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Abstract

Motion of charges at the atomic level is the fundamental mechanism for all chemical
and biological processes in nature. Processes such as the photoelectric effect, molec-
ular dissociation, and photosynthesis, are initiated by the electrons and the nuclei
moving on the time scale of attoseconds to femtoseconds. Learning to control and
steer these ultrafast dynamics is the objective of femtochemistry, where we have
the vision to design artificial reactions and to engineer compounds with exceptional
physical, chemical, or biological properties. The theoretical description of molecular
systems is challenging however, due to the large number of degrees of freedom
and the intrinsic quantum nature of the problem. A full quantum description of the
molecules is far from feasible using today’s computational resources. We need ap-
proximated models to resolve the ultrafast dynamics in molecules theoretically. Here
we show, matrix product states (MPS) are particularly suited to describe ultrafast
electron dynamics in molecules. Using the Hamburg CheMPS2 program developed
for this thesis, we demonstrate the massive reduction of degrees of freedom when
representing the many-body state by time-dependent MPS. In the context of ultrafast
electron dynamics in molecules, we compare reduced density matrices and Green’s
functions obtained from the MPS approach with those from a completely correlated
state. We see a reduction of the effective number of degrees of freedom by several
orders of magnitude, while the error of the one-body reduced density matrix can be
controlled to stay below 10% within a time frame of 3f s . This feature is shown for
correlated systems such as the 10 site hydrogen chain, the hydrogen fluoride molecule,
the water molecule, the ammonia molecule, and the methane molecule. Addition-
ally, for the ionized iodoacetylene molecule, we observe electron dynamics that is in
quantitative agreement with experimental reports. We pinpoint the performance
of the MPS approach in resolving electron migration and demonstrate the vital role
of correlations in this process. We expect the computationally efficient MPS based
time evolution to enable accurate description of many phenomena involving electron
dynamics in molecules hidden before. Still, the method can be expanded to describe
phenomena including nuclear motion and explicit ionization processes.
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Kurzzusammenfassung

Die Bewegung von Ladungen auf atomaren Skalen ist die grundlegende Ursache für
alle chemischen und biologischen Prozesse. Der photoelektrische Effekt, Dissoziation
von Molekülen und Photosynthese sind nur einige Prozesse, die von einer Bewegung
der Elektronen auf der Zeitskala zwischen Attosekunden und Femtosekunden ausge-
löst werden. Kontrolle über diese ultraschnelle Dynamik zu gewinnen ist das Ziel der
Femtochemie. In der Lage zu sein, die ultraschnelle Elektronenbewegung in Molekü-
len zu steuern, würde es ermöglichen künstliche Reaktionen hervorzurufen und damit
Verbindungen mit neuartigen Eigenschaften zu schaffen. Eine theoretische Beschrei-
bung solcher Prozesse ist allerdings sehr aufwendig, da Moleküle viele Freiheitsgerade
besitzen und sie intrinsisch quantenmechanisch sind. Eine komplett quantenmecha-
nische Beschreibung würde unsere heutigen Rechenkapazitäten bei Weitem über-
steigen. Daher brauchen wir Methoden, um dennoch Zeitabhängigkeit in Molekülen
annäherungsweise zu beschreiben. In dieser Arbeit zeigen wir, dass eine solche Be-
schreibung mittels Matrixproduktzuständen (MPS) möglich ist. Mit dem eigens für
diese Arbeit entwickelten Hamburg CheMPS2 Programm demonstrieren wir die im-
mense Reduzierung der Freiheitsgrade, wenn der Vielteilchenzustand durch einen
zeitabhängigen MPS repräsentiert wird. Im Kontext von ultraschneller Elektronen-
dynamik in Molekülen, vergleichen wir reduzierte Dichtematritzen sowie Greensche
Funktionen zwischen dem MPS-Ansatz und einer komplett korrelierten Rechnung.
Wir sehen eine Reduktion der Anzahl von effektiven Freiheitsgraden um mehrere
Größenordnungen, wobei der Fehler in der Einteilchen-Dichtematrix immer unter
10% innerhalb der ersten 3f s gehalten werden kann. Diese Eigenschaft weisen wir
für korrelierte Systeme, wie der Kette aus zehn Wasserstoffatomen, Fluorwasserstoff,
das Wassermolekül, Ammoniak und Methan, nach. Zusätzlich wird Ladungsmigration
in ionisiertem Iodoacetylene untersucht, wobei wir hier eine quantitative Überein-
stimmung mit experimentellen Daten erreichen. Wir spezifizieren in diesem System
den Einfluss von Elektronenkorrelation und zeigen explizit, dass der MPS-Ansatz in
der Lage ist diese aufzulösen. Wir erwarten, dass der sehr effiziente MPS-Ansatz
zukünftig genutzt werden kann, um Ladungsmigrationseffekte zu beschreiben, die
zuvor verborgen waren. Auch lässt sich der MPS-Ansatz noch zusätzlich erweitern,
um beispielsweise Kernbewegungen oder Ionisierungsprozesse zu berücksichtigen.
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1Introduction

Quantum mechanics has been fascinating physicists for more then a century. The
conception that the laws of physics at the nanoscopic scale are fundamentally dif-
ferent from what we perceive in our daily lives has driven generations of physicists
to explore the quantum world experimentally and theoretically. Today, we have a
coherent and consistent mathematical formulation of quantum mechanics that is
our fundamental theory for physics at the nanoscopic scale [1]. Significant domains
of this theory remain hidden however, since they are either too challenging to study
experimentally, our understanding of mathematics is insufficient for an analytical de-
scription, and our computational resources are incapable of a numerical description.
Based on this issue, it is an ongoing challenge to advance our perception of quantum
mechanics into unexplored fields and to search for novel, unexpected phenomena.

But the interest in quantum mechanics is not only driven by curiosity. Quickly after the
description and observation of the first quantum effects, quantum based applications
emerged. Today, about a hundred years later, quantum technology made it into the
lives of almost every human on earth, ranging from telecommunication technology
that we use to stay connected with each other, information technology that shapes
how we make decisions, to medical imaging technology that saved thousands of lives.
To continue the technology-driven development of our community, however, an even
more versatile understanding of quantum mechanics is necessary. Still, many facets
of quantum physics remain undiscovered, but in this unexplored territory lays the
potential for further fantastic technologies. Ideas for future technologies have been
developed, e.g. as steering molecular reaction paths or using quantum states for
information storage, their implementation simply fails at the insufficient degree we
are able to control and describe quantum systems.

A manifestation of quantum mechanics that is particularly interesting from an aca-
demic and technological perspective are molecular systems. As the formation of
molecular bonds is mostly driven by the electrons in the molecule that move on
an Ångstrom length scale (10−10m) and an attosecond time scale (10−18s) [2], every
chemical reaction can be considered a result of quantum mechanics. In this picture,
quantum mechanics is ubiquitous in chemistry [3]. The field of ab initio quantum
chemistry strives to join our understanding of quantum physics and molecular me-
chanics to create a concise picture of the foundation of chemistry. Having such a
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Figure 1.1.: Time scale of processes involving motion of electrons and nuclei in molecular
systems.

precise description is fundamental to advance in physics and chemistry, where only
cooperation between theory and experiment allows to interpret and validate any
scientific result.

Most direct external access to the molecular systems occurs in terms of the interaction
between the molecule and light. Photoinduced processes in molecules play a key role
in experimental quantum chemistry, but are also the main driving force in numerous
effects in physics [13], chemistry [14] and biology [15, 16]. For example, the transfer
of charges in photovoltaic systems [17, 18], DNA damage triggered by ultraviolet
light [19], and photosynthesis in plants and bacteria [20], are all results of an initial
interaction of the compound and incoming light. Further, all these process have in
common that they are triggered by an initial ultrafast motion of the electrons in the
compound, that embodies the first response of the molecule with light. This ultrafast
motion starts with a purely electronic part on the scale of attoseconds, coined charge
migration, which is then the trigger of a slightly slower motion involving the nuclei
as well on the scale of femtoseconds (10−15s), coined charge transfer (see Figure 1.1).
The community in quantum chemistry that aims to obtain control over the electrons
in the molecule moving on the femtosecond scale and the subsequent molecular
reaction is named femtochemistry [21]. Advances in shaping ultra short light pulses
allows to resolve the time-dependent electron dynamics with a femtosecond and
attosecond time resolution. Observing the electronic motion and the subsequent
nuclear motion on the femtosecond time scale is the first step towards the vision
of femtochemistry, in which we are able to steer the entire reaction path to form
artificial compounds [22, 23].
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Figure 1.2.: Schematic illustration of the dimensions we need to consider when approaching
the correct description of the molecular system. We need to consider orbital
set completeness (x-axis) and correlation completeness (y-axis) independently,
where only in the complete basis set limit (CBS) and in the full configuration
interaction limit (full CI) we can find the exact solution. Example is for a small
molecule with medium sized orbital set. Scales are not representative.

The theoretical description of the processes happening at the attosecond to femtosec-
ond time scale is extremely challenging. The large number of degrees of freedom
in combination with the intrinsic quantum mechanical effects, makes finding theo-
retical models for molecules a key subject of today’s physical sciences. In fact, the
accurate treatment of many-body systems is one of the greatest challenges in mod-
ern sciences [24]. Many different approaches have been developed to reduce the
numbers of degrees of freedom, although still allowing for accurate representation
of the essential mechanisms in the many-body system. In the context of molecular
systems, a large family of methods have been proposed. These methods can be cate-
gorized into two types, first, methods based on Hartree–Fock theory [25, 26], where
one describes the molecule with respect to molecular orbitals, and second, methods
based on density functional theory [27, 28], where one drops the description of the
molecule via quantum mechanical states but uses the charge density instead. Both
methods have their own strengths and weaknesses [29] and for both methods exist
large families of extensions [30–39].

In Hartree–Fock theory the approximation is two-fold. First, one assumes that the
state of the electrons in the molecule can be described by a set of orbitals. The
orbital basis set is then finite and is only able to represent the exact location in the
complete basis set limit (CBS). Second, one assumes that correlations in the molecule
are entirely absent and that the molecular state can be described by a single Slater
determinant or configuration [40]. The single configuration approximation reduces
the many-electron molecule to a set of coupled single-electron problems that are
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then solved self-consistently. The resulting many-body state of the molecule is then
a simple product state of molecular orbitals, which is easy to store even for large
molecules.

The family of post-Hartree–Fock methods build upon the molecular orbitals and at-
tempt to account for the electronic correlations by introducing more configurations.
The post-Hartree–Fock methods are then distinguished by their approach to choose
the included configurations. For example, in configuration interaction (CI) [30, 31]
and coupled cluster (CC) [32–34] the configurations are chosen with respect to the
number of electrons excited compared to the Hartree–Fock ground state (single ex-
citations (CIS, CCS), double excitations, (CISD, CCSD), ...), in complete active space
self-consistent field theory (CAS-SCF) the orbitals entering quantum mechanical su-
perposition states remain separated from orbitals that are double occupied or empty,
and in full configuration interaction quantum Monte Carlo the configurations are
inserted or neglected stochastically based on the evolution of walkers [41]. Only if
all configurations are included, i.e. full configuration interaction (full CI), the exact
many-body state is represented and the electrons in the molecule can be arbitrarily
correlated. However, already for medium sized orbital sets, such a description exceeds
modern computational resources (see Figure 1.2).

The post-Hartree–Fock methods outlined above assume that the many-body state of
the molecule can be described by a limited number of configurations. In contrast to
this static approach, a method known from solid-state theory that describes quantum
states using all configurations obtained large attention in quantum chemistry. The
large success of the density matrix renormalization group [42, 43] method (DMRG) in
quantum physics, motivated its extension to quantum chemical problems. Even if the
number of configurations is too large for the post-Hartree–Fock methods mentioned
above, DMRG can give full CI-like results and represent the many-body state accu-
rately. For example, DMRG and its extensions revealed the large role of correlations
in breaking nitrogen bonds [44–47] and allowed for calculation of avoided crossing in
LiF, CsH, Cr2 and C2 [48–51]. In the representation of the many-body state in DMRG, no
configurations are neglected, however, it is assumed that the entanglement entropy
of the electrons in the system is limited. If this is the case, we can write the many-
body state of the molecule in form of a matrix product state (MPS) [52]. The MPS
approach at the heart of DMRG can be understood as generalization of the product
state approach at the heart of Hartree–Fock theory.

Finding a general extension of the DMRG method and the underlying MPS approach
to describe time-dependent problems appeared challenging however. In solid-state
theory, various concepts have been developed that benefit from the locality of the
interaction in solids [53–55]. An extension of the time-evolution methods for MPS
to long-ranged problems was tedious and impractical due to complexity [56, 57].
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For example, the time-dependent variational principle was benchmarked for various
systems [58], however, it is prone to errors in case of systems with chaotic interac-
tion. The contradicting convergence parameters time step size and number of MPS
truncation steps have challenged scientists [59, 60]. Only a single study was reported
applying dynamic DMRG in quantum chemistry [60] prior this work, successfully
finding ionization potentials of the hydrogen chain and the water molecule.

Outline

In the following thesis, we extend the scope of the MPS approach to the context
of ultrafast electron dynamics in molecules. We shine light on the features of the
MPS approach that allow or limit its use in time-dependent quantum chemistry.
Special focus is laid on the description of electron dynamics at the attosecond to few
femtosecond time scales. Here, the dynamics are significantly quantum mechanical
and the existing methods struggle most in finding appropriate many-body state
representations without applying a priori truncations to the number of configurations.
On the journey to a stable implementation of the time-dependent MPS approach
in quantum chemistry, we reveal both, intrinsic properties of the MPS approach, as
well as new manifestations of electronic correlations in molecules at ultrafast time
scales. In the end, we will have a coherent understanding of the capabilities of the
MPS approach when applied to time-dependent quantum chemistry problems, that is
result of a profound comparison between the MPS approach and the full CI approach,
as well as, from a comparison to a charge migration experiment.

In order to achieve this, we proceed coherently with only limited prior knowledge
of quantum chemistry and the DMRG method necessary. We start in Chapter 2
with an introduction into the field of quantum chemistry. We introduce the reader
to the Born–Oppenheimer approximation and the approximations related to the
Hartree–Fock method. We explicitly introduce the orbital reference of the many-
body state and its simplified Gaussian representation. We outline the Hartree–Fock
method, its physical implications and relevance for the following thesis. Further, do
we sketch two post-Hartree–Fock methods, namely CAS-SCF and CI-SCF, to sensitize
the reader to common approaches in quantum chemistry and their inference in terms
of configurations.

In the second half of Chapter 2, we introduce the MPS approach, which is the main
subject of this study. We discuss its history in solid-state physics and quantum
chemistry, its internal properties with respect to entanglement, and then formulate
the MPS approach in terms of tensor networks. We introduce the concepts of tensor
networks and its graphical representation to facilitate the following discussion of the
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operations involving MPS. We continue by discussing variational handling of MPS,
before turning to time evolution methods for MPS. Here, we outline two explicit time
evolution methods that operate on the MPS globally, namely the fourth-order Runge–
Kutta, and the Krylov space time evolution method. The Krylov space time evolution
method is further examined with respect to orthogonal and non-orthogonal Krylov
basis vectors.

In Chapter 3, we discuss the MPS approach more explicitly by means of symmetries
and their implementation in the Hamburg CheMPS2 extension. We outline the com-
putational advantage given by incorporating symmetries of the molecular system
into the MPS approach. We discuss the particle number conservation of the molecular
system, the points group symmetry of the molecular geometry, and the spin conser-
vation of the molecular system, as well as how these symmetries can be incorporated
into the MPS approach using spin-adapted MPS tensors. Further do we outline the
Hamburg CheMPS2 program as an extension of the MPS implementation CheMPS2 by
Wouters [51]. We lay down the adaptions necessary for time dependent studies and
illustrate implementational details improving convergence of the MPS approach.

Chapter 4 marks the beginning of the analysis of the MPS approach in this thesis.
We compare results from the MPS approach to results obtained from a completely
correlated many-body state representation. We perform this comparison for two
distinct types of molecules. First, we use the MPS approach to study electron dynamics
in the hydrogen molecule and in a chain of 10 hydrogen atoms. For this system, we
discuss the performance of the MPS approach to resolve the one-body reduced density
matrix, the two-body reduced density matrix, as well as one-body Green’s functions
in time and frequency domain. All these results are compared to quasi exact results
using a completely correlated representation of the many-body state. Second, for a
profound analysis of the MPS approach, we also study multi-dimensional molecules,
namely the hydrogen fluoride molecule, the water molecule, the ammonia molecule,
as well as the methane molecule. Here we compare the ability of the MPS approach
to find the correct one-body reduced density matrix within a period of 1fs after a
sudden excitation. We discuss both, single and double excited initial states. Lastly
in Chapter 4, we compare time-evolution methods for time-dependent MPS and
propose an improvement for the Krylov space time evolution method, that makes it
particularly well suited for time evolution of MPS. We demonstrate, that the improved
time-evolution is able to further improve the accuracy of the MPS representation.

In Chapter 5, we then apply the MPS approach to a situation, where a completely
correlated description is beyond today’s computational resources, however, there
are experimental results to compare to. We study the ultrafast charge migration in
iodoacetylene C2HI that was recently measured by Kraus et al. [5]. We demonstrate
that the MPS approach is able to describe the charge migration following sudden
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ionization qualitatively and quantitatively, whereas a modelling based on Hartree–
Fock and density functional theory fails. We pursue this circumstance to the electronic
correlations governing the charge motion. Further, do we consider the effect of the
nuclear motion in this process and preclude any nuclei induced dephasing.

To conclude, we summarize in Chapter 6 and propose avenues that can be approached
based on the findings of this thesis and the developed Hamburg CheMPS2 exten-
sion.
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2Electrons in Molecules

The theoretical investigation of processes in molecules is an elaborate task as it
requires both, a proper description of the physics in molecules, as well as tailored
concepts to give meaning to the results. As processes in molecules occur on the
atomic time, the atomic energy, and the atomic length scale, we will need an ade-
quate quantum mechanical description, taking into account all necessary degrees of
freedom [61]. On the one hand, our quantum mechanical picture needs to be suitable
to describe the molecule correctly, on the other hand has it to be optimized to allow
for an efficient simulation using today’s computational means. This chapter presents
the necessary tools to accomplish this. We will introduce quantum mechanical meth-
ods, numerical frameworks and appropriate approximations to facilitate an efficient
description of dynamic processes in molecules. The chapter starts from concepts of
today’s quantum chemistry theory and then focuses on an optimized representation
of the many-body state using the matrix product state approach [52]. We further
establish the time evolution algorithms to allow for simulation of time-dependent
phenomena in molecules.

2.1 Ab Initio Quantum Chemistry

There are two very common approaches to describe molecules computationally: The
first option is to use empirical or semi-empirical models [62–65] that are tailored
to represent the physical situation in the molecule at an effective level. This usu-
ally requires the use of empirical parameters that are unknown a priori but can be
accessed by experiments. The second option is to work in the concept of ab initio
quantum chemistry [66], where only natural constants and interactions enter the
model prior to the calculation. Here, no empirical data is required, which enables
quantitative predictions on situations that are challenging to study experimentally.
The ab initio methods are usually more complex and it is more difficult to extract
the intrinsic mechanisms, however, the fundamental setting makes this the more
natural approach in most quantum chemistry studies. For example, in this concept it
is possible to predict molecular geometries [67, 68], photo emission spectra [69], and
dissociation energies [70], without requiring any experimental input. The ab initio
concept will also be the concept of choice in our study, as we aim to describe electron
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dynamics in molecules quantitatively and to challenge our numerical method with
experimental observations.

2.1.1 The Quantum Chemistry Problem

On a quantum mechanical level, the molecule is completely described by the time-
dependent Schrödinger equation [1]

i h̄ ∂
∂t |Ψ(t)〉 = Ĥ |Ψ(t)〉 , (2.1)

where h̄ = 6.582119514 · 10−16eV s is the reduced Planck constant, |Ψ(t)〉 is the time-
dependent many-body quantum state of the molecule, and Ĥ is the Hamiltonian of
the system. The time-dependent Schrödinger equation is the key equation of motion
of the molecule, although it neglects all relativistic effects. Relativistic effects are
mostly absent for light elements, but they contribute for heavy elements such as
caesium (atomic number 55) [71]. We need to be careful when working with heavy
elements and either add relativistic corrections to Hamiltonian Ĥ [72, 73], or replace
the Schrödinger equation by the Dirac equation [74]. For molecules formed from light
elements (such as most molecules studied here) we can safely neglect relativistic
effects and only rely on the time-dependent Schrödinger equation.

In case of static problems, we obtain the time-independent Schrödinger equation from
Equation 2.1

Ĥ |Ψ〉 = E |Ψ〉 , (2.2)

which we can turn into an eigenvalue equation using linear algebra. We see, there
is a set of states that solve Equation 2.2, called eigenstates, which do not evolve any
dynamics, i.e. they are stationary states. A molecule in one of the eigenstates as
defined by Equation 2.2 does not have any time-dependent observables. Finding the
eigenstates of the Hamiltonian embodies a significant part of quantum chemistry,
which is a challenging problem [75, 76]. Nevertheless, from the eigenstates we are able
to predict molecular geometries, emission spectra and dissociation energies. There
are numerous methods to find ground states of molecules and low lying excited
states [77–79], which we will partly discuss in later chapters, however, the main focus
of this thesis is on dynamics in molecules, therefore, the time-dependent Schrödinger
equation in Equation 2.1 will be absolutely essential throughout this thesis.
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For an isolated molecule, the Hamiltonian in Equation 2.1 and Equation 2.2 can be
split into the parts [61]

Ĥ = T̂ele + T̂nuc + V̂nuc−ele + V̂ele−ele + V̂nuc−nuc , (2.3)

where the specific parts in position space are given by

T̂ele = −
Ne∑
i=1

h̄2

2me

∂2

∂2ri
, (2.4)

T̂nuc = −
Nn∑
I=1

h̄2

2MI

∂2

∂2RI
, (2.5)

V̂nuc−ele = − 1
4πε0

Ne∑
i=1

Nn∑
I=1

eZI
|ri − RI |

, (2.6)

V̂ele−ele = 1
4πε0

Ne∑
i>j

e2

|ri − rj |
, (2.7)

V̂nuc−nuc = 1
4πε0

Nn∑
I>J

ZIZJ
|RI − RJ |

. (2.8)

The operator T̂ele represents the kinetic energy of the Ne electrons in the molecule.
The natural constant me = 9.10938 ·10−31kg is the electron mass and ri is the position
of the electron i . The operator T̂nuc represents the kinetic energy of the NN nuclei
in the molecule, where MI is the nuclear mass of the nucleus I and RI is its position.
The Coulomb interaction between electrons and nuclei is represented by V̂nuc−ele ,
with ε0 = 8.85419 · 10−12 F

m being the vacuum permittivity, e = 1.60218 · 10−19C
being the elementary charge and ZI being the nuclear charge of the nucleus I . Lastly,
the Coulomb interaction between the electrons is represented in V̂ele−ele and the
Coulomb interaction between the nuclei is represented in V̂nuc−nuc using the same
symbols as described before [1].

2.1.2 Born–Oppenheimer Approximation

Now we want to outline one of the most essential approximations applied in the
field of ab initio quantum chemistry, namely the Born–Oppenheimer Approxima-
tion. Within the Born–Oppenheimer Approximation, we separate the molecular
Schrödinger equation into one equation for the electrons and one equation for the
nuclei [61]. This simplification is based on the assumptions that electrons and nuclei
move on different time scales, which is a consequence of the large nuclear to electron
mass ratio. Where an electron has a mass of 9.10938 · 10−31kg even the lightest
atom, the hydrogen atom has a mass of 1.67353 · 10−27kg , therefore being 1837 times
heavier than the electron. This makes electrons react to external perturbations much
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faster than the nuclei. The Born–Oppenheimer Approximation is widely used in both,
the investigation of static properties such as geometries, as well as, in the description
of dynamical quantities such as ionization potentials. In situations we are interested
in, i.e. the molecular response to excitation on femtosecond time scales, the nuclei
will be entirely inactive and only the electrons exhibit dynamics.

May |Ψ(t)〉 be the many-body state of the isolated molecule as introduced in Equation
2.1 and Equation 2.2. We can then, based on the Born–Oppenheimer Approximation,
separate it into

|Ψ(t)〉 = |Ψ(t)〉nuc · |Ψ(t)〉ele , (2.9)

where |Ψ(t)〉nuc is the nuclear part of the many-body state and |Ψ(t)〉ele is the elec-
tronic part of the many-body state. If the nuclei are frozen at fixed positions, the
nuclear part of the many-body state does not experience any dynamics |Ψ(t)〉nuc =
|Ψ〉nuc . Only the electronic part of the many-body state evolves dynamics according
to the electronic time-dependent Schrödinger equation

i h̄ ∂
∂t |Ψ(t)〉ele = Ĥele |Ψ(t)〉ele , (2.10)

where the operator Ĥele is the electronic Hamiltonian derived from the Hamiltonian
in Equation 2.3 in the Born–Oppenheimer Approximation.

If the nuclei are kept at fixed positions, we treat them classically and do not need to
consider them in the quantum calculation. The nuclei do not require a description in
terms of wave functions, but we can allocate them well defined coordinates

|Ψ(t)〉nuc → {R1, · · · , RNN}, (2.11)

with {R1, · · · , RNN} being the set of coordinates specifying the positions of the NN
nuclei in the molecule. Only the electrons act according to the laws of quantum
mechanics, whereas the nuclei have classic positions in space.

The electronic Hamiltonian Ĥele reads in the Born–Oppenheimer approximation

Ĥele = T̂ele + V̂nuc−ele + V̂ele−ele + Enuc , (2.12)

which is similar to the Hamiltonian explained in Equation 2.3. Only the kinetic energy
of the nuclei vanishes and the nuclear interaction turns into a constant energy Enuc
that only depends on the nuclei positions. If the nuclei stay at fixed positions with
no momentum, their kinetic energy is zero and T̂nuc can be neglected. Further, the
sum in the nuclear-nuclear interaction V̂ele−ele (see Equation 2.8) can be performed
explicitly using the nuclear coordinates {R1, · · · , RNN}. This gives the constant energy
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Figure 2.1.: Ground state potential energy surface of the nitrogen dimer (N2), where the
molecular energy E(dN2 ) depends on the distance between the two nitrogen
atoms dN2 . The energies are calculated using the Hartree–Fock implementation
of the molpro program package [80] for two different spin states (HF S = 0 and
HF S = 3), as well as, using the density matrix renormalization group (DMRG)
implementation by Lau [67]. All calculations were performed in a minimal
STO-6G Gaussian basis set [81].

Enuc shift that does not have any impact on the electronic part of the state. Solving
Equation 2.10 is the main challenge of this thesis, as we are solely interested in the
electronic dynamics and the nuclei rest on the time scales considered.

By solving the time-independent Schrödinger equation in the Born–Oppenheimer Ap-
proximation Ĥele |Ψ(t)〉ele = E |Ψ(t)〉ele we can derive eigenstates and eigenenergies
of the molecule within the Born–Oppenheimer Approximation. The eigenenergies
depend on the chosen geometry of the molecule {R1, · · · , RNN}, therefore, the energy
is a function of the positions of the nuclei (see Figure 2.1 for the nitrogen dimer). These
functions in the multi-dimensional space of all nuclei positions are called potential
energy surfaces. The potential energy surface has a global minimum, which is referred
to as the equilibrium geometry and there will be energy gaps between specific geome-
tries that then allow to predict, for example, which energy is necessary to separate
specific nuclei or parts of the molecule from the remaining part (dissociation). Further
does the Franck–Condon principle [82] state that molecular excitations always occur
vertically on potential energy surfaces, meaning that if excited, the molecule does
not change its geometry instantly. A change of the molecular geometry is always a
consequence of electronic excitation.

Of course, the Born–Oppenheimer approximation has very strict limitations. In our
study, the Born–Oppenheimer approximation limits the time range we are able to
describe. Already on the time scale of femtoseconds, light elements may start mov-
ing as a response to the electronic motion. However, the nascent nuclear motion
(translations and vibrations) is completely neglected in Born–Oppenheimer approx-
imation. This excludes a dynamic description of processes such as bond formation
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and dissociation. In order to capture such effects, it is necessary to go beyond the
Born–Oppenheimer approximation [83]. Further, work by Arnold et al. [84] has
shown, that the width of the nuclear wave function in position space can lead to
significant decoherence in the electronic motion and therefore damps the correlated
electron motion. Although the nuclei are expected to keep their fixed positions, the
assumptions of the classically described nuclei may not be appropriate (see Equation
2.11). This is in particular the case for light atoms such as hydrogen. As a consequence
of these issues, our studies will be limited to a few femtoseconds time range and we
will need to make sure that the results are stable with respect to small displacements
of hydrogen atoms in the molecules we will be discussing (see Section 5.1.1).

2.2 The Electronic State

From now on, we completely focus on the electronic part of the many-body state
for the reasons outlined above. We do not consider the nuclear part of the many-
body state in what follows, but treat the nuclei purely classically. If we omit the
subscript | · 〉elec → | · 〉, we symbolize the electronic many-body state in all following
equations.

2.2.1 Single Electron Orbitals

Let us start with the single electron picture and then extend the single electron
picture to the many electron picture by using the means of second quantization later
in Section 2.2.2. We now search for an elegant choice to express the state of a single
electron in the molecule in terms of spatial orbitals

〈r|φi〉 = φi (r). (2.13)

The function φi (r) specifies the spatial distribution of an electron occupying orbital
i . The set of orbitals the electrons enter {φ0(r),φ1(r), · · · } can be any collection of
linear independent functions. For example, they can be eigenstate of the position
operator r̂ |r〉 = r |r〉 or the eigenfunctions to the (hydrogen-like) atomic Schrödinger
equation ĤAtom |φi〉 = Ei |φi〉 (see following discussion). If the set is complete, an
arbitrary electron distribution ϕ(r) can be resolved in the orbital basis set

ϕ(r) =
∞∑

i=0
ciφi (r), (2.14)

with expansion coefficients ci . This is the so called complete basis set limit, where we
are able to describe arbitrarily distributed electrons. Of course, such a description
is numerically impractical and usually unnecessary to describe electrons that move
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close to the center of mass of the molecule. We therefore use a finite orbital basis
set {φ0(r),φ1(r), · · · ,φL(r)} that incorporates a limited number of basis set functions
only. With the finite orbital basis set, the correct electron distribution can only be
resolved approximately ϕ(r) ≈∑L

i=0 c̃iφi (r), which introduces a basis set truncation
error. However, we should be able to balance the basis set truncation error, as long as
the electrons remain close to the molecule.

We want to make sure that the orbitals we use form an orthogonal basis. The overlap
between the arbitrary orbitals i and j is given by

Si j = 〈φi |φj〉 =
∫
φ∗i (r)φj(r)dr, (2.15)

which might be far from an identity matrix. Working with a non-orthogonal basis
is disadvantageous for solving the molecular Schrödinger equation, as we need to
adapt the Equation 2.1 to the non-orthogonality. We rather use a set of orthonormal-
ized orbitals by bringing the orbitals in an orthonormal form. This can be done by
diagonalizing the matrix S and use the eigenstate as orbital basis set.

If we have decided on a set of orthonormal orbitals, we can write down the one-
electron part of the Hamiltonian of the molecule. In the Born–Oppenheimer Ap-
proximation, the one-electron Hamiltonian ĤOE (i) for the electron i in the molecule
constitutes of two addends, namely the kinetic energy of the electrons, as well as the
static potential of the nuclei on the electrons (compare Equation 2.4 and Equation
2.6)

ĤOE (i) = − h̄2

2me

∂2

∂2ri
− 1

4πε0

Nn∑
I=1

eZI
|ri − RI |

= T̂ OE (i) + V̂ OE (i). (2.16)

To express the molecular one-electron Hamiltonian in the chosen orbital basis we
need two types of integrals:

• The orbital representation of the kinetic energy:

Tab = 〈φa|T̂ OE (1)|φb〉 = − h̄
2me

∫ ∞
−∞

φ∗a(r1) ∂2

∂2r1
φb(r1)dr1 (2.17)

This integral represents the kinetic energy of a single electron. The kinetic
energy may cause an electron to be scattered from orbital a to orbital b (or vice
versa).

• The orbital representation of the electron-nucleus interaction:

Vab = 〈φa|V̂ OE (1)|φb〉 = − 1
4πε0

Nn∑
I=1

∫ ∞
−∞

φ∗a(r1) eZI
|r1 − RI |

φb(r1)dr1 (2.18)
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This integral represents the interaction of an electron with the Nn nuclei of
the molecule. The electron-nucleus interaction may cause an electron to be
scattered from orbital a to orbital b (or vice versa).

As the electrons are indistinguishable, the integrals are independent of the electron
index i in Equation 2.16 (〈φa|T̂ OE (1)|φb〉 = 〈φa|T̂ OE (2)|φb〉 = · · · ). The integrals then
form the one-electron part of the molecular Hamiltonian in Equation 2.12. In this
orbital basis, the one-electron part of the Hamiltonian is given by

tab = Tab + Vab (2.19)

where we use tab as the combined one-electron integral.

Slater Type Orbitals

To find a finite orbital basis set, a common option is to orient at bound states of
the atoms in the molecule. This is especially advantageous in situations where the
electrons stay close to the nuclei of the molecule. The analytic form of the bound
orbitals are known for the hydrogen atom [85] only. For atoms with more than one
electron, numerical methods need to be applied to find the approximated orbitals for
atoms with more than one electron. The general procedure in quantum chemistry is
to find approximated atomic orbitals numerically and then expand these orbitals in
terms of Slater type orbitals or in terms of Gaussian type orbitals [3].

Slater type orbitals have the general form in spherical coordinates

φnlml
S (r , θ,ϕ) = N r n−1e−µr Y ml

l (θ,ϕ), (2.20)

where n and µ are the parameters fitted to the numerical solution of the many-
electron atomic orbitals. N is a normalization constant and Y ml

l (θ,ϕ) is a spherical
harmonic with l being the angular momentum quantum number and ml being the
magnetic quantum number. In case of the 1s orbital (n = 1, l = 0, ml = 0) of the
hydrogen atom located at RI , the Slater type orbital reads [61]

φH,1s
S (r − RI) = 1√

π

(
1
a0

) 3
2

e−
|r−RI |

a0 , (2.21)

where a0 = 0.52918Å is the Bohr radius. In case of the 1s orbital of hydrogen, the
Slater type orbital matches the exact atomic orbital.

The atomic orbitals can be extended to all elements, although the orbitals cannot be
determined exactly as soon as more than one electron surrounds the nucleus. But we

16 Chapter 2 Electrons in Molecules



know from numerical calculations that their qualitative shape and the angular mo-
mentum representation remains the same if electron-electron interaction is present
in the atom. The atomic orbitals have a decaying exponential r-dependence, which
is correctly resolved by the Slater type orbital [86]. Further, according to the Kato
theorem [3], the orbitals have a cusp at the position of the nucleus, which is also
correctly resolved by the Slater type orbitals. Therefore, correctly tuned Slater type
orbitals allow for accurate representation of the atomic orbitals, even for atoms with
many-electrons.

The single electron basis set for the molecule {φ0(r),φ1(r), · · · ,φL(r)} is then con-
structed from the atomic orbitals of the atoms in the molecule. For example, when
describing the water molecule (H2O) with an atomic basis set of 1s orbitals for the
hydrogen atoms and 1s , 2s , and 2p orbitals for the oxygen atom, we have the basis
set

ΦH2O
S = {φH,1s

S (r − RH1),φH,1s
S (r − RH2),φO,1s

S (r − RO),φO,2s
S (r − RO),

φO,2px
S (r − RO),φO,2py

S (r − RO),φO,2pz
S (r − RO)}, (2.22)

where RH1 is the location of the first hydrogen atom, RH2 is the location of the second
hydrogen atom, and RO is the location of the oxygen atom. The orbital φH,1s

S is fitted
to express the 1s atomic orbital of a hydrogen atom and the orbital φO,1s

S is fitted to
express the 1s atomic orbital of a oxygen atom, the orbital φO,2s

S is fitted to express
the 2s atomic orbital of a oxygen atom, ... . With this construction, we obtain a basis
set of 7 atomic orbitals, which makes it a minimal basis set.

In atomic and molecular orbital theory, we distinguish between two types of basis
sets: minimal basis sets and extended basis sets [61]. In minimal basis sets, the orbitals
are limited to the shell that is occupied by at least one electron in the neutral atom.
For example, hydrogen and helium will be considered using the 1s orbital; lithium to
neon will be considered using the 1s , 2s , 2px , 2py , and the 2pz orbital; and sodium to
argon will be considered using the 1s , 2s , 2px , 2py , 2pz , 3s , 3px , 3py , and the 3pz orbital.
In contrast to minimal basis sets, extended basis sets also include atomic orbitals
with larger main quantum number n. In case of molecules, electrons might occupy
such excited atomic orbitals as a result of the hybridization of the atomic orbitals.
Here, using extended basis sets allows for more precise results, as the electrons can
adapt their location more flexible to the molecular situation (compare Equation 2.14).
By using extended basis sets, we reduce the basis set truncation error and resolve the
spatial distribution of the electrons in the molecule more accurately.
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Gaussian Type Orbitals

We decided to use a basis of atomic orbitals as a first approach to resolve the spatial
distribution of the electrons in the molecule. However, the Slater type orbitals as
introduced in Equation 2.21 are difficult to operate with [61, 87]. To find the one-
electron matrix elements for Hamiltonian in Equation 2.16 a large number of integrals
as given in Equation 2.17 and Equation 2.18 needs to be evaluated. This problem
further exaggerates when considering the electron-electron interaction in Equation
2.7. In fact, evaluating the integrals has been considered to be the biggest problem
in quantum chemistry [3]. An efficient and precise method to find the integrals is
therefore crucial for our studies, however, there is no method to achieve this for Slater
type orbitals. In quantum chemistry, an alternative approach is much more common,
which simplifies the computational demand to evaluate the integrals.

