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Zeit.
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Notations and Conventions

Although all of the following notations will be introduced when they arise for the first time,

already a selection of those with a universal meaning throughout the whole thesis is given

in this Section. Corresponding estimators of the listed parameters and functions will be

marked with a “ˆ” and are omitted here for the sake of brevity.

Notations

N set of natural numbers

Q set of rational numbers

R set of real numbers

Y dependent variable, real valued

X independent variable, RdX -valued for some dX ∈ N

ε error term, real valued, centred and independent of X

g regression function

σ2 variance (function) of the errors

h nonparametric transformation function

Θ transformation parameter set, subset of RdΘ for some dΘ ∈ N

θ transformation parameter

Λθ parametric transformation function

B regression parameter set, subset of RdB for some dB ∈ N

β regression parameter

gβ parametric regression function

FY |X distribution function of Y conditional on X

F−1
Y |X conditional quantile function of Y conditional on X

fY |X density function of Y conditional on X

xv



Notations and Conventions

v, w weight functions

K univariate kernel function in the context of kernel estimation

K multivariate kernel function in the context of kernel estimation

K integrated kernel function

hy, hx bandwidths

µ finite measure
D→ convergence in distribution

 weak convergence

op term, that converges to zero in probability

Op term, that is bounded in probability

Conventions

Let d be a natural number.

• Let f : RdX → R be some real valued function. Then,
∫
f(x) dx is defined as∫

RdX f(x) dx.

• Let gβ : RdX → R be a real valued function, which depends on some parameter

β ∈ B. Then, Dβgβ denotes the derivative with respect to β. The corresponding

Hessian matrix is denoted by Hess gβ.
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Introduction

Arguably one of the most important contributions of mathematical statistics consists in

the prediction of some variable Y , which is based on the realisations of some explanatory

variable X. A powerful tool for predicting this so called dependent or response variable

Y by the covariate or regressor X are regression models. It is difficult to date back the

beginnings of such models, but they can be traced back even to Francis Galton and Karl

Pearson, see Stanton (2001).

Nowadays, much attention is still concentrated on linear regression models. From a statis-

tical point of view, Y and X are viewed as (possibly multivariate) random variables and

the linear regression model can be written as

Y = βtX + ε. (1)

Here, β is called the regression coefficient and ε is an unobservable random variable, which is

independent of X and fulfils E[ε] = 0. Sometimes, ε is assumed to be normally distributed.

At a first glance, the linear regression model (1) seems to be attractive when analysing

some given data set, since it is easy to implement and nicely interpretable. Nevertheless,

the model relies on very restrictive assumptions such as additivity, homoscedasticity and

sometimes normality of the error term ε and of course linearity of the relationship between

Y and X. These problems regarding applicability of model (1) were already observed by

Box and Cox (1964) and motivated them to introduce the parametric transformation model

Λθ0(Y ) = βtX + ε. (2)

Here, the response variable Y is transformed by a transformation function Λθ0 before fit-

ting it to the linear regression model. The unknown function Λθ0 is assumed to belong

to some parametric class of strictly increasing functions {Λθ : θ ∈ Θ} for some finite di-

mensional parameter space Θ. Box and Cox (1964) presented a parametric class of power

transformations, the famous Box-Cox-transformations, which contains as special cases the

identity and the logarithm. Their transformation class was enlarged by Yeo and Johnson

(2000), but there are meanwhile various classes of transformation functions, see Zellner and

Revankar (1969), John and Draper (1980), Bickel and Doksum (1981) or Jones and Pewsey

(2009) for further examples. An alternative motivation for transformation models is the

perspective of first transforming the data in order to make somehow “simpler” procedures

from nonparametric regression applicable.

Although the parametric transformation model generalizes the linear regression model by

far, the basic assumption of a linear regression function remains. Moreover, this selection

1



Introduction

problem carries over to the choice of the transformation function, since model (2) relies on

the assumption that the experimenter chooses an appropriate transformation class. As a

further extension, model (2) can be generalized by allowing nonparametric transformation,

regression and variance functions h, g and σ2. The resulting nonparametric transformation

model

h(Y ) = g(X) + σ(X)ε (3)

with ε ⊥ X,E[ε] = 0 and Var(ε) = 1 will be the central object of this thesis. Usually, h

is assumed to be strictly increasing and some smoothness assumptions on h, g and σ are

made.

There are many reasons for considering nonparametric and heteroscedastic transformation

models. First, the analysis of a general model helps to understand the links between all

of its components better. Additionally, some results, e.g., on identifiability, which will be

explained below, can be carried over to simpler models. Second, hypothesis tests, which are

based on the comparison of parametric and nonparametric estimators, can be constructed

so that general models allow inferences to be drawn about the type of the relationship bet-

ween Y and X. Two examples for such tests will be provided in Chapters 2 and 5. Third,

previous knowledge or assumptions on the relationship between Y and X can make the

application of parametric or homoscedastic models inappropriate.

Box and Cox (1964) applied their transformation functions to data on survival times of

intoxicated animals and on the duration of worsted yarn before it gets broken. Transforma-

tion models are used frequently in such duration models, see Gørgens and Horowitz (1999)

or Van den Berg (2001). John and Draper (1980) analysed the ability of expert inspectors

in assessing the thickness of certain types of piping. They found that the usual Box-Cox

transformations describe their data rather badly and adjusted them by taking the abso-

lute value of Y and changing the sign afterwards. Carroll and Ruppert (1984) applied the

Box-Cox transforms to spawner recruit and chemical reaction data. The Michaelis Menten

equation (Michaelis and Menten (1913)) is often used in such contexts. Ruppert, Cressie,

and Carroll (1989) considered the estimation of Michaelis-Menten parameters and pointed

out that a wrong transformation of the model may lead to heteroscedastic errors. They

also applied the Box-Cox transforms to study the reproduction of the sockeye salmon and

some enzyme kinetics. Horowitz (2009) examined the influence of the economic activity

on the duration of contract strikes and mentioned hedonic pricing as a further applica-

tion. The latter was done by Wen, Bu, and Zhang (2013), who modelled the house prices

in Hangzhou City. Another research field, where transformation models are applied and

which is related to duration models, is the field of survival analysis. To mention only one

application, Cheng, Wei, and Ying (1995) analysed the influence of a patient’s age on his or

her survival time. When considering transformation models as in (2) or (3), there are ba-

sically three categories, into which questions can be classified. The first group contains the

more probability theoretical questions regarding solvability of the model or uniqueness of

its components. Second, when faced with an underlying model probably every statistician

is interested in estimating its components. Third, the price of nonparametric modelling

often consists in a decreasing performance of the estimators of its components. Hence, it

may be desirable to test whether some simple parametric model like (2) holds. Indeed, all
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of the four main chapters 2–5 of this thesis can be classified into one of these categories.

One question, which belongs to the first group and which was already mentioned above,

is that of identifiability of a model. A model is identified if its components are uniquely

determined by the joint distribution of (Y,X). To illustrate that this uniqueness in gene-

ral does not hold without further assumptions, let α > 0 and β ∈ R be some constants.

Multiplying both sides of (3) by α and adding β to both sides afterwards leads to

αh(Y ) + β = αg(X) + β + ασ(X)ε,

that is

h̃(Y ) = g̃(X) + σ̃(X)ε (4)

for h̃ = αh + β, g̃ = αg + β, σ̃ = ασ. Even if the transformation function is assumed

to be strictly increasing, any triple h, g, σ in (3) leads to infinitely many other solutions

h̃, g̃, σ̃ in (4). Various identification results in different models were provided, e.g., by

Horowitz (1996), Ekeland, Heckman, and Nesheim (2004), Linton, Sperlich, and Van Keile-

gom (2008), Chiappori, Komunjer, and Kristensen (2015) and Vanhems and Van Keilegom

(2019), see Chapter 3 for details. Most of these results show that it suffices for each of the

corresponding transformation models to fix the parameters α and β from above to ensure

identifiability of the model. Usually, this is done by so called location and scale constraints,

e.g., like h(0) = 0 and h(1) = 1. Nevertheless, further assumptions are necessary to ensure

identifiability in the context of heteroscedastic models, see Remark 3.4.1. In Chapter 3,

identifiability of the nonparametric heteroscedastic model (3) will be proven. So far, such

a general result has not been provided in the literature.

Several approaches of estimating the transformation function in various models have been

discussed in the past. The fully parametric models mentioned above assume normality of

the error ε and apply maximum likelihood estimators. Klaaßen, Kück, and Spindler (2017)

analysed a fully parametric model in the context of high dimensional data. For some esti-

mating approaches in models with a parametric regression function, but a nonparametric

transformation function, see Horowitz (1996), Chen (2002), Zhou, Lin, and Johnson (2009)

and Jochmans (2013). A summary was given by Horowitz (2009). There are only a few

estimators in models with a parametric transformation function and a nonparametric re-

gression function. Linton, Chen, Wang, and Härdle (1997) considered a model with an

additive regression function and suggested to estimate the transformation parameter by an

instrumental variable approach or a pseudo-likelihood method. Linton et al. (2008) used a

profile likelihood approach and ideas on minimum distance estimators (see Chen, Linton,

and Van Keilegom (2003), Chapter 5 of Koul (2002) or Section 3.2 of Van der Vaart and

Wellner (1996)) to develop a “profile likelihood estimator” and a “mean square distance

from independence estimator” in their seminal paper. Colling and Van Keilegom (2018)

introduced a third estimator for the transformation parameter. See Section 1.3 for details

on these estimators. Fully nonparametric, but homoscedastic transformation models have

been treated by Chiappori et al. (2015) and Colling and Van Keilegom (2019), see Section

1.4 for details. Heteroscedastic, but semiparametric models have been considered by Zhou

et al. (2009), Neumeyer, Noh, and Van Keilegom (2016) and Wang and Wang (2018). While

Zhou et al. (2009) assumed the regression function to be linear and the variance function to
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be known, Neumeyer et al. (2016) extended the results of Linton et al. (2008) to semipara-

metric transformation models with parametric transformation functions and nonparametric

regression and variance functions. Wang and Wang (2018) considered a similar model to

Zhou et al. (2009), but allowed censored data.

Every special case (e.g. the homoscedastic model) of (3) may induce the need to test for

its validity. Hence, there are various different objectives to test for in the context of trans-

formation models. There already exist a couple of hypothesis tests concerning parametric

assumptions on the regression or transformation function or the significance of the com-

ponents of the covariate X, that is, if all of the covariate’s components are necessary to

describe Y . Goodness of fit tests for the regression function were developed by Colling

and Van Keilegom (2016, 2017) and Kloodt and Neumeyer (2019), while Allison, Hušková,

and Meintanis (2018) and Kloodt and Neumeyer (2019) examined the significance of the

components of the covariate X, see Section 2.2 for details. Tests for the hypothesis of

a parametric transformation function were provided by Neumeyer et al. (2016), Hušková,

Meintanis, Neumeyer, and Pretorius (2018), Hušková, Meintanis, and Pretorius (2019) and

Szyd lowski (2017), see the introduction of Chapter 5 for details.

This thesis is structured as follows. First, some essentials on kernel estimators, goodness

of fit tests in semiparametric transformation models as well as some results on the estima-

tion of the transformation function in semiparametric and nonparametric models are given.

Then, a goodness of fit test for the regression function in a nonparametric and homosce-

dastic model is developed in Chapter 2. Chapter 3 addresses the issue of identifiability in

the nonparametric and heteroscedastic model (3). The results obtained there are in turn

used in Chapter 4 to construct estimators for the transformation function h in model (3).

Moreover, uniform convergence results are presented. In Chapter 5, a hypothesis test for

the null hypothesis of a parametric transformation function in the nonparametric and ho-

moscedastic transformation model is given. The test is based on the ideas of Colling and

Van Keilegom (2018). The asymptotic behaviour under the null hypothesis as well as under

(local) alternatives is analysed. Furthermore, relevant hypotheses are considered. Finally,

the results of this theses are summarized and discussed in Chapter 6 and possible ideas for

future research are mentioned.
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Essentials

This thesis treats several aspects of nonparametric transformation models. Especially, good-

ness of fit tests for parametric assumptions on the regression and transformation function

are developed in Chapters 2 and 5, respectively. Therefore, a brief overview about good-

ness of fit tests in regression models as well as some previous results on parametric and

nonparametric estimation of the transformation function are given in Sections 1.2, 1.3 and

1.4. Moreover, kernel estimators will be introduced in Section 1.1, since they will be used

as the main tool for nonparametric estimation in this thesis.

1.1 Kernel Estimators

Kernel estimation is arguably one of the most frequently applied methods in nonparametric

estimation. See the book of Wand and Jones (1995) for a well written examination. In this

section, only a limited selection of results on kernel estimators, which are used in almost all

of the following chapters, is presented. While doing so, the main framework will remain the

same: Independent and identically distributed random pairs (Y,X), (Y1, X1), ..., (Yn, Xn)

with joint distribution function FY,X and density fY,X are given. Y is assumed to be real

valued, while X is assumed to be RdX -valued for some dX ∈ N.

Mostly in this thesis, the notations from Chiappori et al. (2015) are adopted. In particular,

let fX denote the marginal density of X and define p(y, x) =
∫ y
−∞ fY,X(u, x) du. Partial

derivatives with respect to y or some component xj are marked with a lower y and xj ,

respectively, e.g., py(y, x) = ∂
∂yp(y, x). When considering fX , the random variable in the

index will be omitted sometimes, that is f(x) = fX(x), fxj (x) = fXxj (x) = ∂
∂xj

fX(x) and

the abbreviation fx = fx1 is used.

To define the kernel estimators of these quantities, let K : R→ R denote a kernel function,

which means
∫
K(x) dx = 1 here, and let K : RdX → R denote the corresponding product

kernel on RdX . Mostly, a continuous kernel with bounded support will be considered in this

thesis, but together with some chapter specific assumptions these conditions will be listed

in each of the chapters separately. Moreover, let hy ↘ 0 and hx ↘ 0 be some bandwidth

sequences. Define

Khy(y) =
1

hy
K

(
y

hy

)
, Khx(x) =

1

hdXx
K

(
x

hx

)
, Khy(y) =

∫ y

−∞
Khy(u) du, (1.1)
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1. Essentials

f̂X(x) =
1

n

n∑
i=1

Khx(x−Xi), f̂x(x) =
1

nhdX+1
x

n∑
i=1

∂

∂v1
K(v)

∣∣∣∣
v=

x−Xi
hx

, (1.2)

p(y, x) =

∫ y

−∞
fY,X(u, x) du, py(y, x) = fY,X(y, x), px(y, x) =

∫ y

−∞

∂

∂x1
fY,X(u, x) du,

(1.3)

Φ(y, x) =
p(y, x)

fX(x)
, Φy(y, x) =

py(y, x)

fX(x)
, Φx(y, x) =

px(y, x)

fX(x)
− p(y, x)fx(x)

f2
X(x)

(1.4)

and

p̂(y, x) =
1

n

n∑
i=1

Khy(y − Yi)Khx(x−Xi) (1.5)

p̂y(y, x) =
1

n

n∑
i=1

Khy(y − Yi)Khx(x−Xi) (1.6)

p̂x(y, x) =
1

nhdX+1
x

n∑
i=1

Khy(y − Yi)
∂

∂v1
K(v)

∣∣∣∣
v=

x−Xi
hx

. (1.7)

Φ from (1.4) is an alternative expression for the conditional distribution function of Y

conditioned on X. In the following, it will be referred to the estimators in (1.2) and (1.5)–

(1.7) as the kernel estimators for fX , fx, p, py and px. The index of the bandwidths hx and

hy refers to the components which they are used for. hx and hy do not depend on specific

values of x ∈ RdX , y ∈ R.

As for most estimators, the expected quadratic errors of these estimates can be divided into

systematic and random errors. To handle the systematic error or bias of the estimators,

higher order kernels are used (Wand and Jones (1995, p. 32)). When doing so, a kernel

K : R→ R is said to have order q ∈ N, if∫
|x|jK(x) dx = 0 for all j = 1, ..., q − 1 and

∫
xqK(x) dx <∞.

Basically, this together with integration by substitution and Taylor expansions will ensure

negligibility of the systematic error.

Lemma 1.1.1 Let K be of order q ∈ N and hqy, h
q
x = o

(
n−

1
2

)
. Further, let Y,X be real and

RdX -valued random variables with joint density fY,X , which is q-times partially continuously

differentiable with bounded derivatives of order q. Then,

E[Khy(u− Y )Khx(X − x)] =

∫ u

−∞
fY,X(z, x) dz + o

(
1√
n

)
= p(u, x) + o

(
1√
n

)
uniformly in u ∈ R, x ∈ Rd.

The proof is given in Section 1.6.1. Once tools for bounding the bias of an estimator have

been introduced, the question of how to treat the random errors arises. Although dependent

data is considered there, the ideas of Hansen (2008) will be applied for this purpose. Since
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1.2. Goodness of Fit Tests in Mean Regression Models

his results have to be fit to the context of each chapter separately, the details are not

presented in this Section. Nevertheless, note that under the conditions mentioned there

Theorem 2 of Hansen (2008) already yields

sup
x∈K

∣∣f̂X(x)− E[f̂X(x)]
∣∣ = Op

(√
log(n)

nhdX

)

for all compact sets K ∈ RdX . By the same reasoning as in the proof of Lemma 1.1.1, this

can be extended to

sup
x∈K
|f̂X(x)− fX(x)| = Op

(√
log(n)

nhdX

)
.

The nonparametric estimators for the transformation function of Chiappori et al. (2015)

and Colling and Van Keilegom (2019) are based on the idea of expressing the transformation

function via Φx and Φy from equation (1.4). When plugging in the estimators from (1.2)

and (1.5)–(1.7) into (1.4) to obtain estimators Φ̂x and Φ̂y for Φx and Φy, the uniform

convergence results can be extended to Φ̂x and Φ̂y rather easily. The following Lemma was

taken directly from Chiappori et al. (2015).

Lemma 1.1.2 Let a, b, â, b̂ ∈ R, b, b̂ 6= 0. Then,

â

b̂
− a

b
=

1

b
(â− a)− a

b2
(b̂− b)− b̂− b

b̂b

(
â− a− a(b̂− b)

b

)
. (1.8)

Replacing â and b̂ by p̂ and f̂X leads to a uniform bound for the difference |Φ̂− Φ|.

1.2 Goodness of Fit Tests in Mean Regression Models

The idea of justifying the application of a specific model by applying a corresponding

goodness of fit test previously came up in the beginning of the twentieth century and has

attracted more and more attention in the context of regression models since the early 1990s

(González-Manteiga and Crujeiras (2013)). A huge variety of procedures testing, e.g., for

a parametric regression function in the model

Y = g(X) + ε, (1.9)

where X is RdX -valued and Y and ε are real valued with E[ε|X] ≡ 0, can be found in the

literature. A thorough review of such tests was given by González-Manteiga and Crujeiras

(2013). They distinguished between smoothing based tests and tests that are based on em-

pirical regression processes. Since an exhaustive presentation would go beyond the scope

of this thesis, only some goodness of fit tests of both categories, which already have been

extended to transformation models, are described in the following.

The approaches of Bierens (1982) and Stute (1997) were extended by Colling and Van Kei-

legom (2016) to the context of semiparametric transformation models and belong to the

second class of goodness of fit tests. Consider a parametric class of regression functions

{gβ : β ∈ B} for some parameter space B ⊆ RdB with some dB ∈ N and n independent and

identically distributed observations (Yi, Xi), i = 1, .., n, from the nonparametric regression
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1. Essentials

model (1.9). Both of the mentioned papers made use of the observation that the parametric

residuals εi(β) := Yi−gβ(Xi) fulfil E[εi(β)|X] ≡ 0, which means that model (1.9) is fulfilled

with g = gβ, if and only if one has

E[εi(β)w(Xi, γ)] = 0

for an appropriate weight function w, an appropriate parameter space Γ ⊆ RdΓ with some

dΓ ∈ N and all γ ∈ Γ, but differ in the applied weight function. While Bierens (1982) used

(as a special case)

w(x, γ) = exp(ixtγ)

and a compact multidimensional interval as a parameter space Γ, Stute (1997) applied

w(x, γ) = I{x≤γ}

for one dimensional x. Colling and Van Keilegom (2017) considered the generalization

with multidimensional x ∈ RdX , componentwise indicator functions and a parameter space

Γ = RdX in a model with parametric transformations. Under the null hypothesis of g = gβ0

for some β0 ∈ B, Bierens (1982) and Stute (1997) showed weak convergence of the empirical

process

Rn(γ) =
1√
n

n∑
i=1

(Yi − gβ̂(Xi))w(Xi, γ), γ ∈ Γ,

where β̂ is an appropriate estimator of β0, to some Gaussian processes for both choices

of w and Γ. Afterwards, a Kolmogorov-Smirnov type (Stute (1997)) and a Cramér-von-

Mises type (Bierens (1982)) test statistic were defined for testing the null hypothesis of a

parametric regression function and the asymptotic distribution was derived from the weak

convergence of the corresponding process.

The tests of Härdle and Mammen (1993) and Zheng (1996) are representatives of the

smoothing based procedures. Both were extended to semiparametric transformation models

by Kloodt and Neumeyer (2019). Consider again independent and identically distributed

observations (Yi, Xi), i = 1, .., n, from model (1.9). Let K and hx be a kernel function and

bandwidth sequence, respectively. Recall definition (1.1) and let {gβ : β ∈ B} be a class of

parametric regression functions to test for. The test of Zheng (1996) is based on the fact

that

E
[
(Y − gβ0(X))E[(Y − gβ0(X))|X]fX(X)

]
= E

[
E[(Y − gβ0(X))|X]2fX(X)

]
is equal to zero if and only if g ≡ gβ0 holds for some β0 ∈ B. Here, fX denotes the density

function of X. The test statistic can be written as

Vn =
1

n(n− 1)

n∑
i=1

n∑
j=1
j 6=i

Khx(Xi −Xj)(Yi − gβ̂(Xi))(Yj − gβ̂(Xj))

for some parametric estimator β̂ of the minimizer β0 = arg min
β∈B

E[(Y − gβ(X))2].

To describe the test of Härdle and Mammen (1993), let

ĝ(x) =

∑n
i=1 Khx(x−Xi)Yi∑n
i=1 Khx(x−Xi)

8



1.3. Semiparametric Transformation Models

denote the Nadaraya Watson estimator of g and define for every gβ, β ∈ B, the smoothed

version

g̃β(x) =

∑n
i=1 Khx(x−Xi)gβ(Xi)∑n

i=1 Khx(x−Xi)
.

The approach is based on a comparison of the nonparametric estimator ĝ and the smoothed

versions g̃β of the parametric regression functions gβ. To be precise, let w be an appropriate

weight function and define the test statistic

Tn = nh
dX
2

∫ (
ĝ(x)− g̃β̂

)2
w(x) dx,

where β̂ is an appropriate estimator of the minimizer β0 = arg min
β∈B

E[(Y −gβ(X))2]. Under

the null hypothesis of a parametric regression function, Härdle and Mammen (1993) proved

weak convergence of the appropriately standardized test statistic Tn to some normally

distributed random variable.

Although the test provided in Section 2.3 is based on the estimated conditional quantile

function instead of the estimated regression function, there are many parallels between the

test of Härdle and Mammen (1993) and the approach developed there. Especially, the

parameters of the asymptotic normal distribution and the rather slow convergence of the

test statistic to this distribution for finite sample sizes are similar.

1.3 Semiparametric Transformation Models

Since transformation models usually are applied to the data to avoid misspecification of the

underlying model or to induce desired properties such as homoscedasticity, additivity or

normality of the error terms (Box and Cox (1964)), it is worthwhile to generalize model (2)

further by for example considering a nonparametric regression function g. The consequent

model

Λθ0(Y ) = g(X) + ε (1.10)

for independent ε and X, for some true transformation parameter θ0 ∈ Θ, some parameter

space Θ ⊆ RdΘ with some dΘ ∈ N and a class of transformation functions {Λθ : θ ∈ Θ}
has been studied extensively in the literature. Linton et al. (2008) introduced two esti-

mating approaches, which will be described later in this section, for θ0 in their seminal

paper. These ideas were revisited among others by Neumeyer et al. (2016) and Vanhems

and Van Keilegom (2019) to extend the approaches to heteroscedastic errors and endoge-

nous regressors, respectively. Recently, Colling and Van Keilegom (2018) developed two

further estimators by minimizing appropriate distances between the parametric class of

transformation functions and the nonparametric estimator by Colling and Van Keilegom

(2019). In the following, some of the approaches mentioned above are described briefly.

Note that the class of transformation functions {Λθ : θ ∈ Θ} has to fulfil some conditions to

ensure uniqueness of the true transformation parameter. This issue will be discussed later

in more detail.
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1. Essentials

The Profile Likelihood Estimator

Linton et al. (2008) introduced two methods for estimating the true transformation para-

meter θ0 in model (1.10), the profile likelihood estimator and the mean square distance

from independence estimator. While the latter one is discussed in the subsection below,

the profile likelihood method will be explained in the following.

Let θ ∈ Θ and define gθ(·) = E[Λθ(Y )|X = ·] as well as ε(θ) = Λθ(Y ) − gθ(X). Denote

the conditional distribution and density function of Y conditional on X by FY |X and fY |X ,

respectively. Then, the conditional distribution function can be written as

FY |X(y|x) = P (Λθ(Y ) ≤ Λθ(y)|X = x) = P (ε(θ) ≤ Λθ(y)− gθ(x)|X = x).

For the true transformation parameter θ = θ0, this results due to the independence of ε

and X in

FY |X(y|x) = Fε(Λθ(y)− gθ(x))

and

fY |X(y|x) = fε(Λθ(y)− gθ(x))Λ′θ(y),

where Fε and fε are the distribution function and density of ε = ε(θ0) and Λ′θ denotes the

derivative of Λθ with respect to y. This can be used to apply techniques from maximum

likelihood estimation. Let (Yi, Xi), i = 1, ..., n, be independent and identically distributed

observations from model (1.10). Then, the profile likelihood estimator θ̂PL is defined as

θ̂PL = arg max
θ∈θ

n∑
i=1

(
log(f̂ε(θ)(Λθ(Yi)− ĝθ(Xi))) + log(Λ′θ(Yi))

)
,

where fε(θ) denotes the density of ε(θ) and f̂ε(θ) and ĝθ are some nonparametric estimators

for fε(θ) and gθ. By using the Kullback Leibler divergence similarly to Neumeyer et al.

(2016), it can be shown that the true transformation parameter θ0 minimizes the function

θ 7→ E[log(fε(θ)(Λθ(Y )− gθ(X))) + log(Λ′θ(Y ))],

so that θ̂PL is a meaningful estimate of θ0. Linton et al. (2008) were able to show asymptotic

normality of
√
n(θ̂PL − θ0) under the assumptions mentioned in their paper.

The Mean Square Distance from Independence Estimator

The second estimator introduced by Linton et al. (2008) was the mean square distance from

independence estimator (MDE). Let gθ and ε(θ) be defined as in the subsection above and

let ε̂(θ) be some estimator of ε(θ). The idea behind the MDE is that ε(θ) is independent of

X if and only if θ = θ0. Hence, the joint distribution function of X and ε(θ) can be written

as the product of the marginal distribution functions if and only if θ = θ0. To define the

estimator, let (Yi, Xi), i = 1, ..., n, be independent and identically distributed observations

from (1.10) and define the empirical distribution functions

F̂X(x) =
1

n

n∑
i=1

I{Xi≤x}, F̂ε(θ)(e) =
1

n

n∑
i=1

I{ε̂i(θ)≤e}, F̂X,ε(θ)(x, e) =
1

n

n∑
i=1

I{Xi≤x}I{ε̂i(θ)≤e}.
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1.3. Semiparametric Transformation Models

Then, the MDE is defined as

θ̂MD = arg min
θ∈θ

∫ (
F̂X(x)F̂ε(θ)(e)− F̂X,ε(θ)(x, e)

)2
dµ(x, e)

for some appropriate measure µ. Under the assumptions mentioned there, it was shown

in Linton et al. (2008) that
√
n(θ̂MD − θ0) is asymptotically normal. In their simulations,

Linton et al. (2008) observed that θ̂PL seems to outperform θ̂MD.

An estimator, which is related to the MDE, is used later in Chapter 4 to estimate some

component of a nonprametric estimator for the transformation h in model (3) with hete-

roscedastic errors. Roughly speaking, the reason for adapting the MDE instead of the PLE

approach there is that the estimation of fε requires good estimates of ε on the whole set of

real numbers, while the exact value of ε does not influence the indicator function I{ε≤e}, as

long as it exceeds some boundary. This issue will be discussed in detail in Chapter 4.

Comparing the Transformation Class to a Nonparametric Estimator

The remaining two approaches for estimating θ0 in model (1.10) that were mentioned above,

were developed by Colling and Van Keilegom (2018). Both of the procedures are based on

a comparison of the parametric transformation class and a nonparametic estimator of the

transformation function. Colling and Van Keilegom (2019) considered the nonparametric

model

h(Y ) = g(X) + ε, (1.11)

where h is assumed to be strictly increasing, E[ε] = 0 holds and X and ε are independent.

Their estimator will be denoted by ĥ in the following. Note that the validity of the model

in (1.10) is unaffected by linear transforms, that is, the model still holds when Λθ0 , g and

ε are replaced by

Λ̃(y) = aΛθ0(y) + b, g̃(x) = ag(x) + b and ε̃ = aε

for any constants a > 0, b ∈ R. Therefore, so called identification constraints are necessary

to fix a and b and to induce uniqueness of the true transformation function. The nonpa-

rametric estimator of Colling and Van Keilegom (2018) fulfils ĥ(0) = 0 and ĥ(1) = 1. To

make the nonparametric estimator comparable to the parametric class of transformation

functions {Λθ : θ ∈ Θ}, the same identification constraints have to be applied. Thus, some

distance between

y 7→ (Λθ(1)− Λθ(0))ĥ(y) + Λθ(0)

and Λθ is used to construct an estimator θ̂ for θ0, since both functions attain the same

values at y = 0 and y = 1 then. To be precise, a quadratic distance is used and θ̂ is defined

as

θ̂ = arg min
θ∈Θ

n∑
i=1

(
ĥ(Yi)(Λθ(1)− Λθ(0)) + Λθ(0)− Λθ(Yi)

)2
. (1.12)

The factors c1(θ) := (Λθ(1) − Λθ(0)) and c2(θ) := Λθ(0), that are necessary to fit the

underlying identification constraints of ĥ to those of {Λθ : θ ∈ Θ}, are uniquely determined.

11



1. Essentials

Nevertheless, it might be sensible to minimize in (1.12) with respect to c1 and c2 as well.

The corresponding estimator can be written as

θ̃ = arg min
θ∈Θ,c1∈R+,c2∈R

n∑
i=1

(
ĥ(Yi)c1 + c2 − Λθ(Yi)

)2
.

Indeed, Colling and Van Keilegom (2018) showed that θ̃ outperforms θ̂ in simulations.

Additionally, they proved weak convergence of
√
n(θ̂−θ0) and

√
n(θ̃−θ0) to some normally

distributed random variables.

A goodness of fit test for a parametric transformation function, which makes use of the

idea to compare a nonparametric estimator of a transformation function to a parametric

transformation class, will be presented in Chapter 5.

1.4 Nonparametric Transformation Models

In this section, previous results on the nonparametric estimation of the transformation

function are presented. Compared to the previous section, this is again a further step

towards modelling the relationship between two random variables as flexible as possible.

While Chapter 3 will allow heteroscedasticity, the homoscedastic model (1.11) will be con-

sidered here. As in the previous section, any triple (h, g, Fε), where Fε denotes the distri-

bution function of ε, can only be unique up to linear transformations, which again leads to

the question of identifiability of model (1.11). In the case of a linear regression function g,

Horowitz (1996) developed a single index approach to identify and estimate the transfor-

mation function h. Chiappori et al. (2015) and Colling and Van Keilegom (2019) applied

related methods, but estimated h in the general framework of a nonparametric g.

The basic idea of all of three approaches was to write the conditional distribution function

FY |X of Y conditioned on X as

FY |X(y|x) = Fε(h(y)− g(x)).

The conditional distribution FY |X can be alternatively expressed as Φ from (1.4). Let fε

be the density of ε and denote the derivative of h by h′. Then, the derivatives of FY |X with

respect to y and some component xi of x can be written as

∂

∂y
FY |X(y|x) = fε(h(y)− g(x))h′(y) and

∂

∂xi
FY |X(y|x) = −fε(h(y)− g(x))

∂

∂xi
g(x).

In the following, the derivative with respect to x1 is considered w.l.o.g. Consequently, the

quotient of both derivatives can be written as

λ(y|x) :=

∂FY |X(y|x)

∂y

∂FY |X(y|x)

∂x1

= − 1
∂
∂x1

g(x)
h′(y). (1.13)

Note that the equation above only holds if

fε(h(y)− g(x)) 6= 0 and
∂

∂x1
g(x) 6= 0. (1.14)

12
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Horowitz (1996), Chiappori et al. (2015) and Colling and Van Keilegom (2019) ensured

validity of (1.14) by appropriate assumptions, but this issue is not discussed further here.

Integrating equation (1.13) with respect to y leads to∫ y

y0

λ(u|x) du = − 1
∂
∂x1

g(x)
(h(y)− h(y0))

for every y0 ∈ R. Several kinds of identification constraints are conceivable to make any

solution h to this equation unique. Chiappori et al. (2015) and Colling and Van Keilegom

(2019) required for example

h(0) = 0 and h(1) = 1,

which leads to

h(y) =

∫ y
0 λ(u|x) du∫ 1
0 λ(u|x) du

.

Although the right hand side does not depend on x, the performance of the estimator

defined later increases when integrating with respect to x. To make this precise, let v be

some weight function with
∫
v(x) dx = 1. Then, it holds that

h(y) = arg min
q∈R

∫
v(x)

(∫ y
0 λ(u|x) du∫ 1
0 λ(u|x) du

− q

)2

dx

as well as

h(y) = arg min
q∈R

∫
v(x)

∣∣∣∣∣
∫ y

0 λ(u|x) du∫ 1
0 λ(u|x) du

− q

∣∣∣∣∣ dx. (1.15)

Applying the square loss as in the first equation results in

h(y) =

∫
v(x)

∫ y
0 λ(u|x) du∫ 1
0 λ(u|x) du

dx, (1.16)

while applying the absolute loss leads to some kind of median.

Let (Yi, Xi), i = 1, ..., n, be independent and identically distributed observations of (1.11).

Then, an estimator for the transformation function h can be obtained by first inserting the

estimators given in (1.2) and (1.5)–(1.7) into (1.4) and (1.13) to get estimators Φ̂y, Φ̂x and

λ̂ for Φy,Φx and λ and by plugging in these estimators into (1.15) and (1.16) afterwards.

Actually, Chiappori et al. (2015) and Colling and Van Keilegom (2019) used a smoothed

version

ĥ(y) = arg min
q∈R

∫
v(x)

(
ŝ1(y, x)

ŝ1(1, x)
− q
)(

2Lb

(
ŝ1(y, x)

ŝ1(1, x)
− q
)
− 1

)
dx

instead of (1.15), where ŝ1(y, x) is defined as
∫ y

0 λ̂(u|x) du, b = bn is some bandwidth

sequence and Lb(·) = L
( ·
b

)
for an appropriate distribution function L.

An equation similar to (1.16) is used in Chapter 4 to construct an estimator for h in the

context of heteroscedastic errors.
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1. Essentials

Basing the Estimator on Pretransformed Data

Colling and Van Keilegom (2019) observed that the estimator of Chiappori et al. (2015)

might perform badly if the distribution of Y is somehow inappropriate. For example, if the

distribution of Y is very asymmetric or highly skewed, it seems that the procedure works

rather badly. To overcome this problem, Colling and Van Keilegom (2019) first applied

a pretransformation to the data. To make this precise, consider again independent and

identically distributed random variables (Yi, Xi), i = 1, ..., n, fulfilling model (1.11). Then,

denote the distribution function of Y by FY and define

T (y) =
FY (y)− FY (0)

FY (1)− FY (0)
and Ui = T (Yi).

For Q := h ◦ T −1, model (1.11) can be expressed as

Q(U) = g(X) + ε.

After replacing Ui by the estimates

Ûi = T̂ (Yi) with T̂ (y) =
F̂Y (y)− F̂Y (0)

F̂Y (1)− F̂Y (0)
,

where F̂Y denotes the empirical distribution function of Y1, ..., Yn, an estimator

Q̂(u) = arg min
q∈R

∫
v(x)

(
s̃1(u, x)

s̃1(1, x)
− q
)(

2Lb

(
s̃1(u, x)

s̃1(1, x)
− q
)
− 1

)
dx, (1.17)

Q can be obtained as described above. Here s̃1(y, x) is defined as
∫ u

0 λ̃(z|x) dz and

λ̃(u|x) :=

∂F̂U|X(u|x)

∂u

∂F̂U|X(u|x)

∂x1

.

The corresponding estimator for h is ĥ(y) = Q̂(T̂ (y)). Using the notations from Section

1.1, define (compare Colling and Van Keilegom (2019))

Dp,0(u, x) =
Φu(x, u)fx(x)

Φ2
1(u, x)f2(x)

, Dp,u(u, x) =
1

f(x)Φ1(u, x)
,

Dp,1(u, x) = − Φu(u, x)

f(x)Φ2
1(u, x)

, Df,0(u, x) = −Φu(u, x)Φ(u, x)fx(x)

Φ2
1(u, x)f2(x)

,

Df,1(u, x) =
Φu(u, x)Φ(u, x)

Φ2
1(u, x)f(x)

.

Moreover, define

s1(u, x) :=

∫ u

0

∂FU|X(r|x)

∂u
∂FU|X(r|x)

∂x1

dr, ṽ1(u0, x) =
v(x)

s1(u0, x)
, ṽ2(u0, x) =

v(x)s1(u0, x)

s1(1, x)2

and (for ṽ ∈ {ṽ1, ṽ2})

δṽj (u0, u) =

∫ max(u,Uj)

max(0,Uj)

(
ṽ(u0, Xj)Dp,0(r,Xj)−

∂

∂x1

(
ṽ(u0, x)Dp,1(r, x)

)∣∣∣
x=Xj

)
dr

14
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+

∫ u

0

(
ṽ(u0, Xj)Df,0(r,Xj)−

∂

∂x1

(
ṽ(u0, Xj)Df,1(r, x)

)∣∣∣
x=Xj

)
dr

+ (I{Uj≤u} − I{Uj≤0})ṽ(u0, Xj)Dp,u(Uj , Xj)

+

∫ u

0

(
I{Uj≤u} − I{Uj≤0}

FU (1)− FU (0)
− r
)

∫
X

((
ṽ(u0, x)Dp,0(r, x) +

∂

∂x1

(
ṽ(u0, x)Dp,1(r, x)

))

fU,X(r, x) + ṽ(u0, x)Dp,u(r, x)
∂

∂r
fU,X(r, x)

)
dx dr

−
(
I{Uj≤1} − I{Uj≤0}

FU (1)− FU (0)
− 1

)∫ u

0
r

∫
X

(
ṽ(u0, x)Dp,0(r, x)

− ṽ(u0, x)
∂

∂r
Dp,u(r, x) +

∂

∂x1

(
ṽ(u0, x)Dp,1(r, x)

))
fU,X(r, x) dx dr

−
(
I{Uj≤1} − I{Uj≤0}

FU (1)− FU (0)
− 1

)
u

∫
X
ṽ(u0, x)Dp,u(u, x)fU,X(u, x) dx.

Then, Colling and Van Keilegom (2019) proved for the estimator in (1.17) as well as for

another estimator, which is based on similar thoughts as in (1.16),

ĥ(y)− h(y) =
1

n

n∑
i=1

ψ(Ui, Xi, T (y)) + op

(
1√
n

)
for

ψ(Uj , Xj , u) = δṽ1
j (1, u)− δṽ2

j (u, 1) +
Q′(u)

FU (1)− FU (0)

(
I{Uj≤u} − I{Uj≤0} − FU (u) + FU (0)

)
−Q′(u)

FU (u)− FU (0)

(FU (1)− FU (0))2

(
I{Uj≤1} − I{Uj≤0} − FU (1) + FU (0)

)
.

The approaches developed in Chapters 2 and 5 can be applied for both of the estimators of

Chiappori et al. (2015) and Colling and Van Keilegom (2019), but the latter one is used in

the simulation studies there.

1.5 Miscellaneous

Finally, a technical Lemma is presented, which given any sequence of random variables

Zn = op(1), yields the existence of a deterministic sequence δn ↘ 0, such that Zn = op(δn).

This Lemma will be applied in Sections 2.8.7 and 4.6.3.

Lemma 1.5.1 Let (Zn)n∈N be a sequence of random variables such that Zn = op(1). Then,

there exists a deterministic and monotonic null sequence (δn)n∈N such that

Zn = op(δn).

The proof is given in Section 1.6.2.
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1.6 Proofs

Here, the proofs of the lemmas stated in Sections 1.1 and 1.5 are given.

1.6.1 Proof of Lemma 1.1.1

This lemma can be proven by basic calculations. More precisely, recall that K is a kernel

of order q and write

E[Khy(u− Y )Khx(X − x)] =

∫ ∫
Khy(u− z)Khy(v − x)fY,X(z, v) dz dv

=

∫ ∫ ∫ u−z
hy

−∞
K(w) dwKhy(v − x)fY,X(z, v) dz dv

=

∫ ∫ ∫ u−hyw

−∞
fY,X(z, v) dz K(w) dwKhy(v − x) dv

=

∫ ∫
p(u− hyw, v)K(w) dwKhy(v − x) dv

=

∫
p(u, v) Khy(v − x) dv +O

(
hqy
)

= p(u, x) +O
(
hqy + hqx

)
= p(u, x) + o

(
1√
n

)
by using a Taylor expansion of p.

1.6.2 Proof of Lemma 1.5.1

Let (εm)m∈N, (τi)i∈N be decreasing null sequences. Define

m̃N,τ := sup
{
m ∈ N : sup

n≥N
P (|Zn| > εm) ≤ τ

}
,

where

m̃N,τ =∞, if sup
n≥N

P (|Zn| > εm) ≤ τ for all m ∈ N

m̃N,τ = 0, if sup
n≥N

P (|Zn| > εm) > τ for all m ∈ N.

If m̃N,τ < ∞ define mN,τ = m̃N,τ . If the case m̃N,τ = ∞ occurs for some N ∈ N (and

consequently for all Ñ ≥ N as well), define mN,τ such that (mN,τ )N∈N is a monotonic

sequence in N converging to ∞. Therefore, the sequence (εmN,τ )N∈N with ε0 = ε1 is

monotonically decreasing and converging to 0 for all τ ∈ (0, 1).

Moreover, define recursively

k1 = 0

δ̃1 = εm1,τ1
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ki+1 = min

{
k ≥ ki + 1 : εmk,τi+1

≤ δ̃i
2

}
, i ≥ 1

δ̃i+1 = εmki+1,τi+1
i ≥ 1.

An appropriate sequence (δn)n∈N can be defined via

(δn)n∈N =
(√

δ̃1, ...,

√
δ̃1︸ ︷︷ ︸

(k2−k1)−times

,

√
δ̃2, ...,

√
δ̃2︸ ︷︷ ︸

(k3−k2)−times

, ...
)
.

Then, δn → 0 by construction and for all C > 0 one has

lim sup
n→∞

P

(
|Zn|
δn

> C

)
≤ lim sup

n→∞
P (|Zn| > δ2

n)

= lim
N→∞

sup
n≥N

P (|Zn| > δ2
n)

≤ lim
j→∞

sup
i≥j

sup
k≥ki

P
(
|Zk| > εmki,τi

)
≤ lim

j→∞
sup
i≥j

τi

= lim
j→∞

τj

= 0,

that is Zn = op(δn).
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2

Testing for a Parametric

Regression Function in

Nonparametric Transformation

Models - A Quantile Approach

Let GB = {gβ : β ∈ B} be a class of regression functions indexed by some finite dimensional

regression parameter β ∈ B ⊆ RdB . Consider the simple regression model

Y = g(X) + ε (2.1)

with E[ε] = 0 and ε independent of X. While there is a large variety of goodness of fit

tests for the null hypothesis of g belonging to GB

H0 : g ∈ GB, (2.2)

so far only a handful of them have been extended to the semiparametric transformation

case and, to the author’s knowledge, none of those has been extended to nonparametric

transformation models.

In this chapter, methods known from the estimation of conditional quantiles are used to de-

velop a test for the hypothesis of the conditional mean fulfilling (2.2). Therefore, first a brief

overview of some nonparametric estimation techniques for conditional quantile functions

and of some tests, which already have been generalized to semiparametric transformation

models, is given in Sections 2.1 and 2.2, respectively. Afterwards, a new testing approach

is presented in Section 2.3 and this test is extended to nonparametric transformation mo-

dels in Section 2.4. Some thoughts on the asymptotic behaviour of the provided test are

postponed to Section 2.5.

2.1 Nonparametric Conditional Quantile Estimation

There is a huge variety of literature concerning the issue of estimating the quantiles of a

real valued random variable Y given a (possibly multidimensional) covariate X. Before a
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brief insight into some of the methods is provided recall the definitions of Section 1.1. Just

like there, assume that independent and identically distributed observations (Yi, Xi), i =

1, ..., n, of a joint distribution P (Y,X) are given. An overview not only of the nonparametric

estimation of conditional quantiles, but also of some hypothesis tests for model assumptions

can be found in the dissertation of Guhlich (2013).

The arguably most common approach uses the so called “check-function”

ρτ (u) = u(τ − I{u<0}) (2.3)

to estimate the conditional τ -quantile of the distribution of Y conditioned on X = x, for

example by

arg min
q∈R

1

n

n∑
i=1

ρτ (Yi − q)Khx(x−Xi).

This approach is motivated by the fact that the true quantile can be expressed as the

minimizer

arg min
q∈R

E[ρτ (Y1 − q)|X1 = x].

See the book of Koenker (2005) for a detailed examination of this estimator and several

adjustments in various contexts. Some basic results had already been provided by Stone

(1977) and Chaudhuri (1991). The last papers also mentioned local polynomial extensions,

which are also considered by Yu and Jones (1997). Horowitz and Lee (2005, 2007) intro-

duced a procedure based on instrumental variables to estimate the conditional quantile

function nonparametrically. Mu and He (2007) applied check-functions to estimate a trans-

formation parameter in parametric transformation models on the one hand and a goodness

of fit test for the model itself on the other hand.

A second type of quantile estimators can be classified as the inverting estimators. There,

the basic idea is to estimate the conditional distribution function appropriately and to in-

vert this estimator afterwards at some level τ ∈ (0, 1). Since nonparametric estimation of

the conditional distribution function itself is a topic of large interest and thus there exist

various approaches for such an estimation, these approaches provide various methods to

estimate quantiles of the conditional distribution function as well. See for example Hall,

Wolff, and Yao (1999) for some ideas on estimating the conditional distribution function.

One class of such estimators for the conditional distribution function are the Nadaraya-

Watson-type estimators referring to the papers of Nadaraya (1964) and Watson (1964).

Some convergence results can be found in the paper of Devroye (1981). While Hall et al.

(1999) provided a monotonically growing estimator of the conditional distribution function,

Dette and Volgushev (2008) used related techniques to obtain non crossing estimators of

the conditional quantile curves, that is, a with respect to τ monotonically growing quan-

tile function. In this chapter, a smoothed version of the Nadaraya-Watson-type estimator,

which was treated for example by Hansen (2004) and which was also applied by Chiappori

et al. (2015), is used. With (1.1) the estimator for the conditional distribution function can

be written similarly to (1.4) as

Φ̂(y, x) = F̂Y |X(y|x) =

∑n
i=1Khy(y − Yi)Khx(x−Xi)∑n

i=1 Khx(x−Xi)
.
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Although Φ̂ and F̂Y |X denote the same quantity, the latter notation is used throughout this

chapter. The corresponding estimator of the quantile function can be written as

F̂−1
Y |X(τ |x) = min{y ∈ R : F̂Y |X(y|x) ≥ τ}. (2.4)

It is conjectured that after some adjustments the theory of this chapter can be applied to

other estimating approaches as well. Nevertheless, the usage of (2.4) is accompanied with

some synergy effects reducing the complexity of the (anyway quite technical) proofs of this

section, especially when considering transformation models in Section 2.4.

2.2 Previous Tests in Semiparametric Models

Here, a small insight into model specification testing in transformation models is given.

Note that many of those tests are strongly linked to the estimation approaches presented

in Sections 1.3 and 1.4. Up to now, there is no test which allows nonparametric estimation

of the transformation and regression functions at the same time. Therefore, only tests in

the semiparametric model

Λθ0(Y ) = g(X) + ε, (2.5)

where {Λθ : θ ∈ Θ} is a class of transformation functions indexed by a finite dimensional

transformation parameter θ and θ0 denotes the true transformation parameter, are mentio-

ned here. Specification tests in models like (2.5) in general aim to justify some reduction of

the model complexity, which may result in faster or more precise estimators of the model

components. With respect to the regression function g such a reduction may consist in a

reduction of the dimension of the covariate or even in a parametric assumption.

Allison et al. (2018) and Kloodt and Neumeyer (2019) provided tests for the significance of

components of the covariate X in semiparametric transformation models, that is, if all of

the covariate’s components are necessary to describe Y . While Allison et al. (2018) exten-

ded the approaches of Bierens (1982) and Hlávka, Hušková, Kirch, and Meintanis (2017),

Kloodt and Neumeyer (2019) developed a test, which is based on the ideas of Lavergne,

Maistre, and Patilea (2015). Neither the first nor the second approach outperforms the

other procedure. The approaches of Allison et al. (2018) detect local alternatives with pa-

rametric rates, which is not the case for the test of Kloodt and Neumeyer (2019). Kloodt

and Neumeyer (2019) in turn supplied a test statistic with an asymptotic distribution, that

is independent of the estimation of the transformation parameter, which in general does not

hold for the procedures of Allison et al. (2018), and introduced a fast bootstrap algorithm,

which performs as good as that of Allison et al. (2018). The independence of the asymp-

totic behaviour of the test statistic and the estimation of the transformation function is a

desirable property that will be fulfilled by the statistic presented in this Section as well.

In the context of testing the null hypothesis of a parametric regression function in se-

miparametric transformation models, Colling and Van Keilegom (2016, 2017) developed

two classes of tests. One the one hand, they extended the approaches of Van Keilegom,

González-Manteiga, and Sánchez Sellero (2008) and compared the empirical distribution

function of the semiparametrically estimated errors to that of the parametrically estimated

errors (Colling and Van Keilegom (2016)). On the other hand, they generalized the ideas
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of Bierens (1982), Stute (1997) and Escanciano (2006) to develop procedures which were

called “integrated approaches” by them (Colling and Van Keilegom (2017)). The main idea

of these integrated approaches consists in summing appropriately weighted estimated resi-

duals for some weighting functions that depend on some weighting parameter first (which

forms an empirical process with respect to the weighting parameter) and integrating the

square of this sum with respect to the weighting parameter. All of the procedures of Colling

and Van Keilegom (2016, 2017) detect local alternatives with parametric rates, but require

a quite sophisticated and computationally demanding bootstrap algorithm. The methods

of Kloodt and Neumeyer (2019) are based on the ideas of Härdle and Mammen (1993) and

Zheng (1996) and suffer from a slower convergence rate of detected local alternatives, but

provide a test statistic with an asymptotic distribution, that is independent of the esti-

mation of the transformation parameter. Furthermore, they introduced a fast bootstrap

procedure, which is competitive to those of Colling and Van Keilegom (2016, 2017). Mu

and He (2007) introduced a goodness of fit test for a parametric transformation (quantile

regression) model as a whole.

2.3 Testing for a Parametric Regression Function via the

Conditional Quantile Function

In Section 1.2, some approaches of how to test for a parametric regression function were

presented. Afterwards, the main idea in Section 2.2 was to take these approaches and to mo-

dify them in order to obtain valid tests in semiparametric transformation models. Although

the presented approach will follow the same spirit, the tools used in this section slightly

differ from those in 2.2. Basically, the influence of estimating the transformation parameter

in semiparametric models is described by an appropriate Taylor expansion, where asymp-

totic negligibility of higher terms of the expansion is ensured by appropriate integrability

conditions on the parametric transformation function and its derivatives.

In the infinite dimensional nonparametric setting, one has to proceed differently since on

the one hand Taylor expansions can not be applied as simply as for parametric transforma-

tions and on the other hand the available estimators of the transformation in general only

yield satisfying uniform convergence rates on compact sets. See for example the results of

Chiappori et al. (2015) and Colling and Van Keilegom (2019). Therefore, a new testing ap-

proach, which is extended to nonparametric transformation models in part 2.4, is presented

in this section.

Although aiming to test for a parametric regression function, the method provided here

is related to testing for a parametric quantile function. Already Chiappori et al. (2015)

suggested the estimation of conditional quantiles. See Zheng (1998), Bierens and Ginter

(2001), Horowitz and Spokoiny (2002), He and Zhu (2003) and Horowitz and Lee (2009)

for some testing approaches in the context of quantile regression or Zheng (2000) for the

related question of testing for a parametric conditional distribution function. The test in

this section uses a Cramér-von-Mises-type test statistic based on the inverse function of a

kernel estimator of the conditional distribution function. In this regard, the testing appro-

ach differs from the tests mentioned above and, to the author’s knowledge, also from other
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tests in the literature. Hence, the asymptotic behaviour is examined in detail in Subsection

2.3.2.

2.3.1 The Test Statistic

From now on, the regression function is allowed to have an arbitrary intercept under the

null hypothesis. Usually in regression models, the intercept is estimated as a part of the

regression function anyway, so that this is does not reduce the generality of the model

severely. Although possible as well, instead of assuming GB in (2.2) to be closed with

respect to addition of constants the adjusted null hypothesis

H0 : g ∈ GB + R = {x 7→ gβ(x) + c : β ∈ B, c ∈ R} (2.6)

will be considered for reasons of comprehensibility. Here, β and c are identified under

assumption (A7) from Section 2.7, which will be introduced and discussed later.

Let (Yi, Xi), i = 1, ..., n, be realisations of model (2.1) and let τ ∈ (0, 1). Let Fε be the

distribution function of ε and denote the τ -quantile of the conditional distribution of a

random variable Z (given X = x) by F−1
Z (τ) and F−1

Z|X(τ |x), respectively. Due to

F−1
Y |X(τ |x) = E[Y |X = x] + F−1

ε (τ) = g(x) + F−1
ε (τ), (2.7)

there is a strong connection between the conditional τ -quantile and the conditional expec-

tation. Many Cramér-von-Mises-type tests like that of Härdle and Mammen (1993) take

advantage of the fact that g ∈ GB is equivalent to (E[Y |X = x] − gβ0(x))2 = 0 for all

x ∈ RdX and some β0 ∈ B. Referring to (2.7), another condition, which is equivalent to

(2.2), is

(F−1
Y |X(τ |x)− gβ0(x)− F−1

ε (τ))2 = 0 for all x ∈ RdX and some β0 ∈ B. (2.8)

This condition can be translated to the context of (2.6) as

(F−1
Y |X(τ |x)− gβ0(x)− c)2 = 0 for all x ∈ RdX and some β0 ∈ B, c ∈ R. (2.9)

Let v be a weighting function with compact support in RdX , such that for all τ ∈ (0, 1)

condition (2.9) and

v(x)(F−1
Y |X(τ |x)− gβ0(x)− c)2 = 0 for all x ∈ RdX and some β0 ∈ B, c ∈ R (2.10)

are equivalent. Thanks to (2.7), for all τ, χ ∈ (0, 1) the function x 7→ F−1
Y |X(τ |x)−F−1

Y |X(χ|x)

is constant, so that equation (2.10) can be extended to multiple quantiles. For this purpose,

let µ be a finite measure with compact support in (0, 1). Then, (2.10) is equivalent to

min
c∈R

sup
x∈RdX

v(x)(F−1
Y |X(τ |x)− gβ0(x)− c)2 = 0 for all τ ∈ (0, 1) and some β0 ∈ B,

so that

min
β∈B

∫
min
c∈R

∫
v(x)(F−1

Y |X(τ |x)− gβ(x)− c)2 dxµ(dτ) = 0. (2.11)
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Equation (2.11) will be the base of the test statistic. Recall the definitions of Section 1.1

and let K,hx and hy be some kernel functions and some bandwidths, respectively, and

define Khy(y) = 1
hy
K
( y
hy

)
as well as

K(y) =

∫ y

−∞
K(u) du, Khy(y) =

∫ y

−∞
Khy(u) du,

K(x1, ..., xdX ) =

dX∏
i=1

K(xi), Khx(x1, ..., xdX ) =

dX∏
i=1

Khx(xi)

and

p̂(y, x) =
1

n

n∑
i=1

Khy(y − Yi)Khx(x−Xi),

f̂X(x) =
1

n

n∑
i=1

Khx(x−Xi),

F̂Y |X(y|x) =
p̂(y, x)

f̂X(x)
. (2.12)

Now, estimate the conditional τ -quantile

F−1
Y |X(τ |x) = g(x) + F−1

ε (τ)

via F̂−1
Y |X(τ |x) and define the test statistic as

Tn = nh
dX
2
x min

β∈B

∫
min
c∈R

∫
v(x)

(
F̂−1
Y |X(τ |x)− gβ(x)− c

)2
dxµ(dτ). (2.13)

Here and in the following, F−1
Y |X is assumed to be the quantile function if the inverse function

of FY |X does not exist.

Remark 2.3.1 The inner minimization in (2.13) can be done analytically by solving

∂

∂c

∫
v(x)

(
F̂−1
Y |X(τ |x)− gβ(x)− c

)2
dx = −2

∫
v(x)

(
F̂−1
Y |X(τ |x)− gβ(x)− c

)
dx = 0,

that is

Tn = nh
dX
2
x min

β∈B

∫ ∫
v(x)

(
F̂−1
Y |X(τ |x)− gβ(x)− ĉβ,τ

)2
dxµ(dτ)

= nh
dX
2
x min

β∈B

∫ ∫
v(x)

(∫
v(w)

(
F̂−1
Y |X(τ |x)− gβ(x)− (F̂−1

Y |X(τ |w)− gβ(w))
)
dw∫

v(w) dw

)2

dxµ(dτ)

with

ĉβ,τ =

∫
v(w)(F̂−1

Y |X(τ |w)− gβ(w)) dw∫
v(w) dw

. (2.14)

�
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2.3.2 Asymptotic Behaviour of the Test Statistic

In the following, the asymptotic behaviour of Tn is examined. Consider the local alternatives

H1,n : g(x) = gβ0(x) + c0 + cn∆n(x) for all x ∈ supp(v) (2.15)

and some fixed β0 ∈ B, c0 ∈ R and define

Y0 = gβ0(X) + c0 + ε.

Here, cn = n−
1
2h
− dX

4
x and ∆n is assumed to be uniformly bounded in x and n. Similarly to

(2.14), define

cβ,τ =

∫
v(x)(F−1

Y0|X(τ |x)− gβ(x)) dx∫
v(x) dx

. (2.16)

As before, the conditional distribution function of Y0 given X, the (integrated) joint density

of (Y0, X) etc. are denoted by FY0|X , fY0,X (p0) etc. Let Dβ and Hess denote the derivative

and the Hessian of a function with respect to β. Let

Ω =

∫
v(x)

(∫
v(w)

(
Dβgβ0(x)−Dβgβ0(w)

)
dw∫

v(w) dw

)t
(∫

v(w)
(
Dβgβ0(x)−Dβgβ0(w)

)
dw∫

v(w) dw

)
dx (2.17)

be positive definite (this will be the assumption (A7) in Section 2.7). Moreover, define

κ(x, τ) =
v(x)

fY0|X(F−1
Y0|X(τ |x)|x)2fX(x)2

. (2.18)

Before the main result is presented, an auxiliary lemma is given. The assumptions are listed

in Section 2.7.

Lemma 2.3.2 Let τ ∈ (0, 1). Assume model (2.1) under (A1),(A3)–(A6) from Section

2.7. Further, let

h
3− dX

2
x → 0, h2

yh
− dX

2
x → 0, hyh

1− dX
2

x → 0 (2.19)

or let
∫
K(w)2w dw :=

( ∫
K(w)2wj dw

)
j=1,...,dX

= 0 ∈ RdX and

h
3− dX

2
x → 0, h2

yh
− dX

2
x → 0, hyh

2− dX
2

x → 0. (2.20)

Then, one has

nh
dX
2
x

∫ ∫
v(x)

(
F̂−1
Y0|X(τ |x)− F−1

Y0|X(τ |x)
)2
dxµ(dτ)− b D→ Z (2.21)

with Z ∼ N (0, V ),

V = 2

∫ (∫
K(x)K(x+ s) dx

)2

ds

∫
v(w)2

fX(w)2
dw

∫ 1

0

∫ 1

0

(∫ (
I{u1≤τ} − τ

)(
I{u2≤τ} − τ

)
fε(F

−1
ε (τ))2

µ(dτ)

)2

du1 du2 (2.22)
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and

b = h
− dX

2
x

∫
K(w)2 dw

∫ ∫
κ(x, τ)p0(F−1

Y0|X(τ |x), x)

(
1−

p0(F−1
Y0|X(τ |x), x)

fX(x)

)
dxµ(dτ)

− hyh
− dX

2
x

∫
K(w)2 dw

∫
2zK(z)K(z) dz

∫ ∫
κ(x, τ)fY0,X(F−1

Y0|X(τ |x), x)

(
1−

p0(F−1
Y0|X(τ |x), x)

fX(x)

)
dxµ(dτ)

+ h
1− dX

2
x

∫ ∫
κ(x, τ)

∂

∂u

[
p0(F−1

Y0|X(τ |x), u)

(
1−

p0(F−1
Y0|X(τ |x), u)

fX(u)

)]
u=x

dxµ(dτ)

∫
K(w)2w dw + h

2− dX
2

x

∫
K(w)2wt

∫ ∫
κ(x, τ)

[
∂2

∂u2
p0(F−1

Y0|X(τ |x), u)
∣∣∣
u=x

− 2
p0(F−1

Y0|X(τ |x), x)

fX(x)

∂2

∂u2
p0(F−1

Y0|X(τ |x), u)
∣∣∣
u=x

+
p0(F−1

Y0|X(τ |x), x)2

fX(x)2

∂2

∂x2
fX(x)

]
dxµ(dτ)w dw.

Here, ∂2

∂x2 fX(x) denotes the Hessian of fX . If

h
1− dX

2
x → 0, hyh

− dX
2

x → 0 (2.23)

or
∫
K(w)2w dw = 0 and

h
2− dX

2
x → 0, hyh

− dX
2

x → 0, (2.24)

b simplifies to

b = h
− dX

2
x

∫
K(w)2 dw

∫
v(x)

fX(x)
dx

∫
τ(1− τ)

fε(F
−1
ε (τ))2

µ(dτ) + o(1). (2.25)

The proof is given in Section 2.8.2.

Remark 2.3.3 1. Condition (2.19) requires 3− dX
2 > 0, that is dX ≤ 5, (2.24) leads to

dX ≤ 3 and (2.23) even to dX = 1. Principally, b can alternatively be defined without

any of these conditions as

b = h
dX
2
x

∫ ∫
κ(x, τ)E

[(
Khy(F−1

Y0|X(τ |x)− gβ0(X1)− c0 − ε1)−
p0(F−1

Y0|X(τ |x), x)

fX(x)

)2

Khx(x−X1)2

]
dxµ(dτ). (2.26)

There is a trade off between how simple b is and how strict the bandwidth conditions

are.

2. Let α ∈ RdB . Then,

αtΩα =

∫
v(x)

((
Dβgβ0(x)−

∫
v(w)Dβgβ0(w) dw∫

v(w) dw

)
α

)2

dx
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=

∫
v(x)

(
Dβgβ0(x)α−

∫
v(w)Dβgβ0(w)αdw∫

v(w) dw

)2

dx,

that is, positive definiteness of Ω is only violated if there exists some α ∈ RdB , α 6= 0,

such that the map x 7→ Dβgβ0(x)α is constant with respect to x. For example, this

is the case, if GB already contains constant functions (e.g. polynomial functions with

intercepts). Such a case will be excluded by assumption (A7). However, the test can

be applied for the general class as well (see the explanation below).

In the following, the assumptions (2.19) and (2.20) are relaxed and expression (2.26) is used

for b. The minimization with respect to c may cause the existence of multiple minimizing

parameters β ∈ B, especially if GB is already closed with respect to addition of constants.

To derive the asymptotic behaviour, it will be assumed that∫ ∫
v(x)(F−1

Y0|X(y|x)− gβ(x)− cβ,τ )2 dxµ(dτ) > 0 for all β0 6= β ∈ B,

that is, the class GB is possibly shrunk to avoid multiple solutions β of the outer minimiza-

tion. Nevertheless, since the value of the test statistic is not influenced by this shrinkage,

the resulting test can be applied in the general case as well.

Theorem 2.3.4 Assume model (2.1). Further, let (A1)–(A8) from Section 2.7 hold and

let b, V and Z be defined as in Lemma 2.3.2. Then,

Tn − b− δn
D→ Z,

where

δn = µ([0, 1])

∫
v(x)

(
∆n(x)−

∫
v(w1)∆n(w1) dw1∫

v(w2) dw2
−
(
Dβgβ0(x)−

∫
Dβgβ0(w3) dw3∫
v(w4) dw4

)

Ω−1

(∫
v(w5)∆n(w5)

(
Dβgβ0(w5)−

∫
Dβgβ0(w6) dw6∫
v(w7) dw7

)
dw5

)t)2

dx.

Under H0 (that is ∆n ≡ 0 and thus δn = 0), this leads to Tn − b
D→ Z.

The proof can be found in Section 2.8.3. Later, a hypothesis test will be deduced from

Theorem 2.3.4. To see whether δn lies above some threshold δ > 0, that is, a test based on

the asymptotic distribution of Tn would detect the local alternative, define

∆̃n(x) = ∆n(x)−
∫
v(w1)∆n(w1) dw1∫

v(w2) dw2

as well as

D̃(x) = Dβgβ0(x)−
∫
Dβgβ0(w1) dw1∫
v(w2) dw2

.

Then,

Ω =

∫
v(x)D̃(x)tD̃(x) dx.

Moreover, it can be shown by similar arguments as in the proof of Remark 2.3.5 below that

δn = µ([0, 1])

∫
v(x)

(
∆̃n(x)−

(∫
v(w)∆̃n(w)D̃(w) dw

)
Ω−1D̃(x)t

)2

dx.
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Let β̃ be the minimizer

β̃ = arg min
β∈B

∫
v(x)

(
∆̃n(x)− D̃(x)β

)2
dx.

By standard calculations, it can be shown that

β̃ = Ω−1

∫
v(x)∆̃n(x)D̃(x) dx

and

δn =

∫
v(x)

(
∆̃n(x)− D̃(x)β̃

)2
dx,

that is, δn is greater than zero, if ∆̃n as a function is linearly independent of the components

of D̃. For some fixed ∆n ≡ ∆, β̃ and δn are independent of n, so that

δn = δ =

∫
v(x)

(
∆̃(x)− D̃(x)β̃

)2
dx > 0,

if ∆̃ is linearly independent of D̃. Such an orthogonality condition is quite intuitive and is

often assumed explicitly, e.g., by Härdle and Mammen (1993). See the proof of the following

remark for more details.

Remark 2.3.5 1. δn can alternatively be expressed as

δn = µ([0, 1])

∫
v(x)∆n(x)2 dx− µ([0, 1])

( ∫
v(x)∆n(x) dx

)2∫
v(w) dw

− µ([0, 1])

(∫
v(x)∆n(x)

(
Dβgβ0(x)−

∫
Dβgβ0(w1) dw1∫
v(w2) dw2

)
dx

)

Ω−1

(∫
v(x)∆n(x)

(
Dβgβ0(x)−

∫
Dβgβ0(w1) dw1∫
v(w2) dw2

)
dx

)t
= δ1,n + δ2,n + δ3,n.

2. Let model (2.15) hold for some sequence βn with ||βn − β0|| = cn and ∆n(x) =
gβn (x)−gβ0

(x)

cn
. Then, δn = o(1), that is, the asymptotic behaviour of the test statistic

is the same as for g(x) = gβ0(x) + c0. This is consistent with g = gβ0 + c0 + cn∆n =

gβn + c0 ∈ GB + R. The proof can be found on page 71.

The easiest way to construct a test with asymptotic level α for a given α ∈ (0, 1) may

consist in estimating b and V by some estimators b̂ and V̂ and to reject H0 if Tn > b̂ +√
V̂ u1−α, where u1−α denotes the (1 − α)-quantile of the standard normal distribution.

The corresponding test looks like

Φ(Y1, X1, ..., Yn, Xn) = I{
Tn>b̂+

√
V̂ u1−α

}. (2.27)

See Section 2.5 for more details.

Theorem 2.3.6 1. Assume (A1),(A3),(A5) from Section 2.7 as well as

inf
τ∈supp(µ)

fε(F
−1
ε (τ)) inf

x∈supp(v)
fX(x) > 0. (2.28)
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Moreover, let fX , fε and gβ0 be uniformly continuous and assume

hx, hy,
log(n)

nhdXx
,
log(n)

nhy
→ 0.

If b̂ and V̂ are some estimators of b and V , such that

b̂ = op
(
nh

dX
2
x

)
and

√
V̂ = op

(
nh

dX
2
x

)
,

one has

P (Φ(Y1, X1, ..., Yn, Xn) = 1)→ 1

under fixed alternatives. Especially, the test is consistent under (A1)–(A8) with fixed

cn,∆n.

2. Assume (A1)–(A8) for ∆n ≡ 0 and let b̂, V̂ be some estimators of b and V with

b̂− b = op(1) and V̂ − V = op(1). (2.29)

Then,

P (Φ(Y1, X1, ..., Yn, Xn) = 1)→ α.

The proof is given in Section 2.8.5.

Remark 2.3.7 When considering a quantile regression model

Y = g(X) + ε̃

for some fixed τ ∈ (0, 1) with ε̃ not necessarily independent of X and F−1
ε̃|X(τ |X) = 0 almost

surely, the test (without minimizing with respect to c and with µ being the Dirac measure

in τ) can still be applied to test for the null hypothesis

H̃0 : g ∈ GB.

It is supposed that after replacing the product density of (X, ε) by the joint density fX,ε̃ in

(A1)–(A8) and assuming

inf
x∈supp(v)

fX,ε̃(x, 0) > 0,

the presented results remain valid for testing H̃0, although in general for different b and V .

�

2.4 Extending the Test to Nonparametric Transformation

Models

In this section, the nonparametric transformation model

h(Y ) = g(X) + ε (2.30)
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is considered. Denote the conditional distribution function of h(Y ) conditioned on X = x

by F hY |X(y|x) = Fh(Y )|X(y|x) = P (h(Y ) ≤ y|X = x). Let ĥ be a monotonic estimator of h

that fulfils

ĥ(y)− h(y) =
1

n

n∑
k=1

ψ(Yk, Xk, y) + op

(
1√
n

)
= Op

(
1√
n

)
(2.31)

uniformly on compact sets, where ψ fulfils (A9) in Section 2.7. Examples for such estima-

tors are those of Chiappori et al. (2015) and Colling and Van Keilegom (2019). The main

advantage of basing the test statistic on the conditional quantile (instead of the conditi-

onal mean) consists in the ability to transfer the convergence rate of the nonparametric

transformation estimator to the estimated quantile, which is in general not possible for the

conditional mean. To illustrate what is meant by this consider the problem of estimating a

specific quantile (F hY |X)−1(τ |x) for some τ ∈ (0, 1) of the conditional distribution function of

h(Y ) conditioned on X = x. If the estimator (2.12) for the conditional distribution function

in the untransformed model and its inverse are modified by replacing Y with ĥ(Y ), this

leads to the estimator (F̂ ĥY |X)−1(τ |x), where

F̂ ĥY |X(y|x) =
p̂ĥ(y, x)

f̂X(x)
and p̂ĥ(y, x) =

1

n

n∑
i=1

Khy(y − ĥ(Yi))Khx(x−Xi).

Since K was assumed to have a compact support, for example [c1, c2] ⊆ R for some c1 <

c2 ∈ R, the value of p̂ĥ(y, x) for some x ∈ RdX , y ∈ R only depends on those values of ĥ that

belong to the interval [y+hyc1, y+hyc2]. This implies that ĥ (for this illustration assumed

to be strictly increasing) only needs to be evaluated at [ĥ−1(y + hyc1), ĥ−1(y + hyc2)],

which indeed is a compact set. Translating this to y ∈ [y1, y2], ĥ needs to be evaluated

at [ĥ−1(y1 + hyc1), ĥ−1(y2 + hyc2)]. In the proof of Theorem 2.4.1 the randomness of this

interval is taken into account as well, but together with the fast convergence rate of ĥ

to h this will be the main reason for the asymptotic negligibility of the transformation

estimation.

In the following, quantities which depend on the estimator ĥ of the transformation function

are marked with an upper ĥ (e.g. T ĥn , F̂
ĥ
Y |X , p̂

ĥ), whereas quantities which depend on the

true transformation function h are marked with an upper h (e.g. T hn , F̂
h
Y |X , p̂

h, F hY |X , p
h).

Theorem 2.4.1 Assume model (2.30) under (A1)–(A9) for ∆n ≡ 0 and with F−1
Y |X repla-

ced by (F hY |X)−1. Then,

T ĥn = nh
dX
2
x min

β∈B

∫
min
c∈R

∫
v(x)

(
(F̂ ĥY |X)−1(τ |x)− gβ(x)− c

)2
dxµ(dτ)

= nh
dX
2
x min

β∈B

∫
min
c∈R

∫
v(x)

(
(F̂ hY |X)−1(τ |x)− gβ(x)− c

)2
dxµ(dτ) + op(1)

= T hn + op(1).

The proof can be found in Section 2.8.6. The asymptotic behaviour of T ĥn follows directly

from Theorem 2.3.4 and Theorem 2.4.1.
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Corollary 2.4.2 Assume model (2.30) under (A1)–(A9) from Section 2.7 for ∆n ≡ 0 as

well as (2.23). Then,

T ĥn − b
D→ Z

with Z ∼ N (0, V ),

V = 2

∫ (∫
K(x)K(x+ s) dx

)2

ds

∫
v(w)2

fX(w)2
dw

∫ 1

0

∫ 1

0

(∫ (
I{u1≤τ} − τ

)(
I{u2≤τ} − τ

)
fε(F

−1
ε (τ))2

µ(dτ)

)2

du1 du2

and

b = h
− dX

2
x

∫
K(w)2 dw

∫
v(x)

fX(x)
dx

∫
τ(1− τ)

fε(F
−1
ε (τ))2

µ(dτ) + o(1).

As in the nontransformation case, a corresponding test can be defined via

Φh(Y1, X1, ..., Yn, Xn) = I{
T ĥn>b̂+

√
V̂ u1−α

}. (2.32)

Theorem 2.4.3 1. Let τ ∈ (0, 1) and assume (A1),(A3),(A5) from Section 2.7 as well

as (2.28). Further, let fX , fε and g be uniformly continuous and assume

hx, hy,
log(n)

nhdXx
,
log(n)

nhy
→ 0.

Let ĥ be uniformly consistent over compact sets. If b̂ and V̂ are some estimators of b

and V , such that

b̂ = op
(
nh

dX
2
x

)
and

√
V̂ = op

(
nh

dX
2
x

)
,

it holds that

P (Φh(Y1, X1, ..., Yn, Xn) = 1)→ 1

under fixed alternatives. Especially, the test is consistent under (A1),(A3)–(A9)

with fixed alternatives.

2. Assume (A1)–(A9) for ∆n ≡ 0 and let b̂, V̂ be some estimators fulfilling (2.29).

Then,

P (Φh(Y1, X1, ..., Yn, Xn) = 1)→ α.

The proof is given in Section 2.8.7.

Remark 2.4.4 1. Note that the asymptotic distribution of T ĥn is not only independent

of the estimation of the transformation function, but also independent of the trans-

formation function h itself, since V and b only depend on the distributions of X and

ε.

2. In principle, if equation (2.31) is valid under (2.15), it should be possible after mi-

nor adjustments to extend Theorem 2.4.1 to local alternatives like in (2.15) as well.

Since to the author’s knowledge there are no results regarding the convergence of a
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nonparametric estimator ĥ to h (especially no results as (2.31)) in the context of local

alternatives with respect to g so far, this idea is not pursued further. Note that this

question heads in the same direction as Lemma 5.8.1, where local alternatives with

respect to the transformation function are considered.

�

2.5 Some Thoughts on the Behaviour for Finite Sample Sizes

In this section, a brief overview of the behaviour of the test statistic for small sample sizes is

given. Not claiming to present a perfectly elaborated analysis of the tests given in (2.27) and

(2.32) the aim is to point out some advantages and disadvantages the given tests might be

accompanied with and to give the author’s view of possible adjustments worth to consider

during future research.

As stated in Theorems 2.3.6 and 2.4.3, some estimators of b and V fulfilling (2.29) are needed

before the tests in (2.27) and (2.32) can be applied. Although conceivable for general µ,

only the Dirac-Measure µ = δτ for τ = 1
2 is treated here. Consequently, equations (2.22)

and (2.25) lead to

V =
2

fε(F
−1
ε (1

2))4

∫ (∫
K(x)K(x+ s) dx

)2

ds

∫
v(w)2

fX(w)2
dw

(∫ 1

0

(
I{u≤ 1

2
} −

1

2

)2

du

)2

=
1

8fε(F
−1
ε (1

2))4

∫ (∫
K(x)K(x+ s) dx

)2

ds

∫
v(w)2

fX(w)2
dw

and

b =
1

4fε(F
−1
ε (1

2))2h
dx
2
x

∫
K(w)2 dw

∫
v(x)

fX(x)
dx.

Some of the components in the expressions above can be calculated explicitly. For example,

if K is the Epanechnikow kernel, one has∫ (∫
K(x)K(x+ s) dx

)2

ds =
167

385
and

∫
K(x)2 dx =

3

5
.

Hence, only fε(F
−1
ε (1

2)),
∫ v(w)
fX(w) dw and

∫ v(w)2

fX(w)2 dw are unknown and need to be estimated.

For the integrals this can be done by

1

n

n∑
i=1

v(Xi)

f̂X(Xi)2
≈
∫

v(w)

fX(w)
dw and

1

n

n∑
i=1

v(Xi)
2

f̂X(Xi)3
≈
∫

v(w)2

fX(w)2
dw,

where f̂X is the estimator defined in (1.2). fε(F
−1
ε (1

2)) in turn can be estimated by

1
n

∑n
i=1 v(Xi)Khε

(
F̂−1
Y |X(1

2 |Xi)− Yi
)

1
n

∑n
i=1 v(Xi)

in model (2.1) and in model (2.30) by

1
n

∑n
i=1 v(Xi)Khε

(
(F̂ ĥY |X)−1(1

2 |Xi)− ĥ(Yi)
)

1
n

∑n
i=1 v(Xi)

for some appropriate bandwidth hε.
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Theorem 2.5.1 Assume model (2.30) and (A1)–(A9) as well as

nh2dX
x h4

ε →∞, nrh2dX
x h4(r+1)

ε →∞ and hqε = o
(
h
dX
2
x

)
.

Then,

1

n

n∑
i=1

v(Xi)

f̂X(Xi)2
=

∫
v(w)

fX(w)
dw + o

(
h
dX
2
x

)
, (2.33)

1

n

n∑
i=1

v(Xi)
2

f̂X(Xi)3
=

∫
v(w)2

fX(w)2
dw + o

(
h
dX
2
x

)
, (2.34)

1
n

∑n
i=1 v(Xi)Khε

(
(F̂ ĥY |X)−1(1

2 |Xi)− ĥ(Yi)
)

1
n

∑n
i=1 v(Xi)

= fε

(
F−1
ε

(
1

2

))
+ o
(
h
dX
2
x

)
, (2.35)

so that b̂ and V̂ are consistent estimators of b and V , respectively. The assertion also holds,

if the transformation function h is known, that is, under model (2.1).

The proof is given in Section 2.8.8.

Remark 2.5.2 1. Theorems 2.5.1, 2.3.6 and 2.4.3 ensure that after plugging the esti-

mators from above into the expressions for b and V the tests presented in (2.27) and

(2.32), respectively, are indeed consistent level-α-tests. Note that in addition to the

relatively strict bandwidth conditions used in the last Theorem, the expression for b

from (2.25) itself requires (2.24) and thus dX ≤ 3.

2. With respect to the asymptotic behaviour of the test statistic and the examination of

this behaviour, there are many similarities to the approach of Härdle and Mammen

(1993). Since some of the asymptotically negligible terms converge to zero at quite

a slow rate, they advise against using the asymptotic distribution in their model to

construct tests as is (2.27) or (2.32) via some plug-in-approach. Possibly, some of

their ideas can be transferred to the context here to improve the behaviour of the tests

for finite sample sizes.

This theoretical background in mind, some observations (Y1, X1), ..., (Yn, Xn) are simulated

from the underlying models

Y = γ∆(X) +X − 1

2
+ ε, (2.36)

h(Y ) = γ∆(X) +X − 1

2
+ ε (2.37)

in the following, where X ∼ U([−2, 2]) and ε ∼ N (0, 1) in both cases. In (2.37) h is chosen

to be the Yeo-Johnson transformation with parameter equal to θ = 1 (see (5.3)), that is

the identity. Note that in contrast to model (2.36), the transformation function will be

estimated when model (2.37) is mentioned. The parametric class of regression functions to

test for is chosen to be G1 = {x 7→ bx+a : a, b ∈ R}, that is, in terms of the null hypothesis

in (2.6), it will be tested for GB + R = G1 with GB = {x 7→ bx : b ∈ R}. ∆(X) = X2 and
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∆(X) = exp(X) are used as deviation functions, in both cases with γ = 0, 0.5, 1, 1.5, 2, 2.5, 3.

Further,

K(x) =
3

4
(1− x2)I{|x|≤1} and v(x) =

1

2
I{|x|≤1}

are used as a kernel and weighting function, respectively. For the implementation, the

language R as well as the already implemented functions integrate and h.select (with met-

hod=’cv’ ) for integration and bandwidth calculation were used. For the sample size of

n = 100 the normal reference rule (Silverman (1986)) was applied since the cross validation

bandwidths tend to be too small to ensure f̂X > 0 on the support of v.

Table 2.1 shows some rejection probabilities of the test in (2.27) for sample sizes of n =

100, 200, 1000 with m = 200 repetitions to estimate the rejection probability. First, the

asymptotic test seems to be very conservative since under the null hypothesis the test does

not even reject once during all of the repetitions in each of the scenarios. The reason for

this can be seen in table 2.2. Although only the case n = 200 and γ = 0 is considered

there, the same conclusions can be drawn for the other scenarios as well. Table 2.2 lists

the means of b̂ and V̂ as well as the theoretical quantities from the asymptotic distribution

and the empirical mean and variance of the test statistic. Since b depends on the random

bandwidth hx, the mean over all m = 200 corresponding values of b was taken. Although

the estimation is very sensitive with respect to estimation errors in fε(F
−1
ε (1

2)), the ap-

proximations of b and V are reasonable. However, mean and variance of T seem to be far

below their asymptotic counterparts, which results in an extremely conservative test. It is

not clear, if estimating the more complex expression for b given in Lemma 2.3.2 would lead

to better results. Applying this expression would have been much more computationally

demanding on the one hand and does not even necessarily improve the test’s performance

on the other hand since these estimators might be accompanied with new estimation errors

and the estimated variance would be unaffected by those adjustments. Second, this phe-

nomenon not only lowers the rejection probabilities under the null hypothesis, but those

under the alternatives as well resulting at least in some models in rather small power.

Some rejection probabilities for the transformation model (2.37) are listed in Table 2.3. Due

to the choice of the transformation parameter, model (2.37) coincides with model (2.36),

that is, the only difference of the tests consists in the estimation of the transformation

function. While for ∆(X) = exp(X) the test Φ outperforms Φh by far the latter seems to

perform slightly better for ∆(X) = X2. Nevertheless, note that both tests in general test

different null hypotheses, which makes a comparison difficult.

Due to the mentioned drawbacks it is not advisable to apply the asymptotic tests directly.

Instead, at least the estimators of b and V have to be adjusted. A similar conclusion was

drawn by Härdle and Mammen (1993) in their scenario. The author would suggest to apply

some bootstrap procedure to mimic the behaviour of the test statistic as a whole instead

of only the mean and the variance. Because of the similar structure of the given test to

that in Section 5 it is conjectured that an algorithm similar to that of (5.4.1) might work.

Nevertheless, although due to the dependence of b on fε(F
−1
ε (τ))2 some procedures like

the wild bootstrap introduced by Liu (1988) and applied for example by Härdle and Mam-

men (1993) might not lead to consistent estimates of the critical values, already simpler

algorithms, probably based on smoothed residual bootstrap like in the paper of Neumeyer
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et al. (2016), might work. Since the convergence of nonparametric estimators of the trans-

formation function h in model (2.30) is limited to compact sets so far it is conjectured that

applying these approaches might require to estimate the residuals parametrically.

Sample Size n = 100 n = 200 n = 1000

Alternative\Level α = 0.05 α = 0.10 α = 0.05 α = 0.10 α = 0.05 α = 0.10

∆(X) = X2

γ = 0 0.000 0.000 0.000 0.000 0.000 0.000

γ = 0.5 0.020 0.040 0.040 0.060 0.715 0.805

γ = 1 0.240 0.320 0.535 0.600 1.000 1.000

γ = 1.5 0.640 0.775 0.955 0.980 1.000 1.000

γ = 2 0.875 0.940 1.000 1.000 1.000 1.000

γ = 2.5 0.970 0.995 1.000 1.000 1.000 1.000

γ = 3 0.980 0.990 1.000 1.000 1.000 1.000

∆(X) = exp(X)

γ = 0 0.000 0.000 0.000 0.000 0.000 0.000

γ = 0.5 0.005 0.020 0.015 0.020 0.075 0.140

γ = 1 0.055 0.070 0.085 0.145 0.865 0.905

γ = 1.5 0.160 0.210 0.355 0.420 1.000 1.000

γ = 2 0.390 0.465 0.585 0.670 1.000 1.000

γ = 2.5 0.560 0.620 0.810 0.850 1.000 1.000

γ = 3 0.710 0.755 0.905 0.950 1.000 1.000

Table 2.1: Rejection probabilities for the nontransformation model (2.36) and sample sizes

of n = 100, n = 200 and n = 1000.

Quantity b V

mean of the true asymptotic values 5.09 17.04

mean of the estimators 5.21 21.5

empirical mean and variance 1.34 1.87

Table 2.2: Estimated b and V compared to the true asymptotic values and the simple

empirical mean and variance in model (2.36) with n = 200 and γ = 0.
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Sample Size n = 200 n = 500 n = 1000

Level α = 0.05 α = 0.10 α = 0.05 α = 0.10 α = 0.05 α = 0.10

∆(X) = X2

γ = 0 0.000 0.000 0.000 0.000 0.000 0.000

γ = 0.5 0.040 0.075 0.205 0.310 0.795 0.835

γ = 1 0.715 0.820 1.000 1.000 1.000 1.000

γ = 1.5 0.990 0.995 1.000 1.000 1.000 1.000

γ = 2 1.000 1.000 1.000 1.000 1.000 1.000

γ = 2.5 1.000 1.000 1.000 1.000 1.000 1.000

γ = 3 1.000 1.000 1.000 1.000 1.000 1.000

∆(X) = exp(X)

γ = 0 0.000 0.000 0.000 0.000 0.000 0.000

γ = 0.5 0.000 0.005 0.005 0.010 0.025 0.045

γ = 1 0.000 0.005 0.025 0.045 0.175 0.280

γ = 1.5 0.010 0.015 0.085 0.115 0.430 0.530

γ = 2 0.000 0.000 0.140 0.185 0.570 0.660

γ = 2.5 0.005 0.015 0.130 0.185 0.535 0.625

γ = 3 0.015 0.025 0.135 0.205 0.490 0.580

Table 2.3: Rejection probabilities for the transformation model (2.37) and sample sizes of

n = 200, n = 500 and n = 1000.

2.6 Discussion

A procedure for testing the null hypothesis of a parametric regression function and an ex-

tension to nonparametric transformation models have been developed. Although the testing

approach itself might be of interest as well, the main contribution consists in providing a

test that allows nonparametric estimation of the transformation function. To the author’s

knowledge, this has not been done before in the literature and might open the door to a

new general class of goodness of fit tests.

There are mainly two aspects of potential improvement. On the one hand, as was men-

tioned in Section 2.5 an appropriate bootstrap procedure could be applied to mimic the

asymptotic behaviour of Tn and T ĥn better than when using the asymptotic distribution.

Such a phenomenon was already observed by Härdle and Mammen (1993). On the other

hand, the detection of local alternatives can be possibly improved to detecting parametric

rates by changing the test statistic. One way could consist in applying empirical process

approaches like He and Zhu (2003) and Horowitz and Lee (2009) did. For example, consider

Ẑ(τ, x, e) =
1

n

n∑
i=1

Ξ
(
ε̂i(τ), Xi, x, e

)
(2.38)

with ε̂i(τ) = ĥ(Yi)− (F̂ ĥY |X)−1(τ |Xi) and some appropriate function Ξ. If Ξ is chosen to be

a weighted indicator function of the form Ξ(ε̂(τ), X, x, e) = v(Xi)I{ε̂i(τ)≤e}, this leads to a

weighted residual process

Ẑ(τ, x, e) =
1

n

n∑
i=1

v(Xi)I{ĥ(Yi)−(F̂ ĥ
Y |X)−1(τ |Xi)≤e}

≈ 1

n

n∑
i=1

v(Xi)I{εi≤e+F−1
ε (τ)} (2.39)

similar to that treated in Akritas and Van Keilegom (2001). Perhaps some of the techniques

applied there are helpful for the asymptotic analysis of (2.39). In the context of quantile

36



2.7. Assumptions

regression, it is more common to use residuals of the form ε̃i(τ) = I{ĥ(Yi)−gβ̂(Xi)} − τ for

some parametric estimator gβ̂ instead of ε̂i. Nevertheless, processes as in (2.38) or (2.39)

can be possibly used to construct a hypothesis test that is sensitive to faster converging

local alternatives.

Note that the general idea to replace the estimated conditional mean by the estimated con-

ditional distribution function is not limited to testing for a parametric regression function.

Tests of similar type as Φ and Φh to test for significance of components of the covariate X

are conceivable as well. Moreover, other nonparametric estimators of the transformation

function can be applied as long as they fulfil certain properties, e.g., as (2.31). Especially,

it should be possible to obtain an even more general test in the context of heteroscedastic

transformation models by applying the estimator, which will be presented in Chapter 4.

2.7 Assumptions

Let q, r ∈ N.

(A1) Depending on which model is considered, models (2.1) or (2.30) hold with ε inde-

pendent of X. Let (Yi, Xi), i = 1, ..., n, be independent and identically distributed

observations from the corresponding model.

