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Abstract

At the core of the Robertson-Seymour theory of graph minors lies
a powerful structure theorem which captures, for any fixed graph H,
the common structural features of all the graphs not containing H as
a minor. Robertson and Seymour prove several versions of this theo-
rem, each stressing some particular aspects needed at a corresponding
stage of the proof of the main result of their theory, the graph minor
theorem.

We prove a new version of this structure theorem: one that seeks
to combine maximum applicability with a minimum of technical ado,
and which might serve as a canonical version for future applications
in the broader field of graph minor theory. Our proof departs from
a simpler version proved explicitly by Robertson and Seymour. It
then uses a combination of traditional methods and new techniques
to derive some of the more subtle features of other versions as well as
further useful properties, with substantially simplified proofs.

1 Introduction

Graphs in this paper are finite and may have loops and multiple edges. Oth-
erwise we use the terminology of [6]. A graph H is a minor of a graph G if
H can be obtained from a subgraph of G by contracting edges.

The theory of graph minors was developed by Robertson and Seymour,
in a series of 23 papers published over more than twenty years, with the aim
of proving a single result: the graph minor theorem, which says that in any
infinite collection of finite graphs there is one that is a minor of another. As
with other deep results in mathematics, the body of theory developed for the
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proof of the graph minor theorem has also found applications elsewhere, both
within graph theory and computer science. Yet many of these applications
rely not only on the general techniques developed by Robertson and Seymour
to handle graph minors, but also on one particular auxiliary result that is
also central to the proof of the graph minor theorem: a result describing
the structure of all graphs G not containing some fixed other graph H as a
minor.

This structure theorem has many facets. It roughly says that every graph
G as above can be decomposed into parts that can each be ‘almost’ embedded
in a surface of bounded genus (the bound depending on H only), and which
fit together in a tree structure [6, Thm. 12.4.11]. Although later dubbed
a ‘red herring’ (in the search for the proof of the graph minor theorm) by
Robertson and Seymor themselves [15], this simplest version of the structure
theorem is the one that appears now to be best known, and which has also
found the most algorithmic applications [2, 3, 4, 11].

A particularly simple form of this structure theorem applies when the
excluded minor H is planar: in that case, the said parts of G—the parts that
fit together in a tree-structure and together make up all of G—have bounded
size, i.e., G has bounded tree-width. If H is not planar, the graphs G not
containing H as a minor have unbounded tree-width, and therefore contain
arbitrarily large grids as minors and arbitrarily large walls as topological
minors [6]. Such a large grid or wall identifies, for every low-order separation
of G, one side in which most of that grid or wall lies. This is formalized by
the notion of a tangle: the larger the tree-width of G, the larger the grid or
wall, the order of the separations for which this works, and (thus) the order
of the tangle. Since adjacent parts in our tree-decomposition of G meet in
only a bounded number of vertices and thus define low-order separations,
our large-order tangle ‘points to’ one of the parts, the part G′ that contains
most of its defining grid or wall.

The more subtle versions of the structure theorem, such as Theorem (13.4)
from Graph Minors XVII [16], now focus just on this part G′ of G. Like every
part in our decomposition, it intersects every other part in a controlled way.
Every such intersection consists of a bounded number of vertices, of which
some lie in a fixed apex set A ⊆ V (G′) of bounded size, while the others are
either at most 3 vertices lying on a face boundary of the portion G0 of G′

embedded in the surface, or else lie in (a common bag of) a so-called vortex ,
a ring-like subgraph of G′ that is not embedded in the surface and meets
G0 only in (possibly many) vertices of a face boundary of G0. The precise
structure of these vortices, of which G′ has only boundedly many, will be
the focus of our attention for much of the paper. Our theorem describes in
detail both the inner structure of the vortices and the way in which they are
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linked to each other and to the large wall, by disjoint paths in the surface.
These are the properties that have been used in applications of the structure
theorems such as [1, 7], and which will doubtless be important also in future
applications. An important part of the proofs is a new technique for ana-
lyzing vortices. We note that these techniques have also been independently
developed by Geelen and Huynh [9].

The basis for this paper is Theorem (3.1) from Graph Minors XVI [15],
which we shall restate as Theorem 1. Together with the ‘grid-theorem’ that
large enough tree-width forces arbitrarily large grid minors (see [6]), and a
simple fact about tangles from Graph Minors X [14], these are all the results
we require from the Graph Minor series.

This paper is organized as follows. In Section 2 we introduce the ter-
minology we need to state our results, as well as the theorem from Graph
Minors XVI [15] on which we shall base our proof. Section 3 explains how we
can find the tree-decomposition indicated earlier, with some additional infor-
mation on how the parts of the tree-decomposition overlap. Section 4 collects
some lemmas about graphs embedded in a surface, partly from the literature
and partly new. In Section 5 we show how a given near-embedding of a graph
can be simplified in various ways if we allow ourselves to remove a bounded
number of vertices (which, in applications of these tools, will be added to the
apex set). Section 6 contains lemmas showing how to obtain path systems
with nice properties. Section 7 contains the proof of our structure theorem.
In the last section, we give an alternative definition of vortex decompositions
and show that our result works with these ‘circular’ decompositions as well.

2 Structure Theorems

A vortex is a pair V = (G,Ω), where G is a graph and Ω =: Ω(V ) is a
linearly ordered set (w1, . . . , wn) of vertices in G. These vertices are the
society vertices of the vortex; their number n is its length. We do not always
distinguish notationally between a vortex and its underlying graph or the
vertex set of that graph; for example, a subgraph of V is just a subgraph
of G, a subset of V is a subset of V (G), and so on. Also, we will often use
Ω to refer to the linear order of the vertices w1, . . . , wn as well as the set of
vertices {w1, . . . , wn}.

A path-decomposition D = (X1, . . . , Xm) of G is a decomposition of our
vortex V if m = n and wi ∈ Xi for all i. The depth of the vortex V is the
minimum width of a path-decomposition of G that is a decomposition of V .

When n > 1, the adhesion of our decomposition D of V is the maximum
value of |Xi ∩Xi+1|, taken over all 1 ≤ i < n. We define the adhesion of a
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vortex V as the minimum adhesion of a decomposition of that vortex.
When D is a decomposition of a vortex V as above, we write Zi :=

(Xi ∩Xi+1) \ Ω, for all 1 ≤ i < n. These Zi are the adhesion sets of D. We
call D linked if

• all these Zi have the same size;

• there are |Zi| disjoint Zi−1–Zi paths in G[Xi]− Ω, for all 1 < i < n;

• Xi ∩ Ω = {wi−1, wi} for all 1 ≤ i ≤ n, where w0 := w1.

Note that Xi ∩Xi+1 = Zi ∪ {wi}, for all 1 ≤ i < n (Fig. 1).

Figure 1: A linked vortex decomposition

The union over all 1 < i < n of the Zi−1–Zi paths in a linked decompo-
sition of V is a disjoint union of X1–Xn paths in G; we call the set of these
paths a linkage of V with respect to (X1, . . . , Xm).

Clearly, if V has a linked decomposition as above, then G has no edges
between non-consecutive society vertices, since none of the Xi could contain
both ends of such an edge. Conversely, if G has no such edges then V does
have a linked decomposition: just let Xi consist of all the vertices of G− Ω
plus wi−1 and wi. We shall be interested in linked vortex decompositions
whose adhesion is small, unlike in this example.

Let V = (G,Ω) be a vortex, and v a vertex of some supergraph of V .
Clearly, (G − v,Ω \ {v}) is a vortex, too, which we denote by V − v. If the
length of V is greater than 2, this operation cannot increase the adhesion q
of V : This is clear for v /∈ Ω, so suppose Ω = (w1, . . . , wn) with v = wk for
some 1 ≤ k ≤ n. We may assume without loss of generality that k 6= n.
Take a decomposition (X1, . . . , Xn) of V of adhesion q. Then, it is easy to
see that

(X1, . . . , Xk−1, (Xk ∪Xk+1) \ {wk}, Xk+1, . . . , Xn)
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is a decomposition of V −v of adhesion at most q. We shall not be interested
in the adhesion of vortices of length at most 2. For a vertex set A ⊆ V we
denote by V − A the vortex we obtain by deleting the vertices of A in turn.
For a set of vortices V we define V − A := {V − A : V ∈ V , V − A 6= ∅}.

A (directed) separation of a graph G is an ordered pair (A,B) of non-
empty subsets of V (G) such that G[A] ∪ G[B] = G. The number |A ∩ B|
is the order of (A,B). Whenever we speak of separations in this paper, we
shall mean such directed separations.

A set T of separations of G, all of order less than some integer θ, is a
tangle of order θ if the following holds:

(1) For every separation (A,B) of G of order less than θ, either (A,B) or
(B,A) lies in T .

(2) If (Ai, Bi) ∈ T for i = 1, 2, 3, then G[A1] ∪G[A2] ∪G[A3] 6= G.

Note that if (A,B) ∈ T then (B,A) /∈ T ; we think of A as the ‘small
side’ of the separation (A,B), with respect to this tangle.

Given a tangle T of order θ in a graph G, and a set Z ⊆ V (G) of fewer
than θ vertices, let T −Z denote the set of all separations (A′, B′) of G−Z
of order less than θ−|Z| such that there exists a separation (A,B) ∈ T with
Z ⊆ A∩B, A−Z = A′ and B −Z = B′. It is shown in [14, Theorem (6.2)]
that T − Z is a tangle of order θ − |Z| in G− Z.

Given a subsetD of a surface Σ, we write D̊, ∂D, andD for the topological
interior, boundary, and closure, of D in Σ, respectively. For positive integers
α0, α1, α2 and α := (α0, α1, α2), a graph G is α-nearly embeddable in Σ if there
is a subset A ⊆ V (G) with |A| ≤ α0 such that there are integers α′ ≤ α1 and
n ≥ α′ for which G − A can be written as the union of n + 1 edge-disjoint
graphs G0, . . . , Gn with the following properties:

(i) For all 1 ≤ i ≤ j ≤ n and Ωi := V (Gi ∩ G0), the pairs (Gi,Ωi) =: Vi
are vortices, and Gi ∩Gj ⊆ G0 when i 6= j .

(ii) The vortices V1, . . . , Vα′ are disjoint and have adhesion at most α2; we
denote the set of these vortices by V . We will sometimes refer to these
vortices as large vortices.

(iii) The vortices Vα′+1, . . . , Vn have length at most 3; we denote the set
of these vortices by W . These are the small vortices of the near-
embedding.

(iv) There are closed discs in Σ, with disjoint interiors D1, . . . , Dn, and an
embedding σ : G0 ↪→ Σ−⋃n

i=1 Di such that σ(G0) ∩ ∂Di = σ(Ωi) for
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all i and the generic linear ordering of Ωi is compatible with the natural
cyclic ordering of its image (i.e., coincides with the linear ordering of
σ(Ωi) induced by [0, 1) when ∂Di is viewed as a suitable homeomor-
phic copy of [0, 1]/{0, 1}). For i = 1, . . . , n we think of the disc Di as
accommodating the (unembedded) vortex Vi, and denote Di as D(Vi).

We call (σ,G0, A,V ,W) an α-near embedding of G in Σ, or just a near-
embedding, with apex set A. For an integer α′ larger than all the αi we call
(σ,G0, A,V ,W) an α′-near embedding. It captures a tangle T of G if the
‘large side’ B′ of an element (A′, B′) ∈ T −A is never contained in a vortex.

A direct implication of Theorem (3.1) from [15], stated in this terminol-
ogy, reads as follows:

Theorem 1. For every non-planar graph R there exist integers θ, α ≥ 0
such that the following holds: Let G be a graph that does not contain R as a
minor, and let T be a tangle in G of order at least θ. Then G has an α-near
embedding, with apex set A say, in a surface Σ in which R cannot be drawn,
and this embedding captures T − A.

We shall use Theorem 1 as the basis of our proofs in this paper.
Given a near-embedding (σ,G0, A,V ,W) of G, let G′0 be the graph re-

sulting from G0 by joining any two nonadjacent vertices u, v ∈ G0 that lie
in a common small vortex V ∈ W ; the new edge uv of G′0 will be called a
virtual edge. By embedding these virtual edges disjointly in the discs D(V )
accommodating their vortex V , we extend our embedding σ : G0 ↪→ Σ to
an embedding σ′ : G′0 ↪→ Σ. We shall not normally distinguish G′0 from its
image in Σ under σ′.

A vortex (Gi,Ωi) is properly attached if |Ωi| ≤ 3 and it satisfies the
following two requirements. First, for every pair of distinct vertices u, v ∈ Ωi

the graph Gi must contain an Ωi-path (one with no inner vertices in Ωi) from
u to v. Second, whenever u, v, w ∈ Ωi are distinct vertices (not necessarily
in this order), there are two internally disjoint Ωi-paths in Gi linking u to v
and v to w, respectively.

Clearly, if (Gi,Ωi) is properly attached to G0, the vortex (Gi−v,Ωi\{v})
is properly attached to G0 − v for any vertex v ∈ Ωi.

Given a graph H embedded in our surface Σ, a curve C in Σ is H-normal
if it hits H in vertices only. The distance in Σ of two points x, y ∈ Σ is the
minimal value of |G′0 ∩ C| taken over all G′0-normal curves C in the surface
that link x to y. The distance in Σ of two vortices V and W is the minimum
distance in Σ of a vertex in Ω(V ) from a vertex in Ω(W ). Similar, the distance
in Σ of two subgraphs H and H ′ of G′0 is the minimum distance in Σ of a
vertex in H from a vertex in H ′.
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A cycle C in Σ is flat if C bounds an open disc D(C) in Σ. Disjoint cycles
C1, . . . , Cn in Σ are concentric if they bound open discs D(C1) ⊇ . . . ⊇ D(Cn)
in Σ. A set P of paths intersects C1, . . . , Cn orthogonally, and is orthogonal
to C1, . . . , Cn, if every path P in P intersects each of the cycles in a (possibly
trivial but non-empty) subpath of P .

Let G be a graph embedded in a surface Σ, and Ω a subset of its vertices.
Let C1, . . . , Cn be cycles in G that are concentric in Σ. The cycles C1, . . . , Cn
enclose Ω if Ω ⊆ D(Cn). They tightly enclose Ω if, in addition, the following
holds:

For all 1 ≤ k ≤ n and every point v ∈ ∂D(Ck), there is a
vertex w ∈ Ω whose distance from v in Σ is at most n−k+2.

For a near-embedding (σ,G0, A,V ,W) of a graph G in a surface Σ and
concentric cycles C1, . . . , Cn in G′0, a vortex V ∈ V is (tightly) enclosed by
these cycles if they (tightly) enclose Ω(V ).

A flat triangle in G′0 is a boundary triangle if it bounds a disc that is a
face of G′0 in Σ.

For positive integers r ≥ 3, define a graph Hr as follows (Fig. 2). Let
P1, . . . , Pr be r disjoint (‘horizontal’) paths of length r−1, say Pi = vi1 . . . v

i
r.

Let V (Hr) =
⋃r
i=1 V (Pi), and let

E(Hr) =
r⋃

i=1

E(Pi) ∪
{
vijv

i+1
j | i, j odd; 1 ≤ i < r; 1 ≤ j ≤ r

}

∪
{
vijv

i+1
j | i, j even; 1 ≤ i < r; 1 ≤ j ≤ r

}
.

We call the paths Pi the rows of Hr; the paths induced by the vertices
{vij, vij+1 : 1 ≤ i ≤ r} for an odd index i are its columns.

P1

P2

P6

v11 v12 v13 v14 v15 v16

v21

v61

v22

Figure 2: The graph H6
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The 6-cycles in Hr are its bricks. In the natural plane embedding of Hr,
these bound faces of H. The outer cycle of the unique maximal 2-connected
subgraph of Hr is the boundary cycle of Hr.

Any subdivision H = THr of Hr will be called an r-wall, or a wall of
size r. The bricks and the boundary cycle of H are its subgraphs that form
subdivisions of the bricks and the boundary cycle of Hr, respectively. An
embedding of H in a surface Σ is a flat embedding, and H is flat in Σ, if
the boundary cycle C of H bounds an open disc D(H) in Σ such that all its
bricks Bi bound disjoint, open discs D(Bi) in Σ with D(Bi) ⊆ D(H) for all
i.

For topological concepts used but not defined in this paper we refer to [6,
Appendix B]. When we speak of the genus of a surface Σ we always mean
its Euler genus, the number 2− χ(Σ).

A closed curve C in Σ is genus-reducing if the (one or two) surfaces
obtained by ‘capping the holes’ of the components of Σ \ C have smaller
genus than Σ. Note that if C separates Σ and one of the two resulting
surfaces is homeomorphic to S2, the other is homeomorphic to Σ. Hence in
this case C was not genus-reducing.

The representativity of an embedding G ↪→ Σ 6' S2 is the smallest in-
teger k such that every genus-reducing curve C in Σ that meets G only in
vertices meets it in at least k vertices. We remark that, by [6, Lemmas B.5
and B.6], all faces of an embedded graph are discs if the representativity of
the embedding is positive.

An (α0, α1, α2)-near embedding (σ,G0, A,V ,W) of a graph G in some
surface Σ is (β, r)-rich for integers 3 ≤ β ≤ r if the following statements
hold:

(i) G′0 contains a flat r-wall H.

(ii) If Σ 6' S2, the representativity of G′0 in Σ is at least β.

(iii) For every vortex V ∈ V there are β concentric cycles C1(V ), . . . , Cβ(V )
in G′0 tightly enclosing V and bounding open discs D1(V ) ⊇ . . . ⊇
Dβ(V ), such that Dβ(V ) contains Ω(V ) and D(H) does not meet

D1(V ). For distinct, large vortices V,W ∈ V , the discs D1(V ) and
D1(W ) are disjoint. In particular, every two vortices in V have dis-
tance greater than β in Σ.

(iv) Let V ∈ V with Ω(V ) = (w1, . . . , wn). Then there is a linked decom-
position of V of adhesion at most α2 and a path P in V ∪ ⋃W with
V (P ∩ G0) = Ω(V ) that avoids all the paths of the linkage of V , and
traverses w1, . . . , wn in this order.

8



(v) For every vortex V ∈ V , its set of society vertices Ω(V ) is linked in G′0
to branch vertices of H by a set P(V ) of β disjoint paths having no
inner vertices in H.

(vi) For every vortex V ∈ V , the paths in P(V ) intersect the cycles
C1(V ), . . . , Cβ(V ) orthogonally.

(vii) All vortices in W are properly attached.

Using this terminology, we can now state the main result of our paper:

Theorem 2. For every non-planar graph R and integers 3 ≤ β ≤ r there
exist integers α0 = α0(R, β), α1 = α1(R) and w = w(α0, R, β, r) such that the
following holds with α = (α0, α1, α1). Every graph G of tree-width tw(G) ≥ w
that does not contain R as a minor has an α-near, (β, r)-rich embedding in
some surface Σ in which R cannot be embedded.

For our proof of Theorem 2 we shall use Theorem 1, but not directly.
Instead, we use Theorem 1 in the next section to prove Theorem 4, stated
below, which is a strengthening of Theorem (1.3) of [15]. Our proof of The-
orem 2 will then be based on Theorem 4.

3 Finding a tree-decomposition

The following lemma shows that we can slightly modify a given α-near em-
bedding by embedding some more vertices of the graph in the surface, so
that all the small vortices are properly attached to G0.

Lemma 3. Given an integer α and an α-near embedding (σ,G0, A,V ,W) of
a graph G in a surface Σ, there exists an α-near embedding (σ̂, Ĝ0, A,V , Ŵ)
of G in Σ such that G0 ⊆ Ĝ0 and σ̂|G0 = σ, each vortex in Ŵ is properly
attached to Ĝ0, and consecutive society vertices of vortices V ∈ V are never
adjacent in V .

Proof. Let us consider the following modifications of our near-embedding,
each resulting in another α-near embedding.

(1) By embedding edges between society vertices of a small vortex V in
D(V ), we may assume that no vortex in W contains an edge between
two of its society vertices.
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(2) By first performing (1) and then splitting a small vortex (Gi,Ωi) into
several small vortices each consisting of a component of Gi−Ωi together
with only their neighbours in Ωi as society vertices, we may assume that
every (Gi,Ωi) ∈ W satisfies

The graph Gi − Ωi is connected and receives an edge from
every vertex in Ωi.

(?)

(3) If a society vertex w of a small vortex V = (Gi,Ωi) has only one
neighbour v in Gi, we can embed v and all v − Ωi edges in D(V ) and
replace w with v in Ωi. Thus, we may assume that for every vortex
(Gi,Ωi) ∈ W every society vertex has at least two neighbours in Gi−Ωi.

(4) Let V := (Gi,Ωi) ∈ W be a vortex of length 3. If there is a vertex
z ∈ V (Gi)\Ωi, that separates one society vertex w ∈ Ωi from the other
two society vertices w′, w′′, we can write (Gi,Ωi) as the union of two
small vortices V 1 := (G1

i , {z, w}) and V 2 := (G2
i , {z, w′, w′′}). Let G+

0

denote the graph we obtain from G0 by adding z to its vertex set and
extending σ to an embedding σ+ of G+

0 in Σ by mapping z to a point
in D(V ). It is easy to see that (σ+, G+

0 , A,V , (W \ {V })∪ {V 1, V 2}) is
an α-near embedding of G in Σ.

We can iterate these two modifications only finitely often: Every appli-
cation of (1), (3) or (4) increases either the number of embedded vertices or
the number of embedded edges of the graph G while an application of (2)
reduces the number of small vortices not satisfying (?).

Let (σ̂, Ĝ0, A,V , Ŵ) be the α-near embedding obtained by applying the
two modifications as often as possible. Then, for every vortex (Gi,Ωi) ∈ W
every w ∈ Ωi has at least two neighbours in Gi − Ωi, which is connected. In
particular every two vertices in Ωi are linked by an Ωi-path in Gi.

Suppose now that Ωi = {u, v, w}, and let us find paths P = u . . . v and
Q = v . . . w in Gi that meet only in v. Let v′, v′′ be distinct neighbours of
v in Gi − Ωi. We can find P and Q as desired unless the sets {v′, v′′} and
{u,w} are separated in Gi by one vertex z. Then z 6= v, since Gi − Ωi is
connected and u,w send edges there. So z also separates v from {u,w} in
Gi, contrary to (4).

Thus, (Gi,Ωi) is properly attached. Clearly, G0 ⊆ Ĝ0 and σ̂|G0 = σ. Em-
bedding any vortex edges between adjacent society vertices of large vortices
V in the surface instead, we may assume that V contains no such edges, as
desired.

Given two graphs G and H, we say that H is properly attached to G if
the vortex (H, V (H) ∩ V (G)) is properly attached to G.
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Theorem 4. For every non-planar graph R and for every integer m there
exists an integer α such that for every graph G that does not contain R as
a minor and every Z ⊆ V (G) with |Z| ≤ m there exist a tree-decomposition
(Vt)t∈T of G and a choice r ∈ V (T ) of a root of T such that, for every
t ∈ T , there is a surface Σt in which R cannot be embedded, and the torso
Gt of Vt has an α-near embedding (σt, Gt0, At,Vt, ∅) in Σt with the following
properties:

(i) The vortices V ∈ Vt have decompositions of width at most α satisfying
(ii) below.

(ii) For every t′ ∈ T with tt′ ∈ E(T ) and t ∈ rT t′ the overlap Vt ∩ Vt′ is
contained in At′, and (Vt ∩ Vt′) \At is contained either in a part Xtt′ of
a vortex decomposition from (i) or in a subset Xtt′ of V (Gt0) that spans
in Gt0 either a K1 or a K2 or a K3 bounding a face of Gt0 in Σt. In
the latter case, Gt′ − At is properly attached to Gt0.

(iii) If t = r, then Z ⊆ Ar. We say that the part Vr (with the chosen
near-embedding of Gr) accomodates Z.

We remark that the statement about Z in Theorem 4 only serves a techni-
cal purpose, to facilitate induction. The main difference between Theorem 4
and Theorem 1 is that the vortex decompositions required in Theorem 4 have
bounded width, while those in Theorem 1 are only required to have bounded
adhesion. It is this difference that requires the extra work when we deduce
Theorem 4 from Theorem 1: Starting from the α-near embedding of G pro-
vided by Theorem 1, we have to split off small vortices of large width, and
large parts to decompose those parts of G inductively.

Proof of Theorem 4. Applying Theorem 1 with the given graph R yields two
constants α̂ and θ̂. We may assume that m is large enough that θ := (m +
2)/3 ≥ max(θ̂, 3α̂ + 3) and θ is integral and let α := 4θ − 2.

The proof proceeds by induction on |G|, for these (now fixed) R, m and
α. We may assume that |Z| = m(= 3θ − 2), since if it is smaller we can
add arbitrary vertices to Z. (We may assume that such vertices exist, as the
theorem is trivial for |G| < α.)

We may assume that

There is no separation (A,B) of G of order at most θ such
that both |Z ∩ A| and |Z ∩B| are of size at least |A ∩B|. (1)

Otherwise, let ZA := (Z \B) ∪ (A ∩B). By assumption, |A ∩B| ≤ |Z ∩B|,
so |ZA| = |Z \B|+ |A∩B| ≤ |Z| = m. We apply our theorem inductively to
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G[A] and ZA, which yields a tree-decomposition of G[A] such that the torso
of its root part GA has its apex set in a suitable near-embedding contain ZA.
Similarly, we apply the theorem to G[B] and ZB := (Z \ A) ∪ (A ∩ B). We
combine these two tree-decompositions by joining a new part Z ∪ (A ∩ B)
to both GA and GB and obtain a tree-decomposition of G with the desired
properties of the theorem: The new part, which we make the root, contains
at most |Z| + |A ∩ B| ≤ 4θ − 2 vertices, so all these can be put in the
apex set of an α-near embedding. Finally, the new part contains Z, and
the new decomposition inherits all the remaining desired properties from the
decomposition of G[A] and G[B]. This proves (1).

Let T be the set of separations (A,B) of G of order less than θ such that
|Z ∩B| > |Z ∩ A|. Let us show that

T is a tangle of G of order θ. (2)

By (1) and our assumption that |Z| = m = 3θ − 2, for every separation
(A,B) of G of order less than θ exactly one of the sets Z ∩B and Z ∩A has
size less than θ. This implies both conditions from the definition of a tangle.

From (1) and the definition of T we conclude

|Z ∩ A| < |A ∩B| for every (A,B) ∈ T . (3)

As θ ≥ θ̂, Theorem 1 gives us an α̂-near embedding (σ,G0, Â, V̂ , Ŵ) of G in
some surface Σ that captures T . Our plan now is to split G at separators
consisting of apex vertices, of society vertices of vortices in Ŵ , or single parts
of vortex decompositions of vortices in V̂ . We shall retain intact a part of G
that contains G0, and which we know how to embed α-nearly; this part is
going to be a part of a new tree-decomposition. For the subgraphs of G that
we split off we shall find tree-decompositions inductively, and eventually we
shall combine all these tree-decompositions to one tree-decomposition of G
that satisfies our theorem.

By Lemma 3, we may assume that large vortices contain no edges between
consecutive society vertices, and that all small vortices are properly attached
to G0. Let us consider such a vortex (Gi,Ωi) ∈ Ŵ . Since our embedding
captures T , the separation (V (Gi)∪ Â, V (G \ (Gi \Ωi))∪ Â), whose order is
at most 3 + |Â| < θ, lies in T . By (3), Gi contains at most 2 + |Â| vertices
of Z. Thus, Z ′i := Ωi ∪ Â∪ (Z ∩Gi) has size at most 5 + 2α̂ ≤ m. We apply
our theorem inductively to the smaller graph G[V (Gi) ∪ Â] with Z ′i. Let H i

be the torso of the root part of the resulting tree-decomposition (T i,Hi),
the one that accomodates Z ′i. Recall that Gi was properly attached to G0.
The Ωi-paths witnessing this have no vertices in Â, and by replacing any H i-
subpaths they contain with torso-edges of H i, we can turn them into paths
witnessing that also H i − Â is properly attached to G0.
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For every vortex (Gi,Ωi) ∈ V̂ , with Ωi = {wi1, . . . , win(i)} say, let us choose

a fixed decomposition (X̂ i
1, . . . , X̂

i
n(i)) of adhesion at most α̂. We define

X i
j :=





(
X̂ i

1 ∩ X̂ i
2

)
for j = 1(

X̂ i
j ∩ (X̂ i

j−1 ∪ X̂ i
j+1)

)
for 1 < j < n(i)(

X̂ i
n(i) ∩ X̂ i

n(i)−1

)
for j = n(i)

By G−i we denote the graph on X i
1 ∪ . . . ∪ X i

n(i) in which every X i
j induces

a complete graph but no further edges are present. Now, as the adhesion
of (Gi,Ωi) is at most α̂, every X i

j contains at most 2α̂ vertices and thus,
(X i

1, . . . , X
i
n(i)) is a decomposition of the vortex V −i := (G−i ,Ωi) of depth at

most 2α̂ ≤ α. Let V denote the set of these new vortices.
For every j = 1, . . . , n(i), the pair

(
X̂ i
j ∪ Â, (V (G) \ (X̂ i

j \X i
j)) ∪ Â

)

is a separation of order at most |X i
j ∪ Â| ≤ 2α̂ + α̂ ≤ θ. As before, our

embedding captures T , so the separation lies in T . By (3), at most θ − 1
vertices from Z lie in X̂ i

j∪Â. Let Z ′ij := X i
j∪Â∪(Z∩X̂ i

j). This set contains at
most 2θ−1 ≤ m vertices and, as before, we can apply our theorem inductively
to the smaller graph G[X̂ i

j ∪ Â] with Z ′ij. We obtain a tree-decomposition
(T ij ,Hi

j) of this graph, with the root torso H i
j accomodating Z ′ij.

Now, with V0 := V (G0) ∪ Â, we can write

G = G[V0] ∪
(⋃
W
)
∪
(⋃
{G[X̂ i

j] : Vi ∈ V , 1 ≤ j ≤ n(i)}
)
.

Let us now combine our tree-decompositions of the vortices in W and the
graphs G[X̂ i

j] to a tree-decomposition of G: We just add a new tree vertex v0

representing V0 to the union of all the trees T i and T ij , and add edges from
v0 to every vertex representing an H i or an H i

j we found in our proof.
We still have to check that the torso of the new part V0 can be α-nearly

embedded as desired. But this is easy: Let G′0 be the graph obtained from
G0 by adding an edge xy for every two nonadjacent vertices x and y that lie
in a common vortex V ∈ W . We can extend the embedding σ : G0 ↪→ Σ
to an embedding σ′ : G′0 ↪→ Σ by mapping the new edges disjointly to the
discs D(V ). Then G′ := G′0 ∪

⋃
G−i is the torso of V0 in our new tree-

decomposition, and (σ′, G′0, Â ∪ Z,V , ∅) is an α-near embedding of G′ in Σ
whose apex set contains Z.

As noted, Theorem (1.3) of [15] is a direct result from Theorem 4:
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Corollary 5. For every nonplanar graph R there exists an integer α such that
every graph with no R-minor has a tree-decomposition (Vt)t∈T such that for
every t ∈ T there is a surface Σt in which R cannot be embedded but in which
the torso Gt corresponding to t has an α-near embedding (σt, Gt0, At,Vt, ∅).

4 Graphs on Surfaces

In this section, we collect results about graphs embedded in surfaces. Except
for the last one, these results are not directly related to near-embeddings.
Our first tool is the grid-theorem from [13]; see [6] for a short proof.

Theorem 6. For every integer k there exists an integer f(k) such that every
graph of tree-width at least f(k) contains a wall of size at least k.

Every large enough wall embedded in a surface contains a large flat sub-
wall:

Lemma 7. For all integers k, g there is an integer ` = `(k, g) such that any
wall of size ` embedded in a surface of genus at most g contains a flat wall
of size k.

Proof. Let ` be chosen large enough that every `-wall contains g+ 1 disjoint
k + 1-walls. By [6, Lemma B.6], any `-wall H in a surface Σ of genus g
contains a k-wall H ′ each of whose bricks bounds an open disc in Σ. If none
of these open discs contains a point of H, the wall H ′ is flat. Otherwise, the
disc containing a point of H contains all the other k+ 1-walls we considered,
and thus, all these are flat.

Lemma 8. Let G be a graph of tree-width at least w. Then in every tree-
decomposition of G the torso of at least one part also has tree-width at least w.

Proof. If every torso has a tree-decomposition of width at most w − 1, we
can use [6, Lemma 12.3.5] to combine these into a tree-decomposition of G
of width at most w − 1.

The following lemma is a direct corollary of Lemmas B.4 and B.5 from
[6].

Lemma 9. For every surface Σ, every closed curve C ⊂ Σ that does not
bound a disc in Σ is genus-reducing.

Let Σ be a (closed) surface and G be a graph embedded in Σ. For a face
f of G, let S be the set of vertices that lie on ∂f . If we delete S and add a
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new vertex v to G with neighbours N(S), we obtain a graph G′. It is easy
to see that we can extend the induced embedding of G−S to an embedding
of G′. We say that the graph G′ embedded in Σ was obtained from G by
contracting f to v.

The following lemma is from Demaine and Hajiaghayi [5].

Lemma 10. For every two integers t and g there exists an integer s =
s(t, g) such that the following holds. Let G be a graph of tree-width at least
s embedded in some surface Σ of genus g. If G′ is obtained from G by
contracting a face to a vertex, then G′ has tree-width at least t.

Our next lemma is due to Mohar and Thomassen [12]:

Lemma 11. Let G ↪→ Σ 6= S2 be an embedding of representativity at least
2k+2 for some k ∈ N. Then, for every face f of G in Σ there are k concentric
cycles (C1, . . . , Ck) in G such that f ⊆ D̊(Ck).