Instead of Slater type orbitals, we use Gaussian type orbitals [88, 89]. In cartesian
coordinates, Gaussian type orbitals have the form

φi jk
G,α(r) = N x i y jzke−α|r|2 (2.23)

with the major adjustment compared to Slater type orbitals being the exponential
dependence∼ |r|2. The width of the Gaussian α is the parameter fitted to the atomic
orbital (compare to Slater type orbitals) and i , j , and k are positive integers accounting
for the angular part of the atomic orbital andN is again a normalization constant.
For example, for the 1s (i = j = k = 0) orbital of hydrogen we use the Gaussian
function

φH,1s
G,α (r − Ri ) =

(
2α
π

) 3
4

e−α|r−Ri |2 , (2.24)

If we represent the atomic orbital in terms of Gaussian functions, the integrals in
Equation 2.15, Equation 2.17, and Equation 2.18 are easy to evaluate analytically. For
example, the overlap of an 1s orbital located at Ri with an 1s orbital located at Rj is
given by [87]

S(1s,i ,α),(1s,j,β) =
∫
φH,1s

G,α (r − Ri )φH,1s
G,β (r − Rj)dr =

(
π

α + β

)3/2
e−

αβ
α+β |Ri−Rj |2

(2.25)
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Figure 2.2.: Slater type orbital (Slater) and contracted Gaussian type orbitals (STO-nG) as
the representation of the 1s orbital of the hydrogen atom.

and the integral for the kinetic energy is given by

T(1s,i ,α),(1s,j,β) = − h̄2

2me

∫
φH,1s

G,α (r − Ri )
∂2

∂2rφ
H,1s
G,β (r − Rj)dr (2.26)

= h̄2

2me

αβ

α + β

(
6− 4 αβ

α + β
|Ri − Rj |2

)(
π

α + β

)3/2
e−

αβ
α+β |Ri−Rj |2 .

(2.27)

This allows for fast numerical evaluation of the integrals. All modern quantum
chemistry software feature build-in integral evaluation and there are open source
libraries to calculate the integrals [90]. In this work, we will use the integral evaluate
program SEWARD of the molpro program package [80] and LIBINT [90] as part of the
PySCF python package [91].

The Gaussian type orbitals are much easier to handle, however, in the current form,
they do not represent the atomic orbitals correctly. The decaying slope is different
and at the position of the nucleus r = RI atomic orbitals have a finite slope (Kato
theorem), whereas, the slope of Gaussian type orbitals is zero (see Figure 2.2 for
example of Slater type orbitals vs Gaussian type orbitals). We need to address these
issues when utilizing Gaussian type orbitals for atomic orbitals. We do this in terms
of contracted Gaussian type orbitals. For the example of the 1s orbital a contracted
Gaussian type orbital reads

φ1s
CG (r − RI) =

NG∑
p=1

cp φ1s
G,αp (r − RI). (2.28)

Instead of using a single (primitive) Gaussian type orbital, we mimic the atomic
orbital by a linear combination (contraction) of Gaussian functions with different
widths αp . The coefficients cp and αp are fitted to give the best representation
of the atomic orbital for a given number of Gaussian type orbitals NG . The more
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Gaussian type orbitals we use, the better this approximation gets (see Figure 2.2). The
number of Gaussian type orbitals, the coefficients cp and αp needed to represent a
specific atomic orbital have been optimized for decades and are publicly available in
databases such as the EMSL Basis Set Library [92]. Using contracted Gaussian type
orbitals does not aggravate the integral evaluation, as the integrals can still be easily
calculated analytically. The contraction just introduces additional sums including
already evaluated integrals and the contraction coefficients cp .

Although we focused on the 1s orbital in the shown examples, the discussion above
translates directly to p (i + j + l = 1), d (i + j + l = 2), and f (i + j + l = 3) orbitals.
Evaluation of the integrals remains simple when using Gaussian type orbitals in
comparison to Slater type orbitals [89]. Attaching to the example above to find a
minimal atomic basis set for the water molecule, we get using contracted Gaussian
type orbitals

ΦH2O
CG = {φH,1s

CG (r − RH1),φH,1s
CG (r − RH2),φO,1s

CG (r − RO),φO,2s
CG (r − RO),

φO,2px
CG (r − RO),φO,2py

CG (r − RO),φO,2pz
CG (r − RO)}, (2.29)

where the orbital φX ,z
CG is the contracted Gaussian type orbital to represent the z

atomic orbital of the atom X .

2.2.2 Electronic Many-Body State

Having decided about the single electron basis, we can use the means of second
quantization to extend the Hilbert space to the many electron picture [61]. Suppose
we have a set of L orthonormal (〈φi |φj〉 =

∫
φ∗i (r)φj(r)dr = δi j∀i , j) single electron

orbitals

Φ = {φ0(r),φ1(r), . . . φL(r)}, (2.30)

then we can define the operator ĉ†iσ creating an electron with spin σ in the orbital
labeled by i and the operator ĉiσ annihilating an electron with spin σ in the orbital la-
beled by i . These operators are ladder operators between parts of the Fock space with
different electron numbers, which take care of the fermionic many-body properties
of the state.

Using the creation and annihilating operators, all possible states can be constructed
from the vacuum state |0〉, the state were there is no electron in the system. A state
with an electron with spin ↑ in orbital number 1 is constructed via

|n0↑ = 0 n0↓ = 0, n1↑ = 1, n1↓ = 0, · · · nL↑ = 0, nL↓ = 0〉 = ĉ†1↑ |0〉 . (2.31)
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The many-body basis state |n1↑n1↓ · · · nL↑nL↓〉 is then called a configuration, or a Slater
determinant. The index niσ ∈ {0, 1} encodes the properties that only one electron can
be in a given spin state. This basis of the many-body Hilbert space is called occupation
number basis.

As electrons in molecules are indistinguishable particles in a quantum mechanical
sense, the electronic many-body state needs to be conform to the permutation
rules of fermions. This means, the many-body state must be anti-symmetric under
particle exchange−P̂i j |Ψ〉 = |Ψ〉, where P̂i j is the permutation operator exchanging
electron number i and electron number j . The permutation properties for fermions
are encoded in the commutation relations of the creation and annihilation operator
ĉ†σi and ĉσi . These operators need to conform to the anti-commutation rules[

ĉ†σi , ĉτ j
]

+
= δi jδστ , (2.32)[

ĉ†σi , ĉ†τ j

]
+

= 0, (2.33)

[ĉσi , ĉτ j ]+ = 0, (2.34)

where [·]+ is the anti-commutator. If the creation and annihilation operators obey
these rules, the configurations |n1↑n1↓ · · · nL↑nL↓〉 constructed via Equation 2.31 auto-
matically have the correct permutation relations.

The time-dependent many-body state of a molecule is completely specified by a
linear combination of configurations. For a basis of L orbitals the time-dependent
many-body state reads

|Ψ(t)〉 =
∑

n1↑n1↓···nL↑nL↓

cn1↑n1↓···nL↑nL↓(t) |n1↑n1↓ · · · nL↑nL↓〉 , (2.35)

where ni↑ ∈ {0, 1} (ni↓ ∈ {0, 1}) is the number of up (down) electrons in the orbital
i , and the coefficient tensor cn1↑n1↓···nL↑nL↓(t) holds the time-dependent expansion
coefficients. The many-body state representation in Equation 2.35 is considered quasi
exact, as it describes the full quantum state and allows for any quantum mechanical
superposition. Although, there is still the error due to the limited sized one-electron
basis (only a limited number of orbitals are included in Φ, see Equation 2.30 ). De-
pending on the situation, this error must be controlled by the form, the type, and the
number of included single electron orbitals (see Section 2.2.1).

When writing down the Hamiltonian from Equation 2.12 using second quantization,
it reads,

Ĥ =
∑
i jσ

ti j ĉ†iσ ĉjσ + 1
2
∑

i jklστ
Vi jkl ĉ†iσ ĉ†jτ ĉlτ ĉkσ + Enuc , (2.36)
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where ti j represents the one-body part of the Hamiltonian, i.e. the kinetic energy and
the static field from the nuclei (see Equation 2.16), and Vi jkl represents two-body part
of the Hamiltonian, i.e. the electron-electron interaction. When representing the
Hamiltonian from Equation 2.10 in the single electron basis of orbitals, the two-body
integrals read

Vi jkl = e2

4πε0

∫ ∞
−∞

∫ ∞
−∞

φ∗i (r1)φ∗j (r2) 1
|r1 − r2|

φk(r1)φl (r2)dr1dr2, (2.37)

that represents the interaction between two electrons in the orbitals k and l , and the
probability for them to be scattered in the orbitals i and j as a result of the interaction
process. Using these integrals and the one-body integers ti j we have everything we
need to specify the second quantized Hamiltonian in Equation 2.36.

2.3 Post-Hartree–Fock Methods

In Equation 2.35, we have seen the many-body state, which describes the electronic
state of the molecule exactly up to errors due to the restricted basis set. However,
the exponentially growing number of possible configurations in Equation 2.35,

# configurations = 4L, (2.38)

makes working with |Ψ(t)〉 extremely challenging. We need to store the same num-
ber of coefficients as we consider configurations (the curse of dimensionality), which
quickly exceeds the memory of today’s computers. For example, if describing a
molecule with an orbital space of 50 orbitals, we need≈ 1.2675 ·1030 coefficients (this
number may reduce when using symmetries, see Section 3.1). It requires 1.014 · 1014

terabytes of memory just to store the many-body state on a computer. Today, the
limit for completely correlated ground state calculations are at system sizes of 22
orbitals holding 22 electrons, even with heavy use of high-performance and parallel
computing [93]. To handle completely correlated time-dependent situations in a
reasonable amount of time, the orbital basis sets must even be smaller. In the fol-
lowing Section 2.3 and in Section 2.4 we discuss concepts to reduce the number of
configurations that are necessary to consider when describing the many-body state
of medium sized orbital basis sets.

2.3.1 Hartree–Fock as a Starting Point

Most rigorous approximation is to reduce the many-body state to just a single con-
figuration. Here, the single electron orbitals are optimized such that the chosen
configuration is minimal in energy. This approach is known as the Hartree–Fock
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method [61] and will be the starting point for most calculations in this thesis. It is
the core of most approaches in quantum chemistry, therefore, we will briefly lay
down the concepts related to this approximation to gain a picture of its physical
implications.

Let us assume for a moment that the electrons in the molecule we want to describe
are non-interacting, i.e. the two-electron part in the Hamiltonian in Equation 2.12 is
absent. Then, the Hamiltonian can be written in the form

Ĥ =
Ne∑
i=1

ĤOE (i), (2.39)

where Ne is the number of electrons in the molecule and ĤOE (i) is the one-electron
Hamiltonian as given in Equation 2.16. If the Hamiltonian can be written as given in
Equation 2.39, we can reformulate the many-body Schrödinger equation in Equation
2.2 into a set of Ne one-body Schrödinger equations. The independent one-body
Schrödinger equations can be solved

ĤOE (1)φOE
m (r1) = Emφ

OE
m (r1), (2.40)

for each electron in the molecule (they are all similar due to the indistinguishably of
fermions). For example, we could write down the Schrödinger equation in Equa-
tion 2.40 in the single electron basis of orthonormalized Gaussian type atomic
orbitals as given above in Section 2.2.1. Then we have an L-dimensional eigen-
value problem, that is usually easy to solve. The resulting set of eigenfunctions
ΦOE = {φOE

0 (r),φOE
1 (r), . . . φOE

L (r)} can be used as a new single-electron basis and
the ground state configuration can be formed from a single Slater determinant (con-
figuration). We obtain the ground state by distributing the Ne electrons over the
Ne/2 orbitals with the lowest energies (assuming an even number of electrons in the
molecule)

|ΨHF 〉OE = | 1︸︷︷︸
n1↑

1︸︷︷︸
n1↓

1︸︷︷︸
n2↑

· · · 1︸︷︷︸
nNe/2↓

0 0 · · · 0〉 , (2.41)

where the orbitals are ordered with respect to their energy Em from left to right.
We solved the molecular Schrödinger equation in case of absent electron-electron
interaction.

But the assumption of non-interacting electrons is unrealistic for most molecules.
Usually, the long-ranged Coulomb interaction does form the orbitals and we need
to consider electron-electron interaction to obtain realistic results. However, we still
want to keep the description of the molecule on the one electron level. To do this, we
add a mean field to the one electron Hamiltonian in Equation 2.39, that accounts for

2.3 Post-Hartree–Fock Methods 23



the electrostatic field coming from the remaining electrons in the molecule. Therefore,
the electrons are moving in both, the electrostatic field of the nuclei, as well as in the
averaged field of the other electrons.

We add terms that represent the electron-electron interaction onto the one electron
Hamiltonian, which makes it the Fock operator. It reads

F̂ (1) = ĤOE (1) +
occu∑

n

(
Ĵn(1)− K̂n(1)

)
, (2.42)

where Jn(1) is the Coulomb operator and Kn(1) is the exchange operator. We now
solve the Schrödinger equation for the Fock operator

F̂ (1)φm(r1) = Emφm(r1), (2.43)

that gives us single-electron orbitals that also consider for the electron-electron
interaction. The Coulomb operator

Ĵn(1)φm(r1) = e2

4πε0

∫ ∞
−∞

φ∗n(r2) 1
|r1 − r2|

φm(r1)φn(r2)dr2, (2.44)

accounts for the direct (classical) interaction of the electrons, and the exchange
operator

K̂n(1)φm(r1) = e2

4πε0

∫ ∞
−∞

φ∗n(r2) 1
|r1 − r2|

φn(r1)φm(r2)dr2, (2.45)

accounts for the exchange interaction that is a consequence of the indistinguishably
of the electrons. Solving Equation 2.43 gives the optimal one electron orbitals, that
minimize the energy if the many-body state is expressed using one configuration.
The issue with Equation 2.43 is that the operators Jn(1) and Kn(1) themselves depend
on the orbital basis set. Therefore, when optimizing the single-electron orbitals, the
Coulomb operator and the exchange operator change. We need to solve Equation
2.43 self-consistently, i.e. to solve the eigenvalue problem in Equation 2.43 iteratively
until the form of the operators has converged. For this reason, the Hartree–Fock
method is often referred to as self-consistent field theory.

Electronic correlations are entirely absent in the Hartree–Fock description of the
molecule. By describing the many-electron state of the molecule using a single
configuration with an optimized orbital basis set, we neglect all correlations. Due
to the neglected electronic correlations, the Hartree–Fock method is often called a
quasi classic method, as the most prominent feature of quantum mechanics, the
correlation of electrons in different orbitals, is absent. Everything that is necessary to
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describe the system that goes beyond the Hartree–Fock method, is then understood
as electronic correlations and quantum features.

The orbitals that solve Equation 2.43 to Equation 2.45 self-consistently are called
molecular orbitals. These orbitals are now able to represent the electrons in the
molecule optimally on the one-electron level. Whereas the atomic orbitals we started
with were solely centered at the nuclei of the molecule, the molecular orbitals might
now be delocalized. The electrons occupy these orbitals with integer occupation
numbers. This uncorrelated approach is for closed shell molecules a good starting
point, however, many situations also require to account for electron correlations.
Especially when quantitative predictions of ground state energies and energy gaps is
required, the energy reduction in the molecule as a result of electronic correlations
needs to be considered (correlation energy). Further has the Hartree–Fock method
problems to describe dissociation energies, in particular for open-shell fragments [3]
(see for example Figure 2.1).

When introducing correlations in the next sections, we use the molecular orbitals
obtained from the Hartree–Fock method, as they are the optimal orbitals on the one-
electron level. Then we reintroduce correlations to the many-body state by extending
the many-body space with more configurations. The resulting family of methods
is called post-Hartree–Fock methods, as they go beyond Hartree–Fock, but still use
the Hartree–Fock results significantly. Such methods are for example the Complete
Active Space Theory and the Configuration Interaction, which will be explained in the
following two Sections 2.3.2 and Section 2.3.3, and the matrix product state approach
we will describe in detail in Section 2.4.

2.3.2 Complete Active Space Theory

One popular post-Hartree–Fock method is the Complete Active Space Theory (CAS)
[76], which extends the semiclassical calculation by quantum corrections, allowing
superpositional many-body states. Where in the Hartree–Fock method, at all times,
only one configuration is considered, in the CAS method, some of the neglected config-
urations are reintroduced. This allows the system to be in superpositional states and
thereby reintroduces electronic correlations to the many-body state representation.

We start with an orbital basis we obtained from a previous Hartree–Fock calculation.
The molecular orbitals are categorized into three classes:

• The core orbitals, that remain doubly occupied throughout the entire calcula-
tion. These orbitals do not need to be considered in the quantum part of the
calculation, since two electrons in a singlet state occupying an orbital cannot
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contribute to any correlations. These orbitals and the occupying electrons are
again considered on the Hartree–Fock level.

• The active orbitals, that are allowed to be occupied partly by electrons that enter
correlated quantum states. These orbitals may contribute to superposition
states and therefore they are treated on the full quantum mechanical level. For
these orbitals, the additional configurations are added into the calculation.

• The empty orbitals, that remain empty throughout the entire calculation. Such
orbitals are usually related to very high energies, therefore an occupation may
be unlikely when doing ground state studies or studies involving time evolution
introduced by small excitations. The empty orbitals are not considered in the
quantum part of the calculation.

Using these different types of orbitals, the many-body Hilbert space state is extended
by the corresponding configurations and therefore allows to consider quantum effects.
We can write the many-body state in Equation 2.35 approximately as a product

|Ψ〉 ≈ |ΨCAS〉 = |ΨC 〉 ⊗ |ΨA〉 ⊗ |ΨE 〉 , (2.46)

where |ΨC 〉 is the part of the state describing electrons in core orbitals, |ΨA〉 is the
part of the state describing electrons in active orbitals, and |ΨE 〉 is the part of the
state describing the empty orbitals. The correlation effects are only enabled in the
active part of the many-body state (|ΨA〉), whereas the core orbitals and the empty
orbitals are described on the Hartree–Fock level.

With some orbitals being active on the quantum mechanical level, we now can
write down the Hamiltonian in the many-body basis, for which we can solve for
the ground state or for which we can describe the time-dependence. For example,
if we found the ground state |Ψ0

CAS〉 of the many-body Hamiltonian, we will have
a better representation of the physical ground state of the molecule compared to
previous Hartree–Fock state in any case. However, this is not the best quantum
representation we can find using a given number of active orbitals. We can start to
optimize the molecular orbitals as we did in Hartree–Fock, but now based on the
correlated calculation. If we calculate the one body reduced density matrix (OBRDM),
which is given by

γi j =
∑
σ

〈Ψ0
CAS | ĉ†iσ ĉjσ |Ψ0

CAS〉 , (2.47)

for i and j are indices of active orbitals, we will get a densely populated matrix in
case the state is correlated. Diagonalizing the OBRDM lets us find new orbitals,
that are now shaped based on the quantum mechanical calculation. These orbitals
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are called natural orbitals. The natural orbitals are not the best possible orbitals
on the one-electron level, as those are the orbitals obtained from the Hartree–Fock
calculation, however, when considering superpositional many-body states and elec-
tronic correlations, the natural orbitals obtained from diagonalizing the OBRDM are
advantageous.

The natural orbitals are a new set of single electron states, that we can use to ex-
pand our many-body state in. Further do they allow to quantify how entangled the
electrons in the many-body state are. For uncorrelated states in Equation 2.47 the
diagonal elements in γ are integer and all non-diagonal elements are zero. This is a
typical Hartree–Fock state, were all electrons are localized in specific orbitals. Now,
in CAS, with the added correlations, also partly populated orbitals are possible and
then the OBRDM obtains off-diagonal elements and the diagonal elements become
fractional. The fractional occupation numbers of the natural orbitals are a measure
for entanglement in the system [94].

The CAS method is a widely used method, especially in ground state theory, as it
combines both, an inclusion of quantum features, as well as, optimization of the
orbitals. Many benchmark calculations of ground states for molecules such as HNO
[95], are done using the CAS. However, CAS is not that prominently featured in the
area of dynamics. There are existing time-dependent CAS methods [96], but in
most situations it is not the method of choice. Here, other methods are popular, for
example approaches based on configuration interaction.

2.3.3 Configuration Interaction

One of the post-Hartree–Fock methods that is widely used in the description of
time-dependent phenomena is the method named configuration interaction (CI) [77].
Again, we start from the Hartree–Fock ground state configuration and add new
configurations to the reduced representation of the many-body state. But now in the
CI approach, we choose the configurations in terms of electronic excitations.

Let |ψHF
0 〉 be the Hartree–Fock ground state, with N electrons occupying the N/2

lowest molecular orbitals and the remaining L − N/2 orbitals being unoccupied.
Let us excite one electron from the initially occupied orbitals to one of the initially
unoccupied orbitals. For example, we can form the state

|ψjσ
iσ 〉 = ĉ†iσ ĉjσ |ψHF

0 〉 , (2.48)

i.e. the state where an electron with spin σ has been annihilated from the orbital j and
promoted to one initially unoccupied orbital i . As we are working in the occupation
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number basis, the resulting state |ψjσ
iσ 〉 is again a basis state of the many-body basis.

Of course, the orbital i needs to be occupied in the Hartree–Fock ground state and
the orbital j needs to be unoccupied, as otherwise the result on the right hand side of
Equation 2.48 is zero (see rules for second quantization operators). Using this type of
excitations we can add more and more configurations to our reduced representation
of the many-body state. Working with the CI representation of the many-body state
will improve results compared to the Hartree–Fock representation of the many-body
state (for both, representing eigenstates, as well as representing time-dependent
states).

The most basic class to include are single particle-hole excitations, which are also
called configuration interaction singles (CIS). Here we add all possible single excitations
to the reduced many-body state. This means, we expand the many-body state as

|ψ(t)〉 ≈ |ψCIS(t)〉 = c0(t) |ψHF
0 〉+

∑
i jσ

ci j(t)ĉ†jσ ĉiσ |ψHF
0 〉︸ ︷︷ ︸

1h 1p

. (2.49)

The reduced many-body Hilbert space now includes the Hartree–Fock configuration
and all possible (non-vanishing) single excitations ĉ†jσ ĉiσ |ψHF

0 〉. In case of a molecule
including N electrons and an orbital basis of L orbitals, we have in total 2LN excited
configurations and the Hartree–Fock ground state configuration. For the example out-
lined above of a molecule with 20 electrons and 50 orbitals, this reduces the number
of configurations to 2001, which only requires 16 kilobytes to store in memory.

However, the many-body Hamiltonian does not mix the Hartree–Fock ground state
and the newly added CIS configurations. This is a consequence of Brillouin’s the-
orem [78], which states that all matrix elements of the Hamiltonian of the form
〈ψjσ

iσ |H |ψHF
0 〉 = 0 vanish. Therefore, we need to consider further classes of particle-

hole excitations.

We can improve the results by including single and double particle-hole excitations
(CISD)

|ψ(t)〉 ≈ |ψCISD(t)〉 = |ψHF
0 〉+ |ψCIS(t)〉+

∑
i jklστ

ci jkl (t)ĉ†jσ ĉ†iτ ĉkτ ĉlσ |ψHF
0 〉︸ ︷︷ ︸

2h 2p

, (2.50)

in our reduced representation of the many-body state, where all configurations with
up to two excited electrons form the many-body state. This class of states couples
directly to the Hartree–Fock starting state [61].
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The total number of configurations that belong to this class is

#CI Doubles = 1/4(N − 1)N(2L− N − 1)(2L− N), (2.51)

which is substantially larger than what we have seen for CIS. But still, CISD calcula-
tions are easily possible with today’s computational means. Returning to the example
of a molecule with 20 electrons and 50 orbitals, we now need 601401 configurations to
describe a many-body state within CISD, which requires 4.811 megabytes in memory.
Such calculations are still easily manageable on desktop computers.

We can proceed like this and include more and more excitations, which will improve
the quality of our many-body state representation. However, we already have seen
the large jump in the number of excitation at the step from CIS to CISD. It continues
like this, with more and more configurations coming with every CI class of excitation.
The general formula to calculate the number of configurations in the class of n
excitations is

# configuration in class with n excitations =
(

N
n

)(
2L− N

n

)
, (2.52)

which shows the factorially growing number of possible configurations. When going
to n = N excitations, we obtain the complete many-body state in Equation 2.35. This
demonstrates why the many-body state including all possible configurations is also
called full configuration interaction state or full CI state. However, as explained above,
going beyond CIS and CISD is in most situations computationally very challenging.
Therefore most calculations focus on lower excitations classes, which is often justified
by the increasing energy corresponding to high excitations.

The CI method has been applied to both, to ground state calculations [97], as well
as, to time-dependent calculations [98]. Among the Hartree–Fock method, and the
CAS method, most modern quantum chemistry codes feature a CI implementation
[80, 91] that allows for arbitrary forms of excitations to be included in the quantum
calculation.

When it comes to time-dependent studies, however, the CAS method and the CI
method have a problem related to their choice of configurations. Both methods
restrict the number of configurations artificially, which removes a large number
of configurations from the considered many-body Hilbert space, although these
configurations may become important within the dynamics. It is difficult to estimate
the error coming with this restriction, especially if the underlying effects are unknown
and the form of the configurations adapts time-dependently. Next we will outline
a method that is more dynamic in the truncation of the many-body Hilbert space,
which makes it in particular suited for time-dependent studies.
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2.4 Matrix Product States

In the previous two chapters we have outlined three methods to simplify the rep-
resentation of the many-body state in Equation 2.35. The three methods rely on
the concept that a limited number of configurations is sufficient to represent the
many-body state approximately. They choose a specific form of configurations and
then perform the calculation within this reduced but fixed configurational space. This
can be problematic for different reasons: On the one hand, choosing configurations
gives the calculation a bias that propagates through the entire calculation. On the
other hand, especially when calculating dynamic quantities, the configurations which
represent the many-body state may change time-dependently. Then the many-body
state is represented well in the initial state, however, after the system evolved dy-
namics for a couple of femtoseconds, the configurations involved may have changed
[98]. It is very difficult to identify from the approaches outlined above, using statically
chosen configurations, whether the many-body state is represented appropriately at
all times.

To circumvent this behavior, we will introduce a more dynamic approach to repre-
sent the many-body states, which is able to simplify the many-body state without
cutting any configurations (within the fixed orbital space). Instead of cutting con-
figurations from the many-body Hilbert space, this approach directly tackles the
electronic correlations [99]. Based on the assumption that not all electrons will be
essentially correlated with each other, the approach dynamically cuts entanglement
from the many-body state, however, the entanglement is able to reenter the many-
body state dynamically if necessary [52]. With this dynamic inclusion of correlations
and entanglement, the representation does not suffer from the static concept of the
time-dependent Hartree–Fock method or the time-dependent configuration inter-
action singles and doubles. This form of representing the many-body state is called
matrix product state (MPS) approach [100] and will be introduced in the following
section. We will introduce it in the context of quantum chemistry, although, its origin
is in condensed matter physics [42, 43]. Most of the following discussion can be
directly translated to condensed matter physics [101] and other fields as well [102,
103].

2.4.1 Definition

To understand the idea behind MPS approach, it is good to start from the many-body
state as given in Equation 2.35. The most crucial part in Equation 2.35 are the time-
dependent expansion coefficients cn1↑n1↓···nL↑nL↓(t) as they are too many to store on
today’s computers. We are now turning to the mathematical area of tensors, where
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we understand the set of coefficients cn1↑n1↓···nL↑nL↓(t) as a complex tensor of rank
2L that changes time-dependently. All possible coefficients forming the expansion
of the many-body state are encoded in this large mathematical object. The idea is,
originating from the idea of matrix decompositions [104], to decompose this large
tensor into a sequence of low rank tensors. For example, in

cn1↑n1↓···nL↑nL↓(t) =
∑

a1a2···aL−1

An1↑n1↓
a1 (t)An2↑n2↓

a1a2 (t) · · ·AnL↑nL↓
aL−1 (t), (2.53)

=An1↑n1↓(t)An2↑n2↓(t) · · ·AnL↑nL↓(t) (2.54)

with An1↑n1↓(t) being a row vector (rank 1 tensor), Ani↑ni↓(t) being matrices (rank 2
tensors), and AnL↑nL↓(t) being a column vector (rank 1 tensor). This sequence of vector-
matrix-...-vector products then exactly reproduces the original expansion coefficient
cn1↑n1↓···nL↑nL↓(t). Instead of storing all coefficients in a large tensor cn1↑n1↓···nL↑nL↓(t),
we store them factorized in 4L vectors and matrices.

There is no approximation behind this decomposition and such a decomposition
is always possible by sequentially applying singular value decomposition on the
coefficient tensor [104]. Schollwöck layed down this process very detailed in his
seminal work [52]. The complete MPS representation of the many-body state is then
written as

|Ψ(t)〉 = |Ψ(t)〉MPS (2.55)

=
∑

n1↑n1↓···nL↑nL↓

An1↑n1↓(t)An2↑n2↓(t) · · ·AnL↑nL↓(t) |n1↑n1↓ · · · nL↑nL↓〉 , (2.56)

including all configurations |n1↑n1↓ · · · nL↑nL↓〉. At this point we did not cut any infor-
mation from the representation of the many-body state.

2.4.2 Origin and Properties

Although MPS are commonly used in today’s quantum chemistry [48, 51, 105–109],
they originated in the field of condensed matter physics in a completely different
shape. It was White [42, 43] who first came up with a new, size consistent exten-
sion of renormalization group in order to study the ground state energy of long
one-dimensional chains of spins, which he described using the Heisenberg model.
His method later became known as density matrix renormalization group (DMRG)
[99]. White was able to calculate new benchmark level ground state energies, spin
expectation values and the Haldane gap using DMRG for astonishingly long chains
(up to L = 300).
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DMRG is an efficient variational method to find ground states of many-body systems.
It is able to reduce the effective degrees of freedom of a problem efficiently and only
includes those that are necessary to represent the many-body ground state. Today,
DMRG and many of its extensions are very popular in condensed matter physics
[110–115], high-energy physics [116–118], and quantum information theory [119–122]
and still allows for benchmark level results in many fields it is applied to.

Shortly after the DMRG has been introduced by White in 1992, Östlund and Rommer
[123] noticed in 1995 the similarity of the DMRG approach with a variational concept
known from information compression called tensor trains [124, 125] that commonly
became known as MPS. Later, Noshino noticed [126] that an MPS-like ansatz was
already used earlier by Kramers and Wannier in 1941 [127] and in 1986 by Baxter
[128]. After understanding the mathematical origin of the DMRG method, a family
of variational methods emerged quickly, ranging from ground and excited state
evaluation [129–131], many different methods to describe time-dependence [55, 56,
132–134] and systems at finite-temperature [135–137], to pushing into (quantum)
machine learning [103].

The keywords DMRG and MPS are sometimes used as synonyms in literature, al-
though they are related to different subjects. Where MPS is the approach to represent
the many-body state of a quantum system, DMRG is the method to obtain MPS
variationally with respect to ground state energy for example. However, in the DMRG
algorithm initially proposed by White, the MPS approach as given in Equation 2.56
is not directly apparent. For this historic reason, there are two types of DMRG im-
plementation, one based on the algorithm by White, and one based directly on the
MPS approach, although the two methods are mathematically equivalent. Older
implementations [138–140] use the algorithm by White, whereas almost all new
implementations rely on the more flexible MPS formulation [51, 107, 141, 142].

Area Law

The main benefit of the MPS approach is the mathematically proven advantage
we have when studying gapped ground states of one-dimensional systems with
short-ranged interaction. Here, the MPS approach has a mathematically proven
feature to reduce the number of degrees of freedom to an amount that does not grow
exponentially with system size (in contrast to Equation 2.35). The theorem behind
this feature is the area law of condensed matter physics [143, 144]. The area law
states that, for systems with short-ranged interaction and a gapped ground state,
the entanglement entropy of the ground state S(ρ) = −tr [ρ0logρ0] for any two
subsystemsK andM scales with the interface area AKM of these two systems (see
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a)
subsystemMsubsystemK subsystemK

AKM AKM

Figure 2.3.: a) Partition of a one-
dimensional system in two
parts, showing the constant
area of interface AKM. The
interface area between sub-
system K and subsystem M
does not grow with the size of
subsystemK or with the size of
subsystem M. With the area
law (see b) ), this means also
the entanglement entropy of
subsystem K is constant. b)
Entanglement entropy of the
bipartite system of subsystem
K and subsystem M. If the
system has short-ranged inter-
action and a gapped ground
state, the entangled entropy
of any two subsystems scales
as the area of the interface of
these subsystems.

subsystemK

subsystemM

ρM = trK{|ψ〉 〈ψ|}

surface AKM S(ρM) ∝ AKM

b)

Figure 2.3 b) ). The entanglement entropy does not directly depend on the size of
the two subsystems, only their intersection surface is crucial. However, if we pick a
random state from the many-body Hilbert space, it will most likely violate the area
law by having an entanglement entropy scaling with the size of the two subsystems.
The entanglement entropy for different partitions of the random state will scale with
the size of the partitions. For ground states we only want to consider states where
the entanglement entropy is independent (up to finite size effects) of the subsystem
sizes. By focusing on states conforming to the area law, i.e. the area law states, we
can reduce the degrees of freedom for ground state calculations drastically.

For one-dimensional systems, the area of interface between two subsystems is con-
stant due to geometry. On the one-dimensional line, there will be two points in each
subsystem being closest to the other subsystem, which form the (one-dimensional)
area of interface (see Figure 2.3 a) ). The area does not depend on the size of the
subsystems, i.e. with the result from the area law, we know that the entanglement
entropy is constant as well. One therefore wants to work in the manifold of the
many-body Hilbert space that shows a constant entanglement entropy for any bipar-
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many-body Hilbert space

D = 100000
D = 10000

area law states
D = 1000

D = 100

Figure 2.4.: Graphical illustration of the many-body Hilbert space and the MPS manifold for
various exemplary MPS bond dimension D. The shown bond dimensions D are
examples and depend on the type of the system.

tition of the system. This manifold is often referred to by being the tiny corner of the
many-body Hilbert space the ground states lives in [101, 145].

In Section 2.4.1 we introduced the MPS approach as sequential decomposition of the
expansion coefficients of the complete many-body state in Equation 2.35, where we
also highlighted that this can be done for any state without introducing a mathe-
matical error. But when describing the gapped ground state of a one-dimensional,
short-ranged system, we know from the area law that we can focus on states with
constant entanglement entropy. We approach the states not conforming to the area
law by limiting the matrix dimension D of the matrices Ani↑ni↓(t) in the MPS approach
(see Equation 2.56) to be constant (not depending on the system size). We will discuss
in Section 2.4.5 the reason for this behavior. There exist a specific bond dimension
where the MPS exactly represents the manifold of area law states, however this
dimension is unknown a priori (see Figure 2.4). The necessary bond dimension need
to be evaluated by convergence tests. With the limitation of the matrix dimension in
the MPS we achieve two things: On the one hand, we neglect all states violating the
area law, and on the other hand, we reduce the computational effort to handle the
many-body state representation.

However, the area law is limited to gapped systems with short-ranged interaction and
does not say anything about entanglement in case the interaction is long-ranged. The
quantum chemical systems we are interested in encounter long-ranged interaction for
two reasons: First, due to the long-ranged Coulomb interaction between electrons in
different orbitals (see Equation 2.12), and second, due to the artificial one-dimensional
lineup of the delocalized molecular orbitals to fit into the one-dimensional shape of
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the sequence of matrix products in Equation 2.56. Both of these reasons forbid the
application of the area law, therefore, there is no mathematical guarantee that MPS
with limited bond dimension are a valid approach to represent the many-body state
in quantum chemical systems.

Further is the area law limited to gapped ground states and it does not say anything
about how the entanglement evolves with time. In time-dependent situations, it is
possible that the many-body state leaves the area of the Hilbert space we are able to
resolve efficiently using the MPS approach to represent the many-body state. This
issue becomes even more problematic in long time studies. The more time evolves,
the more the system may leave the area of the Hilbert space the MPS are able to
resolve. This issue is called the runaway error. It is one of the reasons why, in this
study, we will completely focus on the short-time behavior that takes place within a
few femtoseconds after excitation. The idea is that the exact many-body state has
not left the area of the Hilbert space in the time range we are looking at. There, the
MPS approach is still able to describe the many-body state appropriately. Later in
this thesis, we will outline a couple of concepts to reduce the runaway error, as it
might be possible that the many-body state can be described by the MPS approach
although the entanglement entropy has left the manifold of area law states.

Despite the bad news on long-ranged interaction and time-dependence, the MPS
approach has shown striking performance for both, long-ranged systems, as well
as in time-dependent situations. For many years, MPS are heavily used in quantum
chemistry to predict ground states, excited states [48, 146–149], avoided crossings [48,
49, 150, 151], and spin-splittings [152–155] for many molecules regardless the system
being long-ranged and high-dimensional. Of course, the guarantee of the area law
does not apply here. However, this does not forbid the use of MPS as a valid approach
to represent the many-body state. The same holds for time-dependent studies, also
here MPS have proven to be a very efficient way in describing the time-dependent
many-body state, ranging from spin dynamics [54, 156–159], transport properties[54,
160–163], to ionization potentials [60, 164].

2.4.3 Graphical Notation

Now we want to introduce some general concepts that will turn out to be helpful for
the following discussions of the MPS approach. The MPS approach is a special case of
the more general concept of tensor networks [101]. Tensor network theory includes the
one-dimensional approach to represent the many-body state (the MPS as outlined
above), but also covers higher dimensional decompositions of the many-body state
such as tree-tensor networks [165–167], multi-scale entanglement renormalization
ansatz (MERA) [168–170], and projected entanglement pair states (PEPS) [171–174].
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a

b)

a scalar

v

i

a vector

c)

Mi j

a matrix

d)

T

σ1σ2σ3σ4σ5
· · ·

σn

a rank n tensor

Figure 2.5.: Graphical representation of tensors with various ranks. a) a scalar is depicted
using a box without any lines attached. b) a vector is depicted using a box with
one line attached. c) a matrix is depicted using a box with two lines attached. d)
a rank n tensor is depicted using a box with n lines attached.

Later in this section, will we explain the algorithms to perform operations on MPS
in the language of tensor networks, therefore it will be beneficial to have a good
understanding of the ideas behind the tensor network concept and its notation
[101].