(A2) One has g(x) = gβ0(x) + c0 + cn∆n(x) with cn = n−
1
2h
− dX

4
x and some uniformly

bounded and continuous function ∆n (both uniformly in x and n).

(A3) The kernel K is r-times continuously differentiable with bounded support. Moreover,

one has
∫
K(z) dz = 1,

∫
zlK(z) dz = 0 for all l = 1, ..., q − 1 and

∫
|zqK(z)| dz <∞.

(A4) The bandwidths hx and hy fulfil

nh2dX
x

log(n)2
→∞, (2.40)

nh
dX (r+1)

2r
x h

2(r+1)
r

y →∞, (2.41)

n log(n)−
1
2hdXx h

3
2
y →∞, (2.42)

nh
dXr

2r−1
x h

4(r+1)
2r−1
y →∞, (2.43)

n log(n)−
2
3h

5dX
3

x h2
y →∞, (2.44)

√
nhqx → 0,

√
nhqy → 0.

(A5) v is uniformly continuous with compact support.

(A6) fX and gβ0 are q-times continuously differentiable. fε is q-times continuously diffe-

rentiable with bounded derivatives. One has ∂
∂efε(e)

|e|→∞−→ 0, ∂2

∂e2
fε(e)

|e|→∞−→ 0 and

inf
τ∈supp(µ)

fε(F
−1
ε (τ)) inf

x∈supp(v)
fX(x) > 0.

37



2. Testing for a Parametric Regression Function in Nonparametric Transformation
Models - A Quantile Approach

(A7) B ⊆ RdB is a compact parameter set and the function (β, x) 7→ gβ(x) is two times con-

tinuously differentiable on B × supp(v) with respect to both components. Moreover,

it holds that
∫ ∫

v(x)(F−1
Y0|X(y|x)− gβ(x)− cβ,τ )2 dxµ(dτ) > 0 for all β0 6= β ∈ B.

(A8) Ω is positive definite.

(A9) The estimator ĥ of h is strictly monotone and fulfils (2.31). ψ fulfils E[ψ(Y,X, y)] = 0

for all y ∈ R. For all compact sets C ⊆ R the function value ψ(y1, x1, y) is uniformly

bounded in (y1, x1, y) ∈ RdX+1 × C.

Remark 2.7.1 (i) The standard assumptions hx, hy = o(1), nhdXx , nhy →∞ are implied

by (A4).

(ii) Together with cn = n−
1
2h
− dX

4
x the equations (2.41)–(2.44) imply

√
ncr+1

n

hr+1
y

→ 0,
c4
n log(n)

hdXx h3
y

→ 0,
n

1
4 crn
hr+1
y
→ 0 and

c2
n log(n)

n
1
4hdXx h3

y

→ 0.

(iii) (A3) and (A4) are fulfilled for K(u) = 945
512(1−u2)3

(
1− 11

3 u
2
)
I[−1,1](u) (that is q = 4

and r = 2), dX ∈ {1, 2} and hx = hy = n−
1
6 (see Hansen (2009)).

(iv) Due to F−1
Y0|X(τ |x) = gβ0(x) + c0 + F−1

ε (τ), (A6) implies

inf
x∈supp(v), τ∈supp(µ)

fX(x)fε(F
−1
Y0|X(τ |x)− gβ0(x)− c0) > 0.

�

2.8 Proofs

Before proving the main results of the Sections 2.3 and 2.4 an auxiliary lemma is given.

2.8.1 An Auxiliary Result

The following Lemma yields an asymptotic expansion for the difference of the conditional

quantile function and its estimator F̂−1
Y |X(τ |x). Recall model (2.1) under the local alterna-

tives H1,n in (2.15) and Y0 = gβ0(X) + c0 + ε.

Lemma 2.8.1 Assume (A1)–(A5). Then,

F−1
Y0|X(τ |x)− F̂−1

Y |X(τ |x)

=
1

fY0|X(F−1
Y0|X(τ |x)|x)

(
1

fX(x)
p̂(F−1

Y0|X(τ |x), x)−
p0(F−1

Y0|X(τ |x), x)

fX(x)2
f̂X(x)

)
+ op

(
1√
n

)

= op
(
n−

1
4
)
,

F−1
Y0|X(τ |x)− F̂−1

Y0|X(τ |x)
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=
1

fY0|X(F−1
Y0|X(τ |x)|x)

(
1

fX(x)
p̂0(F−1

Y0|X(τ |x), x)−
p0(F−1

Y0|X(τ |x), x)

fX(x)2
f̂X(x)

)
(2.45)

+ op

(
1√
n

)
= op

(
n−

1
4
)

and

F̂−1
Y |X(τ |x)− F̂−1

Y0|X(τ |x)

=
cn

nfY0|X(F−1
Y0|X(τ |x)|x)fX(x)

n∑
i=1

Khy(F
−1
Y0|X(τ |x)− gβ0(Xi)− c0 − εi)

Khx(x−Xi)∆n(Xi) + op

(
1√
n

)
(2.46)

uniformly in x ∈ supp(v) and τ ∈ supp(µ).

Proof: Denote the j-th derivatives of K and fε by K(j) and f
(j)
ε , respectively. For appro-

priate y∗i ∈ R one has

p̂(y, x)− p̂0(y, x)

=
1

n

n∑
i=1

(
Khy(y − gβ0(Xi)− c0 − εi − cn∆n(Xi))−Khy(y − gβ0(Xi)− c0 − εi)

)
Khx(x−Xi)

=
1

n

n∑
i=1

r−1∑
j=0

K(j)

(
y − gβ0(Xi)− c0 − εi

hy

)
Khx(x−Xi)

(−1)j+1cj+1
n ∆n(Xi)

j+1

hj+1
y (j + 1)!

+
1

n

n∑
i=1

K(r)(y∗i )Khx(x−Xi)
(−1)r+1cr+1

n ∆n(Xi)
r+1

hr+1
y (r + 1)!

.

Thanks to (A2) and (2.41), one has (for an appropriate constant C > 0)∣∣∣∣ 1n
n∑
i=1

K(r)(y∗i )Khx(x−Xi)
(−1)r+1cr+1

n ∆n(Xi)
r+1

hr+1
y (r + 1)!

∣∣∣∣ ≤ Ccr+1
n

hr+1
y

1

n

n∑
i=1

|Khx(x−Xi)|

= op

(
1√
n

)
.

Moreover, integration by parts yields

E

[
1

hj+1
y

K(j)

(
y − gβ0(X1)− c0 − εi

hy

)
Khx(x−X1)∆n(X1)j+1

]

=

∫ ∫
1

hj+1
y

K(j)

(
y − gβ0(w)− c0 − e

hy

)
Khx(x− w)∆n(w)j+1fε(e) de fX(w) dw

=

∫ ([
− 1

hjy
K(j−1)

(
y − gβ0(w)− c0 − e

hy

)
fε(e)

]∞
−∞

39



2. Testing for a Parametric Regression Function in Nonparametric Transformation
Models - A Quantile Approach

+

∫
1

hjy
K(j−1)

(
y − gβ0(w)− c0 − e

hy

)
f (1)
ε (e) de

)
Khx(x− w)∆n(w)j+1fX(w) dw

= ...

...

=

∫
1

hy
K

(
y − gβ0(w)− c0 − e

hy

)
f (j)
ε (e) deKhx(x− w)∆n(w)j+1fX(w) dw

=

∫
K(e)f (j)

ε (y − gβ0(w)− c0 − hye) deKhx(x− w)∆n(w)j+1fX(w) dw

= f (j)
ε (y − gβ0(w)− c0)∆n(x)j+1fX(x) + o(1)

uniformly in y ∈ R, x ∈ supp(v) for all j = 1, ..., r − 1. (2.41) and (2.42) imply

c
2(j+1)
n log(n)

hdXx h2j+1
y

→ 0

for all j = 1, ..., r − 1, so that

1

n

n∑
i=1

K(j)

(
y − gβ0(Xi)− c0 − εi

hy

)
Khx(x−Xi)

(−1)j+1cj+1
n ∆n(Xi)

j+1

hj+1
y (j + 1)!

=
(−1)j+1cj+1

n

nhj+1
y (j + 1)!

n∑
i=1

(
K(j)

(
y − gβ0(Xi)− c0 − εi

hy

)
Khx(x−Xi)∆n(Xi)

j+1

− E
[
K(j)

(
y − gβ0(X1)− c0 − ε1

hy

)
Khx(x−X1)∆n(X1)j+1

])
+ op

(
1√
n

)

=
cj+1
n

hjy
Op

(√
log(n)

nhdXx hy

)
+ op

(
1√
n

)

= op

(
1√
n

)
for all j = 1, ..., r − 1 and uniformly with respect to x ∈ supp(v) and with respect to y

in some compact set, where the second to last equality follows from the results of Hansen

(2008) (see section 1.1). Hence,

p̂(y, x)− p̂0(y, x) = −cn
n

n∑
i=1

Khy(y − gβ0(Xi)− c0 − εi)Khx(x−Xi)∆n(Xi) + op

(
1√
n

)
= Op(cn)

= op
(
n−

1
4
)
. (2.47)

uniformly on compact sets with respect to y and uniformly in x ∈ supp(v). Since (2.43)

and (2.44) imply

n log(n)
− 2

2j+1h
dX (j+4)

2j+1
x h2

y →∞
(
⇒ c2j

n log(n)

n
1
4hdXx h2j+1

y

→ 0

)
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for all j = 1, ..., r − 1, a similar reasoning leads to

f̂Y |X(y|x)− fY0|X(y|x) = op
(
n−

1
4
)

uniformly on compact sets. These asymptotic expressions will be used to obtain a similar

expression for F̂−1
Y |X(τ |x)−F−1

Y |X(τ |x). Again, Theorem 2 of Hansen (2008) or more precisely

the adjustments discussed later in the proof of Lemma 4.2.12 combined with (A4) ensure

that

p̂0(y, x)− p0(y, x) = op
(
n−

1
4
)
, f̂X(x)− fX(x) = op

(
n−

1
4
)

and
∂

∂y
f̂Y |X(y|x) = Op(1)

uniformly on compact sets, so that Lemma 1.1.2 leads to

F̂Y0|X(y|x)− FY0|X(y|x)

=
p̂0(y, x)

f̂X(x)
− p0(y, x)

fX(x)

=
1

fX(x)
(p̂0(y, x)− p0(y, x))− p0(y, x)

fX(x)2
(f̂X(x)− fX(x))

− f̂X(x)− fX(x)

f̂X(x)fX(x)

(
p̂0(y, x)− p0(y, x)− p0(y, x)(f̂X(x)− fX(x))

fX(x)

)

=
1

fX(x)
(p̂0(y, x)− p0(y, x))− p0(y, x)

fX(x)2
(f̂X(x)− fX(x)) + op

(
1√
n

)
= op

(
n−

1
4
)
.

and

F̂Y |X(y|x)− FY0|X(y|x) =
1

fX(x)
(p̂(y, x)− p0(y, x))− p0(y, x)

fX(x)2
(f̂X(x)− fX(x))

+ op

(
1√
n

)
= op

(
n−

1
4
)
.

Since for an appropriate y∗ between F̂−1
Y |X(τ |x) and F−1

Y0|X(τ |x)

0 = F̂Y |X(F̂−1
Y |X(τ |x)|x)− FY0|X(F−1

Y0|X(τ |x)|x)

= F̂Y |X(F−1
Y0|X(τ |x)|x) + f̂Y |X(F−1

Y0|X(τ |x)|x)
(
F̂−1
Y |X(τ |x)− F−1

Y0|X(τ |x)
)

+
∂

∂y
f̂Y |X(y∗|x)

(
F̂−1
Y |X(τ |x)− F−1

Y0|X(τ |x)
)2 − FY0|X(F−1

Y0|X(τ |x)|x)

= F̂Y |X(F−1
Y0|X(τ |x)|x)− FY0|X(F−1

Y0|X(τ |x)|x)

+ fY |X(F−1
Y0|X(τ |x)|x)

(
F̂−1
Y |X(τ |x)− F−1

Y0|X(τ |x)
)

+
(
f̂Y |X(F−1

Y0|X(τ |x)|x)− fY |X(F−1
Y0|X(τ |x)|x)

)(
F̂−1
Y |X(τ |x)− F−1

Y0|X(τ |x)
)
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+
∂

∂y
f̂Y |X(y∗|x)

(
F̂−1
Y |X(τ |x)− F−1

Y0|X(τ |x)
)2

due to the continuity of F̂Y |X and FY0|X , it holds that F̂−1
Y |X(τ |x) − F−1

Y0|X(τ |x) = op
(
n−

1
4

)
uniformly in x ∈ supp(v) and τ ∈ supp(µ). Moreover, note that

fY |X(y|x)− fY0|X(y|x) = O(cn)

uniformly on compact sets and that cnn
− 1

4 = o
(
n−

1
2

)
. Hence,

0 = F̂Y |X(F̂−1
Y |X(τ |x)|x)− FY0|X(F−1

Y0|X(τ |x)|x)

= F̂Y |X(F−1
Y0|X(τ |x)|x)− FY0|X(F−1

Y0|X(τ |x)|x)

+ fY |X(F−1
Y0|X(τ |x)|x)

(
F̂−1
Y |X(τ |x)− F−1

Y0|X(τ |x)
)

+Op
((
F̂−1
Y |X(τ |x)− F−1

Y0|X(τ |x)
)2)

+Op
((
f̂Y |X(F−1

Y0|X(τ |x))− fY0|X(F−1
Y0|X(τ |x))

)(
F̂−1
Y |X(τ |x)− F−1

Y0|X(τ |x)
))
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(
1√
n

)
= F̂Y |X(F−1

Y0|X(τ |x)|x)− FY0|X(F−1
Y0|X(τ |x)|x)

+ fY0|X(F−1
Y0|X(τ |x)|x)

(
F̂−1
Y |X(τ |x)− F−1

Y0|X(τ |x)
)

+ op

(
1√
n

)
uniformly in x ∈ supp(v) and τ ∈ supp(µ). Due to (A6), this in turn implies

F−1
Y0|X(τ |x)− F̂−1

Y |X(τ |x)

=
F̂Y |X(F−1

Y0|X(τ |x)|x)− FY0|X(F−1
Y0|X(τ |x)|x)

fY |X(F−1
Y0|X(τ |x)|x)
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(
1√
n

)

=
1

fY0|X(F−1
Y0|X(τ |x)|x)

(
1

fX(x)
p̂(F−1

Y0|X(τ |x), x)−
p0(F−1

Y0|X(τ |x), x)

fX(x)2
f̂X(x)

)
+ op

(
1√
n

)
.

The same expression can be obtained for F−1
Y0|X(τ |x)− F̂−1

Y0|X(τ |x) when replacing p̂ by p̂0,

so that (see (2.47))

F̂−1
Y |X(τ |x)− F̂−1

Y0|X(τ |x)

=
1

fY0|X(F−1
Y0|X(τ |x)|x)fX(x)

(
p̂0(F−1

Y0|X(τ |x), x)− p̂(F−1
Y0|X(τ |x), x)

)
+ op

(
1√
n

)

=
cn

fY0|X(F−1
Y0|X(τ |x)|x)fX(x)n

n∑
i=1

Khy(F
−1
Y0|X(τ |x)− gβ0(Xi)− c0 − εi)

Khx(x−Xi)∆n(Xi) + op

(
1√
n

)
.

�

2.8.2 Proof of Lemma 2.3.2

Thanks to Lemma 2.8.1 the difference F̂−1
Y0|X(τ |x)− F−1

Y0|X(τ |x) can be written as

F̂−1
Y0|X(τ |x)− F−1

Y0|X(τ |x)
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=
1

fY0|X(F−1
Y0|X(τ |x)|x)

1

n

n∑
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(
1

fX(x)
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−
p0(F−1

Y0|X(τ |x), x)

fX(x)2

)
Khx(x−Xi) + op

(
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)
uniformly in x ∈ supp(v), so that
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2
x
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v(x)

(
F̂−1
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x
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1
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∫ ∫
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2
x
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1
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1

n
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1
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−
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)
Khx(x−Xi)

)
dxµ(dτ) + op(1).

Recall

κ(x, τ) =
v(x)

fY0|X(F−1
Y0|X(τ |x)|x)2fX(x)2

.

Because of Hölder’s inequality it suffices to show the assertion for

nh
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2
x

∫ ∫
v(x)

fY0|X(F−1
Y0|X(τ |x)|x)2fX(x)2
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1

n
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dxµ(dτ)
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2
x

n
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∫ ∫
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Y0|X(τ |x)− gβ0(Xi)− c0 − εi)−
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Khx(x−Xi)
2 dxµ(dτ) +
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2
x

n
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∫ ∫
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= T1 + T2.

Asymptotic Behaviour of T1

First, note that using integration by parts and Lemma 1.1.1, one has∫
Khy(F−1

Y0|X(τ |x)− z)2fY0,X(z, x) dz

=

∫
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=
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=
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)
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)
uniformly in x ∈ supp(v) and τ ∈ supp(µ). Similar calculations yield
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=
∂
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uniformly in x ∈ supp(v) and τ ∈ supp(µ). Here, ∂

∂xfX(x) and ∂2

∂x2 fX(x) are the derivative

and the Hessian of fX , that is a vector and a matrix. The expectation of T1 can be written

as
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x

∫ ∫
κ(x, τ)E
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)
dxµ(dτ)
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∫ ∫
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∫ ∫
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by the bandwidth assumptions (2.19) and (2.20). Let C > 0 be a sufficiently large constant.

Then, the variance of T1 can be bounded by
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Asymptotic Behaviour of T2

Similar to Lemma 1.1.1, one has
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∫ ∫
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Y0|X(τ |x)− z)fY0,X(z, x− hxw) dz

−
p0(F−1

Y0|X(τ |x), x)

fX(x)
fX(x− hxw)

)
dw

=

∫
K(w)

(∫ ∫ F−1
Y0|X

(τ |x)−z

hy

−∞
K(u)fY0,X(z, x− hxw) du dz

−
p0(F−1

Y0|X(τ |x), x)

fX(x)
fX(x− hxw)

)
dw

=

∫
K(w)

(∫
K(u)

∫ (FY0|X)−1(τ |x)−hyu

−∞
fY0,X(z, x− hxw) dz du

−
p0(F−1

Y0|X(τ |x), x)

fX(x)
fX(x− hxw)

)
dw

=

∫
K(w)

(∫
K(u)p0(F−1

Y0|X(τ |x)− hyu, x− hxw) dz du

− p0(F−1
Y0|X(τ |x), x)

fX(x− hxw)

fX(x)

)
dw

= O
(
hqx
)

= o

(
1√
n

)
(2.48)

uniformly in x ∈ supp(v). Therefore, the expectation of T2 can be written as

E[T2] = (n− 1)h
dX
2
x

∫ ∫
κ(x, τ)E

[(
Khy(F−1

Y0|X(τ |x)− gβ0(X1)− c0 − ε1)

−
p0(F−1

Y0|X(τ |x), x)

fX(x)

)
Khx(x−X1)

]2

dxµ(dτ)

= o(1).

Define

Zi(x) =

(
Khy(F−1

Y0|X(τ |x)− gβ0(Xi)− c0 − εi)−
p0(F−1

Y0|X(τ |x), x)

fX(x)

)
Khx(x−Xi),
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so that

T2 =
h
dX
2
x

n

n∑
i=1

n∑
j=1
j 6=i

∫ ∫
κ(x, τ)Zi(x)Zj(x) dxµ(dτ).

Later, Theorem 2.1 of De Jong (1987) will be used to show asymptotic normality of T2. By

the same reasoning as before, it can be proven that

E
[
Z1(x)Z2(x)Z3(u)Z4(u)

]
= o

(
1

n2

)
and

E
[
Z1(x)Z2(x)Z2(u)Z3(u)

]
= o

(
1

nhdXx

)
uniformly in x, u ∈ supp(v), which results in

E[T 2
2 ]

=
2(n− 1)hdXx

n
E

[(∫ ∫
κ(x, τ)Z1(x)Z2(x) dxµ(dτ)

)2]
+ o(1)

=
2(n− 1)hdXx

n
E

[(∫ ∫
κ(x, τ)

(
Khy(F−1

Y0|X(τ |x)− gβ0(X1)− c0 − ε1)

−
p0(F−1

Y0|X(τ |x), x)

fX(x)

)
Khx(x−X1)

(
Khy(F−1

Y0|X(τ |x)− gβ0(X2)− c0 − ε2)

−
p0(F−1

Y0|X(τ |x), x)

fX(x)

)
Khx(x−X2) dxµ(dτ)

)2]
+ o(1)

= 2h−dXx E

[(∫ ∫
κ(X1 − hxx, τ)

(
Khy(F−1

Y0|X(τ |X1 − hxx)− gβ0(X1)− c0 − ε1)

−
p0(F−1

Y0|X(τ |X1 − hxx), X1 − hxx)

fX(X1 − hxx)

)
K(x)

(
Khy(F−1

Y0|X(τ |X1 − hxx)− gβ0(X2)− c0 − ε2)−
p0(F−1

Y0|X(τ |X1 − hxx), X1 − hxx)

fX(X1 − hxx)

)

K

(
x+

X1 −X2

hx

)
dxµ(dτ)

)2]
+ o(1)

= 2h−dXx

∫ ∫ ∫ ∫ (∫ ∫
κ(w1 − hxx, τ)

(
Khy(F−1

Y0|X(τ |w1 − hxx)− z1)

−
p0(F−1

Y0|X(τ |w1 − hxx), w1 − hxx)

fX(w1 − hxx)

)
K(x)

(
Khy(F−1

Y0|X(τ |w1 − hxx)− z2)

−
p0(F−1

Y0|X(τ |w1 − hxx), w1 − hxx)

fX(w1 − hxx)

)
K

(
x+

w1 − w2

hx

)
dxµ(dτ)

)2

fY0,X(z1, w1)

fY0,X(z2, w2) dw1 dw2 dz1 dz2 + o(1)

= 2

∫ ∫ ∫ ∫ (∫ ∫
κ(w1 − hxx, τ)

(
Khy(F−1

Y0|X(τ |w1 − hxx)− z1)
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−
p0(F−1

Y0|X(τ |w1 − hxx), w1 − hxx)

fX(w1 − hxx)

)
K(x)

(
Khy(F−1

Y0|X(τ |w1 − hxx)− z2)

−
p0(F−1

Y0|X(τ |w1 − hxx), w1 − hxx)

fX(w1 − hxx)

)
K(x+ w2) dxµ(dτ)

)2

fY0,X(z1, w1)

fY0,X(z2, w1 − hxw2) dw1 dw2 dz1 dz2 + o(1).

Note that Khy(F−1
Y0|X(τ |w1 − hxx) − z1) = I{z1≤F−1

Y0|X
(τ |w1)} + o(1) for Lebesgue all w1, x ∈

RdX , z ∈ R and µ-all τ ∈ (0, 1), so that the dominated convergence theorem yields

E[T 2
2 ] = 2

∫ ∫ ∫ ∫ (∫ ∫
κ(w1, τ)

(
I{z1≤F−1

Y0|X
(τ |w1)} −

p0(F−1
Y0|X(τ |w1), w1)

fX(w1)

)
K(x)

(
I{z2≤F−1

Y0|X
(τ |w1)} −

p0(F−1
Y0|X(τ |w1), w1)

fX(w1)

)
K(x+ w2) dxµ(dτ)

)2

fY0,X(z1, w1)fY0,X(z2, w1) dw1 dw2 dz1 dz2 + o(1)

= 2

∫ ∫ ∫ (∫
κ(w1, τ)

(
I{z1≤F−1

Y0|X
(τ |w1)} −

p0(F−1
Y0|X(τ |w1), w1)

fX(w1)

)
(
I{z2≤F−1

Y0|X
(τ |w1)} −

p0(F−1
Y0|X(τ |w1), w1)

fX(w1)

)
µ(dτ)

)2

fY0,X(z1, w1)fY0,X(z2, w1) dw1 dz1 dz2

∫ (∫
K(x)K(x+ w2) dx

)2

dw2 + o(1).

(2.49)

Later, it will be shown, that the asymptotically non negligible term is equal to V . Define

Wi,j = 2
h
dX
2
x

n

∫ ∫
κ(x, τ)

(
Zi(x)− E[Z1(x)]

)(
Zj(x)− E[Z1(x)]

)
dxµ(dτ).

Then,

W (n) :=
∑
i<j

Wi,j = T2

is what De Jong (1987) called clean, that is E[Wi,j |(Yi, Xi)] = 0 for all i 6= j ∈ {1, ..., n}.
In (2.48), it was proven that E[Z1(x)] = o

(
1√
n

)
uniformly in supp(v). Moreover, one can

show W (n) = T2 + op(1) as well as E[W (n)2] = E[T 2
2 ] + o(1) similarly to before. Therefore,

max
i<j

E[W 2
i,j ]

E[W (n)2]
=

4hdXx E
[( ∫ ∫

κ(x, τ)Z1(x)Z2(x) dxµ(dτ)
)2]

nE[W (n)2]
= O

(
1

n

)
= o(1),

so that in order to prove normality of W (n) and thus normality of T2 it remains to show

E[W (n)4]

E[W (n)2]2
→ 3

(see Theorem 2.1 of De Jong (1987)). It holds that

E[W (n)4] =
∑
i<j

∑
k<l

∑
r<s

∑
t<u

E[Wi,jWk,lWr,sWt,u]
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=
n(n− 1)

2
E[W 4

1,2] +
3n(n− 1)(n− 2)(n− 3)

4
E[W 2

1,2]2

+ 3n(n− 1)(n− 2)
E[W 2

1,2W
2
2,3]

4
+ 6n(n− 1)(n− 2)E[W1,2W2,3W

2
3,1]

+ 6n(n− 1)(n− 2)(n− 3)E[W1,2W2,3W3,4W4,1], (2.50)

where the prefactors are explained later.

In the following, consider

W̃i,j = 2
h
dX
2
x

n

∫ ∫
κ(x, τ)Zi(x)Zj(x) dxµ(dτ)

instead of Wi,j as this makes calculations (a little bit) clearer and more convenient and the

proof of the asymptotic negligibility of these replacements follows in a similar manner (for

example E[W̃ 4
1,2] = E[W 4

1,2] + o(1)).

First, one has for an appropriate constant C > 0

n2E[W̃ 4
1,2] =

16h2dX
x

n2
E

[(∫ ∫
κ(x, τ)Z1(x)Z2(x) dxµ(dτ)

)4]

≤ Ch2dX
x

n2
E

[(∫ ∫
κ(x, τ)|Khx(x−X1)Khx(x−X2)| dxµ(dτ)

)4]

=
C

n2h2dX
x

E

[(∫ ∫
κ(X1 − hxx, τ)

∣∣∣∣K(x)K

(
x+

X1 −X2

hx

)∣∣∣∣ dxµ(dτ)

)4]
= o(1).

In equation (2.49) was shown that

n4

16
E[W̃ 2

1,2]2 = V 2 + o(1).

For a sufficiently large constant C > 0, E[W̃ 2
1,2W̃

2
2,3] can be bounded by

n3E[W̃ 2
1,2W̃

2
2,3]

≤ Ch2dX
x

n
E

[(∫ ∫
κ(x1, τ1)

∣∣Khx(x1 −X1)Khx(x1 −X2)
∣∣ dx1 µ(dτ1)

)2

(∫ ∫
κ(x2, τ2)

∣∣Khx(x2 −X3)Khx(x2 −X2)
∣∣ dx2 µ(dτ2)

)2]

=
C

nh2dX
x

E

[(∫ ∫
κ(X1 − hxx1, τ1)

∣∣∣∣K(x1)K

(
x1 +

X1 −X2

hx

)∣∣∣∣ dx1 µ(dτ1)

)2

(∫ ∫
κ(X3 − hxx2, τ2)

∣∣∣∣K(x2)K

(
x2 +

X3 −X2

hx

)∣∣∣∣ dx2 µ(dτ2)

)2]

=
C

nh2dX
x

∫ ∫ ∫ (∫ ∫
κ(w1 − hxx1, τ1)

∣∣∣∣K(x1)K

(
x1 +

w1 − w2

hx

)∣∣∣∣ dx1 µ(dτ1)

)2

(∫ ∫
κ(w3 − hxx2, τ2)

∣∣∣∣K(x2)K

(
x2 +

w3 − w2

hx

)∣∣∣∣ dx2 µ(dτ2)

)2
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fX(w1)fX(w2)fX(w3) dw1 dw2 dw3

=
C

n

∫ ∫ ∫ (∫ ∫
κ(w2 + hxw1 − hxx1, τ1)

∣∣K(x1)K(x1 + w1)
∣∣ dx1 µ(dτ1)

)2

(∫ ∫
κ(w2 + hxw3 − hxx2, τ2)

∣∣K(x2)K(x2 + w3)
∣∣ dx2 µ(dτ2)

)2

fX(w2 + hxw1)fX(w2)fX(w2 + hxw3) dw1 dw2 dw3

= o(1).

E[W̃1,2W̃2,3W̃
2
3,1] can be treated similar since

n3E[W̃1,2W̃2,3W̃
2
3,1]

≤ Ch2dX
x

n
E

[ ∫ ∫
κ(x1, τ1)

∣∣Khx(x1 −X1)Khx(x1 −X2)
∣∣ dx1 µ(dτ1)∫ ∫

κ(x2, τ2)
∣∣Khx(x2 −X2)Khx(x2 −X3)

∣∣ dx2 µ(dτ2)

(∫ ∫
κ(x3, τ3)

∣∣Khx(x3 −X3)Khx(x3 −X1)
∣∣ dx3 µ(dτ3)

)2]

=
C

nh2dX
x

E

[ ∫ ∫
κ(X1 − hxx1, τ1)

∣∣∣∣K(x1)K

(
x1 +

X1 −X2

hx

)∣∣∣∣ dx1 µ(dτ1)

∫ ∫
κ(X2 − hxx2, τ2)

∣∣∣∣K(x2)K

(
x2 +

X2 −X3

hx

)∣∣∣∣ dx2 µ(dτ2)

(∫ ∫
κ(X3 − hxx3, τ3)K(x3)

∣∣∣∣K(x3 +
X3 −X1

hx

)∣∣∣∣ dx3 µ(dτ3)

)2]

≤ C2

nh2dX
x

∫ ∫ ∫ (∫ ∣∣∣∣K(x1)K

(
x1 +

w1 − w2

hx

)∣∣∣∣ dx1

)
(∫ ∣∣∣∣K(x2)K

(
x2 +

w2 − w3

hx

)∣∣∣∣ dx2

)(∫ ∣∣∣∣K(x3)K

(
x3 +

w3 − w1

hx

)∣∣∣∣ dx3

)2

fX(w1)fX(w2)fX(w3) dw1 dw2 dw3

≤ C3

n

∫ ∫ ∫ (∫ ∣∣K(x1)K(x1 + w1)
∣∣ dx1

)(∫ ∣∣∣∣K(x2)K(x2 + w3)

∣∣∣∣ dx2

)
fX(w2 + hxw1)fX(w2)fX(w2 − hxw3) dw1 dw2 dw3

= o(1)

for an appropriate constant C > 0. It remains to consider E[W̃1,2W̃2,3W̃3,4W̃4,1]. This

expectation can be treated by

n4E[W̃1,2W̃2,3W̃3,4W̃4,1]

≤ Ch2dX
x E

[ ∫ ∫
κ(x1, τ1)

∣∣Khx(x1 −X1)Khx(x1 −X2)
∣∣ dx1 µ(dτ1)
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∫ ∫
κ(x2, τ2)

∣∣Khx(x2 −X2)Khx(x2 −X3)
∣∣ dx2 µ(dτ2)∫ ∫

κ(x3, τ3)
∣∣Khx(x3 −X3)Khx(x3 −X4)

∣∣ dx3 µ(dτ3)∫ ∫
κ(x4, τ4)

∣∣Khx(x4 −X4)Khx(x4 −X1)
∣∣ dx4 µ(dτ4)

]

=
C

h2dX
x

E

[ ∫ ∫
κ(X1 − hxx1, τ1)

∣∣∣∣K(x1)K

(
x1 +

X1 −X2

hx

)∣∣∣∣ dx1 µ(dτ1)

∫ ∫
κ(X2 − hxx2, τ2)

∣∣∣∣K(x2)K

(
x2 +

X2 −X3

hx

)∣∣∣∣ dx2 µ(dτ2)

∫ ∫
κ(X3 − hxx3, τ3)K(x3)

∣∣∣∣K(x3 +
X3 −X4

hx

)∣∣∣∣ dx3 µ(dτ3)

∫ ∫
κ(X4 − hxx4, τ4)K(x4)

∣∣∣∣K(x4 +
X4 −X1

hx

)∣∣∣∣ dx4 µ(dτ4)

]

≤ C2

h2dX
x

∫ ∫ ∫ ∫ (∫ ∣∣∣∣K(x1)K

(
x1 +

w1 − w2

hx

)∣∣∣∣ dx1

)
(∫ ∣∣∣∣K(x2)K

(
x2 +

w2 − w3

hx

)∣∣∣∣ dx2

)(∫ ∣∣∣∣K(x3)K

(
x3 +

w3 − w4

hx

)∣∣∣∣ dx3

)
(∫ ∣∣∣∣K(x3)K

(
x4 +

w4 − w1

hx

)∣∣∣∣ dx4

)
fX(w1)fX(w2)fX(w3)fX(w4) dw1 dw2 dw3 dw4

≤ C3

∫ ∫ ∫ ∫ (∫ ∣∣K(x1)K(x1 + w1)
∣∣ dx1

)(∫ ∣∣∣∣K(x2)K

(
x2 +

w2 − w3

hx

)∣∣∣∣ dx2

)
(∫ ∣∣K(x3)K(x3 + w4)

∣∣ dx3

)
fX(w2 + hxw1)fX(w2)fX(w3)fX(w3 − hxw4) dw1 dw2 dw3 dw4

= C3hdXx

∫ ∫ ∫ ∫ (∫ ∣∣K(x1)K(x1 + w1)
∣∣ dx1

)(∫ ∣∣K(x2)K(x2 + w3)
∣∣ dx2

)
(∫ ∣∣K(x3)K(x3 + w4)

∣∣ dx3

)
fX(w2 + hxw1)fX(w2)fX(w2 − hxw3)fX(w2 − hxw3 − hxw4) dw1 dw2 dw3 dw4

= o(1).

Finally, this leads to

E[W (n)4] =
3n4

4
E[W 2

1,2]2 + o(1) = 3V 2 + o(1) = 3E[T 2
2 ]2 + o(1) = 3E[W (n)2]2 + o(1)

and thus T2
D→ N (0, V ).

Note that the prefactor of 3n(n−1)(n−2)(n−3)
4 =

(
n
4

)
· 3 · 6 in (2.50) results from the fact that

•
(
n
4

)
is the number of possibilities to choose a set of four indices out of {1, ..., n}

(without ordering them),
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• 3 is the number of possibilities to assign these indices to the corresponding four tuples

(i, j), (k, l), (r, s), (t, u) to obtain E[W 2
1,2]2 and

• 6 is the number of possible permutations of these tuples.

The other prefactors in (2.50) can be derived similarly, but do not matter for the asymptotic

behaviour of
E[T 4

2 ]

E[T 2
2 ]2

. �

Rewriting b and V

The expressions for V and b given in (2.22) and (2.25), respectively, follow from (compare

(2.7))

p0(F−1
Y0|X(τ |x), x) = Fε(F

−1
Y0|X(τ |x)− g(x))fX(x) = τfX(x)

and

fY,X(F−1
Y0|X(τ |x), x) = fε(F

−1
Y0|X(τ |x)− g(x))fX(x) = fε(F

−1
ε (τ))fX(x).

To specify this, use the definition of κ(x, τ) in (2.18) and write under the assumptions (2.23)

and (2.24)

b = h
− dX

2
x

∫
K(w)2 dw

∫ ∫
κ(x, τ)p0(F−1

Y0|X(τ |x), x)

(
1−

p0(F−1
Y0|X(τ |x), x)

fX(x)

)
dxµ(dτ)

+ o(1)

= h
− dX

2
x

∫
K(w)2 dw

∫ ∫
v(x)

fε(F
−1
ε (τ))2fX(x)

τ(1− τ) dxµ(dτ) + o(1)

= h
− dX

2
x

∫
K(w)2 dw

∫
v(x)

fX(x)
dx

∫
τ(1− τ)

fε(F
−1
ε (τ))2

µ(dτ) + o(1)

and (see (2.49))

V = 2

∫ (∫
K(x)K(x+ s) dx

)2

ds

∫ ∫ ∫ (∫
κ(w, τ)

(
I{z1≤F−1

Y0|X
(τ |w)} −

p0(F−1
Y0|X(τ |w), w)

fX(w)

)(
I{z2≤F−1

Y0|X
(τ |w)} −

p0(F−1
Y0|X(τ |w), w)

fX(w)

)

µ(dτ)

)2

fY0,X(z1, w)fY0,X(z2, w) dw dz1 dz2

= 2

∫ (∫
K(x)K(x+ s) dx

)2

ds

∫ ∫ ∫ (∫
κ(w, τ)

(
I{z1−g(w)≤F−1

ε (τ)} − τ
)

(
I{z2−g(w)≤F−1

ε (τ)} − τ
)
µ(dτ)

)2

fε(z1 − g(w))fε(z2 − g(w)) dz1 dz2 fX(w)2 dw

= 2

∫ (∫
K(x)K(x+ s) dx

)2

ds

∫
v(w)2

fX(w)2

∫ ∫ (∫ (
I{Fε(z1−g(w))≤τ} − τ

)
fε(F

−1
ε (τ))(

I{Fε(z2−g(w))≤τ} − τ
)

fε(F
−1
ε (τ))

µ(dτ)

)2

fε(z1 − g(w))fε(z2 − g(w)) dz1 dz2 dw
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= 2

∫ (∫
K(x)K(x+ s) dx

)2

ds

∫
v(w)2

fX(w)2
dw

∫ 1

0

∫ 1

0

(∫ (
I{u1≤τ} − τ

)(
I{u2≤τ} − τ

)
fε(F

−1
ε (τ))2

µ(dτ)

)2

du1 du2.

�

2.8.3 Proof of Theorem 2.3.4

Later, it will be shown, that the test statistic Tn defined in (2.13) is asymptotically equi-

valent to T̃n + δ2,n + δ3,n, where

T̃n = nh
dX
2
x

∫ ∫
v(x)

(
F̂−1
Y |X(τ |x)− F−1

Y0|X(τ |x)
)2
dxµ(dτ),

δ2,n = −
(∫

v(x)Dβgβ0(x)∆n(x) dx

)
Ω−1

(∫
v(x)Dβgβ0(x)∆n(x) dx

)t
and

δ3,n = −µ([0, 1])

( ∫
v(x)∆n(x) dx

)2∫
v(w) dw

.

T̃n in turn can be split into

T̃n = nh
dX
2
x

∫ ∫
v(x)

(
F̂−1
Y |X(τ |x)− F̂−1

Y0|X(τ |x) + F̂−1
Y0|X(τ |x)− F−1

Y0|X(τ |x)
)2
dxµ(dτ)

= nh
dX
2
x

∫ ∫
v(x)

(
F̂−1
Y |X(τ |x)− F̂−1

Y0|X(τ |x)
)2
dxµ(dτ)

+ nh
dX
2
x

∫ ∫
v(x)

(
F̂−1
Y0|X(τ |x)− F−1

Y0|X(τ |x)
)2
dxµ(dτ)

+ 2nh
dX
2
x

∫ ∫
v(x)

(
F̂−1
Y |X(τ |x)− F̂−1

Y0|X(τ |x)
)(
F̂−1
Y0|X(τ |x)− F−1

Y0|X(τ |x)
)
dxµ(dτ)

= T1 + T2 + T3.

While Lemma 2.3.2 can be applied for T2 to obtain

nh
dX
2
x

∫ ∫
v(x)

(
F̂−1
Y0|X(τ |x)− F−1

Y0|X(τ |x)
)2
dxµ(dτ)− b D→ Z

with Z ∼ N (0, V ) and b as well as V from Lemma 2.3.2, T1 can be treated as follows.

Remember

κ(x, τ) =
v(x)

fY0|X(F−1
Y0|X(τ |x)|x)2fX(x)2

as well as (2.46) and write

nh
dX
2
x

∫ ∫
v(x)

(
F̂−1
Y |X(τ |x)− F̂−1

Y0|X(τ |x)
)2
dxµ(dτ)

= nh
dX
2
x

∫ ∫
κ(x, τ)

(
cn
n

n∑
i=1

Khy(F
−1
Y0|X(τ |x)− gβ0(Xi)− c0 − εi)Khx(x−Xi)∆n(Xi)
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+ op

(
1√
n

))2

dxµ(dτ)

≤ c2
nh

dX
2
x

n

n∑
i=1

n∑
j=1

∫ ∫
κ(x, τ)Khy(F

−1
Y0|X(τ |x)− gβ0(Xi)− c0 − εi)Khx(x−Xi)

Khy(F
−1
Y0|X(τ |x)− gβ0(Xj)− c0 − εj)Khx(x−Xj)∆n(Xi)∆n(Xj) dxµ(dτ)

+
op
(√
ncnh

dX
2
x

)
n

n∑
i=1

∫ ∫
κ(x, τ)

∣∣Khy(F
−1
Y0|X(τ |x)− gβ0(Xi)− c0 − εi)

Khx(x−Xi)∆n(Xi)
∣∣ dxµ(dτ) + op(1)

=
1

n2

n∑
i=1

n∑
j=1

∫ ∫
κ(x, τ)Khy(F

−1
Y0|X(τ |x)− gβ0(Xi)− c0 − εi)Khx(x−Xi)Khx(x−Xj)

Khy(F
−1
Y0|X(τ |x)− gβ0(Xj)− c0 − εj)∆n(Xi)∆n(Xj) dxµ(dτ)

+ op(1)

by the definition of cn in (A2). Then, (2.42) leads to nhdXx hy →∞ and thus

1

n
E

[ ∫ ∫
κ(x, τ)Khy(F

−1
Y0|X(τ |x)− gβ0(X1)− c0 − ε1)2Khx(x−X1)2∆n(X1)2 dxµ(dτ)

]
=

1

n

∫ ∫ ∫ ∫
κ(x, τ)Khy(F

−1
Y0|X(τ |x)− gβ0(w)− c0 − e)2Khx(x− w)2∆n(w)2

fX(w)fε(e) dw de dxµ(dτ)

=
1

nhdXx

∫ ∫ ∫ ∫
κ(x, τ)Khy(F

−1
Y0|X(τ |x)− gβ0(x− hxw)− c0 − e)2K(w)2∆n(x− hxw)2

fX(x− hxw)fε(e) dw de dxµ(dτ)

=
1

nhdXx hy

∫ ∫ ∫ ∫
κ(x, τ)K(e)2K(w)2∆n(x− hxw)2

fX(x− hxw)fε(F
−1
Y0|X(τ |x)− gβ0(x− hxw)− c0 − hye) dw de dxµ(dτ)

= o(1),

that is

T1 =
1

n2

n∑
i=1

n∑
j=1
j 6=i

∫ ∫
κ(x, τ)Khy(F

−1
Y0|X(τ |x)− gβ0(Xi)− c0 − εi)Khx(x−Xi)

Khy(F
−1
Y0|X(τ |x)− gβ0(Xj)− c0 − εj)Khx(x−Xj)∆n(Xi)∆n(Xj) dxµ(dτ) + op(1).

Due to

E
[
Khy(F

−1
Y0|X(τ |x)− gβ0(X1)− c0 − ε1)Khx(x−X1)∆n(X1)

]
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=

∫ ∫
Khy(F

−1
Y0|X(τ |x)− gβ0(w)− c0 − e)Khx(x− w)∆n(w)fε(e)fX(w) de dw

=

∫ ∫
K(e)K(w)∆n(x− hxw)fε(F

−1
Y0|X(τ |x)− gβ0(x− hxw)− c0 − hye)

fX(x− hxw) de dw

= ∆n(x)fε(F
−1
Y0|X(τ |x)− gβ0(x)− c0)fX(x) + o(1)

uniformly in x ∈ supp(v) and τ ∈ supp(µ), the expectation of T1 can be written as

E[T1] =

∫ ∫
κ(x, τ)E

[
Khy(F

−1
Y0|X(τ |x)− gβ0(X1)− c0 − ε1)

Khx(x−X1)∆n(X1)
]2
dxµ(dτ) + o(1)

= δ1,n + o(1)

with

δ1,n =

∫ ∫
κ(x, τ)∆n(x)2fε

(
F−1
Y0|X(τ |x)− gβ0(x)− c0

)2
f2
X(x) dxµ(dτ)

=

∫ ∫
v(x)∆n(x)2 dxµ(dτ)

= µ([0, 1])

∫
v(x)∆n(x)2 dx.

Here, the definition of κ(x, τ) and the fact were used that (compare (2.7))

fY0|X(F−1
Y0|X(τ |x)|x) = fε(F

−1
Y0|X(τ |x)− gβ0(x)− c0) = fε(F

−1
ε (τ)).

In the following, it is shown that the variance of the asymptotically nonnegligible terms

converges to zero. For reasons of clarity and comprehensibility, define

Zi,j =

∫ ∫
κ(x, τ)Khx(x−Xi)Khx(x−Xj)Khy(F

−1
Y0|X(τ |x)− gβ0(Xi)− c0 − εi)

Khy(F
−1
Y0|X(τ |x)− gβ0(Xj)− c0 − εj)∆n(Xi)∆n(Xj) dxµ(dτ),

so that T1 = 2
n2

∑n
i=1

∑n
j=i+1 Zi,j + op(1). To show that the variance of T1 converges to

zero, write

Var

(
2

n2

n∑
i=1

n∑
j=i+1

Zi,j

)

=
4

n4

n∑
i=1

n∑
j=i+1

n∑
k=1

n∑
l=k+1

Cov(Zi,j , Zk,l)

=
4

n4

n∑
i=1

n∑
j=i+1

Var(Zi,j) +
4

n4

n∑
i=1

n∑
j=i+1

n∑
l=i+1
l 6=j

Cov(Zi,j , Zi,l)

+
4

n4

n∑
k=1

n∑
i=k+1

n∑
j=i+1

Cov(Zi,j , Zk,i) +
4

n4

n∑
i=1

n∑
j=i+1

n∑
l=j+1

Cov(Zi,j , Zj,l)
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+
4

n4

n∑
j=1

n∑
i=j−1

n∑
k=j−1
k 6=i

Cov(Zi,j , Zk,j),

so that it suffices to prove that

E[Z2
1,2], E[|Z1,2Z1,3|], E[|Z1,2Z2,3|] and E[|Z1,3Z2,3|] (2.51)

converge to zero. For an appropriate constant C > 0 it holds that

E[Z2
1,2]

n2

≤ C

n2
E

[(∫ ∫
κ(x, τ)

∣∣Khy(F
−1
Y0|X(τ |x)− gβ0(X1)− c0 − ε1)

Khy(F
−1
Y0|X(τ |x)− gβ0(X2)− c0 − ε2)Khx(x−X1)Khx(x−X2)

∣∣ dxµ(dτ)

)2]

=
C

n2h2dX
x

E

[(∫ ∫
κ(X1 − hxx, τ)

∣∣∣∣Khy(F
−1
Y0|X(τ |X1 − hxx)− gβ0(X1)− c0 − ε1)

Khy(F
−1
Y0|X(τ |X1 − hxx)− gβ0(X2)− c0 − ε2)K(x)K

(
x+

X1 −X2

hx

)∣∣∣∣ dxµ(dτ)

)2]

=
C

n2h2dX
x

∫ ∫ ∫ ∫ (∫ ∫
κ(w1 − hxx, τ)

∣∣∣∣Khy(F
−1
Y0|X(τ |w1 − hxx)− gβ0(w1)− c0 − e1)

Khy(F
−1
Y0|X(τ |w1 − hxx)− gβ0(w2)− c0 − e2)K(x)K

(
x+

w1 − w2

hx

)∣∣∣∣ dxµ(dτ)

)2

fX(w1)fX(w2)fε(e1)fε(e2) dw1 dw2 de1 de2

=
C

n2hdXx

∫ ∫ ∫ ∫ (∫ ∫
κ(w1 − hxx, τ)

∣∣∣∣Khy(F
−1
Y0|X(τ |w1 − hxx)− gβ0(w1)− c0 − e1)

Khy(F
−1
Y0|X(τ |w1 − hxx)− gβ0(w1 − hxw2)− c0 − e2)K(x)K(x+ w2)

∣∣∣∣ dxµ(dτ)

)2

fX(w1)fX(w1 − hxw2)fε(e1)fε(e2) dw1 dw2 de1 de2

=
C

n2hdXx

∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫
(
κ(w1 − hxx1, τ1)

∣∣∣∣Khy(F
−1
Y0|X(τ1|w1 − hxx)− gβ0(w1)− c0 − e1)

Khy(F
−1
Y0|X(τ1|w1 − hxx1)− gβ0(w1 − hxw2)− c0 − e2)K(x1)K(x1 + w2)

∣∣∣∣)(
κ(w1 − hxx2, τ2)

∣∣∣∣Khy(F
−1
Y0|X(τ2|w1 − hxx2)− gβ0(w1)− c0 − e1)

Khy(F
−1
Y0|X(τ2|w1 − hxx2)− gβ0(w1 − hxw2)− c0 − e2)K(x2)K(x2 + w2)

∣∣∣∣)
fX(w1)fX(w1 − hxw2)fε(e1)fε(e2) dw1 dw2 de1 de2 dx1 dx2 µ(dτ1)µ(dτ2)
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=
C2

n2hdXx h2
y

∫ ∫ ∫ ∫ ∫ ∫ (
κ(w1 − hxx1, τ1)

∣∣∣∣K(e1)K(e2)K(x1)K(x1 + w2)

∣∣∣∣)
fX(w1)fX(w1 − hxw2)fε(F

−1
Y0|X(τ1|w1 − hxx)− gβ0(w1)− hye1)

fε(F
−1
Y0|X(τ1|w1 − hxx1)− gβ0(w1 − hxw2)− hye2) dw1 dw2 de1 de2 dx1 µ(dτ1)

≤ C2

n2hdXx h2
y

∫ ∫ ∫ ∫ ∫ ∫ ∣∣∣∣K(e1)K(e2)K(x1)K(x1 + w2)

∣∣∣∣fX(w1) dx1 dw1 dw2 de1 de2

= o(1).

Again for an appropriate constant C > 0, the second expectation in (2.51) can be written

as

E[|Z1,2Z1,3|]
n

≤ C

nh2dX
x

E

[(∫ ∫
κ(x, τ)

∣∣∣∣Khy(F
−1
Y0|X(τ |X1 − hxx)− gβ0(X1)− c0 − ε1)

Khy(F
−1
Y0|X(τ |X1 − hxx)− gβ0(X2)− c0 − ε2)K(x)K

(
x+

X1 −X2

hx

)∣∣∣∣ dxµ(dτ)

)
(∫ ∫

κ(x, τ)

∣∣∣∣Khy(F
−1
Y0|X(τ |X1 − hxx)− gβ0(X1)− c0 − ε1)

Khy(F
−1
Y0|X(τ |X1 − hxx)− gβ0(X1)− c0 − ε3)K(x)K

(
x+

X1 −X3

hx

)∣∣∣∣ dxµ(dτ)

)]
=

C

nh2dX
x

∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫
κ(x1, τ1)κ(x2, τ2)

∣∣∣∣Khy(F
−1
Y0|X(τ1|w1 − hxx1)− gβ0(w1)− c0 − e1)

Khy(F
−1
Y0|X(τ1|w1 − hxx1)− gβ0(w2)− c0 − e2)K(x1)K

(
x1 +

w1 − w2

hx

)
Khy(F

−1
Y0|X(τ2|w1 − hxx2)− gβ0(w1)− c0 − e1)

Khy(F
−1
Y0|X(τ2|w1 − hxx2)− gβ0(w3)− c0 − e3)K(x2)K

(
x2 +

w1 − w3

hx

)∣∣∣∣fX(w1)

fX(w2)fX(w3)fε(e1)fε(e2)fε(e3) dw1 dw2 dw3 de1 de2 de3 dx1 dx2 µ(dτ1)µ(dτ2)

≤ C2

nhyh
2dX
x

∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∣∣∣∣K(e1)K(e2)K(e3)K(x1)K

(
x1 +

w1 − w2

hx

)

K(x2)K

(
x2 +

w1 − w3

hx

)∣∣∣∣fX(w1)fX(w2)fX(w3) dw1 dw2 dw3 de1 de2 de3 dx1 dx2

≤ C3

nhy

∫ ∫ ∫ (∫
|K(x1)K(x1 + w2)| dx1

)(∫
|K(x2)K(x2 + w3)| dx2

)
fX(w1)fX(w1 − hxw2)fX(w1 − hxw3) dw1 dw2 dw3
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= o(1).

Similarly,

E[|Z1,2Z2,3|]
n

≤ C

nh2dX
x

E

[(∫ ∫
κ(x, τ)

∣∣∣∣Khy(F
−1
Y0|X(τ |X1 − hxx)− gβ0(X1)− c0 − ε1)

Khy(F
−1
Y0|X(τ |X1 − hxx)− gβ0(X2)− c0 − ε2)K(x)K

(
x+

X1 −X2

hx

)∣∣∣∣ dxµ(dτ)

)
(∫ ∫

κ(x, τ)

∣∣∣∣Khy(F
−1
Y0|X(τ |X2 − hxx)− gβ0(X2)− c0 − ε2)

Khy(F
−1
Y0|X(τ |X2 − hxx)− gβ0(X3)− c0 − ε3)K(x)K

(
x+

X2 −X3

hx

)∣∣∣∣ dxµ(dτ)

)]

=
C

nh2dX
x

∫ ∫ ∫ ∫ ∫ ∫ (∫ ∫
κ(x, τ)

∣∣∣∣Khy(F
−1
Y0|X(τ |w1 − hxx)− gβ0(w1)− c0 − e1)

Khy(F
−1
Y0|X(τ |w1 − hxx)− gβ0(w2)− c0 − e2)K(x)K

(
x+

w1 − w2

hx

)∣∣∣∣ dxµ(dτ)

)
(∫ ∫

κ(x, τ)

∣∣∣∣Khy(F
−1
Y0|X(τ |w2 − hxx)− gβ0(w2)− c0 − e2)

Khy(F
−1
Y0|X(τ |w2 − hxx)− gβ0(w3)− c0 − e3)K(x)K

(
x+

w2 − w3

hx

)∣∣∣∣ dxµ(dτ)

)
fX(w1)fX(w2)fX(w3)fε(e1)fε(e2)fε(e3) dw1 dw2 dw3 de1 de2 de3

≤ C2

nhy

∫ ∫ ∫ (∫
|K(x)K(x+ w1)| dx

)(∫
|K(x)K(x+ w3)| dx

)
fX(w2 + hxw1)fX(w2)fX(w2 − hxw3) dw1 dw2 dw3

= o(1)

and

E[|Z1,3Z2,3|]
n

≤ C3

nhy

∫ ∫ ∫ (∫
|K(x)K(x+ w2)| dx

)(∫
|K(x)K(x+ w3)| dx

)
fX(w3 + hxw1)fX(w2 + hxw3)fX(w3) dw1 dw2 dw3

= o(1).

In total,

T1 = δ1,n + op(1)

has been proven, so that only T3 is left to be examined. Inserting equations (2.45) and

(2.46) yields

T3 = 2nh
dX
2
x

∫ ∫
v(x)

(
F̂−1
Y |X(τ |x)− F̂−1

Y0|X(τ |x)
)(
F̂−1
Y0|X(τ |x)− F−1

Y0|X(τ |x)
)
dxµ(dτ)
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= 2nh
dX
2
x

∫ ∫
κ(x, τ)

(
cn
n

n∑
i=1

Khy(F
−1
Y0|X(τ |x)− gβ0(Xi)− c0 − εi)Khx(x−Xi)∆n(Xi)

+ op

(
1√
n

))(
1

n

n∑
i=1

(
Khy(F−1

Y0|X(τ |x)− gβ0(Xi)− c0 − εi)

−
p0(F−1

Y0|X(τ |x), x)

fX(x)

)
Khx(x−Xi) + op

(
1√
n

))
dxµ(dτ)

= 2nh
dX
2
x

∫ ∫
κ(x, τ)

(
cn
n

n∑
i=1

Khy(F
−1
Y0|X(τ |x)− gβ0(Xi)− c0 − εi)

Khx(x−Xi)∆n(Xi)

)(
1

n

n∑
i=1

(
Khy(F−1

Y0|X(τ |x)− gβ0(Xi)− c0 − εi)

−
p0(F−1

Y0|X(τ |x), x)

fX(x)

)
Khx(x−Xi)

)
dxµ(dτ) + op(1)

=
2cnh

dX
2
x

n

n∑
i=1

n∑
j=1

∫ ∫
κ(x, τ)Khy(F

−1
Y0|X(τ |x)− gβ0(Xi)− c0 − εi)

Khx(x−Xi)∆n(Xi)

(
Khy(F−1

Y0|X(τ |x)− gβ0(Xj)− c0 − εj)−
p0(F−1

Y0|X(τ |x), x)

fX(x)

)
Khx(x−Xj) dxµ(dτ) + op(1),

where the second to last equality follows similarly to the proof of Lemma 2.3.2 and the

treatment of T1. For a sufficiently large constant C > 0 one has (see (2.44))

cnh
dX
2
x E

[∣∣∣∣ ∫ ∫ κ(x, τ)Khy(F
−1
Y0|X(τ |x)− gβ0(X1)− c0 − ε1)Khx(x−X1)2∆n(X1)

(
Khy(F−1

Y0|X(τ |x)− gβ0(X1)− c0 − ε1)−
p0(F−1

Y0|X(τ |x), x)

fX(x)

)
dxµ(dτ)

∣∣∣∣]

≤ Ccnh
dX
2
x E

[ ∫ ∫
κ(x, τ)|Khy(F

−1
Y0|X(τ |x)− gβ0(X1)− c0 − εi)|Khx(x−X1)2 dxµ(dτ)

]

= Ccnh
dX
2
x

∫ ∫ ∫ ∫
κ(x, τ)|Khy(F

−1
Y0|X(τ |x)− gβ0(w)− c0 − e)|Khx(x− w)2

fX(w)fε(e) dw de dxµ(dτ)

=
C

n
1
2h

3dX
4

x

∫ ∫ ∫ ∫
κ(x, τ)|K(e)|K(w)2

fX(x− hxw)fε(F
−1
Y0|X(τ |x)− gβ0(w)− c0 − hye) dw de dxµ(dτ)

= o(1),
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so that

T3 =
2cnh

dX
2
x

n

n∑
i=1

n∑
j=1
j 6=i

Z̃i,j + op(1)

with

Z̃i,j =

∫ ∫
κ(x, τ)Khx(x−Xi)Khy(F

−1
Y0|X(τ |x)− gβ0(Xi)− c0 − εi)∆n(Xi)Khx(x−Xj)

(
Khy(F−1

Y0|X(τ |x)− gβ0(Xj)− c0 − εj)−
p0(F−1

Y0|X(τ |x), x)

fX(x)

)
dxµ(dτ).

To prove asymptotic negligibility of T3, it suffices to show c2nh
dX
x

n2 E
[(∑n

i=1

∑n
j=1
j 6=i

Z̃i,j
)2]

=

o(1). This leads to the proof of

c2
nh

dX
x E[Z̃2

1,2] = o(1), (2.52)

c2
nh

dX
x E[Z̃1,2Z̃2,1] = o(1),

c2
nnh

dX
x E[Z̃1,2Z̃1,3] = o(1), (2.53)

c2
nnh

dX
x E[Z̃1,2Z̃3,1] = o(1),

c2
nnh

dX
x E[Z̃1,2Z̃2,3] = o(1),

c2
nnh

dX
x E[Z̃1,2Z̃3,2] = o(1),

c2
nn

2hdXx E[Z̃1,2Z̃3,4] = o(1). (2.54)

For the sake of brevity, only equations (2.52),(2.53) and (2.54) are proven. The other

assertions follow similarly. Let C > 0 be a sufficiently large constant. Equation (2.52)

results from

c2
nh

dX
x E[Z̃2

1,2]

≤ Cc2
nh

dX
x E

[(∫ ∫
κ(x, τ)|Khy(F

−1
Y0|X(τ |x)− gβ0(X1)− c0 − ε1)

Khx(x−X1)Khx(x−X2)| dxµ(dτ)

)2]

≤ Cc2n

hdXx
E

[(∫ ∫
κ(X1 − hxx, τ)

∣∣∣∣Khy(F
−1
Y0|X(τ |X1 − hxx)− gβ0(X1)− c0 − ε1)

K(x)K

(
x+

X1 −X2

hx

)∣∣∣∣ dxµ(dτ)

)2]

=
Cc2n

hdXx

∫ ∫ ∫ (∫ ∫
κ(w1 − hxx, τ)

∣∣∣∣Khy(F
−1
Y0|X(τ |w1 − hxx)− gβ0(w1)− c0 − e)

K(x)K

(
x+

w1 − w2

hx

)∣∣∣∣ dxµ(dτ)

)2

fX(w1)fX(w2)fε(e) dw1 dw2 de

= Cc2n

∫ ∫ ∫ (∫ ∫
κ(w1 − hxx, τ)

∣∣∣∣Khy(F
−1
Y0|X(τ |w1 − hxx)− gβ0(w1)− c0 − e)
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K(x)K(x+ w2)

∣∣∣∣ dxµ(dτ)

)2

fX(w1)fX(w1 − hxw2)fε(e) dw1 dw2 de

= Cc2
n

∫ ∫ ∫ ∫ ∫ ∫ ∫
κ(w1 − hxx1, τ1)κ(w2 − hxx2, τ2)

∣∣∣∣K(x1 + w2)K(x2)K(x2 + w2)

K(x1)Khy(F
−1
Y0|X(τ1|w1 − hxx1)− gβ0(w1)− c0 − e)

Khy(F
−1
Y0|X(τ2|w1 − hxx2)− gβ0(w1)− c0 − e)∣∣∣∣fX(w1)fX(w1 − hxw2)fε(e) dw1 dw2 de dx1 dx2 µ(dτ1)µ(dτ2)

=
C2c2

n

hy

∫ ∫ ∫ ∫ ∫
κ(w1 − hxx1, τ1)

∣∣∣∣K(e)K(x1)K(x1 + w2)

∣∣∣∣
fX(w1)fX(w1 − hxw2)fε(F

−1
Y0|X(τ1|w1 − hxx1)− gβ0(w1)− hye)dw1 dw2 de dx1 µ(dτ1)

= O
(
n−1h

− dX
2

x h−1
y

)
= o(1).

In (2.48), it was shown that

E

[
Khx(x−X1)

(
Khy((FY0|X)−1(τ |x)−gβ0(X1)− c0−ε1)−

p0(F−1
Y0|X(τ |x), x)

fX(x)

)]
= o

(
1√
n

)
uniformly in x ∈ supp(v) and τ ∈ supp(µ), so that

c2
nnh

dX
x E[Z̃1,2Z̃1,3]

= c2
nnh

dX
x

∫ ∫ ∫ ∫
κ(x1, τ1)κ(x2, τ2)E

[
∆n(X1)2Khx(x1 −X1)Khx(x2 −X1)

Khy(F
−1
Y0|X(τ1|x1)− gβ0(X1)− c0 − ε1)Khy(F

−1
Y0|X(τ2|x2)− gβ0(X1)− c0 − ε1)

]
E

[
Khx(x1 −X2)Khy(F−1

Y0|X(τ1|x1)− gβ0(X2)− c0 − ε2)−
p0(F−1

Y0|X(τ1|x1), x1)

fX(x1)

]

E

[
Khx(x2 −X3)Khy(F−1

Y0|X(τ2|x2)− gβ0(X3)− c0 − ε3)−
p0(F−1

Y0|X(τ2|x2), x2)

fX(x2)

]
dx1 dx2 µ(dτ1)µ(dτ2)

= o

(
h
dX
2
x

n

)∫ ∫ ∫ ∫
κ(x1, τ1)κ(x2, τ2)E

[
|Khx(x1 −X1)Khx(x2 −X1)

Khy(F
−1
Y0|X(τ1|x1)− gβ0(X1)− c0 − ε1)Khy(F

−1
Y0|X(τ2|x2)− gβ0(X1)− c0 − ε1)|

]
dx1 dx2 µ(dτ1)µ(dτ2)

= o

(
1

nh
dX
2
x

)
E

[ ∫ ∫ ∫ ∫
κ(X1 − hxx1, τ1)κ(x2, τ2)|K(x1)
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Khy(F
−1
Y0|X(τ1|X1 − hxx1)− gβ0(X1)− c0 − ε1)Khy(F

−1
Y0|X(τ2|x2)− gβ0(X1)− c0 − ε1)|

dx1 dx2 µ(dτ1)µ(dτ2)

]

= o

(
1

nh
dX
2
x

)∫ ∫ ∫ ∫ ∫ ∫
κ(x2, τ2)|K(x1)Khy(F

−1
Y0|X(τ1|w − hxx1)− gβ0(w)− c0 − e)

Khy(F
−1
Y0|X(τ2|x2)− gβ0(w)− c0 − e)|fX(w)fε(e) dw de dx1 dx2 µ(dτ1)µ(dτ2)

= o

(
1

nh
dX
2
x hy

)∫ ∫ ∫ ∫ ∫
|K(x1)K(e)|

fX(w)fε(F
−1
Y0|X(τ1|w − hxx1)− gβ0(w)− c0 − hye) dw de dx1 µ(dτ1)

= o(1).

Moreover, equation (2.54) follows from (2.48) by

c2
nn

2hdXx E[Z̃1,2Z̃3,4]

= c2
nn

2hdXx

∫ ∫ ∫ ∫
E
[
∆n(X1)Khx(x1 −X1)Khy(F

−1
Y0|X(τ1|x1)− gβ0(X1)− c0 − ε1)

]
E
[
∆n(X3)Khx(x2 −X3)Khy(F

−1
Y0|X(τ2|x2)− gβ0(X3)− c0 − ε3)

]
E

[
Khx(x1 −X2)

(
Khy(F−1

Y0|X(τ1|x1)− gβ0(X2)− c0 − ε2)−
p0(F−1

Y0|X(τ1|x1), x1)

fX(x1)

)]

E

[
Khx(x2 −X4)

(
Khy(F−1

Y0|X(τ2|x2)− gβ0(X4)− c0 − ε4)−
p0(F−1

Y0|X(τ2|x2), x2)

fX(x2)

)]
κ(x1, τ1)κ(x2, τ2)dx1 dx2 µ(dτ1)µ(dτ2)

= o
(
h
dX
2
x

) ∫ ∫ ∫ ∫
κ(x1, τ1)κ(x2, τ2) dx1 dx2 µ(dτ1)µ(dτ2)

= o(1).

All in all, it was proven that T3 = op(1) and thus

T̃n − b = nh
dX
2
x

∫ ∫
v(x)

(
F̂−1
Y |X(τ |x)− F−1

Y0|X(τ |x)
)2
dxµ(dτ)− b

D→ Z + δ1,n

with Z ∼ N (0, V ) and δ1,n = µ([0, 1])
∫
v(x)∆n(x)2 dx.

Asymptotic Equivalence of Tn and T̃n + δ2,n + δ3,n

Recall Remark 2.3.1 and the definition of ĉβ,τ in (2.14). Due to

δn = δ1,n + δ2,n + δ3,n
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(see Remark 2.3.5) it remains to show asymptotic equivalence of T̃n + δ2,n + δ3,n and

Tn = nh
dX
2
x min

β∈B

∫ ∫
v(x)

(
F̂−1
Y |X(τ |x)− gβ(x)− ĉβ,τ

)2
dxµ(dτ).

For that purpose define

G(β)

= −2nh
dX
2
x

∫ ∫
v(x)

(
F̂−1
Y |X(τ |x)− gβ0(x)− cβ0,τ

)
dx(ĉβ0,τ − cβ0,τ )µ(dτ)

− 2nh
dX
2
x

∫ ∫
v(x)

(
F̂−1
Y |X(τ |x)− gβ0(x)− cβ0,τ

)
Dβ(gβ0(x) + cβ0,τ ) dxµ(dτ)(β − β0)

+ nh
dX
2
x

∫
v(x) dx

∫
(ĉβ0,τ − cβ0,τ )2 µ(dτ) + nh

dX
2
x µ([0, 1])(β − β0)tΩ(β − β0)

as well as β̄ = arg min
β∈B

G(β) and

β̂ = nh
dX
2
x arg min

β∈B

∫ ∫
v(x)

(
F̂−1
Y |X(τ |x)− gβ(x)− ĉβ,τ

)2
dxµ(dτ).

First, it will be shown that

||β̂ − β0|| = Op
(
n−

1
2h
− dX

4
x

)
, (2.55)

||β̄ − β0|| = Op
(
n−

1
2h
− dX

4
x

)
. (2.56)

Due to

F̂−1
Y |X(τ |x)− gβ0(x)− cβ0,τ = F̂−1

Y |X(τ |x)− F−1
Y0|X(τ |x) = op(1)

uniformly in x ∈ supp(v), τ ∈ µ, assumption (A7) implies β̂−β0 = op(1) and β̄−β0 = op(1).

Further, for all sequences βn ∈ B,n ∈ N with ||βn − β0|| → 0, Lemma 2.8.1, assumption

(A7) and equation (2.14) yield

ĉβn,τ − cβ0,τ

=

∫
v(x)

(
F̂−1
Y |X(τ |x)− F−1

Y0|X(τ |x) + gβ0(x)− gβn(x)
)
dx∫

v(x) dx

=

∫
v(x)

(
F̂−1
Y |X(τ |x)− F̂−1

Y0|X(τ |x) + F̂−1
Y0|X(τ |x)− F−1

Y0|X(τ |x)
)
dx∫

v(x) dx
+Op(||βn − β0||)

=
cn

n
∫
v(x) dx

n∑
i=1

∫
v(x)

fY0|X(F−1
Y0|X(τ |x)|x)fX(x)

Khy(F
−1
Y0|X(τ |x)− gβ0(Xi)− c0 − εi)

Khx(x−Xi)∆n(Xi) dx+Op
(

1√
n

+ ||βn − β0||
)

=
cn∫

v(x) dx
E

[∫
v(x)

fY0|X(F−1
Y0|X(τ |x)|x)fX(x)

Khy(F
−1
Y0|X(τ |x)− gβ0(Xi)− c0 − εi)
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Khx(x−Xi)∆n(Xi) dx

]
+ op(cn) +Op

(
1√
n

+ ||βn − β0||
)

= cn

∫
v(x)∆n(x) dx∫

v(x) dx
+ op(cn) +Op

(
1√
n

+ ||βn − β0||
)

(2.57)

uniformly in τ ∈ supp(µ), where the second to last equation can be shown analogously to

the reasoning in the proof of Lemma 4.2.12 later. Moreover, note that

Dβ ĉβ,τ = −
∫
v(x)Dβgβ(x) dx∫

v(x) dx
= Dβcβ,τ (2.58)

and∫ ∫
v(x)(cβ0,τ − ĉβ0,τ )Dβ(gβ0(x) + cβ0,τ ) dxµ(dτ)

(2.57)
= cn

∫
v(x)∆n(x) dx∫

v(x) dx

∫ ∫
v(x)Dβ(gβ0(x) + cβ0,τ ) dxµ(dτ) + op(cn)

= cn

∫
v(x)∆n(x) dx∫

v(x) dx

∫ ∫
v(x)

(
Dβgβ0(x)−

∫
v(w)Dβgβ0(w) dw∫

v(w) dw

)
dxµ(dτ) + op(cn)

= op(cn).

Therefore, a Taylor expansion of β 7→
(
F̂−1
Y |X(τ |x)−gβ(x)−cβ,τ

)2
and the binomial formula

yield for some β∗ between β̂ and β0

0 ≤ nh
dX
2
x

∫ ∫
v(x)

(
F̂−1
Y |X(τ |x)− gβ0(x)− cβ0,τ

)2
dxµ(dτ)− Tn

= nh
dX
2
x

∫ ∫
v(x)

(
F̂−1
Y |X(τ |x)− gβ0(x)− cβ0,τ

)2
dxµ(dτ)

− nh
dX
2
x

∫ ∫
v(x)

(
F̂−1
Y |X(τ |x)− gβ0(x)− ĉβ0,τ

)2
dxµ(dτ)

+ 2nh
dX
2
x

∫ ∫
v(x)

(
F̂−1
Y |X(τ |x)− gβ0(x)− ĉβ0,τ

)
Dβ(gβ0(x) + ĉβ0,τ ) dxµ(dτ)(β̂ − β0)

+ nh
dX
2
x (β̂ − β0)t

∫ ∫ (
v(x)

(
F̂−1
Y |X(τ |x)− gβ∗(x)− ĉβ∗,τ

)
Hess(gβ∗(x) + ĉβ∗,τ )

−
(
Dβ(gβ∗(x) + ĉβ∗,τ )

)t
Dβ(gβ∗(x) + ĉβ∗,τ )

)
dxµ(dτ)(β̂ − β0)

= 2nh
dX
2
x

∫ ∫
v(x)

(
F̂−1
Y |X(τ |x)− gβ0(x)− cβ0,τ

)
dx(ĉβ0,τ − cβ0,τ )µ(dτ)

− nh
dX
2
x

∫
v(x) dx

∫
(ĉβ0,τ − cβ0,τ )2 µ(dτ)

+ 2nh
dX
2
x

∫ ∫
v(x)

(
F̂−1
Y |X(τ |x)− gβ0(x)− ĉβ0,τ

)
Dβ(gβ0(x) + cβ0,τ ) dxµ(dτ)(β̂ − β0)

− nh
dX
2
x µ([0, 1])(β̂ − β0)tΩ(β̂ − β0) + op

(
nh

dX
2
x ||β̂ − β0||2

)
(2.59)

= −G(β̂) + op

(√
nh

dX
4
x ||β̂ − β0||

)
+ op

(
nh

dX
2
x ||β̂ − β0||2

)
.
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Here, it was used that

F̂−1
Y |X(τ |x)− gβ∗(x)− ĉβ∗,τ = op(1)

uniformly in x ∈ supp(v), τ ∈ supp(µ) and∫ ∫
v(x)

(
Dβ(gβ∗(x) + ĉβ∗,τ )

)t
Dβ(gβ∗(x) + ĉβ∗,τ ) dxµ(dτ) = Ω + op(1)

componentwise due to β∗ − β0 = op(1).

Later, it will be shown that (again componentwise)

√
nh

dX
4
x

∫ ∣∣∣∣ ∫ (F̂−1
Y |X(τ |x)− gβ0(x)− cβ0,τ

)
v(x)Dβ(gβ0(x) + cβ0,τ ) dx

∣∣∣∣µ(dτ)

≤
√
nh

dX
4
x

∫ ∣∣∣∣ ∫ (F̂−1
Y |X(τ |x)− F̂−1

Y0|X(τ |x)
)
v(x)Dβ(gβ0(x) + cβ0,τ ) dx

∣∣∣∣µ(dτ)

+
√
nh

dX
4
x

∫ ∣∣∣∣ ∫ (F̂−1
Y0|X(τ |x)− F−1

Y0|X(τ |x)
)
v(x)Dβ(gβ0(x) + cβ0,τ ) dx

∣∣∣∣µ(dτ)

= Op(1) (2.60)

as well as

√
nh

dX
4
x

∫ ∣∣∣∣ ∫ (F̂−1
Y |X(τ |x)− gβ0(x)− cβ0,τ

)
v(x) dx

∣∣∣∣µ(dτ) = Op(1).

Since (2.57) implies

ĉβ0,τ − cβ0,τ = Op
(
cn +

1√
n

)
,

equation (2.59) then leads to

0 ≤ −nh
dX
2
x µ([0, 1])(β̂ − β0)tΩ(β̂ − β0)

+Op
(√

nh
dX
4
x ||β̂ − β0||

)
+ op

(
nh

dX
2
x ||β̂ − β0||2

)
+Op(1),

that is β̂ − β0 = Op
(
n−

1
2h
− dX

4
x

)
.

To prove the equations from above, define

κ̃(x, τ) =
v(x)Dβ(gβ0(x) + cβ0,τ )

fY0|X(F−1
Y0|X(τ |x)|x)fX(x)

(2.61)

and write with Lemma 2.8.1

√
nh

dX
4
x

∫ ∣∣∣∣ ∫ (F̂−1
Y |X(τ |x)− F̂−1

Y0|X(τ |x)
)
v(x)Dβ(gβ0(x) + cβ0,τ ) dx

∣∣∣∣µ(dτ)

=
1

n

n∑
i=1

∫ ∣∣∣∣ ∫ κ̃(x, τ)Khy(F
−1
Y0|X(τ |x)− gβ0(Xi)− c0 − εi)Khx(x−Xi)∆n(Xi) dx

∣∣∣∣µ(dτ)

+ op(1)

= E

[ ∫ ∣∣∣∣ ∫ κ̃(x, τ)Khy(F
−1
Y0|X(τ |x)− gβ0(X1)− c0 − ε1)Khx(x−X1)∆n(X1) dx

∣∣∣∣µ(dτ)

]
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+ op(1)

= Op(1)

as well as (with Lemma 2.8.1)

√
nh

dX
4
x

∫ ∣∣∣∣ ∫ (F̂−1
Y0|X(τ |x)− F−1

Y0|X(τ |x)
)
v(x)Dβ(gβ0(x) + cβ0,τ ) dx

∣∣∣∣µ(dτ)

=

∫ ∣∣∣∣h
dX
4
x√
n

n∑
i=1

∫
κ̃(x, τ)

(
Khy(F−1

Y0|X(τ |x)− gβ0(Xi)− c0 − εi)−
p0(F−1

Y0|X(τ |x), x)

fX(x)

)

Khx(x−Xi) dx

∣∣∣∣µ(dτ) + op(1)

=

∫ ∣∣∣∣h
dX
4
x√
n

n∑
i=1

∫
κ̃(Xi − hxx, τ)

(
Khy(F−1

Y0|X(τ |Xi − hxx)− gβ0(Xi)− c0 − εi)

−
p0(F−1

Y0|X(τ |Xi − hxx), Xi − hxx)

fX(Xi − hxx)

)
K(x) dx

∣∣∣∣µ(dτ) + op(1).

Let C > 0 be a sufficiently large constant. Then, for each of the components κ̃k, k =

1, ..., dB, one has

E

[(∫ ∣∣∣∣h
dX
4
x√
n

n∑
i=1

∫
κ̃k(Xi − hxx, τ)

(
Khy(F−1

Y0|X(τ |Xi − hxx)− gβ0(Xi)− c0 − εi)

−
p0(F−1

Y0|X(τ |Xi − hxx), Xi − hxx)

fX(Xi − hxx)

)
K(x) dx

∣∣∣∣µ(dτ)

)2]

≤ µ([0, 1])E

[∫ (
h
dX
4
x√
n

n∑
i=1

∫
κ̃k(Xi − hxx, τ)

(
Khy(F−1

Y0|X(τ |Xi − hxx)− gβ0(Xi)− c0 − εi)−
p0(F−1

Y0|X(τ |Xi − hxx), Xi − hxx)

fX(Xi − hxx)

)

K(x) dx

)2

µ(dτ)

]

≤ µ([0, 1])h
dX
2
X E

[∫ (∫
κ̃k(X1 − hxx, τ)

(
Khy(F−1

Y0|X(τ |X1 − hxx)− gβ0(X1)− c0 − ε1)

−
p0(F−1

Y0|X(τ |X1 − hxx), X1 − hxx)

fX(X1 − hxx)

)
K(x) dx

)2

µ(dτ)

]

+ µ([0, 1])nh
dX
2
X

∫ ∫
E

[
κ̃k(X1 − hxx, τ)

(
Khy(F−1

Y0|X(τ |X1 − hxx)− gβ0(X1)− c0 − ε1)

−
p0(F−1

Y0|X(τ |X1 − hxx), X1 − hxx)

fX(X1 − hxx)

)]2

K(x) dxµ(dτ)
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≤ Ch
dX
2
X

(∫
|K(x)| dx

)2

+ o
(
h
dX
2
X

)
= o(1),

where the last inequality can be shown similarly to (2.48), so that

√
nh

dX
4
x

∫ ∣∣∣∣ ∫ (F̂−1
Y0|X(τ |x)− F−1

Y0|X(τ |x)
)
v(x)Dβ(gβ0(x) + cβ0,τ ) dx

∣∣∣∣µ(dτ) = op(1) (2.62)

and

√
nh

dX
4
x

∫ ∣∣∣∣ ∫ (F̂−1
Y |X(τ |x)− gβ0(x)− cβ0,τ

)
v(x)Dβ(gβ0(x) + cβ0,τ ) dx

∣∣∣∣µ(dτ) = Op(1).

Completely analogously, it can be shown that

√
nh

dX
4
x

∫ ∣∣∣∣ ∫ (F̂−1
Y |X(τ |x)− gβ0(x)− cβ0,τ

)
v(x) dx

∣∣∣∣µ(dτ) = Op(1).

Therefore, it holds that β̂ − β0 = Op
(
n−

1
2h
− dX

4
x

)
. Especially, (2.59) implies

Tn = nh
dX
2
x

∫ ∫
v(x)

(
F̂−1
Y |X(τ |x)− gβ0(x)− cβ0,τ

)2
dxµ(dτ) +Op(1).

β̄ is defined as the due to (A8) unique minimizer of G. Hence,

0 = DβG(β̄)

= −2nh
dX
2
x

∫ ∫
v(x)

(
F̂−1
Y |X(τ |x)− gβ0(x)− cβ0,τ

)
Dβ(gβ0(x) + cβ0,τ ) dxµ(dτ)

+ 2nh
dX
2
x µ([0, 1])(β − β0)tΩ,

that is, (2.60) leads to

β̄ = β0 +
1

µ([0, 1])
Ω−1

∫ ∫
v(x)

(
F̂−1
Y |X(τ |x)− gβ0(x)− cβ0,τ

)
(
Dβ(gβ0(x) + cβ0,τ )

)t
dxµ(dτ)

= β0 +Op
(
n−

1
2h
− dX

4
x

)
. (2.63)

Note that for all β ∈ B with ||β − β0|| = Op
(
n−

1
2h
− dX

4
x

)
, one has (see (2.59))∫ ∫

v(x)
(
F̂−1
Y |X(τ |x)− gβ(x)− ĉβ,τ

)2
dxµ(dτ)

=

∫ ∫
v(x)

(
F̂−1
Y |X(τ |x)− gβ0(x)− cβ0,τ

)2
dxµ(dτ) +G(β) + op(1),

so that

Tn = nh
dX
2
x

∫ ∫
v(x)

(
F̂−1
Y |X(τ |x)− gβ̂(x)− ĉβ̂,τ

)2
dxµ(dτ)
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= nh
dX
2
x

∫ ∫
v(x)

(
F̂−1
Y |X(τ |x)− gβ0(x)− cβ0,τ

)2
dxµ(dτ) +G(β̂) + op(1)

≥ nh
dX
2
x

∫ ∫
v(x)

(
F̂−1
Y |X(τ |x)− gβ0(x)− cβ0,τ

)2
dxµ(dτ) +G(β̄) + op(1)

= nh
dX
2
x

∫ ∫
v(x)

(
F̂−1
Y |X(τ |x)− gβ̄(x)− ĉβ̄,τ

)2
dxµ(dτ) + op(1)

≥ Tn + op(1).

Consequently, to obtain the asymptotic distribution of Tn it suffices to calculate that of

nh
dX
2
x

∫ ∫
v(x)

(
F̂−1
Y |X(τ |x)− gβ0(x)− cβ0,τ

)2
dxµ(dτ) +G(β̄) = T̃n +G(β̄).

Inserting β̄ from (2.63) into G(β̄) yields

T̃n +G(β̄)

= T̃n − 2nh
dX
2
x

∫ ∫
v(x)

(
F̂−1
Y |X(τ |x)− gβ0(x)− cβ0,τ

)
dx(ĉβ0,τ − cβ0,τ )µ(dτ)

+ nh
dX
2
x

∫
v(x) dx

∫
(ĉβ0,τ − cβ0,τ )2µ(dτ)

− nh
dX
2
x

µ([0, 1])

(∫ ∫
v(x)

(
F̂−1
Y |X(τ |x)− gβ0(x)− cβ0,τ

)
Dβ(gβ0(x) + cβ0,τ ) dxµ(dτ)

)
Ω−1

(∫ ∫
v(x)

(
F̂−1
Y |X(τ |x)− gβ0(x)− cβ0,τ

)
Dβ(gβ0(x) + cβ0,τ ) dxµ(dτ)

)t
+ op(1).

Since ĉβ0,τ was defined as the minimizer of c 7→
∫
v(x)

(
F̂−1
Y |X(τ |x)− gβ0(x)− c

)2
dx, it holds

that ∫
v(x)

(
F̂−1
Y |X(τ |x)− gβ0(x)− ĉβ0,τ

)
dx = 0

and thus ∫
v(x)

(
F̂−1
Y |X(τ |x)− gβ0(x)− cβ0,τ

)
dx

=

∫
v(x)

(
F̂−1
Y |X(τ |x)− gβ0(x)− ĉβ0,τ + ĉβ0,τ − cβ0,τ

)
dx

=

∫
v(x)(ĉβ0,τ − cβ0,τ ) dx

for all τ ∈ supp(µ). Together with F−1
Y0|X(τ |x) = gβ0(x) + cβ0,τ , this results in

T̃n +G(β̄)

= T̃n − δ1,n + µ([0, 1])

∫
v(x)∆n(x)2 dx− nh

dX
2
x

∫
v(x) dx

∫
(ĉβ0,τ − cβ0,τ )2µ(dτ)

− nh
dX
2
x

µ([0, 1])

(∫ ∫
v(x)

(
F̂−1
Y |X(τ |x)− F−1

Y0|X(τ |x)
)
Dβ(gβ0(x) + cβ0,τ ) dxµ(dτ)

)
Ω−1
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(∫ ∫
v(x)

(
F̂−1
Y |X(τ |x)− F−1

Y0|X(τ |x)
)
Dβ(gβ0(x) + cβ0,τ ) dxµ(dτ)

)t
+ op(1)

(2.62)
= T̃n − δ1,n + µ([0, 1])

∫
v(x)∆n(x)2 dx− nh

dX
2
x

∫
v(x) dx

∫
(ĉβ0,τ − cβ0,τ )2µ(dτ)

− nh
dX
2
x

µ([0, 1])

(∫ ∫
v(x)

(
F̂−1
Y |X(τ |x)− F̂−1

Y0|X(τ |x)
)
Dβ(gβ0(x) + cβ0,τ ) dxµ(dτ)

)
Ω−1

(∫ ∫
v(x)

(
F̂−1
Y |X(τ |x)− F̂−1

Y0|X(τ |x)
)
Dβ(gβ0(x) + cβ0,τ ) dxµ(dτ)

)t
+ op(1)

= T̃n − δ1,n + µ([0, 1])

∫
v(x)∆n(x)2 dx− µ([0, 1])

( ∫
v(x)∆n(x) dx

)2∫
v(x) dx

− 1

µ([0, 1])

(
1

n

n∑
i=1

∫ ∫
v(x)

fY0|X(F−1
Y0|X(τ |x)|x)fX(x)

Dβ(gβ0(x) + cβ0,τ )

Khy(F
−1
Y0|X(τ |x)− gβ0(Xi)− c0 − εi)Khx(x−Xi)∆n(Xi) dxµ(dτ)

)

Ω−1

(
1

n

n∑
i=1

∫ ∫
v(x)

fY0|X(F−1
Y0|X(τ |x)|x)fX(x)

Dβ(gβ0(x) + cβ0,τ )

Khy(F
−1
Y0|X(τ |x)− gβ0(Xi)− c0 − εi)Khx(x−Xi)∆n(Xi) dxµ(dτ)

)t
+ op(1),

where (2.46) and (2.57) were applied to obtain the last equation. Let κ̃ be as in (2.61).

Then, one has

1

n

n∑
i=1

∫ ∫
v(x)

fY0|X(F−1
Y0|X(τ |x)|x)fX(x)

Dβ(gβ0(x) + cβ0,τ )

Khy(F
−1
Y0|X(τ |x)− gβ0(Xi)− c0 − εi)Khx(x−Xi)∆n(Xi) dxµ(dτ)

=
1

n

n∑
i=1

∫ ∫
κ̃(x, τ)Khy(F

−1
Y0|X(τ |x)− gβ0(Xi)− c0 − εi)Khx(x−Xi)∆n(Xi) dxµ(dτ)

=

∫ ∫
κ̃(x, τ)E

[
Khy(F

−1
Y0|X(τ |x)− gβ0(X1)− c0 − ε1)Khx(x−X1)∆n(X1)

]
dxµ(dτ)

+ op(1)

=

∫ ∫ ∫ ∫
κ̃(x, τ)Khy(F

−1
Y0|X(τ |x)− z)Khx(x− w)∆n(w)fY0,X(z, w) dz dw dxµ(dτ)

+ op(1)

=

∫ ∫ ∫ ∫
κ̃(x, τ)K(z)K(w)∆n(x− hxw)

fY0,X(F−1
Y0|X(τ |x− hxw)− hyz, x− hxw) dz dw dxµ(dτ) + op(1)

=

∫ ∫
κ̃(x, τ)∆n(x)fY0,X(F−1

Y0|X(τ |x), x) dxµ(dτ) + op(1)
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=

∫ ∫
v(w)Dβ(gβ0(w) + cβ0,τ )∆n(w) dw µ(dτ) + op(1),

so that with (2.58)

T̃n +G(β̄)

= T̃n − δ1,n + µ([0, 1])

∫
v(x)∆n(x)2 dx− µ([0, 1])

( ∫
v(x)∆n(x) dx

)2∫
v(x) dx

− 1

µ([0, 1])

(∫ ∫
v(x)Dβ(gβ0(x) + cβ0,τ )∆n(x) dxµ(dτ)

)

Ω−1

(∫ ∫
v(x)Dβ(gβ0(x) + cβ0,τ )∆n(x) dxµ(dτ)

)t
+ op(1)

= T̃n − δ1,n + µ([0, 1])

∫
v(x)∆n(x)2 dx− µ([0, 1])

( ∫
v(x)∆n(x) dx

)2∫
v(x) dx

− µ([0, 1])

(∫
v(x)∆n(x)

(
Dβgβ0(x)−

∫
Dβgβ0(w) dw∫
v(w) dw

)
dx

)

Ω−1

(∫
v(x)∆n(x)

(
Dβgβ0(x)−

∫
Dβgβ0(w) dw∫
v(w) dw

)
dx

)t
+ op(1)

= T̃n − δ1,n + µ([0, 1])

∫
v(x)

(
∆n(x)−

∫
v(w1)∆n(w1) dw1∫

v(w2) dw2

−
(
Dβgβ0(x)−

∫
Dβgβ0(w3) dw3∫
v(w4) dw4

)

Ω−1

(∫
v(w5)∆n(w5)

(
Dβgβ0(w5)−

∫
Dβgβ0(w6) dw6∫
v(w7) dw7

)
dw5

)t)2

dx+ op(1)

= T̃n − δ1,n + δn + op(1)

= T̃n + δ2,n + δ3,n + op(1),

where the third from last equality was obtained by standard calculations. Finally, Lemma

2.3.2 leads to

Tn − b− δn
D→ Z.

