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Zusammenfassung

Die im Zuge dieser Doktorarbeit angefertigten Studien sollen zu einem besseren Verständnis
des Einflusses ageostrophischer Prozesse auf die Ozeandynamik beitragen. Dazu werden
drei unterschiedliche Fallstudien betrachtet – die großskalige Zirkulation, durch Wirbel
induzierte Vermischungsprozesse innerhalb der Deckschicht des Ozeans sowie die Rolle
ageostrophischer Dynamik hinsichtlich der Ermöglichung eines direkten Weges zur En-
ergiedissipation. Des Weiteren wird untersucht, in wie weit es möglich ist, die komplexe
ageostrophische Dynamik mittels Parametrisierungen zu vereinfachen.

In der ersten Fallstudie werden zonal gemittelte Modelle der großskaligen meridionalen
Umwelzbewegung untersucht. Während die Dynamik im Inneren des Ozeans mittels einer
geostrophischen Balance beschrieben werden kann, sind für eine korrekte Beschreibung des
westlichen Randstromes ageostrophische Prozesse zu berücksichtigen. Hinsichtlich zonal
gemittelter Modelle ist es von entscheidender Bedeutung, dass beide dynamischen Regime,
sowohl der innere Ozean als auch der westliche Randstrom, angemessen repräsentiert
werden. Es wird gezeigt, dass Modelle, die keine angemessene Berücksichtigung beider
Regime beinhalten, dynamische Inkonsistenzen aufweisen. In dieser Arbeit wird daher
eine neue Parameterisierung für den zonal gemittelten Transport entwickelt, in der beide
dynamischen Regime berücksichtigt werden und die daher keine dynamischen Inkonsis-
tenzen aufweist. Die dynamische Konsistenz der neuen Parametrisierung kann aus einer
guten Übereinstimmung zwischen einem zonal aufgelösten und dem neu entwickelten zonal
gemittelten Model geschlossen werden.

Die zweite Fallstudie beschäftigt sich mit der Vermischung von Wirbeln innerhalb der
Deckschicht des Ozeans. Eine schwache Stratifizierung der Deckschicht hat zur Folge,
dass ageostrophische Prozesse innerhalb der Deckschicht eine große Rolle spielen. Zwei
Parametrisierungen werden untersucht, die explizit diese ageostrophischen Prozesse berück-
sichtigen. Die erste Parametrisierung basiert auf einer linearen Stabilitätsanalyse, während
der zweiten eine Skalierung der potentiellen Energiebilanz zu Grunde liegt. Die Fähigkeit
beider Parametrisierungen, den Vermischungseffekt dieser Wirbel zu diagnostizieren wird
mittels numerischer Simulationen für eine Vielzahl verschiedener dynamischer Bedingungen
untersucht. Ein wichtiges Resultat dieser Untersuchungen ist, dass sich die parametrisierten
Wirbelflüsse im Mittel nicht weniger als um einen Faktor zwei von den diagnostizierten
Wirbelflüssen unterscheiden. Für ein Szenario einer sich im Gleichgewicht befindlichen
Strömung schneidet dabei die Parametrisierung, die auf der linearen Stabilitätsanalyse
basiert, ein wenig besser ab. Im Gegensatz dazu schneidet die Parametrisierung, die auf
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der Skalierung der potentiellen Energiebilanz basiert, in einem Szenario einer sich restrat-
ifizierenden Dichtefront besser ab. In beiden Szenarien wird die vertikale Struktur der
Wirbelflüsse besser von der auf der linearen Stabilitätsanalyse basierenden Parametrisier-
ung wiedergegeben.

Die dritte Fallstudie untersucht den Einfluss von ageostrophischer Dynamik auf die
kinetische Energiedissipation. Numerische Simulationen für eine Vielzahl von dynamis-
chen Bedingungen, charakterisiert durch ihre Richardson-Zahl, werden benutzt, um den
Energiefluss im Wellenzahlraum zu diagnostizieren. Die Untersuchungen zeigen, dass in der
Gegenwart quasi-geostrophischer Dynamik ein Fluss der kinetischen Energie hin zu großen
Skalen erfolgt. Im Gegensatz bewirken ageostrophische Prozesse einen kinetischen En-
ergiefluss zu kleineren Skalen. Horizontal divergente Geschwindigkeiten, welche sich unter
ageostrophischen Bedingungen entwickeln, sind verantwortlich für diesen Fluss zu kleineren
Skalen. Eine wichtige Konsequenz ist, dass die Energiedissipation auf kleinen Skalen in der
Gegenwart von ageostrophischen Prozessen stärker ist. Um den Effekt der ageostrophis-
chen Dynamik auf die Energiedissipation zu quantifizieren, wird die Abhängigkeit der En-
ergiedissipation von der Richardson-Zahl untersucht und ein Potenzgesetz abgeschätzt,
welches die Abhängigkeit der kleinskaligen Energiedissipation von der Richardson-Zahl
beschreibt.
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Abstract

This thesis aims to provide a better understanding of the role of ageostrophic processes in
ocean dynamics by analyzing three different case studies – the large-scale circulation, the
mixing of eddies in the upper ocean and the ability of ageostrophic dynamics to feature
a direct route to dissipation. Furthermore, it examines to which extent parameterizations
can yield adequate simplifications of the more complex ageostrophic phenomena.

The first case study concerns zonally averaged models of the large-scale meridional
overturning circulation. Ageostrophic processes need to be considered here to correctly
describe the dynamics in western boundary currents, while the interior ocean can be de-
scribed by a geostrophic balance. Both, interior geostrophic and ageostrophic dynamics in
the western boundary current need to be considered for the zonally averaged flow. It is
illustrated that many zonally averaged models which do not consider both regimes show
dynamical inconsistencies in comparison with zonally resolved models. A new parameter-
ization for the zonally averaged flow is developed, in which both dynamical regimes are
directly represented and which does not suffer from those inconsistencies. Zonally resolved
models show good agreement with the new zonally averaged model, demonstrating that
the new parameterization is dynamically consistent.

The second case study deals with the mixing of eddies in the upper ocean. Since the
stratification is often weak within the mixed layer, ageostrophic processes are likely to oc-
cur here. Two parameterizations for the eddy mixing are compared, which especially take
ageostrophic dynamics into account. The first is based on linear stability analysis while
the second is based on a scaling of the potential energy release. Numerical simulations for
a wide range of dynamical conditions are used to diagnose the ability of these parameter-
izations to predict the mixing effect of the eddies. It turns out that the mean difference
between both parameterizations and the diagnosed eddy fluxes is less than a factor of two.
While the parameterization based on linear stability analysis performs slightly better in an
equilibrated forced-dissipative flow scenario, the parameterization based on the scaling of
the potential energy release performs better in a scenario of a re-stratifying density front.
In addition it is found that the vertical structure of the eddy fluxes is better described by
the former in both scenarios.

The third case study investigates the role of ageostrophic dynamics for kinetic energy
dissipation. Numerical simulations for a wide range of different dynamical conditions char-
acterized by their Richardson number are used to diagnose the energy flux in wavenumber
space. It is found that quasi-geostrophic dynamics feature an upscale kinetic energy flux
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while kinetic energy is transferred towards smaller scales for ageostrophic dynamics. Hor-
izontal divergent velocities evolving under ageostrophic conditions can be identified to
be responsible for the downscale flux. An important consequence is that the small-scale
dissipation is larger in the presence of ageostrophic dynamics. To quantify the effect of
ageostrophic dynamics on the small-scale dissipation, its dependency on the Richardson
number is investigated and a power law relating the energy dissipation with the Richardson
number is estimated.
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Chapter 1

Introduction

The equations that describe the physical components of the climate system are known in
principle for more than 100 years. However, their solutions bear still major challenges
since the non-linear character of these equations inhibits analytic solutions. It is often
not necessary to consider these mathematical equations in their full complexity. In such
cases, it is possible to make assumptions about the underlying dynamics, which reduce the
mathematical complexity without inhibiting adequate solutions.

A basic example for ocean dynamics is the concept of geostrophic balance, in which the
horizontal pressure gradient force is nearly balanced by the Coriolis force. The resulting
flow can be directly calculated from the underlying pressure field. It changes only in time
if there are temporal changes of the pressure field. The geostrophic balance holds often to
a good approximation for the large-scale dynamics in the interior ocean. However, other
ageostrophic forces become important on shorter spatial and temporal scales or close to
the boundaries of the ocean, and the geostrophic balance is not a reasonable assumption
anymore.

Fig. 1.1 indicates spatial and temporal scales of important dynamical regimes within
the ocean. Dynamics on the largest spatial and temporal scales, like Rossby waves or
mesoscale eddies, are in geostrophic balance. In contrast, ageostrophic processes become
important for processes on smaller space and time scales, like internal waves or small-
scale turbulence. Although the scales of these different dynamics might be separated by
some orders of magnitude, it is essential to note that there are many interactions between
the different regimes and thus interactions of processes between different length and time
scales. In particular, it is not sufficient to consider only the Rossby wave and mesoscale eddy
regime to understand the large-scale circulation. Ageostrophic processes directly influence
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Figure 1.1: Space and time scales of important ocean processes. Red circles denote impor-
tant dynamical regimes. The lower left grey rectangle indicates the resolution of current
global climate models, while the upper right rectangle denotes the resolution of current
basin-scale ocean models. Dashed extensions of the rectangles indicate the expected in-
crease in resolution due to an increase in computational power expected for the next years.
Black lines denote the dispersion relation of Rossby waves (lower left side), internal waves
(middle) and surface waves (upper half). The horizontal dashed lines indicate the regime
for internal waves with frequencies between the Coriolis parameter f and the vertical strati-
fication N . Vertical dashed lines indicate the first internal Rossby radius Ri, the barotropic
Rossby radius Ro and the Ozmidov scale Lo (from Carsten Eden personal communication,
see also Olbers et al. (2012)).

the large-scale circulation e.g. by providing a sink for kinetic energy due to dissipation or
by providing potential energy due to diapycnal mixing. Both phenomena are key processes
for larger scale dynamics, like the meridional overturning circulation (MOC), for instance.

Since numerical models require a discretization in space and time, they have to neglect
processes below their spatial and temporal resolution. Limitations in the computational
power are responsible for the fact that current ocean models are not able to achieve both, a
global integration for climatic relevant time periods and a resolution of ageostrophic small-
scale processes. As can be inferred from Fig. 1.1, global as well as regional ocean models
are hardly able to resolve the internal wave field and small-scale turbulence, although these
processes influence the larger scales.

Parameterizations are a common strategy to tackle this problem. In this case, theoreti-
cally or empirically based assumptions are used to find an approximative representation of
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the unresolved processes. To ensure a minimum lack of accuracy, the parameterizations it-
self as well as the outcome of any model using these parameterizations have to be carefully
validated.

This thesis aims at investigating ageostrophic dynamics within three different case stud-
ies, a zonally averaged ocean model, the mixing of eddies in the upper ocean and the ability
of ageostrophic dynamics to feature a direct route of kinetic energy to dissipation. Further-
more, it examines to which extent parameterizations can yield adequate simplifications of
the more complex ageostrophic phenomena.

In Chapter 2, the influence of ageostrophic dynamics on the meridional overturning
circulation (MOC) is investigated. Although the meridional circulation is considered pre-
dominantly to be in geostrophic balance, ageostrophic dynamics play a fundamental role in
the establishment of a western boundary current. Therefore, they influence the entire MOC
and the meridional transport of heat or other substances. Zonally averaged models of the
MOC do not explicitly distinguish between the interior ocean and this western boundary
current and therefore cannot directly consider both, the geostrophic and the ageostrophic
regime. On the other hand zonally averaged models are a powerful tool for parameter stud-
ies or long-term simulations since the simulation of a two-dimensional domain naturally
causes much less computational costs than that of a three-dimensional domain. Further-
more, to search for dynamical consistent simplifications that are necessary to develop a
zonally averaged model can finally lead to a better understanding of the MOC. Therefore,
a way to implicitly consider the ageostrophic boundary current and the geostrophic interior
in a dynamically consistent closure for zonally averaged models is introduced in Chapter
2.

In Chapter 3, the focus is on ageostrophic processes that predominantly occur near the
ocean surface. Turbulent mixing in the upper ocean causes low stratification within the
first hundred meters and establishes the so called mixed layer. Eddies that arise in the
mixed layer are likely to be subject to ageostrophic dynamics, in contrast to eddies in the
stronger stratified ocean interior which are assumed to be in quasi-geostrophic balance. In
Chapter 3 it is investigated to which extent parameterizations are able to account for the
effect of mixed layer eddies. The performance of two parameterizations, the first based on
linear stability analysis (Stone, 1972b) and the second based on a scaling of the potential
energy release (Fox-Kemper et al., 2008), is compared for different mixed layer scenarios.

Besides the mixing of heat or other substances, a turbulent flow plays an important
role for the transfer of energy between different scales. In Chapter 4, it is examined how
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Chapter 1. Introduction

direction and magnitude of the energy fluxes in wavenumber space change as soon as
ageostrophic processes become relevant. The main energy source of the ocean is given by
atmospheric and tidal forcing. Both act predominantly on large scales like a few hundred
kilometers. Energy dissipation, on the other hand, is mainly achieved due to molecular
friction and diffusion, therefore occurring on the smallest scales. Thus, there have to be
processes that are responsible for an energy transport from the large scales to the small
molecular scales. Three-dimensional small-scale turbulence is known to provide such a
downscale energy cascade (Kolmogorov, 1941) but since it acts on scales much smaller
than the oceanic forcing scales, it is likely no candidate to explain the energy transfer on
larger scales. In contrast, geostrophic turbulence coincides on spatial and temporal scales
with the forcing scales, but the theory of geostrophic turbulence rather suggests an upscale
energy transport (Charney, 1971). The geostrophic turbulence thus does not provide a
direct route to dissipation. Less is known about the energy fluxes for turbulence acting
between the small-scale and the geostrophic scales. Therefore, it is analyzed in Chapter 4,
how ageostrophic processes like mixed layer eddies are able to influence the strength and
direction of the energy flux.

In the next section, a short introduction to geostrophic and ageostrophic dynamics will
be given. The explicit role of ageostrophic dynamics for the three case studies will be
discussed in more detail in the following sections.

1.1 Geostrophic and ageostrophic dynamics

The equation of the vertical component of vorticity ζ = ∂xv− ∂yu yields some insight into
the dynamics of a flow system. The non-dimensional form of this equation in hydrostatic
and Boussinesq approximation reads1:

γ∂t̂ζ̂︸︷︷︸
I

+ γû · ∇̂ζ̂︸ ︷︷ ︸
II

+
γ

Rβ

β̂v̂︸ ︷︷ ︸
III

− f̂∂ẑŵ︸ ︷︷ ︸
IV

=

Roζ̂∂ẑŵ︸ ︷︷ ︸
V

+Ro(∂ŷŵ − ∂ẑv̂)∂x̂ŵ + Ro(∂ẑû− ∂x̂ŵ)∂ŷŵ︸ ︷︷ ︸
VI

+
γEk
Ro

F̂ (ζ)︸ ︷︷ ︸
VII

, (1.1)

where hats indicate non-dimensional variables, u = (u, v, w)T denotes the three-dimensional
velocity, f = 2Ω sin θ the planetary vorticity, Ω the rotation frequency of the earth, θ

1Derivations and scalings of this section closely follow Olbers et al. (2012), chapter five.
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1.1. Geostrophic and ageostrophic dynamics

latitude, β the meridional gradient of the planetary vorticity and F (ζ) friction. The mag-
nitudes of the individual terms in Eq. (1.1) depend on dimensionless parameters like the
Rossby number Ro (ratio between inertial and Coriolis force), the Rhines number Rβ (ra-
tio between inertial force and variations of the Coriolis force over the considered spatial
scales), the ratio between advection of relative vorticity and stretching of planetary vor-
ticity γ and the Ekman number Ek (ratio between friction and Coriolis force). In terms of
characteristic scales of a flow system these parameters can be expressed as

Ro =
U

fL
, Rβ =

U

βL2
, γ =

U2H

WL2f
, Ek =

D

fU
, (1.2)

where L and H denote horizontal and vertical length scales, U and W horizontal and
vertical velocity scales and D a typical scale for the magnitude of friction.

For a large part of the ocean, it is valid to assume that Ro� 1, γ . 1 (see below) and
Ek� Ro. In this case, the right hand side of Eq. (1.1) vanishes and the terms on the left
hand side have to balance each other. This regime is called geostrophic.

It is common to distinguish between two important sub-regimes within the geostrophic
regime, namely the quasi-geostrophic and the planetary-geostrophic regime. While the
planetary-geostrophic regime is characterized by a balance between stretching (IV) and
advection (III) of planetary vorticity, the quasi-geostrophic regime is characterized by a
balance between stretching of planetary (IV) and advection of relative vorticity (II). The
Rhines scale Lβ =

√
U/β which distinguishes both regimes can be obtained by comparing

the magnitude of the advection of relative (II) to planetary (III) vorticity. Dynamics
with typical length scales smaller than the Rhines scale, L < Lβ, are in quasi-geostrophic
balance. In contrast, if L > Lβ, the dynamics are in planetary-geostrophic balance. Note
that a balance between (III) and (IV) for the planetary-geostrophic regime implies that
Rβ < 1 and γ = Rβ, which is only achieved if the vertical velocity scales like W =

(Ro/Rβ)(H/L)U . In contrast, a balance between (II) and (IV) for the quasi-geostrophic
regime implies Rβ > 1 and γ = 1 and therefore a different scaling for the vertical velocity
of W = Ro(H/L)U .

The dynamical regime of planetary-geostrophic balance can be found in the interior
of the ocean for the large-scale circulation (in Fig. 1.1, it corresponds to the long wave
branch of the Rossby waves). In this case, the equation for the vertical vorticity component,
Eq. (1.1), reduces to the Sverdrup relation βv = f∂zw meaning that any source of upwelling
∂zw by e.g. wind-induced Ekman pumping or diapycnal mixing causes a poleward mass
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Chapter 1. Introduction

transport. While this equation is a good approximation to the large-scale flow of the interior
ocean, it is violated at the western ocean boundary where γEk/Ro ≈ 1 and friction (term
VII in Eq. (1.1)) enables a boundary layer current that is important for the meridional
mass and heat transport. As far as models for the zonally integrated meridional flow are
concerned, an interplay between the ageostrophic boundary currents and the geostrophic
interior has to be carefully considered. How to parameterize both regimes in a zonally
integrated flow is introduced in Chapter 2.

In contrast to the regime of planetary-geostrophic balance, the dynamical regime of
quasi-geostrophic balance describes many aspects of baroclinic and barotropic instabilities,
mesoscale eddies and geostrophic turbulence (in Fig. 1.1, it corresponds to the intermedi-
ate and short wave branch of the Rossby waves). It holds within large parts of the ocean
except close to lateral or surface boundaries and is therefore of fundamental importance
for ocean dynamics. However, especially in the ocean surface mixed layer, in regions dom-
inated by convection or within strongly sheared and weakly stratified boundary currents,
the dynamics are characterized by small vertical and horizontal spatial scales but large
horizontal and vertical velocity scales yielding large Ro, large Rβ and γ ≈ 1. In this case,
stretching of relative vorticity (V), vortex tilting (VI) and the geostrophic terms become
of comparable magnitude in the vorticity balance Eq. (1.1). Furthermore, the advection of
momentum is no longer negligible, and the geostrophic balance is not valid anymore.

Two aspects of these type of ageostrophic dynamics are considered in Chapter 3 and
Chapter 4. In Chapter 3, it is investigated to which extent these ageostrophic dynamics
influence the re-stratification of the upper ocean mixed layer and different parameteriza-
tions for the mixing of eddies induced by baroclinic instabilities are compared. The focus
of Chapter 4 is on the influence of ageostrophic processes on energy dissipation. In con-
trast to a downscale kinetic energy flux for quasi-geostrophic dynamics (Charney, 1971),
the direction of the kinetic energy flux can be reversed if the dynamic is dominated by
ageostrophic processes. This change of the direction of the kinetic energy flux has large
influence on the small-scale dissipation and is analyzed in Chapter 4.

1.2 Effects of ageostrophic processes on the meridional

overturning circulation

Atmosphere and ocean together transport about 6 PW heat at maximum from low to high
latitudes (Trenberth and Caron, 2001). The ocean’s contribution of this heat flux is roughly
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1.2. Effects of ageostrophic processes on the meridional overturning circulation

25% (Trenberth and Caron, 2001), which points to the importance of the ocean for the
climate system. A number of current systems is responsible for this heat flux. The zonal
average of all these current systems is called meridional overturning circulation (MOC).

The mechanisms that drive the MOC are mechanical forcing and internal mixing.
Fig. 1.2 shows a schematic of the main processes involved in the Meridional Overturn-
ing Circulation of the Atlantic (AMOC), an important contributor to the total MOC. A
simplified picture of the AMOC can be obtained by dividing it into two overturning cells,
a surface cell transporting North Atlantic Deep Water (NADW) in a clockwise orienta-
tion and a lower cell transporting Antarctic Bottom Water (AABW) in an anti-clockwise
orientation (a detailed review of the MOC can be found e.g. in Kuhlbrodt et al. (2007)).

Figure 1.2: Schematic of the MOC. Color shading denotes the density structure with light
surface water masses in blue and heavy bottom water masses in yellow. Volume trans-
ports are depicted by blue arrows and basically follow density contours. Two overturning
cells can be identified. An upper cell containing North Atlantic Deep Water (NADW)
circles clockwise and a lower cell containing Antarctic Bottom Water (AABW) circles
anti-clockwise. Lifting of the dense water masses might either occur due to the breaking
of internal waves and their induced diapycnal mixing (orange and red arrows) or due to
wind-driven upwelling (black arrows) through Ekman suction in the Southern Ocean that
is partly compensated by an eddy overturning (from Kuhlbrodt et al. (2007)).
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Chapter 1. Introduction

Surface cooling by cold and dry winds causes deep water formation in the Labrador
Sea and the Nordic Seas. The Greenland-Iceland-Scotland ridge system prevents a direct
inflow of the dense bottom waters formed in the Nordic Seas into the North Atlantic. An
overflow of the dense water masses over these ridges is accompanied by an entrainment of
other water masses. Together, these water masses contribute substantially to the volume
flux of the MOC (e.g. Quadfasel and Käse, 2013). The combination of the deep water
masses from the Nordic Seas and those of the Labrador Sea are called North Atlantic Deep
Water (NADW). The NADW spreads southwards in energetic western boundary currents
and partly recirculates in the interior.

Energy is needed to lift the dense water masses up again in order to close the over-
turning loop. One process that induces such a lifting is diapycnal mixing. This mixing
is predominantly caused by the internal waves which are generated by tidal and wind
stress forcing. Energy transfer to large vertical wavenumbers by non-linear wave-wave in-
teractions and critical layer absorption cause these waves to break. This internal wave
dissipation provides energy for diapycnal mixing. Measurements of the diapycnal diffusion
within the ocean reveal that this process is too small in most regions of the ocean to explain
the strength of the MOC (e.g. Polzin et al., 1997). However, there are some exceptions
where the diapycnal diffusion is large, e.g. over rough topography (e.g. Garabato et al.,
2004).

Another competing process, responsible for lifting of dense water masses is wind-induced
upwelling in the Southern Ocean. A divergence of the Ekman transport at the Southern
Ocean induces an upwelling that lifts the dense deep water masses and inclines the isopy-
cnals. Since inclined isopycnals yield baroclinically unstable conditions, mesoscale eddies
are generated, which cause an overturning partly compensating the Ekman upwelling. At
the surface the water mass properties are changed due to atmospheric buoyancy fluxes; e.g.
heat fluxes into the ocean typically cause a warming of these water masses. The loop of
the upper cell of the AMOC is closed by a return flow of the upper water masses towards
the North Atlantic. Until now it is not entirely clear which process is most important in
lifting the dense NADW, either wind-induced upwelling or diapycnal mixing (e.g. Ferrari
and Wunsch, 2009).

The deep water formation of AABW takes place at the shelf along the Antarctic con-
tinent predominantly within the Weddel and Ross Sea. Since the water masses are denser
than those of the NADW, they supply the lower circulation cell of the AMOC. On its way
northward, the AABW is lifted e.g. by diapycnal mixing from the bottom to depths that
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1.2. Effects of ageostrophic processes on the meridional overturning circulation

are still below the NADW and where it recirculates towards the Southern Ocean closing
the lower cell of the AMOC.

Simple models have been of great benefit to obtain a qualitative understanding of the
MOC. Nevertheless, fundamental open questions remain and there is still a need for a
better qualitative and quantitative understanding of the different aspects of the MOC.
Nowadays, this understanding is predominantly extended by the use of complex numerical
ocean or climate models. However, simple models like that described in Chapter 2 are still
of great benefit in e.g. interpreting results from the complex models or in deriving new
hypothesis about fundamental processes of the MOC.

The box model of Stommel (1961) is one of the simplest models of the MOC. Stom-
mel (1961) divides the ocean in two parts, a southern and northern box, and describes
the overturning by an upper and lower pipe flow between both boxes (see Fig. 1.3 for a
schematic of the model). Since the underlying equations of the box model are non-linear,
complex solutions exist that contain multiple equilibria and hysteresis loops. Although
this model only yields a very simplified qualitative picture of the MOC, it has brought
interest to whether such multiple equilibria can also be found in more complex numerical
simulations. In fact, McManus et al. (2004) report large variations concerning the MOC
strength during the past and Rahmstorf (1996) and Rahmstorf et al. (2005) find multiple
equilibria and hysteresis loops related to different fresh water fluxes in more complex nu-
merical ocean models. However, Stommel’s box model does not make any assumptions of a
geostrophically balanced flow. An astonishing fact, keeping in mind that by far the largest
part of the ocean is in geostrophic balance. Hence, the model implicitly assumes that the
overturning can exclusively be described by frictionally dominated and thus ageostrophic
flows.

A different approach is taken by Stommel and Arons (1960) who assume that the in-
terior flow is in geostrophic balance. In addition, a vertical decomposition of the ocean
into an upper and an abyssal layer is assumed. The vertical water exchange between both
layers is simplified such that it consists of two parts. A local prescribed deep water source
pumps water from the upper into the lower layer. Simultaneously, a homogeneously dis-
tributed upward mass flux balances this localized deep water source. The former might
be interpreted as parameterization for downwelling induced by ocean convection while the
latter might be understood as a representation of diapycnal mixing. If all these assump-
tions are applied, the resulting equations that describe the flow are linear and can be
solved analytically. Despite these simplifications, the model describes a flow system that
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Figure 1.3: Schematic of the Stommel (1961) box model. The ocean is divided into a
northern and southern box connected with a surface and an abyssal pipe flow q. The
magnitude of q is assumed to be proportional to the density difference ∆ρ between both
boxes. The surface heat flux is assumed to keep the temperature always at the fixed values
T1 and T2 for the southern and northern box, respectively. Salinity is allowed to change by
a fresh water flux FS that is equal in magnitude but of opposing sign for both boxes. The
density difference ∆ρ that controls the exchange flow q is calculated by a linear equation
of state. The direction of the overturning (sign of q) depends on the strength of FS which
sets the pressure difference ∆ρ.

already contains important aspects of the MOC, in particular it predicts the existence of a
deep western boundary current that is not part of the geostrophic balanced interior flow.
To explain the balance in this western boundary current, friction and thus ageostrophic
dynamics, has to be taken into account.

The models discussed so far are only very rudimentary representations of the MOC. A
next step towards more realistic models is to consider zonally averaged primitive equations.
In these type of models, the complexity of a three dimensional flow is reduced by projecting
the flow on the meridional-vertical plane. Complications arise in such a concept as soon as
zonal gradients of a quantity begin to play a role. These gradients cannot be represented
in a zonally averaged framework and thus have to be parameterized. Since any meridional
flow in geostrophic balance is determined by a zonal pressure gradient, there is a priori no
information about the geostrophically balanced meridional transport in a zonally averaged
model. If the geostrophically balanced part of the meridional flow is of major importance
as normally assumed, any zonally averaged ocean model misses a fundamental aspect of
the MOC as long as there are no parameterizations for the zonal pressure gradient.

Parameterizations of Marotzke et al. (1988) and Wright and Stocker (1991) for the
zonally integrated meridional flow assume that friction is at least as important as the
Coriolis force in the meridional momentum budget. In this case, the meridional pressure
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Figure 1.4: Left: Two dimensional sketch of the Stommel and Arons (1960) model. The
ocean is divided into two layers and the interchange between both layers is prescribed by
a localized downward volume flux (large black arrow) and spatial homogeneous upwelling
(small black arrows). Right: Horizontal flow in the lower layer (arrows). Assuming a
northern deep water source and homogeneous upwelling yields a northward flow along
pressure contours (color shaded) in the lower layer (opposite in the upper layer). Mass
conservation demands a westward boundary current that flows southward in the lower and
northward in the upper layer. The prediction of such western boundary currents is one of
the main results of the Stommel and Arons (1960) model.

gradient is proportional to the friction on the meridional flow and therefore directly related
to the strength of the meridional flow itself. Such type of closure is quite similar to
the assumptions made in Stommel’s box model. However, Straub (1996) notes that the
assumption of Stommel (1961) by which the meridional flow is determined by the meridional
pressure gradient is inconsistent to the model of Stommel and Arons (1960) where the
meridional flow is only determined by the location of the deep water source and not by
the meridional pressure gradient. The model of Stommel and Arons (1960) is directly
based on the planetary-geostrophic balance of the vorticity equation Eq. (1.1). Therefore,
it is assumed to be more appropriate to describe the local meridional mass transport. In
contrast Stommel’s box model only considers the integrated effect of the meridional mass
transport.

Chapter 2 of this thesis aims at answering the questions:

• Are zonally averaged ocean models that parameterize the zonally averaged meridional
flow with the zonally averaged meridional pressure gradient dynamically inconsistent?

