
Design and Development of a

GPU-accelerated Micromagnetic Simulator

D i s s e r t a t i o n

zur Erlangung des akademischen Grades

Dr. rer. nat.

an der Fakultät für Mathematik, Informatik und Naturwissenschaften

der Universität Hamburg

eingereicht beim

Fach-Promotionsausschuss Informatik von

Gunnar Selke

aus Hamburg

Juli 2013

� korrigierte Fassung �

Gutachter Prof. Dr. Dietmar P. F. Möller

PD Dr. Guido Meier

Prof. Dr. Stephan Olbrich

Datum der Disputation 2. April 2014

Abstract

Micromagnetic simulators are important software tools to investigate ferromagnetic

nano- and microstructures. In this work the fast micromagnetic simulator MicroMagnum

is developed, which runs on CPUs as well as on graphics processing units (GPUs). Its

high performance on GPUs allows the investigation of large simulation problems that

could not be treated before by previous software. From the beginning MicroMagnum was

developed with strong feedback by the users to obtain a high usability. Fast algorithms

using the �nite-di�erence method are presented that implement the micromagnetic model

e�ciently. By employing graphics processing units, a speedup of up to two orders of

magnitude is achieved.

Modern graphics processors allow general programming on graphic processing units.

GPUs have many compute cores and their programming model is inherently parallel. Thus

the algorithms have to be parallelized before they are ported to the GPU architecture.

Several parallel software patterns are adapted to the GPU architecture and applied to

the implementation of the micromagnetic model.

The software requirements of performance, correctness, extendability, usability, por-

tability, and maintainability are desired properties. The simulator is written in Python

and C++. To achieve high software extendability, the dynamic scripting language Py-

thon is used for the implementation of the non-speed-critical software parts. Likewise

the users of the simulator write their simulation scripts in Python. A module system

that manages the dependencies of the model variables of the micromagnetic model is

presented. An abstraction layer that hides the implementation details of the CPU and

GPU algorithms and data representations is developed. This speed-critical software layer

is written in C++ and CUDA C.

Several benchmarks that compare the performance of the CPU and GPU routines are

performed.

As a use case, non-linear vortex-core dynamics are investigated using simulations

performed by MicroMagnum.

i

Zusammenfassung

Mikromagnetische Simulatoren sind wichtige Werkzeuge, um ferromagnetische Mikro-

und Nanostrukturen zu untersuchen. In dieser Arbeit wird MicroMagnum, ein performan-

ter mikromagnetischer Simulator, entwickelt. Der Simulator läuft sowohl auf CPUs als

auch auf Gra�kprozessoren (GPUs). Die hohe Performanz auf GPUs erlaubt die Durch-

führung von komplexen Simulationen, die voher nicht berechenbar waren. Von Anfang

an wurde MicroMagnum unter ständigem Feedback seiner Benutzer entwickelt, um eine

hohe Benutzbarkeit zu garantieren.

Schnelle Algorithmen, die das mikromagnetische Modell mittels der �nite Di�erenzen

Methode berechnen, werden präsentiert. Durch die Nutzung von Gra�kprozessoren wird

gegenüber der CPU eine Geschwindigkeitssteigerung von bis zu zwei Gröÿenordnungen

erreicht.

Moderne Gra�kkarten erlauben die freie Programmierung ihrer Gra�kprozessoren.

Die Prozessoren haben viele Rechenkerne, und ihr Programmiermodell ist von Natur aus

parallel. Dadurch müssen die Algorithmen parallelisiert werden, bevor sie auf die GPU-

Architektur portiert werden. Mehrere parallele Software-Entwurfsmuster werden auf die

GPU-Architektur adaptiert und auf das mikromagnetische Modell angewendet.

Die Software-Qualitätskriterien Performanz, Korrektheit, Erweiterbarkeit, Benutz-

barkeit, Portabilität und Wartbarkeit sind erwünschte Eigenschaften. Der Simulator wur-

de in Python und C++ entwickelt. Um eine gute Software-Erweiterbarkeit zu erreichen,

wird die dynamisch typisierte Python-Skriptprogrammiersprache für die Implementa-

tion der Geschwindigkeitsunkritischen Programmteile verwendet. Ebenso schreiben die

Benutzer der Software ihre Simulationsprogramme in Python. Ein Modulsystem wird

präsentiert, welches die Abhängigkeiten zwischen den Modellvariablen des mikromagne-

tischen Modells verwaltet. Eine Abstraktionsschicht enthält die Implementationsdetails

der CPU- und GPU-algorithmen und Datenstrukturen. Diese Performanzkritischen Rou-

tinen sind in C++ und CUDA C implementiert.

Mehrere Benchmarks werden durchgeführt, um die Geschwindigkeit auf CPUs und

GPUs zu vergleichen.

Als Anwendungsfall wird die nicht-lineare Dynamik von magnetischen Vortizes durch

MicroMagnum untersucht.

ii

Contents

Introduction 1

I Micromagnetic Model and its Discretization 7

1 Micromagnetic Model 7

1.1 Landau-Lifshitz-Gilbert equation . 8

1.2 E�ective �eld terms . 8

1.2.1 Exchange �eld . 9

1.2.2 Demagnetization �eld . 9

1.2.3 Anisotropy �eld . 10

1.2.4 External �eld . 11

1.3 Extensions for spin currents and electrical currents 11

1.3.1 Spin-torque . 11

1.3.2 Macrolayer spin-torque . 11

1.3.3 Current paths . 12

1.3.4 Oersted �eld . 13

2 Discretization 14

2.1 Finite-di�erence discretization . 14

2.1.1 Boundary conditions . 15

2.1.2 Exchange �eld . 15

2.1.3 Demagnetization �eld . 16

2.1.4 Demagnetization �eld (scalar potential method) 20

2.1.5 Anisotropy �eld . 22

2.1.6 External �eld . 23

2.1.7 Oersted �eld . 23

2.1.8 Current paths . 24

2.2 Time discretization . 24

2.2.1 Explicit Runge-Kutta schemes . 25

2.2.2 Time integration in micromagnetic simulation 29

3 Fast Numerical Methods 30

3.1 Demagnetization �eld . 30

3.1.1 Fast convolution . 30

3.1.2 Fast �eld computation . 38

3.1.3 Full algorithm . 43

3.1.4 Scalar potential method . 48

iii

3.2 Exchange �eld . 48

3.3 Oersted �eld . 49

3.4 Current paths . 50

II Parallel Computation of the Micromagnetic Model 51

4 Parallel computing 51

4.1 Fundamentals . 52

4.2 Parallel micromagnetic model computation 54

4.2.1 E�ective �eld . 54

4.2.2 Convolution-based �eld terms . 54

4.2.3 Local �eld terms . 55

5 Computation on Graphics Processing Units 56

5.1 CUDA programming model . 56

5.2 Micromagnetic model implementation in CUDA 60

5.2.1 Parallel loop over array elements 60

5.2.2 Reduce operation . 61

5.2.3 Array rotation . 64

5.2.4 Iterated fast Fourier transforms 66

5.2.5 Matrix-vector product . 67

5.2.6 Small kernel convolution . 70

III The MicroMagnum Simulator 73

6 Design and Implementation 73

6.1 Software quality requirements . 73

6.2 Programming language choice . 74

6.3 Architecture . 77

6.3.1 Mathematical abstraction layer 77

6.3.2 Micromagnetic module system . 80

6.3.3 Simulation description and solver interface 83

6.4 Discussion . 89

7 Software tests 91

7.1 Unit and integration tests . 91

7.2 Functionality tests . 91

7.2.1 µMAG standard problem 1 . 92

7.2.2 µMAG standard problem 2 . 92

7.2.3 µMAG standard problem 3 . 93

iv

7.2.4 µMAG standard problem 4 . 96

7.2.5 Spin torque standard problem . 96

7.2.6 Larmor precession test . 98

7.3 Performance tests . 98

7.3.1 Proportional run times . 99

7.3.2 Demagnetization �eld . 102

7.3.3 Demagnetization �eld (scalar potential method) 105

7.3.4 Exchange �eld . 106

7.3.5 Comparison to OOMMF . 106

7.3.6 Memory usage . 108

7.4 Conclusion . 109

8 Use Case: Non-linear Magnetic Vortex Core Dynamics 111

8.1 Magnetic vortex con�guration . 111

8.2 Vortex dynamics . 113

8.3 Conclusion . 117

Conclusion and Outlook 119

Acknowledgement 123

Appendix 125

A Listings 125

A.1 Functionality tests . 125

A.1.1 µMAG standard problem 1 . 125

A.1.2 µMAG standard problem 2 . 126

A.1.3 µMAG standard problem 3 . 127

A.1.4 µMAG standard problem 4 . 128

A.1.5 Spin-Torque standard problem . 129

A.1.6 Larmor precession test . 130

A.2 Sparse convolution subroutines . 130

References 134

v

vi

Introduction

In recent decades simulations of ferromagnetic nanostructures received a great deal of

interest in basic research and industry. In physical experiments, simulations are used

to explain the observed magnetization dynamics. Technology companies employ mi-

cromagnetic simulations to develop storage devices based on ferromagnetic properties.

Ferromagnets possess magnetic moments that lead to a permanent magnetization. The

magnetic moments can be manipulated by external magnetic �elds and electrical cur-

rents. Due to these properties ferromagnets are suitable for the representation of the

binary state inside storage devices. To make the storage devices small enough, ferromag-

nets with spatial dimensions ranging from some nanometers up to some microns, so-called

ferromagnetic microstructures, are required. If a current is applied through ferromag-

nets, the electrical resistance depends on the orientation of the magnetic moments. These

so-called magnetoresistive e�ects are used to detect the orientation of the magnetic mo-

ments. For example, hard-disk read heads exploit magnetoresistive e�ects. In contrast to

hard magnetic materials like iron, cobalt, and nickel, the magnetization of soft magnetic

materials can be manipulated by small amplitudes of excitation. A prominent example

of a soft magnetic material is Permalloy (Ni80Fe20), which has permanent magnetic mo-

ments that are easily manipulated. In recent years a large number of memory concepts

that contain ferromagnetic microstructures have been proposed. The memory concepts

di�er in how they represent binary states and how these states are read and manipulated.

In the nineties the Magnetoresistive Random Access Memory (MRAM) was invented. It

Figure 0.1: (a) Magnetoresistive Random Access Memory (MRAM) cell, (b) Vortex Memory
cell (VRAM) (Reprinted with permission from Ref. [1]. Copyright 2008, American Institute of
Physics.), (c) Racetrack memory.

was �rst sold commercially in 2007. A cell of an MRAM[2], see Fig. 0.1 (a), consists of

a stack of ferromagnetic and non-ferromagnetic layers. The binary state is represented

by the orientation of the magnetic moments in the so-called free layer. In a free layer

the binary state is stable but can be easily manipulated by a current or a magnetic �eld.

The binary state is read out by applying a low current through the layers. The electrical

resistance depends on the orientation of the magnetization due to the Giant Magneto

Resistance or Tunneling Magneto Resistance. For example, a low resistance represents a

1

Figure 0.2: Ferromagnetic models sorted by level of abstraction. The applicability of the
models ranges from the atomistic level at the bottom to the macroscopic level at the top. The
micromagnetic model is highlighted. (Figure adapted from Ref. [6]).

binary zero, and a high resistance represents a binary one. Another new memory device

is the proposed race track memory[3, 4]. Here multiple bits are stored magnetically along

a ferromagnetic nanowire, see Fig. 0.1 (c). A bit-wise one or zero is represented by the

polarization of a magnetic domain on a section of the nanowire. A spin-polarized current

is used to shift the magnetic domains around the nanowire in order to position one bit

under the �xed read and write heads. This way a shift register is realized. The nanowire

may be extended into the third dimension, thus potentially allowing a very high storage

density. A Vortex random access memory stores the binary state by the magnetization

pattern of a vortex[1, 5], see Fig. 0.1 (b). The binary state is modi�ed by a spin-polarized

and current and its concomitant Oersted �eld. The cells can be arranged in an array to

realize a word and a bit line like in a MRAM. In comparison to an MRAM less energy is

required for writing a bit and the writing process is faster.

The physical origin of the representation, writing, and reading of binary states in

storage concepts can be acquired by experiments, theoretical considerations, and simu-

lations. Experiments can be costly and time consuming and theoretical models are often

strongly simpli�ed. Thus, for the investigation of ferromagnetic nano- and microstruc-

tures, micromagnetic simulations have become a powerful tool to predict their magnetic

behavior. In recent years, advancements of computers in computation speed and memory

size allowed increasingly realistic simulations. However, quantum-mechanical simulations

can still be performed for a few number of atoms only. In 1935, Landau and Lifshitz in-

troduced the micromagnetic model. In this model the magnetic moments are replaced by

classical magnetization vectors, and a ferromagnetic body is represented by a continuous

magnetization vector �eld. The magnetization vectors interact by e�ective �elds. An

equation of motion, the so-called Landau-Lifshitz-Gilbert equation, describes the magne-

tization dynamics. For most problems, the nonlinear Landau-Lifshitz-Gilbert equation

can only be solved numerically. In micromagnetic simulations, the ferromagnetic body is

discretized by simulation cells. Each simulation cell contains a local magnetization and

e�ective �eld. Typical simulations have millions of simulation cells. Thus fast algorithms

with high computation power are required.

Common micromagnetic simulations on CPUs run sequentially. Often, in order to

2

achieve acceptable computation times, simulation elements with a smaller size than the

experimental samples are chosen. Simulations with large simulation elements in the

micrometer range can take days to months to complete. It is therefore important to

develop numerical methods for the simulation that are as e�cient as possible.

During the last two decades several micromagnetic simulators for use on commodity

hardware have been developed, see Tab. 0.1. They are distinguished by their use of a

�nite di�erence method[7, 8, 9], a hybrid �nite/boundary element method[10, 11, 12, 13],

a fast multipole[14, 15, 16, 17], or another numerical method to compute the Landau-

Lifshitz-Gilbert equation including the e�ective �elds.

The simulators that employ the �nite di�erence method usually use rectangular

meshes for the spatial discretization. Due to the widely used Fourier transform method

for calculating magnetic �elds they are typically very fast, because e�cient software

libraries to compute fast Fourier transforms are available. However, the regular dis-

cretizing mesh can be disadvantageous when non-rectangular and/or irregular samples

are investigated[18]. The most established micromagnetic simulator that employs a �nite

di�erence scheme is the Object Oriented MicroMagnetic Framework (OOMMF)[19]. It

runs on multi-core processors and is implemented in C++ and the Tcl scripting language.

In contrast, the �nite-element simulators allow more �exible meshes. Additionally,

an adaptive mesh re�nement is possible[20]. Meshes with tetrahedral elements are most

widely used. In the �nite-element method the e�ective �eld is numerically approximated

by the solution of a linear equation system[13]. The solution of linear equation systems

is a common problem in the �eld of computational mathematics and there exist many

numerical methods and readily usable software implementations. Due to the use of stan-

dard algorithms the computation can be executed parallely. In comparison to the �nite

di�erence method, the �nite element method still requires more memory and computa-

tion time. Thus for rectangular-shaped geometries usually a �nite di�erence simulator

is preferred. Established micromagnetic simulators that employ a �nite-element scheme

are NMag[21, 22] and MagPar[23], both of which use tetrahedral meshes. They are

implemented in the C++, OCaml and Python programming languages.

In recent years, general purpose programming on graphics processing units (GPGPU)

has become available. Graphics processors are used as accelerators for e�cient numerical

computations due to their high number of cores and high memory bandwidth. Their

many cores enable them to compute highly in parallel. GPUs have been used to speed up

micromagnetic simulations with the �nite-element method[30] and the non-uniform grid

interpolation method[31]. During the writing of this thesis micromagnetic simulators

using the �nite di�erence method on GPUs, both open-source and commercial, have

emerged[26, 24].

In this thesis the design and implementation of the MicroMagnum simulator, which

is available online[32] as an open source project[33], is presented. It is a �nite di�erence

micromagnetic simulator that solves the Landau-Lifshitz-Gilbert equation parallely on

3

Name License Parallel
execution

Implementa-
tion language

Scripting
language

Online

Finite di�erence method simulators
GPMagnet[24] comm. GPU n/a n/a (1)
JaMM PD no Java n/a (2)
LLG comm. n/a n/a n/a (3)
M3S[25] n/a no Matlab Matlab n/a
MicroMagnum GPL GPU C++, Python Python (4)
MicroMagus comm. n/a n/a n/a (5)
muMax[26] GPL GPU Go yes (6)
muMax 2 GPL GPU Go yes (7)
OOMMF[19] PD SMP Tcl, C++ Tcl (8)
RKMAG n/a no FORTRAN n/a (9)
YAMMS GPL no Java JavaScript (10)

Finite element method simulators, including hybrid methods
MagFEM3d GPL no FORTRAN - (11)
MagPar[23] GPL MPI C++ - (12)
NMag[21, 22] GPL MPI OCaml,

Python
Python (13)

Fast multipole method / multigrid method simulators
AlaMag[27] GPL no C++ - (14)
FastMag[28] n/a GPU n/a n/a (15)

Table 0.1: Overview of di�erent micromagnetic simulation programs including MicroMagnum,
which is described in this work. For each simulator the license (public domain (PD), GNU Gen-
eral Public License[29] (GPL), or a commercial license), parallel execution support (Symmetric
multiprocessing (SMP), on graphics processing units (GPU), or using parallel processes using
the message passing interface (MPI)), the implementation and scripting languages and the web
site, if available, is listed. (Table adapted and extended from Ref. [25].)

1http://www.goparallel.net/index.php/gp-software
2http://jamm.uno.edu/
3http://llgmicro.home.mindspring.com/
4http://micromagnum.informatik.uni-hamburg.de
5http://www.micromagus.de
6http://code.google.com/p/mumax
7http://code.google.com/p/mumax2
8http://math.nist.gov/oommf/
9http://www.rkmag.com
10http://github.com/c-abird/yamms_core
11http://magfem3d.sourceforge.net/
12http://www.magpar.net/
13http://nmag.soton.ac.uk/nmag/
14http://faculty.mint.ua.edu/~visscher/AlaMag/
15http://cem.ucsd.edu/index_files/fastmag.html

4

http://www.goparallel.net/index.php/gp-software
http://jamm.uno.edu/
http://llgmicro.home.mindspring.com/
http://micromagnum.informatik.uni-hamburg.de
http://www.micromagus.de
http://code.google.com/p/mumax
http://code.google.com/p/mumax2
http://math.nist.gov/oommf/
http://www.rkmag.com
http://github.com/c-abird/yamms_core
http://magfem3d.sourceforge.net/
http://www.magpar.net/
http://nmag.soton.ac.uk/nmag/
http://faculty.mint.ua.edu/~visscher/AlaMag/
http://cem.ucsd.edu/index_files/fastmag.html

103

104

105

106

107

108

104 105 106 107

co
m
p
u
ta
ti
on

ti
m
e
(s
)

number of simulation cells

1 hour

1 day

1 week

1 month

CPU
GPU

Figure 0.3: Computation time of MicroMagnum for 107 simulation steps during a micromag-
netic simulation using one core of an Intel Xeon X5650 CPU (red line) and an Nvidia M2050
graphics processor (blue line) in dependence of the number of simulation cells. A speedup of up
to 40 is reached compared to single-threaded computation on the CPU.

Nvidia graphics processing units. The simulator is implemented using the programming

languages C++[34], CUDA C[35] and Python[36]. Due to the transfer of the program

from the CPU to the GPU, a considerable speedup can be reached. Figure 0.3 gives a

�rst impression of the speed that is gained in MicroMagnum; detailed benchmark results

are presented in section 7.3. Compared to computations on a modern CPU, a speedup

of up to 40 is reached. The actual speedup depends on the problem size (the number of

simulation cells and whether the discretization mesh is two- or three-dimensional) and

the selected numerical �oating point precision of either 32-bit or 64-bit on the GPU. Some

kinds of simulations require 64 bit precision, and some kinds tolerate 32-bit precision in

order to obtain useful results.

This thesis is organized as follows: There are three main parts. The �rst part de-

scribes the micromagnetic model and its �nite di�erence discretization. Fast algorithms

for the numerical solution are also presented. The second part deals with the parallel

computation of the presented algorithms on multi-core CPUs as well as graphics pro-

cessing units. The third part describes the development of a micromagnetic simulation

framework MicroMagnum. Here some aspects of the software development are discussed.

As a use-case, the simulator is applied to investigate nonlinear vortex motion[37], which

could be utilized in vortex random access memory.

5

6

Part I

Micromagnetic Model and its

Discretization

In this part the micromagnetic model and its extensions for electrical and spin currents

is introduced. Its �nite-di�erence discretization is presented. Finally, fast algorithms to

compute the micromagnetic model are presented.

1 Micromagnetic Model

In ferromagnetic materials, the spins of adjacent electrons align in parallel, leading to

intrinsic magnetic moments. The parallel alignment remains even in the absence of an

external excitation such as a magnetic �eld which causes a permanent magnetization.

To describe the spin dynamics, the atomistic Heisenberg model[38] was introduced. In

this model the electron spins are located on the crystal lattice. Usually this spatial

resolution is too high for simulations. In 1935, the phenomenological micromagnetic

model was introduced by Landau and Lifshitz[39] to describe larger systems. In this

model the electron spins are replaced by a classical magnetization function. The temporal

evolution of the magnetization is given by the Landau-Lifshitz-Gilbert equation. It can

be used to investigate magnetization con�gurations like domain walls[40] and magnetic

vortices[41, 42].

In the micromagnetic model the individual magnetic moments are represented by a

classical �eld of magnetization vectors

~M(~r) =

∑
µB

V
(1.1)

with the Bohr magneton µB = e~/(2me) = 9.27 · 10−24Am2. This �eld gives the volume

density of the magnetic moments of a material and thus has the unit A/m. The length

of the magnetization vectors is the saturation magnetization Ms = | ~M | and is a measure

for the number of elementary magnetic moments µB per volume of a material. In the

following the magnetization ~M �eld is a function of the position ~r at time t.

7

Figure 1.1: Gyration and damping of a magnetization vector as described by the Landau-
Lifshitz-Gilbert equation. The green arrow indicates the damping term and the red arrow
indicates the gyration term.

1.1 Landau-Lifshitz-Gilbert equation

The dynamical behaviour of the magnetization of a ferromagnet is described by the

Landau-Lifshitz-Gilbert equation[39, 43] (LLGE),

d ~M

dt
= −γ ~M × ~Htot −

γα

Ms

~M × (~M × ~Htot). (1.2)

The magnetization vectors interact via the total �eld ~Htot, which depends on the posi-

tion ~r and time t. The material parameter α is the phenomenological Gilbert damping

constant. The two terms on the right hand side, i.e. the gyration term and the damping

term, cause a damped gyration around the total �eld, see Fig. 1.1. The damping term

was added by T. L. Gilbert [44, 45] to account for dissipation e�ects. Both terms include

the gyromagnetic ratio γ. The second term is proportional to the phenomenological

Gilbert damping parameter α. Without external excitation, the magnetization vectors

eventually align parallel to the total �eld.

1.2 E�ective �eld terms

In the basic micromagnetic model the total energy[6] of a ferromagnet

E = Eexch + Edemag + Eaniso + Eext

= µ0

∫ [
A(~∇ ~M)2 +

1

2
~Hdemag

~M + k~a ~M + ~Hext
~M

]
dV (1.3)

8

is a sum of the exchange energy, the demagnetization energy, the anisotropy energy, and

the energy of the external �eld. The magnetic permeability of vacuum µ0 is a natural

constant. The exchange energy Eexch with the exchange constant A is the result of the

quantum-mechanical interaction between neighboring spins. It causes adjacent magne-

tization vectors to align parallel. The demagnetization energy ~Hdemag is the interaction

energy of the magnetic �eld that is generated by the magnetization vectors themselves.

This long-range interaction causes the magnetic moments to prefer an anti parallel align-

ment. The name stems from the fact that the demagnetization �eld causes the total

magnetic moment to reduce. The anisotropy energy Eaniso is an energy penalty due to

the spin-orbit coupling of the electrons in the ferromagnetic material. It favors the align-

ment of the magnetization vectors to a preferred direction given by the easy axis ~a. The

anisotropy constant k is the strength of this penalty. The external energy ~Eext is the

interaction energy of an external �eld ~Hext with the magnetization.

From these energy terms the corresponding e�ective �elds in the Landau-Lifshitz-

Gilbert equation (Eq. 1.2) can be derived by the variational derivative

~Htot = − 1

µ0

δE

δ ~M
. (1.4)

Several terms contribute to the total �eld to account for the di�erent origins of total

energy:
~Htot = ~Hexch + ~Hdemag + ~Haniso + ~Hext (1.5)

In the following, the four �elds in Eq. 1.5 are described.

1.2.1 Exchange �eld

The exchange energy is the result of the quantum-mechanical interaction between neigh-

boring spins. It causes adjacent magnetization vectors to align parallel. Applying the

variational derivative in Eq. 1.4 to the exchange energy yields the exchange �eld

~Hexch =
2A

µ0M2
s

∆ ~M (1.6)

with the exchange sti�ness constant A and the saturation magnetization Ms.

1.2.2 Demagnetization �eld

In the absence of electrical currents the Maxwell's equations reduce to

~∇× ~H = 0 (Ampere's law) (1.7)

and
~∇ · ~B = 0 (Gauss' law). (1.8)

9

The magnetic �eld ~H and the magnetic �ux density ~B are related by

~B = µ0(~M + ~H). (1.9)

The solution of Eq. 1.7 can be expressed as the gradient of a scalar potential �eld φ:

~H = −~∇φ. (1.10)

Substituting Eq. 1.9 and Eq. 1.10 into Eq. 1.8 yields

µ0
~∇ · (~M + ~H) = µ0

~∇ · (~M − ~∇φ) = 0 (1.11)

and thus
~∇ · ~M = ∆φ (1.12)

inside the magnetized volume. Outside the magnetized volume ∆φ = 0. Given a mag-

netization ~M , the solution for the scalar potential φ is [46]

φM(~r) = − 1

4π

∫
V

∇′ · ~M(r′)

|~r − ~r′|
dV ′ +

1

4π

∫
∂V

~n · ~M(r′)

|~r − ~r′|
dS ′. (1.13)

resulting in the demagnetization �eld

~Hdemag = −~∇φM . (1.14)

In this work the terms demagnetization �eld and stray �eld are used interchangeably.

1.2.3 Anisotropy �eld

Magnetically anisotropic materials possess a direction dependence where the magnetic

moments tend to align parallely to one or more preferred directions, the so-called easy

axes[6]. One source of this e�ect is the atomic crystal structure of the material. Here the

cases of one easy axis and three orthonormal axes are considered. In the case of one easy

axis the variational derivative of the anisotropy energy yields the uniaxial anisotropy �eld

~Huni =
2k

µ0M2
s

(~M · ~a)~a, |~a| = 1, (1.15)

with the unit vector ~a pointing into the easy axis and the anisotropy constant k, which

in case of the crystalline anisotropy is a material constant. In the case of three easy axes

the variational derivative of the cubic anisotropy energy yields the cubic anisotropy �eld

~Hcub =
2k

µ0Ms

(
α(β2 + γ2)~a1 + β(α2 + γ2)~a2 + γ(α2 + β2)~a3

)
. (1.16)

10

It includes the three orthonormal easy axes ~a1, ~a2, and ~a3. The parameters α, β, and γ

are the direction cosines of the magnetization to these axes (such that α~a1 +β ~a2 +γ ~a3 =

~m(~r)).

1.2.4 External �eld

In the micromagnetic model the external �eld

~Hext (1.17)

is a term of the e�ective �eld.

1.3 Extensions for spin currents and electrical currents

The magnetization vectors can be excited by a magnetic �eld as well as by an electri-

cal current. The spins of the itinerant electrons of the current exert a torque on the

magnetization vectors. This spin torque is proportional to the electrical current density.

For a spatially varying current density the strength of the spin torque varies with the

current density. Additionally, the magnetization is in�uenced by the Oersted �eld that

is generated by a spatially inhomogeneous current.

1.3.1 Spin-torque

If a current passes through a ferromagnetic monolayer a majority of the spins of itinerant

electrons points up (or down), which is called spin polarization. The itinerant electron

spins of a spin-polarized current exert a torque on the gradient of the localized magnetiza-

tion of the ferromagnet. The spin torque was �rst introduced by Berger[47] and extended

by Zhang and Li[48, 49]. This torque is modeled by the addition of a spin-torque term

ST (~M,~j) = −(1 + ξα)
bj

Ms(1 + α2)
~M × (~M × (~j · ~∇) ~M)

−(ξ − α)
bj

M2
s (1 + α2)

~M × (~j · ~∇) ~M (1.18)

to the right hand side of the Landau-Lifshitz-Gilbert equation with the nonadiabaticity

constant ξ, and the coupling constant bj.

1.3.2 Macrolayer spin-torque

In the macro spin model only one local magnetization vector is assumed to be located in

a ferromagnetic layer[50]. If a current is applied in the out-of-plane direction of a stack

of ferromagnetic and nonmagnetic layers like in an MRAM cell, the itinerant electron

11

spins of the current exert a torque

ST (~M,~j) = − γajj

Ms(1 + α2)
~M × (~M × ~P) +

γαaj
1 + α2

~M × ~P) (1.19)

on the magnetization vector in the so-called free layer. In the free layer the magneti-

zation can rotate in all directions while in the remaining layers of an MRAM-cell the

magnetization is �xed by, e.g., antiferromagnets to polarize the spin current. This torque

term is added to the right hand side of the Landau-Lifshitz Gilbert equation and includes

the coupling constant aj, and the spin polarization P .

1.3.3 Current paths

To investigate current-induced magnetization dynamics experimentally, electrical con-

tacts are positioned at the surface of the ferromagnetic microstructure and a voltage is

applied to allow an electron �ow from one contact to the other. The resulting current

paths show spatial variations, e.g. due to the sample's shape, electrical resistance, and

magnetization. The di�erence of the electrostatic potential Φ at both contacts results in

an electrical �eld ~E = −~∇Φ which generates a current density ~j in the sample due to

Ohm's law
~j = σ ~E = −σ~∇Φ. (1.20)

The current density j is proportional to the conductance tensor σ which incorporates

the conductance in all three spatial directions. The conductance tensor is de�ned as

the inverse of the resistance tensor σ = ρ−1. The resistance tensor includes the ohmic

resistance ρΩ and the anisotropic magnetostatic resistance ρAMR. The local anisotropic

magnetostatic resistance

ρ = ρ⊥ + (ρ|| − ρ⊥) cos2(θ(~j, ~M)) = ρ⊥ + ∆ρ cos2(θ(~j, ~M)) (1.21)

depends on the angle θ(~M,~j) between the local magnetization ~M and the local current

density ~j as given by the product of the di�erence between resistance ρ|| with current

parallel to the magnetization and the resistance with current perpendicular to the mag-

netization and the term cos2(θ(~j, ~M)). In tensor notation the resistance tensor reads[51]

ρ =

ρ⊥(m2
x +m2

z) + ρΩ ∆ρmxmy ∆ρmxmz

∆ρmxmy ρ⊥(m2
x +m2

z) + ρ||m
2
y + ρΩ ∆ρmymz

∆ρmxmz ∆ρmymz ρ⊥(m2
x +m2

y) + ρ||m
2
z + ρΩ

 .

(1.22)

The current density inside the sample is computed using the continuity equation

∂ρ

∂t
= ~∇ ·~j (1.23)

12

with the electrical charge density ρ. Inserting Eq. 1.20 into Eq. 1.23, employing the

divergence theorem
∫
V
~∇ ·~j dV =

∮
S
~j · ~n dS with the surface element S and the normal

~n and assuming the quasi-static case ∂ρ
∂t

= 0 yields∫
dS~nσ~∇Φ = 0. (1.24)

This equation uses the conductivity tensor σ. In case of more than one magnetization

vector Eq. 1.24 can be brought in a form of a Linear Set of Equations. Solving this LSE

gives the electrostatic potential inside the whole sample. Employing Eq. 1.20 one obtains

the current density j.

1.3.4 Oersted �eld

Electrical currents �owing through the sample generate a magnetic �eld called the Oer-

sted �eld. The �eld is a part of the e�ective �eld and thus in�uences the magnetization

dynamics. Although the �eld is typically weak compared to the exchange and demagne-

tization �elds, its in�uence can be signi�cant. For example, the Oersted �eld contributes

signi�cantly to the current pulse induced switching behavior of magnetic vortices[52].

Given a current density �eld ~j(~r) inside a volume V , the �eld is given by the Biot-Savart

law
~HOersted(~r) =

1

4π

∫
V

~j(~r′)× ~r − ~r′

|~r − ~r′|3
dV ′. (1.25)

13

2 Discretization

Until now a continuous micromagnetic model has been introduced. In this chapter,

the model is discretized in order to solve it by numerical methods. In section 2.1, the

simulated volume is discretized spatially using a grid of rectangular cells. In section 2.2,

the time is discretized into �nite time steps by using Runge-Kutta solvers.

2.1 Finite-di�erence discretization

The simulation volume is spatially discretized by a rectangular grid with equally sized

cuboid simulation cells. The simulation cells have the side lengths lx, ly and lz along

each direction. The mesh has a number of nx, ny and nz cells in each direction, with a

total of n = nxnynz cells. The cells are enumerated using an index i counting from 0 to

(n− 1). They have the volumes Vi and are located by their cell middle points ~ri.

The discretized magnetization �eld ~Mi at cell i is approximated by the average of the

continuous magnetization �eld in that cell volume,

~Mi =
1

lxlylz

∫
Vi

~M(~r) dV. (2.1)

Similarly, the terms of the total e�ective �eld are each discretized by

~Heff,i =
1

lxlylz

∫
Vi

~Hx(~r) dV. (2.2)

All material parameters such as Ms, A, and α are speci�ed per cell as well. Usually they

are either speci�ed by the user or drawn from a material database.

Some assumptions have to be made to discretized the continuous micromagnetic

model. All �elds of the continuous model are spatially averaged over each simulation

cell. Thus inside each cell, the �elds are assumed to be homogeneous. This approach

is valid only for su�ciently small simulation cells. The cell size should not exceed the

exchange length lex =
√

A
2Ms

to resolve all magnetic phenomena which are described

by the continuous model[6]. It is determined by the exchange sti�ness constant A and

saturation magnetization Ms.

In a computer implementation, the discretized �elds are represented by three-dimen-

sional arrays. They have the size (nx, ny, nz) so that each array entry corresponds to one

simulation cell. For example, the magnetization is stored in the magnetization array of

vectors

~M [m,n, o] = ~Mi where ~ri =

(
lx(m+

1

2
), ly(n+

1

2
), lz(o+

1

2
)

)
, (2.3)

where the indices of the array are enclosed in square brackets ([,]). Similarly, any other

�elds and material parameters that are given per cell are stored in arrays.

14

Figure 2.1: (a) Magnetized volume with open boundary conditions discretized by a rectangular
mesh. (b) Magnetized volume with periodic boundary condition in x-direction. The thin lines
denote the simulation cell sizes, the thick lines the periodic tiles. The magnetization dynamics
are computed in the black tiles, and the grey tiles contain repetitions.

