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Abstract
Ultracold quantum degenerate gases of alkaline-earth-like atoms open up new perspectives

for the investigation of strongly-correlated many-body physics. Long-lived metastable states in
combination with a decoupled nuclear spin enable the realization of intriguing Hamiltonians be-
yond the possibilities of current alkali-based experiments, ranging from the Kondo lattice model
to SU(N)-symmetric magnetic systems. Among the alkaline-earth-like elements, Yb is partic-
ularly versatile due to its large number of bosonic and fermionic isotopes with a wide range of
interaction strengths. This thesis describes a newly-built setup for the study of quantum many-
body physics with ultracold Yb, demonstrating the preparation of Bose-Einstein condensates
and multi-component degenerate Fermi gases in an optical lattice with coherent control over
the electronic state.
Within this work we have implemented for the first time a two-dimensional magneto-optical
trap (2D-MOT) for the initial laser cooling of Yb. The slow atoms from the 2D-MOT can
directly be loaded into a 3D-MOT operating on a narrow intercombination transition, and load-
ing rates comparable with Zeeman slower setups are achieved. The flexibility and the compact
setup of the 2D-MOT makes our setup well suited for the production of multi-element quantum
gas mixtures in the future.
Via evaporative cooling in a crossed optical dipole trap Bose-Einstein condensates of 174Yb
with up to 2 · 105 atoms are produced. Loading the condensate into a triangular optical lattice,
we observe the superfluid to Mott-insulator transition with Yb. Using the fermionic isotope
173Yb, quantum degenerate, multi-component Fermi gases with one to six spin components are
obtained with up to 8 · 104 atoms at 0.15TF.
In order to coherently prepare Yb quantum gases in the metastable 3P0 state, an ultrastable laser
addressing the 1S0 → 3P0 clock transition at 578 nm has been developed as a major part of this
thesis. Exhibiting a short-term stability at the 1Hz-level, this laser will serve as an important
tool for the manipulation and probing of strongly-correlated many-body systems of ultracold
Yb.
Control over the electronic state is demonstrated by Rabi spectroscopy on the 1S0 → 3P0 tran-
sition of quantum degenerate 173Yb in a three-dimensional optical lattice. In a spin-polarized
sample more than 90% of the atoms can be prepared in the metastable 3P0 state. Driving a
vibrational sideband transition, the atoms can also be coherently excited to higher bands in the
optical lattice. Moreover, first experiments towards the electronic state control of interacting
spin mixtures are performed, exhibiting signatures of interaction-induced lineshifts.
The preparation and manipulation techniques presented in this thesis constitute an important
step towards the exploration of novel quantum many-body physics with ultracold Yb.
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Zusammenfassung
Ultrakalte Quantengase aus Erdalkali-ähnlichen Atomen eröffnen neue Möglichkeiten zur

Untersuchung stark korrelierter Quantenvielteilchensysteme. Langlebige metastabile Zustände
kombiniert mit einem entkoppelten Kernspin ermöglichen es faszinierende Vielteilchensysteme
zu realisieren, die über die Möglichkeiten heutiger Alkali-basierter Experimente hinausgehen:
Vom Kondo-Gitter-Modell bis hin zu SU(N)-symmetrischen magnetischen Systemen. Von al-
len Erdalkali-ähnlichen Elementen besticht vor allem Ytterbium (Yb) durch die Vielzahl von
fermionischen und bosonischen Isotopen mit unterschiedlichen Wechselwirkungsstärken. Im
Rahmen der vorliegenden Arbeit wurde ein neuer experimenteller Aufbau zur Erforschung von
Quantenvielteilchensystemen aus ultrakalten Yb-Atomen realisiert. Mit diesem Aufbau wurden
sowohl Bose-Einstein Kondensate, als auch mehrkomponentige Fermigase in einem optischen
Gitter präpariert. Ferner wurde die kohärente Kontrolle des elektronischen Zustands ultrakalter
Atome demonstriert.
In dem hier vorgestellten Aufbau wurde zum ersten Mal eine zweidimensionale magneto-
optische Falle (2D-MOT) zur Erzeugung langsamer Yb-Atome implementiert. Die Atome aus
der 2D-MOT können direkt in eine 3D-MOT auf einer schmalen Interkombinationslinie geladen
werden. Die erzielten Laderaten sind mit denen von Zeeman slowern vergleichbar. Durch die
Flexibilität und den kompakten Aufbau der 2D-MOT ist unsere Apparatur besonders gut für die
Erzeugung mehrelementiger Quantengasmischungen in zukünftigen Experimenten geeignet.
Mittels evaporativer Kühlung in einer gekreuzten Dipolfalle wurden reine 174Yb Bose-Einstein
Kondensate mit bis zu 2 · 105 Atomen realisiert. Anhand dieser Kondensate konnte der Mott-
Isolator Übergang in einem optischen Dreiecksgitter demonstriert werden. Des Weiteren wur-
den unter Verwendung des fermionischen Isotops 173Yb ein- bis sechskomponentige quan-
tenentartete Fermigase mit bis zu 8 · 104 Atomen bei 0.15TF erzeugt.
Zur kohärenten Präparation von Yb-Quantengasen im metastabilen 3P0-Zustand wurde als wich-
tiger Teil dieser Arbeit ein hochstabiler Laser für die Anregung des 1S0 → 3P0 Uhrenüber-
gangs bei 578 nm entwickelt. Mit einer Kurzzeitstabilität von etwa 1 Hz eröffnet dieser La-
ser vielfältige Möglichkeiten der gezielten Manipulation und Detektion von ultrakalten Yb-
Vielteilchensystemen.
Die Kontrolle des elektronischen Zustands wurde anhand von Rabi-Spektroskopie auf dem
1S0 → 3P0 Übergang von quantenentartetem 173Yb in einem dreidimensionalen optischen Git-
ter gezeigt. In einem Spin-polarisierten Ensemble können mehr als 90% der Atome im metasta-
bilen 3P0 präpariert werden. Die kohärente Anregung in höhere Bänder des optischen Gitters
ist durch die Adressierung von Vibrationsseitenbändern möglich. Schließlich wurden erste Ex-
perimente zur Kontrolle des elektronischen Zustands in wechselwirkenden Spin-Mischungen
durchgeführt. Diese weisen Anzeichen von wechselwirkungsinduzierten Linienverschiebungen
auf.
Die in dieser Arbeit vorgestellten Präparations- und Manipulationstechniken stellen einen guten
Ausgangspunkt dar, um die neuartige Physik von Yb-Quantengasen zu untersuchen.
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Introduction - Many-body physics with
ultracold Ytterbium

For a very long time, the work of physicists has been to take the world to pieces in order to
find the elementary constituents of all things in nature. While this work has not come to an end
as can be seen in the exciting research in current elementary particle physics, it can already be
considered extremely successful: The physics of single electrons, neutrons and protons, which
make up the matter we find on earth, can be quantitatively described with enormous accuracy.
Interestingly, one of the main challenges for today’s physicists is putting all these particles back
together and understand how the collective properties of nuclei, molecules or solid state mate-
rials emerge from the physics of their microscopic constituents. One outstanding problem of
this kind is the mechanism of the high-temperature superconductivity of cuprate materials [2],
which is still barely understood. But there are many more questions in condensed matter and
general many-body physics which are equally puzzling and have withstood their solution for
many years, such as the existence of spin-liquid states in frustrated magnets [3] or Majorana
bound-states in hybrid superconductors [4].
The fact that the size of the Hilbert spaces of quantum many-body systems grows exponentially
with the number of particles makes them computationally intractable and therefore extremely
difficult to analyze theoretically. Consequently, tackling many-body physics problems requires
reducing their complexity to the minimum. To this end, strongly simplified theoretical mod-
els have been developed, such as the Hubbard model or the Kondo lattice model in condensed
matter physics, which are hoped to capture the essence of the physics behind the phenomena to
be studied. However, even these simplified models cannot be solved entirely and it is unclear
whether they really contain the answers to the open questions. The idea of simplification can,
however, also be transferred to the experimental domain: One can try to engineer an artificial
material, which is free from all features that unnecessarily complicate the physical understand-
ing. Such an artificial material should ideally allow to tune all relevant physical parameters
over a wide range, the particle spacings should be large enough to directly look at the micro-
scopic structure, and the relevant timescales should be slow enough to study dynamic effects
without extreme effort. It can then be investigated, whether this simplified toy-material exhibits
the same phenomena as the original condensed matter sample. One can test, how the material
responds to changes in the physical parameters, and in which way the macroscopic properties
are connected to the microscopic states of the particles. In other words, one can directly look at
a physical realization of a simplified model instead of solving it computationally. This would
circumvent the computational limitations encountered in the theoretical study of many-body
physics problems.
In 1998 Jaksch and Zoller [5] were the first to realize that ultracold, neutral atoms constitute

1
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wonderful building blocks of such toy-materials. Although interacting only via weak van-der-
Waals forces, neutral atoms cooled to nK-temperatures can be brought into the regime where
interactions dominate over all other energy scales and strong quantum-correlations govern the
many-particle physics. This can be done in two ways: Feshbach-resonances can be used to
strongly increase the interactions after the atoms have been cooled down [6]. Alternatively,
the kinetic energy, which still dominates over the interaction energy in bare, trapped gases of
ultracold atoms, can further be reduced by applying an optical lattice potential to the atoms [7].
In a deep enough lattice, the on-site interaction of two atoms on the same lattice site becomes
much larger than the kinetic tunneling energy, and the sample enters the interaction-dominated
regime.
In the past years, considerable progress has been made on experiments with strongly correlated
many-body systems of ultracold atoms. The Mott-insulator state has been realized with bosonic
[8] as well as fermionic atoms [9, 10], the BEC-BCS crossover has been intensely studied in
many experiments ([11, 12] and references therein), and the equation of state of a unitary Fermi
gas has been measured [13], to name only a few. While these experiments demonstrate the
potential of ultracold atoms as model systems for many-body physics, a lot of effort is still nec-
essary to reach the regimes that allow to address the cutting-edge problems of condensed matter
physics. Many of these efforts today are devoted to establishing new experimental tools for
the manipulation and probing of the atomic samples in order to step-by-step increase the com-
plexity of the many-body Hamiltonians which can be realized: Novel optical lattice geometries
are implemented [14, 15], probing and manipulation techniques with high spatial resolution are
developed [16, 17], strong artificial magnetic fields for cold atoms are engineered [18]. Since
the internal structure of the atoms crucially determines how they can be manipulated and what
kinds of many-body Hamiltonians can be studied with them, extending the experimental trap-
ping and cooling techniques to more and more atomic species is an important part of this work.
Most cold-atoms-experiments today work with alkali atoms, which possess many desirable
properties: Their strong D1- and D2-spectral lines in the red to near-infrared spectral range
offer strong cycling transitions well suited for laser cooling. They comprise bosonic as well as
fermionic isotopes with various ground-state spin configurations. Several isotopes exhibit broad
Feshbach-resonances that can be used for tuning of the ground-state interaction. However, two
other classes of atoms receive growing attention. The first one consists of atoms with a sizable
magnetic dipole moment in the ground state. Three elements belonging to this class have been
cooled to quantum degeneracy: Chromium [19], Dysprosium [20], and Erbium [21]. The rich
physics connected to the anisotropic, long-range dipole-dipole interactions of these elements
is attracting great interest [22]. The second class is that of alkaline-earth-like atoms, consist-
ing of the alkaline-earth elements and Ytterbium (Yb), which exhibits a very similar electronic
structure. These elements have been used already for several years in the field of frequency
metrology, because they exhibit ultranarrow optical transitions which are very insensitive to
environmental perturbations, making them excellent frequency references [23]. Their potential
for the field of quantum many-body physics has only been realized a few years ago, when a
series of theoretical proposals showed how the characteristic properties of these atoms could
be used to engineer fascinating Hamiltonians [24, 25] and establish powerful tools for quantum
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Figure 0.1: Panel a): The five lowest energy electronic states of Yb. The spectrum is split between singlet-
and triplet-states of the combined electron spin. The three 3P -states couple to the ground state only via narrow
intercombination transitions. While the transition to the 3P1 state is still broad enough to be used for laser cooling,
the 3P0,2 are true metastable states with lifetimes of tens of seconds and can be used for the study of quantum many-
body physics. Panel b): Illustration of the Kondo lattice model realized with ultracold Yb. A mixture of ground-
and metastable state atoms is loaded into a state dependent optical lattice, where only the ground-state atoms can
hop between lattice sites. A difference in the interaction between symmetric and anti-symmetric superpositions of
ground- and metastable state atoms leads to a direct spin-exchange interaction between the two species.

information processing [26–28]. Motivated by these exciting prospects, the goal of the work
presented in this thesis has been to build an apparatus for the investigation of quantum many-
body physics with ultracold Yb, allowing experiments beyond what is presently possible with
alkali atoms.
The most interesting aspect of alkaline-earth-like atoms is the existence of low-lying metastable

electronic states. Because of their two valence-electrons, the energy spectrum of these atoms
resembles that of Helium, being split into singlet (S = 0) and triplet states (S = 1) of the
combined electron spin S. The selection rule ∆S = 0 for electric dipole transitions forbids
transitions between singlet and triplet states. However, imperfect LS-coupling leads to very
weak so-called intercombination transitions connecting these states. Figure 0.1 a) depicts the
five lowest lying electronic states of Yb. The ground state is a 1S0-state with no angular mo-
mentum L = S = J = 0. It is connected to the next higher singlet state 1P1 via a strong
dipole-allowed transition in the blue. Energetically in between these two states lie three 3P
states. The 3P1 is coupled to the ground state via a relatively broad intercombination transition
in the green. The other two states 3P0 and 3P2 are true metastable states with lifetimes of tens
of seconds. The corresponding dipole transitions to the ground state exhibit extremely narrow
linewidths of only a few mHz.
These metastable states differ strongly from the ground state in their interactions as well as their
ac-polarizability, which has intriguing consequences for experiments with mixtures of ground-
and metastable-state atoms. For the fermionic alkaline-earth and Yb isotopes, which exhibit
nuclear spin, mixtures of the 1S0 ground state with the 3P0 metastable state are of special inter-
est, because both states have a vanishing electronic angular momentum J = 0. Thus, in such
a mixture the electronic state and nuclear spin constitute independent degrees of freedom. In
ref. [24] it has been pointed out that two alkaline-earth-like atoms on the same site of an optical
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Figure 0.2: Panel a) depicts ground- and metastable state Yb-atoms in a state-dependent optical lattice, which is
red-detuned for the ground-state and blue-detuned for the excited state. The two species thus occupy individual
sub-lattices shifted by half a lattice spacing. Coupling the two electronic states by laser radiation leads to laser-
assisted tunneling between the two sub-lattices. This can be used for the generation of strong artificial magnetic
fields as illustrated in panel b). The atoms are placed on a two-dimensional square lattice, where along one direction
normal tunneling occurs (indicated by black arrows) and laser assisted tunneling is active along the other direction
(indicated by yellow arrows). Due to the spatially varying phase of the coupling laser, a net phase is imprinted on
the atomic wavefunction, when moving around a lattice plaquette. This phase φ is equivalent to a vector potential
acting on the atoms.

lattice, each in a different electronic state 1S0 or 3P0, are subject to a direct spin-exchange inter-
action. If this spin-exchange interaction is combined with a state-dependent optical lattice that
allows tunneling 1S0 atoms between neighboring sites but freezes out the motion of 3P0 atoms,
the system is described by the Kondo lattice model, one of the most important models in current
condensed matter physics [24, 29]. Such a state-dependent lattice is easily realized for ground-
and metastable-state atoms. The ac-polarizability of the 1S0 ground state is mostly determined
by strong transitions to other singlet states, while the polarizability of the 3P0 state is dominated
by transitions to other triplet states. Therefore, the relative size of the polarizabilities of the two
states varies strongly with wavelength. Choosing the right wavelength for the optical lattice
thus allows to realize almost any state dependence. The Kondo lattice scenario with ultracold
Yb-atoms is illustrated in fig. 0.1 b). 3P0 atoms experience a deep optical lattice and are pinned
to the individual lattice sites. 1S0 atoms are allowed to hop between neighboring sites, where
they couple to the localized 3P0 atoms via the spin-exchange interaction. Up to now experi-
ments of ultracold atoms in optical lattices have mostly been restricted to the Hubbard model.
Therefore, the realization of the Kondo lattice would constitute an important step in the study
of condensed matter problems with cold atoms.
Mixtures of 1S0 and 3P0 atoms in state-dependent optical lattices have, however, many more

interesting applications. Consider for example atoms in an optical lattice, which is red-detuned
for the ground state and blue-detuned for the metastable state. Since the ground-state atoms are
drawn to the intensity maxima and the metastable states to the intensity minima, the two species
occupy individual sub-lattices, shifted by half a lattice site with respect to each other as shown
in fig. 0.2 a). If in such a lattice the two states are coupled by means of laser radiation, tran-
sitions between the ground- and metastable state are accompanied by laser-assisted tunneling
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from one sub-lattice to the other. In such a laser-assisted tunneling process the spatially varying,
complex-valued phase of the coupling laser is imprinted on the atomic wavefunction. This phase
can be used to generate artificial magnetic fields for Yb-atoms moving on a two-dimensional
optical lattice as depicted in fig. 0.2 b). The lattice must be implemented such that along one di-
rection the atoms move by regular spontaneous tunneling, while laser-assisted tunneling occurs
along the second direction [30]. It can be shown that in this scenario the atomic wavefunction
aquires a net phase when moving around a lattice plaquette, equivalent to the Aharonov-Bohm
phase of electrons moving in a magnetic field [31]. The system is then described by the Harper
Hamiltonian, which contains important aspects of the integer quantum Hall effect [32] and is
still subject of intense theoretical study. While similar schemes can be implemented for alkali
atoms [33, 34], they require near resonant optical lattices and Raman coupling, which both in-
duce significant heating of the atoms. The facts that for Yb the lattice can be far detuned from
any transition and spontaneous emission from the metastable state is negligible constitute two
important advantages, which make the implementation of strong synthetic magnetic fields for
ultracold Yb very promising.
These are only two examples, which illustrate the possibilities that ultracold alkaline-earth-like
atoms offer for the field of strongly correlated quantum many-body physics. Other interesting
research directions using specific features of these atoms include high-spin quantum magnetism
[35] and dipolar open-shell molecules [36].
Experiments with ultracold Yb have been pioneered by the research group of Y. Takahashi in
Kyoto, who produced the first Bose-Einstein-condensate of 174Yb already in 2003 [37]. By the
time we started the Yb-experiment in Hamburg, his group had cooled five of the seven stable
Yb-isotopes into the quantum degenerate regime. Since then they have also performed first in-
teresting experiments with Yb in optical lattices [38, 39]. In contrast, none of the alkaline-earth-
elements had been cooled to quantum degeneracy when we started our work. This happened,
however, shortly afterwards when first 40Ca [40] and later 84Sr [41] were Bose-condensed.
While especially Sr has now been demonstrated to be an extremely versatile atom, Yb capti-
vates with its large number of stable isotopes, especially the two fermionic ones each with very
interesting characteristics, as well as its favorable laser cooling properties. These two aspects
as well as the successful experiments in the Kyoto group were our main motivation to choose
Yb for our experiments.

This thesis comprises three chapters. The first chapter describes the experimental setup for
the laser cooling of Yb. We demonstrate for the first time a two-dimensional magneto-optical
trap (2D-MOT) as a source of slow Yb atoms, providing an alternative to the commonly used
Zeeman slower. After discussing the characteristics of the two cooling transitions used for the
2D- and 3D-MOT, the cooling and trapping performance is characterized and compared to that
of Zeeman slower setups.
Chapter 2 presents the production of quantum degenerate gases of bosonic 174Yb and fermionic
173Yb. Following a discussion of the evaporative cooling to quantum degeneracy in a crossed
optical dipole trap for each isotope, their behavior in a triangular optical lattice is examined.
For 174Yb a measurement of the superfluid to Mott-insulator transition is presented. For 173Yb
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special attention is paid to the process of loading the optical lattice, revealing that due to the
high mass of Yb higher Bloch-bands of the lattice are easily populated. Moreover, techniques
for the preparation and detection of the nuclear spin states of 173Yb are demonstrated.
Chapter 3 finally deals with the control of the electronic state of ultracold Yb. In section 3.1
a stable laser system for addressing the ultranarrow 1S0 → 3P0 transition is presented, which
has also been built in the course of this thesis. With this system a linewidth at the few-Hz level
could be demonstrated. The remaining two sections cover the spectroscopy on the 1S0 → 3P0

transition of fermionic 173Yb in an optical lattice. First the spectroscopy is characterized experi-
mentally using a spin-polarized sample. Finally, the spectroscopy Hamiltonian of an interacting
two-component spin-mixture is discussed in detail and first spectroscopy experiments on such
an interacting sample are presented.



1 A 2D/3D-MOT Setup for Laser Cooling of Yb

Every cold atoms experiment starts with an initial laser cooling and trapping stage, taking the
atoms evaporated from a solid piece of material at a few hundred K to a dilute gas in the µK-
regime. In this chapter I present our laser cooling setup for Yb, demonstrating for the first time
a 2D-MOT as a source of cold Yb atoms, providing an alternative to the commonly used Zee-
man slower.
The arguments in favor of a 2D-MOT can be summarized as follows: The 2D-MOT has become
well established as a reliable, bright, and flexible source of cold atoms in the past years. Com-
pared to a Zeeman slower it is more compact and in principle easier to build. Moreover, it can
be used for cooling multiple elements for the investigation of heteronuclear quantum gas mix-
tures, while Zeeman slower setups often require two separate slowers for this purpose. Finally,
a 2D-MOT does not require a slowing laser beam from the direction of the 3D-MOT. There-
fore, 2D-MOT setups typically have better optical access to the 3D-MOT chamber than Zeeman
slower setups. An important argument for our team was the fact that all other experiments in
our group use 2D-MOTs. Doing so also for Yb allowed us to adopt for the most part the design
of the other experiments in our group.
Until 2009 2D-MOTs were exclusively used for elements with comparatively high vapor pres-
sure at room temperature, such as Rb, K, or Hg [42–44], where the 2D-MOT can be loaded
from background vapor. Yb however, exhibits an extremely low vapor pressure at room tem-
perature and the 2D-MOT needs to be loaded from a thermal beam emitted from an oven or a
dispenser. In ref. [45] the authors showed that this is indeed feasible by demonstrating a 2D-
MOT for Li, which was loaded from a thermal atom beam emitted from an oven located at the
side of the 2D-MOT.
This chapter presents the implementation of such a side-loaded 2D-MOT for Yb. It is organized
as follows: After summarizing the details of the relevant cooling transitions in section 1.1, the
vacuum chamber and the geometry of the 2D/3D-MOT setup, as well as the cooling laser sys-
tems are described in sections 1.2 and 1.3. The setup is then characterized in section 1.4. Finally,
the advantages and disadvantages of a 2D-MOT compared to a Zeeman slower are discussed in
section 1.5.

1.1 Cooling Transitions of Yb

The most important parameter of an optical transition used for laser cooling and magneto-
optical trapping is the linewidth Γ. It determines both the radiation pressure and thus the capture
velocity of a MOT, as well as the Doppler temperature, which is approximately the temperature

7
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Figure 1.1: Diagram of the lowest lying energy levels
of Yb. Two transitions are well suited for laser cooling:
The 1S0 → 1P1 with its large linewidth yields a large
capture velocity but also a large Doppler temperature. It
is thus ideal for pre-cooling thermal atoms to sub-mK
temperatures. The narrower 1S0 → 3P1 intercombi-
nation transition with a Doppler temperature of 4.4µK
can then be used to cool the atoms further.

limit in a MOT. The Doppler temperature TD is given by

TD =
~Γ

2kB

≈ 24µK/MHz · Γ

2π
, (1.1)

where ~ denotes Planck’s constant and kB the Boltzmann constant. An upper bound for the
MOT capture velocity vc can be estimated by taking the slowing force to be at its maximum
of ~kΓ/2 over the whole MOT volume, with k denoting the wavenumber of the cooling light.
From energy conservation one obtains

vc =

√
~kΓd

M
, (1.2)

where d is the MOT diameter and M the mass of the atom. For Yb with a mass of ∼ 174 u and
a cooling transition in the visible spectral range (λ ≈ 500 nm) the capture velocity amounts to

vc,Yb ≈ 17 m/s ·
√

d · Γ
cm ·MHz

(1.3)

Using these estimates, one can identify two useful cooling transitions in the energy spectrum
of Yb, which is depicted in fig. 1.1: The 1S0 → 1P1 transition at 399 nm and the 1S0 → 3P1

transition at 556 nm. The 399 nm transition, with a linewidth of Γ = 2π · 29 MHz results
in a Doppler temperature of 700µK and a capture velocity of 102 m/s ·

√
d/cm. Thus it is

well suited for initially cooling the atoms from a few hundred K to sub-mK temperatures.
Due to its high Doppler temperature, it is however rather impractical for a final laser cooling
stage prior to evaporation. For alkali atoms, which can be sub-Doppler cooled, the Doppler
temperature is basically irrelevant. However, all known sub-Doppler cooling mechanisms rely
on redistribution of population between different mF-ground-states. Hence, they do not work
for the bosonic isotopes of Yb, which all have F = 0 in the ground-state. Thus, the temperature
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of a MOT on the 1S0 → 1P1 transition will really be limited to TD = 700µK, which is a rather
bad starting point for evaporation into the quantum degenerate regime. Luckily, the 1S0 → 3P1

intercombination transition provides a much lower Doppler temperature of 4.4µK due to its
narrow linewidth of Γ = 2π · 182 kHz. At the same time, the capture velocity on this transition
of 7 m/s ·

√
d/cm is still sufficient to capture atoms from a Zeeman slower or a 2D-MOT. The

Doppler temperature of 4.4µK is comparable to the sub-Doppler temperatures achieved with
alkali atoms and presents a good starting point for evaporative cooling. This suggests a two
stage cooling procedure, where the atoms are initially cooled in a Zeeman-slower or a 2D-MOT
on the broad 1S0 → 1P1 transition. The resulting beam of pre-cooled atoms is then directly
loaded into a 3D-MOT on the narrower 1S0 → 3P1 intercombination transition. This two-color
cooling scheme has been pioneered by the group of Y. Takahashi [46] and to my knowledge is
currently used by all Yb-quantum gas experiments worldwide.
Since the maximum capture velocity of the intercombination MOT is rather small, it is desirable
to fully reach this maximum in the experiment. This is complicated by the fact that the Doppler
shift is independent of the transition linewidth. For narrow line transitions it thus exceeds the
natural linewidth already for very low velocities and easily shifts the atoms out of resonance
with the cooling light. Our intercombination MOT has a diameter of d = 2 cm (cf. section 1.2),
resulting in a maximal capture velocity of 10 m/s according to eq. (1.3). The Doppler shift at
this velocity is

∆νD =
kvc

2π
= 18 MHz, (1.4)

which is about a 100 times the natural linewidth of the transition. Consequently, an atom that
traverses the MOT will most of the time scatter no photons, because it is Doppler-shifted out
of resonance with the cooling light. Part of this Doppler shift is compensated by the Zeeman
shift as the atoms move through the magnetic field gradient of the MOT. For our geometry
with a MOT diameter of 2 cm and a gradient field of 2 G/cm the Zeeman shift across the MOT
amounts to ∆νZ ≈ 8 MHz, leaving an uncompensated Doppler shift of about 10 MHz. In order
to keep the scattering rate, and thus the slowing force, at its maximum during the entire capture
process, light with a spectral width of about 10 MHz is required. This is still 50 times the
natural linewidth. The required broadening can either be achieved by saturation broadening or
by actively modulating the laser frequency itself. The latter method is more economic, because
saturating the transition implies a reduction of the scattering rate per photon.

For the fermionic isotopes 171Yb and 173Yb, which carry a nuclear spin of I = 1/2 and
I = 5/2 respectively, the hyperfine structure of the cooling transitions needs to be taken into
account. It is shown in fig. 1.2. The hyperfine splitting of the 3P1-manifold is on the order of a
few GHz, much larger than the relevant detunings in the intercombination-MOT. Consequently,
neighboring hyperfine transitions that are not used for the MOT can be neglected. The hyperfine
splittings of the 1P1-manifold are about a factor of ten smaller and amount to a few hundred
MHz. A rather small splitting compared to the linewidth of Γ = 2π · 29 MHz. For 171Yb
this is not problematic, because the F = 3/2-state used for cooling is the lowest hyperfine
state. The cooling laser can thus be red-detuned from the whole hyperfine manifold, which is
ideal for Doppler cooling. For 173Yb the hyperfine structure is however extremely problematic:
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Figure 1.2: Hyperfine structure of the 3P1 and 1P1 states of Yb. For the 3P1-state shown in panel a), the hyperfine
splitting is in the GHz-range and thus negligible compared to the detunings in a MOT. The splittings in the 1P1

manifold are however only a few hundred MHz, corresponding only to a few linewidths of the 1S0 → 1P1

transition. Especially the F = 3/2 and F = 7/2 states in 173Yb are only 2.5 Γ apart. This narrow hyperfine
structure is a serious problem for a MOT on this transition. The hyperfine Landé-factors gF are indicated next to
each level.

The F = 7/2-state that must be used for Doppler cooling is the highest energy hyperfine
level. And only 2.5 Γ below lies the F = 3/2-state. Thus, for MOT detunings of ∆ < 2.5 Γ
the cooling laser will be closely blue-detuned from that state, resulting in Doppler heating.
Tuning the cooling laser below the F = 3/2-state is also problematic, because the gF-factors
of the F = 3/2- and F = 7/2-states have opposite sign. Thus, the F = 3/2-state causes
a deconfining position-dependent force acting against the desired confining force exerted by
the F = 7/2-transition. Already in early experiments on magneto-optical trapping of Yb on
the 399 nm-transition, a strongly suppressed loading rate for 173Yb has been observed and was
attributed to the narrow hyperfine structure [47–49]. This problem applies of course also to
a 2D-MOT and presents a major disadvantage of a 2D-MOT for Yb compared to a Zeeman
slower. Unfortunately, we realized this too late. Still, we managed to tweak the 2D-MOT such
that we can reasonably work with 173Yb in our experiment, as will be described in section 1.4.

Another peculiarity of the laser cooling and trapping of fermionic Yb- and alkaline-earth
isotopes, which must be shortly mentioned here, comes from the large difference of the ground-
and excited-state magnetic moments of the cooling transitions. Since the ground state of Yb has
a purely nuclear spin, its magnetic moment is∼ 2000 times smaller than those of the excited 1P1

and 3P1 states, which are on the order of the Bohr-magneton. Therefore, in the magnetic field
gradient of the MOT the cooling transitions split up according to the magnetic quantum number
of the excited statem′F as shown in fig. 1.3 a). This is in stark contrast to alkali atoms, where the
differential magnetic moment is small and the transition splits up according to the difference of
the initial- and final-state magnetic quantum numbers ∆mF. This is shown in panel b) of the
same figure. The consequences of this m′F-dependent splitting for the magneto-optical trapping
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Figure 1.3: Illustration of the capture process in a MOT using a transition with a large differential Zeeman shift
between the ground- and excited state as in Yb. In the magnetic field gradient of a MOT, such a transition splits
up according to the magnetic quantum number of the final state m′F, as shown in panel a). In contrast, when
the differential Zeeman shift is low as in the case of alkalis, the transition splits up according to the ∆mF of the
transition, as shown in panel b). In the case of a large differential Zeeman shift, only half of the mF -ground states
can be efficiently captured as shown in panels c) and d) for the

(
1S0, F = 5/2

)
→
(
3P1, F = 7/2

)
of 173Yb.

For positive mF shown in c), the magnetic field shifts both transitions σ+ and σ− to higher frequencies. Thus,
the Doppler-blue-shifted σ+-polarized beam is in resonance and slows down the atom. For negative mF shown
in d), both transitions exhibit a negative Zeeman shift, bringing them into resonance with the Doppler-red-shifted
σ−-polarized beam, which accelerates the atom. For the stretched states mF = ±5/2 shown here, the large ratio
between the Clebsch-Gordan coefficients of 1:21 further favors the slowing of the mF = +5/2-state and the
acceleration of the mF = −5/2-state.

of alkaline-earth-like atoms have first been noticed by the Tokyo group [50] and are nicely
explained in ref. [51]. Essentially, it can be summarized by saying that in the steady state the
MOT only works well for one half of the mF-ground-states, while being ineffective on the other
half. As long as enough MOT-photons are scattered to continuously randomize the ground-
state mF-population, this is more or less irrelevant. Only the average restoring force is reduced.
During the MOT capture process, when the Doppler shift νD is large compared to the Zeeman
shift, the consequences are more drastic, as can be seen from the following discussion: Consider
an atom in the mF = +5/2 ground-state, entering the MOT from the direction of positive x,
shown in fig. 1.3 c). It can be excited to the m′F = +7/2-state by absorbing a σ+-polarized
photon from MOT-beam 1, slowing down the atom, or it can be excited to the m′F = +3/2-state
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by absorbing a σ−-polarized photon from MOT-beam 2, accelerating the atom. The magnetic
field gradient shifts both states to higher energies in the region of x > 0. Due to the Doppler
shift, beam 1 is blue shifted into resonance with them′F = +7/2-transition, while beam 2 is red-
shifted, out of resonance. This strongly favors the desired scattering of σ+-photons from beam
1 that slows down the atom. The Clebsch-Gordan coefficients further suppress the unwanted
scattering of σ−-photons. Thus, atoms entering the MOT in the mF = +5/2-state can be
efficiently captured. These arguments also hold for the other states with mF > 0. Only the
lower Zeeman shift slightly reduces the suppression of unwanted σ−-scattering. The situation is,
however, completely reversed for states withmF < 0: Consider now an atom in themF = −5/2
ground-state entering the MOT again from the direction of positive x. This atom can be excited
to the m′F = −7/2-state by absorbing σ−-photons from beam 2, accelerating the atom. Or
it can be excited to the m′F = −3/2-state by absorbing σ+-photons from beam 1, slowing
down the atom. Contrary to the +5/2-case, the combination of Zeeman- and Doppler shift
brings the undesired σ−-transition into resonance, while shifting the desired σ+-transition out
of resonance. The Clebsch-Gordan coefficients further worsen the situation, as they suppress
the σ+- compared to the σ−-transition. Consequently, atoms in the mF = −5/2-state are hardly
captured by the MOT at all. This effect is less pronounced but qualitatively the same for the
other states with mF < 0. This discussion shows that due to the large differential Zeeman shift
between the ground- and excitedmF-states only half of themF-states can be captured in a MOT.

