969). In this 

model changes of DIC and TA were calculated from physical and biogeochemical processes. 

These parameters are conservative quantities with respect to mixing and changes in temperature 

and pressure and are thus most qualified to calculate the remaining variables of the carbonate 

system diagnostically (Wolf-Gladrow, 2007). For this purpose the equilibrium constants of 

Mehrbach et al. (1973) as refitted by Dickson & Millero (1987) were used and adapted to the 

seawater scale.  

Apart from the previously mentioned changes in river loads the same treatment for DIC was 

used as already explained in the work of Lorkowski et al. (2012). The main extension in the 

study at hand considering the carbonate system was the introduction of a prognostic treatment 

of TA in order to study the impact of biogeochemical and physical changes of TA onto the 

carbonate system and especially on acidification. The physical part contained advective and 

mixing processes as well as dilution by riverine freshwater input. The biogeochemical part was 

driven by uptake and release of calcium and nutrients in the water column and also by 

atmospheric deposition of reduced and oxidised nitrogen. The modelled internal processes that 

altered TA were changes of calcium, nitrate, ammonium and phosphate. The gain of calcium 
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and ammonium in the water column increased TA as well as the decline of nitrate and 

phosphate. Vice versa the decline of calcium and ammonium as well as the gain of nitrate and 

phopshate decreased TA. Denitrification was no part of the prognostic treatment of TA because 

only benthic denitrification occurred in the model and this was driven by coupled 

ammonification / nitrification (Seitzinger & Giblin, 1996), which does not result in changes of 

TA in total. This effect will be discussed later. The respective fluxes included in the prognostic 

treatment of TA were identified as internal fluxes (F1-17) and are as follows: 

 

1) Pelagic calcite dissolution 

2) Calcite formation 

3) Benthic calcite dissolution 

4) Nitrification 

5) Uptake of nitrate 

6) Excretion of ammonium by zooplankton 

7) Excretion of ammonium by bacteria 

8) Uptake of ammonium by phytoplankton 

9) Uptake of ammonium by bacteria 

10) Benthic remineralisation of ammonium 

11) Atmospheric deposition of ammonium 

12) Atmospheric deposition of nitrate 

13) Benthic remineralisation of phosphate 

14) Uptake of phosphate by phytoplankton 

15) Uptake of phosphate by bacteria 

16) Excretion of phosphate by zooplankton 

17) Excretion of phosphate by bacteria 

 

The biogeochemical fluxes changed the simulated TA concentration in the following way: 
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     (2.1) 

 

All calcium-related fluxes (1 – 3) were included twice into the TA budget because TA keeps 

track of the level of protons of the respective ions (Dickson, 1981). Hence one mol of calcium 

released into the water column by calcite dissolution caused an increase of TA by two mol. 
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Furthermore, nitrification caused a twofold decrease because two ions were involved: the 

consumption of ammonium decreased TA as well as the subsequent production of nitrate. 

It should be pointed out that riverine TA entered the model as bulk TA. TA was not changed 

directly due to riverine nutrient loads because they were already included in riverine TA loads. 

However, they had an indirect effect on TA because the nutrient loads drove the internal TA 

variability that was related to nutrients. 

 

2.2.7.1 Theoretical background: 

Regarding the biogeochemical part of the model that calculated the carbonate system, the 

theoretical background was best explained in the work of Wolf-Gladrow et al. (2007). All 

following short explanations in this chapter refer to that study and give an overview how F1-17 

can change TA. 

TA is defined by the excess of proton acceptors over proton donors with respect to a certain 

zero level of protons for each acid-base system. It could be written for seawater as follows 

(Dickson, 1981): 
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    (2.2) 

To distinguish between the species of each acid-base system a single pK value is defined at 

pKzlp = 4.5 that applies for all systems. All bases formed from weak acids with pK > pKzlp are to 

be considered proton acceptors and acids with pK ≤ pKzlp are to be considered proton donors 

(Dickson, 1981). The chemical species with the largest concentration at pH = pKzlp defines the 

zero level of protons for the respective acid-base system. The coefficients in (2.2) indicate how 

many protons the chemical species could donate or accept when they are converted to their 

respective zero level of protons. 

Simulated biogeochemical changes of TA (F1-17) were related to calcite, nitrate, ammonium and 

phosphate. The impact of calcite-related processes (calcium carbonate precipitation and 

dissolution (2.3), (2.4)) 

 OHCOCaCOHCOCa 2233
2 2 ++⇔+ −+       (2.3) 

3
2
3

2 CaCOCOCa ⇔+ −+         (2.4) 
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on alkalinity can be directly explained by Dickson’s definition due to changes in carbonate and 

bicarbonate ions. In contrast, the impact of changes in nutrient concentrations on TA has to be 

explained by the ‘nutrient-H+-compensation principle’ that was also introduced by Wolf-

Gladrow et al. (2007). Although nitrate and ammonium are no part of Dickson’s TA-definition 

(Dickson, 1981) their uptake or release by algae results in changes of TA in the respective 

environment. The absorbing cell has to maintain electroneutrality, so e.g. an uptake of one 

molecule of nitrate is accompanied by the uptake of one proton (symport) or a release of one 

hydroxide ion (antiport), which both are again part of Dickson’s definition. 

Wolf-Gladrow et al. (2007) introduced an equivalent expression to Dickson’s definition of TA 

that is called ‘the explicit conservative form of total alkalinity’ (TAec). It enables to explain 

changes of TA due to nutrient assimilation and other biogeochemical processes in a simple way. 

The foundation of this expression is the assumption of electroneutrality of aqueous solutions, so 

that the sum of all charges is zero (the ellipses stand for ions with minor concentrations): 
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If this equation is rearranged so that Dickson’s expression appears on the right-hand side, the 

expression for TAec appears on the left-hand side: 
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are total phosphate, ammonium, sulphate, fluoride and nitrite respectively.  
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Of course, there are many other biogeochemical processes involved in changes of TA in 

seawater that were not considered in this model. Beside the calcium-related fluxes other internal 

processes (F4-12) were chosen that were directly affected by the modelled riverine and 

atmospheric input of nitrogen. These processes were supposed to have the largest 

biogeochemical impact on TA. 

Considering the above mentioned (chapter 2.2.5) planktonic C:N:P ratios the phosphate-related 

processes (F13-17) had minor impact on TA compared to the other fluxes. It has to be pointed out 

that the change of TA is independent of the phosphate species. A change of 1 mol of phosphate 

(H3PO4, H2PO4
-, HPO4

2- or PO4
3-) results in a change of 1 mol TA (Wolf-Gladrow et al., 2007). 

In accordance with the nutrient-H+-compensation principle the uptake of 1 mol PO4
3- by algae is 

associated with the symport of 3 mol H+ (or antiport of 3 mol OH-). Analogously, the uptake of 

1 mol HPO4
2- would be associated with the symport of 2 mol H+ (or antiport of 2 mol OH-). 

Nevertheless, the difference in the level of protons of each phosphate species and the amount of 

compensatory H+ (or OH-) is always -1, because the zero level of protons in this system is 

H2PO4
-. 

The advantage of TAec is that changes in TA that are driven by biogeochemical processes could 

be easily explained with one formula (2.6) without considering the nutrient H+-compensation 

principle. 
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2.3 Results 

2.3 Results 

 

2.3.1 TA turnover rate and underlying fluxes in 2008 

The prognostic treatment of TA in this model study included 17 different fluxes (F1 – F17) that 

were referred to calcite, nitrate, ammonium and phosphate. The cumulative impact of these 

fluxes on TA was examined in the validation area (59,338 km²) and in the whole model domain 

(332,050 km²) (Fig. 2.3 – 2.7) in order to detect the most important fluxes that govern the 

modelled TA production during the course of the year 2008. Therefore, the fluxes were divided 

into four components, one for calcite and one for each nutrient. Note that the impact on TA is 

shown in Fig. 2.3 – 2.7 including the prefactors of each flux (compare (2.6)). Hence, every 

calcite-related process (F1 – F3) is considered twofold because the dissolution / formation of 1 

mol calcite results in a production / consumption of 2 mol TA. The twofold impact of 

nitrification (F4) was allocated to nitrate and ammonium. Hence, 1 mol nitrogen that got 

nitrified is included onefold in both components (Fig. 2.4, 2.5). 

2.3.1.1 Calcite 

The impact of calcite-related processes (F1 – F3) on modelled TA turnover is shown in Fig. 2.3. 

All processes showed a similar progress in both areas. Calcite formation and dissolution was 

almost balanced at the end of 2008 but not during the course of the year. Calcite dissolution 

exceeded calcite formation slightly in autumn and winter. In spring and summer, calcite 

formation exceeded calcite dissolution. About 95% of the overall calcite dissolution took place 

in the sediment in both examined areas. 

 35 



2 Turnover of total alkalinity in the southern North Sea and benthic denitrification 

 

Fig. 2.3: The cumulative impact of calcite-related processes [mmol TA m-2] on TA (TAcal) 

in the validation area (top) and the whole model domain (bottom) in 2008. F1: pelagic 

calcite dissolution, F2: calcite formation and F3: benthic calcite dissolution. 

 

2.3.1.2 Nitrate 

The impact of nitrate-related processes (F4, F5, F12) on modelled TA turnover is shown in Fig. 

2.4. All processes showed a similar progress in both areas. Nitrification decreased the TA 

turnover continuously during the course of the year. The uptake of nitrate by phytoplankton 

exceeded nitrification from March to September but especially in spring, when the 

phytoplankton bloom occurred (Lorkowski et al., 2012). This effect governed the nitrate-related 

impact on TA at that time. The processes that decreased TA exceeded the uptake of nitrate in 

autumn and winter. In comparison to the other components, the nitrate-related component was 

significantly unbalanced at the end of the year. 
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2.3 Results 

 

Fig. 2.4: The cumulative impact of nitrate-related processes [mmol TA m-2] on TA (TANO3) 

in the validation area (top) and the whole model domain (bottom) in 2008. F4: nitrification, 

F5: uptake  and F11: atmospheric deposition. 

 

2.3.1.3 Ammonium 

The impact of ammonium-related processes (F4, F6 – F11) on modelled TA turnover is shown in 

fig. 2.5. It was decided to sum up the excretion and uptake of ammonium (F6 – F9) to one net 

flux (“excr. – uptake”) in order to keep the figure clear and legibly scaled. These fluxes were up 

to 2190 mmol TA m-2 yr-1 in the validation area and up to 1837 mmol m-2 yr-1 in the whole 

model domain. The impact of ammonium-related processes on TA turnover decreased slightly 

in the validation area until August, whereas it decreased in the whole model domain until March 

and was almost stagnant until September. Afterwards, it slightly increased in both areas in 

autumn. Pelagic remineralisation is included in the excretion of ammonium by bacteria (F7). 

This process governed the sub-component “excr. – uptake” in autumn, because less ammonium 

was taken up by phytoplankton (F8). In short, remineralised or excreted ammonium was almost 

completely nitrified or taken up immediately. This is why no pronounced imbalances occurred 

during the course of the year. In contrast to the other components, the impact of ammonium-
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related processes on TA turnover revealed a slightly higher imbalance in the validation area than 

in the whole model domain. 

 

Fig. 2.5: The cumulative impact of ammonium-related processes [mmol TA m-2] on TA 

(TANH4) in the validation area (top) and the whole model domain (bottom) in 2008. 

F6+F7+F8+F9: excretion - uptake, F10: benthic remineralisation, F4: nitrification and F11: 

atmospheric deposition. 

 

2.3.1.4 Phosphate 

The impact of phosphate-related processes (F13 – F17) on modelled TA turnover is shown in Fig. 

2.6. It was decided to sum up the uptake of phosphate by phytoplankton (F14) and bacteria (F15) 

to one flux (“uptake”) as well as the excretion of phosphate by zooplankton (F16) and bacteria 

(F17) (“excretion”). The latter also included pelagic remineralisation. All processes showed a 

similar progress in both areas. The uptake exceeded the excretion and benthic remineralisation 

slightly in April and May. Afterwards, it was almost balanced until September. The excretion 

and benthic remineralisation exceeded the uptake in autumn. At the end of the year the overall 

impact of phosphate-related processes on TA was almost balanced. 
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Fig. 2.6: The cumulative impact of phosphate-related processes [mmol TA m-2] on TA 

(TAPO4) in the validation area (top) and the whole model domain (bottom) in 2008. F14+F15: 

uptake, F13: benthic remineralisation and F16+F17: excretion. 

 

2.3.1.5 TA turnover rate and denitrification 

The impact of all four components on modelled TA turnover, the resulting TA turnover rate 

itself and the modelled denitrification rate are shown in Fig. 2.7. Note that denitrification is only 

shown in order to enable a comparison with the TA turnover rate. It was no part of the 

prognostic treatment of TA and did not impact the TA turnover itself directly. Until May the TA 

turnover rate was governed by the impact of nitrate-related processes in both areas. Hence, the 

rapid increase of TA turnover in April and May was due to enhanced uptake of nitrate during 

the phytoplankton spring bloom. Afterwards, a slight imbalance in the ammonium-related 

processes and enhanced calcite formation caused a decrease in the TA turnover in the validation 

area and stagnancy in the whole model domain until September. The turnover rate increased in 

October and November caused by enhanced benthic calcite dissolution. Denitrification steadily 

increased during the course of the year and exceeded the amount of TA that was converted by 

149 mmol m-2 yr-1 in the validation area and by 12.8 mmol m-2 yr-1 in the whole model domain 
 39 



2 Turnover of total alkalinity in the southern North Sea and benthic denitrification 

at the end of the year. A total amount of 80 / 22 Gmol N yr-1 was denitrified in the whole model 

domain / validation area, whereas an amount of 76 / 13 Gmol TA yr-1 was produced. 

 

 

Fig. 2.7: The cumulative impact of all four components [mmol TA m-2] on TA (TAint) and 

denitrification [mmol N m-2] in the validation area (top) and the whole model domain 

(bottom) in 2008. TAcal: impact of calcite-related processes, TANO3: impact of nitrate-

related processes, TANH4: impact of ammonium-related processes and TAPO4: impact of 

phosphate-related processes. 
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2.3.2 Impact of internal TA turnover on TA concentrations in 2008 

One of the main aims of this study is to reproduce high TA concentrations observed in the 

German Bight in summer (Thomas et al., 2009; Salt et al., subm.). Monthly mean surface 

concentrations of TA and the cumulative TA concentration differences [µmol kg-1] caused by 

the internal turnover are shown in Fig. 2.8 for February, May, August and November. The latter 

were calculated as the difference of two simulations with and without implemented prognostic 

treatment of TA. The superposition was acceptable due to the conservative characteristics of 

TA. The impact of the internal turnover on monthly TA concentration changes is shown in Fig. 

2.9. Therefore, monthly values of the internal turnover rates of TA [mmol m-2 mon-1] are shown 

on the right side and the respective TA concentration differences between the last and the first 

day of the month [µmol kg-1] caused by the internal turnover are shown on the left side of Fig. 

2.9. The concentration differences shown in Fig. 2.9 differ from the concentration differences 

shown in Fig. 2.8 because they show differences that occurred in the course of one month. Thus, 

they can be related to the TA turnover rates also shown in Fig. 2.9. The concentration 

differences shown in Fig. 2.8 are cumulative and are related to the TA produced during the year 

until the shown month. So they show how much TA is converted in total also incorporating the 

months not shown in Fig. 2.8. 

In February, TA concentrations ranged between 2275 µmol kg-1 at the Elbe estuary and 2450 

µmol kg-1 at the Thames estuary (Fig. 2.8, left side). In addition, the concentration pattern was 

homogeneous in the German Bight and the central North Sea. TA was produced near the 

estuaries Thames, Wash, Ems and Elbe, the outlet of the Ijsselmeer and east of 8°E significantly 

(Fig. 2.9, right side), whereas it was slightly consumed (about 40 mmol m-2 mon-1) in large parts 

of the model domain, especially in the northwest. The resulting concentration differences in 

February (Fig. 2.9, left side) were marginally negative (about 1 µmol kg-1) in the model domain. 

The cumulative concentration differences caused by the internal turnover of TA occurred 

especially east of 7°E and increased the concentration up to 20 µmol kg-1 (Fig. 2.8, right side). 

This was mainly due to consumed TA in January (Fig. 2.7). 

In May, TA concentrations ranged between 2275 µmol kg-1 at the Elbe and 2435 µmol kg-1 at 

the Thames estuary (Fig. 2.8, left side). The concentration pattern was more heterogeneous than 

in February, because concentrations increased near the river Rhine (2380 µmol kg-1), in the Jade 

Bay (2350 µmol kg-1, located around 8.3°E and 53.5°N) and near the island of Sylt (2340 µmol 

kg-1). TA was produced in large parts of the model domain especially in the western part, near 

the outlet of the river Rhine and in the German Bight, whereas it was slightly consumed 

especially near the Danish coast (Fig. 2.9, right side). The resulting concentration differences in 

May (Fig. 2.9, left side) occurred at the same places and were also more distributed. The 

resulting cumulative concentration differences were highest in the eastern part of the model 
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domain, near the Dutch coast and especially in the German Bight, where concentrations 

increased up to 40 µmol kg-1 due to the TA turnover. 

In August, TA concentrations ranged between 2290 µmol kg-1 in the northwestern part of the 

model domain, 2360 µmol kg-1 at the western part of the Dutch coast and 2380 µmol kg-1 at the 

Thames estuary (Fig. 2.8, left side). Concentrations in the German Bight were lower than in 

May and less heterogeneous. TA was produced at some river outlets of the British coast, the 

outlet of the rivers Rhine, Weser and Elbe as well as in some small areas in the north western 

part of the model domain, whereas it was slightly consumed in large parts of the model domain 

(Fig. 2.9, right side). The concentrations in August only decreased near the river Rhine and 

south of the island of Sylt significantly (Fig. 2.9, left side). The cumulative differences in 

concentrations that were caused by the TA turnover were pronounced east of 7°E and in the 

German Bight and increased up to 40 µmol kg-1 (Fig. 2.8, right side). 

In November, TA concentrations ranged between 2280 µmol kg-1 in the northwestern part of the 

model domain and 2395 µmol kg-1 at the Thames estuary (Fig. 2.8, left side). The concentration 

pattern was more homogeneous in the German Bight and in the central part of the North Sea 

compared to concentrations in May and August. Analogously to August, TA was produced at 

some river outlets but it was also slightly produced (20 – 40 mmol m-2 mon-1) in large areas in 

the central and eastern part of the model domain. The TA production in these areas could be 

related to calcite dissolution in the sediment (Fig. 2.3, 2.7). The cumulative differences in 

concentrations that were caused by the TA turnover were still pronounced east of 7°E and 

increased up to 25 µmol kg-1 (Fig. 2.8, right side). 
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Fig. 2.8: Left side: simulated monthly mean surface TA concentrations [µmol kg-1]. Right 

side: cumulative concentration differences [µmol kg-1] caused by internal turnover of TA 

in 2008. 
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Fig. 2.9: Left side: concentration differences of the last and first day of the month caused 

by TA turnover [µmol kg-1]. Right side: monthly turnover rate of TA [mmol m-2 mon-1]. 
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2.3.3 Impact of nutrient river loads on TA turnover in 1977 - 2009 

Previous results in this chapter show that TA turnover rate is mainly driven by nitrate-related 

processes (Fig. 2.4, 2.7). During the simulated period, river loads of nutrients, especially loads 

of nitrate, fluctuated significantly (Fig. 2.10). TA turnover and nitrogen loads of the three main 

rivers discharging into the German Bight correlated well (R² = 0.82) if loads of ammonium were 

considered negatively because the uptake of ammonium reduces TA. Thus far, the year 2008 

was examined in detail but river loads of nitrate were low (8.1 Gmol N yr-1) compared to the 

years 1987 (20.0 Gmol N yr-1), 1994 (16.9 Gmol N yr-1) or 2002 (14.7 Gmol N yr-1). 

Observed surface TA concentrations and simulated monthly mean surface concentrations in 

August 2008 are shown in Fig. 2.11 as well as TA concentrations in May and August in the 

years 1987, 1994 and 2002. This was done in order to compare years with high river loads and 

thus high turnover rates of TA (Fig. 2.10) with observations. So far, the observed high TA 

concentrations in the German Bight could not be adequately reproduced with this model setup 

in 2008. The overarching question in this paragraph is whether river loads of nutrients could be 

the origin of high TA concentrations in summer. 

The results were also compared in a Taylor diagram (Taylor, 2001) in Fig. 2.12 in order to give 

a statistical overview. Observations of 10 different stations were available in the validation area 

(Fig. 2.1), each with four to six measurements at different depths (52 measured points). 

Measured TA concentrations of each point were compared with the modeled TA concentrations 

in the respective grid cells. The correlation coefficients, the standard deviations (STD) and the 

root mean square errors (RMSE) were calculated for each simulation. 

With focus on the German Bight, the highest TA concentrations were simulated in May and 

August 1994 (Fig. 2.11), when the annual amount of produced TA was highest (21.0 Gmol yr-1) 

in the simulated period (Fig. 2.10). Nevertheless, observations could not be reproduced 

adequately in May or in August of any of the examined years (Fig. 2.12). The deviations from 

observation were represented by RMSE values of 28 µmol kg-1 for the years 1987, 2002 and 

2008 and 25 µmol kg-1 for the year 1994 and thus did not differ significantly. 
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Fig. 2.10: River loads of nitrate and ammonium of the main rivers in the German Bight as 

well as TA turnover in the validation area [Gmol yr-1]. 
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Fig. 2.11: Observed surface TA concentrations (August 2008) and simulated monthly 

mean surface TA concentrations [µmol kg-1]. 
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Fig. 2.12: Taylor diagram of simulated TA concentrations in 2008 (A), 1987 (B), 1994 (C) 

and 2002 (D) compared to observed TA concentrations (52 measurements) in the 

validation area. 
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2.4 Discussion 

2.4.1 The impact of internal processes on TA 

Modelled TA in this study was calculated prognostically. Changes of nitrate, ammonium and 

phosphate concentrations changed the TA concentration as well as calcification and 

decalcification. Phosphate-related processes (F13-17) have only minor impact on TA compared to 

nitrogen-related processes because fixed N:P ratios were assumed (see 2.2.5). Ammonium-

related processes (F4, F6-11) did not lead to changes in net TA because ammonium is an 

intermediate product produced through incomplete oxidation of organic matter (Hu and Cai, 

2011). Nevertheless, it was important to include these processes into the model in order to 

obtain a closed TA budget even on smaller temporal and spatial scales, because these processes 

could potentially occur in different areas. During the course of the year calcification and 

decalcification affected the TA turnover noticeably, but they were balanced at the end of the 

year (Fig. 2.3). The amplitudes of their influences were determined by an assumed ratio of POC 

/ PIC = 40 mol C mol-1 C for flagellates, which was a rather low estimate compared to other 

model studies that applied ECOHAM (Kühn et al., 2010; Lorkowski et al., 2012). However, 

higher values would increase the overall TA turnover only marginally in summer. 

The main internal processes that changed TA in this model were nitrogen-related. In this context 

Hu and Cai (2011) discussed the amount of irreversibly produced net TA of ocean margins that 

is exported to the open oceans. Only the permanent loss of anaerobic remineralisation products 

could contribute to the production of TA on larger spatial and temporal scales, e.g. due to 

denitrification and pyrite burial. Hu and Cai (2011) also stated that a complete coupling of 

ammonification (+1), nitrification (-2) and denitrification (+1) would not lead to a net TA gain 

(numbers in brackets show the changes in TA due to the amount of nitrogen that gets 

converted). The coupling of these processes occurs widely in continental shelves (Seitzinger et 

al., 2006) and dominates also in the North Sea (except for the Wadden Sea) (Raaphorst et al., 

1990; Seitzinger & Giblin, 1996). Only the denitrification of allochthonous nitrate leads to a net 

increase of TA. This does not apply to the atmospheric deposition of nitrogen because if 

atmospheric nitrate / ammonium enters the water column it decreases / increases the TA 

concentration at first, which counteracts the impact on TA when the respective species is taken 

up. 

The corresponding process in this model that removes anaerobic remineralisation products was 

benthic denitrification fuelled by benthic nitrification. Benthic denitrification fuelled by pelagic 

nitrate invading the sediment from overlaying layers was neglected due to the lack of a vertical 

resolution of the sediment module (Pätsch & Kühn, 2008). In this case, denitrification would 

directly affect the TA turnover because it consumes pelagic nitrate, which is in contrast to 
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denitrification coupled with nitrification. Nevertheless, former studies revealed that 

denitrification is mainly coupled with nitrification in North Sea sediments (except for the 

Wadden Sea), so that the relating uncertainty should be small (Raaphorst et al., 1990; Seitzinger 

& Giblin, 1996; Pätsch & Kühn, 2008). According to the model developments by Pätsch & 

Kühn (2008), pelagic denitrification under anoxic conditions was also included in the model but 

did not occur. 

During benthic remineralisation the nitrogen was released from the sediment as ammonium 

(F10) that could be nitrified afterwards (F4) and released as molecular nitrogen (N2). The 

coupling of sedimentary ammonification, nitrification and denitrification of remineralised 

nitrogen was parameterised as in Pätsch & Kühn (2008) and depends on oxygen consumption 

(Seitzinger and Giblin, 1996). Hence, it was calculated without simulating the intermediate 

products of denitrification. Benthic denitrification itself was not included in the prognostic 

treatment of TA (compare (2.1)) because it was driven directly by organic nitrogen that was 

remineralised in the sediment. This is in accordance with the statement of Hu & Cai (2011) that 

the complete coupling of ammonification, nitrification and denitrification has no effect on net 

TA. They also stated that only the denitrification of allochthonous nitrate produces TA 

irreversibly, but this is not restricted to denitrification fuelled by pelagic nitrate. Changes in TA 

concentrations caused by denitrification of allochthonous nitrate were already included in the 

internal fluxes that consider the uptake of nitrogen (F5, F8). As a consequence, this means that 

most of net TA was already produced prior to denitrification, when nitrate was taken up by 

phytoplankton. 

The produced TA in the validation area was 13.12 Gmol yr-1 in 2008, which could be mostly 

attributed to 14.93 Gmol yr-1 of incorporated allochthonous nitrate that entered the validation 

area either by river loads or by exchange with the adjacent North Sea (Fig. 2.7). The remaining -

1.81 Gmol yr-1 could be attributed to short-time scale processes of the nitrogen cycle (-1.59 

Gmol yr-1), phosphate (-0.15 Gmol yr-1) and calcite (-0.07 Gmol yr-1).  

The impact of evaporation and precipitation on TA concentration was also evaluated. The 

evaporation was calculated during the hydrodynamical part of the simulations and compared 

with climatological data of precipitation. Both effects were almost balanced out and ranged 

between 700 and 800 mm yr-1 in the German Bight. It was decided not to include evaporation 

and precipitation because the available data of precipitation (NCEP Reanalysis, Kalnay et al., 

1996) were erroneous. They showed high deviations from the climatological data in the German 

Bight that decreased with distance to the coast. 
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2.4.2 Denitrification rate as an estimate of TA production 

The prognostic treatment of TA implemented in this model study considered 17 different fluxes. 

It was shown that TA turnover and denitrification rates proceeded differently during the course 

of the year (Fig. 2.7). Nevertheless, they converged at the end of the year 2008, so it is worth 

estimating whether denitrification could be used as an estimate for nitrogen based TA turnover 

rates on annual scales. 

