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Linkages in Large Graphs of Bounded
Tree-Width

Jan-Oliver Fröhlich∗ Ken-ichi Kawarabayashi†‡

Theodor Müller§ Julian Pott¶ Paul Wollan�

February 2014

Abstract

We show that all sufficiently large (2k + 3)-connected graphs of
bounded tree-width are k-linked. Thomassen has conjectured that all
sufficiently large (2k + 2)-connected graphs are k-linked.

1 Introduction
Given an integer k ≥ 1, a graph G is k-linked if for any choice of 2k distinct
vertices s1, . . . , sk and t1, . . . , tk of G there are disjoint paths P1, . . . , Pk in
G such that the end vertices of Pi are si and ti for i = 1, . . . , k. Menger’s
theorem implies that every k-linked graph is k-connected.

One can conversely ask how much connectivity (as a function of k) is
required to conclude that a graph is k-linked. Larman and Mani [12] and
Jung [8] gave the first proofs that a sufficiently highly connected graph is also
k-linked. The bound was steadily improved until Bollobás and Thomason
[3] gave the first linear bound on the necessary connectivity, showing that
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every 22k-connected graph is k-linked. The current best bound shows that
10k-connected graphs are also k-linked [18].

What is the best possible function f(k) one could hope for which implies
an f(k)-connected graph must also be k-linked? Thomassen [20] conjectured
that (2k+2)-connected graphs are k-linked. However, this was quickly proven
to not be the case by Jørgensen with the following example [21]. Consider
the graph obtained from K3k−1 obtained by deleting the edges of a matching
of size k. This graph is (3k− 3)-connected but is not k-linked. Thus, the best
possible function f(k) one could hope for to imply k-linked would be 3k − 2.
However, all known examples of graphs which are roughly 3k-connected but
not k-linked are similarly of bounded size, and it is possible that Thomassen’s
conjectured bound is correct if one assumes that the graph has sufficiently
many vertices.

In this paper, we show Thomassen’s conjectured bound is almost correct
with the additional assumption that the graph is large and has bounded
tree-width. This is the main result of this article.

Theorem 1.1. For all integers k and w there exists an integer N such that
a graph G is k-linked if

κ(G) ≥ 2k + 3, tw(G) < w, and |G| ≥ N.

where κ is the connectivity of the graph and tw is the tree-width.

The tree-width of the graph is a parameter commonly arising in the theory
of graph minors; we will delay giving the definition until Section 2 where we
give a more in depth discussion of how tree-width arises naturally in tackling
the problem. The value 2k + 2 would be best possible; see Section 8 for
examples of arbitrarily large graphs which are (2k + 1)-connected but not
k-linked.

Our work builds on the theory of graph minors in large, highly connected
graphs begun by Böhme, Kawarabayashi, Maharry and Mohar [1]. Recall that
a graph G contains Kt as a minor if there Kt can be obtained from a subgraph
of G by repeatedly contracting edges. Böhme et al. showed that there exists
an absolute constant c such that every sufficiently large ct-connected graph
contains Kt as a minor. This statement is not true without the assumption
that the graph be sufficiently large, as there are examples of small graphs
which are (t

√
log t)-connected but still have no Kt minor [11, 19]. In the case

where we restrict our attention to small values of t, one is able to get an
explicit characterisation of the large t-connected graphs which do not contain
Kt as a minor.
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Theorem 1.2 (Kawarabayashi et al. [10]). There exists a constant N such
that every 6-connected graph G on N vertices either contains K6 as a minor
or there exists a vertex v ∈ V (G) such that G − v is planar.

Jorgensen [7] conjectures that Theorem 1.2 holds for all graphs without
the additional restriction to graphs on a large number of vertices. In 2010,
Norine and Thomas [17] announced that Theorem 1.2 could be generalised
to arbitrary values of t to either find a Kt minor in a sufficiently large t-
connected graph or alternatively, find a small set of vertices whose deletion
leaves the graph planar. They have indicated that their methodology could
be used to show a similar bound of 2k + 3 on the connectivity which ensures
a large graph is k-linked.

2 Outline
In this section, we motivate our choice to restrict our attention to graphs of
bounded tree-width and give an outline of the proof of Theorem 1.1.

We first introduce the basic definitions of tree-width. A tree-decompos-
ition of a graph G is a pair (T, X ) where T is a tree and X = {Xt ⊆ V (G) :
t ∈ V (T )} is a collection of subsets of V (G) indexed by the vertices of T .
Moreover, X satisfies the following properties.

1.
�

t∈V (T ) Xt = V (G),

2. for all e ∈ E(G), there exists t ∈ V (T ) such that both ends of e are
contained in Xt, and

3. for all v ∈ V (G), the subset {t ∈ V (T ) : v ∈ Xt} induces a connected
subtree of T .

The sets in X are sometimes called the bags of the decomposition. The
width of the decomposition is maxt∈V (T ) |Xt| − 1, and the tree-width of G is
the minimum width of a tree-decomposition.

Robertson and Seymour showed that if a 2k-connected graph contains
K3k as a minor, then it is k-linked [15]. Thus, when one considers (2k + 3)-
connected graphs which are not k-linked, one can further restrict attention
to graphs which exclude a fixed clique minor. This allows one to apply the
excluded minor structure theorem of Robertson and Seymour [16]. The struc-
ture theorem can be further strengthened if one assumes the graph has large
tree-width [5]. This motivates one to analyse separately the case when the
tree-width is large or bounded. The proofs of the main results in [1] and
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[10] similarly split the analysis into cases based on either large or bounded
tree-width.

We continue with an outline of how the proof of Theorem 1.1 proceeds.
Assume Theorem 1.1 is false, and let G be a (2k + 3)-connected graph which
is not k-linked. Fix a set {s1, . . . , sk, t1, . . . , tk} such that there do not exist
disjoint paths P1, . . . , Pk where the ends of Pi are si and ti for all i. Fix a
tree-decomposition (T, X ) of G of minimal width w.

We first exclude the possibility that T has a high degree vertex. Assume
t is a vertex of T of large degree. By Property 3 in the definition of a tree-
decomposition, if we delete the set Xt of vertices from G, the resulting graph
must have at least degT (t) distinct connected components. By the connec-
tivity of G, each component contains 2k + 3 internally disjoint paths from
a vertex v to 2k + 3 distinct vertices in Xt. If the degree of t is sufficiently
large, we conclude that the graph G contains a subdivision of Ka,2k+3 for
some large value a. We now prove that that if a graph contains such a large
complete bipartite subdivision and is 2k-connected, then it must be k-linked
(Lemma 7.1).

We conclude that the tree T does not have a high degree vertex, and
consequently contains a long path. It follows that the graph G has a long
path decomposition, that is, a tree-decomposition where the tree is a path.
As the bags of the decomposition are linearly ordered by their position on
the path, we simply give the path decomposition as a linearly ordered set
of bags (B1, . . . , Bt) for some large value t. At this point in the argument,
the path-decomposition (B1, . . . , Bt) may not have bounded width, but it
will have the property that |Bi ∩ Bj| is bounded, and this will suffice for
the argument to proceed. Section 3 examines this path decomposition in
detail and presents a series of refinements allowing us to assume the path
decomposition satisfies a set of desirable properties. For example, we are able
to assume that |Bi ∩ Bi+1| is the same for all i, 1 ≤ i < t. Moreover, there
exist a set P of |B1 ∩ B2| disjoint paths starting in B1 and ending in Bt. We
call these paths the foundational linkage and they play an important role in
the proof. A further property of the path decomposition which we prove in
Section 3 is that for each i, 1 < i < t, if there is a bridge connecting two
foundational paths in P in Bi, then for all j, 1 < j < t, there exists a bridge
connecting the same foundational paths in Bj. This allows us to define an
auxiliary graph H with vertex set P and two vertices of P adjacent in H if
there exists a bridge connecting them in some Bi 1 < i < t.

Return to the linkage problem at hand; we have 2k terminals s1, . . . , sk

and t1, . . . , tk which we would like to link appropriately, and B1, . . . , Bt is
our path decomposition with the foundational linkage running through it.
Let the set Bi ∩ Bi+1 be labeled Si. As our path decomposition developed
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in the previous paragraph is very long, we can assume there exists some
long subsection Bi, Bi+1, . . . , Bi+a such that no vertex of s1, . . . , sk, t1, . . . , tk
is contained in

�i+a
i Bi − (Si−1 ∪ Si+a) for some large value a. By Menger’s

theorem, there exist 2k paths linking s1, . . . , sk, t1, . . . , tk to the set Si−1∪Si+a.
We attempt to link the terminals by continuing these paths into the subgraph
induced by the vertex set Bi ∪ · · · ∪ Bi+a. More specifically, we extend the
paths along the foundational paths and attempt to link up the terminals
with the bridges joining the various foundational paths in each of the Bj. By
construction, the connections between foundational paths are the same in Bj

for all j, 1 < j < t; thus we translate the problem into a token game played
on the auxiliary graph H. There each terminal has a corresponding token,
and the desired linkage in G will exist if it is possible to slide the tokens
around H in such a way to match up the tokens of the corresponding pairs of
terminals. The token game is rigorously defined in Section 4, and we present
a characterisation of what properties on H will allow us to find the desired
linkage in G.

The final step in the proof of Theorem 1.1 is to derive a contradiction
when H doesn’t have sufficient complexity to allow us to win the token game.
In order to do so, we use the high degree in G and a theorem of Robertson and
Seymour on crossing paths. We give a series of technical results in preparation
in Section 5 and Section 6 and present the proof of Theorem 1.1 in Section 7.

3 Stable Decompositions
In this section we present a result which, roughly speaking, ensures that a
highly connected, sufficiently large graph of bounded tree-width either con-
tains a subdivision of a large complete bipartite graph or has a long path
decomposition whose bags all have similar structure.

Such a theorem was first established by Böhme, Maharry, and Mohar in [2]
and extended by Kawarabayashi, Norine, Thomas, and Wollan in [9], both
using techniques from [13]. We shall prove a further extension based on the
result by Kawarabayashi et al. from [9] so our terminology and methods will
be close to theirs.

For all basic definitions and notation we refer to Diestel’s textbook [4].
We begin this section with a general Lemma about nested separations. Let G
be a graph. A separation of G is an ordered pair (A, B) of sets A, B ⊆ V (G)
such that G[A] ∪ G[B] = G. If (A, B) is a separation of G, then A ∩ B is
called its separator and |A∩B| its order. Two separations (A, B) and (A�, B�)
of G are called nested if either A ⊆ A� and B ⊇ B� or A ⊇ A� and B ⊆ B�. In
the former case we write (A, B) ≤ (A�, B�) and in the latter (A, B) ≥ (A�, B�).
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This defines a partial order ≤ on all separations of G. A set S of separations
is called nested if the separations of S are pairwise nested, that is, ≤ is a
linear order on S. To avoid confusion about the order of the separations in
S we do not use the usual terms like smaller, larger, maximal, and minimal
when talking about this linear order but instead use left, right, rightmost,
and leftmost, respectively (we still use successor and predecessor though). To
distinguish ≤ from < we say ‘left’ for the former and ‘strictly left’ for the
latter (same for ≥ and right).

If (A, B) and (A�, B�) are both separations of G, then so are (A ∩A�, B ∪
B�) and (A ∪ A�, B ∩ B�) and a simple calculation shows that the orders of
(A∩A�, B∪B�) and (A∪A�, B∩B�) sum up to the same number as the orders
of (A, B) and (A�, B�). Clearly each of (A ∩ A�, B ∪ B�) and (A ∪ A�, B ∩ B�)
is nested with both, (A, B) and (A�, B�).

For two sets X, Y ⊆ V (G) we say that a separation (A, B) of G is an X–Y
separation if X ⊆ A and Y ⊆ B. If (A, B) and (A�, B�) are X–Y separations
in G, then so are (A∩A�, B∪B�) and (A∪A�, B∩B�). Furthermore, if (A, B)
and (A�, B�) are X–Y separations of G of minimum order, say m, then so are
(A∩A�, B ∪B�) and (A∪A�, B ∩B�) as none of the latter two can have order
less than m but their orders sum up to 2m.

Lemma 3.1. Let G be a graph and X, Y, Z ⊆ V (G). If for every z ∈ Z there
is an X–Y separation of G of minimal order with z in its separator, then
there is a nested set S of X–Y separations of minimal order such that their
separators cover Z.

Proof. Let S be a maximal nested set of X–Y separations of minimal order
in G (as S is finite the existence of a leftmost and a rightmost element in any
subset of S is trivial). Suppose for a contradiction that some z ∈ Z is not
contained in any separator of the separations of S.

Set SL :={(A, B) ∈ S | z ∈ B} and SR :={(A, B) ∈ S | z ∈ A}. Clearly
SL ∪ SR = S and SL ∩ SR = ∅. Moreover, if SL and SR are both non-
empty, then the rightmost element (AL, BL) of SL is the predecessor of the
leftmost element (AR, BR) of SR in S. Loosely speaking, SL and SR contain
the separations of S “on the left” and “on the right” of z, respectively, and
(AL, BL) and (AR, BR) are the separations of SL and SR whose separators
are “closest” to z.

By assumption there is an X–Y separation (A, B) of minimal order in G
with z ∈ A ∩ B. Set

(A�, B�) :=(A ∪ AL, B ∩ BL) and (A��, B��) :=(A� ∩ AR, B� ∪ BR)

(but (A�, B�) :=(A, B) if SL = ∅ and (A��, B��) :=(A�, B�) if SR = ∅). As
(AL, BL), (A, B), and (AR, BR) are all X–Y separations of minimal order
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in G so must be (A�, B�) and (A��, B��). Moreover, we have z ∈ A�� ∩ B�� and
thus (A��, B��) /∈ S.

By construction we have (AL, BL) ≤ (A�, B�) and (A��, B��) ≤ (AR, BR).
To verify that (AL, BL) ≤ (A��, B��) we need to show AL ⊆ A� ∩ AR and
BL ⊇ B� ∪ BR. All required inclusions follow from (AL, BL) ≤ (A�, B�) and
(AL, BL) ≤ (AR, BR). So by transitivity (A��, B��) is right of all elements of
SL and left of all elements of SR, in particular, it is nested with all elements
of S, contradicting the maximality of the latter.

We assume that every path comes with a fixed linear order of its vertices.
If a path arises as an X–Y path, then we assume it is ordered from X to Y
and if a path Q arises as a subpath of some path P , then we assume that Q
is ordered in the same direction as P unless explicitly stated otherwise.

Given a vertex v on a path P we write Pv for the initial subpath of P
with last vertex v and vP for the final subpath of P with first vertex v. If v
and w are both vertices of P , then by vPw or wPv we mean the subpath of P
that ends in v and w and is ordered from v to w or from w to v, respectively.
By P−1 we denote the path P with inverse order.

Let P be a set of disjoint paths in some graph G. We do not distinguish
between P and the graph

�P formed by uniting these paths; both will be
denoted by P . By a path of P we always mean an element of P , not an
arbitrary path in

�P .
Let G be a graph. For a subgraph S ⊆ G an S-bridge in G is a connected

subgraph B ⊆ G such that B is edge-disjoint from S and either B is a single
edge with both ends in S or there is a component C of G − S such that B
consists of all edges that have at least one end in C. We call a bridge trivial
in the former case and non-trivial in the latter. The vertices in V (B) ∩ V (S)
and V (B) \ V (S) are called the attachments and the inner vertices of B,
respectively. Clearly an S-bridge has an inner vertex if and only if it is non-
trivial. We say that an S-bridge B attaches to a subgraph S � ⊆ S if B has
an attachment in S �. Note that S-bridges are pairwise edge-disjoint and each
common vertex of two S-bridges must be an attachment of both.

A branch vertex of S is a vertex of degree �= 2 in S and a segment of S is a
maximal path in S such that its ends are branch vertices of S but none of its
inner vertices are. An S-bridge B in G is called unstable if some segment of S
contains all attachments of B, and stable otherwise. If an unstable S-bridge
B has at least two attachments on a segment P of S, then we call P a host
of B and say that B is hosted by P . For a subgraph H ⊆ G we say that
two segments of S are S-bridge adjacent or just bridge adjacent in H if H
contains an S-bridge that attaches to both.
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If a graph is the union of its segments and no two of its segments have the
same end vertices, then it is called unambiguous and ambiguous otherwise.
It is easy to see that a graph S is unambiguous if and only if all its cycles
contain a least three branch vertices. In our application S will always be a
union of disjoint paths so its segments are precisely these paths and S is
trivially unambiguous.

Let S ⊆ G be unambiguous. We say that S � ⊆ G is a rerouting of S if
there is a bijection ϕ from the segments of S to the segments of S � such that
every segment P of S has the same end vertices as ϕ(P ) (and thus ϕ is unique
by the unambiguity). If S � contains no edge of a stable S-bridge, then we call
S � a proper rerouting of S. Clearly any rerouting of the unambiguous graph
S has the same branch vertices as S and hence is again unambiguous.

The following Lemma states two observations about proper reroutings.
The proofs are both easy and hence we omit them.

Lemma 3.2. Let S � be a proper rerouting of an unambiguous graph S ⊆ G
and let ϕ be as in the definition. Both of the following statements hold.

(i) Every hosted S-bridge has a unique host. For each segment P of S the
segment ϕ(P ) of S � is contained in the union of P and all S-bridges
hosted by P .

(ii) For every stable S-bridge B there is a stable S �-bridge B� with B ⊆ B�.
Moreover, if B attaches to a segment P of S, then B� attaches to ϕ(P ).

Note that Lemma 3.2 (ii) implies that no unstable S �-bridge contains an
edge of a stable S-bridge. Together with (i) this means that being a proper
rerouting of an unambiguous graph is a transitive relation.

The next Lemma is attributed to Tutte; we refer to [9, Lemma 2.2] for a
proof1.

Lemma 3.3. Let G be a graph and S ⊆ G unambiguous. There exists a
proper rerouting S � of S in G such that if B� is an S �-bridge hosted by some
segment P � of S �, then B� is non-trivial and there are vertices v, w ∈ V (P �)
such that the component of G − {v, w} that contains B� − {v, w} is disjoint
from S � − vP �w.

This implies that the segments of S � are induced paths in G as trivial
S �-bridges cannot be unstable and no two segments of S � have the same end
vertices.

1 To check that Lemma 2.2 in [9] implies our Lemma 3.3 note that if S� is obtained
from S by “a sequence of proper reroutings” as defined in [9], then by transitivity S� is a
proper rerouting of S according to our definition. And although not explicitly included in
the statement, the given proof shows that no trivial S�-bridge can be unstable.
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Let G be a graph. A set of disjoint paths in G is called a linkage. If
X, Y ⊆ V (G) with k := |X| = |Y |, then a set of k disjoint X–Y paths in G
is called an X–Y linkage or a linkage from X to Y . Let W = (W0, . . . , Wl)
be an ordered tuple of subsets of V (G). Then l is the length of W , the sets
Wi with 0 ≤ i ≤ l are its bags, and the sets Wi−1 ∩ Wi with 1 ≤ i ≤ l are its
adhesion sets. We refer to the bags Wi with 1 ≤ i ≤ l−1 as inner bags. When
we say that a bag W of W contains some graph H, we mean H ⊆ G[W ].
Given an inner bag Wi of W , the sets Wi−1 ∩ Wi and Wi ∩ Wi+1 are called
the left and right adhesion set of Wi, respectively. Whenever we introduce
a tuple W as above without explicitly naming its elements, we shall denote
them by W0, . . . , Wl where l is the length of W . For indices 0 ≤ j ≤ k ≤ l we
use the shortcut W[j,k] :=

�k
i=j Wi.

The tuple W with the following five properties is called a slim decomposi-
tion of G.

(L1)
�W = V (G) and every edge of G is contained in some bag of W .

(L2) If 0 ≤ i ≤ j ≤ k ≤ l, then Wi ∩ Wk ⊆ Wj.

(L3) All adhesion sets of W have the same size.

(L4) No bag of W contains another.

(L5) G contains a (W0 ∩ W1)–(Wl−1 ∩ Wl) linkage.

The unique size of the adhesion sets of a slim decomposition is called its
adhesion. A linkage P as in (L5) together with an enumeration P1, . . . , Pq of
its paths is called a foundational linkage for W and its members are called
foundational paths. Each path Pα contains a unique vertex of every adhesion
set of W and we call this vertex the α-vertex of that adhesion set. For an
inner bag W of W the α-vertex in the left and right adhesion set of W are
called the left and right α-vertex of W , respectively. Note that P is allowed
to contain trivial paths so

�W may be non-empty.
The enumeration of a foundational linkage P for W is a formal tool to

compare arbitrary linkages between adhesion sets of W to P by their ‘induced
permutation’ as detailed below. When considering another foundational link-
age Q = {Q1, . . . , Qq} for W we shall thus always assume that it induces the
same enumeration as P on W0 ∩W1, in other words, Qα and Pα start on the
same vertex.

Suppose that W is a slim decomposition of some graph G with founda-
tional linkage P . Then any P-bridge B in G is contained in a bag of W , and
this bag is unique unless B is trivial and contained in one or more adhesion
sets.
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We say that a linkage Q in a graph H is p-attached if each path of Q is
induced in H and if some non-trivial Q-bridge B attaches to a non-trivial
path P of Q, then either B attaches to another non-trivial path of Q or there
are at least p−2 trivial paths Q of Q such that H contains a Q-bridge (which
may be different from B) attaching to P and Q.

We call a pair (W , P) of a slim decomposition W of G and a foundational
linkage P for W a regular decomposition of attachedness p of G if there is an
integer p such that the axioms (L6), (L7), and (L8) hold.

(L6) P [W ] is p-attached in G[W ] for all inner bags W of W .

(L7) A path P ∈ P is trivial if P [W ] is trivial for some inner bag W of W .

(L8) For every P, Q ∈ P , if some inner bag of W contains a P-bridge attaching
to P and Q, then every inner bag of W contains such a P-bridge.

The integer p is not unique: A regular decomposition of attachedness p has
attachedness p� for all integers p� ≤ p. Note that P satisfies (L7) if and only
if every vertex of G either lies in at most two bags of W or in all bags. This
means that either all foundational linkages for W satisfy (L7) or none.

The next Theorem follows2 from the Lemmas 3.1, 3.2, and 3.5 in [9].

Theorem 3.4 (Kawarabayashi et al. [9]). For all integers a, l, p, w ≥ 0 there
exists an integer N with the following property. If G is a p-connected graph
of tree-width less than w with at least N vertices, then either G contains
a subdivision of Ka,p, or G has a regular decomposition of length at least l,
adhesion at most w, and attachedness p.

Note that [9] features a stronger version of Theorem 3.4, namely Theo-
rem 3.8, which includes an additional axiom (L9). We omit that axiom since
our arguments do not rely on it.

Let (W , P) be a slim decomposition of adhesion q and length l for a
graph G. Suppose that Q is a linkage from the left adhesion set of Wi to
the right adhesion set of Wj for two indices i and j with 1 ≤ i ≤ j < l.
The enumeration P1, . . . , Pq of P induces an enumeration Q1, . . . , Qq of Q
where Qα is the path of Q starting in the left α-vertex of Wi. The map
π : {1, . . . , q} → {1, . . . , q} such that Qα ends in the right π(α)-vertex of
Wj for α = 1, . . . , q is a permutation because Q is a linkage. We call it
the induced permutation of Q. Clearly the induced permutation of Q is the
composition of the induced permutations of Q[Wi], Q[Wi+1], . . . , Q[Wj ]. For

2 The statement of Lemma 3.1 in [9] only asserts the existence of a minor isomorphic
to Ka,p rather than a subdivision of Ka,p like we do. But its proof refers to an argument
in the proof of [13, Theorem 3.1] which actually gives a subdivision.
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any permutation π of {1, . . . , q} and any graph Γ on {1, . . . , q} we write πΓ
to denote the graph ({π(α) | α ∈ V (Γ)}, {π(α)π(β) | αβ ∈ E(Γ)}). For a
subset X ⊆ {1, . . . , q} we set QX :={Qα | α ∈ X}.

Keep in mind that the enumerations P induces on linkages Q as above al-
ways depend on the adhesion set where the considered linkage starts. For
example let Q be as above and for some index i� with i < i� ≤ j set
Q� := Q[W[i�,j]]. Then Qα[W[i�,j]] need not be the same as Q�

α. More precisely,
we have Qα[W[i�,j]] = Q�

τ(α) where τ denotes the induced permutation of
Q[W[i,i�−1]].

For some subgraph H of G the bridge graph of Q in H, denoted B(H, Q),
is the graph with vertex set {1, . . . , q} in which αβ is an edge if and only if
Qα and Qβ are Q-bridge adjacent in H. Any Q-bridge B in H that attaches
to Qα and Qβ is said to realise the edge αβ. We shall sometimes think of
induced permutations as maps between bridge graphs.

For a slim decomposition W of length l of G with foundational link-
age P we define the auxiliary graph Γ(W , P) := B(G[W[1, l−1]], P). Clearly
B(G[W ], P [W ]) ⊆ Γ(W , P) for each inner bag W of W and if (W , P) is
regular, then by (L8) we have equality.

Set λ :={α | Pα is non-tivial} and θ :={α | Pα is trivial}. Given a sub-
graph Γ ⊆ Γ(W , P) and some foundational linkage Q for W , we write GQ

Γ

for the graph obtained by deleting Q \ QV (Γ) from the union of Q and those
Q-bridges in inner bags of W that realise an edge of Γ or attach to QV (Γ)∩λ
but to no path of Qλ\V (Γ). For a subset V ⊆ {1, . . . , q} we write GQ

V instead
of GQ

Γ(W,P)[V ]. Note that Qθ = Pθ. Hence GP
λ and GQ

λ are the same graph and
we denote it by Gλ.

A regular decomposition (W , P) of a graph G is called stable if it satisfies
the following two axioms where λ :={α | Pα is non-trivial}.

(L10) If Q is a linkage from the left to the right adhesion set of some inner bag
of W , then its induced permutation is an automorphism of Γ(W , P).

(L11) If Q is a linkage from the left to the right adhesion set of some inner
bag W of W , then every edge of B(G[W ], Q) with one end in λ is also
an edge of Γ(W , P).

Given these definitions we can further expound our strategy to prove the
main theorem: We will reduce the given linkage problem to a linkage problem
with start and end vertices in W0 ∪Wl for some stable regular decomposition
(W , P) of length l. The stability ensures that we maximised the number of
edges of Γ(W , P), i.e. no rerouting of P will give rise to new bridge adjacencies.
We will focus on a subset λ0 ⊆ λ and show that the minimum degree of G
forces a high edge density in GP

λ0
, leading to a high number of edges in
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Γ(W , P)[λ0]. Using combinatoric arguments, which we elaborate in Section 4,
we show that we can find linkages using segments of P and P-bridges in GP

λ0

to realise any matching of start and end vertices in W0 ∪Wl, showing that G
is in fact k-linked.

We strengthen Theorem 3.4 by the assertion that the regular decompo-
sition can be chosen to be stable. We like to point out that, even with the
left out axiom (L9) included in the definition of a regular decomposition,
Theorem 3.5 would hold. By almost the same proof as in [9] one could also
obtain a stronger version of (L8) stating that for every subset R of P if some
inner bag of W contains a P-bridge attaching every path of R but to no path
of P \ R, then every inner bag does.

Theorem 3.5. For all integers a, l, p, w ≥ 0 there exists an integer N with
the following property. If G is a p-connected graph of tree-width less than w
with at least N vertices, then either G contains a subdivision of Ka,p, or G
has a stable regular decomposition of length at least l, adhesion at most w,
and attachedness p.

Before we start with the formal proof let us introduce its central concepts:
disturbances and contractions. Let (W , P) be a regular decomposition of a
graph G. A linkage Q is called a twisting (W , P)-disturbance if it violates
(L10) and it is called a bridging (W , P)-disturbance if it violates (L11). By a
(W , P)-disturbance we mean either of these two and a disturbance may be
twisting and bridging at the same time. If the referred regular decomposition
is clear from the context, then we shall not include it in the notation and just
speak of a disturbance. Note that a disturbance is always a linkage from the
left to the right adhesion set of an inner bag of W .

Given a disturbance Q in some inner bag W of W which is neither the first
nor the last inner bag of W , it is not hard to see that replacing P [W ] with Q
yields a foundational linkage P � for W such that Γ(W , P �) properly contains
Γ(W , P) and we shall make this precise in the proof. As the auxiliary graph
can have at most

�
w
2

�
edges, we can repeat this step until no disturbances

(with respect to the current decomposition) are left and we should end up
with a stable regular decomposition, given that we can somehow preserve the
regularity.

This is done by “contracting” the decomposition in a certain way. The
technique is the same as in [2] or [9]. Given a regular decomposition (W , P)
of length l of some graph G and a subsequence i1, . . . , in of 1, . . . , l, the
contraction of (W , P) along i1, . . . , in is the pair (W �, P �) defined as follows.
We let W � :=(W �

0, W
�
1, . . . , W

�
n) with W �

0 := W[0, i1−1],

W �
j := W[ij , ij+1−1] for j = 1, . . . , n − 1,
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Wn := W[in,l], and P � = P [W �
[1, n−1]] (with the induced enumeration).

Lemma 3.6. Let (W �, P �) be the contraction of a regular decomposition
(W , P) of some graph G of adhesion q and attachedness p along the sequence
i1, . . . , in. Then the following two statements hold.

(i) (W �, P �) is a regular decomposition of length n of G of adhesion q and
attachedness p, and Γ(W �, P �) = Γ(W , P).

(ii) The decomposition (W �, P �) is stable if and only if none of the inner
bags Wi1 , Wi1+1, . . . , Win−1 of W contains a (W , P)-disturbance.

Proof. The first statement is Lemma 3.3 of [9]. The second statement follows
from the fact that an inner bag W �

j of W � contains a (W �, P �)-disturbance if
and only if one of the bags Wi of W with ij ≤ i < ij+1 contains a (W , P)-
disturbance (unless W � has no inner bag, that is, n = 1). The “if” direction
is obvious and for the “only if” direction recall that the induced permutation
of P �[W �

j ] is the composition of the induced permutations of the P [Wi] with
ij ≤ i < ij+1 and every P �-bridge in W �

j is also a P-bridge and hence must
be contained in some bag Wi with ij ≤ i < ij+1.

Let Q be a linkage in a graph H and denote the trivial paths of Q by Θ.
Let Q� be the union of Θ with a proper rerouting of Q \ Θ obtained from
applying Lemma 3.3 to Q\Θ in H−Θ. We call Q� a bridge stabilisation of Q
in H. The next Lemma tailors Lemma 3.2 and Lemma 3.3 to our application.

Lemma 3.7. Let Q be a linkage in a graph H. Denote by Θ the trivial paths
of Q and let Q� be a bridge stabilisation of Q in H. Let P and Q be paths of
Q and let P � and Q� be the unique paths of Q� with the same end vertices as
P and Q, respectively. Then the following statements hold.

(i) P � is contained in the union of P with all Q-bridges in H that attach
to P but to no other path of Q \ Θ.

(ii) If P and Q are Q-bridge adjacent in H and one of them is non-trivial,
then P � and Q� are Q�-bridge adjacent in H.

(iii) Let Z be the set of end vertices of the paths of Q. If p is an integer such
that for every vertex x of H − Z there is an x–Z fan of size p, then Q�

is p-attached.

Proof.

(i) This is trivial if P ∈ Θ and follows easily from Lemma 3.2 (i) otherwise.
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(ii) The statement follows directly from Lemma 3.2 (ii) if P and Q are both
non-trivial so we may assume that P = P � ∈ Θ and Q is non-trivial. By
assumption there is a P–Q path R in H. Clearly R ∪ Q contains the
end vertices of Q�. On the other hand, by (i) it is clear that Q∩Q� ⊆ Q�.
We claim that R ∩Q� ⊆ Q�. Since R is internally disjoint from Q all its
inner vertices are inner vertices of some (Q \Θ)-bridge B. If B is stable
or unstable but not hosted by any path of Q (that is, it has at most
one attachment), then Lemma 3.2 implies that no path of Q� contains
an inner vertex of B and that our claim follows. If B is hosted by a
path of Q, then this path must clearly be Q and thus by Lemma 3.2
(i) R ∩ Q� ⊆ Q� as claimed. Hence R ∪ Q contains a P–Q� path that is
internally disjoint from Q� as desired.

(iii) Clearly all paths of Q� are induced in H, either because they are trivial
or by Lemma 3.3. Let B be a non-trivial hosted Q�-bridge and let Q�

be the non-trivial path of Q� to which it attaches. Then by Lemma 3.3
there are vertices v and w on Q� and a separation (X, Y ) of H such that
V (B) ⊆ X, X ∩ Y ⊆ {v, w} ∪ V (Θ), and apart from the inner vertices
of vQ�w all vertices of Q� are in Y , in particular, Z ⊆ Y . But B has an
inner vertex x which must be in X \ Y . So by assumption there is an
x–{v, w} ∪ V (Θ) fan of size p in G[X] and thus also an x–Θ fan of size
p − 2. It is easy to see that this can gives rise to the desired Q�-bridge
adjacencies in H.