• If yes, how can geostrophic and ageostrophic dynamics be considered in order to
obtain a dynamical consistent model of the zonally averaged meridional overturning
circulation?
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1.3 Parameterizations for eddy fluxes in an ageostrophic

environment

Studies from Holland (1978), among others, reveal that mesoscale eddies have a major
influence on the large-scale circulation and many studies aim at quantifying this influence
(e.g. Gent and McWilliams, 1990; Larichev and Held, 1995; Killworth, 1997; Eden, 2011).
As soon as more sophisticated satellite data with increased spatial resolution became avail-
able, variability even below the spatial scales of the mesoscale eddy field – the so called
sub-mesoscale – was observed (Scully-Power, 1986; Munk et al., 2000). Fig. 1.5 shows two
pictures of such phenomena. The first is a photograph taken from an astronaut out of a
space shuttle where microlayer surfactants that become visible in the sunglitter indicate
cyclonic spiral-shaped eddies. The second picture shows a phytoplankton bloom off the
coast of Argentina taken by the NASA MODIS/TERRA sensor2 with many filaments at
the edges of the phytoplankton patch. Both patches indicate strongly sheared filaments
that are typical for sub-mesoscale processes.

Meanwhile, a variety of processes like e.g. ageostrophic baroclinic instability, fronto-
genesis or symmetric instability have proven to be responsible for sub-mesoscale features
(e.g. Haine and Marshall, 1998). A common feature of those processes is the fact that they
come along with large Rossby numbers (e.g. Thomas et al., 2008). The considerations of
Sec. 1.1 demonstrate that ageostrophic dynamics in the upper ocean are caused by the
stretching and tilting of relative vorticity (term V and VI in Eq. (1.1)) and not necessarily
by friction (term VII). Thus, the ageostrophic dynamics considered here are different from
those discussed for the large-scale meridional circulation in Sec. 1.2. For sub-mesoscale
eddies rather deviations from a quasi-geostrophic balance (term II and IV) than from a
planetary-geostrophic balance (term III and IV) are relevant.

Fig. 1.6 shows a sketch of a typical situation in the upper ocean that causes sub-
mesoscale eddies. Wind-induced turbulence and surface cooling are responsible for a low
stratification of the upper water masses in contrast to the stronger stratified underlying
pycnocline. These low stratified water masses are often accompanied by meridional density
gradients which are caused, e.g. by mesoscale eddy straining or differential atmospheric
heat and fresh-water fluxes. In this case, the flow is baroclinically unstable and features
eddies that re-stratify the inclined density surfaces by converting potential energy into

2The picture is taken from http://lance-modis.eosdis.nasa.gov/cgi-bin/imagery/single.cgi?
image=Argentina.A2004348.1415.1km.jpg.
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Figure 1.5: (left) Sunglitter photograph of spiral eddies in the Mediterranean off Egypt
taken from a space shuttle cruise with a handheld Hasselblad 6x6 cm camera (from
Munk et al. (2000)). (right) Phytoplankton bloom off Argentina taken of the NASA
MODIS/TERRA sensor.

kinetic energy. The effect of these eddies on the density field can be decomposed into an
advective and a diffusive component. While the advective component is responsible for the
re-stratification by an adiabatic overturning of the inclined density surface (see Fig. 1.6),
the diffusive component is diabatic and causes diapycnal mixing.

An appropriate scale for eddies arising as a result of baroclinic instability is given by
the first baroclinic Rossby radius Lr = NH/f , where N is the square root of the vertical
buoyancy stratification, H a depth scale and f the Coriolis parameter. Low values of the
stratification and the depth scale of the mixed layer feature a Rossby radius that is much
smaller than its counterpart of the ocean interior. Therefore, the eddies occurring in the
mixed layer have smaller spatial scales than interior mesoscale eddies. Since the velocity
of the mixed layer eddies is comparable to those of the ocean interior, the small spatial
length scales of the mixed layer eddies yield a large Rossby number. In fact, the Rossby
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Figure 1.6: Schematic of the spin-down of a buoyancy front induced by mixed layer eddies
(adapted from Fox-Kemper et al. (2008)). Contours indicate buoyancy with lighter water
masses at the left hand side and heavier at the right hand side of the domain. Eddies
extract available potential energy and convert it into eddy kinetic energy, developing an
overturning circulation that ranges from the ocean surface to the bottom of the mixed
layer determined by the depth of the pycnocline. In addition, mixed layer eddies can be
responsible for enhanced diapycnal diffusivities.

number is often larger than one, indicating that ageostrophic processes are relevant for the
mixed layer eddies (McWilliams, 1985b; Munk et al., 2000; Shcherbina et al., 2013).

For numerical ocean models, the ageostrophic dynamics build a major challenge since
they occur on scales of the order of meters to a few kilometers and current global ocean
models as well as many regional ocean models are not able to directly resolve mixed layer
eddies (the resolution of a state of the art global ocean model might inferred from e.g.
Jungclaus et al. (2013)). Nevertheless, their mixing has large influence on the transport
of heat, trace gases and organic substances between the upper ocean mixed layer and the
abyssal ocean (Oschlies, 2002). Therefore, the eddies influence the air-sea gas exchange,
the depth of the mixed layer and other important quantities of the climate system by
interfering with bio-geochemical cycles and the air-sea gas exchange of trace gasses like
e.g. CO2 or heat (Lévy et al., 2001, 2012).

In order to account for the influence of mixed layer eddies on the climate system,
parameterizations have to be developed that represent the eddy overturning and mixing.
Fox-Kemper et al. (2008) use a scaling for the potential energy release induced by baroclinic
instability to relate this energy release with the kinetic energy of the eddies. By using
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these considerations, they construct a parameterization that especially accounts for eddies
in the mixed layer, but might also be representative of the mixing of mesoscale eddies. A
competing approach results from Stone (1972b), who uses linear stability analysis for a
parameterization of eddy mixing induced by ageostrophic baroclinic instability. Although
this approach is aimed to parameterize ageostrophic mixing effects in the atmosphere, it
is likely to be also applicable within the ocean mixed layer.

These two approaches are based on very different concepts. Therefore, it is difficult to
argue which parameterization is more applicable. In Chapter 3, the parameterizations of
the eddy fluxes are related to fundamental parameters of the flow: the Richardson number
as the ratio between vertical stratification and vertical shear of the horizontal velocity, the
Rossby number and the aspect ratio. Using these parameters in the algebraic expression
makes a direct comparison of the parameterizations possible and the following question is
discussed:

• What are the main differences between eddy flux parameterizations based on linear
stability analysis and parameterizations based on scalings of the eddy potential energy
release?

Relating the parameterized eddy mixing of the flow to its dynamical characteristics allows
to investigate the performance of the parameterization under geostrophic as well as under
ageostrophic dynamical conditions. A numerical ocean model is used to simulate the eddy
mixing under such idealized different dynamical conditions. By comparing the diagnosed
eddy fluxes with the parameterized counterparts, the following question is addressed:

• How do parameterizations of mixed layer eddy fluxes perform under ageostrophic
and geostrophic conditions?

1.4 The route to dissipation in the presence of ageostro-

phic dynamics

Understanding and quantifying the ocean’s energy budget is of fundamental importance
for future climate predictions. Nevertheless, it bears major challenges since it requires a
detailed understanding of nearly all ocean processes. If the ocean is assumed to be in
steady state, then its total energy has to be conserved and all incoming and outgoing
energy fluxes have to balance each other.
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To better distinguish between long and short term influences on the ocean energy bud-
get, Lorenz (1955) introduces a decomposition of the kinetic and potential energy into a
mean and an eddy-induced part. Lorenz’s energy cycle contains the exchange between
kinetic (MKE) and available potential (MPE) energy of the mean circulation and the ki-
netic (EKE) and available potential (EPE) energy of the eddy circulation. Therefore,
Lorenz (1955) defined available potential energy as the difference between the total poten-
tial energy and a minimum potential energy that the system would have after an adiabatic
rearrangement of all fluid particles (see Tailleux (2013) for an extension of APE to multi-
component Boussinesq fluids with a non-linear equation of state). Apart from theses fluxes
between the energy reservoirs, there might also be external sources of energy e.g. due to
atmospheric forcing or sinks of energy due to dissipation.

Fig. 1.7 shows the Lorenz energy cycle diagnosed from a global eddy-permitting (1/10o)
numerical ocean model (Storch et al., 2012). Although the energy forcing due to surface
fluxes of each individual energy reservoir is nearly balanced by a direct dissipative flux
out of this reservoir, there are also energy fluxes between the individual energy reservoirs.
The processes that can be associated with these exchanges are: barotropic instability for
an exchange between MKE and EKE, baroclinic instability for an exchange between MPE
and EPE and between EPE and EKE, and wind-driven upwelling for an exchange between
MKE and MPE.

Atmospheric forcing predominantly acts on very large scales. Since kinetic energy dis-
sipation can only occur at molecular scales, there has to be a downscale energy flux that
connects the atmospheric large-scale energy input with the molecular small-scale energy
sink. Fig. 1.8 shows a schematic of the paradigm how energy is redistributed between
different scales by the turbulent dynamics. Following Charney (1971), geostrophic turbu-
lence yields a downscale available potential and an upscale kinetic energy flux. Kinetic
energy injected at large scales thus cannot reach the small scales directly and must either
be dissipated at the large scales or transformed into available potential energy. Numerical
simulations from Storch et al. (2012) suggest that 26% of the MKE surface flux is trans-
formed to MPE, 6% to EKE and that 74% is dissipated as can be inferred from Fig. 1.7.
Available potential energy is transported towards smaller scales until it reaches the scale
of the first internal Rossby radius. At this scale baroclinic instability (Eady, 1949; Stone,
1966) transforms available potential energy into kinetic energy (fluxes between MPE and
EPE and between EPE and EKE in Fig. 1.7). Since baroclinic instability is assumed to
transform most of the available potential energy, the remaining downscale flux of available
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Figure 1.7: Lorenz energy cycle of a 1/10o eddy permitting model forced by 6-hourly surface
fluxes (Storch et al., 2012). The rectangles contain energy reservoirs for mean kinetic energy
(MKE), eddy kinetic energy (EKE), mean potential energy (MPE) and available potential
energy (APE) and numbers are given in 1018 J. Arrows between the reservoirs denote
energy exchanges, horizontal ones pointing into the reservoirs denote the wind generated
energy input for MKE and EKE and the generation of APE due to thermohaline surface
fluxes for MPE and EPE. Diagonal arrows pointing out of the boxes denote energy sinks
by dissipation. All energy fluxes are given in 1012 W. Note, that red numbers depend on
the choice of a reference density profile that is chosen to be the global area average of the
time mean density. Black numbers are independent of the reference density (adapted from
Storch et al. (2012) and Olbers et al. (2012)).

potential energy to scales smaller than the Rossby radius has to be rather weak.

Following the theory of geostrophic turbulence, the kinetic energy induced by baroclinic
instability has to be transported upscale again and the turbulent eddies would grow in size
up to the basin scale and have to dissipate there. Since such basin-scale eddies are not found
in the ocean, there has to be an eddy damping process that yields an energy dissipation
on spatial scales between the Rossby radius and the basin scale. Some possible candidates
might be lee wave generation (Bell, 1975; Nikurashin and Ferrari, 2011), loss of balance
resulting from e.g. Lighthill radiation of gravity waves (Ford et al., 2000) or ageostrophic
instabilities (Molemaker et al., 2005).

In addition, there might be an alternative route to dissipation due to the presence of
ageostrophic processes. In fact, Capet et al. (2008c) and Molemaker et al. (2010) observe in
different numerical model studies a downscale kinetic energy flux as soon as ageostrophic
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Figure 1.8: Schematic of the energy flux within the ocean. The length scale decreases
from left to right and the upper part depicts the available potential energy APE and the
lower part kinetic energy KE. Atmospheric forcing yields an energy source at the largest
scales. APE is transported downscale until it reaches spatial scales comparable to the first
baroclinic Rossby radius where baroclinic instability sets in and transforms APE into KE.
Within the geostrophic regime, KE is subject to an inverse energy cascade that transports
energy upscale towards the basin scale. Processes like e.g. lee wave generation, loss of
balance resulting from Lighthill radiation or ageostrophic instabilities cause a damping of
the eddies by exaggerating internal waves. In contrast, in regions where Ri is small (e.g. at
the upper ocean), there might also be a downscale energy flux due ageostrophic effects that
transports KE towards the smallest scales where it is dissipated by molecular processes.
While the direction of the KE flux depends on whether ageostrophic processes are present,
the APE flux is always downscale (see also Molemaker and McWilliams (2010) for a similar
picture).

processes are present. In this case, energy is transported downscale until it enters the
regime of isotropic turbulence. This regime is known to feature a downscale energy flux
until the energy reaches the dissipation scale (Kolmogorov, 1941). It is not known so far,
how important this ageostrophic route to dissipation is in comparison to the other possible
dissipation mechanism.

Chapter 4, aims to obtain a detailed understanding of the downscale energy flux un-
der ageostrophic conditions. As for Chapter 3, the ageostrophic processes investigated in
Chapter 4 are predominantly due to stretching and tilting of relative vorticity (term V
and VI in Eq. (1.1)). Although friction (term VII in Eq. (1.1)) plays an important role to
dissipate energy, a damping is applied in the numerical model that only acts on the largest
and smallest scales. It is assumed that the intermediate scales are not affected by friction
or diffusion and that ageostrophic dynamics predominantly result from vortex stretching
and tilting. In Chapter 4, numerical simulations are performed with varying dynamical
conditions. This enables to investigate how the magnitude and direction of the energy flux
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depends on the dynamical conditions and its ability to feature ageostrophic dynamics. The
following specific question is addressed:

• How can a downscale energy flux and the resulting small-scale dissipation be related
to the dynamical characteristics of a flow system?

1.5 Thesis Overview

As outlined in this chapter, this thesis aims at understanding the influence of ageostrophic
dynamics on important aspects of the ocean circulation. Three different case studies form
three research papers:

Chapter 2 consists of a research paper published in the Journal of Physical Oceanogra-
phy (Brüggemann et al., 2011). It is entitled "A dynamically consistent closure for zonally
averaged ocean models" and addresses the following specific research questions:

• Are zonally averaged ocean models that parameterize the zonally averaged meridional
flow with the zonally averaged meridional pressure gradient dynamically inconsistent?

• If yes, how can geostrophic and ageostrophic dynamics be considered in order to
obtain a dynamical consistent model of the zonally averaged meridional overturning
circulation?

Chapter 3 consists of a research paper submitted to the Journal of Physical Oceanog-
raphy. It is entitled "Validating different parameterizations for mixed layer eddy fluxes
induced by baroclinic instability" and addresses the following specific research questions:

• What are the main differences between eddy flux parameterizations based on linear
stability analysis and parameterizations based on scalings of the eddy potential energy
release?

• How do parameterizations of mixed layer eddy fluxes perform under ageostrophic
and geostrophic conditions?

Chapter 4 consists of a research paper that is in preparation to be submitted to the
Journal of Physical Oceanography. It is entitled "Routes to dissipation under different
dynamical conditions" and addresses the following specific research question:

• How can a downscale energy flux and the resulting small-scale dissipation be related
to the dynamical characteristics of a flow system?
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Chapter 5 provides a summary of the answers on these questions given within the
three research papers. Furthermore an outlook is presented that discusses open or further
questions arising from the investigation of each of the three case studies.
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Chapter 2

A dynamically consistent closure for
zonally averaged ocean models

This chapter is a reprint of the paper "A dynamically consistent closure for zonally averaged
ocean models" published in the Journal of Physical Oceanography ( c©Copyright (November
2011) AMS)1.

Citation: Brüggemann, Nils, Carsten Eden, Dirk Olbers, 2011: A dynamically consis-
tent closure for zonally averaged ocean models. J. Phys. Oceanogr., 41, 2242-2258. doi:
http://dx.doi.org/10.1175/JPO-D-11-021.1

1 c©Copyright (November 2011) American Meteorological Society (AMS). Permission to use figures,
tables, and brief excerpts from this work in scientific and educational works is hereby granted provided
that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under
Section 107 of the U.S. Copyright Act September 2010 Page 2 or that satisfies the conditions specified in
Section 108 of the U.S. Copyright Act (17 USC §108, as revised by P.L. 94-553) does not require the AMS’s
permission. Republication, systematic reproduction, posting in electronic form, such as on a web site or in
a searchable database, or other uses of this material, except as exempted by the above statement, requires
written permission or a license from the AMS. Additional details are provided in the AMS Copyright Policy,
available on the AMS Web site located at (http://www.ametsoc.org/) or from the AMS at 617-227-2425
or copyrights@ametsoc.org.
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Chapter 2. A dynamically consistent closure for zonally averaged ocean models

Abstract

Simple idealized layered models and primitive equation models show that the meridional
gradient of the zonally averaged pressure has no direct relation with the meridional flow.
This demonstrates a contradiction in an often used parameterization in zonally averaged
models. The failure of this parameterization reflects the inconsistency between the model
of Stommel and Arons (1960) and the box-model of Stommel (1961), as previously pointed
out by Straub (1996).

A new closure is proposed. The ocean is divided in two dynamically different regimes,
a narrow western boundary layer and an interior ocean; zonally averaged quantities over
these regions are considered. In the averaged equations three unknowns appear: The
interior zonal pressure difference ∆pi, the zonal pressure difference ∆pb of the boundary
layer, and the zonal velocity uδ at the interface between the two regions. We parameterize
∆pi using a frictionless vorticity balance, ∆pb by the difference of the mean pressure in the
interior and western boundary, and uδ by the mean zonal velocity of the western boundary
layer.

Zonally resolved models, a layer model and a primitive equation model, validate our
parameterization by comparing with the respective zonally averaged counterparts. It turns
out that the zonally averaged models reproduce well the buoyancy distribution and the
meridional flow in the zonally resolved model versions with respect to the mean and time
changes.

2.1 Introduction

It is a common assumption in physical oceanography, that the magnitude and sign of the
zonally integrated meridional transport in the ocean, i.e. the meridional overturning circu-
lation (MOC), is related to the meridional pressure or density gradient. This assumption
originates in the discussion of a two-box model by Stommel (1961), in which the exchange
flow between the two boxes is parameterized with the density difference between the boxes.
The physical basis of this closure is a hypothetical dynamical balance between the pressure
difference induced by the different densities of the boxes, and friction in a narrow pipe
connecting the two parts of the ocean at depth.

A similar dynamical balance was also assumed by Marotzke et al. (1988) to close the
momentum balance of the zonally averaged primitive equations. The Coriolis force is
ignored, and a balance between the zonally averaged meridional pressure gradient and
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some kind of interior friction (Marotzke et al. (1988) choose vertical friction) acting on
the meridional velocity v is implemented in the meridional momentum balance, while
momentum advection is assumed to be negligible. The last assumption is reasonable for
scales larger than the internal Rossby radius. From this regime, a simple diagnostic relation

v̄ = −γ∂yp̄ (2.1)

between the zonally averaged meridional transport v̄ and the meridional gradient of the
zonally averaged pressure p̄ can readily be derived, where the positive parameter γ depends
on the type for frictional parameterization (we will assume Rayleigh friction for simplicity
but other forms are possible). Note that the wind stress forcing in Eq. (2.1) was ignored.
It can be included in all closures discussed in the present study.

This relation for v̄, together with the zonally averaged continuity equation to determine
the vertical velocity w̄, allows to calculate the zonally averaged tracer balances. Here zonal
velocity/tracer correlations, which introduce standing-eddy contributions in the tracer bal-
ances, are ignored. Wright and Stocker (1991) diagnosed the relation between −∂yp̄ and v̄
in a zonally resolved general circulation model and found indeed a positive value for the
constant γ, which, however, depends on latitude. However, their particular choice of this
relation is void of any dynamical fundament. Wright et al. (1998) give dynamical argu-
ments to motivate a modified version of the closure, which leads to a relation very similar
to Eq. (2.1) (see Sec. 2.5 for details).

It is one purpose of this study to demonstrate that the closure Eq. (2.1) is physically
inconsistent. Although this point was already discussed by Straub (1996) and Greatbatch
and Lu (2003), it was apparently not well received by the scientific community: there are
currently several coupled Earth system models of intermediate complexity with zonally
averaged ocean model components relying on the closure given by Eq. (2.1) (Claussen
et al., 2002). Because of their low computational costs, such models are often used for paleo
climate simulations and long-term climate projections – several of them are included in the
Fourth Assessment Report of the IPCC (Solomon et al., 2007). Ocean only versions are
used e.g. for studies discussing the stability of the thermohaline circulation (e.g. Alexander
and Monahan (2009)). Furthermore, scalings for the global meridional circulation including
the Southern Ocean and its impact on the circulation in zonally bounded basins still rely
on Eq. (2.1) (Gnanadesikan, 1999; Levermann and Fürst, 2010). We would like to point
out that the closure by Wright et al. (1995) is an exception, it does not rely on Eq. (2.1)
as we will discuss in the Sec. 2.6.
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Chapter 2. A dynamically consistent closure for zonally averaged ocean models

It is evident that the closures by Marotzke et al. (1988), Wright and Stocker (1991)
and Wright et al. (1998) have in common that they call for a "downgradient" form of
the meridional transport similar to what was assumed by Stommel (1961) for the viscous
pipe flow in his two-box model, leading to a local relation between v̄ and ∂yp̄. It was
argued by Straub (1996) that this assumption is inconsistent with the model by Stommel
and Arons (1960), describing the flow in a two-layer system. In that model, the zonal
mean of the interface height between the layers, equivalent to the pressure in primitive
equations, becomes independent of the location of the deepwater sources, i.e. independent
of the sign and magnitude of the meridional transports, thus proving the closures based
on Eq. (2.1) to be wrong. We call this contradiction between the two models by Stommel
and Arons (1960) and Stommel (1961) "Straub’s dilemma" and further detail this point in
the following section.

The models by Stommel (1961) and Stommel and Arons (1960) have different con-
ceptual backgrounds and were developed to focus on different aspects of ocean dynamics.
Therefore it cannot be a priori expected that both models are consistent with each other.
Evidently, both models had success in describing important phenomena of the ocean dy-
namics. However, applying the strongly simplified assumptions of the Stommel (1961)
model to zonally averaged models of Marotzke et al. (1988), Wright and Stocker (1991)
and Wright et al. (1998), "Straub’s dilemma" cannot be ignored any more because it reveals
dynamical inconsistencies of these models.

The central purpose of the present study, however, is to present and validate an alter-
native closure for zonally averaged models, which generalizes the concept of Wright et al.
(1995). Their closure is based on a meridional integration of the vorticity balance in the
interior and in the western boundary layer. In their closure the need of an integration
constant emerges which is difficult to determine but which sets the size and sign of the
meridional transports. We also divide the ocean into an interior and a western boundary
current but instead of averaging the vorticity equation over these regions we work with the
momentum and buoyancy (layer thickness) equations directly. This way we avoid the de-
termination of an integration constant but need instead parameterizations for the interior
pressure difference, for the pressure difference of the boundary layer and the zonal velocity
at the interface between these regions. A detailed comparison of two types of circulation
models (a two-layer model, referred to as LM, like the one by Stommel and Arons (1960)
and a general primitive equation model, referred to as PEM, with many levels) with their
zonally averaged counterparts demonstrates the feasibility of the closure.
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2.2. Straub’s dilemma

2.2 Straub’s dilemma

2.2.1 Dilemma in a simple layered model

We first consider the model by Stommel and Arons (1960) in a slightly extended form also
used by Greatbatch and Lu (2003) which is further referred to as layer model or LM. The
governing equations for this model are given by

∂tu− fv = −g′∂xh− r u (2.2)

∂tv + fu = −g′∂yh− r v (2.3)

∂th+H(∂xu+ ∂yv) = Q− λh (2.4)

where H denotes the mean thickness of the lower layer of a two-layer ocean and its pertur-
bation h, with a density difference δρ, between the two layers represented by the reduced
gravity g′ = gδρ/ρ0. The velocities u and v are the differences between the upper and
lower layer velocities. A prescribed deepwater source is denoted by Q and the interior
upwelling is parameterized by the term −λh in the thickness balance Eq. (2.4). The mo-
mentum balance Eq. (2.2) and Eq. (2.3) is taken linear, friction induced by sub-grid-scale
processes is represented by Rayleigh friction with coefficient r. For a detailed derivation of
the model equations see e.g. Gill (1982), section 6.2, or Greatbatch and Lu (2003). There
are two equations derived from Eq. (2.2) to Eq. (2.4) which we present for later use. The
momentum balance yields the vorticity balance

(∂t + r)(∂xv − ∂yu) = −f(∂xu+ ∂yv)− βv (2.5)

and using this equation to eliminate the divergence from the thickness balance we find

(∂t + λ)h− (H/f)(∂t + r)(∂xv − ∂yu)− (Hβ/f)v = Q (2.6)

which is the potential vorticity balance. Implementing the geostrophic approximation of
Eq. (2.2) and Eq. (2.3) to eliminated u and v, turns this into the familiar form of the
quasi-geostrophic vorticity equation

∂t(∇2h− h/R2) + β∂xh+ r∇2h− (λ/R2)h = −Q/R2 (2.7)
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Chapter 2. A dynamically consistent closure for zonally averaged ocean models

Figure 2.1: Numerical simulation of LM after 160 years of integration. (a) Layer thickness h in m
(contours) and velocity (arrows) in m s−1 with deepwater source Q localized in the north-western
corner. (b) Same as (a) but with deepwater source Q located at the equator y = 0 on the western
side. (c) Same as (a) but with Q at the south-western corner. (d) Zonally averaged layer thickness
h̄ in m for the experiment shown in (a). (e) Same as (d) but for the equatorial source. (f) Same
as (e) but for the southern source. (g) Total meridional transport in Sv (solid), transport in the
western boundary layer (dashed) and transport in the interior (dotted) for the experiment shown
in (a). (h) Same as (g), but for the equatorial source. (i) Same as (g), but for the southern source.
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2.2. Straub’s dilemma

where R = c/|f | is the baroclinic Rossby radius and c =
√
Hg′ the Kelvin wave speed.

The equation determines the long-term adjustment of the circulation by Rossby waves. It
also determines the steady state.

The potential vorticity equation reveals the existence of a western boundary layer of
the Stommel type with the familiar width δW = r/β, resulting from the dominant balance
between advection of planetary vorticity and the torque by the Rayleigh friction, βv =

−r∂xv or β∂xh = −r∂xxh. In the interior the planetary term β∂xh and the upwelling
term −λh/R2 dominate. Approaching the northern (or southern) rim of the domain, with
h→ const, v → 0 and Q ≡ 0, upwelling and the Rayleigh friction term r∂yyh must balance
in the steady state. This implies a meridional scale, δNS = R

√
(δh/h)r/λ where δh/h

the relative variation of h. These consideration can be used to construct an approximate
analytical solution of Eq. (2.7). Here, however, a numerical model will be used.

For the experiments with LM we have used the parameter values r = 2× 10−6 s−1,
λ = 1× 10−9 s−1, g′ = 0.02 m s−2, β = 2.3× 10−11 m−1 s−1 and H = 400 m which yields
c = 2.8 m s−1, R = 30 km (at y = 4000 km), δW = 100 km and δNS = 300 km. For the latter
δh/h ∼ 0.1 is used. The system is integrated on an equatorial β-plane and the horizontal
resolution is 20 km in the zonal and meridional directions. The zonal and meridional
extend of the model domain is 2500 km and 10 000 km, respectively. To demonstrate the
influence of the transport and pressure field on the location of the deepwater source, we
choose three different locations for Q. The results of the three experiments are shown in
Fig. 2.1. The location of the deep-water source is at the north western edge of the model
domain for Fig. 2.1a, at the equator at the western boundary for Fig. 2.1b, and at the
south western edge of the model domain for Fig. 2.1c. The lateral scale of Q is δW in both
directions. In each experiment two dynamical different regimes exist: a narrow western
boundary layer with a strong meridional flow, and a weak interior flow whose meridional
component is always poleward. The widths of the boundary layers at the western, northern
and southern rims confirm the above considerations.

In the interior the velocity field and the thickness contours are almost identical in all
three cases. This is because the Sverdrup balance

βv = (f/H)λh (2.8)

obtained from Eq. (2.6) holds to a good approximation for steady conditions and r/(βB)�
1, where B is the zonal width of the basin. We also need to know that h is related to Q
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Chapter 2. A dynamically consistent closure for zonally averaged ocean models

only in an integral sense, i.e.

λ

∫
hdxdy =

∫
Qdxdy (2.9)

in the integral over the whole model domain; however, the rhs of Eq. (2.9) has only contri-
butions from the western boundary region. From Eq. (2.8) it is clear that the meridional
interior transport is driven by the interior upwelling λh which is almost identical for the
three cases, i.e. almost uniform and of similar magnitude. The major differences occur
therefore only in the boundary current of the individual experiments which has to balance
the interior flow and the upwelling in the interior and the different inflows of the localized
deepwater source Q.

It is clear that the location and strength of the deepwater source Q in the thickness
equation determines the total transport in the lower layer, i.e. when Q is located at the
northern-western corner, the total meridional transport is southward in both hemispheres
of the domain, Fig. 2.1g (solid line), and it is anywhere northward for a deepwater source
Q located at the south-western corner of the domain, Fig. 2.1i, while the total transport is
polewards in both hemispheres for an equatorial source, Fig. 2.1h. The source Q drives a
total transport of about 5 Sv in the vicinity of the source in each case, which linearly reduces
due to the interior upwelling into the upper layer with increasing distance from the source.
Although the western boundary layer is much smaller than the total width of the basin,
the transport in the western boundary layer is of similar magnitude as the total transport.
It also has the same direction as the total transport, except for the region y < −2500 km,
|y| > 2500 km and y > 2500 km for the experiment with northern, equatorial and southern
source, respectively, where it opposes the total transport.

Since the zonal integral of h is dominated by the interior, the zonally integrated h

becomes independent of the location of the deepwater source Q. Consequently, h and in
particular the meridional gradient of h become independent of the location of Q, and thus
the sign and strength of the meridional transport is neither related to the zonal average of
h nor its meridional gradient. This statement is in contrast to the box model by Stommel
(1961) where the flow between the two boxes is parameterized by the meridional density
difference between the boxes, and also in contrast to the closures by Marotzke et al. (1988),
Wright and Stocker (1991) and Wright et al. (1998) which all depend on Eq. (2.1). To
summarize, the parameterization in the box model by Stommel (1961) and the closures
based on Eq. (2.1) are not consistent with the dynamics of the model by Stommel and
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Arons (1960). This inconsistency, "Straub’s dilemma", was first noted by Straub (1996).