2.1.1 Boundary conditions

Numerical simulations are restricted to a �nite number of cells. Thus �nite-di�erence

methods can only handle a �nite region in which the magnetization dynamics are com-

puted, and boundary conditions have to be de�ned. In micromagnetic simulations open

and periodic boundary conditions can be applied.

With open boundary conditions (Fig. 2.1 (a)), the simulated magnetized volume is

�nite in space, i.e. outside this volume all magnetization vectors are zero. In this case

only the magnetized volume has to be discretized by the mesh.

With periodic boundary conditions (Fig. 2.1 (b)), the assumption is that the mag-

netization pattern repeats itself in�nitely along one or more principle directions. The

magnetized volume is partitioned into tiles, where each tile contains one repetition of

the magnetization. Non-repeating directions are handled as with open boundary condi-

tions. It will be shown that with periodic boundary conditions, if su�ces to compute the

magnetization pattern for one tile only.

2.1.2 Exchange �eld

The Laplace operator in three dimensions in Cartesian coordinates is

∆ =

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
. (2.4)

In the �nite-di�erence scheme, the simplest numerical approximation of the Laplace

operator is to calculate the second derivatives using central di�erence quotients. For

example, along the x-axis with cell size lx,

∂2

∂x2
f(x, y, z) =

f(x+ lx, y, z)− 2f(x, y, z) + f(x− lx, y, z)

l2x
+O(l2x). (2.5)

15

Figure 2.2: Two volumes that interact by the magnetostatic �eld. ~M is the average magneti-
zation inside τ2, and ~H is the average �eld seen in τ1 that is generated by τ2.

For small values of lx the numerical error scales with l
2
x. Several exchange �eld approx-

imations where investigated in Ref. [53]. It is shown that the simple nearest-neighbor

scheme in Eq. 2.5 is an adequate approximation for micromagnetic simulations. Having

cells with edge lengths (lx, ly, lz), one can thus use

Hexch,k[i] =
2A[i]

µ0Ms[i]l2k

∑
j∈NN(i),
Ms[j]>0

(mk[i]−mk[j]) , k ∈ {x, y, z}, (2.6)

where NN(i) returns the indices of the six nearest neighbors of cell i if i is inside the array

(and less than six indices when i lies on the border), and ~m is the unit magnetization.

Finite di�erences between cells where one Ms is zero are omitted from the sum.

Periodic boundary conditions With periodic boundary conditions, one has to make

sure that the nearest-neighbor function NN in Eq. 2.6 returns the nearest neighbors by

wrapping around the grid borders in all periodic directions.

2.1.3 Demagnetization �eld

Here the computation of the demagnetization �eld in a �nite di�erence mesh is described.

Each simulation cell holds a magnetization vector, which interacts with all magnetization

vectors in the mesh, including itself. The average magnetic �eld seen in volume τ1 due

to a uniformly magnetized region τ2 (see Fig. 2.2) can be generally expressed[54] as

~Hτ1←τ2 = −N · ~Mτ2 , (2.7)

Here (Nij) is the �generalized demagnetization tensor� and has 3× 3 entries. It depends

only on the geometry of the regions τ1 and τ2 and their distance. In the case of a

�nite-di�erence mesh, all regions τi that are considered are cuboid simulation cells of the

same size. Thus, for any given cell pair (i, j) with midpoints ~ri and ~rj their generalized

demagnetization tensor can be derived from the distance vector of the cells, and Eq. 2.7

can be written as
~Hj←i = −N(~ri − ~rj) · ~Mi. (2.8)

16

In order to get the total average demagnetization �eld reaching cell j, the generated �elds

from all cells, including cell j, are summed up,

~Hj =
n−1∑
i=0

~Hj←i = −
n−1∑
i=0

N(~ri − ~rj) · ~Mi. (2.9)

The vector �eld made up by all ~Hj is the discretized demagnetization �eld term of the

total �eld. In order to calculate this �eld, the tensors N(~ri − ~rj) have to be known for

the midpoint-to-midpoint distances ~ri − ~rj of all pairwise cells i and j. In the following

it is shown how these tensors can be calculated.

Newell et al.[54] show how the demagnetization tensor in Eq. 2.9 can be derived. This

is a generalization of the formulas derived in Ref. [55] where the cells are cubic. In a

similar fashion, in Ref. [56] demagnetization tensors for prism-shaped cells and in Ref. [55]

cubic cells were calculated. The scalar potential given in Eq. 1.13 includes volume and

surface charges. By integration by parts the scalar potential can be brought to the form

φ(~r) =
1

4π
~Mj ·

∫
V ′
j

~∇′(1

|~r − ~r′|
) dV ′j (2.10)

where the assumption that the magnetization inside each cell is uniform is used. Here

V ′ is the volume of the cell, and ~∇′ is the gradient with respect to ~r′. The average �eld

reaching cell i is then

~Hi←j =
1

Vi

∫
Vi

[
−~∇φ

]
dVi

=
1

Vi

∫
Vi

[
−~∇ 1

4π
~Mj ·

∫
V ′
j

~∇′(1

|~r − ~r′|
) dV ′j

]
dVi

= −N · ~Mj, (2.11)

where the components of the demagnetization tensor N are given by

Nαβ = − 1

4πVi

∫
Vi

dV

∫
V ′
j

~∇′α~∇′β(
1

|~r − ~r′|
) dV ′j (2.12)

using ~∇(1/|~r−~r′) = −~∇′(1/|~r−~r′|). The volume integral is converted to surface integrals
using the divergence theorem,

Nαβ =
1

4πV

∫
S

dS~nα

∫
S′

dS ′~n′β
|~r − ~r′|

. (2.13)

where S and S ′ are the surfaces of the source and target volumes. For pairs of cuboids

of size (∆X,∆Y,∆Z) the integral can be solved analytically. This equation is a sum of

17

Figure 2.3: Surfaces of two interacting cells with a distance of (X,Y, Z) that contribute with a
total of four surface pairs to (a) Nxx, see Eq. 2.14, and (b) Nxy, see Eq. 2.17. Surface pairs with
di�erent (same) signs contribute a negative (positive) term. (Figure adapted from Ref. [54].)

integrals for each pair of faces between the two cuboids. In total this sum has 6× 6 = 36

integrals. For Nxx, the integrals for face pairs with normals parallel to the x-direction

are non-zero. Thus only four integrals remain, and Eq. 2.13 becomes

Nxx =
1

4πV
(2F (X, Y, Z)− F (X + ∆X, Y, Z)− F (X −∆X, Y, Z)), (2.14)

see Fig. 2.3 (a). The integrals are of the form[54]

F (X, Y, Z) =

∫ ∆z

0

∫ ∆y

0

∫ ∆z

0

∫ ∆y

0

dz dy dz′ dy′√
X2 + (y + Y − y′)2 + (z + Z − z′)2

. (2.15)

Rotation of the coordinate system yields the remaining diagonal components

Nyy(X, Y, Z,∆X,∆Y,∆Z) = Nxx(Y,X,Z,∆Y,∆X,∆Z)

Nzz(X, Y, Z,∆X,∆Y,∆Z) = Nxx(Z, Y,X,∆Z,∆Y,∆X). (2.16)

Similarly, for Nxy any integrals for a face pair where the �rst face has a normal along the

x-direction and the second has a normal along the y-direction are non-zero. Again four

integrals remain and Eq. 2.13 becomes

Nxy =
1

4πV
(G(X, Y, Z)−G(X−∆X, Y, Z)−G(X, Y +∆Y, Z)+G(X−∆X, Y +∆Y, Z)),

(2.17)

see Fig. 2.3 (b). Here, the integrals are of the form

G(X, Y, Z) =

∫ ∆z

0

∫ ∆y

0

∫ ∆z

0

∫ ∆x

0

dz dy dz′ dx′√
(X − x′)2 + (Y + y)2 + (z + Z − z′)2

. (2.18)

Rotation of the coordinate system yields the o�-diagonal components

Nxz(X, Y, Z,∆X,∆Y,∆Z) = Nxy(X,Z, Y,∆X,∆Z,∆Y)

Nyz(X, Y, Z,∆X,∆Y,∆Z) = Nxy(Y, Z,X,∆Y,∆Z,∆X). (2.19)

18

Since the demagnetization tensor is symmetric, the remaining o�-diagonal components

can be obtained by the relation

Nαβ = Nβα. (2.20)

The integrals in Eq. 2.15 and Eq.2.18 and thus the whole demagnetization tensor can be

calculated analytically for arbitrary cell distances[54]. After the demagnetization tensors

for each cell midpoint-to-midpoint distance have been precalculated, Eq. 2.9 for the x-

component (and similarly for the y- and z-component) of the demagnetization �eld reads

−Hdemag,x(~ri) =
∑
j

Nxx(~ri − ~rj) ·Mx(~rj)

+
∑
j

Nxy(~ri − ~rj) ·My(~rj)

+
∑
j

Nxz(~ri − ~rj) ·Mz(~rj). (2.21)

This equation contains three discrete convolutions. In a computer implementation, the

�elds in Eq. 2.21 are stored in arrays. The linear convolution of two three-dimensional

arrays A and B is de�ned as

(A ∗B)[l,m, n] =
nx−1∑
i=0

ny−1∑
j=0

nz−1∑
k=0

A[i, j, k] ·B[l − i,m− j, n− k], (2.22)

where 0 ≤ l < nx, 0 ≤ m < ny and 0 ≤ n < nz. Each component of the demagnetization

tensor Nαβ(~r) is stored in a number array of size (2nx − 1, 2ny − 1, 2nz − 1), where each

distance vector ~r is mapped to the array indices (i, j, k) using

Nαβ[i, j, k]↔ Nαβ(lx((nx + i) mod (2nx − 1)− nx),
ly((ny + j) mod (2ny − 1)− ny),
lz((nz + k) mod (2nz − 1)− nz)), (2.23)

see Fig. 2.4. Here the self-demagnetization tensor is mapped to the indices (0, 0, 0).

Eq. 2.21 can now be expressed using arrays as

−Hdemag,x = Nxx ∗Mx + Nxy ∗My + Nxz ∗Mz

−Hdemag,y = Nyx ∗Mx + Nyy ∗My + Nyz ∗Mz

−Hdemag,z = Nzx ∗Mx + Nzy ∗My + Nzz ∗Mz (2.24)

where (∗) is the array convolution operator de�ned in Eq. 2.22.

19

Figure 2.4: (a) Demagnetization array. (b) Mapping of distance vectors (black arrows) to
indices (small rectangles) for the arrays of the demagnetization tensor components.

Periodic boundary conditions With periodic boundary conditions, the convolution

sum has to be extended to take into account the magnetization outside the simulation

volume. Because the magnetization repeats itself inde�nitely, only one period is stored

in the magnetization array. The extended sum is

− ~Hdemag,p[j] =
∑
k,l,m

(∑
i

N(~ri − ~rj + offset(k, l,m)) · ~M [i]

)
(2.25)

where k, l,m ∈ Z iterate over an in�nite number of repetitions in three dimensions and

offset(k, l,m) = kLx ~ex + lLy ~ey + mLy ~ez is the distance vector of the tile at k, l,m from

the tile at the origin. Rearranging Eq. 2.25 yields

− ~Hdemag,p[j] =
∑
i

Np(~ri − ~rj) · ~M [i] (2.26)

with the generalized demagnetization tensor for a in�nitely repeating volume

Np(~ri − ~rj) =
∑
k,l,m

N(~ri − ~rj + offset(k, l,m)). (2.27)

Again the tensor �eld Np is constant as it only depends on the geometry of the mesh. In

numeric simulations, the in�nite sum in Eq. 2.27 needs to be approximated at the start

of the simulation. As the magnetic �eld that is generated by one tile diminishes with the

squared distance, it su�ces to include only near tiles up to a limit, see Ref. [57].

2.1.4 Demagnetization �eld (scalar potential method)

An alternate way to calculate the demagnetization �eld is to calculate its scalar potential

�eld Φ �rst. The magnetic �eld can then be derived by calculating its gradient using the

relation ~H = −~∇Φ. In this section a fast algorithm for calculating the potential �eld is

presented. Because it is similar to the fast convolution method described in the previous

20

section, all mentioned optimizations apply here too. However, the calculation of the scalar

potential requires a smaller number of fast Fourier transforms, making it potentially

faster. In addition, it requires less memory. The rest of this section follows closely

the publication A Fast Finite-Di�erence Method for Micromagnetics Using the Magnetic

Scalar Potential by C. Abert, G. Selke, B. Krüger, and A. Drews[58], Copyright 2012

IEEE. Similar techniques using fast Fourier transforms to calculate the scalar potential

have been described in Ref. [59]. Equations 1.13 and 1.14 can be written as

~Hdemag(~r) = −~∇φ = −~∇
∫

S(~r − ~r′) ~M(~r′) d~r′. (2.28)

Discretization of the vector �eld S assuming cuboid cells yields

S(~ri − ~rj) =
1

4π

∫
Vj

∇′ 1

|~r − ~r′|
d3~r′

∣∣∣∣
~r=~ri

(2.29)

where Vj is the cuboid homogeneously magnetized cell volume that generates the demag-

netization �eld, and ~ri − ~rj is the distance vector between target cell j and source cell

i, measured from the center of the cells. The scalar potential can be expressed by the

following discrete convolution

φ(~ri) =
∑
j

S(~ri − ~rj) ~M(~rj) (2.30)

Now the integral for S in Eq. 2.29 is solved for a cuboid volume Vj with side lengths lx,

ly, and lz. Applying the divergence theorem yields

Sz =
1

4π

∫
∂V

~n′ · ~ez
|~r − ~r′|

dA′ (2.31)

for the z-component of the vector �eld S. The surface normal is denoted by ~n′, and ~ez
is the unit vector in z-direction. The integral has only contributions on the two faces in

the xy-plane:

Sz =
∑
±

± 1

4π

∫ lx/2

−lx/2

∫ ly/2

−ly/2

dx′dy′√
(x− x′)2 + (y − y′)2 + (z ∓ lz/2)2

(2.32)

21

with ~r = (x, y, z). Solving the inde�nite integral yields

F (x, y, z) =
1

4π

∫ x

0

∫ y

0

dx′dy′√
x′2 + y′2 + z′2

(2.33)

=
1

4π

{
− x+ z arctan

(x
z

)
− z arctan

(
xy

z
√
x2 + y2 + z2

)

+ y ln
[
2
(
x+

√
x2 + y2 + z2

)]
+ x ln

[
2
(
y +

√
x2 + y2 + z2

)]}
. (2.34)

Now the de�nite integrals can be assembled:

Sz(~r) = −
∑
i,j,k

ijkF (x+ i lx
2
, y + j ly

2
, z + k lz

2
),

Sx(~r) = −
∑
i,j,k

ijkF (y + i ly
2
, z + j lz

2
, x+ k lx

2
),

Sy(~r) = −
∑
i,j,k

ijkF (z + i lz
2
, x+ j lx

2
, y + k ly

2
). (2.35)

with i, j, k ∈ {−1,+1}. With the formulation in Eq. 2.35 for S(~r) the scalar potential

at any point r of the demagnetization �eld that is generated by a set of homogeneously

magnetized cuboid cells with center points rk can now be determined exactly using the

scalar product

Φ(~r) =
∑
~rk

S(~r − ~r′) · ~M(~rk) (2.36)

or

Φ = Sx ∗Mx + Sy ∗My + Sz ∗Mz. (2.37)

where ∗ is the discrete convolution. The gradient of Φ yields the demagnetization �eld.

2.1.5 Anisotropy �eld

The continuous equations for the uniaxial and cubic anisotropy �eld directly translate into

their spatially discrete counterparts. The discrete uniaxial anisotropy �eld approximation

at cell i is

~Huni[i] =
2k[i]

µ0Ms[i]
(~m[i] · ~a)~a, (2.38)

where ~a is the unit vector pointing in the direction of the easy axis. The cubic anisotropy

�eld approximation becomes

~Hcub[i] =
2k[i]

µ0Ms[i]

(
α(β2 + γ2)~a1 + β(α2 + γ2)~a2 + γ(α2 + β2)~a3

)
. (2.39)

with α = ~m[i] · ~a1, β = ~m[i] · ~a1, and γ = ~m[i] · ~a1.

22

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

y
[n

m
]

x [nm]

-1

0

1

φ
[a

rb
itr

ar
y

un
its

]

Figure 2.5: Scalar potential Φ of a cube, which is homogeneously magnetized in the z-direction,
of size 1 nm× 1 nm× 1 nm. The inlay shows the gradient �eld of the potential. (Figure from
Ref. [58], Copyright 2012 IEEE.)

Periodic boundary conditions As the anisotropy �eld is computed locally for each

simulation cell, no special treatment regarding di�erent boundary conditions is needed.

Thus Eq. 2.38) and Eq. 2.39 can be used without modi�cation.

2.1.6 External �eld

The external �eld is simply averaged over each simulation cell,

Hext[i] = Hext,i. (2.40)

Periodic boundary conditions No special treatment is required.

2.1.7 Oersted �eld

For the �nite-di�erence approximation of the Oersted �eld the Biot-Savart law has to be

discretized. As the Oersted �eld is treated as homogeneous in each cell, its average value

is used.
~HOer[i] =

1

Vi

∫
Vi

~HOersted(~r) dVi, (2.41)

where Vi is the volume of cell i. Similar to the demagnetization �eld, the Oersted �eld

can be expressed by a convolution

~HOer, j =
∑
i

K(~rj − ~ri) ·~j(~ri) (2.42)

23

with the antisymmetric tensor K and the current density j. A detailed calculation of the

Oersted �eld is presented in Ref. [60].

Periodic boundary conditions The Oersted �eld under periodic boundary con-

ditions can be calculated analogously to the periodic demagnetization �eld, see also

Ref. [60].

2.1.8 Current paths

The continuity equation in Eq. 1.23 is solved numerically using the method described

in Ref. [61]. The continuity equation must hold for every simulation cell, resulting in

i = 0, 1, . . . (n− 1) equations ∫
Si

σi~∇Φi~n dS = 0. (2.43)

The conductivity tensor σi and the electrostatic potential Φi are now assumed non-

changing in each cell. The surface integral incorporates six cell surfaces, yielding

lylz(σxx Dx Φi + σxy Dy Φi + σxz Dz Φi)

+lxlz(σyx Dx Φi + σyy Dy Φi + σyz Dz Φi)

+lxly(σzx Dx Φi + σzy Dy Φi + σzz Dz Φi) = 0 (2.44)

as the �nite-di�erence approximation. Here Dd is the �nite di�erence approximation of

a partial �rst derivative in dimension d. Now the discretized equations form a system of

n linear equations, which is solved numerically[61] for Φi, i = 0..(n− 1).

A~Φ = (0, 0, . . . , 0)T (2.45)

where A is a n × n matrix and ~Φ is a vector with n components. Applying Eq. 1.20 to

the computed ~Φ yields the current density.

Periodic boundary conditions Periodic boundary conditions for the computation of

current paths are not covered in this thesis.

2.2 Time discretization

Together with an initial magnetization ~M0, the LLG equation forms an initial value

problem[62] with one magnetization vector for each simulation cell i = 0 . . . (n− 1),

~M(~ri, t = 0) = ~M0(~ri)

d ~M(~ri, t)

dt
= f(t, ~M(~ri, t)) (2.46)

24

where f is the right hand side of Eq. 1.2. The magnetization at some time t is given by

the integral

~M(~ri, t) = ~M(~ri, t0) +

∫ t

t0

fi(τ, ~M(~ri, τ)) dτ. (2.47)

A numerical solver for an initial value problem calculates an approximation of the above

integral using discretized time steps.

Explicit Euler method One of the simplest explicit Runge-Kutta methods for the

numerical approximation of Eq. 2.47 is the explicit Euler integration method. Starting

from the Taylor series up to the second order

~M(r, t) = ~M(r, t0) +
d ~M(r, t0)

dt
· (t− t0) +O((t− t0)2) (2.48)

the substitutions h := t− t0 and t := t0 yield

~M(ri, t+ h) = ~M(ri, t) + h · f(t, ~M(ri, t)) +O(h2) (2.49)

for every cell i where h is the time step size. Numerical integration of Eq. 2.49 with

discrete time steps tκ yields

~M(ri, tκ+1) ≈ ~M0(r) +
∑

k∈{1,2,...κ}

h · f(tk, ~M(ri, tk)), (2.50)

which is an approximation of Eq. 2.47. In order to compute the approximation of

M(r, tκ+1) only the intermediate result of the previous stage is needed, which makes

this method a one-stage method.

2.2.1 Explicit Runge-Kutta schemes

Equation 2.47 can be numerically integrated using Runge-Kutta schemes. Explicit Run-

ge-Kutta schemes with s stages are de�ned by the equation

~yn+1 = ~yn + h

s∑
i=1

bi~ki (2.51)

with the stage vectors

~k1 = f(tn, ~yn), (2.52)

~ki = f(tn + ci, ~yn +
i−1∑
j=1

ai,j~kj), 2 ≤ i ≤ s (2.53)

25

A concrete Runge-Kutta method is speci�ed with the coe�cients ai,j, bi (1 ≤ i ≤ s), and

ci (2 ≤ i ≤ s). The coe�cients can be written down in a so-called Butcher tableau,

0

c2 a2,1

...
...

. . .

cs as,1 · · · as,s−1

b1 · · · bs

(2.54)

where the coe�cients ci in Eq. 2.52 are written vertically in the �rst column, the coe�-

cients bi in Eq. 2.51 horizontally at the bottom row, and the coe�cients aij in Eq. 2.52

in the middle. For explicit Runge-Kutta schemes with more than one stage, the matrix

(ai,j) is lower-triangular. Here the stage vectors ~k can be calculated in succession, as ~ki
depends only on ~k0, ~k1, . . . , ~ki−1. After the stage vectors are computed, they are combined

in Eq. 2.51 to yield the next integration result.

Classical Runge-Kutta method The classical Runge-Kutta method is an explicit

four-stage method which has a lower step error than the explicit Euler method. A

weighted average of four stage vectors ~kn is used to advance the solution from a previous

value ~M(ti) to the next value ~M(ti+1),

~M(ti+1) = ~M(ti) +
1

6

(
~k1 + 2~k2 + 2~k3 + ~k4

)
+O(h5)

with ti+1 = ti + h where h is the time step. The second term on the right hand side

gives the weighted average of the four stage vectors. The stage vectors are calculated as

follows:

k1 = h · f(tn, yn) k2 = h · f(tn +
1

2
h, yn +

1

2
k1)

k3 = h · f(tn +
1

2
h, yn +

1

2
k2) k4 = h · f(tn + h, yn + k3). (2.55)

Thus, the butcher tableau is

0

1/2 1/2

1/2 0 1/2

1 0 0 1

1/6 1/3 1/3 1/6

. (2.56)

The step error is O(h5).

26

Figure 2.6: Relationship between the absolute error vector ~eabs, the relative error vector ~erel,
and the vectors ~yn, ~yn+1, and ~y

∗
n+1 in embedded Runge-Kutta methods with step size control.

Embedded Runge-Kutta methods with adaptive step size control Embedded

Runge-Kutta methods try to estimate the error produced by one Runge-Kutta step. This

error can then be used to control the step size h. The error estimation is done by having

two methods of di�erent order in the Butcher tableau, one with error order p and one

with error order p− 1. The embedded (p− 1)-order step is given by

~y∗n+1 = ~yn + h
s∑
i=1

b∗i
~ki. (2.57)

It uses the same stage vectors ~ki that are used to calculate the p-order step, but uses a

di�erent weighted average given by a new di�erent set of coe�cients b∗i . The estimated

absolute error is the di�erence between the embedded step and the output step,

~eabs = ~yn+1 − ~y∗n+1, (2.58)

see Fig. 2.6. Given the estimated error in Eq. 2.58 that would be produced at the next

step, the step size h may be adjusted for the following step. On the one hand, the step

size is desired to be as large as possible so that the numerical integration proceeds fast.

On the other hand, increasing h also increases the step error. Thus, an adaptive step

size controller adjusts the step size to be as large as possible to that the error is within

a tolerable error margin. The error vector given in Eq. 2.58 is the estimated absolute

error per Runge-Kutta step. In practice, for the step size control a scalar quantity that

represents the error is needed. An obvious choice is the maximum norm of the error

vector, which selects the �worst o�ending� variable with the highest error, e.g.

eabs = ||~eabs||max. (2.59)

27

This norm is chosen in MicroMagnum. Another frequently used norm is the euclidean

norm, which can be optionally selected. It is useful to also estimate the relative error.

The relative error is the element-wise ratio of the absolute error ~eabs to the integration

step vector, see Fig. 2.6. Again the worst o�ending variable is chosen using

~erel = eabs/||~yn+1 − ~yn||max. (2.60)

The step size to the (s + 1)-th power is proportional to the absolute error, hs+1 ∼ eabs.

The new step size hnew is now chosen such that the next step is expected to produce the

tolerated error eabs,tol. As h
s+1
new ∼ eabs,tol, the new step size is chosen as

hs+1
abs,new = Shs+1

old

eabs,tol

eabs

⇔ habs,new = hold

(
eabs,tol

eabs

)1/(s+1)

(2.61)

Here S ≤ 1 is called the step headroom. It is chosen as S = 0.85. The relative error is of

order s. The new step size according to the relative order thus becomes

hrel,new = hold

(
erel,tol

erel

)1/s

. (2.62)

For the step size control, the smaller, more �pessimistic� step size is chosen from the two

new step sizes that were suggested from the absolute and relative error:

hnew = min(habs,new, hrel,new) (2.63)

If at the next step, for the new step size, a too high absolute or relative error is produced,

the step has to be retried with a smaller h. For the calculation of the smaller h Eqs. 2.61

and 2.62 are used.

A commonly used method of orders 5 and 4 is the Runge-Kutta-Fehlberg method[63],

which has the following tableau:

0

1/4 1/4

3/8 3/32 9/32

12/13 1932/2197 −7200/2197 7296/2197

1 439/216 −8 3680/513 −845/4104

1/2 −8/27 2 −3544/2565 1859/4104 −11/40

16/135 0 6656/12825 28561/56430 −9/50 2/55

25/216 0 1408/2565 2197/4104 −1/5 0

(2.64)

The �rst row at the bottom gives the fourth-order solution (bi) and the second gives

the �fth-order solution (b∗i), both by applying Eq. 2.51 to the same stage vectors. Other

28

explicit Runge-Kutta methods are the Dormand-Prince[64] method that uses a �fth-order

step to advance the solution with an embedded fourth-order step, and the fourth-order

Cash-Karp[65] method with an embedded fourth-order step.

2.2.2 Time integration in micromagnetic simulation

Renormalization After each Runge-Kutta step, the vectors of the magnetization array

have to be re-normalized so that each vector retains a length ofMs at any time as de�ned

by the micromagnetic model.

Stop criterion In practical simulations, a stop criterion has to be de�ned that de-

termines when the simulation or a part thereof has completed. Which criterion is used

depends on the particular simulation problem. For example, a stop criterion could be

met when

• a certain simulation time is reached

• a certain number of time steps have completed

• a relaxed magnetization state is reached.

The maximum simulation time or number of time steps is speci�ed by the user of the

simulation software. A relaxed magnetization state is a con�guration that is located at

a local energy minimum. Without external excitation, the con�guration remains static.

Thus in order to detect such a energy minimum, the stop criterion can be de�ned in terms

of the rotational speed of the magnetization vectors. The rotational speed, measured in

rad/s, approaches zero when the magnetization relaxes. Given to consecutive steps i and

i+ 1 separated by a time step h, it can be approximated by

θ(~rn) ≈ 1

h
arctan

|~mi+1(~rn)− ~mi(~rn)|
|~mi(~rn)|

≈ |~mi+1(~rn)− ~mi(~rn)|
h

. (2.65)

In practice the magnetization vector with the highest rotational speed is regarded in

order to determine whether the whole magnetization state is relaxed, i.e.

magnetization is relaxed ⇔ max
n=1..n

θ(~rn) < θtolerance. (2.66)

A commonly selected value for θtolerance is 1 degree per nanosecond.

29

3 Fast Numerical Methods

In order to compute the time derivative of the magnetization using the Landau-Lifshitz-

Gilbert equation, the total �eld on the right hand side has to be computed from the

current magnetization. Thus discretized versions of the demagnetization �eld (Eq. 2.9),

the exchange �eld (Eq. 2.6), the anisotropy �eld (Eqs. 2.38, 2.39), and the external �eld

(Eq. 2.40) have to be computed. These computations should be as fast as possible, as

the Landau-Lifshitz-Gilbert equation is evaluated frequently during a simulation. The

most time-consuming part is the computation of the convolution in the demagnetization

and the Oersted �eld. Thus the main focus of this section lies on the fast computation

of the convolutions. This is achieved by using fast Fourier transforms.

3.1 Demagnetization �eld

The demagnetization �eld in either tensor notation

−Hdemag,x =Nxx ∗Mx + Nxy ∗My + Nxz ∗Mz

−Hdemag,y =Nxy ∗Mx + Nyy ∗My + Nyz ∗Mz

−Hdemag,z =Nxz ∗Mx + Nyz ∗My + Nzz ∗Mz (3.1)

(exploiting the symmetry Nαβ = Nβα) or in vector notation

~Hdemag = ~∇ (Sx ∗Mx + Sy ∗My + Sz ∗Mz) . (3.2)

is a part of the LLGE. The aim is to compute Eq. 3.1 and Eq. 3.2 as fast as possible.

From a computational perspective, both equations contain similar operations on multi-

dimensional scalar arrays, e.g. the component wise summation (+) and discrete linear

convolutions (∗). Thus for the algorithmic optimization both computations can be treated
very similarly. In particular, the convolution dominates all other operations in terms of

computation time. In the following the fast computation of the convolution is achieved

by using fast Fourier transforms while exploiting the properties of the demagnetization

tensor �eld N, the scalar potential vector �eld S and the magnetization ~M .

3.1.1 Fast convolution

The straight-forward computation of the convolutions in Eqs. 3.1 and 2.37 involves the

iteration over all pairs of simulation cells leading to a time complexity in O(n2), where

n is the number of cells. The computation can be sped up by using the fast convolution,

which employs the discrete convolution theorem

A ∗B ↔ Â · B̂, (3.3)

30

where the hat accent symbol denotes the transform of a sequence, with fast Fourier

transforms[66] (FFTs) to replace the convolution with a product in the frequency domain.

The convolution theorem is valid for any number of spatial dimensions. Using FFTs, the

discrete Fourier transforms can be computed in O(n log n) time. If n is large enough

the fast convolution yields an extreme reduction of the computation time compared

to the straight-forward O(n2) algorithm. The fast convolution method has been used

successfully in �nite-di�erence micromagnetic simulators[19, 67, 25, 26, 17] to compute

the demagnetization �eld. In the following the fast convolution and the fast Fourier

transform in multiple dimensions are described in detail.

Fast Fourier transforms There are many fast Fourier transform algorithms that ex-

ecute in O(n log n) time. Here the so-called radix-2 algorithm for the computation of the

discrete Fourier transform (DFT) is shortly introduced. The DFT of an complex input

sequence xk of length N , 0 ≤ k < N , results in a transformed complex output x̂k of the

same length. It is de�ned as

x̂i =
N−1∑
j=0

xj · ω−ijN , where ωkN = e2π
√
−1k/N . (3.4)

Here ωkN is the Nth root of unity raised to the k-th power. The radix-2 algorithm

requires that N is a power of two, i.e. there exists an integer p so that 2p = N . The

input sequence x is split into the two subsequences x′k = x(2k) and x
′′
k = x(2k+1) of length

n = N/2, 0 < k ≤ n. The sum is now converted to two sums,

x̂i =
n−1∑
k=0

x′k · ω
−i(2k)
N +

n−1∑
k=0

x′′k · ω
−i(2k+1)
N

=
n−1∑
k=0

x′k · ω−ikn + ω−iN ·
n−1∑
k=0

x′′k · ω−ikn . (3.5)

The sums form the discrete Fourier transform of the subsequences x′ and x′′ of length

N/2, respectively. It follows

x̂i =

{
x̂′i + ω−iN · x̂′′i , i < n

x̂′i−n − ω
−(i−n)
N · x̂′′i , i ≥ n.

(3.6)

For the i ≥ n case the relations ωkN = ωk+N
N and ωkN = −ωk+(N/2)

N were used.

Computing the transforms of the subsequences recursively using the same equation

yields the radix-2 fast Fourier transform algorithm. The input data is recursively split

until the trivial case with input size N = 1 is reached, where x̂0 = x0. The requirement

that the total transform size N = 2p is a power of two ensures that the trivial case

31

is always reached after p recursions. The listing 1 shows the recursive radix-2 FFT

algorithm.

1 def fft_rec(x):

2 """

3 Returns the fast Fourier transform of the complex input sequence 'x'.

4 The input length must be a power of two.

5 """

6 def root(n, k): return exp(2*pi*1j*k/n)

7 N = len(x)

8 i f N == 1:

9 return x

10 e l se :

11 x_e = fft_rec ([x[i*2] for i in range(N/2)]) # x_e = fft(x ')

12 x_o = fft_rec ([x[i*2+1] for i in range(N/2)]) # x_o = fft(x '')

13 for i in range(N/2):

14 x[i] = x_e[i] + root(N, -i) * x_o[i]

15 x[i+N/2] = x_e[i] - root(N, -i) * x_o[i]

16 return x

Listing 1: Recursive version of the radix-2 FFT algorithm.

In line 9�10 the trivial case N = 1, which stops the recursion, is handled. Otherwise,

in lines 12 and 13 the even and odd subsequences of the input are created and their

transforms computed recursively. The roots of unity, computed by the function root,

are also referred to as twiddle factors. The loop at lines 16�18 computes all x̂k from the

previously transformed subsequences using Eq. 3.6. Because the total recursion depth is

p = log2N , and the function calls within each recursion level do work linear in N , the

total computational complexity is O(N logN).

For good performance, this recursive algorithm is not ideal. During the execution

temporary storage has to be allocated in order to store the transforms of the even and

odd input sequences. Also, the implemented function is not tail-recursive and thus can

not be trivially optimized by the compiler. It is however possible to reformulate the

algorithm in an iterative fashion which works in-place with only a constant amount of

temporary storage. From the recursive algorithm one can see that before any output is

calculated the data is recursively split into even and odd parts, see the so-called butter�y

diagram in Fig. 3.1 (a). After the input is split up, the output sequence is assembled by

applying the twiddle factors, see Fig. 3.1 (b). Due to the recursive splits, the original

input is reordered from left to right in the so-called bit-reversed order. In bit-reversed

order the input array X is permuted using the index mapping

f(i) = (b(n−1)b(n−2) . . . b1b0)2 (3.7)

where i is the index ranging from 0 to 2n−1 and (b0b1 . . . b(n− 2)b(n− 1))2 is the binary

representation of i. The iterative radix-2 algorithm has two steps, both of which can be

done in-place using only a small constant amount of temporary storage.

32

Figure 3.1: Data �ow of a radix-2 FFT of length N = 8 using the algorithm in listing 1. The
numbers denote the item indices of the input sequence. (a) Recursive splitting of the input into
even and odd parts where d is recursion depth, resulting in bit-reversed order at d = 3. (b)
Multiplication with the twiddle factors and assembly of the result. This diagram is called the
butter�y diagram.