Proof of Theorem 3.5. We will trade off some length of a regular decompo-
sition to gain edges in its auxiliary graph. To quantify this we define the
function f : N0 → N0 by f(m) :=(zlw!)ml where z := 2(w

2) and call a regular
decomposition (W , P) of a graph G valid if it has adhesion at most w, at-
tachedness p, and length at least f(m) where m is the number of edges in the
complement of Γ(W , P) that are incident with at least one non-trivial path
of P .

Set λ := f
��

w
2

��
and let N be the integer returned by Theorem 3.4 when

invoked with parameters a, λ, p, and w. We claim that the assertion of Theo-
rem 3.5 is true for this choice of N . Let G be a p-connected graph of tree-width
less than w with at least N vertices and suppose that G does not contain a
subdivision of Ka,p. Then by the choices of N and λ the graph G has a valid
decomposition (the foundational linkage has at most w paths so there can be
at most

�
w
2

�
non-edges in the auxiliary graph). Among all valid decomposi-

tions of G pick (W , P) such that the number of edges of Γ(W , P) is maximal
and denote the length of (W , P) by n.
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We may assume that for any integer k with 0 ≤ k ≤ n − l one of the
l − 1 consecutive inner bags Wk+1, . . . , Wk+l−1 of W contains a disturbance.
If not, then by Lemma 3.6, the contraction of (W , P) along the sequence
k + 1, k + 2, . . . , k + l is a stable regular decomposition of G of length l,
adhesion at most w, and attachedness p as desired.

Claim 3.5.1. Let 1 ≤ k ≤ k� ≤ n − 1 with k� − k ≥ lw! − 1. Then the
graph H := G[W[k,k�]] contains a linkage Q from the left adhesion set of Wk

to the right adhesion set of Wk� such that B(H, Q) is a proper supergraph of
Γ(W , P), the induced permutation π of Q is the identity, and Q is p-attached
in H.

Proof. There are indices k0 := k, k1, . . . , kw! := k� + 1, such that we have kj −
kj−1 ≥ l for j ∈ {1, . . . , w!}. For each j ∈ {0, . . . , w! − 1} one of the at least
l−1 consecutive inner bags Wkj+1, Wkj+2, . . . , Wkj+1−1 contains a disturbance
Qj by our assumption. Let Wij be the bag of W that contains Qj and let Q�

j

be the bridge stabilisation of Qj in G[Wij ].
If Qj is a twisting (W , P)-disturbance, then so is Q�

j as they have the
same induced permutation. If Qj is a bridging (W , P)-disturbance, then so
is Q�

j by Lemma 3.7 (ii). The set Z of end vertices of Qj is the union of both
adhesion sets of Wij and clearly for every vertex x ∈ Wij \ Z there is an x–Z
fan of size p in G[Wij ] as G is p-connected. So by Lemma 3.7 (iii) the linkage
Q�

j is p-attached in G[Wij ].
For every j ∈ {0, . . . , w!− 1} denote the induced permutation of Q�

j by πj.
Since the symmetric group Sq has order at most q! ≤ w! we can pick3 indices
j0 and j1 with 0 ≤ j0 ≤ j1 ≤ w! − 1 such that πj1 ◦ πj1−1 . . . ◦ πj0 = id.

Let Q be the linkage from the left adhesion set of Wk to the right adhesion
set of Wk� in H obtained from P [W[k,k�]] by replacing P [Wij ] with Q�

j for all
j ∈ {j0, . . . , j1}. Of all the restrictions of Q to the bags Wk, . . . , Wk� only
Q[Wij ] = Qj with j0 ≤ j ≤ j1 need not induce the identity permutation.
However, the composition of their induced permutations is the identity by
construction and therefore the induced permutation of Q is the identity.

To see that B(H, Q) is a supergraph of Γ(W , P) note that k < ij0 so Q
and P coincide on Wk and hence by (L8) we have

Γ(W , P) = B(G[Wk], P [Wk]) ⊆ B(H, Q).

It remains to show that B(H, Q) contains an edge that is not in Γ(W , P).
Set W := Wij0

, W � := Wij0+1, and π := πj0 . If Q�
j0

is a bridging disturbance,

3 Let (G, ·) be a group of order n and g1, . . . , gn ∈ G. Then of the n + 1 products
hk :=

�k
i=1 gi for 0 ≤ k ≤ n, two must be equal by the pigeon hole principle, say hk = hl

with k < l. This means
�l

i=k+1 gi = e, where e is the neutral element of G.
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then B0 := B(G[W ], Q[W ]) contains an edge that is not in Γ(W , P). Since
Q and P coincide on all bags prior to W (down to Wk) we must have B0 ⊆
B(H, Q).

If Q�
j0

is a twisting disturbance, then j1 > j0, in particular, W � comes
before Wij0+1

(there is at least one bag between Wij0
and Wij0+1

, namely
Wkj0+1

). This means Q[W �] = P [W �] and hence we have

B1 := B(G[W �], Q[W �]) = B(G[W �], P [W �]) = Γ(W , P).

On the other hand, the induced permutation of the restriction of Q to all bags
prior to W � is π and thus π−1B1 ⊆ B(H, Q). But π is not an automorphism
of Γ(W , P) and therefore π−1B1 = π−1Γ(W , P) contains an edge that is not
in Γ(W , P) as desired. This concludes the proof of Claim 3.5.1

To exploit Claim 3.5.1 we now contract subsegments of lw! consecutive
inner bags of W into single bags. We assumed earlier that (W , P) is not
stable so the number m of non-edges of Γ(W , P) is at least 1 (if Γ(W , P) is
complete there can be no disturbances). Set n� := zf(m − 1). As (W , P) is
valid, its length n is at least f(m) = zlw!f(m − 1) = n�lw!. Let (W �, P �) be
the contraction of (W , P) along the sequence i1, . . . , in� defined by ij :=(j −
1)lw! + 1 for j = 1, . . . , n�. Then by Lemma 3.6 the pair (W �, P �) is a regular
decomposition of G of length n�, adhesion at most w, it is p-attached, and
Γ(W �, P �) = Γ(W , P).

By construction every inner bag W �
i of W � consists of lw! consecutive inner

bags of W and hence by Claim 3.5.1 it contains a bridging disturbance Q�
i

such Q�
i is p-attached in G[W �

i ], its induced permutation is the identity, and
B(G[W �

i ], Q�
i) is a proper supergraph of Γ(W �, P �).

Clearly Γ(W �, P �) has at most z − 1 proper supergraphs on the same
vertex set. On the other hand, W � has at least n� − 1 = zf(m − 1) − 1
inner bags. By the pigeonhole principle there must be f(m − 1) indices
0 < i1 < . . . < if(m−1) < n� such that B(G[W �

ij
], Q�

ij
) is the same graph Γ for

j = 1, . . . , f(m − 1).
Let (W ��, P ��) be the contraction of (W �, P �) along i1, . . . , if(m−1). Obtain

the foundational linkage Q�� for W �� from P �� by replacing P �[Wij ] with Qij

for 1 ≤ j ≤ f(m − 1). By construction W �� is a slim decomposition of G of
length f(m − 1) and of adhesion at most w. Q�� is a foundational linkage for
W �� that satisfies (L7) because P �� does. By construction Q�� is p-attached
and B(G[W ��], Q��[W ��]) = Γ for all inner bags W �� of W ��. Hence (W ��, P ��)
is regular decomposition of G. But it is valid and its auxiliary graph Γ has
more edges than Γ(W , P), contradicting our initial choice of (W , P).
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4 Token Movements
Consider the following token game. We place distinguishable tokens on the
vertices of a graph H, at most one per vertex. A move consists of sliding a
token along the edges of H to a new vertex without passing through vertices
which are occupied by other tokens. Which placements of tokens can be
obtained from each other by a sequence of moves?

A rather well-known instance of this problem is the 15-puzzle where tokens
1, . . . , 15 are placed on the 4-by-4 grid. It has been observed as early as 1879
by Johnson [6] that in this case there are two placements of the tokens which
cannot be obtained from each other by any number of moves.

Clearly the problem gets easier the more “unoccupied” vertices there are.
The hardest case with |H| − 1 tokens was tackled comprehensively by Wilson
[22] in 1974 but before we turn to his solution we present a formal account
of the token game and show how it helps with the linkage problem.

Throughout this section let H be a graph and let X always denote a
sequence X = X0, . . . , Xn of vertex sets of H and M a non-empty sequence
M = M1, . . . , Mn of non-trivial paths in H. In our model the sets Xi are
“occupied vertices”, the paths Mi are paths along which the tokens are moved,
and i is the “move count”.

Formally, a pair (X , M) is called a movement on H if for i = 1, . . . , n

(M1) the set Xi−1 � Xi contains precisely the two end vertices of Mi, and

(M2) Mi is disjoint from Xi−1 ∩ Xi.

Then n is the length of (X , M), the sets in X are its intermediate configura-
tions, in particular, X0 and Xn are its first and last configuration, respectively.
The paths in M are the moves of (X , M). A movement with first configura-
tion X and last configuration Y is called an X–Y movement. Note that our
formal notion of token movements allows a move Mi to have both ends in Xi−1

or both in Xi. In our intuitive account of the token game this corresponds to
“destroying” or “creating” a pair of tokens on the end vertices of Mi.

Let us state some obvious facts about movements. If M is a non-empty
sequence of non-trivial paths in H and one intermediate configuration Xi is
given, then there is a unique sequence X such that (X , M) satisfies (M1). A
pair (X , M) is a movement if and only if ((Xi−1, Xi), (Mi)) is a movement for
i = 1, . . . , n. This easily implies the following Lemma so we spare the proof.

Lemma 4.1. Let (X , M) = ((X0, . . . , Xn), (M1, . . . , Mn)) and (Y , N ) =
((Y0, . . . , Ym), (N1, . . . , Nm)) be movements on H and let Z ⊆ V (H).
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(i) If Xn = Y0, then the pair
�
(X0, . . . , Xn = Y0, . . . , Ym), (M1, . . . Mn, N1, . . . , Nm)

�

is a movement. We denote it by (X , M) ⊕ (Y , N ) and call it the con-
catenation of (X , M) and (Y , N ).

(ii) If every move of M is disjoint from Z, then the pair
�
(X0 ∪ Z, . . . , Xn ∪ Z), (M1, . . . Mn)

�

is a movement and we denote it by (X ∪ Z, M).

Let (X , M) be a movement. For i = 1, . . . , n let Ri be the graph with
vertex set (Xi−1 × {i − 1}) ∪ (Xi × {i}) and the following edges:

1. (x, i − 1)(x, i) for each x ∈ Xi−1 ∩ Xi, and

2. (x, j)(y, k) where x, y are the end vertices of Mi and j, k the unique
indices such that (x, j), (y, k) ∈ V (Ri).

Define a multigraph R with vertex set
�n

i=0(Xi × {i}) where the multiplicity
of an edge is the number of graphs Ri containing it. Observe that two graphs
Ri and Rj with i < j are edge-disjoint unless j = i + 1 and Mi and Mj both
end in the same two vertices x, y of Xj, in which case they share one edge,
namely (x, j)(y, j). Our reason to prefer the above definition of R over just
taking the simple graph

�n
i=1 Ri is to avoid a special case in the following

argument.
Every graph Ri is 1-regular. Hence in R every vertex (x, i) with 0 < i < n

has degree 2 as (x, i) is a vertex of Rj if an only if j = i or j = i + 1. Every
vertex (x, i) with i = 0 or i = n has degree 1 as it only lies in R1 or in Rn.
This implies that a component of R is either a cycle (possibly of length 2)
avoiding (X0 ×{0})∪ (Xn ×{n}) or a non-trivial path with both end vertices
in (X0 ×{0})∪ (Xn ×{n}). We denote the subgraph of R consisting of these
paths by R(X , M). Intuitively, each path of R(X , M) traces the position
of one token over the course of the token movement or of one pair of tokens
which is destroyed or created during the movement.

For vertex sets X and Y we call any 1-regular graph on (X ×{0})∪ (Y ×
{∞}) an (X, Y )-pairing. An (X, Y )-pairing is said to be balanced if its edges
form a perfect matching from X × {0} to Y × {∞}, that is, each edge has
one end vertex in X × {0} and the other in Y × {∞}.

The components of R(X , M) induce a 1-regular graph on (X0 × {0}) ∪
(Xn × {n}) where two vertices form an edge if and only if they are in the
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same component of R(X , M). To make this formally independent of the
index n, we replace each vertex (x, n) by (x,∞). The obtained graph L is an
(X0, Xn)-pairing and we call it the induced pairing of the movement (X , M).
A movement (X , M) with induced pairing L is called an L-movement. If a
movement induces a balanced pairing, then we call the movement balanced
as well.

Given two sets X and Y and a bijection ϕ : X → Y we denote by L(ϕ)
the balanced X–Y pairing where (x, 0)(y,∞) is an edge of L(ϕ) if and only
if y = ϕ(x). Clearly an X–Y pairing L is balanced if and only if there is a
bijection ϕ : X → Y with L = L(ϕ).

Given sets X, Y , and Z let LX be an X–Y pairing and LZ a Y –Z pairing.
Denote by LX ⊕LZ the graph on (X ×{0})∪ (Z ×{∞}) where two vertices
are connected by an edge if and only if they lie in the same component of
LX ∪L(idY )∪LZ . The components of LX ∪L(idY )∪LZ are either paths with
both ends in (X ×{0})∪ (Z ×{∞}) or cycles avoiding that set. So LX ⊕LZ

is an X–Z pairing end we call it the concatenation of LX and LZ . The next
Lemma is an obvious consequence of this construction (and Lemma 4.1 (i)).

Lemma 4.2. The induced pairing of the concatenation of two movements is
the concatenation of their induced pairings.

Let (X , M) be a movement on H. A vertex x of H is called (X , M)-
singular if no move of M contains x as an inner vertex and Ix :={i | x ∈ Xi}
is an integer interval, that is, a possibly empty sequence of consecutive integers.
Furthermore, x is called strongly (X , M)-singular if it is (X , M)-singular and
Ix is empty or contains one of 0 and n where n denotes the length of (X , M).
We say that a set W ⊆ V (H) is (X , M)-singular or strongly (X , M)-singular
if all its vertices are. If the referred movement is clear from the context, then
we shall drop it from the notation and just write singular or strongly singular.

Note that any vertex v of H that is contained in at most one move of
M is strongly (X , M)-singular. Furthermore, v is singular but not strongly
singular if it is contained in precisely two moves but neither in the first nor
in the last configuration.

The following Lemma shows how to obtain linkages in a graph G from
movements on the auxiliary graph of a regular decomposition of G. It enables
us to apply the results about token movements from this section to our linkage
problem.

Lemma 4.3. Let (W , P) be a stable regular decomposition of some graph G
and set λ :={α | Pα is non-trivial} and θ :={α | Pα is trivial}. Let (X , M) be
a movement of length n on a subgraph Γ ⊆ Γ(W , P) and denote its induced
pairing by L. If θ is (X , M)-singular and Wa and Wb are inner bags of W
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with b − a = 2n − 1, then there is a linkage Q ⊆ GP
Γ [W[a,b]] and a bijection

ϕ : E(L) → Q such that for each e ∈ E(L) the path ϕ(e) ends in the left
α-vertex of Wa if and only if (α, 0) ∈ e and ϕ(e) ends in the right α-vertex
of Wb if and only if (α,∞) ∈ e.

Proof. Let us start with the general observation that for every connected
subgraph Γ0 ⊆ Γ(W , P) and every inner bag W of W the graph GP

Γ0
[W ]

is connected: If αβ is an edge of Γ0, then some inner bag of W contains a
P-bridge realising αβ and so does W by (L8). In particular, GP

Γ0
[W ], contains

a Pα–Pβ path. So PV (Γ0)[W ] must be contained in one component of GP
Γ0

[W ]
as Γ0 is connected. But any vertex of GP

Γ0
[W ] is in PV (Γ0) or in a P-bridge

attaching to it. Therefore GP
Γ0

[W ] is connected.
The proof is by induction on n. Denote the end vertices of M1 by α

and β, that is, X0 � X1 = {α, β}. By definition the induced pairing L1

of ((X0, X1), (M1)) contains the edges (γ, 0)(γ,∞) with γ ∈ X0 ∩ X1 and
w.l.o.g. precisely one of (α, 0)(β, 0), (α, 0)(β,∞), and (α,∞)(β,∞). The above
observation implies that GP

M1
[Wa] is connected. Hence Pα[W[a,a+1]]∪GP

M1
[Wa]∪

Pβ[W[a,a+1]] is connected and thus contains a path Q such that Q1 :={Q} ∪
PX0∩X1 [W[a,a+1]] satisfies the following. There is a bijection ϕ1 : E(L1) → Q1

such that for each e ∈ E(L1) the path ϕ1(e) ends in the left γ-vertex of Wa

if and only if (γ, 0) ∈ e and ϕ1(e) ends in the right γ-vertex of Wa+1 if and
only if (γ,∞) ∈ e. Moreover, the paths of Q1 are internally disjoint from
Wa+1 ∩ Wa+2.

In the base case n = 1 the linkage Q := Q1 is as desired. Suppose that
n ≥ 2. Then ((X1, . . . , Xn), (M2, . . . , Mn)) is a movement and we denote its
induced permutation by L2. Lemma 4.2 implies L = L1 ⊕ L2. By induction
there is a linkage Q2 ⊆ GP

Γ [W[a+2,b]] and a bijection ϕ2 : E(L2) → Q2 such
that for any e ∈ E(L2) the path ϕ2(e) ends in the left α-vertex of Wa+2

(which is the right α-vertex of Wa+1) if and only if (α, 0) ∈ e and in the right
α-vertex of Wb if and only if (α,∞) ∈ e.

Clearly for every γ ∈ X1 the γ-vertex of Wa+1∩Wa+2 has degree at most 1
in Q1 and in Q2. If a path of Q1 contains the γ-vertex of Wa+1 ∩ Wa+2 and
γ /∈ X1, then γ ∈ θ so by assumption Iγ = {i | γ ∈ Xi} is an integer interval
which contains 0 but not 1. This means that no path of Q2 contains the unique
vertex of Pγ. If the union Q1 ∪ Q2 of the two graphs Q1 and Q2 contains
no cycle, then it is a linkage Q as desired. Otherwise it only contains such a
linkage.

CHAPTER 1. LINKAGES

22



In the rest of this section we shall construct suitable movements as input
for Lemma 4.3. Our first tool to this end is the following powerful theorem4

of Wilson.

Theorem 4.4 (Wilson 1974). Let k be a postive integer and let H be a graph
on n ≥ k + 1 vertices. If H is 2-connected and contains a triangle, then for
every bijection ϕ : X → Y of sets X, Y ⊆ V (H) with |X| = k = |Y | there is
a L(ϕ)-movement of length m ≤ n!/(n − k)! on H.

The given bound on m is not included in the original statement but not
too hard to check: Suppose that (X , M) is a shortest L(ϕ)-movement and m
is its length. Since L is balanced we may assume that no tokes are “created”
or “destroyed” during the movement, that is, all intermediate configurations
have the same size and for every i with 1 ≤ i ≤ m there is an injection
ϕi : X → V (H) such that the induced pairing of ((X0, . . . , Xi), (M1, . . . , Mi))
is L(ϕi). If there were i < j with ϕi = ϕj, then

�
(X0, . . . , Xi = Xj, Xj+1, . . . , Xm), (M1, . . . , Mi, Mj+1, . . . , Mm)

�

was an L(ϕ)-movement of length m − j + i < m contradicting our choice of
(X , M). But there are at most n!/(n − k)! injections from X to V (H) so we
must have m ≤ n!/(n − k)!.

For our application we need to generate L-movements where L is not
necessarily balanced. Furthermore, Lemma 4.3 requires the vertices of θ to be
singular with respect to the generated movement. Lemma 4.8 and Lemma 4.9
give a direct construction of movements if some subgraph of H is a large
star. Lemma 4.10 provides an interface to Theorem 4.4 that incorporates
the above requirements. The proofs of these three Lemmas require a few
tools: Lemma 4.5 simply states that for sets X and Y of equal size there is a
short balanced X–Y movement. Lemma 4.6 exploits this to show that instead
of generating movements for every choice of X, Y ⊆ V (H) and any (X, Y )-
pairing L it suffices to consider just one choice of X and Y . Lemma 4.7 allows
us to move strongly singular vertices from X to Y and vice versa without
spoiling the existence of the desired X–Y movement.

We call a set A of vertices in a graph H marginal if H − A is connected
and every vertex of A has a neighbour in H − A.

Lemma 4.5. For any two distinct vertex sets X and Y of some size k in a
connected graph H and any marginal set A ⊆ V (H) there is a balanced X–Y
movement of length at most k on H such that A is strongly singular.

4Wilson stated his theorem for graphs which are neither bipartite, nor a cycle, nor a
certain graph θ0. If H properly contains a triangle, then it satisfies all these conditions
and if H itself is a triangle, then our theorem is obviously true.
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Proof. We may assume that H is a tree and that all vertices of A are leaves
of this tree. This already implies that vertices of A cannot be inner vertices
of moves. Moreover, we may assume that X ∩ Y ∩ A = ∅.

We apply induction on |H|. The base case |H| = 1 is trivial. For |H| > 1
let e be an edge of H. If the two components H1 and H2 of H − e each
contain the same number of vertices from X as from Y , then for i = 1, 2 we
set Xi := X∩V (Hi) and Yi := Y ∩V (Hi). By induction there is a balanced Xi–
Yi movement (Xi, Mi) of length at most |Xi| on Hi such that each vertex of A
is strongly (Xi, Mi)-singular where i = 1, 2. By Lemma 4.1 (X , M) :=(X1 ∪
X2, M1)⊕(X2∪Y1, M2) is an X–Y movement of length at most |X1|+ |X2| =
|X| = k as desired. Clearly (X , M) is balanced and A is strongly (X , M)-
singular as H1 and H2 are disjoint.

So we may assume that for every edge e of H one component of H − e
contains more vertices from Y than from X and direct e towards its end
vertex lying in this component. As every directed tree has a sink, there is
a vertex y of H such that every incident edge e is incoming, that is, the
component of H − e not containing y contains more vertices of X than of Y .
As |X| = |Y |, this can only be if y is a leaf in H and y ∈ Y \ X.

Let M be any X–y path and denote its first vertex by x. At most one
of x ∈ Y and x ∈ A can be true by assumption. Clearly (({x}, {y}), (M)) is
an {x}–{y} movement and since H − y is connected, by induction there is
a balanced (X \ {x})–(Y \ {y}) movement (X �, M�) of length at most k − 1
on H − y such that A is strongly singular w.r.t. both movements. As before,
Lemma 4.1 implies that

(X , M) :=
�
(X, (X \ {x}) ∪ {y}), (M)

�
⊕ (X � ∪ {y}, M�)

is an X–Y movement of length at most k. Clearly (X , M) is balanced and
by construction A is strongly (X , M)-singular.

Lemma 4.6. Let k be a positive integer and H a connected graph with a
marginal set A. Suppose that X, X �, Y �, Y ⊆ V (H) are sets with |X|+|Y | = 2k,
|X �| = |X|, and |Y �| = |Y | such that (X ∪ X �) ∩ (Y � ∪ Y ) does not intersect
A. If for each (X �, Y �)-pairing L� there is an L�-movement (X �, M�) of length
at most n� on H such that A is strongly (X �, M�)-singular, then for each
(X, Y )-pairing L there is an L-movement (X , M) of length at most n� + 2k
such that A is (X , M)-singular and all vertices of A that are not strongly
(X , M)-singular are in (X � ∪ Y �) \ (X ∪ Y ).

Proof. Let (XX , MX) be a balanced X–X � movement of length at most |X|
and let (XY , MY ) be a balanced Y �–Y movement of length at most |Y | such
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that A is strongly singular w.r.t. both movements. These exist by Lemma 4.5.
For any X �–Y � movement (X �, M�) such that A is strongly (X �, M�)-singular,

(X , M) :=(XX , MX) ⊕ (X �, M�) ⊕ (XY , MY )

is a movement of length at most |X| + n� + |Y | = n� + 2k by Lemma 4.1.
In a slight abuse of the notation we shall write a ∈ MX , a ∈ M�, and a ∈

MY for a vertex a ∈ A if there is a move of MX , M�, and MY , respectively,
that contains a. Consequently, we write a /∈ MX , etc. if there is no such
move. The set A is strongly singular w.r.t. each of (XX , MX), (X �, M�), and
(XY , MY ). Therefore all moves of M are internally disjoint from A and each
a ∈ A is contained in at most one move from each of MX , M�, and MY .
Moreover, for each a ∈ A

1. a ∈ MX if and only if precisely one of a ∈ X and a ∈ X � is true,

2. a ∈ M� if and only if precisely one of a ∈ X � and a ∈ Y � is true, and

3. a ∈ MY if and only if precisely one of a ∈ Y � and a ∈ Y is true.

Clearly A \ (X ∪ X � ∪ Y � ∪ Y ) is strongly (X , M)-singular as none of its
vertices is contained in a path of M.

Let a ∈ X ∩ A. Then by assumption a /∈ Y ∪ Y � and thus a /∈ MY . If
a ∈ X �, then a ∈ M� and a /∈ MX . Otherwise a /∈ X � and therefore a ∈ MX

and a /∈ M�. In either case a is in at most one move of M and hence X ∩ A
is strongly (X , M)-singular. A symmetric argument shows that Y ∩ A is
strongly (X , M)-singular.

Let a ∈ (X � ∪ Y �)∩A with a /∈ X ∪ Y . Then a ∈ X � � Y � so a ∈ M� and
precisely one of a ∈ MX and a ∈ MY is true.

We conclude that every vertex of a ∈ A is (X , M)-singular and it is even
strongly (X , M)-singular if and only if a /∈ (X � ∪ Y �) \ (X ∪ Y ).

The induced pairings LX of (XX , MX) and LY of (XY , MY ) are both
balanced and it is not hard to see that for a suitable choice of L� the induced
pairing LX ⊕ L� ⊕ LY of (X , M) equals L.

Lemma 4.7. Let H be a connected graph and let X, Y ⊆ V (H). Suppose that
L is an (X, Y )-pairing and (X , M) an L-movement of length n. If x ∈ X ∪Y
is strongly (X , M)-singular, then the following statements hold.

(i) (X � x, M) is an (L� x)-movement of length n where X � x :=(X0 �
{x}, . . . , Xn � {x}) and L � x denotes the graph obtained from L by
replacing (x, 0) with (x,∞) or vice versa (at most one of these can be a
vertex of L).
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(ii) A vertex y ∈ V (H) is (strongly) (X , M)-singular if and only if it is
(strongly) (X � x, M)-singular.

Proof. Clearly (X � x, M) is an (L � x)-movement of length n. As its in-
termediate configurations differ from those of X only in x, the last assertion
is trivial for y �= x. For y = x note that {i | x /∈ Xi} is an integer interval
containing precisely one of 0 and n because {i | x ∈ Xi} is.

In the final three Lemmas of this section we put our tools to use and
construct movements under certain assumptions about the graph. Note that
it is not hard to improve on the upper bounds given for the lengths of the
generated movements with more complex proofs. However, in our main proof
we have an arbitrarily long stable regular decomposition at our disposal, so
the input movements for Lemma 4.3 can be arbitrarily long as well.

Lemma 4.8. Let k be a positive integer and H a connected graph with a
marginal set A. If one of

a) |A| ≥ 2k − 1 and

b) |NH(v) ∩ NH(w) ∩ A| ≥ 2k − 3 for some edge vw of H − A

holds, then for any X–Y pairing L such that X, Y ⊆ V (H) with |X|+|Y | = 2k
and X ∩ Y ∩ A = ∅ there is an L-movement (X , M) of length at most 3k on
H such that A is (X , M)-singular.

The basic argument of the proof is that that if we place tokens on the
leaves of a star but not on its centre, then we can clearly “destroy” any given
pair of tokens by moving one on top of the other through the centre of the
star.

Proof. Suppose that a) holds. Let NA ⊆ A with |NA| = 2k − 1. There are
sets X �, Y � ⊆ V (H) such that

1. |X �| = |X| and |Y �| = |Y |,

2. X ∩ NA ⊆ X �,

3. Y ∩ NA ⊆ Y �, and

4. NA ⊆ X � ∪ Y � and X � ∩ Y � ∩ A = ∅.
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By Lemma 4.6 it suffices to show that for each X �–Y � pairing L� there is
an L�-movement (X �, M�) of length at most k on H such that A is strongly
(X �, M�)-singular. Assume w.l.o.g. that the unique vertex of (X � ∪ Y �) \ NA

is in X �. Repeated application of Lemma 4.7 implies that the desired L�-
movement (X �, M�) exists if and only if for every (X �∪Y �)–∅ pairing L�� there
is an L��-movement (X ��, M��) of length at most k on H such that A is strongly
(X ��, M��)-singular.

Let L�� be any (X � ∪ Y �)–∅ pairing. Then E(L��) = {(xi, 0)(yi, 0) | i =
1, . . . , k} where (X � ∪ Y �) ∩ NA = {x1, . . . , xk, y2, . . . , yk} and (X � ∪ Y �) \
NA = {y1}. For i = 0, . . . , k set Xi :={xj, yj | j > i}. For i = 1, . . . , k
let Mi be an xi–yi path in H that is internally disjoint from A. Then
(X ��, M��) :=((X0, . . . , Xk), (M1, . . . , Mk)) is an L��-movement of length k and
obviously A is strongly (X ��, M��)-singular.

Suppose that b) holds and let NA ⊆ NH(v)∩NH(w)∩A with |NA| = 2k−3
and set NB :={v, w}. There are sets X �, Y � ⊆ V (H) such that

1. |X �| = |X| and |Y �| = |Y |,

2. X ∩ NA ⊆ X � and X � ∩ A ⊆ X ∪ NA,

3. Y ∩ NA ⊆ Y � and Y � ∩ A ⊆ Y ∪ NA,

4. NA ⊆ X � ∪ Y � and X � ∩ Y � ∩ A = ∅,

5. NB ⊆ X � or X � ⊂ NA ∪ NB, and

6. NB ⊆ Y � or Y � ⊂ NA ∪ NB.

By Lemma 4.6 (see case a) for the details) it suffices to find an L�-movement
(X �, M�) of length at most k on H such that A is strongly (X �, M�)-singular
where L� is any X �–Y � pairing. Since |(X � ∪ Y �) \ NA| = 3 we may asssume
w.l.o.g. that NB ⊆ X � and Y � ⊆ NA∪{v}. So either there is z ∈ X �\(NA∪NB)
or v ∈ Y �. By repeated application of Lemma 4.7 we may assume that
NA ⊆ X �. This means that L� has the vertices N̄A := NA × {0}, v̄ :=(v, 0),
w̄ :=(w, 0), and z̄ :=(z, 0) in the first case or z̄ :=(v,∞) in the second case.
So L� must satisfy one of the following.

1. No edge of L� has both ends in {v̄, w̄, z̄}.

2. v̄w̄ ∈ E(L�).

3. v̄z̄ ∈ E(L�).

4. w̄z̄ ∈ E(L�).
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This leaves us with eight cases in total. Since construction is almost the same
for all cases we provide the details for only one of them: We assume that
v ∈ Y � and w̄z̄ ∈ E(L�). Then L� has edges (w, 0)(v,∞) and {(xi, 0)(yi, 0) |
i = 1, . . . , k−1} where x1 := v and X �∩NA = {x2, . . . , xk−1, y1, . . . , yk−1}. For
i = 0, . . . , k − 1 set Xi :={w} ∪�

j>i{xj, yj} and let Xk :={v}. Set M1 := vy1

and Mi := xivyi for i = 2, . . . , k − 1 and let Mk be a w–z path in H that is
internally disjoint from A. Then (X �, M�) :=((X0, . . . , Xk), (M1, . . . , Mk)) is
an L�-movement and A is strongly (X �, M�)-singular.

Lemma 4.9. Let k be a positive integer and H a connected graph with a
marginal set A. Let X, Y ⊆ V (H) with |X| + |Y | = 2k and X ∩ Y ∩ A = ∅.
Suppose that there is a vertex v of H − (X ∪ Y ∪ A) such that

2|NH(v) \ A| + |NH(v) ∩ A| ≥ 2k + 1.

Then for any (X, Y )-pairing L there is an L-movement of length at most
k(k + 2) on H such that A is singular.

Although the basic idea is still the same as in Lemma 4.8 it gets a little
more complicated here as our star might not have enough leaves to hold all
tokens at the same time. Hence we prefer an inductive argument over an
explicit construction.