For an oriented curve C and points x, y ∈ C we denote by xCy the
subcurve of C with endpoints x, y that is oriented from x to y. For a graph
G embedded in a surface Σ, a face f of G, and a closed curve C in Σ, let
C(C, f) denote the number of components of C ∩ f .

Lemma 12. Let G be a graph embedded in a surface Σ, and let F be the set
of faces. For an integer r > 0, consider all G-normal, genus-reducing curves
C in Σ that satisfy |C ∩ G| < r. Let C be chosen so that

∑
f∈F C(C, f) is

minimal. Then, C(C, f) ≤ 1 for all f ∈ F .

Proof. Suppose there is an f ∈ F with C(C, f) > 1. Then there is a compo-
nent D of f − C whose boundary ∂D contains two distinct components of
f ∩ C, say the interiors of disjoint arcs xCy and zCw following some fixed
orientation of C. Then x, y, z, w appear in this (cyclic) order on C.

Join x to z by an arc A through D. Then Cw := xAzCx and Cy := zAxCz
are closed curves in Σ meeting precisely in A. Each of them meets G in fewer
vertices than C does, so neither Cw nor Cy are genus reducing. This implies
by Lemma 9 that Cw and Cy bound discs Dw and Dy in Σ. If Dw contains a
point of Cy then Cy \A ⊆ Dw and hence C ⊆ Dw. But then C bounds a disc
contained in Dw ⊆ Σ (by the Jordan curve theorem), which contradicts our
assumption that C is genus-reducing in Σ. Hence Dw∩Cy = ∅, and similarly
Dy ∩Cw = ∅. This implies that Dw ∩Dy = A. But then Dw ∪Dy is a closed
disc in Σ bounded by C, a contradiction as earlier.

Whenever there are cycles enclosing a vortex V , we can find cycles tightly
enclosing V :
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Lemma 13. For an integer α > 0, let (σ,G0, A,V ,W) be an α-near embed-
ding of some graph G in a surface Σ and let C1, . . . , Cn be cycles enclosing
a vortex V ∈ V. Then, there are n cycles C ′1, . . . , C

′
n in G0 that enclose V

tightly, such that D(C ′1) ⊆ D(C1).

Proof. Let us write Dk := D(Ck) for 1 ≤ k ≤ n and Dn+1 := D(V ) and
V (Cn+1) := Ω(V ). Suppose there is a cycle C ⊆ G′0 ∩ Dk \ Dk+1 for some
1 ≤ k ≤ n such that C 6= Ck. Then, we can replace Ck by C and obtain
a new set of cycles in G0 enclosing V . By this replacement, we reduce the
number of vertices and edges of G′0 in Dk, so we can repeate this step only
finitely often. We may assume that C1, . . . , Cn were chosen so that such that
a replacement is not possible.

We claim that these cycles enclose V tightly. To see this, consider for a
vertex v ∈ V (Ck) the set F of all faces f of G′0 with f ⊆ D(Ck) and v ∈ ∂f .
For every two neighbours x, y of v that lie on the boundary of the same face
f ∈ F , there is a path in G′0∩∂f linking x, y and avoiding v. Therefore, there
is a face fv ∈ F such that ∂fv contains a vertex v′ ∈ V (Ck+1)1: otherwise,⋃{∂f : f ∈ F} would contain a path between the two neighbours v−, v+ of
v in Ck, that avoids v. Substituting this path for the path v−vv+ in Ck then
turns Ck into a cycle in G′0∩ (Dk \Dk+1) avoiding v, contradicting the choice
of the Ci. Similarly, every edge e of Ck lies on the boundary of a face f of
G′0 that also contains a vertex v′ of Ck+1. Then every inner point x of e can
be linked to v′ by a curve through f . By induction on n− k, we may assume
that, unless k = n and v′ ∈ Ω(V ), there is a curve C linking v′ ∈ V (Ck+1) to
some w ∈ Ω(V ), with |C ∩G′0| ≤ n− (k+ 1) + 2. We extend this curve by a
curve in f from v or x to v′ which gives us a curve as desired.

5 Taming a Vortex

In this section we describe how to obtain a new (and simpler) near-embedding
from an old one if we are allowed to move a bounded number of vertices from
the embedded part of the graph to the apex set. For example, we might
reduce the number of large vortices by combining two of them, or reduce the
genus of the surface by cutting along a genus-reducing curve.

Lemma 14. Let (σ,G0, A,V ,W) be an (α0, α1, α2)-near embedding of a graph
G in a surface Σ. If there are two vortices V,W ∈ V of length at least 4 and
a G-normal curve C in Σ from D(V ) to D(W ) that meets G in at most d

1Indeed, thickening G′
0 in Σ turns f into a compact surface with boundary. By the

classification of these surfaces, the component of ∂f meeting the thickened vertex v is a
circle, which defines a closed walk in G′

0. This walk contains the desired path.
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vertices, then there is a vertex set A′ ⊆ V (G0) of size |A′| ≤ 2α2 + d and a
vortex V ′ ⊆ G − A′ such that G has an (α0 + 2α2 + 2 + d, α1 − 1, α2)-near
embedding

(σ|G0−A′ , G0, A ∪ A′,V ′,W ′)
in Σ with V ′ ⊆ (V \ {V,W})−A′ ∪ {V ′} and W ′ =W −A′ ∪ {V −A′ : V ∈
V , |Ω(V ) \ A′| ≤ 3}.
Proof. Let us choose decompositions (X1, . . . , Xn) of V and (Y1, . . . , Ym) ofW
of adhesion at most α2, where Ω(V ) = (v1, . . . , vn) and Ω(W ) = (w1, . . . , wm).
By slightly adjusting C we may assume that the endpoints of C are vertices
vk and w`, so that C ∩D(V ) = {vk} and C ∩D(W ) = {w`} for some indices
1 ≤ k ≤ n and 1 ≤ ` ≤ m. Let S be the set of vertices in Σ on C. By fattening
C to a disc D we obtain a closed disc D′ := D ∪D(V ) ∪D(W ) such that
D′∩(G0−S) = (Ω(V )∪Ω(W ))\{vk, w`}. By reindexing if neccesary we may
assume that the orientations of ∂D′ induced by Ω(V )\{vk} and Ω(W )\{w`}
agree.

Let X := (Xk ∩ Xk+1) if k < n and X := {vk} if k = n and let Y :=
(Y` ∩ Y`+1) if ` < m and Y := {w`} if ` = m. Note that |X| ≤ α2 and
|Y | ≤ α2. If k 6= 1, let X ′k−1 := (Xk−1 ∪ Xk) \ X and X ′i := Xi \ X for all
i 6∈ {k − 1, k}. If k = 1, let X ′2 := (X1 ∪ X2) \ X and X ′i := Xi \ X for all
i ≥ 3. Define sets Y ′j analoguosly with ` and m replacing k and n. Finally,
let A′ := S ∪X ∪ Y and G′ := (V ∪W )− A′. Then for

Ω′ := (vk+1, . . . , vn, v1, . . . , vk−1, w`+1, . . . , wm, w1, . . . , w`−1)

the tuple V ′ := (G′,Ω′) is a vortex with a decomposition

(X ′k+1, . . . , X
′
n, X

′
1, . . . , X

′
k−1, Y

′
`+1, . . . , Y

′
m, Y

′
1 , . . . , Y

′
`−1)

of adhesion at most α2. Now it is easy to see that A′ satisfies the conditions
as desired.

Our next lemma shows how to make vortices linked. The techniques used
in its proof originate from [8] and were extended by Geelen and Huynh [9].

Lemma 15. Let (σ,G0, A,V ,W) be an (α0, α1, α2)-near embedding of a graph
G in a surface Σ such that every small vortex W ∈ W is properly attached.
Moreover, assume that

(i) For every vortex V ∈ V there are α2 + 1 concentric cycles C0(V ), . . . ,
Cα2(V ) in G′0 tightly enclosing V .

(ii) For distinct vortices V,W ∈ V, the discs D(C0(V )) and D(C0(W )) are
disjoint.
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Then there is a graph G̃0 ⊆ G0 containing G0 \
(⋃

V ∈V D(C0(V ))
)

, a set

Ã ⊆ V (G) \ V (G̃0) of size |Ã| ≤ α̃ := α0 + α1(2α2 + 2), and sets Ṽ and
W̃ ⊆ W of vortices such that, with σ̃ := σ|G̃′

0
, the tuple (σ̃, G̃0, A ∪ Ã, Ṽ , W̃)

is an (α̃, α1, α2 + 1)-near embedding of G in Σ such that every vortex Ṽ ∈ Ṽ
satisfies condition (iv) of the definition of (β, r)-rich, and D(Ṽ ) ⊇ D(V ) for
some V ∈ V.

Proof. We will convert the vortices in V into linked vortices one by one, so
let us focus on one vortex V ∈ V . The idea is as follows: we delete one vertex
from each of the enclosing cycles, which gives us a set of α2 +1 disjoint paths.
If necessary, we also delete an adhesion set of V which allows us to assume
that the paths are ‘aligned’ to the vortex. Then, we ‘push’ these paths as
far into the vortex as possible. As the adhesion of the vortex is bounded by
α2, at least one of the paths remains entirely in the surface. The vertices of
the innermost such path, later denoted by P0, become the society vertices of
our new vortex, and the shifted path system shows that this new vortex is
linked.

By assumption, V has a decomposition (X ′1, . . . , X
′
n′) with adhesion sets

Z ′i := X ′i∩X ′i+1 of size at most α2, for all i < n′. Pick a vertex v ∈ C0(V ). As
C0(V ), . . . , Cα2(V ) enclose V tightly, there is a curve C from v to Ω(V ) :=
{w′1, . . . , w′n′} that contains at most α2 + 2 vertices of G′0. Let S denote
the set of these vertices. Clearly, S consists of exactly one vertex from each
Ci(V ), 0 ≤ i ≤ α2 and one society vertex w′j of V .

Put n := n′ − 1 and Z ′n′ := ∅ and let Z := Z ′j ∪ {w′j}. If j = 1 let

(X1, . . . , Xn) := ((X ′1 ∪X ′2) \ Z,X ′3 \ Z, . . . , X ′n′ \ Z) .

If j > 1, let

(X1, . . . , Xn) := (X ′j+1\Z,X ′j+2\Z, . . . , X ′n′\Z,X ′1\Z, . . . , (X ′j−1 ∪X ′j)\Z).

Then (X1, . . . , Xn) is a decomposition of adhesion at most α2 of the vortex
V − Z taken with respect to the society (w1, . . . , wn) defined by wi := Xi ∩
Ω(V ) for all i. For i < n, let Zi := Xi ∩Xi+1.

Recall that the linear ordering of Ω is induced by an orientation of the disc
D(V ). The extension of this orientation to D(Ci) induces a cyclic ordering
on V (Ci), for each 0 ≤ i ≤ α2, in which we let xi denote the successor, and
yi the predecessor of the unique vertex in S ∩ V (Ci). Let X := {x0, . . . , xα2}
and Y := {y0, . . . , yα2}. Now we delete S ∪ Z, a set of at most 2α2 + 1
vertices, and put

G′ :=
((
G′0 ∩D(C0(V ))

)
∪ V

)
− (S ∪ Z).
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Clearly, the graph G′ still contains a set of α2 + 1 disjoint X–Y paths. Let
us show that

For every set P of α2 + 1 disjoint X–Y -paths in G′, the path
P0 starting in x0 lies in G′0.

(4)

Otherwise, let wq be the vertex of P0 preceding its first vertex in V −Ω(V ).

As the subpath P0wq of P0 lives entirely in the plane graph G′0 ∩D(C0(V )),
the set V (P0wq) ∪ Zq separates X from Y . Thus, all α2 + 1 paths in P have
to pass through Zq, a set of at most α2 vertices, a contradiction. This proves
(4).

By planarity, (4) implies that the paths in P \ {P0} cannot cross P0, so
P0 ends in y0. Together with v and the edges x0v and vy0 the path P0 forms
a cycle in G′0; for our original set P , this is the cycle C0, but for every P
satisfying (4) its x0–y0 path P0 defines such a cycle in G′0. This cycle bounds
a disc D(P) in Σ containing Ω(V ), and we define

G(P) :=
((
G′0 ∩D(P)

)
∪ V

)
− (S ∪ Z).

Clearly, G(P) contains the paths from P .
Let us choose P as in (4) with G(P) minimal, and let the vertices of P0

be labeled p0, . . . , pr. Then we have the following:

For every vertex pi ∈ V (P0) there is a set T of α2 + 1 vertices
of G(P) that contains pi and separates X from Y in G′.

(5)

Indeed, if i ∈ {0, r} then T ∈ {X, Y } will do so assume that 0 < i < r.
By the minimality of G(P), there is no set of α2 + 1 disjoint X–Y paths in
G′ − pi. Hence by Menger’s theorem, an X–Y separator T ′ of size at most
α2 exists in G′ − pi. Since G(P) − pi ⊆ G′ − pi contains the α2 paths of
P \ {P0}, we have T ′ ⊆ V (G(P)) and |T ′| = α2. Now T := T ′ ∪ {pi} is as
desired. This completes the proof of (5).

Let us pick for each i = 0, . . . , r a separation (Ai, Bi) of G(P) as in (5),
with pi ∈ Ti := Ai ∩ Bi and |Bi| minimal such that X ⊆ Ai and Y ⊆ Bi.
Clearly, each Ti contains exactly one vertex from each path in P . Let us
show the following:

Bi ) Bj for all 0 ≤ i < j ≤ r. (6)

Note first that Bi 3 pi ∈ P0pi ⊆ Aj \ Bj, so it suffices to show that
Bi ⊇ Bj. Suppose this fails. Then |Bj|∩Bi| < |Bj, which will contradict our
choice of (Aj, Bj) if we can show that we could have chosen the separation
(Ai ∪ Aj, Bi ∩ Bj) instead of (Aj, Bj). Clearly, pj ∈ pjP0 ⊆ Bi ∩ Bj, since
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i < j. Moreover, the new separator TB := (Ai ∪ Aj) ∩ (Bi ∩ Bj) contains
at least one vertex from each path of P , so |TB| ≥ |P|. Likewise, the X–Y
separator TA := (Ai∩Aj)∩(Bi∪Bj) meets every path in P , so TA ≥ |P|. But
|TA|+ |TB| = |Ti|+ |Tj| = 2|P|. Hence both inequalities hold with equality;
in particular, |TB| = |P| = α2 + 1 as desired. This proves (6).

We set Ω := V (P0) and X0 := A0 and Xi := Ai ∩ Bi−1 for 1 < i < r
and Xr := Br−1. It is easy to check that (X0, . . . , Xr) is a linked path
decomposition of the vortex (G(P),Ω). Finally, consider all W ∈ W such
that Ω(W ) intersects G(P). If Ω(W ) ⊆ G(P), we add W to G(P) and delete
it from W . Otherwise, any vertices of Ω(W ) in G(P), and any edges of G′0
between them, are vertices and edges of P0. We then delete any such edges
from G(P) and dent D((G(P),Ω)) a little, so that its boundary no longer
meets the interior of such edges. Since these W were properly attached, such
edges can be replaced on P0 by paths through W . Hence, property (iv) from
(β, r)-rich follows for the new vortex G(P).

Lemma 16. Let z > 0 be an integer, and (σ,G0, A,V ,W) an (α0, α1, α2)-
near embedding of a graph G in a surface Σ such that every two vortices in V
have distance at least z in Σ. If the representativity of G′0 in Σ is less than
z, then there is a vertex set A′ ⊆ V (G0) with |A′| < a := 2α2 + 2 + z, such
that one of the following statements holds:

a) There exists a set V ′ of vortices in G, a surface Σ′ with g(Σ′) < g(Σ) and
an (α0 + a, α1 + 1, α2)-near embedding

(σ′, G0 − A′, A ∪ A′,V ′,W − A′)

of G in Σ′.

b) There exists a separation (A1, A2) of G with A1 ∩ A2 = A′ such that
for i = 1, 2 there are surfaces Σi and (α0 + a, α1, α2)-near embeddings
(σi, Gi

0, A
i,V i,W i) of G[Ai] into Σi such that g(Σi) < g(Σ).

Proof. Let C be a genus-reducing curve in Σ that hits less than z vertices
of G′0. Let us assume that C meets the open disc D(V ) of a large vortex V ,
the case when it does not is even easier. Note that C cannot meet another
large vortex, since the distance in Σ of two large vortices is at least z. By
Lemma 12 we may assume that C meets the face f of G′0 containing D(V ) in
at most one component (of C ∩ f). We can therefore modify C so that there
are society vertices x, y ∈ Ω(V ) with ∂D(V )∩C = {x, y}. If C enters D(V )
from a disc D(W ) of a small vortex W with x ∈ Ω(W ) = {wi−1, wi, wi+1} ⊆
Ω(V ), where wi−1, wi, wi+1 are enumerated as in Ω(V ), we choose C so that
x = wi+1. After this modification, C hits at most z+2 vertices. Deleting the
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two appropriate adhesion sets splits V into two vortices V ′, V ′′, and using
facts from elementary point-set topology such as in [6, Chapter 4.1] we can
partition D(V ) into two discs D(V ′), D(V ′′) to accomodate them. Let A′ be
the union of the deleted adhesion sets and the vertices hit by C. This set
contains up to a vertices.

Now, A′ is a separator of G. We delete C from Σ and cap the holes of
the resulting components; cf. [6, Appendix B]. If Σ \ C has one component,
statement (a) follows, otherwise (b) is true.

Lemma 17. Let (σ,G0, A,V ,W) be an (α0, α1, α2)-near embedding of a graph
G in a surface Σ. Let V ∈ V be a vortex, and (C1, . . . , C`) cycles tightly
enclosing V . Then there is a set X of disjoint open discs with

⋃
∆∈X ∆ =

D(C1) such that the following holds: For every disc ∆ ∈ X there are sets
S ⊆ V (G′0) of size |S| ≤ 2`+ 2 and S ′ ⊆ V of size |S ′| ≤ 2α2 − 2 such that

• S = G′0 ∩ ∂∆ ⊆ V (C1) ∪ . . . ∪ V (C`) ∪ Ω(V )

• |S ∩ Ci| ≤ 2 for each i = 1, . . . , `

• |S ∩ Ω(V )| ≤ 2

• there is a separation (X1, X2) of G with X1∩X2 = S∪S ′ and G0∩X1 =
G0 ∩∆.

Proof. Pick a point p ∈ D(V ). Let (x0, . . . , xn) denote the vertices of C1(V )
ordered linearly in a way compatible with a cyclic orientation of C1(V ).
For 1 ≤ i ≤ n, denote the edges xi−1xi by ei, and put en+1 := xnx0 and
e0 := ∅. We will inductively define curves linking x0, . . . , xn to p. First,
let us choose for all i = 0, . . . , n a curve L′i linking xi to p so that L′i ∩ G′0
consists of exactly one vertex from each of the cycles C1, . . . , C` and one
society vertex wi ∈ Ω(V ) and so that L′iwi ∩ D(V ) = ∅ and wiL

′
i ⊆ D(V ).

Then put L0 := L′0, and for i = 1, . . . , n define Li inductively as follows.
Let z be the first point of L′i on L0 ∪ Li−1. If z ∈ L0, let Li := L′iz;
otherwise let Li := L′izLi−1. Note that, for 1 ≤ i ≤ n and every point
z ∈ L′i, |L′iz ∩ (C1 ∪ . . . ∪ C`)| = k if and only if z ∈ D(Ck) \D(Ck+1) where
D(C`+1) := ∅.

Elementary topology implies (as in the proof of Lemma 13) that D(C1) \
L0 has a unique component homeomorphic to an open disc ∆′0. Assume
inductively that, for some 1 ≤ i ≤ n, we have defined an open disc ∆′i−1 ⊆
D(C1) whose boundary is contained in L0 ∪ Li−1 ∪ C1, contains Li−1, and
meets C1 in exactly C1\(e0∪. . .∪ei−1). Then ∆′i−1 contains the interior of Li,
which joins two points of ∂∆′i−1 and thus divides ∆′i−1 into two open discs ∆i

and ∆′i. We let ∆′i be the disc whose boundary satisfies for i the requirements
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analogous to those made earlier for i− 1 on ∆′i−1, and let ∆i := ∆′i−1 \ ∂∆′i
be the other disc. Finally, put ∆n+1 := ∆′n, set X := {∆1, . . . ,∆n+1}, and
let ∂∆i ∩G0 =: Si for all i.

Induction on i shows that Si has exactly one edge on C1 and otherwise
lies in L0 ∪ Li, so |Si| ≤ 2` + 2. If ∆i ∩D(V ) = ∅, then Si and S ′i := ∅ are
as desired. Otherwise, ∂∆i meets D(V ) in an arc linking distinct vertices
wi, wj. Let S ′i be the union of the corresponding adhesion sets Zi, Zj in
a vortex decomposition of V of adhesion ≤ α2. Again, Si and S ′i are as
desired.

6 Streamlining Path Systems

In this section we provide tools that allow us to find path systems in near-
embeddings that satisfy conditions (v) and (vi) in the definition of (β, r)-rich.

Lemma 18. Let G be a graph and A,B,C subsets of V (G) with |B| = 2k−1
for some integer k. If G contains a set P of 2k − 1 disjoint A–B paths, and
a set Q of 2k− 1 disjoint B–C paths, then there are k disjoint A–C paths in
G.

Proof. Let P be a set of 2k− 1 disjoint A–B paths, and let Q a set of 2k− 1
disjoint B–C paths in G. For every set S ⊆ V (G) with |S| < k, at least k
paths in P and at least k paths in Q avoid S. Two of these paths contain a
common vertex of B, so G− S contains a path from A to C. The existence
of k disjoint A–C paths now follows by Menger’s theorem.

Lemma 19. Let G be a graph embedded in a surface, let H be a flat wall in G
of size 32k2+r in G for integers k < r, and let Ω be a subset of V (G) avoiding
D(H) such that there are 16k2 disjoint paths from Ω to branch vertices of H.
Then H contains a wall H0 of size r and k disjoint paths from Ω to branch
vertices of H0 that lie on the boundary cycle of H0.

Proof. Let H0 be an r-wall in H with 8k2 concentric cycles in H enclosing
H0. Choose a set P of 16k2 disjoint paths from Ω to branch vertices of H
such that |E(P) \ E(H)| is minimal, and among these so that

∑
P∈P |P | is

minimal.
We claim that no path P ∈ P meets H0. Otherwise P would meet each

of our 8k2 concentric cycles C ⊆ H without ending on C. By the choice of P ,
this means that P contains no branch vertex of H, but meets C only inside
one subdivided edge of C before leaving it again. By our first condition for
the choice of P , the branch vertices of H that are the ends of this subdivided
edge must each lie on another path from P , which must end there. So we
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have at least 16k2 paths from P other than P ending at such branch vertices,
which contradicts our assumption that |P| = 16k2.

As |P| = 16k2, either at least 4k rows or at least 4k columns contain
terminal vertices of paths in P . In either case it is easy to see that at least
half of these branch vertices (i.e. ≥ 2k) can be linked disjointly to branch
vertices on the boundary cycle of H0. Lemma 18 completes the proof.

Let G be a graph and X, Y ⊆ V (G) with |X| = |Y | =: k. An X–Y linkage
in G is a set of k disjoint paths in G such that each of these paths has one
end in X and the other end in Y .

An X–Y linkage P in G is singular if V (
⋃P) = V (G) and G does not

contain any other X–Y linkage. The next lemma will be used in the proof
of Lemma 21.

Lemma 20. If a graph G contains a singular X–Y linkage P for vertex sets
X, Y ⊆ V (G), then G has path-width at most |P|.

Proof. Let P be a singular X–Y linkage in G. Applying induction on |G|,
we show that G has a path-decomposition (X0, . . . , Xn) of width at most |P|
such that X ⊆ X0. For every x ∈ V (G) let P (x) denote the path P ∈ P
that contains x. Suppose first that every x ∈ X has a neighbour y(x) in G
that is not its neighbour on P (x). Then y(x) /∈ P (x) by the uniqueness of P .
The digraph on P obtained by joining for every x ∈ X the ‘vertex’ P (x)
to the ‘vertex’ P (y(x)) contains a directed cycle D. Let us replace in P for
each x ∈ X with P (x) ∈ D the path P (x) by the X–Y path that starts
in x, jumps to y(x), and then continues along P (y(x)). Since every ‘vertex’
of D has in- and outdegree 1 in D, this yields an X–Y linkage with the same
endpoints as P but different from P . This contradicts our assumption that
P is singular. Thus, there exists an x ∈ X without any neighbours in G
other than (possibly) its neighbour on P (x). Consider this x.

If P (x) is trivial, then x is isolated in G and x ∈ X ∩ Y . By induction,
G− x has a path-decomposition (X1, . . . , Xn) of width at most |P| − 1 with
X \{x} ⊆ X1. Add X0 := X to obtain the desired path-decomposition of G.
If P (x) is not trivial, let x′ be its second vertex, and replace x in X by x′ to
obtain X ′. By induction, G − x has a path-decomposition (X1, . . . , Xn) of
width at most |P| with X ′ ⊆ X1. Add X0 := X ∪ {x′} to obtain the desired
path-decomposition of G.

Our next lemma is a weaker version of Theorem 10.1 of [10].

Lemma 21. Let s, and t be positive integers with s ≥ t. Let G′ be a graph
embedded in the plane, and let X ⊆ V (G′) be a set of t vertices on a common
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face boundary of G′. Let (C1, . . . , Cs) be concentric cycles in G′, tightly en-
closing X. Let G′′ be another graph, with V (G′) ∩ V (G′′) ⊆ V (C1). Assume
that G′ ∪G′′ contains an X–Y linkage P with Y ⊆ V (C1). Then there exists
an X–Y linkage P ′ in G′ ∪G′′ such that P ′ is orthogonal to Ct+1, . . . , Cs.

Proof. Assume the lemma is false, and let G′, G′′, P , and (C1, . . . , Cs) form
a counterexample with the minimum number of edges. Then G := G′∪G′′ =⋃s
i=1Ci ∪ P , and V (G) = V (

⋃P). (Delete isolated vertices if necessary).
Let us show that, for all P ∈ P and for all 1 ≤ i ≤ s, every component of
P ∩ Ci is a single vertex. Indeed, if P ∩ Ci had a component containing an
edge e, then G′/e would form a counterexample with fewer edges, since any
path using the contracted vertex ve would still form, or could be expanded
to a path for our desired path system P ′.

Next, let us show that

P is singular. (7)

If there exists an X–Y linkage P distinct from P , then at least one of the
edges of P is not contained in P . Since, as noted above, the paths in P have
no edges on C1, . . . , Cs, the subgraph

⋃s
i=1Ci ∪

⋃P forms a counterexample
with fewer edges, a contradiction. This proves (7).

Our choice of the cycles Ci as tightly enclosing X implies at once:

There is no subpath Q of some path P ∈ P in D(Cj) with
both endpoints in Cj for some j and otherwise disjoint from⋃
i V (Ci).

(8)

A local peak of P is a subpath Q of a path P ∈ P such that Q has both
endpoints on Cj for some j > 1 and every internal vertex of Q in (

⋃
i V (Ci))

lies in V (Cj−1).
Let us show the following:

P has no local peak (9)

Suppose Q = x . . . y ⊆ P ∈ P is a local peak, with endpoints in Cj say,
chosen so that j is maximal.

Let xCjy denote the subpath of Cj such that the cycle xCjy ∪Q bounds
a disc D ⊆ D(Cj−1)\D(Cj). If no interior vertex of xCjy lies on a path from
P , we can replace Q by xCjy on P and then contract this subpath of P , to
obtain a counterexample with fewer edges. Hence xCjy does have an interior
vertex z on a path P ′ ∈ P . Let zP ′z′ be a minimal non-trivial subpath of
P ′ such that z′ ∈ ⋃iCi (This exists, as j > 1.) If z′ ∈ Cj, then zP ′z′ ⊆ D
by (8). We then repeat the argument, with the local peak zP ′z′ instead of
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Q. This can happen only finitely often, and will eventually contradict the
minimality of our counterexample. We may thus assume that z′ cannot be
chosen in Cj. Then zP ′z′ ∩ D = ∅ and z′ ∈ Cj+1, and zP ′z′ extends to a
subpath z′′P ′z′ of P ′ with z′′ ∈ Cj+1 and no vertex other than z, z′, z′′ in⋃
iCi. This path is a local peak of P that contradicts our choice of Q with

j minimal, completing the proof of (9).
An immediate consequence of (8) and (9) is the following. For every

P ∈ P , let x be the endpoint of P inX and let y be the vertex of V (C1)∩V (P )
closest to x on P . Then the subpath P := xPy of P is orthogonal to the
cycles C1, . . . , Cs. In fact, P ∩ Ci is a single vertex, for each 1 ≤ i ≤ s.

The final claim will complete our proof:

For every P ∈ P, the path P − P does not meet Ct+1. (10)

To prove (10), suppose there exists P ∈ P such that (P −P )∩Ct+1 6= ∅.
As before, it follows now from (8) and (9) that P − P contains a subpath Q
from Ct+1 to C1 that is orthogonal to the cycles Ct+1, Ct . . . , C1. Together
with final segments of our paths P and the cycles C1, . . . , Ct+1, this path Q′

forms a subdivision of the (t+ 1)× (t+ 1) grid, which is well known to have
path-width t+ 1. This contradicts (7) and Lemma 20, proving (10).

7 Proof of the Main Result

Before proceeding with the proof of Theorem 2, we will need one more lemma.
A similar result can be found in [5].

Lemma 22. For every integer t and all integers α, g > 0 there is an integer
s > 0 such that the following holds. Let G be a graph of tree-width at least
s and (σ,G0, A,V , ∅) an α-near embedding of G in a surface Σ of genus g
such that all vortices V ∈ V have depth at most α. Then G0 has tree-width
at least t.

Proof. Let t, α, g be given. By Lemma 10, there is an integer r such that for
every graph H of tree-width at least r embedded in a surface Σ of genus g the
contraction of α disjoint faces of H to vertices leaves a graph of tree-width
at least t+ α.

Let G be a graph as stated in the Lemma, of tree-width s > αr. Let G+
0

be the graph we obtain if for every vortex V ∈ V with Ω(V ) = (w1, . . . , wn)
say, we add to G0 all edges wjwj+1 for 1 ≤ j ≤ n, where n + 1 := 1 if
not already in G0. Clearly, σ can be extended to an embedding of G+

0 by
embedding the new edges in the corresponding discs D(V ).

The tree-width of G+
0 is at least r. (11)
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Otherwise, choose a tree-decomposition (Vt)t∈T of G+
0 of width less than r.

For every vortex V ∈ V choose a fixed decomposition (X1, . . . , Xn) of depth
at most α. For every t ∈ T define

V ′t := Vt ∪
⋃

V ∈V
{Xj : wj ∈ Vt}

Note that, as all vortices are disjoint and thus every vertex in Vt can be a
society vertex of at most one vortex, we have |V ′t | ≤ α|Vt| < αr. We claim
that (V ′t )t∈T is a tree-decomposition of G ∪ G+

0 . To see this, pick a vertex
v ∈ Vt1 ∩ Vt3 for distinct t1, t3 ∈ T . We have to show that v ∈ V ′t2 for all
t2 ∈ t1Tt3. Let us assume that v /∈ V (G+

0 ) as the other case is easy. By
construction, there is a vortex V with Ω(V ) = (w1, . . . , wn) such that for
some wj, wk ∈ Ω(V ), we have v ∈ Xj ∩ Xk and wj ∈ Vt1 and wk ∈ Vt3 .
We may assume without loss of generality that j < k. By construction, G+

0

contains path wjwj+1 . . . wk. As Vt2 separates Vt1 from Vt3 in G ∪ G+
0 , there

is a vertex w` ∈ Vt2 for some j ≤ ` ≤ k. Then v ∈ X`, since (X1, . . . , Xn) is
a path-decomposition, so v ∈ Vt2 as desired.

Clearly, (Vt)t∈T is a tree-decomposition of G as well, but it has width at
most αr, a contradiction to our choice of G. This proves (11).

For every vortex V ∈ V there is a face f ⊆ D(V ) of G+
0 with Ω(V ) =

∂f ∩ G+
0 . By the choice of r, contracting all these faces to vertices yields a

graph of tree-width at least t + α. Removing the new vertices, of which we
have at most α, results in the graph G0 \

⋃V with tree-width at least t: note
that the new edges of G+

0 disappear in these two steps. Thus, the graph G0

has tree-width at least t as well, proving the lemma.

Proof of Theorem 2. Let α̂ be the integer α provided for R and m = 0 by
Theorem 4, and let γ̂ be an integer such that R embeds in every surface Σ
with g(Σ) > γ̂. By Theorems 4 and 6 and Lemmas 22, 7 and 8, there is an
integer w such that if the tree-width of our graph G is larger than w, the
following holds: There is a tree-decomposition (Vt)t∈T of G such that the
torso Ĝ of one part Vt0 has an α̂-near embedding (σ̂, Ĝ0, Â, V̂ ′, ∅) in a surface
Σ̂ in which R cannot be embedded such that Ĝ′0 contains a flat wall of size
at least

6α̂+2γ̂+1(r + α̂(β + α̂ + 3) + p),

where p := 2α̂(β+ 2α̂+ 2γ̂+ 4) + 4. We will show that, with these constants,
we find an α-near embedding of G for α = (α0, α1, α2) defined as

α0 := α̂ + p(2γ̂ + α̂) + 2α̂2 + 2α̂

α1 := α̂ + γ̂

α2 := 2α̂ + γ̂
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that is almost (β, r)-rich: The near embedding satisfies all the desired prop-
erties except for (v) and (vi). Instead, we only find paths linking the societies
of large vortices to arbitrary branch vertices of a large wall. But this can
be remedied: We apply the result for 32β2 + r and 16β2 instead for r and
β, respectively, and with Lemmas 19 and 21 we obtain a (β, r)-rich near-
embedding as desired.