1.2 The MOT setup

The vacuum setup we use is similar to those used in the other experiments in our group. It is
presented in great detail in the PhD thesis of Sören Dörscher [52], who did the CAD design.
Figure 1.4 depicts the essential parts of our MOT setup. The vacuum chamber consists of two
glass cells connected to a small stainless steel chamber. The steel chamber provides separate
connections to two 50 l/s ion pumps, one for each glass cell, and connects the two cells via a
differential pumping tube. The 2D-MOT is operated in the upper glass cell. From there, the
slowed atoms propagate through the differential pumping tube into the lower glass cell, called
science cell, where they are eventually cooled to quantum degeneracy. A close-up of the 2D-
MOT cell is shown in panel b) of fig. 1.4. Two dispensers1 are mounted upright in the corners
of the glass cell. The slit-shaped openings are facing the center of the cell that corresponds to
the position of the 2D-MOT. Expectedly, the dispensers emit almost into the full half space in
front of the opening. Thus, in order to avoid coating the glass cell with Yb, we have installed
additional slit apertures in front of the dispensers that limit the coating of the glass cell to the
corners, where no laser beams pass through.
The magnetic field gradient for the 2D-MOT is generated by four coils of rectangular shape,
which can be seen in fig. 1.4 a) and b), generating a gradient of 4.6 G/cm · A−1. Each coil
consists of 84 turns of copper wire with a diameter of 1.25 mm. In order to reach gradients as

1Alvatec, AS-4-Yb-500-S
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Figure 1.4: Schematic of the vacuum setup and the 2D-/3D-MOT geometry. Panel a) depicts a three-dimensional
drawing of the vacuum chamber and the MOT beams. The 2D-MOT glass cell is connected to the science cell via
a narrow differential pumping tube located inside the stainless steel chamber. A push-beam enhances the flux of
atoms reaching the science cell. For the bosonic 174Yb the fluorescence of the 2D-MOT can well be observed on
a ccd-camera as a thin long line. Hundreds of millions of atoms in the 3D-MOT fluoresce in bright green. Panel
b) depicts a close-up of the 2D-MOT cell. Two dispensers are mounted upright in the corners of the glass cell,
emitting Yb vapor through ∼ 2 cm long slits. Additional apertures carefully positioned in front of the dispensers
protect the glass cell from being coated with Yb.

high as 60 G/cm necessary for the Yb-2D-MOT, the brass reels on which the coils are wound
are water-cooled. Some other groups use permanent magnets to generate the 2D-MOT field.
While this is a good option for a single-element 2D-MOT, it cannot be done when using the 2D-
MOT for cooling multiple elements, since this usually requires changing the gradient during the
experimental cycle. The 2D-MOT beams are elliptical with diameters of (1 cm× 4 cm). The
long axis is oriented vertically to match the emission characteristics of the dispenser and the slit
aperture in front of it.
The 3D-MOT gradient is generated by a pair of Helmholtz coils, which shall also serve as a
quadrupole trap for RF-evaporation of Rb, when producing ultracold Yb-Rb-mixtures in the
future. Therefore, they have been designed for the generation of high field gradients of ∼
160 G/cm. The coils consist of 48 turns of copper wire with a diameter of 2.15 mm, producing
a gradient of 1.3 G/cm · A−1 along their axis of symmetry. They are placed in a hermetically
sealed housing made of fiber enforced epoxy to avoid eddy-currents. Cooling water is sent
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Figure 1.5: Simplified schematic of the 556 nm laser system. We have two commercial frequency-doubled laser
sources at our disposal, a diode laser-based and a fiber laser-based system. The diode laser-based system is locked
to an ultrastable ULE cavity via the Pound-Drever-Hall (PDH) technique and is used for the optical Stern-Gerlach
separation described in section 2.5.2. The MOT light is derived from the fiber laser-based system, which is stabi-
lized to the fluorescence of an Yb atomic beam in the case of 174Yb and offset locked to the cavity-locked diode
laser for 173Yb. The 200 MHz acousto-optic modulator (AOM) in the MOT arm is used to broaden the frequency
spectrum of the cooling light as described in the main text. A mechanical shutter completely shuts off the cooling
light after the MOT phase.

through the housing, flowing directly around the wire. This results in a very compact design
with high cooling efficiency. The large inner diameter of the coil housings provides an opening
angle of 90◦ at which the atoms can be accessed through the coil openings. The distance of
3.4 cm between the two coil housings provides very good optical access to the atoms from the
side of the coils as well. The coils have been tested up to a current of 140 A, producing a
gradient of 182 G/cm or alternatively a homogeneous field of 890 G. The Yb 3D-MOT needs
of course only a very small magnetic field gradient of a few G/cm, due to the narrow linewidth
of the 1S0 → 3P1 transition.
The 3D-MOT beams have a circular cross section with a 1/e2-diameter of 2 cm, one propagating
along y and the other two in the x-z-plane under ±45◦ with respect to the horizontal as can be
seen in fig. 1.4 a). Initially, we used six independent beams for the 3D-MOT. Recognizing later
that laser power is more important than perfect balancing of the radiation pressure, we switched
to a three beam configuration, where each beam is retro-reflected in a cat’s-eye configuration.

1.3 The Cooling Laser Systems

The choice of available laser sources for the two cooling transitions at 399 nm and 556 nm are
rather limited. Light at 556 nm can in principle be obtained from dye lasers, which are however
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experimentally rather inconvenient. The only alternatives are frequency-doubled diode or fiber
lasers. We have two laser systems at this wavelength: A diode laser-based system2 with an
output power of ≈ 200 mW and a frequency-doubled fiber laser3 with an output power of
≈ 290 mW. The whole laser system is depicted in fig. 1.5. Because of its higher output power,
the fiber laser is employed for the 3D-MOT. A 200 MHz acousto-optic modulator (AOM) in
double-pass configuration in the 3D-MOT beamline is used to broaden the spectrum of the
cooling laser and thereby increase the capture velocity. This is done by modulating the RF-
frequency driving the AOM over several MHz using a triangular modulation signal as indicated
in fig. 1.5. The diode laser system is used for the optical Stern-Gerlach separation of 173Yb (cf.
section 2.5.2) and might be used in the future for a double-isotope MOT. We use two different
locking schemes for 173Yb and 174Yb. For 174Yb only the fiber laser providing the MOT light
is needed. In this case we stabilize the laser to the Doppler-free fluorescence signal obtained
from spectroscopy on an Yb atomic beam. For 173Yb the Doppler-free signal from the atomic
beam spectroscopy is rather weak, due to the lower isotope abundance and the large number
of magnetic substates, each resulting in its own lamb-dip, shifted by stray magnetic fields.
Moreover, we need a far-detuned laser for the spin separation via the optical Stern-Gerlach
effect. In this case we stabilize the lasers as follows: The diode laser-based system is locked
to a stable high-finesse Fabry-Perot cavity and is used for the optical Stern-Gerlach pulse. A
small portion of this stabilized laser light is overlapped with light from the fiber laser and the
resulting beat note is used for offset-locking the fiber laser to the diode laser system such that it
is resonant with the (1S0, F = 5/2)→ (3P1, F = 7/2) transition and can be used for the MOT.
The offset-lock and the optical Stern-Gerlach setup has in large part been implemented by my
colleague André Kochanke.

The 399 nm-light can be generated either via frequency-doubled diode lasers or directly via
blue laser diodes. Since using directly the blue laser diodes is in principle easier and cheaper
than using a frequency-doubled laser, we started with a laser setup based purely on blue laser
diodes. This setup is described in the Diplomarbeit of Hans Kessler [53], which I supervised
within my time in the lab. After first running the 2D-MOT with this setup, we realized that the
MOT loading rate was limited by the 399 nm laser power. Therefore we added a frequency-
doubled laser system4 (SHG-system), used exclusively for the 2D-MOT light.
Figure 1.6 depicts the complete 399 nm setup in the current configuration. The central part of
the system is a home-built external cavity diode laser (ECDL), using a Nichia laser diode5 and
a diffraction grating6 with 3600 lines/mm and 50% diffraction efficiency for s-polarized light.
Although the bare laser diode delivers up to 120 mW output power, it only exhibits single-
frequency operation in the external cavity up to a power of 12 mW. The single-frequency
output power could be significantly increased, when the feedback from the grating was reduced
by intentionally misaligning the grating. Of course, for reliable operation the grating needs to be

2TOPTICA: DL-FA SHG
3Menlo Systems: Orange one-SHG
4Toptica: DL-TA SHG
5NDV4313, selected for a central wavelength of 400 nm
6Optometrics: 3-4361
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Figure 1.6: Simplified schematic of the
399 nm laser system. A home-built
ECDL at 399 nm is locked to the fluo-
rescence signal of an Yb atomic beam.
The stabilized light is amplified by in-
jection locking slave 1, consisting of a
laser diode of the same type as the mas-
ter ECDL. The light of slave 1 is split
into two arms, frequency-shifted and
used to injection-lock three more slave
lasers. Slaves 2 and 3 were first used to
operate the 2D-MOT and are currently
unused. The light of Slave 4 is used
for two imaging beams and the 2D-
MOT push beam. The 2D-MOT light is
generated by a commercial frequency-
doubled, amplified diode laser system.
It is located on the same table as the
vacuum system next to the 2D-MOT
cell and offset-locked to the master
ECDL. In this way losses due to opti-
cal fibers and AOMs are avoided.

optimally aligned, but this indicates that using a grating with lower diffraction efficiency should
improve the maximum output power of the laser. However, since no other suitable off-the-shelf
gratings are available and 12 mW of output power are sufficient for our purposes, we decided to
stick with the high feedback grating. This master ECDL is stabilized to the spectroscopy signal
obtained from the same atomic beam used for the 556 nm-light. Doppler-free spectroscopy
techniques are not necessary here, because the transverse velocity spread of the atomic beam is
so small that the bare fluorescence signal is already free from Doppler broadening.
0.5 mW of light from the master laser are used to injection lock a second blue laser diode of the
same type, named slave 1. The light of slave 1 is then split up, shifted to the desired frequencies,
and injected into three more slave laser diodes slave 2, slave 3 and slave 4. Slaves 2 and 3 were
initially used for the two 2D-MOT beams, but are currently unused. In the future they might
serve for example for fluorescence detection of small atom numbers. Slave 4 delivers the light
for two absorption imaging beams and the 2D-MOT push beam.
The 2D-MOT light is now produced by the frequency-doubled diode laser system. In order to
maximize the available MOT power, this laser has been set up on an elevated platform right next
to the vacuum chamber. The light is then sent through free space to the 2D-MOT cell, avoiding
the insertion and transmission losses of optical fibers. When using fibers for the high power
2D-MOT beams of about 200 mW in the beginning, we observed a strong degradation of the
fiber facets after a few weeks, which increased the total fiber losses to about 50%. The SHG
laser is offset-locked to the master ECDL. The 2D-MOT detuning is then simply adjusted by
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Figure 1.7: Panel a): 3D-MOT loading rate for 174Yb measured as a function of 2D-MOT magnetic field gradient
and detuning in units of the 2D-MOT linewidth Γ. The best loading rate is obtained at a gadient of 60 G/cm and
a detuning of −1.2Γ. Panel b): Number of 174Yb atoms trapped in the 3D-MOT as a function of loading time for
the optimum 2D-MOT parameters. The red data points correspond to the current setup. The green data points were
obtained, using the fiber-coupled injection locked diode lasers slave 2 and 3 for the 2D-MOT and a six-beam 3D-
MOT configuration. The blue data points were obtained by replacing the diode lasers with the frequency-doubled
system, still using optical fibers and a six-beam 3D-MOT.

changing the reference frequency of the offset-lock. This has two important advantages: First,
no AOMs are needed to adjust the detuning. Thus, the typical 15 to 20% loss of an AOM are
avoided. Moreover, the detuning can be changed quickly over a wide range of several GHz,
limited by the bandwidth of the reference input of the locking electronics of 7 GHz. This might
be useful in the future for the production of Yb isotope mixtures. During the MOT-loading
cycle, the frequency could be changed from one isotope to another to sequentially load the two
isotopes into a two-color 3D-MOT. The offset-lock electronics we use have been designed by
Jürgen Appel et al. and are described in ref. [54]. This setup provides us with a power of
180 mW in each of the 2D-MOT beams. For the elliptical 2D-MOT beams with diameters of
(1 cm× 4 cm) the resulting peak saturation parameter is s0 = I/Isat ≈ 1.9.

1.4 Characterization of the 2D/3D-MOT Setup

In order to characterize the 2D/3D-MOT-setup described above, the dependence of the 3D-
MOT loading rate on the various parameters of the 2D- and 3D-MOT has been analyzed for the
bosonic isotope 174Yb and the fermionic 173Yb.
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1.4.1 Bosonic 174Yb

After initial optimization, we studied the influence of the most important MOT parameters
on the 3D-MOT loading rate R3D. Figure 1.7 a) depicts R3D as a function of the 2D-MOT
magnetic field gradient and the 2D-MOT detuning ∆2D in units of the 1S0 → 1P1 linewidth
Γ. The loading rate is maximized for a gradient of about 60 G/cm and a detuning of ∆2D =
−2π · 35 MHz = −1.2 Γ. These parameters are immediately plausible, considering the avail-
able 2D-MOT power and beam geometry: For the transverse 2D-MOT diameter of 1 cm, the
maximum capture velocity is 102 m/s as explained in section 1.1. Due to the low saturation
parameter of s0 = 1.9, at most s0/ (s0 + 1) ≈ 65% of this capture velocity can be achieved.
Considering further imperfections such as the Gaussian intensity profile of the MOT beams, a
capture velocity of ∼ 50 m/s can be considered realistic. The resulting Doppler shift at this
velocity is νD = 125 MHz. At our optimum field gradient of 60 G/cm, the Zeeman shift across
the MOT amounts to 84 MHz. The remaining 40 MHz are within the saturation broadened
linewidth of Γ

√
1 + s0 = 48 MHz. The detuning of ∆2D = −2π · 35 MHz corresponds to the

MOT light being in resonance with atoms at rest near the edge of the MOT, as should be the
case for optimum capture.
A detailed understanding of fig. 1.7 a) can be obtained by numerically integrating the trajectories
of a thermal distribution of particles cooled by the 2D-MOT. This calculation was performed
in our team by Sören Dörscher and is in detail presented in his PhD thesis [52]. The predicted
optimum detuning and gradient agree very well with our measured optimum values. The simu-
lation also reveals that the observed maximum is indeed the global optimum. For larger gradient
fields, the loading rate starts to decrease again.
Having found the optimum detuning and gradient, the third important 2D-MOT parameter is
the power of the push beam. The relative increase of the loading rate with push beam power is
shown in fig. 1.8 a). For push beam powers above 300µW, the loading rate saturates at about
three times the loading rate without push beam. For the Rb 2D-MOTs in other experiments in
our group the push beam increases the loading rate by more than a factor of 10. The fact that
the increase is lower in our case may partly be explained by the rather low capture velocity of
the 3D-MOT. Besides pushing more atoms down, the push beam may also accelerate atoms to
velocities outside of the capture range of the 3D-MOT. Another reason might be an asymmetric
emission profile of the dispenser. The push beam being about 20 MHz red-detuned works by
pushing atoms down that were initially traveling slowly upward in the 2D-MOT. If most of the
atoms were already emitted downwards by the dispenser, there would be little to be gained by
the push beam.
The most important parameter of the 3D-MOT is the magnitude of the spectral broadening. As

explained in the previous section, the spectrum of the cooling light is broadened by modulation
via a double-pass AOM. We use a triangular modulation signal with a modulation frequency of
200 kHz and a modulation amplitude of up to several MHz. R3D as a function of the spectral
width of the cooling laser is plotted in fig. 1.8 b). In this measurement the center frequency of
the cooling light was adjusted such that the highest frequency component was kept at a constant
detuning of −3.2 MHz. As the broadening is increased, the loading rate increases almost lin-
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Figure 1.8: Panel a): Relative increase of the 3D-MOT loading rate due to the push beam as a function of push
beam power. Initially the loading rate increases linearly. For push-beam powers above 300µW it saturates at about
three times the bare loading rate. Panel b): 3D-MOT loading rate as a function of the spectral broadening of the
3D-MOT cooling light. For broadening amplitudes up to 7 MHz, the loading rate decreases linearly, because the
capture velocity of the 3D-MOT increases. For larger broadening, the spectral power density becomes too low and
compromises the capture efficiency.

early up to a spectral width of 7 MHz. This indicates that the beam of atoms produced by the
2D-MOT exhibits a rather flat velocity distribution, with the consequence that an increase in
the capture velocity due to the spectral broadening causes a proportional increase of the loading
rate. For spectral widths above 7 MHz, the loading rate decreases again. This can be understood
as follows: In section 1.1 it was estimated that the maximum capture velocity of our 3D-MOT of
10 m/s is achieved for a spectral width of the cooling laser of 10 MHz. Realistically, the max-
imum capture velocity is below this value, because part of the atoms hit the MOT off-center
and the effective cooling volume might be reduced by imperfect overlap of the cooling beams
at the edges of the MOT. Therefore, the capture velocity is probably close to its maximum for
a spectral width of 7 MHz. Broadening the light further will take power from the frequency
components that contribute to the cooling. Since the average intensity per natural linewidth is
already down to ∼ 2Isat for a broadening of 7 MHz, the capture rate will decrease for further
broadening.
Figure 1.7 b) shows measured 3D-MOT loading curves for different experimental configura-
tions. The green curve was recorded in the initial configuration using the injection locked laser
diodes for the 2D-MOT resulting in a power of 50 mW per 2D-MOT beam. Changing from the
diode lasers to the SHG-system increased the 2D-MOT power by a factor of two to 100 mW per
2D-MOT beam, resulting in a two times larger loading rate, shown in blue. Finally, bringing the
blue SHG system from the laser table to the vacuum table and removing the optical fibers, in-
creased the 2D-MOT power to 180 mW per beam. Moreover, we changed from a six-beam- to a
retroreflected three-beam 3D-MOT and improved the push beam configuration. These changes
resulted in another factor of two improvement in the loading rate, shown in red. In this final
configuration we achieve loading rates of about 13 · 106 s−1, yielding more than 108 atoms af-
ter 10 s loading. This is comparable to Zeeman slower setups and a good starting point for
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Figure 1.9: Panel a): 3D-MOT loading rate for 173Yb measured as a function of 2D-MOT magnetic field gradient
and detuning in units of the 2D-MOT linewidth Γ. This measurement is analogous to that presented in fig. 1.7
for 174Yb. The loading rate exhibits a sharp cut-off at a detuning of −1.5Γ, which is attributed to the resonance
of the

(
1P1, F = 3/2

)
-hyperfine state at ∼ −2.5Γ. The optimum loading rate is however achieved for similar

parameters as for 174Yb, i.e. a gradient of 60 G/cm and a detuning of −1.2Γ. Note that for this measurement,
the 2D-MOT polarization has been adjusted for an optimal loading rate and deviates considerably from the usual
circular polarization. Panel b): Number of 173Yb atoms trapped in the 3D-MOT as a function of loading time for
the optimum 2D-MOT parameters.

evaporative cooling.

1.4.2 Fermionic 173Yb

For the fermionic isotope 173Yb, laser cooling on the 1S0 → 1P1 transition is disturbed by the
narrow hyperfine splitting between the F = 7/2- and F = 3/2-states. This effect is so severe
that the 3D-MOT loading rate reaches only a few 104 s−1, if only the laser detunings are changed
from 174Yb to 173Yb. The most important adjustment that needs to be made to improve the load-
ing rate is the polarization of the 2D-MOT cooling beams. The change of the polarization has to
be accompanied by a realignment of the cooling beams, probably because of a different overall
radiation pressure compared to the bosons. Iteratively adjusting alignment and polarization of
the 2D-MOT beams yields loading rates between 1.1 · 106 s−1 and 1.5 · 106 s−1. Accounting
for the two times lower natural abundance of 173Yb compared to 174Yb the 3D-MOT loading
rate is still a factor of five lower. This must be attributed in large part to the large differential
Zeeman shift between the ground- and excited states of the MOT transitions. As detailed in
section 1.1, this has the effect that only half the mF-ground states can be efficiently captured
by the MOT. The atoms emitted from the dispenser can be assumed to be randomly distributed
among the different mF-states. Consequently, only half of the atoms whose velocities lie within
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the 2D-MOT capture range can indeed be captured, reducing the 2D-MOT flux by a factor of
two, compared to the bosons. The atoms emitted from the 2D-MOT towards the 3D-MOT are
again randomly distributed among the six ground-statemF-levels, due to optical pumping in the
2D-MOT and the absence of a guiding magnetic field in the differential pumping stage. Thus,
only 50% of the atoms reaching the 3D-MOT can be captured. As a result of this reduction of
the loading rates of both MOT stages by a factor of two, the 3D-MOT loading rate is reduced
by a factor of four compared to the bosons. In the light of these considerations, the factor of five
reduction observed in our setup is astonishingly good given the hyperfine structure problems.
In section 1.5 it will be argued that this problem should not arise in Zeeman slower setups.
The 3D-MOT loading rate as a function of the 2D-MOT gradient and detuning is depicted in
fig. 1.9 a). Apart from the overall lower loading rate, the qualitative behavior of R3D is also
different compared to the bosonic 174Yb. Towards lower gradients it falls off more slowly than
for the bosons. A possible explanation for this effect could be that the change of the light po-
larization away from perfect circular polarization reduces the position-dependent force for the
sake of better transverse cooling. Another difference to the boson 2D-MOT is the sharp cut-off
of the loading rate at a detuning of about −1.5 Γ. This can be attributed to the mF = 3/2-state
located at a detuning of−72 MHz ≈ 2.5Γ. The behavior of the loading rate with the push beam
power and the spectral broadening of the 3D-MOT laser is similar to the case of 174Yb.

1.5 Comparison to Zeeman Slowers

Having presented our 2D-MOT setup for Yb and characterized its performance, I want to com-
pare it to the common Zeeman slower-based setups and discuss its advantages and disadvan-
tages.
In the previous section it has been shown that the performance of the 2D/3D-MOT system dif-
fers significantly between bosonic 174Yb and fermionic 173Yb. Therefore, these two cases must
be discussed separately. Considering bosonic 174Yb, the loading rate achieved in our setup can
compete with existing Zeeman slower setups. It even significantly surpasses the loading rates
published by the Tokyo and Seattle groups [37, 55]. Those experiments work, however, with
significantly lower cooling laser powers. Zeeman slower-based Yb-setups built in Munich and
Florence approximately at the same time as our project seem to surpass our numbers. The per-
formance of our setup is, however, more than sufficient for a fast and reliable production of
174Yb-Bose-Einstein condensates as will be shown in section 2.4.
It has been mentioned above that the production of ultracold mixtures of Yb and Rb atoms is
one of the long-term perspectives for our setup. For this purpose, a 2D-MOT provides a sig-
nificantly better optical access to the 3D-MOT chamber as can be seen by looking at the dual
Zeeman slower setups of the Yb-Rb-experiment in Düsseldorf [56] or the Yb-Li-experiment in
Seattle [57]. This limitation of the Zeeman slower setups can in principle be circumvented by
transporting the atoms from the 3D-MOT chamber into a glass cell with good optical access.
While it has been shown that this can work reliably [58], it is certainly an additional complica-
tion of the experiment, which one might want to avoid.
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In section 1.4.2 it has been shown that for fermionic 173Yb the performance of our 2D/3D-
MOT system is a factor of five worse than for the boson 174Yb. The two effects that lead to this
degradation of the MOT-performance for 173Yb are the hyperfine structure and the large differ-
ential Zeeman shift. There are strong arguments that the problems connected to these effects
are intrinsically circumvented when a Zeeman slower of the increasing-field-type, also called
σ−-type, is used [59]. In this configuration, the atoms exit from the oven at zero magnetic field
so that all mF-states are initially resonant with the slowing laser. The first few scattering pho-
tons from the σ−-polarized slowing laser then pump all atoms into the mF = −5/2-state. Once
the atoms have reached the outermost mF-level, the slowing laser only couples to the desired
(1P1, F = 7/2,mF = −7/2)-state. Consequently, the F = 5/2 and F = 3/2 states have no
influence on the slowing process. Being slowed on the |mF = −5/2〉 → |mF = −7/2〉 cycling
transition, they obviously exit the Zeeman slower in the mF = −5/2-state. If the orientation
of the magnetic field gradient and the light polarization of the 3D-MOT are chosen such that
the mF = −5/2-state is efficiently captured [46], all of the slowed atoms can be loaded into
the MOT. Therefore, the performance of the Zeeman slower/3D-MOT combination should be
independent of the isotope used and the loading rates are solely determined by the isotope abun-
dances. This is confirmed by experiments in the Kyoto group [60].
In section 1.4.2 it has further been mentioned that the 173Yb-2D-MOT requires a polarization
and an alignment, which significantly differ from the optimum configuration for the bosons.
This is problematic for the production of mixtures of 173Yb and one of the other Yb-isotopes.
The easiest way to load a double isotope 3D-MOT would be to simply change the 2D-MOT
detuning from one isotope to the other within the experimental sequence and in this way load
the two isotopes sequentially. For this to work, an alignment of the 2D-MOT beams needs to
be found which results in reasonable loading rates for both isotopes. For 173Yb and the bosonic
Yb-isotopes, we have not been able to find such an alignment.
In summary, a 2D-MOT is a good alternative to a Zeeman slower for the bosonic Yb-isotopes,
resulting in comparable 3D-MOT loading rates. It has the technical advantage that it can be used
for multiple elements, providing better optical access to the 3D-MOT chamber in multi-element
experiments than setups with multiple Zeeman slowers. In the case of 173Yb, the 2D-MOT per-
formance is however compromised due to fundamental problems related to the internal structure
of 173Yb, namely the narrow hyperfine structure of the 1P1-state and the large differential Zee-
man shift of the cooling transitions. These lead to a significantly reduced 3D-MOT loading rate
and pose substantial problems for the production of isotope mixtures comprising 173Yb. Thus,
for 173Yb a Zeeman slower, which most probably avoids these problems, would be preferable.
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This chapter describes the preparation and manipulation of ultracold, quantum degenerate sam-
ples of bosonic 174Yb and fermionic 173Yb in our setup. It begins with a discussion of the
collisional properties and AC-polarizability of Yb in sections 2.1 and 2.2, since these two prop-
erties are of crucial importance for the evaporative cooling and many-body physics of ultracold
atomic gases. Following the description of our crossed dipole trap in section 2.3, the preparation
and manipulation of the bosonic and fermionic isotopes is in detail presented in the final two
sections 2.4 and 2.5, including details on our optical lattice and the preparation and detection of
nuclear spin states.

2.1 Collisional Properties of Yb

Once an atomic gas has been laser cooled to µK temperatures and is loaded at high density
into a conservative trap, its physics is solely determined by the elastic and inelastic collision
properties, as well as the quantum statistics of the atoms. At ultracold temperatures only the
lowest partial wave collisions are relevant. Below a few tens of µK even p-wave collisions are
more and more suppressed. The only relevant collision parameter is then the s-wave scattering
length a. The interaction potentials that determine a are the Born-Oppenheimer potentials of
the various molecular orbitals that at large distance connect to the relevant two-atom scattering
states. A detailed, comprehensive discussion of ultracold temperature scattering is hard to find.
The basic theory of low energy scattering is reviewed e.g. in [61]. A more detailed overview,
also covering the collisional coupling of the hyperfine states of alkali atoms, can be found in
[62].
For atomic states with non-zero electronic, as well as nuclear angular momentum and hyper-
fine coupling, the total angular momenta F1 and F2 of the individual atoms are in general not
conserved in an s-wave collision. This is because the spin-exchange coupling and the coupling
between the electronic angular momentum to the internuclear axis dominates over the hyperfine
interaction at short internuclear distances [62]. Consequently, different hyperfine states have
different scattering lengths, depending on the combined two-atom spin f = F1 + F2, which
must be conserved in an elastic s-wave collision. This is the case for alkali atoms and lies at the
heart of spin-dynamics, which have been observed in many experiments [63].
For 1S0 ground-state Yb- or alkaline-earth atoms the scattering is much simplified, because the
electronic orbital angular momentum, as well as the electronic spin are zero. Consequently,
there is no hyperfine interaction and the |1S0,

1S0〉 scattering state couples only to a single
molecular orbital, the 1Σ+

g state, independent of the nuclear spin [62, 64]. Therefore, the nu-

23
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s-wave scattering lengths of Yb in units of a0

Isotope: 168Yb 170Yb 171Yb 172Yb 173Yb 174Yb 176Yb

168Yb 252 117 89 65 38 2 -358
170Yb 64 36 -2 -81 -517 209
171Yb -3 -8 -577 428 141
172Yb -598 417 200 106
173Yb 199 138 80
174Yb 105 54
176Yb -24

Table 2.1: Inter- and intra-species s-wave scattering lengths of all Yb isotopes, given in units of the Bohr radius
a0. The data is taken from ref. [65] and has been obtained from two-color photoassociation spectra.

clear spins of two colliding 1S0 atoms are individually conserved. On the one hand, this implies
that ground-state Yb gases will not exhibit any spin dynamics. On the other hand, it gives rise to
SU(N) symmetry of the many-body Hamiltonians of N-component nuclear spin mixtures. This
symmetry has been predicted to lead to exotic magnetic phases which have never been observed
experimentally [24].
The ground-state s-wave scattering lengths have been measured for all combinations of Yb-
isotopes via photo-association spectroscopy in the Kyoto group [65]. Their results are shown in
table 2.1. The various scattering lengths cover a wide range from strongly attractive to strongly
repulsive. This is especially interesting because the ground state of Yb does not exhibit mag-
netic Feshbach resonances that allow tuning of the interaction. By choosing suitable isotope
mixtures, at least a limited range of different interactions can be realized. Stable quantum de-
generate gases have been produced in the Kyoto group for all isotopes, except for the strongly
attractive boson 172Yb [37, 66–69].
As pointed out in the introduction, quantum many-body experiments with Yb are not a pri-
ori restricted to the electronic ground state. The spontaneous decay rates of the metastable
3P0,2-states on the order of 0.1 s−1 are small enough to be neglected on typical experimental
timescales of < 1 s. Studying the many-body physics of 1S0-3P0,2-mixtures depends, however,
also on the collisional stability of these states. In contrast to ground-state collisions, scattering
involving the metastable states is far more complicated.
In collisions between ground- and metastable-state atoms, the various |1S0,

3PJ〉 scattering
states connect to four different molecular orbitals, two of which are attractive (3Σ+

u and 3Πg),
and two repulsive

(
3Σ+

g and 3Πu) [64, 70]. Coupling between these orbitals can lead to fine
structure changing collisions, as well as principle quantum number changing collisions. Fine
structure changing collisions are energetically impossible for the 3P0-state at ultralow tempera-
tures, because it is the energetically lowest in the 3PJ fine-structure triplet. Principle quantum
number changing collisions are however possible. In such a collision, the 3P0-state decays to the
1S0 ground state, releasing the excitation-energy as kinetic energy, which causes the colliding
atoms to escape from the trap. Collisions between two 3P0 atoms are even more complicated.
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Since both atoms can change their electronic configurations, the number of inelastic collision
channels is much larger than for 1S0-3P0-collisions.
Elastic collisions between 1S0 and 3P0 atoms are again simplified due to the zero net electronic
angular momentum in both states. As a consequence of the absence of hyperfine coupling the
molecular orbitals maintain their gerade/ungerade symmetry also at large internuclear distance
in the separated atom limit [71, 72]. The two orbitals connecting to the |1S0,

3P0〉 limit are the
Hund’s case (c) orbitals 0−u and 0−g [70]. They connect to the separated atom states:

0−g −→
∣∣1S0

〉 ∣∣3P0

〉
+
∣∣3P0

〉 ∣∣1S0

〉
= |eg〉+ (2.1)

0−u −→
∣∣1S0

〉 ∣∣3P0

〉
−
∣∣3P0

〉 ∣∣1S0

〉
= |eg〉− (2.2)

The difference of the 0−u and 0−g molecular potentials leads to different scattering lengths aeg+
and aeg− for the |eg〉− and |eg〉+ states, which are thus the eigenstates of the s-wave interaction
between 1S0 and 3P0 atoms.
For atoms in the lowest band of an optical lattice s-wave collisions shift the energy of two atoms
occupying the same site by the energy [73]

U =
2π~2a

M

∫
d3r |w (r)|4 , (2.3)

where w (r) is the lowest band Wannier function and M is the mass of the atom. Thus, the on-
site (elastic) interaction Hamiltonian for two atoms with two possible electronic states |1S0〉 =
|g〉 and |3P0〉 = |e〉 reads:

Ĥint =
(
Uee |ee〉 〈ee|+ U+

eg |eg〉
+ 〈eg|+ + U−eg |eg〉

− 〈eg|− + Ugg |gg〉 〈gg|
)

⊗ 1
(1)
↑↓ ⊗ 1

(2)
↑↓ . (2.4)

For the sake of clarity, also the nuclear-spin part of the Hamiltonian is explicitly written here. It
is simply given by the identity operators in the spin subspaces of the two atoms 1(1,2)

↑↓ , because
the interaction is spin-independent owing to the lack of hyperfine coupling. Resolving the dif-
ferences between the four interaction energies Ugg, Ueg+, Ueg−, and Uee with a stable laser on
the 1S0 → 3P0 transition will be a valuable tool allowing occupation number dependent probing
and manipulation of ultracold mixtures of these states as will be detailed in chapter 3.
Until very recently, the only available data on the 1S0-3P0 scattering lengths were those ob-
tained from precision spectroscopy in optical lattice clock setups, probing density shifts of the
1S0 → 3P0 transition in low-density thermal atomic samples [74–78]. However, when finishing
this manuscript, the Munich group published the first direct spectroscopic measurements of the
1S0-3P0 interaction shifts of a quantum degenerate gas of 173Yb in a three-dimensional optical
lattice [79]. We have performed similar measurements also showing a signature of 1S0-3P0 in-
teraction, which are presented in section 3.3.2 of this thesis. Table 2.2 summarizes the currently
most accurate values of the scattering lengths for the fermionic Sr and Yb isotopes taken from
the above mentioned publications. For the bosonic Yb isotopes there is no available data.
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1S0-3P0 s-wave scattering lengths and inelastic loss coefficients

Isotope: 173Yb 171Yb 87Sr

agg 199± 2 [65] −3 [65] 96.2± 0.1 [80]
aeg+ 219.5± 2 [79] ∼ 25 [76] 169± 8 [75]
aeg− 2170± 190 [79] - 68± 22 [75]
aee 306.2± 10.4 [79] - 176± 11 [75]
βeg 6± 1.4 [79] - -
βee 220± 50 [79] - 140± 80 [77]

Table 2.2: S-wave scattering lengths and inelastic loss coefficients for 1S0-3P0-mixtures of the fermionic Sr and
Yb isotopes. Scattering lengths are given in units of the Bohr radius a0. Inelastic loss coefficients for 1S0-3P0-
collisions (βeg) and 3P0-3P0-collisions (βee) are given in 10−13 cm3/s. The values for 173Yb have been obtained
via clock spectroscopy on a quantum degenerate two-component mixture in a three-dimensional optical lattice
[79]. For 87Sr ([75] and references therein) as well as 171Yb [76] the scattering lengths are deduced from density
shifts in an optical lattice clock. The ground state scattering lengths measured via photo-association spectroscopy
are given for reference [65, 80].