The spatial distributions of annual mean denitrification and TA turnover rates are shown in Fig. 

2.13 as well as the differences between them. Denitrification was steadily decreasing from the 

southeastern part to the northwestern part of the model. TA turnover rates showed a more 

complicated pattern in the whole model domain: the highest values were simulated near the 

outlet of the river Rhine, in the German Bight and near the outlets of the Thames and Wash 

estuaries. The pattern of TA turnover rates in the validation area was more heterogeneous than 

denitrification with high values in the eastern part and low values in the western part. The most 

differences occurred in an area that extended from the northern Dutch coast to the Danish coast. 

Denitrification rates were up to 1.2 mmol N m-2 d-1 higher than TA turnover rates in that area. 

Against this, TA turnover rates were up to 3.5 mmol TA m-2 d-1 higher than denitrification rates 

near the outlets of the rivers Rhine, Thames and Wash and about 0.3 mmol TA m-2 d-1 higher in 

some minor parts of the central North Sea. 

The spatial deviation of denitrification and TA turnover can be due to three main reasons: 

1. Denitrification does not change TA if the respective nitrogen source enters the model 

domain as total organic nitrogen (TON) e.g. via rivers or the southern and northern 

lateral boundaries of the model domain. In this case, denitrification exceeds TA 

turnover. 

2. Atmospheric deposition of nitrogen does not change net TA after denitrification, 

although it is allochthonous. If 1 mol atmospheric nitrate / ammonium enters the water 

column, TA decreases / increases by 1 mol (compare F12 and F11 in (2.1)). The uptake of 

1 mol nitrate / ammonium increases / decreases TA by 1 mol and thus counteracts the 

previous TA change. If this organic nitrogen gets denitrified, denitrification exceeds TA 

turnover. 

3. Allochthonous nitrate is taken up by phytoplankton prior to denitrification in the model, 

which means that net TA is already produced prior to denitrification. In this case either 

TA turnover or denitrification exceeds the other process. 
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The spatial deviation of denitrification and TA turnover can lead to misinterpretations of pelagic 

TA concentrations, the respective sources of TA and measured denitrification rates of the 

underlying sediment if the source of nitrate for denitrification is unclear. In this case, the correct 

sources of TA can be missed unintentionally. Denitrification does only change TA on site if it is 

fuelled by pelagic nitrate invading the sediment. As it was already discussed above, benthic 

denitrification is supposed to be fuelled by benthic nitrification in the North Sea (except for the 

Wadden Sea), but pelagic nitrate as source for denitrification should not be excluded 

completely. In short, local pelagic TA concentrations can hardly be attributed to denitrification 

rates in the North Sea. 

Nevertheless, the annual biogeochemical TA production can be estimated from denitrification 

on larger spatial scales (e.g. Chen & Wang, 1999; Chen, 2002; Thomas et al., 2009). The annual 

amounts of produced TA and denitrified nitrogen are shown in Fig. 2.14 for the validation area 

and the whole model domain in the period 1977 - 2009. Denitrification was about 11.3 ± 3.4 

Gmol yr-1 higher than TA turnover in the validation area in every year. The differences ranged 

from 4.8 Gmol yr-1 in 2002 to 29.6 Gmol yr-1 in 1979. Denitrification was about 12.6 ± 8.7 

Gmol yr-1 higher than TA turnover in the whole model domain. TA turnover slightly exceeded 

denitrification only in 2002. The differences in the whole model domain ranged from -0.5 Gmol 

yr-1 in 2002 to 24.3 Gmol yr-1 in 1996 and were more variable than in the validation area. The 

differences between denitrification and TA turnover were higher in the first half of the 

simulation period than in the second half. Until / after 1992 the mean deviation was 13.9 Gmol 

yr-1 / 9.1 Gmol yr-1 in the validation area and 18.1 Gmol yr-1 / 7.7 Gmol yr-1 in the whole model 

domain. 

The differences between denitrification and TA turnover in the whole model domain showed a 

higher variability than in the validation area. This is due to the amount of allochthonous TON 

that was denitrified in the respective areas. The validation area receives a permanent supply of 

TON mainly by rivers, whereas the whole model domain receives TON by rivers and via the 

lateral boundaries in the south and north. The latter underlie hydrodynamic variations that could 

exhibit unusual stream patterns in some years (compare Pätsch & Kühn, 2008), which in turn 

affected the TON supply in the model. This effect will also be discussed in a following chapter 

of this study. 

The greatest deviation in the first half of the period was caused by elevated river loads of 

ammonium (Fig. 2.10) that were up to 4 Gmol yr-1 for all rivers in the German Bight in that 

time. The consumption of ammonium, either by uptake or by nitrification, consumes TA 

irreversibly.  The uptake of 1 mol ammonium decreases TA by 1 mol, which becomes 

irreversibly if the produced TON is denitrified. Nitrification of 1 mol ammonium decreases TA 
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by 2 mol and the subsequent uptake of 1 mol nitrate increases TA by 1 mol, which also results 

in a decrease of TA by 1 mol. 

The mean amount of nitrogen that was denitrified exceeded the mean amount of TA that was 

produced by about 85% in the validation area and by about 17% in the whole model domain. If 

only the second half of the simulated period is considered, denitrification exceeded TA turnover 

by about 65% in the validation area and by about 10% in the whole model domain. If the 

amount of TA that is produced by nitrogen-related processes should be assessed, the spatial and 

temporal extent of the entire redox cycle has to be considered. As a consequence, the 

contribution of TA that is produced in the German Bight to an overall North Sea TA budget can 

not be derived from denitrification solely. In contrast to this, annual TA production in the whole 

model domain can be approximated from denitrification, if a certain inaccuracy is accepted. 

This inaccuracy may further decrease if the entire northwest European Shelf is considered. 

 

 

Fig. 2.13: Annual mean denitrification and TA turnover rates (top) and the differences 

(bottom) [mmol m-2 d-1] in 2008. 
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Fig. 2.14: Annual amounts of produced TA [Gmol yr-1] and denitrification [Gmol N yr-1] 

in the whole model domain (md) and in the validation area (va). 

 

2.4.3 Model validation 

Recent observations in the North Sea revealed high TA concentrations in the German Bight in 

summer. These values could not be reproduced with this model setup so far, neither in the 

respective year of observation (2008) nor in years with high river loads of nutrients (Fig. 2.11, 

2.12). In 2008, most of TA was produced in April and May (Fig. 2.7) and caused the highest TA 

concentrations in these months (Fig. 2.8). In the simulated period, the highest TA concentrations 

in the German Bight were calculated in August 1994 (Fig. 2.11), which could not reproduce the 

observations either (Fig. 2.12). As a consequence, high TA concentrations in summer can not 

only be related to the turnover of allochthonous nitrogen, even if the highest differences in TA 

concentrations caused by TA turnover occur in the German Bight (Fig. 2.9). 
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2.5 Conclusion 
Denitrification is only partly applicable as a proxy for annual TA production. It depends on the 

spatial extend of the investigated area. Thomas et al. (2009) considered modelled denitrification 

rates for their calculation of TA production in the North Sea, which was applicable as a first-

order estimate of an overall annual budget. They also compared their calculation of TA exported 

from the Wadden Sea with denitrification rates measured in the Wadden Sea and assessed their 

own estimate as rather too low. Nevertheless, the findings in this chapter about the deviation of 

denitrification from TA turnover are also applicable for the Wadden Sea. Studies revealed a 

minor significance of coupled nitrification and denitrification there (Jensen et al., 1996; Deek et 

al., 2012) but in terms of TA production the coupling can be considered for a whole tidal basin. 

It does not matter for the TA exchange budget of a tidal basin whether denitrification is fuelled 

directly by nitrification in the respective upper sediment layer or by nitrification elsewhere in 

the tidal basin, but this will be discussed in more detail in a following chapter. 

Furthermore, more sources of TA have to be identified in order to reproduce high TA 

concentrations in summer. The indirect impact of riverine nutrient loads was investigated in this 

chapter, but river loads of bulk TA can cause high variabilities during the course of the year that 

have not been considered in the model setup so far. In the next chapters, the impact of riverine 

TA loads and Wadden Sea exchange rates will be estimated. 
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3.1 Introduction 

3 Impact of river input on alkalinity 
concentrations in the southern North Sea 

 

 

 

3.1 Introduction 
 

Rivers are important sources of nutrients, TA, DIC and other components in coastal areas. The 

impact of riverine nutrient loads on TA concentrations in the German Bight is discussed in 

chapter 2. River loads of the British rivers were based on the report of Heath et al. (2002). The 

river loads of the more important continental rivers were based on the report of Pätsch & 

Lenhart (2008). This data set was also used in former model studies of the carbonate system of 

the North Sea and the northwest European Shelf (Artioli et al., 2012, Lorkowski et al., 2012). 

The data provide daily river loads for nutrients that were based on measured freshwater 

discharges and concentrations for each river. The data sets for TA and DIC were also based on 

measured daily freshwater discharges, whereas the concentrations for TA and DIC were based 

on one single concentration value in each case for each river. These concentrations were defined 

by the application of the end member approach as in Hjalmarsson et al. (2008). 

River loads of bulk TA and bulk DIC are in focus of this chapter, because their variations could 

potentially lead to the observed high TA concentrations in the German Bight in summer. The 

direct effect of river loads on TA is in focus here, whereas the indirect effect of riverine 

nutrients is in focus of chapter 2. Especially variations in TA concentrations in the Elbe estuary 

can significantly affect TA concentrations in the German Bight (Brasse et al., 2002). Riverine 

TA and DIC concentrations can increase, e.g., due to increasing freshwater discharge in the Elbe 

estuary (Amann, 2013). Certainly, this correlation depends on the composition of the river 

catchment area and it can also be inverse in other estuaries as it was stated by Gypens et al. 

(2009) for the river Scheldt. Furthermore, also the plume of the river Rhine can affect TA 

concentrations in the German Bight (Hoppema, 1990; van den Berg et al., 1996) either directly 

due to its relatively high loads of TA (170 Gmol yr-1 in 2008) or indirectly due to high loads of 

nitrate (12.5 Gmol yr-1 in 2008). However, the respective data sets of TA and DIC loads 

provided by Pätsch & Lenhart (2008) are an adequate basis for calculations of the carbonate 

system in the open North Sea even if they lack seasonal accuracy, because seasonality is only 
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given by freshwater discharge. Nevertheless, variations in riverine TA concentrations have to be 

considered in order to get a more precise budget of TA sources and sinks in the German Bight. 

The aim of this chapter is to improve the data basis for river loads in order to study the riverine 

impact on TA concentrations and thus the carbonate system in the German Bight. The 

overarching question is: Can seasonal variations in river loads of TA explain the observed high 

TA concentrations in the German Bight in summer 2008? 

The first step is to take into account additional drainage of German rivers that originated from 

the areas downstream of the respective points of observation. Therefore, the freshwater 

discharges as well as the river loads of the rivers Elbe, Weser and Ems were increased by 21%, 

19% and 30%. These corrective factors were already mentioned in the report of Pätsch & 

Lenhart (2008) but not adapted to the datasets. The increase of TA and nutrient river loads 

affected the TA concentrations in the German Bight directly and indirectly (e.g. by the uptake of 

nitrate). As a second step monthly variations in riverine TA and DIC concentrations of the most 

important continental rivers were implemented into the model. These improvements were based 

on different measurements of the carbonate system in the respective rivers (www.waterbase.nl, 

Amann, 2013). As a third step the impact of the river Rhine on TA concentrations in the 

German Bight was investigated. For this purpose, simulations without loads of the river Rhine 

were carried out. 

The implemented changes in river loads also affected nutrient loads, especially loads from the 

German rivers. Therefore it was also investigated how much TA was additionally converted 

internally and where it was converted. These investigations can help to understand the spatial 

extent of a river plume of (indirect) potential TA that can differ from (direct) bulk TA. In order 

to compare the amounts of TA that were produced internally with TA river loads the “effective 

riverine TA” (Riveff) was defined. It was necessary because changes of TA concentrations came 

along with changes in (water) volume due to freshwater discharge, which also dilutes TA in the 

respective grid cell of the model.  

The results of the simulations were compared with observations from August 2008 (Salt et al., 

subm.) when the high TA concentrations were observed in the German Bight. 
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3.2 Methods 

 

Figure 3.1: Model domain and the positions of rivers 1 – 16 (Tab. 3.1). 

 

3.2.1 Freshwater discharge 

The aim of this chapter is to improve the data basis for river loads. The implemented 

improvements also included the discharges of some rivers in the model, because climatological 

data sets (British rivers) were used or the respective point of observation was located far off the 

river mouth so that the data sets did not represent the whole catchment area of the river (German 

rivers). 

Basically, the same model setup was used as in chapter 2: Daily fluxes of freshwater from 16 

rivers were used (Fig. 3.1). For the German Bight and the other continental rivers daily 

observations of runoff were used (Pätsch & Lenhart, 2008). Additionally to the first simulations, 

the discharges of the rivers Elbe, Weser and Ems were increased by 21%, 19% and 30% in 

order to take additional drainage into account that originated from the area downstream of the 
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respective points of observation. These corrective factors were also mentioned in Pätsch & 

Lenhart (2008) but have not been considered for the calculation of the datasets. The data of 

HASEC (2012) were implemented for the British rivers with daily values for freshwater. The 

annual amounts of freshwater of the different rivers are shown in Tab. 1. These freshwater 

fluxes govern the salinity gradient from the coast into the North Sea and enhance the advection 

from the river mouths into the sea. Fig. 3.2 illustrates the sea surface salinity (SSS) in February 

(left) and August (right) of 2008. Riverine freshwater discharge was also considered for the 

calculation of the concentrations of all biogeochemical tracers in the model. As a consequence, 

it was possible to simulate dilution effects if the riverine concentration of a tracer was smaller 

than the concentration in the respective model area where the river discharged. 

 

Figure 3.2: Simulated salinity [PSU] in February (left) and August (right) 2008. 

It can be seen that the strong freshwater fluxes in winter (mean river Elbe discharge in February: 

1420 m³ s-1) led to lower salinities in the German Bight than in summer (mean river Elbe 

discharge in August: 300 m³ s-1). 
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Table 3.1: Annual riverine freshwater discharge [km³ yr-1]. 

  2001 2002 2003 2004 2005 2006 2007 2008 2009 

Elbe 23.05 43.38 23.95 19.56 25.56 26.98 26.61 24.62 24.28 

Ems 3.47 4.48 3.15 3.52 2.99 2.54 4.32 3.32 2.58 

Noordzeekanaal 3.21 2.98 2.49 3.05 3.03 2.96 1.55 3.05 2.46 

Ijsselmeer (east) 9.55 9.94 6.27 7.97 7.35 7.30 9.10 8.23 6.59 

Ijsselmeer (west) 9.55 9.94 6.27 7.97 7.35 7.30 9.10 8.23 6.59 

Nieuwe Waterweg 50.37 51.33 34.72 42.91 41.61 44.21 49.59 49.76 44.69 

Haringvliet 33.10 35.18 17.92 10.77 12.36 16.02 24.00 15.70 11.06 

Scheldt 7.28 2.74 4.31 3.64 3.59 3.74 4.63 4.57 3.63 

Weser 11.43 18.97 11.80 10.52 10.37 9.72 16.21 12.59 9.58 

Firth of Forth 2.72 3.76 2.06 3.01 3.00 2.84 2.85 3.59 3.66 

Tyne 1.81 2.25 1.18 2.04 1.92 1.78 2.09 2.70 2.05 

Tees 1.33 1.78 0.94 1.59 1.27 1.45 1.49 1.99 1.55 

Humber 10.76 12.10 7.16 10.51 7.68 11.11 12.03 13.87 9.60 

Wash 5.46 4.39 3.08 3.91 1.96 2.72 5.24 4.77 3.21 

Thames 4.47 3.23 2.41 2.13 0.96 1.57 3.52 3.20 2.38 

Eider 0.67 0.97 0.47 0.70 0.68 0.67 0.63 0.58 0.57 

Sum 178.20 207.40 128.16 133.78 131.66 142.91 172.94 160.76 134.46 
 

 

3.2.2 River loads of TA, DIC and nutrients 

Up to now, no model setup took variations in riverine TA and DIC concentrations into account. 

Hence, the contribution of rivers to TA variations in the German Bight might be 

underestimated. Therefore, the dataset of riverine input was changed compared to the 

simulations in chapter 2. New data of freshwater discharge were introduced as well as TA and 

DIC loads for the British rivers (HASEC, 2012). Monthly mean concentrations of TA and DIC 

were added for the Dutch rivers and for the German river Elbe. The river loads were 

recalculated together with the respective freshwater discharges. For the Dutch rivers data of 

bicarbonate and pH of the years 2007 – 2009 (www.waterbase.nl) were used to calculate 

monthly mean concentrations of TA and DIC by applying CO2sys (Lewis & Wallace, 1998) 

with the set of constants from Millero (2006). Monthly mean concentrations of nitrate were also 

calculated for this period, in order to take into account that the riverine TA concentrations also 

depend on nitrate concentrations. 

Additionally, new measurements of TA, DIC, nitrate and ammonium concentrations by Amann 

(2013) were used to recalculate river loads of the Elbe estuary. Concentrations at 5 km 

downstream of Glückstadt (km 679, see Tab. 3.2) were used from this data set for the river load 
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calculations of TA, DIC and nitrate in the model. As no measurements were available in 

January and June, interpolated concentrations from measurements in December and February or 

May and July were used. Concentrations of TA and DIC that were used for river load 

calculations in the study of Lorkowski et al. (2012) were 2231 and 2195 µmol kg-1 in every 

month. In comparison, TA concentrations in the study at hand were higher from November to 

March (2355 µmol kg-1 on average) and lower from April to October (1985 µmol kg-1 on 

average), whereas DIC concentrations were higher from October to March (2373 µmol kg-1 on 

average) and lower from April to September (2021 µmol kg-1 on average). The mean 

concentration of nitrate in the river Elbe used by Lorkowski et al. (2012) was 201 µmol kg-1 and 

was thus only slightly higher than the mean value in this study (197 µmol kg-1). The 

concentrations used there were measured 51 km upstream (at Seemannshöft, km 628) from the 

sampling site of the study at hand. 

Tab. 3.2: River Elbe concentrations at km 679 for TA, DIC, nitrate and ammonium [µmol 

kg-1]. N is the number of available measurements. Concentrations in January and June 

(N=0) were calculated from December and February or from May and July, respectively.  

 

month N TA DIC NO3
- NH4

+ 
January 0 2380 2415 247.17 3.55 
February 1 2272 2319 330.05 4.93 
March 1 2293 2362 277.35 2.76 
April 2 2083 2179 224.65 0.58 
May 1 2017 2093 192.73 0.83 
June 0 1967 2025 160.8 1.07 
July 2 1916 1956 128.88 1.31 
August 1 1768 1853 103.36 1.32 
September 3 1988 2018 111.61 0.15 
October 3 2156 2200 157.16 0.75 
November 1 2342 2428 266.94 2.80 
December 1 2488 2512 164.29 2.17 
 

 

The data sources and positions of the river mouths of all 16 rivers are shown in Tab. 3.3 and in 

Fig. 3.1. The respective riverine concentrations of TA, DIC and nitrate are shown in the 

appendix (A6). Monthly TA- and DIC-concentrations of the river Elbe and the two river mouths 

of the river Rhine (Nieuwe Waterweg and Haringvliet) are shown in Fig. 3.3. The resulting river 

loads are shown in Fig. 3.4 – 3.6 and are compared with the previously used river loads in 

chapter 2. Certainly, river loads of other nutrients also change TA in the German Bight. 

However, they had only minor impact on TA in the simulated period (2001 – 2009) so it was 

decided to neglect them in this study in order to keep the changes as simple as possible. 
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Table 3.3: River numbers in Fig. 3.1, their positions and source of data for simulation C. 

Number in Fig. 
3.1 

Name River mouth position Data source 

1 Elbe 53°53'20"N  08°55'00" E Pätsch & Lenhart (2008); 
TA-, DIC- and nitrate- 
concentrations by Amann 
(2013) 

2 Ems 53°29'20"N  06°55'00"E Pätsch & Lenhart (2008) 
3 Noordzeekanaal 52°17'20"N  04°15'00"E Pätsch & Lenhart (2008); 

TA-, DIC- and nitrate- 
concentrations from 
waterbase.nl 

4 Ijsselmeer (east) 53°17'20"N  05°15'00"E As above 
5 Ijsselmeer (west) 53°05'20"N  04°55'00"E As above 
6 Nieuwe 

Waterweg 
52°05'20"N  03°55'00"E As above 

7 Haringvliet 51°53'20"N  03°55'00"E As above 
8 Scheldt 51°29'20"N  03°15'00"E As above 
9 Weser 53°53'20"N  08°15'00"E Pätsch & Lenhart (2008) 
10 Firth of Forth 56°05'20"N  02°45'00"W HASEC (2012) 
11 Tyne 55°05'20"N  01°25'00"W HASEC (2012) 
12 Tees 54°41'20"N  01°05'00"W HASEC (2012) 
13 Humber 53°41'20"N  00°25'00"W HASEC (2012) 
14 Wash 52°53'20"N  00°15'00"E HASEC (2012): sum of 

4 rivers: Nene, Ouse, 
Welland and Witham 

15 Thames 51°29'20"N  00°55'00"E HASEC (2012) 
16 Eider 54°05'20"N  08°55'00"E Johannsen et al, 2008 

 

A statistical analysis of uncertainties of the concentrations used for calculations of the new river 

loads was not possible, because only 3 values were available for each Dutch river and month. 

The respective concentrations are shown in the appendix. For the river Elbe only 1 – 3 (0 in 

January and June) measurements were available (Tab. 3.2). 
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3.2.3 Simulated scenarios 

The years 2001 to 2009 were simulated with three spin-up years in 2000. Six different scenarios 

(A – F) were conducted as described below. The main differences between the scenarios are 

summarized in Tab. 3.4. The respective TA and DIC concentrations in the Elbe estuary and the 

river Rhine are shown in Fig. 3.3, the river loads are shown in Fig. 3.4 – 3.6. 

A: 

This was the simulation that was already introduced in the previous chapter and is the reference 

scenario: The prognostic treatment of TA was implemented and constant river concentrations 

for TA and DIC were used (Pätsch & Lenhart, 2008; Lorkowski et al., 2012). Interannual and 

seasonal variations of TA and DIC are proportional to freshwater discharges. 

B: 

This scenario was like A but with increased discharges of the German rivers Elbe, Weser and 

Ems by 21%, 19% and 30%. These corrective factors were applied to freshwater discharge and 

river loads. They were already mentioned in the report of Pätsch & Lenhart (2008) but not 

considered for the calculation of the dataset. This scenario was conducted in order to study the 

impact of the additional drainage that originated from the area downstream of the respective 

points of observation. 

C: 

This simulation was a further development of A because loads of TA and DIC were calculated 

more precisely for the main continental rivers. For that reason monthly variations of riverine TA 

and DIC concentrations were integrated (Tab. 3.3) as well as nitrate concentrations that were 

measured at the same place and time, respectively. All changes of riverine input that have been 

described in this chapter have been applied for this scenario. 

D, E: 

Further scenarios were conducted to examine the impact of the river Rhine on TA 

concentrations in the German Bight. This was an important step in order to localise the main 

drivers of TA there. River loads and freshwater dilution of the river Rhine were set to 0 in both 

scenarios. In this context, D and E represented the scenarios C and A with disabled input of the 

river Rhine. 
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F: 

The impact of internal fluxes (F1 – F17, see chapter 2.2.7) was compared with riverine input of 

TA. Therefore, the setup of simulation C was used but without the impact of internal fluxes on 

TA. Note that only the impact on TA was switched off and not the respective fluxes itself. 

 

Tab. 3.4: Summary of the main features of simulations A – F: “Prognostic TA” is the 

concentration change of TA due to internal processes (see previous chapter). “German 

river discharge” keeps track of the corrected discharge of the rivers Ems, Weser and Elbe. 

“River configuration” means the implementation of all described changes in this chapter 

concerning riverine concentrations and loads of TA, DIC and nitrate. “River Rhine loads” 

means if the river Rhine is implemented into the model or not. 

Simulation prognostic TA German river 
discharge 

River 
configuration 

River Rhine 
loads 

A enabled uncorrected unchanged enabled 
B enabled corrected unchanged enabled 
C enabled corrected changed enabled 
D enabled corrected changed disabled 
E enabled uncorrected unchanged disabled 
F disabled corrected changed enabled 
 

 

3.2.4 Changed river input 

As it is shown in Fig. 3.3 (compare “A” and “C”), river Rhine concentrations of TA and DIC 

were about 100 to 200 µmol kg-1 lower in scenario A compared to the annual mean of the 

concentrations used in scenario C. The TA concentration of the Elbe estuary was about 50 µmol 

kg-1 higher in A compared to the annual mean of the concentrations used in C whereas the DIC 

concentration did not differ much. In fact the seasonal variability in the Elbe estuary is higher 

than in the river Rhine, which was represented by low TA and DIC concentrations in summer 

and high concentrations in winter (compare Tab. 3.2). Concentrations that were used in scenario 

A were the same as in Lorkowski et al. (2012) or in the report of Pätsch & Lenhart (2008). 

Especially the low concentrations in the Elbe estuary in August indicated an increased dilution 

effect in the German Bight near the river mouth that could not be resolved without variations in 

riverine TA and DIC concentrations. 

 65 



3 Impact of river input on alkalinity concentrations in the southern North Sea 

Compared to scenario A and the report of Pätsch & Lenhart (2008) the implemented changes in 

riverine concentrations of TA and DIC increased the annual river loads of TA and DIC of the 

Elbe estuary by 8 to 10 Gmol yr-1 and the loads of the river Rhine by 10 to 20 Gmol yr-1 

(compare figure 3.4). The loads of the remaining continental rivers increased by 5 to 10 Gmol 

yr-1. There were no current data of TA and DIC measurements available for the rivers Weser 

and Ems, so the same concentrations (2356 µmol kg-1 for both) were used as in the study of 

Lorkowski et al. (2012). The differences between TA and DIC loads of the British rivers were 

more diverse because they were already treated more precisely (HASEC, 2012). 