2.2.2 The dilemma in primitive equations
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Figure 2.2: The upper row displays in (a) the meridional overturning streamfunction ψ (contour
interval is 0.5 Sv) and in (b) the zonally averaged temperature (contour interval is 0.5oC) of
PEM with a deepwater formation region at the northern boundary. The meridional overturning
streamfunction (contour interval is 2 Sv) and zonally averaged temperature (contour interval is
0.5oC) for an equatorial deepwater formation region is shown in (c) and (d), respectively. The
results are time averages over the last 100 years of a 200 years integration.

The independence of the meridional gradient of the zonally averaged thickness from
the meridional transport is not specific to layered models but is also found in a primitive
equation model (Viebahn and Eden (2010); http://www.ifm.zmaw.de/mitarbeiter/

prof-dr-carsten-eden/numerical-models/), referred to as PEM, with a similar config-
uration as the layered model (LM). In PEM we have neglected momentum advection (as
before), and, for simplicity, the only tracer is temperature. The model domain is identical
to the layered model, but there are 20 vertical levels of 50 m thickness, such that the do-
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main is 1000 m deep. PEM is forced by relaxation of temperature in the uppermost grid
box towards a target temperature, which is zonally and meridionally uniform except for
a small region of meridional width r/β (equivalent to the western boundary layer width)
at the northern or equatorial region with a 3 K smaller target temperature. This way a
northern or equatorial deepwater formation region is introduced as in the layered model.
A case with southern source is just a mirror of the one with northern source and therefore
not further discussed. The time scale of relaxation at the surface is 20 days. Convection
in case of unstable stratification is parameterized by setting the vertical diffusivity to very
large values. As in LM, there is no wind forcing, i.e. we focus here on the thermohaline
circulation. Friction is identical to the LM, except that we introduce in addition lateral
and vertical friction with viscosities of 3.2× 104 m2 s−1 and 1× 10−3 m2 s−1, respectively,
since otherwise unphysical oscillations on a short time scale develop. We use the Quicker
advection scheme (Leonard, 1979) for tracers and vertical diffusivity of 1× 10−4 m2 s−1 in
addition.

The steady solution of PEM, shown in Fig. 2.2, indeed has much resemblance to LM.
In the experiment with a northern source, there is a deep temperature minimum at the
equator and isopycnals below about 500 m depth are symmetric with respect to the equator,
bending towards the bottom and towards the poles (Fig. 2.2b). A similar "hill", symmetric
around the equator, can be seen in the experiment with the equatorial source (Fig. 2.2d),
although it is located more to the surface than at depth. Fig. 2.2 a and 2.2c also show the
meridional transports for both experiments with PEM by the meridional streamfunction
ψ with v̄ = −∂zψ. The surface forcing drives a volume transport of a couple of Sv in
both cases. In case of the northern source, there is southward flow at depth, almost
uniform upwelling in the interior and northward return flow at the surface. Sign, magnitude
and meridionally structure of the meridional transport is also very similar to LM in the
experiment with equatorial source (see Fig. 2.2c and 2.2d).

As for LM, the meridional gradient of the zonally averaged density (i.e. temperature)
or pressure (not shown) is similar in both experiments with PEM (compare Fig. 2.1d
with Fig. 2.2b and Fig. 2.1e with Fig. 2.2d for the case with northern and equatorial
deep water source, respectively) and is of opposite sign in both hemispheres. Their depth
dependence differs. The meridional transport, on the other hand, does not show any direct
dependency on ∂yp̄, with respect to the individual hemispheres or experiments, proving
the downgradient closures based on Eq. (2.1) to be wrong in primitive equation models as
well. The reason is of course the same as in LM, notably the zonally averaged pressure p̄
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is dominated by the interior zonal mean of p, which is in turn governed by the frictionless
Sverdrup relation in the interior.

Greatbatch and Lu (2003) increased the vertical mixing to unrealistic values in LM
and found that the zonally averaged thickness h̄ becomes dominated by the values in the
western boundary layer, such that h̄ resembles more and more the meridional transports.
We note here that introducing meso-scale eddy mixing results in a similar effect. However,
again unrealistically large values of the isopycnal thickness diffusivity are needed.

2.3 A consistent closure

We regard the closure for a zonally averaged model proposed by Wright et al. (1995) as
dynamically consistent. It is based on a meridionally integrated, zonally averaged balance
of vorticity (see Sec. 2.6). However, integrating the vorticity balance requires integration
constants to be specified in each hemisphere. Wright et al. (1995) locate these constants at
the northern and southern boundary of the domain and relate them to the interior flow at
the respective boundaries. The result is a non-local relation between the zonally averaged
pressure p̄ (or thickness h̄) and the average meridional flow, as detailed in Eq. (2.45)
of the Appendix. We have shown that the interior flow, and thus p̄ (or h̄), are nearly
independent of the deepwater convection region and the direction and magnitude of the
MOC. Since the choice of the integration constant determines the direction and magnitude
of the MOC, it appears therefore problematic to use the interior flow for the choice. We
therefore propose and evaluate a closure for zonally averaged models which avoids unknown
integration constants. The closure is developed for the shallow water and the primitive
equations.

2.3.1 Closure for the layer model

Instead of considering the vorticity balance in the interior and the western boundary layer
we simply use separate thickness and momentum balances averaged over these domains
and keep also all time derivatives. Zonal averages of variables over the whole basin are
indicated with overbars without an index, zonal averages over the boundary layer or the
interior carry an additional index b or i, respectively. The total meridional transport can
be obtained by

Bv̄ = Bbv̄b +Biv̄i (2.10)
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and the zonally averaged height by

Bh̄ = Bbh̄b +Bih̄i (2.11)

Here B, Bb and Bi denote the total basin width from the western to the eastern boundary,
the width of the western boundary layer and the width of the interior, respectively. Note
that the boundary layer width might be defined as a multiple of r/β. Obviously, Bb � Bi.

Motivation and evaluation of the closure

Averaging the system Eq. (2.2) to Eq. (2.4) over the western boundary at xW to the offshore
edge of the western boundary layer at xδ yields

∂tūb − fv̄b = −g′∆hb/Bb − rūb (2.12)

∂tv̄b + fūb = −g′∂yh̄b − rv̄b (2.13)

∂th̄b +H(∂yv̄b + uδ/Bb) = Q̄B/Bb − λh̄b. (2.14)

with ∆hb = h(x = xδ) − h(x = xW ) = hδ − hW . In the thickness balance the zonal
velocity uδ = u(x = xδ) at the interface between the interior and the boundary layer
appears. Furthermore, it was assumed in Eq. (2.14) that u(x = xW ) = 0 and the source
Q was located entirely in the western boundary layer. Likewise the respectively averaged
equations for the interior regime, extending from xδ to xE, are

∂tūi − fv̄i = −g′∆hi/Bi − rūi (2.15)

∂tv̄i + fūi = −g′∂yh̄i − rv̄i (2.16)

∂th̄i +H(∂yv̄i − uδ/Bi) = −λh̄i. (2.17)

with ∆hi = h(x = xE)−h(x = xδ) = hE−hδ. Here u(x = xE) = 0 is used. To allow for the
northern and southern boundary layers, described in section 2.2.1, the friction terms have
been retained though they are negligible in the actual interior. The pressure differences
over the respective domains, ∆hb and ∆hi, as well as the zonal velocity uδ have to be
parameterized. The resulting model will be referred to as ZALM (zonally averaged layer
model).
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Figure 2.3: (a) Thickness difference (in m) over the western boundary layer ∆hb (solid) and its
parameterization Eq. (2.23) (dashed) as function of y for the experiment with northern source.
(b) Same for ∆hi and its parameterization Eq. (2.21). (c) Zonal velocity at the offshore edge of
the boundary layer uδ (solid) and its parameterization Eq. (2.18) (dashed). All tuning coefficients
are set to one. Lower row (d), (e), and (f) Same but for experiments with equatorial source.

We start by assuming that uδ must be close to ūb, hence we put2

uδ
!

= γ1ūb (2.18)

in the thickness balances Eq. (2.14) and Eq. (2.17). Note that a linear increase of u within
the western boundary layer would yield γ1 = 2. However, u is not increasing linearly over
the western boundary layer (not shown) and we found that the best fit is obtained for
γ1 = 1.7 (see also Fig. 2.3c and Fig. 2.3f where l.h.s and r.h.s. of Eq. (2.18) are shown).
Next we demand that the thickness balance for the interior regime yields the averaged
form of the Sverdrup balance Eq. (2.8), assuming steady state and vanishing friction. To
insert v̄i from the momentum balance Eq. (2.15) into the thickness balance Eq. (2.17) we
compute the meridional divergence of v̄i from the zonal momentum balance Eq. (2.15),
which becomes

f∂yv̄i = (g′/Bi)∂y∆hi − βv̄i + r∂yūi + ∂t∂yūi (2.19)

2In this paper we denote by the " !="-sign that we introduce a parameterization.
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We note that the choice

g′∂y∆hi
!

= fuδ (2.20)

leads to an interior thickness budget in which only the βv-contribution, frictional and
tendency terms remain, i.e. to an interior Sverdrup balance analogous to Eq. (2.8) (as-
suming that βv dominates r∂yūi and ∂t∂yūi in Eq. (2.19)). Using Eq. (2.20) together with
Eq. (2.18) as parameterization of ∆hi, the integrated form this relation reads

g′∆hi = g′(∆hi)|y=0 + γ1

∫ y

0

fūbdy
′ (2.21)

The integration constant at y = 0 follows from the steady state zonal balance at the
equator,

g′(∆hi)|y=0
!

= −rBiūi(y = 0) (2.22)

Note that the Rayleigh model has the deficit that the equatorial field ūi(y = 0) is completely
decoupled from the rest. For this reason ūi(y = 0) in Eq. (2.22) is replaced by the mean
over three grid points across the equator. Note that the l.h.s and r.h.s. of Eq. (2.21) are
shown in Fig. 2.3b and Fig. 2.3e.

It remains to specify a parameterization for the pressure difference ∆hb = hδ−hW across
the boundary layer. We have experimented with a variety of closures for ∆hb analogous to
Eq. (2.20), i.e. motivated by the potential vorticity budget in the western boundary layer.
However, many possible forms for the closure, which often yield an excellent fit to the
respective variable in the zonally resolved model, turned out to lead to unstable numerical
integrations. The simple ansatz

∆hb
!

= γ2(h̄i − h̄b) (2.23)

with another tuning parameter γ2 of order one, on the other hand, yields stable integrations
in all cases which we have considered, and also a reasonable fit to ∆hb from the zonally
resolved model as discussed next (l.h.s and r.h.s. of Eq. (2.23) are shown in Fig. 2.3a
and Fig. 2.3d). Further, the results of the integrations with the resulting zonally averaged
model compare well with the zonally resolved counterparts, as discussed below, giving
confidence to the parameterization Eq. (2.23).
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Fig. 2.3 shows the western boundary thickness difference ∆hb and its parameterization
h̄i−h̄b, both diagnosed from the experiments with the layered model LM, shown in Fig. 2.1.
For the experiment with northern (southern) source, the parameterization fits well ∆hb

except for the southernmost (northernmost) part of the domain in the experiment with
northern (southern) source, where ∆hb becomes negative, while h̄i − h̄b stays positive.
A similar deviation in the sign of the parameterization can be seen in the experiment
with the equatorial source for large distances from the source. However, the structure
of the meridional changes in h̄i − h̄b are in all cases similar to ∆hb. We also note that
the quality of the parameterization depends on the exact definition of the width of the
western boundary layer. Here, we have used Bb = r/β with values for r and β as in
the numerical experiments. The middle panels of Fig. 2.3 displays ∆hi from the zonally
resolved model and its parameterization Eq. (2.21) which in fact agree very well. Fig. 2.3
also shows the outflow from the western boundary region, uδ, from the zonally resolved
model together with its parameterization ūb. Our choice Eq. (2.18) fits uδ well with respect
to the meridional structure and sign, while the magnitude is underestimated, which might
be resolved by tuning the parameter γ1 to values greater than one.

Performance of the zonally averaged layer model

The complete ZALM consists of Eq. (2.12) to Eq. (2.14) for the boundary layer and
Eq. (2.15) to Eq. (2.17) for the interior domain together with the parameterizations ex-
pressed in Eq. (2.18), Eq. (2.21) and Eq. (2.23). ZALM was programmed in Fortran 90
and the source code together with a detailed documentation of all numerical details can
be downloaded from http://www.ifm.zmaw.de/mitarbeiter/prof-dr-carsten-eden/

numerical-models/. The steady state of a numerical integration of ZALM is shown as
dashed lines in Fig. 2.4 and compared with the correspondingly averaged quantities diag-
nosed from LM. Note that the configuration of ZALM is identical to LM in all respects
(excepts for the zonal extent and the closure). Transports and thickness height are rea-
sonably well reproduced by ZALM for the northern and equatorial sinking case using
γ1 = γ2 = 1 and a boundary layer width of Bb = r/β. However, by changing the tuning
parameters to γ1 = 1.7, γ2 = 1.2 and Bb = 2r/β, the broad central ”hill’ in h̄ and the
structure at the northern and southern boundaries are even better reproduced (dotted
lines in Fig. 2.4). This improvement was found after some educated trials. Probably an
even better improvement could be reached by using a parameter optimization procedure
but this is not focus of this study.
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Figure 2.4: Comparison of results of LM and ZALM for the experiment with northern source in
(a) and (c) and for the experiment with equatorial source in (b) and (d). Shown is the zonally
averaged layer thickness h̄ in m (a) and (b) and meridional transports Bv̄ in Sv (c) and (d).
In (a) and (b) solid lines denote the results of LM , the dashed lines the results of ZALM with
γ1 = γ2 = 1 and Bb = r/β and the dotted lines the results of ZALM with γ1 = 1.7, γ2 = 1.2
and Bb = 2r/β. In (c) and (d) the thick lines are total transports (Bv̄) of LM (solid) and ZALM
(dashed) and the thin lines are interior transports (Biv̄i) of LM (solid) and ZALM (dashed). In
(c) and (d) the result of ZALM with γ1 = γ2 = 1 and Bb = r/β are shown; the results with the
tuned parameter set look similar.

We take next a closer look at the physical processes which establish the circulation in
ZALM. Kawase (1987) showed that the establishment of the deepwater circulation involves
basin-wide propagating Kelvin and Rossby waves: A thickness anomaly generated at the
northern boundary of the basin propagates along the western boundary southward in form
of a Kelvin wave; at the equator, the Kelvin wave turns into an equatorial Kelvin wave and
crosses the basin towards the east where it is again reflected and propagates at the eastern
boundary north- and southward; westward propagating long Rossby waves, emanating
from the eastern boundary, then transfer the signal into the interior of the ocean. These
processes are of course realized in LM and a very similar adjustment process can be found
in ZALM.
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It is easily confirmed that the dynamics in the western boundary layer of ZALM allow
for a Kelvin wave. With ūb ≡ 0 and vanishing friction, diffusion and forcing, the equations
become

∂tv̄b + g′∂yh̄b = 0 ∂th̄b +H∂yv̄b = 0 (2.24)

which yields the familiar wave speed c =
√
g′H. The zonal velocity is in geostrophic

balance. In a corresponding way, Kelvin waves exist for the interior regime of ZALM,
which are, however, attached to the eastern boundary in the zonally resolved model . Both
regimes also support meridionally propagating gravity waves which are coupled via the
pressure terms and the uδ-term in the thickness balances.

Because of the zonal averaging, equatorial waves and midlatitude Rossby waves appear
in a quite hidden way in ZALM. The Rossby wave response in midlatitudes is governed
by the potential vorticity equations for the boundary and interior regime derived from
Eq. (2.12) to Eq. (2.14) and Eq. (2.15) to Eq. (2.17) together with the parameterizations
expressed in Eq. (2.18), Eq. (2.21) and Eq. (2.23). We find, omitting again friction, diffusion
and forcing

∂t(h̄i −R2∂yyh̄i) + (βR2/Bi)h̄b = 0 (2.25)

∂t(h̄b −R2∂yyh̄b)− (fR2/Bb)∂y(h̄b − h̄i)− (βR2/Bb)h̄i = 0 (2.26)

with the Rossby radius R =
√
g′H/f 2. Here all tuning parameters of the parameterizations

are set to one. Note that τα = Bα/(βR
2) is the time that a baroclinic Rossby wave needs

to cross the respective region α = i, b. The corresponding time scale for the interior is
roughly 10 years in the northern part; it decreases towards the equator to several days
(7 days at y = 300 km). For the boundary layer, the time scale is considerably smaller
(by the factor Bb/Bi ' 25). The Rossby wave communication between the two regimes is
thus represented by an oscillation of the mean layer thicknesses h̄i and h̄b with a period
proportional to

√
τiτb. In addition there is a meridional propagation of the perturbation

with the correct Rossby wave speed, expressed by the meridional derivative terms in the
tendency terms.

To assess the temporal behavior, Fig. 2.5 shows h̄b and h̄i for ZALM in comparison to
LM from the start of both integrations. In the initial phase of both simulations the anomaly
in the interface height produced by the deepwater source is distributed via a Kelvin wave
propagating from the northern edge of the model domain along the western boundary
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Figure 2.5: Establishment of the circulation for LM (upper row) and ZALM (lower row) for an
experiment with a northern deep water source. (a) and (c) show h̄b (in m) as a function of time
and latitude for LM and ZALM, respectively. (b) and (d) show h̄i (in m) as function of time and
latitude for LM and ZALM, respectively.

towards the south. During this stage the interior is still quiet. The Kelvin wave reaches
the equator after approximately 20 days (see Fig. 2.5a and 2.5c) in both ZALM and LM. We
note that in ZALM the propagation speed of the wave response at the western boundary
depends to some extent on the western boundary width Bb. Increasing (decreasing) Bb

from r/β, the value used in Fig. 2.5, to larger (smaller) values, the southward propagation
speed decreases (increases) slightly. The reason is the increasing (decreasing) importance
of ūb for the dynamics, which should be zero for a pure Kelvin wave, but which is present
in both numerical integrations, reducing the southward propagation (Kelvin wave) speed.

The signal is then transported from the boundary layer into the interior (see Fig. 2.5b
and 2.5d). This is first achieved by the increasing imbalance of the Kelvin wave dynamics:
Approaching the equator, the geostrophic relation for v̄b cannot be sustained, and a zonal
velocity ūb must increasingly develop. This disturbance thus couples into the interior
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thickness balance and the resulting thickness perturbation spreads to the north and to the
south, involving the northward propagating Kelvin wave response at the eastern boundary
and zonally and meridionally propagating Rossby waves in the interior. The time scale of
this subsequent adjustment is also very similar in LM and ZALM.

2.3.2 Application to primitive equations
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Figure 2.6: Comparison of parameterized variables with the model result for PEM in the ex-
periment with a northern deep water source. The upper row shows ∆pb (a), ∆pi (b) and uδ (c)
in the zonally resolved model. The lower row shows the respective parameterizations: p̄i − p̄b
(d),

∫ y
0 fuδ dy

′ (e), and ūb (f). The contour intervals are 0.1 m2 s−2 in (a), (b), (d) and (e) and
0.1 cm s−1 in (c) and (f).

The application of the closure, discussed so far for the layered model, to primitive
equations is straightforward. Averaged separately over the western boundary layer and
over the interior, the equations become

∂tūα − fv̄α = −∆pα/Bα + F̄ u
α (2.27)

∂tv̄α + fūα = −∂yp̄α + F̄ v
α (2.28)

∂tb̄α + ∂y b̄αv̄α + ∂zw̄αb̄α = ∂zKα∂z b̄α − εαuδ b̄α/Bα (2.29)

∂yv̄α + ∂zw̄α = −εαuδ/Bα (2.30)
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with α = b, i indicating the boundary or interior part, respectively, and εb = 1 and εi = −1.
The (scaled) pressure p̄α is related to the buoyancy b̄α = −gρ̄α/ρ0 by the hydrostatic
relation ∂zp̄α = b̄α. Note that standing-eddy fluxes are neglected in Eq. (2.29). Friction is
contained in F u

α and F v
α and is specified below. Momentum advection has been neglected

as before for the layered model. Convection is parameterized by using large values of the
vertical diffusivity Kα in case of unstable stratification.

The pressure differences over the western boundary layer and the interior, ∆pb = p(x =

xδ) − p(x = xW ) and ∆pi = p(x = xE) − p(x = xδ), respectively, and the zonal velocity
uδ at the offshore edge of the western boundary need parameterizations. Analogous to the
closure in the layered model, we use

uδ
!

= γ1ūb , ∆pi
!

= ∆pi(y = 0) + γ1

∫ y

0

fūbdy
′ , ∆pb

!
= γ2(p̄i − p̄b) (2.31)

The interior pressure difference at the equator, ∆pi(y = 0), is again set by the steady
zonal momentum balance at the equator. The model includes a rigid lid surface boundary
condition and a diagnostic relation to find the surface pressure as usual in ocean general
circulation models. This zonally averaged primitive equation model will be denoted by
ZAPEM.

Fig. 2.6 shows ∆pb, ∆pi and uδ diagnosed in PEM and their parameterizations given by
Eq. (2.31). There is a good agreement concerning sign and structure of the variables and
their parameterizations. Only in the southernmost part the parameterization for ∆pb does
not show the correct sign, similar to what we have seen for LM (see Fig. 2.3a). It turns out
that an important parameter is the boundary layer width Bb, which we have chosen here
as Bb = 3.7r/β since this value seems to match best the boundary layer width in PEM.
Note that the boundary layer is broader than expected from the Rayleigh friction term
because we also have included harmonic friction in PEM, which leads to a wider boundary
layer.

ZAPEM was programmed in Fortran 90 and the source code as well as a documentation
of all important numerical details can be downloaded from http://www.ifm.zmaw.de/

mitarbeiter/prof-dr-carsten-eden/numerical-models/. The results of ZAPEM after
200 years of integration for two different surface boundary conditions are shown in Fig. 2.7.
The configuration and relevant parameters of ZAPEM are identical to the zonally resolved
model version (PEM) shown in Fig. 2.2, except for the zonal extent, the closure and
that we have omitted the harmonic zonal friction terms (meridional friction is kept) in
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Figure 2.7: Meridional overturning streamfunction ψ ((a), contour interval is 0.5 Sv) and zonally
averaged temperature T̄ ((b), contour interval is 0.5 ◦C) in ZAPEM after 200 years of integration
with a deepwater formation region at the northern boundary. (c) and (d) show ψ and T̄ for the
case of the equatorial deepwater source.

ZAPEM. Two different surface boundary conditions are implemented using the two different
target surface temperatures, as described in section 2.2 2.2.2. We found without parameter
optimization, i.e. for γ1 = γ2 = 1 and Bb = 3.7r/β already good agreement between
ZAPEM and PEM; we therefore made no further attempt of parameter tuning. However,
for the polar sinking case (see Fig. 2.7a and 2.7b) the overturning rate in ZAPEM is slightly
too strong while the vertical stratification is slightly too weak. For the equatorial sinking
(see Fig. 2.7c and 2.7d) the reverse statement holds.

For comparison we also present a primitive equation simulation with the inconsistent
closure of the form Eq. (2.1). We use the zonally averaged meridional momentum equation

∂tv̄ = −∂yp̄− γWSrv̄ + Ah∂yyv̄ + Av∂zzv̄ (2.32)

which is the time-dependent case of Eq. (2.1) and similar to the closure proposed by
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Figure 2.8: Effect of the inconsistent parameterization analogous to Eq. (2.1): Meridional over-
turning streamfunction ψ ((a), contour interval is 0.5 Sv) and zonally averaged temperature T̄
((b), contour interval is 0.5 ◦C) of the zonally averaged primitive equation model using the clo-
sure Eq. (2.32) after 200 years of integration. The deepwater formation region is located at the
northern boundary in (a) and (b). The case of an equatorial deepwater formation region is shown
in (c) and (d).

Marotzke et al. (1988) and Wright and Stocker (1991). Note that the Coriolis term is
omitted in the meridional momentum balance Eq. (2.32) and replaced by a large Rayleigh
damping term. Note also that horizontal and vertical friction is included here only for
a consistent comparison with the other simulations; there is no qualitative difference in
the results with and without these terms (not shown). The zonally averaged meridional
velocity v̄ from Eq. (2.32) is used in the budget for b̄ for which no further closure is needed;
w̄ is calculated from the continuity equation.

Fig. 2.8 shows results of an integration using Eq. (2.32) as closure with γWS = 40.
While the overturning circulation is similar to ZAPEM and PEM, the structure of the
buoyancy field reveals a major disagreement for the case of a northern deepwater source
(Fig. 2.8b). According to Eq. (2.1) the sign of the meridional buoyancy (pressure) gradient
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Figure 2.9: Model configuration with Southern Ocean included. Shown are the meridional stream-
function ψ in Sv (a) and (c) and zonally averaged temperature T̄ in ◦C (b) and (d) in the primitive
equation model (PEM in (a) and (b)) and the zonally averaged model (ZAPEM in (c) and (d))
after 200 years of integration.

cannot change if the streamfunction consists of one single overturning cell. This clearly
contradicts the results of PEM and ZAPEM. Only for the case of the equatorial deepwater
source, the buoyancy distribution (Fig. 2.8d) conforms better with that of ZAPEM and
PEM, although the northern and southern boundary layers as observed in ZAPEM and
PEM are not reproduced.

Fig. 2.9 illustrates the effect of wind forcing and a Southern Ocean part in simulations
with ZAPEM and PEM. It is straightforward to include wind forcing and/or zonally peri-
odic boundary conditions in the zonally averaged models ZALM and ZAPEM: The zonally
averaged wind stress is used as upper boundary condition in the vertical stress divergences
contained in F̄ u

α and F̄ v
α . For the zonally unbounded periodic part of the domain, as found

in the Southern Ocean, the zonal pressure differences are simply set to zero. Their dy-
namical role is replaced by the effect of meso-scale eddies, see e.g. Olbers and Visbeck
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Chapter 2. A dynamically consistent closure for zonally averaged ocean models

(2005). This process can be included by interpreting the momentum balance as a balance
for the residual velocity, i.e. the sum of the Eulerian mean velocity and the eddy-driven
(bolus) velocity (Andrews et al., 1987; Ferreira and Marshall, 2006; Viebahn and Eden,
2010). The effect of meso-scale eddy density mixing is then represented by vertical friction
with viscosity Kgmf

2/N2 where Kgm denotes the isopycnal thickness diffusivity according
to the Gent and McWilliams (1990) parameterization. We simply take a constant value of
Kgm = 1000 m2 s−1.

For the simulations shown in Fig. 2.9, we have chosen the same model domain as
before, but for the southern quarter of the basin we apply zonally periodic boundary
conditions to represent the Southern Ocean. Note that the setup is similar to that used
in Viebahn and Eden (2010): The wind stress over the Southern Ocean region is zonally
constant and sinusoidal in the meridional coordinate with a maximum of 2× 10−4 m2 s−2

located at the center of the periodic domain. The wind stress in the zonally bounded
part of the domain is set to zero. The surface boundary condition for buoyancy is a
relaxation towards a target buoyancy restoring function with a linear increase (with a
rate of 10−9 s−2) in the Southern Ocean region, a constant value from y = −2560 km to
y = 2560 km, and a linear decrease of the target buoyancy at the northern part (with the
same rate), which generates an equivalent temperature difference of about 20 K between
the equator and the polar boundaries. As before, the zonally averaged model (ZAPEM)
with our new closure are compared with a simulation with PEM in an identical (but zonally
resolved) setup (Fig. 2.9). ZAPEM again reproduce well PEM, although ZAPEM again
slightly underestimates the overturning and overestimates the stratification in comparison
with corresponding PEM experiment. We further note that temperature and salinity and
further passive tracers can be added as variables to the zonally averaged model (not shown).
Isopycnal mixing is also implemented as an additional mixing term in the tracer balances.
It is also straightforward to include variations in the ocean depth.

2.4 Summary and discussion

The box model by Stommel (1961) and the model by Stommel and Arons (1960) both aim
to describe the meridional overturning circulation of the ocean. Much of our knowledge
about this important aspect of the ocean’s circulation is based on these models. However,
Straub (1996) pointed out an inconsistency between the box model and the Stommel and
Arons (1960) model, which proofs the assumption Eq. (2.1) to be inconsistent, which
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is an inherent assumption in the box model of Stommel (1961) and also in many zonally
averaged ocean models (Claussen et al., 2002). We call this inconsistency Straub’s dilemma,
representing the fact that it appears not possible to infer the meridional transport from the
meridional gradient of the zonally averaged pressure. This is because the zonally averaged
pressure is dominated by the interior pressure which, on the other hand, is governed by
frictionless and linear dynamics expressed by the Sverdrup relation Eq. (2.8). Since this
vorticity balance is driven only by the interior upwelling, it is unrelated to the sign of the
meridional flow.

In this study, we present and evaluate a new and consistent closure for zonally averaged
models to replace the inconsistent closure given by Eq. (2.1), illustrated by numerical inte-
grations with a layered model version and a version based on the full primitive equations.
Following Wright et al. (1995), the model domain is divided into an interior part – governed
by the Sverdrup relation Eq. (2.8) – and a boundary layer part, where friction plays an
important role in the vorticity balance. In contrast to Wright et al. (1995), however, we
do not use the vorticity balances of the interior and the boundary layer directly, but we
use instead the zonally averaged, interior and boundary layer, momentum and thickness
(or buoyancy) budgets. The reason for doing so is that using the meridionally integrated
vorticity balances, as suggested by Wright et al. (1995), introduces the need to specify
an unknown integration constant. We find the choice of this integration constant to be
problematic, since it sets the sign of the meridional transport.

Therefore, we use the vorticity balance only to motivate the parameterization of the
zonal pressure difference over the interior, which is needed for the zonally averaged interior
zonal momentum balance. The zonal pressure difference across the boundary layer, on
the other hand, is parameterized by the difference of the zonally averaged pressure in
the interior and the pressure averaged over the boundary layer. The advective exchange
between the boundary layer and interior is parameterized using the mean zonal velocity
in the boundary layer. The standing eddy fluxes in the non-linear buoyancy budgets are
simply neglected. Both in the layered model and the primitive equation model we find
good agreement with respect to the evaluation of the parameterizations and model results
in terms of the mean simulation of the transports and the thickness (buoyancy) and its
time changes.

