
 

 

 

 

 

 

 

 

 

 

Sustainable Bioenergy Use and Climate Change in China 
- A Spatial Agent Model for the Case of Jiangsu Province    

 

 

 

 

 

Dissertation 
zur Erlangung des Doktorgrades 

an der Fakultät für Mathematik, Informatik und Naturwissenschaften 

Fachbereich Geowissenschaften 

der Universität Hamburg 

 

 

vorgelegt von 

Kesheng Shu 
aus Wuhan, China 

 

 

 

 

 

Hamburg 

2014 

 

 

 
 
 



 

 

 

 
 
 
 

 

 

 

 

 

 

Tag der Disputation: Januar 16, 2015 

Folgende Gutachter empfehlen die Annahme der Dissertation: 

Prof. Dr. Jürgen Scheffran 

Prof. Dr. Uwe Schneider 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Eidesstattliche Versicherung 

Declaration on oath 

Hiermit erkläre ich an Eides statt, dass ich die vorliegende Dissertationsschrift selbst verfasst 

und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe. 

I hereby declare, on oath, that I have written the present dissertation by my own and 

have not used other than the acknowledged resources and aids. 

 

 

Kesheng Shu, Hamburg, den 18. Nov. 2014 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I dedicate this thesis to 

my family, my wife Na Yang 

for their constant support and unconditional love. 

I love you all dearly. 
 

 

 

 



I 

 

Abstract 

In the context of climate change and energy crisis, bioenergy, which accounts for the largest 

share of renewable energy in the global energy mix, has drawn considerable attention from an 

increasing number of countries. While its potential to curb greenhouse gas emissions and to 

provide energy has been widely acknowledged, concerns over the side effects of bioenergy 

are still being voiced. In particular, its perceived threats on food security and local ecosystems 

have largely impeded its development, which is best exemplified by the role that bioenergy 

takes in the EU's growth strategy of "Europe 2020". This fact provided the motivation for the 

reflections presented in this thesis on how to realize a sustainable development of the 

bioenergy industry.  

To answer this question, we have selected a coastal province in eastern China as the region in 

which to conduct our study. China is simultaneously the most populated country and the 

largest GHGs emitter in the world. It can, therefore, be expected that the entire international 

community can learn some valuable lessons from the practical experience that China has 

gathered in the field of bioenergy. 

Following a brief outline of the background information on our research in the initial two 

chapters, Chapter 3 frames the structure of the bioenergy industry and clarifies the role of 

each actor. Depending on their relative importance in the industry, these actors can be 

assigned to one of the two categories of stakeholders: central or peripheral. Based on the local 

practice, we present the construction process of the bioenergy industry in China from both the 

supply side and the demand side. This descriptive analysis is intended to help the reader form 

a general understanding of the bioenergy industry in China, on which our subsequent 

quantitative analysis is based. 

Chapter 4 focuses on farmers as one of the central stakeholders that are located at the 

upstream of the bioenergy supply chain. We develop a biomass feedstock provision model 

compiled with GAMS to simulate the responsive behaviors of farmers – the agents in our 

spatial-agent dynamic model – to the challenges arising from emerging energy crops. Using 



 

 

II

this model, we delineate land use changes after the insertion of the bioenergy industry. We 

further fix the sources of the promising biomass feedstock, with the straws of conventional 

crops accounting for 85% of feedstock and energy crops for the remaining 15%. In view of 

the geographical characteristics of the region, the northern part of Jiangsu is recommended to 

accommodate an extensive cultivation of energy crops in the long run. Furthermore, our 

model also confirmed the positive role of reclaimed mudflats as a candidate for the arable 

land resource that is capable of alleviating land use conflicts between conventional crops and 

energy crops. 

In analogy to Chapter 4 focusing on farmers, Chapter 5 concentrates on haulers and bioenergy 

plants operators, which are the other two actors belonging to the category of central 

stakeholders. Based on the data on biomass feedstock provision predicted by the model 

described above, we deliberately calibrate the optimizing model of bioenergy industry 

infrastructure to stimulate their respective performances. As a result we discovered a general 

pattern in the modeled distribution of bioenergy plants: due to the higher transportation cost 

of biomass feedstock than of bioenergy products, bioenergy plants opt to be situated more 

closely to the sources of biomass feedstock than to the consumption centers of bioenergy 

products. In terms of the specific distribution, the model projects that up to 44% of 

biorefineries and 62% of power plants with the largest scale should be located in northern 

Jiangsu. These figures support the government’s decision to turn the area into a production 

basis for bioenergy, as outlined in the official development plan. Additionally, we evaluate 

two proposed policies designed to relieve the pressure of bulky biomass transport on local 

logistic systems and to shorten the regional development disparity among three sub-regions of 

the region studied. 

By combining the above two independent but related models in Chapter 6, we arrive at a 

decision support system for the bioenergy industry. This system takes into account the whole 

bioenergy supply chain. Unlike each of the separate sub-models presented in previous 

chapters, the integrated model adequately depicts the interactions among the upstream and 

downstream of the bioenergy supply chain. Furthermore, it also describes their feedback to 

peripheral stakeholders such as the government, local residents, NGOs and other lobbying 
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groups, which do not form part of the supply chain but influence the general setting for the 

bioenergy industry. Using this model as our analytical tool, we examine two policies aiming 

to promote the bioenergy industry: a comprehensive policy (a favorable taxation) and a 

targeted policy (a financial subsidy). Generally speaking, despite the fact that both supportive 

measures could significantly boost the development of the industry without necessarily 

jeopardizing food security, their effectiveness relies to a great extent on the scale and the 

objectives of these measures taken.  

In the last chapter, we return to our qualitative analysis. This time, however, we widen its 

temporal and spatial scope. First, we construct a conceptual model describing the cascade use 

and recycling of biomass resources. Then we compare the short-term and the long-term 

incentive mechanisms involved. Finally, we apply Porter's diamond model to analyze 

separately all the factors constituting the advantages of the bioenergy industry. We argue that 

an unprecedented opportunity for bioenergy industry development has come. The 

fundamental actors driving the development of the industry are professional bioenergy firms 

boasting clearly defined and well-enforced property rights, good supervision mechanisms, 

advanced technological background and effective management methods. Since the bioenergy 

industry is mostly oriented towards the domestic market, it is likely to become more 

competitive with the formation of an industrial cluster focused on bioenergy or by receiving 

appropriate support from the government. The government's intervention is justified in this 

context by the government’s supervisory duties, legislative duties and its responsibility to 

provide favorable incentives.  

In this study, we have successfully built an integrated model covering all the actors of the 

bioenergy industry and proposed a sustainable development strategy for the industry in China. 

Nevertheless, the study has several limitations that need be overcome before it can be 

extended to other regions. Firstly, due to the lack of high-quality field data of energy crops 

plantations, the uncertainties regarding actual agricultural operations and the resultant 

potential ecological risks cannot be fully reflected in our study. Secondly, only bioethanol and 

biopower have been included in the mathematical model. In view of the wide variety of 

biomass conversion routes, more bioenergy products should be included in future models. 
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Zusammenfassung 

Vor dem Hintergrund des Klimawandels und der Energiekrise hat Bioenergie in einer 

wachsenden Zahl von Ländern in letzter Zeit beträchtliche Aufmerksamkeit gewonnen. Zum 

weltweiten Energiemix trägt sie bereits heute den größten Teil bei. Zwar wird das Potenzial 

von Bioenergie, zu einer Reduktion der Treibhausgasemissionen beizutragen, weithin 

anerkannt; doch werden immer noch Bedenken in Hinblick auf ihre Nebenwirkungen 

geäußert. Insbesondere die befürchteten Gefahren für die Ernährungssicherheit und lokale 

Ökosysteme behindern die Entwicklung der Bioenergie erheblich, was wohl am besten 

anhand der Rolle veranschaulicht werden kann, die der Bioenergie in der 

Entwicklungsstrategie „Europa 2020“ durch die EU zugeschrieben wird. Vor diesem 

Hintergrund behandelt die vorliegende Dissertation die Frage, wie eine nachhaltige 

Entwicklung der Bioenergieindustrie erreicht werden kann. 

Zur Beantwortung dieser Frage wurde eine küstennahe Provinz im Osten Chinas als 

Untersuchungsgebiet ausgewählt.  China ist das bevölkerungsreichste Land und der größte 

Treibhausgasemittent der Welt. Es kann daher davon ausgegangen werden, dass die gesamte 

Völkergemeinschaft einige wertvolle Lehren aus den praktischen Erfahrungen ziehen kann, 

die China auf dem Gebiet der Bioenergie gesammelt hat. 

Im Anschluss an eine kurze Darstellung des Hintergrunds unserer Untersuchung in den ersten 

beiden Kapiteln wird im dritten Kapitel die Struktur der Bioenergiebranche skizziert und die 

Rolle der einzelnen Akteure beschrieben. Abhängig von deren jeweiliger Bedeutung für die 

Branche können diese Akteure als entweder Haupt- oder Nebenakteure klassifiziert werden. 

Ausgehend von der lokalen Praxis stellen wir die Entwicklung der Bioenergiebranche in 

China sowohl auf der Angebots- als auch auf der Nachfrageseite dar. Diese deskriptive 

Analyse soll dem Leser ein Grundverständnis der Bioenergiebranche in China vermitteln, auf 

dem die anschließende quantitative Analyse aufbaut. 

Das vierte Kapitel beschäftigt sich mit den Landwirten, die als zentrale Akteure am Anfang 

der Bioenergie-Wertschöpfungskette stehen. Mit Hilfe von GAMS entwickeln wir ein Modell 
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zur Bereitstellung der Biomasserohstoffe, um das Reaktionsverhalten der Landwirte (den 

Akteuren in unserem dynamischen räumlichen Akteursmodell) auf die Herausforderungen zu 

simulieren, die mit dem Aufkommen der Energiepflanzen verbunden sind. Unter Verwendung 

dieses Modells skizzieren wir die durch die Bioenergiesparte ausgelösten Veränderungen im 

Bereich der Landnutzung. Hierbei legen wir die Anteile für konventionellen Anbau und 

Energiepflanzen an der gesamten landwirtschaftlichen Produktion auf 85% und 15% fest. 

Aufgrund der geographischen Beschaffenheit der Region wird für den nördlichen Teil von 

Jiangsu langfristig eine extensive Bewirtschaftung mit Energiepflanzen empfohlen. Darüber 

hinaus wurde mit Hilfe unseres Modells die positive Rolle urbar gemachten Wattenmeers als 

Ressource einer möglichen Entschärfung von Landnutzungskonflikten zwischen 

konventionellen und Energiepflanzen bestätigt. 

Analog zum Fokus des vierten Kapitels auf Landwirte konzentriert sich das fünfte Kapitel auf 

Spediteure und die Betreiber von Bioenergieanlagen, die beide ebenfalls zu der Gruppe der 

Hauptstakeholder gehören. Ausgehend von den Angaben zur Bioenergie-Versorgungskette, 

die sich aus Simulationen mit dem oben beschriebenen Modell ergeben, justieren wir das 

Optimierungsmodell für die Infrastruktur der Bioenergiebranche im Sinne einer Förderung 

der jeweiligen Leistungen. Als Ergebnis wurde ein allgemeines Muster im Hinblick auf die 

räumliche Verteilung von Bioenergieanlagen beobachtet: Da die Transportkosten von 

Biomasserohstoffe höher sind als die von Bioenergieprodukten, bevorzugt das Modell eine 

Entscheidung für die Platzierung von Bioenergieanlagen nahe bei den Rohstoffquellen 

gegenüber Nähe zu Konsumzentren. Hinsichtlich der genauen räumlichen Verteilung 

errechnet das Modell, dass bis zu 44% der Bioraffinerien und 62% der größten Kraftwerke im 

nördlichen Teil von Jiangsu errichtet werden sollten. Diese Zahlen bekräftigen die 

Entscheidung der Regierung, die Gegend zu einen Standort der Bioenergieproduktion zu 

machen, was auch im offiziellen Entwicklungsplan der Region zu finden ist. Zusätzlich 

werten wir zwei vorgeschlagene Handlungsweisen aus, die zur Reduktion der Auswirkungen 

sperriger Biomassetransporte auf die lokale Logistikinfrastruktur sowie zur Verringerung der 

Entwicklungsunterschiede zwischen drei Gegenden innerhalb der betrachteten Region 

beitragen sollen. 
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Eine Kombination der beiden oben beschriebenen voneinander unabhängigen aber dennoch 

miteinander verwandten Modelle im sechsten Kapitel führt zu einem 

Entscheidungsunterstützungssystem für die Bioenergiebranche. Das System berücksichtigt die 

gesamte Bioenergieversorgungskette. Anders als die in den vorangegangenen Kapiteln 

beschriebenen Untermodelle bildet das integrierte Modell das Zusammenspiel zwischen den 

vorgelagerten und den nachgelagerten Märkten innerhalb der Bioenergiebranche hinreichend 

ab. Darüber hinaus beschreibt es deren Rückkopplung mit den Nebenstakeholdern, zu denen 

die Regierung, Bewohner, NGOs und andere Lobbygruppen gehören. Diese sind nicht Teil 

der Versorgungskette, haben aber einen Einfluss auf die Rahmenbedingungen der 

Bioenergiebranche. Unter Zuhilfenahme unseres Modells als analytisches Instrument 

untersuchen wir zwei Ansätze zur Förderung der Bioenergieindustrie: Eine umfassende 

Politik (günstige Besteuerung) und eine zielgerichtete Politik (finanzielle Förderung). Im 

Allgemeinen hängt die Effektivität beider Ansätze größtenteils vom Ausmaß und von den 

Zielsetzungen der getroffenen Maßnahmen ab. Die Herausforderung besteht darin die 

Förderungsmaßnahmen so auszurichten, dass sie die Branche stärken ohne die  

Nahrungsmittelsicherheit zu gefährden. 

Im letzten Kapitel kehren wir zur qualitativen Analyse zurück. Diesmal weiten wir jedoch 

ihren zeitlichen und räumlichen Rahmen aus. Zunächst entwickeln wir ein konzeptionelles 

Modell, das die Kaskadennutzung und das Recycling von Biomasseressourcen beschreibt. 

Daraufhin vergleichen wir die damit verbundenen kurzfristigen und langfristigen 

Anreizmechanismen. Zum Schluss wenden wir Porters Diamantenmodell an, um all jene 

Faktoren gesondert zu analysieren, die für die Bioenergiebranche Vorteile bedeuten. Wir 

legen dar, dass sich derzeit eine noch nie dagewesene Chance für die Entwicklung der 

Bioenergiebranche bietet. Bei den Hauptakteuren, die die Entwicklung der Branche antreiben, 

handelt es sich um professionelle Bioenergieunternehmen, die über klar definierte und gut 

durchsetzbare Eigentumsrechte, etablierte Kontrollmechanismen, einen fortgeschrittenen 

technologischen Hintergrund und effektive Managementmethoden verfügen. Da die 

Bioenergiebranche vor allem auf den heimischen Markt ausgerichtet ist, wird sie durch die 

Bildung eines Branchenclusters oder durch angemessene Förderung durch die Regierung 
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wahrscheinlich wettbewerbsfähiger. Ein Eingreifen der Regierung ist in diesem 

Zusammenhang durch deren Aufsichtspflicht, deren legislative Aufgaben und deren 

Zuständigkeit, finanzielle Anreize zu schaffen, gerechtfertigt. 

In dieser Studie ist es uns gelungen, ein integriertes Modell zu entwickeln, das alle Akteure 

der Bioenergiebranche umfasst. Wir haben weiterhin eine Strategie zur nachhaltigen 

Entwicklung der Branche in China ausgearbeitet. Dennoch hat die Studie auch einige 

Beschränkungen, die überwunden werden müssen, bevor sie auf andere Regionen übertragen 

werden kann. Zum Einen können die Unsicherheiten hinsichtlich der tatsächlichen 

landwirtschaftlichen Erzeugung und den aus dieser resultierenden Umweltrisiken in dieser 

Studie aus Ermangelung hochwertiger Felddaten im Hinblick auf Energiepflanzenplantagen 

nicht voll und ganz reflektiert werden, zum Anderen wurden in dem mathematischen Modell 

nur Bioethanol und Biostrom berücksichtigt. Angesichts der großen Bandbreite an Wegen der 

Biomasse-Konversion sollten in künftige Modellen weitere Bioenergieprodukte eingebaut 

werden. 
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1 Introduction 

1.1 Research Background 

1.1.1 Climate change and GHGs emission mitigation 

Although a small group of people still insist on their suspicion of the reality of climate change, 

many of the observed changes since mid-19th century have suggested that warming of the 

climate system is unequivocal. The evidence includes the warmed atmosphere and ocean, the 

diminished amounts of snow and ice, the risen sea level and the increased concentrations of 

greenhouse gases (GHGs).  

Natural and anthropogenic substances and processes are believed to be the drivers of climate 

change as they can alter the Earth's energy budget. Radiative forcing (RF) is widely adopted 

to quantify the change in energy fluxes and the largest contribution to total RF is caused by an 

increase in the atmospheric concentration of CO2 since 1750. In the recent years, along with 

more detailed and longer observations and improved climate models as well as a better 

understanding of the climate system and its recent changes, it is extremely likely that human 

influence has been the dominant cause of the observed warming since the mid-20th century. 

In terms of the sources of GHGs, energy production and agriculture, forestry and other 

land-use (AFOLU) are the two leading sectors of GHGs (34% and 24% respectively), and the 

energy sector and transportation dominating the global soaring trend (IPCC, 2013).  

As continued emissions of GHGs will cause further warming and changes in all components 

of the climate system, limiting climate change will require substantial and sustained reduction 

of anthropogenic GHGs emissions. One goal already accepted by the international community 

is to keep the global temperature change in this century caused by anthropogenic GHGs 

emissions less than 2℃ relative to pre-industrial levels. This target, according to the latest 

calculation, is characterized by atmospheric concentrations in 2100 of about 450 ppm CO2eq 

(IPCC, 2014). Actually, the level of anthropogenic emissions is heavily dependent on a group 

of factors, including population, the structure of the economy, income and income distribution, 

policy, patterns of consumption, investment decisions, individual and societal behaviors, the 
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state of technology, availability of energy sources and land-use change. Correspondingly, the 

promising measures to curtail the GHGs emission have to be derived from the reform of these 

factors. Among them, bioenergy, owning the biggest share in total global energy supply from 

renewable energy sources, have attracted much research interest on GHGs emission 

mitigation. Especially, the bioenergy coupled with CCS (carbon dioxide capture and storage), 

so called BECCS technology, features prominently in long-run mitigation scenarios. This new 

technology can not only reduce CO2 emissions by storing carbon in long-term geological 

sinks, but continually sequester CO2 from the air through non-stopped and repetitive 

regeneration of biomass resource feedstock. 

China, as the most populous developing country, has contributed 26% of global CO2 emission 

in 2010, which is on the top of the emission list. Even though we put the trade factor into 

consideration, China still has surpassed the U.S. and ranked the first, emitting 21.9% of the 

total amount. However, if we consider the historical responsibility, that is the accumulation of 

CO2 emissions over time, China's contribution falls down to the second place (about 12%) 

with the U.S. leading others. Moreover, once the per capita emission is examined, China slips 

into the 2nd place, locating after all industrialized countries listed in Annex I of the United 

Nations Framework Convention on Climate Change (UNFCCC) and some developing 

countries (U.S. Energy Information Administration, 2014).  

In order to perform its international obligation for curtailing its CO2 emission and realize 

sustainable development, China has adopted several strategies in recent years to cope with 

climate change. Among these, utilization of bioenergy is one of the most important measures. 

China is globally the third-largest producer and consumer of bioethanol. According to the 

actual situation of utilization in China, the biomass is divided into five types: straw, manure, 

forest and wood biomass byproducts, municipal waste and urban wastewater. The potential 

quantity of all biomass byproduct energy in 2004 was 3 511 Million tons coal equivalent 

(Mtce), and the acquirable quantity was 460 Mtce. Among that, crop residues account for 

38.9%, followed by forest wood (36.1%), dung (22.1%), city rubbish (1.9%) and wastewater 

(1.0%) (Shen et al., 2010). 
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1.1.2 Energy security 

Figure 1-1 Global primary energy consumption 

Along with a thrilling two-digital growth of its GDP between 2000 and 2011, China's appetite 

for raw materials, especially for fossil fuels, has endured an astonishing increase. In 2010, 

China became the largest global energy consumer, accounting for about half of global coal 

consumption and being the world's second-largest oil consumer just behind the U.S. (Figure 

1-1). In its total primary energy consumption in 2011, coal occupied the vast majority (69%), 

nearly four times as much as the second largest source- oil (18%). Following the predominant 

two fossil fuels, hydroelectric sources (6%), natural gas (4%) and nuclear power (nearly 1%) 

ranks the third, fourth and fifth place respectively.  

In light of such energy consumption structure and its limited energy production capability, it 

is evident that China's domestic energy production growth cannot keep pace with its energy 

demand growth. This judgement implies that a continuous rise of China’s dependency on 

abroad resources, such as crude oil, is unsustainable. In 2009, China was the second-largest 

net oil importer in the world and is projected to surpass the U.S., becoming the top in 2014 

(U.S. Energy Information Administration, 2014). High reliance on oil imports has, on the one 



 

 

4

hand, consumed China's large amount of diplomatic resources; on the other hand, even 

dragged China into territorial disputes with its neighbors. With the aim of strengthening the 

state energy security, shifting from traditional fossil fuels to renewable energies could be one 

feasible and effective solution. Bioenergy, as an indispensable component of renewable 

energy, deserves high attention. 

1.1.3 Development strategy of renewable energy and the prospect of bioenergy 

In China, the early laws for encouraging the development of renewable energy can be traced 

back to 1995. These laws include "Electricity law of the People's Republic of China 

(P.R.C.)"(1995), "Energy conservation law of P.R.C" (1997) and "Air Pollution Prevention 

law of P.R.C" (2000) (Peidong et al., 2009). Until 2005, the first specific legislation of 

renewable energy, "Renewable Energy Law of P.R.C" has been published. In 2007, China 

issued the "Long-term National Economic and Social Development Strategy", which set the 

contribution of renewable energy to 2020's primary energy consumption to 15% (China 

National Development and Reform Commission 2007). 

Furthermore, considering its booming and promising prospect, the Chinese government has 

issued a specialized development plan exclusively for the bioenergy industry across its 12th 

five-year period (2011-2015). In "The 12th Five-year Development Plan of Bioenergy", the 

main utilization directions of biomass and the corresponding bioenergy products are selected 

and confirmed. Meanwhile, the development goal for each bio-product has also been listed 

out (Table 1.1). Once this goal is achieved, 33 million tons of CO2 and 2.4 million tons of SO2 

can be curtailed compared to the current energy utilization structure (Zhuang et al., 2010). 

1.1.4 The existing problems of bioenergy utilization 

Although China has achieved many accomplishments in biomass development so far, some 

problems still exist. For example, the conflict of land, water, labor and capital between 

bioenergy crops and food crops is one of the largest obstacles (Schneider and McCarl, 2003). 

Besides the common barriers, the site-specific natural, social and economic factors have 

deeply separated China from most of other countries in reference to bioenergy. Firstly, the 

stress of biomass feedstock supply is much tenser in China than in most other countries. As 

China uses only 7% of the global arable land to feed 22% of the world’s population, securing  
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Table 1-1 The planned development goal of main bioenergy products 

Bio-products and their sources 
Utilization scale Annual output 

Coal 
equivalent 

Amount Unit Amount Unit 106 t/year 

1. Power Generation 13 106KW  

106KW  

106KW  

106KW  

78 109kwh 

109kwh 

109kwh 

109kwh 

24.3 

Agriculture and forestry  8 48 15 

Biogas  2 12 3.7 

Municipal waste 3 18 5.6 

2. Biogas   22 109m3 17.5 

Household 50 106households19 109m3 15 

Large scale agricultural residues 6000 terminals 2.5 109m3 2 

Industrial organic wastewater and 
sewage treatment plant sludge 1000 terminals 0.5 109m3 0.5 

3. Biomass Solid Fuel 10 106t   5 

4. Biomass Liquid Fuel 5 106t   5 

Fuel ethanol 4    3.5 

Biodiesel and aviation fuel 1    1.5 

Total     51.8 

 (Data source: "The 12th Five-year Development Plan of Bioenergy") 

 

food supply is an utmost important issue. In this context, the competition for limited 

agricultural resources between bioenergy crops and traditional crops may perform strongly. 

Secondly, scattered peasant farmers in China are not ideal for energy crop's introduction as it 

needs large-scale commercial plantation. Besides that, the hardly convened power of farmers 

hinders the balance of market power between the biomass supplier and consumer. Thirdly, 

although non-legal binding development plans have been published, the development 

mechanism of biomass is unsound due to the scarcity of tailored policy incentives. For 

example, the special capital subsidies, low VAT rate, low duty rates on biomass equipment or 

parts and fair pricing mechanism for biomass power generation are abstained (Shen, Liu, 

2010).  

In order to maximize its positive roles in combating climate change and promoting state 
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energy security while decreasing its negative side-effects on society and environment, 

conducting a research on the bioenergy industry construction in China is necessary and 

meaningful.  

 

1.2 Objective and research questions 

No matter comparing from the sources, conversion pathways or utilization directions, the 

bioenergy industry is always the most complicated energy transition system among the 

portfolio of renewable energies. As it is relevant to many actors in the human-earth system, 

this research is destined to be a comprehensive and cross-disciplinary one.  

In general, this project is aiming to design a tailored sustainable development approach for the 

bioenergy industry in China. Following the whole life cycle of bioenergy, this research seeks 

to combine the existing principles, criteria and requirements of the International Sustainability 

and Carbon Certification (ISCC) system with the local situation of China. Through the 

integration of qualitative and quantitative analysis, that is, setting up both a conceptual and a 

computational model, this project is devoted to optimizing the distribution of biomass 

feedstock and bioenergy infrastructure. Furthermore, it will propose innovative measures and 

streamlined strategies for regional governance towards each sector of bioenergy supply chain, 

which meet the requirements of technical feasibility, economic viability, environmental 

sustainability and societal acceptability. 

Such research objective entails the following specific research questions which the thesis 

attempts to discuss: 

 What are the interactions of bioenergy to the actors of the human-earth system? 

 What does the structure of the bioenergy industry in China look like? 

 How to manage bioenergy supply chain? 

 Is it preferable to introduce energy crops? If yes, which kinds of energy crops are suitable 

for introducing?  

 What are the optimal land use patterns under different biomass demand levels? 
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 Can mudflats play a positive role in alleviating land use conflict between energy crops 

and conventional crops? 

 Following an optimal biomass feedstock distribution, how to arrange the bioenergy 

infrastructure and the related transportation network? 

 How to envision the utilization methods of biomass feedstock in the future? 

Biomass-based power plant and biorefinery, which is more suitable for China? 

 Is biomass pretreatment process worth introducing to China? 

 What does a bioenergy industry decision support system look like?  

 Can the initiative of combating climate change play a big role in promoting bioenergy 

industry? 

 

1.3 Thesis framework 

In order to achieve the above goal and answer such questions, our research will follow the 

below technical route (Figure 1-2): 

Along with the presented technical route, this research includes four steps: 

 

1. Clarifying the components of the bioenergy industry retrieved from local practice in 

the Jiangsu province and shaping the conceptual framework of the industry.  

On the basis of understanding the status of bioenergy in the human-earth system composed of 

natural resources, human needs, societal stability and climate change, this research starts from 

scrutinizing the bioenergy development practice in our study area, the Jiangsu province. In 

accordance with the whole life cycle of bioenergy utilization combined with Jiangsu's 

experience, we delineate a conceptual framework of bioenergy industry for China and discuss 

the biomass feedstock supply management. This part qualitatively presents us a complete 

picture of how should bioenergy industry in China look like. 
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Figure 1-2 The technical route of the research 

 

2. Constructing a spatial-agent dynamic model of optimized agricultural land use to 

simulate the distribution of biomass feedstock sources in the Jiangsu province 

Out of its excellent performance on complex and large scale modeling applications, we 

choose GAMS software to set up a non-linear spatial-agent dynamic model. This model is 

designed to present an optimal temporal and spatial distribution of biomass feedstock by 

simulating each agent's decision making on limited agricultural resources allocation among 

candidate crops across a period of twenty years. Besides of showing the optimal land use 

pattern, this model can also be applied to observe the land use change under different biomass 

demand scenarios. 
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3. Developing the optimized model of bioenergy industry infrastructure to allocate the 

bioenergy plants and design the correspondent transportation system 

Following the above model, another optimization model of bioenergy industry infrastructure 

will be constructed. This model is to determine the optimal locations and capacities of two 

types of bioenergy plants (biomass-based power plants and biorefineries), and the 

correspondent delivery system of biomass feedstock, bioenergy products and byproducts 

transportation. The model is fairly helpful in allocating efficient and cost-effective bioenergy 

industry infrastructures which will bring a profound influence on the revival of rural areas in 

China. 

 

4. Building a decision support system for the bioenergy industry to analyze policy effects 

quantitatively 

By the integration of above two mathematical sub-models, a decision support system 

describing all sections of supply chain of the bioenergy industry in China will finally be built. 

Running on this simulation system, conducting a quantitative assessment of policy effects 

becomes possible. In this research, we will explore two policies, the targeted governmental 

subsidies and universal carbon tax. 

 

5. Proposing a sustainable development strategy of the bioenergy industry 

Combined with all the findings in the previous steps, the conclusion part of the study 

discusses the comprehensive strategy of the bioenergy industry sustainable development. We 

will first propose the concept of cascade use and recycling of biomass resources, and then 

explore the relations of the incentive mechanism in the short and the long term. In the end, 

Porter's diamond model is applied to analyze the bioenergy industry’s strength, weakness, 

opportunity and threats, which forms the competitiveness of the industry.  
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1.4 Research methods 

This research is conducted across several disciplines, such as Geographic Information 

Systems (GIS), agricultural economics, industrial economics, human geography and 

operations research. By combining field research and indoor analysis, our study emphasizes 

both theoretical and practical issues. It is a mixture of qualitative and quantitative 

measurement and a combination of spatial and temporal dimensions. Specifically, the research 

methods entail: 

 

1. Agent-based model 

An agent-based model (ABM) is a class of computational models for simulating the actions 

and interactions of autonomous agents (either individual or collective entities, such as 

organizations or groups) with a view to assessing their effects on the system as a whole. This 

research depicts each county as an agent and observes its behavior. It is assumed that, all the 

farmers (in the optimized model of agricultural land use) and all the bioenergy plants (in the 

optimized model of bioenergy industry infrastructure) in one county are assembled as one 

agent.  

 

2. System dynamics 

System dynamics (SD) is an approach to understanding the performance of complex systems 

over time. It deals with internal feedback loops and time delays that affect the behavior of the 

entire system. This method applied to our research is to examine the change of land use and 

the distribution of bioenergy plants over a timeframe of twenty years. 

 

3. Life cycle assessment 

Life-cycle assessment (LCA) is a technique to assess environmental impacts associated with 

all the stages of a product's life from-cradle-to-grave (i.e. from raw material extraction 

through materials processing, manufacture, distribution, use, repair and maintenance, to 

disposal or recycling). Our study applies the concept of "life from cradle to grave" to our 
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bioenergy industry structure analysis and sorts out all the stakeholders in the whole process of 

biomass utilization for energy purpose.  

 

4. Time series forecasting 

Time series forecasting is a group of techniques of trend extrapolation based on the 

assumption that "the best estimate for tomorrow is the continuation of yesterday’s trend". 

Among those, regression analysis is commonly used. This thesis is using such a technique to 

generate values of some parameters.  

 

1.5 Research innovative points 

Based on all the accessible literature, this project is, so far, the first ever study to apply GAMS 

to create a decision support system for the bioenergy industry development in China.  

Unlike most existing quantitative researches on bioenergy, which mimic only parts of the 

industry, this project covers the whole manufacturing flow of bioenergy products. It 

particularly examines the interactions of farmers and bioenergy plants operators on the 

biomass feedstock market. 

The simulation results fill the knowledge gap between theoretical analysis on the role of the 

bioenergy industry in the context of climate change and the local practices in the Jiangsu 

province. This progress lays a foundation of understanding the status of bioenergy in the 

complex human-earth system.  

Besides that, the framework of the simulation platform can also be extended to include more 

natural resources, which offer policymakers a powerful analysis tool for assisting the natural 

resources management.   
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2 Literature review 

2.1 The global biomass potential 

The supply of sustainable energy is one of the main challenges that we have to face over the 

coming decades, particularly because of the need to address climate change. Biomass, the 

carrier of bioenergy, can make a substantial contribution to supplying future energy demand in 

a sustainable way. In the past, bioenergy has been utilized in the form of heat for a quite long 

time in human history. Nowadays, thanks to the development of biomass conversion 

technology, its form has expanded to electricity and fuels for transportation. So far, it is the 

largest contributor of the global renewable energy supply (International Energy Agency, 

2010).   

At present, forestry, agricultural and municipal residues, as well as wastes are the main 

feedstocks for biomass-based electricity and heat generation. In addition, a very small share of 

sugar, grain, and vegetable oil crops are used as feedstocks for the production of liquid 

biofuels. As to the assessment of global bioenergy potential, various researchers have 

contributed efforts in this field. The earliest specialized biomass potential assessment can be 

traced back to 1993. Hall et al. (1993) described the potential of biomass based on the 

principle physical and chemical properties of biomass and the fundamental of photosynthesis. 

Following that, Yamamoto et al. (1999) had used a SD technique to develop a global land-use 

and energy model (GLUE) and considered the competition of land use among the bioenergy, 

food and materials and energy source constraints. Based on the model results, they speculated 

that in 2100, the ultimate bioenergy potential will reach 277EJ/yr, which promisingly comes 

from energy crops harvested on surplus arable lands and biomass residues, such as 

cereal-harvesting residues, animal dung, roundwood felling residues, and timber scrap. 

Furthermore, Fischer and Schrattenholzer (2001) made a similar assessment by linking the 

potentials with scenarios of agriculture production and land use in the global energy scenario 

with high economic growth and low GHGs emissions. They estimated that bioenergy would 

supply 15% of global primary energy by 2050. In 2003, Berndesa et al. (2003) analyzed the 
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contribution of biomass to the future global energy supply reviewed from 17 papers including 

the aforementioned ones. Through the review, the authors found out that the projected scale of 

biomass utilization for energy purpose in 2050 would vary from below 100 EJ/yr to above 

400 EJ/yr. They believed the reason of the big difference was large uncertainties of three 

crucial parameters, land availability and yield levels in energy crop production as well as the 

substantial variation of the future availability of forest wood and of residues from agriculture 

and forestry. In order to cluster the reviewed papers, they classified these 17 studies into either 

demand-driven or resource-focused types. This classification, to some extent, has reflected the 

two opposite initiatives, considering either from demand side or supply side, of the 

assessment of bioenergy potential. Following that, Dornburg et al. (2010) revisited the key 

factors that may influence the potential. They argued water availability, biodiversity, food 

demand, energy demand and agricultural commodity markets were the interrelated factors. 

Moreover, they made a sensitivity analysis of the available information to narrow down the 

range of biomass potentials from 0-1500 EJ/yr to approximately 200-500 EJ/yr in 2050. A 

year later, Offermann et al. (2011) borrowed the definition of biomass potential (there are four 

levels: theoretical potential, geographical potential, technical potential and economic potential) 

from Smeets and Faaij (2007) and concluded that bioenergy would not have the potential to 

become the major part of the global primary energy supply in the future, although the definite 

size of the potential was unclear and estimates were widely varied. 