River loads of nitrate of the Elbe estuary increased by almost 0 to 1 Gmol yr-1 and the loads of 

the remaining continental rivers increased by 0.2 to 1 Gmol yr-1 (figure 3.5). Nitrate loads of the 

river Rhine were up to 1.5 Gmol yr-1 lower in most of the years except for the years 2003 and 

2009. Nitrate loads of the British rivers were constantly about 10 Gmol yr-1 in scenario A, 

whereas loads in scenario C ranged between 5.5 and 11.5 Gmol yr-1. This revealed a certain 

inconsistency because loads of TA and DIC slightly varied. This was mainly because loads of 

the British rivers were developed step by step for scenario A and thus for river loads that were 

used in the study of Lorkowski et al. (2012). River loads of nutrients are based on 

climatological data (Heath et al., 2002) and loads of TA and DIC are partly derived from the 

study of Neal (2002). The newly implemented data of HASEC (2012) provide a dataset from a 

single source and allows replacing of the climatological data by daily values. 
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Figure 3.3: Monthly TA and DIC-concentrations [µmol kg-1] in the rivers Elbe and Rhine. 
Rhine 1 and Rhine 2 are river number 6 and 7 in Fig. 3.1 and Tab. 3.3. The dashed lines 
are the concentrations that were used in simulation A and in the previous chapter. The 
annual mean concentration of the new river loads in the recent chapter is defined as “C”. 
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3 Impact of river input on alkalinity concentrations in the southern North Sea 

 

 

Fig. 3.4: Annual export of riverine TA and DIC in simulations A and C (and D, F) of the 

rivers Elbe, Rhine (both river mouths), the remaining continental rivers and the British 

rivers [Gmol yr-1]. 
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Fig. 3.5: Annual export of riverine nitrate in simulations A and C (and D, F) of the rivers 

Elbe, Rhine (both river mouths), the remaining continental rivers and the British rivers. 
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3.3 Results 

3.3.1 Seasonal TA concentrations in 2008 

The effects of the implemented new river input data on TA concentrations are shown in Fig. 3.6 

and 3.7. Surface TA concentrations in scenario A and C are shown for February, May, August 

and November 2008 in Fig. 3.6. The differences between scenario B and A as well as between 

C and A are shown in Fig. 3.7 in order to highlight the resulting changes in TA concentrations 

in the German Bight. The scale in Fig. 3.7 was chosen in order to highlight differences in TA 

concentrations in the German Bight. As a consequence, the concentrations at the western Dutch 

coast were higher than the maximum value of the chosen scale in every month but these values 

are also mentioned in the following. 

3.3.1.1 February 

TA concentrations in scenario A ranged between 2275 µmol kg-1 at the Elbe estuary, 2345 µmol 

kg-1 at the mouth of the river Rhine and 2450 µmol kg-1 at the Thames estuary. TA 

concentrations in scenario B were about 5 to 7 µmol kg-1 lower at the Elbe estuary. In scenario 

C the TA concentrations were lower near the most rivers at the British coast except for the river 

Humber, where TA concentrations were up to 20 µmol kg-1 higher than in scenario A. This 

pattern of concentration differences was simulated at the British coast in every season. TA 

concentrations increased about 15 µmol kg-1 near the river Rhine. Furthermore, the TA 

concentrations increased about 3 to 15 µmol kg-1 in an area that was located east of 4°E and 

south of 55.5°N. 

3.3.1.2 May 

TA concentrations in scenario A ranged between 2275 µmol kg-1 at the Elbe estuary, 2350 µmol 

kg-1 in the Jade Bay (around 8.3°E and 53.5°N) and 2435 µmol kg-1 at the Thames estuary. TA 

concentrations in scenario B slightly increased about 2 to 4 µmol kg-1 at the northeastern part of 

the Dutch coast, at the Danish coast between 55°N and 55.5°N and in the Jade Bay. They 

decreased about 20 µmol kg-1 at the Elbe estuary. In scenario C the concentrations increased up 

to 100 µmol kg-1 in the direct vicinity of the river Rhine. They increased about 4 to 8 µmol kg-1 

in an area located east of 6°E and south of 56°N. Furthermore, the TA concentrations also 

decreased around 6 to 100 µmol kg-1 near the Elbe estuary. 

3.3.1.3 August 

TA concentrations in scenario A ranged between 2290 µmol kg-1 in the northwestern part of the 

model domain, 2360 µmol kg-1 at the western part of the Dutch coast and 2380 µmol kg-1 at the 

Thames estuary. In scenario B the concentrations increased about 4 µmol kg-1 in the Jade Bay. 
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In scenario C the concentrations increased about 10 to 20 µmol kg-1 at the western part of the 

Dutch coast and about 3 to 6 µmol kg-1 in an area located roughly east of 4°E and south of 

56°N. Furthermore, the TA concentrations also decreased around 6 to 50 mmol kg-1 near the 

Elbe estuary. 

3.3.1.4 November 

TA concentrations in scenario A ranged between 2280 µmol kg-1 in the northwestern part of the 

model domain and 2395 µmol kg-1 at the Thames estuary. In scenario B the differences in 

concentrations were all over below 1 µmol kg-1. In scenario C the concentrations increased 

about up to 20 µmol kg-1 at the western part of the Dutch coast and up to 4 µmol kg-1 in an area 

that was located between 6°E and 8°E and between 54°N and 56°N. The TA concentrations 

decreased about 4 to 10 µmol kg-1 near the Elbe estuary. 

In summary, the differences in TA concentrations were more pronounced in scenario C than in 

scenario A. In scenario C the TA concentrations showed a more heterogeneous pattern in the 

German Bight, especially in May and August. The concentrations decreased near the Elbe 

estuary, whereas they significantly increased west of 8°E. 
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3 Impact of river input on alkalinity concentrations in the southern North Sea 

 

Fig. 3.6: Simulated surface TA-concentrations [µmol kg-1] in scenario A and C in 2008. 
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Fig. 3.7: Differences in TA-concentrations [µmol kg-1] between scenario B and A as well as 

C and A. 
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3.3.2 Seasonal internal TA production in 2008 

The implemented changes in river input contained changes in loads of nitrate. Hence, the 

internal turnover of TA is also affected. The internal turnover of TA was already explicitly 

discussed in chapter 2. Thus it was presented as the sum of all 17 fluxes in the chapter at hand. 

The differences between scenario B and A as well as between C and A are shown in Fig. 3.8 in 

order to highlight the resulting changes in internal TA turnover in the German Bight. 

3.3.2.1 February 

Changes in the internal turnover of TA were all over below 0.5 mmol m-2 d-1 in scenario B. In 

scenario C it increased about 0.6 mmol m-2 at the rivers Elbe and Wash and between 0.6 to 1.5 

mmol m-2 d-1 at the river Humber. 

3.3.2.2 May 

In both scenarios (B and C) the internal turnover of TA increased similarly about 0.4 to 1.0 

mmol m-2 d-1 in the German Bight and at the northern Dutch coast. In scenario C the internal 

turnover of TA increased about 1.5 mmol m-2 d-1 at the Elbe estuary, whereas it decreased at the 

rivers Wash and Firth of Forth about 1.4 to 2.0 mmol m-2 d-1. 

3.3.2.3 August 

In scenario B the internal turnover of TA increased about 0.4 to 0.7 mmol m-2 d-1 at the Elbe 

estuary and along 8°E between 54°N and 55.5°N. In scenario C the internal turnover of TA 

increased about 0.5 to 2.0 mmol m-2 d-1 in the same areas. Additionally, it increased about 0.3 

mmol m-2 d-1 at the mouth of the river Rhine. Changes at the Britsh coast ranged between -1.4 

and 1.5 mmol m-2 d-1. 

3.3.2.4 November 

Changes in the internal turnover of TA were all over below 0.5 mmol m-2 d-1 in scenario B. In 

scenario C it increased about 0.6 mmol m-2 d-1 at the Elbe estuary and it decreased up the 1.8 

mmol m-2 d-1 at the river Thames. 

In summary, most changes of the internal turnover of TA were located in the German Bight in 

May and August. In scenario A 13.12 Gmol TA yr-1 were internally produced in the validation 

area (east of 4.5°E, north of 53.5°N and south of 55.5°N) in 2008. It increased about 1.54 Gmol 

TA yr-1 in scenario B and about 1.79 Gmol TA yr-1 in scenario C. Nevertheless, it is remarkable 

that almost no changes occurred at the western Dutch coast. 
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Fig. 3.8: Differences in internal turnover rates of TA [mmol m-2 d-1] between scenario B 

and A as well as C and A. 
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3.3.3 TA originating from the river Rhine in 2008 

The differences in TA concentrations between scenario A and E as well as between C and D are 

shown Fig. 3.9. These scenarios were conducted in order to study the impact of the river Rhine 

on TA concentrations in the German Bight. Furthermore, the differences in the internal turnover 

between these scenarios are shown in Fig. 3.10. 

3.3.3.1 February 

In scenario A the impact of the river Rhine on TA concentrations ranged between 4 µmol kg-1 

near the island of Sylt and 10 µmol kg-1 at the river Ems (Fig. 3.9). In scenario C this impact 

was more pronounced in the validation area. It ranged between 7 µmol kg-1 in an area north of 

54.5°N and south of the island of Sylt and 17 µmol kg-1 near the river Ems and the northern part 

of the Dutch coast. The internal turnover of TA that was driven by the river Rhine ranged 

between -1 and 1.2 mmol m-2 d-1 near the river Rhine (Fig. 3.10). 

3.3.3.2 May 

In scenario A the impact of the river Rhine on TA concentrations was more homogeneous than 

in scenario C in an area east of 6.5°E and south of 56°N (Fig. 3.9). It ranged between 7 and 8 

µmol kg-1, whereas it ranged between 7 µmol kg-1 around 6.5 °E and 12 µmol kg-1 near the 

island of Sylt and the Jade Bay. The internal turnover of TA driven by the river Rhine was most 

pronounced in this month (Fig. 3.10). It ranged between 3 mmol m-2 d-1 at the north western part 

of the Durch coast and 10 mmol m-2 d-1 near the river Rhine. Additionally, the internal turnover 

of TA was driven by the river Rhine about 2 to 4 mmol m-2 d-1 in the western and middle part of 

the validation area. 

3.3.3.3 August 

In both scenarios the areal extent of the impact of the river Rhine on TA concentrations was 

largest in this month (Fig. 3.9). In scenario A it ranged between 7 and 8 µmol kg-1 in most parts 

of the validation area and between 10 and 12 µmol kg-1 at the northern part of the Dutch coast. 

In scenario C it ranged between 8 µmol kg-1 in the central northern part of the validation area 

(around 7°E and 55°N), 11 µmol kg-1 near the island of Sylt and 17 µmol kg-1 at the northern 

part of the Durch coast. The internal turnover of TA was induced slightly negative by the river 

Rhine (-0.5 to -1.5 mmol m-2 d-1) in the eastern and middle part of the validation area (Fig. 

3.10). 

3.3.3.4 November 

In scenario A the impact of the river Rhine on TA concentrations ranged between 7 and 8 µmol 

kg-1 in most parts of the validation area (Fig. 3.9). In scenario C it ranged between 7 µmol kg-1 
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at the western and northern edge of the validation area and 12 µmol kg-1 in an area east of 6°E 

and south of 55°N. The internal turnover of TA was induced about 2 mmol m-2 d-1 near the river 

Rhine. 

In summary, the impact of the river Rhine on TA concentrations in the German Bight was more 

heterogeneous and more pronounced in scenario C than in scenario A. The internal turnover of 

TA was induced by the river Rhine similarly in both scenarios. In scenario A / C 1.21 / 1.14 

Gmol TA yr-1 were produced internally in the validation area in 2008. 
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3 Impact of river input on alkalinity concentrations in the southern North Sea 

 

Fig. 3.9: TA that originated in the river Rhine represented by differences in TA-

concentrations [µmol kg-1] between scenario A and E as well as C and D. 
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Fig. 3.10: Internal turnover rates of TA [mmol m-2 d-1] that were induced by the river 

Rhine. 
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3.3.4 Seasonal DIC concentrations in 2008 
The effects of the implemented new river input data on DIC concentrations are shown in Fig. 

3.11. Surface TA concentrations in scenario A and the differences between C and A are shown 

for February, May, August and November 2008. 

3.3.4.1 February 

In scenario A the DIC concentrations ranged between 2110 µmol kg-1 near the English Channel 

and 2180 µmol kg-1 in the central and southern part of the German Bight. In scenario C the 

concentrations increased about 10 µmol kg-1 at the northern part of the Dutch coast and up to 30 

µmol kg-1 near the Elbe estuary and the river Rhine. 

3.3.4.2 May 

In scenario A the DIC concentrations ranged between 2035 µmol kg-1 at the North Frisian coast 

and 2140 µmol kg-1 at the East Frisian coast. The concentrations in scenario C increased about 9 

to 15 µmol kg-1 in the German Bight and the northern part of the Dutch coast near the river Ems. 

They also increased about 90 µmol kg-1 at the river Rhine. 

3.3.4.3 August 

The DIC concentrations in scenario A ranged between 1940 µmol kg-1 at the North Frisian and 

the Danish coast (between 55°N and 55.5°N) as well as in the Jade Bay and 2150 µmol kg-1 at 

the western part of the Dutch coast. The DIC-concentration in the German Bight showed a 

heterogeneous pattern with decreasing values from west to east. The concentrations in scenario 

C increased about 3 to 6 µmol kg-1 in the German Bight and about 25 µmol kg-1 at the river 

Rhine. They decreased about 25 to 50 µmol kg-1 near the Elbe estuary. 

3.3.4.4 November 

The DIC concentrations in scenario A ranged between 2080 µmol kg-1 near the English Channel 

and 2150 µmol kg-1 near the Elbe estuary. The concentrations increased in scenario C about 24 

µmol kg-1 near the Elbe estuary and the river Rhine.  

In summary, changes in DIC concentrations in the German Bight occurred especially in 

February and May. Only slight changes occurred in August and November. 
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Fig. 3.11: DIC concentrations in scenario A (left) and differences in DIC concentrations 

[µmol kg-1] between scenario C and A (right).  
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3.3.5 Comparison of TA and DIC concentrations with observations in 2008 

The results of scenario C were compared with observations of TA and DIC in August 2008 (Salt 

et al., subm.). The latter revealed high TA and DIC concentrations in the German Bight (east of 

7°E and south of 55°N) and around the Danish coast (around 56°N) that is shown in Fig. 3.12. 

The observed concentrations ranged between 2350 and 2380 µmol kg-1 (TA) and 2110 and 2160 

µmol kg-1 (DIC) respectively. 

The results of the conducted scenarios A – F are presented in Taylor diagrams (Taylor, 2001) in 

Fig. 3.13 and 3.14. Therefore, the same area was validated that was already examined in chapter 

2 (east of 4.5°E, north of 53.5°N and south of 55.5°N, see Fig. 2.1). In that area observations of 

10 different stations were available, each with four to six measurements at different depths (52 

measured points). Measured TA and DIC concentrations of each point were compared with the 

modeled TA concentrations in the respective grid cells. The correlation coefficients, the 

standard deviations (STD) and the root mean square errors (RMSE) were calculated for each 

simulation. 

One aim of this model development was to reduce the RMSE in order to bring the simulated TA 

concentrations closer to observations. The deviations from observations of scenarios A – E were 

represented by RMSE values around 28 µmol kg-1 (see Fig. 3.13). In scenario C the variation of 

TA concentrations in the validation area was slightly increased compared to A, which was 

represented by a STD of 6 µmol kg-1. The STD was lowest in the scenarios without loads of the 

river Rhine (STD = 4 µmol kg-1 in D and E). The deviations from observations of simulated 

DIC concentrations were represented by RMSE values of 38 µmol kg-1 for scenarios A – C and 

40 µmol kg-1 for scenarios D and E (Fig. 3.14). Compared to observations TA / DIC was 

simulated up to 50 µmol kg-1 / 60 µmol kg-1 too low in the German Bight (Fig. 3.12). 
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Fig. 3.12: Surface TA and DIC concentrations [µmol kg-1] in August 2008 observed (top) 

and simulated (center, scenario C) as well as differences between observations and 

scenario C (bottom). 
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Fig. 3.13: Taylor diagram of simulated TA concentrations (A – F) compared to observed 

TA concentrations (52 measurements) in the validation area. Standard deviation and 

RMSE (green) are in µmol kg-1. 

 

Fig. 3.14: Taylor diagram of simulated DIC concentrations (A – F) compared to observed 

DIC concentrations (52 measurements) in the validation area. Standard deviation and 

RMSE (green) are in µmol kg-1. 
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3.4 Discussion 
 

3.4.1 River loads and concentrations 

One aim of this part of the study is to investigate whether the observed high TA concentrations 

could originate from rivers, especially from the Elbe estuary. River loads used in former model 

studies (Artioli et al., 2012, Lorkowski et al., 2012) were based on the report of Pätsch & 

Lenhart (2008). These TA and DIC datasets were based on measured freshwater discharges and 

on one concentration value for each river defined by the application of the end member 

approach as in Hjalmarsson et al. (2008). The data were an adequate basis for calculations of the 

carbonate system in the open North Sea but they lack seasonal accuracy because seasonality is 

only given by freshwater discharge.  

The seasonal variability of TA and DIC concentrations in the Elbe estuary revealed low values 

in summer and higher values in winter (Tab. 3.2, Fig. 3.3). This seasonality is mainly driven by 

discharge with monthly mean values of about 460 m³ s-1 in August and 950 m³ s-1 in February 

(Pätsch & Lenhart, 2008). Rainfall and snowmelt in the catchment area of the Elbe estuary 

increase the TA and DIC mobilisation in winter and lead to the observed increased 

concentrations of TA and DIC in the upper estuary (Amann, 2013). This is due to the river 

catchment area, which is partly comprised of sedimentary carbonates (8.6%) and mixed 

sediments (13.5%) that are likely to contain carbonates transported via glaciers from northerly 

lying cretaceous marine carbonates (Amann, 2013, Lehner et al., 2008, Hartmann & Moosdorf, 

2012). 

Riverine TA and DIC concentrations could also be calculated by linear regressions of these 

parameters as a function of the logarithm of freshwater discharge. Gypens et al. (2009) assumed 

negative relationships between TA or DIC and the discharge in the river Scheldt that are due to 

dilution effects. Although this assumption is applicable for most rivers (Ludwig et al., 1996; Cai 

et al., 2008) it does not correspond to the positive relationships between TA or DIC and the 

discharge in the river Elbe that were found by Amann (2013).  

Analogously to the modelled prognostic treatment of TA in this study, biogeochemical 

processes have also an impact on TA and DIC concentrations in the Elbe estuary. Especially 

nitrification can decrease TA by two mol per mol NO3 produced. Vice versa denitrification can 

increase TA and Seitzinger and Kroeze (1998) estimated that about 50% of global dissolved 

inorganic nitrogen (DIN) river inputs are removed in estuaries by denitrification. Nevertheless, 

Dähnke et al. (2008) identified a change from a denitrification to a nitrification spot in the Elbe 

estuary that was attributed to a loss of its natural denitrification capacity due to extensive 

dredging and removal of sediments. Hence, the observed low TA concentrations in summer and 
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early fall can also be referred to the weakened denitrification capacity in the inner Elbe estuary 

(Amann, 2013). 

Due to the scarcity of data necessary for the applications of the end member approach it was 

decided to use real concentrations at zero salinity in order to obtain seasonal to monthly TA and 

DIC concentrations for the most important rivers. This approach could lead to erroneous 

estimates because of potential nonconservative behaviour of chemicals in upper estuaries 

(Frankignoulle et al., 1996, Gypens et al., 2009). In case of the Elbe estuary Amann (2013) 

estimated up to 4.0 Gmol yr-1 additional TA and DIC that could originate from marshes (Weiss, 

in prep.). This would cause the main deviation of real concentrations at zero salinity from end 

member values. 

The lack of seasonality of the TA concentrations in the dataset of Pätsch & Lenhart (2008) 

causes another inaccuracy if a precise TA budget is intended. Using again the example of the 

Elbe estuary, the TA concentration that was used for river load calculations was 2231 µmol kg-1 

on every day. This concentration also included a certain amount of nutrients when it was 

determined. This could be best explained by the explicit conservative form of total alkalinity 

(Wolf-Gladrow, 2007) that was already mentioned in chapter 2.2.7 in this study. It means in 

effect that TA concentrations change due to changes in the concentrations of nutrients, mainly 

due to changes in nitrate. The river loads of nitrate that were calculated in the report of Pätsch & 

Lenhart (2008) were based on weekly concentration measurements. Variations of nitrate 

concentrations in the Elbe estuary can exceed up to 200 µmol kg-1 during the course of the year 

(compare Tab. 3.2) but there were no variations of concentrations considered for the 

calculations of TA river loads. This would not cause any problems if the determined TA 

concentration was calculated without any nutrients. In this case TA river loads could be easily 

calculated by subtracting the nitrate concentrations from the uniquely determined TA 

concentration value. For instance, if the corresponding nitrate concentration was 150 µmol kg-1, 

when the TA concentration of 2231 µmol kg-1 was determined and the nitrate was completely 

taken up by phytoplankton afterwards, this would result in a TA concentration of 2381 µmol kg-

1. This value could be defined as “background TA” in this case. If the dataset of nitrate with 

weekly concentrations was used for simulations and relatively high concentrations about 300 

µmol kg-1 occurred, this would result in a background TA concentration of 2531 µmol kg-1. In 

fact the background TA concentration should not change if no changes due to discharge are 

considered (see above). 

Consequently, the river load data for TA are biased because they do not keep track of changing 

riverine TA concentrations due to the variation of nitrate concentrations. There is an 

inconsistency if the datasets for TA and nitrate are used together, in order to budget riverine 

bulk TA and TA that could be generated by the uptake of riverine nitrate, which can hardly be 
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quantified. The resulting inaccuracy in the TA load of the Elbe estuary can be up to 0.4 Gmol 

mo-1 in some months, which is negligible if the carbonate system of the whole North Sea is in 

focus of a study (Artioli et al., 2012; Lorkowksi et al., 2012). In the study at hand the TA budget 

of a smaller part of the North Sea is in focus. This is the reason why it was decided to change 

river loads of nitrate analogously to river loads of TA in the present study. The underlying 

measurements of nitrate were carried out at the same places and at the same times as the TA and 

DIC measurements. 

 

3.4.2 The impact of changed river loads on the TA and DIC concentrations in the 

German Bight 

The aim of the implementation of more precise river loads was to investigate whether the 

observed high TA concentrations in the German Bight can originate from rivers. In the model 

validation the RMSE did not change from simulation A (old river loads, Pätsch & Lenhart, 

2008) to simulations B and C (Fig. 3.13), which means that rivers are unlikely the origin of 

elevated TA concentrations in the German Bight. In comparison to A the TA and DIC 

concentrations mostly increased at the western part of the Dutch coast in scenario C (Fig. 3.7, 

3.11). The TA and DIC concentrations slightly increased in the German Bight and the 

concentration patterns were more heterogeneous. This can only partly be explained by increased 

loads of TA and nutrients of the rivers Weser and Ems because TA concentrations in scenario B 

only increased about 2 µmol kg-1 in the German Bight (Fig. 3.7) in August. TA concentrations 

were about 4 µmol kg-1 higher (west of 8°E) in scenario C than in B. The majority of increased 

TA and DIC concentrations in C in that area were due to increased loads of the river Rhine (Fig. 

3.9). Furthermore, the differences in concentrations between scenario C and A (Fig. 3.7) 

revealed similar patterns to the increased concentrations that were caused by the river Rhine in 

scenario C in every season (compare Fig. 3.9, left and right side). On the one hand this seems to 

be counter-intuitive because TA loads of the river Rhine increased similarly to TA loads of the 

German rivers Ems, Weser, Elbe and Eider in 2008 (Rhine +16.4 Gmol yr-1, German rivers 

+16.3 Gmol yr-1 in B, +15.3 Gmol yr-1 in C). On the other hand TA concentrations of the river 

Rhine increased in scenario C compared to A, whereas the TA concentrations of the Elbe 

estuary decreased. Hence, the effect of dilution by freshwater discharge on simulated TA 

concentrations increased near the Elbe estuary, whereas it decreased near the river Rhine. 
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3.4.3 Introduction of effective river loads (Riveff) 

The effective river load (Riveff) was defined in order to quantify the combined effects of river 

load and freshwater discharge on TA concentration in the respective model grid cell. Riveff 

enables a comparison of the impact of river input and internal processes on TA concentration 

changes. 

The annual TA river loads (TAlo) that discharged directly into the validation area (rivers Elbe, 

Weser, Ems and Eider) were 78.2 Gmol yr-1 in scenario A and an additional 15.3 Gmol yr-1 in 

scenario C (93.5 Gmol yr-1) in 2008. Internal processes accounted for a TA production of 14.9 

Gmol yr-1 (including atmospheric nitrogen input) in the validation area in C, which was almost 

equal to the additional river loads. In order to combine the effects of river loads and dilution, the 

freshwater discharge in the validation area has to be considered additionally, which was 41.11 

km³ yr-1 in 2008. Following a simple mass balance calculation the flushing of the respective grid 

cells with river input resulted in a decrease of TA concentrations if the riverine concentration 

was lower than the concentration in the respective grid cell. This effect was defined as TAfl and 

it could be figured out if the amount of TA was calculated that was flushed out of the grid cells 

with river input due to the freshwater discharge (Fig. 3.15). It was calculated from concentration 

changes caused by the additional volume of freshwater discharge so that it could be 

distinguished from advection due to currents. TAfl in the validation area was 96.7 Gmol yr-1 in 

2008. Thus, an effective river input (Riveff) could be defined as the difference of TAlo and TAfl 

in Gmol yr-1. 

flloeff TATARiv −=        (3.1) 

 

 

Fig. 3.15: Schematic description of the effective river input (Riveff) in the validation area 

(sum of rivers Elbe, Weser, Ems and Eider). 

 

The effective river input was -3.2 Gmol TA yr-1 in scenario C (-2.2 Gmol TA yr-1 in scenario A) 

and was remarkably lower than TA that was produced internally (14.9 Gmol TA yr-1). 
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Moreover, it is pointed out that the riverine input in the validation area has an annual dilution 

effect. This is in marked contrast to the river Rhine that has an effective river input of 23.9 

Gmol TA yr-1 in scenario C (10.6 Gmol TA yr-1 in scenario A). Compared to scenario A Riveff 

of the German rivers decreased about 1.0 Gmol TA yr-1 due to the implemented changes in river 

input. Opposed to this, Riveff of the river Rhine increased about 13.3 Gmol TA yr-1. This is why 

the impact on TA concentrations of the river Rhine was more pronounced even in the German 

Bight than the impact of the German rivers. Certainly, this depends also on hydrodynamic 

conditions in the North Sea. Clockwise flow patterns, which can occur especially in spring, can 

reduce the impact of the river Rhine on TA concentrations in the German Bight (Lenhart & 

Pohlmann, 1997). The impact of different hydrodynamical conditions will be discussed in 

chapter 4. 

 

3.4.4 Temporal progress of Riveff and internal turnover of TA 

The cumulative temporal progress of Riveff and the internal turnover of TA (sum of F1 – F17) are 

presented in Fig. 3.16. The Riveff decreased steadily in scenario A, whereas it decreased from 

February to November in scenario C and increased in December and January. The progress of 

Riveff in scenario C was in accordance with the implemented new TA concentrations of the Elbe 

estuary (Fig. 3.3). Low TA concentrations in the Elbe estuary induced a stronger decrease of 

Riveff in scenario C than in scenario A in summer, although the effects of unchanged 

concentrations of the remaining German rivers were included in Riveff. 

The temporal progress of the internal turnover of TA has already been discussed in chapter 2. 

However, the implemented changes in river loads also included changes in river loads of 

nutrients. Most effects of changed nutrient loads on TA concentrations were similar in scenarios 

B and C (Fig. 3.8), thus most changes in the internal turnover rate were due to the increased 

river loads of German rivers. The internal turnover rates of scenario A and C were similar until 

April (Fig. 3.16). Differences first occurred near the island of Sylt and the northern Dutch coast 

in May, when nitrate or phosphate became the limiting factor at the end of a phytoplankton 

bloom (Lorkowski et al., 2012). At that time the increased availability of nutrients induced an 

enhanced uptake of nitrate and primary production. More organic material induced additional 

denitrification so that TA was produced irreversibly. This effect lasted until August and resulted 

in 1.79 Gmol TA that got additionally produced mainly in the German Bight (Fig. 3.8). 