Proof. Set NA := NH(v)∩A and NB := NH(v) \ A. If |NA| ≥ 2k − 1, then we
are done by Lemma 4.8 as 3k ≤ k(k+2). So we may assume that |NA| ≤ 2k−2.
Under this additional assumption we prove a slightly stronger statement than
that of Lemma 4.9 by induction on k: We not only require that A is singular
but also that all vertices of A that are not strongly singular are in NA\(X∪Y ).

The base case k = 1 is trivial. Suppose that k ≥ 2. There are sets
X �, Y � ⊆ V (H) such that

1. |X �| = |X| and |Y �| = |Y |,

2. X ∩ NA ⊆ X � and X � ∩ A ⊆ X ∪ NA,

3. Y ∩ NA ⊆ Y � and Y � ∩ A ⊆ Y ∪ NA,

4. NA ⊆ X � ∪ Y � and X � ∩ Y � ∩ A = ∅,

5. NB ⊆ X � or X � ⊂ NA ∪ NB,

6. NB ⊆ Y � or Y � ⊂ NA ∪ NB, and

7. v /∈ X � and v /∈ Y �.
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By Lemma 4.6 it suffices to find an L�-movement (X �, M�) of length at
most k2 such that A is strongly (X �, M�)-singular where L� is any X �–Y �

pairing.
If there are x, y ∈ X � ∩ NH(v) such that (x, 0)(y, 0) ∈ E(L�), then

set X �� := X � \ {x, y}, Y �� := Y �, H �� := H − (A \ (X �� ∪ Y ��)), and L�� := L� −
{(x, 0), (y, 0)}. We have NH��(v) \ A = NB and NH��(v) ∩ A = NA \ {x, y} as
NA ⊆ X � ∪ Y �. This means

2|NH��(v) \ A| + |NH��(v) ∩ A| ≥ 2|NB| + |NA| − 2 ≥ 2k − 1.

Hence by induction there is an L��-movement (X ��, M��) of length at most
(k + 1)(k − 1) on H �� such that A is singular and all vertices of A that
are not strongly singular are in NA \ (X �� ∪ Y ��). Since NA ∩ V (H ��) ⊆
X �� ∪ Y �� the set A is strongly (X ��, M��)-singular. Then by construction
(X �, M�) :=((X �, X ��), (xvy))⊕ (X ��, M��) is an L�-movement of length at most
k2 and A is strongly (X �, M�)-singular.

The case x, y ∈ Y � ∩ NH(v) with (x,∞)(y,∞) ∈ E(L�) is symmetric. If
there are x ∈ X � ∩NH(v) and y ∈ Y � ∩NH(v) such that (x, 0)(y,∞) ∈ E(L�)
and at least one of x and y is in NA, then the desired movement exists by
Lemma 4.7 and one of the previous cases.

By assumption

2|NH(v)| ≥ 2|NB| + |NA| ≥ 2k + 1

and thus |NH(v)| ≥ k +1. If NB ⊆ X �, then NH(v) ⊆ X �∪ (Y �∩A) and there
is a pair as above by the pigeon hole principle. Hence we may assume that
X � ⊂ NB and by symmetry also that Y � ⊂ NB. This implies that NA = ∅
and that L� is balanced.

So we have |X �| = k = |Y �|, X �, Y � ⊆ NB and |NB| ≥ k + 1. It is easy
to see that there is an L�-movement (X �, M�) of length at most 2k ≤ k2 on
H[{v} ∪ NB] such that A is strongly (X �, M�)-singular.

Lemma 4.10. Let n ∈ N and let f : N0 → N0 be the map that is recursively
defined by setting f(0) := 0 and f(k) := 2k+2n!+4+f(k−1) for k > 0. Let k
be a positive integer and let H be a connected graph on at most n vertices with
a marginal set A. Let X, Y ⊆ V (H) with |X| + |Y | = 2k and X ∩ Y ∩ A = ∅
such that neither X nor Y contains all vertices of H−A. Suppose that there is
a block D of H−A such that D contains a triangle and 2|D|+|N(D)| ≥ 2k+3.
Then for any (X, Y )-pairing L there is an L-movement of length at most f(k)
on H such that A is singular.

Proof. Set NA := N(D) ∩ A and NB := N(D) \ A. If |NA| ≥ 2k − 1, then we
are done by Lemma 4.8 as 3k ≤ f(k). So we may assume that |NA| ≤ 2k − 2.
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Under this additional assumption we prove a slightly stronger statement than
that of Lemma 4.10 by induction on k: We not only require that A is singular
but also that all vertices of A that are not strongly singular are in NA\(X∪Y ).
As always the base case k = 1 is trivial. Suppose that k ≥ 2.

Claim 4.10.1. Suppose that |V (D) \ X| ≥ 1 and that there is an edge
(x, 0)(y, 0) ∈ E(L) with x ∈ V (D) and y ∈ V (D)∪N(D). Let A� ⊆ A\(X∪Y )
with |A�| ≤ 1. Then there is an L-movement of length at most |D|!+1+f(k−1)
on H − A� such that A is singular and every vertex of A that is not strongly
singular is in NA \ (X ∪ Y ).

Proof. Let y� be a neighbour of y in D. Here is a sketch of the idea: Move
the token from x to y� by a movement on D which we can generate with
Wilsons’s Theorem 4.4 and then add the move yy�. This “destroys” one pair
of tokens and allows us to invoke induction.

We assume x �= y� (in the case x = y� we can skip the construction
of (Xϕ, Mϕ) in this paragraph). Set X � :=(X \ {x}) ∪ {y�} if y� /∈ X and
X � := X otherwise. The vertices x and y� are both in the 2-connected graph
D which contains a triangle. By definition |X ∩ V (D)| = |X � ∩ V (D)| and
by assumption both sets are smaller than |D|. Let ϕ : X → X � any bijection
with ϕ|X\V (D) = id |X\V (D) and ϕ(x) = y�. By Theorem 4.4 there is a balanced
L(ϕ|V (D))-movement of length at most |D|! on D so by Lemma 4.1 (ii) there
is a balanced L(ϕ)-movement (Xϕ, Mϕ) of length at most |D|! on H such
that all its moves are contained in D.

Set X �� := X � \ {y, y�} and let L� be the X �–X �� pairing with edge set
{(z, 0)(z,∞) | z ∈ X ��} ∪ {(y, 0)(y�, 0)}. Clearly ((X �, X ��), (yy�)) is an L�-
movement. Let L�� be the X ��–Y pairing obtained from L by deleting the edge
(x, 0)(y, 0) and substituting every vertex (z, 0) with (ϕ(z), 0). By definition
we have L = L(ϕ) ⊕ L� ⊕ L��.

The set A�� := A� ∪ (A ∩ {y}) has at most 2 elements and thus 2|D| +
|N(D) \ A��| ≥ 2k + 1. So by induction there is an L��-movement (X ��, M��)
of length at most f(k − 1) on H − A�� such that A is (X ��, M��)-singular and
every vertex of A that is not strongly (X ��, M��)-singular is in NA \ (X ∪ Y ).
Hence the movement

(X , M) :=(Xϕ, Mϕ) ⊕
�
(X �, X ��), (yy�)

�
⊕ (X ��, M��)

on H −A� has induced pairing L by Lemma 4.2 and length at most |D|! + 1+
f(k− 1). Every move of M that contains a vertex of A \{y} is in M��. Hence
A \ {y} is (X , M)-singular and every vertex of A \ {y} that is not strongly
(X , M)-singular is in NA \ (X ∪ Y ). If y /∈ A, then we are done. But if y ∈ A,
then our construction of (X ��, M��) ensures that no move of M�� contains y.
Therefore y is strongly (X , M)-singular.
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Claim 4.10.2. Suppose that |V (D)\X| ≥ 2 and that L has an edge (x, 0)(y, 0)
with x, y ∈ N(D). Then there is an L-movement of length at most 2|D|! +
2 + f(k − 1) on H such that A is singular and every vertex of A that is not
strongly singular is in NA \ (X ∪ Y ).

Proof. The proof is very similar to that of Claim 4.10.1. Let y� be a neighbour
of y in D. We assume y� ∈ X (in the case y� /∈ X we can skip the construction
of (Xϕ, Mϕ) in this paragraph). Let z ∈ V (D)\X and let X � :=(X\{y�})∪{z}.
Let ϕ : X → X � be any bijection with ϕ|X\V (D) = idX\V (D) and ϕ(y�) = z.
Applying Theorem 4.4 and Lemma 4.1 as in the proof of Claim 4.10.1 we
obtain a balanced L(ϕ)-movement (Xϕ, Mϕ) of length at most |D|! such that
its moves are contained in D (in fact, we could “free” the vertex y� with only
|D| moves by shifting each token on a y�–z path in D by one position towards
z, but we stick with the proof of Claim 4.10.1 here for simplicity).

Set X �� :=(X �\{y})∪{y�} and let ϕ� : X � → X �� be the bijection that maps
y to y� and every other element to itself. Clearly ((X �, X ��), (yy�)) is an L(ϕ�)-
movement. Let L�� be the X ��–Y pairing obtained from L by substituting every
vertex (z, 0) with (ϕ� ◦ ϕ(z), 0). It is not hard to see that this construction
implies L = L(ϕ) ⊕ L(ϕ�) ⊕ L��. Since (0, x)(0, y�) is an edge of L�� with
x ∈ V (D) ∪ N(D) and y� ∈ V (D) we can apply Claim 4.10.1 to obtain an
L��-movement (X ��, M��) of length at most |D|!+1+f(k−1) on H− ({y}∩A)
(note that y ∈ A ∩ X implies y /∈ Y by assumption) such that A \ {y} is
(X ��, M��)-singular and every vertex of A \ {y} that is not strongly (X ��, M��)-
singular is in NA \ (X ∪ Y ). Hence the movement

(X , M) :=(Xϕ, Mϕ) ⊕
�
(X �, X ��), (yy�)

�
⊕ (X ��, M��)

on H has induced pairing L by Lemma 4.2 and length at most 2|D|! + 2 +
f(k − 1). The argument that A is (X , M)-singular and the only vertices of
A that are not strongly (X , M)-singular are in NA \ (X ∪ Y ) is the same as
in the proof of Claim 4.10.1.

Pick any vertex v ∈ V (D). There are sets X �, Y � ⊆ V (H) such that

1. |X �| = |X| and |Y �| = |Y |,

2. X ∩ NA ⊆ X � and X � ∩ A ⊆ X ∪ NA,

3. Y ∩ NA ⊆ Y � and Y � ∩ A ⊆ Y ∪ NA,

4. NA ⊆ X � ∪ Y � and X � ∩ Y � ∩ A = ∅,

5. NB ⊆ X � or X � ⊂ NA ∪ NB,
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6. NB ⊆ Y � or Y � ⊂ NA ∪ NB,

7. v /∈ X � and v /∈ Y �,

8. V (D) ∪ NB ⊆ X � ∪ {v} or X � ⊂ V (D) ∪ N(D), and

9. V (D) ∪ NB ⊆ Y � ∪ {v} or Y � ⊂ V (D) ∪ N(D).

By Lemma 4.6 it suffices to find an L�-movement (X �, M�) of length at most
f(k) − 2k on H such that A is strongly (X �, M�)-singular where L� is any
X �–Y � pairing.

Since n ≥ |D| we have f(k)−2k ≥ 2|D|!+2+f(k−1) and by assumption
v ∈ V (D) \ X �. If L� has an edge (0, x)(0, y) with x ∈ V (D) and y ∈
V (D) ∪ N(D), then by Claim 4.10.1 there is an L�-movement (X �, M�) of
length at most f(k) − 2k on H such that A is strongly (X �, M�)-singular
(recall that NA \ (X � ∪ Y �) is empty by choice of X � and Y �). So we may
assume that L� contains no such edge and by Lemma 4.7 we may also assume
that it has no edge (x, 0)(y,∞) with x ∈ V (D) and y ∈ NA.

Counting the edges of L� that are incident with a vertex of (V (D) ∪
N(D)) × {0} we obtain the lower bound

�L�� ≥ |X � ∩ V (D)| + |X � ∩ NB|/2 + |(X ∪ Y ) ∩ NA|/2.
If V (D)∪NB ⊆ X � ∪ {v}, then |X � ∩ V (D)| = |D| − 1 and |X � ∩NB| = |NB|.
Since |(X � ∪ Y �) ∩ NA| = |NA| this means

2k = 2�L�� ≥ 2(|D| − 1) + |NB| + |NA| ≥ 2|D| + |N(D)| − 2 ≥ 2k + 1,

a contradiction. So we must have X � ⊂ V (D) ∪ N(D) and |V (D) \ X �| ≥ 2.
Applying Claim 4.10.2 in the same way as Claim 4.10.1 above we deduce that
no edge of L� has both ends in X × {0} or one end in X × {0} and the other
in NA × {∞}. By symmetry we can obtain statements like Claim 4.10.1 and
Claim 4.10.2 for Y instead of X thus by the same argument as above we may
also assume that Y � ⊂ V (D) ∪ N(D) and that no edge of L� has both ends
in Y × {∞} or one end in NA × {0} and the other in Y × {∞}. Hence L� is
balanced and NA = ∅. Let ϕ� : X � → Y � be the bijection with L� = L(ϕ�).

In the rest of the proof we apply the same techniques that we have already
used in the proof of Claim 4.10.1 and again in that of Claim 4.10.2 so from
now on we only sketch how to construct the desired movements. Furthermore,
all constructed movements use only vertices of V (D)∪NB for their moves so
A is trivially strongly singular w.r.t. them.

If NB \X � �= ∅, then we have X � ⊂ NB by assumption, so |NB| ≥ k+1 and
thus also Y � ⊂ NB. This is basically the same situation as at the end of the
proof for Lemma 4.9 so we find an L�-movement of length at most 2k ≤ f(k).
We may therefore assume that NB ⊆ X � ∩ Y �.
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Claim 4.10.3. Suppose that L� has an edge (x, 0)(y,∞) with x ∈ V (D)
and y ∈ NB. Then there is an L�-movement (X �, M�) of length at most
|D|! + 2 + f(k − 1) such that the moves of M� are disjoint from A.

Proof. Let y� be a neighbour of y in V (D). Since D is 2-connected, y� has two
distinct neighbours yl and yr in D. Using Theorem 4.4 we generate a balanced
movement of length at most |D|! on H such that all its moves are in D and
its induced pairing has the edge (x, 0)(yl,∞) and its final configuration does
not contain y� or yr. Adding the two moves yy�yr and yly

�y then results in
a movement (Xx, Mx) of length at most |D|! + 2 whose induced pairing Lx

contains the edge (x, 0)(y, 0).
It is not hard to see that there is a pairing L�� such that Lx ⊕ L�� = L

and this pairing must have the edge (y, 0)(y,∞). By induction there is an
L��-movement (X ��, M��) of length at most f(k−1) such that none if its moves
contains y. So (X �, M�) :=(Xx, Mx)⊕ (X ��, M��) is an L� movement of length
at most |D|! + 2 + f(k − 1) as desired.

Claim 4.10.4. Suppose that L� has an edge (x, 0)(y,∞) with x, y ∈ NB.
Then there is an L�-movement (X �, M�) of length at most 2|D|! + 4 + f(k− 1)
such that the moves of M� are disjoint from A.

Proof. Let x� be a neighbour of x in V (D). Since D is 2-connected, x� has
two distinct neighbours xl and xr in D. With the same construction as
in Claim 4.10.3 we can generate a movement (Xx, Mx) of length at most
|D|! + 2 such that its induced pairing Lx contains the edge (x, 0)(xr,∞) and
(x��, 0)(x,∞) for some vertex x�� ∈ V (D)∩X �. There is a pairing L�� such that
L = Lx ⊕ L�� and L�� contains the edge (xr, 0)(y,∞).

By Claim 4.10.3 there is an L��-movement (X ��, M��) of length at most
|D|! + 2 + f(k − 1). So (X �, M�) :=(Xx, Mx) ⊕ (X ��, M��) is an L� movement
of length at most 2|D|! + 4 + f(k − 1) as desired.

Since f(k)−2k ≥ 2|D|!+4+f(k−1) we may assume that NB∩Y � = ∅ and
thus NB = ∅ by Claim 4.10.3 and Claim 4.10.4. This means X �, Y � ⊆ V (D)
and therefore by Theorem 4.4 there is an L�-movement (X �, M�) of length at
most |D|! ≤ n! ≤ f(k) − 2k. This concludes the induction and thus also the
proof of Lemma 4.10.

5 Relinkages
This section collects several Lemma that compare different foundational link-
ages for the same stable regular decomposition of a graph. To avoid tedious
repetitions we use the following convention throughout the section.
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Convention. Let (W , P) be a stable regular decomposition of length l ≥ 3
and attachedness p of a p-connected graph G. Set λ :={α | Pα is non-trivial}
and θ :={α | Pα is trivial}. Let D be a block of Γ(W , P)[λ] and let κ be the
set of all cut-vertices of Γ(W , P)[λ] that are in D.

Lemma 5.1. Let Q be a foundational linkage. If αβ is an edge of Γ(W , Q)
with α ∈ λ or β ∈ λ, then αβ is an edge of Γ(W , P).

Proof. Some inner bag Wk of W contains a Q-bridge B realising αβ, that is,
B attaches to Qα and Qβ. For i = 1, . . . , k − 1 the induced permutation πi of
Q[Wi] is an automorphism of Γ(W , P) by (L10) and hence so is the induced
permutation π =

�k−1
i=1 πi of Q[W[1,k−1]].

Clearly the restriction of any induced permutation to θ is always the
identity, so π(α) ∈ λ or π(β) ∈ λ. Therefore π(α)π(β) must be an edge of
Γ(W , P) by (L11) as B attaches to Q[W ]π(α) and Q[W ]π(β). Since π is an
automorphism this means that αβ is an edge of Γ(W , P).

The previous Lemma allows us to make statements about any foundational
linkage Q just by looking at Γ(W , P), in particular, for every α ∈ λ the
neighbourhood N(α) of α in Γ(W , P) contains all neighbours of α in Γ(W , Q).
The following Lemma applies this argument.

Lemma 5.2. Let Q be a foundational linkage such that Q[W ] is p-attached in
G[W ] for each inner bag W of W. If λ0 is a subset of λ such that |N(α)∩θ| ≤
p − 3 for each α ∈ λ0, then every non-trivial Q-bridge in an inner bag of W
that attaches to a path of Qλ0 must attach to at least one other path of Qλ.

Proof. Suppose for a contradiction that some inner bag W of W contains a
Q-bridge B that attaches to some path Qα[W ] with α ∈ λ0 but to no other
path of Qλ[W ]. Recall that either all foundational linkages for W satisfy (L7)
or none does and P witnesses the former. Hence by (L7) a path of Q[W ] is
non-trivial if and only if it is in Qλ[W ]. So by p-attachedness Qα[W ] is bridge
adjacent to at least p − 2 paths of Qθ in G[W ]. Therefore in Γ(W , Q) the
vertex α is adjacent to at least p − 2 vertices of θ and by Lemma 5.1 so it
must be in Γ(W , P), giving the desired contradiction.

Lemma 5.3. Let Q be a foundational linkage. Every Q-bridge B that attaches
to a path of Qλ\V (D) has no edge or inner vertex in GQ

D, in particular, it can
attach to at most one path of QV (D).

Proof. By assumption B attaches to some path Qα with α ∈ λ \ V (D). This
rules out the possibility that B attaches to only one path of Qλ that happens
to be in QV (D). So if B has an edge or inner vertex in GQ

D, then it must realise
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an edge of D. Hence B attaches to paths Qβ and Qγ with β, γ ∈ V (D). This
means that αβ and αγ are both edges of Γ(W , Q) and thus of Γ(W , P) by
Lemma 5.1. But D is a block of Γ(W , P)[λ] so no vertex of λ \ V (D) can
have two neighbours in D.

Given two foundational linkages Q and Q� and a set λ0 ⊆ λ, we say that
Q� is a (Q, λ0)-relinkage or a relinkage of Q on λ0 if Q�

α = Qα for α /∈ λ0 and
Q�

λ0
⊆ GQ

λ0
.

Lemma 5.4. If Q is a (P , V (D))-relinkage and Q� a (Q, V (D))-relinkage,
then GQ�

D ⊆ GQ
D, in particular, GQ

D ⊆ GP
D.

Proof. Clearly GQ
D and GQ�

D are induced subgraphs of G so it suffices to
show V (GQ�

D ) ⊆ V (GQ
D). Suppose for a contradiction that there is a vertex

w ∈ V (GQ�
D ) \ V (GQ

D). We have GQ�
D ∩ Q� = Q�

V (D) ⊆ GQ
D so w must be an

inner vertex of a Q�-bridge B�. But w is in Gλ − GQ
D and thus in a Q-bridge

attaching to a path of Qλ\V (D), in particular, there is a w–Qλ\V (D) path R
that avoids GQ

D ⊇ Q�
V (D). This means R ⊆ B� and thus B� attaches to a path

of Q�
λ\V (D) = Qλ\V (D), a contradiction to Lemma 5.3. Clearly P itself is a

(P , V (D))-relinkage so GQ
D ⊆ GP

D follows from a special case of the statement
we just proved.

Lemma 5.5. Let Q be a (P , V (D))-relinkage. If in Γ(W , P) we have |N(α)∩
θ| ≤ p − 3 for all α ∈ λ \ V (D), then there is a (Q, V (D))-relinkage Q� such
that for every inner bag W of W the linkage Q�[W ] is p-attached in G[W ] and
has the same induced permutation as Q[W ]. Moreover, Γ(W , Q�) contains all
edges of Γ(W , Q) that have at least one end in λ.

Proof. Suppose that some non-trivial Q-bridge B in an inner bag W of W
attaches to a path Qα = Pα with α ∈ λ \ V (D) but to no other path of Qλ.
Then B is also a P-bridge and P [W ] is p-attached in G[W ] by (L6) so Pα[W ]
must be bridge adjacent to at least p − 2 paths of Pθ in G[W ] and thus α
has at least p − 2 neighbours in θ, a contradiction. Hence every non-trivial
Q-bridge that attaches to a path of Qλ\V (D) must attach to at least one other
path of Qλ.

For every inner bag Wi of W let Q�
i be the bridge stabilisation of Q[Wi]

in G[Wi]. Then Q�
i has the same induced permutation as Q[Wi]. Note that

the set Z of all end vertices of the paths of Q[Wi] is the union of the left and
right adhesion set of Wi. So by the p-connectivity of G for every vertex x
of G[Wi] − Z there is an x–Z fan of size p in G[Wi]. This means that Q�

i is
p-attached in G[Wi] by Lemma 3.7 (iii).

Hence Q� :=
�l−1

i=1 Q�
i is a foundational linkage with Q�[Wi] = Q�

i for i =
1, . . . , l − 1. Therefore Q�[W ] is p-attached in G[W ] and Q�[W ] has the same
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induced permutations as Q[W ] for every inner bag W of W . There is no
Q-bridge that attaches to precisely one path of Qλ\V (D) but to no other path
of Qλ so we have Q�

λ\V (D) = Qλ\V (D) by Lemma 3.7 (i). The same result
implies Q�

V (D) ⊆ GQ
D so Q� is indeed a relinkage of Q on V (D).

Finally, Lemma 3.7 (ii) states that Γ(W , Q�) contains all those edges of
Γ(W , Q) that have at least one end in λ.

The “compressed” linkages presented next will allow us to fulfil the size re-
quirement that Lemma 4.10 imposes on our block D as detailed in Lemma 5.7.
Given a subset λ0 ⊆ λ and a foundational linkage Q, we say that Q is com-
pressed to λ0 or λ0-compressed if there is no vertex v of GQ

λ0
such that GQ

λ0
−v

contains |λ0| disjoint paths from the first to the last adhesion set of W and
v has a neighbour in Gλ − GQ

λ0
.

Lemma 5.6. Suppose that in Γ(W , P) we have |N(α) ∩ θ| ≤ p − 3 for all
α ∈ λ \ V (D) and let Q be a (P , V (D))-relinkage. Then there is a V (D)-
compressed (Q, V (D))-relinkage Q� such that for every inner bag W of W the
linkage Q�[W ] is p-attached in G[W ].

Proof. Clearly Q itself is a (Q, V (D))-relinkage. Pick Q� from all (Q, V (D))-
relinkages such that GQ�

D is minimal. By Lemma 5.4 and Lemma 5.5 we may
assume that we picked Q� such that for every inner bag of W of W the linkage
Q�[W ] is p-attached in G[W ].

It remains to show that Q� is V (D)-compressed. Suppose not, that is,
there is a vertex v of GQ�

D such that v has a neighbour in Gλ − GQ�
D and

GQ�
D − v contains an X–Y linkage Q�� where X and Y denote the intersection

of V (GQ�
D ) with the first and last adhesion set of W , respectively.

By Lemma 5.4 we have GQ��
D ⊆ GQ�

D ⊆ GQ
D and thus Q�� is a (Q, V (D))-

relinkage as well. This implies GQ��
D = GQ�

D by the minimality of GQ�
D . The

vertex v does not lie on a path of Q�� by construction so it must be in a
Q��-bridge B��. But v has a neighbour w in Gλ−GQ�

D and there is a w–Q�
λ\V (D)

path R that avoids GQ�
D . This means R ⊆ B�� and thus B�� attaches to a path

of Q��
λ\V (D), contradicting Lemma 5.3.

Lemma 5.7. Let Q be a V (D)-compressed foundational linkage. Let V be
the set of all inner vertices of paths of Qκ that have degree at least 3 in GQ

D.
Then the following statements are true.

(i) Either 2|D| + |N(D) ∩ θ| ≥ p or V (GQ
D) = V (QV (D)) and κ �= ∅.

(ii) Either 2|D| + |N(D)| ≥ p or there is α ∈ κ such that |Qβ| ≤ |V ∩
V (Qα)| + 1 for all β ∈ V (D) \ κ.
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Note that V (GQ
D) = V (QV (D)) implies that every Q-bridge in an inner

bag of W that realises an edge of D must be trivial.

Proof.

(i) Denote by X and Y the intersection of GQ
D with the first and last

adhesion set of W , respectively. Let Z be the union of X, Y , and the
set of all vertices of GQ

D that have a neighbour in Gλ − GQ
D. Clearly

Z ⊆ V (Qκ)∪X∪Y . Moreover, GQ
D−z does not contain an X–Y linkage

for any z ∈ Z: For z ∈ X∪Y this is trivial and for the remaining vertices
of Z it holds by the assumption that Q is V (D)-compressed. Therefore
for every z ∈ Z there is an X–Y separation (Az, Bz) of GQ

D of order at
most |D| with z ∈ Az ∩ Bz. On the other hand, QV (D) is a set of |D|
disjoint X–Y paths in GQ

D so every X–Y separation has order at least
|D|. Hence by Lemma 3.1 there is a nested set S of X–Y separations
of GQ

D, each of order |D|, such that Z ⊆ Z0 where Z0 denotes the set of
all vertices that lie in a separator of a separation of S.

We may assume that (X, V (GQ
D)) ∈ S and (V (GQ

D), Y ) ∈ S so for any
vertex v of GQ

D−(X∪Y ) there are (AL, BL) ∈ S and (AR, BR) ∈ S such
that (AL, BL) is rightmost with v ∈ BL \ AL and (AR, BR) is leftmost
with v ∈ AR \ BR. Set SL := AL ∩ BL and SR := AR ∩ BR.

Let z be any vertex of Z0 “between” SL and SR, more precisely, z ∈
(BL \AL)∩ (AR \BR). There is a separation (AM , BM ) ∈ S such that its
separator SM := AM ∩ BM contains z. Then z witnesses that AM � AL

and BM � BR and thus (AM , BM) is neither left of (AL, BL) nor right
of (AR, BR). But S is nested and therefore (AM , BM) is strictly right
of (AL, BL) and strictly left of (AR, BR). This means v ∈ SM otherwise
(AM , BM ) would be a better choice for (AL, BL) or for (AR, BR). So any
separator of a separation of S that contains a vertex of (BL \ AL) ∩
(AR \ BR) must also contain v.

If v /∈ Z0, then (BL \AL)∩ (AR \BR)∩Z0 = ∅. This means that SL∪SR

separates v from Z in GQ
D. So SL ∪ SR ∪ V (QN(D)∩θ) separates v from

G − GQ
D in G. By the connectivity of G we therefore have

2|D| + |N(D) ∩ θ| ≥
��SL ∪ SR ∪ V (QN(D)∩θ)

�� ≥ p.

So we may assume that V (GQ
D) = Z0 Since every separator of a sepa-

ration of S consists of one vertex from each path of QV (D) this means
V (QV (D)) ⊆ V (GQ

D) = Z0 ⊆ V (QV (D)). If κ = ∅, then X ∪ Y ∪
V (QN(D)∩θ) separates GQ

D − (X ∪ Y ) from G − GQ
D in G so this is

just a special case of the above argument.
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(ii) We may assume κ �= ∅ by (i) and κ �= V (D) since the statement is
trivially true in the case κ = V (D). Pick α ∈ κ such that |V ∩ V (Qα)|
is maximal and let β ∈ V (D) \ κ. For any inner vertex v of Qβ define
(AL, BL) and (AR, BR) as in the proof of (i) and set Vv := V ∩ (BL \
AL) ∩ (AR \ BR).

By (i) we have Vv ⊆ Z0 and every separator of a separation of S that
contains a vertex of Vv must also contain v. This means that Vv∩Vv� = ∅
for distinct inner vertices v and v� of Qβ since no separator of a separation
of S contains two vertices on the same path of QV (D).

Furthermore, SL ∪SR ∪ Vv separates v from V (Qκ)∪X ∪ Y ⊇ Z in GQ
D

so by the same argument as in (i) we have 2|D| + |N(D)∩ θ| + |Vv| ≥ p.
Then |N(D) ∩ λ| ≥ |Vv| would imply 2|D| + |N(D)| ≥ p so we may
assume that |N(D) ∩ λ| < |Vv| for all inner vertices v of Qβ. Clearly
N(D) ∩ λ is a disjoint union of the sets (N(γ) ∩ λ) \ V (D) with γ ∈ κ
and these sets are all non-empty. Hence |κ| ≤ |N(D) ∩ λ| and thus
|κ| + 1 ≤ |Vv| for all inner vertices v of Qβ.

Write V for the inner vertices of Qβ. Statement (ii) easily follows from

|V |(|κ| + 1) ≤
�

v∈V

|Vv| ≤ |V | ≤ |κ| · |V ∩ V (Qα)|.

6 Rural Societies
In this section we present the answer of Robertson and Seymour to the
question whether or not a graph can be drawn in the plane with specified
vertices on the boundary of the outer face in a prescribed order. We will apply
their result to subgraphs of a graph with a stable decomposition.

A society is a pair (G,Ω) where G is a graph and Ω is a cyclic permutation
of a subset of V (G) which we denote by Ω̄. A society (G,Ω) is called rural if
there is a drawing of G in a closed disc D such that V (G) ∩ ∂D = Ω̄ and Ω
coincides with a cyclic permutation of Ω̄ arising from traversing ∂D in one
of its orientations. We say that a society (G,Ω) is k-connected for an integer
k if there is no separation (A, B) of G with |A ∩ B| < k and Ω̄ ⊆ B �= V (G).
For any subset X ⊆ Ω̄ denote by Ω|X the map on X defined by x �→ Ωk(x)
where k is the smallest positive integer such that Ωk(x) ∈ X (chosen for each
x individually). Since Ω is a cyclic permutation so is Ω|X.

Given two internally disjoint paths P and Q in G we write PQ for the
cyclic permutation of V (P ∪ Q) that maps each vertex of P to its successor
on P if there is one and to the first vertex of Q−P otherwise and that maps
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each vertex of Q−P to its successor on Q−P if there is one and to the first
vertex of P otherwise.

Let R and S be disjoint Ω̄-paths in a society (G,Ω), with end vertices
r1, r2 and s1, s2, respectively. We say that {R, S} is a cross in (G,Ω), if
Ω|{r1, r2, s1, s2} = (r1s1r2s2) or Ω|{r1, r2, s1, s2} = (s2r2s1r1).

The following is an easy consequence of Theorems 2.3 and 2.4 in [14].

Theorem 6.1 (Robertson & Seymour 1990). Any 4-connected society is rural
or contains a cross.

In our application we always want to find a cross. To prevent the society
from being rural we force it to violate the implication given in following
Lemma which is a simple consequence of Euler’s formula.

Lemma 6.2. Let (G,Ω) be a rural society. If the vertices in V (G) \ Ω̄ have
degree at least 6 on average, then

�
v∈Ω̄ dG(v) ≤ 4|Ω̄| − 6.