We advocate to replace the inconsistent closure Eq. (2.1) by the new closure discussed
in this study in zonally averaged ocean models. However, we do not imply that the box
model by Stommel (1961) is inconsistent as well. On the one hand, the interpretation of
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the meridional flow in the ocean as driven by the pressure difference between two boxes and
controlled by friction in a hypothetical pipe connecting the two boxes by Stommel (1961),
is certainly an incorrect oversimplification of the real dynamics. On the other hand, many
results and predictions of the box models can be reproduced by models including the correct
dynamics. This agreement might give some confidence in the box model, although we know
that its dynamics are incomplete and only a very rough analogue to the real dynamics.
We hope that the new zonally averaged model presented here can contribute to further
confirm and extend knowledge from the box model about the meridional flow in the ocean.

2.5 Appendix A: Some frequently used inconsistent clo-

sures

In this section and the next, we discuss some closures analogous to Eq. (2.1) using the layer
equations for simplicity, but the results easily transfer to primitive equations. We also
neglect wind forcing, which can, however, easily be incorporated. Marotzke et al. (1988)
proposed a closure by abandoning the Coriolis force and implementing (unrealistical) large
friction into the meridional momentum balance,

0 = −g′∂yh̄− rv̄ (2.33)

which leads directly to Eq. (2.1) with γ = 1/r. Here g′ is the reduced gravity, h the
layer thickness, v the meridional velocity component and h̄ and v̄ their zonal averages,
respectively. Note that we use here Rayleigh friction with friction coefficient r to connect
to the model by Stommel and Arons (1960) while Marotzke et al. (1988) originally used
vertical diffusion of momentum. However, the specific choice of the friction does not change
the fundamental relation Eq. (2.1).

A similar relation was proposed by Wright and Stocker (1991). They consider the zonal
momentum balance in the zonally averaged form, where the east-west pressure difference
hE − hW over the basin width B needs a parameterization. They choose

(hE − hW )/B = −γWS sin 2φ ∂yh̄ (2.34)

where φ denotes latitude and γWS a constant of order 1. The zonal pressure difference is
thus expressed in terms of the local meridional pressure gradient, which is also of the form
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Eq. (2.1) assuming that the meridional flow is in geostrophic balance, with a parameter γ
proportional to cosφ. This setting is supported by numerical experiments with a three-
dimensional (but highly simplified) circulation model, but as argued by Greatbatch and
Lu (2003), the support is because of the highly diffusive nature of the ocean model. Note
that the closure is not based on any dynamical concepts.

Wright et al. (1998) avoid a direct closure for the pressure difference hE − hW . The
zonal momentum balance is entirely abandoned. In fact, the zonally averaged meridional
momentum balance is written as

fū+ g′∂yh̄ = f(ū− ū(g)) = −rv̄ (2.35)

with Coriolis parameter f , the zonally averaged zonal velocity ū and its geostrophic com-
ponent ū(g) = −(g′/f)∂yh̄. To determine the meridional velocity v̄ from Eq. (2.35) the
ageostrophic zonal velocity ū− ū(g) must be known and thus has to be parameterized. For
this reason, Wright et al. (1998) divide the zonal extend B of the ocean again into a western
frictional boundary layer part of width Bb and an interior part of width Bi = B−Bb � Bb.
They write

B(ū− ū(g)) = Bi(ūi − ū(g)
i ) +Bb(ūb − ū(g)

b ) (2.36)

with the zonal velocities ūi and ūb averaged over the interior and western boundary layer,
respectively and where the superscript (g) denotes the geostrophic component of the ve-
locity. The interior flow is largely geostrophic and thus, Wright et al. (1998) assumed the
product Bi(ūi − ū(g)

i ) to be small. In the boundary layer, the flow has both a geostrophic
and an ageostrophic component, but u vanishes on the continental side of the layer and
should be largely governed by the geostrophic balance on the offshore edge of the western
boundary layer. The interior geostrophic component continues only moderately changed
into the boundary layer and to the actual boundary. Hence, the magnitudes of ūb − ū(g)

b

and ū(g)
b should be similar but of opposite signs in the boundary layer, and

B(ū− ū(g)) ≈ Bb(ūb − ū(g)
b ) ≈ −Bbū

(g)
i ≈ −Bbū

(g) (2.37)

should hold. Inserting the parameterized ageostrophic velocity into the meridional mo-
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mentum balance then yields

v̄ = −g
′Bb

rB
∂yh̄ (2.38)

which is identical to Eq. (2.1) with a suitable parameter γ = Bb/(rB). Note that this
closure is entirely of geometric nature: it uses the observed structure of a basin-wide
circulation with a narrow western boundary current but not any further dynamics.

2.6 Appendix B: The consistent closure by Wright et al.

(1995)

Wright et al. (1995) propose a dynamically consistent closure by splitting the ocean basin
into a western boundary layer and an interior and considered the vorticity budgets av-
eraged separately over both regions. Assuming a frictionless interior and using specific
parameterizations for friction in the western boundary layer, they derive a non-local rela-
tion between the meridional transport and zonally averaged pressure. Because the original
closure of Wright et al. (1995) needs the specification of integration constants which are
difficult to determine, we have presented in section 2.3 a generalization of the concept by
Wright et al. (1995), which does not need the specification of integration constants.

We found the derivation of the closure in Wright et al. (1995) unnecessarily complicated.
Here we give an alternative simplified derivation with less assumptions to arrive at a similar
equation. The analysis is again performed for the layer model and starts with the zonal
momentum balance in the zonally averaged from

− fv̄b = −g′(hδ − hW )/Bb − rūb (2.39)

−fv̄i = −g′(hE − hδ)/Bi − rūi (2.40)

which are identical to Eq. (2.12) and Eq. (2.15) neglecting the time tendency terms. Again,
indices W , E and δ denote that the values are taken at the western or eastern boundary
or at the interface between interior ocean and boundary layer, respectively. The overbars
denote zonal averages over the interior with additional index i or boundary layer with index
b, and Bb and Bi denote the width of the boundary layer and the interior, respectively. Only
a few approximations now lead to the closure by Wright et al. (1995). First, the friction
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term in Eq. (2.40) will be neglected. Because of the kinematic boundary condition at the
eastern boundary, uE = 0, it follows from Eq. (2.3) that ∂yhE = 0 or hE = const. Second,
the thickness perturbation hW along the western boundary in Eq. (2.40) is eliminated by
the meridional velocity vW using the steady meridional momentum balance at xW in the
form

0 = −g′∂yhW − rvW (2.41)

and vW is parameterized by v̄b. Note that uW = 0 was assumed. Next the friction coefficient
r in Eq. (2.41) is replaced by βBb using Bb = r/β as the boundary layer width according
to Stommel (1948). The meridional integral of Eq. (2.41) with starting point at y0 can be
used to eliminate hW from Eq. (2.39) to end up with

fv̄b − β
∫ y

y0

v̄bdy
′ = g′(hδ − hW (y0))/Bb + rūb (2.42)

where integration limit y0 is arbitrary. The meridional velocities v̄i and v̄b then follow from

fv̄b − β
∫ y

y0

v̄bdy
′ =

∫ y

y0

f∂yv̄bdy
′ = g′(hδ − hW (y0))/Bb + rūb (2.43)

fv̄i = g′(hE − hδ)/Bi (2.44)

and are seen to be both determined by hδ. Wright et al. (1995) propose the closure hδ = γh̄,
where h̄ denotes the zonally averaged thickness, and neglect the last term in Eq. (2.43)
related to friction. Both are quite good assumptions for the layered model outside the
northern and southern boundary layers (not shown). Note, however, that Eq. (2.43) only
determines the derivative of v̄b and thus it it is necessary to set an integration constant
for v̄b. One may take here v̄b(y0) which by Eq. (2.43) is obviously related to the unknown
hW (y0). Note that the frictionless interior balance leads to hE = hδ(y = 0) = γh̄(y = 0).

To arrive at the central equation of the Wright et al. (1995) model, Eq. (2.43) is divided
by f and integrated from y0 to y (in the same hemisphere to avoid the singularity at y = 0)
to give v̄b, involving now the unknown v̄b(y0). The total meridional flow is then governed
by

Bv̄ = Bbv̄b(y0) + γg′
∫ y

y0

f−1∂yh̄dy
′ − γ(g′/f)(h̄− h̄(y = 0)) (2.45)
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Wright et al. (1995) use as integration constant the boundary transport at the northern
and southern boundary, which they relate to the interior flow at the respective boundary
(Eq. (2.45) is used twice to circumvent the singularity at the equator). It becomes clear
that this closure implies that the information about the placement of the deepwater source
— which is invisible to the interior flow — must be contained in h̄ at the northern and
southern boundary layers.

Fig. 2.1d to Fig. 2.1f show indeed that h̄ at the northern (southern) boundary layer
for the experiment with northern (southern) sinking is slightly higher and reaches a larger
value at the northern (southern) end of the domain than in the experiment with equatorial
and southern (northern) sinking. It is this small difference which has to determine the sign
of the flow in the non-local relation between v̄ and h̄ of Wright et al. (1995). Consequently,
an evaluation (not shown) of the closure based on Eq. (2.45) in the layered model shows
that it is not able to predict v̄ using only h̄ from the model. The reason is that the assump-
tion leading to the closure, i.e. a frictionless interior flow, breaks down in the northern and
southern boundary layer. The unknown integration constant then determines the merid-
ional flow. We propose in section 2.3 a more robust way to determine the meridional flow,
which avoids Eq. (2.41) and thus the meridional integration and appearance of unknown
integration constants.
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Validating different parameterizations
for mixed layer eddy fluxes induced by
baroclinic instability

This chapter is under review in the Journal of Physical Oceanography
Citation: Brüggemann, Nils, Carsten Eden, 2013: Validating different parameteriza-

tions for mixed layer eddy fluxes induced by baroclinic instability. submitted to J. Phys.
Oceanogr.

51



Chapter 3. Validating different parameterizations for mixed layer eddy fluxes induced by
baroclinic instability

Abstract

In this study, we discuss two different parameterizations for the effect of mixed layer eddies,
one based on ageostrophic linear stability analysis (ALS) and the other one based on a
scaling of the potential energy release by eddies (PER). Both parameterizations contradict
each other in two aspects. First, they predict different functional relationships between the
magnitude of the eddy fluxes and the Richardson number (Ri) related to the background
state. Secondly, they also predict different vertical structure functions for the horizontal
eddy fluxes.

Numerical simulations for two different configurations and for a large range of different
background conditions are used to validate the parameterizations. It turns out that the
mean deviation between both, ALS and PER, and the diagnosed eddy fluxes is less than
a factor of two, varying Ri over three orders of magnitude. While ALS performs slightly
better in an equilibrated forced-balanced flow scenario, we obtain a slightly better perfor-
mance of PER for a spin-down scenario. In both scenarios, the vertical structure of the
meridional eddy fluxes predicted by ALS is more accurate than that of PER while the
vertical structure of the vertical eddy fluxes is well predicted by both parameterizations.

3.1 Introduction

High resolution satellite altimetry and numerical simulations of the near-surface ocean show
variability on scales much smaller than the typical Rossby radius of the ocean interior
(Munk et al., 2000; Klein et al., 2008). The dynamics on these scales are often called
submesoscales and it is assumed that ageostrophic processes have to be taken into account
to describe these phenomena. Submesoscale dynamics might predominantly occur within
the ocean mixed layer, where the influence of the atmosphere by convective and wind-
induced mixing leads to dynamic conditions which are not in quasi-geostrophic balance
anymore, although out of balance dynamics might also be met under certain circumstances
in the ocean interior. Haine and Marshall (1998) investigate different mechanisms which
play a role for the upper ocean mixed layer dynamics. All these processes act to re-stratify
the mixed layer and occur on length scales which are too small to be resolved by today’s
climate models. Consequently, Oschlies (2002) observed a bias in e.g. the mixed layer depth
and the surface ocean heat flux in coarser but eddying ocean models, suggesting that these
processes might also play an important role for e.g. biogeochemical cycles.

The discussion of ageostrophic instabilities by Stone (1966) shows that a key param-
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eter to distinguish between different kinds of instabilities is the Richardson number, Ri
– the ratio of the vertical buoyancy gradient divided by the square of the vertical shear
of horizontal velocity. While baroclinic instabilities can occur for all Ri, symmetric in-
stabilities are only met for Ri < 1 and Kelvin-Helmholtz instability for Ri < 0.25. In
addition, the growth rate of baroclinic and symmetric instabilities also depends on Ri. In
typical idealized model simulations of the spin-down of ocean fronts (e.g. Haine and Mar-
shall (1998); Boccaletti et al. (2007); Fox-Kemper et al. (2008); Bachman and Fox-Kemper
(2013)) symmetric instabilities start to re-stratify the ocean front if Ri < 1 and lead to
stable conditions with respect to symmetric instabilities (Ri ≥ 1). After this first phase
of re-stratification and after the geostrophic adjustment, baroclinic instabilities set in and
lead to a further spin-down of the front caused by baroclinic eddy buoyancy fluxes. Baro-
clinic instabilities occur in nearly every flow system with vertically sheared velocity and
are therefore important to be parameterized if ocean models are not able to resolve them.

Stone (1966) and Molemaker et al. (2005) find that even for small Ri characteristic for
the mixed layer, the dominating baroclinic instabilities are still geostrophically balanced to
a large extent, although they might also come in concert with secondary unbalanced insta-
bilities. This means that, if the mixed layer instabilities are predominantly in geostrophic
balance, they might be well described by mesoscale eddy parameterizations designed for
the interior of the ocean with large Ri (Green, 1970; Killworth, 1997; Eden and Great-
batch, 2008b; Eden, 2011). On the other hand, there are also parameterizations developed
for small Ri and thus ageostrophic baroclinic instabilities (Stone, 1972a) and parame-
terizations especially developed for the mixed layer (Fox-Kemper et al., 2008). All these
parameterizations need to somehow connect the magnitude of the eddy mixing to the mean
state. Since the Richardson number Ri is an important measure for the characteristics of
the mean state instabilities, it is not surprising that most parameterizations associate the
magnitude of the eddy fluxes by some kind of functional relationship to Ri. Hence, these
parameterizations can be distinguished by their dependency on Ri.

The parameterization of Fox-Kemper et al. (2008) is based on different physical argu-
ments than that of Stone (1972a) (in the quasi-geostrophic limit the latter is in fact very
similar to the one by Killworth (1997) and Eden (2011)) and thus suggests a different func-
tional relationship between the Richardson number and the amplitude of the eddy fluxes.
The aim of this study is to discuss differences in these two parameterizations for mixed
layer eddies. By comparing the different Ri-dependencies of the parameterizations with
the diagnosed dependency in a numerical model, we aim to clarify which Ri-dependency
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is more appropriate to parameterize the eddy fluxes. Since both parameterizations differ
also with respect to the vertical structure of the meridional eddy fluxes, we furthermore
compare the vertical profiles of the eddy fluxes from the numerical simulations and that of
the parameterizations. All these investigations are performed for two different scenarios,
an equilibrated flow scenario and the spin-down of a temperature front, and over a wide
range of values for Ri.

In the following, we will introduce the parameterizations of Fox-Kemper et al. (2008)
and Stone (1972a) in Sec. 3.2. Numerical simulations for two different scenarios are con-
sidered to validate these parameterizations. The first one is a baroclinically unstable flow,
where re-stratification is prevented by diabatic temperature restoring. A description of
the setup and a discussion of the results can be found in Sec. 3.3. The second scenario
is the spin-down of a baroclinically unstable temperature front. Section 3.4 provides a
detailed description of the setup and the results. Finally, Sec. 3.5 provides a discussion of
the obtained results and their implications for parameterizing mixed layer eddy fluxes in
numerical ocean models.

3.2 Parameterizations for mixed layer eddy fluxes

To discuss the influence of mixed layer eddy fluxes on the mean buoyancy budget, we
average the equation for buoyancy b

∂tb̄+∇ · ūb̄+∇ · u′b′ = D̄. (3.1)

For simplicity, we consider zonal averages, i.e. () denotes a zonal average and ()′ the
deviations to that average. In Eq. (3.1), the local change of mean buoyancy b̄ is given
by the advection of mean buoyancy by the mean velocity ū, the divergence of the eddy
fluxes u′b′ and diabatic processes denoted by D. While the mean flux ūb̄ can directly be
determined in a numerical ocean model, the eddy flux u′b′ needs to be parameterized.

As described in the following, the structure and strength of the eddy fluxes depends on
the background state of the flow. A non-dimensionalization of the Navier-Stokes equations
shows that basically three parameters determine the inviscid adiabatic equations, namely
the Richardson number Ri, the Rossby number Ro and the aspect ratio δ (see Sec. 3.6).
Therefore, it is convenient to derive parameterizations for the eddy fluxes in dependency
on these parameters.
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3.2.1 A parameterization based on linear stability analysis

The concept of using linear stability analysis to determine eddy fluxes is based on the
following ideas (see e.g. Green (1970), Stone (1972a), Killworth (1997) and Eden (2011)):
As long as perturbations to a mean state are small, all perturbation variables can be
obtained by solving a linearized set of equations for waves. From the solution for these
perturbation variables the eddy fluxes can be calculated from the correlations between
velocity and buoyancy perturbation. If the frequency for certain wave modes becomes
complex, there is an exponential increase or decay of these waves. The fastest growing
mode is expected to dominate over the others and therefore, this fastest growing mode is
assumed to be responsible for the eddy mixing.

As soon as the exponentially growing perturbations reach the same magnitude as the
background state, the linearization of the equation is certainly no longer a good approxi-
mation and non-linear effects become important. However, as long as there is no significant
energy cascade transporting energy to different scales, it is reasonable to assume that the
eddies retain their initial scales and structure and that it is possible to infer on the eddy
fluxes by the linear solutions. Nevertheless, it remains to find a proper scaling for the
magnitude of the eddy fluxes at the end of their exponential growth in the fully turbulent
regime.

Stone (1972a) argues that the exponential growth of the wave is stopped as soon as
non-linear effects become important. Thus, the perturbation velocity v′ takes the same
order of magnitude as the background velocity and v′ ∝M2H/f yields the scaling for the
eigenvectors. A different idea to scale the amplitude of the eigenvectors is suggested by
Killworth (1997) who suggests to use the time and length scale of the fastest growing mode
to scale the meridional velocity component v′. For quasi-geostrophic conditions (i.e. large
Ri), constant meridional and vertical buoyancy gradients M2 and N2, respectively, and
vanishing planetary vorticity gradient, the growth rate σmax of the fastest growing mode
and the corresponding wave number kmax can be derived as follows (Eady, 1949):

kmax ≈ 1.6L−1
r , σmax ≈ 0.3

f√
Ri

(3.2)

where Lr = NH/f denotes the Rossby radius and Ri = N2f 2/M4 the Richardson number
for a flow in geostrophic balance with depth H. Applying the scaling of Killworth (1997)
then yields v′ = σmax/kmax ≈ 0.25M2H/f and therefore, basically the same scaling as
suggested by Stone (1972a).
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Figure 3.1: (a) Growth rate inferred from linear stability analysis as a function of the
along-stream wave number k for the solution by Eady (black) and Stone (grey) for Ri = 1
(dashed-dotted), Ri = 10 (dashed) and Ri = 100 (solid). Maximum growth rates σmax at
wave numbers kmax are indicated by circles. (b) and (c) denote the vertical profiles of v′b′
and w′b′, respectively as determined by Eq. (3.3) (dashed), Eq. (3.6) (solid) and Eq. (3.9)
(dashed-dotted) for Ri = 1 (dashed line in (c) is nearly indistinguishable similar to the
dashed-dotted line). (d) Maximum of the eddy fluxes v′b′ (black) and w′b′ (grey) as a
function of Ri (line styles are the same as in (b) and (c)).

Following the ideas of Stone (1972a) and Killworth (1997), it is possible to calculate
exact expressions for the eddy fluxes of the Eady (1949) model as detailed in Sec. 3.7:

v′b′

H2f 3
= −1.9CE

√
Riα3,

w′b′

H2f 3
= CE

1√
Ri
µE(z)α2 (3.3)

where CE denotes a tuning constant of order one and α = Ro/δ is the ratio between the
Rossby number Ro = U/(fL) and the aspect ratio δ = H/L for a flow with velocity scale
U and horizontal and vertical length scales L and H, respectively. While v′b′ is vertically
constant, the vertical dependency of w′b′ is denoted by µE(z) which has a maximum of one
at z = −H/2 and is given by

µE(z) =
cosh

(
kmaxLr

(
2z
H

+ 1
))
− cosh (kmaxLr)

1− cosh (kmaxLr)
. (3.4)

This kind of closure was already successfully implemented and validated in numerical ocean
models in Killworth (1997), Eden (2011) and Eden (2012) for general profiles of N2 and
M2 and including also the planetary vorticity gradient.

Within the mixed layer, especially at fronts, strong vertical shears and weak stratifica-
tions are likely to occur such that Ri becomes small and ageostrophic processes have to be
taken into account. For the ageostrophic equations, it is no longer possible to find analyti-
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3.2. Parameterizations for mixed layer eddy fluxes

cal solutions as for the quasi-geostrophic Eady problem even for constant N2 and M2 and
vanishing planetary vorticity gradient. Stone (1966) derives approximative solutions for
the ageostrophic linearized equations and finds quite similar solutions to the ones of Eady
(1949) for Ri ≥ 1. For the fastest growth rate σmax and the corresponding wave length
kmax, Stone (1966) obtains

kmax =

√
Ri

1 + Ri

√
5

2
L−1
r , σmax =

√
Ri

1 + Ri

√
5

54

f√
Ri
. (3.5)

The only difference between these results and the ones from Eady (1949) is an additional
factor

√
Ri/(1 + Ri) which approaches one for large Ri. Fig. 3.1a indicates that there is

hardly any disagreement between the solutions of Eady (1949) and Stone (1966) for large
Ri, while for smaller Ri the factor

√
Ri/(1 + Ri) becomes more and more important (see

e.g. dashed dotted lines in Fig. 3.1a for Ri = 1).

As before, it is possible to derive the eddy fluxes by linear stability analysis up to a
proportionality constant from the correlations of the eigenvectors for v′, w′ and b′. If we use
the same scaling as suggested by Killworth (1997), namely assuming

√
v′v′ ∝ σmax/kmax,

we obtain

v′b′

H2f 3
= −8

5
CS
√

1 + Riα3,
w′b′

H2f 3
= CS

1√
1 + Ri

µS(z)α2, (3.6)

where CS denotes another tuning parameter of order one. Formally, these equations are
valid only in the long wave limit as noted by Stone (1972b). We use this approximative
form and compare the eddy fluxes obtained by Eq. (3.6) with numerical solutions of the
eigenvalue problem below and find good agreement. As in Eady’s solution and depicted in
Fig. 3.1b, there is no vertical dependency of v′b′ in Stone’s solution. The vertical structure
of w′b′ denoted by µS(z) is derived by Stone (1972b) as

µS(z) = −4
z

H0

(
z

H0

+ 1

)
(3.7)

and therefore only marginally deviates from the hyperbolic structure of w′b′ obtained for
the Eady problem (see Fig. 3.1c).

Although the solution of Stone (1972a) accounts for ageostrophic effects, it is quite
similar to the one obtained by Eady (1949) for the quasi-geostrophic limit of large Ri.
Fig. 3.1d shows the maximum of the eddy fluxes v′b′ (solid curves) and w′b′ (dashed curves)
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for both parameterizations over a large range of values for Ri. There are only differences for
Ri = O(1) between Eady’s and Stone’s solution due to the additional factor

√
Ri/(1 + Ri)

in Stone’s solution. For large Ri this factor approaches one and Stone’s solution becomes
identical to the one of Eady (1949).

3.2.2 The parameterization of Fox-Kemper et al. (2008)

Fox-Kemper et al. (2008) derive a parameterization for the spin-down of a baroclinic density
front with typical mixed layer conditions by scaling the magnitude of the potential energy
release. Their key assumption is that the potential energy release (∆PE = g/ρ0∆ρ∆z)
is achieved by the vertical eddy flux. Thus, they assume ∆PE/∆t ∝ −∆z(∆yM2 +

∆zN2)/∆t = −w′b′, where ∆z and ∆y denote the vertical and horizontal eddy length
scales, respectively, and ∆t the eddy time scale. To infer these eddy length and time
scales, the following assumptions are made:

1. The eddy time scale is an advective time scale ∆t ∝ ∆y/Ue, where Ue denotes the
eddy velocity.

2. The eddy velocity is set to be proportional to the thermal wind velocity Ue ∝ M2

f
H.

3. The eddy depth scale ∆z is assumed to be proportional to the mixed layer depth H.

4. The eddy fluxes are along surfaces inclined by half of the isopycnal slope, i.e. ∆z
∆y

=

−1
2
M2

N2 as can be inferred from parcel theory (Haine and Marshall, 1998).

The second assumption is also made by Stone (1972a) and the assumptions three and
four do not contradict the results of the linear stability analysis. Therefore, the param-
eterizations of Stone (1972a) and Fox-Kemper et al. (2008) differ only with respect to
the first assumption1: While this assumption of Fox-Kemper et al. (2008) leads to a time
scale Te = Ri/f , the scaling by Stone (1972a) as well as that by Killworth (1997) suggest
Te =

√
1 + Ri/f .

The assumptions discussed so far yield only the magnitude of the eddy fluxes and Fox-
Kemper et al. (2008) use the vertical structure µ(z) obtained from the linear stability

1Note that assumption four only corresponds to Stone (1972a) at the steering level.
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analysis for w′b′2. To obtain v′b′, Fox-Kemper et al. (2008) assume in correspondence to
assumption four v′b′ = −2w′b′N2/M2 and thus obtain

v′b′

H2f 3
= −2CFµF (z)Riα3,

w′b′

H2f 3
= CFµF (z)α2, (3.9)

where CF is another tuning parameter of order one.

3.2.3 Comparison of the parameterizations

There are two principal differences between the parameterization of Fox-Kemper et al.
(2008) Eq. (3.9) and the one based on linear stability analysis given by Eq. (3.6). The
first one is a different dependency of the eddy fluxes on Ri resulting from assumption one
of the last section. This means that even if both solutions are accurately tuned for a
certain Ri, there might be a difference in the magnitude of the eddy fluxes for different
Ri. Fig. 3.1d shows the maxima of the eddy fluxes v′b′ and w′b′ from Eq. (3.9) together
with the eddy fluxes of the quasi-geostrophic linear stability problem Eq. (3.3) and the
ageostrophic problem Eq. (3.6). Here, the tuning constants are chosen in the way that both
parameterizations agree best for Ri = 1. For Ri = 100, however the difference between both
parameterizations is roughly one order of magnitude. Choosing different tuning coefficients
will shift the curves parallel to the vertical axis in the double logarithmic plot, but there
will always remain a large difference for certain Ri.

The second difference concerns the vertical structure of the horizontal eddy flux v′b′.
Because Fox-Kemper et al. (2008) assume w′b′/v′b′ = 0.5M2/N2 everywhere and not only
at the steering level, they end up with a parabolic structure function for v′b′ that vanishes
at the surface and the mixed layer base. Contrary, linear stability analysis suggests a
constant horizontal flux throughout the whole mixed layer (see Fig. 3.1b).

The differences between both parameterizations become more illustrative if we consider
a down-gradient closure for the horizontal eddy fluxes and the ratio of the horizontal and

2In fact Fox-Kemper et al. (2008) use a higher order solution in the zonal wave number for the linear
stability analysis than that of Stone (1972b) and apply to this solution the large Ri limit:

µF (z) = −4
z

H0

(
z

H0
+ 1
)(

1 +
5
21

(
2z
H0

+ 1
)2
)
. (3.8)
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the vertical eddy fluxes

v′b′ = −K∂y b̄, w′b′ = γv′b′ (3.10)

with the lateral diffusivity K = −v′b′/∂y b̄ and the eddy flux ratio γ = w′b′/v′b′. In order
to parameterize K, it is common to use mixing length theory and to express K as the
product of a typical eddy velocity Ue and a length scale Le

K ∝ UeLe. (3.11)

Both, the parameterization of Fox-Kemper et al. (2008) and the parameterization based
on linear stability analysis assume that the eddy velocity scale is proportional to the ther-
mal wind velocity and that the eddy fluxes are along surfaces inclined by s/2 at the
steering level, where s = −M2/N2 denotes the isopycnal slope. Thus, the difference
between both parameterizations concerning the amplitude of the eddy fluxes can be iden-
tified from a different choice of the eddy length scale. Linear stability analysis predicts
Le =

√
(Ri + 1)/RiLr and therefore, a length scale essentially given by the Rossby radius

Lr with only small deviations for Ri = O(1). In contrast, Fox-Kemper et al. (2008) use
Le = H0N

2
0/|M2

0 | =
√
RiLr as a characteristic eddy length scale, i.e. a length scale that

deviates from the parameterization based on linear stability analysis.

One might now construct the amplitude of the eddy fluxes v′b′ and w′b′ with Eq. (3.10)
and Eq. (3.11). By assuming Ue = M2H/f , γ ≈ 1/2s and L0 =

√
RiLr or L0 =√

(Ri + 1)/RiLr, we obtain either the parameterizations of Fox-Kemper et al. (2008) or the
one based on linear stability analysis, respectively. Instead of composing the lateral diffu-
sivity by a velocity and a length scale, it would also be possible to compose it by a length
and a time scale Te. If we assume the latter to be Te = Le/Ue, we obtain Te =

√
Ri + 1/f0

for the parameterization based on linear stability analysis and Te = Ri/f0 for the pa-
rameterization of Fox-Kemper et al. (2008). Both time scales as well as the length scales
differ.

In an adiabatic steady state, the diapycnal component of the eddy fluxes will vanish
(except for a possible rotational component) and γ will be equal to the isopycnal slope as
assumed by e.g. Gent et al. (1995), Killworth (1997) and Eden (2011). In the presence
of small scale diabatic processes, however, there will be a net diapycnal transport of the
eddies (Tandon and Garrett, 1996; Eden and Greatbatch, 2008a). Because the mixed
layer is predestinated to those diabatic processes, it is reasonable to expect non-vanishing
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3.3. Baroclinic instabilities in a forced-dissipative scenario

diapycnal eddy fluxes and diapycnal diffusivities also in equilibrated scenarios for the mixed
layer. In fact, we explicitly apply diabatic conditions to prevent the buoyancy front from
slumping down in our equilibrated scenarios. Therefore, it seems more promising to assume
γ < s than γ = s for our spin-down scenario but probably also for the real mixed layer.