The fact that fermionic 1S0-3P0-mixtures are characterized by two scattering lengths age+ and
age− makes them especially interesting candidates for quantum-many-body experiments. For
example, it has been shown that the difference of the singlet and triplet scattering lengths
∆aeg = (age+ − age−) gives rise to a Kondo-exchange coupling, allowing to realize the Kondo
lattice Hamiltonian with ultracold fermionic Yb [25, 81]. The extremely large ∆aeg of 173Yb
as well as the moderate inelastic loss rate of 1S0-3P0 collision (βeg) deduced from the Munich
experiments make this isotope a very promising candidate for experiments along these lines.
While so far little is known about the collisional properties of 171Yb, it may also be of special
interest. Its extremely small ground-state interaction could result in an even larger ratio between
ground-state and exchange interaction leading to a purely exchange-dominated system.

2.2 Polarizability of the 1S0 and 3P0 states
The way in which atoms can be manipulated with off-resonant light is determined by their
polarizability α (λ), its real part Re (α) being the proportionality constant between the dipole
potential Udip generated by a light-field at wavelength λ and the intensity I of that field [84]:

Udip = −Re (α) · I (2.5)

Figure 2.1 depicts Re (α) for the 1S0 ground state and the 3P0 metastable state of Yb, calculated
by summing up the two-level-contributions of all known transitions involving these states. The
polarizability of the ground state is dominated by the strong 1S0 → 1P1 transition at 399 nm.
The only lower lying transition of significant strength is the 1S0 → 3P1 at 556 nm. Thus,
for wavelengths above 556 nm the dipole potential is always attractive and varies only weakly,
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Figure 2.1: Real part of the AC-polarizabilities of
the 1S0 (black) and 3P0 (red) states of Yb. The
polarizabilties are calculated by summing over the
two-level-contributions of all known transitions.
Characteristic frequencies, such as the magic and
anti-magic wavelengths, as well as the zero cross-
ing of the 3P0 polarizability are reproduced by this
calculation only with ∼ 10% inaccuracy. More ac-
curate values for these frequencies based on a mea-
surement of the magic wavelength [82] and a rela-
tivistic many-body calculation of α [83] are writ-
ten next to the dashed lines in the figure. The
gray-shaded region indicates the wavelength tuning
range of a Ti:Sapph laser. Tuning its wavelength
allows the realization of different state dependent
lattices.

decreasing for larger wavelengths. For the metastable 3P0 state, Re (α) exhibits a qualitatively
different shape: The dominant resonances are the 3P0 → 3S1 transition at 649 nm and the
3P0 → 3D1 transition1 at 1388 nm, leading to an almost linearly shaped polarizability between
800 nm and 1100 nm, changing its sign near ∼ 950 nm. When working with mixtures of 1S0

and 3P0 atoms, this qualitative difference between the polarizabilities makes the wavelength
of a far off-resonant dipole potential a new tunable parameter. Mixtures of ground-state alkali
atoms exhibit such a state dependent polarizability only very close to the D1- and D2-lines.
It is thus accompanied by a significant inelastic photon-scattering rate, causing appreciable
heating of the ultracold sample. Tuning of the differential polarizability is especially interesting,
when working with optical lattices. By tuning the wavelength of the lattice laser, qualitatively
different state dependent lattices can be generated: For lattice wavelengths between ∼ 700 nm
and ∼ 900 nm, the 1S0 and 3P0 polarizabilities are both attractive. Therefore, a lattice potential
at these wavelengths has the same geometry for both states. However, the lattice depths are
generally different. Only at a single, so-called magic wavelength the polarizabilities are exactly
equal and the two states experience the exact same lattice potential. For wavelengths above
∼ 950 nm the polarizabilities have opposite sign, attractive for the ground state and repulsive
for the metastable state. Thus, the lattice potentials for the two states are displaced by half a
lattice spacing, creating an overall checkerboard lattice, with each state living on its individual
sub-lattice. The relative depth of the two sub-lattices varies with wavelength, being exactly
equal at the so-called anti-magic wavelength slightly above 1100 nm. Due to the shallow slope
of the polarizabilities, the simple calculation shown in fig. 2.1 does not accurately reproduce
the exact values for the magic and anti-magic wavelengths, as well as the zero crossing of
the 3P0 polarizability. The magic wavelength has however been determined experimentally to
be located at λmagic = 759 nm [82]. Moreover, a relativistic many-body calculation of the
polarizabilities of the 1S0 and 3P0 states has been carried out in ref. [83], which reproduces

1For an extended level scheme of Yb including these transitions see appendix C.
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the measured magic wavelength up to an inaccuracy of 1.3%. From the plot presented therein,
values for the anti-magic wavelength (1113 nm), as well as the zero-crossing (983 nm) can be
extracted. These values are also given in fig. 2.1.
In order to exploit the differential polarizability between the 1S0 and 3P0 states as a tuning
parameter in our experiments, we have chosen to use a titanium-sapphire (Ti:Sapph) laser for
our optical lattice, as described in section 2.4.2. It would be ideal, to also use a Ti:Sapph for
the dipole trap. However, in contrast to optical lattices, a dipole trap for all optical evaporation
requires rather high powers of > 10 W, which are not regularly available from a Ti:Sapph
laser. Therefore, we decided to use a dipole trap laser at 532 nm, strongly attractive for the 1S0

and weakly attractive for the 3P0 state. When working with Yb only, 1064 nm would be the
better choice. The higher available power at that wavelength roughly compensates the lower
polarizability of the ground state, but the photon scattering rate would be significantly lower.
However, our machine is supposed to also produce ultracold mixtures of Yb and Rb at a later
stage. The large differential polarizability of these two elements might necessitate the use of
a bichromatic dipole trap using both 532 nm and 1064 nm light in order to equalize the dipole
potential for both species [85]. Therefore, we decided to start with a 532 nm trap for Yb.

2.3 The Crossed Dipole Trap Setup

Three different criteria are important for an optical dipole trap that is used both for evaporation
as well as confining the atoms during the actual experiment: First, the trap should have a large
effective trap volume in order to maximize the transfer efficiency from the MOT into the dipole
trap. Second, it should have large trap frequencies during evaporation, in order to speed up the
evaporation. Third, it should have low trap frequencies after evaporation has been completed,
which are ideally the same in all three directions, such that an isotropic and homogeneous
sample is obtained. Meeting all of these criteria at the same time is generally difficult. We
decided to plan our trap similar to the dipole traps used successfully in the Kyoto group, with a
tightly focused strong horizontal beam (from here on called DT1) and a larger and weaker beam
(from here on called DT2) for confinement along the propagation axis of the horizontal beam.
In order to achieve lower trapping frequencies in the final trap, we left the option to implement
an additional horizontal beam with a larger beam diameter the atoms could be transferred to, if
desired.

The geometric configuration of the trap is shown in fig. 2.2 a). The horizontal beam DT1
is oriented along y, while the weak beam DT2 propagates in the x-z-plane, tilted by 19◦ with
respect to the horizontal in order to leave room for the imaging setup along x. DT1 has a
maximum power of about 9 W at the location of the atoms and an elliptical beam profile with
1/e2-radii of w0x = 29µm and w0z = 18µm. At full power, this results in a trap depth of
623µK. For DT2 a round beam with a 1/e2-radius of w0 = 79µm and a maximum power
of 3.2 W at the location of the atoms is used. This results in a maximum potential depth of
18.5µK.
Initially, we used a vertical beam for DT2 with an elliptical cross-section of w0x = 85µm and
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Figure 2.2: a): Geometry of the dipole trap. The strong beam (DT1) propagates horizontally along the y-direction.
The weak beam (DT2) is running in the x-z-plane, tilted by 19◦ with respect to the horizontal. b): Simplified
schematic of the laser system used for the crossed optical dipole trap. 18 W of 532 nm-light generated by a
frequency-doubled solid state laser (Coherent Verdi V18) is split into two beams with a splitting ratio of 1:2. Their
power is controlled with two acousto optic modulators. The stronger beam (DT1) is guided to the vacuum chamber
via free space. Rigidly mounted beam-shaping optics focus the beam to the position of the MOT. The weaker beam
(DT2) is brought to the vacuum chamber via a single mode fiber. A small portion of each beam is detected on a
photodiode for active power stabilization.

w0y = 28µm, the short axis oriented along y, i.e. the direction of DT1. The advantage of this
configuration is that the trapping frequency along the z-direction can be adjusted independent
of the other two trapping frequencies [1, 52]. When realizing that the size of our ultracold
gases was limited by the effective volume of the crossed trap, we changed DT2 to the tilted
configuration described above. All data presented in this thesis has been obtained using this
configuration.
The beam-shaping optics for the horizontal and the initial vertical beam have been designed
and built by my colleague Sören Dörscher and are described in detail in his PhD thesis [52].
The modified, round DT2 beam is produced simply by a standard commercial f = 12 mm fiber
collimator2 and a f = 500 mm achromatic doublet lens. The weak beam with a maximum
power of 3.2 W can still be conveniently fiber coupled. For the strong beam with 9 W the fiber
is easily damaged when the beam is not well coupled into the fiber. Therefore, DT1 is guided
to the experiment via free space. The power of the two beams is adjusted via two AOMs3,
which are made of quartz to avoid thermal lensing. The voltage controlled oscillators driving
the AOMs are detuned by a few MHz in order to avoid interference of the two dipole trap
beams. For active power control, a portion of the light is split off and detected on a photodiode.
The photodiode signal is fed to a home-built proportional-integral-controller that regulates the
power via the AOMs with a servo-bandwidth of a few tens of kHz. In order to measure the
power of the horizontal beam over a range of three orders of magnitude, we use a home-built
logarithmically amplified photodiode. The whole laser setup of the crossed optical dipole trap
is shown in fig. 2.2 a).

2Schäfter und Kirchhoff
3Crystal Technologies MODEL 3080-292
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Loading of the dipole trap is achieved by simply overlapping it with the MOT. Atoms whose
energy is reduced below the trap depth after entering the trapping volume get caught in the
dipole trap. In order to optimize the loading, the MOT has to be compressed and cooled as much
as possible. We do so in a MOT cooling and compression stage directly after loading the MOT.
During this stage, all three MOT parameters are changed over a period of 400 ms: The frequency
broadening of the cooling light, needed to maximize the capture velocity, is no longer necessary
after the MOT loading phase and is therefore reduced to zero. At the same time the power of
the cooling light is lowered to only a few % of the loading power, significantly reducing the
Doppler-limited temperature. Moreover, the detuning is reduced to ∼ Γ helping both to further
cool and to compress the MOT. The magnetic field gradient is increased from 2 G/cm to 7 G/cm
enhancing the MOT compression. In order to precisely overlap the compressed MOT with the
dipole trap, we finely adjust the MOT position by applying a small homogeneous magnetic field
offset, which is slowly ramped up during the cooling and compression stage.

2.4 Bose Einstein Condensates of 174Yb

Due to its high natural abundance of 32% and its moderately repulsive scattering length of
105a0, the bosonic isotope 174Yb is the easiest to cool to ultralow temperatures. Thus, we used
this isotope to optimize and characterize our setup. In section 2.4.1 the evaporative cooling
to Bose-Einstein-condensation is characterized. Section 2.4.2 describes our three-beam opti-
cal lattice and presents a measurement of the bosonic Mott-insulator transition of 174Yb in a
triangular lattice geometry.

2.4.1 Evaporative Cooling

Once the atoms have been loaded into the dipole trap as described in the previous section, evap-
oration is forced by continuously ramping down the dipole trap power. Our evaporation ramp
consists of two steps. In the first step the power of DT1 is exponentially ramped down from
its maximum power of 9 W to a power of about 300 mW within 5 s, while the power of DT2
is kept constant. During this first step the atoms concentrate in the crossed dipole trap region,
as the temperature drops below the potential depth of DT2. At the end of the first evaporation
step, the potential depths of the two trapping beams are almost equal, and most of the atoms
are trapped in the crossed region. In the second evaporation step the powers of both beams are
simultaneously decreased over 1.5 s until they reach their final values of 25 mW and 1.9 W and
an almost pure Bose-Einstein condensate (BEC) has formed. As for the first step, we use expo-
nential ramps. The evaporation procedure has been optimized by varying the duration as well
as the final trap powers for each of the two evaporation steps. Dividing the second evaporation
step into two with different ramp speeds did not further improve the cooling efficiency.
The evolution of the temperature and the number of trapped atoms during evaporative cooling

is shown in fig. 2.3. The temperature has been determined from the expansion of the thermal
fraction of the gas, fitted with a Gaussian. Note the different time-scales used for the two evapo-
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Figure 2.3: Evolution of potential depth, particle number and temperature during the evaporative cooling proce-
dure. During the first step (a) only the power of DT1 is decreased until its potential depth roughly equals that of
DT2 and nearly all atoms are concentrated in the crossed trapping region. During the first step the extension of the
gas is still too large to determine the total atom number. In the second step (b) both dipole trap beams, DT1 and
DT2, are simultaneously decreased until an almost pure BEC has formed in the trap. Temperatures are extracted
from the expansion of the thermal fraction of the gas. The potential depths given correspond to the AC-Stark shift
at the peak of the Gaussian beam profiles and are not to be confused with the actual depth of the overall trap.

ration steps a) and b). The evaporation speed is significantly higher in the second step. This can
be explained by the higher density in the crossed region compared to the extremely elongated
horizontal trap. Due to the correspondingly higher elastic scattering rate, the atoms thermalize
faster, allowing a faster power rampdown. The sharp drop in temperature at the end of the evap-
oration must be attributed to problems with the temperature determination, when the thermal
fraction of the atoms becomes too small for the Gaussian fit to work reliably.
During evaporative cooling, the atom number decreases exponentially together with tempera-
ture. Interestingly, the loss rate increases in the final stage of evaporation near the BEC phase
transition. This might be explained by the potential tilt due to gravity becoming important at
very low trap depths. This tilt makes the trapping barrier increasingly asymmetric with its low-
est region at the bottom of the trap. Thus, not the total kinetic energy of the atoms is decisive
for evaporation, but the kinetic energy along the vertical direction. This reduced dimensionality
of evaporation makes the cooling significantly less efficient [86, 87].
The phase transition from a thermal gas to a BEC is shown in fig. 2.4 a). We cross the phase
transition at a critical temperature of∼ 500 nK with about 6·105 atoms in the trap. At the end of
the evaporation stage we end up with a little below 2 · 105 atoms in an almost pure condensate.
We measure the trapping frequencies of the final trap configuration by observing center of mass
oscillation of the BEC, which are induced by pulsing on one of the optical lattice beams (see
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Figure 2.4: a): Particle number and condensate fraction as a function of temperature, as the gas is evaporatively
cooled across the BEC phase transition. The absorption images, taken 17.5 ms after release from the trap, exhibit
the characteristic transition from a Gaussian- to a Thomas-Fermi profile. The condensate fraction is determined
from a two-dimensional bimodal fit to the image data. For large condensate fractions small variations of the image
background disturb the fit, resulting in an underestimation of the condensate fraction. b) Center of mass oscillations
of the BEC along the principal axes of the dipole trap at the end of evaporation, revealing trapping frequencies of
(ωx, ωy, ωz) ≈ (84, 66, 134) Hz.

section 2.4.2) that has been intentionally misaligned from the center of the trap. From these
oscillations shown in fig. 2.4 b) we deduce trapping frequencies along the principal axes of the
trap of (ωx, ωy, ωz) ≈ (84, 66, 134) Hz.
Our dipole trap configuration with the tightly focused DT1 beam and the rather large, nearly

horizontal beam DT2, allows to partially compensate gravity by adjusting the transverse dis-
placement d between the two beams (see fig. 2.5 b)): Figure 2.5 a) demonstrates the effect of
the transverse displacement d on the final atom number in the BEC for different final poten-
tial depths of DT2. For a shallow DT2 potential, the atom number exhibits a maximum as the
beam position is moved across the horizontal beam axis, whereas for a deep DT2 potential the
situation is inverted and the maximum is turned into a minimum. This can qualitatively be ex-
plained by looking at the effective trap depth and volume. In fig. 2.6 the equipotential contours
of the total trapping potential in the x-z-plane including gravity are plotted for different beam
displacements for a shallow and a deep DT2 potential. Clearly, for the shallow DT2 (fig. 2.6
a)) trap depth and volume are maximized at intermediate displacements d, where gravity is best
canceled, maximizing the size of the BEC. If the displacement is too large or too small, the
slope of the tilted beam potential is too small to compensate gravity and the trap opens at the
bottom. For a strong DT2 (fig. 2.6 b)), the maximum slope of the DT2 potential is so strong,
that it pulls the atoms out of the trap, causing the BEC size to be decreased compared to the low
power case. Since the beam is tilted this happens to one side of the trap. For larger or smaller
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Figure 2.5: a): Atom number in the BEC at the end of evaporation as a function of the final potential depth of
DT2. The different curves correspond to different transverse displacements d of DT2 with respect to the center of
DT1 as indicated in panel b). The absolute value of d could not be determined. Consequently, the values for d
given in panel a) are written with an unknown offset d0. For a discussion of this measurement see the main text.

displacements, the slope is weakened and effectively cancels gravity. To understand quanti-
tatively, why the configuration of low DT2 potential and intermediate displacement results in
the largest BEC sizes, one would have to calculate the total trapping volume for the different
configurations. However, not only the volume of the trap is important for the final BEC size,
but also the shape of the trap barrier, which influences the evaporation process. As mentioned
above, a strongly asymmetric barrier which is significantly lower in one direction than in the
other two, reduces the dimensionality of evaporation and decreases the cooling efficiency. For
our final trap configuration, the potential depth produced by DT2 is much larger than that of
DT1. Therefore, the most symmetric barrier is achieved by reducing the power of DT2 as far
as possible and placing the steepest slope of the beam at the trap center to still cancel gravity.
Indeed this results in the largest BECs as can be seen from fig. 2.5 a).
The decay of the atom number after the BEC has been prepared is shown in fig. 2.7. For times
above 4 s it is exponential with a decay time constant of 5.7 s, equivalent to a decay rate of
Γdec = 0.174 s−1. The scattering rate of dipole trap photons in the final trap configuration in-
cluding the displacement of the tilted beam amounts to Γscat,DT = 0.137 s−1. The remaining
loss rate of 0.037 s−1 or (27 s)−1 could either be due to background gas collisions or photon
scattering of residual light from the 2D-MOT laser located near the vacuum chamber. Although
we have shielded and shuttered the 2D-MOT laser with great care, leaking of photons at this
low rate cannot be excluded.
During the first seconds after the end of evaporation, the atoms decay non-exponentially. In
order to check, whether three-body loss is responsible for this decay, a model containing three-
body and one-body loss taken from ref. [88] has been fitted to the data. For this fit the single
particle loss rate Γ1, as well as an offset in the detected atom number have been fixed to the
values obtained from the exponential decay at large times. The best fit is shown as solid blue
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Figure 2.6: Equipotential contours of the total trapping potential of the crossed dipole trap in the x-z-plane at
the end of the evaporation ramp for different transverse displacements d of DT2 with respect to the center of DT1
(cf. fig. 2.5 b)). The peak potential depth of DT2 is 10.3µK in panel a) and 15.4µK in panel b), corresponding
to the mininum and maximum potential depths in fig. 2.5 a). The variation of the trap volume for the different
configurations qualitatively explains the behavior of the BEC size in fig. 2.5 a)

line in fig. 2.7. It clearly does not agree with the data. When the single particle decay rate and
atom number offset are left as a free parameters, the fit results in Γ1 ∼ 10−10 s−1, which is
clearly not reasonable. Therefore, we conclude that three-body loss is not responsible for the
non-exponential decay of the condensate.
Most likely this decay is caused by further lowering of the trap depth during the first seconds
after the end of evaporation, occurring due to a focus shift of the horizontal beam. Such a fo-
cus shift can be caused by the modulator crystal of the dipole trap AOM cooling down: The
RF-power driving the AOM heats the modulator crystal causing a slight change in the diffrac-
tion angle. Due to the imaging properties of our beam shaping optics, this temperature-induced
tilt is translated into a focus shift. The shift changes whenever the RF-power is significantly
increased or lowered as is the case during the evaporation ramp. If the lowering of the power
during the evaporation happens too fast for the modulator to thermalize, the focus will shift
further even after the final power has been reached. Such a residual focus shift away from the
trap center would cause further unwanted lowering of the potential, forcing further evaporation.
Since this has not bothered us so far, we have not investigated the decay further. Such problems
will be eliminated once we set up a third dipole trap beam, the atoms are transferred to, after
evaporative cooling has been stopped. Such a third beam would be fiber coupled, which would
eliminate any focus drifts.

In terms of stability, the dependence of the BEC size on the MOT atom number is of inter-
est. Figure 2.8 depicts BEC atom number and condensate fraction as a function of the MOT
loading time. For the short loading times used here, the MOT atom number depends almost
linearly on the loading time (cf. fig. 1.7). Condensate fraction and atom number increase nearly
exponentially, but with different time constants. The condensate fraction already saturates for
loading times above 3 s. The atom number increases more slowly, with a 1/e-time of 1.9 s. At
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Figure 2.7: Atom number decay of the BEC
in the crossed dipole trap directly following the
evaporative cooling. The decay is clearly non-
exponential. The solid red line is a double expo-
nential fit to the data, while the dashed red line has
been obtained with an exponential fit to the data
starting from t = 4 s. The solid blue line corre-
sponds to the best fit of inelastic three-body losses
according to the model from [88], with the sin-
gle particle lifetime and atom number offset fixed
to the values obtained from the exponential fit at
large times. It clearly does not fit the data. A de-
tailed discussion is given in the main text.

Figure 2.8: Atom number and condensate frac-
tion at the end of evaporation as a function of the
MOT loading time. The condensate fraction al-
ready saturates for MOT loading times above 3 s.
The atom number grows more slowly. Imperfec-
tions of the image background disturb the bimodal
fit and limit the detectable condensate fraction to
∼ 85%. For long MOT loading times of 10 s,
±10% fluctuation of the MOT atom number only
results in ±1% fluctuation in the BEC atom num-
ber. For short MOT loading times the condensate
fraction can be significantly increased by adapting
the evaporative cooling ramp (blue star).

a MOT loading time of 10 s, ±10% fluctuation of the MOT atom number only results in ±1%
fluctuation in the BEC atom number.

2.4.2 174Yb in a Triangular Optical Lattice

As discussed in the introduction, the most interesting regime of quantum-many-body physics is
the regime, where the interactions between the particles dominate over all other energy scales.
The extremely weak interactions between neutral atoms therefore require cooling to ultralow
temperatures in order to reduce the kinetic energy until it is comparable to the interaction energy.
However, even at temperatures of 100 nK and densities of 1014 cm3, the interactions are still so
weak that they can be described by a mean-field potential completely neglecting quantum cor-
relations between the particles. In order to reach the strongly-correlated, interaction-dominated
regime, either the interaction has to be significantly increased by the use of Feshbach reso-
nances. Alternatively, if no Feshbach resonances exist as for Yb, the atoms can be placed into
an optical lattice potential. Instead of increasing the interaction, an optical lattice reduces the
kinetic energy of the atoms, which can move in the lattice only by tunneling between adjacent
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Figure 2.9: Schematic view of the geometry of the optical lattice. a): Three beams of equal frequencies propagat-
ing in the x-z-plane and intersecting under angles of 120◦ generate a 2D optical lattice. If the beams are polarized
along y, perpendicular to their plane of propagation, they produce a triangular lattice with a lattice spacing of 2/3λ,
as indicated in the figure. Rotating the polarization into the plane of propagation changes the lattice geometry to
a honeycomb lattice. b): An additional retro-reflected beam along y is detuned from the 2D-lattice by 160 MHz,
adding a sinusoidal 1D-lattice with a lattice spacing of λ/2 perpendicular to the 2D-lattice resulting in an overall
3D lattice.

sites. In deep lattices, the kinetic energy can easily be reduced below 1% of the onsite interac-
tion, taking the atomic ensemble into the strongly correlated regime.
The configuration of our optical lattice is shown in fig. 2.9. It consists of three beams prop-

agating in the vertical x-z-plane intersecting at an angle of 120◦, as well as one retro-reflected
horizontal beam along y. The three beams in the x-z-plane all have the same frequency so that
they all interfere and generate a two-dimensional (2D) optical lattice potential. The horizontal
beam along y is 160 MHz detuned from the 2D-lattice and its intensity incoherently adds to that
of the other beams. Thus, it generates a regular sinusoidal one-dimensional (1D) lattice along y,
whose only tunable parameter is the lattice depth. The three-beam lattice in the x-z-plane offers
significantly more flexibility: Depending on the polarization of the beams the lattice geome-
try can be changed from triangular (also called hexagonal) for y-polarization to a honeycomb
geometry for the beams polarized in the lattice plane. Moreover, by modulating the phase dif-
ference between the three beams, the whole lattice can be shaken. This technique allows to
imprint arbitrary phases on the tunneling matrix elements, and thereby realize artificial vector
potentials for the atoms. The Rb experiment in our group was the first to use such a three-beam
lattice and successfully realize artificial vector potentials by lattice shaking. Their success in-
spired us to also implement this kind of optical lattice in our setup. More details about the three
beam lattice and the generation of artificial vector potentials by phase modulation can be found
in references [89–92].
The laser system for our optical lattice is schematically depicted in fig. 2.10. The most im-
portant aspect to notice is the use of fiber noise cancellation for the three-beam lattice. While
for retro-reflected optical lattices the phase of the lattice potential is solely determined by the
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Figure 2.10: Schematic view of the laser system used for the optical lattice. The output of a Ti:Sapph laser
(Coherent MBR) is split into four beams, one for the 1D-lattice along y and three for the 2D-lattice. In order to
achieve a stable interference pattern of the three 2D-lattice beams, we use a fiber-noise-cancellation (FNC) setup,
that stabilizes the phase of the fiber output relative to a laser beam picked off in front of the fiber. Details on the
FNC setup can be found in ref. [89].

position of the retro-reflecting mirror, the phase of the three-beam lattice is given by the to-
tal path-length difference between the individual beams, which can fluctuate due to vibrations,
thermal drifts and air currents. The most important source of phase noise are vibration-induced
changes of the optical path length in the 5 m-long fibers. Therefore, the phases of the 2D-lattice
beams at the fiber outputs are stabilized relative to the phase of local oscillator beams picked-
off somewhere in front of the fibers. This is done by detecting the beat note between the light
retro-reflected from the plane-cut output facet of the fiber and the local oscillator and locking
it to a stable RF source as shown in fig. 2.10. As laser source for the lattice we use a Ti:Sapph
laser because of its wide wavelength tuning range, allowing significant tuning of the differential
polarizability between the 1S0 and 3P0 states (cf. section 2.2). For experiments where this dif-
ferential polarizability has to be controlled with high precision, the frequency of the Ti:Sapph
can be stabilized to a precision wavelength meter4 with a longterm stability of ∼ 10 MHz. The
laser system has been setup by my colleague Bastian Hundt and it will be presented in more
detail in his PhD thesis.
Pumped with 18.5 W at 532 nm the Ti:Sapph delivers a maximum output power of 5 W at the
magic wavelength 759 nm. Considering this maximum output power, the sizes of the lattice
beams are chosen such that we can reach the Mott-insulator regime in the triangular as well as
the honeycomb geometry. The measured 1/e2-diameters at the waists of our lattice beams are
((92.1, 92.2, 92.1)± 0.2) µm for the three-beam lattice and (83± 0.2) µm for the 1D-lattice.
The beam-shaping optics for the lattice beams have been built by Niels Petersen and will be
described in his Master thesis.
The alignment of the lattice beams is done in the same way as in ref. [89]: After careful geomet-
rical pre-alignment, the final adjustment is done by minimizing the center-of-mass oscillations

4High-Finesse WS-U
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Figure 2.11: a): Intensity distribution in the x-z-plane for different combinations of 2D-lattice beams switched
on (not to scale). The three possible combinations of 2D-lattice beams produce 3 different 1D-lattices, rotated by
60◦ with respect to each other. When all three 1D-lattices are equally deep, all three beams together produce a
symmetric triangular lattice. In order to calibrate the lattice, the intensities of the three beams are adjusted such
that the parametric excitation to the second excited band occurs at the same modulation frequency for all three
1D-lattices. Panel b) depicts the measured excitation spectra for a 1D-lattice depth of 6.2Er after the lattice has
been calibrated. The parametric heating results in a depletion of the central BEC peak in the time-of-flight image.

induced by pulsing on the lattice beam that is to be aligned. We apply the lattice beam for typi-
cally 2 ms. If the beam is not perfectly pointing at the trap center, the additional dipole potential
of the lattice beam displaces the trap minimum, causing oscillations of the BEC5. These oscil-
lations vanish once the beam has been aligned perfectly to the trap minimum. We estimate the
alignment uncertainty achieved with this method to be ±2µm, corresponding to ∼ 2% of the
beam radius. The longitudinal alignment of the focus to the trap center is done by evaporating
into a crossed dipole trap consisting of the horizontal dipole trap beam DT1 and the lattice beam
under consideration. For evaporation, only DT1 is ramped down, while the power of the lattice
beam is held constant. The final power of DT1 is chosen such that the temperature of the gas is
slightly below the critical temperature for Bose-Einstein-condensation. For the given temper-
ature and DT1 potential at this point, the critical temperature and thus the condensate fraction
are solely determined by the confinement produced by the lattice beam, which depends on its
alignment. The critical temperature is highest when the lattice beam intersects with the dipole
trap at its focus, maximizing the confinement and consequently the critical temperature. We
thus adjust the focus position such that for a given final power of DT1, the condensate fraction
is maximized. We estimate the uncertainty of the focus position found with this technique to be
±3 mm corresponding to 10 % of the beams Rayleigh range zR.