(a) reorder the input to bit-reversed order.

(b) traverse the butter�y diagram (see Fig. 3.1 (b)) from top to bottom.

The listing 2 shows the bit reversal algorithm in step (a).

1 def bit_reverse(x):

2 """

3 Converts the sequence 'x' to bit -reversed order.

4 """

5 n = len(x)

6 j = 0 # j is counted up in bit -reversed order.

7 for i in range(0, n-1): # i is counted up in normal order.

8 # Swap elements i and j (but swap each pair only once!)

9 i f j > i:

10 x[i], x[j] = x[j], x[i]

11

12 # Increase j by one in bit -reversed order , e.g. 11001 -> 00101.

13 k = n >> 1

14 while k <= j:

15 j -= k

16 k >>= 1

17 j += k

Listing 2: Permute a sequence to bit-reversed order.

Here the input sequence is traversed by the indices i and j. i is counted up in normal

order, and j is counted up in bit-reversed order. During the traversal in lines 7�18, the

33

sequence elements at i and j are swapped (line 10). The condition j > i at line 9 ensures

that each possible element pair is only swapped once. Lines 12�17 increases j by one in

bit-reversed order. The listing 3 shows the iterative radix-2 FFT algorithm in step (b).

1 def fft(x):

2 """

3 Computes the fast Fourier transform of the complex input sequence 'x

'.

4 The input length must be a power of two.

5 """

6

7 def root(N, k): return exp(2*pi*1j*k/N)

8

9 N = len(x)

10 bit_reverse(x)

11

12 fft_num = N/2

13 fft_len = 2

14 while fft_num > 0:

15 for m in range(fft_len /2):

16 W = root(fft_len , -m)

17 for i in range(m, N, fft_len):

18 j = i + fft_len /2;

19 x[i] = x[i] + W * x[j];

20 x[j] = x[i] - W * x[j];

21 fft_num >>= 1

22 fft_len <<= 1

Listing 3: Iterative version of the radix-2 algorithm.

In line 9, the input array of size N is permuted in bit-reversed order. The loop starting

at line 13 iterates over the butter�y diagram in Fig. 3.1 (b) from top to bottom with a

total of log2(N) iterations. The loops at lines 14 and 16 iterates over the subarrays in the

butter�y diagram, combining fft_num subarrays of length fft_len in lines 18�19. The

indices i and j represent the connecting lines from one level to the next in the butter�y

diagram.

The presented radix-2 algorithm is a special case of the Cooley-Tukey fast Fourier

transform algorithm. The Cooley-Tukey algorithm is more general, as it splits a sequence

of length N = N1 · N2 into N1 transforms of length N2 followed by multiplications by

the twiddle factors. Starting from the discrete Fourier transform x̂k =
∑N−1

j=0 xjω
−jk
N , the

substitutions j = j1n2 + j2 and k = k1 + k2n1 eventually lead to

x̂k1+k2n1 =

n2−1∑
j2=0

[(
n1−1∑
j1=0

xj1+n2ω
−j1k1
n1

)
ω−j2k1N

]
ω−j2k2n2

. (3.8)

Like the radix-2 algorithm (which is the special case N2 = 2), this equation can be

implemented using an iterative algorithm. Equation 3.8 can be applied directly when N

is not a prime number. When a prime length is encountered during the recursion, one

34

has to resort to a di�erent method to calculate that subtransform. One way is to simply

calculate Eq. 3.4 directly, another way is to use a specialized prime-length transform

algorithm like the Rader's algorithm[68] or the Bluestein's chirp-z algorithm[69].

The two-dimensional discrete Fourier transform x̂ of an input x of size (nx, ny) is

x̂i,j =
nx−1∑
k=0

ny−1∑
l=0

xk,l · ω−iknx
ω−jlny

(3.9)

There are many multi-dimensional fast Fourier transform algorithms[70]. The most

straight-forward algorithm is the row-column algorithm. Here the two-dimensional trans-

forms are reduced to series of one-dimensional transforms. Rearranging Eq. 3.9 leads to

x̂i,j =

ny−1∑
l=0

[
nx−1∑
k=0

xk,l · ω−iknx

]
ω−jlny

(3.10)

The expression in square brackets is a one-dimensional DFT of length nx in x-direction,

and the outer expression is a one-dimensional DFT of length ny in y-direction. In a com-

puter implementation, the computation of the whole 2-D transform involves the compu-

tation of Ny 1-D transforms of length Nx iterated along the y-direction, and afterwards

Nx 1-D transforms of length Ny iterated along the x-direction. For the 1-D transforms

the previously introduced FFT algorithm can be used. In this case the total asymptotic

run time is in

O(ny(nx log nx) + nx(ny log ny)) = O(nxny log nxny) = O(n log n) (3.11)

for n = nxny the number of data points. The three-dimensional discrete Fourier trans-

forms is de�ned analogously, i.e.

x̂i,j,k =
nx−1∑
l=0

ny−1∑
m=0

nz−1∑
n=0

xl,m,n · ω−ilnx
ω−jmny

ω−knnz
(3.12)

Here the row-column algorithm involves three iterated 1-D transforms: First, nynz trans-

forms in x-direction, second, nxny transforms in y-direction, and third, nynz transforms

in z-direction, see Fig. 3.2. Again the run time is in O(n log n) where n is the number of

data points.

Until now only forward transforms have been considered. The inverse transform

will be needed to implement fast convolutions. The discrete Fourier transform in one

dimension of a sequence of length n is

xi =
1

n

N−1∑
j=0

x̂j · ω+ij
N . (3.13)

35

y y y

(0, 0, 0)(0, 0, 0) x (0, 0, 0) xx

z z z

Figure 3.2: Computation of the three-dimensional fast Fourier transform using the row-column
algorithm in three successive steps. The square denotes the working array. The arrows indicate
one-dimensional subtransforms. (Figure adapted from Ref. [71].)

Applying the inverse transform to a transformed sequence will produce the original se-

quence. The two- and three-dimensional inverse transforms are

xi,j =
1

nxny

nx−1∑
k=0

ny−1∑
l=0

x̂k,l · ω+ik
nx
ω+jl
ny

(3.14)

and

xi,j,k =
1

nxnynz

nx−1∑
l=0

ny−1∑
m=0

nz−1∑
n=0

x̂l,m,n · ω+il
nx
ω+jm
ny

ω+kn
nz

. (3.15)

As the only di�erence to the forward transforms is the prefactor and the plus sign,

these equations can be incorporated into the previously discussed fast Fourier transforms

algorithms (such as the Cooley-Tukey algorithm and the row-column algorithm) with

only minor modi�cations, producing fast inverse Fourier transform algorithms.

Discrete convolution theorem The discrete one-dimensional cyclic convolution Z =

X ∗ Y of two N -length arrays X and Y is de�ned as

Zk =
N−1∑
j=0

Xj · Y(N+j−k) mod N , k = 0..(N − 1). (3.16)

This operation is commutative. According to the discrete convolution theorem, it can be

expressed as an element-wise product (·) in the frequency domain,

Z = X ∗ Y ⇔ Ẑ = X̂ · Ŷ . (3.17)

36

Starting with

X̂k · Ŷk =
N−1∑
l=0

Xl · ω−klN ·
N−1∑
m=0

Ym · ω−kmN =
N−1∑
l=0

N−1∑
m=0

Xl · Ym · ω−k(l+m)
N , (3.18)

substituting l +m := p (and thus m = p− l) and switching the sums gives

X̂k · Ŷk =
N−1∑
p=0

(
N−1∑
l=0

Xl · YN+p−l) mod N

)
︸ ︷︷ ︸

X∗Y =:Z

·ω−kpN = Ẑk. (3.19)

The computation of the convolution via fast Fourier transforms using the convolution

theorem is called fast convolution. The fast convolution computes Z = X∗Y by the trans-

formation of X and Y into the frequency domain and the computation of the product,

followed by an inverse transformation that yields the result. The discrete two-dimensional

cyclic convolution of two arrays X and Y of size (nx, ny) is

(X ∗ Y)kx,ky =
nx−1∑
jx=0

ny−1∑
jy=0

Xjx,jy · Y(nx+jx−ky) mod nx,(ny+jy−ky) mod ny . (3.20)

The discrete convolution theorem in Eq. 3.17 is valid in two dimensions as well. Here

two-dimensional transforms are employed. The convolution in three dimensions and the

fast three-dimensional convolution is de�ned in a similar fashion. In general, the fast

convolution works for any number of dimensions.

Fast convolution of real inputs The discrete Fourier transform of a sequence of

length N that contains only real values has conjugate symmetry around the element at

dN
2
e, i.e. X̂k = X̂N−k, k ∈ {1, 2, . . . N}. Using exp(x) = exp(−x) yields

X̂N−k =
N−1∑
j=0

Xj · ω−j(N−k)
N =

N−1∑
j=0

Xj · ω−NjN︸ ︷︷ ︸
=1

ωjkN =
N−1∑
j=0

Xj · ω−jkN = X̂(k). (3.21)

Due to the symmetry it su�ces to compute and store only half of the symmetric output.

A discrete Fourier transform that does this is called a real-to-complex (R2C) transform.

It takes a real input of length N and computes dN+1
2
e complex values. The correspond-

ing inverse complex-to-real (C2R) transform takes dN+1
2
e complex inputs and computes

N real outputs. Most fast Fourier transform algorithms, e.g. the Cooley-Tukey algo-

rithm, can be modi�ed by removing the redundant parts of the operations to produce

a R2C and a C2R version. This saves roughly one half of the computation time. As

the intermediary product in the frequency domain preserves the conjugate symmetry, i.e.

(z1z2) = z1 z2, z1, z2 ∈ C, the fast convolution of two real inputs can be implemented by

37

using R2C and C2R transforms. Only dN+1
2
e products have to be calculated. Altogether

a speedup of about two is reached compared to the general fast convolution. The fast

convolution of real inputs can be extended to two and more dimensions by applying the

row-column algorithm. For example, the two-dimensional algorithm for each of the two

inputs X, Y of size (Nx, Ny) is:

1. For each input X and Y , compute the 2-D R2C FFT,

• Compute Ny R2C FFTs of length Nx along the x-direction, resulting in a

complex array of size (dNx/2 + 1e, Ny),

• Compute dNx/2 + 1e FFTs of length Ny along the y-direction,

2. Compute the dNx/2 + 1e ×Ny products in the frequency domain,

3. Compute the inverse 2-D C2R FFT of the products:

• Compute dNx/2 + 1e inverse FFTs of length Ny along the y-direction,

• Compute Ny inverse C2R FFTs of length Nx along the x-direction, producing

the real-valued result array of size (dNx/2 + 1e, Ny).

Fast convolutions of real inputs in higher dimensions can be implemented accordingly.

3.1.2 Fast �eld computation

The fast convolution computes a cyclic convolution where negative indices to the array

Y are �wrapped around� using the modulo operator, see Eqs. 3.16 and 3.20. A direct

use of the cyclic convolution in the demagnetization �eld computation would introduce

non-physical cell interactions. For a correct result these terms have to be removed. This

is achieved by padding the magnetization array with zeros in each spatial dimension,

~M∗[k0, k1, k2] =

{
~M [k0, k1, k2] if k0 < nx ∧ k1 < ny ∧ k2 < nz
(0, 0, 0)T , else

, (3.22)

so that all unwanted convolution terms become zero, see Fig. 3.3. Furthermore the mag-

netization array and the demagnetization tensor array need to have the same dimensions

in order to compute the element-wise products. Thus the magnetization array of size

(nx, ny, nz) is zero-padded to the dimensions (2nx − 1, 2ny − 1, 2nz − 1) before Eqs. 3.23

and 3.24 can be used. If the magnetization array has singular dimensions, i.e. is an

e�ectively one- or two-dimensional array, no zero-padding in these directions is needed

as 2ni − 1 = 1.

38

Figure 3.3: Computation of the demagnetization �eld array of size 3× 3 using a cyclic convo-
lution with a zero-padded magnetization array of size 5× 5. (a) and (b) display the exemplary
convolution sum for the demagnetization array at x = 0, y = 0 and x = 1, y = 1, respectively.
The colors encode the inputs that contribute only zero-valued terms to the cyclic convolution
(yellow), the inputs that contribute non-zero terms to the cyclic convolution (orange), the en-
tries that are cut out from the resulting array (gray), leaving the calculated demagnetization
�eld (red).

Following the convolution theorem and the fact that the convolution and the fast

Fourier transform are linear operations, Eq. 3.1 takes the form

−Ĥ∗x = N̂xx · M̂∗
x + N̂xy · M̂∗

y + N̂xz · M̂∗
z

−Ĥ∗y = N̂yx · M̂∗
x + N̂yy · M̂∗

y + N̂yz · M̂∗
z

−Ĥ∗z = N̂zx · M̂∗
x + N̂zy · M̂∗

y + N̂zz · M̂∗
z (3.23)

and Eq. 3.2 takes the form

~H = ~∇Φ

Φ̂∗ = Ŝx · M̂∗
x + Ŝy · M̂∗

y + Ŝz · M̂∗
z (3.24)

in the frequency domain. Here the magnetization is zero-padded. The transforms of the

tensor components N̂αβ and the vector components Ŝα can be precomputed once and

then used repeatedly to compute the demagnetization �eld for di�erent magnetization

con�gurations. Thus, one demagnetization �eld computation involves six transforms in

Eq. 3.23 and four transforms in Eq. 3.24, the multiplication in the frequency domain,

and several additions. After the inverse transform, the demagnetization �eld ~H has to

be cut out from the transform output ~H∗ in Eq. 3.23, see Fig. 3.3. In Eq. 3.24, Φ has to

be cut out from the expanded Φ∗.

39

Figure 3.4: Computation steps of (a) the forward and (b) the inverse sparse fast Fourier
transform in two dimensions, implemented with the row-column algorithm. The green (magenta)
arrows denote iterated 1-D transforms in the x-direction (y-direction). The light yellow area
denotes zero-valued input, input, the grey areas denote values that do not contribute to the
�nal result.

Fast convolution with sparse input and output For the demagnetization �eld

computation using the fast convolution the zero-padded magnetization array is Fourier

transformed. After the product in the frequency domain and the inverse transform, the

demagnetization �eld is cut out from the transform output array. Here the forward

transform and the inverse transform operate on sparse data:

• The magnetization array is zero-padded, and so is the input to the forward FFTs.

• Only the unpadded parts of the inverse FFT output represent the actual demagne-

tization �eld. The padded parts contain cyclic convolution sums without physical

meaning. Thus the output of the inverse FFT can be considered sparse.

In short, the forward transform has an input that is partially zero, and the backward

transform has an output that is partially unneeded. Implementations of such sparse

transforms that exploit the sparsity of their input and output can be made more e�cient

than general FFTs by leaving out redundant calculations. They are called sparse FFTs.

In the case of N-D sparse forward transforms, the row-column algorithm can be mod-

i�ed to leave out the 1-D subtransforms that have an input of zero, see Fig. 3.4 (a). The

omission of these subtransforms is possible because the Fourier transform of a zero-valued

sequence is zero. Similar considerations apply to the inverse transform, see Fig. 3.4 (b).

Here those subtransforms are left out that do not contribute to the �nal, cut out result.

40

In case of 2-D inputs, approximately one half of the forward and inverse transforms in

x-direction can be omitted from the computation, see Fig. 3.4, reducing the computation

time by 25%. Similarly, for 3-D inputs, about 3/4 of the x-transforms and 1/2 of the

y-transforms are omitted, reducing the computation time by about 40%.

Exploiting the even/odd properties of Nij The demagnetization tensor �eld N(~r)

with ~r = (x, y, z) is real-valued and has the following properties

• Nxx(x, y, z), Nyy(x, y, z) and Nzz(x, y, z) are even in x, y and z,

• Nxy(x, y, z) is odd in x and y, and even in z,

• Nxz(x, y, z) is odd in x and z, and even in y,

• Nyz(x, y, z) is odd in y and z, and even in x.

This is a consequence of the even and oddness of the analytical functions f and g in

Ref. [54] that are used to construct the demagnetization tensor. Due to the symme-

tries, each tensor component in the frequency domain is also real-valued. The even/odd

properties carry over into the frequency domain,

• N̂xx(x, y, z), N̂yy(x, y, z) and N̂zz(x, y, z) are even in x, y and z,

• N̂xy(x, y, z) is odd in x and y, and even in z,

• N̂xz(x, y, z) is odd in x and z, and even in y,

• N̂yz(x, y, z) is odd in y and z, and even in x.

This means that for the storage of the demagnetization tensor �eld in the frequency

domain only one octant needs to be stored, as symmetric entries can be generated on

the �y by re�ection for the multiplication in the frequency domain. Also, no imaginary

parts need to be stored. This results in a memory requirement of about 6N �oating

point numbers where N is the number of cells. The product is simpli�ed and thus sped

up a little as one factor is now real-valued. Similar considerations apply to the scalar

potential method. Here the �eld S(~r) is real-valued and has the properties

• Sx(x, y, z) is odd in x and even in y and z,

• Sy(x, y, z) is odd in y and even in x and z, and

• Sz(x, y, z) is odd in z and even in x and y.

Because of these properties, all components are real-valued, and in the frequency domain

any imaginary parts vanish. The even/odd properties again translate into the frequency

domain:

41

• Ŝx(x, y, z) is odd in x and even in y and z,

• Ŝy(x, y, z) is odd in y and even in x and z, and

• Ŝz(x, y, z) is odd in z and even in x and y.

Thus, the storage requirement for the �eld array in the frequency domain amounts to

2N where N is the number of cells.

Additional zero-padding Because the demagnetization �eld is determined through

a linear convolution, additional zero-padding may be applied to the operands M and N,

thus increasing their dimensions. This can be bene�cial because the performance of the

mixed-radix algorithm for calculating fast Fourier transforms typically depends on the

transform size. For example, the FFTW library [72, 73, 74, 75] for calculating FFTs and

inverse FFTs performs best when the transform length for one dimension is a product of

primes smaller than thirteen[70]. This is because in the implemented algorithm of Cooley

and Tukey, the n-length transform is recursively divided into n0 transforms of length n1

where n = n0 · n1. The recursion stops either when n is a prime or when a hard coded

constant-length transform routine becomes available. A prime-length transform is, for

example, calculated with the naive O(n2) DFT algorithm, with the Rader's algorithm[68],

or with Bluestein's chirp z-algorithm[69]. FFTW contains many hard coded, highly

optimized routines for constant-length transforms of sizes smaller than about 30. Thus,

when the total transform length is a product of small primes, the e�cient Cooley-Tukey

algorithm together with the hard coded routines is exclusively used.

A detailed empirical analysis for fast Fourier transform lengths in a micromagnetic

simulator is presented in Ref. [25]. As additional zero-padding also increases the amount

of data that needs to be processed, a strategy that selects the padding size for a given

transform size is needed. Too much padding will increase the memory requirements and

again decrease the overall performance. With no extra padding, (l̃x, l̃y, l̃z) has a size of

(2lx − 1, 2ly − 1, 2lz − 1), which is uneven and thus clearly a bad choice. An obvious

strategy is therefore to round each transform length up to the next even integer. In

general, the transform lengths could be rounded up to the next integer that is a multiple

of 2, 4, 8, an so on. An extreme strategy is to round each length up to the next power

of two. This is done in the OOMMF[19] micromagnetic simulator, where only radix-

2 transforms are implemented. Another strategy is to increase the transform length

iteratively by one until an number with small prime factors, preferably factors of 2, is

reached. Table 3.1 summarizes the strategies available in MicroMagnum. The default

strategy is set to round_4, which provides good performance for most grid con�gurations.

When the magnetization array is resized by the additional zero-padding, the size of the

demagnetization tensor arrays has to be adjusted as well by inserting additional entries.

These values are in principle arbitrary because they do not contribute to the computed

42

Strategy Round mode (i ∈ x, y, z)

none No zero-padding: l̃i = 2li − 1

round_2 Round to even size: l̃i = 2li
round_4 Round l̃i to next multiple of 4

round_8 Round l̃i to next multiple of 8

round_POT Round to next power-of-two: l̃i = 2m > 2 · li − 1 > 2m−1

round_primes(n) Round up until integer with prime factors ≤ n is reached

Table 3.1: Zero-padding strategies that are available in MicroMagnum.

demagnetization �eld result. However, in order to preserve the even/oddness properties

which are needed for the previous optimization, these entries should be set to zero. If

(ex, ey, ez) are the new dimensions of the magnetization array according to a zero-padding

strategy in Tab. 3.1, the tensor index mapping Eq. 2.23 becomes

Nαβ[i, j, k]↔ Nαβ(lx((nx + i) mod (ex)− nx),
ly((ny + j) mod (ey)− ny),
lz((nz + k) mod (ez)− nz)). (3.25)

Entries which correspond to cell-to-cell distances that do not exist in the discretizing

mesh are set to zero to preserve the even/oddness properties presented in section 3.1.2.

3.1.3 Full algorithm

In the following all of the above optimizations are integrated into a fast convolution al-

gorithm speci�cally designed for the demagnetization �eld computation. For the fast

Fourier transforms it uses a modi�ed sparse row-column method. The row-column

method is used to split the multidimensional FFT into one-dimensional FFTs. Em-

pirically, one-dimensional fast Fourier transforms can be executed fastest when its input

and/or output is stored in memory contiguously, i.e. the spatial data locality is increased.

This improves the chance that during the FFT computation the working memory �ts

into the cache memory. This improves the speed of the algorithm. For the row-column

method, the data locality for the transforms in y- and z-direction can be improved by

rotating the working data array in memory, so that the transform of the desired direc-

tion works on continuously stored data. Here it is assumed that the arrays are stored

in column-major order, i.e. the �rst dimension x is contiguous. This is optimal for the

application of the 1D transforms in x-direction. On the other hand, before the transforms

in y-direction are applied, the input array is rotated in memory so that the y-dimension

becomes contiguous. The same applies for FFTs in z-direction. For the sparse forward

transform, the array rotation substeps include simultaneous zero-padding of the output

43

along the next contiguous dimension. Conversely, for the sparse backward transform, the

array rotation substeps include simultaneous cutting of the input along the original con-

tiguous dimension (see Fig. 3.5). This way all unnecessary 1D-FFTs are omitted from the

computation. For meshes with a two-dimensional grid of simulation cells, the algorithm

to compute the demagnetization �eld is as follows:

0. Initialization

1. Choose a zero-padding strategy according to Tab. 3.1. Denote the magnetiza-

tion arrays dimensions as (nx, ny) and its zero-padded dimensions as (ex, ey).

2. Precompute, negate, zero-pad from the size of (2nx − 1, 2ny − 1) to size of

(ex, ey), transpose, and �nally fast Fourier transform the demagnetization ten-

sor arrays Nαβ.

I. Forward transform each of Mx, My, Mz:

(a) zero-pad Mi along the x-direction, resulting in an array of size (ex, ny).

(b) by looping along the y-direction, perform ny 1d real-to-complex FFTs along

the x-direction, resulting in a complex array of size (dex/2 + 1e, ny).

(c) zero-pad Mi along the y-direction and transpose it, resulting in a complex

array of size (ey, dex/2 + 1e).

(d) by looping along the original x-direction, perform dex/2 + 1e 1d FFTs along

the original y-direction.

II. (e) compute the products in the frequency domain according to Eq. 3.23.

III. Inverse transform each of Hx, Hy, Hz:

(f) by looping along the original x-direction, perform dex/2 + 1e 1d IFFTs along

the original y-direction.

(g) cut Mi along the y-direction and transpose it, resulting in a complex array of

size (dex/2 + 1e, ny).

(h) by looping along the y-direction, perform ny 1d complex-to-real FFTs along

the x-direction, resulting in a complex array of size (ex, ny).

(i) cut Mi along the x-direction, resulting in an array of size (nx, ny).

The demagnetization �eld computation on three-dimensional grids of simulation cells

require 3-D transforms. These include an additional rotation and transform in z direction

substep. In the following the three-dimensional version of the fast sparse convolution

algorithm is given.

0. Initialization

44

Figure 3.5: (a) � (i) Computational steps to compute the demagnetization �eld ~H from the
magnetization ~M on a two-dimensional array of simulation cells. The �lled rectangles denote
two-dimensional number arrays that serve as the input and output of the steps. Blue arrays
contain real-valued numbers, and orange arrays contain complex-valued numbers.

1. Choose a zero-padding strategy according to Tab. 3.1. Denote the magne-

tization arrays dimensions as (nx, ny, nz) and its zero-padded dimensions as

(ex, ey, ez).

2. Precompute, negate, zero-pad from (2nx − 1, 2ny − 1, 2nz − 1) to (ex, ey, ez),

rotate, and �nally fast Fourier transform the demagnetization tensor arrays

Nαβ.

I. Forward transform each of Mx, My, Mz:

(a) zero-pad Mi along the x-direction, resulting in an array of size (ex, ny, nz).

(b) by looping along the y- and z-directions, perform nynz 1d real-to-complex

FFTs along the x-direction, resulting in a complex array of size (dex/2 +

1e, ny, nz).

(c) zero-pad Mi along the y-direction and rotate it, resulting in a complex array

of size (ey, dex/2 + 1e, nz).

(d) by looping along the original x- and z-directions, perform dex/2 + 1enz 1d

FFTs along the original y-direction.

(e) zero-pad Mi along the z-direction and rotate it, resulting in a complex array

of size (ez, dex/2 + 1e, dey/2 + 1e).

(f) by looping along the original x- and y-directions, perform dex/2+1edey/2+1e
1d FFTs along the original z-direction.

II. (g) compute the products in the frequency domain according to Eq. 3.23.

45

Subroutine Listing in appendix A.2

zeropad (20)
unpad (21)

rotate-zeropad (22)
rotate-cut (23)
FFTi (24)

FFTi (real-to-complex) (25)
FFTi (complex-to-real) (26)

product (27)

Table 3.2: De�nition of the subroutines used in steps (a)�(i) in Fig. 3.5 and (a)�(m) in Fig. 3.6

.

III. Inverse transform each of Hx, Hy, Hz:

(h) by looping along the original x- and y-directions, perform dex/2+1edey/2+1e
1d IFFTs along the original z-direction, resulting in a complex array of size

(ez, dex/2 + 1e, dey/2 + 1e).

(i) cutMi along the original z-direction and rotate it, resulting in a complex array

of size (dey/2 + 1e, dex/2 + 1e, nz).

(j) by looping along the original x- and z-directions, perform dex/2 + 1enz 1d

complex-to-real FFTs along the original y-direction, resulting in a complex

array of size (ey, dex/2 + 1e, nz).

(k) cutMi along the original y-direction and rotate it, resulting in an array of size

(d2/ex + 1e, ny, nz).

(l) by looping along the original x- and y-directions, perform nynz 1d complex-to-

real FFTs along the original x-direction, resulting in a complex array of size

(ex, ny, nz).

(m) cut Mi along the x-direction, resulting in an array of size (nx, ny, nz).

The behavior of the subroutines (a)�(i) for the 2-D case and (a)�(m) for the 3-D case are

de�ned in appendix A.2, see Tab. 3.2.

Periodic boundary conditions If periodic boundary conditions in one or more di-

mensions are enabled, the cyclicality of the fast convolution can be exploited. To do this,

the zero-padding of the magnetization array in the periodic directions are omitted[57].

The size of the demagnetization tensor in the periodic directions is then equal to the

size of the unpadded magnetization array[76, 77]. Thus the computation time is greatly

reduced as the number of data points in the fast Fourier transforms is halved for each

additional periodic direction. The 2-D and 3-D algorithms displayed in Fig. 3.5 and in

46

h

F
ig
u
r
e
3
.6
:
(a
)
�
(m

)
C
om

p
u
ta
ti
on
al
st
ep
s
to

co
m
p
u
te

th
e
d
em

ag
n
et
iz
at
io
n
�
el
d
~ H
fr
om

th
e
m
ag
n
et
iz
at
io
n
~ M
on

a
tw
o-
d
im

en
si
on
al
ar
ra
y

of
si
m
u
la
ti
on

ce
ll
s.

T
h
e
�
ll
ed

re
ct
an
gl
es

d
en
ot
e
tw
o-
d
im

en
si
on
al
n
u
m
b
er

ar
ra
y
s
th
at

se
rv
e
as

th
e
in
p
u
t
an
d
ou
tp
u
t
of

th
e
st
ep
s.

B
lu
e
ar
ra
y
s

co
n
ta
in

re
al
-v
al
u
ed

n
u
m
b
er
s,
an
d
or
an
ge

ar
ra
y
s
co
n
ta
in

co
m
p
le
x
-v
al
u
ed

n
u
m
b
er
s.

47

Fig. 3.6 can be directly used with periodic boundary conditions. The only di�erence is

the setup of the demagnetization tensor array Nαβ, which is computed according to an

approximation[57] of Eq. 2.27, and the size of the zero-padded magnetization (ex, ey, ez).

3.1.4 Scalar potential method

For the potential �eld Eq. 3.24 is computed using fast convolutions. Here the three-

dimensional algorithm from the previous subsection can be employed, with the di�erence

that only one inverse transform is needed to get the potential �eld Φ, and that the

product in the frequency domain is a scalar product of vectors. As the inverse Fourier

transform is only applied once to obtain the scalar �eld (as opposed to three times for

each component of the demagnetization �eld), the scalar potential method requires only

four instead of six transforms. In principle all discussed optimizations for the tensor

method are possible here as well. After the potential �eld is calculated, its gradient

yields the demagnetization �eld. In MicroMagnum, the gradient is computed using the

�nite di�erences between the eight cell vertices. First, the scalar potential is calculated

on all cell vertices. Then, for each cell and for each component of the gradient vector, the

�nite di�erences between four pairs of vertices are averaged, yielding an approximation

of the demagnetization �eld at each cell. As the gradient computation has linear run

time, the convolution dominates and the total run time is in O(n log n). Compared to

the tensor �eld method, a speedup of up to 50 % can be expected because only four

instead of six forward and inverse transforms are required.

3.2 Exchange �eld

The exchange �eld in Eq. 2.6 is computed by applying a weighted Laplacian on each

component of the magnetization array by using �nite di�erences. In case of periodic

boundary conditions and constant exchange sti�ness A and saturation magnetizationMs

at each cell, the weights are the same at all cells, and the discrete weighted Laplace

operator can be expressed as a discrete multidimensional convolution with a �xed kernel.

For a mesh containing a 2-D array of cells, each cell has six neighbors and the kernel

becomes

L(lx, ly) =
1

l2x

0 0 0

1 −2 1

0 0 0

+
1

l2y

0 1 0

0 −2 0

0 1 0

 , (3.26)

where lx and ly is the size of each cell. For three-dimensional meshes, L(lx, ly, lz) has

the dimensions 3 × 3 × 3 and is de�ned similarly. Because the convolution is linear,

the exchange �eld can be computed together with the demagnetizing �eld by adding the

kernel L into the demagnetization tensor �eld, resulting in a combined �eld of symmetric

48

tensors

N′ =

Nxx Nxy Nxz

Nxy Nyy Nyz

Nxz Nyz Nzz

− 2A

µ0M2
s

L 0 0

0 L 0

0 0 L

 . (3.27)

Here L must be appropriately zero-padded in all directions so that the center entry

of L is added to the self-demagnetization tensor terms. As the combined tensors are

precomputed before the simulation, the exchange �eld can be computed �for free� along

with the demagnetization �eld. This method works well together with the inclusion of

periodic boundary conditions (see section 3.1.3). Because the periodic dimensions are

not zero-padded in the demagnetization tensor array, the convolution becomes periodic

in that dimension, which is what is wanted for the periodic exchange �eld computation as

well. A drawback of the combined computation is that it can not be used for simulations

where the material parameters A and Ms vary between the simulation cells. Also, the

demagnetization �eld and exchange �eld and their energies are not computed separately,

although the user might be interested in these energies. It is not possible to integrate the

exchange �eld computation into the scalar potential computation described in section

2.1.4, as the exchange �eld cannot be formulated as a gradient of a scalar �eld.

3.3 Oersted �eld

As show in Ref. [60], a discretized version of the Biot-Savart equation in Eq. 1.25 on

regular, rectangular grids can be expressed as a convolution of the current density with

a �eld of antisymmetric tensors,

~HOersted(~rk) =
N−1∑
l=0

K(~rk − ~rl) ·~j(~rl) =
(
K ∗~j

)
(~rk), (3.28)

where N is the number of cells. The convolution can be e�ciently computed using fast

Fourier transforms in O(n log n) time. The 3× 3 antisymmetric tensor K is de�ned as

Kij(R) =
2

4πV

∫
V

d3r

∫
V ′
d3r′

R + r − r′

|R + r − r′|3
· (~ei × ~ej) (3.29)

for a pair of cells with the cell volumes V and V ′, the cell distance R = |~r − ~r′|, and
the coordinate axes ~ei and ~ej, i, j ∈ {x,y,z}. This integral is numerically evaluated[60].

All optimizations for the demagnetization �eld computations apply for the Oersted �eld

computation as well. The Oersted �eld can be calculated along the demagnetization �eld

by sharing the computation of the inverse Fourier transforms, resulting in a combined

49

�eld,

−Ĥ∗combined,x = N̂xx · M̂∗
x + N̂xy · M̂∗

y + Nxz · M̂∗
z − K̂xy · ĵ∗y − K̂xz · ĵ∗z

−Ĥ∗combined,y = N̂yx · M̂∗
x + N̂yy · M̂∗

y + Nyz · M̂∗
z + K̂xy · ĵ∗x − K̂yz · ĵ∗z

−Ĥ∗combined,z = N̂xz · M̂∗
x + N̂yz · M̂∗

y + Nzz · M̂∗
z + K̂xz · ĵ∗x + K̂yz · ĵ∗y. (3.30)

Here ĵ∗x/y/z denotes the zero-padded, fast Fourier transformed current density array. The

combination of the �eld reduces the additional computation time of the Oersted �eld to

roughly 50% of the original time.

3.4 Current paths

The system of linear equations in Eq. 2.45 is solved by using an iterative Krylov subspace

solver as described in Ref. [61].

50

Part II

Parallel Computation of the

Micromagnetic Model

This part contains two chapters. In the �rst chapter parallel algorithms are shortly

introduced and applied to the computation of the Landau-Lifshitz-Gilbert equation. The

second chapter deals with the parallel implementation of the micromagnetic model on

CUDA graphics processing units.

4 Parallel computing

A performance gain can be obtained by executing algorithms in parallel. If the compu-

tational problem can be divided into subproblems, each subproblem can be computed

by a single process to save computation time. A prerequisite for parallel computation

is the absence of a causal dependency between the subproblems. Parallel computation

is most e�cient if the processes are executed on multi-core computers. In case of GPU

computing a large number of cores access a single memory, which is e�cient for executing

a single instruction on di�erent data. This kind of computation is required for exam-

ple at the fast Fourier transform at the computation of the demagnetization �eld in the

micromagnetic model. In chapter 7.3 it is shown that the parallel demagnetization �eld

computation on a GPU leads to a speedup of up to 66 in comparison to the sequential

computation on a CPU.