If the system is not steady, as it is the case for a re-stratifying density front, γ is likely to
be smaller than the isopycnal slope even if the flow is completely adiabatic. Green (1970)
and Stone (1972a) suggest that γ takes values at the steering level close to 1/2s. Similarly,
Fox-Kemper et al. (2008) suggests γ = 1/2s for the whole vertical profiles of v′b′ and w′b′

and not only at the steering level. As detailed below, we also expect diabatic effects to
occur in our spin-down scenario due to numerical diffusion. Therefore, we cannot expect
a completely adiabatic re-stratification process in the spin-down scenario. However, as
mentioned above, this scenario is probably not unrealistic with respect to the ocean mixed
layer, where diabatic processes will certainly accompany the re-stratification by baroclinic
instabilities.

These considerations bring us to the following questions, which we aim to answer by
the diagnosis of numerical model results:

1. Which dependency of v′b′ and w′b′ on Ri is more appropriate, the one by Eq. (3.9)
or the one based on linear stability analysis given by Eq. (3.6)?

2. What is the vertical structure of the horizontal eddy fluxes v′b′? A constant profile as
suggested by the linear stability analysis or a parabolic shaped structure as suggested
by Fox-Kemper et al. (2008)?

3. Are there qualitative differences of the parameter dependency of the eddy fluxes in
a spin-down scenario in comparison to an equilibrated scenario?

3.3 Baroclinic instabilities in a forced-dissipative sce-

nario

3.3.1 Numerical simulations

To simulate mixed layer instabilities, we use the MIT General Circulation Model (MIT-
gcm, Marshall et al. (1997)). The configuration resembles that of Eady (1949) and Stone
(1966). Our model domain consists of a reentrant channel with periodic boundary condi-
tions at zonal boundaries and solid walls at meridional boundaries. For simplicity, we use
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Symbol meaning value

(nx, ny, nz) number of grid points in x, y and z direction (120, 120, 40)
H0 depth of the basin 200 m
f0 Coriolis parameter 7× 10−5 s−1

U0 zonal velocity α0H0f0

M0 meridional buoyancy gradient
√
α0f0

N0 vertical buoyancy gradient α0

√
Ri0f0

kmax wavenumber of fastest growing wave
√

5/2/(
√

1 + Ri0α0H0)

σmax growth rate of fastest growing wave
√

5/54/
√

1 + Ri0f0

∆x horizontal resolution 8π/kmax/nx
A4 biharmonic horizontal viscosity U0dx

3/20
Av harmonic vertical viscosity U0dz/200
λu linear drag coefficient 0.5σmax

λT inverse restoring timescale 2σmax

Table 3.1: Overview of model parameters.

temperature as the only active tracer and a linear equation of state, thus, temperature and
buoyancy are equivalent. In order to test the parameterization for different Ri and α, we
vary vertical and meridional buoyancy gradients N2

0 and M2
0 to obtain specific values for

Ri0 and α0 in accordance to

Ri0 =
N2

0 f
2
0

M4
0

, α0 =
M2

0

f 2
0

. (3.12)

N2
0 and M2

0 are used to initialize the temperature field T0. The initial velocity is chosen to
be in thermal wind balance with the initial temperature. A uniform depth of H0 = 200 m

and Coriolis parameter of f0 = 7× 10−5 s−1 are applied throughout all simulations. The
domain width is chosen equal in zonal and meridional direction and allows for four wave
lengths of the most unstable wave to fit in the domain. Since we use a resolution of 120
grid points in the horizontal, the horizontal resolution varies in dependency on Ri0 and α0

(see Tab. 3.1). In contrast, we use a constant vertical resolution of 40 layers and 5 m depth
for each experiment.

The described setup is baroclinically unstable and small perturbations that we add to
T0 exponentially grow to eddies which drain their kinetic energy out of the mean state by
relaxing the temperature front. In order to obtain an equilibrated scenario, we apply a
temperature forcing that counteracts the re-stratification effect. This forcing is achieved by
a restoring of the zonal mean temperature T̄ to the target temperature T0 which is identical
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Figure 3.2: Instantaneous horizontal sections of temperature (a, d), vorticity ζ = ∂xv−∂yu
(b, e) and horizontal velocity divergence ∆ = ∂xu + ∂yv (c, f), both normalized by f0, at
t = 160σ−1

max for an experiment with Ri0 = 1 and α0 = 4 in (a) - (c) and an experiment
with Ri0 = 1000 and α0 = 4 in (d) - (f).

to the initial condition with an inverse time scale λT = 2σmax, where σmax is the growth rate
determined by Eq. (3.5) with Ri0 and α0. This means we add a tendency term λT (T0− T̄ )

to the temperature conservation equation in the model. Such kind of restoring has the
advantage that the zonal mean front is preserved without damping zonal deviations. In
this sense the method is similar to the spectral nudging of Thompson et al. (2006). The
restoring is diabatic and yields diapycnal fluxes of buoyancy which are certainly present
within the ocean mixed layer, and we consider the zonal restoring as a surrogate for more
realistic diabatic processes that would retain a surface buoyancy front in the real ocean.

The instability of the flow yields a conversion of potential energy into eddy kinetic
energy. Due to the restoring, there is a permanent source of energy which has to be balanced
by dissipation to obtain an equilibrated energy budget. Here, we use a Rayleigh damping
of zonal and meridional momentum to extract kinetic energy and to damp the inverse
energy cascade at the largest scales. The applied time scale is chosen to be proportional to
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Figure 3.3: (a) Global mean total energy (grey dashed), mean kinetic energy (black solid),
eddy kinetic energy (grey solid) and available potential energy (black dashed) as a function
of time for an experiment with Ri0 = 1 and α0 = 4. (b) diagnosed Ri (solid) and α (dashed)
normalized by their initial values Ri0 and α0 as a function of time. Time is scaled by the
initial growth rate σmax. Vertical black lines indicate the time point from which time
averages are applied (see text).

the maximum growth rate, i.e. the drag coefficient is set to λu = 0.5σmax. In addition to
the linear drag, we use biharmonic horizontal and harmonic vertical friction with no-slip
boundary conditions at the side walls and free-slip at the bottom (viscosities can be found in
Tab. 3.1). Temperature is advected by a third order upwind advection scheme. No explicit
diffusion is used, except in statically unstable conditions (N2 < 0), where an implicit
vertical diffusion with diffusivity of 1× 10−2 m2 s−1 parameterizes convection. Since we
do not expect hydrostatic effects to become relevant for the parameter range chosen in
this study, we use the hydrostatic version of the MITgcm (tests with the non-hydrostatic
version do not yield different results).

Snapshots of the equilibrated flow are shown in Fig. 3.2a - c for one simulation dom-
inated by ageostrophic dynamics (Ri0 = 1 and α0 = 4) and in Fig. 3.2d - f for one with
predominantly quasi-geostrophic balanced dynamics (Ri0 = 1000 and α0 = 0.25). The
snapshots of temperature in Fig. 3.2a and d indicate large eddy activity. Typical for ageo-
strophic dynamics, the simulation with Ri0 = 1 and α0 = 4 features a relative vorticity
ζ = ∂xv− ∂yu shown in Fig. 3.2b which is much larger than f0 within the spiral-like struc-
tured eddies indicating large local Rossby numbers. Within these regions of large relative
vorticity, values of the horizontal velocity divergence ∆ = ∂xu+ ∂yv are of the same order
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as ζ (Fig. 3.2c). In the simulation with Ri0 = 1000 and α0 = 0.25, smaller values of ζ occur
and ∆ is much smaller than the vorticity (Fig. 3.2e and f), which is typical for a flow in
quasi-geostrophic balance.

Fig. 3.3a shows a time series of globally averaged available potential energy APE, eddy
kinetic energy EKE, mean kinetic energy MKE and total energy TE = APE+EKE+MKE
for Ri0 = 1 and α0 = 4. APE is defined as the difference between the globally integrated
potential energy zb and a minimum potential energy state. For the latter, we adiabatically
rearrange the water parcels such that all horizontal gradients vanish and calculate the global
mean potential energy of this state. Mean kinetic energy is calculated by MKE = 1/2(ū2 +

v̄2) where ū and v̄ denote zonal averages of the zonal and meridional velocity components
u and v, respectively. Eddy kinetic energy is determined by EKE = 1/2(u′2 + v′2), with
u′ = ū− u and v′ = v̄ − v.

After a period of approximately 20σ−1
max, the simulation has reached a statistical equi-

librium in which the global mean potential and kinetic energy are fluctuating around their
time mean value without showing a systematic trend. In Fig. 3.3b, time series of global
mean Ri and α are shown, both parameters are scaled by their initial value Ri0 = 1 and
α0 = 4. While there is hardly any change in α, Ri increases by a factor of seven after
baroclinic instability sets in. A time average from t = 40σ−1

max to t = 160σ−1
max (indicated by

the vertical black lines in Fig. 3.3) is applied for each simulation to obtain diagnosed values
for Ri and α which are used to identify the parameter dependency of the eddy fluxes. For
the experiment shown in Fig. 3.3 this yields Ri = 6.9 and α = 3.7. Note that the ratio
Ri/Ri0 becomes smaller in experiments with larger Ri (not shown).

3.3.2 Validating the parameterizations

To investigate the dependency of the eddy fluxes on Ri and α, we perform different experi-
ments by varying the initial and restoring temperature T0. All other parameters are chosen
as detailed in Tab. 3.1. Each experiment is integrated over a time period of more than
150σ−1

max. Time mean values of Ri and α are derived as described in the previous section
where we use global and time averages of M2 and N2. This time average is performed
over a period of more than 100σ−1

max as indicated in Fig. 3.3 by the vertical black lines
and the meridional mean is limited to regions with y > 0.1Ly and y < 0.9Ly, where Ly
denotes the basin width in order to exclude boundary effects. Eddy fluxes are determined
by considering a zonal and time mean of v, w and b and the corresponding deviations to
determine v′b′ and w′b′. An eddy streamfunction Ψed and a diapycnal diffusivity Kdia are
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calculated from the diagnosed v′b′ and w′b′ as

Ψed =
v′b′∂z b̄− w′b′∂y b̄∣∣∇b̄∣∣2 , Kdia = −v

′b′∂y b̄+ w′b′∂z b̄∣∣∇b̄∣∣2 . (3.13)

To compare the diagnosed v′b′, w′b′, Ψed and Kdia with the vertical profiles of the parame-
terizations, we take an additional meridional average of the respective quantities where we
again exclude the meridional boundaries as mentioned above.

The parameterizations for v′b′ and w′b′ based on the analytic solution of the linear
stability problem (ALS) by Stone (1972a) and that of Fox-Kemper et al. (2008) (FFH)
are given by Eq. (3.6) and Eq. (3.9), respectively. In addition, we parameterize the eddy
fluxes by a third method very similar to ALS, namely a numerical solution of the linearized
eigenvalue problem (NLS) for a given background state instead of using the approximative
solution by Stone (1972a). In NLS,M2 andN2 are allowed to vary vertically. Details on the
method can be found in Thomsen et al. (2014). As before for ALS, we scale the eigenvectors
by assuming v′ = CNσmax/kmax where σmax and kmax are now determined numerically and
CN is a tuning factor. Since the computational costs of this method are very high it is
probably not appropriate to be implemented in a numerical ocean model. Nevertheless, a
consideration of NLS enables us to differentiate if differences between diagnosed eddy fluxes
and ALS are due to approximations made in Stone (1972a) and how much improvement
could be achieved with more accurate eigenfunctions.

We determine CS and CF by a least square fit between diagnosed and parameter-
ized eddy fluxes. Since we are aiming to achieve a variation of the eddy fluxes over
several orders of magnitude, we apply a logarithmic weighting and therefore minimize∑

i(log10(yi) − log10(xi) − log10(C))2 to obtain the fitting constant C = CS or C = CF

where yi denotes the diagnosed v′b′ and w′b′ and xi the parameterized counterpart of ALS
or FFH, respectively, for an experiment i characterized by a certain Ri0 and α0. With this,
we obtain CS = 1.1 and CF = 0.15 for the corresponding parameterizations. Note that
Fox-Kemper et al. (2008) find CF = 0.06 for their spin-down simulations, thus a signifi-
cantly smaller value. In Fig. 3.4, we show the scaled parameterizations for v′b′ and w′b′

for the three parameterizations as a function of the diagnosed v′b′ and w′b′. The closer
the points are to the black diagonal line the better the diagnosed eddy fluxes match their
parameterized counterparts. Note that different tuning coefficients would mean a shift
parallel to the vertical axis of the points in Fig. 3.4.

In principle, the quality of the single parameterizations might be inferred from the
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Figure 3.4: (a)-(c) Fitting of the different parameterizations for v′b′ (dots) and w′b′

(crosses). Tuning parameters are obtained by a least square fit as CS = 1.1 in (b) and
CF = 0.15 in (c).

scatter of the points in Fig. 3.4, but for a more detailed analysis we want to consider the
Ri- and α-dependency separately. Plotting the maximum values of the profiles of v′b′,
w′b′, Ψed and Kdia against Ri in Fig. 3.5a - d for experiments with α0 = 4 shows the
dependency of the eddy fluxes on Ri. A linear regression in these double logarithmic plots
yields the exponents κ of the leading order Riκ-dependency of the eddy fluxes. Similarly, we
obtain the leading order αλ-dependency from a set of experiments with Ri0 = 1 by a linear
regression of the eddy fluxes against α in the double logarithmic plots shown in Fig. 3.5e
- h. It turns out that there is no qualitative change of the Ri-dependency for experiments
with α0 = 1 and α0 = 0.25, and vice versa there is no change of the α dependency for
different Ri (not shown).

The slopes determined by the linear regressions for Fig. 3.5 are given in Tab. 3.2. Note
that in some cases, the slopes for ALS and FFH do not perfectly agree with Eq. (3.6) and
Eq. (3.9), respectively. The reason for that is, that α stays not strictly constant throughout
the experiments shown in Fig. 3.5a - d and also Ri slightly varies within the experiments
for different α shown in Fig. 3.5e - h. Thus, the eddy fluxes do not only vary due to a
change of Ri in Fig. 3.5a - d but also due to slight changes of α, causing the slopes of
ALS and FFH to differ from what would be expected for α = const.. The same is true for
the slopes determined by the experiments shown in Fig. 3.5e - h. Equation (3.6) suggests
for ALS and large Ri a slope of κ = 0.5 and λ = 3 for v′b′ and κ = −0.5 and λ = 2 for
w′b′ while Eq. (3.9) suggests for FFH κ = 1 and λ = 3 for v′b′ and κ = 0 and λ = 2 for
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Figure 3.5: Meridional (a, e) and vertical (b, f) eddy fluxes v′b′ and w′b′, eddy streamfunc-
tion Ψed (c, g) and diapycnal diffusivity Kdia (d, g) are plotted in (a)-(d) against Ri for
simulations with α0 = 4 and in (e)-(h) against α for simulations with Ri0 = 1. Red dots
indicate diagnosed results and blue, green and black dots the corresponding NLS, ALS and
FFH parameterizations. Colored lines denote respective linear least square fits. The slopes
of these fits in the double logarithmic plots indicate the leading order dependency on Ri
in (a)-(d) and the dependency on α in (d)-(h) (slopes are given in Tab. 3.2).

w′b′. However, as can be inferred by Tab. 3.2, the resulting deviations from the determined
slopes to these theoretical slopes for ALS and FFH are rather small.

Despite these issues, it can be noted that the Ri-dependency of the diagnosed eddy
fluxes v′b′ and w′b′ is not perfectly matched by any parameterization and that the esti-
mated exponents κ for the diagnosed eddy fluxes are in between the FFH and the NLS and
ALS parameterizations. Furthermore, the numerical simulations indicate a strong decay
of w′b′ for larger Ri which is in contradiction to FFH. Although the tendency for decreas-
ing w′b′ with larger Ri is correctly described by the NLS and ALS, the decrease in the
numerical model is not as strong as suggested by these parameterizations. For the eddy
streamfunction Ψed and the diapycnal diffusivity Kdia, we obtain similar findings since Ψed

and Kdia are functions of v′b′ and w′b′.

Fig. 3.6 shows the vertical structure of the eddy fluxes for α0 = 4 and different Ri.
Because there are large variations of the magnitude of the eddy fluxes between the param-
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κdiag κFFH κNLS κALS λdiag λFFH λNLS λALS

v′b′ 0.7 0.9 0.5 0.4 2.9 3.0 3.0 3.0
w′b′ -0.3 -0.0 -0.5 -0.5 2.0 2.0 2.0 2.0
Ψed -0.2 -0.0 -0.5 -0.5 1.0 1.0 1.0 1.0
Kdia -1.3 -1.0 -1.5 -1.5 0.0 0.1 0.0 0.1

Table 3.2: Estimated dependency of the respective variable on Riκ and αλ.
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Figure 3.6: Vertical profiles for v′b′ (a), w′b′ (b), Ψed (c) and Kdia (d) for the diagnosed
eddy fluxes in red and the FFH, NLS and ALS parameterizations in black, blue and
green, respectively. All profiles are normalized by their maximum value and shifted for
each experiment while the dashed black lines indicate the respective zero lines. The three
experiments are with α0 = 4 but with Ri varying from left to right as Ri = 3.2, Ri = 46
and Ri = 1200.

eterizations, Fig. 3.6 shows all profiles normalized by their maximum values. The diagnosed
profiles resemble what we expect from linear stability analysis. While v′b′ is almost con-
stant in the vertical, w′b′ has a parabolic vertical dependency with a maximum at mid
depth (red lines in Fig. 3.6a and b). The structure of v′b′ is quite well matched by ALS but
does not share the same vertical dependency as predicted by FFH. All parameterizations
capture quite well the diagnosed profile of w′b′. Note that the meridional averaged profiles
instead of constant means of M2 and N2 are used in NLS.

The profiles of Ψed and Kdia depend not only on v′b′ and w′b′ but also on the vertical
structure of M2 and N2. While M2 has nearly no vertical structure, N2 increases at the
top and the bottom (not shown) and therefore influences the structure of Ψed and Kdia.
The resulting profiles are shown in Fig. 3.6c and d. The vertical structure of Ψed (red line)
is quite well captured by NLS and ALS (blue and green lines) in contrast, the profile of
the FFH parameterization decays too strong at the top and at the bottom.

While the structure of Kdia is not matched at all by FFH, it is also only partly matched
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by ALS and NLS. At top and bottom ALS and NLS closely follow the diagnosed profile but
at mid-depth they underestimate the minimum of Kdia. Note that Kdia becomes negative
for small Ri which is probably due to the influence of rotational eddy fluxes. It might
also be that the strong mid-depth minimum decreases if the rotational eddy fluxes are
subtracted from the total eddy fluxes, such that the profiles of NLS and ALS match better
the diagnosed profiles of Kdia, but we have made no attempt to do so.

Since the energy conversion between potential and kinetic energy is influenced by the
temperature restoring and the linear damping, we test the sensitivity of the Ri-dependency
of the eddy fluxes for different restoring time scales λT and drag coefficients λu. These
experiments indicate that these parameters have minor influence on the determined Ri-
dependency (not shown). While the effects of variations in λT from λT = 1.5σmax to
λT = 2.5σmax seem negligible with respect to the Ri-dependency, variations of λu within
the range of λu = 0.25σmax to λu = 0.75σmax yield slight variations of the exponents from
κ = 0.6 to κ = 0.7 for v′b′ and from κ = 0.2 to κ = 0.4 for w′b′.

3.4 Baroclinic instabilities in a spin-down scenario

3.4.1 Numerical simulations

To simulate mixed layer instabilities at a re-stratifying density front, we choose a setup
similar to that used in Fox-Kemper et al. (2008) and Bachman and Fox-Kemper (2013).
While Fox-Kemper et al. (2008) directly diagnose the eddy buoyancy fluxes in the spin-
down scenario, Bachman and Fox-Kemper (2013) use the eddy fluxes of several passive
tracers to estimate a mixing tensor common to all passive tracers, which is assumed to be
also representative for buoyancy. This allows the authors to infer the eddy buoyancy fluxes
from the diagnosed tensor elements. Here, however, we diagnose the eddy buoyancy fluxes
directly as done by Fox-Kemper et al. (2008).

Like in the setup of Sec. 3.3, the model domain consists of a reentrant zonal channel
with solid walls at meridional boundaries. To prevent effects from the solid meridional
boundaries, we limit the zonal jet and thereby the location where the instabilities grow
to a region of width Lf at the center of the channel. This is done by choosing b0 =

N2
0 (z+H0)+

LfM
2
0

2
tanh

(
2
y−Ly

2

Lf

)
where Ly denotes the width of the channel in meridional

direction. This initial condition deviates slightly from that considered by Eady (1949) and
Stone (1966) who assumed ∂yyb0 = 0 and ∂yb0 = M2

0 , but we will focus our analysis on
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3.4. Baroclinic instabilities in a spin-down scenario

Figure 3.7: (a) Horizontal and (b) vertical snapshots of temperature, (c) vorticity ζ =
∂xv−∂yu and (d) velocity divergence ∆ = ∂xu+∂yv both normalized by f0 for an experiment
of the spin-down scenario with initial Ri0 = 1 and α0 = 4 at t = 17σ−1

max, at the beginning
of the averaging period. (e)-(f) Same as in (a)-(d) but at t = 28σ−1

max, at the end of the
averaging period.

the center of the front where these conditions are fullfilled. To dissipate momentum, we
use harmonic friction with a viscosity depending on the resolved motion after Smagorinsky
(1963) with a "Smagorinsky coefficient" of one which was also used by Fox-Kemper et al.
(2008). No-slip conditions are applied at the side walls but free slip at the bottom. No other
boundary conditions are used for momentum or density. As before, we use temperature as
the only active tracer and a linear equation of state. Due to the numerical dissipation of
the applied third order upwind advection scheme, we do not use any explicit diffusion. All
simulations for the spin-down experiments are performed with the non-hydrostatic version
of the MITgcm although we do not expect non-hydrostatic effects to be relevant for the
parameter range considered in this study.

We vary the initial stratification to obtain Ri0 = 1 to Ri0 = 160 and α0 = 4 in a first
set of experiments. Correspondingly, in a second set of experiments with Ri0 = 1, we vary
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α0 from α0 = 0.2 to α0 = 10. The horizontal resolution is set to ∆x = π/(5kmax) (128
points in x and y) and the vertical resolutions to ∆z = 5 m (60 levels). The basin depth
of H = 300 m and the Coriolis parameter of f0 = 7.29× 10−5 s−1 are not varied.

Small white-noise perturbations of O(1× 10−3 K) in the initial conditions lead to expo-
nentially growing baroclinic instabilities. In contrast to the simulations in the equilibrated
scenario, there is no source of potential energy and baroclinic instability induces a slump-
ing of the temperature front by converting all available potential energy (APE) into eddy
kinetic energy (EKE). Fig. 3.7 shows that this re-stratification process takes place on a
time scale of about 10σ−1

max which corresponds to a few days for the chosen parameters.
As in the equilibrated scenario for Ri = O(1), the flow features local Rossby numbers
ζ/f0 = (∂xv − ∂yu)/f0 > 1 and a normalized velocity divergence ∆ = (∂xu + ∂yv)/f0 of
the same order of magnitude. Both indicate ageostrophic dynamics. For larger Ri and
therefore quasi-geostrophic conditions, ζ/f0 is smaller than one and ∆� ζ (not shown).

Fig. 3.7 shows that the flow field is dominated by large individual eddies and the same
is true for the magnitude of the eddy fluxes (not shown). Since the occurrence of single
eddy events is a random process, it is necessary to average over these events. In the
equilibrated scenario, a temporal mean over some eddy time scales is sufficient to exclude
single eddy events but the strong time dependencies in the spin-down scenario rules out
this possibility here. Instead, we perform ten ensemble simulations for each experiment
characterized by its initial Ri0 and α0. Each ensemble member only differs in the small
random perturbations added to the initial temperature.

In Fig. 3.8a, we show an ensemble averaged time series of the conversion of APE into
EKE by baroclinic instability for an experiment with Ri0 = 1 and α0 = 4. During the re-
stratification phase, the mean kinetic energy (MKE) stays constant until boundary effects
become important, suggesting that there is no significant interaction between the eddies
and the mean current. Total mechanical energy (TE) is dissipated due to the applied
viscous damping. Fig. 3.8b and c show time series of Ri and α, respectively, averaged
over the domain. In accordance to the rather small changes in MKE, α, or equivalently
the meridional buoyancy gradient, hardly changes. The large increase in Ri soon after the
onset of the re-stratification is mainly caused by changes in the vertical stratification.

3.4.2 Validating the parameterizations

In contrast to a quasi-stationary system as considered in Sec. 3.3, a time-dependent system
requires slight changes in our analysis to determine the diagnosed and parameterized eddy
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Figure 3.8: Time dependency of global mean total mechanical energy (grey thin line),
mean kinetic energy (black thick line), eddy kinetic energy (grey thick line) and available
potential energy (black thin line) for an experiment in the spin-down scenario with Ri0 = 1
and α0 = 4 (a) and time dependency of Ri (b) and α (c). Small vertical lines denote the
standard deviation of the ensemble spread. Time is scaled by the initial growth rate σmax.
Vertical black lines indicate the period over which the time average is taken to diagnose
the eddy fluxes (see text for details).

fluxes. Most of the diagnostics described in the following are performed similar as in Fox-
Kemper et al. (2008) to allow for a comparison between their and our results. We use a
zonal average to estimate mean quantities. By doing so, we obtain eddy fluxes which are
two-dimensional and change in time. We furthermore average v′b′ and w′b′ over y within
the active area of the eddies, because we are interested in the mean effect of the eddies.
Thus, the meridional averaging is restricted to the center of the front (all points for which
M2 < 0.1 max(M2)). Finally, we perform an average over ten ensemble simulations.

Such averages over the frontal width of M2 and N2 are also performed to diagnose
Ri and α given by Eq. (3.12). The diagnosed Ri and α enter Eq. (3.6) and Eq. (3.9) to
determine v′b′ and w′b′ for ALS and FFH, respectively. For NLS, we calculate v′b′ and
w′b′ with the use of the horizontally (over the frontal width) averaged vertical profiles of
M2 and N2. Finally, we calculate the ensemble mean of the diagnosed and parameterized
eddy fluxes to eliminate the effect of single eddy events as described above.

Fig. 3.9 shows the time evolution of the vertical maximum of the eddy fluxes for a
specific set of ensemble experiments. In the initial phase v′b′ and w′b′ are zero as long
as the eddies have not reached finite amplitude yet. After a time of roughly 5σ−1

max, v′b′

and w′b′ start to increase. While w′b′ saturates after approximately 15σ−1
max, v′b′ further
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Figure 3.9: Vertical maximum of the eddy fluxes v′b′ (a) and w′b′ (b) for an experiment
with Ri0 = 1 and α0 = 4 as a function of time. Solid lines denote the ensemble mean and
mean over the re-stratification region (see text for details) while the ensemble means of ALS
and FFH are denoted by dashed and dashed-dotted lines, respectively. The small vertical
lines indicate the standard deviation over ten ensemble simulations. Time is scaled by the
initial growth rate σmax for ALS and FFH, respectively. The period of the re-stratification
phase determined as detailed in the text is indicated by vertical black lines.

increases until 30σ−1
max.

Fox-Kemper et al. (2008) restrict their analysis on the re-stratification phase of the
eddies. Therefore, they define a time period that starts as soon as the eddies have reached
finite amplitude and ends when the eddies reach the meridional boundaries. We also only
consider times for which v2 > 0.1U0 for half of the mixed layer grid points and where
∆T (t)−∆T (t0)

∆T (t0)
< 0.03 with ∆T =< T (y = 0.08Ly)−T (y = 0.92Ly) >

xz, denoting the zonally
and depth averaged temperature difference near the boundaries and t0 the initial time.
This period is indicated in Fig. 3.8 and Fig. 3.9 by vertical black lines. In the following,
we apply time averages over this period to consider the effect of the eddy re-stratification.

To scale the eddy fluxes, we proceed similar as in the equilibrated scenario. As before,
we minimize

∑
i(log10(yi)− log10(xi)− log10(C))2 with respect to the tuning constant C for

each parameterization where yi denotes the diagnosed v′b′ or w′b′ and xi the parameterized
counterpart for an experiment i. We obtain CS = 1.2 and CF = 0.1. Hence CS is quite
similar to the value we obtain for the equilibrated scenario for ALS. In contrast, CF is
slightly smaller than the value we find for the equilibrated scenario but still roughly a
factor of two larger in comparison to the value determined by Fox-Kemper et al. (2008)
(note that Fox-Kemper et al. (2008) determined CF by only considering w′b′ instead of
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Figure 3.10: Dependency of the horizontal and vertical eddy fluxes v′b′ (a, d) and w′b′ (b,
e), eddy streamfunction Ψed (c, f) and diapycnal diffusivity Kdia (d, g) on Ri for α0 = 4 in
(a) - (d) and on α for Ri0 = 1 in (e)-(g) in the spin-down scenario. Red dots denote the
ensemble mean of the diagnosed variables, blue of the NLS, green of the ALS and black
of the FFH parameterization and crosses indicate the standard deviation of the ensemble
spread. Each ensemble consists of ten simulations which deviate only in small random
initial perturbations. Straight lines are a least square linear fit as detailed in the text. The
slopes of these fits in the double logarithmic plots indicate the leading order dependency
on Ri for (a) - (d) and on α for (e) - (h) (values are given in Tab. 3.2).

considering both v′b′ and w′b′ as done here).