Tensor networks are (graphical) representations of linear algebra operations. To every
tensor network we can either write down a formula specifying the operation or we
can draw a graphic that represents the network much more comprehensively. The
large number of indices and sums occurring in tensor networks usually obscures the
operation from analytic formulas, however, the graphical representation makes it
easy to understand it at first sight.

In these graphical representations, the tensors are described by different boxes that
are connected by lines that we call bonds in the following. These bonds represent free
indices of the tensor. For example, a scalar a does not have any free indices, therefore,
it is represented by a box without any lines attached (see Figure 2.5 a) ) . A vector v has
one free index, therefore it is described by a box with one line attached to its graphical
representation (see Figure 2.5 b) ). A matrix M has two free indices, therefore it is
described by a box with two lines attached to its graphical representation (see Figure
2.5 c) ). We can continue this for arbitrary tensors of rank n, that will have n lines
attached to its box (see Figure 2.5 d) ). The form of the box will not have any intrinsic
meaning in this work, however, we will use different shapes to distinguish tensors
belonging to different quantities.

There are two types of bonds: We have open bonds and we have closed bonds.
Whereas the open bonds have only one end connected to a tensor, the closed bonds
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have both ends connected to tensors. Whenever a bond is closed, it represents a sum
over an index. For example, the trace of a matrix can be represented by

tr(M) =
∑

i
Mi i = M i , (2.57)

where the result is a scalar, since it does not have any free bonds. In general, it
does not matter how the bonds are attached to the box, they can be attached at the
upper and the lower part, or at the left and the right of a box. Sometimes we give
the index a name (such as in Equation 2.57), however, in most cases it is up to the
reader to keep track of which bond represents which index. We can depict any linear
tensor operation using this notation, for example, matrix multiplication C = A · B is
visualized as

Ci j =
∑

k
AikBkj = A Bk

i j , (2.58)

with one closed bond (k) and two open bonds (i and j) since the result of the matrix
multiplication is again a matrix.

The many-body state in its MPS representation as given in Equation 2.56 becomes in
this graphical notation

|ψMPS〉 =
∑

n1↑n1↓···nL↑nL↓

A[1] A[2] · · · A[L]

n1↑n1↓ n2↑n2↓ nL↑nL↓

|n1↑n1↓ · · · nL↑nL↓〉 , (2.59)

where we substituted the sequence of matrix products by its graphical representation.
From this graphical representation, it can be seen easily, that for a fixed configuration
n1↑n1↓ · · · nL↑nL↓, the very left and the very right tensor need to be rank 1 tensors
(vectors) and the remaining are rank 2 tensors (matrices). When incorporating the
indices niσ which specify the configuration into the tensors, all ranks are increased by
two (This is why the tensors in Equation 2.59 have three (four) bonds).

The state norm of a many-body state in the MPS representation 〈ψMPS |ψMPS〉 is
calculated as (using the orthonormality of the occupation number basis and the sum
rule for closed bonds)

〈ψMPS |ψMPS〉 =
∑

n1↑n1↓···nL↑nL↓

A∗n1↑n1↓ · · ·A∗nL↑nL↓An1↑n1↓ · · ·AnL↑nL↓ (2.60)

=
A[1] A[2] · · · A[L]

A[1] A[2] A[L]· · ·
, (2.61)
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where we used the convention of complex conjugated matrices and vectors to have
their indices at the bottom (This is just a convention that does not apply in general
in tensor networks). The result of the overlap 〈ψMPS |ψMPS〉 is a scalar, therefore, its
graphical representation in Equation 2.61 does not have any open bonds.

2.4.4 Left- and Right-Orthonormalization

Now we want to discuss a couple of properties of the MPS approach that often
allow to reduce the complexity of operations on MPS. We can take advantage of the
gauge freedom of MPS and shape the MPS to have properties that simplify following
calculations.

At any closed bond i , j = i + 1 in the sequence of matrix products in Equation 2.61,
we can insert the identity operator in form of a unitary matrix (U†U = 1)

· · · A[i] A[j] · · ·

ni↑ni↓ nj↑nj↓

= · · · A[i] U† U A[j] · · ·

ni↑ni↓ nj↑nj↓

Ã[i] Ã[j]

(2.62)

= · · · Ã[i] Ã[j] · · ·

ni↑ni↓ nj↑nj↓

, (2.63)

where Ã[i ] is the from the left by U multiplied matrix. In these steps, the overall shape
of the MPS does not change, however, the matrices A[i ] differ from the matrices Ã[i ].
Therefore, the MPS representation of a many-body state is never unique. We can
always introduce identities at any closed leg, which may change the elements of
the MPS tensors, but leaves the expansion coefficient resulting after performing all
matrix products unchanged.

Instead of inserting identities, we can also apply decomposition methods on the
matrices. For example, we can QR decompose the very first tensor of the MPS

A[1]

n1↑n1↓

A[2]

n2↑n2↓

= Q R A[2]

n2↑n2↓n1↑n1↓

Ã[1] Ã[2]

(2.64)
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and now, instead of multiplying R back to form A[1], multiplying it to the right into
the following tensor A[2]. This leaves us again with the very same MPS, however, we
know that the first tensor in the MPS in Equation 2.59 has the property

Ã[1]

Ã[1]

S[1]

= = 1, (2.65)

as this is a property of the QR decomposition Q†Q = 1. The tensor S[1] is the partial
overlap at site 1 that is in this case the identity. Then we can apply the same procedure
to the second tensor in the MPS and obtain the identity

Ã[1]

Ã[1]

Ã[2]

Ã[2]

S[2]

= = 1, (2.66)

and continue to any arbitrary orbital k . If we know that this procedure has been
applied to an MPS on the left of orbital k , we can simplify Equation 2.65 and Equation
2.66, since it is guaranteed that they will give the identity operator. For example when,
calculating the norm as given in Equation 2.61, we can benefit a lot from this feature.
This process is called left-orthonormalization of the MPS [52]. Although it seems to
be of little use at this point, since it also increased the overhead of the calculation to
perform the QR-decompositions, it will be very beneficial in the following. In most
cases, the orthonormalization comes at no additional cost (see Section 2.4.5).

We can also bring the MPS in a right-orthonormalized form by applying LQ decompo-
sition successively from the right

A[L]

nL↑nL↓

= L Q

nL↑nL↓

Ã[L]

, (2.67)

which then allows to simplify operations such as

Ã[L]

Ã[L]

= = 1. (2.68)
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Again, we can continue with the tensor j = L− 1

Ã[L]

Ã[L]

Ã[j]

Ã[j]
= = 1. (2.69)

An MPS can also be in a mixed canonical form,

A[1]

A[1]

· · ·

· · ·

A[i]

A[i]

A[j] A[k]

A[k]

· · ·

· · ·

A[L]

A[L]

=
A[j]

(2.70)

where on the left side of the orbital j the MPS tensors are left-orthonormalized and on
the right side of orbital j the MPS tensors are right-orthonormalized. We will discover
such MPS when we are introducing the sweeping algorithm in Section 2.4.9.

2.4.5 Truncation and Entanglement

We have discovered various concepts of the MPS representation of the many-body
state. We outlined its properties in terms of entanglement and have seen that they
are not unique, but can be gauged to have special properties. However, we have not
yet discussed where the reduction of complexity is applied to the many-body state.
We introduced MPS in Equation 2.56 as the exact decomposition of the expansion
coefficients of the many-body state, which is not related to any approximation. There-
fore MPS, as described at this point, still represent the complete many-body state
in Equation 2.35. Now we want to discuss how to simplify the representation of the
many-body state using the MPS approach.

Earlier, we discussed that the complete representation of the many-body state is
impossible to manage for medium sized basis sets due to the large number of expan-
sion coefficients. When using the exact MPS representation of the many-body state,
the number of coefficients is still growing factorially with the system size. To gain
any computational benefit compared to the complete representation, we need to
reduce the number of degrees of freedom of the MPS representation, which trans-
lates to a reduction of the bond dimension of the MPS tensors. For one-dimensional
systems, with short-ranged interaction and a gapped ground state, we know that this
reduction of dimension must be advantageous.

Next, we will discuss methods that reduce the MPS tensor dimension by using tensor
decomposition based on singular value decomposition.

In Section 2.4.4 we have already met the first two tensor decomposition methods,
namely the LQ and the QR decomposition. In line with these tensor decomposition
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methods, we can decompose any of the tensors in the MPS in terms of singular value
decomposition (SVD)

· · · A[i] · · ·

ni↑ni↓

= · · · U S V † · · ·

ni↑ni↓

(2.71)

= · · · U S V † · · ·

ni↑ni↓

(2.72)

where the matrix S is diagonal holding the real singular value spectrum. We are
free to choose where to put the index specifying the physical state ni↑ni↓, either
we put them at the matrix U or at the matrix V †. The choice where to put the
indices determines if the left-orthogonalization or right-orthogonalization property
is implemented at this bond of the MPS, as we know UU† = 1 and V †V = 1.

The interesting feature of SVD is now that we can use it to find the optimal approxi-
mation of the tensor A[i ] using a reduced dimensional tensor Ã[i ]. If we remove the
singular values smaller than a certain threshold ε from the singular value spectrum
and only keep the Dε singular values that are larger then ε, we obtain the optimal
approximation of the matrix A[i ] [104]

||A[i ]− Ã[i ]||2 =
∑
λi<ε

λ2
i , (2.73)

where || · || denotes the Frobenius norm and the sum is over all removed singular
values. The idea is now to use SVD to truncate the tensors in Equation 2.54 to find a
representation [124] of the entire MPS representation of the many-body state that
is optimal with respect to some dimension Dε. This optimal representation is then
constructed from smaller tensors Ã[i ]

· · · A[i] · · ·

ni↑ni↓

= · · · U S V † · · ·

ni↑ni↓

(2.74)

≈ · · · Ũ S̃ Ṽ † · · ·

ni↑ni↓

= · · · Ã[i] · · ·

n1↑n1↓

, (2.75)

where Ũ and Ṽ † are the adapted transformation matrices where the lines (rows)
belonging to neglected singular values have been removed. As soon as the truncated
singular values are nonzero, this truncation introduces an truncation error, i.e. the
MPS from the MPS tensors represents the many-body state approximately.

When truncating singular values from the singular value spectrum, we change the
dimension of the horizontal bonds in Equation 2.56. From now on, we will distinguish
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two types of bonds the tensors in the MPS have. There are bonds going vertically
with the occupation number being the related quantity ni↑ni↓. We will call these
bonds physical bonds as they have a direct physical meaning, namely the occupa-
tion numbers of the orbital i . Then there are also the bonds going horizontally in
Equation 2.56 that we will call virtual bonds. Those are the bonds we introduced
with tensor factorization of the complete coefficient tensor. The truncation based on
SVD changes the dimensions of the tensors A[i ] with respect to virtual bonds only.
The dimension of a virtual bond is called the bond dimension. The physical bonds
remain unaffected by the SVD truncation, therefore, all configurations can contribute
to the MPS representation of the many-body state. This is in strong contrast to other
post-Hartree–Fock methods outlined above (see 2.3), which all cut configurations
from the many-body Hilbert space, i.e. they cut the physical degrees of freedom.

Truncating the MPS in this manner has implications on the entanglement the MPS is
able to resolve. Let us divide the orbitals into two setsK andM and assume that the
orbitals of the setK are on the left of site and include the orbital i and the orbitals of
the setM are on the right of orbital i . The entanglement entropy between electrons
in these two orbital basis sets is given by

S(ρK) = tr{ρKlogρK}, (2.76)

where ρK is the reduced density matrix. In the tensor network notation it is

ρK =
U[1]

U[1]

· · ·

· · ·

U[i]

U[i]

S

S

V [k]

V [k]

· · ·

· · ·

V [L]

V [L]

sub systemMsub systemK

(2.77)

=
U[1]

U[1]

· · ·

· · ·

U[i]

U[i]

S2

sub systemK

(2.78)

assuming that the MPS |Ψ〉MPS is in a mixed canonical form with left-normalized
tensors for σ ≤ i and right-normalized tensors for σ > i . In this basis, ρK is diagonal
and S2 holds the eigenvalues of the reduced density matrix. If we assume a com-
pletely mixed spectrum with all eigenvalues of the reduced density being 1

Dε (this is
the worst case), we can estimate the entanglement entropy as

S(ρK) ∝ log(Dε). (2.79)

Therefore, the entanglement entropy that the MPS approach is able to resolve grows
logarithmically with bond dimension D. In little entangled states, a small bond di-
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mensions is sufficient to describe the state, whereas, as the entanglement grows,
also the bond dimension of the MPS needs to grow to maintain precision. Depend-
ing on the many-body state, it can vary from bond dimension 1, which means no
entanglement (Hartree–Fock) up to extremely large bond dimension, which means
maximally entangled. When using MPS with small bond dimensions, we assume
that the entanglement of the electrons is limited and the real entanglement does not
exceed the entanglement the MPS are able to describe.

After the truncation to bond dimension D has been performed on all tensors in the
MPS, we obtain a new, approximated MPS representation of the many-body state

|ψ〉 ≈ |ψMPS〉 =
∑

n1↑n1↓···nL↑nL↓

Ã[1] Ã[2] · · · Ã[L]

n1↑n1↓ n2↑n2↓ nL↑nL↓

|n1↑n1↓ · · · nL↑nL↓〉 , (2.80)

where all MPS tensors have a maximum virtual bond dimension D. For a given bond
dimension D, this is the quasi optimal approximation to the complete many-body
state [124].

2.4.6 Level-1 Operations

Now we have a basic understanding of the concept of MPS and see how they can
help us when representing many-body states. When using the MPS approach to solve
the (time-dependent) Schrödinger equation, we need to perform the operations of
linear algebra on MPS, such as scaling them by a factor, adding two or more MPS, and
applying operators on MPS. With level 1 operations, we have operations that involve
MPS only (compare to BLAS level 1 operation for vectors [175]). With level 2 operations,
we have operations that involve operator applications on MPS (compare to BLAS level
2 operations for matrix-vector products).

First, and most simple operation on a many-body state in MPS representation is to
scale it by a factor α

α |A〉MPS =
∑

n1↑n1↓···nL↑nL↓

(αAn1↑n1↓ [1]) · · ·AnL↑nL↓ [L] |n1↑n1↓ · · · nL↑nL↓〉 , (2.81)

=
∑

n1↑n1↓···nL↑nL↓

(
L√αAn1↑n1↓ [1]

)
· · ·
(

L√αAnL↑nL↓ [L]
)
|n1↑n1↓ · · · nL↑nL↓〉 ,

(2.82)

where we are free to multiply the factor α into one of the tensors A[i ]. Alternatively,
we observed better numerical stability when multiplying each of the MPS tensors by
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a factor L√α. Then the factor is more evenly distributed, which reduces floating point
errors.

Second, and still simple operation of type level 1 is a scalar product of two many-body
states in MPS representation. Here again, we can formulate an optimal procedure:
The scalar product of two many-body states in MPS representation is given by the
tensor network (using the orthonormality of the occupation number basis)

〈AMPS |BMPS〉 =
B[1] B[2] · · · B[L]

A[1] A[2] A[L]· · ·
= S[L], (2.83)

which is similar to the tensor network we already have seen for the MPS norm in
Equation 2.61. In tensor networks such as the one shown in Equation 2.83 the order of
summation is very important in terms of efficiency. In this particular tensor network,
we need to perform the summations either from left to right, or from right to left.
We should never perform the summation of virtual bonds first, (from bottom to top
or reverse), as we then obtain the exponential scaling of the complexity we have
encountered for the complete many-body state. In this example, the optimal order of
summation is easy to find, however, for more complex tensor networks, it is unclear
what the optimal order of summation is. Finding the optimal order of summation for
a generic tensor network is NP-hard [176].

Adding two many-body states in MPS representation is more challenging, because
adding is an operation that potentially changes the bond dimension of the MPS repre-
sentation. Suppose we want to add the two many-body states in MPS representation
|A〉MPS and |B〉MPS

|C〉MPS = |A〉MPS + |B〉MPS , (2.84)

where |A〉MPS has the maximum bond dimension DA and |B〉MPS has the maximum
bond dimension DB . To form the matrix C ni↑ni↓ [i ] that form the MPS representation
of the resulting state |C〉MPS , we need to arrange the matrices as

C ni↑ni↓ [i ] =
(

Ani↑ni↓ [i ] 0
0 Bni↑ni↓ [i ]

)
, (2.85)

therefore, the MPS |C〉MPS will have a maximum bond dimension of DC = DA + DB .
Next step in the addition operation is to truncate the MPS |C〉MPS by using SVD, as
described in Section 2.4.5. In case that |A〉MPS and |B〉MPS are linearly dependent
SVD will reduce the bond dimension to DA (or DB) without introducing any error. In
other situations, the MPS bond dimension need to be reduced to make sure that the
MPS bond dimension does not grow with every following MPS addition.
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This exact method to add MPS is too complex in most situations, and the error in-
troduced by the extra truncation spoils the overall result. In Section 2.4.9 we will
therefore introduce a variational concept to add many-body states in MPS represen-
tation that works more efficiently.

2.4.7 Matrix Product Operators

The same decomposition we applied to the many-body state can be applied to many-
body operators [52]. Even though the operators are usually not the most challenging
part in the quantum mechanical description of many-body system (most operators
are extremely sparse), it is beneficial to have the MPS approach extended to operators,
namely the matrix product operator (MPO) representation of many-body operators.
The generation of MPO can be done equivalently to the MPS approach, by successive
decomposition of the coefficients specifying the operator. Suppose we have the
operator expressed in the occupation number basis

Ô =
∑

n1↑n1↓···nL↑nL↓
n′1↑n

′
1↓···n

′
L↑n
′
L↓

On1↑n1↓···nL↑nL↓
n′1↑n

′
1↓···n

′
L↑n
′
L↓
|n1↑n1↓ · · · nL↑nL↓〉 〈n

′
1↑n

′
1↓ · · · n

′
L↑n

′
L↓| . (2.86)

Then, we can express the complete tensor On1↑n1↓···nL↑nL↓
n′1↑n

′
1↓···n

′
L↑n
′
L↓

of rank 4L as a product of

lower rank tensors. The operators in the MPO representation then reads

ÔMPO =
∑

n1↑n1↓···nL↑nL↓
n′1↑n

′
1↓···n

′
L↑n
′
L↓

O[1]n1↑n1↓
n′1↑n

′
1↓
· · ·O[L]nL↑nL↓

n′L↑n
′
L↓
|n1↑n1↓ · · · nL↑nL↓〉 〈n

′
1↑n

′
1↓ · · · n

′
L↑n

′
L↓| ,

=
∑

n1↑n1↓···nL↑nL↓
n′1↑n

′
1↓···n

′
L↑n
′
L↓

O[1] O[2] · · · O[L]

n1↑n1↓

n′
1↑n′

1↓

n2↑n2↓

n′
2↑n′

2↓

nL↑nL↓

n′
3↑n′

3↓

|n1↑n1↓ · · · nL↑nL↓〉 〈n
′
1↑n

′
1↓ · · · n

′
L↑n

′
L↓|

(2.87)

where again O[1]n1↑n1↓
n′1↑n

′
1↓

is a row vector O[i ]ni↑ni↓
n′i↑n

′
i↓

are matrices and O[L]nL↑nL↓
n′L↑n

′
L↓

is a column

vector. As for the non-truncated MPS representation of the many-body state, the MPO
representation of a many-body operator is mathematically correct, and introduces no
errors. The sequence of matrix products in Equation 2.87 exactly form the operator
matrix elements On1↑n1↓···nL↑nL↓

n′1↑n
′
1↓···n

′
L↑n
′
L↓

.

The MPO representation of a many-body operator can in most cases be found and
used exactly, as the bond dimension of the virtual bonds only grows polynomially
with system size [177]. Usually the many-body operators are sparse (Hamiltonian,
occupation number operators, spin operators) and a large number of coefficients are
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zero. This is in contrast to MPS representations of many-body states, which are in
general not sparse. In quantum chemistry with the long-ranged interaction, the bond
dimension of the Hamiltonian in MPO representation grows quartically with system
size (DMPO ∝ L4). That is manageable in most situations; Usually the bond dimension
of the MPS representation is the limiting factor. Still the MPO representation of a
many-body operator can be truncated in a similar fashion as the MPS representation
of a many-body operator. This reduces the complexity of the calculation, however,
it comes at the cost of dealing with an approximated Hamiltonian. Such operator
truncations have been applied in quantum chemistry [177], but most studies rely on
the exact MPO representation of the Hamiltonian and focus on truncation of the MPS
representation of the many-body state.

2.4.8 Level-2 Operations

With level 2 operations, we have the application of many-body operators in MPO
representation on many-body states in MPS representation. The MPO application is
an operation that potentially changes the bond dimension of the MPS representation
of the resulting many-body state. Here, we explain the direct method, although
this method has the same issues that we already encountered for addition of many-
body states in MPS representation (see Section 2.4.6). The growth of the MPS bond
dimension and the necessary truncation steps spoil the result of direct application
of operators in MPO representation. For this reason, we will discuss the variational
operator application as a possible solution to this issue in Section 2.4.9.

If we apply a many-body operator in MPO representation directly to a many-body
state in MPS representation we get

ÔMPO |ψ〉MPS =
∑

n1↑n1↓···nL↑nL↓
n′1↑n

′
1↓···n

′
L↑n
′
L↓

O[1]n1↑n1↓
n′1↑n

′
1↓
· · ·O[L]nL↑nL↓

n′L↑n
′
L↓

An′1↑n
′
1↓ · · ·An′L↑n

′
L↓ |n1↑n1↓ · · · nL↑nL↓〉 ,

=
∑

n1↑n1↓···nL↑nL↓

O[1] O[2] · · · O[L]

n1↑n1↓

A[1]

n2↑n2↓

A[2]

nL↑nL↓

A[L]· · ·

|n1↑n1↓ · · · nL↑nL↓〉 , (2.88)

where it is again very important to choose the right order to perform the summations.
The best possible order of summation is again from left to right, or from right to left,
i.e. by starting with the index commonly shared by the first (last) tensors O[1] (O[L])
and A[1] (A[L]) and then continue sequentially to the right (left). If we want to obtain
the result of this operator application in MPS representation, we skip summation
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over the virtual bonds, as we need them next to recover the MPS representation as
the next step.

Let us have a closer look onto one of the summations that need to be performed. The
two summations over the physical bonds at site i and j = i + 1 reads

O[i]· · · O[j] · · ·

ni↑ni↓

A[i]

nj↑nj↓

A[j] · · ·· · ·

Â[i] Â[j]

= Ā[i]· · · Ā[j] · · ·

ni↑ni↓ nj↑nj↓

. (2.89)

This gives a new double virtual bond connecting between the two tensors Ā[i ] and
Ā[j]. The lower bond originates from the virtual bond in MPS representation of the
many-body state |ψ〉MPS , and the upper bond originates from the virtual bond in
the MPO representation of the operator ÔMPO . To bring the resulting many-body
state in MPS representation again, we need to unify these two virtual bonds into
a single. The unified bond will have a bond dimension of DA · DO , i.e. significantly
larger than the previous bond dimension. This shows the problem we encountered
already for addition of MPS. The bond dimension of the MPS representation of the
resulting many-body state increases when performing operator applications. We
need to truncate the MPS to reduce the bond dimension of the MPS representation
of the resulting many-body state.

If the MPO representation of the many-body operator has a bond dimension of DO ,
and the MPS representation of the many-body state has bond dimension of DA, the
computational cost for operator application scales likeO(LD2

OD2
A). In our long-ranged

quantum chemistry problem the bond dimension of the MPO representation of the
Hamiltonian scales like O(L2) with system size, we therefore obtain the costs for
application of the HamiltonianO(L5D2

A) [177].

2.4.9 Variational Handling of Matrix Product States

Now we want to introduce a more efficient method to add many-body states in MPS
representation and to apply operators to many-body states in MPS representation.
We have already seen direct methods to perform these operations in Section 2.4.6 and
Section 2.4.8, however, those increase the bond dimension of the resulting many-body
state in MPS representation. In this section we want to describe a procedure that
variationally optimizes a many-body state in MPS representation to MPS addition or
MPO application with the constraint of a previously chosen maximum bond dimen-
sion. This means we are performing the operation (addition or operator application),
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while simultaneously limiting the bond dimension of the MPS representation of the
resulting many-body state.

Let us start with the example of addition of two many-body states in MPS representa-
tion |A〉MPS and |B〉MPS . Further, we want to obtain the resulting many-body state
represented as an MPS |C〉MPS with a previously fixed bond dimension DC . Instead of
performing the direct addition followed by truncation (see Section 2.4.6 and Section
2.4.5 ), we vary the tensors in |C〉MPS to find the global minimum of the functional

L[|C〉MPS ] = || |C〉MPS − (|A〉MPS + |B〉MPS)||2. (2.90)

We find the tensor C [i ] in |C〉MPS that minimize Equation 2.90 by taking the first
derivative of the functional with respect to the tensor C [i ]∗ in 〈C |MPS and set it to
zero

0 = ∂

∂C [i ]∗L[C ] = ∂

∂C [i ]∗ ( MPS 〈C |C〉MPS − MPS 〈C |A〉MPS − MPS 〈C |B〉MPS) .

(2.91)

Here, we already canceled terms not depending on C [i ]∗. Solving Equation 2.91
minimizes the value of the functional in Equation 2.90 with respect to C [i ] and
therefore brings the MPS |C〉MPS close to the sum of the two many-body states in
MPS representation |A〉MPS and |B〉MPS .

At this point, the graphical representation of tensor networks is particularly handy.
The derivative of Equation 2.91 reads in the graphical representation

0 =
C [h]

C [h]· · ·

· · · C [i] C [j]

C [j]

· · ·

· · ·
−

A[h]

C [h]· · ·

· · · A[i] A[j]

C [j]

· · ·

· · ·

−
B[h]

C [h]· · ·

· · · B[i] B[j]

C [j]

· · ·

· · ·
, (2.92)

where the first part depicts 〈C |C〉 in Equation 2.91, the second part depicts 〈C |A〉
in Equation 2.91 and the third part depicts 〈C |B〉 in Equation 2.91. The tensor C [i ]∗

simply vanishes when taking the derivative of Equation 2.91, since Equation 2.91 is
linear in C [i ]∗.

To solve Equation 2.92, let us remember the (left-) right-orthonormalization property
of many-body states in MPS representation. In Section 2.4.4 we discussed the feature
of many-body state in MPS representation to be in a special form, where parts of
tensor networks such as given in Equation 2.92 form identity operators (see Equation
2.66 and Equation 2.68). At this point of the MPS addition, we can take advantage of
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this property. Assume the MPS |C〉MPS happens to have its orthonormal center at
orbital i , which means, all tensor to the left of orbital i are left-orthogonalized and all
tensors to the right of orbital i are right-orthogonalized. Using the properties of left-
and right-orthonormalization, we can simplify Equation 2.92 to

0 =
C [i]

−
A[h]

C [h]· · ·

· · · A[i] A[j]

C [j]

· · ·

· · ·
−

B[h]

C [h]· · ·

· · · B[i] B[j]

C [j]

· · ·

· · ·
,

(2.93)

which we can rearrange to

C [i]
=

A[h]

C [h]· · ·

· · · A[i] A[j]

C [j]

· · ·

· · ·
+

B[h]

C [h]· · ·

· · · B[i] B[j]

C [j]

· · ·

· · ·
.

(2.94)

This is a linear equation that we can solve directly. The (left-) right-orthonormal-
ization property of the many-body state in MPS representation enabled us to turn
Equation 2.91 into a linear equation (Equation 2.94). By solving Equation 2.94 we find
a minimum of the functional in Equation 2.90 for the particular tensor C [i ].

However, the minimum we found from this procedure is not necessary the global
minimum of Equation 2.90. The solution of Equation 2.91 for orbital i strongly depends
on all tensors C [j] ∀j 6= i . To approach the global minimum, we also need to vary the
other tensors in the MPS |C〉MPS . We do this in the form of sweeps [42, 43], where we
repeat the procedure we performed for orbital i for the next tensor i → i ± 1 in the
MPS |C〉MPS , and all following. Thereby, we optimize the MPS |C〉MPS to represent
the sum in Equation 2.90 variationally, until we reached convergence to the desired
accuracy. Most importantly, the bond dimension of the MPS |C〉MPS remains fixed
within this procedure. It is chosen for the initial guess of the MPS |C〉MPS , and does
not change in this procedure. The optimization happens in the fixed manifold of the
many-body Hilbert space the MPS state |C〉MPS covers. This manifold is not changed
within this optimization procedure, which improves efficiency compared to the direct
approach outlined above in Section 2.4.6.

This procedure is also able to perform many other operations beyond the addition
of two MPS. For example, we can easily use it to add more than two MPS at once.
Then the Equation 2.94 is just appended by more addends on the right hand side.
Further allows this procedure to truncate many-body states in MPS representation
variationally [178]. Such an operation starts from the functional

L[|C〉MPS ] = || |C〉MPS − |A〉MPS ||2, (2.95)
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and all following steps of the variation procedure remain similar to those for MPS
addition. Most importantly we can also use the variational method to apply many-
body operators in MPO representation, i.e. to perform level 2 operations on many-
body states in MPS representation. Here, the functional to minimize reads

L[|C〉MPS ] = || |C〉MPS − Ô |A〉MPS ||2, (2.96)

but the concept of the procedure is again similar to what has been explained for MPS
addition. For application of many-body operators in MPO representation the linear
equation to solve reads

C [i]
=

A[h]

O[h]

C [h]· · ·

· · ·

· · · A[i]

O[i]

A[j]

O[j]

C [j]

· · ·

· · ·

· · ·

, (2.97)

which shows the additional summations that increase complexity of operator appli-
cation. However, the resulting method is still more efficient than the direct approach
to apply MPO to MPS (see Section 2.4.8).

Another advantage of the variational method is that we can combine various opera-
tions into one. For example, we can combine operator applications with an arbitrary
large sum of other MPS. Then the functional to minimize reads

L[|C〉MPS ] = || |C〉MPS −
(

Ĥ |A〉MPS +
∑

p
|p〉MPS

)
||2 (2.98)

This feature will become in particular handy in the time evolution methods that we
will outline in Section 2.5.

The computational cost of a variational optimization is small compared to the direct
approaches explained in Section 2.4.6 and Section 2.4.8. The complexity of the varia-
tional method for the addition of two MPS with bond dimension D into an MPS with
bond dimension D is per sweepO(LD3) and therefore only grows linearly with the
system size. For application of MPO in quantum chemistry to MPS, the complexity is
O(L4D2 + L3D3), which is one order smaller in L compared to the direct approach.

In this procedure to add many-body states in MPS representation, we took the deriva-
tive of a single site C [i ]∗, which has the advantage that the MPS dimension does
not change within the optimization. However, this comes at the cost that the MPS
representation of the many-body state remains in a fixed manifold of the many-body
Hilbert space. It is not free to adapt to a new manifold of the many-body Hilbert
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space (see Section 2.4.2) by changing the virtual basis. It can adjust the coefficient in
the tensors C [i ] only, however, without changing the virtual basis. It cannot leave the
corner of the Hilbert space the initial MPS |C〉MPS was constructed to represent. For
this reason, we will use a dynamic extension, that is able to adjust the corner of the
Hilbert space the MPS represents. Instead of taking the derivative of a single tensor
C∗[i ], we work with neighboring pairs of tensors

∂

∂C [i ]∗ →
∂

∂C [i ]∗C [j]∗ , (2.99)

C [i] → C [i] C [i] = S[i , j] , (2.100)

which allows for adaption of the virtual basis and therefore to adapt the manifold
it represents in the many-body Hilbert space. S[i , j] is known as the two-site object
[51, 106] and is equivalent to the two-site DMRG algorithm [42, 43]. After the linear
equation has been solved using the two-site object, it needs to be decomposed
into two matrices to fit back in the resulting MPS representation of the many-body
state. This can be done using the SVD introduced in Section 2.4.5. It is known that
the two-site procedure of doing variational operations improves the overall MPS
performance. There are existing extensions to enhance the single-site procedure as
well [179], however, we will use the two-site procedure throughout this thesis.

2.5 Time Evolution of Matrix Product States

Now, that we have all necessary tools to operate on MPS, we can proceed by discussing
how to apply these operations to solve the time-dependent Schrödinger equation
(see Equation 2.1). Finally, we want to solve the time-dependent Schrödinger equation
for many-body states in MPS representation

i h̄ ∂
∂t |Ψ(t)〉MPS = Ĥ |Ψ(t)〉MPS , (2.101)

in the most efficient and precise fashion. The general solution to this differential
equation is given in terms of the time evolution operator. If the state |Ψ(t0)〉MPS is
known at time t0, the time evolved state at time t − t0 is given by

|Ψ(t − t0)〉MPS = e− i
h̄ Ĥ(t−t0) |Ψ(t0)〉MPS , (2.102)

for time-independent Hamiltonians. However, finding a representation of the time
evolution operator is the central challenge in time-dependent quantum mechanics.
There are many methods to solve the time-dependent Schrödinger equation for
many-body states in MPS representation [59], however, only a few can be applied to
quantum chemical systems due to the long-ranged interaction (see Section 2.4.2).
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2.5.1 Overview of Time Evolution Algorithms for Matrix
Product States

The most prominent time evolution algorithm for many-body states in MPS repre-
sentation is the time evolving block decimation (TEBD) method that is based on a
Lie–Trotter decomposition of the time evolution operator [53]. Assume we can write
the Hamiltonian in terms of a sum

Ĥ =
∑

i
ĥi ,i+1, (2.103)

where the addend to the Hamiltonian ĥi ,i+1 only acts on the sites (orbital) i and i + 1.
Then we can express the time evolution operator in Equation 2.102 approximately
as

e− i
h̄ Ĥt ≈ e− i

h̄ ĥ1,2t/2 · · · e− i
h̄ ĥL−1,Lt/2e− i

h̄ ĥL−1,Lt/2 · · · e− i
h̄ ĥ1,2t/2 +O(t2), (2.104)

which is also known as the Lie–Trotter decomposition and has similarities with the
well known split operator method used e.g. in the bachelor theses by Wunderlich
[180] and Berg [181].

With the MPO representation of the Hamiltonian in Equation 2.103, we can easily
find the operators e− i

h̄ ĥi+1,i t/2 since its is just an exponential of an operator acting on
two sites (orbitals). These exponentials are successively applied to the many-body
state in MPS representation according to Equation 2.104 and then generate the time
evolved MPS. TEBD is likely to be the best time evolution method existing for many-
body stats in MPS representation [182], however, it has a very strict limitation. The
decomposition in Equation 2.103 is only possible if the Hamiltonian is short-ranged,
which forbids the use of TEBD for most quantum chemical systems. For specific
molecules it is possible to formulate short-ranged problems, however, in the context
of ab initio quantum chemistry, the Hamiltonian is inherently long-ranged. For this
reason we cannot rely on the TEBD time evolution approach.

A method that is able to treat long-ranged problems is the time-dependent varia-
tional principle (TDVP) applied to MPS [56, 132]. Here one solves the time-dependent
Schrödinger equation for each individual tensor Ψ [i ](t) in the MPS representation of
the many-body state |Ψ(t − t0)〉MPS . One obtains these local time-evolution equa-
tions from a projection of the time-dependent Schrödinger equation onto the tangent
space of the MPS manifold. Then one solves the Schrödinger equation in this tangent
space for each of the tensors in the MPS. By performing sweeps similar to the sweeps
in the procedure for variational operations (see Section 2.4.9), one eventually obtains
the time evolved state. The resulting procedure allows for unitary time-evolution
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and can be applied to long-ranged problems, however, its performance diminishes
for problems with non-local interaction [182]. With one-dimensional lineup of the
different orbitals of the molecule in the MPS representation, we obtain non-uniform
Coulomb integrals in the quantum chemistry Hamiltonian. This makes use of TDVP
problematic in quantum chemical situations.

The two approaches outlined above are inherently designed for MPS. They use the
tensor network feature and are designed to operate locally on individual tensors of
the MPS representation instead of working with the total MPS. Such approaches have
shown to have good efficiency [56, 58, 132, 183, 184], however, these studies included
mostly systems in one-dimension, where electronic interaction and entanglement is
limited. Here, with the more complex quantum chemistry situation, we will choose a
different path: Instead of designing tailored time evolution algorithms for the MPS
representation, we understand the MPS approach as an optimized way to represent
the many-body state. With operations such as scaling, adding, and applying oper-
ators, we have everything we need to work with MPS just like we would do with
the complete many-body state. Then we can use any already existing methods to
solve the time-dependent Schrödinger equation. Here, we will focus on two of such
methods, namely the fourth-order Runge–Kutta approach, and the Krylov space time
evolution.

2.5.2 Fourth-Order Runge–Kutta

The first method we want to use to time evolve a many-body state in MPS repre-
sentation is the fourth-order Runge–Kutta method [185]. For our situation with a
time-independent Hamiltonian it is based on the Taylor expansion of the time evo-
lution operator in Equation 2.102 up to the fourth order. The Runge–Kutta method
starts by finding the four Runge–Kutta vectors, in our case all of them in MPS repre-
sentation

|k1〉MPS :=i ∆t
h̄ Ĥ |Ψ(t)〉MPS (2.105)

|k2〉MPS :=i ∆t
h̄ Ĥ

(
|Ψ(t)〉MPS + 1

2 |k1〉MPS

)
(2.106)

|k3〉MPS :=i ∆t
h̄ Ĥ

(
|Ψ(t)〉MPS + 1

2 |k2〉MPS

)
(2.107)

|k4〉MPS :=i ∆t
h̄ Ĥ (|Ψ(t)〉MPS + |k3〉MPS) . (2.108)

Here, we see that we just need the operations described in Section 2.4.6 and Section
2.4.8 to find the Runge–Kutta vectors. We can find these vectors by applying the
variational approach as discussed in Section 2.4.9. The many-body state evolved by a
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time step ∆t is then constructed from a superposition of the initial state and the four
Runge–Kutta vectors

|Ψ(t + ∆t)〉MPS = |Ψ(t)〉MPS + 1
6 (|k1〉MPS + 2 (|k2〉MPS + |k3〉MPS) + |k4〉MPS)

+O(∆t5), (2.109)

which is correct up to fifth order in the discrete time step size ∆t . When inserting
the Runge–Kutta vectors into Equation 2.109, this exactly matches the fourth order
Taylor expansion of the time evolution operator in Equation 2.102.

