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Abstract

The quantum mechanical description of electromagnetic fields predicts fluctuations in

their amplitude and phase quadrature, that underlay Heisenberg’s uncertainty rela-

tion. When reflected by an object, the fields induce a radiation pressure force. The

amplitude uncertainty causes fluctuations of this force, resulting in quantum radia-

tion pressure noise. The standard quantum limit sets a lower bound for the sum of

radiation pressure noise and shot noise, that will dominate the sensitivity of future

gravitational-wave detectors. In optomechanics the radiation pressure noise is investi-

gated. One fundamental goal is to undercut the standard quantum limit by applying

squeezed states, that have a reduced variance in one quadrature and an amplified vari-

ance in the orthogonal. A shot noise reduction of 2.2 dB in an optomechanical table

top experiment can be found in the literature.

In this work squeezed states were produced in a nonlinear crystal via degenerate

parametric down-conversion. At a sideband frequency of 400 kHz a squeeze factor of

(−8.7± 0.2) dB was measured. In a first experiment the setup was used to demonstrate

how internal squeezing can improve the sensitivity of an interferometric measurement.

An increase of the sensitivity-bandwidth product of 36 % was experimentally observed

for an artificially generated signal.

This thesis further presents a cryogenic optomechanical experiment with a silicon

nitride membrane as mechanical oscillator. The topology of a Michelson-Sagnac in-

terferometer was chosen to realize a Michelson interferometer with the membrane as

end mirror despite its low reflectivity. A contrast of the outcoming modes of 99.7 %

was reached for temperatures down to 100 K. The signal at the dark fringe allowed a

measurement with a shot-noise limited sensitivity for an input power of 50µW.

After calibrating the measured spectra with the theoretical shot noise, the quality

factors of the membrane Q293 ≈ 2.7 · 105 and Q100 ≈ 1.5 · 106 at 293 K and 100 K

could be determined from the resulting displacement spectral density. By injecting

externally produced squeezed states, the quantum shot noise in the presented experi-

ment was reduced by (3.1± 0.2) dB, which corresponds to a factor of
√

2 in the linear

displacement spectral density. For a radiation-pressure-noise limited sensitivity, the

demonstrated application of squeezed states could allow to overcome the standard

quantum limit in the future.
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Kurzfassung

Aus der quantenmechanischen Beschreibung elektromagnetischer Felder folgen Fluk-

tuationen in deren Amplituden- und Phasenquadratur, die der Heisenbergsche Un-

schärferelation unterliegen. Wenn die Felder von einem Objekt reflektiert werden,

erzeugen sie eine Strahlungsdruckkraft. Die Fluktuationen dieser Kraft aufgrund der

Amplitudenunschärfe verursachen das Quanten-Strahlungsdruckrauschen. Das Stan-

dardquantenlimit ist der Minimalwert für die Summe aus Strahlungsdruckrauschen

und Schrotrauschen, der in Zukunft die Sensitivität von Gravitationswellendetektoren

limitieren wird. In der Optomechanik wird das Strahlungsdruckrauschen erforscht.

Ein fundamentales Ziel ist das Überwinden des Standardquantenlimits durch die An-

wendung gequetschter Zustände, deren Varianz in einer Quadratur vermindert aber in

der orthogonalen erhöht ist. In der Literatur findet man eine Schrotrauschreduktion

von 2.2 dB in einem optomechanischem Tischaufbau.

In dieser Arbeit wurden gequetschte Zustände mithilfe der parametrischen Abkon-

version in einem nichtlinearen Kristall generiert. Bei einer Seitenbandfrequenz von

400 kHz wurde ein Quetschfaktor von (−8.7± 0.2) dB gemessen. In einem ersten Ex-

periment mit dem Aufbau wurde demonstriert, wie intern produzierte gequetschte

Zustände die Sensitivität einer interferometrischen Messung verbessern können. Ein

Anstieg des Sensitivität-Bandbreite-Produkts von 36 % wurde für ein künstlich gene-

riertes Signal experimentell beobachtet.

Es wird weiterhin ein kryogenes optomechanisches Experiment mit einer Siliziumni-

trid-Membran als mechanischer Oszillator präsentiert. Die Topologie des Michelson-

Sagnac-Interferometers wurde gewählt um trotz ihrer geringen Reflektivität ein Mi-

chelson-Interferometer mit der Membran als Endspiegel zu realisieren. Für Temper-

aturen bis minimal 100 K konnte ein Kontrast der Moden im Ausgang von 99.7 %

erreicht werden. Das Signal im dunklen Ausgang ermöglichte eine Messung mit einer

vom Schrotrauschen limitierten Sensitivität für eine Eingangsleistung von 50µW.

Nach der Kalibrierung der gemessenen Spektren mit dem theoretischen Schrotrau-

schen konnten die Gütefaktoren der Membran Q293 ≈ 2.7 ·105 und Q100 ≈ 1.5 ·106 bei

293 K und 100 K aus der resultierenden spektrale Dichte der Ortsänderung bestimmt

werden. Durch die Injektion extern produzierter gequetschter Zustände wurde das

Quantenschrotrauschen im präsentierten Experiment um (3.1± 0.2) dB gesenkt, was

einem Faktor
√

2 in der linearen spektralen Rauschdichte entspricht. Für eine vom

Strahlungsdruckrauschen limitierte Sensitivität könnte die demonstrierte Anwendung

von gequetschten Zuständen in Zukunft eine Unterschreitung des Standardquanten-

limits ermöglichen.
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1 Introduction

Optomechanical coupling: The subject of optomechanics investigates the coupling

between electromagnetic fields and mechanical oscillators due to the impulse transfer

of photons. The quantization of light into photons was stated the first time by Albert

Einstein in his explanation for the photoelectric effect [1]. Each photon of a light field

with the frequency ω = 2πf has an energy of E = ~ω and a momentum p = ~ω
c

with

the reduced Planck’s constant ~ [2] and the speed of light c. Because of the high speed

of light, the impulse of a single photon usually does not affect a macroscopic mass

in a measurable order of magnitude. However, for a high-power light beam with a

power P the sum of photons produces an average force of F = 2P
c

on a retro-reflecting

mirror. Already Peter Lebedew stated in 1901 that the sunlight induces a pressure

of 0.4 mg on a black surface of 1 m2 or a pressure of 0.8 mg on a mirror of the same

size. He presented the first experimental observation of an optomechanical force with

a radiometer [3].

The described coupling causes two effects in optomechanical systems. The first is

the dynamical radiation pressure force in optical cavities [4]. The force of the light on

an end mirror of a cavity causes a displacement, which then influences the power of the

light. The power variations result again in a change of the force. It occurs a coupling

between the optical and mechanical degrees of freedom [5]. Such coupling allows for

example the cooling of macroscopic objects to their ground state as demonstrated in

[6]. The second effect is called radiation pressure noise. The phase’s and amplitude’s

uncertainty of an electromagnetic field underlay Heisenberg’s uncertainty relation [7].

The product of the variances of the corresponding operators of these observables can

not go below a certain limit. Hence the precision of measuring both of them is finite.

The quantum shot noise is caused by the phase uncertainty of the electromagnetic field

and occurs during the detection of the light field on a photoelectric detector due to

the fact, that the photons are uncorrelated. Therefore it is also called photon counting

noise. The quantum radiation pressure noise is caused by the amplitude uncertainty

and occurs when the electromagnetic field is reflected by movable objects. Due to the

fluctuations of the acting force exerted by the photons, the deflection of the object

varies, which causes a phase modulation [8]. Even for strong light fields, the optome-

chanical coupling is so small, that it only needs to be considered in the cases of low

masses and high precision experiments.
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Quantum radiation pressure noise in gravitational-wave detectors: The described

effects are relevant for interferometric measurements, in particular for the detection of

gravitational waves [9]. The existence of gravitational waves is a consequence of Al-

bert Einstein’s general relativity theory [10]. Gravitational-wave detectors as GEO600

[11], LIGO [12] and VIRGO [13] base on the concept of a Michelson interferometer

to detect small changes in the arm lengths caused by disturbances in the curvature

of space time. In the updated detectors as advanced LIGO the classical noise sources

as seismic noise, technical laser noise and thermal noise will be reduced to such a low

level, that the sensitivity in a broad frequency range in the audioband will be limited

by the quantum noise [14][15], the sum of the shot noise and the radiation pressure

noise. For advanced LIGO the radiation pressure noise will limit the sensitivity in the

frequency range of 10 to 40 Hz [16].

The input power in an interferometer determines the ratio between shot noise and

radiation pressure noise. By increasing the optical input power of an interferome-

ter, the phase fluctuations can be decreased, however the amplitude fluctuations get

enhanced. As a consequence there exists a frequency dependent optimum power to

reach the minimum quantum noise in interferometric measurements. The resulting

limitation of the sensitivity is called the standard quantum limit.

The application of squeezed Light: An alternative to a light power variation to en-

hance the sensitivity of gravitational-wave detectors is the application of nonclassical

states. The fluctuations of a state in one quadrature can be lower than the fluctuations

of a vacuum state as long as the fluctuations in the orthogonal quadrature are magni-

fied such, that Heisenberg’s uncertainty relation is still fulfilled [17]. These states are

called squeezed states. They were observed the first time in 1985 [18] with a squeeze

factor of 0.3 dB. Over the years the techniques for the generation and detection of

squeezed light improved. The current record value for the squeeze factor of 15 dB was

measured in 2016 [19].

The application of squeezed states to improve the sensitivity of interferometric mea-

surements as for gravitational-wave detection has been theoretically regarded by Caves

[20]. In this approach the states are produced by an external source and injected

2



through the output of the interferometer. This technique has been successfully ap-

plied in current gravitational-wave detectors. The enhancement of the sensitivity with

squeezed states in GEO600 is described in [21]. The implementation of a squeezed-

light source in LIGO resulted in the best broadband sensitivity to gravitational waves

up to this point [22]. Alternative concepts using nonclassical states to improve the

sensitivity of interferometric measurements with cavities are taking advantage of the

white-light-cavity effect [23] or the internal production of squeezed states [24].

The Michelson-Sagnac interferometer as optomechanical experiment: Due to

their scaling, gravitational-wave detectors are not suitable for in depth investigations

of the radiation pressure. Therefore the field of optomechanics covers the fundamen-

tal research of the coupling between electromagnetic fields and mechanical oscillators.

The first experiments by Braginsky, who measured the damping of an oscillator using

microwave radiation [9], were followed by a variety of approaches using different me-

chanical oscillators as microtoroids [25], cantilevers [26], optomechanical crystals [27]

or thin membranes [28][29][30]. Unlike the heavy masses of the optics in gravitational-

wave detectors, these lighter devices with a wide range of mechanical quality factors

and resonance frequencies provide the opportunity to operate interferometric exper-

iments on a small scale. The experiences and results from the investigation of such

optomechanical systems will allow to improve the measurement sensitivity of future

gravitational-wave detectors further.

In this work an optomechanical experiment with the long term goal, to reach and

overcome the mentioned standard quantum limit, is presented. Therefore initially a

radiation-pressure-noise limited sensitivity of an interferometric measurement needs

to be achieved. In [31] the Michelson-Sagnac Interferometer is proposed as a possible

setup to reach the radiation pressure noise for an input power of 1 W at a temperature

of 1 K. The principle bases on a Michelson interferometer whose arms are folded such,

that they are reflected by the same end mirror from the two opposite sides. In this

case a silicon nitride membrane is used as this end mirror of the interferometer, serv-

ing as mechanical oscillator. Due to its low reflectivity, a high percentage of the light

is transmitted in both directions and forms a Sagnac mode at the output. Because

of their high quality factors and low masses such membranes are good candidates to

measure radiation pressure.
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As in gravitational-wave detectors, also in optomechanics the application of squeezed

states can improve the measurement’s sensitivity. Recently the reduction of quantum

shot noise by 2.2 dB with squeezed states has been demonstrated in a table top ex-

periment with an optomechanical magnetometer [32]. Injecting squeezed states into

the proposed Michelson-Sagnac interferometer, as done in this work, can improve the

radiation-pressure-noise limited sensitivity in the future even further, which forms a

crucial step towards beating the standard quantum limit for a broad frequency range.

Thesis structure: The main focus of the presented work is the optimization of an

optomechanical table top experiment with a silicon nitride membrane as a mechanical

oscillator. The chosen topology is a Michelson-Sagnac interferometer. To achieve a

quantum-noise limited sensitivity, classical noise sources as thermal and laser ampli-

tude noise must be suppressed. Therefore the laser noise was investigated and the

setup was designed for low temperatures and cooled down with a cryostat.

The squeezed light for the experiment was generated via the process of degenerate

parametric down-conversion in a nonlinear crystal and measured with a balanced ho-

modyne detector. The source was built up, characterized and the produced states were

injected into the interferometer to enhance the sensitivity by reducing the quantum

shot noise.

The injection of externally produced squeezed states is not the only approach to use

non classical states to enhance an interferometer’s sensitivity. This thesis contains

an excursus describing the demonstration of a different concept: The generation of

squeezed states directly inside the resonator of an interferometer. Using this tech-

nique, the sensitivity-bandwidth product can be improved [24][33].

This thesis is structured as follows:

� Chapter 2 covers the fundamental theoretical concepts of optomechanics and

quantumoptics.

4



� In chapter 3 the silicon nitride membrane as mechanical oscillator is regarded

and the topology of the Michelson-Sagnac interferometer is introduced. An

overview of the noise sources in the setup is given.

� The experimental production of non classical states is described in chapter 4.

The nonlinear processes for the generation and the homodyne detector scheme

for the measurement of squeezed light are explained, as well as the specific setup

used in this work.

� Chapter 5 presents the approach to use internally produced squeezed states to

improve the sensitivity of cavity-enhanced interferometric measurements. The

squeezed-light source was modified to demonstrate this alternative idea in con-

trast to injecting externally produced states.

� In chapter 6 the experimental realization of the Michelson-Sagnac interferom-

eter is described, including the challenges to build the setup for low tempera-

tures, to achieve a high contrast of the outcoming modes and to implement the

squeezed-light source.

� The performance of the experiment is presented in chapter 7. The executed

measurements include the characterization of the silicon nitride membrane as

mechanical oscillator, the detection of the squeezed states by the built source

and the enhancement of the interferometer’s sensitivity by injecting these states.

� Chapter 8 shows the future improvements of the experiment, that will allow

to reach the radiation pressure noise and the standard quantum limit. Besides

some general upgrades, the setup of an active laser amplitude stabilization and

the implementation of a signal recycling mirror is planned.
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2 Theoretical Concepts of Optomechanics and

Quantum Optics

The presented experimental work mainly consists of two parts. The first one is an in-

terferometer with a harmonic oscillator to investigate its mechanical interaction with

the electromagnetic field. The second one is a squeezed-light source to produce non-

classical states that are used afterward to enhance the sensitivity of this interferometer.

Hence this chapter describes the fundamental theoretical concepts of optomechanics

and quantum optics [34] [35] [8] [17].