Fig. 3.10a - d shows the Ri-dependency of the eddy fluxes in the spin-down scenario. The
ensemble averaged maxima of the eddy fluxes are shown as a function of Ri for experiments
with α0 = 4 and varying Ri0 from Ri0 = 1 to Ri0 = 160. Similar to that, Fig. 3.10e - h
shows the dependency of the eddy fluxes on α for a second set of experiments with Ri0 = 1

and α0 varying from α0 = 0.4 to α0 = 4. We obtain the exponents κ and λ of the leading
order Riκ and αλ dependency by a least square fit and show them in Tab. 3.3. Note that
as before in the equilibrated scenario, the estimated slopes for ALS and FFH slightly differ
from what would be expected by Eq. (3.6) and Eq. (3.9), respectively. The reason for this
are again slight deviations in α throughout the experiments shown in 3.10a - d and slight
variations in Ri within the experiments shown in 3.10e - h.
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κdiag κFFH κNLS κALS λdiag λFFH λNLS λALS

v′b′ 1.0 1.2 0.6 0.7 3.3 3.1 3.1 3.1
w′b′ -0.0 0.1 -0.4 -0.4 2.3 2.0 2.0 2.0
Ψed -0.1 0.0 -0.5 -0.4 1.3 1.0 0.9 1.0
Kdia -1.2 -1.0 -1.6 -1.5 0.4 -0.1 -0.2 -0.1

Table 3.3: Estimated dependency of the respective variable on Riκ and αλ.

In the spin-down scenario, FFH tends to better describe the diagnosed eddy fluxes in
comparison to NLS and ALS (see Tab. 3.3 for the Ri and α-dependencies and Tab. 3.4 for
the mean and maximum deviations). For instance, v′b′ determined by FFH matches quite
well with the diagnosed v′b′ for the experiments with varying Ri0 (Fig. 3.10a). However,
the decrease of w′b′ and Ψed for larger Ri in Fig. 3.10b and c, respectively, is not captured
by FFH. On the other hand, it is too strong in ALS and NLS. Although Fig. 3.10d suggests
that Kdia is better represented by ALS and NLS, the diagnosed slope of the Ri-dependency
is better matched by FFH. As in the equilibrated scenario, the simulations with fixed Ri0
and varying α0 shown in Fig. 3.10e - h indicate that both parameterizations predict the
correct dependency on α for v′b′ and w′b′. Deviations occur only between parameterized
and diagnosed Ψed and Kdia, since all parameterizations seem to overestimate Ψed and
Kdia.

In Fig. 3.11, we show the vertical structure of v′b′, w′b′, Ψed and Kdia normalized by the
corresponding maximum value of each profile. Note that again only the global mean values
ofM2 and N2 enter the calculations of v′b′ and w′b′ for the FFH and ALS parameterization
while the zonally and meridionally averaged profiles of M2 and N2 enter the calculations
of Ψed and Kdia and also the calculation of v′b′ and w′b′ for NLS. The meridional eddy flux
v′b′ decreases slightly at the top and at the bottom but the decrease is not as strong as
suggested by the parabolic structure function for v′b′ by FFH. There is a better agreement
between the constant profile suggested by NLS and ALS and the diagnosed profile in the
spin-down scenario, especially for larger Ri. On the other hand, the diagnosed profile for
w′b′ is again well matched by all parameterizations. The diagnosed profiles of Ψed and Kdia

are slightly better matched by NLS and ALS than by FFH.
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Figure 3.11: Vertical profiles for v′b′ (a), w′b′ (b), Ψed (c) and Kdia (d) for the diagnosed
eddy fluxes in red and the FFH, NLS and ALS parameterizations in black, blue and green,
respectively. All profiles are normalized by their maximum value while the dashed black
lines indicate the respective zero lines. The three experiments are all performed with α0 = 4
but with Ri0 varying from left to right as Ri0 = 1, Ri0 = 10 and Ri0 = 160.

3.5 Summary and discussion

Mixed layer eddies play an important role in influencing e.g. air-sea gas exchange, surface
heat and freshwater fluxes, mixed layer depth and thus biogeochemical cycles. The spatial
scales of these eddies and the related mixing processes range from 100 m to 10 km and thus
are too small to be resolved by current ocean models. Without accurate parameterization
for mixed layer eddies, these models might therefore show a bias. Large velocity shear and
low stratification are typical of the dynamics within the mixed layer featuring Richardson
and Rossby numbers of order one. Therefore, the flow is not in quasi-geostrophic balance
anymore and parameterizations developed for interior quasi-geostrophic dynamics have to
be modified.

Stone (1972a), Killworth (1997) and Eden (2011) suggest a parameterization for baro-
clinic instabilities based on linear stability analysis. Fox-Kemper et al. (2008), however,
suggest a competing approach based on a scaling of potential energy release by eddies.
The main contradiction between the two approaches lies in a different dependency of the
eddy fluxes on background conditions characterized by the Richardson number Ri. Since
large variations of Ri occur within the mixed layer, this contradiction can lead to large
differences of the predicted eddy fluxes between the two parameterizations. Another dif-
ference between both parameterizations is the vertical structure of the meridional eddy
flux. While Fox-Kemper et al. (2008) assume a parabolic profile, linear stability analysis
suggests a constant vertical profile (Stone, 1972b).

This study aims to clarify to which extent the parameterizations of Fox-Kemper et al.
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equilibrated spin-down
NLS ALS FFH NLS ALS FFH

v′b′ 150 (220) 160 (230) 190 (460) 140 (200) 130 (180) 110 (170)
w′b′ 160 (220) 180 (250) 160 (270) 140 (210) 140 (190) 120 (140)
Ψed 170 (290) 180 (310) 200 (460) 130 (200) 130 (170) 120 (180)
Kdia 230 (350) 240 (400) 370 (630) 130 (210) 120 (160) 150 (220)

Table 3.4: Mean deviations (in %) of maximum amplitudes between parameterized and
diagnosed eddy fluxes (maximum devations are given in brackets) for the equilibrated
scenario discussed in Sec. 3.3 and the spin-down scenario discussed in Sec. 3.4.

(2008) (FFH) and parameterizations based on linear stability analysis (ALS) are appro-
priate to predict eddy fluxes within the mixed layer using idealized simulations for a large
range of different background conditions and two different configurations. Diagnosing the
eddy fluxes for each experiment enables us to examine the functional relationship between
the magnitude of the eddy fluxes and Ri and to compare it with the predicted functional
relationship of ALS and FFH. Two likely mixed layer scenarios are investigated: an equili-
brated flow system with constant shear and stratification and the spin-down of a buoyancy
front.

We find that the magnitudes of the parameterized eddy fluxes v′b′ and w′b′ and the
eddy streamfunction Ψed do not deviate from the diagnosed ones by more than a factor
of two in the mean and at maximum by a factor of five for Ri varying over three orders
of magnitude. Slightly larger deviations can be found for the diapycnal diffusivities in the
spin-down scenario but also here the mean deviation is less than a factor of four (see Tab. 3.4
for an overview of the deviations). We conclude that both parameterizations are more or
less equally successful in parameterizing the magnitude of mixed layer eddy fluxes. More
precisely, we find that the diagnosed eddy fluxes are in between the predictions of both
parameterizations for the equilibrated scenario. Likewise in the spin-down scenario, the
magnitude of the diagnosed eddy fluxes is somewhere in between the magnitude suggested
by FFH and ALS although perhaps slightly better matched by FFH. In any case, FFH does
not predict the correct vertical structure of the horizontal eddy fluxes v′b′. The diagnosed
profiles of v′b′ in both scenarios suggest a constant profile rather than a parabolic shaped
one predicted by FFH. This bias in v′b′ translates to a similar bias in Ψed for FFH.

Within this study, we make some assumptions to simplify the diagnostics. There is no
consideration of a change of planetary vorticity (β-effect, where β denotes the meridional
gradient of the Coriolis parameter f). An influence of β on meso-scale eddies can be ex-
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pected as soon as the Rhines scale Lβ =
√

2Urms/β becomes smaller than the Rossby radius
Lr = NH/f (e.g. Eden, 2007). If we approximate the root mean square velocity Urms by
the thermal wind, the ratio between Rhines scale and Rossby radius can be expressed as
Lr/Lβ =

√
αRiHβ/f . Even for the largest Ri and α considered here, this ratio is small

for mid-latitude values of f and β and for a water depth H appropriate for the mixed
layer. Therefore, we do not expect changes in the planetary vorticity to be relevant for
eddy fluxes in the mixed layer at mid-latitudes. For interior dynamics, with large H and
probably larger Ri, however, it is reasonable to assume that effects by the planetary vortic-
ity gradient become important and we refer to Eden (2011) and Eden (2012) where linear
stability analysis was successfully used to parameterize eddy fluxes for quasi-geostrophic
flows including the β-effect.

Another simplification we make in this study is to consider the mixed layer isolated
from the abyssal ocean and to apply a solid bottom at the mixed layer base. However, we
do not expect large influences of the abyssal circulation on the mixed layer eddy fluxes as
long as the increase of N2 within the pycnocline is large and changes in the vertical shear of
the horizontal velocity are small. In these cases, the mixed layer and the interior ocean can
be considered as separated regimes. Thomsen et al. (2014) show for a typical situation of a
boundary current that NLS suggests two maxima of the growth rate, one corresponding to
an interior mode and the other one to the mixed layer mode considered within this study.
The eddy fluxes of the mixed layer mode quickly vanish below the mixed layer base as also
observed in numerical model studies of Fox-Kemper and Ferrari (2008). However, Badin
et al. (2011) show that there can be an influence of mixed layer eddies on lateral tracer
mixing within the pycnocline. To account for interactions between the mixed layer and the
pycnocline, both parameterizations considered in this study have to be modified. For the
parameterization based on linear stability analysis this would mean to derive analytical
approximations for more complicated profiles of N2 and M2 as in Killworth (1997) and
Eden (2012).

Neither of the parameterizations accounts for horizontal changes of N2 and M2. As
long as these variations occur on scales larger than the mixed layer Rossby radius, the eddy
fluxes might be calculated with the varying N2 and M2 in a WKB-sense. For variations
of N2 and M2 on scales at or below the mixed layer Rossby radius, it is not clear whether
the parameterizations yield reasonable results, since lateral shear instabilities might have
other characteristics than baroclinic instability. Furthermore, we have not accounted for
non-hydrostatic effects. Guidance of how these effects might be implemented in ALS can
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be drawn from Stone (1971). According to Mahadevan (2006) who does not find major
differences between a non-hydrostatic and hydrostatic spin-down simulation for parameters
similar to those applied here and in accordance to Stone (1971) who reports that non-
hydrostatic effects become relevant only for α� 1, we do not expect these effects to play
an important role for the parameter range considered in this study. Since the thermal wind
relation is a basic ingredient to determine the eddy velocity scale, both parameterizations
are also not likely to make accurate predictions at the equator.

The fact that we find an acceptable performance of all parameterizations also for large
Ri suggests to use the parameterizations also in the ocean interior as a closure for mesoscale
eddies. Since some aspects of the simulations performed within this study are quite un-
typical for quasi-geostrophic mesoscale dynamics, like e.g. large diapycnal eddy fluxes or
no change in the planetary vorticity gradient, the results of this study cannot directly be
transferred to the deeper ocean. Thus, it remains unclear to which extent the FFH param-
eterization is able to predict also interior eddy fluxes. The successful implementation and
validation of the ALS parameterization for mesoscale eddy fluxes by Killworth (1997) and
Eden (2012) and for mixed layer eddy fluxes within this study yields the conclusion that
the parameterization based on linear stability analysis is successful to parameterize both,
mixed layer and interior eddy fluxes.

3.6 Appendix A: Nondimensionalized equations of mo-

tion

We nondimensionalize the inviscid adiabatic Navier-Stokes equations in Boussinesq ap-
proximation to identify important characteristic parameters. By using the following scales
as in e.g. Stone (1970):

t =
L0

U0

t̂, f = f0, (3.14)

(x, y) = L0(x̂, ŷ), z = H0ẑ, (3.15)

∂zb = N2
0∂z b̂, ∂yb = M2

0∂y b̂ (3.16)

p = N2
0H

2
0 p̂, b = N2

0H0b̂, (3.17)

(u, v) = U0(û, v̂), w = H0f0ŵ, (3.18)
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we obtain

RoDtu− v′ = −RoRi∂xp′, (3.19)

RoDtv + u′ = −RoRi∂yp′, (3.20)

δ2Dtw
′ = −Ri(∂zp′ − b′), (3.21)

∂xu
′ + ∂yv

′ + ∂zw
′ = 0, (3.22)

Dtb = 0. (3.23)

This set of equations contains three parameters, namely the aspect ratio δ = H0/L0, the
Rossby number Ro = U0/(L0f0) and the Richardson number Ri = N2

0H
2
0/U

2
0 . While the

magnitude of δ determines if non-hydrostatic effects are important, the magnitude of Ri
and Ro determines to which extent ageostrophic effects have to be considered.

Note that a slightly different scaling w = f0U
2
0/(N

2
0H0)ŵ and p = fU0L0p̂ was pro-

posed by McWilliams (1985b) and Molemaker et al. (2005). Although this scaling yields a
different weighting between the single terms in the Navier-Stokes equations, the resulting
set of equations is still sufficiently described by Ri, Ro and δ.

The background flow determines only two parameters Ri and α = Ro/δ. In order
to evaluate the magnitude of the single terms in Eq. (3.19) - Eq. (3.23), an additional
assumption on e.g. the length scale L0 is necessary. Three different assumptions for L0 are
made by different authors:

1. L0 = N0H0

f0
=
√
RiRo

δ
H0, i.e. L0 is chosen to be the Rossby radius (Molemaker et al.,

2005), leading to:

δ =
f0

N0

, Ro =
M2

0

f0N0

, Ro2Ri = 1. (3.24)

2. L0 = U0

f0
= Ro

δ
H0 (Stone, 1970), leading to:

δ =
f 2

0

M2
0

, Ro = 1. (3.25)

3. L0 =
N2

0

M2
0
H0 = RiRo

δ
H0 (Fox-Kemper et al., 2008), leading to:

δ =
M2

0

N2
0

, Ro =
M4

0

N2
0 f

2
0

, RiRo = 1. (3.26)
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Each of these assumptions relates the aspect ratio to the characteristic properties of the
background flow N2

0 ,M2
0 and f0 and it reduces the number of the characteristic parameters

of the problem. Since we only consider α = Ro/δ, these different scalings have no direct
influence on the parameterizations Eq. (3.6) and Eq. (3.9) or the prescribed initial condi-
tions of our numerical simulations. However, for identifying which terms in Eq. (3.19) -
Eq. (3.23) are relevant for a certain background state, one of the above choices for L0 has
to be made in order to relate Ro and δ separately to this background state.

3.7 Appendix B: Eddy fluxes in the Eady problem

We linearize the quasi geostrophic potential vorticity equation to obtain

(∂t + U∂x)(∇2
hψ
′ +

f 2

N2
∂zzψ

′) = 0, (3.27)

where ψ′ = ψ̄−ψ is the perturbation of the horizontal streamfunction ψ with respect to the
streamfunction of the background flow, which is given by ψ̄ = −U0 (z/H + 1) y for a zonal
flow in thermal wind balance U = U0(z/H + 1) with amplitude U0 = −M2H/f , where M2

denotes a constant meridional buoyancy gradient, H the water depth and f the Coriolis
parameter. Using a wave ansatz ψ′ = φ(z)ei(ωt−kx−ly), we obtain a differential equation for
φ(z):

φ− H2

L2
rk

2
h

∂zzφ = 0, (3.28)

where kh = (k2 + l2)−1/2 denotes the horizontal wave number. Equation (3.28) has the
solution φ = A cosh(Lrkhz/H) +B sinh(Lrkhz/H). The vertical velocity w is derived from
ψ by w = −f/N2Dt∂zψ which reads in the linearized form:

w = − f

N2
[(iω − iUk)∂zφ+ i

U0

H
kφ]. (3.29)

Rigid lid boundary conditions w = 0 at z = 0 and z = −H yield

A =
U0k − ω
U0k

κB, (3.30)

ω

U0k
=

1

2
± iF (κ)

κ
, (3.31)

82



3.7. Appendix B: Eddy fluxes in the Eady problem

with F (κ) =
√
κ coth(κ)− κ2/4− 1 and κ = Lrkh. Exponential growth and therefore

instability can be expected if ωi = Im {ω} < 0, especially the maximum exponential
growth rate σmax = max(−ωi) is obtained for k = κ1/Lr and l = 0 with κ1 ≈ 1.6 and
F (κ1) ≈ 0.3 (Eady, 1949).

As soon as the perturbations reach finite amplitude, the exponential growth is inhibited.
We assume that this happens if v′ ∝ σmax/kmax (Killworth, 1997). Therefore, we obtain
B = Cσmax/k

2
max with a tuning constant C of order one. Hence, we can calculate the

meridional eddy fluxes v′b′:

v′b′ =
1

2
Re {−ifkφ∂zφ∗} =

C2

2

F (κ)3

κ2

M4H2N

f 2
, (3.32)

and the vertical eddy fluxes w′b′:

w′b′ =
f 2

2N2
Re
{
−i
[
(ω − Uk)|∂zφ|2 +

kU0

H
φ∂zφ

∗
]}

= −C
2

4

F (κ)3

κ
tanh(

κ

2
)
M6H2

N3f 2
µE(z),

(3.33)

with the structure function µE(z) that peaks at one and for which we obtain

µE(z) =
cosh

(
κ
(

2z
H

+ 1
))
− cosh (κ)

1− cosh (κ)
. (3.34)

Note that for z = −H/2 and for the maximum growth rate with κ = κ1 ≈ 1.6 the eddy
flux ratio is w′b′/v′b′ = −(κ1/2) tanh(κ1/2)M2/N2 ≈ −0.53M2/N2.
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Abstract

In this study, we investigate how ageostrophic dynamics generate an energy flux towards
smaller scales. We use numerical simulations of baroclinic instability with varying dy-
namical conditions ranging from quasi-geostrophic balance to ageostrophic flows. We find
that dissipation at smaller scales by viscous friction is much more efficient if the flow is
dominated by ageostrophic dynamics than in quasi-geostrophic conditions. In the presence
of ageostrophic dynamics, we also observe an energy flux towards smaller scales while en-
ergy is transferred towards larger scales for quasi-geostrophic dynamics. Decomposing the
velocity field into its rotational and divergent components shows that only the divergent ve-
locity component, which becomes stronger for ageostrophic flows, features a downscale flux.
Variation of the dynamical conditions from ageostrophic dynamics to quasi-geostrophic bal-
anced flows shows that the forward energy flux and therefore the small-scale dissipation
decreases as soon as the horizontal divergent velocity component decreases. A power law
of the dependency of the small-scale dissipation on the Richardson number is estimated
for use in future parameterizations.

4.1 Introduction

Turbulent flows in quasi-geostrophic balance show a kinetic energy transfer from smaller to
larger scales (Charney, 1971; Rhines, 1977). In contrast, turbulent flows on much smaller
scales feature a kinetic energy flux in the opposite direction, i.e. from larger towards smaller
scales, where the energy is finally dissipated on molecular scales (Kolmogorov, 1941). On
the other hand, most of the energy input into the ocean occurs on scales characteristic
for quasi-geostrophic balance, which are much larger than the small-scale regime that
features a downscale energy flux. Due to the inverse energy flux on these larger scales,
the energy has to be dissipated at the basin scale e.g. by lee wave generation (Bell, 1975;
Nikurashin and Ferrari, 2011), a loss of balance resulting from Lighthill radiation of gravity
waves (Ford et al., 2000) or by the direct generation of unbalanced ageostrophic instabilities
(Molemaker et al., 2005). So far, it is unknown whether such an indirect route to dissipation
is efficient enough to balance the energy input into the ocean by wind and tides (Ferrari
and Wunsch, 2009). However, numerical model studies from Capet et al. (2008c) and
Molemaker et al. (2010) suggest that there is a direct route to dissipation for the energy
of the large-scale circulation, since they observe a downscale energy flux for dynamics that
are out of geostrophic balance but still have a small aspect ratio. If this downscale energy
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flux can be related to the described mechanisms that cause a loss of balance (Ford et al.,
2000; Molemaker et al., 2005) is not entirely clear.

The aim of this study is to investigate which dynamical conditions are necessary to gen-
erate a downscale kinetic energy flux. Furthermore, we examine if there is a dependency
between the strength of this downscale kinetic energy flux and the dynamical character-
istics of the flow system. Molemaker et al. (2010) find that a model based on the full
Boussinesq equations dissipates substantially more energy at smaller scales than a quasi-
geostrophic model does for the same dynamical conditions. They also observe a downscale
energy flux featured by the Boussinesq model while in the quasi-geostrophic model, the
energy is transferred in the opposite direction towards larger scales as described by Char-
ney (1971). Thus, the occurrence of ageostrophic dynamics seems to play a crucial role for
the establishment of a forward energy flux.

To which extent a flow system develops ageostrophic dynamics, strongly depends on its
inherent dynamics. A suitable characterization can be given by the Richardson number Ri,
which is the ratio of the vertical density stratification and the vertical shear of the horizontal
velocity. While a flow with Ri < 1 is unstable with respect to symmetric instabilities and
for Ri < 0.25 also to Kelvin-Helmholtz instabilities, instabilities that arise for Ri� 1 are
mainly in quasi-geostrophic balance (see e.g. Stone (1966)). For Ri = O(1), Molemaker
et al. (2005) find the dominant unstable mode to be unbalanced to approximately 10%
while also additional modes occur which are unbalanced to an even higher degree.

Values of Ri = O(1) can be found at the ocean surface with weak stratification or
within strong boundary currents with large velocity shears. Simulations of an idealized
subtropical, eastern boundary current system by Capet et al. (2008a) and Capet et al.
(2008b) reveal sub-mesoscale eddies and filaments out of geostrophic balance in the upper
100 m. Furthermore, Capet et al. (2008c) observe that these unbalanced motions are
accompanied by a forward energy flux at spatial scales smaller than the mesoscales (defined
by the length scale of the first baroclinic Rossby radius). In contrast, the energy flux is
negative at the mesoscales as expected from the theory of geostrophic turbulence (Charney,
1971).

The different directions of the energy fluxes are interpreted by Waite and Bartello
(2006) and Lindborg (2006) as a competition between quasi-geostrophic and stratified
turbulence. The former features an upscale energy transfer and a characteristic dependency
of the kinetic energy spectrum on the horizontal wavenumber of k−3 (Charney, 1971).
Observations of the atmospheric kinetic energy spectrum from Nastrom and Gage (1985)
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indeed show the predicted spectral dependency of k−3 at global scales. However, at smaller
scales, the energy spectrum flattens and converges to a spectral slope of k−5/3. Observations
and theoretical studies (see e.g. Lindborg (2006) and references therein) give support to
the hypothesis that the k−5/3-dependency can be explained by a forward cascade due to
nonlinearly interacting gravity waves (Dewan, 1997). Idealized simulations for stratified
turbulence indeed feature a downscale energy flux and a k−5/3-dependency of the spectral
kinetic energy density (e.g. Waite and Bartello, 2004; Lindborg, 2006). In between the
regimes of quasi-geostrophic turbulence and stratified turbulence, it is not a priori clear
whether the upscale energy flux of the quasi-geostrophic turbulence or the downscale energy
flux of the stratified turbulence dominates. Lindborg (2005) finds that a dominant upscale
energy transport occurs as soon as the Rossby number of the flow is smaller than 0.1.

A competing approach to explain the different characteristics of the energy spectrum
results from surface quasi-geostrophic dynamics (SQG) (Blumen, 1978; Tulloch and Smith,
2009). Numerical simulations with a primitive equation model by Klein et al. (2008) point
to a strong resemblance between the surface kinetic energy spectrum and the spectrum
of the density variance at the surface as suggested by SQG. On the other hand, Klein
et al. (2008) find a strong deviation of the interior dynamics from the surface dynamics.
Especially, they observe different characteristics of the interior kinetic energy spectrum
than predicted from SQG. Therefore, it is arguable whether SQG dynamics can be used
to explain interior flow characteristics (LaCasce, 2012).

In this study, we perform simulations of baroclinic instability in a channel. By varying
dynamical conditions of this flow from Ri = O(103) to Ri = O(1), we aim to observe the
transition between an upscale energy flux for quasi-geostrophic dynamics to a downscale
energy flux for ageostrophic dynamics. An equilibrium in the simulation is achieved by
counter-balancing the eddy re-stratification with a restoring of the zonal mean buoyancy
towards a target buoyancy. This permanent source of available potential energy parame-
terizes forcing in the ocean acting on large scales and balances the conversion of available
potential energy into kinetic energy by baroclinic production. To achieve an equilibrium,
the kinetic energy injected by baroclinic production has to be balanced by some kind of
dissipation and we apply two different kinds of kinetic energy dissipation. Momentum
dissipation by a linear drag of the zonal mean velocity field acts predominantly on the
largest scales. This kind of dissipation is a surrogate of e.g. lee wave generation (Bell,
1975; Nikurashin and Ferrari, 2011), Lighthill radiation of gravity waves (Ford et al., 2000)
or ageostrophic instability (Molemaker et al., 2005). On the other hand, dissipation by vis-
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cous friction extracts energy predominantly on the smallest resolved scales and is intended
to be a parameterization for processes which generate downscale energy fluxes towards
molecular scales. The energy dissipation rates due to the large- and small-scale dissipation
as well as the spectral energy flux for different Ri are compared to observe differences
in the magnitude and direction of the energy flux for quasi-geostrophic and ageostrophic
dynamics.

Capet et al. (2008c) find an increase in the forward energy flux for an increasing hori-
zontal resolution of their model and emphasize that it is of major importance to adequately
resolve ageostrophic processes. In order to achieve a similar accuracy of the resolution for
all dynamical conditions, we choose the horizontal basin scale in dependency on the spa-
tial scale of the dominant baroclinically unstable modes following Stone (1966). Thus, we
do not need to increase the number of grid points in the model and always use adequate
grid resolution. Another difference of our approach in comparison to Capet et al. (2008c)
is that we are able to directly investigate different dynamical regimes isolated from any
interference between these dynamics and influences from other processes inherent in any
more complex model like that one used in Capet et al. (2008c).

Molemaker et al. (2010) compare the dynamics of the quasi-geostrophic model with
that of a Boussinesq model. The present study is an alternative approach to that. Instead
of a priori excluding any ageostrophic effects, we allow ageostrophic dynamics in all applied
simulations but rather change the dynamical conditions of the investigated flow. In our
simulations, it depends on these conditions if ageostrophic processes develop or if quasi-
geostrophic dynamics dominate. We are also able to investigate intermediate regimes in
between the extrema of ageostrophic flows and flows in quasi-geostrophic balance.

Waite and Bartello (2006); Lindborg (2006) and Deusebio et al. (2013) investigate the
transition between stratified and quasi-geostrophic turbulence for the meteorologic context.
In all those studies, however, the spatial scale and strength of the kinetic energy source is
prescribed. The approach of this study is complementary. We aim to investigate baroclinic
instability as one of the main sources of turbulence in the ocean. Therefore, the strength
and scale of the kinetic energy source is directly related to the dynamics. By varying Ri
throughout different simulations, we examine a wide range of dynamical conditions typical
for the ocean meso- and sub-mesoscale regime.

This paper is organized as follows: In Sec. 4.2, we introduce the numerical model and
analyze the energy budget in physical and spectral space. An investigation of the energy
fluxes under different dynamical conditions can be found in Sec. 4.3. The influence of
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these different dynamical conditions on the dissipation is discussed in Sec. 4.4. In Sec. 4.5,
we discuss the sensitivity of our results before we end with a summary and conclusion in
Sec. 4.6.

4.2 Diagnosing the energy cycle

4.2.1 The numerical model

We use a configuration of the hydrostatic version of the MITgcm (Marshall et al., 1997).
The model domain consists of a reentrant channel with periodic boundary conditions in
zonal direction and solid walls at the meridional boundaries. Baroclinically unstable condi-
tions are provided by a vertically sheared and stratified background flow that is in thermal
wind balance with a constant meridional buoyancy gradient M2

0 and a constant stratifica-
tion N2

0 . The parameters N2
0 and M2

0 determine the Richardson number Ri0 as follows:

Ri0 =
N2

0 f
2

M4
0

, (4.1)

where f is the Coriolis parameter. We achieve different Ri0 and thus different dynamical
conditions by varying N0 for a constant Coriolis parameter f = 7× 10−5 s−1 and a constant
meridional stratification M2

0 = 4f 2. Since we use a linear equation of state and only
temperature as an active tracer, temperature and buoyancy are equivalent.

Following Stone (1966), the fastest exponential growth rate σmax with respect to the
Richardson number for a background state with constant vertical and meridional stratifi-
cation are given for perturbations with a characteristic length scale L0. The length scale
and growth rate of this fastest growing mode are approximately given by

L0 = 2π

√
2

5

√
1 + Ri0

M2
0

f 2
H, σmax =

√
5

54

1√
1 + Ri0

f, (4.2)

where H denotes the basin depth that we choose to be H = 200 m throughout all simula-
tions. To achieve an adequate resolution for different flow scenarios, we choose the basin
width to be 8L0 in zonal and meridional direction. Therefore, eight wavelengths of the
most unstable baroclinic waves fit in the domain for every chosen Ri0. We use a resolution
of (120 x 120 x 40) grid points in zonal, meridional and vertical direction in each model
configuration.
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Ri0 Ri Fru/10−3 Frζ/10−3 Rou Roζ Roε N/f Re4/106

1 20 8.4 84 0.13 1.3 0.064 25 0.87
2 27 6.9 68 0.12 1.2 0.056 28 0.96
4 45 5.2 51 0.11 1.1 0.047 32 1.3
8 64 3.8 37 0.093 0.92 0.038 37 1.4

16 113 2.6 26 0.081 0.79 0.03 44 1.8
32 184 1.8 18 0.068 0.67 0.024 51 2.3
63 325 1.2 11 0.056 0.55 0.018 61 2.7

126 560 0.75 7.2 0.046 0.44 0.014 73 3.1
251 1100 0.45 4.3 0.036 0.34 0.011 89 3.6

Table 4.1: Overview of characteristic parameters: Ri0 = N2
0 f

2/M4
0 , Ri = N2f 2/M4, Fr =

Urms/(NLke), Frζ = ζrms/N , Rou = Urms/(fLke), Roζ = ζrms/f , Roε = P 1/3/(L
2/3
B f) and

Re4 = UrmsL
3
ke/A4 whereN2 andM2 denote time mean values fo the vertical and meridional

stratification, Urms and ζrms the root mean square of the horizontal velocity and vertical
vorticity component, respectively, Lke = 2π

∫∞
0
k−1EKE dk/

(∫∞
0
EKE dk

)
a characteristic

length scale, P the energy injection at the basin scale LB and A4 the biharmonic viscosity.

