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Notations and Conventions

Although all of the following notations will be introduced when they arise for the first time,
already a selection of those with a universal meaning throughout the whole thesis is given

in this Section. Corresponding estimators of the listed parameters and functions will be

[13al)

marked with a and are omitted here for the sake of brevity.

Notations
N set of natural numbers
Q set of rational numbers
R set of real numbers
Y dependent variable, real valued
X independent variable, R4¥-valued for some dx € N
€ error term, real valued, centred and independent of X
g regression function
o? variance (function) of the errors
h nonparametric transformation function
© transformation parameter set, subset of R% for some dg € N
0 transformation parameter
Ay parametric transformation function
B regression parameter set, subset of R for some dg € N
I} regression parameter
98 parametric regression function
Fyx distribution function of Y conditional on X
F;ﬁx conditional quantile function of Y conditional on X
Ty|x density function of Y conditional on X

XV



Notations and Conventions

v, W weight functions
K univariate kernel function in the context of kernel estimation
K multivariate kernel function in the context of kernel estimation
K integrated kernel function
hy, ha bandwidths
7 finite measure
2 convergence in distribution
~ weak convergence
op term, that converges to zero in probability
Op term, that is bounded in probability
Conventions

Let d be a natural number.

e Let f : RIX — R be some real valued function. Then, [ f(x)dx is defined as
fRdX f(x)dx.

o Let gg : R — R be a real valued function, which depends on some parameter
B € B. Then, Dggg denotes the derivative with respect to 3. The corresponding

Hessian matrix is denoted by Hess gg.
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Introduction

Arguably one of the most important contributions of mathematical statistics consists in
the prediction of some variable Y, which is based on the realisations of some explanatory
variable X. A powerful tool for predicting this so called dependent or response variable
Y by the covariate or regressor X are regression models. It is difficult to date back the
beginnings of such models, but they can be traced back even to Francis Galton and Karl
Pearson, see [Stanton| (2001).

Nowadays, much attention is still concentrated on linear regression models. From a statis-
tical point of view, Y and X are viewed as (possibly multivariate) random variables and

the linear regression model can be written as
Y =8'X +e. (1)

Here, 3 is called the regression coefficient and € is an unobservable random variable, which is
independent of X and fulfils F[e] = 0. Sometimes, ¢ is assumed to be normally distributed.
At a first glance, the linear regression model seems to be attractive when analysing
some given data set, since it is easy to implement and nicely interpretable. Nevertheless,
the model relies on very restrictive assumptions such as additivity, homoscedasticity and
sometimes normality of the error term € and of course linearity of the relationship between
Y and X. These problems regarding applicability of model were already observed by

Box and Cox] (1964) and motivated them to introduce the parametric transformation model

Ao (V) = BX +e. (2)

Here, the response variable Y is transformed by a transformation function Ag, before fit-
ting it to the linear regression model. The unknown function Ag, is assumed to belong
to some parametric class of strictly increasing functions {Ag : § € O} for some finite di-
mensional parameter space 0. Box and Cox| (1964) presented a parametric class of power
transformations, the famous Box-Cox-transformations, which contains as special cases the
identity and the logarithm. Their transformation class was enlarged by [Yeo and Johnson
(2000), but there are meanwhile various classes of transformation functions, see|Zellner and
Revankar| (1969)), |John and Draper] (1980), Bickel and Doksum| (1981 or |Jones and Pewsey
(2009)) for further examples. An alternative motivation for transformation models is the
perspective of first transforming the data in order to make somehow “simpler” procedures
from nonparametric regression applicable.

Although the parametric transformation model generalizes the linear regression model by

far, the basic assumption of a linear regression function remains. Moreover, this selection



Introduction

problem carries over to the choice of the transformation function, since model relies on
the assumption that the experimenter chooses an appropriate transformation class. As a
further extension, model can be generalized by allowing nonparametric transformation,
regression and variance functions h, g and 2. The resulting nonparametric transformation
model

hY) = g(X) +o(X)e (3)

with e L X, F[e] = 0 and Var(e) = 1 will be the central object of this thesis. Usually, h
is assumed to be strictly increasing and some smoothness assumptions on h,g and o are
made.

There are many reasons for considering nonparametric and heteroscedastic transformation
models. First, the analysis of a general model helps to understand the links between all
of its components better. Additionally, some results, e.g., on identifiability, which will be
explained below, can be carried over to simpler models. Second, hypothesis tests, which are
based on the comparison of parametric and nonparametric estimators, can be constructed
so that general models allow inferences to be drawn about the type of the relationship bet-
ween Y and X. Two examples for such tests will be provided in Chapters 2| and [5] Third,
previous knowledge or assumptions on the relationship between Y and X can make the
application of parametric or homoscedastic models inappropriate.

Box and Cox (1964) applied their transformation functions to data on survival times of
intoxicated animals and on the duration of worsted yarn before it gets broken. Transforma-
tion models are used frequently in such duration models, see |Gorgens and Horowitz (1999))
or Van den Berg| (2001). John and Draper| (1980) analysed the ability of expert inspectors
in assessing the thickness of certain types of piping. They found that the usual Box-Cox
transformations describe their data rather badly and adjusted them by taking the abso-
lute value of Y and changing the sign afterwards. |Carroll and Ruppert| (1984) applied the
Box-Cox transforms to spawner recruit and chemical reaction data. The Michaelis Menten
equation (Michaelis and Menten| (1913)) is often used in such contexts. Ruppert, Cressie,
and Carroll| (1989) considered the estimation of Michaelis-Menten parameters and pointed
out that a wrong transformation of the model may lead to heteroscedastic errors. They
also applied the Box-Cox transforms to study the reproduction of the sockeye salmon and
some enzyme kinetics. Horowitz| (2009) examined the influence of the economic activity
on the duration of contract strikes and mentioned hedonic pricing as a further applica-
tion. The latter was done by Wen, Bu, and Zhang| (2013]), who modelled the house prices
in Hangzhou City. Another research field, where transformation models are applied and
which is related to duration models, is the field of survival analysis. To mention only one
application, Cheng, Wei, and Ying (1995)) analysed the influence of a patient’s age on his or
her survival time. When considering transformation models as in or , there are ba-
sically three categories, into which questions can be classified. The first group contains the
more probability theoretical questions regarding solvability of the model or uniqueness of
its components. Second, when faced with an underlying model probably every statistician
is interested in estimating its components. Third, the price of nonparametric modelling
often consists in a decreasing performance of the estimators of its components. Hence, it

may be desirable to test whether some simple parametric model like holds. Indeed, all
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of the four main chapters of this thesis can be classified into one of these categories.
One question, which belongs to the first group and which was already mentioned above,
is that of identifiability of a model. A model is identified if its components are uniquely
determined by the joint distribution of (Y, X). To illustrate that this uniqueness in gene-
ral does not hold without further assumptions, let « > 0 and 8 € R be some constants.
Multiplying both sides of by a and adding 8 to both sides afterwards leads to

ah(Y) + 8 = ag(X) + f + ao(X)e,

that is

R(Y) = §X) +5(X)e (4)

for h = ah + ,§ = ag + 8,6 = ao. Even if the transformation function is assumed
to be strictly increasing, any triple h,g,o in leads to infinitely many other solutions
E,g,& in @) Various identification results in different models were provided, e.g., by
Horowitz (1996), Ekeland, Heckman, and Nesheim! (2004), Linton, Sperlich, and Van Keile-|
igom| (2008)), (Chiappori, Komunjer, and Kristensen| (2015) and Vanhems and Van Keilegom|
, see Chapter |3| for details. Most of these results show that it suffices for each of the

corresponding transformation models to fix the parameters o and S from above to ensure

identifiability of the model. Usually, this is done by so called location and scale constraints,
e.g., like h(0) = 0 and h(1) = 1. Nevertheless, further assumptions are necessary to ensure
identifiability in the context of heteroscedastic models, see Remark In Chapter
identifiability of the nonparametric heteroscedastic model will be proven. So far, such
a general result has not been provided in the literature.

Several approaches of estimating the transformation function in various models have been

discussed in the past. The fully parametric models mentioned above assume normality of

the error € and apply maximum likelihood estimators. Klaaflen, Kiick, and Spindler| (2017)

analysed a fully parametric model in the context of high dimensional data. For some esti-
mating approaches in models with a parametric regression function, but a nonparametric
transformation function, see [Horowitz| (1996), Chen| (2002), Zhou, Lin, and Johnson| (2009)
and Jochmans| (2013). A summary was given by Horowitz (2009). There are only a few

estimators in models with a parametric transformation function and a nonparametric re-

gression function. Linton, Chen, Wang, and Héardle| (1997) considered a model with an

additive regression function and suggested to estimate the transformation parameter by an

instrumental variable approach or a pseudo-likelihood method. |[Linton et al.| (2008) used a
profile likelihood approach and ideas on minimum distance estimators (see
land Van Keilegom| (2003), Chapter 5 of or Section 3.2 of [Van der Vaart and
) to develop a “profile likelihood estimator” and a “mean square distance

from independence estimator” in their seminal paper. Colling and Van Keilegom, (2018)

introduced a third estimator for the transformation parameter. See Section for details
on these estimators. Fully nonparametric, but homoscedastic transformation models have
been treated by Chiappori et al.| (2015) and |Colling and Van Keilegom)| (2019)), see Section
for details. Heteroscedastic, but semiparametric models have been considered by
et al.| (2009)), Neumeyer, Noh, and Van Keilegom| (2016]) and [Wang and Wang| (2018)). While

Zhou et al|(2009)) assumed the regression function to be linear and the variance function to

3
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be known, Neumeyer et al|(2016) extended the results of Linton et al.| (2008) to semipara-

metric transformation models with parametric transformation functions and nonparametric

regression and variance functions. Wang and Wang| (2018)) considered a similar model to
‘Zhou et al.| (2009), but allowed censored data.
Every special case (e.g. the homoscedastic model) of may induce the need to test for

its validity. Hence, there are various different objectives to test for in the context of trans-
formation models. There already exist a couple of hypothesis tests concerning parametric
assumptions on the regression or transformation function or the significance of the com-
ponents of the covariate X, that is, if all of the covariate’s components are necessary to
describe Y. Goodness of fit tests for the regression function were developed by
and Van Keilegom! (2016 [2017)) and Kloodt and Neumeyer| (2019), while Allison, Huskov4,|
and Meintanis| (2018) and Kloodt and Neumeyer| (2019)) examined the significance of the
components of the covariate X, see Section for details. Tests for the hypothesis of
a parametric transformation function were provided by Neumeyer et al.| (2016]), Huskova,|
\Meintanis, Neumeyer, and Pretorius| (2018)), Huskova, Meintanis, and Pretorius) (2019) and
Szydlowski (2017), see the introduction of Chapter [5| for details.

This thesis is structured as follows. First, some essentials on kernel estimators, goodness

of fit tests in semiparametric transformation models as well as some results on the estima-
tion of the transformation function in semiparametric and nonparametric models are given.
Then, a goodness of fit test for the regression function in a nonparametric and homosce-
dastic model is developed in Chapter [2l Chapter |3| addresses the issue of identifiability in
the nonparametric and heteroscedastic model . The results obtained there are in turn
used in Chapter 4| to construct estimators for the transformation function A in model .
Moreover, uniform convergence results are presented. In Chapter [5] a hypothesis test for
the null hypothesis of a parametric transformation function in the nonparametric and ho-
moscedastic transformation model is given. The test is based on the ideas of
Van Keilegom (2018). The asymptotic behaviour under the null hypothesis as well as under

(local) alternatives is analysed. Furthermore, relevant hypotheses are considered. Finally,
the results of this theses are summarized and discussed in Chapter [6] and possible ideas for

future research are mentioned.



Essentials

This thesis treats several aspects of nonparametric transformation models. Especially, good-
ness of fit tests for parametric assumptions on the regression and transformation function
are developed in Chapters 2] and [f] respectively. Therefore, a brief overview about good-
ness of fit tests in regression models as well as some previous results on parametric and
nonparametric estimation of the transformation function are given in Sections and
Moreover, kernel estimators will be introduced in Section [1.1], since they will be used

as the main tool for nonparametric estimation in this thesis.

1.1 Kernel Estimators

Kernel estimation is arguably one of the most frequently applied methods in nonparametric
estimation. See the book of Wand and Jones| (1995)) for a well written examination. In this
section, only a limited selection of results on kernel estimators, which are used in almost all
of the following chapters, is presented. While doing so, the main framework will remain the
same: Independent and identically distributed random pairs (Y, X), (Y1, X1), ..., (Ya, Xp)
with joint distribution function Fy x and density fy,x are given. Y is assumed to be real
valued, while X is assumed to be R%X-valued for some dx € N.

Mostly in this thesis, the notations from Chiappori et al.| (2015]) are adopted. In particular,
let fx denote the marginal density of X and define p(y,z) = [Y_ fy,x(u,z)du. Partial
derivatives with respect to y or some component z; are marked with a lower y and z;,
respectively, e.g., p,(y,x) = a%p(y,ac). When considering fx, the random variable in the
index will be omitted sometimes, that is f(x) = fx(z), fz;(x) = fxa, (x) = 8%jfx(ac) and
the abbreviation f, = f;, is used.

To define the kernel estimators of these quantities, let K : R — R denote a kernel function,
which means [ K(x)dz =1 here, and let K : R?x — R denote the corresponding product
kernel on R%X. Mostly, a continuous kernel with bounded support will be considered in this
thesis, but together with some chapter specific assumptions these conditions will be listed
in each of the chapters separately. Moreover, let h, ~\, 0 and h, ~\, 0 be some bandwidth

sequences. Define

Khy@):,jfc(lfy), Khz<x>=1K<fj;>, K) = [ Ko (w)du (1)

d
Yy hyX
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i 1 ; L -0
fx@) =3 K@= X0, fale)= —5=5 ) 5K
— T i=1

z—X

V=7~

T) = /y frx(u,x)du, py(y,z) = frx(y,x), p(y, / fYX (u,7) du,

(1.3)
(y,2) _ py(y,z) o) = Py 2) Py, 2) fal2)
YD hw PO e YT e T ge Y
and
Do) = S Ko (y — YK, (2 — X0 (1.5)
=1
Buly ) = -3 K (5 — YK, (z — X) (16)
=1
. 1 " 0
bu(y,z) = S pdx T Z’Chy (y — Yz)aTJlK(U) e (1.7)
x i—1 v= hzl

® from is an alternative expression for the conditional distribution function of Y
conditioned on X. In the following, it will be referred to the estimators in and .f
as the kernel estimators for fx, fz,p,p, and p,. The index of the bandw1dths h; and
hy refers to the components which they are used for. h, and h, do not depend on specific
values of x € Ry € R.

As for most estimators, the expected quadratic errors of these estimates can be divided into
systematic and random errors. To handle the systematic error or bias of the estimators,
higher order kernels are used (Wand and Jones| (1995, p. 32)). When doing so, a kernel
K : R — R is said to have order ¢ € N, if

/\x]]K(w) dr=0forall j=1,..,q—1 and /qu(x) dzx < 0.

Basically, this together with integration by substitution and Taylor expansions will ensure

negligibility of the systematic error.

Lemma 1.1.1 Let K be of order ¢ € N and hi, hi = o(n_%). Further, let Y, X be real and
R _yalued random variables with joint density fv,x, which is g-times partially continuously

differentiable with bounded derivatives of order q. Then,

Bl (0= YK (X = )] = [ fexten)ds o 5= ) =)+ -

uniformly in v € R,z € R%.

The proof is given in Section Once tools for bounding the bias of an estimator have
been introduced, the question of how to treat the random errors arises. Although dependent

data is considered there, the ideas of Hansen| (2008]) will be applied for this purpose. Since

6
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his results have to be fit to the context of each chapter separately, the details are not
presented in this Section. Nevertheless, note that under the conditions mentioned there
Theorem 2 of Hansen (2008)) already yields

. . log(n

for all compact sets K € R4, By the same reasoning as in the proof of Lemma, this

can be extended to

Te nhdx

sup | fx (@) ~ fx(+)] = 0p< IOg(”)>.

The nonparametric estimators for the transformation function of |(Chiappori et al.| (2015)
and |Colling and Van Keilegom (2019) are based on the idea of expressing the transformation
function via ®, and ®, from equation . When plugging in the estimators from (.2
and f into to obtain estimators éx and i’y for ®, and ®,, the uniform
convergence results can be extended to $, and @y rather easily. The following Lemma was
taken directly from |Chiappori et al.| (2015).

Lemma 1.1.2 Let a, b,d,l; € R, b, b # 0. Then,

1. a - b—b/(. a(b—b)
= (a—a)— 5 (b-b) - = <a—a—b). (1.8)

S|
SIS

Replacing @ and b by p and fx leads to a uniform bound for the difference @ — ®|.

1.2 Goodness of Fit Tests in Mean Regression Models

The idea of justifying the application of a specific model by applying a corresponding
goodness of fit test previously came up in the beginning of the twentieth century and has
attracted more and more attention in the context of regression models since the early 1990s
(Gonzalez-Manteiga and Crujeiras| (2013))). A huge variety of procedures testing, e.g., for

a parametric regression function in the model
Y =9(X) +e¢, (1.9)

where X is R%X-valued and Y and ¢ are real valued with E[¢|X] = 0, can be found in the
literature. A thorough review of such tests was given by |Gonzalez-Manteiga and Crujeiras
(2013). They distinguished between smoothing based tests and tests that are based on em-
pirical regression processes. Since an exhaustive presentation would go beyond the scope
of this thesis, only some goodness of fit tests of both categories, which already have been
extended to transformation models, are described in the following.

The approaches of Bierens (1982)) and |Stute| (1997) were extended by Colling and Van Kei-
legom| (2016) to the context of semiparametric transformation models and belong to the
second class of goodness of fit tests. Consider a parametric class of regression functions
{gs : B € B} for some parameter space B C R?5 with some dg € N and n independent and

identically distributed observations (Y;, X;),7 = 1,..,n, from the nonparametric regression

7
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model (1.9). Both of the mentioned papers made use of the observation that the parametric
residuals €;(5) := Y; — gg(X;) fulfil E[e;(5)|X] = 0, which means that model (|1.9)) is fulfilled
with g = gg, if and only if one has

Elei(B)w(Xi, )] = 0

for an appropriate weight function w, an appropriate parameter space I' C R with some
dr € N and all v € ', but differ in the applied weight function. While Bierens (1982) used

(as a special case)
w(x,v) = exp(iz'y)

and a compact multidimensional interval as a parameter space I, Stute (1997)) applied

w(:z:, 7) = I{mgw}

for one dimensional z. |Colling and Van Keilegom| (2017)) considered the generalization
with multidimensional 2 € R%X | componentwise indicator functions and a parameter space
I' = R in a model with parametric transformations. Under the null hypothesis of g = 98,
for some [y € B, Bierens (1982) and [Stute, (1997) showed weak convergence of the empirical

process

Ru() = == (% = g5(X)u(Xis), €T,
=1

where ﬁ is an appropriate estimator of [y, to some Gaussian processes for both choices
of w and T'. Afterwards, a Kolmogorov-Smirnov type (Stute| (1997)) and a Cramér-von-
Mises type (Bierens| (1982))) test statistic were defined for testing the null hypothesis of a
parametric regression function and the asymptotic distribution was derived from the weak
convergence of the corresponding process.

The tests of [Hardle and Mammen| (1993)) and Zheng (1996) are representatives of the
smoothing based procedures. Both were extended to semiparametric transformation models
by Kloodt and Neumeyer| (2019). Consider again independent and identically distributed
observations (Y;, X;),i = 1,..,n, from model . Let K and h; be a kernel function and
bandwidth sequence, respectively. Recall definition and let {gg : B € B} be a class of
parametric regression functions to test for. The test of [Zheng| (1996) is based on the fact
that

B[(Y — g5, (X)) EI(Y — g5, (X)) X]fx (X)] = B[E[(Y — g5,(X))|X]* fx (X)]

is equal to zero if and only if g = gg, holds for some 3y € B. Here, fx denotes the density

function of X. The test statistic can be written as

for some parametric estimator 3 of the minimizer 8y = arg min E[(Y — 95(X))?].
BeB
To describe the test of |[Hardle and Mammen (1993), let

i K, (2 - Xp)Y;

90 =5 K (o~ %)




1.8. Semiparametric Transformation Models

denote the Nadaraya Watson estimator of g and define for every gg, 8 € B, the smoothed

version

Go(z) = > i K, (7 — X5)g5(Xi)
’ i Kn(z - X;)

The approach is based on a comparison of the nonparametric estimator ¢ and the smoothed
versions gg of the parametric regression functions gg. To be precise, let w be an appropriate

weight function and define the test statistic
d
T, = nhs / (

where 3 is an appropriate estimator of the minimizer Sy = arg min E[(Y — 93(X))?]. Under
BeB

the null hypothesis of a parametric regression function, Hardle and Mammen, (1993)) proved

o
—
8
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weak convergence of the appropriately standardized test statistic 7, to some normally
distributed random variable.

Although the test provided in Section is based on the estimated conditional quantile
function instead of the estimated regression function, there are many parallels between the
test of Hardle and Mammen (1993) and the approach developed there. Especially, the
parameters of the asymptotic normal distribution and the rather slow convergence of the

test statistic to this distribution for finite sample sizes are similar.

1.3 Semiparametric Transformation Models

Since transformation models usually are applied to the data to avoid misspecification of the
underlying model or to induce desired properties such as homoscedasticity, additivity or
normality of the error terms (Box and Cox| (1964)), it is worthwhile to generalize model
further by for example considering a nonparametric regression function g. The consequent

model

Ao (Y) = g(X) +< (1.10)

for independent ¢ and X, for some true transformation parameter 6y € ©, some parameter
space © C R% with some dg € N and a class of transformation functions {Ag : 0 € ©}
has been studied extensively in the literature. |Linton et al. (2008]) introduced two esti-
mating approaches, which will be described later in this section, for 6y in their seminal
paper. These ideas were revisited among others by Neumeyer et al. (2016 and Vanhems
and Van Keilegom| (2019) to extend the approaches to heteroscedastic errors and endoge-
nous regressors, respectively. Recently, |Colling and Van Keilegom| (2018) developed two
further estimators by minimizing appropriate distances between the parametric class of
transformation functions and the nonparametric estimator by |Colling and Van Keilegom
(2019). In the following, some of the approaches mentioned above are described briefly.
Note that the class of transformation functions {Ay : § € ©} has to fulfil some conditions to
ensure uniqueness of the true transformation parameter. This issue will be discussed later

in more detail.
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The Profile Likelihood Estimator

Linton et al.| (2008) introduced two methods for estimating the true transformation para-
meter 6y in model , the profile likelihood estimator and the mean square distance
from independence estimator. While the latter one is discussed in the subsection below,
the profile likelihood method will be explained in the following.

Let 6 € © and define gg(-) = E[Ag(Y)|X = -] as well as €(0) = Ap(Y) — go(X). Denote
the conditional distribution and density function of ¥ conditional on X by Fy |y and fyx,

respectively. Then, the conditional distribution function can be written as

Fyix(ylz) = P(Ag(Y) < Ag(y)|X = x) = P(e(0) < Ao(y) — go(2)| X = ).

For the true transformation parameter 8 = 6, this results due to the independence of ¢
and X in

Fyx(ylz) = Fe(Ao(y) — go(z))
and

fyixWlz) = fe(Ma(y) — go(2))Ap(y),

where F; and f; are the distribution function and density of ¢ = £(6p) and A} denotes the
derivative of Ag with respect to y. This can be used to apply techniques from maximum
likelihood estimation. Let (Y;, X;),i = 1,...,n, be independent and identically distributed
observations from model . Then, the profile likelihood estimator épL is defined as

Opr = arg@g;ax Z log(f-(9)(Aa(Yi) — Go(X3))) + log(Ah(Y7))),

where f, ) denotes the density of () and fg(g) and gy are some nonparametric estimators
for f.) and gp. By using the Kullback Leibler divergence similarly to Neumeyer et al.

(2016), it can be shown that the true transformation parameter ) minimizes the function

0 — Eflog(fo)(Ag(Y) — go(X))) + log(Ay(Y))],

so that fpy, is a meaningful estimate of . |Linton et al.|(2008]) were able to show asymptotic

normality of \/ﬁ(épL — 6p) under the assumptions mentioned in their paper.

The Mean Square Distance from Independence Estimator

The second estimator introduced by Linton et al.| (2008) was the mean square distance from
independence estimator (MDE). Let gy and £(6) be defined as in the subsection above and
let £(0) be some estimator of €(#). The idea behind the MDE is that £(0) is independent of
X if and only if 8 = 6. Hence, the joint distribution function of X and £(#) can be written
as the product of the marginal distribution functions if and only if 8 = 6y. To define the
estimator, let (Y;, X;),i = 1,...,n, be independent and identically distributed observations
from and define the empirical distribution functions

1 « 5
== Iixizap Fple) Zf{sz o<err Fxeo)(@e) ZI{X <eH{ei0)<e}-
=1

10
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Then, the MDE is defined as

Onip = arge;ergin / (FX@)FE(@)(e) - FX’E((;) (x, e))2 du(z,e)
for some appropriate measure p. Under the assumptions mentioned there, it was shown
in [Linton et al (2008) that v/n(fyp — ) is asymptotically normal. In their simulations,
Linton et al.| (2008) observed that Opy, seems to outperform O D

An estimator, which is related to the MDE, is used later in Chapter [ to estimate some
component of a nonprametric estimator for the transformation A in model with hete-
roscedastic errors. Roughly speaking, the reason for adapting the MDE instead of the PLE
approach there is that the estimation of f. requires good estimates of € on the whole set of
real numbers, while the exact value of € does not influence the indicator function I <y, as

long as it exceeds some boundary. This issue will be discussed in detail in Chapter

Comparing the Transformation Class to a Nonparametric Estimator

The remaining two approaches for estimating 6 in model that were mentioned above,
were developed by |Colling and Van Keilegom| (2018]). Both of the procedures are based on
a comparison of the parametric transformation class and a nonparametic estimator of the
transformation function. |Colling and Van Keilegom! (2019) considered the nonparametric

model
hY)=g(X)+e, (1.11)

where h is assumed to be strictly increasing, E[e] = 0 holds and X and ¢ are independent.
Their estimator will be denoted by h in the following. Note that the validity of the model
in (1.10) is unaffected by linear transforms, that is, the model still holds when Ay,, g and

€ are replaced by

Aly) = alg,(y) +b, §(z) =ag(x)+b and ¢&=ac

for any constants a > 0,b € R. Therefore, so called identification constraints are necessary
to fix @ and b and to induce uniqueness of the true transformation function. The nonpa-
rametric estimator of (Colling and Van Keilegom| (2018) fulfils 2(0) = 0 and h(1) = 1. To
make the nonparametric estimator comparable to the parametric class of transformation
functions {Ay : 0 € ©}, the same identification constraints have to be applied. Thus, some

distance between
y — (Ag(1) — Ag(0))A(y) + Ag(0)

and Ay is used to construct an estimator 6 for 0y, since both functions attain the same
values at y = 0 and y = 1 then. To be precise, a quadratic distance is used and 0 is defined

as
n

0 = argmin 3 (h(V3)(Aa(1) = 49(0)) + Ao (0) ~ Ao (Y2)”. (1.12)
€ i—1

=

The factors ci(0) := (Ag(1) — Ag(0)) and c2(6) := Ap(0), that are necessary to fit the

underlying identification constraints of h to those of {Agy : 0 € ©}, are uniquely determined.

11
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Nevertheless, it might be sensible to minimize in (1.12)) with respect to ¢; and ¢y as well.
The corresponding estimator can be written as
0 = argmin Z (h(Y;)er + c2 — Ag(Y7)) ™.
0€O,c1eRt,co€R i=1

Indeed, Colling and Van Keilegom| (2018) showed that 6 outperforms 6 in simulations.
Additionally, they proved weak convergence of \/n( —6y) and /(6 — ;) to some normally
distributed random variables.

A goodness of fit test for a parametric transformation function, which makes use of the
idea to compare a nonparametric estimator of a transformation function to a parametric

transformation class, will be presented in Chapter

1.4 Nonparametric Transformation Models

In this section, previous results on the nonparametric estimation of the transformation
function are presented. Compared to the previous section, this is again a further step
towards modelling the relationship between two random variables as flexible as possible.
While Chapter 3| will allow heteroscedasticity, the homoscedastic model will be con-
sidered here. As in the previous section, any triple (h, g, %), where F. denotes the distri-
bution function of &, can only be unique up to linear transformations, which again leads to
the question of identifiability of model . In the case of a linear regression function g,
Horowitz| (1996) developed a single index approach to identify and estimate the transfor-
mation function h. |Chiappori et al. (2015)) and |Colling and Van Keilegom| (2019) applied
related methods, but estimated h in the general framework of a nonparametric g.

The basic idea of all of three approaches was to write the conditional distribution function

Fy|x of Y conditioned on X as

Fy|x (ylz) = Fo(h(y) — g(x)).

The conditional distribution Fy|x can be alternatively expressed as ® from (1.4). Let f.
be the density of € and denote the derivative of h by h’. Then, the derivatives of Fy x with

respect to y and some component z; of x can be written as

0 0 0

@FHX(W) = fe(h(y) — g(x))h'(y) and oz, Fyx (ylz) = —fe(h(y) — g(m))amig(fn).

In the following, the derivative with respect to x1 is considered w.l.o.g. Consequently, the

quotient of both derivatives can be written as

OFy | x (ylz) 1
0 /
AWyle) = gy =~ (Y): (1.13)
el 5 g(@)

Note that the equation above only holds if
0
fe(h(y) —g(z)) #0 and afmg(iﬂ) # 0. (1.14)

12
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Horowitz| (1996), Chiappori et al.| (2015) and |Colling and Van Keilegom (2019) ensured
validity of ([1.14]) by appropriate assumptions, but this issue is not discussed further here.
Integrating equation (|1.13|) with respect to y leads to

Y 1
/y Al = == ()~ o)

for every yp € R. Several kinds of identification constraints are conceivable to make any
solution h to this equation unique. |Chiappori et al. (2015) and |Colling and Van Keilegom
(2019)) required for example

h(0) =0 and A(l)=

which leads to

h(y) =

fol Aulz) du

Although the right hand side does not depend on x, the performance of the estimator
defined later increases when integrating with respect to x. To make this precise, let v be
some weight function with [ v(z)dz = 1. Then, it holds that

I 2
h(y) = arg rlgin / (z <f0 - q) dz
qe 0

as well as

J| o Mulw) du
Jo X

Applying the square loss as in the first equation results in

h(y) = arg min / dx. (1.15)

geR

h(y) = / f’ da:, (1.16)
0

while applying the absolute loss leads to some kind of median.
Let (Y;,X;),i = 1,...,n, be independent and identically distributed observations of (1.11]).

Then, an estimator for the transformation function h can be obtained by first inserting the

estimators given in and . into and to get estimators <I)y, $, and

\ for ®,, P, and A and by pluggmg in these estlmators mto (]1.15|) and (]1.16[) afterwards.
Actually, |Chiappori et al.| (2015) and |Colling and Van Keilegom| (2019) used a smoothed

version
7 . §1 (y7 .’E) 1 (y )
h(y) = ar mln/um(A — ><2Lb<A — —1|dz
(y) B (z) o) ¢ SLo ¢
instead of , where $1(y,z) is defined as fo (ulx)du, b = b, is some bandwidth
sequence and Ly(-) = L(é) for an appropriate distribution function L.
An equation similar to ([1.16]) is used in Chapter [4] to construct an estimator for h in the

context of heteroscedastic errors.
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Basing the Estimator on Pretransformed Data

Colling and Van Keilegom (2019) observed that the estimator of Chiappori et al.| (2015])
might perform badly if the distribution of Y is somehow inappropriate. For example, if the
distribution of Y is very asymmetric or highly skewed, it seems that the procedure works
rather badly. To overcome this problem, |Colling and Van Keilegom| (2019)) first applied
a pretransformation to the data. To make this precise, consider again independent and
identically distributed random variables (Y;, X;),7 = 1, ..., n, fulfilling model . Then,
denote the distribution function of Y by Fy and define

Fy (y) = F(0)

W= 50 - A0

and U; =T(Y;).

For Q := ho 7!, model (1.11) can be expressed as

After replacing U; by the estimates

mzfm>wm.ﬂw=§§£:g$}

where Fy denotes the empirical distribution function of Y7,...,Y},, an estimator

O(u) = arg min / o(z) (Zﬁ ;’3 - q> <2Lb<28‘ g - q> - 1) dz, (1.17)

@ can be obtained as described above. Here §1(y, z) is defined as [’ A(z|x) dz and

OFy | x (ulz)
\ —__Ou
Ale) = 57 caim
o1

The corresponding estimator for h is h(y) = Q(7(y)). Using the notations from Section
define (compare (Colling and Van Keilegom, (2019))

Py (w, u) fo(z) 1
D ) = 97 Nr79/7 N\ D u ) - T N+w 7\
Pl 2) = G2, 2) f2(x) ) = Fo)n ()
D — D —
p1 (U, ) F(z <I>% u,z)’ f£.0(u, ) <I>%(u,a:)f2(:£) ’
_ Py (u, 2)P(u, )
Pt t) = gt ) 1
Moreover, define
w Oy x (r|z)
N ey Tl R I C) B _ v(@)s1(uo, ¥)
51(u, ) .—/0 8FUg;1(r|x) dr, 01(ug,z) = S1(0.7) U9 (ug, ) = (L 2)?
and (for © € {01, 02})
B max(u,U;) ~ o
65 (uo, u) = / (v(uo,Xj)Dpp(r, X;) — a—(v(UO,x)Dnl(r, a:)) B > dr
max(0,U;) L1 =X

14
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# [ (30001000 X) = 5 (000X D1r:0)

+ (v, <uy — L{v;<0y) (0, X;) Dpu(Uj, X;)

)
+/0 (I{}(7’][]J<(u§_l{U<0} >
[ (3t 2)Dyotr) + -

Jux(r,z) 4+ 0(ug, ) Dp (7, x)grvaX(T’ a:)) dx dr

(=150 1) [ (st

— 0(uo, );Dpu(r x) + 87371( 0(ug, ) Dp 1 (r, )))fUX(r x) dx dr

I, <1y = <oy )
B 7 0 _1 D u ) 5 d .
( Fy(1) — Fy(0) >U/Xv(u0,x) pou(t, ) fU.x (u, z) d

Then, |Colling and Van Keilegom| (2019)) proved for the estimator in (1.17) as well as for
another estimator, which is based on similar thoughts as in (|1.16]),

(3u0.2) Dy (1)

1 & 1
hy)—h(y)==> (U, X, T(y) +op| —=
V- =223 g <\/ﬁ>

for
Q' (u)
Fy(1) — Fy(0)

(FFg((lu))—_g]((oo))y (I{Ujél} Iy, <0y — Fy(1) + FU(O))

Y(Uj, Xj,u) :5;?1(1710)—5?2(“7 1) + (Itv,<uy — Lju, <0y — Fu(u) + Fy(0))

- Q'(u)

The approaches developed in Chapters 2| and [5| can be applied for both of the estimators of
Chiappori et al.| (2015)) and Colling and Van Keilegom| (2019)), but the latter one is used in

the simulation studies there.

1.5 Miscellaneous

Finally, a technical Lemma is presented, which given any sequence of random variables
Zy, = 0p(1), yields the existence of a deterministic sequence d,, \, 0, such that Z,, = 0,(dy).
This Lemma will be applied in Sections [2.8.7] and [£.6.3]

Lemma 1.5.1 Let (Zy,)nen be a sequence of random variables such that Z,, = o,(1). Then,

there exists a deterministic and monotonic null sequence (0p)nen such that

The proof is given in Section [1.6.2
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1.6 Proofs

Here, the proofs of the lemmas stated in Sections and are given.

1.6.1 Proof of Lemma|(1.1.1

This lemma can be proven by basic calculations. More precisely, recall that K is a kernel

of order ¢ and write

E[IChy(u -Y)K; (X —2)] = //Khy (u— z)Khy (v—2)fyx(z,v)dzdv

u—

- ///—:Z K(w) dwKy, (v — z) fy.x(z,v) dz dv

_ / / /_ :hyw frox (2,0) dz K (w) dw Ky, (v — ) dv
_ //p(u ~ hyw,v) K (w) dwKp, (v — ) do
_ / p(u,0) K, (v — ) do + O(h)

= p(u,x) + O(h{ + hi)

— plu,z) + o<\}ﬁ>

by using a Taylor expansion of p.

1.6.2 Proof of Lemma (1.5.1

Let (€m)men, (7i)ieny be decreasing null sequences. Define

MN,+ = sup {m € N:sup P(|Z,| > em) < T},

n>N
where
Mmy,» = 00, if sup P(|Z,| > &) <7 forallmeN
n>N
my,r =0, if sup P(|Z,| > em) > 7 for all m € N.
n>N

If my, < oo define my, = my,. If the case My, = oo occurs for some N € N (and
consequently for all N > N as well), define my , such that (my;)nen is a monotonic
sequence in N converging to co. Therefore, the sequence (e . )ven With g9 = &1 is
monotonically decreasing and converging to 0 for all 7 € (0, 1).

Moreover, define recursively

k1=0

51 = 5m1,7.1
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oi
kl+1—m1n{k>k +1: EMry s < 2}

6i+1 = 8mki+1 Titl

An appropriate sequence (0p,)nen can be defined via

e R}

(ko—k1)—times (kz—k2)—times

Then, 9§, — 0 by construction and for all C' > 0 one has
Zn :
<| | > C’) < limsup P(|Z,| > 62)

lim sup P

n—0o0 571 n—oo

= lim sup P(|Z,] > 62)
N—>oon>N

< lim sup sup P(|Z;| > Emp, r. )
J00 >4 k>k; ‘

< lim supT;
J=00 i>j

= lim 7
j—)OO

=0,

that is Z,, = 0p(0n).

1.6. Proofs
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Testing for a Parametric
Regression Function in

Nonparametric Transformation
Models - A Quantile Approach

Let Gg = {gs : B € B} be a class of regression functions indexed by some finite dimensional

regression parameter § € B C R?. Consider the simple regression model
Y =¢g(X)+¢ (2.1)

with E[e] = 0 and € independent of X. While there is a large variety of goodness of fit
tests for the null hypothesis of g belonging to Gp

Hy: g€Us, (2.2)

so far only a handful of them have been extended to the semiparametric transformation
case and, to the author’s knowledge, none of those has been extended to nonparametric
transformation models.

In this chapter, methods known from the estimation of conditional quantiles are used to de-
velop a test for the hypothesis of the conditional mean fulfilling (2.2). Therefore, first a brief
overview of some nonparametric estimation techniques for conditional quantile functions
and of some tests, which already have been generalized to semiparametric transformation
models, is given in Sections and respectively. Afterwards, a new testing approach
is presented in Section and this test is extended to nonparametric transformation mo-
dels in Section Some thoughts on the asymptotic behaviour of the provided test are
postponed to Section

2.1 Nonparametric Conditional Quantile Estimation

There is a huge variety of literature concerning the issue of estimating the quantiles of a

real valued random variable Y given a (possibly multidimensional) covariate X. Before a
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brief insight into some of the methods is provided recall the definitions of Section Just
like there, assume that independent and identically distributed observations (Y;, X;),i =
1,...,n, of a joint distribution P(*¥) are given. An overview not only of the nonparametric
estimation of conditional quantiles, but also of some hypothesis tests for model assumptions
can be found in the dissertation of |(Guhlich (2013).

The arguably most common approach uses the so called “check-function”

pr(u) = u(T — Ipuco}) (2.3)

to estimate the conditional T-quantile of the distribution of Y conditioned on X = =z, for

example by

n
arg min L > 0 (Vi — K, (2 — X).
geR M
This approach is motivated by the fact that the true quantile can be expressed as the
minimizer

argmin E[p, (Y] — ¢)| X1 = z].

geR

See the book of [Koenker| (2005) for a detailed examination of this estimator and several
adjustments in various contexts. Some basic results had already been provided by [Stone
(1977) and (Chaudhuri| (1991). The last papers also mentioned local polynomial extensions,
which are also considered by Yu and Jones (1997). Horowitz and Lee (2005, 2007) intro-
duced a procedure based on instrumental variables to estimate the conditional quantile
function nonparametrically. Mu and He| (2007) applied check-functions to estimate a trans-
formation parameter in parametric transformation models on the one hand and a goodness
of fit test for the model itself on the other hand.
A second type of quantile estimators can be classified as the inverting estimators. There,
the basic idea is to estimate the conditional distribution function appropriately and to in-
vert this estimator afterwards at some level 7 € (0,1). Since nonparametric estimation of
the conditional distribution function itself is a topic of large interest and thus there exist
various approaches for such an estimation, these approaches provide various methods to
estimate quantiles of the conditional distribution function as well. See for example [Hall,
Wolff, and Yao (1999) for some ideas on estimating the conditional distribution function.
One class of such estimators for the conditional distribution function are the Nadaraya-
Watson-type estimators referring to the papers of Nadaraya, (1964) and Watson| (1964).
Some convergence results can be found in the paper of Devroye (1981). While Hall et al.
(1999) provided a monotonically growing estimator of the conditional distribution function,
Dette and Volgushev (2008)) used related techniques to obtain non crossing estimators of
the conditional quantile curves, that is, a with respect to 7 monotonically growing quan-
tile function. In this chapter, a smoothed version of the Nadaraya-Watson-type estimator,
which was treated for example by |[Hansen| (2004) and which was also applied by (Chiappori
et al. (2015), is used. With the estimator for the conditional distribution function can
be written similarly to as
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Although $ and Fy‘ x denote the same quantity, the latter notation is used throughout this

chapter. The corresponding estimator of the quantile function can be written as
A 1 ) .
FYlX(T]a:) =min{y € R: Fyx(ylz) > 7}. (2.4)

It is conjectured that after some adjustments the theory of this chapter can be applied to
other estimating approaches as well. Nevertheless, the usage of (2.4)) is accompanied with
some synergy effects reducing the complexity of the (anyway quite technical) proofs of this

section, especially when considering transformation models in Section

2.2 Previous Tests in Semiparametric Models

Here, a small insight into model specification testing in transformation models is given.
Note that many of those tests are strongly linked to the estimation approaches presented
in Sections and Up to now, there is no test which allows nonparametric estimation
of the transformation and regression functions at the same time. Therefore, only tests in
the semiparametric model

Mg, (Y) = 9(X) +e¢, (2.5)

where {Ag : 0 € ©} is a class of transformation functions indexed by a finite dimensional
transformation parameter 6 and 6y denotes the true transformation parameter, are mentio-
ned here. Specification tests in models like in general aim to justify some reduction of
the model complexity, which may result in faster or more precise estimators of the model
components. With respect to the regression function g such a reduction may consist in a
reduction of the dimension of the covariate or even in a parametric assumption.

Allison et al.| (2018) and |[Kloodt and Neumeyer| (2019) provided tests for the significance of
components of the covariate X in semiparametric transformation models, that is, if all of
the covariate’s components are necessary to describe Y. While Allison et al.| (2018)) exten-
ded the approaches of Bierens| (1982)) and Hlavka, Huskové, Kirch, and Meintanis| (2017),
Kloodt and Neumeyer| (2019) developed a test, which is based on the ideas of Lavergne,
Maistre, and Patilea (2015). Neither the first nor the second approach outperforms the
other procedure. The approaches of |Allison et al.|(2018) detect local alternatives with pa-
rametric rates, which is not the case for the test of Kloodt and Neumeyer| (2019). Kloodt
and Neumeyer (2019) in turn supplied a test statistic with an asymptotic distribution, that
is independent of the estimation of the transformation parameter, which in general does not
hold for the procedures of |Allison et al.| (2018), and introduced a fast bootstrap algorithm,
which performs as good as that of |Allison et al| (2018). The independence of the asymp-
totic behaviour of the test statistic and the estimation of the transformation function is a
desirable property that will be fulfilled by the statistic presented in this Section as well.
In the context of testing the null hypothesis of a parametric regression function in se-
miparametric transformation models, (Colling and Van Keilegom| (2016}, 2017)) developed
two classes of tests. One the one hand, they extended the approaches of [Van Keilegom,
Gonzalez-Manteiga, and Sanchez Sellero (2008) and compared the empirical distribution
function of the semiparametrically estimated errors to that of the parametrically estimated
errors (Colling and Van Keilegom (2016)). On the other hand, they generalized the ideas
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of Bierens| (1982), Stute (1997) and |[Escanciano| (2006) to develop procedures which were
called “integrated approaches” by them (Colling and Van Keilegom| (2017)). The main idea
of these integrated approaches consists in summing appropriately weighted estimated resi-
duals for some weighting functions that depend on some weighting parameter first (which
forms an empirical process with respect to the weighting parameter) and integrating the
square of this sum with respect to the weighting parameter. All of the procedures of |Colling
and Van Keilegom| (2016, [2017)) detect local alternatives with parametric rates, but require
a quite sophisticated and computationally demanding bootstrap algorithm. The methods
of Kloodt and Neumeyer| (2019)) are based on the ideas of Hardle and Mammen (1993 and
Zheng| (1996) and suffer from a slower convergence rate of detected local alternatives, but
provide a test statistic with an asymptotic distribution, that is independent of the esti-
mation of the transformation parameter. Furthermore, they introduced a fast bootstrap
procedure, which is competitive to those of (Colling and Van Keilegom, (2016, [2017)). Mu
and He| (2007) introduced a goodness of fit test for a parametric transformation (quantile

regression) model as a whole.

2.3 Testing for a Parametric Regression Function via the

Conditional Quantile Function

In Section some approaches of how to test for a parametric regression function were
presented. Afterwards, the main idea in Section [2.2] was to take these approaches and to mo-
dify them in order to obtain valid tests in semiparametric transformation models. Although
the presented approach will follow the same spirit, the tools used in this section slightly
differ from those in Basically, the influence of estimating the transformation parameter
in semiparametric models is described by an appropriate Taylor expansion, where asymp-
totic negligibility of higher terms of the expansion is ensured by appropriate integrability
conditions on the parametric transformation function and its derivatives.

In the infinite dimensional nonparametric setting, one has to proceed differently since on
the one hand Taylor expansions can not be applied as simply as for parametric transforma-
tions and on the other hand the available estimators of the transformation in general only
yield satisfying uniform convergence rates on compact sets. See for example the results of
Chiappori et al.| (2015) and |Colling and Van Keilegom| (2019). Therefore, a new testing ap-
proach, which is extended to nonparametric transformation models in part is presented
in this section.

Although aiming to test for a parametric regression function, the method provided here
is related to testing for a parametric quantile function. Already Chiappori et al.| (2015)
suggested the estimation of conditional quantiles. See [Zheng (1998), Bierens and Ginter
(2001)), Horowitz and Spokoiny (2002)), He and Zhu (2003) and [Horowitz and Lee| (2009)
for some testing approaches in the context of quantile regression or Zheng| (2000) for the
related question of testing for a parametric conditional distribution function. The test in
this section uses a Cramér-von-Mises-type test statistic based on the inverse function of a
kernel estimator of the conditional distribution function. In this regard, the testing appro-

ach differs from the tests mentioned above and, to the author’s knowledge, also from other
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tests in the literature. Hence, the asymptotic behaviour is examined in detail in Subsection
2.0.2)

2.3.1 The Test Statistic

From now on, the regression function is allowed to have an arbitrary intercept under the
null hypothesis. Usually in regression models, the intercept is estimated as a part of the
regression function anyway, so that this is does not reduce the generality of the model
severely. Although possible as well, instead of assuming Gp in to be closed with
respect to addition of constants the adjusted null hypothesis

Hy: geGp+R={x— gg(z)+c:pe€B,ceR} (2.6)

will be considered for reasons of comprehensibility. Here, 8 and c¢ are identified under
assumption from Section which will be introduced and discussed later.

Let (Y;, X;),i = 1,...,n, be realisations of model and let 7 € (0,1). Let F. be the
distribution function of € and denote the 7T-quantile of the conditional distribution of a

random variable Z (given X = ) by F,'(7) and Fy X(T\x), respectively. Due to
Fyx(tle) = BIY|X = @] + F7H(7) = g(2) + F (), (2.7)

there is a strong connection between the conditional 7-quantile and the conditional expec-
tation. Many Cramér-von-Mises-type tests like that of Hardle and Mammen (1993)) take
advantage of the fact that g € Gp is equivalent to (E[Y|X = z] — gg,(x))? = 0 for all
z € R and some By € B. Referring to , another condition, which is equivalent to

, is

(F;‘lx(ﬂa:) — gao(x) — F-H7))?2 =0 for all € R and some Sy € B. (2.8)
This condition can be translated to the context of as

(F;|1X(T]x) —gpo(x) —¢)2 =0 for all z € R and some fy € B,c € R. (2.9)

Let v be a weighting function with compact support in R%X, such that for all 7 € (0,1)

condition (2.9 and
v(m)(F;‘IX(T\x) — ga(x) —c)> =0 for all 2 € R and some By € B,c € R (2.10)

are equivalent. Thanks to 1j for all 7, x € (0,1) the function z FYlX(T]a:) —F;|1X (x]x)
is constant, so that equation (2.10]) can be extended to multiple quantiles. For this purpose,
let i be a finite measure with compact support in (0,1). Then, (2.10]) is equivalent to

min sup v(x)(F;llX(ﬂx) — gpo(z) —c)> =0 forall 7 € (0,1) and some By € B,
c€R x€RIX

so that

min /min/ Y\X (Tlz) — gs(z) — ¢)* dw p(dr) = 0. (2.11)

BeB ceR
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Equation (2.11]) will be the base of the test statistic. Recall the definitions of Section
and let K, h; and h, be some kernel functions and some bandwidths, respectively, and

define Kj, (y) = iK(%) as well as

) )
K(y) = K (u) du, Khn, (y) = Kp, (u) du,
dX dX
K(xlv xdx) - HK(J?Z), Khx(xlv 7xdx) = HKhx($Z)
i=1 i=1

and

_ b)) (2.12)

Now, estimate the conditional 7-quantile
-1 -1
Fy\x(7—|x) =g(x) + F. (1)

via FYlX(T]a:) and define the test statistic as

T, = nh gtgg /Igglé}/ Y‘X (t]x) — gs(x) — C)Qdaz,u(dT). (2.13)

Here and in the following, F;‘lx is assumed to be the quantile function if the inverse function

of Fy|x does not exist.

Remark 2.3.1 The inner minimization in can be done analytically by solving

% /v(x)(F;|1X(T]:v) —gs(z) — 0)2 dr = —2/v(w)(ﬁ';|1X(T]x) —gs(z) — c) dr =0,

that is
T, = nhx mln // Y|X Tlx) — gs(x) — 6/377)2 dx p(dr)
ax w) (Fyl (7]2) = gp(@) — (Fy )y (T]w) — gg(w))) dw) *
fe gg]rgl // ( Jv(w) dw )
dx p(dr)
" J o) (Fy i (7Iw) — gs(w)) d
. Jow F;‘XTU} —gg(w)) dw
Car = T o(w) dw (2.14)
U
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2.3.2 Asymptotic Behaviour of the Test Statistic

In the following, the asymptotic behaviour of T}, is examined. Consider the local alternatives

Hin: g(x) =gg,(x) + co+ cnlAp(x) for all z € supp(v) (2.15)

)

and some fixed [y € B, co € R and define

Yb :ggo(X)—FCo—F&.

_dx
Here, ¢, = n_%hx 4 and A, is assumed to be uniformly bounded in x and n. Similarly to

[£19), define

. _f”(x)(Fy ‘X(T|x) 95(x)) d
T Jo(x) de

As before, the conditional distribution function of Yj given X, the (integrated) joint density

(2.16)

of (Yp, X) etc. are denoted by Fy;|x, fvyx (po) etc. Let Dg and Hess denote the derivative

and the Hessian of a function with respect to 5. Let

0= /v(x) (f”(w)(D,Bgﬂo(x) — Dggp,(w)) dw)t

Jv(w) dw

(fv(w)(Dﬂgﬁo (z) — Dagg, (w)) dw) o (2.17)

[ v(w) dw
be positive definite (this will be the assumption in Section [2.7). Moreover, define

v(z)
—1 *
Fropx By (7)) 2 x ()2
Before the main result is presented, an auxiliary lemma is given. The assumptions are listed
in Section 2.7

k(z,7) = (2.18)

Lemma 2.3.2 Let 7 € (0,1). Assume model under |(A1))(A3){(A6) from Section
[2.7. Further, let

5 dx L i Ldx
hy * —0, hyhy > =0, hyhy * —0 (2.19)
or let [ K(w)?*wdw := ( [ K(w)?w; dw)J lody =UE ReX and
5 dx L _dx ax
hy * —0, hyhy > =0, hyhy *> =0, (2.20)
Then, one has
_ 2 D
nhy * // Y‘X (t|z) — FYO‘IX(7'|1‘)) drp(dr)—b=Z (2.21)

with Z ~ N(0,V),

—9 / ( / K(z)K(x + s) dx>2ds / fi{(z‘g; d

/ / </ I{U1<T}E(F;¥:§T}_T) M(d7)>2dm dugy (2.22)
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and

b—hg; / dw// k(x, 7)po( Y|X(T‘x) )( Po( Y0f|))((((;)!x) 33)>dxu(d7)

—hyhgcd;(/K(w)2 dw /QZIC(Z)K(Z) dz

//M%ﬂﬁmﬂ%&ﬁ@%@@— (@Bg”x»mwuﬂ
i ols-S5) s

/K(w)dew—lrh /K )2 t// (@, 7) [ O oyl (7). )

po(Fyl (7la), @) g2

— fX(x) Wpo(F}jolX(T’x),U) N
pU(F}jlx(ﬂx)’I)Q 0?
}‘X(«T)Q fo(x) dx p(dr) w dw.
Here, ;—;fx(x) denotes the Hessian of fx. If
_dx _dx
hy * —0, hyhy > =0 (2.23)
or [ K(w)*wdw =0 and
5 dx _ay
hz * —0, hyhy > —0, (2.24)
b simplifies to
- 2 v(z)
=it [ Kwpaw [ £ i f 2wm+d> (2.25)
€

The proof is given in Section [2.8.2

Remark 2.3.3 1. Condition requires 3 — dTX > 0, that is dx < 5, leads to

26

dx <3 and even to dx = 1. Principally, b can alternatively be defined without

any of these conditions as

b= ax // w(x, ) KK%(F;OTX(T@) — go(X1) —co—€1) — po(Fyi)((((;m),x))z

K, (z — Xl)Q] dx p(dr). (2.26)

There is a trade off between how simple b is and how strict the bandwidth conditions

are.

2. Let o € RYB. Then,

Q0 = / () ((Dﬁgﬁo () ”(“?fo)ﬁzlg}) d“’) a> e
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— /v(x) (D,Bgﬁo () — / v(wﬂfiﬂ)@;@:)a dw) 2 dz,

that is, positive definiteness of Q2 is only violated if there exists some a € R4« #£ 0,

such that the map x — Dggg,(x)c is constant with respect to x. For example, this
is the case, if Gp already contains constant functions (e.g. polynomial functions with
intercepts). Such a case will be excluded by assumption|(A7) However, the test can

be applied for the general class as well (see the explanation below).

In the following, the assumptions (2.19)) and (2.20)) are relaxed and expression (2.26) is used

for b. The minimization with respect to ¢ may cause the existence of multiple minimizing
parameters S € B, especially if Gp is already closed with respect to addition of constants.

To derive the asymptotic behaviour, it will be assumed that

//v(:v)(F;OTX(y]:U) —gs(x) — cpr)?drp(dr) >0 forall By#pB€ B,

that is, the class Gp is possibly shrunk to avoid multiple solutions 8 of the outer minimiza-
tion. Nevertheless, since the value of the test statistic is not influenced by this shrinkage,

the resulting test can be applied in the general case as well.

Theorem 2.3.4 Assume model (2.1). Further, let[(A1}{(A8) from Section [2.7 hold and
let b,V and Z be defined as in Lemma[2.53.3. Then,

T, —b—36,2 7,

where

- LI (- L5t

e S I

Under Hy (that is A, =0 and thus 6, = 0), this leads to T), — b Bz

The proof can be found in Section Later, a hypothesis test will be deduced from
Theorem To see whether 6, lies above some threshold § > 0, that is, a test based on

the asymptotic distribution of T},, would detect the local alternative, define

An(z) = An(z) — fv(}”i)(i;(;”;ldw
as well as . d

R
Then,

Q= / o(2)D(2) D(x) dx.
Moreover, it can be shown by similar arguments as in the proof of Remark below that

3o = (10,1 [ v(a) (A(o) = [ o)A, (0)D(0) dw)lef)(x)tfdx.
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Let B be the minimizer

B = arg min /v(:c)(An(a:) - D(m)ﬁ)Q dx.

BeB

By standard calculations, it can be shown that
=01 /v(x)An(x)f)(x) dz

and

n= [ o(@)(Bale) - D(@)3)” do.

that is, &, is greater than zero, if A,, as a function is linearly independent of the components
of D. For some fixed A, = A, 3 and §,, are independent of n, so that

op=0= /v(m)(&(m) — D(:U)B)Qdac > 0,

if A is linearly independent of D. Such an orthogonality condition is quite intuitive and is
often assumed explicitly, e.g., by Hardle and Mammen| (1993). See the proof of the following

remark for more details.

Remark 2.3.5 1. 8, can alternatively be expressed as

2
60 = ([0, 1]) / v(@)An(@)” dz — (0, 1) (fv}mzﬁs(ﬁdx)

— (o, 1])</v(x)An(:L") <Dﬁg,30 (z) — fljﬁvg(fzg)ujliuiwl) d$>

Q—1< / o(2)An () (Dﬁgﬁo () 1 l}ﬁfzié”;ii“) dm)t

= 61,11 + 52,71 + 53,71-

2. Let model hold for some sequence (3, with ||6, — Bol| = ¢n and Ap(x) =
98 ()98, (7)

Cn

is the same as for g(x) = gg,(x) + co. This is consistent with g = gg, + co + cnAp =
93, +co € Gp +R. The proof can be found on page .

. Then, 6, = o(1), that is, the asymptotic behaviour of the test statistic

The easiest way to construct a test with asymptotic level « for a given o € (0,1) may
consist in estimating b and V' by some estimators b and V and to reject Hy if T, > b+
\/‘T/ Ul—q, Where uj_, denotes the (1 — «)-quantile of the standard normal distribution.
The corresponding test looks like

(Y1, X1, ..., YV, X)) = Lt T} (2.27)

See Section B.5 for more details.

Theorem 2.3.6 1. Assume[(A1)[(A3)[(A5) from Section[2.7 as well as

inf  f.(F7Y(7)) inf  fx(z) > 0. (2.28)

TEsupp() z€supp(v)
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Moreover, let fx, f- and gg, be uniformly continuous and assume

log(n) log(n)

28 )
nhgx nhy

hz;hya

Ifl; and V are some estimators of b and V', such that

dx

d
b= op(nhs® ) and VU = op(nthX),
one has
P®(Y1, X1, ., Yo, X)) = 1) = 1

under fized alternatives. Especially, the test is consistent under|(A1)H(A8) with fixed
Cny Ay

2. Assume for A, =0 and let B, V be some estimators of b and V with

b—b=o0p(1) and V —V =o,(1). (2.29)

Then,
P(®(Y1,X1,...Y,, X)) =1) > a.

The proof is given in Section [2.8.5
Remark 2.3.7 When considering a quantile regression model
Y=¢9g(X)+¢

for some fized T € (0,1) with € not necessarily independent of X and Fafpl((ﬂX) =0 almost
surely, the test (without minimizing with respect to ¢ and with p being the Dirac measure

in T) can still be applied to test for the null hypothesis

Hy: g¢ge€gp.

It is supposed that after replacing the product density of (X,e) by the joint density fx s in

and assuming

inf  fyo(,0) >0,
z€supp(v)

the presented results remain valid for testing Hy, although in general for different b and V.

O

2.4 Extending the Test to Nonparametric Transformation
Models

In this section, the nonparametric transformation model
h(Y)=g(X)+e (2.30)
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is considered. Denote the conditional distribution function of A(Y") conditioned on X = x
by Y‘X(y|:z:) = Fpyyx(ylr) = P(h(Y) < y|X = x). Let h be a monotonic estimator of h
that fulfils

h(y) - h(y) = i;wm,xk,y) + (%) _ o(%) (2.31)

uniformly on compact sets, where ¢ fulfils in Section Examples for such estima-
tors are those of |(Chiappori et al|(2015) and |Colling and Van Keilegom, (2019). The main
advantage of basing the test statistic on the conditional quantile (instead of the conditi-
onal mean) consists in the ability to transfer the convergence rate of the nonparametric
transformation estimator to the estimated quantile, which is in general not possible for the
conditional mean. To illustrate what is meant by this consider the problem of estimating a
specific quantile (F: V] " ) H(r|z) for some 7 € (0,1) of the conditional distribution function of
h(Y') conditioned on X = z. If the estimator for the conditional distribution function
in the untransformed model and its inverse are modified by replacing Y with iL(Y), this

leads to the estimator (F{}‘X) L(7]x), where

a3 5h x
F¢|X<y|x>=pff(; )> and Py, Z/chuy h(Yi)Kn. (z — X5).

Since K was assumed to have a compact support, for example [c1,c2] C R for some ¢; <
cs € R, the value of ﬁﬁ(y, x) for some z € R?x 4 € R only depends on those values of h that
belong to the interval [y + hyci,y + hyca]. This implies that h (for this illustration assumed
to be strictly increasing) only needs to be evaluated at [h~1(y + hycl),ﬁ_l(y + hyca)l,
which indeed is a compact set. Translating this to y € [y1, yQ] h needs to be evaluated
at [h= (y1 + hyc1), h ' (y2 + hycz)]. In the proof of Theorem [2.4.1| the randomness of this
interval is taken into account as well, but together with the fast convergence rate of h
to h this will be the main reason for the asymptotic negligibility of the transformation
estimation.

In the following, quantities which depend on the estimator & of the transformation function
are marked with an upper h (e.g. T F h| x> D ), whereas quantities which depend on the
true transformation function h are marked with an upper h (e.g. T, F h‘ L p, {}l P ph).

Theorem 2.4.1 Assume model underm A9 )| for A, = 0 and with F: Y‘X repla-
ced by ( Y|X)_1. Then,
Th = nhy? / i / - — o) da p(d
w =nhs" min [ min (B x) " (7]e) — g(x) — ¢)” da ()
. 2
= nh, — — 1
nh rﬁneljrgl/rcrélﬂg/ Y|X “7|2) — gs(x) — ¢)” dx p(dr) + 0p(1)
=T +0,(1).

The proof can be found in Section m The asymptotic behaviour of T, ;} follows directly
from Theorem [2.3.4] and Theorem 2.4.1]
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Corollary 2.4.2 Assume model under [(A1)H{(A9) from Section [2.7 for A, =0 as

well as . Then,
T -bvB 2z

with Z ~ N(0,V),

—9 / < / K(z)K(z + s) dx)st / fi{(z‘g; d

e

—dTX 1 —T
b=hy /K( fX / ) wu(dr) + o(1).

As in the nontransformation case, a corresponding test can be defined via

and

MY, Xy, ., Y, X)) = I{Tﬂ>é+ﬁul,a}' (2.32)

Theorem 2.4.3 1. Let 7 € (0,1) and assume[(ATJ[(A8)[(A5) from Section[2.7] as well
as . Further, let fx, fo and g be uniformly continuous and assume

log(n) log(n)
nhgx7 nhy

hCC7h‘y7 —>0

Let h be uniformly consistent over compact sets. IfI; and V are some estimators of b
and V', such that

b= op(nha) and V7 = op(nhi?),

it holds that
P(@"vi, X1, ..., Y, X,) =1) > 1

under fized alternatives. Especially, the test is consistent under |(A1)|(A3)H(A9)

with fized alternatives.

2. Assume for A, = 0 and let b,V be some estimators fulfilling .

Then,

P(®"M(Y1, X1, ... Y, X)) = 1) = a.
The proof is given in Section [2.8.7}

Remark 2.4.4 1. Note that the asymptotic distribution of Tf;‘ 18 not only independent
of the estimation of the transformation function, but also independent of the trans-
formation function h itself, since V and b only depend on the distributions of X and

e.

2. In principle, if equation s valid under , it should be possible after mi-
nor adjustments to extend Theorem to local alternatives like in as well.

Since to the author’s knowledge there are mo results regarding the convergence of a
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nonparametric estimator h to h (especially no results as ) in the context of local
alternatives with respect to g so far, this idea is not pursued further. Note that this
question heads in the same direction as Lemma where local alternatives with

respect to the transformation function are considered.

O

2.5 Some Thoughts on the Behaviour for Finite Sample Sizes

In this section, a brief overview of the behaviour of the test statistic for small sample sizes is
given. Not claiming to present a perfectly elaborated analysis of the tests given in and
the aim is to point out some advantages and disadvantages the given tests might be
accompanied with and to give the author’s view of possible adjustments worth to consider

during future research.

As stated in Theorems and some estimators of b and V fulfilling (2.29) are needed
before the tests in (2.27) and (2.32) can be applied. Although conceivable for general p,
only the Dirac-Measure y = 6, for 7 = % is treated here. Consequently, equations 1}

and (2.25)) lead to

s x+s>dw>2ds/fiz“;§2dw</;<f{u<;}—;>2du>
A ;/(/K “”x) fx

s f ww w/ffg)

Some of the components in the expressions above can be calculated explicitly. For example,

2

and

if K is the Epanechnikow kernel, one has

/</K($)K(l‘+5)dx>2ds:;g; and /K(m)2d1‘:§.

Hence, only f.(F- ! f

dw and f

Ix w) f
For the integrals thls can be done by
1 1 <~ v(X;)? 2
— / dw and — Z })7> ~ v(w) 5 d
P fx Px(w n fx(X)? ) fx(w)

where fx is the estimator defined in . f-(F71(3)) in turn can be estimated by
% Dot U(Xi)Khs (FY|X(%‘Xl) - Yi)
% Z?:l v(X5)
in model (2.1) and in model (2.30) by
5 i (X Kn (B ) (31X0) — h(Yd))
%Z?:l v(X5)

for some appropriate bandwidth h..
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Theorem 2.5.1 Assume model and|(A1)H(A9) as well as

dx
nh2xht = 0o, nRZXRATT) 00 and  he=o(ha® ).
Then,
1 & X; dx
1 &) [ vw) dw + o(hy? ), (2.33)
na= fx(Xi)? fx(w)
1 & v( w)? ax
— dw+ o(hg® ), 2.34
At o). (230

s (X, A’E—lli—Ai ix
D (X)th((Fy‘X) (31X:) = h(¥2) :fE(F1<;>>+O(hw2 ), (2.35)

%Z?:l v(X;) :

so that b and V are consistent estimators of b and V', respectively. The assertion also holds,
if the transformation function h is known, that is, under model .

The proof is given in Section [2.8.8

Remark 2.5.2 1. Theorems[2.5.1) [2.53.0| and [2.4.5 ensure that after plugging the esti-
mators from above into the expressions for b and V' the tests presented in and
, respectively, are indeed consistent level-a-tests. Note that in addition to the

relatively strict bandwidth conditions used in the last Theorem, the expression for b

from itself requires and thus dx < 3.

2. With respect to the asymptotic behaviour of the test statistic and the examination of
this behaviour, there are many similarities to the approach of |[Hdrdle and Mammer)
(1995). Since some of the asymptotically negligible terms converge to zero at quite
a slow rate, they advise against using the asymptotic distribution in their model to
construct tests as is or via some plug-in-approach. Possibly, some of
their ideas can be transferred to the context here to improve the behaviour of the tests

for finite sample sizes.

This theoretical background in mind, some observations (Y7, X1), ..., (Y, X,,) are simulated

from the underlying models

Y = vyA(X) + X — % +¢, (2.36)
hY)=~A(X) + X — % +e (2.37)

in the following, where X ~ U([—2,2]) and € ~ N (0, 1) in both cases. In h is chosen
to be the Yeo-Johnson transformation with parameter equal to 8 = 1 (see ), that is
the identity. Note that in contrast to model , the transformation function will be
estimated when model is mentioned. The parametric class of regression functions to
test for is chosen to be G; = {z — bz +a : a,b € R}, that is, in terms of the null hypothesis
in , it will be tested for Gg + R = Gy with Gg = {z + br : b € R}. A(X) = X? and
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A(X) = exp(X) are used as deviation functions, in both cases with v = 0,0.5,1, 1.5,2,2.5, 3.
Further,

3 1
K(z) = Z(l — a:Q)I{|x|§1} and v(x) = 51{\x|§1}

are used as a kernel and weighting function, respectively. For the implementation, the
language R as well as the already implemented functions integrate and h.select (with met-
hod="cv’) for integration and bandwidth calculation were used. For the sample size of
n = 100 the normal reference rule (Silverman| (1986)) was applied since the cross validation
bandwidths tend to be too small to ensure f x > 0 on the support of v.

