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3 Automatic Spectral Classification

The main goal of automatic classification in the HES is to identify objects of a certain class in its large
data base. More formally, the problem can be stated as follows. The HES data base of digital spectra
can be represented by feature vectors~x, consisting of a set of continuous valuesxi , i.e.~x= (x1; : : : ;xd);
whered is the number of features used. In Sect. 3.2 we describe how features are derived from HES
spectra. We want to construct adecision rulewhich allows to assign a spectrum with feature vector~x
to one of thenc classesΩ j , j = 1: : :nc, defined in the specific classification context. That is, we want
to carry out asupervisedclassification, as opposed toun supervisedclassification, where the aim is to
group objects into classesnot defined before the classification process.

For supervised classification alearning sampleis always needed. For our purposes, we define a
learning sample to be a set ofnls objects for which the feature vectors are known,f~xg= (~x1; : : : ;~xnls);
and for which thereal classes are known. The real classes can be defined e.g. by grouping a set of
objects according to their stellar parameters (e.g.Teff, logg, [Fe/H]), or by assigning classes to a set of
spectra by comparison with reference objects. With the helpof a learning sample, information on the
class-conditional probability densities

p(~xjΩ j)
can be gained.p(~xjΩ j)d~x is the probability to observe a feature vector in the range~x: : :~x+d~x in the
classΩ j . Experience has shown that in most HES applications it is appropriate to modelp(~xjΩ j) by
multivariate normal distributions, i.e.,

p(~xjΩ j) = 1(2π)d=2
pjΣ j j exp

��1
2
(~x�~µj)Σ�1

j (~x�~µj)0� ; (6)

where j denotes class number,~µj the mean feature vector of classΩ j , andΣ j the covariance matrix of
classΩ j .

In many applications of automatic spectral classification in the HES, it is not possible to generate a
large enough learning sample fromreal spectra present on HES plates. This is because usually the target
objects are very rare. Therefore, we have developed methodsto generateartificial learning samples by
simulations, using either model spectra, or slit spectra. The next section is devoted to a description of
the procedures involved.

3.1 Simulation of Objective-Prism Spectra

The conversion of model spectra, or slit spectra, to objective-prism spectra consists of 5 steps:

(1) Rebinning to the non-equidistant pixel size according to the global dispersion relation (Eq. 3)

(2) Multiplication with the HES spectral sensitivity curve(s)

(3) Smoothing with a Gaussian filter, for simulation of the seeing profile

(4) Adding of pixel-wise, normally distributed noise
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(5) Random shift of the simulated spectrum according to the error distribution of the wavelength
calibration zero point (�10µm).

Step (4) ensures that objects of any brightness can be simulated; the average brightness corresponding
to a givenS=N can be derived from Eq. (5).

3.1.1 HES Spectral Sensitivity Curves

Spectral sensitivity curves (SSCs) for HES plates have beendetermined by comparison of white dwarf
model spectra, rebinned to the wavelength dependent pixel size∆λ of the objective-prism spectra, with
objective-prism spectra of DA white dwarfs on HES plates. A first implementation of such a procedure
was done by von Laar (1995). The DA model spectra were fitted toslit spectra of each of the white
dwarfs under comparison. We do not use the slit spectra directly as reference, because slit losses would
produce erroneous results.

By comparing SSCs for plates from different plate batches, with different sky background, and
generated with objects spanning a wide brightness range (but below the saturation threshold), we in-
vestigated the possible systematic influence of these characteristics on the shape of the SSCs. The
parameters of the 12 objects used in this investigation, andplate parameters, are listed in Tab. 2.