Proof. Since (G,Ω) is rural there is a drawing of G in a closed disc D with
V (G) ∩ ∂D = Ω̄. Let H be the graph obtained by adding one extra vertex w
outside D and joining it by an edge to every vertex on ∂D. Writing b := |Ω̄|
and i := |V (G) \ Ω̄|, Euler’s formula implies

�G� + b = �H� ≤ 3|H| − 6 = 3(i + b) − 3

and thus �G� ≤ 3i + 2b − 3. Our assertion then follows from
�

v∈Ω̄
dG(v) + 6i ≤

�

v∈V (G)

dG(v) = 2�G� ≤ 6i + 4b − 6

In our main proof we will deal with societies where the permutation Ω is
induced by paths (see Lemma 6.4 and Lemma 6.5). But every inner vertex
on such a path that has degree 2 in G adds slack to the bound provided by
Lemma 6.2 as it counts 2 on the left side but 4 on the right. This is remedied
in the following Lemma which allows us to apply Lemma 6.2 to a “reduced”
society where these vertices are suppressed.

Lemma 6.3. Let (G,Ω) be a society and let P be a path in G such that all
inner vertices of P have degree 2 in G. Denote by G� the graph obtained from
G by suppressing all inner vertices of P and set Ω� :=Ω|V (G�). Then (G�,Ω�)
is rural if and only if (G,Ω) is.

Proof. The graph G is a subdivision of G� so every drawing of G gives a
drawing of G� and vice versa. Hence a drawing witnessing that (G,Ω) is rural
can easily be modified to witness that (G�,Ω�) is rural and vice versa.
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Two vertices a and b of some graph H are called twins if NH(a) \ {b} =
NH(b) \ {a}. Clearly a and b are twins if and only if the transposition (ab) is
an automorphism of H.

Lemma 6.4. Let G be a p-connected graph and let (W , P) be a stable regular
decomposition of G of length at least 3 and attachedness p. Set θ :={α |
Pα is trivial} and λ :={α | Pα is non-trivial}. Suppose that αβ is an edge
of Γ(W , P)[λ] such that |N(α) ∩ θ| ≤ p − 3, |N(β) ∩ θ| ≤ p − 3, and for
Nαβ := N(α)∩N(β) we have Nαβ ⊆ θ and |Nαβ| ≤ p− 5. If α and β are not
twins, then the society (GP

αβ, PαP
−1
β ) is rural.

Proof.

Claim 6.4.1. Every P-bridge with an edge in GP
αβ must attach to Pα and

Pβ, in particular, GP
αβ − Pα and GP

αβ − Pβ are both connected.

Proof. By Lemma 5.2 every non-trivial P-bridge that attaches to Pα or Pβ

must attach to another path of Pλ. Since Pα and Pβ are induced this means
that all P-bridges with an edge in GP

αβ must realise the edge αβ and hence
attach to Pα and Pβ.

Claim 6.4.2. The set Z of all vertices of GP
αβ that are end vertices of Pα or

Pβ or have a neighbour in G − (GP
αβ ∪ PNαβ

) is contained in V (Pα ∪ Pβ).

Proof. Any vertex v of GP
αβ − (Pα ∪Pβ) is an inner vertex of some non-trivial

P-bridge B that attaches to Pα and Pβ. Since GP
αβ contains all inner vertices

of B the neighbours of v in G − GP
αβ must be attachments of B. But if B

attaches to a path Pγ with γ �= α, β, then γ ∈ Nαβ and therefore all neighbours
of v are in GP

αβ ∪ PNαβ
.

Claim 6.4.3. The society (GP
αβ, PαP

−1
β ) is rural if and only if the society

(GP
αβ, PαP

−1
β |Z) is.

Proof. Clearly (GP
αβ, PαP

−1
β |Z) is rural if (GP

αβ, PαP
−1
β ) is. For the converse

suppose that (GP
αβ, PαP

−1
β |Z) is rural, that is, there is a drawing of GP

αβ in
a closed disc D such that GP

αβ ∩ ∂D = Z and one orientation of ∂D induces
the cyclic permutation PαP

−1
β |Z on Z.

For the rurality of (GP
αβ, PαP

−1
β ) and (GP

αβ, PαP
−1
β |Z) it does not matter

whether the first vertices of Pα and Pβ are adjacent in GP
αβ or not and the

same is true for the last vertices of Pα and Pβ. So we may assume that both
edges exist and we denote the cycle that they form together with the paths
Pα and Pβ by C.
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The closed disc D� bounded by C is contained in D. It is not hard to
see that the interior of D� is the only region of D − C that has vertices of
both Pα and Pβ on its boundary. But every edge of GP

αβ lies on C or in a
P-bridge B with B − (P \ {Pα, Pβ}) ⊆ GP

αβ. By Claim 6.4.1 such a bridge B
must attach to Pα and Pβ and in the considered drawing it must therefore
be contained in D�. This means GP

αβ ⊆ D� which implies that (GP
αβ, PαP

−1
β )

is rural as desired.

Claim 6.4.4. The society (GP
αβ, PαP

−1
β |Z) is 4-connected.

Proof. Set H := GP
αβ and Ω := PαP

−1
β |Z. Note that Ω̄ = Z since Z ⊆ V (Pα ∪

Pβ) by Claim 6.4.2. Set T := V (PNαβ
). Clearly Z∪T separates H from G−H

so for every vertex v of H − Z there is a v–T ∪ Z fan of size at least p in G
as G is p-connected. Since |T | ≤ p − 5 this fan contains a v–Z fan of size at
least 4 such that all its paths are contained in H. This means that (H,Ω) is
4-connected as desired.

By the off-road edges of a cross {R, S} in (H,Ω) we mean the edges in
E(R ∪ S) \ E(Pα ∪ Pβ). We call a component of R ∩ (Pα ∪ Pβ) that contains
an end vertex of R a tail of R. We define the tails of S similarly.

Claim 6.4.5. If {R, S} is a cross in (H,Ω) whose set E of off-road edges is
minimal, then for every z ∈ Z \ V (R ∪ S) each z–(R ∪ S) path in Pα ∪ Pβ

ends in a tail of R or S.

Proof. Suppose not, that is, there is a Z–(R ∪ S) path T in Pα ∪ Pβ such
that its last vertex t does not lie in a tail of R or S. W.l.o.g. we may assume
that t is on R. Since t is not in a tail of R the paths Rt and tR must both
contain an edge that is not in Pα ∪ Pβ so E(T ∪ Rt ∪ S) \ E(Pα ∪ Pβ) and
E(T∪tR∪S)\E(Pα∪Pβ) are both proper subsets of E. But one of {T∪Rt, S}
and {T ∪ tR, S} is a cross in (H,Ω), a contradiction.

Suppose now that α and β are not twins.

Claim 6.4.6. (H,Ω) does not contain a cross.

Proof. If (H,Ω) contains a cross, then we may pick a cross {R, S} in (H,Ω)
such that its set E of off-road edges is minimal. Since Z ⊆ V (Pα ∪ Pβ) we
may assume w.l.o.g. that {R, S} satisfies one of the following.

1. R and S both have their ends on Pα.

2. R has both ends on Pα. S has one end on Pα and one on Pβ.

3. R and S both have one end on Pα and one on Pβ.
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We reduce the first case to the second. As Pβ contains a vertex of Z but
no end of R or S it must be disjoint from R∪S by Claim 6.4.5. But R and S
both contain a vertex outside Pα (recall that Pα is induced by (L6)) so R∪S
meets H − Pα which is connected by Claim 6.4.1.

Therefore there is a Pβ–(R ∪ S) in H − Pα, in particular, there is a Z–
(R ∪ S) path T with its first vertex z in Z ∩ V (Pβ) and we may assume that
its last vertex t is on S. Denote by v the end of S that separates the ends of
R in Pα.

Then {R, vSt ∪ T} is a cross in (H,Ω) and we may pick a cross {R�, S �}
in (H,Ω) such that its set E � of off-road edges is minimal and contained in
the set F of off-road edges of {R, vSt ∪ T}. If R� ∪ S � contains no edge of
T , then E � is a proper subset of E as it does not contain E(S) \ E(vSt), a
contradiction to the minimality of E. Hence R� ∪ S � contains an edge of T
and hence must meet Pβ. So by Claim 6.4.5 one of its paths, say S � ends in
Pβ as desired.

On the other hand, all off-road edges of {R�, S �} that are incident with
Pβ are in T and therefore the remaining three ends of R� and S � must all be
on Pα. Hence {R�, S �} is a cross as in the second case.

In the second case we reroute Pα along R, more precisely, we obtain a
foundational linkage Q from P by replacing the subpath of Pα between the
two end vertices of R with R.

The first vertex of R ∪ S encountered when following Pβ from either of
its ends belongs to a tail of R or S by Claim 6.4.5. Obviously a tail contains
precisely one end of R or S. Since R has no end on Pβ and S only one,
(R ∪ S) ∩ Pβ is a tail of S, in particular, R is disjoint from Pβ and hence the
paths of Q are indeed disjoint.

Clearly S must end in an inner vertex z of Pα. By the definition of Z
there is a P-bridge B in some inner bag W of W that attaches to z and to
some path Pγ with γ ∈ N(α) \ N(β). But B ∪ S is contained in a Q-bridge
in G[W ] and therefore βγ is an edge of B(G[W ], Q[W ]) and thus of Γ(W , Q)
but not of Γ(W , P). This contradicts Lemma 5.1.

In the third case Claim 6.4.5 ensures that the first and last vertex of
Pα and of Pβ in R ∪ S is always in a tail and clearly these tails must all be
distinct. Hence by replacing the tails of R and S with suitable initial and final
segments of Pα and Pβ we obtain paths P �

α and P �
β such that the foundational

linkage Q :=(P \ {Pα, Pβ}) ∪ {P �
α, P

�
β} has the induced permutation (αβ).

Since Pγ = Qγ for all γ /∈ {α, β} it is easy to see the there must be an inner
bag W of W such that Q[W ] has induced permutation (αβ). But clearly (αβ)
is an automorphism of Γ(W , P) if and only if α and β are twins in Γ(W , P).
Hence Q[W ] is a twisting disturbance by the assumption that α and β are
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not twins. This contradicts the stability of (W , P) and concludes the proof
of Claim 6.4.6.

By Claim 6.4.4 and Theorem 6.1 the society (H,Ω) is rural or contains a
cross. But Claim 6.4.6 rules out the latter so (H,Ω) is rural and by Claim 6.4.3
so is (GP

αβ, PαP
−1
β ).

In the previous Lemma we have shown how certain crosses in the graph
H = GP

αβ “between” two bridge-adjacent paths Pα and Pβ of P give rise to
disturbances. The next Lemma has a similar flavour; here the graph H will be
the subgraph of G “between” Pα and Qα where α is a cut-vertex of Γ(W , P)[λ]
and Q a relinkage of P .

Lemma 6.5. Let G be a p-connected graph with a stable regular decomposition
(W , P) of attachedness p and set λ :={α | Pα is non-trivial} and θ :={α |
Pα is trivial}. Let D be a block of Γ(W , P)[λ] and let κ be the set of cut-
vertices of Γ(W , P)[λ] that are in D. If |N(α) ∩ θ| ≤ p − 4 for all α ∈ λ,
then there is a V (D)-compressed (P , V (D))-relinkage Q such that Q[W ] is
p-attached in G[W ] for all inner bags W of W and for any α ∈ κ and any
separation (λ1, λ2) of Γ(W , P)[λ] such that λ1 ∩ λ2 = {α} and N(α) ∩ λ2 =
N(α) ∩ V (D) the following statements hold where H := GP

λ2
∩ GQ

λ1
, q1 and

q2 are the first and last vertex of Qα, and Z1 and Z2 denote the vertices of
H − {q1, q2} that have a neighbour in Gλ − GP

λ2
and Gλ − GQ

λ1
, respectively.

(i) We have Z1 ⊆ V (Pα) and Z2 ⊆ V (Qα). Furthermore, Z :={q1, q2} ∪
Z1 ∪ Z2 separates H from Gλ − H in G − PN(α)∩θ.

(ii) The graph H is connected and contains Qα. The path Pα ends in q2.

(iii) Every cut-vertex of H is an inner vertex of Qα and is contained in
precisely two blocks of H.

(iv) Every block H � of H that is not a single edge contains a vertex of
Z1 \ V (Qα) and a vertex of Z2 \ V (Pα) that is not a cut-vertex of H.
Furthermore, Qα[W ] contains a vertex of Z2 for every inner bag W
of W.

(v) There is (P , V (D))-relinkage P � with P � = (Q \ {Qα}) ∪ {P �
α} and

P �
α ⊆ H such that Z1 ⊆ V (P �

α), V (P �
α ∩ Qα) consists of q1, q2, and all

cut-vertices of H, and P �[W ] is p-attached in G[W ] for all inner bags
W of W.

(vi) Let H � be a block of H that is not a single edge. Then P � := H �∩P �
α and

Q� := H � ∩ Qα are internally disjoint paths with common first vertex q�1
and common last vertex q�2 and the society (H �, P �Q�−1) is rural.
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Pα
GQ

λ2

q1

GP
λ1 P �

α

Qα q2

Figure 1: The graph H = GP
λ2

∩ GQ
λ1

.

Figure 1 gives an impression of H. The upper (straight) black q1–q2 path
is Qα and everything above it belongs to GQ

λ2
. The lower (curvy) black path

is P �
α and everything below it belongs to GP

λ1
. The dotted paths are subpaths

of Pα and, as shown, Pα need not be contained in H and need not contain
the vertices of Pα ∩ P �

α in the same order as P �
α. The white vertices are the

cut-vertices of H. The vertices with an arrow up or down symbolise vertices
of Z2 and Z1, respectively. The blocks of H that are not single edges are
bounded by cycles in P �

α ∪ Qα and Lemma 6.5 (vi) states that the part of H
“inside” such a cycle forms a rural society.

Proof. For a (P , V (D))-relinkage Q and β ∈ κ any GQ
D-path P ⊆ Pβ such

that some inner vertex of P has a neighbour in Gλ−GP
D is called an β-outlet of

Q. By the outlet graph of Q we mean the union of all components of Pκ−GQ
D

that have a neighbour in Gλ − GP
D. In other words, the outlet graph of Q is

obtained from the union of all β-outlets for all β ∈ κ by deleting the vertices
of GQ

D.
Clearly P itself is a (P , V (D))-relinkage. Among all (P , V (D))-relinkages

pick Q� such that its outlet graph is maximal. By Lemma 5.6 there is a V (D)-
compressed (Q�, V (D))-relinkage Q such that Q[W ] is p-attached in G[W ]
for all inner bags W of W . Note that GQ

D ⊆ GQ�
D by Lemma 5.4, so the outlet

graph of Q is a supergraph of that of Q�. Hence by choice of Q�, they must
be identical, in particular, the outlet graph of Q is maximal among the outlet
graphs of all (P , V (D))-relinkages.

Claim 6.5.1. For any foundational linkage R of W we have GR
λ1
∪GR

λ2
= Gλ

and GR
λ1

∩ GR
λ2

= Rα.

Proof. By Lemma 5.1 we have Γ(W , R)[λ] ⊆ Γ(W , P)[λ], so (λ1, λ2) is also
a separation of Γ(W , R)[λ]. Hence each R-bridge in an inner bag of W has
all its attachments in Rλ1∪θ or all in Rλ2∪θ and thus GR

λ1
∪ GR

λ2
= Gλ. The
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induced path Rα is contained in GR
λ1
∩GR

λ2
by definition. If GR

λ1
∩GR

λ2
contains

a vertex that is not on Rα, then it must be in a non-trivial R-bridge that
attaches to Rα but to no other path of Rλ. Such a bridge does not exist by
Lemma 5.2 (applied to λ0 :=λ).

Claim 6.5.2. For every vertex v of H − Pα there is a v–Z2 path in H − Pα

and for every vertex v of H − Qα there is a v–Z1 path in H − Qα.

Proof. Let v be a vertex of H−Pα ⊆ GP
λ2
−Pα. Then there is β ∈ λ2 \λ1 such

that v is on Pβ or v is an inner vertex of some non-trivial P-bridge attaching
to Pβ by Lemma 5.2 and the assumption that |N(α) ∩ θ| ≤ p − 4. In either
case GP

λ2
− Pα contains a path R from v to the first vertex p of Pβ. But p is

also the first vertex of Qβ and therefore it is contained in Gλ − GQ
λ1

. Pick w
on R such that Rw is a maximal initial subpath of R that is still contained
in H. Then w �= p and the successor of w on R must be in Gλ − GQ

λ1
. This

means w ∈ Z2 as desired. If v is in H −Qα, then the argument is similar but
slightly simpler as Qβ = Pβ for all β ∈ λ1 \ λ2.

(i) Any vertex of GP
λ2

that has a neighbour in GP
λ1

− GP
λ2

must be on Pα

by Claim 6.5.1. This shows Z1 ⊆ V (Pα) and by a similar argument
Z2 ⊆ V (Qα).

A neighbour v of H in G either is in no inner bag of W , it is in Gλ, or
it is in Pθ. In the first case v can only be adjacent to q1 or q2 as these
are the only vertices of H in the first and last adhesion set of W .

In the second case, note that Q is a (P , λ2)-relinkage since V (D) ⊆ λ2

and thus Lemma 5.4 yields GQ
λ2

⊆ GP
λ2

which together with Claim 6.5.1
implies

Gλ = GP
λ1

∪ GP
λ2

= GP
λ1

∪ (GP
λ2

∩ GQ
λ1

) ∪ (GP
λ2

∩ GQ
λ2

)

= GP
λ1

∪ H ∪ GQ
λ2

.

Hence v is in Gλ − GQ
λ1

or in Gλ − GP
λ2

and thus all neighbours of v in
H are in Z2 or Z1, respectively.

In the third case v is the unique vertex of some path Pβ with β ∈ θ. Let
w be a neighbour of v in H. Either w is on Pα or there is a w–Z2 path in
H by Claim 6.5.2 which ends on Qα as shown above. So αβ is an edge
of Γ(W , P) or of Γ(W , Q). The former implies β ∈ N(α) directly and
the latter does with the help of Lemma 5.1. Hence we have shown that
Z ∪ V (PN(α)∩θ) separates H from the rest of G concluding the proof of
(i).
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(ii) We have Qα ⊆ GQ
λ1

by definition and Qα ⊆ GP
λ2

since Q is a (P , λ2)-
relinkage. Hence Qα ⊆ H and some component C of H contains Qα.
Suppose that v is a vertex of H ∩ Pα. Let w be the vertex of Pα such
that wPαv is a maximal subpath of Pα that is still contained in H. Since
Pα ⊆ GP

λ2
we must have w ∈ {q1} ∪ Z2 ⊆ V (Qα) and hence v is in C.

For any vertex v of H − Pα there is a v–Z2 path in H by Claim 6.5.2
which ends on Qα by (i). This means that v is in C and hence H is
connected.

For every inner bag W of W the induced permutation π of Q[W ] maps
each element of λ1 \ λ2 to itself as Q is (P , λ2)-relinkage. Moreover, π
is an automorphism of Γ(W , P) by (L10) and α is the unique vertex of
λ2 that has a neighbour in λ1 \λ2. This shows π(α) = α. Hence Qα and
Pα must have the same end vertex, namely q2.

(iii) Let v be a cut-vertex of H. By (ii) it suffices to show that all components
of H − v contain a vertex of Qα. First note that every component of
H − v contains a vertex of Z: If a vertex w of H − v is not in Z, then
by (i) and the connectivity of G there is a w–Z fan of size at least
p−|N(α)∩θ| ≥ 2 in H and at most one of its paths contains v. But any
vertex z ∈ Z \ V (Qα) is on Pα by (i) and the paths q1Pαz and zPαq2

do both meet Qα but at most one can contain v (given that z �= v). So
every component of H − v must contain a vertex of Qα as claimed.

Claim 6.5.3. A Qα-path P ⊆ Pα ∩ H is an α-outlet if and only if some
inner vertex of P is in Z1, in particular, every vertex of Z1 \ V (Qα) lies in a
unique α-outlet. Denoting the union of all α-outlets by U , no two components
of Qα − U lie in the same component of H − U .

Proof. Clearly Qα ⊆ GQ
D ∩ H ⊆ GQ

λ2
∩ GQ

λ1
= Qα by Claim 6.5.1. Suppose

that P ⊆ Pα ∩ H has some inner vertex z1 ∈ Z1. Then P is a GQ
D-path and

z1 has a neighbour in Gλ − GP
λ2

⊆ Gλ − GP
D so P is an α-outlet.

Before we prove the converse implication let us show that H ⊆ GP
D. If

some vertex v of H ⊆ GP
λ2

is not in GP
D, then there is β ∈ λ2 \V (D) such that

v is on Pβ or v is an inner vertex of a non-trivial P-bridge attaching to Pβ.
But v is in H − Pα so by Claim 6.5.2 and (i) there is a v–Qα path in H and
hence αβ is an edge of Γ(W , Q)[λ] and thus of Γ(W , P)[λ] by Lemma 5.1.
But (λ1, λ2) is chosen such that N(α) ∩ λ ⊆ λ1 ∪ V (D), a contradiction.

Suppose that P is an α-outlet. Then some inner vertex z of P has a
neighbour in Gλ − GP

D ⊆ Gλ − H. So z ∈ Z1 ∪ Z2 and therefore z ∈ Z1 as
z /∈ V (Qα) ⊇ Z2 by (i).
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To conclude the proof of the claim we may assume for a contradiction that
Qα contains vertices r1, r, and r2 in this order such that H−U contains an r1–
r2 path R and r is the end vertex of an α-outlet. Let Q� be the foundational
linkage obtained from Q by replacing the subpath r1Qαr2 of Qα with R.
Clearly Q� is a (P , V (D))-relinkage. It suffices to show that the outlet graph
of Q� properly contains that of Q to derive a contradiction to our choice of Q.
By choice of R and the construction of Q� each β-outlet of Q for any β ∈ κ
is internally disjoint from Q� and hence is contained in a β-outlet of Q�. But
r is not on Q�

α so it is an inner vertex of some α-outlet of Q� so the outlet
graph of Q� contains that of Q properly as desired.

Claim 6.5.4. Let r1 and r2 be the end vertices of an α-outlet P of Q. Then
r1Qαr2 contains a vertex of Z2 \ V (Pα).

Proof. We assume that r1 and r2 occur on Qα in this order. Set Q := r1Qαr2.
Clearly P ∪ Q is a cycle. Since Pα is induced in G, some inner vertex v of Q
is not on Pα. By Claim 6.5.2 there is a v–Z2 path R in H − Pα and its last
vertex z2 must be on Qα (see (i)) but not on Pα. Finally, Claim 6.5.3 implies
that v and z2 must be in the same component of Qα − P so both are on Q
as desired.

(iv) Clearly H � contains a cycle. Since Qα is induced in G there must be
a vertex v in H � − Qα and the v–Z1 path in H − Qα that exists by
Claim 6.5.2 avoids all cut-vertices of H by (iii) and thus lies in H �−Qα.
So H � contains a vertex of Z1 − V (Qα) which lies on Pα by (i) and thus
also an α-outlet by Claim 6.5.3. So by Claim 6.5.4 we must also have a
vertex of Z2 \ V (Pα) in H � that is neither the first nor the last vertex
of Qα in H �.

For any inner bag W of W the end vertices of Qα[W ] are cut-vertices
of H. By (L8) G[W ] contains a P-bridge realising some edge of D that
is incident with α. So some vertex of Pα has a neighbour in Gλ − GP

λ1
.

If Qα[W ] = Pα[W ], then GQ
λ1

[W ] = GP
λ1

[W ] so this neighbour is also in
Gλ −GQ

λ1
and hence Qα[W ] contains a vertex of Z2. If Qα[W ] �= Pα[W ],

then some block of H in G[W ] is not a single edge so by the previous
paragraph Qα[W ] contains a vertex of Z2.

Claim 6.5.5. Every Z1–Z2 path in H is a q1–q2 separator in H.

Proof. Suppose not, that is, H contains a q1–q2 path Q�
α and a Z1–Z2 path R

such that R and Q�
α are disjoint. Clearly H∩Q = Qα so Q� :=(Q\{Qα})∪{Q�

α}
is a foundational linkage. The last vertex r2 of R is in Z2 and hence has a
neighbour in Gλ − GQ

λ1
. So there is an r2–Q�

λ2\λ1
path R2 that meets H only
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in r2. Similarly, for the first vertex r1 of R there is an r1–Q�
λ1\λ2

path R1 that
meets H only in r1. Then R1 ∪ R ∪ R2 witness that Γ(W , Q�) has an edge
with one end in λ1 \λ2 and the other in λ2 \λ1, contradicting Lemma 5.1.

Claim 6.5.6. Let H � be a block of H. Then Q := H � ∩ Qα is a path and its
first vertex q�1 equals q1 or is a cut-vertex of H and its last vertex q�2 equals
q2 or is a cut-vertex of H. Furthermore, there is a q�1–q�2 path P ⊆ H � that is
internally disjoint from Q such that Z1 ∩ V (H �) ⊆ V (P ) and if a P -bridge
B in H � has no inner vertex on Qα, then for every z1 ∈ Z1 ∩ V (H �) the
attachments of B are either all on Pz1 or all on z1P .

Proof. It follows easily from (iii) that Q is a path and q�1 and q�2 are as claimed.
If H � is the single edge q�1q

�
2, then the statement is trivial with P = Q so

suppose not. Our first step is to show the existence of a q�1–q�2 path R ⊆ H �

that is internally disjoint from Q.
By (iv) some inner vertex z2 of Q is in Z2 \V (Pα). Since H � is 2-connected

there is a Q-path R ⊆ H � − z2 with first vertex r1 on Qz2 and last vertex
r2 on z2Q. Pick R such that r1Qr2 is maximal. We claim that r1 = q�1 and
r2 = q�2.

Suppose for a contradiction that r2 �= q�2. By the same argument as before
there is Q-path S ⊆ H � − r2 with first vertex s1 on Qr2 and last vertex s2 on
r2Q. Note that s1 must be an inner vertex of r1Qr2 by choice of R. Similarly,
Q separates R from S in H � otherwise there was a Q-path from r1 to s2 again
contradicting our choice of R.

But S has an inner vertex v as Q is induced and Claim 6.5.2 asserts the
existence of a v–Z1 path S � in H − Qα which must be disjoint from R as Q
separates S from R. So there is a Z1–Z2 path in z2Qs1 ∪ s1Sv ∪ S � which
is disjoint from Qαr1Rr2Qα by construction, a contradiction to Claim 6.5.5.
This shows r2 = q�2 and by symmetry also r1 = q�1.

Among all q�1–q�2 paths in H � that are internally disjoint from Q pick P
such that P contains as few edges outside Pα as possible. To show that P
contains all vertices of Z1 ∩ V (H �) let z1 ∈ Z1 ∩ V (H �). We may assume
z1 �= q�1, q

�
2. If z1 is an inner vertex of Q, then Q contains a Z1–Z2 path that

is disjoint from P , a contradiction to Claim 6.5.5. So there is an α-outlet R
which has z1 as an inner vertex. Then Rz1 ∪ Q and z1R ∪ Q both contain
a Z1–Z2 path and by Claim 6.5.5 P must intersect both paths. But P is
internally disjoint from Q so it contains a vertex t1 of Rz1 and a vertex t2
of z1R. If some edge of t1Pt2 is not on Pα, then P � := q�1Pt1Pαt2Pq�2 is q�1–q�2
path in H � that is internally disjoint from Q and has fewer edges outside Pα

than P , contradicting our choice of P . This means t1Rt2 ⊆ P and therefore
z1 is on P .
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Finally, suppose that for some z1 ∈ Z1 there is a P -bridge B in H � with
no inner vertex in Qα and attachments t1, t2 �= z1 such that t1 is on Pz1 and
t2 is on z1P (this implies z1 �= q�1, q

�
2). Let R be the α-outlet containing z1

and denote its end vertices by r1 and r2. By Claim 6.5.4 some inner vertex
z2 of r1Qr2 is in Z2.

If B has an attachment in z1P −R, then z1Rr2 ∪ z2Qr2 contains a Z1–Z2

path that does not separate q�1 from q�2 in H � and therefore does not separate q1

from q2 in H, contradicting Claim 6.5.5. So B has no attachment in z1P −R
and a similar argument implies that B has no attachment in Pz1 −R. So all
attachments of B must be in P ∩R ⊆ Pα. As R ∪B contains a cycle and Pα

is induced some vertex v of B is not on Pα. But then Claim 6.5.2 implies the
existence of a v–Z2 path that avoids Pα and hence uses only inner vertices of
B, in particular, some inner vertex of B is in Z2 ⊆ V (Qα), contradicting our
assumption and concluding the proof of this claim.

(v) Applying Claim 6.5.6 to every block H � of H and uniting the obtained
paths P gives a q1–q2 path R ⊆ H such that Z1 ⊆ V (R) and V (R∩Qα)
consists of q1, q2, and all cut-vertices of H. Moreover, for every z1 ∈ Z1 a
P -bridge B in H that has no inner vertex in Qα has all its attachments
in Rz1 or all in z1R.

Set Q� :=(Q\{Qα})∪{R}). Let P � be the foundational linkage obtained
by uniting the bridge stabilisation of Q�[W ] in G[W ] for all inner bags
W of W . Then P �[W ] is p-attached in G[W ] for all inner bags W of W
by Lemma 3.7.

To show P �
β = Qβ for all β ∈ λ \ {α} it suffices by Lemma 3.7 to

check that every non-trivial Q�-bridge B� that attaches to Q�
β attaches

to at least one other path of Q�
λ. If B� is disjoint from H it is also a

Q-bridge and thus attaches to some path Qγ = Q�
γ with γ ∈ λ \ {α, β}

by Claim 6.5.1. If B� contains a vertex of H, then it attaches to Q�
α = R

as H is connected (see (ii)) and Q� ∩ H = R.

To verify P �
α ⊆ H we need to show B� ⊆ H for every Q�-bridge B�

that attaches to R but to no other path of Q�
λ. Clearly for every vertex

v of GP
λ1

− Pα there is a v–Pλ1\{α} path in GP
λ1

− Pα. Similarly, for
every vertex v of GQ

λ2
− Qα there is a v–Qλ2\{α} path in GQ

λ2
− Qα. But

Q�
β = Pβ for all β ∈ λ1 \ {α} and Q�

β = Qβ for all β ∈ λ2 \ {α} and
Gλ −H = (GP

λ1
−Pα)∪ (GQ

λ2
−Qα). This means that B� cannot contain

a vertex of Gλ − H and thus B� ⊆ H as desired.

We have just shown that every bridge B� as above is an R-bridge in
H. By construction and the properties (i) and (iv) every component of
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Qα − R contains a vertex of Z2 and hence lies in a Q�-bridge attaching
to some path Q�

β with β ∈ λ2 \ {α}. So B� is an R-bridge in H with
no inner vertex in Qα and therefore there must be z1, z

�
1 ∈ Z1 ∪ {q1, q2}

such that z1Rz�1 contains all attachments of B� and no inner vertex of
z1Rz�1 is in Z1. By Lemma 3.7 this implies that P �

α contains no vertex of
Qα − R and Z1 ⊆ V (P �

α). On the other hand, P �
α must clearly contain

the end vertices of R and all cut-vertices of H. This concludes the proof
of (v).

(vi) We first show that (H �,Ω) is rural where Ω := P �Q�−1|Z where Z � := Z∩
V (H �). Since H is connected and H∩P � = Pα we must have β ∈ N(α)∩θ
for each path Pβ with β ∈ θ whose unique vertex has a neighbour in H.
So the set T of all vertices of Pθ that are adjacent to some vertex of H �

has size at most p− 4 by assumption. Clearly Z � ∪ T separates H � from
the rest of G so for every vertex v of H � − Z � there is a v–(Z � ∪ T ) fan
of size at least p and hence a v–Z fan of size at least 4. Hence (H �,Ω)
is 4-connected and hence it is rural or contains a cross by Theorem 6.1.

Suppose for a contradiction that (H �,Ω) contains a cross. By the off-road
edges of a cross {R, S} in (H �,Ω) we mean edge set E(R∪S)\E(P �∪Q�).
We call a component of R ∩ (P � ∪ Q�) that contains an end of R a tail
of R and define the tails of S similarly.

Claim 6.5.7. If {R, S} is a cross in (H �,Ω) such that its set of off-road
edges is minimal, then for every z ∈ Z that is not in R ∪ S the two
z–(R ∪ S) paths in P � ∪ Q� both end in a tail of R or S.

The proof is the same as for Claim 6.4.5 so we spare it.

Claim 6.5.8. Every non-trivial (P �∪Q�)-bridge B in H � has an attach-
ment in P � − Q� and in Q� − P �.