2.1 The Spectral Density

To analyze an observable x, it can be examined in the time domain x(t) or in the

frequency domain x(Ω). Under the condition that a function is square-integrable, the

Fourier transformation

x(Ω) =

∫ ∞

−∞
x(t)e−iΩt dt (2.1)

is used for the transition from one description to the other. As the later presented

measurements all result from random processes, the observables can not be written as

an analytical function of t or Ω, but can only be described with probabilities pi for a

certain measurement outcome xi. Therefore the expectation value of the measurement

〈x(t)〉 =
∑

pixi (2.2)

is used. Its auto-correlation function

Sx(t, τ) = 〈x(t)x(t+ τ)〉 , (2.3)

expresses how the measurement of x at time t is correlated to a copy of itself at time

t+ τ . The corresponding Fourier transformation

Sx(Ω) =

∫ ∞

−∞
〈x(t)x(t+ τ)〉 e−iΩt dt (2.4)

is called the spectral density. As equation (2.4) is symmetric in such way that |Sx(Ω)|2 =

|Sx(−Ω)|2 , it is often more convenient to only consider positive frequencies. A factor

of 2 is necessary for the scaling of this so called single-sided spectral density. Then the

7



back transformation with Sx(t, 0) = ∆2x yields to

〈
x2
〉

=

∫ ∞

0

2

2π
Sss
x (Ω) dΩ . (2.5)

2.2 The Mechanical Oscillator

2.2.1 The Harmonic Oscillator Transfer Function

The starting point to describe a harmonic oscillator is Newton’s second law for a

position dependent storing force Fspring = −κx(t) with the equation of movement x(t)

induced by an external force Fext and a spring constant κ. The movement is damped

by a force Fdamp(x(t), ẋ(t)). It applies

m
d2

dt2
x(t) + Fdamp(x(t), ẋ(t)) + κx(t) = Fext . (2.6)

In [35] it is shown how to solve the latter equation using Fourier transformation. When

multiplied with e−iΩt and integrated from t = −∞ to t =∞, the differential equation

(2.6) transforms to

∫ ∞

−∞
e−iΩt

(
m
d2

dt2
x(t) + Fdamp(x(t), ẋ(t)) +mΩ2

0x(t)

)
dt =

∫ ∞

−∞
e−iΩtFext(t) dt (2.7)

with the resonance frequency Ω2
0 = κ

m
. Under the condition that x(t = ±∞) = 0, the

Fourier transformation can be written as:

ẋ(Ω) =

∫ ∞

−∞
e−iΩt

d

dt
x(t) dt (2.8)

= [e−iΩtx(t)]∞−∞︸ ︷︷ ︸
=0

−(−iΩ)

∫ ∞

−∞
e−iΩx(t) dt

︸ ︷︷ ︸
x(Ω)

. (2.9)

Inserting ( d
dΩ

)nx(Ω) = (iΩ)nx(Ω) in equation (2.6) leads to:

[
−mΩ2 + i

Fdamp(x(Ω), ẋ(Ω))

ix(Ω)
+mΩ2

0

]
x(Ω) = Fext(Ω) . (2.10)

To receive a solution for x(Ω) it is defined that:

κdamp(x(Ω), ẋ(Ω)) =
Fdamp(x(Ω), ẋ(Ω))

ix(Ω)
. (2.11)

8



It follows:

x(Ω) =


 1

mΩ2
0

1− Ω2

Ω2
0
− iκdamp

mΩ2
0

(1− Ω2

Ω2
0
)2 + (

κdamp

mΩ2
0

)2


Fext(Ω) (2.12)

= H(Ω)Fext(Ω) . (2.13)

Here H(Ω) stands for the complex oscillator transfer function with arg[H(Ω)] = φ(Ω)

describing the phase difference between the excitation of the oscillator and its reaction.

Assuming that κdamp 6= 0, there are two damping mechanisms to consider. The viscous

damping is caused by residual gas in the surrounding of the oscillator and therefore

dependent on the velocity ẋ(t) [36]. In this case the damping force is:

Fdamp,vis = −γmẋ(t) (2.14)

with the damping coefficient γ. It applies κdamp(Ω) = γmΩ. The internal losses of the

oscillator cause the second damping mechanism, the structural damping. One assumes

a repulsively acting internal force

Fdamp,str = −κ(1 + iφ(Ω))x(Ω) . (2.15)

According to [37] the function φ(Ω) is approximately flat for a large range of frequen-

cies, hence for simplicity it is assumed to be constant.

2.2.2 The Mechanical Quality Factor

The energy dissipation of a mechanical oscillator is quantified with the quality factor

Q. It determines the time t, that the energy of an oscillator needs to drop down to a

fraction of 1/e of the initial energy value E0:

E(t) = E0e
−Ω0t

Q . (2.16)

For the viscous and structural damping, the quality factors Qvis and Qstr are given by:

Qvis =
Ω0

γ
, (2.17)

Qstr =
1

φ
. (2.18)
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For the harmonic oscillator these yield to the corresponding transfer functions:

Hvis =
1

mΩ2
0

1

(1− Ω2

Ω2
0
) + i 1

Qvis

Ω
Ω0

, (2.19)

Hstr =
1

mΩ2
0

1

(1− Ω2

Ω2
0
) + i 1

Qstr

(2.20)

with the real parts

<Hvis =
1

mΩ2
0

1√
(1− Ω2

Ω2
0
)2 + ( 1

Qvis

Ω
Ω0

)2
, (2.21)

<Hstr =
1

mΩ2
0

1√
(1− Ω2

Ω2
0
)2 + ( 1

Qstr
)2
. (2.22)

In the case of several damping mechanisms acting on the oscillator, the sources add

up and it applies:
1

Qtotal

=
∑

i

1

Qi

. (2.23)

An alternative definition of the mechanical quality factor is [37]:

Q =
|H(Ω0)|
|H(0)| (2.24)

=
Ω0

∆Ω
(2.25)

with ∆Ω = 2π · FWHM being the angular full width half maximum width. Its value

and therefore also the quality factor can be determined from an oscillator’s transfer

function as it is illustrated in figure 2.1.

2.3 Fundamentals in Quantum Optics

2.3.1 The Quantization of the Electrical Field

In the experimental part of this framework the quantum noise of interferometric mea-

surements is investigated. To explain its cause the quantum mechanical character

of electromagnetic fields needs to be considered. The expressions for a single mode

field with frequency ω in a standing wave cavity propagating in z- and polarized in x

10



10−4

10−3

10−2

0.1

1

10

105 fres =
Ω0
2π

106 107

Q =
∣∣∣H(Ω0)
H(0)

∣∣∣ Q = Ω0
∆Ω = fres

FWHM

|H
(Ω

)|
(m

/
N
)

frequency (Hz)

Figure 2.1: Transfer function of a harmonic oscillator: The used parameters
in this theoretical curve illustrating equation (2.21) are a quality factor of Q = 50, a
mass of m = 20 ng and a resonance frequency of fres = 500 kHz. The quality factor
given by the relation in equation (2.25) can be determined as the ratio between the
peak height and the initial value or between the resonance frequency fres = Ω0

2π
and

the full width half maximum FWHM = ∆Ω
2π

.
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direction follow directly from the Maxwell equations. The electrical field is

Ex(z, t) =

√
2ω2

V ε0
q(t) sin(kz) (2.26)

and the magnetic field is

By(z, t) =
µ0ε0
k

√
2ω2

V ε0
p(t) cos(kz) (2.27)

with ε0 being the vacuum permittivity, µ0 being the vacuum permeability, V being

the effective quantization volume and k being the wave number. The variable q(t) de-

scribes the canonical position and its derivative p(t) = q̇(t) the momentum. Replacing

the operators Ê and B̂ by the operator equivalents q̂ and p̂, the Hamiltonian becomes

Ĥ =
1

2
(p̂2 + ω2q̂2) . (2.28)

In the next step, the non Hermitian annihilation operator â and creation operator â†

are introduced, such that

âω =
1√
2~ω

(ωq̂ + ip̂) , (2.29)

â†ω =
1√
2~ω

(ωq̂ − ip̂) (2.30)

with

[âω, â
†
ω] = 1 (2.31)

with the reduced Planck’s constant ~. Applied on the state of an electromagnetic field,

the annihilation operator lowers the photon number by one, the creation operator

increases it by one. The Hamiltonian then transforms to

Ĥ = ~ω(â†ωâω +
1

2
) = ~ω(n̂+

1

2
) (2.32)

with photon number operator

n̂ = â†ωâω . (2.33)

12



By applying the operator â†ω on the ground state |0〉 repeatedly, any state |n〉 can be

created. The such created states are called Fock states [38]:

|n〉 =
(â†ω)n√
n!
|0〉 . (2.34)

2.3.2 Quantum Fluctuations

The fluctuations of an electric field are described by its variance

∆E2
x =

〈
∆2Êx(z, t)

〉
(2.35)

=
〈
Ê2
x(z, t)

〉
−
〈
Êx(z, t)

〉2

. (2.36)

For a Fock state |n〉 this results in:

∆E2
x =
√

2E0 sin(kz)

√
n+

1

2
(2.37)

with the amplitude of the electric field E0. From equation (2.37) follows that even

for a vacuum state with n = 0, it applies ∆E2
x > 0. These fluctuations are called the

vacuum fluctuations [39][17].

2.3.3 The Definition of the Quadrature Operators

With the previously introduced annihilation and creation operators the quadrature

operators for an electromagnetic field with frequency ω are defined as:

X̂ω =
1

2
(âω + â†ω) , (2.38)

Ŷω =
1

2i
(âω − â†ω) , (2.39)

such that

[X̂ω, Ŷω] =
i

2
. (2.40)

X̂ω describes the amplitude of the light, Ŷω its phase.

2.3.4 The Description of Squeezed States

Accordingly the Hamiltonian for the amplitude and phase quadrature operators is:

Ĥω = ~ω(X̂2
ω + Ŷ 2

ω ) (2.41)

13



such that it applies ∆2X̂ω = ∆2Ŷω = 1
4

for the ground state with 〈n̂〉 = 0. The

presented equations correspond to the ones of a harmonic oscillator and thus are fun-

damental to describe the wave character of photons and to transfer from classical

optics to quantum optics. Whereas the phase quadrature is well defined as zero in

classical physics, it has an uncertainty unequal to zero around its expectation value

in quantum physics.

In interferometry signals at modulation frequencies Ωi much lower than the angu-

lar light frequency ω are targeted to be measured. Therefore the current given by a

photodetector in the output is decomposed into intervals of width ∆Ω measuring the

signals in Ωi ± ∆Ω
2

. For each of these intervals, there exists a pair of non commuting

operators, that describe the signal and noise carried by the light at these frequencies.

The spectrum of the Fourier components is the so called window function and the

modulation of the electric field in the corresponding interval is the so called modu-

lation mode. The modulation modes at a frequency Ω are described by the sum of

the the carrier frequency ω of the light beam, the lower sideband with ω −Ω and the

upper sideband with ω + Ω [8][40].

To describe the modulation modes, the short forms X̂ := X̂Ω,∆Ω and Ŷ := ŶΩ,∆Ω

will be used from this point. Usually these operator pairs are time independent con-

cerning quantum noise, but time dependent concerning signals like a gravitational

wave measured by an interferometer. For these new operator pairs, the Hamiltonian

of the modulation mode reads [8]:

Ĥ = ~Ω(â†â+
1

2
) = ~Ω(X̂ + Ŷ ) . (2.42)

â and â+ are the annihilation and creation operators for the modulation mode with

the commutator [â, â†] = 1. X̂ is called the amplitude quadrature and Ŷ is called

the phase quadrature. As for the corresponding operators for the light mode, it also

applies for the modulation mode:

â = X̂ + iŶ , (2.43)

â† = X̂ − iŶ (2.44)

and

[X̂, Ŷ ] =
i

2
. (2.45)
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For two operators Â and B̂ the product of their variances is fundamentally limited by

〈
∆2Â

〉〈
∆2B̂

〉
≥ 1

4

∣∣∣
〈

[Â, B̂]
〉∣∣∣

2

, (2.46)

which is the so called Heisenberg uncertainty relation [7][17]. Applied on the quadra-

ture operators X̂ and Ŷ this limit calculates as

〈
∆2X̂

〉〈
∆2Ŷ

〉
≥ 1

16
. (2.47)

For the ground state it applies

〈
∆2X̂vac

〉
=

1

4
=
〈

∆2Ŷvac

〉
. (2.48)

But also states with uneven ∆2X̂ and ∆2Ŷ exist. According to [41] a state is called

squeezed if the variance in one quadrature is below 1
4
. This does not only apply for X̂

or Ŷ , but for any arbitrary quadrature

X̂θ = X̂ cos(θ) + Ŷ sin(θ) , (2.49)

such that 〈
∆2X̂θ

〉
<

1

4
. (2.50)

Then θ is called the squeeze angle. As the Heisenberg uncertainty relation given in

equation (2.47) has to stay fulfilled for a squeezed state, the variance of the orthogonal

quadrature will always be increased or antisqueezed. Figure 2.3.4 illustrates the shape

of the quantum noise for a vacuum state, a state with squeezed amplitude quadrature,

a state with squeezed phase quadrature and a state squeezed for an arbitrary angle θ.

The factor ξ, by which the variance is reduced in comparison to the vacuum state, is

called the squeeze factor and usually given as a value on the dB scale. The conversion

is [8]

PdB = −10 · log10

( ∆2X̂θ

∆2X̂vac

)
. (2.51)

A different description is given by the squeeze parameter r with:

e−2r =
∆2X̂θ

∆2X̂vac

. (2.52)
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Figure 2.2: Quantum noise for a ground state and vacuum states, that are
squeezed in different quadratures: The quantum noise can be visualized in the
shown quadrature picture. Even for a ground state (top left) the quantum fluctuations
are not zero. These vacuum fluctuations are equal in both quadratures, the amplitude
quadrature X̂ and the phase quadrature Ŷ . A state is squeezed if the fluctuations are
below 1

4
in one of the quadratures as in the top right for the X̂ and the bottom left

for Ŷ . r is called the squeezed parameter. A state can be squeezed for any chosen
quadrature angle θ between these two as well. In the bottom right a squeezed state
in the quadrature X̂θ is pictured. Then θ is called the squeeze angle.
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To squeeze a state mathematically, the squeeze operator

Ŝ = e
1
2

(ξ∗ââ−ξ(â†â†)) (2.53)

with

ξ = reiθ (2.54)

is introduced [17]. Its expectation values for the annihilation and creation operators

are:

Ŝ†âŜ = â cosh(r)− â†eiθ sinh(r) , (2.55)

Ŝ†â†Ŝ = â† cosh(r)− âe−iθ sinh(r) . (2.56)

From these results the variances for X̂ and Ŷ as defined in equations (2.38) and (2.39)

follow as

〈
∆2X̂

〉
=

1

4
[cosh2(r) + sinh2(r)− 2 sinh(r) cosh(r) cos(θ)] , (2.57)

〈
∆2Ŷ

〉
=

1

4
[cosh2(r) + sinh2(r) + 2 sinh(r) cosh(r) cos(θ)] . (2.58)

For θ = 0 one receives

〈
∆2X̂

〉
=

1

4
e−2r , (2.59)

〈
∆2Ŷ

〉
=

1

4
e2r , (2.60)

which corresponds to a state that is squeezed in the X̂ quadrature. As described in

[17] it can be shown, that applying Ŝ for an arbitrary squeeze angle θ will squeeze the

state in the X̂θ quadrature.
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3 The Optomechanical Setup with Silicon Nitride

Membrane

Today’s optomechanical experiments work a variety of oscillators is examined, whose

masses, mechanical quality factors and resonance frequencies vary over several orders

of magnitude. Examples are kilogram scale mirrors as the ones in gravitational-wave

detectors [42][12], gram-scale mirrors [43], microtoroids [25], cantilevers [26], optome-

chanical crystals [27] or thin membranes made of silicon nitride as the one chosen for

the presented experiment. Its properties will be described in this chapter.