In a parallel program, two or more processors perform computations simultaneously

in order to solve a computational task. The motivation is to combine the resources of

the parallel processors and make the computation more e�cient, or even possible. In the

case of micromagnetic simulation the prime motivation is to simulate large samples with

high spatial resolution in adequate time. Here the run time speedup gained by parallel

computing is most important.

In the �rst part of this chapter important concepts of parallel computing are in-

troduced. This includes performance metrics which are later used to benchmark the

developed parallel algorithms. In the second part of this chapter it is described how

the �nite-di�erence computation of the micromagnetic model, i.e. the Landau-Lifshitz-

Gilbert equation including all e�ective �eld terms, can be expressed as a parallel algo-

rithm.

51

4.1 Fundamentals

A parallel program is executed by processes that run simultaneously, where each process

performs a part of the total computation. Thus, when a parallel algorithm is developed, at

least two concepts have to be considered: How the processes interact by communication,

and how the computations are partitioned across the processes.

Interaction of the Parallel Processes The shared-memory model and the message-

passing model are considered.

In the shared-memory model, the parallel processes operate on the same (shared)

working memory. From the operating system view, these processes are called software

threads. Threads usually run on the same computer and have access to a common part of

the system memory. Commonly used programming environments in parallel numerical

computing with threads are OpenMP[78] and PThreads[79], although many others exist.

In GPGPU computing, every procedure that runs on the GPU is inherently parallelized

using threads. In this thesis the CUDA programming environment[35] by Nvidia is used.

The OpenCL[80] environment targets threaded programming on both CPUs and GPUs.

In the message passing model, the parallel processes communicate via interprocess

messages. The messages have to be programmed explicitly by the developer. Typically

the data transfer rate and the transfer latency are performance bottlenecks of the parallel

algorithm. On the operating system level, the processes are usually implemented via

operating system processes. On a computer cluster, the processes may be distributed

across the nodes. Message passing is done via the network or, when two communicating

processes run on the same node, via copies in the system memory. A commonly used

parallel programming environment is the message passing interface (MPI[81]).

Hardware and software threads A thread is the sequence of executed processor

instructions. A software thread corresponds to the �ow of execution of a running program.

Software threads are managed by the operating system and are scheduled to run on

the hardware. A hardware thread is de�ned by the sequence of instructions that is

executed by a compute core on the processor. In case of a multi-core CPU processor

each core processes one hardware thread. A modern GPU can contain hundreds of

hardware threads.

Partitioning of the computation The partitioning of the computation into con-

current parts can be distinguished into two kinds, data level parallelism and task level

parallelism.

• Data-level parallelism: The data is divided into chunks. Each parallel process

operates on one of these chunks.

52

• Task-level parallelism: The sequential program is divided into independent subpro-

grams. Each parallel process executes one of these subprograms.

As an example the per-element addition of two arrays of length n is considered. Both

arrays can be split into two subsequences of length n/2 and then be added concurrently

by two data-parallel processes, each of which processes one half of the arrays. Both pro-

cesses essentially execute the same algorithm, but process di�erent chunks of data. In

contrast, task-level parallelism deals with the parallel computation of di�erent subpro-

grams. Typically a parallel program makes use of both data and task level parallelism.

Performance measurements The following notation is taken from the book Intro-

duction to Parallel Computing by Grama et al.[82]. In order to assess the e�ciency of a

parallel algorithm, its run time for a given number of processors is measured and com-

pared to the run time of a respective sequential algorithm. The parallel run time on a

computer with n processors is called Tpar(n), and the sequential run time of the best

sequential algorithm is called Tseq. The speedup S of a parallel algorithm that is executed

on n processors is de�ned as the ratio of the run time of the best respective sequential

algorithm by the time taken by the parallel algorithm:

S =
Tseq

Tpar(n)
(4.1)

For a meaningful comparison, all run time measurements should be conducted on the

same hardware. Sometimes this is not possible, e.g. when the run times of algorithms on

CPU and GPU architectures are compared. The maximal theoretical speedup is limited

by Amdahls law. It divides the algorithm into two parts, a parallelizable part and a

sequential non-parallelizable part. It is assumed that the sequential part cannot be sped

up no matter how many parallel processors are devoted to the overall computation. If

P is the parallelizable fraction and (1− P) the sequential fraction of the algorithm, the

speedup for n parallel processors is modeled as

S(n) =
1

(1− P) + P/n
. (4.2)

The maximal theoretical speedup is thus Smax = 1/(1 − P) for n → ∞. It is limited

by the sequential fraction of the algorithm. Given a measured speedup of S∗(n) on n

processors, the parallel fraction can be estimated using

P ∗ =
1/S∗(n)− 1

1/n− 1
. (4.3)

Much of the development time for parallel algorithms is devoted to make P as high as

possible. As given by Amdahls law, doubling the number of processors rarely halves

53

the run time of a parallel algorithm. The e�ciency E(n) of a parallel algorithm on n

processors is de�ned as the ratio of the speedup and n,

E(n) =
S(n)

n
. (4.4)

4.2 Parallel micromagnetic model computation

In order to simulate the magnetization dynamics the Landau-Lifshitz-Gilbert equation

has to be computed repeatedly. From a computational point of view, the magnetiza-

tion �eld is inserted into the LLG equation in order to retrieve its time derivative, i.e.

d ~M/dt = f(~M) where f is the LLG equation. This section deals with the parallel

computation of f(~M) with a given ~M .

4.2.1 E�ective �eld

The LLG equation includes the total magnetic �eld, which is composed of several terms,

e.g.
~Htot = ~Hexch + ~Hdemag + ~Haniso + ~Hext + (4.5)

Neither of these terms depend on any time derivative of the magnetization, so that each

term can be computed simultaneously. The computation of each term in parallel is an

example of task level parallelism. In this case however the computation times of the

subtasks are not evenly distributed � the demagnetization �eld alone takes at least 60 %

of the total run time. Thus dividing the work evenly across more than two processors

becomes di�cult. Similarly, in the extended LLG equation, the spin torque term can be

computed in parallel to the other terms.

d ~M

dt
= LLG(~M, ~H) + ST (~M,~j) (4.6)

In order to compute the spin torque term the current density and the magnetization �eld

must be known. If the current density is computed dynamically from the magnetization

�eld using the current path equations the spin torque term can take a considerable

amount of computation time, and a higher speedup can be expected.

4.2.2 Convolution-based �eld terms

The demagnetization �eld and the Oersted �eld are the most time-expensive terms of the

e�ective �eld term. Both are based on a convolution which is computed via fast Fourier

transforms. In this section possible parallelization opportunities are discussed.

Parallel �eld component transforms The computation of the demagnetization �eld

involves the fast Fourier transform of each magnetization �eld component Mx, My and

54

Mz. Due to the independence of these transformations they can be computed in parallel,

see Fig. 3.5 and Fig. 3.6. Similarly, the inverse transforms that result in the demagne-

tization �eld components Hx, Hy and Hz can be computed independent of each other.

This is a type of data level parallelism.

Parallel fast Fourier transforms The report in Ref. [83] identi�es common numeri-

cal tasks in scienti�c computing and classi�es them into thirteen groups in terms of their

parallel implementation characteristics. Tasks in one class exhibit common parallel com-

putation and communication patterns. The multidimensional fast Fourier transform was

selected as the prototypical member of the spectral-methods group. It requires all-to-all

communication between distributed compute nodes and is therefore a memory-bound

algorithm. In the micromagnetic model two- and three-dimensional transforms are re-

quired. Within the row-column algorithm (see section 3.1.1), all iterated one-dimensional

transforms within the steps shown in Fig. 3.5 and Fig. 3.6 can be executed concurrently.

Here the array rotation steps cause the aforementioned all-to-all communication between

the nodes.

There are two basic parallel one-dimensional fast Fourier transform algorithms, name-

ly the binary-exchange algorithm and the transpose algorithm (see Ref. [82] for a detailed

description). However, typically the individual 1-D transforms needed for micromagnetic

simulations are too small to warrant the parallel overhead. In the case of a micromagnetic

simulator, only two- and three-dimensional transforms are required and as such are much

easier parallelized by a parallelized row-column transform algorithm. The parallel row-

column algorithm is a data-parallel method.

Parallel multiplication After the magnetization array is transformed into the fre-

quency domain, each element has to be multiplied with the corresponding element of the

transformed demagnetization tensor. All products are independent of each other and can

thus be computed in parallel, exhibiting data level parallelism.

4.2.3 Local �eld terms

In any simulation cell, the local �elds depend only on the cells in their immediate neigh-

borhood. This means that the local �elds can be computed at each cell independently

and in parallel. For example, the exchange �eld, the anisotropy �eld and the external

�eld are local, whereas the demagnetization �eld and the Oersted �eld are not. Paral-

lelization of the local �elds involve its computation at each simulation cell in parallel.

This is again a type of data level parallelism.

55

5 Computation on Graphics Processing Units

Graphics processors have evolved into general-purpose multiprocessors that are capable

of highly parallel computations. The development is driven by the demand to produce

high de�nition real time imagery. Graphics cards that accelerate the generation of three-

dimensional real time images became commercially available in the middle of the 1990s.

The processors on these graphics cards mainly provided hardware-accelerated rasteriza-

tion of textured triangles. Many graphics cards included on-board memory on which

the texture data could be stored in order to circumvent the PCI bottleneck. Later pro-

cessors added the capability to perform geometric transforms and lightning calculation

on the device. In order to perform these calculations, the graphics processors were de-

signed to operate massively in parallel. Real-time imaging also required a high memory

bandwidth between the processor and its on-board memory. The introduction of shader

languages[84, 80, 85] in the 2000s allowed the execution of programmer-de�ned algo-

rithms on the graphics processors. Using the shader language, numerical computations

could be, for example, formulated in terms of texture transforms inside the graphics

processors' texturing unit. However, as the shader languages were primarily designed to

produce graphics e�ects for computer games, they were di�cult to exploit for general-

purpose programming. In the late 2000s the major graphics card manufacturers began

to make their processors more accessible and provided tools to allow the use of general-

purpose programming languages. The CUDA compute architecture [35] developed by

Nvidia allows the programmer to develop his GPU algorithms in a superset of the C

programming language. Similarly, the Stream SDK from AMD allows free programming

using OpenCL, another extension of C. The increase of the performance of GPUs in

recent years is shown in Fig. 5.1.

5.1 CUDA programming model

CUDA provides a standard model for general computing on graphics processing units

across the graphics card produced by Nvidia. CUDA extends the C and C++ program-

ming languages with new language primitives suitable for its parallel computation model.

The CUDA developer kit includes CUBLAS[86], an implementation of the basic linear

algebra subprograms[87], CUFFT[88], an implementation of fast Fourier transforms, and

several other libraries targeted at statistical and �nancial applications. A good overview

of the CUDA programming model and its application to numerous mathematical prob-

lems such as numerical linear algebra and fast Fourier transforms is given in Ref. [89].

The �rst CUDA-enabled GPUs were the line of G80 processors, which became �rst

available on the Geforce 8800 line of graphics cards, and later, as server hardware tar-

geted at scienti�c computing, on the Tesla C810 graphics cards. One GPU contains

one or more streaming multiprocessors (MP). Each multiprocessor contains a number of

56

0

1000

2000

3000

4000

5000

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

G
F
lo
p
s/
s

Year

G701 G712

G803
G925

G2007
G200b8GF1009

GF11010

GK10412

GK11013

Figure 5.1: Theoretical peak 32 bit �oating point operations per second (FLOPS) of several
Nvidia graphics processing units over the last years. The footnotes indicate the corresponding
graphics card models.

1Geforce 7800 GTX
2Geforce 7900 GTX
3Geforce 8800 GTX / Tesla C870
4Geforce 8800 Ultra
5Geforce 9800 GTX
6Geforce 9800 GTX+
7Geforce GTX 280
8Geforce GTX 285 / Tesla C1060
9Tesla M2050 / M2070 / C2050 / C2070
10Tesla M2090 / Geforce GTX 580
12Geforce GTX 680
13Geforce GTX Titan

57

parallel compute cores which are called streaming processors (SP) (see Fig. 5.2). For

example, the G200 chip on the Tesla M2050 card contains at total of 448 compute cores

inside 14 multiprocessors with 32 streaming processors each. Each streaming processor

contains an arithmetic logic unit (ALU). All streaming processors within an individual

multiprocessor are connected to one control unit and thus always share a common code

path, i.e. a multiprocessor processes multiple data with a single instruction. This kind

of parallelism is called single instruction/multiple data (SIMD) in the Flynn taxonomy

of parallel computers[90]. However, the individual multiprocessors may execute di�erent

code paths at the same time, as each multiprocessor contains its own control unit.

Besides the control unit, the streaming processors inside one multiprocessor also share

a common memory, the so-called shared memory. This memory is only a few kilobytes

small, but very fast. It is used for the communication between the streaming processors

without involving the much slower global memory. The shared memory can also be used

as a programmer-managed cache memory.

In order to achieve high performance, parallel global memory accesses by di�erent

streaming processors can be satis�ed by combining them into a single memory block

transfer between the GPU and the global memory. The combined block transfer is called

coalesced. This is only possible when certain criteria are met. On a multiprocessor, there

are always 32 threads that are executed concurrently by its stream processors. This

package of 32 threads is called a �warp�. A warp is further divided into two half-warps,

each comprised of the �rst 16 and the last 16 threads of a warp, respectively. At CUDA

compute capability greater than 2.0, the concurrent memory accesses of one half-warp

are coalesced if all their addresses fall into an interval that �ts a memory block transfer1.

If these criteria are not or only partially met, two or more memory block transfers are

caused, resulting in a lower overall performance. It is the programmers responsibility

to schedule the memory accesses in such a way that as few as possible block memory

transfers are caused.

Graphics processors are able to hide memory latency by fast thread switching. On

the G80 GPU, global memory accesses are not cached and involve a latency penalty of

hundreds of clock cycles. The G80 GPU is able to run 448 hardware threads in parallel.

The threads are light-weight, and scheduling is very fast. In order to hide memory latency,

software threads that are waiting for a memory access to complete can be suspended with

a very low overhead, leaving the processing power to the active threads. Later GPUs

like the Fermi GF100 GPU targeted at scienti�c computing, add a L1 and a L2 cache in

order to reduce latency. However, enabling the L1 cache reduces the amount of shared

memory available to the program and thus potentially the number of threads that can

be executed at the same time in parallel by the multiprocessor for a given program.

1GPUs with compute capabilities less than 2.0 have an even stricter requirement for coalescing mem-
ory accesses.

58

Figure 5.2: Hardware architecture of the graphics processing unit of Nvidia graphics card. The
GPU consists of several multiprocessors (MP, yellow) that contain multiple streaming processors
(SP, green) that share an instruction unit. Each MP has a shared memory, and each SP has a set
of registers. The GPU is connected to the global memory. (Adapted from CUDA programming

guide[35].)

Figure 5.3: Multi-GPU setup where multiple graphics cards are installed on a host computer.
The GPUs and the host system communicate via the peripheral bus (PCI express bus).

59

5.2 Micromagnetic model implementation in CUDA

For the solution of the micromagnetic model using the �nite di�erence method, the

following numerical operations need to be implemented on the GPU:

• operations implemented by looping over the elements of arrays

� addition of two arrays, scaling of an array, etc.

� computation of �elds local to one cell, e.g. the anisotropy �eld

� computation of the sum/average of all elements in an array

• operations needed for the fast convolution of the demagnetization �eld / Oersted

�eld computation:

� Array rotation

� Matrix-vector product

� Iterated fast Fourier transforms

• convolution of a 2-D or 3-D array with a small �xed-size convolution kernel for the

computation of the exchange �eld.

In the following implementation strategies for the mentioned operations on the GPU are

presented.

5.2.1 Parallel loop over array elements

Simple array operations like the element-by-element addition of two arrays can be im-

plemented by a loop:

1 void add(f l oa t *dst , const f l oa t *src , int N)

2 {

3 for (int i=0; i<N; ++i) {

4 dst[i] += src[i];

5 }

6 }

Listing 4: Addition of two arrays in C

Here the array src is added to the array dst. Simple loops like this are easily parallelized

by executing multiple iterations of the loop at the same time. The following CUDA

function uses 32 thread blocks with 128 threads for a total of 32 · 128 = 4096 potentially

parallel threads. If the length of the arrays is N , each thread executes N/4096 iterations

of the loop.

1 const int GRID_SIZE = 32, BLOCK_SIZE = 128;

2

3 __global__

60

4 void add_kernel(f l oa t *dst , const f l oa t *src , int N)

5 {

6 const int tid = blockDim.x * blockIdx.x + threadIdx.x;

7

8 for (int i=tid; i<N; i+= GRID_SIZE*BLOCK_SIZE) {

9 dst[i] += src[i];

10 }

11 }

12

13 void add(f l oa t *dst , const f l oa t *src , int N)

14 {

15 // call CUDA kernel with a total of 32*128 = 4096 threads.

16 add_kernel <<<GRID_SIZE , BLOCK_SIZE >>>(dst , src , N);

17 }

Listing 5: Addition of two arrays in CUDA C

The CUDA function add_kernel is executed by each thread. In line 6, the thread index

from 0 to 4095 is calculated. Each thread then enters the loop in lines 8�10. The loop is

parallely executed by the threads in an interleaved fashion, see line 8. This ensures that

the accesses to global memory are coalesced, because each half-warp of threads accesses

memory addresses that lie adjacent in memory.

In MicroMagnum, parallel loops on the GPU are used to implement the following

simple array operations:

• element wise array addition, subtraction, multiplication, division

• assign constant value to each array element

• normalize an array of vectors

• computation of �elds local to one simulation cell: uniaxial and cubic anisotropy

�eld, external �eld

5.2.2 Reduce operation

In functional programming, the reduce function traverses the elements of some data

structure and builds up a result using a combining function. For example, a reduce

function could iterate over a sequence of n numbers p0, p1, . . . pn and use as the combining

function a left-associative binary operation ⊗ to give the result (p0⊗ (p1⊗ (p2⊗ . . .) . . .).
If the combining function is associative, the reduce operation can be naturally executed

using a parallel algorithm. The input array is distributed among n processes and the

reduce operation is computed in parallel on each subset, resulting in an intermediate

result array of size n. The parallel reduce operation is now applied recursively on the

intermediate result until one �nal result remains.

In numerical computing, many operations on arrays can be formulated in terms of a

reduce function. For example, the sum of the elements of an array is the array reduction

61

using the function a⊗ b 7→ a+ b. The parallel reduce function is e�ciently implemented

for CUDA using the �parallel reduce pattern�[91]. Here, a CUDA kernel is repeatedly

executed on an input array, generating the output for the next repetition. Each thread

block generates only one element in the output array, thereby reducing the input step by

step using the combining function. The kernel is called until only one element remains,

which is the end result.

In MicroMagnum, the following array operations are implemented using the parallel

reduce pattern:

• Compute sum/average of the array elements.

• Find the smallest/largest element in array.

• Compute the scalar product of two arrays.

• Find the vector with the largest magnitude in a vector array.

As an example, listing 6 shows how the sum of an array can be computed using the

parallel reduce pattern with CUDA.

1 __global__

2 s ta t i c void kernel_sum_reduce(const f l oa t *in, f l oa t *out , int N)

3 {

4 __shared__ f loa t sh [256]; // thread block size is (256 ,0 ,0)

5 const unsigned int bid = gridDim.x * blockIdx.y + blockIdx.x;

6 const unsigned int tid = threadIdx.x;

7 const unsigned int i = bid * 256 + tid;

8

9 i f (i < N) {

10 sh[tid] = in[i];

11 } e l se {

12 sh[tid] = 0.0;

13 }

14 __syncthreads ();

15

16 i f (tid < 128) sh[tid] += sh[tid +128];

17 __syncthreads ();

18

19 i f (tid < 64) sh[tid] += sh[tid +64];

20 __syncthreads ();

21

22 i f (tid < 32) {

23 vo la t i l e f l oa t *smem = sh;

24 smem[tid] += smem[tid +32]; smem[tid] += smem[tid +16]; smem[tid] +=

smem[tid+ 8];

25 smem[tid] += smem[tid+ 4]; smem[tid] += smem[tid+ 2]; smem[tid] +=

smem[tid+ 1];

26 }

27

28 // write result for this block to global memory

62

29 i f (tid == 0) out[bid] = sh[0];

30 }

Listing 6: Add up all numbers in an array in CUDA C

The kernel_sum_reduce kernel takes an input array in of size N and write an interme-

diate reduce result to the output array out of size N/256. It is designed to run on N/256

threads, so that each thread reduces 256 elements of the input array and produces one

intermediate result, which is the sum of the 256 elements. In order to compute the sum

of an array of arbitrary size, the reduce kernel is called multiple times from C++ in the

following listing 7.

1 f l oa t cuda_sum(const f l oa t *src , int N)

2 {

3 // Allocate temporary storage

4 f l oa t *buf1 , *buf2;

5 alloc_reduce_buffers (&buf1 , &buf2 , N);

6

7 // First iteration

8 {

9 const int B = (N+255) /256;

10 kernel_sum_reduce <<<B, 256>>>(src , buf1 , N);

11 N = B;

12 }

13

14 // Remaining iterations

15 f l oa t *in = buf1 , *out = buf2;

16 while (N > 1) {

17 const int B = (N+255) /256;

18 kernel_sum_reduce <<<B, 256>>>(in, out , N);

19 N = B; std::swap(in, out);

20 }

21 checkCudaLastError("kernel_sum_reduce () execution failed");

22

23 const f l oa t result = download_float(in); // result is stored at in[0]

24 free_reduce_buffers (&buf1 , &buf2);

25 return result;

26 }

Listing 7: The C++ code that calls the kernel_sum_reduce CUDA function.

Two bu�ers called buf1 and buf2 are allocated. They hold the intermediate results of

the reduce operation. For the �rst iteration, the input array is partially reduced to the

buf1 bu�er of size N/256. For the remaining iterations, the output of the last iteration

is reduced repeatedly until only one element remains, which is the array sum. The two

bu�ers are used as intermediate input/output bu�ers.

63

5.2.3 Array rotation

The full 2-D and 3-D algorithms presented in section 3.1.3 in Figs. 3.5 and 3.6 inter-

nally perform array rotations in memory for the fast convolution. They are required for

fast Fourier transforms that operate on data points that lie contiguous in memory. All

arrays are stored in FORTRAN order with minimal stride, i.e. if an array has the size

(Nx, Ny, Nz), the element at (x, y, z) has the linear index i = x + yNx + zNxNy. The

array rotation thus permutes the dimensions of input array. In particular, there are two

rotation directions required,

1. rotate left: permute dimensions from (Nz, Nx, Ny) to (Nx,Ny,Nz) (see listing 22 for

a de�nition)

2. rotate right: permute dimensions from (Ny, Nz, Nx) to (Nx,Ny,Nz) (see listing 23

for a de�nition)

Additionally, after the left rotation, the output has to be zero-padded along Nx-direction,

and after the right rotation the input array has to be unpadded. In the following, only

the implementation of the 2-D case is discussed. Here both types of rotations correspond

to the same matrix transposition. To allow for unpadding and/or later zero-padding, the

transposition function accepts an arbitrary stride length for the y-dimension for both the

input and the output array. By using appropriate values for the strides array contents

that will be unpadded/zero-padded can be skipped from the input/output.

The kernel_transpose_2d in listing 8 function transposes a 2-D array on the GPU.

It takes the dimensions of the input array (dim_x, dim_y), pointers to the input and

output bu�ers (in, out), and the input and output strides in y-direction (in_stride_y,

in_stride_x; in units of 2*sizeof(float)). A �xed input/output stride of 1 in the

x-direction is assumed. As kernel_transpose_2d is a CUDA kernel, it is executed

concurrently for each entry of the input array. Each thread block copies an one tile of

size 16 × 16 to the output tile in transposed order. A thread block has 256 threads.

Accesses to global memory are made coalesced by actually performing the transposition

in the shared memory.

1 __global__

2 void kernel_transpose_2d(

3 const int dim_x , const int dim_y ,

4 const f l oa t * in , const int in_stride_y ,

5 f l oa t *out , const int out_stride_y)

6 {

7 const int Q = 2; // Improves shared memory bank conflicts.

8 __shared__ f loa t sh [2*16*(16+Q)];

9

10 // Move to source and dest tiles.

11 const int base_x = 16*blockIdx.x, base_y = 16*blockIdx.y;

12 in += 2*(base_x + in_stride_y*base_y); // Src tile @ (base_x ,

base_y)

64

Figure 5.4: Implementation of the matrix transposition algorithm on CUDA C using the shared
memory. Yellow boxes: Thread blocks, which are assigned to matrix tiles. Grey boxes: Shared
memory area of a thread block. Red lines: Memory read operations. Green lines: Memory write
operations. Horizontal lines represent coalesced memory transfers.

13 out += 2*(base_y + out_stride_y*base_x); // Dest tile @ (base_y ,

base_x)

14

15 const bool at_border = (blockIdx.x == gridDim.x-1

16 || blockIdx.y == gridDim.y-1);

17 i f (! at_border) {

18 read_and_store_transposed_2d <16>(in , in_stride_y , sh , 16+Q);

19 __syncthreads ();

20 read_and_store_2d <16>(sh, 16+Q, out , out_stride_y);

21 } e l se {

22 in += 2*(threadIdx.x + in_stride_y*threadIdx.y);

23 out += 2*(threadIdx.y + out_stride_y*threadIdx.x);

24 i f (base_x + threadIdx.x < dim_x && base_y + threadIdx.y < dim_y) {

25 out[0] = in[0];

26 out[1] = in[1];

27 }

28 }

29 }

Listing 8: Matrix transposition algorithm in CUDA C.

In lines 11�13, the input and output bu�er pointers are translated to the source and

destination tile addresses. In line 15, it is determined whether the current thread block

processes a tile that lies at the border of the array. A border tile can overlap the array and

is thus processed separately. Inner tiles are copied via the shared memory (lines 18�21),

and border tiles are copied with the slower direct copy (lines 22-27), see Fig. 5.4. For

the direct copy, the 'in' and 'out' pointers are adjusted again to point at the source and

destination entries in the input and output bu�er (lines 22�23). The real and imaginary

parts of the entry are then copied (lines 25�26), except when the array border was passed

over (line 24). The fast shared-memory transposition is implemented in the template

functions read_and_store_transposed_2d and read_and_store_2d.

1 template < int block_size_x >

65

2 __device__ __inline__ stat i c void read_and_store_transposed_2d(

3 const f l oa t * in , const int in_stride_y ,

4 f l oa t *out , const int out_stride_y)

5 {

6 // 1) Read at (x,y)

7 const int x = threadIdx.x, y = threadIdx.y;

8 in += 2*y*in_stride_y; out += 2*y;

9

10 // 2) Store at (y,x)

11 const int imag = (x & 1) ? (-out_stride_y +1) : 0;

12 out[(x+ 0)*out_stride_y + imag] = in[x+ 0];

13 out[(x+block_size_x)*out_stride_y + imag] = in[x+block_size_x];

14 }

15

16 template < int block_size_x >

17 __device__ __inline__ stat i c void read_and_store_2d(

18 const f l oa t * in , const int in_stride_y ,

19 f l oa t *out , const int out_stride_y)

20 {

21 const int x = threadIdx.x, y = threadIdx.y;

22 in += 2*y*in_stride_y; out += 2*y*out_stride_y;

23 out[x+ 0] = in[x+ 0];

24 out[x+block_size_x] = in[x+block_size_x];

25 }

Listing 9: Helper functions for the array transpose algorithm in CUDA C.

When called from a thread block, the function read_and_store_transposed_2d reads a

tile using only coalesced memory transfers, and writes the tile in transposed order into a

temporary bu�er. The template parameter block_size_x speci�es the size of the thread

block in x-direction. As the writes are not coalesced, the output bu�er must point to

shared memory. The read_and_store_2d, when called from a thread block, copies a tile

from a temporary input bu�er to the output bu�er. Here, both the reads and writes are

coalesced. Using these two functions, the fast shared-memory transpose is implemented,

with the temporary bu�er in the shared memory of the calling thread block.

The 3-D version of the transpose is needed for the computation of the demagnetization

�eld with a three-dimensional discretization mesh. Here both the left rotate and the

right rotate have to be implemented in di�erent CUDA functions. The rotations can

be implemented with coalesced global memory accesses as well, although the required

pointer arithmetic becomes quite complex.

5.2.4 Iterated fast Fourier transforms

The full 2-D and 3-D algorithms presented in section 3.1.3 in Figs. 3.5 and 3.6 inter-

nally compute iterated 1-D fast Fourier transforms for the fast convolution. Due to the

preceding array rotations in memory, the array elements are always laid out linearly in

memory along the respective transform direction. Array elements that are complex are

66

stored in so-called packed order, i.e. the real part and the imaginary part of each element

are stored adjacently in two 32-bit �oat cells. All arrays are stored in FORTRAN order

with minimal stride: If an array has the size (Nx, Ny, Nz), the element at (x, y, z) has

the linear index i = x+ yNx + zNxNy. An iterated FFT along the �rst direction of this

array, which is stored continuously in memory, would involve NyNz transforms of length

Nx, starting at element (0, 0, 0). Due to the minimal stride, each input to the transform

is directly followed by the next input in memory.

It is therefore su�cient to implement fast Fourier transforms that perform N iterated

forward and inverse transforms of length M , where the input and output sequences

are stored linearly after each other and are in packed complex format (see algorithm

iterated_fft in appendix A.2. FFT algorithms like the iterative radix-2 algorithm

presented in listing 3 of section 3.1.1 typically work in-place so that the input data is

overwritten with the output data, thus saving memory. Additionally, specialized real-to-

complex and complex-to-real iterated FFTs are employed where either the input or the

output has real elements, see section 3.1.1.

In MicroMagnum, the computation of the fast Fourier transforms on the GPU is

implemented by the CUFFT library[88] which comes with the CUDA SDK[35]. CUFFT

supports iterated in-place FFTs, inverse in-place FFTs, out-of-place R2C FFTs, and

out-of-place C2R FFTs. CUFFT contains e�cient algorithms to compute transforms of

lengths that are not a power of two, see also section 3.1.2. An alternative to CUFFT

for CUDA GPUs which claims to be faster for some cases is presented in Ref. [92].

An overview of the massively parallel implementation of FFTs on the GPU is given in

Ref. [93].

5.2.5 Matrix-vector product

The matrix-vector product is needed for the fast demagnetization �eld computation, see

Eq. 3.23. The CUDA function kernel_multiplication_symmetric given in listing 10

receives pointers to the transformed demagnetization tensor arrays Nxxr, Nxyr, Nxzr,

Nyyr, and Nyzr. The transformed tensor is symmetric, see Eq. 2.20, and contains only

real values, see section 3.1.2. The matrix-vector product is done in-place on the vector

component arrays Mx, My, and Mz. These arrays contain the transformed magnetization,

and therefore have complex elements in packed order. As the product is computed for

each array element, the dimensionality of the array does not matter, and all arrays are

treated as one-dimensional.

1 _global__ void kernel_multiplication_symmetric(

2 const f l oa t *Nxxr , const f l oa t *Nxyr , const f l oa t *Nxzr ,

3 const f l oa t *Nyyr , const f l oa t *Nyzr , const f l oa t *Nzzr , /*in*/

4 f l oa t *Mx, f l oa t *My, f l oa t *Mz) /* inout */

5 {

6 extern __shared__ f loa t sh[];

7

67

8 const int i_base = 256 * (blockIdx.x + blockIdx.y*gridDim.x);

9 const int i_offs = threadIdx.x; // 0..255

10 const int i = i_base + i_offs;

11 const int j_base = 2* i_base;

12

13 // (a) load demagnetization tensor

14 const f l oa t Nxx_re = Nxxr[i], Nxx_im = 0.0;

15 const f l oa t Nxy_re = Nxyr[i], Nxy_im = 0.0;

16 const f l oa t Nxz_re = Nxzr[i], Nxz_im = 0.0;

17 const f l oa t Nyy_re = Nyyr[i], Nyy_im = 0.0;

18 const f l oa t Nyz_re = Nyzr[i], Nyz_im = 0.0;

19 const f l oa t Nzz_re = Nzzr[i], Nzz_im = 0.0;

20

21 // (b) copy Mx,My,Mz to shared memory

22 sh [0*256+ i_offs] = Mx [0*256+ j_base+i_offs];

23 sh [1*256+ i_offs] = Mx [1*256+ j_base+i_offs];

24 sh [2*256+ i_offs] = My [0*256+ j_base+i_offs];

25 sh [3*256+ i_offs] = My [1*256+ j_base+i_offs];

26 sh [4*256+ i_offs] = Mz [0*256+ j_base+i_offs];

27 sh [5*256+ i_offs] = Mz [1*256+ j_base+i_offs];

28

29 // (c) load Mx,My,Mz from shared memory

30 __syncthreads ();

31 const f l oa t Mx_re = sh [0*256+ i_offs *2+0];

32 const f l oa t Mx_im = sh [0*256+ i_offs *2+1];

33 const f l oa t My_re = sh [2*256+ i_offs *2+0];

34 const f l oa t My_im = sh [2*256+ i_offs *2+1];

35 const f l oa t Mz_re = sh [4*256+ i_offs *2+0];

36 const f l oa t Mz_im = sh [4*256+ i_offs *2+1];

37

38 // (d) compute matrix -vector product

39 f l oa t Hx_re , Hx_im , Hy_re , Hy_im , Hz_re , Hz_im;

40 symmetric_tensor_multiplication(

41 Nxx_re , Nxx_im , Nxy_re , Nxy_im , Nxz_re , Nxz_im ,

42 Nyy_re , Nyy_im , Nyz_re , Nyz_im , Nzz_re , Nzz_im ,

43 Mx_re , Mx_im , My_re , My_im , Mz_re , Mz_im ,

44 &Hx_re , &Hx_im , &Hy_re , &Hy_im , &Hz_re , &Hz_im

45);

46

47 // (e) write back result

48 sh [0*256+ i_offs *2+0] = Hx_re;

49 sh [0*256+ i_offs *2+1] = Hx_im;

50 sh [2*256+ i_offs *2+0] = Hy_re;

51 sh [2*256+ i_offs *2+1] = Hy_im;

52 sh [4*256+ i_offs *2+0] = Hz_re;

53 sh [4*256+ i_offs *2+1] = Hz_im;

54

55 // (f) copy shared memory to Mx, My, Mz

56 __syncthreads ();

57 Mx [0*256+ j_base+i_offs] = sh [0*256+ i_offs];

58 Mx [1*256+ j_base+i_offs] = sh [1*256+ i_offs];

68

59 My [0*256+ j_base+i_offs] = sh [2*256+ i_offs];

60 My [1*256+ j_base+i_offs] = sh [3*256+ i_offs];

61 Mz [0*256+ j_base+i_offs] = sh [4*256+ i_offs];

62 Mz [1*256+ j_base+i_offs] = sh [5*256+ i_offs];

63 }

Listing 10: Element wise array-vector product in CUDA C.

The CUDA function is divided into six steps (a)�(f). Each thread is assigned exactly

one matrix-vector multiplication. The threads are organized into thread blocks of size

256. The shared memory is used to avoid non-coalesced global memory accesses. Parts

(a)�(f) are, for each thread in a thread block of 256 threads,

(a) Load demagnetization tensor into local variables. This access is coalesced, see lines

14�19.