Table shows some rejection probabilities of the test in for sample sizes of n =
100, 200, 1000 with m = 200 repetitions to estimate the rejection probability. First, the
asymptotic test seems to be very conservative since under the null hypothesis the test does
not even reject once during all of the repetitions in each of the scenarios. The reason for
this can be seen in table Although only the case n = 200 and v = 0 is considered
there, the same conclusions can be drawn for the other scenarios as well. Table lists
the means of b and V as well as the theoretical quantities from the asymptotic distribution
and the empirical mean and variance of the test statistic. Since b depends on the random
bandwidth h,, the mean over all m = 200 corresponding values of b was taken. Although
the estimation is very sensitive with respect to estimation errors in f.(F-1(3)), the ap-
proximations of b and V are reasonable. However, mean and variance of T" seem to be far
below their asymptotic counterparts, which results in an extremely conservative test. It is
not clear, if estimating the more complex expression for b given in Lemma [2.3.2| would lead
to better results. Applying this expression would have been much more computationally
demanding on the one hand and does not even necessarily improve the test’s performance
on the other hand since these estimators might be accompanied with new estimation errors
and the estimated variance would be unaffected by those adjustments. Second, this phe-
nomenon not only lowers the rejection probabilities under the null hypothesis, but those
under the alternatives as well resulting at least in some models in rather small power.
Some rejection probabilities for the transformation model are listed in Table Due
to the choice of the transformation parameter, model coincides with model ,
that is, the only difference of the tests consists in the estimation of the transformation
function. While for A(X) = exp(X) the test ® outperforms ®” by far the latter seems to
perform slightly better for A(X) = X?2. Nevertheless, note that both tests in general test
different null hypotheses, which makes a comparison difficult.

Due to the mentioned drawbacks it is not advisable to apply the asymptotic tests directly.
Instead, at least the estimators of b and V have to be adjusted. A similar conclusion was
drawn by Hardle and Mammen| (1993) in their scenario. The author would suggest to apply
some bootstrap procedure to mimic the behaviour of the test statistic as a whole instead
of only the mean and the variance. Because of the similar structure of the given test to
that in Section [5| it is conjectured that an algorithm similar to that of might work.
Nevertheless, although due to the dependence of b on f.(F-!(7))? some procedures like
the wild bootstrap introduced by |Liu| (1988) and applied for example by Hardle and Mam-
men (1993) might not lead to consistent estimates of the critical values, already simpler

algorithms, probably based on smoothed residual bootstrap like in the paper of [Neumeyer
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et al.| (2016, might work. Since the convergence of nonparametric estimators of the trans-
formation function h in model ([2.30)) is limited to compact sets so far it is conjectured that

applying these approaches might require to estimate the residuals parametrically.

Sample Size n = 100 n = 200 n = 1000
Alternative\Level a=005| a=010 | =005 | «a=0.10 | «a=0.05 | a«=0.10
v=0 0.000 0.000 0.000 0.000 0.000 0.000
v =0.5 0.020 0.040 0.040 0.060 0.715 0.805
y=1 0.240 0.320 0.535 0.600 1.000 1.000
A(X) = X2 y=15 0.640 0.775 0.955 0.980 1.000 1.000
v =2 0.875 0.940 1.000 1.000 1.000 1.000
v =25 0.970 0.995 1.000 1.000 1.000 1.000
v=3 0.980 0.990 1.000 1.000 1.000 1.000
vy=0 0.000 0.000 0.000 0.000 0.000 0.000
v=0.5 0.005 0.020 0.015 0.020 0.075 0.140
y=1 0.055 0.070 0.085 0.145 0.865 0.905
A(X)=exp(X) | y=15 0.160 0.210 0.355 0.420 1.000 1.000
v =2 0.390 0.465 0.585 0.670 1.000 1.000
v=25 0.560 0.620 0.810 0.850 1.000 1.000
=3 0.710 0.755 0.905 0.950 1.000 1.000

Table 2.1: Rejection probabilities for the nontransformation model l} and sample sizes
of n = 100,n = 200 and n = 1000.

Quantity b 1%

mean of the true asymptotic values | 5.09 | 17.04

mean of the estimators 5.21 21.5

empirical mean and variance 1.34 | 1.87

Table 2.2: Estimated b and V compared to the true asymptotic values and the simple
empirical mean and variance in model 1D with n =200 and v = 0.
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Sample Size n = 200 n = 500 n = 1000
Level a=005| a=010 | a=005 | a=0.10 | a=0.05 | a=0.10
v=0 0.000 0.000 0.000 0.000 0.000 0.000
v=10.5 0.040 0.075 0.205 0.310 0.795 0.835
y=1 0.715 0.820 1.000 1.000 1.000 1.000
A(X) = X2 vy=1.5 0.990 0.995 1.000 1.000 1.000 1.000
y=2 1.000 1.000 1.000 1.000 1.000 1.000
¥=2.5 1.000 1.000 1.000 1.000 1.000 1.000
vy=3 1.000 1.000 1.000 1.000 1.000 1.000
vy=0 0.000 0.000 0.000 0.000 0.000 0.000
v=0.5 0.000 0.005 0.005 0.010 0.025 0.045
=1 0.000 0.005 0.025 0.045 0.175 0.280
A(X)=exp(X) | y=1.5 0.010 0.015 0.085 0.115 0.430 0.530
=2 0.000 0.000 0.140 0.185 0.570 0.660
=25 0.005 0.015 0.130 0.185 0.535 0.625
=3 0.015 0.025 0.135 0.205 0.490 0.580

Table 2.3: Rejection probabilities for the transformation model 1| and sample sizes of
n = 200,n = 500 and n = 1000.

2.6 Discussion

A procedure for testing the null hypothesis of a parametric regression function and an ex-
tension to nonparametric transformation models have been developed. Although the testing
approach itself might be of interest as well, the main contribution consists in providing a
test that allows nonparametric estimation of the transformation function. To the author’s
knowledge, this has not been done before in the literature and might open the door to a
new general class of goodness of fit tests.

There are mainly two aspects of potential improvement. On the one hand, as was men-
tioned in Section an appropriate bootstrap procedure could be applied to mimic the
asymptotic behaviour of 7T, and Ti‘ better than when using the asymptotic distribution.
Such a phenomenon was already observed by Hardle and Mammen| (1993). On the other
hand, the detection of local alternatives can be possibly improved to detecting parametric
rates by changing the test statistic. One way could consist in applying empirical process
approaches like|He and Zhu| (2003|) and [Horowitz and Lee (2009) did. For example, consider

n

. 1
Z(r,me) ==Y E(&(r), X, x,€) (2.38)
i=1
with &;(7) = h(Y;) — (Fé|X)_1(T|Xi) and some appropriate function Z. If = is chosen to be
a weighted indicator function of the form Z(&(7), X, z,e) = v(Xi)I(z(r)<e}, this leads to a
weighted residual process

n

N 1 1
Z(r,z,e) = n ZU(Xi)I{fz(Yi)—(Fz}‘X)—l(T|Xi)§e} ~ 0 Z”(Xi)l{aéeJrF;l(T)} (2.39)
i=1 i=1

similar to that treated in|Akritas and Van Keilegom (2001)). Perhaps some of the techniques
applied there are helpful for the asymptotic analysis of (2.39). In the context of quantile
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regression, it is more common to use residuals of the form &;(7) = I (h(¥i)=gax)y T for
some parametric estimator 95 instead of &;. Nevertheless, processes as in or
can be possibly used to construct a hypothesis test that is sensitive to faster converging
local alternatives.

Note that the general idea to replace the estimated conditional mean by the estimated con-
ditional distribution function is not limited to testing for a parametric regression function.
Tests of similar type as ® and ®" to test for significance of components of the covariate X
are conceivable as well. Moreover, other nonparametric estimators of the transformation
function can be applied as long as they fulfil certain properties, e.g., as . Especially,
it should be possible to obtain an even more general test in the context of heteroscedastic

transformation models by applying the estimator, which will be presented in Chapter [4]

2.7 Assumptions

Let ¢,r € N.

(A1) Depending on which model is considered, models (2.1) or (2.30) hold with & inde-
pendent of X. Let (Y;, X;),i = 1,...,n, be independent and identically distributed
observations from the corresponding model.

dx
1

(A2) One has g(z) = gg,(x) + co + cnAp(z) with ¢, = n~2hy * and some uniformly

bounded and continuous function A,, (both uniformly in = and n).

(A3) The kernel K is r-times continuously differentiable with bounded support. Moreover,
one has [ K(2)dz =1, [2!K(z)dz=0foralll =1,...,q— 1 and [|29K(z)|dz < cc.

(A4) The bandwidths h, and h, fulfil

thX
e s o0, (2.40)
log(n)?
dx (r+1)  2(r41)
nhy * hy T — o0, (2.41)
3
nlog(n)_%hg"hﬁ — 00, (2.42)
dxr 4(r+1)
nhy "t hy Tt — o0, (2.43)
o Ddx
nlog(n)  3hy? h12/ — 00, (2.44)
Vvnhl — 0,
Vnhi — 0.

(A5) v is uniformly continuous with compact support.

(A6) fx and gg, are g-times continuously differentiable. f. is g-times continuously diffe-

le]—o00 0 92 le| =00

rentiable with bounded derivatives. One has % fe(e) » pezfe(e) — 0 and

inf  f(FZN1)) inf  fx(z) > 0.

TEsupp () z€supp(v)
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(A7) B C R is a compact parameter set and the function (8, z) + gg(z) is two times con-
tinuously differentiable on B x supp(v) with respect to both components. Moreover,
it holds that [ fv(:n)(F;O}X(yu) —gp(z) — cgr)? dx p(dr) > 0 for all By # B € B.

(A8) Q is positive definite.

(A9) The estimator h of h is strictly monotone and fulfils (2.31). 1 fulfils E[¢(Y, X,y)] =0
for all y € R. For all compact sets C C R the function value ¥ (y;,x1,y) is uniformly
bounded in (y1,z1,y) € RXF! x C.

Remark 2.7.1 (i) The standard assumptions hy, hy = o(1), nhX nh, — oo are implied

by .

ax
T4

(ii) Together with ¢, = n"3hy

the equations (2.41)—(2.44)) imply

Vet ct log(n) nic c2 log(n)
P e S— y -1 0 and 1idx;3
hy ha I hy nThEX hi

(iii) [(A3) and|(A4) are fulfilled for K (u) = W1-u?)3(1- %uz)l[_m} (u) (thatis q =4
andr =2), dx € {1,2} and hy = hy = ne (see|Hansen (2009)).

(iv) Due to F;OTX(TM) = gg, (%) + co + F1(7), |(A6) implies

inf Fl — —¢g) > 0.
resupp(vl)r,lﬂ'esupp(#) Fx ($)f5( YO\X(TL%) 9Bo (x) CO)

2.8 Proofs
Before proving the main results of the Sections [2.3] and 2.4 an auxiliary lemma is given.

2.8.1 An Auxiliary Result

The following Lemma yields an asymptotic expansion for the difference of the conditional
quantile function and its estimator F;‘lx(ﬂx) Recall model 1' under the local alterna-
tives Hyp in (2.15) and Yy = gg,(X) + co + .

Lemma 2.8.1 Assume|(A1)H{(A5). Then,

Fy i (rla) = Byl (rle)

1 L po(Fy y (7)), ) 1
= fy(]'X(FﬁX(T,x)m (fx@r)p(FYOTX(TlU),ZU) _bo }})l(X(x)Q fx(x)> + 0p<\/ﬁ>
=0p (n_%)7
Fy i (rla) = Byl (7]2)
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_ 1 1 _ B (FY_'()|X(T"T)7$) )
fYO|X(F;0}X(T|.%')‘x) (fX( ) (FYolX(T’l“)ym) Fx(@)? fx(x)) (2.45)
1
“( )
= op(n_i)
and
Fyl(rla) = Byl (7o)
- nfyolx (Fyy x (712)]2) fx () ZK’W Fyox (Tl2) = 950 (Xi) — co — 3)
1
K, (2 = Xi) An(Xi) + 0p <\/ﬁ> (2.46)

uniformly in x € supp(v) and T € supp(u).

Proof: Denote the j-th derivatives of K and f. by K and fg(j ), respectively. For appro-
priate y; € R one has

ﬁ(yv SU) - ﬁo(y7 $)

1 n
EZ IChy Yy— gﬁo Xi) —co— & — cnAn(Xi)) — ’Chu(y Q,BO(X ) —co— 51))

K, (z — X;)

n r—1 . A ‘

Xi) —co— & —1)T A, (XG) T

PN (y e e X
i=1 j=0 Y hy (J+1)!

(_1)T+ICZ+1An(Xi)T+1

K — X,
WK, (2 = Xi) W 1 1)!

3\*—‘
||M:

Thanks to|(A2)[and (2.41)), one has (for an appropriate constant C' > 0)

Cartl1 &
< hr+1 EZ ’Khz(.’lf _XZ)|
Y

i=1

1
~o(55)
Moreover, integration by parts yields

. — X1)—co—¢; '
B[ oo (1= =i, g, ]
Y

( 1)r+1 r+1A ( )r+1
hyt(r 4 1)!

Y KK - X)
=1

/ / h’“ <y gﬁO(hi CO_e)Khx(ﬂf—w)An(w)j“fg(e)de Fx(w) dw

:/<[_%K(j—1)<y_gﬁo(72/—co—e)fg(e)]iooo
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n / hng(j—l) (y - 960(12) —C— e>f5(1)( )de) Ky, (z — w)Ap (W)t fx (w) dw

Y

:/VjK(y—%ﬂﬁj_%_e>ﬁ”@kamuwwwAAwV“ﬁdew

/K My — g () — o — hye) de K, ( — w)An(w)* fx (1) duw

Dy = ggo (w) = co)An(@)’™ fx () + o(1)

uniformly in y € R,z € supp(v) for all j =1,...;r — 1. (2.41) and (2.42) imply

2(j+1) log( )
hgx h2;+1

forall 5 =1,...,r — 1, so that

1 n ) Y —gp,(Xi) —co—&i K (w_X‘)(_l)j+1c¥;+1An(Xi)j+1
nz h ha ' R4+ 1)
i=1 v (J+1)!

Y

BIEAVES D , Xi) —co— '
= (i)l—dl > (K(J) (y 95 (Xi) — o €Z>Khz (2 — Xi)An(X;)*!
thy (] + 1)' i=1 hy

—E [K(j) (y — 9o (X;L) . El)Khz (z — Xl)An(Xl)j+1:|) +0p <\/15>

Y

_ o ([ los(n) o <1>
n, P\ \ ndxn, ) T P\Vn

(%)

for all j = 1,...,7 — 1 and uniformly with respect to x € supp(v) and with respect to y

in some compact set, where the second to last equality follows from the results of Hansen
(2008)) (see section |1.1]). Hence,

Py, ) — po(y, ) = —— ZKhy Y — g5, (Xi) — co — i) K, (x — Xi) An(Xi) + Op<\/1?z)
= Op(cn)
= op(n_%). (2.47)

uniformly on compact sets with respect to y and uniformly in = € supp(v). Since (2.43)

and (2.44) imply

dx (5+4) 211
nlog(n) T h, 7 h2 = o0 (;» %g(;)l = o)
nzhxxhyﬁ_
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for all j =1,...,7 — 1, a similar reasoning leads to

Frixlz) = frox (ylz) = 0p(n4)

uniformly on compact sets. These asymptotic expressions will be used to obtain a similar
expression for F;‘lx(ﬂx) —F;llx(ﬂx). Again, Theorem 2 of Hansen (2008) or more precisely
the adjustments discussed later in the proof of Lemma [4.2.12| combined with ensure
that

. _1 5 _1 d
po(y, ) —po(y,z) = op(n~7), fx(z)— fx(z)=o0p(n"7) and @fmx(ylw) = 0y(1)
uniformly on compact sets, so that Lemma leads to

FY0|X(?J\33) — Py, x (y|x)

_ Po(y,z)  poly, )
fx(@)  fx(@)

L hoy.2) — pol ) — P (@) — (@)

~ x(@) fx(@)?
x(@) = fx@) (. 2) — . ~po(y, ) (fx () — fx(x))
o) (n(0.2) = o) e )
_ 1 — T _ o) z) — fx(z)) +o L
- fx(af)(po(%x) pO(@/? )) fX(x)Q (fX( ) fX( ))+ p<\/ﬁ>
zop(n_i).

and

(B 7) — po(w.2)) — 2UD (F () — fx(a))

N 1
Fyx (y|z) — Fyy x (ylz) = @) Fx(@)?

x ()

Since for an appropriate y* between F}:ﬁx (1|x) and F;OTX (1|x)

0 = By (Byy (rlo)le) — Fyyx (Fy; y (rlo)le)
= By (Fy [y (rlo)l) + fyx (Fy (7)) (B (7o) = Pyl (7))
45 B (1e) (B (rlo) = Byl (712)” = Frgpx (B (rlo)o)
= Fy|X(F;JX(T|:r)|x) - FYO|X(F}%TX(T|ZL‘)|1‘)
+ Sy ix (B (7]2)]a) (£5  (7]2) = Fy | (7]2))
T (Frix By (o) @) — fypx (Fyg b (1) [0)) (B (rl) — Byl (7))
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O -~ A
+ gy 1) (B (7l2) = Py (7la)°

due to the continuity of Fy|X and Fy;x, it holds that F;|1X(T|x) - F;OTX(TM‘) =0 (nfi)

uniformly in x € supp(v) and 7 € supp(u). Moreover, note that

Frix(lz) = froix (yle) = Olen)

uniformly on compact sets and that ¢,n~4 = o(n"2). Hence,
0 = Fyix (Byx (7)) — Fyyjx (Fyp by (7))
= Fy|x (Fy, ¢ (7|2)|2) = Fy x (Fy, | (7]2) @)
+ fix By () ) (Bl (71) = Byl (710) + O (B (7o) = Pyl (712))?)
0, (i (i (1) = i (s (1) (y (rle) = Flyrla)) + (=)
= Fyx(Fy;ly (7)) = Fyx (Bl (rla)la)

_ A _ 1
+ fYo\X(Fyo‘lx(T‘x)‘m) (Fy\lx(ﬂx) - Fyo\lx(T‘x)) +0p (\/ﬁ)
uniformly in = € supp(v) and 7 € supp(p). Due to|(A6)] this in turn implies

Fyi(rla) = By (7])

B Fyx (Fy |y (Tl2)|2) = Fy x (Fy, [ (7]a)]z) < i )
Frix (Fy x (1]2)|) P\ Vn

- L L 7po(F;OTX(T\x),x)A 1
" hox (B (rla)le) (e Filstrieno - 2005 e ) oo )

The same expression can be obtained for Fy. }X (1|z) — F;O TX (7|x) when replacing p by po,

so that (see (2.47))

po (Y, A 1
- fYolX(F;OTX (T|2)|z) fx (x) (pO(FYo}X(ﬂx)’ z) — p(FYO‘IX (1), l‘)) + 0p <\/ﬁ>

n

- - ol TIT) — i) —Co— &g
= T By i 2 e ol (719) =0 (X0 =0 =€)
Kp, (r — Xi)An(Xi) + 0p (;ﬁ) )

2.8.2 Proof of Lemma |2.3.2

Thanks to Lemma [2.8.1| the difference F;O}X(ﬂx) - F;O}X(ﬂ:z:) can be written as

Frlo(rla) - Fyl(rla)
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= : INS (L e b (e o
- fYoX(FY()lX(ﬂx)’.’L‘)n;(fX(x)]Chy(FYoX< ) — g8, (Xs) — co — &)

AL P

uniformly in x € supp(v), so that

dx

nhy® /v(m)(ﬁ%}x(ﬂm) - F;OTX(T“T))2CZ.%

=n = v(r ! S L Fol (7| —Cco—
=1t [ oo G & (e Bila(rh) =000~ =)

Yo|X i=1

e S
1
()

n

_nh:c // <fY0|X y|X (T]x)|x) n ;(fX T

_Po(FiSXX(<T)‘2x)’x)>Khx(x—Xi)>>2d:v,u(d7')+//0p(\/ﬁh;l§)”($)

<fY0|X( Fy ‘X(T|$ |z) n ; < YolX(T|x) 90 (Xi) — co — &)

Y0|X(T’x) 9po(Xi) — co — &)

F. T|x

ool Y;;XX(()| he )>Khz( Xi)) da p(dr) + 0,(1).
Recall

v(x)

Fropx By () )2 i ()2

Because of Holder’s inequality it suffices to show the assertion for

k(z,7) =

n

2 _1 o
e //fY0|X Fyix T|$ |2)2 fx (2)? ( Z<Khy(FYOX(T|$) 950(Xi) — o — i)

po(F Y|X 7|) >) >2
- Ky, (xr — X;) | dxp(dr)

fx ()

-1
Pbo (FYO|X(

h & ] o))’
2/ m(sm(/chy(FyOTX(rrx)—gﬁo<Xi>—co—si>— e )

K, (z - X ) dx p(dr) + (z,7)
=1 j=1
JFi
Fy o (T|z),x
<Khy( Yo \X(T|x) gﬁo(X ) —C0—&; ) - ( Yoflj;(( )‘ )>Khl(x - Xz)
Fy x),x
Kn, (P (T]2) = 980 (X)) = e — &) — ! Yj!jj(( )' h2) Ky, (x — X;) d p(dr)
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=T +T1s.

Asymptotic Behaviour of T;

First, note that using integration by parts and Lemma one has
/lChy Yo |X (T|x) — z)2fy07x(z,a:) dz
= [ 2, (Bl (rle) = 2, (Pl rle) = 2)o(z, ) d
_ / 2K (VK ()po(Fy by (7]a) — hy2,) dz

= /QIC(Z)K(z) dzpo(F;(jX(T\x),:L‘) — hy / 22K(2)K(z) dz fyO7X(F}%}X(T]x),x) + O(hi)

as well as

/ (K () dz = lim [ 2K()K(2)dz = lim K(w)? =

and

//Ch Y |X (T]2) — 2) fyvy x (2, 2) dz = pO(F;(jX(Tu)’:E) + 0<\/lﬁ)

uniformly in x € supp(v) and 7 € supp(u), so that

o Gy
/ (/chy(FYO|X(Tya;) 2) fX(x)) Frox(z2) dz

= po(Fy; Ly (7). 2) — by / 22K(2) K (2) d fyo x (Fy x (7]2), @)

po(Fy (¢ (7|z), 2)?
Y}i(x) + 0<\/lﬁ> +0(12)
po(F%}X(T\fv),ﬂi)>
fx(z)

= m(Fyy (rlo). ) (1 -

+ 0(\/15> +0(h2)

uniformly in z € supp(v) and 7 € supp(p). Similar calculations yield

Tl2))\ 2
/(;chy( YlX(Tyg;)z)p(Y“M) %fyo,x(z,x)dz

_ hy/QZIC(z)K(z) dz fyO’X(F;(jX(T‘x),IL‘)

fx(x)
) (Fy.ix(lz),2) o
= %po(F;(jX(T’Q?),U) - 2p0 YJJ}){((CE) %pO(F;oIX T|x), u) o

po(Fy (rla),2)? g

(@) = by [ 2K ds oo x(0:2)

fx(@)? oz y=Fy ' (7]a)
+0 <\}ﬁ> + O(hz)
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— aau <p0(FYOTX(T‘$) )<1 - pO(F;jjj((;)'x),U))> u=c

—hy/2le(z)K(Z) dz %fYO,X(ya )‘y P (o) +0<\/lﬁ> +O(hy)

and "
[ (o rbatrle) -y BTN oy
= L o r.w)| - (Y°'X((;>’$) D2 i Fh (el
p<FY§j((J DD pete) i, [ o el
n o<}> L o)

uniformly in 2 € supp(v) and 7 € supp(u). Here, - 9 fx(x) and aa—;fx(:c) are the derivative
and the Hessian of fx, that is a vector and a matrix. The expectation of T} can be written
as

E[T1]

) Do (F_Ol (1|z), ) 2
= h,2 //H(x,T) [(’Chy( Y‘X(T|x) 98 (X)) —co — &) — Yo|X ) )

K, (v — XZ-)2] dx p(dr)

dX // T /< Y0|X(T‘x) z) _pO(F;§j((;Jx)’x)>2

[ Koo = ey w) dwds do ()

— dx// K(x, T /( Y0|X(T|x)—z)—p( Yoft(((;)x) "7))2
[ K@ xer = ) du d di )
dx// (@, /( Y|X(T|x) Z)_ ! YO|X((;-)x) m))
/K wdw

2
+ h2 / K(w)zwt%fymx(z, z)w dw + 0(h§)> dz dzx p(dr)

( / K (w)? dw fy, x () + fYo

ot K (w dw// (e, T)po(Fyp by (7]2), )( (Y}'j(() )x)>da:u(dr)
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~hyhe dX/K dw/Qle // K. 7) fro.x (Fyp b (1), @) da p(dr)

] fotor

o o(Fl o,y (1 i YO'X( TN dsutar) [ Kwwda
Fx(w) -

dx 2
LR K(w)2wt///<;(a:,7') laaqﬁpo(F%IX(T\x),u)

po(Fy |y (T]2),2) 52
—2 Y}I;:(x) ;MPO(F;())((T‘IE)’U)

u=x

uU=x

po(Fyly (rl),2)? 2
0 Yo|X wfx(x)

fx(x)?

2 dx dx dx

+O(hhs ? ) +0(he * ) +O(R2hs * )+ 0p(1)

dx p(dT)w dw + (’)(

oruad]

dx

_ _ _dx _dx
T T g 2)+o<hyh

=)

:b+(9(h

= b+ o0p(1)

by the bandwidth assumptions (2.19)) and (2.20). Let C' > 0 be a sufficiently large constant.
Then, the variance of 77 can be bounded by

(hz Z// K(z, T </Chy 0|X(T|l‘) 950 (Xs) — co — )_P( yf;(((;\x) x)>2

Ky, (x — Xi)2 dx u(dT))

- [(// T (Khy( Fyoix (Tl2) = g5, (X1) — co —e1) — o (ngjlj(:)’x) *'”))2

K, (z— X;)? dwu(df))z]

CZgXEK/Khx(z: — X1)2dm)2]
_ n}%X (/K(a:)2dx>2

<

IA




2.8. Proofs
Asymptotic Behaviour of T»
Similar to Lemma [1.1.1] one has

po( YO|X(

pO(Fy0|X(T

N //Khz (z —w) (’Chy((FYoX)l(T’x) —2) = fX(x;x),x))fyo,x(z,w) dz dw

/ </’Chy voix (T12) = 2) fro x (2@ — hyw) dz

po(Fyl (7). @)

fx()

fx(x— hﬂu)) dw
F;Ul‘X(ﬂz)fz

:/K(w)(//_oo Y K (u) fry x (22— hyw) dudz

(Bl (), 2)
_ o) fx(x— hﬂu)) dw

(Fyy x) ™ (rlz)—hyu
/ </K / fYo,X(Z,l'—hm’U))dzdu

Po( YO|X(T‘$)’x)

fx()

_ /K(w) < / K (u)po( Byl (rl) = by, — hyw) dz du

fx(z — hyw) w
@ >d

fxlz — hww)> dw

fpo(F;OTX(T\x),x

O(hg)

o( =) (2.48)

uniformly in = € supp(v). Therefore, the expectation of T5 can be written as

n—th// ,7) chhy Fyt (T]2) = g5y (X1) — o — 1)

pO( ;O|X(T‘.T),l’) 2
_ () )Khz (x — Xl)} dx p(dr)
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so that

K(z,T) Zj(x) dx p(dr).

1= 1] 1
J#i

Later, Theorem 2.1 of De Jong| (1987) will be used to show asymptotic normality of T5. By

the same reasoning as before, it can be proven that

E|Zy(2)Z2(x) Z3(u) Zs(u)] = 0 <>

and

E[Zl(x)ZQ(x)ZQ(u)ZS(u)}:o< 1 )

uniformly in x,u € supp(v), which results in

_ 2n = DA [(//R(x,T)Zl(x)Zg(x) dxu(d7)>2} +o(1)
[(

[ [ et (1, (s ) = g5 060) o = )

)i 30 (K, (gl (rle) = 93, () = 0 = =)

- ) Xa)dw(df))Q] +o(1)

=2h_ dXE[(// (X1 — hyx T)(lChy( Y‘X(T|X1—hxx)—ggo(Xl)—co—el)

( Y|X( ’Xl )7X1_hac$)
- Fr(X = hm )K(x)

po(Ff1 (11 X1 — hpx), X1 — hy)
<’Chy( v (T1X1 = haw) — s, (Xa) — o — £2) — —— 2% (5 — ) )

(e 7Y ) | o)

:Qh;dx////<//n(w1—hxa:,7) (IChy(F;(jX(T\wl—hxx)—zl)

- po(Fyy (Tlwn = haw), w1 —
Ix (w1 — hyx)

po(F;O}X(T]wl — hyx),wy — hxaz)) < Wy — Wy
K(z+
fx (w1 — hyx)

hyx
))K(x) (;chy(FYO}X(T\wl — hy) — 22)

> dxu(dT))QfYo,X(Zhwl)

T

Iy, x (22, wa) dwy dws dzy dza + o(1)

o [ [ [[( [ [ rtwn = nawer) (o, (hytrton = e - 1)
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po(Ey L (rlwr — b)) —

hyx) B
- fx(wy — hyx) )K(aj) <Khy (FYO:;-X(T|/I‘U1 — hat) — 22)

Fl o (r|lw — hyx), w1 — hyx 2
B po( 1/0|X(f)|(<101 — )m) ! )>K(x + wy) dx u(dﬂ) Jyvo,x (21, w1)

fyo,x (22, w1 — hyws) dwy dwa dzy dze + o(1).

Note that Kp, (Fy /y(Tlw1 — hew) — 21) = (<P (ron)} + o(1) for Lebesgue all wq,z €

Yo |X
Rex z € R and p-all 7 € (0,1), so that the dominated convergence theorem yields

E[T3 :2//// <///<(w1,7') <I{21§F;01X(7'|w1)} _p0<F%jc);((1T;1)7wl)>K($)

po(F;(jX(Tlm),wﬂ
{Z2< Yo |X(T|w1)} o fX(wl)

fme(zl, wl)meX(ZQ, ’LU1) dwy dwg dz1 dzo + 0(1)

o] (oot )

po(Fyyjx (Twr), w1) 2
N e~y L)

> K(z + ws) dx ,u(dT)) i

2
Jvo.x (21, w1) fyy,x (22, w1) dwy dz1 dzo / </K(1:)K(a: + wo) dm) dws + o(1).
(2.49)

Later, it will be shown, that the asymptotically non negligible term is equal to V. Define

h 2
Wiy =27 [ [ wla,n)(Z@) - BL1@) (2(0) - EZ1(a)]) do utar).
Then,
)= Wij=T1
1<J
is what De Jong| (1987) called clean, that is E[W;;|(Y;, X;)] = 0 for all ¢ # j € {1,...,n}.
In , it was proven that E[Z;(z)] = 0( ) uniformly in supp(v). Moreover, one can

show W( ) = Ta+o0p(1) as well as E[W( )2 ] E[T2?]+o0(1) similarly to before. Therefore,

I?gXE[W2 1 4hng|:<ffﬁ(x,T)Zl($)ZQ($) dx M(dT))Q] ) O(l) — o(1)

EW(n)? nE[W (n)?] n
so that in order to prove normality of W (n) and thus normality of 75 it remains to show

EW ()]

EW "

(see Theorem 2.1 of De Jong| (1987)). It holds that

=3 YN EWi Wi W W]

1<j k<l r<s t<u
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- ”(”Q_DE[W{{Q] +

3n(n —1)(n —2)(n — 3)

1 B
E[WE, W3]
4
3)E

+3n(n—1)(n—2) +6n(n — 1)(n — 2)E[W1 2 Wa s W3]

+6n(n—1)(n—2)(n— (W12Wo 3 W3 4 Wai], (2.50)

where the prefactors are explained later.

In the following, consider

Wij = w(x, 7)Zi(x) Zj(x) da p(dr)

instead of W; ; as this makes calculations (a little bit) clearer and more convenient and the
proof of the asymptotic negligibility of these replacements follows in a similar manner (for
example E[WﬁQ] = E[W,] + o(1)).

First, one has for an appropriate constant C' > 0

2, = 100 [(// (@, 7) 21 () Za (2 )da:p(dr)) ]

Ch2dx E[(//’i(x’ Ky, (z — X1)Kp, (2 — Xo)| dz M(d7)>4}

Xi — Xo !
= n2h2dX X1 ml’ T) K( )K .CE—FT d$u(d7)
= o(1).
In equation ([2.49)) was shown that
nt o 2
EE[WL?] = V" +o(1).

For a sufficiently large constant C' > 0, E [Wf 2W22 3] can be bounded by
SBWE, W3]

< Chﬂ%dxE[(///i(xl,Tl)’Khw(xl — XK, (21— Xo)| dml,u(dﬁ))2

n

<//R(x2’ 72) | Kh, (w2 — X3)Kp, (v2 — X2)| daa M(dT2))2]

([ [t = bk (o + 222
(// (X3 = haz, ) (xg)K<x2+X - X)
= [ [ [ ([ [ et =pemin)
([ [ s = arsm

dzy u(dﬁ)>2

da u(d72)> 2]

dzy u(dﬁ)>2

K(z1)K <1U1 + wlh_ w2>

das M(d@) 2

K(xz)K<x2 + w?’}; w2>
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Ix(wr) fx (w2) fx (w3) dw dws dws

///(// (w2 + howy — haw1,71) |K x1)K(z1 +wy |da:1,ud71>

(// (wg + hyws — hyxa, To }K x9)K(zg + w3) }dacg,u dTg))

Ix(wa + hawi) fx (w2) fx (we + hyws) dwy dws dws
= o(1).
E [WLQWZgWg’ 1] can be treated similar since
SB[ W2,

CthX

[// K\T1,T1 ‘Kh Tr1 — Xl)Kh (.1,‘1 X2 ‘dl'l,u dTl)

//Ii(.l‘g, TQ)‘KhI (.%2 — XQ)KhI (1‘2 — Xg)} d.%'g ,U,(dTg)

<//H(I3’ 73)| K, (23 — X3)Kp, (23 — X1)| ds u(d73)>2]

_ nh2dx [// (X1 — haz1,71) K(xl)K<;v1+ X1 - X ) dz: p(dm)
// (X3 — howa, 72)|K(22)K <x2+ X2 o — X ) dwz p(dr2)
<// (X3 — hpws, 73)K(x3) K(l‘3+ X3 h_xX ) d933u(d73))2]

e | ] ([ (o 2222 )
</‘K(z2)K<x2+ wZ};w?’) dx2> </‘K(x3)K<:c3+ w‘”’h;wl)

fx(wr) fx (w2) fx (w3) dwy dws dws
dx2>

S ([ o0t +wn|den ) ([ ek + )

Ix (w2 + hpwy) fx (we) fx (w2 — hpws) dwy dws dws

2
dx3>

= o(1)

for an appropriate constant C' > 0. It remains to consider E [W172W273W374W471]. This

expectation can be treated by

LE[Wy 2 Wo 3 W3 4 Wiy 1]
< ChidXE{//m(xhﬁ)‘Khz(xl - X1)Kp, (21 — XQ)‘ dzy p(dm)

o1



2. Testing for a Parametric Regression Function in Nonparametric Transformation
Models - A Quantile Approach

///i(xg, TQ)‘K}LI (IL’Q — XQ)K}LZ (IL’Q — Xg)} d.CCQ ,u(dTg)
///{(:1:3, 7'3)|Khx (x3 — X3)Kp, (3 — X4)} dzs p(drs)

///{($4, 7'4){Khz (x4 — Xa)Kp, (4 — Xl)} dxa ,u(du)]

:hgdx [// (X1 = hyr, 7)|[K (21K <x1+XhX>
[ [ st ha i o)
// (X — hys, m3)K (25)

// (X — hya, 70)K (22)

S [ (=)
([ (s 21)
([ < (s )

< [ [ miosvaton) (e 252)
< [ 1K Ga)K e+ w) dm)

fX (wg + hxwl)fx(wg)fx (’wg)fx(wg — hxw4) dw1 dwg dw3 dw4

:Cghgx////</‘K($1)K($1+w1>\d$1)(/!K(xz)K(:cﬁwg)yd@)
(/‘K(x3)K(x3+w4)‘d1}3>

[x (wa 4+ hpwy) fx (w2) fx (w2 — hyws) fx (we — hyws — hywy) dwy dws dws dwy

da:l M(dTl)

dzo p(dra)

332 €To +

K(
K(:L' 4 X3 _X4> dzs pu(drs)
K

X —X
T4+ 4 1) dmu(du)]

dxl)
dSUQ) </‘K €3 K<CC3+ ’LU3h—’w4> dxg)

d:c4> Ix (wr) fx (w2) fx (ws3) fx (wy) dwy dws dws dwy

d{L'Q)

+0(1) =3V2 +0(1) = 3E[TF)? + o(1) = 3E[W (n)?]> 4 o(1)

and thus T = N(0, V).
Note that the prefactor of 3n("_1)(2_2)(n_3) = (Z) -3-61in 1' results from the fact that

. (Z) is the number of possibilities to choose a set of four indices out of {1,...,n}

(without ordering them),
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e 3 is the number of possibilities to assign these indices to the corresponding four tuples
(1,7), (k, 1), (r,s), (t,u) to obtain E[WE2]2 and
e § is the number of possible permutations of these tuples.
The other prefactors in (2.50)) can be derived similarly, but do not matter for the asymptotic

E[T$]
E[TQQQ}Q : ]

behaviour of

Rewriting b and V

The expressions for V' and b given in (2.22)) and ([2.25)), respectively, follow from (compare

(2.7))
po(Fyly (rla). ) = Fu(Fyly (7l2) — g(a)) fx () = 7fx (@)
and
Frox (Bl (7l2),2) = (Bl (o) — g(@) fx (@) = fo(F () fx(a).
To specify this, use the definition of k(z, 7) in and write under the assumptions

and (227)

:h;?/K(w)2dw//n(x,f)po(pﬁx(ﬂx),x)<1— ool Y}j((;m )>dw(d7)

+o(1)
-% o)
/K(w)2 dw // fa F{l(T) QfX(«T)T(l — 1) dx p(dr) + o(1)
ok )
=i [ h» /ﬂﬂ<»“M)+“)
and (see (2.49))

:2/(/K(m)K(x+s)dm)2ds///(/m(w )

Po(Fy x (T|w), w) Po(Fy, x (T|w), w)
(s = s = ™ ™)

2
M(d7)> fyo.x (21, ) fyy, x (22, w) dw dzy dzp

:2/</K(a:) (z +5) da:) ds///(/ (I guwy<r=r()) = 7)

2
(I{Zz_g(w)gpgl(ﬂ} - T) N(d7)> Je(z1 — g(w)) fe(22 — g(w)) dz1 dzo fX(w)2 dw

<o [ (([xeme o) as [ 208 [ [( [ Uramen 2

(I{Fs(zrg(w))ﬁr}_T) (dT))2f (21 — g(w)) f=(22 — g(w)) dz1 d2zo dw
fEn) ) s e e
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co [ ([ i) o [ 2

/ / (/ I{UI<T}5(F€)SS§T}_T) IU’(dT))Qdulduz

2.8.3 Proof of Theorem [2.3.4

Later, it will be shown, that the test statistic 7, defined in ([2.13)) is asymptotically equi-
valent to Tn + 02, + 03, Where

[ [ o) (Etrle) - Byl i) de ),

5o = —< / o(2) Dags, () An() dx) Q-1 / o(2) Dags, () An() da:)t

N

and
([ v(@)An(z)dz)
Sam = —u(]0, 1
T,, in turn can be split into
_ A _ 2
T, = nhy 7 // Y|X (T|x) — YOTX(T"T) + FYOTX(T’.T) — FYOTX(T’.T)) dx p(dr)

= nhy = // Y|X (t)z) — F;O}X(ﬂm))z dx p(dr)
bt // Byl (rla) — Byl (7la))? da u(dr)
+ 2nhy = // Y|X (t)z) — F;OTX(TLT))(F;OTX(TkE) — F;OTX(TL%)) dx p(dr)
=T+ Ty + Ty
While Lemma can be applied for T5 to obtain

nhy £ // Fy |X (Tlz) — Fy, |X(T|x))2d3:u(d7') -3z

with Z ~ N(0,V) and b as well as V from Lemma T} can be treated as follows.

Remember
v(z)

Froix By () [)2 i ()2

k(z,7) =
as well as and write
nh2 // Y‘X (1|z) — FYTX(T|x))2dx,u(dT)
= [ [ o ( ZKhy (Fyil (7l2) — g3y (X0) = 0 — 2K, (@ — X)An(X0)
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+%(;J>mem

n n

S5 [ [ st r) i (Bl (rle) = 30(X5) 0 — 20K (o~ X0

2 o
2
< ciha
- n
i=1 j=1

Khy(FﬁX(T\x) = 950(X;) — co — ) Kp, (x — X;)An(X;) An(X;) dz p(dr)

op(\/ﬁcnhjg() " 1
+—§ H(I,T)Ky(FO (T|z) — g8, (Xs) — co — &)
n i=1 // ’ hy \ o X 96 0—€
K, (x — Xi)An(X;)| da p(dr) + 0p(1)

=220 [ [ e K (B () - 95, (X0 — 0~ 20K = XK (o - X))

i=1 j=1

K, (Fy 5 (T12) = 95, (X;) — o — £5) An(Xi) An(X;) d p(dr)
+ 0p(1)

by the definition of ¢, in|(A2)| Then, 1' leads to nhgx hy — oo and thus
1 —
nEU/“(x’ T) K, (Fy x (7]2) = 95,(X1) = co — 1)K, (¢ — X1)*An(X1)? de p(dr)

— > [ ][ [ ranisn(Flatrle) = gw) - co = K (o = wP Au(w)?

fx(w) fe(e) dw de dx p(dr)

_ 1////mmmkaﬂﬂwmwww%%—WWM%WFMWQ

nhgx

fx(z — hyw) fe(e) dwde dx p(dr)

nhglxhy////’{(:U’T)K(e)QK(w)QAn(x_hxw)Q

fx(x— hmw)fe(F;(jX(T]:r) — g8, (x — hgw) — cg — hye) dw de dx p(dr)
= o(1),

that is

T, = % ZZ//H(:U’T)K@(F%TX(TW) — 95, (Xi) — co — &) Kp, (z — X;)

i=1 j—1
i#i
K, (Fyx (712) = 98, (X;) = co — ) K, (& — X;)An(Xi) A (X;) da p(dr) + 0p(1).
Due to

E[Khy(F%TX(TW) — 95, (X1) — co — £1)Kp, (x — X1)Ap(X1)]
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— //Khy(F;OTX(T]x) — 9, (w) —co — e)Kyp, (x — w)Ap(w) fz(e) fx (w) de dw

— [ [ KOK@)A@ - o) Py (7o) = g0~ o) = co = hye)
Fx (@ = hyw) de dw

= A (@) fo(Fy x (T]2) = g5, () — co) fx () +0(1)

uniformly in z € supp(v) and T € supp(u), the expectation of T} can be written as
E[Ty] = //H(x,r)E[Khy(FﬁX(r\x) — 98, (X1) —co— 1)
K, (7 — X1)An(X1)]? da p(dr) + o(1)
= 810 +0(1)

with

= | [ (o)A@ £ (P ) = 50 (2) — o) (o) o )

— [ [v@an@? iz ptar

= u((0,1) / o(@)An(e)? do.
Here, the definition of x(x,7) and the fact were used that (compare ([2.7)))

Frox (b (rlo)l@) = (Bl (7le) = gag (@) — o) = fo(F7 (7).

In the following, it is shown that the variance of the asymptotically nonnegligible terms

converges to zero. For reasons of clarity and comprehensibility, define

Zig= | [ (o1 (o = XK (@ = X, (Pl (o) = 95 (X0) = co = &)

Khy(F;O‘lx(T‘x) — gﬂo(Xj> —Co — z’fj)An(Xi)An(Xj) dx /L(d’i‘),

so that Ty = >0 > i—iv1 Zij + op(1). To show that the variance of Ty converges to

zero, write

(235 0)

i=1 j=i+1

YRR
_ EZ Z Z Z Cov(Zij, Zi,)

i=1 j=i+1 k=11=k+1

:%ZZV&Y(Z 422 ZCOV 1,79 )

=1 j=1+1 i=1 j=t+1]=i+1
I#5
4 n n n
EDID D SELCATHEES 3 i BRI
k=1i=k+1 j=1+1 =1 j=i+11l=5+1
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+ % Z Z; Z Cov(Zj, Zy j)

so that it suffices to prove that

E[Z},], E|Z12Z1 3|), E[|Z12Z23]] and  E[|Z1,3Z2,3]] (2.51)

converge to zero. For an appropriate constant C > 0 it holds that

E[Z23,]

C
< <SFE

n2
(] [ rtemlmn, (gl trlo) = 93, (60 = o =)

2
K (B (7o) = 93 (X2) = 0 = ) (0 = XK (o X dopar)) |

| ([ [ =nenn

_ X1 — X
B (P (15 = o) = 95, (062) = o = e K (o) (o 4+ 2122

sl [1](J fon-nen

_ w —w
R (B (s = i) = gy 12) = 0 — ex) K@K (0 242 )

K, ( ;?OTX(T\Xl — hew) — g5, (X1) — o — €1)
2
dx,u(d7’)> ]

K, (Fy i (Tlwr = how) — ggy (w1) — co — e1)

dz M(df)f

fx(wi) fx (w2) fz(e1) fe(e2) dwy dws deq dea

e | [ (] [t

K, (Fyx (Tlwr = hyr) — gg, (w1 — haws) — co — e2) K (2)K (@ + w2)

o ﬁx(ﬂw — he) — g, (w1) — co — e1)

dw u(d7)>2

Ix(wr) fx (w1 — haws) fo(e1) fe(e2) dwy dws deq deo

w1

</<c(w1 — hgx1,11)

Khy(F;O\IX(Tl’wl — hyx) — 980 (w1) —co —e1)

)
)

Khy(F;OTX(Tl‘wl — hx:lil) — ggo(wl — hx’wg) — Cy — 62)K($1)K(IL’1 + ’wg)

(H(wl — hgxo, T2)

Khy(F;(jX(Tﬂwl — ha2) — g, (w1) — co — e1)

K, (Fy

volx (211 — hawa) — g, (w1 — haws) — co — e2)K(22) K (2 + wp)

fx(w1) fx(wy — hywe) fo(e1) fe(e2) dwy dws dey des dxy dag pu(dr) p(ds)
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02
N nzthhg//////(K(wl_hmxl’ﬁ) )
Fx(w) fx (w1 — how) f=(Fyj (Tiwi — hat) — gg, (w1) — hyer)
fa(F;JX(Tllwl — hxxl) — ggo (w1 — hxwg) — hyez) dw1 dwg d€1 deg dl‘l M(dTl)
CQ
: hh/ [[]] ] |seomemies +u

=o(1).

K(el)K(eg)K(x1>K($1 + 'LUQ)

fX (wl) d.%’l dw1 dUJQ d€1 d€2

Again for an appropriate constant C' > 0, the second expectation in (2.51]) can be written

as

E[|Zl 271 3]

h2dX [(// T

K, (Fy |y (71 X1 = hyw) = g5y (X2) — co — £2)K (@)K <a; + th_XZ)

([ ] stn
-1 X1 — X3

Khy(FyolX(T]Xl — hax) — g8, (X1) — co — e3)K(2)K (a: + h)

T

‘Khy(Fnlx(Tllwl — hew1) — gg,(w1) — co — e1)

Khy YOTX(T’Xl - hwm) - gﬁo(Xl) —Cy — 61)

dx u(dr))

Khy(F;(jx(ﬂXl — hew) — g5, (X1) — co — €1)

detar) )|

- w1 — w
Ky, (FYOTX(TI‘IUI = hat1) = gpy (w2) — co — e2) K (z1)K <x1 - 1hg; 2)

Khy (F%}X(T2|w1 — hewa) — gﬁo(w1) —cp—e1)

— wp —w
R (Pl (s = htz) = g 2) = o = ea)K 2K (24 = ) )

Fx(w2) fx (ws) f=(e1) fe(e2) fe(e3) dwy dwy dws dey deg des dzy dxo pu(dry) pu(drs)

<z [ [T ] [ meomeomeomin(a )

) ’fX wl)fX (ZUQ)fX (’u)g) dw1 dw2 dw3 d61 d€2 d€3 d:Cl dCCQ

K(LEQ)K(.TQ + wlh

///</|K 21K (21 + ws |d:c1)(/\K 2) x2+w3)|dﬂc2>

fx(wr) fx (w1 — hpwa) fx (w1 — hyws) dwy dws dws
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= o(1).

Similarly,
HZ1 273 3||

h2dX K// W

K, (Fy x (T1X1 = haw) — g5, (X2) = co — 52)K(SU)K($ + th_ X2>

<///€(l‘,7’)
-1 Xo — X3

Khy(FYO‘X<T‘X2 — hyx) — g8, (X3) —co — 53)K($)K<x + . )

S T [ $

Khy YO}X(T‘Xl — hyx) — gﬁo(Xl) —co—€1)

dx u(df))

K, (Fy 5 (7| X2 = hat) — gg,(X2) — co — e2)

detar) )|

Khy(F;O}X(ﬂun — hew) — gg,(w1) — co — e1)

R (P (rlar = ) = gy ) = co = ex) K (o + =2 ) | o tar))
([ ] | i, (b ol = o) = g ) = 0 - )
K (B 7l = ) = gy ) = co = o)K@ (o 2222 ) | o))

f (w1 fx(wz fX (w3)f5(61)f5(62)f5(63) dw1 dwg dw3 d61 deg d63

///(/'K m+“’1)|d~”’f></!K(ﬂf)K(a:+w3)ydx>

Ix (w2 + hpwy) fx (w2) fx (w2 — hyws) dwy dws dws

PlaZaall < €[ 1 ([ icecte s waao) ([ K+ alar)

fx (w3 + hawy) fx (w2 + haws) fx (w3) dwy dws dws
=o(1).

In total,
T = 51’71 + Op(l)

has been proven, so that only T3 is left to be examined. Inserting equations ([2.45) and

[£48) yields
T3 = 2nh, £ // Y\X (1|z) — YO}X(T|1‘)) (FYTX(TM:) FY}X(TMJ)) dx p(dr)
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- th:TX ///43(:(},7') (c;; Z;Khy(F;O}X(T]x) 980 (Xi) — co — €)Kp, (x — X;)An(X;)

+ o,,(\/lﬁ» <711 zn: (/chy(F;Olex) 950 (X3) — co — &)

i=1

po(Fgﬁi((;Jx),w)>Khx - X0+ p(\}ﬁ)) dz ju(dr)

:2nh;l§// m< ZKhy (Fyolx (T]7) = 950 (X3) = co — &)

Ko = X080050) ) (5 3 (K, (Bl 7o) = 9 (X0 0 =)

=1

Po( YO|x(T’x)7x)
I

- Xn) dz pu(dr) + 0y(1)

20n

2SS [ | i (Birle) 5,050 — 0

=1 j=1

oy 1+ (T]2),
K, (z — Xi)An(Xi)</chy(Fm}X(T|:c) 98,(X;) — co — g5) — (Yf)):;x)‘) )>

K, (z — X;) dx p(dr) + op(1),

where the second to last equality follows similarly to the proof of Lemma and the
treatment of 7). For a sufficiently large constant C' > 0 one has (see (2.44)))

enhd EH// (s ) Ky (Bl (712) = g0 (X1) — o — 1)Ko, (2 — X1)2An (X1)

|

< Coht E[// (e, )| Ky (Fyrby (712) = g5, (X1) = co — &0) K, (¢ — X1)? da u(dr)

= et [ [ [ [ rte.nKa, (b (rlo) - g5, () = o~ K, (2 = w)?

fx (w) fe(e) dw de dx p(dr)

o [[] fremnics

fx(x— hxw)fs(F;O}X(ﬂx) — 98, (W) — co — hye) dw de dx p(dT)

= o(1),

(Fypx (T12),2)
<’Chu( Yolx (T12) = 95, (X1) — co —€1) — = Y}f{((w)‘ > dz p(dr)
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so that .
200 h? e e =
Ty==""=3 > Zij+op(1)
=1 j=1
JFi
with

po(Fy) (7). 2)

fx(z)

d
c2hy

X ~
To prove asymptotic negligibility of 75, it suffices to show ="3—F [( > ;;:1 Zi,j)2] =
i

<Khy (F}%TX(TV?) — 980 (Xj) —co—¢€j) — > dx p(dr).

o(1). This leads to the proof of

crhIXE[Z3,5] = o(1), (2.52)

chhiX ElZ19221] = o(1),
CinhiXE[ZLQZLg] = 0(1), (2.53)

cinthE[ZLng’l] = 0(1),

CinthE[ZLQZQ’g] = 0(1),

CinhiXE[ZLQZ&Q] = 0(1),
An*hiX B[Z) 973.4] = o(1). (2.54)

For the sake of brevity, only equations (2.52),(2.53) and (2.54) are proven. The other
assertions follow similarly. Let C' > 0 be a sufficiently large constant. Equation (2.52))

results from

CithE[Ziﬂ
< o< e|( [ [ nte i, Fltrlo) - g (X0) - - <)

2
Kp, (v — X1)Kp, (v — Xo)| dx u(dT)) ]

2
< :;;EK//K(Xl—hxﬂ?,T)

8w

S (] fron e

K(2)K (x + wlh;w?)

i f (] frim-res

Khy(F;(jx(ﬂXl — hew) — gg,(X1) — co — €1)

K(x)K(:z +

Kp, (F;OTX(ﬂwl — hyx) — gg,(w1) — co — €)

2
dx ,u(d7)> fx (w1) fx (w2) fe(e) dwy dws de

Kp, (F;OTX(ﬂwl — hgx) — gg,(w1) —co —€)
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2
K(z)K(z + ws)|dx ,u(d7')> fx(wr) fx (w1 — hyw2) f=(€) dwy dws de

:Cc%////////ﬁ(wl—hxml,ﬁ)/ﬁ(wg—hxajg,rg) K (21 + ws)K (29)K (5 + ws)

K (1)K, (Fy i (Tiwy — howt) — g (w) —co —€)

Khy (F%‘l)((TQ’wl — hmxg) — gﬁo(wl) — Cy — 6)

‘fx(wl)fx('wl — hxwg)fé(e) dw1 dU}Q de d$1 dxg ,u(dﬁ) M(dTQ)

_ C;fz /////n(wl—hmxl,n) K(e)K(21)K (21 +wn)

fx(’wl)fx(wl — hxwg)fg(F;JX(lewl — hmxl) — gﬁo (wl) — hye)dw1 d’wg de dl’l /L(dTl)

- O(n*h;%{h;l)
=o(1).

In (2.48)), it was shown that

E{Khw(:n—)ﬁ)<’Chy((FYO|X)_1(T‘fU)—gﬁo(Xl)_CO_el)_pO( ;Ofi);((;)’m)7m)>] B 0<1>

uniformly in x € supp(v) and 7 € supp(u), so that

CinhixE[zl,QZLg]
= C%nhgx ////H(xl,Tl)H(xQ,TQ)E[An(Xl)QKhz@Tl —Xl)Khz(CUQ —Xl)

Khy(F;(,\IX(Tl’fEl) — 98,(X1) —co — 61)Khy(F5aX(T2|x2) — 9p,(X1) —co —e1)]

po(Fyyjx (Ti]z1), Il)}
fx(z1)

po(Fyyx (a]2), 962)}
fx (@2)

E [Khz (21 — X2)Kp, (Fy x (T1]a1) — g5, (X2) — co — €2) —

B |, (22 = XK, (Pl (o) = 93, (Xe) — o = 20) -

dxy dxs p(dry) p(drs)

:(,(hf) ////,./.;(;,;1,Tl),i(@,Tg)EUKhx(xl—Xl)Khx(mg—Xl)

K, (Fy 5 (T1]21) = 950 (X1) = co — €1) K, (Fy | (Ta]2) — g0 (X1) — o — €1)]]

dxy dzs p(dry) p(drs)

(h Vel [ [ ] [ st = b nton o

62




2.8. Proofs
K, (Fy i (1] X1 = hawn) = g5, (X1) = €0 — 1) Kn, (Fy | (T2]72) — g5, (X1) = co — 1))

dwy dxg p(dT) M(dTZ)]

=o< h%) [ ][] ][, @mie - i) - giw) - o

K, (Fyx (T2]22) = g (w) — co — )| fx (w) fe(e) dw de dry dxa p(dmy) p(ds)

(A [

fx(w)fe( y|X(7'1|W—hxfB1)—gﬁo(w)—Co—hye)dwdedxl,u(dﬁ)

=o(1).
Moreover, equation follows from by
cin2hﬁx E[ZLQ 2374]
— . nzhdx////E W(X)Kn, (21— X0)Kny (Fyr b (milen) — g5, (X1) = co — €1)]

B[An(X3)Kn, (22 — X3) Ky, (Fy [ (T2|22) — g5, (X5) — co — €3)]

Fol o (m|z), z
E[Khm(m )<1Ch( Fyly(nilzr) - gBO(X2)_CO_€2)—pO( voix (T1]21) 1))]

fx (1)
E [Khz (z2 — X4) (’Chy (Fyypx (T2l72) = g5 (Xa) — co —e4) — pO(F%k((Zif2>7 x2)>]
k(z1,11)k(22, T2)dx1 dg p(dTy) p(dre)
dTX) ////K,(ﬂjl,Tl)li($2,Tg) dzy dxo p(dry) p(dr)
— o(1).
All in all, it was proven that T3 = 0,(1) and thus
b nns // (Fyx (rlz) = Pyl (7la)” da p(dr) — b

B Z+61,
with Z ~ N(0,V) and 61, = p([0,1]) [ v(z) Ay (2)* da.
Asymptotic Equivalence of T,, and Tn + d2.n + 03,
Recall Remark and the definition of ¢g ; in . Due to
Op = 01,n + 020 + 031

63



2. Testing for a Parametric Regression Function in Nonparametric Transformation
Models - A Quantile Approach

(see Remark it remains to show asymptotic equivalence of T, + 02, + 93, and
T, = nhy = mln // Y‘X (1]x) — gp(z) — éﬁ,T)de:“(dT)'
For that purpose define
G(B)
= —ann [ [ o) (B (r1e) = g,(0) = ) s = ) )

—onnt [ [ o) (ke r1e) = 930 0) = ) D ) + ) ) 5 = 60)

b / (x) dx / Cr — i) aldr) + ([0, 1))(8 — 50)'B — o)

as well as 8 = argmin G(3) and
peB

B = nh;,;2 arg min // Y|X (1]x) — gs(x) — éB,T)2 dx p(dr).

BeB

First, it will be shown that

»‘Q‘

18 = Boll = Oy (n~3hs ). (2.55)

18 = foll = Op (n ™o

#‘Q

). (2.56)
Due to
Fyl(rlz) = gso(x) = egyr = By (Tl2) = Fyty (Tla) = 0p(1)

uniformly in & € supp(v), T € p, assumption [(A7)|implies 5— By = 0,(1) and f— o = 0,(1).
Further, for all sequences (3, € B,n € N with ||5, — fo|| — 0, Lemma assumption

(A7) and equation ([2.14) yield

Cﬁnﬂ' - C,Bo,T

S o(@) (Byly (rla) — Byl (7l2) + g5y (2) — g5, (2)) da

[v(z)dz
o(z) (E5L (r)z) — Folo ()2 T\ | r))ax
:f ( )(FY|X( | ) FYOIX(IL(L_)‘_dwYW( | ) FY|X( | ))d +(’)p(||5n—50”)

"f x) dx Z/ fyolx (Fy, |X T‘)x)fx)fx( )Khy(F;ij(T"r) 980(Xi) — co — &)

Kp, (x — X)An(X;) de + O, (\/15 + |8 — ﬂOH)
) T —cn —
[/ e P (eI ey e Ul (712) — 98,50 =0 =)
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K (o = X)A0(X0) do| + 0p(ca) + O, = + 118, = ol

N
. Jv(x)A,(z) dx ole 1 B
= ) da + op( n)+0p<\/ﬁ+uﬂn BoH) (2.57)

uniformly in 7 € supp(u), where the second to last equation can be shown analogously to
the reasoning in the proof of Lemma later. Moreover, note that

f”(?)ﬁi%(;c) Y Dyes (2.58)

Dglsr = —

and
[ [ o) sr = o) Dt &)+ ) o )

@, Lol | / 2) D (g0 () + e r) dit i(dr) + oplcn)

fv dx
= op(cn).

Therefore, a Taylor expansion of 5 ( V] X(T|x) gs(z) — 05,7)2 and the binomial formula

yield for some 3* between 3 and By
0 < nhi // (By (71e) = 95 (2) = cayr)” da pu(dr) —
b / / (B (7o) — g3 () = cs0)* do p(dr)
b // (Fy i (712) = g0 (@) — égy.r) " da p(dr)
s [ [ o) (Bl (r1o) = g5, ) = ) Dl (@) + ) s lar) (3 o)
i (B - Bo) / / (B (7l2) — o () — 63e.7) Hess(gs (o) + E3.1)
— (Ds(g5+ (2) + 5.)) D95 () + E-.7) ) da p(dr) (B = Bo)
=20 [ [o@) (e (r10) = 98, 0) = ) ot — ) lar)
— o [ ota)da / (E0:r — o) ()
- onh o)1) = 9500 — é,r) Dl o) + ) o ) 6~ )
— i (0, 1)(B — Bo)' B — Bo) + 0p (nh;TXHﬁ ~ ol (2.59)

~G(B) + op (ViihaT 113 - All) + op (ne 113~ o).
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Here, it was used that
Fy i (rla) — gg+(2) — é5 » = 0p(1)

uniformly in x € supp(v), T € supp(p) and

[ [ o) (Ds(a3 0) + )" Dl @) + 50) dilar) = 2+ 0y(1)

componentwise due to 8* — By = o,(1).

Later, it will be shown that (again componentwise)

vt | \ [ (Ee(rle) = 50 (0) = e, o(a) D9 () + ) d| )

< fh /‘/ Y|X (tz) — y|X(T|x))v(:c)Dg(ggO(x)+cﬁw)d$ p(dr)

\th /‘/ Y|X (T]z) F%TX(T]x))v(x)Dg(gﬁo(x)+CﬁO7T)dx pu(dr)

= 0,(1) (2.60)

as well as

u(dr) = O, (1).

ax .
Vnhgt /’/(F;llx(ﬂx) — 950 (2) — ¢y ,r)v(2) do
Since (2.57) implies

. 1
Cgo,r — CBosr = Op| Cn + ﬁ )
equation (2.59)) then leads to

ax

0= —nha® pu([0,11)(3 = Bo)' (B — fh)
O, (Vtha 115~ foll) + op (nha? 115 — Boll?) + Op(1),

N 1 _9x
that is 8 — By = (’)p(n_ﬁhx 4 )

To prove the equations from above, define

:‘%([B,T) _ v(ﬁ)Dé(fﬁo($) +C,30,T) (261)
Frox Byl (T }) e (2)

and write with Lemma 2.8.1]

Vi [| [ (h(ria) = Byl (rla)) o) Datas (o) + o) do

p(dr)

= ;Z/ ' /F”v(W)Khy(F{Jx(T\x) — 950 (Xi) — co — &) Kn, (x — Xi) A (X;) da| pu(dr)

+ 0p(1)

— E[/‘/R(m,T)Khy(F;OlX(ﬂm) — 95,(X1) — co — 1)Ky, (. — X1)Ap(X1) da u(dr)}
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+ 0p(1)
= 0p(1)

as well as (with Lemma [2.8.1])

p(dr)

vl (7l2) = Fyoly (712) 0(@) D (gso (@) + ey r) d
vt [| [ ¢

= PPl r12). )
=3 | ) (K, b 1) = 95,000 = 0 2 P

I

Khz (l‘ — Xl) dx

p(dr) + 0p(1)

/'2/ Xi = hatty T <’Chy( Fyoix (71X = how) — g5 (Xi) — co — &)

( y|X(7_|X )aXi_hxl‘)
— (X —hx) )K()daz

u(dr) + op(1).

Let C' > 0 be a sufficiently large constant. Then, for each of the components ki, k =

1,...,dp, one has

gl

I Z/@ ~ hgw, T </chy( Fyot (T1Xi = o) — gy (X3) — co — €3)

- (F;|X(;;|<)((’ h);U)X i_hw))K( ) dzx u(dr)>2]
< u([0,1))E /< Z/'fk )
(’Ch“( Fyx (T1Xi = haw) = g50(Xi) — e — &) = (FY_X(;)': _h;)xi—hm)
K(2) dx>2ﬂ<d7)]

< (0. )by E

/ (//%k(Xl — h:CJZ,T) (’Chy< Yo IX(T‘Xl — hzl') — ggO(Xl) — Cy — 61)

Fo1o(r|1X — hgx), X1 — hyx i
ol Y0X<f|X &l_hjm)l >>K<x)dx> u(dv)]

(0. [ [ E|Fa(x0 = o) (Ko (g (131 ) = 3, 060) = 0 = )

pO(F;O‘X(’ﬂXl - h:ﬂx)le — hyx

B Fx (X1 = hea) )ﬂ K por)
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< Chj§(</|K(:c)|dx>2+o(h;§)
— o(1),

where the last inequality can be shown similarly to (2.48)), so that

u(dr) = o0,(1) (2.62)

/‘/ volx (T12) = Fy |y (T12) ) v(2) D (gsy (x) + cgo,r) dev
and

\/ﬁhZTX / ‘ / (F’;'lX(T]m) — 980 (@) — ¢y, )v(2) D398, () + cpy.,r) dz| p(dr) = Op(1).

Completely analogously, it can be shown that

vt [ ] [ (Erle) = 950 (0) = e )ola) da

u(dr) = O (1).

ax

Therefore, it holds that B —Bo=0, (nféh; T). Especially, (2.59)) implies

2
T, = nhy 5 // Y‘X (T]@) — g8, () — cy,r) " da p(dr) + Op(1).
(3 is defined as the due to unique minimizer of G. Hence,
0= DsG(B)

= _2nh$ // Y\X 7_|33) 980 (x) - CﬁOJ)D/B(g,BO (:U) + 0/3077') dx :u(dT)

dx
+ 2nhe” p([0,1])(8 — Fo)'Q2
that is, (2.60)) leads to

B=fot——

e 1])9—1//1;(:0(@;(7@)_gﬁo(x)_Cﬁw)
(Dg(gs0 () + cpy.r))" da p(dr)

= B0+ 0, (n*%h;dTX). (2.63)

d

_dx
Note that for all 8 € B with || — Bo|| = Op (n_%hm 4 ), one has (see (2.59))

[ [ @i - g5(0) = 23" o ptar)

= [ [ el@) (B (rlz) = @) o) do ) + G9) + o0,

so that
dTX fr—1 5\
T, = nhy //v(x) (FY‘X(T|1‘) —9g5(x) — 0377_) dx p(dr)
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= ntha 2 // Y|X (T]x) — gp,(x) — 050,7)2 dx p(dr) + G(B) +0p(1)
> an? [ [ o) (B (rlo) = 93, 0) = es,r)? denldr) + G(B) + (1)

= nhy = // Y|X (T]x) — gg(x) — éBJ)Q dz p(dr) + op(1)
> T, + op(1).

Consequently, to obtain the asymptotic distribution of 7, it suffices to calculate that of

nho / / (B (712) = g50(2) = cp0.r)* da pldr) + G(B) = Ty, + G(B).
Inserting 3 from into G(B) yields
T, +G(B)
=T, — 2nh, £ // Y‘X (Tlz) — 98, () — cgy,r) dx(Ey,r — CBo,r) p1(dT)

d
kgt /v(m) dx /(6,80,7- — Cgor ) pu(dr)

"h 5 ( / / (By by (rlz) - ggo(x)—0,8077)Dﬁ(9/6’o(1’)+Cﬁo,f)d$”(d7)>g_l

<// Y\X (Tlz) — 98, (x) — ¢go,r) Dp(9s, (%) + cg,,7) da M(d7)>t +op(1).

Since ¢ég, » was defined as the minimizer of ¢ — [ v(x) (F;‘lx(ﬂx) —gp,(z) — 0)2 dz, it holds
that

[ v(@) (B (rla) = g0@) = 57) do = 0

and thus
[ @) (E (o) - g3y (2) = i) da
= /v(:c) (Fy|x(7'|$) 980 (%) — epyr + Chyr — Cﬁof) dx

— [ @) e~ ) s

for all 7 € supp(p). Together with Fy. ‘X(T|l‘) = g8, () + cg, -, this results in

=Ty, — 1. + ([0, 1]) /v(m)An(:c)2 dx — nh;TX /v(:r) dx /(éﬁo,r — Cpp.r ) p(dr)

uqz[f(b)121])<//v( ) (Fyix (rle) - F&%TX(T’”U))DB(%(”?)+Cﬁo,r)dafﬂ(d7)>ﬂ1
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([ ] o) Eetrlo) - Fily o) Dt o) + car) datan) ) -+ 0,00

T — 61 + ([0, 1]) / o(2) A ()2 dz — nhd / o(z) dz / (Cs0.r — ci0.0)21a(dr)

0 1] <// Byl (rle) - Yolx<7‘x))Dﬁ<9ﬁo($)+C,30,T)d:cu(d7)>9_1

<// Y|X (t]x) — YOTx(T‘l'))Dﬁ(gﬁo(l’) + cgyr) d M(d7)>t +o0,(1)

(fv(x) n(r)d )2
o) ds

G2 | | o Do) - one)

K, (Fyjx (T12) = 950 (X3) — co — £0) K, (2 — Xi) An(X;) da u(d7)>

< //fy0|X Y|X Tym ) fx (z )Dﬂ(gﬂo($)+65o,r)

Khy(F;(jX(T\a:) 98, (Xi) — co — ) Ky, (v — X3) Ap(X5) do u(dT)) +0p(1),

=T, 81+ u(0.1)) [ o)A (2)? o u(0.1)

where (2.46) and (2.57)) were applied to obtain the last equation. Let & be as in (2.61)).