For all experiments performed within this thesis the three-beam lattice has been set to the
triangular configuration. This is done by adjusting the polarization of all three beams along y,

5These oscillations allow to determine the trapping frequencies of the dipole trap as shown in fig. 2.4
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i.e. perpendicular to the lattice plane. For a precise adjustment of the polarization, we exploit
the fact that the 1D-lattice propagates perpendicular to the 2D-lattice and thus along the direc-
tion of the desired 2D-lattice polarization. Consequently, if the 2D-lattice beams are perfectly
y-polarized, they do not interfere with the 1D-lattice. In order to probe the interference between
the 1D- and 2D-lattices, we set them to the same frequency and block the retro-reflection of
the 1D-lattice beam. Moreover, we coarsely set the polarization of the 1D-lattice perpendicular
to the k-vector of the 2D-lattice beam, whose polarization is to be adjusted. This maximizes
the interference contrast between the 1D-lattice and the in-plane polarization component of the
2D-lattice beam. We then observe Kapitza-Dirac diffraction off the 1D-lattice generated by the
interference between the 1D-lattice beam and the 2D-lattice beam. When the polarization of
the 2D-lattice beam is aligned perfectly parallel to the k-vector of the 1D-lattice, the two beams
do not interfere and no Kapitza-Dirac diffraction peaks are observed. The sensitivity of this
technique can be enhanced by using a sequence of multiple Kapitza-Dirac pulses. The uncer-
tainty of the polarization angle adjusted with this method is ±1◦, corresponding to a maximum
of 0.03% of the power having the wrong polarization. Having optimized the polarization of the
2D-lattice beam in this way, we can cross-check for the perpendicularity of the 1D- and 2D-
lattice beams. To that end we rotate the polarization of the 1D-lattice such that it points along
the k-vector of the 2D-lattice beam. In this configuration the two beams can only interfere, if
the angle between them deviates from 90◦. From Kapitza-Dirac diffraction in this configuration
we deduce an upper limit of ±1.5◦ for the deviation of the angle between the 2D-lattice beams
and the 1D-lattice from 90◦.
The lattice depth has been calibrated by the standard technique of parametric heating: If the lat-
tice intensity is modulated, parametric excitation causes severe heating and particle loss, when
the modulation frequency equals the energy difference between the lowest and the second ex-
cited band of the lattice. This loss and heating cause a depletion of the central BEC peak in
the time-of-flight image. Measuring the atom number in the central peak versus modulation
frequency thus allows to determine the energy difference between these bands for a given lat-
tice intensity. Comparing the measured resonance frequency to the calculated band structure
then allows to extract the lattice depth. For the three-beam lattice, there is an additional com-
plication: In order to achieve a fully symmetric triangular lattice, all three beams should have
the same intensity. The symmetry of the lattice can however not be extracted from a simple
parametric heating spectrum. In order to calibrate all three beams individually, we use the fact
that the triangular lattice is in fact a superposition of three 1D-lattices intersecting at an angle
of 60◦ as shown in fig. 2.11 a). Each of these 1D-lattices is generated by one of three possible
pairs of 2D-lattice beams. The triangular lattice is symmetric when all three of these 1D-lattices
are equally deep. Thus, we adjust the intensities of the three beams until the parametric heat-
ing resonances of all three 1D-lattices occur at the same modulation frequency. Figure 2.11 b)
shows the parametric excitation spectra of the three 1D-lattices after they have been calibrated.

Having aligned and calibrated the lattice, we checked whether we can drive our ultracold
bosonic gas into the Mott-insulator regime. To this end, we used the following experimental
sequence: After producing a BEC in the crossed dipole trap, the horizontal 1D-lattice is ramped
to 25Er within 50 ms, dividing the gas into an array of decoupled quasi-2D condensates. Once
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Figure 2.12: Measurement of the superfluid to Mott-insulator transition in an array of quasi-2D condensates of
174Yb in a triangular optical lattice. Details on the experimental sequence are given in the main text. Panel a)
depicts a series of time-of-flight images, exhibiting the characteristic loss and revival of coherence as the lattice
depth is first increased and then decreased again. In panel b) visibility of the interference pattern and condensate
fraction are plotted versus ratio of onsite interaction U and hopping J . The fact that the condensate fraction drops
faster than the visibility is attributed to particle-hole excitations in the Mott-insulating state. The supposedly rather
high density in the lattice is expected to significantly influence the transition (see main text).

the 1D-lattice has reached its final value, the 2D-lattice beams are ramped to depths between
1 and 23Er. Subsequently, all potentials are abruptly switched off and the sample is imaged
after 33 ms time-of-flight. As the lattice depth increases, the characteristic loss of coherence
in the momentum distribution is observed as shown in fig. 2.12. The coherence revives as the
lattice depth is lowered again and the phase transition is reversed, bringing the atomic ensemble
back into the superfluid regime. The parameter that determines the phase of the system is the
ratio of the onsite interaction U and the hopping zJ . z is the number of nearest neighbors,
which is z = 6 for a 2D triangular lattice. We have compared the dependence of visibility and
condensate fraction on U/6J measured in our setup to the same measurement performed on
the Rb-experiment in our group. This Rb-measurement is in detail described in ref. [89]. The
trapping frequencies and lattice parameters are similar to our setup. As in ref. [89], we find that
the condensate fraction drops at significantly lower U/6J than the visibility. And similarly we
attribute this effect to a small amount of particle-hole excitations in the Mott-insulator phase.
However, the overall drop in the visibility as well as in the condensate fraction occurs at consid-
erably larger U/6J values than in the Rb-experiment. Possibly, this observation is related to the
two times higher mass of Yb compared to Rb, as explained in the following: While the lattice
parameters U and J depend on the mass only via the recoil energy, the harmonic potential in
units of Er is proportional to the squared product of the mass m and mean trap frequency ω̄:

Vtrap/Er ∝ m2ω̄2 (2.6)
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Consequently, in order to achieve the same confinement for Yb and Rb, the trapping frequencies
for Yb must be a factor of two lower than for Rb to compensate the mass difference. Or
from a different point of view: For the same trapping frequencies, the density, being roughly
proportional to mω̄, is twice as large for Yb. Evaluating the shell structure for 1D- and 2D-
lattice depths of 25 and 22.5Er, neglecting tunneling (J = 0) [93] and using the parameters
of the measurement shown in fig. 2.12, one finds a maximum site occupation of nmax = 7. In
contrast, the same calculation for the experimental parameters from ref. [89] yields nmax = 4.
As a consequence of the high site occupation in our experiment, the thickness of the outer Mott-
shells obtained from the J = 0-calculation is only two to three lattice sites. For such narrow
shells, the fluid regions expected between the shells can be assumed to significantly disturb
the Mott-state, leading to an increased visibility. Moreover, for the high expected occupation
numbers of up to seven, bond-charge interactions can significantly enhance the tunnel-coupling
between adjacent sites, shifting the critical U/6J to larger values [94].
The measurement of the bosonic Mott-insulator transition was mainly performed to check the
reliability of our lattice setup, which we had just installed. Therefore, after convincing ourselves
that we could reliably ramp into and out of the Mott-state, we decided to pursue our main goal
and prepare the setup for the investigation of the clock transition on the fermionic isotope 173Yb.
Now being fully aware of the high densities in our setup and the physics this is most probably
connected to, it would be interesting to evaluate, whether our setup allows e.g. to quantitatively
investigate the bond-charge coupling for high occupation numbers. The supposedly very small
three-body loss rate of Yb should be very favorable for experiments along these lines. For
studies of Hubbard-physics, however, the density would need to be significantly reduced. As
mentioned already in section 2.3, this will be possible in the near future with the help of a third
dipole trap beam allowing to considerably lower the trapping frequencies.

2.5 Quantum Degenerate Fermi Gases of 173Yb

The main interest in ultracold gases of alkaline-earth-like elements comes from their fermionic
isotopes which in contrast to their bosonic counterparts exhibit nuclear spin. It is the interplay
between the nuclear spin and the electronic degree of freedom that allows to realize many-body
Hamiltonians which are difficult to implement with alkali atoms [24]. The two fermionic iso-
topes of Yb both have interesting properties: 173Yb carries a large nuclear spin of 5/2 with
six different mI-states, opening up many possibilities for the study of multi-component fermi-
mixtures. 171Yb in contrast only has a nuclear spin of 1/2. Its main feature, however, is the small
s-wave scattering length of −3a0. Consequently, the importance of the 1S0-3P0 interaction rel-
ative to the ground-state interaction is significantly increased for this isotope, as explained in
section 2.1. Still, the small ground-state interaction also requires a second species for efficient
sympathetic cooling during evaporation. Since this increases the experimental complexity sig-
nificantly, we have decided to begin our fermion experiments with 173Yb.
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Figure 2.13: Evolution of the potential depths of
the two dipole trap beams DT1 (solid red line) and
DT2 (solid blue line) during the forced evaporation
of 173Yb. In a first step only DT1 is reduced until
most of the atoms are concentrated in the crossed
trap. In a second step, both beams are ramped
down, bringing the gas into the quantum degener-
ate regime. In a third step, DT1 is slowly reduced
further, until T/TF = 0.15 is reached. For compar-
ison the ramps used for the bosonic isotope 174Yb
are plotted as dashed lines for DT1 (red) and DT2
(blue).

2.5.1 Evaporative Cooling

Evaporative cooling of fermionic atoms to ultra-low temperatures is complicated by the Pauli
principle, which states that identical fermions do not undergo s-wave collisions. Consequently,
thermalization in a gas of identical fermions becomes extremely slow once the temperature
drops below the threshold for p-wave collisions. Efficient evaporative cooling of fermions is
only possible either in a mixture of different internal states or sympathetically in a hetero-
nuclear mixture, ideally with a bosonic species as coolant. 173Yb with its scattering length of
199 a0 and large nuclear spin of I = 5/2 is well suited for direct evaporation in a spin mixture.
The experimental procedure for the preparation of a quantum degenerate fermi gas of 173Yb is
basically the same as for the production of BECs described above: Within 20 s we load about
14 · 106 atoms into the 3D-MOT. After the loading phase the MOT is cooled and compressed as
described in section 2.3. Interestingly, the lowest light power that can be used before the atoms
start to fall out of the MOT is slightly higher than for the bosons. This might be explained by the
lower average restoring force due to the small Zeeman shift of the ground state (cf. section 1.1).
The final temperature in the MOT is however between 10 and 15µK, similar to the bosons.
After the compression phase we end up with about 2 · 106 atoms in the dipole trap at a few tens
of µK.
For forced evaporative cooling we use a power ramp which is slightly different from the one

used for the bosons: We start by ramping down DT1 within 4 s to a power of 300 mW until
nearly all atoms are confined in the crossed region, keeping the power of DT2 constant. This
first step is 1 s faster than for the bosons, which can be attributed to the twice as large scattering
length speeding up thermalization. In the second step, both beams are ramped down within
1.5 s to powers of 50 mW for DT1 and 1.9 W for DT2. At the end of the second step the gas
has just entered the quantum degenerate regime with ∼ 2 · 105 atoms at 40% of TF. In the
third evaporation step, the gas is brought deeper into the quantum degenerate regime by slowly
reducing the power of DT1 further to its final value of 25 mW within 1.3 s. Slowing down the
forced evaporation is necessary, because in the quantum degenerate regime only atoms near the
Fermi surface contribute to the thermalization, slowing it down considerably [95]. The evolution
of the potential depth of the two dipole trap beams during the forced evaporation phase is shown
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Figure 2.14: Evaluation of time-of-flight images of the ultracold Fermi gas. A two-dimensional fit of a Thomas-
Fermi profile (solid red line) allows to extract T/TF. Quantum-degeneracy can be clearly observed by comparing
the data to a 2D Gaussian fit to the wings of the time-of-flight distribution (dashed blue line), which significantly
overestimates the density in the center of the distribution. The data in panel b) is taken at the end of the forced
evaporation phase. For the image in panel a), the final trap depth was set to a larger value in order to obtain a less
degenerate sample. Panel c) depicts close-ups of the line-sums from a) and b), including a 2D Gaussian fit to the
whole distribution (dashed green line). While the deviation is much smaller than for the fit to the wings only, it can
clearly be observed.

in fig. 2.13. As for the bosons, all ramps are of exponential shape. At the end of this three-step
evaporation we end up with a balanced spin mixture of 70...80 · 103 atoms at 15% of the Fermi
temperature. The temperature is determined by fitting a two-dimensional Thomas-Fermi profile
to the density distribution after time of flight, leaving the fugacity z, the peak density and the
Thomas-Fermi radii as free parameters. The temperature relative to the Fermi temperature is
then obtained from the fugacity via:

6 · Li3 (z) = −
(
TF

T

)3

, (2.7)

where Li3 (z) is the third order poly-logarithmic function [96]. The signature of Fermi degen-
eracy in the time-of-flight distribution is a flattening at the center compared to the slope at the
edges of the distribution. It is due to Pauli pressure pushing the atoms to the edges of the mo-
mentum distribution, when the occupation of the lowest energy states becomes on the order of
unity. This flattening can be most clearly observed when fitting a Maxwell-Boltzmann distri-
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Figure 2.15: a): Decay of the degenerate Fermi gas held in the crossed dipole trap. As for the bosons, the lifetime is
limited by photon scattering from the dipole trap. For short hold-times a slight non-exponential decay is observed,
attributed to a focus shift of DT1. The solid red line is a double exponential fit to the data. The dashed red line is
an exponential fit to the data for t ≥ 4 s. The increase of T/TF over time, can be explained by a reduction of TF
due to the loss of particles. Panel b) shows T/TF vs. the particle number N , together with a fit of the expected
N−1/3 dependence. From this fit and the fit to N (t) in a), the time dependence of T/TF is calculated and shown
as solid blue line in panel a).

bution, i.e. a 2D-Gaussian, to the wings of the momentum distribution, as shown in fig. 2.14
a) and b). Comparing this Gaussian ’wing-fit’ to the measured data and the Thomas-Fermi fit,
the increase in Fermi degeneracy at a lower T/TF can clearly be observed. When fitting a 2D-
Gaussian to the whole time-of-flight distribution, the deviations from the Thomas-Fermi profile
are much smaller, as can be seen in the close-up of the line profiles in panel c) of fig. 2.14. At
moderate T/TF ≈ 0.3, the deviation is hardly visible. At T/TF ≈ 0.15, however, the deviation
can clearly be observed.

Figure 2.15 a) shows the decay of our degenerate Fermi gas in the crossed dipole trap. The
decay rate of (0.19± 0.04) s−1 for hold times longer than 4 s is compatible with that measured
for the bosons. During the first four seconds we observe again a slight non-exponential decay,
however much less than for the bosons. This strengthens the assumption that a focus shift of
the horizontal dipole trap beam resulting in unwanted lowering of the trap is responsible for
this non-exponential decay: The third evaporation step, lasting for 1.2 s, provides more time for
the AOM to thermalize, compared to the bosons, where this third step is not used. Thus, the
unwanted focus shift following the evaporation is smaller. Moreover, since we regularly adjust
the dipole trap focus position for optimal evaporation performance, the overall focus position
might be slightly different in this measurement compared to the BEC measurements presented
in section 2.4.1, changing the influence of the thermal focus shift.
As the ultracold gas decays, the ratio T/TF slowly increases from 15% to 25% over a hold-time
of 10 s. This can for the most part be explained by the decay of the atom number resulting
in a decrease of the Fermi temperature proportional to N−1/3. In fig. 2.15 b) T/TF is plotted
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versus the number of atoms N . The N−1/3 dependence fits the data reasonably well. The solid
blue line combines the fitted curves for N (t) and T/TF (N) to yield the time dependence of
T/TF (t). Comparing this curve to the measured temperatures, one can extract a heating rate of
about 2% of TF over 10 s or 2 · 10−3TF s−1.

2.5.2 Production and Detection of Spin-Mixtures
In contrast to their bosonic counterparts, the fermionic Yb-isotopes exhibit nuclear spin. In
order to fully exploit this additional degree of freedom, controlled preparation and readout of
the nuclear-spin magnetic quantum number mI are required. For electronic states with non-
zero angular momentum J , the electronic and nuclear spins couple to a total hyperfine spin F ,
which can be controlled conveniently via direct coherent coupling of different spin states using
microwave- and RF-radiation. This is the case for the ground states of alkali atoms, or the 3P2-
state of Yb. For the J = 0 states of Yb such as the 1S0 ground state and the metastable 3P0

state, this is hardly feasible for two reasons: First, the nuclear magnetic moment is∼ 2000 times
smaller than that of the electron. Consequently,∼ 2000 times higher fields are required in order
to achieve a coupling to the nuclear spin on the same order of magnitude as for the electron spin.
Producing such high fields is hardly feasible experimentally. Secondly, the nuclear spin states
do not exhibit a quadratic Zeeman shift. Thus, all mI-states are equally separated and cannot
be individually addressed. While both problems can in principle be overcome by using Raman-
instead of direct coupling and inducing a nonlinear splitting between the mI-states by means of
near resonant light-shifts, the most straightforward way to control the spin composition of the
ultracold gas is to perform optical pumping prior to evaporation.
In our experiment, optical pumping proceeds as follows: After the dipole trap has been loaded

and the MOT light is switched off, we apply a homogeneous magnetic field of 67 G along the
axis of the horizontal dipole trap. This splits neighboring mF-levels of the (3P1, F = 7/2)
hyperfine state by 40 MHz, far enough to address them individually despite the Doppler- and
light-shift broadening in the dipole trap. We are then able to depopulate individual ground-state
mI-levels by shining in pulses of σ+-polarized 556 nm light at the right detuning along the di-
rection of the magnetic field. Subsequently, we perform evaporative cooling.
In order to probe the spin distribution of the ultracold gas, we use the so-called optical Stern-
Gerlach (OSG) technique [97–99]: After releasing the atoms from the trap, we pulse on a laser
beam tuned in between the hyperfine states of the 1S0 → 3P1 transition, resulting in an mI-
dependent light-shift. With the slope of the Gaussian beam profile positioned at the center of
the atom cloud, the atoms experience an mI-dependent force that spatially separates the differ-
ent spin components after time-of-flight. Figure 2.16 a) and b) show the geometry of the OSG
setup. The beam enters the glass cell under an angle of 11◦ with respect to the horizontal, its
center located half its 1/e2-radius above the atoms. The spin components thus separate perpen-
dicular to the axis of the beam, i.e. almost vertically, as shown in fig. 2.16 b). Splitting the
cloud vertically instead of horizontally has the advantage that the splitting can be seen from
both imaging directions (x and y). The OSG beam has a 1/e2-diameter of 200µm, a power of
40 mW and a detuning of 1.27 GHz to the blue of the (3P1, F = 7/2)-state. The light is derived
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Figure 2.16: Geometry of the optical Stern-Gerlach (OSG) setup. Panel a): The OSG beam propagates in the y-z
plane at an angle of 11◦ with respect to the horizontal. Panel b): The beam is adjusted half the 1/e2-radius above
the atoms, such that the largest intensity gradient is located at the position of the atom cloud. Due to the differential
light-shift between the different spin components, the cloud splits up perpendicular to the OSG beam. The almost
vertical separation can be seen from both imaging directions x and y. Panel c): Absorption image of a degenerate
gas of 173Yb after OSG separation without optical pumping prior to evaporation. The gas is a balanced mixture of
all six spin components. The OSG beam has been aligned slightly further away from the atoms to reduce photon
scattering.

from the frequency-doubled diode laser-based system, locked to the ULE cavity (cf. fig. 1.5).
The OSG setup has in large part been implemented by my colleague André Kochanke and will
be described in more detail elsewhere.

Figure 2.17 shows the polarizability and scattering rate close to the 1S0 → 3P1 transition.
The dashed lines indicate the detuning used in the experiments described here. The differences
between the polarizabilities of neighboring mI-states are rather asymmetric, such that a good
separation of all six components is hardly possible without significant photon scattering. By ad-
justing the power or the alignment of the OSG beam, we can choose between good separation
of all six spin components or low photon scattering. Minimizing photon scattering is especially
important when a precise quantitative measurement of the spin composition is desired. The
OSG performance could be improved by the use of two OSG beams of opposite circular polar-
ization, as has been demonstrated for 87Sr [100]. This should allow to well separate all six spin
components without significant photon scattering.

With optical pumping and OSG spin separation at hand, we can evaluate the production of
different spin mixtures of quantum degenerate 173Yb. Without optical pumping prior to evap-
oration, we end up with a balanced mixture of all six spin states as shown in fig. 2.16 c). By
subsequently depopulating one or more mI-states, we prepare degenerate Fermi gases with one
to six spin components. This is shown in fig. 2.18. Here, the OSG beam is applied for a time of



2.5 Quantum Degenerate Fermi Gases of 173Yb 47

Figure 2.17: Polarizability and scattering rate for the different mI states of 173Yb for σ+-polarized light. The
frequency is given with respect to the

(
1S0, I = 5/2

)
→
(
3P1, F = 7/2

)
-transition. In the experiments described

here, a detuning of 1.27 GHz to the blue of that transition has been used (marked by dashed line). The asymmetric
splitting of the polarizability makes it difficult to separate all spin components without significant photon scattering.

1 ms directly after switching off the trap, resulting in a good separation of all six spin compo-
nents. The spin distribution is however distorted due to photon scattering and the corresponding
optical pumping. Quantitative evaluation of the spin composition can be performed with re-
duced OSG duration. Images without spin separation, shown to the right of the respective OSG
images, are used to extract T/TF for the different mixtures.
Let us first consider only the cases of multi-component spin mixtures with two to six compo-
nents. For all of these spin mixtures the same evaporation ramp is used. In the measurements,
the total atom number decreases with the number of spin components, while the degeneracy
T/TF slightly increases. Going from six to four components hardly changes the degeneracy.
For three and two components T/TF then increases by 1...2%.
Three different effects influence the dependence of T/TF on the number of spin components.
First, the optical pumping heats the sample in the dipole trap. This heating amounts however
only to a few photon recoils, which is negligible compared to the initial temperature in the
dipole trap of a few tens of µK. Second, the evaporative cooling efficiency decreases with the
number of spin components present, because the evaporation depends on elastic collisions be-
tween different spin states. Third, as atoms are transferred from one spin component to another,
the number of atoms per component is increased, resulting in an increase of TF, which at con-
stant temperature reduces the degeneracy parameter T/TF.
The reduced evaporation efficiency directly manifests itself in the decrease of the total atom
number as the number of mI-states is reduced. The fact that T/TF only decreases very little
indicates that the increase in the Fermi temperature nearly balances the reduced evaporation
efficiency.
The spin polarized gas constitutes a special case. Because of the Pauli exclusion of s-wave
collisions, a spin polarized gas can hardly be evaporatively cooled into the quantum degenerate
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Figure 2.18:
Different spin mix-
tures of degenerate
173Yb. Differ-
ent mixtures are
produces by depop-
ulating unwanted
spin components
by optical pumping
prior to evaporation.
As the number
of components is
reduced from six to
two, a slight increase
of the degeneracy
parameter T/TF
can be observed,
which is attributed
to a reduced evap-
oration efficiency.
A spin-polarized
sample is produced
via sympathetic
cooling by minority
spin components,
which are completely
eliminated during
evaporation. Details
are given in the main
text.
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regime without a second species as sympathetic coolant. In order to provide such a coolant,
we adjust the duration of the optical pumping pulses such that a small but equal fraction of the
unwanted spin components is still present at the beginning of the evaporation. We then force
evaporation by ramping down the dipole trap until all unwanted spin components are removed
from the trap. The degeneracy that can be achieved without having unwanted spin components
present at the end of evaporation is limited to T/TF ≈ 0.25, because the forced evaporation
is not spin-selective. In order to optimize the final T/TF, both the initial spin distribution as
well as the evaporation ramp have to be adjusted iteratively. The final trap depth for the case
of a spin-polarized gas is larger than for the multi-component spin mixtures. Another way to
produce a spin-polarized gas, which we have not yet explored, is the removal of unwanted spin
components after evaporating a multi-component mixture.
In section 2.1 it has been pointed out that for the (J = 0)-states the scattering length is inde-
pendent of the nuclear spin. Thus, as long as only ground-state spin mixtures are to be studied,
only the number of components in a given spin mixture matters. Which mI-states are used ex-
actly is irrelevant. However, when the ground state is optically coupled to the 3P0 metastable
state, the exact choice of spin components is indeed important, because of the mI-dependent
Clebsch-Gordan coefficients of the 1S0 → 3P0 transition. In this context a two-component spin
mixture of the two stretched states mI = ±5/2 is of special interest, as will be explained in
section 3.3.1. We prepare this mixture in the following way: We use the σ−-polarized imaging
beam along the y direction on the 399 nm transition to pump nearly all atoms to the mI = −5/2
state. Subsequently, the desired amount of population is transferred back to mI = +5/2 state
with the optical pumping beam on the 556 nm transition. The uppermost panel of fig. 2.18
shows a 1:2 mixture of these two components.

2.5.3 173Yb in the Optical Lattice
Like electrons in a solid state crystal, fermionic atoms in an optical lattice fill up the reciprocal
lattice from q = 0 in the first Brillouin zone up to the fermi surface. Thus, their momentum
distribution after abruptly switching off the lattice does not exhibit the discrete peaks observed
for bosons. Instead, the presence of the lattice potential is best observed by so-called band
mapping. This is done by ramping down the lattice on a time-scale that is slow compared to
the band-gap of the lattice and fast with respect to the trapping frequency [101, 102]. If the
correct ramp speed is chosen, quasi-momentum is conserved and adiabatically mapped onto
real momentum in the limit of vanishing lattice depth. The momentum distribution can then be
observed in the density distribution after time-of-flight. If the lattice is decreased too fast, atoms
are excited to higher bands and the band population is not conserved. If the lattice is decreased
too slowly, the quasi-momentum states of the lattice ultimately transform back to the harmonic
oscillator eigenstates of the trap. Both, ramping too slowly or too fast, will smear out sharp
features in the momentum distribution, such as the edges of the first Brillouin zone.
Figure 2.19 depicts the time-of-flight distribution after band mapping out of the horizontal 1D-
lattice for a spin-polarized gas at T/TF = 0.3 for two different atom numbers. After evaporative
cooling has been completed, the 1D-lattice is ramped up linearly within 50 ms to a depth of
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Figure 2.19: Time-of-flight im-
ages obtained after band map-
ping of a spin-polarized gas at
T/TF = 0.3 out of a 1D-
lattice with a depth of 20Er, av-
eraged over 15 individual mea-
surements. The lattice is ori-
ented horizontally. Best map-
ping is achieved, by linearly
ramping down the lattice within
2 ms. For 22 · 103 atoms, the
lowest band is completely filled
with no observable higher band
population. For an increased
atom number of 60 · 103 about
10% of the atoms occupy the
second band.

20Er. The atoms are then held in the lattice for 20 ms, before band mapping is performed by
ramping down the lattice linearly within 2 ms. In the direction of the lattice, the distribution is
flattened in the center and falling off steeply at the edges of the first Brillouin zone, marked by
dashed lines in fig. 2.19. The edges of the distribution are smoothed out due to the finite ramp-
down time of the lattice. For 2 · 104 atoms in panel a) the 1st Brillouin zone is homogeneously
filled and no higher band population is observed. In panel b) however, where the atom number
is increased by a factor of three, about 10% of the atoms homogeneously populate the second
band, or the second Brillouin zone of the lattice. Observing atoms in the second band at these
moderate atom numbers is rather unusual. In order to understand how this comes about, it is
worthwhile to consider the process of loading the lattice in some detail.
The most simple approach to the problem is to consider particles in a box potential, on top of

which a lattice is slowly increased. The eigenstates of the box potential without the lattice are
plane waves, linearly spaced in momentum space. When the lattice is slowly increased, these
momentum states are adiabatically transformed into the corresponding quasi-momentum states
of the lattice potential. Thus, all states occupying the first Brillouin zone before the lattice is
applied will be loaded into the first band, states initially in the second Brillouin zone will be
loaded into the second band, and so on.
In one dimension, the energy at the edge of the N th Brillouin zone is

EN = N2~2k2
L

2M
= N2Er, (2.8)

where kL is the wavenumber of the lattice laser. Therefore, the criterion that all states with
momenta in theN th Brillouin zone are mapped into theN th band can equivalently be expressed
in terms of energy: All states with energies below Er will form the first band. All states with
energies between Er and 4Er will form the second band, and so on. This can immediately be
seen by looking at the band structure of a 1D-lattice shown in fig. 2.20 a).
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Figure 2.20: a) Band structure of a 1D-
lattice with a depth of 0.5Er The band
gaps between the N th and (N + 1)th
band appear at energies N2Er. b) i):
Brillouin zones of a square lattice. ii) If
initially momentum states up to ~|~k| =
~kL are occupied, only the first band
is populated but cannot be completely
filled. iii): The first band is completely
filled if initially all states up to ~|~k| =
~
√

2kL are occupied. This also leads
to population in the second band. iv):
If the maximum initial momentum ex-
ceeds ~

√
2kL, even the third and fourth

band will be populated.

The situation changes when higher dimensions are considered, because the energy is no longer
constant along the borders of the Brillouin zones. E.g. in two dimensions, the first Brillouin
zone of a square lattice is a square of size 2kL. The free momentum states below Er lie however
on a disk of radius kL. Consequently, the first band of the lattice cannot be completely filled,
without populating higher bands. The highest possible filling factor of the first band is the
ratio between the area of the first Brillouin zone and the area of a disk of radius kL, which
is π/4 ≈ 0.8. If states above Er are occupied, they will partly be loaded into higher bands,
although the lowest band is not yet full, as illustrated in fig. 2.20 b). This problem can also
be formulated in position- instead of momentum-space by considering that the density of a
2D-Fermi gas is given by

n0,2d =
π

4a2
· EF

Er

, (2.9)

where a is the lattice spacing. If all states up to EF = Er are occupied, the number of atoms
per unit cell is only a2 ·n0,2d = π/4 ≈ 0.8. Similar arguments hold for three dimensions: Here,
the volume of the Brillouin zone of a cubic lattice has to be compared to that of a sphere with
radius kL, resulting in the highest possible filling of π/6 ≈ 0.5. Thus, in order to fill up the first
band completely, the gas needs to be adiabatically compressed after the lattice has been applied.
In experiments with ultracold atoms in optical lattices, this adiabatic compression is intrinsically
taken care of by the harmonic trapping potential. The underlying mechanism can be understood
by solving the single particle Hamiltonian of a combined harmonic+lattice potential as has been
done in one dimension in refs. [103–105]. The probability distribution |Ψ (x)|2 of the corre-
sponding eigenstates in position space is shown in fig. 2.21 for two different lattice depths. In
panel a) the lattice depth is 0.5Er, in panel b) 2Er. Comparing the two plots reveals that as
the lattice depth is increased, the highest energy states start to localize in the outer regions of
the trap. This happens as soon as the potential energy difference between neighboring sites due
to the harmonic confinement exceeds the nearest neighbor tunneling. As a consequence of the
localization, the energies of the eigenstates are more and more determined by the local value
of the trapping potential, pushing the states towards the center of the trap and compressing the
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Figure 2.21: Panels a) and b) show the spatial distribution of the lowest energy eigenstates of a combined har-
monic+lattice potential for lattice depths of 0.5Er and 2Er, respectively. The x-axis denotes the position in units
of the lattice spacing a. The energy in units of Er is given on the y-axis. The harmonic trapping frequency is
66 Hz, corresponding to ωy in our experiment. As the lattice depth increases, the states start to localize in the outer
regions of the trap, leading to the appearance of a bandgap in the center. Panel c): Energy spectrum of a combined
harmonic+lattice potential. Reprinted figure with permission from Viverit et al., Phys. Rev. Lett. 93, 110401
(2004). Copyright (2004) by the American Physical Society. s is the lattice depth in units of the recoil energy.
The level spacing changes from linear for the initial harmonic oscillator states to quadratic for the localized states.
About one third of the states above Er steeply bend upwards as the lattice is increased, forming the second band.

sample. The appearance of localized states is also responsible for the formation of a bandgap
in the trap center, spreading towards the edges as the lattice depth increases. The first band is
filled as soon as the highest energy states have tightly localized at the edges of the trap and a
homogeneous density of one atom per lattice site is reached in the occupied central trapping
region. Depending on the initial number of atoms and the harmonic confinement, this happens
at different lattice depths.
Remarkably, the criterion found for the homogeneous lattice, stating that all states with ener-

gies below Er are loaded into the lowest band, remains valid also for the harmonically confined
lattice. This can be seen in fig. 2.21 a) and b) as well as in panel c) of the same figure. The
latter has been taken from ref. [104] and depicts the energy spectrum of a 1D harmonic+lattice
potential as a function of lattice depth for a harmonic confinement of ~ωtrap = 0.05Er. All
states with initial energies below Er transform smoothly from the linearly-spaced harmonic os-
cillator states to the quadratically-spaced localized states. States above Er behave differently:
One set of states strongly bends upwards in energy as the lattice depth increases. Those are the
states eventually forming the second band. The second set of states exhibits the same smooth
behavior as the states below Er. Those states finally end up as localized states in the first band.
Looking closely at the spectrum, it can be seen that all the crossings between the localized and
second-band states are in fact avoided crossings with extremely narrow splittings. This can be
understood as follows: Because of the spatial separation between the first- and second-band
states, the tunnel-coupling responsible for the avoided crossing becomes very small. Conse-
quently, if the lattice were ramped up perfectly adiabatically such that all atoms in the second
band had enough time to tunnel to lower lying localized states, none of the avoided crossings
would be crossed and all states would finally end up in the first band. However, the tunnel-
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Figure 2.22: Panel a): Fraction η>Er
of atoms fulfilling the conditions of eqs. (2.10) and (2.11) versus the total

atom numberN . The red line corresponds to the case of a 1D-lattice (red line). For the case of a 2D- and 3D-lattice
the condition of eq. (2.11) is applied along all lattice directions, resulting in the blue line for a 2D-lattice and the
green line for a 3D-lattice. All harmonic oscillator states below the Fermi energy are assumed to be populated,
corresponding to zero temperature. Panel b) depicts η>Er as a function of T/TF for a fixed atom number of
N = 6 · 104. Temperature is taken into account by populating the harmonic oscillator states according to the
Fermi-Dirac distribution. The different lines are again corresponding to the different dimensionalities.

coupling and thus the avoided crossings quickly become negligibly small, such that adiabaticity
can hardly be achieved experimentally. Thus, it is reasonable to expect that all of the steeply
upward bending states will be transferred to the second band. Looking at fig. 2.21 c), one finds
that roughly one third of the states above Er are loaded into the second band.
These considerations now allow to perform a simple estimate of the number of atoms trans-

ferred to higher bands during the loading of the lattice. First, let us consider the case of an
ensemble of atoms trapped in a 3D-harmonic trap, loaded into a 1D-lattice along the y-direction
as has been done in the measurements of fig. 2.19. Since the lattice is oriented along one of the
principle axes of the trap, the Hamiltonian separates for the three directions x, y, and z and the
condition E < Er applies separately to the direction of the 1D-lattice. Therefore, out of all
harmonic oscillator states with energies

E (nx, ny, nz) =

(
nx +

1

2

)
~ωx +

(
ny +

1

2

)
~ωy +

(
nz +

1

2

)
~ωz < EF. (2.10)

those states with (
ny +

1

2

)
~ωy > Er (2.11)

cannot all be loaded into the first band. The red line in fig. 2.22 a) depicts the fraction of atoms
η>Er that fulfill eqs. (2.10) and (2.11) for the case of a 1D-lattice. For a quadratic 2D- or a cubic
3D-lattice, the condition of eq. (2.11) has to be applied analogously to all lattice directions,
leading to correspondingly higher values of η>Er , shown in blue and green in the same plot.
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Figure 2.23: Time-of-flight distribution of a two-component mixture at T/TF = 0.2 after band mapping out of
the full 3D-lattice, averaged over 20 runs. The lattice depth is 13.7Er for the triangular lattice and 14.5Er for the
1D-lattice, in order to achieve approximately equal tunneling in all three directions. The images are taken along
x, in the plane of the triangular lattice and perpendicular to the 1D-lattice. Correspondingly, only the horizontal
momentum distribution exhibits the sharp edges of the first Brillouin zone. In the vertical direction, the image
integrates over the hexagonal volume of the Brillouin zone, leading to a more peaked line-profile. The projected
edges of the first and second Brillouin zone are marked by dashed lines. In panel a) at a filling of 8.5 · 103 per spin
component only very little population is observed in higher bands, while for a filling of 18.5 · 103 per component
as in b), significant population in higher bands can be observed.