The baroclinic eddy field will re-stratify the ocean front. We aim to prevent this
frontal collapse by applying a restoring of the zonal mean buoyancy to the initial buoyancy.
Therefore, we add the term λb(b0−b̄) to the buoyancy tendency where λb denotes an inverse
time scale of λb = 2σmax, b̄ denotes the zonally averaged buoyancy in the model and b0 a
target buoyancy specifying the desired Ri0 and M2

0 . This zonal mean buoyancy restoring
yields a permanent source of potential energy which on the one hand is dissipated by
numerical diffusion of the applied third order upwind advection scheme for temperature,
and which is transformed into kinetic energy by baroclinic eddies on the other hand. We do
not apply any explicit diffusion. However, we increase the diffusivities in case of statically
unstable conditions as a parameterization for convection in the hydrostatic simulations.

To achieve a balanced state, the kinetic energy injected by the baroclinic production
has to be balanced by an energy sink. Therefore, we choose two sources of dissipation.
The first is due to biharmonic horizontal and harmonic vertical friction which are most
active close to the grid scale. The second is realized by a linear drag of the zonal mean
horizontal velocities which in contrast is most active at the basin scale. The latter is
achieved by adding the term −λuuh to the horizontal momentum equations where λu
denotes an inverse time scale and uh the zonally averaged horizontal velocity. Since we
use free-slip conditions at the side walls and at the bottom, the biharmonic dissipation
and the zonal drag are the only sinks of kinetic energy. The magnitude of the dissipation
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Chapter 4. Routes to dissipation under different dynamical conditions

is adjusted to a certain Ri0 by choosing the inverse restoring time scale λu = 0.5σmax,
the biharmonic viscosity A4 = 1.5× 10−4M2

0HL
3
0/f and the harmonic vertical viscosity

Av = 1.25× 10−4M2
0H

2/f .

Figure 4.1: Snapshots of surface vorticity (a) - (c) and horizontal divergence (d) - (f), both
normalized by f and shown for times after the flow has equilibrated. (a) and (d) show an
experiment with Ri = 20, (b) and (e) with Ri = 184 and (c) and (f) with Ri = 1100.

Although we relax zonal mean buoyancy, we observe that the equilibrium stratification
differs from the initial stratification and therefore also the mean Richardson number Ri
differs from its initial counterpart Ri0. To take this into account for further diagnostics,
we determine the global and time mean values of N2 andM2 (see Fig. 4.2 to infer the time
averaging period) to calculate a mean Ri and L from Eq. (4.1) and Eq. (4.2), respectively.
In Tab. 4.1, we give an overview of important parameters that characterize the flow in
the different simulations. We also determine parameters used by e.g. Waite and Bartello
(2006) and Lindborg (2005) to characterize their flow dynamics. Considering the criteria
of Lindborg (2005) (stratified turbulence occurs above Roε ≈ 0.1) or that of Waite and
Bartello (2006) (stratified turbulence occurs above Rou ≈ 0.4 or Roζ ≈ 3), we find that
all simulations in Tab. 4.1 are still outside the regime of stratified turbulence. However,
the experimental design of this study is not intended to necessarily enter this regime but
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4.2. Diagnosing the energy cycle

rather to investigate the energy flux for baroclinically unstable flow systems typical for the
ocean. Since we observe ageostrophic dynamics for our low-Ri experiments that have a
major influence on the energy flux (see below), we consider our configuration as adequate.

Snapshots of the vorticity ζ = ∂xv − ∂yu and the horizontal divergence ∆ = ∂xu+ ∂yv

of the equilibrated flow system are shown in Fig. 4.1 for three experiments with different
Ri. The experiment with Ri = 20 features large local Rossby numbers ζ/f , especially
in the cyclonic spiral shaped eddies (Fig. 4.1a). In addition, large values of ∆ indicate
strong up- and downwelling that is characteristic for ageostrophic dynamics (Fig. 4.1d).
In contrast, the experiment with Ri = 1100 shows lower values of both ζ and ∆ indicating
dynamics which are close to quasi-geostrophic balance. While the experiments with small
Ri might be representative for the ocean mixed layer with weak stratification, or for strong
boundary currents1, larger Ri might be found in weakly sheared near-surface conditions
during summer or within the ocean interior.

4.2.2 The energy cycle in physical space

In this section, we analyze differences in the energy dissipation between experiments with
ageostrophic dynamics (small Ri) and quasi-geostrophic dynamics (large Ri). For a dom-
inant downscale energy flux for ageostrophic dynamics, we expect the dissipation by the
viscous friction to be larger in comparison to experiments with quasi-geostrophic dynamics.
The momentum equation in our model is given by

∂tuh = −∇ · uuh − f × uh −∇hp− λuuh + Du, (4.3)

where u = (u, v, w)T denotes the full and uh the horizontal velocity, ∇hp the horizontal
pressure gradient divided by a reference density, uh the zonal mean velocity and Du the
dissipation by the horizontal biharmonic and vertical harmonic dissipation. A kinetic
energy (KE) equation is obtained by multiplying Eq. (4.3) with uh, which yields for K =

uh
2/2

∂tK = −∇ · uK −∇ · up+ wb′ − uh · λuūh + uh ·Du, (4.4)

1For Ri < 1 different kinds of instability next to baroclinic instability are possible like e.g. symmetric
instability, Kelvin-Helmholtz instability (for Ri < 1/4) or convective instability for N2

0 < 0. Since these
instabilities act to increase Ri up to Ri = 1 on very short time and length scales, we restrict our analysis
to cases where Ri > 1.
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Figure 4.2: (a) Globally averaged KE (blue) and APE (red) as a function of time scaled
by the initial maximum growth rate σmax for a simulation with Ri = 20. Note that we
have subtracted a constant value of 108 m2 s−2 from APE. (b) shows the tendency terms
for APE where red denotes the tendency resulting from buoyancy production, green the
tendency due to numerical mixing, blue the restoring of the zonal mean and black the total
tendency of APE. The convective mixing component is indicated by a blue dashed line but
it is negligible in comparison to the other terms in (b). (c) shows the tendency terms for
kinetic energy where red denotes the buoyancy production, green the small-scale viscous
friction, blue the zonal mean drag and black the total tendency of KE. The vertical dashed
black lines in (a) - (c) indicate the averaging period to calculate time mean values of Ri,
L and energy budgets or tendencies (see text for details).

where the hydrostatic relation (∂zp = b) was used and where p′ = p−N2
mz

2/2.

A conservation equation for available potential energy APE can be obtained from the
conservation equation of buoyancy

∂tb = −∇ · ub+ λb(b0 − b̄) +Db, (4.5)

where b̄ denotes the zonal mean buoyancy, b0 a target buoyancy determined by N2
0 and

M2
0 and Db numerical diffusion. The latter is related to the third order upwind advec-

tion scheme for buoyancy that is known to be responsible for numerical diffusion2 and
convective mixing. Following e.g. Capet et al. (2008c), we determine the former by sub-
tracting the advective tendency of the third order upwind scheme from the tendency of a
second order centered advection scheme. We define the available potential energy APE by
P = b′2/(2N2

m) with b′ = b−N2
mz denoting the difference between the local buoyancy and

2In contrast, we use a centered second order scheme for momentum advection that conserves second
order moments. Thus, we do not have to care about numerical dissipation in the kinetic energy budget.
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4.2. Diagnosing the energy cycle

the reference buoyancy N2
mz of the global and time mean stratification N2

m of the equili-
brated flow. The conservation equation for APE is then obtained by multiplying Eq. (4.5)
with b′/N2

m

∂tP = −∇ · uP − b′w +
b′

N2
m

λb(b0 − b̄) +
b′

N2
m

Db. (4.6)

Note that there is an exchange between kinetic and available potential energy by the term
−b′w on the right hand side of Eq. (4.6) which we refer to as baroclinic production.

Fig. 4.2a shows a time series of the volume averaged KE and APE. After a period of
roughly 20σ−1

max, the initial perturbations have grown to finite amplitude and KE and APE
oscillate around their respective mean values. The globally averaged tendencies for APE
and KE are given in Fig. 4.2b and c, respectively. The only energy source of the model is
the restoring of zonal mean buoyancy (Fig. 4.2b). In the budget for APE it is balanced by
two small dissipative sinks due to numerical diffusion and convective mixing and by a large
sink due to baroclinic production. The latter acts as an exchange between APE and KE
and thus can be found with opposite sign in Fig. 4.2c as a source for KE which is balanced
by two sinks of KE, namely, the viscous friction acting primarily on small scales and the
zonal mean drag acting primarily on large scales. Note that all other terms of Eq. (4.4)
and Eq. (4.6) average exactly to zero in the global integral.

The time mean energy cycle for three simulations with different Ri is shown in Fig. 4.3.
The external forcing by zonal restoring feeds the total APE and is balanced in equilibrium
by numerical and implicit diffusion and by the buoyancy production term that converts
APE into KE. This source of KE, on the other hand, is balanced by sinks due to viscous
dissipation and the zonal mean drag. The main difference between the three simulations
depicted in Fig. 4.3 is given by the ratio of the two dissipation terms for KE. While KE is
dissipated to a much larger extent by the zonal mean drag than by the viscous friction for
Ri = 1100, the opposite is the case for smaller Ri, which indicates that for ageostrophic
dynamical conditions (small Ri), the energy transport to smaller scales is more efficient in
comparison to quasi-geostrophic dynamical conditions (large Ri). This finding emphasizes
the hypothesis that the direction of the energy cascade depends on the Richardson number.
Note also that there is a large decrease in the rate between APE and KE and a small relative
decrease in the dissipation of APE for an increasing Ri.

95



Chapter 4. Routes to dissipation under different dynamical conditions

KE APE
0.011
0.057
0.124

110
  17
    519

36
41

57
42
35

76
79
80

100
100
100

22
19
15

Ri =     20
Ri =   184
Ri = 1100

Figure 4.3: Schematic of the energy balances for three simulations with different Ri. The
numbers in the boxes denote the volume averaged KE and APE in kJ m−3. The ingoing
arrows indicate energy sources and outgoing arrows energy sinks due to the tendency terms
of Eq. (4.4) and Eq. (4.6). All fluxes are scaled by the energy input due to the zonal buoy-
ancy restoring which is 122× 10−6 W m−3, 110× 10−6 W m−3 and 81× 10−6 W m−3 for the
experiments with Ri = 20, 184 and 1100, respectively. More specifically, the arrow between
the boxes of KE and APE denotes the tendency due to buoyancy production, the lateral
arrows indicate the tendencies due to the zonal mean drag and the zonal mean buoyancy
restoring and the diagonal-outward arrows indicate the dissipation by viscous friction for
KE and numerical diffusion plus convective mixing for APE. While the tendencies for KE
nearly balance each other, there is a small residual in the APE budget.

4.2.3 The energy cycle in wavenumber space

In order to diagnose at which spatial scales the specified energy sources and sinks act, we
spectrally decompose the kinetic energy balance and consider equations for the spectral
kinetic and available potential energy density EKE and EAPE, respectively. We apply
a horizontal Fourier transformation to Eq. (4.3) and multiply by ûh

∗, where we denote
a Fourier transformed quantity by a caret and its complex conjugated counterpart by
a star. After taking a global average, we obtain an equation for the spectral density
EKE = 1/(2H∆k)

∫
ûh
∗ · ûh dz (e.g. Frisch, 1995)

∂tEKE =
1

H

∫ [
−ûh

∗ · ∇̂ · uuh − û∗ · ∇̂p′ + ŵ∗b̂′ − ûh
∗ · λ̂uūh + ûh

∗ · D̂u

]
dz, (4.7)

(see Sec. 4.7 for a more detailed derivation). Likewise, we obtain an equation for the spec-
tral density of available potential energy EAPE = 1/(2N2

mH∆k)
∫
b̂′
∗
b̂′ dz by multiplying

the Fourier transform of Eq. (4.5) by b̂′
∗
/N2

m and taking the global average

∂tEAPE =
1

N2
mH

∫ [
−b̂′

∗
∇̂ · ub′ − b̂′

∗
ŵN2

m + b̂′
∗ ̂λb(b0 − b̄) + b̂′

∗
D̂b

]
dz. (4.8)
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Figure 4.4: Tendencies for EAPE (a) and EKE (b) as a function of the horizontal wavenum-
ber k =

√
k2
x + k2

y for a simulation with Ri = 20. Black curves in (a) and (b) denote
tendencies due to advection, red curves denote buoyancy production, green curves denote
dissipation due to diffusion in (a) and due to viscous friction in (b), blue curves denote the
restoring of zonal mean buoyancy in (a) and the zonal mean drag in (b) and dashed-dotted
black lines indicate the sum of all other terms in (a) and (b). (c) and (d) the same as (a)
and (b) but for an experiment for Ri = 1100. In addition, the length scale of the fastest
growing mode 1/L is indicated by vertical black dashed lines in (a) - (d).

Note that all terms in Eq. (4.7) and Eq. (4.8) are real quantities. As in Eq. (4.4) and
Eq. (4.6), the buoyancy production b̂′

∗
ŵ = ŵ∗b̂′ yields an exchange between EKE and EAPE

since it occurs with opposite signs in Eq. (4.7) and Eq. (4.8).

Fig. 4.4 shows the budget for spectral kinetic and available potential energy density
in correspondence to Eq. (4.7) and Eq. (4.8), respectively. As mentioned above, the only
energy source of the model results from the restoring of zonal mean buoyancy which in-
creases APE on the largest scales (see Fig. 4.4a and c). Since dissipation is rather small
in the EAPE budget, the main loss of EAPE results from baroclinic production converting
EAPE into EKE mainly around the length scale L of the fastest growing unstable baroclinic
wave. The tendency due to APE advection is negative on the large forcing scales and pos-
itive on the intermediate scales of baroclinic production as can be inferred from Fig. 4.4a
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Chapter 4. Routes to dissipation under different dynamical conditions

and c. Therefore, the non-linear advection terms in Eq. (4.8) yield a connection between
the large spatial scales of the APE source and the scales where baroclinic production trans-
forms APE into KE. While baroclinic production is largest at the Rossby radius in the
experiment with Ri = 1100, it reaches its maximum at the largest scales for Ri = 20.

In contrast to the source of APE, which can be found at the largest scales, baroclinic
production increases KE on a wide range of scales. In our model, KE can only be dis-
sipated at the large scales by the zonal mean drag and on the smallest scales by viscous
dissipation, therefore there has to be a transfer of kinetic energy from the intermediate
scales of baroclinic production to either the small or the large scales. Fig. 4.4b shows that
in the simulation with Ri = 20, this advection of KE yields a negative tendency of EKE at
large and a positive tendency at small scales. Thus, there has to be a downscale kinetic
energy flux in this simulations (which will be discussed in the next section). In the exper-
iment with Ri = 1100, advection of KE increases EKE at both large and small scales and
decreases energy at the intermediate scales where baroclinic production is most effective.
In this case, the corresponding energy flux has to be downscale at the small, but upscale at
the large scales. The larger tendencies of the KE advection at large scales indicate that the
energy flux is predominantly upscale as might be expected for quasi-geostrophic dynamics.

4.3 Energy fluxes

Fig. 4.3 indicates that an important difference between the dynamics at small and large Ri
is the ratio between the small and the large-scale dissipation. Diagnosing the KE budget
in spectral space (Fig. 4.4) reveals that advection of KE yields a redistribution of energy
from intermediate to either small or large scales. To investigate this energy redistribution
in dependency on the Richardson number, we consider spectral energy fluxes3 caused by
the advective terms in the energy budget. The local flux Π of any advected quantity can
be derived from the spectral density of its advection term A by Π(k) = −

∫ k
0
A(k′) dk′.

Especially for the kinetic energy ΠKE and available potential energy flux ΠAPE, we obtain

ΠKE(k) =
1

H

∫ ∞∑
k′=k

ûh
∗ · ∇̂ · uuh dz, ΠAPE(k) =

1

H

∫ ∞∑
k′=k

1

N2
m

b̂′
∗
∇̂ · ub′ dz. (4.9)

3Note that any interpretation of the energy flux as a local transfer of energy between neighboring scales
might be misleading since complex wave-wave (e.g. triade) interactions can be responsible for a non-local
energy transfer in wavenumber space.
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A comparison of the spectral densities and fluxes of KE and APE as well as for en-
strophy η = [(∂xv − ∂yu+ f)N2]

2 for experiments with different Ri illustrates the results
of the previous sections. Fig. 4.5 shows that the slope of the KE spectrum is steeper for
larger Ri approaching a value of approximately -3 which is characteristic for geostrophic
turbulence (Charney, 1971). For smaller Ri, the slope comes close to a value of −5/3 as
already observed by Capet et al. (2008c) and Molemaker et al. (2010). However, the the-
oretical predictions for the spectral slopes are made under the hypothesis that there is an
inertial range at certain scales in which all energy sources and sinks vanish. In the present
simulations, however, there is no inertial range. Although dissipation acts only on large
or small scales in our setup, baroclinic production is active on nearly all spatial scales (see
Fig. 4.4). Therefore, one cannot expect in principle the diagnosed slopes to resemble the
theoretical expectations assuming an inertial range for both, the KE and the APE spectra.

As in the case of the KE density, we also find important changes of the KE flux for
changing Ri (Fig. 4.5 e). For small Ri, the energy flux is positive on all spatial scales
and ΠKE has a maximum at spatial scales smaller than the length scale L of the fastest
growing wave. This maximum decreases when Ri increases while on the other hand, ΠKE

becomes negative at larger scales with a minimum at scales smaller than L. Thus, we
observe an upscale energy flux as expected from quasi-geostrophic turbulence for large Ri
and a downscale energy flux similar to stratified turbulence for small Ri. In between these
extrema, there is both a downscale flux at smaller and an upscale flux at larger scales.
Thus, as soon as ageostrophic dynamics begin to become important, the flow is no longer
restricted to transfer energy towards larger scales. Instead, the energy proceeds towards
smaller scales providing a direct route to dissipation. These results are in agreement with
Capet et al. (2008c) and Molemaker et al. (2010), since both observe a downscale energy
flux as soon as ageostrophic dynamics are present and a negative energy flux for dynamics
in quasi-geostrophic balance. Here, the transition can be directly related to Ri.

These findings also correspond to results that Lindborg (2006) and Waite and Bartello
(2006) obtain for the transition towards stratified turbulence. A comparison of the Rossby
numbers Ro and the Froude numbers Fr (Tab. 4.1) of our low-Ri simulations with the
values of e.g. Waite and Bartello (2006) suggests that these simulations are at the lower
end of their quasi-geostrophic turbulence regime and just about to approach the regime of
stratified turbulence. Therefore, it might be argued whether the ageostrophic dynamics in
these simulations already cause stratified turbulence although their spectral characteristics
are quite similar to those of stratified turbulence.
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Figure 4.5: Energy and enstrophy spectra (a) - (d) and fluxes (e) - (h) as a function of the
wavenumber k scaled by the length scale L of the fastest growing mode for different Ri.
Spectra and fluxes for kinetic energy are depicted in (a) and (e), for kinetic energy divided
into the rotational component Er

KE and Πrrr
KE (solid lines) and the residual component Ed

KE
and ΠKE−Πrrr

KE (dashed lines) as defined in Sec. 4.3.1 in (b) and (f), for potential energy in
(c) and (g) and for enstrophy in (d) and (h). Different colors of the lines denote experiments
with different Ri as indicated by the legend. Black solid and dashed lines in (a) - (d) denote
the spectral slopes of -3 and -5/3, respectively.

Fig. 4.5c shows that in the experiments with large Ri the spectral slope of APE is close
to -5/3 at larger scales and becomes shallower for smaller scales until diffusion sets in and
yields a strong decrease of the APE spectra. For smaller Ri, the part of the spectrum that
resembles the -5/3 slope is more and more restricted to the largest scales of the domain
and nearly the whole spectrum is flat. Note that Molemaker and McWilliams (2010) as
well observe a slight flattening of the APE spectrum on smaller scales, but the decrease
of the spectral slope in their simulations is by far not as strong as in ours. In accordance
with Molemaker and McWilliams (2010), we find an overall positive flux of APE also for
spatial scales and Ri where the KE flux changes its sign.

In contrast to the APE spectra, the enstrophy spectra shown in Fig. 4.5d are shallower
at larger scales and steepen towards smaller scales. In consistency with Deusebio et al.
(2013), we find that the enstrophy flux is positive for all Ri. Thus, the enstrophy flux
is directed towards smaller scales and independent of the direction of the KE flux in all
experiments and at all scales. Concerning both the APE and the enstrophy fluxes, we
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note that the magnitude of the spectral fluxes are not deviating much between the single
experiments. For APE, the maximum of the flux is close to L for small Ri and shifted
slightly to larger scales at larger Ri. In contrast, the maximum of the enstrophy flux is at
scales slightly smaller than L and shifted further towards smaller scales as Ri decreases.

4.3.1 Rotational and divergent components of the energy fluxes

A more detailed interpretation of the energy fluxes and spectra can be obtained if the
velocity u is decomposed into a rotational part ur = (ur, vr, 0)T and a divergent part
ud = (ud, vd, w)T so that ∂xur + ∂yu

r = 0 and ∂xvd− ∂yud = 0 (see also Klein et al. (2008),
Capet et al. (2008c) and Molemaker et al. (2010)). A decomposition of the spectral kinetic
energy density into its rotational component Er

KE ≡ 1/(H∆k)
∫

ûh
r∗ · ûh

r dz and the
residual Ed

KE ≡ 1/(H∆k)
∫

(ûh
∗ · ûh − ûh

r∗ · ûh
r) dz is shown in Fig. 4.5b. Except for

the smallest scales, Er
KE is much larger than the residual Ed

KE for all Ri. Furthermore,
the rotational part of the energy spectrum has a much steeper slope for all Ri than the
residual component (Fig. 4.5b). Note that a spectral slope of -3 would be expected for two
dimensional turbulence (Fjørtoft, 1953).

In the same way, the energy flux can be decomposed into one component Πrrr
KE that

is derived by only considering the rotational velocity ur in Eq. (4.9) and the residual
ΠKE−Πrrr

KE. If decomposed in this manner, the rotational flow can be considered as nearly
two-dimensional. Following the argumentation of Fjørtoft (1953), a two-dimensional flow
has to satisfy an additional conservation equation, for enstrophy (ζr)2 = (∂xv

r−∂yur)2 and
it thus must obey an inverse energy cascade. In fact, Πrrr

KE is negative nearly everywhere
in all experiments as can be inferred from Fig. 4.5f. Consequently, any positive part of
the kinetic energy flux has to result from components of ΠKE that involve the divergent
velocity ud. Fig. 4.5f also shows that the residual component ΠKE − Πrrr

KE is positive for
nearly all scales and for all Ri.

The decomposition of the velocity field indicates a sharp separation between the dy-
namics that is caused by the rotational velocity field and that of the divergent velocity field.
The steep kinetic energy spectrum and the upscale kinetic energy flux associated to the
rotational velocity is similar to what would be expected for quasi-geostrophic turbulence
(Charney, 1971). In contrast, the relatively flat kinetic energy spectrum and the downscale
kinetic energy flux related to the divergent flow agrees well with energy spectra and fluxes
observed in stratified turbulence (e.g. Lindborg, 2005). For larger Ri, kinetic energy spec-
tra and fluxes seem to be dominated by the rotational part as one would expect for the
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limit of quasi-geostrophic dynamics where the velocity is to first order divergence-free. For
decreasing Ri the importance of the divergent velocity component increases and changes
the main characteristics of the kinetic energy spectrum and flux.

We obtain a more detailed decomposition of the eddy fluxes by inserting ur and ud

in Eq. (4.9) and considering all components separately. In this case, the kinetic energy
flux ΠKE is decomposed into eight components Πabc

KE, corresponding to each part of the
advective momentum tendency uh

a∇ · ubuh
c where a, b and c denote place holders for r

and d and thus indicating either the rotational or the divergent component of u. Fig. 4.6a
and c show such a detailed decomposition for two simulations with Ri = 20 and Ri = 1100,
respectively.
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Figure 4.6: (a) and (c) Kinetic energy flux split up into its single components for Ri = 20
in (a) and Ri = 1100 in (c). Green lines denote the total kinetic energy flux ΠKE, blue lines
the rotational component Πrrr

KE and red lines the residual ΠKE−Πrrr
KE. Grey and black lines

denote a further decomposition of ΠKE − Πrrr
KE in Πrdr

KE (black solid), Πdrr
KE (black dashed),

Πddr
KE (black dashed-dotted), Πrrd

KE (black dotted), Πdrd
KE (grey dashed), Πrdd

KE (grey dashed-
dotted) and Πddd

KE (grey dotted). The flux of available potential energy density is shown in
(b) for Ri = 20 and in (d) for Ri = 1100. Blue lines denote Πr

APE, green lines the total flux
and red lines the residual ΠAPE − Πr

APE.

As mentioned above, the flux component Πrrr
KE that only involves the rotational velocity
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is predominantly negative for both simulations. In the simulation with Ri = 1100 (Fig. 4.6
c), it dominates all other components and determines nearly alone the total energy flux.
In the simulation with Ri = 20, however, the components including ud are of the same
order of magnitude. Although these components partly compensate each other, their sum
has a larger absolute value than Πrrr

KE and is positive for all wavenumbers. For all Ri, we
find that an important contribution to ΠKE − Πrrr

KE results from the term Πrdr
KE. This term

is not only one of the largest of all flux components, it also has a maximum at the same
wavenumber as ΠKE − Πrrr

KE.
The flux of available potential energy ΠAPE can be decomposed with respect to its

rotational component Πr
APE and its divergent component Πd

APE. In this case, Πr
APE results

from the advection of available potential energy by ur and Πd
APE from the advection by

ud. We find that for small Ri the component Πr
APE is negative but dominated by Πd

APE

which is positive, resulting in a net-positive ΠAPE (Fig. 4.6b). For larger Ri, we observe an
increase of Πr

APE (not shown). It becomes positive at the larger scales and for even larger
Ri positive on all spatial scales. In contrast, Πd

APE decreases for increasing Ri and becomes
less important compared to Πr

APE. Thus, for large Ri, ΠAPE is almost completely given by
its rotational component (Fig. 4.6d).

4.3.2 Unbalanced dynamics as trigger for a forward energy flux

To which extent horizontal divergent motions evolve within a certain flow field can be
inferred by considering the horizontal divergence of the friction-less version of Eq. (4.3)

∂t∆ = −u · ∇∆− ∂xu · ∇u− ∂yu · ∇v + fζ −∇2p, (4.10)

with ∆ = ∂xu + ∂yv denoting the horizontal divergence and ζ = ∂xv − ∂yu the relative
vorticity. Thus, a significant local production of ∆ occurs as soon as there is an imbalance
between the terms on the right hand sight of Eq. (4.10) (McWilliams, 1985a). Similarly to
Capet et al. (2008b), we define a parameter ε that measures the magnitude of the residual
of the terms on the rhs of Eq. (4.10) weighted by the magnitude of the single terms. In
contrast to Capet et al. (2008b), we exclude the advective tendency u · ∇∆ from the
parameter ε since the role of this term is restricted rather to a spatial redistribution than
a production of ∆. Thus, we define ε as:

ε =
|−∂xu · ∇u− ∂yu · ∇v + fζ −∇2p|

|−∂xu · ∇u− ∂yu · ∇v|+ |fζ|+ |∇2p|+ µ
, (4.11)
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Chapter 4. Routes to dissipation under different dynamical conditions

where µ = fζRMS + (∇2p)RMS is added to the denominator in order to prevent locations to
be identified as unbalanced where the individual terms on the rhs of Eq. (4.10) are small
(see Capet et al. (2008b)).

Figure 4.7: (a) Snapshots of the production of horizontal divergence Dt∆ at the surface
for an experiment with Ri = 27. The total deviation from cyclostrophic balance according
to Eq. (4.11) is shown in (d), for only the geostrophic terms fζ −∇2p in (c) and for only
the advective part −∂xu · u− ∂yu · v in (d). The same is shown in (e) - (h) as in (a) - (d)
but for an experiment with Ri = 1100.

In Fig. 4.7a and e, we show the divergence production Dt∆ with Dt = ∂t + u · ∇
denoting the material derivative for an experiment with Ri = 27 and an experiment with
Ri = 1100. As expected for the low Ri, the divergence production is much larger than for
larger Ri. This might also be inferred from ε derived after Eq. (4.11). While for Ri = 1100

ε indicates hardly any unbalanced flow, for Ri = 27 large regions can be identified, which
are out of balance. A decomposition of ε into its geostrophic εgeo and advective εadv part

εgeo =
|fζ −∇2p|

|−∂xu · ∇u− ∂yu · ∇v|+ |fζ|+ |∇2p|+ µ
, (4.12)

εadv =
|−∂xu · u− ∂yu · v|

|−∂xu · ∇u− ∂yu · ∇v|+ |fζ|+ |∇2p|+ µ
, (4.13)

shows that the deviation from geostrophic balance dominates the total imbalance ε for
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4.4. Dependency of the energy dissipation on the Richardson number

Ri = 27. For Ri = 1100 both components seem to cancel each other since they are much
larger than the total deviation from balance. Nevertheless, in comparison to the experiment
with Ri = 27, the two components are rather small for Ri = 1100.

Following McWilliams (1985b), the tendency of the horizontal velocity divergence
Eq. (4.10) is of the order of Ri−1. Thus, the growth of ageostrophic divergent velocity
components is directly related to the Richardson number. These considerations suggest
a simple relation between the small-scale dissipation and the dynamics of a flow: flows
characterized by small Ri feature large divergent velocity components; these, on the other
hand, induce a downscale kinetic energy flux that, if strong enough, dominates the total
kinetic energy flux. In the case of a substantial downscale kinetic energy flux, a large part
of injected kinetic energy has to be dissipated at small scales.