Then, one has

Z/ | ot T () o)

K, (Fyjx (Tl2) = g5, (X:) — co — €0)Kp, (& — Xi) An(X;) da p(dr)

Z// RrR(Z, T Khy Y|X ’1‘) gﬁo( )—C()—EZ)Kh ( Xz)An(Xz) dl‘u(d’i')

— //Fa(x,T)E[Khy(F;(jX(ﬂx) — 950(X1) — o — 1)K, (& — X1)An(X1)] da p(dr)
+ op(1)
- ////IZJ(CE,T)Khy(FYOTX(T’x) — 2)Kp, (x — w)Ap(w) fyy, x (2, w) dz dw dz pu(dT)

+ 0p(1)

_ / / / / Rz, 7K (2K (w) A (2 — how)

Iy, x (F Yo |X(7'|x — hgw) — hyz, & — hyw) dz dw dx pu(dr) + op(1)

// R(x,T) x) fyy,x Y}X(T|x),x) dx p(dr) + op(1)
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= [ [ o)Dstas () + e Autw) du ldr) + 0, (1),

so that with (2.58)
T, + G(B)
2
=T, — 1,0 + p([0,1]) /U(JJ)An(x)2 dz — u([0,1]) (f U?l?;;(;‘; dz)

u([()l,l])<//U<x)Dﬁ(gﬁO(x)+Cﬂo,r)An(:L‘) dxu(dﬂ)

< [ [ @ Datosn (@) + )bl dwdﬂ)t +opll)

2
= Tn — 51771 + u([0,1]) /U(ﬂf)An(x)2 dz — p(]0,1]) (f U(}El(Axn)(;; dl‘)
— u((0.1) ( [ 01,00 (Daga o) - L dm)
o (/v(x)A”(x) <Dﬁgﬁo($) - W) dx) +0p(1)
[ — ol 2 — J o(w1)Ap(wy) duy
=T, — 61.n + ([0, 1])/ ( )(An( ) oo i

fD/Bg/BO (w3) dws
- (Dﬁgﬂo(x) - fv(w4) duwy >

Q_l</U(w5)An(w5)<D5g50(w5) B fDBQBo(WG)dw(s) dw5>t>2dx—|—op(1)

[ v(wr) dwr
=T, — 61,0 + 0n + 0p(1)
=T, + 0o + 03,0 + 0p(1),
where the third from last equality was obtained by standard calculations. Finally, Lemma

239 leads to

T, —b—26, 23 2.

2.8.4 Proof of Remark [2.3.5

0, was defined as

Op = ,U([Oa 1]) /U(x) (An(w) _ f’U(wl)An(wl) dwy _ <D69,BO(ZU) _ fDBgﬁo(w?:) d'wg)

[ v(ws) dws [ v(ws) dwy
2
1 _ J Dsggy(we) dws ! .
Q (/U(w5)An(w5)<D69,@o(w5) T o(wr) dur >d 5> ) de.
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The alternative expression for d,, can be obtained by simply expanding that from above.
While doing so, the fact is used that

J v(w2) Dgps, (w2) dw, [ o(ws)Dagpy (wa) dwy \*
/v(wl) T o(ws) duw (Dgggo (w1) T o(ws) duos ) dwy =0. (2.64)

To prove the second assertion, rewrite A,, as

An(x) = 9 (x);lgﬂo (x) = Dﬁgﬁo (%) Bn;l o

+o(1)

uniformly in x € supp(v) and n € N. Hence, the distributive law yields

0n = p((0,1]) /u(az) (Dﬁgﬂo(iﬂ)ﬁn —f_ <f“(w1)Dﬁgﬁo(w1) dw1> B — Bo

Cn [ v(ws) dws Cn

- (Dﬁgﬁo (x)

(oo ) )Y

= u(0.1) [ o ((D/sgﬁo () - Lol Dasn () dus)

 J Dsygg, (ws) dw3>
J v(wa) dwy

[ v(ws) dws

(5”;50 =07 ([ o)) (D ) - L) e d“’5>t))2 "

+o(1).

Equation ([2.64) leads to

Bn—Bo Q_1</v(w5)An(w5)(Dgggo(w5) _ fDBQ[J’o(w(s)dwﬁ) dw5>t

cn, f v(wy) dwy

n - _ L, — D ! d .
A3 - 5550 )

+o(1)

_Ba—Bo_ ((/il ~ B)" /v(w5) < Digs () — 22950(3) dw3)

cn Cn [ v(ws) dwy

<Dﬁg,6’o (ws) — / l}ﬂvg(i‘;;”flzviw(”) dw5> +0(1)

/Bn_/BO

— Bn_ﬁo —Qflﬂ

Cn Cn

=o(1),

+o(1)

that is, §, = o(1). O
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2.8.5 Proof of Theorem [2.3.6

The proof of the second part directly follows from Theorem and Slutsky’s theorem,

so that it remains to prove the first assertion. Since Hy is violated in this case, one has

min // Y|X (T]x) — gp(x) — c)2dx p(dr) > 0.

BEB, ceER
Recall 5y, 2) (. 2)
FY|X(Z/|35) — Py x(ylz) = [}jg) - Zjéj)

Again, the results of Hansen| (2008) yield p(y, z) —p(y, z) = 0,(1) as well as fx (z)— fx (z) =

0p(1) uniformly on compact sets and thus
Fyix(yle) = Fyx (ylz) = op(1)
uniformly on = € supp(v) and y belonging to some compact set  C R. When choosing

K = [y1,y2] with

Yy = inf FQEX(T, x) and 1y = sup F;EX(T,JU),
z€supp(v),TEsupp(k) zEsupp(v),TEsupp(p)

assumption ([2.28) ensures that the functions y — Fy|x(y|x) are strictly increasing for all
x € supp(v), so that

B (o) — Byl (rla) = 0,(1)
uniformly on x € supp(v) and 7 € supp(u). Especially, it holds that
swp k()< swp |Fh ()] + opD)
x€supp(v),TEsupp(p) z€supp(v),Esupp(p)

and the minimization in (2.13]) with respect to ¢ can be replaced by that over some appro-

priate compact set [c1, c2] C R to obtain

T, 2
o = min // Y|X (T|z) — gp(x) — c) dx p(dr) + op(1)
nh, 3 ,BEB c€ler,e2]

// Y\X (7le) - 17|1X(T’~”U))2dxu(dr)

~

- sup
ﬂcESUPp(v) TEsupp(u)

max // )| F Y‘X (1|z) — gs(a) — c| d p(dr)

BEB,c€[c1,c2)

BeB ce[cl,CQ] // Y\X T|x) 95(1’) — 0)2 dx ,U«(dT) + 0p(1)

Vi () = Byl (rle)|

min // Y|X (1|z) — gg(x) — C)le' p(dr) + op(1).

BEB c€ler,e2]

Hence
P((I)(YlaXla aanXn) = 1)
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P(T > b+ VTuiy)

( Tn Z)—F\/?Ula)
dy >

n T

dx
nhg?

I
g

=1+o
O
2.8.6 Proof of Theorem |2.4.1
Note that there exists a compact interval C = [c1, c2] € R such that
(F{}|X)*1(T]a:) € (h(c1),h(cz)) for all x € supp(v), T € supp(u). (2.65)
Similar to the case without transformations, one has
B x(yle) = Fiyx (yla)
_ ) P
fx(x)  fx(@)
_ 1 h h ph(ya'x) £
 fx(@) = fx(@) <Ah o Py ) (fx(x) — fX(l‘))>
(o) fx (@) Py, x) —p"(y, ) (@) ,
By, ) = " (y,) = 0p(n~3) (2.66)

and

fx(@) — fx(z) = Op(”_%)
uniformly in x € supp(v) and y € h(C). First, the asymptotic behaviour of p (y, z)—p(y, x)
her—6) =
(c2 +6) =

is examined. To this end, let § > 0. As the support of K is compact and h(y) <
h(ci — 0) + 0p(1) uniformly in y € (—oo,c; — §) and analogously h(y) > h

h(ca + 6) + op(1) uniformly in y € (¢2 + 6, 00) one has
P(vZ €N(C),y ¢ [e1 — 8,00+ 0 : K, (2 — h(y)) = K, (= — b)) € {0, 1}) 1. (2.67)

(2.41) yields

LS Iy sene KU ”(y"”")><h<m—iL(n))thw(x—Xi)

thy i=1 hy
sup  (h(y) — ﬁ(y))j
e1—3, h(Yi)
< y€le1—d,c2+9] ' Yy — i B
- hilfl nhy z; hy Kh:c ($ X'L)
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1
=0,| ————~
p(\/’?l]hg/1>

=)

for all j =2,...,r as well as

1 3 T * ol r
‘nh”“ > Tivicler-seatan K () (h(Yi) = h(Y) ™K, (@ — X5)
Y=l

sup  (h(y) — h(y))™*!
yEle1—d,ca+6]

< sup K (y Ky, (2
h§+1 yER Z

1
-0 )
+1 1
Vi byt
1
= Op % .
Hence, one has for appropriate y; € R,i =1,...,n
ﬁh(y7 l‘) - ﬁh(ya .ZE)
1< - 1

= > K, (y — M(Y2)) K, (z — X;) — - > K, (y — M(Y3)) K, (z — X)

=1 =1

*Z (vieler—b.caa)) Kn, (v — B(Y:)) K, (2 — X))
=1

- 72 (Vicler—6.ca+0} Ky (y h(Y; ))Khz(:U_Xi) +0p<\}ﬁ>

=1

= 3 Moieemsens Z O () () ) K - X0

1 1 r
+ - Z I{Yie[mf&,@ﬂs]}mK( !

o)

1 1
=3 Z VY, Xio, Yi) L yiefer—6.co+8)1 K hy (¥ — R(Y2)) Ki, (2 — X3) 4 0p <\/ﬁ> (2.68)
1=1 k=

| )~ h(Y)) K, (o - X

and

|ﬁh(y7 JI) - ﬁh(y7 .’L’)’

1 ; 1
55 et sessan i o = MY (Y — RO (o= X0+ 0p (=)
1
< s i \—Zmy (0= HOV)K o = X0+ 0p (2 )
z€[c1—8,c2+6] n
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o, <\}5> (2.69)

uniformly in y € h(C),x € supp(v). Due to (2.69), equation (2.66) can be extended to
7"y, ) — p"(y,2) = 0,(n"7), s0 that

N

~ 7 z h x
Fixolo) = Flix(vle) = 55070 = ) = W:7) (f (@) — fr@)

fx(z)?
1
+0”<ﬁ>
_ 1 B z _ph(y7$) p z 0 L
- 0 - e v 1)
ZOP(n_i)

uniformly on x € supp(v) and y € h(C). A similar reasoning leads to
Ry wlo) = fxole) =op(08) and L flole) = 0,(0)
uniformly on x € supp(v) and y € h(C), so that for an appropriate y* one has
0= F$|X((FQ\X>_1(T|=®)‘$) — Fx (Fx) 7 (r]2)|2)
= R (B) 7 (Fl)le) + Ry (B0 (la)la) (Bx) ™ (le) = (B ) ™ (7))

+ ;yfélxw*m((Fé|x>—1<r|x> — ()7 (12))” = B (B )~ (7))

= B (Fly ) 7 (rl2)[e) — B (Fly ) (7))

R (R ) (B ) = () 01o) + 00 )
uniformly in = € supp(v) and 7 € supp(p). This in turn results in
(Fl ) "M (rl2) — (B ) 7M7)
Bl ((F )T ) e) = B (R ) 7 (o)) ) (1)
N 1 (B ) l)]) "\
- 1 U gy o DB Tl
- f¢X<<F¢|X>—1<m>rx>(fx<x>p (B (). o) E)
1
*"p(ws)
- 1§anhz<x—Xz->(1ich (Pl )~ (rl2) — h(¥D)
(B ) (7)) n = Fx (@)™
PP ) (), @) 1
) o)

76



2.8. Proofs

uniformly in z € supp(v) and 7 € supp(u). Note that validity of Hy is assumed, that is,
h(Y") here corresponds to Yy =Y in Section Therefore, equation (2.45) leads to

(Fyx) ! (7le) = (F ) ! (7o)

= 1 L b -1 o) ) — ((F{}p{) Yr|z),2) . N
B f}I}|X((F¢‘X)_1(T|.%')|x) <fx(.1,‘)p ((FY|X) <T‘ )’ ) fX(l')Q fX( ))
1 1< 1 B

A0 o 3

uniformly in z € supp(v) and 7 € supp(u). Hence, (2.68)), (2.69)) and (2.70) yield
(Fpx) 7 (rl2) — (B %)~ (7])

= (Fx) " () — (Bly) ™ () — (Bx) ™ () — (Byx) ™ ()

270) fng((F{}'X) 1( e (ﬁfl((F{}IX)—l(ﬂl‘),x)—ﬁh((F},}|X)_1(T|$),IL‘))

1
“o )
268) 1
I Yoo X YD) lpyicior s
fQIX((FﬁX)_I(T‘x)’x)fx( nQ;kzl¢ koo X Yi) L€ (er —6,c0-+9])

K, (Pl )~ (7l2) — h(Y) Ky, (2 — X0) + 0, (%)

o, <\/1%> (2.71)

uniformly in x € supp( ) and 7 € supp(u). Recall that (F}@|X) Y7l = g8, (") +co+ F (7).

Extend definitions and ( - ) to
L Ju@(F ) T (Tl2) — gp() da

b = Jv(z)dx
éh . f ( )((F¢|X) l(T!w)—gg(x))da:
T J (@) de
g @) ) — gs(@)) da
b Jv(z)dz ’

Recall Theorem [2.3.4] and the definitions of §,, there. Due to validity of Hy it holds that
0, = 0. In the proof of Theorem [2.3.4] it was shown that

T" = minnh, > // Y|X “Hrlw) — ga(w) — égJ)Q dx p(dr)

BEB
—and [ @B rlo) - (Fh) k) doslar) + 0,()
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= b+ O,(1). (2.72)

Similar to the proof of ([2.14]) one can show that

R Jv(z)dz B

o Te@) (B ) = (B )M () ( 1
h h o, —= (2.73)
(%)

and the same calculations as in (2.57)) lead to (note that Hy was assumed, that is ¢, = 0)

ch o _eh g o f”(x)((ﬁ3]}|x)_1(7’\x) - (F}’}|X)—1(7-‘x))
T [v(z)dz

= O<\/15 (2.74)

uniformly in f € B and 7 € supp(u).

Let Bh and Bh be the minimizing values in 7" and Tf}, respectively.

Lemma 2.8.2 Let Bi‘ and " denote the minimizers of Gh:BxR— R,
GH(8) = 2t [ [ @) (F07 rle) — ga) — )

Dps(gp, () + s, ») da pu(dr) (B — Bo) + nhgt (8= B0)' B — fo),

and G" : Bx R — R,
68 =2t [ [ o) (Bl r1o) — g () - b, )
Dy(9s0(x) + i) dz p(dr) (8 = Bo)

+”lh2(5 B0)" QB — Bo).

Define
T = nhy a / (B )M (712) — gao () — by ,)? da ()

=t [ [ o) (B0 1) = ()™ 010)” die ).

Then, one has
5 1 _dx
18" = Bol| = Op(n~2hs *), (2.75)

dx

16" — Boll = Op(n~2hy *),
18" — Bol| = Oy(n~3), (2.76)
18" — Bol| = Op(n~2)

N[

and
dx

nht / / o(@) (Bl ) 7 (712) = gsy () — )2 da p(dr) = T + 0,(1).
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Proof: It is started with proving the last assertion. Write

it [ [ o) ()7 1) = g3 ) — ¢, ) sl
—ant | / (B k) = (B) ™ rlo)
+ (B )7 (rla) — g3 (@) — ) da ()
= ant [ [ o) () 0l = (Bl 010)” di ) + 7
voun | / (F) ™ (rla) = (Bly) 7 ()

((F31x) " (Tl) = ggo (@) — €y, ) d p(d)

Thanks to (2.71]) the first term is asymptotically negligible. In Lemma it was shown
d

~ _2X
that T = O, (hz 2 ) Moreover, the third term can be expressed alternatively via (2.71
and Lemma 2.81] as

nhy® e (E i) - (B )

((Fyx) "t (rl2) — ggy (@) — €y, ) dae pu(dr)

=t [ [ (fy|X ) R ; ¥ 1)

Toveta-sessat Ko ()™ (7ke) — W) K o = X0 + 0 2 ))

1
<f{}x((F{}|X) (rla)lz)

. ph((F’}”Lljf;)(:)(;’x)’ ) > +0, (%)) dz (dr)

= nz Z Z// k(@ 7)Y (Yoo, Xis Y I (viefer 5004011 K, (B x) 7 (T]) — B(Y7))

ZK% (];m/chywx)—lmx) ~ h(YD)

k(z,T) =

T (L) () 02 x ()2

has a compact support. For all compact sets C C R, the function (y1,x1,y) — ¥(y1,21,y)
is uniformly bounded in (y1,x1,y) € R¥**! x C due to assumption The sum can be
split into

nhgt P o (E ) - (B )
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(B2 )~ (7l2) — ggo () — B, ) da ()
- hnz // 2, 7)U(Yi, Xi, Yi) Lyiefer—s.cotaly Ky (Fyx) 7! (Tl2) = h(Y7))

P () (rl2), 2
fx(x)

K, (r— X >(/chy<< b ) (rle) — h(Y:)) )>dw(d7)

ZZ// k(2, 7)Yy X Yi) Ly ler —s.cora} Ky (FY ) (T]2) — B(Y2))

=1 k=1
ki

n2

K o~ XK, (o~ X0) (K, () rle) = n00)

() (7). 2)
@) ) dx p(dr)
k(a, ) (Yi, Xi, Y Iy, efer—s.caro)y Koy (FYx) ™ (7]2) — h(Y3))
=1 |=1
1#1

K, (r — X)Kj (z — X)) (fchy<<F¢|X>1<ﬂx> (%)

P ) (7)), )
- @) ) dx p(dr)
n2 22// 2, ) (Ve Xies Y I{vicler—s.e0-4o)y Kn, (F ) ' (T]2) = B(Y7))
=1 k=1
k#i

P ) (rl2), 2
fx(x)

K, (r— X >(/<hy<< ) ) — h(¥i) — ))dmdﬂ

nz ZZZ// (2, )Y (Vi Xiy Yi) [{vie(er —5.e0+6])

i=1 k=1 [=1
ki 1#£i.k

K, (Fx) " (tle) = h(Y:)) K, (& — XK, (2 — X1) <’Chy((F¢|x)_1(Tlx) — h(Y1))

h(Fh )N r|2), =
A Y}i(x)( ) )>d$u(d7')+op(l)

=T+ IT+IIT+1V +V +o,(1).

For an appropriate constant C' > 0, term I can be bounded by

= sz Z//E<x7T>|Khy((F}’}|X)_1(T|x) — W(Y2)|Kn, (z — Xi)? da p(dr)
=1
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=S 3 [ R b I () 01 + i) — YD) K () (),
n2hg? i=1

which in turn is asymptotically negligible due to
E[w(X; + how, 7)| Ky, (Fy x) ™ (71X + ha) — h(Y7))]]

- / (W + ha, 7) Ky (Fle) ™ (o + ) — gag (1) — co — €) f (w) fo(e) dw de

= //{(w + hyx, 7)K(e) fx(w) f=(( y‘X) Yr|w + hpx) — 9p,(w) — co — hye) dw de
_ o)
uniformly in z € supp(K) and 7 € supp(u), that is I = o0,(1). For the second term define
2= [ [ w00 X Y et sesay B, () ko) = B(Y) K (& = X0

P () (rlz), 2
fx(x)

Ko, (z — Xp) (’Ch (Fyx) " (7l2) = h(Ya)) — )> dx p(dr),

dx

so that II = hfj S Sk ZH For an appropriate constant C' > 0, the expectation of
ki

|le12| can be bounded by

zis) < [ [ nten) Bl (B0 0le) ) K 2 - X0)]

E[|Knp, (x — X3)[] dz p(dr)

=0(1),
that i
’ ls, d n n de n n
ha i ha?
IS 33 ELS 3 SR
i=1 k=1 =1 k=1
ki ki

Term 111 can be treated similarly to obtain 111 = op(1).
For the fourth term define

21 = [ [ 5l Ve X Y0 vt -sessay K, ()™ (7o) = (YD) K (o = X2

PH(F ) (rl2), 2
fx(z)

dx dx

. 2
that is, IV = }””7 Z?:1 Z%?
1

so that for an appropriate constant C' > 0

S

i=1 k=1

<Ichy(( Y\X) l(T‘x) - h(YZ-)) - )) dl‘/i(dT):

n
=1

IV | = + 0p(1
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Ch
n

dx
2
X

<

Zl//ﬁ(JI,T)‘Khy((F{/LX)_l(T]x) — h(Y3))|Kn, (z — X;)? da p(dr)

Itvieler—5,c0+6])

1 n
=~ (Y Xi, V)
k=1

ey

= 0(%) Cf; Z / / k7)o, (Fly) ™ (7la) — h(YD)|

K, (z — X;)?dx p(dr)

1
o)
? nhgx
where the last equality follows similar to proving asymptotic negligibility of I, 11 and I11.
Hence, IV = 0,(1).

It remains to examine term V. Define
Zi = //H($,T)¢(Yk,Xk,E)I{ne[cl—é,cﬁa]}f(hy((F{ﬁx)_l(ﬂx) — h(Y}))Kp, (z — X;)

PH(F )~ (7]2), 2)
fx(z)

Ko o = X0 (K, () (rle) = 1(30) - ) dutar),

ax
ix
so that V = hl‘? DD DD D Zi‘,/k,l' One has
i ik

n n n

dX n n n
BV =S S S SIS Y Bl

i=1 k=1 |=1 s=1 t=1 u=1
k#i 14,k t#s u#s,t

Due to E[1p(Ya, X2, Y1)|Y1] = 0 the expectation vanishes whenever k or ¢ are occurring only
once in (i,k,l, s,t,u). Only asymptotic negligibility of the summand corresponding to the
case, in which k =t and #{i,k,, s,t,u} = 5, will be shown, since asymptotic negligibility
of the remaining summands can be deduced from this case and the calculations for terms
I,I1I,I11,1V. It holds that

E[Z{532155)
= |: / / ’Q(l', T)w(Y% X2, Yl)q'b(}é’ X2, n)l{yle[cl—6,02+5]}I{Y4€[01—5,c2+5]}

K, (Fx) " (rl2) = (V1)) K, (& — X0) K, (F)x) " (7]2) = A(Y2)) Ky, (@ — Xa)

ph<<F¢X>1<T|w>,x>)

Kp, (z — X3)Kp, (z — X5) (’Chy((F{}IX)_I(ﬂx) —h(¥s)) - fx (@)

PH(F ) (r|2), )
fx(x)

(’Chy<<F¢X>1<Tlx> ~ hl¥5)) - ) d”(d”]
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= E|://K(J:?T)w(yéaX%m)w(Y27X27Y4)I{Y1€[cl5,02+6}}I{Y4€[015,02+6]}

K, (Fyx) 7 (7]2) = h(Y1)) K, (2 — X1) K, (Fx) ' (7l2) = B(Ya)) K, (& — X4)

h((Fh )~Y(r|z), = 2
E[Khr(l’ — X3) </Chy((F¢|X)1(T’x) — h(Y3)) — il Y'jci(x; =) )>} dx M(dT):|

As in ([2.48]) the inner expectation can be bounded via

ph«F&X)-lmx),x))]

E|:Khz (a; — Xg) (]Ch (( y|X) 1<T‘Z') - h(YB)) - fX(x)

:/K (/K (Fl ) (7l2) = by, — hyw) d2 du

fx(z — hmw)) dw

h h -1
() ) ) P

_ 0p<\/15> (2.77)

uniformly in x € supp(v) and 7 € supp(p). By the same reasoning as before this results in
E[Z1 9 3ZX2 5] = 0( ) and thus

n

dX n n n n
vI=BESSSISS SS BlEl 2] = o).

=1 k=1 I=1 s=1 u=1
ki 14,k s#i,k,l u#ik,l,s

Finally, this leads to V' = 0,(1), that is
dX ~h
et [ [ o@) (B o) = o) — ) dontar) =T+ 0y(0).

Treatment of Bh,Bﬁ,Bh and Bi’

For treating Bh and Bﬁ note that
[ [ v (7 ol — gata) ) tar)
-/ / (Bl (rle) — g3(a) = &4 ) do i) + 0,(1)

Z//w@ Flix) ™ 010) = 95(0) — &, de ) + 0,(1)

uniformly in 5 € B with

sup / / (Fl) ™ (7l2) — ga(a) — ch,,)? da pu(dr) > 0

BEB,|IB—Bol|>s

for all § > 0, which leads because of |(A7)|to ||3" — Bo|| = 0,(1) and HBE—BOH = 0p(1). Due
to (2.72)), one has 7" —b = 0,(1) and a Taylor expansion of 3 ((F}@'X)*l —g3(x) —cgJ)2

(compare (2.59)) yields
" —b
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ant [ / ()™ (7l2) = gin(a) — iy )* do () — b+ Op(1)
i // )" () — g5 () — )2 do pldr) — b
~2an? | / ) rla) = g50(0) = s ) Da(g(o) + s )
do () (Bo — B) + (Bo — B)mhed QB0 — 57) + op (ki 1150 — B711%) + Op(1)
> T = bt e (50— B - 1) — 20t [ [ o)
(Bx) ™ (7le) = g0 (@) = iy ) Dg(gzn @) + el ) da pldr) (B — BY)
O, (y/nh (180 — M) + op (nha? 1180 — BHI12) + 0,(1)

= (Bo — BMYnhy? Q(Bo — B") + O (\ nhX 180 — BM[) + op(nha? |50 — AH[2) + Op(1).
(2.78)

Here, the second to last inequality, where égh

pare (2.58)) and (2.74)))

was replaced with Cgﬁ _» follows from (com-

\T

nhy * // ((F) ! (rl2) = ggi() — chi ) Ds(g0 (@) + ey ) d p(dr)
= nhy 3+ //v(x)((F¢|X)_1(T|x) — 9gi(x) — égﬁ’T)Dﬂ (941 () + ég%) dz pu(dr)

+ (’)p(\/ nhgx)

=it [ [ o) (B0 rlo) — (Bl ™ (rlo) + (Bl) ™ rle) = g0(e) = )

B [ [ o) (R0 (k) = 5000 = ) (Daggs (o) + ¢, ) drplar)

+ (’)p(\/ nhﬁx).

The last equality in 1) follows from the definition of Bﬁ as the minimizer of TJ}, which

implies

it [ [ o) ()™ 1) = 930 0) = ) Dalgz (o) + ) e ur) = 0.

dx

Since €2 is positive definite, equation (2.78]) leads to ||Bh —bBoll = O, (n_%h;T). The same

assertion for Bh was already shown in the proof of Theorem
As the minimizer of G"(3), 8" it is determined by

0= DsG"(B)
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= —2nh,? / / o(@) (Bl ) 7 (712) — gy (&) — ly ) Dilgan () + ) do u(dr)

dx dx
+ 2nh,? (6 - BO)tnh:pQ Q

and consequently can be expressed as

= fo+Q~ // (B x) " (rlz) — (Fyx) ' (712)) D(gpo (x) + ¢y )" da pu(dr)
=B+ Q" // Y\X Yrlz) — ( ¢'|X)_1<T‘x))Dﬁ<gﬁo(x) + cgw)t da p(dr)
o <x/ﬁ> (2.79)

=ho- Qil% Z // fY\X Y|X T\x)’x)fx( )Dﬁ(gﬁ()(x) + o) Koo (0 = X0)

PR () '
(Jen, (R ) — i = =2 T ) + 0, ()
—50—*2 / [ #oKi - x (/chy« Fl) ™ (rl) — h(Y2))

PM(E)” (T‘x)’x)>dw(d7)+op<l>,

fx(x) Vn
where (@)
v(zx
F(z) = 0! Di(gs(a) + iy )"
F i (B ) ()l fx ()7 o
is a (multidimensional) function with compact support. To show Hﬁh Boll = (—n) it

is sufficient to prove

E[(}éj [ [a@se-x)

(Fn (R0 k) = b)) - ((F”}'}i 5 )(T'x)’@) dg;ﬂ(dﬂ)z} ~o(+):

for each component 5 of K, k = 1,...,dg. This in turn leads to analysing

E[( [ [ sk - x)

FI T|T), T 2
(/chy<(F¢|X>1<rrx>—hm)> P ) (rle) )>dw(d7>> ]

fx (@)
E[//Rk(x)Khw(x—Xl)

Fh )V (r|2), x 2
(K, ™ o) vy - 2B Y )

and
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For some sufficiently large C' > 0 the first expectation can be bounded by
B|( [ [ A te = x0 (K () rlo) - i)

PN Y]

([ pnte—xre)]
sc(/|K<m>|dx>2,

while the second expectation can be treated as in (2.48)). Finally, || Bﬁ — Bol| = (%) has
been proven. Additionally, due to (2.79) it was shown that

118" — Bol|

H / / (Fx) " (rl2) = (51x) ™ (7]2)) Ds (930 () + cfy, ) da pu(dr)

:OPW)

Putting Things together

_dx
Let 5 = (Bn)nen be a sequence in B with § — fy = (’)p(n_%h;E 4 ) Then, as in (2.59)) a
Taylor expansion of 3 ((F{ﬁ )= gsa) — 0577)2 and the binomial formula yield for

some (* between B and By

it [ [ o) (P 1) = gate) — ) )
—ant [ / ()™ (712) = g3 (@) — &, ) da u(ar)
ot [ @) () el - g0 -, )
D950 () + 2l ) d () (8 — o) + nba (8 — Bo)' B — i) + op(1)
=t [ @) ()7 01 - g o) — e, ) o lar)
b // ) — ek )2 du p(dr)
ot [ o) (B0 (7o) = g5, 0) = ) (= ) )

—onht / / (B (1) — ggo () — b )
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D950 ) + ly ) dw () (8 — o) + et (8 — Bo)' QB — i) + op(1)
= Th + GM(B) + 0,(1) (2.80)
and
et [ [ o) ()™ r1o) = gato) = ) di ) = Th o+ GP(3) + o,(1).

Note that in contrast to the proof of Theorem m, 2.3.4) equation (2.74]) leads to asymptotic
negligibility of the terms containing cgo - cﬂO ,=0 ( 1). Due to (2.75)) and (|2.76), one

has
Th =T+ G"(B") + 0,(1)
> Tt + GM(B") + 0,(1)
= an? [ [ o) (B0 o) — g50(0) = ) o) + 0,00
> T+ 0,(1)

so that it suffices to consider the minimum of 3 +— T/ + Gﬁ(ﬁ) in . Therefore, Tﬁ is

asymptotically equivalent to
T+ G (5"
S / / () () = gao (@) — iy )
D93y (&) + iy ) do pldr) (B — Bo) +nha? (B — Go)'UF" — o)
— T b (B — o) (5" — fo)
ED 71 4 0, (1),

Recall that Hy was assumed, that is 6, = 61, = 02, = 03, = 0 with 61,4, 02,03, from
Remark Hence, a similar reasoning to that from above for T (with 8" instead of
B") leads to T = T + 0,(1), so that

Th = TP + 0,(1) = T + 0, (1).

2.8.7 Proof of Theorem [2.4.3

It will be started with the first assertion. FY| +(y|x) was defined as

Py, x)

" with p (y, @ ZIChyy hY)Kp, (. — X;).
X

Fyx(yle) =

87



2. Testing for a Parametric Regression Function in Nonparametric Transformation
Models - A Quantile Approach

Let K = [k1, k2] be compact and § > 0. One has
sup  [A(y) — h(y)| = op(1).
yé[kl—é,kg—i-d}
Let 6, \( 0 be the monotonic sequence from Lemma with
sup [h(y) — h(y)| = 0p(dn)-
ye[k175,k2+6]
Then, the results of Hansen| (2008) can be adjusted as later in (4.6.10]) to obtain

sup [Py, ) — p"(y, )|
x€supp(v),yeX

= swp Z/chyy h(Y:) + h(Yi) = h(Y7)) = K, (y — B(Y2) K, (x — X;)

zesupp(v),yek | T

< sup Z |KChy (y = B(Y:) + B(Y;) = h(Yi)) = K, (y — (V)| K, (z — X5)]
z€supp(v), yek T
1 y+on—h(¥y)
hy
< sup - / |K (u)| du |Kp, (x — X;)| + op(1)
zesupp(v),yek T Zz; %fyh(m P
y+én—h(Y7)

hy
= sup E |
z€supp(v),yeX

K (u)| du|Kp, (x — X1)|| + 0p(1)

y—6n—h(Y7)
hy

y+on— 9[30(”) co—e

S T . g HEO1 0 (5= )l (e e+ 0,0

z€supp(v),yeX

y+n—gp, (w)—co—hyu

- s [ / f-(€) de | K (w)] du K, (@ — )| fx(w) dw

z€supp(v),yeX dn—9p, (w)—co—hyu

+ 0p(1)

sup // y + gﬁo( hx’w) —Ccy — hyu)

z€supp(v),yeX
— F.(y — 0p — gg,(x — hgw) — ¢ — hyu))|K(u)] du | K(w)|fx(x — hyw) dw + op(1)

= 0p (1)
and thus

sup }F{?\X(ylﬂ —F¢|X(y|x)’ = op(1).
z€supp(v),yeX

The rest of the proof of the first assertion was already given in the proof of Theorem [2.3.6
With the reasoning from above the proof of the second part directly follows from Theorem
and Slutsky’s theorem. O

2.8.8 Proof of Theorem [2.5.1

Since the support of v is compact, the results of |Hansen| (2008)) yield

Fx(@) — fx(a) = 0p< k’g(”))

nhgx
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uniformly in z € supp(v). Due to fx(x) > 0 for all x € supp(v), this leads to

1 & v( 1 & v(X log(n
EZ _EZ]? ( ng;){)>

7,1X

ax
and analogously to (2.33) and 1 3" | v(X;) = [v(w)fx(w)dw + o(hs® ). The numerator
in (2.35)) can be treated similarly to the proof of Lemma To this end, recall

(B0 (51%) - vy = 71 (3) — e

The results of [Hansen| (2008) imply

n Z Khs< Fyix)” 1(%|Xz') - h(Yz’)> = iﬁ:v(X,-)Kha (F‘;l(;) _ 5i>

that is, is suffices to show

§ 20 ((Fh) (31) =00
_ % Zn: v(X;) K, ((F¢|X>‘1 (%IXZ-) - h(Yi)> Fop(ha?).

=1

Since the set {(F{ﬁ‘x)”(%\x) cx € supp(v)} is bounded, there exists a compact set IC,
such that

P4 Sortxom. (™ () -i0)
i=1

n

_1 ‘ v(Xi)I{YieIC}Khs ((F%X)l (%‘Xz) — B(E))) —1
and

p(L vt (10 () -0

1
w>w%@4mw>gmywmwél
i=1
Hence, one has for some appropriate C' > 0,y € R

n n

L v (B~ (51%) - 09) = 2 S, (R (516) -0 )|

i=1 =1
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. zn:v(xi)l{yie;c} (Khs ((Féx)—l (51%) - ﬁ(m)) — K. ((F{;X)—l (51%) - h(Yi))) ’

i=1
dx
+0p(ha”)
n r—1
1 v(Xi)iviexy &
D I D R L7 N
ni o J oy’ v=(FP ) " (B IX)—h(Y)
i -1 L ah y—1( 1 7 ’
(B0 7 (51%:) = (B0 7 (516) + b)) = A(Y))
1 & U(Xi)I{Y-EIC} o
— — s v - K ‘
* ’I’LZ 7’! ayT hs(y) y:y;f

dx

<(F}i}x)l (%m) — (B0 (%|Xi> + h(Y;) — ﬁ(y;-))r +op(hs?)

1 ,
7 1 1 J A )
<> =] s (B )TN (51e) = () T (512) |+ sup [A(y) — A(y)l
jz_;hg<x€supp(v) Yix (2 ) Yix (2 ) yeK
1 « o7
- v Xl —K ‘ —11y_,.
C [ 1 1 " . dx
+ — su Fh ) Zlz) = (B )" =l2)| +sup |h(y) — h T)—i—o hy?
o (xeSup‘;(w (B0 (Ghe) = @0~ (gle) |+ sup ) = R ) +0p (" )

— (91,((nh§)_i + (nrhg(rﬂ))—i)

dx

= Op(hﬂ?T)'
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Identification in a Fully
Nonparametric Transformation
Model with Heteroscedasticity

The underlying question of this Chapter can be formulated quite easily: Given some real
valued random variable Y and some R -valued random variable X fulfilling the heterosce-

dastic transformation model

hMY)=g(X)+0o(X)e (3.1)

with some error term ¢ fulfilling ¢ 1 X, Ele] = 0 and Var(e) = 1, are the model components
h:R =R, g:R¥ 5 R,0:R¥X — (0,00) and the error distribution uniquely determined if
the joint distribution of (Y, X) is known? This uniqueness is called identification of a model.
Already Box and Cox] (1964), |Bickel and Doksum| (1981) and Zellner and Revankar| (1969)
introduced some parametric classes of transformation models. Horowitz (1996) proved for
a linear regression function g and homoscedastic errors that the model is identified, when
h(yo) = 0 is assumed for some yo € R and the regression parameter is standardized so that
the first component, which is different from zero, is equal to one. Later, the ideas of[Horowitz
(1996) were extended by [Ekeland et al. (2004) to general smooth regression functions g. The
arguably most general identification results so far were provided by |Chiappori et al.| (2015)
and [Vanhems and Van Keilegom| (2019)), who considered general regression functions and
homoscedastic errors as well, but allowed endogenous regressors. Linton et al.| (2008)) used
similar ideas to obtain identifiability of a model with parametric transformation functions
as a special case. Results allowing heteroscedasticity are rare. [Zhou et al. (2009)) showed
identifiability in some kind of single-index model with a linear regression function g and
a known variance function o. [Neumeyer et al.| (2016) assumed identifiability implicitly by
their assumption (a7).

In contrast to the approaches mentioned above, it is tried here to avoid any parametric
assumption on h, g or o, which to the author’s knowledge has not been done in the literature
so far. Note that the validity of the model is unaffected by linear transformations. This
means that for arbitrary constants a > 0,b € R equation still holds when replacing h,
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3. Identification in a Fully Nonparametric Transformation Model with Heteroscedasticity

g and o by

Of course, one could have chosen an arbitrary a € R as well, but as in Section the
transformation function h will be restricted to be strictly increasing. Nevertheless, at least
two conditions for fixing a and b are needed. Referring to the fact that these conditions
will determine the linear transformation they are sometimes called location and scale con-
straints.

This chapter is organized as follows. First, some differences to the homoscedastic case (that
is, 0 € R is constant) are pointed out, before the main identification result for heterosce-
dastic transformation models as in is presented. The chapter is completed by a brief
discussion in [3.3] The proof of the main result is given in and some additional remarks

are postponed to |3.6

3.1 Differences to the Homoscedastic Case

Many of the homoscedastic identification approaches mentioned above are based on the
same idea (see |[Ekeland et al.| (2004)), Horowitz (2009) and recently |Chiappori et al.| (2015)).
Using the example of (Chiappori et al| (2015) their method can be summarized in the
following way (see Section |1.4{for details): Let Fy|x be the conditional distribution function
of Y conditioned on X. Take the derivatives of Fy|x with respect to y and z, divide the
first by the latter one and obtain the transformation function by integrating this quotient.
After applying some identification constraints the transformation function is identified as
it only depends on the joint distribution of (Y, X).

In heteroscedastic models the reasoning has to be changed since the conditional distribution

function and its partial derivatives can be written as

Fy|x(ylz) = P(Y <y|X =xz)

OFyix(le) _ <h(y) —9(@) >0 (3:2)

dy

and

OFy | x (y|r) _ <h(y) - g(:v)) U(x)ags) + (h(y) — g(ﬂf))%fig(cf)
ox; c U(x) O($) ‘

Here, h/(y) is an abbreviation for the derivative a%h(y) and Fy, f. denote the distribution

function and density of €. Hence, the transformation function can not be obtained by
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3.2.  The Transformation Function as a Solution of a Differential Equation

choosing an appropriate ¢ = 1,...,dx and simply integrating the quotient

OF: x
Y\(;;(m ) - h’(y)a(az) (3 3)
P () B+ (hly) — 9@ G

since the denominator now also depends on the transformation function. Although obvious,
note that for a constant o the same quotient as in the homoscedastic case of Section [1.4]is
obtained.

Remark that equation only holds if

hiy) —

f€< ) g(fﬂ)) S0
o(x)

Therefore, f.(y) > 0 is assumed for all y € R. This condition can be replaced by considering

appropriate subsets ) of the support of Y such that one of the sets

- OF;
Ay, — {x : vix (ylr)

oz, > 0 for allyey}, i=1,..,dx, (3.4)

is not empty. But since the consequent results would be restricted on ) as well this will not
be examined further. |Chiappori et al.| (2015) circumvent this problem by their assumption
A6, but its validity is not obvious and in general it can not be fulfilled for bounded support
of f. and Y = R. See Section for a short discussion on bounded support of f..

3.2 The Transformation Function as a Solution of a Diffe-

rential Equation

From now on, consider without loss of generality the case i = 1 and define

OF x T o(x
Wxule) () 290) o ((y) — g(x)) 252

NI = 5y =~ . (35)
N W(y)o ()
and
o(x o9(=) h —alz 9o (x)
Ay) = /v(m))\(y]a;) dz = _/v(x) (%) e —;’((yg(yj)(x)g( ) ", do — AJ;/Z’;(?J)7

where v is an appropriate weighting function and A and B are defined as
Oo(x)

ol dg(x) 2 Oo(x)
A:z/v(m)( ) e~ 9) 30, > dr and B::/v($) 011 . (3.7)

o(x) o(z)

Note that A is uniquely determined by the joint distribution of (Y, X). From an identifica-

tion point of view it is not necessary to consider a weighted version of A, but since this will
be needed later in Section it is already introduced here. For all functions h, g, o, which
fulfil model , consider a weight function v such that B # 0. Note that if B = 0 for all
weight functions v, this implies homoscedasticity of the error and identifiability of the mo-
del can be shown as in (Chiappori et al| (2015)). Some further observations are summarized

in the following remark.
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Remark 3.2.1 Assume h/(y) > 0 for all y € R. Then, it holds that:
(i) X is well defined on R.
(i) X\ has at most one root, which is denoted by yo. Equation @) leads to h(yo) = —%.

(#ii) The sign of B is equal to the sign of X\ at (—oo,yp). Therefore, assume the sign of B

to be known and assume w.l.o.g B to be positive.

(iv) In Section estimators for X and yo will be derived. These can be used to test

whether or not there exists a root yo of .

A= /v(x)a(m)ail (%) dz.

(vi) Possibly, one has B = 0. As mentioned above, one can proceed analogously to |Chi-

(v) A can be written as

appori et al.| (2015) in this case. It might be sensible to first apply a test for the null
hypothesis Hy : B =0 (see Remark .

Assume existence of the root yy defined as in Remark above and assume B > 0. See
Sectionfor the case, in which there is no such root. Consider a compact set [z4, 23] C R
with yo < 2,. The condition yy < 2, can be replaced by z, < yo as well. Let h'(y) > 0
for all y € R. Then, validity of equation on (yg,00) is equivalent to the differential

equation

A+ Bh(y)
B (y) = ———F2% 3.8
) =" (33)
for all y € (yo,00). Now, an appropriate initial condition
h(y1) = M (3.9)

for some y; > yp and some A; > —% (see Remark together with Theorem in
Section [3.6] can be applied to obtain uniqueness of any existing solution & on some compact
interval [z,,25] C (y0,00). Basically, this is one part of the proof of Lemma below.
There, the initial condition can be seen as the previous scale constraint.

This result will yield that for fixed A and B the transformation function A is identified on
every compact interval [z, zp] such that yy < z, by the differential equation combined
with an appropriate initial value. Thus, to prove uniqueness the remaining task consists
in extending any solution to the whole set of real numbers on the one hand and to show
that A and B as well as this extension are unique on the other hand. When doing so, the

assumptions [(A4)| and [(A7)| from Section will play a key role.

An analytic Expression of the Transformation Function

Again, let [z4, 2] C (yo,00) be compact. Note that A + Bh(y) > 0 for all y > yo by
definition of yg and B > 0. When having a closer look on the definition of A, one may
notice that equation (3.6)) can be written as

1 Wy __1<310g(|A+Bh(y)|)
My)  A+Bh(y) B oy

> for all y # yo. (3.10)

94



3.2.  The Transformation Function as a Solution of a Differential Equation

As a consequence, condition (3.9 leads to

v A+ Bh(y)
7 ) -

eXp<_B Mu A+ B\

for all y € [zq, 2]
Y1

and

(A—|—B)\1)exp<—B yylA(lu)du) —A

h(y) = B for all y € [zq, 2] (3.11)

for an arbitrary, but fixed A\; > —%. So far, A1 has not been fixed and no specific location
constraint has been considered yet. Later, it will be shown that B is already determined by
the independence of € and X, so that apart from the initial condition , any (location)
constraint which fixes A would be sufficient. This is consistent with the beginning of this
chapter where it was mentioned that there are at least two conditions necessary to identify
the transformation function since the model is invariant under (monotonically growing)
linear transformations. In the following, it will be proven that as in the homoscedastic case
there will be exactly two conditions needed to identify the model.

An elegant way to choose the location constraint is to require
h(yo) =0, (3.12)

since this in turn results due to Remark in A = 0. An obvious choice for fixing A;

may consist in A\; = 1, so that

h(y) = exp < B /yy A(lu) du) for all y € [za, 2] (3.13)

Although this choice seems to be quite convenient, in principle any condition that fixes A

is conceivable.
Example 3.2.2 Another way to determine the location and scale constraints is requiring
h(y1) =0 and A'(y;)=1. (3.14)

Due to equation (@, this leads to A = —\(y1). One possibility to solve the corresponding

differential equation consists in writing

vo1
H(y) :—/ ——du > —oo for all y >y
Y1 A(u)

and rewriting (@ as

W(y) exp(BH(y)) + h@)f;) exp(BH(y)) Ué) exp(BH(y)) = 0.

:(%h(y) exp(BH (y))

Integration results in

) xp(BH () — by exp(BH () = A | ’ A(ly) exp(BH (u)) du
Y1

=0
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3. Identification in a Fully Nonparametric Transformation Model with Heteroscedasticity

and finally

H(y)

) = ~Aexp(~BH()) | | ep(Bud
Y1

- _% exp(—BH(y))(exp(BH(y)) — exp(BH(y1)))
—

=1
= Z(exp(~BH()) - 1)

AMy1)(1 — exp(=BH (y)))
5 .

For uniqueness reasons this approach should lead to the same solution as the previous one

and indeed leads to

B (A—I—Bh(yl))exp(—B v ﬁdu) |

= £ exp(~BH() - 1)

These preliminary thoughts are formalized in the following lemma.

Lemma 3.2.3 Assume[(A1)}{(A6) from Section|[3.4 Further, require condition and
let yo < yo < y1 as well as B # 0.

1. For each A € R such that Ay > —%, the unique solution to on (yo,00) is given
by . It can be extended to a global unique solution to (@ by

(A+BA1) exp (fB fyyl ﬁ du) —-A
Y >Y
h(y) = —% Y =19y > (315)
(A+BX2) exp (—B o X du) —A
B ¥ <o

where Ay is uniquely determined by requiring lim h'(y) = lim h'(y) = h'(yo) as
Y \¥o v,/ Y0

: -t 1 +t 1
1151—1;% (A—'—B)q)@Xp <B< yy; Wdu— yle )\(u)du>> +A
B

2. If additionally and A\ =1 hold, one has

Ay = — (3.16)

exp(—B yylﬁdu) Y > 1o
h(y) =4 0 Y=190 > (3.17)
/\Qexp<—B iﬁdu) v < Yo

where g is uniquely determined by requiring lim h'(y) = lim h'(y) = h'(yo) as
Y \Wo v./'Yo

w=men (2( [ e [T ) e
o = —lim exp —du — —du | |. 3.18
+50 Yo Au) " A(u)
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3.2. The Transformation Function as a Solution of a Differential Equation

The proof can be found in Section

Given any fixed B, the uniqueness of A has not been treated so far apart from the fact that
or imply A =0 or A = —\(y1), respectively. Nevertheless, this can be used
to argue that any conditions (probably with identification constants different from zero or

one) of type (3.9) and (3.12)) or type (3.14) determine A as well, since all solutions can
be linearly transformed to the already identified case. Therefore, only the identification

constraints and for A\ = 1 are considered from now on so that A = 0.

Up to now, uniqueness of a solution for any fixed B was shown. In the last part of this
section, the uniqueness of B is discussed in order to derive an identification result from the
previous arguments. Assume the existence of two continuously differentiable solutions h, i
to the differential equation as in with corresponding parameters (B, ) and
(B ) 5\2) such that B, B > 0. Assume B # B and without loss of generality assume B > B.
Then, equation leads to

B
s Bt

h(y) = 5 for all y > g
and consequently _
~ B
- A+ BM)B [ Bh(y)+ A\ 5!
h/(y) _ ( 1) > ( ( ) > h/(y)
(A+BM\)B\ A+ B\

for all y > yo. Continuous differentiability of h and A (yo) € (0, 00) imply ' (yo) = 0, which
is a contradiction to assumption from Section Hence, the assumption B # B
has to be rejected and one has h = h. Finally, the main identification result of this section

directly follows from Lemma (3.2.3

Theorem 3.2.4 Assume[(A1)H(A6) from Section[3.4 as well as conditions ([3.9) for \1 =
1 and . Further, let yo < yo < y1 as well as B # 0. Then, the unique solution of the

model equation s given by

exp ( B y1 /\(u) du) Y > Yo
hy)=14 0 Y=y -
A9 exp ( B y2 )\(u) du) y < Yo

where Ay s uniquely determined as (3.18) via lim h'(y) = lim h'(y) = K/ (yo) > 0. Further,
Y \Yo Y./'Y0

B is uniquely determined and one has

g(x) = ERh(Y)|X =z] and o(z) = /Var(h(Y)|X = z).

So far, uniqueness of B was proven by using h'(yg) > 0. In Section m it is tried to relax
this assumption. Assumption from Section will play a major role there instead.
Now, an example is given in which neither [[A4)| nor [[A7)] are fulfilled and the model there
is not identified.

Example 3.2.5 (see also Remark below). Consider the model
Y = X + Xe,
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3. Identification in a Fully Nonparametric Transformation Model with Heteroscedasticity

that is g(x) = o(x) = x, for some random variables X 1 e with E[c] = 0 and E[¢%] <
0o. This model does not fulfil assumption [(A7) or h'(y) > 0 for all y € R. Indeed, the

transformation function is no longer identified since for example

V3 =X%1+e)

X3E[(1+ )]+ X3((1 +2)* — E[(1 +&)])

(X) +6(X)é

Il
S}

for g(z) = 23E[(1 +¢)3],5(x) = 23\/Var((1 +¢)3) and & = (tep—BlA+e)’]

Var((1+4¢)3)

Under the additional assumption that h is twice continuously differentiable, an analytic
expression for B can be obtained. Equation (3.6 yields

Bh(y)
AMy) = — ,
(y) ()
so that the derivative of \ can be written as
d W (y)* = n"(y)h(y)
—Ay)=-B
T W)

with b’ (y) = aa—;h(y). Applying (3.12), that is h(yg) = 0, results in

0

Equation (3.19)) will be important in Section since it yields an analytic expression for

B, which can be used to construct a plug in estimator. This section is completed by an

additional remark.

Remark 3.2.6 Some possible extensions are listed in the following. It is conjectured, that

they can be shown with slightly more effort.

1.
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The identification result should hold for any other combination of location and scale
constraints as long as they fir A and \1 in equation .

It should be possible to extend Theorem to all monotonic functions h with
lim h(y) = —oo and lim h(y) = oo although one has to change argumentation
y——00 Yy—oo

(see corollary below). For example, uniqueness of Ay possibly can be shown in a
similar way to the proof of Lemma below.

There might be cases when h can be defined as shown here even when the model is not
fulfilled. The author does not know yet if applying the resulting transformation could
still be advisable in terms of simplifying the model or making other procedures better

applicable.

. It is conjectured that an extension to models with endogenous regressors can be deduced

sitmilarly to |Chiappori et al.| (2015) and|Vanhems and Van Keilegom| (2019).



3.83. Discussion

3.3 Discussion

The so far most general identification result in the theory of transformation models has
been provided. While doing so, the techniques of [Ekeland et al. (2004]) and |Chiappori et al.
(2015) have been used to reduce the problem of identifiability to that of solving an ordinary
differential equation. Most of the previous results are contained as special cases. The main
contribution consists in allowing heteroscedastic errors, which justifies the common practice
to assume identifiability like for example in the paper of Neumeyer et al. (2016).
Moreover, the result is constructive in the sense that it does not only guarantee identifica-
tion of the model, but even supplies an analytic expression of the transformation function
depending on the joint distribution function of the data and some parameter B. This para-
meter is identified, too, and can be expressed as in (3.19)) under the additional assumption
of a twice continuously differentiable transformation function.

Future research could consist in successively generalizing the result as has been suggested
in Remark Moreover, it would be desirable to develop conditions on the joint distri-
bution function of (Y, X) under which model is fulfilled. In contrast to the thoughts
on identifiability here, such a question addresses the solvability of , that is, the issue

of existence of a solution instead of uniqueness.

3.4 Assumptions

In the following, assumptions needed for the presented results are listed.
(A1) Let Y,e and X be real valued and R%*-valued random variables, respectively, with
h(Y) =g(X)+ o(X)e.
Let h be continuously differentiable.
(A2) ¢ is a centred random variable independent of X with E[e] = 0 and Var(e) = 1.
(A3) The density f: is continuous with f.(y) > 0 for all y € R.

(A4) The conditional distribution function Fy | x(y|z) is continuously differentiable with
respect to y and x with %Fy|X(y|:c) >0 for all y € R,z € R¥x.

(A5) g and o are continuously differentiable and o(x) > 0 for all z € R?x.

(A6) v is a weighting function such that A, B and A are well defined by equations (3.6]) and
(3.7) and such that B # 0.

(A7) Define for ¢ > 0 the sets M. := {x : g(x) > ¢} and M._.:= {z : g(x) < —c}. There

is some ¢ > 0 such that P(X € M~.) >0 (or P(X € M._.) > 0) holds and x %

is not constant on M~. (or M_.).

Remark 3.4.1 1. Let
pa: R— R

y — sign(y)|y|~.
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Assumption|(A7) is needed to avoid cases like g(x) = go(z) for some g € R, since in

this case for arbitrary o > 0 one has
Pa(9(X) +0(X)e) = 0(X)%palg +¢)

= o(X)*Elpa(g +€)]

=4(X)

o (X)) /Var c pa(g +¢€) — Elpalg +¢)]
T X)WV Varpalg £9)) T A= =

=5(X) ~

=£

so that by definition
95 (x)

B = Bla) = /’U(w) S do = aB(1)

could attain any value, such that the second moment of pu(g + €) exists.

2. Due to equation , assumption ensures h'(y) > 0 for all y € R.

3.5 Proof of Lemma (3.2.3

First, consider a compact interval K = [k1, k2] C (yo,00) and recall equation (3.11). As-

sumption ensures b/ > 0. First, it is shown that h as defined in (3.11]) is the unique
solution to (3.8)) on [k1, k2]. For the moment assume k; = y; and define

A+ Bh
Ay)

With @ = y1,b = ko and 09 = A1, Theorem below ensures uniqueness of the solution
of

G = [y1,k2] X [M,00) and D:G — R, D(y,h) =

W (y) = 7‘4 ‘t\(B;})L(y)

In Section it was shown that (3.11) indeed is a solution of (3.8). Since f.(y) > 0 for
all y € R, this solution holds for arbitrarily large ko. Hence, by letting ko tend to infinity

for all y € [y1, ka].

uniqueness of h on [y;,00) is obtained.
Now, consider an arbitrary value § € (yo,y1). Then, with the previous initial condition

replaced by

h(g) = A
for some A > 0 and the same arguments as before, the differential equation
A+ Bh(y) -
W(y) = ——+—-— forally € [g, ko
)=~ 32

is uniquely solved by

(A+ BN exp (B [¥ sy du) — A
B

h(y) =
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A+BX
GRS e (= B[ sk du) (A+ Bh(y) - A
B
for all y € [y, 00), where the last equation follows from (3.11)). To fulfil the previous scale

constraint h(y;) = A; it is required that

(A+\B) exp( J sty d )—A

\ =
B

Since this in turn results in h(y) = h(y) for all y € [, 00), h is identified for all y € [§, 00).

Choosing g arbitrarily close to yg results in

(A—I—B)\l)exp( B y1 )\(u) du) —A

h(y) = 5 for all y > yp.

When proceeding analogously for y < yo with the initial condition

h(yz) = X'
for some N < ]‘3, one has
(A+B)\’)exp( B y2 Nu )du) —A
h(y) = for all y < yo.
B
Recall h/(y) > 0 for all y € R and let ¢ > 0. Due to the continuous differentiability of h in
7o one has
h(yo + t% h(yo)
lim — 1.
=0 h(yo —t) = h(yo)

On the other hand, it holds that

h(yo +t) — h(yo) (A + BA)exp ( B[ L )

4
h(yo — t) — h(y yo -t 1
(yo —)t (%0) (A+ BX) exp( B ) du)

B (o [ - [ 55)

so that
yo—t 1 Yo+t 1
e (1 i ) 14
= 5 = \g.
This leads to the uniqueness of Solution (3.15)). Inserting A = 0 yields the second part of
the assertion. O

3.6 Miscellaneous

In this section all results, proofs or remarks are collected, that are not directly necessary to
follow the golden thread of the chapter, but nevertheless important and interesting additions

that complete a comprehensive discussion of the topic.
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3.6.1 Bounded Support of f.

In the previous discussion, the density f. of the error term was always assumed to be
greater than zero on the whole set of real numbers. In this Subsection it is tried to relax
this assumption and to show how the derived approaches can be adapted to this case. It
is assumed that A’ > 0 although it is conjectured that the ideas here can be extended to
general monotonic transformations h by similar ideas as in Section below.

Identifiability of the model on compact intervals is considered first. Hence, let Y C R
be a compact interval. The main drawback when allowing one-sided or even bounded

support of f. consists in the fact that in general the set

OF;
Ay = {x : vx (ylz)

>0forally€y},
y

which is defined similar to equation (3.4)), no longer consists of every = € R4X,

Example 3.6.1 Consider the following model
Y=X+1+¢

with one-sided error ¢ = n — 1 and n ~ Exp(l). For the choice of Y = [0,1] one has
Ay = (—00,0).

Chiappori et al. (2015) introduced an assumption similar to Ay # (), where ) is equal
to the support of Y. Although they considered the partial derivative with respect to an
appropriate z; instead of y, the underlying problem remains the same. As in example[3.6.1
the weighting with respect to = has to be restricted to Ay. Although not a big problem
from an identification perspective this issue becomes crucial when estimating since neither
g nor Ay are known a priori. From an identification point of view, this “weighting” can
even be implemented using a dirac measure.

The argumentation becomes even more complicated when considering an error term with
bounded (from both sides) support or a heteroscedastic model, but at least the following

corollary can be stated.

Corollary 3.6.2 Assume the support Y of Y is an interval and can be partitioned into

countably many bounded subintervals (Vp)new such that
Ay, #0 and max{y:y € V,} =min{y:y € YVot1} for all n € N.

Then, the transformation function h from model is identified on Y via h(y1) = A1 and
h(y2) = A2 for arbitrary y1,y2 € YV, A1 < As2.

Proof: Assume existence of a root yg of A and let yg € YV, for some m € N. If there does
not exist such a root, one can proceed as later in Subsection [3.6.2l The basic reasoning
in this case would be the same, so that only the first case with a root is considered in the
remaining proof.

Let y1,, and y2 ,, be the lower and upper bound of the interval V,,. For any A1, < A2m,

identification of h on Yy, via h(y1,m) = A1,m and h(y2,m) = A2,m can be shown as before in
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Section
Now look at the two consecutive intervals V,, and Vi,11, that is y2.,m, = y1,m+1. Since h is

continuously differentiable in ys ,,, the limits

lim h(y) and lim &/(y)

Y—y2,m Y—Y2,m

exist and especially have to be independent of any sequence y; izop Y2,m- Therefore, the
location and scale constraints for V11 are determined by the continuous differentiability
of h. Hence, h is identified on V;,+1 as well. After proceeding analogously for all previous
and consecutive intervals, one obtains a version of h which only depends on the chosen
values of Ai,, and Ag,, from the first step. Due to the continuous differentiability of h,
this is even the case if there are accumulation points in the sequence (y2,)nen. The two
constants A1 ,, and Az, are directly linked to the global location and scale constraints of
h and are uniquely determined by h(y1) = A1 and h(y2) = Aa.

O

If one has chosen a set ) and an appropriate weighting function v once, the conditions
necessary to ensure identifiability of the model are thus the same as in the case with

unbounded support.

3.6.2 The Case without a Root yg

Again, the notations from Section are used, that is, yg is defined as the root of the map
y — A+ Bh(y) with A and B from (3.7). Recall the model (3.1). B is assumed to be
different from zero, so that the only possibility that there does not exist any root gy of A is
the case where the image of h and consequently the support of f. is bounded from at least
one side. Therefore, this is a special case of Subsection but has not been treated in
detail there.

Identifiability of the model on compact intervals is considered in the following. Hence,
let Y be an interval and let v be weighting function, such that supp(v) C Ay # 0 and
h(y) # 0 for all y € Y. Introduce the location and scale constraints

h(yl) = )\1 and h(yQ) = )\2

for arbitrary values y1 < y2 € Y and A1 < Ay € R. Then, the corresponding solution to

(3.8) on Y is given by

1
exp<—B yyl)\(u)du> -1
exp(—B y‘yle(lu)du) -1

Indeed, the transformation function expressed in this way fulfils the differential equation

h(y) = (A2 — A1)

+)\1, yEy.

as well as the boundary constraints. Uniqueness of h can be shown as in Section [3.2] Since
h(y1) < h(y2) and the map y — exp( - B yylﬁdu) is monotone, h is increasing as
required. Estimating the transformation would become insofar easier later as there is no

longer the need to estimate yp and A2 as in Chapter [4
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3.6.3 Vanishing Derivatives of h

Up to now, it was assumed that the derivative of h is positive. Keeping the assumption of
monotonicity, one potential generalisation could consist in allowing hA/(y) = 0 at least for
some real numbers y € R. In the following, another reasoning for identifying B is presented,

which does not require h'(yg) > 0. For this purpose, define for any o € R\{0} the function
Ya: R— R

y — sign(y)|y|*.

Lemma 3.6.3 Let X,e,g and o be as in assumptions |(A1)H(A3) and|(A7) from Section
m. Further, let € be a centred random variable independent of X with Var(é) = 1. Let g
and & be functions, such that for some a > 0 with E[pa(9(X) + 0(X)e)?] < 0o one has

Ya(g(X)+0(X)e) =g(X)+d(X)é almost surely.

Then, it holds that o = 1.

Proof: According to assumption [(A7)| assume w.l.o.g. that x — % is not almost surely

constant on M- for an appropriate ¢ > 0 and that P(X € Ms.) > 0 holds (the other case

can be treated analogously). Let Mx C M-, be a bounded subset such that
)

(i) z+— % is not almost surely constant on Mx,

(i) P(X € Mx) >0,

o(x)
11) su ——| < oQ.
(i) mEJ\EX 9(x)

Consequently, there exists some d > 0 such that

o(x)e
g(z)

g(x)+o(r)e >0 and sup <1

in
x€EMx,e€(—4,0) zEMx, ec(—6,6)

The generalized Binomial Theorem provides

(X)) — axe (@) (2N &
Dt (X)) () (9(X) + 0(X)e)® = Dty (X)) (€)9(X) §<k><g<x>> a

Since the conditional expectation, conditional variance and the remaining error term can

be written as

3(X) = E[pa(g(X) + o(X)e)|X], 5%(X) = Var (pa(9(X) + 0(X)e)|X)

and
= _ $alg(X) +0(X)e) - §(X)
a(X) ’
it holds that
Iy (X)I(_(;’(;)(g)é = Iy, (X>I(—5,5) (5)800‘(9()() +0(X)e) — §(X)
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3.6. Miscellaneous

k a—kgk _ &
TR ML ngg? L

— Iniy (X)](_s.6)(2) < g (X ) 4 Z < )%?&)

independent of XeMx

This can be alternatively expressed as

Ingy (X)I(_5.5)(€)E = Tty (X)I(—s6)(2) > Br(X)e¥
with

Q>U(X)kg(X)a_k for all £k > 1.

Bo(X) = T and  B(X) = (k 5(X)

Due to the independence of € and X, the coefficients 8, k > 0, are not allowed to depend

on X. Since Z(( )) by assumption depends on X, %

independent of X. Thus, (k) # 0 for at most one k. Due to o > 0 one has o = 1. O

is at most for one k € INy

It is conjectured that similar techniques to the proof above can be used to identify model [3.1]
without assuming A’ > 0. Nevertheless, the following conjecture has not been completely

proven so far, so that only a sketch of a possible proof is given.

Conjecture 3.6.4 Assume[(A1JH(AZ)[(A5)H(AT) from Section[3.4 as well as conditions
for \1 =1 and . Let the conditional distribution function Fy|x(y|x) be conti-
nuously differentiable with respect to y and x and assume h'(y) > 0 for all y # yo. Then,

the unique solution to the model equation is given by

exp ( B y1 )\(u) du) Y > Yo
h(y) = 0 Y=Y »
A9 exp ( B y2 )\(u) du) y < Yo

where it is set % =00 as well as é := 0 and Ao is uniquely determined. Further, one has

g(x) = E[h(Y)|X =2] and o(z) = +/Var(h(Y)|X = z).

Sketch of the Proof: The case h/(yp) > 0 has been considered in Theorem so that
h(yo) = 0 is assumed. Moreover, assume w.l.o.g. B > 0. For B = 0 the approach of
Chiappori et al.| (2015) can be adjusted in the same way as follows.
Let h and A fulfil model (3.1)) with for \; = 1 and (3.12), that is, h and h are solutions
to the differential equalities
A —F)\Bh(y) W (y) = _[l + Bh(y)

() A(y)

for some B,B > 0,A, A € R and all y # yo. By the same reasoning as before, h and h can

W(y) = -

be written as
exp< B " /\()du) Y > Yo
hy)=14 0 Y ="Yo
Ao €xXp ( B y2 )\(u) du) Y < Yo
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3. Identification in a Fully Nonparametric Transformation Model with Heteroscedasticity

and
exp(—B yﬁﬁdu) Y > Yo
h(y) =14 0 Y="%Y >
S\Qexp(—B ngﬁdu) y < Yo

where A = A = 0 is implied by the location constraint (3.12)). Due to assumption one
has

lim h(y) =—o0c0 and lim A(y) = oco.

Yy—>—00 y—>00
Therefore, the transformation functions A and h from above can be written as

/

exp(—B yylﬁu)du) Y > Yo
h(y) =4 0 Y =Yo (3:20)

exp(—B yiﬁdu) Y < Yo

and
exp(—B yzﬁdu> Y > Yo
h(y) =4 0 Y =1

By _1
exp(—B gsmdu> Yy < Yo
for some appropriate ys3, 73 < yg, which are uniquely determined by A, B, Ao and A, B, 5\2,

respectively. These expressions in turn yield

exp(—B ;ﬁdu) Y > Yo
(h(y)) =4 0 Y ="Y0
exp(—B y‘iﬁdu) y < 1Yo

— () + By Iy <exp (-3 /y j A(lu) du) 1),

05

B
B

that is,

) = . 010) = D g (o0 (= B [ ) - 1)

Y3
It is conjectured that similar arguments to the proof of Lemma lead to

exp(—B/yjs/\(lu)du> =1

and thus to g3 = y3. Finally, Lemma ensures B = B and consequently h = h.

It is conjectured that this result can be extended to a more general class of monotonic
functions.
3.6.4 Uniqueness of Solutions to Ordinary Differential Equations

Finally, two basic results about ordinary differential equations and uniqueness of possible
solutions are given. Theorem [3.6.6] is slightly modified compared to the version of [Forster
(1999, p. 102) so that the proof is presented as well.
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3.6. Miscellaneous

Lemma 3.6.5 (Gronwall’s Inequality, see|Gronwall (1919) or|Bellman| (1953) for details)
Let I = [a,b] C R be a compact interval. Let u,v:I — R and q: I — [0,00) be continuous

functions. Further, let
y
u(y) <o) + [ ale)u(z)ds

for ally € I. Then, one has

u(y) < v(y) + / " o(2)q(2) exp < / 0 dt) dz forallye .

Theorem 3.6.6 (see|Forster| (1999, p. 102) for a related version) Let b > a > yg and G C
(yo,0) x RT be a set such that [a,b] x RT C G. Moreover, let D : G — R, (y,h) — D(y, h),
be continuous with respect to both components and continuously differentiable with respect
to the second component. Then, for all 6y > 0 any solution h € C([a,b],RT) of the initial

value problem
W(y) = D(y, h(y)), h(a)="0o

18 unique.