Biomass feedstock in China generally comes from the residue from agriculture and forestry 

processing, covering solid residue, the concentrated organic waste water from the agriculture 

products processing, crop straw and stalk, human and animal excrement, and urban residential 

refuse. Although China is in the transition from a traditional agricultural-based society to a 

modernized industrial-based society, the population residing in rural areas is partly relying on 

biomass, especially for the residents in remote rural areas. Li et al. (1998) investigated the 

biomass potential in China systematically and specifically. They adopted the “bottom-up” 

method to assess the amount and analyze the availability for energy purpose of biomass from 

the source of straw and stalk, excrement, municipal solid waste, forest and wood residues 

respectively. In addition, they further set up the first biomass resource database system in 

China to provide data support for later coming researchers and decision makers. Later, Li et al. 
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(2005) basically followed the same line and further classified the forest and wood residues in 

two sub-categories: the ones from efficiency improvement and the others from substitution by 

other fuels. In addition, they also took waste water and black liquor into consideration. 

Different from above two studies, Elmore et al. (2008) applied a completely different method. 

Taking agricultural residue from rice as an example, they tactically used nationwide data sets 

of net primary production (NPP) to calculate the spatial distribution of rice straw in China for 

the period 2000-2004. Through a comparison with the results from local investigations, it 

proved that remote measures of rice straw yield could reasonably replace field investigations 

on the provincial scale. Along with this way, Jiang et al. (2012a) brought this GIS-based 

approach a step forward. They took a number of conservation issues, including resources 

(total amount, spatial and temporal distribution), economy (transportation costs), environment, 

and technology, into consideration. This approach makes the assessment process to be more 

realistic and reliable.  

 

2.2 Energy crop plantation 

Out of the concern over food security, the claims for upgrading the biofuel production 

technology from 1st generation to 2nd generation have gained in popularity. Therefore, many 

countries started to consider the plantation of dedicated energy crops on marginal lands for 

biomass supply. 

As early as in 1930s, switchgrass had firstly come into view on Lincoln, NE, USA. In 1990, 

its role on offering bioenergy was reaffirmed there. Recently, the US energy department had 

identified switchgrass as a viable perennial herbaceous feedstock for cellulosic ethanol 

production (Mitchell et al., 2008). Besides, Walsh et al. (2003) also confirmed another two 

promising bioenergy crops, hybrid popular and willow, in a modified agricultural sector 

model (POLYSYS). They set up two scenarios of farm-gate price of biomass, respectively at 

US$2.44/GJ and US$ 1.83/GJ, and found that a higher farm-gate price intended to encourage 

the adoption of management practice for higher productivity on Conservation Reserve 

Program lands. Not only in the U.S., in India Rashmi et al. (2009) had considered kansgrass, a 
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variety of switchgrass, and proposed that instead of planting cereal crops, cultivating energy 

crops for bioenergy production and exporting the energy may be more beneficial to the 

country. In Argentina, van Dam et al. (2009) argued that it was difficult to draw a general 

conclusion whether or not switchgrass was sustainable for one region, because the answer 

heavily depended on the locally applied agricultural management system. Besides of 

switchgrass, reed canary grass and miscanthus sinensis are also among the candidate energy 

crops (Lazdina et al., 2007, Stewart et al., 2009). 

Considering China's large population and the incurred food supply pressure, diversifying the 

sources of biomass feedstock is of full practical significance for this country. With respect to 

the candidate sources, Huang (2005) selected sugarcane, cassava and sweet potato as the 

crops suitable for his suggested biofuel production projects in southern China. Different from 

Huang’s study, Shao and Chu (2008) studied oil-based plants for biodiesel. They selected 10 

species out of 1 554 species in China, among which 154 species have oil rich seeds with more 

than 40% oil content and 30 species have rich biofuel content. In 2010, Li et al. (2010) 

recommended another five species, Salix, Hippophae, Tamarix, Caragana and Prunus, as 

dedicated energy crops in China. Tian et al. (2009) estimated that by 2020, the production 

capacity of bioethanol in China will climb up to 22 million tons should reserved land 

resources be explored and yield per unit area be improved. 

 

2.3 The role of bioenergy in the human- resource- environment system 

As the carrier of bioenergy, biomass is utilized in different forms to meet diverse human 

demands, such as the need for food, feed, industrial raw material or energy. This renewable 

energy helps to keep societal stability and alleviate climate change by partly replacing the use 

of fossil fuels. Conversely, these factors can also promote or hamper the development of 

bioenergy. The interactions between these actors and bioenergy are part of the human-earth 

system in which bioenergy stands at the central stage (Figure 2-1). Given above 

understanding, we will focus on the economic, social and environmental opportunities and 

challenges of bioenergy development as well as the benefits and negative side effects in such 
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applications. The research of this part can offer a general image of bioenergy in the whole 

human- resource- environment system and clarify the key points worthy of further research. 

 

 

 

 

 

 

Figure 2-1 Integrated assessment framework with causal links between climate change, 
natural resources, human needs and societal stability, with possible strategies from the 

perspective of bioenergy (Adapted from Scheffran & Schilling, 2009) 

 

2.3.1 GHG emissions mitigation 

Many studies hold a view that the use of bioenergy has zero net carbon emissions since the 

emissions released in its utilization for energy are subsequently captured in biomass regrowth. 

Therefore, using the “carbon-neutral” energy to replace petroleum in the transportation sector 

and coal in electricity generation can reduce the emission amount of CO2 to the atmosphere. 

In order to accurately assess bioenergy’s substantial potential in GHGs mitigation, the 

International Energy Agency (IEA) proposed Task 38 titled “GHGs balances of biomass and 

bioenergy systems”. This project brings together the 12 participating countries’ national 

programs on GHGs balances for a wide range of biomass systems, bioenergy technologies 

and terrestrial carbon sequestration. With the perception that bioenergy industry can be 

regarded as an independent counterpart to the existing agriculture system and the fossil fuel 

energy system, these studies evaluated the potential of CO2 emission mitigation by comparing 

the bioenergy system with either afforestation or fossil fuel energy system (Table 2-1). Even 

though the research in one group uses the same referencing system, their assessment results 
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are quite different, even in some cases are exclusive to each other. In our view, the 

discrepancies arise from the inconsistent definitions of research boundary and the diverse 

geographic features in different research regions. 

 

Table 2-1 Review of selected research papers on the evaluation of the role of bioenergy 
in GHG emissions mitigation 

Selected paper Methodology Results 

Research field Ⅰ: Bioenergy system versus Afforestation   
Hall and House, 
1993 

Literature review The substitution of bioenergy to 
fossil fuels could be far more 
effective. 

Schlamadinger and 
Marland, 1996 

Graz/Oak Ridge Carbon 
Accounting Model 

Strongly depends on the productivity 
of land, the current land use pattern, 
and the efficiency of the applied 
harvest method. 

Sims, 1999 Case study in New Zealand Afforestation, at the best, can only 
be a short-term measure. 

Hedenus and Azar, 
2009 

A linear optimization model 
that links the energy system, 
an afforestation sector and the 
pulp and timber market. 

Long-rotation forests for the purpose 
of carbon sequestration will not be 
cost-effective in the long run under a 
stringent climate policy. 

Rootzen et al., 2010 PRO-COMAP model In the short term perspective 
(meaning 30 years), the mitigation 
potential of long-rotation plantation 
is desirable. The bioenergy is, 
however, preferred if a long-term 
view is taken. 

Alig et al., 2010 Forest and Agriculture Sector 
Optimization Model- 
Greenhouse gases model 

Receipt of carbon-related payments 
by landowners in forestry and 
agriculture can have substantial 
impacts 

Research field Ⅱ: Bioenergy system versus Referencing fossil fuel energy system 
Schlamadinger et al., 
1997 

A standard methodology, 
emphasis on system 
boundaries definition 

Site-specific 

Jungmeier et al., 
1999 

LCA In general, the greenhouse gas 
emissions of bioenergy systems are 
lower compared to the fossil 
systems. 
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Cherubini, 2009 Standard LCA conform to ISO 
14040 norms 

Site-specific 

Research field Ⅲ: Intrinsic components of bioenergy system  
Ⅰ: Energy system 
versus multi-product 
crop system: 
Dornburg et al., 2005 

Monte-Carlo analysis Multi-product crops are not granted 
for an option to increase the 
performance of bioenergy systems 

Ⅱ: The scale of 
bioenergy system: 
Dornburg et al., 2007 

A methodology combined a 
bottom-up analysis of biomass 
applications, biomass cost 
supply curves and market 
prices of land, biomaterials 
and bioenergy carriers 

GHGs emission mitigation costs 
increase strongly along with the 
scale of biomass production. 

Ⅲ: Biomass carbon 
cycle: Cherubini et 
al., 2009 

LCA  Site-specific 

Ⅳ: Comparison of 
four candidate 
bioenergy crops: 
Hillier et al., 2009 

LCA  Miscanthus and Short Rotation of 
Coppice (SRC) are likely to have a 
mostly beneficial impact on 
curtailing GHGs emissions, while 
oilseed rape and winter wheat have 
either a net GHGs cost or only a 
marginal benefit. 

 

Besides CO2 emission reduction, some researches discussed other issues: Bouwman et al. 

(2010) concentrated on the nitrogen rather than the carbon cycle in the simulation of biofuel 

production from energy crops. They estimated that annual production would require an 

additional 19 Tg of N fertilizer by 2050, causing a global emission of 0.7 Tg of N2O-N, 0.2 

Tg NO-N, and 2.2 Tg of NH3-N. Bohin (1998), Yu and Peng (2007) introduced the carbon tax 

in their research. Laurijssen and Faaij (2009) and Pasicko et al. (2009) considered the 

possibility of certified carbon emission trade on the global level. 

 

2.3.2 Other environmental issues 

Besides GHG emissions mitigation, much literature also focuses on other environmental 

issues. For example, the role of energy crops on soil remedy has been examined. Koffa (1991) 

emphasized that the introduction of certain kinds of hydrocarbon- and oil-based plant species 

can remedy more than 5 million ha of degraded soils in the Philippines. Similarly, 
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Chiaramonti et al. (1998) introduced a so-called “DESERESCUE” project, which considers 

the biomass as a source of both bioenergy and water. They argued that the latter value would 

be welcomed by many coastal areas of the Mediterranean countries, as well as by other 

countries sharing the similar situations.  

Besides that, soil fertility is also a hot topic. Annex et al. (2007) demonstrated that the 

emerging markets for bioenergy from cereal crops were creating a time window for the 

redesign of conventional agricultural system. The eco-friendly and efficient agricultural 

system of a closed nutrient cycle was envisioned to reduce the energy cost and economic cost 

of fertilizers and pesticides simultaneously. In particular, he took switchgrass (Panicum 

virgatum L.) as an example and predicted that such crop could curtail 78% of required 

N-fertilizer. However, Huggins et al.  (2011) doubted that the removal of crop residue from 

land would substantially decrease the soil organic matter (SOM) which, in turn, could 

negatively affect the sustainability of agriculture in the long term.  

Along with that, a group of researchers have concerns about the change of landscape and 

biodiversity led by the introduction of energy corps. They believe that the cultivation of 

energy crops can impact biodiversity both positively and negatively depending on the scales. 

For example, positive effects of enhanced bio-control services on biodiversity can be 

observed at the field level, but the extent of such impacts heavily depends on the management, 

age, size and heterogeneity of the crops. On a regional scale, significant uncertainties exist, 

and there is a major concern that extensive commercial production could have adverse effects 

on biodiversity, particularly in areas of high nature conservation value. However, the 

integration of energy crops into traditional agricultural system could help stimulate the 

restoration of degraded land and improve biodiversity values (Dauber et al., 2010, Firbank, 

2008, Hennenberg et al., 2010, Landis et al., 2008). Additionally, energy crop’s positive role 

on biotic intrusion prevention and negative influence on the shrinking habitat for wildlife 

cannot be neglected (Fargione et al., 2009, Witt, 2010).  

In addition, land use change, even land use conflict in densely populated nations, has drawn 

increasing attentions. The introduction of energy crops will, to some extent, occupy the 

original arable lands for conventional crops. Therefore, the traditional land use pattern faces 
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new challenges, such as food price fluctuation, global warming pollution, deforestation, 

nutrient runoff, water use and other relevant environmental impacts. One possible way to 

avoid such problems is to plant energy crops on marginal lands, i.e. the areas poorly suited to 

conventional crops owing to either low soil fertility or food safety reasons (Ceotto and 

Candilo, 2011, Dale et al., 2010, Martin and Hopson, 2008). 

 

2.3.3 Socio-economic issues  

In addition, bioenergy can also prompt the economical and social improvement at the cost of 

the associated challenges.  

Many studies support the views that each section of life cycle of bioenergy, from biomass 

feedstock production, transportation, conversion to bioenergy products and byproducts 

distribution, can generate significant benefits for rural economy and communities. Thornley et 

al. (2008) conducted a quantitative estimation of the employment of biomass power plants. 

Domac et al. (2002) (2005) further classified the employment created by bioenergy plants into 

three kinds:  

·Direct employment, resulting from bioenergy plants operation, construction and bioenergy 

products output;  

·Indirect employment, resulting from all activities connected, but not directly related, like 

supporting industries, services and similar;  

·Induced employment, which describes the effects including the higher purchasing power, 

which is induced by increased earnings from direct and indirect jobs, may also create 

opportunities for new secondary jobs, which could attract people to stay or even to move in.  

Plieninger (Plieninger et al., 2006) conducted his study in Germany and concluded the 

conditions for a successful production of biomass feedstock. These conditions include 

economic factors, the forms of public incentive tools, the compatibility with farmers' cultural 

patterns and psychological aspects. Additionally, they compared small- and large-scale 

bioenergy plants and claimed the former led to a more comprehensive creation of added value 

in agriculture and rural areas than the latter. 
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On the other hand, some researchers have concentrated on a regional scale and explored the 

role of bioenergy in promoting regional development. Elbakidze et al. (2007) took Murmansk 

in northwest Russia as a case to apply Model Forest (MF) in a bid to achieve regional 

sustainable development which based on forest goods, ecosystem service and values. 

Perez-Verdin et al. (2008) held a similar viewpoint. He analyzed the economic impacts of 

woody biomass utilization for bioenergy in Mississippi, US in terms of gross output, 

value-added and also employment. Additionally, Gan and Yu (2008) argued that there was a 

considerable potential in developing and disseminating household-based technologies, for 

example the energy-efficient modern biomass stoves, in rural areas of China. This small-scale 

and scattered way of utilization was believed to produce far more economic, social and 

environmental benefits than centralized biomass-based power plants. Sharing the same 

opinion as Gan's of opposing centralized bioenergy usage, Wang (2008) advocated biogas 

production. He recommend that combined with solar energy and wind energy, the biogas 

generated by biomass fermentation can basically meet the energy demand in rural and, 

moreover, biogas can help build a circular economy. By taking local geographic features into 

consideration, biogas can be used in Tibet, China.  

Although the majority of researchers have valued the benefits of bioenergy in regional 

development, there are still some scientists holding a critical opinion. Kuchler (2010), for 

example, critically reviewed how energy security-, food and agriculture-, and climate 

change-oriented international organizations frame bioenergy production in developing 

countries, e.g. bioethanol production in Brazil. He pointed out that the way in which these 

global institutions framed bioenergy's role in developing regions had already sufficiently 

manifested the inequalities in energy supply and environment protection between the "core" 

and "periphery" countries, and created internal contradictions that perpetuated unequal 

exchanges embedded in the system.  

 

2.3.4 Sustainable standards and certification schemes for bioenergy 

Out of the concerns over potential side effects of large-scale bioenergy production projects, 

sustainability criteria and certification systems are proposed by some literature so as to 
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guarantee the bioenergy use in sustainable pathways and to “maximize the use of potentials 

while minimizing risks” (WBGU, 2009).  

In a study of the certification system for international biomass trade, Lewandowski and Faaij 

(2006) listed more than 100 social, economic, ecological and general criteria deliberately 

selected from existing certification systems, sets of sustainability criteria or guidelines on 

environmental or social sound management of resources. Markevicius et al. (2010) , on the 

other hand, reviewed the sustainability criteria of the production and use of liquid biofuels. In 

his research, 35 criteria were framed in an emerging sustainability assessment framework. 

Among those, 12 criteria focus on environmental issues, 4 are social related and 1 is about 

economy. In general, energy balance and GHGs balance were perceived as especially critical, 

whereas food security ranked comparatively low. In the same research field, Buchholz et al. 

(2009) did a literature review and drew a similar conclusion: Only two criteria, energy 

balance and GHGs balance, were perceived as critical. Social criteria and site-specific criteria 

were ranked low in all attributes. 

So far there are already many initiatives to this certification scheme written down on paper. 

The first legally binding certification system for sustainable biomass and bioenergy is the 

"International Sustainability and Carbon Certification (ISCC)". Established under the 

framework of a German Law "Biokraftstoff-Nachhaltigkeitsverordnung" and supported by 

German Federal Ministry of Food, Agriculture and Consumer Protection via the Agency for 

Renewable Resources (FNR), ISCC was approved in 2010 by German Federal Institute for 

Agriculture and Food (Bundesanstalt für Landwirtschaft und Ernährung, BLE). The system is 

operational, though still under development. ISCC describes the rules and procedures for 

certification that are issued by the approved Certification Bodies with the ISCC Label (Seal)1. 

The objectives of the ISCC are the establishment of an internationally oriented, practical and 

transparent system for the certification of biomass and bioenergy, allowing a differentiation of 

sustainable from non-sustainable products at different stages of the value chain. Regarding the 

key issues (reduction of GHGs emissions; sustainable land use; protection of natural 

                                                              
1 The following introduction of ISCC system is cited from Scheffran J., 2010. Criteria for a Sustainable 

Bioenergy Infrastructure and Lifecycle, in: Mascia P.N., Scheffran J.(Eds.), Plant Biotechnology for 

Sustainable Production of Energy and Co-Products. Springer, Heidelberg, pp. 409- 47. 
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biospheres; social sustainability), six principles are defined, specified by their respective 

criteria (see Appendix I). These are categorized as “major musts” (M1 in the table) and 

“minor musts” (M2 in the table), where, for a successful audit, all major musts and 80% of the 

minor musts have to be complied with. 

ISCC initially is about a central-organized certification system where the standards are meant 

to be international and valid in all countries and regions that are part of the value added chain. 

As needed, a national or regional initiative can adapt the ISCC standards to local conditions. 

 

2.4 Some comments on the literature review 

Since bioenergy has been seen as a fairly feasible and effective solution to both GHGs 

emission mitigation and global energy security, the coverage of the concept of bioenergy has 

evolved a lot from its original definition. The development of modern biomass conversion 

technology offers an opportunity to diversify the pathways of biomass utilization, meaning the 

way not only limited to fuel wood for cooking. Partly due to this reason, a consensus on the 

calculation of biomass potential does hardly exist, although much effort has been pouring on 

it. In addition, this estimation would appear more complex, should the introduction of energy 

crops and site-specific geographic features be taken into consideration. Among numerous 

models for biomass potential calculation, it is too arbitrary to judge which method is the best 

as each model has its particular application field and corresponding conditions. However, at 

least, it is confident to say that the models involving local situations are more precise than 

general ones. Thus, it is meaningful to set up a localized mathematical model for simulating 

the bioenergy industry in China following a generalized analysis framework.  

Besides that, the role of bioenergy in the complex human-earth system has also been explored 

by a number of studies. Particularly, the benefits and costs bioenergy projects can bring to the 

regional economy, society and environment have been in-depth reviewed. Among those, 

energy balance and GHGs balance are repeatedly discussed. Concluded from the experiences 

gained in advanced countries in terms of bioenergy development, the publication of ISCC 

certification system is a cornerstone on the way to a sustainable bioenergy industry. Following 
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the spirit of the system, we need to construct a technically feasible, economically viable, 

environmentally sustainable and socially acceptable bioenergy industry for China. To achieve 

this goal, it is necessary to set up a mathematical model and apply this model to quantitatively 

analyze the distribution of biomass feedstock and bioenergy infrastructure, which lays a 

foundation for proposing innovative measures and streamlined strategies for the stakeholders 

of the bioenergy industry.
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Appendix I Principles, criteria and requirements of the International 

Sustainability and Carbon Certification (ISCC) system 

Principles and 
types of criteria 

Criterion M1 M2

PRINCIPLE 1: Biomass shall not be produced on land with high biodiversity value or 
high carbon stock. HCV areas shall be protected 
 Biomass is not produced on land with high biodiversity value. X  
 Biomass is not produced on highly biodiverse grassland. X  
 Biomass is not produced on land with high carbon stock. X  
 Biomass is not produced on land that was peatland in January 

2008 or thereafter. 
X  

 If land was converted after January 1, 2008, the conversion 
and the use should not run contrary to principle 1. 

X  

 All other production areas of the farm/ plantation comply with 
the ISCC Principle 1. 

X  

PRINCIPLE 2: Biomass shall be produced in an environmentally responsible way. This 
includes the protection of soil, water and air and the application of Good Agricultural 
Practices 

Environmental 
impact 
assessment and 
stakeholder 
consultation 

Environmental aspects are considered if planning buildings, 
drainage etc. 

X  

Natural water 
courses 

Natural vegetation areas around springs and natural 
watercourses are maintained or re-established. 

 X 

 
 
 
 
Soil 
conservation 
and avoidance of 
soil erosion 

Good agricultural practices must be applied with respect to: 
Prevention and control of erosion, maintaining and improving 
soil nutrient balance, soil organic matter, soil pH, soil 
structure, soil biodiversity and prevention of salinisation. A 
soil management plan aimed at sustainable soil management, 
erosion prevention and erosion control must be documented. 
Annual documentation of applied good agricultural practices 
with respect to the above mentioned aspects must be in place. 

 X 

Field cultivation techniques used to reduce the possibility of 
soil erosion. 

X  

 
 
 
 

Soil organic matter is preserved. X  
Organic fertilizer is used according to nutritional requirements 
of the soil. 

X  

Burning as part of the cultivation process is not allowed X  
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Soil organic 
matter and soil 
structure 

without permission. Burning as part of land clearance is not 
allowed. 
Techniques have been used that improve or maintain soil 
structure. 

X  

The use of agricultural by-products does not jeopardize the 
function of local uses of the by-products, soil organic matter 
or soil nutrients balance. Documentation must be available 
that the use of by-products does not occur at the expense of 
the soil nutrient balance, soil organic matter balance or 
important traditional uses (such as fodder, natural fertilizer, 
material, local fuel etc.) unless documentation is available that 
similar or better alternatives are available and are applied. 

X  

 
 
 
 
 
 
 
 
Ground Water 
and Irrigation 

Mineral oil products and Plant Protection Products are stored 
in an appropriate manner which reduces the risk of 
contaminating the environment. 

X  

If ground water is used for irrigation, the producer respects 
existing water rights, both formal and customary, and can 
justify the irrigation in light of accessibility of water for 
human consumption. Local legislation is followed. 

X  

Documentation of water management plan aimed at 
sustainable water use and prevention of water pollution. 
Annual documentation of applied good agricultural practices 
with respect to: efficient water usage, responsible uses of 
agro-chemicals, waste discharge must be available. 

 X 

The producer can justify the method of irrigation used in light 
of water conservation. 

 X 

To protect the environment, water is abstracted from a 
sustainable source. 

 X 

 
 
 
 
 
 
 
Use of Fertilizer 

During the application of fertilizers with considerable nitrogen 
content care is taken not to contaminate the surface and 
ground water. 

X  

Fertilizers with considerable nitrogen content are only applied 
on absorptive soils. 

X  

Complete records of all fertilizer applications are available 
(where, what, how much, date). 

X  

The fertilizer application machinery allows accurate fertilizer 
application. 

X  

Inorganic fertilizers are stored in a covered, clean and dry 
area. 

 X 

Fertilizers are stored in an appropriate manner, which reduces 
the risk of contamination of water courses. 

X  

Fertilizer is used according to an input/output balance. X  
The use of raw sewage sludge is not allowed. X  

 Assistance with implementation of IPM systems has been  X 
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Integrated Pest 
Management 
(IPM) 

obtained through training or advice. 
The producer can show evidence of implementation of at least 
one activity that falls in the category of "Prevention". 

 X 

The producer can show evidence of implementation of at least 
one activity that falls in the category of "Observation and 
Monitoring". 

 X 

The producer can show evidence of implementation of at least 
one activity that falls in the category of "Intervention". 

 X 

 
 
 
 
 
 
 
Use of Plant 
Protection 
Products (PPP) 

Staff dealing with plant protection products is competent. X  
Producers only use plant protection products that are 
registered in the country of use for the target crop where such 
official registration scheme exists. 

X  

The producer follows the label instructions. X  
All application equipment is calibrated. X  
Invoices of registered plant protection products are kept.  X 
If there are local restrictions on the use of plant protection 
products they are observed. 

X  

All the plant protection product applications have been 
recorded (where, when, what, how much, why, who). 

X  

Surplus application mixes or tank washings is disposed of in a 
way not to contaminate the ground water. 

X  

 
 
 
 
 
 
Plant Protection 
Product Storage 

Plant protection products are stored in accordance with local 
regulations in a secure, appropriate storage. Potential 
contamination of the ground water must be avoided. 

X  

There are facilities for measuring and mixing plant protection 
products. 

X  

There are facilities to deal with spillage to avoid 
contamination of the ground water. 

X  

The product inventory is documented and readily available.  X 
All plant protection products are stored in their original 
package. 

X  

Liquids are not stored on shelves above powders.  X 
Obsolete plant protection products are securely maintained 
and identified and disposed off by authorized or approved 
channels. 

 X 

 
 
 
 
 
 
 
Empty Plant 
Protection 

The re-use of empty plant protection product containers for 
purposes other than containing and transporting of the 
identical product is avoided. 

 X 

The disposal of empty plant protection product containers 
does occur in a manner that avoids exposure to humans and 
the environment. 

 X 

Official collection and disposal systems are used when 
available. 

 X 

Empty containers are rinsed either via the use of an integrated X  
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Product 
Containers and 
Waste Disposal 

pressure rinsing device on the application equipment, or at 
least three times with water. The rinsate from empty 
containers is returned to the application equipment tank. Local 
regulations regarding disposal or destruction of containers are 
followed. 
The premises have adequate provisions for waste disposal.  X 
There is a farm waste management plan. Waste recycling 
avoids or reduces wastage and avoids the use of landfill or 
burning. 

 X 

PRINCIPLE 3: Safe working conditions through training and education, use of 
protective clothing and proper and timely assistance in the event of accidents 

 
 
 
 
 
 
 
 
 
 
 
 
Safe Working 
conditions 

The farm has a health, safety and hygiene policy and 
procedures including issues of the risk assessment. 

 X 

First Aid kits are present at all permanent sites and in the 
vicinity of fieldwork. 

 X 

Workers (including subcontractors) are equipped with suitable 
protective clothing in accordance with legal requirements 
and/or label instructions or as authorized by a competent 
authority. Protective clothing is cleaned after use and stored 
so as to prevent contamination of clothing or equipment. 

X  

Potential hazards are clearly identified by warning signs and 
placed where appropriate. 

 X 

There are records kept for training activities and attendees.  X 
All workers handling and/or administering chemicals, 
disinfectants, plant protection products, biocides or other 
hazardous substances and all workers operating dangerous or 
complex equipment as defined in the risk assessment have 
certificates of competence, and/or details of other such 
qualifications. 

X  

All workers received adequate health and safety training and 
they are instructed according to the risk assessment. 

 X 

Workers have access to clean food storage areas, designated 
dining areas, hand washing facilities and drinking water. 

 X 

On site living quarters are habitable and have the basic 
services and facilities. 

 X 

 
 
Plant Protection 
Product 
Handling 

The accident procedure is evident within ten meters of the 
plant protection product/ chemical storage facilities. 

 X 

There are facilities to deal with accidental operator 
contamination. 

 X 

There are procedures dealing with re-entry times on the farm. X  

PRINCIPLE 4: Biomass production shall not violate human rights, labor rights or land 
rights. It shall promote responsible labor conditions and workers' health, safety and 
welfare and shall be based on responsible community relations.  
The criteria listed here is based on internationally recognized requirements concerning 
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social aspects 
 A self-declaration on good social practice regarding human 

rights has been communicated to the employees and signed by 
the farm management and the employees’ representative. 

 X 

 Employment conditions comply with equality principles. X  
 There is no indication of discrimination (distinction, exclusion 

or preference) practiced that denies or impairs equality of 
opportunity, conditions or treatment based on individual 
characteristics and group membership or association. For 
example, on the basis of: race, caste, nationality, religion, 
disability, gender etc. 

X  

 There is no indication of forced labor at the farm. X  
 Workers have the freedom to join labor organizations or 

organize themselves to perform collective bargaining. 
Workers must have the right to organize and negotiate their 
working conditions. Workers exercising this right should not 
be discriminated against or suffer repercussions. 

X  

 The farm does pay a living wage which meets at least legal or 
industry minimum standards. 

X  

 The person responsible for workers' health, safety and good 
social practice and the elected individual(s) of trust have 
knowledge about and/or access to recent national labor 
regulations/collective bargaining agreements. 

 X 

 All impacts for surrounding areas, communities, users and 
land owners taken into account and sufficiently compensated 
for. 

 X 

 The management does hold regular two-way communication 
meetings with their employees where issues affecting the 
business or related to worker health, safety and welfare can be 
discussed openly. 

 X 

 There is at least one worker or a workers' council elected 
freely and democratically who represent the interests of the 
staff to the management. 

 X 

 There is a complaint form and/or procedure available on the 
farm, where employees and affected communities can make a 
complaint. 

 X 

 All children living on the farm have access to quality primary 
school education. 

X  

 There are records that provide an accurate overview of all 
employees (including seasonal workers and subcontracted 
workers on the farm) and indicate full names, a job 
description, date of birth, date of entry, wage and the period of 
employment. 

 X 

 No minors are employed on the farm. X  
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 All employees are provided with fair legal contracts. Copies 
of working contracts can be shown for every employee 
indicated in the records. These have been signed by both the 
employee and the employer. 

 X 

 There is a time recording system that shows daily working 
time and overtime on a daily basis for all employees. 

 X 

 The working hours and breaks of the individual worker are 
indicated in the time records comply with legal regulations 
and/or collective bargaining agreements. 

 X 

 Pay slips document the conformity of payment with at least 
legal regulations and/or collective bargaining agreements. 

 X 

 Other forms of social benefits are offered by the employer to 
employees, their families and/or community. 

 X 

 Mediation is available in case of a social conflict.  X 
 Fair and transparent contract farming arrangements are in 

place. 
 X 

 Biomass production does not impair food security.  X 

PRINCIPLE 5: Biomass production shall take place in compliance with all applicable 
regional and national laws and shall follow relevant international treaties 

 The producer can proof that the land is used legitimately and 
that traditional land rights have been secured. 

X  

 There is awareness of, and compliance with, all applicable 
regional and national laws and ratified international treaties. 

X  

PRINCIPLE 6: Good management practices shall be implemented 
 A recording system is established for each unit of production. 

These records must be kept in an ordered and up-to-date 
condition for at least 3 years. 

X  

 Records are kept for the description of the areas in use. X  
 In case of the engagement of subcontractors they must comply 

fully with the ISCC standard and provide the respective 
documentation and information. 

X  

 

(Source:http://www.iscc-system.org/uploads/media/ISCC_EU_202_Sustainability_Requirements-Requirem

ents_for_theProduction_of_Biomasse_2.3_01.pdf. M1 Major Must, M2 Minor Must, HCV high 

conservation value, EIA environmental impact assessment, IPM integrated pest management, PPP plant 

protection products.) 
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3 The practice of bioenergy development in China – Evidence from Jiangsu 

province1 

3.1 Introduction 

The use of biomass to produce bioenergy and biomaterials as substitutes for goods based on 

petro-chemicals is a response to several global problems. Biomass-based products can match 

a wide range of energy demands. They are renewable and can be stored at relatively moderate 

losses compared to other forms of renewable energy. The global supply of bioenergy has 

doubled in the past forty years. In 2010, the global supply of bioenergy reached 1277 Million 

tonnes of oil equivalent (Mtoe), ranking fourth after the main traditional fossil fuels [crude oil 

(4069 Mtoe), coal (3596 Mtoe) and natural gas (2719 Mtoe)] but leading the contribution of 

renewable energy types (International Energy Agency, 2012). 

While receiving worldwide attention, there are still notable differences in the development of 

bioenergy between highly developed and least developed countries. These differences include 

the following four aspects:  

(1) Differences in the share of bioenergy in the energy source mix 

While the total contribution of modern bioenergy in highly developed countries is on average 

only about 3% of total primary energy supply, bioenergy contributes some 22% in developing 

countries' total primary energy mix, and values as high as 80% for some of the least 

developed countries (Chum et al., 2011, Koljonen et al., 2013). 

(2) Differences in bioenergy utilization forms 

Owing to the economic feasibility and adoption of modern conversion processes, biomass in 

developed countries is transformed to a higher degree into commercial energy forms, such as 

electricity, biodiesel, and ethanol, and thus can be introduced into existing energy markets 

(Demirbas and Demirbas, 2007, Plieninger, Bens, 2006). In contrast, in the rural areas of least 

                                                              
1 The adaptation of this chapter has been submitted to the journal "Energy for Sustainable Development". 
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developed countries, biomass is still being utilized in the traditional way, for example, by 

being burned in rural areas as a direct heat source used for heating and cooking.  

(3) Differences in motivation for development 

The concept of modern bioenergy was conceived in developed countries in the context of 

mitigating problems, such as climate change, energy shortage, and local air pollution. On the 

other hand, least developed countries place high hopes on the role of bioenergy in boosting 

social and economic development (Domac, Richards, 2005). The use of biomass there is 

expected to bring local farmers some income and even to create a new branch of industry, also 

called the sunrise industry, aiming at driving these countries towards industrialization 

(Silveira, 2005).  

(4) Differences in socio-economic conditions 

Continued population growth in least developed countries increases the competition for 

limited natural resources, such as land and water. The lack of ability to mitigate or adapt to the 

consequences of climate change could exacerbate this competition in the future, thereby 

raising the propensity for conflicts in these areas. The possibility of such conflicts makes the 

introduction of energy crops in these countries a highly sensitive matter facing a number of 

challenges (Scheffran, 2009, Schneider and McCarl, 2003). Moreover, the agriculture sector 

in those countries, compared with other sectors, is less attractive for the investors, which 

implies insufficient funding for implementation of bioenergy. Besides, small-scale and vastly 

scattered farmers and a less developed infrastructure lead to a distinct environment for the 

development of bioenergy in these countries.  

In view of the differences, it is likely that the bioenergy development in highly developed and 

least developed countries performs in different ways. Correspondingly, existing research on 

this aspect has, in most cases, been conducted in one single group. This research method can 

facilitate the generalization of common features within each type of the countries, but it is far 

less enough to fully demonstrate the dynamic evolutionary process of bioenergy utilization. 

China, as the biggest emerging economy in the world, has concurrently the characteristics of 

both developed and developing countries. It accommodates the largest population while 

practicing a transitional process of biomass utilization on its soil. By exploring the concrete 
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development experience in depth from one representative area, we can, on the one hand, 

diversify the empirical studies of bioenergy development from the perspective of an emerging 

economy, and, on the other hand, vividly delineate this evolutionary process occurring in 

China.  

The chapter is organized as follows. First, an overview of the characteristic features of the 

case region is provided. Next, after analyzing the local biomass potential and its utilization 

pathways, a suitable mode of bioenergy industry construction is presented. Specifically, the 

structure of both supply side and demand side is considered. Finally, we will generalize the 

advantages and disadvantages of alternative pathways of bioenergy development in a bid to 

provide some guidelines for other areas of China. 