The Runge–Kutta method is one of the standard methods for time evolution in many
studies of condensed matter theory and in numerical mathematics in general. It is
easy to implement and has a very well controllable error with the time step size. There
are also lower and higher order Runge–Kutta methods, however, in most studies the
fourth order method provides good performance.

The Runge–Kutta method still suffers from the problem of performing the time
evolution non-unitarily. As it is based on a finite expansion of the time evolution
operator in Equation 2.102. The norm of the time evolved state will change with
time. This error scales like O(∆t5), which limits the size of the discrete time steps
immensely. The same applies to the energy expectation value if evaluated in a state
evolved using the Runge–Kutta method, which is nonphysical for time-independent
Hamiltonians. Therefore a careful choice of the discrete time step size ∆t is crucial
for this method.

As being a fourth order method, performing a time step from t to t + ∆t using the
Runge–Kutta method requires four applications of the Hamiltonian to the many-
body state in MPS representation, as well as four MPS additions. We can do paired
applications and additions in one variation step, however, we need to calculate the
Runge–Kutta vectors sequentially, as our implementation does not allow to directly
perform higher order operator applications. Therefore, we first generate the Runge–
Kutta vectors as given in Equation 2.105 to Equation 2.108 and then proceed with the
superposition of the time evolved state in Equation 2.109.

2.5.3 Orthogonalized Krylov Space Time Evolution

With the Runge–Kutta method we have seen a time evolution method that is based
on the direct Taylor expansion of the time evolution operator in Equation 2.102. In
contrast to this approach, we want to introduce the family of Krylov space methods
[186, 187] that go beyond a simple expansion of the time evolution operator. The
method originated by Lanczos [188] who proposed a new method to find eigenvalues
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of hermitian operators based on a reduced Hilbert space that was later named the
Krylov space. The large success of the Lanczos method makes the method popular
till today, were it is still the method of choice for finding the low energy spectrum
of physical problems. The idea of the Krylov space was extended to a time evolution
method that performs the evaluation of the time evolution operator in the Krylov
space [187]. The resulting time evolution concept is one of the most sophisticated in
today’s numerical mathematics. The ideas were slightly extended compared to what
has been proposed initially, however, the idea of the Krylov space remains the same
[189–191]. As the strengths of the Krylov space time evolution align with the needs
of our requirements of a time-evolution method, we will include the Krylov space
method in our analysis of time-dependent MPS. Further is the Krylov space method
easily implemented given the operations on many-body states in MPS representation
outlined above, therefore it fits well in the scope of our analysis of the MPS approach
in quantum chemistry.

The idea of the Krylov space methods is now to, instead of solving the time-dependent
Schrödinger equation in the full many-body Hilbert space, reduce the problem to
a linear subspace of the many-body Hilbert space and solve the time-dependent
Schrödinger equation in this smaller vector space. The smaller vector space is called
the Krylov space, which is generated from successive application of the Hamiltonian
to a test state. In our time-dependent situation, we choose the test state as the
many-body state we want to time evolve |Ψ(t)〉MPS in the MPS representation. In
this case, the Krylov space is given by

K = span({|Ψ(t)〉MPS , Ĥ |Ψ(t)〉MPS , Ĥ2 |Ψ(t)〉MPS , Ĥ3 |Ψ(t)〉MPS · · · }). (2.110)

that can be extended to any order NKry . To use the Krylov space, we need to find a
transformation from the complete many-body Hilbert space, to the smaller Krylov
space, i.e. we need a set of basis vectors of the Krylov space expressed in the complete
many-body Hilbert space.

There are different approaches to find a basis of the Krylov space, where we will
discuss two concepts in detail in this thesis. A method to generate the Krylov basis
vectors successively is Gram–Schmidt orthogonalization applied to the Krylov vectors
in Equation 2.110

|φk+1〉MPS = Ĥ |φk〉MPS −
∑
j≤k

MPS 〈φj | Ĥ |φk〉MPS
MPS 〈φj |φj〉MPS

|φj〉MPS , (2.111)

where |φ0〉MPS = |Ψ(t)〉MPS is the state we want to evolve. The basis generated
from Equation 2.111 forms an orthogonal basis of the Krylov space using the MPS
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representation of the many-body state. All operations in Equation 2.111 are efficiently
performed using the variational method discussed in Section 2.4.9.

The state evolved after a time step ∆t is constructed from the Krylov basis vectors by
building the superposition [59]

|ψ(t + ∆t)〉MPS =
∑

k

[
e−i ∆t

h̄ N−1H
]

k0
|φk〉MPS (2.112)

where the matrix Ni j =MPS 〈φi |φj〉MPS represents the overlaps of the Krylov basis
vectors, Hi j =MPS 〈φi |Ĥ|φj〉MPS represents the Hamiltonian in the Krylov space and
[ · ]k0 denotes the element at the k-th row and the 0-th column of the exponential
matrix. The overlap matrix N is supposed to be an identity matrix, as the Krylov basis
vectors are generated in an orthonormal way, however, we need to keep numerical
errors and truncation errors of the MPS in mind. Of course, the MPS representation
of the Krylov basis vectors is imperfect, which induces a loss of orthogonality of the
Krylov basis vectors in MPS representation. We take this into account by including the
overlap matrix in the exponential of the time evolution equation in Equation 2.112.

Let us compare the Krylov space method with the previously introduced Runge–
Kutta method. As we indeed calculate the time evolution operator, including the
exponential in Equation 2.112, in the Krylov space instead of in the real many-body
Hilbert space, the method is now norm conserving and energy conserving. This gives
the method a large advantage compared to the Runge–Kutta method. It allows for
much larger time steps and longer time evolution [59]. We will observe this in the
detailed analysis of the MPS approach in Section 4. Further is the Krylov space method
more flexible in adapting to the physical situation. On the one hand we can try to
converge the dynamics using the time step size ∆t , while on the other hand, we can
also change the size of the Krylov space NKry and see how this effects the results.

The complexity of a time step depends on the Krylov space dimension. For a given
Krylov space dimension NKry , we need to perform NKry − 1 Hamiltonian applications
and NKry summations. A Krylov space dimension of NKry = 5 is comparable with the
complexity of the Runge–Kutta method.

2.5.4 Non-Orthogonalized Krylov Space Time Evolution

The Krylov space basis generated from the vectors in Equation 2.111 is not the only
valid basis of the Krylov space. When using an MPS representation of the Krylov basis
vectors, the Krylov vectors will loose orthogonality due to the MPS truncation. In
the time-evolution, Equation 2.112, we handled this by introducing the inverse of the
overlap matrix in the exponential. Another approach is to form the Krylov space from
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non-orthonormal basis vectors in the first place. When constructing the basis in a
non-orthogonalized fashion, we can use

|φk+1〉MPS = Ĥ |φk〉MPS
|MPS 〈φk | ĤĤ |φk〉MPS |2

, (2.113)

which spans the Krylov space just as given in the Krylov space definition in Equation
2.110. This will be the second method to form a Krylov space basis that we discuss in
the following analysis of the MPS approach.

The time evolution is again done according to Equation 2.112, which already takes
care of possible non-orthogonality of the basis states. The resulting time evolution
is, up to a MPS truncation error, norm and energy conserving. When using the non-
orthonormalized Krylov basis vectors, and forming the time evolved state from the
basis vectors, the resulting equation for the time evolved state is very similar to the
NKry -th expansion of the exact time evolution operator in Equation 2.102, however, in-
corporating a complex pre-factor in a way that the resulting time evolution is unitary.
This is a special feature of the non-orthonormal Krylov basis vectors, that will improve
the performance of the MPS time evolution approach in special circumstances (see
Section 4).

However, this improved performance is limited to special problems, as time-evolution
based on the non-orthogonal Krylov basis vectors is more prone to errors. Especially if
the state to time evolve is close to an eigenstate of the Hamiltonian, then the non-
orthonormal Krylov basis vectors tend to become linearly dependent, which causes
large numerical errors, when calculating the inverse N−1 in Equation 2.112. Therefore
we have to apply the non-orthogonalized Krylov approach more carefully.

The complexity of the non-orthogonalized Krylov approach is slightly reduced com-
pared to the orthonormalized approach. We have the NKry − 1 operator application
and only one addition of the previous Krylov vectors, however, in most cases the
application of the Hamiltonian is the most costly part of the calculation. Therefore,
the formal complexity of the non-orthogonalized Krylov space method is similar
compared to orthogonalized Krylov space, however, the reduction in MPS bond di-
mension can be significant, which allows for more efficient calculations using the
non-orthogonalized Krylov method in special situations (see Section 4).

These are the time evolution algorithms we want to apply in this analysis of the MPS
based time evolution for dynamics in molecules. There exist many more approaches
that have been developed, ranging from Chebyshev time evolution [192], more ex-
tensions to the time-dependent variational principle [58], up to Hylleraas functions
[193] to calculate dynamic Green’s functions in frequency space directly. However,
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for the first application of the MPS approach in time-dependent ab initio quantum
chemistry presented in this thesis, we have a good variety of methods to access the
performance of the MPS approach in this field.
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3Competitive Implementation of
the Matrix Product State
Approach

Many numerical implementations of the DMRG method, the MPS approach, and
more complex tensor network approaches have been developed in recent years [51,
139, 141, 142, 194–197]. There are multipurpose implementations of the tensor network
approach that can be adapted to many physical problems. One of such implementa-
tions is the open source ITensor package [141], where the author contributed himself.
The ITensor package is able to implement any tensor network, however, most fea-
tures focus on the MPS approach to represent many-body states and on the MPO
approach to represent many-body operators. For this type of tensor networks, it
offers procedures to perform most operations discussed in Section 2.4. Implementing
the time evolution methods discussed in Section 2.5 is straight forward. For exam-
ple, ITensor was the package of choice in a master project that was initiated by the
author of this thesis. Kothe [198] used the ITensor package and its MPS implementa-
tion to study time-dependent transport mechanisms in tunneling junctions at finite
temperature.

Highly flexible packages such as ITensor come with a significant problem when using
them for calculations on a competitive level. They sacrifice performance in computa-
tion time and memory for ease of adaption. Especially in ab initio quantum chemistry
there is little chance to apply non-optimized code, as the complexity of the problem is
enormous for non-trivial molecules. Computational power and memory is always the
bottleneck in finding results of high accuracy. The modern quantum chemistry codes
have been developed and optimized for decades and they are advanced in terms
of computation efficiency, memory usage, and parallelism concepts. Therefore, we
need an implementation of the MPS approach specifically optimized for quantum
chemistry problems when proposing MPS as a promising approach to study time-
dependent effects in molecules. Only then we will be able to describe dynamics in
molecules with satisfying precision and international competitive efficiency.

In the next chapter, we want to propose the Hamburg CheMPS2 extension as one
of such highly optimized implementations of the MPS approach, which enables
time-dependent studies in quantum chemistry. We will discuss its origins and the
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properties that make it one of the state-of-the-art MPS implementations. Together
with the insights in the MPS approach in context of time-dependent quantum chem-
istry (that we discuss in Chapter 4 and Chapter 5), the Hamburg CheMPS2 extension
is the main asset developed in this Ph.D. project. The results discussed in this thesis
are just the starting point of time-dependent MPS in quantum chemistry, where the
Hamburg CheMPS2 extension is used in numerous ongoing and future projects.

3.1 Symmetry Adapted Tensor Networks

A crucial benefit in computational physics originates in the symmetries of the physical
system. Symmetries allow to reduce the dimension of the considered many-body
Hilbert space, which then results in a simplification of the many-body state. For
example, let us suppose we have a molecule where the electrons can occupy L = 20
orbitals. If we span the many-body Hilbert space without using any symmetries, its
dimension is given by dim (H) = 4L ≈ 1.099 · 1012. To represent the many-body
state computationally we need dim (H) ≈ 1.099 · 1012 coefficients (see Section 2.2.2),
which requires≈ 70.37T B of data when using real double precision numbers. This is
computationally very challenging using today’s computational resources, however,
using symmetries we can reduce the problem to a subspace of the many-body Hilbert
space of manageable size. If utilizing the electron number conservation and the spin
conservation and focus on the many-body states with N↑ = 10 spin-up electrons
and N↓ = 10 spin-down electrons, we can reduce the problem to a subspace of
dim

(
HN↑=10,N↓=10

)
=
( L

N↑
)
·
( L

N↓
)

= 3.4134 · 1010 coefficients, which only requires
0.2731T B of data to store the many-body state. Calculations for many-body Hilbert
space dimensions of this magnitude have been performed successfully [93]. With
the MPS we have a complementary approach to simplify the representation of the
many-body state. We can combine the symmetries of the molecular system with the
MPS approach to gain an additive computational advantage. In the following section,
we discuss how to reduce the effective dimension of the many-body Hilbert space
using symmetries and how these symmetries are implemented into the tensors of
the MPS approach.

When taking advantage of symmetries, we use that the Hamiltonian is block-diagonal
if written in the eigenbasis of the symmetry generating operator (see Figure 3.1). This
is a consequence of [

Ĥ, Ô
]

= 0, (3.1)

where Ô is the symmetry generating operator. The blocks correspond to eigenvalues
of the operator Ô, that are also good quantum numbers (for example the electron
number) of the system. The many-body states with fixed quantum number form
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Figure 3.1.: Schematic factorization of the Hamiltonian into symmetry blocks. The symme-
tries used in this Section are particle number N , irreducible representation I ,
and spin quantum numbers S and Sz .

a subspace of the many-body Hilbert space. When focussing on states with fixed
quantum numbers, we can reduce the total problem onto one of the subspaces with a
fixed quantum number. All other states can be neglected, since their coefficient in the
many-body state are zero. Therefore, the effective Hilbert space dimension reduces
and we obtain a computational advantage. This also holds for time-dependent
situations, where the good quantum number is a conserved quantity of the system.
As soon as the initial state is chosen from one of the subspaces, the time evolved
many-body state remains part of this subspace forever.

Already the first DMRG study of chemical systems by White and Martin [105] made use
of symmetries. They incorporated the abelian electron number and spin-projection
symmetries to find the accurate ground state energy of water. Shortly following,
studies additionally incorporating abelian point group symmetries [44, 199] were pub-
lished, promoting the role of DMRG in quantum chemistry. With these symmetries
implemented into the DMRG method, a rich family of quantum chemistry studies
evolved with prior unmatched precise results. However, advancing the DMRG method
even further by implementation of non-abelian symmetries proved more challenging.
First implementation of non-abelian symmetry was done by McCulloch and Gulácsi
[200–202] however, not with the aim to study quantum chemical systems. Sharma
and Chan [203], as well as Wouters et al. [51] were the first to implement the non-
abelian spin symmetry to study eigenstates of quantum chemical systems. Especially
implementation of the non-abelian total spin symmetry enhanced the capabilities of
the DMRG method and the MPS approach, enabling description of nearly degenerated
states with different spin quantum numbers.
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In the Hamburg CheMPS2 extension (which is an extension of the implementation by
Wouters [51]) we exploit three different symmetries of the molecule. We make use of
the electron number symmetry, the point group symmetry, and the spin symmetry,
which we discuss in detail in the following.

3.1.1 Electron Number

First symmetry we want to discuss more closely is the electron number symmetry. The
molecule described in Chapter 2 forms a closed system, where no electrons leave or
enter the system. Neither we have any electron sources nor we consider any electron
absorbing parts in the system. Then, the Hamiltonian in Equation 2.3 commutes with
the total electron number operator

[
Ĥ, N̂

]
=
[

Ĥ,
∑

i
(n̂i↑ + n̂i↓)

]
= 0, (3.2)

which attributes the conservation of the electron number in the system. Since the
commutator in Equation 3.2 is zero, we can find a basis where the particle number
operator N̂ is diagonal and the Hamiltonian is (at least) block diagonal. We can choose
the number of electrons (for example corresponding to a neutral molecule) and solve
the Schrödinger equation for this block of the Hamiltonian without considering any
other block.

In Equation 2.35 we chose to represent the complete many-body state in the occupa-
tion number basis. The Hamiltonian is already block diagonal in this basis. To utilize
the electron number conservation in the complete many-body state we solely need
to restrict the sum over all possible configurations in Equation 2.35 to configurations
where

∑
i ni↑ + ni↓ = N holds

|Ψ(t)〉 → |Ψ(t)〉N =
∑

n1↑n1↓···nL↑nL↓∑
i ni↑+ni↓=N

cn1↑n1↓···nL↑nL↓(t) |n1↑n1↓ · · · nL↑nL↓〉 . (3.3)

We introduced a secondary condition to the summation, as we know coefficients
where

∑
i ni↑ + ni↓ = N is violated are zero. This removes all states with electron

number 6= N from the many-body state and reduces the subspace of the many-body
Hilbert space considered.

But also the MPS tensors can benefit from the electron number symmetry. In the MPS
formulation in Equation 2.56 and Equation 2.59 the virtual basis in which the tensors
A[i ] are expressed can be chosen arbitrarily, we did not make any statement on its
form or shape. We assume the variational optimization of the MPS representation
to find the optimal virtual basis and MPS tensor. However, we can support the
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variational optimization of the virtual basis by writing the MPS tensors in a virtual
basis of electron number eigenstates. We adapt the physical and virtual bonds of the
MPS tensors to the particle number basis

A[i]ai−1 ai

ni↑ni↓

→
A[i]Ni−1αi−1 Niαi

niγi

, (3.4)

where each bond ai−1 → Ni−1αi−1, ai → Niαi and ni↑ni↓ → niγi is a tuple of particle
number Ni−1, Ni and ni and remaining degrees of freedom αi−1, αi and γi .

For example, after separation of the occupation number of the physical bond at
orbital i , it becomes

ni↑ni↓ → niγi ∈


|ni = 0, γi〉 ,
|ni = 1, γi〉 ,
|ni = 2, γi〉

 , (3.5)

where ni = ni↑ + ni↓ is the number of electrons in the orbital i and γi holds further
information about the orbital (spin and the irreducible representation of the orbital,
see following sections). Now the virtual basis states have well defined electron
numbers. The electron number Ni of the virtual bond i represents the total number
of electrons that are in orbitals to the left of the bond, i.e. in orbitals≤ i . For example,
when coming across the MPS tensor element

A[4]n4=1γ4
N3=4α3,N4=5α4

=
A[4]N3 = 4α3 N4 = 5α4

n4 = 1γ4

, (3.6)

we know from the virtual basis states that this element of the MPS tensors is part of
an expansion coefficient cN

n1↑n1↓···nL↑nL↓ where there are 5 electrons distributed over
the orbitals 1 to 3 (5 =

∑3
i=1 ni↑+ ni↓) and 6 electrons are distributed over the orbitals

1 to 4 (6 =
∑4

i=1 ni↑ + ni↓).

In naive approaches, any coefficient of the many-body state with fixed number of
electrons N is constructed without using the electron number symmetry via

cN
n1↑n1↓···nL↑nL↓ =

∑
α1···αL A[1]

α1
A[2]

α2
· · ·

αL
A[L]

n1↑n1↓ n2↑n2↓ nL↑nL↓

. (3.7)
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A[4]n4=1γ4
N3=3,N4=3

A[4]n4=1γ4
N3=4,N4=4

Ã[4]n4=1γ4
N3=3,N4=4

Ã[4]n4=1γ4
N3=2,N4=3 Ã[4]n4=1γ4

N3=2,N4=4

Ã[4]n4=1γ4
N3=5,N4=3 Ã[4]n4=1γ4

N3=5,N4=4

A[4]n4=1γ4
N3=4,N4=3

An4=1γ4 [4] =

Figure 3.2.: Schematic classification of the MPS matrix An4=1γ4 [4] into particle number blocks.
Red blocks are zero by particle number symmetry. We only store the blocks Ã
that conform to the electron number symmetry (blue blocks with bold font).

Here, the MPS tensors for representing the coefficient cN
n1↑n1↓···nL↑nL↓ are expressed

in an arbitrary virtual basis. If physical and virtual bonds are written in the electron
number basis the MPS representation turns into

cN
n1γ1···nLγL =

∑
N1α1···NLαL A[1]0

N1α1
A[2]

N2α2
· · · A[L]

n1γ1 n2γ2 nLγL

N
. (3.8)

We introduced trivial bonds at the first and at the last MPS tensor. The very left virtual
bond (0) specifies that there are no electrons on the left of orbital 1 and the very right
virtual bond (N) specifies that exactly N electrons have to be distributed over the
orbitals 1 to L.

Now with the virtual bonds and physical bonds having particle number indices, we
have local particle number conservation in the indices: The number of electrons to
the left of orbital i and the number of electrons in orbital i need to sum to the number
of electrons in the right bond Ni−1 + ni = Ni . We can most easily express this in terms
of delta functions in the MPS tensors

A[i ]niγi
Ni−1αi−1,Niαi

= Ã[i ]niγi
Ni−1αi−1,Niαi

δNi−1+ni ,Ni , (3.9)

A[i]Ni−1αi−1 Niαi

niγi

=
Ã[i]Ni−1αi−1 Niαi

niγi

·
δNi−1 Ni

ni

. (3.10)

Only if Ni−1 + ni = Ni , the matrix element of A[i ] at a given bond index is different
from zero and needs consideration in its computational representation. The tensor
A[i ] is separated into blocks since it only needs to store values where the delta func-
tion evaluates to one. This simplifies the form of the MPS tensors A[i ], as we only
store Ã[i ] (see Figure 3.2).
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By using the particle number symmetry in this manner, we focused the MPS represen-
tation to cover states of a subspace in the many-body Hilbert space only. Instead of
covering the entire many-body Hilbert space, MPS in the symmetry adapted formula-
tion only represent states of the subspace with electron number N . This is why MPS
implementations employing electron number symmetry have improved convergence
behavior. We assisted the variational optimization (or any method that outputs an
MPS) to focus on states with the occupation number we are interested in.

3.1.2 Irreducible Representations

Additionally to the particle number symmetry, we want to utilize the symmetry that
is given by the geometry of the molecule. If the geometry is invariant under rotation
or inversion, the electronic density is also invariant under these operations. We can
benefit from this property and further reduce the subspace of the many-body Hilbert
space that the MPS approach needs to represent.

Molecules can be attributed a point group that is formed by all operations that leave
the form of the molecule invariant. Such operations are for example rotations by
2π/n of the molecule around a symmetry axis (Cn), reflections at a symmetry plane σ
or just the identity operation (E ). Together with an instruction how to apply paired
operations, these operations form a group which is used to characterize the symmetry
of the molecule [3]. For example, the point group C1 is the group of the identity alone
(no symmetry at all), the point group Cs is the group of the identity operation and
a reflection operation at a symmetry plane, and Cnν is the group of the identity
operation, n-fold rotation operations around the main symmetry axis and n possible
reflection operations.

If the molecular geometry is invariant under operations of a given point group, also
the electronic density implements these symmetry properties. Further is the elec-
tronic density surrounding the molecule constructed from the molecular orbitals.
Consequently, also the molecular orbitals are invariant under the operations of the
point group of the molecule, although they have the freedom to change their sign.
This is most vividly demonstrated at the example of the water molecule H2O. The ge-
ometry of the water molecule is invariant under operations of the C2ν point group

C2ν = {{E , C2,σxz ,σyz} , ∗} , (3.11)

which includes the identity (E ), rotation by 180◦ (C2) around the symmetry axis,
vertical mirroring at the xz plane (σv (xz)), and vertical mirroring at the yz plane
(σv (yz)) (see Figure 3.3 a)). The symbol ∗ is the operation to multiply the symmetry
operations.
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A1

B1 B2

a) b)

Figure 3.3.: Symmetry properties and molecular orbitals of the water molecule H2O. a)
shows the symmetry planes and the symmetry axis of the water molecule.
Rotation by π around the symmetry axis, as well as mirroring at the xz plane
and the yz plane leaves the molecule unchanged. b) The molecular orbitals with
respect to their irreducible representation. The molecular orbitals transform
like the irreducible representations of the C2ν point group. There is no occupied
molecular orbital that transforms like irreducible representation A2 in the water
molecule.

a)
C2ν E C2 σv (xz) σv (yz)
A1 1 1 1 1
A2 1 1 −1 −1
B1 1 −1 1 −1
B2 1 −1 −1 1

b)
⊗ A1 A2 B1 B2
A1 A1 A2 B1 B2
A2 A2 A1 B2 B1
B1 B1 B2 A1 A2
B2 B2 B1 A2 A1

Table 3.1.: The character table a) and multiplication table b) of the C2ν point group.

In case of C2ν symmetry, the molecular orbitals are categorized by four irreducible
representations (irreps) A1, A2, B1, and B2. The irreps specify under what operations
of the point group a molecular orbital changes its sign. For example, the molecular
orbitals of the irrep A1 do not change sign if any operation of the C2ν point group is
applied (see Figure 3.3 b) (top) ). The molecular orbitals of the irrep B1 change their
sign if rotated by 180◦ or when mirrored at the yz-plane. Whether the molecular
orbital changes its sign is noted in terms of character tables. The character table of the
C2ν symmetry is given in Table 3.1 a) where 1 symbolizes the molecular orbital remains
unaffected by the operation and−1 symbolizes the molecular orbital changes its sign
if the symmetry operation is applied. In Figure 3.3 b) we see, a sign-full representation
of the molecular orbitals of the water molecule. Character tables such as the one
given above for the C2ν point group exist for all point groups [204].

In Section 2.2.2 we chose to represent the complete many-body state as a linear
combination of configurations, i.e. occupation number basis states (see Equation
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2.35). The configurations are not only eigenstates of the occupation number operator,
but they can be attributed to a fixed irrep as well. The irrep I of the configuration
|n1↑n1↓ · · · nL↑nL↓〉 is

I =
L⊗

i=1
Ĩi , ĩi =

Îi , if ni↑ + ni↓ = 1
Î0, otherwise

, (3.12)

where Îi is the irrep of the orbital i and Î0 is the trivial irrep (A1 for the C2ν point group
example above). How the irreps are multiplied by ⊗ is specified in multiplication
tables (see Table 3.1 b)). Therefore, not only the molecular orbitals correspond to one
of the irreps, but we can extend this to the many-body state level by attributing the
configurations a fixed irrep as well.

With the configurations embodying irreps, also the complete many-body state trans-
forms like an irrep if constructed from configurations of one irrep only. When fixing
the irrep of the many-body state prior to the calculation, the sum over all possible
configurations in Equation 2.35 reduces

|Ψ(t)〉N → |Ψ(t)〉NI =
∑

n1↑n1↓···nL↑nL↓∑
i ni↑+ni↓=N⊗L

i=1 Ĩi =I

cn1↑n1↓···nL↑nL↓(t) |n1↑n1↓ · · · nL↑nL↓〉 . (3.13)

Again, we construct the many-body state from a smaller subspace of the complete
many-body Hilbert space just as we did for electron number symmetry.

With the newly introduced irrep of the many-body state, we can further decompose
the bonds of the MPS tensors. We can again attribute the virtual bonds quantum
numbers, now with respect to the irrep. Every bond gets an additional degree of
freedom to specify the irrep. Together with the electron number degree of freedom
the MPS tensors read

A[i]Ni−1αi−1 Niαi

niγi

→
A[i]Ni−1Ii−1αi−1 Ni Iiαi

ni iiγi

. (3.14)

Also the physical bonds now carry the irrep of the orbital, or the left part of the system
in all bonds. The physical bonds are now

ni iiγi ∈


|ni = 0, ii = Î0, γi〉
|ni = 1, ii = Îi , γi〉
|ni = 2, ii = Î0, γi〉

 , (3.15)
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where empty orbitals and double occupied orbitals have the trivial irrep Î0 and only
single occupied orbitals contribute to the irrep of the many-body state. The index
γi symbolizes remaining physical degrees of freedom, which is the spin state of the
electron that occupies the orbital. This degree of freedom is subject of Section 3.1.3.

In the Hamburg CheMPS2 extension we restrict ourselves to abelian point groups,
i.e. to point groups where the symmetry operations commute. Non-abelian point
groups are implemented in the quantum chemistry package BLOCK by Chan et al.
[205], whereas the CheMPS2 package and the Hamburg CheMPS2 extension is limited
to abelian symmetries.

Similar to the procedure of the particle number symmetry, we can factor the MPS
tensor into a reduced tensor and a delta function. When taking advantage of the
electron number symmetry and the point group symmetry of the molecule, tensors
in the MPS representation read

A[i ]ni iiγi
Ni−1Ii−1αi−1,Ni Iiαi

=Ã[i ]ni iiγi
Ni−1Ii−1αi−1,Ni Iiαi

δNi−1+ni ,Ni δIi−1⊗ii ,Ii , (3.16)

A[i]Ni−1Ii−1αi−1 Ni Iiαi

ni iiγ

=
Ã[i]Ni−1Ii−1αi−1 Ni Iiαi

ni iiγ

· (3.17)

δNi−1 Ni

ni

·
δIi−1 Ii

ii

, (3.18)

where the delta function δIi−1⊗ii ,IR takes into account the contributing irreps.

The MPS representation of the expansion coefficient cNI
n1i1γ1···nLiLγL

in the complete
many-body state with N electrons and the irrep I is again in terms of MPS tensors

cNI
n1i1γ1···nLiLγL =

∑
N1···NL−1
I1···IL−1
α1···αL−1

A[1]0I0
N1I1α1

A[2]
N2I2α2

· · · A[L]

n1i1γ1 n2i2γ2 nLiLγL

NI
, (3.19)

with zero particles and the trivial irrep to the left of orbital 1. Using the fixed bonds
at the very left and at the very right of the MPS and the delta functions in Equation
3.18, the MPS automatically only considers configurations with the correct irrep.
Therefore, we were able to remove configurations from the sum in Equation 2.35, as
their coefficients are necessarily zero. This reduces the dimension of the subspace of
the many-body Hilbert space the MPS represent.

But utilizing the molecular symmetry and expressing the molecular orbitals in terms
of irrep does not only simplify the representation of the complete many-body state.
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Further, do some of the integrals in the quantum chemistry Hamiltonian (see Equation
2.36) evaluate to zero by symmetry [61].The one-body integrals ti j and the two-body
integrals Vi jkl may be zero due to the parity of the orbital [3]. In the application of
the Hamiltonian, we are able to simplify the sums, which reduces the time to apply
the Hamiltonian to many-body states (either in complete representation or in MPS
representation).

3.1.3 Spin Quantum Number

With the particle number symmetry and the symmetry of the molecular geometry
we have utilized two abelian symmetries with quantum numbers that are conserved
on the individual tensor level. Additionally, we want to utilize that the magnetic
moment of the electrons is a conserved quantity, i.e. we want to take advantage
of total spin symmetry of the molecule. The total spin symmetry is a non-abelian
symmetry, which makes it more challenging to implement into the MPS approach.
However, the additional reduction of the subspace of the many-body Hilbert space is
significant and allows for a much more precise representation of many-body states
using the MPS approach. We want to introduce the spin symmetry as implemented
in CheMPS2 package by Wouters [51, 206], which is based on theory by McCulloch
and Gulácsi [200].

The operators quantifying the magnetic moment of the electrons in the molecule are
given in second quantization

Ŝx = 1
2
∑

i

(
ĉ†i↑ci↓ + ĉ†i↓ci↑

)
, (3.20)

Ŝy = 1
2i
∑

i

(
ĉ†i↑ci↓ − ĉ†i↓ci↑

)
, (3.21)

Ŝz = 1
2
∑

i

(
ĉ†i↑ci↑ − ĉ†i↓ci↓

)
, (3.22)

Ŝ2 = Ŝx Ŝx + Ŝy Ŝy + Ŝz Ŝz . (3.23)

These operators are angular momentum operators, i.e. they follow the commuta-
tion relations of the angular momentum algebra [207]. The quantum chemistry
Hamiltonian in Equation 2.36 commutes with all these operators[

Ĥ, Ŝ2
]

= 0 and
[
Ĥ, Ŝα

]
= 0 ∀α ∈ {x , y , z}, (3.24)

therefore, the Hamiltonian and the spin operators share eigenstates. Further Ŝ2 and
Ŝz commute with N̂ and Î . The goal is now to find the eigenbasis of the total spin
operator S2 and the (for example) Sz component of the spin. In this basis, the Hamil-
tonian is block diagonal and we can again focus on the subspace of the many-body
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Hilbert space, as we did for the particle number symmetry and the molecular geom-
etry symmetry. While Sz is conserved on a local orbital level, S2 involves different
orbitals.

At the heart of the incorporation of the spin symmetry into MPS tensors is the Wigner–
Eckhart-Theorem [208, 209]. It states that any tensor T k of rank k expressed in the
eigenbasis of the angular momentum operator |s sz〉 can be decomposed as

〈s sz |T k
q |s ′ sz ′〉 = 〈ssz kq|s ′sz ′〉 〈s||T k ||s ′〉 , (3.25)

where 〈ssz kq|s ′sz ′〉 is the Clebsch–Gordan coefficient, q is the component of the tensor
T , and 〈s||T k ||s ′〉 is a reduced representation of the tensor, which lost its dependence
on the magnetic spin quantum numbers Sz . The Clebsch–Gordan coefficients are
mostly known from addition of angular momenta in quantum mechanics but they
appear in this context as well [207].

We express the MPS tensors in the eigenbasis of the spin operators and decompose it
according to the Wigner–Eckhart-Theorem. This allows us then to restrict the MPS
representation to eigenstates with fixed spin S and the magnetic projection Sz . We
express all bonds, i.e. physical and virtual basis states, in the eigenbasis of the spin
operators. Now, when introducing a spin-full indexing of the physical states, we have
a complete set of indices specifying the physical state of the orbital i . We add the
spin quantum numbers to the physical bonds

ni ii si sz
i ∈


|ni = 0, ii = I0, si = 0, sz

i = 0〉
|ni = 1, ii = Ii , si = 1

2 , sz
i = 1

2〉
|ni = 1, ii = Ii , si = 1

2 , sz
i = −1

2〉
|ni = 2, ii = I0, si = 0, sz

i = 0〉

 , (3.26)

and are now able to exactly characterize all four possible states of an orbital. Express-
ing an MPS tensor in the spin eigenbasis, we obtain

A[i]Ni−1Ii−1αi−1 Ni Iiαi

ni iiγi

→
A[i]Ni−1Ii−1Si−1Sz

i−1αi−1 Ni Ii Si Sz
i αi

ni ii si sz
i

. (3.27)

In this basis, most strikingly, we can decompose the MPS tensors in terms of the
Wigner–Eckhart-Theorem in Equation 3.25 to obtain

A[i ]ni ii si sz
i

Ni−1Ii−1Si−1Sz
i−1αi−1,Ni Ii Si Sz

i αi
= 〈Si−1Sz

i−1si sz
i |Si Sz

i 〉 δNi−1+ni ,Ni δIi−1⊗ii ,IR

Ã[i ]ni ii si
Ni−1Ii−1Si−1αi−1,Ni Ii Siαi

, (3.28)
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where it is particularly important to note that the reduced MPS tensor Ã[i ] does not
depend on the magnetic quantum numbers Sz

i−1, Sz
i , and sz

i . This is an immense
reduction in dimension of the MPS tensors, where we use the sparsity most efficiently.
The magnetic spin quantum numbers only appear in the Clebsch–Gordan coefficient,
which we only evaluate if necessary.

The final MPS approach, incorporating the particle number, the geometry rotation,
and the spin symmetry is then given by the reduced tensors

cNISSz
n1i1s1sz

1 ···nLiLsLsz
L

=
∑

N1···NL−1
I1···IL−1
S1···SL
Sz

1 ···Sz
L

α1···αL−1

A[1]0i000
N1I1S1Sz

1α1

A[2]
N2I2S2Sz

2α2

· · · A[L]

n1i1s1sz
1 n2i2s2sz

2 nLiLsLsz
L

NISSZ

, (3.29)

where N is the fixed electron number in the system, I is the fixed irrep of the many-
body state, S is the spin quantum number of the many-body state, and Sz is the
magnetic spin quantum number of the many-body state. But with the reduced
representations of the MPS tensors, we only need to store the reduced MPS tensors
Ã[i ]

cNISSz
n1i1s1sz

1 ···nLiLsLsz
L

=
∑

N1···NL−1
I1···IL−1
S1···SL
Sz

1 ···Sz
L

α1···αL−1

〈00s1sz
1 |S1Sz

1 〉 · · · 〈SL−1Sz
L−1sLsz

L |SSz〉
δ0+n1,N1 · · · δNL−1+nL,N
δi0⊗i1,I1 · · · δIL−1⊗iL,I

Ã[1]0i0
N1I1S1α1

Ã[2]
N2I2S2α2

· · · Ã[L]

n1i1s1 n2i2s2 nLiLsL

NIS

, (3.30)

in the MPS representation of the complete many-body state. The remaining factors
are given by the delta functions and the Clebsch–Gordan coefficients that we do not
need to store as they can be evaluated on demand.

On the one hand, the spin symmetry reduces the size of the Hilbert space that the
MPS is requested to span, and on the other hand reduces the rank of the individual
MPS tensors. In the MPS implementation, we exclusively work with the reduced MPS
tensors Ã[i ]Ni Ii S

NLILSα,NR IR Sβ , whereas the full tensor is never calculated. Where needed, it
is multiplied with the corresponding Clebsch–Gordan coefficient and delta functions.
This allows for large efficiency improvements compared to the utilizing the abelian
symmetries only. It allows to reduce the size of the MPS tensors, but it also allows
to resolve states that are close to degeneracy [114]. When performing ground state
calculations, states may be close to degeneracy and the variational optimization is
likely to be trapped in a local minimum, as it tends to mix nearly degenerate states.
The use of the spin quantum number allows to distinguish between those states and
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to approach the real ground state correctly (or the minimal energy state for some
given S).

We have now achieved both, we found an efficient method to simplify the MPS
structure, as well as reduced the dimension of the Hilbert space we are interested
in. The particle number, the point group symmetry, and the total spin symmetry
enabled us to define reduced MPS tensors with physical and virtual basis states being
eigenstates of the particle number operator, a fixed irrep and the spin operator. Next,
we want to discuss the Hamburg CheMPS2 extension in more detail and outline the
features needed to use the MPS approach to study time-dependent situations in
quantum chemistry.