Proof: Let hy,hy : [a,b] — RT be two solutions of the mentioned initial value problem.
Since

K :={(y,0) € [a,b] x RY : y € [a,1],0 € {h1(y), ha(y)}}

is compact, there exists some L > 0 such that |D(y,0) — D(y,¢)| < L|# — 9| for all
(y,0), (y,v) € K. Consider the distance d(y) := |h1(y) — h2(y)|. Then for all y € [a, b]

d(y) = [h(y) = hi(a) = (ha(y) — ha(a))]

_ ‘/y(D(z,hl(z)) Dz, ha(2))) dz
< [(1D(m(2)) - Dz ha(2))] d=

< L/y |hi(z) — ha(2)| dz
y

= L/a d(z)dz

Gronwall’s Inequality leads to d < 0 (set u = d,v =0,q = L). O
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Nonparametric Estimation of the
Transformation Function in a
Heteroscedastic Model

After identifiability of model under conditions and was proven in the last
chapter, the question arises how its components can be estimated appropriately. To the
author’s knowledge, there is no estimating approach in such a general model as so far.
To mention only some methods in the literature, Chiappori et al. (2015) provided an esti-
mator for homoscedastic models, while|[Neumeyer et al.| (2016) extended the ideas of Linton
et al.| (2008)) to the case of heteroscedastic errors, but only for parametric transformation
functions. In the context of a linear regression function, Horowitz (2009) discussed several
approaches for a parametric/ nonparametric transformation function and a parametric/
nonparametric distribution function of the error term.

In the following, the analytical expressions of the model components in are used to
construct corresponding estimators in Section Afterwards, the asymptotic behaviour of
these estimators is examined in Section When doing so, equation and the ideas
of [Horowitz (1996) will play key roles in defining estimators and deriving the asymptotic
behaviour. Some simulations are conducted in Section and the chapter is concluded by
a short discussion in The proofs can be found in Section

Throughout this chapter, assume from Section as well as B > 0 (see Re-
mark . Moreover, assume the location and scale constraints and for some
y1 > yo with Ay = 1 and let (Y7, X;),7 = 1,...,n, be independent and identically distributed
observations from model .

4.1 Definition of the Estimator

An estimation technique is presented, which combines parts of the work of [Chiappori et al.
(2015) and that of Horowitz (1996 and |[Linton et al. (2008). First, some preliminary
definitions are needed before the final estimator is defined in Subsection
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4. Nonparametric Estimation of the Transformation Function in a Heteroscedastic Model

4.1.1 Estimation of A and yj
As in Section A is defined as

Oy x (ylz)

Ay) = / o) g d

dy

for some weight function v and yp is defined by the equation A(yg) = 0. In this thesis, a
Plug-In-approach is used to estimate first A by some kernel estimator A and then estimate
yo by the root of \. To be precise, the conditional distribution function Fy | x is estimated
for some kernel function K and some bandwidth sequences h, \, 0 and h, ~\, 0 by

r I~ :ﬁ(yvx)
Fyx (ylz) 7fx($)

with fX and p as defined in equations 1) and 1} Then, this estimator is plugged into

the expression for A yielding

OFy | x (yl|z)
3 ox
ANy) = [ v(x)——"—dux. 4.1

() = [ vla) 352 (@.1)

dy
Note that by construction and assumption |(B2)|from Section 4.5 the estimated conditional
distribution function Fy| x is continuously differentiable. Once A is estimated an estimator
for yo can be defined as the solution to S\(y) = 0. In Section it will be shown that
for arbitrary large compact sets I C R there will be at most one solution with probability
converging to one for n — oo. Since for finite sample sizes it might be the case that there

is more than one solution, an estimator is defined by

go = argmin [y|. (4.2)

y:A(y)=0
Assumption (A3)|from Section [3.4]and B # 0 ensure that there exists a root of A, since h
is surjective under Hence, due to the uniform convergence of A\ to A, which is proven
in Lemma below, A possesses a root (that is close to yp) as well with probability

converging to one. Details will be given in Subsection

4.1.2 Estimation of B

Recall
v o1
h(y) :exp<—B/ mdu) for all y > yo

Y1
and some y; > ¥y, that is, once y; is fixed and A and yy are estimated appropriately it
remains to estimate B, at least to estimate h on (yp,00). Due to B € R this can be seen
as a parametric problem. Two approaches to estimate B will be provided in this section.
Unfortunately, it will be seen that without further conditions the already existing methods
in (semi-)parametric transformation models (e.g. of Linton et al| (2008) or (Colling and
Van Keilegom| (2018)) can not be applied in the scenario here. The reason is that they

rely on appropriate estimators for conditional mean and variance or require an appropriate
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4.1.  Definition of the Estimator

nonparametric estimator. See Section for details on these procedures.
Nevertheless, proceeding similarly to [Horowitz (1996), an estimator for B can be deduced,

which converges under several conditions to B with a y/n-rate as will be seen in Section

Estimation of B via the Derivative of A\

Since the convergence rate of the estimator presented later relies on some additional as-
sumptions, first a less sophisticated estimator is provided, which is based on equation
and less computationally demanding, but achieves a slower convergence rate compared to
the second estimator, which is presented later. Under the conditions and (| -,

was shown in Section B.2] that

Bh(y
Ay) =5
dy (y)
and 5
—A = —B.
Jy Y ’y=y0

Plugging the estimators for A and yo given in Section [{.1.1]into the previous equation, leads
to the estimator

A . 4.3
0y Y )y=?30 ( )

Later, asymptotic normality of this estimator will be shown in Subsection [£.2.1]

The Mean Square Distance from Independence Approach

Now, a more sophisticated approach for estimating B will be presented. Apart from using
conditional quantiles instead of the conditional mean, this estimator will be related to
the Mean-Square-Distance-From-Independence estimator of |Linton et al.| (2008). Let ¢ be
a parameter that needs to be examined. The basic idea of the estimator is that for all
parameters ¢ some appropriately defined residuals are independent of X if and only if ¢ is
equal to the true parameter, which will be B in this Section. This idea and the definition
of the residuals will be explained in detail below.

To examine the estimator, let U,V be some random variables, where U is real valued,

7 € (0,1) and denote the T-quantile of U conditional on V' = v by
Fgﬁ/(’f"l}) =inf{u € R: Fyy(ulv) > 7}.

F. and f. denote the distribution function and density of €. Since h is assumed to be

strictly increasing and
hY) = g(X) +0(X)e

with ¢ independent of X, it holds that (with F.1(1) = E|X(7']X))
Wy A (71X)) = Fyly o (71X) = 9(X) 4 0 (X)F L (71X).
Especially, one has

WY) = h(Fy ) (11X)) = g(X) + 0(X)e — g(X) — o(X)F (1)
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4. Nonparametric Estimation of the Transformation Function in a Heteroscedastic Model

= o(X)(e — F71(7)). (4.4)

)

To obtain a random variable independent of X one has to adjust for the standard error

o(X). This can be done in several ways: Consider for some 3 € (0,1)

B _ —1
() Fa(X)\a_F;%T)\ ‘X(ﬁ 0 = o) oy P):

(iii) F (1 X)(e—Fz ( ))IX(mX) = U(X)(FE_I(ﬂ) - FE_I(T))‘

Note that due to o, f- > 0 all of these expressions are different from zero (in the third case
consider 3 # 7) so that the quotients

W(Y) — h(Fyx (71X)) Rl

= (4.5)
\/ FyGopte i px PI) \/ B gty (8)
h(Y') — h( Y‘X(T|X)) _ e~ Fl(r) )
Fcr_(;()\sfFEI(T)HX(B’X) F\;ngl(T)\(ﬁ)’
h(Y) = h(Fy )y (71X) e FoL(r) )
- =i =: ¢ (4.7)
Fa(,lX)(efF )|X(B|X) FY(B) — F='(7)

are well defined. Principally, all of these standardisations can be used to construct an
estimator. Nevertheless, only the third approach is considered in the following. Note that
€ is independent of X if and only if ¢ is independent of X.

Assume a quantile, for which lower and upper bounds are known, needs to be estimated.
As in the paper of [Horowitz (1996)) the idea is used that the exact value of an observation
should not influence an appropriate estimator of the quantile if the observation exceeds
one of these bounds. This property will turn out to be the crucial advantage of using the
estimated conditional quantile instead of the mean, like for example in the paper of |[Linton
et al. (2008). Since parametric classes of transformation functions were considered there,
the problem of estimating the mean after transforming Y could be solved by assuming A.5
(Linton et al., 2008, p. 700), a uniform (with respect to the transformation parameter)
integrability condition of the derivatives with respect to the parameter.

Assume B € [By, Ba] for some 0 < By < B and define

he(y) = exp ( - c/: A(lu) du> and  he(y) = exp ( - c/: X(lu) du> (4.8)

for y > yo and (compare to and .
he(Y) — Al (1)
he(Fy 5 (BIX)) = he(Fy 5 (71X))

Ec =

Moreover, define for an estimator hy of hy and ¢ € [By, Bo|

he(y) = sign(ha(y))|ha(y)|" (4.9)

112



4.1.  Definition of the Estimator

Consequently, hg = h is the true transformation function. As will be seen later, it suffices
to consider the case Y > yg here. In Chapter |3, it was shown that ¢ = B is the only
value such that £, is independent of X (see Lemma . As in Chapter 2, Fy|x and
consequently F;ﬁX as well as €. can be estimated by replacing Fy|x with

2ie1 Ky (y = Yo Ko, (& — Xi)

FY|X(Z/|$) = ST Ky (@ — X)) (4.10)

Uniform convergence of F;|1X to F;ﬁx was shown in Lemma [2.8.1f Consider a given interval

[Zas 20] C (Yo, 00) and let 7 < B € (0,1), [eq, ep] € R and Mx be a non-random interval such
that
(M1) Mx Csupp(v) and fx(x) >0 for all x € My,

(M2) z+— % is not almost surely constant on Mx,

(M3) F;|}(7'|:L’),F;|1X(B|m) € (2q4,2p) for all x € My,

(M4) sup hc(FﬁlX(ﬂw)) +e(hC(F;|1X(B|:L‘)) — hc(F;ﬂX(T\:U))) < h¢(zp) and
x€Mx ,e€leq,ep],c€[B1,B2]

(M5) he(Fy i (712)) + e(he(Fy x (B12)) = he(Fy )y (T]2))) > he(za)-

inf
€M x ,e€ [ea,eb] ,ce [Bl ,BQ]

Since Mx is an interval, the boundary of Mx has Lebesgue-measure equal to zero. See
example for a (admittedly, rather technical) way to construct a set Mx fulfilling these

assumptions.
Remark 4.1.1 1. It holds that

Mx C N {x : helza) < he( Py (r]2) + e(he(Fy iy (B12)) — he(Fy ly (7)) < hc<zb)}.

e€lea,ep],c€[B1,B2]

2. C’ondz’tz’on can be relazxed to the case, where there exists some subset MX C Mx

that fulfils [(M1) (and [[M2){{M5)).

3. If leq, &) C [0,1], conditions[(M4) and [(M5) are implied by

sup max (hC(F;|1X(T]x)), hc(F;ﬂX'(ﬂ’x))) < he(zp)
r€EMx ,c€[B1,B2]

and

. . 1 ~1
a:EMX,lglEf[Bl,Bg} min (hc(Fy‘X(T|:1:)),hC(FY‘X(mx))) > he(2q)-

4. Let hy, fmT and me be some estimators, such that hi(y) converges uniformly in y €
(24, 2] to h1(y) and fo., (z), fmﬁ (x) converge uniformly in x € Mx to F;llX (t|z) and

F;llx(ﬁ\x) Then, conditions |(M1)H{(M5) imply P(ép < e) = P(ép < e|X € Mx)

as well as

My ) {x:mza)<hc<fm7<x>>+e<hc<fm,i<x>>—hc<fm7<x>>><hc<zb>}

e€leq,ep],c€[B1,B2]

with probability converging to one, where he is defined as in .
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4. Nonparametric Estimation of the Transformation Function in a Heteroscedastic Model

When estimating P(£. < e) the problem arises that £. can not be observed directly, but has
to be estimated as well. Since nonparametric estimators such as he usually only converge
to h. with y/n-rate on compact subsets of (yg,0), £ can not be estimated with \/n-rate in
general. Here, the advantage of using the conditional quantiles instead of the conditional

mean in (4.5)—(4.7) becomes clear:

After conditioning on X € My, P(¢. < e|X € Mx) can be estimated by

w1 L <o lixieny)

P(é.<e|X € Mx) =
‘ %Z?:l I{XiEMX}

where

. he(Yi) = he(Fy ' (71X3))

Eci = 7 =

he( Y|x(B‘X ) — he( y|X(T|Xi)).

Although A, might not be a v/n-consistent estimator for h. on R, it is still strictly monotonic.
Since X € Mx implies

he(za) < he(Fy (71X) + e(he(Fy [ (B1X) = he(Ey [ (T1X))) < he(z),

one has
iL (2a) — B (A;| (T‘X)) 2 2 iLC(Zb) - iLC( A;|1X(T|X)>
= = <éc+e—é&.< 5 - .
h( Y|x(6’X)) hC( | ‘ )) he( Y‘X<5‘X)) hc<F ‘X(T|X)>
Consequently, monotonicity of h leads to
i ) — el 1) )
Y<zs = éE.<= - = £E.<e,
he(By [ (BIX)) — he( By (71X)
i ) Py (71 )
Y>z = &> = E.> €,

v
he(By  (B1) — hel(By fy (7]X)

if X € Mx. Therefore, &, only has to be calculated when Y € [z, 23], which means that
all results about uniform convergence on compact sets like [£.2.2] can be applied without
worsening convergence rates. See Horowitz| (1996, p. 107) for a similar reasoning.

Consider b, fm,, fm; belonging to specific function sets specified later and define s =
(h,fmT,me) as well as sg = (hq, Y‘X( T|), Y‘X(ﬁ| )t with hy from 1' and

b(Y)® = b(fm. (X))
b(fins (X)) = b (fm. (X))

Ec(s) =

Guple,s)(@,e) = P(X < 2,800, fin, fmy) < €| X € Mx)

— P(X < z|X € Mx)P(2c(b, fm,» fmy) < €| X € Mx), (4.11)
Gnmple,s)(z,e) = P(X < 2,8.(0, fin, . fm,) < €| X € Mx)

— P(X < 2|X € Mx)P(2(b, fm,, fmy) < €|X € Mx) (4.12)
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with

Yo Iz i<er Iixi<ey I {xieMxy

S =

P(X < 2,20, fm,, fms) < €| X € Mx) = I S 7
n =1 EMx

S|=

Yoim Iixo<at Iixsemxy
% Z?:l I{XiGMX}

P(X <z|X € M) =

3 I () <ep [, eMy}
= i Iixenyy

P(2e(0, finys fimp) < €l X € Mx) =

Moreover, define

Ale, s) = ¢ /MX /[ | Guples) (@ deds = [Gurn(es3) (4.13)

where ||.||2 denotes the £2-norm on Mx x [eq, ). Then, Lemma, implies A(c, sp) =0
if and only if c= B

For some estimator § of sy the function ¢ — A(c, s9) can be estimated by

Ale,3) = \//M /[ Guarole 8) (@, e)2de dz = ||Grarn(c, §)|lo.
X €a,€p

From now on, § will be defined as

§ = (b Byl (71X, B (810) (4.14)
. . . > . 1
in this section, where hi is defined as in 1} and Fy| ¢ denotes the inverse of the estimator
of the conditional distribution function as in 1) Minimizing A(c, §) with respect to ¢

leads to the estimator

B = argmin A(c, 3). (4.15)
CG[Bl,BQ]

Remark 4.1.2 Without further examination, some thoughts on testing for Hy : B =0 are
given together with two possible testing approaches. Assume B = 0. Then, equation (@
implies

A
)

1. Due to a%h(y) > 0, A is well defined and has either no root (when A # 0) or infinitely

many roots (when A =0). This can be used to reject Hy, if there is only one root in

AMy) =

a given interval [zq, zp] C R.

2. The underlying estimating approach of B is based on the fact that the residuals cor-
responding to every ¢ € R are independent of X if and only if ¢ = B. Hence, it
could be possible to proceed as in the paper of |Chiappori et al. (2015) and to test for

independence of X and the residuals.

115



4. Nonparametric Estimation of the Transformation Function in a Heteroscedastic Model

Example 4.1.3 Constructing an appropriate set Mx. Let [zq,2p] € (yo,00) be a given
interval, {Xl,...,f(q} = {X1,..,X, : X; € supp(v)} for some appropriate ¢ € N the
set of observations falling in the support of v and x* = f(q the empirical mean of these
observations. Define for each k € N the (possibly empty) set

Qk::{<L,£):L<f7“fe{;"“’k;1} Fy(x (1E[X)). Fyx (6| EX]) € (Z”lls’z”_li)}

and for each e € R,c € [By,Ba],m € N and 7 < € (0,1) the set

Ot = {x e (+;) < hel(Fy e (71)) + e (he(Fy A (BIX)) — he (P (7)) < he (;) }

Further, for all k € N define (1, 8k) = argmax{{ — ¢} and choose 1 minimal if the

(L7£)6Qk
mazximizing values are not unique. Moreover, define
mj = min {mEN: ﬂ szc’%#w}
e€[—L, L] c€[B1,Bo]

if the set of appropriate m is not empty (otherwise set my = oc). When choosing k* =
min{k € N: my < oo}, the interior of the set

- 5 Bl
My := N Qs 70
ec[— , —1—],c€[B1,Bs]

"Lk* Mk

is not empty, since (y,c) — he(y) is uniformly continuous on compact sets. Now choose
l € NU{L :n e N} minimal such that

i i 1
My = 5 N IFN IR I I C Mx
i i 1

o
holds for appropriate i1,...,1q € Z, where My denotes the interior of Mx.

Up to now, Mx is unknown in general and thus has to be approximated. Let t, =
and define

. E— X .
= {00 <enee (o S R Friele) € (st H - -t |

_1
log(n)

(7k, Bi) := arg max{{ — ¢},
(ng)er

QL = {x he (za—i—%) Ftn < he(Fy 'y (7]2)) +e(he(Fy ' (B1X)) = he(Fy 'y (7]2))) < he (zb—a) —tn}
as well as
1k = min {meN: ﬂ ngcvé;;k;é@}.
ee[—ﬁ =1,c€[B1,B2]

and k* = min{k € N : my < co}. In a similar way, estimators [ and My for l and Mx
can be defined. One has

2" — E[X] = 0p(1), hely) —he(y) = 0p(1) and i (rla) — Fy i (T1E[X]) = 0,(1),
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4.1.  Definition of the Estimator

where the last two convergences hold uniformly on compact sets. Therefore,
P(k* = k*) —> 1,
P(rgs = my=) — 1,
P(Tg» = ) — 1,
P(Be = Bre) = 1,
Pil=1)—1,
and consequently P(MX = Mx) — 1, which means that Mx can be viewed as known and
not random.
4.1.3 Putting Things together

So far, estimators of all the components in apart from Ay have been presented.
These estimators are now combined to obtain an estimator of the transformation function
h on (yp,00). While doing so, it is assumed that some y; € (yp,o0) and a compact set
K C (yo,00), on which the transformation function h needs to be estimated, are given. The
extension to (—oo,yp) as well as the estimation of Ao are postponed to Section m

In an estimator for h. was already given. Note that h = hp. Insert each of the

estimators B and B for B from 1 or 1} to get

h(y) = exp < — B’/: X(lu) du), y ek, (4.16)

and

ﬁ(y) = exp ( — B/yy (1u) du), y € K. (4.17)

P

4.1.4 Extending the Estimator to (—oo, yo)

So far, the estimator was only considered on compact sets K C (yp, 00). Now, the estimator
is extended to arbitrary values y € R. Doing so requires estimators for gy and Ao. While
an estimator for yy was already defined in (4.2) an estimator for A\ is given first, before

these are combined to an estimator /4 on R and the asymptotic behaviour is examined.

An Estimator for A\,

The presented approach for estimating Ao will be similar to estimating B by B in 1)
Recall the analytic expression (3.17)) for h, that is

exp(—B iﬁdu) Y > Yo
hy)=14 0 Y =10
)\gexp<—B yiﬁdu) Y < Yo

for some arbitrary fixed value yo < yo. It is known that A is uniquely determined by

0 0 0
lim —A(y) = lim —~h = —h >0
S, 5y = i 5 ( 5" )
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4. Nonparametric Estimation of the Transformation Function in a Heteroscedastic Model

as

\ | < yo—t 1 J Yo+t q p
o = —lim exp B(/ — u—/ — u))
t—0 v Au) ()

Since estimators for A, B and g are already available, these can be plugged in to obtain

Ao = — exp (B(/:O_tn X(lu) du — /jmn X(lu) du)) (4.18)

for an appropriate sequence t,, \, 0. Similarly, an estimator

Ao = — exp (B(/:O_tn X(lu) du — /jo+tn X(lu) du>> (4.19)

is obtained, when estimating B by B asin (4.15)).

the estimator

A Global Estimator

Having a look at equation (3.17)) again, note that estimators for all of its components have
been provided in the previous sections. Hence, these can be used to define an estimator
of the transformation function A that can be applied globally for all y € R. Because h is

continuous in its root gy, one has

v o1 v o1
B/ —duyx}ooo and B/ —duy/—;yooo.
v AMw) vz Muw)

Therefore, to estimate h in a neighbourhood of 19, it might not be a good idea to do so
by estimating B and the integrals directly. To motivate the estimators in (4.20)) and (4.21))
below, one can write for an appropriate sequence y, \, yo (e.8. Yn = Yo + t,, with ¢, as

above)

h(y) = exp

|
&

[ : ) ()
un S W)=y, (0 = 0) + 0w — yo)

B L
T30 / — du)h(ym
——————

= exp (log(y — yo) — 1og(yn — y0)) h(yn)

Y—1Y
= h(yn)7
Yn — Yo

118



4.2. Asymptotic Behaviour of the Estimator

so that it makes sense to estimate h in a neighbourhood of gy by a linearisation of h.

For some sequence t, \, 0 the resulting estimator on R can be defined by

exp(—B yziﬁd,lj’)v y2y0+tn7
LRG0 + tn), y € (Jo, 0 + tn),
h(y) =4 0, y = o, (4.20)
got;yilQQO - tn)7 Y € (Z)O - tn7g0)7
\ _R((v_1 o
| )\gexp< B v2 () du), Yy < 9o —tn-

If (tp)nen is chosen appropriately, this estimator is uniformly consistent on compact sets
K C R (details can be found in part [4.2.1)). Again, a similar estimator

eXp<—B y‘jﬁdu), Y > g0+ tn,
L0 R(go + tn), y € (0,90 + tn),
h(y) =1 0, v = o, (4.21)
BV (o — t), y € (Jo — tu:f0).
5\26XP<—B iﬁdu), Yy < Yo — tn-

is obtained when estimating B and Ag as in (4.3]) and (4.18).

4.2 Asymptotic Behaviour of the Estimator

Here, the asymptotic behaviour of the estimators presented in Section {4.1| is examined.
First, the main results on estimating hq (defined as in ), B and h are given. Afterwards,
some minor adjustments taking care of the estimation of yy and Ay as well as some technical
part preparing the proof of the main results are presented. The assumptions can be found
in Section

4.2.1 Asymptotic Behaviour of the Estimated Transformation Function

In this part, the main results regarding the convergence rates of the estimator of A provided
in the previous Section [4.1| are given. These are separated into Theorem and Theorem
considering on the one hand the estimation of the integral in and on the other
hand the estimation of B. In Theorem uniform convergence on compact sets I C
(Yo, 00) is shown.

Due to the plug in type approach, first an expression for A= \is proven. This expression
is used in a second step to prove some convergence results on the integral over A and to
connect this later via to the estimation of k. To handle A(u) — A(u), one can proceed
similarly to |Chiappori et al.|(2015) and define with the notations from Section (e.g. see

C3)-CD) and f = fx

Doz_ia D,:_iv D7:7’
Y2 (I)ny by (ng p,x q)yf
2pf yZ pyq)x p
Do = - + , Diy=——s
e O,f3  B,f? ¢)32/f2 [ o, 2
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4. Nonparametric Estimation of the Transformation Function in a Heteroscedastic Model

and corresponding estimators of ®,®, and ®, with (1.2), (1.5)—(1.7). Here and in the
following, the convention f = fx is used to denote the density of X.

Lemma 4.2.1 Assume[(A1)H{(A7) and[(B1)H{(B5) and let K C R be compact. Then, with

___Om \ =9z
AMylx) = TPy 1 (0] and A(ylz) = OFy 1x (512)
oy -y

one has
Alz) = Alz) = By, =) — p(y, 7)) Dpo(y, ) + (b2 (y, ) — Pa(y, %)) Dpo(y, @)

+ (Py (Y, 2) — py(y, ) Dypy(y, ) + (f(x) — f(2))Dyo(y, )
T (fule) — @) Dyulys) + 0 (jﬁ)

uniformly in = € supp(v) and y € K. Moreover, with A(y) = [v(z)A(y|z)dz from it
holds that

AMu) — Au) = 1 > (U(Xi)Dpp(u, X;)Kh, (u—Y;) — a(”(Xi)gy’;’f(“’ X)) K, (u—Y)

=1

a(U(Xi)Df,cc(qui))>

+ U(Xi)Dp7y(u, Xz‘)Khy (U - Y;) + U(Xi)Df,g(u, Xz) — axl

ey
_ op< log(”)> (4.22)

uniformly in y € KC.

The proof can be found in Section Lemma |4.2.1] gives an expression which makes it
possible to extend (or even improve) the convergence rate of A= to the one of the integral.

Again, similar techniques as in the paper of |Chiappori et al. (2015) are applied.

Theorem 4.2.2 Assume [(AI)}(A7) and [(B1)}{(B5) Then, for all compact intervals
[un, 2] € (30,00) the process (Zn(y))yeun ) defined by

o= ()

converges weakly to a centred Gaussian process Zy with covariance function kz which can

be found in the proof in Section [{.6.2.

Asymptotic Behaviour of B and B

Before stating Theorem some further notations and assumptions are needed. Recall
that under the mean square distance from independence approach in the estimator B

was defined as the minimizer with respect to ¢ of
Ale,h, By o (71X), By 5 (B1X)

120



4.2. Asymptotic Behaviour of the Estimator

- /M /[ (P(X < a2, Byl (71), By (B1X)) < €] X € M)
X €a,€p

~ P(X < alX € M) P(eclhn, Byl (71X). By (B1X)) < el X € My) ) ded.

Y\X

For appropriate functions h : R — R, f ., fin, : RI¥x — R write again s = (b, fon,, fmg)
and so = (hq, Y|X(7'| ), YlX(B[ )t with hy from 1) Denote the supremum norms of
fmes fmg and h on Mx and (24, 2] by ||.||my and [|.]|2, ), respectively. Let C' > 0 such
that sup ‘ 5u 2h1 )‘ < % and define the set of functions

UE[2a,2p)

W= { O Fos Foy) < B € C2((20 26])s Frns s Foy € C2OMx), Fn, (Mix) € (200 20).

2

0
fmﬁ(MX) - (Za,Zb), Wh(U)

0 0
< — .
= ¢ 2u61[21fzb] ou (U) - uel[ng;zb} 8uh1( )} (4 23)

endowed with the supremum norm

1l = max (1Al 2y 25 [1 s 1z || s 1) -

Following Section 2.7.1 of [Van der Vaart and Wellner (1996), consider for some v, R > 0
the (Holder-)class C}, of all functions on Mx such that all partial derivatives up to order
|7] are uniformly bounded by R and the partial derivatives of highest order are Lipschitz
of order v — |v]. More precisely, define for any multi-index j = (ji, ..., ja, ) the differential

oI
J1 Jd
Oz ...8xd

D, =

as well as the norm

9

D;f(z) - D,
171 = max sup [D3()] + s sup 1220 DT W)
<17) ze My =17 apyeMyx |z —y|["1

where the inequality j7 < || has to be read in the sense of Z?§1 Ji < |7v] for every multi-

index j = (j1,...,Jdy)- In the case of dx =1 the norm can be written as

ahJ alvl f( )‘
L’YJ ~ 9alY]
Iflly = max sup f( )|+ oL
v J=1.5|v] zeMx a-rj r#YEMx ||x_y|‘7_L7J

Further, define for some R > 0 the set C},(Mx) as the set of all (sufficiently often differen-
tiable) functions f with ||f||, < R and

= {5 €M h € Ch (20 ), fn, € O (M), fimy € C f’"ﬂ ' X)} (4.24)

for some constants vy, > 17'Yfmf>’7fm6 > dx and Rh,RfW,Rfm[3 < oo. For all (z,e) €
Mx % [eq,ep] let T'i(c, s0)(x,e) denote the ordinary derivative of Gyp(c,so)(x,e) with
respect to ¢ and let I'y(c, so) (z, €)[s—sp] denote the directional derivative of Grp(c, so)(z, €)

with respect to s, that is

Ta(e, 50) (@, €)[s — s0] = %g% Guple, so+t(s — so))(t:c, e) — Guplc, so)(z, e).
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4. Nonparametric Estimation of the Transformation Function in a Heteroscedastic Model

Furthermore, let
DynGrp(c, s0)(z,e)[b — hi],

Dy, Crrp(e,50)(@.€) [fm, — Fyix (7).

Dfmﬁ Gup(c, s0)(z,e) [fmg - F;ﬂx(ﬁ”]
denote the directional derivatives with respect to b, fm,, and fy,, respectively. Now, some
further properties can be formulated. These will allow to proceed in the proof of Theorem
below similarly to Linton et al.|(2008). Most of them are already implied by assump-
tions [[ADHATIBIH(BS5)| (see Lemma below). Let Gasp and Gprp be defined as
in and and let § be an estimator of sg. In the proof of Theorem it will be
shown that the assumptions [(C1){{C3)|and [(C5)| below are already implied by [[AT)}{(A7)
in Section and in Section while validity of [[C4)l[(C6)| and [[C6’)| for

§ as in (4.14) is treated in Lemma below.
Let My and [eq, €3] be defined as in the definition of B in Section

(C1) One has Gyp(B,so) =0 and B — B = o,(1).

(C2) For all (x,e) € Mx X [eq, €] the ordinary derivative (with respect to ¢) I'1 (¢, so)(z, €)
of Gupl(e, so)(x,e) exists in a neighbourhood of B and is continuous at ¢ = B.

['1(B, s0)(z, e) is different from zero on a set with positive Apsy x e, ¢,]-MeaSUTE.

(C3) The directional derivative I'a(c, so)(z,€)[s — so] of Gump(c, so)(z,e) with respect to
s exists for all ¢ € Bs, (7,€) € Apryxfeq,e;] @and in all directions [s — so] with s € H
and H as in . Moreover, for any § > 0 let Bs be the d-neighbourhood of B in
[Bi, Bs] and Hs = {s € H : ||s — s0||» < 6}. Consider a positive sequence d,, — 0 and
(¢,s) € Bs, x Hs,. Then,

(i) for an appropriate constant C' > 0 (independent of ¢ and s) it holds that

|Grmp(c,s) — Guple, so) — Ta(c, s0)[s — solll2

3
< O(lh—mlIE, oy + e = Fy e ) By + s — Fyix B Biy)-

(ii) one has ||T'2(c, s0)[5 — so] —I'2(B, s0)[5 — s0]|| = op(lc — BJ) + 0y (nfé) uniformly
in c € By, .

(C4) 3= (hy, fmT, fmﬂ) is some estimator of sy with § € # with probability converging to
_ 3 1
one, ||hy — th[QZa,Zb] = 0p(n”2) and
5 _ 5 _ 1
1 fme = Fyixe (I a1 — F i (B [aay = 0p(n” 7).
1
(C5) |\ B\|<5su|l|) s l|Grhmp(e,s) — Gupl(e, s) — Guup(B, so)ll2 = op(n™2).
c— S0n,|[S—S0[|S0n

(C6) For some 0% > 0, it holds that

vn /MX /[ » I'1(B, 50)(z,e)(Gump(B, 50)(z,e) + Ta(B, so)(z, €)[§ — so]) de dz

2>/\/’((),c7124).
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4.2. Asymptotic Behaviour of the Estimator

(C6’) There exist a function ¢r, with E[¢r, (Y, X)] = o(n_%) and E[vr, (Y, X)?] € (0, 00)
such that

\/E/M /[ee]Fl(B,so)(x,e)<GnMD(B,so)(x,e)+F2(B,so)(x,e)[.§50])ded:c

- \/15 Z Yr, (Y;, X;)
i—1
— o,(1). (4.25)

Lemma 4.2.3 Assume from Section and for a compact in-
terval [zq, 2] € (yo,00) as well as[(B1){(B5) and [[B3’) If dx = 1 and § is defined as
in (4.14), one has § € H with probability converging to one for ), = Vime = Vimy = 2 and
some sufficiently large constants Ry, Rfmq—’Rfm,g > 0. The second part of as well as
|(C6) and|(C6’) are valid, but instead of below one has

waﬁﬂﬁwwh—Q(ﬁ;>,

and consequently

A 1
BB:Op(m)

The proof is given in Section m For arbitrary dy, the estimators (or the assumptions)
have to be adjusted, such that on the one hand the differentiability and boundedness con-
ditions, that ensure § € H, are met and on the other hand the convergence assumption in
remains valid. This issue is not considered further in this thesis.

Theorem 4.2.4 Assume[(A1H(AT) from Section[3. and[(M1){(M5) for some compact
interval [zq, 2] C (yo,00). Further, let § be an estimator of so such that [(C4) and[(C6)

are valid.

(i) Let
mwa%mwm=04l>. (4.26)

Then,

where Zp ~ N (0,0%) is a centred, normally distributed random variable with variance

2 _ ‘7124
7B I0i (B, s0) I}
and o4 > 0 from .
(ii) If
[[T2(B, s0)[5 — sol||l2 = Op(an) (4.27)

holds for some sequence a, \, 0 with a,* = o(y/n), one has B — B =o,(ay).
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4. Nonparametric Estimation of the Transformation Function in a Heteroscedastic Model

The proof can be found in Section Note that the convergence rate of B to B is
strongly linked to that of the estimated conditional quantile function F;ﬂx as a component
of s.

Another approach presented in consisted in estimating B via B from .

Theorem 4.2.5 Assume[(A1JH(A7) from Section[3.] and[(B1)H{(B5)[(B3’) from Section
[4.8. Then,
\Jnh3(B-B) B 7; (4.28)

for Z gz ~ N (0, J%) and

oy = ([ (2w o) ([ o Duston w7 frxanw) o).

The proof is given in Section

Combining the Results

Now, everything is prepared to state the main convergence result for the estimator of the
transformation function given in part First, a convergence result on compact subsets

of (yo, 00) will be provided. An extension to compact subsets of R is given later in Theorem

E2.1T

Theorem 4.2.6 If not specified further below, let § = (Bl,fmT,fmﬁ) be some estimator
of so = (hl,F;|1X(T]x),F;|1X(5|x)) and define an estimator of h on (yp,0) as in by
h(y) = hy(y) with B from .
(i) Let hy fulfil
. IR 1
) = o) = 5= 3 00 X + 012 ), (4.20)
ﬁ; "\vn

which holds uniformly on compact sets K C (yo,00). Moreover, let the function class
{(v,z) = Yp(v,x,y) : y € K} be Donsker with respect to the distribution law of
(Y, X). Let K C (yo,00) be compact. Then, under the assumptions in Theorem

and for § = 5 the stochastic process (Hy,(y))yex defined by
Hy(y) := vn(h(y) — h(y))

converges weakly on compact sets to a centred Gaussian process (Zp(y))yex with co-

variance function
) = ()| (P g ), 11, )
<B¢h(Y1, X1,0)

hi(v)

and ¢Yr, as in|(C6°) In particular, if|(B1){(B5) are valid and sg is estimated by §
from , equation is valid and it holds that

+log(h1 (v))r, (Y1, X1)>]

s, 0) = B()h(0) B [(Bm (u) + / oy v, <Y1,X1>)
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4.2. Asymptotic Behaviour of the Estimator

<Bm<v> +f ) s dy v, (%Xﬁﬂ

with N1 as in .
(i) Under the assumptions of[(it) in Theorem one has

h(y) — h(y) = op(an)
uniformly on compact sets K C (yg, 00).

(iii) Let 8 be defined as in ({{.14). For every compact set K C (yo,o0) and under the as-
sumptions of Theorem|4.2.5, the process (Hy(y))yexc defined by Hy(y) = /nh%(ﬁ(y)—

h(y)) with h as in (14.1 21) converges weakly to the centred Gaussian process

(Z5,(y))yex = <h(y) /: A(lu) du ZB)yeK

with Z g from Theorem [/.2.5,
The proof can be found in Section

Remark 4.2.7 |Colling and Van Keilegom (2019) adjusted the estimator of Chiappori et al.
(2015) by first transforming Y with the empirical distribution function Fy as explained in
Section[I-4} In the context of the heteroscedastic model presented here, such a pretransfor-
mation is conceiwable as well. Although not done by the author, the same techniques as used
in the paper of Colling and Van Keilegom| (2019) should work to obtain a result similar to
Theorem . Note that the estimation of F;ﬂX, if based on the original data, remains

unaffected by this pretransformation

Asymptotic Behaviour of the Estimators of yo and A\,

Let h be defined as in 1} There, estimators for yg and Ao with an asymptotic behaviour
which has not been examined yet occur. This will be the subject of the following passages,
before these findings are used to derive a result concerning the asymptotic behaviour of h.

Assume h to be two times continuously differentiable.

Theorem 4.2.8 (A7) in Section and (B5) in Section [{.5 Let o be
defined as in . Then,
N D
V' 1hy (G0 — yo) = N (0, 050)
for

2 [ K(2)?dz

= L [ P Dy, frx (oo, w) du.

The proof can be found in Sectionm To state a general asymptotic result for &, the only
thing missing is the asymptotic behaviour of A2 and Ao, respectively. Although based on
the same idea, both of the estimators depend on the respective methods applied to estimate
A, 9o and B. In the following, the convergence rates of B — B and B — B are used to define
suitable rates for the sequence (¢, )nen in (4.21)) and (4.20]).
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4. Nonparametric Estimation of the Transformation Function in a Heteroscedastic Model

Theorem 4.2.9 Assume |(A1)H(A7) in Section and |(B1)H(B5) as well as|(B3’) in

' ] qp log(n)
Section . Let t, \( 0 be a sequence with o o(1). Then,

= log(tn)t, . log(n)
(o +tn) — h(yo +tn) = O +
(G0 +tn) — h(yo +tn) = Op - nhy

Further, for the estimator defined in one has

2
- Aza%zh(yo)tn log(ty,) n log(n)

A2 — g = +
%h(yO) P A /nhg tn\/ nhy

+ 0p(th). (4.30)

1
For t, ~ (10522)2)4 the fastest convergence rate in (4.30) is reached and

Na s h(yo )

Ay — Ay =
ol (yo)

+ op(tn).

The proof is given in Section 4.6.8

Remark 4.2.10 If an estimator B with B — B = O,(ay) for some sequence (an)nen with
an \( 0 is used to define A2 as in , one can show similarly that

WG+ tn) = hlyo + ta) = Oy (1°g<tn>tnan - log(n>>

/nhy

and
. )\Q%h(yoﬁn log(n)
Ao —do=—2—""— + 0O, |log(ty)an, + + 0p(tn)-
2-h(yo) g tay/nhy ) "

Asymptotic Behaviour of the Global Estimator

By now, all ingredients have been presented that are necessary to state a uniform conver-

gence result for h on compact sets.

Theorem 4.2.11 Assume [(A1)H(A7) in Section and [(B1)H(B5)|[(B3’) in Section
[4-8. Let t, \ 0 be a decreasing sequence.

(i) Assume|[(M1JH{(M5), {4.26) and ({{.29). Let B and h be estimated as in and
[4-20) with § as in [4.1]).

(a) If K C (yo,0) is compact, one has

sup is) ~ 1) = 0, = ).

b) If K C |yo,o0) is compact and t,, ~ le®) one has
(b)

sup ) — )] = 0, ().

yeK
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4.2. Asymptotic Behaviour of the Estimator

(ii) Let B and h be estimated as in and . If K C R is compact and t, ~

log(n)?\ 7
(W) , one has

~ (0] 'n2 i
suprh@)—h(y)!—op((l )

yeKx nhy

'
N———

The proof can be found in Section

4.2.2 Uniform Convergence Rates for Kernel Estimators

This section deals with kernel estimators and their convergence rates. The notations are
taken from Sections and especially recall the definitions f. Instead of
the general idea that was already captured in Section [I.I] more specific results needed to
examine similar convergence rates for estimates of the conditional distribution and quantile
function are given. Recall that all estimators proposed in Chapter [ somehow depend on
kernel estimators.

For this purpose, some ideas of Hansen (2008) are borrowed. To unify notations as consis-
tently as possible, define

n

N 1 .CE—Xi
)\ = Z;K
() = e > 2K ()

=1

for some (here independent) random pairs (Z;, X;),i = 1,...,n, some bandwidth sequence
he N\ 0, some product kernel K with corresponding kernel function K and z € R4, In
the proofs of the following results, it will be sometimes referred to K as the “kernel” of
¥ and to the dimension of the domain of K (here dx) is as the “dimension” of ¥. These
terminologies only influence the proofs of the following results and will be explained in
detail there.

In the paper of Hansen| (2008), the Z; are replaced by random variables Y;, which possibly
depend on X;. Here, Z; will be replaced by Kp,(y — Y;), Ky, (y — Y;) or simply by 1. In
contrast to Hansen (2008), not weakly dependent, but instead independent random pairs

(Zi, X;),i =1,...,n, are considered. It was shown there, that under appropriate conditions

U(2) - Bl¥(x)] = Op(an) (4.31)

uniformly on compact (even on appropriately growing) sets, where

1

log(n) \ 2

oo (20
nhg

Since the most general result is not needed and the proof later due to some minor assumpti-
ons will be sketched anyway, the details of how to obtain equation (4.31]) are omitted here.
Note that if assumption [(B3)|is valid, one has a,, = op(n_i). This results in the following

lemma.

Lemma 4.2.12 Assume [(A1)H(A7) and [(B1}H(B5) and let [z4, z5) C R be an arbitrary,

compact interval. Then, one has

sup  v(2)|p(y,x) — p(y, )| = 0p(n71),
Y€[2a,2p],zERIX
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R _1
sup v(x)|pe(y, ) — Py, x)| = Op(n 4)7
ye[za,zb],xERdX

~ _1
sup  v(@)|py(y,x) — py(y, )| = 0p(n~1),
YE[2a,2p) JxERIX

sup ()| f(2) = f(2)] = op(n~7),

zERYX
sup 0(2)| fol) — fo(@)] = 0p(n~7).
rERYX

The proof can be found in Section

Remark 4.2.13 For all sequences (¢, )nen with at most polynomial growth, the convergence
results in Lemma can be extended toy € [—cy, cy] similarly to the proof of Theorem 2
of | Hansen| (2008). Note that the constant q there can be chosen arbitrarily for independent
data.

In the proof of Theorem [£.2.2] these convergence results are used to rewrite the difference
between the quotient of the conditional distribution function of Y conditioned on X and

its empirical counterpart. The main tool for doing so is Lemma Remember equation

(L.8]), that is,
a a 1, a - b—b/. a(l;—b)
2l Ca—a) - 2h-b) - (a—a- 122
A GOl ICR <a ¢ b )

for arbitrary a, b,a,b e R,bb # 0. Using the same techniques as in the proof of Lemma
one can show

Corollary 4.2.14 Assume[(A1JH(A7) and[(B1)H{(B5) and let [24, 2] C R be an arbitrary

compact interval. Then, one has

sup o(z)
z€RIX

92, 12 (®) — g fo(@)] = 0p(1),

sup v(x)
UE[za,2p),LERIX

sup v(x)
u€[za,2p),rERIX

9 & B)
sup 0(2)| =Py (u, 1) — Py (u, )| = 0p(1),
U€[2q,2p],tERIX u ou »
i o) b (u, ) O (u,z)| = op(1)
UG[Za,zb]E:eRdx ou N7 ou v\ = 0p(1),
9 4 i)
9 0 o
ues[il,)zb} o M) = 5oAu)| = 0p(1),
9% . 92
S 5w~ 5 W] = o).

Further, the assertion still holds if the weighting function v is omitted as long as x is

restricted to belong to a compact set.
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The proof can be found in Section [4.6.11] Once a convergence result is proven for an
estimator of the conditional distribution function, it can be extended relatively easily to

the corresponding estimator of the conditional quantile function

F;llx(ﬂx) =inf{ueR: Fy|X(u|ac) > 7}

as is done in the following Lemma.

Lemma 4.2.15 Assume [(A1)H(A7) and [(BI)}H(B5) and let [1,,7) C (0,1), [24, 2] C R
be compact intervals. Then, one has

. 1
sup v(z)|Fy x (ylz) — Fy x (ylz)] = op(n~1),
ye[za,zb],zeRdX

sup (@) (rle) = By (7]2)] = 0p(n73).
YE[7a,mp],zERIX

The proof can be found in Section [4.6.12

4.3 Simulations

In this section, the behaviour of the estimators for yg, B and h given in (4.2), (4.3 and
(4.17)), respectively, for finite sample sizes is examined. For this purpose, observations of

independent real valued random variables X ~ U([0,1]) and € ~ U([—1,1]) are generated.

Afterwards, Y is defined by
@+X+““>f+7u+x+m”e)
8 8 ’

that is, model (3.1)) is fulfilled with

Yy =

3
hl(y) = % + %y g(z) =14z and o(x)=

(L+a)*

5
The transformation function A is chosen such that it is strictly monotonic. Furthermore,
it fulfils the identification conditions A(0) = 0 and A(1) = 1 and thus needs to be linearly
transformed later when comparing it to the estimator h. Note that & does not fulfil as-
sumption Nevertheless, since the equation is based on the idea that the factor
fe( - hw)—g@) ) in cancels out when dividing Y‘a); (ylz) by 6FY'5(y ) , it is tried to keep

(2)
fe constant.

The simulations are conducted with the language R (R Core Team (2017)). Some of the
already implemented commands such as integrate and h.select are applied and an interface
for C++ is used to reduce the computation time. The weighting function v is chosen to be
the indicator function of [0, 1]. Instead of integrating

8FY\X(Z/\9C)
ox1

8FY\X(ZJ\9C)
Oy

x = v(x)

as in (4.1)), the mean of N, = 100 evaluations of the integrand at equidistant points between

the minimum and the maximum of the observations of X was taken. This is similar to
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4. Nonparametric Estimation of the Transformation Function in a Heteroscedastic Model

what Colling and Van Keilegom (2019) did and to what will be done later in Section
to estimate the transformation function in a homoscedastic model nonparametrically.
To calculate the bandwidths h, and h,, cross validation and the normal reference rule,
respectively, have been applied (Silverman| (1986)). The kernel K is chosen to be the
Epanechnikov kernel.

According to equation , B can be expressed as

1

2

B = dx =log(4) ~ 1.39.
A T 0o = log(d)

Solving for A(y) = 0 leads to the equation 1 = log(4)h(y) and thus to

1 1 7
=p ! = ~ 0.68.
v <log<4>> 8log(4) " Slog(4)

Observations are simulated for sample sizes of n € {100,200, 500, 1000, 2000, 5000, 10000}.
For computational reasons, the number m of simulation runs for each of the scenarios

decreases with the sample size and can be found in Table Figure [f.1] shows a realization

Sample Size n = 100 n = 200 n = 500 n =1000 | n =2000 | n=5000 | n= 10000
Number of Sim. Runs | m =500 | m =500 | m =200 | m =200 | m = 100 m = 50 m = 20

Table 4.1: The sample sizes and the corresponding number of the simulation runs.

0.8 1.0 1.2
I

Transformed Observations
0.6

0.4

0.2

0.0
I

Figure 4.1: One realization of the estimated transformation function (black curve) and

the true transformation function (red curve) are shown for n = 500.

of the estimator A in 1' which is based on n = 500 observations in black and the

true transformation function h in red, both for y > ¢¢. The estimator A2 of Ao has not
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4.8. Stmulations

been simulated. Here and in the following, the scale constraint in for y; = 2 and
A1 = 1 is used, that is 2(2) = 1 = h(2). Moreover, to compare the estimator to the true
transformation function, h is linearly transformed to fulfil h(gp) = 0 (compare to (3.12])).
Therefore, both functions have to intersect at least in g and y; = 2. The approximation in
Figure seems to be quite good, although the estimator for values below y; = 2 slightly
overestimates the true transformation function, whereas the opposite holds for values above
y1 = 2. As can be seen in Graphic [£.2] this phenomenon carries over to all of the simulated

scenarios. There, the difference h— h of the estimator and the true transformation function,

n=100 n=200
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0.0
1
Difference of the True Transformation and its Estimator
0.0
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Y Y
n=2000 n=5000

04
|

Difference of the True Transformation and its Estimator
00
1

04
0.2
1

0.2

0.0
|

-02
|
-0.2
|

-04
|
-04
|

Difference of the True Transformation and its Estimator

Figure 4.2: The difference of the true transformation function and its estimator under
the same identification conditions is shown for the sample sizes of n = 100,n = 200,n =
500, n = 1000, n = 2000, n = 5000, n = 10000.

again based on the same identification conditions, for different sample sizes is shown. Up to
a sample size of n = 2000, m = 100 curves are displayed, whereas for n = 5000 only m = 50
curves are shown. As expected, the difference decreases with a growing sample size. Since

h(y) € (0,1) for all y € (yo,2) and h(y) > 1 for all y > 2, the phenomenon of overestimating
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4. Nonparametric Estimation of the Transformation Function in a Heteroscedastic Model

h for values below y; = 2 and underestimating h for values above y; = 2 might indicate an
underestimation of B. This theory is supported by the data listed in Table Whereas

Sample Size | Mean of §o | Mean of B | Est. MISE
n = 100 1.14 0.80 33.19

n = 200 0.88 0.76 12.90

n = 500 0.64 0.81 2.38

n = 1000 0.65 0.85 2.25

n = 2000 0.66 0.99 2.19

n = 5000 0.71 1.10 2.30

n = 10000 0.66 1.16 1.92
True Values 0.68 1.39

Table 4.2: Means of the estimators gy and B as well as the estimated MISE of the
estimated transformation function for the sample sizes of n = 100,n = 200,n = 500,n =
1000, » = 2000, n = 5000, n = 10000.

§jo already seems to be unbiased for n = 500, the value of B is even for n = 10000 below
the true value of B = 1.39, although the gap between B and B decreases with a growing
sample size. The reason for this might be the estimation of B via the derivative of X in yj,

since

OFy | x (y|z)
N _ o1
)\(y) N U(JU) 8FY|X(y|z) d
dy

is already based on derivatives. Consequently, estimating B by B leads to the issue of
estimating second order derivatives. In this context, kernel estimators sometimes perform
rather poorly.

Finally, some QQ-plots for §y and B are given in Figure There, the empirical quantiles
of the estimators are compared to those of standard normally distributed random variables.
While the distribution of ¢y seems to be almost normal already for a sample size of n = 500,
the corresponding curve for B has a small bump for n = 500, but at least seems to be linear
for n = 5000. This indicates a slower convergence to the asymptotic distribution than for
9Jo. One possibility to overcome especially the bias problem might consist in the usage of
B instead of B, but this is not explored further in this thesis.
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Figure 4.3: Normal-QQ-Plots of the estimators §jo and B for the sample sizes of n = 500
and n = 5000.

4.4 Discussion

The so far most general approach for estimating the transformation function in the hete-
roscedastic model has been developed. Depending on the chosen approach for esti-
mating B, two estimators h and h related to that of Chiappori et al. (2015) have been
provided and the advantages and disadvantages of both have been discussed briefly. Con-
sistency results for the proposed estimators and its components have been provided. A
weak convergence result of the stochastic process (v/n(h(y) — h(y)))yek on compact sets to
a centred Gaussian process has been given.

Since the procedure is quite sophisticated, future research could consist in simplifying the
estimation of at least some components of h or h. Moreover, recall that the estimator is
based on equation , which in turn is based on the fact that

> 0.

OFyx(ylz) . (h(y) —g(@)\ M (y)
ay‘fa( o(a) >o<x>

From a theoretical point of view, the part depending on the density f. does not influence

. OF: . .. OF
the estimator and cancels out when w is divided by %. Nevertheless, the
estimated values of %z(ylx) and w might be extremely small in applications, which
1 Y

might lead to numerical problems. Additionally, an examination of the behaviour of B for
finite sample sizes would be worthwhile, since the usage of B seems to be accompanied with

a bias.

133



4. Nonparametric Estimation of the Transformation Function in a Heteroscedastic Model

4.5 Assumptions

In the following, the assumptions of this chapter are listed. Additionally, assume (A1)
(A7) from Chapter

Let m € N and let v be a weight function with a compact support.

(B1) Let (Y, X),(Y1,X1),..., (Y, X,) be independent and identically distributed observa-
tions from model (3.1). Let the density fy x of the joint distribution of (Y, X) be
(m + 1)-times continuously differentiable. Assume fy x to be bounded and fx to be

bounded away from zero on the support of v.

(B2) Let K be a continuously differentiable kernel of order m with compact support.

hy hoX hgX *?
(B3) Let y/nhy’ — 0,/nh;* — 0, % — oo and % — 00

(B4) Let v be (m + 1)-times continuously differentiable.

(B5) Let there exist some ¢ > 0 such that M. = Ms, N supp(v) or Mc_. = M._. N
supp(v) fulfil assumption

In Section the assumption below, which is slightly stronger than assumption
(B3)| will be used.

nhShy nhiX 14 nh3h3
(B3,) Let logy(n) — oo, W — 0 and log(ng — Q.
4.6 Proofs

This section contains the proofs of this chapter. The proofs are organized in a similar order
as before, that is, the main results are proven first before the auxiliary assertions from
Section [£.2.2] are considered.

4.6.1 Proof of Lemma 4.2.1

Proof: The proof follows the same line as the one of Lemma 1 of |Chiappori et al.| (2015)).

For reasons of clarity, the arguments of the occurring functions are omitted.

Recall equation (1.8]):

Sal IS

1, a - b—b/. a(l;—b)
—E(a—a)—b?(b—b)— 7 <a—a— 2 )

for arbitrary a, b, a,beR,b,b 2 0. Since

S|

<1>y:% and @, =Pz _Ple

£

this results in
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as well as
. 1 . f_ f
by =0y = 5y —m) = 250 - =L (= -2
=op (=)
Here, uniform convergence results like
sup  v(w)|f(w) = f(2)] = op(n~F)
z€supp(v)
or
sup |py () — py ()] = 0p(n %)
yElu1,u2], zEsupp(v)
are guaranteed by Lemma To rewrite &, — ®,, note that
p Ail' xr 1 A [ xr P 1
M 1 ot~ pi) =2 = )+
_ 1 ~ £ ¢ pfx R R 1
— F5l0= e+ 9l — 1) = G = G+ 1)+ oo )
T . - 20fr 4 1
Lo+ B 10 - 2 - 1) v )

and therefore (again with Lemma |4.2.12]),

fa fm N 1 A~ 2 fz x P N 1
q>x—q>x=—ﬂ<p—p>+f<px—px>+( f —%)(f—f)—ﬁ(fx—fx)ﬂp(\/ﬁ) (4.34)

Inserting this into equation (4.32) leads to the first assertion about the expression for
AMylz) — M(y|z). Remark that

Dyop + Dpapz + Dpypy + Dyof + Dyafa

_ _(I)fx Dz o, Q(I)fx Dz o, . (I)f;t

+ P ——
o, f O, f D,  B,f D, b, &f

=0
and thus

AMu) — Mu) = / (A(ulz) — Aulz))v(z) dz
= [ (Dol a)plus) + Dyl 2)al,) + Dy 21y )

+ Dy o(u, 2)f(z) + Dy o (u, l‘)fx(m))v(x) dx + oy (\/1%>

Inserting the definition of p, p., py, f , fx one obtains

Au) — Au)
— i;/ (Dpp(u, z)Cn, (u — Vi) K, (# — X;) 4+ Dy o (u, 2)Kp, (v — K)W
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+ Dy y(u, ) Kp, (v — Y3)Kp, (v — X;) + Dy o(u, 2)Kp, (z — X5)

8Khx (QZ — Xz) 1
8—5[)1 'U(IL') d:IZ + Op % .
Due to the assumptions [[B2)| and [[B3)] a Taylor expansion leads to

/l($)Khm(€E —X;)dx = /Z(Xi + heo)K(2) de = 1(X;) + O(\}ﬁ)

for every m-times continuously differentiable function [ with bounded support. Moreover,

+ Dy p(u,x)

integration by parts yields

/l($)('9i‘1Kh””(x — X;)dz = /Khx (x — Xl)aill(x) dz
= /K(x)azl x dx
1 z=X;+hgzx
9

for every (m + 1)-times continuously differentiable function ! with bounded support. Due
to the compactness of supp(v) and [u1, us| all derivatives of Dy, ..., D¢, are bounded, so

that

Au) — AMu) = 7112 <U(Xi)Dp70(u,Xi)/Chy (u—Y;) — av(Xi)g;f(u’ Xi)lchy (u—Y5)

8U(Xi)Df,;p(U7Xi)>

+v(Xi) Dpy (u, Xi) Kp,, (u —Y;) +v(X;) Dy o(u, X;) — By

Finally,
: log(n)
sup [A(u) — A(u)| = O
sup (1) — ) ( nhy)
follows as in the proof of Lemma below. Il

4.6.2 Proof of Theorem [4.2.2

The main idea of the proof is to find an expression

/: (A(lu) B )\(1u)> du = iim(w — Eni(y)]) + op (%) (4.35)

i=1
(n; will be defined later) for which some weak convergence results can be applied.

First, remark that since [ug,us] C (yo,00) is compact, u — ﬁ is bounded and bounded

away from zero on [u1,us]|. Hence, one has

[ Gaa=xta) o= [ o
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Possibly, extend [ug, us] such that y; is included (e.g. consider [min(y1,u1), max(y1, uz)l).
Due to assumption |(B3), Lemma leads to

Zn(u) :\/ﬁ</yy)‘()/\()du+(’)< sup M(u)—A(u)P))

1 )‘(U) u€lu1,us2)

=N Wdu)w(l)-
A

Moreover, Lemma, yields

n

Aw) = Aw) ==Y <U(Xi)D,,,o(u, Xi)Kh, (u— Vi) —

i=1

0v(X;)Dp o (u, X;)
81‘1

K, (u = Y3)

+ 0(Xi) Dy (u, Xi) Kp, (u = Yi) + v(X3) Dy (u, Xi) — Ov(X) D gl Xi))

0xy
()

uniformly in u € [ug, ug], that is

/yyx(;() du =~ Z/yl u( DDy o(u, Xi)Kn, (u— Y;)

1

6”( i) Dpa(u, Xi)
8.%‘1

+ 0(Xi)Dyo(u, Xi) — Ou(X)D g Xi)) du + o, (1)

D1 NG
~ a7

The following lemma is similar to Proposition 2 of (Colling and Van Keilegom (2019)). Since

Kh, (u —Y5) 4+ v(X;) Dy (u, X;) Kp, (u — Y;)

the reasoning in the proof differs from that of (Colling and Van Keilegom (2019), the proof

is given as well.

Lemma 4.6.1 Let [uy,us] C (yo,00) be compact, | : R x R — R, (u,z) — I(u,z), be
bounded on compact sets and let | have a compact support with respect to the x-component,

which will be denoted by supp, (l) in the following. Then, under the conditions of Theorem
one has

Z/ ) (Kn, (u = Y3) —f{néu})d“:0p<wlﬁ>

uniformly in y € [uy, ug].

Proof: Define ¢(z, z|y,a) = fy% I(u, 2)I{y>2+4q) du. Then, g is bounded. One has

)
Z/ Hu, X) (Kn, (u = Y5) — Ity,<uy) du
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1w [Y
“n Z/ l(u’Xi)/ (Zpvi<uthyy — Lvicuy) K (2) dt du
i=1vY1

=23 [ (et Vil thy) — (X5, Vil 0) K (1)
i=1

n

Let § > 0 be such that [u; — 6§, us + 0] C (yo,00). Further, for all y,y € [u1,u2],a,a € [—6, 0]

and probability measures () one has

VEQ[(a(X1, Yily,a) — a(X1, Y1[3,@)”

o 2
= \/EQK/ U, X1) Ty u> vita) —I{@>u>Y1+&})du> ]

Y1

< sup [l(u, 2)|(ly — 9| + |a — al).
w€[u1,uz],zEsupp, (1)

Hence, the covering numbers of the class
F = {({E,Z) = Q($7Z|y7a) HYVRS [u17u2]7a € [_57 6]}

can be bounded by N (e, F, L2(Q)) < 8% for an appropriate constant C' > 0 (independent
of @), so that by Theorem 2.5.2 of Van der Vaart and Wellner| (1996) F is Donsker. Since

sup E[(q(X:, Yily, thy) — a(X;, Yily,0))%] = O(h2) = o(1)
y€[u1,uz],tesupp(K)

Corollary 2.3.12 of Van der Vaart and Wellner| (1996) leads to

sup

> (a(Xi, Yily, thy) — g(Xi, Yily, 0)
y€E[u1,uzl,tesupp(K)

i=1

S|

- E[4(Xi il thy) — a6, Vi 0))|
1
= 0p % .
The integrated expectation in turn can be bounded via a Taylor expansion

sup
y€E€[u1,uz]

E{/ (q(X,Y|y,thy) — q(X,Y\y,O))K(t) dt] ’

= sup
y€lu,uz]

/E[/:l(u,X)(FYX(u—thy|X) —Fy|X(u|X))du]K(t) dt‘

= o).

Now, the assertion is implied by assumption |(B3) O
Define

] L Y -1 ) ) _8U(X7;)Dp’z(u,Xi)
0 = [ 5 (050 Dao ) Dol 20) 1oy
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v - A L Ou(Xi) Dy (u, X;)
+/yl )2 <U(XZ)Df70(u,X,) s du. (4.36)
Then, Lemma leads to
1~ Ov(X;) Dy (u, X;)
- ;m(y) = Z/ ( )Dpo(u, Xi) [iy>v,y — . Ity
Ov(Xi)Dya(u, X;
000 Dy, X5) i, (= ) + (XD ol X) - PR DLE R
as
o\ 7m
- n — Th y Op \/ﬁ 9

where

v -1
Ll WU(Xi)Dp7y('LL,XZ')Khy (U _ Y;) du

1

T /\(1)12)2 (Ipvisyy = Tpvicuny) +0p )

can be shown similarly to Lemma4.6.1 If one is able to prove E[n;(y)] = op (%) uniformly
in y € [u1,ug] this would prove equation (4.35)). Indeed, one has

Elni(y)]

s et [ B [

+0(0) Dy 0.0) . 2) + () Dyalu ) f o)~ PO ) ) o

- [ 57 ] (s@Dant it z) - PO

00Dy w2}, (1,0) + o) D o) ) — P ) )

/y1 — / ( p,0(W, 2)p(u, ) + Dy o (u, z)pg(u, x)

+ Dy y(u, z)py(u, z) + Dyo(u, x) f(z) + Dfa(u, l‘)fx(l‘)> dz du

=0. (4.37)
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So far, the asymptotic representation
vl 1 1 « 1
— | du=— ni(y) — Emi(y)]) +o ()
[ (i 3wy = v o) = B o 2
was proven. It remains to show weak convergence of the corresponding process to an

appropriate Gaussian process. For this purpose, define

“ vo—1 0v(z)Dp 2 (u, x)
nz,az(y) = / ﬁ <’U($)Dp,0(u7$) - 6;1 I{uZz} du

n Aw)

+ /: A(_ul)Q <v(1:)Df70(u,x) - a”("”)gif(“’ x>> du,

v(x)D, (2,2
2 a(y) = —<()A(’;§§))+(I{zgy} — Ia<yny)s

v(x)Dy, (2, x
n%2(y) == (%) 7(I{zgy} —Iiacyy),

where for some value a € R the terms (a); and (a)_ denote the positive and negative part

of a, respectively. Hence,

ni(y) = 1% x, (W) + 0% x, (W) + 15, x, ).

It can be casily seen that n? . (y), 7%, (y) and ¢ ,(y) are bounded by some constant C>0

uniformly in y, 7 € [u, u2]. In the following, it will be proven, that the function classes

Fi = {(z,az) — ngw(y),y € [Ul,UQ]}, j €{a,b,c},

are Donsker. Example 2.10.7 of Van der Vaart and Wellner| (1996|) then implies that the
class F = {(z,2) — 1:2(y),y € [u1,uz]} is Donsker as well. While the Donsker property of

F? and F¢ can be shown by standard arguments as for indicator functions, one has

] s (vt PO Y1y

n%0(y) = n5.(9)] =

n /gy A(_ul)2 (”(x)Df,o(u, )+ av(x)gif(u’ x)> du‘

<Cly -yl
for all y,y € [u1,ue2] and an appropriate constant C' > 0, so that

VEIOS, 0, ) =0, x, @) < Cli—yl.
Let € > 0. Then, &-brackets [, u] for the function class F* can be defined as

lex) = ()~ Y and u(em) =0t )+ o, =LK,

for some K € N and appropriate values yj, ..., yj € [u1,u2]. Consequently, the bracketing

number can be deduced from that of [u1, uz] and for some constant C' the bracketing integral

/OOO \/log(J\/H(s,]:, Lo(PYX))) de = C/OOO \/Iog (max <€12’ 1>> de < oo
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is finite. Theorem 2.5.6 of [Van der Vaart and Wellner| (1996)) ensures that F* is Donsker,
as long as the finite dimensional distributions converge, but this in turn (as for F°, F¢
and F) is implied by the multivariate Central Limit Theorem. It was already shown that
Emi(y)] = 0 for y € [u1,uz]. Let g,y € [u1,ug]. After some rather technical computations

for the indicator functions, the covariance function can be written as

kz(Y,9)
= Elm(y)m(y)]
_ v 1 Ov(X1)Dp - (u, X1)
=E (/yl OB <v(X1)Dp,o(u, X1) - o5, >I{uzyl}du
v(X1)Dpy(Y1, X
_ ( 1))\(Y1()21 1) (I{Ylgy} — I{Ylﬁyl})

vy 1 Ov(X1)Dy o (u, X1)
" /yl A(u)? (U(Xl)DﬂO(u’ X1) = dx1 > du)

| 0v(X1)Dp o (t, X1)
( /y YOI <U(X1)Dp,0(t,X1)— a:il Iysyyy dt

_ u(X1)Dpy (Y, X1)

A(Y7)2 (I{Ylﬁﬁ} - I{Ylﬁyl})
y -1 aU(Xl)wa(t,Xl)
+ /yl \ t)2 <U(X1)Df70(t,X1) axl dt

- [ [ s (00 Dot ) - 2O 0)

av(Xl)Dp,m (t, Xl)
6.%'1

vV (yAY) v(z)Dyy (2, )\
Moo /(55 e

/yl /y1 / < x)Dyo(u,x) — av(x)g;,lx(%x)>

81}(:1:)Df7x(t, x)
8901

+ (1= 21, 55) /: AZZiZtyl) / W(U(@Dm(% o) — 6v(x)§;fc(u,x)>

v(z)Dpy(2, ) fyx (2, x) de dz du

AyVy) 1 0v(x)Dp 4 (u, x)
— 21 D .x) — p,x\ U,
mzy) / Lo seacae (sPratin ) - 2 2e2)

v(x)Dpy(z, ) fyx (2, x) de dz du

)p(u At,x)dx dt du

<v(x)Df70(t,:U) . ) f(@) dz dt du
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- /y /y )\(U)21>\(t)2 <U(x)Dp7O(U, ) — 81’(@187;?(% x))

Y1 vy
(v(ar)Df,O(t, x) — W)p(u, x) dzx dt du
v o[y 1 0v(z)Dp z(u, x)
AR G e
(v(m)Dﬁo(t, x) — W)p(u, x) dx dt du
¥ ryvyi 1
+ (1= 2Igy,<4y) /y1 /yAy1 W“(»”U)Dp,y(zﬁf)
(v(x)vao(t,x) - W frx(z,x)drdzdt

+(1- 2I{y1§z7}) /y /y ! W”(@Dny(%x)

Y1 J YAy
~ Ov(x) Dyt @)

(U(.%)Df,o(t, x) .

) fyx(z,z)drdz dt.

Finally, the weak convergence

(Zn(y))ye[ul,ug] ~ (Z(y))ye[ul,uﬂ

was proven, where Z is a centred Gaussian process with covariance function xz. U

4.6.3 Proof of Theorem 4.2.4

As already mentioned, the estimation procedure described in Section [4.1.2]is related to the
Mean-Square-Distance-From-Independence approach of [Linton et al. (2008). There, the
results of(Chen et al.| (2003)) were used to prove asymptotic normality. Although calculations
can not be carried over directly to the approach here, the following proof uses quite similar
modifications of the results of |(Chen et al. (2003) as Linton et al. (2008). Let b, f,,,, and
Jms be some appropriate functional parameters. With the notations of Theorem 2 of Chen

et al.| (2003) one would have (view h as a functional parameter as well)
0 =c,
h= (0, fnrs fing)" = s,
M(0,h)(z,e) = Guplc, s)(z,e).
In this proof, use the notations of [Linton et al.| (2008) and write
s = (0, finrs fmp)'s
Gup(c,s)(z,e) = P(X < z,éc(b, fin,, fmy) < e|X € Mx)
— P(X < z|X € Mx)P(Ec(b, fin,, fms) < €| X € Mx),
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Grarn(c,s)(z,€) = P(X < 2,2.(b, fm,, fmy) < €| X € My)
— P(X < 2|X € Mx)P(Ec(8, . fms) < €| X € Mx)
and
Ale,s) = [|Garp(e, 5)l |2

instead. Recall the definition of B:

B = arg min A(C, §) = arg min HGnMD(C, §)H2
c€[B1,Bs] c€[B1,Bs)

Here, ||.||2 denotes the £2-norm on My X [e4, ep]. Define

h (07 ((0°(fom, (2)) + €(0°(fins (2)) = B (fm, (2)))) %)) = g(2)

o()

ke(s,x,e) =
with hy as in (4.8, so that h = hP® and due to the model equation (3.1, it holds that

Gup(e, s)(z,e)

=P(X <z,é.(s)<elX € Mx)— P(X <z|X € Mx)P(é.(s) <e|X € Mx)

B ) N (X))
‘P<X§ 0 oy (X)) — 0o (X)) 'XEMX)

he(Y’ )—b(fmf( )
h(fms (X)) = b¢(fm, (X))

= P(X <uz,e <ks,X,e)|X € Mx)

—P(X<z|X € MX)P( <elX € MX>

— P(X < 2|X € Mx)P(e < ke(s, X, )| X € Mx).