 

3.2 Regional review 

The Jiangsu Province lies on the eastern coast of China and contains 13 cities. Together with 

the city of Shanghai and the Zhejiang Province, it constitutes the most advanced economic 

area in China, also referred to as the Yangtze River Delta Economic Circle (YRDEC) (Figure 

3-1). 

 

Figure 3-1 The location of Jiangsu province 

Due to differences in topography and socio-economic development, the Jiangsu Province is 
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often divided into southern, central, and northern sub-regions. While, as a whole, the Jiangsu 

Province belongs to the most developed regions in China, there is still a large regional 

disparity between these three parts. Specifically, the combined share of secondary 

(manufacturing) and tertiary (service) industries in the southern sub-region is relatively high 

and is one reason for the higher average income and better living conditions compared to the 

central and northern sub-region. Due to its favorable climatic and topographic conditions, the 

primary industry is considered to be the pillar of the northern sub-region. The agricultural 

suitability in the north made the Jiangsu province one of the major grain and cotton 

production bases in China for more than one thousand years. In addition to regional 

differences, a dual economy has also existed for a long time in the entire Jiangsu Province, 

resulting in an enormous gap between urban centers and rural areas. For example, in 2009 the 

average per-capita income of urban and rural households amounted to 20,552 CNY and 8,004 

CNY, respectively (Statistic Bureau of Jiangsu Province, 2010). The general socio-economic 

differences between the three sub-regions of the Jiangsu Province are presented in Table 3-1. 

 

Table 3-1 Socio-economic indicators in Jiangsu province 

Sub-region Population 

(106) 

GDP 
per 
capita 
(CNY) 

GDP by industry (109CNY) Arable area 
(103 ha) 

GHGs 
emission 

(106 t) 
Primary Secondary Tertiary

Southern 30.80 69278 53.24 1171.70 890.48 934.06 102.00 

Central 16.30 39263 51.51 359.26 228.25 1080.66 31.72 

Northern 30.15 23835 106.53 353.27 259.88 2674.76 28.59 

Data source: (Li et al., 2008, Statistic Bureau of Jiangsu Province, 2010) 

 

In recent times, rapid economic growth has caused a sharp rise in the consumption of energy 

in the Jiangsu Province. By the end of 2012, the provincial total energy consumption was 288 

million tonnes of coal equivalent (Mtce) (Statistic Bureau of Jiangsu Province, 2013). 

Furthermore, it is estimated to reach 584 Mtce by 2020, more than doubling the current level 

(Wang et al., 2009). While consuming a large amount of energy, energy resources in the 
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Jiangsu Province are scarce. Its exploitable oil and coal reserves account only for 0.2% and 

1.2%, respectively, of China’s reserves. More than 92% of coal, 93% of crude oil and 99% of 

natural gas were imported from other provinces, neighboring countries, or even from overseas 

(People's Government of Jiangsu Province, 2012a). High dependence on international fossil 

fuel markets makes a country vulnerable to international price fluctuations. In this context, 

increasing energy security through domestic and renewable resources becomes a priority issue 

for the sustainable development process of the Jiangsu Province.  

High levels of fossil fuel consumption also expose the region to severe air pollution and 

increase GHGs emissions. In a statistical analysis of the provincial inventory of greenhouse 

gas emissions in 1990 based on the methods provided in the IPCC Guidelines (1995), Xu et al. 

(1999) demonstrate that energy consumption is the main source of CO2 emissions in the 

Jiangsu Province, and account for up to 91.6% of total emissions. Meanwhile, the government 

of the Jiangsu Province has issued the “Comprehensive Activity Plan for Energy-Saving and 

GHGs Emission Reduction of Jiangsu Province in 2011-2015” (People's government of 

Jiangsu province, 2012b). This plan mandates that the energy consumption per unit GDP (104 

CNY) in the Jiangsu province should decrease to 0.602 tonnes of standard coal equivalent 

(SCE) by 2015. The 18% reduction, compared to 2010 levels, implies a CO2 emission 

reduction between 2011 and 2015 of about 42 million tonnes.  

To cope with the above issues of energy security, air pollution reduction, and GHGs emission 

mitigation, the participation of renewable energy in the local energy source mix has been 

emphasized in the 12th Five-year Energy Development Plan in the Jiangsu Province. 

Although it is only a supplement to fossil fuels in terms of its share in energy supply (In 2015, 

it is to account for 5.08% of the provincial primary energy consumption), renewable energy is 

expected to reform the local energy industry (People's Government of Jiangsu Province, 

2012a). In Table 3-2, we show the main sources of the renewable energy and their utilization 

potentials for power generation in the Jiangsu province.  
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Table 3-2 The main sources of renewable energies for power generation in Jiangsu 
province 

Potential and use 

 

Renewable energy 
source 

Exploitable 
potential (GW) 1 

Installed 
capacity in 
2010 (GW) 

Projected 
installed  

capacity in 
2015 (GW) 2 

Demonstrative 
cost 

(CNY/kwh) 

Wind onshore 19.08 1.372 2.40 0.6324 

Wind offshore 22.09 0.002 3.60 0.9655  

Solar PV 4.71-10.85 0.0033 0.80 1.2606 

Rural biomass 24.58 0.803 1.00 0.8347 

Municipal waste and 
sludge 

0.92 0.803 - 0.5878 

 

Notes: 1) The values of exploitable potential are calculated in the assumption that annual utilization hours 

of installed turbine are 7650 hours; 2) Data source: 1. (Hong et al., 2013); 2. (People's Government of 

Jiangsu Province, 2012a); 3. (Zhou and Zhang, 2010); 4. (Wang and Lu, 2009); 5. (Yang et al., 2010); 6. 

(Ma et al., 2010); 7. (Li and Hu, 2009); 8. (Yang and Ma, 2006) 

 

In terms of power generation, the currently installed capacity of biomass in the Jiangsu 

province ranks first among alternative renewable energy types, although the demonstrative 

production cost of power derived from biomass is not the cheapest. Together with wind 

energy and solar energy, bioenergy is an indispensable sector of energy supply in the Jiangsu 

province.  

As mentioned earlier, agriculture plays an important role in the Jiangsu Province, especially in 

its central and northern sub-region. In 2012, the grain output of Jiangsu province increased to 

33.73 million tonnes, which is higher than the total output of its four neighboring 

administrative regions – the three coastal provinces of Guangdong, Fujian, Zhejiang and the 

city of Shanghai. In fact, the grain output in 2012 ranked fourth in entire China. The high 

yield of grains is accompanied by the high yield of crop biomass. An abundant supply of 

straw provides a stable feedstock for the bioenergy industry. The diverse utilization channels 

of straw can create additional business opportunities and increase the income of farmers. 

Higher incomes will ultimately improve the quality of life in rural areas. Li et al. (2008) 

estimate that as many as 10,000 companies in the Jiangsu province could be established for 
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gathering, processing, transportation, and selling of biomass. This estimate is based on the 

assumption that each village installs a small pelletizing plant with an annual output of 3,000t. 

Collectively, such companies could generate annual revenue of 9-14 billion CNY and support 

about 300,000 additional jobs. The sale of straw to the biorefineries could create an additional 

income of 6 billion CNY to farmers. More importantly, the modern bioenergy utilization 

opens a window for the vast rural areas in the Jiangsu Province by linking conventional 

agriculture to a modernized energy supply system. In other words, it would be an opportunity 

for the Jiangsu Province to attract investments and stimulate the socio-economic development 

in rural areas. This could be helpful for eliminating the regional disparity and the gap between 

urban and rural areas, which is the goal that the Chinese authorities are pursuing with the 

“new village construction” campaign. 

There is yet another feature of the Jiangsu province that should be mentioned here. Certain 

coastal areas, in particular some counties within the administrative regions of Lianyungang, 

Yancheng and Nantong, have mudflats covering more than 6,000 km2 (Ling, 2010). This land 

resource could be used for large-scale biomass plantations. In summary, the Jiangsu Province 

is an attractive region for bioenergy development both in terms of demand and supply 

conditions (Figure 3-2). 
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Figure 3-2 Conditions for demand and supply of bioenergy in Jiangsu province 

3.3 The current local practice of bioenergy development 

The organization of bioenergy production can be roughly divided into four types: (1) 

centralized biomass plantation and energy production; (2) distributed biomass plantation and 

energy generation; (3) centralized biomass plantation and distributed energy production, and 

(4) distributed biomass plantation and centralized energy production. For most developing 

countries, the local conditions of current agricultural systems, specifically the existence of 

small-scale peasant farmers, favors the option of distributed biomass plantations. While 

distributed plantations would increase the biomass collection cost compared to centralized 

ones, there are benefits from 1) maintaining a higher degree of biodiversity with diffuse 

plantations of energy crops on a small-scale and 2) preventing some of the peasants from 

being excluded or marginalized due to centralization. As to the energy production, we argue 

that large centralized production can facilitate the biomass conversion and attract investment 

in auxiliary industry, creating industrial chains which strengthen the entire bioenergy industry.  
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3.3.1 The rural biomass potential 

By comparing the resource potential and utilization directions of both urban sewage and rural 

biomass, the government has posed high expectations on the latter in its "12th Five-year 

Energy Development Plan" According to the assessment of local resources, the available rural 

biomass in the Jiangsu Province was estimated at 41.5 Mtoe in 2006 and 54 Mtoe in 2010, 

with the expected potential to reach 61 Mtoe in 2015. The two main sources of rural biomass 

are crop straw and manure from humans and livestock (Table 3-3). 

 

Table 3-3 The biomass potential in Jiangsu rural area 

Items Quantity available 

(million tonnes) 

Proportion 

(%) 

Year 2006 2010 2015 2006 2010 2015 

Crop straw 19.88 22.50 24.00 48.01 41.82 39.36 

Forest biomass resource 2.97 10.72 14.25 7.17 19.93 23.37 

Manure from humans and livestock 18.56 20.35 22.35 44.82 37.83 36.66 

Energy crops (for biodiesel) 0 0.23 0.37 0 0.42 0.61 

Total 41.41 53.80 60.97 100 100 100 

Data source: (Zhang et al., 2008) 

 

Manure is most suitable as a feedstock for biogas production. Due to its dispersed distribution 

of small farms and the difficulties associated with large-scale collection and long distance 

transportation, to date such manure is mainly fermented in methane tanks with a volume of 

about 3 m3. In the vast rural areas of the Jiangsu Province, this type of biogas is primarily 

used to meet the needs of heat for cooking and light. Its intrinsic characteristics imply that 

manure is only suitable for distributed energy production, but little adaptable for large-scale 

centralized energy production, such as commercial production of electricity or liquid fuels. By 

contrast, crop straw has a much wider range of possible applications than manure, because it 

can be more cost-effectively transformed into electricity, bioethanol or biodiesel. The process 

of centralized combustion or biochemical-conversion can be commercialized and integrated 
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into the current energy supply system. Therefore, in the remainder of this paper, we will focus 

on the utilization of crop straw. 

 

3.3.2 The current situation of crop straw utilization 

It is estimated that the total amount of crop straw in the Jiangsu Province averages around 40 

million tonnes per year. The southern, central and northern sub-regions contribute 15.1%, 27.2% 

and 57.7%, respectively. There are five utilization pathways which are demonstrated in Figure 

3-3. The letters "Nor.", "Cen." and "Sou." stand for the three sub-regions. 

 

 

Figure 3-3 The source and utilization of crop straw in Jiangsu province in 2008 

Date source: (Executive Office of People's Government of Jiangsu Province (EOPGJP), 2010) 
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In the past decade, the Jiangsu Province exploited the energy potential of crop straw in four 

product types: power, liquid fuel, gas fuel, and solid fuel. Among those four alternatives, 

power generation via briquettes is the currently most advanced method. 

By the end of 2012, 30 demonstration projects of biomass-based power plants with 0.803 GW 

installed capacity had been approved in the Jiangsu Province, of which 13 had already been 

connected to the electricity grid. Most of these plants employ the direct combustion 

technology and are located in the northern and central sub-regions, consuming 3.6 million 

tonnes of crop straw (Yan, 2013). This value is projected to rise to 6 million tonnes by 2015 

(Executive Office of People's Government of Jiangsu Province (EOPGJP), 2010). 

In addition to power generation, the option of liquid biofuel production, e.g. bioethanol, is in 

the stage of demonstration in the Jiangsu province. In 2006, gasoline containing 10 percent 

bioethanol (E10) was introduced in the northern sub-region. Currently, the bioethanol 

originates from the 1st generation process, the fermentation of grains from corn and sorghum. 

In the aim of reducing adverse impacts on food supply, 2nd generation type biofuels, e.g. 

bioethanol fermented from cellulosic crop straw, is being developed in the Jiangsu province. 

In 2010, a new demonstration plant was built in the city of Huai'an, which is capable of 

fermenting 13,000 tonnes of crop straw per year (Xiong, 2010). It is expected that, in the near 

future, the biomass-based bioethanol can be widely used for the E10 gasoline production. 

In terms of gas fuel, biogas has a relatively longer history than other utilization paths. By the 

end of 2008, more than 10,000 households were using about 10,000 tonnes of crop straw to 

ferment biogas. In addition, 72 gasification stations with each offering gas to 300 households 

have been installed in the Jiangsu province in the context of the “new village construction” 

campaign. Regarding solid fuel options, briquettes for power generation at processing cost of 

85 CNY/t (Qi, 2007) may be used at small scales. The utilization of other methods is rather 

small (Executive Office of People's Government of Jiangsu Province (EOPGJP), 2010). In 

Table 3-4, the cost structures of those different forms of bioenergy in the Jiangsu Province are 

displayed.  

Although the Jiangsu Province has made great progress over the last years in the field of 

modern bioenergy utilization, the total utilization of crop straws remains below 60%. This is  
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Table 3-4 The cost structures of three main forms of bioenergy in Jiangsu Province 

Cost structure 

 

Type of 
bioenergy 

Annualized 
fixed cost 

Feedstock 
cost 

Operational cost Total Data 
source 

103CNY/t  

103CNY/MW 

CNY/m3 

CNY/t 

CNY/kWh 

CNY/m3 

103CNY/ t 

103CNY/MW 
CNY/m3 

CNY/t 

CNY/kWh 

CNY/m3 

Biofuel 0.249 6160 1.461 7870 Jiang et 
al., 2012b 

Bioelectricity1 713 0.459 383.360 0.6022 Zhang et 
al., 2012 

Biogas 0.131 0.030 0.050 0.211 Gu and 
Zhou, 
1999 

Notes: 1. The preliminary cost data of bioelectricity production is from an internal report on a "Biomass 

power plant forum" which organized by Jiangsu Electric Power Industry Association in February, 2012. 

2. The unit cost of power generation is calculated in the assumption that annual utilization hours of installed 

turbine are 7650 hours. In reality, due to the unstable supply of biomass feedstock and equipment 

maintenance, the utilization hours are hardly to be reached. In this case, the unit cost in reality should be 

higher than the 0.6 CNY/kwh and usually fluctuates around 0.8 CNY/kWh (see Table 3-2).  

 

clearer for only considering the utilization ratio of crop straw for commercialized energy 

production (see Fig. 3). For example, as little as 3.4 % of crop straw is used for power 

generation, while the percentage of crop straw for the production of bioethanol or biodiesel is 

practically negligible. Meanwhile, as much as 16.4 million tonnes of crop straw have been 

discarded and burned off resulting in severe air pollution during the harvest season and the 

loss of soil fertility. By leading the discarded crop straw into modern bioenergy use, we can 

benefit a lot in both bioenergy industry and local infrastructure. Therefore, it can be concluded 

that the use of crop straw for centralized energy generation in the Jiangsu Province has a 

promising future. Meanwhile, we need to notice that the boosting demand of crop straw for 

bioenergy use could make its use for other purposes more expensive, and as such a 

comprehensive and deliberate consideration of crop straw utilization is necessary. 
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3.4 The construction of a bioenergy industry in the Jiangsu province 

The local strategy of bioenergy development in the Jiangsu province focuses on large-scale 

centralized production of energy (power, liquid fuel, gas fuel, and solid fuel) from 

decentralized biomass (crop straw or energy crops). During this process, certain economic, 

social and environmental requirements have to be met (Scheffran, 2009).  

 

3.4.1 Stakeholder analysis  

The understanding of the stakeholder concept has changed considerably in the past decades.  

In general, there is a twofold definition of stakeholders. In the narrow sense, the term may be 

defined as “any identifiable group or individual on whom the organization is dependent for its 

continued survival” (Freeman and Reed, 1983). A more generalized definition considers a 

stakeholder to be “any identifiable group or individual who can affect the achievement of an 

organization’s objects or who is affected by the achievement of an organization’s objectives” 

(Freeman and Reed, 1983). Mitchell et al. (1997) propose that the typology of stakeholders 

should be based on the stakeholders’ possession or non-possession of (1) power to impact the 

organization, (2) legitimacy of their relationship towards the organization, and (3) urgency of 

their claims, i.e. the degree to which stakeholders' claims can draw attentions of organization's 

managers. In accordance with the above idea, two layers of stakeholders in the bioenergy 

industry in the Jiangsu Province can be defined: The fundamental layer refers to “central 

stakeholders”, who fall under the narrow definition. The actors in this layer form the 

bioenergy “organization”, i.e. the supply chain of bioenergy. It is their actions that determine 

the success or failure of the bioenergy industry. The secondary layer of actors who fall under 

the broad definition are “peripheral stakeholders” who are outside or at the margin of the 

supply chain. They are immediately affected by the process of bioenergy production, but in 

turn they also exert their own positive or negative influence on the supply chain.  

We use life cycle analysis (LCA) to include in our assessment all major actors of the 

bioenergy industry in the Jiangsu Province. The complete life cycle of biomass comprises five 

phases: cultivation, harvesting, processing, distribution and utilization (Scheffran, 2009). Of 

these phases, the first four involve the supply of bioenergy products to the bioenergy market, 
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whereas the last phase involves the consumption of the final product by the end user. Actors 

that actively take part in the supply chain are defined as central stakeholders within the 

framework of our analysis. Specifically, this group includes farmers, haulers, and bioenergy 

plant operators. By analogy, actors that are involved in the last, consumptive phase are 

referred to as peripheral stakeholders, such as the consumers of bioenergy products and other 

actors defined as peripheral by Mitchell et al. (1997). In our research, these include 

governments (central, provincial, and local governments), non-governmental organizations 

and research institutes, local residents and communities, bioenergy end-users and the general 

public. They influence the general operating environment for central stakeholders through a 

risk-and-benefit-sharing mechanism. The detailed material and information linkages among 

the stakeholders are presented in Figure 3-4. 

 

 

Figure 3-4 Central and peripheral stakeholders in the bioenergy industry 
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3.4.2 Supply side construction: The management of the bioenergy supply chain  

According to Mentzer et al. (2001), a supply chain is generally defined as “a set of three or 

more entities (organizations or individuals) directly involved in the upstream and downstream 

flows of products, services, finances, and/or information from a source to a customer”. In the 

case of the bioenergy industry, farmers form the upstream segment. They are in control of a 

steady and adequate feedstock supply for the subsequent bioenergy production. As 

independent agents, they decide which agricultural crops to plant on how much land and 

under which method of cultivation. Their decision-making process is repeated on an annual 

basis, and as such is relatively flexible and able to adjust to changing economic condition 

quickly. These conditions include expected net benefits of particular crop management 

systems and their perceived risk levels. Once perennial energy crops are introduced, the 

annual mode of decision making cannot be sustained. The deviation from the established 

annual cultivation method (re-distribution of capital, uncertainties of long-term financial 

rewards, reduced adaptability) obstructs the process of introducing energy crops. 

Further downstream in the supply chain are the bioenergy plant operators who have a central 

position in the whole bioenergy industry. Viewed upstream, these operators purchase biomass 

feedstock from farmers and provide them with income in return. Viewed downstream, they 

compete with other commercial forms of energy supply. In addition, they also communicate 

with peripheral stakeholders. The success of energy crop introduction to the Jiangsu Province 

mainly depends on the efficiency of the adopted technology, which is affected by the technical 

feasibility and the economic conditions for investing in these technologies including 

supporting policies. 

Haulers are the carriers of material flow. They transport feedstock from farmers to the 

processing plants and distribute biofuel products from processing plants to end users. They 

also transport processing waste, e.g. bioslurry, back to the farms. Due to certain intrinsic 

characteristics of biomass, i.e. low bulk density and seasonal availability, flexible and 

affordable transportation services are crucial for the sustainable development of the bioenergy 

industry. In the case of the Jiangsu Province, these actors usually include bioenergy plant 

operators and professionalized peasant farmers' agents. 
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Mentzer et al.(2001) view supply chain management (SCM) as “the system, strategic 

coordination of the traditional business functions and the tactics across these business 

functions within a particular company and across business within the supply chain, for the 

purpose of improving the long-term performance of the individual companies and the supply 

chain as a whole.” Moreover, Gold (2011) underlines five pivotal elements for the evaluation 

of supply chain design and management. These elements are (1) supply chain cooperation, (2) 

supply chain coordination, (3) supply chain governance, (4) long-term relationships and (5) 

communication for conflict settlement and joint development.  

In the case of the Jiangsu Province, the government has proposed its own mode of supply 

chain management which conforms to the above guidelines. It has integrated the construction 

of the bioenergy supply chain into its agricultural reformation process. This is marked by the 

introduction of "energy-oriented agriculture". In order to mitigate the cost of this transition 

process, the agricultural reform is setup as a gradual development in two phases: 1) utilization 

of crop straw and 2) utilization of perennial energy crops.  

 

3.4.2.1 Phase1: Utilization of Crop Straw 

For developing countries, the efficient exploitation of existing crop straw presents a 

considerable potential for developing bioenergy without unduly disrupting existing 

agricultural practices and food production or requiring new land entering into production. 

Furthermore, it could become an additional source of revenue for farmers. Since continued 

removal of straw and other crop residues could endanger long-term soil quality, the losing 

fertility could be compensated through the return of processing by-products such as bioslurry 

to the fields (Wei et al., 2011). However, the incurred transportation cost of bioslurry has to be 

simultaneously taken into consideration so as to avoid unprofitable investments. Considering 

the potential supply of crop straw and the overall demand for biomass in the Jiangsu Province, 

this residue type could become the main bioenergy feedstock in the next decade. 

The change of farming systems, which have evolved over thousand years, may require a 

substantial transitional period. During this period farmers can adjust to an “energy-oriented 
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agriculture”, both in a technological and psychological sense. Thus, introducing the crop's 

energy value as additional commodity to the traditional agricultural food production system 

needs to be accepted by the farmers. This period can be thought of as phase 1 of the 

agricultural reform, or as the construction phase for a bioenergy industry supply chain.  

Current agriculture in the Jiangsu Province still consists of many small-scale peasants. Such 

farming is also typical of most other developing countries. The peasant farmers, who 

individually own small pieces of land, are scattered and often far away from relevant 

commodity markets. Individual farmers are price-takers, who do not have market power and 

do not directly influence the direction of agricultural development on an individual basis. 

Therefore, the professional associations of farmers and peasant farmers' agents (farmers' 

representatives), who have gradually emerged with the fast increasing demand of crop straw, 

and who rely on the collective power of individual peasant farmers as well as large-scale 

bioenergy plants (plants' representatives), are capable of taking on such responsibility. 

Distinguished by the different roles of both representatives in the crop straw collection 

process, two management methods of the bioenergy supply chain in the Jiangsu Province are 

being shaped ("one to multiple" and "multiple to multiple"), which are illustrated in Figure 

3-5.  

 

 

Pattern 1: Multiple to multiple 
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Pattern 2: One to Multiple 

Figure 3-5 Two patterns of bioenergy supply chain management 

Pattern 1 "Multiple to Multiple" means that many bioenergy plants are facing many peasant 

farmers. In this pattern, the actors both on the supply and the demand side of the biomass 

market are not strong enough to control others, and therefore face normal competition. As 

bioenergy plants do not have enough resources to deal with thousands of individual peasant 

farmers, the collaborative associations of peasant farmers and professional peasant farmers' 

agents can facilitate the negotiation process and help in the exchange of information between 

biomass suppliers and consumers. However, there are also negative side effects to pattern 1. 

First, in very competitive markets, the price of biomass is usually subject to larger 

fluctuations. The uncertainty about future prices will create an economic risk on both the 

biomass supply and demand side. Second, because of the competition for crop straw between 

the bioenergy users and other traditional straw users (i.e. paper and sheets producers), farm 

associations are eager to sell straw to the customer who offers the highest price. The loose 

internal structure of straw suppliers primarily restricts their focus to tangible benefits in the 
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short run, preventing them from negotiating long-term contracts with bioenergy plants.  

Pattern 2 "One to Multiple", by contrast, refers to one or few large bioenergy plants facing 

many peasant farmers. These few plants will then have substantial power to influence the 

biomass market. In such a situation, the bioenergy plants are likely to build up an exclusive 

collection and storage base with a radius of 50-80 km and establish several purchasing 

stations, each covering an area of 2-5 km in radius (Executive Office of People's Government 

of Jiangsu Province (EOPGJP), 2010). Such infrastructure makes it attractive for the plant 

operators to sign long-term purchase contracts with peasant farmers. From the farmers’ 

perspective, such arrangements can guarantee long-run economic benefits and reduce 

uncertainties of competitive markets. From the plant owners’ perspective, such contracts 

secure a stable supply of biomass feedstock at a relatively low price. Especially, by stipulating 

the types and quality of biomass in the contract, bioenergy plants can gradually introduce 

energy crops and lead the peasant farmers to switch to an energy-oriented agriculture without 

explicitly changing any relationships in the established supply chain. Due to such benefits, 

this pattern seems more suitable for bioenergy development in the Jiangsu Province. 

3.4.2.2 Phase 2: Utilization of perennial energy crops 

Along with the development of the bioenergy industry, steadily increased demand for biomass 

feedstock is anticipated. Once the existing crop straw cannot fully meet the need, the 

introduction of perennial energy crops to the Jiangsu Province could be one of the available 

alternatives. The introduction of new crops is a major development and could be characterized 

as phase 2 of the construction of the bioenergy supply chain.  

 The selection of energy crops 

For developing countries, the choice of dedicated energy crop species is not a simple matter. A 

number of non-technical factors must be taken into consideration, including food security, 

environmental protection, social equity and national/rural development. In order to assure the 

success of such decisions, this choice must be informed by market options at local, national 

and international scales. 

With the support of national and provincial policies, in recent years, a number of research 
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institutes have begun to search for suitable species and to conduct small-scale field 

experiments in several parts of China, including the Jiangsu Province. Chen (2008) mentions 

clover, switchgrass, miscanthus, phalaris, cassava, sugar cane, and sweet sorghum as 

promising "energy grasses". Liu et al. (2008) use field experiments in Dafeng county, Jiangsu 

Province, and the city of Laizhou in the Shandong Province to confirm the seawater-tolerance 

and high-yield rates of particular varieties of glucide bioenergy (Helianthus Tuberosus) and 

bio-oil plants (Oleic sunflower). These varieties are especially suitable for cultivation in 

coastal mudflats. Based on the reviewed literature, the yields of four promising energy crops 

in China (switchgrass, silverrreed, giantreed and miscanthus) are summarized in Table 3-5. 

Note that all of these data were established in small-scale experiments under controllable 

conditions. 

Table 3-5 The annual yields of potential energy crops in China (tonnes/hectare) 

Switchgrass Silverreed Giantreed Miscanthus Data source 

23.8 39.5   Li, 2009 

5.2-11    Du et al., 2010 

12    Liu et al., 2009 

231 39.051 34.461  Haitao et al., 2008 

8-35  5-35 10-40 Xie et al., 2008 

20.03 32.11 28.75 29.96 Zong et al., 2012 

14.2   11.7 Li et al., 2007 

   37.5, 43.76, 4.33-14.77, 
18.49-20.36, 39.052 

Li and Zhou, 2012 

28.05 28.95 34.35  Hou et al., 2011b 

3.77 11.45   Xincun et al., 2011 

10-25  15-35 15-30 Xie et al., 2007 

6.77, 15.41,  

28.33, 27.903 

7.0, 17.6 

29.6, 28.23 

16.1, 30.4, 

34.4, 34.33 

 Fan et al., 2010a 

Notes: 1. This data is obtained from switchgrass of the 2nd year and silverreed and giantreed of the 3rd year. 

2. The first two data-sets were obtained in Heilongjiang and Shandong, and the last three data-sets are 

collected in Beijing reflecting the yields of miscanthus in its 1st, 2nd and 3rd year. 3. These data-sets were 

collected in 2006, 2007, 2008 and 2009 respectively. 
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In view of the limited availability of data, we tentatively suggest the introduction of the 

energy crops listed above as candidate species for the Jiangsu Province. As most of the data 

were collected in other regions of China, the yields of these candidate species in Jiangsu 

Province should be verified through local field experiments.  

 

 The mudflat as a candidate arable land resource 

The experience with bioenergy development in Europe and the US shows that avoidance of 

food security conflicts is a precondition for a successful introduction of energy crops 

(Scheffran, 2009, Scheffran, 2010, Thomas et al., 2009, Tirado et al., 2010). To avoid or 

mitigate land use conflicts with food crops, energy crops may be planted on marginal or 

degraded lands (Schröder et al., 2008, Tang et al., 2010) or inserted as catch crop into crop 

rotations (Schönhart et al., 2011). For the Jiangsu Province, however, there exists yet another, 

a third option – the utilization of mudflats. 

The Jiangsu Province is located on the eastern coast of China and has a non-reclaimed 

mudflat of about 500,000 hectares. This area consists of a supratidal belt (30,000 hectares) 

and an intertidal belt (470,000 hectares) and is mainly situated in Lianyungang (19,520 

hectares), Yancheng (140,000 hectares) and Nantong (138,000 hectares). If this area can be 

reclaimed after thoroughly evaluating the possible ecological side effects, it could be used as 

the biomass production base becoming a new economic engine for the Jiangsu Province. To 

achieve this, the governmental authority of the province approved a now official plan for the 

mudflat reclamation in 2010 which included an environmental impact assessment, and 

regarded it as an important instrumental tool for boosting the regional development of 

northern and central sub-regions. This plan schedules the reclamation of 180,000 hectares of 

mudflat between 2010 and 2020 in three periods (1: 2010-2012, 2: 2013-2015 and 

3: 2016-2020). According to the result of the environmental impact assessment, the candidate 

areas are distributed only along the coast with high deposition speed. By deliberately keeping 

away from the core and buffer zones of natural reserves and special marine sanctuaries, 

preserving 20 estuarine beaches inside the control areas of the estuarine regulation line and 

retaining Jiangsu's particularly important wetland ecologies and landscapes, the reclamation 
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in gear-shape rather than parallel shape to the coastal line is calculated to lengthen the coastal 

line by 384 km and maintain a large degree of the marine biodiversity. Furthermore, while 60% 

of the reclaimed areas will be used for agriculture and 20% for construction, the remaining 20% 

will be devoted to ecological protection (Executive Office of People's Government of Jiangsu 

Province (EOPGJP), 2010). Based on this plan, we calculated the temporal and spatial 

distribution of all potential mudflats for energy crop cultivation for the period between 2010 

and 2020. The results are listed in Table 3-6, whereby “area” refers to the total amount of 

mudflats assigned for reclamation. The last three columns give the actual area of mudflats 

dedicated to energy crops in each period. 

 

Table 3-6 Potential mudflats for energy crop cultivation in Jiangsu Province (103 ha), 
with total area and actual use in different periods 

No. Bank section (shoal) County Area Period 1 Period 2 Period 3 

A01 Xiuzhen estuary-  

Youwang estuary 

Ganyu 1.00  0.00  0.47  0.00  

A02 Xingzhuang estuary- 
Linhongkou 

Ganyu 1.67  0.00  0.00  0.00  

A03 Linhongkou- Xishu Lianyungang 2.33  0.00  0.00  0.00  

A04 Xuwei port Lianyungang 4.67  0.00  0.00  0.00  

A05 Xiaodong port-  

Xintan port 

Xiangshui 1.33  0.60  0.00  0.67  

A06 Shuangyang port-  

Yunliang estuary 

Sheyang 1.00  0.00  0.00  0.93  

A07 Yunliang estuary-  

Sheyang estuary 

Sheyang 1.67  0.73  0.00  0.00  

A08 Simaoyou estuary -  

Wanggang estuary 

Dafeng 6.00  1.00  0.00  1.60  

A09 Wanggang estuary- 
Chuandong port 

Dafeng 5.00  2.53  0.00  2.20  

A10-1 Chuandong port-  

Dongtai estuary 

Dafeng 1.17  0.00  1.10  0.00  

A10-2 Chuandong port-  Dongtai 1.17  0.00  1.10  0.00  
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Dongtai estuary 

A11 Tiaozini Dongtai 26.67  8.00  9.33  0.00  

A12-1 Fangtang estuary-  

Xinbeiling estuary 

Dongtai 3.33  1.28  1.87  0.00  

A12-2 Fangtang estuary-  

Xinbeiling estuary 

Hai'an 2.00  1.92  0.00  0.00  

A13 Xinbeiling estuary - 
Xiaoyangkou 

Rudong 4.00  0.00  3.67  0.00  

A14 Xiaoyangkou- Juejukou Rudong 12.00  1.27  0.93  1.60  

A15 Juejukou- Dongling port Rudong 21.33  2.60  2.60  8.67  

A16 Yaosha- Lengjiasa Tongzhou 29.33  0.00  3.47  15.60  

A17-1 Yaowang port- Haozhi port Tongzhou 1.92  0.45  0.40  0.00  

A17-2 Yaowang port- Haozhi port Haimen 1.92  0.45  0.40  0.00  

A17-3 Yaowang port- Haozhi port Qidong 3.83  0.90  0.80  0.00  

A18 Haozhi port- Tanglu port Qidong 3.33  0.00  1.80  0.00  

A19 Xiexing port-Yuantuojiao Qidong 3.33  0.00  1.07  0.00  

A20 Dongsha Dongtai 21.33  0.00  0.00  13.87  

A21 Gaoni Dongtai 18.67  0.00  0.00  12.13  

Total 180.00 21.73 29.01 57.27 

Notes: 1. Phase 1: 2010-2012, Phase 2: 2013-2015, Phase 3: 2016-2020; 2. Data source: (Development and 

Reform Commission of Jiangsu Province, 2010). 

 

Since the reclaimed mudflat neither is burdened by privately held land ownership titles nor 

has established cultivation traditions, the reclaimed mudflat is more suitable for large-scale 

centralized production of biomass, provided the utilization does not cause environmental 

degradation and occurs in a sustainable manner. Correspondingly, the bioenergy could and 

should be produced with modern and relatively sustainable farm management. In view of the 

actual circumstances in the Jiangsu Province, it was proposed that the task of reclaiming the 

mudflat and subsequent planting of the energy crops should be assigned to the Jiangsu 

Agribusiness Group Corporation, which is a state-owned company managing 18 farms. 

Compared to many small peasants, this company possesses abundant capital, modern 

cultivation technology and advanced farm machinery. By exclusively entitling a state-owned 

company to reclaim the mudflat, the government can control the supply of goods with 
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common attributes at a low administrative transaction cost. Unlike individual peasant farmers, 

the assembled farms belonging to the Jiangsu Agribusiness Group Corporation can act as a 

stronger collective player with more power to face the mono- or oligopolistic purchasers in 

the biomass market. However, although this mode would better balance the market forces 

between the supply and demand sides of the biomass market, it would simultaneously 

marginalize small-scale peasant farmers if not compensated by an appropriate sensitive and 

equitable management. In order to avoid an increasing gap between small-scale peasants and 

large scale farms, institutional arrangements need to be set up to secure the compatibility of 

this mode with the former two management methods. Examples are to deliver the legitimacy 

for a shift of economic power or to explore the possibility of the bioenergy plantation jointly 

managed by the Jiangsu Agribusiness Group Corporation and the local community. 