3.2 The Hamburg CheMPS2 Extension

The program package that was developed in this work to solve the time-dependent
Schrödinger equation for the quantum chemistry Hamiltonian using the MPS ap-
proach is a fork of the CheMPS2 package written by Sebastian Wouters at Ghent
University [51, 151]. CheMPS2 is considered as one of the state-of-the-art DMRG
quantum chemical implementations. The CheMPS2 package is embedded in various
quantum chemistry packages, such as psi4 [210, 211], pyscf [212], and molcas [213],
where it serves as an efficient solver for otherwise too large active spaces. Today, it is
not actively extended by the authors, however, there are maintenance updates on an
irregular basis.

The CheMPS2 package is a highly optimized program tailored to find ground states
and low lying excited states of molecules using the MPS approach. It incorporates
particle number symmetry, point group symmetry, and spin symmetry into the MPS
tensor representation (see Section 3.1). It allows to find the eigenstates using a
standard two-site MPS variational method (DMRG) and to find excited states using
orthogonal projection. Additionally, it implements the complete active space self
consistent field method (CAS-SCF) [95, 214, 215], as well as, the complete active space
second order perturbation theory method (CASPT2) [216, 217]. In these methods the
full CI solver of the active space has been replaced with the DMRG solver (then it is
called DMRG-SCF and DMRG-CASPT2) [108, 148, 151]. The limit for active spaces is close
to 40 orbitals, holding 40 electrons. Larger active spaces require immense amounts
of time and memory that are impractical in most situations. The CheMPS2 program
allows for various analysis outputs of the resulting MPS, ranging from spin-spin
correlation functions to 2−, 3−, and 4− particle reduced density matrices.
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The CheMPS2 package, including the entire source code is published on GitHub at
https://github.com/SebWouters/CheMPS2 under the GNU General Public License
Version 2 (GPL-2.0). This license allows free use and extension of the code, given the
precondition that any extensions need to be published under the GPL-2.0 or one of its
successors. The Hamburg CheMPS2 extension is therefore also published on GitHub
at https://github.com/lfrahm/CheMPS2 under the license GPL-2.0 including the
source code and the documentation.

In the following section we discuss the Hamburg CheMPS2 extension. We explain the
necessary adaptions to solve the time-dependent Schrödinger equation and outline
implementational details of the time evolution methods to improve performance.

3.2.1 Necessary Adaptions

Even though the CheMPS2 package is one of the most popular MPS implementation
for quantum chemistry, it lacks necessary features we require in order to implement
the time evolution methods described in Section 2.5. It is specifically tailored to
ground and excited state optimization, rather than implementing the tensor network
in a flexible way. The MPS approach is deeply integrated into the code, with most
objects only present in the MPS approach. For our time-dependent MPS approach,
we can reuse parts of the existing code, however, most parts needs to be adapted at
least slightly.

The major adaptions include

• Development of a variational optimization algorithm to perform MPS addition
and application of operators. The representation of the Hamiltonian needs to
be adapted to perform variational operator application.

• Adaption of new MPS tensor objects that allow for representation of complex-
valued many-body states and implementation of the complex-valued two-site
objects required in the optimization scheme of complex MPS.

• Stable implementation of the time evolution methods.

3.2.2 Representation of the Hamiltonian

In Section 2.4.9, we describe an optimization scheme to add MPS and to apply opera-
tors (see Equation 2.97) to MPS. We optimize the virtual basis and the MPS tensors
to find the MPS representation of the resulting many-body state of the performed
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operation. In this optimization scheme, we replace the MPS tensor that is currently
optimized with an evaluated tensor network. For example, to apply the Hamiltonian
to the MPS |B〉MPS , the MPS tensor B[i ] is replaced by (compare the tensor network
in Equation 2.97)

B[i]
=

A[h]

H[h]

B[h]· · ·

· · ·

· · · A[i]

H[i]

A[j]

H[j]

B[j]

· · ·

· · ·

· · ·

A[1]

H[1]

B[1]

A[L]

H[L]

B[L]

Hl Hr

. (3.31)

The operators Hl and Hr are called renormalized operators. The renormalized op-
erators are the representations of the Hamiltonian in the virtual basis of the MPS
tensor at orbital i . We need these to express the action of the Hamiltonian on the
MPS tensor C [i ]. They occur naturally in the MPS approach and are similar to the
renormalized operators known from the DMRG method.

In the DMRG method, similar tensor networks as in Equation 3.31 occur, however,
there the upper MPS and the lower MPS are the same. This follows from minimization
of the functional

min = MPS 〈Ψ |Ĥ|Ψ〉MPS
MPS 〈Ψ |Ψ〉MPS

, (3.32)

when solving for the ground state. The variational optimization is similar to what
we described in Section 2.4.9, however here only one state |Ψ〉MPS appears in the
functional. As the CheMPS2 package solves for eigenstates of the Hamiltonian, it is
optimized to solve functionals as given in Equation 3.32, instead of the more general
functional we need to solve in Equation 2.96. For the optimization in terms of operator
application and MPS addition, we also need the tensor network where there are two
or more states in the functional, which introduces a completely new type of tensor
networks and forbids to take advantage of many useful tensor identities the original
CheMPS2 packages builds upon.

For example, ground state optimization and time-dependent MPS need a renormal-
ized representation of a product of the electron creation operator at the orbital i and
an electron annihilation operator at orbital j (ĉ†iσ ĉjσ) to represent the one-electron
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integrals in the quantum chemistry Hamiltonian. Let us assume we optimize the MPS
tensor at orbital k > i , j , then we evaluate the tensor network

(c†iσcjσ)[k] =

A[i]

ĉ†
σ[i]

B[i]· · ·

· · ·

· · · · · ·

· · ·

· · ·

A[1]

1[1]

B[1]

A[j]

ĉσ[j]

B[j] · · ·

· · ·

· · ·

B[k]

1[k]

A[k]

S[i − 1]

, (3.33)

as part of the operator Hl in Equation 3.31. The three open bonds on the right indicate
that (c†iσcjσ)[k] is an operator on the virtual bonds (rank 3 tensor). We construct
such diagrams for all one-body operators in the quantum chemistry Hamiltonian and
also for all two-body combinations of operators (see renormalized operators in [105]
and [206] ). The object S[i − 1] was already introduced in Section 2.4.6, where we
introduced the normalization features of the MPS representation (there S[i ] turned
out to be the identity operator) and also in Section 2.4.4 where we described the
overlap of MPS. Ground state DMRG can be formulated such that the tensor S[i−1] is
always the identity tensor and we do not need to evaluate it in any detail (this follows
from the case |C〉MPS = |A〉MPS and dexterous use of normalization centers). In the
situation in Equation 3.31 however, we have different upper and lower MPS states,
therefore we need to evaluate the tensor network for every renormalized operator.

Another helpful feature in ground state DMRG we can not utilize is the representation
of conjugated operators: The renormalized operator for ĉ†jσ ĉiσ in the virtual basis at
site k is not given by the hermitian conjugation of ĉ†iσ ĉjσ in the virtual basis at site
k

(c†jσciσ)[k] 6=
(

(c†iσcjσ)[k]
)†

, (3.34)

however, we must evaluate their tensor networks independently. This is an artefact
of the virtual basis of the MPS. If conjugating the renormalized operator in Equation
3.33 this would also conjugate the MPS tensors

(
(c†iσcjσ)[k]

)†
=

B[i]

ĉ†
σ[i]

A[i]· · ·

· · ·

· · · · · ·

· · ·

· · ·

B[1]

1[1]

A[1]

B[j]

ĉσ[j]

A[j] · · ·

· · ·

· · ·

A[k]

1[k]

B[k]

, (3.35)

3.2 The Hamburg CheMPS2 Extension 75



however, in Equation 3.31 we need the network (among many others)

(c†jσciσ)[k] =

A[i]

ĉσ[i]

B[i]· · ·

· · ·

· · · · · ·

· · ·

· · ·

A[1]

1[1]

B[1]

A[j]

ĉ†σ[j]

B[j] · · ·

· · ·

· · ·

B[k]

1[k]

A[k]

. (3.36)

This introduces an immense number of additional tensor networks that are needed
to implement and evaluate when using variational optimization to apply the Hamil-
tonian to an MPS.

The additional overlap tensor networks we need to consider and the missing conjuga-
tion features are just two examples where working with time-dependent MPS is more
challenging than implementing ground state optimization using the MPS approach.
There are more tensor networks and operators required when working with time-
dependent MPS, however, we will not discuss them in more detail. Most of these
adaptions originate in the examples present above: New complex networks we have
to include and the absence of conjugation properties of renormalized operators.

3.2.3 Transition to Complex Numbers

Second major adaption in the Hamburg CheMPS2 extension is the transition to
complex-valued MPS representations. The phase introduced by the time evolution
gives rise to complex expansion coefficients in the complete many-body states, and
therefore, we also need to represent them by complex-valued MPS representations.
For ground state and excited state optimization this is not necessary, since we can
find a gauge where the eigenstates of the Hamiltonian are entirely real-valued in the
absence of magnetic fields. Consequently, the MPS representation as implemented
in CheMPS2 uses real numbers only, which we need to adapt.

With the transition to complex numbers, the complexity of the entire MPS approach
gains a factor of 4. Where the multiplication of two real numbers is usually imple-
mented directly (on float point operation), the multiplication of two complex num-
bers is broken down into four multiplications of real numbers. Therefore, we need
to expect at least four times the computational demand compared to ground state
calculations, plus the added complexity due to the additional evaluated diagrams
(see Section 3.2.2).

But with the transition to complex-valued MPS tensors further come adjustments
to all computational routines. We also need to adapt the methods to operate on
MPS tensors and the renormalized operators (c†iσcjσ)[k], e.g. algorithms to evaluate
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tensor networks using multiplication algorithms and singular value decomposition,
to complex-valued MPS tensors.

3.2.4 Implementational Remarks

The two most important extensions of CheMPS2 program are the implementation of
the variational optimization scheme for Hamiltonian application and MPS addition, as
well as the implementation of the time evolution methods. In the following section
we want to outline some tricks to improve convergence and increase numerical
stability that are implemented in the Hamburg CheMPS2 extension.

The newly introduced class HamiltonianOperator handles the variational optimiza-
tion, whereas the class TimeEvolution is responsible for everything related to time
evolution. Among the added tensor networks explained in the two sections be-
fore, these two classes incorporate the most important procedures to perform time-
dependent calculations. These procedures include algorithms for the three different
time evolution algorithms introduced in Section 2.5.

Implementation of Variational Optimization

An implementational note is due on the trial MPS used for the optimization scheme.
In the variational algorithm, we start by choosing an arbitrary MPS, which we then op-
timize to represent the desired operation. For example, when adding the MPS |A〉MPS
and |B〉MPS we optimize the trial MPS |C〉MPS for the minimum of the functional
(compare Equation 2.90)

L[|C〉MPS ] = || |C〉MPS − (|A〉MPS + |B〉MPS)||2. (3.37)

The variation therefore relies on a good choice of the trial MPS |C〉MPS , which needs
to have overlap with the optimal MPS that minimizes the function in Equation 3.37
globally. A bad choice may let the variation finish in a local minimum instead of
the global minimum. In the Hamburg CheMPS2 implementation of the variational
method, we chose to reuse the virtual basis of the MPS |A〉MPS and |B〉MPS as the vir-
tual basis of the trial MPS |C〉MPS , however with random numbers filling the tensors
of the MPS |C〉MPS . In the examples benchmarked, this improves the convergence of
the variation algorithm and it is less likely to get trapped in a local minimum.
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Implementation of Krylov Time Evolution

Another helpful implementational adjustment is to reformulate how the time evolved
states are constructed from the Krylov basis vectors in MPS representation. We
already adjusted the time evolution operator in the Krylov space in Equation 2.112
by an inverted overlap matrix to account for any loss of orthogonality of the Krylov
basis vectors. This is the mathematically correct method, when working with non-
orthogonal bases, however, there is a more numerically stable method to do this.
We will see in Section 4.3.2 that the non-orthogonalized Krylov method is prone to
errors, if the state to be time evolved is close to an eigenstate of the Hamiltonian.
Then the non-orthogonalized Krylov basis vectors become linearly dependent of each
other and the overlap matrix N approaches singularity. If the overlap matrix N has
eigenvalues close to zero, taking the inverse results in a significant numerical error. In
the Hamburg CheMPS2 extension, we therefore adjust the time evolved state to

|ψ(t + ∆t)〉MPS =
∑

k

[
e−i ∆t

h̄ N−
1
2 HN−

1
2
]

k0
N− 1

2 |φk〉MPS , (3.38)

which is mathematically equivalent to the method in Equation 2.112, however, numer-
ically evaluating N− 1

2 is more stable if N is close to singularity.

Parallelism

Wouters additionally studied the DMRG method in terms of computational paral-
lelism [206]. The original CheMPS2 program allows for parallelization using multi
machine environments with respect to the Message Passing Interface (MPI), as well as
parallelization using many cores on one machines using the Open Multi-Processing
(OpenMP) protocol. He demonstrated that the CheMPS2 implementation allows for
almost optimal parallelization in both frameworks. The Hamburg CheMPS2 exten-
sion right now only utilizes OpenMP parallelization. It therefore requires to run on
single machines, however, it is able to make use of many cores calculating simultane-
ously. When running in an multi-core environment, the different symmetry sectors
of MPS tensors and the renormalized operators explained in Section 3.1 are evaluated
independently by different cores. The extension to multi machine environments
using the MPI protocol is possible and desirable, however, it may be demanding in
implementation time.
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Listing 3.1: An example input file to perform a time-dependent MPS calculation using the
Hamburg CheMPS2 extention.

1 FCIDUMP = h2o . fcidump
2 GROUP = 5
3
4 MULTIPLICITY = 2
5 NELECTRONS = 9
6 IRREP = 0
7
8 REORDER_FIEDLER = TRUE
9

10 TIME_TYPE = K
11 TIME_KRYSIZE = 5
12 TIME_ORTHO = TRUE
13 TIME_BACKWARD = FALSE
14
15 TIME_STEP_MAJOR = 0 . 1 0
16 TIME_STEP_MINOR = 0 . 1 0
17 TIME_FINAL = 4 3 . 0
18
19 TIME_NINIT = 1 , 2 , 2 , 0 , 0 , 0 , 0 , 2 , 0 , 2 , 0 , 0 , 0
20
21 TIME_HDF5OUTPUT = r e s u l t . hdf5
22 TIME_N_WEIGHTS = 0
23 TIME_HF_STATE = 2 , 2 , 2 , 0 , 0 , 0 , 0 , 2 , 0 , 2 , 0 , 0 , 0
24
25 SWEEP_STATES = 300 , 300 , 300
26 SWEEP_MAX_SWEEPS = 2 , 2 , 4
27 SWEEP_NOISE_PREFAC = 1 e−4, 1 e−6, 0
28 SWEEP_CUTOFF = 0 , 0 , 0

3.2.5 Interfaces to the Hamburg CheMPS2 Extension

The Hamburg CheMPS2 extension offers two interfaces to interact with users. First,
it offers a C++ interface for compiled applications that make use of the Hamburg
CheMPS2 library. Here all necessary classes and features can be used and controlled
from external applications. Second, it has build-in executables for the most common
tasks, such as:

• The chemps2dyn executable for time-dependent calculations using MPS.

• The chemps2fci executable for time-dependent calculations using the com-
plete many-body state.

• The chemps2conv executable to convert a real-valued MPS to a complex-valued
MPS.

• The chemps2ion executable for removing an electron from an orbital in a
complex-valued MPS.

These executables come with every installed version of the Hamburg CheMPS2 exten-
sion. They show a complete documentation of input parameters by calling them using
the help command ./chemps2xxx –help. All of the executables can be controlled by
input files that allow the user to specify the task. This is an adaption of the original
CheMPS2 package that also offers an interface via input files, however, we extended
the interface for time-dependent MPS calculations.
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Listing 3.1 shows an example input file to perform a time-dependent MPS calculation
using the chemps2dyn executable. It starts with the definition of the system, for
example, giving the file of integrals for the many-body Hamiltonian (FCIDUMP), a
symmetry group identifier, the number of electrons in the system (lines 1 to 8 ) and
the order of orbitals used (here reordering based on the Fiedler minimization of the
Hamiltonian band with [151]). It then continues with parameters to specify the time
evolution in lines 10 to 22, such as an identifier for the time evolution method (here
Krylov), parameters as time step size and the time to propagate to, and the form of the
initial state. It ends with the definition of parameters for the optimization algorithm,
giving the number of sweeps and the bond dimension of the MPS tensors.

The chemps2dyn executable allows for input of three different types of initial states.
First and most basic option is to give the initial state in terms of occupation numbers
of the orbitals, such as given in line 19 of Listing 3.1. The program then forms an
uncorrelated state using the given occupation numbers. Of course, the sum of the
occupation numbers need to match to the number of electrons in the system that is
given in line 5 of Listing 3.1. Second option is to define a superposition of uncorrelated
states as the initial state. This is done by writing

1 TIME_NINIT = 2 , 2 , 2 , 2 , 0 , 0 , 0 , 0 , 0 , 2 , 1 , 0 , 0 , 0 , 0 , 2 , 2 , 0 , 0 , 0 , 0
2 TIME_2_NINIT = 2 , 2 , 2 , 2 , 0 , 0 , 0 , 0 , 0 , 1 , 2 , 0 , 0 , 0 , 0 , 2 , 2 , 0 , 0 , 0 , 0
3 TIME_PREFACS = 0 . 7 0 7 1 0 6 7 8 1 1 8 6 5 4 7 5 , 0 . 0 , 0 . 7 0 7 1 0 6 7 8 1 1 8 6 5 4 7 5 , 0.0

in the input file. The program then forms a superposition of the two uncorrelated
states with similar prefactors. The initial state is constructed as

|ψ(t0)〉MPS = 1√
2
|1〉MPS + 1√

2
|2〉MPS , (3.39)

where the states |1〉MPS and |2〉MPS are the uncorrelated states given in line 1 and line
2. Such an initial state has been used in Section 5. Third option to specify the initial
state is to give an MPS that has to match to the system and the chosen symmetry
(size of the system, number of electrons, multiplicity). Here any MPS stored in the
HDF5 format can be used by giving

1 TIME_INIT = CheMPS2_CMPS_ION . h5

in the input file.

The Hamburg CheMPS2 extension offers two ways of providing the results. Some
of the result are printed to the console. This includes quantities that serve more for
debugging purposes such as the energy at any point in time (which is supposed to be
constant in ideal situations), the norm of the time-evolved state (which should stay
close to 1). But also the occupation number of the molecular orbitals, CI weights, as
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well as, the projection onto the initial state, which is a one-particle Green’s function
are printed at every time step.

For more complex output parameters the Hamburg CheMPS2 extension also creates
a binary output in the version 5 of the Hierarchical Data Format (HDF5). In this binary
file the results are stored in a simple to parse format. Here the user also gets the one-
particle reduced density matrix, the two-particle reduced density matrix if requested,
full CI coefficients and more calculation depending numbers such as the size of the
MPS tensors and the time since start of the calculation. The HDF5 file can be easily
extend by arbitrary observables and correlators.

The Hamburg CheMPS2 extension is published under the GNU General License version
2 and can be freely copied and extended, however, with the condition that modified
versions are published under the GPL2-2.0 or one of its successors.
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4Analysis of the Matrix Product
State Approach to Study Ultrafast
Dynamics in Molecules

At this point, we established the concepts to operate with many-body states in
MPS representation and discussed the Hamburg CheMPS2 extension to perform
numerical calculations on time-dependent problems in quantum chemical systems.
However, the MPS representation has never been used to describe electron dynamics
in molecules before, therefore, a profound analysis of the performance of this novel
method is due. In this chapter, we focus on simple systems that are represented by
small orbital sets, such that the complete many-body state from Equation 2.35 is still
manageable using our computing facilities. This gives us the opportunity to challenge
the MPS representation with the complete many-body state. We can directly observe
the impact of convergence parameters (MPS bond dimension, time evolution method,
time step size) on the validity of the results and conclude regularities to operate with
the MPS approach in the context of time-dependent quantum chemistry.

We begin the analysis by studying different types of hydrogen chains, starting from
the simple hydrogen molecule H2 and continuing with longer chains H10. For these
molecules, we compare time-dependent reduced density matrices obtained from the
different representations of the many-body state. Further, we study the one-body
Green’s function in both, the time domain, as well as, in the frequency domain. Next,
we continue with higher-dimensional molecules in extended basis sets. In particular,
we study electron dynamics following a sudden (double) ionization of the molecules
hydrogen fluoride FH, water H2O, ammonia NH3, and methane CH4 in the 6-31G
Gaussian basis set [218]. To rate the accuracy of the MPS representation, we discuss
the relative error of the one-body reduced density matrix originating from the MPS
truncation. In the last part, we analyze different methods to perform time evolution
of many-body states in MPS representation, which reveals an entanglement between
the MPS approach and the time evolution method. A correctly chosen time evolution
method allows us to improve the performance of the MPS representation in special
situations.

Parts of this Chapter have been published in the Journal of Chemical Theory and
Computation [219] and in the European Physical Journal Web of Conferences [220].
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Especially the analysis of the hydrogen chain, as well as, the results on the time
evolution methods have found consideration in these journals.

4.1 Hydrogen Based Molecules

We start the analysis of the MPS representation by describing electron dynamics
in one-dimensional chains of hydrogen atoms. In Section 2.4.2, we highlighted the
optimal performance of the MPS approach when representing gapped ground states
of short-ranged one-dimensional systems. This optimal performance is a consequence
of the limited electron entanglement in this type of states (remember the area law).
Therefore, MPS have an intrinsic benefit when representing states of one-dimensional
systems (this is due to the factorization of the coefficient tensor in a one-dimensional
chain of matrix products), which we rely upon to start the analysis of time-dependent
MPS representation defensively.

The hydrogen molecule and the hydrogen chain have received much interest by
physicists and chemists from the beginning of quantum mechanics [221]. The cationic
hydrogen molecule H +

2 is exactly solvable in the Born–Oppenheimer approximation,
which started the field of molecular orbital theory a hundred years ago [222] . This
model is still at the heart of our current understanding of electrons in molecules (see
Chapter 2). In recent years, hydrogen chains have been extensively used as simplified
model systems for complex molecular chains [223–227]. Its actual simple structure in
combination with the long-ranged Coulomb interaction allows the hydrogen chain to
be simple, while representing most features of more complex systems. The hydrogen
chain has also been subject to numerous benchmark studies of many-body methods.
For example, it was the system of interest for the benchmark studies of density matrix
renormalization group [205, 228–230] and density-matrix embedding theory [231–233],
and in an outstanding review benchmarking almost all latest many-body methods by
Motta et al. [24]. The distance between the atoms here serves as a handle to tune the
electronic correlation, which enables to measure how stable a particular many-body
method handles correlations.

4.1.1 The Hydrogen Molecule

Let us start the analysis with the most simple molecule existing, the hydrogen
molecule. It consists of two hydrogen atoms placed at a distance d , namely the
bond distance. Both hydrogen atoms bring one electron, therefore there are two
electrons in the system, which is a simple realistic many-electron system. For the case
of the cationic hydrogen molecule, the exact solutions within the Born–Oppenheimer
approximation has been found by Burrau in 1929 [222], which is the only molecular
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Figure 4.1.: Isosurfaces to molecular orbitals of the hydrogen molecule from a closed-shell
Hartree–Fock calculation using the cc-pVDZ Gaussian basis set. The two hydro-
gen atoms are separated by the equilibrium distance 0.75Å. The orbital contours
show the surface of φi (r) = ±0.03.

system we know the exact solution for. Already for the neutral molecule, we need
approximate methods to describe the quantum state.

In our analysis, we describe the hydrogen molecule using a Gaussian basis set, as
introduced in Section 2.2.1. We use the basis set cc-pVDZ [234], which is an extended
basis set that is adapted for correlated post-Hartree–Fock methods. The cc-pVDZ
considers five orbitals per atom (1s ,2s ,2px ,2py , and 2pz ,), therefore in total we have a
system of two electrons occupying ten different orbitals. This is a system size, where
it is possible to treat the complete many-body state in Equation 2.35. This allows us
to perform calculations using the complete many-body state for direct comparison
with calculations using the MPS representation.

From a Hartree–Fock calculation we obtain molecular orbitals that are optimized on
the single body level (see Figure 4.1). The distance between the two hydrogen atoms
is the equilibrium distance for this basis set d = 0.747954335Å. The hybridization
of the atomic orbitals can be observed, where for example the energetically lowest
orbital is constructed from the two hybridized 1s orbitals. In the Hartree–Fock ground
state, the two electrons occupy the energetically lowest orbital, which is already the
highest occupied molecular orbital (HOMO).

The many-body state can be now expressed using the set of molecular orbitals. When
taking advantage of the electron number symmetry, as well as the molecular rotation
symmetry (C2ν ), this results in a many-body Hilbert space dimension of 44, i.e. a size
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that is easily manageable using desktop computers. The MPS representation of the
complete many-body state is given by MPS tensors with the bond dimensions

A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9] A[10]
3 4 5 4 3 2 3 2 3 , (4.1)

where the numbers above the virtual bonds denote the dimension of the bond. The
largest bond dimension is DFCI = 5, i.e. no challenge for regular desktop computers
either.

This discussion of the hydrogen molecule serves to introduce the time-dependent MPS
representation at the simplest molecule possible. Situations with more challenging
many-body Hilbert space dimensions will follow after we have seen how the MPS
representation performs at this minimal example.

In the following analysis of the dynamics of the hydrogen molecule, we use the
Hartree–Fock ground state as the initial state for time evolution. Although the
Hartree–Fock ground state is the ground state of the effective single body problem,
it is not an eigenstate of the Hamiltonian acting on in the many-body Hilbert space.
The system in the Hartree–Fock ground state will therefore evolve electron dynamics.
However, at this point, it is less of the question what the dynamics look like, but the
focus of this discussion is on the performance of the MPS representation. We omit all
discussions of the actual dynamics and related physics, but focus exclusively on the
capabilities of the MPS approach to represent the complete many-body state.

First quantity we utilize for comparison between the MPS representation and the
complete many-body state is the spin summed two-body reduced density matrix
(TBRDM) [61]. The TBRDM is given by

Γαi j;kl (t) =
∑
στ

α
〈Ψ(t)|ĉ†iσ ĉ†jτ ĉlτ ĉkσ|Ψ(t)〉

α
, (4.2)

withα ∈ {MPS, FCI} indexing whether the TBRDM has been calculated from the state
in MPS representation, or from the complete many-body state (the full CI state). The
TBRDM holds both, a variety of two-body correlators, as well as one-body quantities.
For example, the one-body reduced density matrix (OBRDM) (see Equation 2.47) can
be extracted from the TBRDM via

γαi j (t) = 1
N − 1

∑
k

Γαik;jk(t), (4.3)

which holds information on coherences the electrons develop and the occupation
numbers of the molecular orbitals. Also the particle number and the energy expecta-
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Figure 4.2.: Relative error of the two-body reduced density matrix of the hydrogen molecule
for various MPS bond dimensions. The initial state is the Hartree–Fock ground
state for the cc-pVDZ Gaussian basis set. In all calculations (full CI based repre-
sentation and MPS based representation) the state is time-evolved using the
orthogonalized Krylov space method with Krylov space dimension NKry = 6 and
time step size ∆t = 2.42as .

tion value can be calculated from the TBRDM (compare second quantized Hamiltonian
in Equation 2.36)

Nα(t) =
∑
iσ

α〈Ψ(t)|n̂iσ|Ψ(t)〉α =
∑

i j
Γαi j;i j(t) = Nα, (4.4)

Eα(t) = α〈Ψ(t)|Ĥ|Ψ(t)〉α =
∑
i jσ

ti jγi j(t) + 1
2
∑
i jkl

Vi j;kl Γαi j:kl (t) + E0 = Eα, (4.5)

where both are supposed to be constants of motion in the systems discussed here
(up to errors due to MPS truncation). Hence, the TBRDM is an object with extensive
physical content that describes the system’s state beyond the single electron picture.
In this particular situation of only two electrons, it holds an equivalent amount of
information as the complete many-body state. It will be a good quantity to quantify
the quality of the time-dependent MPS representation.

For each of the two representations of the many-body state we obtain the time-
dependent TBRDM. Where we consider the TBRDM extracted from the complete
many-body state to be the exact result, the TBRDM extracted from the MPS repre-
sentation experiences an error due to MPS truncation. We can quantify the absolute
error of the MPS truncation on the TBRDM by

εT BRDM(t) = ||Γ FCI(t)− Γ MPS(t)||, (4.6)

where || · || denotes the Frobenius norm [235]. From the absolute error, we get the
relative error via

ε̃T BRDM(t) = ||Γ
FCI(t)− Γ MPS(t)||
||Γ FCI(t)|| , (4.7)
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which is shown in Figure 4.2 for various MPS bond dimensions. In Figure 4.2, all
calculations use orthogonalized Krylov space time evolution as described in Section
2.5.3 with a Krylov space dimension of NKry = 6 and a time step size of 2.42as .

At time t = 0.0f s , the TBRDM extracted from the complete many-body state and the
TBRDM extracted from the MPS representation completely match. The truncation
error of the MPS representation at time t = 0.0f s is zero for all MPS bond dimensions,
since no truncation has been applied at this point. However, from the first discrete
time step, the complete many-body state and the MPS representation differ due
to MPS truncation. We observe this truncation error in the growth of the error of
the TBRDM. This errors growths linearly, since the MPS representation suffers an
error with every discrete time step. In Figure 4.2 we see the form of the error growth
and how it depends on the bond dimension of the MPS representation. The bond
dimension, as a measure for MPS truncation, directly controls the slope of the error
of the TBRDM. Where the error induced by the MPS representation is negligible for
bond dimension D = 5 and D = 4 (see Figure 4.2 a) ), it grows to 30% within a period
of 1f s for an MPS bond dimension of D = 2 (see Figure 4.2 b) ).

From the negligible error in case of bond dimension DFCI = 5, we can conclude that
the MPS approach is able to find an accurate representation of the many-body state.
For this large bond dimension limit, the MPS is able to hold as much information as
the complete many-body state, i.e. the MPS approach of the complete many-body
state could only differ due to problems in the time evolution algorithm. Apparently,
this is not the case and the MPS representation matches the complete many-body
state with numerical precision within the first 1f s time range.

But the error of the TBRDM is not only for the maximum MPS bond dimension
negligible. Also if the bond dimension of the MPS is limited to D = 4, the MPS
approach represents the complete many-body state with numeric precision (see
Figure 4.2 a) ). In contrast to the case with bond dimension DFCI = 5 described above,
with a bond dimension of D = 4 the MPS is indeed truncated, however, the induced
truncation error appears to be vanishing. Already in this most basic situation, the
electron entanglement is limited and we can cut parts of the many-body Hilbert
space with no error. This demonstrates the power of the MPS approach, as we can
conclude that there are unimportant parts of the many-body Hilbert space that can
be omitted, without applying any a-priori approximations to the system. This further
demonstrates, that assumption of small entanglement we applied to justify the MPS
approach is valid for this example, and we can truncate with respect to entanglement,
even in time-dependent situations.

The precision of the MPS representation drastically changes when limiting the MPS
bond dimension to D = 3 or D = 2 (see Figure 4.2 b) ). Again, the error of the TBRDM
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Figure 4.3.: One-dimensional chain of ten hydrogen atoms placed at a bond distance d .

grows linearly, however the slope is significantly larger than what we have observed
for bond dimensions D = 4 and DFCI = 5. This shows that, by limiting the MPS bond
dimension, now we remove important parts of the many-body Hilbert space and the
resulting MPS representation is unable to reproduce the correct TBRDM. Still, the
error of the TBRDM is reasonable for the MPS representation with bond dimension
D = 3 (up to 18% within the first 1f s), however, the MPS representation is limited in
the time range it is able to find the TBRDM approximately.

This very first analysis already exposed important properties of the MPS approach.
First, in the large bond dimension limit, it was able to represent the complete many-
body state with numeric precision in the time range of 1f s . Second, we observed
that already in this simple situation, the entanglement of the electrons is limited
and we can remove parts of the many-body Hilbert space without inducing an error
to the MPS representation. Third, when cutting significant parts from the many-
body Hilbert space using the MPS representation is still a reasonable approximation,
however, the time range where the MPS representation is accurate is limited. We
need to keep these properties in mind when continuing to more interesting, more
challenging systems in the following.

4.1.2 The Hydrogen Chain

Next molecule we want to discuss in the analysis of the time-dependent MPS ap-
proach is the chain of hydrogen atoms that are equally spaced on a one-dimensional
line (see Figure 4.3). Isolated from the environment, this molecule is not stable
for open boundary conditions; It will dissociate in a series of H2 molecules. This
mechanism makes it difficult to study the system in experimental situations directly,
however, in our theoretical model we fix the distance between the atoms.

In recent years, the interest of the solid state and quantum chemistry community
in the hydrogen chain enhanced [225, 229, 236–238]. It is understood as an ab initio
extension of the Hubbard model, including a much more profound representation
of the long-ranged Coulomb interaction [24]. When changing the distance between
the atoms d , the hydrogen chain undergoes a phase transition in the thermody-
namic limit, being metallic at small bond distances and becoming Mott-insulating
as the distance between the atoms is increased. Here we will use a bond distance of
d = 0.95Å, which corresponds to metallic phase[60] and is close to the equilibrium
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Figure 4.4.: Isosurfaces of the orthogonalized atomic orbitals for hydrogen chain of 10 atoms.
The atomic orbitals are formed by the minimal STO-6G Gaussian basis set and
then orthogonalized using Löwdin orthogonalization. The orbital contours show
the surface of ψi (r) = ±0.01. The distance between the atoms is d = 0.95Å.

bond distance for periodic boundary conditions [24, 229]. But the hydrogen chain
is also interesting from a methodological point of view, as it is a molecule where
the Hartree–Fock method and many other post-Hartree–Fock methods fail [24, 60].
With the directly tunable correlation parameter, it is the molecule used in numerous
benchmark studies to analyze solid state and ab initio methods [24, 229, 239]. It has
been used to study the performance of DMRG [60, 205, 228–230], density matrix
embedding theory [231], auxiliary-field quantum Monte Carlo [236] and many other
methods [24].

In line with this prominent history, we choose the hydrogen chain to challenge the
time-dependent MPS representation and see how it can handle the physics of this
molecule. As the complexity of the calculations scales with the length of the hydrogen
chain, we can easily adjust the size of the molecule to a size where we can perform
calculations using the complete many-body state in reasonable time. Then we can
directly compare between results based on the MPS representation and the quasi
exact results based on the complete many-body state.

We restrict the size of the hydrogen chain to 10 atoms and use the minimal Gaussian
basis set STO-6G [218]. This translates to a system of one electron and one orbital for
each of the hydrogen atoms. In total, the systems consists of 10 electrons occupying
10 orbitals. When using the particle number symmetry and spin projection symmetry
Ŝz , this leaves us with a total number of 63504 configurations, a dimension that is
manageable by using desktop computers. Therefore, for this system, we can compare
the MPS representation with the complete many-body state.

The shape and the ordering of the orbitals in the MPS representation is crucial for its
performance. We know from the area law that the MPS approach performs best if the
problem is short-ranged, therefore, we want to minimize the long-ranged interaction
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as much as possible. If using a random order of the orbitals, or if using completely
delocalized orbitals such as molecular orbitals from a Hartree–Fock calculation, we
exaggerate the non-local property of the system artificially. Therefore, if possible, we
use localized basis sets and order the orbitals with respect to the physical situation.
Of course, the Coulomb-interaction is still long-ranged in this system and the MPS
representation still accounts for this, however, when connecting the orbitals with
MPS tensors in the MPS representation, an elegant order of the orbitals reduces
this artificial added long-range property. The ordering of the orbitals in the MPS
representation is subject to various studies [44, 122, 146, 167, 203, 205, 240, 241],
although, apart from using physical intuition where possible, no universal method to
find the optimal order has been proposed yet.

For this study, we will use atomic orbitals that have been orthogonalized using the
Löwdin orthogonalization method (see Figure 4.4). The Löwdin orthogonalization
finds the orbitals that are orthogonal to each other

〈φi |φj〉 =
∫

d3rφ∗i (r)φj(r) = δi j , (4.8)

while the overlap with the initial atomic orbital is maximized in a least square manner
[61]. This gives the orbitals in Figure 4.4 the helpful property of being localized at the
atomic positions and being orthogonal to each other. This simplifies the choice of
the orbital ordering. We order the orbitals with respect to their localization in the
molecule from left to right in the MPS representation.

The situation we will analyse is a hydrogen chain that has been singly ionized at the
5th orbital of the molecule, i.e. in the center of the chain. Prior the time evolution
calculation, we prepare the system in its neutral ground state |Ψ0〉. To find the ground
state in the complete many-body representation, we use the parent program package
of our time-dependent MPS implementation, namely the CheMPS2 program [51]. It
has a build-in full CI solver, which is based on the full CI method described by Knowles
and Handy [242]. To find the ground state in MPS representation we use the DMRG
implementation of CheMPS2 by Wouters [51]. We perform a regular DMRG calculation
in the large bond dimension limit, i.e. the MPS representation of the ground state
covers the entire many-body Hilbert space (maximum bond dimension D = 516).
Then we apply an annihilation operator at the fifth orbital, suddenly removing one
electron from the system and thereby driving the system "out of equilibrium". After
normalizing, the initial state is

|Ψ(t0)〉α = 1
α 〈Ψ0|ĉ†5σ ĉ5σ|Ψ0〉α

ĉ5σ |Ψ0〉α , (4.9)

where |·〉α ,α ∈ {MPS, FCI} is either the MPS representation or the complete many-
body state, and σ ∈ {↑, ↓ } can be chosen arbitrarily since we have spin symmetry.
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The initial state we are looking at is therefore a state with 9 electrons and multiplicity
2S + 1 = 2.