�

2.8.4 Proof of Remark 2.3.5

δn was defined as

δn = µ([0, 1])

∫
v(x)

(
∆n(x)−

∫
v(w1)∆n(w1) dw1∫

v(w2) dw2
−
(
Dβgβ0(x)−

∫
Dβgβ0(w3) dw3∫
v(w4) dw4

)

Ω−1

(∫
v(w5)∆n(w5)

(
Dβgβ0(w5)−

∫
Dβgβ0(w6) dw6∫
v(w7) dw7

)
dw5

)t)2

dx.
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The alternative expression for δn can be obtained by simply expanding that from above.

While doing so, the fact is used that∫
v(w1)

∫
v(w2)Dβgβ0(w2) dw2∫

v(w3) dw3

(
Dβgβ0(w1)−

∫
v(w4)Dβgβ0(w4) dw4∫

v(w5) dw5

)t
dw1 = 0. (2.64)

To prove the second assertion, rewrite ∆n as

∆n(x) =
gβn(x)− gβ0(x)

cn
= Dβgβ0(x)

βn − β0

cn
+ o(1)

uniformly in x ∈ supp(v) and n ∈ N. Hence, the distributive law yields

δn = µ([0, 1])

∫
v(x)

(
Dβgβ0(x)

βn − β0

cn
−
(∫

v(w1)Dβgβ0(w1) dw1∫
v(w2) dw2

)
βn − β0

cn

−
(
Dβgβ0(x)−

∫
Dβgβ0(w3) dw3∫
v(w4) dw4

)

Ω−1

(∫
v(w5)∆n(w5)

(
Dβgβ0(w5)−

∫
Dβgβ0(w6) dw6∫
v(w7) dw7

)
dw5

)t)2

dx+ o(1)

= µ([0, 1])

∫
v(x)

((
Dβgβ0(x)−

∫
v(w1)Dβgβ0(w1) dw1∫

v(w2) dw2

)
(
βn − β0

cn
− Ω−1

(∫
v(w5)∆n(w5)

(
Dβgβ0(w5)−

∫
Dβgβ0(w6) dw6∫
v(w7) dw7

)
dw5

)t))2

dx

+ o(1).

Equation (2.64) leads to

βn − β0

cn
− Ω−1

(∫
v(w5)∆n(w5)

(
Dβgβ0(w5)−

∫
Dβgβ0(w6) dw6∫
v(w7) dw7

)
dw5

)t
=
βn − β0

cn
− Ω−1

(∫
v(w5)Dβgβ0(w5)

βn − β0

cn

(
Dβgβ0(w5)−

∫
Dβgβ0(w6) dw6∫
v(w7) dw7

)
dw5

)t
+ o(1)

=
βn − β0

cn
− Ω−1

(
(βn − β0)t

cn

∫
v(w5)

(
Dβgβ0(w5)−

∫
Dβgβ0(w3) dw3∫
v(w4) dw4

)t
(
Dβgβ0(w5)−

∫
Dβgβ0(w6) dw6∫
v(w7) dw7

)
dw5

)t
+ o(1)

=
βn − β0

cn
− Ω−1Ω

βn − β0

cn
+ o(1)

= o(1),

that is, δn = o(1). �
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2.8.5 Proof of Theorem 2.3.6

The proof of the second part directly follows from Theorem 2.3.4 and Slutsky’s theorem,

so that it remains to prove the first assertion. Since H0 is violated in this case, one has

min
β∈B, c∈R

∫ ∫
v(x)

(
F−1
Y |X(τ |x)− gβ(x)− c

)2
dxµ(dτ) > 0.

Recall

F̂Y |X(y|x)− FY |X(y|x) =
p̂(y, x)

f̂X(x)
− p(y, x)

fX(x)

Again, the results of Hansen (2008) yield p̂(y, x)−p(y, x) = op(1) as well as f̂X(x)−fX(x) =

op(1) uniformly on compact sets and thus

F̂Y |X(y|x)− FY |X(y|x) = op(1)

uniformly on x ∈ supp(v) and y belonging to some compact set K ⊆ R. When choosing

K = [y1, y2] with

y1 = inf
x∈supp(v),τ∈supp(µ)

F−1
Y |X(τ, x) and y2 = sup

x∈supp(v),τ∈supp(µ)
F−1
Y |X(τ, x),

assumption (2.28) ensures that the functions y 7→ FY |X(y|x) are strictly increasing for all

x ∈ supp(v), so that

F̂−1
Y |X(τ |x)− F−1

Y |X(τ |x) = op(1)

uniformly on x ∈ supp(v) and τ ∈ supp(µ). Especially, it holds that

sup
x∈supp(v),τ∈supp(µ)

|F̂−1
Y |X(τ |x)| ≤ sup

x∈supp(v),τ∈supp(µ)
|F−1
Y |X(τ |x)|+ op(1)

and the minimization in (2.13) with respect to c can be replaced by that over some appro-

priate compact set [c1, c2] ⊆ R to obtain

Tn

nh
dX
2
x

= min
β∈B,c∈[c1,c2]

∫ ∫
v(x)

(
F̂−1
Y |X(τ |x)− gβ(x)− c

)2
dxµ(dτ) + op(1)

≥
∫ ∫

v(x)
(
F̂−1
Y |X(τ |x)− F−1

Y |X(τ |x)
)2
dxµ(dτ)

− 2 sup
x∈supp(v),τ∈supp(µ)

∣∣F̂−1
Y |X(τ |x)− F−1

Y |X(τ |x)
∣∣

max
β∈B,c∈[c1,c2]

∫ ∫
v(x)

∣∣F−1
Y |X(τ |x)− gβ(x)− c

∣∣ dxµ(dτ)

+ min
β∈B,c∈[c1,c2]

∫ ∫
v(x)

(
F−1
Y |X(τ |x)− gβ(x)− c

)2
dxµ(dτ) + op(1)

= min
β∈B,c∈[c1,c2]

∫ ∫
v(x)

(
F−1
Y |X(τ |x)− gβ(x)− c

)2
dxµ(dτ) + op(1).

Hence

P (Φ(Y1, X1, ..., Yn, Xn) = 1)
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= P
(
Tn > b̂+

√
V̂ u1−α

)
= P

(
Tn

nh
dX
2
x

>
b̂+

√
V̂ u1−α

nh
dX
2
x

)

= P

(
min

β∈B,c∈[c1,c2]

∫ ∫
v(x)

(
F−1
Y |X(τ |x)− gβ(x)− c

)2
dxµ(dτ) > op(1)

)
= 1 + o(1).

�

2.8.6 Proof of Theorem 2.4.1

Note that there exists a compact interval C = [c1, c2] ⊆ R such that

(F hY |X)−1
(
τ |x
)
∈ (h(c1), h(c2)) for all x ∈ supp(v), τ ∈ supp(µ). (2.65)

Similar to the case without transformations, one has

F̂ ĥY |X(y|x)− F hY |X(y|x)

=
p̂ĥ(y, x)

f̂X(x)
− ph(y, x)

fX(x)

=
1

fX(x)
(pĥ(y, x)− ph(y, x))− ph(y, x)

fX(x)2
(f̂X(x)− fX(x))

− f̂X(x)− fX(x)

f̂X(x)fX(x)

(
p̂ĥ(y, x)− ph(y, x)− ph(y, x)(f̂X(x)− fX(x))

fX(x)

)
,

p̂h(y, x)− ph(y, x) = op
(
n−

1
4
)

(2.66)

and

f̂X(x)− fX(x) = op
(
n−

1
4
)

uniformly in x ∈ supp(v) and y ∈ h(C). First, the asymptotic behaviour of p̂ĥ(y, x)−p̂h(y, x)

is examined. To this end, let δ > 0. As the support of K is compact and ĥ(y) ≤ ĥ(c1−δ) =

h(c1 − δ) + op(1) uniformly in y ∈ (−∞, c1 − δ) and analogously ĥ(y) ≥ ĥ(c2 + δ) =

h(c2 + δ) + op(1) uniformly in y ∈ (c2 + δ,∞) one has

P
(
∀z ∈ h(C), y /∈ [c1 − δ, c2 + δ] : Khy

(
z − ĥ(y)

)
= Khy

(
z − h(y)

)
∈ {0, 1}

)
→ 1. (2.67)

(2.41) yields∣∣∣∣ 1

nhjy

n∑
i=1

I{Yi∈[c1−δ,c2+δ]}K
(j−1)

(
y − h(Yi)

hy

)
(h(Yi)− ĥ(Yi))

jKhx(x−Xi)

∣∣∣∣
≤

sup
y∈[c1−δ,c2+δ]

(h(y)− ĥ(y))j

hj−1
y

1

nhy

n∑
i=1

∣∣∣∣K(j−1)

(
y − h(Yi)

hy

)
Khx(x−Xi)

∣∣∣∣
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= Op
(

1
√
n
j
hj−1
y

)

= op

(
1√
n

)
for all j = 2, ..., r as well as∣∣∣∣ 1

nhr+1
y

n∑
i=1

I{Yi∈[c1−δ,c2+δ]}K
(r)(y∗i )(h(Yi)− ĥ(Yi))

r+1Khx(x−Xi)

∣∣∣∣
≤

sup
y∈[c1−δ,c2+δ]

(h(y)− ĥ(y))r+1

hr+1
y

sup
y∈R

K(r)(y)
1

nhy

n∑
i=1

|Khx(x−Xi)|

= Op
(

1
√
n
r+1

hr+1
y

)

= op

(
1√
n

)
.

Hence, one has for appropriate y∗i ∈ R, i = 1, ..., n,

p̂ĥ(y, x)− p̂h(y, x)

=
1

n

n∑
i=1

Khy
(
y − ĥ(Yi)

)
Khx(x−Xi)−

1

n

n∑
i=1

Khy
(
y − h(Yi)

)
Khx(x−Xi)

=
1

n

n∑
i=1

I{Yi∈[c1−δ,c2+δ]}Khy
(
y − ĥ(Yi)

)
Khx(x−Xi)

− 1

n

n∑
i=1

I{Yi∈[c1−δ,c2+δ]}Khy
(
y − h(Yi)

)
Khx(x−Xi) + op

(
1√
n

)

=
1

n

n∑
i=1

I{Yi∈[c1−δ,c2+δ]}

r∑
j=1

1

hjyj!
K(j−1)

(
y − h(Yi)

hy

)
(h(Yi)− ĥ(Yi))

jKhx(x−Xi)

+
1

n

n∑
i=1

I{Yi∈[c1−δ,c2+δ]}
1

hr+1
y (r + 1)!

K(r)(y)
∣∣∣
y=y∗i

(h(Yi)− ĥ(Yi))
r+1Khx(x−Xi)

+ op

(
1√
n

)

=
1

n2

n∑
i=1

n∑
k=1

ψ(Yk, Xk, Yi)I{Yi∈[c1−δ,c2+δ]}Khy

(
y − h(Yi)

)
Khx(x−Xi) + op

(
1√
n

)
(2.68)

and

|p̂ĥ(y, x)− p̂h(y, x)|

=

∣∣∣∣ 1n
n∑
i=1

I{Yi∈[c1−δ,c2+δ]}Khy(y − h(Yi))(h(Yi)− ĥ(Yi))Khx(x−Xi)

∣∣∣∣+ op

(
1√
n

)

≤ sup
z∈[c1−δ,c2+δ]

|h(z)− ĥ(z)| 1
n

n∑
i=1

|Khy(y − h(Yi))Khx(x−Xi)|+ op

(
1√
n

)

75



2. Testing for a Parametric Regression Function in Nonparametric Transformation
Models - A Quantile Approach

(2.31)
= Op

(
1√
n

)
(2.69)

uniformly in y ∈ h(C), x ∈ supp(v). Due to (2.69), equation (2.66) can be extended to

p̂ĥ(y, x)− ph(y, x) = op
(
n−

1
4

)
, so that

F̂ ĥY |X(y|x)− F hY |X(y|x) =
1

fX(x)
(p̂ĥ(y, x)− ph(y, x))− ph(y, x)

fX(x)2
(f̂X(x)− fX(x))

+ op

(
1√
n

)

=
1

fX(x)
p̂ĥ(y, x)− ph(y, x)

fX(x)2
f̂X(x) + op

(
1√
n

)
= op

(
n−

1
4
)

uniformly on x ∈ supp(v) and y ∈ h(C). A similar reasoning leads to

f̂ ĥY |X(y|x)− f ĥY |X(y|x) = op
(
n−

1
4
)

and
∂

∂y
f̂ ĥY |X(y|x) = Op(1)

uniformly on x ∈ supp(v) and y ∈ h(C), so that for an appropriate y∗ one has

0 = F̂ ĥY |X((F̂ ĥY |X)−1(τ |x)|x)− F hY |X((F hY |X)−1(τ |x)|x)

= F̂ ĥY |X((F hY |X)−1(τ |x)|x) + f̂ ĥY |X((F hY |X)−1(τ |x)|x)
(
(F̂ ĥY |X)−1(τ |x)− (F hY |X)−1(τ |x)

)
+

∂

∂y
f̂ ĥY |X(y∗|x)

(
(F̂ ĥY |X)−1(τ |x)− (F hY |X)−1(τ |x)

)2 − F hY |X((F hY |X)−1(τ |x)|x)

= F̂ ĥY |X((F hY |X)−1(τ |x)|x)− F hY |X((F hY |X)−1(τ |x)|x)

+ fhY |X((F hY |X)−1(τ |x)|x)
(
(F̂ ĥY |X)−1(τ |x)− (F hY |X)−1(τ |x)

)
+ op

(
1√
n

)
uniformly in x ∈ supp(v) and τ ∈ supp(µ). This in turn results in

(F hY |X)−1(τ |x)− (F̂ ĥY |X)−1(τ |x)

=
F̂ ĥY |X((F hY |X)−1(τ |x)|x)− F hY |X((F hY |X)−1(τ |x)|x)

fhY |X((F hY |X)−1(τ |x)|x)
+ op

(
1√
n

)

=
1

fhY |X((F hY |X)−1(τ |x)|x)

(
1

fX(x)
p̂ĥ((F hY |X)−1(τ |x), x)−

ph((F hY |X)−1(τ |x), x)

fX(x)2
f̂X(x)

)

+ op

(
1√
n

)

=
1

fhY |X((F hY |X)−1(τ |x)|x)

1

n

n∑
i=1

Khx(x−Xi)

(
1

fX(x)
Khy((F hY |X)−1(τ |x)− ĥ(Yi))

−
ph((F hY |X)−1(τ |x), x)

fX(x)2

)
+ op

(
1√
n

)
(2.70)
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uniformly in x ∈ supp(v) and τ ∈ supp(µ). Note that validity of H0 is assumed, that is,

h(Y ) here corresponds to Y0 = Y in Section 2.3.2. Therefore, equation (2.45) leads to

(F hY |X)−1(τ |x)− (F̂ hY |X)−1(τ |x)

=
1

fhY |X((F hY |X)−1(τ |x)|x)

(
1

fX(x)
p̂h((F hY |X)−1(τ |x), x)−

ph((F hY |X)−1(τ |x), x)

fX(x)2
f̂X(x)

)

=
1

fhY |X((F hY |X)−1(τ |x)|x)

1

n

n∑
i=1

Khx(x−Xi)

(
1

fX(x)
Khy((F hY |X)−1(τ |x)− h(Yi))

−
ph((F hY |X)−1(τ |x), x)

fX(x)2

)
+ op

(
1√
n

)
uniformly in x ∈ supp(v) and τ ∈ supp(µ). Hence, (2.68), (2.69) and (2.70) yield

(F̂ hY |X)−1(τ |x)− (F̂ ĥY |X)−1(τ |x)

= (F hY |X)−1(τ |x)− (F̂ ĥY |X)−1(τ |x)−
(
(F hY |X)−1(τ |x)− (F̂ hY |X)−1(τ |x)

)
(2.70)

=
1

fhY |X((F hY |X)−1(τ |x)|x)fX(x)

(
p̂ĥ((F hY |X)−1(τ |x), x)− p̂h((F hY |X)−1(τ |x), x)

)
+ op

(
1√
n

)
(2.68)

=
1

fhY |X((F hY |X)−1(τ |x)|x)fX(x)n2

n∑
i=1

n∑
k=1

ψ(Yk, Xk, Yi)I{Yi∈[c1−δ,c2+δ]}

Khy

(
(F hY |X)−1(τ |x)− h(Yi)

)
Khx(x−Xi) + op

(
1√
n

)
(2.69)

= Op
(

1√
n

)
(2.71)

uniformly in x ∈ supp(v) and τ ∈ supp(µ). Recall that (F hY |X)−1(τ |·) = gβ0(·)+c0+F−1
ε (τ).

Extend definitions (2.14) and (2.16) to

chβ,τ =

∫
v(x)((F hY |X)−1(τ |x)− gβ(x)) dx∫

v(x) dx

ĉhβ,τ =

∫
v(x)((F̂ hY |X)−1(τ |x)− gβ(x)) dx∫

v(x) dx

ĉĥβ,τ =

∫
v(x)((F̂ ĥY |X)−1(τ |x)− gβ(x)) dx∫

v(x) dx
.

Recall Theorem 2.3.4 and the definitions of δn there. Due to validity of H0 it holds that

δn = 0. In the proof of Theorem 2.3.4 it was shown that

T hn = min
β∈B

nh
dX
2
x

∫ ∫
v(x)

(
(F̂ hY |X)−1(τ |x)− gβ(x)− ĉhβ,τ

)2
dxµ(dτ)

= nh
dX
2
x

∫ ∫
v(x)

(
(F̂ hY |X)−1(τ |x)− (F hY |X)−1(τ |x)

)2
dxµ(dτ) +Op(1)
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= b+Op(1). (2.72)

Similar to the proof of (2.14) one can show that

ĉĥβ,τ − ĉhβ,τ =

∫
v(x)

(
(F̂ ĥY |X)−1(τ |x)− (F̂ hY |X)−1(τ |x)

)∫
v(x) dx

(2.71)
= Op

(
1√
n

)
(2.73)

and the same calculations as in (2.57) lead to (note that H0 was assumed, that is cn = 0)

ĉĥβ,τ − chβ,τ = ĉĥβ,τ − ĉhβ,τ +

∫
v(x)

(
(F̂ hY |X)−1(τ |x)− (F hY |X)−1(τ |x)

)∫
v(x) dx

= O
(

1√
n

)
(2.74)

uniformly in β ∈ B and τ ∈ supp(µ).

Let β̂h and β̂ĥ be the minimizing values in T hn and T ĥn , respectively.

Lemma 2.8.2 Let β̄ĥ and β̄h denote the minimizers of Gĥ : B × R→ R,

Gĥ(β) = −2nh
dX
2
x

∫ ∫
v(x)

(
(F̂ ĥY |X)−1(τ |x)− gβ0(x)− chβ0,τ

)
Dβ(gβ0(x) + chβ0,τ ) dxµ(dτ)(β − β0) + nh

dX
2
x (β − β0)tΩ(β − β0),

and Gh : B × R→ R,

Gh(β) = −2nh
dX
2
x

∫ ∫
v(x)

(
(F̂ hY |X)−1(τ |x)− gβ0(x)− chβ0,τ

)
Dβ(gβ0(x) + chβ0,τ ) dxµ(dτ)(β − β0)

+ nh
dX
2
x (β − β0)tΩ(β − β0).

Define

T̃ hn := nh
dX
2
x

∫ ∫
v(x)

(
(F̂ hY |X)−1(τ |x)− gβ0(x)− chβ0,τ

)2
dxµ(dτ)

= nh
dX
2
x

∫ ∫
v(x)

(
(F̂ hY |X)−1(τ |x)− (F hY |X)−1(τ |x)

)2
dxµ(dτ).

Then, one has

||β̂ĥ − β0|| = Op
(
n−

1
2h
− dX

4
x

)
, (2.75)

||β̂h − β0|| = Op
(
n−

1
2h
− dX

4
x

)
,

||β̄ĥ − β0|| = Op
(
n−

1
2
)
, (2.76)

||β̄h − β0|| = Op
(
n−

1
2
)

and

nh
dX
2
x

∫ ∫
v(x)

(
(F̂ ĥY |X)−1(τ |x)− gβ0(x)− chβ0,τ

)2
dxµ(dτ) = T̃ hn + op(1).
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Proof: It is started with proving the last assertion. Write

nh
dX
2
x

∫ ∫
v(x)

(
(F̂ ĥY |X)−1(τ |x)− gβ0(x)− chβ0,τ

)2
dxµ(dτ)

= nh
dX
2
x

∫ ∫
v(x)

(
(F̂ ĥY |X)−1(τ |x)− (F̂ hY |X)−1(τ |x)

+ (F̂ hY |X)−1(τ |x)− gβ0(x)− chβ0,τ

)2
dxµ(dτ)

= nh
dX
2
x

∫ ∫
v(x)

(
(F̂ ĥY |X)−1(τ |x)− (F̂ hY |X)−1(τ |x)

)2
dxµ(dτ) + T̃ hn

+ 2nh
dX
2
x

∫ ∫
v(x)

(
(F̂ ĥY |X)−1(τ |x)− (F̂ hY |X)−1(τ |x)

)
(
(F̂ hY |X)−1(τ |x)− gβ0(x)− chβ0,τ

)
dxµ(dτ)

Thanks to (2.71) the first term is asymptotically negligible. In Lemma 2.3.2 it was shown

that T̃ hn = Op
(
h
− dX

2
x

)
. Moreover, the third term can be expressed alternatively via (2.71)

and Lemma 2.8.1 as

nh
dX
2
x

∫ ∫
v(x)

(
(F̂ ĥY |X)−1(τ |x)− (F̂ hY |X)−1(τ |x)

)
(
(F̂ hY |X)−1(τ |x)− gβ0(x)− chβ0,τ

)
dxµ(dτ)

= nh
dX
2
x

∫ ∫
v(x)

(
1

fhY |X((F hY |X)−1(τ |x)|x)fX(x)n2

n∑
i=1

n∑
k=1

ψ(Yk, Xk, Yi)

I{Yi∈[c1−δ,c2+δ]}Khy

(
(F hY |X)−1(τ |x)− h(Yi)

)
Khx(x−Xi) + op

(
1√
n

))
(

1

fhY |X((F hY |X)−1(τ |x)|x)

1

n

n∑
i=1

Khx(x−Xi)

(
1

fX(x)
Khy((F hY |X)−1(τ |x)− h(Yi))

−
ph((F hY |X)−1(τ |x), x)

fX(x)2

)
+Op

(
1√
n

))
dxµ(dτ)

=
h
dX
2
x

n2

n∑
i=1

n∑
k=1

n∑
l=1

∫ ∫
κ(x, τ)ψ(Yk, Xk, Yi)I{Yi∈[c1−δ,c2+δ]}Khy

(
(F hY |X)−1(τ |x)− h(Yi)

)
Khx(x−Xi)Khx(x−Xl)(
Khy((F hY |X)−1(τ |x)− h(Yl))−

ph((F hY |X)−1(τ |x), x)

fX(x)

)
dxµ(dτ) + op(1),

where

κ(x, τ) =
v(x)

fhY |X((F hY |X)−1(τ |x)|x)2fX(x)2

has a compact support. For all compact sets C ⊆ R, the function (y1, x1, y) 7→ ψ(y1, x1, y)

is uniformly bounded in (y1, x1, y) ∈ RdX+1 × C due to assumption (A9). The sum can be

split into

nh
dX
2
x

∫ ∫
v(x)

(
(F̂ ĥY |X)−1(τ |x)− (F̂ hY |X)−1(τ |x)

)
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(
(F̂ hY |X)−1(τ |x)− gβ0(x)− chβ0,τ

)
dxµ(dτ)

=
h
dX
2
x

n2

n∑
i=1

∫ ∫
κ(x, τ)ψ(Yi, Xi, Yi)I{Yi∈[c1−δ,c2+δ]}Khy

(
(F hY |X)−1(τ |x)− h(Yi)

)

Khx(x−Xi)
2

(
Khy((F hY |X)−1(τ |x)− h(Yi))−

ph((F hY |X)−1(τ |x), x)

fX(x)

)
dxµ(dτ)

+
h
dX
2
x

n2

n∑
i=1

n∑
k=1
k 6=i

∫ ∫
κ(x, τ)ψ(Yk, Xk, Yi)I{Yi∈[c1−δ,c2+δ]}Khy

(
(F hY |X)−1(τ |x)− h(Yi)

)

Khx(x−Xi)Khx(x−Xk)

(
Khy((F hY |X)−1(τ |x)− h(Yk))

−
ph((F hY |X)−1(τ |x), x)

fX(x)

)
dxµ(dτ)

+
h
dX
2
x

n2

n∑
i=1

n∑
l=1
l 6=i

∫ ∫
κ(x, τ)ψ(Yi, Xi, Yi)I{Yi∈[c1−δ,c2+δ]}Khy

(
(F hY |X)−1(τ |x)− h(Yi)

)

Khx(x−Xi)Khx(x−Xl)

(
Khy((F hY |X)−1(τ |x)− h(Yl))

−
ph((F hY |X)−1(τ |x), x)

fX(x)

)
dxµ(dτ)

+
h
dX
2
x

n2

n∑
i=1

n∑
k=1
k 6=i

∫ ∫
κ(x, τ)ψ(Yk, Xk, Yi)I{Yi∈[c1−δ,c2+δ]}Khy

(
(F hY |X)−1(τ |x)− h(Yi)

)

Khx(x−Xi)
2

(
Khy((F hY |X)−1(τ |x)− h(Yi))−

ph((F hY |X)−1(τ |x), x)

fX(x)

)
dxµ(dτ)

+
h
dX
2
x

n2

n∑
i=1

n∑
k=1
k 6=i

n∑
l=1
l 6=i,k

∫ ∫
κ(x, τ)ψ(Yk, Xk, Yi)I{Yi∈[c1−δ,c2+δ]}

Khy

(
(F hY |X)−1(τ |x)− h(Yi)

)
Khx(x−Xi)Khx(x−Xl)

(
Khy((F hY |X)−1(τ |x)− h(Yl))

−
ph((F hY |X)−1(τ |x), x)

fX(x)

)
dxµ(dτ) + op(1)

= I + II + III + IV + V + op(1).

For an appropriate constant C > 0, term I can be bounded by

I ≤ Ch
dX
2
x

n2

n∑
i=1

∫ ∫
κ(x, τ)|Khy((F

h
Y |X)−1(τ |x)− h(Yi))|Khx(x−Xi)

2 dxµ(dτ)
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=
C

n2h
dX
2
x

n∑
i=1

∫ ∫
κ(Xi + hxx, τ)|Khy((F

h
Y |X)−1(τ |Xi + hxx)− h(Yi))|K(x)2 dxµ(dτ),

which in turn is asymptotically negligible due to

E[κ(Xi + hxx, τ)|Khy((F
h
Y |X)−1(τ |Xi + hxx)− h(Yi))|]

=

∫
κ(w + hxx, τ)Khy((F

h
Y |X)−1(τ |w + hxx)− gβ0(w)− c0 − e)fX(w)fε(e) dw de

=

∫
κ(w + hxx, τ)K(e)fX(w)fε((F

h
Y |X)−1(τ |w + hxx)− gβ0(w)− c0 − hye) dw de

= O(1)

uniformly in x ∈ supp(K) and τ ∈ supp(µ), that is I = op(1). For the second term define

ZIIi,k =

∫ ∫
κ(x, τ)ψ(Yk, Xk, Yi)I{Yi∈[c1−δ,c2+δ]}Khy

(
(F hY |X)−1(τ |x)− h(Yi)

)
Khx(x−Xi)

Khx(x−Xk)

(
Khy((F hY |X)−1(τ |x)− h(Yk))−

ph((F hY |X)−1(τ |x), x)

fX(x)

)
dxµ(dτ),

so that II = h
dX
2
x
n2

∑n
i=1

∑n
k=1
k 6=i

ZIIi,k. For an appropriate constant C > 0, the expectation of

|ZII1,2| can be bounded by

E[|ZII1,2|] ≤ C
∫ ∫

κ(x, τ)E
[∣∣Khy

(
(F hY |X)−1(τ |x)− h(Y1)

)
Khx(x−X1)

∣∣]
E[|Khx(x−X1)|] dxµ(dτ)

= O(1),

that is,

E

[∣∣∣∣h
dX
2
x

n2

n∑
i=1

n∑
k=1
k 6=i

ZIIi,k

∣∣∣∣] ≤ h
dX
2
x

n2

n∑
i=1

n∑
k=1
k 6=i

E
[
|ZIIi,k|

]
= o(1).

Term III can be treated similarly to obtain III = op(1).

For the fourth term define

ZIVi,k =

∫ ∫
κ(x, τ)ψ(Yk, Xk, Yi)I{Yi∈[c1−δ,c2+δ]}Khy

(
(F hY |X)−1(τ |x)− h(Yi)

)
Khx(x−Xi)

2

(
Khy((F hY |X)−1(τ |x)− h(Yi))−

ph((F hY |X)−1(τ |x), x)

fX(x)

)
dxµ(dτ),

that is, IV = h
dX
2
x
n2

∑n
i=1

∑n
k=1
k 6=i

ZIVi,k . As before, it can be shown that h
dX
2
x
n2

∑n
i=1 Z

IV
i,i = op(1),

so that for an appropriate constant C > 0

|IV | = h
dX
2
x

n2

∣∣∣∣ n∑
i=1

n∑
k=1

ZIVi,k

∣∣∣∣+ op(1)
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≤ Ch
dX
2
x

n

n∑
i=1

∫ ∫
κ(x, τ)

∣∣Khy

(
(F hY |X)−1(τ |x)− h(Yi)

)∣∣Khx(x−Xi)
2 dxµ(dτ)

I{Yi∈[c1−δ,c2+δ]}

∣∣∣∣ 1n
n∑
k=1

ψ(Yk, Xk, Yi)

∣∣∣∣︸ ︷︷ ︸
=Op

(
1√
n

)
= Op

(
1√
n

)
Ch

dX
2
x

n

n∑
i=1

∫ ∫
κ(x, τ)

∣∣Khy

(
(F hY |X)−1(τ |x)− h(Yi)

)∣∣
Khx(x−Xi)

2 dxµ(dτ)

= Op
(

1√
nhdXx

)
,

where the last equality follows similar to proving asymptotic negligibility of I, II and III.

Hence, IV = op(1).

It remains to examine term V . Define

ZVi,k,l =

∫ ∫
κ(x, τ)ψ(Yk, Xk, Yi)I{Yi∈[c1−δ,c2+δ]}Khy

(
(F hY |X)−1(τ |x)− h(Yi)

)
Khx(x−Xi)

Khx(x−Xl)

(
Khy((F hY |X)−1(τ |x)− h(Yl))−

ph((F hY |X)−1(τ |x), x)

fX(x)

)
dxµ(dτ),

so that V = h
dX
2
x
n2

∑n
i=1

∑n
k=1
k 6=i

∑n
l=1
l 6=i,k

ZVi,k,l. One has

E[V 2] =
hdXx
n4

n∑
i=1

n∑
k=1
k 6=i

n∑
l=1
l 6=i,k

n∑
s=1

n∑
t=1
t6=s

n∑
u=1
u6=s,t

E
[
ZVi,k,lZ

V
s,t,u

]
.

Due to E[ψ(Y2, X2, Y1)|Y1] = 0 the expectation vanishes whenever k or t are occurring only

once in (i, k, l, s, t, u). Only asymptotic negligibility of the summand corresponding to the

case, in which k = t and #{i, k, l, s, t, u} = 5, will be shown, since asymptotic negligibility

of the remaining summands can be deduced from this case and the calculations for terms

I, II, III, IV . It holds that

E
[
ZV1,2,3Z

V
4,2,5

]
= E

[ ∫ ∫
κ(x, τ)ψ(Y2, X2, Y1)ψ(Y2, X2, Y4)I{Y1∈[c1−δ,c2+δ]}I{Y4∈[c1−δ,c2+δ]}

Khy

(
(F hY |X)−1(τ |x)− h(Y1)

)
Khx(x−X1)Khy

(
(F hY |X)−1(τ |x)− h(Y4)

)
Khx(x−X4)

Khx(x−X3)Khx(x−X5)

(
Khy((F hY |X)−1(τ |x)− h(Y3))−

ph((F hY |X)−1(τ |x), x)

fX(x)

)
(
Khy((F hY |X)−1(τ |x)− h(Y5))−

ph((F hY |X)−1(τ |x), x)

fX(x)

)
dxµ(dτ)

]
82



2.8. Proofs

= E

[ ∫ ∫
κ(x, τ)ψ(Y2, X2, Y1)ψ(Y2, X2, Y4)I{Y1∈[c1−δ,c2+δ]}I{Y4∈[c1−δ,c2+δ]}

Khy

(
(F hY |X)−1(τ |x)− h(Y1)

)
Khx(x−X1)Khy

(
(F hY |X)−1(τ |x)− h(Y4)

)
Khx(x−X4)

E

[
Khx(x−X3)

(
Khy((F hY |X)−1(τ |x)− h(Y3))−

ph((F hY |X)−1(τ |x), x)

fX(x)

)]2

dxµ(dτ)

]
As in (2.48) the inner expectation can be bounded via

E

[
Khx(x−X3)

(
Khy((F hY |X)−1(τ |x)− h(Y3))−

ph((F hY |X)−1(τ |x), x)

fX(x)

)]

=

∫
K(w)

(∫
K(u)ph((F hY |X)−1(τ |x)− hyu, x− hxw) dz du

− ph((F hY |X)−1(τ |x), x)
fX(x− hxw)

fX(x)

)
dw

= op

(
1√
n

)
(2.77)

uniformly in x ∈ supp(v) and τ ∈ supp(µ). By the same reasoning as before this results in

E
[
ZV1,2,3Z

V
4,2,5

]
= o
(

1
n

)
and thus

E[V 2] =
hdXx
n4

n∑
i=1

n∑
k=1
k 6=i

n∑
l=1
l 6=i,k

n∑
s=1
s 6=i,k,l

n∑
u=1

u6=i,k,l,s

E
[
ZVi,k,lZ

V
s,k,u

]
= o(1).

Finally, this leads to V = op(1), that is

nh
dX
2
x

∫ ∫
v(x)

(
(F̂ ĥY |X)−1(τ |x)− gβ0(x)− chβ0,τ

)2
dxµ(dτ) = T̃ hn + op(1).

Treatment of β̂h, β̂ĥ, β̄h and β̄ĥ

For treating β̂h and β̂ĥ note that∫ ∫
v(x)

(
(F̂ ĥY |X)−1(τ |x)− gβ(x)− ĉĥβ,τ

)2
dxµ(dτ)

=

∫ ∫
v(x)

(
(F̂ hY |X)−1(τ |x)− gβ(x)− ĉhβ,τ

)2
dxµ(dτ) + op(1)

=

∫ ∫
v(x)

(
(F hY |X)−1(τ |x)− gβ(x)− chβ,τ

)2
dxµ(dτ) + op(1)

uniformly in β ∈ B with

sup
β∈B,||β−β0||>δ

∫ ∫
v(x)

(
(F hY |X)−1(τ |x)− gβ(x)− chβ,τ

)2
dxµ(dτ) > 0

for all δ > 0, which leads because of (A7) to ||β̂h−β0|| = op(1) and ||β̂ĥ−β0|| = op(1). Due

to (2.72), one has T hn −b = Op(1) and a Taylor expansion of β 7→
(
(F̂ ĥY |X)−1−gβ(x)−chβ,τ

)2
(compare (2.59)) yields

T hn − b
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(2.72)
= nh

dX
2
x

∫ ∫
v(x)

(
(F̂ hY |X)−1(τ |x)− gβ0(x)− chβ0,τ

)2
dxµ(dτ)− b+Op(1)

= nh
dX
2
x

∫ ∫
v(x)

(
(F̂ hY |X)−1(τ |x)− g

β̂ĥ
(x)− ch

β̂ĥ,τ

)2
dxµ(dτ)− b

− 2nh
dX
2
x

∫ ∫
v(x)

(
(F̂ hY |X)−1(τ |x)− g

β̂ĥ
(x)− ch

β̂ĥ,τ

)
Dβ

(
g
β̂ĥ

(x) + ch
β̂ĥ,τ

)
dxµ(dτ)(β0 − β̂ĥ) + (β0 − β̂ĥ)tnh

dX
2
x Ω(β0 − β̂ĥ) + op

(
nh

dX
2
x ||β0 − β̂ĥ||2

)
+Op(1)

≥ T hn − b+ nh
dX
2
x (β0 − β̂ĥ)tΩ(β0 − β̂ĥ)− 2nh

dX
2
x

∫ ∫
v(x)

(
(F̂ hY |X)−1(τ |x)− g

β̂ĥ
(x)− ĉĥ

β̂ĥ,τ

)
Dβ

(
g
β̂ĥ

(x) + ĉĥ
β̂ĥ,τ

)
dxµ(dτ)(β0 − β̂ĥ)

+Op
(√

nhdXx ||β0 − β̂ĥ||
)

+ op
(
nh

dX
2
x ||β0 − β̂ĥ||2

)
+Op(1)

= (β0 − β̂ĥ)tnh
dX
2
x Ω(β0 − β̂ĥ) +Op

(√
nhdXx ||β0 − β̂ĥ||

)
+ op

(
nh

dX
2
x ||β0 − β̂ĥ||2

)
+Op(1).

(2.78)

Here, the second to last inequality, where ĉh
β̂ĥ,τ

was replaced with cĥ
β̂ĥ,τ

, follows from (com-

pare (2.58) and (2.74))

nh
dX
2
x

∫ ∫
v(x)

(
(F̂ hY |X)−1(τ |x)− g

β̂ĥ
(x)− ch

β̂ĥ,τ

)
Dβ

(
g
β̂ĥ

(x) + ch
β̂ĥ,τ

)
dxµ(dτ)

= nh
dX
2
x

∫ ∫
v(x)

(
(F̂ hY |X)−1(τ |x)− g

β̂ĥ
(x)− ĉĥ

β̂ĥ,τ

)
Dβ

(
g
β̂ĥ

(x) + ĉĥ
β̂ĥ,τ

)
dxµ(dτ)

+Op
(√

nhdXx
)

= nh
dX
2
x

∫ ∫
v(x)

(
(F̂ hY |X)−1(τ |x)− (F̂ ĥY |X)−1(τ |x) + (F̂ ĥY |X)−1(τ |x)− g

β̂ĥ
(x)− ĉĥ

β̂ĥ,τ

)
Dβ

(
g
β̂ĥ

(x) + ĉĥ
β̂ĥ,τ

)
dxµ(dτ) +Op

(√
nhdXx

)
(2.71)

= nh
dX
2
x

∫ ∫
v(x)

(
(F̂ ĥY |X)−1(τ |x)− g

β̂ĥ
(x)− ĉĥ

β̂ĥ,τ

)(
Dβgβ̂ĥ(x) + ĉĥ

β̂ĥ,τ

)
dxµ(dτ)

+Op
(√

nhdXx
)
.

The last equality in (2.78) follows from the definition of β̂ĥ as the minimizer of T hn , which

implies

nh
dX
2
x

∫ ∫
v(x)

(
(F̂ ĥY |X)−1(τ |x)− g

β̂ĥ
(x)− ĉĥ

β̂ĥ,τ

)
Dβ

(
g
β̂ĥ

(x) + ĉĥ
β̂ĥ,τ

)
dxµ(dτ) = 0.

Since Ω is positive definite, equation (2.78) leads to ||β̂ĥ−β0|| = Op
(
n−

1
2h
− dX

4
x

)
. The same

assertion for β̂h was already shown in the proof of Theorem 2.3.4.

As the minimizer of Gĥ(β), β̄ĥ it is determined by

0 = DβG
ĥ(β)
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= −2nh
dX
2
x

∫ ∫
v(x)

(
(F̂ ĥY |X)−1(τ |x)− gβ0(x)− chβ0,τ

)
Dβ(gβ0(x) + chβ0,τ ) dxµ(dτ)

+ 2nh
dX
2
x (β − β0)tnh

dX
2
x Ω

and consequently can be expressed as

β̄ĥ = β0 + Ω−1

∫ ∫
v(x)

(
(F̂ ĥY |X)−1(τ |x)− (F hY |X)−1(τ |x)

)
Dβ(gβ0(x) + chβ0,τ )t dxµ(dτ)

= β0 + Ω−1

∫ ∫
v(x)

(
(F̂ hY |X)−1(τ |x)− (F hY |X)−1(τ |x)

)
Dβ(gβ0(x) + chβ0,τ )t dxµ(dτ)

+Op
(

1√
n

)
(2.79)

= β0 − Ω−1 1

n

n∑
i=1

∫ ∫
v(x)

fhY |X((F hY |X)−1(τ |x)|x)fX(x)
Dβ(gβ0(x) + chβ0,τ )tKhx(x−Xi)

(
Khy((F hY |X)−1(τ |x)− h(Yi))−

ph((F hY |X)−1(τ |x), x)

fX(x)

)
dxµ(dτ) +Op

(
1√
n

)

= β0 −
1

n

n∑
i=1

∫ ∫
κ̃(x)Khx(x−Xi)

(
Khy((F hY |X)−1(τ |x)− h(Yi))

−
ph((F hY |X)−1(τ |x), x)

fX(x)

)
dxµ(dτ) +Op

(
1√
n

)
,

where

κ̃(x) = Ω−1 v(x)

fhY |X((F hY |X)−1(τ |x)|x)fX(x)
Dβ(gβ0(x) + chβ0,τ )t

is a (multidimensional) function with compact support. To show ||β̄ĥ − β0|| = Op
(

1√
n

)
it

is sufficient to prove

E

[(
1

n

n∑
i=1

∫ ∫
κ̃k(x)Khx(x−Xi)

(
Khy((F hY |X)−1(τ |x)− h(Yi))−

ph((F hY |X)−1(τ |x), x)

fX(x)

)
dxµ(dτ)

)2]
= O

(
1

n

)
.

for each component κ̃k of κ̃, k = 1, ..., dB. This in turn leads to analysing

E

[(∫ ∫
κ̃k(x)Khx(x−X1)

(
Khy((F hY |X)−1(τ |x)− h(Y1))−

ph((F hY |X)−1(τ |x), x)

fX(x)

)
dxµ(dτ)

)2]
and

E

[ ∫ ∫
κ̃k(x)Khx(x−X1)

(
Khy((F hY |X)−1(τ |x)− h(Y1))−

ph((F hY |X)−1(τ |x), x)

fX(x)

)
dxµ(dτ)

]2

.
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For some sufficiently large C > 0 the first expectation can be bounded by

E

[(∫ ∫
κ̃k(x)Khx(x−X1)

(
Khy((F hY |X)−1(τ |x)− h(Y1))

−
ph((F hY |X)−1(τ |x), x)

fX(x)

)
dxµ(dτ)

)2]

≤ CE
[(∫

|Khx(x−X1)| dx
)2]

≤ C
(∫

|K(x)| dx
)2

,

while the second expectation can be treated as in (2.48). Finally, ||β̄ĥ−β0|| = Op
(

1√
n

)
has

been proven. Additionally, due to (2.79) it was shown that

||β̄h − β0||

=

∣∣∣∣∣∣∣∣Ω−1

∫ ∫
v(x)

(
(F̂ hY |X)−1(τ |x)− (F hY |X)−1(τ |x)

)
Dβ

(
gβ0(x) + chβ0,τ

)t
dxµ(dτ)

∣∣∣∣∣∣∣∣
= Op

(
1√
n

)
.

�

Putting Things together

Let β = (βn)n∈N be a sequence in B with β − β0 = Op
(
n−

1
2h
− dX

4
x

)
. Then, as in (2.59) a

Taylor expansion of β 7→
(
(F̂ ĥY |X)−1 − gβ(x) − cβ,τ

)2
and the binomial formula yield for

some β∗ between β̂ and β0

nh
dX
2
x

∫ ∫
v(x)

(
(F̂ ĥY |X)−1(τ |x)− gβ(x)− ĉĥβ,τ

)2
dxµ(dτ)

= nh
dX
2
x

∫ ∫
v(x)

(
(F̂ ĥY |X)−1(τ |x)− gβ0(x)− ĉĥβ0,τ

)2
dxµ(dτ)

− 2nh
dX
2
x

∫ ∫
v(x)

(
(F̂ ĥY |X)−1(τ |x)− gβ0(x)− ĉĥβ0,τ

)
Dβ

(
gβ0(x) + ĉĥβ0,τ

)
dxµ(dτ)(β − β0) + nh

dX
2
x (β − β0)tΩ(β − β0) + op(1)

= nh
dX
2
x

∫ ∫
v(x)

(
(F̂ ĥY |X)−1(τ |x)− gβ0(x)− chβ0,τ

)2
dxµ(dτ)

+ nh
dX
2
x

∫ ∫
v(x)(chβ0,τ − ĉ

ĥ
β0,τ )2 dxµ(dτ)

+ 2nh
dX
2
x

∫ ∫
v(x)

(
(F̂ ĥY |X)−1(τ |x)− gβ0(x)− chβ0,τ

)
(chβ0,τ − ĉ

ĥ
β0,τ ) dxµ(dτ)

− 2nh
dX
2
x

∫ ∫
v(x)

(
(F̂ ĥY |X)−1(τ |x)− gβ0(x)− chβ0,τ

)
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Dβ

(
gβ0(x) + chβ0,τ

)
dxµ(dτ)(β − β0) + nh

dX
2
x (β − β0)tΩ(β − β0) + op(1)

= T̃ hn +Gĥ(β) + op(1) (2.80)

and

nh
dX
2
x

∫ ∫
v(x)

(
(F̂ hY |X)−1(τ |x)− gβ(x)− chβ,τ

)2
dxµ(dτ) = T̃ hn +Gh(β) + op(1).

Note that in contrast to the proof of Theorem 2.3.4, equation (2.74) leads to asymptotic

negligibility of the terms containing chβ0,τ
− ĉĥβ0,τ

= Op
(
n−

1
2

)
. Due to (2.75) and (2.76), one

has

T ĥn = T̃ hn +Gĥ(β̂ĥ) + op(1)

≥ T̃ hn +Gĥ(β̄ĥ) + op(1)

= nh
dX
2
x

∫ ∫
v(x)

(
(F̂ ĥY |X)−1(τ |x)− g

β̄ĥ
(x)− ĉĥ

β̄ĥ,τ

)2
dxµ(dτ) + op(1)

≥ T ĥn + op(1)

so that it suffices to consider the minimum of β 7→ T̃ hn +Gĥ(β) in (2.80). Therefore, T ĥn is

asymptotically equivalent to

T̃ hn +Gĥ(β̄ĥ)

= T̃ hn − 2nh
dX
2
x

∫ ∫
v(x)

(
(F̂ ĥY |X)−1(τ |x)− gβ0(x)− chβ0,τ

)
Dβ(gβ0(x) + chβ0,τ ) dxµ(dτ)(β̄ĥ − β0) + nh

dX
2
x (β̄ĥ − β0)tΩ(β̄ĥ − β0)

= T̃ hn − nh
dX
2
x (β̄ĥ − β0)tΩ(β̄ĥ − β0)

(2.76)
= T̃ hn +Op

(
h
dX
2
x

)
.

Recall that H0 was assumed, that is δn = δ1,n = δ2,n = δ3,n = 0 with δ1,n, δ2,n, δ3,n from

Remark 2.3.5. Hence, a similar reasoning to that from above for T hn (with β̄h instead of

β̄ĥ) leads to T hn = T̃ hn + op(1), so that

T ĥn = T̃ hn + op(1) = T hn + op(1).

�

2.8.7 Proof of Theorem 2.4.3

It will be started with the first assertion. F̂ ĥY |X(y|x) was defined as

F̂ ĥY |X(y|x) =
p̂ĥ(y, x)

f̂X(x)
with p̂ĥ(y, x) =

1

n

n∑
i=1

Khy(y − ĥ(Yi))Khx(x−Xi).

87



2. Testing for a Parametric Regression Function in Nonparametric Transformation
Models - A Quantile Approach

Let K = [k1, k2] be compact and δ > 0. One has

sup
y∈[k1−δ,k2+δ]

|ĥ(y)− h(y)| = op(1).

Let δn ↘ 0 be the monotonic sequence from Lemma 1.5.1 with

sup
y∈[k1−δ,k2+δ]

|ĥ(y)− h(y)| = op(δn).

Then, the results of Hansen (2008) can be adjusted as later in (4.6.10) to obtain

sup
x∈supp(v),y∈K

|p̂ĥ(y, x)− p̂h(y, x)|

= sup
x∈supp(v),y∈K

∣∣∣∣ 1n
n∑
i=1

Khy(y − h(Yi) + h(Yi)− ĥ(Yi))−Khy(y − h(Yi))Khx(x−Xi)

∣∣∣∣
≤ sup

x∈supp(v),y∈K

1

n

n∑
i=1

∣∣Khy(y − h(Yi) + h(Yi)− ĥ(Yi))−Khy(y − h(Yi))
∣∣ |Khx(x−Xi)|

≤ sup
x∈supp(v),y∈K

1

n

n∑
i=1

∫ y+δn−h(Yi)

hy

y−δn−h(Yi)

hy

|K(u)| du |Khx(x−Xi)|+ op(1)

= sup
x∈supp(v),y∈K

E

[∫ y+δn−h(Y1)
hy

y−δn−h(Y1)
hy

|K(u)| du |Khx(x−X1)|

]
+ op(1)

= sup
x∈supp(v),y∈K

∫ ∫ ∫ y+δn−gβ0
(w)−c0−e

hy

y−δn−gβ0
(w)−c0−e

hy

|K(u)| du |Khx(x− w)|fX(w)fε(e) de dw + op(1)

= sup
x∈supp(v),y∈K

∫ ∫ ∫ y+δn−gβ0
(w)−c0−hyu

y−δn−gβ0
(w)−c0−hyu

fε(e) de |K(u)| du |Khx(x− w)|fX(w) dw

+ op(1)

= sup
x∈supp(v),y∈K

∫ ∫ (
Fε(y + δn − gβ0(x− hxw)− c0 − hyu)

− Fε(y − δn − gβ0(x− hxw)− c0 − hyu)
)
|K(u)| du |K(w)|fX(x− hxw) dw + op(1)

= op(1)

and thus

sup
x∈supp(v),y∈K

∣∣F̂ ĥY |X(y|x)− F̂ hY |X(y|x)
∣∣ = op(1).

The rest of the proof of the first assertion was already given in the proof of Theorem 2.3.6.

With the reasoning from above the proof of the second part directly follows from Theorem

2.4.1 and Slutsky’s theorem. �

2.8.8 Proof of Theorem 2.5.1

Since the support of v is compact, the results of Hansen (2008) yield

f̂X(x)− fX(x) = Op

(√
log(n)

nhdXx

)
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uniformly in x ∈ supp(v). Due to fX(x) > 0 for all x ∈ supp(v), this leads to

1

n

n∑
i=1

v(Xi)

f̂X(Xi)2
=

1

n

n∑
i=1

v(Xi)

fX(Xi)2
+Op

(√
log(n)

nhdXx

)

= E

[
v(X1)

fX(X1)2

]
+Op

(√
log(n)

nhdXx

)

=

∫
v(w)

fX(w)
dw + o

(
h
dX
2
x

)
and analogously to (2.33) and 1

n

∑n
i=1 v(Xi) =

∫
v(w)fX(w) dw + o

(
h
dX
2
x

)
. The numerator

in (2.35) can be treated similarly to the proof of Lemma 2.8.1. To this end, recall

(F hY |X)−1
(1

2
|Xi

)
− h(Yi) = F−1

ε

(1

2

)
− εi.

The results of Hansen (2008) imply

1

n

n∑
i=1

v(Xi)Khε

(
(F hY |X)−1

(1

2
|Xi

)
− h(Yi)

)
=

1

n

n∑
i=1

v(Xi)Khε

(
F−1
ε

(1

2

)
− εi

)

= fε

(
F−1
ε

(1

2

))∫
v(w)fX(w) dw + op

(
h
dX
2
x

)
,

that is, is suffices to show

1

n

n∑
i=1

v(Xi)Khε

(
(F̂ ĥY |X)−1

(1

2
|Xi

)
− ĥ(Yi)

)

=
1

n

n∑
i=1

v(Xi)Khε

(
(F hY |X)−1

(1

2
|Xi

)
− h(Yi)

)
+ op

(
h
dX
2
x

)
.

Since the set
{

(F̂ hY |X)−1
(

1
2 |x
)

: x ∈ supp(v)
}

is bounded, there exists a compact set K,

such that

P

(
1

n

n∑
i=1

v(Xi)Khε

(
(F̂ ĥY |X)−1

(1

2
|Xi

)
− ĥ(Yi)

)

=
1

n

n∑
i=1

v(Xi)I{Yi∈K}Khε

(
(F̂ ĥY |X)−1

(1

2
|Xi

)
− ĥ(Yi)

))
→ 1

and

P

(
1

n

n∑
i=1

v(Xi)Khε

(
(F hY |X)−1

(1

2
|Xi

)
− h(Yi)

)

=
1

n

n∑
i=1

v(Xi)I{Yi∈K}Khε

(
(F hY |X)−1

(1

2
|Xi

)
− h(Yi)

))
→ 1.

Hence, one has for some appropriate C > 0, y∗i ∈ R∣∣∣∣ 1n
n∑
i=1

v(Xi)Khε

(
(F̂ ĥY |X)−1

(1

2
|Xi

)
− ĥ(Yi)

)
− 1

n

n∑
i=1

v(Xi)Khε

(
(FhY |X)−1

(1

2
|Xi

)
− h(Yi)

)∣∣∣∣
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=

∣∣∣∣ 1n
n∑
i=1

v(Xi)I{Yi∈K}

(
Khε

(
(F̂ ĥY |X)−1

(1

2
|Xi

)
− ĥ(Yi)

)
−Khε

(
(FhY |X)−1

(1

2
|Xi

)
− h(Yi)

))∣∣∣∣
+ op

(
h
dX
2
x

)
≤
∣∣∣∣ 1n

n∑
i=1

r−1∑
j=1

v(Xi)I{Yi∈K}

j!

∂j

∂yj
Khε(y)

∣∣∣
y=(Fh

Y |X)−1( 1
2 |Xi)−h(Yi)(

(F̂ ĥY |X)−1
(1

2
|Xi

)
− (F̂hY |X)−1

(1

2
|Xi

)
+ h(Yi)− ĥ(Yi)

)j∣∣∣∣
+

∣∣∣∣ 1n
n∑
i=1

v(Xi)I{Yi∈K}

r!

∂r

∂yr
Khε(y)

∣∣∣
y=y∗i(

(F̂ ĥY |X)−1
(1

2
|Xi

)
− (FhY |X)−1

(1

2
|Xi

)
+ h(Yi)− ĥ(Yi)

)r∣∣∣∣+ op
(
h
dX
2
x

)
≤

r−1∑
j=1

C

hjε

(∣∣∣∣ sup
x∈supp(v)

∣∣∣∣(F̂ ĥY |X)−1
(1

2
|x
)
− (FhY |X)−1

(1

2
|x
)∣∣∣∣j + sup

y∈K
|ĥ(y)− h(y)|j

)

1

nhjε

n∑
i=1

v(Xi)

∣∣∣∣ ∂j∂yjK(y)
∣∣∣
y=

F
−1
ε ( 1

2
)−εi

hε

∣∣∣∣
+

C

hr+1
ε

(
sup

x∈supp(v)

∣∣∣∣(F̂ ĥY |X)−1
(1

2
|x
)
− (FhY |X)−1

(1

2
|x
)∣∣∣∣r + sup

y∈K
|ĥ(y)− h(y)|r

)
+ op

(
h
dX
2
x

)
= Op

((
nh4

ε

)− 1
4 +

(
nrh4(r+1)

ε

)− 1
4

)
= op

(
h
dX
2
x

)
.

�
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3

Identification in a Fully

Nonparametric Transformation

Model with Heteroscedasticity

The underlying question of this Chapter can be formulated quite easily: Given some real

valued random variable Y and some RdX -valued random variable X fulfilling the heterosce-

dastic transformation model

h(Y ) = g(X) + σ(X)ε (3.1)

with some error term ε fulfilling ε ⊥ X,E[ε] = 0 and Var(ε) = 1, are the model components

h : R→ R, g : RdX → R, σ : RdX → (0,∞) and the error distribution uniquely determined if

the joint distribution of (Y,X) is known? This uniqueness is called identification of a model.

Already Box and Cox (1964), Bickel and Doksum (1981) and Zellner and Revankar (1969)

introduced some parametric classes of transformation models. Horowitz (1996) proved for

a linear regression function g and homoscedastic errors that the model is identified, when

h(y0) = 0 is assumed for some y0 ∈ R and the regression parameter is standardized so that

the first component, which is different from zero, is equal to one. Later, the ideas of Horowitz

(1996) were extended by Ekeland et al. (2004) to general smooth regression functions g. The

arguably most general identification results so far were provided by Chiappori et al. (2015)

and Vanhems and Van Keilegom (2019), who considered general regression functions and

homoscedastic errors as well, but allowed endogenous regressors. Linton et al. (2008) used

similar ideas to obtain identifiability of a model with parametric transformation functions

as a special case. Results allowing heteroscedasticity are rare. Zhou et al. (2009) showed

identifiability in some kind of single-index model with a linear regression function g and

a known variance function σ. Neumeyer et al. (2016) assumed identifiability implicitly by

their assumption (a7).

In contrast to the approaches mentioned above, it is tried here to avoid any parametric

assumption on h, g or σ, which to the author’s knowledge has not been done in the literature

so far. Note that the validity of the model is unaffected by linear transformations. This

means that for arbitrary constants a > 0, b ∈ R equation (3.1) still holds when replacing h,
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g and σ by

h̃(y) = ah(y) + b,

g̃(x) = ag(x) + b,

σ̃(x) = aσ(x).

Of course, one could have chosen an arbitrary a ∈ R as well, but as in Section 1.4 the

transformation function h will be restricted to be strictly increasing. Nevertheless, at least

two conditions for fixing a and b are needed. Referring to the fact that these conditions

will determine the linear transformation they are sometimes called location and scale con-

straints.

This chapter is organized as follows. First, some differences to the homoscedastic case (that

is, σ ∈ R is constant) are pointed out, before the main identification result for heterosce-

dastic transformation models as in (3.1) is presented. The chapter is completed by a brief

discussion in 3.3. The proof of the main result is given in 3.5 and some additional remarks

are postponed to 3.6.

3.1 Differences to the Homoscedastic Case

Many of the homoscedastic identification approaches mentioned above are based on the

same idea (see Ekeland et al. (2004), Horowitz (2009) and recently Chiappori et al. (2015)).

Using the example of Chiappori et al. (2015) their method can be summarized in the

following way (see Section 1.4 for details): Let FY |X be the conditional distribution function

of Y conditioned on X. Take the derivatives of FY |X with respect to y and x, divide the

first by the latter one and obtain the transformation function by integrating this quotient.

After applying some identification constraints the transformation function is identified as

it only depends on the joint distribution of (Y,X).

In heteroscedastic models the reasoning has to be changed since the conditional distribution

function and its partial derivatives can be written as

FY |X(y|x) = P (Y ≤ y|X = x)

= P

(
ε ≤ h(Y )− g(X)

σ(X)

∣∣∣X = x

)

= Fε

(
h(y)− g(x)

σ(x)

)
,

∂FY |X(y|x)

∂y
= fε

(
h(y)− g(x)

σ(x)

)
h′(y)

σ(x)
> 0 (3.2)

and
∂FY |X(y|x)

∂xi
= −fε

(
h(y)− g(x)

σ(x)

)
σ(x)∂g(x)

∂xi
+ (h(y)− g(x))∂σ(x)

∂xi

σ(x)2
.

Here, h′(y) is an abbreviation for the derivative ∂
∂yh(y) and Fε, fε denote the distribution

function and density of ε. Hence, the transformation function can not be obtained by
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3.2. The Transformation Function as a Solution of a Differential Equation

choosing an appropriate i = 1, ..., dX and simply integrating the quotient

∂FY |X(y|x)

∂y

∂FY |X(y|x)

∂xi

= − h′(y)σ(x)

σ(x)∂g(x)
∂xi

+ (h(y)− g(x))∂σ(x)
∂xi

, (3.3)

since the denominator now also depends on the transformation function. Although obvious,

note that for a constant σ the same quotient as in the homoscedastic case of Section 1.4 is

obtained.

Remark that equation (3.3) only holds if

fε

(
h(y)− g(x)

σ(x)

)
> 0.

Therefore, fε(y) > 0 is assumed for all y ∈ R. This condition can be replaced by considering

appropriate subsets Y of the support of Y such that one of the sets

ÃY,i =

{
x :

∂FY |X(y|x)

∂xi
> 0 for all y ∈ Y

}
, i = 1, ..., dX , (3.4)

is not empty. But since the consequent results would be restricted on Y as well this will not

be examined further. Chiappori et al. (2015) circumvent this problem by their assumption

A6, but its validity is not obvious and in general it can not be fulfilled for bounded support

of fε and Y = R. See Section 3.6.1 for a short discussion on bounded support of fε.

3.2 The Transformation Function as a Solution of a Diffe-

rential Equation

From now on, consider without loss of generality the case i = 1 and define

λ(y|x) :=

∂FY |X(y|x)

∂x1

∂FY |X(y|x)

∂y

= −
σ(x)∂g(x)

∂x1
+ (h(y)− g(x))∂σ(x)

∂x1

h′(y)σ(x)
(3.5)

and

λ(y) :=

∫
v(x)λ(y|x) dx = −

∫
v(x)

σ(x)∂g(x)
∂x1

+ (h(y)− g(x))∂σ(x)
∂x1

h′(y)σ(x)
dx = −A+Bh(y)

h′(y)
,

(3.6)

where v is an appropriate weighting function and A and B are defined as

A :=

∫
v(x)

(
σ(x)∂g(x)

∂x1
− g(x)∂σ(x)

∂x1

σ(x)

)
dx and B :=

∫
v(x)

∂σ(x)
∂x1

σ(x)
dx. (3.7)

Note that λ is uniquely determined by the joint distribution of (Y,X). From an identifica-

tion point of view it is not necessary to consider a weighted version of λ, but since this will

be needed later in Section 4.2 it is already introduced here. For all functions h, g, σ, which

fulfil model (3.1), consider a weight function v such that B 6= 0. Note that if B = 0 for all

weight functions v, this implies homoscedasticity of the error and identifiability of the mo-

del can be shown as in Chiappori et al. (2015). Some further observations are summarized

in the following remark.
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Remark 3.2.1 Assume h′(y) > 0 for all y ∈ R. Then, it holds that:

(i) λ is well defined on R.

(ii) λ has at most one root, which is denoted by y0. Equation (3.6) leads to h(y0) = −A
B .

(iii) The sign of B is equal to the sign of λ at (−∞, y0). Therefore, assume the sign of B

to be known and assume w.l.o.g B to be positive.

(iv) In Section 4.1.1 estimators for λ and y0 will be derived. These can be used to test

whether or not there exists a root y0 of λ.

(v) A can be written as

A =

∫
v(x)σ(x)

∂

∂x1

(
g(x)

σ(x)

)
dx.

(vi) Possibly, one has B = 0. As mentioned above, one can proceed analogously to Chi-

appori et al. (2015) in this case. It might be sensible to first apply a test for the null

hypothesis H0 : B = 0 (see Remark 4.1.2).

Assume existence of the root y0 defined as in Remark 3.2.1 above and assume B > 0. See

Section 3.6.1 for the case, in which there is no such root. Consider a compact set [za, zb] ⊆ R
with y0 < za. The condition y0 < za can be replaced by zb < y0 as well. Let h′(y) > 0

for all y ∈ R. Then, validity of equation (3.6) on (y0,∞) is equivalent to the differential

equation

h′(y) = −A+Bh(y)

λ(y)
(3.8)

for all y ∈ (y0,∞). Now, an appropriate initial condition

h(y1) = λ1 (3.9)

for some y1 > y0 and some λ1 > −A
B (see Remark 3.2.1) together with Theorem 3.6.6 in

Section 3.6 can be applied to obtain uniqueness of any existing solution h on some compact

interval [za, zb] ⊆ (y0,∞). Basically, this is one part of the proof of Lemma 3.2.3 below.

There, the initial condition can be seen as the previous scale constraint.

This result will yield that for fixed A and B the transformation function h is identified on

every compact interval [za, zb] such that y0 < za by the differential equation (3.8) combined

with an appropriate initial value. Thus, to prove uniqueness the remaining task consists

in extending any solution to the whole set of real numbers on the one hand and to show

that A and B as well as this extension are unique on the other hand. When doing so, the

assumptions (A4) and (A7) from Section 3.4 will play a key role.

An analytic Expression of the Transformation Function

Again, let [za, zb] ⊆ (y0,∞) be compact. Note that A + Bh(y) > 0 for all y > y0 by

definition of y0 and B > 0. When having a closer look on the definition of λ, one may

notice that equation (3.6) can be written as

1

λ(y)
= − h′(y)

A+Bh(y)
= − 1

B

(
∂ log(|A+Bh(y)|)

∂y

)
for all y 6= y0. (3.10)
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3.2. The Transformation Function as a Solution of a Differential Equation

As a consequence, condition (3.9) leads to

exp

(
−B

∫ y

y1

1

λ(u)
du

)
=
A+Bh(y)

A+Bλ1
for all y ∈ [za, zb]

and

h(y) =

(A+Bλ1) exp

(
−B

∫ y
y1

1
λ(u) du

)
−A

B
for all y ∈ [za, zb] (3.11)

for an arbitrary, but fixed λ1 > −A
B . So far, λ1 has not been fixed and no specific location

constraint has been considered yet. Later, it will be shown that B is already determined by

the independence of ε and X, so that apart from the initial condition (3.9), any (location)

constraint which fixes A would be sufficient. This is consistent with the beginning of this

chapter where it was mentioned that there are at least two conditions necessary to identify

the transformation function since the model (3.1) is invariant under (monotonically growing)

linear transformations. In the following, it will be proven that as in the homoscedastic case

there will be exactly two conditions needed to identify the model.

An elegant way to choose the location constraint is to require

h(y0) = 0, (3.12)

since this in turn results due to Remark 3.2.1 in A = 0. An obvious choice for fixing λ1

may consist in λ1 = 1, so that

h(y) = exp

(
−B

∫ y

y1

1

λ(u)
du

)
for all y ∈ [za, zb]. (3.13)

Although this choice seems to be quite convenient, in principle any condition that fixes A

is conceivable.

Example 3.2.2 Another way to determine the location and scale constraints is requiring

h(y1) = 0 and h′(y1) = 1. (3.14)

Due to equation (3.6), this leads to A = −λ(y1). One possibility to solve the corresponding

differential equation consists in writing

H(y) :=

∫ y

y1

1

λ(u)
du > −∞ for all y > y0

and rewriting (3.6) as

h′(y) exp(BH(y)) + h(y)
B

λ(y)
exp(BH(y))︸ ︷︷ ︸

= ∂
∂y
h(y) exp(BH(y))

+
A

λ(y)
exp(BH(y)) = 0.

Integration results in

h(y) exp(BH(y))− h(y1) exp(BH(y1))︸ ︷︷ ︸
=0

= −A
∫ y

y1

1

λ(y)
exp(BH(u)) du
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and finally

h(y) = −A exp(−BH(y))

∫ H(y)

H(y1)
exp(Bu) du

= −A
B

exp(−BH(y))(exp(BH(y))− exp(BH(y1))︸ ︷︷ ︸
=1

)

=
A

B
(exp(−BH(y))− 1)

=
λ(y1)(1− exp(−BH(y)))

B
.

For uniqueness reasons this approach should lead to the same solution as the previous one

and indeed (3.11) leads to

h(y) =
(A+Bh(y1)) exp

(
−B

∫ y
y1

1
λ(u) du

)
−A

B

=
A

B
(exp(−BH(y))− 1).

These preliminary thoughts are formalized in the following lemma.

Lemma 3.2.3 Assume (A1)–(A6) from Section 3.4. Further, require condition (3.9) and

let y2 < y0 < y1 as well as B 6= 0.

1. For each A ∈ R such that λ1 > −A
B , the unique solution to (3.8) on (y0,∞) is given

by (3.11). It can be extended to a global unique solution to (3.8) by

h(y) =



(A+Bλ1) exp

(
−B

∫ y
y1

1
λ(u)

du

)
−A

B y > y0

−A
B y = y0

(A+Bλ2) exp

(
−B

∫ y
y2

1
λ(u)

du

)
−A

B y < y0

, (3.15)

where λ2 is uniquely determined by requiring lim
y↘y0

h′(y) = lim
y↗y0

h′(y) = h′(y0) as

λ2 = −
lim
t→0

(A+Bλ1) exp

(
B

(∫ y0−t
y2

1
λ(u) du−

∫ y0+t
y1

1
λ(u) du

))
+A

B
. (3.16)

2. If additionally (3.12) and λ1 = 1 hold, one has

h(y) =


exp

(
−B

∫ y
y1

1
λ(u) du

)
y > y0

0 y = y0

λ2 exp
(
−B

∫ y
y2

1
λ(u) du

)
y < y0

, (3.17)

where λ2 is uniquely determined by requiring lim
y↘y0

h′(y) = lim
y↗y0

h′(y) = h′(y0) as

λ2 = −lim
t→0

exp

(
B

(∫ y0−t

y2

1

λ(u)
du−

∫ y0+t

y1

1

λ(u)
du

))
. (3.18)
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3.2. The Transformation Function as a Solution of a Differential Equation

The proof can be found in Section 3.5.

Given any fixed B, the uniqueness of A has not been treated so far apart from the fact that

(3.12) or (3.14) imply A = 0 or A = −λ(y1), respectively. Nevertheless, this can be used

to argue that any conditions (probably with identification constants different from zero or

one) of type (3.9) and (3.12) or type (3.14) determine A as well, since all solutions can

be linearly transformed to the already identified case. Therefore, only the identification

constraints (3.9) and (3.12) for λ1 = 1 are considered from now on so that A = 0.

Up to now, uniqueness of a solution for any fixed B was shown. In the last part of this

section, the uniqueness of B is discussed in order to derive an identification result from the

previous arguments. Assume the existence of two continuously differentiable solutions h, h̃

to the differential equation (3.8) as in (3.15) with corresponding parameters (B, λ2) and

(B̃, λ̃2) such that B, B̃ > 0. Assume B 6= B̃ and without loss of generality assume B̃ > B.

Then, equation (3.15) leads to

h̃(y) =
(A+ B̃λ1)

(Bh(y)+A
A+Bλ1

) B̃
B −A

B̃
for all y > y0

and consequently

h̃′(y) =
(A+ B̃λ1)B

(A+Bλ1)B̃

(
Bh(y) +A

A+Bλ1

) B̃
B
−1

h′(y)

for all y > y0. Continuous differentiability of h and h′(y0) ∈ (0,∞) imply h̃′(y0) = 0, which

is a contradiction to assumption (A4) from Section 3.4. Hence, the assumption B 6= B̃

has to be rejected and one has h = h̃. Finally, the main identification result of this section

directly follows from Lemma 3.2.3.

Theorem 3.2.4 Assume (A1)–(A6) from Section 3.4 as well as conditions (3.9) for λ1 =

1 and (3.12). Further, let y2 < y0 < y1 as well as B 6= 0. Then, the unique solution of the

model equation (3.1) is given by

h(y) =


exp

(
−B

∫ y
y1

1
λ(u) du

)
y > y0

0 y = y0

λ2 exp
(
−B

∫ y
y2

1
λ(u) du

)
y < y0

,

where λ2 is uniquely determined as (3.18) via lim
y↘y0

h′(y) = lim
y↗y0

h′(y) = h′(y0) > 0. Further,

B is uniquely determined and one has

g(x) = E[h(Y )|X = x] and σ(x) =
√

Var(h(Y )|X = x).

So far, uniqueness of B was proven by using h′(y0) > 0. In Section 3.6.3, it is tried to relax

this assumption. Assumption (A7) from Section 3.4 will play a major role there instead.

Now, an example is given in which neither (A4) nor (A7) are fulfilled and the model there

is not identified.

Example 3.2.5 (see also Remark 3.4.1 below). Consider the model

Y = X +Xε,
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that is g(x) = σ(x) = x, for some random variables X ⊥ ε with E[ε] = 0 and E[ε6] <

∞. This model does not fulfil assumption (A7) or h′(y) > 0 for all y ∈ R. Indeed, the

transformation function is no longer identified since for example

Y 3 = X3(1 + ε)3

= X3E[(1 + ε)3] +X3
(
(1 + ε)3 − E[(1 + ε)3]

)
= g̃(X) + σ̃(X)ε̃

for g̃(x) = x3E[(1 + ε)3], σ̃(x) = x3
√

Var((1 + ε)3) and ε̃ = (1+ε)3−E[(1+ε)3]√
Var((1+ε)3)

.

Under the additional assumption that h is twice continuously differentiable, an analytic

expression for B can be obtained. Equation (3.6) yields

λ(y) = −Bh(y)

h′(y)
,

so that the derivative of λ can be written as

∂

∂y
λ(y) = −Bh

′(y)2 − h′′(y)h(y)

h′(y)2

with h′′(y) = ∂2

∂y2h(y). Applying (3.12), that is h(y0) = 0, results in

∂

∂y
λ(y)

∣∣∣
y=y0

= −B. (3.19)

Equation (3.19) will be important in Section 4.1.2, since it yields an analytic expression for

B, which can be used to construct a plug in estimator. This section is completed by an

additional remark.

Remark 3.2.6 Some possible extensions are listed in the following. It is conjectured, that

they can be shown with slightly more effort.

1. The identification result should hold for any other combination of location and scale

constraints as long as they fix A and λ1 in equation (3.11).

2. It should be possible to extend Theorem 3.2.4 to all monotonic functions h with

lim
y→−∞

h(y) = −∞ and lim
y→∞

h(y) = ∞ although one has to change argumentation

(see corollary 3.6.4 below). For example, uniqueness of λ2 possibly can be shown in a

similar way to the proof of Lemma 3.6.3 below.

3. There might be cases when h can be defined as shown here even when the model is not

fulfilled. The author does not know yet if applying the resulting transformation could

still be advisable in terms of simplifying the model or making other procedures better

applicable.

4. It is conjectured that an extension to models with endogenous regressors can be deduced

similarly to Chiappori et al. (2015) and Vanhems and Van Keilegom (2019).
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3.3 Discussion

The so far most general identification result in the theory of transformation models has

been provided. While doing so, the techniques of Ekeland et al. (2004) and Chiappori et al.

(2015) have been used to reduce the problem of identifiability to that of solving an ordinary

differential equation. Most of the previous results are contained as special cases. The main

contribution consists in allowing heteroscedastic errors, which justifies the common practice

to assume identifiability like for example in the paper of Neumeyer et al. (2016).

Moreover, the result is constructive in the sense that it does not only guarantee identifica-

tion of the model, but even supplies an analytic expression of the transformation function

depending on the joint distribution function of the data and some parameter B. This para-

meter is identified, too, and can be expressed as in (3.19) under the additional assumption

of a twice continuously differentiable transformation function.

Future research could consist in successively generalizing the result as has been suggested

in Remark 3.2.6. Moreover, it would be desirable to develop conditions on the joint distri-

bution function of (Y,X) under which model (3.1) is fulfilled. In contrast to the thoughts

on identifiability here, such a question addresses the solvability of (3.1), that is, the issue

of existence of a solution instead of uniqueness.

3.4 Assumptions

In the following, assumptions needed for the presented results are listed.

(A1) Let Y, ε and X be real valued and RdX -valued random variables, respectively, with

h(Y ) = g(X) + σ(X)ε.

Let h be continuously differentiable.

(A2) ε is a centred random variable independent of X with E[ε] = 0 and Var(ε) = 1.

(A3) The density fε is continuous with fε(y) > 0 for all y ∈ R.

(A4) The conditional distribution function FY |X(y|x) is continuously differentiable with

respect to y and x with ∂
∂yFY |X(y|x) > 0 for all y ∈ R, x ∈ RdX .

(A5) g and σ are continuously differentiable and σ(x) > 0 for all x ∈ RdX .

(A6) v is a weighting function such that A,B and λ are well defined by equations (3.6) and

(3.7) and such that B 6= 0.

(A7) Define for c > 0 the sets M>c := {x : g(x) > c} and M<−c := {x : g(x) < −c}. There

is some c > 0 such that P (X ∈M>c) > 0 (or P (X ∈M<−c) > 0) holds and x 7→ σ(x)
g(x)

is not constant on M>c (or M−c).

Remark 3.4.1 1. Let

ϕα : R→ R

y 7→ sign(y)|y|α.
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Assumption (A7) is needed to avoid cases like g(x) = gσ(x) for some g ∈ R, since in

this case for arbitrary α > 0 one has

ϕα(g(X) + σ(X)ε) = σ(X)αϕα(g + ε)

= σ(X)αE[ϕα(g + ε)]︸ ︷︷ ︸
=g̃(X)

+ σ(X)α
√

Var(ϕα(g + ε))︸ ︷︷ ︸
=σ̃(X)

ϕα(g + ε)− E[ϕα(g + ε)]√
Var(ϕα(g + ε))︸ ︷︷ ︸

=ε̃

= g̃(X) + σ̃(X)ε̃,

so that by definition (3.7)

B = B(α) =

∫
v(x)

∂σ̃(x)
∂x1

σ̃(x)
dx = αB(1)

could attain any value, such that the second moment of ϕα(g + ε) exists.

2. Due to equation (3.2), assumption (A4) ensures h′(y) > 0 for all y ∈ R.

3.5 Proof of Lemma 3.2.3

First, consider a compact interval K = [k1, k2] ⊆ (y0,∞) and recall equation (3.11). As-

sumption (A4) ensures h′ > 0. First, it is shown that h as defined in (3.11) is the unique

solution to (3.8) on [k1, k2]. For the moment assume k1 = y1 and define

G = [y1, k2]× [λ1,∞) and D : G→ R, D(y, h) = −A+Bh

λ(y)
.

With a = y1, b = k2 and θ0 = λ1, Theorem 3.6.6 below ensures uniqueness of the solution

of

h′(y) = −A+Bh(y)

λ(y)
for all y ∈ [y1, k2].

In Section 3.2 it was shown that (3.11) indeed is a solution of (3.8). Since fε(y) > 0 for

all y ∈ R, this solution holds for arbitrarily large k2. Hence, by letting k2 tend to infinity

uniqueness of h on [y1,∞) is obtained.

Now, consider an arbitrary value ỹ ∈ (y0, y1). Then, with the previous initial condition

replaced by

h̃(ỹ) = λ̃

for some λ̃ > 0 and the same arguments as before, the differential equation

h′(y) = −A+Bh(y)

λ(y)
for all y ∈ [ỹ, k2]

is uniquely solved by

h̃(y) =
(A+Bλ̃) exp

(
−B

∫ y
ỹ

1
λ(u) du

)
−A

B
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=

(A+Bλ̃)
(A+Bλ1) exp

(
−B

∫ y1

ỹ
1

λ(u) du
)

(A+Bh(y))−A

B

for all y ∈ [ỹ,∞), where the last equation follows from (3.11). To fulfil the previous scale

constraint h̃(y1) = λ1 it is required that

λ̃ =

(A+ λ1B) exp

(
B
∫ y1

ỹ
1

λ(u) du

)
−A

B

Since this in turn results in h̃(y) = h(y) for all y ∈ [ỹ,∞), h is identified for all y ∈ [ỹ,∞).

Choosing ỹ arbitrarily close to y0 results in

h(y) =
(A+Bλ1) exp

(
−B

∫ y
y1

1
λ(u) du

)
−A

B
for all y > y0.

When proceeding analogously for y < y0 with the initial condition

h(y2) = λ′

for some λ′ < −A
B , one has

h(y) =
(A+Bλ′) exp

(
−B

∫ y
y2

1
λ(u) du

)
−A

B
for all y < y0.

Recall h′(y) > 0 for all y ∈ R and let t > 0. Due to the continuous differentiability of h in

y0 one has

lim
t→0

h(y0 + t)− h(y0)
t

h(y0 − t)− h(y0)
−t

→ 1.

On the other hand, it holds that

h(y0 + t)− h(y0)
t

h(y0 − t)− h(y0)
−t

= −
(A+Bλ1) exp

(
−B

∫ y0+t
y1

1
λ(u) du

)
(A+Bλ′) exp

(
−B

∫ y0−t
y2

1
λ(u) du

)
= −(A+Bλ1)

(A+Bλ′)
exp

(
B

(∫ y0−t

y2

1

λ(u)
du−

∫ y0+t

y1

1

λ(u)
du

))
,

so that

λ′ = −
lim
t→0

(A+Bλ1) exp

(
B

(∫ y0−t
y2

1
λ(u) du−

∫ y0+t
y1

1
λ(u) du

))
+A

B
= λ2.

This leads to the uniqueness of Solution (3.15). Inserting A = 0 yields the second part of

the assertion. �

3.6 Miscellaneous

In this section all results, proofs or remarks are collected, that are not directly necessary to

follow the golden thread of the chapter, but nevertheless important and interesting additions

that complete a comprehensive discussion of the topic.
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3.6.1 Bounded Support of fε

In the previous discussion, the density fε of the error term was always assumed to be

greater than zero on the whole set of real numbers. In this Subsection it is tried to relax

this assumption and to show how the derived approaches can be adapted to this case. It

is assumed that h′ > 0 although it is conjectured that the ideas here can be extended to

general monotonic transformations h by similar ideas as in Section 3.6.3 below.

Identifiability of the model (3.1) on compact intervals is considered first. Hence, let Y ⊆ R
be a compact interval. The main drawback when allowing one-sided or even bounded

support of fε consists in the fact that in general the set

AY =

{
x :

∂FY |X(y|x)

∂y
> 0 for all y ∈ Y

}
,

which is defined similar to equation (3.4), no longer consists of every x ∈ RdX .

Example 3.6.1 Consider the following model

Y = X + 1 + ε

with one-sided error ε = η − 1 and η ∼ Exp(1). For the choice of Y = [0, 1] one has

AY = (−∞, 0).

Chiappori et al. (2015) introduced an assumption similar to AY 6= ∅, where Y is equal

to the support of Y . Although they considered the partial derivative with respect to an

appropriate xi instead of y, the underlying problem remains the same. As in example 3.6.1,

the weighting with respect to x has to be restricted to AY . Although not a big problem

from an identification perspective this issue becomes crucial when estimating since neither

g nor AY are known a priori. From an identification point of view, this “weighting” can

even be implemented using a dirac measure.

The argumentation becomes even more complicated when considering an error term with

bounded (from both sides) support or a heteroscedastic model, but at least the following

corollary can be stated.

Corollary 3.6.2 Assume the support Y of Y is an interval and can be partitioned into

countably many bounded subintervals (Yn)n∈IN such that

AYn 6= ∅ and max{y : y ∈ Yn} = min{y : y ∈ Yn+1} for all n ∈ N.

Then, the transformation function h from model (3.1) is identified on Y via h(y1) = λ1 and

h(y2) = λ2 for arbitrary y1, y2 ∈ Y, λ1 < λ2.

Proof: Assume existence of a root y0 of λ and let y0 ∈ Ym for some m ∈ N. If there does

not exist such a root, one can proceed as later in Subsection 3.6.2. The basic reasoning

in this case would be the same, so that only the first case with a root is considered in the

remaining proof.

Let y1,m and y2,m be the lower and upper bound of the interval Ym. For any λ1,m < λ2,m,

identification of h on Ym via h(y1,m) = λ1,m and h(y2,m) = λ2,m can be shown as before in
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Section 3.2.

Now look at the two consecutive intervals Ym and Ym+1, that is y2,m = y1,m+1. Since h is

continuously differentiable in y2,m, the limits

lim
y→y2,m

h(y) and lim
y→y2,m

h′(y)

exist and especially have to be independent of any sequence yl
l→∞−→ y2,m. Therefore, the

location and scale constraints for Ym+1 are determined by the continuous differentiability

of h. Hence, h is identified on Ym+1 as well. After proceeding analogously for all previous

and consecutive intervals, one obtains a version of h which only depends on the chosen

values of λ1,m and λ2,m from the first step. Due to the continuous differentiability of h,

this is even the case if there are accumulation points in the sequence (y2,n)n∈IN . The two

constants λ1,m and λ2,m are directly linked to the global location and scale constraints of

h and are uniquely determined by h(y1) = λ1 and h(y2) = λ2.

�

If one has chosen a set Y and an appropriate weighting function v once, the conditions

necessary to ensure identifiability of the model are thus the same as in the case with

unbounded support.

3.6.2 The Case without a Root y0

Again, the notations from Section 3.2 are used, that is, y0 is defined as the root of the map

y 7→ A + Bh(y) with A and B from (3.7). Recall the model (3.1). B is assumed to be

different from zero, so that the only possibility that there does not exist any root y0 of λ is

the case where the image of h and consequently the support of fε is bounded from at least

one side. Therefore, this is a special case of Subsection 3.6.1, but has not been treated in

detail there.

Identifiability of the model (3.1) on compact intervals is considered in the following. Hence,

let Y be an interval and let v be weighting function, such that supp(v) ⊆ AY 6= ∅ and

h(y) 6= 0 for all y ∈ Y. Introduce the location and scale constraints

h(y1) = λ1 and h(y2) = λ2

for arbitrary values y1 < y2 ∈ Y and λ1 < λ2 ∈ R. Then, the corresponding solution to

(3.8) on Y is given by

h(y) = (λ2 − λ1)

exp

(
−B

∫ y
y1

1
λ(u) du

)
− 1

exp

(
−B

∫ y2

y1

1
λ(u) du

)
− 1

+ λ1, y ∈ Y.

Indeed, the transformation function expressed in this way fulfils the differential equation

as well as the boundary constraints. Uniqueness of h can be shown as in Section 3.2. Since

h(y1) < h(y2) and the map y 7→ exp
(
− B

∫ y
y1

1
λ(u) du

)
is monotone, h is increasing as

required. Estimating the transformation would become insofar easier later as there is no

longer the need to estimate y0 and λ2 as in Chapter 4.
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3.6.3 Vanishing Derivatives of h

Up to now, it was assumed that the derivative of h is positive. Keeping the assumption of

monotonicity, one potential generalisation could consist in allowing h′(y) = 0 at least for

some real numbers y ∈ R. In the following, another reasoning for identifying B is presented,

which does not require h′(y0) > 0. For this purpose, define for any α ∈ R\{0} the function

ϕα : R→ R

y 7→ sign(y)|y|α.

Lemma 3.6.3 Let X, ε, g and σ be as in assumptions (A1)–(A3) and (A7) from Section

3.4. Further, let ε̃ be a centred random variable independent of X with Var(ε̃) = 1. Let g̃

and σ̃ be functions, such that for some α > 0 with E[ϕα(g(X) + σ(X)ε)2] <∞ one has

ϕα(g(X) + σ(X)ε) = g̃(X) + σ̃(X)ε̃ almost surely.

Then, it holds that α = 1.

Proof: According to assumption (A7), assume w.l.o.g. that x 7→ g(x)
σ(x) is not almost surely

constant on M>c for an appropriate c > 0 and that P (X ∈M>c) > 0 holds (the other case

can be treated analogously). Let MX ⊆M>c be a bounded subset such that

(i) x 7→ g(x)
σ(x) is not almost surely constant on MX ,

(ii) P (X ∈MX) > 0,

(iii) sup
x∈MX

∣∣∣σ(x)
g(x)

∣∣∣ <∞.
Consequently, there exists some δ > 0 such that

inf
x∈MX , e∈(−δ,δ)

g(x) + σ(x)e > 0 and sup
x∈MX , e∈(−δ,δ)

∣∣∣∣σ(x)e

g(x)

∣∣∣∣ < 1.

The generalized Binomial Theorem provides

IMX
(X)I(−δ,δ)(ε)(g(X) + σ(X)ε)α = IMX

(X)I(−δ,δ)(ε)g(X)α
∞∑
k=0

(
α

k

)(
σ(X)

g(X)

)k
εk.

Since the conditional expectation, conditional variance and the remaining error term can

be written as

g̃(X) = E
[
ϕα(g(X) + σ(X)ε)|X

]
, σ̃2(X) = Var

(
ϕα(g(X) + σ(X)ε)|X

)
and

ε̃ =
ϕα(g(X) + σ(X)ε)− g̃(X)

σ̃(X)
,

it holds that

IMX
(X)I(−δ,δ)(ε)ε̃ = IMX

(X)I(−δ,δ)(ε)
ϕα(g(X) + σ(X)ε)− g̃(X)

σ̃(X)
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= IMX
(X)I(−δ,δ)(ε)

∑∞
k=0

(
α
k

)
σ(X)kg(X)α−kεk − g̃(X)

σ̃(X)

= IMX
(X)I(−δ,δ)(ε)

(
g(X)α − g̃(X)

σ̃(X)
+
∞∑
k=1

(
α

k

)
σ(X)kg(X)α−k

σ̃(X)
εk︸ ︷︷ ︸

independent of X∈MX

)
.

This can be alternatively expressed as

IMX
(X)I(−δ,δ)(ε)ε̃ = IMX

(X)I(−δ,δ)(ε)
∞∑
k=0

βk(X)εk

with

β0(X) =
g(X)α − g̃(X)

σ̃(X)
and βk(X) =

(
α

k

)
σ(X)kg(X)α−k

σ̃(X)
for all k ≥ 1.

Due to the independence of ε̃ and X, the coefficients βk, k ≥ 0, are not allowed to depend

on X. Since σ(X)
g(X) by assumption depends on X, g(X)ασ(X)k

σ̃(X)g(X)k
is at most for one k ∈ IN0

independent of X. Thus,
(
α
k

)
6= 0 for at most one k. Due to α > 0 one has α = 1. �

It is conjectured that similar techniques to the proof above can be used to identify model 3.1

without assuming h′ > 0. Nevertheless, the following conjecture has not been completely

proven so far, so that only a sketch of a possible proof is given.

Conjecture 3.6.4 Assume (A1)–(A3),(A5)–(A7) from Section 3.4 as well as conditions

(3.9) for λ1 = 1 and (3.12). Let the conditional distribution function FY |X(y|x) be conti-

nuously differentiable with respect to y and x and assume h′(y) > 0 for all y 6= y0. Then,

the unique solution to the model equation (3.1) is given by

h(y) =


exp

(
−B

∫ y
y1

1
λ(u) du

)
y > y0

0 y = y0

λ2 exp
(
−B

∫ y
y2

1
λ(u) du

)
y < y0

,

where it is set 1
0 :=∞ as well as 1

∞ := 0 and λ2 is uniquely determined. Further, one has

g(x) = E[h(Y )|X = x] and σ(x) =
√

Var(h(Y )|X = x).