 

3.4.3 Demand side construction: Integration of modern bioenergy into the energy supply 
system 

The demand side construction of bioenergy industry is, to a large extent, an integration 

process of bioenergy into the existing energy infrastructure and markets, with balancing a 

twofold relationship between renewable energy and traditional energy as well as between 

bioenergy and other kinds of renewable energies. China, as a country owning a strong and 

effective hierarchical administrative system, has dealt with the relationship well through its 

three administrative levels. 

 

3.4.3.1 Renewable energy and traditional energy 

Since renewable energy is assumed to gradually fill the market space left by the supply 

shortage of traditional energy, the competition in the first part of the relationship is moderate, 

especially under the institutional guidance and control of the government during the infant 

stage of the bioenergy industry. For power generation, the Chinese central government has 

reached a compromise between the interests of bioenergy power plants and coal power plants, 

and paved the way for biomass access to the utility grid. Furthermore, in order to shorten the 
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gap between supply cost and sale price, the central government offers a subsidy for biomass 

power plants at 0.25 CNY/kWh (National Development and Reform Commission (NDRC), 

2006). As for bioethanol, its production and distribution in China is monopolized and operated 

by regulation in a closed system, due to concerns about food security. To date, the central 

government has granted production licenses to only four bioethanol plants in the entire 

country. They alone are entitled to use stale grains from the national food reserve system, like 

corn or sorghum to produce bioethanol. For the time being, all of their output may be sold 

solely to the two official oligopolies, the Sinopec (China Petroleum & Chemical Corporation) 

and CNPC (China National Petroleum Corporation), each of which has its own 

well-established channels of gasoline distribution in the Chinese petroleum market (Dong, 

2007). Such a regulation creates a rigid bioethanol market which prevents other existing oil 

giants from exerting pressure on the development of the bioenergy industry in its initial stage. 

The restricted licensing has smoothly integrated bioenergy into the energy supply system. In 

terms of biogas, briquettes and chars, which are used primarily in the rural areas to fill the gap 

left by the absence of commercial energies, there is actually no competition between them and 

traditional energy. 

. 

3.4.3.2 Bioenergy in the renewable energy portfolio 

As to the other part of the relationship, the Jiangsu provincial government has provided its 

answer: In 2009, "The Outline for Restructuring and Revitalization of the New Energy 

Industry" was published. One year later, "The Program of Doubling the Emerging Industry in 

Jiangsu Province" was enacted. In these two schematic documents, four energy industries 

(photovoltaic industry, wind power industry, bioenergy industry and nuclear power industry) 

have been confirmed as emerging industries. Meanwhile, development objectives for each 

industry are projected, with proposing the related supportive measures, e.g. information 

generation, provision mechanism, technical assistance relating to biomass resources and 

technologies, etc. As for the county-level governments, the grassroots level administrations 

are more down to earth. They are responsible for overseeing and facilitating the 
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implementation of their supervisors' guidelines, and providing forums for articulating local 

needs and concerns to build political consensus. Out of the experience so far, such 

government involvement generates a sense of ownership that is a critical ingredient for the 

success of bioenergy projects in the long term (Larson and Kartha, 2000). Through this 

top-down style of administrative management, China can effectively reach its policy goals 

within the projected time frame.  

The Jiangsu's practice leads to two suggestions: (1) The governmental intervention for 

renewable energy development in developing countries is essential. This can be justified by 

the role of government on mandating the share of renewable energy in the country's energy 

mix as well as correcting market failure incurred by the positive environmental externality of 

renewable energy industry; (2) The optimal renewable energy portfolio is likely to be a 

mixture of different kinds of renewable energies. This judgement follows the ideas of (1) 

offering an equal development opportunity for all types of renewable energy in the initial 

stage; (2) nurturing the atmosphere of competitive parity when renewable energy market 

evolves maturely; (3) considering the limited resource potential of each single kind of 

renewable energy. In order to minimize the side effect of the governmental intervention, we 

suggest maintaining the initial support within a reasonable scale (not exceeding a relatively 

small overall share) and meanwhile, valuing the important role of economic efficiency in such 

an intervention.  

 

3.5 Summary 

The bioenergy development differs substantially between highly developed and least 

developed countries. By studying the local experience from the Jiangsu Province, China, we 

can diversify the empirical studies of bioenergy development from the perspective of an 

emerging economy and, meanwhile, delineate the evolutionary process of China's bioenergy 

development.  

Since the dispersed distribution of biomass from small-peasant farmers is unlikely to quickly 

transform into a business sector compliant with bioenergy demand, a centralized energy 
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generation from distributed biomass feedstock is more favorable for the Jiangsu province. 

Specifically a concentrated production of modern bioenergy using crop straw and energy 

crops appears desirable. 

The development of the bioenergy industry involves both supply side and demand side 

construction. The supply side construction means integrating the bioenergy supply chain 

management into China's overall agricultural reform. This integration process can be 

completed in two steps: First, the energy value of crop straw must be assimilated into the 

current agricultural system. Second, the cultivation of dedicated energy crops on marginal 

lands and mudflats mark the transition towards an “energy-oriented” agricultural system.  

On the other hand, demand side construction refers to the access of bioenergy to the existing 

energy supply system. Due to the imperfection of market economies in the vast majority of 

developing countries as well as the importance of support from the government for emerging 

industries, the government-led model may actually prove a more feasible alternative. Besides, 

the role of market mechanisms should not be ignored, nor should be the issue of 

environmental sustainability and food security. 
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4 Bioenergy and land use: a spatial-agent dynamic model of optimized 

agricultural land use for Jiangsu in China1 

 

4.1 Introduction 

The objective of future energy policy is to assure the economically and environmentally 

sustainable supply of energy. Concerns about energy security and climate change induced by 

fossil energy have led to advancements in bioenergy utilization over the past decades in the 

US and many European countries (Hall and House, 1993, Jungmeier and Spitzer, 2001, 

Scheffran and BenDor, 2009). In many developing countries, bioenergy is also seen as an 

opportunity to boost the development of the agricultural sector and rural areas (Demirbas and 

Demirbas, 2007, Silveira, 2005). 

In China, such motivations are reflected through a series of bioenergy supporting laws and 

regulations issued in recent years both at the state and provincial levels. Notable examples of 

these legislations are shown in Table 4-1. 

Meanwhile, the Chinese government has specified concrete development targets for the 

bioenergy industry in its official document "The Development Plan for Bioenergy in the 

12th-five year". By the year 2015, the installed capacity of biomass power generation is 

planned to reach 13 GW, annually producing about 78 billion kWh electricity. In addition, the 

governmental target includes 10 million tonnes (Mt) of pelletized solid fuels, 22 billion m3 of 

biogas, and 5 Mt of liquid fuels (China National Development and Reform Commission 

(CNDRC), 2012). 

The bioenergy feedstock can be produced from the biomass of conventional or energy crops. 

However, the large-scale introduction of biomass for bioenergy production raises concerns 

over food security, biodiversity, water scarcity, soil fertility and other environmental issues 
                                                              
1 This chapter was firstly presented in the "12th IAS-STS Annual Conference" and is to be 
submitted to the peer reviewed journal "Energy Policy". 
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(Dauber, Jones, 2010, Sagar and Kartha, 2007, Ugarte and He, 2007). The experience of 

bioenergy development in the EU and US shows that abatement of land use competition and 

conflicts facilitates the introduction of energy crops. The avoidance of severe conflicts 

between food and bioenergy production is especially important for China, a country 

accommodating the largest population in the world (Scheffran, 2009, Scheffran, 2010, 

Thomas, Choi, 2009, Tirado, Cohen, 2010). Several pilot studies have assessed the role of 

energy crops in China and discussed the practicability of their presence in current agriculture 

system qualitatively (Shao and Chu, 2008, Zhuang et al., 2011, Zong, Guo, 2012). However, 

qualitative analyses are usually general and lack flexibility. When facing the task of guiding 

the implementation of bioenergy projects in China, existing research is far less enough. Thus, 

conducting research simulating the optimal spatial and temporal land use pattern in the 

context of energy crops participation is not only an improvement of former studies but is also 

holding a strong practical significance.  

 

Table 4-1 Bioenergy development supporting legislation in China 

Level Name Year 

State Proposals for Implementation of Tax Support Policy on the 

Development of Bioenergy and Biochemical Industry 

2006 

Interim Management Measures of the Special Funds for 

Renewable Energy Development 

2006 

Interim Management Measures of the Subsidy of Straw for Energy 

Use 

2008 

Proposals for Promoting the Comprehensive Utilization of Crop 

Straw 

2008 

Renewable Energy Law of the People's Republic of China (2009 

Amendment) 

2009 

Provincial The Scheme for New Energy Industry Restructuring and 

Revitalization in Jiangsu Province 

2009 

Development Plan for Coastal Area of Jiangsu Province 2009 

Development Plan for Modern Agriculture in Coastal area of 

Jiangsu Province 

2009 

Development Plan of Mudflats in Jiangsu Province 2010 
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To avoid or mitigate land use conflicts, energy crops can be planted on marginal or degraded 

lands (Schröder, Herzig, 2008, Tang, Xie, 2010) or be inserted into crop rotations (Schönhart, 

Schmid, 2011). In China, some prior analyses have explored the potential use of mudflats for 

the plantation of energy crops (Liu et al., 2004, Wang and Zhu, 2009, Zhang et al., 2004). The 

value of mudflats has been recognized by the local governments and included in their 

development plan (Development and Reform Commission of Jiangsu Province, 2010). 

However, the role of reclaimed mudflats for alleviating land use conflicts and food scarcity 

lacks solid quantitative proof and thus, hampers the efficient development of this resource. 

This study uses a dynamic, regionalized agent-based agricultural decision model to examine 

the optimal land use between conventional and energy crops. We quantify the contribution of 

mudflats to alleviate land use conflicts and food scarcity. 

The chapter is structured as follows. First, we provide background information on the case 

study region and discuss particular characteristics relevant to the cultivation of energy crops. 

Next, we describe the mathematical structure, the implementation of data, and the validation 

of the agent-based model. Subsequently, we show and discuss the results for a series of model 

simulations. Finally, we conclude this research by pointing to possible improvements of our 

model. 

 

4.2 Background on the bioenergy industry in the Jiangsu province 

4.2.1 The study region 

Jiangsu Province is located on the eastern coast of China. Together with Zhejiang Province 

and the city of Shanghai, it constitutes one of the most advanced areas in China, often referred 

to as the Yangtze River Delta Economic Circle (see Figure 3-1 in last chapter). Increasing 

levels of energy consumption in the province’s boosting economy together with intensified 

international pressure on curtailing GHG emissions have created an opportunity for the 

growth of modern bioenergy. On the supply side, excellent agricultural infrastructures, such as 

an efficient irrigation system, advanced machineries and a mature technical supporting 

network, and the availability of additional land resources, i.e. reclaimed mudflats, may 
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provide the necessary biomass feedstock for a large-scale bioenergy industry development in 

the Jiangsu province.  

 

4.2.2 Conventional crops 

In the model setting of our study, we distinguish conventional crops and energy crops. 

Conventional crops include all major annual crops which are "conventionally" planted in the 

Jiangsu province for the purpose of food, fodder and industrial material production. The crop 

straw from conventional crops is considered to contribute substantial quantities of biomass 

feedstock in the Jiangsu Province even after the introduction of energy crops. 

According to the official statistics (Executive Office of People's Government of Jiangsu 

Province (EOPGJP), 2010), the straw from wheat, oil-seeds, medium-indiea-rice, 

non-glutinous-rice, corn, cotton and beans accounts for up to 88.5% of the total straw supply. 

These crops are planted on more than 70% of the total arable land and harvested either in 

summer or in autumn. Therefore, our model is also designed to reflect this rotation cropping 

system. To demonstrate the collected data clearly, in Figure 4-1 we use the polygons with five 

scale darkness to represent the different levels of the yield per hectare of seven main crops in 

70 counties of the Jiangsu province in 2010, which is realized on ArcGIS 10.2 platform.  
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Figure 4-1 Crop yield per hectare in 70 counties of Jiangsu province in 2010 

 

Notes: 1. Data source: Statistic Yearbook of Rural Area in the Jiangsu Province (2011). 

2. For the areas with yield data of 0.00, there is no plantation for that crop. 

 

Cultivation cost data are obtained from the annual "Cost-Benefit Investigation of Jiangsu 

Agricultural Products" conducted by the Cost Investigation Supervision Branch of the Jiangsu 

Commodity Price Bureau. The available data span five years from 2006 to 2010 and were 

compiled from answers to a questionnaire randomly distributed to farmers across 

representative 57 counties belonging to 13 prefecture-level cities. Figure 4-2 illustrates the 

average costs for the six main crops cultivated in the Jiangsu province in 2010. In the model, 

the per-hectare cost data which are logged in monetary value have been converted into the 

amount of each input (including land, labor, fertilizer, pesticide and others), in accordance 

with the market price (or equivalent price) of each capital. 
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Figure 4-2 Crop cultivation cost per hectare in 70 counties of Jiangsu province in 2010 

Notes: 

1. Data source: Data Collection of Cost-Benefit Investigation of Jiangsu Agricultural Products (2011). 
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2. The crop of beans is not incorporated into the "Cost-Benefit Investigation of Jiangsu Agricultural 

Products". Thus, the county-level data of beans is not available. 

3. For the areas containing the value of 0.00, data are not available. 

 

As shown in the figure above, the costs of certain crops in some counties are zero. There are 

two reasons: first, some crops are not planted in all areas; second, the survey only includes 

samples from a subset of counties rather than from all counties. Therefore, for some counties 

where the crops may grow, they are not covered by the investigation. To remedy this data 

deficiency, the missing costs data are generated by interpolation of available data adopting the 

Ordinary Kriging Method in ArcGIS. 

 

4.2.3 Energy crops 

In the long term, energy crops are expected to fill the gap between the rising demand of 

biomass feedstock and limited supply from conventional crops. The promising lignocellulosic 

energy crops, based on existing studies, can include both perennial herbaceous crops (i.e. 

switchgrass, Miscanthus) and woody crops (such as willow, poplar, Eucalyptus) (Bauen et al., 

2009).  

While many countries have witnessed a growing level of energy crops cultivation, large-scale 

commercialized energy crop plantations are still absent in China. In consequence, we have not 

observed cultivation data for these commercial energy crops. However, with the support of 

relevant national and provincial policies, a number of research institutes have in recent years 

engaged in species selection and have conducted small-scale field experiments in certain parts 

of China, including the Jiangsu Province. In this study, we use the results from these 

experiments. Existing research shows that in the 3rd year the crops reach a mature stage with 

their yields remaining at a stable level thereafter (Haitao, Yang, 2008). We mimic this finding 

in our model by assuming constant yields for energy crops after the third year. In terms of 

their life span, 10 years are set to switchgrass, silverreed, and giantreed and 20 years to 

miscanthus. 
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After selecting the species of energy crops in our model, we need to specify their cultivation 

costs. Firstly, we process the experimental costs data of switchgrass, silverreed and giantreed, 

using results from (Hou, Fan, 2011b) according to Jiangsu's local price of labor and land, and 

use a reseeding rate of 25% for switchgrass and 0% for the other three crops (Hou et al., 

2011a, Khanna et al., 2008). Secondly, to overcome the data inaccessibility, we use cost data 

for switchgrass to infer the corresponding data for miscanthus. For simplicity, we assume that 

the ratio of the cost of switchgrass to that of miscanthus is the same both in China and in the 

US. Then we apply this ratio obtained from the study (Khanna, Dhungana, 2008) in Illinois, 

USA to the experimental data of switchgrass in China (Hou, Fan, 2011b). The resulting 

adaptive yields and cultivation costs of energy crops are shown in Table 4-2. 

 

Table 4-2 Yield and cost data for candidate energy crops in Jiangsu province 

Crops 

Items      Ages 

Switchgrass Silverreed Giantreed Miscanthus 

1 2 3-10 1 2 3-10 1 2 3-10 1 2 3-20 

Yield (t/ha) 6.77 15.41 28.12 7 17.67 28.98 16.17 30.48 34.42 9.55 19.43 29.96 

Cost (per ha):  

Seedling (CNY) 135000 33750 0 90000 0 0 90000 0 0 423705 0 0 

Planting (d) 7.5 1.8 0 7.5 0 0 7.5 0 0 30.525 0 0 

Maintenance (d) 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 10.425 10.425 10.425 

Harvest (d) 15 15 15 15 15 15 15 15 15 44.7 44.7 44.7 

Irrigation (CNY) 600 0 0 600 0 0 600 0 0 600 0 0 

Water (CNY) 180 0 0 180 0 0 180 0 0 180 0 0 

Electricity (kWh) 846.75 0 0 846.75 0 0 846.75 0 0 846.75 0 0 

N-Fertilizer (kg) 150 150 150 150 150 150 150 150 150 165 69 103.5 

O-fertilizer (kg) 0 0 0 0 0 0 0 0 0 0 0 0 

Herbicide (kg) 3750 0 0 3750 0 0 3750 0 0 4125 0 0 

Data source: (Fan, Hou, 2010a, Fan et al., 2010b, Hou, Fan, 2011a, Hou, Fan, 2011b, Khanna, Dhungana, 

2008, Zong, Guo, 2012) 

 

Note that these data are obtained from small-scale experiments under controlled conditions 

and may not reflect all uncertainties of real agricultural operations.  
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4.2.4 Mudflats 

Previous studies have suggested that cultivating energy crops on surplus agricultural land or 

marginal land could mitigate the potential threat to food security (Ceotto and Candilo, 2011, 

Scheffran, 2010). Mudflats in Jiangsu province have been examined as potential land resource 

for energy crops in many studies (Ling, 2009, 2010, Wang et al., 2010), and confirmed by the 

local government in its "Outline of Reclamation and Utilization Plan for Jiangsu Coastal 

Mudflats Resource (2010-2020)". This guiding scheme has concretely regulated the location, 

acreage, and utilization of mudflats for three different stages presented in Table 3-6 in last 

chapter. Our model implements the projection of this guideline. 

 

4.2.5 Biomass demand 

As is the case for other emerging industries, governmental support for bioenergy is essential. 

The official regulations, such as binding targets or mandates, compulsory grid connection or 

feed-in tariffs, help to create a local biomass market. This market would then establish a price 

for biomass, which corresponds to the marginal cost of meeting a demand target. In this study, 

we directly borrow the official development target of bioenergy to specify biomass demand 

development.  

 

4.3 Model design and structure 

4.3.1 The framework of a spatial-agent dynamic model 

Long-term observations from the real world as empirical references usually play a big role in 

decision-making and policy-forming activities. However, they can be inadequate in 

understanding the possible future behavior of complex feedback systems. This judgement can 

also apply to the bioenergy industry, which bridges both ecological and economic systems. 

Fortunately, a variety of representative models constructed in prior studies can help fill the 

knowledge gaps and assist in bioenergy industry planning (Lychnaras and Schneider, 2011, 

Scheffran and BenDor, 2009, Schneider and McCarl, 2003, Walsh, 2000).  

The spatial-agent system dynamic model described in Scheffran and BenDor (2009) uses a 
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spatial array of uniform grid cells to index the position of individual farmers in the landscape 

as well as their crop yields and costs so as to act as heterogeneous agents while the model 

constructed by Schneider and McCarl (2003) is a partial equilibrium model which links 

agricultural commodity markets to regionalized cropping systems. In this study, we combine 

features from both models: We borrow from the former's structural framework and the latter's 

mathematical expression to develop a new spatial-agent dynamic model of optimized 

agricultural land use. This model is designed to describe annually recurring farmers' decisions 

on the allocation of land to crop types and crop mix.  

The dynamic characteristic of this model mainly arises from two factors. First, heterogeneous 

environmental features related to soil types, climate conditions and other variables can easily 

create diverse conditions for the cultivation of conventional crops, implying non-uniform 

opportunity costs for energy crops introduced into site-specific cultivation patterns. Second, 

single farmer's decisions on land use heavily depend on the whole market signals, meaning 

the prices of commodity markets and factor markets, which, in turn, are decided by the ability 

and willingness of other farmers within the system boundary to plant and cultivate candidate 

crops. That is to say, the famers interacting as a network of agents can aggregately change the 

course of energy crops introduction. Given such analysis, it is important to understand and 

translate into the model the process of how the individual decisions of farmer agents located 

in differentiated areas affect the behavior of agriculture in the province as a whole. 

The aggregated farmers on the county level are spatial agents in our model. As is the reality in 

the Jiangsu province and commonly seen in some other developing countries, countless 

peasant farmers scatter over a large area. Thus it is more feasible to aggregate the farmers in 

each of 70 counties as distinctive agents rather than directly introduce millions of individual 

farmers to our model. 

 

4.3.2 The structure of the spatial-agent dynamic model 

Our spatial-agent dynamic model is constructed to emulate the decision making process of 

heterogeneous farmers and to assess the impact of energy crops on agriculture markets, the 

development of the coastal area, and environmental effects. This model includes the following 
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key components: natural and human resource endowments, markets for agricultural 

production factors and for primary agricultural commodities, options for land management, 

regional development and agricultural, energy policies.  

Similar to other mathematical optimization problems, this model is composed of an objective 

function and a set of constraining equations. The objective function maximizes the net present 

value of total agricultural economic surplus over a 25-year horizon on a year-by-year basis. 

The constraining equations define the convex feasible region for all variables which are listed 

in Table 4-3: 

Table 4-3 Model equations and variables 

Model 

feature 

Item Description 

E
qu

at
io

n 

Arable land limits 
The cultivated and available land in each county in each year is limited 

to given endowments. 

Mudflat limits 

According to Jiangsu's official directive, a limited area of reclaimed 

mudflats mainly scattered in the coastal counties can be devoted to 

energy crop plantations. 

Plantation 

dynamics 

The area of energy crop plantations in higher age classes cannot exceed 

the area of the corresponding previous age class in the previous period. 

Crop choice 

Cropping activities are restricted to a linear combination of historically 

observed choices. Onal and McCarl (1991) find that historical crop mix 

restrictions implicitly embody numerous farming constraints, which are 

difficult to observe. These include crop rotation considerations, 

perceived risk reactions, and a variety of natural conditions.  

Biomass demand 
The production of biomass as feedstock for bioenergy is exogenously 

given. 

Food demand Food production needs to satisfy minimum food demand.  

D
ec

is
io

n 

va
ri

ab
le

s 

The cultivated area 

of each crop  

Cultivated area includes arable lands and mudflats. 

Crop refers to both conventional crops and energy crops. 

The weights of 

historical crop 

mixes 

The weights of historical land use patterns for decisions on land use in 

future years. 

The food import 

and export 

Inter-provincial trade 

 

Solving the model requires finding an optimal level for all endogenous variables subject to 

compliance with all constraining equations. The optimal values of decision variables 
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maximize the economic surplus of the agricultural sector. In our model, the economic surplus 

is computed as the sum of consumer surplus in all commodity markets, producer surplus in all 

factor markets and governmental net payments to the agricultural sector minus unspecific 

variable production cost and the cost of mudflat reclamation. As discussed by McCarl and 

Spreen, maximization of consumer and producer surplus yields the competitive market 

equilibrium. Thus, the optimal variable levels can be interpreted as likely equilibrium levels 

for agricultural activities under given economic, political and technological conditions. 

Simultaneously, the shadow prices, identical to the marginal values of the biomass and food 

demand constraint equations, give market-clearing prices of food and biomass feedstock. A 

detailed description of spatial-agent dynamic model is presented in the appendix. 

 

4.4 Simulation results 

4.4.1 Land use change in facing the introduction of energy crops 

Derived from historically observed data of land use patterns in the Jiangsu province, this 

model offers us the optimal path of biomass feedstock supply facing a continuously growing 

biomass demand, and depicts the land use for conventional crops and energy crops year by 

year. For simplicity, here we only focus on land uses in the year 2030, the final year of the 

model's timeframe. Due to the absence of real energy crop plantations, the land uses for 

conventional crops and energy crops are presented in two different ways: For the conventional 

crops, their land use changes are represented in Figure 4-3A, which are obtained by 

comparing the cultivated area of each crop in 2030 from our model result with those in 2010 

from historical data. Meanwhile, the land use for energy crops is directly picked from the 

simulation result and plotted in Figure 4-3B. 
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(A) Relative change in cultivated area in Jiangsu province between 2010 and 2030 

 

 

(B) Cultivated area of energy crops in Jiangsu province in 2030 

 

Figure 4-3 The projected pattern of land-use change in Jiangsu province in 2030 after 
introduction of energy crops  

Notes: 1. Data source of land use pattern in 2010: Statistic Yearbook of Rural Area in the Jiangsu Province 

(2011). 2. The white polygons mean that there is no plantation of certain kinds of crop in the corresponding 

counties. 

 

The land use pattern reveals two characteristics: (1) The expansion of summer crops, i.e. 

wheat and oilseed rape in this model are mainly concentrated in southern Jiangsu, with oilseed 
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rape having a tremendous boost (for example, its cultivated area has expanded 20 times in 

Wuxi city, 13 times in Kunshan county), thanks to its higher output of unit biomass output 

compared to wheat. (2) Among the autumn crops, no counties appear to be attractive to all 

crops, reflecting a differentiated land use pattern for different crops. For non-glutinous-rice, a 

crop planted broadly in autumn, its enlargement can be mainly found in southern Jiangsu, 

whereas the preferred area for cotton plantation is northern Jiangsu. For cotton, the promising 

cultivated area is located generally along the axis stretching from northwest to southeast, 

crossing the southern part of northern Jiangsu and the whole central Jiangsu. 

Medium-indiea-rice is mainly scattered along the east boundary of the Jiangsu province. 

Compared to other autumn crops, the general pattern for beans plantation, however, cannot be 

directly drawn from the figure. 

In terms of energy crops, they are designed to be planted both on arable lands and newly 

reclaimed mudflats. Given the biomass utilization targets, the energy crops are seen to be 

introduced to the arable lands in only four out of seventy counties (i.e. in Jiangyin, Donghai, 

Huai'an and Jurong county) and to the reclaimed mudflats in four out of ten counties (Hai'an, 

Ganyu, Dongtai and Dafeng county). When focusing on the arable lands for energy crop 

plantations, it is unsurprising to see that the allocation of arable lands between energy crops 

and conventional crops are complementary to each other. The contracted areas for 

conventional crops in these four counties have virtually paved the way for introduction of 

energy crops. In other words, our model suggests the plantation of energy crops to be started 

from these counties. 

In addition, the model has simultaneously demonstrated that giantreed, among four kinds of 

energy crops, is the most profitable type for our case region, a simulation result that can 

support strategies for promoting energy crops. But this conclusion heavily relies on the 

calculation of cost and benefit data without taking into consideration the potential biodiversity 

risk and other environmental side effects, as this kind of information cannot be exploited from 

small-scale experimental data. 
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Figure 4-4 The projected shadow price of arable land in summer and autumn in Jiangsu 
province between 2011-2030 

Figure 4-4 presents the rent of arable lands for biomass feedstock production, both in summer 

and autumn. The two curves in the figure vividly describe the farmers "self-adaptation 

process" and hence can be regarded as "learning curves" of farmers. 

Because of the unprecedented introduction of biomass demand in 2011, the farmers familiar 

with their custom land use patterns are reluctant to react to the new requirement, 

corresponding to a high rent of arable lands for biomass production. Thanks to the farmers' 

annual decision making on land resources allocation, they can be trained on how to 

simultaneously balance the needs of both food and energy. When the farmers get more and 

more experienced, the rent of arable lands could correspondingly go down. But nevertheless, 

the rent of arable lands in summer soars during the initial years, as the biomass demand 

stimulates the expansion of cultivated areas of both wheat and oilseed rape. Besides that, the 

seasonal differences of land rent are expected to be faded out along with the optimization of 

land use. This behavior can be ascribed to the introduction of energy crops, which functions 

as a bridge to connect the land use patterns in summer and autumn. 
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4.4.2 Biomass feedstock supply 

Following the analysis above, the sources of biomass feedstock supply are already clear 

(Figure 4-5). The straws from conventional crops constitute the main source of biomass 

feedstock, contributing more than 85% of the total supply. Among those, two large-scale 

planted crops (wheat in summer and non-glutinous-rice in autumn) lead the sources. 

Following those are corn, oilseed rape, medium-indiea-rice and beans. Cotton is the smallest 

contributor. Their relative positions in the biomass supply ranking list hold unchanged 

throughout the twenty years of projection, reflecting a stable reproduction of the crop mix 

described in the item of crop choice in Table 4-3.  

Different from the expansion of conventional crops, the participation of energy crops has 

dramatically enhanced during the same time period, with their share to the total biomass 

supply soaring from just 2% in 2011 to 15% in 2030. Furthermore, disclosed by our model, 

the energy crops are firstly suggested to be planted on reclaimed mudflats and then on arable 

land. However, the amount of biomass from energy crops on arable land experiences a speedy 

growth and is expected to surpass the part from mudflats in the year 2029. Actually, since 

2024 the cultivated area of energy crops on mudflats is leveling out at around 47 ha, forcing 

the biomass output from this area to reach a plateau at 1.5 million tonnes.  

Besides plotting the composition of biomass feedstock, Figure 4-5 draws out its shadow price 

under the current policy conditions, reflecting the unit price of biomass the society is willing 

to pay. Due to the model's dynamic characteristic, we compute a 10-year moving average 

value of the shadow price and this number, as shown in Figure 4-5, keeps on growing. This 

happens because along with the soaring biomass feedstock demand, the competition between 

conventional crops and energy crops for favorably limited resources, including arable lands, 

labors, fertilizers, pesticides and so on, becomes fierce, implicating an increasing opportunity 

cost of biomass production. This increasing tendency sustains across the whole timeframe 

though, with a clear turning point of the growth rate in 2024, when the momentum apparently 

weakens. Such phenomenon can be explained by the use of mudflats, the cost of which 

greatly outweighs other factors. As we have analyzed before, since 2024 the newly reclaimed 

mudflats for energy crop plantations are so few that they can be neglected. Therefore, this 
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expenditure can be cut off from the total expenditure, which significantly slows down the 

increasing pace of total cost.  

 

Figure 4-5 The projected biomass feedstock supply and its shadow price in Jiangsu 
province between 2011-2030 

4.4.3 Sensitivity analysis 1: Biomass feedstock demand 

As we repeatedly mentioned, the simulation results represent an optimal solution to meeting 

the biomass feedstock demand set by the official development plan. This implies that the 

biomass feedstock supply and the corresponding land use change are highly relevant to this 

given precondition. In order to test the robustness of conclusions drawn under the basic 

scenario as well as to explore the land use change to other bioenergy development targets, a 

sensitivity analysis on biomass feedstock demand is introduced in this section. Specifically, 

four alternative biomass demand scenarios are employed. While two scenarios are set to 

simulate the reduced demand, the other two are designed to the amplified demand (Figure 

4-6). 
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4.4.3.1 Competition between conventional and energy crops 

 

 

 

 

 

 

 

Figure 4-6 The projected share of biomass from energy crops in biomass feedstock 
supply in Jiangsu province between 2011-2030 

Note: Under scenario 1 and 2 (amplified demand scenarios), the given biomass demand equals to 1.2 and 

1.5 times the amount of the basic scenario, respectively. In scenario 3 and 4, the respective demand 

multipliers are 0.5 and 0.8. 

 

By comparing the shares of biomass feedstock from conventional crops and energy crops, we 

can conclude that while straw from conventional crops holds the predominant status in the 

biomass supply, energy crops play a subordinate and complementary role. This land use 

pattern involving both conventional crops and energy crops is, on the one hand, a 

compromising result of the model, balancing all the physical and societal constraints; and, on 

the other hand, a cost-effective way to supply sufficient biomass and maintain food security 

by means of fully exploiting the dual-use of conventional crops (both food and energy use) 

and the single-use of energy crops (only energy use). A gradual and small-scale introduction 

of energy crops at the initial stage suggested by the model helps to realize a smooth transition 
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process of the local agriculture sector switching from food-oriented to both food- and 

energy-oriented, and to avert the potential resistance from local farmers heavily relying on 

their familiar cultivation customs. However, it is worth noting that all the planning of energy 

crops discussed here is based on the condition of the approved biomass feedstock demand, 

which serves virtually as a guidance to regulate the development direction and scale of the 

bioenergy industry. Different development targets should probably lead to their corresponding 

land use patterns. And this argument can be verified by the following sensitivity analysis. We 

find that the land use pattern before and after the introduction of energy crops is highly 

sensitive to the level of biomass demand. For example, once the target rises by 20% (scenario 

1), the share of energy crops in biomass supply will ascend by more than 15%. If the goal is 

set higher by another 30% (scenario 2), the responsive energy crops will contribute half of the 

supply in the terminal years, increasing by about 35% compared to its performance in the 

basic scenario. Instead, once the demand curtails by 20% or more (scenario 3 and 4), energy 

crops will be totally ruled out from the combination of biomass supply sources. Thus, an 

appropriate target of biomass feedstock demand is undoubtedly a pillar of the success of 

popularizing modern bioenergy in the Jiangsu province. 

 

4.4.3.2 Land-use patterns in the three sub-regions 

Going beyond displays on the provincial level, the share of energy crops is also shown in a 

different way on the sub-region level. In general, over a period of twenty-years the change of 

the participation ratio of energy crops on arable lands shares a similar pattern in both seasons 

with only a tiny different in the absolute value of the ratio. Because of the more competitive 

land use allocation in autumn, the share of energy crops in this season is lower. 
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Figure 4-7 The projected energy crop share on arable land in autumn in Jiangsu 
province between 2011-2030 

Note: Under scenario 1 and 2 (amplified demand scenarios), the exogenous biomass demands are 1.2 times 

and 1.5 times as much as the level in basic scenario. 

Figure 4-7 delineates the cultivation of energy crops on arable land in autumn for each of the 

three sub-regions of the Jiangsu province. As mentioned above, there is no introduction of 

energy crops in the reduced demand scenarios. Thus, scenarios 3 and 4 will not be shown in 

Figure 4-7. Furthermore, except for the case of mudflats, energy crops are not planted on 

arable land in the central Jiangsu region at all. Therefore, this area is not included in the 

figure. 

When we focus on the response of energy crops to the soaring biomass demand, a distinct 

hurdle of the participation ratio facing the southern part is revealed by our model. The bold 

lines composed of black symbols shown in Figure 4-7 suggest that the cultivation of energy 

crops on arable land in southern Jiangsu should not exceed about 10% of the total arable land 

resource, no matter what level of biomass demand is expected. This recommendation on 

energy crops proposed by the model reminds us of the high priority of maintaining food 

security in the process of promoting energy crop plantations. Although the southern part of 
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Jiangsu in the short term is more profitable than the northern part, the most promising area for 

the large-scale cultivation of energy crops, in the long term, is northern Jiangsu. This finding 

disclosed by our model agrees with the official orientation towards the northern part as a 

future bioenergy production basis, which was pointed out in the "Development Plan for the 

Coastal area of Jiangsu Province" in 2009 (China National Development and Reform 

Commission (CNDRC), 2009).  

4.4.4 Sensitivity analysis 2: The role of mudflats 

This section analyzes the value of mudflats for the realization of bioenergy targets. We 

compare the basic scenario, where a certain fraction of mudflats is available for energy crops, 

with a situation in which all mudflats are excluded. Figure 4-8 shows the role of mudflats 

using four indicators. 

According to our model results, we can draw the general conclusion that the availability of 

mudflats for energy crop plantations can significantly alleviate land use conflicts in all aspects. 

It substantially lowers the prices of both biomass feedstock and arable land. For example, the 

introduction of mudflats decreases the biomass price by about 100 CNY/t in early years and 

this more acceptable price would facilitate the market acceptance of biomass on the demand 

side. On the supply side, mudflats reduce the rent of arable lands by 150 CNY/ha in autumn 

on average.  

