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Abstract

The equilibrium phase diagram of the Kondo lattice model with classical spins on the so-called zigzag

ladder, which is a minimal example of frustration in one dimension, is derived as a function of exchange

coupling constant J and measure of frustration φ. It is found to contain the well-known antiferromag-

netic phase, an incommensurate spiral phase with varying pitch angle, and a novel spin-dimerized

phase. The results are compared to perturbation theory in both the strong and weak coupling limit

and found to agree well, with the exception of the dimerized phase which is absent in the perturba-

tive approaches. A comparison to results obtained by density-matrix renormalization group (DMRG)

reveals many similarities to the quantum-mechanical model. Both models predict the existence of the

dimerized phase, whereas the DMRG-phase diagram contains further features absent in the classical

approximation.

Next, the real-time dynamics of the system is analyzed following a quench, i.e. a sudden change in

parameter. Two qualitatively different energy regions are identified. For low quench energies, the

system is non-ergodic and remains in the initial spin configuration for all times. The corresponding

energy threshold is reminiscent of the Fermi-Pasta-Ulam (FPU) paradox known from classical dynam-

ics. After exploring the (non-)integrability of the model, the ergodicity threshold is explained using a

linear approximation in the equations of motion describing spin-wave-like excitations.

For higher quench energies, in particular when crossing the equilibrium phase boundary, the dynamics

is ergodic. The time scale of thermalization is found to be highly energy-dependent. Starting from an

initial spiral configuration, the gradual emergence of long range dimer order can be seen. Above a

certain critical energy, however, this long range dimer order breaks down. This thermal transition is

found stable in the limit of larger lattice sizes.
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Kurzzusammenfassung

Das Gleichgewichtsphasendiagramm des Kondo Gitter Modells mit klassischen Spins auf der soge-

nannten Zickzack-Leiter, welche ein Minimalbeispiel für Frustration in einer Dimension ist, wird

hergeleitet als Funktion der Austausch Kopplung J und Frustration φ. Es beinhaltet die bekannte

antiferromagnetische Phase, eine inkommensurable Spiralphase mit variierendem Winkel und eine

neuartige spin-dimerisierte Phase. Die Ergebnisse werden mit Störungstheorie sowohl im Limes

starker als auch schwacher Kopplung verglichen und stimmen gut überein, mit Ausnahme der

dimerisierten Phase, die von der Störungstheorie nicht beschrieben wird. Anschließend wird das

Phasendiagramm verglichen mit Ergebnissen, die mit density-matrix renormalization group (DMRG)

berechnet wurden. Es sind viele Gemeinsamkeiten zwischen semiklassischem und quantenmecha-

nischem Modell festzustellen. Beide sagen die dimerisierte Phase vorher, allerdings beinhaltet das

DMRG-Phasendiagramm noch andere Phänomene, die in der klassischen Approximation fehlen.

Dann wird die Echtzeitdynamik des Systems nach einem Quench, also der plötzlichen Änderung eines

Parameters, analysiert. Es werden zwei qualitativ unterschiedliche Energiebereiche identifiziert. Für

Quenches mit niedriger Energie ist das System nicht ergodisch und verbleibt für immer in der An-

fangsspinkonfiguration. Die entsprechende Energieschwelle erinnert an das Fermi-Pasta-Ulam (FPU)

Paradoxon, bekannt aus der klassischen Dynamik. Nach einer Untersuchung der (Nicht-) Integrabilität

des Modells, wird die Ergodizitätsschwelle mithilfe einer linearen Näherung der Bewegungsgleichun-

gen erklärt, die spinwellenartige Anregungen beschreibt.

Für Quenches mit höherer Energie, insbesondere wenn Phasengrenzen überquert werden, ist die Dy-

namik ergodisch. Die Zeitskala der Thermalisierung ist stark energieabhängig. Ausgehend von einer

anfänglichen spiralen Spinordnung kann der graduelle Aufbau einer langreichweitigen Dimerisierung-

sordnung beobachtet werden. Oberhalb einer kritischen Energie bricht diese Ordnung jedoch zusam-

men. Dieser thermische Übergang ist stabil im Limes größerer Systeme.
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1. Introduction

1.1. Emergence, Frustration and the Kondo Lattice

Studying a single water molecule does not convey the enormous complexity of the properties of a

macroscopic body of water. It cannot be explained by considering solely one oxygen and two hydrogen

atoms on their own, that the same lake can be used in summer for swimming and in winter for ice

skating. Since John Dalton published his model of the atom as an indivisible entity in 1808 in his work

A New System of Chemical Philosophy, much has been corrected and by looking closer and closer ever

new fundamental particles were discovered. Still, even with all this knowledge, the interplay between

many atoms together and the qualities, which result, often remain a mystery. As P.W. Anderson put it

so eloquently in his famous 1972 paper More is different: “… we can see how the whole becomes not

only more than but very different from the sum of its parts.” [1]. This phenomenon of simple parts

creating a complex reality is in fact very universal and examples can be found almost everywhere in

physics, biology and even sociology. Many particles can organize to generate qualitatively different

properties, a concept called emergence.

Any macroscopic material is composed of an innumerable amount of particles. The main focus of

condensed matter physics is understanding the interplay between them and the puzzling properties

which emerge as a result. Often, such as in the case of freezing water, this is closely connected to a

disorder-to-order transition. A well known example is the magnetic phase, which appears when a para-

magnetic metal is cooled down until the previously present spin-rotational symmetry is spontaneously

broken, and all spins align to form, e.g., a ferromagnetic state. There are countless more examples of

peculiar properties of matter arising as the result of correlated electrons - other ordered states such

as superconductivity [2], disordered spin liquids [3] or, well in focus recently, topological insulators

[4]. The intricate knowledge of electronic and magnetic phases of matter, and of the interactions and

behavior of the constituents that make up materials is not of purely academic interest. With the rise of

the digital age comes an increasing dependence on faster and more advanced computer processing and

memory technology, which in turn relies heavily on new insights from condensed matter research.

One of the remarkable features of emergence is that the same simple particles can give rise to very

different phenomena when put in different conditions. One of these special environments is in the fo-

cus of this thesis. The origins lie in 1950, when Gregory Wannier considered a peculiar system which

1



Chapter 1. Introduction

should prove to set a new direction - the so-called Ising model arranged in triangle and honeycomb

structures [5]. Some years later, in 1959, there were several independent works on non-collinear vec-

tor spins subject to competing interactions studied by Yoshimori [6], Villain [7] and Kaplan [8], which

further cemented the start of the extensive new research area of frustrated spin systems. These are

particularly intriguing, as the inability of the system to satisfy competing interactions often results in

the emergence of unconventional states of matter. Consider for example spins coupled by an antiferro-

magnetic nearest-neighbor exchange interaction, which would ideally like to anti-align. In Fig. 1.1 this

situation is sketched on two different lattice geometries. If the lattice is bipartite, i.e. can be split into

two disjoint sublattices, such that any neighbor resides in the other sublattice, as shown on the left in

Fig. 1.1, then this is easily resolved and the well known antiferromagnetic order appears. If there is a

triangle involved, however, as on the right hand side of Fig. 1.1, it is not possible to satisfy each pair

of spins and anti-align them all. Evidently, there must be a compromise emerging that could lead to

unexpected behavior.

?

Figure 1.1.: Schematic picture of geometric frustration. The left picture shows an antiferromagnetic

alignment of spins on the bipartite square lattice, which produces no frustration of the interactions.

On the right hand side, on the contrary, a triangle is shown that does not allow for an unambiguous

antiferromagnetic ground state.

Frustrated spin systems come in many different variants. The model considered in this thesis is the

Kondo lattice model, which, quite generally and independent on the specific geometry, is a two orbital

model describing the coupling and interplay between magnetic and fermionic degrees of freedom and

can be applied to many different materials. If the localized magnetic moments are considered as clas-

sical spins, such as the case here, the Kondo lattice can for example describe the physics of transition

metal oxides such as LaMnO3, which are most famous for exhibiting the colossal magnetoresistance

(CMR) effect. This context has stimulated much research in the last decades [9–12]. Recently, there

has also been interest in the Kondo lattice on frustrated geometries, both theoretical [13–18] and ex-

perimental [19]. A more detailed introduction to the Kondo lattice model and its applications is given

later.

One of the central goals here is to derive and understand the ground state phase diagram of the Kondo

lattice with classical spins on a frustrated zigzag ladder. It turns out to contain a spin-dimerized phase

2



1.2. Moving on: Dynamics and Dynamical Phase Transitions

that is absent in the unfrustrated case and agrees well with results for the model variant with quantum

spins 1/2 obtained by M. Peschke using the density-matrix renormalization group (DMRG) method

[20,21]. This comparison of the classical-spin Kondo lattice with the quantum analogue is found highly

instructive. Also very instructive are several perturbative approaches which describe the system well

in both the weak and strong coupling regime, with the exception of the dimerized phase that appears

to be a non-perturbative phenomenon.

1.2. Moving on: Dynamics and Dynamical Phase Transitions

There is a big advantage of the semiclassical Kondo lattice as compared to the quantum-spin variant.

Namely, the real-time dynamics of a given microstate can be traced on time scales that are orders of

magnitude larger - hence, a second main goal of this thesis is to explore the dynamical behavior of the

system. This goal is in turn split into more general considerations of the nature of the dynamics and

the search for a thermal phase transition of the dimerized phase, i.e. understanding a thermodynamical

phase transition via real-time dynamics.

To describe the physics of the many, it is often neither possible nor necessary to keep track of every

single particle. The great success of statistical mechanics as developed by James Clerk Maxwell, Ludwig

Boltzmann and Josiah Willard Gibbs, is the ability to describe equilibrium properties of macroscopic

systems using only elements of probability theory. If the premise is still that every particle on its

own follows some (perhaps unknown) deterministic equations of motion, there must, however, be a

connection between the two viewpoints. Lately, there has been more focus again on dynamical theories

and experiments: With the advent of optical lattices, there is now an unprecedented measure of control

of model systems out of equilibrium that has been hugely successful for many different systems [22].

After many theoretical considerations [23–25] and preliminary studies [26,27] an optical lattice that

closely resembles a Kondo lattice was recently realized experimentally using 173Yb to create a two-

orbital fermionic quantum gas [28]. This undoubtedly opens the door for many more studies to come.

These advances in experiment have already triggered many theoretical studies on the topic of non-

equilibrium. In addition to the dynamics of classical systems, new questions have started to arise. One

is thermalization, i.e. dynamically approaching equilibrium, in isolated quantum systems [29,30]. A

second one is dynamical phase transitions, a term that was coined to describe phase transitions, where

instead of in the free energy, the non-analyticities are found as a function of time and where the role

of temperature which drives the change of state in a classical thermal phase transition is replaced by

some external system parameter [31–33]. Another focus has recently been on the behavior of systems

in the vicinity of an integrable point in parameter space, which has introduced new concepts such as

prethermalization [34,35].

Many open questions still remain. The mechanism of thermalization in isolated systems both close to

3



Chapter 1. Introduction

and far from integrability is not understood beyond a doubt [30]. New dynamical phenomena emerge

constantly, for example the existence of (meta)-stable non-equilibrium states that have no equivalent

in equilibrium theory and which pose new questions that are far from being answered [36]. Also still

unclear is the fundamental connection between statistical physics and dynamical theory. If statistical

mechanics describes the physics of the many in thermal equilibrium in terms of state variables, while

dynamical theory, on the other hand, describes the time propagation of a many-body microstate, then

thermodynamics must be reducible to real-time dynamics for systems that are large enough. Exactly

how many degrees of freedom are needed for statistical behavior, however, remains elusive.

One idea is to discuss if the criteria for ergodicity apply to the present model. It is found, in fact,

that chaotic motion is apparently not as inevitable as expected. Another one is to investigate the

possible proximity to an integrable model and to derive a linear theory of spin-wave-like excitations.

Studying whether the dimerized phase found in the equilibrium phase diagram is stable against thermal

fluctuations is a concrete question to be answered using the real-time dynamics approach. This is

tackled with the method of quenching a system parameter, a similarity shared with the previously

mentioned dynamical phase transitions known from the quantum-mechanical context [31–33]. Even

though here, the transition is thermal and thus classical, it could still be called dynamical in the sense

that long range (dimer) order is gradually emerging from real time dynamics.

4



2. The Kondo Lattice

This chapter introduces the main model used in this thesis: the Kondo lattice model. First, the model

is motivated and the notation introduced in Section 2.1. Then, the geometry of the zigzag ladder is

explained. Depending on the model parameters, different spin configurations minimize the total energy.

In short, there are two possibilities - either the equilibrium spin configuration can be described by a

constant pitch angle between neighboring spins, or the configuration is dimerized and requires two

angles to characterize the configuration. Fixing the spin configuration with at most two parameters

evidently reduces the problem enormously, and a transformation into k-space can be used to simplify

even further. This is shown in Section 2.2 for both the homogenous spiral and dimerized case.

This chapter concludes with the presentation of two perturbative approaches. The weak coupling limit,

i.e. the well-known RKKY model, is derived in Section 2.3.1. In addition, the strong coupling limit,

which can also be mapped onto an effective spin-only theory - in this case the J1 − J2-Heisenberg

model, is derived in Section 2.3.2.

2.1. Introduction to the Kondo Lattice Model

Electrons in an elemental solid occupy orbitals or bands according to the position in the periodic ta-

ble. Generally speaking, electrons in a partially filled d-band tend to be itinerant, whereas electrons

occupying an f -orbital are localized. In transition metals, itinerant electrons contribute to the metallic

or even superconducting properties of a compound, while localized electrons form local magnetic mo-

ments. Materials with well-formed local moments are, as P. Coleman puts it, on the brink of magnetism
[37].

A model that describes the interplay between local magnetic moments and itinerant conduction elec-

trons is called the Kondo lattice model with one conduction electron orbital and one localized spin per

lattice site. Historically, this is the dense version of the Kondo model, an impurity model that captures

the physics of the Kondo effect, where a localized magnetic impurity acts as a resonant scattering poten-

tial for the electron fluid which increases the resistivity. The Kondo and the Kondo lattice model can

be derived via a so-called Schrieffer-Wolff transformation from the more general Anderson impurity

or periodic Anderson model, respectively [38]. The physics of the so-called heavy-fermion materials

described by the Kondo lattice model is usually dominated by a competition between the Kondo effect

5



Chapter 2. The Kondo Lattice

and a low-energy effective spin-spin coupling caused by the so-called RKKY interaction. In some mate-

rials, however, the f -electrons are in fact so close to the nuclear core that multiple electrons may form

a total spin of length ≫ 1
2 and can thus be approximated by a classical vector - a “classical spin”. In this

case, the Kondo effect - being a purely quantum phenomenon - does not play a role, but other interest-

ing physics arises. This describes for example the entire class of Manganites which exhibit effects such

as colossal magnetoresistance. More on them and on other heavy fermion or mixed valence materials

can be found e.g. in [9,37,39]. This thesis concentrates on the model with a classical approximation of

the localized moments.

The Hamiltonian of the Kondo lattice model is given by

H = ∑
ijσ

tijc†
iσcjσ + J ∑

i
Si · si, (2.1)

where c†
iσ(ciσ) creates (annihilates) an electron at site i = 1, ..., L with spin projection σ =↑, ↓ and

si =
1
2 ∑

σσ′
c†

iσσσσ′ciσ′ (2.2)

is the local conduction-electron spin at site i, where σ denotes the vector of Pauli matrices. The local

spin si couples antiferromagnetically to the localized spin Si at the same site via exchange coupling

constant J > 0. Here, as mentioned, the localized spins Si are taken to be classical vectors of fixed

length |Si| = 1/2 . The first term of Eq. (2.1) describes the hopping of the electrons with hopping

amplitudes tij between sites i and j.

For classical spins Si, the Hamiltonian Eq. (2.1) is effectively bilinear and can be expressed using an

effective hopping matrix teff:

H = ∑
ii′σσ′

teff,ii′σσ′c†
iσci′σ′ (2.3)

with elements

teff,ii′σσ′ = tii′δσσ′ +
J
2
(σSi)σσ′δii′ . (2.4)

The total energy of the system is a functional of the classical spin configuration {S} = (S1, ..., SL) :

E({S}) = ∑
ii′σσ′

(
tii′δσσ′ +

J
2
(σSi)σσ′δii′

)
⟨c†

iσci′σ′⟩{S} (2.5)

It is convenient to introduce the 2L × 2L one-particle reduced density matrix ρ with elements

6



2.2. Equilibrium Spin Configurations on the Zigzag Ladder

ρii′σσ′ ≡ ⟨c†
i′σ′ciσ⟩, (2.6)

which for the ground state is obtained by diagonalizing the effective hopping matrix Eq. (2.4) teff =

UϵU† for the given spin configuration and taking ρ = Θ(−teff) = UΘ(−ϵ)U† , where Θ is the

Heaviside step function.

2.2. Equilibrium Spin Configurations on the Zigzag Ladder

Much attention has been given in recent years to the study of frustrated spin systems. A system is called

frustrated, whenever there are competing interactions acting on the spins and the lattice geometry does

not allow to satisfy all bonds simultaneously, i.e. the ground state does not correspond to the minimum

of each pair of spins. Besides there being many experimental examples of magnetic materials exhibiting

frustration (see for example [???]), frustrated systems are also highly interesting model systems that

often display unconventional states of matter. Frustration induced by geometry is present whenever

the lattice structure includes elementary triangles, such as the 2D triangular and Kagome lattice. There

are already a few works on the Kondo lattice with classical spins on such geometries, see for example

[17,40,41]. The simplest model possible to exhibit frustration, however, is the zigzag ladder. The zigzag

ladder is, despite including elementary triangles, strictly speaking a one-dimensional model, since it

can be mapped exactly on the one-dimensional chain with both nearest and next-to-nearest neighbor

interactions. Both the zigzag ladder geometry as well as the equivalent one-dimensional chain are

illustrated in Fig. 2.1.

t2
t1

J

2ϴ
ϴ+Δϴ

ϴ-
Δϴ

t2

t1J

a b

t2

t1!

Figure 2.1.: (a) Kondo lattice with classical spins on a zigzag ladder with hopping −t1 on the rungs

and −t2 on the legs of the ladder (t1, t2 > 0). This is equivalent to (b), a one-dimensional chain with

nearest neighbor hopping −t1 and next-to-nearest neighbor hopping −t2. In both cases, classical

spins are coupled locally to electrons via exchange coupling constant J.

The hopping amplitude is −t1 between nearest neighbors and −t2 between next-to-nearest neighbors,

i.e. on rungs and legs of the zigzag ladder, respectively. Electrons are coupled locally to a classical

spin via an antiferromagnetic exchange coupling constant J > 0. To better quantify the measure of

7



Chapter 2. The Kondo Lattice

frustration in the system, a parameterization of hopping amplitudes t1 = t cos φ and t2 = t sin φ is

introduced with t fixed at t ≡ 1. Evidently, the limits φ = 0 and φ = π/2 describe the unfrustrated

limit of one, or, in the case of φ = π/2, two decoupled chains with nearest neighbor exchange only.

Within this thesis, the lattice is always considered to be at half-filling, i.e. one electron per site i on

average. Additionally, periodic boundary conditions are always assumed.

The length of the classical spins |S| is constant and kept at |S| = 1
2 throughout this work, but the

orientation of the spins is of course a priori arbitrary. There are therefore 2L parameters of the spin

configuration, i.e. the polar and azimuthal angles of each spin {ϕi, θi}, where both ϕi and θi are continu-

ous variables with ϕi ∈ [0, 2π) and θi ∈ [0, π]. This leaves infinitely many possible configurations and

renders a simple minimization of the energy functional Eq. (2.5) nearly impossible. Knowing, however,

the ground state of the Heisenberg model with classical spins on the zigzag ladder (see Appendix A), an

Ansatz can be made that greatly simplifies the task. Considering that frustration of this type often leads

to a spiral spin order [42], it is not far-fetched to consider a parameterization with a constant pitch an-

gle θ between spins as a possible ground state configuration. Both ferro- and antiferromagnetic order

is included in this parameterization with θ = 0 and θ = π. As an extension, here, the parameterization

will additionally include the possibility of a modulation ∆θ. As pictured in Fig. 2.2, the angle between

nearest neighbor spins then alternates between θ + ∆θ and θ − ∆θ with ∆θ = 0 returning the original

constant angle configuration. The entire spin configuration is thus parametrized by two parameters

(θ, ∆θ) now allowing for a simple minimization of the energy E({S}) ≡ E(θ, ∆θ) (Eq. (2.5)). For

symmetry reasons it is sufficient to consider θ ∈ [0, π] and ∆θ ∈ [0, π/2) with θ = n · 2π/L (n ∈ N)

to satisfy periodic boundary conditions. Spin configurations with ∆θ ̸= 0 are termed dimerized.

I=1,a=0

I=1,a=1

I=L/2,a=0

I=L/2,a=1

2!

!+∆!

!-∆
!

Figure 2.2.: Parameterization of spin configurations on the zigzag ladder, where the angle between

nearest neighbors is alternating between θ ± ∆θ and the angle between next-to-nearest neighbors is

2θ.

2.2.1. Spin Configurations With Constant Pitch Angle

Replacing the 2L parameters {ϕi, θi} with only two, i.e. θ and ∆θ, evidently significantly reduces the

complexity of the model. Translational invariance can be exploited to further simplify the calculation of

the energy, as will be shown in this section. For the moment, only spin configurations with a constant

8



2.2. Equilibrium Spin Configurations on the Zigzag Ladder

pitch angle θ between neighboring spins will be considered. As the model used in this thesis is one-

dimensional, most calculations will reflect this, and the one-dimensional ‘vectors’ are not printed in

bold.

While the 2L × 2L dimensional effective hopping matrix in Eq. (2.4) can certainly be diagonalized nu-

merically for finite lattice sizes, it is not possible to do so analytically for arbitrary spin configurations.

The hopping term alone, however, is diagonalized by a simple Fourier transform

Hhopp = ∑
ijσ

tijc†
iσcjσ = ∑

kσ

ε(k)c†
kσckσ (2.7)

where

ε(k) = −2t1 cos(k)− 2t2 cos(2k) (2.8)

is the dispersion relation and the Fourier transform is defined as

c†
iσ =

1√
L

BZ

∑
k

e−ikri c†
kσ (2.9)

where the sum ∑BZ
k runs over the first Brillouin zone and the spacing of the wave vectors k is given

by k = n · 2π
aL with integer n and lattice spacing a ≡ 1.

The second term of the Kondo lattice Hamiltonian in Eq. (2.1) describes the interaction between elec-

trons and classical spins and can be written as

HJ = J ∑
i

Si · si =
J
2 ∑

iσσ′
(σSi)σσ′c†

iσciσ′ . (2.10)

As mentioned, for now, the classical spins Si are considered to be in a homogenous spiral spin config-

uration with wave vector q and taken, without loss of generality, to lie in the x − y plane, i.e.

Si = S

 cos(q · ri)

sin(q · ri)

0

 , (2.11)

where S ≡ 1
2 is the length of each classical spin. Multiplied with the vector of Pauli matrices σ =

(σx, σy, σz)T this gives

9



Chapter 2. The Kondo Lattice

σ · Si =

(
0 cos(q · ri)− i sin(q · ri)

cos(q · ri) + i sin(q · ri) 0

)

=

(
0 e−iqri

eiqri 0

)
.

(2.12)

The interaction term (Eq. (2.10)), too, can now be Fourier transformed using the Fourier transform in

Eq. (2.9), and becomes

HJ =
JS
2 ∑

i

(
c†

i↑ci↓e−iqri + c†
i↓ci↑eiqri

)
=

JS
2

1
L ∑

i
∑
kk′

(
c†

k↑ck′↓e−ikri eik′ri e−iqri

+c†
k↓ck′↑e−ikri eik′ri eiqri

) (2.13)

where the representation of the Kronecker delta with k = n · 2π/L and k′ = m · 2π/L (n, m integer)

δkk′ =
1
L

L

∑
j=1

eirj(k−k′) (2.14)

is used to yield

HJ =
JS
2 ∑

kk′

(
c†

k↑ck′↓δk′,k⊕q + c†
k↓ck′↑δk,k′⊕q

)
=

JS
2 ∑

k

(
c†

k↑ck⊕q↓ + c†
k⊕q↓ck↑

)
.

(2.15)

Unlike the case of the hopping term above, the Fourier transform does not diagonalize the interaction

Hamiltonian fully, but leaves a 2 × 2 structure where terms with wave vector k mix with k ⊕ q, where

the latter is understood as k ⊕ q = k + q + G with G being a uniquely defined vector of the reciprocal

lattice such that k + q + G ∈ BZ.

Periodicity of the lattice ensures invariance of ∑kσ εkc†
kσckσ after a shift with constant vector q. The

entire Hamiltonian can thus be expressed in matrix form as

H = ∑
k

(
c†

k↑c†
k⊕q↓

)( εk ∆
∆ εk⊕q

)(
ck↑

ck⊕q↓

)
(2.16)

10



2.2. Equilibrium Spin Configurations on the Zigzag Ladder

with ∆ ≡ JS/2 = J/4. This can now be diagonalized with a so-called Bogoliubov transformation

α†
k = ukc†

k↑ + vkc†
k⊕q↓

β†
k = −vkc†

k↑ + ukc†
k⊕q↓

(2.17)

with the condition u2
k + v2

k = 1 to ensure the operators αk, βk obey fermionic anticommutation rela-

tions. Then

u2
k =

1
2

1 −
εk⊕q − εk√

(εk⊕q − εk)2 + ∆2


v2

k =
1
2

1 +
εk⊕q − εk√

(εk⊕q − εk)2 + ∆2


ukvk =

∆

2
√
(εk⊕q − εk)2 + ∆2

(2.18)

follows from the vanishing of the off-diagonal terms of Eq. (2.16) rewritten in terms of αk, βk. The

diagonal Hamiltonian is now

H = ∑
k

[
E−(k, q)α†

k αk + E+(k, q)β†
k βk

]
(2.19)

with

E±(k, q) =
ϵk + ϵk⊕q

2
±

√(
ϵk − ϵk⊕q

2

)2

+ ∆2. (2.20)

For q = π (antiferromagnetic phase), the lower band E−(k, q) of the half-filled system is completely

filled and there is a gap at the boundaries of the magnetic BZ of size 2∆ = JS.

Instead of diagonalizing the 2L × 2L-dimensional effective hopping matrix in Eq. (2.4), the task of

calculating the ground state energy of a spin configuration with constant angle θ is now reduced to

evaluating Eq. (2.20) for q = θ and summing all E±(k, θ) with k ≤ kF, where kF denotes the Fermi

wave vector.

2.2.2. Dimerized Spin Configurations

The previous section was concerned with spin configurations that can be described with a constant

pitch angle θ. The premise here, however, is precisely the possibility to deviate from this antiferromag-

netic or spiral configuration by a constant value ∆θ that may result in a dimerized spin configuration

as shown in Fig. 2.2. Numerical calculations minimizing E = E(θ, ∆θ) in the (J, φ) phase diagram

presented in Chapter 3 show that the only potentially inhomogeneous ground state ever present is a

11



Chapter 2. The Kondo Lattice

spin-dimerized phase with (θ = π/2, ∆θ = π/2). For simplicity, this section is thus restricted to this

special case, even though all results could of course be generalized to arbitrary values of ∆θ.

The particular dimerized phase considered here can be visualized as a ↑↑↓↓-pattern of the spins, which

doubles the unit cell with respect to the regular antiferromagnet.

2ϴ

ϴ+Δϴ

ϴ-
Δϴ

I=1, a=0

I=1, a=1

I=L/2, a=0

I=L/2, a=1

2!
!+∆!
!-∆!

Figure 2.3.: Dimerized spin configuration with θ = π/2, ∆θ = π/2. For labelling purposes, two

adjacent sites are combined as a ‘master-site’ as pictured with the dotted outlines and described with

inter-site-index I ∈ (0, L/2) and intra-site-index a ∈ (0, 1).

Combining adjacent sites with the same orientation into a two-site ‘master-site’ as pictured in Fig. 2.3

relabels the spin-electron-interaction part of the Hamiltonian as

HJ = J
L/2

∑
I=1

∑
a=0,1

SIasIa, (2.21)

where I denotes the inter- ‘master-site’ index running from 1 to L/2 and a the site1 index with values

0 or 1, i.e. the upper or lower leg of the zigzag ladder. The dimerized classical spin configuration can -

without loss of generality assumed to lie in z-direction - be expressed as

SIa = S(−1)Iez, (2.22)

which yields for the interaction Hamiltonian in Eq. (2.21):

HJ =
JS
2 ∑

I
∑

a
∑
σσ′

(−1)I(σez)σσ′c†
IaσcIaσ′

=
JS
2

1
L/2 ∑

I,a,σσ′

π/2

∑
K,K′=−π/2

σz
σσ′e−iIπe−iKIeiK′ Ic†

KaσcK′aσ′ .
(2.23)

In the last line, a Fourier transform similar to Eq. (2.9) was used, except not - as done above in the

1Not to be confused with the lattice spacing also termed a.
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2.2. Equilibrium Spin Configurations on the Zigzag Ladder

case of homogenous spin configurations - with respect to lattice site i ∈ (1, L), but with respect to the

‘master-site’ I ∈ (1, L/2). Accordingly, the inter-‘atomic’-distance is not a = 1 anymore as above,

but a = 2. The first Brillouin zone therefore runs from −π/2 to π/2 and contains L/2 K-values with

K = n · 2π
L (n ∈ N). Using again the definition of the Kronecker Delta as above in Eq. (2.14) gives:

HJ =
JS
2 ∑

a,σσ′
∑
K,K′

σz
σσ′δK′,K⊕πc†

KaσcK′aσ′

=
JS
2 ∑

a,σσ′
∑
K
σz

σσ′c†
KaσcK⊕π,aσ′

=
JS
2 ∑

a
∑
K

(
c†

Ka↑cK⊕π,a↑ − c†
Ka↓cK⊕π,a↓

)
+ h.c.

=
JS
2 ∑

a,σ
∑
K

zσ

(
c†

KaσcK⊕π,aσ + c†
K⊕π,aσcKaσ

)
,

(2.24)

where zσ = ±1 for σ =↑, ↓. Similar to above, K ⊕ π should be understood as K ⊕ π = K + π + G
with reciprocal vector G such that K + π lies within the first BZ.