Proof. Let v be an inner vertex of B. Then H−Qα contains a v–Z1 path
by Claim 6.5.2 so B must attach to P �. Note that v is in a non-trivial
P �-bridge B� and B� ⊆ GP

λ2
since Z1 ⊆ V (P �

α). Furthermore, B� must
attach to a path P �

β = Qβ with β ∈ λ2 \ λ1: This is clear if B� does not
attach to P �

α and follows from Claim 6.5.1 if it does. So B� contains a
path R from v to GQ

λ2
−Qα that avoids P �. But any such path contains

a vertex of Z2 (see (i)) and R does not contain q�1 and q�2 so some initial
segment of R is a v–Z2 path in H � − P � as desired.

Claim 6.5.9. There is a cross {R�, S �} in (H �,Ω) such that its set of
off-road edges is minimal and neither P � nor Q� contains all ends of R�

and S �.
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Proof. Pick a cross {R, S} in (H �,Ω) such that its set E of off-road
edges is minimal. We may assume that P � contains all ends of R and
S. By (iv) some inner vertex z2 of Q� is in Z2. So if R ∪ S contains an
inner vertex of Q�, then Q� − P � contains a Z2–(R ∪ S) path T whose
last vertex t is an inner vertex of R say. Clearly one of {Rt ∪ T, S} and
{tR∪T, S} is a cross in (H �,Ω) whose set of off-road edges is contained
in that of {R, S} and hence is minimal as well. So either we find a cross
{R�, S �} as desired or Q� − P � is disjoint from R ∪ S.

But (R ∪ S) − P � must be non-empty as P � is induced in G. So by
Claim 6.5.8 there is a Q�–(R∪S) path in H �−P �, in particular, there is
a Z2–(R∪S) path T in H � −P � and we may assume that its last vertex
t is on R. Again one of {Rt∪T, S} and {tR∪T, S} is a cross in (H �,Ω)
and we denote its set of off-road edges by F . Pick a cross (R�, S �) in
(H,Ω) such that its set E � of off-road edges minimal and E � ⊆ F .

Since t is not on P � each of Rt and tR contains an edge that is not in
P � ∪ Q� so F \ E(T ) is a proper subset of E. This means that E � must
contain an edge of T by minimality of E and hence it must contain
F ∩ E(T ) so R� ∪ S � contains a vertex of Q� − P � and we have already
seen that we are done in this case, concluding the proof of the claim.

Claim 6.5.10. For i = 1, 2 there is a q�i–(R� ∪ S �) path Ti in H � such
that T1 and T2 end on one path of {R�, S �} and the other path has its
ends in Z1 and Z2.

Proof. It is easy to see that by construction one path of {R�, S �}, say S �,
has one end in Z1\{q�1, q

�
2} and the other in Z2\{q�1, q

�
2}. If for some i the

vertex q�i is in R� ∪ S �, then it must be on R� and there is a trivial q�i–R�

path Ti. We may thus assume that neither of q�1 and q�2 is in R� ∪ S �.

So P � ∪Q� contains two q�1–(R� ∪ S �) paths T1 and T �
1 that meet only in

q�1. By Claim 6.5.7 T1 and T �
1 must both end in a tail of R� or S �. But

(R�, S �) is a cross and no inner vertex of T1 ∪ T �
1 is an end of R� or S � so

we may assume that T1 meets a tail of R�. By the same argument we
find a q�2–(R� ∪ S �) path T2 that end in a tail of R�.

To conclude the proof that (H �,Ω) is rural note that Claim 6.5.10 implies
the existence of a Z1–Z2 path in H that does not separate q1 from q2 in
H and hence contradicts Claim 6.5.5. So (H �,Ω) is rural and (vi) follows
from this final claim:

Claim 6.5.11. The society (H �,Ω) is rural if and only if the society
(H �, P �Q�−1) is.
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This holds by a simpler version of the proof of Claim 6.4.3 where
Claim 6.5.8 takes the role of Claim 6.4.1.

7 Constructing a Linkage
In our main theorem we want to construct the desired linkage in a long stable
regular decomposition of the given graph. That decomposition is obtained
by applying Theorem 3.5 which may instead give a subdivision of Ka,p. This
outcome is even better for our purpose as stated by the following Lemma.

Lemma 7.1. Every 2k-connected graph containing a TK2k,2k is k-linked.

Proof. Let G be a 2k-connected graph and let S, T ⊆ V (G) be disjoint and
of size k each, say S = {s1, . . . , sk} and T = {t1, . . . , tk}. We need to find a
system of k disjoint S–T paths linking si to ti for i = 1, . . . , k.

By assumption G contains a subdivision of K2k,2k, so there are disjoint
sets A, B ⊆ V (G) of size 2k each and a system Q of internally disjoint paths
in G such that for every pair (a, b) with a ∈ A and b ∈ B there exists a unique
a–b path in Q which we denote by Qab.

By the connectivity of G, there is a system P of 2k disjoint (S∪T )–(A∪B)
paths (with trivial members if (S ∪ T ) ∩ (A ∪ B) �= ∅). Pick P such that it
has as few edges outside of Q as possible. Our aim is to find suitable paths of
Q to link up the paths of P as desired. We denote by A1 and B1 the vertices
of A and B, respectively, in which a path of P ends, and let A0 := A \ A1 and
B0 := B \ B1.

The paths of P use the system Q sparingly: Suppose that for some pair
(a, b) with a ∈ A0 and b ∈ B, the path Qab intersects a path of P . Follow Qab

from a to the first vertex v it shares with any path of P , say P . Replacing
P by Pv ∪ Qabv in P does not give a system with fewer edges outside Q by
our choice of P . In particular, the final segment vP of P must have no edges
outside Q. This means vP = vQab, that is, P is the only path of P meeting
Qab and after doing so for the first time it just follows Qab to b. Clearly the
symmetric argument works if a ∈ A and b ∈ B0. Hence

1. Qab with a ∈ A0 and b ∈ B0 is disjoint from all paths of P ,

2. Qab with a ∈ A1 and b ∈ B0 or with a ∈ A0 and b ∈ B1 is met by
precisely one path of P , and

3. Qab with a ∈ A1 and b ∈ B1 is met by at least two paths of P .
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In order to describe precisely how we link the paths of P , we fix some
notation. Since |A0|+|A1| = |A| = 2k = |P| = |A1|+|B1|, we have |A0| = |B1|
and similarly |A1| = |B0|. Without loss of generality we may assume that
|B0| ≥ |A0| = |B1| and therefore |B0| ≥ k. So we can pick k distinct vertices
b1, . . . , bk ∈ B0 and an arbitrary bijection ϕ : B1 → A0. For x ∈ S ∪T denote
by Px the unique path of P starting in x and by x� its end vertex in A ∪ B.

For each i and x = si or x = ti set

Rx :=

�
Qx�bi

x� ∈ A1

Qϕ(x�)x� ∪ Qϕ(x�)bi
x� ∈ B1

.

By construction Rx and Ry intersect if and only if x, y ∈ {si, ti} for some i,
i.e. they are equal or meet exactly in bi. The paths Px and Ry intersect if and
only if Px ends in y�, that is, if x = y. Thus for each i = 1, . . . , k the subgraph
Ci := Psi

∪ Rs�i ∪ Rt�i ∪ Pti of G is a tree containing si and ti. Furthermore,
these trees are pairwise disjoint, finishing the proof.

We now give the proof of the main theorem, Theorem 1.1. We restate the
theorem before proceeding with the proof.

Theorem 1.1. For all integers k and w there exists an integer N such that
a graph G is k-linked if

κ(G) ≥ 2k + 3, tw(G) < w, and |G| ≥ N.

Proof. Let k and w be given and let f be the function from the statement of
Lemma 4.10 with n := w. Set

n0 :=(2k + 1)(n1 − 1) + 1

n1 := max{(2k − 1)

�
w

2k

�
, 2k(k + 3) + 1, 12k + 4, 2f(k) + 1}

We claim that the theorem is true for the integer N returned by Theorem 3.5
for parameters a = 2k, l = n0, p = 2k + 3, and w. Suppose that G is a
(2k + 3)-connected graph of tree-width less than w on at least N vertices. We
want to show that G is k-linked. If G contains a subdivision of K2k,2k, then
this follows from Lemma 7.1. We may thus assume that G does not contain
such a subdivision, in particular it does not contain a subdivision of Ka,p.

Let S = (s1, . . . , sk) and T = (t1, . . . , tk) be disjoint k-tuples of distinct
vertices of G. Assume for a contradiction that G does not contain disjoint
paths P1, . . . , Pk such that the end vertices of Pi are si and ti for i = 1, . . . , k
(such paths will be called the desired paths in the rest of the proof).
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By Theorem 3.5 there is a stable regular decomposition of G of length
at least n0, of adhesion q ≤ w, and of attachedness at least 2k + 3. Since
this decomposition has at least (2k + 1)(n1 − 1) inner bags, there are n1 − 1
consecutive inner bags which contain no vertex of (S ∪ T ) apart from those
coinciding with trivial paths. In other words, this decomposition has a con-
traction (W , P) of length n1 such that S ∪ T ⊆ W0 ∪ Wn1 . By Lemma 3.6
this contraction has the same attachedness and adhesion as the initial de-
composition and the stability is preserved. Set θ :={α | Pα is trivial} and
λ :={α | Pα is non-trivial}.

Claim 7.1.1. λ �= ∅.

Proof. If λ = ∅, or equivalently, P = Pθ, then all adhesion sets of W equal
V (Pθ). So by (L2) no vertex of G − Pθ is contained in more than one bag
of W . On the other hand, (L4) implies that every bag W of W must contain
a vertex w ∈ W \ V (Pθ). Since V (Pθ) separates W from the rest of G and G
is 2k-connected, there is a w–Pθ fan of size 2k in G[W ]. For different bags,
these fans meet only in Pθ.

Since W has more than (2k−1)
�

q
2k

�
bags, the pigeon hole principle implies

that there are 2k such fans with the same 2k end vertices among the q vertices
of Pθ. The union of these fans forms a TK2k,2k in G which may not exist by
our earlier assumption.

Claim 7.1.2. Let Γ0 be a component of Γ(W , P)[λ]. The following all hold.

(i) |N(α) ∩ θ| ≤ 2k − 2 for every vertex α of Γ0.

(ii) |N(α) ∩ N(β) ∩ θ| ≤ 2k − 4 for every edge αβ of Γ0.

(iii) 2|N(α) ∩ λ| + |N(α) ∩ θ| ≤ 2k for every vertex α of Γ0.

(iv) 2|D|+ |N(D)| ≤ 2k + 2 for every block D of Γ0 that contains a triangle.

Note that (iii) implies (i) unless Γ0 is a single vertex and (iii) implies (ii)
unless Γ0 is a single edge. We need precisely these two cases in the proof of
Claim 7.1.6.

Proof. The proof is almost identical for all cases so we do it only once and point
out the differences as we go. Denote by Γ1 the union of Γ0 with all its incident
edges of Γ(W , P). Set L := W0∩W1∩V (GΓ1) and R := Wn1−1∩Wn1 ∩V (GΓ1).
In case (iv) let α be any vertex of D. Let p and q be the first and last vertex
of Pα. Then (L ∪R) \ {p, q} separates GP

Γ1
− {p, q} from S ∪ T in G− {p, q}.

Hence by the connectivity of G there is a set Q of 2k disjoint (S ∪T )–(L∪R)
paths in G−{p, q}, each meeting GP

Γ1
only in its last vertex. For i = 1, . . . , k
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denote by s�i the end vertex of the path of Q that starts in si and by t�i the
end vertex of the path of Q that starts in ti.

Our task is to find disjoint s�i–t�i paths for i = 1, . . . , k in GP
Γ1

and we
shall now construct sets X, Y ⊆ V (Γ1) and an X–Y pairing L “encoding”
this by repeating the following step for each i ∈ {1, . . . , k}. Let β, γ ∈ V (Γ1)
such that s�i lies on Pβ and t�i lies on Pγ. If s�i ∈ L, then add β to X and
set s̄i :=(β, 0). Otherwise s�i ∈ R \ L and we add β to Y and set s̄i :=(β,∞).
Note that s�i ∈ L ∩ R if and only if β ∈ θ. In this case our decision to add
β to X is arbitrary and we could also add it to Y instead (and setting s̄i

accordingly) without any bearing on the proof. Handle γ and t�i similarly.
Then {s̄it̄i | i = 1, . . . , k} is the edge set of an (X, Y )-pairing which we
denote by L.

We claim that there is an L-movement of length at most (n1−1)/2 ≥ f(k)
on H :=Γ1 such that the vertices of A := V (Γ1) ∩ θ are singular. Clearly
H − A = Γ0 is connected and every vertex of A has a neighbour in Γ0 so
A is marginal in H. The existence of the desired L-movement follows from
Lemma 4.8 if (i) or (ii) are violated, from Lemma 4.9 if (iii) is violated, and
from Lemma 4.10 if (iv) is violated (note that |H| ≤ w). But then Lemma 4.3
applied to L implies the existence of disjoint s�i–t�i paths in GP

Γ1
for i = 1, . . . , k

contradicting our assumption that G does not contain the desired paths. This
shows that all conditions must hold.

Claim 7.1.3. We have 2|Γ0|+ |N(Γ0)| ≥ 2k +3 (and necessarily N(Γ0) ⊆ θ)
for every component Γ0 of Γ(W , P)[λ].

Proof. Let Γ1 be the union of Γ0 with all incident edges of Γ(W , P). Set
L := W0∩W1∩V (GP

Γ1
), M := W1∩W2∩V (GP

Γ1
), and R := Wn1−1∩Wn1∩V (GP

Γ1
).

If G − GP
Γ1

is non-empty, then L ∪ R separates it from M in G. Otherwise
M separates L from R in G = GP

Γ1
. By the connectivity of G we have

2|Γ0|+|N(Γ0)| = |L∪R| ≥ 2k+3 in the former case and |M | = |Γ0|+|N(Γ0)| ≥
2k + 3 in the latter.

We now want to apply Lemma 6.4 and Lemma 6.5. At the heart of both
is the assertion that a certain society is rural and we already limited the
number of their “ingoing” edges by Lemma 6.2. To obtain a contradiction we
shall find societies exceeding this limit. Tracking these down is the purpose
of the notion of “richness” which we introduce next.

Let Γ ⊆ Γ(W , P)[λ]. We say that α ∈ V (Γ) is rich in Γ if the inner
vertices of Pα that have a neighbour in both Gλ − GP

Γ and GP
Γ − Pα have

average degree at least 2+ |NΓ(α)|(2+ εα) in GP
Γ where εα := 1/|N(α)∩λ|. A

subgraph Γ ⊆ Γ(W , P)[λ] is called rich if every vertex α ∈ V (Γ) is rich in Γ.
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Claim 7.1.4. For Γ ⊆ Γ(W , P)[λ] and α ∈ V (Γ) the following is true.

(i) If Γ contains all edges of Γ(W , P)[λ] that are incident with α, then α
is rich in Γ.

(ii) If α is rich in Γ, then the inner vertices of Pα that have a neighbour in
GP

Γ − Pα have average degree at least 2 + |NΓ(α)|(2 + εα) in GP
Γ .

(iii) Suppose that Γ is induced in Γ(W , P)[λ] and that there are subgraphs
Γ1, . . . ,Γm ⊆ Γ such that α separates any two of them in Γ(W , P)[λ]
and

�m
i=1 Γi contains all edges of Γ that are incident with α. If α is rich

in Γ, then there is j ∈ {1, . . . , m} such that α is rich in Γj.

Proof.

(i) The assumption implies that GP
Γ contains every edge of Gλ that is

incident with Pα so no vertex of Pα has a neighbour in Gλ − GP
D and

therefore the statement is trivially true.

(ii) The inner vertices of Pα that have a neighbour in Gλ − GP
Γ and in

GP
Γ − Pα have the desired average degree by assumption. We show that

each inner vertex of Pα that has no neighbour in Gλ − GP
Γ has at least

the desired degree. Clearly we have dGP
Γ
(v) = dGλ

(v) for such a vertex
v. Furthermore, dG(v) ≥ 2k + 3 since G is (2k + 3)-connected. Every
neighbour of v in Pθ gives rise to a neighbour of α in θ and by Claim 7.1.2
(iii) there can be at most |N(α)∩θ| ≤ 2k−2|N(α)∩λ| such neighbours.
This means

dGP
Γ
(v) = dGλ

(v) ≥ 2k + 3 − |N(α) ∩ θ| ≥ 2|N(α) ∩ λ| + 3

so (ii) clearly holds.

(iii) We may assume that α is not isolated in Γ and that each of the graphs
Γ1, . . . ,Γm contains an edge of Γ that is incident with α by simply
forgetting those graphs that do not.

For i = 0, . . . , m denote by Zi the inner vertices of Pα that have a
neighbour in Gλ−GP

Γi
and in GP

Γi
−Pα where Γ0 :=Γ and set Z :=

�m
i=1 Zi.

Clearly Pα ⊆ GP
Γi

for all i. Each edge e of GP
Γ that is incident with an

inner vertex of Pα but does not lie in Pα is in a P-bridge that realises
an edge of Γ by (L6) and Lemma 5.2 since Claim 7.1.2 (iii) implies that
|N(α)∩θ| ≤ 2k−2. So at least one of the graphs GP

Γi
contains e. On the

other hand, we have GP
Γi

⊆ GP
Γ for i = 1, . . . , m. This implies Z0 ⊆ Z.
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By the same argument as in the proof of (ii) the vertices of Z have
average degree at least 2 + |NΓ(α)|(2 + εα) in GP

Γ . In other words, GP
Γ

contains at least |Z||NΓ(α)|(2 + εα) edges with one end on Pα and the
other in GP

Γ − Pα.

By assumption we have |NΓ(α)| =
�m

i=1 |NΓi
(α)| and so the pigeon hole

principle implies that there is j ∈ {1, . . . , m} such that GP
Γj

contains a
set E of at least |Z||NΓj

(α)|(2 + εα) edges with one end on Pα and the
other in GP

Γj
− Pα.

By assumption and Claim 6.5.1 the path Pα separates GP
Γi

from GP
Γj

in
Gλ for i �= j. For any vertex z ∈ Z \ Zj there is i �= j with z ∈ Zi, so z
has a neighbour in GP

Γi
− Pα ⊆ Gλ − GP

Γj
. Then the only reason that z

is not also in Zj is that it has no neighbour in GP
Γj

− Pα, in particular,
it is not incident with an edge of E. So the vertices of Zj have average
degree at least 2 + |Z|

|Zj | |NΓj
(α)|(2 + εα) in GP

Γj
which obviously implies

the claimed bound.

Claim 7.1.5. Every component of Γ(W , P)[λ] contains a rich block.

Proof. Let Γ0 be a component of Γ(W , P)[λ]. Suppose that α is a cut-vertex of
Γ0 and let D1, . . . , Dm be the blocks of Γ0 that contain α. Clearly N(α)∩λ ⊆
V (

�m
i=1 Di) so Claim 7.1.4 implies that α is rich in

�m
i=1 Di by (i) and hence

there is j ∈ {1, . . . , m} such that α is rich in Dj by (iii).
We define an oriented tree R on the set of blocks and cut-vertices of Γ0

as follows. Suppose that D is a block of Γ0 and α a cut-vertex of Γ0 with
α ∈ V (D). If α is rich in D, then we let (α, D) be an edge of R. Otherwise
we let (D,α) be an edge of R. Note that the underlying graph of R is the
block-cut-vertex tree of Γ0 and by the previous paragraph every cut-vertex
is incident with an outgoing edge of R. But every directed tree has a sink, so
there must be a block D of Γ0 such that every α ∈ κ is rich in D where κ
denotes the set of all cut-vertices of Γ0 that lie in D.

But the only vertices of GP
D that may have a neighbour in Gλ − GP

D are
on paths of PV (D) by Lemma 5.3 and of these clearly only the paths of Pκ

may have neighbours in Gλ−GP
D. So all vertices of V (D)\κ are trivially rich

in D and hence D is a rich block.

Claim 7.1.6. Every rich block D of Γ(W , P)[λ] contains a triangle.

Proof. Suppose that D does not contain a triangle. By Claim 7.1.3 and
Claim 7.1.2 (i) we may assume D is not an isolated vertex of Γ(W , P)[λ],
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that is, D contains an edge. We shall obtain contradicting upper and lower
bounds for the number

x :=
�

v∈V (PV (D))

(dGP
D
(v) − dPV (D)

(v)).

For every α ∈ V (D) denote by Vα the subset of V (Pα) that consists of the
ends of Pα and all inner vertices of Pα that have a neighbour in GP

D −Pα. Set
V :=

�
α∈V (D) Vα.

For the upper bound let αβ be an edge of D. Then Nαβ := N(α)∩N(β) ⊆
θ as a common neighbour of α and β in λ would give rise to a triangle
in D. Furthermore, |Nαβ| ≤ 2k − 4 by Claim 7.1.2 (ii). By Lemma 6.4
the society (GP

αβ, PαP
−1
β ) is rural if α and β are not twins. But if they are,

then N(α) ∪ N(β) = Nαβ ∪ {α, β}. This means that D is a component of
Γ(W , P)[λ] that consists only of the single edge αβ. So by Claim 7.1.3 we
have |Nαβ| = |N(D)| ≥ 2k − 1, a contradiction. Hence (GP

αβ, PαP
−1
β ) is rural.

The graph G − PNαβ
contains GP

αβ and has minimum degree at least
2k + 3 − |PNαβ

| ≥ 6 by the connectivity of G. By Claim 7.1.2 (i) we have
|N(γ) ∩ θ| ≤ 2k − 2 for every γ ∈ λ so Lemma 5.2 implies that every non-
trivial P-bridge in an inner bag of W attaches to at least two paths of Pλ

or to none. A vertex v of GP
αβ − (Pα ∪ Pβ) is therefore an inner vertex of

some non-trivial P-bridge B that attaches to Pα and Pβ and has all its inner
vertices in GP

αβ. This means that a neighbour of v outside GP
αβ must be an

attachment of B on some path Pγ and hence γ ∈ Nαβ ⊆ θ. So all vertices
of GP

αβ − (Pα ∪ Pβ) have the same degree in GP
αβ as in G − PNαβ

, namely at
least 6.

The vertices of GP
αβ − (Pα∪Pβ) retain their degree if we suppress all inner

vertices of Pα and Pβ that have degree 2 in GP
D. Since the paths of P are

induced by (L6) an inner vertex of Pα has degree 2 in GP
D if and only if it

has no neighbour in GP
D −Pα. So we suppressed precisely those inner vertices

of Pα and Pβ that are not in Vα or Vβ. By Lemma 6.3 the society obtained
from (GP

αβ, PαP
−1
β ) in this way is still rural so Lemma 6.2 implies

�

v∈Vα∪Vβ

dGP
αβ

(v) ≤ 4|Vα| + 4|Vβ| − 6.
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Clearly GP
D =

�
αβ∈E(D) GP

αβ and Pα ⊆ GP
αβ for all β ∈ ND(α) and thus

x =
�

v∈V

�
dGP

D
(v) − dPV (D)

(v)
�

≤
�

α∈V (D)

�

β∈ND(α)

�

v∈Vα

(dGP
αβ

(v) − dPα(v))

=
�

αβ∈E(D)

�

v∈Vα∪Vβ

dGP
αβ

(v) −
�

α∈V (D)

|ND(α)| · (2|Vα| − 2)

≤
�

αβ∈E(D)

(4|Vα| + 4|Vβ| − 6) −
�

α∈V (D)

|ND(α)| · (2|Vα| − 2)

=
�

α∈V (D)

|ND(α)| (4|Vα| − 3) −
�

α∈V (D)

|ND(α)| · (2|Vα| − 2)

<
�

α∈V (D)

2|ND(α)| · |Vα|.

To obtain the lower bound for x note that Claim 7.1.4 (ii) says that for any
α ∈ V (D) the vertices of Vα without the two end vertices of Pα have average
degree 2+ |ND(α)|(2+εα) in GP

D where εα ≥ 1/k by Claim 7.1.2 (iii). Clearly
every inner bag of W must contain a vertex of Vα as it contains a P-bridge
realising some edge αβ ∈ E(D). This means |Vα| ≥ n1/2 ≥ 4k + 2 and thus

x =
�

α∈V (D)

�

v∈Vα

�
dGP

D
(v) − dPα(v)

�

≥
�

α∈V (D)

(|Vα| − 2) · |ND(α)| · (2 + εα)

≥
�

α∈V (D)

|ND(α)| · (2|Vα| − 4 + 4kεα)

≥
�

α∈V (D)

2|ND(α)| · |Vα|.

Claim 7.1.7. Every rich block D of Γ(W , P)[λ] satisfies 2|D| + |N(D)| ≥
2k + 3.

Proof. Suppose for a contradiction that 2|D|+|N(D)| ≤ 2k+2. By Lemma 6.5
there is a V (D)-compressed (P , V (D))-relinkage Q with properties as listed
in the statement of Lemma 6.5. Let us first show that we are done if D is
rich w.r.t. to Q, that is, for every α ∈ V (D) the inner vertices of Qα that
have a neighbour in Gλ − GQ

D and in GQ
D − Qα have average degree at least

2 + |ND(α)|(2 + εα) in GQ
D.
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Denote the cut-vertices of Γ(W , P)[λ] that lie in D by κ. For α ∈ κ let
Vα be the set consisting of the ends of Qα and of all inner vertices of Qα that
have a neighbour in GQ

D − Qα and set V :=
�

α∈κ Vα. Pick α ∈ κ such that
|Vα| is maximal. By Lemma 5.7 (with p = 2k + 3) every vertex of GQ

D lies on
a path of QV (D) and we have |Qβ| < |Vα| for all β ∈ V (D) \ κ.

The paths of Q are induced in G as Q[W ] is (2k + 3)-attached in G[W ]
for every inner bag W of W . Hence Vα contains precisely the vertices of Qα

that are not inner vertices of degree 2 in GQ
D. By the same argument as in

the proof of Claim 7.1.4 (ii) the vertices of Vα that are not ends of Qα have
average degree at least 2 + |ND(α)|(2 + εα) in GQ

D.
We want to show that the average degree in GQ

D taken over all vertices of
Vα is larger than 2 + 2|ND(α)|. Clearly the end vertices of Qα have degree at
least 1 in GQ

D so both lack at most 1+2|ND(α)| ≤ 3|ND(α)| incident edges to
the desired degree. On the other hand, the degree of every vertex of Vα that
is not an end of Qα is on average at least |ND(α)| ·εα larger than desired. But
εα ≥ 1/k by Claim 7.1.2 (iii) and by Lemma 6.5 (iv) the path Qα[W ] contains
a vertex of Vα for every inner bag of W , in particular, |Vα| ≥ n1/2 > 6k + 2
and hence (|Vα| − 2)εα > 6.

This shows that there are more than 2|Vα| · |ND(α)| edges in GQ
D that have

one end on Qα and the other on another path of QV (D). By Lemma 5.1 these
edges can only end on paths of QND(α) so by the pigeon hole principle there
is β ∈ ND(α) such that GQ

D contains more than 2|Vα| edges with one end on
Qα and the other on Qβ.

Hence the society (H,Ω) obtained from (GQ
αβ, QαQ

−1
β ) by suppressing

all inner vertices of Qα and Qβ that have degree 2 in GQ
αβ has more than

2|Vα|+2|Vβ|−2 edges and all its |Vα|+|Vβ| vertices are in Ω̄. So by Lemma 6.2
(H,Ω) cannot be rural. But it is trivially 4-connected as all its vertices are
in Ω̄ and must therefore contain a cross by Theorem 6.1. The paths of Q are
induced so this cross consists of two edges which both have one end on Qα

and the other on Qβ. Such a cross gives rise to a linkage Q� from the left
to the right adhesion set of some inner bag W of W such that the induced
permutation of Q� maps some element of V (D) \ {α} (not necessarily β) to
α and maps every γ /∈ V (D) to itself. Since α has a neighbour outside D
this is not an automorphism of Γ(W , P)[λ] and therefore Q� is a twisting
disturbance contradicting the stability of (W , P).

It remains to show that D is rich w.r.t. Q. Suppose that it is not. By
the same argument as for Claim 7.1.4 (i) there must be α ∈ κ such that
the inner vertices of Qα that have a neighbour in Gλ − GQ

D and in GQ
D − Qα

have average degree less than 2 + |ND(α)|(2 + εα) in GQ
D. Let (λ1, λ2) be a

separation of Γ(W , P)[λ] with λ1 ∩ λ2 = {α} and N(α)∩ λ2 = N(α)∩ V (D).
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Let H, Z1, Z2, P �, q1, and q2 be as in the statement of Lemma 6.5. We shall
obtain contradicting upper and lower bounds for the number

x :=
�

v∈V (P �
α∪Qα)

�
dH(v) − dP �

α∪Qα(v)
�
.

Denote by H1, . . . , Hm the blocks of H that are not a single edge and for
i = 1, . . . , m let Vi be the set of vertices of Ci := Hi ∩ (P �

α ∪ Qα) that are a
cut-vertex of H or are incident with some edge of Hi that is not in P �

α ∪ Qα

and set V :=
�m

i=1 Vi. By definition we have dH(v) = dP �
α∪Qα(v) for all vertices

v of (P �
α ∪ Qα) − V .

Note that H is adjacent to at most |N(α)∩θ| vertices of Pθ by Lemma 6.5
(ii) and Lemma 5.1. So Claim 7.1.2 (iii) and the connectivity of G imply that
every vertex of H has degree at least 2k + 3 − |N(α) ∩ θ| ≥ 2|N(α) ∩ λ| + 3
in Gλ.

To obtain an upper bound for x let i ∈ {1, . . . , m}. By Lemma 6.5 (vi)
Ci is a cycle and the society (Hi,Ω(Ci)) is rural where Ω(Ci) denotes one of
two cyclic permutations that Ci induces on its vertices. Since |N(α) ∩ λ| ≥ 2
every vertex of Hi −Ci has degree at least 6 in Hi by the previous paragraph.
This remains true if we suppress all vertices of Ci that have degree 2 in
Hi. The society obtained in this way is still rural by Lemma 6.3. Since we
suppressed precisely those vertices of Ci that are not in Vi Lemma 6.2 implies�

v∈Vi
dHi

(v) ≤ 4|Vi| − 6. By definition of V we have dH(v) = dP �
α∪Qα(v) for

all vertices v of P �
α ∪ Qα that are not in V . Hence we have

x =
�

v∈V

�
dH(v) − dP �

α∪Qα(v)
�

=
m�

i=1

�

v∈Vi

(dHi
(v) − dCi

(v)) ≤
m�

i=1

(2|Vi| − 6) .

Let us now obtain a lower bound for x. Clearly GP
D ⊆ GP

λ2
and GQ

D ⊆ GQ
λ2

.
To show that dGQ

D
(v) = dGQ

λ2

(v) for all v ∈ V (H) (we follow the general
convention that a vertex has degree 0 in any graph not containing it) it
remains to check that an edge of Gλ that has precisely one end in H but
is not in GQ

D cannot be in GQ
λ2

. Such an edge e must be in a Q-bridge that
attaches to Qα and some Qβ with β ∈ λ \ V (D). But N(α)∩ λ2 = V (D) and
hence β ∈ λ1. So e is an edge of GQ

λ1
but not on Qα and therefore not in GQ

λ2
.

This already implies dGP
D
(v) = dGP

λ2
(v) for all v ∈ V (H) since GQ

D ⊆ GP
D and

GP
λ2

= H ∪ GQ
λ2

(see the proof of Lemma 6.5 (i) for the latter identity). The
next equality follows directly from the definition of H.

dH(v) + dGQ
λ2

(v) = dGP
λ2

(v) + dQα(v) ∀v ∈ V (H).
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Denote by U1 the set of inner vertices of Pα that have a neighbour in both
Gλ − GP

D and GP
D − Pα and by U2 the set of inner vertices of Qα that have

a neighbour in both Gλ − GQ
D and GQ

D − Qα. In other words, U1 and U2 are
the sets of those vertices of Pα and Qα, respectively, that are relevant for the
richness of α in D. Set V � :=(V \ {q1, q2})∪ (Z1 ∩Z2)), VP := V �∩V (P �

α), and
VQ := V � ∩ V (Qα). Then U1 = (V ∩ Z1) ∪ (Z1 ∩ Z2) = V � ∩ Z1 ⊆ VP and
U2 = (V ∩ Z2) ∪ (Z1 ∩ Z2) ⊆ VQ.

By our earlier observation every vertex of H has degree at least 2|N(α)∩
λ| + 3 in Gλ and therefore every vertex of VP \ Z1 must have at least this
degree in GP

λ2
. Since U1 ⊆ VP and α is rich in D this means that

�

v∈VP

dGP
D
(v) ≥ |VP | (2 + |ND(α)| · (2 + εα)) .