First, we will convert the near-embedding of the torso Ĝ into a near-
embedding of the whole graph G by accomodating the rest in its vortices.
To accomplish this, we will use property (ii) from Theorem 4 of our tree-
decomposition. Pick a component T ′ of T − t0 and let t′ be the vertex in this
component adjacent to t0 in T . Let Y := (

⋃
t∈T ′ Vt) \ Â. If t′ is the parent

of t0 in T , i.e., if t′ ∈ rT t0, then Vt′ ∩ Vt0 ⊆ Â and hence Y ∩ Vt0 = ∅. We
then add G[Y ] to Ĝ as a small vortex. Suppose now that t′ is a child of t0,
i.e., that t0 ∈ rT t′. Then, by (ii) of Theorem 4, we can either add G[Y ] to a
part Xtt′ of a vortex V of Ĝ without increasing the adhesion of V , or we can
add G[Y ] as a small vortex that is properly attached.

We perform this modification for all components of T − t0. Let us collect
in a set Ŵ the new small vortices defined, and let V̂ denote the set of the
new possibly modified, large vortices. By merging vortices if necessary, we
may assume that there are no two vortices W,W ′ ∈ Ŵ with Ω(W ) ⊆ Ω(W ′).
Note that (σ̂, Ĝ0, Â, V̂ , Ŵ) is an α̂-near-embedding of all of G, and thus also
an α-near embedding.

Let us, more generally, consider α-near-embeddings (σ,G0, A,V ,W) of G
in surfaces Σ such that

• All vortices in W are properly attached

• All vortices in V have adhesion at most
α̂ + g(Σ̂)− g(Σ) + |V̂| − |V|

• g(Σ) ≤ g(Σ̂)

• |V| ≤ |V̂|+ (g(Σ̂)− g(Σ)) (≤ α1)

• |A| ≤ |Â|+ p
(

2
(
g(Σ̂)− g(Σ)

)
+ |V̂| − |V|

)
(≤ α0)





(?)

and further

G′0 contains a flat wall H0 of size at least 6qµ. (? ?)

where

q := |V|+ 2g(Σ) + 1

µ := µ(σ,G0, A,V ,W) := r + |V|(β + 2α̂ + γ̂ + 3) + p

27



Such near-embeddings exist, since (σ̂, Ĝ0, Â, V̂ , Ŵ) satisfies (?) and (? ?).
Our next task is to find, among all such near embeddings, one with the

following additional properties (P1)–(P4):

(P1) Every two vortices have distance at least 2λ+ 3 in Σ.

(P2) For every vortex V ∈ V there exist λ cycles (C1, . . . , Cλ) tightly enclos-
ing V . If Σ 6' S2, the representativity of G′0 in Σ is at least λ.

(P3) For all distinct vortices V,W ∈ V , the discs D(C1(V )) and D(C1(W ))
are disjoint.

(P4) H0 contains a flat wall H of size 6µ such that D(H) ∩ D(C1(V )) = ∅
for every V ∈ V .

where

λ := λ(σ,G0, A,V ,W) := |V|(β + 2α̂ + γ̂ + 3).

From all α-near-embeddings satisfying (?) and (? ?) let us pick one minimiz-
ing (g(Σ), |V|) lexicographically. We will denote this near-embedding by ε.
We will show that either ε itself has the properties (P1)–(P4) or we can find
a disc in Σ such that, roughly said, the part of our graph nearly-embedded in
this disc can be considered as a near-embedding in S2 with these properties.

For the next steps in the proof, we will repeatedly make use of the follow-
ing fact: for integers `, r, consider a flat wall W of size 8`+ 2r in G′0. In W ,
we can find two subwalls W1,W2 of size r, together with ` concentric cycles
C1(W1), . . . , C`(W1) around W1 and ` concentric cycles C1(W2), . . . , C`(W2)
around W2 such that D(C1(W1)) and D(C1(W2)) are disjoint. In particular,
W1 and W2 have distance at least 2` + 2 in Σ. Further, if V is a vortex
tightly enclosed by k < ` cycles C1(V ), . . . , Ck(V ), then any two vertices
picked from the cycles C1(V ), . . . , Ck(V ) have distance at most 2k < 2` in
Σ. Now, a comparison of the distances shows that one of the walls W1, W2

is disjoint from Ω(V ) and all the cycles C1(V ), . . . , Ck(V ).
Finally note that, if we delete a set X of k vertices from a wall H of size

` > k, at most k rows and at most k columns of H are hit by X and thus,
H −X contains a wall of size at least `− 4k.

Let us show first that our near-embedding ε has property (P1). Otherwise
we apply Lemma 14 with d := 2λ. This gives a vertex set A′ of size at most
2(2α̂ + γ̂) + d ≤ p and a near-embedding ε′ := (σ′, G0 − A′, A ∪ A′,V ′,W ′)
with |V ′| ≤ |V| − 1 of G in Σ. By Lemma 3, we may assume that its
small vortices are properly attached. Then, ε′ satisfies (?) and (? ?) but
(g(Σ), |V ′|) < (g(Σ), |V|) lexicographically, which contradicts the choice of ε.
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To show properties (P2)–(P4) we consider two cases: when Σ ' S2 and
when Σ 6' S2.

First, we assume that Σ ' S2. Given a vortex V ∈ V it is easy to find in
H0 a subwall H half the size of H0 such that D(V )∩D(H) = ∅. Then H has
size at least 3 · 6q−1µ > 6q−1µ+ 4λ (as q − 1 ≥ |V| ≥ 1). Inside H there is a
flat wall HV of size at least 6q−1µ enclosed by λ cycles C1, . . . , Cλ ⊆ H. As
Σ ' S2, Cλ, . . . , C1 enclose V , and D(Cλ) ∩ D(HV ) = ∅. Lemma 13 shows
that there also exist λ cycles C1(V ), . . . , Cλ(V ) tightly enclosing V such that
D(C1(V )) does not meet D(HV ). Iterating this procedure for all V ∈ V
establishes (P2), while replacing our original wall H0 with a flat subwall H
of size at least 6q−|V|µ ≥ 6µ that satisfies D(H) ∩D(C1(V )) = ∅ ∀ V ∈ V .

To prove (P3) suppose, that for two vortices V,W ∈ V the discs D(C1(V ))
and D(C1(W )) intersect. By (P1), the cycles C1(V ), . . . , Cλ(V ), C1(W ), . . . ,
Cλ(W ) are disjoint, so we may assume that D(C1(V )) ⊆ D(C1(W )). By
Lemma 17, there is a disc ∆ ⊆ D(C1(W )) containing D(V ) and a separation
(X1, X2) of G of order at most 2λ + 2α̂ ≤ p such that G0 ∩ X1 = G0 ∩ ∆.
Now let Ṽ be the set of all vortices of V −X1 with a society of size at least
4, and let W̃ be the set of all vortices of W −X1, the vortex (G[X1], ∅), and
the vortices of V−X1 with a society of at most 3 vertices. Clearly, |Ṽ| < |V|,
as Ω(V ) ⊆ X1. It is easy to see now that

(σ|G0−X1 , G0 −X1, A ∪ (X1 ∩X2), Ṽ , W̃)

is an (α0, α1, α2) near-embedding of G in Σ, satisfying (?), and as H is a
sufficiently large wall living in G0 − X1, condition (? ?) holds as well. This
means that (g(Σ), |Ṽ|) < (g(Σ), |V|), a contradiction to our choice of ε. This
proves (P3) and (P4).

We now consider the case when Σ 6' S2. Our plan is to deduce (P2)
from (P1) and Lemmas 11 and Lemmas 16. Thus, we must first show that
the representativity of G′0 in Σ is at least 2λ + 2. Suppose not, and apply
Lemma 16 with z := 2λ + 2. If (a) of Lemma 16 holds, we have a near-
embedding ε′ of G in a surface Σ′ with g(Σ′) < g(Σ) and |V ′| ≤ |V|+ 1. The
properties (?) and (? ?) are easy to verify; for (? ?), notice that 5 · 6q−1µ ≥
8λ + 8, so deleting up to z vertices from our wall H leaves a wall of size
at least 6q−1µ. Hence, the fact that (g(Σ′), |V ′|) < (g(Σ), |V|) contradicts
our choice of ε. Similarly, if (b) of Lemma 16 holds, then one of the graphs
G′10, G

′2
0 contains a sufficiently large wall, so one of the near-embeddings ε1, ε2

satisfies (?) and (? ?), and g(Σ1), g(Σ2) < g(Σ) yields the same contradiction
as before. This shows that the representativity of G′0 in Σ is at least 2λ+ 2.
We now apply Lemma 11 to each of the faces of G′0 that contain the disc
D(V ) of a vortex V ∈ V . Together with Lemma 13, this implies property
(P2).
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To show property (P3), assume that for two vortices V,W ∈ V the
discs D(C1(V )) and D(C1(W )) intersect. As before we may assume that
D(C1(V )) ⊆ D(C1(W )), and an application of Lemma 17 gives us a disc
∆ ⊆ D(C1(W )) containing D(V ), and a separation (X1, X2) of G of order
at most 2λ + 2α̂ ≤ p such that G0 ∩ X1 = G0 ∩ ∆. As noted earlier, there
exists a flat subwall H of H0 of size at least 6q−1µ that is disjoint from
Ω(W ) and all the cycles (C1(W ), . . . , Cλ(W )), and hence from X1 ∩ X2 (as
X1 ∩ X2 ∩ G′0 ⊆

⋃
Ci(W ) ∪ Ω(W ) in Lemma 17). If D(H) ∩ ∆ = ∅, then

H ⊆ G[X2 \X1], so turning G[X1] into a small vortex attached (by an empty
society) to G′0 ∩ G[X2 \ X1] we can reduce the number of large vortices of
our near-embedding, leading to the same contradiction as earlier. Otherwise,
D(H) ⊆ ∆ and H ⊆ G[X1 \ X2]. We now turn G[X2] into a small vortex
attached to G′0 ∩G[X1 \X2] and obtain a contradiction to the minimality of
ε, since g(∆) = 0 < g(Σ). This completes the proof of (P3) for the case of
Σ 6' S2.

To show (P4), let us enumerate the vortices V =: {V1, . . . , V`}. We will
prove by induction on k that, for 1 ≤ k ≤ `, there is a flat wall Hk ⊆ Hk−1

of size 6q−kµ such that D(Hk) avoids D(C1(V1)), . . . , D(C1(Vk)). For k = 0
this is precisely (? ?). Given k ≥ 1, we have q ≥ k + 3 and λ ≤ µ/2.
Hence, as earlier, we can find a subwall Hk ⊆ Hk−1 of size 6q−(k−1)µ/6 ≥
6q−kµ ≥ 63µ from (P2) that avoids Ω(Vk) and all cycles C1(Vk), . . . , Cλ(Vk).
If D(Hk)∩D(C1(Vk)) = ∅, then this completes the induction step. Otherwise,
Lemma 17 gives us a disc ∆ ⊆ D(C1(Vk)) containing D(Hk) and a separation
(X1, X2) of G of order at most 2λ+ 2α̂ ≤ p such that G0 ∩X1 = G0 ∩∆ and
X1 ∩X2 ∩ V (G0) ⊆ ⋃Ci(Vk)∪Ω(Vk). By (P3), this disc ∆ does not contain
D(W ) for any large vortex W 6= Vk. We now turn G[X2 \ X1] into a small
vortex attached by an empty society to G′0 ∩ G[X1 \X2]. We are now back
in the case of Σ = S2 treated before, and can find inside Hk (which we recall
has size at least 6q−k ≥ 63µ ≥ 6µ+ 4λ) a flat subwall H ′ of size 6µ+ 4λ with
D(H ′) ∩ D(Vk) = ∅. Inside H ′ there is a wall of size 6µ (which we note is
large enough to satisfy (? ?) for our large vortex and genus 0) enclosed by λ
cycles in H ′. Re-interpreting these cycles as enclosing Vk, as earlier in our
proof of (P2)–(P4) for Σ ' S2, we once more obtain a contradiction to the
minimality of ε. This completes the proof of (P4) for the case of Σ 6' S2.

From all α-near-embeddings (σ,G0, A,V ,W) of G into surfaces Σ satis-
fying (?) and (? ?) and (P1)–(P4) let us choose one minimizing |V|. Let H
be the wall from (P4).

An application of Lemma 15 now gives us a subgraph G̃0 of G0, a vertex
set Ã ⊆ V (G) \ V (G̃0) with |Ã| ≤ 2α̂2 + 2α̂ disjoint from H and an α-near-
embedding ε̃ := (σ̃, G̃0, A ∪ Ã, Ṽ , W̃) of G such that every vortex Ṽ ∈ Ṽ
has a linked decomposition of adhesion at most α̂, there are still at least
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λ̃ := λ− (α̂ + 1) cycles enclosing every Ṽ ∈ Ṽ .
Let us show that there is no vertex set S in G′0 of size less than β sep-

arating H from Ω(V ) for some vortex V ∈ Ṽ . Suppose there is and let us
choose S minimal. We add to G̃′0 a vertex v and edges from v to all society
vertices Ω(V ). Clearly, after adding v to X2, the set S still separates H from
Ω(V ) and we can extend our embedding by mapping v and the new edges to
D(V ). By the minimality of S, every vertex in S is adjacent to some vertex
of the component T0 of G′0−S that contains v. Let T denote the (connected)
graph T0 together with S and all edges between T0 and S. We note that T0

contains Ω(V ).
We fatten the embedded graph T to obtain a closed, connected set D ⊆ Σ

so that D contains T and further that that ∂D intersects with G′0 only in
edges incident with both S and G′0 \ T .

Every component C of ∂D bounds a cycle in Σ. This is clear if Σ ' S2 and
if Σ 6' S2 we could otherwise slightly shift C in neighbourhoods of vertices
in S to intersect with G′0 only in S and obtain a genus reducing curve that
hits G′0 in less than β many vertices, contradicting (P2).

Let H ′ be a subwall of H of size at least 6µ−4β that avoids S and let Z be
the component of Σ−∂D containing H ′. We define X1 := (V (G′0)∩Z)∪S and
X2 := V (G′0)∩(Σ\Z). This gives us a separation (X1, X2) with S ⊆ X1∩X2.

Further (X1, X2) can be modified so that, for every vortex V ′ ∈ Ṽ\{V }, its
society Ω(V ′) and at least λ̃−β many cycles enclosing V ′ are contained either
in X1 or in X2. Indeed, as one of the cycles C1(V ′), . . . , Cβ(V ′) enclosing V ′

is not hit by X1 ∩ X2, it is contained in either X1 or X2. As this (plane)
cycle C is a separator of G′0, we can add all the vertices embedded in D(C),
in particular Ω(V ′) and the vertices of the cycles Cβ+1, . . . , Cλ̃, to the same
Xi.

Let us consider the case that Z is a disc. As before, we add X1 ∩X2 to
the apex set A ∪ Ã and add a new small vortex W := (G[X1 \X2], ∅) to W̃ .
This new near-embedding of G in S2 still satisfies (?), (? ?), and (P1)–(P4),
but we have reduced |Ṽ| with this operation, a contradiction to our choice of
the near-embedding.

Suppose Z is not a disc. Then, as each component of ∂Z bounds a disc
and each component of Σ \ Z contains a point of D, which is connected,
Σ \ Z has exactly one component Z ′ ' S2. Again, we add X1 ∩ X2 to
the apex set and accomodate X2 \ X1 in a small vortex and obtain a near
embedding of G with a reduced number of large vortices. Let us show that
the representativity of our new embedded graph Ĝ := G̃′0 − X2 is at least
λ−β. Assume the opposite and pick a genus reducing Ĝ-normal curve C in Σ
that meets less than λ−β vertices of Ĝ. Then, we may assume by Lemma 12
that C intersects the face f of Ĝ containing Z ′ at most once. We reroute C
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in f along ∂Z ′. Now, C is also a G̃′0-normal curve meeting at most β many
additional vertices from S, which contradicts (P2) for G̃′0. Now, (P1)–(P4)
are easy to verify.

We conclude that, for every large vortex V ∈ Ṽ , the society Ω(V ) is
connected to the branch vertices of H by β many disjoint paths.

Finally, as described in the beginning, Lemmas 19 and 21 finish the proof.

8 Circular Vortex-Decompositions

In Graph Minors XVII [16], the structure theorem is stated with vortices
having a circular instead of a linear structure. For most applications, the
linear decompositions as discussed so far in this paper are sufficient, but
sometimes the circular structure is necessary. In this section, we introduce
circular vortex decompositions and point out how we can derive a new lemma
from the proof of Lemma 15 that yields circular linkages for them. It is easy
to see that we can apply this new lemma instead of Lemma 15 at the end of
the proof of Theorem 2 and therefore, we can choose to have circular linkages
for the large vortices when we apply the theorem.

For the remainder of this paper, we call decompositions of vortices as
defined in Section 2 linear decompositions to distinguish them more clearly
from the circular decompositions which we introduce now:

Let V := (G,Ω) be a vortex with Ω = (w1, . . . , wn). Let us regard the
ordering of Ω as a cyclic ordering. A tuple D := (X1, . . . , Xn) of subsets
of V (G) is a circular decomposition of V if the following properties are sat-
isfied:

(i) wi ∈ Xi for all 1 ≤ i ≤ n.

(ii) X1 ∪ . . . ∪Xn = V (G).

(iii) When wi < wj < wk < w` are society vertices of V ordered with respect
to the cyclic ordering Ω, then Xi ∩Xk ⊆ Xj ∪X`

(iv) Every edge of G has both ends in Xi for some 1 ≤ i ≤ n.

The adhesion of our circular decomposition D of V is the maximum value
of |Xi−1 ∩Xi|, taken over all 1 ≤ i ≤ n. We define the circular adhesion of
V as the minimum adhesion of a circular decomposition of that vortex.

When D is a circular decomposition of a vortex V as above, we write
Zi := (Xi ∩Xi+1) \ Ω, for all 1 ≤ i < n. These Zi are the adhesion sets of D.
We call D linked if
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• all these Zi have the same size;

• there are |Zi| disjoint Zi−1–Zi paths in G[Xi]− Ω, for all 1 ≤ i ≤ n;

• Xi ∩ Ω = {wi−1, wi} for all 1 ≤ i ≤ n.

Note that Xi ∩Xi+1 = Zi ∪ {wi}, for all 1 ≤ i ≤ n (Fig. 1).
The union of the Zi−1–Zi paths in a circular decomposition of V is a

disjoint union of cycles in G each of which traverses the adhesion sets of D in
cyclic order (possibly several times); We call the set of these cycles a circular
linkage of V with respect to D.

As described in Section 2 for linear decompositions, we see that we can
delete a vertex from a circular decomposition of some vortex and obtain a
new circular decomposition. This operation does not increase the adhesion
but might decrease the number of society vertices.

Clearly, a linear decomposition of some vortex is a circular decomposition
as well and it is easy to see that one can obtain a linear from a circular
decomposition, if one deletes the overlap of two subsequent bags: Let V :=
(G,Ω) a vortex and (X1, . . . , Xn) a circular decomposition of V . Delete the
set Xi−1 ∩ Xi from V for some index 1 ≤ i ≤ n. We obtain a circular
decomposition D := (X ′1, . . . , X

′
n′) of V − Z with n′ ≤ n. By shifting the

indices if necessary we may assume that X ′n′ ∩ X ′1 is empty. D is a linear
decomposition of V −Z: Pick a vertex v ∈ X ′j∩X ′` for indices 1 ≤ j < ` ≤ n′.
This vertex avoids either X ′1 or X ′n′ , let us assume the former. We apply
property (iii) from the definition of a circular decomposition to w1, wj, wk, w`
for any k with j < k < ` and conclude that v ∈ X ′k.

To distinguish near-embeddings with linear decompositions from near-em-
beddings with circular decompositions, we will call the latter explicitly near-
embeddings with circular vortices. Also, for a (α0, α1, α2)-near embedding
with circular vortices let the third bound α2 denote an upper bound for the
circular adhesion of the large vortices.

We give a modified definition of β-rich to comply with the new concepts.
For near-embeddings with circular decompositions we replace property (iv)
by the following:

(iv’) Let V ∈ V with Ω(V ) = (w1, . . . , wn). Then there is a circular, linked
decomposition of V of adhesion at most α2 and a cycle C in V ∪⋃W
with V (C∩G0) = Ω(V ) that avoids all the cycles of the circular linkage
of V , and traverses w1, . . . , wn in this order.

Lemma 23. Let (σ,G0, A,V ,W) be an (α0, α1, α2)-near embedding of a graph
G in a surface Σ such that every small vortex W ∈ W is properly attached.
Moreover, assume that
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(i) For every vortex V ∈ V there are α2 + 1 concentric cycles
C0(V ), . . . , Cα2(V ) in G′0 tightly enclosing V .

(ii) For distinct vortices V,W ∈ V, the discs D(C0(V )) and D(C0(W )) are
disjoint.

Then there is a graph G̃0 ⊆ G0 containing G0 \
(⋃

V ∈V D(C0(V ))
)

, a set

Ã ⊆ V (G) \ V (G̃0) of size |Ã| ≤ α̃ := α0 + α1(2α2 + 2), and sets Ṽ and
W̃ ⊆ W of vortices such that, with σ̃ := σ|G̃′

0
, the tuple (σ̃, G̃0, A ∪ Ã, Ṽ , W̃)

is an (α̃, α1, α2 +1)-near embedding with circular vortices of G in Σ such that
every vortex Ṽ ∈ Ṽ satisfies condition (iv’) of the definition of (β, r)-rich,
and D(Ṽ ) ⊇ D(V ) for some V ∈ V.

Proof. This lemma can be proven almost exactly like Lemma 15. To avoid
completely rewriting the proof, we just point out the differences.

The curve C in the surface hits the vertex set S which consists of exactly
one vertex from each Ci(V ) and one society vertex w′j of V . We split each
vertex in S \ {w′j}: For each 0 ≤ i ≤ α2, we replace v ∈ S ∩V (Ci(V )) by two
new vertices xi, yi and connect them with edges to the former neighbours of v
such that C does not intersect any edges or vertices. The vertices x0, . . . , xα2

and y0, . . . , yα2 form the sets X and Y , respectively.
In the remainder of the proof we delete the set Z instead of S∪Z. At the

end, we identify the vertex pairs (xi, yi) for 0 ≤ i ≤ α2 and obtain a linked,
circular decomposition as desired.
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Abstract

We show that all sufficiently large (2k + 3)-connected graphs of
bounded tree-width are k-linked. Thomassen has conjectured that all
sufficiently large (2k + 2)-connected graphs are k-linked.

1 Introduction

Given an integer k ≥ 1, a graph G is k-linked if for any choice of 2k distinct
vertices s1, . . . , sk and t1, . . . , tk of G there are disjoint paths P1, . . . , Pk in
G such that the end vertices of Pi are si and ti for i = 1, . . . , k. Menger’s
theorem implies that every k-linked graph is k-connected.

One can conversely ask how much connectivity (as a function of k) is
required to conclude that a graph is k-linked. Larman and Mani [13] and
Jung [8] gave the first proofs that a sufficiently highly connected graph is also
k-linked. The bound was steadily improved until Bollobás and Thomason [3]
gave the first linear bound on the necessary connectivity, showing that every
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22k-connected graph is k-linked. The current best bound shows that 10k-
connected graphs are also k-linked [20].

What is the best possible function f(k) one could hope for which implies
an f(k)-connected graph must also be k-linked? Thomassen [22] conjectured
that (2k+2)-connected graphs are k-linked. However, this was quickly proven
to not be the case by Jørgensen with the following example [23]. Consider
the graph obtained from K3k−1 obtained by deleting the edges of a matching
of size k. This graph is (3k−3)-connected but is not k-linked. Thus, the best
possible function f(k) one could hope for to imply k-linked would be 3k− 2.
However, all known examples of graphs which are roughly 3k-connected but
not k-linked are similarly of bounded size, and it is possible that Thomassen’s
conjectured bound is correct if one assumes that the graph has sufficiently
many vertices.

In this paper, we show Thomassen’s conjectured bound is almost correct
with the additional assumption that the graph is large and has bounded
tree-width. This is the main result of this article.

Theorem 1.1. For all integers k and w there exists an integer N such that
a graph G is k-linked if

κ(G) ≥ 2k + 3, tw(G) < w, and |G| ≥ N.

where κ is the connectivity of the graph and tw is the tree-width.

The tree-width of the graph is a parameter commonly arising in the theory
of graph minors; we will delay giving the definition until Section 2 where we
give a more in depth discussion of how tree-width arises naturally in tackling
the problem. The value 2k + 2 would be best possible; see Section 8 for
examples of arbitrarily large graphs which are (2k + 1)-connected but not
k-linked.

Our work builds on the theory of graph minors in large, highly connected
graphs begun by Böhme, Kawarabayashi, Maharry and Mohar [1]. Recall
that a graph G contains Kt as a minor if there Kt can be obtained from
a subgraph of G by repeatedly contracting edges. Böhme et al. showed
that there exists an absolute constant c such that every sufficiently large ct-
connected graph contains Kt as a minor. This statement is not true without
the assumption that the graph be sufficiently large, as there are examples
of small graphs which are (t

√
log t)-connected but still have no Kt minor

[12, 21]. In the case where we restrict our attention to small values of t,
one is able to get an explicit characterisation of the large t-connected graphs
which do not contain Kt as a minor.
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Theorem 1.2 (Kawarabayashi et al. [10]). There exists a constant N such
that every 6-connected graph G on N vertices either contains K6 as a minor
or there exists a vertex v ∈ V (G) such that G− v is planar.

Jorgensen [7] conjectures that Theorem 1.2 holds for all graphs without
the additional restriction to graphs on a large number of vertices. In 2010,
Norine and Thomas [19] announced that Theorem 1.2 could be generalised
to arbitrary values of t to either find a Kt minor in a sufficiently large t-
connected graph or alternatively, find a small set of vertices whose deletion
leaves the graph planar. They have indicated that their methodology could
be used to show a similar bound of 2k+ 3 on the connectivity which ensures
a large graph is k-linked.

2 Outline

In this section, we motivate our choice to restrict our attention to graphs of
bounded tree-width and give an outline of the proof of Theorem 1.1.

We first introduce the basic definitions of tree-width. A tree-decompos-
ition of a graph G is a pair (T,X ) where T is a tree and X = {Xt ⊆ V (G) :
t ∈ V (T )} is a collection of subsets of V (G) indexed by the vertices of T .
Moreover, X satisfies the following properties.

1.
⋃
t∈V (T ) Xt = V (G),

2. for all e ∈ E(G), there exists t ∈ V (T ) such that both ends of e are
contained in Xt, and

3. for all v ∈ V (G), the subset {t ∈ V (T ) : v ∈ Xt} induces a connected
subtree of T .

The sets in X are sometimes called the bags of the decomposition. The
width of the decomposition is maxt∈V (T ) |Xt| − 1, and the tree-width of G is
the minimum width of a tree-decomposition.

Robertson and Seymour showed that if a 2k-connected graph contains
K3k as a minor, then it is k-linked [16]. Thus, when one considers (2k + 3)-
connected graphs which are not k-linked, one can further restrict attention
to graphs which exclude a fixed clique minor. This allows one to apply
the excluded minor structure theorem of Robertson and Seymour [17]. The
structure theorem can be further strengthened if one assumes the graph has
large tree-width [5]. This motivates one to analyse separately the case when
the tree-width is large or bounded. The proofs of the main results in [1] and
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[10] similarly split the analysis into cases based on either large or bounded
tree-width.

We continue with an outline of how the proof of Theorem 1.1 proceeds.
Assume Theorem 1.1 is false, and let G be a (2k+ 3)-connected graph which
is not k-linked. Fix a set {s1, . . . , sk, t1, . . . , tk} such that there do not exist
disjoint paths P1, . . . , Pk where the ends of Pi are si and ti for all i. Fix a
tree-decomposition (T,X ) of G of minimal width w.

We first exclude the possibility that T has a high degree vertex. Assume
t is a vertex of T of large degree. By Property 3 in the definition of a
tree-decomposition, if we delete the set Xt of vertices from G, the resulting
graph must have at least degT (t) distinct connected components. By the
connectivity of G, each component contains 2k + 3 internally disjoint paths
from a vertex v to 2k+3 distinct vertices in Xt. If the degree of t is sufficiently
large, we conclude that the graph G contains a subdivision of Ka,2k+3 for
some large value a. We now prove that that if a graph contains such a large
complete bipartite subdivision and is 2k-connected, then it must be k-linked
(Lemma 7.1).

We conclude that the tree T does not have a high degree vertex, and
consequently contains a long path. It follows that the graph G has a long
path decomposition, that is, a tree-decomposition where the tree is a path.
As the bags of the decomposition are linearly ordered by their position on
the path, we simply give the path decomposition as a linearly ordered set
of bags (B1, . . . , Bt) for some large value t. At this point in the argument,
the path-decomposition (B1, . . . , Bt) may not have bounded width, but it
will have the property that |Bi ∩ Bj| is bounded, and this will suffice for
the argument to proceed. Section 3 examines this path decomposition in
detail and presents a series of refinements allowing us to assume the path
decomposition satisfies a set of desirable properties. For example, we are
able to assume that |Bi ∩ Bi+1| is the same for all i, 1 ≤ i < t. Moreover,
there exist a set P of |B1∩B2| disjoint paths starting in B1 and ending in Bt.
We call these paths the foundational linkage and they play an important role
in the proof. A further property of the path decomposition which we prove
in Section 3 is that for each i, 1 < i < t, if there is a bridge connecting two
foundational paths in P in Bi, then for all j, 1 < j < t, there exists a bridge
connecting the same foundational paths in Bj. This allows us to define an
auxiliary graph H with vertex set P and two vertices of P adjacent in H if
there exists a bridge connecting them in some Bi 1 < i < t.

Return to the linkage problem at hand; we have 2k terminals s1, . . . , sk
and t1, . . . , tk which we would like to link appropriately, and B1, . . . , Bt is
our path decomposition with the foundational linkage running through it.
Let the set Bi ∩ Bi+1 be labeled Si. As our path decomposition developed

40



in the previous paragraph is very long, we can assume there exists some
long subsection Bi, Bi+1, . . . , Bi+a such that no vertex of s1, . . . , sk, t1, . . . , tk
is contained in

⋃i+a
i Bi − (Si−1 ∪ Si+a) for some large value a. By Menger’s

theorem, there exist 2k paths linking s1, . . . , sk, t1, . . . , tk to the set Si−1∪Si+a.
We attempt to link the terminals by continuing these paths into the subgraph
induced by the vertex set Bi ∪ · · · ∪ Bi+a. More specifically, we extend the
paths along the foundational paths and attempt to link up the terminals
with the bridges joining the various foundational paths in each of the Bj.
By construction, the connections between foundational paths are the same
in Bj for all j, 1 < j < t; thus we translate the problem into a token game
played on the auxiliary graph H. There each terminal has a corresponding
token, and the desired linkage in G will exist if it is possible to slide the
tokens around H in such a way to match up the tokens of the corresponding
pairs of terminals. The token game is rigorously defined in Section 4, and we
present a characterisation of what properties on H will allow us to find the
desired linkage in G.

The final step in the proof of Theorem 1.1 is to derive a contradiction
when H doesn’t have sufficient complexity to allow us to win the token game.
In order to do so, we use the high degree in G and a theorem of Robertson
and Seymour on crossing paths. We give a series of technical results in
preparation in Section 5 and Section 6 and present the proof of Theorem 1.1
in Section 7.

3 Stable Decompositions

In this section we present a result which, roughly speaking, ensures that a
highly connected, sufficiently large graph of bounded tree-width either con-
tains a subdivision of a large complete bipartite graph or has a long path
decomposition whose bags all have similar structure.

Such a theorem was first established by Böhme, Maharry, and Mohar
in [2] and extended by Kawarabayashi, Norine, Thomas, and Wollan in [9],
both using techniques from [14]. We shall prove a further extension based on
the result by Kawarabayashi et al. from [9] so our terminology and methods
will be close to theirs.

We begin this section with a general Lemma about nested separations.
Let G be a graph. A separation of G is an ordered pair (A,B) of sets
A,B ⊆ V (G) such that G[A] ∪ G[B] = G. If (A,B) is a separation of G,
then A ∩ B is called its separator and |A ∩ B| its order. Two separations
(A,B) and (A′, B′) of G are called nested if either A ⊆ A′ and B ⊇ B′ or
A ⊇ A′ and B ⊆ B′. In the former case we write (A,B) ≤ (A′, B′) and in the
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latter (A,B) ≥ (A′, B′). This defines a partial order ≤ on all separations of
G. A set S of separations is called nested if the separations of S are pairwise
nested, that is, ≤ is a linear order on S. To avoid confusion about the order
of the separations in S we do not use the usual terms like smaller, larger,
maximal, and minimal when talking about this linear order but instead use
left, right, rightmost, and leftmost, respectively (we still use successor and
predecessor though). To distinguish ≤ from < we say ‘left’ for the former
and ‘strictly left’ for the latter (same for ≥ and right).

If (A,B) and (A′, B′) are both separations of G, then so are (A∩A′, B ∪
B′) and (A ∪ A′, B ∩ B′) and a simple calculation shows that the orders of
(A∩A′, B∪B′) and (A∪A′, B∩B′) sum up to the same number as the orders
of (A,B) and (A′, B′). Clearly each of (A∩A′, B ∪B′) and (A∪A′, B ∩B′)
is nested with both, (A,B) and (A′, B′).