The hopping term in the Hamiltonian can also be rewritten using the relabelling as

Hhopp = ∑
ijσ

tijc†
iσcjσ = ∑

σ

L/2

∑
I,I′=1

∑
a,b=0,1

tI I′abc†
IaσcI′bσ

=
1

L/2 ∑
σI I′ab

π/2

∑
K,K′=−π/2

tI I′abe−iKIeiK′ I′c†
KaσcK′bσ,

(2.25)

again using the ‘master-site’-respective Fourier transform.

The sum over I′ can immediately be evaluated explicitly, as the hopping amplitude tI I′ab is non-zero

only for I′ ∈ {I, I + 1, I − 1}. It follows that

Hhopp =
1

L/2 ∑
σIab

π/2

∑
K,K′=−π/2

(
tI Iabei(K−K′)I(1 − δab)

+ tI(I+1)abei(K−K′)IeiK′
+tI(I−1)abei(K−K′)Ie−iK′

)
c†

KaσcK′bσ

=
1

L/2 ∑
σIab

π/2

∑
K,K′=−π/2

ei(K−K′)I (tI Iab(1 − δab)

+ tI(I+1)abeiK′
+ tI(I−1)abe−iK′

)
c†

KaσcK′bσ,

(2.26)
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Chapter 2. The Kondo Lattice

where

tI Iab = t2 and

tI(I+1)ab = tI(I−1)ab =

t1, if a ̸= b, a > b

t2, if a = b

(2.27)

The condition a > b ensures that the hopping is truly along a zigzag geometry, i.e. the rungs only

connect each site to one other site on the other leg of the lattice outside of their own ‘master-site’. The

resulting hopping Hamiltonian can be written as a 2x2 matrix

Hhopp = ∑
σ

∑
K

(
c†

K0σc†
K1σ

)( 2t2 cos(K) t1(1 + eiK)

t1(1 + e−iK) 2t2 cos(K)

)(
cK0σ

cK1σ

)

≡ ∑
σ

∑
K

(
c†

K0σc†
K1σ

)( ε2(K) ε1(K)
ε∗1(K) ε2(K)

)(
cK0σ

cK1σ

)
,

(2.28)

where ε1(K) ≡ t1(1 + eiK) and ε2(K) ≡ 2t2 cos(K). Together with the result for HJ and again using

the notation ∆ ≡ JS/2, this yields a 4 × 4-matrix for the entire Hamiltonian

H = ∑
σ

∑
K

(
c†

K0σc†
K1σc†

K⊕π0σc†
K⊕π1σ

)
M(K)


cK0σ

cK1σ

cK⊕π0σ

cK⊕π1σ

 (2.29)

with

M(K) =


ε2(K) ε1(K) ∆ 0
ε∗1(K) ε2(K) 0 ∆

∆ 0 −ε2(K) ε1(K + π)

0 ∆ ε∗1(K + π) −ε2(K)

 . (2.30)

This can be diagonalized numerically to yield 4 bands (8 if counting σ =↑, ↓, which are, however,

pairwise degenerate).

Even though there is no analytical expression for the energy eigenvalues that can be evaluated immedi-

ately, still the calculation of the ground state energy has been simplified from diagonalizing a 2L × 2L-

dimensional matrix to diagonalizing L/2 matrices of dimension 4 × 4. This is a considerable improve-

ment and, as can be seen in, Section 3.3 allows therefore (in combination with CUDA-programming),

to calculate lattices of size O(105) easily.
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2.3. Perturbative Approaches

2.3. Perturbative Approaches

In this model, there are several parameter regimes accessible to perturbation theory. In particular,

performing perturbation theory in both the weak and strong limit of the coupling constant J, i.e. J ≫ t
and J ≪ t, leads to an effective spin-only model of Heisenberg type. In the following section, both

will be discussed. Additionally, perturbation theory around t1 = 0 can be found in Appendix B.

2.3.1. Weak Coupling (RKKY) Limit

Phenomenologically, there is a type of indirect exchange interaction observed between nuclear mag-

netic moments in a metal that is due hyperfine interaction with conduction electrons. The theoretical

description of this is attributed to Ruderman and Kittel ([43], 1954), Kasuya ([44], 1956) and Yosida

([45], 1957) and accordingly termed the RKKY model. Speaking in the context of the Kondo lattice

model, a localized magnetic moment will polarize the conduction electrons in its vicinity, which in

turn interact with other localized moments resulting in an effective indirect interaction between them.

The nature of this interaction is thus not limited to nearest-neighboring spins and is in fact found to

be oscillating as a function of distance. It can be derived using second order perturbation theory as

shown in the following.

The starting point is the unperturbed Hamiltonian which is simply the hopping of non-interacting

electrons in the conduction band

H0 = ∑
ijσ

tijc†
iσcjσ = ∑

kσ

ϵkc†
kσckσ. (2.31)

A small interaction with the localized spins via J ≪ t is then introduced via

H1 = J ∑
i

siSi . (2.32)

This perturbation is expected to cause an energy shift, which to first order is given by

∆E1 = ⟨0|H1|0⟩ =
J
2 ∑

iσσ′
(σSi)σσ′ ⟨0|c†

iσcjσ′ |0⟩ = J
2 ∑

iσσ′
(σSi)σσ′ ∑

kk′
U†

ikUik′⟨0|c†
kσck′σ′ |0⟩ (2.33)

where

c†
iσ = ∑

k
Uikc†

kσ (2.34)

is also the unitary transformation that diagonalizes the tight binding model H0 in Eq. (2.31) (i.e. the
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Chapter 2. The Kondo Lattice

discrete Fourier transform) and |0⟩ is the ground state of H0. In the unpolarized system, the spin is

conserved and ∑σσ′ σσσ′δσσ′ = 0. It follows that the first order term

∆E(1) = 0 (2.35)

does not contribute. The second order contribution to perturbation theory is in general given by

∆E(2) = ∑
n ̸=0

|⟨0|H1|n⟩|2
E0 − En

, (2.36)

where |n⟩ are the excited states of the unperturbed system with energies En and E0 is the ground

state energy. The only states constributing to the sum in Eq. (2.36) are those excited by single-particle

operators corresponding to the particle–hole excitations of the originally filled Fermi sphere

|n⟩ = c†
qσcq′σ′ |0⟩ ≡ |qq′σσ′⟩ (2.37)

with q > kF and q′ ≤ kF where kF denotes the Fermi wavevector, i.e. the highest occupied state in the

Fermi sea and σ, σ′ ∈ (↑, ↓). The ground state energy of the unperturbed system is given simply by

the some of all occupied one-particle energies

E0 = ⟨0|H0|0⟩ = ∑
k≤kF

ϵk. (2.38)

The energies of the excited states |n⟩ are

En = Eqq′σσ′ = ⟨qq′σσ′|H0|qq′σσ′⟩
= ∑

k≤kF ,k ̸=q′
ϵk + ϵq

(2.39)

and thus the energy denominator in Eq. (2.36) is given by

E0 − Eqq′σσ′ = ϵq′ − ϵq. (2.40)

The matrix elements in the numerator of Eq. (2.36) are given by
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⟨0|H0|qq′σσ′⟩ = J
2 ∑

iσσ′
∑
kk′

U†
ikUik′ (σSi)σσ′ ⟨0|c†

kσck′σ′c†
qτcq′τ′ |0⟩

=
J
2 ∑

iσσ′
∑
kk′

U†
ikUik′ (σSi)σσ′ δkq′δστ′δk′qδσ′τ

=
J
2 ∑

i
U†

iq′Uiq (σSi)τ′τ .

(2.41)

All in all, the entire second order energy shift becomes

∆E(2) = ∑
σσ′,q>kF ,q′≤kF

|⟨0|H0|qq′σσ′⟩|2
ϵ′q − ϵq

=

(
J
2

)2

∑
σσ′,q>kF ,q′≤kF

(
∑

i
U†

iq′Uiq (σSi)σ′σ

)(
∑

j
U†

jq′Ujq
(
σSj

)
σ′σ

)†

=
J2

2 ∑
ij

SiSj ∑
q>kF ,q′≤kF

U†
iq′UiqU†

jqUjq′

ϵq′ − ϵq

(2.42)

where in the last line ∑σσ′ σσσ′σσ′σ = 2 was used.

The perturbation term can thus be written as an effective spin-only Hamiltonian

HRKKY = ∑
k

JRKKY(k)SkS−k (2.43)

at order J2 with the effective RKKY coupling JRKKY(k) = −J2χ0(ω = 0, k) and the static susceptibility

of the conduction electrons

χ0(ω = 0, k) =
1

2L ∑
q

nk+q,↑ − nq,↓
ϵ(q)− ϵ(k + q)

(2.44)

where nkσ = Θ(−ϵ(k)) is the occupation number.

2.3.2. Strong Coupling Limit

On the other end of the parameter range of the coupling strength J, perturbation theory can also

be used for the limit J ≫ t. Just as in the RKKY limit, here too, the model can be mapped onto

an effective spin-only Hamiltonian of Heisenberg type. Figuratively speaking, the strong coupling

limit corresponds to local “bonds” which fix the electron tightly to the respective classical spin and,
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within the bond, anti-align their orientations perfectly. At half-filling, there is now one such bond at

each lattice site, leaving no possibility for the electrons to move around the lattice. This situation is

the starting point for perturbation theory. In order to apply non-degenerate perturbation theory, the

classical spin configuration must be considered fixed.

The unperturbed Hamiltonian is then evidently the spin-electron interaction term

H0 = J ∑
i
si ·Si, (2.45)

while the perturbation is given by the hopping term

H1 = ∑
ijσ

tijc†
iσcjσ. (2.46)

Again following time independent perturbation theory, the first order correction to the ground state

energy is given by

E(1)
0 = ⟨0|H1|0⟩, (2.47)

which vanishes, since there is no on-site hopping tii.

The expression for the second order contribution is, as above,

E(2)
0 = ∑

n ̸=0

|⟨0|H1|n⟩|2
E0 − En

. (2.48)

where the |n⟩ are eigenstates and |0⟩ the ground state of H0.

The energy of the ground state is given by the sum of bond-energies, with |Si| = 1
2 , as

E0 =
L

∑
i=1

J⟨si⟩Si = −1
4

JL . (2.49)

Excited states |n⟩ contributing to the sum in Eq. (2.48) are those that break two of the bonds between

spins and electrons to allow one electron to hopp to another site, the excited states have thus an energy

lowered by two bond-energies. The difference in the denominator of Eq. (2.48) is then

E0 − En = −1
4

JL − (−1
4

J(L − 2)) = − J
2

. (2.50)

For the numerator, matrix elements of the form

⟨0|c†
iσcjσ|n⟩ (2.51)
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are needed. The ground state |0⟩ can be split into local ground states and expressed as

|0⟩i = |θi, ϕi⟩ =
(

eiϕi cos(θi/2)
sin(θi/2)

)
(2.52)

where (ϕi, θi) are spherical angles of the given classical spin configuration. Without loss of generality,

the classical spins can be taken to lie in the x − y-plane, i.e. |0⟩i = |θi⟩. Note that in particular

| ↑⟩ = |θ = 0⟩ =
(

1
0

)
and | ↓⟩ = |θ = π⟩ =

(
0
1

)
. (2.53)

One excited state |n⟩ describes the hopping of one electron from site i → j:

|n⟩ = |0i⟩c†
jσc†

jσ′ |0j⟩ (2.54)

The sum ∑n in Eq. (2.48) is thus to be understood as over every ordered pair (i, j). One matrix element

for (i, j) including the sum over spin σ =↑, ↓ is

∑
σ

⟨0| c†
iσcjσ |n⟩ = ∑

σ

⟨θi|⟨θj| c†
iσcjσ |0⟩ic†

jσc†
jσ′ |0⟩j

= ⟨θi| ↑⟩i⟨θj| ↓⟩j − ⟨θi| ↓⟩i⟨θj| ↑⟩j

= cos(
θi

2
) sin(

θj

2
)− sin(

θi

2
) cos(

θj

2
) .

(2.55)

With sin x cos y = 1
2 (sin(x − y) + sin(x + y)) and sin( θi−θj

2 ) = − sin( θj−θi
2 ) follows

∑
σ

⟨0| c†
iσcjσ |n⟩ =

1
2

(
sin(

θj − θi

2
) + sin(

θj + θi

2
)

− sin(
θi − θj

2
)− sin(

θi + θj

2
)

)
= sin(

θj − θi

2
) := sin(

θij

2
) ,

(2.56)

where θij denotes the angle between spins at sites i and j. On the zigzag ladder, the angle between

nearest neighbors is θij = θ ± ∆θ, while the angle between next-to-nearest neighbors is 2θ. The

hopping amplitudes are tij = t1 for nearest and tij = t2 for next-to-nearest neighbors. Thus, the
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energy shift due to one hopping process i → j is given by

∆Eij =
|⟨0|H1|ij⟩|2

E0 − Eij
= −2

J
t2
ij sin2(

θij

2
)

=

 − 2
J t2

1 sin2( θ±∆θ
2 ) for i, j nearest neighbors

− 2
J t2

2 sin2( 2θ
2 ) for i, j next-to-nearest neighbors .

(2.57)

All in all, including both i → j and j → i, the ground state energy including second-order corrections

is therefore

E =− 1
4

LJ − (# n.n.n.) · 4
J

t′2 sin2
(

2θ

2

)
− (# n.n.) · 4

J
t2
(

1
2

sin2
(

θ + ∆θ

2

)
+

1
2

sin2
(

θ − ∆θ

2

))
+O

(
t3

J3

) (2.58)

where # n.n. is the number of nearest and # n.n.n. the number of next-to-nearest neighbors. With

sin2( x
2 ) =

1
2 (1 − cos(x)) follows finally up to O

(
t3

J3

)
:

E = L
(
−1

4
J − 2t2

1
J

− 2t2
2

J
+

t2
1
J

cos(θ) cos(∆θ) +
2t2

2
J

cos(2θ)

)
. (2.59)

As shown in Appendix A, the energy for the Heisenberg J1 − J2 model on a zigzag ladder is

E(θ, ∆θ) = L S2 (J1 cos θ cos ∆θ + J2 cos 2θ) . (2.60)

Comparing to Eq. (2.59), the second-order perturbation theory for the Kondo lattice model can appar-

ently be mapped onto an effective Heisenberg J1 − J2 model with

J1 =
8t2

1
J

and J2 =
8t2

2
J

(2.61)

as well as a constant energy-offset of

∆E = L
(
−1

4
J − 2t2

1
J

− 2t2
2

J

)
. (2.62)

The equilibrium spin configuration for the Heisenberg J1 − J2-model is, as shown in Appendix A,

θ = π, ∆θ = 0 if J1 > 4J2

θ = arccos
(
− J1

4J2

)
, ∆θ = 0 if J1 < 4J2 ,

(2.63)
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which can now be translated into Kondo lattice parameters as

θ = π, ∆θ = 0 if t1 > 2t2

θ = arccos
(
− t2

1
4t2

2

)
, ∆θ = 0 if t1 < 2t2 .

(2.64)
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3. Equilibrium Phase Diagram

The ground state phase diagram of the unfrustrated one dimensional Kondo lattice model with classical

spins was studied for example by employing a Monte Carlo method in [10] and using a self-consistent

mean-field-like approach in [46]. The phase diagram, as a function of coupling constant J and electron

filling ⟨n⟩, resulting from the latter is shown in Fig. 3.1. The lattice with low electron filling ⟨n⟩ ≪ 1
is found to have a ferromagnetic ground state, while the half-filled system with ⟨n⟩ = 1 is antiferro-

magnetic for any value of J. In between is a region of phase separation characteristic of a first order

phase transition, where both phases coexist. Additionally, for small to medium coupling constant J
and medium filling ⟨n⟩, there is an incommensurate spiral phase.

⟨ n ⟩
00.20.40.60.81

J
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⟨n⟩

J
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Figure 3.1.: Ground state phase diagram of the unfrustrated Kondo chain with classical spins as a

function of coupling constant J and electron filling ⟨n⟩ with FM = ferromagnetic, AF =

antiferromagnetic, IC = incommensurate (spiral), PS = phase separation. On the line ⟨n⟩ = 1, the

system is antiferromagnetic. From [46].

At half-filling, the system is therefore either antiferromagnetic at zero temperature, or disordered at

finite temperature. On the zigzag ladder which was introduced in the previous chapter, however, the

situation is different. The inclusion of frustration in the form of next-to-nearest neighbor hopping

opens a new dimension of the phase diagram and results in a new phase, which is exclusive to the

frustrated case.
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Chapter 3. Equilibrium Phase Diagram

This chapter shows numerical results for the ground state of the Kondo lattice with classical spins on

the zigzag ladder. Here, the system will always be assumed at half-filling with ⟨n⟩ = 1. The first part

in Section 3.1 will introduce the method, review the parameterization and present the ground state

phase diagram as a function of coupling constant J and frustration φ. The next part in Section 3.2

will carry on the discussion on perturbative approaches, which was started in Section 2.3 analytically,

and present numerical results. After a discussion of finite size effects in Section 3.3, the semiclassical

phase diagram presented here will in Section 3.4 eventually be compared to the quantum mechanical

analogue obtained with DMRG by M. Peschke [20]. Large parts of this chapter have been taken from

our joint publication [21].

3.1. The Ground State as a Function of J and φ

The Kondo lattice model as introduced in Chapter 2 has essentially two parameters - the Kondo cou-

pling constant J that couples conduction electrons to local moment spins and the hopping amplitude

ratio, i.e. measure of frustration, φ = arctan(t2/t1). The equilibrium phase diagram in this chapter is

calculated as a function of these two parameters in essentially the entire parameter range 0 ≤ φ ≤ π/2
and 0 ≤ J < ∞. For each set of (J, φ), the ground state of the Kondo lattice system with classical spins

is found by a simple variational calculation. As seen in Section 2.1, the ground state energy of the

system is a functional of the spin configuration {S} = (S1, ..., SL):

E({S}) = ∑
ii′σσ′

(
tii′δσσ′ +

J
2
(σSi)σσ′δii′

)
⟨c†

iσci′σ′⟩{S} . (3.1)

Instead of considering all possible spin configurations in space, the parametrization as introduced in

Section 2.2 and shown in Fig. 2.2 is used, where two angles θ and ∆θ are sufficient to describe the

orientation of the classical spins. With this, the dependency on the spin configuration in Eq. (3.1)

therefore reduces to E = E(θ, ∆θ). The angle θ is varied between 0 ≤ θ ≤ π on a finite grid with

discrete values θ = n2π/L (n ∈ Z) to ensure consistency with periodic boundary conditions. For

convenience, the same grid is used for ∆θ, despite the fact that it actually is a continuous variable. For

symmetry reasons, it is sufficient to consider 0 ≤ ∆θ ≤ π/2. Also note that (θ → θ − π, ∆θ →
∆θ − π) is a symmetry of the system.

The relevant φ- and J-ranges - in practice J ≤ 14 turns out as sufficient - can now be scanned to find

the minimum energy and corresponding optimal spin configuration (θ, ∆θ) for each parameter pair

J, φ. Exemplary results are shown in Fig. 3.2 for two calculations with constant J (left two columns, in

pink) and two calculations with constant φ (right two columns, in blue). The leftmost column shows,

from top to bottom, the minimum energy per lattice site E/L and the corresponding optimal angles

θ, ∆θ as a function of φ for J = 3 in a system with L = 100. At φ = 0, the system is simply the well

known one dimensional unfrustrated chain with an antiferromagnetic ground state (θ = π, ∆θ = 0)
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3.1. The Ground State as a Function of J and φ

as shown in Fig. 3.1. When increasing the frustration, there emerges a critical φc at which the ground

state changes to a new dimerized state with (θ = π/2, ∆θ = π/2). The same calculations performed

at J = 10 in the second column show in between the antiferromagnetic and dimerized phase, the

existence of another ground state configuration, a spiral phase with continuously varying θ.

Figure 3.2.: Minimum energy per lattice site and optimal θ and ∆θ as a function of φ for J = 3, 10
(first and second column, pink region) and as a function of J for φ = 0.4, 0.8 (third and fourth

column, blue region) for L = 100.

Keeping φ = 0.4 constant and varying J as shown in the third column in Fig. 3.2, leads to a rather

uneventful picture. The entire J-range here leads to an antiferromagnetic ground state. The same J-

variation at φ = 0.8 as shown in the rightmost column, however, reveals a phase boundary between a

dimerized state with (θ = π/2, ∆θ = π/2) and a spiral with θ ≈ 104◦ at around Jc ≈ 6. The latter

is incidentally also the ground state of the classical J1 − J2-Heisenberg model with J1 = J2, which

will be discussed in more detail later on. Note that the shape of θ(φ) in the middle row of the first

two columns is consistent with a first order antiferromagnetic-dimerized transition and a continuous

antiferromagnetic-spiral transition.

After similar calculations across the entire parameter space, the resulting equilibrium phase diagram
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Chapter 3. Equilibrium Phase Diagram

is shown in Fig. 3.3. The solid line indicates calculations for lattice sizes of about L = 200, for which

finite size analysis shows convergence in the regime 0 < φ ⪅ π/4. Beyond this, however, much

larger lattice sizes of up to L = O(105) are needed and the results plotted as data points in Fig. 3.3.

The dimerized phase for φ ⪆ π/4 shown in the second column of Fig. 3.2 for J = 10 for example, is

actually a finite size effect, and should in the thermodynamic limit L → ∞ actually be a spiral phase

with θ close to, but not exactly π/2 and ∆θ = 0. A detailed discussion of finite size effects can be

found in Section 3.3. Both the regimes J ≪ t and J ≫ t are accessible with perturbation theory as

shown analytically in Section 2.3, a comparison with numerical results is shown in Section 3.2.

2 4 6 8 10 12 14
J/t

0

/8

/4

3 /8

/2

DIM

IC

AF

Figure 3.3.: φ − J magnetic phase diagram with an antiferromagnetic phase (AF, θ = π, ∆θ = 0), an

incommensurate spiral phase (IC, π/2 < θ < π, ∆θ = 0), and a dimerized phase (DIM,

θ = π/2, ∆θ = π/2). One of the horizontal dotted lines indicates t1 = t2 (φ = π/4), the other

t1 = 2t2 (φ ≈ 0.148π). Calculations have been performed for L = 200. This is sufficient for

convergence, except for the regime φ ⪆ π/4 where much larger systems with up to L = 100, 000
sites are necessary. The dashed line interpolates between the data points.

As shown for selected parameter ranges in Fig. 3.2, the numerical calculations show the presence of

three different phases. As expected, the well-known result for the unfrustrated chain with φ = 0
is reproduced, i.e. an antiferromagnetic phase with (θ = π, ∆θ = 0). Note that as opposed to the

1D quantum system, the ground state of the classical system does exhibit true long range order at

temperature T = 0. The classical spins act like a staggered magnetic field, resulting in a magnetic
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3.1. The Ground State as a Function of J and φ

unit cell twice the size of the original lattice unit cell. As shown in Section 2.2.1, the electronic band

structure consists of two dispersive bands in the reduced Brillouin zone −π/2 < k ≤ π/2 with a gap

of JS = J/2 at the zone boundary. At half-filling, the system is evidently an insulator.

This characteristic is preserved after turning on the next-to-nearest neighbor hopping t2 by increasing

φ. In fact, all of the phases present in the phase diagram Fig. 3.3 show a finite gap between the highest

occupied and the lowest unoccupied one-particle energies given by the eigenvalues of the effective

hopping matrix (Eq. (2.4)). As the gap is of the order of J, this is of course numerically not possible to

decide for weak J. The finite-size gap is t/L, so that for J → 0 at fixed L the only statement that can

be made with certainty is for J ⪆ t/L.

Even away from the unfrustrated limit at φ = 0, the antiferromagnetic phase persists after increasing

φ > 0 and extends up to a critical value φc that depends, albeit not very strongly, on the exchange

coupling J. In the weak coupling limit, the phase boundary is found to be at φc(J → 0) ≡ φ0 =

arctan(1/2) ≈ 0.148π, which is drawn as a dotted line in Fig. 3.3 and corresponds to t1 = 2t2. This is

the exact position of the Lifschitz point where the number of Fermi points in the noninteracting band

structure changes from two (for φ < φ0) to four (for φ > φ0) as seen in Fig. 3.4. Coincidentally, this

is also the value of the transition in the strong coupling regime J → ∞ where the phase boundary is

also found at φc(J → ∞) ≡ φ∞ ≈ 0.148π, which is not pictured in Fig. 3.3 as J = 14 is not quite

converged to qualitative behavior of J → ∞. This transition was also found using perturbation theory

in Section 2.3.2, where in Eq. (2.64) the transition from an antiferromagnetic to spiral phase was found

to lie precisely at φ∞ = arctan(1/2).

!
!/2!/2

Figure 3.4.: Location of the Fermi points in k-space as a function of φ. The dashed red line illustrates

the Lifshitz transition between a state with two and with four Fermi points at

φ = φ0 = arctan( 1
2 ) ≈ 0.148π (t1 = 2t2). Horizontal arrows: nesting vectors.

For weak J ⪅ 4, the phase transition at φc is a first order transition between the well-known antiferro-
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Chapter 3. Equilibrium Phase Diagram

magnetic phase and a new spin-dimerized phase with (θ = π/2, ∆θ = π/2). In this dimerized phase,

the spin configuration exhibits a ↑↑↓↓-like pattern with antiferromagnetic correlations between next

nearest neighbors, i.e. on the sides of the ladder, and alternating ferro- and antiferromagnetic correla-

tions on the rungs of the ladder.

For larger J, however, the phase boundary φc separates the antiferromagnetic phase not from the

dimerized, but from an incommensurate spin spiral phase (IC) with continuously varying pitch angle

between π/2 < θ < π, as can be seen in the middle row of the second column in Fig. 3.2, where

θ(φ) is plotted for J = 10. Increasing φ starting at φc, the spin configuration changes from θ = π,

i.e. antiferromagnetic order along the rungs - or nearest neighbors, to an incommensurate spiral phase

that ultimately ends in a 90° spiral for φ → π/2 . A first order phase transition separates the spiral

phase from the dimerized phase along the J-axis that starts at Jc ≈ 9.7 at φ = π/2 and terminates in

a triple point at Jtri ≈ 4.2.

Dimerization is a nonperturbative phenomenon. For J → 0, standard RKKY theory does not recover

spin dimerization, at least not at order J2, see Section 3.2.2. Still, the phase boundary ends at J = 0
for a finite hopping ratio: φ

(dim)
c (J) → φ0 = arctan( 1

2 ) for J → 0. It is obvious that in the J → 0
limit the spin dimerization is caused by the Lifschitz transition at φ0, where the number of Fermi

points in the noninteracting band structure changes. It is noteworthy that φ0 coincides with φ∞ =

φ
(dim)
c (J = ∞). However, this must be seen as a coincidental match; for example, the wave vectors of

the incommensurate phase for strong J do not correspond to nesting vectors connecting noninteracting

Fermi points.

3.2. Perturbative Approaches

3.2.1. Strong Coupling Regime

In the ground state of the atomic limit t1 = t2 = 0, each lattice site i is occupied by exactly one electron.

The local spin moment ⟨si⟩ is fully polarized and oriented antiparallel to the classical spin Si. To

compute the functional E({S}) (Eq. (3.1)) the configuration of classical spins {S} = (S1, ..., SL) must

be considered as fixed, and thus the electronic ground state |0⟩ is nondegenerate. The first nonzero

contribution to the functional within nondegenerate perturbation theory in powers of t/J is found at

second order:

E({S}) = −L
J
4
+ ∑

n ̸=0

|⟨0|H1|n⟩|2
E0 − En

+O(t3/J2) . (3.2)

Here, the perturbation H1 = ∑ijσ tijc†
iσcjσ is the hopping term in Eq. (3.2), |0⟩ and |n⟩ are the ground

and the excited states of the Kondo term H0, and E0 = −LJ/4 and En are the corresponding unper-
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3.2. Perturbative Approaches

turbed eigenenergies. The straightforward calculation is given in Section 2.3.2 and results in:

E(θ, ∆θ) =const. +
L
4
(J1 cos θ cos ∆θ + J2 cos(2θ))

+O(t4/J3),

which is just the energy of the classical-spin (|Si| = 1/2) Heisenberg model on the zigzag ladder

with exchange couplings J1 = 8t2
1/J and J2 = 8t2

2/J and for the same parameterization of the spin

configuration as assumed above for the classical-spin Kondo lattice (see Fig. 2.2). The constant, {S}-

independent energy offset is given by

∆E = L
(
−1

4
J − 2t2

1
J

− 2t2
2

J

)
. (3.3)

As the ground-state energy correction at order t3/J2 vanishes identically for all (θ, ∆θ) due to a can-

cellation of two different types of virtual ring-exchange processes, Eq. (3.3) holds up to fourth-order

corrections. The according calculation is a bit more tedious but still straightforward and is not reported

here.

As shown in Appendix A, minimization of the energy functional yields ∆θ = 0 for all (φ, J). Evidently,

there is no spin dimerization in this theory. The optimal pitch angle θ for the spin configuration

depends solely on φ and is θ = π for t1 > 2t2 and

θ = arccos
(
− t2

1

4t2
2

)
= arccos

(
− 1

4 tan2(φ)

)
(3.4)

for t1 < 2t2, which is in accordance with the numerical results of the full theory in the J → ∞ limit.

Strong-coupling perturbation theory also explains why convergence of the results with increasing

L is extremely poor in the range π/4 ≲ φ < π/2 and for strong J. As detailed in Section 3.3,

comparatively large systems must be considered to control the finite-size effects. Calculations in this

parameter regime are performed for systems with up to L = 100, 000 sites, see dots in Fig. 3.3 .

In general, the total energy can be expanded in powers of 1/J as follows:

E(J, φ) = E0 +
1
J

E2 +
1
J3 E4 +O(

1
J5 ) . (3.5)

Seeing as the strong coupling result Eq. (3.3) holds up to fourth order corrections, the difference be-

tween full theory and perturbation theory is expected to be ∝ t4/J3, which, as can be seen in Fig. 3.5,

is indeed the case.
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Figure 3.5.: Difference energy of full theory E and strong coupling perturbation theory Epert per

lattice site plotted against 1/J3 for φ = π/4 and L = 50.

Also apparent in Fig. 3.5 is the fact that perturbation theory agrees moderately well with the full theory

even for J-values as low as J = 10, which is the smallest value plotted in Fig. 3.5, as even then the

energy difference per lattice site is of O(10−2). At the highest plotted value of J = 50 perturbation

theory is in nearly perfect agreement with the ground state energy of the full theory. Note that the

energy plotted in Fig. 3.5 is the ground state energy, i.e. E(θ, ∆θ) minimized with respect to θ and ∆θ.