Similarly, we have U2 ⊆ VQ ⊆ V (Qα) and every vertex v ∈ VQ \ Z2 satisfies
dGQ

D
(v) = 2 = dQα(v). So by the assumption that α is not rich in D w.r.t. Q

we have �

v∈VQ

�
dGQ

D
(v) − dQα(v)

�
< |VQ| · |ND(α)| · (2 + εα).

Observe that

2|N(α) ∩ λ| + 3 = 2 + |N(α) ∩ λ1| · (2 + εα) + |N(α) ∩ λ2| · (2 + εα)

and recall that ND(α) = N(α) ∩ λ2. Combining all of the above we get

x ≥
�

v∈V �

�
dH(v) − dP �

α∪Qα(v)
�

=
�

v∈V �

�
dGP

D
(v) − dGQ

D
(v) + dQα(v) − dP �

α∪Qα(v)
�

=
�

v∈VP

dGP
D
(v) +

�

v∈V �\VP

dGP
D
(v) −

�

v∈VQ

�
dGQ

D
(v) − dQα(v)

�
− 2|V �| − 2m

> |VP | · |ND(α)| · (2 + εα) + 2|VP | + |V � \ VP | · (2|N(α) ∩ λ| + 3)

− |VQ| · |ND(α)| · (2 + εα) − 2|V �| − 2m

= |V � \ VQ| · |ND(α)| · (2 + εα) + |V � \ VP | · |N(α) ∩ λ1| · (2 + εα) − 2m

> 2|V � \ VQ| + 2|V � \ VP | − 2m =
m�

i=1

(2|Vi| − 6)

This shows that D is rich w.r.t. Q as defined above. So Claim 7.1.7 holds.
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By Claim 7.1.1 the graph Γ(W , P)[λ] has a component. This component
has a rich block D by Claim 7.1.5. By Claim 7.1.6 and Claim 7.1.7 we have
a triangle in D and |D| + |N(D)| ≥ 2k + 3. This contradicts Claim 7.1.2 (iv)
and thus concludes the proof of Theorem 1.1.

8 Discussion
In this section we first show that Theorem 1.1 is almost best possible (see
Proposition 8.1 below) and then summarise where our proof uses the require-
ment that the graph G is (2k + 3)-connected.

Proposition 8.1. For all integers k and N with k ≥ 2 there is a graph G
which is not k-linked such that

κ(G) ≥ 2k + 1, tw(G) ≤ 2k + 10, and |G| ≥ N.

f0

Figure 2: The 5-connected graph H0 and its inner face f0.

Proof. We reduce the assertion to the case k = 2, that is, to the claim that
there is a graph H which is not 2-linked but satisfies

κ(H) = 5, tw(H) ≤ 14, and |H| ≥ N.
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For any k ≥ 3 let K be the graph with 2k − 4 vertices and no edges. We
claim that G := H ∗ K (the disjoint union of H and K where every vertex of
H is joined to every vertex of K by an edge) satisfies the assertion for k.

Clearly |G| = |H| + 2k − 4 ≥ N . Taking a tree-decomposition of H of
minimal width and adding V (K) to every bag gives a tree-decomposition of G,
so tw(G) ≤ tw(H)+2k−4 ≤ 2k+10. To see that G is (2k+1)-connected, note
that it contains the complete bipartite graph with partition classes V (H) and
V (K), so any separator X of G must contain V (H) or V (K). In the former
case we have |X| ≥ N and we may assume that this is larger than 2k. In the
latter case we know that G − X ⊆ H, in particular X ∩ V (H) is a separator
of H and hence must have size at least 5, implying |X| ≥ |K| + 5 = 2k + 1
as required.

Finally, G is not k-linked: By assumption there are vertices s1, s2, t1,
t2 of H such that H does not contain disjoint paths P1 and P2 wherePi

ends in si and ti for i = 1, 2. If G was k-linked, then for any enumeration
s3, . . . , sk, t3, . . . , tk of the 2k − 4 vertices of V (K) there were disjoint paths
P1, . . . , Pk in G such that Pi has end vertices si and ti for i = 1, . . . , k. In
particular, P1 and P2 do not contain a vertex of K and are hence contained
in H, a contradiction.

It remains to give a counterexample for k = 2. The planar graph H0 in
Figure 2 is 5-connected. Denote the 5-cycle bounding the outer face of H0 by
C1 and the 5-cycle bounding f0 by C0. Then (V (H0−C0), V (H0−C1)) forms
a separation of H0 of order 10, in particular, H0 has a tree-decomposition of
width 14 where the tree is K2. Draw a copy H1 of H0 into f0 such that the
cycle C0 of H0 gets identified with the copy of C1 in H1. Since H0 ∩H1 has 5
vertices, the resulting graph is still 5-connected and has a tree-decomposition
of width 14. We iteratively paste copies of H0 into the face f0 of the previously
pasted copy as above until we end up with a planar graph H such that

κ(H) = 5, tw(H) ≤ 14, and |H| ≥ N.

Still the outer face of H is bounded by a 5-cycle C1, so we can pick vertices
s1, s2, t1, t2 in this order on C1 to witness that H is not 2-linked (any s1–t1
path must meet any s2–t2 path by planarity).

Where would our proof of Theorem 1.1 fail for a (2k + 2)-connected
graph G? There are several instances where we invoke (2k + 3)-connectivity
as a substitute for a minimum degree of at least 2k +3. The only place where
minimum degree 2k + 2 does not suffice is the proof of Claim 7.1.4. We need
minimum degree 2k + 3 there to get the small “bonus” εα in our notion of
richness. Richness only allows us to make a statement about the inner vertices
of a path and the purpose of this bonus is to compensate for the end vertices.
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Therefore the arguments involving richness in the proofs of Claim 7.1.6 and
Claim 7.1.7 would break down if we only had minimum degree 2k + 2.

But even if the suppose that G has minimum degree at least 2k + 3 there
are still two places where our proof of Theorem 1.1 fails: The first is the proof
of Claim 7.1.3 and the second is the application of Lemma 5.7 in the proof
of Claim 7.1.7.

We use Claim 7.1.3 in the proof of Claim 7.1.6, to show that no component
of Γ(W , P)[λ] can be a single vertex or a single edge. In both cases we do
not use the full strength of Claim 7.1.3. So although we formally rely on
(2k + 3)-connectivity for Claim 7.1.3 we do not really need it here.

However, the application of Lemma 5.7 in the proof of Claim 7.1.7 does
need (2k + 3)-connectivity. Our aim there is to obtain a contradiction to
Claim 7.1.2 (iv) which inherits the bound 2k + 3 from the token game in
Lemma 4.10. This bound is sharp: Let H be the union of a triangle D = d1d2d3

and two edges d1a1 and d2a2 and set A :={a1, a2}. Clearly H − A = D is
connected and A is marginal in H. For k = 3 we have 2|D| + |N(D)| = 8 =
2k + 2. Let L be the pairing with edges (a1, 0)(a2, 0) and (di, 0)(di,∞) for
i = 1, 2. It is not hard to see that there is no L-movement on H as the two
tokens from A can never meet.

So the best hope of tweaking our proof of Theorem 1.1 to work for (2k+2)-
connected graphs is to provide a different proof for Claim 7.1.7. This would
also be a chance to avoid relinkages, that is, most of Section 5, and the very
technical Lemma 6.5 altogether as they only serve to establish Claim 7.1.7.
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Abstract
We consider the problem of determining whether the union of two
infinite matroids is a matroid. We introduce a superclass of the finitary
matroids, the nearly finitary matroids, and prove that the union of two
nearly finitary matroids is a nearly finitary matroid.

On the other hand, we prove that the union of two arbitrary infinite
matroids is not necessarily a matroid. Indeed, we show (under a weak
additional assumption) that the nearly finitary matroids are essentially
the largest class of matroids for which one can have a union theorem.

We then extend the base packing theorem for finite matroids to
finite families of co-finitary matroids. This, in turn, yields a matroidal
proof for the tree-packing results for infinite graphs due to Diestel and
Tutte.

1 Introduction
Recently, Bruhn, Diestel, Kriesell, Pendavingh and Wollan [4] found axioms
for infinite matroids in terms of independent sets, bases, circuits, closure and
(relative) rank. These axioms allow for duality of infinite matroids as known
from finite matroid theory, which settled an old problem of Rado. With these
new axioms it is possible now to look which theorems of finite matroid theory
have infinite analogues.

Here, we shall look at the matroid union theorem which is a classical result
in finite matroid theory [6, 7]. It says that, given finite matroids M1 = (E1, I1)
and M2 = (E2, I2), the set system

I(M1 ∨ M2) = {I1 ∪ I2 | I1 ∈ I1, I2 ∈ I2} (1)
∗Research supported by the Minerva foundation.
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is the set of independent sets of a matroid, the union matroid M1 ∨ M2, and
specifies a rank function for this matroid.

The matroid union theorem has important applications in finite matroid
theory. For example, it can be used to provide short proofs for the base
covering and packing theorem (discussed below more broadly), or to the
matroid intersection theorem [6].

While the union of two finite matroids is always a matroid, it is not true
that the union of two infinite matroids is always a matroid (see Proposition 1.1
below). The purpose of this paper is to study for which matroids their union
is a matroid.

1.1 Our results

In this section, we outline our results with minimal background, deferring
details until later sections. First we prove the following.

Proposition 1.1. If M and N are infinite matroids, then I(M1∨M2) is not
necessarily a matroid.

One of the matroids involved in the proof of this proposition is finitary.
Nevertheless, in Section 4.2, we establish a union theorem (see Theorem 1.2
below) for a superclass of the finitary matroids which we call nearly finitary
matroids, defined next.

For any matroid M , taking as circuits only the finite circuits of M defines
a (finitary) matroid with the same ground set as M . This matroid is called
the finitarization of M and denoted by Mfin.

It is not hard to show that every basis B of M extends to a basis Bfin

of Mfin, and conversely every basis Bfin of Mfin contains a basis B of M .
Whether or not Bfin \ B is finite will in general depend on the choices for B
and Bfin, but given a choice for one of the two, it will no longer depend on
the choice for the second one.

We call a matroid M nearly finitary if every base of its finitarization
contains a base of M such that their difference is finite.

The class of nearly finitary matroids contains all finitary matroids, but
not only. For example, the set system C(M)∪B(M) consisting of the circuits
of an infinite-rank finitary matroid M together with its bases forms the set of
circuits of a nearly finitary matroid that is not finitary (see Proposition 4.13).
In [2] we characterize the graphic nearly finitary matroids; this also gives rise
to numerous examples of nearly finitary matroids that are not finitary.

We show that the class of finitary matroids is closed under union (Section
4.2). In Section 4.3 we prove the same for the larger class of nearly finitary
matroids, which is our main result:
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Theorem 1.2. [Nearly finitary union theorem]
If M1 and M2 are nearly finitary matroids, then M1 ∨ M2 is a matroid and
in fact nearly finitary.

Theorem 1.2 is essentially best possible as follows.
First, the non-finitary matroid involved in the proof of Proposition 1.1 is

a countable direct sum of infinite circuits and loops. This is essentially the
simplest example of a matroid that is not nearly finitary.

Second, we show in Section 4.3.1 that for every matroid N that is not
nearly finitary and that satisfies a (weak) additional assumption there exists
a finitary matroid M such that I(M ∨ N) is not a matroid. Thus in essence,
not only is the class of nearly finitary matroids maximal with the property of
having a union theorem; it is not even possible to add a matroid that is not
nearly finitary to the class of finitary matroids without invalidating matroid
union.

More precisely, we prove the following counterpart to Theorem 1.2.

Proposition 1.3. Let N be a matroid that is not nearly finitary. Suppose
that the finitarization of N has an independent set I containing only countably
many N -circuits such that I has no finite subset meeting all of these circuits.
Then there exists a finitary matroid M such that I(M ∨N) is not a matroid.

A simple consequence of Theorem 1.2 is that M1 ∨ · · · ∨ Mk is a nearly
finitary matroid whenever M1, . . . , Mk are nearly finitary. On the other hand,
(by Observation 4.10) a countable union of nearly finitary matroids need not
be a matroid.

In finite matroid theory, the base covering and base packing theorems are
two well-known applications of the finite matroid union theorem. The former
extends to finitary matroids in a straightforward manner (see Corollary 5.1).

In Section 5, we extend the finite base packing theorem to finite families
of co-finitary matroids; i.e., matroids whose dual is finitary. The finite base
packing theorem asserts that a finite matroid M admits k disjoint bases if
and only if k · rk(X)+ |E(M)\X| ≥ k · rk(M) for every X ⊆ E(M) [7], where
rk denotes the rank function of M . For infinite matroids, this rank condition
is too crude. We reformulate this condition using the notion of relative rank
introduced in [4] as follows: given two subsets B ⊆ A ⊆ E(M), the relative
rank of A with respect to B is denoted by rk(A|B), satisfies rk(A|B) ∈ N∪{∞},
and is given by

rk(A|B) = max{|I \ J | : J ⊆ I, I ∈ I(M) ∩ 2A, J maximal in I(M) ∩ 2B}.

Theorem 1.4. A co-finitary matroid M with ground set E admits k disjoint
bases if and only if |Y | ≥ k · rk(E|E − Y ) for all finite sets Y ⊆ E.

CHAPTER 2. INFINITE MATROID UNION

70



Theorem 1.4 does not extend to arbitrary infinite matroids. Indeed, for
every integer k there exists a finitary matroid with no three disjoint bases
and satisfying |Y | ≥ k · rk(E|E − Y ) for every Y ⊆ E [1, 5].

This theorem gives a short matroidal proof of a result of Diestel and
Tutte [5, Theorem 8.5.7] who showed that the well-known tree-packing theo-
rem for finite graphs due to Nash-Williams and Tutte [5] extends to infinite
graphs with so-called topological spanning trees.

2 Preliminaries
Notation and terminology for graphs are that of [5], for matroids that of [6, 4],
and for topology that of [3].

Throughout, G always denotes a graph where V (G) and E(G) denote its
vertex and edge sets, respectively. We write M to denote a matroid and write
E(M), I(M), B(M), and C(M) to denote its ground set, independent sets,
bases, and circuits, respectively.

It will be convenient to have a similar notation for set systems. That is, for
a set system I over some ground set E, an element of I is called independent, a
maximal element of I is called a base of I, and a minimal element of P(E)\I
is called circuit of I. A set system is finitary if an infinite set belongs to the
system provided each of its finite subsets does; with this terminology, M is
finitary provided that I(M) is finitary.

We review the definition of a matroid as given in [4]. A set system I is the
set of independent sets of a matroid if it satisfies the following independence
axioms [4]:

(I1) ∅ ∈ I.

(I2) �I� = I, that is, I is closed under taking subsets.

(I3) Whenever I, I � ∈ I with I � maximal and I not maximal, there exists
an x ∈ I � \ I such that I + x ∈ I.

(IM) Whenever I ⊆ X ⊆ E and I ∈ I, the set {I � ∈ I | I ⊆ I � ⊆ X} has a
maximal element.

In [4], an equivalent axiom system to the independence axioms is provided
and is called the circuit axioms system; this axiom system characterises a
matroid in terms of its circuits. Of these circuit axioms, we shall make frequent
use of the so called (infinite) circuit elimination axiom phrased here for a
matroid M :
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(C) Whenever X ⊆ C ∈ C(M) and {Cx | x ∈ X} ⊆ C(M) satisfies x ∈
Cy ⇔ x = y for all x, y ∈ X, then for every z ∈ C \

��
x∈X Cx

�
there

exists a C � ∈ C(M) such that z ∈ C � ⊆
�
C ∪�x∈X Cx

�
\ X.

3 The union of arbitrary infinite matroids
In this section, we prove Proposition 1.1. That is, we show that there exists
infinite matroids M and N whose union is not a matroid.

As the nature of M and N is crucial for establishing the tightness of
Theorem 1.2, we prove Proposition 1.1 in two steps as follows.

In Claim 3.1, we treat the relatively simpler case in which M is finitary
and N is co-finitary and both have uncountable ground sets. Second, then, in
Claim 3.2, we refine the argument as to have M both finitary and co-finitary
and N co-finitary and both on countable ground sets.

Claim 3.1. There exists a finitary matroid M and a co-finitary matroid N
such that I(M ∨ N) is not a matroid.

Proof. Set E = E(M) = E(N) = N × R. Next, put M :=
�

n∈N Mn, where
Mn := U1,{n}×R. The matroid M is finitary as it is a direct sum of 1-uniform
matroids. For r ∈ R, let Nr be the circuit matroid on N × {r}; set N :=�

r∈R Nr. As N is a direct sum of circuits, it is co-finitary. (see Figure 1).

M1 M2 M3

N−2 N0 Nπ

...

...

... . . .

. . .. . .

... M4

(1, 0) (2, 0) (3, 0) (4, 0)

Figure 1: M =
�

n∈N Mn and N =
�

r∈R Nr.

We show that I(M ∨ N) violates the axiom (IM) for I = ∅ and X = E;
so that I(M ∨N) has no maximal elements. It is sufficient to show that a set
J ⊆ E belongs to I(M ∨N) if and only if it contains at most countably many
circuits of N . For if so, then for any J ∈ I(M∨N) and any circuit C = N×{r}
of N with C � J (such a circuit exists) we have J ∪ C ∈ I(M ∨ N).
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The point to observe here is that every independent set of M is countable,
(since every such set meets at most one element of Mn for each n ∈ N),
and that every independent set of N misses uncountably many elements of
E (as any such set must miss at least one element of Nr for each r ∈ R).

Suppose J ⊆ E contains uncountably many circuits of N . Since each
independent set of N misses uncountably many elements of E, every set
D = J\JN is uncountable whenever JN ∈ I(J). On the other hand, since each
independent set of M is countable, we have that D /∈ I(M). Consequently,
J /∈ I(M ∨ N), as required.

We may assume then that J ⊆ E contains only countably many circuits of
N , namely, {Cr1 , Cr2 , . . .}. Now the set JM = {(i, ri) : i ∈ N} is independent
in M ; consequently, J \ JM is independent in N ; completing the proof.

We proceed with matroids on countable ground sets.

Claim 3.2. There exist a matroid M that is both finitary and co-finitray,
and a co-finitary matroid N whose common ground is countable such that
I(M ∨ N) is not a matroid.

Proof. For the common ground set we take E = (N × N) ∪ L where L =
{�1, �2, . . .} is countable and disjoint to N × N. The matroids N and M are
defined as follows. For r ∈ N, let Nr be the circuit matroid on N×{r}. Set N
to be the matroid on E obtained by adding the elements of L to the matroid�

r∈N Nr as loops. Next, for n ∈ N, let Mn be the 1-uniform matroid on
({n}×{1, 2, . . . , n})∪{�n}. Let M be the matroid obtained by adding to the
matroid

�
n∈N Mn all the members of E \ E(

�
n∈N Mn) as loops

We show that I(M ∨ N) violates the axiom (IM) for I = N × N and
X = E. It is sufficient to show that

(a) I ∈ I(M ∨ N); and that

(b) every set J satisfying I ⊂ J ⊆ E is in I(M ∨N) if and only if it misses
infinitely many elements of L.

To see that I ∈ I(M ∨ N), note that the set IM = {(n, n) | n ∈ N} is
independent in M and meets each circuit N×{r} of N . In particular, the set
IN := (N×N)\IM is independent in N , and therefore I = IM∪IN ∈ I(M∨N).

Let then J be a set satisfying I ⊆ J ⊆ E, and suppose, first, that J ∈
I(M ∨ N). We show that J misses infinitely many elements of L.

There are sets JM ∈ I(M) and JN ∈ I(N) such that J = JM ∪JN . As JN

misses at least one element from each of the disjoint circuits of N in I, the
set D := I \ JN is infinite. Moreover, we have that D ⊆ JM , since I ⊆ J . In
particular, there is an infinite subset L� ⊆ L such that D+ l contains a circuit
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of M for every � ∈ L�. Indeed, for every e ∈ D is contained in some Mne ; let
then L� = {�ne : e ∈ D} and note that L�∩J = ∅. This shows that JM and L�

are disjoint and thus J and L� are disjoint as well, and the assertion follows.
Suppose, second, that there exists a sequence i1 < i2 < . . . such that

J is disjoint from L� = {�ir : r ∈ N}. We show that the superset E \ L�

of J is in I(M ∨ N). To this end, set D := {(ir, r) | r ∈ N}. Then, D
meets every circuit N × {r} of N in I, so that the set JN := N × N \ D is
independent in N . On the other hand, D contains a single element from each
Mn with n ∈ L�. Consequently, JM := (L \ L�) ∪ D ∈ I(M) and therefore
E \ L� = JM ∪ JN ∈ I(M ∨ N).

While the union of two finitary matroids is a matroid, by Proposition 4.1,
the same is not true for two co-finitary matroids.

Corollary 3.3. The union of two co-finitary matroids is not necessarily a
matroid.

4 Matroid union
In this section, we prove Theorem 1.2. The main difficulty in proving this
theorem is the need to verify that given two nearly finitary matroids M1 and
M2, that the set system I(M1 ∨ M2) satisfies the axioms (IM) and (I3).

To verify the (IM) axiom for the union of two nearly finitary matroids we
shall require the following theorem, proved below in Section 4.2.

Proposition 4.1. If M1 and M2 are finitary matroids, then M1 ∨ M2 is a
finitary matroid.

To verify (IM) for the union of finitary matroids we use a compactness
argument (see Section 4.2). More specifically, we will show that I(M1∨M2) is
a finitary set system whenever M1 and M2 are finitary matroids. It is then an
easy consequence of Zorn’s lemma that all finitary set systems satisfy (IM).

The verification of axiom (I3) is dealt in a joint manner for both matroid
families. In the next section we prove the following.

Proposition 4.2. The set system I(M1 ∨ M2) satisfies (I3) for any two
matroids M1 and M2.

Indeed, for finitary matroids, Proposition 4.2 is fairly simple to prove. We,
however, require this proposition to hold for nearly finitary matroids as well.
Consequently, we prove this proposition in its full generality, i.e., for any pair
of matroids. In fact, it is interesting to note that the union of infinitely many
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matroids satisfies (I3); though the axiom (IM) might be violated as seen in
Observation 4.10).

At this point it is insightful to note a certain difference between the union
of finite matroids to that of finitary matroids in a more precise manner. By
the finite matroid union theorem if M admits two disjoint bases, then the
union of these bases forms a base of M ∨ M . For finitary matroids the same
assertion is false.

Claim 4.3. There exists an infinite finitary matroid M with two disjoint
bases whose union is not a base of the matroid M ∨ M as it is properly
contained in the union of some other two bases.

Proof. Consider the infinite one-sided ladder with every edge doubled, say
H, and recall that the bases of MF (H) are the ordinary spanning trees of H.
Figure 2 shows two pairs of disjoint bases of MF (H). However, the union
of the lower pair properly contains that of the upper pair as it additionally
contains the leftmost edge of H.

Clearly, a direct sum of infinitely many copies of H gives rise to an infinite
sequence of unions of disjoint bases, each properly containing the previous
one. In fact, one can construct a (single) matroid formed as the union of two
nearly finitary matroids that admits an infinite properly nested sequence of
unions of disjoint bases.

. . .

. . .

Figure 2: Two pairs of disjoint spanning trees of H (fat solid and fat dashed).
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4.1 Exchange chains and the verification of axiom (I3)

In this section, we prove Proposition 4.2. Throughout this section M1 and
M2 are matroids. It will be useful to show that the following variant of (I3)
is satisfied.

Proposition 4.4. The set I = I(M1 ∨ M2) satisfies the following.

(I3’) For all I, B ∈ I where B is maximal and all x ∈ I \ B there exists
y ∈ B \ I such that (I + y) − x ∈ I.

Observe that unlike in (I3), the set I in (I3’) may be maximal.
We begin by showing that Proposition 4.4 implies Proposition 4.2.

Proof of Proposition 4.2 from Proposition 4.4. Let I ∈ I be non-maximal
and B ∈ I be maximal. As I is non-maximal there is an x ∈ E \ I such that
I + x ∈ I. We may assume x /∈ B or the assertion follows by (I2). By (I3’),
applied to I + x, B, and x ∈ (I + x) \ B there is y ∈ B \ (I + x) such that
I + y ∈ I.

We proceed to prove Proposition 4.4. The following notation and terminol-
ogy will be convenient. A circuit of M which contains a given set X ⊆ E(M)
is called an X-circuit.

By a representation of a set I ∈ I(M1 ∨ M2), we mean a pair (I1, I2)
where I1 ∈ I(M1) and I2 ∈ I(M2) such that I = I1 ∪ I2.

For sets I1 ∈ I(M1) and I2 ∈ I(M2), and elements x ∈ I1 ∪ I2 and
y ∈ E(M1) ∪ E(M2) (possibly in I1 ∪ I2), a tuple Y = (y0 = y, . . . , yn = x)
with yi �= yi+1 for all i is called an even (I1, I2, y, x)-exchange chain (or even
(I1, I2, y, x)-chain) of length n if the following terms are satisfied.

(X1) For an even i, there exists a {yi, yi+1}-circuit Ci ⊆ I1 + yi of M1.

(X2) For an odd i, there exists a {yi, yi+1}-circuit Ci ⊆ I2 + yi of M2.

If n ≥ 1, then (X1) and (X2) imply that y0 /∈ I1 and that, starting with
y1 ∈ I1 \ I2, the elements yi alternate between I1 \ I2 and I2 \ I1; the single
exception being yn which can lie in I1 ∩ I2.

By an odd exchange chain (or odd chain) we mean an even chain with the
words ‘even’ and ‘odd’ interchanged in the definition. Consequently, we say
exchange chain (or chain) to refer to either of these notions. Furthermore,
a subchain of a chain is also a chain; that is, given an (I1, I2, y0, yn)-chain
(y0, . . . , yn), the tuple (yk, . . . , yl) is an (I1, I2, yk, yl)-chain for 0 ≤ k ≤ l ≤ n.

Lemma 4.5. If there exists an (I1, I2, y, x)-chain, then (I + y)−x ∈ I(M1 ∨
M2) where I := I1 ∪ I2. Moreover, if x ∈ I1 ∩ I2, then I + y ∈ I(M1 ∨ M2).
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Remark. In the proof of Lemma 4.5 chains are used in order to alter the sets
I1 and I2; the change is in a single element. Nevertheless, to accomplish this
change, exchange chain of arbitrary length may be required; for instance, a
chain of length four is needed to handle the configuration depicted in Figure 3.

C1

C2

C3

C4

y0

y1

y2

y3

y4

I2 ∈ I(M2)

I1 ∈ I(M1)

(a) the initial representation

C1

C2

C3

C4

y0

y1

y2

y3

y4

I1 + y0 − y1 + y2 − y3

I2 + y1 − y2 + y3 − y4

(b) the obtained representation

Figure 3: An even exchange chain of length 4.

Next, we prove Lemma 4.5.

Proof of Lemma 4.5. The proof is by induction on the length of the chain.
The statement is trivial for chains of length 0. Assume n ≥ 1 and that
Y = (y0, . . . , yn) is a shortest (I1, I2, y, x)-chain. Without loss of generality,
let Y be an even chain. If Y � := (y1, . . . , yn) is an (odd) (I �

1, I2, y1, x)-chain
where I �

1 := (I1+y0)−y1, then ((I �
1∪I2)+y1)−x ∈ I(M1∨M2) by the induction

hypothesis and the assertion follows, since (I �
1 ∪ I2) + y1 = (I1 ∪ I2) + y0. If

also x ∈ I1 ∩ I2, then either x ∈ I �
1 ∩ I2 or y1 = x and hence n = 1. In the

former case I + y ∈ I(M1 ∨ M2) follows from the induction hypothesis and
in the latter case I + y = I �

1 ∪ I2 ∈ I(M1 ∨ M2) as x ∈ I2.
Since I2 has not changed, (X2) still holds for Y �, so to verify that Y � is an

(I �
1, I2, y1, x)-chain, it remains to show I �

1 ∈ I(M1) and to check (X1). To this
end, let Ci be a {yi, yi+1}-circuit of M1 in I1 + yi for all even i. Such exist by
(X1) for Y . Notice that any circuit of M1 in I1 + y0 has to contain y0 since
I1 ∈ I(M1). On the other hand, two distinct circuits in I1 + y0 would give
rise to a circuit contained in I1 by the circuit elimination axiom applied to
these two circuits, eliminating y0. Hence C0 is the unique circuit of M1 in
I1 + y0 and y1 ∈ C0 ensures I �

1 = (I1 + y0) − y1 ∈ I(M1).
To see (X1), we show that there is a {yi, yi+1}-circuit C �

i of M1 in I �
1 + yi

for every even i ≥ 2. Indeed, if Ci ⊆ I �
1 + yi, then set C �

i := Ci; else, Ci

contains an element of I1 \ I �
1 = {y1}. Furthermore, yi+1 ∈ Ci \ C0; otherwise
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(y0, yi+1, . . . , yn) is a shorter (I1, I2, y, x)-chain for, contradicting the choice of
Y . Applying the circuit elimination axiom to C0 and Ci, eliminating y1 and
fixing yi+1, yields a circuit C �

i ⊆ (C0 ∪Ci)− y1 of M1 containing yi+1. Finally,
as I �

1 is independent and C �
i \ I �

1 ⊆ {yi} it follows that yi ∈ C �
i.

We shall require the following. For I1 ∈ I(M1), I2 ∈ I(M2), and x ∈ I1∪I2,
let

A(I1, I2, x) := {a | there exists an (I1, I2, a, x)-chain}.

This has the property that

for every y /∈ A, either I1 + y ∈ I(M1) or the unique circuit
Cy of M1 in I1 + y is disjoint from A. (2)

To see this, suppose I1 + y /∈ I(M1). Then there is a unique circuit Cy of
M1 in I1 + y. If Cy ∩ A = ∅, then the assertion holds so we may assume
that Cy ∩ A contains an element, a say. Hence there is an (I1, I2, a, x)-chain
(y0 = a, y1, . . . , yn−1, yn = x). As a ∈ I1 this chain must be odd or have length
0, that is, a = x. Clearly, (y, a, y1, . . . , yn−1, x) is an even (I1, I2, y, x)-chain,
contradicting the assumption that y /∈ A.

Next, we prove Proposition 4.4.

Proof of Proposition 4.4. Let B ∈ I(M1∨M2) maximal, I ∈ I(M1∨M2), and
x ∈ I \B. Recall that we seek a y ∈ B \ I such that (I +y)−x ∈ I(M1∨M2).
Let (I1, I2) and (B1, B2) be representations of I and B, respectively. We may
assume I1 ∈ B(M1|I) and I2 ∈ B(M2|I). We may further assume that for all
y ∈ B \ I the sets I1 + y and I2 + y are dependent in M1 and M2, respectively,
for otherwise it holds that I + y ∈ I(M1 ∨ M2) so that the assertion follows.
Hence, for every y ∈ (B ∪ I) \ I1 there is a circuit Cy ⊆ I1 + y of M1;
such contains y and is unique since otherwise the circuit elimination axiom
applied to these two circuits eliminating y yields a circuit contained in I1, a
contradiction.

If A := A(I1, I2, x) intersects B \ I, then the assertion follows from
Lemma 4.5. Else, A ∩ (B \ I) = ∅, in which case we derive a contradiction to
the maximality of B. To this end, set (Figure 4)

B�
1 := (B1 \ b1) ∪ i1 where b1 := B1 ∩ A and i1 := I1 ∩ A

B�
2 := (B2 \ b2) ∪ i2 where b2 := B2 ∩ A and i2 := I2 ∩ A

Since A contains x but is disjoint from B \ I, it holds that (b1 ∪ b2) + x ⊆
i1 ∪ i2 and thus B + x ⊆ B�

1 ∪ B�
2. It remains to verify the independence of

B�
1 and B�

2 in M1 and M2, respectively.
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C

B1

B2

I1
I2

A

i1
i2

b2
b1

Figure 4: The independent sets I1, at the top, and I2, at the bottom, the
bases B1, on the right, and B2, on the left, and their intersection with A.

Without loss of generality it is sufficient to show B�
1 ∈ I(M1). For the

remainder of the proof ‘independent’ and ‘circuit’ refer to the matroid M1.
Suppose for a contradiction that the set B�

1 is dependent, that is, it contains
a circuit C. Since i1 and B1 \ b1 are independent, neither of these contain C.
Hence there is an element a ∈ C ∩ i1 ⊆ A. But C \ I1 ⊆ B1 \ A and therefore
no Cy with y ∈ C \I1 contains a by (2). Thus, applying the circuit elimination
axiom on C eliminating all y ∈ C \ I1 via Cy fixing a, yields a circuit in I1, a
contradiction.

Since in the proof of Proposition 4.4 the maximality of B is only used in
order to avoid the case that B +x ∈ I(M1∨M2), one may prove the following
slightly stronger statement.

Corollary 4.6. For all I, J ∈ I(M1∨M2) and x ∈ I\J , if J+x /∈ I(M1∨M2),
then there exists y ∈ J \ I such that (I + y) − x ∈ I(M1 ∨ M2).