The implemented changes in loads of the river Rhine mostly affected loads of TA and thus 

direct changes of TA concentrations in 2008. Nitrate loads of the river Rhine did not differ 

much from scenario A in 2008 but they differed more in other years (Fig. 3.5). Nevertheless, the 

total amount of internally produced TA that was induced by the river Rhine in the validation 
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area was 1.14 Gmol yr-1, which was 0.07 Gmol yr-1 lower than in scenario A. Considering the 

whole model domain an internal TA production of 11.4 Gmol yr-1 was induced by loads of the 

river Rhine in scenario C (12.0 Gmol yr-1 in A), which is comparable to loads of nitrate in 2008 

(12.5 Gmol yr-1 in A and 12.3 Gmol yr-1 in C). 

In summary, the effect of the river Rhine and the pooled effect of the German rivers can be 

distinguished due to their different impact on TA concentrations. The effective TA river input of 

the river Rhine is significantly higher than the pooled effective river input of the German rivers. 

Thus, the river Rhine affects concentration changes of TA more directly, whereas the German 

rivers affect changes of TA concentrations mainly indirectly by loads of nutrients. 

 

 

Fig. 3.16: Cumulative temporal progress of internal turnover of TA (TAint) and effective 

river input (Riveff) of TA in the validation area [Gmol]. 
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3.5 Conclusion 
 

Experiments with more precise estimates of river loads and the consideration of dilution effects 

due to freshwater discharge showed that observed high TA concentrations in the German Bight 

in summer unlikely originate directly from rivers. Although river loads of nutrients fuel the 

internal processes that generate TA, they only contribute partly to observed high concentrations 

in August, because the majority of internally produced TA was converted in April and May. A 

precise localisation of TA and DIC sources is important in order to understand the evolution of 

the carbonate system in the German Bight through rising atmospheric CO2 concentrations and 

climate change. Under recent conditions rivers play a secondary role in the carbonate system of 

the German Bight in summer. This may change if increasing / decreasing precipitation in the 

catchment area of the Elbe estuary or the river Rhine would increase / decrease the riverine TA 

concentration and thus the effective river input of TA. Also a more extensive dredging and 

removal of sediments in the Elbe estuary could lead to decreasing denitrification and thus more 

nitrate that enters the German Bight. If the additional nitrate would be denitrified entirely after 

entering the German Bight, this would not lead to increased TA exports from the German Bight, 

because the nitrate concentration would not change the background concentration of TA. 

Nevertheless, changes in river loads of nutrients or organic material can change the primary 

production and remineralisation in the German Bight. If more organic material would be 

remineralised under anoxic conditions e.g. in tidal mud flats this could potentially increase the 

export rates of TA in the Wadden Sea. 
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4.1 Introduction 

4 Alkalinity generation in the Wadden Sea as a 
major driver of the carbonate system in the 
southern North Sea 

 

 

 

4.1 Introduction 

Anaerobic degradation of organic material is the most important biogeochemical process in 

marginal seas that irreversibly produces net alkalinity. Hu and Cai (2011) estimated the 

contribution of anaerobic processes in global ocean margins on oceanic net alkalinity budget to 

be in the order of 4 - 5 Tmol TA yr-1 that include continental shelves and oxygen minimum 

zones. Additionally, they estimated another 0.1 - 1.1 Tmol TA yr-1 originating from pyrite burial 

in coastal habitats. 

The dependency of the carbon fluxes in the North Sea on TA especially on the TA produced in 

the Wadden Sea was debated by Thomas et al. (2004) and Thomas et al. (2009). The Wadden 

Sea facilitates approximately 7 – 10% of the annual CO2 uptake of the North Sea. They 

calculated in a first approximation about 72.5 Gmol TA yr-1 originating in the Wadden Sea 

based on observations in the southern North Sea in 2001 and 2002. They reveal a larger 

seasonal amplitude than could be explained by riverine TA alone, especially in summer. These 

findings were confirmed in the previous chapters of this study. Neither seasonal variations in 

riverine TA concentrations nor enhanced eutrophication can cause the observed high TA 

concentrations in summer. 

The irreversible generation of net TA in the Wadden Sea depends on reaction products that 

either resist or escape re-oxidation by oxygen. The first main process is denitrification, which 

generates molecular nitrogen (N2) that can escape to the atmosphere. Jensen et al. (1996) 

estimated about 100 Gmol N yr-1 denitrified in the Wadden Sea. This amount is supposed to 

yield 99 Gmol yr-1 of net TA (Chen and Wang, 1999; Thomas et al. 2009). The second main 

process is sulphate reduction that generates H2S. It can either be buried as pyrite or escape to the 

atmosphere if sediments are exposed to air at low tide (Kristensen et al., 2000). These processes 

have been estimated in a range of 6 – 13 Gmol S yr-1 in the Wadden Sea (Kristensen et al., 

2000; de Beer et al., 2005), which is equal to a production of 12 – 26 Gmol TA yr-1. 
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The aim of this chapter is to check the estimations of Thomas et al. (2009) and to have a closer 

look at TA produced in the Wadden Sea and on seasonal and interannual variabilites of TA 

concentrations in the German Bight. In the context of anthropogenic and climate change a 

distinct allocation of TA sources is necessary to investigate the evolution of the carbonate 

system in the North Sea. The TA generation in the Wadden Sea underlies the effects of changes 

in the production of organic matter and accelerating sea level rise. The North Frisian Wadden 

Sea will be more affected by sea level rise due to its larger tidal basins (van Beusekom et al., 

2012), which results in a loss of intertidal areas. Thus, a further distinction of different Wadden 

Sea export areas is necessary for a more precise allocation of TA sources. 

In contrast to other modelling studies of the carbonate system of the Northwest European shelf 

(Lorkowski et al., 2012; Artioli et al., 2012) sources and sinks of TA and DIC were 

implemented into the model that identify the dynamic behaviour of the Wadden Sea as an area 

of effective production and decomposition of organic material. The respective exchange rates 

were calculated by using measured pelagic DIC and TA concentrations in the Wadden Sea and 

modelled tidal water mass exchange. 

As a first step simulations of different scenarios of Wadden Sea export rates are conducted and 

compared to the results of selected scenarios of the previous chapters and with observations 

from August 2008 (Salt et al., subm.). Afterwards seasonal differences in TA and DIC 

concentrations in the German Bight are examined. 

As a second step the seasonal and interannual variabilities of TA and DIC concentrations in the 

German Bight were investigated for the years 2001 – 2009. Additionally, different 

hydrodynamic stream patterns and flushing times in the validation area were assumed in order 

to examine their impact on seasonal and interannual variabilities. 
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4.2 Methods 

4.2 Methods 
 

 

Figure 4.1: Model domains of ECOHAM (red) and FVCOM (blue), positions of rivers 1 – 

16 (left, see table 4.2) and the Wadden Sea export areas grid cells (right). 

 

4.2.1 Implementation of Wadden Sea dynamics 
The Wadden Sea system of the southern North Sea extends from Den Helder (the Netherlands) 

in the West to Esbjerg (Denmark) in the North over a length of 450 km covering an area of 

about 9500 km2 (Ehlers, 1994). A chain of barrier islands forms the boundary between the 

Wadden Sea and the open North Sea. Deep inlet channels between the islands enable water and 

material exchange with the open North Sea. The entire Wadden Sea system is characterised by 

semidiurnal tides with a tidal range between 1.5 m in the most westerly part and 4 m in the 

estuaries of the rivers Weser and Elbe (Streif, 1990). 

The biogeochemical dynamics and the corresponding influence on the adjacent southern North 

Sea were discussed by van Beusekom (2012). In the study at hand the exchange of TA and DIC 

between North Sea and Wadden Sea was investigated. Therefore controlled sinks and sources 

for TA and DIC were implemented for some of the south-eastern cells of the North Sea grid 

(Fig. 4.1). The cells with adjacent Wadden Sea were separated into three exchange areas: the 

East Frisian and the North Frisian Wadden Sea as well as the Jade Bay, distinguished by “E”, 

“N” and “J” (Fig. 4.1, right side). 
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The Wadden Sea area itself was not resolved by the model. Two parameters were determined in 

order to quantify the TA and DIC loads from the Wadden Sea into the North Sea. 

1) Concentration changes of pelagic TA and DIC in the Wadden Sea during one tide, 

2) Water mass exchange between the back-barrier islands and the open sea during one tide 

Measured concentrations of TA and DIC as well as modelled water mass exchange rates of the 

export areas served as a basis for the calculated exchange. Measured concentrations were 

provided by Winde (2013) and modelled water mass exchange rates were provided by Grashorn 

(2013). 

The daily Wadden Sea exchange of TA and DIC was calculated in the following way: 

 

vol
excwadstawadfluwad _*__ =        (4.1) 

Differences in measured concentrations in the Wadden Sea during rising and falling water levels 

were temporally interpolated and summarized as wad_sta [mmol m-3]. Modelled daily Wadden 

Sea exchange rates of water masses (tidal prisms during falling water level) were defined as 

wad_exc [m³ d-1], and the volume of the corresponding North Sea grid cell was vol [m3]. 

wad_flu [mmol m-3 d-1] were the daily concentration changes of TA and DIC in the respective 

North Sea grid cells. 

In fact, some amounts of the tidal prisms return without mixing with North Sea water, and 

calculations of Wadden Sea export should therefore consider flushing times in the respective 

back-barrier areas. Since differences in measured concentrations between rising and falling 

water levels were used, this effect is already assumed to be represented in the data. This 

approach enabled the use of tidal prisms without consideration of any flushing times. 

 

4.2.1.1 Wadden Sea - measurements 
The flux calculations for simulations were carried out representatively in tidal basins of the East 

and North Frisian Wadden Sea (Spiekeroog Island, Sylt-Rømø) as well as in the Jade Bay. For 

the present study seawater samples were used taken by Winde (2013) on tidal cycles during 

different seasons. The mean concentrations of TA and DIC during rising and falling water levels 

and the respective differences (∆TA and ∆DIC) are given in Tab. 4.1. Measurements in August 

2002 were taken from Moore et al. (2011). The ∆-values were used as wad_sta and linearly 

interpolated between the times of observations for the simulations. Of course, the linear 
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progress of the ∆-values did not represent the natural behaviour perfectly, especially if only few 

data are available. As a consequence, possible short events of high TA and DIC export rates 

could potentially be missed that occurred in periods outside the observation periods. 

 

Table 4.1: Mean TA and DIC concentrations [µmol kg-1] during rising and falling water 

levels and the respective differences (∆-values) that were used as wad_sta in (4.1). Areas 

are the North Frisian (NF), the East Frisian (EF) Wadden Sea and the Jade Bay (JB). 

Area Date TA (rising) TA (falling) ΔTA DIC (rising) DIC (falling) ΔDIC 
NF 29.04.2009 2343 2355 12 1983 2106 123 
 17.06.2009 2328 2332 4 2170 2190 20 
 26.08.2009 2238 2252 14 2077 2105 28 
 05.11.2009 2335 2333 -2 2205 2209 4 
JB 20.01.2010 2429 2443 14 2380 2392 12 
 21.04.2010 2415 2448 33 2099 2132 33 
 26.07.2010 2424 2485 61 2159 2187 28 
 09.11.2010 2402 2399 -3 2302 2310 8 
EF 03.03.2010 2379 2393 14 2313 2328 15 
 07.04.2010 2346 2342 -4 2068 2082 14 
 17./18.05.2011 2445 2451 6 2209 2221 12 
 20.08.2002 2377 2414 37 2010 2030 20 
 01.11.2010 2423 2439 16 2293 2298 5 
 

A statistical analysis of uncertainties of ΔTA and ΔDIC was not possible, because only 

concentrations were considered measured with a delay of 2 hours compared to low tide and high 

tide. This was done in order to obtain representative concentrations of rising and falling water 

levels. As a consequence, only 2 - 3 measurements for each location and season were 

considered for calculations of ΔTA and ΔDIC, which made a statistical analysis of uncertainties 

impossible. 

 

4.2.1.2 Wadden Sea – modelling the exchange rates 
Grashorn (2013) performed the hydrodynamic computations of exchanged water masses 

(wad_exc) with FVCOM (Chen, 2003) by adding up the cumulative seaward transport during 

falling water level (tidal prisms) between the back-barrier islands that were located near the 

respective ECOHAM cells with adjacent Wadden Sea area. These values are given in Tab. 4.2 

for each ECOHAM cell in the respective export areas. The definition of the first cell N1 and the 
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last cell E4 is in accordance to the clockwise order in Fig. 4.1 (right side). For the sake of clarity 

a more detailed description of the calculations  is given in the appendix (A9). 

 

Table 4.2: Daily Wadden Sea runoff to the North Sea at different export areas. 

Position wad_exc [106 m³ d-1] 
N1 273 
N2 1225 
N3 1416 
N4 1128 
N5 4038 
N6 18 
J1 - J3 251 
E1 380 
E2 634 
E3 437 
E4 857 

 

4.2.2 Simulations 
The years 2001 to 2009 were simulated with 3 spin up years in 2000. 7 different scenarios (A - 

G) were conducted as described below. The respective Wadden Sea export rates are shown in 

Fig. 4.2. Simulations of previous chapters (A – C) are also shown here in order to highlight the 

effects of Wadden Sea export rates on TA and DIC concentrations in the German Bight. 

A: 

This scenario was the same as it was already shown in the previous chapters (scenario A): The 

prognostic treatment of TA was implemented and constant river concentrations for TA and DIC 

(Pätsch & Lenhart, 2008; Lorkowski et al., 2012) were used. Interannual and seasonal variations 

of TA and DIC river loads were proportional to freshwater discharges. 

B: 

This scenario was the same like scenario C in the previous chapter: Loads of TA and DIC were 

calculated more precisely for the main continental rivers. For that reason monthly variations of 

riverine TA and DIC concentrations as well as new nitrate concentrations were integrated for 

the main continental rivers. 
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C: 

This scenario was the same like scenario F in the previous chapter: The setup of simulation B 

was used but without the impact of internal fluxes on TA. Note that only the impact on TA was 

switched off and not the respective fluxes itself. 

D: 

This was the first simulation where the Wadden Sea was implemented as described above. 

Summer export rates for the East Frisian Wadden Sea were based on concentration differences 

that were calculated from linear interpolation of measurements that have been conducted in 

March, April and November 2010 and May 2011 (Tab. 4.1). This scenario could be seen as 

minimum assumption for Wadden Sea export rates of TA and DIC because there was no 

summer measurement of TA concentration for the East Frisian Wadden Sea.  

E: 

Since this study focuses on TA concentrations in summer the data set of TA concentrations in 

the East Frisian Wadden Sea was extended with data measured there in August 2002. As 

expected, these data showed higher differences in TA concentrations of rising and falling water 

levels than in simulation D. This simulation could be seen as a medium assumption for Wadden 

Sea export rates. 

F: 

The same concentration differences that were measured in the Jade Bay were also used for the 

East Frisian Wadden Sea. This simulation represented a maximum assumption for Wadden Sea 

export. 

G: 

The impact of internal fluxes (F1 – F17) was compared with Wadden Sea export of TA. 

Therefore, the setup of simulation E was used without the impact of internal fluxes on TA. Note 

that only the impact on TA was switched off and not the respective fluxes itself. 
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Tab. 4.3: Summary of the main features of simulations A – G: “Prognostic TA” is the 

concentration change of TA due to internal processes (see chapter 2). “River 

configuration” means the implementation of all described changes in chapter 3. “Wadden 

Sea export” means an estimate of the exported amount of TA and DIC. “EF Wadden Sea 

data” is a description of the data source for the East Frisian Wadden Sea (see above for 

more details). 

Simulation prognostic 
TA 

River 
configuration 

Wadden Sea 
export EF Wadden Sea data 

A enabled unchanged no - 
B enabled changed no - 
C disabled changed no - 
D enabled changed minimum no summer conc. 
E enabled changed medium summer conc. 
F enabled changed maximum Jade Bay data 
G disabled changed medium summer conc. 
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Figure 4.2: Monthly Wadden Sea export of DIC and TA [Gmol mon-1] at the North Frisian 

coast (NF), East Frisian coast (EF) and the Jade Bay in simulations D – G. 
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4.3 Results 

4.3.1 Model validation - TA concentrations in summer 2008 

The results of simulations A – G were compared with observations of TA in August 2008 (Salt 

et al., subm.). The latter revealed high TA concentrations in the German Bight (east of 7°E and 

south of 55°N) and around the Danish coast (around 56°N) as shown in Fig. 4.3. The observed 

concentrations in these areas ranged between 2350 and 2380 µmol kg-1. These findings were in 

accordance with observed TA concentrations in August / September 2001 (Thomas et al., 2009). 

TA concentrations in other parts of the observed domain ranged between 2270 µmol kg-1 near 

the British coast (53°N – 56°N) and 2330 µmol kg-1 near the Dutch coast and the Channel. 

In order to give a statistical overview the results of simulations A to G were also presented and 

compared in a Taylor diagram (Taylor, 2001) in Fig. 4.4. Therefore, an area was focused 

(validation area), which was located east of 4.5°E, north of 53.5°N and south of 55.5°N (Fig. 

2.1). In that area observations of 10 different stations were available, each with four to six 

measurements at different depths (52 measured points). Measured TA concentrations of each 

point were compared with the modeled TA concentrations in the respective grid cells. The 

correlation coefficients, the standard deviations (STD) and the root mean square errors (RMSE) 

were calculated for each simulation. One aim of this model development was to reduce the 

RMSE in order to bring the simulated TA concentrations closer to observations. 

TA concentrations in simulation A ranged between 2290 µmol kg-1 in the north western part of 

the model domain, 2360 µmol kg-1 at the western part of the Dutch coast and 2380 µmol kg-1 at 

the Thames estuary at the British coast  (see Fig. 4.3). In comparison with observations and the 

other simulations, A had the lowest variations in TA-concentrations in the validation area with 

2320 µmol kg-1 at the Elbe estuary and 2340 µmol kg-1 in the Jade Bay. The deviation of A from 

observations was represented by a RMSE of 28 µmol kg-1 (see Fig. 4.4). 

In simulation B the TA concentrations showed a more heterogeneous pattern with a maximum 

value of 2390 µmol kg-1 at the western part of the Dutch coast and in the river mouth of the 

Wash estuary at the British coast. A minimum value of 2260 to 2270 µmol kg-1 was simulated at 

the mouths of the rivers Elbe and Firth of Forth. The TA concentration pattern in the German 

Bight was also more heterogeneous than in simulation A because higher concentrations of 2350 

µmol kg-1 and 2340 µmol kg-1 were simulated at the Jade Bay and in the central part of the 

German Bight. The deviation of B from observations was represented by a RMSE of 28 µmol 

kg-1 (Fig. 4.4). Compared to A the variation of TA concentrations in the validation area was 

slightly increased which is represented by a STD of 5 µmol kg-1. 
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Figure 4.3: Surface TA-concentrations [µmol kg-1] in August 2008 observed and simulated 
(A – G). 
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Figure 4.4: Taylor diagram of simulated TA-concentrations (A – G) compared to observed 

TA-concentrations (52 measurements) in the validation area. 

In comparison to simulation B TA concentrations in simulation C showed only slightly lower 

values in the western and middle part of the model domain (Fig. 4.3). The largest differences 

occurred at the Danish coast between 55°N and 56°N and in the German Bight, especially in the 

Jade Bay. TA was simulated 20 µmol kg-1 to 40 µmol kg-1 lower in these areas. The deviation 

from observation was highest in C and was represented by a RMSE of 33 µmol kg-1. 

The simulations D – F were based on different assumptions of Wadden Sea export quantities of 

TA and DIC as described above. The major differences in TA concentrations of these scenarios 

compared to B were presented in Fig. 4.7 (left side). These differences occurred east of 6.5°E. 

TA was simulated similarly in D – F at the Danish coast (north of 55°N). In this area the 

concentration was about 20 to 150 µmol kg-1 higher than in simulation B. The main differences 

between these scenarios occurred in the central part of the German Bight (54°N, 8°E). 

Depending on the respective scenario, the TA concentrations were simulated about 20 to 90 

µmol kg-1 higher than in B. With increasing Wadden Sea export (from D to F) the effect of 

elevated concentrations spread further to the west especially near the East Frisian coast. 

Compared to A and B it was possible to increase the variations (STD) with rising export values 

of TA (18 µmol kg-1 in D, 21 µmol kg-1 in E and 30 µmol kg-1 in F). It was also possible to 

bring the simulations closer to observation which was represented by decreasing RMSE values 

(20 µmol kg-1 in D, 17 µmol kg-1 in E and 15 µmol kg-1 in F). 
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In simulations E and G the same TA export quantities were assumed but the impact of internal 

processes on TA concentrations was switched off in G. TA in G was simulated 20 to 40 µmol 

kg-1 lower than in E. The deviation of G from observation was represented by a RMSE of 20 

µmol kg-1. 

 

4.3.2 Model validation - DIC concentrations in summer 2008 

Analogously to TA the simulations were compared with observations of DIC concentrations in 

summer 2008 (Salt et al., subm.). They also revealed high values in the German Bight (east of 7 

°E and south of 55°N) and around the Danish coast (around 56°N) which is shown in Fig. 4.5. 

The observed concentrations in these areas ranged between 2110 and 2160 µmol kg-1. Observed 

DIC concentrations in other parts of the model domain ranged between 2020 µmol kg-1 in the 

north western part and 2110 µmol kg-1 at the Dutch coast. 

The DIC concentrations in simulations A – C ranged between 1940 µmol kg-1 at the North 

Frisian and the Danish coast (between 55°N and 55.5°N) as well as in the Jade Bay and 2150 

µmol kg-1 at the western part of the Dutch coast (Fig. 4.5). The DIC concentrations in the 

German Bight showed a heterogeneous pattern with decreasing values from west to east. In 

comparison to B lower DIC concentrations in C occurred at the river mouth of the river Elbe, at 

the southern part of the Jade Bay, at the North Frisian coast and at the Danish coast. DIC-

concentrations in these areas were around 20 µmol kg-1 lower than in B. Less differences about 

10 µmol kg-1 occurred in an area between 54°N to 55°N and 6°E to 8°E.  The deviations from 

observation of A and B were indicated by RMSEs of 38 µmol kg-1 (see Fig. 4.6). The deviation 

from observation was highest in C represented by a RMSE of 42 µmol kg-1. 

Analogously to TA, the differences in DIC concentrations of the simulations D – F compared to 

B were presented in Fig. 4.7 (right side). These differences occurred east of 6.5°E. DIC was also 

simulated similarly in D – F at the Danish coast (north of 55°N). In this area DIC was up to 200 

µmol kg-1 higher than in B. Differences between these scenarios occurred in the central part of 

the German Bight (54°N, 8°E). Depending on the respective scenario the DIC concentrations 

were simulated about 20 to 60 µmol kg-1 higher than in B. With increasing Wadden Sea export 

of DIC the effect of elevated concentrations spread further to the west, especially near the East 

Frisian coast. Compared to B the variations decreased, which was indicated by lower STDs (7 

µmol kg-1 in D, 8 µmol kg-1 in E and 13 µmol kg-1 in F). The simulated DIC-concentrations 

were brought closer to the observation, which was represented by decreasing RMSE values (25 

µmol kg-1 in D, 24 µmol kg-1 in E and 20 µmol kg-1 in F). 
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Figure 4.5: Surface DIC-concentrations [µmol kg-1] in August 2008 observed and 
simulated (A – G). 
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Figure 4.6: Taylor diagram of simulated DIC-concentrations (A – G) compared to 

observed TA-concentrations (52 measurements) in the validation area. 

 

In simulations E and G the same TA and DIC export quantities were assumed but the impact of 

internal processes on TA concentrations was deactivated in G. Differences between these two 

scenarios occurred analogously to C. The deviation from observation of G was represented by a 

RMS of 27 µmol kg-1. 

 

 

 

 

 

 107 



4 Alkalinity generation in the Wadden Sea as a major driver of the carbonate system in the NS 

 

Figure 4.7: Differences between observations and scenario E [µmol kg-1] as well as 

increases in TA and DIC concentrations [µmol kg-1] due to Wadden Sea exports 

represented by differences in scenarios (D, E, F) and scenario B. 
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4.3.3 Seasonal and interannual variability of TA concentrations 

The years 2001 to 2009 were simulated for all scenarios A to G. Monthly mean concentrations 

of TA were calculated in the validation area and are shown in Fig. 4.8. Mean concentrations of 

surface TA in the validation area measured in August and November 2001, February and May 

2002, August 2005 and August 2008 were also shown in Fig. 4.10. It should be mentioned here, 

that it was decided to show only measured surface data in order not to weight positions with 

greater depths and thus more measurements. Therefore, the image of the measurements 

(observations) in Fig. 4.8 is supposed to give an overview of measured seasonality and 

interannual variability and should be compared to simulations A – G only in a qualitative way. 

The lowest values were measured in November 2001 (2313 µmol kg-1) and in February 2002 

(2304 µmol kg-1). In August, measured mean values of concentrations ranged from 2330 µmol 

kg-1 in 2005 to 2337 µmol kg-1 in 2008. 

The highest TA-concentration in simulation A was about 2335 µmol kg-1 and occurred in 

August 2001. The lowest concentrations in each year were about 2310 to 2315 µmol kg-1 and 

occurred in February and March. Summer concentrations in the years 2002 to 2007 were in the 

range of 2325 to 2330 µmol kg-1 and the highest values in the respective years. 

 

Figure 4.8: Observed mean surface concentrations and simulated monthly mean 

concentrations of TA [µmol kg-1] in the validation area. 
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In comparison to A the TA-concentrations in simulation B showed about 2 µmol kg-1 higher 

values in the winter months. TA-concentrations in A were about 2 – 3 µmol kg-1 higher in 

summer 2001 than in B. 

Simulation C was calculated similar to B but without impact of internal processes on TA. The 

concentrations in simulation C showed the lowest variability of all simulations. They ranged 

between 2300 µmol kg-1 in winter, spring and autumn and 2322 µmol kg-1 in August 2001, 2003 

and 2008. The years 2004 to 2007 showed even lower variabilities. 

The lowest TA concentrations in the Wadden Sea scenarios (simulations D – F) occurred in 

January and February 2001 with 2315 µmol kg-1. The highest concentrations in these scenarios 

occurred in September 2003 with 2348 µmol kg-1 in D, 2354 µmol kg-1 in E and 2360 µmol kg-1 

in F. In comparison to B the winter and spring TA concentrations in D – F were about 10 µmol 

kg-1 higher. The main differences occurred in summer and autumn. Depending on the scenario 

the TA concentrations were simulated about 18 to 30 µmol kg-1 higher in that time. Thus, the 

seasonal variabilities were increased. Additionally, the results of D – F also showed high 

interannual variabilities in summer and autumn. Summer concentrations ranged between 2338 

to 2348 µmol kg-1 in D, 2340 to 2354 µmol kg-1 in E and 2343 to 2360 µmol kg-1 in F. 

Simulation G was calculated similar to E but without impact of internal processes on TA. The 

concentrations in G showed the lowest variability of all Wadden Sea scenarios. They ranged 

between 2313 µmol kg-1 in January 2001 and 2342 µmol kg-1 in September 2003. Compared to 

simulation C the TA concentrations showed a higher interannual variability, especially in 

summer when values of 2338 to 2342 µmol kg-1 occurred. 