The function classes H and H were defined in and . For any § > 0, Bs was
defined in as a d-neighbourhood of B in [By, Bo] and Hs = {s € H : ||s — so||» < d}.
Sometimes, the indices will be omitted if it is clear from the context, which norm is used.
To proceed as in the proof of Theorem 2 of |Chen et al. (2003) or more precisely as in the
proof of a slightly modified version in the paper of Linton et al. (2008), there are several
conditions that have to be proven, namely [(C1){{(C3)]and [[C5)l The conditions and
have been assumed in the statement, see Lemma for a discussion on validity of

(C4)| and iCﬁiL

Each of the following lemmas is dedicated to one of these assumptions. Throughout the rest
of the proof and especially in each of the following lemmas, [(A1)H(A7)| will be assumed.

On the following pages, these auxiliary lemmas are proven. The actual proof, in which all

of these statements are connected to finally prove the original assertion, can be found on
page The next Lemma uses similar techniques as Corollary 3.2.3 of [Van der Vaart and
Wellner, (1996]).

Lemma 4.6.2 With A as in , it holds that A(B, sg) =0 and B—-B= op(1), that is,
(C1) is valid.
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Proof: The first part was already shown in Section [4.1.2] For the second part, consider

the function classes

F = {(X75) = I{XEMx}I{ESk’c(h,fmT,me,X,e)} iseH,ce [BlaB2]7e € [611765]}
and

F = {(X,E) — I{XEMX}I{Xﬁx}l{aﬁkc(h,fmT,fmﬁ,X,e)} HCES H,C S [Bl,Bg],.’E S Mx,e S [6a,6b]}.

It will be shown in the proof of Lemma 6| that the classes F and F are Donsker with
respect to £2 (P(X 5)). Hence,

P(X < z,é.(s50) <elX € Mx) = P(X < z,e < ke(s0, X, e)|X € My)

+ 2ot Lixi<aei<he(so.xie (X €My}
1
w21 Ix,emy)

1
= P(X <z,e < keso, X,e)|X € Mx) +Op<\/ﬁ>'

Assumption |(C4)| yields

fnr (2) = Pyl (7l2) = 0p(n7 1), fany (2) = Fyfy (Bl2) = 0 (n %)

and
1

hi(y) — hi(y) = op(n™1)

uniformly in y € [z4, 23] and x € Mx. Consequently, it holds that

sup |ke(8,7,€) — ke(s0,7,€)| = Op(‘sn)a
c€[B1,B2],zEMx ,e€leq,ep)

where the sequence (dy,)nen can be obtained from Lemma Assumption |(C4)| ensures
§ € H with probability converging to one, so that Corollary 2.3.12 of [Van der Vaart and
Wellner| (1996)) leads to

sup |P(X < 2,6:(3) < e|]X € Mx) — P(X < 2,5.(s0) < e|X € My)|
c€[B1,B2],zEM,e€eq,ep)

P(X <z,e <ke(3,X,e)|X € My)

= sup
c€[B1,B2),zEM,e€eq,ep]

— P(X <z,e < ke(s0, X, €)| X € Mx)|
= o0p(1).

Analogous calculations can be done for P(X < z|X € My) and P(é.(s0) < e|X € My).

Therefore,

— (/M /{emeb} (P(X < 2,60(3) < e|lX € Mx)

— P(X < 2|X € Mx)P(&.(8) < e|]X € Mx))* de d:c>

N
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_ (/M /{ea,eb] (P(X < ,24(s0) < €| X € My)

— P(X < 2|X € Mx)P(E.(s0) < e|X € Mx))*de dx) + 0p(1)

D=

= A(c, s0) + op(1)

uniformly in ¢ € [By, Ba]. Since the map ¢ — A(e, s¢) is continuous and ¢ = B is the unique

minimizer, it holds that

inf A(e,s0) >0
CE[Bl,B2},|C*B|>§

for all § > 0 and thus, B = argmin A(c, §) = argmin A(c, 59) + 0,(1) = B + 0,(1).
CE[Bl,BQ] Ce[Bl,BQ]

Lemma 4.6.3 The ordinary derivative I'1(c, so)(x,e) of Gap(c, so)(z,e) (with respect to

c) exists for all (x,e) € Mx X [eq,€p] in a neighbourhood of B and is continuous at ¢ = B.

['1(B, s0)(z,e) is different from zero on a set with positive Ayry x|e, e,)-measure. Conse-

quently, |(C2) holds true.

Proof: The proof can be divided into three steps namely the proof of the continuous
differentiability of ¢ — k.(sg, z,e), the proof of continuous differentiability of ¢ — P(X <
x,e < ke(so, X,e)|X € Mx) and ¢ — Gpyp(e, so) (each for all (z,e) € M X [eq,€p]) and
finally the proof of I'1 (B, so)(x, e) # 0.

First, for all (z,e) € M X [eq, €]

%kc(so,a}, e)
o (helFy (1) + elhel By (Ble)) — (P (1))~ o(a)
"o o)
1 B 2

oa)

5 <h1(F;|1X(Tx))C +e(m (P (8" — Iy (F;|1X(T]x))c)>

log (hl(F;|g<(T\x))c + e(h1 (Fy e (Bl0))° = ha (F;&@@))C))

B_1
c

+ f(hl(FYI;(ﬂx))c + e(h1 (Fy iy (Bl2)° = (an{(ﬂm))C))

<log <h1(F;llx(r\x))>hl(F;ﬁX(T\x))c n e<1og (hl(F;ﬁX(ﬁ\m)Dhl (Fy e (Bl)°

—log <h1 (F;‘1X(7|x))>h1 (F;|1X(Tyx))c>>] : (4.38)
Due to 0 < hC(F;‘IX<T‘.YJ)>, hC(F;‘IX(ﬁ\x)) as well as
0 < he(za) < he(Fyx (T]2)) + e(he(Fy [ (Bl2)) = he(Fy x (1]2))) < he(z)

for all z € Mx,e € [eq, €p] the function (¢, z,e) — %kc(s(],x, e) is well defined, continuous
and thus bounded on [B1, Ba| X Mx X [eq, €p]. Additionally, for each ¢ € [By, Bs] the points
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(x,e) € Mx X [eq, ep] with %kc(s(],a:, e) = 0 form a null set with respect to Ayzy xJe,,
Second, P(X < z,e < k.(s0,X,€)|X € Mx) can be written as

ep]

P(X <z,e <kcso,X,e),X € Mx)
P(X € M)

P(X <uz,e <kc(so,X,e)|X € Mx) =

1
- P(X € M) /Mxm(—oo,x] F(ke(s0, v, €)) fx (v) dv.

Analogously,

1

P(e < ke(s0, X, e)|X € Mx) = P(XeM)

/ F.(ke(so,v,€e)) fx(v) dv.
Mx

The Dominated Convergence Theorem leads to

gP(X < x,e < kc(so, X,e)|X € Mx)
c
—1/ 2F(k(s v,e))fx(v)dv
P(X 6 MX) MXﬂ(ioo#d ac g C 0, Y, X
—1/ fe(ke(s ve))gk(s v,e)fx(v)dv
= P(X c MX) Mx(—soa] e\he\50, U, e ¢ 0,V X ’

where the supremum of the integrand, which is continuous and evaluated on a compact set,

can be taken as a majorant. Consequently

1

PO M) Jug L)

0
%GMD<67 80)(IE, 6) -
0
&kc(so,v,e)(f(,oow} (v) = P(X <z|X € Mx))fx(v) dv.
Hence, %GMD(B, s0)(z,e) =0 for all (x,e) € Mx X [eq, €] is equivalent to

Fulk(0,0,0) 5 Kelo0,0,)| I -cei(0)fx(0) d
Mx Cc c=B

= P(X <z|X € My) fg(k:B(so,v,e))gkc(so,v,e) fx(v)dv
My oc =B

fMX fE(kB(SO’ Y 6))%1%(807 U, 6) ‘c:BfX(U) dv
iy P(X € Myx) L(—oo0)(w) fx (w) dw

for almost all (x,e) € Mx X [eq, €p] with respect to Ansy xfeq e

Therefore, v — fg(k:B(so,v,e))%kc(so,v,e)‘c would be constant on Mx for almost all

=B
e € [eq, ep]. Due to
and (plug ¢ = B into (4.38))

%kc(807 v, 6)
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4 B( g(g( ) O( )le T 9g C

+e(1og (9(0) + o FT(B) (9(0) + o (0) ()

~log (g0) + 0(0)F (7)) (90) + 0 (7)) )

the map v — fs(kB(so,U,e))%kc(so,v,e)’czB depends on v at least for some e € [eg, €],
that is %GMD(B, s0)(w,e) # 0 for a set with Ays, « e, e,]-Measure greater than zero. O

Lemma 4.6.4 There exists a § > 0 such that for all ¢ € Bs,(x,e) € Mx X [eq,e€p] the
directional derivative T'a(c, so)(x, €)[s — so] of Garp(c, so)(x, €) with respect to s exists in all
directions [s — so|. Moreover, consider a positive sequence d, — 0 and (c,s) € B, X 7:[5n.
Then,

(i) for an appropriate constant C' > 0 one has
|G amp(e,s) — Gup(e, so) — Ta(e, s0)[s — so]ll2
3
<Ol = millE, o+ e — By (rh B + s — Byl (B30,

(i1) one has ||T'a(c, s0)[5 — so] —T'2(B, 50)[$ — sol|| = op(lc — B|) + op(n_%).

Therefore, |(C3)|is valid.

Proof: First, existence of the directional derivatives is shown, before conditions (i) and

(7i) are proven.
Directional derivative with respect to h: Define for some fixed ¢, b, z, e
Jng = h1+t(b —ha),

(t,2) = fi (),

Q=

ZC(fh,tyfmﬂfmga%e) = (fﬁ,t(fmr (z)) + e(fch,t(me(x» - fﬁ,t(fmr (m)))) .

Mostly, the components z, e will be omitted and z.(t) will be written as an abbreviation
for ze(fhit, fm., Jmg» @, e). Further, all derivatives with respect to t are marked with a “-”

those with respect to y are marked with a “’”. Then, one has

)

o) = -,
Lo Al (z(0))
V) = o)) =(0)
as well as
o

S0t T (0))

= P(t, fua(hy ' (2(1))))
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aZC
+ 4 (8, fup(hy <c<>>>>(fh,t<h (2e())) + fha(hy <Zc<t>>>w<}ft<§)<>>>>
]_ C

28 5(0,2200) + 010, 2000) 5 =~ ) ce0) + 500

-1 .
= 0. 2e0) = 2O (y(h e 0)) = 20+ aet| )
Due to
. o Zat) g A (2(0)) Szt
*¢(t Fre(hi ' (2(t)))) = ahl Yze(1)) = m — = ~(0) =,
it holds that N1 0
500,200 = 2O (3471 0)) - 20)
so that
4 t, 2o(t)) = U (t, 20(t '(t, zo(t 4 t
o0t 2e(D) = Bt 2e(1)) + ¥/t 2e(t)) 5 2(2)
2850, 2(0)) + (0, 2(0)) (1)
t=0
_ M ) (0 . 9
= 2L (1 ) = 2e0) - et| )
Additionally,
Do = 21 e @) + €U oo @) = F5 o Fone (@)
ot - = ot Jht\Jms h,t\Jmg ht\Jmr o
= (1 e (2) (B g (2)) = 15 (i (1))
(ch$ ™ (finr (2)) (O (fim, (2)) = 2t (fim, (2)))
+ e (o (@) (0(Fmpy () = Rt (fins ()
= b (fnr (@) (D (fmr (2)) = R1(fim, (2))))-
This in turn results in (for the special case f,,, = FY‘X(T"), fmg = Y|X(B| )
thC(SO"T’e)[h - hl} (fht Y|X( ’ ) F;|1x(ﬁ‘)’1:76) —o
_ 9 h(0(t,2(1)” — g(x)
ot o(x) t=0
_ Bhui(9(t, ze()) PR (s 2 (1)) o (F z(1))
U(w) t=0
_ B0 (ee(0) — b (e O + GzeOis) g9,
o(x) '

and by applying the Dominated Convergence Theorem
DhGMD(C7 80)(1‘7 6)[h - hl]
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1 0 _ _
= ma (/ Fe(ke(fhts Fy|1X(7'")a Fyﬁ){(ﬁ|')v w, e))l{wgm}fx(w) dw

Mx

—P(ng’XEM)/
Mx

F (ke By (71), Byl (B1), w, ) fx (w) duo )

t=0

— P(XleM)( " fa(kc(so,w,e))(I{wgm} —P(X <z|X e MX))

Dike(s0,w, €)[b = ] fx (w) duw).
Directional derivative with respect to fy,. and fn,: For h = hy, k. simplifies to

Zc(hlafmr)fMﬂ)B _g(l‘)'

kc(hl,fm.r,fmgvx7e) = g(_x)

Hence, with

Forrt = Fph 1) 4+ t (s = Fyf(71)) and fun = Fy (B1) + t(finy — Fy s (81))

one has
Dfm k. (h17 Y|X( ’ ) ;|1X(B]),x,e) [fmr - F);|1X(T|)]
= Gkl o Fof (8. 2,0)|
. gzc(hlv fmntv F;\IX(B‘))B - g(x)
ot o(x) 0
a2 (Pe(finr (@) + e(he(Fy i (Bl) — hc(fmf,t(w))))% —g(z)
ot o(x) =0
B _B(~--)*_1(1 —e)he (F§|X(T|w))(fmf( x) — Fy x (7]z))
B o (@) A(Fy x (T]2))
as well as

DkaC(SO,x, 6) [f/B - F}j|1X(/6‘)]

8
(% ke(ha, y\X<T‘) fmg t,T,€)

t=0

0 Zc(hb F;|1)((T’)7 fmg,t)B - g(w)
ot o(x)

t=0

9 (he(Fyx (712)) + e(he(fmg 1(2)) — hc(FﬁlX(T\ﬂ?))))% —9(z)
ot o(x) o

B

B(..) e By (812)) (fimy (2) — Fyy (812))
o (DA(Fy ) (Bl2)) |
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Directional derivative with respect to s: This results from the previous parts of the

proof as follows: Define s; = (fu.t, fm, t, fmg,¢) and t > Zc(t) := ze(sy, 7, €). Then,

_ 9 m(9(t, Z(1)” — g(x)
o Ot o(x) -0

ke(sg,x,e) = —ke(sg, x,€)

ot
only depends on f,, ; and f,, ; via Zc(t), respectively. Due to Z.(0) = z.(so) (= 2z.(0) with

the notation from before), one can proceed as for the derivative with respect to h to obtain

B2:(0)771(2:(0) = (A1 (Z(0))) + %))

o(x)

Dsk.(s0,z,€)[s — so] =

At the same time,

0 . 0
azc(tﬂt:() = azc(fh,ta fmr,t7fmﬁ,t) o

h—h
= ( Dpzc(so) Dy, ze(s0) DfmﬂZC(SO) ) Jm. — F;|1X(7'|x) J

which in total leads to
Dgke(s0,z,e)[s — so] = Dpke(so, z,e)[h — hi] + Dy, ke(so0,z,e) [fmT — F;‘IX(T|)]

+ Dfmﬁ kC(SO’ €T, 6) [fmﬁ - F}j‘lx(6|)}
and (after applying the Dominated Convergence Theorem )

DG (e, so)(x,e)[s — so)

1 9
P(X € M) ot

</M Fs(kc(fh,ta fmT,h fmg,h w, 6))I{w§x}fX(w) dw

—P(X<:U|X6M)/

Fo(ke(fnts fmets fmgtsw,€)) fx (w) dw)
Mx

t=0

1

= BT g, 00,10 0) Ty = PIX < 21X € AD) (Duiso,w.€)fp = o

+ Dy, ke(s0,w,€)[frm, — Fy 5 (7-)] + Dy, Ke(s0,w,€) [ finy — Fyx (B])]) fx (w) dw)
= DyGurp(c, s0)(x,e)[b — h1] + Dy, Gup(c, s0)(z,e) [fmT — F;|1X(T‘)]

+Dfm5GMD(Cv 30)($7€) [fmg _Fyiﬁ)((ﬁ|)] (440)
Proof of (i): First, an auxiliary lemma is proven.

Lemma 4.6.5 Let 6, \, 0,5 = (b, fim,, fm;) € 7:[5n and 0 <n < M Then,

sup 5= (t) — b (0)] = O(I1b — hallz, )
te€[h1(za)+n,h1(2p) =7

15 = Bl g ) = O (/11 = Pl ) = v/

and
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Proof: Let t € [h1(zq) +n, h1(25) — 7], so that t € (h(24), b(2p)) for n sufficiently large. For
an appropriate ¢ € (h1(z4), h1(23)), one has

b= (t) — hy () = Ay (i (™1 (1))) — Ay (1)

1 _
:m(h1(b (1) — 1)

1 _ _
:Wwb (1) = b~ (®)))
= O(|lb = hal])-

To handle [|h" — h) ||, -, notice that the second derivatives of all b with (b, fin,, fm,) €

7:[671 C H are bounded. Hence, for all z € (za, 2p) and some appropriate 21, Za € (zq, 2p)
b(z +v/0n) = hi(z+ Von) = b(2) + ha(2) = O(6n)
by definition of Hs, as well as
b(2 4+ V/0n) — hi (2 + V6n) — b(2) + hi(2)

= V() - Hi()VG, + TEL MG,

= (1'(2) — B1(2))V/bn + O(5n)

uniformly in 2 € (24, 2). Therefore, one has |[b" =} ||z, -, = O(v/6y). The same argument
with 571 = Hh - hl”[za,zb] leads to ”h, - hll”[z(z,zb] = O(\/ Hh - hl||[2a,2b]>' U

Let 6, \, 0 and (¢, s) € Bg, X 7%5”. To apply the lemma from above, split the norm into

three parts (see (4.40))
lGrp(e,s) = Gupl(e, so) —Ia(e, so)[s — solll2
=|Gup(e,b, fm,s fms) = Gup (¢, b, frns, fms) — DnGup(c, s0)[b — ha]
+Gupl(c b, fm,y fms) — Gup(c, by, F§|1X(T\‘)a fms) = Dy, Gup(c,50) | fm, — F;\IX(T|')]
+ Gup(e,hy, Fy ' (71), fmg) — Gap (e, ha, Fylc (1), Fy ' (B])
— Dy,,,Gubl(c, $0) [ fms — F;ﬂlx(ﬁ\')] I[2
<||Gup(e, b, fn,s fmg) — Gup(e, ha, for s fng) — DaGurp(c, so)[h — halll2
+[|Gup(e, by, fm, s fms) — Gup(c, ha, F;\lx(T\')a fmgs) = Dy, Gup(c, 50) [fm, — F;\lx(ﬂ')] |2
+[|Gmp(c, b, F§|1X(T|')7 fms) = Gup(e,s0) — Dy, Gup(c, so) [fms — F;|1X(5|')] |2
Notice for the first summand that due to

G20 (e.9. finrr frny) = Garp(e: b e fns) = DuGarp(e: so)lb — ]l
:</ / (P(XSx’ggkc(h,fmr,fm@,X,e)‘XGM)
M Jleq,ep)
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— P(X < 2|X € M)P(e < kolt, fonrs frnps X,€)|X € M)
_P(X vagg kC(hlafmTafmgaXveﬂX € M)
+ P(X <z|X € M)P(e < ke(ha, fn, frmg, X, €)|X € M)

1
2

— DypGrp (ha, Fy [ (7]), Fy ' (B]), X, e) (x, €)[h — thQ de dac)

1

T P(X € My) /MX (Itv<ay — P(X < 2|X € M) (F-(ke(h, fin,, fmg,v,€))

= Fe(ke(ha, fon s fing:v,€)) = Je(be(hus e fng s v5€))
Dike(ha, Fyy (7]), Fy s (B1), v, )b = ha]) fx (v) dv
and
Fo(ke(D, fmes fng: 0€)) = Felke(h, frnss fing, 0, €))
— fe(ke(h1s fings fings 05 €)) Dike(hu, Fy (1), Fy i (B1), v, €)[h = ha]
= felke(P1, fings Figs 0, €))(Ke(B, fings fings v, €) = ke(Ba, frnss fing, 0, €))
+ fL(k) (ke fnes Fings V5 €) = Ke(B, fns Fing, v, €))7
= felke(ha, fnr s g v, €)) Duke(ha, By (1), By (B1), v, €)[b — ha]
for some k between ke(B, fin, , fmg, 0, €) and ke(hi, fm,, fm,, v, €) it suffices to prove

3
‘kc(h7fm‘r7fmﬁ7v7€) - kC(hlafmT7fm@avve) - thc(So,U,€)[h - hl” < CHb - hl”fzmzb]

for an appropriate C' > 0 and uniformly in ¢ € Bs,v € Mx,e € [eq, €], fn,, fmg, such
that (b, fm,, fms) € H. Analogous calculations for Dy, — and Dfmﬁ yield the sufficient
conditions

|ke(h1, fim, s fmg v €) — kc(hl,F;ﬁX(ﬂ-)?fmwv,e) (4.41)
- DfmT kc(hlv F;|lx(7-|')v fmgy'Ua 6) [fm,- - F;|1X(7")] | (4.42)
< Cllfm, = Fylx (T (4.43)

(uniformly in ¢ € Bs,v € Mx, e € [eq, €] and fi,, such that (b1, fim,, fm,) € #H) and

‘kc(hl, F;‘lx(ﬂ-), Jmg» v, e) — ke(so,v,€e) — Dme kc(s0,v,€) [fmﬁ — F;‘IX(B\)”

< Cllfms — Fie (81) oy (4.44)
uniformly in ¢ € Bs,v € Mx, e € [eq, €] to handle the second and third summand, respecti-
vely.

(4.39) leads to
kC(b7 fmq—? fmgv v, 6) - kc(hlv fmq—v fmgav> 6) - thc(sm v, 6)[b - hl]
1 _ _ _
= o(v) <h1(h 1(ZC(b7fm77fm5)))B = hi(hy 1(20(h17fm77 fmﬁ)))B - BZC(hhfmﬂfmﬁ)B !



4.6.  Proofs

0
<8tzc(fh ts fm,—7 fmg)

(BT el s Fon))) = AT s s fmﬂm))

t=0

:U(lv)<h1(f)_1(zc(b,fm7,fmﬁ))) (B el Fos Fong )P+ 20 Fon )

- Zc(hb fmﬂ fm@)B - B(zc(hla fmr, me))B_l <thC(fh:t’ fmf’ fmﬁ>

t=0

(BT el fos Fin))) = O s fmﬂm))

= a(lv) (67 el Fonr )V = Ba (b e, Fons s Fin)

= Be(ha, fny s Fim) 7 (07 Gelhts Fonr s fn)) = BOOT (e, fngs o))
O(Ilb = mllf., -,)-

because

872 ~
Zc(hvfm-,-a fm[;)B - ZC(O)B — BzC(O) - &Zc(t) . — ot? Zc(fh,ta f;nr?fmﬁ)‘t:t

=0(|lb = hll, .,))

for an appropriate ¢ in (0,1). Apply Lemma to obtain

(07 (20, s Fmg)))? = (07 (ze(0, fonss frns)))”

— Bze(h1, finrs fng) " (b (ze(as fins s Fmg)) = (R (2e(ha, fong s )

= Bhy(hy " (2e(0, fnrs fng))) P~ (B (07 (ze(b, finr s Fms))) — R (b (2e(B, finy s fims)))
— Bze(ha, frngs fng) P~ (W (ze(hn, fones fing)) = (0 e fine s )

+O(|[b — [}

B zb)

= Bzolht, fnrs fng) P (P67 el fons s fns))) = B (BT e, fon, s Fns)))

— by (b3 (ze(ha, fmss fms))) + bRy (ze(Ra, fon, fm5>)>) +O(|Ih = mllf, .,)

as well as

(07 (2e(0, fnrs Fing)) = Ba(hy (2e(0, fnrs Fng))) = Ba (R (2e(ha, fongs fimg)))
+0(hy " (ze(h1, fines fng)))
= hi (07" (ze(0, frnrs fing))) = P (Rt (ze(Pas fongs fins)))

+ 00y ze(has frngs fn))) = 00 (ze(B, finr s fins))

= Iy (hi (2e(0) (07 (ze(B, fonrs fing)) = hi " (2e(ha, s fins)))

+ 0 (07 (2e(0))) (b (e fing s Fng)) = b7 (ze(bs finrs Fimg))) + Ob = I [[2,, .,))
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= (h1(hy ' (2e(0))) = b'(hy " (2e(0)))) (07 (ze (B, fonr s fing)) — i (ze(ha, fn s fins)))
+O(|lh — [}

[2a, zb)

—o(lh = mllZ, ).

It remains to treat the second and the third summand. Recall that it is sufficient to prove
the equations (4.43)) and (4.44]), that is

|ke(ha, fings fings vs€) = ke(ha, By i (T]), fing, v, €)
— Dy, ke(ha, y|X( 7|)s fngs vs€) [ fins _FY\X( 71)]]
< Cllfm, — Fyx (T1)|ix
(uniformly in ¢ € Bs,v € Mx, e € [eq, ] and fi,,, such that (h1, fin,, fms) € H) and
|ke(h1, Fy 5 (71, fing, v, €) = ke(s0,0,€) = Dy, ke(s0,v,€) [fmg — Fyx (B])]]
< Ol fms = Fyx B3y

uniformly in ¢ € Bs,v € Mx,e € [eq,ep] for some appropriate C' > 0. For that purpose,

notice that
el fings fing) = 2e(hns Py (7)), fimy)
= (M (fin, (0))° + e(1 (finy (v))° = P1(fim, (v))%))
— (M (Fy  (710)° + e(h(fins (0))° = I (Fyx (7]0))°)

1
c

o=

=

= 2 ( (Fyy (710))° 4 el (i (0))° — (B (r]0)) £
ey (Fyr b (r0)) (1 = Wy (710) i, (0) = B (7))
£ Olfm, — Fyhe (Pl )

(1= e)zelhn, Fy (71, Frn) = (Fy s (710) (i, (0) = Fiys (710))
A(Fy (7))

Ollfm. = Fyx (T1)[31y)-

Therefore,

kc(hbfmT’fm@aUve) - kc(hlaF;|g((T|)7 me,U,E) - Dfmkac(SO,U,e) [fmr - F}jﬂx(T’)]

= U(lv)<zc(h1>fm-rafmﬁ)3 — ZC(hl’F;ﬁX(ﬂ‘)’me)B
i U o GO R Ll

A(Fy f (7[0)
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- O-(lv) <Bzc(h1’ F;EX(T|)7 fm/s)Bil(ZC(h’lv fm-ra fm;;) - Zc(hh F;‘lx(7'|), fmg))

_ Bzc(hla F;‘lx(T‘)v fmﬂ)B_C(l - e)hl(F}7|1)((T‘v))c(fmr ('l)) - F;ﬁx(ﬂ”)))
AFy L (o))

+ O fm, = Fy i (T1)Rsy)
= Olfom, = Fy (1) )-
Analogously,

kc(hla F;ﬁ)(('ﬂ)a fmﬁa v, 8) - kc(507 v, 6) - DfmT ]{JC(SO, v, 6) [fmg - F;ﬁ)((5|)]

- ff(lv) <z"’(}“’ Fy i (71), fing) = 2e(s0)”

Bze(s0)P el (Fy s (B10))*(funy (v) - FYﬁX(mv)))
APy (Blv))

= (7(11)) <BZC(SO)B—1(ZC(h1,Fyg((7-|.),fm5) _ 20(50))

B Bzc(hla F;|1)((T|)a me)B_Cehl (F}:‘lx(ﬁh}))c(fmg (U) - Fle(,B|U))>
ACFy < (Bv)

+ O(Ilfms = Fyx (B1)IAry)
= O(l|fms = Fyx (B1)I31,).
Hence, (i) is proven.
Proof of (ii): Remember and let ¢ € Bj,. As before, one has
|1DsGarp (e, 50)(x, €)[8 — so] — DsGarp(B, so)(z, €)[5 — so] |
= ||DLGurrp(c, 50)(z, €)[h1 — h1] — DaGrrp(B, s0)(z, €)[h1 — hi]
+ Dy, Gun(e, 50)(@,€) [ fm, — Fyx (7]-)]
— Dy, Gun(B, s0) (@, €) [ fm, — Fy )y (7])]
+ Dy, Gun(e, 50)(2,€) [ fms — Fy [ (6])]
— D0, Grn (B, 50) (@, €) [ fmy — Fyx (1))
< |IDhGarn (e, s0) (@, €) [ — ha] = DhGarn(B, s0)(, €)1 — hu|
+ 11D, Garn (e, 50) (%, €) [ fin, — Fy [y (7]1)]
— Dj,.. Gun(B, s0)(@,€) [ fn, = Fyx (7])]]

+ 11D, G (e: 50) (@, €) [ fmg — Fyx (B1)]
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— Dy, Gup (B, s0)(@, €)[fins — Fy [ (B])]

so that it is again sufficient to prove the condition for each of the summands. To treat the
first summand, let h € H,c € [B1, Ba] and recall the definitions of f; and z.(t) from page

[[47 as well as
|2¢(0) — 25(0)| = O(|c — B|) uniformly in (z,e)

and

DynGurp(c, so)(x,e)[h — hq]

1 0 _ _
= ma( M Fs(kc(fmt’Fyﬁx(ﬂ‘)»Fy|1X(5|‘)7w7e))l{ng}fX(w) dw

— PO alX € ) [ Rl Bl (7). F (Bl 0) fx () dw)

Mx t=0

— P(Xlej\/[)< fs(kc(so,w,e))(.’{wgm} — P(X < 2|X € My))

Diko(s0,w,€)[b — ha] fx(w) dw).

At the beginning of the proof of this lemma, it was shown in (4.39)) that

thc(SOa $,6)[f) - hl] = aatkc(fh,ta F;|lx(7—‘)7 F;‘l)((ﬁ‘)vx’ 6) —o
_ 9 (d(t 2(t)” — g(x)
ot o(x) t=0

Bt 5 (0) P B 2(0) S0 ()
o(x) o

_ BZC(O)Bil( 2(0) — h(hl (2¢(0))) + %ZC(t)‘tzo)
o(x)

(for fu, = Fy‘x( |')7fmg y|X(B| ) in zc(t)), where
Sr2el0)| = g A + el Blo) = Fra Py (rla) |
1

= (5 (P (7)) + e (i (Bla)) — B (Fy (7))
(ch§ ™ (Fy s (1) (0(Fyy (r|2)) — b (Fy (7]))
T ech§ ™ (Fy  (Ble)(0(Fy K (Bl)) — ha By (Bla)

— ey () (0(Fy  (7]2) — ha (B (]2)))-

Hence,
0
sup ze(t) = O(|[h — h1ll[zy,2))
xEMx ,e€leaq,ep] 8t t=0 [ze,%]
and 5 5
sup ze(t)| = 5:z8(1) = O([Ib = P1ll[zq 2] lc = Bl),
TEMx ,e€[eq,ep] 8t t=0 ot t=0 ( [ . )
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so that
DypGup(e,so)(z,e)[h — h1] — DnGup(B, so)(x, e)[h — hi]

= / (I{ng} - P(X < x‘X € MX)) <g0(c,w,e) (Zc(o) - h(hl_l(zc(o))))

Mx
— @(B,w,e) (25(0) = b(h7 (25(0)))) ) dw + o(|c — B)

for some continuously differentiable function ¢ : [By, Ba] x Mx X [eq, €] — R. Due to

p(e;w,e) (h(hyH(2(0))) = b(hy ' (2e(0)))) = @(B,w,e) (ha(hy ' (25(0))) = b(hy ' (25(0))))
= (p(c,w,e) — p(B,w,e))(hi(hy (2(0))) = H(h7} (2(0))))
+ (B, w,e) (h1(hi*(2(0))) — ha(hy ' (28(0))) + b(hy " (28(0))) — b(hy " (2:(0))))
= (B, w,e)(hy(hy " (z5(0))) (A7 ' (2c(0)) — hy ' (25(0)))
= ' (hy ' (25(0) (h ' (2(0)) — hy ' (25(0)))) + ol|c — B])
= O(|[6' = Mll[zy 2] lc = Bl) + o(|e = B)
= o(|e — BJ),
it holds that
IDLG D (e, s0)(x, €)[hy — hi] — DpGarp(B, so)(z, e)[hi — h]l| = op(|e — B).
The second summand can be written as
1D ... Gurn (e, so) (@, e)[Fy x (1) = Fy (7]

~ Dy, Garp(B.so) (@, )y (7]) — Fy (7]

Hp(XéMX) /MX (I{w<y — P(X < |X € My))

(f=(ke(s0,w,.)) Dy, ke(s0,w, .)[F;llx(ﬂ-) - FY—|1X(T\-)]

- Fellns 0, Dy Koo,y (1) = By (1) () s
Thus, it is sufficient to prove
Je(ke(s0,w,€)) Dy,_ke(s0,w, €) [y (7)) = By (7])]
— folkp(s0,w,€) Dy, kn(s0,w, e)[Fy (7)) = Fy (])]
= (Felke(s0,w, ) = fekp(s0,w,€))) Dy, ke(s0,w, ) [Fy [y (7]) = Fy [y (7]1)]
+ fe(kp(s0,w, ) (Dy,,, ke(s0,w, )[Fy [ (7)) = Fy \ (7])]
— Dy, k(s0,w, e)[Fy }y (7]-) = Byl (7])])

157
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= oplle = BI) + Op(n?)

uniformly in (w,e) € Mx X [eq,ep]. By condition [(C4), fy,. (z) — F;‘lx(ﬂx) = 0p(1)

uniformly in x € My, so that for an appropriate ¢ between ¢ and B

(fﬁ(kc(s()? w, 6)) - fE(kB(S()v w, e)))Dfm-r k6(807 w, e)[fmT - F;EX(T’)]

= f (ka0 w,€) 2

ackc(s(),w,e) (¢ — B)op(1)

c=¢

= op(lc — B|).
On the other hand, the remaining term can be rewritten via

Dfm_,_kc(s()awae)[[fmq— - F;|1X(T|)] - DfmTkB(SOa ) )[fmq— - Y|X( |)]

B(e = 1)(fm, (w) = Fy\ (7|w))
o (W)A(Fy (7|w))

(77[}(37 w, 6) - U}(Ca w, 6)),
where

bleaw,e) = (he(Fyly (r|w) + e(he(Fy s (B1w) — he(Fy (rw)) ©~ he( By (7la).

Due to

9 pfe.w,e)

= i(hc(Fy‘&(T!w)) +e(he(Fyx (Blw)) — hC(F;‘g(mw))))5“@(17;&(7@))

—65; log (he(Fyx (Tw) + e(he(Fy  (Blw)) = he(Fy )y (T]w))) )b (e,w, )

B_o

T (B - 1>hc<F;|§<T|x>>(hc<F;|£<<le>> +e(he(Byx (Bw)) = hel(Fy (7)) )
<1og (ha (Fy e (7 w)) he(Fy e (7 w)) + e<10g (P (Fy i (B1w))) he( By (Blw))

~log (h1<F;|1X<Trw>>)m(F;&(v\w)))) + (e, w, ) log (h(Fy 'y (Blw))),
the derivative of 1) with respect to ¢ is uniformly bounded in (w,e) € Mx X [eq, €p]. Hence,
Dy,,, ke(s0,w,€)[fm, = Fy i (7])] = Dy, kp(s0,w,€)[fm, = Fyx (7])]
= oy(|c — B)
uniformly in (w,e) € Mx X [eq, €p]. The same reasoning can be applied for
Dy,,,Gup(c, s0)(z,€) [fmy — Fﬁlx(ﬂ)},
which completes the proof of Lemma
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Lemma 4.6.6 It holds that

1
sup ||Grrvp(c,s) — Gup(c,s) — Guvp(B, so)||2 = op(n™2),
[lc=B||<0n,||s—s0||<n

that is, [(C5), is valid.

Proof: In a moment, it will be shown that the process
Gn(e,s,x,e) = Goupl(e, s)(x,e) — Gupl(e, s)(x, e),

as a process in ¢ € [By, Ba],s € H,xz € Mx,e € |eq, €] is Donsker. Then, Corollary 2.3.12
of [Van der Vaart and Wellner| (1996)) yields

sup Vn|Gr(c,s,z,€) — Gn(G, 5, x,e)| = op(1).
c,éE[Bl,Bg],s,ge'?:[,zeMX,eE[ea,eb}
HS_EHH<5'IL7‘C_E|<6H

Due to Gyp(B, so)(x,e) =0 for all x € Mx, e € [eq, €p] the assertion then follows from the
compactness of Mx and [eq, €p).

First, define the function class
F = {(X,E) — I{XEMX}I{ESkc(h,fmT7fm67X,6)} s E ?:[,C € [Bl;BQ},e € [ea,eb]}.

Due to the definition of H in 1} and the compactness of [By, Ba|, Mx, [eq,€p], there

exists a compact set IC such that
ko(s,z,e) € K, forallseH,ze My,e€ [eq, ey

Consider s,5 € H,c,¢ € [B1, Ba],e, € € [eq,ep]. For some s*, ¢* and e* between s and §, ¢

and ¢ and e and €, respectively, as well as some C' > 0 the L?-distance can be bounded by

(Mg enx Ig <he(sme)y — Lpemx g <ne(s, o2
2.1
= BIixemyy Ie<hosxe)) — leshesxey) ]

1

- (/MX | Fe(ke(s, w, €)) = Fe(ka(5, w, €))] fx (w) dU)> 2

< sup |f.(e)] ( /MX Fx(w) dw)é sup. [ke(s, 0, €) — ke(3w,8)|

eeX weMx

<sw £ [ Ifxldn)” sw [Dukls )5 -
eek Mx

weM x

+ Dfmfkc(3*7w7 e*)[fmr - fmr] + Dfmﬁ kC(S*vwv e*)[fmﬁ - fm/a]

N

+ Deke(s™,w,e%)[é — e]| + Dcker (8%, w, e*)[¢ — ]

Similar to the the proof of (4.39)), one can show with
S = (0% S fny):
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fh7t = b* +t(6 - b)v

o=

Z(t) = (fro(fm, (@) + e(fi o (fr, () = f 4 (fn, (2))))
that
Dpke(s*,w, e)[h — b]

MMMﬂww“%@ﬂ<wm@

2l Lo@—WWW%®W
() (b1 (ze(0)) ) (w

and that

sup |th0(8*a w, 6)[6 - h” < CHG - b”[za,zb]
c€[B1,B2],wEMx ,e€leq,ep)

for an appropriate constant C' > 0 and all s,5 € H and s* between s and 5. A similar
reasoning for Dy, ke« (s, w, ) frm, — frnsls ooy Dok (8%, w, €*)[¢ — ] leads to

sup ‘kc<87 w, 6) - kﬁ(gv w, é)}
weMx

< C (116 = Blliza ) + 11 Fims = Fonc It + [1Foms = Snallar + 16 = | + e =]} (4.45)

for some appropriate constant C' > 0, which is independent of c*,s* e*. This will be
used in the following to define brackets for F. Let £, > 0 and consider &-brackets for
c € [By, Ba),e € [eq, ] and b, fin,, fm, such that s € #. Construct n-brackets for F as

follows. Let )

_ 77
£=¢0n) = 10C sup f=(e)? [|fx(w)|dw

with C from |i For each combination of the £-brackets take representatives b, fon., fim 5

¢, € within these brackets and define

o - 2
I(X,e)=I{X € Mx}f{5 < k(b fanr s fing, X, €) = QSupfg nf\fx !dW}
and
o - 2
w(X,e)=1{X € MX}I{e < ke(h, fmrs fmg, X, €) + 2sup fs(e)an | fx (w)| dw }
eclC

Then, ||u —I||2 < 7 by the same reasoning as above and equation ensures that each
combination of the £(n)-brackets for b, f,, fm, such that s € H and c € [By, Ba), e € [eq, €]
is covered by its corresponding |1, u]- bracket

Since # C O " ([2a5 20]) % CW’”T (Mx) x C (MX) one has for all n > 0

M](n,f,Lz(P)) S-/\/’[](g(n)vc%};([zmzb])’ H-H[za,zb])-/v’[](5(77)7C’YfmT (MX) H HMX)

N (&), Oy " (M), 1132 )N (€); [eas el 1)

N (&(n), [B1, Bal, |.]).
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According to Theorem 2.7.1 of Van der Vaart and Wellner| (1996), one has

8 (M) (6 C2, (B 2 ) ) < o,

dx

g (N (6 G300 i) ) < G 7007

dx
’\/f7nﬁ

log (/\/’[](f,C’Rfmﬁ (Mx), HHMX)) < Cfmﬂﬁ Vfmg
for some appropriate constants Cy,, Cy,, ,C fmg > 0. Note that
Y>1 Vf,, >dx and qp, > dx

by definition of H in 1} Hence, for some C > 0

/0\/10g(f\fu(?7,f7L2(P)))dn

< [ o8 (M) €000 3, s )

Ny (€0, € (M), [ llaex ) )

Vimg

Nij (€. Cry” (M), L))

1 dx

dx
1\ 77 1\ 77 1 1
S () () s () () )
n n n n

so that the function class F is Donsker. Of course, the function class {X — I{x<, 17 €

Mx} is Donsker and by the same reasoning as before it can be shown that the class

]E': {(X, 8) — I{XSI}I{XGMX}I{egkc(s,X,e)} NS 7:[76 S [Bl,BQ],e S [ea,eb],x S Mx}

is Donsker as well.
Finally,

Gnumpl(e s)(x,e) — Gupl(e, s)(z,e)

P(X <z,e <ke(s,X,e)|X € Mx) — P(X < z|X € Mx)P(c < ke(s, X,e)| X € M)

—P(X <w,e<kys,X,e)]X € Mx)+ P(X <z|X € Mx)P(e < ko(s,X,e)| X € Mx)

P(X <z,e<kes,X,e)|X € My)— P(X <z,e <ke(s,X,e)| X € My)
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— P(e < ke(s, X,e)| X € Mx)(P(X < x|X € Myx) — P(X < z|X € My))
— P(X < z|X € Mx)(P(e < ke(s, X, e)| X € Mx) — P(e < ke(s, X, e)| X € Mx))

%Z?:l I{XiSI}I{XiEMX}I{EiSkc(hvfmT1fm[31Xive)}
= —n — P(X <uz,e <k.s,X,e)|X € Mx)
n Zi:l I{XiEMX}

— P(e < ko(s, X, €)|X € My)(P(X < z|X € My) — P(X < 2|X € My))

— P(X < z|X € Mx)(P(e < ke(s, X, e)| X € Mx) — P(e < ke(s, X, e)| X € Mx)) +0p(\}ﬁ>

1 1 1 —
= m - — > Iixi<oylpxsemcy Lie,<ko(®, fon  fm. Xsse
(1Zi—1[{XiEMX} P(XEMX)>”Z1 s M SR o f e o frmg X))

n %

1 1 &
+ P(X € My) (nZI{Xi<Z}I{Xi€Mx}I{€i<kc(h»fmT,fmﬁ,Xi,e)}

1=1
- POX € My, X S22 < Kol o i X))
— P(e < ke(s, X, e)|X € Mx)(P(X < z|X € Myx) — P(X < z|X € My))

— P(X < z|X € Mx)(P(e < ke(s, X, e)| X € Mx) — P(e < ke(s, X, €)| X € Mx)) +0p(\/173>

P(X <z, X € Mx,e <ks,X,e))

T nP(X € MX)2 Z(I{XiEMX} *P(X S Mx))
1

1 1<
— - Iix. <o Isx, I, v
+ P(X c MX) <n ; {X’lS'L} {XzeMX} {Ezgkc(bmfmqr;fmﬁaxme)}

CP(X € My, X <. < k(b frn, fony X, e)>>
= P(e < (s, X, €)| X € My)(P(X < 2| X € My) — P(X < 2|X € My))

. 1
— P(X <z|X € Mx)(P(e < ke(s,X,e)|X € Mx) — P(e < ke(s, X,e)| X € Mx)) +0p(\/>>
n
P(X <z,e <kes, X,e)|X € Mx) —2P(X <z|X € Mx)P(e < k.(s,X,e)|X € Mx)
P(X € My)

(5 X ttxean) - POx € b))

1

K2

n

1 1
P(X € My)n ; (I{XiS:c}I{Xq,eMx}I{sq,gkc(h,fm,,fm,g Xie)}

+

7P(X S MXaX S x,e § kC(b?fm7-7fm57X7e))

— Iix,<oylixiemxy + P(X € Mx, X <) = Lixiemxc} e, <ke(v,fr fng o Xise)}

# PO € My < hall Fofopn Ko6))) 00 =)
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so that because of Corollary 2.3.1 of Van der Vaart and Wellner| (1996)),

sup \/E\Gn(c, s,x,e) — Gn(C, 8,1 e)| = op(1).
¢,6€|B1,Ba) 5,56 H,x€ M e€[eq ep)
[|s—5||1 <On,|c—E|<bn

U
Putting things together:
Similar to [Linton et al.| (2008), define
L,(z,e) = Goyup (B, so)(x,e) — Gyp(B, so)(z, €)
as well as
L (c)(z,e) = Lp(x,e) + T1(B, sp)(x,e)(c — B) + T'y(B, s0)(z, €)[§ — so.
In the proof of Lemma [4.6.6] it was shown that
1
Ialla = [GusroB.s0lls = O = ). (1.46)

Then, one has for all sequences §, \, 0
|Gnarp(c, 8) = Ln(c)ll2

= HGnMD(C, §) — GnMD(Ba 50) + GMD(B, So) — Fl(B, 50)(6 — B) — FQ(B,So)[§ — 50]”2

(C1)

IN

HGnMD(Cv §) - GMD(Ca é) - GNMD(Bv 80)||2

+ [|Gup(c, 8) = T1(B, s0)(c — B) = I'2(B, 50)[8 — s0]ll2

HGMD<C7 §) — Fl(B,S())(C — B) — FQ(B, So)[§ — 30]”2 + Op<\/1?l>
<|[|Gump(e,8) = Gup(c, s0) — Ta(B, s0)[8 — solll2 + [|Gump(c, s0) — T'1(B, s0)(c — B)|l2
1
””(ﬁ)
(C3)|

< [|Gump(e,8) — Gup(e, s0) — I'a(e, 50)[8 — solll2 + ||Gup(c, so) — T'1(B, s0)(c — B2

+oulle = B) 4o )

|Gmp(e, 50) — Gup(B,s0) — T'1(B, s0)(c — B)l[2 + op(|lc — B) + 0y <\/15>
€2, (e B)) +op<\}ﬁ> (4.47)

uniformly in ¢ € Bj,. Denote the minimizer of ¢ — ||Ln(c)||2 by B. Then, B can be
calculated explicitly by solving

0
{lEn(e)] B
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0 .
= 5. |1n +T1(B, 50)(c = B) +Ta(B, 50)[5 = so][3

0

= ac<HLnH§ +T1(B, s0)l13(c = B)? + ||T2(B, 50)[8 — so]l[3

+ Q/MX /{emeb} I'i (B, s0)(z, e)(Ln(x,e) + Ta(B, so)(z, e)[s — so]) de dx(c — B)

+2 /Mx /[ea,e,,} Ly (z,e)la(B, s0)(, e)[5 — so] de dx>
= 2||T1(B, s0)||3(c — B)

+ 2/MX /[emeb} I'1(B, s0)(x,e)(Ly(x,e) + To(B, so)(z, e)[s — so]) de dx
0

Therefore, one has

5 _p_ fo f[ea’eb] I'1(B, s0)(z,e)(Ln(x,e) + Ta(B, so)(z,e)[§ — so]) de dx

IT1(B, s0)ll3
1
(COY op<\/ﬁ>. (4.48)

Proof of (i) in Theorem One has

B . ({-26)+ (4. 46) 1
1LaB)ll2 < 1£a(B)ll2 < 1Lz e)ll2 + IT2(B, 50)[5 — so] |, E22LED 0()

NG
.
1Gurrp(B.8)ll2 < [1Garn (B 8)ll2 < [1£a(B)]l2 +<;ﬁ> _ o(;ﬁ)

and for all ¢ € Bs, and by a Taylor expansion with some B* between ¢ and B

O 117 (o] P
1En (1B = 1LaB)E + 5 a3 (c—B)+ 25 tlep o _ gy
c=B

— ||£a(B)I[3 + [IT1(B, 50)|3(c — B)>. (4.49)
These assertions in turn can be used to obtain

| Grnn (B, 9113

< |Gurmp(B,3)|3
(1£a(B)lls + 0p(1B — BI) + 0p(n%))?

= 1La(B)I3 + 1£a(B)ll20p(n~2) + 0(n )
La(B)I = [IT1(B. s0)l[3(B — B)? + op(n")
CZ) (1Gurin (B, 9)ll2 + 0p(1B — BJ) + 0p(n2))* = [[T1(B, 50)|[3(B — B)* + 0,(n~")
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" (11Guun(B.9)ll2 + 0p(|1B — BI) + 0p(n~2))* ~ [I'4(B, 50) (B — B)? + 0p(n)
= |Grin(B,8)|[3 = [I01(B, 50)|[3(B — B)* + 0,(n"2| B — B) + 0,(|B — B?)
+op(n71).
Thus,

N _ 1 A _ N
IT1(B, 50)l13(B — B)? = 0p(n™2|B — B|) + 0,(|1B — BI*) + 0p(n")
and consequently B — B = op(n_%). Finally, [(C6)| yields
Vn(B - B)
= Vn(B = B) + 0y(1)

\ffMX Jicw ey T1(Bs 50) (@, €) (L (@, €) + 2B, s0) (x, €)[8 — so]) de d

- TVCRDIE L o(1)
— ffMX f[ea,eb B 30)( )(GnMD(:C’e)+F2(B7SO)(‘T76)[§_30])d€dx Y (1)
i T2(B, %) 2 ,
2
L %4
B0 ||r1<B,50>n3)' (4.50)

Proof of in Theorem The reasoning is similar to before, although due to
1La(B)ll2 < |I£n(B)ll2 < ||Ln(z, €)l|2 + [|T2(B, s0)[8 = so]|l2 = Op(an)

and

|Gnain(B,3)ll2 < [|Garin(B, 8)ll2 < ||La(B)|l2 + Op( ) = Op(an)

the orders of the negligible terms change:
|Gnrip (B, 8)|13
< |Grmn (B, 3)|13
= (IILa(B)||2 + 0p(|B — B) + 0p(n"2))
= |La(B)B + [1£a(B)ll20p(n~ %) + 0,(n )
= |L.(B)I — |ITL(B, 50)|3(B — B)? + 0, (ann"?)

1

= (1Gnan(B,9)ls + 0p(1B = B) + 0,(n72))? = |I1(B, 50)|3(B — B)* + 0 (ann™2)
= |Gunp (B, 8)[[5 = [IT1(B, 50)|3(B — B)? + 0p(an| B — B|) + 0,(|1B — BJ?)
—i—op(ann_%).
Therefore, B — B = 0,(a,) and
B-B=B-B+B-B
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4.6.4 Proof of Lemma |4.2.3

First, validity of assumptions[(C4)| and [[C67)|is proven in the following two Lemmas. Note
that |(C6)| follows from |(C6’)| by the Central Limit Theorem.

- . 3
Lemma 4.6.7 One has § € H with probability converging to one, thfth[Qza ] = op(nfé)
_ _1
and |k (71) = Bk (rP)llasg, 1B (819 — Fi (Bl = opln™4).

Proof: Recall the definition of # C H (remember v, = 7y, = Vimg = 2):

H = {s €H:heCh ([2a:2]), fm, € c}%fmT (Mx), fms € C}%fmﬁ (MX)}.

The convergence rates directly follow from Lemma [4.2.15| and Theorem [4.2.2
To prove § € H with probability converging to one it suffices to show uniform conver-

gence of the functions hy, (B]-) and their derivatives up to order two to

Y|X( 7), F Y|X
h1, Fy, X(T\ ), F: Y] X(ﬁ |-) and the corresponding derivatives, respectively. Without loss of

7 m
f ? (MX) only deri-

vatives with respect to x1 are considered since other derivatives can be treated analogously.
For hy this follows from Corollary 4.2.14} since

generality, when proving F. |X(T\ ) € C’WmT (Mx) and FY\X(BH

and

- 1y
—hi(y) = — ~ = ~
, 1(y)

As will be seen in the following, the assertion for FY‘ X( 7|-) and Fy| X(ﬂ |-) follows from the

corresponding assertion for Fy| x(y|-) and hence can be deduced from Corollary |4.2.14] and
Lemma [£.2.15] as well. One has

r = By (Bl (rlo)la),

so that
9 1 g 0 A oAy
0= a—xlme(Fy‘X(ﬂxﬂx) F, (Fy|X(T\$)|x) Y‘X(T|l‘) + Fx(Fy|X(T‘aj)|x)7
where F,, and F, denote the derivative of (y,z) — Fy|X(y|m) with respect to y and =z,

respectively. Note that dx = 1 was assumed. Therefore,

’1j>

0 (fﬂx( l2) )

oz, YIX(T‘x) = _F( ;|X( o))

Corollary and Lemma [4.2.15| lead to
0 ~_4 J 4
—F, — —F, = 0,(1).
ISG%EX Y Y|x(7’x) 971 Y|x(7-‘a7) op(1)

The second derivative can be written as

o?
o 2FY|X(T’x)
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By Py () ) o Fe (Fy [y (7)) — Fa(Fyy (7o) |) 5 Fy (B () )

Y|X
Fy(Ey x (Tl2)|x)?

Similar to before, let Fy,, F;, and F,, denote the partial derivatives of (y,x) — FY‘X(y|x)
of order two. Then, it holds that

0 ~ Aa A A 0

aTJany(Fny(Tlx)lx)=ny(FyﬁX(Tlfﬂ)\Jf)+Fyy(Fy\1X(T\$)!w)87 yix (T]2)
as well as

9 1 . A p—1 9

. A (B (r]2)|z) = me(Fy|X(7-‘$)|x)+F$y(FY|X(T|x)|x)87 T (Tl2),
so that again

2 62
mseljl\/I[)X axle‘X(ﬂx) Oz ng\X(T|$) :Op(l)

is implied by Corollary [£:2.14] O

Lemma 4.6.8 For some ai > 0, one has

\/ﬁ/ / T'1(B, 50)(2, ) (Grarn (B, 50) (@, €) + Ta(B, 50) (@, €)[5 — s0]) de da
Mx Jlea,ep

gN(0,0‘i).

Proof: The concept of the proof is quite simple. First, the left hand side is rewritten such
that

\/ﬁ/ / Iy (B, s0)(z,€)(Gnrp(B, so)(x,€) + Ta(B, s0)(z, €)[5 — s0]) de dx
Mx Jlea,ep

= = (X)) = BV, X)) + oy(1) (451)
=1

for some appropriate function v : R9x*1 — R. Afterwards, the usual Central Limit Theo-
rem can be applied to obtain the desired convergence.
For this purpose, note that in equation (4.40|) it was shown that

Ly(B, so0)(@, €)[8 — so] = DsGup(B, s0)(w, €)[$ — so]
= DiGarp(B, s0)(x, ) [h — hi]
+ Dy, Gup (B, so) (@, e)[Fy ) (7)) = Fyx (7])]
+ Dy, Gup (B, so)(z, ) [Fy [ (B]") = Fy x (B])].

Hence, there are actually four terms that have to be fitted to Expression (4.51]).

Rewriting Guvmp (B, so): For ¢ = B and s = sg = (hy, Y|X(T\ ), Y‘X(ﬂ\ )) one has

9(x) +o(2)F7H(7) + eo(x)(FH(B) — F7H(1)) — g(=)

kp(so,x,e) = (@)
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= F_ (1) + e(FH(B) — FZ (7)),
which is independent of x. Using the expression derived in the proof of Lemma this

leads to

Gnmp (B, so)(z,e)

_ P(X <z,e <kgp(so, X, )| X € Mx) —2P(X < z|X € Mx)P(e < kp(so, X, €)| X € Mx)
- P(X € My)

(

P(X € Mx)n

> (pxiean ~ P(X € MX»)

S\H

n

Z (I{X <y lix;emxy e, <kp(s0, X )}
1=1

+

—P(X € Mx,X <x,e <kp(so,X,e)) — Itx,<a}l{x,eMx}

+P(X €EMx, X < JE) — I{XiEMx}I{EiSkB(SmXi,e)} +P(X € Mx,e < kB(S(),X, 6)))

1
+o( 75)
P(X <z|X € Mx)P(e < F7Y 1) +e(FY(B) — F7H (1) 1 <
- P(X € M) E Z (Tixienyy = PIX € Mx))
1 n
TP ey P(X € Mx)n & (I{XiSI}I{XiGMX}I{eiSFJI<T>+e<F;1<ﬁ>—F;1<r>>}

—P(X € Mx,X <z,e <F ' (1) +e(F,'(B) — F- (7)) — Iix, <oy {xie0x)

+P(XeMx,X<z)-— I{Xz‘GMX}I{a,igFgl(7—)+e(F5’1(5)—F€’1(7))}

+ P(X € Mx,e < F7Y 1) +e(F-HB) — Fg_l(T)))) + 0, (\/177>,

that is,
\/E/MX /ea,eb] ['y(B, s0) (2, )Gy (B, s0)(x, €) de da
- \/15 gwlm, X;) = Bl (Y;, X)) + 0p(1)

for

(Y, X)

- P(X < x|X € Mx)P(e < F=1(7) + e(F-1(8) — F- (7))
= fo [, (oremmB e P(X € My)

1
+ = I'1(B,so)(z, e
P(X € Mx) /MX /[ea,ez,] (B, 20)(z €)

(I{Xgm}I{XEMX}I{ hRC)0CO) (1) 4R (B) - P (7)) Iix<oylixemyy

~overn sy a0 SFE1<T)+e<F51<ﬁ>—FEI(T>)}> ) ded
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Rewriting Dy, Gup (B, so)[h — hy]: Again, as was shown in the proof of Lemma it
holds that

DhGMD(B, 80)(%, 6) [i‘L — hl]

— P(XleM)( " fe(kB(so,w,e)) (Ifp<sy — P(X < 2] X € Mx))

Dikg(s0,w, )[h — halfx (w) dw),
where (for f,,, = F;‘IX(T| )s fmg = Y|x(6’ ) in z.(t))

Bzp(0)P~1 (25(0) — h(hi* (25(0)) + & 25(1)],_,)
o (w)

thB(SQ,’U), G)VL — hl] =

25(0) = (g(w) + o (w)F (1) + eolw) (F'(8) — F (7)) 7,

0

5780 = Bla(w) + o (w)F7(7) + eo(w JETN(B) ~ F () ®

(Bha-1 (B () By (7)) = b (Fy ()
+e(Bhp-1(Fy [y (B1w)) (h(Fy [ (Blw)) — hi(Fy [ (Blw)))

~ Bhy1 By (rfu)) (R () = i (B (7)) ).
(4.53)

Recall from the proof of Theorem [4.2.2] that (see (4.36))

() = (y) =exp<—/:1d“> ‘exp< ) )
:hl(y)/:<;u) >d“+0 <\1F)

- % zn: —hi(y)mi(y) + op <\}ﬁ>

i=1
where

. _ vy -1 ) ) 8U(Xi)Dp,oc(u7Xi)
w0 = [ 5 (v Dot ) + HEIEZD N 1

,( 3 )
e dvsn ~ lvien)

vy o1 ‘ X Ov(X;) Dy 2 (u, X;) U
+ | s (v0x0Dgofu ) AR )

and E[m (y)] = 0 uniformly in [z, 25]. Therefore,

Dykp(s0,w, e)[h — hi]

. B-1 1
= O S (n(Omhy (0 + Blo(w) + o(w)F= (7

no(w) P
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— co(w)(F(8) ~ B (7)) 7 (Bl (Fy i (rlw) s (Fy iy (7))

+e(Bhp(Fy x (Blw)ni(Fy x (Blw)) — BhB<F;§(<T|w>>m<F;ﬁx<rrw>>)))

(3

for an appropriate function v, which is centred and uniformly bounded in (Y, X,w,e) €
Rix+1 Mx X [eq,€p]. Thus,

Jn / / T (B, 50) (@, ) DyGarn(B, 50) (z, €)[ — ha] de da
Mx [emeb]

1 n
" AP e & Jie o oy TaB 505 .01

(I{ng} —P(X <z|X € MX))lﬁg(Yi,Xi,w,e)fX(w) dw de dz + 0,(1)

= =2 (¥ X + oy()
=1

for

1
06X = BN iy oy 1001020

(I{wgz} —P(X<z|X e MX))J)Q(Y},XZ-,w,e)fX(w) dw de dz.

D¢, Gup(B, So)[ﬁ\}‘lx(ﬂ') - FQTX(T\')] and D¢, Gwmp(B, So)[f“;ﬁx(ﬁ\') - F;{TX(BH]:
In the proof of Lemma [4.6.6] it was shown that

Dy, ks (so.z, )y () — Fyl (7])]

B(1 — o) (Fyy (r]0) (B (rl) — Fyly (7))
o (@A(Fy (7))

and

~ Behp(Fy [ (8l0) (Fy [y (Blz) = Fyj (Bl))
(@) A(Fy [ (B]) '

Referring to equation (4.67) in the proof of Lemma (4.2.15)) below, one has
Byl (o) - k(o)

1 1 Z K, (z — X;) <1Chy (F;ﬁx(dx) -Y)

T A By (o) fx (o) n &

SR ()

Dy kg (0. @, ) [Fy 5 (Bl) = Fy (8)] =
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for « € {r,8}. Note that the order of the remaining term, that is obtained in the proof
there, is actually Op(F;|1)((L|$) - F;ﬂx(”w))’ but this order can be extended to

o _ _1
Op((Fy () = Fy s (t]2))?) = oy(n)
similarly to the proof of Lemma by using the Lagrange form of the remainder.

Due to Lemma one has (compare ([2.48))

E [Khz (¢ — X1) (/chy(F;ﬁX(qx) v - Wﬂ _ 0p<1>

uniformly in z € Mx and ¢ € {7, 8}. So far, a representation

\/ﬁ/ / T (B, 50)(2 ) (Grarn (B, 50) (@, €) + Ta(B, 50) (@, €)[ — s0]) de da
Mx Jlea,ep

Z Y1 (Vi X3) + 12(Yi, Xo) + U3, (Yi, X3) + tan(V:, X5)

3\

= E[1 (Y, X) = ¢2(Y, X) = 30 (Y, X) = s (Y, X)]) + 0p(1),

could be found, where

B(1 - e)hB(F;‘lx(T\x))
Bl K= [ g D) e :

By fx (r|2) fyrix (Fy x (7)) fx (@)

FoL (t)z , X
K, (2 — X;) (/Chy(Fglx(T\x) -Y) - " Yf);((a:') ) )> de dx
and

BehB( y|X(ﬁ|$))
n(Ys, Xi) (B, s0)(z,e
w4 /MX /[Ea,eb] 0 ) (CL‘))\( y‘X(mx))fﬂX( Y|X (5!$)|$)fx( )

p(Fy (Ble). )

dedx
fx (@)

depend on n. To fit this expression to equation (4.51)) it suffices to replace 13, and 14 ,, with

some functions 3 and 14 (independent of n and with finite second moments), respectively,

such that

K o~ ) (K (B (rle) Y0 -

El(¢3(Y. X) = ¢3(Y, X))’ = 0(1) and  B[(¢un(Y, X) = ¢u(Y, X))?] = o(1),
since it was already shown that E[y1(Y, X)?], E[¢2(Y, X)?] < co. For this purpose, define

B(1 — e)hp(Fy/x (1))

U ) N (rlo) (el ()
e Behp(Fy |y (B|2))
T e @A By (Bl0) fyyx (Fy (Bl ) fx ()
p(Fyy (7]X), X)
P3(Y, X) = I{XGMX}< {Y<Fy (1)} © Yl;(X( X) )
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/[ }Fl(B,SO)(X, e)Y- (X, e)de,

p(Fy x (B1X), X)
¢4(Y7X):I{X6Mx}<{Y< Yix (B0} Y‘;(X( X) )

/[ }Fl(B,S())(X, 6)1/}5(X, 6) de.
Then,
E[(wii,n()/a X) - ¢3(Y7 X>)2]

_E (/ / Ty (B, 50) (@, )0 (2, €Ki, (X — )
Mx Jlea,ep)

P(Fy o (7la), )
(@) > dedx

</chy (Fyix(tlz) =Y) -

PPy (7]X), X) ?
_ I{XGMx}( (v< Y\X(T|X)} Y?X(X) > /[6(“617} ' (B, s0)(X,e)v (X, e) de) ]

// </ <Ich1/ Fyx(tlz) — 2) - p(ngi(Q;C)’x))Khx (v — )

p(Fyy (r]0),v)
(B (z,e)dedr — Iy, _
/[] 1B so)( ) €) de da {GMX}( (<Pl (o) Fx () )

2
/ ' (B, so)(v,e)t-(v,e) de) fy,x(z,v)dzdv
[eases]

:// (/I{v hweMx}<’Ch (Fyx (7lo = hait) = 2)

P(FL (7l — hai), v — he)
- ;X<U — hyx) )K(x) /[1 PE o= b eirlo = b c)deds

I p(Fy x (7]v),v)

2
/ ' (B, s0)(v, €)Y, (v, €) de) fyx(z,v)dzdv.
[eaveb]

Since Mx is an interval, the boundary of Mx has Lebesgue-measure equal to zero. Note

that K, ( Y‘X(T|’U hyx) — 2) — I, <Fy e (rlo)} for Lebesgue-all z € R, v, 2 € R9X | so that
due to the boundedness of Mx and the cont1nu1ty of ¢, I'y and Fy, X( 7|-), the dominated

convergence theorem leads to

E[(¢3.(Y, X) — 43(Y, X))?] =3 0.
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The same reasoning can be applied for 14 . In total, this leads to

\/ﬁ/ / T'1 (B, 50)(2 ) (Grarn (B, 50) (@, €) + Ta(B, 50) (@, €)[ — s0]) de da
Mx Jlea,ep

n

7= D (W X)) — BV X)) + 0,(1)
=1

for
(Y, X) = 1(Y, X) + 92V, X) + 93(Y, X) + u(Y, X).

The Central Limit Theorem implies

v /M / T(8,50)020) (Cosa (B, 50 ) +Ta(B, s )3 —s) de B A0, 0%)
x Jleaes

for 04 = Var(y(Y, X)). O

To prove Lemma it remains to prove

mwa%m—mmzq(Jéh)

In the following, the complexity of the dominating term in ||T'2(B,s0)[$ — sol||2 will be
reduced stepwise. First, apply (4.40]) to obtain

[T2(B, s0)[8 — sol||2
< [[DnGuip (e, so)lhn = ml||y + || Dy, Gun (B, s0) [Fy iy (7]) = Fy s (71)] ]
—|—HDfmﬁGMD(Ba30)[}%;&)((&‘) Y|X B1)]11,

= HDfmTGMD(B’SO)[Fﬁlx(ﬂ') Y|X ]HQ

11D, Gup B0 (1)~ F ]+ 00 7 )

where the last equation follows from (4.52)), (4.53) and Lemma [4.6.7} Both of the terms
HDfmTGMD(B’ 30)[F;\1X(T") Y\X (- ”|2

and
-1
HDmeGMD(BvSU)[FY|X(5") Y|X Bl
can be treated similarly to each other, so that only the first term is considered in the

following. Recall
Dy, kp(so. 2, €) [y (7)) = By (7])]

B(1 — )h(Fy (7)) (B (rla) — By (7o)
(@M Fy x (7]2))

and
Dy, Gup (B, so) (@, e) [Fy (1) = Fyl (7])]
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1

= 7( u fa(kB(Smw,e))(I{wgz} —P(X <zlX € M))

P(X € M)

Dy, kp(so,w,e) [Fﬁlx(ﬂ') -

Fyle ()] fx (w) duw)

from the proof of Lemma[4.6.4] Consequently, there exists some constant C' > 0 such that

||Df,.. Grrp(B, s0) [Fﬁlx(ﬂ')

that is, it suffices to prove

o 5

A (rle) = Byl (r]2))* dz = op<

1

)

nhix

Y|X (7] ]H2<C|| Y\X( 7|) = F

In equation (4.67) in the proof of Lemma 4.2.15 it will be shown that

Fyh(rle) = Py (rla) = -

@-21)

i [ foo

n

p(Fyx (7l), @)

e )lle,

7 (rf)|) 1 >3 (fxl( K, (Fy x (7]2) = ¥3)

fY|X(Fy|X

Ix(@)? )Khm(“in”op(\/lﬁ)‘

Even though under different assumptions, it was proven in Lemma that (compare

Y\X (t|x) — F;|1X(T]a:))2dxu(d7') = (’)p<h;dTX)

for an appropriate weight function v and some measure p on (0,1). When choosing v(z) =

Itzenryy and g = 67 for the Dirac measure d., this is exactly the assertion that needs to be

proven. Indeed, one can proceed exactly in the same way as there, since the expansion of

F;I1X(7'|x) - F;ﬁ)((7'|:z) from

4.67

will be only sketched here. Define

k(x) =

Then, it holds that

corresponds to that of Lemma

1

Fo e (Fy (o)) Fxc (@)

/MX (Bl (rla) = Fk (o) da

1 S e (el ) — v
SQ/MX <lex(Fy1x(T|w)\x)“;(fx(x)Khy(Fle( @) = Yi)

o 0) 1)

1

p(Fyx (7]), 2)

2.8.1

Hence, the proof

ZHQZ /M (Khy Fye(rle) = ¥) = == )ZK}LZ(x—Xi)?dx
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(1, (B rlo) - ¥3) - p(FY_;f( ((;f )’x))Khx (X~ a)de -+, 2).