The qualitative agreement of the full energy landscape as a function of all θ and ∆θ is shown in Fig. 3.6.

The 2D parameter space is illustrated by plotting the energy per lattice site E/L as a function of θ for all

values of ∆θ according to the pictured color scale, where in particular the deepest red line corresponds

to ∆θ = 0 , the lightest yellow line to ∆θ = π/2 and the deepest blue line to ∆θ = π. Note that

the above-mentioned symmetry (θ → θ − π, ∆θ → ∆θ − π) of the system is immediately apparent,

as the minimum of the red line with ∆θ = 0 is mirrored around θ = π/2 onto the minimum of the

blue line where ∆θ = π. The left column shows the energy landscape of the full theory next to the

perturbation theory result in the right column. The rows show different values of J. At J = 5 in the

top row, i.e. Fig. 3.6 a., the energy minimum seems to be nearly at the same location (θ, ∆θ) for both

full and perturbation theory, but the value of the ground state energy differs noticeably. Additionally,

the entire shape of the (θ, ∆θ)-dependence is different and the energy spectrum much narrower in

the full Kondo model compared to the perturbation theory result. In the middle row, however, where

J = 10, the overall qualitative agreement is already apparent and both location (θ, ∆θ) and value of

minimum energy of the perturbation theory is close to the full theory. Finally, in the bottom row, where

J = 50, the agreement is nearly perfect. The agreement between the full and perturbation theory is

thus not limited to value and location of the energy minimum E(θ, ∆θ) but is identical for the entire

dependence of the energy on θ and ∆θ, as it should be, knowing that for J → ∞ the Kondo lattice
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3.2. Perturbative Approaches

model with classical spins can be mapped exactly onto the Heisenberg J1 − J2-model. To see this, the

calculation in Appendix A can be done for arbitrary spin configurations.

Figure 3.6.: Energy per lattice site E/L as a function of θ (x-axis) and ∆θ (colored lines) for a system

with L = 128 at φ = 0.6 and a. J = 5 (top row), b. J = 10 (middle row) and c. J = 50 (bottom row)

in the full Kondo lattice theory with classical spins (left column) and for the effective spin-only

theory obtained by strong coupling perturbation theory (right column).
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3.2.2. Weak Coupling Regime - RKKY

The effective spin Hamiltonian obtained by standard RKKY theory [43–45] is given by

HRKKY = ∑
k

JRKKY(k)SkS−k (3.6)

at order J2 in the limit J → 0. For a detailed calculation in real space, see Section 2.3.1. The effective

RKKY coupling JRKKY(k) = −J2χ0(ω = 0, k) is given by the static magnetic susceptibility of the

noninteracting conduction electrons

χ0(ω = 0, k) =
1

2L ∑
q

nk+q,↑ − nq,↓
ε(q)− ε(k + q)

, (3.7)

where nkσ = Θ(−ε(k)) is the occupation number and ε(k) the dispersion of the zigzag lattice, i.e.

ε(k) = −2t1 cos(k)− 2t2 cos(2k) . (3.8)

If t2 < t1/2 (φ < φ0 = arctan( 1
2 ) ≈ 0.148π), there are two Fermi points at kF = ±π/2, inde-

pendent of φ. The susceptibility diverges logarithmically with L → ∞ at k = π, as is easily seen

by expanding the denominator in q around q = kF. Hence, spin correlations are predominantly an-

tiferromagnetic, consistent with the antiferromagnetic phase found numerically. If t2 > t1/2, there

are four Fermi points, see Fig. 3.4, resulting in a logarithmic divergence of the susceptibility χ0(0, k)
at the φ-independent nesting „vector” k = π/2. This is consistent with a π/2 spin spiral as well as

with a spin-dimerized phase. Consequently, weak-coupling perturbation theory appears to explain the

presence of the phase transition at t1 = 2t2 in the J → 0 limit. One has to be aware, however, that the

effective RKKY model (Eq. (3.6)) is actually ill-defined in one dimension [47] due to the divergence of

the coupling constant.

Considered here are arbitrary but finite L. In this regime, weak-coupling perturbation theory is well

behaved, and the RKKY coupling constants can be computed numerically using Eq. (3.6) or in the real-

space representation as given in Section 2.3.1. Because of the wave-like nature of the perturbation,

the value of the exchange coupling constant JRKKY oscillates as a function of the spin-spin distance,

which is reproduced numerically and shown in Fig. 3.7 for a system with L = 130 sites at φ = 0.3 and

J = 0.01.

For numerical calculations of RKKY theory as obtained by nondegenerate second order perturbation

theory as detailed in Section 2.3.1, depending on the value of φ, the system size L must be chosen with

care. This is a result of the Lifshitz transition mentioned above. In order to obtain a nondegenerate

electronic ground state, at half-filling the system size needs to be chosen as L = 4n + 2 with integer n
if t2 < t1/2 (φ < φ0), and L = 4n for t2 > t1/2 (φ > φ0). In the latter case, occupied two-fold spin-

degenerate one-particle states labeled by wave vectors k come in pairs ±k, except for k = 0 and k = π.
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3.2. Perturbative Approaches

The ground-state classical-spin configuration is obtained by minimization of the energy function

ERKKY(θ, ∆θ) = E0 + ∑
ij

JRKKY,ijSiSj . (3.9)

Here, the constant offset E0 is given by the total ground state energy of the half-filled conduction band

at J = 0, i.e., E0 = ∑ijσ tij⟨c†
iσcjσ⟩. Eq. (3.9) is easily evaluated numerically, and a nontrivial θ and ∆θ

dependence of ERKKY(θ, ∆θ) is found as shown in Fig. 3.8.
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Figure 3.7.: RKKY coupling Jij as a function of the distance |j − i| here given for fixed i = 0 and

L = 130 at φ = 0.3 and J = 0.01. Due to periodic boundary conditions the plot only covers j = 0 to

j = L/2.

Fig. 3.8 shows a comparison between RKKY-perturbation theory and full theory for the entire θ, ∆θ-

dependent energy landscape similar to Fig. 3.6, where this was done for strong coupling perturbation

theory. Again, the energy per lattice site E/L is plotted as a function of θ with different values of ∆θ

denoted as differently colored lines according to the colorbar on the right. In particular, ∆θ = 0 is

shown as the dark red line, ∆θ = π/2 as light yellow, and ∆θ = π as dark blue. Just as in Fig. 3.6,

the symmetry (θ → θ − π, ∆θ → ∆θ − π) of the system is conveyed as the minimum of the red line

with ∆θ = 0 is mirrored around θ = π/2 onto the minimum of the blue line where ∆θ = π. The

left column shows the results of the full theory, compared to the right, where numerical results for the

RKKY theory were obtained using Eq. (3.9). The rows correspond to different values of the coupling

constant J.

Starting at the bottom row Fig. 3.8 c. where J = 1.0, the difference between the full theory on the left
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and RKKY theory on the right is very noticeable. The only similarity that could be deduced is that the

minimum of E(θ, ∆θ) in both cases lies at around θ = π/2, but both the actual value of the minimum

energy and the shape of the entire landscape look profoundly different. Additionally, the minimum for

the full theory on the left is given by the yellow line with ∆θ = π/2, while the RKKY theory on the

right shows a degeneracy with respect to ∆θ.

Figure 3.8.: Energy per lattice site E/L as a function of θ (x-axis) and ∆θ (colored lines) for a system

with L = 128 at φ = 0.6 and a. J = 0.01 (top row), b. J = 0.1 (middle row) and c. J = 1.0 (bottom

row) in the full Kondo lattice theory with classical spins (left column) and for the effective spin-only

theory obtained by RKKY theory (right column).

The RKKY result in the right panel of the middle row with J = 0.1 looks qualitatively quite similar

to the corresponding full theory on the left. Again, the location of the energy minimum is at (θ =
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3.2. Perturbative Approaches

π/2, ∆θ = 0) compared to (θ = π/2, ∆θ = π/2) in the full theory, but the value of the ground state

energy differs by only O(10−4). Even better, and in fact nearly perfect, is the agreement shown in the

top row Fig. 3.8 a. for J = 0.01. The only difference is again the absence of a spin-dimerized ground

state in the framework of the RKKY theory.

Evidently, RKKY theory is not able to capture the spin-dimerized phase at all. This can be seen more

clearly by zooming into the top row of Fig. 3.8, which is done in Fig. 3.9. Here, the top row again

shows the energy landscape E(θ, ∆θ) again for J = 0.01 and φ = 0.6 as in Fig. 3.8 a., with a zoom

into the region of the energy minimum pictured in the bottom row. Clearly, the full theory shows a

true minimum for ∆θ = π/2 (yellow line), whereas in the RKKY theory on the right, all lines with

∆θ ∈ (0, π/2) lie exactly on top of each other. Hence, higher-order-in-J perturbation theory would

have to be invoked to lift this degeneracy and to reproduce the spin-dimerized phase.

π

π/2

0

π/4

3π/4

Δθ

π

π/2

0

π/4

3π/4

Δθ

full theory RKKY

Figure 3.9.: Energy per lattice site E/L as a function of θ (x-axis) and ∆θ (colored lines) for a system

with L = 128 at φ = 0.6 and J = 0.01 in the full Kondo lattice theory with classical spins (left) and

for the effective spin-only theory obtained by RKKY theory (right). The bottom row shows a zoom

into the minimum of the energy and reveals the corresponding ∆θ to be degenerate in RKKY theory

and ∆θ = π/2 in the full theory.
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The full semiclassical theory predicts a discontinuous transition at φc(J) between an antiferromagnetic

(θ = π, ∆θ = 0) and a dimerized state (θ = π/2, ∆θ = π/2), which are both characterized as local

energy minima.

To characterize the course of the transition at weak J, φc(J) can be expanded for any finite L:

φc(J) = φ0 + const × J2 +O(J4) . (3.10)

As the RKKY Hamiltonian involves a single energy scale only and thus predicts φc(J) = φ0 = const

(relating to the transition with respect to θ only), the J2 term is already beyond second-order perturba-

tion theory. Note that φ0 itself is independent of L as this is related to the Lifschitz transition which

is L-independent in turn.

To learn more about the transition φc(J) in general, both energy minima for the two competing phases

(i = 1, 2) can be expanded in powers of J:

Ei(J, φ) = Ei,0(φ) + J2Ei,1(φ) + J4Ei,2(φ) +O(J6) . (3.11)

For J = 0, the total energy does not depend on the spin configuration such that trivially E1,0(φ) =

E2,0(φ). Therefore, the J2-term of φc(J) is obtained from the condition E1,1(φc) + J2E1,2(φc) =

E2,1(φc) + J2E2,2(φc), i.e., one has to go to O(J4).

L=10

L=22

L=50

L=70

L=102

Figure 3.10.: Difference between the total energy of the full semiclassical theory and of the RKKY

perturbation theory per site as a function of J4 in the weak-J regime at φ = 0.4 < φ0 and for

different system sizes as indicated. Inset: Corresponding slope, i.e., the coefficient

α4 ≡ limJ→0(E(J)− ERKKY)/(LJ4) as a function of L2.
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Fig. 3.10 (main figure) demonstrates that RKKY theory is perfectly valid in the weak-J limit for any finite
system size L. Namely, the difference between the total energy, as obtained from the full semiclassical

theory, and the RKKY energy, Eq. (3.9), is zero up to corrections of the order of J4. For a small system

with L = 10 sites, for instance, there is almost perfect agreement between ERKKY(θ, ∆θ) and the exact

ground-state energy E(θ, ∆θ) up to J = 0.5. In the same J range but for larger lattices with L = 100,

however, there are qualitative deviations between the RKKY and the exact data for E(θ, ∆θ). In fact,

the magnitude of the O(J4) correction strongly increases with increasing system size, as can be seen in

the main part of Fig. 3.10. This can be quantified by the coefficient α4 ≡ E1,2(φ)/L = limJ→0(E(J)−
ERKKY)/(LJ4), i.e., by the slope of the linear trend with J4. The inset demonstrates that α4 diverges

as L2 when L → ∞. This illustrates the breakdown of perturbation theory in the thermodynamical

limit. At the order J2, on the other hand, α2 ≡ E1,1(φ) = limJ→0(ERKKY − E0)/(LJ2), converges to

a finite value as L → ∞, as is well known for the free electron gas [48,49]. The logarithmic divergence

of χ0(0, k) at k = π/2 is integrable, which implies that the total RKKY energy per site, Eq. (3.6),

converges to a finite value in the thermodynamic limit. For the free electron gas in one dimension, one

can evaluate Eq. (3.7) analytically and show that [48,49] χ0(ω = 0, k) ∼ ln(2kF−k)
ln(2kF+k) . This diverges at

k = 2kF. However, in the real-space representation one has χij ∼ Si(Ri − Rj), and the sinc function

is integrable from 0 to ∞ such that the total energy of a Hamiltonian of the form H = L−1 ∑ij χijSiSj

stays finite for L → ∞.

Consequently, the J2-term of φc(J), see Eq. (3.10), is ill-defined when L → ∞ since it is fixed by a

condition involving both α2 and α4.

3.2.3. Perturbation Theory Around t1 = 0

At t1 = 0, i.e. φ = π/2, the ground state is given by two decoupled antiferromagnetically ordered

chains, where both the dimerized and the incommensurate spiral configurations are degenerate. This

is lifted at finite t1 and produces first-order transitions traced by the line J(dim)
c (t1), or J(dim)

c (φ). Nu-

merically, it can be seen that for t1 → 0 , the line J(dim)
c (t1) terminates at J0 ≈ 9.7t as shown in the

phase diagram, Fig. 3.3. Hoping to gain analytical insight into the phase transition, nondegenerate per-

turbation theory in t1 can be used to compute the total energy for a given configuration of the classical

spins. The calculation is shown in Appendix B but unfortunately results in a ground state where both

the dimerized and π/2-spiral state are still degenerate. As odd powers of t1 do not contribute, the

degeneracy is lifted, at the earliest, at order t4
1.

This knowledge can, however still be used to determine properties of the behavior of the line J(dim)
c (t1).

Dimerized states (i = 1) with ∆θ = π/2 and spiral states (i = 2) with ∆θ = 0 are given by local

minima, whose energy can be expanded in powers of t1,

Ei(J, t1) = Ei,0(J) + t2
1Ei,1(J) + t4

1Ei,2(J) + ... , (3.12)
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and the degeneracy E1,0(J) = E2,0(J) in the decoupled-chain limit can be exploited. The energy is

trivially independent of ∆θ and it follows E1,1(J) = E2,1(J). The condition fixing J(dim)
c (t1) then

reads as E1,2(J(dim)
c ) + t2

1E1,3(J(dim)
c ) = E2,2(J(dim)

c ) + t2
1E2,3(J(dim)

c ). Consequently, for an analytical

computation of J0 one would have to go O(t6
1) at least. In any case, the line can be expanded as follows

J(dim)
c (t1) = J0 + const. × t2

1 +O(t4
1) , (3.13)

or put differently, J(dim)
c (φ)− J0 ∝ (φ − π/2)2. This is fully consistent with the dotted line in Fig. 3.3

interpolating between the data points.

3.3. Finite Size Analysis

As mentioned in Section 3.1 in the discussion of the ground state phase diagram, the finite size scaling

is extremely poor for J ⪆ 6 and φ ⪆ π/4. The phase boundary φc between the spiral and dimerized

phase is highly dependent on L for J ⪆ 7 as can be seen in Fig. 3.11, where φc is plotted as a function

of system size L for different values of J. In Fig. 3.11, φc is only converged at L = 200 for J = 6 and

J = 7. For all higher J-values, lattices with around L = 200 sites falsely show a φc value significantly

lower than π/2, i.e. a dimerized phase that extends further than the actual transition shown in Fig. 3.3

for L = 105.

In order to extrapolate, an expression is needed for the dependence of φc on L. Strong coupling per-

turbation theory as detailed in Section 2.3.2 gives as the optimal spin configuration for t1 < 2t2

θ = arccos
(
− 1

4 tan2(φ)

)
, ∆θ = 0 , (3.14)

where t2/t1 = tan φ. In an infinite system, θ would be a continuous variable that smoothly approaches

π/2 from above as φ → π/2 from below. For the actual numerical calculations, performed at finite

L and using periodic boundary conditions, θ runs on a discrete θ-grid with spacings of 2π/L. As-

suming that the energy as a function of θ can in the immediate proximity of the minimum at θmin be

approximated as a parabola, the ‘wrong’ θmin(L finite) can be explained by the finite θ-grid spacing.

As φ → π/2 from below, the optimal θ jumps from θ = π/2 + 2π/L to θ = π/2 at a certain value

φ = φL < π/2. For large L, φL can be determined from the estimate

π

2
+

π

L
= arccos

(
− 1

4 tan2(φL)

)
. (3.15)

Solving for φL yields

φL = arctan

(
1√

4 sin(π/L)

)
. (3.16)
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3.3. Finite Size Analysis

This is plotted in Fig. 3.11 as a dotted line and found to agree well with the result for large J, in

particular with J ≥ 20. Unfortunately, the convergence of φL to φ∞ is very slow. System sizes of

about L ≈ 50, 000 would be necessary to determine φ close to π/2 with an accuracy of better than

1%.

L

!c

J = 6

J = 7

J = 8

J = 9

J = 10

J = 20
J = 30

Figure 3.11.: Value of φc, i.e. the position of the phase boundary between homogenous and dimerized

phase as a function of system size L for different values of J (see colored labels). Dotted line:

analytical estimate for φc(L) ≡ φL, see Eq. (3.16).

As the θ − ∆θ parameter space for each parameter set of (φ, J) is (L/2)× (L/4) dimensional, simply

minimizing E(θ, ∆θ) is clearly not feasible for lattices of size O(105) that are required for convergence

of the phase boundary. Each parameter set is independent, an obvious strategy is therefore to paral-

lelize the computation. In particular, as the number of parameter sets is rather large, this seems as

an ideal use case for GPU computing. In order to calculate the energy E(θ, ∆θ) according to Eq. (3.1),

however, the diagonalization of a 2L × 2L matrix is necessary. For system sizes of L ≈ 105 this is not

feasible. Fortunately, as the crude minimization calculations using the entire θ − ∆θ parameter space

show, there is only one phase present with ∆θ ̸= 0. To obtain the phase boundary between the dimer-

ized and the homogenous spiral phase, it is thus only necessary to compare two phases and determine

the crossover. As detailed in Section 2.2, tackling the problem in k-space only leaves a 4 × 4-matrix

for the dimerized phase and a 2 × 2 matrix for the homogenous spiral phase to diagonalize per set

of parameters. As this is independent of lattice size, this is easily feasible for a standard GPU. Using

the CUDA toolkit, it was possible to calculate the phase boundary in Fig. 3.3 for lattices of up to 105
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lattice sites within a few computing hours. The CUDA calculations in Fig. 3.3 are indicated with black

markers and connected with a dotted line.

3.4. Comparison to DMRG Results

This section aims to compare the results of the Kondo lattice with classical spins as presented in this

thesis to the full quantum system calculated with the density-matrix renormalization group (DMRG)

method, and the related variational uniform matrix product state approach (VUMPS) by Matthias

Peschke. Further information can be found in [20,21].

The fundamentals of the Density Matrix Renormalization Group (DMRG) method were published by

Steven White in 1992 [50,51] and it has since evolved to become one of the most widely used methods

for low dimensional strongly correlated electron systems. An extensive review can be found in [52].

It has remarkable accuracy, for gapped one-dimensional systems, e.g. the spin-1 Heisenberg model,

the exact ground state can be computed up to machine precision [53]. The main draw back of DMRG

is, that it is not easily generalized for systems of higher dimensions d > 1, and while time-dependent

extensions do exist, they also suffer from an exponentially growing computational cost with increasing

time [54]. Nonetheless, it is one of the most powerful methods available to theoretical solid state

physics. In contrast to the semi-classical approximation in the focus of this thesis, the DMRG method

is able to describe the full quantum mechanical problem.

An important difference between semiclassical and quantum system is that the ground state of the

classical system is expected to exhibit long-range order and is degenerate with respect to global SO(3)

rotations of the classical spins, while this is not the case for the quantum mechanical case where quan-

tum fluctuations are present and where the ground state is an isotropic spin singlet. The type of mag-

netic order found semi-classically, however, is expected to relate to the corresponding type of magnetic

short-range order correlations or quasi-long-range (algebraic) magnetic order of the quantum spin case,

since the classical-hybrid system comprises the relevant indirect magnetic coupling mechanisms. The

antiferromagnetic phase with θ = π, ∆θ = 0 for the unfrustrated chain (φ = 0) found for all values of

0 < J < ∞ corresponds to the quantum mechanical quantum-singlet state with short range antiferro-

magnetic correlations. The mechanisms responsible - the RKKY indirect magnetic interaction at weak

J and the superexchange mechanism at strong J - are present in both theories. Both the semiclassical

and quantum-mechanical method also predict the spin dimerized phase.

The phase transition between the AF and the IC phase found semiclassically perfectly matches the shift

of the maximum of the spin-structure factor from Q = π for φ < φc(J) to Q < π for φ > φc(J) in

the quantum-spin case as seen in Fig. 3.12. In this regard, spin correlations in the strong-J regime are

almost classical. For J → ∞, the φ-dependence of the pitch angle θ of the incommensurate magnetic

order can be determined analytically by mapping onto a classical Heisenberg model on the zigzag ladder
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3.4. Comparison to DMRG Results

as detailed in Section 2.3.2, which is plotted in Fig. 3.12 as a black line, and is in excellent agreement.

For J = 10 both the classical and DMRG result lie more or less exactly on the analytical perturbation

theory line, whereas for J = 5 this is only the case for the DMRG results. This is due to the fact

that in contrast to the quantum theory, the classical result for θ at J = 5 predicts a discontinuous

transition from AF to dimerized phase instead of the smooth curve from Af to spiral (IC). Evidently,

the magnitude of the transition Jc between dimerized and spiral phase is different in both theories.

This is not surprising. Clearly, due to the mean-field character inherent to the classical-spin theory,

an identical order of magnitude for the critical parameters cannot be expected. The necessary critical

interaction strength for the classical spins J(dim)
c,class is expected to be much stronger than J(dim)

c , the DMRG

value, since mean-field-like and classical approaches tend to overestimate ordering, i.e., dimerization

due to absence of quantum fluctuations that act against ordering. Indeed, on the t1 = t2 line, for

example, 6.4tJ(dim)
c,class ≫ J(dim)

c ≈ 0.62t is found instead, see [20].

0 /8 /4 3 /8 /2
/2

3 /4

J = 5.0
J = 10.0
J = 5.0 VUMPS
J = 10.0 VUMPS

Figure 3.12.: Pitch angle θ of classical spin configuration (circles) as a function of φ compared to the

maximum of the spin-structure factor Q of the quantum system calculated with variational uniform

matrix product state approach (VUMPS) (×). Black line: analytical result from strong coupling

perturbation theory.

The ground-state φ-vs.-J phase diagram as obtained by DMRG calculations is shown in Fig. 3.13. For

strong J, there are two different homogeneous phases, one with short-range antiferromagnetic spin

correlations characterized by the wave-vector Q = π (AF-SRO), and another one with short-range

incommensurate (spiral) spin correlations (IC-SRO) characterized by a wave-vector in the range π
2 ≤

Q < π, at which the spin-structure factor is at its maximum. Both phases are separated by the green

line in Fig. 3.13. The green arrow indicates the boundary in the J → ∞ limit.
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For weaker interaction strength, J ≲ 0.9t, the spin-structure factor is more complicated such that the

“phase boundary” is no longer well defined. In particular, with decreasing J, a second peak grows near
π
2 . This is a precursor of a gapless ground state with quasi-long-range 90◦ spiral magnetic order (SP-

QLRO, Q = π
2 ) which is found at still weaker J (see red line). The transition to this magnetic state, how-

ever, is preempted by a spin-dimerized phase (DIM) with spontaneously broken translation symmetry

(blue line). This is characterized by alternating ferro- and antiferromagnetic nearest-neighbor correla-

tions on the rungs of the ladder. In the weak-coupling limit the phase transition between the dimerized

and the short-range antiferromagnetic states takes place at φc(J → 0) = arctan( 1
2 ) ≈ 0.148π and

exactly coincides with the transition point in the strong-coupling limit φc(J → ∞) as is indicated by

the dotted line. The system is insulating in the whole phase diagram. Charge excitations are gapped

and the momentum-distribution function does not show a singularity.

/t

AF-SRO

IC-SRO
SP-QLRO

DIM

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0

π/8

π/4

3π/8

π/2

Figure 3.13.: Ground-state phase diagram in the J-φ plane for the half-filled quantum-spin Kondo

model on the zigzag ladder, as obtained by DMRG calculations for systems of up L = 52 sites (and

extrapolated to L = ∞) as well as by VUMPS calculations working directly in the thermodynamical

limit (with bond dimensions extrapolated to m = ∞ where necessary). AF-SRO: antiferromagnetic

short-range order with wave vector Q = π. IC-SRO: incommensurate spiral short-range order with

π/2 ≤ Q < π. DIM: spin-dimerized phase. SP-QLRO: spiral quasi-long-range order, Q = π/2.

Points with error bars locate the various transitions. Black dashes lines: t2 = t1 (upper) and

t2 = t1/2 (lower). Blue and red dashed lines: see text.

The unfrustrated model at t2 = 0 exhibits short-range antiferromagnetic order with an exponential

decay of the spin-correlation function for all J > 0 and a finite energy gap to excited states. For

finite t2 > 0 and with increasing t2, antiferromagnetic correlations are more and more frustrated. At

t2 = t1, however, the ground state supports quasi-longe-range antiferromagnetic order at interactions

weaker than the critical interaction Jmag
c ≈ 0.84t1 (i.e., Jmag

c ≈ 0.594t, see Fig. 3.13) as done in [20]. In

view of the strong geometrical frustrations, this is quite surprising. The magnetic state appears on top

42



3.4. Comparison to DMRG Results

of the spin dimerization, and the magnetic order is given by a 90◦ spin spiral rather than a collinear

antiferromagnetic state. The quasi-long-range order is characterized by algebraically decaying spin

correlations, by a vanishing spin gap, and by a spin-structure factor diverging at the wave vector

Q = π
2 in the thermodynamic limit. Note that according to the Mermin-Wagner theorem [55] the

presence of quantum fluctuations merely excludes true long-range order for the ground state of one-

dimensional systems.

In summary, the phase diagram for the quantum-spin case is largely similar to the semi-classical case,

but there are important additional effects of quantum fluctuations. Firstly, quantum fluctuations de-

stroy the long-range AF and IC magnetic order but still allow a clear distinction between AF and IC

short-range ordered states. Secondly, spin dimerization is strongly suppressed by quantum fluctua-

tions, such that the spin-dimerized phase extends towards by an order of magnitude weaker interac-

tion strengths J only. Moreover, in the quantum model, the line φ
(dim)
c (J) cannot terminate at a finite

critical J on the t1 = 0 axis, contrary to the classical-spin case, since the ground state is unique and

fully gapped, unlike the classical-spin case where the global SO(3) spin-rotation symmetry leads to an

infinite ground-state degeneracy. Apart from φ0, which marks the termination point of φ
(dim)
c (J) for

J → 0, not only in the classical but also in the quantum-spin case, there is no second critical point of

the noninteracting bandstructure in the range 0 < φ < π
2 , so that it seems likely that φ

(dim)
c (J) → π

2

for J → 0 represents the second termination point on the J = 0 axis. Finally, there is no well-defined

triple point in the quantum-spin case. With decreasing J, the boundary φ
(dim)
c (J) becomes less and

less well defined, and a second peak grows in the spin-structure factor at Q ≳ π
2 , which is a precursor

of the spiral (Q = π
2 ) phase at still weaker J.

An important difference between the Kondo model on the zigzag ladder for classical and for quantum

spins is also the different methods of dealing with the magnetic frustration. For strong J and sufficiently

strong t2, i.e., in the moderately frustrated regime, incommensurate (long- or short-range) order rep-

resents the preferred compromise in both cases. While the ground state of the classical-spin model

supports long-range magnetic order in the entire J-φ plane with different collinear or noncollinear

magnetic structures, quantum fluctuations entirely destroy magnetic long-range order in the quantum-

spin case. It is surprising, however, that quasi-long-range magnetic order with algebraic decay of the

spin correlations is realized in a parameter regime (weak J and strong t2) of the quantum-spin model

where frustration is expected to be dominant. Frustration in a way appears to favor magnetic order

as far as possible to be consistent with the Mermin-Wagner theorem. To understand this effect, it is

instructive to see that the quasi-long-range spiral (Q = π
2 ) order, SP-QLRO, only shows up within the

spin-dimerized phase and that the phase boundary of the SP-QLRO phase closely follows the boundary

for the onset of dimerization. Spin dimerization is thus the main reaction of the system to magnetic

frustration in this parameter regime while magnetic order is favored as a secondary effect. Hence,

SP-QLRO appears as an epiphenomenon that necessarily requires the alleviation of frustration due to

a dimerized spin structure which mimics an unfrustrated bipartite lattice.
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In the previous chapter, the equilibrium phase diagram for a Kondo lattice model on the zigzag chain

was calculated with the localized moments Si considered as classical angular momentum vectors. This

allowed a straight-forward calculation of the ground state energy in the entire relevant parameter space

and showed the existence of a spin-dimerized phase previously found with quantum mechanical DMRG

calculations [20]. The latter, covering a wealth of non-trivial quantum effects, is of course a much more

computationally intensive method that in addition is challenged by conceptual limitations in particular

for highly entangled problems1. Nonetheless it is for all intents and purposes an exact method that

covers all relevant aspects of low temperature quantum physics. The semi-classical method was able to

capture the most central results, i.e. the existence of a dimerized phase, but lacked the purely quantum

effects that are also present. But besides a more economical use of computing resources the use of the

classical approximation is also justified in materials where local moments do behave approximately

classical, due to for example a large spin quantum number S.

The real moment to shine for the classical approximation, however, is not the calculation of the ground

state, but the ensuing real-time dynamics. A complete set of non-linear first order differential equations

can be found to describe the real-time dynamics of the entire quantum-classical-hybrid system. There

is in principle no limit to system sizes or propagation times, except naturally the availability of com-

putational resources. This is a clear advantage over methods that suffer from conceptional difficulties,

such as the infamous Monte-Carlo sign problem (e.g. [57]) or truncation errors in DMRG (e.g. [54]).