(b) From the arrays Mx, Mz, and Mz, load the data chunks that are processed by the

whole thread block into the shared memory. As each thread processes a 3-vector of

complex values, each thread has to load six �oat numbers, see lines 22�27. This

access to global memory is coalesced.

(c) After the threads are synchronized, each thread loads its assigned 3-vector from

shared memory into local variables. This access in lines 30�36 is a fast operation.

(d) The matrix-vector product is computed, and the result is stored in local variables,

see lines 39�45.

(e) The computed product is stored back into the shared memory, see lines 48�52.

(f) This step is the inverse of step (b). After synchronization, the products computed

by the thread block are written back into global memory. This is done with coa-

lesced memory accesses. Each thread has to write back six �oat numbers, see lines

56�62.

As each thread block computes 256 products, this CUDA function is suitable to process

array lengths that are a multiple of 256. In order to support arbitrary array lengths,

an additional CUDA function is provided that processes the remaining 0�255 elements

without the use of a shared memory. This function is not shown here.

The Oersted �eld computation requires an antisymmetric tensor instead of a symmet-

ric tensor, see Eq. 2.42. To compute the frequency product for the Oersted �eld, only step

(d) has to be modi�ed. In total, the tensor contains only three unique entries instead of

six. Similarly, the demagnetization �eld computation using the scalar potential method,

requires a vector-vector product, see Eq. 3.24. Here step (d) is modi�ed to compute the

scalar product of two vectors.

69

Figure 5.5: Computation of the �nite di�erence nearest-neighbor Laplace operator on the
GPU. (a) Initial copy from the global memory to the shared memory, including ghost cells, (b)
in-place computation of the operator inside the shared memory, (c) copy of the result, excluding
ghost cells, back to the global memory.

5.2.6 Small kernel convolution

In the �nite di�erence approximation the exchange �eld is represented by the applica-

tion of a six-neighbor for 3-D grids and a four-neighbor in 2-D grids discrete Laplacian

operator to the components of the magnetization, see Eq. 2.6. This computation can be

expressed as the linear convolution ofMx,My, andMz with a 3×3 (2-D grids) or a 3×3×3

(3-D grids) convolution kernel, producing the exchange �eld Hx, Hy, and Hz (see section

3.2). The convolution with such a small, �xed-size kernel that encompasses the cells im-

mediate neighbors is implemented in the following CUDA function kernel_exchange_2d

in listing 11, which computed the exchange �eld for two-dimensional grids.

As the magnetization �eld is stored linearly in memory using column-major order,

cell neighbors in the y-direction are stored in non-adjacent memory addresses. This is

problematic for CUDA GPUs because these cells have to be accesses for the computation

of the convolution sum, as the resulting memory accesses are not coalesced.

1#define BSIZE 16 // block size is 16x16

2

3 template <bool periodic_x , bool periodic_y >

4 __global__ void kernel_exchange_2d(

5 const f l oa t *Mx, const f l oa t *My, const f l oa t *Mz, // magnetization

6 f l oa t *Hx, f l oa t *Hy, f l oa t *Hz, // output: exchange field

7 const f l oa t *Ms, const f l oa t *A, // material parameters

8 int dim_x , int dim_y , f l oa t wx, f l oa t wy)

9 {

10 // thread index (tx , ty) in thread block

11 const int tx = threadIdx.x, ty = threadIdx.y;

12 // simulation cell index (sx , sy) for this thread

13 const int sx = blockIdx.x * BSIZE + tx , sy = blockIdx.y * BSIZE + ty;

14 // shared memory to store mx, my, mz, Ms

15 __shared__ f loa t sh [4][2+ BSIZE][2+ BSIZE];

16

17 i f (sx < dim_x && sy < dim_y) {

18 ///// (a) Copy tile to shared memory , including ghost cells /////

19 // copy tile

70

20 f l oa t mx_i , my_i , mz_i;

21 const f l oa t Ms_i = sh[3][ty+1][tx+1] = Ms[i];

22 i f (Ms_i != 0.0) {

23 sh[0][ty+1][tx+1] = mx_i = Mx[i] / Ms_i;

24 sh[1][ty+1][tx+1] = my_i = My[i] / Ms_i;

25 sh[2][ty+1][tx+1] = mz_i = Mz[i] / Ms_i;

26 }

27

28 // copy ghost cells (omitted here for brevity)

29 copy_ghost_cells <periodic_x , periodic_y >(

30 Mx, My , Mz , Ms , sh , tx , ty , sx , sy , dim_x , dim_y

31);

32 __syncthreads ();

33

34 i f (Ms_i > 0) {

35 // (b) Compute the finite differences

36 f l oa t sum[3] = {0,0,0};

37 i f (sh[3][ty+1][tx] != 0) {

38 sum[0] += (sh[0][ty+1][tx]-mx_i)*wx;

39 sum[1] += (sh[1][ty+1][tx]-my_i)*wx;

40 sum[2] += (sh[2][ty+1][tx]-mz_i)*wx;

41 }

42 i f (sh[3][TY][tx] != 0) {

43 sum[0] += (sh[0][ty+1][tx+2]-mx_i)*wx;

44 sum[1] += (sh[1][ty+1][tx+2]-my_i)*wx;

45 sum[2] += (sh[2][ty+1][tx+2]-mz_i)*wx;

46 }

47 i f (sh[3][TY -1][tx+1] != 0) {

48 sum[0] += (sh[0][ty][tx+1]-mx_i)*wy;

49 sum[1] += (sh[1][ty][tx+1]-my_i)*wy;

50 sum[2] += (sh[2][ty][tx+1]-mz_i)*wy;

51 }

52 i f (sh[3][TY+1][tx+1] != 0) {

53 sum[0] += (sh[0][ty+2][tx+1]-mx_i)*wy;

54 sum[1] += (sh[1][ty+2][tx+1]-my_i)*wy;

55 sum[2] += (sh[2][ty+2][tx+1]-mz_i)*wy;

56 }

57

58 // (c) Compute exchange field and write it back to global memory.

59 const f l oa t f = A[i] / Ms_i;

60 Hx[i] = sum [0]*f; Hy[i] = sum [1]*f; Hz[i] = sum [2]*f;

61 } e l se {

62 Hx[i] = Hy[i] = Hz[i] = 0.0;

63 }

64 } e l se {

65 __syncthreads ();

66 }

67 }

Listing 11: Exchange �eld computation for 2-dimensional grids using a �nite di�erence Laplace

operator in CUDA C.

71

The computation time can be improved by dividing the magnetization array into a grid

of rectangular blocks of 16 × 16 simulation cells. Each block is then assigned a thread

block using 16 · 16 = 256 threads. Before the Laplacian of one block is computed,

the block (lines 19�26) and its adjacent cells from the adjacent blocks (lines 29�31),

the so-called ghost cells, are copied into the shared memory of the thread block, also

see Fig. 5.5. With the exception of some ghost-cell reads, this includes only coalesced

memory accesses. Then, each thread computes the Laplacian of its simulation cell using

fast reads from shared-memory (lines 36�56). Finally the exchange �eld is computed

from the convolution sums and copied into the global memory by only coalesced memory

transfers (lines 59�60). The exchange �eld computation on three-dimensional grids of

simulation cells is implemented similarly. Here thread blocks with 8×8×8 = 512 threads

is mapped to three-dimensional tiles of 8× 8× 8 simulation cells.

72

Part III

The MicroMagnum Simulator

The design and implementation of the MicroMagnum simulator is introduced. The soft-

ware is tested using unit tests, system tests and performance tests. Finally a use-case of

using MicroMagnum for a physical simulation problem is presented.

6 Design and Implementation

In this section the MicroMagnum simulator from the development perspective as well as

the end users' perspective is described.

Both the developers and the end users interact with the software for a considerable

amount of time. Thus it is an advantage if the software meets a range of quality re-

quirements. Experience has shown that from the end users point of view, primarily the

ease of use and the execution speed of the simulator is most important. This includes

a complete documentation of the software. The end user is mostly interested in the re-

sults he or she gets out of the simulator, regardless of how these results were achieved.

Thus it is not important, for example, how well his or her simulation script was written

as long as it works. Often the simulation script is copy-pasted from available examples

and veri�ed by trial and error. This way of programming is referred to as opportunistic

programming[94]. The user programming interface of MicroMagnum was developed with

this type of usage in mind. Useful simulations can be already programmed in just a few

lines of code. However, advanced users often need more functionality than that which

can be provided by a simple interface. Hence it is important that the simulator remains

extendable. Although the user is interested in how fast he or she gets his results from

the simulator, it does not matter to the user how the speed is actually achieved. Thus,

whether the simulator runs on graphics processors or on CPUs should be transparent to

the end user, i.e. the simulation scripts he or she writes should require no modi�cation

in order to run on di�erent hardware. This is achieved by a hardware abstraction layer.

6.1 Software quality requirements

Software quality is important. An overview of models that describe software quality are

given in Ref. [95]. The �rst systematic approaches to formally de�ne software quality

are from the 1970s. Boehm et al.[96] list several desired properties of a software project.

These are performance, correctness, extendability, usability, portability, and maintain-

ability. The performance is a measure for the time that the program needs to complete.

A program is correct if it always produces the right results according to its speci�cation.

The portability requirement is satis�ed if the program can be executed on the desired

73

computer system without non-trivial modi�cations. Maintainability means that faults in

the software can be detected and corrected with relative ease. A program which is ex-

tendable is developed with future extensions in mind. Finally, the usability of a program

measures how easy it can be operated by the user.

Each of these requirements can be applied to any software. Depending on the type

of software, the importance of each requirement will vary. In this work, it will be shown

that all mentioned requirements are important for the micromagnetic simulator presented

here. Typically physicists and engineers use MicroMagnum to perform physical simula-

tions. A high performance reduces the waiting time until their simulations are �nished.

Simulated results must be physically correct. A correct implementation of the micromag-

netic model is thus a prerequisite. Di�erent users have di�erent computer hardware and

operating systems. MicroMagnum should be able to run without problems caused by dif-

ferent computer systems. In this case, portability also means that the code must run on

both CPU and GPU. As the complexity of MicroMagnum grows during its development,

it is important that it stays maintainable. A modular software architecture helps to

achieve this goal. Users are expected to contribute new physical model extensions. Thus

the software must be easily extendable. Since the users cannot be expected to be experts

in computer programming, an intuitive user interface for specifying the simulations must

be provided in order to achieve usability.

6.2 Programming language choice

The choice of the programming languages for a software project is a major design decision

that needs to be resolved before any code is written. In [25] three di�erent prototypes of

micromagnetic simulators are developed using Java[97], Python[36], and MATLAB[98]

as the implementation language, respectively. All prototypes use a rectangular �nite-

di�erence discretization and employ fast Fourier transforms to compute the demagneti-

zation �eld. It was evaluated how the choice of programming language a�ects the software

quality in terms of availability of high level language concepts, portability, testability, and

performance. With the exception of MATLAB, these languages are in contrast to the

traditional languages like C and FORTRAN that can be found in the scienti�c com-

puting landscape. Support of modern programming language concepts was identi�ed as

a weakness of MATLAB, especially for object-oriented programming (OOP) features.

Both Java and Python support OOP concepts natively. In addition, Python supports

functional programming by its use of function objects which implement closures. Next,

portability was evaluated. All three languages are executed within a virtual machine.

Thus, in theory, the simulators can be executed on any computer that has the correct

virtual machine installed. In practice, the use of external numerical computing libraries

limits this freedom, as these libraries are often written in a compiled system language

like C or C++ for performance reasons. Thus they are often only available on selected

74

platforms. However, it was concluded that there are enough readily available numerical

libraries on each of the three evaluated programming languages to implement a portable

micromagnetic simulator. Regarding testability, the Java programming language scored

best. For Java, there are many tools that support a test-driven development process.

In particular, there exist extensive tools for unit-testing and determining test coverage.

Tools for Python and MATLAB are not as advanced. Last, the performance of the sim-

ulators written in Java, Python and MATLAB was compared. The performance largely

depended on the speed of the fast Fourier transform implementations. The Java program

uses the pure-Java jFFT library and the Python program the NumPy [99] and SciPy [100]

libraries. The MATLAB program uses the FFT functions by the MATLAB runtime. In

current MATLAB runtimes, these are implemented in C using the FFTW[70] library.

Here, the performance of Java and the MATLAB versions turned out to be competitive

to the OOMMF simulator. The Python counterpart was about 50 % slower. These were

attributed to the fact that not all optimizations could be implemented using the SciPy

and NumPy libraries. In order to implement all optimizations, an extension library writ-

ten in, e.g., C would be necessary. In conclusion, the author decides against MATLAB

and recommends to use either Java or Python for the development of a micromagnetic

simulator. As major disadvantages of MATLAB the limited high-level programming con-

cepts and the poor unit test and test coverage support was identi�ed. If a language like

Python is chosen, he recommends to develop a working software �rst, and later, if nec-

essary, reimplement the performance-critical parts in a lower-level language in the form

of an extension library. This is largely the route that was taken during the development

of MicroMagnum.

Thus MicroMagnum is written in Python[36], and the C++ language[34] is used to

implement the speed-critical software parts. These parts include all numeric algorithms

that implement the micromagetic model. GPU-speci�c code is written in CUDA C. All

C++ and CUDA code is compiled into an extension library that is loaded by the Python

interpreter. The architecture of MicroMagnum is shown in Fig. 6.1. This combination

is a common pattern to combine the advantages of a scripting language and a system

programming language for scienti�c computing[101, 102]. Python is a strongly and dy-

namically typed programming language. This means that although values in Python have

a (strong) type, the variables that contain these values do not. Programming languages

that have this property are informally referred to as �duck typing� languages. They are

usually interpreted languages. Python also provides automatic garbage collection. No

time consuming compile steps are required during the development. For interactive devel-

opment and testing, the IPython[103] in combination with the PyLab software provides

similar features to the MATLAB console and to the graphical notebooks in Mathematica.

C++ is, like Java a statically typed language that allows object-oriented programming.

It is used to implement the performance-critical parts of the simulator. The main advan-

tage of Java is its automated garbage collection, which avoids most sources of memory

75

Figure 6.1: Architectural software layers of MicroMagnum annotated by their implementing
classes. The colors denote the implementation languages of the layers: (grey/green), C++
(yellow), CUDA C (orange). The gray arrows show the dependencies between the layers.

76

leaks. C++ programmers have to resort to manual memory management techniques

like the RAII[104] principle. However MicroMagnum allows the garbage collector of the

Python virtual machine to collect C++ objects that are unreachable from Python code.

Finally, CUDA C is used to implement numerical routines on the GPU.

6.3 Architecture

The simulator is divided into a hierarchy of software layers, see Fig. 6.1. The lowest

layer contains the mathematical subroutines. This layer functions as a mathematical ab-

straction layer that provides implementations for the CPU and CUDA devices (GPUs).

It is written in C++ and CUDA C. Supported mathematical operations include, for

example, array operations, fast convolution, and fast Fourier transforms. Most hard-

ware optimizations apply in this layer. Now that the hardware is abstracted away, the

mathematical routines are used as building blocks to implement the algorithms for the

discretized physical model. For example, this layer provides a functional-style interface

to compute the exchange �eld from an array of magnetization vectors. The routines

in this layer are written in C++, however, they can be called by the Python code in

the higher layers. The glue code that exports the C++ function to the Python virtual

machine is automatically generated by the SWIG wrapper generator software[105]. Thus

from the programmer's perspective, the C++ functions and classes can be directly called

as if they were implemented in Python. The module system layer is the �rst layer that

is written in Python. It provides an object-based interface for the functional-style rou-

tines of the physical model layer. Each module represents a part of the physical model.

A set of modules is then combined to form the complete simulation model. For the

micromagnetic model, this module system represents an ordinary di�erential equations.

This equation is solved by the numerical solver layer. It uses a Runge-Kutta method to

advance the solution from the initial conditions to the �nal result. The simulation de-

scription layer provides an easy-to-use application interface that is used to parametrize

and specify simulation setups by the end user. It also provides methods to automate

logging and output during the simulation. Finally, at the top-most layer, there are the

user simulation scripts. These scripts are written by the end users of MicroMagnum.

The scripts are written in Python and make calls to the simulation description interface.

Typical simulation scripts are between ten lines and hundreds of lines long.

6.3.1 Mathematical abstraction layer

The mathematical abstraction layer provides device independent data structures that

store numerical data and perform numerical operations. Here the data can be stored

either in system memory for access by the CPU or on the global memory of the graphics

processor for use by the GPU. The data is synchronized between the CPU and GPU as

needed. The most important supported data structures are multi-dimensional �oating

77

point number arrays that store either values of scalars, 3-vectors and complex numbers,

see Tab. 6.1. These three array types can represent all physical �elds for the discretized

Array type Element type

ScalarArray real value
ComplexArray complex value
VectorArray 3-tuple of reals

Table 6.1: Types of hardware-independent number arrays in MicroMagnum.

micromagnetic model.

The device-independent number arrays can be synchronized with one or more devices.

Devices are abstract representations of processors and their memory. Currently there are

three devices, one CPU device that works with 64 bit �oating point numbers stored in

system memory, and two GPU devices that work with 32 bit and 64 bit �oating point

numbers stored in CUDA global memory, respectively: An array is synchronized with a

Device Memory Floating point numbers

CPUDevice System memory 64 bit
CU32Device CUDA global memory 32 bit
CU64Device CUDA global memory 64 bit

Table 6.2: Types of hardware devices in MicroMagnum.

device if its content is actually stored in the memory of that device. It is thus required

for an initialized array that it is synchronized with at least one device at any time. This

means that if the array contents are modi�ed on one device, all other device must be

tagged as unsynchronized. On the other side, before an unsynchronized device can access

an array, it must �rst synchronize the array for the device by copying the data. All needed

synchronization is handled by the acquisition of locks on arrays for a speci�c device.

In order to access elements of an array on a device, a data lock on the array for

the device has to be acquired. For example, in order to access the data in a CUDA

kernel, a data lock for the GPU device has to be obtained. While a lock is in place,

it is guaranteed that the device is synchronized with the array. Thus, if necessary, the

lock operation copies the array entries from another synchronized device to the locking

device. There are two types of locks, a read-lock and a read/write-lock. A read/write

lock can only be acquired on an array if there are no other locks present. In contrast,

multiple read-locks are allowed on an array given that there are no read/write-lock in

place. A read/write lock on one device invalidates the data storage on all other devices,

i.e. while a read/write lock for a device is present, the array is synchronized with exactly

that device. If multiple read-locks are present, the array may the synchronized with more

than one device.

78

All classes in the mathematical abstraction layer are implemented in C++. The

classes that store the multidimensional arrays are called Matrix, VectorMatrix, and

ComplexMatrix. Although it is possible to obtain and release the locks by calling the

respective methods on the matrix objects, it is recommended to lock a matrix by the

instantiation of so-called accessor objects on the matrix. During the construction of the

accessor object a lock is acquired, and the lock is released during destruction. Accessor

objects are meant to be allocated on automatic memory. During the lifetime of the

accessor the matrix elements can be accessed. This design adheres to the Resource

Allocation Is Initialization (RAII, [106, 104]) principle, which is a popular technique in

C++ programming. The automatic destruction of the accessor assures that the matrix is

unlocked when the accessor goes out of scope. This is the case for normal code execution

as well as when an exception is thrown. The following example shows how the elements

of a matrix of scalar �oating point numbers are accessed on the CPU:

1 void f(Matrix &M)

2 {

3 Matrix :: const_accessor M_acc(M);

4 M_acc.at(0, 0) = 42;

5

6 i f (<error >) throw runtime_error("error occurred")

7 }

Here, the type Matrix::const_accessor acquires a read-only lock on the matrix M. Even

when an exception is thrown the matrix is unlocked once the accessor variable M_acc goes

out of scope. This makes it easy to write code that provides basic exception safety[106],

which guarantees that object invariants are preserved and no resources are leaked. A

strong exception guarantee[106] could be supported when the accessor object worked in

a transactional way. A straightforward implementation of transactional accessors would

require to create a temporary copy of the matrix data, provide element access to the

copy, and commit it to the matrix storage during the unlock operation (or throw it away

when an exception is thrown). It was chosen against supporting transactional accessors

because the creation of the temporary copy would consume additional computing time

and resources. If strong exception safety is needed, algorithms can be expressed like this:

1 void f(Matrix &M)

2 {

3 Matrix M_copy = M; // may throw

4 {

5 Matrix :: const_accessor M_acc(M_copy)

6 // ...

7 }

8 M.swap(M_copy); // can not throw

9 }

79

Here the swap-operation exchanges the contents of the matrices M and M_copy. It is

possible to implement this method with a nothrow guarantee[106] because no resources

have to be allocated (as M and M_copy are already initialized), and only the object vari-

ables have to be exchanged. In conclusion the RAII principle allows automatic memory

management without a garbage collector.

In addition to access to array elements, common numerical operations on arrays are

available. These include the scaling of an array, addition of two arrays, normalization,

randomization, �nding the minimum and maximum, and �nding the sum of the ele-

ments. The operations are implemented for each device in the respective device classes.

Operations that involve two arrays, e.g., the addition of two arrays, thus require that

both arrays are synchronized on the same device. If this is not the case, one array is

synchronized before the operation is executed. Here the choice of the synchronization de-

vice is biased towards GPU devices in order to maximize performance. Using the SWIG

interface generator, the C++ array classes are exposed to Python. On the Python side,

the user has access to all array operations while the device synchronization is abstracted

away. Access to array elements is implemented via the subscription operator which au-

tomatically locks the array on the CPU to access the elements.

The hardware-speci�c parts of MicroMagnum are implemented in classes for the de-

vice arrays and the devices. There is a class derived from Array for each device, i.e.

CPUArray, CU32Array, and CU64Array. It is responsible for storing a (multi-dimensional)

scalar number array in a hardware-dependent way. A CPUArray allocates storage space

in system memory, and CU32Array/CU64Array in CUDA global memory, respectively.

The elementary operations on arrays are implemented in device-dependent subclasses of

Device, i.e. CPUDevice, CU32Device, and CU64Device. Each Device subclass performs

operations on arrays of its own device type only. As an exception, each Device class is

required to be able to transfer the contents of its arrays to and from CPU arrays (of type

CPUArray) to allow for array synchronization between devices.

The device-independent array classes are derived from AbstractMatrix. An Ab-

stractMatrix manages the device-independent storage of the matrix contents. At this

level, the locking operations take place. Derived from AbstractMatrix are the classes

ScalarMatrix, VectorMatrix, and ComplexMatrix, which represent multi-dimensional

matrices of scalar values, 3-vectors, and complex values, respectively. More types of such

arrays can be added if the need arises. Each matrix type provides object methods to

perform elementary operations. They are implemented via calls to the device classes with

prior array locks.

6.3.2 Micromagnetic module system

In MicroMagnum the underlying micromagnetic model that drives the simulation is con-

�gured by the selection of a set of modules. One such module represents one or more

80

model variables and their mathematical relationships to other model variables. For ex-

ample, the exchange �eld ~Hexch computation includes the magnetization ~M and the

material parameters Ms and A (see Eq. 2.6). The exchange �eld is represented by the

ExchangeField module and calculates the H_exch model variable with the dependant

variable M and the parameters Ms and A. Figure 6.2 shows another example of a module

con�guration and its connections between model variables. Table 6.3 lists all available

modules in MicroMagnum.

Each module has a set of associated variables, which fall into three categories. Output

variables are those variables that the module can calculate. Most modules have only one

or two output variables. Input variables are those variables which need to be known

before any output variables can be calculated. They are the dependant variables of the

input variables. The parameters are constant variables that are set by the user as part

of the simulation setup. In the micromagnetic model, they are used to set, e.g., material

parameters and con�guration parameters. The simulator will make sure that the selected

modules form a complete model that can be treated as an ordinary di�erential equation.

The restrictions are:

• Each output variable must exist exactly once.

• For each input variable, there needs to be an output variable of the same name.

• Cycles between dependant variables are prohibited.

The currently implemented modules are listed in the table 6.3.

In the Python script, the user selects the modules that he or she wants to include in

the simulation model by a call to the create_solver function, for example:

solver = create_solver(

world , [ExchangeField , StrayField , ExternalField]

)

In this example, the LandauLifshitzGilbert, ExchangeField, StrayField, and Ex-

ternalField modules were included (the LandauLifshitzGilbert module is always

included by default). The model variables that are provided by the modules can now be

accessed by the solver.state object. This object represents the state of the simulated

sample at a speci�c simulation time. Continuing the example, the user may now set the

magnetization pattern and retrieve its corresponding exchange �eld:

solver.state.M = (8e5 , 0, 0) # e. g., set constant magnetization ..

H_exch = solver.state.H_exch # ..and calculate its exchange field.

Here internally, the ExchangeField module is called to compute the exchange �eld from

the magnetization. Similarly, all module variables can be computed by accessing the

solver.state object.

81

Figure 6.2: Exemplary module system that is generated by the expression
create_solver(mesh, [ExchangeField, StrayField, OerstedField, SpinTorque,

AlternatingField]). The large rectangles denote the selected modules. The arrows
connect output variables to input variables between modules. Inside the modules, the
rectangles denote their output variables and the rounded rectangles denote module parameters.
The time evolver interacts with the module system via the variables M, t and dMdt.

.

Module Input var. Output var. Parameter variables

LandauLifshitzGilbert ~M (d ~M/dt), ~Heff α, Ms

ExchangeField ~M ~Hexch, Eexch A

StrayField ~M ~Hstray, Estray -

AnisotropyField ~M ~Haniso, Eaniso kuni, kcub, ~a1, ~a2

ExternalField ~M ~Hext, Eext (amplitude, frequency, etc.)

OerstedField ~j ~Hoer, Eoer -

SpinTorque ~M , ~j (d ~MST/dt) ξ, P , bj
CurrentPath ~M , Vcontact

~j (contact points, resistance)

Table 6.3: List of the physical modules available in MicroMagnum, including their input,
output and parameter variables.

82

All modules are written in Python and make calls into the C++ layer for most com-

putations. A module is a subclass of the Module class, which provides abstract methods

to compute or update input and output variables and property variables. Additionally

the module class provides information on the names of its associated model and parame-

ter variables. This allows the module system to connect all enabled modules to form the

whole simulation model, which is represented by an instance of the internal System class.

Also the module system checks if the enabled modules are compatible. For example, it

is not allowed to have two modules provide the same output variables. A simple manual

caching method is set in place to avoid that model variables are computed twice within

the same time integration step. Each module has access to a cache table within the State

object, which is �ushed automatically after each time step. If a time-intensive output

variable is requested from a module, the module can check if there is already a cached

copy of the variable available, and return it instead if possible. Otherwise, the module

computes the variable and inserts it into the state cache.

Because the model is used by the Runge-Kutta evolver, it must describe an ordinary

di�erential equation. MicroMagnum reserves three variables, which must be provided by

the enabled modules, for this purpose:

• the time t,

• the vector �eld y representing the integration variable,

• the vector �eld dydt representing the derivitive of y at time t.

In the micromagnetic model, the variables y and dydt are aliases for the variables M and

dMdt that are de�ned by the LandauLifshitzGilbertmodule. The Runge-Kutta evolver

logic is implemented in Python and the numerical parts (e.g. Eqs. 2.52, 2.51 and 2.58) are

implemented in C++/CUDA. The methods of Euler, Runge-Kutta (RK4), Runge-Kutta-

Fehlberg (RKF45), Dormand-Prince (DP54), Cash-Carp (CC45), and Bogacki-Shampine

(RK23) are supported. All methods except the Euler method and the RK4 method

include error estimation and step size control. The default method in MicroMagnum is

the RKF45 method.

6.3.3 Simulation description and solver interface

The simulation scripting interface provides a simple to use way to assemble a module

system in order to specify the simulation model �rst, the user speci�es the geometry of the

simulation volume and the contained materials. This speci�cation is represented by an

instance of the class World. Second, the user selects the physical modules that he wants

to have in his simulation model. Then, MicroMagnum initializes the module system

and any material parameters automatically. After that the simulation can be started

using the solver and controller objects. During the simulation logging information and

83

snapshots of the current simulation state can be produced on disk. In the following each

step is described in detail. A a simulation script, the MicroMagnum library is imported

using

from magnum import *

This statement imports all functions and classes provided by MicroMagnum into the

caller's namespace.

Geometry setup The geometry setup is speci�ed using objects of the classes Rectan-

gularMesh, World, Body, Material, and Shape. The RectangularMesh class stores the

discretizing �nite-di�erence mesh of the total simulation volume. For example, a mesh

with 50× 50× 4 cells of size 4nm× 4nm× 4nm with open boundary conditions is created

using the expression

mesh = RectangularMesh(

(50, 50, 4), # number of simulation cells

(4e-9, 4e-9, 4e-9) # simulation cell size

)

Volumes with periodic boundary conditions are speci�ed by an optional third argument

to RectangularMesh.

A World object de�nes the geometry and material parameters of the simulation.

It contains information about the mesh and one or more Body instances. The bodies

de�ne the material parameters in subvolumes of the simulation volume. The material

parameters of the body are speci�ed by a Material object. There are several prede�ned

materials available in MicroMagnum. The volume of the body is speci�ed by a Shape

object. For example, a simulation volume that is completely �lled with Permalloy can

be de�ned using the following script.

world = World(

RectangularMesh ((50, 50, 1), (4e-9, 4e-9, 20e-9)),

Body("all", Material.Py(), Everywhere ())

)

Here the world object contains the mesh and one body object. The body has a name, a

material, and a shape. The shape Everywhere() describes the whole simulation volume.

There are several prede�ned shapes. Shapes can be combined using the set operations

�union�, �intersect�, and �invert�. This allows the user to create complicated volumes using

only primitive basic shapes. This technique is known as constructive solid geometry[107].

Table 6.4 shows the available basic shapes and the combining expressions. Objects of

ImageShape de�ne their volumes by a color-coded areas in graphical images. They are

created by an ImageShapeCreator object, e.g.:

84

isc = ImageShapeCreator(mesh , "image.png")

shape1 = isc.pick("red")

shape2 = isc.pick("green")

Here two shapes are created using the red and green pixels in the image image.png as

a template. This allows the user to draw complex two-dimensional geometry in a image

editor in an intuitive way.

Simulation model setup Now that the world is de�ned, the simulation model is se-

lected via a list of modules. This is done using the create_solver function. For example,

the following code includes the ExchangeField, the StrayField and an ExternalField

module:

solver = create_solver(

world , [ExchangeField , StrayField , ExternalField]

)

The function returns a solver object. Using the .state property, the current simulation

state can be accessed in the form of a state object. Every model variable and module

parameter is accessed via this state object. For example, after a solver is created, the

initial magnetization can be assigned with

solver.state.M = (8e5 , 0, 0)

Here a homogeneous magnetization is assigned. After that, for example, the demagneti-

zation �eld resulting from the assigned magnetization can be retrieved using the model

variable H_stray:

H = solver.state.H_stray

The variable H contains now a VectorField object with the stray �eld.

Solver interface After the geometry, the solver and the initial conditions are set up,

the simulation is started. This is done by a call to the solve method. It has one

parameter which describes when the simulation is complete in the form of a Condition

instance. Conditions are predicates over a micromagnetic state object and evaluate to

either true or false. In the case of the solver call, the most often used condition is

condition.Time, which is true after a given simulation time is reached.

solver.solve(<condition >)

solver.solve(condition.Time (10e-9))

85

Another often used condition is the condition.Relaxed(d) condition, which evaluates

to true when the magnetization change in degrees per rad becomes smaller than d, i.e.

when a energy minimum is reached su�ciently close.

solver.solve(condition.Relaxed (5))

solver.relax (5) # equivalent to first line

As a shortcut, the call to solver.relax() is equivalent to calling solve with the relaxed-

condition. Conditions may also be combined using Boolean operations to express more

complex predicates. Alternatively, custom predicates can be easily de�ned. For example,

the prede�ned condition.Time(t) condition could also be written as a custom condition

with

cond = condition.Condition(lambda state: state.t >= t)

Another example of a custom condition can be seen in listing 17 in appendix A.1.4.

Before the simulation is started, so-called step-handlers can be attached to the solver

instance. For each attached step handler, a condition must be supplied. When the

simulation is being executed, the step handler is called with the current simulation state

whenever the condition is satis�ed. Step handlers are added to the solver with

solver.addStepHandler(<step -handler >, <condition >)

There exist several prede�ned step handlers, see Tab. 6.6. Their main purpose is the

collection of data during the simulation. For example, the OOMMFStorage step handler

continuously saves a snapshot of the current micromagnetic state while the simulation is

running. The DataTableLog step handler writes a tabular data log �le in the .odt �le

format that contains one row for each inspected simulation state.

Batch simulations Often multiple simulations with the same simulation setup, but

with di�erent parameters sets have to be simulated. The provided Controller classes

automates the iteration through a list of parameter sets (represented as a tuple). There

exist several controller classes. In Dependence on the context in which the simulation

script was executed, the create_controller function selects an appropriate controller

class and instantiates it.

def simulation_fn(a,b,c):

run one simulation with parameters a, b, and c.

c = make_controller ([(1,2 ,3), (4,5,6), ...], simulation_fn)

c.start ()

86

expression de�ned volume

shape objects
Everywhere() The whole volume.
Cuboid((x0,y0,z0),(x1,y1,z1)) A cuboid aligned to the coordinate axes,

de�ned by two diagonally opposite corners.
Sphere((x,y,z),r) A sphere with center point and radius.
Cylinder((x0,y0,z0),(x1,y1,z1),r) A cylinder with end points and a radius.
Prism((x0,y0,z0),(x1,y1,z1),poly) Like cylinder, but with a polygonal base.
ImageShape A region de�ned by a graphical image.

combinations of shape objects using set operations
<shape1> & <shape2> Intersection of the two shapes.
<shape1> | <shape2> Union of the two shapes.
�<shape> Inversion of the shape.
<shape1> & �<shape2> Subtraction of two shapes.

Table 6.4: Shape objects and their combinations in MicroMagnum.

expression de�ned condition

condition objects
Always() Always true.
Never() Always false.
Time(t) True after time t is reached.
TimeBetween(t0, t1) True inside the time interval [t0, t1].
Relaxed(rad_per_sec) True if magnetization change is below

rad_per_sec.
AfterNthStep(n) True after the n-th simulation step is reached.
EveryNthStep(n) True for every n-th simulation step.
EveryNthSecond(s) True at every s seconds.

combinations of condition objects
�<cond> True if <cond> returns false, false otherwise.
<cond1> & <cond2> True if both conditions return true, false otherwise.
<cond1> | <cond2> True if either condition returns true, false otherwise.

Table 6.5: condition object and their combinations in MicroMagnum.

expression de�ned step handler

ScreenLog() Displays log output on the console.
DataTableLog(file) Stores a log in the .odt �le format[19].
OOMMFStorage(dir,

["v1", "v2", ...])

Stores snapshots of the �elds given by the state vari-
ables "v1", "v2", . . . in the .omf �le format[19].

VTKStorage(dir, [...]) Like OOMMFStorage, but uses the .vtr format of the
Visualization Toolkit[108].

Table 6.6: Step handler classes in MicroMagnum.