Sketch of the Proof: The case h′(y0) > 0 has been considered in Theorem 3.2.4 so that

h(y0) = 0 is assumed. Moreover, assume w.l.o.g. B > 0. For B = 0 the approach of

Chiappori et al. (2015) can be adjusted in the same way as follows.

Let h and h̃ fulfil model (3.1) with (3.9) for λ1 = 1 and (3.12), that is, h and h̃ are solutions

to the differential equalities

h′(y) = −A+Bh(y)

λ(y)
h̃′(y) = −Ã+ B̃h̃(y)

λ(y)

for some B, B̃ > 0, A, Ã ∈ R and all y 6= y0. By the same reasoning as before, h and h̃ can

be written as

h(y) =


exp

(
−B

∫ y
y1

1
λ(u) du

)
y > y0

0 y = y0

λ2 exp
(
−B

∫ y
y2

1
λ(u) du

)
y < y0
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and

h̃(y) =


exp

(
− B̃

∫ y
y1

1
λ(u) du

)
y > y0

0 y = y0

λ̃2 exp
(
− B̃

∫ y
ỹ2

1
λ(u) du

)
y < y0

,

where A = Ã = 0 is implied by the location constraint (3.12). Due to assumption (A3) one

has

lim
y→−∞

h(y) = −∞ and lim
y→∞

h(y) =∞.

Therefore, the transformation functions h and h̃ from above can be written as

h(y) =


exp

(
−B

∫ y
y1

1
λ(u) du

)
y > y0

0 y = y0

exp
(
−B

∫ y
y3

1
λ(u) du

)
y < y0

(3.20)

and

h̃(y) =


exp

(
− B̃

∫ y
y1

1
λ(u) du

)
y > y0

0 y = y0

exp
(
− B̃

∫ y
ỹ3

1
λ(u) du

)
y < y0

for some appropriate y3, ỹ3 < y0, which are uniquely determined by λ,B, λ2 and λ, B̃, λ̃2,

respectively. These expressions in turn yield

ϕ B̃
B

(h(y)) =


exp

(
− B̃

∫ y
y1

1
λ(u) du

)
y > y0

0 y = y0

exp
(
− B̃

∫ y
y3

1
λ(u) du

)
y < y0

= h̃(y) + h̃(y)I{y<y0}

(
exp

(
− B̃

∫ ỹ3

y3

1

λ(u)
du
)
− 1

)
,

that is,

h̃(y) = ϕ B̃
B

(h(y))− h̃(y)I{y<y0}

(
exp

(
− B̃

∫ ỹ3

y3

1

λ(u)
du
)
− 1

)
.

It is conjectured that similar arguments to the proof of Lemma 3.6.3 lead to

exp

(
− B̃

∫ ỹ3

y3

1

λ(u)
du

)
= 1

and thus to ỹ3 = y3. Finally, Lemma 3.6.3 ensures B̃ = B and consequently h̃ = h.

It is conjectured that this result can be extended to a more general class of monotonic

functions.

3.6.4 Uniqueness of Solutions to Ordinary Differential Equations

Finally, two basic results about ordinary differential equations and uniqueness of possible

solutions are given. Theorem 3.6.6 is slightly modified compared to the version of Forster

(1999, p. 102) so that the proof is presented as well.
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Lemma 3.6.5 (Gronwall’s Inequality, see Grönwall (1919) or Bellman (1953) for details)

Let I = [a, b] ⊆ R be a compact interval. Let u, v : I → R and q : I → [0,∞) be continuous

functions. Further, let

u(y) ≤ v(y) +

∫ y

a
q(z)u(z) dz

for all y ∈ I. Then, one has

u(y) ≤ v(y) +

∫ y

a
v(z)q(z) exp

(∫ y

z
q(t) dt

)
dz for all y ∈ I.

Theorem 3.6.6 (see Forster (1999, p. 102) for a related version) Let b > a > y0 and G ⊆
(y0,∞)×R+ be a set such that [a, b]×R+ ⊆ G. Moreover, let D : G→ R, (y, h) 7→ D(y, h),

be continuous with respect to both components and continuously differentiable with respect

to the second component. Then, for all θ0 > 0 any solution h ∈ C([a, b],R+) of the initial

value problem

h′(y) = D(y, h(y)), h(a) = θ0

is unique.

Proof: Let h1, h2 : [a, b] → R+ be two solutions of the mentioned initial value problem.

Since

K := {(y, θ) ∈ [a, b]× R+ : y ∈ [a, b], θ ∈ {h1(y), h2(y)}}

is compact, there exists some L > 0 such that |D(y, θ) − D(y, ψ)| ≤ L|θ − ψ| for all

(y, θ), (y, ψ) ∈ K. Consider the distance d(y) := |h1(y)− h2(y)|. Then for all y ∈ [a, b]

d(y) = |h1(y)− h1(a)− (h2(y)− h2(a))|

=

∣∣∣∣ ∫ y

a
(D(z, h1(z))−D(z, h2(z))) dz

∣∣∣∣
≤
∫ y

a
|D(z, h1(z))−D(z, h2(z))| dz

≤ L
∫ y

a
|h1(z)− h2(z)| dz

= L

∫ y

a
d(z) dz

Gronwall’s Inequality leads to d ≤ 0 (set u = d, v ≡ 0, q ≡ L). �
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4

Nonparametric Estimation of the

Transformation Function in a

Heteroscedastic Model

After identifiability of model (3.1) under conditions (3.9) and (3.12) was proven in the last

chapter, the question arises how its components can be estimated appropriately. To the

author’s knowledge, there is no estimating approach in such a general model as (3.1) so far.

To mention only some methods in the literature, Chiappori et al. (2015) provided an esti-

mator for homoscedastic models, while Neumeyer et al. (2016) extended the ideas of Linton

et al. (2008) to the case of heteroscedastic errors, but only for parametric transformation

functions. In the context of a linear regression function, Horowitz (2009) discussed several

approaches for a parametric/ nonparametric transformation function and a parametric/

nonparametric distribution function of the error term.

In the following, the analytical expressions of the model components in (3.1) are used to

construct corresponding estimators in Section 4.1. Afterwards, the asymptotic behaviour of

these estimators is examined in Section 4.2. When doing so, equation (3.17) and the ideas

of Horowitz (1996) will play key roles in defining estimators and deriving the asymptotic

behaviour. Some simulations are conducted in Section 4.3 and the chapter is concluded by

a short discussion in 4.4. The proofs can be found in Section 4.6.

Throughout this chapter, assume (A1)–(A7) from Section 3.4 as well as B > 0 (see Re-

mark 3.2.1). Moreover, assume the location and scale constraints (3.9) and (3.12) for some

y1 > y0 with λ1 = 1 and let (Yi, Xi), i = 1, ..., n, be independent and identically distributed

observations from model (3.1).

4.1 Definition of the Estimator

An estimation technique is presented, which combines parts of the work of Chiappori et al.

(2015) and that of Horowitz (1996) and Linton et al. (2008). First, some preliminary

definitions are needed before the final estimator is defined in Subsection 4.1.3.
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4.1.1 Estimation of λ and y0

As in Section 3.2, λ is defined as

λ(y) =

∫
v(x)

∂FY |X(y|x)

∂x1

∂FY |X(y|x)

∂y

dx

for some weight function v and y0 is defined by the equation λ(y0) = 0. In this thesis, a

Plug-In-approach is used to estimate first λ by some kernel estimator λ̂ and then estimate

y0 by the root of λ̂. To be precise, the conditional distribution function FY |X is estimated

for some kernel function K and some bandwidth sequences hy ↘ 0 and hx ↘ 0 by

F̂Y |X(y|x) =
p̂(y, x)

f̂X(x)

with f̂X and p̂ as defined in equations (1.2) and (1.5). Then, this estimator is plugged into

the expression for λ yielding

λ̂(y) =

∫
v(x)

∂F̂Y |X(y|x)

∂x1

∂F̂Y |X(y|x)

∂y

dx. (4.1)

Note that by construction and assumption (B2) from Section 4.5 the estimated conditional

distribution function F̂Y |X is continuously differentiable. Once λ is estimated an estimator

for y0 can be defined as the solution to λ̂(y) = 0. In Section 4.1.4 it will be shown that

for arbitrary large compact sets K ⊆ R there will be at most one solution with probability

converging to one for n→∞. Since for finite sample sizes it might be the case that there

is more than one solution, an estimator is defined by

ŷ0 = arg min
y:λ̂(y)=0

|y|. (4.2)

Assumption (A3) from Section 3.4 and B 6= 0 ensure that there exists a root of λ, since h

is surjective under (A3). Hence, due to the uniform convergence of λ̂ to λ, which is proven

in Lemma 4.2.1 below, λ̂ possesses a root (that is close to y0) as well with probability

converging to one. Details will be given in Subsection 4.1.4.

4.1.2 Estimation of B

Recall

h(y) = exp
(
−B

∫ y

y1

1

λ(u)
du
)

for all y > y0

and some y1 > y0, that is, once y1 is fixed and λ and y0 are estimated appropriately it

remains to estimate B, at least to estimate h on (y0,∞). Due to B ∈ R this can be seen

as a parametric problem. Two approaches to estimate B will be provided in this section.

Unfortunately, it will be seen that without further conditions the already existing methods

in (semi-)parametric transformation models (e.g. of Linton et al. (2008) or Colling and

Van Keilegom (2018)) can not be applied in the scenario here. The reason is that they

rely on appropriate estimators for conditional mean and variance or require an appropriate
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nonparametric estimator. See Section 1.3 for details on these procedures.

Nevertheless, proceeding similarly to Horowitz (1996), an estimator for B can be deduced,

which converges under several conditions to B with a
√
n-rate as will be seen in Section

4.2.

Estimation of B via the Derivative of λ

Since the convergence rate of the estimator presented later relies on some additional as-

sumptions, first a less sophisticated estimator is provided, which is based on equation (3.19)

and less computationally demanding, but achieves a slower convergence rate compared to

the second estimator, which is presented later. Under the conditions (3.9) and (3.12), it

was shown in Section 3.2 that

λ(y) = − Bh(y)
∂
∂yh(y)

and
∂

∂y
λ(y)

∣∣∣
y=y0

= −B.

Plugging the estimators for λ and y0 given in Section 4.1.1 into the previous equation, leads

to the estimator

B̃ := − ∂

∂y
λ̂(y)

∣∣∣
y=ŷ0

. (4.3)

Later, asymptotic normality of this estimator will be shown in Subsection 4.2.1.

The Mean Square Distance from Independence Approach

Now, a more sophisticated approach for estimating B will be presented. Apart from using

conditional quantiles instead of the conditional mean, this estimator will be related to

the Mean-Square-Distance-From-Independence estimator of Linton et al. (2008). Let c be

a parameter that needs to be examined. The basic idea of the estimator is that for all

parameters c some appropriately defined residuals are independent of X if and only if c is

equal to the true parameter, which will be B in this Section. This idea and the definition

of the residuals will be explained in detail below.

To examine the estimator, let U, V be some random variables, where U is real valued,

τ ∈ (0, 1) and denote the τ -quantile of U conditional on V = v by

F−1
U |V (τ |v) = inf {u ∈ R : FU |V (u|v) ≥ τ}.

Fε and fε denote the distribution function and density of ε. Since h is assumed to be

strictly increasing and

h(Y ) = g(X) + σ(X)ε

with ε independent of X, it holds that (with F−1
ε (τ) = F−1

ε|X(τ |X))

h(F−1
Y |X(τ |X)) = F−1

h(Y )|X(τ |X) = g(X) + σ(X)F−1
ε|X(τ |X).

Especially, one has

h(Y )− h(F−1
Y |X(τ |X)) = g(X) + σ(X)ε− g(X)− σ(X)F−1

ε (τ)
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= σ(X)(ε− F−1
ε (τ)). (4.4)

To obtain a random variable independent of X one has to adjust for the standard error

σ(X). This can be done in several ways: Consider for some β ∈ (0, 1)

(i) F−1

σ(X)2(ε−F−1
ε (τ))2|X(β|X) = σ(X)2F−1

(ε−F−1
ε (τ))2

(β),

(ii) F−1

σ(X)|ε−F−1
ε (τ)|

∣∣X(β|X) = σ(X)F−1

|ε−F−1
ε (τ)|(β),

(iii) F−1

σ(X)(ε−F−1
ε (τ))|X(β|X) = σ(X)

(
F−1
ε (β)− F−1

ε (τ)
)
.

Note that due to σ, fε > 0 all of these expressions are different from zero (in the third case

consider β 6= τ) so that the quotients

h(Y )− h(F−1
Y |X(τ |X))√

F−1

σ(X)2(ε−F−1
ε (τ))2|X(β|X)

=
ε− F−1

ε (τ)√
F−1

(ε−F−1
ε (τ))2

(β)
, (4.5)

h(Y )− h(F−1
Y |X(τ |X))

F−1

σ(X)|ε−F−1
ε (τ)| |X(β|X)

=
ε− F−1

ε (τ)

F−1

|ε−F−1
ε (τ)|(β)

, (4.6)

h(Y )− h(F−1
Y |X(τ |X))

F−1

σ(X)(ε−F−1
ε (τ))|X(β|X)

=
ε− F−1

ε (τ)

F−1
ε (β)− F−1

ε (τ)
=: ε̃ (4.7)

are well defined. Principally, all of these standardisations can be used to construct an

estimator. Nevertheless, only the third approach is considered in the following. Note that

ε̃ is independent of X if and only if ε is independent of X.

Assume a quantile, for which lower and upper bounds are known, needs to be estimated.

As in the paper of Horowitz (1996) the idea is used that the exact value of an observation

should not influence an appropriate estimator of the quantile if the observation exceeds

one of these bounds. This property will turn out to be the crucial advantage of using the

estimated conditional quantile instead of the mean, like for example in the paper of Linton

et al. (2008). Since parametric classes of transformation functions were considered there,

the problem of estimating the mean after transforming Y could be solved by assuming A.5

(Linton et al., 2008, p. 700), a uniform (with respect to the transformation parameter)

integrability condition of the derivatives with respect to the parameter.

Assume B ∈ [B1, B2] for some 0 < B1 < B2 and define

hc(y) = exp

(
− c

∫ y

y1

1

λ(u)
du

)
and ĥc(y) = exp

(
− c

∫ y

y1

1

λ̂(u)
du

)
(4.8)

for y > y0 and (compare to (4.4) and (4.7))

ε̃c =
hc(Y )− hc(F−1

Y |X(τ |X))

hc(F
−1
Y |X(β|X))− hc(F−1

Y |X(τ |X))
.

Moreover, define for an estimator h̄1 of h1 and c ∈ [B1, B2]

h̄c(y) = sign(h̄1(y))|h̄1(y)|c. (4.9)
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Consequently, hB = h is the true transformation function. As will be seen later, it suffices

to consider the case Y > y0 here. In Chapter 3, it was shown that c = B is the only

value such that ε̃c is independent of X (see Lemma 3.6.3). As in Chapter 2, FY |X and

consequently F−1
Y |X as well as ε̃c can be estimated by replacing FY |X with

F̂Y |X(y|x) =

∑n
i=1Khy(y − Yi)Khx(x−Xi)∑n

i=1 Khx(x−Xi)
. (4.10)

Uniform convergence of F̂−1
Y |X to F−1

Y |X was shown in Lemma 2.8.1. Consider a given interval

[za, zb] ⊆ (y0,∞) and let τ < β ∈ (0, 1), [ea, eb] ⊆ R and MX be a non-random interval such

that

(M1) MX ⊆ supp(v) and fX(x) > 0 for all x ∈MX ,

(M2) x 7→ g(x)
σ(x) is not almost surely constant on MX ,

(M3) F−1
Y |X(τ |x), F−1

Y |X(β|x) ∈ (za, zb) for all x ∈MX ,

(M4) sup
x∈MX ,e∈[ea,eb],c∈[B1,B2]

hc(F
−1
Y |X(τ |x))+e(hc(F

−1
Y |X(β|x))−hc(F−1

Y |X(τ |x))) < hc(zb) and

(M5) inf
x∈MX ,e∈[ea,eb],c∈[B1,B2]

hc(F
−1
Y |X(τ |x)) + e(hc(F

−1
Y |X(β|x))− hc(F−1

Y |X(τ |x))) > hc(za).

Since MX is an interval, the boundary of MX has Lebesgue-measure equal to zero. See

example 4.1.3 for a (admittedly, rather technical) way to construct a set MX fulfilling these

assumptions.

Remark 4.1.1 1. It holds that

MX ⊆
⋂

e∈[ea,eb],c∈[B1,B2]

{
x : hc(za) ≤ hc(F−1

Y |X(τ |x)) + e(hc(F
−1
Y |X(β|x))−hc(F−1

Y |X(τ |x))) ≤ hc(zb)
}
.

2. Condition (M1) can be relaxed to the case, where there exists some subset M̃X ⊆MX

that fulfils (M1) (and (M2)–(M5)).

3. If [ea, eb] ⊆ [0, 1], conditions (M4) and (M5) are implied by

sup
x∈MX ,c∈[B1,B2]

max
(
hc(F

−1
Y |X(τ |x)), hc(F

−1
Y |X(β|x))

)
< hc(zb)

and

inf
x∈MX ,c∈[B1,B2]

min
(
hc(F

−1
Y |X(τ |x)), hc(F

−1
Y |X(β|x))

)
> hc(za).

4. Let h̄1, f̂mτ and f̂mβ be some estimators, such that h̄1(y) converges uniformly in y ∈
[za, zb] to h1(y) and f̂mτ (x), f̂mβ (x) converge uniformly in x ∈MX to F−1

Y |X(τ |x) and

F−1
Y |X(β|x). Then, conditions (M1)–(M5) imply P (ε̃B ≤ e) = P (ε̃B ≤ e|X ∈ MX)

as well as

MX ⊆
⋂

e∈[ea,eb],c∈[B1,B2]

{
x : h̄c(za) ≤ h̄c(f̂mτ (x)) + e(h̄c(f̂mβ (x))− h̄c(f̂mτ (x))) ≤ h̄c(zb)

}

with probability converging to one, where h̄c is defined as in (4.9).
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When estimating P (ε̃c ≤ e) the problem arises that ε̃c can not be observed directly, but has

to be estimated as well. Since nonparametric estimators such as ĥc usually only converge

to hc with
√
n-rate on compact subsets of (y0,∞), ε̃ can not be estimated with

√
n-rate in

general. Here, the advantage of using the conditional quantiles instead of the conditional

mean in (4.5)–(4.7) becomes clear:

After conditioning on X ∈MX , P (ε̃c ≤ e|X ∈MX) can be estimated by

P̂ (ε̃c ≤ e|X ∈MX) =

1
n

∑n
i=1 I{ˆ̃εc,i≤e}I{Xi∈MX}
1
n

∑n
i=1 I{Xi∈MX}

,

where

ˆ̃εc,i =
ĥc(Yi)− ĥc(F̂−1

Y |X(τ |Xi))

ĥc(F̂
−1
Y |X(β|Xi))− ĥc(F̂−1

Y |X(τ |Xi))
.

Although ĥc might not be a
√
n-consistent estimator for hc on R, it is still strictly monotonic.

Since X ∈MX implies

ĥc(za) ≤ ĥc(F̂−1
Y |X(τ |X)) + e(ĥc(F̂

−1
Y |X(β|X))− ĥc(F̂−1

Y |X(τ |X))) ≤ ĥc(zb),

one has

ĥc(za)− ĥc(F̂−1
Y |X(τ |X))

ĥc(F̂
−1
Y |X(β|X))− ĥc(F̂−1

Y |X(τ |X))
≤ ˆ̃εc + e− ˆ̃εc ≤

ĥc(zb)− ĥc(F̂−1
Y |X(τ |X))

ĥc(F̂
−1
Y |X(β|X))− ĥc(F̂−1

Y |X(τ |X))
.

Consequently, monotonicity of ĥ leads to

Y < za ⇒ ˆ̃εc <
ĥc(za)− ĥc(F̂−1

Y |X(τ |X))

ĥc(F̂
−1
Y |X(β|X))− ĥc(F̂−1

Y |X(τ |X))
⇒ ˆ̃εc < e,

Y > zb ⇒ ˆ̃εc >
ĥc(zb)− ĥc(F̂−1

Y |X(τ |X))

ĥc(F̂
−1
Y |X(β|X))− ĥc(F̂−1

Y |X(τ |X))
⇒ ˆ̃εc > e,

if X ∈ MX . Therefore, ˆ̃εc only has to be calculated when Y ∈ [za, zb], which means that

all results about uniform convergence on compact sets like 4.2.2 can be applied without

worsening convergence rates. See Horowitz (1996, p. 107) for a similar reasoning.

Consider h, fmτ , fmβ belonging to specific function sets specified later and define s =

(h, fmτ , fmβ )t as well as s0 = (h1, F
−1
Y |X(τ |·), F−1

Y |X(β|·))t with h1 from (4.8) and

ε̃c(s) =
h(Y )c − h(fmτ (X))c

h(fmβ (X))c − h(fmτ (X))c
,

GMD(c, s)(x, e) = P
(
X ≤ x, ε̃c(h, fmτ , fmβ ) ≤ e|X ∈MX

)
− P

(
X ≤ x|X ∈MX

)
P
(
ε̃c(h, fmτ , fmβ ) ≤ e|X ∈MX

)
, (4.11)

GnMD(c, s)(x, e) = P̂
(
X ≤ x, ε̃c(h, fmτ , fmβ ) ≤ e|X ∈MX

)
− P̂

(
X ≤ x|X ∈MX

)
P̂
(
ε̃c(h, fmτ , fmβ ) ≤ e|X ∈MX

)
(4.12)
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with

P̂
(
X ≤ x, ε̃c(h, fmτ , fmβ ) ≤ e|X ∈MX

)
=

1
n

∑n
i=1 I{ε̃c,i(s)≤e}I{Xi≤x}I{Xi∈MX}

1
n

∑n
i=1 I{Xi∈MX}

P̂
(
X ≤ x|X ∈MX

)
=

1
n

∑n
i=1 I{Xi≤x}I{Xi∈MX}
1
n

∑n
i=1 I{Xi∈MX}

P̂
(
ε̃c(h, fmτ , fmβ ) ≤ e|X ∈MX

)
=

1
n

∑n
i=1 I{ε̃c,i(s)≤e}I{Xi∈MX}
1
n

∑n
i=1 I{Xi∈MX}

.

Moreover, define

A(c, s) :=

√∫
MX

∫
[ea,eb]

GMD(c, s)(x, e)2 de dx = ||GMD(c, s)||2, (4.13)

where ||.||2 denotes the L2-norm on MX × [ea, eb]. Then, Lemma 3.6.3 implies A(c, s0) = 0

if and only if c = B.

For some estimator ŝ of s0 the function c 7→ A(c, s0) can be estimated by

Â(c, ŝ) :=

√∫
MX

∫
[ea,eb]

GnMD(c, ŝ)(x, e)2 de dx = ||GnMD(c, ŝ)||2.

From now on, ŝ will be defined as

ŝ =
(
ĥ1, F̂

−1
Y |X(τ |X), F̂−1

Y |X(β|X)
)t

(4.14)

in this section, where ĥ1 is defined as in (4.8) and F̂−1
Y |X denotes the inverse of the estimator

of the conditional distribution function as in (4.10). Minimizing Â(c, ŝ) with respect to c

leads to the estimator

B̂ = arg min
c∈[B1,B2]

Â(c, ŝ). (4.15)

Remark 4.1.2 Without further examination, some thoughts on testing for H0 : B = 0 are

given together with two possible testing approaches. Assume B = 0. Then, equation (3.6)

implies

λ(y) = − A
∂
∂yh(y)

.

1. Due to ∂
∂yh(y) > 0, λ is well defined and has either no root (when A 6= 0) or infinitely

many roots (when A = 0). This can be used to reject H0, if there is only one root in

a given interval [za, zb] ⊆ R.

2. The underlying estimating approach of B̂ is based on the fact that the residuals cor-

responding to every c ∈ R are independent of X if and only if c = B. Hence, it

could be possible to proceed as in the paper of Chiappori et al. (2015) and to test for

independence of X and the residuals.
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Example 4.1.3 Constructing an appropriate set MX . Let [za, zb] ⊆ (y0,∞) be a given

interval, {X̃1, ..., X̃q} = {X1, ..., Xn : Xi ∈ supp(v)} for some appropriate q ∈ N the

set of observations falling in the support of v and x∗ = ˆ̃Xq the empirical mean of these

observations. Define for each k ∈ N the (possibly empty) set

Qk :=

{
(ι, ξ) : ι < ξ, ι, ξ ∈

{
1

k
, ...,

k − 1

k

}
, F−1

Y |X(ι|E[X̃]), F−1
Y |X(ξ|E[X̃]) ∈

(
za +

1

k
, zb −

1

k

)}
and for each e ∈ R, c ∈ [B1, B2],m ∈ N and τ < β ∈ (0, 1) the set

Ωτ,βe,c,m :=

{
x : hc

(
za+

1

m

)
< hc(F

−1
Y |X(τ |x))+e

(
hc(F

−1
Y |X(β|X))−hc(F−1

Y |X(τ |x))
)
< hc

(
zb−

1

m

)}
.

Further, for all k ∈ N define (τk, βk) := arg max
(ι,ξ)∈Qk

{ξ − ι} and choose τk minimal if the

maximizing values are not unique. Moreover, define

mk = min

{
m ∈ N :

⋂
e∈[− 1

m
, 1
m

], c∈[B1,B2]

Ωτk,βk
e,c,m 6= ∅

}

if the set of appropriate m is not empty (otherwise set mk = ∞). When choosing k∗ =

min{k ∈ N : mk <∞}, the interior of the set

M∗X :=
⋂

e∈[− 1
mk∗

, 1
mk∗

],c∈[B1,B2]

Ω
τk∗ ,βk∗
e,c,2mk∗

6= ∅

is not empty, since (y, c) 7→ hc(y) is uniformly continuous on compact sets. Now choose

l ∈ N ∪ { 1
n : n ∈ N} minimal such that

MX :=
1

l




i1
...

id

 ,


i1
...

id

+


1
...

1


 ⊆ ◦

M∗X

holds for appropriate i1, ..., id ∈ Z, where
◦
M∗X denotes the interior of M∗X .

Up to now, MX is unknown in general and thus has to be approximated. Let tn = 1
log(n)

and define

Q̂k :=

{
(ι, ξ) : ι < ξ, ι, ξ ∈

{
1

k
, ...,

k − 1

k

}
, F̂−1

Y |X(ι|x∗), F̂−1
Y |X(ξ|x∗) ∈

(
za +

1

k
+ tn, zb −

1

k
− tn

)}
,

(τ̂k, β̂k) := arg max
(ι,ξ)∈Q̂k

{ξ − ι},

Ω̂τ,βe,c,m :=

{
x : ĥc

(
za+

1

m

)
+tn < ĥc(F̂

−1
Y |X(τ |x))+e

(
ĥc(F̂

−1
Y |X(β|X))−ĥc(F̂−1

Y |X(τ |x))
)
< ĥc

(
zb−

1

m

)
−tn

}
as well as

m̂k = min

{
m ∈ N :

⋂
e∈[− 1

m
, 1
m

],c∈[B1,B2]

Ω̂τ̂k,β̂k
e,c,mk

6= ∅

}
.

and k̂∗ = min{k ∈ N : m̂k < ∞}. In a similar way, estimators l̂ and M̂X for l and MX

can be defined. One has

x∗ − E[X̃] = op(1), ĥc(y)− hc(y) = op(1) and F̂−1
Y |X(τ |x∗)− F−1

Y |X(τ |E[X̃]) = op(1),
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where the last two convergences hold uniformly on compact sets. Therefore,

P (k̂∗ = k∗)→ 1,

P (m̂k∗ = mk∗)→ 1,

P (τ̂k∗ = τk∗)→ 1,

P (β̂k∗ = βk∗)→ 1,

P (l̂ = l)→ 1,

and consequently P (M̂X = MX) → 1, which means that MX can be viewed as known and

not random.

4.1.3 Putting Things together

So far, estimators of all the components in (3.17) apart from λ2 have been presented.

These estimators are now combined to obtain an estimator of the transformation function

h on (y0,∞). While doing so, it is assumed that some y1 ∈ (y0,∞) and a compact set

K ⊆ (y0,∞), on which the transformation function h needs to be estimated, are given. The

extension to (−∞, y0) as well as the estimation of λ2 are postponed to Section 4.1.4.

In (4.8) an estimator for hc was already given. Note that h = hB. Insert each of the

estimators B̃ and B̂ for B from (4.3) or (4.15) to get

ĥ(y) = exp
(
− B̂

∫ y

y1

1

λ̂(u)
du
)
, y ∈ K, (4.16)

and

h̃(y) = exp
(
− B̃

∫ y

y1

1

λ̂(u)
du
)
, y ∈ K. (4.17)

4.1.4 Extending the Estimator to (−∞, y0)

So far, the estimator was only considered on compact sets K ⊆ (y0,∞). Now, the estimator

is extended to arbitrary values y ∈ R. Doing so requires estimators for y0 and λ2. While

an estimator for y0 was already defined in (4.2) an estimator for λ2 is given first, before

these are combined to an estimator ĥ on R and the asymptotic behaviour is examined.

An Estimator for λ2

The presented approach for estimating λ2 will be similar to estimating B by B̃ in (4.3).

Recall the analytic expression (3.17) for h, that is

h(y) =


exp

(
−B

∫ y
y1

1
λ(u) du

)
y > y0

0 y = y0

λ2 exp
(
−B

∫ y
y2

1
λ(u) du

)
y < y0

for some arbitrary fixed value y2 < y0. It is known that λ2 is uniquely determined by

lim
y↘y0

∂

∂y
h(y) = lim

y↗y0

∂

∂y
h(y)

(
=

∂

∂y
h(y0) > 0

)
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as

λ2 = −lim
t→0

exp

(
B

(∫ y0−t

y2

1

λ(u)
du−

∫ y0+t

y1

1

λ(u)
du

))
.

Since estimators for λ,B and y0 are already available, these can be plugged in to obtain

the estimator

λ̃2 = − exp

(
B̃

(∫ ŷ0−tn

y2

1

λ̂(u)
du−

∫ ŷ0+tn

y1

1

λ̂(u)
du

))
(4.18)

for an appropriate sequence tn ↘ 0. Similarly, an estimator

λ̂2 = − exp

(
B̂

(∫ ŷ0−tn

y2

1

λ̂(u)
du−

∫ ŷ0+tn

y1

1

λ̂(u)
du

))
(4.19)

is obtained, when estimating B by B̂ as in (4.15).

A Global Estimator

Having a look at equation (3.17) again, note that estimators for all of its components have

been provided in the previous sections. Hence, these can be used to define an estimator

of the transformation function h that can be applied globally for all y ∈ R. Because h is

continuous in its root y0, one has

B

∫ y

y1

1

λ(u)
du

y↘y0→ ∞ and B

∫ y

y2

1

λ(u)
du

y↗y0→ ∞.

Therefore, to estimate h in a neighbourhood of y0, it might not be a good idea to do so

by estimating B and the integrals directly. To motivate the estimators in (4.20) and (4.21)

below, one can write for an appropriate sequence yn ↘ y0 (e.g. yn = y0 + tn with tn as

above)

h(y) = exp

(
−B

∫ y

y1

1

λ(u)
du

)

= exp

(
−B

∫ y

yn

1

λ(u)− λ(y0)
du−B

∫ yn

y1

1

λ(u)
du

)

= exp

(
−B

∫ y

yn

1
∂
∂yλ(y)

∣∣
y=y0

(u− y0) + o(u− y0)
du

)
h(yn)

≈ exp

(
− B

∂
∂yλ(y)

∣∣
y=y0︸ ︷︷ ︸

=1

∫ y

yn

1

u− y0
du

)
h(yn)

= exp
(

log(y − y0)− log(yn − y0)
)
h(yn)

=
y − y0

yn − y0
h(yn),
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4.2. Asymptotic Behaviour of the Estimator

so that it makes sense to estimate h in a neighbourhood of y0 by a linearisation of ĥ.

For some sequence tn ↘ 0 the resulting estimator on R can be defined by

ĥ(y) =



exp
(
− B̂

∫ y
y1

1
λ̂(u)

du
)
, y ≥ ŷ0 + tn,

y−ŷ0

tn
ĥ(ŷ0 + tn), y ∈ (ŷ0, ŷ0 + tn),

0, y = ŷ0,

ŷ0−y
tn

ĥ(ŷ0 − tn), y ∈ (ŷ0 − tn, ŷ0),

λ̂2 exp
(
− B̂

∫ y
y2

1
λ̂(u)

du
)
, y ≤ ŷ0 − tn.

(4.20)

If (tn)n∈N is chosen appropriately, this estimator is uniformly consistent on compact sets

K ⊆ R (details can be found in part 4.2.1). Again, a similar estimator

h̃(y) =



exp
(
− B̃

∫ y
y1

1
λ̂(u)

du
)
, y ≥ ŷ0 + tn,

y−ŷ0

tn
h̃(ŷ0 + tn), y ∈ (ŷ0, ŷ0 + tn),

0, y = ŷ0,

ŷ0−y
tn

h̃(ŷ0 − tn), y ∈ (ŷ0 − tn, ŷ0),

λ̃2 exp
(
− B̃

∫ y
y2

1
λ̂(u)

du
)
, y ≤ ŷ0 − tn.

(4.21)

is obtained when estimating B and λ2 as in (4.3) and (4.18).

4.2 Asymptotic Behaviour of the Estimator

Here, the asymptotic behaviour of the estimators presented in Section 4.1 is examined.

First, the main results on estimating h1 (defined as in (4.8)), B and h are given. Afterwards,

some minor adjustments taking care of the estimation of y0 and λ2 as well as some technical

part preparing the proof of the main results are presented. The assumptions can be found

in Section 4.5.

4.2.1 Asymptotic Behaviour of the Estimated Transformation Function

In this part, the main results regarding the convergence rates of the estimator of h provided

in the previous Section 4.1 are given. These are separated into Theorem 4.2.2 and Theorem

4.2.4 considering on the one hand the estimation of the integral in (4.8) and on the other

hand the estimation of B. In Theorem 4.2.2, uniform convergence on compact sets K ⊆
(y0,∞) is shown.

Due to the plug in type approach, first an expression for λ̂− λ is proven. This expression

is used in a second step to prove some convergence results on the integral over λ and to

connect this later via (3.17) to the estimation of h. To handle λ̂(u)−λ(u), one can proceed

similarly to Chiappori et al. (2015) and define with the notations from Section 1.1 (e.g. see

(1.3)–(1.4)) and f = fX

Dp,0 = − fx
Φyf2

, Dp,y = − Φx

Φ2
yf
, Dp,x =

1

Φyf
,

Df,0 =
2pfx
Φyf3

− px
Φyf2

+
pyΦx

Φ2
yf

2
, Df,x = − p

Φyf2
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4. Nonparametric Estimation of the Transformation Function in a Heteroscedastic Model

and corresponding estimators of Φ,Φx and Φy with (1.2), (1.5)–(1.7). Here and in the

following, the convention f = fX is used to denote the density of X.

Lemma 4.2.1 Assume (A1)–(A7) and (B1)–(B5) and let K ⊆ R be compact. Then, with

λ(y|x) =

∂FY |X(y|x)

∂x1

∂FY |X(y|x)

∂y

and λ̂(y|x) =

∂F̂Y |X(y|x)

∂x1

∂F̂Y |X(y|x)

∂y

one has

λ̂(y|x)− λ(y|x) = (p̂(y, x)− p(y, x))Dp,0(y, x) + (p̂x(y, x)− px(y, x))Dp,x(y, x)

+ (p̂y(y, x)− py(y, x))Dp,y(y, x) + (f̂(x)− f(x))Df,0(y, x)

+ (f̂x(x)− fx(x))Df,x(y, x) + op

(
1√
n

)
uniformly in x ∈ supp(v) and y ∈ K. Moreover, with λ̂(y) =

∫
v(x)λ̂(y|x) dx from (4.1) it

holds that

λ̂(u)− λ(u) =
1

n

n∑
i=1

(
v(Xi)Dp,0(u,Xi)Khy(u− Yi)−

∂
(
v(Xi)Dp,x(u,Xi)

)
∂x1

Khy(u− Yi)

+ v(Xi)Dp,y(u,Xi)Khy(u− Yi) + v(Xi)Df,0(u,Xi)−
∂
(
v(Xi)Df,x(u,Xi)

)
∂x1

)

+ op

(
1√
n

)

= Op

(√
log(n)

nhy

)
(4.22)

uniformly in y ∈ K.

The proof can be found in Section 4.6.1. Lemma 4.2.1 gives an expression which makes it

possible to extend (or even improve) the convergence rate of λ̂−λ to the one of the integral.

Again, similar techniques as in the paper of Chiappori et al. (2015) are applied.

Theorem 4.2.2 Assume (A1)–(A7) and (B1)–(B5). Then, for all compact intervals

[u1, u2] ⊆ (y0,∞) the process (Zn(y))y∈[u1,u2] defined by

Zn(y) :=
√
n

∫ y

y1

(
1

λ̂(u)
− 1

λ(u)

)
du

converges weakly to a centred Gaussian process Zλ with covariance function κZ which can

be found in the proof in Section 4.6.2.

Asymptotic Behaviour of B̃ and B̂

Before stating Theorem 4.2.4 some further notations and assumptions are needed. Recall

that under the mean square distance from independence approach in 4.1.2 the estimator B̂

was defined as the minimizer with respect to c of

Â(c, ĥ1, F̂
−1
Y |X(τ |X), F̂−1

Y |X(β|X))
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4.2. Asymptotic Behaviour of the Estimator

=

∫
MX

∫
[ea,eb]

(
P̂
(
X ≤ x, ε̃c(ĥ1, F̂

−1
Y |X(τ |X), F̂−1

Y |X(β|X)) ≤ e|X ∈MX

)
− P̂

(
X ≤ x|X ∈MX

)
P̂
(
ε̃c(ĥ1, F̂

−1
Y |X(τ |X), F̂−1

Y |X(β|X)) ≤ e|X ∈MX

))2
de dx.

For appropriate functions h : R → R, fmτ , fmβ : RdX → R write again s = (h, fmτ , fmβ )

and s0 = (h1, F
−1
Y |X(τ |·), F−1

Y |X(β|·))t with h1 from (4.8). Denote the supremum norms of

fmτ , fmβ and h on MX and [za, zb] by ||.||MX
and ||.||[za,zb], respectively. Let C > 0 such

that sup
u∈[za,zb]

∣∣ ∂2

∂u2h1(u)
∣∣ ≤ C

2 and define the set of functions

H =

{
s = (h, fmτ , fmβ )t : h ∈ C2([za, zb]), fmτ , fmβ ∈ C

2(MX), fmτ (MX) ⊆ (za, zb),

fmβ (MX) ⊆ (za, zb),

∣∣∣∣ ∂2

∂u2
h(u)

∣∣∣∣ ≤ C, 2 inf
u∈[za,zb]

∂

∂u
h(u) > inf

u∈[za,zb]

∂

∂u
h1(u)

}
(4.23)

endowed with the supremum norm

||s||H = max
(
||h||[za,zb], ||fmτ ||MX

, ||fmβ ||MX

)
.

Following Section 2.7.1 of Van der Vaart and Wellner (1996), consider for some γ,R > 0

the (Hölder-)class CγR of all functions on MX such that all partial derivatives up to order

bγc are uniformly bounded by R and the partial derivatives of highest order are Lipschitz

of order γ − bγc. More precisely, define for any multi-index j = (j1, ..., jdX ) the differential

Dj =
∂j

∂xj11 ...∂x
jd
d

as well as the norm

||f ||γ = max
j≤bγc

sup
x∈MX

|Djf(x)|+ max
j=bγc

sup
x 6=y∈MX

|Djf(x)−Djf(y)|
||x− y||γ−bγc

,

where the inequality j ≤ bγc has to be read in the sense of
∑dX

i=1 ji ≤ bγc for every multi-

index j = (j1, ..., jdX ). In the case of dX = 1 the norm can be written as

||f ||γ = max
j=1,...,bγc

sup
x∈MX

∣∣∣∣ ∂j∂xj f(x)

∣∣∣∣+ sup
x 6=y∈MX

∣∣ ∂bγc
∂xbγc

f(x)− ∂bγc

∂xbγc
f(y)

∣∣
||x− y||γ−bγc

.

Further, define for some R > 0 the set CγR(MX) as the set of all (sufficiently often differen-

tiable) functions f with ||f ||γ ≤ R and

H̃ =

{
s ∈ H : h ∈ CγhRh([za, zb]), fmτ ∈ C

γfmτ
Rfmτ

(MX), fmβ ∈ C
γfmβ
Rfmβ

(MX)

}
(4.24)

for some constants γh > 1, γfmτ , γfmβ > dX and Rh, Rfmτ , Rfmβ < ∞. For all (x, e) ∈
MX × [ea, eb] let Γ1(c, s0)(x, e) denote the ordinary derivative of GMD(c, s0)(x, e) with

respect to c and let Γ2(c, s0)(x, e)[s−s0] denote the directional derivative of GMD(c, s0)(x, e)

with respect to s, that is

Γ2(c, s0)(x, e)[s− s0] := lim
t→0

GMD(c, s0 + t(s− s0))(x, e)−GMD(c, s0)(x, e)

t
.
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Furthermore, let

DhGMD(c, s0)(x, e)[h− h1],

DfmτGMD(c, s0)(x, e)
[
fmτ − F−1

Y |X(τ |·)
]
,

Dfmβ
GMD(c, s0)(x, e)

[
fmβ − F

−1
Y |X(β|·)

]
denote the directional derivatives with respect to h, fmτ and fmβ , respectively. Now, some

further properties can be formulated. These will allow to proceed in the proof of Theorem

4.2.4 below similarly to Linton et al. (2008). Most of them are already implied by assump-

tions (A1)-(A7),(B1)–(B5) (see Lemma 4.2.3 below). Let GMD and GnMD be defined as

in (4.11) and (4.12) and let ŝ be an estimator of s0. In the proof of Theorem 4.2.4, it will be

shown that the assumptions (C1)–(C3) and (C5) below are already implied by (A1)–(A7)

in Section 3.4 and (M1)–(M5) in Section 4.1.2, while validity of (C4),(C6) and (C6’) for

ŝ as in (4.14) is treated in Lemma 4.2.3 below.

Let MX and [ea, eb] be defined as in the definition of B̂ in Section 4.1.

(C1) One has GMD(B, s0) ≡ 0 and B̂ −B = op(1).

(C2) For all (x, e) ∈MX × [ea, eb] the ordinary derivative (with respect to c) Γ1(c, s0)(x, e)

of GMD(c, s0)(x, e) exists in a neighbourhood of B and is continuous at c = B.

Γ1(B, s0)(x, e) is different from zero on a set with positive λMX×[ea,eb]-measure.

(C3) The directional derivative Γ2(c, s0)(x, e)[s − s0] of GMD(c, s0)(x, e) with respect to

s exists for all c ∈ Bδ, (x, e) ∈ λMX×[ea,eb] and in all directions [s − s0] with s ∈ H̃
and H̃ as in (4.24). Moreover, for any δ > 0 let Bδ be the δ-neighbourhood of B in

[B1, B2] and H̃δ = {s ∈ H̃ : ||s− s0||H < δ}. Consider a positive sequence δn → 0 and

(c, s) ∈ Bδn × H̃δn . Then,

(i) for an appropriate constant C ≥ 0 (independent of c and s) it holds that

||GMD(c, s)−GMD(c, s0)− Γ2(c, s0)[s− s0]||2

≤ C
(
||h− h1||

3
2

[za,zb]
+ ||fmτ − F−1

Y |X(τ |·)||2MX
+ ||fmβ − F

−1
Y |X(β|·)||2MX

)
.

(ii) one has ||Γ2(c, s0)[ŝ− s0]−Γ2(B, s0)[ŝ− s0]|| = op(|c−B|) + op
(
n−

1
2

)
uniformly

in c ∈ Bδn .

(C4) ŝ = (h̄1, f̂mτ , f̂mβ ) is some estimator of s0 with ŝ ∈ H̃ with probability converging to

one, ||h̄1 − h1||
3
2

[za,zb]
= op(n

− 1
2 ) and

||f̂mτ − F−1
Y |X(τ |·)||MX

, ||f̂mβ − F
−1
Y |X(β|·)||MX

= op(n
− 1

4 ).

(C5) sup
||c−B||≤δn,||s−s0||≤δn

||GnMD(c, s)−GMD(c, s)−GnMD(B, s0)||2 = op(n
− 1

2 ).

(C6) For some σ2
A > 0, it holds that

√
n

∫
MX

∫
[ea,eb]

Γ1(B, s0)(x, e)
(
GnMD(B, s0)(x, e) + Γ2(B, s0)(x, e)[ŝ− s0]

)
de dx

D→ N (0, σ2
A).

122



4.2. Asymptotic Behaviour of the Estimator

(C6’) There exist a function ψΓ2 with E[ψΓ2(Y,X)] = o
(
n−

1
2

)
and E[ψΓ2(Y,X)2] ∈ (0,∞)

such that

√
n

∫
MX

∫
[ea,eb]

Γ1(B, s0)(x, e)
(
GnMD(B, s0)(x, e) + Γ2(B, s0)(x, e)[ŝ− s0]

)
de dx

− 1√
n

n∑
i=1

ψΓ2(Yi, Xi)

= op(1). (4.25)

Lemma 4.2.3 Assume (A1)–(A7) from Section 3.4 and (M1)–(M5) for a compact in-

terval [za, zb] ⊆ (y0,∞) as well as (B1)–(B5) and (B3’). If dX = 1 and ŝ is defined as

in (4.14), one has ŝ ∈ H̃ with probability converging to one for γh = γfmτ = γfmβ = 2 and

some sufficiently large constants Rh, Rfmτ , Rfmβ > 0. The second part of (C4) as well as

(C6) and (C6’) are valid, but instead of (4.26) below one has

||Γ2(B, s0)[ŝ− s0]||2 = Op
(

1√
nhx

)
,

and consequently

B̂ −B = op

(
1√
nhx

)
.

The proof is given in Section 4.6.4. For arbitrary dX , the estimators (or the assumptions)

have to be adjusted, such that on the one hand the differentiability and boundedness con-

ditions, that ensure ŝ ∈ H̃, are met and on the other hand the convergence assumption in

(C4) remains valid. This issue is not considered further in this thesis.

Theorem 4.2.4 Assume (A1)–(A7) from Section 3.4 and (M1)–(M5) for some compact

interval [za, zb] ⊆ (y0,∞). Further, let ŝ be an estimator of s0 such that (C4) and (C6)

are valid.

(i) Let

||Γ2(B, s0)[ŝ− s0]||2 = Op
(

1√
n

)
. (4.26)

Then,
√
n(B̂ −B)

D→ ZB,

where ZB ∼ N (0, σ2
B) is a centred, normally distributed random variable with variance

σ2
B =

σ2
A

||Γ1(B, s0)||42

and σA > 0 from (C6).

(ii) If

||Γ2(B, s0)[ŝ− s0]||2 = Op(an) (4.27)

holds for some sequence an ↘ 0 with a−1
n = o

(√
n), one has B̂ −B = op(an).
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4. Nonparametric Estimation of the Transformation Function in a Heteroscedastic Model

The proof can be found in Section 4.6.3. Note that the convergence rate of B̂ to B is

strongly linked to that of the estimated conditional quantile function F̂−1
Y |X as a component

of ŝ.

Another approach presented in 4.1.2 consisted in estimating B via B̃ from (4.3).

Theorem 4.2.5 Assume (A1)–(A7) from Section 3.4 and (B1)–(B5),(B3’) from Section

4.5. Then, √
nh3

y(B̃ −B)
D→ ZB̃ (4.28)

for ZB̃ ∼ N (0, σ2
B̃

) and

σ2
B̃

=

(∫ (
∂

∂z
K(z)

)2

dz

)(∫
v(w)2Dp,y(y0, w)2fY,X(y0, w) dw

)
.

The proof is given in Section 4.6.5.

Combining the Results

Now, everything is prepared to state the main convergence result for the estimator of the

transformation function given in part 4.1.3. First, a convergence result on compact subsets

of (y0,∞) will be provided. An extension to compact subsets of R is given later in Theorem

4.2.11.

Theorem 4.2.6 If not specified further below, let s̄ = (h̄1, f̄mτ , f̄mβ ) be some estimator

of s0 = (h1, F
−1
Y |X(τ |x), F−1

Y |X(β|x)) and define an estimator of h on (y0,∞) as in (4.9) by

h̄(y) = h̄B̂(y) with B̂ from (4.15).

(i) Let h̄1 fulfil

h̄1(y)− h1(y) =
1√
n

n∑
i=1

ψh(Yi, Xi, y) + op

(
1√
n

)
, (4.29)

which holds uniformly on compact sets K ⊆ (y0,∞). Moreover, let the function class

{(v, x) 7→ ψh(v, x, y) : y ∈ K} be Donsker with respect to the distribution law of

(Y,X). Let K ⊆ (y0,∞) be compact. Then, under the assumptions in Theorem 4.2.4

(i) and (C6’) for ŝ = s̄ the stochastic process (Hn(y))y∈K defined by

Hn(y) :=
√
n(h̄(y)− h(y))

converges weakly on compact sets to a centred Gaussian process (Zh(y))y∈K with co-

variance function

κh(u, v) = h(u)h(v)E

[(
Bψh(Y1, X1, u)

h1(u)
+ log(h1(u))ψΓ2(Y1, X1)

)
(
Bψh(Y1, X1, v)

h1(v)
+ log(h1(v))ψΓ2(Y1, X1)

)]
and ψΓ2 as in (C6’). In particular, if (B1)–(B5) are valid and s0 is estimated by ŝ

from (4.14), equation (4.29) is valid and it holds that

κh(u, v) = h(u)h(v)E

[(
Bη1(u) +

∫ u

y1

1

λ(y)
dy ψΓ2(Y1, X1)

)
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(
Bη1(v) +

∫ v

y1

1

λ(y)
dy ψΓ2(Y1, X1)

)]
with η1 as in (4.36).

(ii) Under the assumptions of (ii) in Theorem 4.2.4 one has

h̄(y)− h(y) = op(an)

uniformly on compact sets K ⊆ (y0,∞).

(iii) Let ŝ be defined as in (4.14). For every compact set K ⊆ (y0,∞) and under the as-

sumptions of Theorem 4.2.5, the process (H̃n(y))y∈K defined by H̃n(y) =
√
nh3

y(h̃(y)−
h(y)) with h̃ as in (4.17) converges weakly to the centred Gaussian process

(Zh̃(y))y∈K =

(
h(y)

∫ y

y1

1

λ(u)
du ZB̃

)
y∈K

with ZB̃ from Theorem 4.2.5.

The proof can be found in Section 4.6.6.

Remark 4.2.7 Colling and Van Keilegom (2019) adjusted the estimator of Chiappori et al.

(2015) by first transforming Y with the empirical distribution function F̂Y as explained in

Section 1.4. In the context of the heteroscedastic model presented here, such a pretransfor-

mation is conceivable as well. Although not done by the author, the same techniques as used

in the paper of Colling and Van Keilegom (2019) should work to obtain a result similar to

Theorem 4.2.2. Note that the estimation of F−1
Y |X , if based on the original data, remains

unaffected by this pretransformation

Asymptotic Behaviour of the Estimators of y0 and λ2

Let ĥ be defined as in (4.20). There, estimators for y0 and λ2 with an asymptotic behaviour

which has not been examined yet occur. This will be the subject of the following passages,

before these findings are used to derive a result concerning the asymptotic behaviour of ĥ.

Assume h to be two times continuously differentiable.

Theorem 4.2.8 (A1)–(A7) in Section 3.4 and (B1)–(B5) in Section 4.5. Let ŷ0 be

defined as in (4.2). Then, √
nhy(ŷ0 − y0)

D→ N (0, σ2
y0

)

for

σ2
y0

=

∫
K(z)2 dz

B2

∫
v(w)2Dp,y(y0, w)2fY,X(y0, w) dw.

The proof can be found in Section 4.6.7. To state a general asymptotic result for ĥ, the only

thing missing is the asymptotic behaviour of λ̂2 and λ̃2, respectively. Although based on

the same idea, both of the estimators depend on the respective methods applied to estimate

λ, y0 and B. In the following, the convergence rates of B̃−B and B̂−B are used to define

suitable rates for the sequence (tn)n∈N in (4.21) and (4.20).
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Theorem 4.2.9 Assume (A1)–(A7) in Section 3.4 and (B1)–(B5) as well as (B3’) in

Section 4.5. Let tn ↘ 0 be a sequence with log(n)

tn
√
nhy

= o(1). Then,

h̃(ŷ0 + tn)− h(y0 + tn) = Op

 log(tn)tn√
nh3

y

+
log(n)√
nhy

 .

Further, for the estimator defined in (4.18) one has

λ̃2 − λ2 =
λ2

∂2

∂y2h(y0)tn
∂
∂yh(y0)

+Op

 log(tn)√
nh3

y

+
log(n)

tn
√
nhy

+ op(tn). (4.30)

For tn ∼
( log(n)2

nhy

) 1
4 the fastest convergence rate in (4.30) is reached and

λ̃2 − λ2 =
λ2

∂2

∂y2h(y0)tn
∂
∂yh(y0)

+ op(tn).

The proof is given in Section 4.6.8.

Remark 4.2.10 If an estimator B̂ with B̂ −B = Op(an) for some sequence (an)n∈N with

an ↘ 0 is used to define λ̂2 as in (4.19), one can show similarly that

ĥ(ŷ0 + tn)− h(y0 + tn) = Op

(
log(tn)tnan +

log(n)√
nhy

)

and

λ̂2 − λ2 =
λ2

∂2

∂y2h(y0)tn
∂
∂yh(y0)

+Op

(
log(tn)an +

log(n)

tn
√
nhy

)
+ op(tn).

Asymptotic Behaviour of the Global Estimator

By now, all ingredients have been presented that are necessary to state a uniform conver-

gence result for ĥ on compact sets.

Theorem 4.2.11 Assume (A1)–(A7) in Section 3.4 and (B1)–(B5),(B3’) in Section

4.5. Let tn ↘ 0 be a decreasing sequence.

(i) Assume (M1)–(M5), (4.26) and (4.29). Let B and h be estimated as in (4.15) and

(4.20) with ŝ as in (4.14).

(a) If K ⊆ (y0,∞) is compact, one has

sup
y∈K
|ĥ(y)− h(y)| = Op

(
1√
n

)
.

(b) If K ⊆ [y0,∞) is compact and tn ∼ log(n)√
nhy

, one has

sup
y∈K
|ĥ(y)− h(y)| = Op

(
log(n)√
nhy

)
.
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(ii) Let B and h be estimated as in (4.3) and (4.21). If K ⊆ R is compact and tn ∼( log(n)2

nhy

) 1
4 , one has

sup
y∈K
|h̃(y)− h(y)| = Op

((
log(n)2

nhy

) 1
4

)
.

The proof can be found in Section 4.6.9.

4.2.2 Uniform Convergence Rates for Kernel Estimators

This section deals with kernel estimators and their convergence rates. The notations are

taken from Sections 1.1 and 4.2.1, especially recall the definitions (1.1)–(1.7). Instead of

the general idea that was already captured in Section 1.1 more specific results needed to

examine similar convergence rates for estimates of the conditional distribution and quantile

function are given. Recall that all estimators proposed in Chapter 4 somehow depend on

kernel estimators.

For this purpose, some ideas of Hansen (2008) are borrowed. To unify notations as consis-

tently as possible, define

Ψ̂(x) =
1

nhdXx

n∑
i=1

ZiK

(
x−Xi

hx

)
for some (here independent) random pairs (Zi, Xi), i = 1, ..., n, some bandwidth sequence

hx ↘ 0, some product kernel K with corresponding kernel function K and x ∈ RdX . In

the proofs of the following results, it will be sometimes referred to K as the “kernel” of

Ψ̂ and to the dimension of the domain of K (here dX) is as the “dimension” of Ψ̂. These

terminologies only influence the proofs of the following results and will be explained in

detail there.

In the paper of Hansen (2008), the Zi are replaced by random variables Yi, which possibly

depend on Xi. Here, Zi will be replaced by Khy(y − Yi),Khy(y − Yi) or simply by 1. In

contrast to Hansen (2008), not weakly dependent, but instead independent random pairs

(Zi, Xi), i = 1, ..., n, are considered. It was shown there, that under appropriate conditions

Ψ̂(x)− E[Ψ̂(x)] = Op(an) (4.31)

uniformly on compact (even on appropriately growing) sets, where

an =

(
log(n)

nhdXx

) 1
2

.

Since the most general result is not needed and the proof later due to some minor assumpti-

ons will be sketched anyway, the details of how to obtain equation (4.31) are omitted here.

Note that if assumption (B3) is valid, one has an = op(n
− 1

4 ). This results in the following

lemma.

Lemma 4.2.12 Assume (A1)–(A7) and (B1)–(B5) and let [za, zb] ⊆ R be an arbitrary,

compact interval. Then, one has

sup
y∈[za,zb],x∈RdX

v(x)|p̂(y, x)− p(y, x)| = op
(
n−

1
4
)
,
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sup
y∈[za,zb],x∈RdX

v(x)|p̂x(y, x)− px(y, x)| = op
(
n−

1
4
)
,

sup
y∈[za,zb],x∈RdX

v(x)|p̂y(y, x)− py(y, x)| = op
(
n−

1
4
)
,

sup
x∈RdX

v(x)|f̂(x)− f(x)| = op
(
n−

1
4
)
,

sup
x∈RdX

v(x)|f̂x(x)− fx(x)| = op
(
n−

1
4
)
.

The proof can be found in Section 4.6.10.

Remark 4.2.13 For all sequences (cn)n∈N with at most polynomial growth, the convergence

results in Lemma 4.2.12 can be extended to y ∈ [−cn, cn] similarly to the proof of Theorem 2

of Hansen (2008). Note that the constant q there can be chosen arbitrarily for independent

data.

In the proof of Theorem 4.2.2, these convergence results are used to rewrite the difference

between the quotient of the conditional distribution function of Y conditioned on X and

its empirical counterpart. The main tool for doing so is Lemma 1.1.2. Remember equation

(1.8), that is,

â

b̂
− a

b
=

1

b
(â− a)− a

b2
(b̂− b)− b̂− b

b̂b

(
â− a− a(b̂− b)

b

)
for arbitrary a, b, â, b̂ ∈ R, b, b̂ 6= 0. Using the same techniques as in the proof of Lemma

4.2.12, one can show

Corollary 4.2.14 Assume (A1)–(A7) and (B1)–(B5) and let [za, zb] ⊆ R be an arbitrary

compact interval. Then, one has

sup
x∈RdX

v(x)

∣∣∣∣ ∂∂x1
f̂x(x)− ∂

∂x1
fx(x)

∣∣∣∣ = op(1),

sup
u∈[za,zb],x∈RdX

v(x)

∣∣∣∣ ∂∂up̂x(u, x)− ∂

∂u
px(u, x)

∣∣∣∣ = op(1),

sup
u∈[za,zb],x∈RdX

v(x)

∣∣∣∣ ∂∂up̂y(u, x)− ∂

∂u
py(u, x)

∣∣∣∣ = op(1),

sup
u∈[za,zb],x∈RdX

v(x)

∣∣∣∣ ∂∂u Φ̂x(u, x)− ∂

∂u
Φx(u, x)

∣∣∣∣ = op(1),

sup
u∈[za,zb],x∈RdX

v(x)

∣∣∣∣ ∂∂u Φ̂y(u, x)− ∂

∂u
Φy(u, x)

∣∣∣∣ = op(1),

sup
u∈[za,zb]

∣∣∣∣ ∂∂uλ̂(u)− ∂

∂u
λ(u)

∣∣∣∣ = op(1),

sup
u∈[za,zb]

∣∣∣∣ ∂2

∂u2
λ̂(u)− ∂2

∂u2
λ(u)

∣∣∣∣ = op(1).

Further, the assertion still holds if the weighting function v is omitted as long as x is

restricted to belong to a compact set.
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The proof can be found in Section 4.6.11. Once a convergence result is proven for an

estimator of the conditional distribution function, it can be extended relatively easily to

the corresponding estimator of the conditional quantile function

F̂−1
Y |X(τ |x) = inf {u ∈ R : F̂Y |X(u|x) ≥ τ}

as is done in the following Lemma.

Lemma 4.2.15 Assume (A1)–(A7) and (B1)–(B5) and let [τa, τb] ⊆ (0, 1), [za, zb] ⊆ R
be compact intervals. Then, one has

sup
y∈[za,zb],x∈RdX

v(x)|F̂Y |X(y|x)− FY |X(y|x)| = op
(
n−

1
4
)
,

sup
y∈[τa,τb],x∈RdX

v(x)|F̂−1
Y |X(τ |x)− F−1

Y |X(τ |x)| = op
(
n−

1
4
)
.

The proof can be found in Section 4.6.12.

4.3 Simulations

In this section, the behaviour of the estimators for y0, B and h given in (4.2), (4.3) and

(4.17), respectively, for finite sample sizes is examined. For this purpose, observations of

independent real valued random variables X ∼ U([0, 1]) and ε ∼ U([−1, 1]) are generated.

Afterwards, Y is defined by

Y =

(
1 +X + (1+X)2

2 ε
)3

8
+

7
(
1 +X + (1+X)2

2 ε
)

8
,

that is, model (3.1) is fulfilled with

h−1(y) =
y3

8
+

7y

8
, g(x) = 1 + x and σ(x) =

(1 + x)2

2
.

The transformation function h is chosen such that it is strictly monotonic. Furthermore,

it fulfils the identification conditions h(0) = 0 and h(1) = 1 and thus needs to be linearly

transformed later when comparing it to the estimator h̃. Note that ε does not fulfil as-

sumption (A3). Nevertheless, since the equation (3.3) is based on the idea that the factor

fε
(h(y)−g(x)

σ(x)

)
in (3.2) cancels out when dividing

∂FY |X(y|x)

∂xi
by

∂FY |X(y|x)

∂y , it is tried to keep

fε constant.

The simulations are conducted with the language R (R Core Team (2017)). Some of the

already implemented commands such as integrate and h.select are applied and an interface

for C++ is used to reduce the computation time. The weighting function v is chosen to be

the indicator function of [0, 1]. Instead of integrating

x 7→ v(x)

∂F̂Y |X(y|x)

∂x1

∂F̂Y |X(y|x)

∂y

as in (4.1), the mean of Nx = 100 evaluations of the integrand at equidistant points between

the minimum and the maximum of the observations of X was taken. This is similar to
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4. Nonparametric Estimation of the Transformation Function in a Heteroscedastic Model

what Colling and Van Keilegom (2019) did and to what will be done later in Section

5.5.1 to estimate the transformation function in a homoscedastic model nonparametrically.

To calculate the bandwidths hy and hx, cross validation and the normal reference rule,

respectively, have been applied (Silverman (1986)). The kernel K is chosen to be the

Epanechnikov kernel.

According to equation (3.7), B can be expressed as

B =

∫ 1

0

2

1 + x
dx = log(4) ≈ 1.39.

Solving for λ(y) = 0 leads to the equation 1 = log(4)h(y) and thus to

y0 = h−1

(
1

log(4)

)
=

1

8 log(4)3
+

7

8 log(4)
≈ 0.68.

Observations are simulated for sample sizes of n ∈ {100, 200, 500, 1000, 2000, 5000, 10000}.
For computational reasons, the number m of simulation runs for each of the scenarios

decreases with the sample size and can be found in Table 4.1. Figure 4.1 shows a realization

Sample Size n = 100 n = 200 n = 500 n = 1000 n = 2000 n = 5000 n = 10000

Number of Sim. Runs m = 500 m = 500 m = 200 m = 200 m = 100 m = 50 m = 20

Table 4.1: The sample sizes and the corresponding number of the simulation runs.
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Figure 4.1: One realization of the estimated transformation function (black curve) and

the true transformation function (red curve) are shown for n = 500.

of the estimator h̃ in (4.17) which is based on n = 500 observations in black and the

true transformation function h in red, both for y > ŷ0. The estimator λ̂2 of λ2 has not
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4.3. Simulations

been simulated. Here and in the following, the scale constraint in (3.9) for y1 = 2 and

λ1 = 1 is used, that is h̃(2) = 1 = h(2). Moreover, to compare the estimator to the true

transformation function, h is linearly transformed to fulfil h(ŷ0) = 0 (compare to (3.12)).

Therefore, both functions have to intersect at least in ŷ0 and y1 = 2. The approximation in

Figure 4.1 seems to be quite good, although the estimator for values below y1 = 2 slightly

overestimates the true transformation function, whereas the opposite holds for values above

y1 = 2. As can be seen in Graphic 4.2, this phenomenon carries over to all of the simulated

scenarios. There, the difference h̃−h of the estimator and the true transformation function,
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Figure 4.2: The difference of the true transformation function and its estimator under

the same identification conditions is shown for the sample sizes of n = 100, n = 200, n =

500, n = 1000, n = 2000, n = 5000, n = 10000.

again based on the same identification conditions, for different sample sizes is shown. Up to

a sample size of n = 2000, m = 100 curves are displayed, whereas for n = 5000 only m = 50

curves are shown. As expected, the difference decreases with a growing sample size. Since

h(y) ∈ (0, 1) for all y ∈ (y0, 2) and h(y) > 1 for all y > 2, the phenomenon of overestimating
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4. Nonparametric Estimation of the Transformation Function in a Heteroscedastic Model

h for values below y1 = 2 and underestimating h for values above y1 = 2 might indicate an

underestimation of B. This theory is supported by the data listed in Table 4.2. Whereas

Sample Size Mean of ŷ0 Mean of B̃ Est. MISE

n = 100 1.14 0.80 33.19

n = 200 0.88 0.76 12.90

n = 500 0.64 0.81 2.38

n = 1000 0.65 0.85 2.25

n = 2000 0.66 0.99 2.19

n = 5000 0.71 1.10 2.30

n = 10000 0.66 1.16 1.92

True Values 0.68 1.39

Table 4.2: Means of the estimators ŷ0 and B̃ as well as the estimated MISE of the

estimated transformation function for the sample sizes of n = 100, n = 200, n = 500, n =

1000, n = 2000, n = 5000, n = 10000.

ŷ0 already seems to be unbiased for n = 500, the value of B̃ is even for n = 10000 below

the true value of B = 1.39, although the gap between B̃ and B decreases with a growing

sample size. The reason for this might be the estimation of B via the derivative of λ in y0,

since

λ̂(y) =

∫
v(x)

∂F̂Y |X(y|x)

∂x1

∂F̂Y |X(y|x)

∂y

dx

is already based on derivatives. Consequently, estimating B by B̃ leads to the issue of

estimating second order derivatives. In this context, kernel estimators sometimes perform

rather poorly.

Finally, some QQ-plots for ŷ0 and B̃ are given in Figure 4.3. There, the empirical quantiles

of the estimators are compared to those of standard normally distributed random variables.

While the distribution of ŷ0 seems to be almost normal already for a sample size of n = 500,

the corresponding curve for B̃ has a small bump for n = 500, but at least seems to be linear

for n = 5000. This indicates a slower convergence to the asymptotic distribution than for

ŷ0. One possibility to overcome especially the bias problem might consist in the usage of

B̂ instead of B̃, but this is not explored further in this thesis.
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Figure 4.3: Normal-QQ-Plots of the estimators ŷ0 and B̃ for the sample sizes of n = 500

and n = 5000.

4.4 Discussion

The so far most general approach for estimating the transformation function in the hete-

roscedastic model (3.1) has been developed. Depending on the chosen approach for esti-

mating B, two estimators ĥ and h̃ related to that of Chiappori et al. (2015) have been

provided and the advantages and disadvantages of both have been discussed briefly. Con-

sistency results for the proposed estimators and its components have been provided. A

weak convergence result of the stochastic process (
√
n(ĥ(y)−h(y)))y∈K on compact sets to

a centred Gaussian process has been given.

Since the procedure is quite sophisticated, future research could consist in simplifying the

estimation of at least some components of ĥ or h̃. Moreover, recall that the estimator is

based on equation (3.3), which in turn is based on the fact that

∂FY |X(y|x)

∂y
= fε

(
h(y)− g(x)

σ(x)

)
h′(y)

σ(x)
> 0.

From a theoretical point of view, the part depending on the density fε does not influence

the estimator and cancels out when
∂FY |X(y|x)

∂x1
is divided by

∂FY |X(y|x)

∂y . Nevertheless, the

estimated values of
∂FY |X(y|x)

∂x1
and

∂FY |X(y|x)

∂y might be extremely small in applications, which

might lead to numerical problems. Additionally, an examination of the behaviour of B̂ for

finite sample sizes would be worthwhile, since the usage of B̃ seems to be accompanied with

a bias.
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4.5 Assumptions

In the following, the assumptions of this chapter are listed. Additionally, assume (A1)–

(A7) from Chapter 3.

Let m ∈ N and let v be a weight function with a compact support.

(B1) Let (Y,X), (Y1, X1), ..., (Yn, Xn) be independent and identically distributed observa-

tions from model (3.1). Let the density fY,X of the joint distribution of (Y,X) be

(m+ 1)-times continuously differentiable. Assume fY,X to be bounded and fX to be

bounded away from zero on the support of v.

(B2) Let K be a continuously differentiable kernel of order m with compact support.

(B3) Let
√
nhmy → 0,

√
nhmx → 0,

√
nhyh

dX
x

log(n) →∞ and
√
nh

dX+2
x

log(n) →∞.

(B4) Let v be (m+ 1)-times continuously differentiable.

(B5) Let there exist some c > 0 such that M̃>c = M>c ∩ supp(v) or M̃<−c = M<−c ∩
supp(v) fulfil assumption (A7).

In Section 4.1.2, the assumption (B3’) below, which is slightly stronger than assumption

(B3), will be used.

(B3’) Let
nh5

yhx
log(n) →∞,

nh
dX+4
x

log(n) →∞ and
nh3

xh
3
y

log(n) →∞.

4.6 Proofs

This section contains the proofs of this chapter. The proofs are organized in a similar order

as before, that is, the main results are proven first before the auxiliary assertions from

Section 4.2.2 are considered.

4.6.1 Proof of Lemma 4.2.1

Proof: The proof follows the same line as the one of Lemma 1 of Chiappori et al. (2015).

For reasons of clarity, the arguments of the occurring functions are omitted.

Recall equation (1.8):

â

b̂
− a

b
=

1

b
(â− a)− a

b2
(b̂− b)− b̂− b

b̂b

(
â− a− a(b̂− b)

b

)
for arbitrary a, b, â, b̂ ∈ R, b, b̂ 6= 0. Since

Φy =
py
f

and Φx =
px
f
− pfx

f2
,

this results in

Φ̂x

Φ̂y

− Φx

Φy
=

1

Φy
(Φ̂x − Φx)− Φx

Φ2
y

(Φ̂y − Φy)−
Φ̂y − Φy

Φ̂yΦy

(
Φ̂x − Φx −

Φx(Φ̂y − Φy)

Φy

)
, (4.32)
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as well as

Φ̂y − Φy =
1

f
(p̂y − py)−

py
f2

(f̂ − f)− f̂ − f
f̂f

(
p̂y − py −

py(f̂ − f)

f

)
︸ ︷︷ ︸

=op
(

1√
n

)
. (4.33)

Here, uniform convergence results like

sup
x∈supp(v)

v(x)|f̂(x)− f(x)| = op
(
n−

1
4
)

or

sup
y∈[u1,u2], x∈supp(v)

|p̂y(y, x)− py(y, x)| = op
(
n−

1
4
)

are guaranteed by Lemma 4.2.12. To rewrite Φ̂x − Φx, note that

p̂f̂x

f̂2
− pfx

f2
=

1

f2
(p̂f̂x − pfx)− pfx

f4
(f̂2 − f2) + op

(
1√
n

)

=
1

f2
((p̂− p)f̂x + p(f̂x − fx))− pfx

f4
(f̂ − f)(f̂ + f) + op

(
1√
n

)

=
fx
f2

(p̂− p) +
p

f2
(f̂x − fx)− 2pfx

f3
(f̂ − f) + op

(
1√
n

)
and therefore (again with Lemma 4.2.12),

Φ̂x−Φx = −fx
f2

(p̂−p)+
1

f
(p̂x−px)+

(
2pfx
f3
− px
f2

)
(f̂−f)− p

f2
(f̂x−fx)+op

(
1√
n

)
. (4.34)

Inserting this into equation (4.32) leads to the first assertion about the expression for

λ̂(y|x)− λ(y|x). Remark that

Dp,0p+Dp,xpx +Dp,ypy +Df,0f +Df,xfx

= −Φfx
Φyf

+
px

Φyf
− Φx

Φy
+

2Φfx
Φyf

− px
Φyf

+
Φx

Φy
− Φfx

Φyf

= 0

and thus

λ̂(u)− λ(u) =

∫ (
λ̂(u|x)− λ(u|x)

)
v(x) dx

=

∫ (
Dp,0(u, x)p̂(u, x) +Dp,x(u, x)p̂x(u, x) +Dp,y(u, x)p̂y(u, x)

+Df,0(u, x)f̂(x) +Df,x(u, x)f̂x(x)
)
v(x) dx+ op

(
1√
n

)
.

Inserting the definition of p̂, p̂x, p̂y, f̂ , f̂x one obtains

λ̂(u)− λ(u)

=
1

n

n∑
i=1

∫ (
Dp,0(u, x)Khy(u− Yi)Khx(x−Xi) +Dp,x(u, x)Khy(u− Yi)

∂Khx(x−Xi)

∂x1
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+Dp,y(u, x)Khy(u− Yi)Khx(x−Xi) +Df,0(u, x)Khx(x−Xi)

+Df,x(u, x)
∂Khx(x−Xi)

∂x1

)
v(x) dx+ op

(
1√
n

)
.

Due to the assumptions (B2) and (B3), a Taylor expansion leads to∫
l(x)Khx(x−Xi) dx =

∫
l(Xi + hxx)K(x) dx = l(Xi) + o

(
1√
n

)
for every m-times continuously differentiable function l with bounded support. Moreover,

integration by parts yields

−
∫
l(x)

∂

∂x1
Khx(x−Xi) dx =

∫
Khx(x−Xi)

∂

∂x1
l(x) dx

=

∫
K(x)

∂

∂x1
l(x)

∣∣∣∣
x=Xi+hxx

dx

=
∂

∂x1
l(x)

∣∣∣∣
x=Xi

+ o

(
1√
n

)
for every (m + 1)-times continuously differentiable function l with bounded support. Due

to the compactness of supp(v) and [u1, u2] all derivatives of Dp,0, ..., Df,x are bounded, so

that

λ̂(u)− λ(u) =
1

n

n∑
i=1

(
v(Xi)Dp,0(u,Xi)Khy(u− Yi)−

∂v(Xi)Dp,x(u,Xi)

∂x1
Khy(u− Yi)

+ v(Xi)Dp,y(u,Xi)Khy(u− Yi) + v(Xi)Df,0(u,Xi)−
∂v(Xi)Df,x(u,Xi)

∂x1

)

+ op

(
1√
n

)
.

Finally,

sup
y∈K
|λ̂(u)− λ(u)| = Op

(√
log(n)

nhy

)
follows as in the proof of Lemma 4.2.12 below. �

4.6.2 Proof of Theorem 4.2.2

The main idea of the proof is to find an expression∫ y

y1

(
1

λ̂(u)
− 1

λ(u)

)
du =

1

n

n∑
i=1

(ηi(y)− E[ηi(y)]) + op

(
1√
n

)
(4.35)

(ηi will be defined later) for which some weak convergence results can be applied.

First, remark that since [u1, u2] ⊆ (y0,∞) is compact, u 7→ 1
λ(u) is bounded and bounded

away from zero on [u1, u2]. Hence, one has∫ y

y1

(
1

λ̂(u)
− 1

λ(u)

)
du =

∫ y

y1

λ(u)− λ̂(u)

λ̂(u)λ(u)
du
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=

∫ y

y1

λ(u)− λ̂(u)

λ(u)2

(
1− λ̂(u)− λ(u)

λ̂(u)

)
du.

Possibly, extend [u1, u2] such that y1 is included (e.g. consider [min(y1, u1),max(y1, u2)]).

Due to assumption (B3), Lemma 4.2.1 leads to

Zn(u) =
√
n

(∫ y

y1

λ(u)− λ̂(u)

λ(u)2
du+Op

(
sup

u∈[u1,u2]
|λ̂(u)− λ(u)|2

))

(4.22)
=
√
n

(∫ y

y1

λ(u)− λ̂(u)

λ(u)2
du

)
+ op(1).

Moreover, Lemma 4.2.1 yields

λ̂(u)− λ(u) =
1

n

n∑
i=1

(
v(Xi)Dp,0(u,Xi)Khy(u− Yi)−

∂v(Xi)Dp,x(u,Xi)

∂x1
Khy(u− Yi)

+ v(Xi)Dp,y(u,Xi)Khy(u− Yi) + v(Xi)Df,0(u,Xi)−
∂v(Xi)Df,x(u,Xi)

∂x1

)

+ op

(
1√
n

)
uniformly in u ∈ [u1, u2], that is∫ y

y1

λ(u)− λ̂(u)

λ(u)2
du =

1

n

n∑
i=1

∫ y

y1

−1

λ(u)2

(
v(Xi)Dp,0(u,Xi)Khy(u− Yi)

− ∂v(Xi)Dp,x(u,Xi)

∂x1
Khy(u− Yi) + v(Xi)Dp,y(u,Xi)Khy(u− Yi)

+ v(Xi)Df,0(u,Xi)−
∂v(Xi)Df,x(u,Xi)

∂x1

)
du+ op

(
1√
n

)

=:
1

n

n∑
i=1

η̃i(y) + op

(
1√
n

)
.

The following lemma is similar to Proposition 2 of Colling and Van Keilegom (2019). Since

the reasoning in the proof differs from that of Colling and Van Keilegom (2019), the proof

is given as well.

Lemma 4.6.1 Let [u1, u2] ⊆ (y0,∞) be compact, l : R × RdX → R, (u, x) 7→ l(u, x), be

bounded on compact sets and let l have a compact support with respect to the x-component,

which will be denoted by suppx(l) in the following. Then, under the conditions of Theorem

4.2.2 one has

1

n

n∑
i=1

∫ y

y1

l(u,Xi)
(
Khy(u− Yi)− I{Yi≤u}

)
du = op

(
1√
n

)
uniformly in y ∈ [u1, u2].

Proof: Define q(x, z|y, a) =
∫ y
y1
l(u, x)I{u≥z+a} du. Then, q is bounded. One has

1

n

n∑
i=1

∫ y

y1

l(u,Xi)
(
Khy(u− Yi)− I{Yi≤u}

)
du
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=
1

n

n∑
i=1

∫ y

y1

l(u,Xi)

∫ (
I{Yi≤u−thy} − I{Yi≤u}

)
K(t) dt du

=
1

n

n∑
i=1

∫ (
q(Xi, Yi|y, thy)− q(Xi, Yi|y, 0)

)
K(t) dt.

Let δ > 0 be such that [u1− δ, u2 + δ] ⊆ (y0,∞). Further, for all y, ỹ ∈ [u1, u2], a, ã ∈ [−δ, δ]
and probability measures Q one has√

EQ
[(
q(X1, Y1|y, a)− q(X1, Y1|ỹ, ã)

)2]
=

√
EQ

[(∫ ∞
y1

l(u,X1)
(
I{y≥u≥Y1+a} − I{ỹ≥u≥Y1+ã}

)
du

)2]
≤ sup

u∈[u1,u2],x∈suppx(l)
|l(u, x)|(|y − ỹ|+ |a− ã|).

Hence, the covering numbers of the class

F =
{

(x, z) 7→ q(x, z|y, a) : y ∈ [u1, u2], a ∈ [−δ, δ]
}

can be bounded by N (ε,F , L2(Q)) ≤ C
ε2

for an appropriate constant C > 0 (independent

of Q), so that by Theorem 2.5.2 of Van der Vaart and Wellner (1996) F is Donsker. Since

sup
y∈[u1,u2],t∈supp(K)

E
[(
q(Xi, Yi|y, thy)− q(Xi, Yi|y, 0)

)2]
= O(h2

y) = o(1)

Corollary 2.3.12 of Van der Vaart and Wellner (1996) leads to

sup
y∈[u1,u2],t∈supp(K)

∣∣∣∣ 1n
n∑
i=1

(
q(Xi, Yi|y, thy)− q(Xi, Yi|y, 0)

− E
[
q(Xi, Yi|y, thy)− q(Xi, Yi|y, 0)

])∣∣∣∣
= op

(
1√
n

)
.

The integrated expectation in turn can be bounded via a Taylor expansion

sup
y∈[u1,u2]

∣∣∣∣E[ ∫ (q(X,Y |y, thy)− q(X,Y |y, 0)
)
K(t) dt

]∣∣∣∣
= sup

y∈[u1,u2]

∣∣∣∣ ∫ E

[ ∫ y

y1

l(u,X)(FY |X(u− thy|X)− FY |X(u|X)) du

]
K(t) dt

∣∣∣∣
= O

(
hmy
)
.

Now, the assertion is implied by assumption (B3). �

Define

ηi(y) :=

∫ y

y1

−1

λ(u)2

(
v(Xi)Dp,0(u,Xi)−

∂v(Xi)Dp,x(u,Xi)

∂x1

)
I{u≥Yi} du
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− v(Xi)Dp,y(Yi, Xi)

λ(Yi)2

(
I{Yi≤y} − I{Yi≤y1}

)
+

∫ y

y1

−1

λ(u)2

(
v(Xi)Df,0(u,Xi)−

∂v(Xi)Df,x(u,Xi)

∂x1

)
du. (4.36)

Then, Lemma 4.6.1 leads to

1

n

n∑
i=1

η̃i(y) =
1

n

n∑
i=1

∫ y

y1

−1

λ(u)2

(
v(Xi)Dp,0(u,Xi)I{u≥Yi} −

∂v(Xi)Dp,x(u,Xi)

∂x1
I{u≥Yi}

+ v(Xi)Dp,y(u,Xi)Khy(u− Yi) + v(Xi)Df,0(u,Xi)−
∂v(Xi)Df,x(u,Xi)

∂x1

)
du

+ op

(
1√
n

)

=
1

n

n∑
i=1

ηi(y) + op

(
1√
n

)
,

where ∫ y

y1

−1

λ(u)2
v(Xi)Dp,y(u,Xi)Khy(u− Yi) du

= −
∫

1

λ(Yi + hyu)2
v(Xi)Dp,y(Yi + hyu)K(u)

(
I{Yi≤y−hyu} − I{Yi≤y1−hyu}

)
du

= −v(Xi)Dp,y(Yi, Xi)

λ(Yi)2

(
I{Yi≤y} − I{Yi≤y1}

)
+ op

(
1√
n

)
.

can be shown similarly to Lemma 4.6.1. If one is able to prove E[ηi(y)] = op

(
1√
n

)
uniformly

in y ∈ [u1, u2] this would prove equation (4.35). Indeed, one has

E[ηi(y)]

=

∫ y

y1

−1

λ(u)2

∫ (
v(x)Dp,0(u, x)

∫ u

−∞
fY,X(z, x) dz − ∂v(x)Dp,x(u, x)

∂x1

∫ u

−∞
fY,X(z, x) dz

+ v(x)Dp,y(u, x)fY,X(u, x) + v(x)Df,0(u, x)f(x)−
∂v(x)Df,x(u, x)

∂x1
f(x)

)
dx du

=

∫ y

y1

−1

λ(u)2

∫ (
v(x)Dp,0(u, x)p(u, x)− ∂v(x)Dp,x(u, x)

∂x1
p(u, x)

+ v(x)Dp,y(u, x)py(u, x) + v(x)Df,0(u, x)f(x)−
∂v(x)Df,x(u, x)

∂x1
f(x)

)
dx du

=

∫ y

y1

−1

λ(u)2

∫
v(x)

(
Dp,0(u, x)p(u, x) +Dp,x(u, x)px(u, x)

+Dp,y(u, x)py(u, x) +Df,0(u, x)f(x) +Df,x(u, x)fx(x)

)
dx du

= 0. (4.37)
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So far, the asymptotic representation∫ y

y1

(
1

λ̂(u)
− 1

λ(u)

)
du =

1

n

n∑
i=1

(ηi(y)− E[ηi(y)]) + op

(
1√
n

)
was proven. It remains to show weak convergence of the corresponding process to an

appropriate Gaussian process. For this purpose, define

ηaz,x(y) :=

∫ y

y1

−1

λ(u)2

(
v(x)Dp,0(u, x)− ∂v(x)Dp,x(u, x)

∂x1

)
I{u≥z} du

+

∫ y

y1

−1

λ(u)2

(
v(x)Df,0(u, x)−

∂v(x)Df,x(u, x)

∂x1

)
du,

ηbz,x(y) := −
(
v(x)Dp,y(z, x)

λ(z)2

)
+

(
I{z≤y} − I{z≤y1}

)
,

ηcz,x(y) :=

(
v(x)Dp,y(z, x)

λ(z)2

)
−

(
I{z≤y} − I{z≤y1}

)
,

where for some value a ∈ R the terms (a)+ and (a)− denote the positive and negative part

of a, respectively. Hence,

ηi(y) = ηaYi,Xi(y) + ηbYi,Xi(y) + ηcYi,Xi(y).

It can be easily seen that ηaz,x(y), ηbz,x(y) and ηcz,x(y) are bounded by some constant C̃ > 0

uniformly in y, ỹ ∈ [u1, u2]. In the following, it will be proven, that the function classes

F j :=
{

(z, x) 7→ ηjz,x(y), y ∈ [u1, u2]
}
, j ∈ {a, b, c},

are Donsker. Example 2.10.7 of Van der Vaart and Wellner (1996) then implies that the

class F = {(z, x) 7→ ηz,x(y), y ∈ [u1, u2]} is Donsker as well. While the Donsker property of

Fb and Fc can be shown by standard arguments as for indicator functions, one has

|ηaz,x(y)− ηaz,x(ỹ)| =
∣∣∣∣ ∫ y

ỹ

−1

λ(u)2

(
v(x)Dp,0(u, x) +

∂v(x)Dp,x(u, x)

∂x1

)
I{u≥z} du

+

∫ y

ỹ

−1

λ(u)2

(
v(x)Df,0(u, x) +

∂v(x)Df,x(u, x)

∂x1

)
du

∣∣∣∣
≤ C|y − ỹ|

for all y, ỹ ∈ [u1, u2] and an appropriate constant C > 0, so that√
E[(ηaZ1,X1

(y)− ηaZ1,X1
(ỹ))2] ≤ C|ỹ − y|.

Let ξ > 0. Then, ξ-brackets [l, u] for the function class Fa can be defined as

l(z, x) = ηaz,x(y∗j )−
√
ξ

C
and u(z, x) = ηaz,x(y∗j ) +

√
ξ

C
, j = 1, ...,K,

for some K ∈ N and appropriate values y∗1, ..., y
∗
K ∈ [u1, u2]. Consequently, the bracketing

number can be deduced from that of [u1, u2] and for some constant C the bracketing integral∫ ∞
0

√
log(N[ ](ε,F , L2(P Y,X))) dε = C

∫ ∞
0

√
log

(
max

(
1

ε2
, 1

))
dε <∞
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is finite. Theorem 2.5.6 of Van der Vaart and Wellner (1996) ensures that Fa is Donsker,

as long as the finite dimensional distributions converge, but this in turn (as for Fb,Fc

and F) is implied by the multivariate Central Limit Theorem. It was already shown that

E[ηi(y)] = 0 for y ∈ [u1, u2]. Let ỹ, y ∈ [u1, u2]. After some rather technical computations

for the indicator functions, the covariance function can be written as

κZ(y, ỹ)

= E[η1(y)η1(ỹ)]

= E

[(∫ y

y1

−1

λ(u)2

(
v(X1)Dp,0(u,X1)− ∂v(X1)Dp,x(u,X1)

∂x1

)
I{u≥Y1} du

− v(X1)Dp,y(Y1, X1)

λ(Y1)2

(
I{Y1≤y} − I{Y1≤y1}

)
+

∫ y

y1

−1

λ(u)2

(
v(X1)Df,0(u,X1)−

∂v(X1)Df,x(u,X1)

∂x1

)
du

)
(∫ ỹ

y1

−1

λ(t)2

(
v(X1)Dp,0(t,X1)− ∂v(X1)Dp,x(t,X1)

∂x1

)
I{t≥Y1} dt

− v(X1)Dp,y(Y1, X1)

λ(Y1)2

(
I{Y1≤ỹ} − I{Y1≤y1}

)
+

∫ ỹ

y1

−1

λ(t)2

(
v(X1)Df,0(t,X1)−

∂v(X1)Df,x(t,X1)

∂x1

)
dt

)]

=

∫ y

y1

∫ ỹ

y1

∫
1

λ(u)2λ(t)2

(
v(X1)Dp,0(u,X1)− ∂v(X1)Dp,x(u,X1)

∂x1

)
(
v(X1)Dp,0(t,X1)− ∂v(X1)Dp,x(t,X1)

∂x1

)
p(u ∧ t, x) dx dt du

+

∫ y1∨(y∧ỹ)

y1∧(y∨ỹ)

∫ (
v(x)Dp,y(z, x)

λ(z)2

)2

fY,X(z, x) dx dz

+

∫ y

y1

∫ ỹ

y1

∫
1

λ(u)2λ(t)2

(
v(x)Df,0(u, x)−

∂v(x)Df,x(u, x)

∂x1

)
(
v(x)Df,0(t, x)−

∂v(x)Df,x(t, x)

∂x1

)
f(x) dx dt du

+ (1− 2I{y1≥ỹ})

∫ y

y1

∫ u∧(ỹ∨y1)

u∧ỹ∧y1

∫
1

λ(u)2λ(z)2

(
v(x)Dp,0(u, x)− ∂v(x)Dp,x(u, x)

∂x1

)
v(x)Dp,y(z, x)fY,X(z, x) dx dz du

+ (1− 2I{y1≥y})

∫ ỹ

y1

∫ u∧(y∨y1)

u∧y∧y1

∫
1

λ(u)2λ(z)2

(
v(x)Dp,0(u, x)− ∂v(x)Dp,x(u, x)

∂x1

)
v(x)Dp,y(z, x)fY,X(z, x) dx dz du
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+

∫ y

y1

∫ ỹ

y1

1

λ(u)2λ(t)2

(
v(x)Dp,0(u, x)− ∂v(x)Dp,x(u, x)

∂x1

)
(
v(x)Df,0(t, x)−

∂v(x)Df,x(t, x)

∂x1

)
p(u, x) dx dt du

+

∫ ỹ

y1

∫ y

y1

1

λ(u)2λ(t)2

(
v(x)Dp,0(u, x)− ∂v(x)Dp,x(u, x)

∂x1

)
(
v(x)Df,0(t, x)−

∂v(x)Df,x(t, x)

∂x1

)
p(u, x) dx dt du

+ (1− 2I{y1≤y})

∫ ỹ

y1

∫ y∨y1

y∧y1

1

λ(z)2λ(t)2
v(x)Dp,y(z, x)

(
v(x)Df,0(t, x)−

∂v(x)Df,x(t, x)

∂x1

)
fY,X(z, x) dx dz dt

+ (1− 2I{y1≤ỹ})

∫ y

y1

∫ ỹ∨y1

ỹ∧y1

1

λ(z)2λ(t)2
v(x)Dp,y(z, x)

(
v(x)Df,0(t, x)−

∂v(x)Df,x(t, x)

∂x1

)
fY,X(z, x) dx dz dt.