This chapter is devoted to the study of several non-equilibrium phenomena of the semi-classical Kondo

lattice on the zigzag ladder that was previously introduced. The method of choice to lift the system out

of equilibrium will be the concept of so-called parameter quenches, meaning a sudden global change

in some parameter value. The subsequent analysis will be organized as follows: First the equations

of motions and numerical methods are introduced in Section 4.1, then the dynamics will be studied

following several different parameter quenches that can be separated into two regimes according to

the amount of energy introduced by the quench. Section 4.2 covers low-energy quenches with the

discovery of an ergodicity threshold and a discussion including aspects from classical mechanics and

the derivation of linearized equations of motion. This section also includes a short interlude with an

analysis of the integrability of the J1 − J2-Heisenberg model and its applicability to the Kondo lattice.

1For details on the DMRG method, refer for example to [56]
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Finally, the last part of this chapter, Section 4.3, examines the thermal phase transition connected to

spontaneous (discrete) symmetry breaking and emergence of long-range dimer order as well as general

remarks on the thermalization properties of results obtained in this thesis.

4.1. Method and Formalism

4.1.1. Equations of Motion

In classical mechanics, an observable A(q, p, t) is a real-valued function on 6n-dimensional phase

space. The Poisson bracket between arbitrary observables A and B in canonical basis (qα
i , pα

i ), α ∈
(x, y, z), i ∈ (1, n) is defined as

{A, B} = ∑
iα

(
∂A
∂qα

i

∂B
∂pα

i
− ∂A

∂pα
i

∂B
∂qα

i

)
, (4.1)

and can be used to express the time evolution of A(t) as

d
dt

A(t) = {A(t), Hclass} , (4.2)

where Hclass is the classical Hamiltonian function [58]. Here, the relevant classical observables are the

classical spins Si. Their dynamics is the same as angular momentum vectors and for the purpose of

deriving the according equations of motion, they can be expressed in terms of canonical coordinates

and momenta as Si = qi × pi . This can now be used to simplify Eq. (4.1) for spin-dependent functions

to

{A(S), B(S)} = S · ∂A
∂S

× ∂B
∂S

. (4.3)

The classical Hamiltonian is here obtained by taking the expectation value of the quantum mechanical

Hamilton operator Hclass ≡ ⟨H⟩. Using this and Eqs. (4.2) and (4.3), the equations of motion for the

classical spins can now be derived as

d
dt

Si(t) = {Si(t), ⟨H⟩} =
∂⟨H⟩
∂Si

× Si

= J⟨si⟩t × Si(t) ,
(4.4)

where the subscript ⟨·⟩t denotes the fact that of course ⟨si⟩ is itself time-dependent.

The conduction electron system, on the other hand, cannot be considered as classical. The correspond-

ing quantum mechanical version of Eq. (4.2) for the time evolution of an observable A(t) with the
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Hamilton operator2 H is the Heisenberg equation of motion

i
d
dt

A(t) = [A(t), H] , (4.5)

where [·, ·] denotes the quantum mechanical analogue to the Poisson bracket, i.e. the commutator. The

equations of motion for the electron spins si =
1
2 ∑σσ′ c†

iσσσσ′ciσ′ can therefore be derived as

d
dt

⟨si⟩t = −i⟨[si, H]⟩t

= J Si(t)× ⟨si⟩t −
i
2 ∑

j
tij

(
⟨c†

iσσσσ′cjσ′⟩t + h.c.
)

.
(4.6)

Note that as ⟨c†
iσσσσ′cjσ′⟩t is also time-dependent, Eq. (4.4) and Eq. (4.6) together do not form a closed

set of equations. To capture the dynamics of all electronic degrees of freedom, it is convenient to use

the one-particle density matrix ρ with elements

ρii′σσ′ = ⟨c†
i′σ′ciσ⟩ . (4.7)

It is calculated as

ρ = Θ(−teff) = VΘ(−ϵ)V† , (4.8)

where teff is the effective hopping matrix with elements

teff,ii′σσ′ = tii′δσσ′ +
J
2
(σSi)σσ′δii′ , (4.9)

ϵ is a diagonal matrix containing its eigenvalues with corresponding eigenvectors V obtained by the

diagonalization teff = VϵV†, and Θ is the Heaviside step function.

The equation of motion for the one-particle density matrix can be derived from the time-dependent

Schrödinger equation and is called von Neumann or Liouville-von Neumann equation:

i
dρ(t)

dt
= [teff(t),ρ(t)] . (4.10)

The formal solution is given by

ρ(t) = Uρ0U† , (4.11)

2For simplicity, none of the operators here will be denoted with ·̂, this should be clear from context alone.
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where the unitary time-evolution propagator U is defined as

U(t) = T exp
(
−i
∫ t

0
t′eff(τ)dτ

)
(4.12)

with time-order operator T and possibly - in case of parameter quenches - modified effective hopping

matrix t′eff. The initial condition is

ρ0 = Θ(−teff,0) . (4.13)

Together, Eqs. (4.4) and (4.10) describe the dynamics of the entire coupled quantum-classical system. It

can be easily seen that they respect the conservation of

• total particle number, where of course classical spins are fixed to one spin per lattice site, thus

the total number of electrons is also separately conserved, i.e.

d
dt

⟨Ncc
tot⟩ =

d
dt

Tr[ρ(t)] = 0 , (4.14)

• total energy
d
dt

Etot =
d
dt

Tr[ρ(t) · teff] = 0 , (4.15)

• and total spin, i.e. sum of classical and electron spins Stot = ∑i(Si + ⟨si⟩)

d
dt

Stot =
d
dt ∑

i

(
Si +

1
2 ∑

σσ′
σσσ′ρiiσ′σ

)
= 0 . (4.16)

As a side note, it can be easily seen by explicitly calculating the time derivative of Eq. (4.11) with ρ0 ≡
const. and recognizing that the time evolution operator U itself satisfies a time dependent Schrödinger

equation, that the diagonal elements of ρ (in molecular physics sometimes called populations or natural

occupations) are also time-independent.

4.1.2. Initial Conditions and Numerical Remarks

The coupled non-linear first order differential equations Eqs. (4.4) and (4.10) constitute an initial value

problem of the form

ẏ(t) = f (y(t)), with t ≥ t0, and y(t0) ≡ y0 , (4.17)

where y : R → Rn is vector-valued.

Here, the solution of the ode system is implemented using an explicit Runge-Kutta method of order

5(4) that is part of the scipy library [59,60]. The term order 5(4) means the error is controlled assuming
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4.1. Method and Formalism

accuracy of the fourth-order method, but steps are taken using the fifth-order accurate formula. More

on Runge-Kutta methods in general can be found in [61]. The numerical results respect the conserved

quantities in Eqs. (4.14) to (4.16). In Fig. 4.1 an example is plotted for a typical time evolution up to

O(104) time steps. The unit of time is chosen as one inverse hopping matrix element t−1, where t
comes from the nearest and next-to-nearest neighbor hopping t1 = t cos φ and t2 = t sin φ. An

important side note is, that whenever time steps t - here and from now on t will denote time and not

hopping matrix element - are explicitly mentioned in this thesis, they are always understood to be

“true” time steps in the before mentioned units, not Runge-Kutta-time steps.
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Figure 4.1.: Variation in total energy (left), total spin (middle) and total particle number (right) plotted

for 5 · 104 time steps in units of inverse hoppings for a typical time evolution for a system with L = 8,

J = 3 and φ = 0.0. Note the scale on the vertical axis.

Fig. 4.1 shows the difference between total energy at time t and its initial value at time t0 (left panel)

and its analogue for total spin length (middle panel) and total (electron) particle number (right panel).

It can be seen that all are conserved up to machine precision.

An initial state that is also the ground state will not trigger any dynamics. For interesting non-

equilibrium observations, the system will thus have to be excited in one way or another. There are

of course numerous methods to achieve this, but here the focus will be on parameter quenches. In

contrast to a ramp or adiabatic change, the premise of a parameter quench is a sudden change in

parameter at the very beginning of the time evolution. The equilibrium phase diagram from Chapter 3

allows for several possible interesting quench set-ups, but the focus here will be mainly on two

different kinds as illustrated in Fig. 4.2.

Section 4.2 will cover both φ- and J-quenches within the antiferromagnetic phase as marked with

1 in orange in Fig. 4.2. The topic of the final section of this thesis, Section 4.3, will be quenches

either crossing the AF-DIM or IC-DIM phase boundary as drawn with 2 in purple in Fig. 4.2. For all

results presented here, initial spin configurations {S} that are collinear, i.e. antiferromagnetic (AF) or

dimerized (DIM), are chosen to lie in x-direction. Spiral (IC) configurations are initially taken to lie in

the x − y-plane. Because dimerized spin configurations only “fit” into lattices with L = 4 · n, n ∈ N
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due to periodic boundary conditions, the lattice sizes within this thesis are all chosen accordingly.

1

2

Figure 4.2.: Phase diagram of the semiclassical Kondo lattice on the zigzag chain with schematic

illustration of quenches investigated within this thesis. 1) (orange): φ-or J-quenches within the

antiferromagnetic phase. 2) (purple): φ- or J-quenches across the AF-DIM or IC-DIM phase boundary.

Before the discussion of results in the succeeding sections, a short comment on initiating dynamics

is warranted. The first thing to note is that by construction, the electron spins are initially always

collinear to the classical spins, i.e. ⟨si⟩ || Si ∀ i ∈ (1, . . . , L), since they are explicitly calculated to be

in equilibrium to the respective spin configuration, see Eq. (4.8). Remembering the equations of motion

d
dt

Si(t) = J ⟨si⟩t × Si(t) (4.18)

and
d
dt

⟨si⟩t = J Si(t)× ⟨si⟩t −
i
2 ∑

jσσ′
tij

(
⟨c†

iσσσσ′cjσ′⟩t − h.c.
)

, (4.19)

it is clear that the terms ∝ ⟨si⟩ × Si are thus initially zero. This implies that Eq. (4.18) vanishes entirely

whereas all that remains of Eq. (4.19) is the second term on the right hand side. As ⟨si⟩ || Si, this part

of Eq. (4.19) will initially also be collinear to the classical spins. The only possible motion is therefore

constrained to longitudinal motion of ⟨si⟩ the direction of the initial collinear spin configuration!

This would of course hardly merit the discussion for an entire chapter of this thesis. The (numerical)

reality, however, is that the spins - both classical and electronic - can escape this constraint. Whether

this happens or not is a non-trivial property of the system that is deeply connected to the topics covered

in Section 4.2. In short, dynamics can either be chaotic or regular, where the former is expected to be

far more common. A more detailed discussion can be found in the following section. For now, the
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4.2. Ergodicity Threshold

only relevant statement is that deterministic chaos, i.e. chaotic motion following from deterministic

equations of motion, can be defined by the presence of exponential sensitivity on small perturbations

[62]. Double precision on regular computing machines is of order O(10−12), in case of chaotic motion

this should therefore be enough to eventually start dynamics.

Fig. 4.3 confirms this. Plotted are the absolute values of the x-components of the classical spins Si

following a φ-quench from φini = 0.3 to φ f = 0.8 at J = 3 for a system of size L = 128 for the

first 80 time steps. There appears to be a rather long period without any dynamics, until at around

t = 50 the motion starts to become chaotic. Zooming into the seemingly flat lines as shown in the

inset even reveals the trajectories to deviate much earlier, hinting at the exponential sensitivity on the

accumulating numerical error. As there is no laboratory in the world that could provide experimental

conditions free of such perturbations that can start the dynamics, this is not to be regarded as unphys-

ical. There is not much to be learned from it either, apart from the already mentioned power to decide

about the chaotic (or in contrast: regular) nature of the motion. This initial period will therefore often

be omitted from plots, particularly in Section 4.3 where all featured dynamics are chaotic.

Figure 4.3.: Initial trajectories of |Sx
i | after a quench φ = 0.3 → 0.8 for J = 3 and L = 128. The inset

shows a zoom that illustrates the exponential sensitivity on small perturbations (here: numerical

inaccuracy).

4.2. Ergodicity Threshold

Incidentally, not all dynamical systems show chaotic behavior as that displayed in Fig. 4.3. There are

of course further subtleties, but roughly speaking, the absence of chaos is an indication of a so-called

integrable system. The following definitions and discussion will be focused on classical mechanics,

because even though considered here is a quantum-classical hybrid system, for the purposes of this

thesis the main interest lies in the dynamics of the classical spins. It should also be noted, that by
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defining appropriate Poisson-Brackets, the dynamics of the entire hybrid system can be mapped exactly

onto a purely classical system with O(L2) degrees of freedom [63].

Within the Hamiltonian framework, each degree of freedom is connected to two independent quan-

tities: position and momentum. A state of a system with n degrees of freedom therefore lives in

2n-dimensional phase space. If the total energy is a constant of motion, the system is said to be con-

servative and all its trajectories lie on a (2n − 1)-dimensional hypersurface in phase space. If - after

potentially long but finite times - a trajectory passes arbitrarily close to every point on this hypersur-

face, it is called ergodic. This is an important concept in statistical mechanics, where only for ergodic

systems the connection between dynamical and ensemble-based description can be made in form of

the ergodic hypothesis

⟨A⟩T = lim
T→∞

1
T

∫ T

0
A(x(t))dt !

=
∫

Ω
A(x) ρ(x)dx = ⟨A⟩ρ (4.20)

that relates the long-time average to ensemble average of an observable A which depends on some

set of degrees of freedom x(t) that are distributed in phase space Ω according to the equilibrium

probability distribution ρ [64]. In a mathematical sense, the ergodic hypothesis can be expressed in

the language of measure theory [65]. Note that ergodicity is necessary but not sufficient for chaotic

dynamics as will be explained shortly.

There are multiple definitions of integrable systems, an overview can be found for example in [66].

Most common is perhaps integrability “in the Liouville sense”, where a system is called integrable,

if it possesses as many constants of motion Ii as degrees of freedom n that are independent and in

involution, i.e. {Ii, Ij} = 0 for any i, j = 1, . . . , n, where {·, ·} is the Poisson bracket defined in

Eq. (4.1). Such a system is called integrable, because it can be solved by “reduction to quadratures”,

i.e. n independent integrations [67].

θ1

θ2

θ1

θ2

Figure 4.4.: Schematic illustration of the mapping of a trajectory on a 2-torus onto a square. After [68].

The constants of motion constrain the dynamics of an integrable system even further, such that all

trajectories lie on n-dimensional invariant tori that for completely integrable systems cover the entire

phase space. Any trajectory will stay on the same torus, determined by initial conditions, indefinitely
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and can be described in terms of angle variables θi, as pictured in Fig. 4.4 for n = 2. Let θ1 = ω1t+ θ10

and θ2 = ω2t+ θ20. If the ratio of the frequencies ω1/ω2 is commensurate, i.e. a rational number, then

the orbit on the torus is closed and the motion periodic. If it is incommensurate, on the other hand, the

motion is quasi-periodic and never exactly repeats itself. This is clear from Fig. 4.4, where the 2-torus is

unfolded into a square with periodic boundary conditions. In this case, the trajectory becomes a series

of parallel lines. It is immediately clear, that should the frequencies be incommensurate, they cover the

torus densely for t → ∞ [68]. In this sense, the motion on the torus is ergodic, i.e. Eq. (4.20) holds [69].

True statistical properties can therefore only be achieved by ergodicity and chaos. The latter property

is often called mixing, with the most important indication being independence on initial conditions

[68].

Even though much research has been devoted to them over the last decades, integrable systems are

exceptionally rare and in fact are said to “form a set of measure zero” [68]. As of yet, there is no general

mechanism known that can determine the integrability of a system. Still, there is no indication that

the system considered here is integrable, and any dynamics following a parameter quench is therefore

expected to be mixing. This is in fact not the case. The following section focusses on φ- and J-quenches

within the antiferromagnetic phase as illustrated in the overview of the phase diagram in Fig. 4.2 in

orange and denoted with 1 . Contrary to expectations, a finite energy barrier is found below which

the system is not mixing on any observable time scales.

4.2.1. Numerical Observations

Any parameter quench introduces energy into the system. This is intuitively clear, but can also be

expressed more concretely. In Section 4.1.1, the one-particle density matrix ρ was introduced, that

describes the state of the electron system coupled to the classical spins. With this notation, the energy

of the system for fixed spin configuration {S} can be expressed as a function of exchange coupling J
and frustration φ as

E(J, φ) = Tr [ρ(J, φ) · teff(J, φ)] , (4.21)

with effective hopping matrix teff as defined in Eq. (4.9). Let ρ0 ≡ ρ(Jini, φini) be the density matrix

describing the initial state with parameters Jini, φini. This initial state is then propagated with a time

evolution propagator U(t′eff) as introduced in Eq. (4.12) with a quenched effective hopping matrix

t′eff(Jf, φf) that depends on new parameters Jf, φf. The total energy after the quench is therefore given

by

Ef = Tr
[
ρ0 · t′eff

]
. (4.22)

The interesting quantity, however, is only the difference to the ground state energy. This can be viewed

as an “effective temperature”, although such terminology is dangerous as the relationship between
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energy and temperature is unknown for this system. Let

E0,f = Tr
[
ρf · t′eff

]
(4.23)

denote the ground state energy at the point in parameter space given by the after-quench parameters

Jf, φf, with ρf ≡ ρ(Jf, φf). Then, the additional - or excitation - energy introduced by the parameter

quench is given by

∆E = Ef − E0,f . (4.24)

The focus in this section is on parameter quenches within the antiferromagnetic phase. Fig. 4.5 shows

the energy introduced by a quench ∆ε = ∆E/L for a final state within the antiferromagnetic phase

(here: Jf = 3, φf = 0.4) as a function of initial parameters Jini, φini for a φ-quench (left panel), where

J = const., and a J-quench (right panel), where φ = const..

AF DIM AF

Figure 4.5.: Energy introduced by a φ-quench (left) and J-quench (right) ∆ε = ∆E/L as a function of

initial parameters φini, Jini. Final state in both cases is Jf = 3, φf = 0.4 as indicated by red dots. In the

left panel, the dashed line shows the position of the equilibrium phase transition AF-DIM.

The right panel, where ∆ε is plotted for the J-quench, shows a a parabolic minimum around Jf, as

might have been predicted - the expectation is certainly, that any quench with a finite ∆J = |Jf − Jini|
should lead to a finite ∆ε > 0. The φ-quench plotted on the left, however, reveals a peculiarity of the

antiferromagnetic phase. Apparently, ∆ε ≈ 0 for all ∆φ = |φf − φini| > 0 that lie within the φ-range

with antiferromagnetic ground state. φ-quenches within the antiferromagnetic phase are thus “quasi-

adiabatic” and do not cost energy, i.e. excite the system. This is not due to a symmetry of the model and

cannot be proved analytically, ∆ε is also not exactly zero but of order O(10−4), well above numerical

accuracy. Nevertheless, unexpectedly, it is found that E0,f ≈ Ef as long as J = const. and both φf, φini

lie within the antiferromagnetic region of the phase diagram.

At the position of the equilibrium phase transition between antiferromagnetic and dimerized phase,

54



4.2. Ergodicity Threshold

indicated by a dashed line and color-change in Fig. 4.5, there is a discontinuity in ∆ε(φini) as well as a

qualitative behavior change. φ-quenches are no longer quasi-adiabatic but cost an energy proportional

to the size of the quench ∆φ. As E0,f = const. in this plot, because ∆ε is plotted as a function of φini

on which E0,f does not depend, the discontinuity must be present in Ef and the result of calculating

the expectation value of a Hamiltonian in a state that depends on other parameters.

As suggested by the independence of the quench energy ∆ε on φ within the AF phase in the left panel of

Fig. 4.5, a φ-quench does indeed not induce any noticeable dynamics. For a more compact visualization

of the dynamics, instead of plotting every spin- and electron component separately, the focus is on the

staggered magnetization per site

ms ≡ Ms/L where Ms =
L

∑
i=1

(−1)i Si , (4.25)

which can be defined in the electron system as

⟨mcc
s ⟩ ≡ ⟨Mcc

s ⟩/L where ⟨Mcc
s ⟩ =

L

∑
i=1

(−1)i ⟨si⟩ . (4.26)

The staggered magnetization for both classical spins and electrons are plotted in Fig. 4.6 for a φ-quench

from φini = 0.1 to φf = 0.4 at J = 3. The only non-zero component is ⟨mx,cc
s ⟩, which fluctuates as a

function of time as can be seen more closely in the inset of the right panel. This is in fact the only motion

technically in accordance with the equations of motion as discussed in Section 4.1.2. Evidently, the

energy ∆ε introduced by the φ-quench is not sufficient to trigger any dynamics beyond this oscillation

of electron spin length. The classical spins remain forever in their initial configuration. Similar results

are found for other φ-quenches within the AF phase and for system sizes up to L = 128.

When instead of quenching φ, the coupling constant J is quenched within the AF phase, the situation

is similar at first. Fig. 4.7 shows the staggered magnetization for both classical spins and electrons as

a function of time after four different J-quenches (rows) within the antiferromagnetic phase again for

a small system with L = 8 sites at φ = 0. The first two rows show quenches from Jini = 4.0 and

Jini = 5.5 to Jf = 3, respectively. Neither of these result in any dynamics other than that seen in

Fig. 4.6. The only noticable difference for the larger quench J = 5.5 → 3 is the increasing amplitute

of the electron oscillations. Looking back at Fig. 4.5, where the energy introduced by the quench

∆ε is plotted against φini and Jini, it is clear that in contrast to φ-quenches, J-quenches within the

antiferromagnetic phase do cost energy - however small - and are thus expected to result in chaotic

behavior. This is apparently only the case for Jini ⪆ 5.6 for a system with L = 8 as can be seen in the

bottom two rows in Fig. 4.7, where Jini = 5.6 and Jini = 5.7, respectively.
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Figure 4.6.: Components of staggered magnetization per site ms for classical spins (left) and electrons

(right) after a quench from φ = 0.1 → 0.4 for J = 3 and L = 8. Colors are the same for both panels.

blue: x-component, orange: y-component (not visible, below the z-component), green: z-component.

The inset shows a close-up of the oscillations in ⟨mx,cc
s ⟩ for the first 100 time steps.

There seems to be an energy threshold between ∆ε ≈ 4.8 · 10−2 and ∆ε ≈ 5.1 · 10−2 that needs to be

overcome for chaotic dynamics to start. Even if both Jini = 5.6 and Jini = 5.7 in the bottom rows are

clearly chaotic and likely ergodic, on comparatively long time scales of t = 5 · 104 shown here, the

mixing is still limited and the spins are evidently slow to rotate into other directions in space.

The assumption is generally, that any non-integrable system such as this one will be ergodic away from

the ground state. The above observations of nearly stationary dynamics are thus in need of explanation.

It could be argued that the quench energies shown are not very large, but the expectation is usually

that even small energies should lead to ergodic behavior. Furthermore, energies of up to O(10−2) as

shown are certainly not large, but also not negligible. In particular a J-quench from Jini = 5.5 to Jf = 3
as pictured in the second row of Fig. 4.7 does not seem insignificant.

Another consideration could well be the finite system size. A system with L = 8 is admittedly not

very large. Fig. 4.8, however, shows several J-quenches for a system with L = 96 lattice sites. Here,

the energy threshold seems to be indeed much lower than in the system with L = 8, but it is still

noticeable. The first row in Fig. 4.8 shows a J-quench from J = 3.2 → 3.0 that results in stationary

spins. This is of course a rather small quench with an energy of ∆ε ≈ 4.8 · 10−4, but while increasing

the energy in the rows below does start dynamics, they can at most be described as weakly chaotic.
Even after the largest quench from J = 4.1 → 3.0 with ∆ε ≈ 1.3 · 10−2 the spins barely leave their

initial alignment and merely start to oscillate erraticly.

Before analyzing this in more detail, it seems necessary to introduce a more concrete measure of how
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far the spin configuration is deviated from its initial configuration as a function of time. While the

staggered magnetization gives a good qualitative and intuitive picture, it is difficult to quantify when

the dynamics start and how chaotic they are. For this, a well-defined distance in phase space is needed.

As the focus here is on the classical spins, the following discussion will be limited to a distance between

spin configurations. The electrons, being coupled to the spins, are expected to align according to the

classical spins in any case.

a. Jini = 4.0, ∆ε ≈ 9.4 x 10-3

b. Jini = 5.5, ∆ε ≈ 4.8 x 10-2

c. Jini = 5.6, ∆ε ≈ 5.1 x 10-2

d. Jini = 5.7, ∆ε ≈ 5.4 x 10-2

Figure 4.7.: Differently sized J-quenches within the antiferromagnetic phase with Jini and ∆ε as

indicated with Jf = 3 at φ = 0 and L = 8. Plotted are the components of the staggered

magnetization per lattice site for the classical spins ms (left column) and for the electrons ⟨mcc
s ⟩

(right column) for increasing energy ∆ε (top to bottom), where x=blue, y=orange and z=green.
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a. Jini = 3.2, ∆ε ≈ 4.8 x 10-4

b. Jini = 3.4, ∆ε ≈ 1.8 x 10-3

c. Jini = 3.8, ∆ε ≈ 6.9 x 10-3

d. Jini = 4.1, ∆ε ≈ 1.3 x 10-2

J=3.2,3.4,3.8,4.1
L=96

Figure 4.8.: Differently sized J-quenches within the antiferromagnetic phase with Jini and ∆ε as

indicated with Jf = 3 at φ = 0 and L = 96. Plotted are the components of the staggered

magnetization per lattice site for the classical spins ms (left column) and for the electrons ⟨mcc
s ⟩

(right column) for increasing energy (top to bottom), where x=blue, y=orange and z=green.

Consider a spin configuration

CS ≡ {Si} with Si ∈ R3 and |Si| ≡ S = 1/2 for i = 1, . . . , L (4.27)

where each spin individually follows a trajectory Si(t) in phase space. As the length of the classical
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spins is fixed, each spin can only take values that lie on a sphere with radius S. The shortest distance

between two points on a sphere is a geodesic on the surface of the sphere, also called great-circle

distance. The parametrization can be chosen conveniently, such that the distance between two spins

S1 and S2 in R3 is proportional to the angle between them as illustrated in Fig. 4.9. The shortest

distance between two spin configurations CA
S , CB

S is then given by

d(A, B) =

√√√√ L

∑
i=1

S2ϕ2
i with ϕi = arccos

(
SA

i · SB
i

S2

)
≤ π (4.28)

where SA
i ∈ CA

S and SB
i ∈ CB

S . Eq. (4.28) implies, that the furthest distance is d = Sπ
√

L, where each

spin is flipped in an opposite direction. This notation was inspired by [70].

S1

S2

!1 = 0

!2 = "(1,2)<#

"(1,2)

Figure 4.9.: Shortest distance between two classical spins S1 and S2, i.e. great-circle distance on a

sphere.

Armed with a measure of how ‘far away’ the system is from the equilibrium configuration, it can now

be analyzed precisely when the dynamic starts as a function of the energy introduced by the quench.

Let

dS(t) ≡ d(C0, Ct) , (4.29)

where C0 denotes the initial spin configuration and Ct the spin configuration at time t. This distance

from the initial state allows to determine the starting point of the dynamics with a single parameter,

i.e. dS(t) > 0. This is useful to determine the critical energy below which the spins are absolutely

stationary. In order to capture also how closely the spins stay aligned, another measure is the length

of the staggered magnetization per site
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ms ≡
√

m2
s,x + m2

s,y + m2
s,z , (4.30)

that is for a truly ergodic system expected to decrease and eventually become zero, as the system has no

preferred direction in space and no long range magnetic order is allowed for a one dimensional system

such as the one present here. The absence of long range order in one and two dimensional systems was

proved rigorously by N. David Mermin und Herbert Wagner in 1966 [55] and is accordingly called the

Mermin-Wagner-theorem, more on this will be mentioned later. If ergodicity is defined as time average

= ensemble average (Eq. (4.20)), then a system with long time average ⟨ms⟩ ̸= 0 cannot be considered

ergodic.

In Fig. 4.10, dS(t) as well as ms(t) are plotted as a function of time for differently sized J-quenches with

energies between ∆ε ≈ 1.2 × 10−4 (light green) and ∆ε ≈ 1.7 × 10−2 (dark blue) for a system with

L = 96 sites. For lower energies (green lines), the distance dS is either zero or, at marginally larger

energies, increases very slightly. Over the entire time span of t = 5× 104 it grows very slowly if at all.

Increasing the energy further, the spin configuration evidently leaves the initial condition, but, at least

on the pictured time scales, seems to relax to a finite value still moderately close to zero. The largest

energy (darkest blue) is the only one that can be said for certain to exhibit a clear upward trend. After

a short initiation time it starts to increase continuously. Note that the maximum distance for L = 96
is according to the above definition dS,max ≈ 15.4, which indicates that even dS ≈ 3 as in the case of

the largest quench is not very far from the initial configuration, especially after a comparatively long

time span of t = 5 × 104 time steps.
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Figure 4.10.: Left: distance from initial spin configuration dS as defined in Eqs. (4.28) and (4.29) as a

function of time for quenches of different energies between ∆ε ≈ 1.2 × 10−4 (light green) and

∆ε ≈ 1.7 × 10−2 (dark blue) for a system with L = 96 sites at φ = 0 and Jf = 3. Right: length of

staggered magnetization per site ms. Inset: Zoom into ms(t).
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The length of the staggered magnetization plotted in the right panel of Fig. 4.10 can be considered

as approximately conserved for all quenches. Even the largest quench only results in a decrease of

approximately 3 % after t = 5 × 104 time steps, and is the only one that displays a clear downward

trend. All other energies follow the qualitative behavior of the distance plotted in the left panel of

Fig. 4.10, i.e. even if they do depart from the initial value of ms = 0.5, they seem to settle into a value

only slightly below. The long range order present at zero temperature therefore remains even after

a parameter quench introduces energy into the system. Without explicitly calculating the long time

average ⟨ms⟩, it is clear that it will not go to zero within the time scales accessible with this method.

1/L2

L = 12

L = 20

L = 64

L = 28

L = 32

L = 40

Figure 4.11.: Left Panel: Lifetime τ of initial spin configuration (or, equivalently, ms) as defined in

Eq. (4.31) plotted against energy per lattice site ∆ε for Jf = 3, φ = 0 and different lattice sizes as

indicated, each vertical dotted line indicates τ = ∞. Right panel: critical energy per lattice size εcrit

as a function of 1/L2.