For the presented work, the topology of a Michelson-Sagnac interferometer was used.

Its advantages over a classical Michelson interferometer will be explained and its prop-

erties are discussed. The goal is to reach a displacement spectral density of the output

signal that is dominated by shot noise at first, as a second step by the radiation pres-

sure noise. To determine the requirements for the table top experiment described in

chapter 6 the contributions of these quantum noise sources, as well as of the classical

noise sources are estimated [35][29][34][31][44][8].

3.1 The Silicon Nitride Membrane

The mechanical oscillator used for the presented optomechanical experiment is a sili-

cone nitride (SiN) membrane, that was produced by Norcada [46]. The thin material

is strained in a silicon frame as shown on the photo on the left in figure 3.1. Nor-

cada offers these with window sizes varying from 0.5 mm × 0.5 mm to 2 mm × 2 mm

and thicknesses from 30 nm to 200 nm. These devices have quality factors of 106 to

107 and typical resonance frequencies between 10 kHz and 1 MHz depending on the

thickness, size and intrinsic tension [47]. They have been used in several Fabry-Perot

interferometers to measure dispersive coupling [48][49], for optical cooling [28] and to

demonstrate optomechanically induced transparency [50]. In Michelson-Sagnac inter-

ferometers they served as mechanical oscillators in various experiments as [51], [52],

[29] and [30].

The membrane is a dielectric medium with transmission and reflection occurring on

both optical surfaces between vacuum and material. The reflectivity and transmission

can be described by the Fresnel equation [53]. According to [52], the membrane’s
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Figure 3.1: Photo of a silicon nitride membrane (left) and dependency of the
membrane reflectivity on the membrane thickness (right): The photographed
membrane produced by Norcada has a window of 1 mm × 1 mm and a thickness of
100 nm. The plotted curve of equation (3.1) is given for a membrane with a refractive
index of nSiN = 1.996 [45] at a wavelength of λ = 1550 nm. The power reflectivity
Rm = r2

m fluctuates periodically with increasing thickness dm.

reflectivity in vacuum rm for a wavelength λ can be calculated as:

rm = − (n2
SiN − 1) sin(kLnSiNdm)

2inSiN cos(kLnSiNdm) + (n2
SiN + 1) sin(kLnSiNdm)

(3.1)

with kL being the wave number and nSiN being the refractive index of the membrane

material. The dependency of the power reflectivity Rm = r2
m on the membrane thick-

ness dm is pictured on the right in figure 3.1 for a wavelength of 1550 nm and the

corresponding index nSiN,1550 = 1.996 [45]. The membrane acts as a Fabry-Perot

etalon. Therefore the reflectivity depends on the thickness. At this wavelength a

maximum reflectivity of r2
m,max = 0.358 can not be overcome. For the thickness of the

used membrane of dm = 100 nm the theoretical resulting power reflectivity is:

Rm = r2
m,theo = 0.231 . (3.2)

In contrast to a classical pendulum, the membrane is not a stiff mass, but has an

oscillating mass distribution with boundary conditions. For its oscillation properties

not the real mass mreal, but its so called effective mass meff needs to be determined,

such that the differential equation for a harmonic oscillator given in equation (2.6) is
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fulfilled. As derived in [44] it applies

meff =
mreal

4
. (3.3)

The resonance frequency of the membrane depends on its dimensions lx and ly, the

intrinsic tension T , and the mass per area µ. According to [44], the resonance frequency

Ωm,n
res for an (m,n)-mode is given by

Ωm,n
res = π

√
T

µ

(m2

l2x
+
n2

l2y

)
. (3.4)

The membrane in the later presented experiment was a stochiometric high stress mem-

brane with a thickness of dm = 100 nm and a square window with a size of 1 mm×1 mm.

According to [54] the membrane material had a mass density of ρ = (2.84±0.2) ·103 kg
m3

and the intrinsic tension was T ≈ 1 GPa [46]. The calculated effective mass of the

membrane therefore was

meff = (71± 5) ng (3.5)

and the resonance frequency of the (1,1) mode was expected to be

f 1,1
res =

Ω1,1
res

2π
(3.6)

≈ 418 kHz . (3.7)

3.2 The Michelson-Sagnac Interferometer

Laser interferometers are used for precise measurements of small optical length changes.

In a Michelson interferometer a beamsplitter splits an electromagnetic field into two

arms. Both beams are reflected back and interfere on the same beamsplitter. A change

of their path lengths results in a phase difference between the fields and therefore in

an amplitude quadrature change of their sum. This effect can be measured with a

photodetector. For length changes much smaller than the used laser wavelength, the

differential phase change describes the change in the phase quadrature in very good

approximation as well. This shall be applied to measure the displacement of the mem-

brane as mechanical oscillator.

Using the membrane as an end mirror of a Michelson interferometer is challenging

due to its low power reflectivity. For 1550 nm it applies r2
m,theo = 0.23 for the mem-

brane. To avoid losses due to the high transmission a combination of a Michelson and
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Figure 3.2: The Michelson-Sagnac interferometer topology: The incoming
light is split up into two fields on the 50/50 beamsplitter. Both are reflected at the
two steering mirrors and hit the membrane. The transmitted parts run through the
triangular setup in opposite directions and interfere on the beamsplitter as a Sagnac-
interferometer signal. The retro reflected parts interfere on the beamsplitter as a
Michelson-interferometer signal.

a Sagnac interferometer was chosen. This so called Michelson-Sagnac interferometer

(MSI) topology has already been successfully used in previous experiments as in [29]

and [30].

The MSI as shown in figure 3.2 consists of a typical Sagnac-interferometer setup with a

balanced beamsplitter and two steering mirrors. The input light with amplitude ain is

split up at the beamsplitter with reflectivity rbs and transmission tbs. The transmitted

and the reflected beam run through the interferometer formed by the two mirrors in

opposite directions before being overlapped again on the beamsplitter. In addition the

membrane is placed in the middle between both mirrors, such that a fraction rm of the

light is reflected on each side and interferes as well on the beamsplitter. In consequence

the output field does not only contain a Sagnac mode, but also a Michelson mode.

This topology provides the signal of a Michelson interferometer with the membrane

as end mirror, but the transmitted fraction tm does not leave the interferometer as

optical loss.

The amplitude at the output port of the interferometer is formed by the sum of
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all four light fields [35]:

aout = aintmr
2
bse

iθS1 + aintmt
2
bse

iθS2

︸ ︷︷ ︸
Sagnac mode

+ ainrmrbstbse
iθM2 + ainrmrbstbse

iθM2

︸ ︷︷ ︸
Michelson mode

. (3.8)

To quantify the output signal, the phases (θS1, θS2) of the Sagnac mode and the

phases (θM1, θM2) of the Michelson mode need to be determined. They depend on the

distances between the beamsplitter and the two sides of the membrane l1 and l2, as

well as on the phase shifts θmt and θmr that occur when the light is transmitted and

reflected by the membrane:

θS1 =
2π

λ
(l1 + l2) + θmt + π , (3.9)

θS2 =
2π

λ
(l1 + l2) + θmt , (3.10)

θM1 =
4π

λ
l1 + θmr + π , (3.11)

θM2 =
4π

λ
l2 + θmr . (3.12)

The phase flips on the beamsplitter must add up to π
2

to comply with the energy

conservation [55]. Therefore a flip of π for the reflection of the input beam was defined.

The interferometer output amplitude normalized to the input amplitude transforms

to
aout

ain

= tme
iθS1(t2bs − r2

bs)︸ ︷︷ ︸
Sagnac mode

+ rbstbsrme
i
2

(θM1+θM2)2 cos
(θM2 − θM1

2

)

︸ ︷︷ ︸
Michelson mode

. (3.13)

Here the equation

eix + eiy = 2e
i
2

(x+y) · cos
(x− y

2

)
(3.14)

[56] was used. Equation (3.13) shows that the amplitude of the Sagnac mode is

independent of a membrane displacement. From now on the beamsplitter is assumed

to be perfectly balanced with rbs =
√

0.5 = tbs, such that the Sagnac mode is equal to

zero and can be neglected. In this ideal case only the Michelson mode remains. The

sum θM1+θM2 is also independent of the membrane displacement. For the calculation of

the output power, the modulus square of e
i
2

(θM1+θM2) vanishes. The difference between

the phases θM2 − θM1 describes the influence on the output power caused by an arm

length change due to a displacement of the membrane. The normalized output power
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of the interferometer is given by:

Pout

Pin

=

∣∣∣∣
aout

ain

∣∣∣∣
2

=
r2

m

2

[
1 + cos

(8π

λ
∆x
)]

. (3.15)

The argument 8π
λ

∆x describes the phase change caused by a membrane displacement

∆x from its original position. At this point, a difference to a classical Michelson

interferometer as described in [8] should be mentioned. A displacement ∆x of the

membrane induces a differential arm length difference of ∆l = 2 |l1 − l2|, whereas a

displacement of one mirror in a simple Michelson interferometer only induces an arm

length difference of ∆l = |l1 − l2|.

The maximum output power is achieved at the so called bright fringe for ∆x = λ
8
· 2n

and the minimum output power at the so called dark fringe for ∆x = λ
8
· (2n+ 1) with

n ∈ N.

These conditions are a good approximation for the experiment, however, a real beam-

splitter is never perfectly balanced. In figure 3.3 the normalized power transmission of

the interferometer according to equation (3.13) is shown for two different beamsplitter

reflectivities. Using the example |r2
bs − t2bs| = 0.1 it illustrates that even for the case

of an unbalanced beamsplitter, there is a dark fringe with Pout

Pin
= 0. In comparison

to the perfectly balanced case, the dark fringe is reached for a slight detuning. At

this point, the leftover Sagnac mode, which is not completely dark for an unbalanced

beamsplitter, interferes with the Michelson mode destructively. The height of the

maxima become uneven. In the low maxima the constructively interfering Michelson

mode interferes destructively with the leftover Sagnac mode, in the high maxima con-

structively. It has to be considered that correlated amplitude noise of the light in both

arms does not vanish as for the balanced case, which is relevant for the impact of the

laser noise, which is regarded in section 3.4.2. For this reason, the goal is to achieve

a good balancing and therefore a high contrast with even heights of the maxima.

3.3 Quantum Noise Sources in the Interferometer

3.3.1 The Shot Noise

The laser light has a quantum uncertainty in the differential phase quadrature YΩ,∆Ω.

As the photons are uncorrelated, the events of arriving photons are random. This

effect causes the so called shot noise.
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Figure 3.3: The transmission of the interferometer for a balanced and an
unbalanced beamsplitter: The function following from equation (3.13) shows the
normalized square of the Michelson-Sagnac interferometer transmission plotted against
the membrane displacement ∆x for the calculated power reflectivity r2

m,theo = 0.23 of
the membrane. Even for an unbalanced beamsplitter with |r2

bs − t2bs| = 0.1 complete
destructive interference can be realized. At a point slightly detuned from dark fringe
of the balanced case, the Sagnac mode and the Michelson mode cancel out, such that
the output power gets zero.
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In the interferometer output a photodetector measures the photons arriving at times

tk:

I(t) =
∑

k

δ(t− tk) (3.16)

with the average photon number Ī = n̄. The single-sided spectral density from equa-

tion (2.4) for this case is:

|SI(Ω)| = 2n̄ . (3.17)

The power charge of each photon of the laser with an optical power P and a frequency

ω = 2πc
λ

is ~ω = 2πc~
λ

. The proportionality constant ~ is the reduced Planck [2]. The

power spectral density is:

|SP (Ω)| = 2 · 2πc~
λ

P . (3.18)

This result describes the shot noise of the light field. It appears on the photodetector

in the output of the Michelson-Sagnac interferometer. As the wavelength λ is given

by the used laser, the output power Pout is the relevant parameter for the influence

of the shot noise. As common in [57], [36] and [8], for the further thesis the linear

spectral density, given by

√
SMSI

SN =
√

2~ωPout (3.19)

=

√
4πc~Pout

λ
, (3.20)

will be used. The shot noise itself is not induced by a membrane displacement, but

by the photons arriving on the photodetector. Nevertheless, it is indistinguishable

from the interferometric signal. They differ however in their dependency of the input

power. Whereas the shot noise scales with
√
Pin, the signal scales with Pin. The

shot noise single sided spectral density normalized to a signal induced by a membrane

displacement ∆x in units of m√
Hz

is:

√
SMSI

SN,x =

√
SMSI

SN

δPout/δx
(3.21)

=

√
~cλ

8πr2
mPin

1 + cos(8π
λ

∆x)

sin2(8π
λ

∆x)
, (3.22)

where equation (3.15) was used. SMSI
SN,x has its minimum in ∆x = λ

8
× (2n+ 1), which

matches the dark fringe condition from section 3.2. In this case of Pout(∆x = λ
8
) = 0,
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the single sided spectral density of the impact of the shot noise is

√
SMSI

SN,x =

√
~cλ

16πr2
mPin

. (3.23)

According to this result, the shot noise of a setup with defined laser wavelength λ and

a membrane with reflectivity rm can only be decreased by using a higher laser input

power Pin. An alternative option is the injection of squeezed states as it is described

in section 6.3.

3.3.2 The Radiation Pressure Noise

The second quantum noise source is caused by the quantum uncertainty of the differen-

tial amplitude quadrature XΩ,∆Ω of the laser light. The photons hitting the membrane

cause a radiation pressure force. Due to the uncertainty of the amplitude, this force is

not constant. This effect is the origin of the so called quantum radiation pressure noise.