4.4 Dependency of the energy dissipation on the Richard-

son number

The differences in the energy fluxes for different Ri have a direct influence on the ratio of
the large- and small-scale dissipation. If more energy is transferred to larger scales, the
large-scale dissipation has to increase and the small-scale dissipation has to decrease in
order to achieve an equilibrium. The opposite is the case if more energy is transferred
towards smaller scales. Fig. 4.8a shows the tendency terms of the kinetic energy balance
due to buoyancy production and dissipation in spectral space normalized by the global
mean of the buoyancy production. Except for the experiments with the smallest Ri, the
maximum of the energy production occurs at a scale of k = 1/L and slowly decreases at
smaller scales. In contrast, energy dissipation is acting as well on the largest scales by the
zonal mean velocity drag and on the smallest scales by the viscous friction. In between, the
energy dissipation nearly vanishes. Note that the relative small-scale dissipation of kinetic
energy increases for increasing Ri, while the large-scale relative dissipation decreases for
decreasing Ri.

Fig. 4.8b shows the Richardson dependency of the small- and large-scale kinetic en-
ergy dissipation Ds and Dl, respectively, normalized by the kinetic energy source due to
baroclinic production B. We define here the small-scale energy dissipation as the global
average over the viscous friction and, correspondingly, the large-scale energy dissipation as
the dissipation induced by the zonal mean drag. While the large-scale dissipation increases
with increasing Ri, the small-scale dissipation decreases. This finding is in good agreement
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Chapter 4. Routes to dissipation under different dynamical conditions

with the increase of the upscale kinetic energy flux for larger Ri. We obtain an approxi-
mative Ri-dependency of Dl/B = Ri0.23 by a least square fit for the large-scale dissipation
and of Ds/B = Ri−0.15 for the small-scale dissipation. Note that for the smallest Ri ap-
proximately 80% of the kinetic energy injected by baroclinic production is dissipated by
the small-scale dissipation and approximately 20% by large-scale dissipation. In contrast,
for the largest Ri, approximately 55% result from the large-scale dissipation and 45% from
the small-scale dissipation.
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Figure 4.8: (a) Kinetic energy balance for different Ri with respect to the horizontal
wavenumber scaled by L. The solid lines indicate the source of kinetic energy due to baro-
clinic production and the dashed lines indicate the sum of the dissipation due to zonal
restoring and viscous friction. All curves are normalized by the global average of the baro-
clinic production. The black vertical line indicates the wavenumber of the fastest growing
mode 2π/L. Small scale dissipation Ds (red) and large-scale dissipation Dl (blue) normal-
ized by the baroclinic production B are shown in (b). Solid lines indicate regression lines
in correspondence to the following power laws Dl/B = 0.1Ri0.23 and Ds/B = 1.2Ri−0.15.
Red and blue dashed lines indicate fits with Ri0 and Ri−0.5 for the small-scale dissipation
and Ri0 and Ri0.5 for the large-scale dissipation.

4.5 Sensitivity experiments

Capet et al. (2008c) find a decreasing downscale kinetic energy flux for an increase in the
model resolution. This emphasizes the necessity of an adequate resolution for the ageostro-
phic processes. Dissipation either due to numerical effects or due to any explicit diffusion
acts predominantly at the grid scale. If the ageostrophic processes have a comparable scale,
they are damped by the dissipation. Especially, the divergent velocities featured by the
ageostrophic dynamics are immediately subject to dissipation, if they occur close to the

106
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grid scale. In this case, a low resolution yields a strong interference between dissipation
and the ageostrophic dynamics that might dampen a downscale energy flux. As described
above, we aim to circumvent this problem by adjusting the resolution to the underlying
dynamics and choose the resolution (and domain size) with respect to the length scale of
the fastest growing unstable wave for each individual background state. Thus, we assume
that the important dynamics which are responsible for the energy flux occur close to this
spatial scale. However, in a series of sensitivity experiments, we aim to assure that the
results described so far are robust with respect to different resolutions.
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Figure 4.9: APE spectra (a), KE spectra (b) and tendencies for EAPE (c) and EKE (d)
for simulations with different horizontal and vertical resolution for Ri0 = 200. The colors
are the same as in Fig. 4.4. Solid lines indicate the standard simulation with a resolution
of 120 x 120 x 40, the dashed lines indicate a doubled vertical resolution 120 x 120 x 80
(hardly distinguishable from standard simulation) and the dashed-dotted lines a doubled
horizontal resolution 240 x 240 x 40.

Fig. 4.9 shows the kinetic and available potential energy spectra EKE and EAPE, respec-
tively, as well as their tendencies in wavenumber space for different vertical and horizontal
resolutions and an intermediate Ri (the same is found for large and small Ri). Doubling
the vertical resolution from 40 to 80 layers yields hardly any changes of the spectra and
tendencies. For a doubled horizontal resolution of 240 x 240 grid points, the main charac-
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Chapter 4. Routes to dissipation under different dynamical conditions

teristics are also similar to the counterparts with lower resolution. However, some minor
differences can be observed. Higher horizontal resolution also allows to use smaller hori-
zontal viscosity and we choose this in order to achieve a comparable grid Reynolds number
for all simulations. This smaller viscosity yields a shift of the dissipation towards smaller
scales as can be inferred from Fig. 4.9d. Therefore, the decrease of the spectral kinetic
energy, that is induced by dissipation at small scales, is also shifted towards smaller scales
for the simulations with higher horizontal resolution. In the higher resolved simulation, the
slope of EAPE is steeper at the large and intermediate scales in comparison to the standard
simulation.

Fig. 4.10 shows the small-scale dissipation rate Ds normalized by the total amount
of buoyancy production B for the standard simulations shown in Fig. 4.8b as well as for
simulations with higher resolution. As for the local balances shown in Fig. 4.9, a doubling
of the vertical resolution has nearly no effect on Ds. By contrast, doubling the horizontal
resolution yields a stronger decay of Ds with larger Ri. While there is hardly any difference
for the simulations with Ri ≈ 20, a doubling of the resolution yields roughly 30% smallerDs

at Ri ≈ 1000. Thus, we find some quantitive implications on the small-scale dissipation rate
by doubling the horizontal resolutions, even though there are hardly any major qualitative
differences.

Another parameter that might influence the dissipation rate is the meridional buoyancy
gradient M2

0 of the restoring target. So far, we only varied N2
0 for a fixed M2

0 = 4f 2

to obtain a restoring buoyancy target in correspondence to the background Richardson
number Ri0 = N2

0 f
2/M4

0 . Fig. 4.10 also shows simulations for one set of different Ri0 with
M2

0 = 0.25f 2 and another set with M2
0 = 16f 2. Although a change of M2

0 changes the
total energy content and energy dissipation (not shown), there are hardly any changes
concerning the small-scale dissipation rate normalized by the buoyancy production. Thus,
for the simulations performed within this study, the meridional shear is only important
for the absolute magnitude of the energy dissipation, but as long as it does not change
the Richardson number (e.g. a smaller M2

0 is compensated by a smaller N2
0 ), it has no

qualitative influence on the dynamics.

As discussed above, the vigorous re-stratification of the eddies is responsible for a
larger mean Richardson number Ri in comparison to the initial Richardson number Ri0.
For instance, a simulation in the standard configuration with Ri0 = 1 yields a mean Ri
of Ri = 20. To also obtain simulations with Ri = O(1), we increase the restoring time
scale λb from λb = 2σmax to λb = 64σmax (λb is still roughly 40 times larger than the time
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Figure 4.10: Globally averaged small-scale energy dissipation normalized by the globally
averaged buoyancy production as a function of Ri for different sensitivity experiments. The
blue dots indicate the simulations for different Ri0 in the standard configuration with (120
x 120 x 40) grid points, M2

0/f
2 = 4 and λb = 2σmax. Simulations indicated by red and

green dots deviate from the standard simulation by a doubled vertical (120 x 120 x 80) and
a doubled horizontal (240 x 240 x 40) resolution, respectively. Crosses indicate simulations
in standard configuration but with M2

0/f
2 = 0.25 and circles with M2

0/f
2 = 16. Diamonds

denote non-hydrostatic simulations with a larger restoring time scale of λb = 64σmax and
restoring buoyancy targets corresponding to Ri0 between 0.1 and 4 and M2

0/f
2 = 4. The

black solid line indicates a power law fit to all simulation for which a linear regression
yields Ds/B = Ri−0.13. Blue, green and red solid lines indicate fits to the simulations
with standard (Ds/B = Ri−0.15), doubled vertical (Ds/B = Ri−0.19) and doubled vertical
(Ds/B = Ri−0.25) resolution, respectively.

step of the model). This larger restoring time scale yields a stronger compensation of the
buoyancy production by a larger source of potential energy and thus reduces the deviations
between Ri0 and Ri. A set of experiments with Ri0 varying from Ri0 = 0.1 up to Ri0 = 4

indeed features much smaller mean Richardson numbers, ranging between Ri = 1.2 and
Ri = 6.8.

The dissipation rate throughout these experiments is nearly constant as can be inferred
from Fig. 4.10. This can be explained with a saturation of the small-scale energy flux
at a critical Richardson number. At this Ri, nearly all energy is transferred towards
smaller scales where it is dissipated. For instance, for the simulations with increased λb,
roughly 90% of the energy injected by buoyancy production is dissipated by the small-scale
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dissipation. Since we find a downscale energy flux on all scales for these experiments (not
shown), only such an amount of energy can be dissipated at large scales which is directly
injected at these scales. Note that the baroclinic production has its maximum at the largest
scales in the experiments with smaller Ri as can be inferred from Fig. 4.8. Therefore, it
might not be astonishing that still roughly 10% of the baroclinic production is dissipated
by the large-scale dissipation.

4.6 Summary and conclusions

In this study, we show how different dynamical conditions influence the direction of the
energy flux in wavenumber space. We use different numerical model configurations of a
baroclinically unstable flow system to mimic a large range of dynamical conditions. Our
model is forced by a restoring of zonally averaged buoyancy, which yields a large-scale
source of available potential energy and prevents a re-stratification of the inclined buoyancy
surfaces. Energy sinks result from a zonal mean drag as a large-scale sink of kinetic energy,
and viscous friction, which acts predominantly on the smallest scales. Determining the
relative strength of the small-scale dissipation with respect to its large-scale counterpart
gives information about the efficiency of the flow to feature a downscale energy flux. In
addition, we calculate spectral energy densities and fluxes and consider the energy cycle of
the model in physical and spectral space to obtain a detailed understanding of the routes
to dissipation in a baroclinically unstable flow.

Consistent with other studies (e.g. Lindborg, 2005; Waite and Bartello, 2006; Capet
et al., 2008c; Molemaker et al., 2010), we find an upscale kinetic energy flux for dynamics in
quasi-geostrophic balance and a downscale energy flux as soon as ageostrophic processes are
about to become important. While an upscale energy flux is characteristic for geostrophic
turbulence (Charney, 1971), the downscale flux might be interpreted as a result of stratified
turbulence (Lindborg, 2006). In fact, dimensionless parameters like Froude or Richardson
numbers derived from our simulations with a downscale kinetic energy flux indicate, that
these simulations get close to the parameter regime that Lindborg (2005) and Waite and
Bartello (2006) identify to be characteristic for stratified turbulence. The downscale flux
of kinetic energy in the experiments with ageostrophic dynamics comes along with large
dissipation rates at the smallest resolved scales by the viscous friction. Therefore, we
confirm the results from Capet et al. (2008c) and Molemaker et al. (2010) who find that
ageostrophic dynamics are able to yield a direct route to dissipation in contrast to quasi-
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geostrophic dynamics. Here, we relate the strength of this direct route to the Richardson
number Ri that characterizes the dynamical conditions of our model.

For simulations with large Ri, the observed dynamics are to a large extent in geostrophic
balance. The smaller Ri becomes, however, the more unbalanced ageostrophic dynamics are
evident (see also Stone (1970) and Molemaker et al. (2005)). These unbalanced dynamics
feature a horizontal divergent velocity field. A decomposition of the energy flux into
its rotational and divergent components shows a close relation between the energy flux
associated with the divergent velocity component and the downscale energy flux. Therefore,
we conclude that the strength of the small-scale dissipation directly depends on the strength
of the divergent velocity field.

Until now it is not clear how the energy of the mesoscale eddy field is dissipated.
Some possible candidates are lee wave generation (Bell, 1975; Nikurashin and Ferrari,
2011), Lighthill generation of gravity waves (Ford et al., 2000) or ageostrophic instability
(Molemaker et al., 2005). If these processes are responsible for the downscale energy fluxes
induced by ageostrophic dynamics as found by studies of (Capet et al., 2008c; Molemaker
et al., 2010) and in this study is not entirely clear. However, a quantification for all these
processes is mandatory in order to obtain a more detailed understanding of the energy
cycle of the ocean circulation. The results obtained in this study can be used as a first
step towards a quantification of the ageostrophic downscale kinetic energy flux. Together
with a parameterization for baroclinic production that can be obtained e.g. from linear
stability analysis (Stone, 1972b) or a scaling of the potential energy release (Fox-Kemper
et al., 2008), the estimated Richardson-dependency of the present study might be used to
obtain first estimates about location and magnitude of this direct route to dissipation.

Furthermore, a qualitative and quantitative understanding of direction and magnitude
of the kinetic energy flux are helpful in improving parameterizations for momentum dissi-
pation. Most numerical model studies (the present one included) use some kind of artificial
viscous diffusion that extracts energy close to the grid scale in dependency on the mag-
nitude of the viscosity and on the magnitude of the velocity shear (or higher derivatives
of the velocity). For a constant viscosity, it is not guaranteed that only that amount of
energy is dissipated that otherwise would be transferred towards the scales of molecular
dissipation.

Smagorinsky (1963) uses the assumption of a downscale energy flux to control the
specific amount of dissipation by adapting the viscosity. However, quasi-geostrophic dy-
namics yield an upscale energy flux and it is therefore questionable to which extent the

111



Chapter 4. Routes to dissipation under different dynamical conditions

approach of Smagorinsky (1963) yields reasonable dissipation rates for these dynamics.
Leith (1968) derives a scaling of the viscosity for a two-dimensional flow that preserves en-
strophy. Therefore, the approach of Leith (1968) might be considered as more applicable
to quasi-geostrophic dynamics. However, as shown by Capet et al. (2008c); Molemaker
et al. (2010) and in this study, in the presence of ageostrophic dynamics, the energy flux
is downscale. Therefore, it is important to combine the approaches of Smagorinsky (1963)
and Leith (1968) for considering both dynamical regimes to obtain a more reasonable pa-
rameterization of the viscosity. Scaling laws as presented by this study that relate the
dissipation to e.g. the Richardson number and with this to the dynamics of the flow can
therefore provide the basis for more sophisticated parameterizations of momentum dissi-
pation.

Although our model simulations allow some insights into the different dynamics acting
at small and large Ri, they contain many simplifications in contrast to more realistic flow
systems. The zonal mean drag extracts energy at the basin scale of our model domain.
For a model with a larger domain size, we would expect this energy to be transferred
further towards larger scales. At these scales, different dissipation mechanism like e.g.
lee wave generation (Bell, 1975; Nikurashin and Ferrari, 2011), Lighthill generation of
gravity waves (Ford et al., 2000) or ageostrophic instabilities (Molemaker et al., 2005)
might play an important role. In our simulations, we prescribe an artificial cutoff of the
energy transport and therefor assume that there is no further backscattering of energy.
Furthermore, biharmonic diffusion is certainly rather an artificial than a realistic way to
dissipate energy on small scales. However, we assume that the energy flux is more or less
independent of the specific realization of the small-scale and large-scale dissipation and
that our results would not change for other dissipation schemes.

The restoring of zonal mean buoyancy is a diabatic process. Since the ocean interior is
assumed to be nearly adiabatic, our model might primarily be seen as a model of the ocean
mixed layer where diabatic processes are certainly present. The buoyancy restoring might
be replaced by other processes that prevent a re-stratification of an inclined buoyancy
surface to obtain comparable flow conditions in an adiabatic environment. In general, we
would expect that our results are also transferable to situations where an inclination of the
buoyancy surfaces is retained by a more realistic process than our artificial restoring.

Furthermore, the setup considered in this study intents to simulate horizontally isotropic
turbulence since we assume constant values of vertical and horizontal stratification as well
as a constant planetary vorticity. Especially for larger scales, however, a change of the
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planetary vorticity causes a development of zonal jets and thus a highly anisotropic flow.
A characteristic length scale of these zonal jets is the Rhines scale Lβ ∝

√
U/β where

β is the change of planetary vorticity and U a characteristic velocity scale. The upscale
energy cascade of quasi-geostrophic turbulence is not necessarily halted at this scale, but
the energy spectrum becomes highly anisotropic for larger scales (see e.g. Vallis (2006))
and it is not clear to which extent the results obtained e.g. for the scaling of the large
and small-scale dissipation rates hold for such anisotropic flows. Nevertheless, we do not
expect major changes on smaller scales since these are not effected by the β-effect as long
as their scale is smaller than Lβ.

4.7 Appendix A: Derivation of the spectral kinetic en-

ergy density

To obtain an expression for the spectral kinetic energy density, we first consider the cumu-
lative kinetic energy associated with low pass filtered velocities (see Frisch (1995))

u<
K =

∑
k<K

ûhe
ikr, (4.14)

where k =
√
k2
x + k2

y is the horizontal wavenumber and K a cutoff wavenumber. The
globally averaged cumulative kinetic energy E<

k than reads

E<
k =

1

V

∫
1

2
(u<

K)
2 d3r, (4.15)

=
1

2H

∫ ∑
k,k′<K

ûh(k) · ûh(k′)
1

A

∫
ei(k+k′)r d2r dz, (4.16)

by using 1
A

∫
ei(k+k′)r d2r = δk,−k′ it can be written as

E<
k =

1

2H

∫ ∑
k,k′<K

ûh(k) · ûh(k′)δk,−k′ dz, (4.17)

=
1

2H

∫ ∑
k<K

ûh
∗(k) · ûh(k) dz, (4.18)
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From this, we obtain the spectral kinetic energy density by differentiating

EKE = ∂kE
<
k , (4.19)

=
1

H∆k

∫
ûh
∗ · ûh dz, (4.20)

with ∆k = 2π/(L2
x + L2

y)
1/2. Likewise, any spectral tendency T̂KE within the balance of

EKE can be derived by the corresponding tendencies Tu and Tv of the zonal and meridional
momentum equations, respectively

T̂KE =
1

2H∆k

∫ (
û∗T̂u + v̂∗T̂v

)
dz. (4.21)
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Chapter 5

Conclusions

In this chapter, the main results of the previous studies are summarized and answers to the
specific research questions formulated in Chapter 1 are given. Each discussion is followed
by a short outlook on remaining and pursuing questions.

5.1 Effects of ageostrophic processes on the meridional

overturning circulation

Are zonally averaged ocean models that parameterize the zonally averaged
meridional flow with the zonally averaged meridional pressure gradient dy-
namically inconsistent?

Numerical layer and primitive equation models show that the zonally averaged meridional
pressure gradient is independent of the zonally averaged meridional flow (in accordance to
the hypothesis of Straub (1996)). Models that rely on a parameterization of the zonally
averaged meridional flow by the meridional pressure gradient (e.g. Marotzke et al., 1988;
Wright and Stocker, 1991; Wright et al., 1998) are therefore dynamically inconsistent. The
flow and stratification of such a model shows important discrepancies in comparison to
zonally resolved but otherwise identical three-dimensional models. Even though the incon-
sistent models predict the right direction of the meridional transport, they predict a wrong
sign of the meridional pressure gradient as a consequence of the inherent inconsistency of
the models.
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If yes, how can geostrophic and ageostrophic dynamics be considered in order
to obtain a dynamical consistent model of the zonally averaged meridional
overturning circulation?

In Chapter 2, the approach of Wright et al. (1995) is followed and extended to construct a
zonally averaged model that does not suffer from the inconsistency mentioned by Straub
(1996). Therefore, the ocean is divided into two regimes, a western boundary current
and an interior part. While for the latter a geostrophic balance that yields an upwelling
dominated meridional Sverdrup transport is assumed, ageostrophic dynamics in form of
simple Rayleigh friction are taken into account in the momentum budget for the former.
In contrast to Wright et al. (1995), no attempt is made to integrate the resulting vortic-
ity equation which includes the need to find an integration constant that determines the
magnitude and direction of the meridional transport. Instead, the momentum equations
averaged over the western boundary and the interior domain are considered, respectively.
As a consequence, three quantities need to be parameterized; the zonal velocity at the in-
terface between western boundary current and interior, the meridional pressure difference
over the western boundary part and the meridional pressure difference over the interior.

Parameterizations for these three quantities are validated by a three-dimensional nu-
merical model. The diagnosed quantities from the zonally resolved model are found to
be in good agreement with the parameterizations. Furthermore, the circulation predicted
by a numerical model simulation based on the new parameterization is analyzed. Again,
good agreement is found between the dynamics predicted by the new zonally averaged
model and that analyzed from a zonally resolved model. Therefore, it can be concluded
that the proposed parameterization is able to yield a dynamically consistent model since it
considers both dynamical regimes; the geostrophically balanced interior part of the ocean
on the one hand and a western boundary layer part where ageostrophic dynamics play an
important role, on the other hand.

Outlook

A numerical integration of zonally averaged models is less cost-intensive than that of a three
dimensional domain. Therefore, zonally averaged models are a powerful tool whenever
simulations need to be performed over long time periods. One of two classical examples
is the simulation of paleo-climate phenomena or future climate predictions. In this case,
it is quite common that simulations have to be performed over centuries to millennia.
Therefore, zonally averaged models can be very helpful to investigate possible responses
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like a halting of the MOC (e.g. Manabe and Stouffer, 1994; Jungclaus et al., 2006) of the
ocean circulation to past or future atmospheric surface forcing. Zonally averaged models
based on the inconsistent closure are already implemented in climate models of intermediate
complexity (Claussen et al., 2002) and it is important to investigate how the results of such
models are modified if the new consistent closure is used.

The second example concerns sensitivity studies of the meridional overturning circula-
tion with respect to e.g. idealized surface forcing. The box-model of Stommel (1961) as
well as zonally averaged models predict the possibility of different equilibria and hysteresis
loops of the MOC (e.g. Marotzke et al., 1988). Since the model of Stommel (1961) and the
zonally averaged models of Marotzke et al. (1988); Wright and Stocker (1991) and Wright
et al. (1998) are based on similar parameterizations for the meridional flow, it is important
to examine in which way the results obtained from these models are modified if the new
consistent closure is used. Preliminary studies of multiple equilibria and hysteresis loops
with the zonally averaged model introduced in this study promise interesting results as can
be inferred from Olbers et al. (2012).

5.2 Parameterizations for eddy fluxes in an ageostrophic

environment

What are the main differences between eddy flux parameterizations based on
linear stability analysis and parameterizations based on scalings of the eddy
potential energy release?

Linear stability analysis and a scaling of the potential energy release yield two compet-
ing approaches to parameterize eddy fluxes under geostrophic and ageostrophic condi-
tions (Stone, 1972b; Fox-Kemper et al., 2008). A comparison of both parameterizations
is achieved by relating the magnitude of the eddy fluxes to two dimensionless parame-
ters which are important to characterize the dynamical condition of the flow, namely the
Richardson number and the ratio between Rossby number and the aspect ratio. It is found
that both parameterizations show the same parameter dependency with respect to the sec-
ond parameter, i.e. the ratio of Rossby number and aspect ratio, but that they differ with
respect to the first parameter, the Richardson number. As a consequence, they predict
a different magnitude of the eddy fluxes for different dynamical conditions of the flow.
This difference is especially important when both geostrophic and ageostrophic dynamics
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are considered since the magnitude of the Richardson number varies over several orders of
magnitude between both dynamical regimes.

Both parameterizations agree by predicting a parabolic-shaped vertical structure of the
vertical eddy fluxes over a wide range of Richardson numbers. In contrast, a further differ-
ence between both parameterizations concerns the vertical dependency of the meridional
eddy flux. While the parameterization based on linear stability analysis predicts a constant
profile, the parameterization based on a scaling of the potential energy release predicts a
parabolic-shaped vertical structure of the meridional eddy fluxes.

How do parameterizations of mixed layer eddy fluxes perform under ageostro-
phic and geostrophic conditions?

Both parameterizations are validated using numerical simulations for different dynamical
conditions and thus different Richardson numbers in two scenarios, an equilibrated flow
and the spin-down of a density front. A comparison of the diagnosed eddy fluxes and the
parameterized counterparts reveals a slightly better performance of the parameterization
based on linear stability analysis in the first scenario. In contrast, the parameterization
based on the scaling of a potential energy release yields a slightly more accurate magnitude
of the eddy fluxes in the second scenario. Both parameterizations predict the magnitude
of the eddy fluxes up to a factor of three for simulations in which the Richardson number
differs over three orders of magnitude.

Domain averages of the vertical profiles of the eddy fluxes are diagnosed and compared
with the predicted analytical profiles of the parameterizations. It turns out that the vertical
profile of the diagnosed vertical eddy flux is matched well by the vertical structure function
predicted from both parameterizations. In contrast, the vertical profile of the meridional
eddy flux is better matched by the parameterization based on linear stability analysis than
by the parameterization based on the potential energy release.

Outlook

Fox-Kemper et al. (2011) implement the parameterization that is based on the poten-
tial energy release scaling in a global ocean model. A quantification of the influence of
the parameterization on e.g. bio-geochemical processes or the air-sea gas exchange is still
missing. For more sophisticated bio-geochemical models, adequate parameterizations for
mixed layer eddies play a very important role, since they have a large influence on the
mixed layer depth or on vertical fluxes of heat and other substances. So far no investi-
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gations have been made about the influence of the competing parameterization of Stone
(1972b) on bio-geochemical processes, the air-sea heat and gas exchange or the mixed layer
depth. Therefore, it would be important to do so and to compare the results with the pa-
rameterization based on the scaling of the potential energy release (Fox-Kemper et al.,
2008).

We also find a good agreement of both parameterizations for larger Richardson numbers
and thus quasi-geostrophic conditions. Both parameterizations might thus also yield an
adequate representation of the effect of mesoscale eddies in the ocean interior. Some
variants of the parameterization based on linear stability analysis are already implemented
in numerical ocean models (e.g. Killworth, 1997; Eden, 2011) partly with extensions to
account also for a meridional gradient of the planetary vorticity. Therefore, it would be
important to investigate how the parameterization based on the potential energy release
scaling would perform in comparison. Since this parameterization does not consider any
change of the planetary vorticity, it might have to be extended in order to yield reasonable
results for the mesoscale eddy mixing on a global scale.

5.3 The route to dissipation in the presence of ageostro-

phic dynamics

How can a downscale energy flux and the resulting small-scale dissipation be
related to the dynamical characteristics of a flow system?

In Chapter 4, the spectral kinetic energy flux for different dynamical conditions character-
ized by the Richardson number Ri is investigated. For simulations with large Ri and thus
predominantly geostrophic dynamics, an upscale energy flux is found in accordance to the
predictions of quasi-geostrophic turbulence (Charney, 1971). For simulations with smaller
Ri, however, ageostrophic effects become important and a downscale energy flux emerges
at smaller scales in addition to an upscale flux at larger scales. For Ri = O(1), the energy
flux is towards smaller scales for the whole wavenumber range and the upscale flux van-
ishes. Therefore, the results of this study confirm findings from Capet et al. (2008c) and
Molemaker et al. (2010) who report a downscale energy flux for unbalanced ageostrophic
dynamics. By dividing the velocity into its rotational and divergent components, it is also
confirmed that the divergent part of the velocity features a downscale energy flux whereas
the rotational part is predominantly responsible for an upscale energy flux.
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For simulations with different dynamical conditions and thus varying Richardson num-
bers, a systematic decrease of the downscale energy flux for increasing Ri is found. The
extent to which ageostrophic processes generate the downscale energy flux can now be
identified by an easy accessible quantity like the Richardson number. It is thus possible to
directly predict the ability of a flow to feature a downscale energy flux. A linear regression
is used to infer the dependency of the dissipation on the Richardson number. The ob-
tained power law yields reasonable predictions for the dissipation rates for the considered
numerical simulations. This dependency of the dissipation makes it possible to quantify
the direct route of kinetic energy to dissipation induced by ageostrophic dynamics.

Outlook

The pathway of energy contained in the mesoscale and sub-mesoscale eddy field is still not
understood (Ferrari and Wunsch, 2009). In addition, parameterizations in ocean models
are often implemented in an energetically inconsistent way. Current parameterizations
for momentum dissipation, for instance, do not consider effects of an up- or downscale
energy flux, i.e. the amount of energy that is dissipated by these parameterization is not
related to the amount of energy that would be transported downscale by the ageostrophic
flow. Instead current parameterizations extract a certain amount of energy that, for most
parameterizations, is related to the mean velocity shear but not to dynamical parameters
like the Richardson number. Therefore, the extracted amount of energy is likely to be
inappropriate. Results obtained in this study can yield guidance to more appropriate
parameterizations. The dependency of the energy dissipation on the Richardson number
can be used to construct parameterizations that yield a more realistic energy extraction
by accounting for the up- and downscale energy flux in dependency on the underlying
dynamical conditions.

Furthermore, the proposed dependency of the energy dissipation on the Richardson
number might be used to quantify the ability of ageostrophic dynamics to dissipate mo-
mentum. Since the scaling makes it possible to relate this ability to the Richardson number,
a direct accessible quantity, it would be possible to obtain first estimates of the small-scale
dissipation rate by using climatologies from observations or ocean models. Therefore,
global estimates of the energy dissipation resulting from ageostrophic downscale energy
fluxes might be obtained.

120



5.4. Synthesis

5.4 Synthesis

Progress in ocean sciences generated recently an increasing interest in the dynamics of the
ocean on spatial and temporal scales below the planetary geostrophic or quasi-geostrophic
scales. Numerical models and observations report large differences between the dynam-
ics on these smaller scales in contrast to the larger scale dynamics. A large number of
processes observed on these smaller scales cannot be explained under the assumption of a
geostrophic balance – a fundamental concept that has brought otherwise much insight into
many aspects of the large-scale circulation – indicating that ageostrophic dynamics need
to be taken into account in order to yield more adequate explanations for the processes
mentioned above.

Since many conceptual models based on the assumption of a geostrophic balance fail
in describing small-scale phenomena as soon as ageostrophic processes become important,
new concepts and models have to be developed and investigated to provide a theoretical
framework for understanding and interpreting these phenomena. This thesis contributes
to the development of such simplified models of the more complex reality by regarding
three case studies and by investigating possible simplifications of the underlying processes.
However, many remaining questions and also new ones maintain the need for pencils and
CPU hours.
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