In addition, the mudflats help to produce an additional amount of about 0.75 million tonnes of 

food for cross-boundary food trade (0.65 million tonnes more wheat and medium-indiea-rice 

for export, 0.10 million tonnes less beans and corn for import in 2030), accounting for 3.59% 

of total amount of food trade in the same year. Besides that, they can save up to 2% of the 

total arable land in the final year under the basic scenario. 

However, from the view of time scale, the impact of mudflats on these four indicators 

performs differently. For shadow prices of biomass feedstock and arable land, the gap 

between scenarios with and without mudflats are diminishing along with the promotion of 

energy crops. This is believed to be the consequence of the self-adaptation of the farmers 

simulated by our optimization model. Mudflats, as the replacement of arable lands for energy 

crop plantations, can actually function as a safe cushion against the potentially dramatic land 
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use change facing unprecedented biomass needs. And in pace with the downward learning 

curve of farmers, the buffering action offered by mudflats disappears in the end. 

                        A                                        B 

                       C                                        D 

Figure 4-8 The role of mudflats in (A) biomass shadow price, (B) arable land shadow 
price, (C) food trade and (D) fraction of energy crops in arable land in Jiangsu province 

between 2011-2030 

To the opposite, in terms of food trade, the effect of mudflats has enhanced rather than 

weakened in the future. This can be explained by the increasing usage of arable land for 

energy crops. Without the participation of mudflats, the needed energy crops will be 

exclusively planted on arable lands and correspondingly, the total area for food crops is forced 

to be contracted, leading to an increasing loss of food production. Besides, the difference in 
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the ratio of shares for the two scenarios of the fourth indicator exactly equals the portion of 

energy crops planted on mudflats. Echoing the usage of mudflats discussed before, the gap 

between the two curves enlarges at first and then keeps stable since the year 2024. 

 

4.5 Conclusions and discussion 

In this analysis, we have studied the economic feasibility of a planned development target of 

the bioenergy industry in the Jiangsu province and the implications of this development plan 

for agricultural land use. In addition, we have examined the land use changes on the 

provincial and sub-regional level under different development targets and the role of mudflats 

on alleviating land use conflict. From our simulation, some insights can be gained: (1) Facing 

the introduction of energy crops, there is a seasonal difference in land use change. For 

summer crops, the expansion of their cultivation mainly occurs in northern Jiangsu. But there 

is no such a uniform pattern for all crops in autumn. (2) Energy crops are suggested to be 

introduced first to Jiangyin, Donghai, Huai'an and Jurong counties on their arable lands and 

on reclaimed mudflats in Hai'an, Ganyu, Dongtai and Dafeng counties. The most profitable 

energy crop is giant reed. (3) Compared to the biomass from energy crops, the straws from 

conventional crops contribute the absolute majority of biomass supply, accounting for more 

than 85% of the total amount. Among these crops, wheat and non-glutinous-rice top the chart 

of biomass feedstock supply and are followed by corn, oilseed rape, medium-indiea-rice, 

beans and cotton. (4) On the provincial level, the spatial distribution and plantation scale of 

energy crops heavily rely on the bioenergy development target. The model shows that an 80% 

amount of the officially approved biomass demand can directly lead to the elimination of 

energy crops on Jiangsu's soil. (5) On the sub-regional level, the model recommends the 

introduction of energy crops starting from southern Jiangsu. But in the long term, northern 

Jiangsu becomes the main bioenergy production basis. (6) Reclaimed mudflats, as the 

replacement of arable lands for energy crop plantations, are quite helpful in alleviating the 

potential land use conflict incited by the introduction of unprecedented biomass feedstock 

production. The quantitative results demonstrate that mudflats can reduce the biomass price 

by 100 CNY/t and arable land cost by 200 CNY/ha, produce an additional amount of 0.75 



83 

 

million tonnes of food for its across-boundary trade, and save up to 2% of arable land on 

average. But, in the meantime, we need to notice that this relief effect would gradually be 

eroded by the farmers' self-adaptation mechanism.  

Considering its limitations, this model can be extended in the following two directions: First, 

the import of high-qualified field data of energy crop plantations, which is believed to greatly 

advance the prediction of energy crop selection and distribution. Besides that, parallel to the 

independent but inter-linked biomass supply agents, the biomass demand side can also be 

deconstructed into different kinds of biomass utilization agents, for example, the biorefineries 

and biomass-based power plants in the Jiangsu province. More research on the biomass 

feedstock demand side would be meaningful.
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Appendix II The spatial-agent dynamic model specification  

 

The general formulation of the county-level dynamic agent-based model maximizes the present value of the 

total profits across the whole time frame of a system covering the cultivation of both conventional crops 

and energy crops, subject to resources endowment constraints, energy crops transition constraints, 

cultivation selection constraints and product demand constraints.  

 

Indices: 

u: county-level regions /Nanjing, Pukou, Liuhe, Shushui, Gaochun, Wuxi, Jiangyin, Yixing, Xuzhou, 

Fengxian, Peixian, Tongshan, Suining, Xinyi, Pizhou, Changzhou, Wujin, Liyang, Jintan, Suzhou, 

Changshu, Zhangjiagang, Kunshan, Wujiang, Taicang, Nantong, Tongzhou, Hai-an, Rudong, Qidong, 

Rugao, Haimen, Lianyungang, Ganyu, Donghai, Guanyun, Guannan, Huai-an, Lianshui, Hongze, Xuyi, 

Jinhu, Yancheng, Yandu, Xiangshui, Binhai, Funing, Sheyang, Jianhu, Dongtai, Dafeng, Yangzhou, 

Baoying, Yizheng, Gaoyou, Jiangdu, Zhenjiang, Dantu, Danyang, Yangzhong, Jurong, Taizhou, Xinghua, 

Jingjiang, Taixing, Jiangyan, Suqian, Shuyang, Siyang, Sihong/  

fc: food crops /wheat, oilseed-rape, medium-indiea-rice, non-glutinous-rice, beans, corn, cotton/ 

sc: summer crops /wheat, oilseed-rape/ 

ac: autumn crops /medium-indiea-rice, non-glutinous-rice, beans, corn, cotton/ 

pc: perennial crops /switchgrass, miscanthus, silverreed, giantreed / 

pr: products /wheat, seeds, medium-indiea-rice, non-glutinous-rice, beans, corn, cotton, straw/ 

pr_food: non-biomass products /wheat, seeds, medium-indiea-rice, non-glutinous-rice, beans, corn, cotton/ 

pr_energy: products as bioenergy feedstock /straw/ 

t: time horizon /2006-2020/ 

s: the current policy scenario /s1 / 

n: crop season /summer, autumn/ 
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a: crop age /1,2,…,20/ 

ht: historical year /2000-2010/ 

inp: the input factors during crop field management /land, labor-self, labor-employed, water, n-fertilizer, 

p-fertilizer, k-fertilizer, o-fertilizer, pesticide, agricultural-film, diesel, electricity/ 

 

Exogenous data: 

, , , ,
foodcrop

u fc pr t ny : yield of food crop (103 t/103 ha)  

, _ ,
perennial crop
pc pr energy ay : yield of perennial crop (103 t/103 ha)  

, ,pr t sps : price subsidy (103 CNY/103 t) 

, _ ,
grains
u pr food tv : price of non-biomass product (103 CNY/103 t) 

, , ,
food crop

u fc t ssub : land subsidy for conventional crops (103 CNY/103 ha)  

, , ,
perennial crop

u pc t ssub : land subsidy for perennial crops (103 CNY/103 ha)  

mudflatc : reclamation cost of mudflats (103 CNY/103 ha) 

,
land
u tb : total arable land area (103 ha) 

,
mudflat
u tb : mudflats resource potential (103 ha) 

, , ,u fc ht nh : historical cultivation data (103 ha) 

pck : expected lifespan of perennial crops (year)  

t

biomassdema : demand of bioenergy feedstock (103 t) 

grains
tdema : demand of grains (103 t) 

r: discount rate 

u : proportion of straw for energy-end use (electricity and biofuels) to its total amount (%) 

 : ratio of straw from main food crops (wheat, oilseed-rape, medium-indiea-rice, non-glutinous-rice corn, 
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cotton, beans) to its provincial potential (%) 

, ,
arableland
u pc arestvalue : rest value of perennial crop in arable land (103 CNY/103 ha) 

, ,
mudflat
u pc arestvalue : rest value of perennial crop in mudflats (103 CNY/103 ha) 

, ,
food crop

u fc nrestvalue : rest value of food crop (103 CNY/103 ha) 

, , ,
conventional crop
fc t inp uconsumption : consumption of input factors for conventional crops' cultivation (103 ha/103 ha, 103 

d/103 ha, 103 m3/103 ha, 103 kg/103 ha, 103 kWh/103 ha)  

, ,
perennial crop
pc a inpconsumption : consumption of input factors for perennial crops' cultivation  (103 ha/103 ha, 103 

d/103 ha, 103 m3/103 ha, t/103 ha, 103 kWh/103 ha)  

, , ,
ccinput
fc t inp uv : price of input factors for food crops (103 CNY/103 ha, 103 CNY/103 d, 103 CNY/103 m3, 103 

CNY/t, 103 CNY/103 kWh)  

, ,
pcinput
t inp uv : price of input factors for perennial crops (103 CNY/103 ha, 103 CNY/103 d, 103 CNY/103 m3, 103 

CNY/t, 103 CNY/103 kWh) 

 

Decision variables: 

, , ,
food crop

u fc t nLAND :  cultivated area for food crops in arable land (103 ha) 

, , ,
perennial crop

u pc t aLAND : cultivated area for perennial crops in arable land (103 ha) 

, , ,
mudflat
u pc t aLAND : cultivated area for perennial crops in reclaimed mudflats (103 ha) 

, ,u ht nCMIX : weights of historical data  

biomass
tPRICE : endogenous price of biomass (103 CNY/103 t) 

,fc tFOODFLOW : import or export amount of food trade (103 t) 
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Objective function: 

Max WELF = 

 

 

, , _ , , , , , _ , _ , ,
, , _ ,

, , _ , , , , , _ , ,
, , _

(1 )
t

t

food crop food crop grains
u fc pr food t n u fc t n pr food t pr food t s

u fc pr food n

food crop food crop biomass
u fc pr energy t n u fc t n t pr energy t s

u fc pr ene

r

y LAND v ps

y LAND PRICE ps


 

    

     





 

,

, , , , , ,
, ,

, _ , , , , , , , _ , ,
, , _ ,

, , ,

[ ]

( )

rgy n

food crop foodcrop
u fc t n u fc t s

u fc n

perennial crop perennial crop mudflat biomass
pc pr energy a u pc t a u pc t a t pr energy t s

u pc pr energy a

per
u pc t a

LAND sub

y LAND LAND PRICE ps

LAND

 

      









 

 

, , , , , ,
, ,

, , , , , , , , , ,
,

(1 )

ennial crop mudflat perennial crop
u pc t a u pc t s

u pc a

t

perennial crop arableland mudflat mudflat
u pc t a u pc a u pc t a u pc a

u p

LAND sub

r

LAND restvalue LAND restvalue



 
 
 
 
 
 
 
 
 
 
 
 

     
  

  



 
'2030 '

,

, , , , , '2030 '
, ,

, , , , , 1,
, , , ,

, , ,

(1 )

+ (

t
c a

food crop food crop
u fc t n u fc n t

u fc n

t

t

mudflat mudflat mudflat
u pc t a u pc t a

u pc a u pc a

conventional cr
fc t inp u

LAND restvalue

r

c LAND LAND

consumption









 
 
 
  
 

  

 
  
 







 

 

, , , , , ,
, ,

, , , , , , , , , ,
, ,

)

( )

op ccinput food crop
fc t inp u u fc t n

u fc n inp

perennial crop pcinput perennial crop mudflat
pc a inp t inp u u pc t a u pc t a

u pc a inp

v LAND

consumption v LAND LAND

s

 
 
 
        
  
        


 

 
  (1) 

 

The objective function (1) of the model maximizes the present value of the net cash flows of the agriculture 

sector in the Jiangsu province across the whole time frame, as the total revenue minus costs. Specifically, 

the revenue of agriculture sector comprises of the sale of agricultural products, governmental agricultural 

subsidies and terminal values1. The cost mainly covers land resource, labor resource, fertilizers, pesticides 

and other auxiliary inputs. 

From line 1 to line 9, the revenue terms account for: 
                                                              
1 Terminal Values are estimated for every crop. For energy crops, it is calculated as the Present Value of future 

profits of the rest of the productive life of the cultivation. This is equal to (P Y ) (1 r)
t

t t t
t

PV PC


     , where 

tP  is the price of the crop's product in period t, tY  is the yield and tPC  is the production cost. 
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a) the sales revenue of non-biomass from conventional crops 

b) the sales revenue of biomass from conventional crops 

c) the plantation subsidy on conventional crops 

d) the sales revenue of biomass from energy crops 

e) the plantation subsidy on energy crops 

f) the rest value of energy crops in the terminal year 

g) the rest value of conventional crops in the terminal year 

 

Starting from line 10 of the objective function, the cost items are: 

h) the reclamation cost of mudflats 

i) the cost of production inputs for conventional crops 

j) the cost of production inputs for energy crops  

 

Subject to: 

The most fundamental physical constraint on crop cultivation arises from the use of scarce and immobile 

resources. Particularly, the use of agricultural land is limited by given regional endowments of arable land 

and mudflat resources. In the following expressions, ,
land
u tb denotes total arable land area in region u, year t 

and ,
mudflat
u tb is total arable land area for costal mudflat region in region u, year t. 

 , , , , , , ,
,

+ , ,food crop perennial crop lan d
u fc t n u pc t a u t

fc pc a

LAND LAND b u t n     (2) 

 , , , ,
, '2006 '

,
t

mudflat mudflat
u pc t a u t

pc a t

LAND b u t


    (3) 

Equation block (2) requires the sum of the arable lands allocated to certain types of crop plantation 

(including both conventional crops and energy crops) in one crop season be smaller than the amount of 

locally accessible arable land resources, no matter which kind of field management has been adopted. This, 

to some extent, reflects the fact of land use conflict between food crops and energy crops. Similarly, for 

equation block (3), it applies the same structure as block (2). The difference lies in that block (3) proposes 
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the limitation on mudflat resources and reclaimed mudflats are only dedicated to pc, which is energy crop. 

As considering Jiangsu’s unique feature of having large area of mudflats located along its coast, equation 

block (3) offers us a solution that the plantation of energy crop on mudflats may be a feasible and cost 

effective way to secure enough biomass provision for energy purpose while decreasing its negative 

influences on food security as much as possible. 

 , , 1, , , ,
, , , ,

,mudflat mudflat
u pc t a u pc t a

pc a u pc t a

LAND LAND u t      (4) 

Equation block (4) assures that the reclamation process is irreversible. That means the accumulated 

cultivation area for energy crops in mudflats can only be enlarged. This assumption is consistent with an up 

tendency of biomass demand. 
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     (5) 

Equation block (5) is targeted for perennial crops’ consistency. Considering its natural death or farmers’ 

active eradication, the plantation area of certain kind of perennial crop would never be larger but only 

smaller than or be equal to the area of itself in the prior year. 

The fifth set of constraints addresses aggregation related aspects of farmers’ decision process. These 

constraints force farmers’ cropping activities , , ,
food crop

u fc t nLAND either in summer or in autumn to fall within a 

convex combination of historically observed seasonal choices , , ,u fc ht nh  (Eq. (6)). Based on decomposition 

and economic duality theory, Onal and McCarl (1991) show that historical crop mixes represent rational 

choices embodying numerous farm resource constraints, crop rotation considerations, perceived risk 

reactions, and a variety of natural conditions. In (6), the , , ,u fc ht nh  coefficient contains the observed crop 

mix levels for the latest 11 years (they are from 2000 to 2011). , ,u ht nCMIX are positive, endogenous 

variables indexed by historical year and region, whose level will be determined during the optimization 

process. 

  , , , , , , , , , 2010 20300 , , ,food crop
u fc ht n u t ht n u fc t n t

ht

h CMIX LAND u fc t n        (6) 

However, crop mix constraints are not applied to the crops, which under certain policy scenarios are 

expected to expand far beyond the upper bound of historical relative shares (Schneider et al., 2007). As the 
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cultivation area of energy crops is expected to greatly expanded in the future, these crops are naturally 

excluded from this equation block. 
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The supply and demand balance of biomass is represented in equation block (7). The first item denotes the 

biomass demand in a certain year. The second item denotes the biomass from traditional food crops, namely 

crop straw and the last term represents the biomass from perennial crops grown either on arable land or 

reclaimed mudflats. This expression fully secures the achievement of biomass development target in due 

year. 

  , , , _ , , , , , ,
, , _ ,

0 ,grains food crop food crop
fc t u fc pr food t n u fc t n fc t

u fc pr food n

dema y LAND FOODFLOW fc t       (8) 

Paralleling, the last constraint set defines the satisfaction to the requirement of food security in the 

background of bioenergy introduction. The first item is the demand of certain food, the following items 

stand for the produced food from planted conventional crops, and the last item means the gap between food 

demand and supply is filled by across-boundary food trade. 
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5 Optimizing the bioenergy industry infrastructure: transportation 

networks and bioenergy plants locations in the Jiangsu province1 

 

5.1 Introduction 

Due to emerging global environmental challenges and rising global demand of energy, the 

developing countries are investing and designing policies for alternative sources of energy to 

fulfill local energy demands of growing industrial sector and rising population. According to 

IEA’s statistic (2012), the global supply of bioenergy in 2010 reached 1277.08 Million tonnes 

of oil equivalent (Mtoe), ranking fourth after traditional fossil fuels- crude oil (4069.38 Mtoe), 

coal (3596.04 Mtoe) and natural gas (2719.10 Mtoe) but leading the contribution of renewable 

energy types. China has set a concrete development target for bioenergy: by 2020,  its total 

installed capacity of biopower generation will reach 30 GW by consuming 50 Million tonnes 

(Mt) of solid biomass fuel, and it will produce 10 Mt of bioethanol fuel and 2 Mt of biodiesel 

(China National Development and Reform Commission (CNDRC), 2007). 

Along with these ambitious bioenergy products mandates, considerable challenges to the 

bioenergy supply chain infrastructure are highly expected. Richard (2010) predicted that by 

mid-century biomass feedstock transport volumes are likely to exceed the combined capacity 

of current agricultural and energy supply chains including grain, petroleum, and coal. 

Therefore, in order to prevent such prediction from happening, sufficient investments are 

needed to overcome the technical and economic barriers across all stages of the supply chain 

of bioenergy- from crop plantation, feedstock harvesting, storage, transportation, and 

processing to bioenergy products distribution (Seelke and Yacobucci, 2007). Besides of 

optimal biomass feedstock supply, there are another three issues must be addressed in 

bioenergy industry construction: (1) the infrastructure requirements meeting local 

                                                              
1 This chapter is to be submitted to the peer reviewed journal "Energy Research & Social 
Science". 
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environmental and economic conditions; (2) an optimal design of bioenergy plants for an 

efficient conversion of biomass feedstock into bioenergy products through selecting 

appropriate processes; and (3) the cost-effective transportation and distribution networks of 

feedstocks and bioenergy products (Kang et al., 2010). 

Although transportation service is critical for the deployment of biomass feedstock and of 

bioenergy plants, this field has not been fully examined by existing academic literature. On 

the other hand, some policy reports have acknowledged the importance of new logistics, 

which are derived either from the emergence of renovated supply chain required for new 

bioenergy projects or from extra freight transport demand. However, the researches adopting 

quantitative analysis tools are quite rare (Bonilla and Whittaker, 2009).  

In order to fill these gaps, this chapter is to present an analytical dynamic modeling approach, 

which is based on our preceding optimal land use model for simulating the provision of 

biomass feedstock. We design this new model to determine the optimal locations and 

capacities of biomass-fired power plants and biorefineries, the delivery of biomass feedstock 

to bioenergy plants as well as the distributions of biopower, bioethanol and by-products. 

Furthermore, we also apply this model to evaluate the effects of two policies: the biomass 

preprocessing measure and the regional development policy. 

Along with these ambitious bioenergy products mandates, considerable challenges to the 

bioenergy supply chain infrastructure are highly expected. Richard (2010) predicted that by 

mid-century biomass feedstock transport volumes are likely to exceed the combined capacity 

of current agricultural and energy supply chains, including grain, petroleum, and coal. 

Therefore, in order to prevent such prediction from happening, sufficient investments are 

needed to overcome the technical and economic barriers across all stages of the supply chain 

of bioenergy- from crop plantation, feedstock harvesting, storage, transportation, and 

processing to bioenergy products distribution (Seelke and Yacobucci, 2007). Besides of 

optimal biomass feedstock supply, there are another three issues must be addressed in 

bioenergy industry construction: (i) the infrastructure requirements meeting local 

environmental and economic conditions; (ii) an optimal design of bioenergy plants for an 

efficient conversion of biomass feedstock into bioenergy products through selecting 
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appropriate processes; and (iii) the cost-effective transportation and distribution networks of 

feedstocks and bioenergy products (Kang, Önal, 2010). 

Although transportation is a critical service for the deployment of biomass feedstock and of 

bioenergy plants, the existing academic literatures and policy reports lack in depth analysis of 

biomass supply chain impacts on transportation. The importance of new logistics, derived 

from the emergence of renovated supply chain required for new biomass projects and from 

extra freight transport demand, is acknowledged in the policy literatures but detailed analysis 

with quantitative method is rarely done (Bonilla and Whittaker, 2009).  

In order to fill this research deficiency, this chapter is to present analytical dynamic modeling 

approach based on our preceding optimal land use model used for simulating biomass 

feedstock provision. The new model is designed to determine the optimal locations and 

capacities of biomass-fired power plants and biorefineries, delivery of biomass feedstock to 

bioenergy plants, and distributions of bio-power, bioethanol and by-products (bioslurry). 

Furthermore, the effects of biomass preprocessing measure and regional development policy 

can also be evaluated through this model. 

This chapter is divided into five sections. Section 2 presents some background information on 

bioenergy utilization in the Jiangsu province and key components of the optimal bioenergy 

industry infrastructure problem. Section 3 describes the structure of the dynamic agent based 

model, the data collection and processing procedures for certain parameters. Section 4 of the 

study discusses the model simulation results of different tests and scenarios. In the end, 

section 5 elaborates the conclusion and policy implications of the study.  

 

5.2 The optimal bioenergy production and distribution system 

5.2.1 Centralized energy generation versus decentralized energy generation 

Generally, with respect to utilization scale, the use of biomass feedstock can be categorized 

into three modes (Karekezi and Kithyoma, 2006) i.e. (i) Centralized energy generation from 

centralized biomass such as sugar factories which use agricultural wastes to generate heat and 

bio-power for their own consumption; (ii) Centralized energy generation from decentralized 
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biomass production, e.g. the corn-based bioethanol production, and (iii) Decentralized energy 

generation from decentralized feedstock, such as household biogas, which is widely adopted 

in China (Chang et al., 2011, Feng et al., 2009). However, considering the prominent 

contribution of large-scale bioenergy projects to regional development through mechanisms 

of promoting the modernization of traditional agriculture sector, the Chinese government 

seems to have a strong preference for centralized bioenergy systems in recent years (He et al., 

2013). 

The Jiangsu Province, locating on the eastern coast of China, shares the similar situation as 

discussed in above paragraph. Among various bioenergy products, bio-power is the biggest 

energy-purpose user of crop straw (Zhang, Zhang, 2012). By the end of 2012, 30 

demonstration projects of biomass-fired power plants with 0.803 GW installed capacity had 

been approved in the Jiangsu Province, of which 13 had already been successfully connected 

to the power grid. Most of these plants employ the direct combustion technology and are 

located in the northern and central sub-regions, digesting 3.6 Mt of crop straw (Yan, 2013) 

which is likely to rise to 6 Mt by 2015 (Executive Office of People's Government of Jiangsu 

Province (EOPGJP), 2010). As to bioethanol, E10 biofuel was officially introduced to 

northern Jiangsu in 2006. In accordance with an official development plan in 2008, four 

bioethanol plants, mainly using sweet potatoes as feedstock, will be built in the coming years 

in the cities of Lianyungang, Suqian, Yancheng and Xuzhou. In 2010, the annual production 

of E10 was estimated to have reached 4 billion tonnes (Xinhua Newspaper Group, 2008). In 

conclusion, the power generation and bioethanol production are the two predominant 

conversion processes in the Jiangsu province, which have received strong governmental 

support and thus developed better than other possible biomass utilization methods. 

 

5.2.2 Bioenergy industry transportation network and bioenergy plants locations 

Although the transportation network and the bioenergy plants locations are two components 

of bioenergy industry infrastructure, they are actually highly correlated, or even can be 

regarded as just two aspects of one issue. This argument can be explained by Figure 5-1. 

Different from biomass' traditional use as firewood, which involves biomass collection sites 
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and utilization sites (corresponding to biomass production nodes and demand nodes in Figure 

5-1A), modern bioenergy products can only be obtained through professional conversion 

processes. Thus, the third type of nodes, named "processing nodes", is to be introduced and 

inserted between two existing types (Figure 5-1B), which symbolizes the locations of 

bioenergy plants in reality. Once all the features of the processing nodes (meant to the type, 

production capacity and location of bioenergy plants in reality) are fixed, the scale and 

direction of material flows (i.e. the transportation network in the real world), including 

biomass feedstock flow, bioenergy products flow and bioenergy co-product flow, are 

simultaneously shaped between the different groups of nodes. In other words, the bioenergy 

plants locations can decide the pattern of bioenergy industry transportation network and vice 

versa. 

 

 

Figure 5-1 The material flows and nodes of the bioenergy industry 
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5.2.3 The optimal bioenergy industry infrastructure problem 

Through above analysis, it is clear that the optimal bioenergy industry infrastructure problem 

can be simplified as a bioenergy plant location problem. Economically, the latter problem can 

be formulated as searching for a trade-off between the economies of scale brought by 

concentrated bioenergy plants and the reduced transportation cost induced by diffuse plants.  

As a classical example in the linear programming, a facility location problem has been 

discussed for more than half a century. At the initial stage, the models are mainly designed to 

solve the problems relating to the food industry. In 1976, Fuller et al. developed a technique 

to solve large-scale mixed-integer plant-location problems (Fuller et al., 1976). They 

translated the location problem into a minimum-cost-flow network problem and solved it with 

a special purpose network code in conjunction with implicit enumeration. Using this 

technique, they successfully resolved the issue of a cotton-ginning sub-industry's least-cost 

organizational adjustment to exogenous factors. A year later, (Hilger et al., 1977) solved a 

grain sub-terminal location problem within northwestern Indiana, which could also be 

categorized into a mixed integer program, with Benders Decomposition technology.  

Along with the biomass conversion technology development, modern bioenergy utilization 

has gradually been a focus of researchers. English et al. (1981) introduced corn residue as an 

auxiliary fuel in coal-fired power plant and established a linear programming model 

representing Iowa's agricultural sector and biopower-producing complex to assess the 

economic feasibility of the biomass introduction to power industry. More recently, both the 

source of biomass feedstock and its utilization scale have been expanded. Besides that, the 

invention of a series of advanced software of linear programming has further boomed the 

development of bioenergy utilization. Since 2000, General Algebraic Modeling System 

(GAMS) was used in various studies related to biomass production problems such as Nienow 

et al. (2000) used GAMS to examine the cost competitiveness of plantation-produced woody 

biomass and waste wood in a co-firing power plant in northern Indiana. Kaylen et al. (2000) 

analyzed the economic feasibility of lignocellulosic bioethanol by using the same 

programming. Similarly GAMs with cplex solver for multi-region and multi-period was used 

for lignocellulosic bioethanol industry in Oklahoma, USA to establish a mixed integer 
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mathematical programming model to obtain the most economical source of lignocellulosic 

biomass, appropriate time for harvest and storage, inventory management as well as the scales 

and locations of biorefineries (Gelson et al., 2003, Mapemba et al., 2007). 

Besides of using GAMS to construct mathematical programming models, some other 

technologies have also been creatively adopted: For example, De La Torre Ugarte and Ray 

(2000) applied the framework of POLYSYS (The Policy Analysis System), a national 

simulation model of the US agriculture sector, to biomass and bioenergy subsector; 

Sokhansanj et al. (2006) developed the framework of a dynamic integrated biomass supply 

analysis and logistics model (IBSAL) using an object oriented high level simulation language 

EXTEND; Kumar et al. (2006) ranked biomass feedstock collection and transportation 

systems by developing a multi-criteria methodology; Eathington and Swenson (2007) 

proposed a GIS-based decision tool for the selection of sites, scales, and technologies of 

biorefineries. 

Compared with other methods, the mixed-integer optimization mathematical model is a 

relatively advanced research method, which embodies a meaningful economic perspective. 

Meanwhile, GAMS is a high-level modeling system for mathematical optimization, tailored 

for complex, large-scale modeling applications, which is fairly flexible and easy to connect to 

other software. By importing the simulated result from GAMS to ArcGIS for instance, the 

disadvantage of GAMS on visualization can be greatly compensated by ArcGIS powerful 

capability of geographic displays. Based on study objectives and pros and cons of various 

programming tools, we preferred to adopt the combination of both software (GAMs and 

ArcGIS) to execute the construction and demonstration of our optimizing model of bioenergy 

industry infrastructure. 

Following our previous research on optimizing the biomass feedstock provision in the Jiangsu 

province in Chapter 4, the transportation network together with facility locations is simulated 

in this new model. Different from above existing models which only focused on single 

bioenergy plant (either power plant or bio-refinery), this study covers both kinds of bioenergy 

plants. Furthermore, since bioslurry is suggested to be used as an organic fertilizer to crop 

cultivation, its delivery back to biomass source regions is also involved in this model. To sum 
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up, the conceptual framework of our model is showed in Figure 5-2. 

 

 

Figure 5-2 The framework of bioenergy industry infrastructure model 

5.3 The optimization model of bioenergy industry infrastructure in the Jiangsu Province 

5.3.1 The structure of the spatial-agent dynamic model 

Different from most existing studies in solving bioenergy plant location problem, which 

minimize the cost of all infrastructures of the bioenergy supply chain, our optimization model 

depicts the total benefit of the supply chain, implying that the benefit from bioenergy products 

selling is also covered. Thus, the optimization direction of our model is to maximize the total 

benefit. The advantage of this processing method is to integrate the bioenergy products 

demand curves into our model, so as to enable our model, as a simulation tool, to 

quantitatively assess the effects of various policies from the perspective of welfare economics. 

Although the application of bioenergy in China includes biological chemical transition 

(biogas and fuel alcohol), biomass gasification (power generation or thermal power 

coproduction), biomass liquefaction (biodiesel) and direct burning (boiler burning, dense 

burning and garbage burning) (China National Development and Reform Commission 

(CNDRC), 2012), only two bioenergy products (lignocellulosic biofuel and direct 

burning-generated power) are covered by our model in light of their current and envisioned 

shares in the local bioenergy market of Jiangsu province. The by-product of biofuel, bioslurry, 

is arranged to be sold as an organic fertilizer on farms, bringing extra benefits to the 

bioenergy plants. Therefore, the total revenue of the model comes from three sources- two 

bioenergy products, one by-product and governmental financial support. As to the cost part, 
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capital cost, operating cost, feedstock cost and transportation cost are all taken into 

consideration. The total benefit, formulated as the objective function of the model, is retrieved 

by subtracting the total cost from the total revenue. 

Besides of the objective function, a group of constraint equations consists of another 

indispensible component of programming models, which specifically regulate the physical, 

technical or other artificial conditions the model has to meet. In terms of decision variables, 

they are the simulation targets of models and mathematically their optimal solutions can 

warrant the objective function to reach its extreme value and, in the meantime, meet all the 

requirements set by the constraints. In our model the sizes and locations of bioenergy plants 

and the amount and direction of transport flows are included in this category. Table 5-1 

interprets the meaning of these constraints and decision variables occurred in our model. For 

more details, the mathematic expressions attached to this chapter can be referred to. 

 

5.3.2 Model parameterization 

5.3.2.1 Biomass feedstock provision 

A key data set needed in our optimization model of bioenergy industry infrastructure is the 

spatial and temporal distribution of biomass feedstock provision, i.e., the annual output of 

biomass feedstock in each county. As these projected data cannot be directly collected from 

reality, we have developed a biomass provision model to simulate the optimal biomass 

feedstock supply in the Jiangsu province ahead of this research. The results of biomass 

provision simulation are, therefore, introduced into the current model and used as an 

exogenous parameter. For simplicity, all different kinds of biomass feedstock are treated 

indifferently in our model with respect to their ash content, moisture, heat value, the content 

of lignocellulosic, structure, chemical composition and other features. Therefore, they share 

exactly the same combustion and refinement characteristics, one reason being that the 

large-scale differentiated performance data for each kind of biomass feedstock is inaccessible 

in the Jiangsu province. 

 

 



 

 

100

Table 5-1 The overview of model constraints and decision variables 

Model 

components 

Items Interpretation 

Constraints Total feedstock supply  The annual amount of biomass feedstock provision for 

bioenergy products production in each county is exogenously 

given. 

Bioenergy products 

conversion 

In the current technical conditions, the ideal conversion ratios 

of biomass feedstock to bioenergy products are fixed. 

Bioenergy plants 

capacity limitation 

Techno-economically, the maximum installed capacity of each 

single bioenergy plant as well as their minimum utilization 

efficiency is fixed. In addition, the maximum service life of 

installed devices is set at 15-year. 

Bioenergy products 

production 

The possible output of bioenergy products in each plant is 

capped by the maximum production capacity of that plant. 

Bioenergy products 

demand 

The output of bioenergy products or by-products should meet 

their demands in each county. 

Bioethanol and bioslurry 

balance 

As bioslurry is a by-product of bioethanol, there is an 

unchangeable proportion between these two products.  

Decision 

variables 

The sizes and locations 

of bioenergy plants 

These variables can specifically demonstrate for each county 

which type of bioenergy plants is installed at which level of 

production capacity in each year across the whole model 

timeframe. 

The transport amounts 

and directions of biomass 

feedstocks 

This group of variables gives the information about how many 

biomass feedstocks should be transported from which biomass 

source region to which bioenergy plant in every year during 

2011-2030.  

The transport amounts 

and directions of 

bioenergy products 

(byproducts) 

They tell us which kind of bioenergy products should be 

transported from which bioenergy plant to which county at 

which amount in every year throughout the whole projected 

time. 

 

5.3.2.2 The construction of transportation network 

For qualified candidates for bioenergy plants allocation, two vital conditions need to be met: 

an easy access to the local transportation network and the availability of sufficient water 

resource for bioenergy products producing. Since every county in the Jiangsu province is 

connected through an advanced road system and accessible to rich water resource, the whole 

Jiangsu province is suitable for accommodating bioenergy plants. 

In terms of the modes of freight transport, globally, mainly railways, trucks, ships and 
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pipelines are used as the means of the biomass transportation. Some studies have compared 

the cost between different ways of transshipment based on the practical data collected in the 

US and UK, and calculated the minimum economical shipping distance of each mode (Bonilla 

and Whittaker, 2009, Mahmudi and Flynn, 2006). Due to the highly advanced road networks 

and short shipping distances within the province, trucks are the common mean of biomass 

transportation in the Jiangsu Province. For this reason, we only consider this freight transport 

mode in this model. 

As an approximation, the whole area of each county is contracted to a point, the centroid of 

that county, and this point is treated both as an origin and destination for across-county freight 

shipping. In reality, the position of the centroid is equalized as the place where the county's 

administrative authorities locate. The distance between each pair of centroids can be collected 

from the official website of Bureau of Transportation of the Jiangsu province. 