Each photon, that is reflected by the membrane, induces a force of F = 2~ω
c

. The

sum of the forces of all photons for a light power P is FP = 2
c
P . Coming from equa-

tion (3.17) the single sided radiation-pressure-noise spectral density can be derived

similar as for the shot noise:

√
SF

RPN,x =

√
16π~P
cλ

. (3.24)

In the Michelson-Sagnac interferometer a power of P = r2
mPin is reflected and therefore

causes a force on the membrane. To receive the spectral density for the resulting

displacement, equation (3.24) must be multiplied with the oscillator transfer function

from equation (2.19):

√
SMSI

RPN,x = |H(Ω)|
√

16π~r2
mPin

cλ
. (3.25)

A more detailed derivation, which also shows that the photons being reflected on both

sides of the same oscillator don’t compensate each other, can be found in [31]. Even

if the beamsplitter is perfectly balanced, the radiation pressure uncertainties from the

two arms don’t cancel each other out due to the vacuum fluctuations entering through

the open port at the output of the beamsplitter of the interferometer. In consequence

of the phase flip on the beamsplitter due to the energy conservation, the vacuum fluc-

tuations in both arms are anti correlated and the displacement noise sums up.
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In contrast to the shot noise, the radiation pressure noise increases for high light

powers as it follows from equation 3.25.

Figure 3.4 shows the displacement spectral densities of the two quantum-noise sources

in dependency of the measurement frequency f = Ω
2π

for two different input powers

Pin. The power reflectivity r2
m,theo = 0.23 and the effective mass of meff = 71 ng corre-

spond to the membrane used for the presented work. For Pin = 1 W the shot noise is

three orders of magnitude higher than the radiation pressure noise. In a measurement

of the total displacement spectral density only the tip of the resonance peak would

be visible. To see the whole peak of the radiation pressure noise, the incoming light

power needs to be increased by four orders of magnitude. For such high laser powers,

issues like thermal lensing in the beamsplitter and heating of the membrane due to

absorption would appear. In addition the power of the used laser is limited in the

experiment, therefore different techniques as injecting squeezed stated as described in

6.3 or using signal recycling as described in section 8.4 need to be applied to reach a

spectrum, that is radiation-pressure-noise limited over a broad frequency range.

3.3.3 The Standard Quantum Limit

The total quantum noise of an interferometer is given by the sum of the shot noise

from equation (3.23) and the radiation pressure noise from equation (3.25). Both

variances add up when the output light is detected. As

√
SMSI

SN,x ∝
1√
Pin

(3.26)

an input power increase results in a lower shot noise. However it applies

√
SMSI

RPN,x ∝
√
Pin , (3.27)

such that an input power increase results in a higher radiation pressure noise. There-

fore for every measurement frequency, there is an optimum power to receive the small-

est sum of both two. However, for uncorrelated radiation pressure and shot noise,

the total quantum noise can not decrease below a minimum value, which is therefore
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Figure 3.4: Quantum radiation pressure noise and shot noise for input
powers of 1 W (top) and 10 kW (bottom): The used parameters in these models
given by equations (3.23) and (3.25) are a quality factor of Q = 106, a membrane power
reflectivity r2

m,theo = 0.23, an effective mass of meff = 71 ng and a resonance frequency
of fres = 400 kHz. It shows that high input powers are required for a spectrum that is
dominated by radiation pressure noise over a broad frequency range.

29



called the standard quantum limit. The sum of the single-sided spectral densities is:

SMSI
tot,x = SMSI

SN,x + SMSI
RPN,x (3.28)

=
~cλ

16πr2
mPin

+ |H(Ω)|2 16π~r2
mPin

cλ
. (3.29)

To receive the minimum, the derivative

dSMSI
tot,x

dPin

= − ~cλ
16πr2

mP
2
in

+ |H(Ω)|2 16π~r2
m

cλ
(3.30)

is set to zero which results in:

PMSI
SQL =

1

|H(Ω)|
cλ

16πr2
m

. (3.31)

This optimum input power can now be inserted into equation (3.28) to receive the

standard quantum limit in m√
Hz

:

√
SMSI

SQL,x =
√

2 |H(Ω)| ~ . (3.32)

It follows, that the minimum of the total quantum noise is reached when the shot

noise and the radiation pressure noise are equal with

√
SMSI

SN,x =
√
|H(Ω)| ~ =

√
SMSI

RPN,x . (3.33)

The highest standard quantum limit is reached for the maximum of the transfer func-

tion H(Ω) from equation (2.19) at the membrane resonance frequency Ω0:

√
SMSI

SQL,x =

√
2~Q
mΩ2

0

. (3.34)

One fundamental goal in optomechanics is to undercut the standard quantum limit.

When the in section 2.3.4 introduced squeeze angle θ is neither 0 or π
2
, but any arbi-

trary angle in between, the uncertainties in the amplitude and phase quadrature are

correlated. It is further explained in [8], how it is therefore possible to squeeze shot

noise and radiation pressure noise simultaneously. The maximum enhancement for

a displacement spectral density at the standard quantum limit with equal shot noise

and radiation pressure noise can be realized for a squeeze angle of θ = π
4
.
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Figure 3.5: Displacement sensitivity for structural and viscous damping:
The used parameters in this models given by the equations (3.38) and (3.39) are an
effective mass of meff = 71 ng, a resonance frequency of fres = Ω0

2π
= 400 kHz and

a mechanical quality factor of Q = 106. The curves are shown for temperatures of
T = 1 K and T = 300 K.

3.4 Classical Noise Sources in the Interferometer

3.4.1 The Thermal Noise

In the presented work it is aimed for a quantum-noise dominated sensitivity for mea-

surements with the described interferometer. Therefore the impact of the classical

noise sources needs to be considered. For the table top Michelson-Sagnac interferom-

eter the relevant contributions are the thermal noise and the laser noise, hence their

origin and their orders of magnitude are regarded. The influence of thermal noise

appears in different forms. Examples are the thermal refractive noise [58], the thermal

coating noise [59] and the Brownian thermal noise of the optics [60]. The latter is the

dominating source in the Michelson-Sagnac interferometer and for this reason the only

one considered here. The lightest mass is the membrane, thus its Brownian thermal

noise has the highest influence. The atoms have a heat induced random movement.

It is caused by two different damping effects, the viscous and the structural damp-

ing. The Fluctuation Dissipation Theorem by Nyquist [61][36] states that the spectral
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density in a dissipative system of thermal equilibrium is given by

|Sx
therm(Ω)| = −4kBT

Ω
=[H(Ω)] (3.35)

with H(Ω) being the oscillator transfer function, kB being the Boltzmann constant

and T being the temperature of the thermal equilibrium. For the oscillator transfer

functions given in equation (2.19) and (2.20) it applies

=[Hvis(Ω)] = −mΩ0Ω

Qvis

|Hvis(Ω)|2 , (3.36)

=[Hstr(Ω)] = −mΩ2
0

Qstr

|Hstr(Ω)|2 . (3.37)

With the Fluctuation Dissipation Theorem given in equation (3.35) the linear thermal-

noise displacement spectral density for viscose and structural damping can be deter-

mined by using the moduli of the transfer functions from equations (2.21) and (2.22):

√
Sx

vis(Ω) =

√
4mkBTΩ0

Qvis

|Hvis(Ω)| , (3.38)

√
Sx

str(Ω) =

√
4mkBTΩ2

0

QstrΩ
|Hstr(Ω)| . (3.39)

Figure 3.5 compares the viscous and structural damping for the example of an os-

cillator with a resonance frequency of 400 kHz and a quality factor Q = 106. Both

functions are plotted for the temperatures 300 K and 1 K. As they show the same

behavior for Q � 1, from now on only the case of viscous damping will be regarded,

such that Sx
vis(Ω) = Sx

temp(Ω) and Hvis(Ω) = H(Ω).

The integral of equation (3.38) is independent of the quality factor and proportional

to the mode temperature of the membrane. It applies [62]:

Tmode =
1

2π

mΩ2
0

kB

∫ ∞

0

Sx
temp(Ω) dΩ . (3.40)

In figure 3.6 the thermal noise and the previously discussed shot noise given in equa-

tion (3.23) and radiation pressure noise given in equation (3.25) are compared. With

the membrane parameters fres = 400 kHz, Q = 106, meff = 71 ng and r2
m,theo = 0.23

and with an input power of 10 kW a radiation-pressure-noise dominated spectrum

could be reached theoretically. Off resonance the thermal noise at 300 K is an order
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Figure 3.6: Quantum radiation pressure noise, shot noise and thermal noise
for T = 300 K and T = 1 K for an input power Pin = 10 kW : The radiation
pressure noise is given in equation (3.25), the shot noise in equation (3.23) and the
thermal noise in equation (3.38). The used parameters in this model are a quality
factor of Q = 106, the effective mass meff = 71 ng, the membrane power reflectivity
r2

m,theo = 0.23 and a resonance frequency of Ω0

2π
= 400 kHz
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of magnitude higher than the quantum noise. For a temperature of 1 K however it

can be decreased such, that it stays below the shot noise off resonance and below the

radiation pressure noise on the peak. This graph demonstrates that the cooling of the

interferometer is a crucial step to measure the radiation pressure noise over a broad

frequency band.

Generally the comparison of the displacement spectral densities for the shot noise,

the radiation pressure noise and the thermal noise shows, that an observation of the

radiation pressure noise requires a high input power Pin, a high quality factor Q and

a low effective mass meff. In consequence of the previous estimations, a low resonance

frequency would have the advantage of a stronger response of the oscillator to radia-

tion pressure, but another noise source, the technical laser noise, can not be neglected.

Typically the laser noise decreases with higher frequencies.

3.4.2 The Technical Laser Noise

For high precision interferometric measurements the technical noise introduced by the

laser system in the experiment needs to be considered. To achieve a quantum-noise

dominated spectrum, the technical noise needs to be lower than the shot noise. It has

to be distinguished between the frequency and the amplitude noise.

The Frequency Noise: The frequency noise only gets relevant for unequal lengths

of interferometer arms or more generally for different path lengths of interfering fields.

The Michelson-Sagnac interferometer has almost equal arm lengths with a difference

< 0.5 mm, hence it won’t be discussed further. A detailed description is given in [35].

If the interferometer is enhanced using a signal-recycling mirror in the future as it will

be discussed in 8.4, the effective path length of the signal path will be increased and

the phase noise might have to be considered again.

The Amplitude Noise: The amplitude noise of the laser depends on the measure-

ment frequency. It is quantified by the relative intensity noise (RIN) function which

is given by the ratio of the power fluctuation to the average measured power. The

power fluctuation density therefore is

√
SPln =

√
P · RIN . (3.41)
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For a shot-noise limited measurement, the condition

√
SMSI

SN√
Sln

> 1 (3.42)

must be fulfilled. The influence of laser amplitude noise occurs at two points in the ex-

periment: On the membrane and on the detector in the output. The membrane is hit

by the light from both sides. Therefore the displacement noise of the membrane caused

by the power fluctuations would cancel itself out for a perfectly balanced beamsplitter.

For a non perfectly balanced beamsplitter with not exactly equal power reflection r2
bs

and transmission t2bs, the laser noise depends on the unbalancing ∆bs = |t2bs − r2
bs|. Ac-

cording to [35] the corresponding displacement spectral density for the interferometer

output is: √
Sln =

2

c
|H(Ω)| r2

m∆bsS
P
ln . (3.43)

Using equations (3.18) and (3.41), the limit given in equation (3.42) transforms to

∆bsPin · RIN <

√
4πc~Pin

λ
. (3.44)

The second point, where the laser amplitude noise occurs, is on the photodetector. In

this case not the incoming power Pin, but the outcoming power Pout is relevant. The

condition from equation (3.42) transforms to

Pout · RIN <

√
4πc~Pout

λ
, (3.45)

When the interferometer is operated at the dark fringe, the output power is in its

minimum. It calculates as Pout,df = r2
m(1 − C)Pin with C being the contrast of the

modes in the output of the interferometer.
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4 The Generation and Detection of Squeezed States

The injection of squeezed states can improve the sensitivity of interferometric mea-

surements as successfully demonstrated for ground-based gravitational-wave detectors

[39][63][42]. One goal of the presented work is to achieve a comparable enhancement

for an optomechanical experiment and to demonstrate that a reduction of the quan-

tum noise for a radiation-pressure-noise limited sensitivity is possible.

Squeezed light was produced for the first time in 1985 via four-wave-mixing of sodium

atoms [18]. One year later the first generation by four-wave-mixing in optical fibers

was published [64]. The first squeezed states from a nonlinear crystal in a cavity were

also produced in 1986 [65].

The squeezed states for this work were generated via degenerate parametric down-

conversion in nonlinear crystals. The process requires a frequency-doubled pump

field. This field is produced by another nonlinear process, the second-harmonic gen-

eration. For the measurement of squeezed states the principle of balanced homodyne

detection is used. I built up the specific source and the balanced homodyne detector

at the AEI Hannover and moved it to the ILP Hamburg. The implementation into

the optomechanical experiment is presented in section 6.3 [66][8][39][38][67].

4.1 The Experimental Generation of Squeezed Vacuum States

4.1.1 Nonlinear Processes for the Generation of Squeezed States

An incoming light field entering a medium induces a separation of charges and therefore

a polarization. Consequently a phase shifted electrical field is emitted. For a nonlinear

medium a Taylor series of the polarization P (t) decomposes it to

P (t) = ε0(χ(1)E(t) + χ(2)E2(t) + χ(3)E3(t) + ...) (4.1)

with ε0 being the vacuum permittivity, E(t) being the electrical field of the incoming

light and χ(1), χ(2), χ(3),... being the susceptibilities of the different orders, which are

tensors of third order [68]. For linear optics only χ(1) is considered. For higher light

powers also the higher orders get relevant. In the χ(2) process three photons interact.

The higher-order susceptibilities are small enough to be neglected for light powers

under the threshold.
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Figure 4.1: Energy level diagrams for the second-harmonic generation (left)
and degenerate parametric down-conversion (right): In SHG two photons of
ω excite the nonlinear medium such that a photon of 2ω is created. The degenerate
PDC is the inverse process with one photon of 2ω converting into two photons of ω.

In the up-conversion the energies of two photons add up to one photon and in the

down-conversion the energy of one photon gets split up into two photons. Both effects

result in the creation of new frequency components as illustrated in figure 4.1. The

relevant processes for the presented setup are the second-harmonic generation (SHG)

and the degenerate parametric down-conversion (PDC). In the first, two photons of

ω lead to an excitation of double their energy, such that a photon of 2ω gets emitted.

In the second, the inverse process, two photons of ω are emitted after an excitation

with a photon of 2ω [38][67].