The lattice and trapping parameters used for this calculation correspond to the parameters from
our experiment6. η>Er stays zero, until the Fermi energy crosses the recoil energy. Above this
threshold, marked by the dashed line in fig. 2.22, η>Er initially increases almost linearly with
atom number and also linearly with the lattice dimension. This changes for larger atom num-
bers: At some point the first Brillouin zone of the 3d-lattice is completely filled, implying that
all further atoms will increase η>Er . For the 2D- and 1D-lattice, the lowest band can accommo-
date an infinite number of atoms, because there is no limit on the momentum in the directions
that are not confined by the lattice. In the case of a triangular lattice, the situation is more com-
plicated, since the lattice is not oriented along the principal axes of the harmonic potential and
the Hamiltonian does not separate for the three directions x, y, and z. The qualitative behavior
of η>Er can however be expected to be very similar to the case of a square lattice. Temperature
can be included in the estimate by taking the population of the initial harmonic oscillator states
according to the Fermi-Dirac distribution. Figure 2.22 b) depicts η>Er as a function of T/TF for
n = 6 · 104 atoms. In the range between T/TF = 0.05...0.3 it increases almost linearly.
These values can now be compared to the measurements in fig. 2.19. As discussed above, one

6(ωx, ωy, ωz) = (84, 66, 134) Hz, Er = 2 kHz
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Figure 2.24: Time-of-flight dis-
tribution after band mapping
of a six-component mixture at
0.15T/TF out of a 2D triangu-
lar lattice with a depth of 15.2Er,
averaged over 15 runs. Line
sums taken of the colored re-
gions in the image reveal a ho-
mogeneous population of the first
Brillouin zone. Also in this
case, some higher band popula-
tion is observed as expected from
fig. 2.22.

can crudely estimate from fig. 2.21 c) the fraction of atoms transferred to the second band to
be η>Er/3. Thus, for a sample of 6 · 104 spin polarized fermions at T/TF = 0.3 as in fig. 2.19
c), we expect from fig. 2.22 b) about 13% of the atoms in the second band, which agrees rather
well with our measurement. For 2.2 ·104 as in fig. 2.19 b), the estimate still yields η>Er/3 ≈ 9%
in the second band. This does not fit to the image in fig. 2.19 a), which is compatible with no
second band population. This might be explained by the fact that the avoided crossings between
the first and second band states seen in fig. 2.21 c) are still rather large for the states just above
Er. Therefore, one might assume that some of the lowest energy states above Er can be adiabat-
ically transferred over the crossings into the first band, reducing the second band population. A
reliable calculation of the second band population can only be obtained from a full simulation
of the loading process, which is beyond the scope of this thesis.
Figure 2.23 shows a two-component mixture after band mapping out of the full 3d-lattice for
two different fillings. The image is taken along x, in the plane of the triangular lattice. Thus,
along the horizontal direction we observe the sharp edges of the Brillouin zone. Along the verti-
cal direction the imaging process integrates over the hexagonal Brillouin zone of the triangular
lattice, causing a rather peaked density distribution. For a filling of 8.5 · 103 atoms per spin
component as in panel a), hardly any population of higher bands is observed. However, already
for a filling of 18.5 · 103 atoms per spin component there is a significant population in higher
bands. Since the higher band population distributes over several Brillouin zones, no sharp edges
of individual higher zones can be observed.
The hexagonal shape of the first Brillouin zone of the triangular lattice is best observed with a
six-component mixture in a 2D triangular lattice. A corresponding image is shown in fig. 2.24.
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Also in this case, some higher band population is observed in correspondence with fig. 2.22.
These measurements as well as the discussion of the loading process reveal that a band insulator
in the lowest band can only be achieved in our current setup for rather low atoms numbers. As
soon as the Fermi energy exceeds the recoil energy, higher bands are populated. For our param-
eters of ω̄ ≈ 2π · 90 Hz and Er = 2 kHz this happens already for an atom number of 1800 per
spin component. In the measurements presented in this section, we observe significant higher
band population in the 3D-lattice for atom numbers exceeding ∼ 8000 per spin component. As
in the case of the bosonic Mott-insulator, the problematic parameter here is the large mass of
Yb. The ratio of of the Fermi- and the recoil energy, which determines the number of atoms
that can be loaded into the lowest band, is proportional to the product of mass and trapping
frequency. In three dimensions:

EF

Er

=
3
√

48Nat

~k2
L

·mω̄ (2.12)

Thus, at the same trapping frequency, a factor of two lower mass allows to load eight times
more atoms into the lowest band. If we used e.g. 40K in our experiment, we could load 150 ·103

atoms into the lowest band of our lattice instead of 1800. This once more stresses the need for
very low trapping frequencies, when working with Yb in optical lattices.



3 Control of the Electronic State

In the introduction I argued that an important motivation to use ultracold Yb for the study of
quantum many-body physics is the existence of the two long lived electronically excited states
3P0 and 3P2. Due to the long lifetime of these states on the order of seconds, the electronic state
can be used as a second internal degree of freedom in addition to the nuclear spin. This is an
important difference to alkali elements, where the magnetic quantum numbermF of the ground-
state spin F is the only internal degree of freedom. Using different electronic states is especially
interesting, because the s-wave scattering length of an atom generally depends strongly on its
electronic wavefunction as discussed in section 2.1. In contrast, the scattering lengths of the dif-
ferent hyperfine-states of alkali atoms differ only by a few percent. Thus, mixtures of ground-
and metastable state Yb atoms may exhibit new interesting physics, which are not present in
ultracold alkali quantum gases. Moreover, the polarizabilities of the ground and metastable
electronic states of Yb are largely different, because they couple to different excited states (see
section 2.2). This allows to achieve far off-resonant state-dependent optical lattices, which is
again impossible with alkalis. I find two ideas particularly interesting that exploit these features
of the electronic degree of freedom: The generation of homogeneous artificial magnetic fields
for ultracold atoms in an optical lattice [30, 31], and the realization of the Kondo lattice Hamil-
tonian with ultracold atoms [24, 25, 81], which have briefly been described in the introduction.
These proposals, however, depend strongly on the details of the elastic and inelastic interaction
properties of the metastable states. While the interaction properties of the 3P2 state have been
determined for two bosonic isotopes from spectroscopy experiments in the Kyoto group [106],
they were largely unknown for the 3P0-state when this work was performed. Thus, before being
able to use the 3P0-state for the study of quantum many-body physics, the interaction properties
of this state needed to be measured. The most direct way to measure the excited state interac-
tions is to spectroscopically probe the interaction induced shift of the 1S0 →3 P0 transition in an
optical lattice. In this chapter, I describe our efforts towards such spectroscopic measurements
of the interaction properties of the 3P0-state. Section 3.1 describes the laser system used to drive
the ultranarrow 1S0 → 3P0 transition. Sections 3.2 and 3.3 present our experiments on Rabi
spectroscopy of single- and two-component quantum gases in a magic optical lattice. When fin-
ishing this manuscript, the Munich group published the first measurement of the 3P0-interaction
of 173Yb, using techniques similar to those described here [79]. The scattering lengths resulting
from these measurements have already been discussed in section 2.1.

57



58 3 Control of the Electronic State

3.1 The 578nm Spectroscopy Lasersystem

In order to take full advantage of the possibilities that coherent control of the electronic state
offers, a laser system of sufficient coherence time and power is indispensable. High power is
necessary, in order to homogeneously excite an atomic ensemble that suffers from inhomoge-
neous broadening due to interactions or differential light shifts. Interactions of ultracold atoms
in optical lattices are on the order of a few kHz. Thus, exciting atoms independent of their
interacting environment requires Rabi frequencies of about 100kHz. With a Rabi frequency of
77Hz·I/ (mW/cm2) for 173Yb measured at NIST [107] and a beam diameter of 2w0 = 200µm,
a power of 200mW is required. On the other hand, in order to selectively excite atoms depen-
dent on the interaction with their environment or some externally applied field gradient, the
laser should exhibit a large coherence time sufficient to resolve the respective line shifts. With
the above assumption of interactions on the order of kHz, it seems reasonable to aim at a resolu-
tion of ∼ 100Hz. However, obtaining high contrast Rabi oscillation at this resolution, requires
a laser linewidth significantly below this resolution limit. Thus, a linewidth of ∼ 10Hz is desir-
able.
Fortunately, it is well known from the field of optical atomic clocks, how laser linewidths at
the Hz-level can be achieved (see e.g. [108–111]). In all of these systems, linewidth narrowing
is achieved by fast frequency stabilization to an ultrastable high finesse fabry-perot resonator.
Directly stabilizing the free-running laser to the atomic transition of interest is not feasible,
because the spectroscopy signals obtained from the necessarily narrow transitions in standard
vapor cells are too weak to be detected with a good signal to noise ratio. If a fast stabilization
loop with sufficient gain is realized, the laser noise is completely eliminated except for a noise
pedestal 40 to 50dB below the carrier. The laser frequency stability is then solely determined
by the stability of the reference cavity, being the decisive part of an ultrastable laser system.
Therefore, I start by describing our ultrastable cavity setup as well as the laser we use in sec-
tion 3.1.1. Section 3.1.2 explains the technical details of the stabilization loop. The stability we
achieve with our system is evaluated in section 3.1.3.

3.1.1 Laser and Stabilization Cavity

As a laser source for the 1S0 → 3P0 transition of Yb at 578 nm we use an amplified frequency-
doubled diode laser1 at 1156 nm with a total output power of 300 mW. Let me briefly discuss
the arguments for this choice. The only available scientific lasers directly emitting at 578 nm
are dye lasers [111]. These are, however, experimentally rather inconvenient and are basically
not used anymore. The second, preferable method to generate 578 nm light is to upconvert
infrared lasers via second harmonic generation (SHG) or sum frequency generation (SFG) in
a nonlinear crystal. Suitable infrared lasers are either diode lasers at 1156 nm, which can be
frequency-doubled, or an Yb fiber laser at 1030 nm and an Nd:YAG laser at 1319 nm, which

1Toptica DL-SHG pro



3.1 The 578nm Spectroscopy Lasersystem 59

can be combined in SFG to reach 578 nm [107]. While the latter option profits from inherently
lower frequency noise of the solid state lasers compared to diode lasers, the SFG is technically
somewhat more complicated. For frequency doubling, the infrared light can easily be enhanced
in a build-up cavity to boost the conversion efficiency. SFG, on the other hand, is usually done
in a single pass through a crystal waveguide, resulting in significantly lower efficiencies. Of
course, the total visible output power is still higher for the solid state laser SFG compared to
the SHG power of a bare diode laser, because the infrared power to start with is a lot higher.
However, since 2012 tapered amplifiers at 1156 nm have become available, allowing powers of
> 300 mW at the doubled wavelength. Moreover, the two solid state lasers significantly exceed
the price of a diode laser and a tapered amplifier. Thus, a frequency-doubled diode laser seems
to be a good choice.
The second important component for the spectroscopy laser system is the reference cavity, used
to stabilize the laser and narrow down its linewidth as far as possible. Since linewidths of< 1 Hz
of state-of-the-art stable laser seems to be more than sufficient for our purposes, our team de-
cided to simply buy the best commercially available cavity, rather than going for a home-built
solution. The cavity we use has been developed in the group of John Hall in Boulder [109]
and is commercially available from the company Advanced Thin Films for many years now. Its
main feature is the vertical, midplane-mounted design. The high symmetry makes the cavity
length robust agains mechanical perturbations. Moreover, the cavity spacer as well as the mirror
substrates are made of ULE, a glass that exhibits a zero crossing of the thermal expansion coef-
ficient near room temperature. Apart from the cavity geometry and material one has to decide,
whether the infrared or the frequency-doubled light is stabilized to the cavity and choose the
mirror coatings correspondingly. In our team, it has been decided to use the 578 nm light for
the stabilization. This provides the flexibility to change the laser source and use e.g. the SFG
solution described above, if this proves useful at a later stage.
The cavity setup: Although the cavity is designed to be as robust as possible against external

perturbations, it has to be extremely well shielded from mechanical and thermal fluctuations.
Our cavity setup, realizing this shielding, has been designed by Thomas Rützel. It is based on
the setup described in [108] and is in detail explained in his Diplomarbeit [112], which was
supervised as part of this PhD thesis. Here, I will only present the most important features of
the setup. A sketch and a photograph of the complete system is shown in fig. 3.1. The cavity is
mounted vertically on three teflon rods fixed to a ring of Zerodur glass. It is situated inside of
two heat shields made of gold-coated copper. This whole ensemble is placed inside a home-built
stainless steel vacuum chamber, which is held at a pressure of a few times 10−7 mbar. All the
materials have been carefully selected to minimize the thermal coupling between the cavity, the
heat shields and the vacuum chamber. The outer heat shield is sitting on a ring-shaped thermo-
electric cooler (TEC) that is used for active temperature stabilization. The vacuum chamber
together with the optical setup for the frequency stabilization is mounted on a breadboard that
is placed on a passive vibration isolation system2. The whole setup rests on a standard optical
table and is surrounded by a box shielded with acoustic insulation foam.

2MinusK 150BM-1
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Figure 3.1: Panel a) schematically depicts the mounting of the ultra stable cavity in the vacuum chamber. Held at
its midplane, the ULE cavity is supported by three rods made of Teflon. The Teflon rods are mounted in a Zerodur
ring that is fixed to the inner thermal shield. Three PEEK spacers between the Zerodur ring and the thermal shield
minimize the thermal contact. Spacers of the same kind are used to insulate the two thermal shields from each
other. For active temperature control the outer shield is directly placed on a TEC, using low outgassing thermal
paste to maximize the heat conductance. Two thermistors on the top and the bottom of the thermal shield are used
for temperature sensing. For optimal thermal contact between the bottom of the TEC and the vacuum chamber, a
large copper plate is installed in between. Panel b) shows a photo of the whole cavity assembly.

Temperature control: Active temperature control of the cavity is necessary for two reasons.
First, thermal drifts that determine the longterm frequency stability of the cavity need to be can-
celed. Second, the cavity temperature needs to be tuned away from room temperature in order
to reach the zero crossing of the thermal expansion coefficient. We have chosen to actively con-
trol the temperature of the outer copper heat shield for two reasons. First, we can cool the heat
shield to temperatures far below room temperature without suffering from water condensation,
because the shield is in vacuum. Second, we have the inner heat shield as a passive insulation
layer to damp residual temperature fluctuations that cannot be eliminated by the temperature
servo. As temperature sensors, we use two 10 kΩ-thermistors placed at the top and the bottom
of the outer heat shield. The temperature controller measures their series resistance, which is
apart from small imperfections a measure of the mean temperature of the shield. This is impor-
tant, because the TEC, being the heat sink/source, is situated on the bottom of the shield. When
the TEC heats or cools, heat flows to the bottom of the shield and leads to a vertical temper-
ature gradient, due to its finite thermal resistance. Consequently, if only one sensor at the top
or at the bottom of the shield is used, this gradient causes the average temperature of the shield
to vary as the cooling power of the TEC changes. And since the thermalization between the
heat shields is much slower than within each individual shield, the inner shield will follow the
average temperature of the outer shield. This effect becomes more pronounced as the set tem-
perature is tuned away from room temperature and the required cooling power increases. The
controller used for the temperature stabilization is a home-built proportional-integral-controller.
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Figure 3.2: 24 hour trace of the temperature of
the self stabilized temperature control circuit. The
temperature, shown in red, is measured with a
10 kΩ thermistor connected to a precision multi-
meter. The peak to peak temperature variation is
below 200µK over the whole measurement cycle.
The blue curve depicts the control voltage, which is
proportional to the TEC drive current.

The circuit is in large part taken from ref. [113]. For the pc-board layout I have taken special
care to minimize thermoelectric voltages, leading to variations of the temperature setpoint and
errors in the measured temperature. Still, the controller is temperature-stabilized itself by a
second identical circuit on the same board, to reduce thermoelectric voltages to a minimum.
Before implementing the controller at the cavity setup it was evaluated by monitoring the tem-
perature of the pc-board with an extra thermistor connected to a precision multimeter, while the
temperature stabilization of the board was active. The temperature measured with the separate
thermistor was stable to better than 200µK over 24 hours as shown in fig. 3.2.
The high-finesse mirrors: The relevant characteristics of the cavity mirrors are the finesse,

which is a measure of the mirror reflectivity, and the cavity transmission, which is a measure of
the mirror’s losses. The cavity finesse is measured via the decay of the intracavity field: Light is
coupled into the cavity after passing through an AOM. A photodetector behind the cavity output
mirror monitors the transmission, which is proportional to the intracavity intensity. The laser
frequency is then tuned near the cavity resonance such that from time to time, light is coupled
into the cavity mode and is detected on the transmission photodetector. As soon as the detected
transmission rises above a certain threshold, the AOM is switched off and no more light is cou-
pled into the cavity. Once the incoming light has been switched off, the exponential decay of
the intracavity field is measured by the transmission photodetector. This kind of measurement
is often referred to as cavity ringdown measurement. The decay signal observed with our cavity
is shown in fig. 3.3 a). From the time constant of the exponential decay, the cavity finesse F is
calculated via [114]

F =
cπ

L
· τ, (3.1)

where L is the cavity length (in our case 7.75 cm), c is the speed of light and τ is the 1/e-
decay time of the intracavity intensity. The measured decay time of 12.2µs corresponds to a
finesse of F = 148120 and a full width at half maximum (FWHM) of the cavity resonance
of ∆νFWHM = 13.03 kHz. This was veryfied by locking the laser to a second high finesse
cavity as described in section 3.1.2 and monitoring the transmission while slowly scanning
the locked laser across the cavity resonance. This direct linewidth measurement is shown in
fig. 3.3 b). The measured linewidth of 13.13 kHz agrees well with the ringdown measurement.
The measurements shown in fig. 3.3 were performed a few days after evacuating the cavity
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Figure 3.3: Panel a) depicts the decay of the cavity transmission after coupling light into the cavity and suddenly
switching off the input light. The exponential fit yields a decay constant of τ = 12.2µs corresponding to cavity
linewidth ∆νFWHM = 13.03 kHz. The shaded region has been excluded from the fit, in order to be insensitive to
the switching characteristics. The 3 dB-bandwidth of the detector is 20 MHz. In panel b) the cavity transmission
is plotted as the laser is scanned across the resonance. The laser has been locked to a second ULE cavity, to
make the linewidth sufficiently narrow. The observed FWHM agrees well with that extracted from the ringdown
measurement.

chamber. After some time in the vaccuum, the finesse slightly increased resulting in a narrower
linewidth of 12.09 kHz (cf. fig. 3.6).
In order to determine the mirror losses, the transmission and reflection coefficients of the cavity
were measured for the locked laser on resonance with a power meter, resulting in

T = PT/Pin = (19± 1) %; R = PR/Pin = (39± 2) % (3.2)

Here, Pin is the power sent to the cavity. PR and PT denote the reflected and transmitted
power, respectively. From these numbers together with the finesse one can calculate the mirror
transmission and loss coefficients T and A, as well as the mode-matching coefficient ε via
simple formulas derived in [115]:

α =
T

1−R
= 0.31± 0.02 (3.3)

T =
π

F
2α

1 + α
= (10.1± 0.5) ppm (3.4)

A =
π

F
1− α
1 + α

= (11.1± 0.5) ppm (3.5)

ε = T
(
T + A

T

)2

= (84± 7) % (3.6)

These calculations rely on the assumption that the two mirrors are identical. Differences be-
tween the mirrors cannot be deduced from the cavity properties. Equation (3.2) implies that
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Figure 3.4: Schematic layout of a
laser frequency stabilization loop. A
frequency detector produces a voltage
Uin (t) proportional to the laser fre-
quency. This voltage is filtered and
amplified by an electronic control cir-
cuit and fed to a transducer, which af-
fects a change in the laser frequency.

1 − T −R = 42% of the power incident on the cavity is absorbed by the cavity mirrors. This
absorption loss heats the mirror coatings and thereby shifts the resonance frequency. The im-
portance of this effect will be discussed in section 3.1.3. The excellent mode matching of more
than 80% is important in order to minimize the laser shot noise, which is the dominant noise
source in our Pound-Drever-Hall detector as described in the following section.

3.1.2 Linewidth Narrowing via a Fast Pound-Drever-Hall Lock

While frequency stabilization setups belong to the standard tools in almost every atomic physics
lab, the requirements on frequency stability are usually quite moderate. Laser cooling of atoms,
as well as imaging, is typically done on transitions that are a few hundred kHz to several MHz
wide. A frequency stability of a few percent of these linewidths works well for most experi-
ments. Thus, the inherent short term stability of typical diode lasers of a few hundred kHz is
usually sufficient and frequency stabilization loops only need to compensate slow drifts of the
laser frequency. If, however, the laser linewidth is to be reduced to the Hz-level, the demands
on gain and bandwidth of the control loop become much higher and one has to worry about
details that most of the time do not matter.
Before presenting the actual implementation of the linewidth narrowing loop, I will try to clar-
ify the requirements the setup has to meet to reduce the laser linewidth to the Hz-level. These
requirements concern three quantities: The detector’s frequency resolution, the low frequency
gain of the controller and the bandwidth of the control loop.
The basic layout of a laser frequency control loop is shown in fig. 3.4. A frequency detector
generates a voltage proportional to the laser frequency Uin (t) = s · νL (t), where s is the sen-
sitivity of the detector. This voltage is then compared to some set value Us (t). The deviation
from the set value is filtered and amplified by the controller before being fed to a transducer
affecting a change of the laser frequency, which in turn leads to a change in the detector voltage
Uin (t+ dt). The Fourier transform of Uin (t) per square root of unit bandwidth is called the
noise spectral density of Uin (t), which has units V/

√
Hz and is denoted as ρU (ν). Multiplying

ρU (ν) by the detector slope s, one finds the frequency noise spectral density of the laser in units
Hz/
√

Hz:
ρν (ν) = s · ρU (ν) = s · F (Uin (t)) (3.7)

The frequency noise spectral density, being immediately linked to the signals in a frequency
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control loop, seems to be a good quantity to analyze such a control loop. In everyday lab work,
however, one often thinks in terms of the linewidth of a laser, which is strictly speaking the
width of the power spectral density (PSD) of the lasers electric field. PSD and noise spectral
density are related via [116]:

PSDE (ν) = 2E2
0

∫ ∞
−∞

ei2π(ν0−ν)τ exp

(
−2 ·

∫ ∞
0

|ρν (f)|2 sin2 (πfτ)

f 2
df

)
dτ (3.8)

This rather non-trivial dependence underlines that the linewidth is indeed not a very practical
measure of laser frequency noise. In fact, since the PSD contains the integral over the whole
noise spectrum, it can hardly be used to extract information about the spectral composition
of the laser noise. Still, it is the PSD and thus the linewidth that eventually determines the
resolution in a spectroscopy experiment. An intuitive connection between the two quantities
can be made by evaluating eq. (3.8) for a flat noise density ρν (ν) = ρ0. For this special case
one finds a Lorentzian power spectral density with a FWHM of

∆ν = π · |ρ0|2 . (3.9)

In order to achieve a Lorentzian linewidth of ∆ν = 1 Hz, the noise density of the laser would
thus need to be reduced below ρ1Hz = 0.56 Hz/

√
Hz across the whole spectrum. Due to the

finite bandwidth of the feedback loop, this is of course impossible. The general shape of a
realistic noise spectrum of a locked laser is depicted by the blue line in fig. 3.5 a). At low
Fourier frequencies the noise is reduced to the detector noise level, if a sufficiently high gain is
achieved. Towards higher Fourier frequencies the loop gain decreases. Consequently, the noise
increases and reaches that of the free-running laser a little above the control bandwidth.

Ref. [116] analyzes the PSD, belonging to such a noise density that is truncated at low fre-
quencies: The authors show that the noise density can be divided into two regions that affect
the power spectral density in qualitatively different ways: In the first region, above the dashed
green line in fig. 3.5, the noise amplitude is higher than the noise frequency. In other words,
the modulation index of the noise is > 1. The noise in this region contributes to the central
part around the carrier of the PSD. In the region below the green line, the noise frequency is
larger than the noise amplitude and the modulation index is thus < 1. Noise in this region
only contributes to the wings of the power spectral density, leaving the central part unchanged.
Accordingly, a truncated noise density as shown in fig. 3.5 a) results in a narrow central car-
rier with a linewidth determined by the low-frequency noise level and small additional peaks at
some distance from the carrier, stemming from the unaltered high-frequency part of the noise
density. This is schematically shown in fig. 3.5 b). If these side peaks are far enough from the
carrier as to not interfere with the spectral features that are to be addressed with the laser, they
can be neglected.
With this understanding it is now possible to quantify the requirements for achieving a 1Hz-
linewidth of the locked laser. Since the linewidth is determined by the low frequency noise
level, which for high enough gain is limited by the detector noise, the maximum allowable de-
tector noise ρdet is directly given by the white noise level from eq. (3.9) corresponding to the
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Figure 3.5: a) Schematic plot of the noise density of a free-running (red solid line) and locked (blue solid line)
diode laser. The green dashed line separates regions of high and low modulation index of the noise according to
ref. [116]. b) Schematic plot of the power spectral densities of a free-running (dashed red line) and locked (solid
blue line) laser. The technical low frequency noise of the free-running laser results in a broad gaussian power
spectral density. The frequency lock suppresses the low frequency noise ideally down to the detector noise level
ρdet, leading to a narrow central carrier in the power spectral density. The unsuppressed high frequency noise
appears in the power spectral density as small side peaks.

desired linewidth. For a linewidth of 1Hz this amounts to 0.56 Hz/
√

Hz as stated above.
To understand how much gain is needed in the control loop, the noise density of the free-running
laser has to be analyzed. It is schematically depicted by the red line in fig. 3.5 a) and is com-
posed of two contributions: First, the noise due to spontaneous emission that is fundamentally
connected to the lasing process and leads to the Schawlow-Townes linewidth limit [117]. It has
a flat frequency spectrum and for typical external cavity diode lasers (ECDL) is on the order of a
few tens of Hz/

√
Hz corresponding to a Lorentzian Schawlow-Townes linewidth of a few kHz.

The second, more important contribution is technical noise, which dominates at low Fourier
frequencies. The most relevant technical noise sources are fluctuations of the laser diode pump
current, acoustic and mechanical vibrations, as well as temperature fluctuations. The spectral
density of the technical noise typically increases strongly towards lower Fourier frequencies and
can easily reach levels of up to 1 MHz/

√
Hz as shown in fig. 3.5 a). Reducing this noise below

the 0.56 Hz/
√

Hz needed for a 1Hz-linewidth, thus requires a loop gain of more than 120 dB.
This demand on the gain also puts a lower limit on the required control loop bandwidth. The
maximum possible servo bandwidth is determined by the phase of the loop transfer function.
At some Fourier frequency this phase reaches -180°, making the loop unstable if the gain at this
frequency is larger than unity. Thus, the gain has to be reduced from about 120 dB at 1 Hz to
0 dB before the phase reaches -180°. This cannot be done arbitrarily fast, because a nth order
low pass reducing the gain by n · 20 dB/decade also introduces a phase lag of −n · 90◦ into the
transfer function. Conservatively assuming a first order low pass characteristic for the loop filter
a loop gain of 120 dB at 1 Hz can be reduced to 0 dB at 1 MHz. Thus, a control bandwidth of
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Figure 3.6: a): Sketch of the PDH setup. A few tens of µW of probe light are brought to the setup via an optical
fiber. 50% of this light is split off by a non-polarizing beam splitter and directed to the photodiode PD1 used for
active stabilization of the probe power. The other half of the light is phase modulated at 18 MHz by the electro optic
modulator (EOM) after passing through a high quality glan-polarizer for polarization cleaining. The spatial mode
of the beam is matched to the cavity with three lenses. An optical isolator is used to separate the reflected from
the incoming light and reduce etaloning between the cavity and the various optical elements. The light reflected
from the cavity is detected with a fast, low noise avalanche photodiode (APD). The error signal is then obtained
by mixing the APD signal with the local oscillator (LO) driving the EOM. The light transmitted through the cavity
is monitored by the photodiode PD2. b): Measured error- and transmission signals of the PDH detector. The error
signal is shown in light red together with a fit of the ideal PDH signal shape in deep red. The transmission signal
plotted in gray exhibits a perfect Lorentzian shape with a FWHM of 12.09 kHz. The black line is a Lorentzian
fit to the transimission signal. Note that the linewidth in this measurement, performed after the cavity had been
under vacuum for some weeks, is slightly lower than that in fig. 3.3, measured right after evacuation of the cavity
chamber.

roughly 1 MHz will be necessary to reach the high gain, required for the narrow linewidth. It is
interesting to compare this bandwidth estimate to the intersection of the modulation index sepa-
ration line with the noise density of the free-running laser in fig. 3.5 a), which occurs already at
∼ 1 kHz. According to the model from ref. [116] it would suffice to eliminate the noise below
this intersection point. Thus, the control bandwidth is in fact determined by the required gain at
low frequencies rather than by the bandwidth of the noise that must be eliminated. This implies
that the bandwidth requirements can be relaxed, if the technical laser noise at low frequencies
is reduced leading to a lower required gain.