 

5.3.2.3 Cost structure of bioenergy plants 

The total cost of running a bioenergy plant is composed by three main components (Kang, 

Önal, 2010): (i) annualized fixed cost, which includes the cost of land for bioenergy plants' 

physical structure (calculated on the basis of the rent of arable land and the size of occupied 

land), and the one-off investment on factory buildings and machinery; (ii) processing cost, 

which is proportional to the production capacity utilized (which can be assessed by the 

amount of biomass feedstock processed); and (iii) other costs related to operational expenses, 

such as labor and administrative expenses, which are linked to the installed capacity of plants. 

Through reviewing the academic literatures taking China as the case region, we adopt the 

following values listed in Table 5-2 for their corresponding parameters.  

 

5.3.2.4 Bioenergy products demand 

The level of bioenergy products demand in our model is mainly set in accordance with the 

officially proposed development goals of biofuel and biomass-based power. However, to 

introduce the values into the optimization model, there are still two more problems to address:  
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(1) how to translate the targets in the five-year plan into the annual targeted value across the 

whole time horizon; (2) how to break down the projected annual target on the provincial level 

into the county-level. 

 

Table 5-2 The cost structures of bioenergy plants used in the model 

Cost structure 

Type of plant 

Unit Annualized 

fixed cost 

Feedstock 

cost 

Operational 

cost 

Total Data source 

Biorefinery 103CNY/tonne 0.249 6.160 1.461 7.870 Jiang, Sun, 

2012b 

Power plant1 103CNY/MW 713 0.459 383.360 0.6022 Zhang, Zhang, 

2012  

Notes: 1. The preliminary cost data of operating power plant is excerpted from an internal report distributed 

on the "Biomass power plant Forum" hosted by Jiangsu Electric Power Industry Association in February, 

2012. 

2. The unit cost of power generation is calculated in the assumption that annual utilization hours of 

installed turbine are 7650 hours. In reality, due to the seasonal supply of biomass feedstock and equipment 

maintenance, the ideal utilization hours are hardly to be reached. In this case, the unit cost in reality should 

be higher than the 0.602 CNY/kwh and usually fluctuates around 0.8 CNY/kWh.  

 

In order to answer the first question, we adopt the regression analysis to analyze the original 

data. To be more specific, as the historical data about bioenergy products is available, we can 

combine their historical output and projected targets and set up a regression equation to 

interpolate the unknown values in the gap years. As to the by-product of biofuel, i.e. bioslurry, 

which is not included in the official development plan, we just hold the fixed proportional 

relationship between biofuel and bioslurry throughout the whole timeframe. Accordingly, the 

bioslurry demand can be confirmed, once the biofuel demand is projected.  

With regard to the second question, we apply different strategies to different bioenergy 

products and by-product. Firstly, let us take the demand of biomass-based power as an 

example to demonstrate the strategy. We collect historical data of each county’s power 

consumption from the statistical year book of Jiangsu province (2002-2011) and perform 

regression analysis which is further used to predict future total power demand of each county. 

The predicted power demand is the total amount of power, which includes not only 
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biomass-based power, but also other sources of power. Then we sum up the county-level 

power demands to the annually provincial power demand. Using this provincial amount as a 

reference, we can normalize each county's total power demand and finally obtain the share of 

each county's power demand to the provincial demand. This share is then used as a reference 

ratio to decompose the annual target of biomass-based power on the provincial level achieved 

in the first step into the county-level. Meanwhile, as the consumption data of motor gasoline 

in the Jiangsu province is inaccessible, we have to use the above ratio to decompose the 

annual biofuel target. As to the bioslurry target disintegration, we take the share of each 

county's biomass output to the provincial output as the distribution ratio. 

 

5.4 Simulation result 

5.4.1 The spatial distribution of bioenergy plants and their scales  

(1) The spatial distribution of bioenergy feedstock provision 

 

 

Figure 5-3 The projected distribution of biomass feedstock output in Jiangsu province in 
2030 
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Figure 5-3 shows the projected distribution of biomass feedstock provision in 2030. We 

assume that biomass feedstock provision comes from two sources - either from the straws of 

conventional crops or from energy crops. Specifically this study covered the cultivation of 

seven conventional crops (wheat, oilseed rape, medium-indiea-rice, non-glutinous-rice, corn, 

cotton and beans) and four energy crops (switchgrass, silverreed, giantreed and miscanthus). 

As shown in Figure 5-3, the source of biomass output in the Jiangsu province generally 

follows the principle of high output in the north and low in the south, with a tremendous gap 

between the counties. For example, the highest output recorded in Dongtai city (1 818.89 

thousand tonnes) is 32 times as much as the lowest output in Zhenjiang city (56.89 thousand 

tonnes). In terms of regional difference, the southern Jiangsu, owning an advanced secondary 

and tertiary industry and dense population, has a higher demand of energy. Therefore, given 

an obviously spatial disparity between biomass output and bioenergy demand, our research on 

optimizing the distribution of bioenergy plants and the related transportation network makes 

sense. 

 

(2) The distribution of biorefineries 

In order to intuitively present the simulation result of the layout of biorefineries, we use 

ArcGIS 10.2 platform's function of classification and symbolized display to visualize our 

numerical results. As we mentioned before, the classical facility location problem of 

bioenergy plants can be translated into a question of how to allocate a plant (i.e. "processing 

node" in our paper) between biomass feedstock supply region (i.e. "production node") and 

bioenergy products consumption center (i.e. "the demand node"). To answer this question, we 

project the distribution of biorefineries (the spots in Figure 5-4) on the layers of taking either 

the production nodes (the polygons in Figure 5-4A) or the demand nodes (the polygons in 

Figure 5-4B) and explore the correlations between the spots and the polygons. What we need 

to notice is that the biomass output data and bioenergy products data have been converted 

from absolute value into intensity so as to rule out the impact of county size. 
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                    A                                 B 

Figure 5-4 The projected distribution and scale of biorefineries in Jiangsu province on 
the layer of (A) production nodes and (B) the demand nodes in 2030 

 

According to Figure 5-4, the distribution of projected biorefineries in the Jiangsu province 

generally concentrates in three areas: In northern Jiangsu, the biorefineries are located along 

the axis stretching from northwest to southeast (especially, the axis consists of Fengxian- 

Tongshan- Suining- Suqian- Shuyang- Huai'an- Funing- Jianhu- Sheyang- Dafeng- Dongtai), 

whereas in central and southern Jiangsu, the counties the Yangtze river flows through as well 

as the ones surrounding the Shanghai city are favorable candidates. The only existing 

biorefinery located in huai’an county will be kept in 2030 and its scale will be retained at the 

current level.  

As to the scale of single biorefinery, a techno-economic analysis of cellulosic ethanol fuel 

production (Zheng, 2011) recommends to fix the maximum allowance level of installed 

capacity for a single biorefinery at 0.05 Mt. Furthermore, in view of the local demonstrative 

plant, biorefineries with two scales are introduced, i.e. 0.025 Mt and 0.05 Mt. Among the total 

31 biorefineries projected in 2030, 9 plants will equip the highest installed capacity, with 

other 22 plants each owning the capacity of 0.025 Mt. For the large scale biorefineries, 8 

plants will be equally partitioned into both northern and southern Jiangsu, with one plant 
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allocated in the central part. Because of the reasonable setting of biorefinery's scale, the 

production capacity in each projected biorefinery is fully exploited in the optimizing model. 

Comparing the consistency of spatial distribution of spots and polygons within two figures, 

Figure 5-4 (A) has a better uniform shape, implying that biorefineries are located more closely 

to biomass feedstock source regions rather than to bioethanol consumption centers. The 

reason to this phenomenon is the relatively costly transportation of biomass feedstock from 

source regions to biorefineries and bioslurry from biorefineries back to biomass source 

regions, compared to the delivery of bioethanol from biorefineries to bioethanol consumption 

centers (the transportation cost of biomass feedstock and bioslurry in total is 1.922 CNY/t.km 

and the cost of bioethanol is 0.708 CNY/t.km). Although this theory can explain the allocation 

of most biorefineries, there are several counties exceptionally located in the counties 

neighboring to the Shanghai city. The high demand for bioethanol there successfully 

outweighs its disadvantage of relatively scarce biomass output and thus, becomes the decisive 

factor to determine the biorefineries allocation. 

 

(3) The distribution of power plants 

 

                    A                                 B 

Figure 5-5 The projected distribution of power plants in Jiangsu province on the layer of 
(A) production nodes and (B) the demand nodes in 2030 
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Totally, 60 biomass-fired power plants are projected to be set up in 2030. Among those, all 

the currently existing plants will be preserved and almost every county is designed to build up 

a power plant on its soil. But for the location of large-scale power plants, a similar distribution 

principle to biorefineries can be seen: the northwest-southeast axis in northern Jiangsu and the 

belt along the Yangtze River across central and southern Jiangsu are maintained. The only 

difference lies in the absence of counties surrounding the Shanghai city. 

In terms of power plants' scales, three level scales are adopted- 15 MW, 30 MW and 45 MW- 

and the maximum allowance value of installed capacity for a single power plant is fixed at 45 

MW. In such a flexible system of power plants' scales, the utilization ratio of each plant is to 

reach 100% in 2030. The distribution of power plants has been listed in details in Table 5-3. 

 

Table 5-3 The projected sub-regionally differentiated distribution of power plants with a 
three-level scale in Jiangsu province in 2030 

Scales Existing power plants New power plants Total 

15MW 2 24 26 
Nor:2 Cen:- Sou:- Nor: 6 Cen:7 Sou:11 

30MW 3 13 16 
Nor:3 Cen:- Sou:- Nor: 8 Cen:3 Sou:2 

45MW 5 13 18 
Nor:3 Cen:2 Sou:- Nor: 8 Cen:3 Sou:2 

Note: the symbols of "nor", "cen" and "sou" represent for northern Jiangsu, central Jiangsu and southern 

Jiangsu respectively. 

 

As shown clearly in the above figure, the northern Jiangsu has been projected to 

accommodate large scale biomass-fired power plants (on the level of 45MW, 11 out of 18 

plants are located in northern Jiangsu and on the level of 30MW, this share rises up to 69%). 

Among 10 existing power plants, compared to their current production capabilities, the scale 

of six plants is to be improved, with another two to be the same and the last two to be 

contracted in 2030, which, above all, is generally consistent with the increasing tendency of 

power demand.  

To the facility location problem, the distribution of biomass power plants shares the same 

characteristic as biorefineries, also closing to the biomass source regions. The reason is 
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straightforward: biomass-based power, in the model, is designed to be integrated into grid. 

Therefore, the delivery of biomass feedstock is the only source of transportation cost and 

becomes the exclusive factor to determine the sites of biomass-fired power plants. 

Now we take the two kinds of bioenergy plants as a whole to consider the bioenergy projects 

implication in the Jiangsu province. Six counties, named "promising sites" for bioenergy 

plants allocation can be picked out among 70 candidates (northern Jiangsu: Shuyang, Huai’an 

and Dongtai county; central Jiangsu: Xinghua county; southern Jiangsu: Jurong and Jiangyin 

county). In our simulation, they accommodate both biorefineries and power plants with the 

largest scale and simultaneously rank among the top areas of biomass output. This overlap, to 

some degree, can be regarded as a proof for supporting our previous judgment that the main 

factor to determine the allocation of bioenergy plants is the pattern of biomass output rather 

than bioenergy products demand. Among three sub-regions, the performance of northern 

Jiangsu is more outstanding, in which up to 44% of new biorefineries and 62% of power 

plants with the largest scale are projected to be located. In this sense, the official orientation 

of northern Jiangsu as a modern bioenergy production base is confirmed by our model. 

 

5.4.2 The transportation of bioenergy  

In this section, our research focus moves on to the other pillar of the bioenergy infrastructure- 

the transportation network. In Figure 5-6, we delineate the projected transportation network of 

bioenergy industry in 2030. The first two pictures deal with the transportation of biomass 

feedstock, with Figure 5-6 (A) representing the delivery of biomass feedstock from supply 

areas to biorefineries and 5-5-6 (B) depicting the biomass source regions for each power plant. 

From the distribution of blank areas in both graphs - denoting no biomass supply for the 

corresponding type of bioenergy plant, a mutual exclusion of those areas in two plots can be 

observed, which is meant to be a highly coordinated distribution of two kinds of bioenergy 

plants. In the meantime, as disclosed by the simulation result, for the biomass source regions 

producing limited biomass feedstock, the highly specific biomass supply to only one kind of 

bioenergy plants rather than a mixed supply is more profitable. 
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                 A                                   B 

 

                C                                    D 

Figure 5-6 The projected transportation network of (A) biomass from supply bases to 
biorefineries (B) biomass from supply bases to power plants (C) biofuel from 

biorefineries to consumption centers and (D) bioslurry from biorefineries back to 
biomass supply bases in Jiangsu province in 2030 

Notes: The polygons with different colors are used to distinguish the biomass source region (or supply 

destination) for each bioenergy plant from the others. Specifically, the counties having the same color offer 

biomass foodstock to the same bioenergy plant (Figure 5-6 A and B) or they are the supply destination of 

bioenergy products from the same bioenergy plant (Figure 5-6 C and D).  
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Figure 5-6 (C) and (D) demonstrate the dissemination of product and by-product of 

biorefineries. Despite sharing the same production pattern, the dispatch of biofuel and 

bioslurry is fairly different, due to their spatially differentiated demand. As shown in Figure 

5-6 (C), the polygons with smaller scale in southern Jiangsu, symbolizing a shorter 

transportation distance of bioethanol than in the northern part, is the reflection of the northern 

part's weak bioethanol demand. That is to say, the output from a biorefinery in the northern 

part can cover a larger area than the one with the same production capacity in the south. 

Instead, the delivery of bioslurry performs more actively in northern Jiangsu, the main 

biomass source regions, which demand for a large amount of bioslurry as fertilizer. 

In addition, the smaller polygons in Figure 5-6 (A) and (B) than the ones in 5-6 (C) and (D) 

clearly reflect the fact that the scale of biomass feedstock shipping is always incomparable to 

that of bioenergy products. Table 5-4 gives us numerical evidences to support the above 

judgement. 

 

Table 5-4 The statistic indices of projected four cross-county transportation routes in 
Jiangsu province in 2030 

      Transportation routes 
 
Statistic indices of 
cross-county transportation 

Biomass 
feedstock  
(to 
biorefineries) 

Biomass 
feedstock  
(to power 
plant) 

Biofuel 
(to 
consumption 
center) 

Bioslurry 
(to biomass 
supply bases) 

The shortest distance (km) 16 10 11 11 
The longest distance (km) 59 86 243 187 
The average distance (km) 36.40 41.19 71.66 60.40 
The transportation frequency  15 32 65 67 

 

By comparing the first two columns with the last two, the same conclusion can be drawn. This 

result unambiguously proves our prior judgement that the bioenergy plants are planned to be 

located more closely to biomass feedstock source regions. 

Additionally, another heterogeneity lying between biorefineries and biomass-fired power 

plants can be sorted out. The phenomenon that the majority values listed in column 1 are 

smaller than the ones in column 2 demonstrates that the biorefineries are allocated 

preferentially by the optimizing model. 
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5.4.3 The comparison of two biomass utilization methods: power and biofuel 

 

                 A                                       B 

Figure 5-7 The projected number (A) and total installed capacity (B) of two types of 
bioenergy plants in Jiangsu province between 2011-2030 

After respectively discussed the site and scale of two kinds of bioenergy plants as well as their 

related transportation networks in 2030, we are now examining their performances across the 

whole projected period. In Figure 5-7, both the (A) number and (B) total installed capacity of 

two kinds of bioenergy plants are exhibited. 

In general, along with the booming demand for bioenergy products, the number and installed 

capacity of both kinds of bioenergy plants are increasing. Meanwhile, the ladder-like growth 

pattern can also be observed in Figure 5-7 (A), which is believed to be the result of our 

assumption that the phasing in or phasing out process of a single bioenergy plant lasts for five 

years and correspondingly, the production capacity of such a plant increases or decreases 

annually by 20%. In addition, a sudden drop in the number but continuously rising 

momentum in installed capacity manifest the concentration process of biorefineries in 2030. 

In terms of the utilization scales of two kinds of bioenergy products, biomass-based power 

dominates Jiangsu's bioenergy market for the whole time. Its leading role in the bioenergy 

market is a comprehensive consequence led by both a favored development strategy to power 

Year

2011
2012

2013
2014

2015
2016

2017
2018

2019
2020

2021
2022

2023
2024

2025
2026

2027
2028

2029
2030

N
u

m
b

er

0

10

20

30

40

50

60

70

Biorefinery plant number
Power plant number

Year

2011
2012

2013
2014

2015
2016

2017
2018

2019
2020

2021
2022

2023
2024

2025
2026

2027
2028

2029
2030

In
st

a
lle

d
 c

ap
ac

ity
 o

f b
io

re
fin

e
ry

 (
M

t)
0.00

0.20

0.40

0.60

0.80

1.00

1.20

In
st

al
le

d 
ca

pa
ci

ty
 o

f p
ow

er
 p

la
nt

 (
M

W
)

0

500

1000

1500

2000

2500

Total installed capacity of biorefineries
Total installed capacity of power plants



 

 

112 

and technical obstacles in bioethanol production from lignocellulosic biomass. However, once 

the obstacles, in the long term, are overcome, biorefineries' installed capacity is expected to 

extend 8 times in just two decades, with their counterparts- biomass-fired power plants- 

enlarging 4 times in the same period. 

 

5.4.4 The introduction of pretreatment of biomass feedstock 

As Richard (2010) has stressed that the soaring transport volumes inflamed by the rapid 

growth in demand for lignocellulosic bioenergy are likely to exceed the combined capacity of 

grain, petroleum and coal supply chains, he suggests taking the methods of satellite 

preprocessing and densification for long-distance transport. Therefore, in this section we 

focus on the biomass feedstock densification process and quantitatively assess its impact on 

the transportation network with conducting an economic accounting of bioenergy plants by 

using our model. Initially, we suppose all biomass source regions are obliged to install 

densification facilities. The additional preprocessing cost led by the new devices is set at 85 

CNY/tonne and correspondingly, the transportation cost of packed biomass reduces to 0.5 

CNY /tonne.km in our model (Qi, 2007). 

 

Table 5-5 Statistic indices of the cross-county part of projected four transportation 
paths with the introduction of biomass feedstock densification in Jiangsu province in 

2030 

      Transportation path 
 
Statistic indices of 
cross-county transportation 

Biomass 
feedstock  
(to 
biorefineries) 

Biomass 
feedstock  
(to power 
plant) 

Biofuel 
(to 
consumption 
center) 

Bioslurry 
(to biomass 
supply bases) 

The shortest distance (km) 12 10 11 11 
The longest distance (km) 63 103 261 201 
The average distance (km) 36.50 41.11 79.63 65.49 
The transportation frequency  14 19 70 69 

 

Comparing Table 5-5 with Table 5-4, the biomass feedstock densification obviously has a 

positive impact on the long-distance biomass transportation, which can be proved by the 
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increased longest distances of biomass feedstock delivery for biorefineries and power plants. 

Meanwhile, the densification process prompts the expansion of bioenergy products' 

transportation network, which, however, seemly contradicts to our intuitive perception that the 

cut transportation cost of feedstock should help relax the constraint of biomass processing 

facilities located closely to the biomass source regions. We argue that this simulation result is 

partly due to the extra preprocessing cost. In other words, the newly introduced preprocessing 

cost is expected to weaken the role of lower transportation cost on improving the distribution 

flexibility of bioenergy plants. As illustrated in Table 5-6, the plants’ expenditures on fuel cost 

have, instead, risen. Such mechanism forces the bioenergy plants to be relocated close to the 

biomass source regions even further when the biomass densification process introduces. 

 

Table 5-6 The projected economic accounting with/ without biomass feedstock 
densification between 2011-2030 (106 CNY) 

Bioenergy plants type 
Cost and revenue 

Without densification With densification 
Biorefinery Power plant Biorefinery Power plant 

Cost Biomass densification - - 0.288 0.927 
Biomass transportation 0.156 1.218 0.063 0.305 

Bioenergy plants 
operation 

57.814 50.146 56.315 49.896 

Bioenergy products 
delivery 

0.603 - 0.559 - 

Revenue Bioenergy products 
selling 

112.866 88.487 111.421 87.59 

Net benefit 54.293 37.123 54.196 36.462 

 

Besides that, the added fuel cost renders the production capacities of two kinds of bioenergy 

plants shrinking and leads to a net benefit loss at 0.758×106 CNY. Based on this calculation 

result, we suggest that the compulsory introduction of biomass feedstock densification 

process to the Jiangsu province is not economically desirable for the bioenergy industry. Since 

the newly introduced preprocessing cost cannot be fully compensated by the saved 

transportation cost under the circumstance of limited scale of transportation network within 

Jiangsu, a broader transportation network, for example the one throughout China, perhaps can 
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refute our previous judgement. In addition, it is worth noting that this conclusion is made only 

for the bioenergy industry. If the positive social effects of densification process, i.e. the less 

turbulence on the delivery of other commercial goods, e.g. grain, petroleum and coal, are 

taken into consideration, a different picture could probably be seen.  

To verify our judgment, we alternatively adopt a spontaneous decision process, in which 

bioenergy plants operators can decide on their own whether or not to install such densification 

facilities. Not surprisingly, no operators in the new scenario are willing to adopt these devices 

when only their own benefits are counted. This implies that in a bid to rectify the positive 

externality of biomass pretreatment process on other related industries as well as local 

transportation system, the subsidy from governments is necessary. 

 

5.4.5 Regional development policy 

As the role of bioenergy industry on prompting regional development has been much 

appreciated by many bioenergy researchers (eg. Li and Wang, 2008, Thornley, Rogers, 2008), 

our study has designed a policy scenario of allocating at least 50% of the total production 

capacity of bioenergy products to northern Jiangsu, in a bid to balance the regional disparity 

between this region and southern Jiangsu. 

Correspondingly, in order to properly facilitate the concentration of bioenergy plants in the 

northern area, the maximum allowable value of installed capacity for single plant in this 

scenario has been relaxed from 45 MW to 60 MW for bioenergy plants and from 0.05 million 

tonnes to 0.075 million tonnes for biorefineries. The updated distributing profiles of bioenergy 

plants are presented in Figure 5-8. 
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                     A                                  B 

 

Figure 5-8 The layout of (A) biorefineries and (B) biomass-fired power plants in Jiangsu 
province in 2030 under the regional development policy of allocating 50% installed 

capacity of bioenergy plants to Northern Jiangsu 

From Figure 5-8, two new features in the updated spatial distribution of bioenergy plants can 

be discovered: (1) the bioenergy plants are expected to be allocated in more counties, with the 

number of biorefineries rising from 31 to 35 and of power plants increasing from 60 to 61. (2) 

The favorability to bioenergy products is set to change. Compared with the basic scenario, the 

annual production capacity of biomass-based power will expand from 1680 MW to 1710 MW 

in 2030, whereas the biofuel output will shrink to 0.075 Mt from 1 Mt in the baseline. 

Consistent with a contracted production capacity, the shadow price of biofuel will rise by 343 

CNY/tonne. Meanwhile, the shadow price of power will decrease by 0.011 CNY/kwh, thanks 

to the enlarged installed capacity of power plants. 

On the sub-region level, more small scale biorefineries (0.025 Mt) are suggested to be 

introduced to the counties in the northern Jiangsu, for instance the Xinyi, Donghai, Lianshui, 

Xuyi and Jinhu counties. Besides that, the only largest scale biorefinery in our case (0.075 Mt) 

is also planned to be allocated in Dongtai county, belonging to the northern part. In southern 

Jiangsu, all the biorefineries are set to be at small scale. After above adjustment, northern 

Jiangsu gains an extra 0.075 Mt production capacity of bioethanol, with the southern and 
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central parts losing 0.05 Mt respectively. For biomass-fired power plants, as their distributions 

in the baseline have already fitted to the proportion requirement, there is no additional 

production capacity arranged in northern Jiangsu. Oppositely, its regional installed capacity is 

to decrease 15 MW, although two largest scale ones (60 MW) are expected to be located in 

this area. The southern Jiangsu, instead, benefits from such an alteration, obtaining additional 

45 MW production capacity.  

 

5.5 Conclusions and discussion 

By building up an optimizing model of bioenergy infrastructure in the Jiangsu province, we 

have quantitatively assessed two elements composing the bioenergy industry infrastructure: 

the distribution of bioenergy plants and their related transportation networks.  

With regard to the first element, the distribution of bioenergy plants has shown the feature of 

concentration to some degree. On the sub-region level, the bioenergy plants in northern 

Jiangsu are optimally located along the axis stretching from northwest to southeast, while in 

central and southern Jiangsu, the counties the Yangtze River flows through are favorable. 

Additionally, the counties surrounding Shanghai city are suitable for biorefineries but not 

power plants. According to our simulation result, up to 44% of new biorefineries and 62% of 

power plants with the largest scale are projected to be located in the northern Jiangsu, 

corroborating evidence for the regions' official orientation as a renewable energy production 

basis. On the county level, thanks to their abundant biomass feedstock supply, six counties 

including Shuyang, Huai’an, Dongtai, Xinghua, Jurong and Jiangyin can accommodate both 

biorefineries and power plants with the biggest installed capacity, and thus be confirmed as 

the most promising places for bioenergy plants allocation. To the classical facility location 

problem, our model's answer is that the factor of biomass feedstock supply rather than the 

bioenergy products demand predominately determines the locations of bioenergy plants. The 

reason is that the delivery of biomass feedstock costs more than of bioenergy products. 

In terms of the second element, biorefineries are given a higher priority by the model when it 

optimizes the transportation network. This judgement is concluded from the simulation result 
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of a smaller scale network of biomass delivery to biorefineries than to power plants. As to the 

relationship between two utilization methods of lignocellulosic bioenergy, i.e. power and 

bioethanol, they are coordinated quite well and complementary to each other in our 

optimizing model. Along with the rising demand for bioenergy products, the production 

capacity of both bioenergy products expands, and biomass-based power dominates Jiangsu's 

bioenergy market in terms of its utilization scale. This trend is expected to remain in the short 

term. In the long term, the biorefineries can gain more market share if the technology of 

bioethanol production from lignocellulosic biomass can make a breakthrough. 

In addition, the model unveils that the introduction of biomass feedstock densification process 

to the Jiangsu province does not benefit the bioenergy industry. Limited to the relatively small 

scale transportation network within the Jiangsu province, the newly introduced preprocessing 

cost cannot be fully traded-off by the saved transportation cost. Perhaps, a larger scale 

transportation network, for instance the one throughout China, could be favorable. 

In the end, a regional development policy has been examined in our model. Under the 

scenario of northern Jiangsu holding 50% production capacity of bioenergy products, more 

counties are expected to become the candidates for bioenergy plants. For northern Jiangsu, its 

bioethanol production capacity will increase by 0.075 Mt in 2030, but its regional installed 

capacity of power plants, in the meantime, will contract by 15MW. 

While offering us some insights on optimal bioenergy industry infrastructure, this model also 

has certain limitations: firstly, the interaction between farmers, the biomass feedstock supplier, 

and bioenergy plants operators, the biomass feedstock consumer, has not been sufficiently 

considered. For simplicity, the biomass feedstock provision is given exogenously in our 

model. But in local practice, the farmers can logically detect the altered biomass demand and 

rearrange their biomass feedstock production. Thus, in an improved model, the biomass 

feedstock provision should be dynamic rather than static. Besides that, only two bioenergy 

products have been included in our model. In view of the wide variety of biomass conversion 

routes, more bioenergy products should be taken into consideration. 

Conclusively, despite the existence of several deficiencies, this mathematical modelling 

approach can still provide a valuable insight to policy makers, as well as the future investors 
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in the bioenergy industry. Therefore, the coverage of this model is worthy of extending to 

other regions and finally to the whole area of China. 
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Appendix III The spatial-agent dynamic model specification  

 

The general formulation of this county-level dynamic agent-based model maximizes the present value of 

the total profits across the whole time frame of a system covering two utilization methods of cellulosic 

bioenergy, subject to total feedstock supply constraints, bioenergy products conversion constraints, 

bioenergy plants capacity limitation constraints, bioenergy products production and bioethanol and 

bioslurry balance constraints.  

 

Indices: 

u: county-level regions /Nanjing, Pukou, Liuhe, Shushui, Gaochun, Wuxi, Jiangyin, Yixing, Xuzhou, 

Fengxian, Peixian, Tongshan, Suining, Xinyi, Pizhou, Changzhou, Wujin, Liyang, Jintan, Suzhou, 

Changshu, Zhangjiagang, Kunshan, Wujiang, Taicang, Nantong, Tongzhou, Hai’an, Rudong, Qidong, 

Rugao, Haimen, Lianyungang, Ganyu, Donghai, Guanyun, Guannan, Huai’an, Lianshui, Hongze, Xuyi, 

Jinhu, Yancheng, Yandu, Xiangshui, Binhai, Funing, Sheyang, Jianhu, Dongtai, Dafeng, Yangzhou, 

Baoying, Yizheng, Gaoyou, Jiangdu, Zhenjiang, Dantu, Danyang, Yangzhong, Jurong, Taizhou, Xinghua, 

Jingjiang, Taixing, Jiangyan, Suqian, Shuyang, Siyang, Sihong/ 

r(u): the biomass production locations /county-level regions/ 

j(u): candidate biorefinery locations /county-level regions/ 

l(u): candidate biomass-fired power plant locations /county-level regions/ 

n(u): the demand centers /county-level regions/ 

allt: time horizon /2002-2040/ 

t(allt): projected time horizon /2011-2040/ 

d：period /2011-2015，2016-2020，2021-2025，2026-2030，2031-2035，2035-2040/ 

goods: type of shipping goods /feedstock, bioethanol, residue/ 

plant: biomass utilization plant /biorefinery, powerplant/ 
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number: the order of plants /n1-n5/ 

product: type of products /biopower, bioethanol, residue/ 

device: the type of power generation turbine /12MW, 15MW, 25MW/ 

turbine: the installed capacity of biorefinery /0.01 Mt, 0.02 Mt, 0.05Mt/ 

 

Exogenous data: 

,goods tc : the transportation costs by shipping per unit amount and distance for shipping goods goods in year t 

(109CNY/106t.km) 

pilec : the biomass feedstock densification process cost (109CNY/106t) 

,u u
d : the distance between one location u and the other location u  (km) 

biorefeinery
tb : the annualized fixed investment cost for biorefinery plant in year t (109CNY/106t) 

powerplant
tb : the annualized fixed investment cost for power plant in year t (109CNY/MW) 

biorefinery
tv : the fuel cost for biorefinery plant in year t (109CNY/106t) 

powerplant
tv : the fuel cost for biopower generation from power plant in year t (109CNY/106kwh) 

biorefinery
to : other operational costs for biorefinery plant in year t (109CNY/106t) 

powerplant
to : other operational costs for power plant in year t (109CNY/MW) 

,r tsup : amount of biomass feedstock supplied by region r, year t (106t) 

,
bioethanol
n tdem : demand of bioethanol in demand center n and year t (106t) 

,
electricity
n tdem : demand of biopower in demand center n and year t (106kwh) 

,
residue
r tdem : demand of residue in biomass production location r and year t (106t) 

max,biorefineryi : maximum capacity of biorefinery plant in practical (106t) 

max, powerplanti : maximum capacity of power plant in practical (MW) 
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min, powerplanti : minimum capacity of power plant in practical (MW)  

biorefinery : conversion factors from biomass to bioethanol (106t/106t) 

powerplant : conversion factors from biomass to biopower (106kwh/106t) 

biorefinery : conversion factor of residue as the byproduct of bioethanol from biomass (106t/106t) 

biorefinery : the output coefficient of residue to bioethanol (106t/106t)  

powerplant : the efficiency of power generation (unitless) 

,powerplant max : maximum annual utilization hours of power plant (103hours) 

,powerplant min : minimum annual utilization hours of power plant (103hours) 

bioethanol
t : blending rate of bioethanol into gasoline in year t (unitless) /E10/ 


,j ti : newly added capacity of the existing biorefinery plant built at location j, year t (106t) 


,l ti : newly added capacity of the existing biomass-fired power plant built at location l, year t (MW) 

powerplant
devicecap : unit capacity of each type of power generation turbine (MW)  

biorefinery
turbinecap : unit capacity of each type of biorefinery turbine (Mt)  

lifespan: the life span of fixed equipments in biorefinery and biomass-fired power plant (years) 

biofuel
tps : the price subsidy of per unit of biofuel in year t (106CNY/106t) 

residue
tps : the price subsidy of per unit of residue in year t (106CNY/106t) 

electricity
tps : the price subsidy of per unit of biopower in year t (106CNY/106kwh) 

,t dtimemapping : the coefficient of accumulated installed capacity for bridging projected time horizon and 

period 

Decision variables: 

Nonnegative variables: 

, ,
feedstock

r j tY : amount of feedstock for bioethanol manufacturing shipped from biomass production location r to 
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biorefinery j location in year t (106t) 

, , ,
bioethanol
j number n tY : amount of bioethanol produced by feedstock shipped from the number biorefinery located at j to 

demand center n in year t (106t) 


, ,
bioethanol
j n tY : amount of bioethanol produced by feedstock shipped from existing biorefinery located at j to 

demand center n in year t (106t) 

, , ,
residue
j number r tY : amount of residue generated during the processing of bioethanol production shipping from the 

number biorefinery located at j to biomass production location r in year t (106t) 


, ,
residue
j r tY : amount of residue generated during the processing of bioethanol production shipping from existing 

biorefinery located at j to biomass production location r in year t (106t) 

, ,
feedstock

r l tY : amount of feedstock for biopower generation shipping from biomass production location r to 

biomass-fired power plant location l in year t (106t) 

, , ,
electricity

l number n tY : amount of biopower distributed from the number biomass-fired power plant locating at l to  

demand center location n in year t (106kwh) 


, ,
electricity

l n tY : amount of biopower distributed from existing biomass-fired power plant locating at l to demand 

center location n in year t (106kwh) 

biofuel
tPRICE : the price per unit of biofuel in year t (106CNY/106t) 

residue
tPRICE : the price per unit of residue in year t (106CNY/106t) 

electricity
tPRICE : the price per unit of biopower in year t (106CNY/106kwh) 

Integer variables: 

, , ,l number device dI : number of newly equipped turbines of capacity device in the number biomass-fired power 

plant built at location l, period d  

, , ,j number turbine dI : number of newly equipped turbines of capacity turbine in the number biorefinery built at 

location j, period d 
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The objective function (1) of the model maximizes the present value of the net cash flows of the production 

sector of bioenergy products in the Jiangsu province across the whole time frame, as the total revenue 

minus costs. Specifically, the revenue of bioenergy products production sectors comprises of the sale of 

bioethanol, bioslurry and biomass-based power, as well as the governmental subsidies. The cost mainly 

covers the transportation cost and preprocessing cost of biomass feedstock and the delivery cost of 

bioenergy products, the fuel cost, operational cost and annualized fixed cost of bioenergy plants and other 
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auxiliary inputs. 

From line 2 to line 4, the revenue terms account for: 

a) the sales revenue and the governmental subsidy from bioethanol 

b) the sales revenue and the governmental subsidy from bioslurry 

c) the sales revenue and the governmental subsidy from biomass-based power 

 

Starting from line 6 of the objective function, the cost items are: 

d) the transportation and preprocessing cost of the part of biomass feedstock consumed in biorefineries 

e) the annualized fixed cost and operational cost of newly installed biorefineries 

f) the fuel cost of newly installed biorefineries and the corresponding delivery cost of bioethanol 

g) the operational cost, fuel cost of existing biorefineries and the corresponding delivery cost of bioethanol 

h) the delivery cost of bioslurry produced in newly installed biorefineries 

i) the delivery cost of bioslurry produced in existing biorefineries 

j) the transportation and preprocessing cost of the part of biomass feedstock consumed in biomass-fired 

power plants 

k) the annualized fixed cost, the operational cost and the fuel cost of newly installed biomass-fired power 

plants 

l) the operational cost and the fuel cost of existing biomass-fired power plants. 