Another definition is needed to allow for a systematic analysis of the dependence on system size L.

Evidently, there is a finite energy that needs to be overcome to take the system away from the initial

state at all, and even if it does depart, it stays rather close to the initial configuration even after long

times. To further quantify this, it is useful to define a “lifetime” τ of the initial spin configuration as

τ ≡ min t with dS(t) > 0 , (4.31)

which is the time until the dynamic starts at all. In the following results this is numerically implemented

as dS(t) > 10−5, although several values were tested and the results do not depend on the exact choice,

as long as it is numerically small, i.e. of order O(10−4) or below. Naturally, τ must depend on the

energy introduced by the quench ∆ε. This relationship is plotted for several lattice sizes for Jf = 3,

φ = 0 in the left panel of Fig. 4.11. τ increases strongly with ∆ε and eventually diverges for all lattice
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sizes. The last data point is in all cases τ = ∞, indicated by the vertical dotted lines. This point can

be seen as the location of the critical energy εcrit = Ecrit/L, below which ms is conserved exactly and

the system does not show any dynamics.

Note that despite plotting against ∆ε = ∆E/L, there is still a distinct L-dependence of τ(∆ε), in

particular of εcrit. The latter is plotted in the right panel of Fig. 4.11. Evidently εcrit → 0 in the

thermodynamic limit L → ∞ approximately ∝ 1/L2.

4.2.2. The FPU Problem and Proximity to Integrability

This energy threshold is reminiscent of a phenomenon known in the framework of classical dynam-

ics. In 1954, Enrico Fermi, John R. Pasta, Stanislaw Ulam und Mary Tsingou carried out one of the

earliest numerical computer simulations now known as the Fermi-Pasta-Ulam-Tsingou or often just

Fermi-Pasta-Ulam (FPU) problem [71]. The original objective was to confirm the ergodicity hypoth-

esis by showing that any nonlinearity added to a linear model will immediately result in chaotic and

thereby ergodic behaviour. They found, however, a different result, regardless of whether the chosen

perturbation type was quadratic (termed α-model), cubic (termed β-model), or “broken linear”. In each

of their calculations, for N = 32 and N = 64 modes, the behavior was not chaotic at all, but found

to be quasi-periodic. This result triggered many new avenues of research and lead for example to the

discovery of solitons [72] and the integrability of a complete class of nonlinear equations, including

the Korteweg-de Vries equations [73,74].

The idea that a system “close to” an integrable model retains its regular, non-chaotic dynamics was first

proposed by Andrey Kolmogorov in 1954 [75] and later proven rigorously (under certain conditions)

by Jürgen Moser in 1962 [76] and Vladimir Arnold in 1963 [77] and is since known as the KAM-theorem.

The premise of it is that small perturbations to an integrable model leave some of the invariant tori

introduced at the beginning of this section and sketched in Fig. 4.4, intact, such that depending on the

initial conditions, the motion could still be trapped on one of them. Even though some of the conditions

for its applicability - for example a nonlinear integrable model, smaller systems, smaller perturbations

- are not satisfied in case of the FPU problem, it is still often cited as a qualitative explanation of the

periodic dynamics of the nonlinear FPU model.

Inspired by the idea of the KAM-theorem, Felix Izrailev and Boris Chirikov found an energy threshold

for the β-model above which the dynamics start to exhibit the expected ergodic behavior, that is cal-

culated using a theory of overlapping non-linear resonances, which they called stochasticity threshold
[78]. As it turns out, the initial conditions Fermi et. al. used in their original simulation were located

far below this energy threshold. In particular the size of the perturbation was found to be much too

small, despite previous perturbation theory studies finding the original FPU problem to be “beyond

weak coupling limit” [79,80].
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Neither the FPU threshold nor the KAM theorem can be applied exactly to the problem at hand, but

inspired by this, the reason for the critical energy in the dynamics found here will be further inves-

tigated. Particularly promising seems the search for a “nearby” integrable model. The Kondo lattice

model is very likely not integrable neither in the full quantum-mechanical version nor with classical

spins, but a related spin model, the Heisenberg model was solved exactly by Hans Bethe in 1931 in

the quantum mechanical variant, at least in the nearest-neighbor only case [81]. The classical spin-

Heisenberg model has under certain conditions also been found to be integrable in the limit of small

lattice sizes (see e.g. [82]). Since the FPU paradox is a classical mechanics problem and the relevant

degrees of freedom here are the classical spins, it is not entirely far fetched to hope for an effective

spin-only model that perhaps even posses an integrable limit. The following section will be concerned

with the integrability of classical Heisenberg models in the geometry present here, i.e. the zigzag chain.

Although this is ultimately not found to be a reasonable explanation for the numerically found energy

threshold - this will be given later in Section 4.2.4 - it is still instructive to consider.

4.2.3. Integrability of the Classical J1-J2- Heisenberg Model

One of the most fundamental models of magnetism is the Heisenberg model that describes interactions

between localized spins Si, Sj coupled to each other with coupling constants Jij. The Hamiltonian is

given by

H = ∑
ij

JijSiSj , (4.32)

where usually, the coefficients Jij are taken to be nonzero only for nearest neighbours i, j, but here

on the zigzag geometry, in addition to Jij = J1 for i, j=nearest neighbours (n.n.), Jij = J2 for next-to-

nearest neighbours(n.n.n.), i.e.

H = J1

n.n.

∑
ij

SiSj + J2

n.n.n.

∑
ij

SiSj . (4.33)

This is sometimes also called the (Heisenberg) J1-J2—model. An equilibrium consideration on this model

can be found in Appendix A.

Nearest-neighbour-classical spin systems are thought to be non-integrable in general, except for the

trivial highly anisotropic Ising case [83]. Technically, the J1 − J2-model is not a nearest-neighbor

model, and in any case, exceptions may certainly exist. There is no known universal statement on the

integrability of the classical J1 − J2-model, and it seems unlikely that it should be integrable in general.

Still, there may be an integrable limit.

R. Steinigeweg et. al. propose a method to derive the integrability of small spin clusters of “Heisenberg

type”, i.e. that can be described with a Hamiltonian of the general form seen in Eq. (4.32) [82]. There,

it is proven that such a spin system is integrable if it is either the uniform or disjoint union of other,

themselves integrable, spin systems. In this context, a uniform union is defined as the union of two spin
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systems A and B, where every spin in system A is coupled to every spin from system B with nonzero

coupling constant J. A disjoint union, likewise, is then defined similarily, only with zero coupling

constant J = 0. Using this method and a table of known integrable spin clusters in [82], the Heisenberg

J1 − J2 model is found to be integrable only in the cases L = 4 and L = 6 with J1 = J2 = 1. The

generalization to arbitrary values of J1 = J2 ̸= 1 is assumed to be possible and numerically confirmed.

(a) without periodic boundary conditions (b) with periodic boundary conditions

Figure 4.12.: Heisenberg J1-J2-spin cluster with L = 4 (a) without and (b) with periodic boundary

conditions, where both right pictures shows the separation into two integrable subsystems shown as

red and green.

The smallest possible system that could still be considered a “zigzag ladder” contains four lattice sites

as pictured in Fig. 4.12. Both a spin dimer (two coupled or decoupled spins) and a single spin are known

to be integrable. As the four spin model as pictured in Fig. 4.12 can be separated into the disjoint union

of two such dimers, it is therefore also integrable both with and without periodic boundary conditions.

The respective separation into subsystems is pictured in Fig. 4.12a and Fig. 4.12b.

Four spins is of course barely a ladder, the question is now whether the integrability holds also for larger

sytems. The next larger system is a zigzag ladder with six sites as pictured in Fig. 4.13. Here, periodic

boundary conditions are necessary to allow for separation into integrable subsystems. Fig. 4.13 shows

that with periodic boundary conditions, the six spin system can be separated into a uniform union of

two integrable subsystems, the four spin model marked in red and a disconnected dimer marked in

green. The spins are labeled from i = 0 to i = 5 to facilitate the following analysis of constants of

motion.

A system is integrable if it has as many linearly independent constants of motion ci (that are also in

involution, i.e. {ci, cj} = 0) as degrees of freedom i = 1, ..., L, the six-spin model pictured in Fig. 4.13

with L = 6 should therefore contain six conserved quantities. All spin systems of Heisenberg type

(Eq. (4.32)) have at least two constants of motion, the total energy Etot and one component of the

total spin, often taken to be Sz
tot. If a system can be separated into two integrable subsystems A and

B, i.e. H = HA + HB, there is an additionally known constant of motion, namely S2
tot − S2

A − S2
B.

Furthermore, the total system also respects the conserved quantities of the respective subsystems [82].
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Figure 4.13.: Decomposition into two integrable subsystems shown in red and green of the J1-J2

system with L = 6, J1 = J2 and periodic boundary conditions.

Note that the choice for the conserved quantities is not unique. Gathering all the above mentioned

hints, the six constants of motion for a classical Heisenberg spin system on the zigzag ladder with six

spins can be expressed as

1)E0 = Etot,

2)Sz
tot,

3)E1 = S0S3,

4)E2 = S1S4,

5)E3 = S2S5,

6)E4 = S2
tot − S2

A − S2
B = S0S2 + S0S5 + S1S2 + S1S5 + S2S3 + S2S4 + S3S5 + S4S5 .

(4.34)

As the uniform or disjoint union introduced above is only defined for the case J1 = J2 = J ∈ {0, 1},

the separation shown in Fig. 4.13 would cease to be “uniform” in case of unequal couplings J1 ̸= J2.

As integrable systems are rather rare in general, a system that is not (yet) proven to be integrable is

usually expected not to be. Whether the integrability of the six spin Heisenberg zigzag ladder and thus

the conservation of the constants of motions Eq. (4.34) holds away from J1 = J2 is tested numerically

in Fig. 4.14. Instead of J1 and J2, the variable to measure frustration will be taken as φ to allow a better

comparison to the Kondo lattice model thereafter. As shown in Section 2.3.2, in equilibrium the Kondo

lattice can be mapped exactly onto an effective Heisenberg model with

J1 =
8t2

1
J

and J2 =
8t2

2
J

, (4.35)

where t1 = t cos φ, t2 = t sin φ and J is given in units of inverse hopping t as in the rest of this thesis.

This parameterization will be used for φ = arctan(t2/t1) = arctan(
√

J2/J1). Note that of course

φ = π/4 implies both J1 = J2 and t1 = t2. Fig. 4.14 now shows dynamics in the Heisenberg and
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Kondo lattice model for different values of φ.

The initial conditions used are the same in all columns, namely the spiral ground state at φ = π/4
slightly perturbed to initiate dynamics. Note that this refers to the alignment of the classical spins,

the initial condition for the electrons is as in all dynamical calculations within this thesis simply the

corresponding ground state as explained in Section 4.1. The perturbation is exactly the same in all

columns to guarantee exactly similar initial conditions. All calculations are done for J = 10. To clarify,

J denotes the Kondo coupling, whereas J1 and J2 are the Heisenberg coupling constants, which depend

on J as given in Eq. (4.35). The first row shows the dynamics of the average angle between nearest

neighbor spins ⟨θi⟩. In the integrable case φ = π/4 shown in orange in the middle column, the

oscillation of ⟨θi⟩ does look rather regular, it appears to be a superposition of periodic motions with

different frequencies. Going away from the integrable case in the columns immediately to the left and

right, this quality persists. Only looking at the dynamics in the first row, it would not be surprising to

find that the system with φ ̸= π/4 is still integrable. This is disproven, however, by looking at the

rows below, where the constants of motion in Eq. (4.34) are also plotted as a function of time (except for

Etot and Sz
tot that are trivially conserved in all cases). Evidently, they are only constant in the previously

found to be integrable case of φ = π/4.

This behaviour is reminiscent of the above mentioned KAM-theorem [75–77]. In short, the theorem

states that even away from integrability, a system can retain invariant tori in phase space on which the

motion remains regular. Under certain conditions, the measure of the chaotic regions is in fact nearly

zero. Evidently, non-chaotic motion alone is no proof of integrability, and is indeed to be expected in

the vicinity of a known to be integrable model. This idea explains the regular dynamics close to but

away from the integrable case J1 = J2 in Fig. 4.14.

The rightmost column in Fig. 4.14 shows the same quantities in the Kondo lattice model plotted in red

at φ = π/4, again using the same initial conditions as in the J1 − J2-model cases. The dynamics in

the first row do not look regular at all, and none of the constants of motion of the Heisenberg spin case

are still conserved. Unlike the Heisenberg model, the Kondo lattice does not appear to be integrable

at L = 6, even though in equilibrium at J = 10 the ground state of the Kondo lattice is almost exactly

that of an effective Heisenberg model with J1 = 8t2
1/J and J2 = 8t2

2/J. The perturbative description

seems to be limited to the equilibrium case and cannot be extended beyond.

This result is of course not altogether surprising, the mere fact that in equilibrium the Kondo lattice

model can be mapped onto an effective Heisenberg model in the strong coupling limit does not nec-

essarily imply that the dynamics are similar at all. In fact, it is not even trivial to simply compare the

two models in non-equilibrium.
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Figure 4.14.: First row: average nearest-neighbor angle ⟨θi⟩ as a function of time for different values

of φ, where the integrable case is plotted in orange (φ = π/4). Other rows: constants of motion of

the integrable case, see Eq. (4.34). Rightmost column: comparison to Kondo lattice model. All

calculations are done for J = 10 with J1 = 8t2
1/J, J2 = 8t2

2/J and φ = arctan(t2/t1).

As introduced in Section 4.1.1, the equations of motion for classical spins and electrons in the Kondo

lattice model are

d
dt

Si(t) = J⟨si⟩t × Si(t) and

d
dt

⟨si⟩t = J Si(t)× ⟨si⟩t −
i
2 ∑

j
tij

(
⟨c†

iσσσσ′cjσ′⟩t + h.c.
)

,
(4.36)
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compared to only the classical spins in the Heisenberg J1-J2-model with

d
dt

Si =
n.n.

∑
j

J1 Sj × Si +
n.n.n.

∑
j

J2 Sj × Si , (4.37)

where ∑n.n. and ∑n.n.n. denote the sums over nearest and next-to-nearest neighbours, respectively, and

again J1 = 8t2
1/J and J2 = 8t2

2/J.

Figure 4.15.: Comparison between Dynamics in the Heisenberg J1-J2-model (left column) and the

Kondo lattice (right column) for a. φ = 0.0 (top row) and b. φ = π/4 (middle and bottom row).

Plotted are the components of the staggered magnetization per site mx
s (blue), my

s (orange) and mz
s

(green). The bottom row shows a zoom of the middle row at different time scales for Heisenberg and

Kondo model. All frames are calculations at L = 6 and J = 15 with identical initial conditions

between left and right column.

In the Kondo lattice model, the only energy scale is given by the amplitude of the hopping t, time steps
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are therefore given in units of inverse hoppings 1/t. With t1 = t cos φ and t2 = t sin φ, the dynamics

in the Heisenberg model in Eq. (4.37) are effectively ∝ t2/J. A true comparison between dynamics

in the two models is therefore impossible without adjusting the time scales. Numerical results show

that the dynamics are indeed similar only if the time scale is adjusted. The exact adjustment-factor,

however, is found to be non-trivial and not only to depend on J, but also to depend on φ.

Fig. 4.15 shows a comparison between dynamics in the J1-J2-Heisenberg model (left column) and the

Kondo lattice (right column) for a system of size L = 6 with J = 15. The setting is again a slightly

perturbed initial spin configuration, different for cases a. φ = 0 and b. φ = π/4 but same for the

respective left and right panel comparing Heisenberg and Kondo model. In the first row, the dynamics

is initiated by slightly perturbing the initial antiferromagnetic ground state. The components of the

staggered magnetization per lattice site, defined as in Eq. (4.25), are plotted with blue lines showing

mx
s , orange lines my

s and green lines mz
s . All are oscillating in the same way and with roughly the

same frequency for both the Heisenberg and the Kondo model, without adjusting the time scale. In

the second row, the perturbed initial configuration is the spin spiral ground state at φ = π/4. Here,

the oscillation only look similar when comparing at different time scales as illustrated by the third

row, that shows a zoom into time sections of the middle row, that are different in the Heisenberg and

Kondo case. The Kondo lattice dynamics are apparently faster by roughly a factor of 5, but even after

adjusting for time scales the similarities between Heisenberg and Kondo model are approximate at best.

Note that even though the dynamics in the top row look rather regular, neither the Heisenberg nor the

Kondo lattice are integrable in this parameter regime as mentioned above. This is only the case for the

Heisenberg model at L = 6 and φ = π/4, i.e. the left panel of the middle and bottom row of Fig. 4.15.

The behavior after a parameter quench, as opposed to simply a slight perturbation, is in both models

also only qualitatively similar. This is pictured in Fig. 4.16. Again, the left column shows the dynamics

of the J1 − J2-Heisenberg model and the right column that of the Kondo lattice. Here, the initial

configuration is the antiferromagnetic ground state at φini = 0.3 in a system of size L = 100 with

J = 30 = const.. Plotted are the dynamics of the components of the staggered magnetization per site

mx
s (blue), my

s (orange), and mz
s (green), after a quench to φf = 0.7. The bottom row shows a zoom into

different time sections of the Heisenberg and Kondo dynamics. Again, the Kondo lattice dynamics are

faster than in the Heisenberg model, but in this case by a factor of roughly 10.

Comparing Fig. 4.16 to case b. of Fig. 4.15 (middle and bottom rows), it could be concluded that the

Kondo lattice dynamics are generally faster by a factor of J/3. The first row of Fig. 4.15, however,

shows that at φ = 0, both models are moving roughly at the same time scale. More calculations at

different values of φ, that are for reasons of brevity not pictured here, confirm a nontrivial dependence

on φ of the time scale of the dynamics. The influence of φ is not altogether surprising, seeing as

it is defined as φ = arctan(t2/t1) in terms of the hopping amplitudes in the electron system of the

Kondo lattice model, that has no equivalent in the Heisenberg model. The coupling constants resulting
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from perturbation theory are ∝ t2
1, t2

2, thus φ is not a very well defined measure of frustration in the

Heisenberg model.

Figure 4.16.: Dynamics after a quench φ = 0.3 → 0.7 in the J1-J2-Heisenberg model (left column) and

the Kondo lattice (right column) for L = 100 and J = 30. Plotted are the components of the

staggered magnetization per size mx
s (blue), my

s (orange) and mz
s (green). The bottom row shows a

zoom of the top row at different time scales in the Heisenberg and Kondo model.

To conclude this section, neither the Heisenberg nor the Kondo lattice model on the zigzag ladder

are integrable in general. The Heisenberg model with L = 6 sites and periodic boundary conditions,

however, is integrable if J1 = J2. Although in equilibrium, the Kondo lattice on the zigzag ladder can

be mapped onto the Heisenberg model in the strong coupling limit, a comparison between the two

models cannot be generalized to non-equilibrium.

4.2.4. Linear Approximation and Spin-Wave-Like Excitations

In the problems from classical dynamics mentioned in Section 4.2.2, the ergodicity threshold was ex-

plained with a proximity to an integrable model. If this is the case here, then the Heisenberg J1 − J2-

model was excluded as a possible candidate for such an integrable limit in the last section. In the FPU

paradox introduced above, a non-linear perturbation is added to a linear model in order to observe

ergodic behavior. Here, the starting point is the full system, but the backwards route is also possible

- by linearizing the equations of motion. This is incidentally also done in classical spin wave theory
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to describe low energy collective excitations of the Heisenberg model that are also known to destroy

long range magnetic order in low dimensional systems. As shown in Chapter 3, the system considered

here displays a magnetic long range order at T = 0. It seems therefore a worthwhile approach to look

for corresponding spin-wave-like excitations, as spin-wave theory is a linear theory and thus derives

from an integrable model, valid at very low excitation energies.

Before applying the linear approximation to the Kondo lattice, a short review of classical spin wave

theory as known in the literature is presented. Again, the starting point will be the Heisenberg model,

the paradigm model for localized magnetism. At zero temperature it describes a perfectly ordered

ferromagnet or antiferromagnet, depending on the sign of the interactions. At finite temperature, this

order is either decreased or, if the model is one or two dimensional, entirely destroyed as proven in

the so-called Mermin-Wagner-theorem [55]. The order is destroyed by propagating spin waves with a

gapless excitation spectrum, in the quantized version also called magnons. Their dispersion relation

can be obtained in several ways, one of those being a linearization of the equations of motion. The

equations of motion of the Heisenberg model

H =
N

∑
i,j=1

Jij Si · Sj (4.38)

can be derived as in Section 4.1.1 using Eq. (4.2) and are given by

d
dt

Si =
N

∑
j=1

Jij Sj × Si . (4.39)

As this is the case of relevance here, the coupling constants considered will be Jij > 0, for which the

ground state is antiferromagnetic.

The premise of spin wave theory is a perturbation δSi precessing around the ground state spin configu-

ration {S0}, which is perfectly aligned along an arbitrarily chosen axis in space. Note that this type of

excitation - an expansion around the initial configuration - agrees with the kind of dynamics observed

in Section 4.2.1, where the system stays mostly aligned along the initially chosen axis of magnetization

for energies below a certain threshold. Parts of the following spin wave theory review are taken from

[84] and [85].

For the linearization of the Heisenberg model, the ansatz Si ≡ Si,0 + δSi is plugged into the equations

of motion Eq. (4.39) to ultimately obtain a dispersion relation for the excitations. The initial spin

configuration can be described by Si,0 = S0eik0·Ri , where S0 is oriented along the chosen initial axis,

Ri is the vector pointing to lattice site i and k0 is the wave vector characterizing the antiferromagnetic
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order, which in the 1D case simply means k0 = π. Eq. (4.39) then becomes

d
dt

δSi = ∑
j

Jij (δSi × Si,0 + Si,0 × δSi)

= ∑
j

Jij

(
δSi × S0eik0·Ri + S0eik0·Ri × δSi

)
.

(4.40)

From these equations of motion it can be seen that the motion of δSi must be perpendicular to S0, it

is therefore useful to define the variable S±
i = δSx

i ± iδSy
i , assuming S0 points in z-direction.

The solutions to Eq. (4.40) are then of the form

S+
i =

√
2
N ∑

k

[
Akei(k·Ri−ωkt) + Bkei((k−k0)·Ri−ωkt)

]
and

S−
i =

√
2
N ∑

k

[
A∗

ke−i(k·Ri−ωkt) + B∗
ke−i((k−k0)·Ri−ωkt)

]
.

(4.41)

This corresponds to two spin waves precessing around the initial magnetization axis with the same

frequency ωk but different amplitudes |Ak + Bk| and |Ak − Bk| on the two sublattices given by the

antiferromagnetic order as pictured in Fig. 4.17.

Figure 4.17.: Spin wave in an antiferromagnetic Heisenberg model. After [84].

Using the Fourier transform of the interaction Jij

J(k) = ∑
j

Jijeik·(Rj−Ri) , (4.42)

the frequency is found to be

ωk = ±2S
√
(J(k0)− J(k))(J(k0)− J(k − k0)) , (4.43)
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or, in the 1D nearest-neighbor case simply

ωk = ±2SJ
√

1 − cos2(k) . (4.44)

Evidently, the long wavelength limit of the antiferromagnetic spin wave dispersion in the regular

nearest-neighbor Heisenberg model is not, as in the ferromagnetic case, quadratic, but linear in k,

i.e. ωk ∝ |k| for small values of k. For a frustrated model with nearest neighbor interactions J1 and

next-to-nearest neighbor interactions J2 Eq. (4.43) becomes, within the antiferromagnetic phase with

k0 = π,

ωk = 2S
√
(J2 − J1 − J2 cos(2k))2 − (J1 cos(k))2

≡ 2SJ
√
(sin Φ − cos Φ − sin Φ cos(2k))2 − (cos Φ cos(k))2 ,

(4.45)

where in the last line the frustration is parameterized by J1 = J cos Φ and J2 = J sin Φ. Fig. 4.18 shows

the dispersion relation for different values of Φ, the case Φ = 0 denoting the regular nearest-neighbor

only case. Note that Φ ≈ 0.245 is the critical value above which the ground state transitions from

antiferromagnetic order with k0 = π to spiral order with k0 ̸= π, more on the J1 − J2-Heisenberg

model can be found in Appendix A.

Φ = 0.0

Φ = 0.1

Φ = 0.2

Φ = 0.245

Figure 4.18.: Spin wave dispersion in the antiferromagnetic Heisenberg model Eq. (4.45) with coupling

constants J1 ≡ J cos Φ and J2 ≡ J sin Φ for different values of frustration Φ. The red line (Φ = 0)

shows the dispersion of the regular nearest-neighbor chain Eq. (4.44).

Inspired by spin wave theory for the Heisenberg model, here too, the equations of motion can be

linearized. The complete set of nonlinear differential equations describing the time evolution of the
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Kondo lattice system as introduced in Section 4.1.1 is

Ṡi(t) = J⟨si⟩t × Si(t) and

iρ̇(t) = [teff ({Si}) ,ρ(t)]
(4.46)

where the effective hopping matrix

teff = thopp + Σ ({Si}) (4.47)

depends on the classical spin configuration {Si} via the self-energy Σ with elements

Σii,σσ′ =
J
2
(Si · σ)σσ′ . (4.48)

The expectation values of the electron spins ⟨si⟩ can be expressed in terms of the one-particle reduced

density matrix ρ as follows

⟨si⟩ =
1
2

Tr [σρi] =
1
2 ∑

σσ′
σσσ′ρii,σ′σ . (4.49)

The ansatz to linearize Eq. (4.46) is then simply

Si = S0,i + δSi and

ρ = ρ0 + δρ .
(4.50)

Letting ρi denote the 2 × 2 matrix block with entries ρiiσσ′ and plugging Eq. (4.50) into Eq. (4.46), the

equation of motion for the classical spins becomes, up to first order,

δṠi =
J
2

Tr [σ · (ρ0,i + δρi)]× (S0,i + δSi)

=
J
2
(Tr(σ · δρi)× S0,i + Tr(σ · ρ0,i)× δSi) ,

(4.51)

where it was also used that ⟨s0,i⟩ × Si,0 = 0 since in the initial state, electrons and classical spins are

collinear per construction. The linearized equation of motion for the density matrix is

δρ̇ = −i[teff ({S0 + δS}) ,ρ0 + δρ]

= −i ([teff ({S0}) , δρ] + [Σ(δS),ρ0]) ,
(4.52)

where [Teff(S0),ρ0] = 0, since ρ0 is a function of Teff(S0), was used. Eqs. (4.51) and (4.52) can be

written more compactly in matrix form

ẋ(t) = M x(t) , (4.53)

where x(t) = (δS, δρ)T is the (3L + 4L2)-dimensional vector of spin and electron degrees of freedom
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4.2. Ergodicity Threshold

and M is the (3L + 4L2)× (3L + 4L2)-dimensional constant coefficient matrix. In block matrix form

this can be written as (
δṠ
δρ̇

)
=

(
MSS MSE

MES MEE

)(
δS
δρ

)
(4.54)

with matrix elements

MSS
iα,i′α′ =

J
2 ∑

σσ′

xyz

∑
β

εαβα′σ
β
σσ′ρ0,iiσσ′δii′

MSE
iα,i′ j′σ′τ′ =

J
2

xyz

∑
βγ

εαβγσ
β
σ′τ′S0,iγδii′δi′ j′

MES
ijστ,i′α′ =− i

J
2 ∑

µ

σα′
σµρ0,i′ jµτδii′ + i

J
2 ∑

µ

σα′
µτρ0,ii′σµδi′ j

MEE
ijστ,i′ j′σ′τ′ =− ithopp,ii′δσσ′δττ′δjj′ + ithopp,j′ jδσσ′δττ′δii′

− i
J
2 ∑

α

S0,iασα
σσ′δii′δjj′δττ′ + i

J
2 ∑

α

S0,i′ασα
τ′τδii′δjj′δσσ′ .

(4.55)

A system of coupled differential equations with constant coefficients of the form Eq. (4.53) has a fun-

damental system of solutions given by

{v1eλ1t, ..., vneλnt} , (4.56)

where vi are eigenvectors to the eigenvalues λi of M and the matrix dimension in this case is n =

3L + 4L2. A solution to Eq. (4.53) can therefore be expressed as

x(t) =
n

∑
j=1

cjvjeλjt , (4.57)

where the coefficients cj need to be chosen to satisfy the initial condition x(t = 0) ≡ x0, i.e.

Vc = x0 or c = V−1x0 . (4.58)

The vector c is composed of coefficients cj corresponding to the columns vj of the matrix V that

diagonalizes M. Note that a peculiarity of the model here is that the matrix M is neither hermitian

nor anti-hermitian since even though M†
SS = −MSS and M†

EE = −MEE, it can be easily seen that

M†
SE ̸= −MES. A numerical diagonalization still shows only imaginary eigenvalues that occur in

pairs (λi,−λi), indicating the solutions are of the form

x(t) =
n/2

∑
i=1

(
civieiωit + c−iv−ie−iωit

)
, (4.59)
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and can thus be pictured as oscillations around x0 with frequencies ωi ≡ Im(λi). Just as for ωk in

the solution of Heisenberg model spin waves in Eq. (4.43), here too, the spectrum is symmetric and for

each frequency ωi there are two solutions precessing in different directions around x0.

Figure 4.19.: Comparison between full theory (left column) and linear approximation (right column)

for a lattice of size L = 8 at φ = 0.0 and J = 3.0. The upper left panel shows the time evolution of

the electron spin component ⟨sx
cc⟩ after a quench J = 4.9 → 3.0, the lower left panel the

corresponding numerical fast Fourier transform (FFT) plotted against frequencies. The upper right

panel shows ⟨sz
cc⟩ calculated from the solution δρ of the ode of the linear approximation Eq. (4.54),

the lower right panel again the corresponding FFT against frequencies.