For two sets X, Y ⊆ V (G) we say that a separation (A,B) of G is an X–Y
separation if X ⊆ A and Y ⊆ B. If (A,B) and (A′, B′) are X–Y separations
in G, then so are (A∩A′, B∪B′) and (A∪A′, B∩B′). Furthermore, if (A,B)
and (A′, B′) are X–Y separations of G of minimum order, say m, then so are
(A∩A′, B∪B′) and (A∪A′, B∩B′) as none of the latter two can have order
less than m but their orders sum up to 2m.

Lemma 3.1. Let G be a graph and X, Y, Z ⊆ V (G). If for every z ∈ Z there
is an X–Y separation of G of minimal order with z in its separator, then
there is a nested set S of X–Y separations of minimal order such that their
separators cover Z.

Proof. Let S be a maximal nested set of X–Y separations of minimal order
in G (as S is finite the existence of a leftmost and a rightmost element in
any subset of S is trivial). Suppose for a contradiction that some z ∈ Z is
not contained in any separator of the separations of S.

Set SL :={(A,B) ∈ S | z ∈ B} and SR :={(A,B) ∈ S | z ∈ A}. Clearly
SL ∪ SR = S and SL ∩ SR = ∅. Moreover, if SL and SR are both non-
empty, then the rightmost element (AL, BL) of SL is the predecessor of the
leftmost element (AR, BR) of SR in S. Loosely speaking, SL and SR contain
the separations of S “on the left” and “on the right” of z, respectively, and
(AL, BL) and (AR, BR) are the separations of SL and SR whose separators
are “closest” to z.

By assumption there is an X–Y separation (A,B) of minimal order in G
with z ∈ A ∩B. Set

(A′, B′) :=(A ∪ AL, B ∩BL) and (A′′, B′′) :=(A′ ∩ AR, B′ ∪BR)

(but (A′, B′) :=(A,B) if SL = ∅ and (A′′, B′′) :=(A′, B′) if SR = ∅). As
(AL, BL), (A,B), and (AR, BR) are all X–Y separations of minimal order in
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G so must be (A′, B′) and (A′′, B′′). Moreover, we have z ∈ A′′ ∩ B′′ and
thus (A′′, B′′) /∈ S.

By construction we have (AL, BL) ≤ (A′, B′) and (A′′, B′′) ≤ (AR, BR).
To verify that (AL, BL) ≤ (A′′, B′′) we need to show AL ⊆ A′ ∩ AR and
BL ⊇ B′ ∪ BR. All required inclusions follow from (AL, BL) ≤ (A′, B′) and
(AL, BL) ≤ (AR, BR). So by transitivity (A′′, B′′) is right of all elements of
SL and left of all elements of SR, in particular, it is nested with all elements
of S, contradicting the maximality of the latter.

We assume that every path comes with a fixed linear order of its vertices.
If a path arises as an X–Y path, then we assume it is ordered from X to Y
and if a path Q arises as a subpath of some path P , then we assume that Q
is ordered in the same direction as P unless explicitly stated otherwise.

Given a vertex v on a path P we write Pv for the initial subpath of P
with last vertex v and vP for the final subpath of P with first vertex v. If v
and w are both vertices of P , then by vPw or wPv we mean the subpath of P
that ends in v and w and is ordered from v to w or from w to v, respectively.
By P−1 we denote the path P with inverse order.

Let P be a set of disjoint paths in some graph G. We do not distinguish
between P and the graph

⋃P formed by uniting these paths; both will be
denoted by P . By a path of P we always mean an element of P , not an
arbitrary path in

⋃P .
Let G be a graph. For a subgraph S ⊆ G an S-bridge in G is a connected

subgraph B ⊆ G such that B is edge-disjoint from S and either B is a single
edge with both ends in S or there is a component C of G − S such that B
consists of all edges that have at least one end in C. We call a bridge trivial
in the former case and non-trivial in the latter. The vertices in V (B)∩V (S)
and V (B) \ V (S) are called the attachments and the inner vertices of B,
respectively. Clearly an S-bridge has an inner vertex if and only if it is non-
trivial. We say that an S-bridge B attaches to a subgraph S ′ ⊆ S if B has
an attachment in S ′. Note that S-bridges are pairwise edge-disjoint and each
common vertex of two S-bridges must be an attachment of both.

A branch vertex of S is a vertex of degree 6= 2 in S and a segment of S is
a maximal path in S such that its ends are branch vertices of S but none of
its inner vertices are. An S-bridge B in G is called unstable if some segment
of S contains all attachments of B, and stable otherwise. If an unstable S-
bridge B has at least two attachments on a segment P of S, then we call P
a host of B and say that B is hosted by P . For a subgraph H ⊆ G we say
that two segments of S are S-bridge adjacent or just bridge adjacent in H if
H contains an S-bridge that attaches to both.

If a graph is the union of its segments and no two of its segments have the
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same end vertices, then it is called unambiguous and ambiguous otherwise.
It is easy to see that a graph S is unambiguous if and only if all its cycles
contain a least three branch vertices. In our application S will always be
a union of disjoint paths so its segments are precisely these paths and S is
trivially unambiguous.

Let S ⊆ G be unambiguous. We say that S ′ ⊆ G is a rerouting of S
if there is a bijection ϕ from the segments of S to the segments of S ′ such
that every segment P of S has the same end vertices as ϕ(P ) (and thus ϕ is
unique by the unambiguity). If S ′ contains no edge of a stable S-bridge, then
we call S ′ a proper rerouting of S. Clearly any rerouting of the unambiguous
graph S has the same branch vertices as S and hence is again unambiguous.

The following Lemma states two observations about proper reroutings.
The proofs are both easy and hence we omit them.

Lemma 3.2. Let S ′ be a proper rerouting of an unambiguous graph S ⊆ G
and let ϕ be as in the definition. Both of the following statements hold.

(i) Every hosted S-bridge has a unique host. For each segment P of S the
segment ϕ(P ) of S ′ is contained in the union of P and all S-bridges
hosted by P .

(ii) For every stable S-bridge B there is a stable S ′-bridge B′ with B ⊆ B′.
Moreover, if B attaches to a segment P of S, then B′ attaches to ϕ(P ).

Note that Lemma 3.2 (ii) implies that no unstable S ′-bridge contains an
edge of a stable S-bridge. Together with (i) this means that being a proper
rerouting of an unambiguous graph is a transitive relation.

The next Lemma is attributed to Tutte; we refer to [9, Lemma 2.2] for a
proof1.

Lemma 3.3. Let G be a graph and S ⊆ G unambiguous. There exists a
proper rerouting S ′ of S in G such that if B′ is an S ′-bridge hosted by some
segment P ′ of S ′, then B′ is non-trivial and there are vertices v, w ∈ V (P ′)
such that the component of G − {v, w} that contains B′ − {v, w} is disjoint
from S ′ − vP ′w.

This implies that the segments of S ′ are induced paths in G as trivial
S ′-bridges cannot be unstable and no two segments of S ′ have the same end
vertices.

1 To check that Lemma 2.2 in [9] implies our Lemma 3.3 note that if S′ is obtained
from S by “a sequence of proper reroutings” as defined in [9], then by transitivity S′ is a
proper rerouting of S according to our definition. And although not explicitly included in
the statement, the given proof shows that no trivial S′-bridge can be unstable.
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Let G be a graph. A set of disjoint paths in G is called a linkage. If
X, Y ⊆ V (G) with k := |X| = |Y |, then a set of k disjoint X–Y paths in G is
called an X–Y linkage or a linkage from X to Y . LetW = (W0, . . . ,Wl) be an
ordered tuple of subsets of V (G). Then l is the length ofW , the sets Wi with
0 ≤ i ≤ l are its bags, and the sets Wi−1 ∩Wi with 1 ≤ i ≤ l are its adhesion
sets. We refer to the bags Wi with 1 ≤ i ≤ l − 1 as inner bags. When we
say that a bag W of W contains some graph H, we mean H ⊆ G[W ]. Given
an inner bag Wi of W , the sets Wi−1 ∩Wi and Wi ∩Wi+1 are called the left
and right adhesion set of Wi, respectively. Whenever we introduce a tuple
W as above without explicitly naming its elements, we shall denote them by
W0, . . . ,Wl where l is the length of W . For indices 0 ≤ j ≤ k ≤ l we use the
shortcut W[j,k] :=

⋃k
i=jWi.

The tuple W with the following five properties is called a slim decompo-
sition of G.

(L1)
⋃W = V (G) and every edge of G is contained in some bag of W .

(L2) If 0 ≤ i ≤ j ≤ k ≤ l, then Wi ∩Wk ⊆ Wj.

(L3) All adhesion sets of W have the same size.

(L4) No bag of W contains another.

(L5) G contains a (W0 ∩W1)–(Wl−1 ∩Wl) linkage.

The unique size of the adhesion sets of a slim decomposition is called its
adhesion. A linkage P as in (L5) together with an enumeration P1, . . . , Pq of
its paths is called a foundational linkage for W and its members are called
foundational paths. Each path Pα contains a unique vertex of every adhesion
set of W and we call this vertex the α-vertex of that adhesion set. For an
inner bag W of W the α-vertex in the left and right adhesion set of W are
called the left and right α-vertex of W , respectively. Note that P is allowed
to contain trivial paths so

⋂W may be non-empty.
The enumeration of a foundational linkage P for W is a formal tool to

compare arbitrary linkages between adhesion sets ofW to P by their ‘induced
permutation’ as detailed below. When considering another foundational link-
age Q = {Q1, . . . , Qq} forW we shall thus always assume that it induces the
same enumeration as P on W0 ∩W1, in other words, Qα and Pα start on the
same vertex.

Suppose that W is a slim decomposition of some graph G with founda-
tional linkage P . Then any P-bridge B in G is contained in a bag ofW , and
this bag is unique unless B is trivial and contained in one or more adhesion
sets.
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We say that a linkage Q in a graph H is p-attached if each path of Q is
induced in H and if some non-trivial Q-bridge B attaches to a non-trivial
path P of Q, then either B attaches to another non-trivial path of Q or there
are at least p−2 trivial paths Q of Q such that H contains a Q-bridge (which
may be different from B) attaching to P and Q.

We call a pair (W ,P) of a slim decompositionW of G and a foundational
linkage P forW a regular decomposition of attachedness p of G if there is an
integer p such that the axioms (L6), (L7), and (L8) hold.

(L6) P [W ] is p-attached in G[W ] for all inner bags W of W .

(L7) A path P ∈ P is trivial if P [W ] is trivial for some inner bag W of W .

(L8) For every P,Q ∈ P , if some inner bag ofW contains a P-bridge attach-
ing to P and Q, then every inner bag of W contains such a P-bridge.

The integer p is not unique: A regular decomposition of attachedness p has
attachedness p′ for all integers p′ ≤ p. Note that P satisfies (L7) if and only
if every vertex of G either lies in at most two bags of W or in all bags. This
means that either all foundational linkages for W satisfy (L7) or none.

The next Theorem follows2 from the Lemmas 3.1, 3.2, and 3.5 in [9].

Theorem 3.4 (Kawarabayashi et al. [9]). For all integers a, l, p, w ≥ 0 there
exists an integer N with the following property. If G is a p-connected graph
of tree-width less than w with at least N vertices, then either G contains a
subdivision of Ka,p, or G has a regular decomposition of length at least l,
adhesion at most w, and attachedness p.

Note that [9] features a stronger version of Theorem 3.4, namely Theo-
rem 3.8, which includes an additional axiom (L9). We omit that axiom since
our arguments do not rely on it.

Let (W ,P) be a slim decomposition of adhesion q and length l for a
graph G. Suppose that Q is a linkage from the left adhesion set of Wi to
the right adhesion set of Wj for two indices i and j with 1 ≤ i ≤ j < l.
The enumeration P1, . . . , Pq of P induces an enumeration Q1, . . . , Qq of Q
where Qα is the path of Q starting in the left α-vertex of Wi. The map
π : {1, . . . , q} → {1, . . . , q} such that Qα ends in the right π(α)-vertex of
Wj for α = 1, . . . , q is a permutation because Q is a linkage. We call it
the induced permutation of Q. Clearly the induced permutation of Q is the
composition of the induced permutations of Q[Wi], Q[Wi+1], . . . , Q[Wj]. For

2 The statement of Lemma 3.1 in [9] only asserts the existence of a minor isomorphic
to Ka,p rather than a subdivision of Ka,p like we do. But its proof refers to an argument
in the proof of [14, Theorem 3.1] which actually gives a subdivision.
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any permutation π of {1, . . . , q} and any graph Γ on {1, . . . , q} we write πΓ
to denote the graph ({π(α) | α ∈ V (Γ)}, {π(α)π(β) | αβ ∈ E(Γ)}). For a
subset X ⊆ {1, . . . , q} we set QX :={Qα | α ∈ X}.

Keep in mind that the enumerations P induces on linkages Q as above
always depend on the adhesion set where the considered linkage starts. For
example let Q be as above and for some index i′ with i < i′ ≤ j set
Q′ :=Q[W[i′,j]]. Then Qα[W[i′,j]] need not be the same as Q′α. More pre-
cisely, we have Qα[W[i′,j]] = Q′τ(α) where τ denotes the induced permutation

of Q[W[i,i′−1]].
For some subgraph H of G the bridge graph of Q in H, denoted B(H,Q),

is the graph with vertex set {1, . . . , q} in which αβ is an edge if and only if
Qα and Qβ are Q-bridge adjacent in H. Any Q-bridge B in H that attaches
to Qα and Qβ is said to realise the edge αβ. We shall sometimes think of
induced permutations as maps between bridge graphs.

For a slim decomposition W of length l of G with foundational link-
age P we define the auxiliary graph Γ(W ,P) :=B(G[W[1, l−1]],P). Clearly
B(G[W ],P [W ]) ⊆ Γ(W ,P) for each inner bag W of W and if (W ,P) is
regular, then by (L8) we have equality.

Set λ :={α | Pα is non-tivial} and θ :={α | Pα is trivial}. Given a sub-
graph Γ ⊆ Γ(W ,P) and some foundational linkage Q for W , we write GQΓ
for the graph obtained by deleting Q \QV (Γ) from the union of Q and those
Q-bridges in inner bags of W that realise an edge of Γ or attach to QV (Γ)∩λ
but to no path of Qλ\V (Γ). For a subset V ⊆ {1, . . . , q} we write GQV instead
of GQΓ(W,P)[V ]. Note that Qθ = Pθ. Hence GPλ and GQλ are the same graph
and we denote it by Gλ.

A regular decomposition (W ,P) of a graph G is called stable if it satisfies
the following two axioms where λ :={α | Pα is non-trivial}.

(L10) If Q is a linkage from the left to the right adhesion set of some inner bag
of W , then its induced permutation is an automorphism of Γ(W ,P).

(L11) If Q is a linkage from the left to the right adhesion set of some inner
bag W of W , then every edge of B(G[W ],Q) with one end in λ is also
an edge of Γ(W ,P).

Given these definitions we can further expound our strategy to prove
the main theorem: We will reduce the given linkage problem to a linkage
problem with start and end vertices in W0 ∪ Wl for some stable regular
decomposition (W ,P) of length l. The stability ensures that we maximised
the number of edges of Γ(W ,P), i.e. no rerouting of P will give rise to new
bridge adjacencies. We will focus on a subset λ0 ⊆ λ and show that the
minimum degree of G forces a high edge density in GPλ0

, leading to a high

47



number of edges in Γ(W ,P)[λ0]. Using combinatoric arguments, which we
elaborate in Section 4, we show that we can find linkages using segments of
P and P-bridges in GPλ0

to realise any matching of start and end vertices in
W0 ∪Wl, showing that G is in fact k-linked.

We strengthen Theorem 3.4 by the assertion that the regular decompo-
sition can be chosen to be stable. We like to point out that, even with the
left out axiom (L9) included in the definition of a regular decomposition,
Theorem 3.5 would hold. By almost the same proof as in [9] one could also
obtain a stronger version of (L8) stating that for every subset R of P if some
inner bag ofW contains a P-bridge attaching every path of R but to no path
of P \ R, then every inner bag does.

Theorem 3.5. For all integers a, l, p, w ≥ 0 there exists an integer N with
the following property. If G is a p-connected graph of tree-width less than w
with at least N vertices, then either G contains a subdivision of Ka,p, or G
has a stable regular decomposition of length at least l, adhesion at most w,
and attachedness p.

Before we start with the formal proof let us introduce its central concepts:
disturbances and contractions. Let (W ,P) be a regular decomposition of a
graph G. A linkage Q is called a twisting (W ,P)-disturbance if it violates
(L10) and it is called a bridging (W ,P)-disturbance if it violates (L11). By
a (W ,P)-disturbance we mean either of these two and a disturbance may be
twisting and bridging at the same time. If the referred regular decomposition
is clear from the context, then we shall not include it in the notation and
just speak of a disturbance. Note that a disturbance is always a linkage from
the left to the right adhesion set of an inner bag of W .

Given a disturbanceQ in some inner bag W ofW which is neither the first
nor the last inner bag ofW , it is not hard to see that replacing P [W ] with Q
yields a foundational linkage P ′ for W such that Γ(W ,P ′) properly contains
Γ(W ,P) and we shall make this precise in the proof. As the auxiliary graph
can have at most

(
w
2

)
edges, we can repeat this step until no disturbances

(with respect to the current decomposition) are left and we should end up
with a stable regular decomposition, given that we can somehow preserve the
regularity.

This is done by “contracting” the decomposition in a certain way. The
technique is the same as in [2] or [9]. Given a regular decomposition (W ,P)
of length l of some graph G and a subsequence i1, . . . , in of 1, . . . , l, the
contraction of (W ,P) along i1, . . . , in is the pair (W ′,P ′) defined as follows.
We let W ′ :=(W ′

0,W
′
1, . . . ,W

′
n) with W ′

0 :=W[0, i1−1],

W ′
j :=W[ij , ij+1−1] for j = 1, . . . , n− 1,
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Wn :=W[in,l], and P ′ = P [W ′
[1, n−1]] (with the induced enumeration).

Lemma 3.6. Let (W ′,P ′) be the contraction of a regular decomposition
(W ,P) of some graph G of adhesion q and attachedness p along the sequence
i1, . . . , in. Then the following two statements hold.

(i) (W ′,P ′) is a regular decomposition of length n of G of adhesion q and
attachedness p, and Γ(W ′,P ′) = Γ(W ,P).

(ii) The decomposition (W ′,P ′) is stable if and only if none of the inner
bags Wi1 ,Wi1+1, . . . ,Win−1 of W contains a (W ,P)-disturbance.

Proof. The first statement is Lemma 3.3 of [9]. The second statement follows
from the fact that an inner bag W ′

j of W ′ contains a (W ′,P ′)-disturbance if
and only if one of the bags Wi of W with ij ≤ i < ij+1 contains a (W ,P)-
disturbance (unless W ′ has no inner bag, that is, n = 1). The “if” direction
is obvious and for the “only if” direction recall that the induced permutation
of P ′[W ′

j ] is the composition of the induced permutations of the P [Wi] with
ij ≤ i < ij+1 and every P ′-bridge in W ′

j is also a P-bridge and hence must
be contained in some bag Wi with ij ≤ i < ij+1.

Let Q be a linkage in a graph H and denote the trivial paths of Q by Θ.
Let Q′ be the union of Θ with a proper rerouting of Q \ Θ obtained from
applying Lemma 3.3 to Q\Θ in H−Θ. We call Q′ a bridge stabilisation of Q
in H. The next Lemma tailors Lemma 3.2 and Lemma 3.3 to our application.

Lemma 3.7. Let Q be a linkage in a graph H. Denote by Θ the trivial paths
of Q and let Q′ be a bridge stabilisation of Q in H. Let P and Q be paths of
Q and let P ′ and Q′ be the unique paths of Q′ with the same end vertices as
P and Q, respectively. Then the following statements hold.

(i) P ′ is contained in the union of P with all Q-bridges in H that attach
to P but to no other path of Q \Θ.

(ii) If P and Q are Q-bridge adjacent in H and one of them is non-trivial,
then P ′ and Q′ are Q′-bridge adjacent in H.

(iii) Let Z be the set of end vertices of the paths of Q. If p is an integer
such that for every vertex x of H − Z there is an x–Z fan of size p,
then Q′ is p-attached.

Proof.

(i) This is trivial if P ∈ Θ and follows easily from Lemma 3.2 (i) otherwise.
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(ii) The statement follows directly from Lemma 3.2 (ii) if P and Q are both
non-trivial so we may assume that P = P ′ ∈ Θ and Q is non-trivial. By
assumption there is a P–Q path R in H. Clearly R∪Q contains the end
vertices of Q′. On the other hand, by (i) it is clear that Q ∩ Q′ ⊆ Q′.
We claim that R∩Q′ ⊆ Q′. Since R is internally disjoint from Q all its
inner vertices are inner vertices of some (Q\Θ)-bridge B. If B is stable
or unstable but not hosted by any path of Q (that is, it has at most
one attachment), then Lemma 3.2 implies that no path of Q′ contains
an inner vertex of B and that our claim follows. If B is hosted by a
path of Q, then this path must clearly be Q and thus by Lemma 3.2
(i) R ∩Q′ ⊆ Q′ as claimed. Hence R ∪Q contains a P–Q′ path that is
internally disjoint from Q′ as desired.

(iii) Clearly all paths of Q′ are induced in H, either because they are trivial
or by Lemma 3.3. Let B be a non-trivial hosted Q′-bridge and let Q′

be the non-trivial path of Q′ to which it attaches. Then by Lemma 3.3
there are vertices v and w on Q′ and a separation (X, Y ) of H such that
V (B) ⊆ X, X ∩ Y ⊆ {v, w} ∪ V (Θ), and apart from the inner vertices
of vQ′w all vertices of Q′ are in Y , in particular, Z ⊆ Y . But B has an
inner vertex x which must be in X \ Y . So by assumption there is an
x–{v, w} ∪ V (Θ) fan of size p in G[X] and thus also an x–Θ fan of size
p− 2. It is easy to see that this can gives rise to the desired Q′-bridge
adjacencies in H.

Proof of Theorem 3.5. We will trade off some length of a regular decompo-
sition to gain edges in its auxiliary graph. To quantify this we define the

function f : N0 → N0 by f(m) :=(zlw!)ml where z := 2(w2) and call a regular
decomposition (W ,P) of a graph G valid if it has adhesion at most w, at-
tachedness p, and length at least f(m) where m is the number of edges in
the complement of Γ(W ,P) that are incident with at least one non-trivial
path of P .

Set λ := f
((
w
2

))
and let N be the integer returned by Theorem 3.4 when

invoked with parameters a, λ, p, and w. We claim that the assertion of
Theorem 3.5 is true for this choice of N . Let G be a p-connected graph of
tree-width less than w with at least N vertices and suppose that G does not
contain a subdivision of Ka,p. Then by the choices of N and λ the graph G
has a valid decomposition (the foundational linkage has at most w paths so
there can be at most

(
w
2

)
non-edges in the auxiliary graph). Among all valid

decompositions of G pick (W ,P) such that the number of edges of Γ(W ,P)
is maximal and denote the length of (W ,P) by n.
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We may assume that for any integer k with 0 ≤ k ≤ n − l one of the
l − 1 consecutive inner bags Wk+1, . . . ,Wk+l−1 of W contains a disturbance.
If not, then by Lemma 3.6, the contraction of (W ,P) along the sequence
k + 1, k + 2, . . . , k + l is a stable regular decomposition of G of length l,
adhesion at most w, and attachedness p as desired.

Claim 3.5.1. Let 1 ≤ k ≤ k′ ≤ n − 1 with k′ − k ≥ lw! − 1. Then the
graph H :=G[W[k,k′]] contains a linkage Q from the left adhesion set of Wk

to the right adhesion set of Wk′ such that B(H,Q) is a proper supergraph of
Γ(W ,P), the induced permutation π of Q is the identity, and Q is p-attached
in H.

Proof. There are indices k0 := k, k1, . . . , kw! := k′+1, such that for j ∈ {1, . . . ,
w!} we have kj−kj−1 ≥ l. For each j ∈ {0, . . . , w!−1} one of the at least l−1
consecutive inner bags Wkj+1,Wkj+2, . . . ,Wkj+1−1 contains a disturbance Qj
by our assumption. Let Wij be the bag of W that contains Qj and let Q′j be
the bridge stabilisation of Qj in G[Wij ].

If Qj is a twisting (W ,P)-disturbance, then so is Q′j as they have the
same induced permutation. If Qj is a bridging (W ,P)-disturbance, then so
is Q′j by Lemma 3.7 (ii). The set Z of end vertices of Qj is the union of both
adhesion sets of Wij and clearly for every vertex x ∈ Wij \Z there is an x–Z
fan of size p in G[Wij ] as G is p-connected. So by Lemma 3.7 (iii) the linkage
Q′j is p-attached in G[Wij ].

For every j ∈ {0, . . . , w! − 1} denote the induced permutation of Q′j by
πj. Since the symmetric group Sq has order at most q! ≤ w! we can pick3

indices j0 and j1 with 0 ≤ j0 ≤ j1 ≤ w!−1 such that πj1 ◦πj1−1 . . .◦πj0 = id.
Let Q be the linkage from the left adhesion set of Wk to the right adhesion

set of Wk′ in H obtained from P [W[k,k′]] by replacing P [Wij ] with Q′j for all
j ∈ {j0, . . . , j1}. Of all the restrictions of Q to the bags Wk, . . . ,Wk′ only
Q[Wij ] = Qj with j0 ≤ j ≤ j1 need not induce the identity permutation.
However, the composition of their induced permutations is the identity by
construction and therefore the induced permutation of Q is the identity.

To see that B(H,Q) is a supergraph of Γ(W ,P) note that k < ij0 so Q
and P coincide on Wk and hence by (L8) we have

Γ(W ,P) = B(G[Wk],P [Wk]) ⊆ B(H,Q).

It remains to show that B(H,Q) contains an edge that is not in Γ(W ,P).
Set W :=Wij0

, W ′ :=Wij0+1, and π :=πj0 . If Q′j0 is a bridging disturbance,

3 Let (G, ·) be a group of order n and g1, . . . , gn ∈ G. Then of the n + 1 products

hk :=
∏k

i=1 gi for 0 ≤ k ≤ n, two must be equal by the pigeon hole principle, say hk = hl
with k < l. This means

∏l
i=k+1 gi = e, where e is the neutral element of G.
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then B0 :=B(G[W ],Q[W ]) contains an edge that is not in Γ(W ,P). Since
Q and P coincide on all bags prior to W (down to Wk) we must have B0 ⊆
B(H,Q).

If Q′j0 is a twisting disturbance, then j1 > j0, in particular, W ′ comes
before Wij0+1

(there is at least one bag between Wij0
and Wij0+1

, namely
Wkj0+1

). This means Q[W ′] = P [W ′] and hence we have

B1 :=B(G[W ′],Q[W ′]) = B(G[W ′],P [W ′]) = Γ(W ,P).

On the other hand, the induced permutation of the restriction ofQ to all bags
prior to W ′ is π and thus π−1B1 ⊆ B(H,Q). But π is not an automorphism
of Γ(W ,P) and therefore π−1B1 = π−1Γ(W ,P) contains an edge that is not
in Γ(W ,P) as desired. This concludes the proof of Claim 3.5.1

To exploit Claim 3.5.1 we now contract subsegments of lw! consecutive
inner bags of W into single bags. We assumed earlier that (W ,P) is not
stable so the number m of non-edges of Γ(W ,P) is at least 1 (if Γ(W ,P) is
complete there can be no disturbances). Set n′ := zf(m − 1). As (W ,P) is
valid, its length n is at least f(m) = zlw!f(m− 1) = n′lw!. Let (W ′,P ′) be
the contraction of (W ,P) along the sequence i1, . . . , in′ defined by ij :=(j −
1)lw! + 1 for j = 1, . . . , n′. Then by Lemma 3.6 the pair (W ′,P ′) is a regular
decomposition of G of length n′, adhesion at most w, it is p-attached, and
Γ(W ′,P ′) = Γ(W ,P).

By construction every inner bag W ′
i of W ′ consists of lw! consecutive

inner bags ofW and hence by Claim 3.5.1 it contains a bridging disturbance
Q′i such Q′i is p-attached in G[W ′

i ], its induced permutation is the identity,
and B(G[W ′

i ],Q′i) is a proper supergraph of Γ(W ′,P ′).
Clearly Γ(W ′,P ′) has at most z − 1 proper supergraphs on the same

vertex set. On the other hand, W ′ has at least n′ − 1 = zf(m − 1) − 1
inner bags. By the pigeonhole principle there must be f(m − 1) indices
0 < i1 < . . . < if(m−1) < n′ such that B(G[W ′

ij
],Q′ij) is the same graph Γ for

j = 1, . . . , f(m− 1).
Let (W ′′,P ′′) be the contraction of (W ′,P ′) along i1, . . . , if(m−1). Obtain

the foundational linkage Q′′ for W ′′ from P ′′ by replacing P ′[Wij ] with Qij
for 1 ≤ j ≤ f(m − 1). By construction W ′′ is a slim decomposition of G of
length f(m− 1) and of adhesion at most w. Q′′ is a foundational linkage for
W ′′ that satisfies (L7) because P ′′ does. By construction Q′′ is p-attached
and B(G[W ′′],Q′′[W ′′]) = Γ for all inner bags W ′′ of W ′′. Hence (W ′′,P ′′)
is regular decomposition of G. But it is valid and its auxiliary graph Γ has
more edges than Γ(W ,P), contradicting our initial choice of (W ,P).
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4 Token Movements

Consider the following token game. We place distinguishable tokens on the
vertices of a graph H, at most one per vertex. A move consists of sliding a
token along the edges of H to a new vertex without passing through vertices
which are occupied by other tokens. Which placements of tokens can be
obtained from each other by a sequence of moves?

A rather well-known instance of this problem is the 15-puzzle where to-
kens 1, . . . , 15 are placed on the 4-by-4 grid. It has been observed as early as
1879 by Johnson [6] that in this case there are two placements of the tokens
which cannot be obtained from each other by any number of moves.

Clearly the problem gets easier the more “unoccupied” vertices there are.
The hardest case with |H|−1 tokens was tackled comprehensively by Wilson
[25] in 1974 but before we turn to his solution we present a formal account
of the token game and show how it helps with the linkage problem.

Throughout this section let H be a graph and let X always denote a
sequence X = X0, . . . , Xn of vertex sets of H and M a non-empty sequence
M = M1, . . . ,Mn of non-trivial paths in H. In our model the sets Xi are “oc-
cupied vertices”, the paths Mi are paths along which the tokens are moved,
and i is the “move count”.

Formally, a pair (X ,M) is called a movement on H if for i = 1, . . . , n

(M1) the set Xi−14Xi contains precisely the two end vertices of Mi, and

(M2) Mi is disjoint from Xi−1 ∩Xi.

Then n is the length of (X ,M), the sets in X are its intermediate configu-
rations, in particular, X0 and Xn are its first and last configuration, respec-
tively. The paths in M are the moves of (X ,M). A movement with first
configuration X and last configuration Y is called an X–Y movement. Note
that our formal notion of token movements allows a move Mi to have both
ends in Xi−1 or both in Xi. In our intuitive account of the token game this
corresponds to “destroying” or “creating” a pair of tokens on the end vertices
of Mi.

Let us state some obvious facts about movements. If M is a non-empty
sequence of non-trivial paths in H and one intermediate configuration Xi is
given, then there is a unique sequence X such that (X ,M) satisfies (M1). A
pair (X ,M) is a movement if and only if ((Xi−1, Xi), (Mi)) is a movement
for i = 1, . . . , n. This easily implies the following Lemma so we spare the
proof.

Lemma 4.1. Let (X ,M) = ((X0, . . . , Xn), (M1, . . . ,Mn)) and (Y ,N ) =
((Y0, . . . , Ym), (N1, . . . , Nm)) be movements on H and let Z ⊆ V (H).
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(i) If Xn = Y0, then the pair

(
(X0, . . . , Xn = Y0, . . . , Ym), (M1, . . .Mn, N1, . . . , Nm)

)

is a movement. We denote it by (X ,M)⊕ (Y ,N ) and call it the con-
catenation of (X ,M) and (Y ,N ).

(ii) If every move of M is disjoint from Z, then the pair

(
(X0 ∪ Z, . . . , Xn ∪ Z), (M1, . . .Mn)

)

is a movement and we denote it by (X ∪ Z,M).

Let (X ,M) be a movement. For i = 1, . . . , n let Ri be the graph with
vertex set (Xi−1 × {i− 1}) ∪ (Xi × {i}) and the following edges:

1. (x, i− 1)(x, i) for each x ∈ Xi−1 ∩Xi, and

2. (x, j)(y, k) where x, y are the end vertices of Mi and j, k the unique
indices such that (x, j), (y, k) ∈ V (Ri).

Define a multigraph R with vertex set
⋃n
i=0(Xi×{i}) where the multiplicity

of an edge is the number of graphs Ri containing it. Observe that two graphs
Ri and Rj with i < j are edge-disjoint unless j = i+ 1 and Mi and Mj both
end in the same two vertices x, y of Xj, in which case they share one edge,
namely (x, j)(y, j). Our reason to prefer the above definition of R over just
taking the simple graph

⋃n
i=1Ri is to avoid a special case in the following

argument.
Every graph Ri is 1-regular. Hence inR every vertex (x, i) with 0 < i < n

has degree 2 as (x, i) is a vertex of Rj if an only if j = i or j = i+ 1. Every
vertex (x, i) with i = 0 or i = n has degree 1 as it only lies in R1 or in Rn.
This implies that a component of R is either a cycle (possibly of length 2)
avoiding (X0×{0})∪ (Xn×{n}) or a non-trivial path with both end vertices
in (X0×{0})∪ (Xn×{n}). We denote the subgraph of R consisting of these
paths by R(X ,M). Intuitively, each path of R(X ,M) traces the position
of one token over the course of the token movement or of one pair of tokens
which is destroyed or created during the movement.