 

Subject to:  

The most fundamental physical constraints on biomass feedstock provision, the installed capacity of 

bioenergy plants and the demand for bioenergy products. 

, , , , , ,feedstock feedstock
r j t r l t r t

j l

Y Y sup r t                                  (2) 

Equation block (2) assures the amount of biomass feedstock delivered out from region r separately to 

biorefineries locating at j and to biomass-fired power plants locating at l cannot exceed the local biomass 

feedstock output in each year t. 
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
, , , , , , ,

,

,bioethanol bioethanol feedstock biorefinery
j number n t j n t r j t

number n n r

Y Y Y j t                                           (3) 

Equation block (3) guarantees that the total output of bioethanol from both newly installed and existing 

biorefineries cannot exceed their ideal output calculated on the basis of biomass feedstock input. 


, , , , , , ,

,

,electricity electricity feedstock power plant powerplant
l number n t l n t r l t

number n n r

Y Y Y l t                                      (4) 

Similarly, equation block (4) requires the total output of biomass-based power from both newly installed 

and existing biomass-fired power plants cannot exceed their ideal output calculated on the basis of biomass 

feedstock input. 

  max,
, , , , , ,biorefinery biorefinery

turbine j number turbine d t d
turbine d

cap I timemapping i j number t
 

  
 

                       (5) 

The aim of setting up equation block (5) is to ensure the installed capacity of each biorefinery to be lower 

than the technical-economically optimal capacity.
 

  max,
, , , , , ,powerplant powerplant

device l number device d t d
device d

cap I timemapping i l number t
    
 

  
                    (6) 

Similar to the above equation block, the equation block (6) refers to power plants. It ensures the installed 

capacity of each biomass-fired power plant to be under the technical-economically optimal capacity. 

Planned:  

 

 

, , , , , , ,

, , , ,

0.5

, ,

biorefinery bioethanol
turbine j number turbine d t d j number n t

turbine d n

biorefinery
turbine j number turbine d t d

turbine d

cap I timemapping Y

cap I timemapping j number t

 
   

 
    
 
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 




                         (7) 

Existing: 

  
, 1 , , , 1

1 14 1 14

0.5 ,bioethanol
j t j n t j t

t t t n t t t

i Y i existing j t
     

                                            (8) 

 

The group of equation block (7) and (8) is to hold the utilization ratio of production capacity for each 

biorefinery (Equation (7) refers to newly installed biorefineries and equation (8) regards to existing 

biorefineries) between 50% and 100%. 

Planned:   
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                  (9) 

Existing: 

  , ,
, 1 , , , 1

1 14 1 14

,powerplant min electricity powerplant max
l t l n t l t

t allt t n t allt t

i Y i existing l t 
     

                          (10) 

 

Like the above group, this group of constraints, applying to biomass-fired power plants, is to keep the 

utilization ratio of each biomass-fired power plant ranging from 50% to 100%. 


, , , , , ,

,

/ ,bioethanol bioethanol bioethanol bioethanol
j number n t j n t t n t

j number j

Y Y dem n t
 
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 
                                    (11) 


, , , , , ,

,

,residue residue residue
j number r t j r t r t

j number j

Y Y dem r t                                                   (12) 


, , , , , ,

,

,electricity electricity electricity
l number n t l n t n t

l number l

Y Y dem n t   
  

                                           (13) 

 

The group of equation block (11), (12) and (13) is bioenergy products demand constraints. These 

constraints require the output amount of each kind of bioenergy products (bioethanol in (11), bioslurry in 

(12) and biomass-based power in (13)) should at least meet its corresponding demand on the market for 

each region n, t and year t. 

Planned: 

, , , , , , , ,residue bioethanol biorefinery
j number r t j number n t

r n

Y Y j number t                                              (14) 

Existing: 

 
, , , , ,residue bioethanol biorefinery

j r t j n t
r n

Y Y j t                                                        (15) 

As bioslurry is the byproduct of bioethanol, the output of bioslurry in each biorefinery should be 

proportionate to the output of bioethanol. The equation blocks (14) and (15) are designed to reflect such 

principle in the model. 
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6 Bioenergy supportive measures and industry development: The decision 

support system of the bioenergy industry1 

6.1 The current bioenergy supportive policies 

The historical experiences of bioenergy growth in the EU and US unambiguously demonstrate 

that the development of the bioenergy industry is highly dependent on the policy support from 

governments. This conclusion also holds true for China. In the past twenty years, Chinese 

government has designed and enacted a series of laws, regulations and initiatives to promote 

the advancement of renewable energies. Bioenergy industry has also garnered much support. 

Based on policy targets and actors of the bioenergy industry, these supportive measures can be 

grouped into four categories: the policies for shaping a favourable external environment, for 

guaranteeing intermediate input, for introducing value-adding factors and for promoting 

bioenergy output. In the following parts, we will examine them one by one. 

 

6.1.1 Policies for shaping a favorable external environment 

Related to the promotion of renewable energy in China, the first law “electricity law of the 

People's Republic of China (P.R.C.) was introduced in 1995 followed by "Energy 

conservation law of P.R.C" (1997) and "Air Pollution Prevention law of P.R.C" (2000) 

(Peidong, Yanli, 2009). The first specific legislation on renewable energy- "Renewable 

Energy Law of P.R.C" (RELPRC) - was published in 2005 which was later amended in 2009 

in order to reflect the latest progress in the renewable energy industry. In the updated version, 

the concept of "low-carbon" development was introduced and the supportive policies for the 

exploration and utilization of renewable energy, including bioenergy, were simultaneously 

proposed. Although lacking of specific application procedures to warrant its implication, this 

law, as an overarching legislation, has confirmed the status of renewable energy in the state 

energy-mix and shaped an institutional framework for all subordinate supportive policies. 

Following that, "The 12th Five-year Development Plan of Bioenergy" regulated the main 
                                                              
1 This chapter is to be submitted to the peer reviewed journal "Biomass & Bioenergy". 
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utilization directions of biomass resources and the projected outputs of corresponding 

bioenergy products.  

However, the above targets are only a guideline rather than a legal obligation for bioenergy 

industry development. To accomplish the above goals, the governments have continuously 

issued stepwise complementary regulations to create and promote the bioenergy market. This 

stepwise regulatory policy of government can be elaborated through the case of fuel ethanol.  

In April 2001, a set of national standards on bioethanol's blending, storage, and delivery, i.e. 

“Denatured Fuel Ethanol” (GB18350-2001) and “Bioethanol Gasoline for Automobiles” 

(GB18351-2001), was released, clearing the technical barriers of the introduction of 

bioethanol to China. Two months later in June 2001, China launched the first ever project 

related to bioethanol, named “State Scheme of Pilot Projects on Bioethanol Gasoline for 

Automobiles”. Initially in the pilot project, three cities of Henan province (Zhengzhou, 

Luoyang, and Nanyang) and two cities of Heilongjiang provinces (Harbin and Zhaodong) 

were given mandate to run all of vehicles in the territory on bioethanol gasoline for a year. 

The China Petroleum and Chemical Corporation (Sinopec) and the China National Petroleum 

Corporation (CNPC) were the only two authorized bioethanol dispensers with the former 

being responsible for Henan province and the latter for Heilongjiang province. Given the 

success of the pilot project, in 2004 the National Development and Reform Commission 

(NDRC) with the help of seven other ministries implemented the State Scheme of Extensive 

Pilot Projects on Bioethanol Gasoline for Automobiles” (SSEPP) (see Figure 6-1 for more 

details). Under this extension, the pilot projects were launched to all cities of five provinces 

and several cities in certain provinces. In this round, five prefecture cities (Xuzhou, 

Lianyungang, Huai'an, Yancheng and Suqian) located in Northern Jiangsu are included in the 

trial regions. By the end of 2005, original #90, 93, 95, and 97 unleaded gasoline were 

mandated to be completely switched to #90, 93, 95, and 97 bioethanol gasoline (E10) and the 

blending rate of bioethanol was set at 10%. 
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Figure 6-1 Provinces/prefecture cities in China included in the “State Scheme of 
Extensive Pilot Projects on Bioethanol Gasoline for Automobiles” in 2004  

(Source: (Dong, 2007)) 

Notes: Provinces and cities included in the “State Scheme of Extensive Pilot Projects on Bioethanol 

Gasoline for Automobiles” in 2004 are five provinces: Heilongjiang, Jilin, Liaoning, Henan, and Anhui; 

nine prefecture cities in Hubei province: Xiangfan, Jingmen, Suizhou, Xiaogan, Shiyan, Wuhan, Yichang, 

Huangshi, and Ezhou; seven prefecture cities in Shandong province: Jinan, Hezhe, Zhaozhuang, Linyi, 

Liaocheng, Jining, and Tai’an; six prefecture cities in Hebei province: Shijiangzhuang, Baoding, Xingtai, 

Handan, Changzhou, Hengshui; and five prefecture cities in Jiangsu province: Xuzhou, Lianyungang, 

Huai’an, Yancheng, and Suqian. 

 

As indicated in the SSEPP, the production, distribution and consumption of fuel ethanol 

constitute a closed system and are under strict control. All denatured fuel ethanol must be 

produced by certified plants, and all E10 gasoline is distributed by either Sinopec or CNPC. 

So far, only four biorefineries have been authorized by the central government to produce fuel 

ethanol from grains, or so-called the "1st generation biofuel": Jilin Fuel Ethanol Co. Ltd., 

Anhui Fengyuan Biochemical, and 100,000 t from Heilongjiang Huarun Ethanol. For the 

Jiangsu province, the fuel ethanol is supplied from the biorefinery in Anhui. In addition, the 

settle price of bioethanol between fuel ethanol plants and Sinopec and CNPC was calculated 
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as the shipping price of the #90 gasoline1 published by NDRC multiplied by a factor of 

0.9111. The market price of bioethanol gasoline was equalized to the #90 normal gasoline 

price published by the NDRC and may adjusted according to the gasoline market under the 

allowed range by government (Dong, 2007). 

 

 

Figure 6-2 Four authorized biorefineries by central government in China 

(Source: (Dong, 2007)) 

 

As bioenergy industry is both capital- and technical-intensified, the investment on the biomass 

conversion technology and the related devices is too burdensome for small bioenergy plants to 

afford. However, the investment has a significant spill-over effect to the entire industry. Out 

of this reason, in addition to delicately create a bioenergy market, the central government has 

devoted public funds to the scientific research on bioenergy. As early as in 1982, a national 

science and technology development plan has been designed to solve technical problems in 

renewable energy industry. Following that, the 863 plan (since 1986), 973 plan (since 1997) 
                                                              
1 #90 gasoline is one type of widely used gasoline in China with the octane rating at 90. The octane rating is a 

standard measure of the performance of a fuel. The higher the octane number is, the more compression the fuel 

can withstand before detonating (igniting). In China, it is calculated as the average of the RON and the MON, 

called the Anti-Knock Index (AKI). 
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and each five-year energy development plan have chosen several important but difficult topics 

for intensive investment. For example, in the latest "The 12th Five-year Development Plan of 

Bioenergy", the conversion technology in lignocellulosic bioethanol production, the 

cultivation of new variants of energy crops and the development of powerful power 

generators of biogas are selected as three key research topics.  

 

6.1.2 Policies for guaranteeing intermediate input 

For bioenergy industry, the intermediate input is biomass feedstocks. According to the 

practical data, feedstock can account for 50%-80% of the operation costs of bioenergy plants 

(Jiang, Sun, 2012b, Zhang, Zhang, 2012). Hence both the state and the provincial 

governments have established related policies to maintain the sufficient provision of biomass 

feedstock to meet its increasing demand along with the industry development.  

In 2007, the Ministry of Finance (MOF) issued "Interim Management Measures of Granting 

Funds to the Raw Material Production Bases for Bioenergy and Biochemical". This regulation 

set the subsidy level for forestry and agricultural production bases at 3,000 and 2,700 CNY/ha 

respectively and rules that such subsidy should be applied to the following aspects: selection 

and cultivation of promising variants of energy crops, land leveling and technical assistance. 

One year later, the MOF proposed to subsidize the straw for energy use in "Interim 

Management Measures of the Subsidy of Straw for Energy Use". In 2011, the NDRC issued 

"Promoting the Comprehensive Utilization of Crop Straw in the 12th-five year" and set the 

target of comprehensive utilization ratio of crop straw at 80% by 2015. Especially, the part for 

energy use should reach 13%. On provincial level, the local government set an even more 

ambitious goal of 27% in the Jiangsu province (Executive Office of People's Government of 

Jiangsu Province (EOPGJP), 2010). With not only promoting the utilization of crop straw, the 

local government has also inspired the transitional process of traditional agriculture. In the 

"12th five-year Development Plan for Modern Agriculture of Jiangsu Province", the biomass 

for energy purpose use has been viewed as a new agricultural economy growth engine. The 

annual sale of biomass resources was expected to be worth 12 billion CNY by 2015.  
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6.1.3 Policies for introducing value-adding actors 

Bioenergy plants assume the task of upgrading the commercial value of biomass feedstock 

and they are the main value-adding actors of the industry. Keeping in the view of important 

role in the value chain of bioenergy industry, the "Proposals for Implementation of Fiscal and 

Tax Supportive Policies on the Development of Bioenergy and Biochemical Industry" 

proposed in 2006 offering favorable fiscal and tax measures for these actors. Generally, 

preferred policies for value adding actors can be divided into four types: (1) the flexible 

subsidy for the consumers' losses to balance the price disparity between traditional energy 

products and bioenergy products; (2) the subsidy for biomass feedstock production bases to 

stable the biomass provision; (3) the subsidy for demonstration projects to assist the 

implication of new technologies; (4) the partial tax exemption to enhance the competitiveness 

of bioenergy-related businesses. 

In addition, in accordance with RELPRC, the financial institutions are encouraged to provide 

special capital discounts and preferential loans to the bioenergy projects that are listed in "The 

National Renewable Energy Industrial Development Guidance Catalogue". Moreover, the 

"Interim Measures on Special Funds for Renewable Energy Development" in 2006 provided 

bioenergy industry with interest-free or interest-low loans. 

 

6.1.4 Policies for promoting bioenergy output 

In 2006, NDRC regulated the "Pilot scheme on renewable energy prices and cost-sharing". 

According to this scheme, the on-grid tariff of biomass-based power (including agriculture & 

forestry residues direct combustion and gasification generation, waste incineration, landfill 

gas and methane power generation) is fixed by the government. The area-differentiated 

benchmark price is set by the price authorities of the State Council, which is calculated as the 

desulfurized coal electricity benchmark price for each province in 2005, plus subsidies. The 

subsidy for biomass-based power is 0.25 CNY /kWh since the power plants put into use and 

lasts for 15 years. Since 2010, the subsidy is discounted by 2% over its level in the previous 

year. For the biomass power generation projects selected by a competitive bidding process, 

government-guided prices are to be introduced and are identical to the bidding price which 
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should not overpass the region’s benchmark price. In order to stabilize the potential investors’ 

market expectation and solve the problems arising in the process of executing the above 

scheme, NDRC has further published "Notice on improving the policies for the prices of 

agricultural and forestry biomass based power generation" by 2010. In this notice, the NDRC 

has adopted a uniform benchmark price at CNY 0.75/kwh for all the regions to replace the 

original subsidy phasing out plan. The notice, moreover, has set up a sustainable cost-sharing 

system of the on-grid tariff for biomass-based power. The provincial grids should pay the part 

identical to the local desulfurized coal electricity benchmark price and the excessive part is 

compensated by the renewable energy surcharge which is collected following the requirement 

of "Pilot scheme on allocation of renewable energy surcharge".  

To promote the production of denatured fuel ethanol, the MOF offered the authorized four 

biorefineries consumption tax exemption since 2005 according to its "Notice on the issue of 

tax policy related to denatured fuel ethanol production enterprises". The existing production 

capacities of all plants, therefore, have been fully tapped. Along with the continuously 

increasing demand of bioethanol, not only the stale grains stored in the national grains reserve 

system have been fully used; some fresh grains are also put into use. Out of the concern over 

food security and to avoid conflicts between food and energy sector, the MOF has modified 

its preferential tax policy on biorefineries, with the emphasis on guiding them to switch their 

biomass feedstock from stale grains to other non-grain crops, so called the "2nd generation of 

bioethanol". According to the new policy notes "Notice on adjusting the tax policy related to 

denatured fuel ethanol production enterprises", the four authorized biorefineries were ordered 

to resume paying the value-added tax and consumption tax since 2011. The levying ratios are 

initially fixed at 20% and 1% respectively and will increase by 20% and 1% year on year until 

the normal level is reached. 

 

6.2 The bioenergy industry development decision support system 

In pace with the governmental supports being widely adopted for the development of the 

bioenergy industry in China, the policy effects have gradually emerged in the practice. Some 
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academic literature on bioenergy industry, therefore, have focused on this issue and 

qualitatively explored the effectiveness of these policies. In contrast, the researches 

conducting quantitative evaluations are far from enough, which, in turn, hinders the 

implementation of these policies to a larger scale. 

In order to fill the gap between the practice and our perception of supportive measures as well 

as offer the scientists and policy makers a tool to systematically design, compare and select 

the most favorable policy, a bioenergy industry development decision support system 

(BioDSS) is set to be built in the following part of this chapter. 

 

6.2.1 The bioenergy industry development decision support system  

 

Figure 6-3 The bioenergy industry development decision support system  

As is shown in Figure 6-3, the BioDSS can be constructed in four steps: (1) collecting nature 

and society observations relevant to bioenergy feedstock production and its utilization for 

energy purpose, (2) setting up two independent but related sub-models, i.e. bioenergy 

feedstock provision model and bioenergy industry infrastructure model, (3) conducting 

separate but linked scenarios through models running and (4) integrating two sub-models to 

form the bioenergy industry decision support system. In light of the previous two chapters 

having discussed the two sub-models in depth, this chapter will mainly focus on the aspect of 
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models integration and the application of BioDSS on policy effects evaluation.  

 

6.2.2 The integration of biomass feedstock provision model and bioenergy industry 
infrastructure model 

To mimic their interactive behaviors in the practice, farmers, the predominating actors in 

bioenergy feedstock provision model, and bioenergy plants operators, the decisive agents in 

bioenergy industry infrastructure model are designed, in the BioDSS, to be connected via the 

biomass feedstock market. On this market, farmers assume the responsibility of supplying 

sufficient biomass feedstock, with the plants operators, on the other side, providing channels 

for biomass feedstock consuming. Accordingly, the two seemly independent sub-models can 

be integrated into a bioenergy industry development decision support system by equalizing 

the total output of biomass feedstock shaped in the first sub-model to the demand of biomass 

feedstock proposed in the second sub-model. 

As a result, the biomass feedstock supply constraint the farmers originally face is internalized 

as a relation binding both farmers and plants operators in the integrated system. From the 

perspective of the operators, the pattern of biomass feedstock provision is not exogenously 

given anymore and can adjust to the layout of bioenergy industry infrastructures. In the new 

system, both the farmers and bioenergy plants operators have been entitled more flexibility to 

either actively or passively react to the other's behaviors. Therefore, the bioenergy industry as 

well as the whole social welfare is expected to benefit from this internal negotiation 

mechanism. 

 

6.3 The implementation of BioDSS 

After building the BioDSS, we will apply this simulation platform to assess supportive 

measures. In this chapter, two types of market-oriented policies, i.e. a universal taxation 

policy and a targeted subsidy policy, are under review. 
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6.3.1 The introduction of the carbon tax  

Based on the estimate of bioenergy products' potentials in GHG emissions mitigation by 

previous studies, our research focuses on the response of bioenergy industry to carbon-based 

energy tax introduction. In order to testify the sensitivity of such responses, a set of carbon tax 

involving ten levels ranging from 100 CNY to 1000 CNY per tonne of carbon is to be 

introduced, comparing to a level of 10 CNY per tonne suggested to be initially executed in 

China (Li, 2013). 

For bioenergy, a carbon-neutral renewable energy, the total amount of CO2 emission 

throughout its life cycle is much less than of other traditional fossil fuels. Thus, levying an 

indiscriminate carbon tax on all kinds of energies is actually a "carbon subsidy" for bioenergy. 

In the following paragraphs, we will gauge to what extent each level carbon tax can affect the 

bioenergy industry. This test can provide the governments with a tangible result under each 

policy scenario.  

In the Jiangsu province, biomass-based power and bioethanol are the two dominating 

bioenergy products approved by the local government. In this study, their mitigation potentials 

are calculated as comparing their emission amounts with the counterparts they can replace, or 

more specific, coal-based power which accounts for nearly 80% of nationwide electricity 

supply1 and 90# gasoline which is sold in all gas stations. The emission factor of each energy 

product and the mitigation potentials of bioenergy products have been listed in Table 6-1.  

 

 

 

 

 

 

 

                                                              
1 Data source: China electric power yearbook (2000-2013) 



137 

 

 

Table 6-1 The emission factors and mitigation potentials of energy products adopted in 
BioDSS 

Energy products1 Emission factor2 Mitigation potential3 Data source 

Coal-based electricity 2600 gCE/kWh - Lin et al., 2008, 
Lin et al., 2006 Biomass-based electricity 552.80 gCE/kWh 1460gCE/kg 

90# gasoline 2298.57 gCE/kg - Gao et al., 2012 
Bioethanol 1769.90 gCE/kg 84.59gCE/kg 
 

Notes: 1. The values used in our research is based on current technology. It is worth noting that the 

adoption of new technology in the future may significantly curtail the emission factors, for example, the 

large-scale application of carbon capture sequestration (CCS). 2. The value of emission factor is the amount 

of carbon emission of 1kg (or 1kWh) of the corresponding energy product in its whole life time. 3. The 

value of mitigation potential is the difference of carbon emissions between the bioenergy product generated 

from 1kg of biomass feedstock and the same amount of referencing fossil fuel. In the conversion process, 

1.4 kg of biomass feedstock is presumed to generate 1 kWh of power and meanwhile, 6.2 t of biomass 

feedstock supposedly produces 1 t of bioethanol. 
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Table 6-2 The projection of land use change in Jiangsu province under different levels of the carbon tax in 2030 

 

 Baseline 
(103ha) 

Carbon tax levels (CNY/t.CO2)
1 

200 400 600 800 1000 

 
Land use pattern 

Arable land in summer 2931 0.00% 0.00% 0.00% 0.00% 0.89% 
Arable land in autumn 3439 0.00% 1.05% 1.05% 1.05% 1.05% 
Mudflat 17 147.06% 417.65% 811.76% 1088.24% 1170.59% 

 
 
 
 
 
 

Crop plantation 
area 

Conventional crops 6370 0.00% 0.57% -3.06% -7.99% -14.13% 
 Wheat 2087 0.00% 1.25% -1.63% -5.46% -9.54% 
 Oilseed rape 844 0.00% -2.96% -9.60% -18.84% -30.21% 
 Medium indiea rice    450 0.00% 0.89% 0.22% -1.56% -5.56% 
 Non glutinous rice 2034 0.00% 0.59% -1.62% -5.21% -9.88% 
 Beans 248 0.00% 1.61% -1.61% -8.47% -20.16% 
 Corn 520 0.00% 1.15% -2.50% -10.19% -20.77% 
 Cotton 188 0.00% 4.79% -17.02% -26.60% -32.98% 
Energy crops 17 147.06% 417.65% 1494.12% 2694.12% 4000.00% 
 Switchgrass - - - - - - 
 Miscanthus - - - - - - 
 Silverreed - - - - - - 
 Giantreed 17 147.06% 417.65% 1494.12% 2694.12% 4000.00% 

Note: 1. The values in the columns of carbon tax levels are change rates of land use areas. They are obtained by comparing the absolute values of land use areas in 

different carbon tax scenarios given by the simulation results with the values in the baseline.  
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Table 6-3 The projected response of bioenergy industry infrastructure in Jiangsu province to different levels of the carbon tax in 2030 

 

 Unit Baseline Carbon tax levels (CNY/t.CO2) 
200 400 600 800 1000 

Biomass-based power 106kWh 12344 12967 14342 15480 15491 15874 
Bioethanol 106t 1.100 1.075 1.025 1.025 1.000 0.925 

Number of 15 MW power plants - 18 18 16 12 12 12 
Number of 30 MW power plants - 13 13 14 12 12 13 
Number of 45 MW power plants - 22 23 27 33 33 34 
Number of 25 000 t biorefineries - 27 27 27 27 27 27 
Number of 50 000 t biorefineries - 9 9 9 9 9 9 

Average biomass transportation distance ( for power plants) km 42 58 55 47 45 43 
Average biomass transportation distance ( for biorefineries) km 41 41 50 49 38 34 

Average biofuel transportation km 61 67 64 81 80 103 
Average bioslurry transportation km 54 60 74 82 77 111 

Biomass transportation frequency ( for power plants)  - 47 55 51 50 47 40 
Biomass transportation frequency ( for biorefineries)  - 15 13 19 17 15 11 

Biofuel transportation frequency - 63 65 64 69 69 70 
Bioslurry transportation frequency - 61 63 66 66 68 71 
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6.3.1.1 The response of biomass feedstock production 

The simulation results are according to expectations and clearly show that the introduction of 

the carbon tax has a positive effect on bioenergy industry, prompting both biomass feedstock 

supply and the successive bioenergy products output. The effect is more significant when we 

adopt a higher level of the carbon tax. Figure 6-4 plots two indices of biomass feedstock 

supply under the different carbon tax scenarios: the total production amount and the 

market-clearing price of biomass feedstock. Due to the inspiration of the carbon tax, the 

utilization scale of the environmentally friendly industry raises dramatically, with a 76% 

expansion of biomass feedstock supply under the carbon tax at 1000 CNY/t.CO2. Meanwhile, 

the market-clearing price of biomass feedstock is nearly 2.5 times that in the baseline, 

implying a higher profit for the farmers and, therefore, encouraging them to produce more 

biomass feedstock. This judgment is demonstrated by the land use change according to the 

varied levels of the carbon tax, which is included in Table 6-2. In addition, the performance of 

a decreasing price but increasing biomass supply under the scenario of the carbon tax at 200 

CNY/t can be ascribed to the participation of more reclaimed mudflats in this scenario than in 

the baseline, which avoids disturbing the existing land use pattern for conventional crops and 

secures an expanded biomass feedstock supply with holding the output level of food. 

Echoing the rising momentum of biomass feedstock supply, the areas of both used arable land 

and reclaimed mudflat have expanded. However, their expansion tendency displays differently. 

In view of the crop rotation in local agriculture practice, the arable land usage can be divided 

into the parts for summer crops and autumn crops separately. Accordant to our simulation 

result, an upper limitation for land expansion can be observed in autumn crops. The 

competitive allocation of limited arable land resources in the season is believed to be the 

reason. Besides that, the seasonal differences in land use should not be ignored. In the face of 

energy crops' introduction, the arable land use pattern in summer is more resilient than in 

autumn, demonstrated by its total area keeping unchanged in the first four carbon tax 

scenarios. In other words, the amount of idle arable land resources in the summer can be kept 

and later tapped for ensuring the food security in China. As to mudflat, a candidate land 

resource exclusively for energy crops, the reclaimed area has expanded by 1171% in the 
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scenario of the carbon tax at 1000 CNY/t.CO2, due to its fairly trivial usage in baseline but 

tremendous potential under the pressure of large biomass demand.  
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Figure 6-4 The projected response of biomass feedstock production in Jiangsu province 
to the carbon tax at different levels in 2030 

While analyzing the composition of biomass feedstock, more information could be disclosed. 

By comparing the plantation areas between conventional crops and energy crops (there are 

6.37 million ha for conventional crops and 16 thousand ha for energy crops in baseline), we 

conclude that the straw of conventional crops, as a whole, contributes the overwhelming 

portion of biomass feedstock. However, when the sources of the incremental part of biomass 

feedstock supply incurred by the rising carbon tax are decomposed, differentiated 

performances of the crops can be found. Among these crops, oilseed rape is strongly affected 

by energy crops due to its comparatively low productivity of straw, leading to a continuous 

contraction of its plantation area spanning from the low level carbon tax to the high level. 

Instead, medium indiea rice is the most preferred crop. When the plantation areas of other 

crops are cutting down to save lands for energy crops, the crop of medium indiea rice is still 

planted more widely than in the baseline. This trend does not change till the carbon tax climbs 
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up to 800 CNY/t.CO2. At that level, the plantation areas of all conventional crops shrink and 

simultaneously, the usage of reclaimed mudflat reaches the highest level. In that scenario, 

only giantreed is planted in the mudflat, due to its high output of biomass feedstock. In the 

meantime, the plantation area of giantreed has expanded to 41 times as large as in the scenario 

of no carbon tax.  

Thus, according to our simulation, it is confident to judge that the imposition of the carbon tax 

on energy products can, naturally, accelerate the process of energy crops introduction as well 

as the reclamation of mudflat. However, in terms of its effect on food security, the tax does 

not necessarily place the food security in the risk. The relatively low level of the carbon tax 

(below 400 CNY/t.CO2 in our model), can, on the contrary, maintain and even stimulate the 

cultivation of most conventional crops except oilseed rape. However, once the levying level 

climbs to 600 CNY/t.CO2 or more, the impact on food production becomes negative and the 

extent of such impact positively correlates with the level of the tax. 

 

6.3.1.2 The response of bioenergy industry infrastructure 

Comparing the output of two bioenergy products among different carbon tax scenarios, the 

BioDSS shows biomass-based power has gradually gained a predominant position in two 

bioenergy products, thanks to its higher GHG emission mitigation potential. As is shown in 

Table 6-1, for the same 1 kg of biomass feedstock, the whole conversion process can produce 

1460 g carbon emission less than the production of coal-based electricity, if the feedstock is 

processed into electricity. Meanwhile, compared to the #90 gasoline, only 84.59 g carbon 

emission can be curtailed if the biomass feedstock is for bioethanol production. Therefore, in 

facing of carbon tax introduction, the low carbon product - biomass-based power in our case- 

is preferred. This selective effect is expected to intensify, should the levying level of carbon 

tax mount.  

In accordance with the shifting focus of production from biofuel to bio-power, the total 

installed capacity of power plants is booming, demonstrated by the soaring number of 

large-scale power plants at 34 under the extreme scenario. In the meantime, the capacity of 

biorefineries keeps unchanged although their spatial distributions are adjusting, given that the 
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demand of bioenergy products under each carbon tax level holds the same as in the baseline. 

In addition, the related transportation network has correspondingly changed. With regard to 

the allocation of bioenergy plants, the introduction of the carbon tax helps the biomass-based 

power plants to gain priority over their opponents- the biorefineries, and such dominance is 

even enhanced as the level of carbon tax climbs up. As can be observed from the Table 6-3, 

although the utilization scale of biomass for power stands increasing, the corresponding 

transportation scale of biomass feedstock for power plants does not synchronously rise. 

Oppositely, it steadily contracts from the scenario of 200 CNY/t.CO2. This optimization of 

biomass transportation for bio-power is achieved at the cost of biorefineries allocation. While 

the power plants are given preference, the biorefineries have to, therefore, be allocated at less 

favorable places and thus the distance of cross-county delivery of bioethanol and its 

byproduct- bioslurry- has to be prolonged and occurs more frequently. In terms of the 

continuously downscale biomass feedstock transportation for biorefineries, the slashing 

output of bioethanol, meant to the cutting demand of biomass feedstock, is believed to be the 

reason. 

However, in the differentiated reactions to the diverse carbon tax scenarios, there is one 

principle to be held: the bioenergy plants are suggested to be always allocated close to the 

biomass source regions rather than to the bioenergy products consuming centers, no matter 

which level of carbon tax is imposed. 

 

6.3.2 The targeted policies towards biomass supplier and processors 

As all the actors in the bioenergy supply chain contribute the GHG emissions in the 

production of bioenergy products, the universal carbon tax can affect them indiscriminately. 

But, on the other hand, we also anticipate certain types of policies which target only one actor 

rather than the whole. Therefore, in this part, we will examine the effectiveness of such 

targeted policies. 

6.3.2.1 The setting of three targeted policies 

Echoing the local practice, in this part we will set three targeted policies to represent the three 

groups of the executed policies in the Jiangsu province: the policies for guaranteeing 
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intermediate input, for introducing value-adding factors and for promoting bioenergy output. 

In the first scenario, labelled "towards bioproducts", a public financial funding is designed to 

subsidize the production of bioenergy products. This amount of money is set to compensate 

the high production cost of bioenergy products compared to the fossil fuels they replaced. In 

accordance with the local practice, the subsidy levels for biomass-based power and bioethanol 

are respectively fixed at 0.25 CNY/kWh and 750 CNY/t in our model. The second scenario, 

named as "towards lands", is to simulate the situation of offering subsidy to the farmers in a 

bid to encourage the collection of biomass from the straw of plants growing either on arable 

lands or reclaimed mudflats. Currently, the subsidy of 225 CNY/ha is provided to offset the 

extra machinery and labor cost in the collection process. The third scenario of "towards 

mudflats" is particularly tailored for the Jiangsu province. As reclamation of mudflats is time 

consuming and costly and thus, largely outweighs the expected incomes from their usage for 

energy crops plantations. For this reason, the total area of reclaimed mudflats in the baseline 

accounts for less than 1% of the used arable land. In this case, providing reclamation subsidy 

is believed to alleviate the financial burden of farmers and beef up the reclamation process, as 

well as promote energy crops' introduction. As suggested by the local investigation, the 

subsidy level is pinned at 30,000 CNY/ha for the year of 2011 and grows by 5% year on year. 

 

6.3.2.2 A comparison of three policy scenarios 

On the basis of simulation results from BioDSS, we conduct a simple cost-benefit analysis for 

the farmers, bioenergy plants operators, governments and the whole bioenergy industry. Their 

performances under each policy scenario have been plotted in Figure 6-5. 

Besides that, in order to precisely present the responses of the bioenergy industry to different 

policy scenarios, other six indicators have been picked out and listed in Table 6-4. Among 

those, the first two indicators demonstrate the land use change in each scenario, with the 

following two portraying the interaction between farmers and operators and the last two 

depicting the output change of bioenergy products. 
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Table 6-4 The reactions of the bioenergy industry in Jiangsu province in different 
subsidy scenarios in 2030 

    Subsidy direction 
Indicators 

No subsidy Towards 
Bioproducts 

Towards 
Lands 

Towards 
Mudflat 

Conventional crops cultivation 
(103 ha) 

6370 6370 6370 6365 

Energy crops cultivation (103 ha) 17 36 18 28 
Biomass shadow price (CNY/t) 123 111 132 118 
Biomass output (103 t) 25597 26202 25637 25986 
Biopower (106kWh) 12344 12737 12370 12500 
Bioethanol (106t) 1.100 1.100 1.100 1.125 
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Figure 6-5 The variation of profit allocation in Jiangsu province under differentiated 
directions for subsidy by 2030 

Notes: 1. Profits in our study are calculated as the benefits minus the corresponding costs. 2. There are 

seven indicators describing the profits allocation: (1) The total profit of bioenergy industry. (2) The profit 

from food output. (3) The profit from biomass output. (4) The profit from biorefineries operation. (5) The 

profit from power plants operation. (6) The total subsidy provided by the government. (7) The rate of return 

on targeted subsidy. 3. The units of first six indicators refer to the left Y axis and the unit of the last one 

refers to the right Y axis. 
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In general, all these subsidies can bring bioenergy industry a net profit (See Figure 6-5). 

Among those, the subsidy towards mudflat is most efficient, with the rate of return at 5.21. 