Name BJ Plate bgr Batch Teff [K] log g

HE 0004-5403 16.2 12076 1123 1D4 18200�300 8:26�0:06
HE 0059-5701 16.4 12052 1026 1D4 30400�300 8:08�0:06
HE 0252-3501 16.0 11420 1039 1D4 17400�300 7:35�0:05
HE 0358-5127 15.4 10844 765 1I3 24100�300 8:10�0:05
HE 0409-5154 16.1 10844 765 1I3 27500�300 8:00�0:06
HE 0412-4744 16.5 10844 765 1I3 19300�300 8:08�0:06
HE 0418-5326 16.1 10939 649 1I3 27900�200 8:00�0:05
HE 1049-1552 14.2 9091 752 1C8 20200�200 8:63�0:04
HE 1058-1258 14.8 9091 752 1C8 24700�200 8:84�0:04
HE 1058-1334 16.6 9091 752 1C8 15900�300 8:00�0:07
HE 1017-1618 15.8 8402 1363 1K6 28600�300 8:30�0:06
HE 1017-1352 14.4 8402 1363 1K6 33500�200 8:25�0:05

Table 2: Sample of DA white dwarfs used for determination of spectral sensitivity curves.
bgr is the diffuse background (in counts) averaged over four plate quarters.

By comparing the shapes of the 12 resulting SSCs, we found that there isno systematic influence
of object brightness, plate batch and sky background on SSC shape. The plate material of the HES is
astonishingly homogenous as compared to other surveys, e.g. the other Hamburg based objective prism
survey, the HQS Hagen et al. (1995). However, aslight variation of SSC shape is present (see Fig. 9),
which hence must be attributed to another parameter. Since it is the blue part of the SSCs that varies, it
is very likely that the time span between hypersensitization and development of the plate is responsible
for the shape variations.

We grouped the 12 SSCs into 4 SSC classes of similar shape (seeTab. 3), and averaged them within
these classes. When converting model spectra or slit spectra to objective prism spectra, we use an SSC
created by averaging the 4 averaged SSCs with randomly assigned weights.
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Figure 9: Averaged spectral sensitivity curves.
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# Name BJ Plate bgr Batch

1 HE 0004-5403 16.2 12076 1123 1D4
1 HE 1017-1618 15.8 8402 1363 1K6
1 HE 1017-1352 14.4 8402 1363 1K6

2 HE 1049-1552 14.2 9091 752 1C8
2 HE 1058-1258 14.8 9091 752 1C8

3 HE 0252-3501 16.0 11420 1039 1D4
3 HE 0358-5127 15.4 10844 765 1I3
3 HE 0409-5154 16.1 10844 765 1I3
3 HE 0412-4744 16.5 10844 765 1I3

4 HE 0059-5701 16.4 12052 1026 1D4
4 HE 1058-1334 16.6 9091 752 1C8

Table 3: Averaging of spectral sensitivity curves of similar shape.

3.1.2 Adding Noise

We add artificial, normally distributed noise to the converted spectra, in order to simulate objective-
prism spectra of any brightness. We parameterize theS=N of a spectrum by the meanS=N in the BJ

band, �
S
N

�
BJ

= 1
n

n

∑
i=1

Di

a0+a1Di +a2D2
i

;
using the noise model described in Sect. 2.2.6. Since the noise depends on the densityD, it is important
to take care of the density variation throughout the spectrum. We thus scale the simulated spectra with
a scaling factorc such that the desired meanS=N in BJ is achieved, when the appropriate amount of
pixel-wise Gaussian noise is added. We use the typical noisecoefficients

a0 = 18:4 (7)

a1 = 0:604�10�2 (8)

a2 = 0:719�10�5: (9)

The meanS=N of the scaled spectrum is:�
S
N

�
new

= 1
n

n

∑
i=1

c �Di

a0+a1 �c �Di +a2 �c2 �D2
i

; (10)

For the determination ofc we re-arrange this equation to:

1
n

n

∑
i=1

c �Di

a0+a1 �c �Di +a2 �c2 �D2
i

�� S
N

�
new

= 0 (11)

Eq. (11) can be solved iteratively with the Newton-Raphson method. The iteration rule is:

c(m+1) = c(m)� f (c(m))
f 0(c(m)) ; (12)

where f (c) is the left hand side of Eq. (11). A comparison of simulated spectra with real spectra is
shown in Fig. 10.
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(a) Metal-poor halo star HE 0350-4804. (b) Model spectrum of a metal poor star with the
same stellar parameters as HE 0350-4804, converted
to objective-prism spectrum and with added artificial
noise.