Having clarified the requirements on the frequency control loop, I will now describe the
three main components of the loop: The detector, the controller and the transducer. As al-
ready mentioned above, we detect the laser-cavity frequency difference by means of the Pound-
Drever-Hall (PDH) technique, which has been described in great detail in many publications,
e.g. [118, 119]. It can be summarized as follows: The light sent to the cavity is phase modulated
at some RF-frequency ωm, resulting in two symmetric sidebands in the frequency spectrum of
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Figure 3.7: Current-FM transfer function of the 1156nm laser diodes of the 578nm laser system. The initially
installed diode shown in panel a) exhibits a strong roll-off of the phase already in the low kHz-range, accompa-
nied by an increasing FM gain. This transfer function makes frequency feedback via the injection current nearly
impossible. The replaced diode shown in panel b) displays a better current-FM behavior. The phase rolls off in the
high kHz-range and at the same time the gain decreases. With this diode a loop bandwidth of 300 kHz has been
achieved.

the light. Near a cavity resonance, the light reflected off the cavity experiences a frequency-
dependent phase shift, resulting in a phase difference between the carrier and the sidebands.
In the time domain, this phase shift appears as an amplitude modulation of the reflected light
at the frequency ωm, which is detected with a suitable photodetector. Mixing the detected
signal at the right phase with the RF-source used for the initial modulation results in a DC
output voltage that near resonance depends linearly on the frequency difference between the
light field and the cavity resonance. The details of our PDH setup are depicted in fig. 3.6 a).
Its key components apart from the cavity are the electro-optic modulator (EOM), the Faraday
isolator and the PDH photodetector. The EOM3 uses two brewster-cut electro optic crystals
to minimize birefringence induced polarization modulation and the resulting unwanted resid-
ual amplitude modulation (see below). The Faraday isolator minimizes etaloning between the
cavity input mirror and the photodetector as well as the other optical elements. Again this is
important to minimize residual amplitude modulation of the probe light. The photodetector’s
bandwidth and noise have been chosen such that neither limit the performance of the PDH lock.
We use a custom made avalanche photo diode4 (APD) with a 3 dB bandwidth of 80 MHz, a
gain of 100 mV/µW and a noise density of < 0.5 pW/

√
Hz corresponding to the shot noise

of 0.8µW. The error signal, obtained with this setup is shown in fig. 3.6 b). It exhibits the
dispersive shape typical of an error signal obtained from a resonance. On resonance it has a
linear slope of s = 19.3µV/Hz, which is the detector sensitivity.
The transducer used for the frequency feedback turned out to be the diffcult part in our sys-

3LINOS PM-25
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tem. Using a diode laser, the idea in the beginning had been to use the diode pump current for
fast frequency changes, which is commonly done in diode laser locking setups. However, the
current-to-frequency modulation (current-FM) response of laser diodes differs strongly between
different types of diodes. The current-FM transfer function of the diode initially built into our
SHG system is shown in fig. 3.7 a). For modulation frequencies above 10 kHz the measurement
was done with a network analyzer as follows: The laser was weakly locked to a Fabry-Perot
resonator with a 1 MHz linewidth via the ECDL piezo in a slow feedback loop with a servo
bandwidth of ∼ 100 Hz. Thereby the laser is loosely held on the central slope of the PDH er-
ror signal. This error signal is then fed to the network analyzer which measures the frequency
response of the laser to a fast current modulation. Due to the low locking bandwidth, the fast
frequency modulation is unaffected by the lock. For lower frequencies, where the network an-
alyzer cannot be used, the laser was not locked to the cavity. Instead, the laser was modulated
with an amplitude of 2 to 3 linewidths around the cavity resonance and the phase-shift of the
cavity transmission signal with respect to the modulation signal was measured. The obtained
transfer function shows that a stable servo loop using current feedback is hardly possible with
this diode. The phase of the transfer function already starts to roll off at about 1 kHz reaching
−90◦ at 10 kHz. At the same time the gain increases up to a peak at about 200 kHz. Thus, the
requirement of a gain below unity as the phase exceeds −180◦ can hardly be met.
The unfortunate behavior of this diode’s transfer function can be explained by the interplay of
temperature and charge carrier density modulation in the diode as described in ref. [120]. When
the current through the laser diode changes, also the density of the charge carriers in the laser
diode changes. The charge carrier density influences the index of refraction in the laser diode
and thus the laser frequency. The transfer function of this carrier induced frequency modula-
tion is approximately flat up to modulation frequencies of ∼ 1 GHz, which is far beyond the
requirements of laser locking. However, at low frequencies the current modulation also affects
the temperature of the diode, which leads to a change in the laser cavity length and thus to a
frequency change. At low frequencies the two effects have opposite sign: An increase in cur-
rent causes a temperature increase, leading to a decrease in frequency. In contrast, an increased
carrier density, corresponding to an increase in current, causes a decrease of the refractive index
leading to a frequency increase. Thus, the two effects partly cancel each other at low frequencies
when they are of similar size. This seems to be the case in our laser diode. At low frequencies,
thermal FM dominates and the phase of the transfer function is zero. As the modulation fre-
quency increases, the thermal FM falls off, leading to an increase of the gain, because thermal
FM no longer cancels carrier-FM. Simultaneously, the phase changes from 0 to -180°, because
the dominating effect changes from thermal to carrier-FM.
In 2012 the company that built our diode laser system was able to offer us a different diode, with
a much more well behaved current-FM transfer function, shown in fig. 3.7 b). As the phase rolls
off at high frequencies also the FM gain decreases, which allows to achieve a stable feedback
loop with this diode. However, the phase reaches −180◦ already at 1 MHz, such that only a
control bandwidth of 300 kHz could be achieved with this diode in our setup. This bandwidth
was just enough to achieve stable locking of the laser, but the lock was very sensitive to small
changes of the loop gain. Therefore, also this second diode did not seem suitable for a reliable
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operation of the stabilization loop. Apart from current modulation there are two other possibil-
ities to achieve fast frequency feedback with an ECDL: An EOM inside the external cavity, or
an AOM behind the laser. The intra-cavity EOM would probably have been the ideal solution.
In [110] a servo bandwidth of 3 MHz has been achieved with this technique. However, im-
plementing the EOM into the laser would have required building a new ECDL, which seemed
much more complicated than simply inserting an additional AOM into the setup. Therefore, I
decided to implement a fast AOM as frequency transducer. The feedback bandwidth that can be
achieved with an AOM is determined by the delay, the radio frequency wave experiences when
travelling from the bonded electrodes through the transducer and the acousto optic crystal to
the position of the laser beam. The sound velocity in TeO2 crystals used in most modulators is
4200 m/s. Thus, already a distance of 1 mm between the transducer and the laser beam causes a
delay of 235 ns, equivalent to the delay of 47 m of RG58 coaxial cable. In order to keep this de-
lay as small as possible, we use a modulator designed for a small beam waist5 of 2w0 = 80µm.
Moreover, mounting the AOM on a translation stage, we transversely position the modulator
such that the distance between the transducer and the laser beam is minimized. A sharp cutoff
of the diffraction efficiency can be observed when getting too close to the transducer. The AOM
position is adjusted right to this cutoff point.
In order to fully exploit the delay limited bandwidth of the AOM it is important that the mod-
ulation bandwidth of the RF-source driving the AOM is much larger than the desired loop
bandwidth. We use a voltage-controlled oscillator6 (VCO) with a specified modulation band-
width of 50 MHz. The control input is driven with a fast op-amp7, resulting in a measured 3dB
FM-bandwidth of 30 MHz. Using the AOM as frequency transducer in the feedback loop, a
servo bandwidth of nearly 1 MHz is achieved, about three times above the bandwidth reached
with current feedback to the second laser diode.
The last component to be discussed is the electronic control circuit, used for properly filtering
and amplifying the error signal. We use a commercial circuit8 that is based on a controller de-
veloped at MPQ in Munich [108]. It consists of two independent amplifier branches. A fast
branch with a bandwidth of up to 10 MHz and a maximum gain of 80 dB, meant to drive a fast
transducer, i.e. the AOM in our case. A slow branch with a DC-gain of 120 dB is connected to
the piezo of the ECDL. The piezo has a much higher voltage-to-frequency conversion gain and
frequency adjustment range than the AOM. Thus, with the slow branch connected to the piezo
the low frequency gain can be boosted and longterm drifts of the laser over hundreds of MHz
can be compensated without the laser falling out of lock. The fast branch features several lead
and lag filters, whose corner frequencies can be adjusted in discrete steps to obtain the desired
transfer function.
For the optimization of the control parameters, a small portion of the PDH photodetector sig-

nal is split off and analyzed with a spectrum analyzer. Figure 3.8 a) shows the obtained signal,
which is the PDH error signal before being mixed with the local oscillator. The carrier at the

5Crystal Technology 3200-121
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Figure 3.8: Panel a) depicts the power spectral density of the PDH photodetector signal, when the laser is locked
to the cavity. This corresponds to the PDH error signal shifted to the PDH modulation frequency ωm = 18.2 MHz.
The carrier at ωm is suppressed when the laser is on resonance. The servo bumps are separated by 1.8 MHz, indi-
cating a servo bandwidth of 900 kHz. Panel b) depicts the actual PDH error signal, as observed at the intermediate
frequency output of the mixer. It has been converted to a frequency noise density by multiplying with the detec-
tor sensitivity s. The solid black line marks the white noise level corresponding to Lorentzian linewidth of 1 Hz.
The gray signal is the detector noise without any light incident on the cavity (dark noise). The blue signal is the
detector noise with light sent to the cavity, but tuned away from resonance (bright noise). This bright noise being
significantly above the dark noise indicates that the detector noise is limited by the shot noise of the light. The red
signal is the error signal measured when the laser is locked to the cavity. It lies well below the 1 Hz threshold.

PDH modulation frequency of 18.2 MHz is strongly suppressed when the laser is on resonance
with the cavity. The setpoint of the controller is adjusted such that the carrier amplitude is mini-
mized. Away from the carrier the detected frequency noise increases due to the phase delay and
the decreasing gain in the feedback loop. These noise peaks are referred to as servo bumps and
have their maximum approximately at the servo bandwidth. Figure 3.8 thus indicates a servo
bandwidth of 900 kHz. The loop filter parameters are adjusted for minimum noise near the
carrier and a well behaved roll-off of the servo bumps at high frequencies. The overall gain is
set well below the oscillation threshold. A maximum bandwidth of 1.1 MHz could be achieved.
However, for these settings the noise level at low frequencies was significantly higher than for
the settings used in fig. 3.8 a). Therefore, the slightly lower bandwidth settings seem to be
preferable.
An estimate of the full Bode plot of the control loop transfer function is shown in fig. 3.9 a)

and b). The transfer function of the fast branch is given by the product of the transfer func-
tions of the individual filter stages in the control circuit and the transfer function of the PDH
detector. The transfer functions of the control circuit filter stages have been plotted according to
their specifications, which have been checked with the help of a network analyzer. The transfer
function of the PDH detector has been taken to be a first order low pass with a corner frequency
of half the cavity linewidth. The overall gain of the fast branch has been scaled such that at
the measured servo bandwidth of 900 kHz it reaches the 0 dB threshold. The voltage-frequency
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Figure 3.9: Schematic Bode diagram of the frequency stabilization feedback loop. Panel a) depicts the gain, panel
b) the phase. The transfer function of the fast branch is the product of the transfer functions of the individual
filter stages in the control circuit (Integrators 1-3 and a differentiator (Diff.)) and the transfer function of the PDH
detector. The total transfer function is the sum of the fast branch and the piezo branch. See main text for detailed
explanations.

conversion gain of the VCO and the PDH detector has been included into the PDH detector
gain. For calculating the transfer function of the AOM, I assumed that the step response of the
diffracted light frequency to a sudden change of the drive frequency is given by a delayed error
function erf (t− td). From this step response, the transfer function is obtained via a Laplace
transformation. For a waist of w0 = 45µm the resulting−3 dB bandwidth is 25 MHz. The loop
bandwidth is of course limited by the delay td in the AOM step response, which was adjusted
such that the phase of the total loop transfer function reaches −180◦ at 1.3 MHz, which corre-
sponds to the measured oscillation frequency of the feedback loop. The resulting value for the
delay is td = 100 ns. Using the sound velocity of the TeO2 crystal, this would correspond to a
delay line of 426µm. However, by inspection it can be seen that the beam is much closer to the
edge of the crystal. Thus, I conclude that the delay mainly occurs in the AOM transducer. This
transducer is even a little thicker than 426µm, but the sound velocity is presumably larger than
in the crystal. The phase lag due to the AOM at the measured oscillation frequency of 1.3 MHz
is−47◦. Apart from the AOM delay also the delay of 3.5 m of cable and 2 m of free space beam
line has been included in the phase of the transfer function. For the piezo branch the overall
gain was calculated from the voltage-to-frequency conversion gains of the piezo and the PDH
detector, which were measured independently, and the specified voltage gain of the electronics.
A mechanical resonance of the piezo is expected somewhere between 1.5 kHz − 4 kHz, which
is not included in this Bode plot.
In the low frequency regime below 100 Hz the piezo branch dominates the loop gain. At in-
termediate frequencies between 100 Hz and 10 kHz, both the piezo- and the fast branch are
relevant. Above 10 kHz the piezo gain drops quickly and the fast branch takes over up to the
servo bandwidth of 900 kHz. Note that the piezo feedback branch alone is not stable at this high
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gain. Only the fast branch taking over with enough phase margin at high frequencies stabilized
the loop.
In order to characterize the lock, the noise density of the PDH error signal in the closed feedback
loop is analyzed as shown in fig. 3.8 b). It has been converted to frequency noise density by mul-
tiplying with the detector slope s. The white noise, corresponding to a 1Hz-linewidth according
to eq. (3.9) seen through the 6 kHz low pass of our PDH detector is plotted as a black line.
The detector noise, plotted in blue, is measured with the laser out of lock and far away from
the cavity resonance. For Fourier frequencies above 10 Hz it is limited by the laser intensity
noise around the PDH modulation frequency of 18.2 MHz. It has been checked independently
that the laser intensity is shot noise limited at this high frequency. This flat noise level is far
below the 1Hz white noise, showing that the detector resolution is sufficient to achieve a laser
linewidth below 1 Hz. The electronic dark noise, shown in gray, lies well below the shot noise
and can thus be neglected. For Fourier frequencies below 10 Hz, the detector noise rises above
the shot noise level. We attribute this to residual amplitude modulation at the PDH modulation
frequency. The in-loop noise, shown in red, lies below the 1 Hz-threshold between 0.5 Hz and
20 kHz. At the lower end of the spectrum this is limited by the resolution bandwidth of the
FFT-analyzer. At the high frequency end, the noise increases due to the decreasing gain of the
feedback loop. This is, however, irrelevant for the central laser linewidth as discussed above.
In the regions where the in-loop noise lies below the detector noise, the detector noise is partly
converted to frequency noise due to the high gain of the feedback loop, limiting the locking
accuracy. This is especially relevant at low Fourier frequencies where the residual amplitude
modulation noise becomes large and even rises above the 1Hz white noise. The conversion of
this RAM noise into frequency noise will limit the linewidth of the locked laser most probably to
a few Hz. Apart from the detector noise, also the electronic noise at the controller input stage is
in principle relevant. However, it is specified to 12 nV/

√
Hz, corresponding to 0.6 mHz/

√
Hz,

which is negligible compared to the detector noise.
This analysis of the in-loop error signal and the detector noise shows that we stabilize our laser
to the cavity resonance with an accuracy close to 1 Hz, limited by residual amplitude modula-
tion of the locking light. It does, however, not give any information about the overall stability
of the locked laser, which is largely determined by the stability of the reference cavity. The only
way to measure the overall frequency stability of the locked laser is to compare it to a second
independently stabilized laser, which has similar or better noise characteristics. This analysis is
described in the next section.

3.1.3 Evaluation of the Laser Stability
For the evaluation of the laser’s stability, a second PDH setup was built with a similar cavity
of a slightly different finesse (F = 103000). The only difference in the lock setup is the
PDH photodetector, which is a home-built photodiode with a bandwidth of ∼ 25 MHz. The
modulation frequency of the second PDH setup is set to 15.8 MHz, about 2.4 MHz away from
the modulation frequency of cavity 1, in order to avoid interference between the two setups.
The setup for the beat note analysis is sketched in fig. 3.10. The laser light is split up into two
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Figure 3.10: Schematic of the beat note measure-
ment setup for the stability evaluation of the locked
laser. The laser output is split up and each part is sent
through its individual fast feedback AOM (AOM 1
and AOM 2). A small portion of the light in each arm
is sent to two similar PDH setups using similar ultra
stable cavities as described in the main text. AOM
3 and AOM 4 are used in double- and quadruple-
pass configurations respectively to bridge the fre-
quency difference between the two cavtity modes.
The ECDL piezo is locked to the PDH 1 error sig-
nal. The large part of the light, which is not sent to
the cavities, is overlapped on a beam splitter and the
resulting beat note is analyzed using an oscilloscope
or a spectrum analyzer.

paths before passing the feedback AOMs. The light in the two paths is individually stabilized to
the two cavities, each arm having its own fast feedback AOM. In order to bridge the frequency
difference between the two cavities, the light stabilized to cavity 2 is sent through an AOM in
quadruple-pass configuration. Since the slow branch of the control circuit acts back on the piezo
of the ECDL, it can only be used in one of the control loops. For the measurements shown here
it has been used in the lock to cavity 1.
With only one PDH lock active, the beat signal between the two arms exhibits the spectrum of
the unstabilized laser with a width of ∼ 100 kHz. When both locks are active, the beat signal
is narrowed down to a carrier with a width of a few Hz about 50 dB above a noise plateau
extending to the servo bandwidth of 1 MHz. This is shown in fig. 3.11 a). Looking at the beat
signal with higher resolution as in fig. 3.11 b), one can see the low frequency noise due to
vibrations, residual amplitude modulation, and light power fluctuations, as well as small peaks
50 Hz from the carrier coming from residual power line noise in the electronics.
For short observation times of ∼ 2 s a narrow linewidth of down to 1 Hz of the beat signal can

be observed as shown in fig. 3.12 a). There is, however, still significant low frequency noise that
limits the linewidth to values between 10 Hz and 20 Hz for averaging times of up to 1 min, which
is shown in fig. 3.12 b). The analysis of the in-loop error signal noise in the previous section has
shown that residual amplitude modulation at the PDH frequency contributes a significant part of
this low frequency noise. Moreover, also vibrations of the cavity setup, as well as fluctuations
of the intra-cavity power are possible sources of such low frequency noise. While the influence
of cavity vibrations is difficult to quantify, the contribution of intra-cavity power fluctuations
to the frequency noise can readily be determined. The corresponding measurement has been
performed in the same way as in [121]: The set voltage of the power controller of one of the
cavities is repeatedly changed by 5%, while the power in the second cavity is held constant.
The applied power change corresponds to a change in the transmitted light power of 99 nW for
cavity 1 and 409 nW for cavity 2. The beat frequency of the two independently stabilized arms
is monitored with a frequency counter during the power changes. The recorded frequency traces
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Figure 3.11: Beat signal between two laser beams that are independently stabilized to two identical ultra-stable
cavity PDH setups, recorded with an RF-spectrum analyzer. In panel a) the frequency span is large enough to see
the residual noise plateau about 54 dB below the narrow carrier signal. The noise is peaked at the servo bandwidth
of ∼ 1 MHz. Reducing the resolution bandwidth (RBW) to 2 Hz as in panel b), the dominant low frequency noise
can be observed.

are shown in fig. 3.13 a) and c). After the rapid change of the power sent to the cavity, the beat
frequency settles nearly exponentially to the new frequency as the mirror coatings thermalize
to a new equilibrium temperature. The thermalization time constant is ∼ 1.5 s for both cavities.
In [121] the author observes a sudden step in the beat frequency preceding the exponential
thermalization. It is attributed to an electronic offset of the error signal, causing the locking
point to change with the amplitude of the error signal. In our measurements no such sudden
step is observed. However, the low time resolution of our frequency counter of only 1 s might
make it difficult to see such a jump even if it is there. Therefore, the electronic offsets were
carefully measured to be below 1 mV. At our error signal slope of 19.3µV/Hz, a 1 mV voltage
offset corresponds to a frequency offset of 52 Hz. A 5% change in the light power changes the
error signal slope by 5% and thus results in a change of the frequency offset of 2.6 Hz. This
is clearly negligible compared to the few hundred Hz frequency shift observed after the power
change. In [121] the influence of the electronic offset is much larger, because the power is
changed by more than 400% rather than 5% as in our case.

The overall power-dependent frequency shift extracted from the traces in fig. 3.13 a) and c)
is (3.45± 0.38) kHz/µW for cavity 1 and (623± 31) Hz/µW for cavity 2. These values are
extremely large compared to those reported by the PTB group [121] ((10± 2) Hz/µW) and
by the NIST group [107] (65 Hz/µW). Since the absorption of our cavity mirrors is similar
to that of other high-finesse cavities, the large sensitivity to the intra-cavity power must be
due to an extremely large coefficient of thermal expansion (CTE) of our mirror coatings. The
reason for this large thermal expansion is not known right now. The sign of the frequency
shift has been measured to be positive, i.e. a larger intra-cavity power causes an increase of
the cavity frequency. This implies a positive CTE of the coatings, meaning that they expand
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Figure 3.12: Beat signal between two laser beams that are independently stabilized to two identical ultra-stable
cavity PDH setups. Panel a) depicts a single spectrum recorded with an audio analyzer, revealing a narrow
Lorentzian spectrum with a width of 1 Hz. The inset shows the beat signal in the time domain at a beat fre-
quency of 26 Hz. For longer averaging times, low frequency noise broadens the signal to a gaussian with a FWHM
of 13 Hz. In these measurements a linear drift of ∼ 2 Hz has been compensated by sweeping the RF-frequency of
AOM 4 with a computer controlled DDS chip.

and shorten the cavity when heated. In order to obtain the contribution of the intra-cavity
power fluctuations to the frequency noise of the locked laser, the noise density of the cavity
transmission is multiplied with the observed power-dependent frequency shifts. The observed
thermalization time of 1.5 s is accounted for by multiplying with the transfer function of a first
order low pass with a corner frequency given by the inverse of the thermalization time. The
resulting frequency noise densities are shown in fig. 3.13 b) and d). They lie below the 1 Hz-
white noise density of 0.56 Hz/

√
Hz across the whole spectrum. Consequently, fluctuations of

the intra-cavity power cannot explain the observed 10 Hz linewidth of the beat signal. Still, the
large CTE of our cavity mirrors might be a reason for a rather large CTE of the cavities as a
whole (mirrors and spacer) as will be discussed below.
Apart from the linewidth of the laser on the timescale of a few seconds to one minute, also the

longterm drift of the laser frequency is of great importance. It is limited by drifts of the cavity
temperature. To minimize the sensitivity of the cavity frequency to thermal drifts, the cavity
temperature should be tuned to the zero-crossing of the coefficient of thermal expansion (CTE),
which according to the ULE specification lies between 5◦C and 35◦C.

In order to find the CTE zero crossing of cavity 1, the cavity frequency was measured at
three different cavity temperatures. For this measurement, the cavity frequency was monitored
via the beat note of the locked laser with a frequency comb9, while the cavity temperature
was changed in two steps from 18.9◦C to 13◦C and finally to 7◦C. The time evolution of the
cavity frequency is shown in fig. 3.14. The first thing to observe is the long thermalization
time-constant of τc ≈ 36 h, indicating very good thermal insulation of the cavity from the

9Menlo Systems: FC-1500
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Figure 3.13: Influence of intra-cavity power fluctuations on the frequency stability of the locked laser for the two
ultra-stable cavities. Panels a) and c): Frequency of the beat note between the two independently locked laser
beams, while the power sent to one of the cavities is repeatedly changed by 5%. The absolute power change ∆P
and the resulting frequency change ∆ν are indicated at the top of the graphs. They result in power sensitivities
of (3.45± 0.38) kHz/µW for cavity 1 and (623± 31) Hz/µW for cavity 2. The measured sensitivities and
thermalization times can be used to convert the noise of the cavity transmission into frequency noise of the locked
laser. The corresponding noise densities are plotted in black in panels b) and d). The gray curves show the detector
noise with no light sent to the cavities.

outer thermal shield. The equilibrium cavity frequency corresponding to the set temperature
was found by extrapolating a fit to the data. The exact thermalization curve is difficult to find
analytically. Thus for simplicity, an exponential temperature evolution was assumed for the fit.
Since the temperature was assumed to be near the zero crossing of the CTE, the temperature
dependence of the CTE itself was taken to be linear:

CTE = α · (T (t)− T0) , (3.10)

where T0 is the zero-CTE temperature. With this, the cavity frequency is calculated as:

∆ν (t) = ν0 · CTE · (T (t)− T0) = ν0 · α · (T (t)− T0)2 (3.11)
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Figure 3.14: Measurement of the thermal expansion of the ULE cavity. Panel a) displays the evolution of the
cavity frequency after two subsequent changes of the set temperature of the outer thermal shield. Equation (3.12)
is fitted to the measured evolution to extrapolate to the longterm equilibrium frequency. The three equilibrium
frequencies obtained from a) are plotted versus temperature in panel b). The three data points define a parabola
with its vertex at the zero-CTE temperature.

Assuming an exponential temperature evolution T (t) = Ti + ∆T exp (−t/τ) one finds:

∆ν (t) = ν0 · α ·
(
(Ti − T0)2 + 2∆T (Ti − T0) exp (−t/τ) + ∆T 2 exp (−2t/τ)

)
(3.12)

The equilibrium frequencies extracted from the fits of eq. (3.12) to the measured frequency
evolution are plotted versus the set temperature in fig. 3.14 b). The three data points define
a parabola, whose vertex is at the zero-CTE temperature. This measurement results in an ex-
tremely low T0 of −27.3◦C. At the lowest set temperature of 7◦C the temperature sensitivity
of the cavity is −35.2 Hz/µK. This corresponds to a CTE of 58 ppb, which is about two times
above the specified maximum CTE of ULE for temperatures between 5◦C and 35◦C. The same
measurement was performed also for cavity 2, yielding T0 = −31.7◦C. For the beat mea-
surements shown in this thesis the temperature of cavity 2 was set to 18.3◦C, resulting in a
sensitivity of −40.2 Hz/µK. One might be led to thinking that the anomalously low CTE of
the whole cavity has to do with the anomalously large CTE of the mirror coatings. However,
the expansion of the cavity spacer and mirror coatings affect the cavity frequency in opposite
directions. While the expansion of the spacer leads to an increase in the cavity length, the mirror
coatings can expand only away from the substrates into the cavity, leading to a shortening of the
cavity. Consequently, a large positive CTE of the coatings would need to be canceled also by a
large positive CTE of the cavity spacer, shifting the CTE zero-crossing to higher temperatures.
Given this extremely low T0, we have decided to try working at a cavity temperature of 7◦C.
While water condensation is not a problem inside the vacuum chamber, reaching the −27◦C
would most probably not be possible with the cooling power of our TEC. Moreover, tuning the
cavity so far away from room temperature will lead to a rather strong temperature gradient on
the outer thermal shield, making the setup sensitive to variations of the room temperature as
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Figure 3.15: Panel a): Longterm measurement of the beat signals of the two independently stabilized laser beams,
recorded with a frequency counter at 1s intervals. An overall linear drift of −2.43 Hz/s has been subtracted. The
beat signal slowly oscillates over a few kHz during 16 hours, most probably due to variations of the environmental
temperature. Panel b) shows a close-up of the gray-shaded region in panel a). A residual linear drift of 0.19 Hz/s
has been subtracted. In this region, the beat frequency is stable within 100 Hz during 3.5 hours.

explained above.
Due to the large CTE of our cavities, thermal drifts of the cavity frequency are not negligi-

ble. Figure 3.15 shows a longterm trace of the beat note between the two cavities. Typically,
the beat note drifts with a few Hz/s, most probably due to slow changes of the environmen-
tal temperature. This drift has been subtracted in fig. 3.15 a). The remaining nonlinear drift
amounts to slow oscillations over a few kHz during one day. Zooming in at the linear regions
of this slow oscillation and subtracting also the residual linear drift, a frequency instability of
100 Hz over a period of several hours is obtained as shown in fig. 3.15 a). When performing
spectroscopy on the atomic sample, we actively compensate the linear drift by applying a fre-
quency ramp to the AOM in front of cavity 1 (AOM 3 in fig. 3.10). During the measurement
in fig. 3.15, cavity 1 was temperature controlled using the home-built controller described in
section 3.1.1, which should provide 200µK instability. This would correspond to a frequency
instability of 7 kHz at the measured temperature sensitivity of cavity 1 of 35.2 Hz/µK. Cavity
2 exhibiting a temperature sensitivity of 40.2 Hz/µK was, however, controlled with a standard
laser diode temperature controller with a specified instability of only 2 mK. Thus, the drift of
the beat frequency in this measurement might be limited by the temperature controller of cavity
2. However, during spectroscopy experiments we also observed peak-to-peak longterm drifts
of tens of kHz of cavity 1 with respect to the atomic resonance. This indicates that the home-
built controller does not reach the 200µK instability achieved when testing the controller. The
only difference in the test was that the on-board thermistor was used instead of the thermistor
at the cavity heat shield. Thus, most probably thermoelectric voltages in the sensor connection
compromise the performance. Moreover, residual gradients on the outer heat shield that change
with the cooling power, might limit the stability of the average shield temperature as explained
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Figure 3.16: Setup for clock spectroscopy of ultracold Yb in an optical lattice. See main text for a detailed
explanation.

in section 3.1.1. While the use of two thermistors at the top and the bottom of the shield should
minimize this effect, the size of residual gradients and their variation is unclear. From the expe-
rience we have gained from spectroscopy experiments so far, improving the thermal drifts of the
cavity is highly desirable. Therefore, either the temperature stability needs to be improved by an
order of magnitude, or measures need to be taken in order to reach the zero-CTE temperature.

3.1.4 The Spectroscopy Setup

Having generated stable, narrow-band laser light at the 1S0 → 3P0 transition frequency, this
light must be prepared for spectroscopy experiments. In practice, two things need to be taken
care of. First, the light must be brought from the laser table to the ultracold atoms without
adding extra phase noise. Second, a suitable modulator needs to be installed for shaping the
amplitude of the spectroscopy pulse.
The setup for these two tasks is shown in fig. 3.16. From the laser table the light is sent via
a 10 m long fiber to the table supporting the vacuum chamber. The phase noise caused by vi-
brations of the fiber is canceled, using a standard fiber noise cancellation (FNC) setup, similar
to that used for the three-beam optical lattice (cf. section 2.4.2): The retro-reflection from the
plane-cut rear end of the fiber is diffracted a second time by AOM 5 and is overlapped with
light, split off in front of the AOM. The phase of the resulting beat note is compared with a
stable DDS reference and fed to a proportional-integral controller that acts on the RF-frequency
of AOM 5 to lock the phase of the beat to that of the reference.
At the vacuum chamber, an EOM is used to control the intensity of the clock light. Wave-
plates in front of the EOM are used to optimize the polarization for maximum extinction behind
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the EOM and polarizer. An additional fiber behind the EOM is necessary to obtain good ex-
tinction ratios exceeding 105. The high extinction is desirable, because the Rabi frequency is
proportional to the square root of the intensity. Consequently, an extinction ratio of 104 allows
to suppress the Rabi frequency only by a factor of 100. The second fiber has a length of 1 m
and is rigidly installed on the optical table in order to minimize vibration induced phase noise,
since FNC cannot be used here. Behind the second fiber, the clock laser light is focused to the
position of the atomic sample and overlapped with the dipole trap and lattice beams. At the
position of the atoms the 1/e2-radius of the clock laser beam is 200µm. The lattice and clock
laser beams hit the glass cell at a small angle of 1.4◦, ensuring that the retro-reflection from
the uncoated inner surface of the cell does not interfere with the incoming beam. In case of
perfect perpendicular alignment, interference between the incoming beam and the 4% reflected
light would create a standing wave with an intensity contrast of 20% causing a modulation of
the Rabi frequency by 10%. The frequency of the spectroscopy light is controlled via AOM
3, shifting the frequency sent to the ultrastable cavity. A linear drift of the cavity frequency is
canceled, by applying a frequency ramp to AOM 3 on top of the desired frequency detuning.
The original idea behind using an EOM for rapid switching of the clock laser instead of an AOM
was to minimize power loss, because for certain applications very large clock laser intensities
are desirable. Due to the necessity of the second fiber, this argument is no longer valid. More-
over, temperature-dependent birefringence in the EOM crystal makes the maximum extinction
rather sensitive to temperature drifts. Therefore, it is necessary to optimize the extinction every
few hours even with the EOM put inside a hermetically sealed box for temperature isolation.
Due to these two reasons, switching with an AOM is eventually preferable. We are currently
changing the setup accordingly.