After finding the numerical solution x(t) = (δS, δρ)T in this way, it can be used to calculate the time

evolution of observables in the framework of the linear approximation. Fig. 4.19 shows a comparison of

the time evolution of the full theory and the solution of the linear approximation differential equation

Eq. (4.54). In both cases, all components of the classical spins are constant for all times, as are two of the

electron spin expectation values. Only the component in the direction of the initial spin configuration

- x in the full theory, z in the linear approximation - is fluctuating as a function of time, as plotted in

the top row of Fig. 4.19. In the upper left panel, ⟨sx
cc⟩ is plotted as a function of time for a system of size
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4.2. Ergodicity Threshold

L = 8 after a quench J = 4.9 → 3.0 at φ = 0. The oscillation looks similar to the time evolution of

⟨sz
cc⟩ resulting from the solution of the linear approximation δρ plotted in the upper right panel. This is

confirmed by the numerical fast Fourier transform plotted in the bottom row for both cases, that show

a similar frequency spectrum. The amplitude, however, does not match exactly. The amplitude of the

oscillation of ⟨sx
cc⟩ in the full theory depends on the size of the quench, i.e. the energy introduced into

the system, the frequency spectrum is similar for all quenches below the critical energy Ecrit above

which the dynamics of the classical spins starts.

The linear approximation thus exactly reproduces the dynamics compatible with the equations of mo-

tion first discussed in Section 4.1.2, as it should. No chaotic motion can be expected from such an

approximation and therefore no exponential sensitivity to perturbations that could potentially trigger

any other dynamics than the one pictured in Fig. 4.19. Even though the derivation is similar and the

models share the presence of classical spins, the “spin-wave-like” excitations here are of a different

type than the well known ones found for the Heisenberg model. The linearized equations of motion

Eq. (4.54) mix the classical spin and electron components, the nature of excitations is therefore of a

fundamentally different nature than in the classical spin-only Heisenberg model.
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Figure 4.20.: Left panel: Full spectrum of eigenvalues ωm ≡ Im(λm) of coefficient matrix in Eq. (4.53)

for a system with L = 8, φ = 0 and J = 3 plotted against diagonalization index m. Right panel:

Zoom into ωm > 0 with (first) finite size gap marked in orange.

The entire spectrum of eigenvalues, or rather of the nonzero imaginary ones ωm, is plotted against

the diagonalization index m in Fig. 4.20 for a system with L = 8, J = 3 and φ = 0. The left panel

shows the symmetry of eigenvalues, for each ωm there is a corresponding −ωm, imaginary eigenvalues

always come in pairs. There seems to be an additional symmetry, as each of the ωm is at least doubly
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degenerate. A plot in k-space, that is not available here, would perhaps show a similar symmetry

around k = 0 as in the Heisenberg model in Fig. 4.18. The form of the dispersion ωk seems to be more

complex here, however, as the degeneracy is not uniform.

The degeneracy of the eigenvalue ωm = 0 is particularly high, even when accounting for the factor 2 of

the ± symmetry. For a better understanding of what could be the cause, it might be useful to consider

the simpler Heisenberg model. The solution of the spin wave theory presented above has 2L compo-

nents, but if it would be restated in matrix form analogous to Eq. (4.54), the formal solution would have

3L components. The extra L components correspond to the components in the direction of the initial

configuration. Since it was shown above, that the linear deviation δS must lie in the perpendicular

plane, these L eigenvalues must therefore be zero. Here, the situation is much more complicated. If

the logic of the Heisenberg model were applied, it would account for 5L of the degenerate eigenvalues,

since without the exponential sensitivity on perturbations, which is absent in the linear approximation,

all 3L components of the classical spin and 2L components of the local electron spin would be con-

stant. In addition, there are in both cases “physical” zero modes that are also obtained by an analytical

solution. In case of the Heisenberg model, the zero modes correspond to a collective uniform rotation

of all spins that do not change the state, and are in fact the zero-frequency Goldstone modes connected

to the breaking of the SO(3) symmetry.
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Figure 4.21.: Left panel: degeneracy of ωm = 0 as a function of L. Right panel: bandwidth of ωm

spectrum as a function of J. The inset shows the J2 proportionality for small to medium J. Both

panels are for φ = 0.

The degeneracy of ωm = 0 is plotted as a function of L in the left panel of Fig. 4.21. The proportionality

is linear to L with the same factor for all values of J. The proportionality constant is larger than 5,

there are therefore more L-dependent zero modes than the ones mentioned above. A further analysis

is difficult, however, as the 4L2 elements of the density matrix ρ are with a few exceptions, such as the
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4.2. Ergodicity Threshold

components of ⟨si⟩, not very intuitive degrees of freedom.

The right panel of Fig. 4.21 shows the bandwidth of the positive half of the spectrum, i.e. max(ωm),

as a function of J. The minimum value at J = 0 is 4, which is just the 1D bandwidth of electronic

excitations without the field induced by the classical spins. After an increase ∝ J2 shown also in the

inset for small to medium values of J, in the strong coupling limit starting at J ≈ 10 the bandwidth

takes the value J/2, which is the “Slater gap” also encountered in Section 2.2.1 at the boundaries of

the magnetic Brillouin zone for antiferromagnetic spin configurations. The spin-wave-like excitations

therefore lie within the Slater gap, i.e. below the purely electronic excitations of the system. For all

values of J, the bandwidth is independent of L.

In the thermodynamic limit L → ∞, the spectrum ωm becomes continuous and the energy needed to

excite the first mode above the zero mode is infinitesimally small, the spectrum is said to be gapless.
For finite L, this is not the case, as can be seen in Fig. 4.20 by the example of L = 8. The dependence

of this finite size gap, which is marked in orange in Fig. 4.20, on L and J is shown in the left and right

panel of Fig. 4.22, respectively.
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Figure 4.22.: Finite size gap (see orange marking in Fig. 4.20) as a function of 1/L2 (left panel) and J
(right panel) for φ = 0. The inset in the left panel shows the linear behavior with 1/L2 for larger L.

The inset in the right panel shows the 1/J-proportionality for larger J.

The left panel shows that for all values of J, the gap is roughly proportional to 1/L2 for large L, in

particular for larger values of L, which are shown also in the inset. For smaller values of J as indicated

by the yellow and light green lines, the proportionality seems to change suddenly at some point, but

even then the gap remains proportional to 1/L2. The spin wave spectrum in the Heisenberg model for

the regular unfrustrated antiferromagnetic chain is linear for small values of k, which should result in

a 1/L proportionality of the gap due to evenly spaced k-values. This stands in contrast to the results
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found here, but in this case the excitations are a combination of classical spins and electrons and thus

fundamentally different from the well known spin waves in the Heisenberg model, evidently they also

result in a different, i.e. possibly quadratic dispersion for small k.

The J-dependence of the finite size gap is plotted in the right panel of Fig. 4.22. The qualitative behavior

is similar for all values of L, with a stronger J-dependence for smaller values of L. This of course

simply reflects the fact that the gap closes for L → ∞. After a linear increase until J ≈ 5, the gap

then decreases as ∝ 1/J also shown in the inset, and ultimately, depending on L, nearly closes for very

large J. For lattices with larger L, the dependence on J becomes smaller and smaller until eventually

the gap will be closed for all values of J.

This finite size gap can help explain the ergodicity threshold that was found numerically in Section 4.2.1.

Fig. 4.23 shows a comparison between the critical energy needed to start dynamics Ecrit (blue) and the

gap of the spectrum of linear excitations (orange). Both are, at least approximately, ∝ 1/L2 with the

critical energy going to zero slightly faster with increasing L.
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Figure 4.23.: Critical energy (blue) and finite size gap of the linear approximation (orange) plotted

against 1/L2 for J = 3 and φ = 0.

Below the critical energy Ecrit, the system is “trapped” in the linear regime and remains in the initial

antiferromagnetic configuration forever. It is therefore trivially long-range ordered. The Mermin-

Wagner theorem [55] rigorously proves the absence of long range ordered ferro- or antiferromagnetism

in one and two dimensional systems at finite temperatures. For small but finite T > 0, the order is

destroyed by the spin wave excitations that cost vanishingly small energy to excite and whose total

number diverges for dimensions d = 1 and d = 2 [85]. For finite system sizes, however, the spin

80



4.3. Dimerization Transition

wave spectrum is gapped, and the order-destroying excitations cost a finite amount of energy. Here,

the order is eventually destroyed by the ergodic behavior of the system above the ergodicity threshold,

which can also be seen as the excitation gap needed to excite the spin-wave-like excitations. The results

presented here therefore do not contradict the Mermin-Wagner theorem. Another viewpoint is, that

the Mermin-Wagner theorem only applies to ergodic systems, as it relies on the validity of the ergodic

theorem Eq. (4.20) to provide valid expectation values for the Bogoliubov inequality.

Technically, the ergodicity threshold described here could be called a finite size effect. The same can,

however, also be said of the stochasticity threshold of the FPU paradox mentioned in Section 4.2.2,

that nevertheless was an important result and triggered much research on the connection between

classical dynamics and statistical mechanics. The question of how many degrees of freedom are needed

to expect statistical behavior is still difficult to answer and certainly depends on the specific situation.

Fermi et. al. showed in their case, n = 32, 64 was not sufficient to trigger mixing and therefore statistic

behavior. The results presented here indicate that, at least in this case, L = 32, 64 might also not be

sufficient, but likewise L = O(1023) is far from necessary, as the ergodicity threshold closes very fast,

i.e. as 1/L2. Another point could be made that even though the system above Ecrit is ergodic in the

limit t → ∞, there is still a remnant of the linear regime present in form of the staggered magnetization

ms that is approximately conserved on long time scales as shown in Fig. 4.10 for L = 96.

4.3. Dimerization Transition

In the previous section, the dynamics following parameter quenches within the antiferromagnetic

phase were found to be ergodic only above a critical energy. While they were found to be certainly

non-ergodic below this threshold, even above the timescales were much too slow to actually observe a

true covering of the entire phase space, an appropriate description would therefore be weakly chaotic.
Some examples of truly chaotic dynamics can be obtained by quenches across phase boundaries, as will

be demonstrated in this section by example of quenches across the antiferromagnetic-dimerization and

spiral-dimerization transition illustrated in Fig. 4.2 and marked with 2 .

After determining ergodic properties of a system, new questions arise. The focus in this section will

be on whether or not the system reaches a new equilibrium state, i.e. thermalizes, on observable time

scales, and the nature of this new equilibrium in particular concerning the presence or absence of long

range order. Before discussing numerical results, the following sections first aim to introduce some

important concepts such as phase transitions, long range order and thermalization.

4.3.1. Phase Transitions

A general, but precise definition of phase transitions or even simply a phase is difficult to state. Typi-

cally, a system is said to be in a certain phase if it is in an equilibrium state that can be characterized by
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few thermodynamic variables. This can be a state of matter such as liquid, solid, etc., or more complex

such as magnetic or superconducting. If by changing a system parameter - often, but not always the

temperature - the general characteristics of the system change, it is said to undergo a phase transition.

This is accompanied by non-analyticities of thermodynamic functions that characterize this transition.

They can be broadly separated into two types: When the first derivative of a thermodynamic poten-

tial, such as the free energy, has a discontinuity at the point of the phase transition, it is said to be of

first order. If, on the other hand, the discontinuity appears in one of the higher derivatives such as a

susceptibility, it is called a continuous phase transition. In finite systems such as present here, there

can be no real discontinuities and therewith no real phase transitions at finite temperatures. This can

be illustrated by a short example taken from [86]. Consider the temperature dependent correlation

length or spatial extent of fluctuations ξ of a physical quantity in the vicinity of a continuous phase

transition. At the point of the phase transition, i.e. the critical temperature Tc, this correlation length

ξ diverges to infinity. This is of course impossible in any finite system, as ξ naturally cannot exceed

the system size L. The way in which it diverges can be characterized by a so-called critical exponent,

which depends on very few system properties such as the dimensionality of the system and the range

of interactions. Consider for example

ξ ≈ ξ0t−2/3 with t ≡ T − Tc

Tc
. (4.60)

For a quantitative estimate of how infinite a system needs to be, consider ξ0 ≈ 10 Å the correlation

length far away from the critical point. In this case, the correlation length reaches a system size of

L = 1 cm at t = 10−11, i.e. finite size effects are practically unobservable. This example saves the

concept of phase transition at least for experimentalists, as it is not necessary to have a truly infinite

sample, but for numerical calculations the problem remains and must be combatted with careful finite

size scaling [86]. For the remainder of this thesis it is necessary to understand all phase transitions

mentioned to be in fact more of a crossover from one phase to the next without a true non-analyticity,

even though the term might sometimes be used for simplicity.

T < Tc T > Tc

Figure 4.24.: Schematic picture of a solid to liquid phase transition, where the system is ordered at low

temperatures (left) and disordered at high temperatures (right) with Tc denoting the critical

temperature.
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Besides categorizing into first order and second order (continuous), there is another important quality

that fundamentally distinguishes individual phase transitions. The phase transitions that can be expe-

rienced in everyday life, such as the melting of ice, are usually a function of temperature. By heating

the ice, thermal fluctuations eventually destroy macroscopic order of the crystal structure as shown

schematically in Fig. 4.24. The corresponding discussion relating to the symmetry of each phase will

be continued in the next section. The point here is that there are also phase transitions that can take

place entirely at zero temperature, then of course as a function of some non-thermal system parameter.

In this case, the order is not destroyed by thermal but by quantum fluctuations, this class of transitions

is therefore called quantum phase transitions. As the critical behavior in the vicinity of a transition

taking place at finite temperature is dominated by the thermal fluctuations, all transitions taking place

above T = 0 are generally called classical independent of other system characteristics [87].

Here, any transition that might be observed is induced by a parameter quench as introduced in Sec-

tion 4.1.2. As any parameter quench will necessarily introduce energy ∆E as defined in Eq. (4.24) into

the system, in this framework there are no zero temperature phase transitions. As finite temperature

transitions are always classical, in spite of the system here being a quantum-classical hybrid, there are

no quantum phase transitions to consider, at least as a consequence of parameter quenches. It is there-

fore important to realize that a parameter quench drawn in the flat J − φ equilibrium phase diagram

as pictured in Fig. 4.2 is not an accurate depiction of the resulting phase transition. A more authentic

illustration of the quench is obtained by adding an extra dimension - the temperature - to the phase

diagram as shown in Fig. 4.25.
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Figure 4.25.: Schematic picture of quenches in the finite-temperature phase diagram. The

corresponding zero temperature phase diagram is introduced in Chapter 3 and pictured in Fig. 3.3.

A quench starting in the spiral or antiferromagnetic and ending in the dimerized phase as shown in

Fig. 4.25 is therefore not guaranteed to truly result in a dimerized phase after the system has thermalized
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- if the energy is greater than a critical value connected to some unknown critical temperature, the

outcome will simply be a disordered system.

4.3.2. Spontaneous Symmetry Breaking and Long Range Order

Intimately connected to the concept of phase transitions is the notion of spontaneously broken sym-
metry. The solid-liquid phase transition sketched schematically in Fig. 4.24 shows what is often the

case for a phase transition - one phase has a different symmetry than the other. To be more precise,

“having a symmetry” means that the system is invariant under symmetry operations. If this group

contains a countable number of elements, it is called a discrete symmetry, such as the rotational sym-

metry of a cube, if it contains a continuum of elements, it is called a continuous symmetry, such as the

rotational symmetry of a sphere [85]. In this case, the corresponding Hamiltonian commutes with the

generators of respective symmetry group. In the picture in Fig. 4.24, the liquid phase on the right ex-

presses a higher symmetry than the left, since no point in space is particularly special and any rotation

or transposition will return a similar state. The solid on the left, however, has a discrete symmetry,

where only rotations of exactly 90◦ and transformations according to the lattice spacing will leave the

system invariant. If the low-temperature ground state of a system described with a Hamiltonian that

has a higher symmetry such as pictured on the right in Fig. 4.24 “chooses” an alignment with a lower

symmetry such as pictured on the left, the system is said to have spontaneously broken symmetry.

Example: The Ising Model

Consider the free energy of a system F = E−TS. At high temperatures, the second term will dominate

and F is minimized by maximizing the entropy S. For low temperatures, however, it might be favorable

to instead minimize the internal energy E. If the two resulting macroscopic states differ, then the

system must have undergone a phase transition at some temperature Tc. To illustrate this concept,

first an example of a system with discrete symmetry taken from [86] will be considered. The simplest

imaginable model for magnetism and a paradigm for statistical properties of magnets is the Ising model

that is described by

H = J ∑
⟨ij⟩

SiSj − B
N

∑
i=1

Si (4.61)

where ⟨ij⟩ denotes the sum taken over nearest neighbors coupled with J and Si = ±1 is a classical

spin that can only take two values: up or down. At high temperatures, the free energy is minimized

by maximum entropy that produces an entirely disordered state. At zero temperature, however, the

free energy that is then just the internal energy E, is minimized by an ordered spin configuration

that depends on the coupling constant J and external magnetic field B. By the above argument, this

indicates the existence of a phase transition. It is, however, also possible to construct an argument

against the existence of a phase transition, as will be shown in the following.
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The external magnetic field B induces a magnetization per site M that can be obtained by differentiating

the free energy

F = −kBT ln Z with Z = Tr e−βH (4.62)

with respect to B:

M ≡ 1
N

N

∑
i=1

⟨Si⟩ = − 1
N

∂F
∂B

with

∂F
∂B

= −kBT
1

Tr e−βH Tr
Si

kBT
e−βH = −⟨Si⟩ .

(4.63)

Evidently, for B > 0 the ground state spin configuration is Si = +1 ∀i and thus M = +1, analogously

M = −1 for B < 0. The system must therefore undergo a transition at B = 0.

It can easily be seen that the system is symmetric under up-down symmetry, also called time-reversal

or Z2 symmetry. Eq. (4.61) implies

H(B, J, {Si}) = H(−B, J, {−Si}) . (4.64)

For any function G depending on the spin configuration {Si}

∑
{Si=±1}

G({Si}) = ∑
{Si=±1}

G({−Si}) (4.65)

holds. From both Eq. (4.64) and Eq. (4.65) it follows for the partition function Z:

Z(−B, J, T) = ∑
{Si=±1}

exp[−βH(−B, J, {Si})]

= ∑
{Si=±1}

exp[−βH(−B, J, {−Si})]

= ∑
{Si=±1}

exp[−βH(B, J, {Si})]

= Z(B, J, T) ,

(4.66)

and therefore for the free energy

F(B, J, T) = F(−B, J, T) . (4.67)

Using this, the magnetization M in Eq. (4.63) becomes
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NM(B) = −∂F(B)
∂B

= −∂F(−B)
∂B

=
∂F(−B)
∂(−B)

= −NM(−B) , (4.68)

which leads for B = 0 to the contradiction

M(0) = −M(0) = 0 . (4.69)

There can thus be no magnetization in zero field and therefore no phase transition.

MS

T
Tc0

f(B)

B
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fin
ite
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0
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nite
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a. b. c.

Figure 4.26.: a. Free energy density as a function of magnetic field B for finite and infinite systems and

T < Tc. b. Magnetization M as a function of external magnetic field B. c. Spontaneous

magnetization as a function of temperature. All plots after [86].

This is, however, only correct for finite systems. In the thermodynamic limit N → ∞, the free energy

density f ≡ F
N can develop a discontinuity in its first derivative ∂ f /∂B. f (B) is a convex up function,

but f (B) = f (−B) only implies M(0) = 0 if f (B) is smooth at B = 0 and left and right derivatives

are equal, as shown in Fig. 4.26 a. for a finite system. The behavior sketched in Fig. 4.26 satisfies all

analytical properties of a free energy density but still allows for a phase transition in the thermody-

namic limit. The magnetization as a function of the external field B is shown in Fig. 4.26 b. where the

spontaneous magnetization M(0) ≡ MS is given by

MS = lim
B→0+

−∂ f (B)
B

and − MS = lim
B→0−

−∂ f (B)
B

. (4.70)

The paradox can therefore be resolved by the realization that the thermodynamic limit N → ∞ does

not necessarily commute with the limit B → 0, i.e.

lim
N→∞

lim
B→0

1
N

∂F(B)
∂B

= 0 while lim
B→0

lim
N→∞

1
N

∂F(B)
∂B

̸= 0 . (4.71)

At increasing temperature, the thermal fluctuations destroy the magnetic order, eventually leading to
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MS = 0 at Tc as shown in Fig. 4.26 c.. Below Tc, even though the Hamiltonian is invariant under

time-reversal symmetry {Si} → {−Si}, the statistical expectation values ⟨Si⟩ ̸= 0 are not, which is

an example of spontaneous symmetry breaking.

Strictly speaking, the plot of MS(T) in Fig. 4.26 c. is only correct for a system with dimension d > 1.

For T > 0, there is no long range order in a one dimensional nearest-neighbor Ising model. In fact,

there is a rather general argument for this given in [86,88]. Consider the ferromagnetic ground state

with all spins aligned at T = 0. In this ordered state, the entropy is zero and the free energy thus given

by

FN = −NJ . (4.72)

Increasing the temperature produces thermal fluctuations, i.e. spin flips. Now consider the state, where

the spins are flipped such that there are two domains . . . ↑↑↑↓↓↓ . . . present in the system. The

interface between them has an energy cost of ∆E = 2J, for the internal energy of the domain state

follows therefore

EN = −NJ + 2J . (4.73)

Because, in a system with periodic boundary conditions, this domain can be at any of the N sites, the

corresponding entropy is given by

SN = kB log N . (4.74)

The difference in free energy between the ferromagnetic and the domain state is thus

∆F = (−NJ + 2J − kBT log N)− (−NJ) = 2J − kBT log N , (4.75)

which, for any T > 0, goes to ∆F → −∞ as N → ∞. The system can therefore always lower the

energy by creating a domain wall, and even further by splitting each domain in two and so on. This

can be continued until the long range order is destroyed. There is thus no phase transition in the 1D

Ising model for T > 0.

Quasi-Averages

The paradox of non-commuting limits can be stated in more general terms as done for example in [89].

In systems with spontaneous symmetry breaking, Bogoliubov proposed the concept of quasi-averages
[90]. Normally, for a system in statistical equilibrium, the expectation value of an operator A is given

by

⟨A⟩ ≡ Tr (ρA) = Tr (e−βHA) (4.76)

with the density operator ρ = exp(−βH) and grand-canonical Hamiltonian H = H − µN̂. Now

taking the thermodynamic limit N → ∞ turns out to be surprisingly non-trivial. Consider for example
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a small perturbation ν added to the system via an addition Hν = νH′

Hν = H + Hν − µN̂ . (4.77)

Then taking again ν → 0 can result in a contradiction for the infinite system. For ν = 0 the average

in the infinite system is simply given by

⟨A⟩ = lim
N→∞

Tr (e−βHA) . (4.78)

For the quasi-average, however, the limits are taken the other way around, i.e.

⟨A⟩q ≡ lim
ν→0

lim
N→∞

Tr (e−βHν A) . (4.79)

Now suppose that the Hamiltonian H displays a continuous symmetry S , i.e. it commutes with gener-

ators Γi
S of the corresponding symmetry group

[H, Γi
S ] = 0 . (4.80)

If some operator B is not invariant under S the commutator is nonzero

[B, Γi
S ] ≡ Ci ̸= 0 . (4.81)

Due to the cyclic invariance of the trace, the regular expectation value, i.e. Eq. (4.78), of Ci vanishes

⟨Ci⟩ = 0 (4.82)

in contrast to the quasi-average

⟨Ci⟩q = lim
ν→0

lim
N→∞

Tr (e−βHν [B, Γi
S ]) ̸= 0 . (4.83)

Even though this last argument was given for quantum systems, the classical case can be argued very

similarly. In the classical case, averages can be calculated just as in Eq. (4.76) with the ρ being the (classi-

cal) Boltzmann distribution. The same problem with the thermodynamic limit arises, since the symme-

try of the Hamiltonian (and therewith ρ) determines the value of averages like Eq. (4.76) of observables

like the magnetization. The solution are again quasi-averages where the thermodynamic limit together

with the limit ν → 0 (e.g. B → 0+) is equivalent to setting ν = 0 but only using a restricted ensemble
where microstates contributing to all other degenerate values of the average (e.g. −MS in the Ising

example above) are excluded thus allowing the symmetry of the average of the observable in question

to deviate from the one exhibited by the system as a whole. The two limits ν → 0 and N → ∞ at

the same time thus require the definition of a new probability distribution where excluded states are
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given zero weight [86]. For rigorous mathematical arguments on symmetry breaking and the meaning

of probability in an infinite system see [91].

From a dynamical point of view, the argument of the restricted ensemble is closely related to the

ergodicity breaking discussed in the previous section, as a non-ergodic system evidently also fails to

sample the entire phase space. Spontaneously broken symmetry can therefore be approached either

by the method of “small fields” ν → 0 or by restricted ensembles and ergodicity breaking [86].

Order Parameter

A phase transition connected to spontaneous symmetry breaking can be described by an order param-

eter whose (quasi) average vanishes on one side of the transition while it is finite on the other. The

order parameter for magnetic order that is relevant here is the magnetization per site

mα
q =

1
L
⟨Sα

q⟩ , (4.84)

which is just the average over

Sα
q = ∑

i
eiq·xi Sα

i , (4.85)

where q is the ordering wave vector, e.g. q = π for antiferromagnetic order, and α ∈ {x, y, z} labels the

direction in space. Spontaneously broken symmetry, i.e. a non-vanishing quasi-average of Eq. (4.85),

implies true long-range order in the correlation function

Sαα(q) = lim
B→0+

1
NZ

Tr (e−βH(B)Sα
qSα

−q) (4.86)

i.e.

lim
N→∞

(
1
N

Sαα
q

)
> 0 , (4.87)

or, equivalently,

lim
|xi−xj|→∞

lim
N→∞

⟨Si · Sj⟩ ̸= 0 , (4.88)

where |xi − xj| is the distance between sites i and j [92]. This is intuitively clear, since for long distances

⟨Si · Sj⟩ → ⟨Si⟩⟨Sj⟩ and the quasi average ⟨Si⟩ is only non-vanishing in case of broken symmetry.

Note that Eqs. (4.87) and (4.88) can be applied similarly to any local order parameter Oi.

The previously mentioned Mermin-Wagner theorem rigorously proves there can be no spontaneous

symmetry breaking (of a continuous symmetry) in one and two dimensions at finite temperatures [55],

a result which is surprisingly general and can be applied to a myriad of different models and systems,

see for example [89].

This has the consequence, that the antiferromagnetic and spiral phases in Fig. 3.3 cannot extend to
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finite temperature and therefore no temperature dependent transitions as pictured for the dimerized

phase in Fig. 4.25 are possible. Because the Mermin-Wagner theorem only forbids the breaking of a

continuous symmetry, the only long range order that could possibly be observed is long range dimer

order, which is connected to a discrete symmetry. The order parameter for the dimerized phase is

Di ≡ ⟨Si · Si+1 − Si · Si−1⟩ . (4.89)

Just as in the magnetic case, where long range order can be expressed as ⟨Si⟩ ̸= 0, long range dimer

order is connected to ⟨Di⟩ ̸= 0. These quantities are therefore the focus of the numerical results in

Section 4.3.4.

4.3.3. Thermalization

The great achievement of statistical mechanics is the ability to describe the properties of a system with-

out detailed knowledge of the microscopic behavior. Usually, keeping track of the trajectories of 1023

particles is not desired and would not add any more information than already given by the statistical

perspective. But still, there must of course be a connection to the individual classical dynamics of the

particles. The gap is bridged by the ergodic hypothesis shown in Eq. (4.20), which equates the long time

dynamical average of an observable with its ensemble average. There are, however, requirements that

must be met in order for the equality to apply. As the name states, the assumption is that only dynam-

ical systems that after long enough periods of time cover the entire phase space, i.e. ergodic systems,

can satisfy the ergodic hypothesis. But even when the ergodicity or non-ergodicity established, as was

the focus of Section 4.2, the question remains what exactly is meant by long-time average. Naturally,

the precise definition requires t → ∞, but surely there are finite but long enough times that suffice to

describe the average adequately well. Presumably, every ergodic system will eventually tend to some

new equilibrium state. There are some exceptions, as mentioned in the beginning of Section 4.2, but

generally this means that the dynamics must be chaotic. Once a new equilibrium is established, the

system will merely fluctuate and the long time average cannot change significantly, even if the time is

truly followed to infinity. The crux of the matter is therefore to determine when the system reaches

such a new equilibrium, or, in other words, thermalizes. To do so precisely is not a trivial task, but

there are certainly indications that point towards the thermalization of a dynamical state.

One of the hallmarks of chaotic motion is irreversibility. This is a key piece of the puzzle of how to

connect deterministic equations of motion with statistical behavior and therefore the second law of

thermodynamics. Important for this is the exponential sensitivity on perturbations as mentioned in

Section 4.1.2. A new equilibrium state can therefore not depend on the specific initial conditions and

can in fact be defined as just that. Concretely, when following the dynamics after a parameter quench,

a system described with a certain energy E must yield the same average values of observables, no

matter what the initial conditions for the perturbations were.
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Fig. 4.27 shows three trajectories following three different quenches with different initial conditions

but same ∆ε introduced into the system. From left to right, the observables shown in the three panels

are:

• average nearest neighbor correlations

⟨Cnn
i ⟩ = 1

LS2 ∑
i

Si · Si+1 (4.90)

• average dimerization order parameter

⟨Di⟩ =
1

LS2 ∑
i
|Si · (Si+1 − Si−1)| (4.91)

• average spin-electron correlation

⟨Cse
i ⟩ = 1

L ∑
i

Si · ⟨si⟩ (4.92)

Figure 4.27.: Comparison of different quenches with the same energy of ∆ε ≈ 0.08 but different initial

conditions for a system of size L = 32. The final state in all cases is J f = 4.0, φ f = 0.7. The pink line

shows a J-quench with initial condition Jini ≈ 8.2, the blue and orange lines are φ-quenches with

initial conditions φini ≈ 1.1 and φini = 0.4, respectively. The three panels show, from left to right,

the average nearest neighbor correlations ⟨Cnn
i ⟩ defined in Eq. (4.90), the average dimerization order

parameter defined in Eq. (4.91) and the average spin-electron correlation ⟨Cse
i ⟩ defined in Eq. (4.92).

Evidently, for all observables, dynamics with the same ∆ε relax towards the same mean value indepen-

dent of individual initial conditions. The relaxation happens rather quickly, within about t ≈ 1000
time steps. For true statistical properties, however, the averages must be taken over even longer times

to account for fluctuations. One indication that the time scales are long enough to witness true ther-

malization is the applicability of the central limit theorem from statistical mechanics. The central limit
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theorem states that for an extensive thermodynamic variable

X =
N

∑
i=1

Xi (4.93)

with independent microvariables Xi the mean X/N follows a normal distribution. This in turn implies

that for the standard deviation

σX =
√
⟨X2⟩ − ⟨X⟩2 (4.94)

and the relative standard deviation σX/⟨X⟩ the N-dependency is given by

σX = O(
√

N) and
σX

⟨X⟩ = O
(

1√
N

)
, (4.95)

which in particular means σX/⟨X⟩ → 0 for N → ∞, i.e. (thermal) fluctuations around the mean value

disappear in the thermodynamic limit.