87

By default, the controller sequentially loops through all parameter sets and calls the

simulation function with each set (in the example, simulation_fn). If the script is

started by the operating system, the -p option can be used to specify a range of parameter

sets that shall be processed by the simulator. For example

./ script.py -p 0,16

will run parameter sets 0 to 15 sequentially, and

./ script.py -p 5

will run the �fth parameter (counting from zero) set only. In order to allow the inspection

of a script by automated external tools, the number of parameter sets can be requested

with the �print-num-params argument, and the parameter sets can be listed with the

�print-all-params argument:

./ script.py --print -num -params --print -all -params

In this case the controller does not start any simulations, causing the script to exit

immediately.

Using controller objects, multiple processes can be started in order to sweep through

parameter sets in a parallel fashion. The selection of the parameter set range works

nicely together with a batch processing system. On clusters computers where such a

software is installed, the parallel execution can be easily automated. For example, on the

Oracle Grid Engine (also known as the Sun Grid Engine), multiple copies of a process

can be started parallely across a computer cluster by the submission of a so-called job

array task. Each process has an environment variable SGE_TASK_ID containing the task

id which is a number from 1 to n (with n being the number of tasks in the task array).

Within each process, the simulation script can then be executed via the commands

#/bin/bash

./ script.py -p $(expr $SGE_TASK_ID - 1)

Since this is a common task, the make_controller function can be instructed to create a

controller object that reads the SGE_TASK_ID variable itself:

c = make_controller(

[(1,2,3), (4,5,6), ...], simulation_fn ,

sun_grid_engine=True

)

Here the environment variable is used if available to select the correct parameter set, and

the Python script can be executed directly by the batch system.

88

6.4 Discussion

The development and design of MicroMagnum contributes to the requirements of cor-

rectness, usability, maintainability, portability, extendability, and performance.

Correctness The correctness of the simulator, i.e., that the micromagnetic model is

computed correctly, is veri�ed by the system tests in chapter 7.

Usability MicroMagnum allows to write simulation scripts that can use all features of

the Python scripting language. Each simulation can be built up very intuitively with the

simulation description API of MicroMagnum. As an example, a use case of MicroMagnum

is given in chapter 8.

Performance Due to the support of graphics processors, the mathematical abstraction

layer helps to write fast programs. The array operations are to be used as reusable

building blocks for the implementation of numerical algorithms. (A similar strategy is

followed by the MATLAB and the NumPy[99] development systems. An advantage of

the own implementation is the abstraction from the underlying hardware. Compared to

array operations that are executed on the CPU, the GPU counterparts are signi�cantly

faster. They are inherently parallel due to the GPU hardware architecture. For the

micromagnetic model implementation, an analysis of the performance for both CPU and

GPU hardware is given in chapter 7.3. One main result is that the demagnetization �eld

computation on the GPU is up to 60 times faster compared to CPU computations.

Maintainability The array classes can be directly used from Python code. During the

development of MicroMagnum, changing the parts that are purely implemented in Python

does not require recompilation of the software. Thus the traditional development cycle of

program/recompile/test is shortened for many tasks, contributing to the maintainability.

To encourage test-driven development, the unit test framework that is part of the Python

distribution as the module unittest is utilized. Unit tests are written in Python and

require no recompilation step after code changes. In order to test code written in C++

or CUDA, it must be called from Python. As most of the C++ routines are kept small

and purely functional, they are suitable for unit-testing by Python code.

The system tests, which are described in chapter 8, are written in Python and thus

require no recompilation.

Extendability If the developer wants to develop a new function that performs some

mathematical operations on matrices, the software development process might look as

follows. First, a CPU version of the algorithm as well as a unit test for the new function

is created. Due to the hardware abstraction, the function can be tested even while other

89

parts of the software might run on the GPU. If the input to the function resides on GPU

memory, it will automatically be copied to the system memory due to the use of accessor

objects. When the function is working correctly, the new function is ready to be ported

to GPU code. This may happen gradually if the function is composed of more than one

subroutine. In this case, after each port of a subroutine the unit test is re-run to make

sure the new code works correctly. At the end, all code runs on the GPU. As CUDA

development is more low-level it is more error-prone. By proceeding step by step and

verifying the code in between by unit-tests, errors are avoided. Regarding extendability,

additional hardware can be supported by adding a respective Device and Array subclass.

For example, a device utilizing OpenCL could be added non-intrusively for support of

graphics processors by ATI.

Concerning the Module System Layer further physical modules can be easily imple-

mented and connected to the existing modules. This is due to the high level of abstraction

of the Module System Layer and its modular structure.

Portability The mathematical abstraction layer contributes to software portability

in that it removes the need for client code to target a speci�c hardware for the basic

operations. On the Python side there is no distinction between a array that is stored on

the RAM or on the graphics processor. Consequently, the entire part of MicroMagnum

that is written in Python contains no code that is dependent on the currently activated

device (CPU or CUDA). For the compilation of MicroMagnum the common libraries

FFTS, SWIG, and the CUDA API are used which are free of cost and can be easily

installed.

The GPU support may also be disabled at compile time, so that the whole simulator

runs on CPU. In this case, the mathematical abstraction layer is standard conforming

C++ code which can be easily ported to every system that has a C++ compiler.

90

7 Software tests

In this chapter the following types of software tests[109] are performed:

• Unit tests

• Integration tests

• Functionality tests

• Performance tests

Each unit test checks the correctness of an individual piece of code. Integration tests check

whether the software modules are working together correctly. Functionality tests and

performance tests are system tests. In contrast to unit and integration tests, system tests

do not test speci�c pieces of software code. Functionality tests verify that the software as

a whole conforms to its functional speci�cation, i.e. here that the micromagnetic model

is implemented correctly. The last subsection covers the performance tests.

7.1 Unit and integration tests

MicroMagnum contains about 60 automated test cases and integration tests. For unit

tests the tested pieces of code are either Python classes for the module system, C++

classes for the mathematical abstraction layer, or global C++/CUDA C functions for

speci�c numerical subroutines. The integration tests mostly cover the simulation de-

scription interface written in Python.

7.2 Functionality tests

Functionality tests are a kind of system tests. The µMAG group[110] de�nes several

functionality tests, called standard problems, for micromagnetic simulators. These tests

are used to validate the numerical implementation of the micromagnetic model. The tests

are performed by comparing the results of di�erent micromagnetic simulation software.

Currently there are four de�ned standard problems, which treat di�erent aspects of the

micromagnetic model:

SP1 Compute a hysteresis curve of a ferromagnetic particle.

SP2 Compute a hysteresis curve of a ferromagnetic particle.

SP3 Compute the static magnetic con�gurations of a ferromagnetic cube.

SP4 Compute the dynamics of a ferromagnetic strip under the in�uence of an external

�eld.

91

These tests include the Landau-Lifshitz-Gilbert equation including the demagnetization

�eld, the exchange �eld, the anisotropy �eld, and the external �eld and are described in

sections 7.2.1�7.2.4. Another functionality test that includes the spin-torque extension

to the LLG equation was developed by Naja� et al.[111], see section 7.2.5. Another

test speci�ed in Ref. [111], the Larmor precession test, checks the implementation of the

LLG equation and its numerical integration, see section 7.2.6. There are several other

proposed standard problems (e.g., Ref. [112]). They are not covered in this work.

7.2.1 µMAG standard problem 1

In the standard problem 1 two hysteresis loops of a 1 µm × 2 µm × 20 nm magnetic

rectangle of Permalloy are calculated. Two hysteris curves are calculated by the appli-

cation of an external �eld, ranging from −50 mT to +50 mT, in the x-direction and in

the y-direction. The simulation includes the Landau-Lifshitz-Gilbert equation with the

demagnetization �eld, the exchange �eld, and the uniaxial anisotropy �eld. The speci�ed

material parameters of Permalloy are the magnetization saturation Ms = 8 · 105 A/m,

the exchange sti�ness constant A = 1.3 ·10−11 J/m, and the uniaxial anisotropy constant

k = 5 · 102 J/m3. The easy axis points into the y-direction. The standard problem 1

computes

• the hysteresis curves for the x- and y-direction �elds,

• snapshots of the magnetization pattern at remanence, i.e. when the applied �eld

passes zero.

Figure 7.1 shows the hysteresis loops computed by MicroMagnum using a grid of 100×200

simulation cells of size 10 nm×10 nm×20 nm. The simulation script is shown in listing 14

in the appendix A.1.1. The computed hysteresis curves agree with the solutions reported

at the µMAG website[110].

7.2.2 µMAG standard problem 2

In the standard problem 2 hysteresis loops of a ferromagnetic strip of di�erent scales

are calculated. The simulation includes the Landau-Lifshitz-Gilbert equation with the

demagnetization �eld and the exchange �eld, but excludes the anisotropy �eld. The

strips' dimensions (L, d, t) along the x-, y-, and z-axes have a ratio of 5 : 1 : 0.1. To make

the simulation independent of the material parameters Ms and A, the sizes are given

in units of the exchange length lex =
√
A/Km. Here the magnetostatic energy density

Km = 1
2
µ0M

2
s . The hystereses are calculated for strips with the ratio d/lex ranging from

1 to 40. The magnetic �eld is applied in the (1, 1, 1)-direction. The standard problem 2

computes for each hysteresis curve

• the magnetic remanence Mrem at | ~H| = 0,

92

-1

-0.5

0

0.5

1

-50 -25 0 25 50

〈M
〉/
M

s

µ0H(mT)

(a)

-1

-0.5

0

0.5

1

-50 -25 0 25 50

〈M
〉/
M

s

µ0H(mT)

(b)

Mx
My

Mx
My

Figure 7.1: Hysteresis curve for the applied �eld (a) in x-direction and (b) in y-direction as
computed by MicroMagnum.

• the coercivity �eld intensity Hc at ~M · ~H = 0 (given in units of Ms).

Figure 7.2 shows the (a)�(b) magnetic remanence and (c) coercivity in dependence of

the ratio d/lex as computed by MicroMagnum. The simulation script is shown in listing

15 in the appendix A.1.2. The results agree with the results reported at the µMAG

website[110].

7.2.3 µMAG standard problem 3

The standard problem 3 is used to determine the single domain limit of a ferromagnetic

cube. Here the single domain limit is de�ned as the cube side length L, given in units

of the exchange length lex =
√
A/Km, with equal energies of a �ower state and a vortex

state. The magnetostatic energy density Km = 1
2
µ0M

2
s . The exchange energy, the de-

magnetization energy and the uniaxial anisotropy energy (with k = 0.1Km, and the easy

93

0.95

0.96

0.97

0.98

0.99

1

0 5 10 15 20 25 30 35 40

〈M
x
〉/
M

s

d/lex

(a)

0

0.02

0.04

0.06

0.08

0.1

0 5 10 15 20 25 30 35 40

〈M
y
〉/
M

s

d/lex

(b)

0.04

0.045

0.05

0.055

0.06

0.065

0.07

0 5 10 15 20 25 30 35 40

H
c
/M

s

d/lex

(c)

Figure 7.2: µMAG standard problem 2 results: The magnetic remanence in (a) x-direction
and (b) y-direction and the (c) coercivity �eld intensity in dependence of the ratio d/lex.

94

axis along the y-direction) is included in the simulation. The simulation is independent

of the chosen saturation magnetization Ms and the exchange constant A. A detailed de-

scription of the standard problem 3 and its solution by simulation is given in Ref. [113].

The standard problem 3 computes

• the single domain limit L (given in units of the exchange length lex)

• the total energy density and the demagnetization, exchange, and anisotropy energy

densities for the vortex state and the �ower state at the single domain limit (given

in units of Km)

• the average unit magnetization of the vortex state and the �ower state at the single

domain limit

The results should be shown to be independent of the material parameters A andMs and

di�erent spatial discretizations where the edge length of the simulation cells are smaller

than the exchange length.

The following table shows the determined single domain limit L for di�erent spatial

discretizations of N3 cubic cells, including the reduced �eld term energies and average

magnetization for the �ower and the vortex states as required in the standard problem 1

description. The simulation script is shown in listing 16 in the appendix A.1.3.

�ower state vortex state

N L etot edemag eexch eaniso 〈mz〉 edemag eexch eaniso 〈mx〉

12 8.42 .3033 .2804 .0173 .0055 .9716 .0787 .1728 .0518 .3466

16 8.44 .3031 .2799 .0175 .0055 .9713 .0786 .1726 .0519 .3491

20 8.45 .3030 .2800 .0176 .0056 .9712 .0786 .1723 .0520 .3512

24 8.46 .3028 .2797 .0176 .0056 .9712 .0784 .1723 .0521 .3509

28 8.46 .3029 .2796 .0176 .0056 .9711 .0786 .1722 .0521 .3520

32 8.46 .3029 .2796 .0176 .0056 .9712 .0786 .1722 .0521 .3525

36 8.47 .3026 .2795 .0176 .0056 .9711 .0784 .1721 .0521 .3516

40 8.47 .3026 .2795 .0176 .0056 .9711 .0784 .1721 .0521 .3521

44 8.47 .3026 .2795 .0176 .0056 .9711 .0784 .1721 .0521 .3521

48 8.47 .3026 .2795 .0176 .0056 .9711 .0785 .1721 .0521 .3523

Not shown in the table are, for every N , 〈mx〉 ≈ 0 and 〈my〉 ≈ 0 for the �ower state

and 〈my〉 ≈ 0 and 〈mz〉 ≈ 0 for the vortex state. The results converge with �ner

mesh discretizations and match the results reported at the µMAG website[110] and by

Ref. [113].

95

7.2.4 µMAG standard problem 4

The µMAG standard problem 4 is used to validate that the simulator is able to simulate

magnetization dynamics correctly. A Permalloy cuboid of size 500 nm×125 nm×3 nm are

simulated. The model includes the Landau-Lifshitz-Gilbert equation with the exchange

�eld, the demagnetization �eld, and the external �eld. The material parameters are:

The exchange sti�ness constant A = 1.3 · 10−11 J/m and the saturation magnetization

Ms = 8 · 105 A/m. The initial state is a static s-state. It is generated by a saturating

external �eld along the (1, 1, 1) direction which is slowly decreased to zero. After the s-

state is produced, the magnetization is reversed by applying two di�erent �elds µ0
~H1 =

(−24.6, 4.3, 0) mT and µ0
~H2 = (−35.5,−6.3, 0) mT for about 10 ns. The standard

problem 4 computes for each �eld, starting from the s-state,

• the average unit magnetization 〈Mx〉, 〈My〉, and 〈Mz〉 over time,

• the simulation time and a snapshot of the magnetization when 〈Mx〉 �rst crosses
zero.

The results produced by MicroMagnum on the CPU are shown in Fig. 7.3. A discretiza-

tion of 125 × 25 × 1 cells of size 5 nm × 5 nm × 3 nm is used. The simulation script

is shown in listing 17 in the appendix A.1.4. The results agree with the other submis-

sions reported at the µMAG group website. The �rst zero-crossing of 〈Mx〉 happens at
t1 = 0.135 ns for the �rst �eld and t2 = 0.137 ns for the second �eld. GPU computations

reveal widely equal results (not shown here). Here the zero-crossings occur at t1 = 0.136

ns and t2 = 0.137 ns. In addition, the standard problem 4 is simulated using the alterna-

tive potential-method for the demagnetization �eld computation (not shown in �gure).

Because a three-dimensional cell grid is needed for this method, a discretization grid of

125× 25× 4 cells is chosen. The simulation produced t1 = 0.139 ns and t2 = 0.137 ns.

7.2.5 Spin torque standard problem

The spin torque standard problem[111] is de�ned to test the correct implementation of

the spin-torque extension (Eq. 1.18). The dynamic behavior of a magnetic vortex in a

Permalloy square of size 100 nm × 100 nm × 10nm under the in�uence of a constant

current is examined. The vortex points into the z-direction and curls in-plane counter-

clockwise. The exchange sti�ness constant A = 1.3 · 10−11 J/m and the saturation

magnetization Ms = 8 · 105 A/m. A Gilbert damping of α = 0.1 is used in order to

obtain a fast relaxation. For the spin torque extension term, ξ = 0.05 and P = 1 is

chosen. The initial state is a magnetic vortex in equilibrium position at the center of

the square. It is generated by initializing the magnetization by an analytic expression

and performing a relaxation until an equilibrium state is reached. The vortex is then

excited by a current density of J = 1012 A/m2 in the x-direction. The resulting vortex

96

-1

-0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1

〈M
〉/
M

s

time (ns)

(a)

-1

-0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1
〈M

〉/
M

s
time (ns)

(b)

Figure 7.3: Average magnetization over time during the simulation of the standard prob-
lem 4 of the µMAG group using an external �eld of (a) H1 = (−24.6, 4.3, 0) mT and (b)
H2 = (−35.5,−6.3, 0) mT using MicroMagnum. The red/green/blue lines denote the x/y/z-
component of the averaged magnetization, respectively.

-30

-25

-20

-15

-10

-5

0

5

-20 -15 -10 -5 0 5 10 15 20

y
(n
m
)

x (nm)

(a)

-30

-25

-20

-15

-10

-5

0

5

10

0 2 4 6 8 10 12

co
re

p
o
s.

(n
m
)

time (ns)

(b)

Figure 7.4: Simulation results for the spin torque standard problem[111], calculated by Mi-
croMagnum. (a) Trajectory of vortex core position (x, y) relative to the center of the square,
(b) Vortex core position x (blue) and y (red) over time.

97

core trajectory is then recorded until the vortex reaches a new equilibrium position at

x = −1.2 nm and y = −14.7 nm. The results produced by MicroMagnum are shown

in Fig. 7.4. The simulation was conducted twice with two di�erent meshes. The �rst

simulation with 40×40×1 cells of size 2.5 nm×2.5 nm×10 nm produced an equilibrium

position of x = −1.187 nm and y = −14.487 nm. The second simulation used a mesh

with 100 × 100 × 1 cells of size 1 nm × 1 nm × 10 nm to obtain x = −1.193 nm and

y = −1.472 nm. The simulation script is shown in listing 18 in the appendix A.1.5.

The results from the �ner grid agree with the reference values[111], i.e. the resulting

equilibrium position is calculated at about x = −1.2 nm and y = −14.7 nm. As suggested

in the standard problem de�nition, the vortex core position was determined with sub-cell

precision by the interpolation with a second-order polynomial through the out-of-plane

magnetization around the vortex core. The core position is then approximated by its

maximum.

7.2.6 Larmor precession test

The test de�nition is taken from Ref. [25]. It is inspired from the Larmor precession

example in the manual of the MagPar micromagnetic simulator[23]. It validates the

correct implementation of the Landau-Lifshitz-Gilbert equation and its solution by the

time evolver. The only term included in the e�ective �eld is the Zeeman �eld. The Gilbert

damping factor α is set to zero so that only the precession of the magnetization vector

is included in the model. The frequency of this precession is the Larmor frequency. The

tests completes successfully when the simulated results match the analytically predicted

Larmor precession. The test uses the material parametersMs = 1/µ0 A/m and α = 0 and

the gyromagnetic ratio γ = 2.210173·105 m/(As). The simulation includes one simulation

cell of arbitrary size with an initial magnetization of ~m = (1, 1, 1). The external �eld H is

set to 106 A/m in the z-direction. The simulation is performed for 0.3 ns. The resulting

frequency of the precession is determined by a �t of Mx over t using a sine function. It is

then compared to the analytical Larmor frequency of fLarmor = γ|H|/(2π) ≈ 35.176 GHz.

The simulation script is shown in listing 18 in the appendix A.1.5. The sine �t yields a

frequency of f = 35.176 GHz, which matches the analytical fLarmor.

7.3 Performance tests

In this section, the performance of speci�c parts of the micromagnetic model imple-

mentation of MicroMagnum is measured. Both the CPU and GPU implementation are

compared. As the base system, a computer with four Intel Xeon X5650 CPUs with a

total of 24 cores and 48 GB RAM is used. Each CPU has 6 cores running at 2.67 GHz

with a cache of 12 MB and is connected to 12 GB of RAM. An Nvidia M2050 graphics

processor is installed on the PCI express bus. Two con�gurations of MicroMagnum are

98

used to compare the speed of the CPU and GPU implementations of the micromagnetic

model:

Con�guration 1 Computation on the Xeon X5650 CPU of the base system.

Con�guration 2 Computation on the Nvidia M2050 GPU, controlled by the CPU on

the base system.

On the same computer, the e�ective �eld computation time is a function of the

number of cells in each direction (and whether the mesh is 2-D or 3-D) only. It is

independent of the individual cell size and the total simulation volume. Thus for the

following benchmarks, only the number of cells is varied. The cell size can be considered

arbitrary, e.g. 1 nm × 1 nm × 1 nm. The computation times were measured on an

otherwise unloaded computer using the POSIX function gettimeofday de�ned in the

sys/time.h header. On current Linux systems, this function returns the timing data

with a resolution of at least 10−6 s. In general the measured computation is performed

multiple times in a row until at least two seconds of run time are accumulated, and the

average time for one computation is taken.

This section is structured as follows. First, it is determined that the demagnetiza-

tion �eld computation consumes the largest part of the total computation time. Thus,

the rest of this chapter mainly deals with the performance of the demagnetization �eld

computation. Its computation time is measured in detail and compared for both CPU

and GPU implementations. The speed of MicroMagnum is compared with the OOMMF

simulator, which is the most widely used micromagnetic simulator. Finally the amount

of required memory in dependence of the simulation size is analyzed. Although this is

not strictly a performance test, the amount of memory decides whether a simulation �ts

on the much faster GPU, which typically has much less available on-board RAM than

the host computer.

7.3.1 Proportional run times

The �rst benchmark measures the proportional run times of the di�erent submodules

of MicroMagnum running a complete simulation. The simulations are repeated with

di�erent numbers of simulation cells. They include the Landau-Lifshitz-Gilbert equation

with the demagnetization �eld, the exchange �eld, the uniaxial anisotropy �eld, and

an external �eld. The LLG equation is solved using the six-step Runge-Kutta-Fehlberg

method with step size control. The initialization time of the simulations is not included in

the benchmark. The total run time is broken down into the following parts: Computation

of the Landau-Lifshitz-Gilbert equation, and separately the demagnetization �eld, the

exchange �eld, the anisotropy �eld and the external �eld; the numerical operations of the

Runge-Kutta integration; and any time spent by executing Python code, including the

overhead imposed by the Python virtual machine. Every part but the last represents time

99

component time complexity

Runge-Kutta solver O(n)
Landau-Lifshitz-Gilbert equation O(n)
external �eld O(1)
demagnetization �eld O(n log n)
exchange �eld O(n)
anisotropy �eld O(n)
Oersted �eld O(n log n) [57]
current path solver O(n2) [61]
spin torque term O(n)
Python code O(1)

Table 7.1: Asymptotic time complexities of various components of MicroMagnum.

spent in C++ code. The proportional run time of code written in Python is of particular

interest. As Python is an interpreted, dynamically typed language, it is typically one

to two orders of magnitude slower[114] than compiled, statically typed languages like

C++. As pure Python code is not parallelizable due to the global interpreter lock[115],

a too high amount of time spent in Python code would, according to Amdahls law, limit

the possible speedup gained by parallelizing the non-Python parts, i.e. the numerical

routines written in C++. The other proportional parts of the run time should roughly

re�ect their asymptotic run time complexity in dependence of the number of cells n,

as shown in Table 7.1. In the following the proportional run times of the identi�ed

components are measured. Figure 7.5 shows the benchmark results for simulations with

di�erent numbers of simulation cells, repeated for con�guration 1 (CPU) and 2 (GPU).

The benchmark data was collected by the pro�ler included with the Python interpreter as

the cProfile library. For the GPU measurements the CUDA kernel calls were con�gured

to be synchronous so that the calls return only after the GPU routines have �nished to

execute. This is necessary to ensure that the measured run times do not overlap. The

benchmark shows that the demagnetization �eld does take up to 80 % on the CPU

and up to 60 % on the GPU of the simulation time. This is not surprising as it is the

only long-range interaction. The demagnetization �eld has O(n log n) complexity, and

all other computations have at most O(n) complexity. As the cell size is increased the

log n term becomes less relevant and the proportional time of the demagnetization �eld

computation practically converges. For large simulations the run times of the exchange

�eld and the anisotropy �eld is roughly the same with about 5 % to 10 %. The external

�eld takes about 2 %, the LLG equation about 4 %, and the time evolver about 4 % to

10 % of the total time.

On the GPU con�guration, the time spent in the Python interpreter while executing

Python code is signi�cant. While for large simulations this overhead is smaller than 1 %

on the CPU, the speedup of the numerical routines on the GPU increases the overhead

100

0

0.2

0.4

0.6

0.8

1

103 104 105

fr
a
ct
io
n
o
f
to
ta
l
ti
m
e

number of simulation cells

(a)

0

0.2

0.4

0.6

0.8

1

103 104 105

number of simulation cells

(b)

demagnetization
exchange

anisotropy
external �eld

LLG equation
RK integrator

other
Python code

Figure 7.5: Proportional run times of MicroMagnum on (a) con�guration 1 (CPU) and (b)
con�guration 2 (GPU, using synchronous kernel calls) for micromagnetic simulations in depen-
dence of the number of cells. The simulation includes the LLGE with the demagnetization,
exchange, uniaxial anisotropy, and external �eld. The LLGE is solved by the RKF45 method.
The run time is broken down into the computation of the �elds (red, green, blue, pink), the
LLG equation (cyan), the RKF45 integrator (yellow), any other numerical C++ code (black),
and any Python code (gray).

to more than 10 % of the total run time. As the Python code in this benchmark runs se-

quentially and has a run time of 10 %, according to Amdahl's law any additional speedup

is limited to a factor of less than 10. However, in production code, the CUDA kernel calls

are con�gured to be asynchronous. This means that the Python code (executed on the

CPU) and the CUDA routines can potentially execute at the same time. In order to mea-

sure the e�ect the benchmark was repeated on the GPU con�guration with asynchronous

kernel calls. To determine the time spent waiting at the synchronization points, the total

simulation time for synchronous and asynchronous calls were compared, resulting in a

waiting time of about 20 %. It can thus be assumed that, with asynchronous calls, most

of the former waiting time is now spent on executing Python code (which also had a run

time of roughly 20 %). Thus the overhead imposed by the Python virtual machine is still

negligible on the GPU with the currently reached speedups.

Because the computation of the demagnetization �eld takes most of the time, the

following performance tests will mainly deal with the demagnetization �eld. Additionally

the exchange �eld will be investigated, because it is the only other �eld term in the basic

micromagnetic model that includes neighboring simulation cells for its computation.

101

7.3.2 Demagnetization �eld

The computation time for the demagnetization �eld is measured on the CPU and the

GPU con�gurations for di�erent numbers of simulation cells in both two- and three-

dimensional grids of simulation cells, see Fig. 7.6. For two-dimensional grids, the maxi-

mum reached speedup by using a GPU is 66. It can be seen that the number of simulation

cells in�uence the computation time in a non-monotonous way. This is because transform

sizes result in ine�cient computation of the fast Fourier transforms, see section 3.1.2. For

meshes with more than 512 × 512 cells, an average speedup of 40 and more can be ex-

pected when good grid sizes are used. For three-dimensional grids, the reached speedup

ranges from 18 to 25. This is likely due to the fact that the one-dimensional transforms

within the row-column algorithm are much smaller than in the 2-D case and thus provide

less parallelization opportunities on the GPU implementation of the FFT. In addition it

will be shown that the array rotation routines are a bit slower for the rotation of 3-D

arrays than for 2-D arrays. Together, the 2-D �eld computation is about twice as e�cient

as the 3-D �eld computation.

The computation of the demagnetization on the GPU includes several steps. First, a

sparse fast Fourier transform is used to transform the components of the magnetization

�eld into the frequency domain. An frequency product with the demagnetization tensor

�eld yields the demagnetization �eld in the frequency domain. Finally, the three com-

ponents are transformed back using a sparse FFT to obtain the demagnetization �eld.

Depending on the dimensionality grid, the sparse forward- and inverse FFTs are either

two- or three-dimensional. As described in section 3.1.3 and shown in Figs. 3.5 and 3.6,

they are composed of a series of one-dimensional FFTs and array rotations. In Fig. 7.7,

the proportional run times of the transform, array rotation, and product operations are

shown for di�erent numbers of two-dimensional grids of cells on both the CPU and the

GPU. It can be seen that the transforms, which include both the forward and the inverse

transforms, make up the largest fraction of the computation time. For all grid sizes,

the transforms take about 70-80 % of the time on the CPU and about 60-70 % of the

time on the GPU. The product and array rotation steps consistently share the rest of

the time in about equal parts. Although the implementation of the frequency product is

conceptually simpler than the array rotation, it is not faster because it involves the access

of the demagnetization tensor which contains six unique components that are stored in

the global memory of the GPU.

In the following, the performance of the array rotation is analyzed. The reached per-

formance, measured by the amount of data processed per second, are compared to the

calculated peak performance that can theoretically be achieved by the GPU. The pro-

cedure to calculate the theoretical peak performance of a CUDA device like the M2050

GPU is taken from the CUDA C Best Practices Guide[116]. The theoretical peak band-

102

0.01

0.1

1

10

100

1000

10000

02 2562 5122 7682 10242 12802 15362 17922 20482
0

20

40

60

80

100

120

ru
n
ti
m
e
(m

s)

sp
ee
d
u
p

N ×N

(a)

0.1

1

10

100

1000

10000

03 163 323 483 643 803 963 1123 1283
0

20

40

60

80

100

120

ru
n
ti
m
e
(m

s)

sp
ee
d
u
p

N ×N ×N

(b)

speedup
CPU time
GPU time

speedup
CPU time
GPU time

Figure 7.6: Computation time of one demagnetization �eld computation for (a) di�erent 2-D
grids of N ×N cells and (b) di�erent grids of N ×N ×N cells. The red (blue) line shows the
run time on the CPU (GPU) con�guration. The grey bars show the speedup, e.g. the ratio of
the CPU time to the GPU time. The zero-padding mode round_4 (see Tab. 3.1) is used.

103

0

20

40

60

80

100

5122 10242 15362 20482

re
la
ti
v
e
ti
m
e
(%

)

N ×N

(a)

0

20

40

60

80

100

5122 10242 15362 20482

N ×N

(b)

FFT rotate product

Figure 7.7: Proportional run times of the demagnetization �eld computation on (a) the CPU
and (b) on the GPU of the iterated one-dimensional FFTs and inverse FFTs (red), array rotation,
zero-padding and unpadding (green), and multiplication in the frequency domain (blue) on
di�erent two-dimensional grids of N ×N cells.

width of a CUDA device is the amount of data per time1 that can be transfered between

the GPU and the on-board memory of the graphics card. It can be calculated using the

hardware speci�cations of the graphics card, namely the bus type, the memory clock rate

and the data bus width. The GPU of con�guration 2 has a M2050 graphics processor

that has a memory clock rate of 1546 MHz and a data bus width of 384 bits. Its peak

rate is calculated as 2 · 384/8 bytes · 1546 MHz = 138.2 GB/s. The factor 2 is due to the

fact that the GDDR5 memory of the M2050 is capable of transferring two memory blocks

per clock cycle. The e�ective bandwidth that is reached by a given CUDA function is

the amount of data per time that is transfered between the GPU and its memory. It is

calculated as (Nr +Nw)/t, the number of bytes read and the number of bytes written per

time. It is by de�nition lower than the device's peak bandwidth, which de�nes an upper

limit for functions that work on data stored in memory. Table 7.2 shows the bandwidth

of the array rotation algorithm, given in listing 22 in the appendix, on the CPU and on

the GPU. It can be seen that the GPU implementation has a much higher bandwidth

than the CPU implementation. On the CPU, the bandwidth decreases with larger arrays

which is likely due to cache e�ects. On the GPU, the bandwidth increases with larger ar-

rays due to the constant overhead of calling CUDA functions from the host system. Also

three-dimensional array rotations on the GPU are less e�cient than two-dimensional ro-

tations. This is likely due to the fact that the three-dimensional CUDA rotation function

contains more arithmetic operations to calculate the pointers to the location of the source

cell and the destination cell. Also, in the current implementation, the memory reads are

not completely coalesced. In total, a data bandwidth of up to 67 GB/s is reached for

1given in Gigabytes per second (GB/s = 230 bytes/s)

104

bandwidth (GB/s) bandwidth (GB/s)

array size CPU GPU array size CPU GPU

128× 128× 1 3.09139 6.61886 16× 16× 16 2.74521 1.32414
256× 256× 1 2.82188 20.7008 32× 32× 32 2.43229 11.2789
512× 512× 1 1.7044 44.4882 64× 64× 64 1.6626 32.7198

1024× 1024× 1 1.02023 61.581 128× 128× 128 0.946076 40.2831
2048× 2048× 1 0.876946 67.1275

Table 7.2: Bandwidth, measured in bytes per second, of the rotate-zeropad algorithm (speci�ed
in listing 22) on con�guration 1 (CPU) and on con�guration 2 (GPU). The bandwidth includes
read and write accesses to memory.

CPU GPU

cells tN (ms) tS (ms) speedup tN (m) tS (ms) speedup

16× 16× 16 1.60 1.10 1.45 0.36 0.26 1.38
32× 16× 16 3.20 2.18 1.47 0.48 0.34 1.41
32× 32× 16 7.08 4.68 1.51 0.73 0.52 1.40
32× 32× 32 16.94 11.09 1.52 1.19 0.83 1.43
64× 32× 32 37.01 24.32 1.52 1.99 1.37 1.45
64× 64× 32 89.11 57.43 1.55 3.63 2.47 1.47
64× 64× 64 213.02 135.95 1.57 6.88 4.65 1.48
128× 64× 64 461.12 300.86 1.53 12.27 8.30 1.48
128× 128× 64 933.03 614.62 1.52 21.45 14.71 1.46
128× 128× 128 1917.29 1258.24 1.52 37.27 25.69 1.45

Table 7.3: Computation time of the demagnetization �eld calculation with di�erent spatial
discretizations on the CPU and the GPU using the demagnetization tensor method (tN) and the
scalar potential method (tS). The speedup is the ratio between tN and tS. (Table and caption
adapted from Ref. [58], Copyright 2012 IEEE.)

large 2-D arrays, which is about half of the theoretical peak performance of the GPU.

7.3.3 Demagnetization �eld (scalar potential method)

The computation speed for the demagnetization �eld using the scalar potential method

as described in section 2.1.4 is compared to the speed of the demagnetization tensor

method. The results, which are taken from the publication in Ref. [58], are reproduced

in table 7.3. Di�erent 3-D cell grids of increasing size are examined. The benchmark

reveals that there is a consistent speedup due to the usage of the scalar potential method.

The consistent speedup is due to the fact that the method always requires four instead

of six inverse fast Fourier transforms, independent of the grid size. On the CPU there

is an average speedup of 1.52 ≈ 6/4. On the GPU a speedup of about 1.44 is reached.

The slightly lower speedup on the GPU is due to the fact that the multiplication in the

105

frequency domain for the convolution takes a larger fraction of the time on the GPU than

on the CPU.