 

4.3.4 Seasonal and interannual variability of DIC concentrations 

Analogously to TA, mean surface DIC concentrations that were measured in the validation area 

are shown in Fig. 4.9. The lowest values occurred in August and ranged from 2080 to 2110 

µmol kg-1. The highest value was 2150 µmol kg-1 and was measured in February 2002. 

The years 2001 to 2009 were simulated for all scenarios A to G. Monthly mean concentrations 

of DIC were calculated in the validation area and are shown in Fig. 4.9. In all simulations the 

concentrations increased from October to March and decreased from April to September. 

Maximum values of 2140 to 2155 µmol kg-1 in simulation A occurred every year in March and 

minimum values of 2045 to 2060 µmol kg-1 in September. The highest interannual variability 

occurred in April with concentrations between 2125 to 2150 µmol kg-1 in 2004 and 2006 

respectively. Generally, the DIC concentrations in simulation B showed a similar pattern as in A 

 110 



4.3 Results 

but with up to 10 µmol kg-1 higher values in February and March. During the whole simulation 

period the DIC concentrations in C were 5 to 10 µmol kg-1 lower than in B. 

As well as in the previous simulations the lowest DIC concentrations in the Wadden Sea 

scenarios (D – F) occurred in September and the highest concentrations occurred in March. 

Compared to B the overall DIC concentration was elevated in every Wadden Sea scenario. 

Depending on the scenario the concentrations were up to 10 µmol kg-1 higher in March and 

between 30 to 40 µmol kg-1 higher in September. The differences among the Wadden Sea 

scenarios were highest in August 2007, September 2002 and September 2007, when the DIC 

concentrations were up to 25 µmol kg-1 higher in F than in D. Analogously to the comparison of 

simulations B and C the DIC concentrations in G were 5 to 10 µmol kg-1 lower than in E. 

 

Figure 4.9: Observed mean surface concentrations and simulated monthly mean 

concentrations of DIC [µmol kg-1] in the validation area. 
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4.3.5 Hydrodynamic conditions and flushing times 

The calculations of Wadden Sea TA export in Thomas et al. (2009) were based on several 

assumptions concerning riverine input of bulk TA and nitrate, atmospheric deposition of 

nitrogen, water column inventories of nitrate and the exchange between the Southern Bight and 

the adjacent North Sea (Lenhart et al., 1995). The latter was computed by considering that the 

water in the Southern Bight is flushed with water of the adjacent open North Sea at time scales 

of six weeks. In the study at hand, flushing times in the validation area in summer and winter 

are presented for the years 2001 to 2009 in Fig. 4.10. Additionally, typical monthly flow 

patterns of the model area are in excerpts presented in Fig. 4.11. They were chosen in order to 

show which patterns occurred in 2008 and which patterns occurred when flushing times in 

summer were highest (2003 and 2006). 

 

 

Figure 4.10: Flushing times in the validation area in summer (June to August) and winter 

(January to March). The whole validation area is represented in blue, green is the western 

part of the validation area (4.5°E to 7°E) and red is the eastern part (east of 7°E). 

The flushing times were calculated by dividing the total volume of the respective areas 1 – 3 by 

the total inflow into the areas m3 (m3 s-1)-1. Flushing times were consistently higher in summer 

than in winter. Summer values in the whole validation area ranged from 54 days in 2008 to 81 

days in 2003 and 2006, whereas the winter values in the same area ranged from 32 days in 2008 

to 51 days in 2003 and 2009. The flushing times in the western and eastern part of the validation 
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area were smaller. Flushing times in the western part were consistently shorter than in the 

eastern part. These differences ranged from 5 days in winter 2002 to 14 days in summer 2006 

and 2008. The interannual variabilities of all areas were higher in summer than in winter. 

 

Figure 4.11: Different patterns of streamlines in the model. 

The patterns of streamlines showed in general an anticlockwise flow direction. A clockwise 

flow direction, like to be seen in the eastern part of the model domain in August 2003 and May 

2008 could occur especially in April and May in other years that were not shown here. A 

clockwise flow direction in the eastern part in summer occurred only in August 2003 during the 

simulation period. Other effects that could occur in summer (see September 2003 and July 
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2006) were slow flow rates in the eastern part of the model domain and the appearance of 

circling flow patterns in the German Bight. Simulated annual means of the passage through the 

English Channel ranged between 0.054 Sv in 2003 and 0.125 Sv in 2002. 
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4.4 Discussion 
The aim of this study is to specify the estimations of Thomas et al. (2009) who calculated about 

72.5 Gmol yr-1 TA originating from the Wadden Sea. These calculations were based on 

observations from the CANOBA dataset in 2001 and 2002. The observed high TA 

concentrations in the south eastern North Sea also occurred in August 2008 (Salt et al.,subm.) 

and were used for model validation in this study. Former modelling studies of the carbonate 

system of the North Sea (Artioli et al., 2012, Lorkowski et al., 2012) did not consider the 

Wadden Sea as a source of TA and DIC. They showed good to reasonable agreement to 

observations from the CANOBA dataset in large parts of the North Sea in 2001 / 2002 (Thomas 

et al., 2009). Nevertheless, focussing on the German Bight, especially on summer measurements 

east of 7°E, the observed high TA concentrations could not be simulated satisfactorily. In the 

study at hand it was possible to identify the Wadden Sea as an important TA source for the 

German Bight and it was possible to recalculate the estimations of Thomas et al. (2009) and to 

obtain an annual Wadden Sea TA export rate of 40 Gmol yr-1. Additionally, it was possible to 

define the most important river loads more precisely in order to get a more exact budget of TA 

and DIC in the German Bight. All steps that were required to calculate the budget are discussed 

in the following. 

 

4.4.1 Wadden Sea exchange rates of TA and DIC 

The Wadden Sea is an area of effective decomposition of organic material (van Beusekom et al., 

2012) that originates from land and from the North Sea (Thomas et al., 2009). Anaerobic 

degradation of organic matter generates TA and increases the CO2 buffer capacity of seawater. 

In this study modelled Wadden Sea export rates of TA and DIC were based on concentration 

measurements during tidal cycles in the years 2009 to 2011 (Tab. 4.1) and on calculated tidal 

prisms from a two day-period that were representative as annual mean values. From these data 

three different scenarios of different Wadden Sea export rates in the East Frisian Wadden Sea 

were simulated (simulations D – F). Certainly, this method contained uncertainties referred to 

the seasonality due to the fact that differences in concentrations during falling and rising water 

levels were linearly interpolated. These interpolated values were based on four to five 

measurements in the three export areas that were conducted in different years. Consequently, it 

was not aimed to reproduce the exact TA and DIC concentrations in the years 2001 to 2009. 

The simulations should be seen as possible scenarios if Wadden Sea export rates were 

considered. Nevertheless, the implementation of Wadden Sea export rates enabled a better 

reproduction of observed high TA concentrations in the German Bight in summer (compare 

simulations D – F in Fig. 4.4 and 4.7). The primary processes that could contribute to the TA 

generation in the Wadden Sea have been discussed in the study of Thomas et al. (2009) and 
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were identified as denitrification, sulphate reduction or processes that are coupled to sulphate 

reduction and other processes.  

 

4.4.1.1 Denitrification 

Denitrification in the Wadden Sea is driven by organic material decomposition and 

allochthonous nitrate supply. Taking CH2O as a short form for the organic material without 

consideration of nitrogen or phosphorus content, the denitrification process reads: 

OHCONNOHOCH 22232 752445 ++⇒++ −+      (4.2) 

Approximately 20% of nitrate that is denitrified within the Wadden Sea originates from rivers 

(Beusekom & de Jonge, 2002; Seitzinger et al., 2006). The remaining nitrate can be supplied by 

smaller rivers, groundwater discharge and the adjacent North Sea (Slater & Capone, 1987). 

 

4.4.1.2 Sulphate reduction 

Sulphate reduction generates H2S that can escape to the atmosphere when sediments are 

exposed at low tide (Kristensen et al., 2000): 

OHSHCOHSOOCH 222
2
42 2222 ++⇒++ +−      (4.3) 

Furthermore, H2S can also be buried as pyrite (FeS2) in the sediment (4.4) if reduced iron is 

available from iron reduction (4.5). Sulphur (S) can be considered as a product of incomplete 

sulphate reduction (Hu and Cai, 2011): 

++ +⇒++ HFeSSSHFe 222
2        (4.4) 

OHCOFeHFeOOHOCH 22
2

2 7484 ++⇒++ ++     (4.5) 

A third process that can produce TA in the Wadden Sea is methane oxidation by sulphate 

reduction (Wolf-Gladrow, 2007): 

OHHSHCOSOCH 23
2
44 ++⇒+ −−−       (4.6) 

Considering (4.3) it gets clear that TA increases by 2 mol per 1 mole of decreasing sulphate. 

Reaction (4.4) leads to no change in TA because the consumption of iron cancels the TA 

produced due to iron reduction (4.5). Thomas et al. (2009) showed that the South Eastern Bight 
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act as a sink for TA during autumn and winter, which can be attributed to the reoxidation of 

pyrite (Luff & Moll, 2004; de Beer et al., 2005). 

All these fluxes can hardly be estimated by the model or by TA measurements alone. Only if 

DIC variations in the Wadden Sea were taken into account some numbers can be found (see 

next paragraph). 

 

4.4.1.3 Other Processes 

The net effect of evaporation and precipitation in the Wadden Sea has to be considered, too. 

Although these processes are balanced in the German Bight, enhanced evaporation can occur in 

the Wadden Sea due to increased heating during low tide around noon. Onken & Riethmüller 

(2010) estimated an annual negative freshwater budget in the Hörnum Basin based on long-term 

hydrographic time series from observations in a tidal channel. From this data a mean salinity 

difference between flood and ebb currents of approximately -0.02 PSU can be considered. This 

would result in an increasing TA concentration by 1 µmol kg-1, which is the range of the 

inaccuracy of measurements. Furthermore, the enhanced evaporation interferes with effects of 

groundwater input into the Wadden Sea. Hence, this effect can only hardly be derived from 

salinity differences between flood and ebb tides. As a consequence, the effect of additional 

nutrient input via groundwater discharge into the Wadden Sea remains unclear. 

Certainly, aerobic degradation also occurs in the Wadden Sea, which results in a reduction of 

TA by 17 mol for the regeneration of 106 mol of organic carbon if a C:N:P ratio of 106:16:1 is 

assumed (Thomas et al., 2009). 

 

4.4.2 TA / DIC ratios during the course of the year 

The Wadden Sea export rates in this study were calculated as bulk exports. The underlying 

processes were not simulated explicitly but the ratios of exported TA and exported DIC can give 

hints about the dominant processes (Chen & Wang, 1999; Thomas et al. 2009). Aerobic 

degradation of organic material results in a reduction of TA due to increasing nitrate and 

increasing DIC and is indicated by a TA / DIC ratio of -0.16. Denitrification is indicated by a 

TA / DIC ratio of 1 and processes related to sulphate reduction are indicated by a TA / DIC ratio 

of 2. The respective export rates and ratios of the export rates TA / DIC for the different export 

areas are shown in Fig. 4.12. 
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The TA / DIC ratio in the North Frisian Wadden Sea (NF) ranged most of the time between 0 

and 0.5. Aerobic degradation of organic material and denitrification were the dominant 

processes here. The ratio got negative in autumn, which was due to a negative ∆TA value and 

thus a consumption of TA (compare Tab. 4.1). The sediment got swirled up due to increasing 

wind speed and buried pyrite could get reoxidated. The DIC export rate had also its minimum in 

autumn, which was due to a decreasing supply of organic material in that time. 

The TA / DIC ratios of the Jade Bay and the East Frisian Wadden Sea in simulation F were the 

same. The ratio was about 1 between January and May. The ratio ranged between 1.5 and 2 

between May and September, when sulphate reduction, pyrite burial and methane oxidation by 

sulphate reduction became the dominant processes. The ratio decreased to -0.5 in autumn, when 

aerobic degradation and reoxidation of pyrite occurred, which was also due to increasing wind 

and reoxidation of the sediment. The DIC export rate had its minimum in autumn again due to 

decreasing supply of organic matter. 

 

 

Figure 4.12: Daily Wadden Sea export rates of TA and DIC [Gmol d-1] and the TA / DIC 

ratio of the export rates in the North Frisian (NF) and East Frisian (EF) Wadden Sea as 

well as in the Jade Bay (JB). Different scenarios of Wadden Sea export rates are indicated 

according to the respective simulations (D – G). The times of concentration measurements 

are indicated with x. 
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The TA / DIC ratio of the East Frisian Wadden Sea in simulations D, E and G was about 1 in 

January and February, when denitrification dominated. A slightly negative value occurred at the 

beginning of April when aerobic degradation of organic matter dominated. Between April and 

August the ratio increased to 2. Anaerobic degradation became dominant. Denitrification 

dominated until June in simulations E and G and until July / August in simulation D. Afterwards 

the ratios increased up to 3 in autumn mainly due to relatively high ∆TA values (16 µmol kg-1) 

compared to ∆DIC values (5 µmol kg-1) (compare Tab. 4.1). This was due to dominating 

processes related to sulphate reduction. The maximum ratio of 3 could be due to a short-term 

effect of iron reduction that influenced the measurements of TA concentrations. Iron reduction 

leads to a high generation of TA on short time scales because reduced iron can be rapidly 

reoxidised. 

Derived from these data, the North Frisian Wadden Sea export area showed another pattern than 

the East Frisian Wadden Sea and the Jade Bay export areas. Aerobic degradation of organic 

matter played a key role in the North Frisian Wadden Sea during the whole course of the year. 

The DIC export rates indicated that most organic matter got degraded there, which was also due 

to the fact that the daily exchanged water masses in the North Frisian Wadden Sea (8.1 km³ d-1) 

were 3.5 times higher than in the East Frisian Wadden Sea (2.3 km³ d-1) and 10 times higher 

than in the Jade Bay (0.8 km³ d-1) (compare Tab. 4.2). However, TA export rates of the North 

Frisian and the East Frisian Wadden Sea were in the same range. Regional differences in 

organic matter dynamics in the Wadden Sea were discussed by van Beusekom et al. (2012). 

Organic matter turnover is driven by the import from the North Sea but different eutrophication 

effects are mainly related to the shape and size of a tidal basin. Van Beusekom et al. (2012) 

proposed that wider tidal basins with a large distance between barrier islands and mainland 

generally have a lower eutrophication status than narrower tidal basins. This leads to a 

“dilution” effect of the imported organic matter in wider tidal basins. In this study aerobic 

degradation of organic matter dominated in the North Frisian Wadden Sea, where the size of the 

tidal basins and the distance between barrier islands and mainland are larger. This indicated less 

eutrophication than in the East Frisian Wadden Sea, where anaerobic degradation of organic 

matter dominated. 
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4.4.3 Dominating anaerobic processes in the Wadden Sea 

The calculated daily export rates of TA and the corresponding TA / DIC ratios enabled an 

association of exported TA to the underlying processes. Negative TA / DIC ratios were assigned 

to aerobic degradation of organic matter. TA / DIC ratios between 0 and 1 were completely 

allocated to denitrification, whereas ratios between 1 and 2 were proportionally allocated to 

denitrification and sulphate reduction related processes. Ratios greater than 2 were completely 

allocated to sulphate reduction processes, although iron reduction may have caused this high 

ratio. The amount of TA that was produced due to these processes is presented in Tab. 4.4. 

Certainly, these figures can only be interpreted as a coarse approach to the underlying processes 

because it is doubtful that no sulphate reduction takes place in any parts of the North Frisian 

Wadden Sea or that no denitrification takes place in the East Frisian Wadden Sea or the Jade 

Bay in summer. Nevertheless, these figures can be compared with other studies. 

Kristensen et al. (2000) and de Beer et al. (2005) estimated the Wadden Sea sulphate reduction 

in a range of 6 to 13 Gmol yr-1, which corresponds to a TA production of 12 to 26 Gmol yr-1. 

Considering the fact that the West Frisian Wadden Sea at the northern Dutch coast is not yet 

included into the model the numbers are in acceptable accordance with 8.5 to 15.5 Gmol TA yr-1 

that was produced in this model due to sulphate reduction related processes (Tab. 4.4). 

Data obtained by Jensen et al. (1996) were extrapolated to about 100 Gmol N yr-1 that gets 

denitrified in the entire Wadden Sea (Thomas et al., 2009), which would correspond to a TA 

production rate of about 99 Gmol yr-1. This amount exceeds the calculation in the study at hand 

by a factor of 3 to 4 (26.6 to 33.4 Gmol yr-1). The difference could not only be explained by the 

missing West Frisian Wadden Sea as an additional source of TA in the model. It is likely that 

most of the estimated 100 Gmol N yr-1 are part of coupled ammonification, nitrification and 

denitrification, which does not change net TA (Hu and Cai, 2011). Analogously to the internal 

processes in the model only the denitrification of allochthonous nitrate can change net TA. This 

is also applicable for the Wadden Sea. Furthermore, in terms of TA turnover the effect of 

coupled ammonification, nitrification and denitrification is not only restricted to the same place 

in the sediment in the Wadden Sea. These processes can also be seen as coupled in terms of net 

TA production in a tidal basin if they take place in the same tidal basin. As a consequence, the 

production of net TA caused by denitrification can only hardly be calculated from direct 

measurements of denitrification rates. 

On a regional scale, Deek et al. (2012) calculated denitrification from own measurements to be 

about 1 Gmol N yr-1 in the North Frisian Wadden Sea, which is remarkably lower than the 

amount derived from TA / DIC ratios (18.36 Gmol N yr-1) in Tab. 4.4. Although Deek et al. 

(2012) stated that their calculation may be a lower estimate of denitrification in the North 
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Frisian Wadden Sea, this deviation is most likely due to the calculation of TA / DIC ratios. The 

underlying TA and DIC concentrations were measured near the outlet of the Sylt-Rømø bight, a 

tidal basin where the above mentioned processes can take place at different locations 

simultaneously. Hence, the measured concentrations were influenced by denitrification but also 

by aerobic degradation on the one side and sulphate reduction related processes on the other 

side. The TA / DIC ratios of the last two processes can interfere and result in TA / DIC ratios 

between 0 and 2. This leads to potentially overestimated rates of denitrification in Tab. 4.4. 

Thus, it should be pointed out that a detailed nitrogen budget of the Wadden Sea cannot be 

derived from this TA / DIC ratios. 

Nevertheless, the regional differences in the Wadden Sea have different impacts on the 

carbonate system in the German Bight. High TA / DIC ratios indicate an increased buffer 

capacity for atmospheric CO2, whereas the low TA / DIC ratios of the North Frisian Wadden 

Sea indicate an additional export of excess DIC. This leads to an increased acidification effect in 

the German Bight.  

 

Table 4.4: TA that was produced irreversibly due to aerobic degradation of organic 

matter, denitrification and sulphate reduction related processes in the North Frisian 

Wadden Sea (NF), the Jade Bay and in the East Frisian Wadden Sea in simulations D – G. 

Process NF JB EF (Sim. E, G) EF (Sim. F) EF (Sim. D) 
Aerobic -0.51 -0.03 -0.11 -0.08 -0.11 
Denitrification 18.36 3.70 4.91 11.35 4.49 
Sulphate red. 0.00 3.82 9.24 11.71 4.70 
Sum 17.85 7.49 14.04 22.98 9.08 
 

 

4.4.4 The impact of exported TA and DIC on the North Sea 

In this study it was possible to relate the observed high TA and DIC concentrations mainly to 

TA and DIC export rates from the Wadden Sea (Fig. 4.3 – 4.7). Three different scenarios 

indicated a minimum, medium and maximum estimate of Wadden Sea export rates. TA 

concentrations could be better reproduced than DIC concentrations, which was mainly due to 

the higher sensitivity of DIC to modelled biology. Nevertheless, from a present point of view 

the Wadden Sea is the main driver of TA concentrations in the German Bight. Future forecast 

studies of the evolution of the carbonate system in the German Bight have to put another focus 

on the Wadden Sea and its determining processes. 
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In this context the Wadden Sea evolution due to future sea level rise is the most important 

factor. The balance between sediment supply from the North Sea and sea level rise is a general 

precondition for the persistence of the Wadden Sea (Flemming and Davis, 1994; Van 

Koningsveld et al., 2008). An accelerating sea level rise could lead to a deficient sediment 

supply from the North Sea and shift the balance at first in the largest tidal basins and at last in 

the smallest basins (CPSL, 2005; Van Goor et al., 2003). The share of intertidal flats as 

potential sedimentation areas is larger in smaller tidal basins (van Beusekom et al., 2012), 

whereas larger basins have a larger share of subtidal areas. Thus, assuming an accelerating sea 

level rise, large tidal basins will turn into lagoons, while tidal flats may still exist in smaller tidal 

basins. This effect could decrease the overall Wadden Sea export rates of TA, because 

sediments would no longer be exposed to the atmosphere and the products of sulphate reduction 

would reoxidate in the water column immediately. Moreover, sedimentary exchange in the 

former intertidal flats would only be diffusive and no longer advective due to hydraulical 

gradients during ebb tides, when parts of the sediment get unsaturated with water. During these 

sedimentological changes the composition of sediments can also change. If sediments become 

sandier, aerobic degradation of organic matter would become more dominant. The North Frisian 

Wadden Sea would be more affected by a rising sea level because there the tidal basins are 

larger than the tidal basins in the East Frisian Wadden Sea and even larger than the in the inner 

Jade Bay. 

The Wadden Sea export of TA and DIC is driven by the turnover of organic material. 

Decreasing anthropogenic eutrophication can lead to decreasing phytoplankton biomass and 

production (Cadée & Hegeman, 2002; van Beusekom et al., 2009). Thus, the natural variability 

of the North Sea primary production becomes more important in determining the organic matter 

turnover in the Wadden Sea (McQuatters-Gollop et al. (2007); McQuatters-Gollop & Vermaat 

(2011)). Moreover, despite the assumption of decreasing overall TA export rates from the 

Wadden Sea the impact of the North Frisian Wadden Sea on the carbonate system of the 

German Bight could potentially change due to a change of tidal prisms and thus a change in 

imported organic matter. If less organic matter gets remineralised in the North Frisian Wadden 

less DIC would be exported to the North Sea. 

In the context of climate change, processes that have impact on the freshwater budget of tidal 

mud flats can become more important. An increasing discharge of small rivers and groundwater 

into the Wadden Sea could increase nutrient loads and the production of organic matter. 

Evaporation could also increase due to increased warming and become a more important 

process than today (Onken & Riethmüller, 2010). 

Concluding, in the course of climate change the North Frisian Wadden Sea will be affected first 

by sea level rise, which will result in decreased TA and DIC export rates due to less turnover of 
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organic matter there. This could lead to an increased buffering of atmospheric CO2 in the 

German Bight. Furthermore, if the other parts of the Wadden Sea will be affected by sea level 

rise, the TA export rates will further decrease and thus the buffer capacity in the German Bight 

will decrease, too. Overall, less organic matter will be remineralised in the Wadden Sea. 

 

 

4.4.5 TA budgets and variability of TA concentrations in the German Bight 

Modelled TA and DIC concentrations in the German Bight showed a high interannual and 

seasonal variability (Fig. 4.8, 4.9). Overall, the TA variability was more sensitive to Wadden 

Sea export rates than the DIC variability because the latter was also dominated by biology and 

atmospherical exchange. However, the implementation of Wadden Sea DIC export rates 

enabled a better reproduction of observed DIC concentrations, too. 

It is obvious to associate the TA variability with the variabilities of the different sources. In 

order to calculate a realistic budget, simulation E was considered to be the most probable 

scenario because it was based on the most measurements in the East Frisian Wadden Sea. 

Annual and seasonal budgets of TA sources and sinks are shown in Tab. 4.5. The budget could 

not be perfectly closed because in every year a difference between sources and sinks occurred 

that ranged between 0.77 and 1.78 Gmol yr-1. The relative error was always smaller than 1 % 

but could not be referred to a single process. Other estimates showed that the error increased 

with the total number of fluxes included in a budget calculation. Since 17 fluxes were included 

in the prognostic treatment of TA it was likely that the difference was due to these inaccuracies. 

Nevertheless, the error is smaller than every process considered for TA calculation and should 

thus not change the results of this study significantly. 

River loads ranged from 77.76 to 152.14 Gmol yr-1 and had the highest variability of all TA 

sources in the validation area. As already explained in chapter 3 it is difficult to compare the 

river loads itself with internal processes and Wadden Sea exchange rates without consideration 

of freshwater discharge. For this purpose an effective river input was introduced in chapter 3.4.3 

that enabled a direct comparison of river loads, dilution of TA due to freshwater discharge, 

Wadden Sea exchange rates and the internal processes. If the annual means of the amounts of all 

sources were compared, a relative ranking of the processes could be derived. 68 % of all TA 

concentration changes in the validation area were due to Wadden Sea export rates, 23 % were 

due to internal processes and 9 % were due to effective river input of bulk TA. Certainly, this 

ranking depends mainly on the characteristics of the Elbe estuary. The river Rhine had an 

effective river input of 28 Gmol yr-1 in 2008, which would have a much grater impact on TA 

concentration changes than the Elbe estuary. 
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Table 4.5: Annual TA budgets in the validation area of the years 2001 to 2009 and 

seasonal budgets in 2008 from January to March, April to June, July to September and 

October to December [Gmol]. The Wadden Sea source of TA is referred to simulation E. 

Riveff was introduced in chapter 3.4.3. Flow is the amount of TA that passes the validation 

area. Negative values indicate an export from the validation area to the adjacent North 

Sea. Δcontent indicates the difference of the TA contents of the last and the first time steps 

of the simulated year or quarter. 

  Wadden Sea Int. processes River loads Riveff Flow ΔContent 
2001 39.38 13.19 86.98 -5.15 -4.09 136.37 
2002 39.38 20.11 152.14 -7.03 -288.82 -75.42 
2003 39.38 15.75 90.68 -3.83 -124.59 22.15 
2004 39.44 12.54 77.76 -4.46 -39.75 90.79 
2005 39.39 12.34 88.70 -5.12 -128.21 12.99 
2006 39.39 11.31 87.90 -5.52 -98.98 40.43 
2007 39.39 12.38 109.51 -5.16 -166.98 -4.22 
2008 39.44 14.93 93.48 -4.45 -105.95 42.97 
2009 39.39 10.14 83.14 -4.99 -190.23 -56.86 
Jan - Mar 8.08 0.87 42.14 -0.87 -60.92 -9.83 
Apr - Jun 10.41 12.47 25.69 -1.97 -6.92 41.65 
Jul - Sep 16.76 -2.32 9.58 -1.34 59.93 83.94 
Oct - Dec 4.19 3.91 16.08 -0.27 -98.04 -72.79 
 

On seasonal time scales the internal processes got more important from April to June (50%) and 

from October to December (47%). The impact of effective river input was smaller than 10% in 

every quarter. The Wadden Sea TA export rates had an impact of 82% on TA concentration 

changes in the validation area from January to March and from July to September. 

The sum of Wadden Sea exchange rates, internal processes and effective river loads was highest 

in 2002 (52.46 Gmol yr-1) and lowest in 2009 (44.54 Gmol yr-1). However, the highest TA 

concentrations were simulated in summer 2001, 2009 and especially in summer 2003 (Fig. 10, 

simulation E). In simulation G (like simulation E but without impact of internal processes on 

TA concentrations) the same pattern could be reproduced. Thus, the interannual variability was 

not driven by temporal changes of the internal processes and the Wadden Sea export rates were 

similar in every year. The high interannual variability of summer concentrations could only be 

driven by hydrodynamic differences between the years. Flushing times were higher in summer 

than in winter (Fig. 4.10) in every year, which increased the amount of exported TA that 

accumulated in the validation area. They were also more variable in summer than in winter, but 

high TA concentrations could not only be derived from the presented flushing times. Changes in 

stream patterns also caused high interannual differences in summer TA concentrations (Fig. 