4.1.2 Degenerate Parametric Down-Conversion

The nonlinear process to generate squeezed states is degenerate type I parametric

down-conversion, thus only this type is described. The starting point for the squeezed-

state generation are two fields with frequencies ω and 2ω interacting in a nonlinear

medium with a second order susceptibility χ(2) unequal to zero. They have amplitudes

A and B as well as a phase difference ∆φ. The sum of their electromagnetic fields

E(t) = A cos(ωt+∆φ)− B cos(2ωt) (4.2)

induces a second-order polarization

P (2)(E) = ε0χ
(2)[A2 cos2(ωt+∆φ) + B2 cos2(2ωt)− 2AB cos(ωt+∆φ) cos(2ωt)]

= ε0χ
(2)
[A2

2
[1 + cos(2ωt+ 2∆φ)] +

B2

2
[1 + cos(4ωt)]

− AB[cos(ωt−∆φ) + cos(3ωt−∆φ)]
]
. (4.3)
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The second line of the equation shows, that the polarization contains a constant DC

part, as well as parts depending on the frequencies ω, 2ω, 3ω and 4ω. The rele-

vant effect for the squeezed-state generation is the interaction of the linear polar-

ization component P (1) = −ε0χ(1)A cos(ωt + ∆φ) with the ω dependent component

P
(2)
ω = −ε0χ(2)AB cos(ωt −∆φ) of equation (4.3). For a phase ∆φ = π

2
(2n + 1) with

n ∈ N0, the field at ω is deamplified, while for a relative phase ∆φ = πn the field

is amplified. This is the degenerate parametric down-conversion at the fundamental

frequency ω. It does not only affect the amplitude of the field, but also its quantum

fluctuations.

A visualization of this process is given by the illustration in figure 4.2. Its concept by

Jöran Bauchrowitz was published in [66]. Here only the degenerate parametric down-

conversion for a vacuum state is shown. A complete discussion can be found in the

publication. The incoming fields come from the bottom left of the picture. The bright

so called pump field Ein
2ω with frequency 2ω and the vacuum field Ein

ω with frequency

ω overlap in the nonlinear crystal and induce a separation of charges. The impact of

the nonlinearity of the polarization is demonstrated by picturing the emitted field as

a reflection on the function P (E). It shows that the resulting field’s quantum uncer-

tainties now are phase dependently amplified and deamplified. Decomposing the field

Eout delivers three components: Eout
2ω , Eout

4ω and the squeezed vacuum field Eout
sqz,ω. The

amplitude of the first depends on the first-order polarization P (1)(E2ω), the amplitude

of the second on the second-order polarization P (2)(E2ω).

The illustration shows the necessity of a pump field with double frequency as it de-

forms the uncertainty of the original vacuum field to the characteristic curve Eout
sqz,ω.

Compared to the incoming uncertainty the squeezing effect is revealed by the phase

dependent width. In the knots of the curve the state is squeezed and in the extrema

it is antisqueezed. The strength of this effect scales with the power of the pump

field. Uncertainties in the pump field are small enough to be neglected. Only the

vacuum input field with a frequency half of the pump field frequency is parametrically

amplified.

4.1.3 Second-Harmonic Generation

As a consequence of the presented process for the squeezed-state generation, a light

field with double the fundamental frequency is required. It is also generated with

a nonlinear effect, the second-harmonic generation. In principle, this is the inverse
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Figure 4.2: Visualization of degenerate parametric down-conversion of a
vacuum state: The incoming field from the bottom is the sum of the vacuum noise
with E in

ω and a strong light field with double frequency E in
2ω. The nonlinear process in

the crystal is illustrated as a reflection of the field at the nonlinear polarization function
P (E) in the top left. The resulting field Eout shows a time dependent uncertainty
amplification and can be decomposed into light fields of frequencies 2ω, 4ω and a
squeezed vacuum field with Eout

sqz,ω at frequency ω. The concept of this illustration by
Jöran Bauchrowitz was published in [66].
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process to the described degenerate parametric down-conversion. A pump field with

the frequency ω is used to generate an output field with 2ω. The corresponding

Hamiltonian for the interaction of two fields â and b̂ with ωa and ωb is:

Ĥ = ~ωaâ†â+ ~ωb̂†b̂+ i~χ(2)(â2b̂† − (â†)2b̂) . (4.4)

In this case two photons of the same frequency ω of an electrical field E(ω) interact.

Considering the nonlinear part of equation (4.1) the resulting polarization depends on

the square of the field:

E2 = E2
0 cos(ωt)2 (4.5)

=
1

4
E2

0(eiωt + e−iωt)2 (4.6)

=
1

4
E2

0(e2iωt + e−2i·0·t + e2i·0·t + e−2iωt) (4.7)

=
1

2
(cos(2ωt) + 1) . (4.8)

The result contains only a term depending on the doubled frequency and a frequency

independent term. Hence the generated photon in this process has the frequency 2ω

[69].

Now the inhomogeneous wave equation

∇2 ~En −
ε(1)(ωn)

c2

δ2

δt2
~En =

1

ε0c2

δ2

δt2
~Pn (4.9)

with the nonlinear polarization ~Pn inducing the electromagnetic fields ~En at frequencies

ωn is considered. ε0 is the absolute permittivity of the vacuum and ε(0) the relative

permittivity of the medium. This equation can be derived from the Maxwell equations

as described in [70]. The polarizations ~Pn depend on the incoming fields that have

to fulfill another wave equation, such that a system of coupled differential equations

is formed. The susceptibilities are its coupling constants. Considering two incoming

fields with intensities I1 and I2 and wave numbers k1 = ω1

c1
and k2 = ω2

c2
, the solution
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for the converted intensity in a crystal of length l is

Iconv =
8d2

effω
2
conv |I1| |I2|

n1n2nconvε0c2
l2sinc2

(∆kl

2

)
(4.10)

= Imax
conv





1 ,∆k = 0(
sin( ∆kl

2
)

∆kl
2

)2

,∆k 6= 0 .
(4.11)

deff is a scalar parameter, that substitutes the tensor χ(2) under the condition of a

defined propagation axis. The phase difference is ∆k = k1 + k2 − kconv for plane

wavefronts. ωconv is the frequency of the converted field and nconv the corresponding

refractive index. The influence of the Gouy phase is neglected here. The solutions of

the system of differential equations can be written as:

A2
1(z) = A2

1(0)(1− tanh2(KA1(0)z)) , (4.12)

A2
conv(z) = A2

1(0) tanh2(KA1(0)z) (4.13)

with the amplitude of the incoming field A1(z), the amplitude of the converted field

Aconv(z) and the constant

K =
1

2
deff

√
µ0

ε0

√
ω1ω2ωconv

n1n2nconv

. (4.14)

The dependency of the converted amplitude Aconv on the pump amplitude A1(0) and

on the propagation length in the nonlinear medium along the z-axis is the same. This

applies as well for the converted intensity with Iconv(z) ∝ A2
conv(z). In figure 4.3 the

dependencies of Aconv and A1 of these parameters are plotted in arbitrary units for

the ideal case of ∆k = 0. It shows, that for perfect phase matching and a long crystal

or high pump intensities a conversion efficiency of 100 % can be reached. There is no

minimum length or pump intensity to induce the conversion process.

4.1.4 The Phase Matching

To achieve a high conversion efficiency for the second-harmonic generation and the

parametric down-conversion, a good phase matching between the incoming and the

generated field inside the used medium is of interest. The dispersion causes a mis-

match between the velocities of the fields of different wavelengths. This effect leads

to constructive interference of the generated waves, created at different points in the

medium. As shown in figure 4.3 the crystal length should be long for a high conversion.
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Figure 4.3: Theoretical converted amplitude Aconv(z) in a nonlinear crystal:
Assuming ∆k = 0, the converted amplitude given by equation (4.13) shows the same
dependency on the crystal length as on the incoming pump power. For long crystals
or high powers an efficiency close to 100 % can be reached. No minimum intensity or
length is required to induce the process.
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But considering equation (4.11) the converted intensity decreases for a defined phase

difference ∆k due to the sinc2(∆kl
2

) term. After the length l = 1
∆k

, the converted field

is converted back. The coherence length

lcoh =
2

∆k
(4.15)

defines the length before the fields diverge. The goal is to achieve that both fields

propagate with the same speed, such that the phases match and the efficiency reduc-

ing destructive interference is minimized.

The phase mismatch for the second-harmonic generation is

∆k = 2k1 − kconv (4.16)

with the wave numbers k1 = ω1

c1
and kconv = ωconv

cconv
. The resulting phase matching

condition is

∆k = 2k1 − kconv = 0 , (4.17)

which transforms to
nconvωconv

cconv

= 2
n1ω1

c1

. (4.18)

As it applies ωconv = 2ω1, the concluding condition for perfect phase matching is

n1 = nconv. Considering the dependencies of the absorption coefficients and refrac-

tive indices of materials for the used light frequencies, this condition is challenging to

realize. One approach is the usage of the birefringence of a nonlinear material with

different refractive indices for the ordinary and the extraordinary polarization [68].

An alternative is the here applied so called quasi phase matching. Figure 4.4 illustrates

the difference between a usual nonlinear crystal and one for quasi phase matching. The

crystal on top is continuously poled in one direction. The crystal in the bottom has

areas with alternating polarization directions. To realize such a medium, the crystal

needs to be a ferroelectricum. This means, that its crystalline symmetry allows a polar

axis, that can be polarized in different directions by shifting charged ions. To produce

such a crystal, stripes of an isolating material are applied on the surface using lithog-

raphy. Then it is covered with a electrolyte liquid and a high voltage is applied. The

resulting flipped polarization of the not covered areas is stable at room temperature.

Usual materials for this procedure are lithium niobate (LN) and potassium titanyl

phosphate (KTP). Here a crystal of periodically poled potassium titanyl phosphate
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Figure 4.4: Comparison of a simple nonlinear crystal (top) and a period-
ically poled nonlinear crystal (bottom): In a simple crystal as shown above
the effective polarization inside the crystal is constant over its full length. For quasi
phase matching a periodically poled crystal is used. The direction of the effective non-
linearity varies between different regions with the thickness of the coherence length
lcoh.

(PPKTP) was used [38].

The thickness of a layer of one polarization is lcoh to achieve the optimum quasi

phase matching. Over this length the fundamental and the second-harmonic wave are

in phase. In a usual crystal, they would separate afterward, but in the periodically

poled crystal they enter a layer of the opposite polarization, in which they run back

together. The resulting effect is illustrated in figure 4.5 for a linear approximation of

the tanh-function in the converted amplitude from equation (4.13). In the theoretical

case of a medium with the same refractive index for both wavelengths the converted

amplitude would increase with the propagation length. In a realistic crystal with

one polarization direction the converted light is converted back, such that the ampli-

tude fluctuates, but never reaches high values. In the case of quasi phase matching

the waves run back together after the coherence length lcoh and the converted part

increases with slight oscillations. For an efficient conversion, the crystal must be tem-

perature stabilized. The temperature influences the refractive index and the length of

the crystal and therefore also the thickness of the layers in the periodically poled case.

The temperature for maximum conversion is called the phase matching temperature

[38].

45



0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

co
n
ve
rt
ed

a
m
p
li
tu
d
e
in

ar
b
it
ra
ry

u
n
it
s

propagation length in coherence lengths lcoh

perfect phase matching
no phase matching

quasi phase matching

Figure 4.5: Qualitative comparison of the converted amplitude in an ideal,
in a regular nonlinear crystal and in a periodically poled crystal: For an ideal
crystal with an equal refractive index for the fundamental and the second-harmonic
wavelength, the converted amplitude would increase linearly with the crystal length.
In a regular crystal with one polarization direction the converted light is converted
back after the coherence length. In a periodically poled crystal the waves run back
together when they enter the layer of opposite polarization. The converted amplitude
shows a small oscillation, but increases with the length.
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4.2 The Detection of Squeezed States

4.2.1 The Principle of Balanced Homodyne Detection

With a single photodiode only noise in the amplitude quadrature X̂ = X̂θ=0◦
Ω,∆Ω can be

measured. In contrast, a balanced homodyne detector using two photodiodes provides

the option to characterize a squeezed state for all angles θ. But this is only one of the

advantages. When squeezed vacuum or a dark interferometer output is supposed to

be measured as in the presented work, the vacuum shot-noise level can be determined

with a balanced homodyne detector, but not with a single photodiode.

The scheme as shown in figure 4.6 consists of two photodiodes and a balanced beam-

splitter. The signal field b̂ hits the beamsplitter in one port. It is overlapped with an

external so called local-oscillator field â entering through the other input port. Here a

perfect matching of the modes is assumed. The amplitude of the local-oscillator field

should be much higher than the one of the signal. The two output fields ĉ and d̂ are

focused on the photodiodes. The difference of the voltages is formed electronically.

By shifting the phase θ of the local-oscillator beam, the phase relation between the

fields is defined.

For a balanced beamsplitter with r2
bs = 0.5, the resulting photo voltages for the single

photodiodes are proportional to:

ĉ†ĉ =
1

2
(â† + b̂)(â+ b̂†) , (4.19)

d̂†d̂ =
1

2
(−â† + b̂†)(−â+ b̂) . (4.20)

Here a phase flip of π of â at reflection was chosen to fulfill the energy conversation.

To calculate the difference of the voltages, the amplitudes can be written as described

in [71] as

â = α + δâ , â† = α∗ + δâ† , (4.21)

b̂ = β + δb̂ , b̂† = β∗ + δb̂† (4.22)

with α = 〈â〉 and β = 〈b̂〉 being the classical amplitudes of the fields whereas δâ and

δb̂ are the time dependent fluctuations including the quantum noise. The phase of b̂
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Figure 4.6: The principle of balanced homodyne detection: The local-
oscillator beam â and the signal beam b̂ interfere on a 50/50 beamsplitter and the
resulting fields ĉ and d̂ induce photo voltages in the photodiodes, whose difference
serves as homodyne detector signal. The phase θ between both fields can be shifted
to choose the quadrature angle for the measurement.

is used as the reference phase, such that β is a real number. It applies:

â = â0e
iθ = α0e

iθ + δâ0e
iθ (4.23)

with the phase θ between both fields. This leads to the difference of the photo voltages

V− ∝
〈
ĉ†ĉ− d̂†d̂

〉
(4.24)

=
〈
(α0β + α0δb̂+ δâ†0β + δâ†0δb̂0)e

−iθ (4.25)

+ (βα0 + βδâ0 + δb̂†0α + δb̂†0δâ0)e
θ
〉

(4.26)

=
〈
2α0β cos θ + α0δX̂

θ
b + βδX̂−θ

a + δâ†0δb̂0e
−iθ + δb̂†0δâ0e

−θ
〉
. (4.27)

with δX̂−θ
a = 1

2
(δâeiθ + δâ†e−iθ) and X̂θ

b = 1
2
(δb̂e−iθ + δb̂†eiθ) being the quadrature

operators of the amplitude fluctuations δX̂†
a = δâ + δâ† and δX̂†

b = δb̂ + δb̂† for the

phases −θ and θ. As the light power of the local-oscillator field is much higher than the

signal field, one can assume β2 � α2
0 or for the case of a squeezed vacuum state even

β = 0. Also the contributions depending only on the fluctuations can be neglected.
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Therefore

V− ∝
〈
α0δX̂

θ
b

〉
(4.28)

is a valid approximation. This result demonstrates the advantages of using a balanced

homodyne detector instead of a signal photodiode. The local-oscillator amplitude

replaces the one of the signal field, amplifying its fluctuations. It enables the feature

to choose the phase difference θ to the signal beam and thereby allows to measure the

noise of a state

X̂θ(t) = cos(θ)X̂(t) + sin(θ)Ŷ (t) , (4.29)

for a chosen quadrature angle θ. For θ = 0 one obtains the amplitude quadrature X̂(t)

and for θ = π
2

the phase quadrature Ŷ (t) [8].