Figure 4.28.: The sum of nearest neighbor correlations (here abbreviated Z) as a function of time for

different lattice sizes after a quench φ = 0.3 → 0.8 at J = 3 (main figure) and relative standard

deviation σZ/⟨Z⟩ in the thermal regime, i.e. t ≈ 103 → 105 shaded in light green, as a function of

1/
√

L (inset). The dashed grey line in the inset extrapolates for L → ∞, see discussion in text.

This is tested in Fig. 4.28, where the same φ-quench from φ = 0.3 → 0.8 at J = 3 is repeated for

L = 32, 48, 64, 80 and L = 96. The main figure shows the time evolution of the sum of nearest
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neighbor correlations, here for simplicity abbreviated as

Z = ∑
i

Si · Si+1 . (4.96)

When averaged over 5 · 104 time steps, the inset of Fig. 4.28 shows the behavior of the relative standard

deviation σZ/⟨Z⟩ with the lattice size L. As required, the relative standard deviations goes to zero for

L → ∞ as indicated by the extrapolated dashed grey line, and is ∝ 1/
√

L. This also implies, that

for sufficiently large systems, the notion of typicality can be applied, i.e. one “typical” dynamical state

displays the same properties as a state from an equilibrium statistical ensemble.

Note that for shorter times, the above considerations do not hold, true thermalization in the present

context must therefore be considered realized at the earliest at t ≈ O(104) or even t ≈ O(105)

depending on the particular case. This could also be the reason why the last data point with L = 96
does not quite align with the rest, a longer averaging time would be needed in this case.

One other thing that immediately catches the attention in Fig. 4.28 is the long time until the dynamics

starts. Only after t ≈ 60 time steps do the trajectories seem to leave the initial configuration. This is

due to the in Section 4.1.2 mentioned fact, that initially, the classical spins are collinear to the electrons

and the equations of motion yield Ṡi = 0. If the system is ergodic, however, it is exponentially sen-

sitive to perturbations as discussed in Section 4.2, and therefore at some point will depart. Once the

collinearity is destroyed, the equations of motion yield Ṡi ̸= 0 and the dynamics start. As the following

dynamics will all be ergodic, there is no further physical meaning to obtain from this initiation time

and it will thus often be omitted from any following time dependent plots.

4.3.4. Emergence of Long Range Dimer Order

After the presentation of some theoretical background and terminology in the preceding sections, this

one will now cover the main numerical results related to the dimerization in non-equilibrium. In order

to test the existence of a dimerized phase that extends beyond zero temperature, the trajectory of the

dimerization order parameter Di will be traced after several parameter quenches into the dimerized

phase. In particular, it will be investigated if and how the dimerization persists after a quench as a

function of quench energy ∆ε, that to some extent will play the role of “temperature”. The ultimate aim

is here to find the transition point between the disordered phase at high temperatures and a dimerized

phase as shown in Fig. 4.25, and to determine whether or not the dimerized phase is stable above

zero temperature at all. Of interest are also the timescales on which the system thermalizes. Another

question is whether the semiclassical system, in contrast to mean-field theories, respects the Mermin-

Wagner theorem [55]. The latter excludes spontaneously broken continuous symmetry, but makes no

such statement regarding discrete symmetries. In order to be compliant with Mermin-Wagner, the

system must therefore show the absence of long range magnetic order, but could possibly display long
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range dimer order.

To focus the discussion, in the following the final state for all quenches into the dimerized phase will

be fixed at φf = 0.8, Jf = 3. There are of course two possibilities to arrive at this point, starting in the

antiferromagnetic phase and performing a φ-quench, as well as a J-quench from the spiral phase as

sketched in Fig. 4.2 with 2 . The dimerization transition that is searched for depends on the quench

energy ∆ε, before deciding which quenches are most suited for a systematic analysis, it is therefore

necessary to inspect the ∆ε-dependence of potential initial conditions. A similar analysis was already

done for a final state within the antiferromagnetic phase in Section 4.2 in Fig. 4.5. The corresponding

plot with φf = 0.8, Jf = 3 is shown in Fig. 4.29 for φ-quenches (left) and J-quenches (right) with the

final state marked with a red dot in both cases.

Because of the peculiarity of ‘quasi-adiabaticity’ for φ-quenches within the antiferromagnetic phase al-

ready mentioned in Section 4.2.1, the φ-quenches from the antiferromagnetic phase into the dimerized

phase are all very similar in energy. This can be seen in the left panel of Fig. 4.29, where the energy

per lattice site introduced into the system ∆ε is plotted against initial condition φini for J = const.. An-

other observation is the discontinuity at the point of the AF-DIM equilibrium phase transition marked

with a dashed line. This feature was also present in Fig. 4.5, where it was already observed that this

feature originates in the final quench energy

Ef = Tr
[
ρ0 · t′eff

]
, (4.97)

where the expectation value of the quenched effective hopping matrix t′eff is calculated in the state ρ0,

both of which depend on the initial spin configuration.

AF DIM DIM IC

AF DIM AF

Figure 4.29.: Energy ∆ε = ∆E/L of φ-quenches (left panel) and J-quenches (right panel) as a function

of initial condition. Final state in all cases is (φ = 0.8, J = 3.0) as indicated by red dots. The grey

dashed lines mark the boundaries between equilibrium phases.
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Such a discontinuity can also be seen in the right panel, where the energy ∆ε of a J-quench into the

dimerized phase is shown as a function of initial condition Jini and φ = const., at the point of the

DIM-IC equilibrium phase transition again marked with a dashed line. In this case, however, the jump

is considerably smaller, which might be due to the fact the here, neither phase exhibits a nearly flat

dependence of ∆ε on Jini, but follows the more expected behavior of a roughly continuous increase of

∆ε with increasing ∆J ≡ |Jf − Jini|. As opposed to the φ-quenches, where the range of ∆ε is limited by

the range of possible φ-values as φ ∈ (0, π/2), the energy induced by a J-quench seems to diverge for

Jini → ∞. All in all, the energy dependence of J-quenches seems to be better suited for a systematic

investigation of the dimerization.

As introduced in Section 4.3.2, the presence or absence of long range order can be revealed by observing

whether the real space correlation ⟨OiOj⟩ between any local order parameter Oi with i, j ∈ (1, . . . , L)
goes to zero in the limit of long distances |i − j| → ∞. Performing J-quenches of different energy ∆ε,

there seems to be indeed a qualitative difference in this behavior depending on the size of ∆ε.

a. ∆ε < ∆εcrit 

b. ∆ε > ∆εcrit 

Figure 4.30.: Long time average of real-space correlations ⟨SiSj⟩ (Eq. (4.98)) and ⟨DiDj⟩ (Eq. (4.99)) for

i = 0 (first site) as a function of distance for a system with L = 96 both below (top row) and above

(bottom row) ∆εcrit. Because of periodic boundary conditions, the distance is only plotted until L/2.

95



Chapter 4. Real-Time Dynamics

To test for both magnetic and dimer long range order, Fig. 4.30 shows the long time average of the real

space correlations between spins

⟨SiSj⟩ ≡
1
t

∫ t

0
Si(t′) · Sj(t′)dt′ , (4.98)

as well as the correlations of the dimerization order parameter

⟨DiDj⟩ ≡
1
t

∫ t

0
Di(t′) · Dj(t′)dt′ , (4.99)

which is defined as

Di = Si · (Si+1 − Si−1) , (4.100)

for two different J-quenches.

The top row shows a lower energy quench ∆ε ≈ 0.38 with spin correlations between spins on lattice

sites 0 and i ⟨S0Si⟩ on the left and dimer correlations ⟨D0Di⟩ on the right as a function of distance i for

a system with L = 96. In both cases, the long time average was taken over t = 2 · 105 time steps. The

spin correlations on the left can be seen to significantly decrease as a function of distance, whereas

the dimer correlations on the right stay approximately constant throughout the entire lattice. Note

that because of periodic boundary conditions, the longest possible distance is actually only i = L/2.

The bottom row in Fig. 4.30 shows the same quantities after a quench with ∆ε ≈ 0.44 and reveals

different behavior in both. The spin correlations ⟨S0Si⟩ on the left drop to zero rather quickly. The

dimer correlations ⟨D0Di⟩ on the right are a little slower, but also go nearly to zero before reaching

the maximum distance L/2. The difference in behavior between the top and bottom row suggests the

presence of some critical energy ∆εcrit in between below which the system retains long range dimer

order as seen in the top right panel of Fig. 4.30.

Unfortunately, however, the lattice is either too small or the averaged time not long enough to witness

a truly zero spin correlation ⟨S0Si⟩ for i → ∞ in the top left panel of Fig. 4.30 below the critical energy

∆εcrit. Instead of performing very time and memory intensive calculations of ⟨S0Si⟩with larger lattices

for longer times, there is another indication that can be used for presence or absence of long range order

that is more accessible. For large distances |i − j| → ∞, any correlation between local observables

⟨OiOj⟩ is expected to separate into the individual components ⟨Oi⟩⟨Oj⟩. In order to show the absence

of long range magnetic order, it is therefore equivalent to show that ⟨Si⟩ → 0 for all i ∈ (1, . . . , L). In

the same manner, the presence of long range dimer order would imply ⟨Di⟩ ̸= 0.
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Figure 4.31.: Time averages of magnetic and dimer order parameter as defined in Eqs. (4.101)

and (4.102) as a function of time for four J-quenches with different energies ∆ε (rows) for a lattice of

size L = 32. The first three columns show the components of the magnetic order parameter ⟨Sα
i ⟩

with α = x, y, z, the rightmost column shaded in red the dimerization order parameter ⟨Di⟩. Each

lattice site i is plotted separately as a different line. Final state is in all cases Jf = 3, φf = 0.8 = const.
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The corresponding time averages of magnetic and dimerization order parameter are defined as

⟨Sα
i ⟩t ≡

1
t

∫ t

0
Sα

i (t
′)dt′ , with α ∈ {x, y, z} , (4.101)

and

⟨Di⟩t ≡
1
t

∫ t

0
Di(t′)dt′ . (4.102)

A true long time average should of course not depend on t anymore. As the limit t → ∞ might not be

quite in reach within this theory, it is useful to analyze this dependence and perhaps extrapolate.

Fig. 4.31 shows ⟨Sα
i ⟩t and ⟨Di⟩t as a function of time for four different J-quenches for a system with

L = 32. The top row shows a quench from Jini = 7 to Jf = 3 with quench energy ∆ε ≈ 0.1126.

The components of the magnetic order parameter ⟨Sα
i ⟩ with α = x, y, z are plotted in the first three

columns. The initial spin configuration at Jini = 7, φini = 0.8 is a spin spiral in the x − y plane, as

can be seen by the distribution of ⟨Sx
i ⟩ and ⟨Sy

i ⟩ for small times t. Note that as mentioned above, the

initiation time discussed in Section 4.1.2, where the system stays in the initial configuration, is cut off,

and all plots start at t ≈ 102. The z-component ⟨Sz
i ⟩ is zero at first, but then tends to zero again, as do

the other two. None of them are completely converged at t = 2 · 105, which is the last plotted time, but

the oscillation is expected to decrease on very long time scales and yield ⟨Sα
i ⟩ = 0 for t → ∞. Striking

is the apparent coherence between the spins at later times, as the lines that start apart eventually

converge into almost two single oscillations. This is an indication of the short range order, that can

of course be present even without long range order, and that apparently separates the lattice into

two sublattices of roughly (short range) aligned spins. Finally, the rightmost column shows the time

averaged dimerization order parameter ⟨Di⟩ as a function of time. In the initial spiral configuration,

it is ⟨Di⟩ = 0 for all i, but then continuously increases until it converges to either ⟨Di⟩ ≈ +0.45 or

⟨Di⟩ ≈ −0.45. A perfectly dimerized spin configuration with an exact ↑↑↓↓-alignment would, with

Di as defined as in Eq. (4.100), alternate between Di = +0.5 and Di = −0.5, the converged time

averages of the top row are therefore fairly close to the ground state configuration. Now it is also clear,

that the components of ⟨Sα
i ⟩ seem to align into two different sublattices - one with a tendency to “↑”

the other “↓”.

The second row of Fig. 4.31 shows a quench with Jini = 12 to Jf = 3 and ∆ε ≈ 0.2346. Qualitatively,

the behavior of both ⟨Sα
i ⟩ and ⟨Di⟩ is similar to the row above, with the components of ⟨Sα

i ⟩ oscillating

towards zero and ⟨Di⟩ converged, this time to a value slightly below 0.4. A very noticeable difference

can be seen in the third row, where the quench is from Jini = 14 to Jf = 3 with ∆ε ≈ 0.2729. The

spin components ⟨Sα
i ⟩ still oscillate towards zero, but are now not nearly as aligned as in the two rows

above, as can be seen by the multiple lines that are still present at larger times. The dimerization order

parameter, after initially seeming to converge, breaks apart at around t ≈ 3 · 104. The observable time

scale, however, is too short to determine with certainty whether ⟨Di⟩ will eventually converge to zero.
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4.3. Dimerization Transition

Figure 4.32.: Dimerization order parameter Di plotted for each lattice site i for quenches with

Jini = 7, 12, 14 and 16 (top to bottom row) and Jf = 3 for L = 32 and φ = 0.8. For better visibility,

each Di was averaged over a moving window of t = 100 time steps to reduce the temporal

fluctuations slightly.
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This is more unambiguous in the last row, where the quench is taken from Jini = 16 to Jf = 3 with

∆ε ≈ 0.3055. The dimerization parameter ⟨Di⟩ also first rises, but then breaks off and starts oscillating

around ⟨Di⟩ = 0 with increasingly smaller oscillation amplitude. The spin components ⟨Sα
i ⟩ are

much more converged with the final value at t = 2 · 105 around ⟨Sα
i ⟩ ≈ O(10−3) compared to

⟨Sα
i ⟩ ≈ O(10−2) in the top two rows. As indicated by the row labels, a tentative definition of critical

energy ∆εcrit is for now

∆ε < ∆εcrit ⇔ ⟨Di⟩ = converged ̸= 0 and

∆ε > ∆εcrit ⇔ ⟨Di⟩

not converged or

converged = 0 ,

(4.103)

where the ∆ indicating the energy is added to the system by the quench is dropped for simplicity.

A more detailed plot of the individual dimerization parameter Di without the long time average can

be found in Fig. 4.32. The only average taken in this plot is a moving window average over t = 100
time steps to reduce the significant temporal fluctuations slightly and improve visibility. Shown are the

same calculations as in Fig. 4.31 with Jini = 7, 12, 14, 16 from top to bottom and energies as indicated.

The first two rows, with ∆ε < ∆εcrit, show that each Di fluctuates with an amplitude that increases

with ∆ε but otherwise stays constant. The third row reveals the origin of the kink in ⟨Di⟩ that appears

in the third row of Fig. 4.31 at around t ≈ 3 · 104, which appears to be caused by a temporary flip

of the dimerization order. Simply speaking, this amounts to a shift from ... ↑↑↓↓↑↑ ... to ... ↓↑↑↓↓↑
and back, and could be seen as an unlikely macroscopic fluctuation close to the phase transition. In

the bottom row, where the energy is well above ∆εcrit, this happens continuously, until each Di covers

nearly the entire value range randomly.

For a more systematic approach it is useful to determine collective order parameters that describe the

behavior for all i ∈ (1, . . . , L). The order parameter for magnetic long range order, which needs to

capture the behavior of all three components of the magnetic order parameter ⟨Si⟩, can therefore be

defined as an average “length” of the thermalized spin

OM(t) ≡ 1
L

L

∑
i=1

√
⟨Sx

i ⟩2
t + ⟨Sy

i ⟩2
t + ⟨Sz

i ⟩2
t , (4.104)

where the ⟨Sα
i ⟩t are the time averages as defined in Eq. (4.101), with the time t denoting the time over

which the average is taken.

As the dimerization order parameter defined in Eq. (4.100) is already a scalar, there is no need to cal-

culate an effective “length”. There is, however, another subtlety to mind before averaging over the

lattice. As mentioned above, a dimerized spin configuration consists of alternating values Di = ±0.5,
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4.3. Dimerization Transition

an average is thus best defined as the average of the absolute value or a staggered average

OD(t) ≡
1
L

L

∑
i=1

(−1)i⟨Di⟩t , (4.105)

where the overall sign is chosen such that OD > 0 and again, ⟨Di⟩t denotes the time average as defined

in Eq. (4.102) as a function of averaging time t.
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Figure 4.33.: Average magnetic (left panel) and dimerized (right panel) order parameter as defined in

Eqs. (4.104) and (4.105), respectively, for quenches with different energies ∆ε as indicated by the

colorbar for a lattice with L = 32. Blue-green indicates energies below the dimerization transition,

orange-red above the dimerization transition and yellow those near it.

Fig. 4.33 shows OM(t) in the left panel and OD(t) in the right panel as a function of time for different

J-quenches with Jini ∈ (4, . . . , 25) and energies ∆ε as indicated by different colors according to the

colorbar. Blue-green colored lines correspond to quenches with ∆ε < ∆εcrit orange-red colored lines

to quenches with ∆ε > ∆εcrit and yellow lines to ∆ε ≈ ∆εcrit with the critical dimerization energy

∆εcrit as defined in Eq. (4.103). The magnetic order parameter OM in the left panel suggests OM(t) → 0
for t → ∞ in all cases, even though particularly the lower energy quenches are far from converged on

observable time scales. Evidently the time scale of thermalization is hugely dependent on the energy

∆ε with the quenches above the dimerization transition ∆εcrit decaying noticeably faster than the ones

below.

The lowest energy quenches with Jini = 4, 5, 6 start from within the dimerized phase as can be seen

in the right panel of Fig. 4.33 as the dark green lines. In this case, the energy ∆ε added by the quench

only leads to slightly decreased final value of OD that seems perfectly converged on observable time

scales. Increasing Jini and therewith ∆ε shifts the initial spin configuration into the spiral phase with

an initial OD(t = 0) = 0. The quenches with energy below the critical energy ∆εcrit start to converge
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Chapter 4. Real-Time Dynamics

around t ≈ O(103) to a constant final value of OD, which decreases with increasing energy ∆ε. Those

with energies close to and above ∆εcrit, however, cannot really be said to display a definite convergence

behavior. The higher energy quenches in red clearly tend to OD(t) → 0 for t → ∞, but closer to the

transition this cannot be said with certainty. Either the dimerization order parameter will eventually

go to zero as well, just on very long time scales, or it will converge to another nonzero value below the

already converged final values of OD. The latter case would mean, of course, that these quenches are

still technically below the critical energy if it was defined as a true transition energy between disordered

and dimerized phase. The critical energy ∆εcrit as defined in Eq. (4.103) would then actually be a lower

bound for the transition energy that is most probably higher in the infinite time limit.

?

Figure 4.34.: Converged long time limit of the dimerization order parameter Df as a function of

quench energy ∆ε. The critical energy ∆εcrit according to the tentative definition in Eq. (4.103) shown

as a dashed grey line, denotes the boundary above which the dimerization order parameter OD is

either not converged or zero. The dotted orange line is a speculation for the infinite time limit t → ∞.

This assumption is substantiated when the converged values of OD are plotted as a function of energy.

Let

Df ≡ lim
t→∞

OD(t) (4.106)

denote the final, converged value of the dimerization order parameter OD. Fig. 4.34 shows Df as a

function of quench energy ∆ε for the same calculations shown in Fig. 4.33. It smoothly decreases from

the maximum value of Df = 0.5 until the convergence boundary ∆εcrit marked with a dashed grey

line is hit at Df ≈ 0.35. For larger energies ∆ε, where the lines in Fig. 4.33 are converged, Df = 0
can be safely assumed, so these points are included in Fig. 4.34. For all quenches with energies in

between, however, there cannot be a certainty on whether the final value will tend to Df → 0 and lead

to a discontinuous transition, or some other nonzero value which could lead to a continuous transition
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4.3. Dimerization Transition

as sketched with an orange dotted line. Note the similarity to the magnetization as a function of

temperature in panel c. of Fig. 4.26 in the Ising model. As thermal phase transitions are usually, but

not always, of second order, i.e. continuous phase transitions, the latter case seems more likely. This

cannot be decided using the present method, however, as the accessible time scales are far too low.

dE/L = 0.404

L = 32

L = 64

L = 80

L = 96

Figure 4.35.: Left panel: dimerization order parameter OD(t) (as defined in Eq. (4.105)) for a J-quench

with ∆ε ≈ 0.404 for different lattice sizes as indicated. Right panel: time at which the maximum of

OD is reached as a function of lattice size L, also plotted in the left panel as a dotted line in the

corresponding color.

One important aspect that has not yet been mentioned in this section, is of course the thermodynamic

limit L → ∞. As introduced in Sections 4.3.1 and 4.3.2, strictly speaking there are no phase transitions

and no spontaneous symmetry breaking in finite systems. It cannot, however, be denied, that large but

finite systems often yield adequate results with respect to such phenomena, after all, “real” material

samples are also finite and still exhibit for example ferromagnetic order. There are several approaches

to reconcile spontaneous symmetry breaking in finite systems. One assumption is, that while the

system as a whole cannot exhibit a symmetry broken, long range ordered state, it still can spend long

times in such a state [94].

The left panel of Fig. 4.35 shows the dimerization order parameter OD as a function of time, as defined

in Eq. (4.105), after a quench with the same energy of ∆ε ≈ 0.404 above the critical energy ∆εcrit for

different lattice sizes L as indicated. The time at which the maximum value is reached and the order

parameter starts to break down is marked with a dotted line in the individual colors. The dependence

of this time tm is then shown in the right panel as a function of lattice size L. Evidently, a quench with

the same energy ∆ε seems to lead to a quicker decrease of OD for smaller lattice sizes. Some authors

have found a transition period ∝ exp(
√

L) between the degenerate symmetry broken states [95,96],

but here there are not enough data points and too low time scales to conclude a definite dependence
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of the “lifetime” of the symmetry broken dimerized phase as a function of lattice size.
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Figure 4.36.: Critical dimerization energy ∆εcrit as a function of lattice size L. Upper error bar denotes

the first ∆ε at which the dimerization parameter OD is not converged, lower error bar the last ∆ε at

which OD is converged to a nonzero value.

Another indication of possibly longer stability of the dimerized phase for larger lattice sizes is the

critical energy ∆εcrit below which the dimerization parameter OD is converged to a nonzero value on

observable time scales. Fig. 4.36 shows ∆εcrit as a function of lattice size L. The error bars are meant

as a region of uncertainty, the location of the upper error bar denotes the first ∆ε at which OD is not

converged, the lower error bar the last ∆ε for which it is converged to D f ̸= 0. As discussed above,

some of the calculations above the error bar are far from converged and could in theory still thermalize

to a value D f ̸= 0. This means that the critical energy plotted here simply stands for the energy below

which dimerization is very likely present. Evidently, ∆εcrit increases with increasing lattice size. The

slope decreases with increasing L, suggesting there might be a limit that will be approached in the

thermodynamic limit.

As a consistency check, there will now be a short discussion of a few results for a quench into the

antiferromagnetic phase. Section 4.2 was concerned with quenches within the antiferromagnetic phase,

and Fig. 4.5 showed the quench energies ∆ε as a function of initial condition φini, Jini for a final state

φf = 0.4, Jf = 3. It was shown that J-quenches within the antiferromagnetic phase do not result in

ergodic behavior unless the energy is sufficiently high, and even then the dynamics were merely weakly

chaotic. φ-quenches from the dimerized into the antiferromagnetic phase show a steeper increase in

∆ε.

The response of the system to a quench into the antiferromagnetic phase will here be demonstrated

by the example of three φ-quenches with φini = 0.6, 0.8, 1.2 and final state φf = 0.4, Jf = 3. Fig. 4.37
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4.3. Dimerization Transition

shows again the magnetic and dimer order parameter OM and OD as defined above in Eqs. (4.104)

and (4.105), respectively. The left panel shows OM as a function of time for the three different quenches

with energies as indicated. The largest quench φ = 1.2 → 0.4 shown in dark red shows a longer

initiation time compared with the other two quenches, but then drops to zero rather quickly. The

smallest quench φ = 0.6 → 0.4 on the other hand, shows a quicker start of the dynamics but then

the order parameter starts to fluctuate with a slow frequency and an increasing tendency to zero. A

similarly slow convergence of the magnetic order parameter to zero could be witnessed above for the

quenches into the dimerized phase, when the energy ∆ε was low. The same difference in initiation time

between the quenches of different energies can also be seen in the right panel of Fig. 4.37 where the

dimer order parameter OD is shown as a function of time for the same quenches. In this case, however,

there are nearly no fluctuations at all and all quenches result in a quick convergence to Df = 0. The

antiferromagnetic phase therefore shows no indications of either magnetic or dimerized long range

order at any energy scales.

! = 0.6 → 0.4 
∆ε ≈ 0.1108 

! = 0.8 → 0.4 
∆ε ≈ 0.2136 

! = 1.2 → 0.4 
∆ε ≈ 0.4474 

Figure 4.37.: Magnetic and dimer order parameter as a function of time for φ-quenches with

φini = 1.2, 0.8, 0.6 from the dimerized into the antiferromagnetic phase with different energies ∆ε as

indicated. The final state in all cases is φ f = 0.4, J f = 3 with L = 32.

In conclusion, some questions posed at the beginning of this section can now be answered. One of

these questions concerned the presence or absence of long range dimer order. The Mermin-Wagner

theorem, that forbids spontaneous symmetry breaking of a continuous symmetry above T = 0 is

respected within this semiclassical framework. For both quenches into the dimerized phase and into

the antiferromagnetic phase, the long time average of the order parameter of long range magnetic

order ⟨Si⟩ goes to zero in the long time limit. This underlines the difference to mean field theories,

which in the equilibrium framework do look similar to this semi-classical viewpoint. Note that a mean
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field theory would wrongly predict long range order even for T > 0.

The Mermin-Wagner theorem only makes predictions about the breaking of a continuous symmetry.

The symmetry connected with the dimerization order parameter is, however, discrete. A long range

dimer order is thus in principle possible. Below a certain critical energy, the long time average of

the dimerization order parameter ⟨Di⟩ is indeed found to converge to a finite value. With increasing

energy, there is initially a regime where ⟨Di⟩ is not converged at all on observable time scales, followed

by ⟨Di⟩ → 0 for very large energies ∆ε. The shape of the final, converged value Df(∆ε) is reminiscent

of a second order phase transition like the magnetization of a ferromagnet M(T), even though ∆ε is

of course not a real temperature, but only related to it in an unknown manner. Because of missing

convergence in the vicinity of ∆εcrit, critical exponents cannot be calculated here, although this should

in principle be possible with much larger lattice sizes and longer times.

There is no long range order for T > 0 in the one dimensional Ising model as is well known and shown

heuristically in Section 4.3.2. The argument only uses the fact that domain walls can be created. This

could therefore also apply to the dimerized phase although a detailed analytical consideration of this

specific case will not be given here. Technically, even though the numerical results show a tendency

towards a stable long range dimer order at L → ∞, this could very well not be the case after all. The

lattice sizes shown here are still too small to show this effect, however, as the entropy of the domain

wall state increases only with ∝ log N. It therefore cannot be decided here and would require further

investigations.

Another question posed in the beginning of this section was about the speed of thermalization. Nu-

merical results imply that here, the time scales for thermalization are rather long, unless the energy

∆ε is very large. For both the quench into the dimerized and into the antiferromagnetic phase, ⟨Si⟩
is especially slow to thermalize. The dimerization order parameter ⟨Di⟩, however, converges rather

quickly to zero after a quench into the antiferromagnetic phase, regardless of energy. A quench into

the dimerized phase results either in a rather fast thermalization to a finite value below the critical en-

ergy, a much more slow convergence close to but above the critical energy, or a quicker thermalization

to ⟨Di⟩ → 0 well above the critical energy.
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5. Conclusions, Summary and Perspectives

This thesis covers many aspects of the Kondo lattice model with classical spins on the zigzag ladder both

in equilibrium and beyond. One of the central results is the discovery of a novel dimerized phase. In the

equilibrium part of this thesis, both strong and weak coupling perturbation theory were found to agree

well with the results, but fail to explain the dimerized phase. Hence, this seems to be a nonperturbative

effect.

DMRG calculations by Matthias Peschke found a similar phase in the fully quantum mechanical Kondo

model [20,21]. Although the quantum mechanical and semiclassical phase diagram share many similar-

ities, there are notable differences. Quantum fluctuations destroy any long range order associated with

an order parameter that does not commute with the Hamiltonian in the ground state of the quantum

mechanical system and only allow the distinction between different kinds of short range order - here

spiral or antiferromagnetic - whereas the classical model variant, lacking both quantum and thermal

fluctuations at T = 0, does feature true long range order. In addition, there is a purely quantum me-

chanical phase that has no classical analogue, found within the dimerized phase in the DMRG phase

diagram. This is a quasi-long-range spiral with a peak at Q = π/2 in the spin-structure factor.

In summary, the equilibrium phase diagram on the zigzag ladder is very rich and includes a novel

dimerized phase that in both the quantum and classical case can be seen as a way of alleviating the

frustration. This alleviation seems to pave the way for magnetic quasi-long-range order in the quantum

mechanical model. While the quantum mechanical model still leaves some open questions - apart from

perhaps employing higher order perturbative approaches to capture the dimerization after all - the

semiclassical phase diagram is more or less understood.

The knowledge of the equilibrium phase diagram is then used in the next part of this thesis, where

several non-equilibrium phenomena following parameter quenches are analyzed in detail. The first

finding is the existence of a non-ergodic regime. For lattices of finite size and at low energies, a threshold
of ergodicity is found. Below a certain critical energy Ecrit, there is no observable dynamics besides a

weak longitudinal fluctuation of the local magnetic moment in the electronic system ⟨si⟩t. Even above

but close to this threshold, the classical spins Si(t) stay more or less aligned in the axis of the initial

configurations for considerably long times. It can therefore be said that the staggered magnetization

per site ms becomes an emergent (approximate) conserved quantity. The lack of ergodicity in the low

energy regime is known from classical mechanics in research connected to the so-called FPU-problem
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and the KAM theorem. There, in short, it is the proximity to an integrable model that results in regular

dynamics even in a non-integrable model. In the search for such an integrable model, the J1 − J2-

Heisenberg model proves to be integrable at least in the limiting case J1 = J2 and L ≤ 6. But even

though the Kondo lattice was found to map exactly onto this effective spin-only model for J → ∞ in

equilibrium, the connection is lost in non-equilibrium.