3.2 Lattice Spectroscopy of Single Component
Fermions

While our ultimate goal is to coherently control the electronic state of an ultracold, fermionic
multi-spin mixture, we first characterized our spectroscopy using a spin-polarized gas. The
spectroscopy is performed as follows: As explained in section 2.5.2, we prepare a weakly de-
generate spin-polarized Fermi gas by pumping the majority of the atoms into the mF = +5/2
state10 prior to evaporation, leaving however an equal distribution of the remaining five spin-
states present. The minority spin components then sympathetically cool the mF = +5/2-atoms
during evaporation. In this way we end up with a polarized sample of 7...9 · 104 atoms at
T/TF ≤ 0.3. We then adiabatically ramp up the optical lattice to values between 10 and 40 Er.
Once the atoms are loaded into the lattice, the dipole trap is ramped down in 10ms and switched
off completely to avoid the differential AC-stark shift of the dipole trap light. Held only by the

10While the ground-state spin was denoted as I in section 2.5.2 in order to make explicit that it is a purely nuclear
spin, it will be denoted as F in this section to be consistent with the existing literature.
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magic wavelength optical lattice, we excite the atoms on the clock transition using π-polarized
light. So far, we detect only the remaining ground-state atoms after the probe laser pulse has
been applied. Thus, spectral features appear as dips in the remaining ground-state fraction.
While freely moving atoms exhibit a smooth Doppler-broadened optical excitation spectrum,
the confinement by the optical lattice changes the spectrum into a series of discrete peaks, cor-
responding to simultaneous electronic- and motional excitation to the different bands of the
lattice. The spacings between these discrete excitation peaks are given by the bandgaps of
the lattice, which can easily reach many kHz and are therefore well resolvable with a narrow
linewidth laser. The resonance corresponding to an electronic excitation without changing the
band index is called the carrier. The resonances corresponding to the excitation of higher or
lower bands are called blue and red sidebands, respectively. The Doppler widths of the various
resonances are given by the respective bandwidths in the optical lattice. Using lattice depths
of a few tens of Er, the bandwidth can easily be reduced far below 1 Hz, practically eliminat-
ing Doppler broadening. Due to the finite momentum of the clock laser photons, the coupling
strengths and thus the Rabi frequencies of the carrier and the various sidebands differ from each
other. As the depth of the lattice is increased, the Rabi frequency of the carrier increases while
the sidebands are more and more suppressed. The regime where the carrier is the dominant tran-
sition is called the Lamb-Dicke regime. The theoretical description of optical spectroscopy in
the Lamb-Dicke regime is nicely presented in [122] for ions or atoms in a single tight harmonic
trap. A brief theoretical description of the optical excitation of motional states in an optical
lattice is presented in appendix A of this thesis.

In order to distinguish in our experiment between the carrier and the sideband resonances,
we performed spectroscopy over a wide frequency range of ∼ 100 kHz using a long excitation
pulse with a pulse area of ∼ 55 π. Using a long excitation pulse is advantageous when looking
for sidebands, because as mentioned above the carrier and the various sidebands all have dif-
ferent Rabi frequencies. A pulse area of multiple π and a pulse duration much longer than the
system’s coherence time should result in an excitation fraction of 50% independent of the Rabi
frequency. The atoms in the lowest band of the lattice only contribute to the blue sidebands and
not to the red sidebands, leading to an imbalance between the red and blue sidebands. This im-
balance should allow to identify the individual resonances. The observed sideband spectrum is
shown in fig. 3.17 a). Four spectral features can be identified belonging to the first red sideband,
the carrier, the first and the second blue sidebands.
The higher order sidebands are suppressed due to the reduced Rabi frequency as explained in
appendix A. From the discussion in section 2.5.3, we should expect that in the measurement
shown fig. 3.17 a) with 7 · 104 atoms in a three-dimensional lattice about 30% of the atoms oc-
cupy higher bands. This does however not agree with the strength of the red sideband in fig. 3.17
a), which is compatible with an excitation fraction of a few percent. However, as shown in ap-
pendix A quasimomentum and band-index transverse to the propagation direction of the clock
laser beam cannot be changed during the excitation. Consequently, only those atoms contribute
to the red sideband that are located in the regions of the second Brillouin zone along the direc-
tion of propagation of the spectroscopy laser. This is illustrated in fig. 3.17 b). As shown in
the measurement of fig. 2.19 b), for 6 · 104 atoms about 10% of the atoms are loaded into the
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Figure 3.17: Panel a): Excitation spectrum of a spin-polarized Fermi gas on the clock transition in a three-
dimensional optical lattice. Before loading the atoms into the lattice T/TF = 0.3. The lattice is ramped to depths
of 49Er and 34Er for the 1D- and 2D-lattice respectively. A large pulse area of ∼ 55π is used in order to well
observe the higher order sidebands. The different Rabi frequencies of the sideband transitions, shown as bars in
the figure, lead to different strengths of the observed resonances. Only those atoms located in the second Brillouin
zone along the propagation direction of the clock laser contribute to the first red sideband as illustrated in panel b)
for a square lattice.

second band in the direction of the 1D-lattice, which is compatible with the strength of the red
sideband observed in fig. 3.17 a).
Having identified the carrier resonance in the optical lattice, we looked at Rabi oscillations of

the lattice-confined atoms. Figure 3.18 a) - d) depict oscillations for different Rabi frequencies
and lattice depths. For a single π-pulse, a high excitation fraction exceeding 90% is achieved.
For longer pulses, the oscillations are damped towards a mean excitation of 50%. The fact
that the damping occurs symmetrically towards 50% excitation indicates that it is caused by
dephasing due to an inhomogeneous Rabi frequency. This indication is further strengthened
by the observation that the damping depends on the Rabi frequency itself as can be seen by
comparing fig. 3.18 a) and b). As the Rabi frequency is decreased from 9.4 kHz in panel a)
to 1.5 kHz in panel b) the damping rate also decreases from 2.9 ms−1 to 0.65 ms−1. In optical
clock experiments, which work with thermal atoms in a one-dimensional optical lattice, such
an inhomogeneity of the Rabi frequency is caused by the distribution of the atoms over many
radial oscillator levels [51]. In our case, where the atoms are confined in a three-dimensional
optical lattice, this effect is absent. The main reason for an inhomogeneous Rabi frequency
should then be an inhomogeneous probe laser intensity. For the measurements in fig. 3.18 a)
and b) we used a rather tightly focused probe laser beam with w0 = 61µm. From our trap fre-
quencies we estimate the radius of our cloud transverse to the clock laser beam to be r ≈ 15µm
corresponding to 25% of w0. Figure 3.19 shows numerically calculated Rabi oscillations for
an atomic ensemble equally distributed on a disc of radius r, driven by a probe laser beam
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Figure 3.18: Rabi oscillations of a spin-polarized gas of 173Yb in the three-dimensional optical lattice. Before
loading the atoms in the lattice T/TF = 0.3. The lattice is ramped within 50 ms to the depths indicated in the
images. For the measurement in panel c), the lattice is initially ramped to depths of 30Er and 34Er for the 1D-
and 2D-lattice respectively. Subsequently, the 1D-lattice is ramped to a depth of 80Er within 5 ms. For the
measurements in panels a) and b) a clock laser beam with a 1/e2-radius of w0 = 61µm was used. For panels c)
and d) w0 was increased to 200µm. All measured oscillations exhibit damping with a rate Γ. The ratio of damping
and Rabi frequency Γ/Ω is almost the same for all measurements. The origin for this Rabi frequency-dependent
damping is currently not understood.

with a Gaussian transverse intensity profile with a 1/e2-radius w0, which is displaced with re-
spect to the center of the atom cloud by xc. Comparing the measurement to the calculation for
r/w0 = 25% and xc = 0 in fig. 3.19 a), it is obvious that the size of the cloud alone does not
explain the observed damping. The inhomogeneity of the Rabi frequency increases however,
when the laser hits the sample off center, as shown in panel b) of fig. 3.18. A misalignment
of 10% to 20% of w0 would explain the observed damping. In order to check for a possible
probe misalignment, we carefully aligned the clock laser beam for minimum damping of the
Rabi oscillations using a mirror mount equipped with precision micrometer screws. However,
the damping could not be reduced. Still, we increased the waist of the clock laser beam by
about a factor of three from 61µm to 200µm, which should significantly reduce the effect of
the cloud size as well as a possible misalignment. The measurements in fig. 3.18 c) and d) are
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Figure 3.19: Numerical calculations of Rabi oscillations of atoms equally distributed on a disc of radius r trans-
verse to the direction of the excitation laser beam. The intensity profile of the excitation laser is taken to be
Gaussian with a 1/e2-radius w0. In panel a) the ratio of the size of the atomic sample and the laser beam r/w0 is
varied. The oscillations exhibit significant damping for r/w0 > 5%, due to dephasing caused by the inhomogene-
ity of the Rabi frequency. In panel b) r/w0 is fixed to 25% and the beam is displaced with respect to the cloud by
a variable offset xc, increasing the inhomogeneity of the Rabi frequency and thus the damping of the oscillations.

obtained with the enlarged probe beam, again after careful alignment. The fact that the Rabi
frequency-dependent damping hardly changed, indicates that it is not caused by the Gaussian
probe beam profile. An inhomogeneous clock laser intensity could also be due to an intensity
modulation caused by the interference of the incoming probe beam with its retro-reflection off
the inner glass cell surface. This is, however, avoided by a slight misalignment between the
beam and the glass cell, as discussed in section 3.1.4.
Another reason for the damping could be the significant occupation of higher bands. As dis-

cussed in appendix A, atoms in the first and second band experience a different Rabi frequency
on the carrier transition, causing a beating between the Rabi oscillations of atoms in the first
and the second band. However, as mentioned earlier and discussed in appendix A the Rabi
frequency does not depend on the full three-dimensional band-index but only on that along the
direction of probe laser and 1D-lattice. The fraction of ∼ 10% of the atoms that occupy higher
bands along this direction cannot explain the observed damping. However, it is to be expected
that the atoms in higher bands sit on doubly occupied sites together with an atom in the lowest
band. Due to the different Rabi frequencies for these atoms, they are no longer indistinguishable
and can interact. This considerably complicates the situation. To investigate the effect of higher
bands on the Rabi oscillations of spin-polarized samples, experiments with a significantly re-
duced atom number should be performed. This is however beyond the scope of this work.
Figure 3.20 shows Rabi spectra taken for a polarized Fermi gas exciting the atoms with a single

square-shaped π-pulse. We observe a Fourier-limited resolution down to ∆ν,FWHM ≤ 200 Hz
with a peak excitation fraction exceeding 90%. When the Rabi frequency is reduced below a
Fourier limit of about 200 Hz, significant low frequency noise appears. However, instead of
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Figure 3.20: Rabi spectra of a spin-polarized gas in an optical lattice for different Rabi frequencies. The spectra
a) to c) have been obtained in a three-dimensional optical lattice with depths of 40Er and 33Er, ramped up within
50 ms. The spectrum in d) was taken for a thermal spin-polarized gas in a purely one-dimensional optical lattice
with a depth of 150Er. The data in a) is an average over three independent spectra, while the other three spectra
are single shot measurements. The observed widths of the spectra extracted from a sinc2-fit to the data agrees with
the Fourier limit calculated from the applied Rabi frequencies within the measurement error.

a smoothly broadened spectrum, we observe strong fluctuations of the excitation fraction near
resonance. This indicates that the noise responsible for this distortion is occurring at Fourier
frequencies below the inverse pulse time, but above the experimental cycle time. In order to
narrow down the frequency range of this noise we shortened the experimental cycle in order
to reduce the dead time between subsequent spectroscopy pulses. Instead of evaporating to ul-
tracold temperatures, we continuously switch on the one-dimensional optical lattice at a large
depth of 150Er. After loading atoms from the MOT into the dipole trap, they are optically
pumped into the mF = +5/2 state. Subsequently, the atoms are evaporatively cooled to a few
µK and transferred into the optical lattice by ramping the dipole trap to zero over a time of 1 s.
This has the main advantage that less atoms are lost during evaporation and the MOT loading
time can be decreased from 20 s to 5 s. In total, this decreases the experimental repetition time
from 30 s to 8 s. The higher repetition rate does not have any noticeable influence on the spec-
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Figure 3.21: Rabi oscillations on the first blue
sideband of a spin-polarized gas of 173Yb in a
three-dimensional optical lattice with depths of
30Er and 34Er for the 1D- and 2D-lattice respec-
tively. The peak excitation fraction is limited to
about 50%, because only atoms initially in the
lowest band of the lattice contribute to the side-
band. The asymmetric damping of the oscillations
hints at loss from the excited state (see main text).

troscopic noise. Therefore, we conclude that the noise occurs on timescales between 4 ms and
10 s. The stability analysis of the spectroscopy laser presented in section 3.1.3 shows, however,
that on these timescales, the laser exhibits a linewidth below 20 Hz. Thus, the limitation of the
spectroscopy to linewidths of∼ 200 Hz cannot be explained by the instability of the clock laser.
Currently, we believe that the main cause of this noise are Doppler shifts due to relative motion
of the clock laser and lattice beams induced by air currents and vibrations at the experiment.
We are presently working on making the setup more rigid and shielding it from air flow.
An interesting perspective for future experiments is the spectroscopy on higher order motional

sidebands, allowing to coherently prepare metastable state atoms in higher bands of the optical
lattice. In this way, one could study band relaxation, transport in higher bands or particle-hole
dynamics. All these processes can be expected to be substantially influenced by the differen-
tial interaction and inelastic collisions between ground and metastable state atoms. Figure 3.21
depicts Rabi oscillations on the first blue sideband, corresponding to exciting atoms to the 3P0

state and simultaneously promoting them to the first excited band of the lattice. Since the bands
in an optical lattice are not linearly spaced, the transition frequency of the first blue sideband
depends on the initial band index of the atoms. In other words, for atoms initially in the sec-
ond band, the blue sideband is located at a different frequency than for atoms initially in the
first band. From fig. A.2 in appendix A, one can see that for a 1D-lattice depth of 30Er, the
two sidebands are separated by about 1.5Er, corresponding to 3 kHz, which is about twice the
Fourier-limited resolution in fig. 3.21. Consequently, only atoms initially in the first band can be
excited. The maximum excitation fraction of 50% would however corresponds to a population
of 50% in higher bands along the 1D-lattice direction, which is not reasonable for 7 · 104 atoms
in a 3D-lattice, considering the estimates and measurements discussed in section 2.5.3. Also
here, the interaction between atoms on doubly occupied sites initially in different bands might
be important.
In contrast to the Rabi oscillations on the carrier transition shown in fig. 3.18, the damping
of the oscillations on the blue sideband is asymmetric. They decay towards the level of 50%,
which corresponds to the peak initial excitation fraction. This hints at loss from the excited
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state, which could occur due to metastable atoms decaying back to the lowest band and col-
liding inelasticly with ground state atoms. While this was not the focus of our work so far, it
would be very interesting to explore in detail the dynamics of metastable state atoms in higher
bands.

3.3 Spectroscopy of a Two-Component Gas

3.3.1 Theoretical Description of the Spectroscopy of Spin Mixtures

Narrowline spectroscopy as a preparation and detection tool for quantum many-body physics
becomes most relevant when it is applied to interacting, multi-spin quantum gas mixtures in an
optical lattice. In this section I want to discuss the theoretical description of the spectroscopy
for the simplest case, a two-component gas. As long as tunneling in the lattice is relevant, the
atomic gas must be treated as a true many-body system and the theory becomes difficult. The
discussion here will be restricted to the regime, where the lattice is so deep that tunneling is
negligible on experimental time- and energy scales. In this case the atomic ensemble can be
treated as an array of isolated harmonic traps occupied by either one or two atoms in the lowest
oscillator state. Consequently, the theory becomes simple and the Hamiltonian can be solved
exactly. All considerations here are for fermionic 173Yb. The general arguments hold, however,
for other fermionic elements.

In the following I will distinguish between two experimental configurations, which I call
±5/2-configuration and (3/2)(5/2)-configuration. In the ±5/2-configuration shown in fig. 3.22
a) the atomic gas is prepared in a mixture of the two outermost mF-states |mF = ±5/2〉 and
the spectroscopy laser is π-polarized. In this case, the Clebsch-Gordan coefficients and thus the
Rabi frequencies of the two transitions are equal in magnitude, but have opposite sign. Conse-
quently, for a given length and amplitude of the spectroscopy pulse the two spin components
experience the same pulse area. Moreover, there is a relatively large differential Zeeman shift
of 565 Hz/G between the two transitions [107, 123], such that they can be well resolved even at
small fields. In the (3/2)(5/2)-configuration depicted in fig. 3.22 b) the atoms are prepared in a
mixture of the |mF = 3/2〉 and |mF = 5/2〉 states and the spectroscopy laser is σ+-polarized. In
this configuration only the |mF = 3/2〉-state is addressed by the spectroscopy laser, because the
|mF = 5/2〉 ground state obviously does not couple to σ+-polarized light. This makes it harder
to compare the observed two-component spectra with the single-component spectra, which for
reasons of optical pumping are recorded for the |mF = 5/2〉-state with π-polarized light as de-
scribed in section 3.2. The advantage of this configuration is, however, that the excited state is
a simultaneous eigenstate of the atom-atom interaction and the Zeeman shift. This makes the
interpretation of the spectra much simpler, as will become clear in the course of this section.
Before discussing the Hamiltonian and the spectrum of two interacting atoms, it is useful to
identify the Hilbert space of possible two-atom states the system can adopt. The relevant single-
atom Hilbert space is the four-dimensional product space of the spin- and electronic subspaces.
It is spanned by the basis {|e〉 ⊗ |↑〉 , |e〉 ⊗ |↓〉 , |g〉 ⊗ |↓〉 , |g〉 ⊗ |↑〉}. |e〉 and |g〉 denote the
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Figure 3.22: Illustration of the two spectroscopy configurations discussed in this section. In the ±5/2-
configuration shown in panel a) the atomic gas is prepared in a mixture of the two outer most mF-states
|mF = ±5/2〉 and the spectroscopy laser is π-polarized. The Rabi frequencies of the two transitions have the
same magnitude |Ω|, but opposite sign due to their Clebsch-Gordan coefficients. ∆Z− denotes the differential
Zeeman shift between the transitions. In the (3/2)(5/2)-configuration shown in panel b) the atoms are prepared in a
mixture of the |mF = 3/2〉 and |mF = 5/2〉 states and the spectroscopy laser is σ+-polarized. In this configuration
there is only one allowed transition with Rabi frequency Ω.

electronic orbital states 3P0 and 1S0, respectively. |↑〉 stands for the mF-state with the larger mF

and |↓〉 for that with the smaller mF (cf. fig. 3.22). The tensor product is explicitly written here,
to clarify the distinction between the electronic subspace spanned by {|e〉 , |g〉} and the mF- or
spin subspace spanned by {|↑〉 , |↓〉}. In the later formulas it will be omitted for the sake of
brevity. The tensor product of the two single-atom Hilbert spaces has 16 dimensions. However,
according to the Pauli-Principle identical fermions can only be in states that are anti-symmetric
with respect to particle exchange. Transforming into a (anti)-symmetrized basis, one finds that
the relevant Pauli-allowed subspace of anti-symmetric states is only six-dimensional. Two basis
sets of this space are {∣∣bint

i

〉}
=
{
|ee〉 |↑↓〉− ,
|eg〉+ |↑↓〉− ,
|eg〉− |↑↑〉 ,
|eg〉− |↑↓〉+ ,
|eg〉− |↓↓〉 ,
|gg〉 |↑↓〉−

}
, (3.13)
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and {∣∣bZ
i

〉}
=
{
|ee〉 |↑↓〉− ,
1√
2

(|e ↑ g ↓〉 − |g ↓ e ↑〉) ,

|eg〉− |↑↑〉 ,
1√
2

(|g ↑ e ↓〉 − |e ↓ g ↑〉) ,

|eg〉− |↓↓〉 ,
|gg〉 |↑↓〉−

}
. (3.14)

|eg〉± denote the (anti)-symmetric superpositions 1/
√

2 (|eg〉 ± |ge〉). In the same way |↑↓〉± =
1/
√

2 (|↑↓〉 ± |↓↑〉). These basis sets will be important later on, because as shown in appendix B{∣∣bint
i

〉}
is an eigenbasis of the atom-atom interaction and not of the Zeeman shift.

{∣∣bZ
i

〉}
on

the other hand, is an eigenbasis of the Zeeman Hamiltonian and not of the atom-atom interac-
tion.

Now I turn to the description of the Hamiltonian ĤS that governs the spectroscopy process.
The construction of ĤS is in detail explained in appendix B. Here, I will only highlight those
aspects that are important for the understanding of the expected spectra. The Hamiltonian
consists of four contributions:

ĤS = Ĥel + ĤZ + Ĥint︸ ︷︷ ︸
Ĥa

+ĤL. (3.15)

Ĥel is the bare electronic Hamiltonian and ĤZ describes the Zeeman shift due to an external
magnetic field. These two Hamiltonians are known from basic atomic physics and are given
in eqs. (B.16) and (B.18). Ĥint contains the s-wave interaction between the two atoms. It has
already been discussed in section 2.1 and is given by eq. (2.4). Since the interaction between the
atoms is mF-independent in the 1S0- as well as in the 3P0-state, Ĥint is the same for both spec-
troscopy configurations. Ĥel, ĤZ, and Ĥint make up the atomic Hamiltonian Ĥa. The fourth
contribution ĤL describes the coupling Hamiltonian between the atoms and the light field. Note
that its form depends on whether the system is in the ±5/2- or the (3/2)(5/2)-configuration.
Spontaneous emission can be neglected, because of the extremely long lifetime of the excited
states.
Since the light field probes the energy spectrum of the atomic system Ĥa, it is instructive to first

understand this atomic Hamiltonian and leave the atom-light coupling aside. The most interest-
ing aspect of Ĥa is that generally the atom-atom interaction Ĥint and the Zeeman Hamiltonian
ĤZ do not commute as shown in eq. (B.21). The physical mechanism behind this becomes clear
by comparing the matrix representations of ĤS in the two different bases

{
bint
i

}
and

{
bZ
i

}
given

in eqs. (B.27) and (B.36): On the one hand, the differential Zeeman shift ∆Z− between the two
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Figure 3.23: Level diagrams of the interacting two-atom system in the ±5/2-configuration. In panel a) the dif-
ferential interaction dominates over the differential Zeeman shift. In panel b) the the differential Zeeman shift
dominates over the differential interaction. Further explanations are given in the main text.

transitions couples the interaction eigenstates
∣∣bint

2

〉
= |eg〉+ |↑↓〉− and

∣∣bint
4

〉
= |eg〉− |↑↓〉+. On

the other hand, the difference of the singlet and triplet interaction ∆Ueg = U+
eg − U−eg couples

the Zeeman eigenstates
∣∣bZ

2

〉
= 1√

2
(|e ↑ g ↓〉 − |g ↓ e ↑〉) and

∣∣bZ
4

〉
= 1√

2
(|g ↑ e ↓〉 − |e ↓ g ↑〉).

The other four basis states are, however, identical in the two eigenbases and are simultaneous
eigenstates of both Ĥint and ĤZ. This situation is schematically depicted in fig. 3.23. The
energy spectrum of the coupled states is shown in fig. 3.24 a) to c) for different interaction
configurations. A non-zero differential interaction ∆Ueg leads to an avoided crossing of the
two Zeeman eigenstates, while the average interaction Ueg =

(
U+
eg + U−eg

)
/2 simply shifts the

energy of the interacting states.
If the differential interaction dominates over the differential Zeeman shift, ∆Z− can be treated

in perturbation theory. Since ∆Z− appears only in the off-diagonal elements of the Hamiltonian,
the correction in first order perturbation theory vanishes. The leading correction is in second
order perturbation theory and is given by:

∆E|eg〉−|↑↓〉+ = −∆E|eg〉+|↑↓〉− =
(∆Z−)2

∆Ueg
(3.16)

In the opposite case, where the differential Zeeman shift dominates over the differential interac-
tion, it is useful to transform the perturbation to the Zeeman eigenbasis. The leading correction
to the energies of the Zeeman eigenstates due to the differential interaction is again in second
order perturbation theory and reads:

∆E 1√
2

(|e↑g↓〉−|g↓e↑〉) = −∆E 1√
2

(|g↑e↓〉−|e↓g↑〉) =
(∆Ueg)

2

8∆Z−
(3.17)
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Figure 3.24: a)-c): Energies of the singly excited states of the atomic Hamiltonian Ĥa in the ±5/2-configuration.
The vertical coordinate is the differential Zeeman shift ∆Z− between the two single-atom transitions. The horizon-
tal coordinate is the detuning ∆ from the unshifted single-atom excited state. Both coordinates are given in units
of the Rabi frequency used for the calculation of the excitation spectra in panels d)-f). The solid blue and orange
lines represent the Zeeman eigenstates

∣∣bZ2〉 and
∣∣bZ4〉 with all interactions set to zero. The solid green and red

lines represent the interacting states, which for zero magnetic field equal the interaction eigenstates |eg〉− |↑↓〉+
(red) and |eg〉+ |↑↓〉− (green). The interaction parameters U±eg used for the different spectra are given in the figure.
d)-f): Fraction of remaining ground state atoms Ng/Ntot after applying a spectroscopy pulse as a function of the
laser detuning ∆ from the unshifted single-atom resonance and the differential Zeeman shift ∆Z− in units of the
single-atom Rabi frequency Ω. U±eg are the same as in the corresponding plots a)-c) above. Uee has been set to a
very large value, such that the |ee〉-state is not populated. The spectroscopy pulse used for these spectra is a square
pulse of pulse area π for the single-atom transition. The atomic ensemble is assumed to consist of 50% singly
occupied sites and 50% doubly occupied sites.

Thus, in the limit of a large differential Zeeman shift, the differential interaction ∆Ueg is negli-
gible and only the average interaction Ueg leads to a shift of the resonance.
For spectroscopy experiments the mixing between the Zeeman- and interaction eigenstates is
only relevant if the probe light couples the ground state to these mixed states. This is the case in
the ±5/2-configuration, where the atom-light coupling Hamiltonian is given by eq. (B.25) and
reads:

ĤL,π =
~
√

2Ω

2

(
|eg〉− |↑↓〉+ 〈gg| 〈↑↓|− − |ee〉 |↑↓〉− 〈eg|− 〈↑↓|+ + h.c.

)
(3.18)

Two aspects of this Hamiltonian are worth mentioning: First, note that the light field does
not couple to the state |eg〉+ |↑↓〉−. This is due to the opposite sign of the Clebsch-Gordan
coefficients of the two single-atom transitions. Second, the Rabi frequency is enhanced by a
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factor
√

2 compared to the single atom Rabi frequency, reflecting the collective character of
the excitation. Having constructed the full Hamiltonian of the driven two-atom system, it is
straightforward to calculate the Rabi spectrum. To do so, the Hamiltonian is diagonalized, the
ground state |gg〉 |↑↓〉− is evolved over the duration of a π-pulse and the expectation value 〈n̂g〉
of the number of g-atoms in the final state is calculated. Figure 3.24 d) - f) depicts three such
spectra for different values of U−eg. For simplicity Uee has been set to a very large value, such
that the doubly excited state |ee〉 |↑↓〉− cannot be populated. The case where Uee is on the same
order of magnitude as U±eg will be considered later on. The spectra are calculated for a mixture
of 50% singly occupied sites and 50% doubly occupied sites, because this allows to extract
the interaction induced shifts from a single spectrum. The pulse area is chosen to be π for the
singly occupied sites. These spectra reproduce the spectral structure of the atomic Hamiltonian
shown in fig. 3.24 a) - c). The singly occupied sites are excited, where the non-interacting
Zeeman states are in resonance. The doubly occupied sites are excited at the resonances of the
interacting states. However, in the region of low magnetic field where the eigenstates of the
two-atom system are nearly the interaction eigenstates, only the state |eg〉− |↑↓〉+ is efficiently
excited as mentioned above. For stronger magnetic fields, the two interaction eigenstates are
mixed and the spectrum becomes more and more symmetric. Due to the

√
2 enhancement of

the Rabi frequency for the transition to the |eg〉− |↑↓〉+ state the pulse area for this transition is
π
√

2, which results in a lower excitation fraction and larger sinc-ripples for this transition. This
is again only relevant in the low field region. In the high field region, the interacting states have
a large overlap with the Zeeman eigenstates, which experience the same Rabi frequency as the
non-interacting, single-atom states (cf. eqs. (B.37) and (B.38)).
When the excited state interaction shift (Uee − Ugg) is on the same order of magnitude as(
U±eg − Ugg

)
, a situation may be achieved in which the energy of one of the |eg〉-states lies

nearly centered between the energies of the |gg〉- and |ee〉-state. In this case, the transitions
|gg〉 → |eg〉 and |eg〉 → |ee〉 are simultaneously near resonance and the doubly excited state
|ee〉 |↑↓〉− can be populated with a single laser pulse. Figure 3.25 depicts three spectra for
different ratios of η = (Uee − Ugg) /

(
U−eg − Ugg

)
. The values for U±eg are the same as in

fig. 3.24 a). In panel b) of fig. 3.25 η = 2. Thus, the transitions |gg〉 |↑↓〉− → |eg〉− |↑↓〉+
and |eg〉− |↑↓〉+ → |ee〉 |↑↓〉− are simultaneously on resonance for zero magnetic field. In this
region both atoms on a doubly occupied site are excited and the corresponding spectral feature
looks exactly as for non-interacting atoms, only that it is shifted by U−eg − Ugg. For η > 2 as
in fig. 3.25 c) the energy difference between the two transitions due to the interaction needs to
be compensated by the Zeeman shift in order to achieve exact simultaneous resonance and get
strong double excitation. Note, however, that even in between the two points of exact Zeeman
compensation a significant fraction of atoms is excited to the |ee〉-state and a clear splitting
between the peaks for single and double excitation can be observed. The spectral feature for
double excitation follows a straight vertical line in the shown spectra. This is due to the absence
of Zeeman shifts in the states |gg〉 |↑↓〉− and |ee〉 |↑↓〉−. In panel a) of fig. 3.25 η = 1.8. In
this case the straight line of the double excitation feature never crosses the single excitation
curves and exact simultaneous resonance cannot be achieved at any magnetic field. Significant
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Figure 3.25: Fraction of remaining ground state atoms Ng/Ntot after applying a spectroscopy pulse as a function
of the laser detuning ∆ from the unshifted single-atom resonance and the differential Zeeman shift ∆Z− in units of
the single-atom Rabi frequency Ω. All parameters except Uee are the same as in fig. 3.24 a). In contrast to fig. 3.24,
Uee has been set close to U−eg , such that the |ee〉 can be populated. The ratio η = (Uee − Ugg) /

(
U±eg − Ugg

)
changes from panel a) to c) as written in the figure.

double excitation occurs only at low fields where the single and double excitation peaks are
closest. For even smaller values of η the amplitude of the double excitation peak drops very
quickly to zero. On the other side of the spectrum near the state |eg〉+ |↑↓〉−, double excitation
is hardly possible at all, even if simultaneous resonance of the |gg〉 |↑↓〉− → |eg〉+ |↑↓〉− and
|eg〉+ |↑↓〉− → |ee〉 |↑↓〉− is achieved. This is because the light field does not couple to the
state |eg〉+ |↑↓〉−, preventing double excitation at low magnetic fields. One might be tempted to
think that at large magnetic fields, where a significant portion of the state |eg〉− |↑↓〉+ is mixed
in, double excitation should become possible. However, this mixing leads to a larger over-
lap with the Zeeman eigenstates, which do not allow double excitation due to the differential
Zeeman shift. Consequently, double excitation is always very weak on the |eg〉+-side of the
spectrum, no matter which magnetic field is used.
These considerations lead to the following conclusions: The ±5/2-configuration is well suited

to detect the average interaction Ueg, because it simply shifts the Zeeman eigenstates by the in-
teraction difference

(
Ueg − Ugg

)
independent of the applied magnetic field. In contrast, the dif-

ferential interaction ∆Ueg leads to a significant shift only at small magnetic fields. At large fields
this shift is reduced to a small second-order energy correction, which is given by eq. (3.17).
When working in the low-field regime, one has to be aware that the transition to the singlet state
|eg〉− |↑↓〉+ has a

√
2 enhanced Rabi frequency compared to the single atom Rabi frequency,

while the triplet state |eg〉+ |↑↓〉− does not couple to the light field at all. Direct excitation of
the doubly excited state |ee〉 |↑↓〉− is possible, if the ratio between the excited state interaction
shift and the |eg〉− interaction shift η ≥ 2. For η < 2 direct double excitation is very weak. In
this case, the doubly excited state can only be reached via two subsequent spectroscopy pulses
at different detunings. Altogether, the±5/2-configuration exhibits a rich spectral structure pro-
viding a high degree of flexibility especially for state preparation. Without any knowledge about
the interactions it may however be somewhat tedious to find the right experimental parameters
for the spectroscopy, since the number of expected peaks and their splittings depend strongly
on the relative sizes of the different interactions.
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Figure 3.26: Spectra obtained in the (3/2)(5/2)-configuration. A balanced mixture of the mF = 3/2 and mF =
5/2-states is loaded into a three-dimensional lattice with lattice depths of 40Er and 33Er for the 1D- and 2D-
lattice respectively. Duration and intensity of the probe pulse were adjusted such that a pulse area of π is obtained
for the atoms on singly ocupied sites. From a) to c) the probe intensity is reduced, resulting in a Fourier-limited
resolution of ∆F = 2 kHz in a), ∆F = 490 Hz in b) and ∆F = 250,Hz in c). The fact that in panel c) the width
of the resonance is below the Fourier-limited resolution probably comes from an imperfect compensation of the
frequency drift of the clock laser. The detuning of the clock laser is given up to some offset.

In the (3/2)(5/2)-configuration the competition between the interaction an the Zeeman shift is
irrelevant and the spectra become much simpler. In this configuration ĤL is given by eq. (B.26).
It has the form:

ĤL,σ = −~Ω

2

(
|eg〉− |↑↑〉 〈gg| 〈↑↓|− + |ee〉 |↑↓〉− 〈eg|− 〈↓↓|+ h.c.