For vertex sets X and Y we call any 1-regular graph on (X×{0})∪ (Y ×
{∞}) an (X, Y )-pairing. An (X, Y )-pairing is said to be balanced if its edges
form a perfect matching from X × {0} to Y × {∞}, that is, each edge has
one end vertex in X × {0} and the other in Y × {∞}.

The components of R(X ,M) induce a 1-regular graph on (X0 × {0}) ∪
(Xn × {n}) where two vertices form an edge if and only if they are in the
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same component of R(X ,M). To make this formally independent of the
index n, we replace each vertex (x, n) by (x,∞). The obtained graph L is an
(X0, Xn)-pairing and we call it the induced pairing of the movement (X ,M).
A movement (X ,M) with induced pairing L is called an L-movement. If a
movement induces a balanced pairing, then we call the movement balanced
as well.

Given two sets X and Y and a bijection ϕ : X → Y we denote by L(ϕ)
the balanced X–Y pairing where (x, 0)(y,∞) is an edge of L(ϕ) if and only
if y = ϕ(x). Clearly an X–Y pairing L is balanced if and only if there is a
bijection ϕ : X → Y with L = L(ϕ).

Given sets X, Y , and Z let LX be an X–Y pairing and LZ a Y –Z pairing.
Denote by LX ⊕LZ the graph on (X ×{0})∪ (Z ×{∞}) where two vertices
are connected by an edge if and only if they lie in the same component of
LX ∪L(idY )∪LZ . The components of LX ∪L(idY )∪LZ are either paths with
both ends in (X ×{0})∪ (Z×{∞}) or cycles avoiding that set. So LX ⊕LZ
is an X–Z pairing end we call it the concatenation of LX and LZ . The next
Lemma is an obvious consequence of this construction (and Lemma 4.1 (i)).

Lemma 4.2. The induced pairing of the concatenation of two movements is
the concatenation of their induced pairings.

Let (X ,M) be a movement on H. A vertex x of H is called (X ,M)-
singular if no move ofM contains x as an inner vertex and Ix :={i | x ∈ Xi} is
an integer interval, that is, a possibly empty sequence of consecutive integers.
Furthermore, x is called strongly (X ,M)-singular if it is (X ,M)-singular and
Ix is empty or contains one of 0 and n where n denotes the length of (X ,M).
We say that a set W ⊆ V (H) is (X ,M)-singular or strongly (X ,M)-singular
if all its vertices are. If the referred movement is clear from the context, then
we shall drop it from the notation and just write singular or strongly singular.

Note that any vertex v of H that is contained in at most one move of
M is strongly (X ,M)-singular. Furthermore, v is singular but not strongly
singular if it is contained in precisely two moves but neither in the first nor
in the last configuration.

The following Lemma shows how to obtain linkages in a graph G from
movements on the auxiliary graph of a regular decomposition of G. It enables
us to apply the results about token movements from this section to our linkage
problem.

Lemma 4.3. Let (W ,P) be a stable regular decomposition of some graph G
and set λ :={α | Pα is non-trivial} and θ :={α | Pα is trivial}. Let (X ,M)
be a movement of length n on a subgraph Γ ⊆ Γ(W ,P) and denote its induced
pairing by L. If θ is (X ,M)-singular and Wa and Wb are inner bags of W
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with b − a = 2n − 1, then there is a linkage Q ⊆ GPΓ [W[a,b]] and a bijection
ϕ : E(L) → Q such that for each e ∈ E(L) the path ϕ(e) ends in the left
α-vertex of Wa if and only if (α, 0) ∈ e and ϕ(e) ends in the right α-vertex
of Wb if and only if (α,∞) ∈ e.

Proof. Let us start with the general observation that for every connected
subgraph Γ0 ⊆ Γ(W ,P) and every inner bag W of W the graph GPΓ0

[W ] is
connected: If αβ is an edge of Γ0, then some inner bag of W contains a P-
bridge realising αβ and so does W by (L8). In particular, GPΓ0

[W ], contains
a Pα–Pβ path. So PV (Γ0)[W ] must be contained in one component of GPΓ0

[W ]
as Γ0 is connected. But any vertex of GPΓ0

[W ] is in PV (Γ0) or in a P-bridge
attaching to it. Therefore GPΓ0

[W ] is connected.
The proof is by induction on n. Denote the end vertices of M1 by α

and β, that is, X0 4 X1 = {α, β}. By definition the induced pairing L1

of ((X0, X1), (M1)) contains the edges (γ, 0)(γ,∞) with γ ∈ X0 ∩ X1 and
w.l.o.g. precisely one of (α, 0)(β, 0), (α, 0)(β,∞), and (α,∞)(β,∞). The
above observation implies that GPM1

[Wa] is connected. Hence Pα[W[a,a+1]] ∪
GPM1

[Wa] ∪ Pβ[W[a,a+1]] is connected and thus contains a path Q such that
Q1 :={Q} ∪ PX0∩X1 [W[a,a+1]] satisfies the following. There is a bijection ϕ1 :
E(L1) → Q1 such that for each e ∈ E(L1) the path ϕ1(e) ends in the left
γ-vertex of Wa if and only if (γ, 0) ∈ e and ϕ1(e) ends in the right γ-vertex
of Wa+1 if and only if (γ,∞) ∈ e. Moreover, the paths of Q1 are internally
disjoint from Wa+1 ∩Wa+2.

In the base case n = 1 the linkage Q :=Q1 is as desired. Suppose that
n ≥ 2. Then ((X1, . . . , Xn), (M2, . . . ,Mn)) is a movement and we denote its
induced permutation by L2. Lemma 4.2 implies L = L1 ⊕ L2. By induction
there is a linkage Q2 ⊆ GPΓ [W[a+2,b]] and a bijection ϕ2 : E(L2) → Q2 such
that for any e ∈ E(L2) the path ϕ2(e) ends in the left α-vertex of Wa+2

(which is the right α-vertex of Wa+1) if and only if (α, 0) ∈ e and in the right
α-vertex of Wb if and only if (α,∞) ∈ e.

Clearly for every γ ∈ X1 the γ-vertex of Wa+1∩Wa+2 has degree at most 1
in Q1 and in Q2. If a path of Q1 contains the γ-vertex of Wa+1 ∩Wa+2 and
γ /∈ X1, then γ ∈ θ so by assumption Iγ = {i | γ ∈ Xi} is an integer
interval which contains 0 but not 1. This means that no path of Q2 contains
the unique vertex of Pγ. If the union Q1 ∪ Q2 of the two graphs Q1 and
Q2 contains no cycle, then it is a linkage Q as desired. Otherwise it only
contains such a linkage.

In the rest of this section we shall construct suitable movements as input
for Lemma 4.3. Our first tool to this end is the following powerful theorem4

4Wilson stated his theorem for graphs which are neither bipartite, nor a cycle, nor a
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of Wilson.

Theorem 4.4 (Wilson 1974). Let k be a postive integer and let H be a graph
on n ≥ k + 1 vertices. If H is 2-connected and contains a triangle, then for
every bijection ϕ : X → Y of sets X, Y ⊆ V (H) with |X| = k = |Y | there is
a L(ϕ)-movement of length m ≤ n!/(n− k)! on H.

The given bound on m is not included in the original statement but not
too hard to check: Suppose that (X ,M) is a shortest L(ϕ)-movement and m
is its length. Since L is balanced we may assume that no tokes are “created”
or “destroyed” during the movement, that is, all intermediate configurations
have the same size and for every i with 1 ≤ i ≤ m there is an injection
ϕi : X → V (H) such that the induced pairing of ((X0, . . . , Xi), (M1, . . . ,Mi))
is L(ϕi). If there were i < j with ϕi = ϕj, then

(
(X0, . . . , Xi = Xj, Xj+1, . . . , Xm), (M1, . . . ,Mi,Mj+1, . . . ,Mm)

)

was an L(ϕ)-movement of length m− j + i < m contradicting our choice of
(X ,M). But there are at most n!/(n− k)! injections from X to V (H) so we
must have m ≤ n!/(n− k)!.

For our application we need to generate L-movements where L is not
necessarily balanced. Furthermore, Lemma 4.3 requires the vertices of θ
to be singular with respect to the generated movement. Lemma 4.8 and
Lemma 4.9 give a direct construction of movements if some subgraph of
H is a large star. Lemma 4.10 provides an interface to Theorem 4.4 that
incorporates the above requirements. The proofs of these three Lemmas
require a few tools: Lemma 4.5 simply states that for sets X and Y of equal
size there is a short balanced X–Y movement. Lemma 4.6 exploits this to
show that instead of generating movements for every choice of X, Y ⊆ V (H)
and any (X, Y )-pairing L it suffices to consider just one choice of X and Y .
Lemma 4.7 allows us to move strongly singular vertices from X to Y and
vice versa without spoiling the existence of the desired X–Y movement.

We call a set A of vertices in a graph H marginal if H − A is connected
and every vertex of A has a neighbour in H − A.

Lemma 4.5. For any two distinct vertex sets X and Y of some size k in a
connected graph H and any marginal set A ⊆ V (H) there is a balanced X–Y
movement of length at most k on H such that A is strongly singular.

certain graph θ0. If H properly contains a triangle, then it satisfies all these conditions
and if H itself is a triangle, then our theorem is obviously true.
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Proof. We may assume that H is a tree and that all vertices of A are leaves
of this tree. This already implies that vertices of A cannot be inner vertices
of moves. Moreover, we may assume that X ∩ Y ∩ A = ∅.

We apply induction on |H|. The base case |H| = 1 is trivial. For |H| > 1
let e be an edge of H. If the two components H1 and H2 of H − e each
contain the same number of vertices from X as from Y , then for i = 1, 2 we
set Xi :=X∩V (Hi) and Yi :=Y ∩V (Hi). By induction there is a balanced Xi–
Yi movement (Xi,Mi) of length at most |Xi| on Hi such that each vertex of A
is strongly (Xi,Mi)-singular where i = 1, 2. By Lemma 4.1 (X ,M) :=(X1 ∪
X2,M1)⊕(X2∪Y1,M2) is an X–Y movement of length at most |X1|+|X2| =
|X| = k as desired. Clearly (X ,M) is balanced and A is strongly (X ,M)-
singular as H1 and H2 are disjoint.

So we may assume that for every edge e of H one component of H − e
contains more vertices from Y than from X and direct e towards its end
vertex lying in this component. As every directed tree has a sink, there is
a vertex y of H such that every incident edge e is incoming, that is, the
component of H − e not containing y contains more vertices of X than of Y .
As |X| = |Y |, this can only be if y is a leaf in H and y ∈ Y \X.

Let M be any X–y path and denote its first vertex by x. At most one
of x ∈ Y and x ∈ A can be true by assumption. Clearly (({x}, {y}), (M)) is
an {x}–{y} movement and since H − y is connected, by induction there is
a balanced (X \ {x})–(Y \ {y}) movement (X ′,M′) of length at most k − 1
on H − y such that A is strongly singular w.r.t. both movements. As before,
Lemma 4.1 implies that

(X ,M) :=
(
(X, (X \ {x}) ∪ {y}), (M)

)
⊕ (X ′ ∪ {y},M′)

is an X–Y movement of length at most k. Clearly (X ,M) is balanced and
by construction A is strongly (X ,M)-singular.

Lemma 4.6. Let k be a positive integer and H a connected graph with a
marginal set A. Suppose that X,X ′, Y ′, Y ⊆ V (H) are sets with |X|+ |Y | =
2k, |X ′| = |X|, and |Y ′| = |Y | such that (X∪X ′)∩(Y ′∪Y ) does not intersect
A. If for each (X ′, Y ′)-pairing L′ there is an L′-movement (X ′,M′) of length
at most n′ on H such that A is strongly (X ′,M′)-singular, then for each
(X, Y )-pairing L there is an L-movement (X ,M) of length at most n′ + 2k
such that A is (X ,M)-singular and all vertices of A that are not strongly
(X ,M)-singular are in (X ′ ∪ Y ′) \ (X ∪ Y ).

Proof. Let (XX ,MX) be a balanced X–X ′ movement of length at most |X|
and let (XY ,MY ) be a balanced Y ′–Y movement of length at most |Y | such
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that A is strongly singular w.r.t. both movements. These exist by Lemma 4.5.
For any X ′–Y ′ movement (X ′,M′) such that A is strongly (X ′,M′)-singular,

(X ,M) :=(XX ,MX)⊕ (X ′,M′)⊕ (XY ,MY )

is a movement of length at most |X|+ n′ + |Y | = n′ + 2k by Lemma 4.1.
In a slight abuse of the notation we shall write a ∈ MX , a ∈ M′, and

a ∈ MY for a vertex a ∈ A if there is a move of MX , M′, and MY ,
respectively, that contains a. Consequently, we write a /∈ MX , etc. if there
is no such move. The set A is strongly singular w.r.t. each of (XX ,MX),
(X ′,M′), and (XY ,MY ). Therefore all moves of M are internally disjoint
from A and each a ∈ A is contained in at most one move from each of MX ,
M′, and MY . Moreover, for each a ∈ A

1. a ∈MX if and only if precisely one of a ∈ X and a ∈ X ′ is true,

2. a ∈M′ if and only if precisely one of a ∈ X ′ and a ∈ Y ′ is true, and

3. a ∈MY if and only if precisely one of a ∈ Y ′ and a ∈ Y is true.

Clearly A \ (X ∪ X ′ ∪ Y ′ ∪ Y ) is strongly (X ,M)-singular as none of its
vertices is contained in a path of M.

Let a ∈ X ∩ A. Then by assumption a /∈ Y ∪ Y ′ and thus a /∈ MY . If
a ∈ X ′, then a ∈M′ and a /∈MX . Otherwise a /∈ X ′ and therefore a ∈MX

and a /∈M′. In either case a is in at most one move ofM and hence X ∩A
is strongly (X ,M)-singular. A symmetric argument shows that Y ∩ A is
strongly (X ,M)-singular.

Let a ∈ (X ′ ∪ Y ′)∩A with a /∈ X ∪ Y . Then a ∈ X ′4 Y ′ so a ∈M′ and
precisely one of a ∈MX and a ∈MY is true.

We conclude that every vertex of a ∈ A is (X ,M)-singular and it is even
strongly (X ,M)-singular if and only if a /∈ (X ′ ∪ Y ′) \ (X ∪ Y ).

The induced pairings LX of (XX ,MX) and LY of (XY ,MY ) are both
balanced and it is not hard to see that for a suitable choice of L′ the induced
pairing LX ⊕ L′ ⊕ LY of (X ,M) equals L.

Lemma 4.7. Let H be a connected graph and let X, Y ⊆ V (H). Suppose that
L is an (X, Y )-pairing and (X ,M) an L-movement of length n. If x ∈ X∪Y
is strongly (X ,M)-singular, then the following statements hold.

(i) (X 4 x,M) is an (L4 x)-movement of length n where X 4 x :=(X04
{x}, . . . , Xn 4 {x}) and L 4 x denotes the graph obtained from L by
replacing (x, 0) with (x,∞) or vice versa (at most one of these can be
a vertex of L).
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(ii) A vertex y ∈ V (H) is (strongly) (X ,M)-singular if and only if it is
(strongly) (X 4 x,M)-singular.

Proof. Clearly (X 4 x,M) is an (L 4 x)-movement of length n. As its
intermediate configurations differ from those of X only in x, the last assertion
is trivial for y 6= x. For y = x note that {i | x /∈ Xi} is an integer interval
containing precisely one of 0 and n because {i | x ∈ Xi} is.

In the final three Lemmas of this section we put our tools to use and
construct movements under certain assumptions about the graph. Note that
it is not hard to improve on the upper bounds given for the lengths of the
generated movements with more complex proofs. However, in our main proof
we have an arbitrarily long stable regular decomposition at our disposal, so
the input movements for Lemma 4.3 can be arbitrarily long as well.

Lemma 4.8. Let k be a positive integer and H a connected graph with a
marginal set A. If one of

a) |A| ≥ 2k − 1 and

b) |NH(v) ∩NH(w) ∩ A| ≥ 2k − 3 for some edge vw of H − A

holds, then for any X–Y pairing L such that X, Y ⊆ V (H) with |X|+ |Y | =
2k and X ∩ Y ∩A = ∅ there is an L-movement (X ,M) of length at most 3k
on H such that A is (X ,M)-singular.

The basic argument of the proof is that that if we place tokens on the
leaves of a star but not on its centre, then we can clearly “destroy” any given
pair of tokens by moving one on top of the other through the centre of the
star.

Proof. Suppose that a) holds. Let NA ⊆ A with |NA| = 2k − 1. There are
sets X ′, Y ′ ⊆ V (H) such that

1. |X ′| = |X| and |Y ′| = |Y |,

2. X ∩NA ⊆ X ′,

3. Y ∩NA ⊆ Y ′, and

4. NA ⊆ X ′ ∪ Y ′ and X ′ ∩ Y ′ ∩ A = ∅.
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By Lemma 4.6 it suffices to show that for each X ′–Y ′ pairing L′ there is
an L′-movement (X ′,M′) of length at most k on H such that A is strongly
(X ′,M′)-singular. Assume w.l.o.g. that the unique vertex of (X ′ ∪ Y ′) \NA

is in X ′. Repeated application of Lemma 4.7 implies that the desired L′-
movement (X ′,M′) exists if and only if for every (X ′ ∪ Y ′)–∅ pairing L′′

there is an L′′-movement (X ′′,M′′) of length at most k on H such that A is
strongly (X ′′,M′′)-singular.

Let L′′ be any (X ′ ∪ Y ′)–∅ pairing. Then E(L′′) = {(xi, 0)(yi, 0) | i =
1, . . . , k} where (X ′ ∪ Y ′) ∩ NA = {x1, . . . , xk, y2, . . . , yk} and (X ′ ∪ Y ′) \
NA = {y1}. For i = 0, . . . , k set Xi :={xj, yj | j > i}. For i = 1, . . . , k
let Mi be an xi–yi path in H that is internally disjoint from A. Then
(X ′′,M′′) :=((X0, . . . , Xk), (M1, . . . ,Mk)) is an L′′-movement of length k and
obviously A is strongly (X ′′,M′′)-singular.

Suppose that b) holds and let NA ⊆ NH(v)∩NH(w)∩A with |NA| = 2k−3
and set NB :={v, w}. There are sets X ′, Y ′ ⊆ V (H) such that

1. |X ′| = |X| and |Y ′| = |Y |,

2. X ∩NA ⊆ X ′ and X ′ ∩ A ⊆ X ∪NA,

3. Y ∩NA ⊆ Y ′ and Y ′ ∩ A ⊆ Y ∪NA,

4. NA ⊆ X ′ ∪ Y ′ and X ′ ∩ Y ′ ∩ A = ∅,

5. NB ⊆ X ′ or X ′ ⊂ NA ∪NB, and

6. NB ⊆ Y ′ or Y ′ ⊂ NA ∪NB.

By Lemma 4.6 (see case a) for the details) it suffices to find an L′-
movement (X ′,M′) of length at most k onH such thatA is strongly (X ′,M′)-
singular where L′ is any X ′–Y ′ pairing. Since |(X ′ ∪ Y ′) \ NA| = 3 we may
asssume w.l.o.g. that NB ⊆ X ′ and Y ′ ⊆ NA ∪ {v}. So either there is
z ∈ X ′ \ (NA∪NB) or v ∈ Y ′. By repeated application of Lemma 4.7 we may
assume that NA ⊆ X ′. This means that L′ has the vertices N̄A :=NA × {0},
v̄ :=(v, 0), w̄ :=(w, 0), and z̄ :=(z, 0) in the first case or z̄ :=(v,∞) in the
second case. So L′ must satisfy one of the following.

1. No edge of L′ has both ends in {v̄, w̄, z̄}.

2. v̄w̄ ∈ E(L′).

3. v̄z̄ ∈ E(L′).

4. w̄z̄ ∈ E(L′).
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This leaves us with eight cases in total. Since construction is almost the same
for all cases we provide the details for only one of them: We assume that
v ∈ Y ′ and w̄z̄ ∈ E(L′). Then L′ has edges (w, 0)(v,∞) and {(xi, 0)(yi, 0) |
i = 1, . . . , k−1} where x1 := v and X ′∩NA = {x2, . . . , xk−1, y1, . . . , yk−1}. For
i = 0, . . . , k− 1 set Xi :={w}∪

⋃
j>i{xj, yj} and let Xk :={v}. Set M1 := vy1

and Mi :=xivyi for i = 2, . . . , k − 1 and let Mk be a w–z path in H that is
internally disjoint from A. Then (X ′,M′) :=((X0, . . . , Xk), (M1, . . . ,Mk)) is
an L′-movement and A is strongly (X ′,M′)-singular.

Lemma 4.9. Let k be a positive integer and H a connected graph with a
marginal set A. Let X, Y ⊆ V (H) with |X|+ |Y | = 2k and X ∩ Y ∩ A = ∅.
Suppose that there is a vertex v of H − (X ∪ Y ∪ A) such that

2|NH(v) \ A|+ |NH(v) ∩ A| ≥ 2k + 1.

Then for any (X, Y )-pairing L there is an L-movement of length at most
k(k + 2) on H such that A is singular.

Although the basic idea is still the same as in Lemma 4.8 it gets a little
more complicated here as our star might not have enough leaves to hold all
tokens at the same time. Hence we prefer an inductive argument over an
explicit construction.

Proof. Set NA :=NH(v) ∩ A and NB :=NH(v) \ A. If |NA| ≥ 2k − 1, then
we are done by Lemma 4.8 as 3k ≤ k(k + 2). So we may assume that
|NA| ≤ 2k−2. Under this additional assumption we prove a slightly stronger
statement than that of Lemma 4.9 by induction on k: We not only require
that A is singular but also that all vertices of A that are not strongly singular
are in NA \ (X ∪ Y ).

The base case k = 1 is trivial. Suppose that k ≥ 2. There are sets
X ′, Y ′ ⊆ V (H) such that

1. |X ′| = |X| and |Y ′| = |Y |,

2. X ∩NA ⊆ X ′ and X ′ ∩ A ⊆ X ∪NA,

3. Y ∩NA ⊆ Y ′ and Y ′ ∩ A ⊆ Y ∪NA,

4. NA ⊆ X ′ ∪ Y ′ and X ′ ∩ Y ′ ∩ A = ∅,

5. NB ⊆ X ′ or X ′ ⊂ NA ∪NB,

6. NB ⊆ Y ′ or Y ′ ⊂ NA ∪NB, and

7. v /∈ X ′ and v /∈ Y ′.
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By Lemma 4.6 it suffices to find an L′-movement (X ′,M′) of length at
most k2 such that A is strongly (X ′,M′)-singular where L′ is any X ′–Y ′

pairing.
If there are x, y ∈ X ′ ∩ NH(v) such that (x, 0)(y, 0) ∈ E(L′), then set

X ′′ :=X ′ \ {x, y}, Y ′′ :=Y ′, H ′′ :=H − (A \ (X ′′ ∪ Y ′′)), and L′′ :=L′ −
{(x, 0), (y, 0)}. We have NH′′(v) \A = NB and NH′′(v) ∩A = NA \ {x, y} as
NA ⊆ X ′ ∪ Y ′. This means

2|NH′′(v) \ A|+ |NH′′(v) ∩ A| ≥ 2|NB|+ |NA| − 2 ≥ 2k − 1.

Hence by induction there is an L′′-movement (X ′′,M′′) of length at most
(k + 1)(k − 1) on H ′′ such that A is singular and all vertices of A that
are not strongly singular are in NA \ (X ′′ ∪ Y ′′). Since NA ∩ V (H ′′) ⊆
X ′′ ∪ Y ′′ the set A is strongly (X ′′,M′′)-singular. Then by construction
(X ′,M′) :=((X ′, X ′′), (xvy))⊕(X ′′,M′′) is an L′-movement of length at most
k2 and A is strongly (X ′,M′)-singular.

The case x, y ∈ Y ′ ∩ NH(v) with (x,∞)(y,∞) ∈ E(L′) is symmetric. If
there are x ∈ X ′∩NH(v) and y ∈ Y ′∩NH(v) such that (x, 0)(y,∞) ∈ E(L′)
and at least one of x and y is in NA, then the desired movement exists by
Lemma 4.7 and one of the previous cases.

By assumption

2|NH(v)| ≥ 2|NB|+ |NA| ≥ 2k + 1

and thus |NH(v)| ≥ k+1. If NB ⊆ X ′, then NH(v) ⊆ X ′∪(Y ′∩A) and there
is a pair as above by the pigeon hole principle. Hence we may assume that
X ′ ⊂ NB and by symmetry also that Y ′ ⊂ NB. This implies that NA = ∅
and that L′ is balanced.

So we have |X ′| = k = |Y ′|, X ′, Y ′ ⊆ NB and |NB| ≥ k + 1. It is easy
to see that there is an L′-movement (X ′,M′) of length at most 2k ≤ k2 on
H[{v} ∪NB] such that A is strongly (X ′,M′)-singular.

Lemma 4.10. Let n ∈ N and let f : N0 → N0 be the map that is recursively
defined by setting f(0) := 0 and f(k) := 2k + 2n! + 4 + f(k − 1) for k > 0.
Let k be a positive integer and let H be a connected graph on at most n
vertices with a marginal set A. Let X, Y ⊆ V (H) with |X| + |Y | = 2k and
X ∩ Y ∩ A = ∅ such that neither X nor Y contains all vertices of H − A.
Suppose that there is a block D of H − A such that D contains a triangle
and 2|D| + |N(D)| ≥ 2k + 3. Then for any (X, Y )-pairing L there is an
L-movement of length at most f(k) on H such that A is singular.

Proof. Set NA :=N(D) ∩A and NB :=N(D) \A. If |NA| ≥ 2k − 1, then we
are done by Lemma 4.8 as 3k ≤ f(k). So we may assume that |NA| ≤ 2k−2.
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Under this additional assumption we prove a slightly stronger statement
than that of Lemma 4.10 by induction on k: We not only require that A is
singular but also that all vertices of A that are not strongly singular are in
NA \ (X ∪ Y ). As always the base case k = 1 is trivial. Suppose that k ≥ 2.

Claim 4.10.1. Suppose that |V (D) \ X| ≥ 1 and that there is an edge
(x, 0)(y, 0) ∈ E(L) with x ∈ V (D) and y ∈ V (D) ∪ N(D). Let A′ ⊆
A \ (X ∪ Y ) with |A′| ≤ 1. Then there is an L-movement of length at most
|D|! + 1 + f(k − 1) on H −A′ such that A is singular and every vertex of A
that is not strongly singular is in NA \ (X ∪ Y ).

Proof. Let y′ be a neighbour of y in D. Here is a sketch of the idea: Move
the token from x to y′ by a movement on D which we can generate with
Wilsons’s Theorem 4.4 and then add the move yy′. This “destroys” one pair
of tokens and allows us to invoke induction.

We assume x 6= y′ (in the case x = y′ we can skip the construction
of (Xϕ,Mϕ) in this paragraph). Set X ′ :=(X \ {x}) ∪ {y′} if y′ /∈ X and
X ′ :=X otherwise. The vertices x and y′ are both in the 2-connected graph
D which contains a triangle. By definition |X ∩ V (D)| = |X ′ ∩ V (D)| and
by assumption both sets are smaller than |D|. Let ϕ : X → X ′ any bijection
with ϕ|X\V (D) = id |X\V (D) and ϕ(x) = y′. By Theorem 4.4 there is a balanced
L(ϕ|V (D))-movement of length at most |D|! on D so by Lemma 4.1 (ii) there
is a balanced L(ϕ)-movement (Xϕ,Mϕ) of length at most |D|! on H such
that all its moves are contained in D.

Set X ′′ :=X ′ \ {y, y′} and let L′ be the X ′–X ′′ pairing with edge set
{(z, 0)(z,∞) | z ∈ X ′′} ∪ {(y, 0)(y′, 0)}. Clearly ((X ′, X ′′), (yy′)) is an L′-
movement. Let L′′ be the X ′′–Y pairing obtained from L by deleting the edge
(x, 0)(y, 0) and substituting every vertex (z, 0) with (ϕ(z), 0). By definition
we have L = L(ϕ)⊕ L′ ⊕ L′′.

The set A′′ :=A′ ∪ (A ∩ {y}) has at most 2 elements and thus 2|D| +
|N(D) \ A′′| ≥ 2k + 1. So by induction there is an L′′-movement (X ′′,M′′)
of length at most f(k − 1) on H −A′′ such that A is (X ′′,M′′)-singular and
every vertex of A that is not strongly (X ′′,M′′)-singular is in NA \ (X ∪ Y ).
Hence the movement

(X ,M) :=(Xϕ,Mϕ)⊕
(
(X ′, X ′′), (yy′)

)
⊕ (X ′′,M′′)

on H − A′ has induced pairing L by Lemma 4.2 and length at most |D|! +
1 + f(k − 1). Every move of M that contains a vertex of A \ {y} is in M′′.
Hence A \ {y} is (X ,M)-singular and every vertex of A \ {y} that is not
strongly (X ,M)-singular is in NA \ (X ∪ Y ). If y /∈ A, then we are done.
But if y ∈ A, then our construction of (X ′′,M′′) ensures that no move of
M′′ contains y. Therefore y is strongly (X ,M)-singular.
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Claim 4.10.2. Suppose that |V (D)\X| ≥ 2 and that L has an edge (x, 0)(y, 0)
with x, y ∈ N(D). Then there is an L-movement of length at most 2|D|! +
2 + f(k − 1) on H such that A is singular and every vertex of A that is not
strongly singular is in NA \ (X ∪ Y ).

Proof. The proof is very similar to that of Claim 4.10.1. Let y′ be a neighbour
of y in D. We assume y′ ∈ X (in the case y′ /∈ X we can skip the construction
of (Xϕ,Mϕ) in this paragraph). Let z ∈ V (D) \X and let X ′ :=(X \ {y′})∪
{z}. Let ϕ : X → X ′ be any bijection with ϕ|X\V (D) = idX\V (D) and ϕ(y′) =
z. Applying Theorem 4.4 and Lemma 4.1 as in the proof of Claim 4.10.1
we obtain a balanced L(ϕ)-movement (Xϕ,Mϕ) of length at most |D|! such
that its moves are contained in D (in fact, we could “free” the vertex y′ with
only |D| moves by shifting each token on a y′–z path in D by one position
towards z, but we stick with the proof of Claim 4.10.1 here for simplicity).

Set X ′′ :=(X ′ \ {y}) ∪ {y′} and let ϕ′ : X ′ → X ′′ be the bijection that
maps y to y′ and every other element to itself. Clearly ((X ′, X ′′), (yy′))
is an L(ϕ′)-movement. Let L′′ be the X ′′–Y pairing obtained from L by
substituting every vertex (z, 0) with (ϕ′ ◦ ϕ(z), 0). It is not hard to see that
this construction implies L = L(ϕ)⊕L(ϕ′)⊕L′′. Since (0, x)(0, y′) is an edge
of L′′ with x ∈ V (D) ∪ N(D) and y′ ∈ V (D) we can apply Claim 4.10.1 to
obtain an L′′-movement (X ′′,M′′) of length at most |D|! + 1 + f(k − 1) on
H − ({y}∩A) (note that y ∈ A∩X implies y /∈ Y by assumption) such that
A \ {y} is (X ′′,M′′)-singular and every vertex of A \ {y} that is not strongly
(X ′′,M′′)-singular is in NA \ (X ∪ Y ). Hence the movement

(X ,M) :=(Xϕ,Mϕ)⊕
(
(X ′, X ′′), (yy′)

)
⊕ (X ′′,M′′)

on H has induced pairing L by Lemma 4.2 and length at most 2|D|! + 2 +
f(k − 1). The argument that A is (X ,M)-singular and the only vertices of
A that are not strongly (X ,M)-singular are in NA \ (X ∪ Y ) is the same as
in the proof of Claim 4.10.1.

Pick any vertex v ∈ V (D). There are sets X ′, Y ′ ⊆ V (H) such that

1. |X ′| = |X| and |Y ′| = |Y |,

2. X ∩NA ⊆ X ′ and X ′ ∩ A ⊆ X ∪NA,

3. Y ∩NA ⊆ Y ′ and Y ′ ∩ A ⊆ Y ∪NA,

4. NA ⊆ X ′ ∪ Y ′ and X ′ ∩ Y ′ ∩ A = ∅,

5. NB ⊆ X ′ or X ′ ⊂ NA ∪NB,
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6. NB ⊆ Y ′ or Y ′ ⊂ NA ∪NB,

7. v /∈ X ′ and v /∈ Y ′,
8. V (D) ∪NB ⊆ X ′ ∪ {v} or X ′ ⊂ V (D) ∪N(D), and

9. V (D) ∪NB ⊆ Y ′ ∪ {v} or Y ′ ⊂ V (D) ∪N(D).

By Lemma 4.6 it suffices to find an L′-movement (X ′,M′) of length at most
f(k) − 2k on H such that A is strongly (X ′,M′)-singular where L′ is any
X ′–Y ′ pairing.

Since n ≥ |D| we have f(k)−2k ≥ 2|D|!+2+f(k−1) and by assumption
v ∈ V (D) \ X ′. If L′ has an edge (0, x)(0, y) with x ∈ V (D) and y ∈
V (D) ∪ N(D), then by Claim 4.10.1 there is an L′-movement (X ′,M′) of
length at most f(k) − 2k on H such that A is strongly (X ′,M′)-singular
(recall that NA \ (X ′ ∪ Y ′) is empty by choice of X ′ and Y ′). So we may
assume that L′ contains no such edge and by Lemma 4.7 we may also assume
that it has no edge (x, 0)(y,∞) with x ∈ V (D) and y ∈ NA.