Finally, the weak convergence

(Zn(y))y∈[u1,u2]  (Z(y))y∈[u1,u2]

was proven, where Z is a centred Gaussian process with covariance function κZ . �

4.6.3 Proof of Theorem 4.2.4

As already mentioned, the estimation procedure described in Section 4.1.2 is related to the

Mean-Square-Distance-From-Independence approach of Linton et al. (2008). There, the

results of Chen et al. (2003) were used to prove asymptotic normality. Although calculations

can not be carried over directly to the approach here, the following proof uses quite similar

modifications of the results of Chen et al. (2003) as Linton et al. (2008). Let h, fmτ and

fmβ be some appropriate functional parameters. With the notations of Theorem 2 of Chen

et al. (2003) one would have (view h as a functional parameter as well)

θ = c,

h = (h, fmτ , fmβ )t = s,

M(θ, h)(x, e) = GMD(c, s)(x, e).

In this proof, use the notations of Linton et al. (2008) and write

s = (h, fmτ , fmβ )t,

GMD(c, s)(x, e) = P (X ≤ x, ε̃c(h, fmτ , fmβ ) ≤ e|X ∈MX)

− P (X ≤ x|X ∈MX)P (ε̃c(h, fmτ , fmβ ) ≤ e|X ∈MX),
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GnMD(c, s)(x, e) = P̂ (X ≤ x, ε̃c(h, fmτ , fmβ ) ≤ e|X ∈MX)

− P̂ (X ≤ x|X ∈MX)P̂ (ε̃c(h, fmτ , fmβ ) ≤ e|X ∈MX)

and

A(c, s) = ||GMD(c, s)||2

instead. Recall the definition of B̂:

B̂ = arg min
c∈[B1,B2]

Â(c, ŝ) = arg min
c∈[B1,B2]

||GnMD(c, ŝ)||2.

Here, ||.||2 denotes the L2-norm on MX × [ea, eb]. Define

kc(s, x, e) =
h1

(
h−1
((
hc(fmτ (x)) + e(hc(fmβ (x))− hc(fmτ (x)))

) 1
c
))B − g(x)

σ(x)

with h1 as in (4.8), so that h = hB1 and due to the model equation (3.1), it holds that

GMD(c, s)(x, e)

= P (X ≤ x, ε̃c(s) ≤ e|X ∈MX)− P (X ≤ x|X ∈MX)P (ε̃c(s) ≤ e|X ∈MX)

= P

(
X ≤ x, hc(Y )− hc(fmτ (X))

hc(fmβ (X))− hc(fmτ (X))
≤ e|X ∈MX

)

− P (X ≤ x|X ∈MX)P

(
hc(Y )− hc(fmτ (X))

hc(fmβ (X))− hc(fmτ (X))
≤ e|X ∈MX

)
= P (X ≤ x, ε ≤ kc(s,X, e)|X ∈MX)

− P (X ≤ x|X ∈MX)P (ε ≤ kc(s,X, e)|X ∈MX).

The function classes H and H̃ were defined in (4.23) and (4.24). For any δ > 0, Bδ was

defined in (C3) as a δ-neighbourhood of B in [B1, B2] and H̃δ = {s ∈ H̃ : ||s− s0||H < δ}.
Sometimes, the indices will be omitted if it is clear from the context, which norm is used.

To proceed as in the proof of Theorem 2 of Chen et al. (2003) or more precisely as in the

proof of a slightly modified version in the paper of Linton et al. (2008), there are several

conditions that have to be proven, namely (C1)–(C3) and (C5). The conditions (C4) and

(C6) have been assumed in the statement, see Lemma 4.2.3 for a discussion on validity of

(C4) and (C6).

Each of the following lemmas is dedicated to one of these assumptions. Throughout the rest

of the proof and especially in each of the following lemmas, (A1)–(A7) will be assumed.

On the following pages, these auxiliary lemmas are proven. The actual proof, in which all

of these statements are connected to finally prove the original assertion, can be found on

page 163. The next Lemma uses similar techniques as Corollary 3.2.3 of Van der Vaart and

Wellner (1996).

Lemma 4.6.2 With A as in (4.13), it holds that A(B, s0) = 0 and B̂−B = op(1), that is,

(C1) is valid.
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Proof: The first part was already shown in Section 4.1.2. For the second part, consider

the function classes

F = {(X, ε) 7→ I{X∈MX}I{ε≤kc(h,fmτ ,fmβ ,X,e)} : s ∈ H, c ∈ [B1, B2], e ∈ [ea, eb]}

and

F̃ = {(X, ε) 7→ I{X∈MX}I{X≤x}I{ε≤kc(h,fmτ ,fmβ ,X,e)} : s ∈ H, c ∈ [B1, B2], x ∈MX , e ∈ [ea, eb]}.

It will be shown in the proof of Lemma 4.6.6 that the classes F and F̃ are Donsker with

respect to L2
(
P (X,ε)

)
. Hence,

P̂ (X ≤ x, ε̃c(s0) ≤ e|X ∈MX) = P̂ (X ≤ x, ε ≤ kc(s0, X, e)|X ∈MX)

=
1
n

∑n
i=1 I{Xi≤x,εi≤kc(s0,Xi,e)}I{Xi∈MX}

1
n

∑n
i=1 I{Xi∈MX}

= P (X ≤ x, ε ≤ kc(s0, X, e)|X ∈MX) +Op
(

1√
n

)
.

Assumption (C4) yields

f̂mτ (x)− F−1
Y |X(τ |x) = op

(
n−

1
4
)
, f̂mβ (x)− F−1

Y |X(β|x) = op
(
n−

1
4
)

and

h̄1(y)− h1(y) = op
(
n−

1
4
)

uniformly in y ∈ [za, zb] and x ∈MX . Consequently, it holds that

sup
c∈[B1,B2],x∈MX ,e∈[ea,eb]

|kc(ŝ, x, e)− kc(s0, x, e)| = op(δn),

where the sequence (δn)n∈N can be obtained from Lemma 1.5.1. Assumption (C4) ensures

ŝ ∈ H̃ with probability converging to one, so that Corollary 2.3.12 of Van der Vaart and

Wellner (1996) leads to

sup
c∈[B1,B2],x∈M,e∈[ea,eb]

∣∣P̂ (X ≤ x, ε̃c(ŝ) ≤ e|X ∈MX)− P (X ≤ x, ε̃c(s0) ≤ e|X ∈MX)
∣∣

= sup
c∈[B1,B2],x∈M,e∈[ea,eb]

∣∣P̂ (X ≤ x, ε ≤ kc(ŝ, X, e)|X ∈MX)

− P (X ≤ x, ε ≤ kc(s0, X, e)|X ∈MX)
∣∣

= op(1).

Analogous calculations can be done for P̂ (X ≤ x|X ∈ MX) and P̂ (ε̃c(s0) ≤ e|X ∈ MX).

Therefore,

Â(c, ŝ) =

(∫
M

∫
[ea,eb]

(
P̂ (X ≤ x, ε̃c(ŝ) ≤ e|X ∈MX)

− P̂ (X ≤ x|X ∈MX)P̂ (ε̃c(ŝ) ≤ e|X ∈MX)
)2
de dx

) 1
2
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=

(∫
M

∫
[ea,eb]

(
P (X ≤ x, ε̃c(s0) ≤ e|X ∈MX)

− P (X ≤ x|X ∈MX)P (ε̃c(s0) ≤ e|X ∈MX)
)2
de dx

) 1
2

+ op(1)

= A(c, s0) + op(1)

uniformly in c ∈ [B1, B2]. Since the map c 7→ A(c, s0) is continuous and c = B is the unique

minimizer, it holds that

inf
c∈[B1,B2],|c−B|>δ

A(c, s0) > 0

for all δ > 0 and thus, B̂ = arg min
c∈[B1,B2]

Â(c, ŝ) = arg min
c∈[B1,B2]

A(c, s0) + op(1) = B + op(1).

Lemma 4.6.3 The ordinary derivative Γ1(c, s0)(x, e) of GMD(c, s0)(x, e) (with respect to

c) exists for all (x, e) ∈MX × [ea, eb] in a neighbourhood of B and is continuous at c = B.

Γ1(B, s0)(x, e) is different from zero on a set with positive λMX×[ea,eb]-measure. Conse-

quently, (C2) holds true.

Proof: The proof can be divided into three steps namely the proof of the continuous

differentiability of c 7→ kc(s0, x, e), the proof of continuous differentiability of c 7→ P (X ≤
x, ε ≤ kc(s0, X, e)|X ∈ MX) and c 7→ GMD(c, s0) (each for all (x, e) ∈ M × [ea, eb]) and

finally the proof of Γ1(B, s0)(x, e) 6= 0.

First, for all (x, e) ∈M × [ea, eb]

∂

∂c
kc(s0, x, e)

=
∂

∂c

(
hc(F

−1
Y |X(τ |x)) + e(hc(F

−1
Y |X(β|x))− hc(F−1

Y |X(τ |x)))
)B
c − g(x)

σ(x)

=
1

σ(x)

[
− B

c2

(
h1

(
F−1
Y |X(τ |x)

)c
+ e
(
h1

(
F−1
Y |X(β|x)

)c − h1

(
F−1
Y |X(τ |x)

)c))B
c

log

(
h1

(
F−1
Y |X(τ |x)

)c
+ e
(
h1

(
F−1
Y |X(β|x)

)c − h1

(
F−1
Y |X(τ |x)

)c))

+
B

c

(
h1

(
F−1
Y |X(τ |x)

)c
+ e
(
h1

(
F−1
Y |X(β|x)

)c − h1

(
F−1
Y |X(τ |x)

)c))B
c
−1

(
log
(
h1

(
F−1
Y |X(τ |x)

))
h1

(
F−1
Y |X(τ |x)

)c
+ e

(
log
(
h1

(
F−1
Y |X(β|x)

))
h1

(
F−1
Y |X(β|x)

)c
− log

(
h1

(
F−1
Y |X(τ |x)

))
h1

(
F−1
Y |X(τ |x)

)c))]
. (4.38)

Due to 0 < hc(F
−1
Y |X(τ |x)), hc(F

−1
Y |X(β|x)) as well as

0 < hc(za) ≤ hc(F−1
Y |X(τ |x)) + e(hc(F

−1
Y |X(β|x))− hc(F−1

Y |X(τ |x))) ≤ hc(zb)

for all x ∈ MX , e ∈ [ea, eb] the function (c, x, e) 7→ ∂
∂ckc(s0, x, e) is well defined, continuous

and thus bounded on [B1, B2]×MX × [ea, eb]. Additionally, for each c ∈ [B1, B2] the points
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(x, e) ∈MX × [ea, eb] with ∂
∂ckc(s0, x, e) = 0 form a null set with respect to λMX×[ea,eb].

Second, P (X ≤ x, ε ≤ kc(s0, X, e)|X ∈MX) can be written as

P (X ≤ x, ε ≤ kc(s0, X, e)|X ∈MX) =
P (X ≤ x, ε ≤ kc(s0, X, e), X ∈MX)

P (X ∈M)

=
1

P (X ∈M)

∫
MX∩(−∞,x]

Fε(kc(s0, v, e))fX(v) dv.

Analogously,

P (ε ≤ kc(s0, X, e)|X ∈MX) =
1

P (X ∈M)

∫
MX

Fε(kc(s0, v, e))fX(v) dv.

The Dominated Convergence Theorem leads to

∂

∂c
P (X ≤ x, ε ≤ kc(s0, X, e)|X ∈MX)

=
1

P (X ∈MX)

∫
MX∩(−∞,x]

∂

∂c
Fε(kc(s0, v, e))fX(v) dv

=
1

P (X ∈MX)

∫
MX∩(−∞,x]

fε(kc(s0, v, e))
∂

∂c
kc(s0, v, e)fX(v) dv,

where the supremum of the integrand, which is continuous and evaluated on a compact set,

can be taken as a majorant. Consequently

∂

∂c
GMD(c, s0)(x, e) =

1

P (X ∈MX)

∫
MX

fε(kc(s0, v, e))

∂

∂c
kc(s0, v, e)(I(−∞,x](v)− P (X ≤ x|X ∈MX))fX(v) dv.

Hence, ∂
∂cGMD(B, s0)(x, e) = 0 for all (x, e) ∈MX × [ea, eb] is equivalent to∫

MX

fε(kB(s0, v, e))
∂

∂c
kc(s0, v, e)

∣∣∣
c=B

I(−∞,x](v)fX(v) dv

= P (X ≤ x|X ∈MX)

∫
MX

fε(kB(s0, v, e))
∂

∂c
kc(s0, v, e)

∣∣∣
c=B

fX(v) dv

=

∫
MX

∫
MX

fε(kB(s0, v, e))
∂
∂ckc(s0, v, e)

∣∣
c=B

fX(v) dv

P (X ∈MX)
I(−∞,x](w)fX(w) dw

for almost all (x, e) ∈MX × [ea, eb] with respect to λMX×[ea,eb].

Therefore, v 7→ fε(kB(s0, v, e))
∂
∂ckc(s0, v, e)

∣∣
c=B

would be constant on MX for almost all

e ∈ [ea, eb]. Due to

kB(s0, v, e) = F−1
ε (τ) + e

(
F−1
ε (β)− F−1

ε (τ)
)

and (plug c = B into (4.38))

∂

∂c
kc(s0, v, e)

∣∣∣
c=B

= − 1

B

(
g(v)

σ(v)
+ F−1

ε (τ) + e
(
F−1
ε (β)− F−1

ε (τ)
))

log
(
g(v) + σ(v)

(
F−1
ε (τ) + e

(
F−1
ε (β)− F−1

ε (τ)
)))
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+
1

B

(
log
(
g(v) + σ(v)F−1

ε (τ)
)(
g(v) + σ(v)F−1

ε (τ)
)

+ e
(

log
(
g(v) + σ(v)F−1

ε (β)
)(
g(v) + σ(v)F−1

ε (β)
)

− log
(
g(v) + σ(v)F−1

ε (τ)
)(
g(v) + σ(v)F−1

ε (τ)
)))

the map v 7→ fε(kB(s0, v, e))
∂
∂ckc(s0, v, e)

∣∣
c=B

depends on v at least for some e ∈ [ea, eb],

that is ∂
∂cGMD(B, s0)(x, e) 6= 0 for a set with λMX×[ea,eb]-measure greater than zero. �

Lemma 4.6.4 There exists a δ > 0 such that for all c ∈ Bδ, (x, e) ∈ MX × [ea, eb] the

directional derivative Γ2(c, s0)(x, e)[s− s0] of GMD(c, s0)(x, e) with respect to s exists in all

directions [s − s0]. Moreover, consider a positive sequence δn → 0 and (c, s) ∈ Bδn × H̃δn.

Then,

(i) for an appropriate constant C ≥ 0 one has

||GMD(c, s)−GMD(c, s0)− Γ2(c, s0)[s− s0]||2

≤ C
(
||h− h1||

3
2

[za,zb]
+ ||fmτ − F−1

Y |X(τ |·)||2MX
+ ||fmβ − F

−1
Y |X(β|·)||2MX

)
.

(ii) one has ||Γ2(c, s0)[ŝ− s0]− Γ2(B, s0)[ŝ− s0]|| = op(|c−B|) + op
(
n−

1
2

)
.

Therefore, (C3) is valid.

Proof: First, existence of the directional derivatives is shown, before conditions (i) and

(ii) are proven.

Directional derivative with respect to h: Define for some fixed c, h, x, e

fh,t := h1 + t(h− h1),

ψ(t, z) := f−1
h,t (z),

zc(fh,t, fmτ , fmβ , x, e) :=
(
f ch,t(fmτ (x)) + e(f ch,t(fmβ (x))− f ch,t(fmτ (x)))

) 1
c .

Mostly, the components x, e will be omitted and zc(t) will be written as an abbreviation

for zc(fh,t, fmτ , fmβ , x, e). Further, all derivatives with respect to t are marked with a “ · ”,

those with respect to y are marked with a “ ′ ”. Then, one has

h′1(z) = −h1(z)

λ(z)
,

ψ′(t, z) =
1

f ′h,t(f
−1
h,t (zc(t)))

t=0
= −λ(h−1

1 (zc(0)))

zc(0)

as well as

∂

∂t
ψ(t, fh,t(h

−1
1 (zc(t))))

= ψ̇(t, fh,t(h
−1
1 (zc(t))))

147



4. Nonparametric Estimation of the Transformation Function in a Heteroscedastic Model

+ ψ′(t, fh,t(h
−1
1 (zc(t))))

(
ḟh,t(h

−1
1 (zc(t))) + f ′h,t(h

−1
1 (zc(t)))

∂
∂tzc(t)

h′1(h−1
1 (zc(t)))

)
t→0−→ ψ̇(0, zc(0)) + ψ′(0, zc(0))

(
(h− h1)(h−1

1 (zc(0))) +
∂

∂t
zc(t)

∣∣
t=0

)

= ψ̇(0, zc(0))− λ(h−1
1 (zc(0)))

zc(0)

(
h(h−1

1 (zc(0)))− zc(0) +
∂

∂t
zc(t)

∣∣∣∣
t=0

)
.

Due to

∂

∂t
ψ(t, fh,t(h

−1
1 (zc(t)))) =

∂

∂t
h−1

1 (zc(t))) =
∂
∂tzc(t)

h′1(h−1
1 (zc(t)))

t→0−→ −
λ(h−1

1 (zc(0))) ∂∂tzc(t)
∣∣
t=0

zc(0)
,

it holds that

ψ̇(0, zc(0)) =
λ(h−1

1 (zc(0)))

zc(0)
(h(h−1

1 (zc(0)))− zc(0)),

so that

∂

∂t
ψ(t, zc(t)) = ψ̇(t, zc(t)) + ψ′(t, zc(t))

∂

∂t
zc(t)

t→0−→ ψ̇(0, zc(0)) + ψ′(0, zc(0))
∂

∂t
zc(t)

∣∣∣∣
t=0

=
λ(h−1

1 (zc(0)))

zc(0)

(
h(h−1

1 (zc(0)))− zc(0)− ∂

∂t
zc(t)

∣∣∣∣
t=0

)
.

Additionally,

∂

∂t
zc(t)

∣∣∣∣
t=0

=
∂

∂t

(
f ch,t(fmτ (x)) + e(f ch,t(fmβ (x))− f ch,t(fmτ (x)))

) 1
c

∣∣∣∣
t=0

=
1

c

(
hc1(fmτ (x)) + e(hc1(fmβ (x))− hc1(fmτ (x)))

) 1
c
−1

(
chc−1

1 (fmτ (x))(h(fmτ (x))− h1(fmτ (x)))

+ e(chc−1
1 (fmβ (x))(h(fmβ (x))− h1(fmβ (x))

− chc−1
1 (fmτ (x))(h(fmτ (x))− h1(fmτ (x)))

)
.

This in turn results in (for the special case fmτ = F−1
Y |X(τ |·), fmβ = F−1

Y |X(β|·))

Dhkc(s0, x, e)[h− h1] =
∂

∂t
kc(fh,t, F

−1
Y |X(τ |·), F−1

Y |X(β|·), x, e)
∣∣∣∣
t=0

=
∂

∂t

h1(ψ(t, zc(t)))
B − g(x)

σ(x)

∣∣∣∣
t=0

=
Bh1(ψ(t, zc(t)))

B−1h′1(ψ(t, zc(t)))
∂
∂tψ(t, zc(t))

σ(x)

∣∣∣∣
t=0

=
Bzc(0)B−1

(
zc(0)− h(h−1

1 (zc(0))) + ∂
∂tzc(t)

∣∣
t=0

)
σ(x)

(4.39)

and by applying the Dominated Convergence Theorem

DhGMD(c, s0)(x, e)[h− h1]
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=
1

P (X ∈M)

∂

∂t

(∫
MX

Fε(kc(fh,t, F
−1
Y |X(τ |·), F−1

Y |X(β|·), w, e))I{w≤x}fX(w) dw

− P (X ≤ x|X ∈M)

∫
MX

Fε(kc(fh,tF
−1
Y |X(τ |·), F−1

Y |X(β|·), w, e))fX(w) dw
)∣∣∣∣
t=0

=
1

P (X ∈M)

(∫
MX

fε(kc(s0, w, e))
(
I{w≤x} − P (X ≤ x|X ∈MX)

)
Dhkc(s0, w, e)[h− h1]fX(w) dw

)
.

Directional derivative with respect to fmτ and fmβ
: For h = h1, kc simplifies to

kc(h1, fmτ , fmβ , x, e) =
zc(h1, fmτ , fmβ )B − g(x)

σ(x)
.

Hence, with

fmτ ,t = F−1
Y |X(τ |·) + t

(
fmτ − F−1

Y |X(τ |·)
)

and fmβ ,t = F−1
Y |X(β|·) + t

(
fmβ − F

−1
Y |X(β|·)

)
one has

Dfmτ kc(h1, F
−1
Y |X(τ |·), F−1

Y |X(β|·), x, e)
[
fmτ − F−1

Y |X(τ |·)
]

=
∂

∂t
kc(h1, fmτ ,t, F

−1
Y |X(β|·), x, e)

∣∣∣∣
t=0

=
∂

∂t

zc(h1, fmτ ,t, F
−1
Y |X(β|·))B − g(x)

σ(x)

∣∣∣∣
t=0

=
∂

∂t

(
hc(fmτ ,t(x)) + e(hc(F

−1
Y |X(β|x))− hc(fmτ ,t(x)))

)B
c − g(x)

σ(x)

∣∣∣∣
t=0

= −
B(...)

B
c
−1(1− e)hc(F−1

Y |X(τ |x))(fmτ (x)− F−1
Y |X(τ |x))

σ(x)λ(F−1
Y |X(τ |x))

as well as

Dfβkc(s0, x, e)
[
fβ − F−1

Y |X(β|·)
]

=
∂

∂t
kc(h1, F

−1
Y |X(τ |·), fmβ ,t, x, e)

∣∣∣∣
t=0

=
∂

∂t

zc(h1, F
−1
Y |X(τ |·), fmβ ,t)B − g(x)

σ(x)

∣∣∣∣
t=0

=
∂

∂t

(
hc(F

−1
Y |X(τ |x)) + e(hc(fmβ ,t(x))− hc(F−1

Y |X(τ |x)))
)B
c − g(x)

σ(x)

∣∣∣∣
t=0

= −
B(...)

B
c
−1ehc(F

−1
Y |X(β|x))(fmβ (x)− F−1

Y |X(β|x))

σ(x)λ(F−1
Y |X(β|x))

.
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Directional derivative with respect to s: This results from the previous parts of the

proof as follows: Define st = (fh,t, fmτ ,t, fmβ ,t) and t 7→ z̃c(t) := zc(st, x, e). Then,

kc(st, x, e) =
∂

∂t
kc(st, x, e)

∣∣∣∣
t=0

=
∂

∂t

h1(ψ(t, z̃c(t)))
B − g(x)

σ(x)

∣∣∣∣
t=0

only depends on fmτ ,t and fmβ ,t via z̃c(t), respectively. Due to z̃c(0) = zc(s0) (= zc(0) with

the notation from before), one can proceed as for the derivative with respect to h to obtain

Dskc(s0, x, e)[s− s0] =
Bz̃c(0)B−1(z̃c(0)− h(h−1

1 (z̃c(0))) + ∂
∂t z̃c(t)

∣∣
t=0

)

σ(x)
.

At the same time,

∂

∂t
z̃c(t)

∣∣
t=0

=
∂

∂t
zc(fh,t, fmτ ,t, fmβ ,t)

∣∣∣∣
t=0

=
(
Dhzc(s0) , Dfmτ zc(s0) , Dfmβ

zc(s0)
)

h− h1

fmτ − F−1
Y |X(τ |x)

fmβ − F
−1
Y |X(β|x)

 ,

which in total leads to

Dskc(s0, x, e)[s− s0] = Dhkc(s0, x, e)[h− h1] +Dfmτ kc(s0, x, e)
[
fmτ − F−1

Y |X(τ |·)
]

+Dfmβ
kc(s0, x, e)

[
fmβ − F

−1
Y |X(β|·)

]
and (after applying the Dominated Convergence Theorem)

DsGMD(c, s0)(x, e)[s− s0]

=
1

P (X ∈M)

∂

∂t

(∫
MX

Fε(kc(fh,t, fmτ ,t, fmβ ,t, w, e))I{w≤x}fX(w) dw

− P (X ≤ x|X ∈M)

∫
MX

Fε(kc(fh,t, fmτ ,t, fmβ ,t, w, e))fX(w) dw
)∣∣∣∣
t=0

=
1

P (X ∈M)

(∫
MX

fε(kc(s0, w, e))
(
I{w≤x} − P (X ≤ x|X ∈M)

)(
Dhkc(s0, w, e)[h− h1]

+Dfmτ kc(s0, w, e)
[
fmτ − F−1

Y |X(τ |·)
]

+Dfmβ
kc(s0, w, e)

[
fmβ − F

−1
Y |X(β|·)

])
fX(w) dw

)
= DhGMD(c, s0)(x, e)[h− h1] +DfmτGMD(c, s0)(x, e)

[
fmτ − F−1

Y |X(τ |·)
]

+Dfmβ
GMD(c, s0)(x, e)

[
fmβ − F

−1
Y |X(β|·)

]
. (4.40)

Proof of (i): First, an auxiliary lemma is proven.

Lemma 4.6.5 Let δn ↘ 0, s = (h, fmτ , fmβ ) ∈ H̃δn and 0 < η < h1(zb)−h1(za)
2 . Then,

sup
t∈[h1(za)+η,h1(zb)−η]

|h−1(t)− h−1
1 (t)| = O

(
||h− h1||[za,zb]

)
and

||h′ − h′1||[za,zb] = O
(√
||h− h1||[za,zb]

)
=
√
δn.
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Proof : Let t ∈ [h1(za) +η, h1(zb)−η], so that t ∈ (h(za), h(zb)) for n sufficiently large. For

an appropriate t̃ ∈ (h1(za), h1(zb)), one has

h−1(t)− h−1
1 (t) = h−1

1

(
h1(h−1(t))

)
− h−1

1 (t)

=
1

h′1(h−1
1 (t̃))

(h1(h−1(t))− t)

=
1

h′1(h−1
1 (t̃))

(h1(h−1(t))− h(h−1(t)))

= O(||h− h1||).

To handle ||h′ − h′1||[za,zb], notice that the second derivatives of all h with (h, fmτ , fmβ ) ∈
H̃δn ⊆ H̃ are bounded. Hence, for all z ∈ (za, zb) and some appropriate z̃1, z̃2 ∈ (za, zb)

h
(
z +

√
δn
)
− h1

(
z +

√
δn
)
− h(z) + h1(z) = O(δn)

by definition of H̃δn as well as

h
(
z +

√
δn
)
− h1

(
z +

√
δn
)
− h(z) + h1(z)

= (h′(z)− h′1(z))
√
δn +

h′′(z̃1)− h′′1(z̃2)

2
δn

= (h′(z)− h′1(z))
√
δn +O(δn)

uniformly in z ∈ (za, zb). Therefore, one has ||h′−h′1||[za,zb] = O
(√
δn
)
. The same argument

with δ̃n = ||h− h1||[za,zb] leads to ||h′ − h′1||[za,zb] = O
(√
||h− h1||[za,zb]

)
. �

Let δn ↘ 0 and (c, s) ∈ Bδn × H̃δn . To apply the lemma from above, split the norm into

three parts (see (4.40))

||GMD(c, s)−GMD(c, s0)− Γ2(c, s0)[s− s0]||2

= ||GMD(c, h, fmτ , fmβ )−GMD(c, h1, fmτ , fmβ )−DhGMD(c, s0)[h− h1]

+GMD(c, h1, fmτ , fmβ )−GMD(c, h1, F
−1
Y |X(τ |·), fmβ )−Dfmτ

GMD(c, s0)
[
fmτ − F−1

Y |X(τ |·)
]

+GMD(c, h1, F
−1
Y |X(τ |·), fmβ )−GMD(c, h1, F

−1
Y |X(τ |·), F−1

Y |X(β|·))

−Dfmβ
GMD(c, s0)

[
fmβ − F

−1
Y |X(β|·)

]
||2

≤ ||GMD(c, h, fmτ , fmβ )−GMD(c, h1, fmτ , fmβ )−DhGMD(c, s0)[h− h1]||2

+ ||GMD(c, h1, fmτ , fmβ )−GMD(c, h1, F
−1
Y |X(τ |·), fmβ )−Dfmτ

GMD(c, s0)
[
fmτ − F−1

Y |X(τ |·)
]
||2

+ ||GMD(c, h1, F
−1
Y |X(τ |·), fmβ )−GMD(c, s0)−Dfmβ

GMD(c, s0)
[
fmβ − F

−1
Y |X(β|·)

]
||2.

Notice for the first summand that due to

||GMD(c, h, fmτ , fmβ )−GMD(c, h1, fmτ , fmβ )−DhGMD(c, s0)[h− h1]||2

=

(∫
M

∫
[ea,eb]

(
P (X ≤ x, ε ≤ kc(h, fmτ , fmβ , X, e)|X ∈M)
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− P (X ≤ x|X ∈M)P (ε ≤ kc(h, fmτ , fmβ , X, e)|X ∈M)

− P (X ≤ x, ε ≤ kc(h1, fmτ , fmβ , X, e)|X ∈M)

+ P (X ≤ x|X ∈M)P (ε ≤ kc(h1, fmτ , fmβ , X, e)|X ∈M)

−DhGMD(h1, F
−1
Y |X(τ |·), F−1

Y |X(β|·), X, e)(x, e)[h− h1]
)2
de dx

) 1
2

=
1

P (X ∈MX)

∫
MX

(
I{v≤x} − P (X ≤ x|X ∈M)

)(
Fε(kc(h, fmτ , fmβ , v, e))

− Fε(kc(h1, fmτ , fmβ , v, e))− fε(kc(h1, fmτ , fmβ , v, e))

Dhkc(h1, F
−1
Y |X(τ |·), F−1

Y |X(β|·), v, e)[h− h1]
)
fX(v) dv

and

Fε(kc(h, fmτ , fmβ , v, e))− Fε(kc(h1, fmτ , fmβ , v, e))

− fε(kc(h1, fmτ , fmβ , v, e))Dhkc(h1, F
−1
Y |X(τ |·), F−1

Y |X(β|·), v, e)[h− h1]

= fε(kc(h1, fmτ , fmβ , v, e))(kc(h, fmτ , fmβ , v, e)− kc(h1, fmτ , fmβ , v, e))

+ f ′ε(k̃)(kc(h1, fmτ , fmβ , v, e)− kc(h, fmτ , fmβ , v, e))
2

− fε(kc(h1, fmτ , fmβ , v, e))Dhkc(h1, F
−1
Y |X(τ |·), F−1

Y |X(β|·), v, e)[h− h1]

for some k̃ between kc(h, fmτ , fmβ , v, e) and kc(h1, fmτ , fmβ , v, e) it suffices to prove∣∣kc(h, fmτ , fmβ , v, e)− kc(h1, fmτ , fmβ , v, e)−Dhkc(s0, v, e)[h− h1]
∣∣ ≤ C||h− h1||

3
2

[za,zb]

for an appropriate C > 0 and uniformly in c ∈ Bδ, v ∈ MX , e ∈ [ea, eb], fmτ , fmβ , such

that (h, fmτ , fmβ ) ∈ H̃. Analogous calculations for Dfmτ and Dfmβ
yield the sufficient

conditions ∣∣kc(h1, fmτ , fmβ , v, e)− kc(h1, F
−1
Y |X(τ |·), fmβ , v, e) (4.41)

−Dfmτ
kc(h1, F

−1
Y |X(τ |·), fmβ , v, e)

[
fmτ − F−1

Y |X(τ |·)
]∣∣ (4.42)

≤ C||fmτ − F−1
Y |X(τ |·)||2MX

(4.43)

(uniformly in c ∈ Bδ, v ∈MX , e ∈ [ea, eb] and fmβ , such that (h1, fmτ , fmβ ) ∈ H̃) and∣∣kc(h1, F
−1
Y |X(τ |·), fmβ , v, e)− kc(s0, v, e)−Dfmβ

kc(s0, v, e)
[
fmβ − F

−1
Y |X(β|·)

]∣∣
≤ C||fmβ − F

−1
Y |X(β|·)||2MX

(4.44)

uniformly in c ∈ Bδ, v ∈MX , e ∈ [ea, eb] to handle the second and third summand, respecti-

vely.

(4.39) leads to

kc(h, fmτ , fmβ , v, e)− kc(h1, fmτ , fmβ , v, e)−Dhkc(s0, v, e)[h− h1]

=
1

σ(v)

(
h1(h−1(zc(h, fmτ , fmβ )))B − h1(h−1

1 (zc(h1, fmτ , fmβ )))B −Bzc(h1, fmτ , fmβ )B−1
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(
∂

∂t
zc(fh,t, fmτ , fmβ )

∣∣∣∣
t=0

+ h1(h−1
1 (zc(h1, fmτ , fmβ )))− h(h−1

1 (zc(h1, fmτ , fmβ )))

))

=
1

σ(v)

(
h1(h−1(zc(h, fmτ , fmβ )))B − h1(h−1

1 (zc(h, fmτ , fmβ )))B + zc(h, fmτ , fmβ )B

− zc(h1, fmτ , fmβ )B −B(zc(h1, fmτ , fmβ ))B−1

(
∂

∂t
zc(fh,t, fmτ , fmβ )

∣∣∣∣
t=0

+ h1(h−1
1 (zc(h1, fmτ , fmβ )))− h(h−1

1 (zc(h1, fmτ , fmβ )))

))
=

1

σ(v)

(
h1(h−1(zc(h, fmτ , fmβ )))B − h1(h−1

1 (zc(h, fmτ , fmβ )))B

−Bzc(h1, fmτ , fmβ )B−1(h1(h−1
1 (zc(h1, fmτ , fmβ )))− h(h−1

1 (zc(h1, fmτ , fmβ ))))
)

+O
(
||h− h1||2[za,zb]

)
,

because

zc(h, fmτ , fmβ )B − zc(0)B −Bzc(0)B−1 ∂

∂t
zc(t)

∣∣∣∣
t=0

=
∂2

∂t2
zc(fh,t, fmτ , fmβ )

∣∣
t=t̃

2

= O
(
||h− h1||2[za,zb]

)
for an appropriate t̃ in (0, 1). Apply Lemma 4.6.5 to obtain

h1(h−1(zc(h, fmτ , fmβ )))B − h1(h−1
1 (zc(h, fmτ , fmβ )))B

−Bzc(h1, fmτ , fmβ )B−1(h1(h−1
1 (zc(h1, fmτ , fmβ )))− h(h−1

1 (zc(h1, fmτ , fmβ ))))

= Bh1(h−1
1 (zc(h, fmτ , fmβ )))B−1(h1(h−1(zc(h, fmτ , fmβ )))− h1(h−1

1 (zc(h, fmτ , fmβ ))))

−Bzc(h1, fmτ , fmβ )B−1(h1(h−1
1 (zc(h1, fmτ , fmβ )))− h(h−1

1 (zc(h1, fmτ , fmβ ))))

+O(||h− h1||2[za,zb])

= Bzc(h1, fmτ , fmβ )B−1
(
h1(h−1(zc(h, fmτ , fmβ )))− h1(h−1

1 (zc(h, fmτ , fmβ )))

− h1(h−1
1 (zc(h1, fmτ , fmβ ))) + h(h−1

1 (zc(h1, fmτ , fmβ )))
)

+O(||h− h1||2[za,zb])

as well as

h1(h−1(zc(h, fmτ , fmβ )))− h1(h−1
1 (zc(h, fmτ , fmβ )))− h1(h−1

1 (zc(h1, fmτ , fmβ )))

+ h(h−1
1 (zc(h1, fmτ , fmβ )))

= h1(h−1(zc(h, fmτ , fmβ )))− h1(h−1
1 (zc(h1, fmτ , fmβ )))

+ h(h−1
1 (zc(h1, fmτ , fmβ )))− h(h−1(zc(h, fmτ , fmβ )))

= h′1(h−1
1 (zc(0)))(h−1(zc(h, fmτ , fmβ ))− h−1

1 (zc(h1, fmτ , fmβ )))

+ h′(h−1
1 (zc(0)))(h−1

1 (zc(h1, fmτ , fmβ ))− h−1(zc(h, fmτ , fmβ ))) +O(||h− h1||2[za,zb])
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=
(
h′1(h−1

1 (zc(0)))− h′(h−1
1 (zc(0)))

)(
h−1(zc(h, fmτ , fmβ ))− h−1

1 (zc(h1, fmτ , fmβ ))
)

+O(||h− h1||2[za,zb])

= O(||h− h1||
3
2

[za,zb]
).

It remains to treat the second and the third summand. Recall that it is sufficient to prove

the equations (4.43) and (4.44), that is∣∣kc(h1, fmτ , fmβ , v, e)− kc(h1, F
−1
Y |X(τ |·), fmβ , v, e)

−Dfmτ kc(h1, F
−1
Y |X(τ |·), fmβ , v, e)

[
fmτ − F−1

Y |X(τ |·)
]∣∣

≤ C||fmτ − F−1
Y |X(τ |·)||2MX

(uniformly in c ∈ Bδ, v ∈MX , e ∈ [ea, eb] and fmβ , such that (h1, fmτ , fmβ ) ∈ H̃) and∣∣kc(h1, F
−1
Y |X(τ |·), fmβ , v, e)− kc(s0, v, e)−Dfmβ

kc(s0, v, e)
[
fmβ − F

−1
Y |X(β|·)

]∣∣
≤ C||fmβ − F

−1
Y |X(β|·)||2MX

uniformly in c ∈ Bδ, v ∈ MX , e ∈ [ea, eb] for some appropriate C > 0. For that purpose,

notice that

zc(h1, fmτ , fmβ )− zc(h1, F
−1
Y |X(τ |·), fmβ )

=
(
h1(fmτ (v))c + e(h1(fmβ (v))c − h1(fmτ (v))c)

) 1
c

−
(
h1(F−1

Y |X(τ |v))c + e(h1(fmβ (v))c − h1(F−1
Y |X(τ |v))c)

) 1
c

=
1

c

(
h1(F−1

Y |X(τ |v))c + e(h1(fmβ (v))c − h1(F−1
Y |X(τ |v))c)

) 1
c
−1

ch1(F−1
Y |X(τ |v))c−1(1− e)h′1(F−1

Y |X(τ |v))(fmτ (v)− F−1
Y |X(τ |v))

+O(||fmτ − F−1
Y |X(τ |·)||2MX

)

= −
(1− e)zc(h1, F

−1
Y |X(τ |·), fmβ )1−ch1(F−1

Y |X(τ |v))c(fmτ (v)− F−1
Y |X(τ |v))

λ(F−1
Y |X(τ |v))

+O(||fmτ − F−1
Y |X(τ |·)||2MX

).

Therefore,

kc(h1, fmτ , fmβ , v, e)− kc(h1, F
−1
Y |X(τ |·), fmβ , v, e)−Dfmτ kc(s0, v, e)

[
fmτ − F−1

Y |X(τ |·)
]

=
1

σ(v)

(
zc(h1, fmτ , fmβ )B − zc(h1, F

−1
Y |X(τ |·), fmβ )B

−
Bzc(h1, F

−1
Y |X(τ |·), fmβ )B−c(1− e)h1(F−1

Y |X(τ |v))c(fmτ (v)− F−1
Y |X(τ |v))

λ(F−1
Y |X(τ |v))

)
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=
1

σ(v)

(
Bzc(h1, F

−1
Y |X(τ |·), fmβ )B−1(zc(h1, fmτ , fmβ )− zc(h1, F

−1
Y |X(τ |·), fmβ ))

−
Bzc(h1, F

−1
Y |X(τ |·), fmβ )B−c(1− e)h1(F−1

Y |X(τ |v))c(fmτ (v)− F−1
Y |X(τ |v))

λ(F−1
Y |X(τ |v))

)

+O(||fmτ − F−1
Y |X(τ |·)||2MX

)

= O(||fmτ − F−1
Y |X(τ |·)||2MX

).

Analogously,

kc(h1, F
−1
Y |X(τ |·), fmβ , v, e)− kc(s0, v, e)−Dfmτ kc(s0, v, e)

[
fmβ − F

−1
Y |X(β|·)

]
=

1

σ(v)

(
zc(h1, F

−1
Y |X(τ |·), fmβ )B − zc(s0)B

−
Bzc(s0)B−ceh1(F−1

Y |X(β|v))c(fmβ (v)− F−1
Y |X(β|v))

λ(F−1
Y |X(β|v))

)

=
1

σ(v)

(
Bzc(s0)B−1(zc(h1, F

−1
Y |X(τ |·), fmβ )− zc(s0))

−
Bzc(h1, F

−1
Y |X(τ |·), fmβ )B−ceh1(F−1

Y |X(β|v))c(fmβ (v)− F−1
Y |X(β|v))

λ(F−1
Y |X(β|v))

)

+O(||fmβ − F
−1
Y |X(β|·)||2MX

)

= O(||fmβ − F
−1
Y |X(β|·)||2MX

).

Hence, (i) is proven.

Proof of (ii): Remember (C4) and let c ∈ Bδn . As before, one has

||DsGMD(c, s0)(x, e)[ŝ− s0]−DsGMD(B, s0)(x, e)[ŝ− s0]||

= ||DhGMD(c, s0)(x, e)[h̄1 − h1]−DhGMD(B, s0)(x, e)[h̄1 − h1]

+DfmτGMD(c, s0)(x, e)[f̂mτ − F−1
Y |X(τ |·)

]
−DfmτGMD(B, s0)(x, e)[f̂mτ − F−1

Y |X(τ |·)
]

+Dfmβ
GMD(c, s0)(x, e)[f̂mβ − F

−1
Y |X(β|·)

]
−Dfmβ

GMD(B, s0)(x, e)[f̂mβ − F
−1
Y |X(β|·)

]
||

≤ ||DhGMD(c, s0)(x, e)[h̄1 − h1]−DhGMD(B, s0)(x, e)[h̄1 − h1]||

+ ||DfmτGMD(c, s0)(x, e)[f̂mτ − F−1
Y |X(τ |·)

]
−DfmτGMD(B, s0)(x, e)[f̂mτ − F−1

Y |X(τ |·)
]
||

+ ||Dfmβ
GMD(c, s0)(x, e)[f̂mβ − F

−1
Y |X(β|·)

]
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−Dfmβ
GMD(B, s0)(x, e)[f̂mβ − F

−1
Y |X(β|·)

]
||

so that it is again sufficient to prove the condition for each of the summands. To treat the

first summand, let h ∈ H̃, c ∈ [B1, B2] and recall the definitions of fh,t and zc(t) from page

147 as well as

|zc(0)− zB(0)| = O(|c−B|) uniformly in (x, e)

and

DhGMD(c, s0)(x, e)[h− h1]

=
1

P (X ∈M)

∂

∂t

(∫
MX

Fε(kc(fh,t, F
−1
Y |X(τ |·), F−1

Y |X(β|·), w, e))I{w≤x}fX(w) dw

− P (X ≤ x|X ∈M)

∫
MX

Fε(kc(fh,t, F
−1
Y |X(τ |·), F−1

Y |X(β|·), w, e))fX(w) dw
)∣∣∣∣
t=0

=
1

P (X ∈M)

(∫
MX

fε(kc(s0, w, e))
(
I{w≤x} − P (X ≤ x|X ∈MX)

)
Dhkc(s0, w, e)[h− h1]fX(w) dw

)
.

At the beginning of the proof of this lemma, it was shown in (4.39) that

Dhkc(s0, x, e)[h− h1] =
∂

∂t
kc(fh,t, F

−1
Y |X(τ |·), F−1

Y |X(β|·), x, e)
∣∣∣∣
t=0

=
∂

∂t

h1(ψ(t, zc(t)))
B − g(x)

σ(x)

∣∣∣∣
t=0

=
Bh1(ψ(t, zc(t)))

B−1h′1(ψ(t, zc(t)))
∂
∂tψ(t, zc(t))

σ(x)

∣∣∣∣
t=0

=
Bzc(0)B−1

(
zc(0)− h(h−1

1 (zc(0))) + ∂
∂tzc(t)

∣∣
t=0

)
σ(x)

(for fmτ = F−1
Y |X(τ |·), fmβ = F−1

Y |X(β|·) in zc(t)), where

∂

∂t
zc(t)

∣∣∣∣
t=0

=
∂

∂t

(
f ch,t(F

−1
Y |X(τ |x)) + e(f ch,t(F

−1
Y |X(β|x))− f ch,t(F−1

Y |X(τ |x)))
) 1
c

∣∣∣∣
t=0

=
1

c

(
hc1(F−1

Y |X(τ |x)) + e(hc1(F−1
Y |X(β|x))− hc1(F−1

Y |X(τ |x)))
) 1
c
−1

(
chc−1

1 (F−1
Y |X(τ |x))(h(F−1

Y |X(τ |x))− h1(F−1
Y |X(τ |x)))

+ e(chc−1
1 (F−1

Y |X(β|x))(h(F−1
Y |X(β|x))− h1(F−1

Y |X(β|x))

− chc−1
1 (F−1

Y |X(τ |x))(h(F−1
Y |X(τ |x))− h1(F−1

Y |X(τ |x)))
)
.

Hence,

sup
x∈MX ,e∈[ea,eb]

∣∣∣∣ ∂∂tzc(t)
∣∣∣∣
t=0

∣∣∣∣ = O(||h− h1||[za,zb])

and

sup
x∈MX ,e∈[ea,eb]

∣∣∣∣ ∂∂tzc(t)
∣∣∣∣
t=0

− ∂

∂t
zB(t)

∣∣∣∣
t=0

∣∣∣∣ = O
(
||h− h1||[za,zb]|c−B|

)
,
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so that

DhGMD(c, s0)(x, e)[h− h1]−DhGMD(B, s0)(x, e)[h− h1]

=

∫
MX

(
I{w≤x} − P (X ≤ x|X ∈MX)

)(
ϕ(c, w, e)

(
zc(0)− h(h−1

1 (zc(0)))
)

− ϕ(B,w, e)
(
zB(0)− h(h−1

1 (zB(0)))
))
dw + o

(
|c−B|

)
for some continuously differentiable function ϕ : [B1, B2]×MX × [ea, eb]→ R. Due to

ϕ(c, w, e)
(
h1(h−1

1 (zc(0)))− h(h−1
1 (zc(0)))

)
− ϕ(B,w, e)

(
h1(h−1

1 (zB(0)))− h(h−1
1 (zB(0)))

)
= (ϕ(c, w, e)− ϕ(B,w, e))

(
h1(h−1

1 (zc(0)))− h(h−1
1 (zc(0)))

)
+ ϕ(B,w, e)

(
h1(h−1

1 (zc(0)))− h1(h−1
1 (zB(0))) + h(h−1

1 (zB(0)))− h(h−1
1 (zc(0)))

)
= ϕ(B,w, e)

(
h′1(h−1

1 (zB(0)))(h−1
1 (zc(0))− h−1

1 (zB(0)))

− h′(h−1
1 (zB(0)))(h−1

1 (zc(0))− h−1
1 (zB(0)))

)
+ o(|c−B|)

= O(||h′ − h′1||[za,zb]|c−B|) + o(|c−B|)

= o(|c−B|),

it holds that

||DhGMD(c, s0)(x, e)[h̄1 − h1]−DhGMD(B, s0)(x, e)[h̄1 − h1]|| = op(|c−B|).

The second summand can be written as

||DfmτGMD(c, s0)(x, e)[F̂−1
Y |X(τ |·)− F−1

Y |X(τ |·)
]

−DfmτGMD(B, s0)(x, e)[F̂−1
Y |X(τ |·)− F−1

Y |X(τ |·)
]
||

=

∣∣∣∣∣∣∣∣ 1

P (X ∈MX)

∫
MX

(
I{w≤·} − P (X ≤ ·|X ∈MX)

)
(
fε(kc(s0, w, .))Dfmτ kc(s0, w, .)[F̂

−1
Y |X(τ |·)− F−1

Y |X(τ |·)
]

− fε(kB(s0, w, .))Dfmτ kB(s0, w, .)[F̂
−1
Y |X(τ |·)− F−1

Y |X(τ |·)
])
fX(w) dw

∣∣∣∣∣∣∣∣.
Thus, it is sufficient to prove

fε(kc(s0, w, e))Dfmτ kc(s0, w, e)[F̂
−1
Y |X(τ |·)− F−1

Y |X(τ |·)
]

− fε(kB(s0, w, e))Dfmτ kB(s0, w, e)[F̂
−1
Y |X(τ |·)− F−1

Y |X(τ |·)
]

=
(
fε(kc(s0, w, e))− fε(kB(s0, w, e))

)
Dfmτ kc(s0, w, e)[F̂

−1
Y |X(τ |·)− F−1

Y |X(τ |·)
]

+ fε(kB(s0, w, e))
(
Dfmτ kc(s0, w, e)[F̂

−1
Y |X(τ |·)− F−1

Y |X(τ |·)
]

−Dfmτ kB(s0, w, e)[F̂
−1
Y |X(τ |·)− F−1

Y |X(τ |·)
])
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= op(|c−B|) +Op
(
n−

1
2
)

uniformly in (w, e) ∈ MX × [ea, eb]. By condition (C4), f̂mτ (x) − F−1
Y |X(τ |x) = op(1)

uniformly in x ∈MX , so that for an appropriate c̃ between c and B(
fε(kc(s0, w, e))− fε(kB(s0, w, e))

)
Dfmτ kc(s0, w, e)[f̂mτ − F−1

Y |X(τ |·)
]

= f ′ε(kc̃(s0, w, e))
∂

∂c
kc(s0, w, e)

∣∣∣∣
c=c̃

(c−B)op(1)

= op(|c−B|).

On the other hand, the remaining term can be rewritten via

Dfmτ kc(s0, w, e)[[f̂mτ − F−1
Y |X(τ |·)

]
−Dfmτ kB(s0, w, .)[f̂mτ − F−1

Y |X(τ |·)
]

=
B(e− 1)(f̂mτ (w)− F−1

Y |X(τ |w))

σ(w)λ(F−1
Y |X(τ |w))

(ψ(B,w, e)− ψ(c, w, e)),

where

ψ(c, w, e) =
(
hc(F

−1
Y |X(τ |w)) + e

(
hc(F

−1
Y |X(β|w))− hc(F−1

Y |X(τ |w))
))B

c
−1
hc(F

−1
Y |X(τ |x)).

Due to

∂

∂c
ψ(c, w, e)

=
∂

∂c

(
hc(F

−1
Y |X(τ |w)) + e

(
hc(F

−1
Y |X(β|w))− hc(F−1

Y |X(τ |w))
))B

c
−1
hc(F

−1
Y |X(τ |x))

= −B
c2

log
(
hc(F

−1
Y |X(τ |w)) + e

(
hc(F

−1
Y |X(β|w))− hc(F−1

Y |X(τ |w))
))
ψ(c, w, e)

+

(
B

c
− 1

)
hc(F

−1
Y |X(τ |x))

(
hc(F

−1
Y |X(τ |w)) + e

(
hc(F

−1
Y |X(β|w))− hc(F−1

Y |X(τ |w))
))Bc −2

(
log
(
h1(F−1

Y |X(τ |w))
)
hc(F

−1
Y |X(τ |w)) + e

(
log
(
h1(F−1

Y |X(β|w))
)
hc(F

−1
Y |X(β|w))

− log
(
h1(F−1

Y |X(τ |w))
)
hc(F

−1
Y |X(τ |w))

))
+ ψ(c, w, e) log

(
h1(F−1

Y |X(β|w))
)
,

the derivative of ψ with respect to c is uniformly bounded in (w, e) ∈MX × [ea, eb]. Hence,

Dfmτ kc(s0, w, e)[f̂mτ − F−1
Y |X(τ |·)

]
−Dfmτ kB(s0, w, e)[f̂mτ − F−1

Y |X(τ |·)
]

= op(|c−B|)

uniformly in (w, e) ∈MX × [ea, eb]. The same reasoning can be applied for

Dfmβ
GMD(c, s0)(x, e)[f̂mβ − F

−1
Y |X(β|·)

]
,

which completes the proof of Lemma 4.6.4.
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Lemma 4.6.6 It holds that

sup
||c−B||≤δn,||s−s0||≤δn

||GnMD(c, s)−GMD(c, s)−GnMD(B, s0)||2 = op(n
− 1

2 ),

that is, (C5) is valid.

Proof: In a moment, it will be shown that the process

Gn(c, s, x, e) = GnMD(c, s)(x, e)−GMD(c, s)(x, e),

as a process in c ∈ [B1, B2], s ∈ H̃, x ∈ MX , e ∈ [ea, eb] is Donsker. Then, Corollary 2.3.12

of Van der Vaart and Wellner (1996) yields

sup
c,c̃∈[B1,B2],s,s̃∈H̃,x∈MX ,e∈[ea,eb]

||s−s̃||H<δn,|c−c̃|<δn

√
n|Gn(c, s, x, e)−Gn(c̃, s̃, x, e)| = op(1).

Due to GMD(B, s0)(x, e) = 0 for all x ∈MX , e ∈ [ea, eb] the assertion then follows from the

compactness of MX and [ea, eb].

First, define the function class

F = {(X, ε) 7→ I{X∈MX}I{ε≤kc(h,fmτ ,fmβ ,X,e)} : s ∈ H̃, c ∈ [B1, B2], e ∈ [ea, eb]}.

Due to the definition of H̃ in (4.24) and the compactness of [B1, B2],MX , [ea, eb], there

exists a compact set K such that

kc(s, x, e) ∈ K, for all s ∈ H̃, x ∈MX , e ∈ [ea, eb].

Consider s, s̃ ∈ H̃, c, c̃ ∈ [B1, B2], e, ẽ ∈ [ea, eb]. For some s∗, c∗ and e∗ between s and s̃, c

and c̃ and e and ẽ, respectively, as well as some C > 0 the L2-distance can be bounded by

||I{·∈MX}I{·≤kc(s,·,e)} − I{·∈MX}I{·≤kc̃(s̃,·,ẽ)}||2

= E
[
I{X∈MX}

(
I{ε≤kc(s,X,e)} − I{ε≤kc̃(s̃,X,ẽ)}

)2] 1
2

=

(∫
MX

|Fε(kc(s, w, e))− Fε(kc̃(s̃, w, ẽ))|fX(w) dw

) 1
2

≤ sup
e∈K
|fε(e)|

(∫
MX

|fX(w)| dw
) 1

2

sup
w∈MX

∣∣kc(s, w, e)− kc̃(s̃, w, ẽ)∣∣ 1
2

≤ sup
e∈K
|fε(e)|

(∫
MX

|fX(w)| dw
) 1

2

sup
w∈MX

∣∣∣Dhkc(s
∗, w, e∗)[h̃− h]

+Dfmτ kc(s
∗, w, e∗)[f̃mτ − fmτ ] +Dfmβ

kc(s
∗, w, e∗)[f̃mβ − fmβ ]

+Dekc(s
∗, w, e∗)[ẽ− e]|+Dckc∗(s

∗, w, e∗)[c̃− c]
∣∣∣ 1

2
.

Similar to the the proof of (4.39), one can show with

s∗ = (h∗, f∗mτ , f
∗
mβ

),
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fh,t = h∗ + t(h̃− h),

z̃c(t) =
(
f ch,t(f

∗
mτ (x)) + e(f ch,t(f

∗
mβ

(x))− f ch,t(f∗mτ (x)))
) 1
c

that

Dhkc(s
∗, w, e)[h̃− h]

=
Bh1

(
(h∗)−1(z̃c(0))

)B−1
h′1
(
(h∗)−1(zc(0))

)(
∂
∂t z̃c(t)

∣∣
t=0
−
(
h̃− h

)(
(h∗)−1(zc(0))

))
(h∗)′

(
h−1

1 (zc(0))
)
σ(w)

and that

sup
c∈[B1,B2],w∈MX ,e∈[ea,eb]

|Dhkc(s
∗, w, e)[h̃− h]| ≤ C̃||h̃− h||[za,zb]

for an appropriate constant C̃ > 0 and all s, s̃ ∈ H̃ and s∗ between s and s̃. A similar

reasoning for Dfmτ kc∗(s
∗, w, e∗)[f̃mτ − fmτ ], ..., Dc∗kc∗(s

∗, w, e∗)[c̃− c] leads to

sup
w∈MX

∣∣kc(s, w, e)− kc̃(s̃, w, ẽ)∣∣
≤ C̄

(
||h̃− h||[za,zb] + ||f̃mτ − fmτ ||MX

+ ||f̃mβ − fmβ ||MX
+ |ẽ− e|+ |c̃− c|

)
(4.45)

for some appropriate constant C̄ > 0, which is independent of c∗, s∗, e∗. This will be

used in the following to define brackets for F . Let ξ, η > 0 and consider ξ-brackets for

c ∈ [B1, B2], e ∈ [ea, eb] and h, fmτ , fmβ such that s ∈ H̃. Construct η-brackets for F as

follows. Let

ξ = ξ(η) =
η2

10C̄ sup
e∈K

fε(e)2
∫
|fX(w)| dw

with C̄ from (4.45). For each combination of the ξ-brackets take representatives h̄, f̄mτ , f̄mβ ,

c̄, ē within these brackets and define

l(X, ε) = I{X ∈MX}I

{
ε ≤ kc̄(h̄, f̄mτ , f̄mβ , X, ē)−

η2

2 sup
e∈K

fε(e)2
∫
|fX(w)| dw

}

and

u(X, ε) = I{X ∈MX}I

{
ε ≤ kc̄(h̄, f̄mτ , f̄mβ , X, ē) +

η2

2 sup
e∈K

fε(e)2
∫
|fX(w)| dw

}
.

Then, ||u− l||2 ≤ η by the same reasoning as above and equation (4.45) ensures that each

combination of the ξ(η)-brackets for h, fmτ , fmβ such that s ∈ H̃ and c ∈ [B1, B2], e ∈ [ea, eb]

is covered by its corresponding [l, u]-bracket.

Since H̃ ⊆ CγhRh([za, zb])× C
γfmτ
Rfmτ

(MX)× C
γfmβ
Rfmτ

(MX) one has for all η > 0

N[ ](η,F , L2(P )) ≤ N[ ]

(
ξ(η), CγhRh([za, zb]), ||.||[za,zb]

)
N[ ]

(
ξ(η), C

γfmτ
Rfmτ

(MX), ||.||MX

)
N[ ]

(
ξ(η), C

γfmβ
Rfmβ

(MX), ||.||MX

)
N[ ]

(
ξ(η), [ea, eb], |.|

)
N[ ]

(
ξ(η), [B1, B2], |.|

)
.
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According to Theorem 2.7.1 of Van der Vaart and Wellner (1996), one has

log

(
N[ ]

(
ξ, CγhRh([za, zb]), ||.||[za,zb]

))
≤ Chξ

− 1
γh ,

log

(
N[ ]

(
ξ, C

γfmτ
Rfmτ

(MX), ||.||MX

))
≤ Cfmτ ξ

− dX
γfmτ ,

log

(
N[ ]

(
ξ, C

γfmβ
Rfmβ

(MX), ||.||MX

))
≤ Cfmβ ξ

− dX
γfmβ

for some appropriate constants Ch, Cfmτ , Cfmβ > 0. Note that

γh > 1, γfmτ > dX and γfmβ > dX

by definition of H̃ in (4.24). Hence, for some C > 0∫ 1

0

√
log
(
N[ ](η,F , L2(P ))

)
dη

≤
∫ 1

0

√
log
(
N[ ]

(
ξ(η), CγhRh([za, zb]), ||.||[za,zb]

))
dη

+

∫ 1

0

√
log
(
N[ ]

(
ξ(η), C

γfmτ
Rfmτ

(MX), ||.||MX

))
dη

+

∫ 1

0

√
log
(
N[ ]

(
ξ(η), C

γfmβ
Rfmβ

(MX), ||.||MX

))
dη

+

∫ 1

0

√
log
(
N[ ]

(
ξ(η), [ea, eb], |.|

))
dη

+

∫ 1

0

√
log
(
N[ ]

(
ξ(η), [B1, B2], |.|

))
dη

≤ C
∫ 1

0

((
1

η

) 1
γh

+

(
1

η

) dX
γfmτ +

(
1

η

) dX
γfmβ + log

(
1

η2

)
+ log

(
1

η2

))
dη

<∞,

so that the function class F is Donsker. Of course, the function class {X 7→ I{X≤x} : x ∈
MX} is Donsker and by the same reasoning as before it can be shown that the class

F̃ = {(X, ε) 7→ I{X≤x}I{X∈MX}I{ε≤kc(s,X,e)} : s ∈ H̃, c ∈ [B1, B2], e ∈ [ea, eb], x ∈MX}

is Donsker as well.

Finally,

GnMD(c, s)(x, e)−GMD(c, s)(x, e)

= P̂ (X ≤ x, ε ≤ kc(s,X, e)|X ∈MX)− P̂ (X ≤ x|X ∈MX)P̂ (ε ≤ kc(s,X, e)|X ∈MX)

− P (X ≤ x, ε ≤ kc(s,X, e)|X ∈MX) + P (X ≤ x|X ∈MX)P (ε ≤ kc(s,X, e)|X ∈MX)

= P̂ (X ≤ x, ε ≤ kc(s,X, e)|X ∈MX)− P (X ≤ x, ε ≤ kc(s,X, e)|X ∈MX)
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− P̂ (ε ≤ kc(s,X, e)|X ∈MX)(P̂ (X ≤ x|X ∈MX)− P (X ≤ x|X ∈MX))

− P (X ≤ x|X ∈MX)(P̂ (ε ≤ kc(s,X, e)|X ∈MX)− P (ε ≤ kc(s,X, e)|X ∈MX))

=

1
n

∑n
i=1 I{Xi≤x}I{Xi∈MX}I{εi≤kc(h,fmτ ,fmβ ,Xi,e)}

1
n

∑n
i=1 I{Xi∈MX}

− P (X ≤ x, ε ≤ kc(s,X, e)|X ∈MX)

− P (ε ≤ kc(s,X, e)|X ∈MX)(P̂ (X ≤ x|X ∈MX)− P (X ≤ x|X ∈MX))

− P (X ≤ x|X ∈MX)(P̂ (ε ≤ kc(s,X, e)|X ∈MX)− P (ε ≤ kc(s,X, e)|X ∈MX)) + op

(
1√
n

)

=

(
1

1
n

∑n
i=1 I{Xi∈MX}

− 1

P (X ∈MX)

)
1

n

n∑
i=1

I{Xi≤x}I{Xi∈MX}I{εi≤kc(h,fmτ ,fmβ ,Xi,e)}

+
1

P (X ∈MX)

(
1

n

n∑
i=1

I{Xi≤x}I{Xi∈MX}I{εi≤kc(h,fmτ ,fmβ ,Xi,e)}

− P (X ∈MX , X ≤ x, ε ≤ kc(h, fmτ , fmβ , X, e))
)

− P (ε ≤ kc(s,X, e)|X ∈MX)(P̂ (X ≤ x|X ∈MX)− P (X ≤ x|X ∈MX))

− P (X ≤ x|X ∈MX)(P̂ (ε ≤ kc(s,X, e)|X ∈MX)− P (ε ≤ kc(s,X, e)|X ∈MX)) + op

(
1√
n

)

= −P (X ≤ x,X ∈MX , ε ≤ kc(s,X, e))
nP (X ∈MX)2

n∑
i=1

(I{Xi∈MX} − P (X ∈MX))

+
1

P (X ∈MX)

(
1

n

n∑
i=1

I{Xi≤x}I{Xi∈MX}I{εi≤kc(h,fmτ ,fmβ ,Xi,e)}

− P (X ∈MX , X ≤ x, ε ≤ kc(h, fmτ , fmβ , X, e))
)

− P (ε ≤ kc(s,X, e)|X ∈MX)(P̂ (X ≤ x|X ∈MX)− P (X ≤ x|X ∈MX))

− P (X ≤ x|X ∈MX)(P̂ (ε ≤ kc(s,X, e)|X ∈MX)− P (ε ≤ kc(s,X, e)|X ∈MX)) + op

(
1√
n

)

= −P (X ≤ x, ε ≤ kc(s,X, e)|X ∈MX)− 2P (X ≤ x|X ∈MX)P (ε ≤ kc(s,X, e)|X ∈MX)

P (X ∈MX)(
1

n

n∑
i=1

(I{Xi∈MX} − P (X ∈MX))

)

+
1

P (X ∈MX)

1

n

n∑
i=1

(
I{Xi≤x}I{Xi∈MX}I{εi≤kc(h,fmτ ,fmβ ,Xi,e)}

− P (X ∈MX , X ≤ x, ε ≤ kc(h, fmτ , fmβ , X, e))

− I{Xi≤x}I{Xi∈MX} + P (X ∈MX , X ≤ x)− I{Xi∈MX}I{εi≤kc(h,fmτ ,fmβ ,Xi,e)}

+ P (X ∈MX , ε ≤ kc(h, fmτ , fmβ , X, e))
)

+ op

(
1√
n

)
,
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so that because of Corollary 2.3.1 of Van der Vaart and Wellner (1996),

sup
c,c̃∈[B1,B2],s,s̃∈H̃,x∈MX ,e∈[ea,eb]

||s−s̃||H<δn,|c−c̃|<δn

√
n|Gn(c, s, x, e)−Gn(c̃, s̃, x, e)| = op(1).

�

Putting things together:

Similar to Linton et al. (2008), define

Ln(x, e) = GnMD(B, s0)(x, e)−GMD(B, s0)(x, e)

as well as

Ln(c)(x, e) = Ln(x, e) + Γ1(B, s0)(x, e)(c−B) + Γ2(B, s0)(x, e)[ŝ− s0].

In the proof of Lemma 4.6.6, it was shown that

||Ln||2 = ||GnMD(B, s0)||2 = Op
(

1√
n

)
. (4.46)

Then, one has for all sequences δn ↘ 0

||GnMD(c, ŝ)− Ln(c)||2

= ||GnMD(c, ŝ)−GnMD(B, s0) +GMD(B, s0)− Γ1(B, s0)(c−B)− Γ2(B, s0)[ŝ− s0]||2

(C1)

≤ ||GnMD(c, ŝ)−GMD(c, ŝ)−GnMD(B, s0)||2

+ ||GMD(c, ŝ)− Γ1(B, s0)(c−B)− Γ2(B, s0)[ŝ− s0]||2

(C5)
= ||GMD(c, ŝ)− Γ1(B, s0)(c−B)− Γ2(B, s0)[ŝ− s0]||2 + op

(
1√
n

)
≤ ||GMD(c, ŝ)−GMD(c, s0)− Γ2(B, s0)[ŝ− s0]||2 + ||GMD(c, s0)− Γ1(B, s0)(c−B)||2

+ op

(
1√
n

)
(C3)

≤ ||GMD(c, ŝ)−GMD(c, s0)− Γ2(c, s0)[ŝ− s0]||2 + ||GMD(c, s0)− Γ1(B, s0)(c−B)||2

+ op(|c−B|) + op

(
1√
n

)
(C3)

≤ ||GMD(c, s0)−GMD(B, s0)− Γ1(B, s0)(c−B)||2 + op(|c−B|) + op

(
1√
n

)
(C2)
= op(|c−B|) + op

(
1√
n

)
(4.47)

uniformly in c ∈ Bδn . Denote the minimizer of c 7→ ||Ln(c)||2 by B̄. Then, B̄ can be

calculated explicitly by solving

∂

∂c
||Ln(c)||22
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=
∂

∂c
||Ln + Γ1(B, s0)(c−B) + Γ2(B, s0)[ŝ− s0]||22

=
∂

∂c

(
||Ln||22 + ||Γ1(B, s0)||22(c−B)2 + ||Γ2(B, s0)[ŝ− s0]||22

+ 2

∫
MX

∫
[ea,eb]

Γ1(B, s0)(x, e)(Ln(x, e) + Γ2(B, s0)(x, e)[ŝ− s0]) de dx(c−B)

+ 2

∫
MX

∫
[ea,eb]

Ln(x, e)Γ2(B, s0)(x, e)[ŝ− s0] de dx

)
= 2||Γ1(B, s0)||22(c−B)

+ 2

∫
MX

∫
[ea,eb]

Γ1(B, s0)(x, e)(Ln(x, e) + Γ2(B, s0)(x, e)[ŝ− s0]) de dx

= 0.

Therefore, one has

B̄ = B −

∫
MX

∫
[ea,eb]

Γ1(B, s0)(x, e)(Ln(x, e) + Γ2(B, s0)(x, e)[ŝ− s0]) de dx

||Γ1(B, s0)||22
(C6)
= B +Op

(
1√
n

)
. (4.48)

Proof of (i) in Theorem 4.2.4: One has

||Ln(B̄)||2 ≤ ||Ln(B)||2 ≤ ||Ln(x, e)||2 + ||Γ2(B, s0)[ŝ− s0]||2
(4.26)+(4.46)

= Op
(

1√
n

)
,

||GnMD(B̂, ŝ)||2 ≤ ||GnMD(B, ŝ)||2
(4.47)

≤ ||Ln(B)||2 + op

(
1√
n

)
= Op

(
1√
n

)
and for all c ∈ Bδn and by a Taylor expansion with some B∗ between c and B̄

||Ln(c)||22 = ||Ln(B̄)||22 +
∂

∂c
||Ln(c)||22

∣∣∣∣
c=B̄

(c− B̄) +
∂2

∂c2
||Ln(c)||22

∣∣
c=B∗

2
(c− B̄)2

= ||Ln(B̄)||22 + ||Γ1(B, s0)||22(c− B̄)2. (4.49)

These assertions in turn can be used to obtain

||GnMD(B̂, ŝ)||22

≤ ||GnMD(B̄, ŝ)||22

(4.47)
=

(
||Ln(B̄)||2 + op(|B̄ −B|) + op

(
n−

1
2
))2

= ||Ln(B̄)||22 + ||Ln(B̄)||2op
(
n−

1
2
)

+ op(n
−1)

(4.49)
= ||Ln(B̂)||22 − ||Γ1(B, s0)||22(B̂ − B̄)2 + op(n

−1)

(4.47)
=

(
||GnMD(B̂, ŝ)||2 + op(|B̂ −B|) + op

(
n−

1
2
))2 − ||Γ1(B, s0)||22(B̂ − B̄)2 + op(n

−1)
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(4.48)
=

(
||GnMD(B̂, ŝ)||2 + op(|B̂ − B̄|) + op

(
n−

1
2
))2 − ||Γ1(B, s0)||22(B̂ − B̄)2 + op(n

−1)

= ||GnMD(B̂, ŝ)||22 − ||Γ1(B, s0)||22(B̂ − B̄)2 + op
(
n−

1
2 |B̂ − B̄|

)
+ op(|B̂ − B̄|2)

+ op(n
−1).

Thus,

||Γ1(B, s0)||22(B̂ − B̄)2 = op
(
n−

1
2 |B̂ − B̄|

)
+ op(|B̂ − B̄|2) + op(n

−1)

and consequently B̂ − B̄ = op(n
− 1

2 ). Finally, (C6) yields

√
n(B̂ −B)

=
√
n(B̄ −B) + op(1)

= −
√
n
∫
MX

∫
[ea,eb]

Γ1(B, s0)(x, e)(Ln(x, e) + Γ2(B, s0)(x, e)[ŝ− s0]) de dx

||Γ1(B, s0)||22
+ op(1)

= −
√
n
∫
MX

∫
[ea,eb]

Γ1(B, s0)(x, e)(GnMD(x, e) + Γ2(B, s0)(x, e)[ŝ− s0]) de dx

||Γ1(B, s0)||22
+ op(1)

D→ N
(

0,
σ2
A

||Γ1(B, s0)||42

)
. (4.50)

Proof of (ii) in Theorem 4.2.4: The reasoning is similar to before, although due to

||Ln(B̄)||2 ≤ ||Ln(B)||2 ≤ ||Ln(x, e)||2 + ||Γ2(B, s0)[ŝ− s0]||2 = Op(an)

and

||GnMD(B̂, ŝ)||2 ≤ ||GnMD(B, ŝ)||2 ≤ ||Ln(B)||2 + op

(
1√
n

)
= Op(an)

the orders of the negligible terms change:

||GnMD(B̂, ŝ)||22

≤ ||GnMD(B̄, ŝ)||22

=
(
||Ln(B̄)||2 + op(|B̄ −B|) + op

(
n−

1
2
))2

= ||Ln(B̄)||22 + ||Ln(B̄)||2op
(
n−

1
2
)

+ op(n
−1)

= ||Ln(B̂)||22 − ||Γ1(B, s0)||22(B̂ − B̄)2 + op
(
ann

− 1
2
)

=
(
||GnMD(B̂, ŝ)||2 + op(|B̂ −B|) + op

(
n−

1
2
))2 − ||Γ1(B, s0)||22(B̂ − B̄)2 + op

(
ann

− 1
2
)

= ||GnMD(B̂, ŝ)||22 − ||Γ1(B, s0)||22(B̂ − B̄)2 + op
(
an|B̂ − B̄|

)
+ op(|B̂ − B̄|2)

+ op
(
ann

− 1
2
)
.

Therefore, B̂ − B̄ = op(an) and

B̂ −B = B̂ − B̄ + B̄ −B (4.48)
= op(an).
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4.6.4 Proof of Lemma 4.2.3

First, validity of assumptions (C4) and (C6’) is proven in the following two Lemmas. Note

that (C6) follows from (C6’) by the Central Limit Theorem.

Lemma 4.6.7 One has ŝ ∈ H̃ with probability converging to one, ||ĥ1−h1||
3
2

[za,zb]
= op(n

− 1
2 )

and ||F̂−1
Y |X(τ |·)− F−1

Y |X(τ |·)||MX
, ||F̂−1

Y |X(β|·)− F−1
Y |X(β|·)||MX

= op(n
− 1

4 ).

Proof: Recall the definition of H̃ ⊆ H (remember γh = γfmτ = γfmβ = 2):

H̃ =

{
s ∈ H : h ∈ C2

Rh
([za, zb]), fmτ ∈ C2

Rfmτ
(MX), fmβ ∈ C

2
Rfmβ

(MX)

}
.

The convergence rates directly follow from Lemma 4.2.15 and Theorem 4.2.2.

To prove ŝ ∈ H̃ with probability converging to one it suffices to show uniform conver-

gence of the functions ĥ1, F̂
−1
Y |X(τ |·), F̂−1

Y |X(β|·) and their derivatives up to order two to

h1, F
−1
Y |X(τ |·), F−1

Y |X(β|·) and the corresponding derivatives, respectively. Without loss of

generality, when proving F̂−1
Y |X(τ |·) ∈ CγfmτRfmτ

(MX) and F̂−1
Y |X(β|·) ∈ C

γfmβ
Rfmβ

(MX) only deri-

vatives with respect to x1 are considered since other derivatives can be treated analogously.

For ĥ1 this follows from Corollary 4.2.14, since

∂

∂y
ĥ1(y) =

∂

∂y
exp

(
−
∫ y

y1

1

λ̂(u)
du

)
= − ĥ1(y)

λ̂(y)

and

∂2

∂y2
ĥ1(y) = −

λ̂(y) ∂∂y ĥ1(y)− ĥ1(y) ∂∂y λ̂(y)

λ̂(y)2
=
ĥ1(y) + ĥ1(y) ∂∂y λ̂(y)

λ̂(y)2
.

As will be seen in the following, the assertion for F̂−1
Y |X(τ |·) and F̂−1

Y |X(β|·) follows from the

corresponding assertion for F̂Y |X(y|·) and hence can be deduced from Corollary 4.2.14 and

Lemma 4.2.15 as well. One has

τ = F̂Y |X(F̂−1
Y |X(τ |x)|x),

so that

0 =
∂

∂x1
F̂Y |X(F̂−1

Y |X(τ |x)|x) = F̂y(F̂
−1
Y |X(τ |x)|x)

∂

∂x1
F̂−1
Y |X(τ |x) + F̂x(F̂−1

Y |X(τ |x)|x),

where Fy and Fx denote the derivative of (y, x) 7→ F̂Y |X(y|x) with respect to y and x,

respectively. Note that dX = 1 was assumed. Therefore,

∂

∂x1
F̂−1
Y |X(τ |x) = −

F̂x(F̂−1
Y |X(τ |x)|x)

F̂y(F̂
−1
Y |X(τ |x)|x)

.

Corollary 4.2.14 and Lemma 4.2.15 lead to

sup
x∈MX

∣∣∣∣ ∂∂x1
F̂−1
Y |X(τ |x)− ∂

∂x1
F−1
Y |X(τ |x)

∣∣∣∣ = op(1).

The second derivative can be written as

∂2

∂x2
1

F̂−1
Y |X(τ |x)
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= −
F̂y(F̂

−1
Y |X(τ |x)|x) ∂

∂x1
F̂x(F̂−1

Y |X(τ |x)|x)− F̂x(F̂−1
Y |X(τ |x)|x) ∂

∂x1
F̂y(F̂

−1
Y |X(τ |x)|x)

F̂y(F̂
−1
Y |X(τ |x)|x)2

.

Similar to before, let Fyy, Fxy and Fxx denote the partial derivatives of (y, x) 7→ F̂Y |X(y|x)

of order two. Then, it holds that

∂

∂x1
F̂y(F̂

−1
Y |X(τ |x)|x) = F̂xy(F̂

−1
Y |X(τ |x)|x) + F̂yy(F̂

−1
Y |X(τ |x)|x)

∂

∂x1
F̂−1
Y |X(τ |x)

as well as

∂

∂x1
F̂x(F̂−1

Y |X(τ |x)|x) = F̂xx(F̂−1
Y |X(τ |x)|x) + F̂xy(F̂

−1
Y |X(τ |x)|x)

∂

∂x1
F̂−1
Y |X(τ |x),

so that again

sup
x∈MX

∣∣∣∣ ∂2

∂x2
1

F̂−1
Y |X(τ |x)− ∂2

∂x2
1

F−1
Y |X(τ |x)

∣∣∣∣ = op(1)

is implied by Corollary 4.2.14. �

Lemma 4.6.8 For some σ2
A > 0, one has

√
n

∫
MX

∫
[ea,eb]

Γ1(B, s0)(x, e)
(
GnMD(B, s0)(x, e) + Γ2(B, s0)(x, e)[ŝ− s0]

)
de dx

D→ N (0, σ2
A).

Proof: The concept of the proof is quite simple. First, the left hand side is rewritten such

that

√
n

∫
MX

∫
[ea,eb]

Γ1(B, s0)(x, e)
(
GnMD(B, s0)(x, e) + Γ2(B, s0)(x, e)[ŝ− s0]

)
de dx

=
1√
n

n∑
i=1

(ψ(Yi, Xi)− E[ψ(Y,X)]) + op(1) (4.51)

for some appropriate function ψ : RdX+1 → R. Afterwards, the usual Central Limit Theo-

rem can be applied to obtain the desired convergence.

For this purpose, note that in equation (4.40) it was shown that

Γ2(B, s0)(x, e)[ŝ− s0] = DsGMD(B, s0)(x, e)[ŝ− s0]

= DhGMD(B, s0)(x, e)[ĥ− h1]

+DfmτGMD(B, s0)(x, e)[F̂−1
Y |X(τ |·)− F−1

Y |X(τ |·)
]

+Dfmβ
GMD(B, s0)(x, e)[F−1

Y |X(β|·)− F−1
Y |X(β|·)

]
.

Hence, there are actually four terms that have to be fitted to Expression (4.51).

Rewriting GnMD(B, s0): For c = B and s = s0 = (h1, F
−1
Y |X(τ |·), F−1

Y |X(β|·)) one has

kB(s0, x, e) =
g(x) + σ(x)F−1

ε (τ) + eσ(x)(F−1
ε (β)− F−1

ε (τ))− g(x)

σ(x)
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= F−1
ε (τ) + e(F−1

ε (β)− F−1
ε (τ)),

which is independent of x. Using the expression derived in the proof of Lemma 4.6.6, this

leads to

GnMD(B, s0)(x, e)

= −P (X ≤ x, ε ≤ kB(s0, X, e)|X ∈MX)− 2P (X ≤ x|X ∈MX)P (ε ≤ kB(s0, X, e)|X ∈MX)

P (X ∈MX)(
1

n

n∑
i=1

(I{Xi∈MX} − P (X ∈MX))

)

+
1

P (X ∈MX)

1

n

n∑
i=1

(
I{Xi≤x}I{Xi∈MX}I{εi≤kB(s0,Xi,e)}

− P (X ∈MX , X ≤ x, ε ≤ kB(s0, X, e))− I{Xi≤x}I{Xi∈MX}

+ P (X ∈MX , X ≤ x)− I{Xi∈MX}I{εi≤kB(s0,Xi,e)} + P (X ∈MX , ε ≤ kB(s0, X, e))
)

+ op

(
1√
n

)

=
P (X ≤ x|X ∈MX)P (ε ≤ F−1

ε (τ) + e(F−1
ε (β)− F−1

ε (τ)))

P (X ∈MX)

1

n

n∑
i=1

(I{Xi∈MX} − P (X ∈MX))

+
1

P (X ∈MX)

1

n

n∑
i=1

(
I{Xi≤x}I{Xi∈MX}I{εi≤F−1

ε (τ)+e(F−1
ε (β)−F−1

ε (τ))}

− P (X ∈MX , X ≤ x, ε ≤ F−1
ε (τ) + e(F−1

ε (β)− F−1
ε (τ)))− I{Xi≤x}I{Xi∈MX}

+ P (X ∈MX , X ≤ x)− I{Xi∈MX}I{εi≤F−1
ε (τ)+e(F−1

ε (β)−F−1
ε (τ))}

+ P (X ∈MX , ε ≤ F−1
ε (τ) + e(F−1

ε (β)− F−1
ε (τ)))

)
+ op

(
1√
n

)
,

that is,

√
n

∫
MX

∫
[ea,eb]

Γ1(B, s0)(x, e)GnMD(B, s0)(x, e) de dx

=
1√
n

n∑
i=1

(ψ1(Yi, Xi)− E[ψ1(Yi, Xi)]) + op(1)

for

ψ1(Y,X)

=

∫
MX

∫
[ea,eb]

(
I{X∈MX}Γ1(B, s0)(x, e)

P (X ≤ x|X ∈MX)P (ε ≤ F−1
ε (τ) + e(F−1

ε (β)− F−1
ε (τ)))

P (X ∈MX)

+
1

P (X ∈MX)

∫
MX

∫
[ea,eb]

Γ1(B, s0)(x, e)

(
I{X≤x}I{X∈MX}I

{
hB(Y )−g(X)

σ(X)
≤F−1

ε (τ)+e(F−1
ε (β)−F−1

ε (τ))
} − I{X≤x}I{X∈MX}

− I{X∈MX}I
{
hB(Y )−g(X)

σ(X)
≤F−1

ε (τ)+e(F−1
ε (β)−F−1

ε (τ))
})) de dx.
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Rewriting DhGMD(B, s0)[ĥ− h1]: Again, as was shown in the proof of Lemma 4.6.4 it

holds that

DhGMD(B, s0)(x, e)[ĥ− h1]

=
1

P (X ∈M)

(∫
MX

fε(kB(s0, w, e))
(
I{w≤x} − P (X ≤ x|X ∈MX)

)
DhkB(s0, w, e)[ĥ− h1]fX(w) dw

)
,

where (for fmτ = F−1
Y |X(τ |·), fmβ = F−1

Y |X(β|·) in zc(t))

DhkB(s0, w, e)[ĥ− h1] =
BzB(0)B−1

(
zB(0)− ĥ(h−1

1 (zB(0))) + ∂
∂tzB(t)

∣∣
t=0

)
σ(w)

, (4.52)

zB(0) =
(
g(w) + σ(w)F−1

ε (τ) + eσ(w)(F−1
ε (β)− F−1

ε (τ))
) 1
B ,

∂

∂t
zB(t)

∣∣
t=0

= B
(
g(w) + σ(w)F−1

ε (τ) + eσ(w)(F−1
ε (β)− F−1

ε (τ))
) 1
B
−1

(
BhB−1(F−1

Y |X(τ |w))(ĥ(F−1
Y |X(τ |w))− h1(F−1

Y |X(τ |w)))

+ e
(
BhB−1(F−1

Y |X(β|w))(ĥ(F−1
Y |X(β|w))− h1(F−1

Y |X(β|w)))

−BhB−1(F−1
Y |X(τ |w))(ĥ(F−1

Y |X(τ |w))− h1(F−1
Y |X(τ |w)))

))
.

(4.53)

Recall from the proof of Theorem 4.2.2 that (see (4.36))

ĥ1(y)− h1(y) = exp

(
−
∫ y

y1

1

λ̂(u)
du

)
− exp

(
−
∫ y

y1

1

λ(u)
du

)

= −h1(y)

∫ y

y1

(
1

λ̂(u)
− 1

λ(u)

)
du+ op

(
1√
n

)

=
1

n

n∑
i=1

−h1(y)ηi(y) + op

(
1√
n

)
,

where

ηi(y) =

∫ y

y1

−1

λ(u)2

(
v(Xi)Dp,0(u,Xi) +

∂v(Xi)Dp,x(u,Xi)

∂x1

)
I{u≥Yi} du

− v(Xi)Dp,y(Yi, Xi)

λ(Yi)2

(
I{Yi≤y} − I{Yi≤y1}

)
+

∫ y

y1

−1

λ(u)2

(
v(Xi)Df,0(u,Xi) +

∂v(Xi)Df,x(u,Xi)

∂x1

)
du

and E[η1(y)] = 0 uniformly in [za, zb]. Therefore,

DhkB(s0, w, e)[ĥ− h1]

=
BzB(0)B−1

nσ(w)

n∑
i=1

(
zB(0)ηi(h

−1
1 (zB(0))) +B

(
g(w) + σ(w)F−1

ε (τ)
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− eσ(w)(F−1
ε (β)− F−1

ε (τ))
) 1
B
−1
(
BhB(F−1

Y |X(τ |w))ηi(F
−1
Y |X(τ |w))

+ e
(
BhB(F−1

Y |X(β|w))ηi(F
−1
Y |X(β|w))−BhB(F−1

Y |X(τ |w))ηi(F
−1
Y |X(τ |w))

)))

+ op

(
1√
n

)

=
1

n

n∑
i=1

ψ̃2(Yi, Xi, w, e) + op

(
1√
n

)
for an appropriate function ψ̃2, which is centred and uniformly bounded in (Y,X,w, e) ∈
RdX+1 ×MX × [ea, eb]. Thus,

√
n

∫
MX

∫
[ea,eb]

Γ1(B, s0)(x, e)DhGMD(B, s0)(x, e)[ĥ− h1] de dx

=
1

nP (X ∈M)

n∑
i=1

∫
MX

∫
[ea,eb]

∫
MX

Γ1(B, s0)(x, e)fε(kB(s0, w, e))

(
I{w≤x} − P (X ≤ x|X ∈MX)

)
ψ̃2(Yi, Xi, w, e)fX(w) dw de dx+ op(1)

=
1√
n

n∑
i=1

ψ2(Yi, Xi) + op(1)

for

ψ2(Yi, Xi) =
1

P (X ∈M)

∫
MX

∫
[ea,eb]

∫
MX

Γ1(B, s0)(x, e)fε(kB(s0, w, e))

(
I{w≤x} − P (X ≤ x|X ∈MX)

)
ψ̃2(Yi, Xi, w, e)fX(w) dw de dx.

Dfmτ GMD(B, s0)[F̂−1Y|X(τ |·)− F−1Y|X(τ |·)
]

and Dfmτ GMD(B, s0)[F̂−1Y|X(β|·)− F−1Y|X(β|·)
]
:

In the proof of Lemma 4.6.6, it was shown that

Dfmτ kB(s0, x, e)[F̂
−1
Y |X(τ |·)− F−1

Y |X(τ |·)
]

= −
B(1− e)hB(F−1

Y |X(τ |x))(F̂−1
Y |X(τ |x)− F−1

Y |X(τ |x))

σ(x)λ(F−1
Y |X(τ |x))

and

DfβkB(s0, x, e)[F̂
−1
Y |X(β|·)− F−1

Y |X(β|·)
]

= −
BehB(F−1

Y |X(β|x))(F̂−1
Y |X(β|x)− F−1

Y |X(β|x))

σ(x)λ(F−1
Y |X(β|x))

.

Referring to equation (4.67) in the proof of Lemma (4.2.15) below, one has

F̂−1
Y |X(ι|x)− F−1

Y |X(ι|x)

=
1

fY |X(F−1
Y |X(ι|x)|x)fX(x)

1

n

n∑
i=1

Khx(x−Xi)

(
Khy(F−1

Y |X(ι|x)− Yi)

−
p(F−1

Y |X(ι|x), x)

fX(x)

)
+ op

(
1√
n

)
170



4.6. Proofs

for ι ∈ {τ, β}. Note that the order of the remaining term, that is obtained in the proof

there, is actually op(F̂
−1
Y |X(ι|x)− F−1

Y |X(ι|x)), but this order can be extended to

Op((F̂−1
Y |X(ι|x)− F−1

Y |X(ι|x))2) = op(n
− 1

2 )

similarly to the proof of Lemma 2.8.1 by using the Lagrange form of the remainder.