(c) HE 0454-5446, white dwarf of type DA. (d) Model spectrum of a DA withTeff = 20000 K, con-
verted to objective-prism spectrum and with added arti-
ficial noise.

(e) Quasar HE 2347-4342,z= 2:89. (f) Slit spectrum of HE 2347-4342, converted to
objective-prism spectrum and with added artificial
noise.

Figure 10: HES spectra of objects of different type (left column) in comparison with sim-
ulated objective-prism spectra (right column). The units of the ordinates are densities in
arbitrary units.
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Since a lowerS=N results in a larger scatter of feature valuesxi within each class, the parameters of
the class-conditional probabilities Eq. (6) are determined independently for artificial learning samples
of differentS=N. We use the followingS=N grid:�

S
N

�
BJ

= 5;10;15;20;25;30: (13)

Each spectrum is then classified by using the learning samplewith aS=N which is closest to theS=N of
the spectrum; e.g. a spectrum withS=N= 18 is classified by using the learning sample withS=N = 20.

3.2 Feature Detection

It is critical for automatic classification to have a set ofreliable features at hand. The total set of
available features should contain as much information of the objects to be classified as possible.

A wide range of spectral features is automatically detectedfrom the digitized objective-prism spec-
tra during the data reduction process (see Tab. 4): stellar absorption and emission lines, continuum
shape, Calcium-break, bisecting points of spectral density distribution, C2 and CN band indices, and a
Ca K line index.

Name Description Detection method
all5160eqw Wλ of Mg I b triplett/TiO λ 5168 Iterative fit procedure
all4861eqw Wλ of Hβ Iterative fit procedure
all4388eqw Wλ of Fe I λ 4383+85 Iterative fit procedure
all4340eqw Wλ of Hγ Iterative fit procedure
all4300eqw Wλ of G-Band Iterative fit procedure
all4261eqw Wλ of Cr I λ 4254 + 75 + FeI 4260 + 72 Iterative fit procedure
all4227eqw Wλ of Ca I λ 4227 Iterative fit procedure
all4102eqw Wλ of Hδ Iterative fit procedure
all3969eqw Wλ of Ca H + Hε Iterative fit procedure
all3934eqw Wλ of Ca K Iterative fit procedure
klcomp 1 1. continuum shape coefficient PCA
klcomp 2 2. continuum shape coefficient PCA
klcomp 3 3. continuum shape coefficient PCA
klcomp 4 4. continuum shape coefficient PCA
CaBreak sn S=N Calcium-break Template matching
CaBreak cont Contrast of Calcium-break to continuum Template matching
CaKindex Strength of Ca K Ratio of average pixel values
C2idx1 Strength of C2 λ5165 Ratio of average pixel values
C2idx2 Strength of C2 λ4737 Ratio of average pixel values
CNidx2 Strength of CNλ4216 Ratio of average pixel values
CNidx3 Strength of CNλ3883 Ratio of average pixel values
dx hpp1 Half power point distance 1 Summing of pixel values
dx hpp2 Half power point distance 2 Summing of pixel values

Table 4: Automatically detected spectral features in the HES.
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3.2.1 Detection of Stellar Lines

We implemented a flexible, robust algorithm which allows to detect stellar absorption and/or emission
lines in HES spectra. The algorithm is iterative, consisting of the following steps:

(1) Determination of continuum by filtering with a wide median filter and narrow Gaussian filter.

(2) Improvement of determination of the wavelength calibration zero point by fitting of 3 sets stellar
lines. The sets contain the strongest stellar absorption lines of early type, solar type, and late
type stars, respectively. The individual lines depths, andthe zero point offset of wavelength
calibration are fitted simultaneously. Therelativepositions of the stellar lines are held fixed, and
the linewidths is held fixed at the value of the seeing profile widths, which ismeasured during
spectral extraction. The set of lines giving the strongest signal, i.e. largest average equivalent
widths, is selected, and the wavelength calibration zero point determined with that fit is adopted.