Counting the edges of L′ that are incident with a vertex of (V (D) ∪
N(D))× {0} we obtain the lower bound

‖L′‖ ≥ |X ′ ∩ V (D)|+ |X ′ ∩NB|/2 + |(X ∪ Y ) ∩NA|/2.
If V (D)∪NB ⊆ X ′∪{v}, then |X ′∩V (D)| = |D|− 1 and |X ′∩NB| = |NB|.
Since |(X ′ ∪ Y ′) ∩NA| = |NA| this means

2k = 2‖L′‖ ≥ 2(|D| − 1) + |NB|+ |NA| ≥ 2|D|+ |N(D)| − 2 ≥ 2k + 1,

a contradiction. So we must have X ′ ⊂ V (D) ∪N(D) and |V (D) \X ′| ≥ 2.
Applying Claim 4.10.2 in the same way as Claim 4.10.1 above we deduce that
no edge of L′ has both ends in X ×{0} or one end in X ×{0} and the other
in NA×{∞}. By symmetry we can obtain statements like Claim 4.10.1 and
Claim 4.10.2 for Y instead of X thus by the same argument as above we may
also assume that Y ′ ⊂ V (D) ∪ N(D) and that no edge of L′ has both ends
in Y × {∞} or one end in NA × {0} and the other in Y × {∞}. Hence L′ is
balanced and NA = ∅. Let ϕ′ : X ′ → Y ′ be the bijection with L′ = L(ϕ′).

In the rest of the proof we apply the same techniques that we have already
used in the proof of Claim 4.10.1 and again in that of Claim 4.10.2 so from
now on we only sketch how to construct the desired movements. Furthermore,
all constructed movements use only vertices of V (D)∪NB for their moves so
A is trivially strongly singular w.r.t. them.

If NB \X ′ 6= ∅, then we have X ′ ⊂ NB by assumption, so |NB| ≥ k + 1
and thus also Y ′ ⊂ NB. This is basically the same situation as at the end
of the proof for Lemma 4.9 so we find an L′-movement of length at most
2k ≤ f(k). We may therefore assume that NB ⊆ X ′ ∩ Y ′.
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Claim 4.10.3. Suppose that L′ has an edge (x, 0)(y,∞) with x ∈ V (D)
and y ∈ NB. Then there is an L′-movement (X ′,M′) of length at most
|D|! + 2 + f(k − 1) such that the moves of M′ are disjoint from A.

Proof. Let y′ be a neighbour of y in V (D). Since D is 2-connected, y′ has
two distinct neighbours yl and yr in D. Using Theorem 4.4 we generate a
balanced movement of length at most |D|! on H such that all its moves are in
D and its induced pairing has the edge (x, 0)(yl,∞) and its final configuration
does not contain y′ or yr. Adding the two moves yy′yr and yly

′y then results
in a movement (Xx,Mx) of length at most |D|! + 2 whose induced pairing
Lx contains the edge (x, 0)(y, 0).

It is not hard to see that there is a pairing L′′ such that Lx ⊕ L′′ = L
and this pairing must have the edge (y, 0)(y,∞). By induction there is an
L′′-movement (X ′′,M′′) of length at most f(k−1) such that none if its moves
contains y. So (X ′,M′) :=(Xx,Mx)⊕ (X ′′,M′′) is an L′ movement of length
at most |D|! + 2 + f(k − 1) as desired.

Claim 4.10.4. Suppose that L′ has an edge (x, 0)(y,∞) with x, y ∈ NB.
Then there is an L′-movement (X ′,M′) of length at most 2|D|!+4+f(k−1)
such that the moves of M′ are disjoint from A.

Proof. Let x′ be a neighbour of x in V (D). Since D is 2-connected, x′ has
two distinct neighbours xl and xr in D. With the same construction as
in Claim 4.10.3 we can generate a movement (Xx,Mx) of length at most
|D|! + 2 such that its induced pairing Lx contains the edge (x, 0)(xr,∞) and
(x′′, 0)(x,∞) for some vertex x′′ ∈ V (D) ∩ X ′. There is a pairing L′′ such
that L = Lx ⊕ L′′ and L′′ contains the edge (xr, 0)(y,∞).

By Claim 4.10.3 there is an L′′-movement (X ′′,M′′) of length at most
|D|! + 2 + f(k− 1). So (X ′,M′) :=(Xx,Mx)⊕ (X ′′,M′′) is an L′ movement
of length at most 2|D|! + 4 + f(k − 1) as desired.

Since f(k)−2k ≥ 2|D|!+4+f(k−1) we may assume that NB∩Y ′ = ∅ and
thus NB = ∅ by Claim 4.10.3 and Claim 4.10.4. This means X ′, Y ′ ⊆ V (D)
and therefore by Theorem 4.4 there is an L′-movement (X ′,M′) of length at
most |D|! ≤ n! ≤ f(k)− 2k. This concludes the induction and thus also the
proof of Lemma 4.10.

5 Relinkages

This section collects several Lemma that compare different foundational link-
ages for the same stable regular decomposition of a graph. To avoid tedious
repetitions we use the following convention throughout the section.
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Convention. Let (W ,P) be a stable regular decomposition of some length
l ≥ 3 and attachedness p of a p-connected graph G and set λ :={α | Pα is
non-trivial} and θ :={α | Pα is trivial}. Let D be a block of Γ(W ,P)[λ] and
let κ be the set of all cut-vertices of Γ(W ,P)[λ] that are in D.

Lemma 5.1. Let Q be a foundational linkage. If αβ is an edge of Γ(W ,Q)
with α ∈ λ or β ∈ λ, then αβ is an edge of Γ(W ,P).

Proof. Some inner bag Wk ofW contains a Q-bridge B realising αβ, that is,
B attaches to Qα and Qβ. For i = 1, . . . , k−1 the induced permutation πi of
Q[Wi] is an automorphism of Γ(W ,P) by (L10) and hence so is the induced
permutation π =

∏k−1
i=1 πi of Q[W[1,k−1]].

Clearly the restriction of any induced permutation to θ is always the
identity, so π(α) ∈ λ or π(β) ∈ λ. Therefore π(α)π(β) must be an edge of
Γ(W ,P) by (L11) as B attaches to Q[W ]π(α) and Q[W ]π(β). Since π is an
automorphism this means that αβ is an edge of Γ(W ,P).

The previous Lemma allows us to make statements about any founda-
tional linkage Q just by looking at Γ(W ,P), in particular, for every α ∈ λ
the neighbourhood N(α) of α in Γ(W ,P) contains all neighbours of α in
Γ(W ,Q). The following Lemma applies this argument.

Lemma 5.2. Let Q be a foundational linkage such that Q[W ] is p-attached in
G[W ] for each inner bag W ofW. If λ0 is a subset of λ such that |N(α)∩θ| ≤
p− 3 for each α ∈ λ0, then every non-trivial Q-bridge in an inner bag of W
that attaches to a path of Qλ0 must attach to at least one other path of Qλ.

Proof. Suppose for a contradiction that some inner bag W of W contains a
Q-bridge B that attaches to some path Qα[W ] with α ∈ λ0 but to no other
path of Qλ[W ]. Recall that either all foundational linkages forW satisfy (L7)
or none does and P witnesses the former. Hence by (L7) a path of Q[W ]
is non-trivial if and only if it is in Qλ[W ]. So by p-attachedness Qα[W ] is
bridge adjacent to at least p− 2 paths of Qθ in G[W ]. Therefore in Γ(W ,Q)
the vertex α is adjacent to at least p− 2 vertices of θ and by Lemma 5.1 so
it must be in Γ(W ,P), giving the desired contradiction.

Lemma 5.3. Let Q be a foundational linkage. Every Q-bridge B that at-
taches to a path of Qλ\V (D) has no edge or inner vertex in GQD, in particular,
it can attach to at most one path of QV (D).

Proof. By assumption B attaches to some path Qα with α ∈ λ \V (D). This
rules out the possibility that B attaches to only one path of Qλ that happens
to be in QV (D). So if B has an edge or inner vertex in GQD, then it must realise
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an edge of D. Hence B attaches to paths Qβ and Qγ with β, γ ∈ V (D). This
means that αβ and αγ are both edges of Γ(W ,Q) and thus of Γ(W ,P) by
Lemma 5.1. But D is a block of Γ(W ,P)[λ] so no vertex of λ \ V (D) can
have two neighbours in D.

Given two foundational linkages Q and Q′ and a set λ0 ⊆ λ, we say that
Q′ is a (Q, λ0)-relinkage or a relinkage of Q on λ0 if Q′α = Qα for α /∈ λ0 and
Q′λ0
⊆ GQλ0

.

Lemma 5.4. If Q is a (P , V (D))-relinkage and Q′ a (Q, V (D))-relinkage,
then GQ

′
D ⊆ GQD, in particular, GQD ⊆ GPD.

Proof. Clearly GQD and GQ
′

D are induced subgraphs of G so it suffices to
show V (GQ

′
D ) ⊆ V (GQD). Suppose for a contradiction that there is a vertex

w ∈ V (GQ
′

D ) \ V (GQD). We have GQ
′

D ∩ Q′ = Q′V (D) ⊆ GQD so w must be an

inner vertex of a Q′-bridge B′. But w is in Gλ −GQD and thus in a Q-bridge
attaching to a path of Qλ\V (D), in particular, there is a w–Qλ\V (D) path R
that avoids GQD ⊇ Q′V (D). This means R ⊆ B′ and thus B′ attaches to a path
of Q′λ\V (D) = Qλ\V (D), a contradiction to Lemma 5.3. Clearly P itself is a

(P , V (D))-relinkage so GQD ⊆ GPD follows from a special case of the statement
we just proved.

Lemma 5.5. Let Q be a (P , V (D))-relinkage. If in Γ(W ,P) we have |N(α)∩
θ| ≤ p− 3 for all α ∈ λ \ V (D), then there is a (Q, V (D))-relinkage Q′ such
that for every inner bag W ofW the linkage Q′[W ] is p-attached in G[W ] and
has the same induced permutation as Q[W ]. Moreover, Γ(W ,Q′) contains
all edges of Γ(W ,Q) that have at least one end in λ.

Proof. Suppose that some non-trivial Q-bridge B in an inner bag W of W
attaches to a path Qα = Pα with α ∈ λ \ V (D) but to no other path of Qλ.
Then B is also a P-bridge and P [W ] is p-attached in G[W ] by (L6) so Pα[W ]
must be bridge adjacent to at least p − 2 paths of Pθ in G[W ] and thus α
has at least p − 2 neighbours in θ, a contradiction. Hence every non-trivial
Q-bridge that attaches to a path of Qλ\V (D) must attach to at least one other
path of Qλ.

For every inner bag Wi of W let Q′i be the bridge stabilisation of Q[Wi]
in G[Wi]. Then Q′i has the same induced permutation as Q[Wi]. Note that
the set Z of all end vertices of the paths of Q[Wi] is the union of the left and
right adhesion set of Wi. So by the p-connectivity of G for every vertex x
of G[Wi] − Z there is an x–Z fan of size p in G[Wi]. This means that Q′i is
p-attached in G[Wi] by Lemma 3.7 (iii).

Hence Q′ :=⋃l−1
i=1Q′i is a foundational linkage with Q′[Wi] = Q′i for i =

1, . . . , l− 1. Therefore Q′[W ] is p-attached in G[W ] and Q′[W ] has the same
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induced permutations as Q[W ] for every inner bag W of W . There is no
Q-bridge that attaches to precisely one path of Qλ\V (D) but to no other path
of Qλ so we have Q′λ\V (D) = Qλ\V (D) by Lemma 3.7 (i). The same result

implies Q′V (D) ⊆ GQD so Q′ is indeed a relinkage of Q on V (D).

Finally, Lemma 3.7 (ii) states that Γ(W ,Q′) contains all those edges of
Γ(W ,Q) that have at least one end in λ.

The “compressed” linkages presented next will allow us to fulfil the size re-
quirement that Lemma 4.10 imposes on our blockD as detailed in Lemma 5.7.
Given a subset λ0 ⊆ λ and a foundational linkage Q, we say that Q is com-
pressed to λ0 or λ0-compressed if there is no vertex v of GQλ0

such that GQλ0
−v

contains |λ0| disjoint paths from the first to the last adhesion set of W and
v has a neighbour in Gλ −GQλ0

.

Lemma 5.6. Suppose that in Γ(W ,P) we have |N(α) ∩ θ| ≤ p − 3 for all
α ∈ λ \ V (D) and let Q be a (P , V (D))-relinkage. Then there is a V (D)-
compressed (Q, V (D))-relinkage Q′ such that for every inner bag W of W
the linkage Q′[W ] is p-attached in G[W ].

Proof. Clearly Q itself is a (Q, V (D))-relinkage. Among all (Q, V (D))-
relinkages pick Q′ such that GQ

′
D is minimal. By Lemma 5.4 and Lemma 5.5

we may assume that we picked Q′ such that for every inner bag of W of W
the linkage Q′[W ] is p-attached in G[W ].

It remains to show that Q′ is V (D)-compressed. Suppose not, that is,
there is a vertex v of GQ

′
D such that v has a neighbour in Gλ − GQ

′
D and

GQ
′

D − v contains an X–Y linkage Q′′ where X and Y denote the intersection
of V (GQ

′
D ) with the first and last adhesion set of W , respectively.

By Lemma 5.4 we have GQ
′′

D ⊆ GQ
′

D ⊆ GQD and thus Q′′ is a (Q, V (D))-
relinkage as well. This implies GQ

′′
D = GQ

′
D by the minimality of GQ

′
D . The

vertex v does not lie on a path of Q′′ by construction so it must be in a Q′′-
bridge B′′. But v has a neighbour w in Gλ − GQ

′
D and there is a w–Q′λ\V (D)

path R that avoids GQ
′

D . This means R ⊆ B′′ and thus B′′ attaches to a path
of Q′′λ\V (D), contradicting Lemma 5.3.

Lemma 5.7. Let Q be a V (D)-compressed foundational linkage. Let V be
the set of all inner vertices of paths of Qκ that have degree at least 3 in GQD.
Then the following statements are true.

(i) Either 2|D|+ |N(D) ∩ θ| ≥ p or V (GQD) = V (QV (D)) and κ 6= ∅.

(ii) Either 2|D| + |N(D)| ≥ p or there is α ∈ κ such that |Qβ| ≤ |V ∩
V (Qα)|+ 1 for all β ∈ V (D) \ κ.
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Note that V (GQD) = V (QV (D)) implies that every Q-bridge in an inner
bag of W that realises an edge of D must be trivial.

Proof.

(i) Denote by X and Y the intersection of GQD with the first and last
adhesion set of W , respectively. Let Z be the union of X, Y , and the
set of all vertices of GQD that have a neighbour in Gλ − GQD. Clearly
Z ⊆ V (Qκ)∪X∪Y . Moreover, GQD−z does not contain an X–Y linkage
for any z ∈ Z: For z ∈ X∪Y this is trivial and for the remaining vertices
of Z it holds by the assumption that Q is V (D)-compressed. Therefore
for every z ∈ Z there is an X–Y separation (Az, Bz) of GQD of order at
most |D| with z ∈ Az ∩ Bz. On the other hand, QV (D) is a set of |D|
disjoint X–Y paths in GQD so every X–Y separation has order at least
|D|. Hence by Lemma 3.1 there is a nested set S of X–Y separations
of GQD, each of order |D|, such that Z ⊆ Z0 where Z0 denotes the set of
all vertices that lie in a separator of a separation of S.

We may assume that (X, V (GQD)) ∈ S and (V (GQD), Y ) ∈ S so for any
vertex v of GQD−(X∪Y ) there are (AL, BL) ∈ S and (AR, BR) ∈ S such
that (AL, BL) is rightmost with v ∈ BL \ AL and (AR, BR) is leftmost
with v ∈ AR \BR. Set SL :=AL ∩BL and SR :=AR ∩BR.

Let z be any vertex of Z0 “between” SL and SR, more precisely, z ∈
(BL\AL)∩(AR\BR). There is a separation (AM , BM) ∈ S such that its
separator SM :=AM ∩BM contains z. Then z witnesses that AM * AL
and BM * BR and thus (AM , BM) is neither left of (AL, BL) nor right
of (AR, BR). But S is nested and therefore (AM , BM) is strictly right
of (AL, BL) and strictly left of (AR, BR). This means v ∈ SM otherwise
(AM , BM) would be a better choice for (AL, BL) or for (AR, BR). So
any separator of a separation of S that contains a vertex of (BL \AL)∩
(AR \BR) must also contain v.

If v /∈ Z0, then (BL\AL)∩(AR\BR)∩Z0 = ∅. This means that SL∪SR
separates v from Z in GQD. So SL ∪ SR ∪ V (QN(D)∩θ) separates v from
G−GQD in G. By the connectivity of G we therefore have

2|D|+ |N(D) ∩ θ| ≥
∣∣SL ∪ SR ∪ V (QN(D)∩θ)

∣∣ ≥ p.

So we may assume that V (GQD) = Z0 Since every separator of a sepa-
ration of S consists of one vertex from each path of QV (D) this means
V (QV (D)) ⊆ V (GQD) = Z0 ⊆ V (QV (D)). If κ = ∅, then X ∪ Y ∪
V (QN(D)∩θ) separates GQD − (X ∪ Y ) from G−GQD in G so this is just
a special case of the above argument.
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(ii) We may assume κ 6= ∅ by (i) and κ 6= V (D) since the statement is
trivially true in the case κ = V (D). Pick α ∈ κ such that |V ∩ V (Qα)|
is maximal and let β ∈ V (D) \ κ. For any inner vertex v of Qβ define
(AL, BL) and (AR, BR) as in the proof of (i) and set Vv :=V ∩ (BL \
AL) ∩ (AR \BR).

By (i) we have Vv ⊆ Z0 and every separator of a separation of S that
contains a vertex of Vv must also contain v. This means that Vv ∩Vv′ =
∅ for distinct inner vertices v and v′ of Qβ since no separator of a
separation of S contains two vertices on the same path of QV (D).

Furthermore, SL ∪SR ∪Vv separates v from V (Qκ)∪X ∪Y ⊇ Z in GQD
so by the same argument as in (i) we have 2|D|+ |N(D)∩ θ|+ |Vv| ≥ p.
Then |N(D) ∩ λ| ≥ |Vv| would imply 2|D| + |N(D)| ≥ p so we may
assume that |N(D) ∩ λ| < |Vv| for all inner vertices v of Qβ. Clearly
N(D) ∩ λ is a disjoint union of the sets (N(γ) ∩ λ) \ V (D) with γ ∈ κ
and these sets are all non-empty. Hence |κ| ≤ |N(D) ∩ λ| and thus
|κ|+ 1 ≤ |Vv| for all inner vertices v of Qβ.

Write V for the inner vertices of Qβ. Statement (ii) easily follows from

|V |(|κ|+ 1) ≤
∑

v∈V
|Vv| ≤ |V | ≤ |κ| · |V ∩ V (Qα)|.

6 Rural Societies

In this section we present the answer of Robertson and Seymour to the ques-
tion whether or not a graph can be drawn in the plane with specified vertices
on the boundary of the outer face in a prescribed order. We will apply their
result to subgraphs of a graph with a stable decomposition.

A society is a pair (G,Ω) where G is a graph and Ω is a cyclic permutation
of a subset of V (G) which we denote by Ω̄. A society (G,Ω) is called rural if
there is a drawing of G in a closed disc D such that V (G) ∩ ∂D = Ω̄ and Ω
coincides with a cyclic permutation of Ω̄ arising from traversing ∂D in one
of its orientations. We say that a society (G,Ω) is k-connected for an integer
k if there is no separation (A,B) of G with |A∩B| < k and Ω̄ ⊆ B 6= V (G).
For any subset X ⊆ Ω̄ denote by Ω|X the map on X defined by x 7→ Ωk(x)
where k is the smallest positive integer such that Ωk(x) ∈ X (chosen for each
x individually). Since Ω is a cyclic permutation so is Ω|X.

Given two internally disjoint paths P and Q in G we write PQ for the
cyclic permutation of V (P ∪Q) that maps each vertex of P to its successor
on P if there is one and to the first vertex of Q−P otherwise and that maps
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each vertex of Q−P to its successor on Q−P if there is one and to the first
vertex of P otherwise.

Let R and S be disjoint Ω̄-paths in a society (G,Ω), with end vertices
r1, r2 and s1, s2, respectively. We say that {R, S} is a cross in (G,Ω), if
Ω|{r1, r2, s1, s2} = (r1s1r2s2) or Ω|{r1, r2, s1, s2} = (s2r2s1r1).

The following is an easy consequence of Theorems 2.3 and 2.4 in [15].

Theorem 6.1 (Robertson & Seymour 1990). Any 4-connected society is
rural or contains a cross.

In our application we always want to find a cross. To prevent the society
from being rural we force it to violate the implication given in following
Lemma which is a simple consequence of Euler’s formula.

Lemma 6.2. Let (G,Ω) be a rural society. If the vertices in V (G) \ Ω̄ have
degree at least 6 on average, then

∑
v∈Ω̄ dG(v) ≤ 4|Ω̄| − 6.

Proof. Since (G,Ω) is rural there is a drawing of G in a closed disc D with
V (G)∩ ∂D = Ω̄. Let H be the graph obtained by adding one extra vertex w
outside D and joining it by an edge to every vertex on ∂D. Writing b := |Ω̄|
and i := |V (G) \ Ω̄|, Euler’s formula implies

‖G‖+ b = ‖H‖ ≤ 3|H| − 6 = 3(i+ b)− 3

and thus ‖G‖ ≤ 3i+ 2b− 3. Our assertion then follows from

∑

v∈Ω̄

dG(v) + 6i ≤
∑

v∈V (G)

dG(v) = 2‖G‖ ≤ 6i+ 4b− 6

In our main proof we will deal with societies where the permutation Ω is
induced by paths (see Lemma 6.4 and Lemma 6.5). But every inner vertex
on such a path that has degree 2 in G adds slack to the bound provided by
Lemma 6.2 as it counts 2 on the left side but 4 on the right. This is remedied
in the following Lemma which allows us to apply Lemma 6.2 to a “reduced”
society where these vertices are suppressed.

Lemma 6.3. Let (G,Ω) be a society and let P be a path in G such that all
inner vertices of P have degree 2 in G. Denote by G′ the graph obtained from
G by suppressing all inner vertices of P and set Ω′ := Ω|V (G′). Then (G′,Ω′)
is rural if and only if (G,Ω) is.

Proof. The graph G is a subdivision of G′ so every drawing of G gives a
drawing of G′ and vice versa. Hence a drawing witnessing that (G,Ω) is rural
can easily be modified to witness that (G′,Ω′) is rural and vice versa.
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Two vertices a and b of some graph H are called twins if NH(a) \ {b} =
NH(b) \ {a}. Clearly a and b are twins if and only if the transposition (ab)
is an automorphism of H.

Lemma 6.4. Let G be a p-connected graph and let (W ,P) be a stable regu-
lar decomposition of G of length at least 3 and attachedness p. Set θ :={α |
Pα is trivial} and λ :={α | Pα is non-trivial}. Let αβ be an edge of Γ(W ,P)[λ]
such that |N(α)∩θ| ≤ p−3, |N(β)∩θ| ≤ p−3, and for Nαβ :=N(α)∩N(β)
we have Nαβ ⊆ θ and |Nαβ| ≤ p − 5. If α and β are not twins, then the
society (GPαβ, PαP

−1
β ) is rural.

Proof.

Claim 6.4.1. Every P-bridge with an edge in GPαβ must attach to Pα and
Pβ, in particular, GPαβ − Pα and GPαβ − Pβ are both connected.

Proof. By Lemma 5.2 every non-trivial P-bridge that attaches to Pα or Pβ
must attach to another path of Pλ. Since Pα and Pβ are induced this means
that all P-bridges with an edge in GPαβ must realise the edge αβ and hence
attach to Pα and Pβ.

Claim 6.4.2. The set Z of all vertices of GPαβ that are end vertices of Pα or
Pβ or have a neighbour in G− (GPαβ ∪ PNαβ) is contained in V (Pα ∪ Pβ).

Proof. Any vertex v of GPαβ− (Pα∪Pβ) is an inner vertex of some non-trivial
P-bridge B that attaches to Pα and Pβ. Since GPαβ contains all inner vertices
of B the neighbours of v in G − GPαβ must be attachments of B. But if
B attaches to a path Pγ with γ 6= α, β, then γ ∈ Nαβ and therefore all
neighbours of v are in GPαβ ∪ PNαβ .

Claim 6.4.3. The society (GPαβ, PαP
−1
β ) is rural if and only if the society

(GPαβ, PαP
−1
β |Z) is.

Proof. Clearly (GPαβ, PαP
−1
β |Z) is rural if (GPαβ, PαP

−1
β ) is. For the converse

suppose that (GPαβ, PαP
−1
β |Z) is rural, that is, there is a drawing of GPαβ in

a closed disc D such that GPαβ ∩ ∂D = Z and one orientation of ∂D induces

the cyclic permutation PαP
−1
β |Z on Z.

For the rurality of (GPαβ, PαP
−1
β ) and (GPαβ, PαP

−1
β |Z) it does not matter

whether the first vertices of Pα and Pβ are adjacent in GPαβ or not and the
same is true for the last vertices of Pα and Pβ. So we may assume that both
edges exist and we denote the cycle that they form together with the paths
Pα and Pβ by C.
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The closed disc D′ bounded by C is contained in D. It is not hard to
see that the interior of D′ is the only region of D − C that has vertices of
both Pα and Pβ on its boundary. But every edge of GPαβ lies on C or in a
P-bridge B with B− (P \ {Pα, Pβ}) ⊆ GPαβ. By Claim 6.4.1 such a bridge B
must attach to Pα and Pβ and in the considered drawing it must therefore
be contained in D′. This means GPαβ ⊆ D′ which implies that (GPαβ, PαP

−1
β )

is rural as desired.

Claim 6.4.4. For H :=GPαβ and Ω :=PαP
−1
β |Z the society (H,Ω) is 4-con-

nected.

Proof. Note that Ω̄ = Z since Z ⊆ V (Pα ∪ Pβ) by Claim 6.4.2. Set T :=
V (PNαβ). Clearly Z ∪ T separates H from G − H so for every vertex v of
H − Z there is a v–T ∪ Z fan of size at least p in G as G is p-connected.
Since |T | ≤ p − 5 this fan contains a v–Z fan of size at least 4 such that
all its paths are contained in H. This means that (H,Ω) is 4-connected as
desired.

By the off-road edges of a cross {R, S} in (H,Ω) we mean the edges in
E(R∪ S) \E(Pα ∪Pβ). We call a component of R∩ (Pα ∪Pβ) that contains
an end vertex of R a tail of R. We define the tails of S similarly.

Claim 6.4.5. If {R, S} is a cross in (H,Ω) whose set E of off-road edges is
minimal, then for every z ∈ Z \ V (R ∪ S) each z–(R ∪ S) path in Pα ∪ Pβ
ends in a tail of R or S.

Proof. Suppose not, that is, there is a Z–(R ∪ S) path T in Pα ∪ Pβ such
that its last vertex t does not lie in a tail of R or S. W.l.o.g. we may assume
that t is on R. Since t is not in a tail of R the paths Rt and tR must
both contain an edge that is not in Pα ∪ Pβ so E(T ∪ Rt ∪ S) \ E(Pα ∪ Pβ)
and E(T ∪ tR ∪ S) \ E(Pα ∪ Pβ) are both proper subsets of E. But one of
{T ∪Rt, S} and {T ∪ tR, S} is a cross in (H,Ω), a contradiction.

Suppose now that α and β are not twins.

Claim 6.4.6. (H,Ω) does not contain a cross.

Proof. If (H,Ω) contains a cross, then we may pick a cross {R, S} in (H,Ω)
such that its set E of off-road edges is minimal. Since Z ⊆ V (Pα ∪ Pβ) we
may assume w.l.o.g. that {R, S} satisfies one of the following.

1. R and S both have their ends on Pα.

2. R has both ends on Pα. S has one end on Pα and one on Pβ.
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3. R and S both have one end on Pα and one on Pβ.

We reduce the first case to the second. As Pβ contains a vertex of Z but
no end of R or S it must be disjoint from R ∪ S by Claim 6.4.5. But R and
S both contain a vertex outside Pα (recall that Pα is induced by (L6)) so
R ∪ S meets H − Pα which is connected by Claim 6.4.1.

Therefore there is a Pβ–(R ∪ S) in H − Pα, in particular, there is a Z–
(R∪S) path T with its first vertex z in Z ∩ V (Pβ) and we may assume that
its last vertex t is on S. Denote by v the end of S that separates the ends of
R in Pα.

Then {R, vSt ∪ T} is a cross in (H,Ω) and we may pick a cross {R′, S ′}
in (H,Ω) such that its set E ′ of off-road edges is minimal and contained in
the set F of off-road edges of {R, vSt ∪ T}. If R′ ∪ S ′ contains no edge of
T , then E ′ is a proper subset of E as it does not contain E(S) \ E(vSt), a
contradiction to the minimality of E. Hence R′ ∪ S ′ contains an edge of T
and hence must meet Pβ. So by Claim 6.4.5 one of its paths, say S ′ ends in
Pβ as desired.

On the other hand, all off-road edges of {R′, S ′} that are incident with
Pβ are in T and therefore the remaining three ends of R′ and S ′ must all be
on Pα. Hence {R′, S ′} is a cross as in the second case.

In the second case we reroute Pα along R, more precisely, we obtain a
foundational linkage Q from P by replacing the subpath of Pα between the
two end vertices of R with R.

The first vertex of R ∪ S encountered when following Pβ from either of
its ends belongs to a tail of R or S by Claim 6.4.5. Obviously a tail contains
precisely one end of R or S. Since R has no end on Pβ and S only one,
(R∪ S)∩Pβ is a tail of S, in particular, R is disjoint from Pβ and hence the
paths of Q are indeed disjoint.

Clearly S must end in an inner vertex z of Pα. By the definition of Z
there is a P-bridge B in some inner bag W of W that attaches to z and to
some path Pγ with γ ∈ N(α) \N(β). But B ∪ S is contained in a Q-bridge
in G[W ] and therefore βγ is an edge of B(G[W ],Q[W ]) and thus of Γ(W ,Q)
but not of Γ(W ,P). This contradicts Lemma 5.1.

In the third case Claim 6.4.5 ensures that the first and last vertex of
Pα and of Pβ in R ∪ S is always in a tail and clearly these tails must all be
distinct. Hence by replacing the tails of R and S with suitable initial and final
segments of Pα and Pβ we obtain paths P ′α and P ′β such that the foundational
linkage Q :=(P \ {Pα, Pβ}) ∪ {P ′α, P ′β} has the induced permutation (αβ).
Since Pγ = Qγ for all γ /∈ {α, β} it is easy to see the there must be an inner
bag W of W such that Q[W ] has induced permutation (αβ). But clearly
(αβ) is an automorphism of Γ(W ,P) if and only if α and β are twins in
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Γ(W ,P). Hence Q[W ] is a twisting disturbance by the assumption that α
and β are not twins. This contradicts the stability of (W ,P) and concludes
the proof of Claim 6.4.6.

By Claim 6.4.4 and Theorem 6.1 the society (H,Ω) is rural or contains
a cross. But Claim 6.4.6 rules out the latter so (H,Ω) is rural and by
Claim 6.4.3 so is (GPαβ, PαP

−1
β ).

In the previous Lemma we have shown how certain crosses in the graph
H = GPαβ “between” two bridge-adjacent paths Pα and Pβ of P give rise
to disturbances. The next Lemma has a similar flavour; here the graph H
will be the subgraph of G “between” Pα and Qα where α is a cut-vertex of
Γ(W ,P)[λ] and Q a relinkage of P .

Lemma 6.5. Let G be a p-connected graph with a stable regular decom-
position (W ,P) of attachedness p and set λ :={α | Pα is non-trivial} and
θ :={α | Pα is trivial}. Let D be a block of Γ(W ,P)[λ] and let κ be the
set of cut-vertices of Γ(W ,P)[λ] that are in D. If |N(α) ∩ θ| ≤ p − 4 for
all α ∈ λ, then there is a V (D)-compressed (P , V (D))-relinkage Q such
that Q[W ] is p-attached in G[W ] for all inner bags W of W and for any
α ∈ κ and any separation (λ1, λ2) of Γ(W ,P)[λ] such that λ1∩λ2 = {α} and
N(α)∩λ2 = N(α)∩V (D) the following statements hold where H :=GPλ2

∩GQλ1
,

q1 and q2 are the first and last vertex of Qα, and Z1 and Z2 denote the vertices
of H−{q1, q2} that have a neighbour in Gλ−GPλ2

and Gλ−GQλ1
, respectively.

(i) We have Z1 ⊆ V (Pα) and Z2 ⊆ V (Qα). Furthermore, Z :={q1, q2} ∪
Z1 ∪ Z2 separates H from Gλ −H in G− PN(α)∩θ.

(ii) The graph H is connected and contains Qα. The path Pα ends in q2.

(iii) Every cut-vertex of H is an inner vertex of Qα and is contained in
precisely two blocks of H.

(iv) Every block H ′ of H that is not a single edge contains a vertex of
Z1 \ V (Qα) and a vertex of Z2 \ V (Pα) that is not a cut-vertex of H.
Furthermore, Qα[W ] contains a vertex of Z2 for every inner bag W
of W.