Due to Lemma 1.1.1, one has (compare (2.48))

E

[
Khx(x−X1)

(
Khy(F−1

Y |X(ι|x)− Y1)−
p(F−1

Y |X(ι|x), x)

fX(x)

)]
= op

(
1√
n

)
uniformly in x ∈MX and ι ∈ {τ, β}. So far, a representation

√
n

∫
MX

∫
[ea,eb]

Γ1(B, s0)(x, e)
(
GnMD(B, s0)(x, e) + Γ2(B, s0)(x, e)[ŝ− s0]

)
de dx

=
1√
n

n∑
i=1

(
ψ1(Yi, Xi) + ψ2(Yi, Xi) + ψ3,n(Yi, Xi) + ψ4,n(Yi, Xi)

− E[ψ1(Y,X)− ψ2(Y,X)− ψ3,n(Y,X)− ψ4,n(Y,X)]
)

+ op(1),

could be found, where

ψ3,n(Yi, Xi) = −
∫
MX

∫
[ea,eb]

Γ1(B, s0)(x, e)
B(1− e)hB(F−1

Y |X(τ |x))

σ(x)λ(F−1
Y |X(τ |x))fY |X(F−1

Y |X(τ |x)|x)fX(x)

Khx(x−Xi)

(
Khy(F−1

Y |X(τ |x)− Yi)−
p(F−1

Y |X(τ |x), x)

fX(x)

)
de dx

and

ψ4,n(Yi, Xi) = −
∫
MX

∫
[ea,eb]

Γ1(B, s0)(x, e)
BehB(F−1

Y |X(β|x))

σ(x)λ(F−1
Y |X(β|x))fY |X(F−1

Y |X(β|x)|x)fX(x)

Khx(x−Xi)

(
Khy(F−1

Y |X(τ |x)− Yi)−
p(F−1

Y |X(β|x), x)

fX(x)

)
de dx

depend on n. To fit this expression to equation (4.51) it suffices to replace ψ3,n and ψ4,n with

some functions ψ3 and ψ4 (independent of n and with finite second moments), respectively,

such that

E[(ψ3,n(Y,X)− ψ3(Y,X))2] = o(1) and E[(ψ4,n(Y,X)− ψ4(Y,X))2] = o(1),

since it was already shown that E[ψ1(Y,X)2], E[ψ2(Y,X)2] <∞. For this purpose, define

ψτ (x, e) = −
B(1− e)hB(F−1

Y |X(τ |x))

σ(x)λ(F−1
Y |X(τ |x))fY |X(F−1

Y |X(τ |x)|x)fX(x)
,

ψβ(x, e) = −
BehB(F−1

Y |X(β|x))

σ(x)λ(F−1
Y |X(β|x))fY |X(F−1

Y |X(β|x)|x)fX(x)
,

ψ3(Y,X) = I{X∈MX}

(
I{Y≤F−1

Y |X(τ |X)} −
p(F−1

Y |X(τ |X), X)

fX(X)

)
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∫
[ea,eb]

Γ1(B, s0)(X, e)ψτ (X, e) de,

ψ4(Y,X) = I{X∈MX}

(
I{Y≤F−1

Y |X(β|X)} −
p(F−1

Y |X(β|X), X)

fX(X)

)
∫

[ea,eb]
Γ1(B, s0)(X, e)ψβ(X, e) de.

Then,

E[(ψ3,n(Y,X)− ψ3(Y,X))2]

= E

[(∫
MX

∫
[ea,eb]

Γ1(B, s0)(x, e)ψτ (x, e)Khx(X − x)

(
Khy(F−1

Y |X(τ |x)− Y )−
p(F−1

Y |X(τ |x), x)

fX(x)

)
de dx

− I{X∈MX}

(
I{Y≤F−1

Y |X(τ |X)} −
p(F−1

Y |X(τ |X), X)

fX(X)

)∫
[ea,eb]

Γ1(B, s0)(X, e)ψτ (X, e) de

)2]

=

∫ ∫ (∫
MX

(
Khy(F−1

Y |X(τ |x)− z)−
p(F−1

Y |X(τ |x), x)

fX(x)

)
Khx(v − x)

∫
[ea,eb]

Γ1(B, s0)(x, e)ψτ (x, e) de dx− I{v∈MX}

(
I{z≤F−1

Y |X(τ |v)} −
p(F−1

Y |X(τ |v), v)

fX(v)

)
∫

[ea,eb]
Γ1(B, s0)(v, e)ψτ (v, e) de

)2

fY,X(z, v) dz dv

=

∫ ∫ (∫
I{v−hxx∈MX}

(
Khy(F−1

Y |X(τ |v − hxx)− z)

−
p(F−1

Y |X(τ |v − hxx), v − hxx)

fX(v − hxx)

)
K(x)

∫
[ea,eb]

Γ1(B, s0)(v − hxx, e)ψτ (v − hxx, e) de dx

− I{v∈MX}

(
I{z≤F−1

Y |X(τ |v)} −
p(F−1

Y |X(τ |v), v)

fX(v)

)
∫

[ea,eb]
Γ1(B, s0)(v, e)ψτ (v, e) de

)2

fY,X(z, v) dz dv.

Since MX is an interval, the boundary of MX has Lebesgue-measure equal to zero. Note

that Khy(F−1
Y |X(τ |v − hxx)− z)→ I{z≤F−1

Y |X(τ |v)} for Lebesgue-all z ∈ R, v, x ∈ RdX , so that

due to the boundedness of MX and the continuity of ψτ ,Γ1 and F−1
Y |X(τ |·), the dominated

convergence theorem leads to

E[(ψ3,n(Y,X)− ψ3(Y,X))2]
n→∞−→ 0.
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The same reasoning can be applied for ψ4,n. In total, this leads to

√
n

∫
MX

∫
[ea,eb]

Γ1(B, s0)(x, e)
(
GnMD(B, s0)(x, e) + Γ2(B, s0)(x, e)[ŝ− s0]

)
de dx

=
1√
n

n∑
i=1

(ψ(Yi, Xi)− E[ψ(Y,X)]) + op(1)

for

ψ(Y,X) = ψ1(Y,X) + ψ2(Y,X) + ψ3(Y,X) + ψ4(Y,X).

The Central Limit Theorem implies

√
n

∫
MX

∫
[ea,eb]

Γ1(B, s0)(x, e)
(
GnMD(B, s0)(x, e)+Γ2(B, s0)(x, e)[ŝ−s0]

)
de dx

D→ N (0, σ2
A)

for σ2
A = Var(ψ(Y,X)). �

To prove Lemma 4.2.3, it remains to prove

||Γ2(B, s0)[ŝ− s0]||2 = Op
(

1√
nhdXx

)
.

In the following, the complexity of the dominating term in ||Γ2(B, s0)[ŝ − s0]||2 will be

reduced stepwise. First, apply (4.40) to obtain

||Γ2(B, s0)[ŝ− s0]||2

≤
∣∣∣∣DhGMD(c, s0)[ĥ1 − h1]

∣∣∣∣
2

+
∣∣∣∣DfmτGMD(B, s0)

[
F̂−1
Y |X(τ |·)− F−1

Y |X(τ |·)
]∣∣∣∣

2

+
∣∣∣∣Dfmβ

GMD(B, s0)
[
F̂−1
Y |X(β|·)− F−1

Y |X(β|·)
]∣∣∣∣

2

=
∣∣∣∣DfmτGMD(B, s0)

[
F̂−1
Y |X(τ |·)− F−1

Y |X(τ |·)
]∣∣∣∣

2

+
∣∣∣∣Dfmβ

GMD(B, s0)
[
F̂−1
Y |X(β|·)− F−1

Y |X(β|·)
]∣∣∣∣

2
+Op

(
1√
n

)
,

where the last equation follows from (4.52), (4.53) and Lemma 4.6.7. Both of the terms∣∣∣∣DfmτGMD(B, s0)
[
F̂−1
Y |X(τ |·)− F−1

Y |X(τ |·)
]∣∣∣∣

2

and ∣∣∣∣Dfmβ
GMD(B, s0)

[
F̂−1
Y |X(β|·)− F−1

Y |X(β|·)
]∣∣∣∣

2

can be treated similarly to each other, so that only the first term is considered in the

following. Recall

Dfmτ kB(s0, x, e)
[
F̂−1
Y |X(τ |·)− F−1

Y |X(τ |·)
]

= −
B(1− e)h(F−1

Y |X(τ |x))(F̂−1
Y |X(τ |x)− F−1

Y |X(τ |x))

σ(x)λ(F−1
Y |X(τ |x))

and

DfmτGMD(B, s0)(x, e)
[
F̂−1
Y |X(τ |·)− F−1

Y |X(τ |·)
]
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=
1

P (X ∈M)

(∫
MX

fε(kB(s0, w, e))
(
I{w≤x} − P (X ≤ x|X ∈M)

)
Dfmτ kB(s0, w, e)

[
F̂−1
Y |X(τ |·)− F−1

Y |X(τ |·)
]
fX(w) dw

)
from the proof of Lemma 4.6.4. Consequently, there exists some constant C > 0 such that∣∣∣∣DfmτGMD(B, s0)

[
F̂−1
Y |X(τ |·)− F−1

Y |X(τ |·)
]∣∣∣∣

2
≤ C||F̂−1

Y |X(τ |·)− F−1
Y |X(τ |·)||2,

that is, it suffices to prove∫
MX

(
F̂−1
Y |X(τ |x)− F−1

Y |X(τ |x)
)2
dx = Op

(
1

nhdXx

)
.

In equation (4.67) in the proof of Lemma 4.2.15, it will be shown that

F̂−1
Y |X(τ |x)− F−1

Y |X(τ |x) = − 1

fY |X(F−1
Y |X(τ |x)|x)

1

n

n∑
i=1

(
1

fX(x)
Khy(F−1

Y |X(τ |x)− Yi)

−
p(F−1

Y |X(τ |x), x)

fX(x)2

)
Khx(x−Xi) + op

(
1√
n

)
.

Even though under different assumptions, it was proven in Lemma 2.3.2 that (compare

(2.21))

nh
dX
2
x

∫ ∫
v(x)

(
F̂−1
Y |X(τ |x)− F−1

Y |X(τ |x)
)2
dxµ(dτ) = Op

(
h
− dX

2
x

)
for an appropriate weight function v and some measure µ on (0, 1). When choosing v(x) =

I{x∈MX} and µ = δτ for the Dirac measure δτ , this is exactly the assertion that needs to be

proven. Indeed, one can proceed exactly in the same way as there, since the expansion of

F̂−1
Y |X(τ |x) − F−1

Y |X(τ |x) from (4.67) corresponds to that of Lemma 2.8.1. Hence, the proof

will be only sketched here. Define

κ(x) =
1

fY |X(F−1
Y |X(τ |x)|x)2fX(x)2

.

Then, it holds that∫
MX

(
F̂−1
Y |X(τ |x)− F−1

Y |X(τ |x)
)2
dx

≤ 2

∫
MX

(
1

fY |X(F−1
Y |X(τ |x)|x)

1

n

n∑
i=1

(
1

fX(x)
Khy(F−1

Y |X(τ |x)− Yi)−
p(F−1

Y |X(τ |x), x)

fX(x)2

)

Khx(x−Xi)

)2

dx+ op

(
1

n

)

=
2

n2

n∑
i=1

∫
MX

κ(x)

(
Khy(F−1

Y |X(τ |x)− Yi)−
p(F−1

Y |X(τ |x), x)

fX(x)

)2

Khx(x−Xi)
2 dx

+
2

n2

n∑
i=1

n∑
j=1
j 6=i

∫
MX

κ(x)

(
Khy(F−1

Y |X(τ |x)− Yi)−
p(F−1

Y |X(τ |x), x)

fX(x)

)
Khx(x−Xi)
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(
Khy(F−1

Y |X(τ |x)− Yj)−
p(F−1

Y |X(τ |x), x)

fX(x)

)
Khx(Xj − x) dx+ op

(
1

n

)
.

For some sufficiently large constant C > 0 the expectation of the first term can be bounded

by

E

[
2

n2

n∑
i=1

∫
MX

κ(x)

(
Khy(F−1

Y |X(τ |x)− Yi)−
p(F−1

Y |X(τ |x), x)

fX(x)

)2

Khx(x−Xi)
2 dx

]

≤ C

nhdXx
E

[ ∫
1

hdXx
K

(
x−X1

hx

)2

dx

]
=

C

nhdXx

∫
K(x)2 dx

= O
(

1

nhdXx

)
.

Due to Lemma 1.1.1, the expectation of the second term is of order o
(

1
n

)
, while it can be

shown via the same calculations as were done to obtain (2.49) that the variance is of order

O
(
n−2h−2dX

x

)
. The last assertion of Remark 4.2.3 is a direct consequence of part (ii) of

Theorem 4.2.4.

4.6.5 Proof of Theorem 4.2.5

Let K ⊆ R be compact. Recall the definition of B̃ from equation (4.3)

B̃ = − ∂

∂y
λ̂(y)

∣∣∣
y=ŷ0

.

First, a Taylor expansion together with Theorem 4.2.8 (see the proof in Section 4.6.7 below)

and Corollary 4.2.14 leads to

B̃ = − ∂

∂y
λ̂(y)

∣∣∣
y=ŷ0

= − ∂

∂y
λ̂(y)

∣∣∣
y=y0

− ∂2

∂y2
λ̂(y)

∣∣∣
y=y∗

(ŷ0 − y0)

= − ∂

∂y
λ̂(y)

∣∣∣
y=y0

− ∂2

∂y2
λ(y)

∣∣∣
y=y∗

(ŷ0 − y0) + op(|ŷ0 − y0|)

= − ∂

∂y
λ̂(y)

∣∣∣
y=y0

+Op
(

1√
nhy

)
for some y∗ between ŷ0 and y0. Note that since λ is two times continuously differentiable

and ŷ0 − y0 = op(1) is implied by Theorem 4.2.8, it holds that ∂2

∂y2λ(y)
∣∣∣
y=y∗

is bounded in

probability. Hence, the error due to the estimation of y0 will be asymptotically negligible

and it suffices to consider the asymptotic behaviour of ∂
∂y λ̂(y)

∣∣
y=y0

. Equations (4.65) and

(4.66) below imply

√
h3
ysup
u∈K

v(x)

∣∣∣∣ ∂∂y p̂y(u, x)− ∂

∂y
py(u, x)

∣∣∣∣ = Op

(√
log(n)

nhdXx

)
= op

(
n−

1
4

)
,
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√
h3
ysup
u∈K

v(x)

∣∣∣∣ ∂∂y p̂x(u, x)− ∂

∂y
px(u, x)

∣∣∣∣ = Op

(√
log(n)h2

y

nhdX+2
x

)
= op

(
n−

1
4

)
.

In the following, negligibility is (if not specified further) meant uniformly in y ∈ K and

x ∈ supp(v). Remember (4.33) and (4.34). Due to (with f = fX and f̂ = f̂X)

∂

∂y
Φ̂y(u, x) =

∂
∂y p̂y(u, x)

f̂(x)
and

∂

∂y
Φ̂x(u, x) =

∂
∂y p̂x(u, x)

f̂(x)
− f̂x(x)p̂y(u, x)

f̂2(x)
,

equation (1.8) can be applied again to obtain (arguments are omitted)

∂

∂y
Φ̂y−

∂

∂y
Φy =

1

f

(
∂

∂y
p̂y−

∂

∂y
py

)
−

∂
∂ypy

f2
(f̂ − f)− f̂ − f

f̂f

(
∂

∂y
p̂y −

∂

∂y
py −

∂
∂ypy(f̂ − f)

f

)
︸ ︷︷ ︸

=op

(
1√
nh3
y

)
as well as

p̂yf̂x

f̂2
− pyfx

f2
=

1

f2
(p̂yf̂x − pyfx)− pyfx

f4
(f̂2 − f2) + op

(
1√
nh3

y

)

=
1

f2
((p̂y − py)f̂x + p(f̂x − fx))− pyfx

f4
(f̂ − f)(f̂ + f) + op

(
1√
nh3

y

)

=
fx
f2

(p̂y − py) +
py
f2

(f̂x − fx)− 2pyfx
f3

(f̂ − f) + op

(
1√
nh3

y

)

and thus

∂

∂y
Φ̂x −

∂

∂y
Φx = −fx

f2
(p̂y − py) +

1

f

(
∂

∂y
p̂x −

∂

∂y
px

)
+

(
2pyfx
f3

−
∂
∂ypx

f2

)
(f̂ − f)

− py
f2

(f̂x − fx) + op

(
1√
nh3

y

)
.

In total, this leads to

∂

∂y

(
Φ̂x

Φ̂y

− Φx

Φy

)

=

∂
∂y Φ̂x

Φ̂y

−
Φ̂x

∂
∂y Φ̂y

Φ̂2
y

−
∂
∂yΦx

Φy
+

Φx
∂
∂yΦy

Φ2
y

=
1

Φy

(
∂

∂y
Φ̂x −

∂

∂y
Φx

)
−

∂
∂yΦx

Φ2
y

(Φ̂y − Φy)−
Φ̂y − Φy

Φ̂yΦy

(
∂

∂y
Φ̂x −

∂

∂y
Φx −

∂
∂yΦx(Φ̂y − Φy)

Φy

)

− 1

Φ2
y

(
Φ̂x

∂

∂y
Φ̂y − Φx

∂

∂y
Φy

)
+

Φx
∂
∂yΦy

Φ4
y

(Φ̂2
y − Φ2

y)

+
Φ̂2
y − Φ2

y

Φ̂2
yΦ

2
y

(
Φ̂x

∂

∂y
Φ̂y − Φx

∂

∂y
Φy −

Φx
∂
∂yΦy(Φ̂

2
y − Φ2

y)

Φ2
y

)
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=
1

Φy

(
∂

∂y
Φ̂x −

∂

∂y
Φx

)
−

∂
∂yΦx

Φ2
y

(Φ̂y − Φy)−
∂
∂yΦy

Φ2
y

(Φ̂x − Φx)− Φx

Φ2
y

(
∂

∂y
Φ̂y −

∂

∂y
Φy

)

+
2Φx

∂
∂yΦy

Φ3
y

(Φ̂y − Φy) + op

(
1√
nh3

y

)

=
1

Φy

(
∂

∂y
Φ̂x −

∂

∂y
Φx

)
+

(
2Φx

∂
∂yΦy

Φ3
y

−
∂
∂yΦx

Φ2
y

)
(Φ̂y − Φy)−

∂
∂yΦy

Φ2
y

(Φ̂x − Φx)

− Φx

Φ2
y

(
∂

∂y
Φ̂y −

∂

∂y
Φy

)
+ op

(
1√
nh3

y

)

=
1

Φy

(
− fx
f2

(p̂y − py) +
1

f

(
∂

∂y
p̂x −

∂

∂y
px

)
+

(
2pyfx
f3

−
∂
∂ypx

f2

)
(f̂ − f)− py

f2
(f̂x − fx)

)

+

(
2Φx

∂
∂yΦy

Φ3
y

−
∂
∂yΦx

Φ2
y

)(
1

f
(p̂y − py)−

py
f2

(f̂ − f)

)

−
∂
∂yΦy

Φ2
y

(
− fx
f2

(p̂− p) +
1

f
(p̂x − px) +

(
2pfx
f3
− px
f2

)
(f̂ − f)− p

f2
(f̂x − fx)

)

− Φx

Φ2
y

(
1

f

(
∂

∂y
p̂y −

∂

∂y
py

)
−

∂
∂ypy

f2
(f̂ − f)

)
+ op

(
1√
nh3

y

)

=

∂
∂yΦyfx

Φ2
yf

2
(p̂− p) +

(
2Φx

∂
∂yΦy

fΦ3
y

−
∂
∂yΦx

fΦ2
y

− fx
Φyf2

)
(p̂y − py)−

∂
∂yΦy

Φ2
yf

(p̂x − px)

− Φx

Φ2
yf

(
∂

∂y
p̂y −

∂

∂y
py

)
+

1

Φyf

(
∂

∂y
p̂x −

∂

∂y
px

)

+

(
2pyfx
Φyf3

−
∂
∂ypx

Φyf2
−

2Φxpy
∂
∂yΦy

Φ3
yf

2
+
py

∂
∂yΦx

Φ2
yf

2
−

2pfx
∂
∂yΦy

f3Φ2
y

+
px

∂
∂yΦy

f2Φ2
y

+
Φx

∂
∂ypy

Φ2
yf

2

)
(f̂ − f)

+

(
p ∂
∂yΦy

Φ2
yf

2
− py

Φyf2

)
(f̂x − fx) + op

(
1√
nh3

y

)

= D̃p,0(p̂− p) + D̃p,y(p̂y − py) + D̃p,x(p̂x − px)

+ D̃p,yy

(
∂

∂y
p̂y −

∂

∂y
py

)
+ D̃p,xy

(
∂

∂y
p̂x −

∂

∂y
px

)

+ D̃f,0(f̂ − f) + D̃f,x(f̂x − fx) + op

(
1√
nh3

y

)

with

D̃p,0 =

∂
∂yΦyfx

Φ2
yf

2
, D̃p,y =

2Φx
∂
∂yΦy

fΦ3
y

−
∂
∂yΦx

fΦ2
y

− fx
Φyf2

, D̃p,x = −
∂
∂yΦy

Φ2
yf

,

D̃p,yy = − Φx

Φ2
yf
, D̃p,xy =

1

Φyf
, D̃f,x =

p ∂
∂yΦy

Φ2
yf

2
− 1

f
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and

D̃f,0 =
2fx
f2
−

∂
∂ypx

Φyf2
−

2Φx
∂
∂yΦy

Φ2
yf

+

∂
∂yΦx

Φyf
−

2pfx
∂
∂yΦy

f3Φ2
y

+
px

∂
∂yΦy

f2Φ2
y

+
Φx

∂
∂ypy

Φ2
yf

2
.

Similar to the proof of Lemma 4.2.1, one has

D̃p,0p+ D̃p,ypy + D̃p,xpx + D̃p,yy
∂

∂y
py + D̃p,xy

∂

∂y
px + D̃f,0f + D̃f,xfx

=
pfx

∂
∂yΦy

Φ2
yf

2
+

2Φx
∂
∂yΦy

Φ2
y

−
∂
∂yΦx

Φy
− fx
f
−
px

∂
∂yΦy

Φ2
yf

−
Φx

∂
∂ypy

Φ2
yf

+

∂
∂ypx

Φyf

+
2fx
f

+

∂
∂ypx

Φyf
−

2Φx
∂
∂yΦy

Φ2
y

−
∂
∂yΦx

Φy
−

2pfx
∂
∂yΦy

f2Φ2
y

+
px

∂
∂yΦy

fΦ2
y

+
Φx

∂
∂ypy

Φ2
yf

+
pfx

∂
∂yΦy

Φ2
yf

2
− fx
f

= 0

and

E

[
D̃p,0p̂+D̃p,yp̂y+D̃p,xp̂x+D̃p,yy

∂

∂y
p̂y+D̃p,xy

∂

∂y
p̂x+D̃f,0f̂+D̃f,xf̂x

]
= o

(
1√
nh3

y

)
. (4.54)

The dominated convergence theorem yields√
nh3

y

(
∂

∂y
λ̂(y)

∣∣∣
y=y0

− ∂

∂y
λ(y)

∣∣∣
y=y0

)

=
√
nh3

y

∫
v(x)

∂

∂y

(
Φ̂x(y0, x)

Φ̂y(y0, x)
− Φx(y0, x)

Φy(y0, x)

)
dx

=
√
nh3

y

∫
v(x)

(
D̃p,0(y0, x)p̂(y0, x) + D̃p,y(y0, x)p̂y(y0, x) + D̃p,x(y0, x)p̂x(y0, x)

+ D̃p,yy(y0, x)
∂

∂y
p̂y(y0, x) + D̃p,xy(y0, x)

∂

∂y
p̂x(y0, x) + D̃f,0(y0, x)f̂(x)

+ D̃f,x(y0, x)f̂x(x)

)
dx+ op(1).

The variance of most of the terms above is asymptotically negligible, since for example for

some sufficiently large constant C > 0 one has (see (1.7))

Var

(√
nh3

y

∫
v(x)D̃p,xy(y0, x)

∂

∂y
p̂x(y0, x) dx

)

= nh3
y Var

(
1

n

n∑
i=1

Khy(y − Yi)
∫
v(x)D̃p,xy(y0, x)

∂

∂w1
Khx(w)

∣∣∣
w=x−Xi

dx

)

= h3
yE

[
Khy(y − Y1)2

(∫
v(x)D̃p,xy(y0, x)

∂

∂w1
Khx(w)

∣∣∣
w=x−X1

dx

)2]
+ o(1)

≤ ChyE
[(∫

Khx(x)
∂

∂x1
v(x)D̃p,xy(y0, x) dx

)2]
+ o(1)

= ChyE

[(∫
K(x)

∂

∂w1
v(w)D̃p,xy(y0, w)

∣∣∣
w=Xi+hxx

dx

)2]
+ o(1)
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= o(1).

A similar reasoning for the other terms except D̃p,0(y0, x)p̂(y0, x) leads to√
nh3

y

(
∂

∂y
λ̂(y)

∣∣∣
y=y0

− ∂

∂y
λ(y)

∣∣∣
y=y0

)

=
√
nh3

y

∫
v(x)

(
E
[
D̃p,0(y0, x)p̂(y0, x) + D̃p,y(y0, x)p̂y(y0, x) + D̃p,x(y0, x)p̂x(y0, x)

]
+ D̃p,yy(y0, x)

∂

∂y
p̂y(y0, x) + E

[
D̃p,xy(y0, x)

∂

∂y
p̂x(y0, x) + D̃f,0(y0, x)f̂(x)

+ D̃f,x(y0, x)f̂x(x)
])

dx+ op(1)

(4.54)
=

√
nh3

y

∫
v(x)

(
D̃p,yy(y0, x)

∂

∂y
p̂y(y0, x)− D̃p,yy(y0, x)E

[ ∂
∂y
p̂y(y0, x)

])
dx+ op(1).

=
√
nh3

y

∫
v(x)D̃p,yy(y0, x)

(
∂

∂y
p̂y(y0, x)− ∂

∂y
py(y0, x)

)
dx+ op(1)

=
√
nh3

y

(
1

nh2
y

n∑
i=1

∂

∂u
K(u)

∣∣∣
u=

y0−Yi
hy

∫
v(x)D̃p,yy(y0, x)Khx(x−Xi) dx

−
∫
v(x)D̃p,yy(y0, x)

∂

∂y
py(y0, x)

)
+ op(1)

=

n∑
i=1

(Zn,i − E[Zn,i]) + op(1),

where

Zn,i =
1√
nhy

∂

∂u
K(u)

∣∣∣
u=

y0−Yi
hy

∫
v(Xi + hxx)D̃p,yy(y0, Xi + hxx)K(x) dx = o(1) (4.55)

and the third from last equality follows as in (4.64) below. It holds that

Var

( n∑
i=1

(Zn,i − E[Zn,i])

)

=
1

hy
Var

(
∂

∂u
K(u)

∣∣∣
u=

y0−Y1
hy

∫
v(X1 + hxx)D̃p,yy(y0, X1 + hxx)K(x) dx

)

=
1

hy
E

[(
∂

∂u
K(u)

∣∣∣
u=

y0−Y1
hy

∫
v(X1 + hxx)D̃p,yy(y0, X1 + hxx)K(x) dx

)2]

− 1

hy
E

[
∂

∂u
K(u)

∣∣∣
u=

y0−Y1
hy

∫
v(X1 + hxx)D̃p,yy(y0, X1 + hxx)K(x) dx

]2

=
1

hy
E

[(
∂

∂u
K(u)

∣∣∣
u=

y0−Y1
hy

∫
v(X1 + hxx)D̃p,yy(y0, X1 + hxx)K(x) dx

)2]

− 1

hy

(∫ ∫
∂

∂u
K(u)

∣∣∣
u=

y0−z
hy

∫
v(w + hxx)
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D̃p,yy(y0, w + hxx)K(x) dx fY,X(z, w) dz dw

)2

=
1

hy

∫ ∫ (
∂

∂u
K(u)

∣∣∣
u=

y0−z
hy

)2(∫
v(w + hxx)D̃p,yy(y0, w + hxx)K(x) dx

)2

fY,X(z, w) dz dw − hy
(∫ ∫

∂

∂u
K(u)

∣∣∣
u=z

∫
v(w + hxx)D̃p,yy(y0, w + hxx)K(x) dx

fY,X(y0 − hyz, w) dz dw

)2

=

∫ ∫ (
∂

∂z
K(z)

)2(∫
v(w + hxx)D̃p,yy(y0, w + hxx)K(x) dx

)2

fY,X(y0 − hyz, w) dz dw

+ o(1)

=

∫ (
∂

∂z
K(z)

)2

dz

∫
v(w)2D̃p,yy(y0, w)2fY,X(y0, w) dw + o(1)

= σ2
B̃

+ o(1).

If

1

Var
(∑n

i=1(Zn,i − E[Zn,i])
)

n∑
i=1

E

[
(Zn,i − E[Zn,1])2I{

|Zn,i−E[Zn,1]|2>εVar
(∑n

j=1(Zn,j−E[Zn,j ])
)}]→ 0

holds for all ε > 0, the Lindeberg-Feller Theorem yields asymptotic normality. Due to

σ2
B̃
> 0 and (4.55), the indicator function in the expectation above equals zero for sufficiently

large n ∈ N, which implies applicability of the Lindeberg-Feller Theorem. The assertion

follows from D̃p,yy = Dp,y.

4.6.6 Proof of Theorem 4.2.6

Proof of (i): In the proof of Theorem 4.2.4, it was shown that (see (C6’) and (4.50))

√
n(B̂ −B) =

1√
n

n∑
i=1

ψΓ2(Yi, Xi) + op

(
1√
n

)
. (4.56)

Now, let K ⊆ (y0,∞) be compact. Recall (4.8) and (4.9), that is,

hc(y) = exp

(
− c

∫ y

y1

1

λ(u)
du

)
= exp

(
c log(h1(y))

)
and h̄c(y) = exp

(
c log(h̄1(y))

)
for all c ∈ [B1, B2]. Note that

sup
y∈K
|h̄1(y)− h1(y)|2 = op

(
1√
n

)
,

sup
y∈K
| log(h̄1(y))− log(h1(y))|2 = op

(
1√
n

)
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due to (C4) and K ⊆ (y0,∞). Therefore, a Taylor expansion yields for some h∗ between

h̄1 and h1

h̄c(y)− hc(y) = exp
(
c log(h̄1(y))

)
− exp

(
c log(h1(y))

)
= c exp

(
c log(h1(y))

)(
log(h̄1(y))− log(h1(y))

)
+ c2 exp

(
c log(h1(y))

)(
log(h̄1(y))− log(h1(y))

)2
(C4)
= c exp

(
c log(h1(y))

)(
log(h̄1(y))− log(h1(y))

)
+ op

(
1√
n

)

= chc(y)
h̄1(y)− h1(y)

h1(y)
+ op

(
1√
n

)
uniformly in y ∈ K and c ∈ [B1, B2], that is, once h1 can be estimated with a certain rate,

this rate transfers to hc uniformly in c ∈ [B1, B2]. The only thing left is to replace c by the

estimator B̂ and to apply (4.56), so that

Hn(y)

=
√
n(h̄(y)− h(y))

=
√
n(h̄B̂(y)− hB̂(y) + hB̂(y)− hB(y))

= B̂hB̂(y)

√
n(h̄1(y)− h1(y))

h1(y)
+
√
n
(

exp
(
B̂ log(h1(y))

)
− exp

(
B log(h1(y))

))
+ op(1)

= BhB(y)

√
n(h̄1(y)− h1(y))

h1(y)
+ exp

(
B log(h1(y))

)
log(h1(y))

√
n(B̂ −B) + op(1)

(4.56)
=

h(y)√
n

n∑
i=1

(
Bψh(Yi, Xi, y)

h1(y)
+ log(h1(y))ψΓ2(Yi, Xi)

)
. (4.57)

Convergence of the finite dimensional distributions follows from the Central Limit Theorem.

Since h1 is continuous and bounded away from zero on K, asymptotic equicontinuity (see

condition (2.1.8) of Van der Vaart and Wellner (1996) for a definition) is implied by that

of
(√
n(h̄1(y) − h(y))

)
y∈K. Hence, Corollary 2.3.12 of Van der Vaart and Wellner (1996))

yields

(Hn(y))y∈K  (Zh(y))y∈K,

where the stated expression for the covariance function directly follows from (4.57).

For the estimator ĥ1, which was given in (4.8), it was shown in the proof of Theorem 4.2.2

that

ĥc(y)− hc(y) = −c exp

(
− c

∫ y

y1

1

λ(u)
du

)(∫ y

y1

1

λ̂(u)
du−

∫ y

y1

1

λ(u)
du

)

+ op

(∫ y

y1

1

λ̂(u)
du−

∫ y

y1

1

λ(u)
du

)

= −chc(y)

n

n∑
i=1

ηi(y) + op

(
1√
n

)
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with η as in (4.36), which leads to

Hn(y) = BhB(y)

√
n(ĥ1(y)− h1(y))

h1(y)
+ exp

(
B log(h1(y))

)
log(h1(y))

√
n(B̂ −B) + op(1)

= −Bh(y)
√
n

(∫ y

y1

1

λ̂(u)
du−

∫ y

y1

1

λ(u)
du

)
− h(y)

∫ y

y1

1

λ(u)
du
√
n(B̂ −B) + op(1)

= −h(y)
1√
n

n∑
i=1

(
Bηi(y) +

∫ y

y1

1

λ(u)
du ψΓ2(Yi, Xi)

)
+ op(1). (4.58)

Note that ŝ ∈ H̃ for γh = 2 was shown in the proof of Lemma 4.2.3.

Proof of (ii): Part (ii) of Theorem 4.2.4 and a Taylor expansion lead similarly to before

to

h̄(y)− h(y)

= h̄B̂(y)− hB̂(y) + hB̂(y)− hB(y)

= B̂hB̂(y)
h̄1(y)− h1(y)

h1(y)
+ exp

(
B̂ log(h1(y))

)
− exp

(
B log(h1(y))

)
+ op

(
1√
n

)

= BhB(y)
h̄1(y)− h1(y)

h1(y)
+ exp

(
B log(h1(y))

)
log(h1(y))(B̂ −B) + op

(
1√
n

+ an

)
= op(an)

uniformly on compact sets K ⊆ (y0,∞).

Proof of (iii): Similar to the proof of (ii),

ĥ(y)− h(y) = BhB(y)
ĥ1(y)− h1(y)

h1(y)
+ exp

(
B log(h1(y))

)
log(h1(y))(B̃ −B)

+ op

(
1√
n

+ |B̃ −B|
)

= −h(y)

∫ y

y1

1

λ(u)
du(B̃ −B) + op

(
1√
nh3

y

)

uniformly on compact sets K ⊆ (y0,∞). The assertion follows from Theorem 4.2.5.

4.6.7 Proof of Lemma 4.2.8

Recall the definition of ŷ0 from equation (4.2),

ŷ0 = arg min
y: λ̂(y)=0

|y|.

Corollary 4.2.14 yields

sup
u∈[za,zb],x∈RdX

∣∣λ̂(u)− λ(u)
∣∣ = op(1)
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as well as

sup
u∈[za,zb],x∈RdX

∣∣∣∣ ∂∂uλ̂(u)− ∂

∂u
λ(u)

∣∣∣∣ = op(1).

Let ε > 0. Since λ̂ is continuous and ∂
∂uλ(u)

∣∣
u=y0

= −B 6= 0 there exists with probability

converging to one exactly one root ŷ0 of λ̂ on each interval of the form [−|y0| − r, |y0|+ r]

(for fixed r > 0). Indeed, this root coincides with the estimator ŷ0 from above and fulfils

ŷ0 = y0 + op(1).

One has for some y∗ between ŷ0 and y0

λ̂(y0) = λ̂(y0)− λ̂(ŷ0)

=
∂

∂u
λ̂(u)

∣∣∣∣
u=y∗

(y0 − ŷ0)

= − ∂

∂u
λ(u)

∣∣∣∣
u=y0

(ŷ0 − y0) + op(|ŷ0 − y0|),

so that

ŷ0 − y0 =
λ̂(y0)

B
+ op(|ŷ0 − y0|).

Lemma 4.2.1 leads to√
nhy(ŷ0 − y0)

=

√
hy

B
√
n

n∑
i=1

(
v(Xi)Dp,0(y0, Xi)Khy(y0 − Yi)−

∂v(Xi)Dp,x(y0, Xi)

∂x1
Khy(y0 − Yi)

+ v(Xi)Dp,y(y0, Xi)Khy(y0 − Yi) + v(Xi)Df,0(y0, Xi)−
∂v(Xi)Df,x(y0, Xi)

∂x1

)
+ op(1).

In the following, a Lindeberg-Feller Theorem is applied to prove asymptotic normality of√
nhy(ŷ0 − y0). By the same reasoning as in (4.37), one has

E

[
v(X1)Dp,0(y0, X1)Khy(y0 − Y1)− ∂v(X1)Dp,x(y0, X1)

∂x1
Khy(y0 − Y1)

+ v(X1)Dp,y(y0, X1)Khy(y0 − Y1) + v(X1)Df,0(y0, X1)−
∂v(X1)Df,x(y0, X1)

∂x1

]

= op

(
1√
nhy

)
.

Hence, the asymptotic variance of the dominating term can be calculated as follows:

hy
B2

Var

(
v(X1)Dp,0(y0, X1)Khy(y0 − Y1)− ∂v(X1)Dp,x(y0, X1)

∂x1
Khy(y0 − Y1)

+ v(X1)Dp,y(y0, X1)Khy(y0 − Y1) + v(X1)Df,0(y0, X1)−
∂v(X1)Df,x(y0, X1)

∂x1

)
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=
hy
B2

E

[(
v(X1)Dp,0(y0, X1)Khy(y0 − Y1)− ∂v(X1)Dp,x(y0, X1)

∂x1
Khy(y0 − Y1)

+ v(X1)Dp,y(y0, X1)Khy(y0 − Y1) + v(X1)Df,0(y0, X1)−
∂v(X1)Df,x(y0, X1)

∂x1

)2]
+ o(1).

Note that apart from the third one all of the terms inside the expectation are bounded and

hence (after multiplying with hy) asymptotically negligible, so that

Var

(√
hy

B
√
n

n∑
i=1

(
v(Xi)Dp,0(y0, Xi)Khy(y0 − Yi)−

∂v(Xi)Dp,x(y0, Xi)

∂x1
Khy(y0 − Yi)

+ v(Xi)Dp,y(y0, Xi)Khy(y0 − Yi) + v(Xi)Df,0(y0, Xi)−
∂v(Xi)Df,x(y0, Xi)

∂x1

))
=
hy
B2

E
[(
v(X1)Dp,y(y0, X1)Khy(y0 − Y1)

)2]
+ o(1)

=
hy
B2

∫ ∫
Dp,y(y0, w)2Khy(y0 − z)2v(w)2fY,X(z, w) dz dw + o(1)

=
1

B2

∫
v(w)2Dp,y(y0, w)2

∫
1

hy
K

(
y0 − z
hy

)2

fY,X(z, w) dz dw + o(1)

=
1

B2

∫
v(w)2Dp,y(y0, w)2

∫
K(z)2fY,X(y0 − hyz, w) dz dw + o(1)

= σ2
y0

+ o(1).

Let

Zn,i :=

√
hy

B
√
n

(
v(Xi)Dp,0(y0, Xi)Khy(y0 − Yi)−

∂v(Xi)Dp,x(y0, Xi)

∂x1
Khy(y0 − Yi)

+ v(Xi)Dp,y(y0, Xi)Khy(y0 − Yi) + v(Xi)Df,0(y0, Xi)−
∂v(Xi)Df,x(y0, Xi)

∂x1

)
,

that is,
√
nhy(ŷ0−y0) =

∑n
i=1 Zn,i+op(1). Then, the assertion is implied by the Lindeberg

Feller Theorem, if

1

Var
(∑n

i=1(Zn,i − E[Zn,i])
)

n∑
i=1

E

[
(Zn,i − E[Zn,1])2I{

|Zn,i−E[Zn,1]|2>εVar
(∑n

j=1(Zn,j−E[Zn,j ])
)}]→ 0

holds for all ε > 0. Since |Zn,i| ≤ C√
nhy

for a sufficiently large constant C > 0 this in turn

directly follows from Var
(∑n

i=1(Zn,i − E[Zn,i])
)

= σ2
y0

+ o(1) and σ2
y0
> 0.

4.6.8 Proof of Theorem 4.2.9

It is started with the first assertion. Define t̃n = tn + ŷ0 − y0. Since referring to Theorem

4.2.8, ŷ0 converges to y0 at a faster rate than tn, one has t̃n = tn(1 + op(1)). Moreover, a

184



4.6. Proofs

Taylor expansion leads for some y∗ between ŷ0 and y0 to

h̃(ŷ0 + tn)− h(y0 + tn) = h̃(y0 + t̃n)−
(
h(y0 + t̃n) +

∂

∂y
h(y)

∣∣
y=y∗

(y0 − ŷ0)

)

= h̃(y0 + t̃n)− h(y0 + t̃n) +Op
(

1√
nhy

)
,

so that it suffices to prove

h̃(y0 + tn)− h(y0 + tn) = Op

 log(tn)tn√
nh3

y

+
log(n)√
nhy

 .

To this end, write

h̃(y0 + tn)

= exp

(
− B̃

∫ y0+tn

y1

1

λ̂(u)
du

)

= exp

(
−B

∫ y0+tn

y1

1

λ(u)
du+ (B − B̃)

∫ y0+tn

y1

1

λ(u)
du−B

∫ y0+tn

y1

1

λ̂(u)
− 1

λ(u)︸ ︷︷ ︸
=
λ(u)−λ̂(u)

λ(u)λ̂(u)

du

+ (B − B̃)

∫ y0+tn

y1

λ(u)− λ̂(u)

λ(u)λ̂(u)
du

)
.

Due to ∂
∂uλ(u)

∣∣
u=y0

= −B < 0, one has | ∂∂uλ(u)| ≥ c|u − y0| for some c > 0 and u in a

sufficiently small neighbourhood of y0. This in turn implies for all u in this neighbourhood

of y0 and some corresponding y∗ between u and y0 that

|λ(u)| =
∣∣∣∣λ(y0) +

∂

∂u
λ(u)

∣∣
u=y∗

(u− y0)

∣∣∣∣ ≥ c|u− y0|. (4.59)

Further, apply Theorem 4.2.1 to obtain∫ y0+tn

y1

λ(u)− λ̂(u)

λ(u)λ̂(u)
du =

∫ y0+tn

y1

λ(u)− λ̂(u)

λ(u)(λ(u) + λ̂(u)− λ(u))
du

(4.22)
=

∫ y0+tn

y1

λ(u)− λ̂(u)

λ(u)(λ(u) + op(tn))
du

(4.59)
=

∫ y0+tn

y1

λ(u)− λ̂(u)

λ(u)2
du (1 + op(1)).

For n ∈ N sufficiently large and every fixed ỹ in such a small neighbourhood of y0 that

(4.59) is valid, this integral can be bounded for some constant C > 0 via∫ y0+tn

y1

λ(u)− λ̂(u)

λ(u)2
du ≤ C

∣∣∣∣ ∫ y0+tn

ỹ

1

(u− y0)2
du

∣∣∣∣ sup
u∈[y0,y1]

|λ̂(u)− λ(u)|(1 + op(1))

= C

∣∣∣∣ 1

y0 + tn − y0
− 1

ỹ − y0

∣∣∣∣ sup
u∈[y0,y1]

|λ̂(u)− λ(u)|(1 + op(1))
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(4.22)
= Op

(
log(n)

tn
√
nhy

)
. (4.60)

Because
∫ y0+tn
y1

1
λ(u) du = O(log(tn)), this results in

h̃(y0 + tn)

= h(y0 + tn) exp

(
(B − B̃)

∫ y0+tn

y1

1

λ(u)
du−B

∫ y0+tn

y1

λ(u)− λ̂(u)

λ(u)2
du (1 + op(1))

)

= h(y0 + tn)

1 +Op

 log(tn)√
nh3

y

+
log(n)

tn
√
nhy

 . (4.61)

The fact

h(y0 + tn) = O(tn) (4.62)

yields the first assertion.

By the same reasoning as above, it can be shown that

exp

(
− B̃

∫ ŷ0−tn

y2

1

λ̂(u)
du

)
− exp

(
−B

∫ y0−tn

y2

1

λ(u)
du

)
= Op

(
log(tn)tn√

nh3
y

+
log(n)√
nhy

)
.

(4.63)

This leads to

λ̃2 = −
exp

(
− B̃

∫ ŷ0+tn
y1

1
λ̂(u)

du

)
exp

(
− B̃

∫ ŷ0−tn
y2

1
λ̂(u)

du

)

= −
exp

(
−B

∫ y0+tn
y1

1
λ(u) du

)
+Op

(
log(tn)tn√

nh3
y

+ log(n)√
nhy

)
exp

(
−B

∫ y0−tn
y2

1
λ(u) du

)
+Op

(
log(tn)tn√

nh3
y

+ log(n)√
nhy

)
(4.62)

= −λ2
h(y0 + tn)

h(y0 − tn)
+Op

 log(tn)√
nh3

y

+
log(n)

tn
√
nhy



= −λ2

h(y0) + ∂
∂yh(y0)tn +

∂2

∂y2 h(y0)

2 t2n + o(t2n)

h(y0)− ∂
∂yh(y0)tn +

∂2

∂y2 h(y0)

2 t2n + o(t2n)

+Op

 log(tn)√
nh3

y

+
log(n)

tn
√
nhy



= λ2

∂
∂yh(y0) +

∂2

∂y2 h(y0)

2 tn + o(tn)

∂
∂yh(y0)−

∂2

∂y2 h(y0)

2 tn + o(tn)

+Op

 log(tn)√
nh3

y

+
log(n)

tn
√
nhy



= λ2

(
1 +

∂2

∂y2h(y0)tn + o(tn)

∂
∂yh(y0)−

∂2

∂y2 h(y0)

2 tn + o(tn)

)
+Op

 log(tn)√
nh3

y

+
log(n)

tn
√
nhy



= λ2 +
λ2

∂2

∂y2h(y0)tn
∂
∂yh(y0)

+Op

 log(tn)√
nh3

y

+
log(n)

tn
√
nhy

+ op(tn),
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that is, (4.30) holds.

To obtain the optimal rate in (4.30) try to choose tn such that at least two of the terms

tn,
log(tn)√
nh3

y

and log(n)

tn
√
nhy

converge to zero at the same rate. Note that hx, hy and thus the

optimal tn will converge to zero at a polynomial rate (with respect to n). Therefore, the

choice
log(t̄n)√
nh3

y

=
log(n)

t̄n
√
nhy

leads to t̄n = hy and λ̃2 − λ2 = Op(hy), while

t̃n =
log(t̃n)√
nh3

y

leads to t̃n = log(n)√
nh3

y

and λ̃2 − λ2 = Op(hy). The remaining possibility

tn =
log(n)

tn
√
nhy

,

that is

tn =

(
log(n)2

nhy

) 1
4

= o(hy),

results in

log(tn)√
nh3

y

= O

(
log(n)√
nh3

y

)
= O

(
tn

(
log(n)2

nh5
y

) 1
4

)
(B3’)

= o(tn),

which proves the last part of Theorem 4.2.9.

4.6.9 Proof of Theorem 4.2.11

The proof mainly follows from Theorems 4.2.6 and 4.2.9. While the assertion in (i)a is

a direct consequence of part (i) in Theorem 4.2.6, the proof of Theorem 4.2.9 has to be

slightly adjusted to show the assertion in (i)b. Let y ∈ K\(−∞, y0 + tn). By the same

reasoning as there, one can show for some sufficiently large constant C > 0 that

sup
y∈K\(−∞,y0+tn)

|ĥ(y)− h(y)|

= sup
y∈K\(−∞,y0+tn)

h(y)

∣∣∣∣∣ exp

(
(B − B̂)

∫ y

y1

1

λ(u)
du−B

∫ y

y1

λ(u)− λ̂(u)

λ(u)2
du (1 + op(1))

)
− 1

∣∣∣∣∣
≤ sup

y∈K\(−∞,y0+tn)

Ch(y)

y − y0
sup
u∈K
|λ̂(u)− λ(u)|+Op

(
log(tn)√

n

)

= Op

(
log(tn)√

n
+

log(n)√
nhy

)
,

where the second to last equation follows similarly to (4.60). Remember B̂−B = Op
(
n−

1
2

)
.

Due to h(y) = Op(tn) for all y ∈ K ∩ [0, y0 + tn) and tn ∼ log(n)√
nhy

, this implies (i)b.
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To prove the assertion in (ii), recall the definition of h̃:

h̃(y) =



exp
(
− B̃

∫ y
y1

1
λ̂(u)

du
)
, y ≥ ŷ0 + tn,

y−ŷ0

tn
h̃(ŷ0 + tn), y ∈ (ŷ0, ŷ0 + tn),

0, y = ŷ0,

ŷ0−y
tn

h̃(ŷ0 − tn), y ∈ (ŷ0 − tn, ŷ0),

λ̃2 exp
(
− B̃

∫ y
y2

1
λ̂(u)

du
)
, y ≤ ŷ0.

Let ε > 0. In the proof of Theorem 4.2.9, it was shown that (compare (4.61))

sup
y∈K\(−∞,y0+tn]

|h̃(y)− h(y)| = Op

 log(tn)√
nh3

y

+
log(n)

tn
√
nhy

 = op(tn)

as well as (compare (4.63))

sup
y∈K\[y0−tn,∞)

∣∣∣∣ h̃(y)

λ̃2

− h(y)

λ2

∣∣∣∣ = Op

 log(tn)√
nh3

y

+
log(n)

tn
√
nhy

 = op(tn).

The rate of the convergence here is equal to that of B̃ to B. Therefore,

sup
y∈K\[y0−ε,∞)

∣∣∣∣h̃(y)− h(y)

∣∣∣∣ = sup
y∈K\[y0−ε,∞)

∣∣∣∣λ̃2
h̃(y)

λ̃2

− λ2
h(y)

λ2

∣∣∣∣
= sup

y∈K\[y0−tn,∞)

∣∣∣∣(λ̃2 − λ2)
h̃(y)

λ̃2

+ λ2

(
h̃(y)

λ̃2

− h(y)

λ2

)∣∣∣∣
= Op

(
|λ̃2 − λ2|+ tn

)
= Op(tn).

The fact that |h(y)| = Op(tn) for all y ∈ [y0 − tn, y0 + tn] and tn ∼
( log(n)2

nhy

) 1
4 complete the

proof.

4.6.10 Proof of Lemma 4.2.12

Recall

an =

(
log(n)

nhdXx

) 1
2

= o
(
n−

1
4
)

and let (cn)n∈N be a sequence such that cn →∞ and there exist constants δ1, δ2 > 0 with

|cn| ≤ δ1n
δ2 .

First, the expectations can be calculated as in Section 1.1 to obtain

sup
y∈[za,zb],x∈RdX

v(x)|E[p̂(y, x)]− p(y, x)| = O
(
hmx + hmy

)
= op

(
n−

1
4
)
,

sup
y∈[za,zb],x∈RdX

v(x)|E[p̂x(y, x)]− px(y, x)| = O
(
hmx + hmy

)
= op

(
n−

1
4
)
,

sup
y∈[za,zb],x∈RdX

v(x)|E[p̂y(y, x)]− py(y, x)| = O
(
hmx + hmy

)
= op

(
n−

1
4
)
,
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sup
x∈RdX

v(x)|E[f̂(x)]− f(x)| = O
(
hmx
)

= op
(
n−

1
4
)
,

sup
x∈RdX

v(x)|E[f̂x(x)]− fx(x)| = O
(
hmx
)

= op
(
n−

1
4
)
.

As already mentioned, basically the results of Hansen (2008) are applied. Note that all

of the estimators in the lemma are very similar to the estimator Ψ̂ in (4.31) although the

corresponding Zi may be different. For each estimator, one has to consider a different

“dimension” d̃ and “kernel” of Ψ̂. In a few moments, it will be clear, how this is meant.

First, write

p̂(y, x) =
1

nhdXx

n∑
i=1

Khy(y − Yi)︸ ︷︷ ︸
=Zi

K

(
x−Xi

hx

)
; d̃ = dX ,

p̂x(y, x) =
1

nhdXx

n∑
i=1

Khy(y − Yi)︸ ︷︷ ︸
=Zi

∂

∂x1
K

(
x−Xi

hx

)
; d̃ = dX ,

p̂y(y, x) =
1

nhdXx

n∑
i=1

Khy(y − Yi)K
(
x−Xi

hx

)
; d̃ = dX + 1, Zi ≡ 1,

f̂(x) =
1

nhdXx

n∑
i=1

K

(
x−Xi

hx

)
; d̃ = dX , Zi ≡ 1,

f̂x(x) =
1

nhdX+1
x

n∑
i=1

∂

∂x1
K

(
x−Xi

hx

)
; d̃ = dX , Zi ≡ 1.

Apart from some assumptions on the dependency structure (that are automatically fulfilled

here due to the independence), the Zi are not allowed to depend on n or y and have to

fulfil some boundedness conditions, like for example

sup
x∈RdX

E[|Z1| |X1 = x]fX(x)v(x) <∞.

In the last three cases, both of the requirements are fulfilled so that the assertion directly

follows by Hansen (2008) and assumption (B3). In the first two cases, Zi = Khy(y − Yi)
depends on n as well as on y, so that the results of Hansen (2008) can not be applied directly.

The idea there was to construct an appropriate grid of the set {(y, x) : ||(y, x)|| ≤ cn} such

that the proof of equation (4.31) can be reduced to a non uniform version.

Since in the remaining cases |Zi| is still bounded by some constant K > 0, one can show

for a sufficiently large M > 0

P
(
|Ψ̂(y, x)− E[Ψ̂(y, x)]| > Man

)
≤ 4n

− M
64+6K̄ for all y ∈ [za, zb], x ∈ supp(v)

analogously to Hansen (2008). In contrast to the proof there, the construction of the grid

used in the next step is slightly more sophisticated. The set {(y, x) : ||(y, x)|| ≤ cn} can be

split into

N ≤ cdX+1
n

a
(dX+1)
n hyh

dX(dX+2)
x
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subsets of the form Aj = {(y, x) : |y− yj | ≤ anhyhdXx , ||x− xj || ≤ anhdX+1
x }. Then, one has

for (y, x) ∈ Aj and an appropriate constant K̄ > 0

|p̂(y, x)− p̂(yj , xj)| ≤
1

nhdXx

∣∣∣∣ n∑
i=1

Khy(y − Yi)K
(
x−Xi

hx

)
−Khy(yj − Yi)K

(
xj −Xi

hx

)∣∣∣∣
=

1

nhdXx

∣∣∣∣ n∑
i=1

(
Khy(y − Yi)−Khy(yj − Yi)

)
K

(
x−Xi

hx

)

+Khy(yj − Yi)
(

K

(
x−Xi

hx

)
−K

(
xj −Xi

hx

))∣∣∣∣
≤ K̄2an,

which means that one can proceed analogously to Hansen (2008) to obtain for a sufficiently

large M > 0

P

(
sup

||(y,x)||≤cn
|Ψ̂(y, x)− E[Ψ̂(y, x)]| > Man

)

≤ N max
j=1,...,N

P

(∣∣Ψ̂(yj , xj)− E[Ψ̂(yj , xj)]
∣∣ > M

2
an

)
≤ 4cdX+1

n a−(dX+1)
n h−1

y h−dX(dX+2)
x n

− M
128+12K̄

→ 0.

As was shown above and in Section 1.1, it holds that

sup
y∈R, x∈RdX

v(x)|E[p̂(y, x)]− p(y, x)| = O
(
hmy + hmx

)
,

so that

sup
y∈[za,zb], x∈RdX

v(x)|p̂(y, x)− p(y, x)]| = O

(
hmy + hmx +

√
log(n)

nhdXx

)
((B3))

= o
(
n−

1
4
)

follows. The same reasoning can be applied for p̂x. �

4.6.11 Proof of Corollary 4.2.14

The proof is very similar to that of Lemma 4.2.12. Again, only derivatives with respect

to x1 are considered. First, convergence of the expectations can be shown as before using

integration by parts:

E

[
v(x)

∂

∂u
p̂y(u, x)

]
= v(x)E

[
∂

∂u
Khy(u− Y1)Khx(x−X1)

]
= −v(x)

∫ ∫
∂

∂z
Khy(u− z)Khx(x− w)fY,X(z, w) dz dw

= v(x)

∫ ∫
Khy(u− z)Khx(x− w)

∂

∂z
fY,X(z, w) dz dw
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= v(x)

∫ ∫
K(z)K(w)

∂

∂u
fY,X(u− hyz, x− hxw) dz dw

= v(x)
∂

∂u
fY,X(u, x) + o

(
1√
n

)
, (4.64)

E

[
v(x)

∂

∂u
p̂x(u, x)

]
= v(x)E

[
Khy(u− Y1)

∂

∂x1
Khx(x−X1)

]
= −v(x)

∫ ∫
Khy(u− z)

∂

∂w1
Khx(x− w)fY,X(z, w) dz dw

= v(x)

∫ ∫
Khy(u− z)Khx(x− w)

∂

∂w1
fY,X(z, w) dz dw

= v(x)

∫ ∫
K(z)K(w)

∂

∂x1
fY,X(u− hyz, x− hxw) dz dw

= v(x)
∂

∂x1
fY,X(u, x) + o

(
1√
n

)
and

E

[
v(x)

∂

∂x1
f̂x(x)

]
= v(x)E

[
∂2

∂x2
1

Khx(x−X1)

]

= v(x)

∫ ∫
∂2

∂w2
1

Khx(x− w)fX(w) dw

= −v(x)

∫ ∫
∂

∂w1
Khx(x− w)

∂

∂w1
fX(w) dw

= v(x)

∫ ∫
Khx(x− w)

∂2

∂w2
1

fX(w) dw

= v(x)

∫ ∫
K(z)K(w)

∂2

∂x2
1

fX(x− hxw) dw

=
∂2

∂x2
1

fX(x) + o

(
1√
n

)
.

For each estimator (i.e. for each Ψ̂), one simply has to redefine the corresponding “dimen-

sion” d̃, the “kernel” or the random variables Zi. For example, when treating

∂

∂y
p̂y(y, x) =

1

nhdXx

n∑
i=1

∂

∂y
Khy(y−Yi)K

(
x−Xi

hx

)
=

1

nhdXx h2
y

n∑
i=1

K ′
(
y − Yi
hy

)
K

(
x−Xi

hx

)
or

∂

∂y
p̂x(y, x) =

1

nhdXx

n∑
i=1

Khy(y − Yi)
∂

∂x1
K

(
x−Xi

hx

)
,

set d̃ = dX + 1, Zi = 1 and define the “kernel” functions by

(y, x) 7→ K ′(y)K(x) and (y, x) 7→ K(y)
∂

∂x1
K(x),

respectively. Now, Theorem 2 of Hansen (2008) can be applied directly so that

sup
u∈[za,zb]

v(x)

∣∣∣∣ ∂2

∂x2
1

f̂X(x)− ∂2

∂x2
1

fX(x)

∣∣∣∣ = Op

(√
log(n)

nhdX+4
x

)
= op(1),
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sup
u∈[za,zb]

v(x)

∣∣∣∣ ∂∂up̂y(u, x)− ∂

∂u
py(u, x)

∣∣∣∣ = Op

(√
log(n)

nh3
yh

dX
x

)
= op(1), (4.65)

sup
u∈[za,zb]

v(x)

∣∣∣∣ ∂∂up̂x(u, x)− ∂

∂u
px(u, x)

∣∣∣∣ = Op

(√
log(n)

nhyh
dX+2
x

)
= op(1). (4.66)

Consider

λ̂(u|x) =
Φ̂x(u, x)

Φ̂y(u, x)
.

Due to

∂

∂u
Φ̂y(u, x) =

∂
∂u p̂y(u, x)

f̂(x)
,

∂

∂u
Φ̂x(u, x) =

∂
∂u p̂x(u, x)

f̂(x)
−

∂
∂u p̂(u, x)f̂x(x)

f̂(x)2

and the fact that not the values of the weight function, but only the compactness of its

support was used, the foregoing convergence leads to

sup
u∈[za,zb],x∈RdX

v(x)

∣∣∣∣ ∂∂uλ̂(u|x)− ∂

∂u
λ(u|x)

∣∣∣∣
= sup

u∈[za,zb],x∈RdX
v(x)

∣∣∣∣ ∂∂u
(

Φ̂x(u, x)

Φ̂y(u, x)

)
− ∂

∂u

(
Φx(u, x)

Φy(u, x)

)∣∣∣∣
= sup

u∈[za,zb],x∈RdX
v(x)

∣∣∣∣ Φ̂y(u, x) ∂
∂u Φ̂x(u, x)− Φ̂x(u, x) ∂

∂u Φ̂y(u, x)

Φ̂y(u, x)2

−
Φy(u, x) ∂

∂uΦx(u, x)− Φx(u, x) ∂
∂uΦy(u, x)

Φy(u, x)2

∣∣∣∣
= op(1).

Since ∂
∂uλ(u|x) is bounded on [za, zb]× supp(v) and ∂

∂u λ̂(u|x) is uniformly consistent, this

in turn implies

sup
u∈[za,zb]

v(x)

∣∣∣∣ ∂∂uλ̂(u)− ∂

∂u
λ(u)

∣∣∣∣ = sup
u∈[za,zb]

v(x)

∣∣∣∣ ∂∂u
∫
v(x)λ̂(u|x) dx− ∂

∂u

∫
v(x)λ(u|x) dx

∣∣∣∣
≤
∫

sup
u∈[za,zb],x∈RdX

v(x)

∣∣∣∣ ∂∂uλ̂(u|x)− ∂

∂u
λ(u|x)

∣∣∣∣ dx
= op(1).

Basically, the last part of Corollary 4.2.14 can be shown analogously to the other parts.

First, the expectations need to be calculated, this time using integration by parts twice.

Second,

∂2

∂y2
p̂y(y, x) =

1

nhdXx

n∑
i=1

∂2

∂y2
Khy(y − Yi)K

(
x−Xi

hx

)

=
1

nhdXx h3
y

n∑
i=1

K ′′
(
y − Yi
hy

)
K

(
x−Xi

hx

)
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and
∂2

∂y2
p̂x(y, x) =

1

nhdXx h2
y

n∑
i=1

K ′
(
y − Yi
hy

)
∂

∂x1
K

(
x−Xi

hx

)
can be treated as before to prove

sup
u∈[za,zb]

v(x)

∣∣∣∣ ∂2

∂u2
p̂y(u, x)− ∂2

∂u2
py(u, x)

∣∣∣∣ = Op

(√
log(n)

nh5
yh

dX
x

)
= op(1),

sup
u∈[za,zb]

v(x)

∣∣∣∣ ∂2

∂u2
p̂x(u, x)− ∂2

∂u2
px(u, x)

∣∣∣∣ = Op

(√
log(n)

nh3
yh

dX+2
x

)
= op(1).

Third, show uniform consistency of ∂2

∂u2 Φ̂y(u, x) and ∂2

∂u2 Φ̂x(u, x) to obtain first the uni-

form consistency of ∂2

∂u2 λ̂(u|x). Then, this can be used together with the boundedness of
∂2

∂u2λ(u|x) to obtain

sup
u∈[za,zb]

v(x)

∣∣∣∣ ∂2

∂u2
λ̂(u)− ∂2

∂u2
λ(u)

∣∣∣∣ = op(1).

�

4.6.12 Proof of Lemma 4.2.15

Note that equation (1.8) can be applied to the conditional distribution function, so that

Lemma 4.2.12 yields

v(x)(F̂Y |X(y|x)− FY |X(y|x))

= v(x)

(
p̂(y, x)

f̂X(x)
− p(y, x)

fX(x)

)

=
v(x)

fX(x)
(p̂(y, x)− p(y, x))− p(y, x)v(x)

fX(x)2
(f̂X(x)− fX(x)) + op

(
1√
n

)

=
1

n

n∑
i=1

v(x)

(
1

fX(x)
Khy(y − Yi)Khx(x−Xi)−

p(y, x)

fX(x)2
Khx(x−Xi)

)
+ op

(
1√
n

)
uniformly in x ∈ RdX . Now, the framework is the same as for Lemma 4.2.12, so that one can

proceed exactly as there. It remains to extend the uniform convergence to the estimated

quantile function, which can be shown similar to the proof of Lemma 2.8.1. Due to Lemma

4.2.12, one has

v(x)

(
∂

∂y
F̂Y |X(y|x)− ∂

∂y
FY |X(y|x)

)
= v(x)

(
p̂y(y, x)

f̂(x)
− py(y, x)

f(x)

)
= op(1)

uniformly on compact sets. Let za = F−1
Y |X(τa|x) and zb = F−1

Y |X(τb|x). Since FY |X(y|x) is

strictly increasing in y, or more precisely

inf
y∈[za,zb],x∈supp(v)

∂

∂y
FY |X(y|x) = inf

y∈[za,zb],x∈supp(v)
fε

(
h(y)− g(x)

σ(x)

)
h′(y)

σ(x)
> 0,

F̂Y |X(y|x) is strictly increasing with respect to y ∈ [za, zb] for all x ∈ supp(v) with pro-

bability converging to one. Hence, one can assume F̂Y |X(y|x) to be invertible. Applying
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a Taylor expansion with respect to τ ∈ [τa, τb] leads for some appropriate function F̃ (τ |·)
between F̂−1

Y |X(τ |·) and F−1
Y |X(τ |·) to

0 = F̂Y |X(F̂−1
Y |X(τ |x)|x)− FY |X(F−1

Y |X(τ |x)|x)

= F̂Y |X(F−1
Y |X(τ |x)|x) + f̂Y |X(F̃ (τ, x)|x)

(
F̂−1
Y |X(τ |x)− F−1

Y |X(τ |x)
)

− FY |X(F−1
Y |X(τ |x)|x)

= F̂Y |X(F−1
Y |X(τ |x)|x)− FY |X(F−1

Y |X(τ |x)|x)

+ fY |X(F−1
Y |X(τ |x)|x)

(
F̂−1
Y |X(τ |x)− F−1

Y |X(τ |x)
)

+ op
(
F̂−1
Y |X(τ |x)− F−1

Y |X(τ |x)
)

uniformly in x ∈ supp(v), which in turn results in

F̂−1
Y |X(τ |x)− F−1

Y |X(τ |x)

= −
F̂Y |X(F−1

Y |X(τ |x)|x)− FY |X(F−1
Y |X(τ |x)|x)

fY |X(F−1
Y |X(τ |x)|x)

(1 + op(1))

= − (1 + op(1))

fY |X(F−1
Y |X(τ |x)|x)

1

n

n∑
i=1

(
1

fX(x)
Khy(F−1

Y |X(τ |x)− Yi)Khx(x−Xi)

−
p(F−1

Y |X(τ |x), x)

fX(x)2
Khx(x−Xi)

)
(4.67)

uniformly in x ∈ supp(v). Because of fY |X(F−1
Y |X(τ |x)|x) > 0 for all x ∈ supp(v), the second

assertion follows from the first one. �
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5

Testing for a Parametric

Transformation Function

This Chapter has arisen from from a research project with Natalie Neumeyer and Ingrid

Van Keilegom. A preprint (Kloodt, Neumeyer, and Van Keilegom (2019)), which is based

on the findings of this chapter and which contains most of the results, can be found on

https://arxiv.org/pdf/1907.01223.pdf.

As so often in this thesis, this chapter starts with a model equation namely

h(Y ) = g(X) + ε. (5.1)

As before, refer to h and g as the transformation and regression function, respectively, as

before ε is assumed to be independent of X with E[ε] = 0 and as before, several properties

like, e.g., smoothness or monotonicity of h will be assumed to build the theory on these.

But contrary to the last chapters, the aim of this chapter does not consist in testing for a

parametric regression function or in identification and estimation results for heteroscedastic

errors, but instead in providing a goodness of fit test for the null hypothesis of a parametric

transformation function.

Up to now, testing for a parametric transformation function has not attracted too much

attention in the literature. Mu and He (2007) developed a testing procedure in the con-

text of quantile regression in fully parametric transformation models. Neumeyer et al.

(2016) provided a procedure to test for a parametric transformation function in (heterosce-

dastic) semiparametric transformation models with nonparametric regression and variance

functions. The main idea there is to test for independence of the covariate and the (appro-

priately estimated and standardized) residuals ε. This can be done in several ways, e.g., by

comparing the appropriately estimated distribution or characteristic function of the joint

distribution of (X, ε) to the product of the estimated marginal distribution or characteristic

functions. Similar techniques were used in the context of nontransformed regression models

before, e.g., see Akritas and Van Keilegom (2001) or Jiménez Gamero, Muñoz Garćıa, and

Pino Mej́ıas (2005) for only one reference to each of the approaches. Neumeyer et al. (2016)

used an estimator of the distribution function to test for independence of X and ε, while
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5. Testing for a Parametric Transformation Function

Hušková et al. (2018) provided a similar test in the homoscedastic case, which is based

on the comparison of estimated characteristic functions. The latter test was extended to

heteroscedastic errors by Hušková et al. (2019) very recently. Under the assumption of a

parametric regression function, Szyd lowski (2017) used an L2-distance between the nonpa-

rametric estimator of Chen (2002) and the parametric class, which is tested for, to create

a goodness of fit test for a parametric transformation function.

Throughout this chapter, homoscedastic errors are assumed although the methods presen-

ted here can possibly be combined with the results of the Chapters 3 and 4 to obtain

a more general procedure in fully nonparametric and heteroscedastic models (see Section

5.9.2). For the first time, local alternatives will be considered in the context of testing for

a parametric transformation function. The presented test will be based on the ideas on

estimating the transformation parameter of Colling and Van Keilegom (2018).

Keeping the goal of transforming a model in order to simplify relations and apply simple and

fast procedures afterwards (as mentioned in the introduction) in mind, it might be sensible

from a practical point of view to apply a parametric estimator even if the model does not

hold exactly. With a good choice of the transformation parameter such a transformation,

e.g., can reduce the dependence between covariates and errors enormously. Estimating an

appropriate parameter is much easier than estimating the transformation h nonparame-

trically. Consequently, one might prefer the semiparametric transformation model with a

parametric transformation function over a completely nonparametric one. It is then of inte-

rest to examine how far away the parametric class is from the true transformation function.

To the author’s knowledge this issue has not been discussed in the literature yet. Later, a

test for the precise null hypothesis that a certain distance between the true transformation

function and the parametric class exceeds a given threshold is presented. Then, rejecting

the null yields evidence for applying the parametric transformation model. As a side effect,

this procedure is accompanied with a quantification of the distance between the parametric

class and the true transformation function making the results well interpretable.

This chapter is organized as follows. First, the test statistic is described in Section 5.1,

before its asymptotic distribution is developed in Section 5.2. Interchanged (also called re-

levant or precise) hypotheses are considered in Section 5.3. A bootstrap approach is given

in Section 5.4, while a simulation study is presented in Section 5.5. Finally, the results are

summarized in Section 5.6. The assumptions and proofs are postponed to Sections 5.7 and

5.8, respectively.

5.1 Model and Test Statistic

Consider independent and identically distributed random variables (Yi, Xi), i = 1, ..., n,

which fulfil equation (5.1) and define Si = g(Xi) + εi. The main question of this chapter is

if a given parametric class of transformation functions is considered, does the transformation

function h belong to this class? Hence, a parameter space Θ ⊆ RdΘ with a corresponding

transformation class H̃Θ = {Λθ : θ ∈ Θ} is needed. Then, the null hypothesis could be for

example H0 : h ∈ H̃Θ and the alternative H1 : h /∈ H̃Θ. Having introduced these notations

the idea behind the test statistic is quite simple. An appropriate distance d(ĥ,Λθ) between
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5.1. Model and Test Statistic

an appropriate nonparametric estimator ĥ for h and each function of the transformation

class will be considered and the minimum will be used as the test statistic. Finally, the null

hypothesis will be rejected if this distance is too large.

Although the presented idea is rather intuitive, a lot of questions arise when thinking about

applying the test statistic or a corresponding test. So far, it is not clear how to identify or

estimate the transformation function h and Λθ or which distance should be used. In princi-

ple, any nonparametric estimator of h with an asymptotic representation as in (5.13) below

is applicable. Later, the pretransformed estimator of Colling and Van Keilegom (2019),

which was described in Section 1.4, will be used. A sketch of how this approach could be

extended to the heteroscedastic models by using the estimator from Chapter 4 is given in

Section 5.9.2.

One has to be careful before applying any distance to ĥ and Λθ since both functions are

probably not comparable. As mentioned before in this thesis, transformation models are

in general not identified unless some identification constraints are required. Therefore,

one has to ensure that the identification conditions on which the nonparametric estimator

is based meet the identification conditions of the parametric class, since both estimators

otherwise may deviate from each other only because they are based on different identifica-

tion constraints and h is thus a linear transform of some Λθ0 (which means that basically

both functions fulfil the model equation (5.1)). Throughout this chapter, the identification

conditions

h(0) = 0 and h(1) = 1, (5.2)

which meet the conditions in Section 1.4, are used for the nonparametric transformation

function and its estimator. Note that for example the Yeo-Johnson-transforms (Yeo and

Johnson (2000))

Λθ(Y ) =



(Y+1)θ−1
θ , if Y ≥ 0, θ 6= 0,

log(Y + 1), if Y ≥ 0, θ = 0,

− (1−Y )2−θ−1
2−θ , if Y < 0, θ 6= 2,

− log(1− Y ), if Y < 0, θ = 2

(5.3)

fulfil Λθ(0) = 0 for all θ ∈ R, but in general not Λθ(1) = 1. Therefore, when assuming (5.2)

the null hypothesis of h belonging to the Yeo-Johnson-transforms has to be reformulated as

H0 : h ∈
{

Λθ
Λθ(1) : θ ∈ R

}
. For general parameter spaces Θ and corresponding transformation

classes, this can be extended to

H0 : h ∈
{

Λθ − Λθ(0)

Λθ(1)− Λθ(0)
: θ ∈ Θ

}
=: HΘ. (5.4)

When comparing a nonparametric estimator of h and a parametric member of HΘ this can

be done by computing the difference on the one hand between y 7→ h(y) and y 7→ Λθ(y)−Λθ(0)
Λθ(1)−Λθ(0)

itself or on the other hand between y 7→ h(y)(Λθ(1) − Λθ(0)) + Λθ(0) and y 7→ Λθ(y).

Although in principle both of these approaches are conceivable, only the second one will

be considered in the following, since this approach should be exemplary for the other and

was already used by Colling and Van Keilegom (2018) to develop an estimator of θ under

the null hypothesis. So far, the question of how to choose a distance appropriately has not
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been answered. Let w be a weight function with compact support. Let f and g be real

valued and monotone functions with f(0) = 0 and f(1) = 1. Colling and Van Keilegom

(2018) considered the weighted L2-distance

d̃(f, g) = E[w(Y )(f(Y )(g(1)− g(0)) + g(0)− g(Y ))2] (5.5)

and the modified version

d(f, g) = min
c1∈R+,c2∈R

E[w(Y )(f(Y )c1 + c2 − g(Y ))2]. (5.6)

Note that both distances are zero if and only if g is almost surely a linear transform of

f , which going back to transformation functions would correspond to d(h,Λθ) = 0 for

some θ ∈ Θ and thus to the null hypothesis. Colling and Van Keilegom (2018) found that

estimators of θ that are based on d seem to outperform those based on d̃. Hence, only d will

be considered in the following, but again it should be possible to treat a test statistic based

on d̃ similarly to the one that will be proposed here. Because the expectation in general

has to be estimated as well, d will be replaced by its empirical counterpart

dn(ĥ,Λθ) := min
c1∈R+,c2∈R

1

n

n∑
i=1

w(Yi)(ĥ(Yi)c1 + c2 − Λθ(Yi))
2, (5.7)

where ĥ denotes some nonparametric estimator of h with an asymptotic representation as in

(5.13) below, e.g. the estimator of Colling and Van Keilegom (2019). Now, a test statistic

can be defined as

Tn := min
θ∈Θ

ndn(ĥ,Λθ), (5.8)

where the prefactor results from the asymptotic behaviour derived in Section 5.2. An

asymptotic level α test for (5.4) may consequently look like

Φ(Y1, X1, ...Yn, Xn) = I{Tn>cα} (5.9)

with some critical value cα that is obtained from the asymptotic distribution in Theorem

5.2.2.

5.2 Asymptotic Behaviour of the Test Statistic

In this section, it is examined how the test statistic given in (5.8) behaves asymptotically.

First, define

Ui = T (Yi) with T (y) =
FY (y)− FY (0)

FY (1)− FY (0)
and Zi = (Ui, Xi). (5.10)

Assume FY to be strictly increasing on the support of Y and due to the identification

constraints (5.2) assume w.l.o.g. that 0 and 1 belong to the support of Y (otherwise replace

them by arbitrary values a < b ∈ R here and in (5.2), which belong to the support of Y ),

so that T is well defined and invertible. Using this definition, the model equation (5.1) can

be written as

S := h(Y ) = Q(T (Y )) = g(X) + ε (5.11)

with Q(·) = h(T −1(·)).
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Remark 5.2.1 Due to the identification constraints (5.2), Ui can be expressed alternatively

as

Ui =
FS(h(Yi))− FS(h(0))

FS(h(1))− FS(h(0))
=
FS(Si)− FS(0)

FS(1)− FS(0)
. (5.12)

It was already mentioned in Section 5.1, that an asymptotic representation for ĥ(y)− h(y)

is needed. To be precise, assume

ĥ(y)− h(y) =
1

n

n∑
i=1

ψ(Zi, T (y)) + op

(
1√
n

)
(5.13)

uniformly on compact sets where ψ has to fulfil assumption (A7) in Section 5.7. An example

for such an estimator is the nonparametric estimator of Colling and Van Keilegom (2019),

which was described in Section 1.4.

As already mentioned, the null hypothesis (5.4) can be rewritten as

H0 : h(·)c1 + c2 = Λθ0(·) for some θ0 ∈ Θ, c1 ∈ R+, c2 ∈ R.

Keeping Xi and εi (and thus Si and Zi as well) fixed, local alternatives can for example be

formulated as

H1,n : h(·)c1 + c2 = Λθ0(·) + n−
1
2 r(·) for some θ0 ∈ Θ, c1 ∈ R+, c2 ∈ R, (5.14)

where r is some continuous function and θ0 is assumed to be fixed. This leads to Yi =

h−1(Si). Applying (5.2) again leads to c2 = Λθ0(0) + n−
1
2 r(0) and c1 = Λθ0(1) − Λθ0(0) +

n−
1
2 (r(1)− r(0)), so that

h(·) =
Λθ0(·)− Λθ0(0) + n−

1
2 (r(·)− r(0))

Λθ0(1)− Λθ0(0) + n−
1
2 (r(1)− r(0))

= h0(·) + n−
1
2 r0(·) +O

(
1

n

)
(5.15)

uniformly on compact sets, where

h0(·) =
Λθ0(·)− Λθ0(0)

Λθ0(1)− Λθ0(0)
and r0(·) =

r(·)− r(0)− h0(·)(r(1)− r(0))

Λθ0(1)− Λθ0(0)
. (5.16)

Note that, because r ≡ 0 is possible as well, the null hypothesis is included in this framework

and that due to Remark 5.2.1 the distribution of Ui is independent of n. Hence, it is

reasonable to assume that

h(Yj)− ĥ(Yj) =
1

n

n∑
i=1

ψ(Zi, Uj) + op

(
1√
n

)
holds under local alternatives as well. For the estimator of Colling and Van Keilegom

(2019), this will be shown in Lemma 5.8.1.

Before any result can be stated some notations have to be introduced. First of all, denote

γ = (c1, c2, θ
t)t ∈ Υ := C1×C2×Θ, where Υ is assumed to be compact (see (A1) in Section

5.7), and

γ̃ = arg min
γ∈Υ

n∑
k=1

w(Yk)(ĥ(Yk)c1 + c2 − Λθ(Yk))
2. (5.17)
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For all minimizers γ̃, the test statistic can be written as

Tn = min
γ∈Υ

n∑
i=1

w(Yi)(ĥ(Yi)c1 + c2 − Λθ(Yi))
2 =

n∑
i=1

w(Yi)(ĥ(Yi)c̃1 + c̃2 − Λθ̃(Yi))
2. (5.18)

Moreover, mark the derivatives with respect to θ with a “ · ” and define

R(s) = (s, 1,−Λ̇θ0(h−1
0 (s)))t, (5.19)

Γ = E[w(h−1
0 (S1))R(S1)R(S1)t], (5.20)

ϕ(z) = E[w(h−1
0 (S2))ψ(Z1, U2)R(S2) | Z1 = z] (5.21)

as well as

ζ(z1, z2) = E
[
w(h−1

0 (S3))
(
ψ(Z1, U3)− ϕ(Z1)tΓ−1R(S3)

)
(
ψ(Z2, U3)− ϕ(Z2)tΓ−1R(S3)

)
| Z1 = z1, Z2 = z2

]
, (5.22)

r̄(s) = r0(h−1
0 (s))− E[w(h−1

0 (S1))r0(h−1
0 (S1))R(S1)]tΓ−1R(s), (5.23)

ζ̃(z) = 2E[w(h−1
0 (S2))ψ(Z1, U2)r̄(S2) | Z1 = z]. (5.24)

Here, Zi is defined as in (5.10). Further, let PZ and FZ denote the distribution law and

distribution function of Zi, respectively. Under some assumptions stated later in Section

5.7, it can be shown that the minimizer γ̃ is uniquely determined with probability converging

to one.

Theorem 5.2.2 Assume (A1)–(A7) given in Section 5.7. Let (λk)k∈{1,2,... } be the eigen-

values of the operator

Kρ(z1) :=

∫
ρ(z2)ζ(z1, z2) dFZ(z2)

with corresponding eigenfunctions (ρk)k∈{1,2,... }, which are orthonormal in the L2-space

corresponding to the distribution law PZ . Let (Vk)k∈{1,2,... } be independent and standard

normally distributed random variables and let V0 be centred normally distributed with va-

riance E[ζ̃(Z1)2] such that for all K ∈ N the random vector (V0, V1, . . . , VK)t follows a

multivariate normal distribution with Cov(V0, Vk) = E[ζ̃(Z1)ρk(Z1)] for all k = 1, . . . ,K.

Then, under the local alternative H1,n in (5.14), Tn converges in distribution to

(Λθ0(1)− Λθ0(0))2

( ∞∑
k=1

λkV
2
k + V0 + E

[
w(h−1

0 (S1))r̄(S1)2
])

. (5.25)

In particular, under H0 (i.e. for r ≡ 0), Tn converges in distribution to

T = (Λθ0(1)− Λθ0(0))2
∞∑
k=1

λkV
2
k . (5.26)

The proof can be found in Section 5.8.1.
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Remark 5.2.3 Note that ζ(z1, z2) = E[I(z1)I(z2)] with

I(z) := w(h−1
0 (S1))1/2

(
ψ(z, U1)− ϕ(z)tΓ−1R(S1)

)
.

Thus, the operator K defined in Theorem 5.2.2 is positive semi-definite, because the inner

product 〈·, ·〉 of the Hilbert space L2(RdX+1, PZ) can be used to write

〈Kρ, ρ〉 =

∫ ∫
ρ(z1)ζ(z1, z2) dFZ(z1) ρ(z2) dFZ(z2)

= E

[(∫
ρ(z1)I(z1) dFZ(z1)

)2
]
≥ 0.

Remark 5.2.4 When considering transformation classes of finitely many (by d distinguis-

hable) transformation functions the results of Theorem 5.2.2 can be modified as in Section

5.9.1, since the estimation (here classification) of the transformation parameter does no

longer influence the asymptotic distribution of Tn.

Remark 5.2.5 Note that the minimization is also affected by the local alternative. Often

in regression models, local alternatives are assumed to fulfil some orthogonality condition,

since then the minimizing parameter does not depend on n, see for example Härdle and

Mammen (1993). As was pointed out in Section 2.3.2, an orthogonality condition is needed

to ensure that the test from Chapter 2 detects the local alternatives. If the minimizing

parameter in the context of local alternatives with respect to the transformation function is

assumed to be independent of n, this would mean that

γ̃0 =


c̃1,0

c̃2,0

θ̃0

 := arg min
c1,c2,θ

E[w(Y )(h(Y )c1 + c2 − Λθ(Y ))2]

is independent of n. Since h converges to h0, one should obtain γ̃0 = γ0 in this case with

γ0 such that

h0(y)c1,0 + c2,0 = Λθ0(y).

Consequently, this would lead to

0 =
(
DγE[w(Y )(h(Y )c1 + c2 − Λθ(Y ))2]

∣∣
γ=γ̃0

)t

= 2E

w(Y )

(
h0(Y )c1,0 +

1√
n
r(Y )c1,0 + c2,0 − Λθ0(Y )

)
h(Y )

1

Λ̇θ0(Y )t


 .

Thus,

E[w(Y )r(Y )] = 0, E[w(Y )r(Y )Λ̇θ0(Y )t] = 0 and E[w(Y )r(Y )h(Y )] = 0.

Because not only the distribution of Y , but also h = h0 + 1√
n
r itself depends on n, these

(and especially the last) restrictions might be too strong, so that this assumption would be

no longer sensible. Consequently, the minimizing parameter in general depends on n.
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5. Testing for a Parametric Transformation Function

Theoretically, the critical values cα mentioned in (5.9) can now be obtained using the (1−α)-

quantile of the asymptotic distribution in (5.26). In Section 5.4, a bootstrap procedure is

suggested to estimate these quantiles.

Theorem 5.2.6 Assume (A1)–(A3),(A4’),(A5’) and let ĥ estimate h uniformly consis-

tently on compact sets. Consider the fixed alternative

H1 : d(h,Λθ) > 0 for all θ ∈ Θ (5.27)

and denote the (1 − α)-quantiles of T (as in (5.26)) by cα. Then, for the test provided in

(5.9) and all α ∈ (0, 1)

P (Φ(Z1, ..., Zn) = 1) = P (Tn > cα)
n→∞−→ 1,

that is, the proposed test is consistent.

The proof can be found in Section 5.8.2.

5.3 Testing Precise Hypotheses

So far, the null hypothesis of a parametric transformation model was considered and the

guidance of the proposed test would be to use a parametric estimator unless H0 was not

rejected. Nevertheless, the transformation model with a parametric transformation class

might be useful in applications even if the model does not hold exactly. Since parametric in

general outperform nonparametric estimators (if the model holds), it could still make sense

in some cases to prefer a parametric estimator to a nonparametric one. This gives rise to

the question if a transformation function is too far away from a given parametric class or

if the class is still acceptable. Hence, the interchanged hypotheses

H ′0 : min
θ∈Θ

d(h,Λθ) ≥ η and H ′1 : min
θ∈Θ

d(h,Λθ) < η (5.28)

are considered in this section. Here, Θ and Λθ are as in (5.4) and η is some threshold

fixed beforehand by the experimenter. Referring to Berger and Delampady (1987), the

hypotheses (5.28) are called “precise hypotheses” in the following. If a suitable test rejects

H ′0 for some small η the model is “good enough” to work with, even if it does not hold

exactly. Dette, Kokot, and Volgushev (2018) considered precise hypotheses in the context

of comparing mean functions in the context of functional time series. Note that the idea of

precise hypotheses is related to that of equivalence tests, which originate from the field of

pharmacokinetics (see Lakens (2017)).

Fortunately, the same test statistic as before can be used although one has to standardize

differently. Assume H ′0 holds, that is, let h be a (fixed) transformation which does not

belong to some given parametric transformation class. Further, let

M(γ) = M(c1, c2, θ
t)t = E[w(Y )(h(Y )c1 + c2 − Λθ(Y ))2], (5.29)

let

γ0 = (c1,0, c2,0, θ0) := arg min
(c1,c2,θt)t∈Υ

M(c1, c2, θ
t)t
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5.3. Testing Precise Hypotheses

be unique and let γ̃ be defined as in (5.17). Note that min
c1∈C1,c2∈C2

M(γ) = d(h,Λθ) for all

θ ∈ Θ. Assume that

Γ′ = E

w(Y1)


h(Y1)2 h(Y1) −h(Y1)Λ̇θ0(Y1)

h(Y1) 1 −Λ̇θ0(Y1)

−h(Y1)Λ̇θ0(Y1)t −Λ̇θ0(Y1)t Γ′3,3


 (5.30)

is positive definite, where Γ′3,3 = Λ̇θ0(Y )tΛ̇θ0(Y1)− Λ̈θ0(Y1)R̃1 and R̃i is defined as

R̃i = h(Yi)c1,0 + c2,0 − Λθ0(Yi), i = 1, ..., n. (5.31)

Theorem 5.3.1 Assume (A1)–(A3),(A4’),(A5’),(A7’) in Section 5.7 and let Γ′ be po-

sitive definite. Then

n1/2(Tn/n−M(γ0))
D→ N

(
0, σ2

)
, (5.32)

where σ2 = Var
(
w(Y1)R̃2

1 + δ(Z1)
)

and δ(z) = 2E[w(Y2)ψ(Z1, U2)R̃2 | Z1 = z].

The proof can be found in Section 5.8.3. Since in this scenario it is not clear how to obtain

appropriate quantiles via some bootstrap algorithm, it would be desirable to simply plug

a consistent estimator of σ2 into (5.32) or to be precise standardise the left hand side to

obtain a standard normal distribution. Then, a consistent asymptotic level-α-test would

reject H ′0 if (Tn − nη)/(nσ̂2)1/2 < uα, where uα is the α-quantile of the standard normal

distribution. For this purpose, let (m)n∈N = (mn)n∈N be an intermediate sequence, that is

mn →∞,
n

mn
→∞,

and define q := d n
mn
e − 1. Moreover, let Yw be the compact support of w and denote for

some ν ∈
{

1, ..., q
}

the nonparametric estimator of h depending on Z(ν−1)m+1, ..., Zνr by

ĥ(ν), that is,

ĥ(ν)(y)− h(y) =
1

m

νr∑
j=(ν−1)m+1

ψ(Zj , T (y)) + op

(
1√
m

)
holds uniformly on Yw.

Lemma 5.3.2 Assume (A1)–(A3),(A4’),(A5’),(A7’) in Section 5.7 and let Γ′ be positive

definite. Define

Hm,ν := sup
y∈Yw

∣∣∣∣√m(ĥ(ν)(y)− h(y))− 1√
m

νm∑
j=(ν−1)m+1

ψ(Zj , T (y))

∣∣∣∣ = op(1) (5.33)

for m → ∞. Then, there exists an intermediate sequence (mn)n∈N and a null sequence

(an)n∈N such that

max
ν=1,...,q

Hm,ν = Op(an) (5.34)

and

P (|Hm,1| > ε) = o

(
1

q

)
(5.35)
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5. Testing for a Parametric Transformation Function

holds for all ε > 0. Then, a consistent estimator of the asymptotic variance σ2 is given by

σ̂2 :=
1

q

q∑
ν=1

(
2
√
mn

n

n∑
k=1

w(Yk)
(
ĥ(ν)(Yk)− ĥ(Yk)

)
(ĥ(Yk)c̃1 + c̃2 − Λθ̃(Yk))

+
1
√
mn

νmn∑
j=(ν−1)mn+1

(
w(Yj)(ĥ(Yj)c̃1 + c̃2 − Λθ̃(Yj))

2

− 1

n

n∑
i=1

w(Yi)(ĥ(Yi)c̃1 + c̃2 − Λθ̃(Yi))
2

))2

with (c̃1, c̃2, θ̃
t) = γ̃t from equation (5.17). One has σ̂2 − σ2 = Op

(√
mn
n + an + n−

1
4

)
. The

optimal, that is fastest, rate of convergence is Op(n−
1
4 ), which is obtained if (5.34) and

(5.35) hold for mn = Op(
√
n) and an = Op(n−

1
4 ).

The proof can be found in Section 5.8.4.

5.4 Bootstrap

Although the results presented in Theorem 5.2.2 give an idea of how the test statistic be-

haves asymptotically, it is hard to extract any information about how to choose the critical

values cα in (5.9) from the limiting distribution in equation (5.26) appropriately. The main

reasons for this are that first for any function ζ the eigenvalues of the operator mentioned

in (5.2.2) are unknown, that second this function is unknown and needs to be estimated as

well and that third even ψ (which would be needed to estimate ζ) is unknown and rather

complex (see Section 1.4). Therefore, calculating the quantiles of the distribution in (5.26)

directly might not be a good idea and some bootstrap technique should be applied instead.