(3) Improvement of continuum determination:

(a) Fitting ofall stellar lines detectable in HES spectra

(b) Removal of fitted lines from the original spectrum

(c) Computation of improved continuum by filtering the line-reduced spectrum again with a
wide median filter and narrow Gaussian filter

(c) Start with (3a), ifniter < 3; otherwise compute rectified spectrum with final continuum.

(4) Fitting of all stellar lines in the rectified spectrum by Gaussians.

For each spectral line it can be chosen whether it is to be detected in absorption or emission. The output
of the fit algorithm are equivalent width, FWHM andS=N of the lines, and shift of the wavelength
calibration zero point. Any spectral lines not yet considered can easily be included by just adding its
wavelength to the list of lines to be fitted.

3.2.2 PCA of Continua

We perform a Principal Component Analysis (PCA; see e.g. Murtagh & Heck 1987) of the continua
determined in the iterative line detection procedure, in order to parameterize the continuum shape of
HES spectra. Wisotzki (1991) used PCA in the HES also for quasar selection.

It was found that for the continua of a learning sample of 654 spectra classified by hand, and
occupying the classes A5–K9, three principal components account for almost 98 % of the variance in
the learning sample. It was possible to fit the continua of almost all of the learning sample spectra with
χ2=ν < 2:0. Four objects needed 5 or more components. Their spectra were inspected again and it was
found that they have an unusual continuum shape, probably because they are binaries. These spectra
have thus been excluded from the learning sample.

3.2.3 Broad Band Colours

For many stellar applications it is helpful to haveU �B andB�V colours at hand. Therefore, we
established colour calibrations using so-called “half power points” (hpp; see Wisotzki et al. 2000).
These are bisecting points of a part of the spectrum. Definitions of the hpps can be found in Tab. 5, and
an illustration in Fig. 12. hpps are equivalent to broad bandcolours, but have the advantage of being
more robust against noise.x hpp1 andx hpp2 are well correlated withU�B andB�V, respectively.
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Figure 11: First three principal components of the continuaof 654 learning sample spectra.

Name λ range correlated with
x hpp1 3240Å < λ < 4840Å U �B
x hpp2 3890Å < λ < 5360Å B�V

Table 5: Definitions of spectral half power points (hpp) usedin the HES.



3 AUTOMATIC SPECTRAL CLASSIFICATION 25

Figure 12: Illustration of spectral half power pointsx hpp1 andx hpp2. Solid lines mark
the regions in which the hpps are computed; dotted lines indicate the position of the hpps.
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A more precise colour calibration can be achieved when distancesdx to a cutoff line in a colour-
magnitude diagram (see Fig. 13) is used instead ofx values for the bisecting point, because plate-to-
plate variations of the spectral sensitivity curves are compensated in this way. The cutoff line separates
the bulk of “normal” stars from UV-excess objects (or objects with unusually lowB�V in case of
dx hpp2). The cutoff is determined by a break finding algorithm.

Figure 13: Cutoff-line for bisecting pointx hpp1 on one HES plate.

Because the blue end of the HES spectra is sensitive to contamination by overlaps, special care must
be taken to exclude such spectra from the calibration ofdx hpp1. This has been done by applying
stricter overlap selection criteria. In addition, an iterative κσ-clipping with κ = 3 has been employed
to exclude overlaps unrecognized by the automatic detection. 50 of the 623 spectra in the original data
set have been clipped out, so that the calibration uses spectra of 573 objects. The resulting fit is shown
in Fig. 14.

Figure 14: Calibration ofdx hpp1 using a combined sample of 573 objects from the EC
and HK surveys present on HES plates.

A potential problem for theB�V calibration is that theV band is not fully covered by the HES
wavelength range. Therefore, the calibration for very red objects is inaccurate, or even impossible. As
calibrators for red objects, 36 carbon stars have been used,for which BV photometry was obtained by
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the author at the ESO 2.2 m telescope in April 1999. Carbon stars withB�V > 2:5 have been excluded
from the fit. ForB�V . 1:0, 778 stars from the HK survey of Beers et al. (1992), 354 FHB and other
A-type stars of Wilhelm et al. (1999), and 272 objects from the northern galactic cap fields of the EC
survey (Kilkenny et al. 1997) present on HES plates have beenused. Linear fits in three colour regions
have been done separately, in order to evaluate the scatter independently, and check consistency. Then,
a combined fit to all 1256 unique objects was done (see Fig. 15).