(v) There is (P , V (D))-relinkage P ′ with P ′ = (Q \ {Qα}) ∪ {P ′α} and
P ′α ⊆ H such that Z1 ⊆ V (P ′α), V (P ′α ∩ Qα) consists of q1, q2, and all
cut-vertices of H, and P ′[W ] is p-attached in G[W ] for all inner bags
W of W.
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(vi) Let H ′ be a block of H that is not a single edge. Then P ′ :=H ′∩P ′α and
Q′ :=H ′ ∩Qα are internally disjoint paths with common first vertex q′1
and common last vertex q′2 and the society (H ′, P ′Q′−1) is rural.

Figure 1: The graph H = GPλ2
∩GQλ1

.

Figure 1 gives an impression of H. The upper (straight) black q1–q2 path
is Qα and everything above it belongs to GQλ2

. The lower (curvy) black path
is P ′α and everything below it belongs to GPλ1

. The grey paths are subpaths
of Pα and, as shown, Pα need not be contained in H and need not contain
the vertices of Pα ∩ P ′α in the same order as P ′α. The white vertices are the
cut-vertices of H. The vertices with an arrow up or down symbolise vertices
of Z2 and Z1, respectively. The blocks of H that are not single edges are
bounded by cycles in P ′α ∪Qα and Lemma 6.5 (vi) states that the part of H
“inside” such a cycle forms a rural society.

Proof. For a (P , V (D))-relinkage Q and β ∈ κ any GQD-path P ⊆ Pβ such
that some inner vertex of P has a neighbour in Gλ−GPD is called an β-outlet
of Q. By the outlet graph of Q we mean the union of all components of
Pκ−GQD that have a neighbour in Gλ−GPD. In other words, the outlet graph
of Q is obtained from the union of all β-outlets for all β ∈ κ by deleting the
vertices of GQD.

Clearly P itself is a (P , V (D))-relinkage. Among all (P , V (D))-relinkages
pickQ′ such that its outlet graph is maximal. By Lemma 5.6 there is a V (D)-
compressed (Q′, V (D))-relinkage Q such that Q[W ] is p-attached in G[W ]
for all inner bags W ofW . Note that GQD ⊆ GQ

′
D by Lemma 5.4, so the outlet

graph of Q is a supergraph of that of Q′. Hence by choice of Q′, they must
be identical, in particular, the outlet graph of Q is maximal among the outlet
graphs of all (P , V (D))-relinkages.

Claim 6.5.1. For any foundational linkage R of W we have GRλ1
∪GRλ2

= Gλ

and GRλ1
∩GRλ2

= Rα.
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Proof. By Lemma 5.1 we have Γ(W ,R)[λ] ⊆ Γ(W ,P)[λ], so (λ1, λ2) is also
a separation of Γ(W ,R)[λ]. Hence each R-bridge in an inner bag of W has
all its attachments in Rλ1∪θ or all in Rλ2∪θ and thus GRλ1

∪ GRλ2
= Gλ. The

induced path Rα is contained in GRλ1
∩GRλ2

by definition. If GRλ1
∩GRλ2

contains
a vertex that is not on Rα, then it must be in a non-trivial R-bridge that
attaches to Rα but to no other path of Rλ. Such a bridge does not exist by
Lemma 5.2 (applied to λ0 :=λ).

Claim 6.5.2. For every vertex v of H − Pα there is a v–Z2 path in H − Pα
and for every vertex v of H −Qα there is a v–Z1 path in H −Qα.

Proof. Let v be a vertex of H−Pα ⊆ GPλ2
−Pα. Then there is β ∈ λ2\λ1 such

that v is on Pβ or v is an inner vertex of some non-trivial P-bridge attaching
to Pβ by Lemma 5.2 and the assumption that |N(α) ∩ θ| ≤ p− 4. In either
case GPλ2

− Pα contains a path R from v to the first vertex p of Pβ. But p is

also the first vertex of Qβ and therefore it is contained in Gλ −GQλ1
. Pick w

on R such that Rw is a maximal initial subpath of R that is still contained
in H. Then w 6= p and the successor of w on R must be in Gλ − GQλ1

. This
means w ∈ Z2 as desired. If v is in H−Qα, then the argument is similar but
slightly simpler as Qβ = Pβ for all β ∈ λ1 \ λ2.

(i) Any vertex of GPλ2
that has a neighbour in GPλ1

− GPλ2
must be on Pα

by Claim 6.5.1. This shows Z1 ⊆ V (Pα) and by a similar argument
Z2 ⊆ V (Qα).

A neighbour v of H in G either is in no inner bag of W , it is in Gλ, or
it is in Pθ. In the first case v can only be adjacent to q1 or q2 as these
are the only vertices of H in the first and last adhesion set of W .

In the second case, note that Q is a (P , λ2)-relinkage since V (D) ⊆ λ2

and thus Lemma 5.4 yields GQλ2
⊆ GPλ2

which together with Claim 6.5.1
implies

Gλ = GPλ1
∪GPλ2

= GPλ1
∪ (GPλ2

∩GQλ1
) ∪ (GPλ2

∩GQλ2
)

= GPλ1
∪H ∪GQλ2

.

Hence v is in Gλ −GQλ1
or in Gλ −GPλ2

and thus all neighbours of v in
H are in Z2 or Z1, respectively.

In the third case v is the unique vertex of some path Pβ with β ∈ θ.
Let w be a neighbour of v in H. Either w is on Pα or there is a w–Z2

path in H by Claim 6.5.2 which ends on Qα as shown above. So αβ
is an edge of Γ(W ,P) or of Γ(W ,Q). The former implies β ∈ N(α)
directly and the latter does with the help of Lemma 5.1. Hence we have
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shown that Z ∪ V (PN(α)∩θ) separates H from the rest of G concluding
the proof of (i).

(ii) We have Qα ⊆ GQλ1
by definition and Qα ⊆ GPλ2

since Q is a (P , λ2)-
relinkage. Hence Qα ⊆ H and some component C of H contains Qα.
Suppose that v is a vertex of H ∩ Pα. Let w be the vertex of Pα such
that wPαv is a maximal subpath of Pα that is still contained in H.
Since Pα ⊆ GPλ2

we must have w ∈ {q1}∪Z2 ⊆ V (Qα) and hence v is in
C. For any vertex v of H−Pα there is a v–Z2 path in H by Claim 6.5.2
which ends on Qα by (i). This means that v is in C and hence H is
connected.

For every inner bag W of W the induced permutation π of Q[W ] maps
each element of λ1 \ λ2 to itself as Q is (P , λ2)-relinkage. Moreover, π
is an automorphism of Γ(W ,P) by (L10) and α is the unique vertex of
λ2 that has a neighbour in λ1 \ λ2. This shows π(α) = α. Hence Qα

and Pα must have the same end vertex, namely q2.

(iii) Let v be a cut-vertex ofH. By (ii) it suffices to show that all components
of H − v contain a vertex of Qα. First note that every component of
H − v contains a vertex of Z: If a vertex w of H − v is not in Z, then
by (i) and the connectivity of G there is a w–Z fan of size at least
p − |N(α) ∩ θ| ≥ 2 in H and at most one of its paths contains v. But
any vertex z ∈ Z \V (Qα) is on Pα by (i) and the paths q1Pαz and zPαq2

do both meet Qα but at most one can contain v (given that z 6= v). So
every component of H − v must contain a vertex of Qα as claimed.

Claim 6.5.3. A Qα-path P ⊆ Pα ∩ H is an α-outlet if and only if some
inner vertex of P is in Z1, in particular, every vertex of Z1 \V (Qα) lies in a
unique α-outlet. Denoting the union of all α-outlets by U , no two components
of Qα − U lie in the same component of H − U .

Proof. Clearly Qα ⊆ GQD ∩ H ⊆ GQλ2
∩ GQλ1

= Qα by Claim 6.5.1. Suppose

that P ⊆ Pα ∩H has some inner vertex z1 ∈ Z1. Then P is a GQD-path and
z1 has a neighbour in Gλ −GPλ2

⊆ Gλ −GPD so P is an α-outlet.
Before we prove the converse implication let us show that H ⊆ GPD. If

some vertex v of H ⊆ GPλ2
is not in GPD, then there is β ∈ λ2\V (D) such that

v is on Pβ or v is an inner vertex of a non-trivial P-bridge attaching to Pβ.
But v is in H − Pα so by Claim 6.5.2 and (i) there is a v–Qα path in H and
hence αβ is an edge of Γ(W ,Q)[λ] and thus of Γ(W ,P)[λ] by Lemma 5.1.
But (λ1, λ2) is chosen such that N(α) ∩ λ ⊆ λ1 ∪ V (D), a contradiction.
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Suppose that P is an α-outlet. Then some inner vertex z of P has a
neighbour in Gλ − GPD ⊆ Gλ − H. So z ∈ Z1 ∪ Z2 and therefore z ∈ Z1 as
z /∈ V (Qα) ⊇ Z2 by (i).

To conclude the proof of the claim we may assume for a contradiction
that Qα contains vertices r1, r, and r2 in this order such that H−U contains
an r1–r2 path R and r is the end vertex of an α-outlet. Let Q′ be the
foundational linkage obtained from Q by replacing the subpath r1Qαr2 of
Qα with R. Clearly Q′ is a (P , V (D))-relinkage. It suffices to show that the
outlet graph of Q′ properly contains that of Q to derive a contradiction to
our choice of Q. By choice of R and the construction of Q′ each β-outlet of
Q for any β ∈ κ is internally disjoint from Q′ and hence is contained in a
β-outlet of Q′. But r is not on Q′α so it is an inner vertex of some α-outlet
of Q′ so the outlet graph of Q′ contains that of Q properly as desired.

Claim 6.5.4. Let r1 and r2 be the end vertices of an α-outlet P of Q. Then
r1Qαr2 contains a vertex of Z2 \ V (Pα).

Proof. We assume that r1 and r2 occur on Qα in this order. Set Q := r1Qαr2.
Clearly P ∪Q is a cycle. Since Pα is induced in G, some inner vertex v of Q
is not on Pα. By Claim 6.5.2 there is a v–Z2 path R in H − Pα and its last
vertex z2 must be on Qα (see (i)) but not on Pα. Finally, Claim 6.5.3 implies
that v and z2 must be in the same component of Qα − P so both are on Q
as desired.

(iv) Clearly H ′ contains a cycle. Since Qα is induced in G there must be
a vertex v in H ′ − Qα and the v–Z1 path in H − Qα that exists by
Claim 6.5.2 avoids all cut-vertices of H by (iii) and thus lies in H ′−Qα.
So H ′ contains a vertex of Z1−V (Qα) which lies on Pα by (i) and thus
also an α-outlet by Claim 6.5.3. So by Claim 6.5.4 we must also have
a vertex of Z2 \ V (Pα) in H ′ that is neither the first nor the last vertex
of Qα in H ′.

For any inner bag W of W the end vertices of Qα[W ] are cut-vertices
of H. By (L8) G[W ] contains a P-bridge realising some edge of D that
is incident with α. So some vertex of Pα has a neighbour in Gλ −GPλ1

.

If Qα[W ] = Pα[W ], then GQλ1
[W ] = GPλ1

[W ] so this neighbour is also in

Gλ−GQλ1
and hence Qα[W ] contains a vertex of Z2. If Qα[W ] 6= Pα[W ],

then some block of H in G[W ] is not a single edge so by the previous
paragraph Qα[W ] contains a vertex of Z2.

Claim 6.5.5. Every Z1–Z2 path in H is a q1–q2 separator in H.
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Proof. Suppose not, that is, H contains a q1–q2 path Q′α and a Z1–Z2 path R
such that R and Q′α are disjoint. Clearly H ∩Q = Qα so Q′ :=(Q \ {Qα}) ∪
{Q′α} is a foundational linkage. The last vertex r2 of R is in Z2 and hence
has a neighbour in Gλ − GQλ1

. So there is an r2–Q′λ2\λ1
path R2 that meets

H only in r2. Similarly, for the first vertex r1 of R there is an r1–Q′λ1\λ2

path R1 that meets H only in r1. Then R1 ∪ R ∪ R2 witness that Γ(W ,Q′)
has an edge with one end in λ1 \ λ2 and the other in λ2 \ λ1, contradicting
Lemma 5.1.

Claim 6.5.6. Let H ′ be a block of H. Then Q :=H ′ ∩ Qα is a path and its
first vertex q′1 equals q1 or is a cut-vertex of H and its last vertex q′2 equals
q2 or is a cut-vertex of H. Furthermore, there is a q′1–q′2 path P ⊆ H ′ that
is internally disjoint from Q such that Z1 ∩V (H ′) ⊆ V (P ) and if a P -bridge
B in H ′ has no inner vertex on Qα, then for every z1 ∈ Z1 ∩ V (H ′) the
attachments of B are either all on Pz1 or all on z1P .

Proof. It follows easily from (iii) that Q is a path and q′1 and q′2 are as
claimed. If H ′ is the single edge q′1q

′
2, then the statement is trivial with

P = Q so suppose not. Our first step is to show the existence of a q′1–q′2 path
R ⊆ H ′ that is internally disjoint from Q.

By (iv) some inner vertex z2 of Q is in Z2\V (Pα). Since H ′ is 2-connected
there is a Q-path R ⊆ H ′ − z2 with first vertex r1 on Qz2 and last vertex
r2 on z2Q. Pick R such that r1Qr2 is maximal. We claim that r1 = q′1 and
r2 = q′2.

Suppose for a contradiction that r2 6= q′2. By the same argument as before
there is Q-path S ⊆ H ′− r2 with first vertex s1 on Qr2 and last vertex s2 on
r2Q. Note that s1 must be an inner vertex of r1Qr2 by choice of R. Similarly,
Q separates R from S in H ′ otherwise there was a Q-path from r1 to s2 again
contradicting our choice of R.

But S has an inner vertex v as Q is induced and Claim 6.5.2 asserts the
existence of a v–Z1 path S ′ in H −Qα which must be disjoint from R as Q
separates S from R. So there is a Z1–Z2 path in z2Qs1 ∪ s1Sv ∪ S ′ which
is disjoint from Qαr1Rr2Qα by construction, a contradiction to Claim 6.5.5.
This shows r2 = q′2 and by symmetry also r1 = q′1.

Among all q′1–q′2 paths in H ′ that are internally disjoint from Q pick P
such that P contains as few edges outside Pα as possible. To show that P
contains all vertices of Z1 ∩ V (H ′) let z1 ∈ Z1 ∩ V (H ′). We may assume
z1 6= q′1, q

′
2. If z1 is an inner vertex of Q, then Q contains a Z1–Z2 path that

is disjoint from P , a contradiction to Claim 6.5.5. So there is an α-outlet R
which has z1 as an inner vertex. Then Rz1 ∪ Q and z1R ∪ Q both contain
a Z1–Z2 path and by Claim 6.5.5 P must intersect both paths. But P is
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internally disjoint from Q so it contains a vertex t1 of Rz1 and a vertex t2
of z1R. If some edge of t1Pt2 is not on Pα, then P ′ := q′1Pt1Pαt2Pq

′
2 is q′1–q′2

path in H ′ that is internally disjoint from Q and has fewer edges outside Pα
than P , contradicting our choice of P . This means t1Rt2 ⊆ P and therefore
z1 is on P .

Finally, suppose that for some z1 ∈ Z1 there is a P -bridge B in H ′ with
no inner vertex in Qα and attachments t1, t2 6= z1 such that t1 is on Pz1 and
t2 is on z1P (this implies z1 6= q′1, q

′
2). Let R be the α-outlet containing z1

and denote its end vertices by r1 and r2. By Claim 6.5.4 some inner vertex
z2 of r1Qr2 is in Z2.

If B has an attachment in z1P −R, then z1Rr2 ∪ z2Qr2 contains a Z1–Z2

path that does not separate q′1 from q′2 in H ′ and therefore does not separate
q1 from q2 inH, contradicting Claim 6.5.5. SoB has no attachment in z1P−R
and a similar argument implies that B has no attachment in Pz1−R. So all
attachments of B must be in P ∩R ⊆ Pα. As R∪B contains a cycle and Pα
is induced some vertex v of B is not on Pα. But then Claim 6.5.2 implies the
existence of a v–Z2 path that avoids Pα and hence uses only inner vertices
of B, in particular, some inner vertex of B is in Z2 ⊆ V (Qα), contradicting
our assumption and concluding the proof of this claim.

(v) Applying Claim 6.5.6 to every block H ′ of H and uniting the obtained
paths P gives a q1–q2 path R ⊆ H such that Z1 ⊆ V (R) and V (R∩Qα)
consists of q1, q2, and all cut-vertices of H. Moreover, for every z1 ∈ Z1

a P -bridge B in H that has no inner vertex in Qα has all its attachments
in Rz1 or all in z1R.

SetQ′ :=(Q\{Qα})∪{R}). Let P ′ be the foundational linkage obtained
by uniting the bridge stabilisation of Q′[W ] in G[W ] for all inner bags
W of W . Then P ′[W ] is p-attached in G[W ] for all inner bags W of W
by Lemma 3.7.

To show P ′β = Qβ for all β ∈ λ \ {α} it suffices by Lemma 3.7 to check
that every non-trivial Q′-bridge B′ that attaches to Q′β attaches to at
least one other path of Q′λ. If B′ is disjoint from H it is also a Q-
bridge and thus attaches to some path Qγ = Q′γ with γ ∈ λ \ {α, β} by
Claim 6.5.1. If B′ contains a vertex of H, then it attaches to Q′α = R
as H is connected (see (ii)) and Q′ ∩H = R.

To verify P ′α ⊆ H we need to show B′ ⊆ H for every Q′-bridge B′

that attaches to R but to no other path of Q′λ. Clearly for every vertex
v of GPλ1

− Pα there is a v–Pλ1\{α} path in GPλ1
− Pα. Similarly, for

every vertex v of GQλ2
−Qα there is a v–Qλ2\{α} path in GQλ2

−Qα. But
Q′β = Pβ for all β ∈ λ1 \ {α} and Q′β = Qβ for all β ∈ λ2 \ {α} and
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Gλ−H = (GPλ1
−Pα)∪ (GQλ2

−Qα). This means that B′ cannot contain
a vertex of Gλ −H and thus B′ ⊆ H as desired.

We have just shown that every bridge B′ as above is an R-bridge in
H. By construction and the properties (i) and (iv) every component of
Qα −R contains a vertex of Z2 and hence lies in a Q′-bridge attaching
to some path Q′β with β ∈ λ2 \ {α}. So B′ is an R-bridge in H with
no inner vertex in Qα and therefore there must be z1, z

′
1 ∈ Z1 ∪ {q1, q2}

such that z1Rz
′
1 contains all attachments of B′ and no inner vertex of

z1Rz
′
1 is in Z1. By Lemma 3.7 this implies that P ′α contains no vertex

of Qα−R and Z1 ⊆ V (P ′α). On the other hand, P ′α must clearly contain
the end vertices of R and all cut-vertices of H. This concludes the proof
of (v).

(vi) We first show that (H ′,Ω) is rural where Ω :=P ′Q′−1|Z where Z ′ :=Z∩
V (H ′). Since H is connected and H ∩ P ′ = Pα we must have β ∈
N(α) ∩ θ for each path Pβ with β ∈ θ whose unique vertex has a
neighbour in H. So the set T of all vertices of Pθ that are adjacent to
some vertex of H ′ has size at most p− 4 by assumption. Clearly Z ′∪T
separates H ′ from the rest of G so for every vertex v of H ′−Z ′ there is
a v–(Z ′ ∪ T ) fan of size at least p and hence a v–Z fan of size at least
4. Hence (H ′,Ω) is 4-connected and hence it is rural or contains a cross
by Theorem 6.1.

Suppose for a contradiction that (H ′,Ω) contains a cross. By the off-
road edges of a cross {R, S} in (H ′,Ω) we mean edge set E(R ∪ S) \
E(P ′ ∪Q′). We call a component of R∩ (P ′ ∪Q′) that contains an end
of R a tail of R and define the tails of S similarly.

Claim 6.5.7. If {R, S} is a cross in (H ′,Ω) such that its set of off-road
edges is minimal, then for every z ∈ Z that is not in R ∪ S the two
z–(R ∪ S) paths in P ′ ∪Q′ both end in a tail of R or S.

The proof is the same as for Claim 6.4.5 so we spare it.

Claim 6.5.8. Every non-trivial (P ′ ∪ Q′)-bridge B in H ′ has an at-
tachment in P ′ −Q′ and in Q′ − P ′.

Proof. Let v be an inner vertex of B. Then H − Qα contains a v–Z1

path by Claim 6.5.2 so B must attach to P ′. Note that v is in a non-
trivial P ′-bridge B′ and B′ ⊆ GPλ2

since Z1 ⊆ V (P ′α). Furthermore, B′

must attach to a path P ′β = Qβ with β ∈ λ2 \ λ1: This is clear if B′

does not attach to P ′α and follows from Claim 6.5.1 if it does. So B′
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contains a path R from v to GQλ2
− Qα that avoids P ′. But any such

path contains a vertex of Z2 (see (i)) and R does not contain q′1 and q′2
so some initial segment of R is a v–Z2 path in H ′ − P ′ as desired.

Claim 6.5.9. There is a cross {R′, S ′} in (H ′,Ω) such that its set of
off-road edges is minimal and neither P ′ nor Q′ contains all ends of R′

and S ′.

Proof. Pick a cross {R, S} in (H ′,Ω) such that its set E of off-road
edges is minimal. We may assume that P ′ contains all ends of R and
S. By (iv) some inner vertex z2 of Q′ is in Z2. So if R ∪ S contains an
inner vertex of Q′, then Q′ − P ′ contains a Z2–(R ∪ S) path T whose
last vertex t is an inner vertex of R say. Clearly one of {Rt∪T, S} and
{tR∪T, S} is a cross in (H ′,Ω) whose set of off-road edges is contained
in that of {R, S} and hence is minimal as well. So either we find a cross
{R′, S ′} as desired or Q′ − P ′ is disjoint from R ∪ S.

But (R ∪ S) − P ′ must be non-empty as P ′ is induced in G. So by
Claim 6.5.8 there is a Q′–(R∪S) path in H ′−P ′, in particular, there is
a Z2–(R∪S) path T in H ′−P ′ and we may assume that its last vertex
t is on R. Again one of {Rt∪T, S} and {tR∪T, S} is a cross in (H ′,Ω)
and we denote its set of off-road edges by F . Pick a cross (R′, S ′) in
(H,Ω) such that its set E ′ of off-road edges minimal and E ′ ⊆ F .

Since t is not on P ′ each of Rt and tR contains an edge that is not in
P ′ ∪Q′ so F \E(T ) is a proper subset of E. This means that E ′ must
contain an edge of T by minimality of E and hence it must contain
F ∩ E(T ) so R′ ∪ S ′ contains a vertex of Q′ − P ′ and we have already
seen that we are done in this case, concluding the proof of the claim.

Claim 6.5.10. For i = 1, 2 there is a q′i–(R′ ∪ S ′) path Ti in H ′ such
that T1 and T2 end on one path of {R′, S ′} and the other path has its
ends in Z1 and Z2.

Proof. It is easy to see that by construction one path of {R′, S ′}, say
S ′, has one end in Z1 \ {q′1, q′2} and the other in Z2 \ {q′1, q′2}. If for
some i the vertex q′i is in R′ ∪ S ′, then it must be on R′ and there is a
trivial q′i–R

′ path Ti. We may thus assume that neither of q′1 and q′2 is
in R′ ∪ S ′.
So P ′ ∪Q′ contains two q′1–(R′ ∪ S ′) paths T1 and T ′1 that meet only in
q′1. By Claim 6.5.7 T1 and T ′1 must both end in a tail of R′ or S ′. But
(R′, S ′) is a cross and no inner vertex of T1 ∪T ′1 is an end of R′ or S ′ so
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we may assume that T1 meets a tail of R′. By the same argument we
find a q′2–(R′ ∪ S ′) path T2 that end in a tail of R′.

To conclude the proof that (H ′,Ω) is rural note that Claim 6.5.10 im-
plies the existence of a Z1–Z2 path in H that does not separate q1 from
q2 in H and hence contradicts Claim 6.5.5. So (H ′,Ω) is rural and (vi)
follows from this final claim:

Claim 6.5.11. The society (H ′,Ω) is rural if and only if the society
(H ′, P ′Q′−1) is.

This holds by a simpler version of the proof of Claim 6.4.3 where
Claim 6.5.8 takes the role of Claim 6.4.1.

7 Constructing a Linkage

In our main theorem we want to construct the desired linkage in a long stable
regular decomposition of the given graph. That decomposition is obtained
by applying Theorem 3.5 which may instead give a subdivision of Ka,p. This
outcome is even better for our purpose as stated by the following Lemma.

Lemma 7.1. Every 2k-connected graph containing a TK2k,2k is k-linked.

Proof. Let G be a 2k-connected graph and S = {s1, . . . , sk} and T = {t1, . . . ,
tk} two disjoint sets in V (G) of size k each. We need to find a system of k
disjoint S–T paths linking si to ti for i = 1, . . . , k.

By assumption G contains a subdivision of K2k,2k, so there are disjoint
sets A,B ⊆ V (G) of size 2k each and a system Q of internally disjoint paths
in G such that for every pair (a, b) with a ∈ A and b ∈ B there exists a
unique a–b path in Q which we denote by Qab.

By the connectivity of G, there is a system P of 2k disjoint (S ∪ T )–
(A∪B) paths (with trivial members if (S ∪ T )∩ (A∪B) 6= ∅). Pick P such
that it has as few edges outside of Q as possible. Our aim is to find suitable
paths of Q to link up the paths of P as desired. We denote by A1 and B1

the vertices of A and B, respectively, in which a path of P ends, and let
A0 :=A \ A1 and B0 :=B \B1.

The paths of P use the system Q sparingly: Suppose that for some pair
(a, b) with a ∈ A0 and b ∈ B, the path Qab intersects a path of P . Follow Qab

from a to the first vertex v it shares with any path of P , say P . Replacing
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P by Pv ∪Qabv in P does not give a system with fewer edges outside Q by
our choice of P . In particular, the final segment vP of P must have no edges
outside Q. This means vP = vQab, that is, P is the only path of P meeting
Qab and after doing so for the first time it just follows Qab to b. Clearly the
symmetric argument works if a ∈ A and b ∈ B0. Hence

1. Qab with a ∈ A0 and b ∈ B0 is disjoint from all paths of P ,

2. Qab with a ∈ A1 and b ∈ B0 or with a ∈ A0 and b ∈ B1 is met by
precisely one path of P , and

3. Qab with a ∈ A1 and b ∈ B1 is met by at least two paths of P .

In order to describe precisely how we link the paths of P , we fix some
notation. Since |A0| + |A1| = |A| = 2k = |P| = |A1| + |B1|, we have
|A0| = |B1| and similarly |A1| = |B0|. Without loss of generality we may
assume that |B0| ≥ |A0| = |B1| and therefore |B0| ≥ k. So we can pick k
distinct vertices b1, . . . , bk ∈ B0 and an arbitrary bijection ϕ : B1 → A0. For
x ∈ S ∪ T denote by Px the unique path of P starting in x and by x′ its end
vertex in A ∪B.

For each i and x = si or x = ti set

Rx :=

{
Qx′bi x′ ∈ A1

Qϕ(x′)x′ ∪Qϕ(x′)bi x′ ∈ B1

.

By construction Rx and Ry intersect if and only if x, y ∈ {si, ti} for some
i, i.e. they are equal or meet exactly in bi. The paths Px and Ry intersect
if and only if Px ends in y′, that is, if x = y. Thus for each i = 1, . . . , k
the subgraph Ci :=Psi ∪ Rs′i ∪ Rt′i ∪ Pti of G is a tree containing si and ti.
Furthermore, these trees are pairwise disjoint, finishing the proof.

We now give the proof of the main theorem, Theorem 1.1. We restate
the theorem before proceeding with the proof.

Theorem 1.1. For all integers k and w there exists an integer N such that
a graph G is k-linked if

κ(G) ≥ 2k + 3, tw(G) < w, and |G| ≥ N.

Proof. Let k and w be given and let f be the function from the statement of
Lemma 4.10 with n :=w. Set

n0 :=(2k + 1)(n1 − 1) + 1

n1 := max{(2k − 1)

(
w

2k

)
, 2k(k + 3) + 1, 12k + 4, 2f(k) + 1}
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We claim that the theorem is true for the integer N returned by Theorem 3.5
for parameters a = 2k, l = n0, p = 2k+3, and w. Suppose thatG is a (2k+3)-
connected graph of tree-width less than w on at least N vertices. We want
to show that G is k-linked. If G contains a subdivision of K2k,2k, then this
follows from Lemma 7.1. We may thus assume that G does not contain such
a subdivision, in particular it does not contain a subdivision of Ka,p.

Let S = (s1, . . . , sk) and T = (t1, . . . , tk) be disjoint k-tuples of distinct
vertices of G. Assume for a contradiction that G does not contain disjoint
paths P1, . . . , Pk such that the end vertices of Pi are si and ti for i = 1, . . . , k
(such paths will be called the desired paths in the rest of the proof).

By Theorem 3.5 there is a stable regular decomposition of G of length
at least n0, of adhesion q ≤ w, and of attachedness at least 2k + 3. Since
this decomposition has at least (2k + 1)(n1 − 1) inner bags, there are n1 − 1
consecutive inner bags which contain no vertex of (S ∪ T ) apart from those
coinciding with trivial paths. In other words, this decomposition has a con-
traction (W ,P) of length n1 such that S ∪ T ⊆ W0 ∪Wn1 . By Lemma 3.6
this contraction has the same attachedness and adhesion as the initial de-
composition and the stability is preserved. Set θ :={α | Pα is trivial} and
λ :={α | Pα is non-trivial}.
Claim 7.1.1. λ 6= ∅.

Proof. If λ = ∅, or equivalently, P = Pθ, then all adhesion sets of W equal
V (Pθ). So by (L2) no vertex of G − Pθ is contained in more than one bag
ofW . On the other hand, (L4) implies that every bag W ofW must contain
a vertex w ∈ W \V (Pθ). Since V (Pθ) separates W from the rest of G and G
is 2k-connected, there is a w–Pθ fan of size 2k in G[W ]. For different bags,
these fans meet only in Pθ.

SinceW has more than (2k−1)
(
q

2k

)
bags, the pigeon hole principle implies

that there are 2k such fans with the same 2k end vertices among the q vertices
of Pθ. The union of these fans forms a TK2k,2k in G which may not exist by
our earlier assumption.

Claim 7.1.2. Let Γ0 be a component of Γ(W ,P)[λ]. The following all hold.

(i) |N(α) ∩ θ| ≤ 2k − 2 for every vertex α of Γ0.

(ii) |N(α) ∩N(β) ∩ θ| ≤ 2k − 4 for every edge αβ of Γ0.

(iii) 2|N(α) ∩ λ|+ |N(α) ∩ θ| ≤ 2k for every vertex α of Γ0.

(iv) 2|D|+ |N(D)| ≤ 2k+2 for every block D of Γ0 that contains a triangle.
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Note that (iii) implies (i) unless Γ0 is a single vertex and (iii) implies (ii)
unless Γ0 is a single edge. We need precisely these two cases in the proof of
Claim 7.1.6.

Proof. The proof is almost identical for all cases so we do it only once and
point out the differences as we go. Denote by Γ1 the union of Γ0 with all
its incident edges of Γ(W ,P). Set L :=W0 ∩W1 ∩ V (GΓ1) and R :=Wn1−1 ∩
Wn1 ∩ V (GΓ1). In case (iv) let α be any vertex of D. Let p and q be the
first and last vertex of Pα. Then (L∪R) \ {p, q} separates GPΓ1

−{p, q} from
S ∪ T in G − {p, q}. Hence by the connectivity of G there is a set Q of 2k
disjoint (S ∪ T )–(L ∪ R) paths in G − {p, q}, each meeting GPΓ1

only in its
last vertex. For i = 1, . . . , k denote by s′i the end vertex of the path of Q
that starts in si and by t′i the end vertex of the path of Q that starts in ti.

Our task is to find disjoint s′i–t
′
i paths for i = 1, . . . , k in GPΓ1

and we
shall now construct sets X, Y ⊆ V (Γ1) and an X–Y pairing L “encoding”
this by repeating the following step for each i ∈ {1, . . . , k}. Let β, γ ∈ V (Γ1)
such that s′i lies on Pβ and t′i lies on Pγ. If s′i ∈ L, then add β to X and
set s̄i :=(β, 0). Otherwise s′i ∈ R \L and we add β to Y and set s̄i :=(β,∞).
Note that s′i ∈ L ∩ R if and only if β ∈ θ. In this case our decision to add
β to X is arbitrary and we could also add it to Y instead (and setting s̄i
accordingly) without any bearing on the proof. Handle γ and t′i similarly.
Then {s̄it̄i | i = 1, . . . , k} is the edge set of an (X, Y )-pairing which we denote
by L.

We claim that there is an L-movement of length at most (n1−1)/2 ≥ f(k)
on H := Γ1 such that the vertices of A :=V (Γ1) ∩ θ are singular. Clearly
H − A = Γ0 is connected and every vertex of A has a neighbour in Γ0 so
A is marginal in H. The existence of the desired L-movement follows from
Lemma 4.8 if (i) or (ii) are violated, from Lemma 4.9 if (iii) is violated,
and from Lemma 4.10 if (iv) is violated (note that |H| ≤ w). But then
Lemma 4.3 applied to L implies the existence of disjoint s′i–t

′
i paths in GPΓ1

for i = 1, . . . , k contradicting our assumption that G does not contain the
desired paths. This shows that all conditions must hold.

Claim 7.1.3. We have 2|Γ0|+ |N(Γ0)| ≥ 2k+3 (and necessarily N(Γ0) ⊆ θ)
for every component Γ0 of Γ(W ,P)[λ].