)
(3.19)

From a look at the eigenbases
{∣∣bint

i

〉}
and

{∣∣bZ
i

〉}
it is veryfied that all coupled states are

simultaneous eigenstates of Ĥint and ĤZ. Moreover, the Rabi frequency is the same as for non-
interacting atoms. Consequently, the spectrum of a mixture of singly and doubly occupied sites
only exhibits two peaks. One for the non-interacting and one for the interacting sites. They have
both the same shape, because the Rabi frequencies are identical. And they are separated by the
interaction difference

(
U−eg − Ugg

)
. Excitation from the ground state to the doubly excited state

is not possible in this configuration, because there is no common intermediate state to which
both states are coupled. Thus I conclude that spectroscopy in the (3/2)(5/2)-configuration is
conceptually much simpler than in the ±5/2-configuration.

3.3.2 Spectroscopy of a Two-Component Gas
In this section, I briefly describe first experiments on the spectroscopy of two-component spin
mixtures that we performed in order to obtain information about the interaction properties of
the metastable state atoms.
Figure 3.26 shows spectra obtained with a balanced mixture of the mF = 3/2 and mF = 5/2

states and σ+ polarized probe light, realizing the (3/2)(5/2)-configuration discussed in the
previous section. As explained there, this configuration is sensitive to the interaction difference
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Figure 3.27: Spectrum obtained in the ±(5/2)-
configuration. A balanced mixture of the mF =
±5/2-states is loaded into a three-dimensional
lattice with lattice depths of 30Er and 34Er for
the 1D- and 2D-lattice respectively. An excita-
tion pulse with a duration of 2.7 ms was used,
resulting in a π-pulse for atoms on singly oc-
cupied sites and a corresponding Fourier-limited
resolution of 290 Hz. A homogeneous magnetic
field of 5.5 G has been applied, which induces a
splitting of 3.1kHz between the single atom reso-
nances of the mF = ±5/2-states. Comparing the
spectrum to similar measurements from ref. [79]
performed by the Munich group, the broad cen-
tral peak can be attributed to |eg〉+ and |ee〉 res-
onances. Details are given in the main text. The
detuning of the clock laser is given with respect
to the mF = −5/2-resonance.

between the ground state and the |eg〉−-state
(
U−eg − Ugg

)
. For the spectra a) to c) the Rabi

frequency is reduced in two steps, resulting in a Fourier-limited resolution between 2 kHz and
250 Hz. Within the scanned spectral range of 16 kHz no splitting is observed.
Figure 3.27 shows a spectrum in the±(5/2)-configuration, i.e. a balanced mixture of the mF =
±5/2-states and a π-polarized clock laser. A homogeneous magnetic field of 5.5 G has been
applied to induce a Zeeman splitting between the single-atom resonances of the two mF-states.
Here, despite the low signal to noise ratio three spectral features can be identified. From the
known differential Zeeman shift of the clock transition of 113 Hz/G ·mF [107, 123], one can
identify the peaks resulting from atoms in the mF = ±5/2-states on singly occupied sites.
Between these two resonances, there is a broad spectral feature, which we could initially not
interpret. However, when finishing this manuscript similar measurements were published by the
Munich group [79], achieving a significantly better signal to noise ratio. Their measurements
indicate that the broad central peak can indeed be attributed to the excitation of the |eg〉+-
state. It consists, however, of three closely neighboring peaks: One from the excitation of
the |eg〉+-state with both atoms in the lowest band, one from the excitation of the |eg〉+-state
with one atom in the first and one in the second band, and a third peak corresponding to the
doubly excited |ee〉-state. Taking several spectra at different values of the magnetic field, it
is possible to extract both U+

eg and U−eg by fitting the magnetic field dependent position of the
|eg〉+ resonance to the model described in section 3.3.1. In this way, the authors of ref. [79]
find a+

eg = agg + (22.7± 7.3) a0 and a−eg = agg + (1970± 190) a0. The extremely large value
of a−eg would lead to splittings of several tens of kHz in a three-dimensional optical lattice. This
would explain the fact that we observe no splitting in the (3/2)(5/2)-configuration, since we
only scanned over a spectral width of 16 kHz.

While time did not permit to perform improved experiments within this thesis, our team is
currently working on improving the spectroscopic resolution as well as our detection scheme.
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The implementation of a repump laser on the 3P0 → 3D1 transition at 1388 nm will allow to
detect both ground- and metastable state atoms, which eliminates noise due to fluctuations of
the total atom number [107]. As mentioned in section 3.2, we believe that the spectroscopic
resolution is currently limited by fluctuating Doppler shifts induced by mechanical noise on the
lattice- and clock laser beams. Therefore, improving the mechanical stability of these beams
should lead to an improved resolution. Moreover, using a shallower dipole trap such that only
the lowest band of the lattice is occupied should considerably simplify the interpretation of the
observed spectra. With these improvements underway, we are optimistic that we will soon be
able to coherently address the interacting two-atom states |eg〉± in the lattice.



Outlook

In this thesis a versatile apparatus for the investigation of quantum degenerate Yb has been
presented. This setup allows the preparation of bosonic and fermionic ensembles in a triangular
optical lattice, reaching the strongly correlated regime. The nuclear spin composition can be
controlled and coherent manipulation of the electronic state has been achieved. These capabil-
ities are a good starting point for the study of quantum many-body physics with mixtures of
ground- and metastable-state Yb, realizing Hamiltonians that are not accessible with current
alkali-based experiments.
Having observed first indications of 1S0-3P0-interaction, an improved spectroscopy setup should
soon enable us to prepare in a controlled way the interacting |eg〉±-states in a magic optical lat-
tice. Once hopping between lattice sites is turned on in such a system, an interesting many-body
Hamiltonian is realized, consisting of three different contributions: The Hubbard on-site inter-
action of ground- and metastable-state atoms Ugg and Uee, the Kondo-exchange interaction due
to the different scattering lengths of the |eg〉±-states Vex = ∆Ueg/2, and dissipation due to in-
elastic collisions between two metastable atoms. The competition between these processes can
be expected to lead to interesting phenomena.
The next important steps will then be the realization of a state-dependent optical lattice that
suppresses the tunneling of metastable-state atoms, as well as the development of efficient tech-
niques for the preparation of 1S0-3P0-mixtures in such a state-dependent lattice. In this way the
Kondo lattice model can be realized with ultracold Yb, as has been described in the introduction
and is again depicted in fig. 4.1 a).
Panel b) of the same figure schematically depicts the phase diagram of the Kondo lattice model
in one dimension [25], where a relatively good theoretical understanding has already been estab-
lished [29]. The general form of this phase diagram results from the competition of RKKY-type
interactions between the localized metastable-state atoms (e-atoms), mediated by the mobile
ground-state atoms (g-atoms), on the one hand, and the direct Kondo-exchange between the
g- and e-atoms on the other hand. While the RKKY interaction induces ferromagnetic order-
ing of the localized atoms, the Kondo-exchange favors the formation of spin singlets of g- and
e-atoms, leading to a paramagnetic state with heavy-fermion behavior of the mobile g-atoms.
When the number of g-atoms per site is exactly one, i.e. at half filling, each g-atom forms a spin
singlet with a localized e-atom and a so-called Kondo insulator forms. The relative strength of
the RKKY- versus the Kondo-interaction depends on the ratio of exchange-coupling and hop-
ping of g-atoms Vex/Jg, as well as the number of g-atoms per lattice site ng, as seen in fig. 4.1
b). With ultracold Yb in an optical lattice, it is straightforward to tune both these parameters
by adjusting the ratio of 1S0 and 3P0 atoms and by varying the lattice depth. In this way it will
be possible to study the phase transition between the ferromagnetic, the paramagnetic, and the
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Figure 4.1: Panel a): Illustration of the Kondo lattice model realized with ultracold Yb. A mixture of ground- and
metastable state atoms is loaded into a state-dependent optical lattice, where only the ground-state atoms can hop
between lattice sites. The differential interaction ∆Ueg between the |eg〉±-states results in a direct spin-exchange
interaction between e- and g-atoms. Panel b): Schematic phase diagram of the 1D Kondo lattice model according
to refs. [25, 29]. The competition between RKKY-interactions and Kondo-exchange leads to a ferromagnetic and
a paramagnetic phase.

Kondo insulator phase. Moreover, in an optical lattice, the dimensionality of the system can be
changed by increasing the lattice depth along certain directions to very large values, freezing
out the motion along these directions. Thus, optical lattice experiments allow to explore the
Kondo lattice model in one dimension, where solid theoretical knowledge exists, as well as in
two- and three-dimensions, where the theoretical understanding is so far rather limited. The
temperatures that need to be reached in order to observe Kondo- and RKKY physics are given
by kBT ≤ Jg exp (Jg/ |Vex|) for the Kondo- and kBT ≤ V 2

ex/Jg for the RKKY regime [24]. For
the large Vex of 173Yb suggested by the measurements in ref. [79] both temperatures should
be much easier to achieve than the superexchange temperature necessary for the observation of
magnetism in the Hubbard model.
Another type of experiments, which should be readily feasible with the current setup, exploits

the dissipation of inelastic 3P0-3P0 s-wave collisions. In combination with the Pauli-blocking
of s-wave collisions between identical fermions, the dissipation dynamics in 3P0 spin-mixtures
of fermionic Yb is predicted to produce highly entangled multi-particle spin states [124]. These
entangled states are then completely free from s-wave collisions, which should be observable
as a dramatic slow down of particle loss after the entanglement has formed.
A different direction of research of our project, which has not been described here, aims at
the exploration of ultracold mixtures of Yb and Rb. The vacuum setup is already equipped
with Rb-dispensers and the cooling laser setup is currently implemented. Such mixtures will
open up a wide range of experimental possibilities from the use of Yb as an impurity probe for
Rb-BECs [125] to the creation of open shell dipolar molecules [36].



Appendix A

Spectroscopic Excitation of Motional States

This appendix discusses the excitation of motional states in optical lattice spectroscopy experi-
ments. The full interaction Hamiltonian of a two-level atom with states |g〉 and |e〉 and a running
plane-wave electric field is given by [122]:

Hint =
~
2

Ω0

(
|g〉 〈e| ⊗ e−ikLr + |e〉 〈g| ⊗ eikLr

)
(A.1)

Here, kL is the wave-vector of the electric field. The Hamiltonian has already been transformed
into the reference frame rotating at the laser frequency, and the rotating wave approximation has
been applied. The factors e±ikLr stemming from the running-wave nature of the electric field
lead to the coupling of different momentum states. This can be seen by considering the transi-
tion matrix element for a freely moving atom. The motional eigenstates of an atom experiencing
no forces are the eigenstates of the momentum operator, which are plane waves:

|k〉 =
1√
V
eikr, (A.2)

where V is a suitable normalization constant. The transition matrix element for an atom with
initial momentum ~ki and final momentum ~kf is then given by:

〈e,kf |Hint |g,ki〉 =
~
2

Ω0
1

V

∫
e−ikfreikLreikird3r =

~
2

Ω0 · δ (ki + kL − kf) (A.3)

The Dirac delta function expresses the momentum conservation condition kf = ki + kL. Thus,
when the atom is promoted to the electronically excited state |e〉, it simultaneously gets a kick
due to the momentum of the absorbed photon.
If the atom is moving through a periodic lattice potential, its eigenstates are no longer plane
waves, but rather the bloch waves of the lattice, described by their quasimomentum q and band-
index n. The wavefunction of the state |n,q〉 is then given by:

ψn,q (r) = un,q (r) eiqr, (A.4)

where un,q (r) is the Bloch function. In this case the corresponding transition matrix element is
given by:

d = 〈e,m,qf |Hint |g, n,qi〉 =
~
2

Ω0

∫
ψ∗m,qf

(r)ψn,qi
(r) · eikLrd3r (A.5)
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In analogy to vibrational spectroscopy of molecules, the overlap integral in eq. (A.5) will be
called the Franck-Condon factor of the transition in the following. For our experimental setup,
the matrix element can be further simplified: Since our lattice is composed of a one-dimensional
lattice along y and a two-dimensional triangular lattice in the x-z plane, the lattice Hamiltonian
can be written as a sum of these two lattices:

Hlat (r) = H1D (y) +H2D (x, z) (A.6)

Consequently, the eigenstates can be written as products of the eigenstates of the 1D- and 2D-
lattices:

ψn1,n2,q1,q2 (r) = ψn1,q1 (y) · ψn2,q2 (x, z) (A.7)

Making use of this factorization and the fact that the excitation laser propagates along the di-
rection of the 1D-lattice, the matrix element of eq. (A.5) simplifies to:

d =
~
2

Ω0

∫
ψ∗m1,q1f

(y)ψn1,q1i (y) eikLydy

∫
ψ∗m2,q2f

(x, z)ψn2,q2i
(x, z) dxdz (A.8)

=
~
2

Ω0δm2,n2δ (q2f − q2i)

∫
ψ∗m1,q1f

(y)ψn1,q1i
(y) eikLydy (A.9)

Here, the orthonormalization of the x-z-eigenstates has been used. The resulting delta func-
tions express the fact that the motional state transverse to the direction of the spectroscopy laser
cannot be changed during the laser excitation. In order to get further insight into the remain-
ing Franck-Condon integral, it is useful to expand the 1D-wavefunctions according to Bloch’s
theorem as a sum over reciprocal 1D-lattice vectors G:

ψn1,q1 (y) =
∑
G

cn1 (q1 −G) ei(q1−G)y. (A.10)

Inserting this Fourier sum into eq. (A.9), one obtains:

d =
~
2

Ω0δm2,n2δ (q2f − q2i)
∑
G,G′

cn1 (q1i −G) c∗m1
(q1f −G′)

∫
ei(q1i−G)ye−i(q1f−G

′)yeikLydy

=
~
2

Ω0δm2,n2δ (q2f − q2i)
∑
G,G′

cn (qi −G) c∗m (q1f −G′) · δ (q1i + kL − q1f − (G−G′))

(A.11)

Here, the Dirac delta function under the sum expresses the conservation of quasimomentum
along y, implying momentum transfer from the excitation laser to the atoms:

q1i + kL = q1f + G̃, (A.12)

where G̃ = G−G′. Since the quasimomenta q1f and q1i are restricted to the first Brillouin zone,
it can easily be verified that there is only one combination of q1f and G̃ which fulfills eq. (A.12).
Thus, the sum in eq. (A.11) depends only on q1i and kL and we can write:

d =
~
2

Ω0 · αn1,m1 (q1i, kL) · δm2,n2δ (q2f − q2i) (A.13)
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Figure A.1: Franck-Condon factors αn1,m1 for
transitions between different bands in a sinu-
soidal optical lattice plotted as a function of the
initial quasi-momentum and the lattice depth.
The wavenumber of the spectroscopy laser is
taken to be kL = 1.3klat. A detailed explana-
tion is given in the main text.

Figure A.2: Rabi spectra of atoms in a one-dimensional optical lattice with no transverse motional degrees of
freedom, obtained by numerically diagonalizing the spectroscopy Hamiltonian. Panel a) depicts the spectrum
obtained for an initially completely filled lowest band with no higher band population. In b) the initial state is a
completely filled second band with all other bands empty. The spectrum c) is obtained when the lowest and the
first excited band are initially populated. Further explanations are given in the main text.
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Thus, on top of the selection rule, stating that band-index and quasimomentum are unchanged
along the propagation direction transverse to the excitation laser, the matrix element contains
the band- and momentum dependent Franck-Condon factor αn,m (q1i, kL), causing a reduction
of the bare Rabi frequency. Figure A.1 depicts αn,m (q1i, kL) as a function of lattice depth for
different inter- and intra-band transitions in a sinusoidal optical lattice. The lattice depth is
given in units of the recoil energy with respect to the lattice laser Er = ~2k2

lat/2M , where klat

is the wavenumber of the lattice laser and M is the mass of the atom. The wavenumber of the
spectroscopy laser is taken to be kL = 1.3klat as is the case for the 1S0 → 3P0 clock transition
of Yb.
For small lattice depths, there is a strong q-dependence of the Franck-Condon factors, which
quickly flattens as the lattice depth increases. For large lattice depths all quasimomenta can be
excited equally well, leaving only the dependence of α on the band-index. The regime of negli-
gible q-dependence is analogous to the Lamb-Dicke regime in the spectroscopy of harmonically
confined atoms or ions, since in the limit of large lattice depth each lattice site can be treated as
an individual harmonic microtrap.
Having calculated the matrix elements from eq. (A.13), one can numerically diagonalize the
spectroscopy Hamiltonian and calculate the excitation spectrum in the lattice. Figure A.2 shows
spectra obtained for a purely one-dimensional lattice along the direction of the probe laser, ne-
glecting the transverse dimensions. The excitation pulse has been assumed to be a square pulse
of duration τ = π/Ω0, i.e. a π-pulse with respect to the bare Rabi frequency. The Rabi fre-
quency itself has been set to Ω0 = 0.1Er/~, corresponding to 2π · 200 Hz for Yb in a magic
optical lattice. Panel a) shows the spectrum obtained for a completely occupied first band, with
no higher band population. The spectrum in panel b) is obtained for the second band com-
pletely filled with no population in other bands, while in c) half the population is in the first and
the other half in the second band, with both bands filled completely. The different sidebands
appearing in the spectra reveal the bandstructure of the lattice. The shape of the sidebands is
determined by the dispersion of the lattice and the q-dependence of the Franck-Condon fac-
tors as well as the density of states. As the lattice depth increases, the bands as well as the
Franck-Condon factors flatten. Consequenty, the spectral width of the sidebands decreases and
the excitation becomes more homogeneous. The higher the initial band-index and the higher
the order of the sideband, the more confinement is needed to achieve a sharp resonance. For a
Rabi frequency of 200 Hz used here, the carrier resonance of atoms in the first band becomes
Fourier limited for lattice depths above 10Er, while for atoms in the second band a lattice depth
above 30Er is necessary to achieve an equally narrow spectrum. When exciting higher bands,
deeper lattices are required. The first blue sideband becomes Fourier limited above 25Er for
atoms in the first band and above 45Er for atoms in the second band.
For future experiments, the simultaneous excitation of electronic and motional states opens up
interesting possibilities. In deep lattices where the Franck-Condon factor is q-independent and
the bandwidths are low, the whole atomic ensemble can be excited to a higher band, allow-
ing to study band-relaxation processes and their dependence on interaction and dissipation of
metastable-state collisions. Alternatively, in a shallow lattice one can excite the atoms in a mo-
mentum resolved way and study particle-hole dynamics and transport processes. This could
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be especially interesting in a Kondo lattice scenario, where the Kondo-exchange leads to an
anomalously high effective mass of the particles and so-called heavy-fermion behavior. This
behavior should result in a dramatic slow down of mass transport in the lattice [81].





Appendix B

Derivation of the Spectroscopy Hamiltonian

In this appendix, I derive the Hamiltonian ĤS for two interacting fermionic atoms in the ground
state of a harmonic trap driven by a classical light field. It describes the clock spectroscopy of
two-component fermions in a deep optical lattice reported in section 3.3.2 and complements the
theoretical discussion in section 3.3.1. ĤS has four contributions:

ĤS = Ĥel + ĤZ + Ĥint︸ ︷︷ ︸
Ĥa

+ĤL. (B.1)

Ĥel is the bare electronic Hamiltonian, ĤZ describes the Zeeman shift due to an external ma-
gentic field, and Ĥint contains the s-wave interaction between the two atoms. Together, these
three contributions form the atomic Hamiltonian Ĥa. ĤL is the coupling Hamiltonian between
the atoms and the light field. Because of the extremely long lifetime of the excited states, spon-
taneous emission can be neglected.
For the experiments described in section 3.3.2 two different configurations are used, which are
depicted in fig. 3.22. In the ±5/2-configuration, the atomic sample is prepared in a mixture of
the mF = ±5/2 substates of the 1S0 ground state manifold and π-polarized light is used. In this
configuration, the states |mF = +5/2〉 and |mF = −5/2〉 are denoted as |↑〉 and |↓〉, respec-
tively. In the (3/2)(5/2)-configuration, the atoms are prepared in a mixture of the |mF = 3/2〉
and |mF = 5/2〉 substates and the spectroscopy laser is σ+-polarized. In this case, the notation
for the spin states is |mF = 3/2〉 = |↓〉 and |mF = 5/2〉 = |↑〉. The electronic states 1S0 and
3P0 are denoted as |g〉 and |e〉, respectively, in both configurations.
The two-atom Hilbert space has already been described in section 3.3.1. In accordance with
the Pauli-Principle it includes only those states that are anti-symmetric with respect to particle
exchange and is six-dimensional.
Two relevant basis sets for this space are the eigenbases of the atom-atom interaction and the
Zeeman shift, which are given in eqs. (3.13) and (3.14). Here, they are written down again
together with their vector representations used later on for the matrix representations of the

105



106 Appendix B Derivation of the Spectroscopy Hamiltonian

Hamiltonians. The interaction eigenbasis
{∣∣bint

i

〉}
is given by:

|ee〉 ⊗ |↑↓〉− = {1, 0, 0, 0, 0, 0} =
∣∣bint

1

〉
(B.2)

|eg〉+ ⊗ |↑↓〉− = {0, 1, 0, 0, 0, 0} =
∣∣bint

2

〉
(B.3)

|eg〉− ⊗ |↑↑〉 = {0, 0, 1, 0, 0, 0} =
∣∣bint

3

〉
(B.4)

|eg〉− ⊗ |↑↓〉+ = {0, 0, 0, 1, 0, 0} =
∣∣bint

4

〉
(B.5)

|eg〉− ⊗ |↓↓〉 = {0, 0, 0, 0, 1, 0} =
∣∣bint

5

〉
(B.6)

|gg〉 ⊗ |↑↓〉− = {0, 0, 0, 0, 0, 1} =
∣∣bint

6

〉
, (B.7)

and the Zeeman eigenbasis
{∣∣bZ

i

〉}
by:

|ee〉 ⊗ |↑↓〉− = {1, 0, 0, 0, 0, 0} =
∣∣bZ

1

〉
(B.8)

1√
2

(|e ↑ g ↓〉 − |g ↓ e ↑〉) = {0, 1, 0, 0, 0, 0} =
∣∣bZ

2

〉
(B.9)

|eg〉− ⊗ |↑↑〉 = {0, 0, 1, 0, 0, 0} =
∣∣bZ

3

〉
(B.10)

1√
2

(|g ↑ e ↓〉 − |e ↓ g ↑〉) = {0, 0, 0, 1, 0, 0} =
∣∣bZ

4

〉
(B.11)

|eg〉− ⊗ |↓↓〉 = {0, 0, 0, 0, 1, 0} =
∣∣bZ

5

〉
(B.12)

|gg〉 ⊗ |↑↓〉− = {0, 0, 0, 0, 0, 1} =
∣∣bZ

6

〉
, (B.13)

|eg〉± = 1/
√

2 (|eg〉 ± |ge〉) denote the eg-singlet and -triplet states, respectively. Analogously,
|↑↓〉± denote the ↑↓-singlet and -triplet states. It will become clear later on that

{∣∣bint
i

〉}
and{∣∣bZ

i

〉}
are indeed eigenbases to Ĥint and ĤZ.

In the reference frame rotating at the laser frequency, the electronic Hamiltonian for a single
atom is spin independent and reads:

Ĥel,1 =
~∆

2
(|g〉 〈g| − |e〉 〈e|) , (B.14)

where ∆ = ωL−ωa is the detuning of the laser frequency from the atomic transition. From this
elementary Hamiltonian the full two-atom Hamiltonian, including spin is given by the tensor
product:

Ĥel =
(
Ĥ(1)

el,1 ⊗ 1
(1)
↑↓

)
⊗ 1

(2) + 1
(1) ⊗

(
Ĥ(2)

el,1 ⊗ 1
(2)
↑↓

)
(B.15)

=
~∆

2

(
|gg〉 |↑↓〉− 〈gg| 〈↑↓|− − |ee〉 |↑↓〉− 〈ee| 〈↑↓|−

)
, (B.16)

where the upper index (1, 2) denotes atom 1 and atom 2, respectively.
The Zeeman Hamiltonian acts on the combined spin and electronic space of each atom. For a
single atom it has the form:

ĤZ,1 = ~(∆Z,g↓ |g, ↓〉 〈g, ↓|+ ∆Z,g↑ |g, ↑〉 〈g, ↑|
+ ∆Z,e↓ |e, ↓〉 〈e, ↓|+ ∆Z,e↑ |e, ↑〉 〈e, ↑|) (B.17)
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The combined two-atom Zeeman Hamiltonian is then:

ĤZ = Ĥ(1)
Z,1 ⊗ 1

(2) + 1
(1) ⊗ Ĥ(2)

Z,1 (B.18)

Multiplying out the tensor product and diagonalizing the Hamiltonian, one finds that
{∣∣bZ

i

〉}
is

indeed the eigenbasis of ĤZ:

ĤZ = (∆Z,e↑ + ∆Z,e↓)
∣∣bZ

1

〉 〈
bZ

1

∣∣+ (∆Z,e↑ + ∆Z,g↓)
∣∣bZ

2

〉 〈
bZ

2

∣∣
+ (∆Z,e↑ + ∆Z,g↑)

∣∣bZ
3

〉 〈
bZ

3

∣∣+ (∆Z,e↓ + ∆Z,g↑)
∣∣bZ

4

〉 〈
bZ

4

∣∣
+ (∆Z,e↓ + ∆Z,g↓)

∣∣bZ
5

〉 〈
bZ

5

∣∣+ (∆Z,g↑ + ∆Z,g↓)
∣∣bZ

6

〉 〈
bZ

6

∣∣ (B.19)

The interaction between ground- and metastable state Yb atoms has already been discussed in
section 2.1. The interaction Hamiltonian is spin independent and is given by eq. (2.4). I write it
here again for completeness:

Ĥint =
(
Uee |ee〉 〈ee|+ U+

eg |eg〉
+ 〈eg|+ + U−eg |eg〉

− 〈eg|− + Ugg |gg〉 〈gg|
)

⊗ 1
(1)
↑↓ ⊗ 1

(2)
↑↓ . (B.20)

Since the interaction is spin independent it is immediately clear that
{∣∣bint

i

〉}
is an eigenbasis of

Ĥint.
The commutator of Ĥint and ĤZ is given by:[

ĤZ, Ĥint

]
=

1

2
∆Ueg∆Z−

∣∣bZ
2

〉 〈
bZ

4

∣∣
− 1

2
∆Ueg∆Z−

∣∣bZ
4

〉 〈
bZ

2

∣∣ , (B.21)

where ∆Z− = (∆Z,e↓ −∆Z,e↑ −∆Z,g↓ + ∆Z,g↑) is the differential Zeeman shift between the two
transitions and ∆Ueg =

(
U+
eg − U−eg

)
is the difference between the interaction energies of the

eg-singlet and -triplet states. This shows that in the presence of a non-zero magnetic field and at
the same time a non-zero differential interaction ∆Ueg, neither

{∣∣bint
i

〉}
nor
{∣∣bZ

i

〉}
diagonalize

the two-atom Hamiltonian Ĥa. This complicates the interpretation of the observed spectra in
the ±5/2-configuration as is explained in section 3.3.1.
The last contribution to the spectroscopy Hamiltonian is the atom-light interaction that is cap-
tured in ĤL. The form of ĤL depends on the polarization of the spectroscopy laser, as well as
on the particular mF-levels chosen as |↑〉 and |↓〉. For a single atom in the ±5/2-configuration
it has the form (see e.g. [126]):

ĤL1,π =
~Ω

2
(|g ↑〉 〈e ↑| − |g ↓〉 〈e ↓|) + h.c. (B.22)

Here, ĤL has been transformed into the reference frame rotating at the laser frequency, as
was already done with the electronic Hamiltonian in eq. (B.14). Moreover, the rotating wave
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approximation has been applied to eliminate the fast oscillating terms. Ω is the Rabi frequency
of the |g ↑〉 → |e ↑〉 transition. The minus sign in eq. (B.22) is due to the opposite sign of the
Clebsch-Gordan coefficients of the mF = +5/2 and mF = −5/2 transitions.
In the (3/2)(5/2)-configuration, the atom-light coupling Hamiltonian for a single atom is given
by:

ĤL1,σ =
~Ω

2
|g ↓〉 〈e ↑|+ h.c. (B.23)

Since the |mF = 5/2〉 state does not couple to σ+-polarized light, there is only one Rabi fre-
quency in ĤL,σ. The atom-light coupling Hamiltonian for two atoms is again constructed from
the single-atom Hamiltonians by a sum of tensor products:

ĤL,π,σ = Ĥ(1)
L1,π,σ ⊗ 1

(2) + 1
(1) ⊗ Ĥ(2)

L1,π,σ (B.24)

Evaluating eq. (B.24) for the two configurations one finds:

ĤL,π =
~
√

2Ω

2

(
|eg〉− |↑↓〉+ 〈gg| 〈↑↓|− − |ee〉 |↑↓〉− 〈eg|− 〈↑↓|+ + h.c.

)
(B.25)

ĤL,σ = −~Ω

2

(
|eg〉− |↑↑〉 〈gg| 〈↑↓|− + |ee〉 |↑↓〉− 〈eg|− 〈↓↓|+ h.c.

)
(B.26)

The complete spectroscopy Hamiltonian ĤS is now obtained by summing up eqs. (B.16), (B.19),
(B.20) and (B.24). A good overview over the Hamiltonian is obtained by writing down its ma-
trix representation. For the (3/2)(5/2)-configuration using the interaction basis

{∣∣bint
i

〉}
the

Hamiltonian matrix reads:

Hint
S,σ/~ =

Uee −∆ + ∆Z,e+ 0 0 0 −Ω
2

0

0 U+
eg + ∆Z,+ 0 ∆Z− 0 0

0 0 U−eg + ∆Z,↑+ 0 0 −Ω
2

0 ∆Z,− 0 U−eg + ∆Z,+ 0 0

−Ω
2

0 0 0 U−eg + ∆Z,↓+ 0

0 0 −Ω
2

0 0 ∆ + ∆Z,g+ + Ugg


.

(B.27)
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The different sums of Zeeman shifts have been abbreviated as follows:

∆Z,+ =
1

2
(∆Z,e↑ + ∆Z,e↓ + ∆Z,g↑ + ∆Z,g↓) (B.28)

∆Z,− =
1

2
(∆Z,e↑ −∆Z,e↓ −∆Z,g↑ + ∆Z,g↓) (B.29)

∆Z,e+ = ∆Z,e↑ + ∆Z,e↓ (B.30)
∆Z,g+ = ∆Z,e↑ + ∆Z,e↓ (B.31)
∆Z,↑+ = ∆Z,e↑ + ∆Z,g↑ (B.32)
∆Z,↓+ = ∆Z,e↓ + ∆Z,g↓ (B.33)
∆Z,↑↓ = ∆Z,e↑ + ∆Z,g↓ (B.34)
∆Z,↓↑ = ∆Z,e↓ + ∆Z,g↑ (B.35)

Alternatively the Zeeman basis
{∣∣bZ

i

〉}
can be used and one obtains:

HZ
S,σ/~ =

Uee −∆ + ∆Z,e+ 0 0 0 −Ω
2

0

0 Ueg + ∆Z,↑↓ 0 ∆Ueg

2
0 0

0 0 U−eg + ∆Z,↑+ 0 0 −Ω
2

0 ∆Ueg

2
0 Ueg + ∆Z,↓↑ 0 0

−Ω
2

0 0 0 U−eg + ∆Z,↓+ 0

0 0 −Ω
2

0 0 ∆ + ∆Z,g+ + Ugg


,

(B.36)

where ∆Ueg = U+
eg − U−eg and Ueg =

(
U+
eg + U−eg

)
/2 are abbreviations for the differential and

the average interaction of the eg-states. In the ±5/2-configuration the Hamiltonian matrix in
the interaction basis is given by:

Hint
S,π/~ =



−∆ + Uee 0 0 − Ω√
2

0 0

0 U+
eg 0 ∆Z− 0 0

0 0 U−eg + ∆Z+ 0 0 0

− Ω√
2

∆Z− 0 U−eg 0 Ω√
2

0 0 0 0 U−eg −∆Z+ 0

0 0 0 Ω√
2

0 ∆ + Ugg


. (B.37)
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Here, in addition to the abbreviations of eqs. (B.28) to (B.33) it was used that in the ±5/2-
configuration ∆Z,g↑ = −∆Z,g↓ and ∆Z,e↑ = −∆Z,e↓. In the Zeeman basis this Hamiltonian is
given by:

HZ
S,π/~ =

−∆ + Uee −Ω
2

0 Ω
2

0 0

−Ω
2

Ueg + ∆Z− 0 ∆Ueg

2
0 Ω

2

0 0 U−eg + ∆Z+ 0 0 0

Ω
2

∆Ueg

2
0 Ueg −∆Z− 0 −Ω

2

0 0 0 0 U−eg −∆Z+ 0

0 Ω
2

0 −Ω
2

0 ∆ + Ugg


(B.38)
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Figure C.1: Level Diagram of Yb. Courtesy of Sören Dörscher.
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