Next, the proof of Proposition 4.4, shows that for any maximal represen-
tation (I1, I2) of I there is y ∈ B \ I such that exchanging finitely many
elements of I1 and I2 gives a representation of (I + y) − x.

For subsequent arguments, it will be useful to note the following corollary.
Above we used chains whose last element is fixed. One may clearly use chains
whose first element is fixed. If so, then one arrives at the following.

Corollary 4.7. For all I, J ∈ I(M1∨M2) and y ∈ J\I, if I+y /∈ I(M1∨M2),
then there exists x ∈ I \ J such that (I + y) − x ∈ I(M1 ∨ M2).
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4.2 Finitary matroid union

In this section, we prove Proposition 4.1. In view of Proposition 4.2, it remains
to show that I(M1 ∨ M2) satisfies (IM) whenever M1 and M2 are finitary
matroids.

The verification of (IM) for countable finitary matroids can be done using
König’s infinity lemma. Here, in order to capture matroids on any infinite
ground set, we employ a topological approach. See [3] for the required topo-
logical background needed here.

We recall the definition of the product topology on P(E). The usual base
of this topology is formed by the system of all sets

C(A, B) := {X ⊆ E | A ⊆ X, B ∩ X = ∅},

where A, B ⊆ E are finite and disjoint. Note that these sets are closed as
well. Throughout this section, P(E) is endowed with the product topology
and closed is used in the topological sense only.

We show that Proposition 4.1 can easily be deduced from Proposition 4.8 and
Lemma 4.9, presented next.

Proposition 4.8. Let I = �I� ⊆ P(E). The following are equivalent.

4.8.1. I is finitary;

4.8.2. I is compact, in the subspace topology of P(E).

A standard compactness argument can be used in order to prove 4.8.1.
Here, we employ a slightly less standard argument to prove 4.8.2 as well. Note
that as P(E) is a compact Hausdorff space, assertion 4.8.2 is equivalent to
the assumption that I is closed in P(E), which we use quite often in the
following proofs.

Proof of Proposition 4.8. To deduce 4.8.2 from 4.8.1, we show that I is closed.
Let X /∈ I. Since I is finitary, X has a finite subset Y /∈ I and no superset
of Y is in I as I = �I�. Therefore, C(Y, ∅) is an open set containing X and
avoiding I and hence I is closed.

For the converse direction, assume that I is compact and let X be a set
such that all finite subsets of X are in I. We show X ∈ I using the finite
intersection property1 of P(E). Consider the family K of pairs (A, B) where

1The finite intersection property ensures that an intersection over a family C of closed
sets is non-empty if every intersection of finitely many members of C is.
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A ⊆ X and B ⊆ E \X are both finite. The set C(A, B)∩I is closed for every
(A, B) ∈ K, as C(A, B) and I are closed. If L is a finite subfamily of K, then

�

(A,B)∈L
A ∈

�

(A,B)∈L
(C(A, B) ∩ I) .

As P(E) is compact, the finite intersection property yields

 �

(A,B)∈K
C(A, B)


 ∩ I =

�

(A,B)∈K
(C(A, B) ∩ I) �= ∅.

However,
�

(A,B)∈K C(A, B) = {X}. Consequently, X ∈ I, as desired.

Lemma 4.9. If I and J are closed in P(E), then so is I ∨ J .

Proof. Equipping P(E)×P(E) with the product topology, yields that Carte-
sian products of closed sets in P(E) are closed in P(E)×P(E). In particular,
I × J is closed in P(E) × P(E). In order to prove that I ∨ J is closed, we
note that I ∨ J is exactly the image of I × J under the union map

f : P(E) × P(E) → P(E), f(A, B) = A ∪ B.

It remains to check that f maps closed sets to closed sets; which is equivalent
to showing that f maps compact sets to compact sets as P(E) is a compact
Hausdorff space. As continuous images of compact spaces are compact, it
suffices to prove that f is continuous, that is, to check that the pre-images of
subbase sets C({a}, ∅) and C(∅, {b}) are open as can be seen here:

f−1(C({a}, ∅)) = (C({a}, ∅) × P(E)) ∪ (P(E) × C({a}, ∅))
f−1(C(∅, {b})) = C(∅, {b}) × C(∅, {b}).

Next, we prove Proposition 4.1.

Proof of Proposition 4.1. By Proposition 4.2 it remains to show that the
union I(M1) ∨ I(M2) satisfies (IM). As all finitary set systems satisfy (IM),
by Zorn’s lemma, it is sufficient to show that I(M1 ∨ M2) is finitary. By
Proposition 4.8, I(M1) and I(M2) are both compact and thus closed in
P(E), yielding, by Lemma 4.9, that I(M1) ∨ I(M2) is closed in P(E), and
thus compact. As I(M1)∨I(M2) = �I(M1)∨I(M2)�, Proposition 4.8 asserts
that I(M1) ∨ I(M2) is finitary, as desired.
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We conclude this section with the following observation.

Observation 4.10. A countable union of finitary matroids need not be a
matroid.

Proof. We show that for any integer k ≥ 1, the set system

I :=
�

n∈N

Uk,R

is not a matroid, where here Uk,R denotes the k-uniform matroid with ground
set R.

Since a countable union of finite sets is countable, we have that the mem-
bers of I are the countable subsets of R. Consequently, the system I violates
the (IM) axiom for I = ∅ and X = R.

Above, we used the fact that the members of I are countable and that the
ground set is uncountable. One can have the following more subtle example,
showing that a countable union of finite matroids need not be a matroid.

Let A = {a1, a2, . . .} and B = {b1, b2, . . .} be disjoint countable sets, and
for n ∈ N, set En := {a1, . . . , an}∪{bn}. Then

�
n∈N U1,En is an infinite union

of finite matroids and fails to satisfy (IM) for I = A and X = A∪B = E(M).

4.3 Nearly finitary matroid union

In this section, we prove Theorem 1.2.
For a matroid M , let Ifin(M) denote the set of subsets of E(M) containing

no finite circuit of M , or equivalently, the set of subsets of E(M) which have all
their finite subsets in I(M). We call Mfin = (E(M), Ifin(M)) the finitarization
of M . With this notation, a matroid M is nearly finitary if it has the property
that

for each J ∈ I(Mfin) there exists an I ∈ I(M) such that |J \ I| < ∞. (3)

For a set system I (not necessarily the independent sets of a matroid) we
call a maximal member of I a base and a minimal member subject to not
being in I a circuit. With these conventions, the notions of finitarization and
nearly finitary carry over to set systems.

Let I = �I�. The finitarization Ifin of I has the following properties.

1. I ⊆ Ifin with equality if and only if I is finitary.

2. Ifin is finitary and its circuits are exactly the finite circuits of I.
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3. (I|X)fin = Ifin|X, in particular I|X is nearly finitary if I is.

The first two statements are obvious. To see the third, assume that I is nearly
finitary and that J ∈ Ifin|X ⊆ Ifin. By definition there is I ∈ I such that
J \ I is finite. As J ⊆ X we also have that J \ (I ∩ X) is finite and clearly
I ∩ X ∈ I|X.

Proposition 4.11. The pair Mfin = (E, Ifin(M)) is a finitary matroid, when-
ever M is a matroid.

Proof. By construction, the set system Ifin = I(Mfin) satisfies the axioms
(I1) and (I2) and is finitary, implying that it also satisfies (IM).

It remains to show that Ifin satisfies (I3). By definition, a set X ⊆ E(M)
is not in Ifin if and only if it contains a finite circuit of M .

Let B, I ∈ Ifin where B is maximal and I is not, and let y ∈ E(M) \ I
such that I + y ∈ Ifin. If I + x ∈ Ifin for any x ∈ B \ I, then we are done.

Assuming the contrary, then y /∈ B and for any x ∈ B \ I there exists a
finite circuit Cx of M in I + x containing x. By maximality of B, there exists
a finite circuit C of M in B+y containing y. By the circuit elimination axiom
(in M) applied to the circuits C and {Cx}x∈X where X := C ∩ (B \ I), there
exists a circuit

D ⊆
�

C ∪
�

x∈X

Cx

�
\ X ⊆ I + y

of M containing y ∈ C \�x∈X Cx. The circuit D is finite, since the circuits
C and {Cx} are; this contradicts I + y ∈ Ifin.

Proposition 4.12. For arbitrary matroids M1 and M2 it holds that

I(Mfin
1 ∨ Mfin

2 ) = I(Mfin
1 ∨ Mfin

2 )fin = I(M1 ∨ M2)
fin.

Proof. By Proposition 4.11, the matroids Mfin
1 and Mfin

2 are finitary and
therefore Mfin

1 ∨Mfin
2 is a finitary as well, by Proposition 4.1. This establishes

the first equality.
The second equality follows from the definition of finitarization provided

we show that the finite members of I(Mfin
1 ∨ Mfin

2 ) and I(M1 ∨ M2) are the
same.

Since I(M1) ⊆ I(Mfin
1 ) and I(M2) ⊆ I(Mfin

2 ) it holds that I(Mfin
1 ∨

Mfin
2 ) ⊇ I(M1 ∨ M2). On the other hand, a finite set I ∈ I(Mfin

1 ∨ Mfin
2 ) can

be written as I = I1 ∪ I2 with I1 ∈ I(Mfin
1 ) and I2 ∈ I(Mfin

2 ) finite. As I1 and
I2 are finite, I1 ∈ I(M1) and I2 ∈ I(M2), implying that I ∈ I(M1 ∨M2).
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With the above notation a matroid M is nearly finitary if each base of
Mfin contains a base of M such that their difference is finite. The following
is probably the most natural manner to construct nearly finitary matroids
(that are not finitary) from finitary matroids.

For a matroid M and an integer k ≥ 0, set M [k] := (E(M), I[k]), where

I[k] := {I ∈ I(M) | ∃J ∈ I(M) such that I ⊆ J and |J \ I| = k}.

Proposition 4.13. If rk(M) ≥ k, then M [k] is a matroid.

Proof. The axiom (I1) holds as rk(M) ≥ k; the axiom (I2) holds as it does in
M . For (I3) let I �, I ∈ I(M [k]) such that I � is maximal and I is not. There
is a set F � ⊆ E(M) \ I � of size k such that, in M , the set I � ∪ F � is not only
independent but, by maximality of I �, also a base. Similarly, there is a set
F ⊆ E(M) \ I of size k such that I ∪ F ∈ I(M).

We claim that I ∪F is non-maximal in I(M) for any such F . Suppose not
and I ∪ F is maximal for some F as above. By assumption, I is contained in
some larger set of I(M [k]). Hence there is a set F+ ⊆ E(M) \ I of size k + 1
such that I ∪ F+ is independent in M . Clearly (I ∪ F ) \ (I ∪ F+) = F \ F+

is finite, so Lemma 4.14 implies that
��F+ \ F

�� =
��(I ∪ F+) \ (I ∪ F )

�� ≤
��(I ∪ F ) \ (I ∪ F+)

�� =
��F \ F+

�� .

In particular, k + 1 = |F+| ≤ |F | = k, a contradiction.
Hence we can pick F such that F ∩ F � is maximal and, as I ∪ F is non-

maximal in I(M), apply (I3) in M to obtain a x ∈ (I � ∪ F �) \ (I ∪ F ) such
that (I ∪F )+x ∈ I(M). This means I +x ∈ I(M [k]). And x ∈ I � \ I follows,
as x /∈ F � by our choice of F .

To show (IM), let I ⊆ X ⊆ E(M) with I ∈ I(M [k]) be given. By (IM)
for M , there is a B ∈ I(M) which is maximal subject to I ⊆ B ⊆ X. We
may assume that F := B \ I has at most k elements; for otherwise there is a
superset I � ⊆ B of I such that |B \ I �| = k and it suffices to find a maximal
set containing I � ∈ I(M [k]) instead of I.

We claim that for any F+ ⊆ X \ I of size k + 1 the set I ∪ F+ is not in
I(M [k]). For a contradiction, suppose it is. Then in M |X, the set B = I ∪F
is a base and I ∪ F+ is independent and as (I ∪ F ) \ (I ∪ F+) ⊆ F \ F+ is
finite, Lemma 4.14 implies

��F+ \ F
�� =

��(I ∪ F+) \ (I ∪ F )
�� ≤

��(I ∪ F ) \ (I ∪ F+)
�� =

��F \ F+
�� .

This means k + 1 = |F+| ≤ |F | = k, a contradiction. So by successively
adding single elements of X \ I to I as long as the obtained set is still in
I(M [k]) we arrive at the wanted maximal element after at most k steps.
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We conclude this section with a proof of Theorem 1.2. To this end, we
shall require following two lemmas.

Lemma 4.14. Let M be a matroid and I, B ∈ I(M) with B maximal and
B \ I finite. Then, |I \ B| ≤ |B \ I|.

Proof. The proof is by induction on |B \ I|. For |B \ I| = 0 we have B ⊆ I
and hence B = I by maximality of B. Now suppose there is y ∈ B \ I. If
I + y ∈ I then by induction

|I \ B| = |(I + y) \ B| ≤ |B \ (I + y)| = |B \ I| − 1

and hence |I \ B| < |B \ I|. Otherwise there exists a unique circuit C of M
in I + y. Clearly C cannot be contained in B and therefore has an element
x ∈ I \ B. Then (I + y) − x is independent, so by induction

|I \ B| − 1 = |((I + y) − x) \ B| ≤ |B \ ((I + y) − x)| = |B \ I| − 1,

and hence |I \ B| ≤ |B \ I|.

Lemma 4.15. Let I ⊆ P(E) be a nearly finitary set system satisfying (I1),
(I2), and the following variant of (I3):

(*) For all I, J ∈ I and all y ∈ I \ J with J + y /∈ I there exists x ∈ J \ I
such that (J + y) − x ∈ I.

Then I satisfies (IM).

Proof. Let I ⊆ X ⊆ E with I ∈ I. As Ifin satisfies (IM) there is a set
Bfin ∈ Ifin which is maximal subject to I ⊆ Bfin ⊆ X and being in Ifin. As
I is nearly finitary, there is J ∈ I such that Bfin \ J is finite and we may
assume that J ⊆ X. Then, I \ J ⊆ Bfin \ J is finite so that we may choose a
J minimizing |I \ J |. If there is a y ∈ I \ J , then by (*) we have J + y ∈ I
or there is an x ∈ J \ I such that (J + y) − x ∈ I. Both outcomes give a set
containing more elements of I and hence contradicting the choice of J .

It remains to show that J can be extended to a maximal set B of I in X.
For any superset J � ∈ I of J , we have J � ∈ Ifin and Bfin \ J � is finite as it is
a subset of Bfin \ J . As Ifin is a matroid, Lemma 4.14 implies

|J � \ Bfin| ≤ |Bfin \ J �| ≤ |Bfin \ J |.

Hence, |J � \ J | ≤ 2|Bfin \ J | < ∞. Thus, we can greedily add elements of X
to J to obtain the wanted set B after finitely many steps.

Next, we prove Theorem 1.2.
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Proof of Theorem 1.2. By Proposition 4.4, in order to prove that M1 ∨ M2

is a matroid, it is sufficient to prove that I(M1 ∨ M2) satisfies (IM). By
Corollary 4.7 and Lemma 4.15 it remains to show that I(M1 ∨ M2) is nearly
finitary.

So let J ∈ I(M1 ∨ M2)
fin. By Proposition 4.12 we may assume that

J = J1 ∪ J2 with J1 ∈ I(Mfin
1 ) and J2 ∈ I(Mfin

2 ). By assumption there are
I1 ∈ I(M1) and I2 ∈ I(M2) such that J1 \ I1 and J2 \ I2 are finite. Then
I = I1 ∪ I2 ∈ I(M1 ∨ M2) and the assertion follows as J \ (I1 ∪ I2) ⊆
(J1 \ I1) ∪ (J2 \ I2) is finite.

4.3.1 Unions of non-nearly finitary matroids

In this section, we prove Proposition 1.3 asserting that a certain family of
non-nearly finitary matroids does not admit a union theorem.

A matroid N is non-nearly finitary provided it has a set I ∈ I(Nfin) with
the property that no finite subset of I meets all the necessarily infinite circuits
of N in I. If we additionally assume that there is one such I which contains
only countably many circuits, then there exists a finitary matroid M such
that I(M ∨ N) is not a matroid.

Proof of Proposition 1.3. For N and I as in Proposition 1.3 choose an enumer-
ation C1, C2, . . . of the circuits of N in I. We may assume that I =

�
n∈N Cn.

There exist countably many disjoint subsets Y1, Y2, . . . of I satisfying

1. |Yn| ≤ n for all n ∈ N; and

2. Yn ∩ Ci �= ∅ for all n ∈ N and all 1 ≤ i ≤ n.

We construct the above sets as follows. Suppose Y1, . . . , Yn have already
been defined. Let Yn+1 be a set of size at most n + 1 disjoint to each of
Y1, . . . , Yn and meeting the circuits C1, . . . , Cn+1; such exists as

�n
i=1 Yi is

finite and all circuits in I are infinite.
Let L = {l1, l2, . . .} be a countable set disjoint from E(N). For each n ∈ N

let Mn be the 1-uniform matroid on Yn ∪ {ln}, i.e. Mn := U1,Yn∪{ln}. Then,
M :=

�
n∈N Mn is a direct sum of finite matroids and hence finitary.

We contend that I ∈ I(M ∨ N) and that I(M ∨ N) violates (IM) for
I and X := I ∪ L. By construction, Yn contains some element dn of Cn,
for every n ∈ N. So that JM = {d1, d2, . . .} meets every circuit of N in I
and is independent in M . This means that JN := I \ JM ∈ I(N) and thus
I = JM ∪ JN ∈ I(M ∨ N).

It is now sufficient to show that a set J satisfying I ⊆ J ⊆ X is in
I(M ∨ N) if and only if it misses infinitely many elements L� ⊆ L. Suppose
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that J ∈ I(M ∨ N). There are sets JM ∈ I(M) and JN ∈ I(N) such that
J = JM ∪ JN . As D := I \ JN meets every circuit of N in I by independence
of JN , the set D is infinite. But I ⊆ J and hence D ⊆ JM . Let A be the set
of all integers n such that Yn ∩D �= ∅. As Yn is finite for every n ∈ N, the set
A must be infinite and so is L� := {ln | n ∈ A}. Since JM is independent in
M and any element of L� forms a circuit of M with some element of JM , we
have JM ∩ L� = ∅ and thus J ∩ L� = ∅ as no independent set of N meets L.

Suppose that there is a sequence i1 < i2 < . . . such that J is disjoint from
L� = {lin | n ∈ N}. We show that the superset X \ L� of J is in I(M ∨ N).
By construction, for every n ∈ N, the set Yin contains an elements dn of Cn.
Set D := {dn | n ∈ N}. Then D meets every circuit of N in I, so JN := I \ D
is independent in N . On the other hand, D contains exactly one element
of each Mn with n ∈ L�. So JM := (L \ L�) ∪ D ∈ I(M) and therefore
X \ L� = JM ∪ JN ∈ I(M ∨ N).

It is not known wether or not the proposition remains true if we drop the
requirement that there are only countable many circuits in I.

5 Base packing in co-finitary matroids
In this section, we prove Theorem 1.4, which is a base packing theorem for
co-finitary matroids.

Proof of Theorem 1.4. As the ‘only if’ direction is trivial, it remains to show
the ‘if’ direction. For a matroid N and natural numbers k, c put

I[N, k, c] := {X ⊆ E(N) | ∃I1, ..., Ik ∈ I(N) with gc(I1, ..., Ik) = X},

where gc(I1, ..., Ik) := {e : |{j : e ∈ Ij}| ≥ c}. The matroid M has k disjoint
spanning sets if and only if M∗ has k independent sets such that every element
of E is in at least k − 1 of those independent sets. Put another way, M has
k disjoint bases if and only if

I[M∗, k, k − 1] = P(E). (4)

As M∗ is finitary, I[M∗, k, k − 1] is finitary by an argument similar to
that in the proof of Lemma 4.9; here one may define

f : P(E)k → P(E); f(A1, ..., Ak) = gk−1(A1, ..., Ak),

and repeat the above argument.
Thus, it suffices to show that every finite set Y is in I[M∗, k, k − 1]. To

this end, it is sufficient to find k independent sets of M∗ such that every
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element of Y is in at least k − 1 of those; complements of which are M -
spanning sets S1, ..., Sk such that these are disjoint if restricted to Y . To this
end, we show that there are disjoint spanning sets S �

1, ..., S
�
k of M.Y and set

Si := S �
i ∪ (E − Y ). Since Theorem 1.4 is true for finite matroids [6], the

sets S �
1, ..., S

�
k exist if and only if |Z| ≥ k · rkM.Y (Y |Y − Z) for all Z ⊆ Y . As

|Z| ≥ k·rk(E|E−Z), by assumption, and as rk(E|E−Z) = rkM.Y (Y |Y −Z) [4,
Lemma 3.13], the assertion follows.

It might be worth noting that this proof easily extends to arbitrary finite
families of co-finitary matroids.

Finally, we use Proposition 4.1 (actually only the fact that (IM) is satisfied
for unions of finitary matroids), to derive a base covering result for finitary
matroids. The finite base covering theorem asserts that a finite matroid M can
be covered by k bases if and only if rk(X) ≥ |X|/k for every X ⊆ E(M) [7].

Corollary 5.1. A finitary matroid M can be covered by k independent sets
if and only if rkM(X) ≥ |X|/k for every finite X ⊆ E(M).

This claim is false if M is an infinite circuit, implying that this result is
best possible in the sense that M being finitary is necessary.

Proof. The ‘only if’ implication is trivial. Suppose then that each finite set
X ⊆ E(M) satisfies rkM(X) ≥ |X|/k and put N =

�k
i=1 M ; such is a

finitary matroid by Proposition 4.1. If N is the free matroid, the assertion
holds trivially. Suppose then that N is not the free matroid and consequently
contains a circuit C; such is finite as N is finitary. Hence, M |C cannot be
covered by k independent sets of M |C so that by the finite matroid covering
theorem [6, Theorem 12.3.12] there exists a finite set X ⊆ C such that
rkM |C(X) < |X|/k which clearly implies rkM(X) < |X|/k; a contradiction.
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Abstract

We show that the infinite matroid intersection conjecture of Nash-
Williams implies the infinite Menger theorem proved recently by Aha-
roni and Berger.

We prove that this conjecture is true whenever one matroid is nearly
finitary and the second is the dual of a nearly finitary matroid, where
the nearly finitary matroids form a superclass of the finitary matroids.

In particular, this proves the infinite matroid intersection conjecture
for finite-cycle matroids of 2-connected, locally finite graphs with only
a finite number of vertex-disjoint rays.

1 Introduction
The infinite Menger theorem1 was conjectured by Erdős in the 1960s and
proved recently by Aharoni and Berger [1]. It states that for any two sets
of vertices S and T in a connected graph, there is a set of vertex-disjoint S-
T -paths whose maximality is witnessed by an S-T -separator picking exactly
one vertex form each of these paths.

The complexity of the only known proof of this theorem and the fact that
the finite Menger theorem has a short matroidal proof, make it natural to
ask whether a matroidal proof of the infinite Menger theorem exists. In this
paper, we propose a way to approach this issue by proving that a certain

∗Research supported by the Minerva foundation.
1see Theorem 3.1 below.
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conjecture of Nash-Williams regarding infinite matroids implies the infinite
Menger theorem.

Recently, Bruhn, Diestel, Kriesell, Pendavingh and Wollan [5] found axioms
for infinite matroids in terms of independent sets, bases, circuits, closure and
(relative) rank. These axioms allow for duality of infinite matroids as known
from finite matroid theory, which settled an old problem of Rado. With these
new axioms it is possible now to look which theorems of finite matroid theory
have infinite analogues.

Here, we shall look at the matroid intersection theorem, which is a classical
result in finite matroid theory [9]. It asserts that the maximum size of a
common independent set of two matroids M1 and M2 on a common ground
set E is given by

min
X⊆E

rkM1(X) + rkM2(E \ X), (1)

where rkMi
denotes the rank function of the matroid Mi.

In this paper, we consider the following conjecture of Nash-Williams, which
first appeared in [2] and serves as an infinite analogue to the finite matroid
intersection theorem2.

Conjecture 1.1. [The infinite matroid intersection conjecture]
Any two matroids M1 and M2 on a common ground set E have a common
independent set I admitting a partition I = J1 ∪ J2 such that clM1(J1) ∪
clM2(J2) = E.

Here, clM (X) denotes the closure of a set X in a matroid M ; it consists of X
and the elements spanned by X in M (see [9]). Originally, Nash-Williams’s
Conjecture just concerned finitary matroids, those all of whose circuits are
finite.

1.1 Our results

Aharoni and Ziv [2] proved that Conjecture 1.1 implies the infinite analogues
of König’s and Hall’s theorems. We strengthen this by showing that this con-
jecture implies the celebrated infinite Menger theorem (Theorem 3.1 below),
which is known to imply the infinite analogues of König’s and Hall’s theorems
[7].

Theorem 1.2. The infinite matroid intersection conjecture for finitary ma-
troids implies the infinite Menger theorem.

2An alternative notion of infinite matroid intersection was recently proposed by Chris-
tian [6].
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In finite matroid theory, an exceptionally short proof of the matroid inter-
section theorem employing the well-known finite matroid union theorem [9, 10]
is known. The latter theorem asserts that for two finite matroids M1 = (E1, I1)
and M2 = (E2, I2) the set system

I(M1 ∨ M2) = {I1 ∪ I2 | I1 ∈ I1, I2 ∈ I2} (2)

forms the set of independent sets of their union matroid M1 ∨ M2.
In a previous paper [3, Proposition 1.1], we showed that for infinite ma-

troids M1 and M2, the set system I(M1 ∨ M2) is not necessarily a matroid.
This then raises the question of whether the traditional connection between
(infinite) matroid union and intersection still holds. In this paper, we prove
the following.

Theorem 1.3. If M1 and M2 are matroids on a common ground set E and
M1 ∨ M∗

2 is a matroid, then Conjecture 1.1 holds for M1 and M2.

Throughout, M∗ denotes the dual of a matroid M .
In [3] we show that the ‘largest’ class of matroids for which one can have

a union theorem is essentially a certain superclass of the finitary matroids
called the nearly finitary matroids (to be defined next). This, together with
Theorem 1.3, enables us to make additional progress on Conjecture 1.1, as
set out below.

Nearly finitary matroids are defined as follows [3]. For any matroid M ,
taking as circuits only the finite circuits of M defines a (finitary) matroid
with the same ground set as M . This matroid is called the finitarization of
M and denoted by Mfin.

It is not hard to show that every basis B of M extends to a basis Bfin

of Mfin, and conversely every basis Bfin of Mfin contains a basis B of M .
Whether or not Bfin \ B is finite will in general depend on the choices for B
and Bfin, but given a choice for one of the two, it will no longer depend on
the choice for the second one.

We call a matroid M nearly finitary if every base of its finitarization
contains a base of M such that their difference is finite.

Next, let us look at some examples of nearly finitary matroids. There
are three natural extensions to the notion of a finite graphic matroid in an
infinite context [5]; each with ground set E(G). The most studied one is the
finite-cycle matroid, denoted MFC(G), whose circuits are the finite cycles of
G. This is a finitary matroid, and hence is also nearly finitary.

The second extension is the algebraic-cycle matroid, denoted MA(G),
whose circuits are the finite cycles and double rays of G [5, 4]3.

3MA(G) is not necessarily a matroid for any G; see [8].
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Proposition 1.4. MA(G) is a nearly finitary matroid if and only if G has
only a finite number of vertex-disjoint rays.

The third extension is the topological-cycle matroid, denoted MC(G)4,
whose circuits are the topological cycles of G (Thus Mfin

C (G) = MFC(G) for
any finitely separable graph G; see Section 5.2 or [4] for definitions).

Proposition 1.5. Suppose that G is 2-connected and locally finite. Then,
MC(G) is a nearly finitary matroid if and only if G has only a finite number
of vertex-disjoint rays.

Having introduced nearly finitary matroids, we now state the result of [3].

Theorem 1.6. [Nearly finitary union theorem [3]]
If M1 and M2 are nearly finitary matroids, then M1 ∨M2 is a nearly finitary
matroid.

The following is a consequence of Theorem 1.6 and Theorem 1.3.

Corollary 1.7. Conjecture 1.1 holds for M1 and M2 whenever M1 is nearly
finitary and M2 is the dual of a nearly finitary matroid.

Aharoni and Ziv [2] proved that the infinite matroid intersection conjecture
is true whenever one matroid is finitary and the other is a countable direct
sum of finite-rank matroids. Note that Corollary 1.7 does not imply this result
of [2] nor is it implied by it.

Proposition 1.5 and Corollary 1.7 can be used to prove the following.

Corollary 1.8. Suppose that G and H are 2-connected, locally finite graphs
with only a finite number of vertex-disjoint rays. Then their finite-cycle ma-
troids MFC(G) and MFC(H) satisfy the intersection conjecture.

Similar results are true for the algebraic-cycle matroid, the topological-cycle
matroid, and their duals.

This paper is organized as follows. Additional notation, terminology, and
basic lemmas are given in Section 2. In Section 3 we prove Theorem 1.2. In
Section 4 we prove Theorem 1.3, and in Section 5 we prove Propositions 1.4
and 1.5 and Corollary 1.8.

4MC(G) is a matroid for any G; see [4].
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2 Preliminaries
Notation and terminology for graphs are that of [7], and for matroids that
of [9, 5].

Throughout, G always denotes a graph where V (G) and E(G) denote its
vertex and edge sets, respectively. We write M to denote a matroid and write
E(M), I(M), B(M), and C(M) to denote its ground set, independent sets,
bases, and circuits, respectively.

We review the definition of a matroid as this is given in [5]. A set system
I is the set of independent sets of a matroid if it satisfies the following
independence axioms :

(I1) ∅ ∈ I.

(I2) �I� = I, that is, I is closed under taking subsets.

(I3) Whenever I, I � ∈ I with I � maximal and I not maximal, there exists
an x ∈ I � \ I such that I + x ∈ I.

(IM) Whenever I ⊆ X ⊆ E and I ∈ I, the set {I � ∈ I | I ⊆ I � ⊆ X} has a
maximal element.

The following is a well-known fact for finite matroids (see, e.g., [9]), which
generalizes easily to infinite matroids.

Lemma 2.1. [5, Lemma 3.11]
Let M be a matroid. Then, |C ∩ C∗| �= 1, whenever C ∈ C(M) and C∗ ∈
C(M∗).

We end this section with the definition of exchange chains. For a set
X ⊆ E(M), an X-circuit is a circuit containing X. For sets I1 ∈ I(M1) and
I2 ∈ I(M2), and elements x ∈ I1 ∪ I2 and y ∈ E(M1) ∪ E(M2) (possibly
in I1 ∪ I2), a tuple Y = (y0 = y, . . . , yn = x) is called an even (I1, I2, y, x)-
exchange chain (or even (I1, I2, y, x)-chain) of length n if the following terms
are satisfied.

(X1) For an even i, there exists a {yi, yi+1}-circuit Ci ⊆ I1 + yi of M1.

(X2) For an odd i, there exists a {yi, yi+1}-circuit Ci ⊆ I2 + yi of M2.

If n ≥ 1, then (X1) and (X2) imply that y0 /∈ I1 and that, starting with
y1 ∈ I1 \ I2, the elements yi alternate between I1 \ I2 and I2 \ I1; the single
exception being yn which might lie in I1 ∩ I2.
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By an odd exchange chain (or odd chain) we mean an even chain with the
words ‘even’ and ‘odd’ interchanged in the definition. Consequently, we say
exchange chain (or chain) to refer to either of these notions. Furthermore,
a subchain of a chain is also a chain; that is, given an (I1, I2, y0, yn)-chain
(y0, . . . , yn), the tuple (yk, . . . , yl) is an (I1, I2, yk, yl)-chain for 0 ≤ k ≤ l ≤ n.

Lemma 2.2. [3, Lemma 4.4]
If there exists an (I1, I2, y, x)-chain, then (I + y) − x ∈ I(M1 ∨ M2) where
I := I1 ∪ I2. Moreover, if x ∈ I1 ∩ I2, then I + y ∈ I(M1 ∨ M2).

3 From infinite matroid intersection to the in-
finite Menger theorem

In this section, we prove Theorem 1.2; asserting that the infinite matroid
intersection conjecture implies the infinite Menger theorem.

Given a graph G and S, T ⊆ V (G), a set X ⊆ V (G) is called an S–T
separator if G−X contains no S–T path. The infinite Menger theorem reads
as follows.