For some sufficiently large constant C' > 0 the expectation of the first term can be bounded
by

p(Fy (7l

[n2 Z/M (ichy Fyy (rla) = Vi) — o) )’x)>2Khz(a; —Xi)de]

1 —X;\?
< (’;E[/dK(x 1> dx}
nhdx pdx R

c 2
= e K(z)®dx

1
N O<nhgx>.

Due to Lemma the expectation of the second term is of order 0( ) while it can be
shown via the same calculations as were done to obtain (2.49)) that the variance is of order
O(n~2h;?x). The last assertion of Remark is a direct consequence of part |(ii)| of
Theorem [4.2.4

4.6.5 Proof of Theorem |4.2.5

Let K C R be compact. Recall the definition of B from equation (4.3)

W
Jy y="9o
First, a Taylor expansion together with Theorem [4.2.§] (see the proof in Section below)
and Corollary leads to

. IR
B=——)\
Ay ) y=io
0 : 0% ¢
- _— 2\ — —
50| .~ 5,200 _ o~ )
— D5 = Zaw)| o w0) +opllio — ol
- ay y ¥=10 ayQ y y= yO yO P yD yO
0 : 1
-3 + O, ———
dy ®) Y=%0 p<\/nhy)

for some y* between 7y and yo. Note that since A is two times continuously differentiable
and Jo — yo = 0p(1) is implied by Theorem |4.2.8} it holds that By 2)\( )’ is bounded in
,yf *

probability. Hence, the error due to the estimation of yy will be asymptotically negligible

. Equations (4.65)) and

and it suffices to consider the asymptotic behaviour of %A(yﬂ

(4.66)) below imply

0
\/ hidsup v(z)
uekl

. 0
%py(uv .fL') - aiypy(ua ZL‘)

Y=Yo

:op< 12%@) (),

175



4. Nonparametric Estimation of the Transformation Function in a Heteroscedastic Model

0 log(n)h? N
\/h3 — oV _ -1
hyzlelllé v(@) =% < nhdx+? op (n ! ) ’

. 0
prx(uv .’L') - @pz(% .’I})
In the following, negligibility is (if not specified further) meant uniformly in y € K and
z € supp(v). Remember (4.33) and (4.34). Due to (with f = fx and f = fx)

. 95 (u,x . D5 (u,x A .
2(I)y(uﬂf) = M and 2<I>x(u,a:) = 8ypA( ) = fx(372py(u,x)7
dy f(z) 9y f(x) f2(z)
equation can be applied again to obtain (arguments are omitted)
0 ~ 9 o
D4 0p (0. 0 N Fm o fof(o. 0 gwnli-D

— 1
nhy

as well as

P fx Dy fa | Pyfe, » 1
332 - ;/02 :P(pyfa:_pyfx)— ;/04 (fz—f2)+op<nhg>

:;((ﬁy—py)ferp(fx—fx))—p;‘iz(f—f)(f+f)+op< ! )

2py [z

5 1
fg (f_f)‘i_op(\/n»@)

= f2 (ﬁy _py) + %(fz - fx) -

12
1
~ o= 1)+ 0p )
f nhy,
In total, this leads to
0 (8 2.)
oy\o, &
0 & 0 & 0 el
A I R
P, 2 o, 2
_ 1 2(1)_6 _f?y x(q) _(I))_(i)y_q)y 9 —QQD _a%q)x((i)y_‘l)y)
e \oy ooy ) e Y Y e, \dy T oy " o,
! <<i> 9%, —a 6<1>>+ 5y L (32 — @2)
—— (Db, — P, _
i o) 52 2
L (6 20, e, P
@5@5 oy Y oy Y <I>§
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o v
Py \ 9y dy ° 2 o2 o2\ Oy oy Y
Qq)xaa Dy . 1
+ y— ®y) +0p
(I)g nh3

10, 0 20,20, Lo\ . 2o,
:‘I>y<q)‘r_q)x> +< q)g - é,g >((I)y_q)y)_ L (P — Py

f ? 13 2 72
20,20, Lo\ /1 p
+ ( (1)5 - Z</I>§ ) <f(Py py) - f%(f - f))
Q(I) fI N 1 A 2 fx T
- 62127 <_ P(p_p) + ?(px —pz) + < ?3 - 2;2>(f_f) - %(fx f:z:))

o, (10 . 0 > 5Py > ( 1 )
(o (py— Sp)) ) o
; <f<8ypy aytv) ~ T U)o nh?

o) 9 9
_ e (Q‘I’xay% b f
o2

T . oy .
- Py —Dy) — Pz — Pz
f(bg f@% (pyfg) ( Y y) (1)2 ( )

e (0 0 N, 1(0. 0
(I)gf aypy &ypy (I)yf aypac 8ypm

0 0 2l 0 0 0
+ 2pyfz . By Pz B 2®xpy@@y pyaiy(px _ 2pfx§y¢y pxyy@y @m@py (f— f)
Oyft  Byfr By o ey T ey T ap
0
Pay; Py Dy ) A 1
- (fo = fo) top| ——
( 22 3,0 "\ o
= Dp,o(ﬁ _p) + ﬁpvy(ﬁy _py) + Dp,a:(ﬁx _pa:)
~ 0 0 ~ 0 0
+D, <]A) — a7 D >+D,:p <ﬁx_pz>
p,yy ay ) 6:1/ Yy p,xy ay ay
~ A - A 1
+Df,0(f_f)+Df,x(fm_fx)+0p 73
with
ol o] 0
Do 2 ufo b 2929, %y 3% fa ho_ 5%
p,0 — CI)ZJQ ) Py — f@i fq)g (I)nya DT — q)if s
o)
bpyy:_q)x’ ~pmy: ! ) Efx:paiyq)y_l
, o2 f T, f R 57 S
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and

s of  opr 20,00, D&, 29f00, pLe, ©,L1p,
0= 5 - - .
Dro="5 o, 2 o2 f o, f 302 JRTIE SR

Similar to the proof of Lemma one has
N ~ ~ .9 .9 N ~
Dypop + Dpypy + DpaPe + Dp,yy %py + Dp,ay afpw + Dyof + Dyofa

Cpfag®y 20050 5% ., Pody® Pufpy  Hpbe

5.1 ) e, f <I>§,f ©f By f
2y agPr 22250 50 LY pg®  Cugp phg®y f,
foooeyf ®] o 2o} fo3 ol f o2f2 f
=0

and

N B HO 1
E I:Dp,0p+Dp,ypy+Dp,xpx+Dp,yy8ypy+Dp,acy@px+Df,0f+Df,mfac] = 0< ) . (4'54)

The dominated convergence theorem yields

V(g - o),
= o f o1 (s - G

_ \Jod / ( 10(0s 2)5(Y0 ) + Doy (901 )5y (40> 2) + Do (50> )5 (40, )

~ 0 . - 0 . - R
+ Dp,yy (Y0, w)@py(yoa x) + Dy 2y (Y0, x)afypx(yoa x) + Dyo(yo, z) f(x)

+ Dy (vo, m)fx(x)> dx + 0p(1).

The variance of most of the terms above is asymptotically negligible, since for example for
some sufficiently large constant C' > 0 one has (see (L.7)))

(\/E/ () Dy (o, );px(yo, )d:v)

1 & 9
. 3
ok Var (n ;1 Kn,(y - Vo) / Do) 5o Ko w)] dm)

= g0 02 ([ o Byt k] ar) ] ot

w=r—X1

<Ch E[(/Kh ai o(2) Dyy (40, 7) da:ﬂ +o(1)

E[(/K(x)aawlv(w) Dyl 0)| da:>2] +o(1)

178



4.6.  Proofs

= o(1).

A similar reasoning for the other terms except D, 0(yo, z)p(yo, z) leads to

0 0
\/Tilg"(a.y)\(y)‘y:yo a @A(y)‘ywo)
- \/ nh / < pO yo? ) (y07$) +Dp,y(3107$)13y(y0>$) +Dp,m(y07x)ﬁw(y01x)
~ 0 - 0 - .
+ Dp,yy(yow)afyﬁy(?/o,ﬂ?) + E[Dp,xy(yoaf)@ﬁx(yoa$) + Dy o(yo, x) f(x)
+ Df,z<yo,x>fx<x>}> dz + oy(1)
/ ( (Yo, x) aﬁ (yo, x) - D (Yo x)E[gﬁ (yo x)}) dx + op(1).
\/ Py \Y0: L) 5 Py Yo, pyy Y0, By Py o, P
0 0
= 1/nh / Dy yy (Yo, x )<ayﬁy(y07$) - aypy(yo,x)) dx + Op(l)
1 < 0
= nhg;(%Z;%K(

o / 0(2) Dy (0, 0K, (& — X;) da
y

=",

oy m)bp,yy(yo,x);/py(yo,x>) T op(1)

_%n(/}4)g-%hmx>D%mAym)Q-+hmxyxxx)dx::o(n (4.55)
h

and the third from last equality follows as in (4.64]) below. It holds that

n

Var <Z<Zm - E[Zm-]))

=1

:1W%aKw

hy ou /U(Xl + hat) Dy yy (Yo, X1 + haw)K(x) dm)

—Y;
u=%-4
Y

/U(Xl + hax) ~p,yy(yO’X1 +he2)K(2) da:) 2]

—Y;
u=%-"4
Y

1 ) 2
— E[K(u) /v(X1 + ho ) Dy yy (Yo, X1 + hex)K(z) dx}
hy [ Ou

_¥%—"
hy

/U(X1 + ha) Dp,yy (yo, X1 + how)K () da:) 2]

-7, |G,

(/[ eme

_¥%—-Y
hy

u_yoz/v(uw-hxx)
—
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2
Dy, yy(yo, w + hex)K(x) dz fy x (2, w) dz dw>
2
u—Y0—%

=i ) (Gl

Frx (2, w) dz duw — hy< / / %K(u)

2
frx(yo — hyz,w) dz dw>

. ) 2 ( / v(w + hxa:)f)p,yy(yo, w + hyx)K(x) da:)

B /v(w + he®) Dy yy (yo, w + hy)K(z) dz

_ / / (;ZK(Z)Y ( / 0(w + hat) Doy (0, w0 + ha)K () dx>2 Frx (5o — hyz, w) dz dw

+o(1)

-/ <§ZK<Z>)2dZ [ o@Dyt 0 o) 1)

Var (Y71 (Zni — E[Zn)))

2
Z;Ekz”_EVMDIﬁ%rﬂmm%»Wd " (Znj—ElZn ) } -0

holds for all ¢ > 0, the Lindeberg-Feller Theorem yields asymptotic normality. Due to
0’% > (0 and 1) the indicator function in the expectation above equals zero for sufficiently
large n € N, which implies applicability of the Lindeberg-Feller Theorem. The assertion

follows from Dpyyy =D, ,.

4.6.6 Proof of Theorem [4.2.6

Proof of [(i)k In the proof of Theorem [4.2.4] it was shown that (see [(C6’) and (4.50))

1 & 1
Vn(B - B) = 7n ; U, (Y3, X5) + op (\/ﬁ> : (4.56)
Now, let K C (yo,00) be compact. Recall (4.8) and (4.9)), that is,

teto) = exp (e [ 5 dn) = oxp (cloglm() and huly) = exp (clog(in(s)
Y1

for all ¢ € [By, Bs]. Note that

sup [k (y) — hi(y)|* = op
yer

sup [ log(h1(y)) — log(h1(y))” = o
yekl
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due to [(C4)[and K C (yo,00). Therefore, a Taylor expansion yields for some h* between
Bl and hl

he(y) — hey) = exp (clog(h1(y))) — exp (clog(h1(y)))
= cexp (clog(h1(y))) (log(h1(y)) — log(h1(y)))

+cexp (clog(hi(y))) (log(hu(y)) — log(hi(y)))”

cexp (clog(hn(y))) (log(h1(y)) —log(h1(y))) + 0 <1>

Vvn
_ hi(y) — hi(y) 1
= chely)= hl(y)1 +O”<\/ﬁ>

uniformly in y € K and ¢ € [By, Bs], that is, once h; can be estimated with a certain rate,

this rate transfers to h. uniformly in ¢ € [By, Bs]. The only thing left is to replace ¢ by the
estimator B and to apply 1) so that

= Vn(hg(y) —hgy) +hs(y) —hs(y))
— Bhy(y) ﬁ(hlﬁjf( ) i (exp (Blog( (1)) — exp (Blog( ) +0,(1)
= () YD) ey (B lo(n (1) 050 (D)WA(E — B) + 0,(1)

@56) h(y) ~= [ BYn(Yi, Xi,y)
vn ; ( hi(y)

Convergence of the finite dimensional distributions follows from the Central Limit Theorem.

+log<h1<y>>wr2<n,xi>). (4.57)

Since h; is continuous and bounded away from zero on K, asymptotic equicontinuity (see
condition (2.1.8) of [Van der Vaart and Wellner| (1996)) for a definition) is implied by that
of (v/n(h1(y) — h(y)))yeIC' Hence, Corollary 2.3.12 of [Van der Vaart and Wellner| (1996]))
yields

(Hn(y))yex ~ (Zn(y))yexs

where the stated expression for the covariance function directly follows from (4.57]).
For the estimator h;, which was given in 1) it was shown in the proof of Theorem

that
i}c(y)—hc(y):—cexp(—céf@du></yf£mdu—éf@du>
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with 7 as in (4.36)), which leads to

) hi(y)) :

H,(9) = Bhis(y) Y0 + exp (Blog(h (1)) og(h (5)VA(B — B) + 0,(1)

— —Bh(y ( /y

_ 7 g (Bm /y | A(lu) du ¢F2(Yi,xi)> +o,(1). (4.58)

du> —du\fB B) + 0p(1)
Y1

Y1

Note that § € H for v, = 2 was shown in the proof of Lemma
Proof of Part of Theorem and a Taylor expansion lead similarly to before

to

Il
>

3W) —hp) +hg(y) —hsy)
hi(y) — hi(y)

= Bhy(y) O (Blog(h1(y))) — exp (Blog(ha(y)))
1
()
= BhB(y)W + exp (Blog(hi(y))) log(h1(y))(B — B) + 0p <\/15 + an)
= op(an)

uniformly on compact sets K C (yp, 00).

Proof of Similar to the proof of

hy) - hiy) = BhB@)’W

+op<\1f 1B - B|)

1
—duB B)+op| ———
y1 p(,/nhg)

uniformly on compact sets K C (yp, 00). The assertion follows from Theorem m

+ exp (Blog(hi(y))) log(h1(y))(B — B)

4.6.7 Proof of Lemma |4.2.8

Recall the definition of g from equation (4.2]),
go = argmin [y|.
y: A(y)=0

Corollary [4.2.14] yields
sup M) — A(u)| = 0p(1)

“e[zayzb}»ZGRdX
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as well as 5 3
sup %)\(u) — %)\(u) = op(1).

ue [Za 7Zb] 7x€RdX

Let € > 0. Since A is continuous and %)\(u)’ = —B # 0 there exists with probability

uU=Yo
converging to one exactly one root gy of A on each interval of the form [—|yo| — 7, |yo| + 7]

(for fixed r > 0). Indeed, this root coincides with the estimator gy from above and fulfils
:00 =y + Op(1)~
One has for some y* between g and yg

A(wo) = A(yo) — Ado)

0 : .
= %A(U) —y (yo — Jo)
=~ 2@|  (o— o) +0p(ld0 — ol)
ou i Yo — Yo » Y0 — Yol ),
so that .
. A .
Yo — Yo = %0) + 0p(|90 — vol)-

Lemma [4.2.1] leads to
v 1hy(Jo — Yo)

\/53 Z <U(Xi)Dp,0(yO7 X;)Kn, (yo — Vi) — Ov(X;) Dy (Y0, Xi)
i

6351

B Kh, (yo — Yi)

+ v(X3) Dpy (yo, Xi) Kn, (Yo — Yi) + v(X3) Dy o(yo, Xi) — s

3U(X¢)Df,x(y0,X¢)>
+ 0p(1).
In the following, a Lindeberg-Feller Theorem is applied to prove asymptotic normality of

/nhy(Jo — yo). By the same reasoning as in l) one has

8U(X1)Dp,:p(y07 Xl)
8:61

EP@ﬁ%waﬁﬁAm—H%— K, (9o — Y1)

Ov(X1)Dy 2 (yo, X1)
8951

+ v(X1)Dypy(y0, X1)Kp, (yo — Y1) + v(X1) Dy oy, X1) —

1
V/nhy
Hence, the asymptotic variance of the dominating term can be calculated as follows:

Ov(X1) Dy 2 (yo, X1)
81'1

h
—Z Var <U(X1)Dp,0(y07 X1)Kn, (yo — Y1) —

B2 K, (yo — Y1)

+v(X1)Dypy(yo, X1)Kn, (yo — Y1) +v(X1) Dy o(yo, X1) —

Ov(X1)Dy (Yo, X1)
81‘1
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h

- B%EKU(Xl)Dp,O(yO,Xl)Khy(yo -Y1) -

Ov(X1)Dp(yo, X1)
8x1

Kh, (yo — Y1)

2
+ 0(X1) Dy (90, X1) K, (90 = Y1) +v(X1) Doy, X1) - 8“<X1>ggj<yovxl>> ]
+ o(1).

Note that apart from the third one all of the terms inside the expectation are bounded and

hence (after multiplying with h,) asymptotically negligible, so that

Ov(X;) Dy, (yo, Xi)

Var (é/j% ; (U(Xi)Dp,O(mei)’Chy (yo — Vi) — Do Kn, (yo — Y3)
+ 0(Xi) Dy y (yo, Xi) Kn, (Yo — Yi) + v(Xi) Dy o(yo, Xi) — 8U(Xi)ggf(y0>Xi)>)
- %E[(U(Xl)Dp,y(yoaXl)Khy(yo - 3/1))2] +o(1)

= % / / Dy (Yo, w)QKhy (yo — Z)2U(w)2fy7x(2’, w) dz dw + o(1)

N2
= 1;2/v(w)sz,y(yoaw)Q/hlyK<y0hy Z> fyx(z,w)dzdw+ o(1)

1
T B2 /U(w)QDP»y(3/07w)2/K(Z)zf‘/,X(yo — hyz,w) dz dw + o(1)
= 050 + o(1).
Let

Ov(X;) Dy (yo, Xi)
ox1

Znyi = \/\73 (U(Xi)Dp,O(y07 Xi)Kn, (yo — Yi) — Kh, (Yo — Y3)

8'[} XZ D x 7Xi
+0(Xi) Dp,y(yo, Xi) K, (Yo — Yi) + v(X;) Dy o(yo, Xi) — (Xi) Dy (yo )>,

8$1
that is, \/nhy(Go—vo) = D iy Zn,i+0p(1). Then, the assertion is implied by the Lindeberg
Feller Theorem, if

1
Var (X0 (Zni — ElZn,)))

n

2
2 E {(Z’” ~ BlZua {|Zn—BlZn )2 Var (57 (Zug—ElZag)) } | 70

holds for all € > 0. Since |Z, ;| < —<= for a sufficiently large constant C' > 0 this in turn
’ v/ nhy

directly follows from Var (.71 (Zn,i — E[Zn;])) = 02, +0(1) and o7 > 0.

4.6.8 Proof of Theorem [4.2.9

It is started with the first assertion. Define #,, = t,, + §o — yo. Since referring to Theorem
flo converges to yp at a faster rate than t,, one has #, = t,(1 + 0,(1)). Moreover, a
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Taylor expansion leads for some y* between g and g to
- ~ - ~ 0 )
B0+ t2) = -+ ta) = o+ £2) = (B4 )+ 510, (0~ 0

= il(y() + Z?n) - h(yO + th) + Op <\/%>a

so that it suffices to prove

log(ty)t, 1
o8(tn)tr  Log(n)

h(yo +tn) — hl(yo + tn) = O
nh3 nhy
Y
To this end, write
B(:UO + tn)
- Yo+in 1
= exp ( — B/ - du)
Y1 A(w)
< yo+in 1 ( ) Yyo+tn 1 Yo+tn 1 1
= exp —B/ ——du + B—B/ du B/ - du
wo AW wo A wo Aw) Aw)
—_———
_ AW -Aw)
A(u)A(u)

o [ i)

+ (B —
= —B < 0, one has \a%)\(u)] > clu — yp| for some ¢ > 0 and u in a

Due to %)\(u)‘ =
u=yo
sufficiently small neighbourhood of yg. This in turn implies for all w in this neighbourhood

of yp and some corresponding y* between u and y that

A = [A00) + A0y = 30| >l . (4.59
Further, apply Theorem to obtain
[T, oW,
n Alw)A(u) u Aw)(A(w) + Au) = A(w))
(

For n € N sufficiently large and every fixed g in such a small neighbourhood of yy that

(4.59)) is valid, this integral can be bounded for some constant C' > 0 via

Yo+tn 3 Yo+tn .
/ Mdu <C / %du sup  |A(u) — A(w)|(1 + 0p(1))
Y1 )‘(u) Y (u - yO) u€[yo,y1]
1 “
= — = su AMu) — AMuw)|(1 4+ o0,(1
T Tl A Ao,
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log(n)
= o,,(tn nhy). (4.60)

Because fyyloth" ﬁ du = O(log(t,)), this results in

h(yO + tn)

N Yot+in vot+tn )\ (1) — Nu
= h(yo + tn) exp ((B—B)/ )\<1u)du—B/ Wdu(1+op(1))>

Y1 Y1

log(t, 1
— hlyo+ta) 140, [ 108U | tosm) )} (4.61)
nhg tny/mhy
The fact
h(yo +tn) = O(tn) (4.62)

yields the first assertion.
By the same reasoning as above, it can be shown that

- Z}O_tn yO_tn
exp ( — B/ = 1 du) — exp ( — B/ b du) =0, Log(tn)tn + log(n) .
Y2 Au) Y2 Au) nh nhy
4.63)

< W

This leads to

(g
N =
exp < - B yy;_t" ﬁ du)
yot+tn 1 log(tn )tn log(n)
- exp ( — B ylo O] du) + (’)p( e Thy>
- Yo—tn 1 log(tn)tn | log(n)
exp(—B 3120 Wdu> +Op< \/nh3 T 1/nhy>
*62) h(yo + tn) log(ty) log(n)
— _/\2 + Op +
h(yo — tn) fnh3  tny/nhy
2 h(yo)
h(yo) + a%h(yo)tn + 22 4 o(t2) Lo log(t,,) N log(n)
——h(yo) 3 tp/nh
h(yo) — £ h(yo)tn + 2252212 + o(t3) iy ’
2y hiyo)
a%h(yo) e A () log(t,)  log(n)
- 2 h(yo) O 5 i/nh
a%h(yo) — & 2 tn + O(tn) " Yy " Y
82
gz M(yo)tn + o(tn) log(t,) 1
:)\2<1+ e 1o, [ 3)+t°\g}(%
2R N
Zhlyo) - 225"t + ofty) hy '
A2z h(yo)tn log(t, log(n
A2 th + O, ( )+t (}z + op(tn),
dy (3/0) nhz?; n\/ Ty
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that is, (4.30) holds.
To obtain the optimal rate in (4.30|) try to choose t,, such that at least two of the terms

tn, log(tn) and log(n)

3 converge to zero at the same rate. Note that h.,h, and thus the
nhy tn/nhy

optimal ¢,, will converge to zero at a polynomial rate (with respect to n). Therefore, the

choice _
log(tn,)  log(n)

leads to t, = hy and Ay — Ay = Op(h,), while

i = log(t,,)
nhg
leads to t,, = l\o/g% and Ay — \g = Op(hy). The remaining possibility
Y
_ log(n)
" tm/nhy’
that is
log(n)2 4
by = = o(hy),
< nhy ) O( y)
results in

log(ty,) log(n) log(n)? i g
) e

which proves the last part of Theorem

4.6.9 Proof of Theorem 4.2.11

The proof mainly follows from Theorems [4.2.6| and (4.2.9, While the assertion in (i)a] is
a direct consequence of part in Theorem the proof of Theorem has to be
slightly adjusted to show the assertion in Let y € K\(—00,y0 + tn). By the same

reasoning as there, one can show for some sufficiently large constant C' > 0 that

sup |h(y) — h(y)|

YyeR\(—o0,yo+tn)
exp ((B—B)/:)\(lwdu—B/yyWdU(l—&-Op(l))) -1

< s S ) )+ 0, (<5
yE\(—oo,yo+tn) ¥ — Y0 uek

B log(t,) log(n)
o, () )

where the second to last equation follows similarly to 1) Remember B— B = O, (n_%)
Due to h(y) = Op(ty) for all y € KN [0,y0 + t) and ¢, ~ 1980 “this implies (i)b]

\/nhy’

= sup h(y)
yEKX\(—o0,y0+tn)
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To prove the assertion in recall the definition of A:

;

exp (=B} stsdu).  y= o+t
R (Go + 1), y € (0,50 + tn),
h(y) =4 0, Y = Yo,
Q%Z%@O —tn), Y € (Jo — tn, J0),
\ 5\2eXp<—B yygﬁdu), y < o

Let € > 0. In the proof of Theorem it was shown that (compare (4.61))

log(ty,) N log(n)

sup ‘il(y) —h(y)| = Op = 0p(tn)
YyeR\(—00,y0+1n] nh3 tny/nhy
as well as (compare (4.63))
h(y) _ h(y) log(ta)  log(n)
sup = - —=1=0 + = 0p(tn)-
yeR\[yo—tn,00) | A2 A2 P /nhy?} tny/mhy b

The rate of the convergence here is equal to that of B to B. Therefore,

= ~ h h
sup ‘h(y) - h(y)‘ = sup ’Azfy) - A2§y)
YyER\[yo—¢,00) yeK\[yo—e,00) Ao 2
< h h h
yEK\[yo—tn,00) A2 A2 A2

= Op(1A2 — Aa| +tn)

= Op(tn)'

N

The fact that |h(y)| = Op(t,) for all y € [yo — tn,yo + tn] and ¢, ~ (10527;)2) complete the

proof.

4.6.10 Proof of Lemma |4.2.12

oo = (SE00) oo

nhgx
and let (c,)nen be a sequence such that ¢, — oo and there exist constants d1,d2 > 0 with
en| < 61n%2.

First, the expectations can be calculated as in Section [I.I] to obtain

Recall

sup o) E[p(y, )] — ply, x)| = ORI + b = op(n"1),

Y€[za,2),xERIX

H m m _1
sup ()| E[pe(y, 2)] = pa(y, x)| = O(hy' + hy') = op(n"1),
ye[ZE,ZbLmGRdX

sup v(x)|Elpy(y, 2)] — py(y, 2)| = O(hy' + hy') = o0p(n71),
Y€[2a,2p),0ERIX
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Sﬁg}&wﬂEU%w]—jﬂw|:cxhg) oy (n 1),
sup v(a)| Elfe(@)] - fue)| = O(7) — op(n4).

As already mentioned, basically the results of Hansen| (2008) are applied. Note that all
of the estimators in the lemma are very similar to the estimator ¥ in although the
corresponding Z; may be different. For each estimator, one has to consider a different
“dimension” d and “kernel” of U. In a few moments, it will be clear, how this is meant.

First, write

~ 1 = IE—XZ ~
) = — o ;Khy<y—n>K( ) = dy,
=7,
1 < 0 x—X; ~
02(y, ) = —5— ) Kp,(y—Y;) - —K : d = dx,
Pa(y,) nhgx ;M 0x1 < ha ) ~ X
=7
N 1 - SL’—XZ' ~
Py(?/,ﬂf): th ZKhy(y_Y;)K< h > ’\ﬁd:dX—Fl,ZlE].,
e =1 z

fla) = e SR () wd=dxZi=1,

5 1 0 r—X; 7 _

Apart from some assumptions on the dependency structure (that are automatically fulfilled
here due to the independence), the Z; are not allowed to depend on n or y and have to
fulfil some boundedness conditions, like for example
sup E[|Z1]|X1 = z]fx(x)v(z) < co.
zeRIX

In the last three cases, both of the requirements are fulfilled so that the assertion directly
follows by Hansen (2008) and assumption In the first two cases, Z; = Ky, (y — Y3)
depends on n as well as on y, so that the results of Hansen| (2008)) can not be applied directly.
The idea there was to construct an appropriate grid of the set {(y, ) : ||(y,x)|| < ¢} such
that the proof of equation can be reduced to a non uniform version.

Since in the remaining cases |Z;| is still bounded by some constant K > 0, one can show

for a sufficiently large M > 0
P(1(y,z) — E[¥(y, 2)]| > Man) < dn 75 for all y € [z0, 2}, € supp(v)

analogously to Hansen| (2008). In contrast to the proof there, the construction of the grid
used in the next step is slightly more sophisticated. The set {(y,z) : ||(y,z)|| < ¢n} can be

split into
dX —+1
CTL

N S a’,(IdX'f‘l)hyth (dX+2)
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4. Nonparametric Estimation of the Transformation Function in a Heteroscedastic Model

subsets of the form A; = {(y,z) : |y — y;| < anhyh?X, ||z — 24| < a,hdX 1}, Then, one has
for (y,x) € A; and an appropriate constant K >0

5 5 RN r—X; rj—X;
B(y, ) — P(ys, )| < — i Z/Chy(y—Y;)K< - >_;chy(yj_yi)K< L >‘
& i=1 4 T
1 = SL‘—Xi
= ’I’Lth Z (Ichy (y - }/Z) - Khy(yj - E))K< h >
T i=1 T
I’—X,L' JI'—Xi
+lchy(yj—Yz-)<K< " )—K( Jhx ))‘
Sf(zan,

which means that one can proceed analogously to Hansen (2008) to obtain for a sufficiently
large M > 0

P< sup |¢<y,x>—E[@<y,xm>Man)
[|(y,x)||<cn

. . M
= szl??fN <‘\I/(y],33]) E[\P(ypx])]‘ > 5 an)
< 4cZX+1a;(dX+1)h;lh;dx(dxﬂ)n_msiﬁ

— 0.

As was shown above and in Section [I.]] it holds that

sup  v(x)|E[p(y, )] — p(y, z)| = O(hy + RI*),

y€R, zeRIX
so that
. log(n) \ ([@3) _1
s o@)py, ) — ply, )]l = O ke 4 m 4 [E) ) T -ty
yE[za,zb],xERdX nhI
follows. The same reasoning can be applied for p,. O

4.6.11 Proof of Corollary 4.2.14

The proof is very similar to that of Lemma Again, only derivatives with respect
to x1 are considered. First, convergence of the expectations can be shown as before using

integration by parts:

E [v(x)aauﬁy(u, :1:)} = v(2)E {;;Khy (u— Y1) Knp, (z — X1)

= —v(x) / / %Khy(u — 2)Kp, (x — w) fy x (2, w) dz dw

= v(x)//Khy(u - 2)Kp, (x — w)aazfy,x(z,w) dz dw
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//K fyx( hyz @ — how) dz dw
— (@ )(9 Fyx (. 7) +0<\}ﬁ>, (4.64)
E|o(e) L pa(u.2)| = v(@)E | K, (u— Y1) -2 Ky (@ — X1)
ou o0xy

//Khy u—2z) Khr(x— w) fy,x (2, w) dz dw

:v(x)//Khy(u—z)Khz(x— )8i)fYX(Z w) dz dw

//K 7fYX( — hyz, 7 — hyw) dz dw
= ofa) g frx( x>+o<jﬁ)
and
E[v(x)ailfx(x)] = v(m)E[§2 K, (x Xl)]

// 5K, (v —w) fx (w) dw
o[ %Km W) fx(w) d
/ / K (x = w0z O ) dw
o[ K(z)K(w)(fx%fX(x = hyw) du

0? 1
= r)+o|l —|.
A <¢ﬁ>
For each estimator (i.e. for each \T/), one simply has to redefine the corresponding “dimen-

sion” d, the “kernel” or the random variables Z;. For example, when treating

0 1 0 - X L (v =Y\ (2=
—H = —_— 7K _)/;, K = K/ K

* Y =1 z

or

0 0 JT—Xi
7ACE ) - K )
2 pulyn) = h%X,Zl = Yo 1K< )

set d=d x + 1, Z; = 1 and define the “kernel” functions by

0
(y,7) = K'(y)K(z) and (y,z)— K(y Y) gz, K@),
respectively. Now, Theorem 2 of Hansen (2008) can be applied directly so that
0? 0? log(n)
— - =0 — = o0p(1
ues[il?%]v(x) a$% fX(z) 81‘% fX(:E) p( nhcxlX+4 Op( )7
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P 9 _ log(n) _
ues[il?%] U($) aupy (U, iL’) 8upy (U, .’L‘) - Op ( nhghgx ) - Op(1)> (465)
d . ) _ log(n) _
uﬁgfmaﬁmmnéwm%m—04 mwyﬁ) —op(1).  (4.66)
Consider R
Aulz) = 2ol
q)?J(uv
Due to
a5 ) D 5 9 5 ¢
Eéy(u,m) _ Bu EJ(U’ $)7 g@x(u, x) _ aupfc(ua ) _ 8up(1f,$)fz($)
du f(z) du f(z) f(x)?

and the fact that not the values of the weight function, but only the compactness of its

support was used, the foregoing convergence leads to

0 : 0
%)\(u\x) - %)\(UVC)

w(iocs) -

éy(u, x)%éx(u, x) — Py (u, x)%@y(u, x)

sup v(x)
Uu€[2q,2p],2ERIX

= sup v(z)

UE|[2q,2p],zERIX

sup v(x)

ue [zﬂ 7Zb} ’(EERdX

Dy (u, m)%@m(u, x) — @, (u, w)%fby(u, x)
P, (u, x)?

= op(1).

Since 2 FaA(u|z) is bounded on [zq, 2] X supp(v) and a%j\(ubv) is uniformly consistent, this

in turn implies

0 ¢ 0 0 ‘ 0
ues[il?%]v( x) a—uA( u) — %A( u) —ues[ili)%]v(x) au/v(az))\(UkE) dz — au/v@))\(ulaz) dx
<[ s )| giMule) — Al do
uG[Za,zb],xeleX Ou ou
= op(1).

Basically, the last part of Corollary can be shown analogously to the other parts.

First, the expectations need to be calculated, this time using integration by parts twice.

Second,
* 1 r—X;
1 - y—Y; r—X;
e
 nhixR3 Z} hy ha
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and

82 1 - / y_Y; 8 —Xi

Y =1
can be treated as before to prove

0? 0? log(n)
=P - =0 = 0p(1
ues[ir;b]v(w) 52 by 2) = 5 5py(u,7) p< TR op(1),
0? 0? log(n)
sup v(x)|=—=p(u,x) — =—p(u,x)| = O —_— = 0,(1).
s v@) el ) — el ( T p(1)

Third, show uniform con&stency of - 2<I> (u,r) and & 2, (u,z) to obtain first the uni-
form consistency of 2)\(u|x) Then, this can be used together with the boundedness of

6‘12 (u|x) to obtain

82

0% .
sup v(x) W)\(u) — w)\(u) = o0p(1).

u€[za,2p)

4.6.12 Proof of Lemma 4.2.15

Note that equation ([1.8) can be applied to the conditional distribution function, so that
Lemma |4.2.12] yields

U(x)(ﬁwx(y\x) — Fy|x(y|z))
by, )  ply, )
= vl )< Fx(2) fx(x>>

= (B(y, 2) — ply,z)) —

p(y, z)v(z)
fx(z)?

(o) = et + op =)

I (o b L (L
_”; ( ><fx(ﬂf)lchy(y YK, (o = X5) fx(ﬂf)2KhI( Xl))Jr p(ﬁ)

uniformly in 2 € R?X. Now, the framework is the same as for Lemma{4.2.12| so that one can
proceed exactly as there. It remains to extend the uniform convergence to the estimated

quantile function, which can be shown similar to the proof of Lemma Due to Lemma

one has

v(x 9 x—g x) ) =v(x by, ) _ py(y, ) =o
) (5 P o1e) = 51 Pyl ) = (o) (P4 - 20D} = o,

uniformly on compact sets. Let z, = F;|1X (a]z) and 2z, = F;|1X(Tb]x). Since Fy|x (y|z) is

strictly increasing in y, or more precisely

. 0 .
inf By - Fyix(ylz) = inf fe (

Y€[2a,2p],xEsupp(v) Y€[2a,2),xESUPP(v)

h(y) — g(ﬂ?)) W (y)

o(x)

Fy| x(y|z) is strictly increasing with respect to y € [zq4, 2] for all z € supp(v) with pro-

bability converging to one. Hence, one can assume Fy| x(y|x) to be invertible. Applying
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a Taylor expansion with respect to 7 € [74, 7] leads for some appropriate function F (7))

between 13';|1X(7'|) and F;&(ﬂ) to

0 = Fyx(Fy ) (r]o)|2) = Fy x (Fyx (r]o) )
= Fyix (Fy )y (7]2)]e) + fyix (F(r,2)|2) (Fyy (tl2) = Fy (7))
~ Fyx(Fyx (r]2)[2)
= Byx(Fyl (rl2)[@) = Fyix (Fy [y (r]2)]2)
+ Frix (Fy i (7l2)[2) (B (7]2) = By (712)) + 0p (B (7]2) = Fy (1)

uniformly in z € supp(v), which in turn results in

~

Fyly(rle) = Fy  (7]a)

A B rlole) = Frx (B (rla)lo)
- Fee By e rle)le) ot

_ o OHa) AL e vk, (e
) fnx(F;&mw)\x)n;(qu)’Chy(FmH YKy, (z — Xi)

- p(Fyx (7]z), z)
fx(z)?

uniformly in = € supp(v). Because of fy|X(F;|1X(T|x)|:U) > 0 for all z € supp(v), the second

Ko X)) (4.67)

assertion follows from the first one. O
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Testing for a Parametric

Transformation Function

This Chapter has arisen from from a research project with Natalie Neumeyer and Ingrid
Van Keilegom. A preprint (Kloodt, Neumeyer, and Van Keilegom| (2019)), which is based
on the findings of this chapter and which contains most of the results, can be found on
https://arziv.org/pdf/1907.01223.pdf.

As so often in this thesis, this chapter starts with a model equation namely
hY)=g(X)+e. (5.1)

As before, refer to h and ¢ as the transformation and regression function, respectively, as
before ¢ is assumed to be independent of X with E[¢] = 0 and as before, several properties
like, e.g., smoothness or monotonicity of h will be assumed to build the theory on these.
But contrary to the last chapters, the aim of this chapter does not consist in testing for a
parametric regression function or in identification and estimation results for heteroscedastic
errors, but instead in providing a goodness of fit test for the null hypothesis of a parametric
transformation function.

Up to now, testing for a parametric transformation function has not attracted too much
attention in the literature. Mu and He (2007) developed a testing procedure in the con-
text of quantile regression in fully parametric transformation models. [Neumeyer et al.
(2016)) provided a procedure to test for a parametric transformation function in (heterosce-
dastic) semiparametric transformation models with nonparametric regression and variance
functions. The main idea there is to test for independence of the covariate and the (appro-
priately estimated and standardized) residuals e. This can be done in several ways, e.g., by
comparing the appropriately estimated distribution or characteristic function of the joint
distribution of (X €) to the product of the estimated marginal distribution or characteristic
functions. Similar techniques were used in the context of nontransformed regression models
before, e.g., see |Akritas and Van Keilegom! (2001) or |Jiménez Gamero, Munoz Garcia, and
Pino Mejias (2005) for only one reference to each of the approaches. Neumeyer et al.| (2016))

used an estimator of the distribution function to test for independence of X and ¢, while
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Huskova et al.| (2018)) provided a similar test in the homoscedastic case, which is based
on the comparison of estimated characteristic functions. The latter test was extended to
heteroscedastic errors by Huskova et al.| (2019) very recently. Under the assumption of a
parametric regression function, Szydlowski (2017) used an L2-distance between the nonpa-
rametric estimator of |Chen| (2002) and the parametric class, which is tested for, to create
a goodness of fit test for a parametric transformation function.

Throughout this chapter, homoscedastic errors are assumed although the methods presen-
ted here can possibly be combined with the results of the Chapters [3] and [4] to obtain
a more general procedure in fully nonparametric and heteroscedastic models (see Section
5.9.2)). For the first time, local alternatives will be considered in the context of testing for
a parametric transformation function. The presented test will be based on the ideas on
estimating the transformation parameter of |Colling and Van Keilegom| (2018)).

Keeping the goal of transforming a model in order to simplify relations and apply simple and
fast procedures afterwards (as mentioned in the introduction) in mind, it might be sensible
from a practical point of view to apply a parametric estimator even if the model does not
hold exactly. With a good choice of the transformation parameter such a transformation,
e.g., can reduce the dependence between covariates and errors enormously. Estimating an
appropriate parameter is much easier than estimating the transformation h nonparame-
trically. Consequently, one might prefer the semiparametric transformation model with a
parametric transformation function over a completely nonparametric one. It is then of inte-
rest to examine how far away the parametric class is from the true transformation function.
To the author’s knowledge this issue has not been discussed in the literature yet. Later, a
test for the precise null hypothesis that a certain distance between the true transformation
function and the parametric class exceeds a given threshold is presented. Then, rejecting
the null yields evidence for applying the parametric transformation model. As a side effect,
this procedure is accompanied with a quantification of the distance between the parametric
class and the true transformation function making the results well interpretable.

This chapter is organized as follows. First, the test statistic is described in Section [5.1
before its asymptotic distribution is developed in Section Interchanged (also called re-
levant or precise) hypotheses are considered in Section A bootstrap approach is given
in Section while a simulation study is presented in Section Finally, the results are

summarized in Section [5.6l The assumptions and proofs are postponed to Sections and
.8 respectively.

5.1 Model and Test Statistic

Consider independent and identically distributed random variables (Y;, X;),i = 1,...,n,
which fulfil equation and define S; = g(X;) + ;. The main question of this chapter is
if a given parametric class of transformation functions is considered, does the transformation
function h belong to this class? Hence, a parameter space © C R% with a corresponding
transformation class He = {Ag : 6 € ©} is needed. Then, the null hypothesis could be for
example Hy : h € He and the alternative Hj : h ¢ Ho. Having introduced these notations
the idea behind the test statistic is quite simple. An appropriate distance d(ﬁ, Ag) between
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an appropriate nonparametric estimator h for h and each function of the transformation
class will be considered and the minimum will be used as the test statistic. Finally, the null
hypothesis will be rejected if this distance is too large.
Although the presented idea is rather intuitive, a lot of questions arise when thinking about
applying the test statistic or a corresponding test. So far, it is not clear how to identify or
estimate the transformation function h and Ay or which distance should be used. In princi-
ple, any nonparametric estimator of A with an asymptotic representation as in below
is applicable. Later, the pretransformed estimator of |Colling and Van Keilegom/ (2019),
which was described in Section will be used. A sketch of how this approach could be
extended to the heteroscedastic models by using the estimator from Chapter [4] is given in
Section
One has to be careful before applying any distance to h and Ay since both functions are
probably not comparable. As mentioned before in this thesis, transformation models are
in general not identified unless some identification constraints are required. Therefore,
one has to ensure that the identification conditions on which the nonparametric estimator
is based meet the identification conditions of the parametric class, since both estimators
otherwise may deviate from each other only because they are based on different identifica-
tion constraints and h is thus a linear transform of some Ag, (which means that basically
both functions fulfil the model equation ) Throughout this chapter, the identification
conditions

h(0)=0 and A(l) =1, (5.2)

which meet the conditions in Section [I.4] are used for the nonparametric transformation
function and its estimator. Note that for example the Yeo-Johnson-transforms (Yeo and
Johnson| (2000)))

OHD'=1 ey > 0,9 £ 0,

] b
log(Y +1), if Y >0,0=0,
MOD=1 v if Y <0,0#2 (53)
20 9 ) )

—log(l1-Y), ifY <0,0=2

fulfil Ay(0) = 0 for all § € R, but in general not Ag(1) = 1. Therefore, when assuming ([5.2))
the null hypothesis of i belonging to the Yeo-Johnson-transforms has to be reformulated as
Hy:he {ﬁ("l) :0 e IR{}. For general parameter spaces © and corresponding transformation
classes, this can be extended to

Hozhe{ AG_AO(O)):OGQ} =:Heo. (5.4)

Ag(1) — Ag(0

When comparing a nonparametric estimator of A and a parametric member of Hg this can
be done by computing the difference on the one hand between y — h(y) and y — %
itself or on the other hand between y — h(y)(Ag(1) — Ap(0)) + Ap(0) and y — Ap(y).
Although in principle both of these approaches are conceivable, only the second one will
be considered in the following, since this approach should be exemplary for the other and
was already used by (Colling and Van Keilegom (2018) to develop an estimator of § under

the null hypothesis. So far, the question of how to choose a distance appropriately has not
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5. Testing for a Parametric Transformation Function

been answered. Let w be a weight function with compact support. Let f and g be real
valued and monotone functions with f(0) = 0 and f(1) = 1. |Colling and Van Keilegom
(2018) considered the weighted £2-distance

d(f,9) = Elw(Y)(f(Y)(g(1) = g(0)) + g(0) — g(¥))?] (5.5)
and the modified version

d(f,g)= min _Bw()(f(Y)er +c2 —g(Y))]. (5.6)

c1€Rt co€R

Note that both distances are zero if and only if g is almost surely a linear transform of
f, which going back to transformation functions would correspond to d(h,Ag) = 0 for
some # € O and thus to the null hypothesis. |Colling and Van Keilegom! (2018]) found that
estimators of  that are based on d seem to outperform those based on d. Hence, only d will
be considered in the following, but again it should be possible to treat a test statistic based
on d similarly to the one that will be proposed here. Because the expectation in general
has to be estimated as well, d will be replaced by its empirical counterpart

dy(hAg) = min zn: w(¥y) (W(Yi)er + ¢ — Ag(Yi)?, (5.7)

c1€ERt ,co€R N i1

where h denotes some nonparametric estimator of h with an asymptotic representation as in
below, e.g. the estimator of |Colling and Van Keilegom! (2019)). Now, a test statistic
can be defined as

T,, := minnd,(h, Ag), .
Ieréléln (h,Ag) (5.8)

where the prefactor results from the asymptotic behaviour derived in Section An
asymptotic level « test for ([5.4) may consequently look like

B(Y1, X1, Yo, Xn) = 11500 (5.9)

with some critical value ¢, that is obtained from the asymptotic distribution in Theorem

10.2.2)

5.2 Asymptotic Behaviour of the Test Statistic

In this section, it is examined how the test statistic given in (5.8)) behaves asymptotically.
First, define

_ Fy(y) - F¥(0)

Ui=T(:) with T) = 2=~ F (o)

Assume Fy to be strictly increasing on the support of Y and due to the identification
constraints assume w.l.o.g. that 0 and 1 belong to the support of Y (otherwise replace
them by arbitrary values a < b € R here and in , which belong to the support of V),
so that 7 is well defined and invertible. Using this definition, the model equation can
be written as

S:=h(Y)=Q(T(Y)) =g(X)+e¢ (5.11)
with Q() = A(T=1(-).
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5.2. Asymptotic Behaviour of the Test Statistic

Remark 5.2.1 Due to the identification constraints , U; can be expressed alternatively

v Fs(h(Y;) - Fs(h(0))  Fs(S;) — Fs(0)

~ Fs(h(1)) - Fs(h(0)) — Fs(1) - Fs(0)

Ui (5.12)
It was already mentioned in Section that an asymptotic representation for iL(y) — h(y)
is needed. To be precise, assume

- 1

) ) = & > 02 T + op (=) (5.13)
=1

uniformly on compact sets where 1) has to fulfil assumption in Section An example
for such an estimator is the nonparametric estimator of |Colling and Van Keilegom| (2019),
which was described in Section [I.4]

As already mentioned, the null hypothesis can be rewritten as

Hy : h(-)c1 + co = Ag,(-) for some 0y € ©,¢; € RT e € R.

Keeping X; and ¢; (and thus S; and Z; as well) fixed, local alternatives can for example be

formulated as
Hi, i h(-)er +ca = Mgy (1) + nfér(-) for some 0y € ©,c1 € R, ¢y € R, (5.14)

where r is some continuous function and 6y is assumed to be fixed. This leads to Y; =
h=Y(S;). Applying 1) again leads to ca = Ag,(0) + nfér(O) and ¢; = Ag, (1) — Ag,(0) +
n_%(r(l) —1(0)), so that

VO R N (U R A GO Kt () I S g |
h() A@o(l)_AGO(O)‘Fn*% ho()+ 0()+O< > (5'15)

uniformly on compact sets, where

_ Agy (1) = Ay (0)

_ r(-) = 7(0) = ho(-)(r(1) — r(0))
Agy (1) = Agy (0) '

Agy (1) = Agy (0)

ho() and T‘Q(-) == (516)

Note that, because r = 0 is possible as well, the null hypothesis is included in this framework
and that due to Remark the distribution of U; is independent of n. Hence, it is

reasonable to assume that
. 1 & 1
h(Y;) — h(Y;) = - ;@0(21" Uj) + op 7n

holds under local alternatives as well. For the estimator of |Colling and Van Keilegom
(2019)), this will be shown in Lemma [5.8.1]

Before any result can be stated some notations have to be introduced. First of all, denote
v = (e1,c0,00)t € T := O x Cy x ©, where Y is assumed to be compact (seein Section

, and

5 = arg I?in > w(¥e) (h(Yr)er + c2 — Ag(Yr))2. (5.17)
el k=1
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5. Testing for a Parametric Transformation Function

For all minimizers 7, the test statistic can be written as

n n

7, = min 3~ w(V)(A(Yer + e = oY) = Y w(¥(h(¥Da + &2 = g(¥))?. (5.18)
i=1 i=1
Moreover, mark the derivatives with respect to 6 with a “-” and define
R(s) = (5,1, =gy (hg ' ()", (5.19)
I = Efw(hy" (S1))R(S1)R(S1)], (5.20)
p(2) = Elw(hg ™ (52))¢(Z21,U2)R(S2) | Z1 = 7] (5.21)
as well as

((e1,20) = B[ w(hy" (85)) (¥(Z1, Us) = 9(Z)) T R(S3))

((Za, Us) — (Z2)' T R(Ss)) | Z1 = 21, Zy = 22}, (5.22)
7(s) = ro(hy ' (s)) = Elw(hg ' (S1))ro(hy ' (S1))R(S1)'T " R(s), (5.23)
{(z) = 2Bw(hy " (S2))¥(Z1, Uz)7(S2) | Z1 = z]. (5.24)

Here, Z; is defined as in (5.10)). Further, let P? and F? denote the distribution law and
distribution function of Z;, respectively. Under some assumptions stated later in Section
it can be shown that the minimizer 7 is uniquely determined with probability converging

to one.

Theorem 5.2.2 Assume given in Section|5.7. Let (A\k)req1,2,..} be the eigen-

values of the operator

Kp(z) = /p(ZQ)((zl,ZQ) dFz(z)

with corresponding eigenfunctions (px)ref1,2,..}, which are orthonormal in the L?-space
corresponding to the distribution law P?. Let (Vk)ke{1,2,...} be independent and standard
normally distributed random variables and let Vi be centred normally distributed with va-
riance E[C(Z1)?] such that for all K € N the random vector (Vo,Vi,..., Vi)t follows a
multivariate normal distribution with Cov(Vy, Vi) = E[((Z1)pr(Z1)] for all k = 1,... K.
Then, under the local alternative Hy , in , T, converges in distribution to

(Ago (1) — Agy (0 (ZAka + Vo + E [w(hg ' (51))7(S1)?] ) (5.25)

k=1

In particular, under Hy (i.e. for r =0), T,, converges in distribution to
= (Ag, (1) — Ag, (0 Z A V2. (5.26)

The proof can be found in Section [5.8.1
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5.2. Asymptotic Behaviour of the Test Statistic

Remark 5.2.3 Note that ((z1,22) = E[I(z1)1(22)] with
1(2) = w(hg (S1))"? (¢(2,U1) = (2) T~ R(S1)) -

Thus, the operator K defined in Theorem s positive semi-definite, because the inner
product {-,-) of the Hilbert space L2(RXT1 PZ) can be used to write

Ep.p) = [ [ o061 dF2() plaw) dF(z2)

</p(zl)l(z1)dFZ(z1)>2] > 0.

Remark 5.2.4 When considering transformation classes of finitely many (by d distinguis-
hable) transformation functions the results of Theorem can be modified as in Section

m since the estimation (here classification) of the transformation parameter does no

=FI

longer influence the asymptotic distribution of T,.

Remark 5.2.5 Note that the minimization is also affected by the local alternative. Often
in regression models, local alternatives are assumed to fulfil some orthogonality condition,
since then the minimizing parameter does not depend on n, see for example |[Hardle and
Mammen| (1995). As was pointed out in Section an orthogonality condition is needed
to ensure that the test from Chapter [3 detects the local alternatives. If the minimizing
parameter in the context of local alternatives with respect to the transformation function is

assumed to be independent of n, this would mean that

€1,0
o= | &0 | :=arg m;n Elw(Y)(MY)e1 + e — Ag(Y))?]
- c1,¢2,
to

is independent of n. Since h converges to hg, one should obtain 49 = o in this case with

Yo such that
ho(y)e1,0 + 2,0 = Mgy (y)-
Consequently, this would lead to

0= (DyBlo(Y)(h(Y)er + 2 = 8o(V))] )’

h(Y)
=2F w(Y) <h0(Y)0170 + \/IET(Y)CLO +c20 — Ago (Y)) A zy)t
)

Thus,
Ew)r(Y)] =0, Elw)r(Y)Ag(Y)]=0 and FEw(Y)r(Y)h(Y)]=D0.

Because not only the distribution of Y, but also h = hg + ﬁr itself depends on n, these
(and especially the last) restrictions might be too strong, so that this assumption would be

no longer sensible. Consequently, the minimizing parameter in general depends on n.
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5. Testing for a Parametric Transformation Function

Theoretically, the critical values ¢, mentioned in (5.9) can now be obtained using the (1—«)-
quantile of the asymptotic distribution in (5.26)). In Section a bootstrap procedure is

suggested to estimate these quantiles.

Theorem 5.2.6 Assume |(A1)H{(A3)|(A4’)(A5°) and let h estimate h uniformly consis-

tently on compact sets. Consider the fized alternative

Hy: d(h,Ap) >0 forallfdec® (5.27)

and denote the (1 — o)-quantiles of T (as in (5.20)) by co. Then, for the test provided in
(5-9) and all o € (0,1)

n—oo

P(®(Z1,....;Z,) =1)=P(T, >co) — 1,
that is, the proposed test is consistent.

The proof can be found in Section [5.8.2

5.3 Testing Precise Hypotheses

So far, the null hypothesis of a parametric transformation model was considered and the
guidance of the proposed test would be to use a parametric estimator unless Hy was not
rejected. Nevertheless, the transformation model with a parametric transformation class
might be useful in applications even if the model does not hold exactly. Since parametric in
general outperform nonparametric estimators (if the model holds), it could still make sense
in some cases to prefer a parametric estimator to a nonparametric one. This gives rise to
the question if a transformation function is too far away from a given parametric class or
if the class is still acceptable. Hence, the interchanged hypotheses

H' - mind(h, Ag) > d H' :mind(h, A 2
oggg(,e)_n an 1{0213(79)<n (5.28)

are considered in this section. Here, © and Ay are as in and 7 is some threshold
fixed beforehand by the experimenter. Referring to Berger and Delampady| (1987)), the
hypotheses are called “precise hypotheses” in the following. If a suitable test rejects
H], for some small n the model is “good enough” to work with, even if it does not hold
exactly. Dette, Kokot, and Volgushev (2018]) considered precise hypotheses in the context
of comparing mean functions in the context of functional time series. Note that the idea of
precise hypotheses is related to that of equivalence tests, which originate from the field of
pharmacokinetics (see [Lakens| (2017)).

Fortunately, the same test statistic as before can be used although one has to standardize
differently. Assume H), holds, that is, let h be a (fixed) transformation which does not

belong to some given parametric transformation class. Further, let
M(y) = M(c1, e2,6") = Blw(Y)(h(Y)er + ez — Mg (Y))?], (5.29)
let
Y0 = (c1,0,¢20,00) :== argmin M (cy,cp,60")"

(Cl,CQ,Gt)tGY
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5.3. Testing Precise Hypotheses

be unique and let 4 be defined as in (5.17)). Note that  min  M(y) = d(h, Ag) for all

c1€C,c2€C2
0 € ©. Assume that

h(Y1)? h(Y1)  —h(Y1)Ag (Y1)
I'=E |w(Y;) h(Y7) 1 —Agy (Y1) (5.30)
—h(Y1)Ag, (Y1) —Ag,(V1)! Iy

is positive definite, where I'; 3 = Mgy (V) Ag, (Y1) — B, (Y1) Ry and R; is defined as

R; = h(Y{)CLO + 2,0 — Ag, (Y;), 1=1,..,n. (5.31)

Theorem 5.3.1 Assume [[AI}H{(AS)N (A4’ )[(A5’)[(A7) in Section[5.7 and let T' be po-
sitive definite. Then

n (T, /n — M(v0)) 23 N(0,0%), (5.32)
where 02 = Var (w(Yl)R% +0(21)) and §(z) = 2E[w(Y2)¥(Z1, Us)Ry | Zy = 2].

The proof can be found in Section Since in this scenario it is not clear how to obtain
appropriate quantiles via some bootstrap algorithm, it would be desirable to simply plug
a consistent estimator of o2 into or to be precise standardise the left hand side to
obtain a standard normal distribution. Then, a consistent asymptotic level-a-test would
reject H} if (T, — nn)/(n6%)Y? < ug,, where u, is the a-quantile of the standard normal

distribution. For this purpose, let (m),eny = (M, )nen be an intermediate sequence, that is

n
My — 00, —— — 00,
n

and define ¢ := [mln} — 1. Moreover, let ),, be the compact support of w and denote for

some v € {1, ...,q} the nonparametric estimator of & depending on Z(, _1y,41, - Zur by
ﬁ(”), that is,
. 1 vr 1
L) () = h(y) = — 7. i
(y) = hly) = — > W(Z, TW) + 01”(\/%)

j=@w—1)m+1

holds uniformly on Y.

Lemma 5.3.2 Assume[(A1}H(A3)[(A4°)[(A5’)[(A7)in Section[5.7 and let I be positive
definite. Define

vm

= su m(h"W) (y) — L ; =o .
Hoi= sp V() =) = = > w(ZJ,T(y))‘ () (5.33)

j=(v—1)m+1

for m — oo. Then, there exists an intermediate sequence (mp)nen and a null sequence

(an)nen such that

max Hpp = Op(ay) (5.34)
v=1,....q
and )

P(|Hp1| >¢) = 0<q> (5.35)
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5. Testing for a Parametric Transformation Function

2

holds for all e > 0. Then, a consistent estimator of the asymptotic variance o* is given by

o (112 (2\/:% Zw(y’“)(il(y)(yk) iL(YIC))(B(Y]c)él + ¢ — Ag(Yi))
v=1 k=1
i (w(ij)(ﬁ(yj)él + & — Ay(Y)))?

j=v—1)mn+1

1

+ T

n 2
- 23w + e - 45007 )

with (¢1, ¢, 0') = A from equation . One has 6% — 0% = (’)p(\/% +an + n=1). The
(i/

optimal, that is fastest, rate of convergence is Op(n_%), which is obtained if (5.34) and

hold for my, = Op(y/n) and an, = Op(n*i),

The proof can be found in Section [5.8.4]

5.4 Bootstrap

Although the results presented in Theorem give an idea of how the test statistic be-
haves asymptotically, it is hard to extract any information about how to choose the critical
values ¢, in from the limiting distribution in equation appropriately. The main
reasons for this are that first for any function ¢ the eigenvalues of the operator mentioned
in are unknown, that second this function is unknown and needs to be estimated as
well and that third even ¢ (which would be needed to estimate ) is unknown and rather
complex (see Section . Therefore, calculating the quantiles of the distribution in ([5.26))
directly might not be a good idea and some bootstrap technique should be applied instead.
In this section, a bootstrap algorithm is developed and consistency of the procedure is pro-
ven.

A bootstrap algorithm is required to fulfil two properties: First, under the null hypothesis
the algorithm has to provide, conditioned on the original data (Y7, X1), ..., (Ya, X,), con-
sistent estimates of the quantiles of 7}, or more precisely its asymptotic distribution .
To specify, what is meant by this, let (€2, .4, P) denote the underlying probability space and
assume that (£2,.4) can be written as 2 = Q1 x Q9 and A = A; ® Az for some measurable
spaces (€21,.41) and (2, A2). Further, assume that P is characterized as the product of a
probability measure P; on (€,.4;) and a Markov kernel

P}y x Ay — [0,1],

that is P = P, ® P#. The expectation with respect to Pj(w,-) is written as E[-|w]. In
the following, bootstrap data (Y7*, X7), ..., (Y,:, X)) is generated. While randomness with
respect to the original data is modelled by P;, randomness with respect to the bootstrap

data and conditional on the original data is modelled by Pj. Moreover, assume
Pl (w,A) = P(Q1 x A|(Y;, X;) = (Yi(w), X;(w)) Vi=1,...,n) for all w € Q1, A € As.
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5.4. Bootstrap

With these notations in mind, if the bootstrap statistic is denoted by T ,,,, where m is the

sample size of the bootstrap data, then for all ¢ € (0, 00) it would be desirable to obtain
P (w € Oy : limsup | P} (w, {T%,, < q}) — P(Ty, < ¢)| > 5) = o(1) (5.36)
m—0o0
for all 6 > 0 and n — oco. Here, the notation
Py (w ATy < q}) = Py (w,{& € Q2 (w,0) €{T;,, < q}})

is used. On the other hand, to be consistent under H; the bootstrap quantiles have to
stabilize or at least converge to infinity with a rate less than that of T,. To be precise, it
is needed that

P (w € Oy : limsup Pl (w, {T}, < T2, }) > 5) = o(1) (5.37)

m—o0

for all 6 > 0 and n — oo. The main problem of estimating the quantiles in ([5.26|) consists

in mimicking the asymptotic behaviour of h. In the following, an algorithm is given which

ensures both properties (5.36)) and (5.37)).

Algorithm 5.4.1 Let (Y1,X4),...,(Yn, X,) denote the observed data and for some a €
(0,1) let qo denote the quantile that needs to be estimated. Further, let (an)nen and (by)nen

be sequences with an,b, \ 0. Moreover, define
and  gy(z) = Elhg(Y)|X = al.

(1) Calculate 5 = (&1,6,0)" = argmin 27 w(Y;)(h(Yi)er 4+ 2 — Ap(Yi))2. Let 8 be
er

5
defined as in|(A5) (under the null hypothesis) or as in|(A5°) (under the alternative)
in Section and let § be an estimator of gy, -

(2) Let m € N and let W; and &,i = 1,...,m, be independent and absolute continuous
random variables. Estimate the parametric residuals €(0) = hg(Y) — go(X) by

2(0) = hg(Yi) — §(X,), i=1,...,n.

Draw some indices j%,jz,j = 1,...,m, with replacement from {1,...,n} (indepen-
dently) and define the bootstrap data by

X7 = Xjy + bW

and

i n A
=1

(8) Calculate the bootstrap estimate h* for h* from Y7 X7),5=1,...,m.

(4) Calculate the bootstrap statistic T, ,, = 31€1¥ > w(Yj‘)(ﬁ* (Y] )er + 2 — Ag(Yj*))Z.
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5. Testing for a Parametric Transformation Function

(5) Let B € N. Repeat steps -. B times to obtain the bootstrap statistics T*

n,m,1r "
T*

wm.p- Let @i denote the quantile of Ty, conditional on (Y;, X;),i =1,...,n. FEsti-

nm

mate q;, by
@Z = min {Z € {T;Lk,m,l?‘ nt} ZI{T* <z} > a}‘

To apply the estimating approach developed by |Colling and Van Keilegom| (2019)), further
assumptions are needed to induce the validity of Algorithm [5.4.1]

Assumptions 5.4.2 In the following, the notations from Algorithm[5.].1] are employed.
Let -L e g

nan’ ppdx+4
(1) Let g be (q+ 2)-times continuously differentiable (same q as in[(B4)] in Section[5.7).

(2) Denote the densities of W; and &,i=1,...,m, by fw and fe, respectively. Assume

o fw and fe are (¢ + 2)-times continuously differentiable,
e fy has bounded support,

e fi(0) >0 and fe >0,

e cither ‘%fg(U)! <K,

_ o -
@] <ful™ and | fw)] < Klul™ (5.39)

for all lu| > L, f € {f&a%fg} or

Haf(ﬂf)H <K and H;Cf(x)Hf{mnn} < Kl|z||7" Iz > Ly

for somev >1,K,L € (0,00) and all fe {fW, a%ifw, %fw}, where the same
i was used as in|(B3). From now on, the case i =1 is considered w.l.o.g.

d
Remark 5.4.3 1. The properties 122’(; — o0 and fiy(0) > 0 ensure that conditional
on the original data (Y1,X1), ..., (Yo, Xn) the support of X{ contains the support of v
(from assumption |(B7) in Section with probability converging to one. Thus, v

can be used for calculating h* as well.

2. To proceed as in it may be necessary to modz’fy h* so that S := g(X;)—i—éjg (0~)—
1 DRI ) + anﬁj belongs to the domain of (h*)~! for all j = 1,...,m. As long as
these modifications do not have influence on h*(y) for y € Yy, the influence on h*
and Ty, ., should be asymptotically negligible (which can be proven for the estimator

of |Colling and Van Keilegom| (2019)).

3. Later, it is assumed that the map y — Ag(y) is (¢+2)-times continuously differentiable
for every 6 € O, where © is an arbitrarily small neighbourhood of 6. This assumption
can be relazed as long as (uniformly in 0 € @) Ay can be approzimated by some (q+2)-
times differentiable function Ng such that

sup [Ag(y) — Ao (y)| = op(ay).
yeyw
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For any realisation w € €2y define

_ Fy(y) = Fy+(0)

By =P, 07 <wb) T°0) = 520 "R (o)

U =T (V") (5.40)

and
S* =h*(Y™).

Together with assumptions Algorithm [5.4.1] is constructed in a way such that for the
estimator of (Colling and Van Keilegom| (2019) a bootstrap counterpart to ([5.13)) is valid,
namely

h(y) — b (y) — %iww;,x;,’f*@))’ g %}) :O>

j=1

P, (w €Q:V¥5>0: limsup Py (w, {sup

m—» 00 yeK

=1+o0(1) (5.41)

for all compact sets L C R and n — oo, where ¢* fulfils assumption|(A7*)| In the following,
the conditional density of e(f) given X is written as f.(g,)x-

Lemma 5.4.4 Let K C R be compact. Assume[(A9) in Section[5.7 and

max |9(XG) — go, (X

=10 0 — 6ol|"
] =o0p(1) and % = op(1). (5.42)
an an
Then,
1 & U*él(é) 1 " U*€i(90)
el el —277) = Fel ————= )| = 1
s DR ) LD R(a )| =
and

sup
ue

1 - u — z’fz(é) 1 - u — Ei(eo)
— - 7 = 1).
nan;f§< an ) nan;f£< an o(1)
The proof can be found in Section [5.8.5

Remark 5.4.5 (i) Later, it will be shown that 137, £1(0) = 0,(1) in the proof of
Lemma [5.8.3. Hence, the assertion of Lemma can be extended to the centred

residuals €;(0) — %Z?:l €1(0) by considering a slightly bigger set K.
(ii) Many of the assumptions in|(A9) can be replaced by less complex, but more restrictive
versions. For example, due to assumption below is implied by

E| sup ||HessAg(Y7)|[’| < oo
|16—6oll<s

forallj=1,...,r =1 or

max sup || Hess Ag(Yi)|| = Op(]10 — 60| ")
k=L,...n||9—g,||<5

(=0, (ni) under the alternative).

iii) One has ||0 — 6|| = O n=1) under the alternative. Unfortunatel , the experimenter
P Y

i advance does not know, if the null hypothesis or the alternative holds, so that in

general limits a, to a;! = o(n4(r11)) = o(ni).
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5. Testing for a Parametric Transformation Function

(iv) The regression function gg, can be estimated using the Nadaraya-Watson approach
as in the paper of |Heuchenne, Samb, and Van Keilegom| (2015). Under some ad-

ditional assumptions, their Proposition 6.1 and its extension in the supplement of

Colling and Van Keilegom (2016, p. 7) yield () — gg,(z) = Op<, [losn) 4 116 — 90”)

nhaX

untformly on compact sets. When assuming the existence of some compact set K C
supp(fx) such that supp(v) is contained in the interior of IC, equation (and a
counterpart of below for compact sets) can be obtained when discarding those
(Y, X5), (Y], X7), for which X;, X7 ¢ K holds. Note that an equation similar to
can still be derived, although in general with another 1. Then, requires
a,l = op<(l’?)’gl%;)) 2<TT“>> for HHN—GOH = Op(n_%) and a;! = 0((17’;’;%;())%—1—71%)
for |16 = 6ol| = Op (n 7).