4.11). Distinct anticlockwise stream patterns defined the hydrodynamic conditions in every 
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winter. Summer stream patterns were in most years weaker especially in the German Bight 

(compare Fig. 4.11 September 2003, July 2006). In August 2003 a clockwise pattern was found, 

which led to further accumulation of TA in the water masses. This could explain the highest 

concentrations in summer 2003. 

One aim of this study was to recalculate the Wadden Sea TA export rates calculated by Thomas 

et al. (2009). They estimated that 72.5 Gmol TA yr-1 were produced in the Wadden Sea. Their 

calculations were based on measurements in 2001 and 2002. The presented model was validated 

with data measured in August 2008 (Salt et al., subm.) but the measurements were conducted at 

the same positions. High TA concentrations in the German Bight could be observed in summer 

2001 and in summer 2008. Due to the scarcity of data the West Frisian Wadden Sea could not 

be considered in the simulations but the amount of exported TA from that area could potentially 

be in the same range as from the East Frisian Wadden Sea (10 to 14 Gmol yr-1). In the TA 

budgeting in Tab. 4.5 simulation E was most representable with an annual export of about 39.4 

Gmol yr-1 from the Wadden Sea. With additional export from the West Frisian Wadden Sea the 

overall Wadden Sea export could be 53.4 Gmol yr-1 at the maximum. Thus, the TA export from 

the Wadden Sea calculated in this study is 19.1 to 33.1 Gmol yr-1 lower compared to the study 

of Thomas et al. (2009). This is mainly due to the flushing time that was assumed by Thomas et 

al. (2009). They considered the water masses to be flushed within six weeks (Lenhart et al., 

1995). Flushing times calculated in the study at hand were significantly longer and more 

variable in summer. Since the Wadden Sea export calculated by Thomas et al. (2009) was 

defined as a closing term of the TA budget, underestimated summerly flushing times led to an 

overestimation of the exchange with the adjacent North Sea. 
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4.5 Conclusion 
 

We presented a budget calculation of TA sources in the larger German Bight and related 68% of 

the annual TA concentration changes to Wadden Sea exports of TA. The impact of riverine bulk 

TA is less important in the German Bight due to the comparatively low TA concentrations in 

the Elbe estuary. Nevertheless, the rivers are sources of allochthonous nitrate, which is the main 

source for net TA generation due to denitrification. 

The evolution of the carbonate system in the German Bight under future anthropogenic or 

climate change scenarios depends on the fate of the Wadden Sea. The amount of TA and DIC 

that is exported from the Wadden Sea depends on the amount of organic matter that gets 

imported to and degraded in the Wadden Sea. Decreasing riverine nutrient loads can lead to 

decreasing phytoplankton biomass and production (Cadée & Hegeman, 2002; van Beusekom et 

al., 2009). However, further offshore natural dynamics can override the effects of riverine 

nutrient loads (van Beusekom et al., 2012). 

In the context of sea level rise, the North Frisian Wadden Sea will potentially be more affected 

by a loss of intertidal areas than the East Frisian Wadden Sea (van Beusekom et al., 2012). 

However, this effect can reduce the turnover of organic material in the Wadden Sea, which can 

counteract the effect of increased TA production due to a stimulated organic matter production. 

In this study it was possible to quantify the effect of different TA sources on TA concentrations 

in the German Bight. Derived from TA / DIC ratios (Fig. 4.12) the different Wadden Sea export 

areas can have contrary effects on the carbon budget of the German Bight in terms of release or 

uptake of CO2. Thomas et al. (2004) estimated that the Wadden Sea facilitates approximately 7 

– 10% of the annual CO2 uptake of the North Sea so it is worth to study future scenarios of CO2 

uptake driven by the Wadden Sea in the light of climate change. 
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5 Final discussion 

 

 

 

The main aim of this study is to investigate the impact of anaerobic processes on TA in the 

southern North Sea and to calculate the amount of TA that is exported from the Wadden Sea 

into the North Sea. The observed high TA concentrations in the German Bight cannot be 

reproduced without consideration of the Wadden Sea as a source for TA. Although the 

calculation of Wadden Sea TA export by Thomas et al. (2009) reveal 40 Gmol yr-1 instead of 73 

Gmol yr-1 it remains the most important TA source if the effective river loads are considered. A 

simple consideration of bulk river loads without implication of freshwater discharge neglects 

the possibility of TA dilution by river input and overestimates the riverine impact on TA 

concentrations. 

During the recent study several questions arose that are answered in the following: 

 

Which processes dominate the TA turnover (production – consumption) in the southern North 

Sea? 

Hu & Cai (2011) stated that only the denitrification of allochthonous nitrate can produce net 

TA. However, TA can be already produced prior to denitrification due to the uptake of nitrate 

by phytoplankton. This can be confirmed in chapter 2, because only the nitrate-related processes 

in the model show a significant imbalance at the end of the year that is accountable for TA 

production. Although the ammonium-related processes show high rates, they are mostly 

balanced during the course of the year and lead only to minor TA production or consumption. 

Calcite-related processes can explain TA production or consumption on seasonal time scales in 

the model, but they are mostly balanced at the end of the year. 

 

What are the temporal and spatial deviations between the amount of denitrification and actually 

produced TA? 

The deviations between denitrification and actually produced TA (TA turnover) are high in 

large parts of the validation area. There are significant differences between denitrification and 

TA turnover during the course of the year but they converge at the end of the year. High 

concentrations of TA measured at a certain place and time can hardly be related to 
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denitrification, because TA is likely produced prior to denitrification. However, the source of 

nitrate plays an important role in this assumption. In case denitrification is mainly fuelled by 

pelagic nitrate invading the sediment this would also produce TA but this case cannot be 

reproduced in the model. Although studies showed that denitrification in the North Sea (without 

the Wadden Sea) is mainly fuelled by nitrification in the upper sediment layer (Raaphorst et al., 

1990; Seitzinger & Giblin, 1996), it remains an open question whether denitrification is at least 

partly fuelled directly by pelagic nitrate in some parts of the North Sea. This would decrease the 

deviations at places where denitrification exceeds TA turnover. 

 

At which spatial scales is it adequate to use denitrification rates as an estimate for TA 

production in the North Sea? 

It is shown in this study that denitrification is only partly applicable as a proxy for annual TA 

production, which was also under debate by Hu & Cai (2011). Thomas et al. (2009) considered 

benthic denitrification in the entire North Sea (excluding the Wadden Sea) to correspond to a 

TA release of about 119 Gmol yr-1. This accounts for 15% of the potential annual CO2 uptake if 

a Revelle factor of 11 is considered. If the majority of the allochthonous nitrogen in this area is 

denitrified the estimate has to be corrected in terms of atmospheric nitrogen deposition and 

riverine TON input. Thomas et al. (2009) considered simulated denitrification rates calculated 

by Pätsch & Kühn (2008), who included riverine TON input of about 10 – 15 Gmol yr-1 and 

additional atmospheric nitrogen deposition of about 27 Gmol N yr-1 in their simulation. Hence, 

the net TA production in the entire North Sea (excluding the Wadden Sea) is about 40 Gmol yr-1 

lower than calculated by Thomas et al. (2009). It has to be mentioned here that the model 

domain examined by Pätsch & Kühn (2008) included a larger area compared to the presented 

model domain. Hence, they used higher amounts of atmospheric nitrogen deposition and 

riverine TON input for their calculations. 

 

Can enhanced river loads of nutrients induce a significantly higher TA turnover that can explain 

observations of high TA concentrations in the German Bight? 

River loads of nutrients and TA turnover correlate well (R²=0.82) in the German Bight. In the 

study at hand it was not possible to reproduce the observed high TA concentrations in years 

with comparatively high river loads of nutrients without consideration of Wadden Sea exports. 

Nevertheless, the internal turnover of TA is the second most important driver of TA 

concentrations in the southern North Sea. 
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Can seasonal variations in river loads of bulk TA be the origin of observed high TA 

concentrations in the German Bight? 

It is possible to increase the seasonal variability of TA in the German Bight by including 

variations in riverine TA concentrations. Nevertheless, these changes do not lead to 

significantly higher TA concentrations in the German Bight. Artioli et al. (2012) related high 

TA concentrations to river loads in the German Bight, although they could not reproduce the 

observations there. In the current study it is shown that the effect of rivers on TA concentrations 

in the German Bight is low if dilution by riverine freshwater discharge is also considered. 

 

Do loads of the river Rhine affect TA concentrations or the TA turnover in the German Bight 

significantly? 

The level of TA concentrations in the German Bight is influenced significantly by the river 

Rhine after new river loads were implemented into the model. TA turnover in the German Bight 

is not affected by the river Rhine significantly. In Fig. 2.12 it seems that TA and DIC 

concentrations near the outlet of the river Rhine are calculated too high in simulations compared 

to observations. However, it should be mentioned here that the plume of the river Rhine can 

proceed alongside of the western Dutch coast (Hoppema, 1990), so it is likely that the plume 

was not sampled during the observations due to the fixed positions of the measurement stations. 

 

What is the dominant driver of TA concentrations in the southern North Sea and what drives 

their interannual variability? 

The Wadden Sea has the largest impact on TA concentrations in the German Bight on an annual 

time scale. Of course this influence is lower if the entire North Sea is considered but its impact 

is still significant. In spring the impact of internal TA turnover on TA concentrations is higher 

than the impact of the Wadden Sea due to the occurrence of phytoplankton blooms and the 

associated enhanced nutrient uptake. Nevertheless, differences in flushing times and the 

occurrence of weak meteorological blocking situations can lead to enhanced accumulation of 

simulated TA in the German Bight and thus increase the interannual variability especially in 

summer. 

 

Are there regional differences in TA exported from the Wadden Sea into the North Sea? 

Van Beusekom et al. (2012) stated that the eutrophication status of a tidal basin depends on its 

size. The distance between mainland and barrier islands is generally higher in the North Frisian 

Wadden Sea than in the East Frisian Wadden Sea, which might explain the differences between 
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North Frisian Wadden Sea and East Frisian Wadden Sea in the simulations. Calculations based 

on the measurements in the Wadden Sea show that sulphate reduction related processes exceed 

denitrification in the Jade Bay and in the East Frisian Wadden Sea, whereas about 18 Gmol TA 

yr-1 is produced only by denitrification in the North Frisian Wadden Sea (see chapter 4). The 

calculations of TA produced by sulphate related processes are in acceptable accordance with 

literature values (Kristensen et al., 2000; de Beer et al., 2005) but calculations of TA related to 

denitrification in the Wadden Sea bear uncertainties. Based on the measurements from Jensen et 

al. (1996), Thomas et al. (2009) estimated an annual denitrification rate of about 100 Gmol N 

yr-1 in the whole Wadden Sea, whereas Deek et al. (2012) calculated denitrification from their 

own measurements to be about 1 Gmol N yr-1 in the northern part of the Wadden Sea. Both 

figures differ significantly from calculations in chapter 4, but it should be pointed out that no 

nitrogen budget of the Wadden Sea could be derived from the presented TA / DIC ratios. The 

calculation of 18 Gmol TA yr-1 produced by denitrification in the North Frisian Wadden Sea is 

likely to be interfered by aerobic processes and sulphate reduction related processes. 

Denitrification in the Wadden Sea can also exceed TA production due to the coupling of 

nitrification and denitrification. In this case, the coupling is not limited to the same place in the 

sediment. These processes can also be coupled in terms of net TA production if they take place 

in the same tidal basin. Furthermore, also Deek et al. (2012) stated that their calculation may be 

a lower estimate of denitrification in the Wadden Sea. 
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5.1 Final budgeting of TA production in the North Sea and conclusion 

Thomas et al. (2009) estimated that anaerobic organic matter degradation irreversibly facilitates 

about 20 – 25% of the CO2 uptake of the North Sea. Their calculation is based on 119 Gmol TA 

yr-1 generated in the North Sea due to denitrification and on 73 Gmol TA yr-1 originated in the 

Wadden Sea. As it is shown above only 79 Gmol TA yr-1 can be attributed to denitrification in 

the North Sea and also the exported TA from the Wadden Sea is lower than previously 

estimated by Thomas et al. (2009). Thus, on the basis of a simple proportional calculation the 

revised budget implies that anaerobic organic matter degradation facilitates only up to 15% of 

the annual CO2 uptake of the North Sea. Thomas et al. (2009) also calculated the potential CO2 

uptake resulting from global denitrification (Seitzinger et al., 2006) to be 15 Tmol yr-1. In the 

current model study only 66% of denitrified nitrogen also produces net TA. Hence, on the basis 

of a simple proportional calculation the global estimated CO2 uptake induced by denitrification 

in ocean margins could be reduced to 10 Tmol yr-1. 

The calculations of Wadden Sea export rates of TA and DIC in this study were based on 

measurements conducted at one place for each of the three exchange areas. This reveals 

uncertainties because the measurements were extrapolated to large areas of the Wadden Sea. 

The calculations in this study were more precise than the first estimates by Thomas et al. (2009) 

but interannual variabilites of the Wadden Sea export could not be resolved. Nevertheless, it is 

shown that the Wadden Sea is an important driver of the carbonate system in the southern North 

Sea and it is worth investigating its dynamics and further evolution. Future model studies of the 

carbonate system in the southern North Sea may try to parameterize organic matter degradation 

in the Wadden Sea fuelled by the southern North Sea and the resulting Wadden Sea export rates 

of TA, DIC and nutrients. An even more precise model study can aim to simulate the Wadden 

Sea itself coupled to the southern North Sea. This approach would enable a distinct 

spatiotemporal budgeting of the major biogeochemical processes in the Wadden Sea. 
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A Data used for calculations of the Dutch rivers and river loads in the years 2001 - 

2009 

A1: Data provided by waterbase.nl used for calculations of the Dutch river 

Noordzeekanaal at station Ijmuiden. 

  Data given by waterbase.nl Calculated values 
date HCO3

-[µmol l-1] pH S[PSU] T[°C] NO3
-[µmol l-1] DIC[µmol l-1] TA[µmol l-1] 

22.01.2007 3607 8.1 6.4 9.9 188.6 3751 3814 
19.02.2007 3443 7.9 6.0 8.4 172.9 3568 3556 
19.03.2007 3279 8.0 7.8 10.5 236.4 3410 3453 
19.04.2007 3279 8.1 7.8 17.1 101.4 3445 3558 
10.05.2007 3279 8.1 10.4 16.6 70.0 3466 3609 
11.06.2007 3115 7.9 8.1 21.5 67.1 3254 3315 
09.07.2007 3115 7.8 5.7 21.2 87.1 3236 3239 
06.08.2007 3279 8.0 5.4 22.3 97.1 3419 3486 
03.09.2007 2951 7.8 9.9 21.8 75.0 3083 3125 
01.10.2007 3115 7.8 9.3 18.5 102.1 3246 3272 
26.11.2007 3279 8.0 11.4 10.6 89.3 3427 3502 
27.12.2007 2787 7.9 9.0 8.3 140.0 2895 2907 
21.01.2008 3607 7.9 7.8 9.0 122.9 3744 3750 
18.02.2008 3279 8.0 7.1 7.7 172.1 3402 3426 
17.03.2008 3279 8.0 8.0 8.6 182.1 3407 3444 
14.04.2008 2787 8.4 7.0 11.5 120.7 2976 3149 
13.05.2008 2787 9.4 6.6 18.1 72.1 4899 7091 
09.06.2008 3115 7.6 9.3 21.1 70.0 3252 3223 
07.07.2008 3115 8.0 10.7 23.1 65.0 3298 3435 
04.08.2008 2951 7.8 2.9 22.0 60.0 3056 3029 
01.09.2008 2787 7.7 7.4 21.2 104.3 2902 2893 
27.10.2008 3279 8.2 8.3 15.9 94.3 3472 3629 
24.11.2008 3279 7.9 3.0 13.1 129.3 3389 3363 
22.12.2008 3770 7.9 8.5 7.1 123.6 3915 3917 
19.01.2009 3607 7.8 9.2 7.1 137.9 3750 3724 
16.02.2009 3607 7.7 4.9 6.3 159.3 3766 3667 
16.03.2009 3443 8.1 9.2 8.1 152.1 3594 3676 
14.04.2009 3443 7.9 8.5 13.7 132.1 3582 3615 
11.05.2009 3115 8.3 8.3 16.4 95.7 3338 3542 
08.06.2009 3115 7.9 7.8 19.6 75.7 3248 3298 
06.07.2009 3279 8.0 9.3 22.9 40.7 3458 3583 
03.08.2009 2787 8.0 8.5 23.2 60.7 2934 3035 
31.08.2009 2787 8.0 10.1 22.9 53.6 2946 3063 
08.10.2009 2787 7.9 10.8 20.1 79.3 2922 2995 
23.11.2009 2623 7.9 9.7 13.2 103.6 2732 2766 
21.12.2009 3279 7.9 7.9 9.8 147.9 3405 3415 
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A2: Data provided by waterbase.nl used for calculations of the Dutch river Nieuwe 

Waterweg at station Maassluis. 

  Data given by waterbase.nl Calculated values 

date HCO3
- [µmol l-1] pH salinity [PSU] T [°C] NO3

- [µmol l-1] DIC [µmol l-1] TA [µmol l-1] 
24.01.2007 2295 8.0 1.7 7.8 257.1 2366 2341 
21.02.2007 2623 7.6 1.7 7.4 246.4 2775 2643 
21.03.2007 2951 8.1 0.5 8.8 192.9 3031 2998 
18.04.2007 3115 8.3 2.6 14.5 200.0 3236 3309 
15.05.2007 2951 7.8 1.7 16.0 142.1 3057 2999 
13.06.2007 2295 8.0 1.5 21.1 152.1 2365 2361 
11.07.2007 2623 7.8 0.8 18.7 157.1 2717 2656 
08.08.2007 2623 8.0 1.2 21.4 157.9 2700 2691 
05.09.2007 2787 8.0 0.8 19.0 125.7 2866 2844 
03.10.2007 2787 7.8 1.3 15.5 162.1 2888 2827 
28.11.2007 2623 7.5 1.2 7.1 220.7 2819 2636 
27.12.2007 3279 7.6 0.8 3.8 214.3 3503 3295 
23.01.2008 2787 7.5 0.4 7.8 245.7 3016 2797 
20.02.2008 2787 7.8 2.3 5.3 234.3 2901 2824 
19.03.2008 2623 7.8 0.7 8.3 245.7 2733 2646 
16.04.2008 2787 8.0 0.7 10.2 222.1 2870 2828 
14.05.2008 2623 8.3 0.6 18.9 155.7 2695 2719 
11.06.2008 2623 7.8 1.6 21.7 150.7 2714 2673 
09.07.2008 2951 7.9 3.8 20.8 126.4 3056 3064 
06.08.2008 2623 7.9 2.1 22.5 121.4 2709 2697 
03.09.2008 2787 7.9 4.9 19.8 111.4 2892 2909 
01.10.2008 2623 8.0 4.2 15.6 114.3 2717 2737 
26.11.2008 2951 8.1 0.8 7.5 179.3 3033 3003 
23.12.2008 2787 8.0 0.9 6.1 222.1 2874 2826 
21.01.2009 3115 8.2 1.6 3.3 193.6 3202 3195 
18.02.2009 2623 8.0 0.9 4.6 247.9 2707 2658 
18.03.2009 2623 8.0 0.4 8.0 253.6 2704 2653 
15.04.2009 2787 8.2 1.3 14.1 163.6 2867 2883 
13.05.2009 2787 8.2 2.6 15.5 150.7 2885 2930 
10.06.2009 2787 8.1 3.7 17.9 115.7 2892 2939 
08.07.2009 2787 8.0 2.9 22.5 112.9 2884 2907 
05.08.2009 2623 7.9 2.1 21.6 125.7 2709 2696 
02.09.2009 2623 7.9 5.5 20.4 100.7 2725 2749 
28.10.2009 2623 8.0 3.9 12.0 157.1 2712 2719 
25.11.2009 2787 8.1 1.6 10.6 202.9 2868 2862 
22.12.2009 2623 7.8 2.6 4.2 225.0 2731 2659 
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A3: Data provided by waterbase.nl used for calculations of the Dutch river Haringvliet at 

station Haringvlietsluis. 

  Data given by waterbase.nl Calculated values 

date HCO3
- [µmol l-1] pH salinity [PSU] T [°C] NO3

- [µmol l-1] DIC [µmol l-1] TA [µmol l-1] 
30.01.2007 2295 8.0 0.3 6.3 268.6 2375 2309 
27.02.2007 2459 7.8 0.3 7.5 261.4 2584 2468 
27.03.2007 2623 8.2 0.3 8.5 199.3 2686 2649 
24.04.2007 2787 9.1 0.3 13.7 210.7 2919 3044 
22.05.2007 2787 8.4 0.3 16.3 150.7 2842 2842 
19.06.2007 2787 8.2 0.3 20.5 132.9 2848 2826 
17.07.2007 2459 8.0 0.3 19.5 167.1 2529 2480 
14.08.2007 2623 8.1 0.3 20.0 112.1 2687 2652 
11.09.2007 2623 8.2 0.3 17.6 161.4 2681 2657 
09.10.2007 2951 8.0 0.3 14.6 150.7 3040 2973 
06.11.2007 2623 8.0 0.3 10.9 190.7 2707 2641 
04.12.2007 2623 7.7 0.3 6.7 225.7 2792 2631 
03.01.2008 2459 7.7 0.3 3.2 212.1 2632 2466 
26.02.2008 2623 7.9 0.3 5.8 247.1 2735 2635 
26.03.2008 2459 7.8 0.3 6.8 232.9 2586 2468 
22.04.2008 5246 8.1 0.3 11.2 212.9 5386 5291 
20.05.2008 2787 8.1 0.3 16.8 132.9 2857 2815 
15.07.2008 2787 8.1 0.3 18.6 126.4 2856 2816 
12.08.2008 2623 8.2 0.3 19.7 120.7 2680 2659 
09.09.2008 2623 8.2 0.3 17.1 122.9 2681 2656 
07.10.2008 2787 8.1 0.3 13.5 122.1 2859 2812 
04.11.2008 2787 8.2 0.3 10.1 140.0 2852 2816 
30.12.2008 2623 8.3 0.3 3.0 225.7 2682 2651 
27.01.2009 2951 8.4 0.3 2.5 217.1 3011 2989 
24.02.2009 2787 8.0 0.3 4.8 248.6 2887 2802 
24.03.2009 2459 8.1 0.3 8.3 222.9 2528 2478 
21.04.2009 2623 8.3 0.3 14.3 177.1 2677 2662 
19.05.2009 2787 8.2 0.3 15.0 145.0 2850 2820 
16.06.2009 2787 8.3 0.3 17.8 146.4 2844 2832 
14.07.2009 2623 8.4 0.3 20.4 105.0 2676 2681 
11.08.2009 2623 8.3 0.3 21.3 119.3 2677 2670 
08.09.2009 2131 8.4 0.3 17.9 100.0 2174 2175 
06.10.2009 2623 8.3 0.3 15.2 107.1 2677 2663 
03.11.2009 2787 8.2 0.3 11.4 97.9 2851 2817 
29.12.2009 2459 8.1 0.3 2.6 231.4 2536 2475 
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A4: Data provided by waterbase.nl used for calculations of the Dutch river Scheldt at 

station Schaar van Ouden Doel. 

  Data given by waterbase.nl Calculated values 

date HCO3
- [µmol l-1] pH salinity [PSU] T [°C] NO3

- [µmol l-1] DIC [µmol l-1] TA [µmol l-1] 
22.01.2007 3443 7.8 5.4 9.1 363.6 3574 3529 
05.02.2007 3443 7.8 4.6 8.0 345.7 3575 3518 
07.03.2007 3607 7.6 2.1 9.3 362.1 3802 3639 
04.04.2007 3279 7.8 4.8 10.8 361.4 3402 3360 
29.05.2007 3443 7.9 9.8 18.0 247.9 3598 3664 
25.06.2007 3443 7.7 10.6 20.8 199.3 3593 3604 
23.07.2007 3443 7.7 9.3 20.6 264.3 3589 3590 
20.08.2007 3279 7.7 9.3 20.5 265.7 3418 3419 
17.09.2007 3443 7.7 10.3 19.0 194.3 3590 3592 
15.10.2007 3607 7.7 10.0 16.4 223.6 3758 3746 
14.11.2007 3770 7.9 8.8 11.3 206.4 3921 3947 
12.12.2007 3443 7.7 2.5 8.7 293.6 3597 3485 
07.01.2008 3770 7.9 5.8 5.7 325.0 3907 3880 
04.02.2008 3934 7.9 4.8 7.4 368.6 4074 4042 
31.03.2008 3607 7.8 1.8 8.9 352.9 3747 3654 
28.04.2008 3607 7.9 5.5 12.9 320.7 3738 3739 
26.05.2008 3607 7.9 7.4 17.6 240.7 3755 3796 
23.06.2008 3279 7.8 7.2 19.4 265.0 3411 3422 
21.07.2008 3443 7.8 9.0 19.3 215.7 3588 3616 
20.08.2008 3443 7.6 8.5 20.2 212.9 3593 3551 
17.09.2008 3279 8.0 9.6 18.1 222.9 3442 3542 
13.10.2008 3443 7.8 10.0 16.0 219.3 3587 3608 
10.11.2008 3443 8.3 10.8 11.8 225.7 3689 3913 
08.12.2008 3934 7.8 4.9 7.3 294.3 4086 4021 
19.01.2009 3770 8.0 8.5 3.9 270.0 3912 3933 
02.02.2009 3934 7.9 4.9 3.8 307.9 4077 4029 
02.03.2009 3770 7.7 4.6 6.4 325.0 3938 3831 
01.04.2009 3934 8.0 4.4 9.7 352.1 4070 4075 
25.05.2009 3607 7.9 8.4 17.6 240.0 3760 3813 
24.06.2009 3607 7.9 9.8 19.5 200.0 3774 3850 
22.07.2009 3770 7.7 11.3 21.5 177.1 3938 3959 
18.08.2009 3279 7.9 12.9 22.3 167.9 3458 3572 
14.09.2009 2787 7.8 13.0 19.3 150.0 2917 2968 
12.10.2009 3443 7.8 12.9 16.8 162.1 3597 3643 
09.11.2009 3443 7.8 13.1 12.3 139.3 3590 3614 
07.12.2009 3770 7.8 8.5 9.4 234.3 3919 3898 
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A5: Data provided by waterbase.nl used for calculations of loads from the Ijseelmeer (west 

and east) at station Vrouwezand. 