Figure 15: Calibration ofdx hpp2 by separate fits in different colour regions (upper panel),
and by combined fit to 1256 objects (lower panel).

The results of the fits are summarized in Tab. 6. Note that a single fit contains objects from a large
fraction of the 329 stellar HES plates, and – with the exception of the redB�V fit – a wide range of
object types, e.g. metal-poor stars, solar metallicity F- and G-type stars, field horizontal branch A-type
stars, “normal” A-type stars, DA white dwarfs, DB white dwarfs, sdB stars, AGN. The achieved accu-
racies areσU�B = 0:092m, andσB�V = 0:095m for theB�V fit using all calibration objects together.
The accuracy inB�V for red (B�V & 1) and blue (B�V . 0:3) objects is a factor of� 2 worse
(σ = 0:15m and 0:12m, respectively) than for intermediateB�V objects (σ = 0:074m).
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Colour a0 a1 a2 valid range Nstars σ [mag]

B�V 0:79 2:53�10�5 3:34�10�6 �600< dx hpp2<�300 37 0:15
B�V 0:31 �2:00�10�3 1:74�10�6 �300< dx hpp2< 0 817 0:074
B�V 0:31 �3:06�10�3 4:35�10�6 0< dx hpp2< 400 405 0:12

B�V 0:30 �2:24�10�3 9:62�10�7 �600< dx hpp2< 400 1259 0:095

U �B �0:19 �1:67�10�3 +2:76�10�7 �800< dx hpp1<+800 573 0:092

Table 6: Broad band colour calibration fits.

3.2.4 Narrow Band Colours

We obtain Strömgren coefficientsc1 = (u�b)� (v�b) directly from HES spectra by averaging the
density in the Strömgrenuvbbands, and computing internal coefficientsc1;HES from that.c1;HES has been
calibrated using a total of 79 stars, which are not saturatedin the HES, from three different sources. 22
metal-poor stars have been taken from Schuster et al. (1996), 43 stars from Beers (2000, priv. comm.),
of which 2 have been rejected as outliers (see Fig. 16), and 16hot subdwarfs from an updated version
of the catalog of Kilkenny et al. (1988) (Heber 2000, priv. comm.). The 1σ error of the calibration is
0:15m. c1 can be used as a gravity indicator, since it measures the strength of the Balmer discontinuity.

Figure 16: Calibration of Strömgrenc1 measured in HES spectra. The 2 filled circles mark
objects excluded from the fit.

3.3 Decision Rules

A central issue in automatic classification is the construction of a decision rule which is optimal for the
given classification problem. In the HES, we use two decisionrules: The Bayes rule, and a minimum
cost rule.
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3.3.1 Bayes’ Rule

Classification with Bayes’ rule minimizes the total number of misclassifications, if thetruedistribution
of class-conditional probabilitiesp(~xjΩi) is used (Hand 1981; Anderson 1984). Using Bayes’ theorem,

P(Ωij~x) = P(Ωi)p(~xjΩi)
∑8i

P(Ωi)p(~xjΩi) ;
posterior probabilitiesp(Ωi j~x) can be calculated. A spectrum of unknown class, with given feature
vector~x, can then be classified using Bayes’ rule:

Bayes’ rule: Assign a spectrum with feature vector~x to the class with the highest posterior probability
p(Ωi j~x).

3.3.2 Minimum Cost Rule

In most of the classification problems arising in the HES it isdesired to compile a sample of objects
of a specific class, or a specificsetof classes. In these cases, Bayes’ rule is not appropriate, because
we do not want to minimize the total number of misclassifications, but the misclassifications between
the desired class(es) of objects, and the remaining classes. Suppose we have three classes, A-, F-, and
G-type stars, and we want to compile a complete sample of A-type stars. Then only misclassifications
between A-type stars and F- and G-type stars (and vice versa)are of interest. More specifically, mis-
classifications of A-type stars to F- and G-type stars (leading to incompleteness) are least desirable
when a complete sample shall be compiled, and erroneous classification of F- and G-type stars as A-
type stars (resulting in sample contamination) can be accepted at a moderate rate. Misclassifications
between F- and G-type stars can be totally ignored, because the target object type is not involved.