4.2.2 The Impact of Optical Losses in the Homodyne Detector

The minimization of optical losses is crucial to reach high squeezing. An ideal de-

tector would measure a noise power of a squeezed vacuum state with variance ∆2X̂θ,

normalized to the variance ∆2X̂vac of a non-squeezed vacuum state [8]:

PdB = −10 log10

( ∆2X̂θ

∆2X̂vac

)
= −10 log10(e−2r) . (4.30)

The squeeze parameter r was introduced in 2.3.4. This equation however does not con-

sider the effect of optical losses. For measurements of squeezed states, these result not

only in the detection of less signal, but also in the overlap with vacuum fluctuations.

In consequence the squeezing ellipse is broadened and the squeeze factor decreases.

For a detection efficiency η2 and resulting optical loss of (1−η2) the squeezed variance

transforms to

∆2X̂θ,η = η2∆2X̂θ,η=1 + (1− η2)∆2X̂vac (4.31)

with a measured relative noise power of

PdB,η = −10 log10[η2e−2r + (1− η2)] . (4.32)

For η = 0 it applies PdB,sqz = −PdB,antisqz. In figure 4.7 the detected noise power PdB,η

is plotted against the detection efficiency η2 for states with original relative noise pow-

ers of PdB,η=0 = ±5 dB, PdB,η=0 = ±10 dB and PdB,η=0 = ±15 dB. It shows that the

squeeze factor decreases much steeper with decreasing efficiency than the antisqueeze
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Figure 4.7: Reduction of the squeeze factor due to optical losses: The theo-
retical graph shows the relative squeeze factor PdB,η in dependence of the measurement
efficiency η2 for initial squeezing values of PdB,η=0 = −15 dB, −10 dB and −5 dB as
given by equation (4.32). The corresponding antisqueezing is shown by the dashed
lines. The higher the optical loss, the lower is the efficiency and the lower is the mea-
sured squeeze and antisqueeze factor. It can be seen, that especially for high initial
factors already small optical losses reduce the squeezing significantly.
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factor. The higher the initial squeezing value is, the quicker it drops with increasing

losses.

Thus, to reach high squeezing, the experiment requires high quality optics as well

as a good contrast of the interferometer. The so called propagation loss L appears

due to imperfect optics, for example a mirror in the path with a transmission t2 = L.

The reduced detection efficiency is described by

η2
L = 1− L . (4.33)

The imperfect quantum efficiency of the photodiodes of the balanced homodyne detec-

tor is another cause of optical loss. The not detected percentage of the light degrades

the detection efficiency the same way as imperfect optics.

A good mode overlap of the injected squeezed vacuum field with the local-oscillator

field is required. A mismatch between the beams like differences in the radii of cur-

vature of the wavefronts or different polarizations causes additional optical losses. If

the field in one homodyne detector arm is detected with a single photodiode for equal

powers of the two incoming beams, the overlap between both fields can be quantified.

The visibility is defined as

V IS =
Vmax − Vmin

Vmax + Vmin

(4.34)

with Vmax being the maximum voltage for constructive interference and Vmin being

the minimum voltage for destructive interference. The visibility corresponds to the

detection efficiency

η2
overlap = V IS . (4.35)

Another influence to be considered is the escape efficiency of the resonator

η2
escape =

t2m
T + Lcav

(4.36)

with Lcav being the intra cavity round trip loss and t2m being the power transmission

of the coupling mirror [39]. The round trip loss is caused by absorption in the crystal

and imperfect antireflective coatings.
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4.2.3 The Impact of Phase Jitter

To measure high squeezing, the impact of phase noise needs to be taken into account.

The readout quadrature of the balanced homodyne detector is determined by the

phase relation between the signal and the local-oscillator field. Oscillations of optical

components caused by incoupling acoustic vibrations disturb this phase relation. If

the period of such an oscillation is below the recording time for one data point of the

spectrum analyzer, the point is an integral over a range of angles depending on the

amplitude of the oscillation. As a result, the measured point does not correspond to

the maximum squeezing factor but to a mixture with the antisqueezed quadrature,

thus it has a reduced value [72].

Simulations in [39] comparing squeezing for a constant angle and for a jittering an-

gle demonstrate, that especially for low frequencies below 1 MHz this effect degrades

the detected squeeze factor. An indicator for present phase noise is, that the squeez-

ing does not increase monotonously with increasing pump power, but decreases after

reaching a maximum.

4.3 The Generation of Squeezed Light for the Optomechanical

Experiment

4.3.1 The Resonators for the Squeezed-State Generation

To produce frequency-doubled light and squeezed states, a nonlinear medium is re-

quired. By placing the used crystals inside resonators, the conversion efficiency could

be enhanced significantly. In addition resonators determine the transversal spatial

mode of the amplified field, usually the TEM00 mode. For the squeezed-states gener-

ation antisqueezed states from other modes were suppressed.

Both cavities are schematically shown in figure 4.8. One end mirror of each cav-

ity was given by the coating on the curved side of the crystal, the other by a coupling

mirror. This mirror was attached to a piezo-electric element, that was used to change

the resonator length by applying a voltage. It was screwed onto the aluminium frame,

that surrounded the other components. The plane side of the crystal had an antire-

flective coating for both wavelengths. The crystal was heated with a Peltier element.

An negative temperature coefficient (NTC) resistor was implemented to measure the

temperature. Using the resistance as reference value, a temperature control loop was

built up to provide a stable operating temperature and to achieve the best possible
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Figure 4.8: The resonators for the second-harmonic generation (left) and
the degenerate parametric down-conversion (right): In both cases the res-
onator is formed by the coating on the curved side of the nonlinear crystal and a
coupling mirror, that is attached to a piezo-electric element, which is used for the
length stabilization. The crystal is heated with a Peltier element. The resistance
of the attached NTC resistor acts as reference value for a temperature stabilization
control loop. The components are surrounded by an aluminium frame. The SHG
resonator is pumped with light at the fundamental wavelength and frequency-doubled
light is generated. The PDC resonator is pumped with the frequency-doubled light to
squeeze the uncertainty of the incoming vacuum field.

phase matching.

The SHG resonator: For the generation of frequency-doubled light, a high power

pump field with the fundamental wavelength is sent into the SHG resonator. Both

sides have a high reflectivity for the fundamental wavelength. The coupling mirror has

a high reflectivity for the fundamental field, but a low reflectivity for the frequency-

doubled field. Due to this configuration, the pump field light is amplified and with

every round trip more photons at the doubled frequency are generated, that transmit

through the coupling mirror.

The PDC resonator: A cavity for the optical parametric amplification introduces a

threshold pump power, above which the vacuum field is amplified to a bright laser field.

This effect is called an optical parametric oscillator. For the generation of squeezed
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Reflectivity Reflectivity Reflectivity Reflectivity
mirror 1550 nm mirror 775 nm crystal 1550 nm crystal 775 nm

SHG 90 % < 1 % > 99.8 % 99.5 %
PDC 85 % 97.5 % 99.95 % 99.5 %

Table 1: Power reflectivities of the SHG and PDC resonators.

states pump powers below this threshold were used [8].

The chosen reflectivities for the PDC resonator are crucial to reach high squeezing.

For equal reflectivities of both end mirrors r1 = r = r2 an incoming mode matched

field is transmitted completely. The resonator is called impedance matched. In con-

sequence no part of the uncertainty of the vacuum field is reflected. Due to the full

transmission of the vacuum state in both directions, the mode propagating away from

the resonator is not nonclassical.

In the case of the so called overcoupled resonator, the crystal’s reflectivity is higher

than the reflectivity of the coupling mirror r2 > r1. For a perfectly overcoupled res-

onator with r2 = 1, no field could enter or leave the resonator through the back.

The amplitude quadrature of the reflected field on the high-reflective side destruc-

tively interferes with itself. The coupling mirror is partially transmissive, such that

the internal resonator mode couples to the external modes on this side, the incoming

and the outcoming fields. If a nonlinear crystal is added to such a resonator, infinite

squeezing can be achieved. The gain in the crystal per round trip due to the paramet-

ric down-conversion can mimic the impedance matched case. It can be shown that

the strongest possible intra cavity squeeze factor is (1+r1)2

r2
1

[67]. For the case of high

reflectivities this value is 6 dB and averaged over the full resonator mode, the limit is

3 dB [73]. The external field shows infinite squeezing.

The specific resonators in the experiment: In the presented work the fundamen-

tal light had a wavelength of 1550 nm and the frequency-doubled light a wavelength

of 775 nm. Both resonators for the second-harmonic generation and the degenerate

parametric down-conversion consisted of a coupling mirror and a crystal of periodically

poled potassium titanyl phosphate (PPKTP). The power reflectivities of the optics for

both wavelengths are given in table 1. In previous setups as [39] the PDC cavity was
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only resonant for the fundamental wavelength, such that high pump powers in the

magnitude of 100 mW were required for the degenerate parametric down-conversion.

The resonator for the squeezed-state generation in this experiment had high reflectivi-

ties on both sides for both relevant wavelengths. The waist sizes for the TEM00 mode

for both wavelengths and the amplification of the incoming amplitude ain inside the

cavity were simulated with the software finesse by Andreas Freise. From the reflectiv-

ities, the radii of curvature of the mirror rc,m = 20 mm and the crystal rc,c = 12 mm,

the length of the air gap lair = 20 mm and the crystal length lc = 8.3 mm, the waist

sizes were calculated:

w775
0 = 25µm , (4.37)

w1550
0 = 35µm . (4.38)

For the amplitude acav inside the cavity applied

|acav|2 = 107 · |ain|2 . (4.39)

Due to the double resonance, the temperature of the crystal had to be chosen such,

that the resonance condition was fulfilled for both wavelengths at the same cavity

length. This requirement had the consequence, that the squeezed-light source could

only be operated at a selection of temperatures. The closest one to the phase matching

temperature was chosen. Even if the temperature did not match the temperature for

perfect phase matching, the necessary pump power for the presented squeezed-light

source was in the order of magnitude of 10 mW.

4.3.2 The Setup of the Squeezed-Light Source

The squeezed-light source in this experiment was a table top experiment, that I built

during my master thesis at the AEI Hannover [38]. The setup is shown in figure 4.9.

The laser light with the fundamental wavelength of 1550 nm was split up into different

beams. One part of the light went directly to the balanced homodyne detector as local

oscillator. The balanced homodyne detector electronics were designed and built by

Moritz Mehmet, who used the device for the measurement of 12.3 dB squeezing in [74].

One light field with a wavelength 1550 nm was used as pump field entering the SHG

cavity through the coupling mirror. The generated frequency-doubled light of 775 nm

left the resonator through the same mirror and transmitted through a dichroitic mir-
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Figure 4.9: The setup of the squeezed-light source: The 1550 nm light was
converted to 775 nm in the SHG resonator and a dichroitic mirror separated both
fields. The converted light served as a pump field entering the PDC resonator through
the coupling mirror. The generated squeezed states left the resonator on the same
side and were also separated from the incoming light with a dichroitic mirror. They
overlapped with the local-oscillator field on the beamsplitter of the balanced homodyne
detector. The 1550 nm light entering the PDC resonator through the crystal was only
necessary for the adjustment and was blocked during the squeezing measurement.

ror with high reflectivity for 1550 nm. With the same SHG resonator a conversion

efficiency of 99.5% could be achieved for an input power of 1.1W [38]. Due to the

double resonance of the PDC cavity much less frequency-doubled light was required to

generate high squeezing values. With an input power of 260mW for the SHG, a con-

version efficiency of 57% was reached and 147mW of light with 775 nm was generated.

A light field with 1550 nm was sent through the back of the PDC resonator. As

the resonator was strongly overcoupled, even on resonance only a power of 0.65mW

of the input power of 635mW was transmitted. This field, from now on called the ad-

justment field, was used to build the optical path of the squeezed vacuum states to the

balanced homodyne detector and to adjust the mode overlap with the local-oscillator

field. This procedure is explained more detailed in section 6.3.

For the actual squeezed-state generation the adjustment field was blocked and the

PDC cavity was pumped with the frequency-doubled light. The produced squeezed
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vacuum states left the resonator through the coupling mirror and were reflected by

another dichroitic mirror. On the balanced beamsplitter they interfered with the

local-oscillator field for the balanced homodyne detection. The difference between

the currents of the two photodiodes was built electronically and the resulting out-

put served as signal for the spectrum analyzer to measure the relative noise power.

With two lenses each, the modes of the light fields were matched to the resonators.

Their positions were calculated with the software JamMt by André Thüring and Nico

Lastzka.

To stabilize the lengths of the SHG and the PDC resonators, Pound-Drever-Hall

control feedback loops were applied [75]. For this technique, the beam passes an

electro-optic modulator to generate sidebands to the carrier frequency before the light

is coupled into a resonator. If the cavity fulfills the resonance condition for the carrier

frequency, the side bands and in the non-impedance-matched case also a part of the

carrier light are reflected. At resonance the carrier and the sidebands have the same

phase. If the resonator drifts away from the resonance, also phase shifted carrier light

is reflected and overlaps with the sidebands. The resulting phase modulation of the

reflected light can be measured as an amplitude modulation with a photodiode. De-

modulating the photodiode signal with the modulation frequency results in an error

signal, that can be used for a feedback loop keeping the resonator length stable.

For the stabilization of the SHG resonator, sidebands at a frequency of 119 MHz were

generated on the carrier light using a free space electro-optic modulator. A 1550 nm

photodiode in transmission was used to receive the error signal. To stabilize the PDC

resonator, two control loops were set up. When the adjustment field was used, the

resonator was stabilized using a resonant 1550 nm photodiode in reflection of the crys-

tal. The frequency-doubled light still carried the frequency modulation, such that the

PDC cavity could be stabilized with the sidebands on the 775 nm light, when the cav-

ity was pumped to generate squeezed states. For this purpose a resonant photodiode

in reflection of the coupling mirror was used.
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5 The Sensitivity Enhancement of Interferometric

Measurements with Internally Produced Squeezed

States

As signals caused by classical radiation pressure forces are quite weak, the sensitivity

enhancement of interferometric measurements for gravitational-wave detectors and

other optomechanical experiments is a meaningful matter. The application of signal-

recycling or power-recycling cavities results in a signal increase, but is accompanied

by a bandwidth decrease. Different techniques using nonlinear media and squeezed

states can be used to overcome the following standard sensitivity-bandwidth limit. In

this chapter the approach of internally produced squeezed states will be demonstrated

[24]. The concept for the presented measurements was developed by Mikhail Korobko,

with whom I executed the experiment, using my setup presented in chapter 4. The

results were published in [33].