  Data given by waterbase.nl Calculated values 

date HCO3
- [µmol l-1] pH salinity [PSU] T [°C] NO3

- [µmol l-1] DIC [µmol l-1] TA [µmol l-1] 
10.01.2007 2459 8.3 0.4 7.5 80.7 2512 2489 
06.02.2007 2787 8.6 0.4 4.9 119.3 2841 2849 
06.03.2007 2623 8.4 0.3 6.8 229.3 2675 2662 
03.04.2007 2787 8.7 0.3 9.3 225.0 2848 2877 
02.05.2007 2787 8.7 0.3 14.6 182.9 2853 2892 
26.06.2007 1967 8.7 0.3 18.3 35.7 2017 2050 
24.07.2007 1557 8.9 0.3 19.0 15.7 1613 1664 
21.08.2007 1557 8.9 0.3 18.8 5.0 1613 1663 
18.09.2007 1639 8.9 0.3 15.3 0.7 1694 1741 
16.10.2007 2459 9.0 0.3 13.4 37.1 2553 2638 
13.11.2007 2295 8.5 0.3 7.6 0.7 2339 2340 
11.12.2007 2787 8.5 0.4 6.2 137.1 2840 2838 
08.01.2008 2951 8.5 0.3 2.6 174.3 3008 2999 
05.02.2008 3115 8.5 0.3 4.6 217.1 3175 3169 
04.03.2008 2787 8.6 0.3 6.1 175.0 2841 2852 
01.04.2008 1803 8.7 0.3 6.7 247.1 1841 1857 
27.05.2008 2951 8.5 0.3 14.8 143.6 3010 3021 
24.06.2008 2295 8.7 0.4 17.4 78.6 2352 2389 
22.07.2008 1607 8.6 0.4 16.0 22.1 1641 1657 
19.08.2008 1574 8.9 0.3 17.9 33.6 1629 1678 
16.09.2008 1213 8.8 0.4 16.0 15.0 1247 1275 
14.10.2008 1967 8.6 0.3 12.9 17.1 2008 2024 
11.11.2008 2295 8.6 0.3 8.8 60.0 2341 2353 
09.12.2008 2459 8.4 0.3 3.6 62.9 2509 2492 
22.01.2009 2951 8.5 0.4 1.4 153.6 3008 2997 
03.02.2009 2951 8.5 0.4 0.2 140.0 3008 2995 
03.03.2009 1803 9.0 0.4 4.3 167.1 1858 1903 
01.04.2009 1967 8.8 0.4 7.5 105.0 2014 2043 
25.05.2009 1803 8.9 0.4 17.0 78.6 1865 1920 
23.06.2009 1066 9.0 0.4 17.3 25.0 1110 1155 
22.07.2009 1607 8.8 0.3 19.3 21.4 1655 1694 
19.08.2009 820 9.1 0.4 20.2 2.1 865 915 
14.09.2009 1197 9.1 0.4 16.5 6.4 1257 1320 
13.10.2009 1803 8.6 0.4 12.1 0.7 1841 1854 
10.11.2009 2131 8.4 0.4 8.6 0.7 2173 2165 
08.12.2009 2295 8.3 0.4 6.8 37.1 2345 2322 
 

 

 

 

 

 

 

 137 



Appendix 

A6: Values of TA, DIC and nitrate concentrations [µmol kg-1] of rivers with improved river loads, calculated from A1 – A6 (new river loads) and river 

loads used in chapter 2. New river loads were introduced in chapter 3.2.2. 

River parameter 

Chapter 2 
(mean for 

NO3) 

New river loads introduced in chapter 3 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec average 
Elbe TA 2231 2380 2272 2293 2083 2017 1967 1916 1768 1988 2156 2342 2488 2139 
Noordzeekanaal TA 2580 3762 3550 3524 3441 4748 3278 3419 3183 3027 3299 3210 3413 3488 
Nieuwe Waterweg TA 2580 2778 2708 2765 3006 2883 2658 2876 2695 2834 2761 2834 2927 2810 
Haringvliet TA 2580 2588 2635 2532 3666 2826 2829 2659 2660 2496 2816 2758 2585 2754 
Scheldt TA 3832 3781 3863 3708 3725 3758 3626 3722 3514 3367 3666 3825 3801 3696 
Ijsselmeer TA 2580 2829 3005 2472 2259 2611 1864 1672 1419 1445 2172 2286 2551 2215 
Elbe DIC  2195 2415 2319 2362 2179 2093 2025 1956 1853 2018 2200 2428 2512 2197 
Noordzeekanaal DIC 2678 3748 3579 3470 3334 3901 3252 3331 3136 2977 3214 3183 3405 3378 
Nieuwe Waterweg DIC 2678 2861 2794 2823 2991 2879 2657 2886 2706 2828 2773 2907 3036 2845 
Haringvliet DIC 2678 2673 2735 2600 3661 2850 2846 2687 2681 2512 2859 2803 2670 2798 
Scheldt DIC 3971 3798 3909 3829 3737 3704 3592 3705 3490 3316 3648 3733 3868 3694 
Ijsselmeer DIC 2678 2824 3008 2458 2234 2576 1826 1636 1369 1399 2134 2285 2565 2193 
Elbe NO3 201 247 330 277 225 193 161 129 103 112 157 267 164 197 
Noordzeekanaal NO3 133.4 150 168 190 118 79 71 64 73 78 92 107 137 111 
Nieuwe Waterweg NO3 180.5 232 243 231 195 150 140 132 135 113 145 201 220 178 
Haringvliet NO3 177.4 233 252 218 200 143 144 133 117 128 127 143 228 172 
Scheldt NO3 283.5 320 341 347 345 243 221 219 215 189 202 190 274 259 
Ijsselmeer NO3 99.8 136 159 190 192 135 46 20 14 7 18 20 79 85 
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A7: Annual loads of TA, DIC and nitrate in the Elbe estuary, the river Rhine, the remaining continental rivers and the British rivers. “Old” values were 

used in chapter 2 for simulations, “new” value were introduced in chapter 3. All values are in Gmol yr-1. 

    2001 2002 2003 2004 2005 2006 2007 2008 2009 average 
TA Elbe old 42.50 79.98 44.17 36.06 47.12 49.74 49.07 45.40 44.77 48.76 
 Elbe new 49.80 94.32 53.46 42.65 55.31 57.23 58.72 53.93 52.70 57.57 
 Rhine old 215.34 223.21 135.81 138.59 139.23 155.40 189.86 168.91 143.82 167.80 
 Rhine new 235.73 238.81 144.55 149.45 152.08 172.99 203.03 185.23 156.60 182.05 
 Cont. Rivers old 116.17 117.34 86.11 91.99 91.15 89.77 106.53 101.43 89.10 98.84 
 Cont. Rivers new 119.97 125.43 93.83 96.60 96.44 94.41 113.43 107.52 93.35 104.55 
 Brit. Rivers old 67.41 70.08 44.95 58.19 58.11 58.71 59.30 60.14 60.46 59.71 
 Brit. Rivers new 79.59 74.26 48.80 63.63 41.29 52.31 80.31 84.26 58.62 64.79 
DIC Elbe old 41.81 78.69 43.45 35.47 46.36 48.94 48.28 44.66 44.05 47.97 
 Elbe new 51.17 96.91 54.77 43.80 56.85 59.07 60.19 55.44 54.20 59.16 
 Rhine old 223.52 231.69 140.96 143.84 144.52 161.29 197.07 175.33 149.29 174.17 
 Rhine new 239.18 243.14 147.33 151.82 154.20 174.97 206.41 187.81 158.94 184.87 
 Cont. Rivers old 120.55 121.74 89.32 95.50 94.61 93.13 110.51 105.25 92.46 102.56 
 Cont. Rivers new 120.79 127.02 94.85 97.47 97.23 95.03 115.07 108.57 94.04 105.56 
 Brit. Rivers old 72.52 77.10 63.82 72.88 71.41 71.68 71.96 72.38 72.51 71.81 
 Brit. Rivers new 83.55 77.96 51.23 66.80 43.36 54.92 84.31 88.46 61.55 68.02 
Nitrate Elbe old 4.65 9.10 5.53 3.86 5.06 5.24 4.83 4.37 4.35 5.22 
 Elbe new 4.65 9.12 5.68 4.27 5.59 5.66 5.56 5.61 5.16 5.70 
 Rhine old 16.59 17.79 9.93 10.84 10.19 12.23 14.34 12.54 10.13 12.73 
 Rhine new 15.76 16.44 10.52 10.08 10.07 10.89 13.71 12.26 10.51 12.25 
 Cont. Rivers old 9.52 9.94 7.05 7.39 6.12 5.60 8.74 7.55 4.65 7.40 
 Cont. Rivers new 9.71 10.96 7.78 7.96 6.53 6.05 9.78 8.26 5.24 8.03 
 Brit. Rivers old 10.32 10.32 10.32 10.34 10.32 10.32 10.32 10.34 10.32 10.32 
  Brit. Rivers new 11.92 10.65 7.56 8.85 5.59 7.46 11.42 10.74 7.86 9.12 
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Appendix 

A8: Annual loads of ammonium, phosphate and total organic nitrogen (TON) in the Elbe estuary, the river Rhine, the remaining continental rivers and 

the British rivers. “Old” values were used in chapter 2 for simulations, “new” value were introduced in chapter 3. All values are in Gmol yr-1. 

    2001 2002 2003 2004 2005 2006 2007 2008 2009 mean 
Ammonium Elbe old 0.28 0.42 0.35 0.25 0.27 0.31 0.23 0.21 0.20 0.28 
 Elbe new 0.04 0.09 0.06 0.04 0.05 0.04 0.06 0.05 0.05 0.05 
 Rhine old 0.82 0.73 0.53 0.48 0.33 0.47 0.33 0.38 0.34 0.49 
 Rhine new 0.82 0.73 0.53 0.48 0.33 0.47 0.33 0.38 0.34 0.49 
 Cont. Rivers old 0.56 0.42 0.40 0.35 0.28 0.33 0.28 0.24 0.29 0.35 
 Cont. Rivers new 0.59 0.45 0.42 0.38 0.30 0.35 0.31 0.26 0.30 0.37 
 Brit. Rivers old 1.19 1.19 1.19 1.19 1.19 1.19 1.19 1.19 1.19 1.19 
 Brit. Rivers new 0.43 0.34 0.26 0.25 0.18 0.24 0.30 0.34 0.24 0.29 
Phosphate Elbe old 0.05 0.09 0.04 0.03 0.04 0.03 0.04 0.03 0.03 0.04 
 Elbe new 0.06 0.11 0.05 0.03 0.05 0.04 0.05 0.04 0.04 0.05 
 Rhine old 0.17 0.24 0.13 0.14 0.13 0.15 0.19 0.16 0.14 0.16 
 Rhine new 0.17 0.24 0.13 0.14 0.13 0.15 0.19 0.16 0.14 0.16 
 Cont. Rivers old 0.07 0.09 0.06 0.06 0.05 0.06 0.07 0.04 0.04 0.06 
 Cont. Rivers new 0.08 0.10 0.06 0.06 0.05 0.06 0.07 0.05 0.04 0.06 
 Brit. Rivers old 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 
 Brit. Rivers new 0.36 0.34 0.23 0.29 0.20 0.21 0.30 0.28 0.22 0.27 
TON Elbe old 1.46 1.75 0.65 0.61 0.75 0.45 0.80 0.91 0.78 0.91 
 Elbe new 1.77 2.12 0.78 0.73 0.91 0.54 0.97 1.10 0.94 1.10 
 Rhine old 2.76 3.65 2.76 2.09 2.05 2.09 2.40 1.56 1.83 2.35 
 Rhine new 2.76 3.65 2.76 2.09 2.05 2.09 2.40 1.56 1.83 2.35 
 Cont. Rivers old 2.81 3.80 2.17 2.65 2.49 1.73 2.45 2.25 1.83 2.46 
 Cont. Rivers new 3.00 4.10 2.29 2.80 2.70 1.82 2.57 2.38 1.93 2.62 
 Brit. Rivers old 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73 
  Brit. Rivers new 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73 
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Appendix 

A9: Modelling of the exchange rates (tidal prisms) between the Wadden Sea and the North 

Sea 

FVCOM is an unstructured-grid, finite-volume, 3-D ocean model (see Chen, 2003). The 

respective model domain of FVCOM is shown in Fig. A1. The model is solving the integral 

form of the governing equations for momentum, continuity, temperature, salinity and density on 

a triangular mesh in the horizontal and a σ-coordinate system with 21 σ-levels in the vertical 

direction (see manual given by Chen, 2006). 

To calculate the horizontal diffusion the Smagorinsky eddy parameterisation method (see 

Smagorinsky, 1963) and for the parametrisation of the vertical eddy viscosity the Mellor & 

Yamada (1982) level 2.5 model were applied as turbulence closure schemes. 

The resolution of the unstructured-grid mesh ranged from 500 m at the German coast and 6000 

m in areas that were located far away from the coast. A section of the modelling area around the 

islands of Langeoog and Spiekeroog and the unstructured-grid and bathymetry is shown in Fig. 

A1. The timestep of the hydrodynamic model was 10 s for the simulations. The salinity and the 

temperature were set to a constant value of 35 PSU and 10° C, respectively. For bottom friction 

and vertical and horizontal mixing the default values of FVCOM were applied. Hourly data of 

wind speed, wind direction and pressure provided by the German Weather Service were used as 

meteorological forcing. 

 



Appendix 

Figure A1: Section of the FVCOM modelling area around the islands of Langeoog and 

Spiekeroog: unstructured-grid and bathymetry. Black lines indicate positions where 

wad_exc was calculated. This figure is provided by Grashorn (2013). 

wad_exc was calculated with FVCOM by adding up the cumulative seaward transport during 

falling water level (tidal prisms) between the back-barrier islands that were located near the 

respective ECOHAM cells with adjacent Wadden Sea area. Therefore, model data of a 

representative period between 13.10.2007 and 15.10.2007 were used that were characterised by 

a mean significant wave height of 0.75 m, a mean wave direction of 190.6°, a maximum wind 

speed of 7 m s-1 and a mean surface elevation amplitude of approx. 1 m at 54°01’N, 6°35’E. The 

simulated surface elevation and observed wind speed (FINO 1 station) from 5.10. – 21.10.2007 

are shown in Fig. A2. The model results at that position have been validated by Grashorn 

(2013). 

 

Figure A2: Observed wind speed and simulated surface elevation at FINO1 (54°01’N, 

6°35’E). The period that was used for wad_exc calculation is highlighted in grey. This 

figure is provided by Grashorn (2013). 

In order to get representative tidal prisms for the Wadden Sea export calculations, a period was 

chosen that was supposed to represent a usual tidal situation without remarkable strong winds, 

neap tides or spring tides. Calculations of tidal prisms for every day from 2001 to 2009 were not 

performed due to high computation time. wad_exc for each ECOHAM cell in the respective 

export areas are given in Tab. 4.2. The definition of the first cell N1 and the last cell E4 is in 

accordance to the clockwise order in Fig. 4.1 (right side). 
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Of course the different timeframes of the modelled exchanged water masses and the conducted 

measurements of TA and DIC concentrations in the Wadden Sea caused additional uncertainties 

to the calculated export rates. This is why the timeframe for modelled exchanged water masses 

was chosen in a way that a representative and normal situation was reproduced that mostly 

occurred during the course of a year. Except for measurements in the North Frisian Wadden Sea 

in November 2009, no remarkable strong winds, neap or spring tides were observed during 

measurements of TA and DIC concentrations in the Wadden Sea. Hence, the above mentioned 

uncertainties were reduced to a minimum by the selection of the period for water mass exchange 

simulations. 
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Appendix 

B Contribution to publications 

The following contributions at international conferences were derived from the dissertation: 

 

• F. Schwichtenberg, J. Pätsch, T. Amann, M. Schartau, H. Thomas, V. Winde, O. 

Dellwig, J. van Beusekom, M. Böttcher, S. Grashorn and L. Salt, Impact of internal and 

external alkalinity fluxes on the carbonte system in the German Bight / SE North Sea – 

A model study for the years 2001 – 2009, European Geosciences Union General 

Assembly 2013, Vienna, Austria, April 2013, poster presentation. 

• F. Schwichtenberg, J. Pätsch, I. Lorkowski, T. Amann, M. Schartau, H. Thomas, V. 

Winde, O. Dellwig, J. van Beusekom, M. Böttcher, Impact of internal and external 

alkalinity fluxes on the carbonte system of the larger German Bight, European 

Geosciences Union General Assembly 2012, Vienna, Austria, April 2012, oral 

presentation. 

• F. Schwichtenberg, J. Pätsch, I. Lorkowski, M. Schartau, H. Thomas, V. Winde, O. 

Dellwig, J. van Beusekom, M. Böttcher, Impact of alkalinity fluxes on the carbon cycle 

in the southern North Sea, YOUMARES 2.0, Bremerhaven, Germany, September 2011, 

oral presentation. 

• F. Schwichtenberg, J. Pätsch, I. Lorkowski, M. Schartau, H. Thomas, V. Winde, O. 

Dellwig, J. van Beusekom, M. Böttcher, Impact of alkalinity fluxes on the carbon cycle 

in the southern North Sea between 1977 and 2009, AMEMR, Plymouth, Great Britain, 

Juni 2011, poster presentation. 

• F. Schwichtenberg, J. Pätsch, I. Lorkowski, M. Schartau, H. Thomas, V. Winde, O. 

Dellwig, J. van Beusekom, M. Böttcher, Impact of alkalinity fluxes on the carbon cycle 

in the southern North Sea between 1977 and 2006, European Geosciences Union 

General Assembly 2011, Vienna, Austria, April 2011, oral presentation. 

 

 

 

 

 

 

 

 144 



Bibliography 

Bibliography 

 

Amann, T., Weiss, A., Hartmann, J. Inorganic carbon fluxes in the inner Elbe estuary, 

Germany. Submitted to Estuaries & Coasts. 

 

Amann, T., 2013. Spatio-temporal variability of carbon and silica fluxes through the inner Elbe 

estuary, Germany. Dr.rer.nat. thesis, Universität Hamburg. 

 

Artioli, Y., Blackford, J.C., Butenschön, M., Holt, J.T., Wakelin, S.L., Thomas, H., Borges, 

A.V., Allen, J.I., 2012. The carbonate system in the North Sea: Sensitivity and model 

validation. Journal of Marine Systems, 102-104, 1-13, doi:10.1016/j.jmarsys.2012.04.006. 

 

Backhaus, J.O., 1985. A three-dimensional model for the simulation of shelf sea dynamics. 

Ocean Dynamics, 38(4):165–187. 

 

Backhaus, J.O., Hainbucher, D., 1987. A finite difference general circulation model for shelf 

seas and its application to low frequency variability on the North European Shelf. Elsevier 

Oceanography Series, 45:221–244. 

 

Berelson, W.M., McManus, J., Coale, K.H., Johnson, K.S., Kilgore, T., Burdige, D., Pilskaln, 

C., 1996. Biogenic matter diagenesis on the sea floor: a comparison between two 

continental margin transects. Journal of Marine Research, 54, 731–762. 

 

Berelson, W.M., Balch W.M., Najjar R., Feely R.A., Sabine C., Lee K., 2007. Relating 

estimates of CaCO3 production, export, and dissolution in the water column to 

measurements of CaCO3 rain into sediment traps and dissolution on the sea floor: A 

revised global carbonate budget. Global Biogeochemical Cycles, 21, GB1024, 

doi:10.1029/2006GB002803. 

 

Bergemann, M., 2005. Berechnung des Salzgehaltes der Elbe, p. 8. 

 

Berner, R.A., Scott, M.R., Thomlinson, C., 1970. Carbonate alkalinity in the pore waters of 

anoxic marine sediments. Limnology & Oceanography, 15, 544–549, 

doi:10.4319/lo.1970.15.4.0544. 

 

 

 



Bibliography 

Borges, A.V., 2011. Present day carbon dioxide fluxes in the coastal ocean and possible 

feedbacks under global change, IN Oceans and the atmospheric carbon content (P.M. da 

Silva Duarte & J.M. Santana Casiano Eds), Chapter 3, pp. 47-77. 

 

 

Brasse, S., Nellen, M., Seifert, R., Michaelis, W., 2002. The carbon dioxide system in the Elbe 

estuary. Biogeochemistry, 59, 25-40. 

 

Brewer, P.G., Goldman, J.C., 1976. Alkalinity changes generated by phytoplankton growth. 

Limnology & Oceanography, 21 (1), 108–117. 

 

Broecker, W.S., Peng, T.-H., 1982. Tracers in the Sea. Eldigio Press, New York. (690 pp.). 

 

Brønsted, J.N., 1923. Einige Bemerkungen über den Begriff der Säuren und Basen. Recl. Trav. 

Chim. Pays-Bas, 42, 718–728. 

 

Cadée, G.C., Hegeman, J., 2002. Phytoplankton in the Marsdiep at the end of the 20th century; 

30 years monitoring biomass, primary production, and Phaeocystis blooms. J. Sea Res. 48, 

97e110. 

 

Cai, W.-J., Guo, X., Chen, C.T.A., et al., 2008. A comparative overview of weathering intensity 

and HCO3 2_ flux in the world’s major rivers with emphasis on the Changjiang, Huanghe, 

Zhujiang (Pearl) and Mississippi Rivers. Continental Shelf Research, 28, 1538–1549. 

 

Cai, W.-J., Hu, X., Huang, W.-J., Jiang, L.-Q., Wang, Y., Peng, T.-H., Zhang, X., 2010. Surface 

ocean alkalinity distribution in the western North Atlantic Ocean margins. Journal of 

Geophysical Research, 115, C08014, doi:10.1029/2009JC005482. 

 

Chambers, R.M., Hollibaugh, J.T., Vink, S.M., 1994. Sulfate reduction and sediment 

metabolism in Tomales Bay, California. Biogeochemistry, 25, 1–18, 

doi:10.1007/BF00000509. 

 

Chen, C.-T.A., 2002. Shelf-vs. dissolution-generated alkalinity above the chemical lysocline. 

Deep-Sea Research, II 49, 5365–5375. 

 

 

 

 146 



Bibliography 

Chen, C.-T. A., Wang, S.-L., 1999. Carbon, alkalinity and nutrient budgets on the East China 

Sea continental shelf. Journal of Geophysical Research, 104, 20,675–20,686, 

doi:10.1029/1999JC900055. 

 

Chen, C., Liu, H., Beardsley, R.C., 2003. An Unstructured Grid, Finite-Volume, Three-

Dimensional, Primitive Equations Ocean Model: Application to Coastal Ocean and 

Estuaries. J  Atmos Oceanic Technol, 20 (1), 159-186 

Chen, C., Beardsley, R.C., Cowles, G.W., 2006. An Unstructured Grid, Finite-Volume 

Coastal Ocean Model, FVCOM User Manual, 2nd edn. SMAST/UMASSD Tech. 

Rep. 060602, 315 pp, School for Marine Science and Technology, University of 

Massachusetts-Dartmouth, New Bedford, MA 

 

Chung, S.-N., Lee K., Feely R.A., Sabine C.L., Millero F.J., Wanninkhof R., Bullister J.L., Key 

R.M., Peng T.-H. (2003). Calcium carbonate budget in the Atlantic Ocean based on water 

column inorganic carbon chemistry. Global Biogeochemical Cycles, 17(4), 1093, 

doi:10.1029/ 2002GB002001. 

 

CPSL, 2005. Coastal protection and sea level rise. Wadden Sea Ecosyst. 21, 1e47. 

 

Dähnke, K., Bahlmann, E., Emeis, K., 2008. A nitrate sink in estuaries? An assessment by 

means of stable nitrate isotopes in the Elbe estuary. Limnology & Oceanography, 53, pp. 

1504-1511. 

 

DeBeer, D., Wenzhöfer, F., Ferdelman, T.G., Boehme, S.E., Huettel, M., van Beusekom, J.E.E., 

Böttcher, M.E., Musat, N., and Dubilier, N., 2005. Transport and mineralization rates in 

North Sea sandy intertidal sediments, Sylt-Romo basin, Wadden Sea. Limnology & 

Oceanography, 50, 113–127, 2005. 

 

Deek, A., Emeis, K., van Beusekom, J., 2012. Nitrogen removal in coastal sediments of the 

German Wadden Sea. Biogeochemistry, 108, 467-483. 

 

Deffeyes, K.S. 1965. Carbonate equilibria: a graphic and algebraic approach. Limnology & 

Oceanography, 10:412-426. 

 

Dickson, A.G., 1981. An exact definition of total alkalinity and a procedure for the estimation 

of alkalinity and total inorganic carbon from titration data. Deep-Sea Research, 28A (6), 

609–623. 
 147 



Bibliography 

Dickson, A.G., Millero, F.J., 1987. A comparison of the equilibrium-constants for the 

dissociation of carbonic-acid in seawater media. Deep-Sea Research Part AOceanographic 

Research Papers 34 (10), 1733e1743. 

 

Dickson, A.G., 1992. The development of the alkalinity concept in marine chemistry. Marine 

Chemistry, 40 (1–2), 49–63. 

DOE, 1994. Handbook of methods for the analysis of the various parameters of the carbon 

dioxide system in sea water. Version 2. In: Dickson, A.G., Goyet, C. (Eds.), 

ORNL/CDIAC-74. 

 

Dollar, S.J., Smith, S.V., Vink, S.M., Obrebski, S., Hollibaugh, J.T., 1991. Annual cycle of 

benthic nutrient fluxes in Tomales Bay, California, and contribution of the benthos to total 

ecosystem metabolism. Marine Ecology Progress Series, 79, 115–125, 

doi:10.3354/meps079115. 

 

Doney, S.C., Fabry, V.J., Feely, R.A., Kleypas, J.A., 2009. Ocean acidification: the other CO2 

problem. Annual Review of Marine Scince, 1, 169–192. 

 

Egleston, E.S., Sabine, C.L., Morel,, F.o.M.M., 2010. Revelle revisited: buffer factors that 

quantify the response of ocean chemistry to changes in DIC and alkalinity. Global 

Biogeochemical Cycles, 24. 

 

Ehlers, J., 1994. Geomorphologie und Hydrologie des Wattenmeeres. In: Lozan, J.L., Rachor, 

E., Von Westernhagen, H., Lenz, W. (Eds.), Warnsignale aus dem Wattenmeer. Blackwell 

Wissenschaftsverlag, Berlin, pp. 1–11. 

 

Fabry V., Seibel B.A., Feely R.A., Orr J.C. 2008. Impacts of ocean acidification on marine 

fauna and ecosystem processes. ICES Jornal of Marine Science 65, 414-432 

 

Fennel, K., Wilkin, J., Levin, J., Moisan, J., O’Reilly, J., Haidvogel, D., 2006. Nitrogen cycling 

in the Middle Atlantic Bight: results from a three-dimensional model and implications for 

the North Atlantic nitrogen budget. Global Biogeochemical Cycles 20, 1e14. 

 

Flemming, B.W., Davis, R.A.J., 1994. Holocene evolution, morphodynamics and sedimentology 

of the Spiekeroog barrier island system (southern North Sea). Senckenb. Marit. 25, 

117e155. 

 

 148 



Bibliography 

Frankignoulle, M., Canon, C., Gattuso, J.P., 1994. Marine calcification as a source of carbon 

dioxide: positive feedback of increasing atmospheric CO2. Limnology & Oceanography, 

39, 458–462. 

 

Frankignoulle, M., Bourge, I., Wollast, R., 1996. Atmospheric CO2 fluxes in a highly polluted 

estuary (the Scheldt). Limnology & Oceanography, 41, pp. 365 ‐369. 

 

Goldman, J.C., Brewer, P.G., 1980. Effect of nitrogen source and growth rate on phytoplankton 

mediated changes in alkalinity. Limnology & Oceanography, 25, 352–357. 

 

Grasshoff, K., Kremling, K., Ehrhardt, M. (Eds.), 1999. Methods of seawater analysis. 3rd ed., 

600 pp., Wiley-VCH, Weinheim. 