N

Lemma 5.4.6 Let assumptions[5.4.4 and be fulfilled. Further, assume (A7)
[(A9)[(B1}{(B10) in Section and

. o0 . 0
sup [g(x) — gp,(x)] = 0p(1) and  sup a—g(x) ~ 5, %0 ()| = op(1), (5.43)
zeRIX zeRdx | OT1 21
Moreover, assume the ezistence of a neighbourhood © of 8y such that the map y — Ag(y)
is (¢ + 2)-times continuously differentiable for all 6 € ©. Let h* be the estimator from
based on the bootstrap data (Y;*, X7),j = 1,....,m. Assume that the density of ()

(denoted by f.(9,)) is continuous and

sup ’efs(eo)(e” < 0. (5'44)
ecR

Then, assumptions[(A7%) and[[A8%) are fulfilled and especially equation is valid.

The proof can be found in Section [5.8.6} The assertion can be extended to other i €
{1,...,dx} as long as assumption |(B3)|is fulfilled.

Theorem 5.4.7 Assume Ho[(AIJH(ATJ(AT*)|(A8%)in Section[5.7 Then, the bootstrap
statistic T}, ,, computed by algorithm fulfils . If ¥, denotes for all a € (0,1) the

corresponding bootstrap quantile described in[5.4.1, one has

P, (w € Oy :limsup g}, — ga| > 6) =o(1)

m—00

for all 6 >0 and n — oo.

The proof can be found in Section[5.8.7} Under the null hypothesis the proof of Lemma[5.4.6
is based on the convergence of * to ¢ in probability and uniformly in its input argument,
which will be specified later. If the alternative holds, it is not even clear if ¥* stabilizes in
some sense (see assumption ) Hence, additional assumptions are needed. For that

purpose, define
Fog)(e) = P((0) < e),
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5.5. Simulations

While doing so, assume FZ(0) < FZ(1) to ensure that T is well defined, and define

- >
(EB)_I(U) = > , if Tg(y) § u for all y € R.
00

Note that @ plays a similar role under the alternative as ®(u|z) = Fy|x (u|r) under the
null hypothesis and thus is assumed to be continuously differentiable on Uy x supp(v) with

inf 2i)(u|9c) >0 and inf 0

—®(ulz) >0 5.45
(u,z)€ Up xsupp(v) ou (u,z)€ Up Xsupp(v) 8%1 ( ‘ ) ( )

in the following. Again, the derivative with respect to any other component z;, i €

{1,...,dx}, could have been used as well.

Lemma 5.4.8 Let the assumptions |5.4.2 and (5.42) be fulfilled. Moreover, assume Hq,

[((A1}H(A3) [(A4°). [(A5"), [(AG) [(A7T°) [(A9), [BI}(B10] in Section [5.7 as well as

—. Further, assume the ezistence of a neighbourhood © of 8y such that the
map y — Mg(y) is (q + 2)-times continuously differentiable for all & € ©. Let h* be the

estimator from below, which is based on the bootstrap data (Yj*,X]’?‘),j =1,..,m.
Then, assumption |(A7*) is fulfilled.

The proof can be found in Section [5.8.8

Theorem 5.4.9 Under Hy assume[(A1}H(A3N(A4 (A5 J[(AT¥) in Section[5.7 Then,

the bootstrap statistic Ty ., computed by algorithm fulfils . If ¢, denotes for all
a € (0,1) the corresponding bootstrap quantile described in Algorithm one has

Py (w e T, > limsupq;;> =1+o(1).

m—00

The proof can be found in Section [5.8.9

Remark 5.4.10 Whatever estimator of g is used, there are in general further assumptions

(for example integrability conditions on'Y" ) needed to ensure sup |§(z)—g(x)| = op(1). The
reRIX
reader is referred to Heuchenne et al.| (2015) or Neumeyer et al.| (2016) for one Nadaraya-

Watson and one local polynomial approach, respectively, in the context of transformation

models.

5.5 Simulations

In this section, the question of how the performance of the proposed test for finite sample
sizes could be analysed is answered and some simulations are conducted to illustrate the
behaviour of the test for finitely many observations. The testing procedure mainly consists

of three parts:
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5. Testing for a Parametric Transformation Function

e the nonparametric estimation of h,
e calculating the minimum and the test statistic T},
e estimating critical values (via bootstrap).

While the bootstrap algorithm has already been explained in the previous section, both of
the following subsections deal with one of the first two issues. The last subsection contains
the actual simulation, that means the rejection probabilities and some explanatory figures
for some chosen examples under the null hypothesis and under several alternatives. Consider
n € IN independent random variables (Y7, X1), ..., (Yn, X,) identically distributed as some
(Y, X). Throughout this section, the nonparametric, but homoscedastic transformation
model is assumed and the test from is considered. Simulations and calculations
are conducted with R (R Core Team| (2017)).

5.5.1 Nonparametric Estimation of h

The nonparametric estimator / of Colling and Van Keilegom| (2019) is applied, see Section
[L.4] for some motivation and a detailed treatment of this estimator. Denote the conditional
distribution function of U, given X; = z, with U; from by Fyx(-[z) and the
empirical distribution function of Y7, ..., Y, by Fy. Remember

~

h(y) = Q(T (), (5.46)
where R R
Ty = YW = Fv(0)

 Fy() - Fr(0)]
and U; := T(Y;) estimates U; from (5.10)) for all i = 1,...,n. For some appropriate weight

function v, let

~ . Sl(u,l')
Q(u) = ar mln/vx - —q‘dx 5.47
(1) = argmin. [ (o) |20 (5.47)
with R
u 9Fyx (r|z)
a or
= — 9 d 5.48
O e e (5.48)
Ox1
and

- S K, (X — 1)K, (u = U;)
Fyx (ulz) = 1 S o (X 1) .

Here, h, and h,, are bandwidths and K is an appropriate kernel function (as in the assump-

tions [[B3)] and [[B4)]) and
1 u v i
Kp(u) == hK<h>’ Kn(u) == / Kp(r)dr = / K(r)dr.

Moreover, let L and b be some appropriate distribution function and bandwidth, respecti-
vely, and Ly(-) = L(Ii)). To ensure the derived asymptotic properties, the estimator in
(5.47) actually has to be replaced by a smoothed version

Qu) = arg min / () <28‘ ;”)) - q> <2Lb<28 ;”; - q> - 1) d (5.49)
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5.5. Simulations

(see (Colling and Van Keilegom| (2019)). Nevertheless, the median is used as in the paper
of Colling and Van Keilegom| (2019) for conducting simulations since on the one hand the
expression in ([5.49)) converges to that in for b — 0 (which indeed can be written as
the median) and on the other hand applying the estimator in avoids the choice of
another smoothing parameter. Additionally, it is anyway discretized with respect to the

r-component later.

Remark 5.5.1 1. In principle, the weighted L'-distance in could be replaced by
an L?-distance (or possibly even another distance) as well. Here, only the L'-distance
is used since according to |Colling and Van Keilegom| (2019) the resulting estimator

seems to outperform its counterpart which is based on a square loss.

2. The derivative with respect to any other component x; fulfilling assumption|(B3) can
be used as well (similar to|Chiappori et al| (2015)). W.l.o.g. only the case i = 1 is

considered here.

As in the paper of |Colling and Van Keilegom|(2019) v is chosen to be the density of a uniform
distribution in the simulations. Moreover, for some natural number N,, the estimator is
approximated by the empirical median of points X(u,:rl),l = 1,..., Ny, where z1,...,xn,
form an equidistant grid between min X; and min X;. After rejecting those values for

i=1,...,n i=1,...,n

which the integral (calculated by integrate in R) in (5.48)) diverges or which are near to

such values, the median of all remaining values is considered.

5.5.2 Calculating the Test Statistic
The three-dimensional minimization problem can be reduced to a one-dimensional one. For
this purpose, define

n

folet,e2) == w(Vi)(M(Yi)er + 2 — Ag(Vi))?
pt

and write

T,, = min min o(ci1,ca).
" 0cO (C1,02)€Cl xC f ( ’ )

Taking the derivative of fy leads to

Die, ey foler, ca) = 2 w(Yi) (W(Yi)er + ca — Ag(Y2)) ( MYy , 1 )
k=1

22(01 : CQ)Zn:w(Yk) h(fk) <i"(Yk) ; 1)

k=1

*QZW(Yk)AO(Yk)< h(Yy) , 1 )

k=1

!
=0
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5. Testing for a Parametric Transformation Function

and the corresponding solution

a(®) =R 3 w(Yy)Ag(Yr) Alth) 7
c2(0) k=1 1
where
R = w(Ye) iﬁ(Ykz)2 h(Yy)
k=1 h(Yk) 1

After inserting this solution, one has

| c1(0)
n=wﬂaw’0M”R<wm)

k=1
—ifﬂ%mmm%mmNMm,l)H<M?). (550
j=1 k=1

This expression can now be used to obtain in a first step the minimizer § € © and in a
second step the minimum itself. To calculate the minimum of (5.50)) the function optimize,

which is already implemented in R, is used.

5.5.3 A Simulation Study

Finally, some data is generated and a simulation study is conducted in this section. There
are mainly three blocks of unknown quantities that have to be fixed for simulations. First,

having a look at the model equation
h(Y) = g(X) +e,

this model already contains four components, namely the regression function g, the trans-
formation function h, the distribution of X and the distribution of €, that can be chosen
differently when conducting simulations. Additionally, the same simulation parameters as
in most simulation studies such as bandwidths, kernel functions, the sample size etc. have
to be chosen. The third group consists of the bootstrap components, e.g., the distributions
of W and £ or the number of bootstrap repetitions. Although it is conjectured by the
author that all of these choices might have an impact on the performance of the test in
, examining the influence of each of these choices would go beyond the scope of this
thesis. Further, any comparison to other testing approaches is difficult since to the authors
knowledge only Neumeyer et al. (2016) and Huskova et al. (2019) provided comparable
tests, but considered a parametric transformation and alternatives with respect to the er-
ror distribution in their simulations, which are not covered by model . Consequently,
possibly the first simulations for a hypothesis test in model testing for a parametric

transformation function are given in the following.
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5.5. Simulations

Remark 5.5.2 It might be possible to adapt the testing procedure to the heteroscedastic
model by applying the estimation techniques presented in Section . The resulting test
might be more comparable to other model tests like for example those of |Neumeyer et al.

(2010) and Huskovd et al.| (2019).

Fixing the Model Related Components
Throughout this section,
g(X)=4X -1, X ~U(0,1]) and e~N(0,1)

are chosen. Moreover, the null hypothesis of h belonging to the Yeo-Johnson transforms
(5.3)) with parameter 8 € ©¢ = [0, 2] is tested. Actually, these transforms are standardized

in advance to match the identification constraints
h(0)=0 and h(l)=1.

Later, the cases 8 = 0,0 = 0.5,0 = 1 and § = 2 are simulated. It remains to define
appropriate alternatives. The choice
h(Y) = Ao, (Y) 4+ cr(Y) — Ag,(0) — ¢r(0)

Ag, (1) + cr(1) — Ag,(0) — cr(0)

for some 6 € [0, 2], some strictly increasing function r and some ¢ > 0 leads to the problem,
that the observations are simulated via Y = h™1(g(X) +¢), that is, it is necessary to know
the inverse of the chosen transformation function, which in general cannot be calculated
straightforwardly for such an h. Furthermore, note that the standardization in order to
fulfil the identification constraints indirectly leads to a convex combination of Ag, and r.
In the following, this convex combination (now for the inverse functions) is done directly
via

(1= o) (Ag (V) = Ay 1 (0)) + e(r(Y) — (0))
(1= o)(Ag, (1) = Az, (0)) +e(r(1) = (0))

for some 0y € [0,2], some strictly increasing function r and some ¢ € [0,1]. The inverse

R Y) = (5.51)

Yeo-Johnson transforms are given by

(1+0Y)s —1, ifY >0,0#0
Ae_l(Y) _ exp(Y) 711, ity >0,0=0 ‘ (5.52)
1—(14(0-2)Y)77, ifY <0,0#2

1—exp(-Y), ifY <0,6=2

Remark 5.5.3 1. In general, even with the definition it is not clear if a growing
factor ¢ leads to a growing distance @ Indeed, the opposite might be the case,
if 7 is somehow close to the class of transformation functions considered in the null
hypothesis. To illustrate this phenomenon, let 61 # 09 € [0,2] and consider for some
c > 0 the transformation function

W) = Ag, (Y) — Ag, (0) + c(Ag, (Y) — Ao, (0))

Ag, (1) — Ao, (0) + c(Ag, (1) — Mg, (0))
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5. Testing for a Parametric Transformation Function

While for ¢ = 0 the null hypothesis is valid, the alternative in general holds for

c > 0. Nevertheless, with growing c the transformation function will be closer to
Vo Agy (Y)—Ap,(0)
Mgy (1)—Ag, (0) 7
necessarily imply a somehow “stronger” violation of the null hypothesis.

that is, the distance decreases. Hence, a growing c does not

2. If one defines the transformation function via its inverse as in , it holds that
h e {Y = Mgy (Y (Mg N (1) — A5 (0)) + Ay (0) : B € e}

for ¢ =0, that s, the null hypothesis in would be violated even for c = 0. Since
for computational reasons an analytical form of the inverse transform is required,
it will be proceeded as in to simulate the alternative case and as in to

stmulate the null hypothesis case.

Simulations are conducted for

r(Y) =50(Y), (5.53)
r2(Y) = exp(Y), (5.54)
r3(Y) =Y3, (5.55)

where ® denotes the cumulative distribution function of a standard normal distribution,

and ¢ =0,0.2,0.4,0.6,0.8, 1. Although quite similar to 1 sometimes the logit function

ra(Y) = 5exp(Y)

= Trea®) (5.56)

is used for illustration reasons as well. The prefactor in (5.53) and (5.56|) is introduced due
to the fact that the values of ® and the logit function 1-7-):(;2.) are rather small compared to
the values of Ay, that is, even when using the presented convex combination in (5.51)), Ag,

(except for ¢ = 1) would dominate the “alternative part” r of the transformation function.

In principle, other prefactors are conceivable as well. Note that ro and Ag only differ with
respect to a different standardization. Therefore, if h is defined via (5.51)) with ro from
(5.54) the resulting function is close to the null hypothesis case for ¢ = 1. Consequently, it

is conjectured that the rejection probabilities at some point may decrease for growing c.

Choosing Kernel Functions and Bandwidths

Calculating the test statistic as described in Section [5.5.2| requires a weighting function w
and an appropriate nonparametric estimator of h. The weighting function is set equal to one
(that is, the test statistic is calculated without weighting the data), while the nonparametric
estimator of h is calculated as Colling and Van Keilegom, (2019) did. For details of the
approach see Section As in the paper of (Colling and Van Keilegom| (2019) the

Epanechnikov kernel

K(y) = 50— )1 ()
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is used and the bandwidths are chosen by the normal reference rule (see for example |Sil-
verman| (1986)):

1
4 5

n

(40\/7?>3
ha? - Ogx,

n

where 62 and 62 are estimators for the variance of U = T(Y) and X, respectively. The
number of evaluation points IV, for the nonparametric estimator of h is set equal to 100
(see Section for details). The integral in (5.48)) is computed by applying the function

integrate, which is already implemented in R.

Bootstrap Implementation

After the model components have been fixed and the test statistic can be calculated accor-
dingly, only the question of how to estimate the bootstrap quantiles needs to be answered.
Recall the definition of Algorithm [5.4.1] and its notations. In each of M = 200 simulation
runs n = 100 independent and identically distributed random pairs (Y1, X1), ..., (Y, X»)
are generated as described before. In each simulation run B = 250 bootstrap test statistics,
which are based on m = 100 bootstrap observations (Y;*, X7), ..., (Y,:, X)), were calculated

as in Algorithm [5.4.1] using

W ~U(-1,1]), &¢~N(0,1) and a,=>b,=0.1.

Remark 5.5.4 Among other things, the nonparametric estimation of h, the integration in
, the optimization with respect to 8 and the number of bootstrap repetitions cause the
simulations to be quite computationally demanding. Hence, an interface for C++ as well

as parallelization were used to conduct the simulations.

Results and Interpretation

The main results of the simulation study are presented in Table There, the rejection
probabilities of the settings (5.53)—(5.55) for ¢ = 0,0.2,0.4,0.6,0.8,1 and 6y = 0,0.5,1,2
are listed. The significance level was set equal to 0.05 and 0.10. To obtain more precise
estimators of the rejection probabilities under the null hypothesis, 800 simulation runs were
performed for each choice of 8y under the null hypothesis, whereas in the remaining alter-
native cases 200 runs were conducted.

First, note that the test sticks to the level or is even a bit conservative. Second, the re-
jection probabilities not only differ between different choices of r, but also between different
transformation parameters 6y that are inserted in . Third, the power of the test is,
especially for 6y = 2 and model , even for small values of ¢ quite high in some cases.
Fourth, for small deviations from the null hypothesis the rejection probabilities are someti-

mes extremely small and especially smaller than those under the null hypothesis.
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5. Testing for a Parametric Transformation Function

Alternative/ Parameter 0=0 6=0.5 0=1 0=2
Level a = 0.05 a = 0.10 a = 0.05 a = 0.10 a = 0.05 a =0.10 a = 0.05 a = 0.10
null hyp. 0.01000 0.0400 0.03125 0.0875 0.03125 0.07750 0.01625 0.05625
c=0.2 0.000 0.010 0.075 0.105 0.010 0.015 0.000 0.020
c=0.4 0.000 0.000 0.020 0.045 0.000 0.015 0.120 0.200
5®(Y) c=0.6 0.100 0.155 0.035 0.050 0.085 0.150 0.415 0.545
c=0.8 0.685 0.765 0.110 0.210 0.505 0.645 0.785 0.890
c=1 0.965 0.990 0.925 0.975 0.975 0.985 0.985 0.990
c=0.2 0.010 0.035 0.030 0.045 0.515 0.640 0.885 0.965
c=0.4 0.015 0.040 0.000 0.005 0.060 0.135 0.870 0.980
exp(Y) c=0.6 0.035 0.085 0.000 0.005 0.005 0.005 0.625 0.815
c=0.8 0.020 0.040 0.010 0.040 0.000 0.005 0.185 0.325
c=1 0.020 0.065 0.030 0.090 0.025 0.095 0.050 0.105
c=0.2 0.330 0.505 0.730 0.855 0.810 0.905 0.930 0.995
c=0.4 0.730 0.865 0.815 0.945 0.875 0.970 0.915 0.990
y3 c=0.6 0.880 0.940 0.895 0.960 0.950 0.995 0.940 0.990
c=0.8 0.895 0.965 0.925 0.975 0.935 0.990 0.915 0.980
c=1 0.980 0.990 0.960 0.990 0.939 0.990 0.940 0.985

Table 5.1: Rejection probabilities at 8y = 0,6y = 0.5,0p = 1,0y = 2 for r chosen as in

)65

Apart from other “classical” reasons such as the choice of the model parameters or the
bandwidths and kernel functions, there are two reasons, that explain at least some of these
observations. First, the class of Yeo-Johnson transforms seems to be quite general and
second the testing approach itself is rather flexible due to the minimization with respect to
~v. Having a look at the definition of the test statistic in and , it attains small
values if the true transformation function is close to a linear transformation of Aj; for some
appropriate 0 € [0,2]. In the following, this issue will be explored further by analysing some
graphics.

All of the figures that occur in the following have the same structure and consist of four
subgraphics. The upper left graphic shows the true transformation function h with inverse
function as in (5.51). Due to the choice of g(X) =4X — 1 and X ~ U([0,1]) the vertical
axis reaches from -1 to 3, which would be the support of h(Y") if the error is neglected. In
the upper right corner the parametric estimator A of this function, which is based on 6
from , is displayed. Both of these functions are then plotted against each other in
the lower left corner. Finally, the function Y — AgO(Y(Ag_Ol(l) — AG_OI(O)) + AG_OI(O)), which
somehow represents the part of the true transformation function h, which corresponds to
the null hypothesis, is shown in the last graphic. The arguably most informative of these
graphics is that in the lower left corner since there one can see whether the true transfor-
mation function can be approximated by a linear transform of some Ay, 0 c [0, 2], which is
an indicator for the test probably not rejecting the null hypothesis.

As already mentioned, the rejection probabilities not only differ between different deviation
functions 7, but also for different choices of the transformation parameter. For example,
when considering r as in with ¢ = 0.6 the rejection probabilities for 8y = 0.5 amount
to 0.035 for « = 0.05 and to 0.050 for @ = 0.10, while for § = 2 they are 0.415 and
0.545. Figures and explain why the rejection probabilities differ that much. While
for #y = 0.5 the transformation function can be approximated quite well by transforming
Aj = A16 linearly, the best approximation for 6y = 2 is given by Az = Aj.94 and seems to

be relatively bad. The best approximation for ¢ = 1 can be reached for 8 around 1.4.
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5. Testing for a Parametric Transformation Function

Nevertheless, the differences between the rejection probabilities when using different r seem
to be more severe. The graphics in Figure deal with the logit function as in for
¢ = 1. The Yeo-Johnson transforms are so flexible that even for ¢ = 1 the logit function
can be approximated quite well (for 6 around 1.53). Table lists the empirical means
and variances of some corresponding quantities such as the estimated 6 or the value of the
test statistic. As can be seen there, the value of the test statistic is even below that of
the null hypothesis case for small values of ¢ # 0, which results in relatively low rejection
probabilities. As a side note, the empirical mean of the estimated 0.10-quantiles is below
that of the test statistic although the test rejects only in 8, 75% of the simulation runs. Here
and throughout the whole simulation study, the variance of the estimated transformation
parameter is relatively small.

In contrast to the situation for r as in , considering 6y = 2 and r as in results in
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Figure 5.3: Some transformation functions for ¢ =1 and r as in ([5.56|).

Convex Weights null hyp. | ¢=02 | ¢=04 | ¢=06 | c=08 | c=1
Mean of 0 0.461 0.513 0.664 0.831 1.159 | 1.532
Mean of T, 2.669 2.364 2.368 2.128 1.849 | 4.352
Mean of 0.05-bootstrap-quantiles 3.835 3.500 3.700 3.546 3.705 | 5.036
Mean of 0.10-bootstrap-quantiles 2.663 2.367 2.413 2.171 1.995 | 3.801
Variance of § 0.014 0.014 0.017 0.020 0.028 | 0.042
Variance of T}, 2.381 1.471 1.931 1.402 1.417 | 6.733
Rej. Prob. for o =0.10 0.0875 0.080 0.045 0.065 0.005 | 0.270

Table 5.2: Some estimated quantities of the distribution of 7;, for § = 0.5 and r as in
(15.56]).
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5.6. Discussion

a completely different picture. As can be seen in Figure[5.4] even for ¢ = 0.2 the resulting h
differs so much from the null hypothesis that it can not be linearly transformed into a Yeo-
Johnson transform (see the lower left subgraphic). Consequently, the rejection probabilities
are rather high. Note that not only the values of the test statistic seem to explode, but
those of the bootstrap quantiles as well. Although not intuitive, this is consistent with the

findings in Section [5.4] and equation ([5.37)) since equation ([5.37)) only requires the bootstrap
quantiles to grow less than the test statistic itself.

True Transformation Function
1
!
Parametric Estimator
1
I

15 20
| |

Parametric Estimator
10
|

Param. Funct. at Original Parameter

T T T T
-1 (0] 1 2

w
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w

True Transformation Function True Transformation Function

Figure 5.4: Some transformation functions for § = 2,¢ = 0.2 and r as in ([5.55|).

Convex Weights null hyp. | ¢=0.2 c=04 c=0.6 c=0.8 c=1
Mean of 1.978 0.891 0.754 0.695 0.627 0.644
Mean of T, 10.59 824 1460 1797 1903 2620
Mean of estimated 0.05-quantiles 15.95 621 1105 1320 1447 1944
Mean of estimated 0.10-quantiles 10.77 533 943 1131 1231 1653
Variance of 0 0.002 0.019 0.024 0.021 0.028 0.024
Variance of T, 31.301 | 462534 | 3105125 | 2066320 | 4119168 | 5865643

Table 5.3: Some estimated quantities of the distribution of T}, for § = 2 and r as in (|5.55]).

5.6 Discussion

A new goodness of fit test for the null hypothesis of a parametric transformation function
in the transformation model has been provided. The presented approach allows more
general models than Szydlowski (2017). The asymptotic behaviour of the test statistic
has been examined and consistency of the corresponding test has been proven. In
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5. Testing for a Parametric Transformation Function

addition, consistency of a proposed bootstrap algorithm has been shown. In contrast to
Neumeyer et al.| (2016]) or Huskova et al. (2019), (local) alternatives with respect to the
transformation function instead of the variance function have been considered. Moreover,
a consistent test for the relevant hypotheses has been provided for the first time.
There are several opportunities to adjust and examine the presented methods further. First,
due to the high generality of the model lots of simulation parameters had to be chosen in
Section [5 Unfortunately, analysing the sensitivity of the test with respect to each of the
parameters would have gone beyond the scope of this thesis, so that only the influence of a
few of them has been studied. Further, it remains to conduct simulations in the case of the
relevant hypotheses. In this context, the choice of 7, that is, the threshold up to which a
transformation model is expected to fit the data sufficiently well, would be interesting. This
issue is strongly related to the interpretation of the distance between two transformation
models (which would interest on its own).

At the beginning of this chapter, two possible distances and were suggested
for the comparison of two transformation functions. Although it is conjectured that the
corresponding theory for a test statistic based on can be deduced similarly, further
examination would be interesting. It might even be the case that the corresponding test
is accompanied with more power since the minimization with respect to the identification
coefficients ¢; and ¢y is replaced by fixing them beforehand.

At last, there are many possibilities to extend the test for example to heteroscedastic models
by applying the estimating approaches of Chapter [4] or to the case of finite parameter sets.

Some thoughts about these extensions are given in Section

5.7 Assumptions

In the following assumptions let ) denote the support of Y (which may depend on n under
local alternatives). Further, Fg denotes the distribution function of S as in (5.11)) and Tg
denotes the transformation s — (Fs(s) — Fs(0))/(Fs(1) — Fs(0)).

(A1) The sets C1,C and © are compact.
(A2) The weighting function w is continuous with a compact support Y, C ).

(A3) The map (y,0) — Ay(y) is twice continuously differentiable on ), with respect to 6

and the (partial) derivatives are continuous in (y,6) € R x ©.

(A4) There exists a unique transformation h such that model holds with independent
X ande. (V;, X;),i = 1,...,n, are independent and identically distributed observations
from model . The function hg defined in is strictly increasing as well
as continuously differentiable. Moreover, h is strictly increasing and h and r are

continuous on ),,. Fy is strictly increasing on the support of Y.

(A5) Minimizing the function M : T — R,y = (c1,¢2,6")" = E[w(Y)(ho(Y)c1 + 2 —

Ag(Y))Q] leads to a unique solution 9 = (c1,0, 2,0, 6p) in the interior of Y. For all

97é§onehas sup ‘Ae(l AGO) Aéygj\\(o)‘>0

yGSupp
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(A6) The Hessian matrix I" := Hess M (o) with M as in (5.29)) is positive definite (with 7
as in [(A5)[or [(A5)).

(A7) The estimator h of the transformation function h fulfils for some function ¢
and h from (5.15). For some Uy (independent of n under local alternatives) with
Ts(h(Yw)) C Up the function class {z — ¥(z,t) : t € Uy} is Donsker with respect to
PZ and E[4)(Z1,t)] = 0 for all t € Up. The fourth moment E[w(hy*(S1))¥(Z1,U1)"]
is finite and the conditional moments E[w(hy'(S1))1(Z1,U2)?|Z1 = 2] are locally
bounded.

Remark 5.7.1 1. Since the support of w is compact, continuity on Y, results in uni-

form continuity.

2. Lemma yields|5.8.1) that |(A7) is fulfilled for the estimator of Colling and Van Keile-
gom (2019).

When considering fixed alternatives or the relevant hypothesis H{), assumptions
and [(A7)| are replaced by the following assumptions |(A4’)I(A5’) and [(A7’)| (assumption
(A7) is only relevant for Hj). Note that h is a fixed function then, not depending on n.

(A4’) There exists a unique transformation h such that model (5.1)) holds with X and ¢

independent. The function A is strictly increasing and continuous on ),.

(A5’) Minimizing the function M : T — R,y = (c1,¢2,60")" = E[w(Y)(h(Y)er + 2 —
AQ(Y))2} leads to a unique solution 70 (€1,0,¢2,0,00) in the interior of Y. For all

- Ag(y)—Ng(0)  Ag(y) A (0
0 # 0 one has yessulll)g(w) AZ%LAZEO; A } > 0.

(A7) The transformation estimator h fulfils 1) for some function 1. For some Uy D
Ts(h(Yw)) the function class {z +— (z,t) : t € Up} is Donsker with respect to PZ
and E[y(Zy,t)] = 0 for all t € Uy. Further, one has E[1)(Z1,Uz)?] < co.

Now, some assumptions necessary for the bootstrap theory in Section are given. The
same notation as there is used for the probability space. The expectation with respect to

P} is written as E[-|w].

(A7*) The following properties are meant conditional on the data (Y;, X;),i = 1,...,n, and
thus define for fixed n € N some subsets A,, € Ay of 1, where these properties are
valid. Thus, let w € A,,. Then, the following conditions are assumed to be fulfilled
on A,.

(i) The bootstrap estimator A* of the transformation function fulfils

lim sup P21 (w, {sup

m—r00 yeK

W (y) — 1 () - ;éw*@?@*ﬁ@”‘ g jm}) B

(see|5.41)) for all 6 > 0, for some function ¢* and A* from algorithm
(ii) For Uy from [(A7)|and Y, from [(A2)| one has Tg-(h*(Vw)) C Up.
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5. Testing for a Parametric Transformation Function

(A8%)

(A9)

222

(iii) Let Z* = (U*, X*). The function class {z — 9*(z,t) : t € Up} is Donsker (for
fixed n, but m — o) with respect to PJ(w,-)?" (distribution of Z* conditional

on w) and
E[* (22, )] = /w*(Zf(a;),t)Pg(w, o) =0 forall t € Uy,
(iv) The fourth moment Efw(hy*(SF))*(Zf,Us)*|w] is finite and the conditional

moments E[w(h* 1 (S))*(Z5,U3)?| Zf = z,w] are locally bounded.

(v) For all compact sets K C R one has

P, (w €N sup lw(y)v™* (2, T*(y))| > 5\/ﬁ> =o(1) forall § > 0.
yek,zeRIx +1

(5.57)
(vi) One has

lii;ﬂ Ellv*(z,U7) —¢*(y,U{)||w] =0 for all z in the support of Z*.
y—z

For A, as defined above, assume P;(A,) — 1 for n — co.

Define the distribution function of Z* for some w € Q; by Fz«(2) = Pi(w,{Z* < 2})
and assume
sup |Fz«(z) — Fz(2)| = 0p(1). (5.58)
zeR4x+1

Moreover, for all compact K C R4x+1 there exists an appropriate C' > 0, such that

for n — oo
s wl(h)7 8 (2 T () < O+ 0y(1) (5.59)
Further,
w((P)7H($)) (W (2, Tsx(5)) — ¥(2, Ts+(s))) = 0p(1) (5.60)

for all z € Rx*! s c R and for ¢ from for n — oo.

Denote the conditional density of £(6y) as defined in m given X by f.y)x- Let
K € R be compact and f¢ be bounded and r-times continuously differentiable with
bounded derivatives and denote the k-th derivative of f¢ by fg(k). Further, assume

su,gE[ [ (30 + = anel 12 s = anel ) de} <C  (561)
ue
for 1 € {0,7} and

supE{/HA@O(A(;Ol(ggo(X)—|—u—ane))"j\féj)(e)\fs(goﬂx(u—ane]X) de] < C (5.62)

uell
() u — EZ‘(GO)
fgj ( an, >

for sufficiently large C' > 0,n € N and all j = 1,...,r — 1. Moreover, let

as well as
n

1 — 6ol
na sup Z

n uell i—1

sup || Hess Ag(Y;)[[! = Op(1) (5.63)
|16—601|<é

EfJAgy (V)" + [[Ag, (Y)[["] < 00 (5.64)
and _ .
”0 — HOHT [T
W= S~ qup | Hess A(¥7)I[” = O,(1). (5.65)
n = 110-00l1<6



5.7. Assumptions

5.7.1 Assumptions Needed for the Estimation of h

Since in general it is not clear under which conditions assumption is fulfilled, in
the following assumptions are given which ensure |(A7)| for the estimator of |Colling and
Van Keilegom)| (2019)) in ([5.46)) (see Section|[L.4]for details). Let, as in[(AT)| Uy D Ts(h(Vw))

(independent of n under local alternatives) belong to the interior of the support of U and

assume compactness of Uy. Let X € R denote the support of X.

(B1)

(B2)

(B3)

(B4)

(B5)

(B6)

The cumulative distribution function F; of ¢ is absolutely continuous and has a density

fe that is continuous on its support. Furthermore, X and ¢ are independent.

The transformation @ is strictly increasing and continuously differentiable on Uy,
which is a connected (and compact) subset of R.
The set
OFy x (u|x
Xg; = {:EEX:U([)X(‘);&O forallueuo}
T

is nonempty for some i € {1,...,n} (later the case i = 1 is considered w.l.o.g.).

The bandwidths h, and h,, satisfy for an appropriate ¢ € IV
th +2 hdx h2
\/ﬁh%—>0,\/ﬁh%—>0,\/ﬁ7m—>oo, M—mx).
log(n) log(n)

The kernel K is symmetric with a connected and compact support containing some
neighbourhood around 0. Further, K is g-times continuously differentiable with K
and K’ being of bounded variation. Moreover, [ K(z)dz =1, [ 2'K(z)dz = 0 for all
l=1,...,q—1.

The kernel L is twice continuously differentiable with uniformly bounded derivatives
and with median 0, and b = b, > 0 is a bandwidth sequence that satisfies nb* — oo
and by/nhdx (min(hy, hy))?/ log(n) — oo.

v is a weighting function with a compact support Xy C Xy; with nonempty interior.
Further, [ x, V(@) dz =1 and v is g-times continuously differentiable and all these
derivatives are uniformly bounded in the interior, i.e.,

ol
sup v(z)| < oo,

zeXy | Ozt - 83:3;1:(
for all o, ..., gy € {0,...,q — 1} with o] = %% a; < m.

The regression function g is continuously differentiable with respect to x; on X for
i=1,.. dx.

The joint density function fy x(y,z) of (Y, X) is uniformly bounded, (g + 2)-times
continuously differentiable and all these derivatives are uniformly bounded, i.e.,
olal

sup fy,X(y,x) < 00
y: T(y)eUo, €X0o 8y0‘08x?1~-8xadx ’

dx
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5. Testing for a Parametric Transformation Function

for all ag, a1, ..., gy, With |a| = fjo a; < g+2. Further, assume inf  fy(y) >0,
y: T (y)€Uo
where fy is the density function of Y.

(B10) Assume

zEXp (u,z)eUs X Xo 8:1)1 zeX) OFy x (ulz)

OF 1 OFy x (ulz)
nf fx(@) >0, it OrexU o / a8
0 o1 (u, x)

Remark 5.7.2 Assumptions|(B1) and|(B9) imply continuous differentiability of the trans-

formation function h.

5.8 Proofs

As was shown in Section for some fixed h and under iA4i|7 (B1 iHiBlOi the difference
h(y) — h(y) can be rewritten as

1

) i) = & 30z T) + op 2 ).
=1

where (with @, d, w1, ws from Section

”L/J(Zi, u) = 5;‘71(1,71) — (5;.1}2(% 1) + F,U(lcfl_(u});,U(O)([{Ujgu} — I{Ujgo} — FU(U) + FU(O))

(55((1?__3((00)))2 (I{Ujgl} —Iiy,<oy — Fu(l) + Fy(0)).

Before Theorem is proven, an additional lemma, which ensures ((5.13|) for the estimator

of |Colling and Van Keilegom| (2019) under local alternatives, is shown first.

—Q'(u)

Lemma 5.8.1 Assume |(B1)4(B10) and depending on whether local or fixed alternatives

are considered assume|(A4) or|(A4’) Then, assumption|(A7) is fulfilled for the estimator
of |Colling and Van Keilegom, (2019).

Moreover, if r is an alternative function, such that|(A4) is fulfilled, let A C R be a compact
set which contains 0 in its interior and such that

Do (y) = A6, (0) + a(r(y) = (0))
- Agy (1) = Mgy (0) + a(r(1) = 7(0))

h(y, @)

is for all o € A strictly increasing with respect to y. Further, let h='(y,a) denote the
inverse function of h(y,a) with respect to y and define
Mgy ()—Agy (0)+a(r(y)—r(0))
) =2 (Aot Aoy ratr vy ) ~ Fs(0)
“ Fg(1) — Fs(0)

Then, if h(y, o) denotes the estimator of|Colling and Van Keilegom (2019) of h(y, a), which
is based on (Yo, X;) with Yo ; = h™1(S;,a), i = 1,...,n, it holds that

h(y,a) — h(y,a) = %Zqﬂ(Zj,Ta(y)) + Op(n_%)
j=1
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uniformly in y € Yy, and a € A and the process

Zn(ya Oé) = \/ﬁ(h(yva) - h(yv Oé)), (yv Oé) € Supp(w) x A

converges weakly to a centred Gaussian process with covariance function

((y, o, 9, @) = E[Yp(Z1, Ta(y)) ¥ (21, Ta(@))]-

Proof: Note that in the framework here S = ¢g(X) + ¢ is fixed. In the case of a fixed
transformation h, the assertion is covered by Theorems 5.1 and 5.2 of |Colling and Van Kei-
legom| (2019). Therefore, the assertion only needs to be proven for h(y,«). Due to
{n_% :n € Nyn > N} C A for a sufficiently large N, the statement for local alterna-
tives would follow from this. The expansion is shown uniformly in y € ), and a € A.
Nevertheless, most arguments used for fixed h are still valid.

Verification of : The proof follows the same lines as for some fixed h or fixed a.
The only extra effort is to check whether all previous o,(1)-terms are still negligible. Let
Fy,, ﬁ’y& denote the distibution function and the empirical distibution function, respecti-
vely, of Y, ;,7 = 1,...,n. First, note that as in Remark

B N FYQ (Yaﬂ') - FYQ (0)
Ui =TaYoi) = —p Ay =R (0)

does not depend on « because of A(0) = 0 and h(1) =1 for all h € H. The same holds true

for the estimated version

U, = T (Yo, i) = Fy, (Ya) = Py, (0)
T By, (1) - Fy,(0)

since Iy, <y, ;3 = L{a(Va ;,0)<h(Ya.i,0)} 18 independent of a.

)

As in (5.11]) consider the transformation function @ corresponding to the pretransformed

observations, that is
Q(Ta(Y)) = g(X) +e.

Since the estimator Q of @ only depends on estimates 7;(YZ) of the pretransformed obser-
vations and these in turn do not depend on «, the asymptotic expression of Q — (@ does not
change with «. The uniform consistency of @’ holds by the same argument. Later, it will
be proven that

) 1
Taly) = Taly) = Fy, (1) = Fy,(0)

- RO (1) - i, (0)~ (1) + By 0) oy )

()

uniformly in y € ), and o € A, so that

(Fy, (y) — Fy, (0) — Fy, (y) + Fy,(0))

Q(Ta(y)) — Q(Ta(y))
QTa®)) — QTa(w) + Q' (Ta)(Ta(y) — Ta(y)) + 0p(n~7)

h(y) — h(y)

225



5. Testing for a Parametric Transformation Function

— O(Ta()) - QTa()) + @ (Ta) (Taly) — Ta(y)) + 0p(n"2).

= = > U(Z Talw) + op(n72).

j=1

Note that 72(3/) —Taly) = Op(ﬁ) was used to ensure negligibility of some terms caused
by the Taylor expansion or replacing Q’ by @', so that the remaining task consists not only

in proving the expression above, but the stated order as well. If one shows

N A~

Vn(Fy, (y) — Fy,(y)) = vVn(Fs(h(y, o)) — Fs(h(y,a))) = Op(1)

uniformly in y € R and o € A, both properties follow from the equality

a 1, a - b—b/. a(B—b)
—g—g(a—a)—b—Q(b—b)— - <a—a— 2 )

|

bb

for arbitrary estimators ¢ and b. By standard arguments (see for example [Van der Vaart
and Wellner| (1996))), it can be shown that the class

F'={l—ooy(-): t €R}
is Donsker, so that the class
F={Icohwm)() 1y €Yu,a € A} CF

is (as a subclass of a Donsker class) Donsker as well.

Proof of Weak Convergence: Convergence of the marginal distributions with the cor-
responding covariance function can be shown by the ordinary CLT. Furthermore, it has

already been shown that
1 n
Z(y, o) = n Z V(Zj, Ta(y)) + 0p(1).
j=1

For fixed h |Colling and Van Keilegom| (2019)) proved that for any compact interval U C
Ts(S) the class

F={zm(z,u) :uecld}

is Donsker. Although the proof there is carried out using (Y;, X;) (for fixed h) instead of
Z; = (U;, X;) the statement stays valid since ¥(Z;,u) does not depend on h (see Section
[1.4). Thus, when choosing Uy from Section the class

F={20=9(zTiy)) :y € Vu,a € A} C{z— P(z,u) : u € Up}

is (as a subclass of a Donsker class) Donsker as well.

The remaining conditions for v in assumption |(A7)| follow from the results of |Colling and
Van Keilegom (2019) since ¢ does not depend on a. O
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5.8.1 Proof of Theorem [5.2.2

For ease of presentation define

Ma(er,e2,6) =Y w(Yy)(h(Yj)er + ez — Ag(Y))?, (5.66)
j=1

such that T, = minyey M, (y). Let ¥ = (¢, éa, 0) denote the minimizer of M, and 7y be
the vector such that
ho(y)c1,0 + c20 = Ay, (y) (5.67)
(see [(AB))), that is, c20 = Agy(0) and c19 = Ag,(1) — Agy(0). It already has been shown
that
h(-)er + ca = Mgy () + 1727 (")

for ¢y = Mg, (0) +n~27(0) and ¢1 = Ag, (1) — Ag, (0) + n=2 (r(1) — r(0)), so that

h(y)er,o + c2,0 — gy (y) = h(y)(c10 — 1) +e20 — c2 + n*%r(y)

1

= n"2r(y) — n~2h(y)(r(1) —r(0)) —n~2r(0)
= n73 (r(y) — r(0) — ho(y)(r(1) = r(0))) +o(n"2)
= n_%cLoro(y) + o(n_%) (5.68)

0@

uniformly for y € V.
To get a rough idea of how the proof is structured, the main steps are sketched in the

following;:

Step 1: Reduce the problem of minimizing M,, to that of the quadratic function (hy was
defined in (5.16))

n

q(z) = wlhg ' (Sk))(h(Yi)ero + c20 — Mgy (Yi))?
k=1

n

+22" " w(hy " (Sk)(R(Ya)ero + 2,0 — Mgy (Yi))R(Sk) + n2'Tz
k=1

and obtain the corresponding solution

n

29=—-T"1= Z (h(Yi)ero + c2,0 — Mgy (Vi) R(Sk)
k:
~ _4op 1§;¢ P18+ 0,(n"%)
with
B = Elw(hg ' (S1))ro(hg (S1))R(S1)]. (5.69)
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Step 2: Insert zp in g to obtain

7, ( ST S kg (50062 U (23, V)

k=1 i= 1] 1
n3/222 w(Y)ro(Ye)(Z;, Ur) —*ZZ@ )T o(Zk)
k=1 j=1 j=1k=1

—;ﬁZ‘P<Zk)tl“—16+E[w(hgl(S))ro(hg ()] — BT~ 15) +op(1)
k=1

and rewrite this expression to obtain a sum of U-statistics with kernels ¢ and (.

Step 3: Show that the operator K from the assertion is symmetric as well as continuous
and apply the results of |Witting and Miiller-Funk! (1995) followed by those of |Lee (1990))

to derive the limit distribution.

Before going into the details of each step, some previous thoughts have to be done. Re-

member equation ([5.15)

Agy(-) = Ag (0) + 3 (r(y) — r(0))
Ago(1) = Agy(0) +n ™2

h(-) =
uniformly on compact sets, where

 Aa() — Agy(0) () = r(0) — he()(r(1) — (0))
M) = Fp D = Aaf0) M 700 = hoD = 0]

Note that (due to the identification constraints) one has ~2(0) = 0 and k(1) = 1. Moreover,

since h(, is bounded away from zero on compact sets one has for an appropriate n > 0 and

a random variable S
Y = hg ' (S)] = |hg (ho(h1(9))) — hg ' (9)]

_ ‘1‘ Iho(h~1(S)) - S|

()

<n

ro(i(S)] | (1
SR ‘+O<n>

so that Y converges uniformly to hq 1(8) on compact sets. Furthermore, assumption [(A7)

guarantees equation (5.13]).
Step 1: Reduce the problem of minimizing T;, to that of the quadratic function

n

q(z) =Y why " (Sk) (h(Yi)ero + c20 — Aoy (Vi)
k=1

n

+ 22 Z w(hg ' (Sk)) (h(Ya)e10 + 20 — Mgy (Ya)) R(Sk) + 12Tz
k=1
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Remember that 4 denotes the minimizer of M,, and =g is the vector such that
ho(y)ero + 20 = Moy (y)-

For all v in a compact set that does not contain g and an appropriate € > 0 one has

— Z Yk Yk c1+co — Ag Yk Z”u) Yk Yk c1+co — Ag(Yk))2 + Op(l)

=E[wY)(h(Y)er + ca — Ag(Y))Q] +op(1)

>e

uniformly in v € T, where the last equality can be shown by the same arguments as later
in Theorem Therefore,

5= 70 = 0p(1). (5.70)
Assumption (A7) ensures

sup (i)~ )| = 0,12

and by the definition of 4 as the minimizer in ([5.17)), it holds that

n h(Y%)
Z'w(Yk)(iL(Yk)El + ¢y — Aé(Yk)) 1 =0.
= —Ay(v3)f

Consequently, a Taylor expansion with respect to v yields

n

D wVe)(h(Ye)ero + e20 — Aoy (Yi)?

k=1
= w(Yy)(h(Yi)er + & — Ag(Yr))?
k=1
+vn(y — V)t% w(Yi) (h(YVe)ér + & — Ag(Yr)) 1
- ~Ry)
+Vn(y - Vo)t% w(Yy)
k=1
h(Y3)? h(Ys) —h(Yi)A5(Yr)
h(Y},) 1 —A4(Y2)

—h(YVi)As(Ve)t —Ag(Yi)' Ag(Yi)'Ag(Yi) — Ry(Yi) (A(Yi)é1 + & — Ag(Yi))

V(T = 70) + op(n||7 — v0l*)
=" w(V) (h(Yi)ér + & — Aj(Yi))?
k=1
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n

+Vn(d - ’Yo)t% > w(hg ' (Sk)R(Sk)R(SK) V(¥ = 70) + 0p(nl|7 — 70l*)

k=1

3

=Y wYi)(h(Yi)ér + & — Ag(Yi)? + V(d — %) TVr(d — ) + op(n]|5 — 0l [?).
k=1

Since I' was assumed to be positive definite and

n

> w(¥i) (h(Yr)ér + &2 — Ag(Yr))?
k=1

3

<Y w(Yi) (M(Yi)ero + 20 — Agy (Vi)
k=1

3

2
w(Yy) (Cljo(il(yk) — h(Y)) + h(Yk)CLo + 20 — Ag, (Yk))

n 2
BB 2 S ww) (f;(m ~ h(Ye) + n—%rowol(Sm) +op(1)

one has ||¥ —yl| = (T) This in turn can be used to write

Zw Yk iL Yk R Aé(Yk))Q
k=1

n

=Y wYV)(h(Yi)ero + 2,0 — Mgy (Yi)? + V(3 — 70)'Tvn(3 — )
k=1

+ V(¥ — ) IZ (ho (Sk)) (h(Yi)ero + c2.0 — Mgy (Yi))R(Sk) + 0p(1)

=q(7 —0) +0p(1) (5.71)

again using a Taylor expansion with respect to . For all values v with v — 9 = O, (%)

n
these calculations can be done analogously with all o,(1)-terms holding uniformly in ~

(again similar reasoning to [5.2.6)). Minimizing ¢ leads to
Zq Z() =2 Z (Yk)cl 0+ c20— Ago (Yk))R(Sk)t + QTLZSF
=0

o =T 3wl () )ero + 20 — Ay () R(SH).
k=1

Hence,

2o = argminq(z) = Op<\/15>,
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which means that -y + 2o can be plugged into equation (5.71)) as well. In total,

T =Y w¥i)((Yi)a + & — Ag(Y3)?
k=1
=q(7 —0) +0p(1)

> ming(2) + 0,(1)

= q(20) + 0p(1)

I
M=

w(Yi) (R(Yi) (1,0 + 20,1) + 2,0 + 202 — Aggt05 (Yi)? + 0p(1)

e
Il

1

> Ty, + op(1).

Therefore, it is sufficient to consider min g(z) instead of T;,.
z

Step 2: Write zg as

20 = =223 w(hg ($1) (V) — h(Vi)T T R(S)
k=1
DS (g (S)ro(g ' (Sk)TTR(SE) + 0y (n”2)
n2 k=1
_'_CLOF_ljé ji:“(hﬁl(skﬁﬂsz,U%)R(S})—-Eﬁgr—15<+(%(n—§)
== Vvn

=T p(Z) — 2T B+ op(n72)

= vn

(%)

where the second last equation can be shown by

1 2

Ly~ <¢<zj> > g (S, UwR(Sk))

n
j=1 k=1

E

-o(5)

(similar calculations will be done later). Then, inserting 2o leads to

15,

q(20) + 0p(1)

=Y w(Y)(h(Yi)ero + ca0 — Mgy (Yi))2 = nzbTzo + 0,(1)

k=1
" 2y .
=t Y W) ~ )P + 2 3 (Vi) (h(¥E) — (%)
k=1

—o
3

w(Yk)ro(Yk)2 — nzéfzo + 0,(1)

Proofs
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5. Testing for a Parametric Transformation Function

=ciy Z w(hg ' (Sk)) (h(Yi) — h(Y))?
P

C2 n R 62 n n
= S wlhy (Sw)ro(hg (Se) (h(Ye) = h(YR)) = =2 37>~ 0(Z)'T " o (Z)
k=1 j=1k=1
2¢2 "

T Y0208+ o Blw (s ()rolhg ()] = BT+ 0y(1)
k=1

=A+B+C+D+E+F+o0,(1).

Asymptotic treatment of A:
Due to assumption |(A7)|one has

n

Zw(Zj, T(y)) + op(n_%) =0p <\/15>

=1

(y) — hly) =+

uniformly in y. Therefore, with U; = T (Y;) independent of h

= clo 3wk (S0)(h(Y) — h(¥)*

M:i
S

2 n n
€1,0
? ZZaUk)¢(ZjaUk> +0p<1)
k=1 1i=1 j=1
C%,o - %0 "
=3 2 wlhe (Se)¥(Z, U)” + -5~ > w(hg ' (Sk)e(Zk, U)W (Zi, Us)
k=1 k=1 Z;;lg
2 n n 2 n n n
€10 _ €1,0 _
+—5 whg (Se)e(Zi Ul + —5 > > > wihg (Sk)¢(Zi, Ur)¥(Z;, U)
k=1 i=1 k=1 i=1 7j=1
ik i#k j#ik
+ 0p(1).
Note that
20%0 n n _ n—oo
Var [ —3 > w(hg (S (Zn, U)o (Zi, Uy) | =50
e
as well as
C2 - - n o
Var %ZZw(hal(Sk))w(Zz,Uk) =30
k=1 i=1

and

Efw(hg " (51))¢(Z1, Un)¢(Za, Uh)] = E[[w(hy " (S1))¢(Z1, Ur) Elp(Zs, Uy)|U1] | = 0,

=0

(5.72)
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so that
A= Elw(hy ()¢ (Z2, Ur)? Z Z SNY(Zi, Ur)h(Z, Uy) + op(1)
75 JFLk

= o Elw(hg ' (51))¢(Z2, Ur)?

Z Zza Zk) +0P(1)7

=k+1j

where the (symmetric) kernel 4 is defined as

$a(21, 22, 23) = whg  (S1))(22, Un)¥(z3, Ur) + wlhg ' (S2))v(z1, Uz)(2s, Ua)
+ w(hy ' (S3))¥ (21, Us)t (22, Us).

As in equation ([5.72))

Yar(2) = EWa(Z1,22,23)|Z1 = 2] = 0

and
haa(z1,22) = EWpa(Z1, Za, Z3)| 21 = 21, Za = 23]
= w(hy ' (s1))¥ (22, 1) E[(Zs, U1)| Z1 = 21, Zy = 2]
=0
w(hy (s2))¥(21,u2) E[W(Z3,Uz)| 21 = 21, Za = 2]
-0
+ E[w(hg " (S3))(Z1, Us)p(Za, Us) | Z1 = 21, Zy = 2]
= E[w(hy ' (S3))1(Z1, Us)¢(Z2, Us)| Z1 = 21, Za = ).
For

Vaz(21, 29, 23) = Pal21, 22, 23) — aa(z1, 22) — baa(z1,23) — Va2, 23),

the Hoeffding decomposition (see Hoeffding| (1948)) leads to

1 n n n 5 n n
T)Z YD UalZi 25, %) = T 2(Zk, Z
3/ k=1i=k+1j=i+1 2
1 n n n
+ oy Z VYa3(Ziy Zj, Z).
3) k=1 i=k+1 j=i+1

Since ¢4 3 is a degenerated kernel of order 2, the variance of the last term can be written

as

Z E[Yas(Zi, Zj, Zy,)?]

(nzz S a2, >) Ly

3 k=1i=k+1 j=i+1
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5. Testing for a Parametric Transformation Function

Hence,
A = oElw(hy " (51))¢(Z2, U1)%] + nUap + 0p(1),

where Uy j, is a U-statistic with kernel ¢4 := C%OQJZ)A,Q.

Asymptotic treatment of B:

One can easily see

B:QCIOZ LSk rothy ™ (Si)) (h(Ye) — h(Yi)

_ Clofz S (wling (S ol (S))6(Zi, Us) + w(hig (S))ro(g (524 U)

2 k=11i=k+1

+ 0p(1).

Apply the Hoeffding decomposition to obtain

waB ) +op(1) = \/HUB,n“‘Op(l)a

where Up,, is a U-statistic with kernel
Yp(2) = 2¢] o E[w(hy ' (S2))ro(hg  (S2))9(Z1, U2)| 21 = 2].

Asymptotic treatment of C':

Term C' can be written in the following way

- szzso Tl Z)

j=1k=1

n

)T IOZZw (Z)

J=1 k=1
k#j

= —c] 0 E[p(Z1)'T ' o(Z1)] + nUcn + 0p(1),

where Ug,, is a U-statistic with kernel ¢¢(z1, 22) = —cf g0(21)'T " p(22).

Putting things together:
It already has been shown that

T =nUan + VnUpn +nUcm + VaUp n + ¢ gElw(hg ' (S1))9(Z2, Ur)?]
— A oBle(Z)'To(Z1)] + cf o Elw(hg  (S))ro(hg (5))?] = 1 08T 1B + 0p(1),

where Up j, is a U-statistic with kernel ¢)p(z) = —20%701“_%0(2)%.
For calculating the expectation of T),, recall definitions ([5.23)) as well as (5.69) and note

Elw(hg ())7(8)?) = E [w(hy " (8)) (ro(hg () - BT R(5))”]
= B [w(hy ' (8))ro(hy ' (5))?]
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— 28'T 7 E [w(hy ' (9))ro(hg *(S))R(S)] + BT !5
= E [w(hy ' (9)ro(hg '(5))?] — BT,

so that
E+F= CiOE[w(hal(S))F(S’F].

Consider
b = B [wl(hg™ (S2)) (421, U2) + (S2) — ol Z0) T R(S)]

= f 0 Ele(21)' T 0(21)] — 2¢1 oE [0(Z1)' T R(S2) (¥(Z1, Us) + 7(S2))w(hg ' (S2))]

+ ¢ o Bl(¥(2Z1,Us) + 7(S2))*w(hg ' (S2))]

= oE[p(Z1)' T o(Z1)] — 261 oE |o(Z1) T E {@0(217 Us)w(hg ' (S2))R(S2)

.

— 261 o Elp(21)'|T 7 E [F(S2)w(hg " (S2))R(S2)| + ¢ gE[p(Z1, Uz)*w(hg ' (S2))]
=0
+2c1 o E[(Z1, Ua)7(S2)w(hg  (S2))] +ci g E[F(S2)*w(hg ' (S2))]

=0

=t Bl (Z1, Ua)*w(hy ' (S2))] + el o B[F(S2)*w(hg* (S2))] = i o Elp(Z1)' T~ p(Z1)),

=¢(Z1)

so that b, is an expression for the asymptotic expectation of T,.

Define a kernel (4 as

Calz1,20) = o B [w(hol(ss)) (wzl, )+ =rolh (52) - so<zl>tr—1R<ss>)

(¢(Z2, ) + =l (52) - <P(Zz)tr_lR(S3))

Z1=21,40 = 22]

02
=L Bl ()1 ()]

= ] 0(21)' T p(22) + E[w(hg ' (S3))0(Z1, Us)h(Z2, Us)| Z1 = 21, Z3 = ]

2 2

— i o0(21)' T p(22) — € gp(22) T p(21) — i}g%’(m)trlﬁ - 3;%90(22)t1“1ﬂ
2
+ %E[w(hal(b”g))ro(hal(53))1/;(21, Us)|Z1 = =1]
02
+ %E[w(hal(53))7"0(h61(53))¢(22, Us)|Za = 2]
= Ya(z1,22) + 2\1/5(1#3(21) +1Up(22)) + Yo(z1, 22) + 2\1/5(1/1[)(21) +p(z2)).
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5. Testing for a Parametric Transformation Function

By similar calculations one has

t ¢ (21, 22) = Yalz1, 22) + Ye(21, 22)

as well as
& 0¢(2) = ¥n(2) + (),
so that L
(Z) Ca(Zi, Z;) = nUgan, = nUy, + v/nVy g (5.73)
2/ =1 j=i+1
and thus

T = 1 o(nUp + b+ Vo + Elw(hg ' (51))7(51)%)).

Here, U, and V,, o are U-statistics with kernel ¢ and QN“ , respectively, and
b= Elw(hy'(52))1(Z1,Us)%] = 2E[p(Z1)'T " p(Z1)] = E[{(Z1, Z1)) (5.74)

In the next step these different representations will be used to derive the asymptotic law

via some version of Mercer’s theorem for positive semi-definite kernels.

Step 3: Show the stated weak convergence results.

One part of this step’s reasoning consists in applying a result from functional analysis that
ensures that ¢ can be written as a sum of weighted orthonormal functions (see for example
Witting and Miuller-Funk] (1995, p. 141)). Hence, positive semi-definiteness of ¢ needs to
be shown. This in turn directly follows from the representation ((z1,22) = E[I(21)I(22)]

(see Remark with
I(2) := (Agy (1) = Agy (0)) (w(hg  (S1))'/2 (¥(2,U1) — (=) T R(S1)) -

Referring to Witting and Miiller-Funk (1995) ¢ can be written as

((z1,22) = Y Njps(z1)pi(z2) (5.75)

jeN\{0}

for an orthonormal basis (p;);jen, where the convergence is meant in L2%-sense. Although
the asymptotic distributions of nU, and y/nV, o in equation can be obtained by
applying Theorem 1 of [Lee (1990, p. 79) and the central limit theorem, some arguments
still have to be added since both summands in general depend on each other, that is, the
asymptotic distribution can not be mimicked by simply adding two independent random
variables, which follow the same distributions as the U statistics. This problem can be
solved by some minor adjustments in the proof of Theorem 1 of Lee (1990, p. 79). There,
to prove the statement
nUn B 57 N(VE-1),
JEN{0}

the indices of the sum in , that exceed a natural number K € N are cut off. Then,
the approximation Zszl Mepi(Zi)pi(Z;5) = ((Z;, Z;) (for large K) is used to obtain

n n K
1
nUn = -3 DD Ui Z) =y (Vi — k),
=1 j=1 k=1
J#i
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5.8. Proofs

where Vj, ,, 1= n~1/2 S ok(Zi) and vgy, =m0 p2(Z;) = 14 0p(1) by the law of
large numbers and the orthonormality of the eigenfunctions.

Now to obtain convergence of nlU, + n'/ QVO,n, note that applying the multivariate central
limit theorem, (Von, Vin, ..., Vi)' converges in distribution to (Vp, Vi,..., Vi)' as defined
in Theorem for each K. Thus, the continuous mapping theorem yields

K

K
STV, = k) + Vo B Y MV 1) + Vo
k=1 k=1

for each K. Proceeding as in the proof of Theorem 1 of |Lee (1990, p. 79) by letting K — oo,
one obtains )7 )\k(VkQ — 1) + Vp as the limit of nU, + nl/QVQn. Note further that 1)

especially leads to
> = /Z)‘kpk(zl)Q dP%(z1) = BE[((Z1, 1)) = b,
k=1 k=1

such that nU, + b + nl/QVom converges to > 22, /\ka2 + Vi, which completes the proof of
Theorem [£.2.21 O

5.8.2 Proof of Theorem [5.2.6

Consistency of the test proposed in can be shown rather easily. Recall that h is a
strictly increasing transformation function with h(0) = 0 and h(1) = 1, which can not be
linearly transformed into a function Ag € {Ay : 6 € ©}. Since h is a uniformly consistent
estimator of h, one has

r = min L Zn:w(yk)(ﬁ(yk)cl + e — Ag(Y2))?
n

c1,c2,0 N
1,€2 1

n

o1
= min — > w(Yz)(A(Yr)er + 2 — Ap(Yi))? + 0p(1).
c1,c2,0 N el

Note that the functions

F(y) = w(y)(h(y)er + c2 — Ao(y))?

are bounded, the parameter set C7 x Co x © is compact and for every y the map

v = w(y)(h(y)er + ca — Ao(y))?

is continuous. Hence, following Lemma 6.1 of Wellner| (2005) the class F = {f, : v €
Cy x Cy x ©} is Glivenko-Cantelli so that

1 .

Tn= mm@E[w(Y)(h(Y)q + o — Ag(Y))?] + 0p(1) = ¢+ 0p(1)
C1,C2,

for some constant ¢ € R. Moreover, the dominated convergence theorem implies continuity

of the map

7 s Blw(Y)(h(Y)e1 + ¢ — Ag(V))?]
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5. Testing for a Parametric Transformation Function

Since the set over which the minimum is calculated is compact, one has ¢ > 0. This in turn

leads to
P(Tn>5):P< % > % )”*”1 for all £ > 0.
—~
—c —0
Therefore, any test of the form is consistent. O

5.8.3 Proof of Theorem [5.3.1

Again, the notations ([5.29) and (5.66|) will be used. Let 4 be the minimizer of M,,. Moreover,
define

n

Wa(er, 0,00 = 3 w(¥)(h(Yj)er + e — Ag(¥5)2 (5.76)
j=1
As before, one has
1
DWMn(fy)‘ =0 and — Hess Ma(y0) = I’ + 0p(1). (5.77)
=5

The structure of the proof is as follows: At the beginning, it will be shown that

n

T = Mo(3) = > w(Yi)(M(Yi)ero + c20 — Mgy (Yi)? + Op(V/). (5.78)

k=1
From this, it will be deduced ¥ — 9 = O, (n‘i), which in turn can be used to prove even
= > wi)(h(Yi)ero + ca0 — Agy (Yi))? + 0p(V7). (5.79)

k=1

At last, the asymptotic distribution of n_%Tn is derived via 1)
First, one has similar to before 4 — 9 = 0p,(1) (see (5.70)). Then, since T is compact,

My () — My(v)

n n
Zw Yk Cl—i-CQ—Ag Yk Zw Yk Cl+C2—A9(Yk))
k=1 k=1

3

=c1 Y w(Ve)(A(Yz) = h(Yi))? +2c1 > w(¥r) (h(Yy) — M(Y2)) (h(Yi)er + ca — Ag(Yi))

:Op(ﬁ) =0p(1)

= 0,(vi) (5.80)

uniformly in ¢, 2, 0. Now, consider (h is fixed) the function class

F={y— fy(y) =w)(h(y)er + ca + Ag(y))* : v € T}

and the corresponding empirical process

n

20() = V(3 S 0¥ +ca = A1) = B[V )Y )er + c2 — oY) )

k=1
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_ %(]\an('y) — E[M,()]).
=nM/v)

Convergence of the marginal distributions can be shown by the Central Limit Theorem.
Note that for R(y) = (h(y),1, —Ag,(y))!, all 1,72 € T and an appropriate v* between
and 2, C € R

sup |f71 (y) - fm(y)‘

yEsupp(w)

= sup ‘Dyf'y* () (n — '72)‘
yesupp(w)

=|lmi =l sup ||Dyfr(®)]|
yesupp(w)

< Cllv =2l

Hence, due to the compactness of T the class F is Donsker so that (Z,)yer converges

weakly to some centred Gaussian process. Consequently,

sup [ My (7) — nM(7)| = Op(n'/?). (5.81)
yeY
This in turn can be used to write

1,(5) "= inf 1,() + Oy(v)

< sup | M, (y) — nM ()| + inf nM () + O,(v/n)
~EY yeYT

C20 1M (1) + O, (V).

On the contrary,
~y (-80) . ~
Mn(3) 7=" inf Mo () + Op(Vn)

> —sup |[My(7) —nM(y)| + inf nM(y) + Op(v/n)
~ET yeYT

-81)
nM (o) + Op(\/ﬁ)'
Consequently,
M, (3) = nM(y0) = Op(V/n)
and thus (due to (5.81)),

M;(3) = M (70) = Ma (%) = nM (70) + nM (70) — Mn(70) = Op(v/n).

Now, write

My(v0) — Mn(7) = Op(Vn)
and similar to the sections before for some v* between 4 and - (note that equation ([5.78|)

is obtained in the second row)

M (v0) = Mn(7)
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5. Testing for a Parametric Transformation Function

= My(70) = Mn(%) + Op(v'n)

= D, M,(v) (vo —7) + (70 — )" Hess My, (v") (70 — ) + Op(v/1)

1 1 1 -
nn(y — v)tg Hess M, (Y0)n (0 — ) + op(nll0 — 7I1°) + Op(v/n)

5.77! 1 ~ 1 ~
Vani (v = 3)T'n3 (30 = 3) + Op(V),

so that due to the positive definiteness of I'' one has ¥ — vy = O, (n_%).
Similar to the proof of Theorem define

q(2) == My(y0) + DA,Mn(’y)‘ 2+ n2'Tz.
=0

Then, for all ¥ with ¥ —~9 = O, (n‘i) one has

M () = Myn(v0) + Dy Mn(7) ‘7:% (= 70) + (3 = 70)" Hess Myu(70)( — 70) + 0p(+/n)

= q(7 —0) + 0p(Vn). (5.82)

The minimizer zg of ¢ can be written as

/—1 1 t
Zo=—I"— <DWMn<7)‘7=Wo>

n
. h(Y)
— Z h(Y3) c1,0 +c20 — Aoy (Yz)) 1
k: .
_AGO(Yk)t
1
_ z B¥)ero + cxo — A ()ROE) +0, (- )
k
B[]=0
1
-0 )

that is, (5.82) yields My, (y0+ 20) = ¢(20) + 0p(+/n). Note that the last equality above holds
because 7 is the minimizer of M (v) and hence D, M ()| =, = 0, that is,

E[’w(Yl)(h(Yl)CLo +co20 — Ago (Yl))R(Yl)} =0.
So far, it has been proven
T = q(7 = 0) + 0p(v/n) = q(20) + 0p(v/n) = M (70 + 20) + 0p(v'12) = Ty + 0p(V/n),

so that to prove ([5.32)) it is sufficient to minimize ¢ and replace T, by ¢q(2¢) in equation (5.32]).
Therefore, it remains to look at ¢(zp) in detail and derive the corresponding asymptotic

distribution. Inserting zg into ¢ leads to
q(20) = My(v0) — nzbT 2
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3

=30 w¥i) (W(Ye) = h(Ya))? +M(70)

=0p(1)

+2e0) wy) (M) —h(Y)  (M(Ya)ero + c20 — Aoy (Yi) + 0p(v/n)
1 N———

:% Z?:1 ¢'(Zj»Uk)+0p(ﬁ)

= My() + 22’0 ”1 k” w(Ye)¥(Zj, Ur) R + 0p(V/n).
=1 k=1
In total,
Tn —\T;fﬁw(’m) _ q(%0) —\/ZM(%) + 0,(1)
= Zn(70) + 2;/25 i En: w(Yi)¥(Z;, Up) By, + 0p(1).
T

The last term can be treated as before by applying the Hoeffding decomposition so that

To—nM(y) _ 1§ B e
v ﬁ;(fw()(sk) B2 (8)] + 8(Z1)) + ( ﬁ)

with the centred kernel § from the assertion. The assertion itself now follows from the

ordinary Central Limit Theorem. O

5.8.4 Proof of Lemma |5.3.2

For all n,m € N,m < n the random variables H,, 1, ..., H,, 4 are independent and identically
distributed, so that

P( max |Hpy|>¢)=1—P( max |Hp,|<e¢)
ve{l,...q} ve{l,...q}

q
=1-[[ P(Hns <o)

v=1
=1—P([Hpn,| <€)

=1-(1—P(|Hpq| >¢))"

Due to (1 — §)q 2% exp(—c) for all ¢ € R, one has

P(Verg?;iq}yﬂm,,,y >e)=0(1) & P(Hpa|>¢)= o@) (5.83)

n

Remember ¢ = [> — 1] and define

My, := min {k e{l,..,n}: {% - 1—‘ sup P(|Hp1| >¢€) < 5}.

n>1>k
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5. Testing for a Parametric Transformation Function

Let € € (0,1) be arbitrarily small. Then,

n
——1| sup P(|H;1|>¢)—0
|V|V€n-| -‘ nzlzr[)ﬁn'\ (’ l,l‘ )

for n — oco. Consequently, % < & for all n > N and a sufficiently large N € N. Since

& € (0,1) can be chosen arbitrarily small, one has % — 0 for n — oo, so that
My, = [/ 1y, | > 1y,
is an intermediate sequence. Moreover,

{L _ 1—‘ P(|Hp, 1| >¢€) < {i — 1—‘ sup P(|H;1| > ¢)
mp, Mp [>mn

(o =1 rn
NN {mn

—0 <e

1] sup P(|Hy, 1| > e)

[>mn

— 0

for n — oo. Hence, max H,,, = op(1) follows from ([5.83]), which together with Lemma
v=1,...,q

implies .