7.3.4 Exchange �eld

After the demagnetization �eld, the exchange �eld and the anisotropy �eld are the second-

most computation time intensive �elds in the basic micromagnetic model. Figure 7.8

shows the computation time of the exchange �eld on con�gurations 1 (CPU) and 2

(GPU) and the respective speedup for di�erent numbers of simulation cells in 2-D (with

a grid size of N ×N) and 3-D grids (with a grid size of N ×N ×N).

On 2-D grids (Fig. 7.8 (a)), both the CPU and GPU run times show a linear depen-

dence on the number of cells. An average GPU speedup of about 20 to 28 is reached

for cell grids larger than 256 × 256. For smaller grids the speedup decreases due to the

constant overhead of calling CUDA routines on the GPU. At 128 × 128, the speedup

has halved to about 10. In this benchmark the break-even point for using the GPU is

approximately at 32× 32 simulation cells.

On 3-D grids (Fig. 7.8 (b)), a speedup of up to 15 is reached. In comparison to 2-D

grids, this speedup is signi�cantly lower. The reason is that move from 2-D to 3-D on

the GPU introduces more overhead than on the CPU. On the CUDA implementation,

the limited amount of shared memory of a thread block forces the thread block size to

become 8 × 8 × 8, which increases the number of ghost cells (see section 5.2.6). In 2-D

the ghost cells make up roughly 20 % of the cells stored in shared memory. In 3-D, the

ratio increases to 48 %. Ghost cells result in additional memory accesses that are partly

uncoalesced, thus causing the lower speedup.

7.3.5 Comparison to OOMMF

The performance of the demagnetization �eld computation is compared with the Object

Oriented MicroMagnetic Framework (OOMMF)[19]. OOMMF is the most widely used

�nite di�erence micromagnetic simulator in the micromagnetic community with over a

thousand citations in publications. OOMMF is CPU-only and does not support parallel

processing in the current stable release. The most recent alpha release adds support for

parallel computations using threads, where a speedup of up to 3 using four processors

cores was achieved[117]. Kanai et al. report a speedup of up to 5.6 on eight SMP cores

with a custom code base[118]. In the following the performance of the demagnetization

�eld computation of MicroMagnum is compared to the same computation of the latest

OOMMF version including thread support. In the benchmark an Intel Core i5-3570K

CPU running at 3.40GHz with four cores is used.

The demagnetization �eld computation time for di�erent numbers of cells are shown

in Table 7.4. The CPU computations are done using 64-bit precision and the GPU

computations using 32-bit precision arithmetics. If one CPU core is used, the speed of

106

0.01

0.1

1

10

100

1000

02 2562 5122 7682 10242 12802 15362 17922 20482
0

20

40

60

80

100

120

ru
n
ti
m
e
(m

s)

sp
ee
d
u
p

N ×N

(a)

0.01

0.1

1

10

100

1000

03 163 323 483 643 803 963 1123 1283
0

20

40

60

80

100

120

ru
n
ti
m
e
(m

s)

sp
ee
d
u
p

N ×N ×N

(b)

speedup
CPU time
GPU time

speedup
CPU time
GPU time

Figure 7.8: Computation time of one exchange �eld computation for (a) di�erent 2-D grids of
N ×N cells and (b) di�erent grids of N ×N ×N cells. The red (blue) line shows the run time
on the CPU (GPU) con�guration. The grey bars show the speedup, e.g. the ratio of the CPU
time to the GPU time.

107

MicroMagnum OOMMF

cells CPU GPU CPU × 1 CPU × 4

128× 128 2.00 0.38 2.25 0.71
256× 256 12.18 0.77 11.11 3.55
512× 512 59.90 2.16 52.81 15.77

1024× 1024 271.95 7.74 247.11 72.99
2048× 2048 1386.90 32.31 1106.40 379.73
4096× 2048 2840.86 66.16 2361.46 907.61

200× 200 6.61 � 10.06 3.78
400× 400 36.16 � 47.97 14.11
800× 200 184.67 � 223.34 80.34

1600× 1600 742.63 � 1015.35 347.09

Table 7.4: Run time of the demagnetization �eld computation on MicroMagnum on CPU and
GPU, and on OOMMF on the CPU for di�erent grids of simulation cells. The GPU is on a
Nvidia M2050 graphics card, and the CPU is an Intel Core i5-3570K CPU running at 3.40GHz
with four cores.

MicroMagnum is comparable to OOMMF for grid dimensions that are a power of two

(i.e., N = 2n for an integer n). Here OOMMF is roughly 10 to 20 % faster. For non-

power-of-two sizes, MicroMagnum is faster because internally OOMMF only supports

power-of-two fast Fourier transforms, requiring addition zero-padding of the magneti-

zation array. If OOMMF is run with four parallel cores, it gets a speedup of 3 to 4.

In contrast, if MicroMagnum is run on the GPU, a speedup of roughly 30 to 40 is

reached1. MicroMagnum supports NPOT sizes due to the use of the FFTW and CUFFT

libraries that provide optimized algorithms for both power-of-two and non-power-of-two

fast Fourier transforms. In conclusion MicroMagnum has a comparable performance to

OOMMF on single-threaded CPUs. If both simulators run parallel, i.e. on the GPU and

on a quad core CPU, MicroMagnum is about 10 times faster due to the use of the GPU.

7.3.6 Memory usage

Table 7.5 shows the amount of temporary working memory that is needed per simulation

cell for the computation of the e�ective �elds. There are di�erent values for 2-D and 3-D

meshes for the demagnetization �eld and the Oersted �eld computation because of the

required extra zero-padding in the z-dimension in the 3-D case. For the exchange �eld

and the anisotropy �eld computation, which are both local �elds, the �eld is computed

on the �y from the magnetization array and thus does not require extra temporary

working memory. In contrast, the demagnetization �eld and Oersted �eld computation

1This speedup di�ers from the previously reported maximum speedup of 66, because in this bench-
mark a faster CPU was used.

108

e�ective �eld
�oats
(per cell)

32-bit �oats
(bytes/cell)

64-bit �oats
(bytes/cell)

demagnetization �eld (2-D) 36 144 288
demagnetization �eld (3-D) 72 288 576
Oersted �eld (2-D) 24 96 192
Oersted �eld (3-D) 48 192 384
exchange �eld 0 0 0
anisotropy �eld 0 0 0
external �eld 0 0 0

Table 7.5: Amount of temporary memory needed per simulation cell for the computation of
the e�ective �elds.

requires the largest amount of memory. For the demagnetization �eld, the total amount

of additional memory is the sum of the size of the precomputed demagnetization tensor

and the size of the bu�ers to hold intermediary fast Fourier transform results of the

zero-padded magnetization array. The number of �oating point numbers to store the six

unique components of the demagnetization tensor in memory is roughly 6N2d where N

is the number of cells, and d ∈ {2, 3} the dimension of the grid. Similarly, the amount of

working space for the magnetization array is 3N2d for each of the components Mx, My,

and Mz. A technique that reduces the amount of memory for this bu�er is described in

[117]. The reduction is achieved by interleaving a subset of the lower-dimensional sub-

transforms of the fast Fourier transform with the multiplication in the frequency domain.

This technique is used in the OOMMF simulator, but is not included in MicroMagnum.

In conclusion, the size of the discretizing mesh is limited by the amount of RAM that

is installed on the host computer or, in the case of GPU computation, the amount of

global memory available to the GPU. For example, computing the demagnetization �eld

using a 3-D discretizing mesh with 5.000.000 cells requires 2747 MB of GPU RAM for

the demagnetization �eld computation, which just �ts into the 3072 MB that is installed

on the Nvidia M2050 graphics processors. On the CPU, the amount of needed memory

doubles due to the employed 64 bit precision arithmetics.

7.4 Conclusion

Several test are applied to test the correctness and the e�ciency of the MicroMagnum

simulator. The correctness is veri�ed by unit tests and the µMAG standard problems.

The e�ciency is examined by several benchmarks of MicroMagnum's software compo-

nents. Depending on the component, speedups of one to two orders of magnitude are

reached on the GPU in comparison to the CPU implementations. It is shown that while

the overhead introduced by the Python virtual machine is signi�cant, its running time is

clearly overlayed by parallel computations of the GPU. The speed of MicroMagnum on

109

the CPU is comparable to the speed of OOMMF running on one thread, the most widely

used simulator in the micromagnetic community. On the GPU, MicroMagnum is about

ten times faster than OOMMF running on 4 threads. Finally, it was shown that the used

GPUs have enough on-board memory to host simulations with millions of cells.

110

Figure 8.1: Computed vortex ground state in a Permalloy square (200 × 200 × 20 nm3)
with positive polarization p = 1 and chirality c = 1. The angle between the Mx and the My

component is color-coded.

8 Use Case: Non-linear Magnetic Vortex Core Dynam-

ics

In recent years magnetic vortices have become one of the most studied subjects in the

micromagnetic community. Many publications deal with the dynamics of vortices. The

focus of experiments and micromagnetic simulations about vortices has lead to the lin-

ear, nonlinear and highly nonlinear dynamics of vortex core switching driven by external

�elds or spin-polarized currents. Insights from these investigations have been used to

propose a storage concept, the so-called vortex random access memory[1] (VRAM). This

section introduces the magnetic vortex and deals with the simulation of magnetization

dynamics of vortices using MicroMagnum. The simulated results are summarized from

the article �Non-linear magnetic vortex gyration�[37] by André Drews, Benjamin Krüger,

Gunnar Selke, Thomas Kamionka, Andreas Vogel, Michael Martens, Ulrich Merkt, Di-

etmar Möller and Guido Meier, Copyright 2012 by the American Physical Society. For

this publication MicroMagnum was used to run a large number of simulations.

8.1 Magnetic vortex con�guration

A magnetic vortex forms in ferromagnetic thin-�lm elements[41] where the magnetiza-

tion curls in-plane around an out-of-plane region, the so-called vortex core, see Fig. 8.1.

The orientation of the curling in-plane magnetization is called chirality c. A mathemat-

ical positive (negative) orientation of the magnetization is de�ned as c = −1 (c = 1).

The orientation of the vortex core is called polarization p which can point either in the

plane (p = −1) or out of the plane (p = 1). The core typically has a diameter of a

111

few nanometers[42]. The vortex is an energetic ground state which forms in softmag-

netic thin-�lm elements like Permalloy with a lateral size from ≈ 100 nm up to some

microns. The formation of the vortex can be explained by considering the exchange

and the demagnetization energy of Permalloy. The demagnetization energy is minimized

by aligning the magnetization vectors in parallel to the sample's surface to avoid sur-

face charges resulting in the curling of the magnetization. In the center of the curling

magnetization pattern the magnetization vectors would align antiparallely. This would

drastically increase the exchange energy which wants adjacent magnetization vectors to

align in parallel. Thus the magnetization at the center points out-of-plane resulting in

the formation of the vortex core.

In the following the usage of MicroMagnum for the investigation of magnetic vortices is

presented. Since the magnetic vortex is a widely used examination object MicroMagnum

includes prede�ned routines to form the ground state and to analyze the magnetization

dynamics. The approximate ground state of a magnetic vortex in Fig. 8.1 is generated

by employing the vortex.magnetizationFunction function of the vortex toolbox. The

function applies the parametrization

mx =
c · (y − y0)√

(x− x0)2 + (y − y0)2 +R2)
·Ms

my =
x− x0√

(x− x0)2 + (y − y0)2 +R2)
·Ms

mz =
R√

(x− x0)2 + (y − y0)2 +R2)
·Ms (8.1)

to the magnetization at each position (x, y, z) in the sample with the position of the cen-

ter x0, y0, the saturation magnetization Ms, the chirality c, and the diameter of the core

R. The parametrization is an approximation of the desired ground state magnetization

pattern and thus has an energy in the vicinity to the energy minimum to reduce com-

putation time at the relaxation of the magnetization pattern. Currently MicroMagnum

does not support direct energy minimization, e.g. by using gradient methods. The energy

minimum is computed by disabling the precession term in the Landau-Lifshitz-Gilbert

equation. The magnetization dynamics starts at the given vortex parametrization and

relaxes to the energetic minimum. The stopping criterion is a small remaining change of

the maximum angle between each magnetization vector and its neighbors of the whole

sample, given in degrees per nanosecond. The MicroMagnum script to create a vortex

con�guration is shown in listing 12. In Lines 9�12 the vortex is parametrized and in line

13 the vortex is relaxed. In Line 15 the resulting magnetization pattern is stored on disk

for later use.

1 from magnum import *

2

3 world = World(

112

4 RectangularMesh ((100, 100, 1), (2e-9, 2e-9, 2e-8)),

5 Body("sample", Material.Py(), Everywhere ())

6)

7

8 solver = create_solver(world , [StrayField , ExchangeField], do_precess=

False , log=True)

9 solver.state.M = vortex.magnetizationFunction(

10 core_x =1e-7, core_y =1e-7,

11 polarization =1, core_radius =1e-8

12)

13 solver.relax(max_deg_per_ns = 5)

14

15 writeOMF("groundstate.omf", solver.state.M)

Listing 12: Computation of the vortex ground state in Fig. 8.1.

8.2 Vortex dynamics

Experiments and micromagnetic simulations have shown that the vortex forms without

external excitations only due to the internal exchange and demagnetization energy. If

the core is de�ected by a magnetic �eld or spin-polarized current and the excitation is

turned o� it performs a spiral trajectory around its equilibrium position in the center.

For small amplitudes of excitation close to the resonance frequency the gyration has been

described within a two-dimensional harmonic oscillator model. In this picture the core

gyrates like a quasi particle in a potential

V (x, y) = −κ
2

(x2 + y2) (8.2)

that is given by the intended symmetry of the in-plane magnetization pattern in order to

minimize the demagnetization and exchange energy. The potential includes the compo-

nents x and y of the core position relative to the core position at the ground state x0, y0

and the strength κ of the curvature of the potential. The parameter κ depends on the

thickness t and the lateral size l of the sample[119].

For an alternating excitation and a small amplitude of excitation the core gyrates

on an elliptical trajectory in the steady state. Elliptical trajectories are a typical char-

acteristic of two-dimensional harmonic oscillators. To obtain the dynamical response of

a vortex to a wide range of excitation frequencies a resonance curve can be generated.

In the linear regime the resonance curve has a Lorentz pro�le with a peak at the reso-

nance frequency where the vortex translates the maximum energy from excitation into

gyration. Generating a resonance curve requires an accurate determination of the vortex

core position. From the raw simulated data a rough approximation of the core position

is given by the position of the simulation cell with the largest out-of-plane component

|Mz|. Usually, the simulation cell size is close to the exchange length of about 4 nm for

Permalloy. The vortex core has a diameter of about 20 nm. For the determination of

113

the vortex core position the accuracy of one simulation cell length is not su�cient. A

deviation of the core position of about 1 nm could strongly distort the determination

of the resonance curve, since a resonance curve of vortices usually has a narrow shape

of the Lorentz pro�le. A spatial resolution far below 1nm is required to determine the

resonance frequency. In order to get a higher accuracy the function of the vortex toolbox

of MicroMagnum applies polynomial �ts of second order by employing Lagrange inter-

polation in x- and y− direction by considering the cell with the maximum Mz value and

its next two neighbors[120]. The function reaches an accuracy of about one thousands of

the vortex core diameter which is su�cient for core dynamics.

The harmonic oscillator model adequately describes core gyration in the linear regime.

In many applications, like the operation of a vortex in a VRAM, large amplitudes of exci-

tation would be required covering the nonlinear regime. To �nd an analytical description

of core gyration in the nonlinear regime the harmonic potential in Eq. 8.2 is expanded

by higher order terms leading to the potential

V (x, y) =
κ

2
(x2 + y2 + a(x2 + y2)2 − bx2y2), (8.3)

which includes the nonlinear parameters a and b that depend on the lateral size l and

the thickness t of the sample in a di�erent way than the harmonic parameter κ. Using

this potential and the Thiele equation[121] with the collective coordinate approach the

nonlinear equation of vortex motion is derived,(
vx
vy

)
= −pωf

(
y + 2ay3 + 2ax2y − bx2y

−x− 2ax3 − 2axy2 + bxy2

)

−Γ

(
x+ 2ax3 + 2axy2 − bxy2

y + 2ay3 + 2ax2y − bx2y

)
+

(
u · cos(Ωt)

0

)
(8.4)

with the free frequency ωf , the damping Γ, the velocity due to current excitation u, and

the exciting frequency Ω, see description of Eq. (3) in Ref. [37]. In comparison to the

micromagnetic model this oscillator model only includes a few degrees of freedom. To test

if the reduction of degrees of freedom is a good approximation this model is compared

to micromagnetic simulation using MicroMagnum. Vortex gyration is simulated and

compared to a numerical integration of Eq. 8.4. For the simulations of resonance curves

a large number of simulations are performed. Vortices in Permalloy squares with varying

thicknesses t = 10, 20, 30 nm and lateral sizes l = 200, 500 nm are excited by alternating

currents of amplitudes 2·1010, 5·1010, 1·1011, 1.5·1011, 2·1011 A/m2 and varying excitation

frequencies Ω. The large number of simulations is performed concurrently on a computer

cluster by employing the Controller class of MicroMagnum. The Python simulation

script in listing 13 includes arrays that cover the varying parameters, i.e. lateral size,

thickness, amplitude, and exciting frequency. The input of the Controller object is the

114

name of the Python function that represents the simulation which is de�ned the script

and parameter array.

1 #!/usr/bin/python

2 from magnum import *

3 import math

4

5 # Simulation function

6 def nonlinsim(l, t, Omega , J):

7 mesh = RectangularMesh ((l/4e-9, l/4e-9, 1), (4e-9, 4e-9, t))

8 world = World(mesh , Body("all", Material.Py(), Everywhere ()))

9 core_x , core_y = l/2.0, l/2.0

10

11 # Load vortex groundstate from file

12 M0 = readOMF("square_%s_%s_%.0f.omf" %

13 (int(l*1e9), int(l*1e9), (thickness *1e9)))

14

15 # Excite vortex by an AC current and save vortex core trajectory

16 solver = create_solver(world ,

17 [StrayField , ExchangeField , AlternatingCurrent , SpinTorque],

18 log=True)

19 solver.state.M = M0

20 solver.state.j_amp = (j, 0, 0)

21 solver.state.j_freq = (Omega , 0, 0)

22

23 log = DataTableLog(

24 "square_%s_%s_%.0 f_j %.1e_%.3e.odt" %

25 (int(l*1e9), int(l*1e9), (thickness *1e9), j_amp , j_freq))

26 log.addColumn(

27 ("Vortexcore X-pos.", "core_x"), ("Vortexcore Y-pos.", "core_y"

),

28 lambda state: vortex.findCore(solver , l/2, l/2))

29 solver.addStepHandler(log , condition.EveryNthStep (10))

30

31 solver.solve(condition.Time (50*2* math.pi/j_freq))

32

33 # Parameter space

34 l = [2e-7, 5e-7] # lateral size

35 t = [1e-8, 2e-8, 3e-8] # thickness

36 Omega = [1e9 , (~100 entries omitted), 5e9] # frequency

37 J = [2e10 , 5e10 , 1e11 , 1.5e11 , 2e11] # current

38

39 c = Controller(nonlinsim , l, t, Omega , J)

40 c.start ()

Listing 13: Excitation of a vortex by an AC current with varying simulation parameters.

In these lines of the simulation script thousands of simulations are performed concurrently

on di�erent nodes of the computer cluster. The resulting resonance curves are illustrated

in Fig. 8.2. The lines are numerical solutions of Eq. 8.4, which are �tted to the simulated

results and show good accordance. From these �ts the parameters a and b in Eq. 8.3 are

115

Figure 8.2: Resonance curves of gyrating vortices driven by spin-polarized currents. The
maximum core displacement in x direction versus excitation frequency Ω is shown. The symbols
show simulated results for current densities from 2 × 1010 Am−2 to 2 × 1011 Am−2. The lines
are �ts according to Eq. 8.4. (Figure and caption adapted from Ref. [37], Copyright 2012 by
the American Physical Society.)

obtained.

The simulations show that in the nonlinear regime, i.e. for an increase of the current

amplitude, the resonance curves deform. The deformation depends on the thickness of

the magnetic vortices. Thin (thick) vortices show a blue (red) shift of the resonance

curve, see Fig. 8.2. The red shift of thick samples could also be veri�ed by micromag-

netic simulations and XMCD experiments of magnetic �eld induced vortex gyration of a

Permalloy square 1050×1050×50 nm3as depicted in Fig. 8.3. A deformation is a typical

characteristic of nonlinear dynamics, but the thickness dependence is a special feature of

vortices. A shift of the resonance frequency in the nonlinear regime could for example

be important to achieve low energy consumption by exciting vortices at resonance in

VRAMs by adapting the excitation frequency on the amplitude of excitation to match

resonance.

116

Figure 8.3: (a) Power absorbed by the squares as obtained from �eld-induced ferromagnetic
resonance measurements at di�erent strengths of the exciting magnetic �eld µ0H. (b) Square
of the velocity of �eld-induced gyration from micromagnetic simulations. The lines are guides
to the eyes. For clarity the resonance curves are o�set successively by ∆P = 15 nW and
∆v2 = 1.25 × 104 m2s−2. (Figure and caption adapted from Ref. [37], Copyright 2012 by the
American Physical Society.)

8.3 Conclusion

This use case shows the impact of using MicroMagnum and its small simulation scripts to

obtain a large amount of scienti�c results. Hundreds of simulations have been executed

with di�erent values of the parameters lateral size l, thickness t excitation frequency Ω,

energy curvature parameters a and b of magnetic vortices. For each parameter set of

a simulation the Python scripting language allows an intuitive scripting of relaxing a

magnetic vortex and subsequently excite it by a spin-polarized current j until it reaches

its stationary motion. From the scan of the parameters space a dependence of the sample

thickness on the frequency of nonlinear magnetic vortex gyration could be observed. This

is a fundamental scienti�c result, since usually the gyration frequency of a nonlinear

oscillator mainly depends on the amplitude of gyration.

117

118

Conclusion and Outlook

In this work the performance of micromagnetic simulations is increased on the algorith-

mic as well as on the hardware level. Algorithms based on Fourier transforms and the

�nite di�erence method are adapted to the CPU as well as to the graphics processing

units programming model to compute the micromagnetic model e�ciently. On graphics

processing units, the algorithms run massively parallel and yield a speed up of a factor

of up to 40 compared to single-threaded CPU computations. Each iteration in time is

performed by solving the Landau-Lifshitz-Gilbert equation by the Euler and the Runge-

Kutta method. For each iteration step the total e�ective �eld is computed. The most

time consuming part of the computation of the total e�ective �eld is the convolution at

the demagnetization and Oersted �eld computation, which requires about 70% of the to-

tal computation time. The convolution theorem which employs the fast Fourier transform

reduces its computation time of the convolution. Additionally, implementation details

are presented which drastically increase the speedup of the total computation time. In

case of CPU and GPU implementation, zero padding and symmetry considerations and

sparse Fourier transforms lower the computation time. The algorithm including Fourier

transforms is formulated via transpositions to increase the spatial locality of memory

accesses. For GPU implementation these transpositions are performed in the shared

memory to exploit the larger data bandwidth between streaming processors and shared

memory in comparison to the lower data bandwidth between the streaming processors

and the global memory. Operations in the shared memory require an elaborate reorder-

ing of the threads in the memory area. Only the usage of the shared memory results

in strong speed ups. Further software criteria beside the performance are considered,

namely maintainability, extendability, usability, correctness, by developing a multi-layer

modular software architecture of the micromagnetic simulation tool MicroMagnum. On

the bottom layer performance intense algorithms are implemented in C++. On higher

layers physical modules are implemented in Python, which is an easy-to-use interpreter

language. Rapid development times allow an easy extension of the simulation tool by fur-

ther physical modules. The modules can be easily connected to achieve a multi-physical

approach. The usability of the simulation tool is further increased by developing a domain

speci�c language. Every user can easily build up a simulation example by writing Python

scripts. The correctness is achieved by performing unit test as well as system tests. The

well-established system tests, called the standard problems 1 to 5 of the µMAG group

are performed to ensure the correctness of MicroMagnum. MicroMagnum is available at

the website

http://micromagnum.informatik.uni-hamburg.de,

and the source code is available under the GNU General Public License[29] at

http://github.com/MicroMagnum/MicroMagnum.

119

http://micromagnum.informatik.uni-hamburg.de
http://github.com/MicroMagnum/MicroMagnum

Users from Chile, France and Germany reported that MicroMagnum is subjectively easier

to use than the established micromagnetic simulator OOMMF due to the imperative

rather than declarative nature of the simulation de�nition language. MicroMagnum has

become a successful micromagnetic simulator that has attracted many users[122, 123,

124, 125, 37, 126].

Future Development of MicroMagnum .

This work describes the state of MicroMagnum at version 0.2. The development of

MicroMagnum is an ongoing project with the following roadmap. The next version 0.3,

which is currently in development, will include

• Oersted �eld and current path modules:

Developed by Benjamin Krüeger[60]. Additional extensions to the LLG equation

will include the computation of current paths due to the AMR e�ect and the Oersted

�eld due to electrical and spin currents.

• Application programming interface (API):

The user API will be stabilized for version 0.3.

• Documentation:

The documentation will be improved to that it covers the whole public user API.

Future plans beyond version 0.3 include the development of

• Improved solvers:

Implicit solvers can potentially improve the overall speed of the simulation due to

higher time steps due to their better ability to solve sti� di�erential equations like

the LLGE compared to the currently used explicit schemes.

Currently during a simulation only one instance of the Landau-Lifshitz-Gilbert

equation is computed at any time. Parallel solvers evaluate many instances of

the underlying ordinary di�erential equation at the same time in order to increase

the parallelism. For example, the currently implemented classical Runge-Kutta-

Fehlberg method could be replaced with a parallel iterated Runge-Kutta (PIRK)

methods[127]. Here several Runge-Kutta steps can be computed in parallel, thus

potentially increasing the overall performance of the simulator.

• More physical modules:

The micromagnetic model can be further extended. Thermal e�ects can be sim-

ulated by the inclusion of a random �uctuating magnetic �eld that depends on

the temperature. If currents are simulated, the temperature is in�uenced by Joule

heating.

120

The magnetostriction e�ect[6] causes ferromagnetic materials to change their shape

during their magnetization process, which results in energy loss in form of heat.

• Multi-GPU support:

One of the most important feature for the acceptance of a micromagnetic simulator

is its performance. In this work the performance was mainly achieved by parallel

computing on a single graphics processing unit.

One obvious future extension would be to allow the computation of one simulation

on two or more GPUs in parallel. Currently the number of simulation cells and

thus the size of the simulation volume are limited by the size of the GPU memory.

By coupling multiple GPUs their combined memory could increase that limit. Ad-

ditionally parallel GPUs could potentially lead to a higher overall performance. In

the micromagnetic model, the most di�cult part of multi-GPU parallelization is

the computation of the convolution-based �elds, i.e. the demagnetization �eld and

the Oersted �eld. Their non-local nature would lead to large amounts of data that

have to be communicated between the GPUs. In contrast, the local �elds can be

computed with a small constant amount of communication.

The same considerations for multiple GPUs also apply for simulations on multiple

CPUs, which might be distributed across a cluster of computers. Currently, the

parallelism of a computer cluster can only be exploited by executing di�erent inde-

pendent simulations at the same time. Successfully parallelizing a single simulation

across a computer cluster would be a challenge because of the increased bottleneck

of the message passing system between the computer nodes. Also, achieving a la-

tency and a data rate comparable to, for example, the PCI express bus between

two graphics processors in one computer, might be prohibitively expensive.

• OpenCL support:

Due to the use of the CUDA computing environment MicroMagnum only supports

GPU hardware by Nvidia. The competing OpenCL[80] programming model is sim-

ilar to that of CUDA, but is supported by more hardware architectures, including

graphics processors manufactured by Nvidia and AMD. Thus adding OpenCL sup-

port would enable MicroMagnum to run on a wide range of GPU architectures.

In addition, recent OpenCL implementations also support multicore CPUs. This

might remove the need to implement each numerical algorithms for the CPU and

the GPU altogether.

121

122

Acknowledgement

During this work I received support and encouragement from many people. In particular,

I thank

• Professor Dr. Dietmar Möller for giving me the possibility to work on this project,

his encouragement and enthusiasm, �nancial support, and for reviewing the thesis

and defense.

• Professor Dr. Stephan Olbrich and

Dr. habil. Guido Meier for kindly agreeing to review this thesis and the defense.

• Professor Dr. Ulrich Merkt, the speaker of the Graduiertenkolleg 1286, for giving

me the possibility to work on this project.

• Dr. André Drews for being a great colleage and very good friend, his supervision

of this work, and support.

• Dr. Claas Abert for the good collaboration on the potential �eld method and the

many nice discussions in the o�ce.

• Dr. Benjamin Krüger for the good collaboration on the Oersted �eld computation

and the inclusion of periodic boundary conditions, and many inspiring discussions

well past midnight at the o�ce.

• Theo Gerhard for the good collaboration and his invaluable feedback from the user

perspective.

• Bodo Krause-Kyora for keeping the whole computer cluster up and running, and

many fun discussions about the latest on data center technology.

• Dr. Markus Bolte for his support, especially at the beginning of this project.

• Dr. Katrin Buth for her work for the Graduiertenkolleg.

• all members of the Graduiertenkolleg and the group Technische Informatiksysteme.

• the Deutsche Forschungsgemeinschaft for the �nancial support via the Graduier-

tenkolleg 1268.

Finally, I would like to thank my family and friends for all their invaluable support.

123

124

Appendix

A Listings

A.1 Functionality tests

This section contains the listings that implement the functionality tests described in

chapter 7.

A.1.1 µMAG standard problem 1

1 from magnum import *

2 from math import sin , cos , pi

3

4 Py = Material.Py(Ms=8e5 , A=1.3e-11, k_uniaxial =5e2 , axis1 =(0,1,0))

5

6 world = World(

7 RectangularMesh ((50 ,100 ,1), (20e-9, 20e-9, 20e-9)),

8 Body("square", Py , Everywhere ())

9)

10

11 def hysteresis(name , axis):

12 f = open("hysteresis -%s-axis.txt" % name , "w+")

13 f.write("# H (mT)\t<mx> <my> <mz >\n")

14

15 solver = create_solver(

16 world , [StrayField , ExchangeField , AnisotropyField , ExternalField]

17)

18 solver.state.M = (axis [0]*Py.Ms, axis [1]*Py.Ms, axis [2]*Py.Ms)

19

20 for H in [x*1e-3/MU0 for x in range (50,-51,-1) + range (-50,51,1)]:

21 Hx, Hy , Hz = H*axis[0], H*axis[1], H*axis [2]

22 solver.state.H_ext_offs = (Hx, Hy, Hz)

23 solver.relax (1.0)

24 Mx, My , Mz = solver.state.M.average ()

25 f.write("%s\t%s %s %s\n" % (H*MU0 , Mx/Py.Ms, My/Py.Ms , Mz/Py.Ms))

26

27 i f H == 0:

28 writeOMF("M_remanence -%s-%s.omf" % (name , "up" i f H > H_last e l se

"down"), solver.state.M)

29 H_last = H

30

31 f.close ()

32

33 hysteresis("long", (sin(pi /180), cos(pi /180), 0.0))

34 hysteresis("short", (cos(pi /180), sin(pi /180) , 0.0))

Listing 14: Simulation script for the µMAG standard problem 1 test.

125

A.1.2 µMAG standard problem 2

1 from magnum import *

2 import math

3

4 s = math.sqrt (3.0)

5

6 # Material parameters

7 Py = Material.Py()

8 A = Py.A

9 Ms = Py.Ms

10 K_m = 0.5* MU0*(Ms*Ms)

11 l_ex = math.sqrt(A/K_m)

12

13 # Geometry: ratio = d/l_ex

14 def geometry(ratio):

15 d = ratio * l_ex

16 t = 0.1 * d

17 L = 5.0 * d

18 return L, d, t

19

20 def discretize(L, d, t):

21 nn = (10 ,10 ,10)

22 dd = (1e-9,1e-9,1e-9)

23 return RectangularMesh(nn , dd)

24

25 for ratio in (0.1 ,0.2):

26 L, d, t = geometry(ratio)

27 print "d/l_ex=%s, L=%s, d=%s, t=%s" % (ratio , L, d, t)

28

29 mesh = discretize(L, d, t)

30 world = World(mesh , Body("thinfilm", Material.Py(), Everywhere ()))

31 solver = create_solver(world , [StrayField , ExchangeField ,

ExternalField], log=True , do_precess=False)

32 solver.state.M = (Ms ,0.0 ,0.0)

33

34 # do hysteresis

35 H = 0.0/ MU0

36

37 while True:

38 solver.state.H_ext_offs = (H/s,H/s,H/s)

39 solver.relax()

40 M = solver.state.M.average ()

41

42 print H*MU0 , M[0]+M[1]+M[2]

43 i f M[0]+M[1]+M[2] == 0.0:

44 H_coerc = H

45 break

46 H += 0.1/ MU0

47

48 while True:

126

49 solver.state.H_ext = (H/s,H/s,H/s)

50 solver.relax()

51

52 i f H == 0.0:

53 M_rem = solver.state.M.average ()

54 break

55 H -= 0.1/ MU0

Listing 15: Simulation script for the µMAG standard problem 2 test.

A.1.3 µMAG standard problem 3

1 from magnum import *

2 import math

3

4 K_m = 0.5* MU0*Material.Py().Ms*Material.Py().Ms

5 Py = Material.Py(k_uniaxial =0.1*K_m ,axis1 =(0,0,1),alpha =0.5)

6 l_ex = math.sqrt(Py.A/K_m)

7

8 def sim(N, ratio):

9 def get_info(state):

10 E_str = state.E_str / K_m / L**3

11 E_ex = state.E_ex / K_m / L**3

12 E_ani = state.E_ani / K_m / L**3

13 E_tot = E_str + E_ex + E_ani

14 return E_tot , E_st , E_ex , E_ani , [x/Py.Ms for x in state.M.average

()]

15

16 def my_vortex(field , pos):

17 x, y, z = pos

18 Mx = 8e-9

19 My = -(z-0.5*L)

20 Mz = +(y-0.5*L)

21 scale = Py.Ms / math.sqrt(Mx**2 + My**2 + Mz**2)

22 return Mx*scale , My*scale , Mz*scale

23

24 L = ratio*l_ex # cube side length

25 world = World(RectangularMesh ((N,N,N),(L/N,L/N,L/N)), Body("cube", Py

))

26 solver = create_solver(world ,

27 [StrayField , ExchangeField , AnisotropyField],

28 log=True , do_precess=False)

29

30 solver.state.M = my_vortex

31 solver.relax (2)

32 writeOMF("omf/state -vortex -%s-%s.omf" % (N, ratio), solver.state.M)

33 vo = get_info(solver.state)

34

35 solver.state.M = (0, 0, Py.Ms)

36 solver.relax (2)

37 writeOMF("omf/state -flower -%s-%s.omf" % (N, ratio), solver.state.M)

38 fl = get_info(solver.state)

127

39

40 return vo, fl

41

42 def full_sp3 ():

43 for N in [12 ,16 ,20 ,24 ,28 ,32 ,36 ,40 ,44 ,48]:

44 for ratio in [r/100.0 for r in range (840, 860)]:

45 fl, vo = sim(N, ratio)

46 fl_E_tot , fl_E_str , fl_E_ex , fl_E_ani , (fl_mx , fl_my , fl_mz) = fl

47 vo_E_tot , vo_E_str , vo_E_ex , vo_E_ani , (vo_mx , vo_my , vo_mz) = vo

48

49 f = open("log -%s.txt" % N, "a")

50 f.write("ratio =%s, E_tot =(%s vs %s, diff=%s)\n" %

51 (ratio , fl_E_tot , vo_E_tot , abs(fl_E_tot - vo_E_tot)))

52 f.write(" * flower: %s\n" %

53 ((fl_E_tot , fl_E_str , fl_E_ex , fl_E_ani , (fl_mx ,fl_my ,fl_mz)),)

)

54 f.write(" * vortex: %s\n" %

55 ((vo_E_tot , vo_E_str , vo_E_ex , vo_E_ani , (vo_mx ,vo_my ,vo_mz)),)

)

56 f.close ()

57

58 full_sp3 ()

Listing 16: Simulation script for the µMAG standard problem 3 test.