5.1 The Standard Sensitivity-Bandwidth Limit

In many current interferometric measurements, such as gravitational-wave detectors,

cavities for power-recycling and signal-recycling are implemented. Such signal-enhancing

techniques are applied as the phase-modulation signals on the light field are very weak

and therefore challenging to detect. The consequence of such cavities is a reduction

of the detection bandwidth depending on the cavity’s finesse.

According to [76] the standard sensitivity-bandwidth limit is set by the product of

the peak sensitivity S and a detection bandwidth B for a defined light power P inside

a resonator using coherent states:

S ·B ≤ 8πP

~λl
. (5.1)

Here l is the resonator length, λ is the wavelength of the light and ~ is the reduced

Planck constant. [77]

5.2 The Concept of Internal Squeezed-Light Generation

Different approaches to improve the sensitivity of an interferometer with a cavity

are discussed and in usage. One of them is the so called white-light-cavity effect as
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Figure 5.1: Illustration of the internal squeezing approach: The Fabry-Perot
cavity has a nonlinear crystal inside, which is pumped with frequency-doubled light
to induce the degenerate parametric down-conversion. In addition a field with the
fundamental frequency is used to measure a phase-modulation signal caused by a force
on the mirror. Squeezed states are produced and the generated signal is deamplified.
As this deamplification is limited, the sensitivity-bandwidth product is enhanced.

for example described in [23]. It is suggested to place a nonlinear medium between

the mirrors of the signal-recycling or power-recycling cavity, that can cancel out the

frequency-dependent change of the wavelength. The realization however requires to

find a suitable medium with the desired properties and a high-power laser system,

that is very stable in amplitude and frequency. A second approach is the injection of

squeezed states produced by an external source as suggested in [40] and applied in [78]

to decrease the noise of the light field in the phase quadrature. This technique was

also applied on the presented Michelson-Sagnac interferometer and will be discussed

further in section 6.3.

In contrast to the injection of externally produced squeezed states, it is suggested

to produce them directly inside a cavity of a detector by placing a nonlinear medium

between its mirrors and inducing the squeezed-state generation with pump light [24].

As the squeezing happens inside the linewidth of the cavity, not only the noise but

also the signal is degraded. For an improvement, the phase noise shall be reduced,

which results in an increase of the amplitude noise. With this approach the sensitivity-

bandwidth product can be increased. Mikhail Korobko and I performed a proof-of-

principle experiment, that is presented here.

The starting point of the setup is a Fabry-Perot cavity to measure a phase modulation

caused by a weak force onto one end mirror using a field with the fundamental fre-
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quency. The concept is illustrated in figure 5.1. A nonlinear crystal within is pumped

with frequency-doubled light to induce the degenerate parametric down-conversion for

the squeezed-state generation. Inside the cavity the squeeze factor is limited to 6 dB

(compare 4.3.1) at the resonance frequency. Because of the destructive interference of

the squeezed field with the bright coherent light, the squeeze factor of the outgoing

field is not limited, such that higher squeeze factors can be reached for the vacuum

noise. In contrast, the signal is generated inside the resonator, such that the 6 dB

limit for its deamplification can not be overcome. The fact, that the noise squeezing is

not limited but the signal deamplification is, leads to a gain of the ratio between them

and therefore to an enhanced displacement spectral density. As the sensitivity increase

due to the squeezed states only occurs inside the cavity linewidth, the measurement

bandwidth is reduced. Nevertheless, the amplification of the amplitude uncertainties

inside the resonator causes an enhancement of the sensitivity-bandwidth product.

5.3 The Modified Squeezed-Light Source for the Demonstration

of Internal Squeezed-Light Generation

To test the described concept, the squeezed-light source from figure 4.9 was modified

as illustrated in figure 5.2. The same PDC resonator was used, but in this case it did

not only have the purpose of squeezing vacuum states, but also to act as a Fabry-Perot

cavity comparable to a signal-recycling or power-recycling cavity of an interferome-

ter. With a broadband fiber-coupled electro-optic modulator, a signal was generated

on a 1550 nm field, that was sent through the back of the resonator. This way, a

phase-modulation signal produced by a weak mechanical force on an end mirror was

imitated. The advantage of an externally produced signal was the option of tuning

its frequency and therefore the observation of the resulting change in the detection

bandwidth. The PDC resonator was pumped with frequency-doubled light with a

wavelength of 775 nm produced by the SHG resonator.

The length of the resonator was stabilized with the Pound-Drever-Hall technique [75]

as described in section 4.3.2. With a free space EOM the therefore needed sidebands

were generated on the initial beam. Two options were given in the experiment to

generate the error signal. The length could be stabilized with the pump field by mea-

suring the backreflected 775 nm light with a resonant photodiode and demodulating

the photocurrent. When the pump field was blocked, the backreflected 1550 nm beam

with sidebands at the same frequency was detected in reflection on the other side. The
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Figure 5.2: The modified squeezed-light source for internally generated
squeezing: A fiber-coupled EOM was added to the setup. The modulated light with
wavelength 1550 nm was injected from the back of the PDC resonator to simulate
an optomechanical signal. Simultaneously the frequency-doubled pump light with
wavelength 775 nm entered the cavity through the coupling mirror. The phase of
the signal field was stabilized to the phase of the pump light using the backreflected
signal light. In contrast to the setup in section 4.3.2, now a bright light field of
the fundamental wave length was inside the resonator while squeezed states were
generated.
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Figure 5.3: Using internally produced squeezed states to overcome the stan-
dard sensitivity-bandwidth limit: The squeezing and deamplification was plotted
against the measurement frequency. The detection efficiency for the shown data series
was η2 = 0.82. The squeezing model was fitted to the measured frequency dependent
squeeze factor. The signal deamplification was above the corresponding squeezing
over the whole frequency range. The theoretical deamplification calculated from the
squeezing values is given by the black line. Its error estimated from the data is shown
by the grey area. This data was published in [33].

phase between the two fields inside the resonator was stabilized with another feedback

control loop. For this purpose an error signal was generated by detecting the reflected

signal light. The phase was controlled with a piezo-actuated mirror in the pump field

path.

The output signal of the cavity was detected with a highly efficient broadband bal-

anced homodyne detector. The electronics were designed and built by Stefan Ast

in his PhD thesis [79]. In the frequency range of the presented measurements from

10MHz to 140MHz it showed a dark noise clearance of ≈ 13 dB.
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5.4 Beating the Standard Sensitivity-Bandwidth Limit with

Internally Produced Squeezed Light

To measure the impact of the internally produced squeezed states over the measure-

ment bandwidth, a series of spectra was recorded. Using the fiber-coupled electro-optic

modulator, signals at different frequencies between 10 MHz and 140 MHz were gener-

ated. For each frequency initially the resonator was stabilized with the 1550 nm light

and the output signal of the resonator was measured with the balanced homodyne

detector without pump light. Then the pump light was added, the resonator was sta-

bilized with the 775 nm light and the output signal was measured again. This approach

allowed to compare the signal and the noise without and with internal squeezing di-

rectly. The resulting values for the squeeze factor and the deamplification are plotted

against the signal frequency in figure 5.3.

By analyzing the squeezed and antisqueezed noise in the spectrum the coupling mirror

power transmission, the internal loss L and the detection efficiency η2 were calculated.

The simulations in [33] resulted in an upper bound for the eternal loss of L ≤ 0.23 %

and a corresponding roundtrip-loss bandwidth of

γl =
cL

4l
≤ 2π · 743 kHz (5.2)

with l being the cavity length. This value conforms to absorption measurements for

PPKTP [80] and to the transmission values for the coupling mirror and the antire-

flective coating of the crystal as specified by the manufacturers. The following fitted

squeezing model given as blue dashed line is in agreement with the data. The exper-

imental parameters were used to estimate the theoretically expected deamplification

of the signal, that is given in by the black line. The grey area around it shows the

estimated error bar following from the measurement. Over the whole frequency range

the deamplification was above the squeeze factor. For the shown data set followed a

detection efficiency of η2 = 0.824.

The experiment was performed four times with varying detection efficiencies η2. The

measured reached squeeze factors are plotted against the resulting enhancement in

figure 5.4. In addition the theoretical models of this dependence are given for the

different detection efficiencies. It shows that for each detection efficiency, there exists

an optimum squeeze factor for a maximum enhancement.
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Figure 5.4: The detection-efficiency dependent enhancement factor: Four
data series like the one shown in figure 5.3 with different detection efficiencies η2 were
recorded. The values for the detection efficiencies followed from the squeeze and anti-
squeeze factor reached for the measurements. The dots show the reached enhancement
factors depending on the detected squeezing value. The theoretical curves demonstrate
the existence of an optimum squeeze factor for each η2 to reach the enhancement max-
imum. The maximal measured enhancement was 36%. This data was published in
[33].
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The measured data of noise squeezing and signal deamplification showed a maximal

enhancement of the sensitivity-bandwidth product of 36 %. Considering the error of

the measured values for the squeezing and deamplification, the experimental results

are consistent with the theoretical estimations. An explanation for discrepancies could

be observed electronic resonances of the homodyne-detector electronics and the used

wires.

The concepts of the white-light-cavity effect and the injection of externally produced

squeezed states have been proven to enhance interferometric measurements in the

past. The results of the presented experiment demonstrate the possible enhancement

of laser interferometers with cavities using a third approach, the application of internal

squeezed states. Because of the accompanying deamplification of the signal when the

squeezed states are produced internally, the injection of externally produced states

is still the more efficient concept to improve the signal-to-noise ratio. But it should

be noted, that the sensitivity to intra-cavity loss is lower for the internal-squeezing

approach. Nevertheless, in principle the maximum improvement could be reached by

applying all three techniques in one interferometer.

The Michelson-Sagnac interferometer, which is the main focus of this dissertation,

has currently no cavities, which could allow an enhancement by producing internal

squeezed states. In section 6.3 the injection of externally produced states is presented,

the results are shown in section 7.4. The plan of implementing a signal-recycling cavity

in the future is described in section 8.4.
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6 The Realization of a Michelson-Sagnac

Interferometer at Low Temperatures with Injected

Squeezed States

The topology of the Michelson-Sagnac interferometer was introduced in section 3.2.

In this chapter the actual table top experiment will be presented. The contributions of

the thermal noise to the total noise were estimated in section 3.4.1. It showed that the

aspired radiation-pressure-noise dominated sensitivity of the Michelson-Sagnac inter-

ferometer can only be observed when it is cooled. For this reason the setup was placed

inside a cryostat, whose functionality is described. The interferometer needed to be

designed and built such, that it can be operated at low pressure and low temperatures.

By optimizing the interferometer contrast, the impact of technical laser amplitude

noise and optical losses were minimized. This was required to enhance the sensi-

tivity by injecting squeezed states into the interferometer through the output port

[34][38][39][81][67].

6.1 Operating the Interferometer at Low Temperatures

6.1.1 The Cryogenic System

Because of the high impact of the thermal noise on the sensitivity of the Michelson-

Sagnac interferometer, the experiment needed to be cooled to observe radiation pres-

sure noise in the future. The cryostat and the interferometer were set up by Andreas

Sawadsky during his PhD thesis [34] at the AEI Hannover. Afterward we moved the

experiment to the ILP Hamburg where I continued the work with the help of Pascal

Gewecke, who wrote his master thesis [81] on this project.

At first, a vacuum system was installed. At atmospheric pressure, an effect of gas

damping the oscillations of the membrane occurs. With a pressure of below 10−6 mbar

in the used vacuum system this could be neglected [44]. Also the later presented room

temperature measurements were taken under vacuum. A scroll pump provided a pre-

vacuum pressure of 10−2 mbar. A turbo pump was used to reach the end pressure of

10−6 mbar at room temperature. Residual gas inside a vacuum chamber increases the

heat transfer from its outer surfaces to the components inside. Thus, by operating

the system at low pressures, lower temperatures could be reached with the cryogenic
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Figure 6.1: Functionality of the regenerator for the Gifford McMahon cycle:
The volume is divided into a cold and a warm side, separated by a piston with a
passage, that the gas inside can flow from one side to the other. Through the valves
warm gas leaves the cycle and new gas enters for the cooling process.

system. At cryogenic temperatures an end pressure of 10−7 mbar was reached.

The used cryogenic system, a CCS-xg-CH204N by Janis Research company Inc, was

designed to achieve a temperature of 10K. The cryostat worked with the Gifford

McMahon principle, which is a regenerative process. It bases on the flow of a gas

through a regenerative heat exchanger, a material with high specific thermal capacity,

which separates the cold and the warm side of a volume. The basic setup is shown

in figure 6.1. The gas is compressed by the regenerator and the produced heat is let

into the warm side of the volume. Flowing through a passage in the regenerator, the

gas emits its heat. On the other side, the cold part of the volume, it expands and

thus detracts warmth from the environment. Afterward it flows back through the

passage, absorbing the previously emitted heat and leaving the volume though one of

the valves. Through the other valve new gas enters the volume. By repeating the de-

scribed steps, more and more warmth is carried out of the cold part of the volume [82].

This specific refrigerator system functioned with a closed cycle between a helium-

4-compressor and a cold head, which had two cooling stages. The process happened

in a cylindrical volume with a piston inside, that was driven by a motor and contained

the regenerator. The helium, which acted as exchange gas, did not leave the volume

of the cylinder. The cold head was connected to the compressor with a high and a low

pressure side, that could be opened and closed separately to periodically repeat the

steps of the Gifford McMahon cycle. The chamber contained the so called cold finger,

which made the contact to the experiment, that was hanging upside down from the lid
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of the chamber. Additionally a polished heat shield formed a second layer between the

experiment and the vacuum tank to avoid heat radiation from the outside warming

up the setup. The cooling happened in two steps. On the first stage a temperature of

77 K was reached, the second stage cooled the sample holder down to 10 K. A more

detailed description can be found in [70] and [34].

When an experiment is cooled down, residual moisture from the air condenses on

the surfaces of the optics, decreasing their quality and leading to optical losses and in

this case to a lower interferometer contrast. Condensed water on the surface of the

membrane reduces its quality factor. To avoid such effects, it was necessary to reach

a low vacuum pressure before starting the cooling process. By heating the interferom-

eter with an internal heater during the beginning of the cooling, it was assured, that

any remaining moisture condensed on the surface of the heat shield in the cryostat

instead of on the interferometer parts.

6.1.2 The Interferometer Design for Low Temperatures

The concept of the Michelson-Sagnac interferometer (MSI) with silicon nitride mem-

brane was introduced in section 3.2. The spacer for the MSI was designed by Andreas

Sawadsky. Its development process is described in his PhD thesis [34]. Several re-

quirements had to be met for a successful performance at low temperatures. The

membrane’s linear position in the propagation direction of the beam needed to be

tunable to switch between the bright and the dark fringe of the interferometer. To

achieve a good adjustment at low temperatures, the used materials should ideally have

a low thermal expansion coefficient. Nevertheless, experiences have shown that even

using a material with low deformation, the contrast could not be kept high enough dur-

ing the cool-down. In consequence not only the membrane’s linear position, but also

its orientation and both steering mirrors needed to be adjustable at low temperatures.