The complete many-body state for this symmetry sector is a linear combination of up
to 52920 possible configurations, which allows for fast quasi exact calculations and to
compare to the MPS approach. The MPS representation of the complete many-body
state, which covers the entire many-body Hilbert space, has the bond dimensions

A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9] A[10]
3 10 35 126 417 210 56 15 4 , (4.10)

with the maximum bond dimension of DFCI = 417 between the the fifth and the sixth
MPS tensor. This is the MPS representation where the complete many-body Hilbert-
Space is considered, i.e. it is the MPS representation in the large bond dimension
limit. In the following, we will see, how efficient the MPS approach behaves when this
bond dimension is limited to smaller numbers and therefore parts of the many-body
Hilbert space are truncated from the MPS representation.

Reduced Density Matrices

Similar to the analysis of the hydrogen molecule above, we start the analysis of the
hydrogen chain with a discussion of the TBRDM as given in Equation 4.2 and the
(relative) residuum as given in Equation 4.6. This enables access to the two-body
correlators of the many-body state, but also is a good measure for the coherences
arising in the system (see Equation 4.3). Additionally to the TBRDM, we will analyze
the accuracy of the one-body reduced density matrix (OBRDM) from now on, as it is
the quantity to obtain the electron density from. The absolute and relative error of
the OBRDM due to MPS truncation is

εOBRDM(t) = ||γFCI(t)− γMPS(t)||, (4.11)

ε̃OBRDM(t) = ||γ
FCI(t)− γMPS(t)||
||γFCI(t)||2 , (4.12)

(compare to Equation 4.6 and Equation 4.7).

Using the initial state in Equation 4.9, we perform the time evolution by applying
the Krylov space method as described in Section 2.5.3. We use the orthogonalized
formulation with a Krylov space dimension of NKry = 5 and a time step size of
∆t = 1.21as for both many-body state representations. These are conservative time
evolution parameters, where we have seen from convergence tests on the complete
many-body state that a Krylov space dimension of NKry = 5 is stable for time steps
of up to ∆t = 2as (see Appendix A.1). Any discrepancies in the TBRDM or the OBRDM
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Figure 4.5.: Relative error of the one-body reduced density matrix and the two-electron
reduced density matrix of the hydrogen molecule for various MPS bond dimen-
sions. The initial state is the correlated ground state after a suddenly ionization
of the fifth atomic orbital φ5. For both representations (complete many-body
state and its MPS based representation) the many-body state is propagated
using the orthogonalized Krylov space method with Krylov space dimension
NKry = 5 and time step size ∆t = 1.21as .

extracted from the two many-body state representations are a result of the truncation
of the MPS representation and not consequence of poorly converged time evolution
parameters.

The truncation error of the MPS representation directly depends on the bond dimen-
sion of the MPS representation. We observe this in the relative error of the TBRDM
(see Figure 4.5 a) ) and in the error of the OBRDM (see Figure 4.5 b) ). For all bond
dimensions shown, the error grows linearly within the period of 4f s after the sud-
den ionization of the hydrogen chain. We already have observed and discussed this
linear growth at the example of the hydrogen molecule (see Figure 4.2). Again, the
slope of the errors can be controlled by adjusting the bond dimension of the MPS
representation.

Already for medium sized MPS bond dimensions, the TBRDM and the OBRDM ex-
tracted from the many-body state in MPS representation resembles the result of the
complete many-body state. Working with an MPS bond dimension of D = 110 refers
to a truncation of the many-body state, but still the MPS approach finds the OBRDM
with an error of less than 5%. This demonstrates that the MPS approach is able to
find the relevant domain of the many-body Hilbert space and truncates remaining
parts from the representation of the many-body state. The highly entangled states
truncated from the MPS representation need time to emerge, which manifests in the
time-dependent growth of the truncation errors.

For small bond dimensions, the truncation error of the MPS representation grows
faster. This is the already mentioned runaway error (see Section 2.4.2) of the MPS
approach, where we can only control the slop of the error growth, however, we
cannot prevent the error from happening at all. The slope increases when using
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smaller bond dimensions. The OBRDM error stays reasonably small within the first
two femtoseconds for MPS bond dimensions D = 30, however, it rises beyond 10%
afterwards.

We therefore conclude that the MPS bond dimension has to be chosen with respect
to the time period of interest. Where dynamics on short periods can be described
using small MPS bond dimensions, for longer periods the bond dimension must be
larger. This mechanisms will eventually limit the time period we are able to describe
using the MPS approach.

In Figure 4.5 we also note that the error of the OBRDM is proportional to the error of
the TBRDM. This reveals that the MPS approach performs equally well in representing
correlation as it does in representing coherences. This is also an important observa-
tion, as problems with coherences might be reduced by changing the orbital basis
time-dependently [243]. Such an extension of our time- dependent MPS method is
planed for future projects but goes beyond what is discussed in this thesis.

Time-Dependent Green’s function

To gain a more profound understanding of the performance of the MPS approach
for the hydrogen chain, we continue the analysis with the one-body Green’s func-
tion. This allows us to further quantify the performance of the MPS representation,
however using a quantity that is closer to experimental observables compared to
the more theoretically driven reduced density matrices. Seeing the performance in
Green’s function calculations, we can estimate what the truncation errors we have
seen previously actually mean for observables. We will study both, the Green’s func-
tion in the time domain, as well as its Fourier transformed partner in the frequency
domain. Again, we will directly compare results using the complete many-body state
and its truncated MPS representation.

The one-body Green’s function in the time domain is given by

Gσα
i j (t − t ′) = −iΘ(t − t ′)α 〈Ψ0|ĉ†iσei(Ĥ−E0)(t−t′)ĉjσ|Ψ0〉α , (4.13)

withα ∈ {MPS, FCI} again being the index identifying whether the Green’s function
has been calculated using the MPS representation or using the complete many body
state. The state |Ψ0〉α denotes the correlated ground state of the neutral molecule in
its α representation with the ground state energy E0. The one-body Green’s function
is a measure for how a system responds to excitation. In our molecular situation, we
understand it as the response of the hydrogen chain to ionization in orbital j with
spin σ at time t ′. It describes the component that the electron hole has moved to
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Figure 4.6.: Real part (upper) and imaginary part (lower) of the time-dependent Green’s
function as defined in Equation 4.13 calculated using the complete many-body
state (full CI) and calculated using the MPS representation of the many-body
state with a bond dimension D = 30. For both representations the many-body
state is propagated using the orthogonalized Krylov space method with Krylov
space dimension NKry = 5 and time step size ∆t = 1.21as .

orbital i following the ionization. The Green’s function is a very popular quantity
discussed, as it allows to calculate ionization probabilities of correlated systems (such
as our ab initio model of the hydrogen chain) [60, 61]. The ionization potentials have
been discussed in a study by Ronca et al. [60] using the MPS approach. This allows us
not only to compare to the quasi exact results using the complete many-body state,
but also enables a comparison of the implementations of the MPS approach.

We have all necessary tools to calculate the Green’s function in Equation 4.13 using
the MPS approach. First, we find the ground state of the neutral hydrogen chain,
and describe it in the complete many-body state representation and in the MPS
representation. Then we apply the annihilation operator at orbitals j , reducing the
total electron number by one and thereby ionizing the system. As the next step, we
understand ĉjσ |Ψ0〉α as the initial state for time evolution and start a backwards
time evolution calculation using the methods explained in Section 2.5. At this point,
we use again the orthogonalized Krylov space method for both representations of the
many-body state. After the time evolution has been performed, we project the time
evolved state onto the ground state with an ionization at orbital i . This then leaves
us with the time-dependent one-body Green’s function calculated using either the
MPS (GσMPS

ij (t − t ′)) or the full CI approach (GσFCI
ij (t − t ′)).

Even for significantly truncated MPS, the one-body Green’s function calculated using
the MPS representation agrees with the one-body Green’s function calculated using
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Figure 4.7.: Absolute error of the time-dependent one-body Green’s function (blue, left axis)
and the total norm of the time-dependent Green’s function (red, right axis). The
time-dependent Green’s function, as given in Equation 4.13, is calculated using
the MPS approach with bond dimension D = 30 to represent the state and then
compared to the respective full CI Green’s function. Both representations of the
many-body state are propagated using the orthogonalized Krylov space method
with Krylov space dimension NKry = 5 and time step size ∆t = 1.21as .

the complete many-body state. We observe this in Figure 4.6, where we show the
spin summed and normalized Green’s functions

Gα
i j (t − t ′) =

∑
σ Gασ

i j (t − t ′)∣∣∣∑σ Gασ
i j (0)

∣∣∣ , (4.14)

calculated using the two representations of the many-body state. Here, the bond
dimension of the MPS representation is limited to D = 30. In the period of 4f s , it is
difficult to recognize any differences between both representations. The real and the
imaginary part of the Green’s function almost exactly match to the completely corre-
lated results (Full CI) with just small deviations starting after≈ 2f s . However, these
deviations are minor and does not affect the very well qualitative correspondence of
the two approaches. These calculation were done using the Krylov space dimension
of NKry = 5 with a time step size of ∆t = 1.21as and orthogonalized Krylov basis
vectors.

We observe a qualitatively perfect result although we have observed a relative error
of about 15% when we compared the OBRDM in Figure 4.5. This tells us that the
relative errors of the reduced density matrix is a sensitive measure of the accuracy
of the many-body state. The quality of observables is much better than an estimate
from the error of the reduced density matrices would suggest. This is a consequence
of Gα

i j (t − t ′) can be understood as one matrix element of the OBRDM. Nevertheless,
we continue the benchmark using the reduced density matrices in Section 4.2, as
it is a generic quantity and especially since the OBRDM is the main quantity when
interested in electronic densities (see Chapter 5 5).
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When looking at the absolute error of the time-dependent Green’s function (ε =
|GFCI

55 (t − t ′)−GMPS
55 (t − t ′)|) in Figure 4.7, we again see the error growing with time,

however, with very small slope. The errors in the first four femtoseconds stays below
an absolute value of 0.1, which means the correspondence of the two approaches is
better than two digits in average . This behavior is independent of the norm of the
Green’s function (see dashed red line in Figure 4.7). This shows, even in this correlated
situation, the main features of the Green’s function are governed by little entangled
states, as those are the only ones covered by the MPS representation with bond
dimension D = 30.

Frequency dependent Green’s function

We finish the analysis of the hydrogen chain, by discussing the performance of the
MPS representation to find the Green’s function in the frequency domain. On the
one hand, the frequency-dependent Green’s function can be obtained via Fourier
transformation of the time-dependent Green’s function

Gα
i j (ω) =

∫ ∞
−∞

d(t − t ′)eiω(t−t′)−η(t−t′)Gα
i j (t − t ′), (4.15)

where we also include a broadening η that helps to identify major peaks. For this
approach, the time-dependent Green’s function calculated from the MPS representa-
tion needs to be correct over an extended period of time. From the accurate results
we have seen in Figure 4.6, we can expect our time-dependent MPS representation to
give reasonable result on the frequency-dependent Green’s function as well. On the
other hand, the frequency-dependent Green’s function can also be directly calculated
using the MPS representation either from a Krylov-space approach [244] or by mini-
mizing a Hylleraas-like functional [60]. Ronca et al. showed that a direct evaluation is
advantageous if only a specific frequency region is of interest. However, as we are
mostly interested in the performance of time-dependent MPS, we choose to Fourier
transform the results of Figure 4.6.

In Figure 4.8 we see the frequency dependent Green’s function derived from the
complete many-body state and derived from the MPS representation with bond
dimension D. For h̄ω > −20.0eV , the MPS representation is able to present all
major peaks with respect to peak position, peak height, and peak width. For smaller
frequencies, we observe that the Green’s function from the MPS representation is
slightly shifted to smaller frequencies (see insets Figure 4.8).

In our implementation of the time-dependent MPS representation, we do not observe
any nonphysical results in the imaginary part of the Green’s function. Ronca et al.
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Figure 4.8.: Frequency dependent Green’s function derived from the complete many-body
state, as well as from the MPS approach with a bond dimension of D = 30.
(Upper) shows the real part and (lower) shows the imaginary part. All curves
have been obtained from calculations using the orthogonalized Krylov space
approach with NKry = 5 and a time step size of ∆t = 1.21as . Further, a broad-
ening of η = 0.14eV has been applied to the Fourier transform (see Equation
4.15).

[60] concluded in previous work, that extracting the frequency dependent Green’s
function from the time-dependent Green’s function is very prone to errors if the
time-dependent Green’s function was calculated using the MPS representation. They
observed noisy Green’s functions and unexpected zero-crossings. We cannot confirm
this based on our Krylov space based implementation of the time-dependent MPS
representation. We think this is due to our very general approach, where every Krylov
vector is represented by its own MPS with its own optimized virtual basis. This allows
for versatile adaption of the MPS compared to methods that act on local MPS tensors
inducing an averaged virtual basis for all Krylov vectors utilized by Ronca et al. [60].

4.1.3 Conclusion

We have seen in this section that the MPS approach is able to represent the time-
dependent many-body state efficiently. It is able to resolve quantities holding elec-
tronic correlations (TBRDM), quantities holding electronic coherences (OBRDM), as
well as the Green’s function. The accuracy of the MPS representation is directly cor-
related to the period of time we are interested in and the MPS bond dimension. For
longer time periods, we need to employ larger MPS bond dimensions. We performed
this analysis in a rather artificial situation of the one-dimensional hydrogen chain,
described by a minimal basis set. This model usually does not allow for quantitative
predictions as the electrons are too confined in the small orbital set. How the MPS
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approach performs when the basis set is non-local is still an open question, which we
address in the next section.

4.2 Multi-Dimensional Molecules

In the following we want to extend the analysis of the MPS representation to mol-
ecules that stretch in all three dimensions. Further, will we go beyond the minimal
basis set approach (STO-6G) we used in Section 4.1.2 and utilize the extended basis
set 6-31G [218]. This basis set additionally adds orbitals to the basis set that are un-
occupied in the single atom picture (for example 2s orbitals for hydrogen). On the
one hand, the extended basis set increases the complexity due to the enlarged single-
body basis, and on the other hand the complexity is increased due to the additional
non-locality induced by the artificial one-dimensional orbital ordering in the MPS
representation. It is completely unknown how the time-dependent MPS approach
can represent the time-dependent many-body state, since the MPS representation
has never been used for this type of problems.

4.2.1 Single Ionization

We study the time-dependent response of the electrons in the molecule following
a single ionization. This is a situation directly accessible in experiments, where a
single electron is removed from the molecule on an ultrafast time scale [98, 245–
247]. For example such a process can be initiated by attosecond light pulses [248].
This ionization process can be considered to happen suddenly, i.e. all other particles
(nuclei as well as electrons) remain at their positions during the ionization process.
Then, following the ionization process, the electrons start to respond to the excitation
first in a process called charge migration, which is then followed by nuclear motion
leading to charge transfer. Describing the nuclear motion goes beyond our model
that is based on the Born–Oppenheimer approximation, therefore, we will focus on
time scales where the nuclei remain still. This is usually a period of ten femtoseconds
after the ionization process depending on the nuclei masses [21].

We analyze the performance of the MPS approach in describing four distinct mole-
cules: hydrogen fluoride HF, water H2O, ammonia NH3, and methane CH4. These four
molecules cover most common elements that are the major building blocks in nature.
Also, these molecules were already subject of several full CI studies [105, 249–252],
showing that the electrons indeed enter correlated states. Therefore, we assume
correlation driven electron dynamics following ionization to be crucial in these sys-
tems. But the molecules and the chosen basis set are still simple enough to perform
calculations using the complete many-body state. Thus, we can continue the direct
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FH H2O NH3 CH4

φH,1s
CG (r − RH) φH,1s

CG (r − RH1) φH,1s
CG (r − RH1) φH,1s

CG (r − RH1)
φH,2s

CG (r − RH) φH,2s
CG (r − RH1) φH,2s

CG (r − RH1) φH,2s
CG (r − RH1)

φH,1s
CG (r − RH2) φH,1s

CG (r − RH2) φH,1s
CG (r − RH2)

φH,2s
CG (r − RH2) φH,2s

CG (r − RH2) φH,2s
CG (r − RH2)

φH,1s
CG (r − RH3) φH,1s

CG (r − RH3)
φH,2s

CG (r − RH3) φH,2s
CG (r − RH3)
φH,1s

CG (r − RH4)
φH,2s

CG (r − RH4)
φF ,1s

CG (r − RF ) φO,1s
CG (r − RO) φN,1s

CG (r − RN) φC ,1s
CG (r − RC )

φF ,2s
CG (r − RF ) φO,2s

CG (r − RO) φN,2s
CG (r − RN) φC ,2s

CG (r − RC )
φF ,2px

CG (r − RF ) φO,2px
CG (r − RO) φN,2px

CG (r − RN) φC ,2px
CG (r − RC )

φ
F ,2py
CG (r − RF ) φO,2py

CG (r − RO) φN,2py
CG (r − RN) φC ,2py

CG (r − RC )
φF ,2pz

CG (r − RF ) φO,2pz
CG (r − RO) φN,2pz

CG (r − RN) φC ,2pz
CG (r − RC )

φF ,3s
CG (r − RF ) φO,3s

CG (r − RO) φH,3s
CG (r − RN) φC ,3s

CG (r − RC )
φF ,3px

CG (r − RF ) φO,3px
CG (r − RO) φN,3px

CG (r − RN) φC ,3px
CG (r − RC )

φ
F ,3py
CG (r − RF ) φO,3py

CG (r − RO) φN,3py
CG (r − RN) φC ,3py

CG (r − RC )
φF ,3pz

CG (r − RF ) φO,3pz
CG (r − RO) φN,3pz

CG (r − RN) φC ,3pz
CG (r − RC )

11 orbitals 13 orbitals 15 orbitals 17 orbitals

Table 4.1.: Orbital basis sets for discussed molecules formed from contracted Gaussian
orbitals (see Section 2.2.1).

comparison between the MPS representation and the quasi exact representation of
the many-body state.

In this analysis, we start again from atomic orbitals that we represent by Gaussian
orbitals (see Section 2.2.1). Precisely, in the employed 6-31G Gaussian basis set, the
orbitals include (see Table 4.1):

• hydrogen fluoride HF: For the fluoride atom the orbitals {1s , 2s , 2px , 2py , 2pz ,
3s , 3px , 3py , 3pz} and for the hydrogen atom the orbitals {1s ,2s} are taken into
account, i.e. in total 10 electrons in 11 atomic orbitals.

• water H2O: For the oxygen atom the orbitals {1s , 2s , 2px , 2py , 2pz , 3s , 3px , 3py ,
3pz} and for each of the hydrogen atoms the orbitals {1s , 2s} are taken into
account, i.e. in total 10 electrons in 13 atomic orbitals.
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• ammonia NH3: For the nitrogen atom the orbitals {1s , 2s , 2px , 2py , 2pz , 3s , 3px ,
3py , 3pz} and for the each of the hydrogen atoms the orbitals {1s , 2s} are taken
into account, i.e. in total 10 electrons in 15 atomic orbitals.

• methane CH4: For the carbon atom the orbitals {1s , 2s , 2px , 2py , 2pz , 3s , 3px ,
3py , 3pz} and for each of the hydrogen atoms the orbitals {1s , 2s} are taken
into account, i.e. in total 10 electrons in 17 atomic orbitals.

In the following discussion, we use molecular orbitals that were optimized on the
Hartree–Fock level. The Hartree–Fock calculation provides both, the equilibrium
geometry of the molecule, as well as the molecular orbitals optimized on the single-
body level. We used the molpro quantum chemistry program package [80] to perform
the Hartree–Fock calculations. The molecular orbitals are then used as the one-body
basis to expand the many-body state. In the MPS representation of the many-body
state, we choose an order according to the orbital symmetry and the orbital energy.
First the orbitals are ordered with respect to their irreducible representation and
within these symmetry sectors they are ordered with respect to the orbital energy. The
ordering in symmetry sectors allows to minimize (long-range) coherences, as matrix
element of the OBRDM are zero for orbitals with different irreducible representation
[3].

By preparing the initial state, we try to simulate experimental situations, however,
without being too fixed on the actual experimental realization. Prior the ionization
process, we assume the molecule to be in its neutral Hartree–Fock ground state
|Ψ0〉 , i.e. it can be described by a single configuration of our molecular orbital oc-
cupation number basis. The five molecular orbitals lowest in energy are doubly
occupied, whereas all remaining molecular orbitals stay completely empty. At time
t0 we suddenly remove an electron from one of the orbitals (single-channel sudden
ionization)

|Ψ(t0)〉α = ĉiσ |Ψ0〉α , (4.16)

leaving the molecule singly ionized. The ionized state |Ψ(t0)〉 is again described by
a single configuration. In the uncorrelated one-body picture, this state is still an
eigenstate of the Hamiltonian. In an uncorrelated universe, the system would not
experience any dynamics, as we brought the molecule from its neutral ground state
into one of the cationic eigenstates (Koopmans’ theorem) [61, 253]. However, in our
description the electrons start moving, as the state |Ψ(t0)〉 is not an eigenstate of
the Hamiltonian including many-body effects. All dynamics we observe are therefore
completely driven by the presence of electronic correlations [245].

4.2 Multi-Dimensional Molecules 101



Even though the electrons start moving and this motion is correlation driven, the
dynamics are not subject of this study. The remaining electrons will try to fill the
newly created hole in a motion that depends on the localization of the hole. These
dynamics are indeed challenging for the MPS representation of the time-dependent
state, however, we focus on the capabilities of the MPS representation to handle
the correlated state and do not discuss the occurring dynamics in any detail. The
dynamics following ionization are subject to further studies, such as the bachelor
thesis by Schaub [254].

As the measure of accuracy of the MPS representation, we utilize reduced density
matrices as we did in the analysis of the hydrogen based molecules in Section 4.1.
While we discussed there the TBRDM as well as the OBRDM, we will focus now on
the OBRDM. We have seen, in Figure 4.5 that the errors of the TBRDM and the error of
the OBRDM are almost proportional to each other, which allows us to estimate the
error of the MPS representation from the rather easy to calculate OBRDM.

MPS Representation Error

We determine the error of the MPS representation for all molecules outlined above.
For a given molecule, we prepare the molecule in an initial state as described and
let the system time-evolve. After the system evolved for about one femtosecond,
we calculate the OBRDM. This procedure is performed once using the complete
representation of many-body state, and once again using the MPS representation
of the many-body state. At time t = 1f s , we compare the two resulting OBRDM
by calculating the relative error (see Equation 4.12). From the relative error of the
OBRDM, we estimate the error the MPS representation acquired in the time period of
1f s . We repeat this practice for all possible singly ionized states of the molecule (see
Figure 4.9).

In almost all situations shown, the relative error of the OBRDM is below 15%, even if
the MPS bond dimension is as small as D = 30. Already for the smallest MPS bond
dimension shown, the MPS representation resolves the OBRDM with little error. Here
the error is between 5% and 15%, however it decreases when the bond dimension
is increased. Most situations are well approximated by a MPS representation with
bond dimension D = 70, which refers to a significant reduction of the size of the
represented many-body Hilbert space. Especially dynamics following ionization in the
valence orbitals (HOMO to HOMO-3) are described well by the MPS representation
with bond dimension D = 70, where the relative error is below 5%. This feature is
apparent for all molecules tested. The small errors of the calculation with D = 70
is in particular striking, as the large bond dimension limits the different molecules
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Figure 4.9.: Relative errors of the OBRDM at t = 1f s calculated using the MPS representation
for various molecules (hydrogen fluoride, water, ammonia and methane), initial
states ( single ionization in HOMO, HOMO-1, HOMO-2, HOMO-3 and MOcore)
and bond dimensions (D = 30, D = 50, D = 70, D = 90, and D = 110). In all
calculations (using the complete many-body representation and using the MPS
representation) the state is propagated using the orthogonalized Krylov space
method with Krylov space dimension NKry = 6 and time step size ∆t = 1.0as .
The error of the OBRDM is averaged over a period of ±50as at time t = 1f s .
Additionally, the orbital shape and its ionization potential is given.
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FH H2O NH3 CH4

D = 30 2433.8s 3533.7s 5559.6s 7056.6s
D = 50 3204.1s 5625.9s 8112.7s 11375.1s
D = 70 4160.5s 6380.6s 11110.1s 13662.7s
D = 90 4984.9s 8626.2s 15287.3s 19831.1s

D = 110 5578.5s 10679.4s 17262.3s 24897.1s
FCI 893.2s 4767.3s 71548.9s 149042.4s

Table 4.2.: Run times of the Hamburg CheMPS2 extension in seconds. The initial state is
the Hartree–Fock ground state with a hole in the HOMO. The time evolution
for all calculations were performed by the orthogonalized Krylov space method
with a Krylov space dimension of NKry = 6, a time step size of ∆ = 1as , and the
final time t = 1f s . The calculation was performed on an Intel(R) Xeon(R) CPU
E5-2680 v3 @ 2.50GHz processor with a 20 cores running in parallel. Neither of
the calculations required significant amounts of memory.

differ significantly. The large bond dimension limit for the orbital set of hydrogen
fluoride is DHF

FCI = 318, while the largest possible bond dimension for the methane is
DCH4

FCI = 1885. Apparently, for dynamics following ionization in the valence orbitals,
all these molecules can be described appropriately by an MPS approach with bond
dimension D = 70, which is a manifestation of Koopmans theorem.

Therefore, the area of the many-body Hilbert space required to describe the ionized
molecule is small and it does not grow with the size of the complete many-body
Hilbert space. The dynamics in molecules with a large many-body Hilbert space can
be described by the MPS approach with small bond dimensions. This demonstrates
that the shown cations do not develope correlations that exceed the capabilities of the
MPS approach in this time frame. Even though the molecules are high-dimensional,
include long-ranged Coulomb interaction, and the artificial orbital order exaggerates
the non-locality of the description, the entanglement in the systems spreads slowly
and the MPS approach is able to represent the state with a small bond dimension.

The large area of the many-body Hilbert-space that is neglected in the MPS represen-
tation also manifests in the computation times of these examples (see Table 4.2). For
the molecules NH3 and CH4, computations using the MPS representation runs signifi-
cantly faster than its quasi exact counterpart (denoted as FCI in the table). While the
complexity of the calculation using the complete many-body state grows factorially
with number of electrons and number of orbitals, the MPS representation only scales
polynomially. This gives the MPS representation an advantage in computation time,
that further amplifies when going to larger systems. In systems with small orbital sets
(hydrogen fluoride), the overhead added by the MPS approach reduces the benefit of
using a truncated many-body state, where the quasi exact calculation is faster than
the MPS based calculations.
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Beyond the trend of smaller errors when the bond dimension is increased, the errors
in Figure 4.9 show, that the MPS approach struggles with ionization in core orbitals
(MOcore). Compared to ionization in valence orbitals, the error of the MPS approach
almost doubles if the ionization takes place at the MOcore (the 1s orbital at the heavy
atom F, O, N, or C). A deeper ionization corresponds to a stronger excitation, which
leads to faster emerging correlations. Therefore, the MPS approach will be able to
handle excitation close to the HOMO better than excitations that are close to or in
core orbitals. Nevertheless, also in situations with an electron hole in a core orbital,
the accuracy can be controlled by the bond dimension of the MPS, however, they
need to be larger compared to a hole in valence orbitals.

A comment is due on the different truncation errors of degenerated orbitals. For
example, the HOMOB1 and the HOMOB2 of the hydrogen fluoride molecule have the
same shape and the same orbital energy; they differ in symmetry only. Following
ionization, we expect for both orbitals the same form of entanglement to emerge,
which then may be cut by the truncated MPS representation of the many-body state.
But the truncation error of the MPS representation differs for ionization in these two
orbitals, meaning that we cut different amounts of entanglement. In some sense,
this is an unphysical result, which clearly demonstrates the importance of the order
of the molecular orbitals in the MPS representation. Although the two orbitals are
physically similar, they are considered at different positions in the artificially one-
dimensional MPS representation. For one of the orbitals, the interaction with the
remaining system is effectively on a longer (orbital) distance, which leads to more
long-ranged entanglement that is cut more rigorously.

CI Weights

Let us now try to understand how the MPS approach is able to reproduce the complete
many-body state with this precision. The errors given in Figure 4.9 show that the MPS
is able to represent the complete many-body state, but to use the MPS representation
in situations where we cannot provide quasi exact results for comparison, we need
criteria to decide whether the MPS representation is valid. With the convergence of
the bond dimension, we already have one criterion to validate the MPS approach.
However, to go beyond simple bond dimension convergence, we also want to discuss
configuration interaction weights (CI weights) to understand how the MPS compare
to CI expansions.

We can quantify the importance of the different CI excitation classes (see Section 2.3
for details) by calculating the CI weights. The CI weights tell us how the MPS state
is constructed in terms of configurations in the occupation number basis and how
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important different types of excitations are. Let |Ψ0〉 be the Hartree–Fock ground
state, then, for example, the weight of states where there is one hole in one of the
initially occupied Hartree–Fock states (the one-hole-zero-particle weight) is given by

P1h0p
α (t) =

∑
iσ
|α 〈Ψ(t)|ĉiσ|Ψ0〉α |2, (4.17)

with |Ψ(t)〉α being the time dependent state in its α ∈ {FCI, MPS} representation.
The one-hole-zero-particle weight is one at the initial time P1h0p

α (t0) = 1, as we chose
our initial state to be a one-hole-zero-particle configuration. However, following the
dynamics, also other CI configuration classes can be populated, which eventually
reduces the one-hole-zero-particle weight.

The weight of states with two holes in core or valence molecular orbitals and one
electron excited to a virtual orbital, i.e. the two-hole-one-particle weight is given by

P2h1p
α (t) =

∑
i jkστ

|α 〈Ψ(t)|ĉ†iσ ĉjσ ĉkτ |Ψ0〉α |2. (4.18)

This can be extended to arbitrary excitations, where all configurations belong to one
of such CI classes. All weights added give the norm of the many-body state

P1h0p
α (t) + P2h1p

α (t) + · · · = |α 〈ψ(t)|ψ(t)〉α |2. (4.19)

This allows to extract the weight of higher excitation classes by reordering Equa-
tion 4.19 to Phigh

α (t) = |α 〈ψ(t)|ψ(t)〉α |2 − P1h0p
α (t) − P2h1p

α (t), as it is usually dif-
ficult to calculate all weights. There are too many coefficients to be calculated
(see curse of dimensionality in Section 2). For α = FCI , the norm of the state is
|FCI 〈ψ(t)|ψ(t)〉FCI |2 = 1, however, this is not necessarily the case for the truncated
MPS representation, although it should stay close to one.

In Figure 4.10 we see the time-dependent CI weights together with the truncation
error of the MPS approach for electron dynamics in the water molecule. We prepare
similar initial states as discussed before, i.e. all possible single ionizations of the
water molecule, ranging from the HOMO to MOcore (see Figure 4.9 for graphical de-
piction of the orbitals). Additionally the CI weights of the complete many-body state
calculation (FCI) are shown in light colors in the background to allow for comparison
with the quasi exact results. From these we can estimate the importance of highly
excited configurations to the many-body state representation and validate if the MPS
representation is able to cover highly excited configurations states appropriately. In
almost all situations, the MPS representation shows the correct CI weights, which
indicates it is able to incorporate the correct configurations dynamically.
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Figure 4.10.: CI weights of the time-dependent many-body state of the ionized water
molecule (left y-axis) and errors of the one-body reduced density matrix (right
y-axis). The error is shown for MPS calculations with bond dimension D = 70.
The shown CI weights are the one-hole-zero-particle weight (1h0p), the two-
hole-one-body weight (2h1p) and contributions of higher CI classes (high). In
all calculations (based on the complete many-body state and MPS based rep-
resentation) the state is propagated using the orthogonalized Krylov space
method with Krylov space dimension NKry = 6 and time step size ∆t = 1.0as .
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An interesting feature shown in Figure 4.10 is the dependence of the weights on the
position of the created hole. Following ionization in the HOMO, the HOMO-1, and the
HOMO-2, the system stays in states that are well represented by configurations of
type 1h0p and 2h1p. These types of configurations account for 92% of the entire many-
body state. A CISD expansion of the many-body state would be able to describe the
electron dynamics in these situations correctly. However, the physics changes if the
system is prepared in an initial state with an ionization in the HOMO-3 or the MOcore
orbital. For these two initial states, the following electron dynamics show significant
population of excited configurations. Here, the higher excited configurations account
for about 25% of the total many-body state. A simple CISD representation of the
many-body state would be unable to resolve this behavior, as it restricts the many-
body state representation to low excited configurations.

The CI weights are adjusted dynamically in the MPS representation of the time-
dependent many-body state. In contrast to the CI expansions, with the MPS approach
we do not need to choose a specific type of configuration in our representation prior
the calculation. The MPS approach is able to adapted the configurations dynamically
and it includes higher excited configurations when needed. This already happens
at very small bond dimensions (bond dimension of D = 70 in Figure 4.10), showing
that higher excitation classes are not necessarily tied to strong entanglement in
the state. By limiting the bond dimension, we effectively reduce the amount of
entanglement the MPS is able to represent. Apparently, this does not mean, that
the MPS representation is limited to low excitation CI classes, as we still see large
weights of excited configurations in MPS with small bond dimension. Therefore, the
approach does go beyond the typical CI expansion of the many-body state.

Conclusion

In this section we have seen that the MPS approach also allows to treat the dynamics
of realistic molecules that have been singly ionized. We demonstrated this using the
hydrogen fluoride molecule, the water molecule, the ammonia molecule, as well as
the methane molecule in the extended basis set 6-31G. In all these examples, the
MPS results converged quickly when increasing the bond dimension, which shows
their stable behavior, even if the molecule spreads over all three dimension and the
molecular orbitals are delocalized. Next we analyse how the MPS representation
performs in case of the doubly ionized initial states.
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4.2.2 Double Ionization

To complete the analysis of the MPS representation, we now discuss their perfor-
mance in case the molecule has been doubly ionized. Multiple (including double)
ionization processes of molecules are widespread in nature that either happen as an
ionization following previous ones (sequential ionization), but also involve processes
where multiple electrons are liberated from the molecule at once (non-sequential
ionization). Experimentally, molecules can be brought into a doubly ionized state
by strong-field ionization [180, 255] and by using ultra short laser pulses [256, 257].
It is therefore interesting how the MPS representation performs when applied in
modeling these situations. As benchmark systems, we utilize the same molecules
as described above, namely hydrogen fluoride CF, water H2O, ammonia NH4, and
methane CH4.

Again, double ionization processes can happen suddenly, i.e. they occur on time scales
faster than all electronic response. We will therefore continue in a similar fashion as
our study on single ionization. We prepare the initial state in the Hartree–Fock ground
state, but now remove two electrons from a given orbital at time t = 0. This leaves
the molecule with 8 electrons, which will react onto the newly prepared situation on
the time scale of a few femtoseconds.

Electron dynamics following double ionization has been studied by Hollstein et. al. us-
ing the CI approach [94]. Their CI approach was limited to the two-hole-zero-particle
configurations (2h0p), i.e. configurations where there are two holes in the state
compared to the Hartree–Fock ground state, as well as the three-hole-one-particle
configurations (3h1p), i.e. states with three holes in the Hartree–Fock ground state
and one electron promoted to one of the virtual orbitals. These studies demonstrated
the impact of the 3h1p configuration class, which are absolutely important in de-
scribing the electron dynamics in C2H4BrI2+. As the MPS representation is particularly
suited for describing dynamics that are driven by highly excited configurations, it is
interesting to see how the MPS approach is able to handle doubly ionized situations
and what important CI weights occur in the MPS representation.

MPS Representation Error

The MPS representation is also capable of handling situations where the molecule has
been doubly ionized, especially if the double ionization took place in an outer-valence
orbital. We conclude this from the relative error of the OBRDM after 1f s of time
evolution, shown in Figure 4.11. In all outer-shell (HOMO, HOMO-1, and HOMO-2)
examples, the MPS representation is able to find the correct OBRDM within an error
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Figure 4.11.: Relative errors of the OBRDM at t = 1f s calculated using the MPS representa-
tion for various molecules (hydrogen fluoride, water, ammonia and methane),
initial states ( double ionization in HOMO, HOMO-1, HOMO-2, HOMO-3 and
MOcore) and bond dimensions (D = 30, D = 50, D = 70, D = 90, and D = 110).
In all calculations (using the complete many-body representation and using
the MPS representation) the state is propagated using the orthogonalized
Krylov space method with Krylov space dimension NKry = 6 and time step size
∆t = 1.0as . The error of the OBRDM is averaged over a period of ±50as at
time t = 1f s .
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of 5% when using a MPS bond dimension D = 70. The error reduces to< 2% when
using a MPS bond dimension of D = 110. We observe the rapid convergence of the
MPS results with growing bond dimension that we have already seen for the singly
ionized molecules. This convergence is independent of the actual dimension of the
complete many-body Hilbert space. The dimension of the complete many-body state
for the smallest example hydrogen fluoride molecule is 27252 (DFCI = 175), where it
is for the largest example methane 1416368 (DFCI = 808). Although these dimensions
differ in size, we do not observe the larger Hilbert space requiring significantly larger
MPS bond dimensions to find the OBRDM within an error of 5%.

The situation changes when discussing inner-valence double ionization (HOMO-3)
and double ionization of the core orbital (HOMO-4). Here the MPS approach struggles
to represent the many-body states correctly, which we observe in errors of the OBRDM
in the range of 15% to 30%. Increasing the MPS bond dimension reduces the error of
the OBRDM in case the molecule was prepared in a state with a double hole in the
HOMO-3 orbital. Here we find for an MPS bond dimension of D = 110 an error of
the OBRDM in the range of 2% to 5%. In case the water molecule was prepared in
a state with a double hole located in the HOMO-4, a bond dimension of D = 110 is
still not sufficient. We need to increase the bond dimension further, which reduces
the computational advantage of the MPS approach in comparison to the calculation
using the complete many-body state.

The fact that double ionization in core orbitals are difficult to describe using MPS tells
us that in these situations the entanglement grows comparably fast. This makes a
MPS description of such situations difficult. We need to be careful when describing
situations with deeply ionized molecules in the system. This might also be a conse-
quence of the used orbital ordering that placed the core orbital at the very left of
the MPS representation, leaving it with a large (MPS)distance to energetically large
orbitals on the right of the MPS representation. Further studies on the orbital ordering
in this situation possibly allow to improve the MPS performance for this situation.