In this section, a bootstrap algorithm is developed and consistency of the procedure is pro-

ven.

A bootstrap algorithm is required to fulfil two properties: First, under the null hypothesis

the algorithm has to provide, conditioned on the original data (Y1, X1), ..., (Yn, Xn), con-

sistent estimates of the quantiles of Tn or more precisely its asymptotic distribution (5.26).

To specify, what is meant by this, let (Ω,A, P ) denote the underlying probability space and

assume that (Ω,A) can be written as Ω = Ω1 ×Ω2 and A = A1 ⊗A2 for some measurable

spaces (Ω1,A1) and (Ω2,A2). Further, assume that P is characterized as the product of a

probability measure P1 on (Ω1,A1) and a Markov kernel

P 1
2 : Ω1 ×A2 → [0, 1],

that is P = P1 ⊗ P 1
2 . The expectation with respect to P 1

2 (ω, ·) is written as E[·|ω]. In

the following, bootstrap data (Y ∗1 , X
∗
1 ), ..., (Y ∗m, X

∗
m) is generated. While randomness with

respect to the original data is modelled by P1, randomness with respect to the bootstrap

data and conditional on the original data is modelled by P 1
2 . Moreover, assume

P 1
2 (ω,A) = P

(
Ω1 ×A|(Yi, Xi) = (Yi(ω), Xi(ω)) ∀i = 1, ..., n

)
for all ω ∈ Ω1, A ∈ A2.
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5.4. Bootstrap

With these notations in mind, if the bootstrap statistic is denoted by T ∗n,m, where m is the

sample size of the bootstrap data, then for all q ∈ (0,∞) it would be desirable to obtain

P1

(
ω ∈ Ω1 : lim sup

m→∞

∣∣P 1
2 (ω, {T ∗n,m ≤ q})− P (Tn ≤ q)

∣∣ > δ
)

= o(1) (5.36)

for all δ > 0 and n→∞. Here, the notation

P 1
2 (ω, {T ∗n,m ≤ q}) = P 1

2

(
ω,
{
ω̃ ∈ Ω2 : (ω, ω̃) ∈ {T ∗n,m ≤ q}

})
is used. On the other hand, to be consistent under H1 the bootstrap quantiles have to

stabilize or at least converge to infinity with a rate less than that of Tn. To be precise, it

is needed that

P1

(
ω ∈ Ω1 : lim sup

m→∞
P 1

2 (ω, {Tn ≤ T ∗n,m}) > δ
)

= o(1) (5.37)

for all δ > 0 and n→∞. The main problem of estimating the quantiles in (5.26) consists

in mimicking the asymptotic behaviour of ĥ. In the following, an algorithm is given which

ensures both properties (5.36) and (5.37).

Algorithm 5.4.1 Let (Y1, X1), ..., (Yn, Xn) denote the observed data and for some α ∈
(0, 1) let qα denote the quantile that needs to be estimated. Further, let (an)n∈N and (bn)n∈N

be sequences with an, bn ↘ 0. Moreover, define

hθ(y) =
Λθ(y)− Λθ(0)

Λθ(1)− Λθ(0)
and gθ(x) = E[hθ(Y )|X = x].

(1) Calculate γ̃ = (c̃1, c̃2, θ̃)
t = arg min

γ∈Υ

∑n
i=1w(Yi)(ĥ(Yi)c1 + c2 − Λθ(Yi))

2. Let θ0 be

defined as in (A5) (under the null hypothesis) or as in (A5’) (under the alternative)

in Section 5.7 and let ĝ be an estimator of gθ0.

(2) Let m ∈ N and let Wi and ξi, i = 1, ...,m, be independent and absolute continuous

random variables. Estimate the parametric residuals ε(θ) = hθ(Y )− gθ(X) by

ε̂i(θ̃) = hθ̃(Yi)− ĝ(Xi), i = 1, ..., n.

Draw some indices j∗X , j
∗
ε , j = 1, ...,m, with replacement from {1, ..., n} (indepen-

dently) and define the bootstrap data by

X∗j = Xj∗X
+ bnWj

and

Y ∗j = (h∗)−1

(
ĝ(X∗j ) + ε̂j∗ε (θ̃)− 1

n

n∑
l=1

ε̂l(θ̃) + anξj

)
for h∗(·) =

Λθ̃(·)− Λθ̃(0)

Λθ̃(1)− Λθ̃(0)
.

(5.38)

(3) Calculate the bootstrap estimate ĥ∗ for h∗ from (Y ∗j , X
∗
j ), j = 1, ...,m.

(4) Calculate the bootstrap statistic T ∗n,m = min
γ∈Υ

∑m
j=1w(Y ∗j )(ĥ∗(Y ∗j )c1 + c2 − Λθ(Y

∗
j ))2.
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5. Testing for a Parametric Transformation Function

(5) Let B ∈ N. Repeat steps (2)–(4) B times to obtain the bootstrap statistics T ∗n,m,1, ...,

T ∗n,m,B. Let q∗α denote the quantile of T ∗n,m conditional on (Yi, Xi), i = 1, ..., n. Esti-

mate q∗α by

q̂∗α = min

{
z ∈ {T ∗n,m,1, ..., T ∗n,m,B} :

1

B

B∑
k=1

I{T ∗n,m,k≤z} ≥ α
}
.

To apply the estimating approach developed by Colling and Van Keilegom (2019), further

assumptions are needed to induce the validity of Algorithm 5.4.1.

Assumptions 5.4.2 In the following, the notations from Algorithm 5.4.1 are employed.

Let 1
nan

, log(n)

nb
dX+4
n

→ 0.

(1) Let ĝ be (q+ 2)-times continuously differentiable (same q as in (B4) in Section 5.7).

(2) Denote the densities of Wi and ξi, i = 1, ...,m, by fW and fξ, respectively. Assume

• fW and fξ are (q + 2)-times continuously differentiable,

• fW has bounded support,

• fW (0) > 0 and fξ > 0,

• either
∣∣ ∂
∂ufξ(u)

∣∣ ≤ K,

|f̃(u)| < |u|−ν and
∣∣∣ ∂
∂u
f̃(u)

∣∣∣ ≤ K|u|−ν (5.39)

for all |u| > L, f̃ ∈
{
fξ,

∂
∂ufξ

}
or∣∣∣∣∣∣ ∂

∂x
f̃(x)

∣∣∣∣∣∣ ≤ K and
∣∣∣∣∣∣ ∂
∂x
f̃(x)

∣∣∣∣∣∣I{||x||>L} ≤ K||x||−νI{||x||>L}
for some ν > 1,K, L ∈ (0,∞) and all f̃ ∈

{
fW ,

∂
∂xi
fW ,

∂2

∂x2
i
fW

}
, where the same

i was used as in (B3). From now on, the case i = 1 is considered w.l.o.g.

Remark 5.4.3 1. The properties nb
dX
n

log(n) → ∞ and fW (0) > 0 ensure that conditional

on the original data (Y1, X1), ..., (Yn, Xn) the support of X∗1 contains the support of v

(from assumption (B7) in Section 5.7) with probability converging to one. Thus, v

can be used for calculating ĥ∗ as well.

2. To proceed as in (5.38) it may be necessary to modify h∗ so that S∗j := ĝ(X∗j )+ε̂j∗ε (θ̃)−
1
n

∑n
l=1 ε̂l(θ̃) + anξj belongs to the domain of (h∗)−1 for all j = 1, ...,m. As long as

these modifications do not have influence on h∗(y) for y ∈ Yw, the influence on ĥ∗

and T ∗n,m should be asymptotically negligible (which can be proven for the estimator

of Colling and Van Keilegom (2019)).

3. Later, it is assumed that the map y 7→ Λθ(y) is (q+2)-times continuously differentiable

for every θ ∈ Θ̃, where Θ̃ is an arbitrarily small neighbourhood of θ0. This assumption

can be relaxed as long as (uniformly in θ ∈ Θ̃) Λθ can be approximated by some (q+2)-

times differentiable function Λ̃θ such that

sup
y∈Yw

|Λ̃θ(y)− Λθ(y)| = op(a
2
n).
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5.4. Bootstrap

For any realisation ω ∈ Ω1 define

FY ∗(y) = P 1
2 (ω, {Y ∗1 ≤ y}), T ∗(y) =

FY ∗(y)− FY ∗(0)

FY ∗(1)− FY ∗(0)
, U∗ = T ∗(Y ∗) (5.40)

and

S∗ = h∗(Y ∗).

Together with assumptions 5.4.2, Algorithm 5.4.1 is constructed in a way such that for the
estimator of Colling and Van Keilegom (2019) a bootstrap counterpart to (5.13) is valid,
namely

P1

(
ω ∈ Ω1 : ∀δ > 0 : lim sup

m→∞
P 1

2

(
ω,

{
sup
y∈K

∣∣∣∣ĥ∗(y)− h∗(y)− 1

m

m∑
j=1

ψ∗(S∗j , X
∗
j , T ∗(y))

∣∣∣∣ > δ√
m

})
= 0

)

= 1 + o(1) (5.41)

for all compact sets K ⊆ R and n→∞, where ψ∗ fulfils assumption (A7*). In the following,

the conditional density of ε(θ0) given X is written as fε(θ0)|X .

Lemma 5.4.4 Let K ⊂ R be compact. Assume (A9) in Section 5.7 and

max
i=1,...,n

|ĝ(Xi)− gθ0(Xi)|r

ar+1
n

= op(1) and
||θ̃ − θ0||r

ar+1
n

= op(1). (5.42)

Then,

sup
u∈K

∣∣∣∣ 1n
n∑
i=1

Fξ

(
u− ε̂i(θ̃)

an

)
− 1

n

n∑
i=1

Fξ

(
u− εi(θ0)

an

)∣∣∣∣ = op(1)

and

sup
u∈K

∣∣∣∣ 1

nan

n∑
i=1

fξ

(
u− ε̂i(θ̃)

an

)
− 1

nan

n∑
i=1

fξ

(
u− εi(θ0)

an

)∣∣∣∣ = op(1).

The proof can be found in Section 5.8.5.

Remark 5.4.5 (i) Later, it will be shown that 1
n

∑n
l=1 ε̂l(θ̃) = op(1) in the proof of

Lemma 5.8.2. Hence, the assertion of Lemma 5.4.4 can be extended to the centred

residuals ε̂i(θ̃)− 1
n

∑n
l=1 ε̂l(θ̃) by considering a slightly bigger set K.

(ii) Many of the assumptions in (A9) can be replaced by less complex, but more restrictive

versions. For example, due to (5.42) assumption (5.63) below is implied by

E

[
sup

||θ−θ0||<δ
||Hess Λθ(Yi)||j

]
<∞

for all j = 1, ..., r − 1 or

max
k=1,...,n

sup
||θ−θ0||<δ

||Hess Λθ(Yi)|| = Op
(
||θ̃ − θ0||−1

)
(

= Op
(
n

1
4

)
under the alternative

)
.

(iii) One has ||θ̃− θ0|| = Op
(
n−

1
4

)
under the alternative. Unfortunately, the experimenter

in advance does not know, if the null hypothesis or the alternative holds, so that in

general (5.42) limits an to a−1
n = o

(
n

r
4(r+1)

)
= o
(
n

1
4

)
.
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(iv) The regression function gθ0 can be estimated using the Nadaraya-Watson approach

as in the paper of Heuchenne, Samb, and Van Keilegom (2015). Under some ad-

ditional assumptions, their Proposition 6.1 and its extension in the supplement of

Colling and Van Keilegom (2016, p. 7) yield ĝ(x)− gθ0(x) = Op
(√

log(n)

nh
dX
x

+ ||θ̃− θ0||
)

uniformly on compact sets. When assuming the existence of some compact set K ⊆
supp(fX) such that supp(v) is contained in the interior of K, equation (5.42) (and a

counterpart of (5.43) below for compact sets) can be obtained when discarding those

(Yi, Xi), (Y
∗
j , X

∗
j ), for which Xi, X

∗
j /∈ K holds. Note that an equation similar to

(5.13) can still be derived, although in general with another ψ. Then, (5.42) requires

a−1
n = op

((
nh

dX
x

log(n)

) r
2(r+1)

)
for ||θ̃−θ0|| = Op

(
n−

1
2

)
and a−1

n = o
((

nh
dX
x

log(n)

) r
2(r+1) +n

r
4(r+1)

)
for ||θ̃ − θ0|| = Op

(
n−

1
4

)
.

Lemma 5.4.6 Let assumptions 5.4.2 and (5.42) be fulfilled. Further, assume (A1)–(A7),

(A9),(B1)–(B10) in Section 5.7 and

sup
x∈RdX

|ĝ(x)− gθ0(x)| = op(1) and sup
x∈RdX

∣∣∣∣ ∂∂x1
ĝ(x)− ∂

∂x1
gθ0(x)

∣∣∣∣ = op(1), (5.43)

Moreover, assume the existence of a neighbourhood Θ̃ of θ0 such that the map y 7→ Λθ(y)

is (q + 2)-times continuously differentiable for all θ ∈ Θ̃. Let ĥ∗ be the estimator from

(5.46) based on the bootstrap data (Y ∗j , X
∗
j ), j = 1, ...,m. Assume that the density of ε(θ0)

(denoted by fε(θ0)) is continuous and

sup
e∈R
|efε(θ0)(e)| <∞. (5.44)

Then, assumptions (A7*) and (A8*) are fulfilled and especially equation (5.41) is valid.

The proof can be found in Section 5.8.6. The assertion can be extended to other i ∈
{1, ..., dX} as long as assumption (B3) is fulfilled.

Theorem 5.4.7 Assume H0,(A1)–(A7),(A7*),(A8*) in Section 5.7. Then, the bootstrap

statistic T ∗n,m computed by algorithm 5.4.1 fulfils (5.36). If q∗α denotes for all α ∈ (0, 1) the

corresponding bootstrap quantile described in 5.4.1, one has

P1

(
ω ∈ Ω1 : lim sup

m→∞
|q∗α − qα| > δ

)
= o(1)

for all δ > 0 and n→∞.

The proof can be found in Section 5.8.7. Under the null hypothesis the proof of Lemma 5.4.6

is based on the convergence of ψ∗ to ψ in probability and uniformly in its input argument,

which will be specified later. If the alternative holds, it is not even clear if ψ∗ stabilizes in

some sense (see assumption (5.57)). Hence, additional assumptions are needed. For that

purpose, define

Fε(θ)(e) = P (ε(θ) ≤ e),
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FBS (u) =

∫
Fε(θ0)(u− gθ0(x))fX(x) dx,

T BS (u) =
FBS (u)− FBS (0)

FBS (1)− FBS (0)
,

Φ̃(u|x) = Fε(θ0)

(
(T BS )−1(u)− gθ0(x)

)
.

While doing so, assume FBS (0) < FBS (1) to ensure that T BS is well defined, and define

(T BS )−1(u) =

 −∞∞
 , if TBS (y)

 >

<

u for all y ∈ R.

Note that Φ̃ plays a similar role under the alternative as Φ(u|x) = FU |X(u|x) under the

null hypothesis and thus is assumed to be continuously differentiable on U0× supp(v) with

inf
(u,x)∈U0×supp(v)

∂

∂u
Φ̃(u|x) > 0 and inf

(u,x)∈U0×supp(v)

∂

∂x1
Φ̃(u|x) > 0 (5.45)

in the following. Again, the derivative with respect to any other component xi, i ∈
{1, ..., dX}, could have been used as well.

Lemma 5.4.8 Let the assumptions 5.4.2 and (5.42) be fulfilled. Moreover, assume H1,

(A1)–(A3), (A4’), (A5’), (A6), (A7’), (A9), (B1)–(B10) in Section 5.7 as well as

(5.43)–(5.45). Further, assume the existence of a neighbourhood Θ̃ of θ0 such that the

map y 7→ Λθ(y) is (q + 2)-times continuously differentiable for all θ ∈ Θ̃. Let ĥ∗ be the

estimator from (5.49) below, which is based on the bootstrap data (Y ∗j , X
∗
j ), j = 1, ...,m.

Then, assumption (A7*) is fulfilled.

The proof can be found in Section 5.8.8.

Theorem 5.4.9 Under H1 assume (A1)–(A3),(A4’),(A5’),(A7*) in Section 5.7. Then,

the bootstrap statistic T ∗n,m computed by algorithm 5.4.1 fulfils (5.37). If q∗α denotes for all

α ∈ (0, 1) the corresponding bootstrap quantile described in Algorithm 5.4.1, one has

P1

(
ω ∈ Ω1 : Tn > lim sup

m→∞
q∗α

)
= 1 + o(1).

The proof can be found in Section 5.8.9.

Remark 5.4.10 Whatever estimator of g is used, there are in general further assumptions

(for example integrability conditions on Y ) needed to ensure sup
x∈RdX

|ĝ(x)−g(x)| = op(1). The

reader is referred to Heuchenne et al. (2015) or Neumeyer et al. (2016) for one Nadaraya-

Watson and one local polynomial approach, respectively, in the context of transformation

models.

5.5 Simulations

In this section, the question of how the performance of the proposed test for finite sample

sizes could be analysed is answered and some simulations are conducted to illustrate the

behaviour of the test for finitely many observations. The testing procedure mainly consists

of three parts:
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5. Testing for a Parametric Transformation Function

• the nonparametric estimation of h,

• calculating the minimum and the test statistic Tn,

• estimating critical values (via bootstrap).

While the bootstrap algorithm has already been explained in the previous section, both of

the following subsections deal with one of the first two issues. The last subsection contains

the actual simulation, that means the rejection probabilities and some explanatory figures

for some chosen examples under the null hypothesis and under several alternatives. Consider

n ∈ IN independent random variables (Y1, X1), ..., (Yn, Xn) identically distributed as some

(Y,X). Throughout this section, the nonparametric, but homoscedastic transformation

model (5.1) is assumed and the test from (5.9) is considered. Simulations and calculations

are conducted with R (R Core Team (2017)).

5.5.1 Nonparametric Estimation of h

The nonparametric estimator ĥ of Colling and Van Keilegom (2019) is applied, see Section

1.4 for some motivation and a detailed treatment of this estimator. Denote the conditional

distribution function of U1, given X1 = x, with U1 from (5.10) by FU |X(·|x) and the

empirical distribution function of Y1, ..., Yn by F̂Y . Remember

ĥ(y) = Q̂(T̂ (y)), (5.46)

where

T̂ (y) :=
F̂Y (y)− F̂Y (0)

F̂Y (1)− F̂Y (0)
,

and Ûi := T̂ (Yi) estimates Ui from (5.10) for all i = 1, ..., n. For some appropriate weight

function v, let

Q̃(u) = arg min
q∈R

∫
v(x)

∣∣∣∣ ŝ1(u, x)

ŝ1(1, x)
− q
∣∣∣∣ dx (5.47)

with

ŝ1(u, x) :=

∫ u

0

∂F̂U|X(r|x)

∂r

∂F̂U|X(r|x)

∂x1

dr (5.48)

and

F̂U |X(u|x) :=

∑n
i=1Khx(Xi − x)Khu(u− Ûi)∑n

i=1Khx(Xi − x)
.

Here, hx and hu are bandwidths and K is an appropriate kernel function (as in the assump-

tions (B3) and (B4)) and

Kh(u) :=
1

h
K

(
u

h

)
, Kh(u) :=

∫ u

−∞
Kh(r) dr =

∫ u
h

−∞
K(r) dr.

Moreover, let L and b be some appropriate distribution function and bandwidth, respecti-

vely, and Lb(·) = L
( ·
b

)
. To ensure the derived asymptotic properties, the estimator in

(5.47) actually has to be replaced by a smoothed version

Q̂(u) = arg min
q∈R

∫
v(x)

(
ŝ1(u, x)

ŝ1(1, x)
− q
)(

2Lb

(
ŝ1(u, x)

ŝ1(1, x)
− q
)
− 1

)
dx (5.49)
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(see Colling and Van Keilegom (2019)). Nevertheless, the median is used as in the paper

of Colling and Van Keilegom (2019) for conducting simulations since on the one hand the

expression in (5.49) converges to that in (5.47) for b → 0 (which indeed can be written as

the median) and on the other hand applying the estimator in (5.47) avoids the choice of

another smoothing parameter. Additionally, it is anyway discretized with respect to the

x-component later.

Remark 5.5.1 1. In principle, the weighted L1-distance in (5.47) could be replaced by

an L2-distance (or possibly even another distance) as well. Here, only the L1-distance

is used since according to Colling and Van Keilegom (2019) the resulting estimator

seems to outperform its counterpart which is based on a square loss.

2. The derivative with respect to any other component xi fulfilling assumption (B3) can

be used as well (similar to Chiappori et al. (2015)). W.l.o.g. only the case i = 1 is

considered here.

As in the paper of Colling and Van Keilegom (2019) v is chosen to be the density of a uniform

distribution in the simulations. Moreover, for some natural number Nx, the estimator is

approximated by the empirical median of points λ̂(u, xl), l = 1, ..., Nx, where x1, ..., xNx
form an equidistant grid between min

i=1,...,n
Xi and min

i=1,...,n
Xi. After rejecting those values for

which the integral (calculated by integrate in R) in (5.48) diverges or which are near to

such values, the median of all remaining values is considered.

5.5.2 Calculating the Test Statistic

The three-dimensional minimization problem can be reduced to a one-dimensional one. For

this purpose, define

fθ(c1, c2) :=
n∑
k=1

w(Yk)(ĥ(Yk)c1 + c2 − Λθ(Yk))
2

and write

Tn = min
θ∈Θ

min
(c1,c2)∈C1×C2

fθ(c1, c2).

Taking the derivative of fθ leads to

D(c1,c2)fθ(c1, c2) = 2

n∑
k=1

w(Yk)(ĥ(Yk)c1 + c2 − Λθ(Yk))
(
ĥ(Yk) , 1

)

= 2
(
c1 , c2

) n∑
k=1

w(Yk)

 ĥ(Yk)

1

( ĥ(Yk) , 1
)

− 2
n∑
k=1

w(Yk)Λθ(Yk)
(
ĥ(Yk) , 1

)
!

= 0
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5. Testing for a Parametric Transformation Function

and the corresponding solution c1(θ)

c2(θ)

 = R−1
n∑
k=1

w(Yk)Λθ(Yk)

 ĥ(Yk)

1

 ,

where

R :=

n∑
k=1

w(Yk)

 ĥ(Yk)
2 ĥ(Yk)

ĥ(Yk) 1

 .

After inserting this solution, one has

Tn = min
θ∈Θ

(
c1(θ) , c2(θ)

)
R

 c1(θ)

c2(θ)



− 2
(
c1(θ) , c2(θ)

) n∑
k=1

w(Yk)Λθ(Yk)

 ĥ(Yk)

1

+

n∑
k=1

w(Yk)Λθ(Yk)2

= min
θ∈Θ

n∑
k=1

w(Yk)Λθ(Yk)2

−
n∑
j=1

n∑
k=1

w(Yj)w(Yk)Λθ(Yj)Λθ(Yk)
(
ĥ(Yj) , 1

)
R−1

 ĥ(Yk)

1

 . (5.50)

This expression can now be used to obtain in a first step the minimizer θ̃ ∈ Θ and in a

second step the minimum itself. To calculate the minimum of (5.50) the function optimize,

which is already implemented in R, is used.

5.5.3 A Simulation Study

Finally, some data is generated and a simulation study is conducted in this section. There

are mainly three blocks of unknown quantities that have to be fixed for simulations. First,

having a look at the model equation

h(Y ) = g(X) + ε,

this model already contains four components, namely the regression function g, the trans-

formation function h, the distribution of X and the distribution of ε, that can be chosen

differently when conducting simulations. Additionally, the same simulation parameters as

in most simulation studies such as bandwidths, kernel functions, the sample size etc. have

to be chosen. The third group consists of the bootstrap components, e.g., the distributions

of W and ξ or the number of bootstrap repetitions. Although it is conjectured by the

author that all of these choices might have an impact on the performance of the test in

(5.9), examining the influence of each of these choices would go beyond the scope of this

thesis. Further, any comparison to other testing approaches is difficult since to the authors

knowledge only Neumeyer et al. (2016) and Hušková et al. (2019) provided comparable

tests, but considered a parametric transformation and alternatives with respect to the er-

ror distribution in their simulations, which are not covered by model (5.1). Consequently,

possibly the first simulations for a hypothesis test in model (5.1) testing for a parametric

transformation function are given in the following.
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Remark 5.5.2 It might be possible to adapt the testing procedure to the heteroscedastic

model (3.1) by applying the estimation techniques presented in Section 4. The resulting test

might be more comparable to other model tests like for example those of Neumeyer et al.

(2016) and Hušková et al. (2019).

Fixing the Model Related Components

Throughout this section,

g(X) = 4X − 1, X ∼ U([0, 1]) and ε ∼ N (0, 1)

are chosen. Moreover, the null hypothesis of h belonging to the Yeo-Johnson transforms

(5.3) with parameter θ ∈ Θ0 = [0, 2] is tested. Actually, these transforms are standardized

in advance to match the identification constraints

h(0) = 0 and h(1) = 1.

Later, the cases θ = 0, θ = 0.5, θ = 1 and θ = 2 are simulated. It remains to define

appropriate alternatives. The choice

h(Y ) =
Λθ0(Y ) + cr(Y )− Λθ0(0)− cr(0)

Λθ0(1) + cr(1)− Λθ0(0)− cr(0)

for some θ ∈ [0, 2], some strictly increasing function r and some c > 0 leads to the problem,

that the observations are simulated via Y = h−1(g(X) + ε), that is, it is necessary to know

the inverse of the chosen transformation function, which in general cannot be calculated

straightforwardly for such an h. Furthermore, note that the standardization in order to

fulfil the identification constraints indirectly leads to a convex combination of Λθ0 and r.

In the following, this convex combination (now for the inverse functions) is done directly

via

h−1(Y ) =
(1− c)(Λ−1

θ0
(Y )− Λ−1

θ0
(0)) + c(r(Y )− r(0))

(1− c)(Λ−1
θ0

(1)− Λ−1
θ0

(0)) + c(r(1)− r(0))
(5.51)

for some θ0 ∈ [0, 2], some strictly increasing function r and some c ∈ [0, 1]. The inverse

Yeo-Johnson transforms are given by

Λ−1
θ (Y ) =



(1 + θY )
1
θ − 1, if Y ≥ 0, θ 6= 0

exp(Y )− 1, if Y ≥ 0, θ = 0

1− (1 + (θ − 2)Y )
1

2−θ , if Y < 0, θ 6= 2

1− exp(−Y ), if Y < 0, θ = 2

. (5.52)

Remark 5.5.3 1. In general, even with the definition (5.51) it is not clear if a growing

factor c leads to a growing distance (5.6). Indeed, the opposite might be the case,

if r is somehow close to the class of transformation functions considered in the null

hypothesis. To illustrate this phenomenon, let θ1 6= θ2 ∈ [0, 2] and consider for some

c ≥ 0 the transformation function

h(Y ) =
Λθ1(Y )− Λθ1(0) + c(Λθ2(Y )− Λθ2(0))

Λθ1(1)− Λθ1(0) + c(Λθ2(1)− Λθ2(0))
.
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5. Testing for a Parametric Transformation Function

While for c = 0 the null hypothesis is valid, the alternative in general holds for

c > 0. Nevertheless, with growing c the transformation function will be closer to

Y 7→ Λθ2 (Y )−Λθ2 (0)

Λθ2 (1)−Λθ2 (0) , that is, the distance decreases. Hence, a growing c does not

necessarily imply a somehow “stronger” violation of the null hypothesis.

2. If one defines the transformation function via its inverse as in (5.51), it holds that

h ∈
{
Y 7→ Λθ0(Y (Λ−1

θ0
(1)− Λ−1

θ0
(0)) + Λ−1

θ0
(0)) : θ ∈ Θ

}
for c = 0, that is, the null hypothesis in (5.4) would be violated even for c = 0. Since

for computational reasons an analytical form of the inverse transform is required,

it will be proceeded as in (5.51) to simulate the alternative case and as in (5.4) to

simulate the null hypothesis case.

Simulations are conducted for

r1(Y ) = 5Φ(Y ), (5.53)

r2(Y ) = exp(Y ), (5.54)

r3(Y ) = Y 3, (5.55)

where Φ denotes the cumulative distribution function of a standard normal distribution,

and c = 0, 0.2, 0.4, 0.6, 0.8, 1. Although quite similar to r1 sometimes the logit function

r4(Y ) =
5 exp(Y )

1 + exp(Y )
(5.56)

is used for illustration reasons as well. The prefactor in (5.53) and (5.56) is introduced due

to the fact that the values of Φ and the logit function exp(·)
1+exp(·) are rather small compared to

the values of Λθ, that is, even when using the presented convex combination in (5.51), Λθ0
(except for c = 1) would dominate the “alternative part” r of the transformation function.

In principle, other prefactors are conceivable as well. Note that r2 and Λ0 only differ with

respect to a different standardization. Therefore, if h is defined via (5.51) with r2 from

(5.54) the resulting function is close to the null hypothesis case for c = 1. Consequently, it

is conjectured that the rejection probabilities at some point may decrease for growing c.

Choosing Kernel Functions and Bandwidths

Calculating the test statistic as described in Section 5.5.2 requires a weighting function w

and an appropriate nonparametric estimator of h. The weighting function is set equal to one

(that is, the test statistic is calculated without weighting the data), while the nonparametric

estimator of h is calculated as Colling and Van Keilegom (2019) did. For details of the

approach see Section 5.5.1. As in the paper of Colling and Van Keilegom (2019) the

Epanechnikov kernel

K(y) =
3

4
(1− y2)I[−1,1](y)
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is used and the bandwidths are chosen by the normal reference rule (see for example Sil-

verman (1986)):

hu =

(
40
√
π

n

) 1
5

σ̂u,

hx =

(
40
√
π

n

) 1
5

σ̂x,

where σ̂2
u and σ̂2

x are estimators for the variance of U = T (Y ) and X, respectively. The

number of evaluation points Nx for the nonparametric estimator of h is set equal to 100

(see Section 5.5.1 for details). The integral in (5.48) is computed by applying the function

integrate, which is already implemented in R.

Bootstrap Implementation

After the model components have been fixed and the test statistic can be calculated accor-

dingly, only the question of how to estimate the bootstrap quantiles needs to be answered.

Recall the definition of Algorithm 5.4.1 and its notations. In each of M = 200 simulation

runs n = 100 independent and identically distributed random pairs (Y1, X1), ..., (Yn, Xn)

are generated as described before. In each simulation run B = 250 bootstrap test statistics,

which are based on m = 100 bootstrap observations (Y ∗1 , X
∗
1 ), ..., (Y ∗m, X

∗
m), were calculated

as in Algorithm 5.4.1 using

W ∼ U([−1, 1]), ξ ∼ N (0, 1) and an = bn = 0.1.

Remark 5.5.4 Among other things, the nonparametric estimation of h, the integration in

(5.48), the optimization with respect to θ and the number of bootstrap repetitions cause the

simulations to be quite computationally demanding. Hence, an interface for C++ as well

as parallelization were used to conduct the simulations.

Results and Interpretation

The main results of the simulation study are presented in Table 5.1. There, the rejection

probabilities of the settings (5.53)–(5.55) for c = 0, 0.2, 0.4, 0.6, 0.8, 1 and θ0 = 0, 0.5, 1, 2

are listed. The significance level was set equal to 0.05 and 0.10. To obtain more precise

estimators of the rejection probabilities under the null hypothesis, 800 simulation runs were

performed for each choice of θ0 under the null hypothesis, whereas in the remaining alter-

native cases 200 runs were conducted.

First, note that the test sticks to the level or is even a bit conservative. Second, the re-

jection probabilities not only differ between different choices of r, but also between different

transformation parameters θ0 that are inserted in (5.51). Third, the power of the test is,

especially for θ0 = 2 and model (5.55), even for small values of c quite high in some cases.

Fourth, for small deviations from the null hypothesis the rejection probabilities are someti-

mes extremely small and especially smaller than those under the null hypothesis.
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Alternative/ Parameter θ = 0 θ = 0.5 θ = 1 θ = 2

Level α = 0.05 α = 0.10 α = 0.05 α = 0.10 α = 0.05 α = 0.10 α = 0.05 α = 0.10

null hyp. 0.01000 0.0400 0.03125 0.0875 0.03125 0.07750 0.01625 0.05625

5Φ(Y )

c=0.2 0.000 0.010 0.075 0.105 0.010 0.015 0.000 0.020

c=0.4 0.000 0.000 0.020 0.045 0.000 0.015 0.120 0.200

c=0.6 0.100 0.155 0.035 0.050 0.085 0.150 0.415 0.545

c=0.8 0.685 0.765 0.110 0.210 0.505 0.645 0.785 0.890

c=1 0.965 0.990 0.925 0.975 0.975 0.985 0.985 0.990

exp(Y )

c=0.2 0.010 0.035 0.030 0.045 0.515 0.640 0.885 0.965

c=0.4 0.015 0.040 0.000 0.005 0.060 0.135 0.870 0.980

c=0.6 0.035 0.085 0.000 0.005 0.005 0.005 0.625 0.815

c=0.8 0.020 0.040 0.010 0.040 0.000 0.005 0.185 0.325

c=1 0.020 0.065 0.030 0.090 0.025 0.095 0.050 0.105

Y 3

c=0.2 0.330 0.505 0.730 0.855 0.810 0.905 0.930 0.995

c=0.4 0.730 0.865 0.815 0.945 0.875 0.970 0.915 0.990

c=0.6 0.880 0.940 0.895 0.960 0.950 0.995 0.940 0.990

c=0.8 0.895 0.965 0.925 0.975 0.935 0.990 0.915 0.980

c=1 0.980 0.990 0.960 0.990 0.939 0.990 0.940 0.985

Table 5.1: Rejection probabilities at θ0 = 0, θ0 = 0.5, θ0 = 1, θ0 = 2 for r chosen as in

(5.53)–(5.55).

Apart from other “classical” reasons such as the choice of the model parameters or the

bandwidths and kernel functions, there are two reasons, that explain at least some of these

observations. First, the class of Yeo-Johnson transforms seems to be quite general and

second the testing approach itself is rather flexible due to the minimization with respect to

γ. Having a look at the definition of the test statistic in (5.7) and (5.8), it attains small

values if the true transformation function is close to a linear transformation of Λθ̃ for some

appropriate θ̃ ∈ [0, 2]. In the following, this issue will be explored further by analysing some

graphics.

All of the figures that occur in the following have the same structure and consist of four

subgraphics. The upper left graphic shows the true transformation function h with inverse

function as in (5.51). Due to the choice of g(X) = 4X − 1 and X ∼ U([0, 1]) the vertical

axis reaches from -1 to 3, which would be the support of h(Y ) if the error is neglected. In

the upper right corner the parametric estimator Λθ̃ of this function, which is based on θ̃

from (5.17), is displayed. Both of these functions are then plotted against each other in

the lower left corner. Finally, the function Y 7→ Λθ0(Y (Λ−1
θ0

(1)− Λ−1
θ0

(0)) + Λ−1
θ0

(0)), which

somehow represents the part of the true transformation function h, which corresponds to

the null hypothesis, is shown in the last graphic. The arguably most informative of these

graphics is that in the lower left corner since there one can see whether the true transfor-

mation function can be approximated by a linear transform of some Λθ̃, θ̃ ∈ [0, 2], which is

an indicator for the test probably not rejecting the null hypothesis.

As already mentioned, the rejection probabilities not only differ between different deviation

functions r, but also for different choices of the transformation parameter. For example,

when considering r as in (5.53) with c = 0.6 the rejection probabilities for θ0 = 0.5 amount

to 0.035 for α = 0.05 and to 0.050 for α = 0.10, while for θ = 2 they are 0.415 and

0.545. Figures 5.1 and 5.2 explain why the rejection probabilities differ that much. While

for θ0 = 0.5 the transformation function can be approximated quite well by transforming

Λθ̃ = Λ1.06 linearly, the best approximation for θ0 = 2 is given by Λθ̃ = Λ1.94 and seems to

be relatively bad. The best approximation for c = 1 can be reached for θ around 1.4.
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Figure 5.1: Some transformation functions for θ = 0.5, c = 0.6 and r as in (5.53).

−1.0 −0.5 0.0 0.5 1.0 1.5

−1
0

1
2

3

Y

Tr
ue

 T
ra

ns
fo

rm
at

io
n 

Fu
nc

tio
n

−2 −1 0 1 2

−1
0

1
2

3

Y

Pa
ra

m
et

ric
 E

st
im

at
or

−1 0 1 2 3

−0
.5

0.
0

0.
5

1.
0

1.
5

2.
0

True Transformation Function

Pa
ra

m
et

ric
 E

st
im

at
or

−1 0 1 2 3

−0
.5

0.
0

0.
5

1.
0

1.
5

2.
0

True Transformation Function

Pa
ra

m
. F

un
ct

. a
t O

rig
in

al
 P

ar
am

et
er

Figure 5.2: Some transformation functions for θ = 2, c = 0.6 and r as in (5.53).
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Nevertheless, the differences between the rejection probabilities when using different r seem

to be more severe. The graphics in Figure 5.3 deal with the logit function as in (5.56) for

c = 1. The Yeo-Johnson transforms are so flexible that even for c = 1 the logit function

can be approximated quite well (for θ around 1.53). Table 5.2 lists the empirical means

and variances of some corresponding quantities such as the estimated θ or the value of the

test statistic. As can be seen there, the value of the test statistic is even below that of

the null hypothesis case for small values of c 6= 0, which results in relatively low rejection

probabilities. As a side note, the empirical mean of the estimated 0.10-quantiles is below

that of the test statistic although the test rejects only in 8, 75% of the simulation runs. Here

and throughout the whole simulation study, the variance of the estimated transformation

parameter is relatively small.

In contrast to the situation for r as in (5.56), considering θ0 = 2 and r as in (5.55) results in
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Figure 5.3: Some transformation functions for c = 1 and r as in (5.56).

Convex Weights null hyp. c = 0.2 c = 0.4 c = 0.6 c = 0.8 c = 1

Mean of θ̃ 0.461 0.513 0.664 0.831 1.159 1.532

Mean of Tn 2.669 2.364 2.368 2.128 1.849 4.352

Mean of 0.05-bootstrap-quantiles 3.835 3.500 3.700 3.546 3.705 5.036

Mean of 0.10-bootstrap-quantiles 2.663 2.367 2.413 2.171 1.995 3.801

Variance of θ̃ 0.014 0.014 0.017 0.020 0.028 0.042

Variance of Tn 2.381 1.471 1.931 1.402 1.417 6.733

Rej. Prob. for α = 0.10 0.0875 0.080 0.045 0.065 0.005 0.270

Table 5.2: Some estimated quantities of the distribution of Tn for θ = 0.5 and r as in

(5.56).
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5.6. Discussion

a completely different picture. As can be seen in Figure 5.4 even for c = 0.2 the resulting h

differs so much from the null hypothesis that it can not be linearly transformed into a Yeo-

Johnson transform (see the lower left subgraphic). Consequently, the rejection probabilities

are rather high. Note that not only the values of the test statistic seem to explode, but

those of the bootstrap quantiles as well. Although not intuitive, this is consistent with the

findings in Section 5.4 and equation (5.37) since equation (5.37) only requires the bootstrap

quantiles to grow less than the test statistic itself.
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Figure 5.4: Some transformation functions for θ = 2, c = 0.2 and r as in (5.55).

Convex Weights null hyp. c = 0.2 c = 0.4 c = 0.6 c = 0.8 c = 1

Mean of θ̃ 1.978 0.891 0.754 0.695 0.627 0.644

Mean of Tn 10.59 824 1460 1797 1903 2620

Mean of estimated 0.05-quantiles 15.95 621 1105 1320 1447 1944

Mean of estimated 0.10-quantiles 10.77 533 943 1131 1231 1653

Variance of θ̃ 0.002 0.019 0.024 0.021 0.028 0.024

Variance of Tn 31.301 462534 3105125 2066320 4119168 5865643

Table 5.3: Some estimated quantities of the distribution of Tn for θ = 2 and r as in (5.55).

5.6 Discussion

A new goodness of fit test for the null hypothesis of a parametric transformation function

in the transformation model (5.1) has been provided. The presented approach allows more

general models than Szyd lowski (2017). The asymptotic behaviour of the test statistic

has been examined and consistency of the corresponding test (5.9) has been proven. In
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5. Testing for a Parametric Transformation Function

addition, consistency of a proposed bootstrap algorithm has been shown. In contrast to

Neumeyer et al. (2016) or Hušková et al. (2019), (local) alternatives with respect to the

transformation function instead of the variance function have been considered. Moreover,

a consistent test for the relevant hypotheses (5.28) has been provided for the first time.

There are several opportunities to adjust and examine the presented methods further. First,

due to the high generality of the model lots of simulation parameters had to be chosen in

Section 5.5.3. Unfortunately, analysing the sensitivity of the test with respect to each of the

parameters would have gone beyond the scope of this thesis, so that only the influence of a

few of them has been studied. Further, it remains to conduct simulations in the case of the

relevant hypotheses. In this context, the choice of η, that is, the threshold up to which a

transformation model is expected to fit the data sufficiently well, would be interesting. This

issue is strongly related to the interpretation of the distance between two transformation

models (which would interest on its own).

At the beginning of this chapter, two possible distances (5.5) and (5.6) were suggested

for the comparison of two transformation functions. Although it is conjectured that the

corresponding theory for a test statistic based on (5.5) can be deduced similarly, further

examination would be interesting. It might even be the case that the corresponding test

is accompanied with more power since the minimization with respect to the identification

coefficients c1 and c2 is replaced by fixing them beforehand.

At last, there are many possibilities to extend the test for example to heteroscedastic models

by applying the estimating approaches of Chapter 4 or to the case of finite parameter sets.

Some thoughts about these extensions are given in Section 5.9.

5.7 Assumptions

In the following assumptions let Y denote the support of Y (which may depend on n under

local alternatives). Further, FS denotes the distribution function of S as in (5.11) and TS
denotes the transformation s 7→ (FS(s)− FS(0))/(FS(1)− FS(0)).

(A1) The sets C1, C2 and Θ are compact.

(A2) The weighting function w is continuous with a compact support Yw ⊂ Y.

(A3) The map (y, θ) 7→ Λθ(y) is twice continuously differentiable on Yw with respect to θ

and the (partial) derivatives are continuous in (y, θ) ∈ R×Θ.

(A4) There exists a unique transformation h such that model (5.1) holds with independent

X and ε. (Yi, Xi), i = 1, ..., n, are independent and identically distributed observations

from model (5.1). The function h0 defined in (5.16) is strictly increasing as well

as continuously differentiable. Moreover, h is strictly increasing and h and r are

continuous on Yw. FY is strictly increasing on the support of Y .

(A5) Minimizing the function M : Υ → R, γ = (c1, c2, θ
t)t 7→ E

[
w(Y )(h0(Y )c1 + c2 −

Λθ(Y ))2
]

leads to a unique solution γ0 = (c1,0, c2,0, θ0) in the interior of Υ. For all

θ 6= θ̃ one has sup
y∈supp(w)

∣∣Λθ(y)−Λθ(0)
Λθ(1)−Λθ(0) −

Λθ̃(y)−Λθ̃(0)

Λθ̃(1)−Λθ̃(0)

∣∣ > 0.
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(A6) The Hessian matrix Γ := HessM(γ0) with M as in (5.29) is positive definite (with γ0

as in (A5) or (A5’)).

(A7) The estimator ĥ of the transformation function h fulfils (5.13) for some function ψ

and h from (5.15). For some U0 (independent of n under local alternatives) with

TS(h(Yw)) ⊂ U0 the function class {z 7→ ψ(z, t) : t ∈ U0} is Donsker with respect to

PZ and E[ψ(Z1, t)] = 0 for all t ∈ U0. The fourth moment E[w(h−1
0 (S1))ψ(Z1, U1)4]

is finite and the conditional moments E[w(h−1
0 (S1))ψ(Z1, U2)2|Z1 = z] are locally

bounded.

Remark 5.7.1 1. Since the support of w is compact, continuity on Yw results in uni-

form continuity.

2. Lemma yields 5.8.1 that (A7) is fulfilled for the estimator of Colling and Van Keile-

gom (2019).

When considering fixed alternatives or the relevant hypothesis H ′0, assumptions (A4),(A5)

and (A7) are replaced by the following assumptions (A4’),(A5’) and (A7’) (assumption

(A7’) is only relevant for H ′0). Note that h is a fixed function then, not depending on n.

(A4’) There exists a unique transformation h such that model (5.1) holds with X and ε

independent. The function h is strictly increasing and continuous on Yw.

(A5’) Minimizing the function M : Υ → R, γ = (c1, c2, θ
t)t 7→ E

[
w(Y )(h(Y )c1 + c2 −

Λθ(Y ))2
]

leads to a unique solution γ0 = (c1,0, c2,0, θ0) in the interior of Υ. For all

θ 6= θ̃ one has sup
y∈supp(w)

∣∣Λθ(y)−Λθ(0)
Λθ(1)−Λθ(0) −

Λθ̃(y)−Λθ̃(0)

Λθ̃(1)−Λθ̃(0)

∣∣ > 0.

(A7’) The transformation estimator ĥ fulfils (5.13) for some function ψ. For some U0 ⊃
TS(h(Yw)) the function class {z 7→ ψ(z, t) : t ∈ U0} is Donsker with respect to PZ

and E[ψ(Z1, t)] = 0 for all t ∈ U0. Further, one has E[ψ(Z1, U2)2] <∞.

Now, some assumptions necessary for the bootstrap theory in Section 5.4 are given. The

same notation as there is used for the probability space. The expectation with respect to

P 1
2 is written as E[·|ω].

(A7*) The following properties are meant conditional on the data (Yi, Xi), i = 1, ..., n, and

thus define for fixed n ∈ N some subsets An ∈ A1 of Ω1, where these properties are

valid. Thus, let ω ∈ An. Then, the following conditions are assumed to be fulfilled

on An.

(i) The bootstrap estimator ĥ∗ of the transformation function fulfils

lim sup
m→∞

P 1
2

(
ω,

{
sup
y∈K

∣∣∣∣ĥ∗(y)− h∗(y)− 1

m

m∑
j=1

ψ∗(S∗j , X
∗
j , T ∗(y))

∣∣∣∣ > δ√
m

})
= 0

(see 5.41) for all δ > 0, for some function ψ∗ and h∗ from algorithm 5.4.1.

(ii) For U0 from (A7) and Yw from (A2) one has TS∗(h∗(Yw)) ⊂ U0.
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5. Testing for a Parametric Transformation Function

(iii) Let Z∗ = (U∗, X∗). The function class {z 7→ ψ∗(z, t) : t ∈ U0} is Donsker (for

fixed n, but m→∞) with respect to P 1
2 (ω, ·)Z∗ (distribution of Z∗ conditional

on ω) and

E[ψ∗(Z∗1 , t)|ω] =

∫
ψ∗(Z∗1 (ω̃), t)P 1

2 (ω, dω̃) = 0 for all t ∈ U0.

(iv) The fourth moment E[w(h−1
0 (S∗1))ψ∗(Z∗1 , U

∗
1 )4|ω] is finite and the conditional

moments E[w(h∗−1(S∗1))ψ∗(Z∗1 , U
∗
2 )2|Z∗1 = z, ω] are locally bounded.

(v) For all compact sets K ⊆ R one has

P1

(
ω ∈ Ω1 : sup

y∈K,z∈RdX+1

|w(y)ψ∗(z, T ∗(y))| > δ
√
n
)

= o(1) for all δ > 0.

(5.57)

(vi) One has

lim
y→z

E [|ψ∗(z, U∗1 )− ψ∗(y, U∗1 )| |ω] = 0 for all z in the support of Z∗.

For An as defined above, assume P1(An)→ 1 for n→∞.

(A8*) Define the distribution function of Z∗ for some ω ∈ Ω1 by FZ∗(z) = P 1
2 (ω, {Z∗ ≤ z})

and assume

sup
z∈RdX+1

|FZ∗(z)− FZ(z)| = op(1). (5.58)

Moreover, for all compact K ⊆ RdX+1 there exists an appropriate C > 0, such that

for n→∞
sup

z∈K,s∈R
w((h∗)−1(s))ψ∗(z, TS∗(s)) ≤ C + op(1). (5.59)

Further,

w((h∗)−1(s))(ψ∗(z, TS∗(s))− ψ(z, TS∗(s))) = op(1) (5.60)

for all z ∈ RdX+1, s ∈ R and for ψ from (A7) for n→∞.

(A9) Denote the conditional density of ε(θ0) as defined in 5.4.1 given X by fε(θ0)|X . Let

K ⊆ R be compact and fξ be bounded and r-times continuously differentiable with

bounded derivatives and denote the k-th derivative of fξ by f
(k)
ξ . Further, assume

sup
u∈K

E

[ ∫
||gθ0(X) + u− ane||l|f (j)

ξ (e)|fε(θ0)|X(u− ane|X) de

]
< C (5.61)

for l ∈ {0, j} and

sup
u∈K

E

[ ∫ ∣∣∣∣Λ̇θ0(Λ−1
θ0

(gθ0(X)+u−ane))
∣∣∣∣j |f (j)

ξ (e)|fε(θ0)|X(u−ane|X) de

]
< C (5.62)

as well as

||θ̃ − θ0||j

nan
sup
u∈K

n∑
i=1

∣∣∣∣f (j)
ξ

(
u− εi(θ0)

an

)∣∣∣∣ sup
||θ−θ0||<δ

||Hess Λθ(Yi)||j = Op(1) (5.63)

for sufficiently large C > 0, n ∈ N and all j = 1, ..., r − 1. Moreover, let

E
[
|Λθ0(Y )|r + ||Λ̇θ0(Y )||r

]
<∞ (5.64)

and
||θ̃ − θ0||r

n

n∑
i=1

sup
||θ−θ0||<δ

||Hess Λθ(Yi)||r = Op(1). (5.65)
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5.7.1 Assumptions Needed for the Estimation of h

Since in general it is not clear under which conditions assumption (A7) is fulfilled, in

the following assumptions are given which ensure (A7) for the estimator of Colling and

Van Keilegom (2019) in (5.46) (see Section 1.4 for details). Let, as in (A7), U0 ⊃ TS(h(Yw))

(independent of n under local alternatives) belong to the interior of the support of U and

assume compactness of U0. Let X ⊂ RdX denote the support of X.

(B1) The cumulative distribution function Fε of ε is absolutely continuous and has a density

fε that is continuous on its support. Furthermore, X and ε are independent.

(B2) The transformation Q is strictly increasing and continuously differentiable on U0,

which is a connected (and compact) subset of R.

(B3) The set

X∂i :=

{
x ∈ X :

∂FU |X(u|x)

∂xi
6= 0 for all u ∈ U0

}
is nonempty for some i ∈ {1, ..., n} (later the case i = 1 is considered w.l.o.g.).

(B4) The bandwidths hx and hu satisfy for an appropriate q ∈ IN

√
nhqx → 0,

√
nhqu → 0,

√
nhdX+2

x

log(n)
→∞,

√
nhdXx h2

u

log(n)
→∞.

(B5) The kernel K is symmetric with a connected and compact support containing some

neighbourhood around 0. Further, K is q-times continuously differentiable with K

and K ′ being of bounded variation. Moreover,
∫
K(z) dz = 1,

∫
zlK(z) dz = 0 for all

l = 1, ..., q − 1.

(B6) The kernel L is twice continuously differentiable with uniformly bounded derivatives

and with median 0, and b = bn > 0 is a bandwidth sequence that satisfies nb4 → ∞
and b

√
nhdXx (min(hx, hu))2/ log(n)→∞.

(B7) v is a weighting function with a compact support X0 ⊆ X∂i with nonempty interior.

Further,
∫
X0
v(x) dx = 1 and v is q-times continuously differentiable and all these

derivatives are uniformly bounded in the interior, i.e.,

sup
x∈X0

∣∣∣∣ ∂|α|

∂xα1
1 · · · ∂x

αdX
dX

v(x)

∣∣∣∣ <∞,
for all α1, ..., αdX ∈ {0, ..., q − 1} with |α| =

∑dX
i=1 αi ≤ m.

(B8) The regression function g is continuously differentiable with respect to xi on X for

i = 1, ..., dX .

(B9) The joint density function fY,X(y, x) of (Y,X) is uniformly bounded, (q + 2)-times

continuously differentiable and all these derivatives are uniformly bounded, i.e.,

sup
y: T (y)∈U0, x∈X0

∣∣∣∣ ∂|α|

∂yα0∂xα1
1 · · · ∂x

αdX
dX

fY,X(y, x)

∣∣∣∣ <∞,
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for all α0, α1, ..., αdX with |α| =
∑dX

i=0 αi ≤ q+2. Further, assume inf
y: T (y)∈U0

fY (y) > 0,

where fY is the density function of Y .

(B10) Assume

inf
x∈X0

fX(x) > 0, inf
(u,x)∈U0×X0

∂FU |X(u|x)

∂x1
> 0 and inf

x∈X0

∫ 1

0

∂FU|X(u|x)

∂u (u, x)
∂FU|X(u|x)

∂x1
(u, x)

du > 0.

Remark 5.7.2 Assumptions (B1) and (B9) imply continuous differentiability of the trans-

formation function h.

5.8 Proofs

As was shown in Section 1.4, for some fixed h and under (A4), (B1)–(B10) the difference

ĥ(y)− h(y) can be rewritten as

h(y)− ĥ(y) =
1

n

n∑
i=1

ψ(Zi, T (y)) + op

(
1√
n

)
,

where (with Q, δ, w̄1, w̄2 from Section 1.4)

ψ(Zi, u) = δw̃1
j (1, u)− δw̃2

j (u, 1) +
Q′(u)

FU (1)− FU (0)

(
I{Uj≤u} − I{Uj≤0} − FU (u) + FU (0)

)
−Q′(u)

FU (u)− FU (0)

(FU (1)− FU (0))2

(
I{Uj≤1} − I{Uj≤0} − FU (1) + FU (0)

)
.

Before Theorem 5.2.2 is proven, an additional lemma, which ensures (5.13) for the estimator

of Colling and Van Keilegom (2019) under local alternatives, is shown first.

Lemma 5.8.1 Assume (B1)–(B10) and depending on whether local or fixed alternatives

are considered assume (A4) or (A4’). Then, assumption (A7) is fulfilled for the estimator

of Colling and Van Keilegom (2019).

Moreover, if r is an alternative function, such that (A4) is fulfilled, let A ⊆ R be a compact

set which contains 0 in its interior and such that

h(y, α) :=
Λθ0(y)− Λθ0(0) + α(r(y)− r(0))

Λθ0(1)− Λθ0(0) + α(r(1)− r(0))

is for all α ∈ A strictly increasing with respect to y. Further, let h−1(y, α) denote the

inverse function of h(y, α) with respect to y and define

Tα(y) =
FS

(
Λθ0 (·)−Λθ0 (0)+α(r(y)−r(0))

Λθ0 (1)−Λθ0 (0)+α(r(1)−r(0))

)
− FS(0)

FS(1)− FS(0)
.

Then, if ĥ(y, α) denotes the estimator of Colling and Van Keilegom (2019) of h(y, α), which

is based on (Yα,i, Xi) with Yα,i = h−1(Si, α), i = 1, ..., n, it holds that

ĥ(y, α)− h(y, α) =
1

n

n∑
j=1

ψ(Zj , Tα(y)) + op
(
n−

1
2
)
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uniformly in y ∈ Yw and α ∈ A and the process

Zn(y, α) =
√
n(ĥ(y, α)− h(y, α)), (y, α) ∈ supp(w)×A

converges weakly to a centred Gaussian process with covariance function

c((y, α, ỹ, α̃)) = E[ψ(Z1, Tα(y))ψ(Z1, Tα̃(ỹ))].

Proof: Note that in the framework here S = g(X) + ε is fixed. In the case of a fixed

transformation h, the assertion is covered by Theorems 5.1 and 5.2 of Colling and Van Kei-

legom (2019). Therefore, the assertion only needs to be proven for h(y, α). Due to

{n−
1
2 : n ∈ N, n ≥ N} ⊆ A for a sufficiently large N , the statement for local alterna-

tives would follow from this. The expansion is shown uniformly in y ∈ Yw and α ∈ A.

Nevertheless, most arguments used for fixed h are still valid.

Verification of (5.13): The proof follows the same lines as for some fixed h or fixed α.

The only extra effort is to check whether all previous op(1)-terms are still negligible. Let

FYα , F̂Yα denote the distibution function and the empirical distibution function, respecti-

vely, of Yα,i, i = 1, ..., n. First, note that as in Remark 5.2.1

Ui = Tα(Yα,i) =
FYα(Yα,i)− FYα(0)

FYα(1)− FYα(0)

does not depend on α because of h(0) = 0 and h(1) = 1 for all h ∈ H. The same holds true

for the estimated version

Ûi := T̂α(Yα, i) :=
F̂Yα(Yα,i)− F̂Yα(0)

F̂Yα(1)− F̂Yα(0)
,

since I{Yα,j≤Yα,i} = I{h(Yα,j ,α)≤h(Yα,i,α)} is independent of α.

As in (5.11) consider the transformation function Q corresponding to the pretransformed

observations, that is

Q(Tα(Y )) = g(X) + ε.

Since the estimator Q̂ of Q only depends on estimates T̂α(Yi) of the pretransformed obser-

vations and these in turn do not depend on α, the asymptotic expression of Q̂−Q does not

change with α. The uniform consistency of Q̂′ holds by the same argument. Later, it will

be proven that

T̂α(y)− Tα(y) =
1

FYα(1)− FYα(0)
(F̂Yα(y)− F̂Yα(0)− FYα(y) + FYα(0))

− FYα(y)− FYα(0)

(FYα(1)− FYα(0))2
(F̂Yα(1)− F̂Yα(0)− FYα(1) + FYα(0)) + op

(
n−

1
2
)

= Op
(

1√
n

)
uniformly in y ∈ Yw and α ∈ A, so that

ĥ(y)− h(y) = Q̂(T̂α(y))−Q(Tα(y))

= Q̂(Tα(y))−Q(Tα(y)) + Q̂′(Tα(y))(T̂α(y)− Tα(y)) + op
(
n−

1
2
)
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5. Testing for a Parametric Transformation Function

= Q̂(Tα(y))−Q(Tα(y)) +Q′(Tα(y))(T̂α(y)− Tα(y)) + op
(
n−

1
2
)
.

=
1

n

n∑
j=1

ψ(Zj , Tα(y)) + op
(
n−

1
2
)
.

Note that T̂α(y) − Tα(y) = Op
(

1√
n

)
was used to ensure negligibility of some terms caused

by the Taylor expansion or replacing Q̂′ by Q′, so that the remaining task consists not only

in proving the expression above, but the stated order as well. If one shows

√
n(F̂Yα(y)− FYα(y)) =

√
n(F̂S(h(y, α))− FS(h(y, α))) = Op(1)

uniformly in y ∈ R and α ∈ A, both properties follow from the equality

â

b̂
− a

b
=

1

b
(â− a)− a

b2
(b̂− b)− b̂− b

b̂b

(
â− a− a(b̂− b)

b

)
for arbitrary estimators â and b̂. By standard arguments (see for example Van der Vaart

and Wellner (1996)), it can be shown that the class

F ′ = {I(−∞,t](·) : t ∈ R}

is Donsker, so that the class

F = {I(−∞,h(y,α)](·) : y ∈ Yw, α ∈ A} ⊆ F ′

is (as a subclass of a Donsker class) Donsker as well.

Proof of Weak Convergence: Convergence of the marginal distributions with the cor-

responding covariance function can be shown by the ordinary CLT. Furthermore, it has

already been shown that

Z(y, α) =
1√
n

n∑
j=1

ψ(Zj , Tα(y)) + op(1).

For fixed h Colling and Van Keilegom (2019) proved that for any compact interval U ⊆
TS(S) the class

F̃ = {z 7→ ψ(z, u) : u ∈ U}

is Donsker. Although the proof there is carried out using (Yi, Xi) (for fixed h) instead of

Zi = (Ui, Xi) the statement stays valid since ψ(Zi, u) does not depend on h (see Section

1.4). Thus, when choosing U0 from Section 5.7.1 the class

F = {z 7→ ψ(z, Tα(y)) : y ∈ Yw, α ∈ A} ⊆ {z 7→ ψ(z, u) : u ∈ U0}

is (as a subclass of a Donsker class) Donsker as well.

The remaining conditions for ψ in assumption (A7) follow from the results of Colling and

Van Keilegom (2019) since ψ does not depend on α. �
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5.8.1 Proof of Theorem 5.2.2

For ease of presentation define

Mn(c1, c2, θ
t)t =

n∑
j=1

w(Yj)(ĥ(Yj)c1 + c2 − Λθ(Yj))
2, (5.66)

such that Tn = minγ∈ΥMn(γ). Let γ̃ = (c̃1, c̃2, θ̃) denote the minimizer of Mn and γ0 be

the vector such that

h0(y)c1,0 + c2,0 = Λθ0(y) (5.67)

(see (A5)), that is, c2,0 = Λθ0(0) and c1,0 = Λθ0(1) − Λθ0(0). It already has been shown

that

h(·)c1 + c2 = Λθ0(·) + n−
1
2 r(·)

for c2 = Λθ0(0) + n−
1
2 r(0) and c1 = Λθ0(1)− Λθ0(0) + n−

1
2 (r(1)− r(0)), so that

h(y)c1,0 + c2,0 − Λθ0(y) = h(y)(c1,0 − c1) + c2,0 − c2 + n−
1
2 r(y)

= n−
1
2 r(y)− n−

1
2h(y)(r(1)− r(0))− n−

1
2 r(0)

= n−
1
2
(
r(y)− r(0)− h0(y)(r(1)− r(0))

)
+ o
(
n−

1
2
)

= n−
1
2 c1,0r0(y) + o

(
n−

1
2
)

(5.68)

= O
(
n−

1
2
)

uniformly for y ∈ Yw.

To get a rough idea of how the proof is structured, the main steps are sketched in the

following:

Step 1: Reduce the problem of minimizing Mn to that of the quadratic function (h0 was

defined in (5.16))

q(z) :=
n∑
k=1

w(h−1
0 (Sk))(ĥ(Yk)c1,0 + c2,0 − Λθ0(Yk))

2

+ 2zt
n∑
k=1

w(h−1
0 (Sk))(ĥ(Yk)c1,0 + c2,0 − Λθ0(Yk))R(Sk) + nztΓz

and obtain the corresponding solution

z0 = −Γ−1 1

n

n∑
k=1

w(h−1
0 (Sk))(ĥ(Yk)c1,0 + c2,0 − Λθ0(Yk))R(Sk)

= −c1,0

n
Γ−1

n∑
k=1

ϕ(Zk)−
c1,0√
n

Γ−1β + op
(
n−

1
2
)

with

β = E[w(h−1
0 (S1))r0(h−1

0 (S1))R(S1)]. (5.69)
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Step 2: Insert z0 in q to obtain

Tn = c2
1,0

(
1

n2

n∑
k=1

n∑
i=1

n∑
j=1

w(h−1
0 (Sk))ψ(Zi, Uk)ψ(Zj , Uk)

+
2

n3/2

n∑
k=1

n∑
j=1

w(Yk)r0(Yk)ψ(Zj , Uk)−
1

n

n∑
j=1

n∑
k=1

ϕ(Zj)
tΓ−1ϕ(Zk)

− 2√
n

n∑
k=1

ϕ(Zk)
tΓ−1β + E[w(h−1

0 (S))r0(h−1
0 (S))2]− βtΓ−1β

)
+ op(1)

and rewrite this expression to obtain a sum of U-statistics with kernels ζ and ζ̃.

Step 3: Show that the operator K from the assertion is symmetric as well as continuous

and apply the results of Witting and Müller-Funk (1995) followed by those of Lee (1990)

to derive the limit distribution.

Before going into the details of each step, some previous thoughts have to be done. Re-

member equation (5.15)

h(·) =
Λθ0(·)− Λθ0(0) + n−

1
2 (r(y)− r(0))

Λθ0(1)− Λθ0(0) + n−
1
2 (r(1)− r(0))

= h0(·) + n−
1
2 r0(·) +O

(
1

n

)
uniformly on compact sets, where

h0(·) =
Λθ0(·)− Λθ0(0)

Λθ0(1)− Λθ0(0)
and r0(·) =

r(·)− r(0)− h0(·)(r(1)− r(0))

Λθ0(1)− Λθ0(0)
.

Note that (due to the identification constraints) one has h(0) = 0 and h(1) = 1. Moreover,

since h′0 is bounded away from zero on compact sets one has for an appropriate η > 0 and

a random variable S̃

|Y − h−1
0 (S)| =

∣∣h−1
0 (h0(h−1(S)))− h−1

0 (S)
∣∣

=

∣∣∣∣ 1

h′0(S̃)

∣∣∣∣︸ ︷︷ ︸
<η

∣∣h0(h−1(S))− S
∣∣

≤ η |r0(h−1(S))|√
n

+O
(

1

n

)
,

so that Y converges uniformly to h−1
0 (S) on compact sets. Furthermore, assumption (A7)

guarantees equation (5.13).

Step 1: Reduce the problem of minimizing Tn to that of the quadratic function

q(z) :=

n∑
k=1

w(h−1
0 (Sk))(ĥ(Yk)c1,0 + c2,0 − Λθ0(Yk))

2

+ 2zt
n∑
k=1

w(h−1
0 (Sk))(ĥ(Yk)c1,0 + c2,0 − Λθ0(Yk))R(Sk) + nztΓz
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Remember that γ̃ denotes the minimizer of Mn and γ0 is the vector such that

h0(y)c1,0 + c2,0 = Λθ0(y).

For all γ in a compact set that does not contain γ0 and an appropriate ε > 0 one has

1

n

n∑
k=1

w(Yk)(ĥ(Yk)c1 + c2 − Λθ(Yk))
2 =

1

n

n∑
k=1

w(Yk)(h(Yk)c1 + c2 − Λθ(Yk))
2 + op(1)

= E
[
w(Y )(h(Y )c1 + c2 − Λθ(Y ))2

]︸ ︷︷ ︸
≥ε

+op(1)

uniformly in γ ∈ Υ, where the last equality can be shown by the same arguments as later

in Theorem 5.2.6. Therefore,

γ̃ − γ0 = op(1). (5.70)

Assumption (A7) ensures

sup
y∈Yw

|ĥ(y)− h(y)| = Op
(

1√
n

)
and by the definition of γ̃ as the minimizer in (5.17), it holds that

n∑
k=1

w(Yk)(ĥ(Yk)c̃1 + c̃2 − Λθ̃(Yk))


ĥ(Yk)

1

−Λ̇θ̃(Yk)
t

 = 0.

Consequently, a Taylor expansion with respect to γ yields

n∑
k=1

w(Yk)(ĥ(Yk)c1,0 + c2,0 − Λθ0(Yk))
2

=
n∑
k=1

w(Yk)(ĥ(Yk)c̃1 + c̃2 − Λθ̃(Yk))
2

+
√
n(γ0 − γ̃)t

2√
n

n∑
k=1

w(Yk)(ĥ(Yk)c̃1 + c̃2 − Λθ̃(Yk))


ĥ(Yk)

1

−Λ̇θ̃(Yk)
t


+
√
n(γ̃ − γ0)t

1

n

n∑
k=1

w(Yk)


ĥ(Yk)

2 ĥ(Yk) −ĥ(Yk)Λ̇θ̃(Yk)

ĥ(Yk) 1 −Λ̇θ̃(Yk)

−ĥ(Yk)Λ̇θ̃(Yk)
t −Λ̇θ̃(Yk)

t Λ̇θ̃(Yk)
tΛ̇θ̃(Yk)− Λ̈θ̃(Yk)(ĥ(Yk)c̃1 + c̃2 − Λθ̃(Yk))


√
n(γ̃ − γ0) + op(n||γ̃ − γ0||2)

=
n∑
k=1

w(Yk)(ĥ(Yk)c̃1 + c̃2 − Λθ̃(Yk))
2
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+
√
n(γ̃ − γ0)t

1

n

n∑
k=1

w(h−1
0 (Sk))R(Sk)R(Sk)

t√n(γ̃ − γ0) + op(n||γ̃ − γ0||2)

=
n∑
k=1

w(Yk)(ĥ(Yk)c̃1 + c̃2 − Λθ̃(Yk))
2 +
√
n(γ̃ − γ0)tΓ

√
n(γ̃ − γ0) + op(n||γ̃ − γ0||2).

Since Γ was assumed to be positive definite and

n∑
k=1

w(Yk)(ĥ(Yk)c̃1 + c̃2 − Λθ̃(Yk))
2

≤
n∑
k=1

w(Yk)(ĥ(Yk)c1,0 + c2,0 − Λθ0(Yk))
2

=
n∑
k=1

w(Yk)

(
c1,0(ĥ(Yk)− h(Yk)) + h(Yk)c1,0 + c2,0 − Λθ0(Yk)

)2

(5.68)
= c2

1,0

n∑
k=1

w(Yk)

(
ĥ(Yk)− h(Yk) + n−

1
2 r0(h−1

0 (Sk))

)2

+ op
(
1
)

= Op(1),

one has ||γ̃ − γ0|| = Op
(

1√
n

)
. This in turn can be used to write

n∑
k=1

w(Yk)(ĥ(Yk)c̃1 + c̃2 − Λθ̃(Yk))
2

=

n∑
k=1

w(Yk)(ĥ(Yk)c1,0 + c2,0 − Λθ0(Yk))
2 +
√
n(γ̃ − γ0)tΓ

√
n(γ̃ − γ0)

+
√
n(γ̃ − γ0)t

2√
n

n∑
k=1

w(h−1
0 (Sk))(ĥ(Yk)c1,0 + c2,0 − Λθ0(Yk))R(Sk) + op(1)

= q(γ̃ − γ0) + op(1) (5.71)

again using a Taylor expansion with respect to γ. For all values γ with γ − γ0 = Op
(

1√
n

)
these calculations can be done analogously with all op(1)-terms holding uniformly in γ

(again similar reasoning to 5.2.6). Minimizing q leads to

Dzq(z0) = 2

n∑
k=1

w(h−1
0 (Sk))(ĥ(Yk)c1,0 + c2,0 − Λθ0(Yk))R(Sk)

t + 2nzt0Γ

= 0

⇔ z0 = −Γ−1 1

n

n∑
k=1

w(h−1
0 (Sk))(ĥ(Yk)c1,0 + c2,0 − Λθ0(Yk))R(Sk).

Hence,

z0 := arg min
z

q(z) = Op
(

1√
n

)
,
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which means that γ0 + z0 can be plugged into equation (5.71) as well. In total,

Tn =
n∑
k=1

w(Yk)(ĥ(Yk)c̃1 + c̃2 − Λθ̃(Yk))
2

= q(γ̃ − γ0) + op(1)

≥ min
z
q(z) + op(1)

= q(z0) + op(1)

=

n∑
k=1

w(Yk)
(
ĥ(Yk)

(
c1,0 + z0,1

)
+ c2,0 + z0,2 − Λθ0+z0,3(Yk)

)2
+ op(1)

≥ Tn + op(1).

Therefore, it is sufficient to consider min
z
q(z) instead of Tn.

Step 2: Write z0 as

z0 = −c1,0

n

n∑
k=1

w(h−1
0 (Sk))(ĥ(Yk)− h(Yk))Γ

−1R(Sk)

− c1,0

n
3
2

n∑
k=1

w(h−1
0 (Sk))r0(h−1

0 (Sk))Γ
−1R(Sk) + op

(
n−

1
2
)

= −c1,0Γ−1 1

n2

n∑
k=1

n∑
j=1

w(h−1
0 (Sk))ψ(Zj , Uk)R(Sk)−

c1,0√
n

Γ−1β + op
(
n−

1
2
)

= −c1,0

n
Γ−1

n∑
k=1

ϕ(Zk)−
c1,0√
n

Γ−1β + op
(
n−

1
2
)

= Op
(

1√
n

)
,

where the second last equation can be shown by

E

[∣∣∣∣∣∣∣∣ 1n
n∑
j=1

(
ϕ(Zj)−

1

n

n∑
k=1

w(h−1
0 (Sk))ψ(Zj , Uk)R(Sk)

)∣∣∣∣∣∣∣∣2
]

= O
(

1

n2

)
(similar calculations will be done later). Then, inserting z0 leads to

Tn = q(z0) + op(1)

=

n∑
k=1

w(Yk)(ĥ(Yk)c1,0 + c2,0 − Λθ0(Yk))
2 − nzt0Γz0 + op(1)

= c2
1,0

n∑
k=1

w(Yk)(ĥ(Yk)− h(Yk))
2 +

2c2
1,0√
n

n∑
k=1

w(Yk)r0(Yk)(ĥ(Yk)− h(Yk))

+
c2

1,0

n

n∑
k=1

w(Yk)r0(Yk)
2 − nzt0Γz0 + op(1)
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= c2
1,0

n∑
k=1

w(h−1
0 (Sk))(ĥ(Yk)− h(Yk))

2

+
2c2

1,0√
n

n∑
k=1

w(h−1
0 (Sk))r0(h−1

0 (Sk))(ĥ(Yk)− h(Yk))−
c2

1,0

n

n∑
j=1

n∑
k=1

ϕ(Zj)
tΓ−1ϕ(Zk)

−
2c2

1,0√
n

Γ−1
n∑
k=1

ϕ(Zk)
tβ + c2

1,0E[w(h−1
0 (S))r0(h−1

0 (S))2]− c2
1,0β

tΓ−1β + op(1)

= A+B + C +D + E + F + op(1).

Asymptotic treatment of A:

Due to assumption (A7) one has

ĥ(y)− h(y) =
1

n

n∑
j=1

ψ(Zj , T (y)) + op
(
n−

1
2
)

= Op
(

1√
n

)

uniformly in y. Therefore, with Ui = T (Yi) independent of h

A = c2
1,0

n∑
k=1

w(h−1
0 (Sk))(ĥ(Yk)− h(Yk))

2

=
c2

1,0

n2

n∑
k=1

n∑
i=1

n∑
j=1

w(h−1
0 (Sk))ψ(Zi, Uk)ψ(Zj , Uk) + op(1)

=
c2

1,0

n2

n∑
k=1

w(h−1
0 (Sk))ψ(Zk, Uk)

2 +
2c2

1,0

n2

n∑
k=1

n∑
i=1
i 6=k

w(h−1
0 (Sk))ψ(Zk, Uk)ψ(Zi, Uk)

+
c2

1,0

n2

n∑
k=1

n∑
i=1
i 6=k

w(h−1
0 (Sk))ψ(Zi, Uk)

2 +
c2

1,0

n2

n∑
k=1

n∑
i=1
i 6=k

n∑
j=1
j 6=i,k

w(h−1
0 (Sk))ψ(Zi, Uk)ψ(Zj , Uk)

+ op(1).

Note that

Var

2c2
1,0

n2

n∑
k=1

n∑
i=1
i 6=k

w(h−1
0 (Sk))ψ(Zk, Uk)ψ(Zi, Uk)

 n→∞−→ 0

as well as

Var

c2
1,0

n2

n∑
k=1

n∑
i=1
i 6=k

w(h−1
0 (Sk))ψ(Zi, Uk)

2

 n→∞−→ 0

and

E[w(h−1
0 (S1))ψ(Z1, U1)ψ(Z2, U1)] = E

[
[w(h−1

0 (S1))ψ(Z1, U1)E[ψ(Z2, U1)|U1]︸ ︷︷ ︸
=0

]
= 0,

(5.72)
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so that

A = c2
1,0E[w(h−1

0 (S1))ψ(Z2, U1)2] +
c2

1,0

n2

n∑
k=1

n∑
i=1
i 6=k

n∑
j=1
j 6=i,k

w(h−1
0 (Sk))ψ(Zi, Uk)ψ(Zj , Uk) + op(1)

= c2
1,0E[w(h−1

0 (S1))ψ(Z2, U1)2] +
2c2

1,0

n2

n∑
k=1

n∑
i=k+1

n∑
j=i+1

ψ̃A(Zi, Zj , Zk) + op(1),

where the (symmetric) kernel ψ̃A is defined as

ψ̃A(z1, z2, z3) = w(h−1
0 (S1))ψ(z2, U1)ψ(z3, U1) + w(h−1

0 (S2))ψ(z1, U2)ψ(z3, U2)

+ w(h−1
0 (S3))ψ(z1, U3)ψ(z2, U3).

As in equation (5.72)

ψA,1(z) := E[ψ̃A(Z1, Z2, Z3)|Z1 = z] ≡ 0

and

ψA,2(z1, z2) := E[ψ̃A(Z1, Z2, Z3)|Z1 = z1, Z2 = z2]

= w(h−1
0 (s1))ψ(z2, u1)E[ψ(Z3, U1)|Z1 = z1, Z2 = z2]︸ ︷︷ ︸

=0

+ w(h−1
0 (s2))ψ(z1, u2)E[ψ(Z3, U2)|Z1 = z1, Z2 = z2]︸ ︷︷ ︸

=0

+ E[w(h−1
0 (S3))ψ(Z1, U3)ψ(Z2, U3)|Z1 = z1, Z2 = z2]

= E[w(h−1
0 (S3))ψ(Z1, U3)ψ(Z2, U3)|Z1 = z1, Z2 = z2].

For

ψA,3(z1, z2, z3) := ψ̃A(z1, z2, z3)− ψA,2(z1, z2)− ψA,2(z1, z3)− ψA,2(z2, z3),

the Hoeffding decomposition (see Hoeffding (1948)) leads to

1(
n
3

) n∑
k=1

n∑
i=k+1

n∑
j=i+1

ψ̃A(Zi, Zj , Zk) =
3(
n
2

) n∑
k=1

n∑
i=k+1

ψA,2(Zk, Zi)

+
1(
n
3

) n∑
k=1

n∑
i=k+1

n∑
j=i+1

ψA,3(Zi, Zj , Zk).

Since ψA,3 is a degenerated kernel of order 2, the variance of the last term can be written

as

Var

 1(
n
3

) n∑
k=1

n∑
i=k+1

n∑
j=i+1

ψA,3(Zi, Zj , Zk)

 =
1(
n
3

)2 n∑
k=1

n∑
i=k+1

n∑
j=i+1

E
[
ψA,3(Zi, Zj , Zk)

2
]

= O
(

1

n3

)
.
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Hence,

A = c2
1,0E[w(h−1

0 (S1))ψ(Z2, U1)2] + nUA,n + op(1),

where UA,n is a U-statistic with kernel ψA := c2
1,0ψA,2.

Asymptotic treatment of B:

One can easily see

B =
2c2

1,0√
n

n∑
k=1

w(h−1
0 (Sk))r0(h−1

0 (Sk))(ĥ(Yk)− h(Yk))

=
c2

1,0

√
n(

n
2

) n∑
k=1

n∑
i=k+1

(w(h−1
0 (Sk))r0(h−1

0 (Sk))ψ(Zi, Uk) + w(h−1
0 (Si))r0(h−1

0 (Si))ψ(Zk, Ui))

+ op(1).

Apply the Hoeffding decomposition to obtain

B =
1√
n

n∑
i=1

ψB(Zi) + op(1) =
√
nUB,n + op(1),

where UB,n is a U-statistic with kernel

ψB(z) = 2c2
1,0E[w(h−1

0 (S2))r0(h−1
0 (S2))ψ(Z1, U2)|Z1 = z].

Asymptotic treatment of C:

Term C can be written in the following way

C = −
c2

1,0

n

n∑
j=1

n∑
k=1

ϕ(Zj)
tΓ−1ϕ(Zk)

= −
c2

1,0

n

n∑
k=1

ϕ(Zk)
tΓ−1ϕ(Zk)−

c2
1,0

n

n∑
j=1

n∑
k=1
k 6=j

ϕ(Zj)
tΓ−1ϕ(Zk)

= −c2
1,0E[ϕ(Z1)tΓ−1ϕ(Z1)] + nUC,n + op(1),

where UC,n is a U-statistic with kernel ψC(z1, z2) = −c2
1,0ϕ(z1)tΓ−1ϕ(z2).

Putting things together:

It already has been shown that

Tn = nUA,n +
√
nUB,n + nUC,n +

√
nUD,n + c2

1,0E[w(h−1
0 (S1))ψ(Z2, U1)2]

− c2
1,0E[ϕ(Z1)tΓ−1ϕ(Z1)] + c2

1,0E[w(h−1
0 (S))r0(h−1

0 (S))2]− c2
1,0β

tΓ−1β + op(1),

where UD,n is a U-statistic with kernel ψD(z) = −2c2
1,0Γ−1ϕ(z)tβ.

For calculating the expectation of Tn, recall definitions (5.23) as well as (5.69) and note

E[w(h−1
0 (S))r̄(S)2] = E

[
w(h−1

0 (S))
(
r0(h−1

0 (S))− βtΓ−1R(S)
)2]

= E
[
w(h−1

0 (S))r0(h−1
0 (S))2

]
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− 2βtΓ−1E
[
w(h−1

0 (S))r0(h−1
0 (S))R(S)

]
+ βtΓ−1βt

= E
[
w(h−1

0 (S))r0(h−1
0 (S))2

]
− βtΓ−1βt,

so that

E + F = c2
1,0E[w(h−1

0 (S))r̄(S)2].

Consider

bA := c2
1,0E

[
w(h−1

0 (S2))
(
ψ(Z1, U2) + r̄(S2)− ϕ(Z1)tΓ−1R(S2)

)2]
= c2

1,0E[ϕ(Z1)tΓ−1ϕ(Z1)]− 2c2
1,0E

[
ϕ(Z1)tΓ−1R(S2)(ψ(Z1, U2) + r̄(S2))w(h−1

0 (S2))
]

+ c2
1,0E[(ψ(Z1, U2) + r̄(S2))2w(h−1

0 (S2))]

= c2
1,0E[ϕ(Z1)tΓ−1ϕ(Z1)]− 2c2

1,0E

ϕ(Z1)tΓ−1E

[
ψ(Z1, U2)w(h−1

0 (S2))R(S2)

∣∣∣∣Z1

]
︸ ︷︷ ︸

=ϕ(Z1)


− 2c2

1,0E[ϕ(Z1)t]︸ ︷︷ ︸
=0

Γ−1E
[
r̄(S2)w(h−1

0 (S2))R(S2)
]

+ c2
1,0E[ψ(Z1, U2)2w(h−1

0 (S2))]

+ 2c2
1,0E[ψ(Z1, U2)r̄(S2)w(h−1

0 (S2))]︸ ︷︷ ︸
=0

+c2
1,0E[r̄(S2)2w(h−1

0 (S2))]

= c2
1,0E[ψ(Z1, U2)2w(h−1

0 (S2))] + c2
1,0E[r̄(S2)2w(h−1

0 (S2))]− c2
1,0E[ϕ(Z1)tΓ−1ϕ(Z1)],

so that bA is an expression for the asymptotic expectation of Tn.

Define a kernel ζA as

ζA(z1, z2) := c2
1,0E

[
w(h−1

0 (S3))

(
ψ(Z1, U3) +

1√
n
r0(h−1

0 (S3))− ϕ(Z1)tΓ−1R(S3)

)
(
ψ(Z2, U3) +

1√
n
r0(h−1

0 (S3))− ϕ(Z2)tΓ−1R(S3)

) ∣∣∣∣Z1 = z1, Z2 = z2

]

−
c2

1,0

n
E[w(h−1

0 (S))r0(h−1
0 (S))2]

= c2
1,0ϕ(z1)tΓ−1ϕ(z2) + E[w(h−1

0 (S3))ψ(Z1, U3)ψ(Z2, U3)|Z1 = z1, Z2 = z2]

− c2
1,0ϕ(z1)tΓ−1ϕ(z2)− c2

1,0ϕ(z2)tΓ−1ϕ(z1)−
c2

1,0√
n
ϕ(z1)tΓ−1β −

c2
1,0√
n
ϕ(z2)tΓ−1β

+
c2

1,0√
n
E[w(h−1

0 (S3))r0(h−1
0 (S3))ψ(Z1, U3)|Z1 = z1]

+
c2

1,0√
n
E[w(h−1

0 (S3))r0(h−1
0 (S3))ψ(Z2, U3)|Z2 = z2]

= ψA(z1, z2) +
1

2
√
n

(ψB(z1) + ψB(z2)) + ψC(z1, z2) +
1

2
√
n

(ψD(z1) + ψD(z2)).
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By similar calculations one has

c2
1,0ζ(z1, z2) = ψA(z1, z2) + ψC(z1, z2)

as well as

c2
1,0ζ̃(z) = ψB(z) + ψD(z),

so that
n(
n
2

) n∑
i=1

n∑
j=i+1

ζA(Zi, Zj) = nUA,n = nUn +
√
nVn,0 (5.73)

and thus

Tn = c2
1,0(nUn + b+

√
nVn,0 + E[w(h−1

0 (S1))r̄(S1)2]).

Here, Un and Vn,0 are U-statistics with kernel ζ and ζ̃, respectively, and

b = E[w(h−1
0 (S2))ψ(Z1, U2)2]− 2E[ϕ(Z1)tΓ−1ϕ(Z1)] = E[ζ(Z1, Z1)] (5.74)

In the next step these different representations will be used to derive the asymptotic law

via some version of Mercer’s theorem for positive semi-definite kernels.

Step 3: Show the stated weak convergence results.

One part of this step’s reasoning consists in applying a result from functional analysis that

ensures that ζ can be written as a sum of weighted orthonormal functions (see for example

Witting and Müller-Funk (1995, p. 141)). Hence, positive semi-definiteness of ζ needs to

be shown. This in turn directly follows from the representation ζ(z1, z2) = E[I(z1)I(z2)]

(see Remark 5.2.3) with

I(z) := (Λθ0(1)− Λθ0(0))(w(h−1
0 (S1)))1/2

(
ψ(z, U1)− ϕ(z)tΓ−1R(S1)

)
.

Referring to Witting and Müller-Funk (1995) ζ can be written as

ζ(z1, z2) =
∑

j∈N\{0}

λjρj(z1)ρj(z2) (5.75)

for an orthonormal basis (ρj)j∈N, where the convergence is meant in L2-sense. Although

the asymptotic distributions of nUn and
√
nVn,0 in equation (5.73) can be obtained by

applying Theorem 1 of Lee (1990, p. 79) and the central limit theorem, some arguments

still have to be added since both summands in general depend on each other, that is, the

asymptotic distribution can not be mimicked by simply adding two independent random

variables, which follow the same distributions as the U statistics. This problem can be

solved by some minor adjustments in the proof of Theorem 1 of Lee (1990, p. 79). There,

to prove the statement

nUn
D→

∑
j∈N\{0}

λj(V
2
j − 1),

the indices of the sum in (5.75), that exceed a natural number K ∈ N are cut off. Then,

the approximation
∑K

k=1 λkρk(Zi)ρk(Zj) ≈ ζ(Zi, Zj) (for large K) is used to obtain

nUn =
1

n− 1

n∑
i=1

n∑
j=1
j 6=i

ζ(Zi, Zj) ≈
K∑
k=1

λk(V
2
k,n − vk,n),
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where Vk,n := n−1/2
∑n

i=1 ρk(Zi) and vk,n := n−1
∑n

i=1 ρ
2
k(Zi) = 1 + op(1) by the law of

large numbers and the orthonormality of the eigenfunctions.

Now to obtain convergence of nUn + n1/2V0,n, note that applying the multivariate central

limit theorem, (V0,n, V1,n, . . . , VK,n)t converges in distribution to (V0, V1, . . . , VK)t as defined

in Theorem 5.2.2, for each K. Thus, the continuous mapping theorem yields

K∑
k=1

λk(V
2
k,n − vk,n) + V0,n

D→
K∑
k=1

λk(V
2
k − 1) + V0

for each K. Proceeding as in the proof of Theorem 1 of Lee (1990, p. 79) by letting K →∞,

one obtains
∑∞

k=1 λk(V
2
k − 1) + V0 as the limit of nUn + n1/2V0,n. Note further that (5.75)

especially leads to

∞∑
k=1

λk =

∫ ∞∑
k=1

λkρk(z1)2 dPZ(z1) = E[ζ(Z1, Z1)] = b,

such that nUn + b + n1/2V0,n converges to
∑∞

k=1 λkV
2
k + V0, which completes the proof of

Theorem 5.2.2. �

5.8.2 Proof of Theorem 5.2.6

Consistency of the test proposed in (5.9) can be shown rather easily. Recall that h is a

strictly increasing transformation function with h(0) = 0 and h(1) = 1, which can not be

linearly transformed into a function Λθ ∈ {Λθ : θ ∈ Θ}. Since ĥ is a uniformly consistent

estimator of h, one has

1

n
Tn = min

c1,c2,θ

1

n

n∑
k=1

w(Yk)(ĥ(Yk)c1 + c2 − Λθ(Yk))
2

= min
c1,c2,θ

1

n

n∑
k=1

w(Yk)(h(Yk)c1 + c2 − Λθ(Yk))
2 + op(1).

Note that the functions

fγ(y) = w(y)(h(y)c1 + c2 − Λθ(y))2

are bounded, the parameter set C1 × C2 ×Θ is compact and for every y the map

γ 7→ w(y)(h(y)c1 + c2 − Λθ(y))2

is continuous. Hence, following Lemma 6.1 of Wellner (2005) the class F = {fγ : γ ∈
C1 × C2 ×Θ} is Glivenko-Cantelli so that

1

n
Tn = min

c1,c2,θ
E[w(Y )(h(Y )c1 + c2 − Λθ(Y ))2] + op(1) = c+ op(1)

for some constant c ∈ R. Moreover, the dominated convergence theorem implies continuity

of the map

γ 7→ E[w(Y )(h(Y )c1 + c2 − Λθ(Y ))2].
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Since the set over which the minimum is calculated is compact, one has c > 0. This in turn

leads to

P (Tn > ε) = P
( Tn

n︸︷︷︸
→c

>
ε

n︸︷︷︸
→0

)
n→∞−→ 1 for all ε > 0.

Therefore, any test of the form (5.9) is consistent. �

5.8.3 Proof of Theorem 5.3.1

Again, the notations (5.29) and (5.66) will be used. Let γ̃ be the minimizer ofMn. Moreover,

define

M̃n(c1, c2, θ
t)t =

n∑
j=1

w(Yj)(h(Yj)c1 + c2 − Λθ(Yj))
2. (5.76)

As before, one has

DγMn(γ)
∣∣∣
γ=γ̃

= 0 and
1

n
HessMn(γ0) = Γ′ + op(1). (5.77)

The structure of the proof is as follows: At the beginning, it will be shown that

Tn = Mn(γ̃) =

n∑
k=1

w(Yk)(ĥ(Yk)c1,0 + c2,0 − Λθ0(Yk))
2 +Op(

√
n). (5.78)

From this, it will be deduced γ̃ − γ0 = Op
(
n−

1
4

)
, which in turn can be used to prove even

Tn =

n∑
k=1

w(Yk)(ĥ(Yk)c1,0 + c2,0 − Λθ0(Yk))
2 + op(

√
n). (5.79)

At last, the asymptotic distribution of n−
1
2Tn is derived via (5.79).