Classification aims like this can be realized by using a minimum cost rule. Cost factorsrhk, with

0� rhk � 1; h= 1; : : : ;nc; k= 1; : : : ;nc: (14)

allow to assignrelative weightsto individual types of misclassifications. The cost factorrhk is the
relative weight of a misclassification from classΩh to classΩk.

Suppose we have an object of unknown class, with feature vector~x. We ask how large the cost is if
it belongs to classΩh, and would be assigned to classΩk, h 6= k. The costCh!k(~x) is:

Ch!k(~x) = rhkP(Ωhj~x)= rhk
P(Ωh) p(~xjΩh)
m
∑

i=1
P(Ωi) p(~xjΩi)= rhk

ahph(~x)
m
∑

i=1
ai pi(~x) :

In the last step we have used the abbreviationsP(Ωh) = ah and p(~xjΩh) = ph(~x). We do not know
to which of the possible classesΩh, h= 1; : : : ;nc, the object actually belongs. Therefore, we estimate
the expected costCk(~x) for assigning an object with feature vector~x to the classΩk by computing the
following sum of costs:

Ck(~x) = m

∑
h=1
h6=k

Ch!k(~x)
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∑
h=1
h6=k

rhk
ahph(~x)

∑m
i=1ai pi(~x) (15)

Now we can formulate the minimum cost rule, which minimizes the total cost (Hand 1981).

Minimum Cost Rule: Assign an object with feature vector~x to the classΩk with the lowest expected
cost Ck(~x).

If the cost factors have been chosen such that

rhk� δhk;
the minimum cost rule classification is identical to classification according to Bayes’ rule. In this case
the cost for assigning the classΩk to a spectrum with feature vector~x is the probability that the object
belongs to one of the other classesh 6= k. This follows immediately from Eq. (15). Ifrhk 6= δhk, the total
number of misclassifications isnotminimized, so that the quality of a minimum cost rule classification
has to be evaluated by other criteria.

3.3.3 Rejection Rule

Non-mathematically speaking, Bayes’ rule assigns the class with the highestrelative resemblance to
each spectrum to be classified. However, it is ignorant of theabsoluteresemblance: A spectrum with
feature vector~x may be assigned to a class withvery lowposterior probabilityp(Ωi j~x), if p(Ωi j~x) is
even lower for all other classes. This means that a class is assigned toall spectra, even to “garbage
spectra” which have been disturbed, for instance, by plate artifacts. Therefore, it is useful to make use
of a rejection criterion.

Reject rule: Reject an object from classification to classΩi , if a:i:(Ωi ;~x)> β .

The parameterβ is a threshold to be chosen, and the parametera:i: is theatypicality indexsuggested
by Aitchison et al. (1977),

a:i:(Ωi ;~x) = Γ
�

d
2

;
1
2
(~x�~µi)Σ�1

i (~x�~µi)0� ;
whereΓ(a;x) is the incomplete gamma function andd the number of features used for classification.
Use of the above rejection criterion is identical to performing aχ2 test of the null hypothesisH0 that
an object with feature vector~x belongs to classΩi at significance level 1� β, against the alternative
hypothesisH1 that it doesbelong to classΩi. We reject the null hypothesis, if its significance level is
low, i.e., if it is very unlikely that a feature vector~x is observed for classΩi , given the multivariate
normal distributions (6) are thetrue distributions of the class-conditional probabilitiesp(~xjΩi).
3.4 Evaluation of Classification Rules

Classification rules can be evaluated by the number of expected misclassifications (in case of Bayes’
rule), or by the total expected cost (in case of the minimum cost rule). The three most important
methods to estimate these numbers are (Deichsel & Trampisch1985):

(1) Re-substitution
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(2) “Hould out” method

(3) “Leaving one out” method.