CI Weights

Figure 4.12 shows the CI weights of the time-dependent many-body state for dica-
tionic water H2O2+. The initial state is doubly ionized Hartree–Fock ground state, with
the double hole located at the HOMO (Figure 4.12 a) ), located at the HOMO-1 (Figure
4.12 b) ), located at the HOMO-2 (Figure 4.12 c) ), located at the HOMO-3 (Figure 4.12 d)
), and located at the MOcore (Figure 4.12 e) ).
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Figure 4.12.: Time-dependent CI weights of the many-body state of dicationic water (H2O2+).
The initial state is a double ionization in the molecular orbital as given in the
titles of the plots. The shown CI weights are the two-hole-zero-particle weight
(2h0p), the three-hole-one-body weight (2h1p) and contributions of higher CI
classes (high). In all calculations (based on the complete many-body state and
MPS based representation) the state is propagated using the orthogonalized
Krylov space method with Krylov space dimension NKry = 6 and time step size
∆t = 1.0as .

The many-body state for outer-valence double ionization has a particular high 2h0p
and 3h1p weight (see Figure 4.12 a) to c) ). In these situations a CI expansion is justified
and the system remains in states related to few particle-hole excited configurations.
The settings with a double excitation in the outer-valence orbitals are those we
observed good convergence of the MPS representation for (see Figure 4.11).

In case of inner-valence double ionization and core orbital double ionization, higher
excited configurations become rather important. If the initial state of the water
molecule is prepared as doubly ionized HOMO-3, or doubly ionized MOcore Hartree–
Fock state, the weights of the 2h0p and 3h1p configurations reduce. Then the im-
portance of the higher excited configurations increases. A simple CI expansion of
the many-body state is unable to describe these situations, as multiple particle-hole
excitations contribute significantly. This confirms to observations we made for the
singly ionized systems already, where ionization of deeper orbitals responds to higher
excitations of the molecule. As a consequence of the higher excited initial state, also
the dynamics involves higher excited configurations, which we notice in the form of
a large Phigh(t) weight.

However, the MPS approach is able to include the weights of the higher CI expan-
sion correctly. The CI weight of the MPS representation (bold colors in Figure 4.12)
correspond in all situations to the CI weights of the complete many-body state (light
colors in Figure 4.12). Even in situations where the MPS approach looses precision
in the OBRDM, the CI classes are accurately found in the MPS representation. This
underlines its capabilities to adjusting the representation of the many-body state
dynamically.
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Conclusion

We conclude that the MPS approach enables to represent the many-body state with
minor truncation errors in case the molecule has been doubly ionized. However, the
convergence needs to be monitored more carefully, as we have observed larger rela-
tive errors of the OBRDM if the double hole is located in inner-valence or core orbitals.
Here, the MPS bond dimension needs to be increased compared to the singly ionized
situations studied above, which we attribute to the enlarged excitation energy of
the initial state, but also the orbital ordering can be responsible for this behavior.
For outer-valence orbitals, we have observed similar convergence performance com-
pared to the single ionization situations, where it was easy to reduce the relative
error to 5% by using bond dimensions of D = 70. The necessary bond dimension
is independent of the dimension of the complete many-body Hilbert space of the
problem. This shows that we can gain computational advantages compared to the CI
expansions, especially in situations where more electrons and orbitals are involved.
In case of double ionization, the importance of highly excited configurations seems
to be increased in comparison to the singly ionized situations.

4.2.3 Conclusion

Eventually, we can tell with certainty that the MPS approach performs well for the
more realistic molecules discussed here. We have demonstrated this discussing both,
singly ionized, as well as doubly ionized molecules. Strikingly, the necessary bond
dimension to describe a system is independent of the dimension of the complete
many-body Hilbert space. Therefore, we can converge the MPS representation with
respect to MPS bond dimension and obtain a quasi exact representation of the
complete many-body state. With the exception of double holes in core orbitals, this
convergence was fast and the MPS result agreed with the full CI results upon an error
of less than 10% at bond dimensions close to D = 70. Therefore, we are positive, the
MPS does simplify the calculation of electron dynamics in molecules, however, being
much more dynamic than, for example, the CI expansion of the many-body state. We
proved this specifically by discussing the CI weights and comparing to results of a full
CI calculation. The MPS approach is able to incorporate highly excited configurations
dynamically.
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4.3 Comparison of Time Evolution Algorithms for
Matrix Product States

From the beginning of this chapter, we analyzed the MPS approach to understand if
it is able to handle dynamically emerging entanglement. In these studies, we mostly
utilized the orthogonalized Krylov space time evolution method (see Section 2.5)
with a Krylov space dimension NKry = 6 and a time step size of ∆t = 1as . For this
particular time evolution method, we noticed that the MPS results converged correctly
to the quasi exact results when increasing the MPS bond dimension. Thus, the MPS
approach was able to handle the entanglement appropriately. However, from a
technical point of view, is the orthogonalized Krylov space method the optimal choice
to time-evolve an MPS in quantum chemistry? How does it compare to the more
prominent fourth-order Runge–Kutta method and is there any option to improve
the performance of the Krylov space method? We address these questions in the
following section.

We continue the analysis of the MPS approach, however, now with respect to the
time evolution method rather than focussing on the MPS performance only. The MPS
representation of a many-body state is not unique, i.e. the exact same many-body
state can be equally well represented by MPS with different bond dimensions. As
we interact with the MPS purely variationally, it is possible that the MPS with fixed
bond dimensions show different performance for different time evolution methods.
We will find, the choice of the time evolution method does have an effect on the
MPS representation, where the optimal method can reduce the size of the MPS bond
dimension. This reduction then follows a computational advantage, since we can
either reduce the MPS bond dimension and maintain accuracy, or we can keep the
MPS bond dimension and improve accuracy.

It is important to remark that we still discuss the MPS approach, however, now with
focus on its interplay with the time evolution method. This section is not about
analyzing the time evolution methods themselves. For this, a rich family of studies
exists [258–260].

4.3.1 Non-Unitary vs. Unitary Time Evolution

In Section 2.5 we discussed two different types of time evolution algorithms. On the
one hand, we have the family of non-unitary time evolution methods, that expand
the time evolution operator in Equation 2.102 in a manner that violates the unitarity,
i.e. the time reversal symmetry is broken and the norm of the time-evolved state
may change. For example, the Runge–Kutta methods belongs to this family. On the
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Figure 4.13.: (top) Time-dependent one-body Green’s function of the hydrogen chain calcu-
lated using the complete many-body state and the MPS representation with
bond dimension D = 30. For the complete many-body state the time evolution
(KRY-FCI) was performed using the orthogonalized Krylov space method with
a Krylov space dimension of NKry = 5 and a time step size of ∆t = 1.21as .
For the MPS representation of the many-body state, the time-evaluation was
performed using the orthogonalized Krylov space method (KRY-MPS), the non-
orthogonalized Krylov space method (NKRY-MPS), and the fourth-order Runge–
Kutta method (RK4-MPS). (bottom) The absolute error of the one-body Green’s
function with respect to the calculation using the complete many-body state
(KRY-FCI).

other hand, we have unitary time evolution methods, which also expand the time
evolution operator from Equation 2.102, however, in a fashion that conserves the
feature of unitarity. The Krylov space methods belong to this family. In the following
section, we want to compare these methods and see if the missing unitarity of the
Runge–Kutta method matters to the truncated MPS representation. As the MPS
representation of the many-body state is truncated time-dependently, it looses norm
and its energy expectation value changes anyway. The additional impact of the time
evolution method is yet unclear.

For this comparison, we draw our attention to the chain of 10 hydrogen atoms again,
which we already discussed in Section 4.1.2. It is a very well behaved system, and
it is the single system where the MPS approach has been applied before [60] to
study frequency dependent Green’s functions and ionization potentials. To allow
comparison with these studies, we analyze the time evolution methods using this
system, although, we already know the MPS approach can handle more complex,
respectively multi-dimensional, systems. As the quantity for comparison, we utilize
the time-dependent one-body Green’s function as already given in Equation 4.13 and
in Equation 4.15. We have seen the good convergence of the MPS approach for these
calculations, however, whether the results can be improved by changing the time
evolution method is open.
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Figure 4.13 shows the time evolution of the imaginary part of the time-dependent
Green’s function G55(t − t ′) in a period of 4f s . The Green’s function was obtained
from four independent calculations:

• (KRY-FCI) A calculation that uses the complete many-body state. The time
evolution was performed using the orthogonalized Krylov space method with a
Krylov space dimension of NKry = 5 and a time step size of ∆t = 1.21as . We
consider this calculation as quasi exact with respect to the many-body Hilbert
space and with respect to the time evolution parameters. Using larger Krylov
space dimensions, or reducing the time step size does not affect the result of
the one-body Green’s function shown (see Appendix A.1).

• (KRY-MPS) A calculation that uses the MPS representation of the many-body
state that is fixed to MPS bond dimension D = 30. The time evolution was
performed using the orthogonalized Krylov space method (see Section 2.5.3)
with a Krylov space dimension of NKry = 5 and a time step size of ∆t = 1.21as .

• (NKRY-MPS) A calculation that uses the MPS representation of the many-body
state that is fixed to MPS bond dimension D = 30. The time evolution was
performed using the non-orthogonalized Krylov space method (see Section
2.5.4) with a Krylov space dimension of NKry = 5 and a time step size of ∆t =
1.21as .

• (RK4-MPS) A calculation that uses the MPS representation of the many-body
state that is fixed to MPS bond dimension D = 30. The time evolution was
performed using the fourth-order Runge–Kutta method (see Section 2.5.2) with
a time step size of ∆t = 1.21as .

All above methods require four applications of the Hamiltonian, therefore, they are
similar in computational demand and we should expect similar accuracy. Further, all
MPS based calculations require comparable amounts of memory.

From the imaginary part of the one-body Green’s function (see 4.13 (top) ), we observe
good accuracy for all three calculations using the MPS representation. All calculations
show qualitatively the same behavior, and the oscillation frequencies appear to be
close to the quasi exact frequencies. The performance of the different methods only
manifests in the absolute error of the one-body Green’s function

εαi j(t − t ′) = |GFCI
ij (t − t ′)− Gα

i j (t − t ′)|, (4.20)

with α ∈ {KRY-MPS, NKRY-MPS, RK4-MPS}. While the two Krylov space based meth-
ods have no problem in describing the one-body Green’s function within an absolute
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Figure 4.14.: Major peaks of the frequency dependent one-body Green’s function for a chain
of 10 hydrogen atoms. Peaks are obtained from the Fourier transform of the
results in Figure 4.13, using the same labels. To extract the major peaks, a
broadening of η = 0.14eV has been applied to the Fourier transform (see
Equation 4.15). This figure is published in Frahm [219].

error of 0.1 (real and imaginary part combined), the Runge–Kutta method already
acquires an error larger than 0.3 in the period of 3.3f s . This is an unexpected result,
given all calculations use the MPS representation with the same number of degrees
of freedom and all expand the time evolution operator with four Hamiltonian ap-
plications. Solely the method to express the time evolved state has changed. Again,
this is not a consequence of poorly converged time evolution parameters, but can
be accounted to the non-linear entanglement of the time evolution method and
the MPS representation. The time step size is chosen reasonably small such that
all time-evolution methods (fourth-order Runge–Kutta and Krylov) should show the
same dynamics (see Appendix A.1). This demonstrates, choosing the optimal time
evolution method is relevant for finding the optimal MPS representation of the time
evolved state, where in this example, the two unitary Krylov methods are superior
to the non-unitary Runge–Kutta expansion. The form of the Krylov space method
(orthogonalized and non-orthogonalized) has no significant impact on the accuracy
of the many-body Green’s function. In this example, we see similar absolute errors
with respect to the complete many-body state for both methods.

These two features of the Runge–Kutta method and the Krylov method also display
in the frequencies dependent one-body Green’s function (see Figure 4.14). For the
major peaks of the imaginary part (compare Figure 4.8) we see improved accuracy
of the two Krylov methods compared to the Runge–Kutta method. The peaks from
the Runge–Kutta method are close to the full CI peaks, however, they are slightly
shifted towards frequencies larger in magnitude. The two Krylov space methods
perform well in peak position and height, where the orthogonalized approach is
almost indistinguishable from the quasi exact results.
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With this we can conclude the Krylov space time evolution method to be well suited
for the time-dependent MPS and we should not rely on the too simple Runge–Kutta
approach longer. In this example, the results obtained by using the Krylov space
methods are significantly more accurate, while requiring the same amount of compu-
tational resources. We account this to the conservation of unitarity of the Krylov space
methods. We continue by analyzing the Krylov space method in the following.

4.3.2 Krylov Space Methods

Now we want to discuss the different options for the Krylov space method in more
detail. In the previous section, we have already seen that the Krylov space meth-
ods perform better on MPS than its non-unitary competitor, i.e. the fourth-order
Runge–Kutta method. In this section, we want to analyze the various convergence
parameters of the Krylov space methods in detail. We focus on the size of the Krylov
space NKry , the time step size ∆t , and on the option of using orthogonal or non-
orthogonal Krylov basis vectors.

We perform this comparison at the example of the water molecule, which we already
discussed in Section 4.2.1 and Section 4.2.2. We describe it on the 6-31G basis set
level, which gives us, after the Hartree–Fock calculation, a set of 13 molecular orbitals.
This orbital set is within the dimension where we can perform calculations using the
complete many-body state.

Single Ionization

As the initial state, we use the Hartree–Fock ground state, with a sudden ionization
at the core orbital (MOcore), i.e. the 1s orbital of the oxygen atom (see Figure 4.9 b)).
In the analysis of the MPS representation performed previously in Section 4.2.1, this
was the most difficult situation for the MPS approach we have encountered. The
large excitation energy a core hole brings along challenges the MPS representation
most. The time evolution method used there (orthogonalized Krylov with NKry = 6
and ∆t = 1as) was able to find the correct OBRDM within an error of ≈ 12% for
single ionization, however, showing only little improvement with respect to MPS
bond dimension. We want to pick this initial state, as we see in this situation the
largest opportunity for improvement of the MPS approach.

In Figure 4.15, we see the relative error of the OBRDM increasing with time. The
OBRDM was first calculated using the complete many-body state with the orthogo-
nalized Krylov method with Krylov space dimension NKry = 6 and a time step size of
∆t = 0.484as . Then we calculated the OBRDM using the MPS representation with
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Figure 4.15.: Error of the one-body reduced density matrix for two Krylov space time evo-
lution methods. The corresponding quasi exact calculation employs a Krylov
space dimension of NKry = 6 and a time step size of ∆t = 0.484as . This figure
is published in Frahm [219].

a maximum bond dimension D = 60, but once with orthogonalized Krylov space
method and once with the non-orthogonalized. Figure 4.15 shows the relative er-
rors of these two calculations with respect to the quasi exact calculation using the
complete many-body state.

We observe the linearly growing error of the OBRDM we have seen before for the
hydrogen chain (see Figure 4.5), however, with slopes depending on the time evolution
method. Using the non-orthogonalized Krylov method the error grows to 5% after 1f s ,
whereas when using the orthogonalized Krylov method the error grows almost twice
as fast to 10% in the same period. In this example, the non-orthogonalized Krylov
method allows to reduce the error significantly. Therefore, tweaking the Krylov space
properties does affect the accuracy of the MPS approach, which eventually reduces
the necessary bond dimension to achieve a given precision. A detailed analysis of the
Krylov time evolution method may allow us to find the optimal parameters for time
evolution using MPS and tells us what intrinsic mechanisms in the MPS limit the time
evolution.

We observe improvements when using the non-orthogonal approach, which allows
to reduce the relative error of the OBRDM by 50%. Waiving the orthogonalization
improves the MPS representation of the many-body state. Using MPS with limited
bond dimension inevitably reduces their flexibility to represent the time evolved state
correctly. An efficient use of the remaining coefficients is therefore essential when
optimizing the MPS to represent the correct time evolved state. When constructing
the orthogonalized Krylov vectors in MPS representation however, the MPS sacrifice
their Krylov space property to the additional constraint of being orthogonal to other
Krylov vectors. This additional constraint makes them leave the Krylov space (due to
truncation errors in the variational procedure) and the Krylov space is not spanned
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properly anymore. This constraint is absent when using non-orthogonal Krylov space
vectors in the first place. When using the non-orthogonal Krylov vectors, the Krylov
vectors are already much closer to the different orders of the Taylor expansion of the
time evolution operator

Û(∆t) |Ψ(t0)〉 = |Ψ(t0)〉︸ ︷︷ ︸
|ψ0〉

−i h̄∆t Ĥ |Ψ(t0)〉︸ ︷︷ ︸
|ψ1〉

+1
2 h̄2∆t2 Ĥ2 |Ψ(t0)〉︸ ︷︷ ︸

|ψ2〉

+ · · · , (4.21)

with |ψi〉 being the i-th non-orthogonalized Krylov vector. Although the construction
of the time evolved state goes beyond the expansion in Equation 4.21 in the Krylov
space method, it is a good picture to understand why the non-orthonormalized Krylov
method performs better than its orthogonalized counterpart.

We now discuss the convergence of the Krylov method based time evolution using
MPS by varying the MPS bond dimension, the Krylov space dimension NKry , the time
step size ∆t , and the Krylov basis vector type. In Figure 4.16 we see the color mapped
relative error after a period of 1f s , but averaged in an interval of 50as . The calculations
using the complete many-body state uses the orthogonalized Krylov method and
a Krylov space dimension of NKry = 6. Further, the calculation compared to uses
the same time step size as the MPS approach, such that time points for comparison
match exactly. The Krylov parameters are well converged, even for the largest shown
time step size 2.25as . For the calculation using the complete many-body state, the
results are independent whether we use a time step size of ∆t = 2.25as (maximum
shown) or ∆t = 0.25as (minimum shown). The relative difference of the respective
OBRDM is |γ∆t=0.25as

FCI − γ∆t=2.35as
FCI | ∼ 0.4%, i.e. negligible on the color scale of Figure

4.16.

We see that all calculations converge to a minimal error when increasing the MPS
bond dimension D. This happens especially systematically when using the orthogonal-
ized Krylov space method (upper row of Figure 4.16). While the full CI decomposition
of the MPS approach is DFCI = 608, already at bond dimension of D = 80 for the
orthogonalized Krylov method the resulting OBRDM is calculated within an relative
error of 10%. The necessary bond dimension to achieve an error of 10% with the
non-orthogonalized Krylov space method is even lower (lower row of Figure 4.16).
Here it ranges between D = 40 and D = 50 depending on the time step size ∆t
and the dimension of the Krylov space NKry . This is an essential reduction of the
MPS bond dimension, leading to a significant computation advantage. Remember:
The complexity of the MPS representation scales with D3, therefore decreasing the
bond dimension by 50% corresponds to a reduction of the computation time to an
eighth.
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This reduction of the MPS bond dimension comes at the cost of smaller time step
sizes ∆t needed for the non-orthogonalized Krylov space method. For example when
using the Krylov space dimension NKry = 5, the time step for the non-orthogonalized
Krylov method needs to be close to ∆t = 1.125as to achieve an error of 10%, whereas
the orthogonalized Krylov method is already stable at a time step of ∆t = 2.25as . This
is a disadvantage of the non-orthogonalized Krylov space method: It requires shorter
time steps and therefore requires more time steps to propagate to some fixed point
in time. The increased number of time steps reduces the computational advantage
we gained due to the smaller bond dimensions. However, since the number of time
steps only grows reciprocally with decreasing time step size, it is still beneficial to use
the non-orthogonalized method in this situation. The orthogonalized Krylov method
with a Krylov space dimension of NKry = 5, a time step size of ∆t = 2.25as and an
MPS bond dimension of D = 80, gives the OBRDM within an error of 10%. To achieve
the same accuracy with the non-orthogonalized Krylov space method with NKry = 5,
we need to reduce the time step size to ∆t = 1.25as , but can also decrease MPS bond
dimension to D = 40. Eventually, if using these settings, the calculation using the
non-orthogonalized Krylov space method will finish twice as fast as the calculation
using the orthogonalized Krylov space method.

However, we also observe an issue with the non-orthogonalized Krylov space ap-
proach. When using MPS with small bond dimensions, the non-orthogonalized Krylov
basis vectors tend to become linear dependent very quickly. This happens in particular
if the state to be time-evolved is close to an energy eigenstate, i.e. Ĥ |ψ0〉 ≈ E |ψ0〉.
Then, the first Krylov vector |ψ0〉MPS , the second Krylov vector Ĥ |ψ0〉MPS , and all fol-
lowing Krylov vectors Ĥn |ψ0〉MPS are close to being linearly dependent. The overlap
matrix as given in Equation 3.38 approaches singularity and numerically calculat-
ing its inverse becomes unstable. The initial state in our study, i.e. a single 1s hole
in Hartree–Fock ground state, is such a state close to an eigenstate according to
Koopmans’ theorem. Therefore, linearly dependent Krylov basis vectors clutter the
expansion of the time evolved state in Equation 3.38, which then results in noisy
results when performing convergence analysis. Further, does in such situations a
larger Krylov space dimension not guarantee better results, as the issue with linear
dependent Krylov basis vectors enhances in lager Krylov spaces (see dependence
on NKry in Figure 4.16 ). This effect needs to be balanced by reducing the Krylov
space dimension and by reducing the time step size of the time evolution. There-
fore, the non-orthogonalization Krylov method requires smaller time steps than its
orthogonalized counterpart.

The non-orthogonalized Krylov approach must not be applied if the initial state is
close to an eigenstate. Coincidentally, the orthogonalized Krylov method allows
for efficient treatment here, as it orthogonalizes the Krylov vectors and the overlap
matrix is close to a diagonal matrix.
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Our implementation of the Krylov space time evolution does not suffer from the
effect that the quality of the results declines if using small time steps. In work by
Ronca et al. [60] they encountered an issue if the time steps were chosen small.
In their implementation of fourth-order Runge–Kutta method, that works on local
MPS tensors instead of the global MPS object, the increased number of truncation
steps pollutes the MPS representation and the resulting dynamics emerge erroneous.
They had to choose the time step size first to be large, such that the number of
MPS truncations can be reduced and second to be small to reduce the error of the
Runge–Kutta method (see Supporting Information of [60]). These contradicting
demands limits applicability. In our Krylov space method, where every Krylov vector is
represented by its own MPS, we do not see any issues with small time steps. Contrarily,
we see the error of the MPS representation to decrease for the non-orthogonalized
Krylov space method and small time steps.

Double Ionization

Previously in Section 4.2.2, we noticed that the MPS approach struggles when repre-
senting dynamics resulting from double ionization of a core orbital. We accounted
this to the large excitation energy a double ionization introduces to the system, which
induces heavily entangled states. Let us now analyse, if the MPS representation is
able to cover the entanglement more effectively when propagated using the non-
orthogonalized Krylov space method. As initial state, we again choose the most
challenging situations found in Section 4.2.2, i.e. a double hole located at the 1s
orbital of the oxygen atom of the water molecule.

Figure 4.17 shows for the orthogonalized Krylov space method (upper row), that we
need very large MPS bond dimensions D and very short time steps ∆t in order to
describe the doubly ionized situation within an error of less than 10%. Only in the
limit of D = 150 and ∆t = 0.3as it is able to approach the OBRDM calculated from
the complete many-body state, whereas the results are independent of the Krylov
space dimension NKry . This bad performance of the orthogonalized Krylov space
method was already discussed in Section 4.2.2.

When turning to the non-orthogonalized Krylov space method, the results drastically
improve with respect to both, MPS bond dimension D and time step size ∆t (see lower
row in Figure 4.17). We see for all Krylov space dimensions an improved convergence,
where the Krylov space dimension of NKry = 5 appears to be optimal. Here, only
an MPS bond dimension of D = 90 and a time step size of 1.25as is required to
find the OBRDM within an error of less than 10%. Again, for the calculation using
the complete many-body state, it does not matter if we use a time step size of
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∆t = 2.25as (maximum shown) or ∆t = 0.25as (minimum shown) as both are small
enough for the chosen Krylov space dimension NKry . The relative difference of the
respective OBRDM is |γ∆t=0.25as

FCI − γ∆t=2.35as
FCI | ∼ 2.1%, i.e. minor on the color scale of

Figure 4.17.

This confirms the conclusions drawn from the singly ionized situation. First, the MPS
approach is able to handle more entanglement when using the non-orthogonalized
Krylov space method. Previously, we explained the improved performance of the
non-orthogonal Krylov space method by the more efficient usage of the reduced
number of degree of freedom. In the orthogonalized Krylov space method some of
them are wasted with respect to keep the Krylov vectors orthogonal. However, in the
non-orthogonalized Krylov space method, the MPS is directly optimized to represent
the time-evolved many-body state. This enables the non-orthogonal MPS represen-
tation to embed entanglement more accurately, which is in particular important in
highly excited states, such as the double hole ionization discussed here. Second, the
non-orthogonal Krylov space method may not be applied when discussing states close
to eigenstates of the Hamiltonian. For the single ionization, we noticed noisy conver-
gence with respect to the time step size, which we accounted to a problem if states
are close to eigenstates. In the doubly ionized situation discussed now, Koopmans’
theorem does not apply and we can assume that the initial state is far from being an
eigenstate of the Hamiltonian. With the initial state being not an eigenstate, also the
noise vanishes in the convergence of the time step size ∆t . Now, the results of the
calculation using the non-orthogonalized Krylov space method converges smoothly
and it should be easy to achieve convergence if there are not quasi exact results to
compare to.

4.3.3 Conclusion

In this section, we discussed three different methods to time-evolve a many-body
state in MPS representation. We observed a strong dependence on the MPS repre-
sentation and the time evolution method. This proves that at least some degree of
entanglement in the MPS representation is artificial and can be removed by choosing
the time evolution method wisely. We can conclude, the Krylov space time evolution
methods are superior to the fourth-order Runge–Kutta method, due to unitarity prop-
erties. The Krylov method is able to reduce the absolute error of the time-dependent
Green’s function, as well as the relative error of the OBRDM. We displayed this at the
example of the hydrogen chain.

For the Krylov method, we see an additional advantage of the non-orthogonalized
Krylov space method in comparison to the orthogonalized Krylov space method. We
related this benefit to intrinsic properties of the truncated MPS representation of
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the many-body state, where the reduced number of degrees of freedom are used
more efficiently when using the non-orthogonalized Krylov space method. However,
this advantage is not universal, as there are situations where the Krylov basis vectors
need to be orthogonalized to achieve accurate results. We demonstrated this at the
example of an initial state that is close to an eigenstate of the Hamiltonian.

4.4 Conclusions

In this chapter, we analyzed the performance of the MPS approach in describing time-
dependent problems for different families of molecules. Starting from the hydrogen
molecule, we showed how truncated MPS are able to describe the dynamics on a
quasi exact level. Continuing to the chain of hydrogen atoms, we described the large
potential of the MPS representation in reducing the number of degrees of freedom
dynamically. We demonstrated this by discussing the relative error of the two-body
reduced density matrix, as well as the relative error of the one-body density matrix.
Further, we demonstrated the accuracy of the MPS method at the example of the
one-body Green’s function, in both, the time domain, as well as in the frequency
domain.

Discussing more realistic molecules, we showed the good performance of the MPS
approach in describing the dynamics of the OBRDM after the molecule has been
singly or doubly ionized. In the direct comparison with full CI results, we chose the
hydrogen fluoride molecule, the water molecule, the ammonia molecular, and the
methane molecule. For all these molecules the relative error of the OBRDM converged
with increasing MPS bond dimension.

In a comparison of the time evolution methods, we analyzed the fourth-order Runge–
Kutta method, the orthogonalized Krylov method, as well as the non-orthogonalized
Krylov method. We see the two Krylov methods to work particularly well with the
MPS approach, where the non-orthogonalized Krylov method allows to further reduce
the necessary MPS bond dimension in special circumstances. With this, we know
about the capabilities of the MPS representation and can proceed by applying it to
situations where quasi exact results from the complete many-body state are beyond
today’s computational means.
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5
Role of Correlation to Electron
Migration in Iodoacetylene

After we have analyzed the performance of the MPS representation in Chapter 4, we
are now in the position to employ the MPS representation to molecules, where a
description using the complete many-body state is beyond modern computational
means. Although the systems discussed in the previous chapter included realistic
models of stable molecules, the 6-31G Gaussian orbital set for characterization of the
one-body states is considered basic in quantum chemistry community. To allow for a
quantitative description of the electron dynamics in the molecule we need a more
elaborate orbital basis set, which inevitably enlarges the dimension of the many-body
Hilbert space. The larger orbital sets increase the complexity of the calculations and
an efficient representation of the many-body state is necessary to numerically solve
the time-dependent Schrödinger equation of the electrons in the molecule.

In the following chapter, we employ the MPS representation to study charge mi-
gration effects in iodoacetylene C2HI on a quantitative level that allows for direct
comparison to experiments. We study iodoacetylene that has been single ionized at
the iodine atom and discuss the resulting dynamics with respect to a recent experi-
ment by Kraus et al. [5]. Using the MPS representation, we find migration frequencies
in direct agreement with the experiment, outrunning previous studies performed
on this system. To understand the origin of the migration frequencies, we analyze
the dynamics and find that considering electronic correlation is essential in this
situation. We support this conclusion by examining the role of correlations in the
time-dependent MPS state and compare to calculations of uncorrelated and corre-
lated eigenstates. Finally, we discuss the impact of nuclear geometry to preclude that
the dynamics are subject to nuclear induced dephasing that was reported elsewhere
[84].

Parts of this chapter have found consideration in the Journal of Chemical Theory and
Computation [219].
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Figure 5.1.: The iodoacetylene molecule at
its equilibrium geometry. The
geometry was optimized on
the Hartree–Fock level, using
Stuttgart/Cologne ECP46MDF
and ECP2MWB effective core
potentials and the associated
Gaussian basis sets. The hydro-
gen atom is included on the
6-31G Gaussian basis set level.

1.05Å 1.20Å 2.00Å

5.1 Charge Migration in Iodoacetylene

The following study was motivated by an experiment performed by Kraus et al., who
were able to resolve ultrafast electron dynamics in the iodoacetylene molecule by
using high-harmonic spectroscopy [5]. They showed considerable control over the
entire processes while achieving a temporal resolution of≈ 100as . In collaboration
with theory, they tracked charge migration following strong-field ionization spatially
and temporally. Further, a time-dependent density functional theory (DFT) study by
Wörner et al. [261] was able to describe the electron dynamics quantitatively, however
the major frequency differed from the experimental result by 17%, indicating that
DFT is missing important aspects of the situation.

In this section, we use the MPS approach to understand the processes that are the
fundamental reason behind charge migration on the femtosecond scale. Furthermore,
we study how the MPS approach is able to resemble the experimental setting and
extract the role of electronic correlations in this situation.

The molecule discussed is iodoacetylene C2HI, which expands in one dimension hav-
ing the two carbon nuclei at its center surrounded by one hydrogen atom and one
iodine atom (see Figure 5.1). Being a linear molecule, iodoacetylene exhibits a C∞ν
point group symmetry, which is a non-abelian symmetry group (see Section 3.1).
The Hamburg CheMPS2 extension is only able to handle abelian point groups, we
therefore describe the molecule with respect to the closest point group C2ν . In the
experiment, iodoacetylene was chosen due to its special characteristics with respect
to strong-field ionization. Strong-field ionization is able to leave the molecule with
multiple populated electronic states of the cationic molecule, whose coupling de-
pends on the relative orientation of the molecular axis and the polarization direction
of the laser. In case of perpendicular molecular axis and field polarization direction,
which they controlled using a much slower alignment pulse, the molecule evolves
field-free dynamics.
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We model the experimental situation on an ab initio level, however, we describe
electrons in core orbitals using effective core potentials. This is a popular method
to reduce the number of active electrons considered directly in the model, which
especially simplifies the study of heavy atoms such as iodine [262–264]. For heavy
elements, most chemical bonds involve electrons that are located in higher orbitals,
therefore we can remove electrons in core orbitals from the calculation with little
error. In this study, we employ the Stuttgart/Cologne pseudopotentials [72, 265] ,
where we remove 46 electrons from the iodine atom, leaving it with 7 active electrons
only. The used ECP46MDF [72] effective core potentials were obtained from a multi-
electron fit of the atomic valence energy spectra and it encompasses relativistic
effects in the iodine atom. Furthermore, we remove 2 electrons from each of the
carbon atoms using the ECP2MWB [265] effective core potential, leaving it with 6
electrons. For the carbon atom we do not employ any relativistic corrections. We use
the accompanied Gaussian basis set for the iodine atom and the carbon atoms that
were specifically optimized for the given effective core potentials. The hydrogen atom
in iodoacetylene is included using the 6-31G Gaussian basis set. In total, we describe
the iodoacetylene molecule using 16 electrons in a set of 34 orbitals.

Prior ionization, we assume the iodoacetylene molecule to be in its uncorrelated
(Hartree–Fock) ground state |Ψ0〉 and at its equilibrium (Hartree–Fock) geometry.
Using the quantum chemistry program package Molpro, we find the geometry as
given in Figure 5.1, that only differs slightly to the geometry given by Kraus et al.
[5], who used more elaborate methods than our Hartree–Fock approach to find the
equilibrium geometry. After the Hartree–Fock calculation, we not only have the
equilibrium geometry, but we also obtain molecular orbitals, which serve as a one-
body orbital basis for the many-body state (see Section 2.2.1, analogous to what we
performed in Chapter 4).

Figure 5.2 shows the valence orbitals of the iodoacetylene molecule, as well as, its
lowest four virtual orbitals (more are included in the calculation but not shown in
the figure). The orbitals are separated by the irreducible representations of the C2ν
symmetry of the iodoacetylene molecule. The molecule does not have any orbitals
belonging to the B2 symmetry in our model.

In our study, we focus on the field-free time evolution after the ionization process.
We completely waive the ionization process in our model, but consider the ionization
to happen suddenly at t0. Considering the electric field of the ionization pulse is
possible and has been studied by Weißler [266], however, here we neglect it and
assume the electron to be suddenly removed at time t0 and no external fields perturb
the molecule in the period t > t0. In time-dependent DFT calculations preceding the
experiment (see Supplemental Information of [5]), it was shown that the interaction
with the laser pulse dominantly couples the neutral ground state to the cationic
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Figure 5.2.: Energy diagram of the molecular orbitals of the iodoacetylene molecule. The
molecular orbitals are obtained on the Hartree–Fock level using Stuttgart/-
Cologne effective core potential and the associated basis sets. The orbitals are
categorized by the irreducible representations of the C2ν point group.
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Figure 5.3.: Molecular orbitals and hole densities used to construct the initial state discussed
observed in the experiment.

state with an ionization in the HOMO (|HOMO〉 = ĉHOMO |Ψ0〉) and to the state with
ionization at the HOMO-1 (|HOMO-1〉 = ĉHOMO-1 |Ψ0〉). Excitation to cationic states
with an ionization at the HOMO-2 (|HOMO-2〉 = ĉHOMO-2 |Ψ0〉) and higher is negligible.
Based on this result, we construct our initial state as linear combination of the state
|HOMO〉 and the state |HOMO-1〉.

Further, in the experiment Kraus et al. were able to obtain the phase relation of the
state |HOMO〉 and the state |HOMO-1〉 at the time of the ionization. They found a
small phase difference between the two states (φ = −0.34± 0.37). Here, we assume
no phase difference to be present in the initial state and construct the state at time
t0 (see Figure 5.3)

|Ψ(t0)〉 = 1√
2

(|HOMOB1〉+ |HOMO-1B1〉) , (5.1)

where we chose the hole to be created in molecular orbitals of irreducible representa-
tion B1. Creating the hole in the degenerated orbitals of irreducible representation
B2 is physically equivalent.
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Hole Migration

The time-dependent electron density of the molecule can be calculated from the one-
body reduced density matrix (OBRDM) and the single electron orbitals. The electron
density at time t and position r is given by

ρ(r, t) =
∑

i j
γi j(t)φi (r)φ∗j (r), (5.2)

where γi j(t) is the time-dependent OBRDM as defined in Equation 2.47 and φi (r)
are the molecular orbitals obtained from the Hartree–Fock calculation. Using this
quantity, we can find the hole density by comparing the electron density of the cation
to the electron density of the neutral Hartree–Fock ground state. The time-dependent
hole density is then given by

ρ1h(r, t) = ρHF (r)− ρ(r, t), (5.3)

where ρHF (r) is the electron density of the molecular orbitals obtained from the
Hartree–Fock calculation.

The linear combination of cationic states as given in Equation 5.1 prepares the system
with strong hole localization at the iodine atom. In Figure 5.3, we see the signful
representation of the molecular orbitals, as well as the corresponding hole densities
when preparing a hole in the respective state. Where both states, |HOMOB1〉 and
|HOMO-1B1〉, show a rather delocalized hole at the iodine and at the two carbon
atom, the linear combination as given in Equation 5.3 has strong hole localization at
the iodine atom, just as described in the experiment. This leaves us with an initial
state with dominant hole population at the iodine atom. If we choose the relative
phase between the states |HOMOB1〉 and |HOMO-1B1〉 as π, the hole localizes at the
acetylene, which is a state we will encounter within the dynamics.