There is, however, another approach that yields a plausible integrable model. By linearizing the equa-

tions of motion analogous to standard spin-wave theory a spectrum of magnon-like excitations is found.

The solution to the linearized equations of motion is found to agree qualitatively with the solution of

the full problem. In addition, the finite size gap between the zero mode ω = 0 and the first spin-wave

excitation with ω ̸= 0 can serve as an explanation of the ergodicity threshold for finite lattices. In

the thermodynamic limit L → ∞, any arbitrarily small energy results in excitations, whose number

diverges in one and two dimensions and which over time destroy the initial long range order. In a finite

system, however, the excitation spectrum is not continuous but rather a collection of discrete values.

The initial excitation energy is thus not arbitrarily small as in the thermodynamic limit, but displays

a finite size gap, which is found to agree qualitatively with the critical energy Ecrit. As the system is

finite, the number of excitations does not truly diverge, which is why even above the threshold the

system is only weakly ergodic. Even though in principle, the ergodicity threshold could be classified

as a finite size effect, the weakly ergodic regime with nearly conserved ms persists for numerically

large lattices and extremely long propagation times.

The second result concerning the real-time dynamics considers parameter quenches well above the er-

godicity threshold. Starting with an initial spin configuration within the spiral phase and then quench-

ing the coupling constant J to a value within the dimerized phase, it can be observed that long range

magnetic spiral order is destroyed over time and long range dimer order appears, if the quench energy

∆ε is small enough. Increasing the size of the J-quench and thus the energy, the dimer order even-

tually breaks down. Even though the dimerization order parameter OD decreases continuously with

increasing energy and therefore suggests a second order phase transition, the exact trend cannot be

determined because of poor convergence close to the transition energy ∆εcrit between dimerized and

disordered phase. In addition, the relation between ∆ε and temperature T is unknown, and therefore

no true OD(T) dependence can be established here. For both L → ∞ and t → ∞ critical exponents are

in principle expected to be in reach to the numerical analysis based on real-time dynamics rather than

on ensemble averages. Much larger system sizes than accessible here are also needed for results closer

to the actual transition point and for a true finite size scaling of the dimerization transition. It should

also be noted that the comparatively simple ansatz with only two parameters θ and ∆θ for describing

ground state spin configurations to derive the equilibrium phase diagram seems to be confirmed, as

only those θ, ∆θ-states are produced in the thermalization process.

While the results here certainly stand on their own, further avenues of research are still open. As much
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of the discussion here covered the effects of a finite system size, the most obvious extension would be

to extend the analysis to even larger systems. Substantially larger systems, however, can with this

method only really be feasible with more advanced computing technology, i.e. more parallelization

and perhaps the use of GPU computing also for the non-equilibrium results. The same evidently holds

true for longer propagation times. As the main part of the time propagation contains a matrix mul-

tiplication, the computational effort scales, depending on the algorithm used, from at worst L3 for a

naive implementation to at best L2, which is a lower bound for numerical matrix multiplication. The

results in this thesis have been calculated using GPU computing for equilibrium and regular multi-core

CPU parallelization for non-equilibrium calculations, with the latter running for one to several days

on standard CPUs depending on the number of cores used.

Next to the technical aspects, there are also many more possibilities of further physically interesting

research. All results here have been obtained for a half-filled electron band. It would be interesting

to discover both a new equilibrium phase diagram as well as non-equilibrium properties of the system

away from half-filling. The focus within this thesis has been very much on the classical spins, there

might be still interesting phenomena left to learn about the electronic system. Another straightforward

extension is also the generalization to other lattice geometries, in particular other frustrated ones such

as the triangular lattice. Spin-charge coupled systems, frustrated spin models and non-equilibrium

many-body systems are all research topics that will undoubtedly continue to produce compelling re-

search in the future.

Many of the questions posed in the beginning are much too large to be answered by a single work, but

still there are insights to be gained from this thesis which hope to add another piece to the puzzle. In

particular, the results presented here are another indication that equilibrium statistical properties can
be observed even in systems of relatively small size. Indispensable for the thermalization of the system,

however, is overcoming an energy threshold which separates a static region from the ergodic regime.

The time scales to observe the equilibrium necessary to connect to statistical mechanics are rather

long, yet still accessible within this semiclassical framework, and actually only in the semiclassical

setup. Studying similar questions for the case of a quantum-spin model appears completely out of

reach in the foreseeable future, even though a speedup of thermalization due to quantum fluctuations

is to be expected.
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A. Heisenberg J1 − J2 Model on a Zigzag Ladder

This section is a small excursion on the Heisenberg J1 − J2-model on a zigzag ladder with classical spins.

The goal here will be to derive the ground state energy and spin configuration. The Hamiltonian of

the system is

H = ∑
ij

JijSi · Sj , (A.1)

where Jij is the coupling constant between spins. As pictured in Fig. A.1, on the zigzag ladder, Jij = J1

between nearest and Jij = J2 between next-to-nearest neighbors, i.e. rungs and legs of the zigzag ladder.

The energy of the system is then

E = J1 ∑
nn
⟨SiSj⟩+ J2 ∑

nnn
⟨SiSj⟩ (A.2)

where, as Si are just classical angular momentum vectors, ⟨SiSj⟩ = |S|2 cos α with α = (angle be-

tween Si, Sj).

2!

!+∆!!-∆
!

J1

J2

Figure A.1.: Heisenberg model on a zigzag ladder. Coupling between nearest neighbors J1, between

next to nearest neighbors J2. Shown in red are the angles between neighboring spins, θ ± ∆θ on the

rungs and 2θ on the legs of the ladder, or, equivalently, nearest and next-to-nearest neighbors,

respectively.

Using the parameterization of angles between nearest and next to nearest neighbors as shown in
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Appendix A. Heisenberg J1 − J2 Model on a Zigzag Ladder

Fig. A.1, Eq. (A.2) becomes

E(θ, ∆θ) = L S2
(

1
2

J1 cos (θ + ∆θ) +
1
2

J1 cos (θ − ∆θ) + J2 cos 2θ

)
= L S2 (J1 cos θ cos ∆θ + J2 cos 2θ)

(A.3)

where in the last line cos (x ± y) = cos x cos y ∓ sin x sin y was used.

The ground state energy, i.e. the minimal energy with respect to (θ, ∆θ), can be found by simple deriva-

tion.

Both ∂E/∂θ and ∂E/∂∆θ need to vanish, i.e.

∂E(θ, ∆θ)

∂θ
= L S2 (−J1 sin θ cos ∆θ − 2J2 sin 2θ)

= L S2 (−J1 sin θ cos ∆θ − 4J2 sin θ cos θ)

= −L S2 sin θ (J1 cos ∆θ + 4J2 cos θ)
!
= 0 ,

where sin 2x = 2 sin x cos x was used, and

∂E(θ, ∆θ)

∂∆θ
= −L S2 J1 cos θ sin ∆θ

!
= 0 . (A.4)

Eq. (A.4) is satisfied if either
sin θ = 0 or

J1 cos ∆θ + 4J2 cos θ = 0 ,
(A.5)

yielding the two conditions

θ = nπ (n ∈ N), ∆θ = arbitrary

cos θ = − J1

4J2
cos ∆θ

(A.6)

The first condition plugged into Eq. (A.4) gives

∂E
∂∆θ

= ±L S2 J1 sin ∆θ
!
= 0 , (A.7)

which is satisfied for ∆θ = nπ (n ∈ N). One solution (θ, ∆θ) to give an extremum of E(θ, ∆θ) is

therefore

(θ = nπ, ∆θ = mπ), with n, m ∈ N . (A.8)
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Plugging the second condition in Eq. (A.6) into Eq. (A.4) gives

∂E
∂∆θ

= L S2 J2
1

4J2
cos ∆θ sin ∆θ

!
= 0 , (A.9)

which is satisfied for both ∆θ = nπ and ∆θ = nπ/2 (n ∈ N). For the second line in Eq. (A.6) follows

therefore

cos θ =

±J1/4J2, for ∆θ = nπ

0, for ∆θ = nπ/2 .
(A.10)

From this, two more solutions (θ, ∆θ) that give an extremum of E(θ, ∆θ) are found:(
θ = arccos

(
± J1

4J2

)
, ∆θ = nπ

)
and(

θ = n
π

2
, ∆θ = m

π

2

)
, n, m ∈ N .

(A.11)

There are thus all in all three solutions that satisfy both ∂E/∂θ = 0 and ∂E/∂∆θ = 0, given by

Eq. (A.8) and Eq. (A.11). To further analyse whether these points are in fact minima or maxima, the

Hessian matrix

HE(θ, ∆θ) =

 ∂2E
∂θ2

∂2E
∂θ∂∆θ

∂2E
∂∆θ∂θ

∂2E
∂∆θ2

 (A.12)

is needed, where the second derivatives are

∂2E
∂θ2 = −L S2(J1 cos θ cos ∆θ + 4J2 cos 2θ)

∂2E
∂∆θ2 = −L S2 J1 cos θ cos ∆θ

∂2E
∂∆θ∂θ

=
∂2E

∂θ∂∆θ
= L S2 J1 sin ∆θ sin θ .

(A.13)

The first solution in Eq. (A.8) gives

HE(θ = nπ, ∆θ = mπ) = LS2

 ±J1 − 4J2 0

0 ±J1

 . (A.14)

For a minimum, the Hessian matrix needs to be positive definite. Given that J1, J2 > 0, this implies that
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cos θ cos ∆θ ≡ −1 and therefore either (θ = π, ∆θ = 0) or (θ = 0, ∆θ = π), both of which describe

the same spin configuration - an antiferromagnet along the rungs. Furthermore, from J1 − 4J2 > 0
follows the additional condition J1 > 4J2.

For the first line in Eq. (A.11), the off-diagonal elements of the Hessian matrix vanish again. The matrix

positive definite and the solution therefore a minimum if

∂2

∂θ2 E (θ = arccos(−J1/4J2), ∆θ = 0)

= −LS2
[
− J2

1
4J2

+ 4J2

(
2

J2
1

42 J2
2
− 1
)]

= −LS2
[
− J2

1
4J2

+ 2
J2
1

4J2
− 4J2

]
= −LS2

[
J2
1

4J2
− 4J2

]
> 0 and

∂2

∂∆θ2 E (θ = arccos(−J1/4J2), ∆θ = 0)

= LS2 J2
1

4J2
> 0 ,

where cos 2x = 2 cos2 x − 1 was used in the first line. The solution is therefore a minimum if J1 < 4J2.

Finally, the second line in Eq. (A.11) gives

HE(θ = π/2, ∆θ = π/2) = LS2

 4J2 J1

J1 0

 . (A.15)

Here, the off-diagonal elements do not vanish, and to determine the positive definiteness of the matrix,

the eigenvalues need to be found by diagonalization. The characteristic polynomial is

det(HE − λ) = LS2

∣∣∣∣∣∣
4J2 − λ J1

J1 −λ

∣∣∣∣∣∣ = LS2((−λ)(4J2 − λ)− J2
1)

= LS2(λ2 − 4J2λ − J2
1) ,

(A.16)

which gives the eigenvalues
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λ1,2 = − (−4J2)

2
±
√

(4J2)2

4
+ J2

1

= 2J2 ±
√

4J2
2 + J2

1
!
> 0 .

(A.17)

This cannot be satisfied, (θ = π/2, ∆θ = π/2) is therefore neither minimum nor maximum but a

saddle point.

In summary, the energy E(θ, ∆θ) has the minima

θ = π, ∆θ = 0 if J1 > 4J2

θ = arccos
(
− J1

4J2

)
, ∆θ = 0 if J1 < 4J2 .

(A.18)
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B. Perturbation Theory in t1

The Kondo lattice on a zigzag ladder has, depending on the Kondo coupling J and the frustration

φ, two fundamentally different ground states. For large J, there is only a spiral phase with a constant

nearest-neighbor angle θ, depending on φ either θ = π, i.e. an antiferromagnetic, or π > θ > π/2, an

incommensurate spiral configuration. For small and medium values of J, however, there is an additional

possibility - the dimerized phase. Here, two angles are necessary to describe the spin configuration.

In the main part of the thesis, this is parameterized by two angles θ and ∆θ. Near φ = π/2, that is

for t2 ≫ t1, there is a J-dependent transition from a dimerized phase with (θ = π/2, ∆θ = π/2)
to a 90° spiral phase with (θ = π/2, ∆θ = 0). The idea is now to illuminate this transition and

perhaps even generate a critical value of J by applying perturbation theory in t1. For this purpose, the

parameterization of angles is slightly different in this section than in the rest of the thesis. Here, the

starting point is two decoupled chains, each with an antiferromagnetic spin configuration as pictured

in Fig. B.1. The angle labeled θ here denotes the angle between these two chains, where θ = π/2
describes the homogenous 90° spiral phase and all θ ̸= π/2 would be classified as dimerized. For

t1 = 0 this is evidently infinitely degenerate. The question now arises, whether this is true even when

t1 is turned on as a small perturbation.

2!

!+∆!!-∆
!

J1

J2

t1

t2 "

!

"

i

ĩ

Figure B.1.: Starting point for the perturbation theory in t1, i.e. two decoupled chains with nearest

neighbor hopping t2 and an angle of π between neighboring spins. Between the two chains, there is a

global angle θ. If θ = π/2, this configuration would depict a 90° spiral, all other values of θ constitute

a dimerized configuration. Note that the picture is simplified and the hopping is of course actually

between the underlying electrons. Indices on chain 1 are labelled with i, indices on chain 2 with ĩ.
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The Hamiltonian for two decoupled chains with sites i in chain 1 and sites ĩ in chain 2 is

H0 = t2 ∑
⟨ij⟩,σ

c†
iσcjσ + J ∑

i
siSi + t2 ∑

⟨ĩ j̃⟩,σ
c̃†

ĩσ c̃ j̃σ + J ∑̃
i

s̃ĩS̃ĩ (B.1)

with classical spins Si (or analogously S̃ĩ)

Si = (−1)i Sn , (B.2)

where n is the unit vector in the direction of the antiferromagnetic spin configuration and S is the

length of the classical spins. The Hamiltonian on chain a ∈ (1, 2) can thus be written as:

H(a)
0 = ∑

ijσσ′

(
tijδσσ′ + δij

JS
2
(−1)i(n · σ)σσ′

)
c†

iσcjσ′ (B.3)

where tij = t2 ̸= 0 only for nearest neighbors on the same chain and with the spherical angles ϑ, φ

n =

sin ϑ cos φ

sin ϑ sin φ

cos ϑ

 and n · σ =

(
cos ϑ sin ϑ e−iφ

sin ϑ eiφ − cos ϑ

)
(B.4)

restricting the spins to the x − y-plane eliminates φ so that e−iφ = eiφ = 1. Furthermore, since only

the orientation of the chains relative to each other is important here, not their absolute angle in space,

we can set ϑ(i) ≡ θ and ϑ(ĩ) ≡ 0.

The hopping term of the free Hamiltonian is diagonalized by a Fourier transform to momentum space

Hhopp = ∑
kσ

εkc†
kσckσ

with ckσ =
1√
L

∑
j

e−ijkcjσ ≡ ∑
j

U†
jkcjσ

and εk = −2t2 cos(k)

(B.5)

with this and (−1)i = eiπ , the entire free Hamiltonian of chain 1 can be written in momentum space

in matrix form as
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H0 = ∑
k

(
c†

k,↑ c†
k,↓ c†

k+π,↑ c†
k+π,↓

)
M


ck,↑

ck,↓

ck+π,↑

ck+π,↓

 where M =


−εk 0 ∆ cos θ ∆ sin θ

0 −εk ∆ sin θ −∆ cos θ

∆ cos θ ∆ sin θ εk 0

∆ sin θ −∆ cos θ 0 εk


(B.6)

with ∆ = JS/2. The matrix M is diagonalized by

V †MV = λ with Eigenvalues λ = ±
√

∆2 + ε2
k ≡ ±Ek

and V =


− Bk− sin θ

Nk−
− Bk− sin θ

Nk−

Bk+ sin θ
Nk+

Bk+ cos θ
Nk+

Bk− cos θ
Nk−

− Bk− cos θ
Nk−

− Bk+ cos θ
Nk+

Bk+ sin θ
Nk+

0 1/Nk− 0 1/Nk+

1/Nk− 0 1/Nk+ 0


≡
(
v1 v2 v3 v4

)
(B.7)

with the abbreviations Bk± = (Ek ± εk)/∆ and Nk± =
√

B2
k± + 1, where v1,v2 are eigenvectors to

the eigenvalue −Ek and v3,v4 to +Ek.

The diagonalized Hamiltonian can thus be written as

H0 = ∑
k,m,µ

µEkΨ†
kµmΨkµm

where m = 1, 2 if µ = +, m = 3, 4 if µ = −
and − π/2 < k ≤ π/2, ∆k = 2π/L

(B.8)

with quasiparticle operators Ψk that are given by

Ψk = V †ck where ck =


ck,↑

ck,↓

ck+π,↑

ck+π,↓

 (B.9)
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and can be used to express the ground state as

|G⟩ = ∏
k,m

(
Ψ†

km−|0⟩Ψ̃†
km−

˜|0⟩
)

where − π/2 < k ≤ π/2 and m = 1, 2
(B.10)

i.e. the lower band with energy −Ek is completely filled, and the upper band with +Ek completely

empty at half-filling.

Perturbation theory is now performed by slowly turning on the hopping t1 between the two 1D chains.

The perturbation is given by

H1 = ∑
⟨iĩ⟩

tiĩc
†
iσ c̃ĩσ + h.c. (B.11)

where ⟨iĩ⟩ denotes neighboring sites from chain 1 to chain 2 and vice versa.

For convenience, a notation is introduced to keep track of created and destroyed particles in the two

chains. Let |1,−1⟩ denote the state where one particle is created in chain 1 and one destroyed in chain

2. With this:

H1|G⟩ ∝ t1|1,−1⟩+ t1| − 1, 1⟩ (B.12)

The first order correction to the ground state energy is given by

∆E(1) = ⟨G|H1|G⟩ , (B.13)

which evidently vanishes, since ⟨0, 0| − 1, 1⟩ = ⟨0, 0|1,−1⟩ = 0.

The second order correction to the ground state energy is

∆E(2) = ∑
n

|⟨G|H1|n⟩|2
En − E0

(B.14)

where ∑n is over all excited states n that result in a non-vanishing matrix element. The only states

that achieve this are the one-particle excitations

H1|1,−1⟩ ∝ t1|0, 0⟩+ t1|2,−2⟩,
H1| − 1, 1⟩ ∝ t1|0, 0⟩+ t1| − 2, 2⟩ .

(B.15)
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More precisely,

|1,−1⟩ = |kk̃mm̃⟩ = Ψ†
km+Ψ̃k̃m̃−|G⟩ where m̃ = 1, 2 and m = 3, 4 (B.16)

Rewriting the Fourier transformation as

c†
jσ =

1√
L

∑
−π/2<k≤π/2

(
e−ikjc†

kσ + e−i(k+π)jc†
k+π,σ

)
≡ ∑

−π/2<k≤π/2
(U †

jkc
†
k)σ

≡ ∑
k′=k,k+π

−π/2<k≤π/2

U†
jk′σc†

k′σ

(B.17)

with

U †
jk =

(
U†

jk↑ U†
jk↓ U†

j(k+π)↑ U†
j(k+π)↓

)
(B.18)

where U†
jk↑ = U†

jk↓ =
1√
L

e−ikj and U†
j(k+π)↑ = U†

j(k+π)↓ =
1√
L

e−i(k+π)j.

The perturbation Eq. (B.11) can thus be written as

H1 = t1 ∑
⟨iĩ⟩σk′ k̃′

U†
ik′σc†

k′σŨĩk̃′σ c̃k̃′σ + h.c.

= t1 ∑
⟨iĩ⟩σk′ k̃′

U†
ik′σV†

k′σ,µmΨ†
k,µmŨĩσk̃′Ṽk̃′σ,µ̃m̃Ψ̃k̃,µ̃m̃ + h.c.

(B.19)

Together with Eq. (B.16), the non-vanishing matrix elements from Eq. (B.14) can be calculated

⟨G|H1|qq̃nñ⟩ = ⟨G|

t1 ∑
⟨iĩ⟩σk′ k̃′

U†
ik′σV†

k′σ,µmΨ†
k,µmŨĩσk̃′Ṽk̃′σ,µ̃m̃Ψ̃k̃,µ̃m̃

(Ψ̃†
q̃ñ+Ψqn−|G⟩

)
= ⟨G|t1 ∑

⟨iĩ⟩σk′ k̃′
U†

ik′σV†
k′σ,µmŨĩσk̃′Ṽk̃′σ,µ̃m̃Ψ†

k,µmΨ̃k̃,µ̃m̃Ψ̃†
q̃ñ+Ψqn−|G⟩

= ⟨G|t1 ∑
⟨iĩ⟩σk′ k̃′

U†
ik′σV†

k′σ,µmŨĩσk̃′Ṽk̃′σ,µ̃m̃δµ−δµ̃+δkqδmnδk̃q̃δm̃ñ|G⟩

= t1 ∑
⟨iĩ⟩σ

U†
iq′σV†

q′σ,−nŨĩσq̃′Ṽq̃′σ,+ñ ,

(B.20)

or, explicitly,
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⟨G|H1|qq̃nñ⟩ = t1

L ∑
⟨jj̃⟩




e−iqj

e−iqj

e−i(q+π)j

e−i(q+π)j

 · vn

 ·




eiq̃ j̃

eiq̃ j̃

ei(q̃+π) j̃

ei(q̃+π) j̃

 · ṽñ

 (B.21)

where n = 1,2 and ñ = 3,4 since µ = − and µ̃ = +. The second-order contribution from Eq. (B.14)

includes the sum over all q, q̃, n, ñ:

∆E(2) = ∑
qq̃nñ

|⟨G|H1|qq̃nñ⟩|2
Eqq̃nñ − E0

. (B.22)

The energy difference in the denominator is simply

Eqq̃nñ − E0 = ∑
−π/2<k≤π/2

k ̸=q

(−Ek) + Eq̃ −
(

∑
−π/2<k≤π/2

(−Ek)

)

= Eq̃ + Eq .

(B.23)

The numerator in Eq. (B.22) contains four matrix elements per (q, q̃) stemming from the combinations

of (vn, ṽñ).

The first is (v1, ṽ3)

t1

L ∑
⟨jj̃⟩




e−iqj

e−iqj

e−i(q+π)j

e−i(q+π)j

 · v1

 ·




eiq̃ j̃

eiq̃ j̃

ei(q̃+π) j̃

ei(q̃+π) j̃

 · ṽ3



=
t1

LN−
q N+

q̃
∑
⟨jj̃⟩




e−iqj

e−iqj

e−i(q+π)j

e−i(q+π)j

 ·


−B−

q sin θ

B−
q cos θ

0
1


 ·




eiq̃ j̃

eiq̃ j̃

ei(q̃+π) j̃

ei(q̃+π) j̃

 ·


0

−B+
q̃

0
1




=
t1

LN−
q N+

q̃
∑
⟨jj̃⟩

[
−B−

q sin θe−iqj + B−
q cos θe−iqj + e−i(q+π)j

]
·
[
−B+

q̃ eiq̃j + ei(q̃+π)j
]

(B.24)
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using cos(x)− sin(x) =
√

2 cos(x + π/4) ≡
√

2 cos(x̃):

t1

LN−
q N+

q̃
∑
⟨jj̃⟩

[
−B−

q sin θe−iqj + B−
q cos θe−iqj + e−i(q+π)j

]
·
[
−B+

q̃ eiq̃j + ei(q̃+π)j
]

=
t1

LN−
q N+

q̃
∑
⟨jj̃⟩

[
B−

q

√
2 cos θ̃e−iqj + e−i(q+π)j

]
·
[
−B+

q̃ eiq̃j + ei(q̃+π)j
]

.

(B.25)

This differs from the expression for (v1, ṽ4) only by a sign in the second bracket:

t1

L ∑
⟨jj̃⟩




e−iqj

e−iqj

e−i(q+π)j

e−i(q+π)j

 · v1

 ·




eiq̃ j̃

eiq̃ j̃

ei(q̃+π) j̃

ei(q̃+π) j̃

 · ṽ4



=
t1

LN−
q N+

q̃
∑
⟨jj̃⟩




e−iqj

e−iqj

e−i(q+π)j

e−i(q+π)j

 ·


−B−

q sin θ

B−
q cos θ

0
1


 ·




eiq̃ j̃

eiq̃ j̃

ei(q̃+π) j̃

ei(q̃+π) j̃

 ·


B+

q̃

0
1
0




=
t1

LN−
q N+

q̃
∑
⟨jj̃⟩

[
B−

q

√
2 cos θ̃e−iqj + e−i(q+π)j

]
·
[

B+
q̃ eiq̃ j̃ + ei(q̃+π) j̃

]

(B.26)

For ϵ = ±1 these matrix elements are

t1

LN−
q N+

q̃
∑
⟨jj̃⟩

[
B−

q

√
2 cos θ̃e−iqj + e−i(q+π)j

]
·
[
ϵB+

q̃ eiq̃j + ei(q̃+π) j̃
]

=
t1

LN−
q N+

q̃
∑
⟨jj̃⟩

[
B−

q B+
q̃

√
2 cos θ̃ei(q̃ j̃−qj) + B−

q

√
2 cos θ̃ei((q̃+π) j̃−qj)

+ϵB+
q̃ ei(q̃ j̃−(q+π)j) + ei[(q̃+π) j̃−(q+π)j]

]
.

(B.27)

The sites j and j̃ on the two chains that are adjacent can be labeled as j̃ = j and j̃ = j + 1. This leads
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to

t1

LN−
q N+

q̃
∑

j

[
B−

q B+
q̃

√
2 cos θ̃ei(q̃−q)j

(
1 + eiq̃

)
+ B−

q

√
2 cos θ̃ei((q̃+π)−q)j

(
1 + ei(q̃+π)

)
+ϵB+

q̃ ei(q̃−(q+π))j
(

1 + eiq̃
)
+ ei[(q̃+π)−(q+π)]j

(
1 + ei(q̃+π)

)]
=

t1

N−
q N+

q̃

[
B−

q B+
q̃

√
2 cos θ̃δq,q̃

(
1 + eiq̃

)
+ B−

q

√
2 cos θ̃δq,(q̃+π)

(
1 − eiq̃

)
+ϵB+

q̃ δ(q+π),q̃

(
1 + eiq̃

)
+ δq,q̃

(
1 − eiq̃

)]
=

t1

N−
q N+

q̃

[
δq,q̃

(
B−

q B+
q̃

√
2 cos θ̃ + 1 + eiq̃

(
B−

q B+
q̃

√
2 cos θ̃ − 1

))
+δq,(q̃+π)

(
B−

q

√
2 cos θ̃ + ϵB+

q̃ + eiq̃
(

ϵB+
q̃ − B−

q

√
2 cos θ̃

))]

where 1
L ∑j ei(k−q)j = δk,q and eiπ = −1 was used. The whole expression in Eq. (B.28) then needs to

be squared. Terms containing both δq,q̃ and δq,(q̃+π) would not survive the momentum sum since they

cannot be simultaneously satisfied, it is therefore enough to square the terms ∝ δq,q̃ and ∝ δq,(q̃+π)

individually. Using (a + beix)(a + be−ix) = a2 + b2 + 2 cos(x)ab, the term ∝ δq,q̃ squared is

[
t1

N−
q N+

q̃

]2 [(
B−

q B+
q̃

√
2 cos θ̃ + 1

)2
+
(

B−
q B+

q̃

√
2 cos θ̃ − 1

)2

+2 cos(q̃)
(

B−
q B+

q̃

√
2 cos θ̃ + 1

) (
B−

q B+
q̃

√
2 cos θ̃ − 1

)]
= 2

[
t1

N−
q N+

q̃

]2 [
2(B−

q B+
q̃ )

2 cos2 θ̃ + 1 + cos(q̃)
(

2(B−
q B+

q̃ )
2 cos2 θ̃ − 1

)]

while the term ∝ δq,(q̃+π) squared is

[
t1

N−
q N+

q̃

]2 [(
B−

q

√
2 cos θ̃ + ϵB+

q̃

)2
+
(

ϵB+
q̃ − B−

q

√
2 cos θ̃

)2

+2 cos(q̃)
(

B−
q

√
2 cos θ̃ + ϵB+

q̃

) (
ϵB+

q̃ − B−
q

√
2 cos θ̃

)]
= 2

[
t1

N−
q N+

q̃

]2 [
2(B−

q )
2 cos2 θ̃ + (B+

q̃ )
2 + cos(q̃)

(
(B+

q̃ )
2 − 2(B−

q )
2 cos2 θ̃

)]

after evaluating the sum over q̃ and noting that B+
q+π = B−

q , Eq+π = Eq and N+
q+π = N−

q this yields

for n = 1 and ñ = 3, 4
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|⟨G|H1|qq̃n = 1, ñ = 3⟩|2 + |⟨G|H1|qq̃n = 1, ñ = 4⟩|2

= 4

[ t1

N−
q N+

q̃

]2

+

[
t1B−

q

(N−
q )2

]2
 (2 cos2 θ̃ + 1 + cos(q)

(
2 cos2 θ̃ − 1

))
.

The case n = 2 and ñ = 3, 4 is very similar.

All in all, the (n, ñ) sum in the numerator in Eq. (B.22) gives:

∑
n,ñ

|⟨G|H1|qq̃nñ⟩|2

= K(q) ·
[
2(cos2 θ̃ + sin2 θ̃) + 2 + cos(q) ·

(
2(cos2 θ̃ + sin2 θ̃)− 2

)]
= 4 · K(q) ,

(B.28)

where K(q) is a prefactor depending only on q. As the energy difference in the denominator also only

depends on q and not on θ, unfortunately, this result shows, that up to O(t2
1) the homogenous spiral

and dimerized spin configurations are degenerate for all values of J. Hope of calculating a critical value

of J therefore lies in fourth order perturbation theory at the earliest, since it is apparent by looking at

non-vanishing matrix elements, that the third order correction entirely vanishes. As the second order

correction was already very computationally intensive, however, this does not seem very practical.
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