A.1.4 µMAG standard problem 4

1 from magnum import *

2 from math import sin , cos , pi

3

4 world = World(

5 RectangularMesh ((100, 25, 1), (5e-9, 5e-9, 3.0e-9)),

6 Body("all", Material.Py(alpha =0.02))

7)

8

9 # Create an s-state as the initial magnetization

10 def make_initial_sp4_state ():

11 # Specify an s-state -like starting state

12 def state0(field , pos):

13 u = abs(pi*(pos [0]/ field.mesh.size [0] -0.5)) / 2.0

14 return 8e5 * cos(u), 8e5 * sin(u), 0

15 # Relax to get initial state for SP4

16 solver = create_solver(world ,

17 [StrayField , ExchangeField], log=True , do_precess=False ,

18 evolver="rkf45", eps_abs =1e-4, eps_rel =1e-5

19)

20 solver.state.M = state0

21 solver.state.alpha = 0.5

22 solver.relax (1.0)

23 return solver.state.M # return the final magnetization

24

25 # Apply an external field H on initial magnetization M0

128

26 def apply_field(M0 , H, file_prefix):

27 c la s s ZeroCrossChecker(StepHandler):

28 def __init__(self):

29 self.crossed = False

30 def handle(self , state):

31 i f not self.crossed and state.M.average ()[0] < 0.0:

32 print "First zero -crossing of <Mx> at", state.t*1e9, "ns!"

33 writeOMF(file_prefix + "-Mx -zero.omf", state.M)

34 self.crossed = True

35

36 solver = create_solver(world ,

37 [StrayField , ExchangeField , ExternalField], log=True ,

38 evolver="rkf45", eps_abs =1e-4, eps_rel =1e-4

39)

40 solver.state.M = M0

41 solver.state.H_ext_offs = H

42 solver.addStepHandler(ZeroCrossChecker (), condition.Always ())

43 solver.addStepHandler(DataTableLog(file_prefix + ".odt"), condition.

EveryNthStep (10))

44 solver.solve(condition.Time (1.0e-9))

45

46 # MAIN PROGRAM

47 M0 = make_initial_sp4_state ()

48 apply_field(M0 , (-24.6e-3/MU0 , +4.3e-3/MU0 , 0.0), "sp4 -1")

49 apply_field(M0 , (-35.5e-3/MU0 , -6.3e-3/MU0 , 0.0), "sp4 -2")

Listing 17: Simulation script for the µMAG standard problem 4 test.

A.1.5 Spin-Torque standard problem

1 from magnum import *

2

3 world = World(

4 RectangularMesh ((100, 100, 1), (1e-9, 1e-9, 10e-9)),

5 Body("all", Material.Py(xi=0.05 , P=1.0, alpha =0.1))

6)

7

8 # First step: Relax to get a vortex state

9 solver = create_solver(world , [StrayField , ExchangeField], log=True)

10 solver.state.M = vortex.magnetizationFunction(

11 core_x = 50e-9, core_y = 50e-9,

12 polarization = 1, core_radius = 10e-9

13)

14 solver.state.alpha = 0.3

15 solver.relax()

16 vortex_M = solver.state.M

17

18 writeOMF("sp5 -M0.omf", vortex_M) # save start configuration

19

20 # Second step: Apply DC to vortex

21 solver = create_solver(

22 world ,

129

23 [StrayField , ExchangeField , SpinTorque , AlternatingCurrent], log=True

24)

25

26 solver.state.M = vortex_M

27 solver.state.j_offs = (1e12 , 0, 0)

28

29 # record vortex core position in .odt file "sp5.odt"

30 odt = DataTableLog("sp5.odt")

31 odt.addColumn(

32 ("Vx", "Vortexcore X-pos.", "m"), ("Vy", "Vortexcore Y-pos.", "m"),

33 lambda s: vortex.findCore(solver , 50e-9, 50e-9, "all")

34)

35 solver.addStepHandler(odt , condition.EveryNthStep (100))

36

37 solver.solve(condition.Time (30.0e-9)) # start simulation

38

39 writeOMF("sp5 -M_end.omf", solver.state.M) # save end configuration

Listing 18: Simulation script for the proposed µMAG standard problem 5 test.

A.1.6 Larmor precession test

1 from magnum import *

2

3 # Simple Larmor precession frequency test.

4 # Analytical frequency: MU0*H = 2.2102 e11 rad/s

5 mesh = RectangularMesh ((1,1,1), (1e-9, 1e-9, 1e-9))

6 mat = Material.Py(alpha=0, Ms =1.0/ MU0)

7 world = World(mesh , Body("all", mat , Everywhere ()))

8

9 solver = create_solver(world , [ExternalField], log=True)

10 solver.state.M = (1,1,1)

11 solver.state.H_ext_offs = (0,0,1e6)

12 solver.addStepHandler(DataTableLog("larmor.odt"), condition.Always ())

13 solver.solve(condition.Time (0.3e-9))

Listing 19: Simulation script for the Larmor precession test.

A.2 Sparse convolution subroutines

In this section the subroutines that are used to implement the sparse multidimensional

transforms and convolutions (see Figs. 3.5 and 3.6). Here Python is used to specify the

behavior of the subroutines. In MicroMagnum, they are implemented in C++ for CPUs

and CUDA C for GPUs.

1 def zeropad(A, B, n_x , n_y , n_z , e_x):

2 """

3 Zeropad array A and store result in B.

4

5 Input 'A': 3D array of size (n_x , n_y , n_z)

6 Output 'B': 3D array of size (e_x , n_y , n_z)

7 """

130

8 for x in range(0, e_x):

9 for y in range(0, n_y):

10 for z in range(0, n_z):

11 i f x < n_x:

12 B[x][y][z] = A[x][y][z]

13 e l se :

14 B[x][y][z] = 0.0

Listing 20: Algorithm: Array 3D zeropad.

1 def unpad(A, B, n_x , n_y , n_z , e_x):

2 """

3 Zeropad array A and store result in B.

4

5 Input 'A': 3D array of size (e_x , n_y , n_z)

6 Output 'B': 3D array of size (n_x , n_y , n_z)

7 """

8 for x in range(0, e_x):

9 for y in range(0, n_y):

10 for z in range(0, n_z):

11 i f x < n_x:

12 B[x][y][z] = A[x][y][z]

13 e l se :

14 B[x][y][z] = 0.0

Listing 21: Algorithm: Array 3D unpad.

1 def rotate_and_zeropad(A, B, n_x , n_y , n_z , e_y):

2 """

3 Rotate 3D array from 'xyz' order to 'yzx' order while extending its

4 size along the y-direction by zero -padding.

5

6 Input 'A': 3D array of size (n_x , n_y , n_z)

7 Output 'B': 3D array of size (e_y , n_x , n_z)

8 """

9 for y in range(0, e_y):

10 for x in range(0, n_x):

11 for z in range(0, n_z):

12 i f y < n_y:

13 B[y][z][x] = A[x][y][z]

14 e l se :

15 B[y][z][x] = 0.0

Listing 22: Algorithm: Array 3D rotate/zeropad.

1 def rotate_and_cut(A, B, n_x , n_y , n_z , e_y):

2 """

3 Rotate 3D array from 'yzx' order to 'xyz' order while reducing its

4 size along the y-direction.

5

6 Input 'A': 3D array of size (n_x , e_y , n_z)

7 Output 'B': 3D array of size (n_x , n_y , n_z)

8 """

131

9 for x in range(0, n_x):

10 for y in range(0, e_y):

11 for z in range(0, n_z):

12 B[x][y][z] = A[y][z][x]

Listing 23: Algorithm: Array 3D rotate/cut.

1 def iterated_fft(A, B, n_x , n_y , n_z):

2 """

3 Perform (n_y*n_z) iterated fast Fourier transforms of size n_x along

4 the x-direction.

5

6 Input 'A': 3D array of size (n_x , n_y , n_z)

7 Output 'B': 3D array of size (n_x , n_y , n_z)

8

9 A and B may point to the same array.

10 """

11 tmp = [0.0] * n_x # temporary array of size n_x

12 for y in range(0, n_y):

13 for z in range(0, n_z):

14 for x in range(0, n_x): tmp[x] = A[x][y][z]

15 tmp = fft(tmp)

16 for x in range(0, n_x): B[x][y][z] = tmp[x]

Listing 24: Algorithm: Iterated discrete Fourier transforms along the �rst dimension

1 def iterated_fft_r2c(A, B, n_x , n_y , n_z):

2 """

3 Perform (n_y*n_z) iterated real -to-complex Fourier transforms of size

n_x along

4 the x-direction.

5

6 Input 'A': 3D real array of size (n_x , n_y , n_z)

7 Output 'B': 3D complex array of size (round(n_x /2+1), n_y , n_z)

8 """

9 tmp = [0.0] * n_x # temporary array of size n_x

10 for y in range(0, n_y):

11 for z in range(0, n_z):

12 for x in range(0, n_x): tmp[x] = A[x][y][z]

13 tmp = fft(tmp)

14 for x in range(0, round(n_x /2+1)): B[x][y][z] = tmp[x]

Listing 25: Algorithm: Iterated discrete real-to-complex Fourier transforms along the �rst

dimension

1 def iterated_fft_c2r(A, B, n_x , n_y , n_z):

2 """

3 Perform (n_y*n_z) iterated complex -to-real Fourier transforms of size

n_x along

4 the x-direction.

5

6 Input 'A': 3D complex array of size (round(n_x /2+1) , n_y , n_z)

7 Output 'B': 3D real array of size (n_x , n_y , n_z)

132

8 """

9 tmp = [0.0] * n_x # temporary array of size n_x

10 l = round(n_x /2+1)

11

12 for y in range(0, n_y):

13 for z in range(0, n_z):

14 tmp[0] = A[0][y][z]

15 for x in range(0, l):

16 tmp[x+1] = A[x][y][z]

17 tmp[-x-1] = A[x][y][z]. conjugate ()

18 tmp = fft(tmp)

19 for x in range(0, l): B[x][y][z] = tmp[x]

Listing 26: Algorithm: Iterated discrete real-to-complex Fourier transforms along the �rst

dimension

1 def product(Axx , Axy , Axz , Ayy , Ayz , Azz , Bx , By , Bz , Cx , Cy , Cz , n_x ,

n_y , n_z):

2 """

3 Compute elementwise product of an array containing complex

4 symmetric (3x3) matrices and and array containg complex (3)-vectors ,

e.g.

5

6 / Cx \ / Axx Axy Axz \ / Bx \

7 | Cy | = | Axy Ayy Ayz | * | By | for all x,y,z.

8 \ Cz / \ Axz Ayz Azz / \ Bz /

9

10 Input 'Aij ': 3d complex array of size (n_x , n_y , n_z)

11 Input 'Bi ': 3d complex array of size (n_x , n_y , n_z)

12 Output 'Ci ': 3d complex array of size (n_x , n_y , n_z)

13 """

14 for x in range(0, n_x):

15 for y in range(0, n_y):

16 for z in range(0, n_z):

17 Cx[x][y][z] = Axx[x][y][z]*Bx[x][y][z] +

18 Axy[x][y][z]*By[x][y][z] +

19 Axz[x][y][z]*Bz[x][y][z]

20 Cy[x][y][z] = Axy[x][y][z]*Bx[x][y][z] +

21 Ayy[x][y][z]*By[x][y][z] +

22 Ayz[x][y][z]*Bz[x][y][z]

23 Cz[x][y][z] = Axz[x][y][z]*Bx[x][y][z] +

24 Ayz[x][y][z]*By[x][y][z] +

25 Azz[x][y][z]*Bz[x][y][z]

Listing 27: Algorithm: Elementwise product of an array containing complex symmetric (3x3)

matrices and and array containg complex (3)-vectors.

133

References

[1] S. Bohlens et al., Current controlled random-access memory based on magnetic vortex handedness,

Appl. Phys. Lett. 93, 142508 (2008).

[2] S. Tehrani et al., Progress and Outlook for MRAM technology, IEEE Trans. Magn. 35, 2814

(1999).

[3] S. S. P. Parkin, M. Hayashi, and L. Thomas, Magnetic Domain-Wall Racetrack Memory, Science

320, 190 (2008).

[4] S. S. P. Parkin, U. S. Patent 7315470.

[5] A. Drews et al., Current- and �eld-driven magnetic antivortices for nonvolatile data storage, Appl.

Phys. Lett. 94, 062504 (2009).

[6] A. Hubert and R. Schäfer, Magnetic Domains - The Analysis of Magnetic Microstructures

(Springer, 1998).

[7] S. W. Yuan and H. N. Bertram, Fast adaptive algorithms for micromagnetics, IEEE Trans. Magn.

28, 2031 (1992).

[8] N. Hayashi, K. Saito, and Y. Nakatani, Calculation of Demagnetizing Field Distribution Based on

Fast Fourier Transform of Convolution, Jap. J. Appl. Phys. 35, 6065 (1996).

[9] J. E. Miltat and M. J. Donahue, in Handbook of Magnetism and Advanced Magnetic Materials,

edited by H. Kronmüller and S. S. P. Parkin (Wiley, 2007), Vol. 2, pp. 716�793.

[10] D. R. Fredkin and T. R. Koehler, Hybrid method for computing demagnetizing �elds, IEEE Trans.

Magn. 26, 415 (1990).

[11] T. R. Koehler and D. R. Fredkin, Finite element methods for micromagnetics, IEEE Trans. Magn.

28, 1239 (1992).

[12] J. Fidler and T. Schre�, Micromagnetic modelling - the current state of the art, J. Phys. D: Appl.

Phys. 33, R135 (2000).

[13] T. Schre� et al., in Handbook of Magnetism and Advanced Magnetic Materials, edited by H.

Kronmüller and S. S. P. Parkin (Wiley, 2007), Vol. 2, pp. 765�794.

[14] C. Seberino and H. N. Betram, Concise, e�cient three-dimensional fast multipole method for

micromagnetics, IEEE Trans. Magn. 37, 1078 (2001).

[15] P. B. Visscher and D. M. Apalkov, Charge-based recursive fast-multipole micromagnetics, Physica

B 343, 184 (2004).

[16] A. A. Khan, P. Lugli, W. Porod, and G. Csaba, in 2010 14th International Workshop on Compu-

tational Electronics, IWCE (IEEE, 2010), pp. 1�4.

[17] B. Van de Wiele, F. Olyslager, and L. Dupre, Application of the fast multipole method for the

evaluation of magnetostatic �elds in micromagnetic computations, J. Comput. Phys. 227, 9913

(2008).

[18] C. Abert et al., Numerical methods for the stray-�eld calculation: A comparison of recently

developed algorithms, J. Magn. Magn. Mater. 326, 176 (2013).

[19] M. J. Donahue and D. G. Porter, Object Oriented Micromagnetic Framework, 1999, Interagency

Report NISTIR 6376.

134

[20] K. M. Tako, T. Schre�, M. A. Wongsam, and R. W. Chantrell, Finite element micromagnetic

simulations with adaptive mesh re�nement, J. Appl. Phys. 81, 4082 (1997).

[21] T. Fischbacher, M. Franchin, G. Bordignon, and H. Fangohr, A Systematic Approach to Mul-

tiphysics Extensions of Finite-Element-Based Micromagnetic Simulations: Nmag, IEEE Trans.

Magn. 43, 2896 (2007).

[22] T. Fischbacher et al., Parallel execution and scriptability in micromagnetic simulations, J. Appl.

Phys. 105, 07D527 (2009).

[23] W. Scholz et al., Scalable parallel micromagnetic solvers for magnetic nanostructures, Comp.

Mater. Sci. 28, 366 (2003).

[24] L. Lopez-Diaz et al., Micromagnetic simulations using Graphics Processing Units, J. Phys. D:

Appl. Phys. 45, 323001 (2012).

[25] M. Naja�, Micromagnetic Modeling by Computational Science Integrated Development Environ-

ments (CSIDE), Dissertation, Hamburg University, 2011,

http://ediss.sub.uni-hamburg.de/volltexte/2011/5388/.

[26] A. Vansteenkiste and B. V. de Wiele, MuMax: A new high-performance micromagnetic simulation

tool, J. Magn. Magn. Mater. 323, 2585 (2011).

[27] P. Visscher and D. Apalkov, Simple recursive implementation of fast multipole method, J. Magn.

Magn. Mater. 322, 275 (2010).

[28] R. Chang et al., FastMag: Fast micromagnetic simulator for complex magnetic structures, J. Appl.

Phys. 109, 07D358 (2011).

[29] GNU General Public License, 2013, http://www.gnu.org/licenses/gpl.html.

[30] A. Kakay, E. Westphal, and R. Hertel, Speedup of FEM Micromagnetic Simulations With Graph-

ical Processing Units, IEEE Trans. Magn. 46, 2303 (2010).

[31] S. Li, B. Livshitz, and V. Lomakin, Graphics Processing Unit Accelerated O(N) Micromagnetic

Solver, IEEE Trans. Magn. 46, 2373 (2010).

[32] MicroMagnum website, http://micromagnum.informatik.uni-hamburg.de.

[33] MicroMagnum code repository, http://github.com/MicroMagnum/MicroMagnum.

[34] B. Stroustrup, The C++ Programming Language: 4th ed. (Addison-Wesley, 2013).

[35] CUDA Programming Guide, 2013, http://docs.nvidia.com/cuda/.

[36] G. van Rossum, The Python Language Reference Manual (Network Theory, 2003).

[37] A. Drews et al., Nonlinear magnetic vortex gyration, Phys. Rev. B 85, 144417 (2012).

[38] W. Heisenberg, Zur Theorie des Ferromagnetismus, Z. Phys. 49, 619 (1928).

[39] L. Landau and E. Lifshitz, On the theory of the dispersion of magnetic permeability in ferromag-

netic bodies, Phys. Z. Sow. 8, 153 (1935).

[40] F. Bloch, Zur Theorie des Austauschproblems und der Remanenzerscheinung der Ferromagnetika,

Z. Phys. 74, 295 (1932).

[41] T. Shinjo et al., Magnetic Vortex Core Observation in Circular Dots of Permalloy, Science 289,

930 (2000).

135

http://ediss.sub.uni-hamburg.de/volltexte/2011/5388/
http://www.gnu.org/licenses/gpl.html
http://micromagnum.informatik.uni-hamburg.de
http://github.com/MicroMagnum/MicroMagnum
http://docs.nvidia.com/cuda/

[42] A. Wachowiak et al., Direct Observation of Internal Spin Structure of Magnetic Vortex Cores,

Science 298, 577 (2002).

[43] W. F. Brown, Micromagnetics (Wiley, 1965).

[44] T. L. Gilbert, A Lagrangian formulation of gyromagnetic equation of the magnetization �eld,

Phys. Rev. 100, 1243 (1955).

[45] T. L. Gilbert, A phenomenological theory of damping in ferromagnetic materials, IEEE Trans.

Magn. 40, 3443 (2004).

[46] J. D. Jackson and R. F. Fox, Classical Electrodynamics, 3rd ed. (Wiley, 1998).

[47] L. Berger, Emission of spin waves by a magnetic multilayer traversed by a current, Phys. Rev. B

54, 9353 (1996).

[48] S. F. Zhang and S. S. L. Zhang, Generalization of the Landau-Lifshitz-Gilbert Equation for Con-

ducting Ferromagnets, Phys. Rev. Lett. 102, 086601 (2009).

[49] Z. Li and S. Zhang, Domain-wall dynamics driven by adiabatic spin-transfer torques, Phys. Rev.

B 70, 024417 (2004).

[50] J. C. Slonczewski, Current-driven excitation of magnetic multilayers, J. Magn. Magn. Mater. 159,

L1 (1996).

[51] S. Bohlens, Interplay of Inhomogeneous Currents and Magnetization Textures, Dissertation, Ham-

burg University, 2011,

http://ediss.sub.uni-hamburg.de/volltexte/2011/5054/.

[52] Y. Nakatani and T. Ono, E�ect of the Oersted �eld on a vortex core switching by pulse spin

current, Appl. Phys. Lett. 99, 122509 (2011).

[53] M. J. Donahue and R. D. McMichael, Exchange energy representations in computational micro-

magnetics, Physica B: Condensed Matter 233, 272 (1997).

[54] A. J. Newell, W. Williams, and D. J. Dunlop, A Generalization of the Demagnetizing Tensor for

Nonuniform Magnetization, J. Geophys. Res. 98, 9551 (1993).

[55] M. Schabes and A. Aharoni, Magnetostatic interaction �elds for a three-dimensional array of

ferromagnetic cubes, IEEE Trans. Magn. 23, 3882 (1987).

[56] M. Maicus et al., Magnetostatic energy calculations in two- and three-dimensional arrays of fer-

romagnetic prisms, IEEE Trans. Magn. 34, 601 (1998).

[57] B. Krüger, G. Selke, A. Drews, and D. Pfannkuche, Fast and Accurate Calculation of the Demag-

netization Tensor for Systems with Periodic Boundary Conditions, IEEE Trans. Magn. 49, 4749

(2013).

[58] C. Abert, G. Selke, B. Krüger, and A. Drews, A Fast Finite-Di�erence Method for Micromagnetics

Using the Magnetic Scalar Potential, IEEE Trans. Magn. 48, 1105 (2012).

[59] D. V. Berkov, K. Ramstöcck, and A. Hubert, Solving Micromagnetic Problems. Towards an Op-

timal Numerical Method, Phys. Status Solidi A 137, 207 (1993).

[60] B. Krüger et al., Fast and accurate calculation of demagnetization and Oersted �elds (working

title) , in preparation.

[61] B. Krüger et al., Fast dynamic current-path computation for micromagnetic simulation (working

title) , in preparation.

136

http://ediss.sub.uni-hamburg.de/volltexte/2011/5054/

[62] J. C. Butcher, Numerical Methods for Ordinary Di�erential Equations (Wiley, 1963).

[63] E. Fehlberg, Low-order classical Runge-Kutta formulas with stepsize control and their application

to some heat transfer problems, 1969, NASA technical report 315.

[64] J. R. Dormand and P. J. Prince, A family of embedded Runge-Kutta formulae, J. Comput. Appl.

Math. 6, 19 (1980).

[65] J. R. Cash and A. H. Karp, A variable order Runge-Kutta method for initial value problems with

rapidly varying right-hand sides, ACM Trans. Math. Softw. 16, 201 (1990).

[66] J. W. Cooley and J. W. Tukey, An algorithm for the machine computation of the complex Fourier

series, Math. Comp. 19, 297 (1965).

[67] M. Naja� et al., in Proc. of the 2008 Grand Challenges in Modeling and Simulation Conference

(Society for Modeling and Simulation, 2008), pp. 427�434.

[68] C. M. Rader, Discrete Fourier transforms when the number of data samples is prime, Proc. IEEE

56, 1107 (1968).

[69] L. Bluestein, A linear �ltering approach to the computation of discrete Fourier transform, IEEE

T. Acoust. Speech 18, 451 (1970).

[70] M. Frigo and S. G. Johnson, The Design and Implementation of FFTW3, Proc. IEEE 93, 216

(2005).

[71] G. Selke, Optimierung und Parallelisierung der Berechnung des Demagnetisierungsfelds im mikro-

magnetischen Simulator M3S, Diplomarbeit, Hamburg University, 2008.

[72] M. Frigo and S. G. Johnson, FFTW: an adaptive software architecture for the FFT, Int. Conf.

Acoust. Spee. 3, 1381 (1998).

[73] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran, in Ann. IEEE Symp. Found. Comp.

Sci. (IEEE Computer Society, 1999), p. 285.

[74] M. Frigo, A fast Fourier transform compiler, ACM SIGPLAN Not. 34, 169 (1999).

[75] M. Frigo and S. G. Johnson, A Modi�ed Split-Radix FFT With Fewer Arithmetic Operations,

IEEE T. Signal Proces. 55, 111 (2007).

[76] T. Matsuo and Y. Yamazaki, Demagnetizing Field in Micromagnetic Simulation Under Periodic

Boundary Conditions, IEEE Trans. Magn. 47, 902 (2011).

[77] K. M. Lebecki, M. D. Donahue, and M. W. Gutowski, Periodic boundary conditions for demag-

netization interactions in micromagnetic simulations, J. Phys. D: Appl. Phys. 41, 175005 (2008).

[78] L. Dagum and R. Menon, OpenMP: An industry standard API for shared-memory programming,

IEEE Comput. Sci. Eng. 5, 46 (1998).

[79] Portable Operating System Interface (POSIX), 2008, IEEE Std 1004.1-2008.

[80] A. Munshi, The OpenCL Speci�cation, 2009, technical report.

[81] MPI: A Message-Passing Interface Standard Version 3.0, 2012,

http://www.mpi-forum.org/docs/docs.html.

[82] A. Grama, Introduction to Parallel Computing, 2nd Ed. (Pearson Education, 2003).

[83] K. Asanovic et al., The Landscape of Parallel Computing Research: A View from Berkeley, 2006,

technical report.

137

http://www.mpi-forum.org/docs/docs.html

[84] R. J. Rost, OpenGL Shading Language (Addison-Wesley, 2004).

[85] F. Luna, Introduction to 3D Game Programming with DirectX 9.0c: A Shader Approach (Word-

ware Publishing, Inc., 2006).

[86] CUBLAS library reference manual, 2013, http://docs.nvidia.com/cuda/.

[87] J. Dongarra, Basic Linear Algebra Subprograms Technical Forum Standard, Int. J. High Perform.

Comput. Appl. 16, 1 (2002).

[88] CUFFT library reference manual, 2013, http://docs.nvidia.com/cuda/.

[89] M. Garland et al., Parallel Computing Experiences with CUDA, IEEE Micro 28, 13 (2008).

[90] M. J. Flynn, Some Computer Organizations and Their E�ectiveness, IEEE Trans. Comput. C-21,

948 (1972).

[91] S. Che et al., in Symposium on Application Speci�c Processors, 2008. (IEEE, 2008), pp. 101�107.

[92] A. Nukada and S. Matsuoka, in Proc. of the Conference on High Performance Computing Net-

working, Storage and Analysis, SC '09 (ACM, 2009), pp. 30:1�30:10.

[93] N. K. Govindaraju and D. Manocha, Cache-e�cient numerical algorithms using graphics hardware,

Parallel Comput. 33, 663 (2007).

[94] J. Brandt, P. J. Guo, J. Lewenstein, and S. R. Klemmer, in Proc. of the 4th international workshop

on End-user software engineering, WEUSE '08 (ACM, 2008), pp. 1�5.

[95] B. Kitchenham and S. L. P�eeger, Software quality: the elusive target, IEEE Software 13, 12

(1996).

[96] B. W. Boehm, J. R. Brown, and M. Lipow, in Proc. of the 2nd International Conference on

Software Engineering, ICSE '76 (IEEE Computer Society Press, 1976), pp. 592�605.

[97] K. Arnold, J. Gosling, and D. Holmes, The Java programming language (Addison-Wesley, 2006).

[98] MATLAB Version 7.10.0 (R2010a), 2010, http://www.mathworks.com/.

[99] T. E. Oliphant, A Guide to NumPy (Trelgol Publishing, 2006).

[100] E. Jones et al., SciPy: Open source scienti�c tools for Python, 2013,

http://www.scipy.org/.

[101] J. K. Ousterhout, Scripting: higher level programming for the 21st Century, Computer 31, 23

(1998).

[102] P. H. Langtangen, in Python Scripting for Computational Science, Vol. 3 of Texts in Computational

Science and Engineering, edited by T. J. Barth et al. (Springer, 2008), pp. 189�226.

[103] F. Perez and B. E. Granger, IPython: A System for Interactive Scienti�c Computing, Comput.

Sci. Eng. 9, 21 (2007).

[104] S. Meyers, E�ective C++ : 55 Speci�c Ways to Improve your Programs and Designs (Addison-

Wesley, 2005).

[105] D. M. Beazley, Automated scienti�c software scripting with SWIG, Future Gener. Comput. Syst.

19, 599 (2003).

[106] D. Abrahams, in Generic Programming, Vol. 1766 of Lecture Notes in Computer Science, edited

by M. Jazayeri, R. Loos, and D. Musser (Springer, 2000), pp. 69�79.

138

http://docs.nvidia.com/cuda/
http://docs.nvidia.com/cuda/
http://www.mathworks.com/
http://www.scipy.org/

[107] S. Ghali, Introduction to Geometric Computing (Springer, 2008).

[108] Visualization Toolkit (VTK), 2013, http://www.vtk.org.

[109] G. J. Myers, C. Sandler, and T. Badgett, The Art of Software Testing (Wiley, 2011).

[110] Micromagnetic Modeling Activity Group website,

http://www.ctcms.nist.gov/rdm/mumag.org.html.

[111] M. Naja� et al., Proposal for a standard problem for micromagnetic simulations including spin-

transfer torque, J. Appl. Phys. 105, 113914 (2009).

[112] G. Venkat et al., Proposal for a standard micromagnetic problem: Spin wave dispersion in a

magnonic waveguide, IEEE Trans. Magn. 49, 524 (2013).

[113] R. Hertel and H. Kronmüller, Finite element calculations on the single-domain limit of a ferro-

magnetic cube�a solution to muMAG Standard Problem No. 3, J. Magn. Magn. Mater. 238, 185

(2002).

[114] X. Cai, H. P. Langtangen, and H. Moe, On the performance of the Python programming language

for serial and parallel scienti�c computations, Scienti�c Programming 13, 31 (2005).

[115] S. Masini and P. Bientinesi, in Euro-Par 2010 Parallel Processing Workshops (Springer, 2011), pp.

541�548.

[116] CUDA C Best Practices Guide, 2013, http://docs.nvidia.com/cuda/.

[117] M. J. Donahue, Parallelizing a Micromagnetic Program for Use on Multiprocessor Shared Memory

Computers, IEEE Trans. Magn. 45, 3923 (2009).

[118] Y. Kanai et al., Micromagnetic Analysis of Shielded Write Heads Using Symmetric Multiprocessing

Systems, IEEE Trans. Magn. 46, 3337 (2010).

[119] K. Y. Guslienko, R. H. Heredero, and O. Chubykalo-Fesenko, Nonlinear gyrotropic vortex dynamics

in ferromagnetic dots, Phys. Rev. B 82, 014402 (2010).

[120] B. Krüger, Current-Driven Magnetization Dynamics: Analytical Modeling and Numerical Simu-

lation, Dissertation, Hamburg University, 2011,

http://ediss.sub.uni-hamburg.de/volltexte/2012/5887/.

[121] A. A. Thiele, Steady-State Motion of Magnetic Domains, Phys. Rev. Lett. 30, 230 (1973).

[122] A. Vogel et al., Vortex dynamics in triangular-shaped con�ning potentials, J. Appl. Phys. 112,

063916 (2012).

[123] A. Vogel, A. Drews, M. Weigand, and G. Meier, Direct imaging of phase relation in a pair of

coupled vortex oscillators, AIP Advances 2, 042180 (2012).

[124] J. Kimling et al., Tuning of the nucleation �eld in nanowires with perpendicular magnetic

anisotropy, J. Appl. Phys. 113, 163902 (2013).

[125] A. Drews, G. Selke, and D. P. F. Möller, in Proc. of the 2010 Conference on Grand Challenges in

Modeling and Simulation (Society for Modeling and Simulation, 2010), pp. 152�157.

[126] D. P. F. Möller, A. Drews, and G. Selke, in Proc. of the AlaSim 2012 Conference, Huntsville, AL.

(Society for Modeling and Simulation, 2012).

[127] P. J. van der Houwen and B. P. Sommeijer, Parallel iteration of high-order Runge-Kutta methods

with stepsize control, J. Comput. Appl. Math. 29, 111 (1990).

139

http://www.vtk.org
http://www.ctcms.nist.gov/rdm/mumag.org.html
http://docs.nvidia.com/cuda/
http://ediss.sub.uni-hamburg.de/volltexte/2012/5887/

	Title
	Abstract
	Zusammenfassung
	Contents
	Introduction
	I Micromagnetic Model and its Discretization
	Micromagnetic Model
	Landau-Lifshitz-Gilbert equation
	Effective field terms
	Exchange field
	Demagnetization field
	Anisotropy field
	External field

	Extensions for spin currents and electrical currents
	Spin-torque
	Macrolayer spin-torque
	Current paths
	Oersted field

	Discretization
	Finite-difference discretization
	Boundary conditions
	Exchange field
	Demagnetization field
	Demagnetization field (scalar potential method)
	Anisotropy field
	External field
	Oersted field
	Current paths

	Time discretization
	Explicit Runge-Kutta schemes
	Time integration in micromagnetic simulation

	Fast Numerical Methods
	Demagnetization field
	Fast convolution
	Fast field computation
	Full algorithm
	Scalar potential method

	Exchange field
	Oersted field
	Current paths

	II Parallel Computation of the Micromagnetic Model
	Parallel computing
	Fundamentals
	Parallel micromagnetic model computation
	Effective field
	Convolution-based field terms
	Local field terms

	Computation on Graphics Processing Units
	CUDA programming model
	Micromagnetic model implementation in CUDA
	Parallel loop over array elements
	Reduce operation
	Array rotation
	Iterated fast Fourier transforms
	Matrix-vector product
	Small kernel convolution

	III The MicroMagnum Simulator
	Design and Implementation
	Software quality requirements
	Programming language choice
	Architecture
	Mathematical abstraction layer
	Micromagnetic module system
	Simulation description and solver interface

	Discussion

	Software tests
	Unit and integration tests
	Functionality tests
	muMAG standard problem 1
	muMAG standard problem 2
	muMAG standard problem 3
	muMAG standard problem 4
	Spin torque standard problem
	Larmor precession test

	Performance tests
	Proportional run times
	Demagnetization field
	Demagnetization field (scalar potential method)
	Exchange field
	Comparison to OOMMF
	Memory usage

	Conclusion

	Use Case: Non-linear Magnetic Vortex Core Dynamics
	Magnetic vortex configuration
	Vortex dynamics
	Conclusion

	Conclusion and Outlook
	Acknowledgement
	Appendix
	Listings
	Functionality tests
	muMAG standard problem 1
	muMAG standard problem 2
	muMAG standard problem 3
	muMAG standard problem 4
	Spin-Torque standard problem
	Larmor precession test

	Sparse convolution subroutines

	References