Now, we study the electron dynamics following a sudden preparation of the initial
state as given in Equation 5.1. This initial state is neither an eigenstate of the one-body
Hamiltonian used in Hartree–Fock, nor is it an eigenstate of the Hamiltonian living on
the many-body Hilbert space. Therefore, the system will evolve dynamics, expectedly
on an atto- to femtosecond time scale. Describing these dynamics is difficult however,
as we have now 15 electrons occupying a set of 34 molecular orbitals. Treating this
using the complete many-body state is beyond today’s computational capabilities.
Therefore, we are going to use the MPS approach, since we have seen in Chapter 4
it is able to represent the many-body state accurately depending on the MPS bond
dimension and the period of time we are interested in. To simplify the convergence
analysis, we use the orthogonalized Krylov space method to propagate the MPS in
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Figure 5.4.: Snapshots of the time-dependent hole density. The used MPS bond dimension
is D = 200. For time-evolution we use the orthogonalized Krylov space method
with a Krylov space dimension NKry = 5 with time step size ∆t = 1as . (a) in the
initial state, most of the hole is located at the iodine atom; (b) the hole migrates
to the acetylene leaving the iodine neutral; (c) after 1.85 the hole migrated
back to the iodine atom again; (d) the hole moved to the acetylene part of the
molecule again.

time, although, we discussed in Section 4.3.2, that the non-orthogonalized Krylov
space method can be computational beneficial in special circumstances. However, the
non-orthogonalized method requires additional convergence analysis with respect
to the time step size ∆t and the Krylov space dimension NKry . To limit the extend
of this analysis, we use the orthogonalized approach with conservative Krylov space
parameters. In the following calculations, we use a Krylov space dimension of NKry =
5 and a time step size of ∆t = 1as . When comparing these parameters with the
performance analysis we conducted in Section 4.3.2 on the water molecular (see
Figure 4.15), we can expect these parameters to give stable time evolution parameters.
The open question is how large the bond dimension of the MPS approach needs to be
to describe the time-evolution in this physical situation. We will therefore vary the
bond dimension in the following, to make sure the dynamics are stable with respect
to the part of the many-body Hilbert space covered by the MPS representation.

In Figure 5.4 we see snapshots of the time-dependent hole density for four distinct
points in time. The initial state shows the strong hole localization at the iodide atom,
with the remaining molecule being unaffected by the ionization pulse. Following
the sudden ionization at time t0, the hole starts to migrate nearly completely to the
acetylene part of the molecule, leaving a neutral iodine atom behind after 0.93f s . At
time 1.85f s , the hole has migrated to the iodine atom again, by showing electron
dynamics very similar to that in the initial state. This oscillation between the iodine
atom and the acetylene continues, as we observe, the hole is again at the acetylene
part after 2.77f s in a state very similar to what we have seen at time 0.93f s already.
For times t > 2.77f s this oscillation continues, although, the MPS representation of
the many-body state becomes prone to errors for periods > 3f s , therefore dynamics
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need to be considered carefully in this period. These results were obtained from
a calculation using MPS bond dimension D = 200 and 26 orbitals, which is well
converged (see Appendix A.2 for analysis of the MPS bond dimension and the number
of included orbitals).

The snapshots in Figure 5.4, show the hole density at the measured transition points
in the experiment [5, 267]. There, they see a similar oscillatory motion of the hole
between the iodine atom and the acetylene with an oscillation period of 1.85f s .
The shown densities in Figure 5.4 compare nicely to previous results, although, we
encounter some additional features in the hole densities that are absent in earlier
reports. These are a consequence of our extensive model of the situation. Where the
study by Kraus et al. considered the system as effective two-level system (|HOMO〉
and |HOMO-1〉, or its correlated partners), we included the entire many-body Hilbert
space, although represented in its truncated MPS representation. Therefore, we
model the system much more fundamentally, which then induces additional features
into the hole density. Nevertheless, the major features of the charge motion agree
in both studies. Describing the period of migration has been proven challenging
in previous studies using the time-dependent DFT method with a Perdew-Burke-
Ernzerhof functional. In previous work by Wörner et al. [261], they found the migration
to occur with an oscillation period of 2.13f s , which deviates from the experimental
value of 1.85f s [267] by 17%. Especially when considering the time resolution of
≈ 100as in the experiment.

Population Analysis

To quantify the oscillation we need an appropriate observable indicating the location
of the hole. In the previous work by Wörner et al., they discussed the time-dependent
electric dipole moment of the molecule, which relates to the displacement of the
electron in the molecule. In contrast to their work, we are going to assign the electrons
in the molecules to specific atoms by using Löwdin population analysis [61]. Using
Löwdin population analysis, we will be able to quantify how the hole spreads over
the individual atoms of the molecules. Using the populations, we are then able to
extract the oscillation period of the hole migration that we have seen in Figure 5.4
precisely.

Löwdin population analysis allows us to assign each electron in the molecule to an
atom. We are able to observe, how many electrons are in orbitals located at the iodine
atom, how many electron are in orbitals located at the two carbon atoms and how
many electrons are located in orbitals located at the hydrogen atom. To achieve this,
we project the electron density onto orthogonalized atomic orbitals that are centered
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at the nuclei. Let us start from the integrated electron density given in Equation 5.2
and expand it in terms of molecular orbitals

N =
∫
ρ(r, t)dr (5.4)

=
∑

i j
γi j(t)

∫
ψi (r)ψ∗j (r)dr, (5.5)

where γi j (t) is the time-dependent OBRDM as given in Equation 2.47 and ψi (r) are the
molecular orbitals we used to construct the many-body state. The molecular orbitals
are themselves linear combinations of atomic orbitals. Expanding the molecular
orbitals in terms of atomic orbitals gives

N(t) =
∑
αβ

∑
i j
γi jciαc∗jβ


︸ ︷︷ ︸

γ̃βα

∫
φα(r)φ∗β(r)dr︸ ︷︷ ︸

Sαβ

=
∑
β

(γ̃S)ββ = tr(γ̃S), (5.6)

where we now understand the matrix element (γ̃S)ββ as occupation numbers of
atomic orbital φβ . S is the overlap matrix we already came across in Equation 2.15.
Assuming that each atomic orbital is centered at one of the nuclei, we can account
the total number of electrons in orbitals located at that nuclei. This procedure is
called Mulliken population analysis [61]. However, Mulliken population analysis has
the disadvantage that atomic orbitals can be occupied by more than two electrons.
This is a consequence of the non-orthogonality of the atomic orbitals, which makes
interpretation of the results difficult. However, this can be fixed easily by orthogo-
nalizing the atomic orbitals. By using the permutation rule in the trace operation we
obtain

N(t) = tr(γS) = tr(S 1
2 γ̃S 1

2 ) =
∑
β

(
S 1

2 γ̃S 1
2
)
ββ

, (5.7)

where now
(

S 1
2 γ̃S 1

2
)
ββ

is the occupation number of the orthogonalized atomic

orbital φOrth
β which is upper bounded at occupation number 2 but is still centered at

one of the nuclei. Using these occupation numbers, we can attribute a given number
of electrons to each atom, which then helps us to quantify the time-dependent
location of the hole in the iodoacetylene molecule.

We see the results of this hole population analysis in Figure 5.5, which shows the
partial hole charge at the iodine atom and at the acetylene part of the molecule for
the first 3f s after a sudden ionization at time t0. Initially, at time t = t0, the hole is
almost entirely located in orbitals associated with the the iodine atom. The follow-
ing dynamics show the behavior we already observed in Figure 5.4, however, now
revealing the oscillation period. For comparison with the experiment, we highlighted
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Figure 5.5.: Time-dependent partial hole charge at the iodine atom and at the acetylene part
of the iodoacetylene molecule. The many-body state was represented using the
MPS approach with different bond dimensions D to demonstrate convergence.
The time-evolution was done using the orthogonalized Krylov space method
with Krylov space dimension NKry = 5 and the time step size ∆t = 1as . For
reference, transition points of the experimental oscillation [267] are indicating
using vertical lines. The vertical line at 2.77f s was added for completeness. This
figure is published in Frahm [219].

transition points in the dynamics measured, namely the vertical bars at 0.93f s , 1.85f s ,
and 2.77f s . They fit correctly to the revival points of the dynamics in our MPS based
calculation with an error below the temporal resolution of the experiment.

Figure 5.5 additionally shows the hole population for various bond dimension pa-
rameters of the MPS approach. From the calculations with MPS bond dimensions
within the range of D = 150 and D = 300, we see no significant dependence of the
qualitative behavior of the dynamics. For all these bond dimensions, the resulting
dynamics are converged and we can assume that the results resolve the dynamics
accurately. This is the largest system we have discussed using the MPS approach
so far, where full CI bond dimension as large as DFCI = 6077943. Still, we see no
significant increase of the necessary bond dimension to obtain properly converged
results. Again, MPS with bond dimension of D = O(100) are sufficient to resolve the
dynamics, which shows even in this physical situation the electron entanglement is
limited and can be represented with MPS of small bond dimension.

This raises the question if the dynamics are correlated at all, given the situation of
MPS with really small bond dimension being able to reproduce the experimental
results. Although the DFT calculations performed for this situation suggest that
at least some correlations are present and required, maybe a simple model to the
situation is able to reproduce the dynamics equally well.

136 Chapter 5 Role of Correlation to Electron Migration in Iodoacetylene



0f s 0.5f s 1.0f s 1.5f s 2.0f s 2.5f s 3.0f s
0

0.2

0.4

0.6

0.8

1

t − t0

Partial Charge

H C C
I

H C C
I

1√
2

(
|HOMOA1 〉 + |HOMO − 1A1 〉

)

1√
2

(
|HOMOA1 〉 − |HOMO − 1A1 〉

)

Figure 5.6.: Partial hole charge of the iodine obtained from the MPS representation with
bond dimension D = 300 (solid) and from a simplified two-level model using
the Hartree–Fock orbitals (dotted).

Two-Level Model Based on Hartree-Fock Orbitals

We will try to describe the physical situation with an uncorrelated model and see if
this allows to find the same oscillation period of 1.85f s that we see in the MPS calcula-
tion and in the experiment. When neglecting correlations, the states |HOMOB1〉 and
|HOMO-1B1〉 are eigenstates of the many-body Hamiltonian (Koopmans’ theorem).
Our initial state is the same superposition as we discussed before (see in the upper left
of Figure 5.6) with most hole location at the iodine atom. If the states |HOMOB1〉 and
|HOMO-1B1〉 are eigenstates, we can consider the molecule as an effective two-level
system and neglect all other states. Changing the phase relation between the states
by π gives a state that has most of the hole population located at the acetylene part
of the molecule, just as it was observed in the experiment (see in the lower left of
Figure 5.6).

Now, in the effective two-level model, the dynamics are directly described by the
energies of the two cationic states |HOMOB1〉 and |HOMO-1B1〉. The energies can be
accessed by the ionization potential (IP) coming with every Hartree–Fock calculation

Ei = E0 + IPi , (5.8)

where E0 is the Hartree–Fock energy of the neutral molecule and IPi is the IP of
the orbital i . The IP is the energy necessary to ionize the neutral molecule from its
(Hartree–Fock) ground state |Ψ0〉 to the cationic state with an electron removed
in orbital i . For example, the energy IPHOMOB1

is necessary to ionize the molecule
via the channel |Ψ0〉 → |HOMOB1〉. From the IP, we get the energy gap ∆E =
IPHOMOB1

− IPHOMO-1B1
between the two states, which ultimately determines the
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Figure 5.7.: Energy level scheme including hole densities for the cation comparing uncorre-
lated eigenstates with correlated eigenstates. (left) the uncorrelated eigenstates
of the cationic molecule and corresponding energy levels. The uncorrelated
orbitals indicate a oscillation period of 1.53f s , which underestimates the ob-
served migration period. (right) Correlated eigenstates of the cationic orbitals
as obtained by the DMRG method. The MPS bond dimension to represent the
correlated state was D = 100. With 1.75f s , the oscillation period is now close to
the observed migration oscillation and within the resolution of the experiment.

oscillation period in our two-level system. The time-dependent state in this model
evolves like

|Ψ(t)〉 = 1√
2

(
e
−i
h̄ EHOMOB1

t |HOMOB1〉+ e
−i
h̄ EHOMO−1B1

t |HOMO-1B1〉
)

(5.9)

= 1√
2

e
−i
h̄ EHOMOB1

t (|HOMOB1〉+ e −i
h̄ ∆Et |HOMO-1B1〉

)
, (5.10)

where e
−i
h̄ EHOMOB1

t is a global phase that is unaccessible experimentally. Only the
relative phase e −i

h̄ ∆Et determines the electron dynamics. From the Hartree–Fock cal-
culation, the molecular orbital |HOMOB1〉 has an ionization potential of IPHOMOB1

=
9.8995eV and the molecular orbital |HOMOB1〉has an ionization potential of IPHOMO-1B1

=
12.604eV (see Figure 5.2), resulting in an energy gap of ∆E = −2.705eV . This energy
gap belongs to an oscillation period of T = 1.53f s , which is too short in comparison
to the experiment and the correlated result using the MPS approach (see Figure 5.6
).

The reason for this lies in the missing electronic correlation in the model based on two
Hartree–Fock molecular orbitals. When constructing the uncorrelated eigenstates of
the ion by using Koopmans’ theorem, we reuse the uncorrelated molecular orbitals of
the neutral molecule also for the cationic molecule. It is therefore immediately clear,
that the ionization potentials based on Koopmans’ theorem have to be considered
as upper bounds. Performing an additional Hartree–Fock calculation of the cationic
molecule would allow the molecular orbitals to relax to the ionized situation. The
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newly relaxed molecular orbitals of the cationic molecule will have smaller orbital
energies since they are optimized to the cationic situation. Therefore, already in the
one-body picture of the Hartree–Fock method, we know that Koopmans’ theorem
overestimates ionization potentials and experimental ionization potentials will be
smaller [61].

Further, when adding correlations to the representation of the many-body states, the
eigenstate will acquire an additional energy shift which is called correlation energy.
The correlation energy describes the amount of energy the electrons save by entering
correlated many-body states. Both ionized states discussed here (|HOMOB1〉 and
|HOMO-1B1〉) acquire such an energy shift (see Figure 5.7 right). The newly correlated
eigenstates of the cation further have adjusted densities, but they maintain the
character of the cationic states based on Koopmans’ theorem. The cationic state
with an electron hole in the HOMO becomes in the correlated notation |HOMOB1〉 →
|X̃ +2Π〉with an correlation energy of E corr

X̃ +2Π = −5.820eV and the cationic state with
an electron hole in the HOMO-1 becomes in the correlated notation |HOMOB1〉 →
|Ã+2Π〉with a correlation energy E corr

Ã+2Π = −6.134eV . We obtained the correlation
energies by an independent DMRG calculation of the correlated cationic states. We
use the ground state optimization algorithm for MPS as implemented in CheMPS2
[106] with a bond dimension of D = 100. Both cationic states obtain an energy shift
(E corr

X̃ +2Π and E corr
Ã+2Π ) due to the electronic correlations. The amount of correlation

energy however differs for these states, which eventually changes the gap between
the two lowest cationic eigenstates (see Table 5.1 for a summary of energies).

Previously in Chapter 4, we have seen that states with deeper holes experience a
more dominant effect by correlations, which manifested in an enlarged MPS bond
dimension necessary to describe the correlated electron motion following ionization.
From these results, we can expect that correlations in the state |HOMO-1B1〉 →
|Ã+2Π〉 to be more important than correlations in the state |HOMOB1〉 → |X̃ +2Π〉.
The correlation energy of the state |HOMO-1B1〉 → |Ã+2Π〉 is therefore larger, which
eventually reduces the energy gap between the two cationic states (see Figure 5.7).
With the reduced energy gap between the states |HOMOB1〉 and |HOMO-1B1〉, the
migration of the hole slows down. This is the reason, why our Hartree–Fock model
underestimates the oscillation period. The stronger correlations in states with a
deeper hole brings the cationic states closer together in energy and ultimately slows
down the charge migration dynamics with respect to the Hartree–Fock model.

This demonstrates that methods beyond Hartree–Fock are required to find the ac-
curate oscillation period. Both, the simple Hartree–Fock model outlined above, and
the time-dependent DFT study by Wörner et al. [261] fail to describe the dynamics
quantitatively. Where the uncorrelated model based on Hartree–Fock orbitals un-
derestimates the oscillation period, modelling the system as two-level system of
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HOMOB1 HOMO-1B1 X̃ +2Π Ã+2Π
IP 9.8995eV 12.604eV 9.373eV 11.762eV

E corr 5.820eV 6.134eV
∆E −2.705eV −2.388eV
∆t 1.53f s 1.732f s

Table 5.1.: Summary of uncorrelated and correlated eigenstates together with the corre-
sponding ionization potentials (IP), correlation energies (E corr ) and energy gaps
(∆E and ∆t) discussed in this section.

correlated states approaches the oscillation period more accurately. Also the MPS
approach forecasts the oscillation period within the resolution of the experiment,
which lets us conclude that the electronic correlations are reasonably included in our
MPS representation of the many-body state.

Green’s Function

That the correlated eigenstates are correctly included in the MPS based calculation
becomes apparent when looking at the one-body Green’s function for this situation

G(t) = 〈Ψ(t0)|e− i
h̄ Ĥ(t−t0)|Ψ(t0)〉 , (5.11)

where |Ψ(t0)〉 is the initial state as defined in Equation 5.1. By Fourier transforma-
tion of the Green’s function into the frequency domain G(ω), see Equation 4.15, we
can derive the IP of correlated states that have some overlap with the initial state
|Ψ(t0)〉.

In Figure 5.8, we see the frequency dependent Green’s function extracted from an MPS
based calculation with bond dimension D = 300. The frequency dependent Green’s
function has two major peaks, each corresponding to a correlated eigenstate of the
cationic molecule. We can assign the peaks the two correlated eigenstates X̃ +2Π
and Ã+2Π introduced above. We can attribute these two correlated states, since
we know from Koopmans’ theorem that our initial state, which is a superposition of
two uncorrelated eigenstates, needs to be close to two correlated eigenstates of the
cationic molecule. Previously, we assigned the state |HOMO− 1B1〉 → |Ã+2Π〉 and
the state |HOMOB1〉 → |X̃ +2Π〉. These are the two states observed in Figure 5.8. They
fit in energy directly to the energies obtained from an independent DMRG calculation
specifically targeting the cationic ground state |X̃ +2Π〉 and the first excited cationic
state |Ã+2Π〉.
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Figure 5.8.: Frequency dependent imaginary part of the Green’s function for the case the
molecule was prepared in the initial state as give in Equation 5.1. The time-
evolution was using the orthogonalized Krylov space method with a Krylov
space dimension NKry = 5 and a time step size of ∆t = 1as . The final time
was 3f s and a broadening of 0.14eV was applied to resolve the major peaks.
The peaks were assigned correlated eigenstates of the cationic molecule with
assigned energies from a complementary calculations using the DMRG method
to determine eigenstates.

From this we can conclude that the dynamics are intrinsically correlated and that the
MPS approach is able to capture the necessary amount of correlations to describe
the situation quantitatively. We demonstrated this at the simplified model based on
Koopmans’ theorem and Hartree–Fock molecular orbitals, which fails to find the cor-
rect oscillation period of the hole migration in iodoacetylene. With the MPS approach,
we accounted the underestimation of the simplified model directly to the missing
correlations, which are correctly included in the MPS representation. Independent
calculations to find the cationic eigenstates done for the cationic molecule support
this conclusion, where we see the eigenenergies perfectly aligned with the spectrum
obtained from the time-dependent MPS based calculation.

5.1.1 Impact of Nuclear Geometry

To finalize the discussion of iodoacetylene, we want to study how sensitive the
charge migration discussed above is to displacement of the nuclei. Until now, we
have described the iodoacetylene molecule using a fixed molecular geometry that
remains static during the entire period investigated. This is usually satisfied by
the heavy weight of the nuclei in comparison to the weight of the electrons (see
Born–Oppenheimer Approximation in Section 2.1.2). However, previous studies have
reported dephasing induced by the finite width of the wave packet of the nuclei that
damps the electronic charge migration. This can lead to dephasing of the electronic
dynamics in tens of femtoseconds [268–271], which is usually studied by sampling the
nuclear positions by Gaussians. But this can also occur within a few femtoseconds
[84], if additionally considering the nuclear motion on potential energy surfaces of
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Figure 5.9.: Dependence of the hole migration on the length of the hydrogen-carbon bond.
(left) partial hole charge at the iodine atom (blue) and at the acetylene part (red)
for five different hydrogen-carbon bond lengths. (right) Potential energy surface
of the Hartree–Fock ground state with respect to the hydrogen-carbon bond
length (blue). In this energy surface, the hydrogen nucleus forms a nuclear wave
function (red) with a finite width. Five distances are chosen to account for the
zero-point motion of the hydrogen nucleus (see left).

the cationic states. It is interesting whether the charge migration discussed above is
also subject to this nuclear induced dephasing on the time-range we are interested
in, as it may affect the migration dynamics substantially.

In the discussion above we focused on the dynamics within period of 3f s after the
sudden ionization of the molecule. We are restricted to this very short period by
the limited amount of entanglement the MPS representation is able to handle (see
Chapter 4). In the discussion we assumed the nuclei to remain still due to their heavy
weight; Only the electrons respond to the newly ionized situation. Now, when releas-
ing the approximation of fixed nuclei, we consider the light atoms in iodoacetylene
only as these are the nuclei that move the fastest. Only the light nuclei have a wave
function broad enough to affect the charge migration dynamics, whereas the heavy
nuclei have a wave function so sharply localized that the assumption of fixed posi-
tions is still valid. The lightest nucleus in iodoacetylene is the nucleus of the hydrogen
atom. We therefore concentrate on the impact of the hydrogen displacement on the
charge migration dynamics, and proceed to consider the remaining atoms as fixed in
the period of 3f s .

Let d be the bond distance between the carbon atom away from the iodine atom and
the hydrogen atom in iodoacetylene (see Figure 5.1). When varying this bond distance,
the ground state energy of the molecule changes, which then forms a potential
energy surface (see Figure 5.9 (right)) for iodoacetylene, see Figure 2.1 for the nitrogen
dimer N2). The form of this potential energy surface determines how strong the
hydrogen is bound to the molecule, which consequently determines the width of the
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nuclear wave function. The potential energy surface of the hydrogen-carbon bond
in iodoacetylene is shown in 5.9 (right) for the Hartree-Fock ground state |Ψ0〉 (bold
blue curve) and the first two ionized states |HOMOB1〉 and |HOMO− 1B1〉 (light blue
curves). We now consider the nuclei in an external potential which is given by the
potential energy surface. In this external potential the nucleus extends its nuclear
wave function with a finite width. We solve the one-body Schrödinger equation for
the nucleus and use the resulting wave function as approximation for the hydrogen
nucleus (see red line in Figure 5.9 (right)).

From the nuclear wave function we can read the spacial distribution of the hydrogen
atom in the neutral iodoacetylene molecule. We see from Figure 5.9 (right), the
hydrogen is delocalized in an area of 0.2Å. To account for the sensitivity of the charge
migration dynamics to the hydrogen delocalization, we choose five distinct hydrogen
bond distances to sample the finite width of the nuclear wave function. For these
five distinct bond distances, we perform a charge migration calculation using the
MPS approach and see if the dynamics depend on the bond distance (see Figure 5.9
(left)).

We observe a partial hole population independent of the bond distance of the hydro-
gen atom. For the five sampled bond distances, the hole population only shows minor
deviations with the equilibrium bond distance used in the Section 5.1. Therefore,
we deduce that the finite width of the hydrogen nuclei does not affect any of the
conclusions drawn when we used the equilibrium bond distance.

Further, we do not need to expect this conclusion to be affected by the potential
energy surfaces of the cationic states (see light blue curves in Figure 5.9 (right)). In [84]
they observed femtosecond dephasing only in cases the equilibrium bond distance
(the Franck-Condon-Point) is located at a point, where the cationic potential energy
surfaces have different slopes. The nuclear wave function moves with different speeds
or even in different directions, which significantly reduces the dephasing time. As in
our situation all potential energy surfaces have their minimum close to each other,
the nuclear wave function is unable to change drastically in the period of 3f s .

5.2 Conclusions

In this chapter, we applied to MPS representation of the many-body state to study
charge migration in iodoacetylene to model a recent experiment by Kraus et al. [5].
We assumed the iodoacetylene to be suddenly ionized by a light pulse, creating a
rather localized hole at the iodine atom of the molecule. This localized hole starts to
migrate between the iodine atom and the acetylene part of the molecule on a time
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scale of 1.8f s . The results obtained from the MPS representation agreed with experi-
mental results qualitatively and quantitatively. We demonstrated the important role
of electron correlations in this system by comparing to an uncorrelated model based
on Hartree–Fock molecular orbitals. This uncorrelated model is unable to describe the
charge migration quantitatively, because it underestimates the oscillation period of
the hole migration. We broke down this issue in terms of uncorrelated and correlated
eigenstates of the cationic molecule; attributing the correlation energy to reduce the
gap between the cationic states and thereby changing the frequency of migration.
Further we demonstrated that the MPS representation includes the correct corre-
lated states of the cation by discussing the frequency-depending Green’s function.
This reveals that the correlated states are represented in the time-dependent MPS
representation, which ultimately is the reason for their improved agreement with
the experiment. Lastly, we discussed the impact of the geometry of the molecule
on the charge migration dynamics, specifically accounting for the finite width of the
wave function of the hydrogen atom. The charge migration dynamics is unaffected
by displacing the hydrogen with respect to the remaining molecule and it is therefore
not subject to dephasing driven by the finite width of nuclear wave function.
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6Conclusions

In this thesis, we explored the matrix product state (MPS) approach as an efficient
representation of time-dependent many-body states from a quantum chemical per-
spective. Specifically, we employed it to study the ultrafast response of electrons in
molecules to sudden ionization. The MPS approach is able to describe the resulting
electron dynamics for a few femtoseconds on a full quantum level. The following
chapter summarizes how we justify this conclusion and proposes directions to con-
tinue based on the findings of this thesis.

Summary

We started by highlighting the versatile interest in ultrafast dynamics of molecular
systems in Chapter 1. Molecules are understood as intrinsically driven by quantum
mechanical effects, that are controllable by their interaction with light. When inter-
acting with an incoming light pulse, the electrons and nuclei in the molecule respond
on the attosecond (10−18s) to femtosecond 10−15s time scale. We outlined several
approaches to describe such processes theoretically, particularly highlighting the
density matrix renormalization group (DMRG) method and the closely related matrix
product state (MPS) approach to represent the many-body state of the molecule.
The MPS approach has obtained large attention in quantum chemistry, however, its
performance in describing time-dependent molecular systems is unknown. Obtaining
such an understanding marks the fundamental objective of this thesis.

In order for this thesis to be comprehensible for a broad audience, we introduce the
basic concepts of ab initio quantum chemistry in Chapter 2. To reduce the number of
active particles, we simplified the model by describing the nuclei as classic particles at
fixed positions. This is known as the Born–Oppenheimer approximation for electrons.
Further, as the starting point of the now exclusive electronic system, we introduced
the Hartree–Fock method that describes the molecule in an uncorrelated fashion
using orbitals. Eventually, the Hartree–Fock method provides molecular orbitals that
are optimal with respect to the ground state of the uncorrelated picture.

We discussed the post-Hartree–Fock methods, configurational interaction and the
complete active space with respect to the expansion of many-body state in the ba-
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sis of configurations (Slater determinants). As a more general representation of the
many-body state, we introduced the matrix product state (MPS) approach. Based
on the assumption that the entanglement in the molecule is limited, we factorize
the expansion coefficients of the complete many-body state into matrices with bond
dimension D. By operating on these matrices, instead of the complete many-body
state, we save significant amounts of computation time and memory. Further, we
propose a variational method to add MPS and to apply operators to MPS, that per-
forms efficiently and implements the necessary operations for the time-evolution
method introduced next. For time-evolution of many-body states in MPS represen-
tation, we introduced two methods that operate globally on MPS. The fourth-order
Runge–Kutta method Taylor expands the time evolution operator up to the fourth
order and constructs the time evolved state as the sum of the expansion terms. In
contrast to this expansion, the Krylov space time evolution method transforms the
time-evolution operator into a small subspace of the many-body Hilbert space, the
Krylov space, and finds the exact time-evolution operator in this small space.

After the general introduction of the MPS approach in Chapter 2, we discussed the
MPS approach more explicitly in Chapter 3 in terms of symmetries and implemen-
tational details. We started by outlining how the MPS approach can be adapted to
symmetries of the molecule. First, we introduced the particle number symmetry
of the molecule, that is a result of the closed model of the molecule. Second, we
introduced the point group symmetry of the molecule, that allows to identify many-
body states with respect to irreducible representations. Third, we introduced the spin
symmetry of the molecule, that is a result of magnetic momentum conservation of
the molecule. Writing the MPS tensors in the eigenbasis of these quantities improves
convergence of the MPS approach. In the second part of Chapter 3, we discussed
the Hamburg CheMPS2 extension that was developed in this study. The Hamburg
CheMPS2 extension, our implementation of the MPS representation, is based on
the CheMPS2 program package developed by Wouters [51]. We highlighted neces-
sary adaptions to extend the package to time-dependent problems, including the
representation of the Hamiltonian in the renormalized basis and the transition to
complex-valued many-body states. We finished this chapter with implementational
remarks that demonstrated the improved convergence of the MPS approach and
presented major features of the Hamburg CheMPS2 extension to facilitate future
application.

As this study is the first to use the MPS approach to study electron dynamics in
molecules, a profound analysis is due to assure its validity in this context. This analysis
was conducted in Chapter 4, where we started with simple molecules consisting
of hydrogen only. We demonstrated that the MPS approach is able to describe
the one-body reduced density matrix (OBRDM), the two-body reduced density matrix
(TBRDM), and the one-body Green’s function within a period of a few femtosecond
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after ionization, by directly comparing to calculations using the completely correlated
many-body state. Depending on the bond dimension D, the MPS approach reproduces
the correct observables with minor truncation errors. For longer time periods, we need
to choose a larger bond dimension, which diminishes the computational advantage
when using the MPS approach. We therefore focus on short time periods, i.e. the
response of the molecule within a time frame of 3f s . This is no restriction as the
nuclear motions alters the dynamics for longer time periods.

Next in Chapter 4, we analyzed the time-dependent MPS approach for common
molecules in nature. We discussed the MPS approach to resolve charge migration in
the hydrogen fluoride molecule, the water molecule, the ammonia molecule, as well
as in the methane molecule. For each of the examples, we prepared the molecule
in the Hartree–Fock ground state and applied a sudden ionization at time t0. The
OBRDM obtained from the MPS approach was compared with the OBRDM obtained
from the completely correlated many-body state after 1f s . This reveals that the
MPS is able to describe the OBRDM within an error of 10%, already for a small bond
dimension of D = 70. This performance is almost independent of the size of the
orbital basis set (here orbital sets of 11 to 17 orbitals were used). This enables an
extensive computational advantage compared to the completely correlated many-
body state, where we the MPS approach allows to reduce the number of degrees of
freedom by several orders of magnitude. This conclusion holds for both, single and
double ionization at t0, where only double ionization in core orbitals appeared to
challenge the MPS approach.

Knowing that the MPS approach is able to represent the ultrafast dynamics in mol-
ecules, we analyzed its compatibility with the different time-evolution methods
introduced in the end of Chapter 2. First, we demonstrated that the fourth-order
Runge–Kutta method is able to resolve the correct one-body Green’s function of a hy-
drogen chain, however, a description using the Krylov space method is advantageous.
The Krylov space method is able to reproduce the completely correlated results with
smaller errors, using the same time step size as the Runge–Kutta method. We traced
back this behavior to its unitary property. Further, in our analysis for the single and
double ionized water molecule, we showed the particularly good compatibility of the
MPS with the Krylov space method with non-orthogonalized Krylov space vectors.
The use of non-orthogonalized Krylov space vectors was able to reduce truncation
errors observed by up to 50%. This exhibits that some of the entanglement in the
MPS representation is introduced artificially by the orthogonality requirement and
can be removed by using an elegantly chosen time evolution method and optimal
time evolution parameters.

In Chapter 5 we extended the analysis of the MPS approach to a situation that
cannot be crosschecked by comparing to completely correlated calculations. Here,
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we used the MPS approach to resolve ultrafast charge migration in single ionized
iodoacetylene C2HI+. Such a situation was studied experimentally by Kraus et al. [5],
who measured migration dynamics between the iodine and the acetylene part of
the molecule. We utilized the MPS approach to model the situation studied in the
experiment and to evaluate the role of correlation in this situation.

First, we noticed that the MPS results are stable with respect to the bond dimension
D. Already at a bond dimension of D = 150, which is tiny compared to the full CI limit,
the migration dynamics resolved from the MPS approach are in accordance with the
experiment quantitatively. Second, we compared to an uncorrelated Hartree–Fock
model to estimate the importance of correlations in this situation. We demonstrated
that the correlations indeed stretch the oscillation period, by comparing correlated
and uncorrelated eigenstates of the molecule. The correct dynamics can only be re-
solved when accounting for correlations, which the MPS approach does automatically.
Third, we investigated the impact of the hydrogen atom position, as already the width
of the nuclear wave function has reportedly caused dephasing on the femtosecond
time scale [84]. We find that the studied migration dynamics is not subject to this nu-
clei induced dephasing and the migration dynamics is independent on the hydrogen
position in the molecule.

Outlook

With the findings of this thesis, a wide range of avenues opens to proceed the study
of ultrafast dynamics using the MPS approach. We want to outline ideas for future
developments, where some are already subject to ongoing research projects.

The role of Auger processes [272] induced migration following core-ionization can
now be described. Where we mostly discussed molecules with charge holes in valence
orbitals, x-ray photons also enable to excite electrons in core orbitals. This leaves the
molecule with a highly localized charge hole, that usually decays involving delocalized
electrons in valence orbitals. The decay time of these core-hole states is in the area
of hundreds of attosecond to femtoseconds, therefore being exactly in the time
frame, the MPS approach is able to resolve quasi exactly. Such Auger induced charge
migration processes have been reported experimentally [273–275] and theoretically
[276], where this type of process is expected to occur in all molecules involving
light elements. With the MPS approach, we are now able to model such situations
theoretically, without relying on fixed configuration spaces.

Another interesting direction to proceed is to incorporate the light pulse causing
the ionization. In this thesis, the molecule was always ionized suddenly at time t0,

148 Chapter 6 Conclusions



0eV 1eV 2eV 3eV 4eV 5eV
0eV

20eV

40eV

60eV

electric field Ea0

h̄ω

0

250

500

Ar
bi
tr
ar
y
U
ni
ts

Figure 6.1.: Fourier spectrum of the dipole moment of the one-dimensional chain of hy-
drogen atoms with bond distance 0.53Å. At time< t0 the hydrogen chain is in
its correlated ground state. At time t0 an electric field is suddenly switched on
for a period of 50as and suddenly switched off afterwards. The calculation was
performed using the Hamburg CheMPS2 extension with a MPS bond dimension
of D = 100 and the Krylov space time evolution with a Krylov space dimension
of NKry = 8 and time step size of ∆t = 1.21as . Data from Weißler [266].

however, this is a simplification that can be dropped easily. When including the
ionization pump, the photoelectron can be tracked during the ionization process.
Experimentally, this has been recently demonstrated using strong-field photoelectron
holography [277]. Incorporating the light pulse into the Hamburg CheMPS2 extension
has already been done by Weißler [266], who studies the impact of light pulses
on the one-dimensional hydrogen chain using the MPS approach. The light pulse
drives the hydrogen chain into a state with several excited states populated. The
weights of the excited eigenstates in the molecular state after the pulse, as well
as their energies can be directly extracted from the Fourier transform of the time-
dependent dipole moment (see Figure 6.1). The dipole moment of the chain directly
resembles the electronic structure of the molecule. A simplified model by using
the non-interacting Hubbard model allowed to decrypt the process triggering the
excitation of the hydrogen chain.

Further, we think the MPS approach commands about unused potential to describe
electron dynamics in longer time ranges. We noticed in this study a very strict barrier
for the time frame of approximately 3f s , where the MPS bond dimension has to be
chosen considerably lager to extend this period. We accounted this issue to the emerg-
ing electron entanglement. However, the entanglement in the MPS representation is
basis set depending. We assume, that the time range can be extended by optimizing
the single-electron orbitals time-dependently. In our study, the single-electron basis
was fixed throughout the entire time evolution. Adapting the molecular orbitals
time-dependently, for example to natural orbitals at the given point in time, extends
the time period significantly. Using time-dependent optimized orbitals, coherences
are removed from the MPS representation and the MPS can focus on representing cor-
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relations correctly. Such an optimization has been performed for ground states using
Gaussian transformation at the variational optimization step [243]. A similar simulta-
neous optimization of the orbital basis set for time-dependent MPS would allow to
study electron dynamics happening on time scales of tens of femtoseconds.

At the point, where we are able to describe the molecule at time scales beyond
3f s , it is especially interesting to take into account the nuclear motion. The nuclei
start moving as a response to the electronic excitation. The nature of this charge
transfer process and the role of the electronic correlation is mainly undiscovered
[278]. We know, that after a couple of femtoseconds the molecule will enter a little
correlated state, however, how it gets there and how the finial product depends on
the correlated state at the beginning of this dephasing is unknown and challenging
to study. A joint procedure of the MPS approach and the (classically) moving nuclei
could allow to study this type of entangled electron-nucleus processes.
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AConvergence Analysis

A.1 Convergence of the Time Step Size for
Propagation of the Green’s Function for the
Hydrogen Chain
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Figure A.1.: (left) The imaginary part of the one-particle Green’s function calculated using
the quasi exact full CI approach for the many-electron state representation and
the Krylov time evolution method to solve the time-dependent Schrödinger
equation. The Krylov space is spanned from five NK = 5 orthonormal basis
vectors and the time step size is ∆t = 1.21as (blue) and ∆t = 0.61as (red). (mid-
dle) The imaginary part of the one-particle Green’s function calculated using
the MPS approach for the many-electron state representation and the Krylov
time evolution method to solve the time-dependent Schrödinger equation. The
Krylov space is spanned from five NK = 5 orthonormal basis vectors and the
time step size is ∆t = 1.21as (blue) and ∆t = 0.61as (red). (right) The imaginary
part of the one-particle Green’s function calculated using the MPS approach
for the many-electron state representation and the fourth-order Runge-Kutta
method to solve the time-dependent Schrödinger equation. The the time step
size is ∆t = 1.21as (blue) and ∆t = 0.61as (red). Figure and caption is published
in Frahm [219].
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A.2 Convergence of the Partial Hole Charge with
the Number of Included Orbitals
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Figure A.2.: Convergence of the partial hole charge with the number of active orbitals
and the MPS bond dimension for the ionized iodoacetylene molecule. The
Krylov space dimension is NK = 5 for all calculations and the time step size is
1as . Special points from the experiment by Kraus et al. [5] are highlighted for
reference. Figure and caption is published in Frahm [219].
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