Proof of consistency: In the following, m is written instead of m,,. Note that

h(Y1)
E |w(Y1)(h(Y1)co,1 + co2 — Aoy (Y1)) 1
_AGO (Yl)t
= Dy E[w(M)(h(V)eos +cor — Mgy (1)) _
=0, (5.84)

so that a Taylor expansion and lead to

Vnﬁ S w(¥) (h(Yi)e + & — Ag(Y:)?
=1
\/m n _ ~ 9 m
= =Y w(Y) (Y + & = A(Y))* + Op( )
- ; 1+c2— A (\/;)

- ‘/nm Z w(Y;) (h(Yi)co1 + co2 — Mgy (Y3))?
i=1

n h(Y)
+(7 - 70)'52%% > w(¥i)(A(Yi)eo + coz — Agy (Vi) 1
= _A00 (Y:L)t

=0p(Vn)
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op(mww) +0p<\/f>
_ {f;w(mé? +0p<\/f>
= VmE[w(Y1) R} + O, (ﬁ )

with Ry as in . Consequently, 6% can be written as

=y wﬁ > w(Yi) (¥ (¥a) = h(Yi) ((Yi)ér + &2 — Ag(Yi)

L vm oy . ; P — - m 2
: \/mj:(u—l)m—&-l < (YJ)(h(YJ) vre AQ(YJ)) E[ (YI)R1]> * Op< n))
- 2 2 <2nm w(Ye) (R (Ve) = (Vi) (B(Yi)éx + &2 — A5(Yk))
v=1 k=1
L . w N (h e Go — A s 2 w ~9 m 2
PPN OO AR o) +o,(2)).

w(Yi)W(Zj, U ) (h(Ye)er + é2 — Ag(Yi))

—
S
bl
3
31~
g

v=1 =1 j=(v—1)m+1
1 vm R ~ ~ ) -,
t T Y (W) (RY)E + i~ A(Y)))? — Elw(Y1)R]]
j=w—-1)m+1

ro ({2 )

with a,, from 1) where h was replaced by & in the second equality and equation (|5.33|)
was applied to obtain the last equality. In the following, it will be shown that each of the
occurring terms is of order O,(1), so that the convergence rate can be shifted to the outside

of the brackets by applying the Cauchy-Schwarz inequality. Hence,

; 2 ( Z \ﬁ Z w(Yy)(Z;, Up) (MYi)er + &2 — Aj(Yi))

v=1 =(v—1)m+1

P Loy (wwh(ma+e2—Ag%))?—E[w(Yl)Rﬂ))Z

j=@w—-1)m+1

cof(Zn)

q

1 2
qz< Z (An,j+Bn7j+Cn,j+Dj)> +Op<,/7::+an>

v=1 j=(w—1)m+1
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5. Testing for a Parametric Transformation Function

where

Anj =

SN

> w(Yi)w(Z;, U) (h(Ya)ér + & — Ag(Yi) — Ry,)
k=1

2 n
== Anjks
k=1

Bug= — S (Qu(M)v(Z;, U Re - 5(2)
k=1

1 n
= g : :Bn7j7k’
k=1

Chnj = w(Y¥;)((h(Y))ér + &2 — Ag(1))* — R),

Dj = §(Z;) + w(Y;)R} — E[w(Y;)RY).

In the following, asymptotic negligibility of the terms corresponding to the A, ;, B, ; and
Ch,,; is proven and the convergence of the sum corresponding to D; to o? is developed.
Write

Anike = w(YR)Y(Zi, Up) (h(Yy) (61 — c10) + é2 — ca0 — Ag(Yi) + Mgy (Yi))

and define
h(Yk)
Aigy = w(Yi)¥(Zi, Uy) 1
_A90 (Yk)t
Then, a Taylor expansion with respect to 6 yields
1 z": ( 1 Vi ) )2
> = n,i
1,5 \/ﬁ i=(v—1)m+1
92 9 vm n 2
SV CE D DD oy
v=1 i=(v—1)m+1 k=1
8 q vm n h(Yk‘) 2
= gmn? Z ( Z (3 =)' ) w(Yi)¥(Zi, Uy) 1 + Op(m n))
v=1 \i=(v—1)m+1 k=1 _Ae (Yk)
0

N 16 & T m
< (3 =)' 2 Z Z Aivaz‘,l(’Y =) + Op <n>

=1k=11=1i=@v—1)m+1j=(v—1)m+1

AN

Note that (“” is meant componentwise) due to [(A7’) one has
E[(Az,k;lg,l) : (AS,uAiv)] ?é 0
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only if none of the indices 1, j, s, t is occurring only once in (i, k, j, [, s, u,t,v). Hence,

2[E5 55 Sl SR ol ¥ | S

v=1k=1l=1i=(v—1)m+1 j=(v—1)m+1

and thus

DGR
— —_— 77/7j = D — n
qu:l \/mj "

=(v—1)m+1

due to ¥ —v = O, (n i) The C), ; can be treated similarly, since
Crj = w(¥y) ((M(Y))er + & = Ag(¥))? = (h(Y))er + & = Ag(Y)))?)
+w(Y))((h(Yy)er + &2 — Ag(Y))* — RY)
C’( ) 4+ 0(2)

Therefore, sup |h(y) —h(y)| = O, (n_%) and a Taylor expansion with respect to v lead
yesupp(w)
to

i=(r—1)m+1
9 q < 1 vm (1)>2 9 q ( 1 vm (2)>
=3 Z vm Cn v Ty Z Z n,i
q v=1 m t=(v—1)m+1 q r=1 \/7 =(v—1)m+1
9 q 1 vm .
35 (e X wM@G0) - a0y
1,5 i=(v—1)m+1

o o 2 5 o\
#2800 ~ RO 2~ 350) ) + 23 (e 3 c))

v=1 i=(v—1)m+1

9 q 1 vm ) 9 "
- Z <m Z w(Yj)((h(Yi)él + ¢y — Ag(Yi))2 - R?)) + Op(n)

1,5 i=(v—1)m+1

q vm h(}/;)

2 ~ ;1 -

:qz<(7—70)m R; 1
- S\ g, (v
2
m
(vl W)) (n>
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5. Testing for a Parametric Transformation Function

= (’)p<TZ —i—né),

where the last equality follows by applying (5.84)) and a similar reasoning to obtaining
(15.85]).
Because the data are independent and identically distributed, the term corresponding to

the B, ; can be written as

n o [1< 1 o 2
Ry 5 _ B, ;
A (m X m))

= %ZZZZ E[Bn,z,kB n,J, l]

=0, if i¢{j,k,l} or j¢{ik,l}

1 m n n
= m2n, 4 Z E[Bn,z,k n,'L,l Z Z E Bn K zB ,gg
i=1 k=1 I=1 i=1 j=1
J#i
1 m m
+ Z Z E|[ByjiBn.i;]
=1 j:l
J#i
n—1)(n—2
= ME[Bn,Lan,Ls] +0(1)
mn
n—1)(n—-2 - . .
= %(E[ﬁlw(YQ)w(Zh Us) Ryw(Y3)(Zy1, Us) Rs] — 2E[6(Z1)w(Ya)(Z1, Us) Ra)

— 2E[5(Z)w(Ys)(Z1, Us) Rs] + E[6(Z1)]) + o(1)

_ W(E[zw%)w(zl, Us) Ry E[2w(Y3)1(Z1, Us) Rs| Z1, Zs]

— E[6(Z1)E[2w(Ya)¢(Z1, Uz) Ry| Z1]) — E[6(Z1) E[2w(Y3)¢(Z1, Us) Rs| Z1]] + E[6(Z1)?])
+o(1)

= = D02 v 21, Us) Rod(20)] = EI6(Z0)7)) + o(1)

mn

=o0(1)

using iterated expectation and the definition of § from Theorem Thus,

(s, 5 m) ()

v= (v—1)m+1

It remains to show

1qu< 1 f: D>2 210 <\/m+ni>
2 2 ) =20,
1,3 \/ﬁ]:( ymt1 "
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Note that the D;,j = 1,...,gm, are i.i.d. and centred with finite fourth moments, so that

L5 5 o)) rl(sge) ]

1,5 =(v—1)m+1 J=1

It holds that

1< 1 o 2 1 1 & 2
var (33 (U n) )= ((mm) )
v=1 j=(v—1)m+1 j=1
and .
1 m 1 m m m m
E[<mZD]> } = WZZZZE[DZD]D,CDZ] = 304,
j=1 i=1 j=1 k=1 I=1
that is )
2 2 o) —=a(g)-a(7)
72 — Dj) —a?=0,—=)=0,(+/— ).
q v=1 \/aj:(ufl)erl \/a "

Finally, the Cauchy-Schwarz inequality can be applied to obtain

|62 — 0|
1< 1 — 2 m
- ’qz(m (An,j+Bn7j+Cn,j+Dj)> —o? +Op<1/n+an>
v=1 j=(v—=1)m+1
I/ 1 i 2
< &Z <m (An,j + Bn,j + Cn,j))
v=1 j=(v—1)m+1
I/ 1 i 2
2
(2 ) e
v=1 j=(v—1)m+1
+‘2i(1 S (Any+ Boy 4+ C ))(1 3 D>
- N~ n,J n,J n,j = J
q v=1 m j=(v—1)m+1 \/m j=(r—1)m+1
+ Oy <1 [+ an>
n
<2,0- ( (An,j + Bn + Cn,j)) ( DJ)
q v=1 \/m j=(—1)m+1 v=1 \/m j=@w—1)m+1
+Op<,/m +an+n5>
n
= Op<1/m —I—an—I—n_}l).
n
The optimal convergence rate directly follows from this equation. O

5.8.5 Proof of Lemma |5.4.4

Only the second assertion is shown since the first one can be concluded similarly. The proof

uses similar techniques as Hansen| (2008]). First, for the deviation terms R; = £;(6) — ;(6p)

247



5. Testing for a Parametric Transformation Function

and appropriate u;,i = 1,...,n, a Taylor expansion leads to

Logmp (ueillo) =R _ 1§~ (5o CRY gy (u—cilo)) |, CR) o

i=1 \ j=0

For appropriate 0~y between 6 and 6y the R; can be split into

R,‘ = éz<9~) — Ei(g())
- R i) <o
N A0) Mgy () A 0)
T A - AG0)  A(1) ~ Agy(0) oI I
A Ag(0)  Ag(%) ~ Ag(0) | Ag(Y) —Agl0)  Agy(¥) — Agy(0)
Aé(l) - Ag(O) Aeo(l) - A90 (0) A90(1) - A90 (0) Aao(l) - A90 (0)

+ 960 (Xi) — 9(Xi)
1
= (8500) — Ag(0)) (R (1) — Agy ) 001~ Aal0N anlL) = A1)+ A3(0) = Ao 0)

Ag(Yi) = Agy (Vi) + A9, (0) — Ay(0) )
R V(S v () L
1 . L
— (A5(1) = A5(0)(Ag, (1) = Agy (0)) (A0 (Y2) = 80y (0) + (A, (Y))" = R, (0)") (0~ )

+ %(é — ) (Hess Ay, (¥;) — Hoss Az, (0)) (0 — o))
(— A 0)'(0— 60) - %(é — 09)" Hess A, (1)(8 — 0y)

+ Mgy (0)'(0 — 6o) + %(é — 6o)! Hess Ay, (0)(0 — 90))

T Ko - A9, (0) (Aao (700 — 60) + %(5 — ' Hess A, (Yi)(0 — 6o)

~ Ry (0)1(8 — o) — (8 — )" Hess A (0)(B — ) + g, (X) — 9(X0)

= R; + 9o (Xi) — 9(X). (5.87)
Therefore,
Ly B (u=cilbo) <Oy B (u=cilbo)
nan i=1 a%j‘ ¢ Qan o nan i=1 a%j' £ Qn
C —10(X0) = g9, (X)) L) ((w— (o)
e ; al j! fe an
forall j =1,...,7—1 and
1 | B o)y s C | By, ] L € |G = 960 (X)) ),
_— < i
na, Zz; (Z;’;'I"'ff ( ’L) — nay, Zz; (Z;’;'I"'ff ( ’L) + nay, ZZ; CLZT" fs (uz)




5.8. Proofs

(1) _

for some sufficiently large constant C' > 0, so that it suffices to treat the cases R, =
9(Xi) — 9o, (X;) and Rz@) = R; separately.

When inserting Rl(l) in equation negligibility of the last summand directly follows
from (5.42)) and the boundedness of fg(r). Thanks to [Hansen| (2008)), to prove

1 n (J) u — Ei(g(])
e D (™ )| <€ o)
for all j = 0,...,7 — 1 and some constant C' > 0, it suffices to show uniform (with respect
1 & G) (v —€i(0o) 1| ,¢)(uw—-¢e(bo)
E|— D —= =E|—|f ——=
[nan 2| < a alle \ e

i=1
1 N u—e
)
an an

- / 119() o) (1 — ane) de

to u) boundedness of the expectation. Hence, due to

fe00)(€) de

<C
for some constant C' > 0 (see (5.61))) and thus
(9(Xi) — g0, (X2))! 1) (u - 51(90)) ‘
3

n

1
nay, Z

=1 CL%]‘ o
. _ J
(12 19(X0) =9 (X )
B 7 D e
al ! nay, P (7%
=Op(1) :OP(I)
= Op(l)

forall j =1,...,7r — 1 one has
1 " u — 61(90) + Q(Xz) — 96, (Xl) 1 " u — 51’(90)
_ = _ 1
nan, ;_1 f£< an na, ;_1 Je an + 0p(1)

uniformly on compact sets. R; can be written as

R = 0,118 — 8oll) + Op(118 — ol ) (Aay (¥:) + Agy ()" (8 — )

1 -~ -
+ 50— 00)! (Hess A, (Vi) — Hess Ay, (0))(0 - 90))

1
T Ry (1) = Agy (0)

(Ao (V2 (B — B0) + (6 — ) Hess Ay, (V)6 — b)),

where the O,-terms are independent of i. When inserting R; in equation li one has

for any § > 0
L | B g (0= st
nan a%j' ¢ ap

=1
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5. Testing for a Parametric Transformation Function

160 — 6ol 1
Sop(jnanz

an i=1

9 (“=20) | (14 10008 + a1

=00l swp || HessAa(oIP) )
[|[0—00]|<d

for all j =1,...,7 — 1. By assumptions (5.61)) and (5.62)) the expected value of the sum

j —Eig . . . ~ . .
0 (28D | (1, (G + iy (I (0G0l s s oY) )

et [[0—0o]|<d

can be bounded by some constant C' > 0, so that

1 & u—€;(0p)
nanz an],fg ( an, >‘

i=1
16— 60l% 1 < (‘)(U—&i(@o)) j
<0 < | ——= sup Hess Ag(Y:)|] ) + o0,(1
b ) nan; ¢ o ||9—0o\|<6H (Yl p(1)
= 0p(1)

by (5.42)) and (5.63)). The remaining term can be treated similarly by applying (5.64]) and

(5.65)) to obtain
1 n
a2
=1

fé‘T) z

a’f’

10— 6oll" 1 < : ;
<0 < =D Ao (Y)I" + [[Age (Yo)[I" + {10 — o[[" sup || Hess Ag(Y3)||"
"\ apt! n;< ’ ’ 10~60l <6 )

= o0p(1).

5.8.6 Proof of Lemma |5.4.6

Note that conditional on (Y7, X71), ..., (Y,, X,) the random variables (Y{*, X7), ..., (Y%, X))
are independent as well as identically distributed. Moreover, after conditioning on the
original data, the assumptions are valid with probability converging to one, so
that due to Remark the same reasoning as in the paper of |Colling and Van Keilegom
(2019) can be applied to obtain (5.41)).

For notational convenience the conditional distribution of (Y{*, X7), ..., (Y}, X};,) conditional
on (Y1, X1), ..., (Yn, X,,) is written as P* and the expectation with respect to P* is written
as E*. From a notational point of view, P* and E* replace P) and E[-|w] in the following if
misunderstandings can be excluded. Let Fy+«|x+ denote the conditional distribution function
of Y;* conditioned on X7 (and (Y1, X1), ..., (Yn, Yy)). To verify [[A7¥)|1)* has to be examined
further and to define 1* some further notations are needed. Let v be the weighting function

from assumption and define

u 9Fy =+ x=(ylz)

* — Oy d ~ % — U($) ~ % — ’U(I’)ST(Uo,J})
81(u7x) 0 8FY*5X*(ZU‘$) Y, Ul(u07$) 3;(“07 )a U2(u07$) s){(l,x)g
1
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and (for 0* = o7, 03)

o* max(u,U]’.*) ~ % * * * 0 ~ % *
&7 (up, u) /max(o,U;) (v (uo,Xj )Dp’o(r, Xj) - a—xl(v (uo,x)Dpyl(r, 1:))‘$_X*> dr

J
“ ~ % * * * 0 ~ % * *
(0 X DR X)) — 5 (0 (w0, X;)Dja(ri@))| ) dr

+ Ly <uy = Luy <0y) 7 (0, X7) Dy (U, X7)
N /“ <I{U;Su} —lup<oy r)
o \ Fu=(1) — Fy-(0)

/X (<@*(uo, DD (r2) + O (5w ) D 1, x))>

81'1

. 0
fom (1) + (10,005 0,2) 5o 1))
<I{U*<1} — I{U*<O}

Fu+(1) — Fy=(0 )/ /( (uo, ) Dy o (r, )

= 0 (0,) 5Dy r2) (070, 0) D () ) fr ()

Fy-(1) — Fy=(0) / "
— —1 * Dy * X+ d
(FU*(l) “F(0) wf v (w0, ) Dy, (u, @) fue x+(u, ) dz,
where Dy o(u, ), ..., D} ; (u, z) are defined as

L ot ua) g fxe ()
p,O(ua .’L‘) - q)’;(u, x)2fX* (.%')2 ) (588)
N _ 1

Do) = 5 et ey

* _ —(I)Z(u7 l‘)
Dp1(w2) = i or (w272

D* o _@Z(uv x)‘b*(u, l‘)aixle*(x)
Golu,x) = S (0 2)  xe (2)2

. @7 (u, 2) @ (u, z)
Df71(u7 :Ij) (I):(U,CC)Qfx* (x) ) (589)
where ®*(ulz) = FU*|x*(U,CU) _ pr(um)

20 e ufn) = L0(u,0), B(ulr) = ()
(compare (1.4))) for U* as in (5.40) and fx~ are analogously defined as in Section [L.1] but

based on (Y;*, X[),i=1,...,m, from Algorithm Then, ¥* is defined as

(25, u)

= 5;61*(1, u) — 53.”35 (u,1) + FU*(g (?U* O (I{U;Su} — I{U;go} — Fy-(u) + Fy+ (()))
o, Fus(u) — Fy=(0
— Q" (u) (Fg* ((f))_ FUU ((O)))Q(I{U;<1} — Iy <oy

— Fy«(1) + Fy=(0)). (5.90)
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5. Testing for a Parametric Transformation Function

Condition [(A7*)| for ¢* is implied by the same reasoning as in the paper of |Colling and
Van Keilegom (2019). Note that the first part of Remark ensures that v can be used
as the weighting function for the bootstrap data as well.

To prove |(A8*) an auxiliary lemma is shown in the following. Thanks to the expressions
above for ¢*, Dy o(u, ), ...,D;l(u, x), equation (p-58) and (5.60) will be a direct conse-
quence of Lemma while (5.59)) follows from expression ([5.90) and boundedness of
6;5f,5;f55 on compact sets, so that ¢* fulfils [(A8%) then.

Fy (0) 1—Fy(0)

D=Fy (0) Fy(l)*Fy(O)) be a compact set and define

Lemma 5.8.2 Let C C (— 2

o

Fy x«(t,x) = P U <, X" < d p*(t,x) = ———— Fy~ x+(t, x).
U 7X ( 7x) ( — 9y —x)7 an p ( ,.T) 81‘16de U 7)( ( 7:U)
Let i be as in|(B3). Under the assumptions of Lemma one has
sup  |fx=(z) — f(2)] = op(1),
z€supp(v)
0 0
su —fx+(x) — —f(x)| = 0,(1),
I (g ) = )| = o)
0? 0?
sup | o fx+(x) — 55 f(@)]| = 0p(1),
zesupp(v) 81’% am% g
sup  [p*(u, @) — p(u, z)| = 0p(1),
ueC,xesupp(v)
s |t w) - plu )| = op(1) (5.91)
w€eC,xesupp(v) ou ’ du ’ P ’ .

sup = Op(1)7

u€C,x€supp(v)

o . B

sup |Fy(u) — Fy(u)| = op(1),

sup  [Fz=(u) — Fz(2)| = op(1).

zeR4x+1

Here, p is defined as in but for fu x instead of fy,x, and fx~ is defined as the density
of X{ from Algorithm (conditional on (Y;, X;),i=1,...,n).

Proof: Most of the proof will be quite similar to proving uniform convergence rates for
kernel estimates in the unconditional case (see Lemma [4.2.12)), especially the results of
Hansen| (2008)) are applied several times. While doing so, note that due to (5.39) and (5.44])

kernel estimates like
5 1 < e —e(bp)
feo)(€) = s Zl fe (an

converge uniformly in e € R to their expectation (see Theorem 4 of Hansen| (2008))).

First, appropriate expressions for fx= and p* have to be found. While for fx+ the kernel

1 < - X;
fx+(x) = bix ;fw<:n ™ >

estimator
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is obtained, p* can be expressed for any j € {1, ...,

pH(T((h*) " (w), x)
adX * *\ —
- 0x1...024, Fie e (T7((17)

0N st <ux
= *(SF < <
8951...8de ( g == .73)

'), )

aix

5.8. Proofs

m} as

i — /(_OO ; P*(S} <ulX; = 2)fx(2)dz

xl...(‘?xdx

9(X7)

—&5:(0) + £ X1, &(h)

- ¢ <
axl...c‘?xdx /(—oo,w} <§ -

Qn

‘X* = z> fx+(2)dz

_ 9dx 1N, u—g()—gk()+ legl()
"~ Ox1..0xy /(owkZIP <5§ o > Fxe(2)dz

)+ S éd)

o u—§(2) — &(0
N 8131~--8de /(—oox ZF£<
z) —é(0) + 3 Xis &0)

an,

ZF5<U_ o

> Fxe(2) dz

)fx*@),

where F¢ denotes the cumulative distribution function of . See Section for

sup IfX*(w)—fX(ﬂf)l:Op(biJr loifﬁ)>=op<1>

x€supp(v)

NOp

(note that fyy is a kernel of order 2). The assertion for 3%1 fx+and 68—;2 fx~ follows similarly
1

by applying for example

62 1 0?

1 0?2
:bdX“/Bzsz( ) _

82
b% Oz

_b% 8371

QfW( )fX(U - bnl') du

L2 @) fx(a- bm} N

1 0 0
5 / Tmfw(x)%fx(z)‘z:v—bnm dz

82
+ / fW("LI)aiZiQfX(Z)}z:vfbnx dx
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5. Testing for a Parametric Transformation Function

where (—o0,z] = Xfxl( 00, x;]. From now on, only a%lp* is considered, since the other

terms can be treated analogously. Recall that for all k& € {1,...,n} and appropriate 9~y
between 0 and 6y it holds that (see (5.87))

€x(0)

1
=00 G Ry R~ R @) ()~ A0

+ (Mg (V)" — Mgy (0)') (6 — 0o) + %(é —6p)" (HessA (Yk) Hess A (0))(6 - 90))
(= Ry (1)'(F — o) — 5 (6 — Bo)" Hiess Az (1)(6 — 6o)

+ Agy (0)'(0 — 6o) + %(é — o) Hess Az (0)(6 — 90))

+ Aeo(l) 1 A90 (0> <A60 (Yk)t(é — 90) + %(é — Ho)t Hess Aéyk (Yk)(é _ 00)

— gy (0)/(8 — o) — (8 — )" Fess Ay (0)(8 — ) + 9(Xi) — G(Xi).
Thus, (if ||6 — 6o|| < 0)

1n
nz‘

=1

POEICH )= 57 (14 Ay ()] + 1A, (40
=1

=1

)| + 0,116 — o)

SHE

+116 = 6ol| sup || Hess Ag(¥D)||) + max [5(Xx) — g(Xp)
|10—60]| <8 =1

.....

= 0,( =) + 0,018 - tul) + 0, ma. 1a%0) — o0

= o0p(1).

Since P(||6 — 6o|| < 8) — 1, this can be used together with Lemma m to obtain

8 o *
5 P (T ((R)” '), x)

1l 0 u—g(z) = &(0) + £ 2L, &(0) Az
X )ix-(2)

Gn

¢ fxe(@) , (u—g(x) —&(0) + 5 3L, &(0) 0
2 )

E an o0xy 52, 9®)

PR (u —9(x) = é(0) + 5 X1y éz@))

Gnp,

Ei;;]ﬁ(*( )}

_ @i g <u — (@) + 1 i, &) - ekwo))
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* Feeo) (“ — (@) + % 251(5)) ;mfx*(fc) +o0p(1)
=1

= et (0 = 9 )5 g) + Fay 1 = 9()) 0 + 05(1)

0

= afp(T((h)’l(U))w) + op(1) (5.92)
1

uniformly with respect to x € supp(v) and with respect to u belonging to some compact
set KC, where the third from last equality again follows from Theorem 4 of Hansen (2008])
as in Section A similar reasoning for %p* results in

S (T ()7 @), 2) = 2 p(T () (), ) (5.99)

uniformly in (u,x) € K x supp(v). Later, it will be shown that
TH((h) 7 (w) = T(h™H(w) = 0,(1)
as well as 5 5
52T (B 7Hw) = 5T (h ™ (w) = 0p(1) (5.94)

uniformly on compact sets. Hence, after possibly adjusting the set of admissible values for

u, (5.93)) leads to

9 etz — 3 T O Doy 10
—p (u,x) =
ou 2T O e ey

%P(T(hfl(t))’x)‘t:h*((T*)*l(U)) + 0,(1)
= S %p
2T ((h*) N (791

5a(T(™H 1) 2)] 10y +o,(1)
_ [0}
2T iy

= D p(u,2) + 0,1

as well as

0
— p* = — 1
5o (1,2) = 5plu,) + 0y(1)

uniformly on (u,z) € C x supp(v). Indeed, equation (5.94) can be shown very similar to

(5.92), because
_ Fy+(u) — Fs-(0)

~ Fg:(1) — Fs+(0)

T (")~ (w)
as well as
Fs.(u) = P*(S] < u)
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5. Testing for a Parametric Transformation Function

[ A * ~ n 1 - ~ (N
=1

_ iz":iz”:/l%(u—g(xi + bpw) — €4(0) +;Z?:1él(é)>fw(w) i
k=1

i=1 n
and
o IR O (u— (X byw) — E(0) + L300 &(0)
Iem 1 <=, (u—3(Xi+byw) + 2370 &(0) — (0
:/sz§< ( ) 2= €u(0) k( )>fw(w)dw
n i nay — G

n

N (0= 608+ ba) + £ 3 40)) ) -+ 1)

=1

= aaqu(u) +0p(1)

uniformly on compact sets, where the third equation follows as in and the last
equation follows from the dominated convergence theorem. The uniform convergence of
Fy+ follows by the same arguments. For the treatment of Fz+, equation can be used
together with the fact that %p*(u, x) is a density:

For an arbitrary compact set K equation implies the uniform convergence

sup
(u,x)EK

S ,2) = p(a,2)| = op(1).

ou

Let ¢ > 0. As a probability measure on a polish space, PZ is tight. Thus, there exists a
compact set K C R such that PZ(K) > 1 — £. Hence, for all z € R it holds that

dtdz + P}(-,K)?" 4+ PZ(K°)

F2r(2) — Faa)| < [ [ Icte.o)| o (t.) — So(eo)

<e+o0p(1).

Since € > 0 can be chosen arbitrarily small one has sup |Fz«(z) — Fz(2)| = 0p(1). O
zek

5.8.7 Proof of Theorem [5.4.7]

Again, as in the proof of Lemma the conditional distribution and conditional ex-
pectation of (Y{*, X7),..., (Y}, X)) given (Y1,X1), ..., (Y, X,,) are denoted by P* and E*,
respectively. Consider w € A, with A, from The proof can be divided into two
parts: First, the uniform convergence of some bootstrap components appearing in the

asymptotic distribution of the bootstrap test statistic is proven and second, the assertion
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itself is shown by the convergence of the conditional distribution functions in probability.

Referring to the definition of h*, one has
(A5*) With probability converging to one, minimizing the function M* : T — R,
v = (c1,c0,0) — E* [w(Y*)(R*(Y*)e1 + ¢ — Ag(Y*))Q]
( = E[w(Y*)(h*(Y*)er + c3 — Ag(Y*))2|w]>
leads to a unique solution
7= (o008 (= (201) = A5(0),44(0),0))
in the interior of T.

Here, uniqueness follows due to E*[w(Y™*)(h*(Y*)(A5(1) — Az(0)) + Ay(0) — Ag(Y*))*] =0
from |(A5)l With the notations

R (s) = (5,1, =Ag((h") ()",
"= B lw((h*) 7 (ST R (STR*(S7)'],
0" (2) = B Tw((h*)7H(85))0" (21, U3)R*(S3) | 27 = 2],
a function C* can be defined as
(21, 22) := E° [w((h*)—l(sg))(¢*(2f, U3) = ¢"(Z1)"(T*) T R*(S5))
(*(23,U3) = ¢"(23)' (T") TR (S5)) | 21 = =1, 25 = Zz]

Moreover, define

Tr=cio’ Y NVE with cfg=Ag(1) — Ag(0) (5.95)
k=1

and b* = E[(*(Zf, Z7)|w], where V1, Vs, ... are independent and identically standard nor-

mally distributed and A], A3, ... are the eigenvalues of the operator

Kpla) i= [ pla)C* (o, 22) dF s ()

One can proceed as in the proof of Theorem to obtain

P €O : P 1 - (Z;,Z7) = b*| >
1<w 1 2< {lnr?:up ZZC

=1 j=1
as well as

D))

(5.96)

JFi

P1< € O : limsupsup | Py (w, {T};,, < t}) — Py (w, {T < t})| = ) =1+o0(1),

m—oo tcR

that is, T}, ,,, converges in distribution to T}; for m — oc.
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5. Testing for a Parametric Transformation Function

Convergence of the bootstrap components: Note that neither 1) depends on h nor ¢*
on h* (conditional on (Y;, X;),i =1,...,n). In the following, the convergence in probability
of h*, R*, T, p*, (*,b* to ho (the true transformation under Hyp), R(s) from (5.19)), I' from

(5.20), ¢ from (5.21)), ¢ from (5.22)) and b from (5.74) is shown.

One has 0 = 6y + op(1). (5.38)) implies h* = h + 0p,(1) uniformly on compact sets and thus
w((h*)71(s))R*(s) = w(h™1(s))R(s) + 0,(1) uniformly in s € R. Further, there exists some
C > 0, such that h* is bijective on Y, and |h*| < C as well as |(h*)~!| < C on Y, and
h*(Vw), respectively, with probability converging to one, that is

P (w € Qi : h* bijective, |h*(y)| < C Yy € Y, |(h*)"L(s)| < C Wy e h*(yw)>
=1+o(1).
This in turn means that (see Remark for a possible adjustment of h*)
P (w € O w((h)"L(s))||R* ()| < C Vs € R) =1+0(1)

for some sufficiently large C' > 0. Let fg, fo« denote the densities of S and S*, respectively,
conditioned on (Y;, X;),i = 1,...,n. The dominated convergence theorem leads to (the
inequality is meant componentwise)

Pl(wtez|F*—F\>5)

= Pi(w € Q¢ |[Elw((h™) (ST R (STR"(S7)'|w] — Elw(h™" (S1)R(S1)R(S1)']| > 6)

_p (w ca ‘ /w((h*)_l(s))R*(s)R*(s)tfs*(s) ds — /w(h_l(s))R(s)R(s)tfg(s) ds

e

> 6,

<P (w e ‘ /w((h*)_l(s))R*(s)R*(s)th*(s) ds — /w(h—l(s))R(s)R(s)ffs(s) ds

w((h*) "L ()||R*(s)|I2 < C Vs € R> + Py (w((h*)~(s))||R*(s)||2 > C for some s € R)
=o(1)

for all § > 0. Consequently,
I =T+ 0p(1)

with respect to P;. Due to part (5.59) of [[A8%)] the map

(Z1,U3) = w((h*)~1(95))¢" (21, U3)

is bounded by some constant C uniformly over compact sets with probability converging to
one. Together with the dominated convergence theorem, this leads to boundedness of *

as well as 0*(2) = ¢(2) + 0p(1) and finally boundedness of ¢* and
o) = [ () )W (0 Tee(9) = () (1) R (9)
(0 (22, T (5)) = 9" (22)! (D)L R*(5)) fs-(5) i
= [ w6 (o1, Tals) = () TR (90, To5)
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— @(zz)tl“_lR(s))fs(s) ds + op(1)
= ((21, 22) + 0p(1)

for all z1, 20 € R+ Additionally, one has

Py (w €Qy:  sup  [("(21,22)| > C’) -0

z1,72€RIXH1

for some C > 0, so that for all § > 0
Pl(o.)EQl : |b*—b| >(5)

= P (w € Y| E[¢*(ZT, Z)|w] — E[¢(Z1, Z1)]| > 6)

<P (w € M : |BICU(ZY, Z)w] = BIC(Z1, Z0))| > 6, sup  [¢"(21,22)| < C>

21,20 €RAX +1

i p (w cQ: swp ¢ > c)

21,72€RIxXH1
=o(1),

that is, b* = b+ o0,(1) with respect to P;. Now, all ingredients to prove the convergence
of the distribution functions Fr:(t) = P*(T; < t) to P(T < t) in probability have been

presented.

Convergence of the distribution functions: Let ¢t € R,e > 0 be arbitrary and &,z >
0, Mz € N such that

P(T >t — 253 ) — P(T > t + 263 ) + 26 < g

(Clo(%?i :f: (Z:, Z;) >>s> — P(T > s)

sup <¢& forall m> M: (5.97)
seR i—1
and . .
|Ci0_cl70’+|b*—b’§5§ = *_b*_+b‘<€
€10 Cl 0

For a moment consider m as fixed and define

(LN

Kam = {(21,22) € R 1 |¢* (21, 20) — ((21, 22)| < *}-

3

Then, P((Z},Z3) € Kzm) == 1. For all m > M. one has

(clo( ZZg (Z7.Z7) +b*) >

=1 j=1+1

% % m " - * * * *
<P (01702 <(m2) Z Z C(Z7,Z7)+b ) > t) I{(Z;,Z;)ezcam Vigje{l,...m} }

i=1 j=i+1

+1 {3iiett,.my:(2; . 2;)¢Kem }
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. s t -
< Z Z ¢z Z TO —b- 26) - I{lcio—01,0|+|b*—b|>5é}

i=1 j=i+1
* I{Elz';éje{l,...,m}:(Zi*Z;)gélC;m}
< //I{(:Zg) S T ) b2 }dFZ*(Zl) - dFz(dzm)
T I{|c;0—cl,o|+|b*—b|>ag} T I{aiyéje{L...,m}:(z;,Z;)gycg,m}

:/'”/I{(g)z;mz;ch(zwznzgo—b—?é} dF7(21) . .. dFz(dzm) + 0p(1)

u {1ct g—crol+lbm—bj>5:} T g {zizief1, .m}:(2; . 23)¢Kem }
< P(T >t -2t ) + £+ op(1).
Here, the second to last equality follows from approximating the indicator function by
the sum of the indicator functions of disjoint cubes of dimension m(dyx + 1) (remember

Fy:(21) — Fz+(22) = Fz(21) — Fz(22) + 0,(1) uniformly in 21, 20 € R+ by (5.58))). The
same reasoning leads to

*(clo ( Z Zg Z:,77) +b*) >2P(T>t+2&fcio)—é+op(1)
=1 j=1+1

for all € > 0 and thus

*<010 < Z Z (21, 25) +b*> )—FT(t)’ < g+op(1). (5.98)

=1 j=1+1

Let M € N and define
Apre = {w €Qy:Ym > M: ’P* <c’;,02<(7%z 3 (*(ZZ*,Z])—H)*) ) — PNT > t)‘ < 5}
) = £

as well as

(clo( ZZC 5z +b*)>t)—P*(T;>t)‘:O}.

B, = {w € Q) : limsup |P
1=1 =141

m—r 00

M—oo

Note that Py(B,) "=3 1 because of (5.96) and Py(B, N Ay.) "—> Pi(B,). Let N € N
such that P;(By) > 1—¢ and let M, fulfil (5.97) and P (By) < Pi(BnyN A ) +e. Then,
one has

limsup Py (|Fr«(t) — Fr(t)| > 3¢)

(o (s .

=1 j=i+1

< <Zjii z;,z;+b*> >—P(T>t)‘>3a,
2 i=1 j=1

Nz, 73 +b*> )—P(T>t)‘>35,Bn>

= limsup P; (hm sup

n— oo m—o0

= limsup lim P; < sup

n—oo M—oco m>M
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Bn N AJVI,E)

m

C(Zr,Z%) +b*) > t) - P(T > t)‘ > 3e,
+1

m

m
<limsup lim Pi( sup |P*(cio”( 7mr D
<t o1 (g |7 (i (7 - v

m>M : —
1=1 j=1

BN N AMe,a) + 2¢

M M,
M € =
SlimsupPl(‘P*(ciOQ( =N N g*(Z;‘,Z;)+b*) >t> —P(T>t)‘ >5,BNQAME7E)

n—oo (z\g ) i=1 j=i+1

+ 2¢
ML Mo M
< limsup P, (‘P* <cf702< M: (25, Z57) + b*) > t) - P(T > t)‘ > €> + 2¢
n—roo ( 2 ) i=1 j=i+1
2e.

Since € > 0 can be chosen arbitrarily small, one has
Pi(|Fr:(t) — Fr(t)] >¢) =o(1) forallteR,e>0.

In total, (5.36]) was proven, that is,

P, (w € Qi : limsup | Py (w, {T};,, < q}) — P(T, < q)| > 5) =o(1) forall § > 0.

m—0o0

It remains to deduce

Py (w € O : limsup|q, — qa| > 5) =o(l) forall§d>0

m—r0o0

from this. Let & > 0 be arbitrarily small and let g, be the a-quantile of T' and define

_ < _ < _
En:min<a P(Tn2_qa 5)7P(Tn_qg—|—6) Oé)%e

for some € > 0 and n — oco. Then, if
‘Pg(wv{Trt,m < Qo — 5}) - P(Tn < o — 5)‘ < En,
one has
Py (w AT < 4o — 6}) < @,

that is, ¢ > qo — 0, for sufficiently big n. Analogously, | P (w, Ty m < qa+6}) = P(T, <
da + 6)} < &, implies Py (w,{T};,, < go +6}) > a and ¢}, < go + 6 for sufficiently big n, so
that in total

P, (w € O : limsup|q, — qa| < 5)

m—r0o0

> P, (w € Oy : limsup | P} (w, {T% 0 < Go — 0}) — P(Ty < o — 0)| < &n,
m—0o0

lim sup ‘le(w, {Thm < qa+0}) = P(Th < g+ 5)‘ < En) + o(1)

m— 00
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l\D\(‘f)

> P (w € O : limsup |P; (w, {Tr 1 < 0o —0}) = P(Tn < qo — 0)| <
m—0o0

)+l

lim sup |P21(wa{T:,m < ga+0}) — P(T < qa +6)| <

m—0o0

| ™

=1+o0(1).

5.8.8 Proof of Lemma |5.4.8

Only equation (5.57) needs to be proven, since the remaining conditions follow as in the
proof of Lemma |5.4.6| by the results of (Colling and Van Keilegom| (2019)). In contrast to
the proof of Lemma |5.4.6, one has 6 — 6y = O, (n_i) (here and in the following, o,- and

Op-terms are with respect to P; and for n — oco) and the asymptotic behaviour of ¢* can
not be reduced to the convergence to . Nevertheless, ¥* can be expressed as in ((5.90)
with D* ,D}i , as in 7- The main idea is to prove uniform convergence of
8%@* and aaufb* on Up x supp(v) to 5, 0% and 8 <I> respectively, while the remaining parts
of 635735{,5;{’5 and Q* are bounded in probablhty.
. FB(0) 1-FE(0)

Due to (|5.45) it holds that Uy C (— FE)=FP(0) FE)-FP(0)
that under the assumptions of Lemma one has

p,0)

). In the following, it is proven

sup [T+ (t) = T5° (1) = 0p(1), (5.99)
teR
s;JLI; (Ts) " (w) — (TE) " (w)] = 0,(1), (5.100)
ueto
(u,z)EUH, % supp(v)
sup 9 " (u,x) — gé(u x)| = o0p(1) (5.102)
(u,x)EUp, % supp(v) ou ) ou ) D ) .
0 0 =
oy prad = 0(u, )| = 0p(1). 5.103
(u,z)EUo, % supp(v) 0z (u,2) = 0x1 ( ) P( ) ( )

Due to LemmamFs* can be written for appropriate u} , € R,i=1,...n, w € supp(fw ),

as

FS* (u)

1
— *<g(X;f + buW;) + & (0) — - Zal )+ antj < u)

_ RQZZP*< (Xi + b W) + (é)—iZéI(é)qLan&J'Su)

i=1 k=1 =1

w 9) + LS 20
B [ (e = AOEAO 4

=1 k=1
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:12471 n /F§<u—ggo(Xi+bnw)—ék(é)>fw(w)dw

an

n_m e _ . 15 200
+ % /f&(uf,w)fw(w) (g(Xz H0ue) g (X1a+ BRI El(e)) dw
i=1 k=1 "
— %Z /F£<u_990(Xi +ainw) _Sk(eo))fw(w) dw-i—Op(l).
i=1 k=1

As a distribution function Fy is bounded so that

( a 22/ ( — 9o, (Xii +a1:n’w) (00)>fw(w) dw) 0,

=1 k=1

that is

FS*(’LL) =F

+ 0p(1)

[ () a0

://E

— [ [ Bl s ot cstomzo)) (@) (5) dodw + 0,(1)

Gn

A <u — 900 (% + bpw) — 82(90))] fw(w) fx (2) dx dw + 0p(1)

//FE((;O — 900 (x + bpw)) fov (w) fx () dw dz + 0,(1)

// L(00) (0 — g6, (2)) fw (w) fx () dw dzz + 0p(1).

Since Fg and F ég are distribution functions, this leads to the uniform convergence

sup |Fs: (t) — F& ()| = 0p(1)

and thus to (5.99). To prove (5.100) write Fg,) as
Fegg)(€) = P(e(fo) < e)
=P(g(X)+e< h(heo (e + 96,(X))))
— [ Ehtty e+ 90, (0)) — 9(0) (o)

which implies

//F = 9oo (2 )JFQGO(CU)))*g(fv))fx(x)fx(z) dx dz.

PRI B , >
gy (W) = . if he,(y) _ u for all y € R.
00

Since h and hy, are strictly increasing and F¥ is continuous, one has F£(u1) < FZ(uy) for

FEB(0 1— F 0
all g < uz € (T8) () € (TH) (- spisipry 7oyt ) Especially, (72)7!
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is strictly increasing on Uy, that is, (5.100)) follows from ([5.99)).

Finally, this can be used to obtain

¥t (ula) = L PHUT < ulXT =)

ox1
ip* GX) +5:(0) lng (0) + ané < T3 (u)| X5 =2
ox1 J gz n (0 " S

* 1 a A N
Zaxlp< +€k - 6[ +an£<7rsv*()>

=~ 000(@) [ 1) (T)7 ) = 90, (0)) de + 0,1

N _68561990 (@) fo(00) (TS) ™1 (w) = go, () + 0p(1)

uniformly in (u, z) € Uy xsupp(v), where the second last equality follows from the continuity

of f(9,)- The bootstrap functions

9 §(Xi + bpw) — (0) + L0 2(0)
67FS ZZ/fg( . =l fw(w) dw,
1 k=1 "
®* and %@* can be treated by similar arguments to obtain
p (8 (ulo) - B(ule)] + [ -0 (ule) ~ 5-b(ulo)| = oy(1)
(u,z) €U xsupp(v) O0xy ox1 p '

Since Q* = ’7'5_*1 equations and f lead to

sup  |w(y)™(z, T (y))| = Op(1).

yER,z€RIx +1

5.8.9 Proof of Theorem [5.4.9

Borrowing the notations for R*,I'* and ¢* from the proof of Theorem [5.4.7| recall that ¢*

can be written as
(*(21,22) = E” [w((h*)_l(sé“))(w*(Zik, U3) — " (Z1)'(T*) "' R*(S3))
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(0"(25,U5) = " (ZHT) R (S))) | 2 = 20,75 = 2]

Similar to the proof of Theorem assumption [(A5’)| leads to from the proof of
Theorem As before, equation (5.96]) remains valid, that is,
> 0}) > O> =o0(1)

1= 1] 1
J#i
for b* = E[C*(Zf, Z7)|w]. Since |(A7*)| ensures that

P (w €N sup  |w(y)v*(z, T*(y))| > (5\/5) =o0(1) forallé>0

yeK,zeRIx +1

P (w €0 P21< {hmsup

m—r

and all compact sets K C R, one has

Py (w e sup  |CM(z1,22)] > 5n) =o(1) foralld >0

z1,7z0€RAX H1

(boundedness of R* and I'* follows as in the proof of Theorem [5.4.7)). The same reasoning
as in the proof of Theorem leads to

B (e S22 o] = ol z )

1= 1] 1
JF#i
so that o
lim sup| —— (Z;, Z* +b*| = o,(n
S EESPIDILY )
i

and thus limsup|T; ,,,| = op(n) due to (5.96]). Referring to Theorem [5.3.1, one has

m—00

T = M(20) + 0p(1)

with M (vy9) > 0. Consequently,

Py (w € O : limsup P (w, {T), < Tm}) > O)
m—0o0

1
:P1<w€(21:limsupP21<w,{ TngT;m}> >O>
m—00 n v

1 T, M
§P1<w€(21:limsupP21<w,{ (0) STj;m}> >0> +P1<w€§21:< (70))
m—oo 2 n n 2

= o(1).

In total, (5.37]) was proven, that is,

S|

5

P, (w € Q : limsup Py (w, {T}, < Thm}) > (5) =o(1) forall § > 0.

m—r 00

It remains to prove
P (w e : T, > limsuqu) =1+ o(1)

m— 00

265



5. Testing for a Parametric Transformation Function

for all @ € (0,1). Let o € (0,1). As was shown above, one has

Py (w € Q : limsup Py <w, {71]\42(70) < T;';m}) > O) = o(1).

m—0o0

Therefore,

M
P1<w e : T, < limsuqu) < P <w € 712(%) < limsupq2>

m—r00 m—r0o0

— <
n - 2

+ P1 (w S Ql : Tn M(Vo))

=o(1).

5.9 Miscellaneous

Finally, some additional statements concerning the case of a finite parameter space as well

as some thoughts about related issues and possible extensions are given.

5.9.1 Finite Transformation Parameter Sets

In this section, the case of a finite parameter set © is considered. Hence, when testing for

Ag — Ap(0)

Hh{um—we@}

the previous estimation of the transformation parameter now becomes a classification. Fur-
ther, it is no longer possible to take any derivatives with respect to €, but as will be seen
in the following, this is no longer necessary as well.

Recall that T,, (and analogously the corresponding minimizer 9~) was defined as

n

T, = ming Zw(ifj)(ﬁ(yj)cl + ey — Ag(Y)))%
c1,02,0 “
7=1

If d(Ap,, Ag,) > 0 for all 01,02 € © with 0; # 02, one can show by the same reasoning as in
the proof of Theorem that even under the local alternative the corresponding
minimizer 6 converges in probability to fy. Since convergence in this context means equality,
the transformation parameter can be considered as known when calculating the asymptotic
distribution as in Theorem Thus, T, can be written as
n
Tn = min w(Y7)(h(Y))er + ea — Agy (Y)))? + 0p(1).
j=1
Now one can proceed similarly to Section [5.2] except for the need of estimating the trans-

formation parameter. This leads to
R(s) = (s, 1), (5.104)
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while all remaining components can be defined as in Section (apart from using definition
instead of ) After inserting these quantities in Theorem the asymptotic
distribution in again holds. Alternatively (although a bit imprecisely), setting all
derivatives with respect to 6 equal to zero and “inverting” only the upper left 2 x 2-matrix

of the original I" leads to the same result.

5.9.2 Testing in a Heteroscedastic Model

Recall the considered model and the notations of Chapter ] Here, some thoughts about
how to adapt the test statistic and the heteroscedastic estimators in or (4.21)) to
obtain a testing procedure for either the null hypothesis of a parametric transformation or
the precise hypotheses as in in the heteroscedastic transformation model

hMY)=g(X)+o(X)e

for some variance function ¢ > 0 are presented.
Apart from some other technical assumptions on the nonparametric estimator of h, the

main condition used in this chapter was the linear expansion ((5.13)

~

1< 1
h(y) —h(y) = = > ¥(Zi, T(y) +op| —= |
y) — h(y n; y <\/ﬁ>

In Chapter {4] it was shown that (under several conditions) the heteroscedastic estimator h

of h fulfils (4.58]), that is

n

h(y) = h(y) = —h(y)% > (Bm(y) + /y A(lu) du r, (Y;, Xi)) +op (%)

i=1 Y
(see Chapter [4] for details and the definition of the occurring components). As in the paper
of (Colling and Van Keilegom| (2019), it should be possible to adjust the heteroscedastic
estimator of h by first transforming the data with 7 and then applying the techniques of
Chapter [4l The test statistic

n

Tn = ' ) (A(Y; _AG(Y))2
" 06@@12%?,02602 ;w( l)( ( z)cl+c2 9( z))

for some appropriate compact sets C; € RT,Cy C R would look as in the homoscedastic
case then.

As mentioned in Chapter [4], equation might not always be fulfilled and the nonpa-
rametric estimator in the heteroscedastic model may converge to the true A even under
the null hypothesis with a rate slower than Op(ﬁ) (see for example parts |(ii)| and |(iii)
of Theorem or Remark . This slower convergence of the estimator might also
induce some additional factor to standardize the test statistic. In the situation of part

in Theorem |4.2.6, the process given by y/nh3(h(y) —h(y)) (for some bandwidth &, and the

estimator h from equation (4.17))) converges weakly to some centred Gaussian process. It

is conjectured that the resulting test statistic would consequently look like

n

T, = i h3 Y;)(h(Y; — Ap(Y;))2.
"= o, M 2 B + 2 = Ao (10)
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5. Testing for a Parametric Transformation Function

Remark 5.9.1 The convergence rate of the nonparametric estimator fz(y) in the hete-
roscedastic model is worse for y € (—oo,yo) (see Theorem |4.2.11]), where yo was defined
in Remark [3.2.1. Note that this problem can be circumvented by choosing the weighting

function such that its (compact) support is contained in (yg,00).

5.9.3 Basing the Weights on Pretransformed Data

Not only the nonparametric estimation of the transformation function can be based on the
pretransformed data U; = T( i),i=1,....,n, but the weighting as well, leading to the test

statistic

In= ' U) (h(Y; ~A

(UN)(Q(Uy)er + e2 — Ag(Y7))?,

min E
0€0,c1€C1,c06C 4 1

where Q was defined in 1' and C; € RT,Cy C R are some appropriate compact sets.
Due to

n

min Z Jer +¢o — A 9
6€6,c1€C1,02€0 1tc2 o(Y3))

= o (“Op(fa»i (OB e =Ml

i=1
this would only have an influence on the asymptotic behaviour of 7T;, via the weighting term
(that is, basically w(hy '(S)) has to be replaced by w(U) in (5.19)(5.24)).
Similarly, one can construct a procedure for testing the null hypothesis of a parametric ()

by applying the test statistic

~

79 = (Ui (Q(ffz)cl +c2 — AH(U))

n
; > ul
6ce cleol,CQGCQ i—1

It is conjectured that this adjustment does have an impact on the asymptotic distribution,
since in contrast to before (), only affects the test statistic via its estimator Q and no longer
via the distribution of Y;,7=1,...,n
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Conclusion and Outlook

Finally, some concluding remarks on this thesis as well as an outlook on possible future
research topics are given in this chapter. Since more detailed discussions can be found in
each of the previous chapters the results of this thesis are viewed from a higher level
perspective here.

In the author’s opinion, the main contribution of this thesis consists rather in the intro-
duction of new ideas and concepts in the context of transformation models and the provision
of corresponding tools to exploit them than in the detailed examination of each of the con-
sidered models and approaches. The first hypothesis test in the literature for a parametric
regression model in a nonparametric transformation model has been presented in Chapter
Chapter [3| has provided the first identification result for a nonparametric and heterosce-
dastic transformation model. Consequently, the first estimators for the transformation
function in such models have been given in Chapter [} In Chapter [5] relevant hypotheses
have been considered for the first time in the literature in the context of nonparametric
transformation models. Here, “relevant” means, that the null hypothesis is rejected if the
transformation function is sufficiently close to the parametric class, which is tested for.
Furthermore, a new bootstrap approach has been developed.

Nevertheless, note that none the research fields, which were treated in the chapters is
completed in the sense that each of them offers high potential for further adjustments. To
mention only some examples, a bootstrap procedure would probably increase the perfor-
mance of the test in Chapter [2] and extensions of the theory in Chapter [3] as suggested in
Remark as well as a further analysis of the performance of the nonparametric estima-
tor in Chapter [ would be desirable. Moreover, the implementation of a test for the relevant
hypotheses in Chapter [5| and a corresponding simulation study would be worthwhile. See
Sections [2.6], [3-3] [£.4] and [5.6] for more details on possible extensions and adjustments of the
presented results. Furthermore, there are many links between the chapters. The nonpara-
metric estimator of Chapter [4] e.g., can be used similarly to the theory of Chapters [2| and
to construct a test for a parametric regression or transformation function, respectively,
in heteroscedastic transformation models.

Of course, there are various opportunities for future research activities, which have not
been considered in this thesis in detail yet. In the remainder, two of such potential research

topics are explained briefly.
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6. Conclusion and Outlook

Arguably two of the most important parametric estimators of the transformation parameter
fp in the semiparametric model have been considered in Section The so called
“mean square distance from independence estimator” (MDE) and the “profile likelihood
estimator” (PLE) were developed by Linton et al.| (2008]). Although it seems that in most
cases the PLE performs better than the MDE, it is mentioned there that at least for small
sample sizes none of the estimators seems to outperform the other. Nevertheless, the PLE
is used much more often in the literature.

As was described in Section both of the estimators use the fact that (under some
identification constraints)

go = Ng(Y) — E[Ag(Y)| X]

is independent from X if and only if 8 = 6 for the true transformation parameter 6y. Note

that the same is true for
dp := Ng(Y) — median(Ay(Y)|X).

There are two main arguments for applying the conditional median instead of the conditio-
nal mean. First, estimation of the mean is much more sensitive to ”inconvenient” data than
the median, e.g., when the error terms are highly skewed. Second, since the transformation

functions are assumed to be strictly increasing, it is
median(Ag(Y)|X) = Ap(median(Y|X)).

Therefore, the median has to be estimated only once for all § € ©. Both arguments may
induce robustness and reduce computation costs. (Linton et al., [2008) mentioned that the
PLE typically has a smaller variance than the MDE whereas the MDE has a smaller bias.
Applying the conditional median instead of the conditional mean may reduce the variance
so that it no longer has to be the case that the PLE outperforms the MDE. It is worthwhile
to examine if an estimator, which is similar to the MDE, but based on the conditional
median instead of the conditional mean, may even outperform the PLE.

So far, finite dimensional models have been considered. Nevertheless, for various reasons
it is desirable to apply transformation models to functional explanatory variables as well.
Since the functional structure increases the complexity of the model severely, a starting

point for treating functional data could consist in the linear model
hY) = (X, B) +e,

where X is a random variable attaining values in some Hilbert space (e.g. L?(R)). As functi-
onal transformation models to the author’s knowledge have not been considered yet, there
are various possibilities for further research activities. For example, the transformation
could be estimated parametrically or nonparametrically. Among others, [Cardot, Ferraty,
and Sardal (1999) and |Cardot, Mas, and Sardal (2007) dealt with functional (linear) models

in the case without transformations.
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Appendix A

Formalities

A.1 Abstract

Predicting a real valued random variable Y depending on the observation of an R4X-valued
explanatory covariate is a classical issue in statistics. In this context, transformation models
have attracted more and more attention over the last years and decades. Box and Cox] (1964)
already introduced transformations of the dependent variable to justify assumptions like
normality, homoscedasticity or additivity of the error terms or to reduce skewness of the
distribution of Y. The transformation model, which is considered throughout this thesis,

can be written in its most general form as
M(Y) = g(X) + o(X)e, (A1)

where ¢ is assumed to be independent of X and h,g and o2 denote the transformation,
regression and variance function, respectively. Apart from questions concerning solvabi-
lity or uniqueness, statisticians especially deal with estimating and testing problems when
looking at models like . Indeed, each of the four main chapters can be classified
into one of these three categories. If not specified differently, let (Y;, X;),i = 1,...,n, denote
independent and identically distributed observations from model .

Chapter [2| belongs to the last category and deals in the situation of homoscedastic errors
with the question if the regression function g belongs to some parametric class {gg : 8 € B}.
Here, the parameter space B is a subset of R4 for some dg € N. In contrast to already
existing approaches in the literature, the transformation function is modelled nonparam-
trically. This complicates the estimation of the regression function g as the conditional
expectation and the asymptotic analysis of such an estimator insofar, as the existing uni-
form convergence results for nonparametric estimators h of the transformation function h
in the literature are restricted to compact sets. Therefore, the hypothesis test of Chapter
is based on a comparison of the parametric class and an appropriate estimator of the
conditional quantile function of Y given X instead of the estimated conditional expecta-
tion. This approach is motivated by two observations: On the one hand, the conditional
quantile function and the regression function only differ by an additive constant. On the
other hand, the applied estimator of the conditional distribution function of h(Y") conditi-

onal on X only requires the nonparametric estimator of the transformation function h to

277



Appendiz A. Formalities

be evaluated on a compact set. For an appropriate bandwidth h,, a finite measure p on
(0,1) and an appropriate estimator F{}| « of the conditional distribution function of h(Y")
conditioned on X, the provided test statistic is given by

; : 3 2
Th = nhm ggg /Icrélﬂg / Y‘X “(1)2) — gp(x) — ¢)” dw p(dr).

The asymptotic behaviour is similar to that of the hypothesis test by |[Hardle and Mammen
(1993). First, a version of the test statistic in the nonparametric regression model is pro-
vided, before the approach is extended to transformation models. Afterwards, asymptotic
normality of the test statistic is shown in both cases. It is found that the estimation of
the transformation function does not influence the asymptotic distribution. Some of the
techniques, which are applied in the proofs, are also used later in Chapter |5l Finally, two
tests for each of the models with and without transforming the dependent variable are pro-
vided and the finite sample size behaviour is examined.
Chapter [3| addresses the question of uniqueness of the model components in , which is
called identification of the model. Previous results on identification can not be applied on
such a general model as and mostly are restricted to homoscedastic errors. Similar to
the approach of (Chiappori et al| (2015]), a quotient of partial derivatives of the conditional
distribution function of Y conditional on X is considered. In contrast to the homoscedastic
case, this quotient can not be simply integrated to obtain the transformation function, but
leads to a differential equation, which can be solved uniquely under some common identi-
fication constraints. Moreover, an explicit expression of this solution is given.
Chapter |4 deals with the estimation of the transformation function A in model . The
estimator presented there is based on the expression of h, which was derived in Chapter
Depending on the underlying set, uniform convergence rates up to weak convergence of
\/ﬁ(ﬁ — h) to a centred Gaussian process are proven. Additionally, the behaviour of the
estimator for finite sample sizes is examined.
Under the assumption of a constant variance function o2, a test for the hypothesis, if the
transformation function h belongs to a given class of transformation functions {Agy : 6 € O}
for some given parameter space © C R?% with dg € N, is developed in Chapter The
presented approach uses the ideas of |Colling and Van Keilegom, (2018)) to construct a test
statistic on the base of a comparison of a nonparametric estimator h for h and the para-
metric function class. The asymptotic behaviour of the resulting test statistic

~ n ~
To=_ pmuin o ;w(Yi)(h(Yi)cl +ca = Ag(Y7))?
is examined and tests for the null hypothesis of a parametric transformation class well as
for the null hypothesis of the transformation function not belonging to the parametric class
are provided. Especially, the latter null hypothesis is interesting since in this case rejection
of the null hypothesis yields evidence for the validity of the parametric model. Quite a
sophisticated bootstrap algorithm is presented and the finite sample size behaviour of the
corresponding test is examined in a simulation study.
Finally, the results of the thesis are summarized and discussed in Chapter [6] and a brief

outlook of possible adjustments and extensions is given.
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A.2. Zusammenfassung

A.2 Zusammenfassung

Die Vorhersage einer reellwertigen Zufallsgréfie Y in Abhingigkeit einer R¥X-wertigen,
erklarenden Variable X stellt eine klassische Fragestellung in der Statistik dar. In den
letzten Jahren und Jahrzehnten haben dabei sogenannte Transformationsmodelle immer
weiter an Bedeutung gewonnen. Bereits Box und Cox (1964) fiihrten Transformationen der
abhéngigen Variable ein, um Eigenschaften wie Normalitdt, Homoskedastizitat oder Addi-
tivitdt der Fehler zu erreichen oder die Schiefe einer Verteilung zu reduzieren. Das in dieser

Arbeit betrachtete Transformationsmodell lasst sich allgemein durch
MY)=g(X)+o(X)e (A.2)

beschreiben, wobei Unabhiingigkeit von € und X angenommen wird und h, g und o2 die
Transformations- und Regressions- beziehungsweise Varianzfunktion des Modells darstellen.
Im Rahmen derartiger Modelle beschéftigt sich die Statistik abgesehen von Fragestellungen
beziiglich der Losbarkeit des Modells und der Eindeutigkeit dieser Losungen insbesondere
mit der Schiatzung der Modellkomponenten und Hypothesentests, in obigem Fall beispiels-
weise auf eine parametrische Annahme an eine der drei genannten Funktionen. Tatséchlich
lasst sich jedes der vier Hauptkapitel dieser Arbeit in eine der drei Kategorien einord-
nen. Sofern nicht anders spezifiziert, seien (Y;, X;),7 = 1,...,n, unabhéngige und identisch
verteilte Realisierungen des Modells .

Kapitel [2] gehort zur letzten Kategorie und beschéaftigt sich unter der Annahme einer kon-
stanten Varianzfunktion o2 mit der Frage, ob die Regressionsfunktion g in einer parametris-
chen Klasse {gg : 8 € B} enthalten ist. Dabei sei der Parameterraum B eine Teilmenge von
R?5 fiir ein dp € N. Im Gegensatz zu bereits existierenden Tests in der Literatur werden
keine parametrischen Annahmen an die Transformationsfunktion h gestellt. Dies schrankt
die Schatzung der Regressionsfunktion als bedingten Erwartungswert beziehungsweise die
asymptotische Behandlung eines solchen Schétzers insofern ein, als gleichméaflige Konvergen-
zresultate fiir nichtparametrische Schatzer h der Transformationsfunktion h in der Literatur
bisher auf Kompakta beschrankt sind. Daher beruht der Hypothesentest in Kapitel [2] auf
einem Vergleich der parametrischen Klasse mit der geschétzten bedingten Quantilfunktion
von Y gegeben X anstelle der geschitzten bedingten Erwartung. Dieser Idee liegen zwei
grundlegende Beobachtungen zugrunde: Zum einen unterscheiden sich die bedingte Quan-
tilfunktion und die Regressionsfunktion nur um eine additive Konstante. Zum anderen
bedarf es bei geeigneter Schitzung der bedingten Verteilungsfunktion von h(Y’) gegeben
X nur der Auswertung des nichtparametrischen Schétzers h auf einem Kompaktum. Fir
eine geeignete Bandbreite h,, ein endliches Maf} 1 auf (0, 1) und einen geeigneten Schéitzer
Fﬁifll  fiir die bedingte Verteilungsfunktion von h(Y’) gegeben X ldsst sich die vorgestellte
Teststatistik als

ij = nh min /gleiﬂlg / FY|X Y7|z) — gp(z) — 0)2 dx pu(dT)

schreiben. Das asymptotische Verhalten erinnert an den von Hérdle und Mammen (1993)
entwickelten Hypothesentest. Zunachst wird eine Version der Teststatistik im nichtpa-

rametrischen Regressionsmodell vorgestellt, bevor der Testansatz auf Transformationsmo-
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delle verallgemeinert wird. In beiden Fallen wird asymptotische Normalitat der Teststa-
tistik nachgewiesen, wobei sich die Schitzung der Transformationsfunktion A nicht auf die
asymptotische Verteilung auswirkt. Einige der verwendeten Beweistechniken finden auch
in Kapitel [5| Anwendung. AnschlieBend werden jeweilige Hypothesentests bereitgestellt und
deren Verhalten fiir endliche Stichprobenumfinge untersucht.

Kapitel [3| behandelt die Frage der Eindeutigkeit der Modellkomponenten in dem Modell
(A.2)). Bisherige Resultate in der Literatur sind auf ein derart allgemeines Modell nicht
anwendbar und meist auf homoskedastische Fehler beschriinkt. Ahnlich zu dem Ansatz von
Chiappori, Komunjer und Kristensen (2015) wird ein Quotient von partiellen Ableitungen
der bedingten Verteilungsfunktion von Y gegeben X betrachtet. Allerdings kann dieser nun
nicht mehr einfach integriert werden, um die Transformationsfunktion A zu erhalten, fithrt
aber auf eine Differentialgleichung, deren Losungen unter iiblichen Identifizierbarkeitsbe-
dingungen eindeutig ist. Ferner wird eine explizite Darstellung der Losung angegeben.
Kapitel [] beschaftigt sich mit der Schitzung der Transformationsfunktion A in dem Modell
. Der vorgestellte Ansatz fufit wesentlich auf dem in Kapitel herausgearbeiteten, ex-
pliziten Ausdruck fiir h. In Abhéangigkeit von der betrachteten Menge werden gleichméfige
Konvergenzraten bis hin zur schwachen Konvergenz von \/ﬁ(iL — h) gegen einen zentrierten
GauBprozess bewiesen. Abschliefend wird das Verhalten des Schéatzers fiir endliche Stich-
probenumfange untersucht.

Kapitel 5| stellt wieder unter der Annahme einer konstanten Varianzfunktion o2

einen Hypo-
thesentest bereit, allerdings diesmal fiir die Hypothese einer parametrischen Transformati-
onsfunktion h, das heifit, ob h in einer gegebenen Klasse {Ay : § € ©} fiir einen Parameter-
raum © C R% mit dg € N liegt. Der vorgestellte Ansatz verwendet die Ideen von Colling
und Van Keilegom (2018), um eine Teststatistik auf Basis eines Vergleichs eines nichtpa-
rametrischen Schitzers A fiir h mit der parametrischen Funktionenklasse zu konstruieren.
Das asymptotische Verhalten der resultierenden Teststatistik

n

T, = i Vi) (h(Y; — Ag(Y7))?
el SO 02 =840

wird untersucht und Tests sowohl fir die Nullhypothese einer parametrischen Transforma-
tionsfunktion als auch fiir die Nullhypothese einer Transformation auflerhalb der gegebenen
Funktionenklasse werden bereitgestellt. Der Test fiir die letztere Hypothese ist insbesondere
interessant, da eine Ablehnung der Nullhypothese Evidenz fiir die Giiltigkeit des parame-
trischen Modells liefert. Ein recht ausgekliigelter Bootstrapalgorithmus wird vorgestellt
und das Verhalten des zugehorigen Tests fiir endliche Stichprobenumfinge wird in einer
Simulationsstudie untersucht.

Die Ergebnisse der Arbeit werden abschlieBend in Kapitel [f] zusammengefasst und bewertet.

AuBlerdem wird ein Ausblick in moégliche Ergdnzungen und Erweiterungen gegeben.

A.3 Publications Related to this Dissertation

The author is involved in two preprints related to transformation models:

e Kloodt and Neumeyer| (2019)
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A.4. Fidesstattliche Versicherung

e |[Kloodt, Neumeyer, and Van Keilegom| (2019).

As mentioned in Section Kloodt and Neumeyer| (2019)) contains previous work on good-
ness of fit tests for a parametric regression function as well as on a significance test for
components of the covariate X in the semiparametric transformation model . The
results have not been included in this thesis. A preprint can be found on
https://arxiv.org/pdf/1709.06855.pdf.

Chapter [5| addressed the question of how to test for a parametric transformation function
in nonparametric transformation models. The preprint of Kloodt et al.| (2019) is based on
the results of this Chapter and can be found on https://arxiv.org/pdf/1907.01223.pdf.

A.4 Eidesstattliche Versicherung

Hiermit erklére ich an Eides statt, dass ich die vorliegende Dissertationsschrift selbst verfasst

und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe.

Nick Kloodt
Hamburg, den 15.10.2019
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