First, one has similar to before γ̃ − γ0 = op(1) (see (5.70)). Then, since Υ is compact,

Mn(γ)− M̃n(γ)

=

n∑
k=1

w(Yk)(ĥ(Yk)c1 + c2 − Λθ(Yk))
2 −

n∑
k=1

w(Yk)(h(Yk)c1 + c2 − Λθ(Yk))
2

= c1

n∑
k=1

w(Yk)(ĥ(Yk)− h(Yk))
2

︸ ︷︷ ︸
=Op(1)

+2c1

n∑
k=1

w(Yk) (ĥ(Yk)− h(Yk))︸ ︷︷ ︸
=Op

(
1√
n

) (h(Yk)c1 + c2 − Λθ(Yk))︸ ︷︷ ︸
=Op(1)

= Op(
√
n) (5.80)

uniformly in c1, c2, θ. Now, consider (h is fixed) the function class

F = {y 7→ fγ(y) = w(y)(h(y)c1 + c2 + Λθ(y))2 : γ ∈ Υ}

and the corresponding empirical process

Zn(γ) =
√
n

(
1

n

n∑
k=1

w(Yk)(h(Yk)c1 + c2 − Λθ(Yk))2 − E
[
w(Y )(h(Y )c1 + c2 − Λθ(Y ))2

])
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=
1√
n

(M̃n(γ)− E[M̃n(γ)]︸ ︷︷ ︸
=nM(γ)

).

Convergence of the marginal distributions can be shown by the Central Limit Theorem.

Note that for R(y) = (h(y), 1,−Λ̇θ0(y))t, all γ1, γ2 ∈ Υ and an appropriate γ∗ between γ1

and γ2, C ∈ R

sup
y∈supp(w)

|fγ1(y)− fγ2(y)|

= sup
y∈supp(w)

∣∣Dγfγ∗(y)(γ1 − γ2)
∣∣

= ||γ1 − γ2|| sup
y∈supp(w)

∣∣∣∣Dγfγ∗(y)
∣∣∣∣

≤ C||γ1 − γ2||.

Hence, due to the compactness of Υ the class F is Donsker so that (Zn)γ∈Υ converges

weakly to some centred Gaussian process. Consequently,

sup
γ∈Υ
|M̃n(γ)− nM(γ)| = Op(n1/2). (5.81)

This in turn can be used to write

Mn(γ̃)
(5.80)

= inf
γ∈Υ

M̃n(γ) +Op(
√
n)

≤ sup
γ∈Υ
|M̃n(γ)− nM(γ)|+ inf

γ∈Υ
nM(γ) +Op(

√
n)

(5.81)
= nM(γ0) +Op(

√
n).

On the contrary,

Mn(γ̃)
(5.80)

= inf
γ∈Υ

M̃n(γ) +Op(
√
n)

≥ − sup
γ∈Υ
|M̃n(γ)− nM(γ)|+ inf

γ∈Υ
nM(γ) +Op(

√
n)

(5.81)
= nM(γ0) +Op(

√
n).

Consequently,

Mn(γ̃)− nM(γ0) = Op(
√
n)

and thus (due to (5.81)),

Mn(γ̃)− M̃n(γ0) = Mn(γ̃)− nM(γ0) + nM(γ0)− M̃n(γ0) = Op(
√
n).

Now, write

M̃n(γ0)−Mn(γ̃) = Op(
√
n)

and similar to the sections before for some γ∗ between γ̃ and γ0 (note that equation (5.78)

is obtained in the second row)

M̃n(γ0)−Mn(γ̃)
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= Mn(γ0)−Mn(γ̃) +Op(
√
n)

= DγMn(γ)
∣∣∣
γ=γ̃︸ ︷︷ ︸

(5.77)
= 0

(γ0 − γ̃) + (γ0 − γ̃)t HessMn(γ∗)(γ0 − γ̃) +Op(
√
n)

=
√
nn

1
4 (γ0 − γ̃)t

1

n
HessMn(γ0)n

1
4 (γ0 − γ̃) + op(n||γ0 − γ̃||2) +Op(

√
n)

(5.77)
=
√
nn

1
4 (γ0 − γ̃)tΓ′n

1
4 (γ0 − γ̃) +Op(

√
n),

so that due to the positive definiteness of Γ′ one has γ̃ − γ0 = Op
(
n−

1
4

)
.

Similar to the proof of Theorem 5.2.2, define

q(z) := Mn(γ0) +DγMn(γ)
∣∣∣
γ=γ0

z + nztΓ′z.

Then, for all γ̄ with γ̄ − γ0 = Op
(
n−

1
4

)
one has

Mn(γ̄) = Mn(γ0) +DγMn(γ)
∣∣∣
γ=γ0

(γ̄ − γ0) + (γ̄ − γ0)t HessMn(γ0)(γ̄ − γ0) + op(
√
n)

= q(γ̄ − γ0) + op(
√
n). (5.82)

The minimizer z0 of q can be written as

z0 = −Γ′−1 1

n

(
DγMn(γ)

∣∣∣
γ=γ0

)t

= −Γ′−1 1

n

n∑
k=1

w(Yk)(ĥ(Yk)c1,0 + c2,0 − Λθ0(Yk))


ĥ(Yk)

1

−Λ̇θ0(Yk)
t


= −Γ′−1 1

n

n∑
k=1

w(Yk)(h(Yk)c1,0 + c2,0 − Λθ0(Yk))R(Yk)︸ ︷︷ ︸
E[·]=0

+Op
(

1√
n

)

= Op
(

1√
n

)
,

that is, (5.82) yields Mn(γ0 + z0) = q(z0) + op(
√
n). Note that the last equality above holds

because γ0 is the minimizer of M(γ) and hence DγM(γ)|γ=γ0 = 0, that is,

E[w(Y1)(h(Y1)c1,0 + c2,0 − Λθ0(Y1))R(Y1)] = 0.

So far, it has been proven

Tn = q(γ̃ − γ0) + op(
√
n) ≥ q(z0) + op(

√
n) = Mn(γ0 + z0) + op(

√
n) ≥ Tn + op(

√
n),

so that to prove (5.32) it is sufficient to minimize q and replace Tn by q(z0) in equation (5.32).

Therefore, it remains to look at q(z0) in detail and derive the corresponding asymptotic

distribution. Inserting z0 into q leads to

q(z0) = Mn(γ0)− nzt0Γ′z0
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= c2
1,0

n∑
k=1

w(Yk)(ĥ(Yk)− h(Yk))
2

︸ ︷︷ ︸
=Op(1)

+M̃n(γ0)

+ 2c1,0

n∑
k=1

w(Yk) (ĥ(Yk)− h(Yk))︸ ︷︷ ︸
= 1
n

∑n
j=1 ψ(Zj ,Uk)+op( 1√

n
)

(h(Yk)c1,0 + c2,0 − Λθ0(Yk)) + op(
√
n)

= M̃n(γ0) +
2c1,0

n

n∑
j=1

n∑
k=1

w(Yk)ψ(Zj , Uk)R̃k + op(
√
n).

In total,

Tn − nM(γ0)√
n

=
q(z0)− nM(γ0)√

n
+ op(1)

= Zn(γ0) +
2
√
n

n2

n∑
j=1

n∑
k=1
k 6=j

w(Yk)ψ(Zj , Uk)R̃k + op(1).

The last term can be treated as before by applying the Hoeffding decomposition so that

Tn − nM(γ0)√
n

=
1√
n

n∑
k=1

(
fγ0(Sk)− E[fγ0(S)] + δ(Zk)

)
+ op

(
1√
n

)
with the centred kernel δ from the assertion. The assertion itself now follows from the

ordinary Central Limit Theorem. �

5.8.4 Proof of Lemma 5.3.2

For all n,m ∈ N,m ≤ n the random variables Hm,1, ...,Hm,q are independent and identically

distributed, so that

P
(

max
ν∈{1,...,q}

|Hm,ν | > ε
)

= 1− P
(

max
ν∈{1,...,q}

|Hm,ν | ≤ ε
)

= 1−
q∏

ν=1

P (|Hm,ν | ≤ ε)

= 1− P (|Hm,1| ≤ ε)q

= 1−
(
1− P (|Hm,1| > ε)

)q
.

Due to
(
1− c

q

)q q→∞−→ exp(−c) for all c ∈ R, one has

P
(

max
ν∈{1,...,q}

|Hm,ν | > ε
)

= o(1) ⇔ P (|Hm,1| > ε) = o

(
1

q

)
. (5.83)

Remember q = d nm − 1e and define

m̃n := min

{
k ∈ {1, ..., n} :

⌈n
k
− 1
⌉

sup
n≥l≥k

P (|Hl,1| > ε) ≤ ε
}
.
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Let ξ ∈ (0, 1) be arbitrarily small. Then,⌈ n

dξne
− 1
⌉

sup
n≥l≥dξne

P (|Hl,1| > ε)→ 0

for n → ∞. Consequently, m̃n
n ≤ ξ for all n ≥ N and a sufficiently large N ∈ N. Since

ξ ∈ (0, 1) can be chosen arbitrarily small, one has m̃n
n → 0 for n→∞, so that

mn := d
√
nm̃ne ≥ m̃n

is an intermediate sequence. Moreover,⌈ n

mn
− 1
⌉
P (|Hmn,1| > ε) ≤

⌈ n

mn
− 1
⌉

sup
l≥m̃n

P (|Hl,1| > ε)

=

⌈
n
mn
− 1
⌉⌈

n
m̃n
− 1
⌉︸ ︷︷ ︸

→0

⌈ n

m̃n
− 1
⌉

sup
l≥m̃n

P (|Hm̃n,1| > ε)︸ ︷︷ ︸
≤ε

→ 0

for n → ∞. Hence, max
ν=1,...,q

Hm,ν = op(1) follows from (5.83), which together with Lemma

1.5.1 implies (5.34).

Proof of consistency: In the following, m is written instead of mn. Note that

E

w(Y1)(h(Y1)c0,1 + c0,2 − Λθ0(Y1))


h(Y1)

1

−Λ̇θ0(Y1)t




= DγE
[
w(Y1)(h(Y1)c0,1 + c0,2 − Λθ0(Y1))2

]∣∣∣
γ=γ0

= 0, (5.84)

so that a Taylor expansion and (A5’) lead to

√
m

n

n∑
i=1

w(Yi)(ĥ(Yi)c̃1 + c̃2 − Λθ̃(Yi))
2

=

√
m

n

n∑
i=1

w(Yi)(h(Yi)c̃1 + c̃2 − Λθ̃(Yi))
2 +Op

(√
m

n

)

=

√
m

n

n∑
i=1

w(Yi)(h(Yi)c0,1 + c0,2 − Λθ0(Yi))
2

+ (γ̃ − γ0)t
2
√
m

n

n∑
i=1

w(Yi)(h(Yi)c0,1 + c0,2 − Λθ0(Yi))


h(Yi)

1

−Λ̇θ0(Yi)
t


︸ ︷︷ ︸

=Op(
√
n)

242



5.8. Proofs

+Op
(√

m||γ̃ − γ0||2
)

+Op
(√

m

n

)

=

√
m

n

n∑
i=1

w(Yi)R̃
2
i +Op

(√
m

n

)

=
√
mE[w(Y1)R̃2

1] +Op
(√

m

n

)

with R̃1 as in (5.31). Consequently, σ̂2 can be written as

σ̂2 =
1

q

q∑
ν=1

(
2
√
m

n

n∑
k=1

w(Yk)
(
ĥ(ν)(Yk)− ĥ(Yk)

)
(ĥ(Yk)c̃1 + c̃2 − Λθ̃(Yk))

+
1√
m

νm∑
j=(ν−1)m+1

(
w(Yj)(ĥ(Yj)c̃1 + c̃2 − Λθ̃(Yj))

2 − E[w(Y1)R̃2
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)
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n
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with an from (5.34), where ĥ was replaced by h in the second equality and equation (5.33)

was applied to obtain the last equality. In the following, it will be shown that each of the

occurring terms is of order Op(1), so that the convergence rate can be shifted to the outside

of the brackets by applying the Cauchy-Schwarz inequality. Hence,
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q
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)
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where

An,j =
2

n

n∑
k=1

w(Yk)ψ(Zj , Uk)(h(Yk)c̃1 + c̃2 − Λθ̃(Yk)− R̃k)
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2
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n
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j

)
,

Dj = δ(Zj) + w(Yj)R̃
2
j − E

[
w(Yj)R̃

2
1

]
.

In the following, asymptotic negligibility of the terms corresponding to the An,j , Bn,j and

Cn,j is proven and the convergence of the sum corresponding to Dj to σ2 is developed.

Write

An,i,k = w(Yk)ψ(Zi, Uk)(h(Yk)(c̃1 − c1,0) + c̃2 − c2,0 − Λθ̃(Yk) + Λθ0(Yk))

and define

Ãi,k = w(Yk)ψ(Zi, Uk)


h(Yk)

1

−Λ̇θ0(Yk)
t

 .

Then, a Taylor expansion with respect to θ yields
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n∑
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√
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16

qmn2
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n∑
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.

Note that (“·” is meant componentwise) due to (A7’) one has

E[(Ãi,kÃ
t
j,l) · (Ãs,uÃtt,v)] 6= 0
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only if none of the indices i, j, s, t is occurring only once in (i, k, j, l, s, u, t, v). Hence,

E

[(
16

qmn2
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<∞ (5.85)

and thus
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q∑
ν=1

(
1√
m

νm∑
j=(ν−1)m+1

An,j

)2
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due to γ̃ − γ0 = Op
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1
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)
. The Cn,j can be treated similarly, since
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Therefore, sup
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and a Taylor expansion with respect to γ lead
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= Op
(
m

n
+ n−

1
2

)
,

where the last equality follows by applying (5.84) and a similar reasoning to obtaining

(5.85).

Because the data are independent and identically distributed, the term corresponding to

the Bn,j can be written as
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using iterated expectation and the definition of δ from Theorem 5.3.1. Thus,
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It remains to show
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Note that the Dj , j = 1, ..., qm, are i.i.d. and centred with finite fourth moments, so that
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Finally, the Cauchy-Schwarz inequality can be applied to obtain
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The optimal convergence rate directly follows from this equation. �

5.8.5 Proof of Lemma 5.4.4

Only the second assertion is shown since the first one can be concluded similarly. The proof

uses similar techniques as Hansen (2008). First, for the deviation terms Ri = ε̂i(θ̃)− εi(θ0)
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and appropriate u∗i , i = 1, ..., n, a Taylor expansion leads to

1
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n∑
i=1

fξ
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)
=
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u− εi(θ0)

an

)
+

(−Ri)r

arnr!
f

(r)
ξ (u∗i )

)
.

(5.86)

For appropriate θ̃y between θ̃ and θ0 the Ri can be split into

Ri = ε̂i(θ̃)− εi(θ0)

=
Λθ̃(Yi)− Λθ̃(0)

Λθ̃(1)− Λθ̃(0)
− ĝ(Xi)− εi(θ0)

=
Λθ̃(Yi)− Λθ̃(0)

Λθ̃(1)− Λθ̃(0)
− Λθ0(Yi)− Λθ0(0)

Λθ0(1)− Λθ0(0)
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=
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)
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= R̃i + gθ0(Xi)− ĝ(Xi). (5.87)

Therefore,
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for some sufficiently large constant C > 0, so that it suffices to treat the cases R
(1)
i =

ĝ(Xi)− gθ0(Xi) and R
(2)
i = R̃i separately.

When inserting R
(1)
i in equation (5.86) negligibility of the last summand directly follows

from (5.42) and the boundedness of f
(r)
ξ . Thanks to Hansen (2008), to prove

sup
u∈K

1

nan

n∑
i=1

∣∣∣∣f (j)
ξ

(
u− εi(θ0)

an

)∣∣∣∣ ≤ C + op(1)

for all j = 0, ..., r − 1 and some constant C > 0, it suffices to show uniform (with respect
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for all j = 1, ..., r − 1 one has
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uniformly on compact sets. R̃i can be written as
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where the Op-terms are independent of i. When inserting R̃i in equation (5.86), one has

for any δ > 0
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can be bounded by some constant C > 0, so that

1

nan

n∑
i=1

∣∣∣∣ R̃ji
ajnj!

f
(j)
ξ

(
u− εi(θ0)

an

)∣∣∣∣
≤ Op

(
||θ̃ − θ0||2j

ajn

1

nan

n∑
i=1

∣∣∣∣f (j)
ξ

(
u− εi(θ0)

an

)∣∣∣∣ sup
||θ−θ0||<δ

||Hess Λθ(Yi)||j
)

+ op(1)

= op(1)

by (5.42) and (5.63). The remaining term can be treated similarly by applying (5.64) and

(5.65) to obtain

1

nan

n∑
i=1

∣∣∣∣ R̃riarnr!
f

(r)
ξ (u∗i )

∣∣∣∣
≤ Op

(
||θ̃ − θ0||r

ar+1
n

1

n

n∑
i=1

(
|Λθ0(Yi)|r + ||Λ̇θ0(Yi)||r + ||θ̃ − θ0||r sup

||θ−θ0||<δ
||Hess Λθ(Yi)||r

))
= op(1).

�

5.8.6 Proof of Lemma 5.4.6

Note that conditional on (Y1, X1), ..., (Yn, Xn) the random variables (Y ∗1 , X
∗
1 ), ..., (Y ∗m, X

∗
m)

are independent as well as identically distributed. Moreover, after conditioning on the

original data, the assumptions (B1)–(B10) are valid with probability converging to one, so

that due to Remark 5.4.3 the same reasoning as in the paper of Colling and Van Keilegom

(2019) can be applied to obtain (5.41).

For notational convenience the conditional distribution of (Y ∗1 , X
∗
1 ), ..., (Y ∗m, X

∗
m) conditional

on (Y1, X1), ..., (Yn, Xn) is written as P ∗ and the expectation with respect to P ∗ is written

as E∗. From a notational point of view, P ∗ and E∗ replace P 1
2 and E[·|ω] in the following if

misunderstandings can be excluded. Let FY ∗|X∗ denote the conditional distribution function

of Y ∗1 conditioned on X∗1 (and (Y1, X1), ..., (Yn, Yn)). To verify (A7*) ψ∗ has to be examined

further and to define ψ∗ some further notations are needed. Let v be the weighting function

from assumption (B7) and define

s∗1(u, x) =

∫ u

0

∂FY ∗|X∗ (y|x)

∂y

∂FY ∗|X∗ (y|x)

∂x1

dy, ṽ∗1(u0, x) =
v(x)

s∗1(u0, x)
, ṽ∗2(u0, x) =

v(x)s∗1(u0, x)

s∗1(1, x)2
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and (for ṽ∗ = ṽ∗1, ṽ
∗
2)

δ∗j
ṽ∗(u0, u) =

∫ max(u,U∗j )

max(0,U∗j )

(
ṽ∗(u0, X

∗
j )D∗p,0(r,X∗j )− ∂

∂x1

(
ṽ∗(u0, x)D∗p,1(r, x)

)∣∣∣
x=X∗j

)
dr

+

∫ u

0

(
ṽ∗(u0, X

∗
j )D∗f,0(r,X∗j )− ∂

∂x1

(
ṽ∗(u0, X

∗
j )D∗f,1(r, x)

)∣∣∣
x=X∗j

)
dr

+ (I{U∗j ≤u} − I{U∗j ≤0})ṽ
∗(u0, X

∗
j )D∗p,u(U∗j , X

∗
j )

+

∫ u

0

(I{U∗j ≤u} − I{U∗j ≤0}

FU∗(1)− FU∗(0)
− r
)

∫
X

((
ṽ∗(u0, x)D∗p,0(r, x) +

∂

∂x1

(
ṽ∗(u0, x)D∗p,1(r, x)

))

fU∗,X∗(r, x) + ṽ∗(u0, x)D∗p,u(r, x)
∂

∂r
fU∗,X∗(r, x)

)
dx dr

−
(I{U∗j ≤1} − I{U∗j ≤0}

FU∗(1)− FU∗(0)
− 1

)∫ u

0
r

∫
X

(
ṽ∗(u0, x)D∗p,0(r, x)

− ṽ∗(u0, x)
∂

∂r
D∗p,u(r, x) +

∂

∂x1

(
ṽ∗(u0, x)D∗p,1(r, x)

))
fU∗,X∗(r, x) dx dr

−
(
F̂U∗(1)− F̂U∗(0)

FU∗(1)− FU∗(0)
− 1

)
u

∫
X
ṽ∗(u0, x)D∗p,u(u, x)fU∗,X∗(u, x) dx,

where D∗p,0(u, x), ..., D∗f,1(u, x) are defined as

D∗p,0(u, x) =
Φ∗(u, x) ∂

∂x1
fX∗(x)

Φ∗i (u, x)2fX∗(x)2
, (5.88)

D∗p,u(u, x) =
1

fX∗(x)Φ∗i (u, x)
,

D∗p,1(u, x) =
−Φ∗u(u, x)

fX∗(x)Φ∗i (u, x)2

D∗f,0(u, x) =
−Φ∗u(u, x)Φ∗(u, x) ∂

∂x1
fX∗(x)

Φ∗i (u, x)2fX∗(x)2

D∗f,1(u, x) =
Φ∗u(u, x)Φ∗(u, x)

Φ∗i (u, x)2fX∗(x)
, (5.89)

where Φ∗(u|x) = FU∗|X∗(u, x) = p∗(u,x)
fX∗ (x) ,Φ

∗
u(u|x) = ∂

∂u
Φ∗(u, x), Φ∗i (u|x) = ∂

∂x1
Φ∗(u, x)

(compare (1.4)) for U∗ as in (5.40) and fX∗ are analogously defined as in Section 1.1, but

based on (Y ∗i , X
∗
i ), i = 1, ...,m, from Algorithm 5.4.1. Then, ψ∗ is defined as

ψ∗(Z∗j , u)

= δ∗j
ṽ∗1 (1, u)− δ∗j

ṽ∗2 (u, 1) +
Q∗′(u)

FU∗(1)− FU∗(0)

(
I{U∗j ≤u} − I{U∗j ≤0} − FU∗(u) + FU∗(0)

)
−Q∗′(u)

FU∗(u)− FU∗(0)

(FU∗(1)− FU∗(0))2

(
I{U∗j ≤1} − I{U∗j ≤0} − FU∗(1) + FU∗(0)

)
. (5.90)

251



5. Testing for a Parametric Transformation Function

Condition (A7*) for ψ∗ is implied by the same reasoning as in the paper of Colling and

Van Keilegom (2019). Note that the first part of Remark 5.4.3 ensures that v can be used

as the weighting function for the bootstrap data as well.

To prove (A8*), an auxiliary lemma is shown in the following. Thanks to the expressions

above for ψ∗, D∗p,0(u, x), ..., D∗f,1(u, x), equation (5.58) and (5.60) will be a direct conse-

quence of Lemma 5.8.2, while (5.59) follows from expression (5.90) and boundedness of

δ∗j
ṽ∗1 , δ∗j

ṽ∗2 on compact sets, so that ψ∗ fulfils (A8*) then.

Lemma 5.8.2 Let C ⊆
(
− FY (0)

FY (1)−FY (0) ,
1−FY (0)

FY (1)−FY (0)

)
be a compact set and define

FU∗,X∗(t, x) = P ∗(U∗ ≤ t,X∗ ≤ x), and p∗(t, x) =
∂dX

∂x1...∂xdX
FU∗,X∗(t, x).

Let i be as in (B3). Under the assumptions of Lemma 5.4.6, one has

sup
x∈supp(v)

|fX∗(x)− f(x)| = op(1),

sup
x∈supp(v)

∣∣∣∣ ∂∂x1
fX∗(x)− ∂

∂x1
f(x)

∣∣∣∣ = op(1),

sup
x∈supp(v)

∣∣∣∣ ∂2

∂x2
1

fX∗(x)− ∂2

∂x2
1

f(x)

∣∣∣∣ = op(1),

sup
u∈C,x∈supp(v)

|p∗(u, x)− p(u, x)| = op(1),

sup
u∈C,x∈supp(v)

∣∣∣∣ ∂∂up∗(u, x)− ∂

∂u
p(u, x)

∣∣∣∣ = op(1), (5.91)

sup
u∈C,x∈supp(v)

∣∣∣∣ ∂∂x1
p∗(u, x)− ∂

∂x1
p(u, x)

∣∣∣∣ = op(1),

sup
u∈C
|FU∗(u)− FU (u)| = op(1),

sup
z∈RdX+1

|FZ∗(u)− FZ(z)| = op(1).

Here, p is defined as in 1.3, but for fU,X instead of fY,X , and fX∗ is defined as the density

of X∗1 from Algorithm 5.4.1 (conditional on (Yi, Xi), i = 1, ..., n).

Proof: Most of the proof will be quite similar to proving uniform convergence rates for

kernel estimates in the unconditional case (see Lemma 4.2.12), especially the results of

Hansen (2008) are applied several times. While doing so, note that due to (5.39) and (5.44)

kernel estimates like

f̂ε(θ0)(e) =
1

nan

n∑
i=1

fξ

(
e− ε(θ0)

an

)
converge uniformly in e ∈ R to their expectation (see Theorem 4 of Hansen (2008)).

First, appropriate expressions for fX∗ and p∗ have to be found. While for fX∗ the kernel

estimator

fX∗(x) =
1

nbdXn

n∑
i=1

fW

(
x−Xi

bn

)
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is obtained, p∗ can be expressed for any j ∈ {1, ...,m} as

p∗(T ∗((h∗)−1(u)), x)

=
∂dX

∂x1...∂xdX
FU∗,X∗(T ∗((h∗)−1(u)), x)

=
∂dX

∂x1...∂xdX
P ∗(S∗j ≤ u,X∗j ≤ x)

=
∂dX

∂x1...∂xdX

∫
(−∞,x]

P ∗(S∗j ≤ u|X∗j = z)fX∗(z) dz

=
∂dX

∂x1...∂xdX

∫
(−∞,x]

P ∗
(
ξ ≤

u− ĝ(X∗j )− ε̂j∗ε (θ̃) + 1
n

∑n
l=1 ε̂l(θ̃)

an

∣∣∣∣X∗ = z

)
fX∗(z) dz

=
∂dX

∂x1...∂xdX

∫
(−∞,x]

1

n

n∑
k=1

P ∗
(
ξ ≤

u− ĝ(z)− ε̂k(θ̃) + 1
n

∑n
l=1 ε̂l(θ̃)

an

)
fX∗(z) dz

=
∂dX

∂x1...∂xdX

∫
(−∞,x]

1

n

n∑
k=1

Fξ

(
u− ĝ(z)− ε̂k(θ̃) + 1

n

∑n
l=1 ε̂l(θ̃)

an

)
fX∗(z) dz

=
1

n

n∑
k=1

Fξ

(
u− ĝ(x)− ε̂k(θ̃) + 1

n

∑n
l=1 ε̂l(θ̃)

an

)
fX∗(x),

where Fξ denotes the cumulative distribution function of ξ. See Section 4.2.2 for

sup
x∈supp(v)

|fX∗(x)− fX(x)| = Op
(
b2n +

√
log(n)

nbdXn

)
= op(1)

(note that fW is a kernel of order 2). The assertion for ∂
∂x1

fX∗ and ∂2

∂x2
1
fX∗ follows similarly

by applying for example

E

[
∂2

∂v2
i

fX∗(v)

]
= E

[
1

bdX+2
n

∂2

∂z2
i

fW (z)
∣∣∣
z= v−X

bn

]

=
1

bdX+2
n

∫
∂2

∂z2
i

fW (z)
∣∣∣
z= v−x

bn

fX(x) dx

=
1

b2n

∫
∂2

∂x2
1

fW (x)fX(v − bnx) dx

=

[
1

b2n

∂

∂x1
fW (x)fX(x− bnv)

]∞
−∞︸ ︷︷ ︸

=0

+
1

bn

∫
∂

∂x1
fW (x)

∂

∂zi
fX(z)

∣∣
z=v−bnx dx

=

[
1

bn
fW (x)

∂

∂zi
fX(z)

∣∣
z=v−bnx

]∞
−∞︸ ︷︷ ︸

=0

+

∫
fW (x)

∂2

∂z2
i

fX(z)
∣∣
z=v−bnx dx

=
∂2

∂v2
i

fX(v) +O(b2n).
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where (−∞, x] = ×dXi=1(−∞, xi]. From now on, only ∂
∂x1

p∗ is considered, since the other

terms can be treated analogously. Recall that for all k ∈ {1, ..., n} and appropriate θ̃y

between θ̃ and θ0 it holds that (see (5.87))

ε̂k(θ̃)

= εk(θ0) +
1

(Λθ̃(1)− Λθ̃(0))(Λθ0(1)− Λθ0(0))

(
Λθ0(Yk)− Λθ0(0)

+
(
Λ̇θ0(Yk)

t − Λ̇θ0(0)t
)
(θ̃ − θ0) +

1

2
(θ̃ − θ0)t

(
Hess Λθ̃Yk

(Yk)−Hess Λθ̃0(0)
)
(θ̃ − θ0)

)
(
− Λ̇θ0(1)t(θ̃ − θ0)− 1

2
(θ̃ − θ0)t Hess Λθ̃1(1)(θ̃ − θ0)

+ Λ̇θ0(0)t(θ̃ − θ0) +
1

2
(θ̃ − θ0)t Hess Λθ̃0(0)(θ̃ − θ0)

)
+

1

Λθ0(1)− Λθ0(0)

(
Λ̇θ0(Yk)

t(θ̃ − θ0) +
1

2
(θ̃ − θ0)t Hess Λθ̃Yk

(Yk)(θ̃ − θ0)

− Λ̇θ0(0)t(θ̃ − θ0)− 1

2
(θ̃ − θ0)t Hess Λθ̃0(0)(θ̃ − θ0)

)
+ g(Xk)− ĝ(Xk).

Thus, (if ||θ̃ − θ0|| ≤ δ)∣∣∣∣ 1n
n∑
l=1

ε̂l(θ̃)

∣∣∣∣ ≤ ∣∣∣∣ 1n
n∑
l=1

εl(θ0)

∣∣∣∣+Op(||θ̃ − θ0||)
1

n

n∑
l=1

(
1 + |Λθ0(Yl)|+ ||Λ̇θ0(Yl)||

+ ||θ̃ − θ0|| sup
||θ−θ0||<δ

||Hess Λθ(Yl)||
)

+ max
k=1,...,n

|ĝ(Xk)− g(Xk)|

= Op
(

1√
n

)
+Op

(
||θ̃ − θ0||

)
+Op

(
max

k=1,...,n
|ĝ(Xk)− g(Xk)|

)
= op(1).

Since P (||θ̃ − θ0|| ≤ δ)→ 1, this can be used together with Lemma 5.4.4 to obtain

∂

∂x1
p∗(T ∗((h∗)−1(u)), x)

=
1

n

n∑
k=1

∂

∂x1
Fξ

(
u− ĝ(x)− ε̂k(θ̃) + 1

n

∑n
l=1 ε̂l(θ̃)

an

)
fX∗(x)

=
1

n

n∑
k=1

[
− fX∗(x)

an
fξ

(
u− ĝ(x)− ε̂k(θ̃) + 1

n

∑n
l=1 ε̂l(θ̃)

an

)
∂

∂x1
ĝ(x)

+ Fξ

(
u− ĝ(x)− ε̂k(θ̃) + 1

n

∑n
l=1 ε̂l(θ̃)

an

)
∂

∂x1
fX∗(x)

]

= −
fX∗(x) ∂

∂x1
ĝ(x)

nan

n∑
k=1

fξ

(
u− ĝ(x) + 1

n

∑n
l=1 ε̂l(θ̃)− εk(θ0)

an

)

+
∂
∂x1

fX∗(x)

n

n∑
k=1

Fξ

(
u− ĝ(x) + 1

n

∑n
l=1 ε̂l(θ̃)− εk(θ0)

an

)
+ op(1)
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= −fε(θ0)

(
u− ĝ(x) +

1

n

n∑
l=1

ε̂l(θ̃)

)
fX∗(x)

∂

∂x1
ĝ(x)

+ Fε(θ0)

(
u− ĝ(x) +

1

n

n∑
l=1

ε̂l(θ̃)

)
∂

∂x1
fX∗(x) + op(1)

= −fε(θ0)(u− g(x))fX(x)
∂

∂x1
g(x) + Fε(θ0)(u− g(x))

∂

∂x1
fX(x) + op(1)

=
∂

∂x1
p(T ((h)−1(u)), x) + op(1) (5.92)

uniformly with respect to x ∈ supp(v) and with respect to u belonging to some compact

set K, where the third from last equality again follows from Theorem 4 of Hansen (2008)

as in Section 4.2.2. A similar reasoning for ∂
∂up
∗ results in

∂

∂u
p∗(T ∗((h∗)−1(u)), x) =

∂

∂u
p(T ((h)−1(u)), x) (5.93)

uniformly in (u, x) ∈ K × supp(v). Later, it will be shown that

T ∗((h∗)−1(u))− T (h−1(u)) = op(1)

as well as
∂

∂u
T ∗((h∗)−1(u))− ∂

∂u
T (h−1(u)) = op(1) (5.94)

uniformly on compact sets. Hence, after possibly adjusting the set of admissible values for

u, (5.93) leads to

∂

∂u
p∗(u, x) =

∂
∂up
∗(T ∗((h∗)−1(t)), x)

∣∣
t=h∗((T ∗)−1(u))

∂
∂uT ∗((h∗)−1(t))

∣∣
t=h∗((T ∗)−1(u))

=

∂
∂up(T (h−1(t)), x)

∣∣
t=h∗((T ∗)−1(u))

∂
∂uT ∗((h∗)−1(t))

∣∣
t=h∗((T ∗)−1(u))

+ op(1)

=

∂
∂up(T (h−1(t)), x)

∣∣
t=h(T −1(u))

∂
∂uT (h−1(t))

∣∣
t=h(T −1(u))

+ op(1)

=
∂

∂u
p(u, x) + op(1)

as well as
∂

∂x1
p∗(u, x) =

∂

∂x1
p(u, x) + op(1)

uniformly on (u, x) ∈ C × supp(v). Indeed, equation (5.94) can be shown very similar to

(5.92), because

T ∗((h∗)−1(u)) =
FS∗(u)− FS∗(0)

FS∗(1)− FS∗(0)

as well as

FS∗(u) = P ∗(S∗j ≤ u)
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= P ∗
(
ĝ
(
X∗j∗X

+ bnWj

)
+ ε̂j∗ε (θ̃)− 1

n

n∑
l=1

ε̂l(θ̃) + anξj ≤ u
)

=
1

n

n∑
i=1

1

n

n∑
k=1

∫
Fξ

(
u− ĝ(Xi + bnw)− ε̂k(θ̃) + 1

n

∑n
l=1 ε̂l(θ̃)

an

)
fW (w) dw

and

∂

∂u
FS∗(u) =

∫
1

n

n∑
i=1

1

n

n∑
k=1

∂

∂u
Fξ

(
u− ĝ(Xi + bnw)− ε̂k(θ̃) + 1

n

∑n
l=1 ε̂l(θ̃)

an

)
fW (w) dw

=

∫
1

n

n∑
i=1

1

nan

n∑
k=1

fξ

(
u− ĝ(Xi + bnw) + 1

n

∑n
l=1 ε̂l(θ̃)− ε̂k(θ̃)

an

)
fW (w) dw

=

∫
1

n

n∑
i=1

fε

(
u− ĝ(Xi + bnw) +

1

n

n∑
l=1

ε̂l(θ̃)

)
fW (w) dw + op(1)

=
1

n

n∑
i=1

fε(θ0)(u− g(Xi)) + op(1)

= E[fε(θ0)(u− g(X1))] + op(1)

=
∂

∂u
FS(u) + op(1)

uniformly on compact sets, where the third equation follows as in (5.92) and the last

equation follows from the dominated convergence theorem. The uniform convergence of

FU∗ follows by the same arguments. For the treatment of FZ∗ , equation (5.91) can be used

together with the fact that ∂
∂up
∗(u, x) is a density:

For an arbitrary compact set K equation (5.91) implies the uniform convergence

sup
(u,x)∈K

∣∣∣∣ ∂∂up∗(u, x)− ∂

∂u
p(u, x)

∣∣∣∣ = op(1).

Let ε > 0. As a probability measure on a polish space, PZ is tight. Thus, there exists a

compact set K ⊆ R such that PZ(K) > 1− ε
2 . Hence, for all z ∈ R it holds that

|FZ∗(z)− FZ(z)| ≤
∫ ∫

IK(t, x)

∣∣∣∣ ∂∂tp∗(t, x)− ∂

∂t
p(t, x)

∣∣∣∣ dt dx+ P 1
2 (·,Kc)Z∗ + PZ(Kc)

≤ ε+ op(1).

Since ε > 0 can be chosen arbitrarily small one has sup
z∈K
|FZ∗(z)− FZ(z)| = op(1). �

5.8.7 Proof of Theorem 5.4.7

Again, as in the proof of Lemma 5.4.6, the conditional distribution and conditional ex-

pectation of (Y ∗1 , X
∗
1 ), ..., (Y ∗m, X

∗
m) given (Y1, X1), ..., (Yn, Xn) are denoted by P ∗ and E∗,

respectively. Consider ω ∈ An with An from (A7*). The proof can be divided into two

parts: First, the uniform convergence of some bootstrap components appearing in the

asymptotic distribution of the bootstrap test statistic is proven and second, the assertion
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itself is shown by the convergence of the conditional distribution functions in probability.

Referring to the definition of h∗, one has

(A5*) With probability converging to one, minimizing the function M∗ : Υ→ R,

γ = (c1, c2, θ
t)t 7→ E∗

[
w(Y ∗)(h∗(Y ∗)c1 + c2 − Λθ(Y

∗))2
]

(
= E

[
w(Y ∗)(h∗(Y ∗)c1 + c2 − Λθ(Y

∗))2|ω
])

leads to a unique solution

γ∗ = (c∗1,0, c
∗
2,0, θ

∗
0)

(
=
(
Λθ̃(1)− Λθ̃(0),Λθ̃(0), θ̃

))
in the interior of Υ.

Here, uniqueness follows due to E∗[w(Y ∗)(h∗(Y ∗)(Λθ̃(1)− Λθ̃(0)) + Λθ̃(0)− Λθ̃(Y
∗))2] = 0

from (A5). With the notations

R∗(s) := (s, 1,−Λ̇θ̃((h
∗)−1(s)))t,

Γ∗ := E∗[w((h∗)−1(S∗1))R∗(S∗1)R∗(S∗1)t],

ϕ∗(z) := E∗[w((h∗)−1(S∗2))ψ∗(Z∗1 , U
∗
2 )R∗(S∗2) | Z∗1 = z],

a function ζ∗ can be defined as

ζ∗(z1, z2) := E∗
[
w((h∗)−1(S∗3))

(
ψ∗(Z∗1 , U

∗
3 )− ϕ∗(Z∗1 )t(Γ∗)−1R∗(S∗3)

)
(
ψ∗(Z∗2 , U

∗
3 )− ϕ∗(Z∗2 )t(Γ∗)−1R∗(S∗3)

)
| Z∗1 = z1, Z

∗
2 = z2

]
.

Moreover, define

T ∗n = c∗1,0
2
∞∑
k=1

λ∗kV
2
k with c∗1,0 = Λθ̃(1)− Λθ̃(0) (5.95)

and b∗ = E[ζ∗(Z∗1 , Z
∗
1 )|ω], where V1, V2, ... are independent and identically standard nor-

mally distributed and λ∗1, λ
∗
2, ... are the eigenvalues of the operator

K∗ρ(z1) :=

∫
ρ(z2)ζ∗(z1, z2) dFZ∗(z2).

One can proceed as in the proof of Theorem 5.2.2 to obtain

P1

(
ω ∈ Ω1 : P 1

2

(
ω,

{
lim sup
m→∞

∣∣∣∣T ∗n,m − 1

m− 1

m∑
i=1

m∑
j=1
j 6=i

ζ∗(Z∗i , Z
∗
j )− b∗

∣∣∣∣ > 0

})
> 0

)
= o(1)

(5.96)

as well as

P1

(
ω ∈ Ω1 : lim sup

m→∞
sup
t∈R

∣∣P 1
2 (ω, {T ∗n,m ≤ t})− P 1

2 (ω, {T ∗n ≤ t})
∣∣ = 0

)
= 1 + o(1),

that is, T ∗n,m converges in distribution to T ∗n for m→∞.
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Convergence of the bootstrap components: Note that neither ψ depends on h nor ψ∗

on h∗ (conditional on (Yi, Xi), i = 1, ..., n). In the following, the convergence in probability

of h∗, R∗,Γ∗, ϕ∗, ζ∗, b∗ to h0 (the true transformation under H0), R(s) from (5.19), Γ from

(5.20), ϕ from (5.21), ζ from (5.22) and b from (5.74) is shown.

One has θ̃ = θ0 + op(1). (5.38) implies h∗ = h+ op(1) uniformly on compact sets and thus

w((h∗)−1(s))R∗(s) = w(h−1(s))R(s) + op(1) uniformly in s ∈ R. Further, there exists some

C̃ > 0, such that h∗ is bijective on Yw and |h∗| < C̃ as well as |(h∗)−1| < C̃ on Yw and

h∗(Yw), respectively, with probability converging to one, that is

P1

(
ω ∈ Ω1 : h∗ bijective, |h∗(y)| ≤ C̃ ∀y ∈ Yw, |(h∗)−1(s)| ≤ C̃ ∀y ∈ h∗(Yw)

)
= 1 + o(1).

This in turn means that (see Remark 5.4.3 for a possible adjustment of h∗)

P1

(
ω ∈ Ω1 : w((h∗)−1(s))||R∗(s)||2 ≤ C ∀s ∈ R

)
= 1 + o(1)

for some sufficiently large C > 0. Let fS , fS∗ denote the densities of S and S∗, respectively,

conditioned on (Yi, Xi), i = 1, ..., n. The dominated convergence theorem leads to (the

inequality is meant componentwise)

P1

(
ω ∈ Ω1 : |Γ∗ − Γ| > δ

)
= P1

(
ω ∈ Ω1 :

∣∣E[w((h∗)−1(S∗1 ))R∗(S∗1 )R∗(S∗1 )t|ω]− E[w(h−1(S1))R(S1)R(S1)t]
∣∣ > δ

)
= P1

(
ω ∈ Ω1 :

∣∣∣∣ ∫ w((h∗)−1(s))R∗(s)R∗(s)tfS∗(s) ds−
∫
w(h−1(s))R(s)R(s)tfS(s) ds

∣∣∣∣ > δ

)

≤ P1

(
ω ∈ Ω1 :

∣∣∣∣ ∫ w((h∗)−1(s))R∗(s)R∗(s)tfS∗(s) ds−
∫
w(h−1(s))R(s)R(s)tfS(s) ds

∣∣∣∣ > δ,

w((h∗)−1(s))||R∗(s)||2 ≤ C ∀s ∈ R
)

+ P1

(
w((h∗)−1(s))||R∗(s)||2 > C for some s ∈ R

)
= o(1)

for all δ > 0. Consequently,

Γ∗ = Γ + op(1)

with respect to P1. Due to part (5.59) of (A8*), the map

(Z∗1 , U
∗
2 ) 7→ w((h∗)−1(S∗2))ψ∗(Z∗1 , U

∗
2 )

is bounded by some constant C uniformly over compact sets with probability converging to

one. Together with the dominated convergence theorem, this leads to boundedness of ϕ∗

as well as ϕ∗(z) = ϕ(z) + op(1) and finally boundedness of ζ∗ and

ζ∗(z1, z2) =

∫
w((h∗)−1(s))

(
ψ∗(z1, TS∗(s))− ϕ∗(z1)t(Γ∗)−1R∗(s)

)
(
ψ∗(z2, TS∗(s))− ϕ∗(z2)t(Γ∗)−1R∗(s)

)
fS∗(s) ds

=

∫
w(h−1(s))

(
ψ(z1, TS(s))− ϕ(z1)tΓ−1R(s)

)(
ψ(z2, TS(s))
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− ϕ(z2)tΓ−1R(s)
)
fS(s) ds+ op(1)

= ζ(z1, z2) + op(1)

for all z1, z2 ∈ RdX+1. Additionally, one has

P1

(
ω ∈ Ω1 : sup

z1,z2∈RdX+1

|ζ∗(z1, z2)| > C

)
→ 0

for some C > 0, so that for all δ > 0

P1

(
ω ∈ Ω1 : |b∗ − b| > δ

)
= P1

(
ω ∈ Ω1

∣∣E[ζ∗(Z∗1 , Z
∗
1 )|ω]− E[ζ(Z1, Z1)]

∣∣ > δ
)

≤ P1

(
ω ∈ Ω1 :

∣∣E[ζ∗(Z∗1 , Z
∗
1 )|ω]− E[ζ(Z1, Z1)]

∣∣ > δ, sup
z1,z2∈RdX+1

|ζ∗(z1, z2)| ≤ C
)

+ P1

(
ω ∈ Ω1 : sup

z1,z2∈RdX+1

|ζ∗(z1, z2)| > C

)
= o(1),

that is, b∗ = b + op(1) with respect to P1. Now, all ingredients to prove the convergence

of the distribution functions FT ∗n (t) = P ∗(T ∗n ≤ t) to P (T ≤ t) in probability have been

presented.

Convergence of the distribution functions: Let t ∈ R, ε > 0 be arbitrary and ε̃, δε̃ >

0,Mε̃ ∈ N such that

P (T > t− 2ε̃c2
1,0)− P (T > t+ 2ε̃c2

1,0) + 2ε̃ ≤ ε

2
,

sup
s∈R

∣∣∣∣P(c2
1,0

(
m(
m
2

) m∑
i=1

m∑
j=i+1

ζ(Zi, Zj) + b

)
> s

)
− P (T > s)

∣∣∣∣ ≤ ε̃ for all m ≥Mε̃ (5.97)

and

|c∗1,0 − c1,0|+ |b∗ − b| ≤ δε̃ ⇒
∣∣∣∣ t

c∗1,0
2 − b

∗ − t

c2
1,0

+ b

∣∣∣∣ ≤ ε̃.
For a moment consider m as fixed and define

Kε̃,m :=
{

(z1, z2) ∈ R2(d+1) : |ζ∗(z1, z2)− ζ(z1, z2)| ≤ ε̃

m

}
.

Then, P ((Z∗1 , Z
∗
2 ) ∈ Kε̃,m)

n→∞−→ 1. For all m ≥Mε one has

P ∗
(
c∗1,0

2

(
m(
m
2

) m∑
i=1

m∑
j=i+1

ζ∗(Z∗i , Z
∗
j ) + b∗

)
> t

)

≤ P ∗
(
c∗1,0

2

(
m(
m
2

) m∑
i=1

m∑
j=i+1

ζ∗(Z∗i , Z
∗
j ) + b∗

)
> t

)
I{

(Z∗i ,Z
∗
j )∈Kε̃,m ∀i 6=j∈{1,...,m}

}
+ I{

∃i 6=j∈{1,...,m}:(Z∗i ,Z∗j )/∈Kε̃,m
}
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≤ P ∗
(
m(
m
2

) m∑
i=1

m∑
j=i+1

ζ(Z∗i , Z
∗
j ) >

t

c2
1,0

− b− 2ε̃

)
+ I{

|c∗1,0−c1,0|+|b∗−b|>δε̃
}

+ I{
∃i 6=j∈{1,...,m}:(Z∗i ,Z∗j )/∈Kε̃,m

}
≤
∫
· · ·
∫
I{ m

(m2 )
∑m
i=1

∑m
j=i+1 ζ(zi,zj)>

t

c21,0
−b−2ε̃

} dFZ∗(z1) . . . dFZ∗(dzm)

+ I{
|c∗1,0−c1,0|+|b∗−b|>δε̃

} + I{
∃i 6=j∈{1,...,m}:(Z∗i ,Z∗j )/∈Kε̃,m

}
=

∫
· · ·
∫
I{ m

(m2 )
∑m
i=1

∑m
j=i+1 ζ(zi,zj)>

t

c21,0
−b−2ε̃

} dFZ(z1) . . . dFZ(dzm) + op(1)

+ I{
|c∗1,0−c1,0|+|b∗−b|>δε̃

} + I{
∃i 6=j∈{1,...,m}:(Z∗i ,Z∗j )/∈Kε̃,m

}
≤ P (T > t− 2ε̃c2

1,0) + ε̃+ op(1).

Here, the second to last equality follows from approximating the indicator function by

the sum of the indicator functions of disjoint cubes of dimension m(dX + 1) (remember

FZ∗(z1)− FZ∗(z2) = FZ(z1)− FZ(z2) + op(1) uniformly in z1, z2 ∈ RdX+1 by (5.58)). The

same reasoning leads to

P ∗
(
c∗1,0

2

(
m(
m
2

) m∑
i=1

m∑
j=i+1

ζ∗(Z∗i , Z
∗
j ) + b∗

)
> t

)
≥ P (T > t+ 2ε̃c2

1,0)− ε̃+ op(1)

for all ε > 0 and thus∣∣∣∣P ∗(c∗1,02

(
m(
m
2

) m∑
i=1

m∑
j=i+1

ζ∗(Z∗i , Z
∗
j ) + b∗

)
≤ t
)
− FT (t)

∣∣∣∣ ≤ ε

2
+ op(1). (5.98)

Let M ∈ N and define

AM,ε :=

{
ω ∈ Ω1 : ∀m ≥M :

∣∣∣∣P ∗(c∗1,02

(
m(
m
2

) m∑
i=1

m∑
j=i+1

ζ∗(Z∗i , Z
∗
j ) + b∗

)
> t

)
− P ∗(T ∗n > t)

∣∣∣∣ < ε

}

as well as

Bn :=

{
ω ∈ Ω1 : lim sup

m→∞

∣∣∣∣P ∗(c∗1,02

(
m(
m
2

) m∑
i=1

m∑
j=i+1

ζ∗(Z∗i , Z
∗
j ) + b∗

)
> t

)
− P ∗(T ∗n > t)

∣∣∣∣ = 0

}
.

Note that P1(Bn)
n→∞−→ 1 because of (5.96) and P1(Bn ∩ AM,ε)

M→∞−→ P1(Bn). Let N ∈ N
such that P1(BN ) ≥ 1−ε and let Mε fulfil (5.97) and P1(BN ) ≤ P1(BN ∩AMε,ε)+ε. Then,

one has

lim sup
n→∞

P1(|FT∗n (t)− FT (t)| > 3ε)

= lim sup
n→∞

P1

(
lim sup
m→∞

∣∣∣∣P ∗(c∗1,02

(
m(
m
2

) m∑
i=1

m∑
j=i+1

ζ∗(Z∗i , Z
∗
j ) + b∗

)
> t

)
− P (T > t)

∣∣∣∣ > 3ε,Bn

)

= lim sup
n→∞

lim
M→∞

P1

(
sup
m≥M

∣∣∣∣P ∗(c∗1,02

(
m(
m
2

) m∑
i=1

m∑
j=i+1

ζ∗(Z∗i , Z
∗
j ) + b∗

)
> t

)
− P (T > t)

∣∣∣∣ > 3ε,
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Bn ∩AM,ε

)

≤ lim sup
n→∞

lim
M→∞

P1

(
sup
m≥M

∣∣∣∣P ∗(c∗1,02

(
m(
m
2

) m∑
i=1

m∑
j=i+1

ζ∗(Z∗i , Z
∗
j ) + b∗

)
> t

)
− P (T > t)

∣∣∣∣ > 3ε,

BN ∩AMε,ε

)
+ 2ε

≤ lim sup
n→∞

P1

(∣∣∣∣P ∗(c∗1,02

(
Mε(
Mε

2

) Mε∑
i=1

Mε∑
j=i+1

ζ∗(Z∗i , Z
∗
j ) + b∗

)
> t

)
− P (T > t)

∣∣∣∣ > ε,BN ∩AMε,ε

)

+ 2ε

≤ lim sup
n→∞

P1

(∣∣∣∣P ∗(c∗1,02

(
Mε(
Mε

2

) Mε∑
i=1

Mε∑
j=i+1

ζ∗(Z∗i , Z
∗
j ) + b∗

)
> t

)
− P (T > t)

∣∣∣∣ > ε

)
+ 2ε

(5.98)
= 2ε.

Since ε > 0 can be chosen arbitrarily small, one has

P1

(
|FT ∗n (t)− FT (t)| > ε

)
= o(1) for all t ∈ R, ε > 0.

In total, (5.36) was proven, that is,

P1

(
ω ∈ Ω1 : lim sup

m→∞

∣∣P 1
2 (ω, {T ∗n,m ≤ q})− P (Tn ≤ q)

∣∣ > δ
)

= o(1) for all δ > 0.

It remains to deduce

P1

(
ω ∈ Ω1 : lim sup

m→∞
|q∗α − qα| > δ

)
= o(1) for all δ > 0

from this. Let δ > 0 be arbitrarily small and let qα be the α-quantile of T and define

εn = min

(
α− P (Tn ≤ qα − δ)

2
,
P (Tn ≤ qα + δ)− α

2

)
→ ε

for some ε > 0 and n→∞. Then, if∣∣P 1
2 (ω, {T ∗n,m ≤ qα − δ})− P (Tn ≤ qα − δ)

∣∣ ≤ εn,
one has

P 1
2 (ω, {T ∗n,m ≤ qα − δ}) < α,

that is, q∗α > qα − δ, for sufficiently big n. Analogously,
∣∣P 1

2 (ω, {T ∗n,m ≤ qα + δ})− P (Tn ≤
qα + δ)

∣∣ ≤ εn implies P 1
2 (ω, {T ∗n,m ≤ qα + δ}) > α and q∗α < qα + δ for sufficiently big n, so

that in total

P1

(
ω ∈ Ω1 : lim sup

m→∞
|q∗α − qα| ≤ δ

)
≥ P1

(
ω ∈ Ω1 : lim sup

m→∞

∣∣P 1
2 (ω, {T ∗n,m ≤ qα − δ})− P (Tn ≤ qα − δ)

∣∣ ≤ εn,
lim sup
m→∞

∣∣P 1
2 (ω, {T ∗n,m ≤ qα + δ})− P (Tn ≤ qα + δ)

∣∣ ≤ εn)+ o(1)
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≥ P1

(
ω ∈ Ω1 : lim sup

m→∞

∣∣P 1
2 (ω, {T ∗n,m ≤ qα − δ})− P (Tn ≤ qα − δ)

∣∣ ≤ ε

2
,

lim sup
m→∞

∣∣P 1
2 (ω, {T ∗n,m ≤ qα + δ})− P (Tn ≤ qα + δ)

∣∣ ≤ ε

2

)
+ o(1)

= 1 + o(1).

�

5.8.8 Proof of Lemma 5.4.8

Only equation (5.57) needs to be proven, since the remaining conditions follow as in the

proof of Lemma 5.4.6 by the results of Colling and Van Keilegom (2019). In contrast to

the proof of Lemma 5.4.6, one has θ̃ − θ0 = Op
(
n−

1
4

)
(here and in the following, op- and

Op-terms are with respect to P1 and for n→∞) and the asymptotic behaviour of ψ∗ can

not be reduced to the convergence to ψ. Nevertheless, ψ∗ can be expressed as in (5.90)

with D∗p,0, ..., D
∗
f,1 as in (5.88)–(5.89). The main idea is to prove uniform convergence of

∂
∂uΦ∗ and ∂

∂uΦ∗ on U0 × supp(v) to ∂
∂u Φ̃ and ∂

∂x1
Φ̃, respectively, while the remaining parts

of δ∗j
ṽ∗1 , δ∗j

ṽ∗2 and Q∗′ are bounded in probability.

Due to (5.45) it holds that U0 ⊆
(
− FBS (0)

FBS (1)−FBS (0)
,

1−FBS (0)

FBS (1)−FBS (0)

)
. In the following, it is proven

that under the assumptions of Lemma 5.4.8 one has

sup
t∈R
|TS∗(t)− T BS (t)| = op(1), (5.99)

sup
u∈U0

|(TS∗)−1(u)− (T BS )−1(u)| = op(1), (5.100)

sup
(u,x)∈U0,× supp(v)

|Φ∗(u, x)− Φ̃(u, x)| = op(1), (5.101)

sup
(u,x)∈U0,× supp(v)

∣∣∣∣ ∂∂uΦ∗(u, x)− ∂

∂u
Φ̃(u, x)

∣∣∣∣ = op(1), (5.102)

sup
(u,x)∈U0,× supp(v)

∣∣∣∣ ∂∂x1
Φ∗(u, x)− ∂

∂x1
Φ̃(u, x)

∣∣∣∣ = op(1). (5.103)

Due to Lemma 5.4.4 FS∗ can be written for appropriate u∗i,w ∈ R, i = 1, ..., n, w ∈ supp(fW ),

as

FS∗(u)

= P ∗
(
ĝ(X∗j + bnWj) + ε̂j∗ε (θ̃)− 1

n

n∑
l=1

ε̂l(θ̃) + anξj ≤ u
)

=
1

n2

n∑
i=1

n∑
k=1

P ∗
(
ĝ(Xi + bnWj) + ε̂k(θ̃)−

1

n

n∑
l=1

ε̂l(θ̃) + anξj ≤ u
)

=
1

n2

n∑
i=1

n∑
k=1

∫
Fξ

(
u− ĝ(Xi + bnw)− ε̂k(θ̃) + 1

n

∑n
l=1 ε̂l(θ̃)

an

)
fW (w) dw
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=
1

n2

n∑
i=1

n∑
k=1

∫
Fξ

(
u− gθ0(Xi + bnw)− ε̂k(θ̃)

an

)
fW (w) dw

+
1

n2

n∑
i=1

n∑
k=1

∫
fξ(u

∗
i,w)fW (w)

(
ĝ(Xi + bnw)− gθ0(Xi + bnw) + 1

n

∑n
l=1 ε̂l(θ̃)

an

)
dw

=
1

n2

n∑
i=1

n∑
k=1

∫
Fξ

(
u− gθ0(Xi + bnw)− εk(θ0)

an

)
fW (w) dw + op(1).

As a distribution function Fξ is bounded so that

Var

(
1

n2

n∑
i=1

n∑
k=1

∫
Fξ

(
u− gθ0(Xi + bnw)− εk(θ0)

an

)
fW (w) dw

)
→ 0,

that is

FS∗(u) = E

[∫
Fξ

(
u− gθ0(X1 + bnw)− ε2(θ0)

an

)
fW (w) dw

]
+ op(1)

=

∫ ∫
E

[
Fξ

(
u− gθ0(x+ bnw)− ε2(θ0)

an

)]
fW (w)fX(x) dx dw + op(1)

=

∫ ∫
E
[
I{u−gθ0 (x+bnw)−ε2(θ0)≥0}

]
fW (w)fX(x) dx dw + op(1)

=

∫ ∫
Fε(θ0)(u− gθ0(x+ bnw)

)
fW (w)fX(x) dw dx+ op(1)

=

∫ ∫
Fε(θ0)(u− gθ0(x)

)
fW (w)fX(x) dw dx+ op(1).

Since FS∗ and FBS are distribution functions, this leads to the uniform convergence

sup
t∈R
|FS∗(t)− FBS (t)| = op(1)

and thus to (5.99). To prove (5.100) write Fε(θ0) as

Fε(θ0)(e) = P (ε(θ0) ≤ e)

= P
(
g(X) + ε ≤ h(h−1

θ0
(e+ gθ0(X)))

)
=

∫
Fε
(
h(h−1

θ0
(e+ gθ0(x)))− g(x)

)
fX(x) dx,

which implies

FBS (u) =

∫ ∫
Fε
(
h(h−1

θ0
(u− gθ0(z) + gθ0(x)))− g(x)

)
fX(x)fX(z) dx dz.

for

h−1
θ0

(u) =

 −∞∞
 , if hθ0(y)

 >

<

u for all y ∈ R.

Since h and hθ0 are strictly increasing and FBS is continuous, one has FBS (u1) < FBS (u2) for

all u1 < u2 ∈ (T BS )−1(U0) ⊆ (T BS )−1
((
− FBS (0)

FBS (1)−FBS (0)
,

1−FBS (0)

FBS (1)−FBS (0)

))
. Especially, (T BS )−1
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is strictly increasing on U0, that is, (5.100) follows from (5.99).

Finally, this can be used to obtain

Φ∗i (u|x) =
∂

∂x1
P ∗(U∗j ≤ u|X∗j = x)

=
∂

∂x1
P ∗
(
ĝ(X∗j ) + ε̂j∗ε (θ̃)− 1

n

n∑
l=1

ε̂l(θ̃) + anξ ≤ T −1
S∗ (u)

∣∣X∗j = x

)

=
1

n

n∑
k=1

∂

∂x1
P ∗
(
ĝ(x) + ε̂k(θ̃)−

1

n

n∑
l=1

ε̂l(θ̃) + anξ ≤ T −1
S∗ (u)

)

=
1

ann

n∑
k=1

fξ

(
T −1
S∗ (u)− ĝ(x) + 1

n

∑n
l=1 ε̂l(θ̃)− ε̂k(θ̃)

an

)
∂

∂x1
ĝ(x)

= − ∂

∂x1
ĝ(x)

1

nan

n∑
k=1

fξ

(
T −1
S∗ (u)− ĝ(x) + 1

n

∑n
l=1 ε̂l(θ̃)− εk(θ0)

an

)
+ op(1)

= −
∂
∂x1

ĝ(x)

an

∫
fξ

(
T −1
S∗ (u)− ĝ(x) + 1

n

∑n
l=1 ε̂l(θ̃)− e

an

)
fε(θ0)(e) de+ op(1)

= − ∂

∂x1
ĝ(x)

∫
fξ(e)fε(θ0)

(
T −1
S∗ (u)− ĝ(x) +

1

n

n∑
l=1

ε̂l(θ̃)− ane
)
de+ op(1)

= − ∂

∂x1
gθ0(x)

∫
fξ(e)fε(θ0)

(
(T BS )−1(u)− gθ0(x)

)
de+ op(1)

= − ∂

∂x1
gθ0(x)fε(θ0)

(
(T BS )−1(u)− gθ0(x)

)
+ op(1)

uniformly in (u, x) ∈ U0×supp(v), where the second last equality follows from the continuity

of fε(θ0). The bootstrap functions

∂

∂u
FS∗(u) =

1

n2an

n∑
i=1

n∑
k=1

∫
fξ

(
u− ĝ(Xi + bnw)− ε̂k(θ̃) + 1

n

∑n
l=1 ε̂l(θ̃)

an

)
fW (w) dw,

Φ∗ and ∂
∂uΦ∗ can be treated by similar arguments to obtain

sup
(u,x)∈U0×supp(v)

|Φ∗(u|x)− Φ̃(u|x)|+
∣∣∣∣ ∂∂x1

Φ∗(u|x)− ∂

∂x1
Φ̃(u|x)

∣∣∣∣ = op(1).

Since Q∗ = T −1
S∗ equations (5.100) and (5.88)–(5.89) lead to

sup
y∈R,z∈RdX+1

|w(y)ψ∗(z, T ∗(y))| = Op(1).

�

5.8.9 Proof of Theorem 5.4.9

Borrowing the notations for R∗,Γ∗ and ϕ∗ from the proof of Theorem 5.4.7 recall that ζ∗

can be written as

ζ∗(z1, z2) := E∗
[
w((h∗)−1(S∗3))

(
ψ∗(Z∗1 , U

∗
3 )− ϕ∗(Z∗1 )t(Γ∗)−1R∗(S∗3)

)
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(
ψ∗(Z∗2 , U

∗
3 )− ϕ∗(Z∗2 )t(Γ∗)−1R∗(S∗3)

)
| Z∗1 = z1, Z

∗
2 = z2

]
.

Similar to the proof of Theorem 5.4.7 assumption (A5’) leads to (A5*) from the proof of

Theorem 5.4.7. As before, equation (5.96) remains valid, that is,

P1

(
ω ∈ Ω1 : P 1

2

(
ω,

{
lim sup
m→∞

∣∣∣∣T ∗n,m − 1

m− 1

m∑
i=1

m∑
j=1
j 6=i

ζ∗(Z∗i , Z
∗
j )− b∗

∣∣∣∣ > 0

})
> 0

)
= o(1)

for b∗ = E[ζ∗(Z∗1 , Z
∗
1 )|ω]. Since (A7*) ensures that

P1

(
ω ∈ Ω1 : sup

y∈K,z∈RdX+1

|w(y)ψ∗(z, T ∗(y))| > δ
√
n
)

= o(1) for all δ > 0

and all compact sets K ⊆ R, one has

P1

(
ω ∈ Ω1 : sup

z1,z2∈RdX+1

|ζ∗(z1, z2)| > δn
)

= o(1) for all δ > 0

(boundedness of R∗ and Γ∗ follows as in the proof of Theorem 5.4.7). The same reasoning

as in the proof of Theorem 5.2.2 leads to

E

[(
1

m− 1

m∑
i=1

m∑
j=1
j 6=i

ζ∗(Z∗i , Z
∗
j )

)2 ∣∣∣ω] =
2m2

(m− 1)2
E
[
ζ∗(Z∗1 , Z

∗
2 )2 |ω

]
,

so that

lim sup
m→∞

∣∣∣∣ 1

m− 1

m∑
i=1

m∑
j=1
j 6=i

ζ∗(Z∗i , Z
∗
j ) + b∗

∣∣∣∣ = op(n)

and thus lim sup
m→∞

|T ∗n,m| = op(n) due to (5.96). Referring to Theorem 5.3.1, one has

1

n
Tn = M(γ0) + op(1)

with M(γ0) > 0. Consequently,

P1

(
ω ∈ Ω1 : lim sup

m→∞
P 1

2

(
ω, {Tn ≤ T ∗n,m}

)
> 0
)

= P1

(
ω ∈ Ω1 : lim sup

m→∞
P 1

2

(
ω,

{
1

n
Tn ≤

1

n
T ∗n,m

})
> 0

)

≤ P1

(
ω ∈ Ω1 : lim sup

m→∞
P 1

2

(
ω,

{
M(γ0)

2
≤ 1

n
T ∗n,m

})
> 0

)
+ P1

(
ω ∈ Ω1 :

Tn
n
<
M(γ0)

2

)
= o(1).

In total, (5.37) was proven, that is,

P1

(
ω ∈ Ω1 : lim sup

m→∞
P 1

2 (ω, {Tn ≤ T ∗n,m}) > δ
)

= o(1) for all δ > 0.

It remains to prove

P1

(
ω ∈ Ω1 : Tn > lim sup

m→∞
q∗α

)
= 1 + o(1)
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for all α ∈ (0, 1). Let α ∈ (0, 1). As was shown above, one has

P1

(
ω ∈ Ω1 : lim sup

m→∞
P 1

2

(
ω,

{
nM(γ0)

2
≤ T ∗n,m

})
> 0

)
= o(1).

Therefore,

P1

(
ω ∈ Ω1 : Tn ≤ lim sup

m→∞
q∗α

)
≤ P1

(
ω ∈ Ω1 :

nM(γ0)

2
< lim sup

m→∞
q∗α

)

+ P1

(
ω ∈ Ω1 :

Tn
n
≤ M(γ0)

2

)
= o(1).

�

5.9 Miscellaneous

Finally, some additional statements concerning the case of a finite parameter space as well

as some thoughts about related issues and possible extensions are given.

5.9.1 Finite Transformation Parameter Sets

In this section, the case of a finite parameter set Θ is considered. Hence, when testing for

H0 : h ∈
{

Λθ − Λθ(0)

Λθ(0)− Λθ(0)
: θ ∈ Θ

}
the previous estimation of the transformation parameter now becomes a classification. Fur-

ther, it is no longer possible to take any derivatives with respect to θ, but as will be seen

in the following, this is no longer necessary as well.

Recall that Tn (and analogously the corresponding minimizer θ̃) was defined as

Tn = min
c1,c2,θ

n∑
j=1

w(Yj)(ĥ(Yj)c1 + c2 − Λθ(Yj))
2.

If d(Λθ1 ,Λθ2) > 0 for all θ1, θ2 ∈ Θ with θ1 6= θ2, one can show by the same reasoning as in

the proof of Theorem 5.2.6 that even under the local alternative (5.14) the corresponding

minimizer θ̃ converges in probability to θ0. Since convergence in this context means equality,

the transformation parameter can be considered as known when calculating the asymptotic

distribution as in Theorem 5.2.2. Thus, Tn can be written as

Tn = min
c1,c2

n∑
j=1

w(Yj)(ĥ(Yj)c1 + c2 − Λθ0(Yj))
2 + op(1).

Now one can proceed similarly to Section 5.2 except for the need of estimating the trans-

formation parameter. This leads to

R(s) = (s, 1)t, (5.104)
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while all remaining components can be defined as in Section 5.2 (apart from using definition

(5.104) instead of (5.19)). After inserting these quantities in Theorem 5.2.2 the asymptotic

distribution in (5.25) again holds. Alternatively (although a bit imprecisely), setting all

derivatives with respect to θ equal to zero and “inverting” only the upper left 2× 2-matrix

of the original Γ leads to the same result.

5.9.2 Testing in a Heteroscedastic Model

Recall the considered model and the notations of Chapter 4. Here, some thoughts about

how to adapt the test statistic and the heteroscedastic estimators in (4.20) or (4.21) to

obtain a testing procedure for either the null hypothesis of a parametric transformation or

the precise hypotheses as in (5.28) in the heteroscedastic transformation model

h(Y ) = g(X) + σ(X)ε

for some variance function σ > 0 are presented.

Apart from some other technical assumptions on the nonparametric estimator of h, the

main condition used in this chapter was the linear expansion (5.13)

ĥ(y)− h(y) =
1

n

n∑
i=1

ψ(Zi, T (y)) + op

(
1√
n

)
.

In Chapter 4 it was shown that (under several conditions) the heteroscedastic estimator ĥ

of h fulfils (4.58), that is

ĥ(y)− h(y) = −h(y)
1

n

n∑
i=1

(
Bηi(y) +

∫ y

y1

1

λ(u)
du ψΓ2(Yi, Xi)

)
+ op

(
1√
n

)
(see Chapter 4 for details and the definition of the occurring components). As in the paper

of Colling and Van Keilegom (2019), it should be possible to adjust the heteroscedastic

estimator of h by first transforming the data with T and then applying the techniques of

Chapter 4. The test statistic

Tn = min
θ∈Θ,c1∈C1,c2∈C2

n∑
i=1

w(Yi)(ĥ(Yi)c1 + c2 − Λθ(Yi))
2.

for some appropriate compact sets C1 ⊆ R+, C2 ⊆ R would look as in the homoscedastic

case then.

As mentioned in Chapter 4, equation (4.58) might not always be fulfilled and the nonpa-

rametric estimator in the heteroscedastic model may converge to the true h even under

the null hypothesis with a rate slower than Op
(

1√
n

)
(see for example parts (ii) and (iii)

of Theorem 4.2.6 or Remark 4.2.3). This slower convergence of the estimator might also

induce some additional factor to standardize the test statistic. In the situation of part (iii)

in Theorem 4.2.6, the process given by
√
nh3

y(h̃(y)−h(y)) (for some bandwidth hy and the

estimator h̃ from equation (4.17)) converges weakly to some centred Gaussian process. It

is conjectured that the resulting test statistic would consequently look like

Tn = min
θ∈Θ,c1∈C1,c2∈C2

h3
y

n∑
i=1

w(Yi)(h̃(Yi)c1 + c2 − Λθ(Yi))
2.
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Remark 5.9.1 The convergence rate of the nonparametric estimator ĥ(y) in the hete-

roscedastic model is worse for y ∈ (−∞, y0) (see Theorem 4.2.11), where y0 was defined

in Remark 3.2.1. Note that this problem can be circumvented by choosing the weighting

function such that its (compact) support is contained in (y0,∞).

5.9.3 Basing the Weights on Pretransformed Data

Not only the nonparametric estimation of the transformation function can be based on the

pretransformed data Ûi = T̂ (Yi), i = 1, ..., n, but the weighting as well, leading to the test

statistic

Tn = min
θ∈Θ,c1∈C1,c2∈C2

n∑
i=1

w(Ûi)(ĥ(Yi)c1 + c2 − Λθ(Yi))
2

= min
θ∈Θ,c1∈C1,c2∈C2

n∑
i=1

w(Ûi)(Q̂(Ûi)c1 + c2 − Λθ(Yi))
2,

where Q̂ was defined in (5.46) and C1 ⊆ R+, C2 ⊆ R are some appropriate compact sets.

Due to

min
θ∈Θ,c1∈C1,c2∈C2

n∑
i=1

w(Ûi)(ĥ(Yi)c1 + c2 − Λθ(Yi))
2

= min
θ∈Θ,c1∈C1,c2∈C2

(
1 +Op

(
1√
n

)) n∑
i=1

w(Ui)(ĥ(Yi)c1 + c2 − Λθ(Yi))
2,

this would only have an influence on the asymptotic behaviour of Tn via the weighting term

(that is, basically w(h−1
0 (S)) has to be replaced by w(U) in (5.19)–(5.24)).

Similarly, one can construct a procedure for testing the null hypothesis of a parametric Q

by applying the test statistic

TQn = min
θ∈Θ,c1∈C1,c2∈C2

n∑
i=1

w(Ûi)(Q̂(Ûi)c1 + c2 − Λθ(Ûi))
2.

It is conjectured that this adjustment does have an impact on the asymptotic distribution,

since in contrast to before Q, only affects the test statistic via its estimator Q̂ and no longer

via the distribution of Yi, i = 1, ..., n.
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Conclusion and Outlook

Finally, some concluding remarks on this thesis as well as an outlook on possible future

research topics are given in this chapter. Since more detailed discussions can be found in

each of the previous chapters 2–5, the results of this thesis are viewed from a higher level

perspective here.

In the author’s opinion, the main contribution of this thesis consists rather in the intro-

duction of new ideas and concepts in the context of transformation models and the provision

of corresponding tools to exploit them than in the detailed examination of each of the con-

sidered models and approaches. The first hypothesis test in the literature for a parametric

regression model in a nonparametric transformation model has been presented in Chapter

2. Chapter 3 has provided the first identification result for a nonparametric and heterosce-

dastic transformation model. Consequently, the first estimators for the transformation

function in such models have been given in Chapter 4. In Chapter 5, relevant hypotheses

have been considered for the first time in the literature in the context of nonparametric

transformation models. Here, “relevant” means, that the null hypothesis is rejected if the

transformation function is sufficiently close to the parametric class, which is tested for.

Furthermore, a new bootstrap approach has been developed.

Nevertheless, note that none the research fields, which were treated in the chapters 2–5, is

completed in the sense that each of them offers high potential for further adjustments. To

mention only some examples, a bootstrap procedure would probably increase the perfor-

mance of the test in Chapter 2 and extensions of the theory in Chapter 3 as suggested in

Remark 3.2.6 as well as a further analysis of the performance of the nonparametric estima-

tor in Chapter 4 would be desirable. Moreover, the implementation of a test for the relevant

hypotheses in Chapter 5 and a corresponding simulation study would be worthwhile. See

Sections 2.6, 3.3, 4.4 and 5.6 for more details on possible extensions and adjustments of the

presented results. Furthermore, there are many links between the chapters. The nonpara-

metric estimator of Chapter 4, e.g., can be used similarly to the theory of Chapters 2 and

5 to construct a test for a parametric regression or transformation function, respectively,

in heteroscedastic transformation models.

Of course, there are various opportunities for future research activities, which have not

been considered in this thesis in detail yet. In the remainder, two of such potential research

topics are explained briefly.
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Arguably two of the most important parametric estimators of the transformation parameter

θ0 in the semiparametric model (1.10) have been considered in Section 1.3. The so called

“mean square distance from independence estimator” (MDE) and the “profile likelihood

estimator” (PLE) were developed by Linton et al. (2008). Although it seems that in most

cases the PLE performs better than the MDE, it is mentioned there that at least for small

sample sizes none of the estimators seems to outperform the other. Nevertheless, the PLE

is used much more often in the literature.

As was described in Section 1.3, both of the estimators use the fact that (under some

identification constraints)

εθ := Λθ(Y )− E[Λθ(Y )|X]

is independent from X if and only if θ = θ0 for the true transformation parameter θ0. Note

that the same is true for

δθ := Λθ(Y )−median(Λθ(Y )|X).

There are two main arguments for applying the conditional median instead of the conditio-

nal mean. First, estimation of the mean is much more sensitive to ”inconvenient” data than

the median, e.g., when the error terms are highly skewed. Second, since the transformation

functions are assumed to be strictly increasing, it is

median(Λθ(Y )|X) = Λθ(median(Y |X)).

Therefore, the median has to be estimated only once for all θ ∈ Θ. Both arguments may

induce robustness and reduce computation costs. (Linton et al., 2008) mentioned that the

PLE typically has a smaller variance than the MDE whereas the MDE has a smaller bias.

Applying the conditional median instead of the conditional mean may reduce the variance

so that it no longer has to be the case that the PLE outperforms the MDE. It is worthwhile

to examine if an estimator, which is similar to the MDE, but based on the conditional

median instead of the conditional mean, may even outperform the PLE.

So far, finite dimensional models have been considered. Nevertheless, for various reasons

it is desirable to apply transformation models to functional explanatory variables as well.

Since the functional structure increases the complexity of the model severely, a starting

point for treating functional data could consist in the linear model

h(Y ) = 〈X,β〉+ ε,

where X is a random variable attaining values in some Hilbert space (e.g. L2(R)). As functi-

onal transformation models to the author’s knowledge have not been considered yet, there

are various possibilities for further research activities. For example, the transformation

could be estimated parametrically or nonparametrically. Among others, Cardot, Ferraty,

and Sarda (1999) and Cardot, Mas, and Sarda (2007) dealt with functional (linear) models

in the case without transformations.
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Appendix A

Formalities

A.1 Abstract

Predicting a real valued random variable Y depending on the observation of an RdX -valued

explanatory covariate is a classical issue in statistics. In this context, transformation models

have attracted more and more attention over the last years and decades. Box and Cox (1964)

already introduced transformations of the dependent variable to justify assumptions like

normality, homoscedasticity or additivity of the error terms or to reduce skewness of the

distribution of Y . The transformation model, which is considered throughout this thesis,

can be written in its most general form as

h(Y ) = g(X) + σ(X)ε, (A.1)

where ε is assumed to be independent of X and h, g and σ2 denote the transformation,

regression and variance function, respectively. Apart from questions concerning solvabi-

lity or uniqueness, statisticians especially deal with estimating and testing problems when

looking at models like (A.1). Indeed, each of the four main chapters 2–5 can be classified

into one of these three categories. If not specified differently, let (Yi, Xi), i = 1, ..., n, denote

independent and identically distributed observations from model (A.1).

Chapter 2 belongs to the last category and deals in the situation of homoscedastic errors

with the question if the regression function g belongs to some parametric class {gβ : β ∈ B}.
Here, the parameter space B is a subset of RdB for some dB ∈ N. In contrast to already

existing approaches in the literature, the transformation function is modelled nonparam-

trically. This complicates the estimation of the regression function g as the conditional

expectation and the asymptotic analysis of such an estimator insofar, as the existing uni-

form convergence results for nonparametric estimators ĥ of the transformation function h

in the literature are restricted to compact sets. Therefore, the hypothesis test of Chapter

2 is based on a comparison of the parametric class and an appropriate estimator of the

conditional quantile function of Y given X instead of the estimated conditional expecta-

tion. This approach is motivated by two observations: On the one hand, the conditional

quantile function and the regression function only differ by an additive constant. On the

other hand, the applied estimator of the conditional distribution function of h(Y ) conditi-

onal on X only requires the nonparametric estimator of the transformation function h to
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be evaluated on a compact set. For an appropriate bandwidth hx, a finite measure µ on

(0, 1) and an appropriate estimator F̂ ĥY |X of the conditional distribution function of h(Y )

conditioned on X, the provided test statistic is given by

T ĥn = nh
dX
2
x min

β∈B

∫
min
c∈R

∫
v(x)

(
(F̂ ĥY |X)−1(τ |x)− gβ(x)− c

)2
dxµ(dτ).

The asymptotic behaviour is similar to that of the hypothesis test by Härdle and Mammen

(1993). First, a version of the test statistic in the nonparametric regression model is pro-

vided, before the approach is extended to transformation models. Afterwards, asymptotic

normality of the test statistic is shown in both cases. It is found that the estimation of

the transformation function does not influence the asymptotic distribution. Some of the

techniques, which are applied in the proofs, are also used later in Chapter 5. Finally, two

tests for each of the models with and without transforming the dependent variable are pro-

vided and the finite sample size behaviour is examined.

Chapter 3 addresses the question of uniqueness of the model components in (A.1), which is

called identification of the model. Previous results on identification can not be applied on

such a general model as (A.1) and mostly are restricted to homoscedastic errors. Similar to

the approach of Chiappori et al. (2015), a quotient of partial derivatives of the conditional

distribution function of Y conditional on X is considered. In contrast to the homoscedastic

case, this quotient can not be simply integrated to obtain the transformation function, but

leads to a differential equation, which can be solved uniquely under some common identi-

fication constraints. Moreover, an explicit expression of this solution is given.

Chapter 4 deals with the estimation of the transformation function h in model (A.1). The

estimator presented there is based on the expression of h, which was derived in Chapter

3. Depending on the underlying set, uniform convergence rates up to weak convergence of
√
n(ĥ − h) to a centred Gaussian process are proven. Additionally, the behaviour of the

estimator for finite sample sizes is examined.

Under the assumption of a constant variance function σ2, a test for the hypothesis, if the

transformation function h belongs to a given class of transformation functions {Λθ : θ ∈ Θ}
for some given parameter space Θ ⊂ RdΘ with dΘ ∈ N, is developed in Chapter 5. The

presented approach uses the ideas of Colling and Van Keilegom (2018) to construct a test

statistic on the base of a comparison of a nonparametric estimator ĥ for h and the para-

metric function class. The asymptotic behaviour of the resulting test statistic

T̃n = min
c1∈R+,c2∈R,θ∈Θ

n∑
i=1

w(Yi)(ĥ(Yi)c1 + c2 − Λθ(Yi))
2

is examined and tests for the null hypothesis of a parametric transformation class well as

for the null hypothesis of the transformation function not belonging to the parametric class

are provided. Especially, the latter null hypothesis is interesting since in this case rejection

of the null hypothesis yields evidence for the validity of the parametric model. Quite a

sophisticated bootstrap algorithm is presented and the finite sample size behaviour of the

corresponding test is examined in a simulation study.

Finally, the results of the thesis are summarized and discussed in Chapter 6 and a brief

outlook of possible adjustments and extensions is given.
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A.2 Zusammenfassung

Die Vorhersage einer reellwertigen Zufallsgröße Y in Abhängigkeit einer RdX -wertigen,

erklärenden Variable X stellt eine klassische Fragestellung in der Statistik dar. In den

letzten Jahren und Jahrzehnten haben dabei sogenannte Transformationsmodelle immer

weiter an Bedeutung gewonnen. Bereits Box und Cox (1964) führten Transformationen der

abhängigen Variable ein, um Eigenschaften wie Normalität, Homoskedastizität oder Addi-

tivität der Fehler zu erreichen oder die Schiefe einer Verteilung zu reduzieren. Das in dieser

Arbeit betrachtete Transformationsmodell lässt sich allgemein durch

h(Y ) = g(X) + σ(X)ε (A.2)

beschreiben, wobei Unabhängigkeit von ε und X angenommen wird und h, g und σ2 die

Transformations- und Regressions- beziehungsweise Varianzfunktion des Modells darstellen.

Im Rahmen derartiger Modelle beschäftigt sich die Statistik abgesehen von Fragestellungen

bezüglich der Lösbarkeit des Modells und der Eindeutigkeit dieser Lösungen insbesondere

mit der Schätzung der Modellkomponenten und Hypothesentests, in obigem Fall beispiels-

weise auf eine parametrische Annahme an eine der drei genannten Funktionen. Tatsächlich

lässt sich jedes der vier Hauptkapitel 2–5 dieser Arbeit in eine der drei Kategorien einord-

nen. Sofern nicht anders spezifiziert, seien (Yi, Xi), i = 1, ..., n, unabhängige und identisch

verteilte Realisierungen des Modells (A.2).

Kapitel 2 gehört zur letzten Kategorie und beschäftigt sich unter der Annahme einer kon-

stanten Varianzfunktion σ2 mit der Frage, ob die Regressionsfunktion g in einer parametris-

chen Klasse {gβ : β ∈ B} enthalten ist. Dabei sei der Parameterraum B eine Teilmenge von

RdB für ein dB ∈ N. Im Gegensatz zu bereits existierenden Tests in der Literatur werden

keine parametrischen Annahmen an die Transformationsfunktion h gestellt. Dies schränkt

die Schätzung der Regressionsfunktion als bedingten Erwartungswert beziehungsweise die

asymptotische Behandlung eines solchen Schätzers insofern ein, als gleichmäßige Konvergen-

zresultate für nichtparametrische Schätzer ĥ der Transformationsfunktion h in der Literatur

bisher auf Kompakta beschränkt sind. Daher beruht der Hypothesentest in Kapitel 2 auf

einem Vergleich der parametrischen Klasse mit der geschätzten bedingten Quantilfunktion

von Y gegeben X anstelle der geschätzten bedingten Erwartung. Dieser Idee liegen zwei

grundlegende Beobachtungen zugrunde: Zum einen unterscheiden sich die bedingte Quan-

tilfunktion und die Regressionsfunktion nur um eine additive Konstante. Zum anderen

bedarf es bei geeigneter Schätzung der bedingten Verteilungsfunktion von h(Y ) gegeben

X nur der Auswertung des nichtparametrischen Schätzers ĥ auf einem Kompaktum. Für

eine geeignete Bandbreite hx, ein endliches Maß µ auf (0, 1) und einen geeigneten Schätzer

F̂ ĥY |X für die bedingte Verteilungsfunktion von h(Y ) gegeben X lässt sich die vorgestellte

Teststatistik als

T ĥn = nh
dX
2
x min

β∈B

∫
min
c∈R

∫
v(x)

(
(F̂ ĥY |X)−1(τ |x)− gβ(x)− c

)2
dxµ(dτ)

schreiben. Das asymptotische Verhalten erinnert an den von Härdle und Mammen (1993)

entwickelten Hypothesentest. Zunächst wird eine Version der Teststatistik im nichtpa-

rametrischen Regressionsmodell vorgestellt, bevor der Testansatz auf Transformationsmo-
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delle verallgemeinert wird. In beiden Fällen wird asymptotische Normalität der Teststa-

tistik nachgewiesen, wobei sich die Schätzung der Transformationsfunktion h nicht auf die

asymptotische Verteilung auswirkt. Einige der verwendeten Beweistechniken finden auch

in Kapitel 5 Anwendung. Anschließend werden jeweilige Hypothesentests bereitgestellt und

deren Verhalten für endliche Stichprobenumfänge untersucht.

Kapitel 3 behandelt die Frage der Eindeutigkeit der Modellkomponenten in dem Modell

(A.2). Bisherige Resultate in der Literatur sind auf ein derart allgemeines Modell nicht

anwendbar und meist auf homoskedastische Fehler beschränkt. Ähnlich zu dem Ansatz von

Chiappori, Komunjer und Kristensen (2015) wird ein Quotient von partiellen Ableitungen

der bedingten Verteilungsfunktion von Y gegeben X betrachtet. Allerdings kann dieser nun

nicht mehr einfach integriert werden, um die Transformationsfunktion h zu erhalten, führt

aber auf eine Differentialgleichung, deren Lösungen unter üblichen Identifizierbarkeitsbe-

dingungen eindeutig ist. Ferner wird eine explizite Darstellung der Lösung angegeben.

Kapitel 4 beschäftigt sich mit der Schätzung der Transformationsfunktion h in dem Modell

(A.2). Der vorgestellte Ansatz fußt wesentlich auf dem in Kapitel 3 herausgearbeiteten, ex-

pliziten Ausdruck für h. In Abhängigkeit von der betrachteten Menge werden gleichmäßige

Konvergenzraten bis hin zur schwachen Konvergenz von
√
n(ĥ−h) gegen einen zentrierten

Gaußprozess bewiesen. Abschließend wird das Verhalten des Schätzers für endliche Stich-

probenumfänge untersucht.

Kapitel 5 stellt wieder unter der Annahme einer konstanten Varianzfunktion σ2 einen Hypo-

thesentest bereit, allerdings diesmal für die Hypothese einer parametrischen Transformati-

onsfunktion h, das heißt, ob h in einer gegebenen Klasse {Λθ : θ ∈ Θ} für einen Parameter-

raum Θ ⊆ RdΘ mit dΘ ∈ N liegt. Der vorgestellte Ansatz verwendet die Ideen von Colling

und Van Keilegom (2018), um eine Teststatistik auf Basis eines Vergleichs eines nichtpa-

rametrischen Schätzers ĥ für h mit der parametrischen Funktionenklasse zu konstruieren.

Das asymptotische Verhalten der resultierenden Teststatistik

T̃n = min
c1∈R+,c2∈R,θ∈Θ

n∑
i=1

w(Yi)(ĥ(Yi)c1 + c2 − Λθ(Yi))
2

wird untersucht und Tests sowohl für die Nullhypothese einer parametrischen Transforma-

tionsfunktion als auch für die Nullhypothese einer Transformation außerhalb der gegebenen

Funktionenklasse werden bereitgestellt. Der Test für die letztere Hypothese ist insbesondere

interessant, da eine Ablehnung der Nullhypothese Evidenz für die Gültigkeit des parame-

trischen Modells liefert. Ein recht ausgeklügelter Bootstrapalgorithmus wird vorgestellt

und das Verhalten des zugehörigen Tests für endliche Stichprobenumfänge wird in einer

Simulationsstudie untersucht.

Die Ergebnisse der Arbeit werden abschließend in Kapitel 6 zusammengefasst und bewertet.

Außerdem wird ein Ausblick in mögliche Ergänzungen und Erweiterungen gegeben.

A.3 Publications Related to this Dissertation

The author is involved in two preprints related to transformation models:

• Kloodt and Neumeyer (2019)
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• Kloodt, Neumeyer, and Van Keilegom (2019).

As mentioned in Section 2.2, Kloodt and Neumeyer (2019) contains previous work on good-

ness of fit tests for a parametric regression function as well as on a significance test for

components of the covariate X in the semiparametric transformation model (2.5). The

results have not been included in this thesis. A preprint can be found on

https://arxiv.org/pdf/1709.06855.pdf.

Chapter 5 addressed the question of how to test for a parametric transformation function

in nonparametric transformation models. The preprint of Kloodt et al. (2019) is based on

the results of this Chapter and can be found on https://arxiv.org/pdf/1907.01223.pdf.

A.4 Eidesstattliche Versicherung

Hiermit erkläre ich an Eides statt, dass ich die vorliegende Dissertationsschrift selbst verfasst

und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe.

Nick Kloodt

Hamburg, den 15.10.2019
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