Re-substitution means that one uses the learning sample also as test sample. The drawback of this
method is that oneunderestimatesthe number of expected misclassifications, because a classification
rule derived with the help of a finite learning sample is always adapted to the individual composition
of the learning sample. Therefore, the estimation of the expected number of misclassification is biased
(Deichsel & Trampisch 1985).

An improvement in this respect is gained when the “hold out” method is used. Here one randomly
divides the learning sample disjunctly into a new, smaller learning sample, and a test sample. Since the
learning sample and test sample are completely independentin this case, an unbiased estimate of the
expected error rates is possible (Deichsel & Trampisch 1985). However, the drawback is that one needs
a large enough learning sample. When modeling the class-conditional probabilities with multivariate
normal distributions, the learning sample size has to be large enough to ensure a robust estimation of
the parameters of the distributions. When using non-parametric methods, the situation is even worse,
because theshapeof the distribution has to be determined, too, so that additional degrees of freedom
are present.

The problem of learning sample size can be circumvented by using the “leaving one out” method.
Suppose we have a learning sample of sizenls. We exclude objecti from the learning sample, and
construct the classification rule using thenls � 1 remaining objects. Objecti is then classified with
this classification rule. This procedure is repeatednls times, so that each object of the learning sample
is excluded once, and used as test sample. By adding up the numbers of misclassifications obtained
in each step, one gets an unbiased estimate of the expected error rate (Deichsel & Trampisch 1985).
The only drawback of this method is that it consumes a lot morecomputing time than the previously
mentioned methods, sincenls classification rules have to constructed. However, the computing time
increases onlylinearily with learning sample sizenls, so that the usage of the “leaving one out” method
was feasible for all HES learning samples used so far (the largest learning sample used hadnls =
165000).

3.5 Choosing a Feature Combination

It is necessary to select a subset of the available features for each classification problem, and eachS=N
step, because of several reasons.

(1) Blended lines, e.g. Hε+Ca H, can confuse the classification.

(2) It is advantageous to exclude redundant features from the set of features used for classification,
since the usage of less features results in more stable estimates of the parameters of the multi-
variate normal distributions Eq. (6).

(3) The optimal feature set can vary withS=N. For instance, at lowS=N it can be useful to only
use continuum shape parameters and colours for classification, because no stellar lines can be
detected reliably anymore.

The best method for finding the optimal feature combination is to evaluateall 2d � 1 possible
combinations of thed available features, since this is the only way toprove that the combination
found is really the best one. However, since the computing time raises exponentially with the number
of features, the complete search is only feasible for a limited number of features. On a Linux PC
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with 333 MHz Pentium II processor the complete search in a feature space ofd = 11, evaluated with
“leaving one out” on a learning sample of 22 500 objects, takes about one day. Since the search has to
be done for all 6S=N steps individually,d= 11 is about the feasibility limit.

In practice it is usually possible to select a subset ofd < 11 features from the 23 available features
listed in Tab. 4 by astrophysical considerations alone. E.g., when it is desired to select metal-poor stars,
one can restrict the initial feature set to those features that arepossiblyuseful as indicators forTeff,
logg, and [Fe/H], and one can safely ignore e.g. Carbon band indices. It is also possible to reduce
the dimensionality of the feature space bya priori combining redundant features, e.g. the equivalent
widths of the Balmer lines to asumof equivalent widths.

3.6 Choosing Cost Factors

The cost factors were adjusted by using a special tool, whichdisplays the confusion matrix, estimated
with the “leaving one out” method on the learning sample, depending on the choice of three sets of
cost factors:

t2o: Cost factor for misclassification of an object of thetarget class (‘t’) to (‘2’) one of theother
classes (‘o’).

o2t: Cost factor for contamination of the target class.

o2o: Cost factor for misclassification between other classes.

Since sample completeness and contamination are interdependent, in practice only therelative value
t2o/o2t has to be adjusted. A screen-dump of the cost factor tool is shown in Fig. 17.
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