This number means each 1 CNY subsidy invested on mudflat reclamation by governments 

can bring the whole industry an additional profit of 5.21 CNY, much higher than the other two 

directions for subsidy. Furthermore, the most effective subsidy has, at the same time, the 

smallest scale in the three options, costing only 0.843 billion CNY for twenty years. 

Compared to other subsidy schemes, the financial burden of this policy is easiest for 

governments to bear. 

Different from the last two scenarios, the subsidy on bio-products is the only targeted policy 

created in our model to be imposed on bioenergy plants operators. As can be seen from the 

indicator 4 and 5 in Figure 6-5, both kinds of bioenergy plants can benefit a lot from this 

supportive measure. Moreover, even the targeted policies designed for supporting farmers can 

also bring the operators additional profit, thanks to the policy-driven larger output of biomass 

feedstock allowing them to produce more bioenergy products. On the contrary, the portfolio 

of subsidies except for the subsidy on lands, cannot improve the economic benefit of farmers 

although the total output of biomass feedstock has increased among all scenarios. This 

seemingly paradoxical phenomenon is suggested to be the result of the unreasonably high 

share of reclamation cost of mudflats in the total cultivation cost of energy crops, which 

renders the plantation of energy crops in reclaimed mudflat unprofitable. In order to prevent 

this projection from realizing, offering sufficient subsidy on reclamation at the level of 

exceeding our simulation scenario is necessary. 

Besides that, as disclosed by the model, the plantation of conventional crops is not adversely 

affected by these bioenergy promotion policies in terms of food security. In all scenarios 

except the one of "towards mudflat", the plantation areas of conventional crops are estimated 

to be retained at the level of 6370 thousand hectares. Even in the "towards mudflat" scenario, 

where there is a slight decline in cultivation areas, the profit from food output still grows, 

owning to the conventional crops' dual functions of offering both food and biomass. 

Regarding the composition of profits, the food output constitutes the primary income source 

of farmers, which objectively reflects the subordinate status of the bioenergy industry in the 
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current agriculture structure. For bioenergy plant operators, the operation of biorefineries is 

more profitable, due to the production of two beneficial products there, bioethanol and 

bioslurry. 

 

6.4 Conclusion  

Similar to other countries, China has issued a package of supportive policies to promote the 

development of the bioenergy industry in the face of traditional fossil fuels shortage and 

global climate change. In terms of the policy targets, these measures are categorized into four 

groups: the group for shaping a favourable external environment, for guaranteeing 

intermediate input, for introducing value-adding factors and for promoting bioenergy output. 

While these policies have largely prompted the development of the bioenergy industry, we 

have to acknowledge that our perception of supportive measures is still lagging behind the 

practices in China. One possible explanation is related to the lack of a policy analysis tool 

fitting to China's situation.  

To eliminate this shortcoming, we build a bioenergy industry development decision support 

system in this chapter by integrating the two connected but independent sub-models of 

bioenergy feedstock provision model and bioenergy industry infrastructure model respectively 

set up in chapter 4 and chapter 5. Using the BioDSS, we have explored two types of 

bioenergy promotion policies: a universal taxation policy and a targeted subsidy. Generally 

speaking, both supportive measures significantly boost the development of the bioenergy 

industry without necessarily jeopardizing the food security. 

For carbon tax, the effects positively correlate to its level, and it helps the biomass-based 

power plants to solidify leadership in the bioenergy market due to the larger mitigation 

potential of bio-power. However, the introduction of the carbon tax cannot change the 

principle of the layout of bioenergy plants: the bioenergy plants are always suggested to be 

allocated close to the biomass source regions rather than to the bioenergy products demand 

centers. 

For financial subsidies, the one towards mudflat is preferable among three options, which has 



 

 

148

the highest rate of return and smallest scale. While all subsidies can benefit bioenergy plants 

operators, the subsidy towards lands cannot improve farmers' economic benefits, because of 

the unreasonably high reclamation cost of mudflats. In terms of the revenue sources, the food 

output provides the farmers the overwhelming majority of income and biorefineries are more 

profitable than biomass-based power plants. 

Along with the breakthrough of critical biomass conversion technology, both the amount and 

the complexity of the information relevant to the bioenergy industry have increased, so does 

the problem of how to handle the information in a manner which can facilitate the 

development of the industry. Our BioDSS, which is created under such perception and has 

taken China's local practice into consideration, can be widely used to simulate the optimal 

supply chain of bioenergy products and assist the decision making process concerning the 

development of the bioenergy industry in China. Furthermore, although constructed in China, 

BioDSS is promising to be introduced to other countries after receiving necessary adjustment 

according to the target region. This platform, combined with other bioenergy simulation 

models, is believed to guide our practice in terms of modern bioenergy utilization in the 

future. 
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7 The sustainable development strategy of bioenergy industry in China1 

7.1 The cascade use and recycling of biomass feedstock 

The concept of circular economy was first introduced in China in 1998 and formally accepted 

as a new development strategy in 2002, aiming to alleviate the contradiction between 

booming economic development and the shortage of raw materials and energy (Yuan et al., 

2006). This concept is derived from the notion of a closed loop. In other words, circular 

economy is to replace a linear type of the industrial chain ("resources-products-wastes") by a 

circular type ("resources-products-renewable resources"). In a closed loop, the "3R" principles 

(reduce, reuse and recycle) have to be upheld. 

Following this "3R" principle, some pioneer studies have suggested the cascade utilization of 

biomass, which can be defined as the sequential use of original raw materials (primary crop, 

oilseed rape, etc.) and co- or by-products of biomass to produce materials and bioenergy 

(Raschka and Carus, 2012). Prior to the introduction of such a concept, biomass feedstock is 

treated as an energy carrier and a raw material separately, leading to the formation of two 

parallel utilization methods. The optimal biomass use for energy purposes, under previous 

conception, is achieved over only part of the biomass resource potential, rather than taking the 

complete sources of biomass into consideration. To the opposite, the cascading biomass use is 

based on respecting the various characteristics of diverse biomass sources and the different 

requirements for biomass with particular physical characteristics from various economic 

sectors (Haberl and Geissler, 2000). Therefore, a conceptual model of cascade use and 

recycling of biomass is proposed in Figure 7-1. 

 

                                                              
1 The adaptation of this chapter has been submitted to the IAS-STS yearbook (2013). 
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Figure 7-1 The conceptual model of cascade use and recycling of biomass 

 

7.2 Bioenergy development policy options in China 

7.2.1 Three options: Feed-in law, Renewable Portfolio Standard and Tendering policy 

The current policy for bioenergy development in China is a type of feed-in law, which is 

regarded to be the impetus for the birth of today's modern renewable energy industry (Wiser 

et al., 2002). A feed-in law is a price-based policy, under which all renewable energy 

produced will be purchased and fed to the market at a specified price for a specified period of 

time set by the government (Sequeira, 2006). An alternative to feed-in law is the Renewable 

Portfolio Standard (RPS), which is a quantity-based policy that establishes a target quantity of 

each renewable energy product to be included in the respective energy market, e.g. an 

electricity mix by a specific date. It specifies who is responsible for supplying the renewable 

energy and defines penalties for non-compliance. A combination of both feed-in laws and 

RPS is the tendering policy. This policy is designed to find the lowest purchasing price and 

the eligible projects at the same time through government-overseen competitive bidding 

processes. To be specific, potential renewable developers are invited to submit construction 

schemes of new renewable production facilities and meanwhile, to indicate their expected 

selling prices of the energy products. The lowest priced renewable energy projects are then 
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franchised with a guarantee from the government to purchase all the output from these 

projects (Wiser, Hamrin, 2002).  

The above three policy options are all designed to create a market for renewable energy, each 

of which has specific advantages and disadvantages. Wiser et al. (2002) distinguished 11 

criteria for evaluating the success of each policy implemented in the US and Europe. The 

assessment result is listed in Table 7-1. In general, the feed-in law is more 

administration-driven than RPS and tendering policy; however, the latter two options 

emphasize the importance of market mechanisms. 

 

Table 7-1 Comparison of policy options to promote renewable energy development 

Policy objectives Feed-in RPS Tendering 

Incentives for cost and price minimization No * Yes 

Ability to maintain targets for renewable energy * Yes * 

Assurance of resource diversity Yes No * 

Sustainable market for energy products No Yes * 

Political viability * * * 

Local industry development Yes * No 

Compatibility with energy industry and
regulatory structure 

* * Yes 

Policy stability Yes No * 

Competitive parity * Yes No 

Integration of renewable energy supplies No Yes * 

Simplicity Yes No No 

Notes: 1 * Depends on certain conditions. 2 Adapted from: (Shen, Liu, 2010, Wiser, Hamrin, 2002) 
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Because each option has its specific advantages and disadvantages, there is no ‘‘ideal’’ 

renewable energy support policy. The favorability of these options is heavily reliant upon the 

policy objectives and the political context within which the decisions are being made (Wiser, 

Hamrin, 2002). Besides that, geographic resource capacities and different developmental 

stages of particular bioenergy technologies also play a critical role in choosing specific policy 

options (Shen, Liu, 2010). 

Connecting to the local practice of bioenergy development in the Jiangsu province, it seems 

that the feed-in law is most likely the best policy for China and maybe for other developing 

countries, at least in the short term. For this judgement, we will conduct a more detailed 

analysis in the following section. 

 

7.2.2 Suitable policy options for China 

Based on the experiences and lessons of renewable energy development in main industrialized 

countries, a typical course of renewable energy development can be divided into 5 phases (see 

Table 7-2). 

Refer to the classification criteria of the phases listed in Table 7-2, biogas and biomass-based 

power generation can be categorized as in phase II; the other utilization paths of biomass in 

the Jiangsu province (cellulosic bioethanol, biodiesel, briquette and charring) are still in the 

phase I. In this sense, the bioenergy market in the Jiangsu province, as a whole, is a nascent 

market. 

Under the existing framework of the Kyoto Protocol, developing countries, including China, 

do not bear quantified emission limitation or reduction commitments (United Nations, 2013). 

At the same time, only a recommended rather than a compulsory target for renewable energy 

development has been adopted by China. As the RPS is lacking sufficient legitimate ground, 

it is currently not practicable for China. Furthermore, currently there are only two utility 

companies in China and the power market is highly regulated and strictly overseen by the 

state hence a competitive market has so far not yet developed. This is another argument 

against the use of RPS. 

In contrast, as earlier said, the feed-in law fits China's reality better. Considering the steady  
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Table 7-2 Typical renewable energy developmental phases 

Phase I. Research, Development and Demonstration of New Technologies 

* Resource Assessment 

* Technology Development and Demonstration 

Phase II. Wholesale Market Development 

* Establishment of stable wholesale market rules and processes 

* Establishment of companies willing and able to undertake resource development 

* Establishment of manufacturing facilities 

* Development of a financing framework 

Phase III. Cost Reduction 

* Project experience (multiple projects by individual companies) 

* Increased manufacturing volume 

* Development of related infrastructure and service companies to support the technology 

* Standardized product 

Phase IV. Price Reduction 

* Assured volume/long-term opportunities 

* Competitive market 

Phase V. Retail Market Development 

* Clear market rules 

* Four or more individual companies 

* Public education/information 

Data source: (Zhang et al., 2000) 

 

increase in energy demand and an uneven distribution of renewable energy potential, China 

should encourage a diversity of renewable energy supply sources. Particularly, at the 

inception of a renewable energy system development, it is valuable to see which types of 

renewable energy technologies will be developed and at what cost through the market 

selection rather than to speculate arbitrarily by the policy maker which type will be developed 

within a certain price range. Feed-in tariffs appear to provide an easier mechanism of assuring 
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diversity. First, they warrant that any form of renewable supply that can be generated at or 

below the feed-in tariff has a real chance of being developed. When the costs of the 

technologies for certain energy products decrease, the corresponding feed-in tariffs of those 

products can be reduced without adjusting the tariffs of other products. Therefore, both 

resource diversity and some economic efficiency can be achieved at the same time. 

In addition, experiences in Germany, Denmark, Spain, and the U.S. show that feed-in tariffs 

can spur the advancement of a local renewable energy system infrastructure with benefits for 

local economic and industry development and employment (Rickerson et al., 2012, Wiser, 

Hamrin, 2002). This is one of the motives for the developing countries to promote the 

development of renewable energy. Different from RPS and tendering policy, which focus on 

immediate cost minimization, feed-in tariffs provide a short-term regulatory security to 

potential bioenergy investors by guaranteeing a minimum return on investment, which gains 

time for local actors to grow. 

Furthermore, feed-in laws are more appropriate in a regulated setting in which an absolute 

competitive parity (the ability of a policy to spread the cost of renewable energy fairly and 

evenly across market participants) is not required. In comparison to RPS and tendering, the 

design, administration, and enforcement of feed-in tariffs are simpler. From a contractual and 

transaction cost perspective, feed-in tariffs with standardized interconnection requirements (a 

set of design requirements for output to be connected to the existing distribution system, e.g. 

the utility grid), contract terms, and conditions can simplify negotiations and speed the 

development and contracting process for renewable energy producers, which ease the market 

entry for financially weak and small local players to the renewable energy business (Wiser, 

Hamrin, 2002). From an administration cost perspective, the feed-in law generates much less 

administration costs for most developing countries' governments which do not have much 

experience on renewable energy commercialization. 

The last argument that supports the feed-in tariff as an optimal instrument is its consistency 

with the existing laws and administrative structure. China has declared the rudimentary 

feed-in law as a priority while issuing the RELPRC and the " Mid- and Long-term 

Development Plan for Renewable Energy", choosing the same policy for bioenergy 
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development which is not only consistent with the currently executing regulations, but also 

entails relatively low political risks. 

Although feed-in tariffs and its complementary policies currently appear to have advantages 

over RPS and tendering policy for the Jiangsu province, there are concerns over the 

compatibility of feed-in tariffs with liberalization of renewable energy markets and their 

economic, technical and political sustainability. Several European nations consider 

abandoning or phasing out subsidy-based systems in favor of RPS. Similarly, U.S. 

policymakers increasingly prefer support market mechanisms that stimulate competition and 

minimize cost (Ryan et al., 2005). For the Jiangsu province as well as for other regions in 

China and many developing countries, the transition from an administration-led policy, i.e. 

feed-in tariffs, to market oriented policies, i.e. RPS and tendering, will sooner or later become 

necessary, due to the reason of preventing path-dependency, which means the longer we rely 

on administration-led policies, the more we get addicted to them, and as such the more 

reluctantly we switch to market-driven ones. 

Unlike the feed-in law, RPS and tendering policies create price competition both between 

different bioenergy suppliers and between suppliers of renewable energy. By means of market 

power, renewable energy generators are pressed to continuously lowering their costs through 

economies of scale and gaining project development experience. Thus, through the 

implementation of market-oriented policies, the driving force of industry development is 

internalized. In other words, the bioenergy industry can step towards the track of sustainable 

development in its own strength rather than by the outside force, e.g. the administrative 

power.  

Moreover, as RPS is competitively neutral, it can avoid unjustified welfare shifts from some 

sorts of renewable energy to others. With a well-designed credit trading system under an RPS, 

the incremental costs of energy products can be spread fairly across the market participants. 

Additionally, if integrated with other economic, environmental and resource development 

goals, the credit trading system can help to reduce the economic gap between the three 

sub-regions of the Jiangsu province. 
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7.3 The discussion of development strategy of bioenergy industry in China 

To answer the question of why particular industries become competitive in particular 

locations but others are not, Michael E. Porter (1990) creatively built an analytic paradigm to 

explain the national competitiveness, named the diamond model (Figure 7-2). He examined 

several hundred types of industries of eight advanced countries (the US, UK, Sweden, Japan, 

Italy, Germany and Denmark) and two new industrialized countries (South Korea and 

Singapore) and found that four determinants (factor conditions, demand conditions, related 

and supporting industries and firm strategy, structure and rivalry) and two auxiliary factors 

(government and chance) constitute the elements of competitiveness. The name of the 

diamond model is derived from the outline of the network formed by the interactions between 

these variables. Here we borrow this model to discuss the ways of cultivating bioenergy 

industry's competitiveness. 

 

 

Figure 7-2 Porter's diamond model - the determinants of national advantage (Porter, 
1990) 

 

FACTOR CONDITIONS: Porter divided factor conditions into primary and advanced 
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production factors. For bioenergy industry, primary production factors refer to the basic 

proven reserves of biomass resources in China. Unfortunately, the nationwide potential of 

biomass resources is still unclear, although the rural areas have the tradition of using biomass 

for heat and cooking for several thousand years. In this sense, conducting a survey on biomass 

resources to clarify the possible sources of biomass feedstock, as well as the potential for each 

source and its distribution, is not only necessary but also urgent. As to advanced production 

factors, human resource is a critical one. Compared to primary factors, the bioenergy 

researchers and trained workers, who are professionals in the operation and management of 

bioenergy, cannot be cultivated in a short time but require continuous and a considerable 

amount of investments lasting for a relatively long period.  

DEMAND CONDITIONS: According to the sources, bioenergy demand can divide into 

domestic demand and global demand. Due to biomass’ natural attributes of low energy 

density and irregular shapes, long-distance transport of bulky biomass in reality is not much 

profitable. For this reason, the domestic market, especially a local market, contributes the 

predominant part of the demand. From the perspective of economics, the conception of 

market includes three components, i.e. market structure, size and growth. Among them, 

bioenergy market structure can be further divided into biochemical conversion (biogas and 

fuel alcohol), biomass gasification (power generation or thermal power coproduction), 

biomass liquefaction (biodiesel) and direct burning (boiler burning, dense burning and 

garbage burning). In all possible utilization methods, the scale of biomass power generation 

ranks the 1st, and the installed capacity reached 5.5 GW by the end of 2010, generating 

electricity of 33 billion kWh. Following power generation, the annual output of biogas was 

about 10 Mtce. Biomass liquid fuel (bioethanol 1.8 Mt and biodiesel 0.5 Mt) and biomass 

solid fuel (3 Mt) ranked the 3rd and 4th respectively (China National Development and Reform 

Commission (CNDRC), 2012). In favor of the economy of scale brought by the concentrated 

utilization, large-scale production of bio-power and bioethanol are preferred by the Chinese 

governments. In view of the technology-intensive and capital-intensive production process, 

governments have even proposed targeted fiscal and tax policies to prompt the applications of 

bioenergy products. 
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In addition, the overseas market, as a complementary but emerging market, is also worth 

paying attention. Given the highly competitive leaders in the international bioenergy industry, 

the advantage of China's bioenergy industry is not distinct. Therefore, before participating in 

the international competition, the industry in China needs to achieve a major breakthrough in 

several critical fields, for example, the research on bio-enzyme widely used in the cellulosic 

biofuel production.  

RELATED AND SUPPORTING INDUSTRIES: Porter claims that for a single firm or a 

single industry, it is hard to keep its competitive edge; and that only by forming effective 

industrial clusters and stimulating active interactions between upstream and downstream of 

the industry can the competitive edge be retained. This rule can also be applied to the 

bioenergy industry. Due to the varying sources of biomass feedstock, the bioenergy industry 

has a close connection with many other industries and thus leads to the formation of an 

industrial cluster (Figure 7-3). 

The industries having backward linkages to the bioenergy industry are agriculture, forestry 

industry and machinery manufacturing industry, which offer bioenergy industry either 

biomass feedstock or machineries. Since the energy purpose of biomass resources is 

introduced, the cultivation and harvest methods as well as the machineries used in different 

stages are about to change correspondingly. The industries that have forward linkages to the 

bioenergy industry are automobile manufacturing industry and transportation industry as these 

industries consume the bioenergy products. The bioenergy industry can affect the 

development directions of these downstream industries and broaden their application scopes 

and scales. These downstream industries, in turn, will propose higher standards to the 

bioenergy products in the face of competition. This mutual feedback provides the bioenergy 

industry with an endogenous momentum for developing and, therefore, helps the industry to 

shape its competitiveness in the energy portfolio. 

Along with the supply chain of the bioenergy industry, the industries having lateral linkage to 

the bioenergy industry are:  
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Figure 7-3 The industrial cluster with bioenergy industry centered 

 

(1) The ones sharing the same primary biomass resources. They are pulp and paper production 

industry and chemical industry. Initially, the competition among them for the biomass 

feedstock appears to be unavoidable. However, under the guidance of the principle of the 

cascade use of biomass, the by-products and sludge in pulp and paper production industry and 

chemical industry can be used as feedstock for the bioenergy industry. Thus, the conflicts 

between these industries can be relieved.  

(2) The industries sharing the same renewable energy market. The wind energy, solar energy, 

geothermal energy, tidal energy may, on the one hand, compete with the bioenergy industry 

for the limited market capacity and supportive funds from governments. However, on the 

other hand, a "promotion effect" from the combination of renewable energies could also be 
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observed, as these energies share the same policy environment, have geographically 

differentiated potentials and use different but related technologies. All of these facts indicate 

that the competition among these renewable energies is not a zero-sum game, and that the 

bioenergy industry can probably benefit from this competition. 

(3) The industries sharing transportation resources, for instance, the coal industry and 

petroleum industry. One distinctive feature of bioenergy, compared to most other renewable 

energies, is the mobility of its energy carrier. While offering the advantage of stabilizing 

energy supply on a larger temporal and spatial scope, bioenergy aggravates the competition 

for valuable transportation resources, i.e. the competition for haulers, vehicles and road 

resources. To reduce to a minimum the disturbance of biomass and bioenergy delivery on the 

existing transportation network, an appropriate layout of bioenergy industry infrastructure as 

well as adopting densification process for biomass feedstock are essential. 

To sum up, the development of bioenergy industry is not an isolated, but a comprehensive 

issue, which needs to take the entire bioenergy industry cluster into consideration and 

especially, value the role of synergy. 

FIRM STRATEGY, STRUCTURE AND RIVALRY: this is a triangle relationship of 

corporative governance proposed by Porter. It covers the topics like how to found, organize 

and manage firms, how to face the rivals. Firms, as the micro-organizations in the industrial 

system, play a fundamental role in the formation and development of industries. For 

bioenergy industry, professional bioenergy firms enjoying definite property rights, perfect 

governance mechanisms, advancing technological background and efficient management 

methods should be the basic actors making up the bioenergy industry. In compliance with the 

market mechanism and the related governmental support, they are led to efficiently allocate 

the input capitals, adequately invest on critical technologies, sufficiently provide bioenergy 

products and in the end, to optimize both social benefits and economic benefits of the 

bioenergy industry.  

CHANCE AND GOVERNMENT: Porter points out that as auxiliary factors, chance and 

government cannot function independently other than through influencing the above four 

determinants.  
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In the face of the soaring energy demand and the volatile energy markets, the traditional 

development path of human society, which heavily relies on fossil fuels, has come under 

strong criticism. Searching for alternative renewable energies is not only a key to solving the 

current problem. More importantly, it represents a totally new development strategy. In the 

meantime, the side effects of excessively using fossil fuels have emerged. Out of the concern 

over climate change, a line of treaties dealing with controlling GHG emissions are signed by 

the international community. Under this circumstance, bioenergy, as a feasible solution to 

both fill in the demand gap left by fossil fuels and contribute to the GHGs emission mitigation, 

has obtained an unprecedented opportunity for its development.  

Government is the last element in the diamond model. It can influence the supply conditions 

of critical production factors, demand conditions in the home market, and competition 

between firms and industrial clusters on a higher level. Integrated with the reality of China, 

the governments there are supposed to assume the triad of responsibilities.  

The first responsibility is supervisory duties. The governments should supervise rather than 

personally participate in the bioenergy industry. In the meantime, the management methods of 

the government have to follow the intrinsic features of the bioenergy industry. Particularly, 

each actor constituting the bioenergy industry should match with a specific administrative 

department. Therefore, the authors suggest setting up an inter-departmental council composed 

of agriculture, land, industry and business, technology and environmental protection 

ministries so as to smooth the communication between the different sections of the bioenergy 

industry. 

The second one is legislative duties. Compared to conventional energies, the bioenergy 

industry is relatively nascent, and a mature bioenergy market has not completely formed. In 

order to offer bioenergy industry a favorable development environment and meanwhile 

prevent the unfair competition from traditional energies by using their predominant status in 

the existing energy market, the status and the share of bioenergy in the future energy portfolio 

need to be clarified and ensured by laws. Therefore, a periodically nationwide investigation 

on biomass resources legislated in RELPRC is necessary to obtain the first-hand and 

up-to-date data of biomass potential from each source. Based on the updated information, we 
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suggest the NDRC to compile a bioenergy industry development plan within the framework 

of the  five-year development plan. The consistency of this industry development plan with 

other plans focusing on the related and supported industries should specially be paid attention.  

The last one is its responsibility to provide favorable incentives. As an emerging industry 

having high positive externality to the human society and natural environment, the support 

from governments is justified. In accordance with the hierarchical administrative system, a set 

of top-down supportive measures covering all actors of the bioenergy industry should be 

designed. However, although the governmental interference at a reasonable scale can correct 

the market failure and assist the improvement of nascent industries, the market-oriented 

policies in general are preferred. Besides of offering subsidies, the governments bear other 

responsibilities, such as consolidating fund-raising channels for the firms, constructing the 

risk early-warning system and assisting the demonstrative projects.  

In conclusion, the overarching guideline for the government on cultivating the industry's 

competitiveness is to construct a favorable market circumstance and respect the predominant 

role of bioenergy firms in the bioenergy industry. 

 

7.4 Conclusion 

After constructing a comprehensive simulation platform of decision support for bioenergy 

industry development, this chapter returns to the primary question proposed at the beginning 

of our research, i.e. what is the sustainable development strategy of the bioenergy industry in 

China. To answer this question, we should not only focus on the industry itself but adopt a 

temporarily and spatially broad viewpoint to examine the relations between the bioenergy 

industry and the relevant factors, the latter of which, as a whole, compose the external 

atmosphere of the industry.  

Echoing the principle of sustainability, this chapter firstly proposes a conceptual model of 

cascade use and recycling of biomass derived from the notion of circular economy and 

emphasizes the coordinated utilization of biomass as an energy carrier and as a raw material.  

Subsequently, the focus is moved on to the different but related features of incentive 
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mechanisms in the short and the long term. We argue that the adoption of 

administration-driven policy, i.e. feed-in law, is currently more realistic for China than 

market-oriented policies, such as RPS and tendering policy. The reason is that in China, a 

mature competitive renewable energy market has not yet formed. Meanwhile, the motive of 

correcting the market failure incurred by positive environmental externality of renewable 

energy projects has also justified our suggestion. Nevertheless, the potential side effect of 

governmental intervention on the development of a competitive market in the long term 

cannot be ignored. In the future, the transition process from feed-in tariffs to RPS and 

tendering is unavoidable. 

In the end, by using Porter's diamond model, this study discusses the comprehensive strategy 

of cultivating bioenergy industry's competitiveness. Particularly, four determinants including 

factor conditions, demand conditions, related and supporting industries and firm strategy, 

structure and rivalry and two auxiliary factors covering government and chance have been 

examined. We argue that an unprecedented opportunity for bioenergy industry development 

has come. The fundamental actors driving the development of the industry are professional 

bioenergy firms boasting clearly defined and well-enforced property rights, good supervision 

mechanisms, advanced technological background and effective management methods. Since 

the bioenergy industry is mostly oriented towards the domestic market, it is likely to become 

more competitive with the formation of an industrial cluster focused on bioenergy or by 

receiving appropriate support from the government. The government's intervention is justified 

in this context by the government’s supervisory duties, legislative duties and its responsibility 

to provide favorable incentives.  

Different from most accessible literature about the construction of the bioenergy industry in 

China, this research tentatively introduces a prestigious analysis tool in the field of the 

industrial economy to decompose the competitiveness of the bioenergy industry. Although the 

analytical paradigm in this chapter has only applied to the industry in China, it can also be 

applied to the industry in other countries. In the future, a comparative study on this industry 

among the advanced and emerging economies could become a new research topic.  
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7.5 Research limitations and outlook 

In this study, we have successfully built an integrated model covering all the actors of the 

bioenergy industry and proposed a sustainable development strategy for the industry in China. 

Nevertheless, the study has several limitations that need be overcome before it can be 

extended to other regions.  

Firstly, there are uncertainties in this study. Uncertainty in analysis processes reflects the 

incomplete knowledge of the system or limited capacity of available hardware (e.g. 

computing capacity). Due to the lack of high-quality field data of energy crops plantations, 

the uncertainties regarding actual agricultural operations and the resultant potential ecological 

risks cannot be fully reflected in our study.  

Secondly, only bioethanol and biopower have been included in the mathematical model. In 

order to improve the coverage of the model, more biomass conversion routes should be 

included in future models. 

Therefore, further research can be conducted from the points listed below:  

(1) To include more environmental factors. In the simulation of biomass feedstock provision, 

we can introduce more the environmental factors, such as soil erosion, nitrogen, and 

phosphorous movements so as to improve the weight of environmental issues in our model. 

(2) To adopt high-quality data of energy crops plantations and biomass conversion routes. 

Along with the accumulation of the practical experience from our study area, more first-hand 

data can be collected. The use of high-quality data will significantly improve the scope and 

precision of our model. 

(3) To adopt more natural resources. Due to the high extensibility of the BioDSS, in the 

coming studies, we can introduce other natural resources, for example, water resources, 

forestry resources and grassland resources into consideration. 
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Appendix A An overview of the field trip  

I conducted a field trip to the study area of this research- Jiangsu province in China- between 

February 15 and March 15 in 2012. In the 30-day trip, I visited Beijing, Nanjing, Huai’an, 

Suqian and Yancheng and mainly collected three types of data: 

• Literature data 

• Land use and land cover map, the types, cultivated area, yield of crops, total arable 

land area, ArcGIS file of the transportation system, (the irrigation and tillage method, 

the utilization of mechanical equipment, pesticide and fertilizer)  

• Local data  

• The costs (including direct, power and overhead) and benefits of each crop, the local 

situation of mudflat, the demand amount of dry matter, national incentives and 

limitations of bioenergy, transportation costs for biomass and its products, costs of 

existing bioenergy plant (including annualized fixed cost, processing cost and other 

costs) 

• Interviews data 

• The perspectives of stakeholders of bioenergy industry, including farmers, haulers, 

plant operators, governments, NGOs, local residents and public 

In order to obtain a complete picture of the bioenergy industry in Jiangsu province, I designed 

eight kinds of administrative bodies (research institutes, industry associations and companies) 

to be visited, corresponding to each section of the supply chain of bioenergy products. The 

detailed interviewees are listed in Table A. 
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Table A Overview of the interviewees 

Field  Name  Title  Institutes/ organizations  

Food crop 

plantation 

Shi  General 
manager  

Nanjing Pukou Tangquan Farm  

Shu Yu  Staff  Jiangsu Province Statistic Bureau  

Guanghua 
Wang  

Director  Cost Price Investigation and Supervision 
branch,  

Jiangsu Commodity Price Bureau  

Shulin Guo  Director  Agriculture centre, Jianggang Farm  

Zhu  Dean  Jiangsu farms agribusiness company  

Crop straw 
utilization  

  Energy division, Jiangsu Development and 
Reform Commission1  

Yuting 
Qian  

Staff  Rural energy division, Jiangsu Province 
Commission of Agriculture  

Energy crop  

plantation  

Yong Xu  Deputy 
director, Vice 
Prof.  

Institute of Biochemical Engineering, 
Nanjing Forestry University  

Xiaohua 
Long  

Vice Prof.  Research Institute of Biomass Energy, 
Nanjing Agriculture University  

Zhaohong 
Fang  

Deputy 
general 
manager  

Jiangsu East Lake Bioenergy Plant Garden  

Mudflat  

reclamation 

Hongyou 
Chen  

Director  Jiangsu Agricultural Resources 
Development Bureau  

Shen Lin  Prof.  

Deputy 
director  

Institute of Jiangsu Costal development 
research, Yancheng Normal University  

Biomass 
transportation 

Li  Director  Provincial Road Bureau,  
Jiangsu Transportation Department  

  Shanghai Railway Bureau, Nanjing 
Branch1  

Biopower Wenchun 
Cui  

Director  Energy division, Suqian Development and 
Reform Commission  
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Chen  Engineer  Suqian Kaidi Green Energy Development 
Co., Ltd.  

Chun Tian  Office 
director  

Huai’an Guoxin biomass power company  

Xinhai Gu  Staff  Jiangsu Electric Power Association,  
Biomass Power Generation Branch 

Bioethanol Peng Xiong  Board 
Chairman  

Huai’an Baimai Green Bioenergy  Co., 
Ltd.  

Biodiesel 

Yunjuan 
Sun  

Dr.  Bioenergy and Materials Key Laboratory, 
Research Institute of Forestry Chemistry, 
Chinese Academy of Forestry Science  

Xu  General 
manager  

Jiangsu Qianglin Bioenergy CO. LTD.  

Notes: 1. These interviewees were contacted via Email. In such case, no contact person was listed here.  
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Appendix B Impression from the field trip to Jiangsu province 

 

 

(Left) The view of local farmland 

(Right) The front gate of Jianggang Farm 

 

 

(Left) The first demonstrative production line of bioethanol in the Jiangsu province  

(Right) The byproduct of bioethanol- bioslurry  
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(Left) The storage area of biomass feedstock 

(Right) The smashed biomass feedstock  

 

 

(Left) The feedstock feeding to furnace for power generation 

(Right) The biopower feeding to grid  
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(Left) The pool for incineration residue 

(Right) Photographed with interviewee, the general manager of Huai’an Baimai Green 

Bioenergy Company  

 

(Left) Photographed with the interviewee, Prof. Shen Lin from Institute of Jiangsu Costal 

development research, Yancheng Normal University 

(Right) Photographed with the interviewee, Director Hongyou Chen from Jiangsu Agricultural 

Resources Development Bureau
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Appendix C Short resume 

Kesheng Shu, studied Geology at the China University of Geosciences, Economics at Wuhan 

University, and Human Geography at the Institute of Geographic Sciences and Natural Resources 

Research of the Chinese Academy of Sciences. In his master thesis, he discussed the population 

carry capacity of the upstream regions of the Yangtze River. Since September 2010, he is a PhD 

student at the Research Group Climate Change and Security (CLISEC) at the Institute of 

Geography, University of Hamburg. He focuses on modeling the development of bioenergy 

industry in the context of climate change. 

 

Research Interests  

 Natural resources management modeling and policy analysis 

 Climate change adaptation and mitigation 

 General algebraic modeling system (GAMS) 

 

Selected Paper Publishing: 

1. K. Shu, A. Uwe, J. Scheffran, Bioenergy and land use: a spatial-agent dynamic model of 

optimized agricultural land use to Jiangsu in China, The 12th IAS-STS Annual Conference 2012.  

2. K. Shu, J. Scheffran, A. Uwe, Bioenergy for sustainable development in developing countries - 

A Jiangsu prospective, The 32nd International Geographical Congress 2012.  

3. K. Shu, M. Huo, Discussion of the Chinese Development Strategies of Geothermal Resources 

Based on the Circular Economy, World Geothermal Congress 2010.  

4. K. Shu, M. Huo, Application of Remote Sensing Technology in Geothermal Exploration: a case 

study of Taizhou city in Jiangsu province, World Geothermal Congress 2010.  

5. K. Shu, The research on the Division of the Development Priority Zones on the Basis of 

Relative Carrying Capacity of Resources Information：a case study of the Yangtze River Basin, 

Areal Research and Development, 1(2010),33-37.  

 

Selected Practical training: 

08.2014- 01.2015, Teaching assistant, Hamburg University 

10.2013- 03.2014, Research assistant, Hamburg University  

10.2012- 06.2013, Visiting scholar, Institute for advanced studies on science, technology and 

society (IAS-STS), Graz, Austria  

04.2012- 03.2014, Activities coordinator, PIASTA, Hamburg University 
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