 

Grashorn, S., 2013. Wave-current interactions in coastal areas. Dr.rer.nat. thesis, Universität 

Oldenburg. 

 

Gypens, N., Borges, A.V., Lancelot, C., 2009. Effect of eutrophication on air-sea CO2 fluxes in 

the coastal Southern North Sea: a model study of the past 50 years. Global Change Biology 

15, 1040e1056. 

 

Hartmann, J., Moosdorf, N., 2012. The new global lithological map database GLiM: A 

representation of rock properties at the Earth surface. Geochemistry Geophysics 

Geosystems, 13, DOI: 10.1029/2012gc004370. 

 

HASEC, 2012. OSPAR Convention for the Protection of the Marine Environment of the North-

East Atlantic. Meeting of the Hazardous Substances and Eutrophication Committee 

(HASEC), Oslo 27 February – 2 March 2012. 

 

Heath, M.R., Edwards, A.C., Pätsch, J., Turrell,W.R., 2002. Modelling the behaviour of nutrient 

in the coastal waters of Scotland. vol. 10. Report Of the Fisheries Research Services, pp. 

1e106. 

 

Hjalmarsson, S., Wesslander, K., Anderson, L.G., Omstedt, A., Perttilä, M., Mintrop, L., 2008. 

Distribution, long-term development and mass balance calculation of total alkalinity in the 

Baltic Sea. Continental Shelf Research 28, 593–601. 

 

 

 149 



Bibliography 

Hu, X., Cai, W.-J., 2011. An assessment of ocean margin anaerobic processes on oceanic 

alkalinity budget. Global Biogeochemical Cycles, 25, GB3003, doi: 

10.1029/2010GB003859. 

 

Hulth, S., Aller, R.C., Canfield, D.E., Dalsgaard, T., Engström, P., Gilbert, F., Sundbäck, K., 

Thamdrup, B., 2005. Nitrogen removal in marine environments: Recent findings and future 

research challenges. Marine Chemistry, 94, 125–145, doi:10.1016/j.marchem.2004.07.013. 

 

Hoppema, J.M.J, 1990. The distribution and seasonal variation of alkalinity in the southern 

bight of the North Sea and in the western Wadden Sea. Netherlands Journal of Sea 

Research, 26 (1), 11-23. 

 

Ilyna, T., Zeebe, R., Brewer, P.G. 2010. Future ocean increasingly transparant to low-

frequency sound owing to carbon dioxide emissions. Nature Geoscience, 3, 18-22. 

 

IPCC. 2001. Climate Change 2001: Synthesis Report. A contribution of working groups I, II, 

and III to the Third Assessment Report of the IPCC. Tech. rept. Cambridge. 

 

Jacobsen, M.Z., 2005. Studying ocean acidification with conservative, stable numerical schemes 

for nonequilibrium air-ocean exchange and ocean equilibrium chemistry. Journal of 

Geophysical Research – Atmospheres 110: D07302. DOI: 10.1029/2004JD005220. 

 

Jacobsen, O., 1873. Ueber die Luft des Meerwassers. Justus Liebig's Ann. Chem. Pharm., 167, 

1–38. 

 

Jahnke, R.A., Craven D.B., Gaillard, J.-F. 1994. The influence of organic matter diagenesis on 

CaCO3 dissolution at the deep-sea floor. Geochimica Cosmochimica Acta, 58, 2799–2809, 

doi:10.1016/0016-7037 (94)90115-5. 

 

Jensen, K.M., Jensen, M.H., Kristensen, E., 1996. Nitrification and denitrification in Wadden 

Sea sediments (Konigshafen, Island of Sylt, Germany) as measured by nitrogen isotope 

pairing and dilution. Aquat. Microb. Ecol., 11, 181–191. 

 

Johannsen, A., Dahnke, K., Emeis, K., 2008. Isotopic composition of nitrate in five German 

rivers discharging into the North Sea. Organic Geochemistry, 39, 1678-1689. 

 

 

 150 



Bibliography 

Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha 

S., White, G., Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., 

Mo, K.C., Ropelewski, C., Wang, J., Leetmaa, A., Reynolds, R., Jenne, R., Joseph, D., 

1996. The NCEP/NCAR 40-year reanalysis project. Bulletin Of The American 

Meteorological Society, 77(3):437–471. 

 

Kleypas, J., Feely, R.A., Fabry, V., Langdon, C., Sabine, C.L., Robbins, L.L. 2006. Impacts of 

Ocean Acidification on Coral Reefs and Other Marine Calcifiers: A Guide for Future 

Research, report of a workshop held 1820 April 2005, St. Peterburg, FL. Sponsored by 

NSF, NOAA, and the U.S. Geological Survey, 88 pp. 

 

Kochergin, V.P., 1987. Three-dimensional prognostic models. Three-dimensional Coastal 

Ocean Models, pages 201–208. 

 

Kristensen, E., Bodenbender, J., Jensen, M.H., Rennenberg, H., Jensen, K.M., 2000. Sulfur 

Cycling of intertidal Wadden Sea sediments (Konigshafen, Island of Sylt, Germany): sulfate 

reduction and sulfur gas emission. Journal of Sea Research, 43, 93–104. 

 

Kroeker, K.J., Kordas, R.L., Crim, R.N., Singh, G.G. 2010. Meta-analysis reveals negative yet 

variable effects of ocean acidification on marine organisms. Ecology Letters, 13, 1419-

1434. 

 

Kühn, W., Pätsch, J., Thomas, H., Borges, A.V., Schiettecatte, L.S., Bozec, Y., Prowe, A.E.F., 

2010. Nitrogen and carbon cycling in the North Sea and exchange with the North Atlantic-A 

model study, Part II: Carbon budget and fluxes. Continental Shelf Research (30), pp. 1701-

1716. DOI: DOI 10.1016/j.csr.2010.07.001. 

 

Lam, P., et al. 2009. Revising the nitrogen cycle in the Peruvian oxygen minimum zone, Proc. 

Natl. Acad. Sci. U. S. A., 106, 4752–4757, doi:10.1073/pnas.0812444106. 

 

Langer, M.R., 2008. Assessing the contribution of foraminiferan protists to global ocean 

carbonate production. The Journal of Eukaryotic Microbiology 55 (3), 163–169. 

 

Lehner, B., Verdin, K., Jarvis, A., 2008. New global hydrography derived from spaceborne 

elevation data. Eos, Transactions, AGU, 89, pp. 93-94. 

 

 

 151 



Bibliography 

Lenhart, H.-J., Radach, G., Backhaus, J. O., Pohlmann, T., 1995. Simulations of the North Sea 

circulation, its variability, and its implementation as hydrodynamical forcing in ERSEM, 

Neth. J. Sea Res., 33, 271–299. 

 

Lenhart, H., Pohlmann, T., 1997. The ICES-boxes approach in relation to results of a North Sea 

circulation model. Tellus, 49A, 139-160. 

 

Lewis, E., Wallace, D.W.R., 1998. Program Developed for CO2 System. 

 

Lorkowski, I., Pätsch, J., Moll, A., Kühn, W., 2012. Interannual variability of carbon fluxes in 

the North Sea from 1970 to 2006 – Competing effects of abiotic and biotic drivers on the 

gas-exchange of CO2. Estuarine, Coastal and Shelf Science, 100, 38-57, 

doi:10.1016/j.ecss.2011.11.037. 

 

Ludwig, W., Amiotte-Suchet, P., Probst, J.L., 1996. River discharges of carbon to the world’s 

oceans: determining local inputs of alkalinity and dissolved and particulate organic carbon. 

C.R. Academy of Science, Paris, t. 323, Serie II a, pp. 1007–1014. 

 

Luff, R., Moll, A., 2004. Seasonal dynamics of the North Sea sediments using a three-

dimensional coupled water-sediment model system. Continental Shelf Research, 24, 1099–

1127. 

 

Martin, W.R., Sayles, F.L. 1996. CaCO3 dissolution in sediments of the Ceara Rise, western 

equatorial Atlantic. Geochimica Cosmochimica Acta, 60, 243–263, doi:10.1016/0016-

7037(95)00383-5. 

 

McQuatters-Gollop, A., Raitsos, D.E., Edwards, M., Pradhan, Y., Mee, L.D., Lavender, S.J., 

Attrill, M.J., 2007. A long-term chlorophyll data set reveals regime shift in North Sea 

phytoplankton biomass unconnected to nutrient trends. Limnology & Oceanography, 52, 

635e648. 

 

McQuatters-Gollop, A., Vermaat, J.E., 2011. Covariance among North Sea ecosystem state 

indicators during the past 50 years e contrasts between coastal and open waters. Journal of 

Sea Research, 65, 284e292. 

 

 

 

 152 



Bibliography 

Mehrbach, C., Culberso, C., Hawley, J.E., Pytkowic, R.M., 1973. Measurement of apparent 

dissociation-constants of carbonic acid in seawater at atmospheric pressure. Limnology & 

Oceanography 18 (6), 897e907. 

 

Mellor, G.L., Yamada, T., 1982. Development of a Turbulence Closure Model for 

Geophysical Fluid Problems. Rev Geophys 20(4): 851-875 

 

Millero, F.J., 2001. Physical Chemistry of Natural Waters. Wiley-Interscience Series in 

Geochemistry. Wiley-Interscience, New York. 654 pp. 

 

Millero, F.J., Graham, T.B., Huang, F., Bustos-Serrano, H., Pierrot, D., 2006. Dissociation 

constants of carbonic acid in seawater as a function of salinity and temperature. Marine 

Chemistry, 100, pp. 80-94. DOI: 10.1016/j.marchem.2005.12.001. 

 

Milliman, J.D., Troy, P.J., Balch, W.M., Adams, A.K., Li, Y.-H., Mackenzie, F.T., 1999. 

Biologically mediated dissolution of calcium carbonate above the chemical lysocline. Deep 

Sea Research, Part I, 46, 1653–1669, doi:10.1016/S0967-0637(99)00034-5. 

 

Moll, A., 1998. Regional distribution of primary production in the North Sea simulated by a 

three-dimensional model. Journal of Marine Systems 16, 151–170. 

 

Moore, W.S., Beck, M., Riedel, T., Rutgers van der Loeff, M., Dellwig, O., Shaw, T.J., 

Schnetger, B., Brumsack, H.-J., 2011. Radium-based pore water fluxes of silica, alkalinity, 

manganese, DOC, and uranium: A decade of studies in the German Wadden Sea. 

Geochimica et Cosmochimica Acta, 75, 6535 – 6555. 

 

Neal, C., 2002. Calcite Saturation in eastern UK rivers. The Science of the Total Environment, 

282-283, 311-326. 

 

Neumann, T., 2000. Towards a 3D-ecosystem model of the Baltic Sea. Journal of Marine 

Systems 25, 405e419. 

 

Onken, R., Riethmüller, R., 2010. Determination of the freshwater budget of tidal flats from 

measurements near a tidal inlet. Continental Shelf Research, 30, 924-933, doi: 

10.1016/j.csr.2010.02.004. 

 

 

 153 



Bibliography 

OSPAR-Commission, 2000. Quality status report 2000, volume 3. OSPAR-Commission. 

 

Otto, L., Zimmerman, J.T.F., Furnes, G.K., Mork, M., Saetre, R., Becker, G., 1990. Review of 

the physical oceanography of the North Sea. Netherlands Journal of Sea Research, 26 (2-

4):161–238. 

 

Park, K. 1969. Oceanic CO2 system: an evaluation of ten methods of investigation. Limnology 

& Oceanography, 14: 179-186. 

 

Pätsch, J., Kühn, W., 2008. Nitrogen and carbon cycling in the North Sea and exchange with 

the North Atlantic – a model study Part I: Nitrogen budget and fluxes. Continental Shelf 

Research, 28, 767–787. 

 

Pätsch, J., Lenhart, H.-J., 2008. Daily Loads of Nutrients, Total Alkalinity, Dissolved Inorganic 

Carbon and Dissolved Organic Carbon of the European Continental Rivers for the Years 

1977–2006. Berichte aus dem Zentrum für Meeres- und Klimaforschung, 

 

Pätsch, J., Serna, A., Dähnke, K., Schlarbaum, T., Johannsen, A., Emeis, K.-C., 2010. Nitrogen 

cycling in the German Bight (SE North Sea) - Clues from modelling stable nitrogen 

isotopes. Continental Shelf Research, 30: 203-213. 

 

Pohlmann, T., 1991. Untersuchung hydro- und thermodynamischer Prozesse in der Nordsee mit 

einem dreidimensionalen numerischem Modell. Berichte aus dem Zentrum für Meeres- und 

Klimaforschung, Reihe B(Nr. 23):1–116. 

 

Pohlmann, T, 1996. Predicting the thermocline in a circulation model of the North Sea – Part I: 

model description, calibration and verification. Continental Shelf Research, 16(2): 131–

146. 

 

Provoost, P., van Heuven, S., Soetaert, K., Laane, R.W.P.M., Middelburg, J.J., 2010. Seasonal 

and long-term changes in pH in the Durch coastal zone. Biogeoscience, 7, 3869-3878. 

 

Quigg, A., Finkel, Z.V., Irwin, A.J., Rosenthal, Y., Ho, T., Reinfelder, J.R., Schofield, O., 

Morel, F.M.M., Falkowski, P.G., 2003. The evolutionary inheritance of elemental 

stoichiometry in marine phytoplankton. Nature 425, 291e294. 

 

 

 154 



Bibliography 

Raaphorst, W., Kloosterhuis H.T., Cramer, A., Bakker, K.J.M., 1990. Nutrient early diagenesis 

in the sandy sediments of the Dogger Bank area, North Sea: pore water results. Neth. J. 

Sea. Res. 26(1): 25-52. 

 

Rakestraw, N.W., 1949. The concept of alkalinity or excess base of seawater. Journal of Marine 

Research, 8, 14–20. 

 

Raven et al. Royal Society, Ocean Acidification Due to Increasing Atmospheric Carbon 

Dioxide (Policy Document 12/05, Royal Society, London, 2005). 

 

Revelle, R., Suess, H., 1957. Carbon dioxide exchange between atmosphere and ocean and the 

question of an increase of atmospheric CO2 during the past decades. Tellus 9, 18–27. 

 

Sabine, C.L., R.A. Feely, N. Gruber, R.M. Key, K. Lee, J.L. Bullister, R. Wanninkhof, C.S. 

Wong, D.W.R. Wallace, B. Tilbrook, F.J. Millero, T.-H. Peng, A. Kozyr, T. Ono, and A.F. 

Rios, 2004. The Oceanic sink for Anthropogenic CO2, Science, 305, 367-371. 

 

Sabine, C.L., Tanhua, T., 2010. Estimation of anthropogenic CO2 inventories in the ocean. 

Annual Review of Marine Science, 2, 175–198. 

 

Salt, L., Thomas, H., Prowe, A.E.F., Borges A.V., De Baar, H.J.W., 2012. Variability of shelf 

sea pH and CO2 pumping in response to NAO forcing. submitted to Journal of Geophysical 

Research. 

 

Seitzinger, S., Giblin, A.E., 1996. Estimating denitrification in North Atlantic continental shelf 

sediments. Biogeochemistry 35, 235–260. 

 

Seitzinger, S.P., Kroeze, C., 1998. Global distribution of nitrous oxide production and N inputs 

in freshwater and coastal marine ecosystems. Global Biogeochemical Cycles, 12, pp. 93-

113. DOI: 10.1029/97gb03657. 

 

Seitzinger, S., Harrison, J.A., Bohlke, J.K., Bouwman, A.F., Lowrance, R., Peterson, B., Tobias, 

C., Drecht, G.V., 2006. Denitrification across landscapes and waterscapes: A synthesis. 

Ecol. Appl., 16, 2064–2090, doi:10.1890/1051-0761(2006)016[2064:DALAWA]2.0.CO;2. 

 

 

 

 155 



Bibliography 

Slater, J.M., Capone, D.G., 1987. Denitrification in aquifer soils and nearshore marine 

sediments influenced by groundwater nitrate. Appl. Environ. Microb., 53, 1292–

1297. 

 

Smagorinsky, J., 1963. General Circulation experiments with the primitive equations I. 

The basic experiment. Mon Wea Rev 91(3): 99-164 

 

 

Smith, S.V., Hollibaugh, J.T., 1993. Coastal metabolism and the oceanic organic carbon 

balance. Reviews of Geophysics, 31, 75–89, doi:10.1029/92RG02584. 

 

Streif, H., 1990. Das ostfriesische Wattenmeer. Nordsee, Inseln, Watten und Marschen. 

Gebrüder Borntraeger, Berlin. 

 

Taylor, K.E., 2001. Summarizing multiple aspects of model performance in a single diagram. 

Journal Geophysical Research, 106 , 7183-7192, 2001 

 

Thomas, H., Bozec, Y., Elkalay, K., de Baar, H.J.W., 2004. Enhanced open ocean storage of 

CO2 from shelf sea pumping. Science 304, 1005e1008. 

 

Thomas, H., Schiettecatte, L.S., Suykens, K., Kone, Y.J.M., Shadwick, E.H., Prowe, A.E.F., 

Bozec, Y., de Baar, H.J.W., Borges, A.V., 2009. Enhanced ocean carbon storage from 

anaerobic alkalinity generation in coastal sediments. Biogeosciences (6), pp. 267-274. 

 

Turrell, W.R., 1992. New hypotheses concerning the circulation of the northern North Sea and 

its relation to North Sea fish stock recruitment. ICES Journal of Marine Science, 49, 107-

123. 

 

Van den Berg, A.J., Ridderinkhof, H., Riegmann, R., Ruardij, P., Lenhart, H., 1996. Influence of 

variability in water transport on phytoplankton biomass and composition in the southern 

North Sea: a modelling approach (FYFY). Continental Shelf Research, 16, 7, 907-931. 

 

Van Beusekom, J.E.E., Brockmann, U.H., Hesse, K.-J., Hickel, W., Poremba, K., Tillmann, U., 

1999. The importance of sediments in the transformation and turnover of nutrients and 

organic matter in the Wadden Sea and German Bight. German Journal Hydrography 51 

(2/3), 245–266. 

 
 156 



Bibliography 

Van Beusekom, J.E.E., de Jonge, V.N., 2002. Long-term changes in Wadden Sea nutrient 

cycles: importance of organic matter import from the North Sea. Hydrobiologica, 475/476, 

185–194. 

 

Van Beusekom, J.E.E., Loebl, M., Martens, P., 2009. Distant riverine nutrient supply and local 

temperature drive the long-term phytoplankton development in a temperate coastal basin. J. 

Sea Res. 61, 26e33. 

 

Van Beusekom, J.E.E., Buschbaum, C., Reise, K., 2012. Wadden Sea tidal basins and the 

mediating role of the North Sea in ecological processes: scaling up of management? Ocean 

& Coastal Management, 68, 69-78. 

 

Van Goor, M.A., Zitman, T.J.,Wang, Z.B., Stive, M.J.F., 2003. Impact of sea-level rise on the 

equilibrium state of tidal inlets. Mar. Geol. 202, 211e227. 

 

Van Koningsveld, M., Mulder, J.P.M., Stive, M.J.F., Van der Valk, L., Van der Weck, A.W., 

2008. Living with sea-level rise and climate change: a case study of the Netherlands. J. 

Coast. Res. 24, 367e379. 

 

Wang, Z.A., Cai, W.-J., 2004. Carbon dioxide degassing and inorganic carbon export from a 

marsh-dominated estuary (the Duplin River): A marsh CO2 pump. Limnology & 

Oceanography, 49, 341–354, doi:10.4319/lo.2004.49.2.0341. 

 

waterbase.nl, Data-ICT-Dienst Rijkswaterstaat, data obtained on 12.09.2011 – 15.09.2011, 

http://www.rijkswaterstaat.nl/water/waterdata_waterberichtgeving/ 

 

Winde, V., 2013. Zum Einfluss von benthischen und pelagischen Prozessen auf das 

Karbonatsystem des Wattenmeeres der Nordsee. Dr.rer.nat. thesis, EMA Universität 

Greifswald. 

 

Wolf-Gladrow, D.A., Zeebe, R.E., Klaas, C., Kortzinger, A., Dickson, A.G. (2007). Total 

alkalinity: The explicit conservative expression and its application to biogeochemical 

processes. Marine Chemistry, 106, 287–300, doi:10.1016/j.marchem.2007.01.006. 

 

Zeebe, R.E., Wolf-Gladrow, D. 2001. CO2 in seawater: Equilibrium, Kinetics, Isotopes. 1st edn. 

ELSEVIER. 

 

 157 



Bibliography 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 158 



Bibliography 

Danksagung 

Mein besonderer Dank gilt meinem Betreuer Prof. Dr. Kay-Christian Emeis. Seine Ratschläge 

lenkten meine Arbeit immer wieder auf den rechten Weg zur erfolgreichen Promotion und 

halfen mir, einen Blick für das Wesentliche zu entwickeln. Durch seine Hilfe war es mir 

möglich, meine Promotion in der mir zur Verfügung stehenden Zeit zu einem erfolgreichen 

Abschluss zu bringen. Ich bedanke mich insbesondere bei ihm für die Unterstützung, dass ich 

meine Arbeit auch im dritten Jahr fortsetzen konnte. 

Auch möchte ich mich herzlich bei meinem zweiten Betreuer Dr. Johannes Pätsch bedanken, 

der mich mit viel Geduld in die Welt der Ökosystemmodellierung eingeführt und meine Fragen 

beantwortet hat und mir in der täglichen Arbeit hilfsbereit zur Seite stand. Seine Vorarbeiten 

und die von ihm erstellten Programmstrukturen in bildeten das Grundgerüst meiner Arbeit. 

Mein Dank gilt auch Prof. Dr. Carsten Eden, der mir nicht nur in seiner Funktion als Mitglied 

meines Advisory Panels zur Seite stand, sondern mir auch ermöglichte, meine Arbeit in den 

letzten drei Monaten zum Abschluss zu bringen. 

Ich bedanke mich auch bei Dr. Thomas Pohlmann für seine Ratschläge zum hydrodynamischen 

Teil der Simulationen und für seine Teilnahme an meiner Prüfungskommission. Ebenfalls 

bedanke ich mich bei Prof. Dr. Inga Hense für die gewissenhafte Ausübung ihrer Funktion als 

Vorsitzende meines Advisory Panels sowie ihrer Teilnahme an meiner Prüfungskommission. 

Ebenfalls möchte ich mich bei Prof. Dr. Michael Böttcher bedanken für seine Bereitschaft als 

externes Mitglied an der Prüfungskommission teilzunehmen. Er half mir ebenfalls dabei mein 

Verständnis der Alkalinität und der biogeochemischen Prozesse im Wattenmeer zu entwickeln. 

Ich bedanke mich außerdem bei Prof. Dr. Helmuth Thomas, der durch seine Vorarbeit die 

thematische Grundlage meines Projektes schuf, und auch trotz der großen räumlichen Distanz 

stets ein offenes Ohr für mich hatte. 

Ich bedanke mich auch herzlich bei Dr. Ina Lorkowski, die mir insbesondere in der ersten Phase 

meiner Arbeit half, mich in der Modellumgebung zurechtzufinden. Ebenfalls möchte ich mich 

bei Dr. Wilfried Kühn, Dr. Hermann Lenhart, Fabian Große und Dr. Andreas Moll für ihre 

freundliche Unterstützung und angeregte Diskussionen bedanken. 

Ein wesentlicher Bestandteil meiner Arbeit konnte nur durch die Bereitstellung bis dato 

unveröffentlichter Messdaten und Modellergebnisse realisiert werden. Ich bedanke mich daher 

besonders für das entgegengebrachte Vertrauen und die Bereitschaft zur Zusammenarbeit bei 

Vera Winde und Olaf Dellwig, die mir Messdaten aus dem Wattenmeer zur Verfügung gestellt 

 159 



Bibliography 

haben, bei Thorben Amann für Messdaten aus der Elbe und bei Sebastian Grashorn für die 

simulierten Tidenprismen. 

Zu guter Letzt bedanke ich mich bei Dr. Ulrich Callies und Dr. Justus van Beusekom, die mir 

auch in Zukunft ermöglichen im Bereich der Nordsee und des Wattenmeeres forschen zu 

können. 

 

 

 

 

 

 160 



 

Eidesstattliche Versicherung 

Ich erkläre hiermit an Eides statt, dass ich die vorliegende Arbeit selbständig angefertigt habe. 

Die aus fremden Quellen direkt oder indirekt übernommenen Gedanken wurden als solche 

kenntlich gemacht. Diese Arbeit wurde weder in gleicher noch in ähnlicher Form einer anderen 

Prüfungsbehörde vorgelegt. 

 

Hamburg, den 

 

 

Fabian Schwichtenberg 


	2.2 Methods
	2.2.1 Model description
	2.2.2 The hydrodynamic module
	2.2.5 The biogeochemical module
	2.2.7 Concept of Alkalinity and the carbonate system

	2.4 Discussion
	2.4.1 The impact of internal processes on TA

	2.5 Conclusion
	3.1 Introduction
	3.2 Methods
	3.2.1 Freshwater discharge
	3.2.2 River loads of TA, DIC and nutrients
	3.2.3 Simulated scenarios

	3.3 Results
	3.3.1 Seasonal TA concentrations in 2008
	3.3.2 Seasonal internal TA production in 2008
	Fig. 3.8: Differences in internal turnover rates of TA [mmol m-2 d-1] between scenario B and A as well as C and A.
	3.3.3 TA originating from the river Rhine in 2008
	Fig. 3.10: Internal turnover rates of TA [mmol m-2 d-1] that were induced by the river Rhine.
	3.3.4 Seasonal DIC concentrations in 2008
	3.3.5 Comparison of TA and DIC concentrations with observations in 2008

	3.4 Discussion
	3.4.1 River loads and concentrations

	3.5 Conclusion
	4.2 Methods
	4.2.1 Implementation of Wadden Sea dynamics
	4.2.1.1 Wadden Sea - measurements
	4.2.1.2 Wadden Sea – modelling the exchange rates
	4.2.2 Simulations

	4.3 Results
	4.3.1 Model validation - TA concentrations in summer 2008
	The results of simulations A – G were compared with observations of TA in August 2008 (Salt et al., subm.). The latter revealed high TA concentrations in the German Bight (east of 7 E and south of 55 N) and around the Danish coast (around 56 N) as sho...
	Figure 4.3: Surface TA-concentrations [µmol kg-1] in August 2008 observed and simulated (A – G).
	4.3.2 Model validation - DIC concentrations in summer 2008
	Figure 4.5: Surface DIC-concentrations [µmol kg-1] in August 2008 observed and simulated (A – G).
	4.3.3 Seasonal and interannual variability of TA concentrations
	4.3.4 Seasonal and interannual variability of DIC concentrations
	4.3.5 Hydrodynamic conditions and flushing times

	4.4 Discussion
	4.4.1 Wadden Sea exchange rates of TA and DIC
	4.4.5 TA budgets and variability of TA concentrations in the German Bight

	4.5 Conclusion
	Are there regional differences in TA exported from the Wadden Sea into the North Sea?
	5.1 Final budgeting of TA production in the North Sea and conclusion
	Appendix
	A9: Modelling of the exchange rates (tidal prisms) between the Wadden Sea and the North Sea
	B Contribution to publications
	The following contributions at international conferences were derived from the dissertation:
	Bibliography