Proof. Let Γ1 be the union of Γ0 with all incident edges of Γ(W ,P). Set
L :=W0 ∩W1 ∩ V (GPΓ1

), M :=W1 ∩W2 ∩ V (GPΓ1
), and R :=Wn1−1 ∩Wn1 ∩

V (GPΓ1
). If G − GPΓ1

is non-empty, then L ∪ R separates it from M in G.
Otherwise M separates L from R in G = GPΓ1

. By the connectivity of G
we have 2|Γ0| + |N(Γ0)| = |L ∪ R| ≥ 2k + 3 in the former case and |M | =
|Γ0|+ |N(Γ0)| ≥ 2k + 3 in the latter.
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We now want to apply Lemma 6.4 and Lemma 6.5. At the heart of both is
the assertion that a certain society is rural and we already limited the number
of their “ingoing” edges by Lemma 6.2. To obtain a contradiction we shall
find societies exceeding this limit. Tracking these down is the purpose of the
notion of “richness” which we introduce next.

Let Γ ⊆ Γ(W ,P)[λ]. We say that α ∈ V (Γ) is rich in Γ if the inner
vertices of Pα that have a neighbour in both Gλ − GPΓ and GPΓ − Pα have
average degree at least 2 + |NΓ(α)|(2 + εα) in GPΓ where εα := 1/|N(α) ∩ λ|.
A subgraph Γ ⊆ Γ(W ,P)[λ] is called rich if every vertex α ∈ V (Γ) is rich in
Γ.

Claim 7.1.4. For Γ ⊆ Γ(W ,P)[λ] and α ∈ V (Γ) the following is true.

(i) If Γ contains all edges of Γ(W ,P)[λ] that are incident with α, then α
is rich in Γ.

(ii) If α is rich in Γ, then the inner vertices of Pα that have a neighbour in
GPΓ − Pα have average degree at least 2 + |NΓ(α)|(2 + εα) in GPΓ .

(iii) Suppose that Γ is induced in Γ(W ,P)[λ] and that there are subgraphs
Γ1, . . . ,Γm ⊆ Γ such that α separates any two of them in Γ(W ,P)[λ]
and

⋃m
i=1 Γi contains all edges of Γ that are incident with α. If α is

rich in Γ, then there is j ∈ {1, . . . ,m} such that α is rich in Γj.

Proof.

(i) The assumption implies that GPΓ contains every edge of Gλ that is
incident with Pα so no vertex of Pα has a neighbour in Gλ − GPD and
therefore the statement is trivially true.

(ii) The inner vertices of Pα that have a neighbour in Gλ − GPΓ and in
GPΓ − Pα have the desired average degree by assumption. We show
that each inner vertex of Pα that has no neighbour in Gλ −GPΓ has at
least the desired degree. Clearly we have dGP

Γ
(v) = dGλ(v) for such a

vertex v. Furthermore, dG(v) ≥ 2k + 3 since G is (2k + 3)-connected.
Every neighbour of v in Pθ gives rise to a neighbour of α in θ and by
Claim 7.1.2 (iii) there can be at most |N(α) ∩ θ| ≤ 2k − 2|N(α) ∩ λ|
such neighbours. This means

dGP
Γ

(v) = dGλ(v) ≥ 2k + 3− |N(α) ∩ θ| ≥ 2|N(α) ∩ λ|+ 3

so (ii) clearly holds.
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(iii) We may assume that α is not isolated in Γ and that each of the graphs
Γ1, . . . ,Γm contains an edge of Γ that is incident with α by simply
forgetting those graphs that do not.

For i = 0, . . . ,m denote by Zi the inner vertices of Pα that have a neigh-
bour in Gλ −GPΓi and in GPΓi − Pα where Γ0 := Γ and set Z :=

⋃m
i=1 Zi.

Clearly Pα ⊆ GPΓi for all i. Each edge e of GPΓ that is incident with an
inner vertex of Pα but does not lie in Pα is in a P-bridge that realises
an edge of Γ by (L6) and Lemma 5.2 since Claim 7.1.2 (iii) implies that
|N(α) ∩ θ| ≤ 2k − 2. So at least one of the graphs GPΓi contains e.
On the other hand, we have GPΓi ⊆ GPΓ for i = 1, . . . ,m. This implies
Z0 ⊆ Z.

By the same argument as in the proof of (ii) the vertices of Z have
average degree at least 2 + |NΓ(α)|(2 + εα) in GPΓ . In other words, GPΓ
contains at least |Z||NΓ(α)|(2 + εα) edges with one end on Pα and the
other in GPΓ − Pα.

By assumption we have |NΓ(α)| = ∑m
i=1 |NΓi(α)| and so the pigeon hole

principle implies that there is j ∈ {1, . . . ,m} such that GPΓj contains a
set E of at least |Z||NΓj(α)|(2 + εα) edges with one end on Pα and the
other in GPΓj − Pα.

By assumption and Claim 6.5.1 the path Pα separates GPΓi from GPΓj in
Gλ for i 6= j. For any vertex z ∈ Z \ Zj there is i 6= j with z ∈ Zi, so z
has a neighbour in GPΓi − Pα ⊆ Gλ −GPΓj . Then the only reason that z

is not also in Zj is that it has no neighbour in GPΓj − Pα, in particular,
it is not incident with an edge of E. So the vertices of Zj have average

degree at least 2 + |Z|
|Zj | |NΓj(α)|(2 + εα) in GPΓj which obviously implies

the claimed bound.

Claim 7.1.5. Every component of Γ(W ,P)[λ] contains a rich block.

Proof. Let Γ0 be a component of Γ(W ,P)[λ]. Suppose that α is a cut-
vertex of Γ0 and let D1, . . . , Dm be the blocks of Γ0 that contain α. Clearly
N(α) ∩ λ ⊆ V (

⋃m
i=1Di) so Claim 7.1.4 implies that α is rich in

⋃m
i=1Di by

(i) and hence there is j ∈ {1, . . . ,m} such that α is rich in Dj by (iii).
We define an oriented tree R on the set of blocks and cut-vertices of Γ0

as follows. Suppose that D is a block of Γ0 and α a cut-vertex of Γ0 with
α ∈ V (D). If α is rich in D, then we let (α,D) be an edge of R. Otherwise
we let (D,α) be an edge of R. Note that the underlying graph of R is the
block-cut-vertex tree of Γ0 and by the previous paragraph every cut-vertex
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is incident with an outgoing edge of R. But every directed tree has a sink,
so there must be a block D of Γ0 such that every α ∈ κ is rich in D where κ
denotes the set of all cut-vertices of Γ0 that lie in D.

But the only vertices of GPD that may have a neighbour in Gλ − GPD are
on paths of PV (D) by Lemma 5.3 and of these clearly only the paths of Pκ
may have neighbours in Gλ − GPD. So all vertices of V (D) \ κ are trivially
rich in D and hence D is a rich block.

Claim 7.1.6. Every rich block D of Γ(W ,P)[λ] contains a triangle.

Proof. Suppose that D does not contain a triangle. By Claim 7.1.3 and
Claim 7.1.2 (i) we may assume D is not an isolated vertex of Γ(W ,P)[λ],
that is, D contains an edge. We shall obtain contradicting upper and lower
bounds for the number

x :=
∑

v∈V (PV (D))

(dGP
D

(v)− dPV (D)
(v)).

For every α ∈ V (D) denote by Vα the subset of V (Pα) that consists of the
ends of Pα and all inner vertices of Pα that have a neighbour in GPD − Pα.
Set V :=

⋃
α∈V (D) Vα.

For the upper bound let αβ be an edge of D. Then Nαβ :=N(α)∩N(β) ⊆
θ as a common neighbour of α and β in λ would give rise to a triangle
in D. Furthermore, |Nαβ| ≤ 2k − 4 by Claim 7.1.2 (ii). By Lemma 6.4
the society (GPαβ, PαP

−1
β ) is rural if α and β are not twins. But if they are,

then N(α) ∪ N(β) = Nαβ ∪ {α, β}. This means that D is a component of
Γ(W ,P)[λ] that consists only of the single edge αβ. So by Claim 7.1.3 we
have |Nαβ| = |N(D)| ≥ 2k−1, a contradiction. Hence (GPαβ, PαP

−1
β ) is rural.

The graph G − PNαβ contains GPαβ and has minimum degree at least
2k + 3 − |PNαβ | ≥ 6 by the connectivity of G. By Claim 7.1.2 (i) we have
|N(γ) ∩ θ| ≤ 2k − 2 for every γ ∈ λ so Lemma 5.2 implies that every non-
trivial P-bridge in an inner bag of W attaches to at least two paths of Pλ
or to none. A vertex v of GPαβ − (Pα ∪ Pβ) is therefore an inner vertex of
some non-trivial P-bridge B that attaches to Pα and Pβ and has all its inner
vertices in GPαβ. This means that a neighbour of v outside GPαβ must be an
attachment of B on some path Pγ and hence γ ∈ Nαβ ⊆ θ. So all vertices
of GPαβ − (Pα ∪ Pβ) have the same degree in GPαβ as in G− PNαβ , namely at
least 6.

The vertices of GPαβ−(Pα∪Pβ) retain their degree if we suppress all inner
vertices of Pα and Pβ that have degree 2 in GPD. Since the paths of P are
induced by (L6) an inner vertex of Pα has degree 2 in GPD if and only if it has
no neighbour in GPD − Pα. So we suppressed precisely those inner vertices
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of Pα and Pβ that are not in Vα or Vβ. By Lemma 6.3 the society obtained
from (GPαβ, PαP

−1
β ) in this way is still rural so Lemma 6.2 implies

∑

v∈Vα∪Vβ
dGP

αβ
(v) ≤ 4|Vα|+ 4|Vβ| − 6.

Clearly GPD =
⋃
αβ∈E(D) G

P
αβ and Pα ⊆ GPαβ for all β ∈ ND(α) and thus

x =
∑

v∈V

(
dGP

D
(v)− dPV (D)

(v)
)

≤
∑

α∈V (D)

∑

β∈ND(α)

∑

v∈Vα
(dGP

αβ
(v)− dPα(v))

=
∑

αβ∈E(D)

∑

v∈Vα∪Vβ
dGP

αβ
(v)−

∑

α∈V (D)

|ND(α)| · (2|Vα| − 2)

≤
∑

αβ∈E(D)

(4|Vα|+ 4|Vβ| − 6)−
∑

α∈V (D)

|ND(α)| · (2|Vα| − 2)

=
∑

α∈V (D)

|ND(α)| (4|Vα| − 3)−
∑

α∈V (D)

|ND(α)| · (2|Vα| − 2)

<
∑

α∈V (D)

2|ND(α)| · |Vα|.

To obtain the lower bound for x note that Claim 7.1.4 (ii) says that for any
α ∈ V (D) the vertices of Vα without the two end vertices of Pα have average
degree 2+ |ND(α)|(2+εα) in GPD where εα ≥ 1/k by Claim 7.1.2 (iii). Clearly
every inner bag of W must contain a vertex of Vα as it contains a P-bridge
realising some edge αβ ∈ E(D). This means |Vα| ≥ n1/2 ≥ 4k + 2 and thus

x =
∑

α∈V (D)

∑

v∈Vα

(
dGP

D
(v)− dPα(v)

)

≥
∑

α∈V (D)

(|Vα| − 2) · |ND(α)| · (2 + εα)

≥
∑

α∈V (D)

|ND(α)| · (2|Vα| − 4 + 4kεα)

≥
∑

α∈V (D)

2|ND(α)| · |Vα|.

Claim 7.1.7. Every rich block D of Γ(W ,P)[λ] satisfies 2|D| + |N(D)| ≥
2k + 3.
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Proof. Suppose for a contradiction that 2|D| + |N(D)| ≤ 2k + 2. By Lem-
ma 6.5 there is a V (D)-compressed (P , V (D))-relinkage Q with properties
as listed in the statement of Lemma 6.5. Let us first show that we are done
if D is rich w.r.t. to Q, that is, for every α ∈ V (D) the inner vertices of Qα

that have a neighbour in Gλ − GQD and in GQD − Qα have average degree at
least 2 + |ND(α)|(2 + εα) in GQ

D.
Denote the cut-vertices of Γ(W ,P)[λ] that lie in D by κ. For α ∈ κ let

Vα be the set consisting of the ends of Qα and of all inner vertices of Qα that
have a neighbour in GQD − Qα and set V :=

⋃
α∈κ Vα. Pick α ∈ κ such that

|Vα| is maximal. By Lemma 5.7 (with p = 2k+ 3) every vertex of GQD lies on
a path of QV (D) and we have |Qβ| < |Vα| for all β ∈ V (D) \ κ.

The paths of Q are induced in G as Q[W ] is (2k + 3)-attached in G[W ]
for every inner bag W of W . Hence Vα contains precisely the vertices of Qα

that are not inner vertices of degree 2 in GQD. By the same argument as in
the proof of Claim 7.1.4 (ii) the vertices of Vα that are not ends of Qα have
average degree at least 2 + |ND(α)|(2 + εα) in GQD.

We want to show that the average degree in GQD taken over all vertices of
Vα is larger than 2 + 2|ND(α)|. Clearly the end vertices of Qα have degree at
least 1 in GQD so both lack at most 1+2|ND(α)| ≤ 3|ND(α)| incident edges to
the desired degree. On the other hand, the degree of every vertex of Vα that
is not an end of Qα is on average at least |ND(α)| ·εα larger than desired. But
εα ≥ 1/k by Claim 7.1.2 (iii) and by Lemma 6.5 (iv) the path Qα[W ] contains
a vertex of Vα for every inner bag of W , in particular, |Vα| ≥ n1/2 > 6k + 2
and hence (|Vα| − 2)εα > 6.

This shows that there are more than 2|Vα| · |ND(α)| edges in GQD that
have one end on Qα and the other on another path of QV (D). By Lemma 5.1
these edges can only end on paths of QND(α) so by the pigeon hole principle
there is β ∈ ND(α) such that GQD contains more than 2|Vα| edges with one
end on Qα and the other on Qβ.

Hence the society (H,Ω) obtained from (GQαβ, QαQ
−1
β ) by suppressing

all inner vertices of Qα and Qβ that have degree 2 in GQαβ has more than

2|Vα|+2|Vβ|−2 edges and all its |Vα|+|Vβ| vertices are in Ω̄. So by Lemma 6.2
(H,Ω) cannot be rural. But it is trivially 4-connected as all its vertices are
in Ω̄ and must therefore contain a cross by Theorem 6.1. The paths of Q are
induced so this cross consists of two edges which both have one end on Qα

and the other on Qβ. Such a cross gives rise to a linkage Q′ from the left
to the right adhesion set of some inner bag W of W such that the induced
permutation of Q′ maps some element of V (D) \ {α} (not necessarily β) to
α and maps every γ /∈ V (D) to itself. Since α has a neighbour outside D
this is not an automorphism of Γ(W ,P)[λ] and therefore Q′ is a twisting
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disturbance contradicting the stability of (W ,P).
It remains to show that D is rich w.r.t. Q. Suppose that it is not. By

the same argument as for Claim 7.1.4 (i) there must be α ∈ κ such that
the inner vertices of Qα that have a neighbour in Gλ −GQD and in GQD −Qα

have average degree less than 2 + |ND(α)|(2 + εα) in GQ
D. Let (λ1, λ2) be a

separation of Γ(W ,P)[λ] with λ1∩λ2 = {α} and N(α)∩λ2 = N(α)∩V (D).
Let H, Z1, Z2, P ′, q1, and q2 be as in the statement of Lemma 6.5. We shall
obtain contradicting upper and lower bounds for the number

x :=
∑

v∈V (P ′
α∪Qα)

(
dH(v)− dP ′

α∪Qα(v)
)
.

Denote by H1, . . . , Hm the blocks of H that are not a single edge and for
i = 1, . . . ,m let Vi be the set of vertices of Ci :=Hi ∩ (P ′α ∪ Qα) that are a
cut-vertex of H or are incident with some edge of Hi that is not in P ′α ∪Qα

and set V :=
⋃m
i=1 Vi. By definition we have dH(v) = dP ′

α∪Qα(v) for all vertices
v of (P ′α ∪Qα)− V .

Note that H is adjacent to at most |N(α)∩θ| vertices of Pθ by Lemma 6.5
(ii) and Lemma 5.1. So Claim 7.1.2 (iii) and the connectivity of G imply that
every vertex of H has degree at least 2k + 3− |N(α) ∩ θ| ≥ 2|N(α) ∩ λ|+ 3
in Gλ.

To obtain an upper bound for x let i ∈ {1, . . . ,m}. By Lemma 6.5 (vi)
Ci is a cycle and the society (Hi,Ω(Ci)) is rural where Ω(Ci) denotes one of
two cyclic permutations that Ci induces on its vertices. Since |N(α)∩λ| ≥ 2
every vertex of Hi−Ci has degree at least 6 in Hi by the previous paragraph.
This remains true if we suppress all vertices of Ci that have degree 2 in
Hi. The society obtained in this way is still rural by Lemma 6.3. Since we
suppressed precisely those vertices of Ci that are not in Vi Lemma 6.2 implies∑

v∈Vi dHi(v) ≤ 4|Vi| − 6. By definition of V we have dH(v) = dP ′
α∪Qα(v) for

all vertices v of P ′α ∪Qα that are not in V . Hence we have

x =
∑

v∈V

(
dH(v)− dP ′

α∪Qα(v)
)

=
m∑

i=1

∑

v∈Vi
(dHi(v)− dCi(v)) ≤

m∑

i=1

(2|Vi| − 6) .

Let us now obtain a lower bound for x. Clearly GPD ⊆ GPλ2
and GQD ⊆ GQλ2

.
To show that dGQ

D
(v) = dGQ

λ2

(v) for all v ∈ V (H) (we follow the general

convention that a vertex has degree 0 in any graph not containing it) it
remains to check that an edge of Gλ that has precisely one end in H but is
not in GQD cannot be in GQλ2

. Such an edge e must be in a Q-bridge that
attaches to Qα and some Qβ with β ∈ λ\V (D). But N(α)∩λ2 = V (D) and
hence β ∈ λ1. So e is an edge of GQλ1

but not on Qα and therefore not in GQλ2
.
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This already implies dGP
D

(v) = dGP
λ2

(v) for all v ∈ V (H) since GQD ⊆ GPD and

GPλ2
= H ∪GQλ2

(see the proof of Lemma 6.5 (i) for the latter identity). The
next equality follows directly from the definition of H.

dH(v) + dGQ
λ2

(v) = dGP
λ2

(v) + dQα(v) ∀v ∈ V (H).

Denote by U1 the set of inner vertices of Pα that have a neighbour in both
Gλ − GPD and GPD − Pα and by U2 the set of inner vertices of Qα that have
a neighbour in both Gλ −GQD and GQD −Qα. In other words, U1 and U2 are
the sets of those vertices of Pα and Qα, respectively, that are relevant for the
richness of α in D. Set V ′ :=(V \ {q1, q2}) ∪ (Z1 ∩ Z2)), VP :=V ′ ∩ V (P ′α),
and VQ :=V ′ ∩ V (Qα). Then U1 = (V ∩Z1)∪ (Z1 ∩Z2) = V ′ ∩Z1 ⊆ VP and
U2 = (V ∩ Z2) ∪ (Z1 ∩ Z2) ⊆ VQ.

By our earlier observation every vertex of H has degree at least 2|N(α)∩
λ| + 3 in Gλ and therefore every vertex of VP \ Z1 must have at least this
degree in GPλ2

. Since U1 ⊆ VP and α is rich in D this means that

∑

v∈VP
dGP

D
(v) ≥ |VP | (2 + |ND(α)| · (2 + εα)) .

Similarly, we have U2 ⊆ VQ ⊆ V (Qα) and every vertex v ∈ VQ \ Z2 satisfies
dGQ

D
(v) = 2 = dQα(v). So by the assumption that α is not rich in D w.r.t. Q

we have ∑

v∈VQ

(
dGQ

D
(v)− dQα(v)

)
< |VQ| · |ND(α)| · (2 + εα).

Observe that

2|N(α) ∩ λ|+ 3 = 2 + |N(α) ∩ λ1| · (2 + εα) + |N(α) ∩ λ2| · (2 + εα)

and recall that ND(α) = N(α) ∩ λ2. Combining all of the above we get
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x ≥
∑

v∈V ′

(
dH(v)− dP ′

α∪Qα(v)
)

=
∑

v∈V ′

(
dGP

D
(v)− dGQ

D
(v) + dQα(v)− dP ′

α∪Qα(v)
)

=
∑

v∈VP
dGP

D
(v) +

∑

v∈V ′\VP

dGP
D

(v)−
∑

v∈VQ

(
dGQ

D
(v)− dQα(v)

)
− 2|V ′| − 2m

> |VP | · |ND(α)| · (2 + εα) + 2|VP |+ |V ′ \ VP | · (2|N(α) ∩ λ|+ 3)

− |VQ| · |ND(α)| · (2 + εα)− 2|V ′| − 2m

= |V ′ \ VQ| · |ND(α)| · (2 + εα) + |V ′ \ VP | · |N(α) ∩ λ1| · (2 + εα)− 2m

> 2|V ′ \ VQ|+ 2|V ′ \ VP | − 2m =
m∑

i=1

(2|Vi| − 6)

This shows that D is rich w.r.t. Q as defined above. So Claim 7.1.7 holds.

By Claim 7.1.1 the graph Γ(W ,P)[λ] has a component. This component
has a rich block D by Claim 7.1.5. By Claim 7.1.6 and Claim 7.1.7 we have
a triangle in D and |D|+ |N(D)| ≥ 2k+ 3. This contradicts Claim 7.1.2 (iv)
and thus concludes the proof of Theorem 1.1.

8 Discussion

In this section we first show that Theorem 1.1 is almost best possible (see
Proposition 8.1 below) and then summarise where our proof uses the require-
ment that the graph G is (2k + 3)-connected.

Proposition 8.1. For all integers k and N with k ≥ 2 there is a graph G
which is not k-linked such that

κ(G) ≥ 2k + 1, tw(G) ≤ 2k + 10, and |G| ≥ N.

Proof. We reduce the assertion to the case k = 2, that is, to the claim that
there is a graph H which is not 2-linked but satisfies

κ(H) = 5, tw(H) ≤ 14, and |H| ≥ N.

For any k ≥ 3 let K be the graph with 2k − 4 vertices and no edges. We
claim that G :=H ∗K (the disjoint union of H and K where every vertex of
H is joined to every vertex of K by an edge) satisfies the assertion for k.
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f0

Figure 2: The 5-connected graph H0 and its inner face f0.

Clearly |G| = |H| + 2k − 4 ≥ N . Taking a tree-decomposition of H of
minimal width and adding V (K) to every bag gives a tree-decomposition
of G, so tw(G) ≤ tw(H) + 2k − 4 ≤ 2k + 10. To see that G is (2k + 1)-
connected, note that it contains the complete bipartite graph with partition
classes V (H) and V (K), so any separator X of G must contain V (H) or
V (K). In the former case we have |X| ≥ N and we may assume that this is
larger than 2k. In the latter case we know that G − X ⊆ H, in particular
X ∩ V (H) is a separator of H and hence must have size at least 5, implying
|X| ≥ |K|+ 5 = 2k + 1 as required.

Finally, G is not k-linked: By assumption there are vertices s1, s2, t1,
t2 of H such that H does not contain disjoint paths P1 and P2 wherePi
ends in si and ti for i = 1, 2. If G was k-linked, then for any enumeration
s3, . . . , sk, t3, . . . , tk of the 2k − 4 vertices of V (K) there were disjoint paths
P1, . . . , Pk in G such that Pi has end vertices si and ti for i = 1, . . . , k. In
particular, P1 and P2 do not contain a vertex of K and are hence contained
in H, a contradiction.

It remains to give a counterexample for k = 2. The planar graph H0 in
Figure 2 is 5-connected. Denote the 5-cycle bounding the outer face of H0 by
C1 and the 5-cycle bounding f0 by C0. Then (V (H0−C0), V (H0−C1)) forms
a separation of H0 of order 10, in particular, H0 has a tree-decomposition of
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width 14 where the tree is K2. Draw a copy H1 of H0 into f0 such that the
cycle C0 of H0 gets identified with the copy of C1 in H1. Since H0∩H1 has 5
vertices, the resulting graph is still 5-connected and has a tree-decomposition
of width 14. We iteratively paste copies ofH0 into the face f0 of the previously
pasted copy as above until we end up with a planar graph H such that

κ(H) = 5, tw(H) ≤ 14, and |H| ≥ N.

Still the outer face of H is bounded by a 5-cycle C1, so we can pick vertices
s1, s2, t1, t2 in this order on C1 to witness that H is not 2-linked (any s1–t1
path must meet any s2–t2 path by planarity).

Where would our proof of Theorem 1.1 fail for a (2k + 2)-connected
graph G? There are several instances where we invoke (2k + 3)-connectivity
as a substitute for a minimum degree of at least 2k + 3. The only place
where minimum degree 2k + 2 does not suffice is the proof of Claim 7.1.4.
We need minimum degree 2k + 3 there to get the small “bonus” εα in our
notion of richness. Richness only allows us to make a statement about the
inner vertices of a path and the purpose of this bonus is to compensate for
the end vertices. Therefore the arguments involving richness in the proofs
of Claim 7.1.6 and Claim 7.1.7 would break down if we only had minimum
degree 2k + 2.

But even if the suppose that G has minimum degree at least 2k+ 3 there
are still two places where our proof of Theorem 1.1 fails: The first is the
proof of Claim 7.1.3 and the second is the application of Lemma 5.7 in the
proof of Claim 7.1.7.

We use Claim 7.1.3 in the proof of Claim 7.1.6, to show that no component
of Γ(W ,P)[λ] can be a single vertex or a single edge. In both cases we do
not use the full strength of Claim 7.1.3. So although we formally rely on
(2k + 3)-connectivity for Claim 7.1.3 we do not really need it here.

However, the application of Lemma 5.7 in the proof of Claim 7.1.7 does
need (2k + 3)-connectivity. Our aim there is to get a contradiction to
Claim 7.1.2 (iv) which gets the bound 2k + 3 from the token game in Lem-
ma 4.10. This bound is sharp: Let H be the union of a triangle D = d1d2d3

and two edges d1a1 and d2a2 and set A :={a1, a2}. Clearly H−A = D is con-
nected and A is marginal in H. For k = 3 we have 2|D|+|N(D)| = 8 = 2k+2.
Let L be the pairing with edges (a1, 0)(a2, 0) and (di, 0)(di,∞) for i = 1, 2.
It is not hard to see that there is no L-movement on H as the two tokens
from A can never meet.

So the best hope of tweaking our proof of Theorem 1.1 to work for (2k+2)-
connected graphs is to provide a different proof for Claim 7.1.7. This would
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also be a chance to avoid relinkages, that is, most of Section 5, and the very
technical Lemma 6.5 altogether as they only serve to establish Claim 7.1.7.
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Entwicklung der Arbeit

Die Entwicklung der Arbeit “Linkages in Large Graphs of Bounded Tree-
Width” gliedert sich zeitlich in drei Abschnitte.

1. Das Projekt wird zunächst von Ken-Ichi Kawarabayashi, Theodor Mül-
ler und Paul Wollan in Tokio im September 2009 bearbeitet. Hier wird
die grundlegende Beweisstrategie entwickelt. Das allgemeine Linkage-
Problem soll auf ein Linkage-Problem in einem Graphen mit einer lan-
gen Wegzerlegung zurückgeführt werden. Das Umleiten der Wege wird
kombinatorisch über ein Token-Game beschrieben. Mit Hilfe der Resul-
tate von Robertson und Seymour zu rural societies (cf. Theorem 6.1)
sollen Kreuze in Brücken zwischen Fundamentalwegen gefunden wer-
den, um die Brückenkonfiguration zur Anwendung des Token-Games
zu verbessern. Es wird erwartet, dass das Token-Game nur in einfa-
chen Fällen betrachtet werden muss (z.B. dass der Hilfsgraph ein Stern
ist). Es gibt die Hoffnung, dass ein Zusammenhang von 2k + 2 aus-
reicht. Technische Details werden nur oberflächlich diskutiert, da er-
wartet wird, dass die Umsetzung an vielen Stellen analog zu anderen
Resultaten möglich sei (z.B. lange Wegesysteme wie in [1]; Vortex ver-
dichten wie in [2]).

2. Von Oktober 2009 bis August 2011 arbeitet Theodor Müller in Ham-
burg allein weiter. In dieser Zeit fand eine tiefe technische Analyse
der Beweisstrategie statt. Dabei offenbaren sich eine Reihe von größe-
ren technischen und konzeptionellen Problemen. Ergebnis dieser Arbeit
sind Lösungskriterien für das Token-Game. Dabei werden auch triviale
Fundamentalwege berücksichtigt, die zuvor zu Schwierigkeiten geführt
haben. Vorläufer der Begriffe rich und rich block werden entwickelt.
Das Verdichten eines solchen Blocks um die Brückenkonfiguration zu
verbessern wird für den Fall gelöst, dass der Block nur eine Artikulation
des Hilfsgraphen enthält. Es zeigt sich, dass die Beweismethode einen
Zusammenhang von 2k + 3 erfordert.

3. Im August 2011 kommen Jan-Oliver Fröhlich und Julian Pott zum Pro-
jekt hinzu. Theodor Müller begleitet das Projekt ab diesem Zeitpunkt
im Hintergrund und beteiligt sich dann, wenn Probleme auftreten. Der
Begriff einer stable regular decomposition wird entwickelt. Die Verdich-
tung eines Blocks mit beliebig vielen Artikulationen wird gelöst. Das
Token-Game wird in seiner endgültigen Fassung beschrieben. Die ver-
schiedenen Beweisteile werden organisiert und formalisiert, die dazu
benötigten Notationen werden entwickelt und vereinheitlicht. Die enge
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Verstrickung zwischen den verschiedenen Beweisteilen führt dazu, dass
selbst kleine notwendige technische Änderungen Auswirkungen auf den
gesamten Beweis haben, sodass Definitionen und Notationen mehrfach
vollständig überarbeitet werden müssen. So wird die endgültige Defi-
nition von rich erst im November 2013 gefunden. Die Ausarbeitung
von technischen Details (z.B. Lemmas 6.4 und 6.5) nimmt viel Zeit
in Anspruch. Sowohl konzeptionelle als auch technische Probleme wer-
den häufig zu dritt gemeinsam an der Tafel bearbeitet. Die letztend-
liche Ausformulierung des Beweises wird von Jan-Oliver Fröhlich vor-
genommen. Viele der dabei auftretenden technischen Problemen und
Detailfragen werden gemeinsam geklärt. Die Ausarbeitung des Bewei-
ses kommt im Februar 2014 zum Abschluss. Im März 2014 verfasst Paul
Wollan die Abschnitte 1 und 2 der Arbeit.
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Summary

A central part of the graph minor theory developed by Robertson and Sey-
mour is the excluded minor structure theorem [5][6]. This theorem has found
many applications elsewhere.

In the first part of this dissertation, we present a new version of this struc-
ture theorem with the goal to provide a broad feature set and an accessible
terminology to allow for easier applications.

A graph G with |G| ≥ 2k is called k-linked if for every choice of distinct
vertices s1, . . . , sk, t1, . . . , tk there are disjoint paths P1, . . . , Pk such that the
ends of Pi are si and ti. It has been shown by Larman and Mani [3] and Jung
[2] that there exists a function f(k) such that every f(k)-connected graph
is k-linked. Bollobàs and Thomason [1] have given a linear bound of 22k.
This result has been improved by Thomas and Wollan [4] by proving that
10k-connected graphs are k-linked.

In the second part, we show that for all integers k and w there is an
integer N such that every 2k+3-connected graph G of tree width less than w
on at least N vertices is k-linked. A central part of the proof is the study of
certain subgraphs of G. We analyze linear decompositions of these subgraphs
with new techniques we derived from those techniques used in the first part.
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Zusammenfassung

Ein zentraler Bestandteil der Minorentheorie von Robertson und Seymour ist
der Struktursatz über Graphen mit verbotenen Minoren [5][6]. Dieser Satz
hat an vielen weiteren Stellen Anwendung gefunden.

Im ersten Teil dieser Dissertation stellen wir eine neue Version dieses
Struktursatzes mit umfangreichen strukturellen Beschreibungen und einer
zugänglichen Terminologie vor, um weitere Anwendungen zu vereinfachen.

Ein Graph G mit |G| ≥ 2k ist k-verbunden, wenn es für jede Wahl ver-
schiedener Ecken s1, . . . , sk, t1, . . . , tk disjunkte Wege P1, . . . , Pk gibt, sodass
jeder Weg Pi die Enden si und ti hat.

Larman und Mani [3] und Jung [2] haben die Existenz einer Funktion f(k)
bewiesen, sodass jeder f(k)-zusammenhängende Graph k-verbunden ist. Bol-
lobàs und Thomason [1] haben gezeigt, dass ein linearer Zusammenhang von
22k ausreicht. Dieses Ergebnis wurde von Thomas und Wollan [4] mit dem
Beweis, dass 10k-zusammenhängende Graphen k-verbunden sind, verbessert.

Im zweiten Teil dieser Dissertation zeigen wir, dass es für jede Wahl von
natürlichen Zahlen k und w eine natürliche Zahl N gibt, sodass jeder 2k+3-
zusammenhängende Graph Gmit Baumweite höchstens w und mindestens N
Ecken k-verbunden ist. Ein zentraler Teil des Beweises ist die Untersuchung
gewisser Teilgraphen von G. Wir analysieren lineare Zerlegungen dieser Teil-
graphen mit weiterentwickelten Techniken aus dem ersten Teil.
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