Theorem 3.1 (Aharoni and Berger [1]). Let G be a connected graph. Then
for any S, T ⊆ V (G) there is a set L of vertex-disjoint S–T paths and an
S–T separator X ⊆ �

P∈L V (P ) satisfying |X ∩ V (P )| = 1 for each P ∈ L.

Infinite matroid union cannot be used in order to obtain the infinite Menger
Theorem directly via Theorem 1.3 and Theorem 1.2. Indeed, in [3, Proposition
1.1] we construct a finitary matroid M and a co-finitary matroid N such that
their union is not a matroid. Consequently, one cannot apply Theorem 1.3 to
the finitary matroids M and N∗ in order to obtain Conjecture 1.1 for them.
However, it is easy to see that Conjecture 1.1 is true for these particular M
and N∗.

Next, we prove Theorem 1.2.

Proof of Theorem 1.2. Let G be a connected graph and let S, T ⊆ V (G) be
as in Theorem 3.1. We may assume that G[S] and G[T ] are both connected.
Indeed, an S–T separator with G[S] and G[T ] connected gives rise to an
S–T separator when these are not necessarily connected. Abbreviate E(S) :=
E(G[S]) and E(T ) := E(G[T ]), let M be the finite-cycle matroid MF (G), and
put MS := M/E(S) − E(T ) and MT := M/E(T ) − E(S); all three matroids
are clearly finitary.
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Assuming that the infinite matroid intersection conjecture holds for MS

and MT , there exists a set I ∈ I(MS) ∩ I(MT ) which admits a partition
I = JS ∪ JT satisfying

clMS
(JS) ∪ clMT

(JT ) = E,

where E = E(MS) = E(MT ). We regard I as a subset of E(G).
For the components of G[I] we observe two useful properties. As I is

disjoint from E(S) and E(T ), the edges of a cycle in a component of G[I]
form a circuit in both, MS and MT , contradicting the independence of I in
either. Consequently,

the components of G[I] are trees. (3)

Next, an S-path5 or a T -path in a component of G[I] gives rise to a circuit
of MS or MT in I, respectively. Hence,

|V (C) ∩ S| ≤ 1 and |V (C) ∩ T | ≤ 1 for each component C of G[I]. (4)

Let C denote the components of G[I] meeting both of S and T . Then by
(3) and (4) each member of C contains a unique S–T path and we denote the
set of all these paths by L. Clearly, the paths in L are vertex-disjoint.

In what follows, we find a set X comprised of one vertex from each P ∈ L
to serve as the required S–T separator. To that end, we show that one may
alter the partition I = JS ∪ JT to yield a partition

I = KS ∪ KT satisfying clMS
(KS) ∪ clMT

(KT ) = E and (Y.1-4), (5)

where (Y.1-4) are as follows.

(Y.1) Each component C of G[I] contains a vertex of S ∪ T .

(Y.2) Each component C of G[I] meeting S but not T satisfies E(C) ⊆ KS.

(Y.3) Each component C of G[I] meeting T but not S satisfies E(C) ⊆ KT .

(Y.4) Each component C of G[I] meeting both, S and T , contains at most
one vertex which at the same time

(a) lies in S or is incident with an edge of KS, and

(b) lies in T or is incident with an edge of KT .
5A non-trivial path meeting G[S] exactly in its end vertices.
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Postponing the proof of (5), we first show how to deduce the existence of
the required S–T separator from (5). Define a pair of sets of vertices (VS, VT )
of V (G) by letting VS consist of those vertices contained in S or incident
with an edge of KS and defining VT in a similar manner. Then VS ∩ VT may
serve as the required S–T separator. To see this, we verify below that (VS, VT )
satisfies all of the terms (Z.1-4) stated next.

(Z.1) VS ∪ VT = V (G);

(Z.2) for every edge e of G either e ⊆ VS or e ⊆ VT ;

(Z.3) every vertex in VS ∩ VT lies on a path from L; and

(Z.4) every member of L meets VS ∩ VT at most once.

To see (Z.1), suppose v is a vertex not in S ∪T . As G is connected, such a
vertex is incident with some edge e /∈ E(T )∪E(S). The edge e is spanned by
KT or KS; say KT . Thus, KT + e contains a circle containing e or G[KT + e]
has a T -path containing e. In either case v is incident with an edge of KT

and thus in VT , as desired.
To see (Z.2), let e ∈ clMT

(KT )\KT ; so that KT +e has a circle containing
e or G[KT + e] has T -path containing e; in either case both end vertices of e
are in VT , as desired. The treatment of the case e ∈ clMS

(KS) is similar.
To see (Z.3), let v ∈ VS ∩VT ; such is in S or is incident with an edge of KS,

and in T or is incident with an edge in KT . Let C be the component of G[I]
containing v. By (Y.1-4), C ∈ C, i.e. it meets both, S and T and therefore
contains an S–T path P ∈ L. Recall that every edge of C is either in KS

or KT and consider the last vertex w of a maximal initial segment of P in
C − KT . Then w satisfies (Y.4a), as well as (Y.4b), implying v = w; so that
v lies on a path from L.

To see (Z.4), we restate (Y.4) in terms of VS and VT : each component of
C contains at most one vertex of VS ∩ VT . This clearly also holds for the path
from L which is contained in C.

It remains to prove (5). To this end, we show that any component C of
G[I] contains a vertex of S ∪ T . Suppose not. Let e be the first edge on a
V (C)–S path Q which exists by the connectedness of G. Then e /∈ I but
without loss of generality we may assume that e ∈ clMS

(JS). So in G[I] + e
there must be a cycle or an S-path. The latter implies that C contains a
vertex of S and the former means that Q was not internally disjoint to V (C),
yielding contradictions in both cases.

We define the sets KS and KT as follows. Let C be a component of G[I].

1. If C meets S but not T , then include its edges into KS.
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2. If C meets T but not S, then include its edges into KT .

3. Otherwise (C meets both of S and T ) there is a path P from L in
C. Denote by vC the last vertex of a maximal initial segment of P in
C −JT . As C is a tree, each component C � of C − vC is a tree and there
is a unique edge e between vC and C �. For every such component C �,
include the edges of C � + e in KS if e ∈ JS and in KT otherwise, i.e. if
e ∈ JT .

Note that, by choice of vC , either vC is the last vertex of P or the next edge
of P belongs to JT . This ensures that KS and KT satisfy (Y.4). Moreover,
they form a partition of I which satisfies (Y.1-3) by construction. It remains
to show that clMS

(KS) ∪ clMT
(KT ) = E.

As KS ∪ KT = I, it suffices to show that any e ∈ E \ I is spanned by KS

in MS or by KT in MT . Suppose e ∈ clMS
(JS), i.e. JS + e contains a circuit

of MS. Hence, G[JS] either contains an e-path R or two disjoint e–S paths
R1 and R2. We show that E(R) ⊆ KS or E(R) ⊆ KT in the former case and
E(R1) ∪ E(R2) ⊆ KS in the latter.

The path R is contained in some component C of G[I]. Suppose C ∈ C
and vC is an inner vertex of R. By assumption, the edges preceding and
succeeding vC on R are both in JS and hence the edges of both components
of C − vC which are met by R plus their edges to vC got included into KS,
showing E(R) ⊆ KS. Otherwise C /∈ C or C ∈ C but vC is no inner vertex of
R. In both cases the whole set E(R) got included into KS or KT .

We apply the same argument to R1 and R2 except for one difference. If
C /∈ C or C ∈ C but vC is no inner vertex of Ri, then E(Ri) got included into
KS as Ri meets S.

Although the definitions of KS and KT are not symmetrical, a similar
argument shows e ∈ clMS

(KS) ∪ clMT
(KT ) if e is spanned by JT in MT .

Note that the above proof requires only that Conjecture 1.1 holds for
finite-cycle matroids.

4 From infinite matroid union to infinite ma-
troid intersection

In this section, we prove Theorem 1.3.

Proof of Theorem 1.3. Our starting point is the well-known proof from finite
matroid theory that matroid union implies a solution to the matroid intersec-
tion problem. With that said, let B1 ∪ B∗

2 ∈ B(M1 ∨ M∗
2 ) where B1 ∈ B(M1)
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and B∗
2 ∈ B(M∗

2 ), and let B2 = E \ B∗
2 ∈ B(M2). Then, put I = B1 ∩B2 and

note that I ∈ I(M1) ∩ I(M2). We show that I admits the required partition.
For an element x /∈ Bi, i = 1, 2, we write Ci(x) to denote the fundamental

circuit of x into Bi in Mi. For an element x /∈ B∗
2 , we write C∗

2(x) to denote
the fundamental circuit of x into B∗

2 in M∗
2 . Put X = B1 ∩ B∗

2 , Y = B2 \ I,
and Z = B∗

2 \ X, see Figure 1.

B1

B2 I

X Z

Y

B∗
2

red

blue blue is spanned by I in M2

red is spanned by I in M1

Figure 1: The sets X, Y , and Z and their colorings.

Observe that

clM1(I) ∪ clM2(I) = E = I ∪ X ∪ Y ∪ Z. (6)

To see (6), note first that
X ⊆ clM2(I). (7)

Clearly, no member of X is spanned by I in M1. Assume then that x ∈ X is
not spanned by I in M2 so that there exists a y ∈ C2(x)∩Y . Then, x ∈ C∗

2 (y),
by Lemma 2.1. Consequently, B1 ∪ B∗

2 � B1 ∪ (B∗
2 + y − x) ∈ I(M1 ∨ M∗

2 );
contradiction to the maximality of B1 ∪ B∗

2 , implying (7).
By a similar argument, it holds that

Y ⊆ clM1(I). (8)

To see that
Z ⊆ clM1(I) ∪ clM2(I), (9)

assume, towards contradiction, that some z ∈ Z is not spanned by I neither in
M1 nor in M2 so that there exist an x ∈ C1(z)∩X and a y ∈ C2(z)∩Y . Then
B1−x+z and B2−y+z are bases and thus B1∪B∗

2 � (B1−x+z)∪(B∗
2−z+y);

contradiction to the maximality of B1 ∪ B∗
2 . Assertion (6) is proved.

The problem of finding a suitable partition I = J1 ∪ J2 can be phrased
as a (directed) graph coloring problem. By (6), each x ∈ E \ I satisfies
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C1(x) − x ⊆ I or C2(x) − x ⊆ I. Define G = (V, E) to be the directed graph
whose vertex set is V = E \ I and whose edge set is given by

E = {(x, y) : C1(x) ∩ C2(y) ∩ I �= ∅}. (10)

Recall that a source is a vertex with no incoming edges and a sink is a vertex
with no outgoing edges. As C1(x) does not exist for any x ∈ X and C2(y)
does not exist for any y ∈ Y , it follows that

the members of X are sinks and those of Y are sources in G. (11)

A 2-coloring of the vertices of G, by say blue and red, is called divisive if it
satisfies the following:

(D.1) I spans all the blue elements in M1;

(D.2) I spans all the red elements in M2; and

(D.3) J1∩J2 = ∅ where J1 := (
�

x blue C1(x))∩ I and J2 := (
�

x red C2(x))∩ I.

Clearly, if G has a divisive coloring, then I admits the required partition.
We show then that G admits a divisive coloring. Color with blue all the

sources. These are the vertices that can only be spanned by I in M1. Color
with red all the sinks, that is, all the vertices that can only be spanned by I
in M2. This defines a partial coloring of G in which all members of X are red
and those of Y are blue. Such a partial coloring can clearly be extended into
a divisive coloring of G provided that

G has no (y, x)-path with y blue and x red. (12)

Indeed, given (12) and (11), color all vertices reachable by a path from a
blue vertex with the color blue, color all vertices from which a red vertex is
reachable by a path with red, and color all remaining vertices with, say, blue.
The resulting coloring is divisive.

It remains to prove (12). We show that the existence of a path as in (12)
contradicts the following property:
Suppose that M and N are matroids and B ∪ B� is maximal in I(M ∨ N).
Let y /∈ B ∪ B� and let x ∈ B ∩ B�. Then, (by Lemma 2.2)

there exists no (B, B�, y, x)-chain; (13)

(in fact, the contradiction in the proofs of (7),(8), and (9) arose from simple
instances of such forbidden chains).
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Assume, towards contradiction, that P is a (y, x)-path with y blue and x
red; the intermediate vertices of such a path are not colored since they are not
a sink nor a source. In what follows we use P to construct a (B1, B

∗
2 , y0, y2|P |)-

chain (y0, y1, . . . , y2|P |) such that y0 ∈ Y , y2|P | ∈ X, all odd indexed members
of the chain are in V (P )∩Z, and all even indexed elements of the chain other
than y0 and y2|P | are in I. Existence of such a chain would contradict (13).

Definition of y0. As y is pre-colored blue then either y ∈ Y or C2(y)∩Y �= ∅.
In the former case set y0 = y and in the latter choose y0 ∈ C2(y) ∩ Y .

Definition of y2|P |. In a similar manner, x is pre-colored red since either
x ∈ X or C1(x) ∩ X �= ∅. In the former case, set y2|P | = x and in the latter
case choose y2|P | ∈ C1(x) ∩ X.

The remainder of the chain. Enumerate V (P ) ∩ Z = {y1, y3, . . . , y2|P |−1}
where the enumeration is with respect to the order of the vertices defined by P .
Next, for an edge (y2i−1, y2i+1) ∈ E(P ), let y2i ∈ C1(y2i−1)∩C2(y2i+1)∩I; such
exists by the assumption that (y2i−1, y2i+1) ∈ E. As y2i+1 ∈ C∗

2 (y2i) for all rele-
vant i, by Lemma 2.1, the sequence (y0, y1, y2, . . . , y2|P |) is a (B1, B

∗
2 , y0, y2|P |)-

chain in I(M1 ∨ M∗
2 ).

This completes our proof of Theorem 1.3.

Note that in the above proof, we do not use the assumption that M1∨M∗
2

is a matroid; in fact, we only need that I(M1 ∨ M∗
2 ) has a maximal element.

5 The graphic nearly finitary matroids
In this section we prove Propositions 1.4 and 1.5 yielding a characterization
of the graphic nearly finitary matroids.

For a connected graph G, a maximal set of edges containing no finite
cycles is called an ordinary spanning tree. A maximal set of edges containing
no finite cycles nor any double ray is called an algebraic spanning tree. These
are the bases of MF (G) and MA(G), respectively. We postpone the discussion
about MC(G) to Section 5.2.

To prove Propositions 1.4 and 1.5, we require the following theorem of
Halin [7, Theorem 8.2.5].

Theorem 5.1 (Halin 1965). If an infinite graph G contains k disjoint rays
for every k ∈ N, then G contains infinitely many disjoint rays.
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5.1 The nearly finitary algebraic-cycle matroids

The purpose of this subsection is to prove Proposition 1.4.

Proof of Proposition 1.4. Suppose that G has k disjoint rays for every integer
k; so that G has a set R of infinitely many disjoint rays by Theorem 5.1. We
show that MA(G) is not nearly finitary.

The edge set of
�R =

�
R∈R R is independent in MA(G)fin as it induces

no finite cycle of G. Therefore there is a base of MA(G)fin containing it; such
induces an ordinary spanning tree, say T , of G. We show that

T − F contains a double ray for any finite edge set F ⊆ E(T ). (14)

This implies that E(T ) \ I is infinite for every independent set I of MA(G)
and hence MA(G) is not nearly finitary. To see (14), note that T − F has
|F |+1 components for any finite edge set F ⊆ E(T ) as T is a tree and succes-
sively removing edges always splits one component into two. So one of these
components contains infinitely many disjoint rays from R and consequently
a double ray.

Suppose next, that G has at most k disjoint rays for some integer k and
let T be an ordinary spanning tree of G, that is, E(T ) is maximal in MA(G)fin.
To prove that MA(G) is nearly finitary, we need to find a finite set F ⊆ E(T )
such that E(T )\F is independent in MA(G), i.e. it induces no double ray of G.
Let R be a maximal set of disjoint rays in T ; such exists by assumption and
|R| ≤ k. As T is a tree and the rays of R are vertex-disjoint, it is easy to see
that T contains a set F of |R|− 1 edges such that T −F has |R| components
which each contain one ray of R. By maximality of R no component of T −F
contains two disjoint rays, or equivalently, a double ray.

5.2 The nearly finitary topological-cycle matroids

In this section we prove Proposition 1.5 that characterizes the nearly finitary
topological-cycle matroids. Prior to that, we first define these matroids. To
that end we shall require some additional notation and terminology on which
more details can be found in [4].

An end of G is an equivalence class of rays, where two rays are equivalent if
they cannot be separated by a finite edge set. In particular, two rays meeting
infinitely often are equivalent. Let the degree of an end ω be the size of a
maximal set of vertex-disjoint rays belonging to ω, which is well-defined [7].
We say that a double ray belongs to an end if the two rays which arise from
the removal of one edge from the double ray belong to that end; this does
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not depend on the choice of the edge. Such a double ray is an example of a
topological cycle6

For a graph G the topological-cycle matroid of G, namely MC(G), has E(G)
as its ground set and its set of circuits consists of the finite and topological
cycles. In fact, every infinite circuit of MC(G) induces at least one double ray;
provided that G is locally finite [7].

A graph G has only finitely many disjoint rays if and only if G has only
finitely many ends, each with finite degree. Also, note that

every end of a 2-connected locally finite graph has degree at least 2. (15)

Indeed, applying Menger’s theorem inductively, it is easy to construct in any
k-connected graph for any end ω a set of k disjoint rays of ω.

Now we are in a position to start the proof of Proposition 1.5.

Proof of Proposition 1.5. If G has only a finite number of vertex-disjoint rays
then MA(G) is nearly finitary by Proposition 1.4. Since MA(G)fin = MC(G)fin

and I(MA(G)) ⊆ I(MC(G)), we can conclude that MC(G) is nearly finitary
as well.

Now, suppose that G contains k vertex-disjoint rays for every k ∈ N. If G
has an end ω of infinite degree, then there is an infinite set R of vertex-disjoint
rays belonging to ω. As any double ray containing two rays of R forms a
circuit of MC(G), the argument from the proof of Proposition 1.4 shows that
MC(G) is not nearly finitary.

Assume then that G has no end of infinite degree. There are infinitely
many disjoint rays, by Theorem 5.1. Hence, there is a countable set of ends
Ω = {ω1, ω2, . . .}.

We inductively construct a set R of infinitely many vertex-disjoint double
rays, one belonging to each end of Ω. Suppose that for any integer n ≥ 0
we have constructed a set Rn of n disjoint double rays, one belonging to
each of the ends ω1, . . . , ωn. Different ends can be separated by finitely many
vertices so there is a finite set S of vertices such that

�Rn has no vertex in
the component C of G − S which contains ωn+1. Since ωn+1 has degree 2 by
(15), there are two disjoint rays from ωn+1 in C an thus also a double ray D
belonging to ωn+1. Set Rn+1 := Rn ∪ {D} and R :=

�
n∈N Rn.

As
�R contains no finite cycle of G, it can be extended to an ordinary

spanning tree of G. Removing finitely many edges from this tree clearly leaves
an element of R intact. Hence, the edge set of the resulting graph still contains
a circuit of MC(G). Thus, MC(G) is not nearly finitary in this case as well.

6Formally, the topological cycles of G are those subgraphs of G which are homeomorphic
images of S1 in the Freudenthal compactification |G| of G. However, the given example is
the only type of topological cycle which shall be needed for the proof.
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In the following we shall propose a possible common generalization of
Propositions 1.4 and 1.5 to all infinite matroids. We call a matroid M k-
nearly finitary if every base of its finitarization contains a base of M such
that their difference has size at most k. Note that saying ‘at most k’ is not
equivalent to saying ‘equal to k’, consider for example the algebraic-cycle
matroid of the infinite ladder. In terms of this new definition, Propositions
1.4 and 1.5 both state for a certain class of infinite matroids that each member
of this class is k-nearly finitary for some k. In fact, for all known examples
of nearly finitary matroids, there is such a k. This raises the following open
question.

Question 5.2. Is every nearly finitary matroid k-nearly finitary for some k?

5.3 Graphic matroids and the intersection conjecture

By Corollary 1.7, the intersection conjecture is true for MC(G) and MFC(H)
for any two graphs G and H since the first is co-finitary and the second is
finitary. Using also Proposition 1.5, we obtain the following.

Corollary 5.3. Suppose that G and H are 2-connected, locally finite graphs
with only a finite number of vertex-disjoint rays. Then, MC(G) and MC(H)
satisfy the intersection conjecture.

Using Proposition 1.4 instead of Proposition 1.5, we obtain the following.

Corollary 5.4. Suppose that G and H are graphs with only a finite number
of vertex-disjoint rays. Then, MA(G) and MA(H) satisfy the intersection
conjecture if both are matroids.

With a little more work, the same is also true for MFC(G), see Corol-
lary 1.8.

Proof of Corollary 1.8. First we show that (((MC(G)fin)∗)fin)∗ = MC(G) if G
is locally finite. Indeed, then MC(G)fin = MFC(G), MFC(G)∗ is the matroids
whose circuits are the finite and infinite bonds of G, and its finitarization has
as its circuits the finite bonds of G. And the dual of this matroid is MC(G),
see [5] for example.

Having showed that (((MC(G)fin)∗)fin)∗ = MC(G) if G is locally finite,
we next show that if MC(G) is nearly finitary, then so is MFC(G)∗. For
this let B be a base of MFC(G)∗ and B� be a base of (MFC(G)∗)fin. Then
B� \ B = (E \ B) \ (E \ B�). Now E \ B is a base of MFC(G) = MC(G)fin

and by the above E \ B� is a base of MC(G). Since MC(G) is nearly finitary,
B� \ B is finite, yielding that MFC(G)∗ is nearly finitary.
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As MFC(G)∗ is nearly finitary and MFC(H) is finitary, MFC(H) and
MFC(G) satisfy the intersection conjecture by Corollary 1.7.

A similar argument shows that if G and H are are 2-connected, locally
finite graphs with only a finite number of vertex-disjoint rays, then one can
also prove that MFC(G)∗ and MFC(H)∗ satisfy the intersection conjecture.
Similar results are true for MC(G)∗ or MA(G)∗ in place of MFC(G)∗.
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APPENDICES

Summary
This cumulative dissertation consists of the three papers, “Linkages in Large
Graphs of Bounded Tree-Width” (chapter 1), “Infinite matroid union” (chap-
ter 2), and “On the intersection of infinite matroids” (chapter 3), that all
belong to the area of discrete mathematics and involve very large or infinite
structures.

The smallest known function f such that every f(k)-connected graph is k-
linked is f(k) = 10k as shown by Thomas and Wollan in 2005. In “Linkages in
Large Graphs of Bounded Tree-Width” we show that for all positive integers k
and w there is an integer N such that every (2k + 3)-connected graph G of
tree-width less than w on at least N vertices is k-linked.

The papers “Infinite matroid union” and “On the intersection of infinite
matroids” extend the notion of a union of two finite matroids to infinite
matroids and apply the derived union theorem.

In the former paper, we show that the union of two infinite matroids need
not be a matroid. We establish a union theorem for a superclass of the finitary
matroids (matroids with no infinite cycle), called the nearly finitary matroids
and show that for every matroid that is not nearly finitary and satisfies a
certain countability condition there is a finitary matroid such that the union
of the two is not a matroid. We use the union theorem for finitary matroids
to obtain base covering and base packing results for finitary and co-finitary
matroids, respectively.

In the latter paper, we show that Nash-Williams’ infinite matroid inter-
section conjecture implies the infinite Menger theorem. We also establish a
link between our union theorem and Nash-Williams’ conjecture by the use of
exchange chains, a technique that we also used in the former paper to show
that any union of two matroids satisfies the independence axiom (I3). Finally,
we explore the implications of the matroidal framework developed in both
papers for cycle matroids of graphs.
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APPENDICES

Zusammenfassung
Diese kumulative Dissertation besteht aus drei Arbeiten, „Linkages in Large
Graphs of Bounded Tree-Width“ (Kapitel 1), „Infinite matroid union“ (Kapi-
tel 2) und „On the intersection of infinite matroids“ (Kapitel 3), die alle zum
Gebiet der diskreten Mathematik zu zählen sind und sich mit sehr großen
oder unendlichen Strukturen beschäftigen.

Die kleinste bekannte Funktion f , so dass jeder f(k)-zusammenhängende
Graph k-verbunden ist, ist f(k) = 10k und wurde 2005 von Thomas und
Wollan gefunden. In „Linkages in Large Graphs of Bounded Tree-Width“
zeigen wir, dass es für alle natürlichen Zahlen k und w eine natürliche Zahl N
gibt, so dass jeder (2k + 3)-zusammenhängende Graph G der Baumweite
kleiner w auf mindestens N Ecken k-verbunden ist.

Die Arbeiten „Infinite matroid union“ und „On the intersection of infinite
matroids“ erweitern den Begriff der Vereinigung zweier endlicher Matroide auf
unendliche Matroide und wenden den dafür hergeleiteten Vereinigungssatz
an.

In der ersten Matroid-Arbeit zeigen wir, dass die Vereinigung zweier unend-
licher Matroide kein Matroid sein muss. Wir beweisen einen Vereinigungssatz
für eine Oberklasse der finitären Matroide (solche ohne unendlichen Kreis), die
der fast finitären Matroide, und konstruieren für jedes Matriod, das nicht fast
finitär ist und einer gewissen Abzählbarkeitsbedingung genügt, ein finitäres
Matroid, so dass die Vereinigung der beiden kein Matroid ist. Mit dem Ver-
einigungssatz für finitäre Matroide zeigen wir einen Basisüberdeckungs-Satz
für finitäre und einen Basispackungs-Satz für co-finitäre Matroide.

In der zweiten Matroid-Arbeit leiten wir den unendlichen Satz von Men-
ger aus Nash-Williams’ Schnitt-Vermutung für unendliche Matroide her. Wir
finden außerdem eine Verbindung zwischen unserem Vereinigungssatz und
Nash-Williams’ Vermutung durch die Anwendung von Austauschketten, ei-
ner Technik, die wir in unserer ersten Matroid-Arbeit eingeführt haben, um
nachzuweisen, dass die Vereinigung zweier Matroide stets dem Unabhängig-
keitsaxiom (I3) genügt. Schlussendlich untersuchen wir die Folgen der in
beiden Arbeiten entwickelten Resultate für Kreismatroide von Graphen.
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Die Entwicklung der Linkage-Arbeit

Die Entwicklung der Arbeit „Linkages in Large Graphs of Bounded Tree-
Width“ gliedert sich zeitlich in drei Abschnitte.

1. Das Projekt wird zunächst von Ken-ichi Kawarabayashi, Theodor Mül-
ler und Paul Wollan in Tokio im September 2009 bearbeitet. Hier wird
die grundlegende Beweisstrategie entwickelt. Das allgemeine Linkage-
Problem soll auf ein Linkage-Problem in einem Graphen mit einer langen
Wegzerlegung zurückgeführt werden. Das Umleiten der Wege wird kom-
binatorisch über ein Token-Game beschrieben. Mit Hilfe der Resultate
von Robertson und Seymour zu rural societies (cf. Theorem 6.1) sollen
Kreuze in Brücken zwischen Fundamentalwegen gefunden werden, um
die Brückenkonfiguration zur Anwendung des Token-Games zu verbes-
sern. Es wird erwartet, dass das Token-Game nur in einfachen Fällen
betrachtet werden muss (z.B. dass der Hilfsgraph ein Stern ist). Es gibt
die Hoffnung, dass ein Zusammenhang von 2k+2 ausreicht. Technische
Details werden nur oberflächlich diskutiert, da erwartet wird, dass die
Umsetzung an vielen Stellen analog zu anderen Resultaten möglich sei
(z.B. lange Wegesysteme wie in [1]; Vortex verdichten wie in [2]).

2. Von Oktober 2009 bis August 2011 arbeitet Theodor Müller in Ham-
burg allein weiter. In dieser Zeit fand eine tiefe technische Analyse
der Beweisstrategie statt. Dabei offenbaren sich eine Reihe von größe-
ren technischen und konzeptionellen Problemen. Ergebnis dieser Arbeit
sind Lösungskriterien für das Token-Game. Dabei werden auch triviale
Fundamentalwege berücksichtigt, die zuvor zu Schwierigkeiten geführt
haben. Vorläufer der Begriffe rich und rich block werden entwickelt.
Das Verdichten eines solchen Blocks um die Brückenkonfiguration zu
verbessern wird für den Fall gelöst, dass der Block nur eine Artikulation
des Hilfsgraphen enthält. Es zeigt sich, dass die Beweismethode einen
Zusammenhang von 2k + 3 erfordert.

3. Im August 2011 kommen Jan-Oliver Fröhlich und Julian Pott zum Pro-
jekt hinzu. Theodor Müller begleitet das Projekt ab diesem Zeitpunkt
im Hintergrund und beteiligt sich dann, wenn Probleme auftreten. Der
Begriff einer stable regular decomposition wird entwickelt. Die Verdich-
tung eines Blocks mit beliebig vielen Artikulationen wird gelöst. Das
Token-Game wird in seiner endgültigen Fassung beschrieben. Die ver-
schiedenen Beweisteile werden organisiert und formalisiert, die dazu
benötigten Notationen werden entwickelt und vereinheitlicht. Die enge
Verstrickung zwischen den verschiedenen Beweisteilen führt dazu, dass
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selbst kleine notwendige technische Änderungen Auswirkungen auf den
gesamten Beweis haben, sodass Definitionen und Notationen mehrfach
vollständig überarbeitet werden müssen. So wird die endgültige Defi-
nition von rich erst im November 2013 gefunden. Die Ausarbeitung
von technischen Details (z.B. Lemmas 6.4 und 6.5) nimmt viel Zeit in
Anspruch. Sowohl konzeptionelle als auch technische Probleme werden
häufig zu dritt gemeinsam an der Tafel bearbeitet. Die letztendliche Aus-
formulierung des Beweises wird von Jan-Oliver Fröhlich vorgenommen.
Viele der dabei auftretenden technischen Problemen und Detailfragen
werden gemeinsam geklärt. Die Ausarbeitung des Beweises kommt im
Februar 2014 zum Abschluss. Im März 2014 verfasst Paul Wollan die
Abschnitte 1 und 2 der Arbeit.

Literatur

[1] T. Böhme, K. Kawarabayashi, J. Maharry und B. Mohar. Linear Connec-
tivity Forces Large Complete Bipartite Minors. J. Combin. Theory B 99
(2009), 557–582.

[2] R. Diestel, K. Kawarabayashi, T. Müller und P. Wollan. On the exclu-
ded minor structure theorem for graphs of large tree-width. J. Combin.
Theory B 102 (2012), 1189–1210.

Jan-Oliver Fröhlich, Theodor Müller, Julian Pott
Hamburg, 31.03.2014

APPENDICES

109



Jan-Oliver Fröhlich

Research Interests
graph minors, infinite graphs, infinite matroids

Current Occupation
since 2014 postdoc with P. Wollan at Sapienza University of Rome

Education
2014 PhD in Mathematics, University of Hamburg, Hamburg, Germany.
2009 Diploma in Mathematics, University of Hamburg, Hamburg, Germany.
2008 Certificate of Advanced Study in Mathematics, University of Cambridge,

Cambridge, United Kingdom.

Publications
Linkages in Large Graphs of Unbounded Tree-Width, in preparation,
with K. Kawarabayashi, T. Müller, J. Pott, and P. Wollan.

2014 Linkages in Large Graphs of Bounded Tree-Width, preprint,
with K. Kawarabayashi, T. Müller, J. Pott, and P. Wollan,
http://arxiv.org/abs/1402.5549.

2011 On the intersection of infinite matroids, submitted, with E. Aigner-Horev
and J. Carmesin, http://arxiv.org/abs/1111.0606.

2011 Infinite matroid union, submitted, with E. Aigner-Horev and J. Carmesin,
http://arxiv.org/abs/1111.0602.

2011 Linear connectivity forces large complete bipartite minors: An alter-
native approach, J. Combin. Theory Ser. B, 101 (2011), 502–508, with
T. Müller.

Talks
2011 Elgersburg Workshop 2011, Elgersburg, Germany.

Title: Taming the apex set

Scholarships
2006–2009 scholar of the Studienstiftung des deutschen Volkes

April 1, 2014

110


	Linkages in Large Graphs of Bounded Tree-Width
	Introduction
	Outline
	Stable decompositions
	Token movements
	Relinkages
	Rural societies
	Constructing a linkage
	Discussion
	References

	Infinite matroid union
	Introduction
	Preliminaries
	The union of arbitrary infinite matroids
	Matroid union
	Base packing in co-finitary matroids
	References

	On the intersection of infinite matroids
	Introduction
	Preliminaries
	From infinite matroid intersection to the infinite Menger theorem
	From infinite matroid union to infinite matroid intersection
	The graphic nearly finitary matroids
	References

	Appendices
	Summary
	Zusammenfassung
	Die Entwicklung der Linkage-Arbeit
	Academic CV