For high precision interferometric measurements, avoiding mechanical vibrations was

crucial. Therefore it needed to be assured, that the resonance frequencies of the used

components were not within the measurement range and that the experiment was iso-

lated from acoustic noise from the outside as good as possible. Besides the mentioned

points, also a minimization of the heat exchange with the environment needed to be

considered.

The membrane was glued onto a holder. Its material of choice was copper because

of its good heat conductance to avoid a heating of the membrane. Additional copper
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Figure 6.2: Realization of the Michelson-Sagnac interferometer for cryo-
genic temperatures: The membrane was glued onto a copper holder, that was
screwed onto a stack of positioners by the company attocube [83]. They allowed an
adjustment of the membrane in the xy-plane as well as a linear shift along the beam
axis via an electric controller. The steering mirrors were attached to triangular posi-
tioners by the company Janssen Precision Engineering [84]. The screws on the three
edges of these devices could be also controlled via an electric controller, such that the
mirrors could be adjusted. All components were screwed onto a spacer made of In-
var. To increase the reflectivity of the setup for heat radiation, the spacer was coated
with gold. The complete setup hung upside down from the vacuum chamber lid. An
additional damping stage reduced vibrations coupling into the experiment from the
outside. Copper braids bridged the spacer and the cold plate to avoid a thermal
isolation due to the damping stage.
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wires connecting the copper holder to the cold plate increased the heat transfer even

further. The holder was attached to a stack of three cryogenic positioners by the

company attocube. These allowed the adjustment of the linear position in propagation

direction of the beam and of the vertical and horizontal angle of the membrane. In

figure 6.2 the stack with the membrane attached to the holder is visible in the middle

of the setup.

The beamsplitter was not adjustable. The steering mirror holders were attached to

the so called Cryo Linear Actuators by the company Janssen Precision Engineering.

In figure 6.2 they are shown with the mirrors as part of the interferometer setup.

These positioners were designed to be stiff and insensitive to vibrations as resonance

frequencies of mirror holders have been an issue in previous interferometer designs as

described in [34]. The three screws to adjust the mirrors in the xy plane could be

operated with step sizes of down to 5 nm at 4 K. The total range was ±1.5 mm. The

monolithic triangular main body was made of bronze to guarantee the reset force of

the springs. The sockets holding the mirrors were made of Invar. Because of its very

low thermal expansion coefficient, Invar was the material of choice to minimize defor-

mation during the cooling to cryogenic temperatures. As the fused silica mirrors had a

very low contraction when they were cooled, using a material with similar properties,

minimized stress on them [34].

The mentioned components were all screwed onto a spacer as shown in figure 6.2. The

chosen material for the block was again Invar due to its very low thermal expansion

coefficient. The shape was designed as symmetric as possible to reduce deformation

during the cooling. It was based on the concept by Morten Steinecke for a monolithic

Michelson-Sagnac Interferometer design. He simulated the low thermal deformation

in his bachelor thesis [85]. To avoid a warming due to heat radiation from the envi-

ronment, the reflectivity of the block and of the beamsplitter holder was increased by

coating them with gold. The design provided the option to attach a third Janssen

positioner to implement a signal-recycling mirror in the future. Two thermometers,

one at the cold plate and one at the copper membrane holder, were implemented.

The interferometer was screwed upside down to the sample holder of the cryostat.

To reduce vibrations from the outside coupling into the interferometer, an additional

damping stage by the company Janssen Precision Engineering, the Cryo Vibration

Isolation Platform, was implemented. It was made of bronze which acts well as a
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spring material for low temperatures. The stage was designed to reduce vibrations

coupling into the experiment with a low cut-off frequency. Simulations described in

[34] estimated a suppression of −40 dB
decade

above the cut-off frequency of 41 Hz for the

vertical direction. A disadvantage of the stage was its thermal isolation between the

interferometer spacer and the cryostat. To bridge the heat flow, soft copper braids

leading to the cold plate were attached to the interferometer. On the bottom right of

figure 6.2 the damping stage and the copper braids are visible.

6.1.3 The Impact of the Heat Flow through the Wires

The original vacuum chamber was replaced by a bigger one, as its original volume

turned out to be too small. To cool a bigger volume with the same cooling power, the

heat flow into the cryostat needed to be kept as low as possible.

The attocube and Janssen positioners were adjustable from the outside of the in-

terferometer using controllers from the companies. The cables for the connections

needed to be suitable for cryogenic temperatures and have a resistance below 10 Ω

over the whole length to assure that the positioners work properly. In total 12 wires

were used for the steering mirror positioners, 6 for the membrane positioners and 4 for

the two thermometers. The electric feedthroughs of the cryostat provided to route 45

cables into the cryostat. In the beginning, copper cables were used, but due to their

good heat conductance properties, too much warmth got led to the experiment. For

an empty cryostat without cables, a minimum temperature of 8.5 K could be reached

within 7-8 hours. After implementing the cables, it took 3 days to reach a temperature

of 13 K. As a consequence the cryostat could not provide enough cooling power to

reach low temperatures anymore [34].

The copper cables had a thermal conductivity of λCu293−77 = 417 W
mK

for the temper-

ature range of the first cooling stage from 293 K to 77 K and a thermal conductivity

of λCu77−10 = 974 W
mK

for the temperature range of the second cooling stage from 77 K

to 10 K. Each cable had had a cross section of 0.032 mm2. According to [34] the heat

flow for a solid bar from one surface with the area A to the opposite surface is

Q̇cond = λ(T )A
dT

dx
(6.1)

with the temperature-dependent thermal conductivity λ(T ). The temperature differ-

ence to the first cooling stage compared to room temperature was 300 K − 77 K and
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the length of the wire in this stage was dx = 20 cm. The resulting value for the heat

flow per wire for the first cooling stage calculated as

Q̇cond, Cu,293−77 = 14.4 mW . (6.2)

A length of dx = 80 cm of the wire led through the second stage. Accordingly the

heat flow was:

Q̇cond, Cu,77−10 = 2.6 mW . (6.3)

To reduce the heat flow to the sample holder, the copper cables were exchanged with

bronze-phosphor cables, the so called Duo-Twist cryogenic wires by the company

Lake Shore Cryotronics Inc. The cross section of each wire was 0.032 mm2. The

value for the cooling to the first stage was assumed to conform to the specified value

for the thermal conductivity at room temperatures, such that λPB293−77 = 417 W
mK

.

This was a very conservative estimation as the thermal conductivity decreases with

decreasing temperatures. For the second stage the specified value for 77 K was used:

λPB77−10 = 25 W
mK

. For the same cable length of 1 m with 20 cm in the first and 80 cm

in the second stage, the heat transfer per cable for the first stage was

Q̇cond, PB,293−77 = 1.7 mW (6.4)

and for the second stage

Q̇cond, PB,77−10 = 0.27 mW . (6.5)

Due to this strong heat flow reduction, the cooling performance could be improved

and again a temperature of 8.5 m K was reached for an empty chamber with cables

leading inside.

6.2 The Setup, Adjustment and Readout of the

Michelson-Sagnac Interferometer

6.2.1 The Experimental Setup

The described Michelson-Sagnac interferometer in the cryostat formed the core of the

table top experiment. The adjustment was mostly done from the outside when the

tank was closed. It was aspired to reach a contrast as high as possible to reduce

optical losses and to minimize the impact of laser amplitude noise. In the experiment

as shown in figure 6.3, the laser light transmitted through a triangular mode-cleaning

resonator to provide a clean TEM00 mode. The resonator is from now on called pre
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Figure 6.3: The Michelson-Sagnac setup in the table top experiment: The
laser beam was filtered by the pre-mode-cleaner cavity to provide a clean TEM00 mode.
With a beamsplitter, the light was split up into the input light for the interferometer
and the local-oscillator light. The output field of the interferometer interfered with
the local oscillator at the homodyne detector, which is described in section 4.2.1. The
phase between the fields determined the readout angle.
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mode cleaner (PMC). The outcoming beam was split up into the interferometer input

beam and the local oscillator. On the beamsplitter of the homodyne detector the

output beam of the interferometer and the local-oscillator beam interfered and the

two resulting fields hit the two photodiodes. The principle of balanced homodyne

detection is explained in section 4.2.1. A mirror attached to a piezo-electric actuator

served as a phase shifter to control the phase between the two fields. The output of

the homodyne detector, the subtraction of the two photocurrents, was measured with

a spectrum analyzer.

6.2.2 Optimizing the Michelson-Sagnac Interferometer Contrast

As the influence of the laser amplitude noise on the total-noise spectral density of

the interferometer depended on the output power, an optimization of the contrast

was crucial for a quantum-noise dominated sensitivity. The higher the contrast of the

modes was, the lower was Pout at the dark fringe. As the interferometer was inside

the vacuum tank, the beam paths could not be checked by eye and the transmitted

and back reflected light was the only reference point. All components relevant for the

adjustment process are shown in figure 6.4.

The first step before assembling the whole interferometer was to determine the angle

of the beamsplitter for the optimum balancing. For this purpose only the beamsplitter

was attached to the interferometer spacer. With a powermeter the reflected power and

the transmitted power for a straight incoming beam were measured and the spacer

was rotated to achieve the ideal position. For an angle of 45.5◦ a perfect balancing of

∆bs = |r2
bs − t2bs| = 0± 0.01 was achieved. The error was caused by the powermeter.

Afterward the positioner stack with the membrane holder and the membrane, as well

as one steering mirror with its positioner were mounted. Using the two mirrors in

front of the vacuum tank and the steering mirror positioner, the beam was adjusted

such, that the reflected beam hit the membrane in the middle and exited the spacer

through the hole for the missing mirror in the center. Then the second steering mirror

was mounted to complete the interferometer. With a ccd camera four spots became

visible in the output. By moving the positioners for the membrane and the steering

mirrors, these modes were overlapped.

For the further adjustment of the contrast, two photodiodes were used. One was

placed at the output to measure the transmission, one behind the pre-mode-cleaner
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Figure 6.4: The components for the interferometer adjustment process:
Two lenses determined the incoming beam’s waist size and linear waist position. The
two mirrors in front of the vacuum tank were used to adjust the beam’s position
and orientation. Two photodiodes, one behind the pre-mode-cleaner cavity, one at
the interferometer output, were used to measure the reflected and transmitted power.
The two steering mirrors inside the tank and the membrane were adjustable with
electronic controllers. The position of the beamsplitter was fixed, its angle could only
be adjusted by turning the whole interferometer.
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cavity to measure the reflection of the interferometer. During the adjustment process,

the membrane position was scanned by applying a triangular voltage on the linear

membrane positioner with a function generator. The ratio between the maximum and

minimum voltage measured with the output photodiode

C =
Vmax − Vmin

Vmax + Vmin

(6.6)

determined the contrast.

At first the overlap of the Sagnac mode was optimized. To measure the Sagnac

mode separated from the Michelson mode, the membrane was slightly tilted with

its positioner, such that the photodiodes only detected the light transmitted by the

membrane. In the case of a perfect Sagnac interferometer, the output photodiode

should measure zero. All the light would be reflected back to the pre-mode-cleaner

cavity, such that a maximum on the photodiode behind is reached. This could only

be realized when the waist of the beam was exactly in the middle of the interferome-

ter. The positions for the needed lenses were calculated with the software JamMt by

André Thüring and Nico Lastzka. The chosen waist size had to be much smaller than

the membrane to avoid hitting the membrane frame. A waist diameter of 270µm was

measured with a beam analyzer.

By shifting the lenses, by tilting the steering mirrors inside the interferometer and

by adjusting the mirrors in front of the vacuum tank, the reflection signal was maxi-

mized. When the membrane was tilted back afterward, the Michelson mode was added

to the signal again and a sinusoidal signal appeared on top of the Sagnac signal in

reflection. In transmission almost only the Michelson signal was measured. After opti-

mizing the contrast of the Michelson mode with the two steering mirrors, the residual

Sagnac mode showed as flat signal.

For a good Michelson contrast the beam waist needed to be positioned on the mem-

brane. Thus, for an already well adjusted Sagnac mode, the membrane was shifted

linearly with its positioner to the point where the highest contrast could be achieved.

During the process several challenges and limitations occurred. When the membrane

was tilted to measure only the Sagnac mode, the path was slightly misaligned due to

the refraction in the material. When the Sagnac overlap was only adjusted with tilted
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membrane, the reached contrast was not optimal. Therefore the fine adjustment had

to be done when both modes were overlapping.

To avoid clipping on the membrane frame, the waist size needed to be much smaller

than the membrane. But the consequence was high divergence and a bigger beam size

on the steering mirrors, the beamsplitter and the vacuum tank windows. The waist

size had to be chosen such, that clipping at these other components was avoided.

Therefore a trade-off between a small waist on the membrane and too high divergence

causing clipping of the beam at other optics had to be made.

The minimum power reflection of the antireflective coating of the beamsplitter was

170 ppm (parts per million) for an angle of 45◦. For the angle of best balancing of

45.5◦ it was 260 ppm [34]. It followed that the power of the light reflected by the

coating could not be neglected. It left the interferometer as a low power beam next

to the signal beam and could be cut off using a pinhole.

As the frame of the membrane was also transmissive for the used wavelength, it was

not always obvious in the adjustment process if the beam hit the frame or the mem-

brane. To verify that the beam hit the membrane, the ratio between the light power

in the Sagnac mode and in the Michelson mode turned out to be a good indicator. As

the silicon frame acted as a resonator, its reflectivity and transmission were dependent

on the wavelength. When the wavelength was shifted and the heights of the signals

stayed constant, the light hit the membrane. When they changed, it hit the frame.

Figure 6.5 shows the resulting interference fringes of the optimized contrast for an

in linear direction scanned membrane displacement. On the left the measured signal

of the photodiode in reflection is shown. The Sagnac mode appeared as a flat signal,

the sinusoidal signal on top shows the Michelson mode. From the ratio between these

two, it followed a power reflectivity of the membrane of

r2
m = 0.19± 0.005 . (6.7)

By taking the ratio of the input power Pin and the maximum output power at the

bright fringe, both measured with a powermeter, this reflectivity could be confirmed.

This experimental value was slightly lower than the theoretical value of r2
m,theo = 0.23

calculated with equation (3.1). The value strongly depends on the refractive index

which may vary depending on the pureness of the silicon nitride. The used membrane
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Figure 6.5: Interferometer signal for a scanned membrane displacement
in reflection (left) and in transmission (right): The graphs show the measured
signals of both photodiodes, that were used for the contrast adjustment. The reflected
signal showed the sum of the Sagnac mode as flat signal and the Michelson mode as
sinusoidal signal. Their ratio determined the experimental value for the membrane
power reflectivity r2

m = 0.19 ± 0.005. On the right the transmission signal is shown.
The Sagnac mode interfered deconstructively and almost only the Michelson mode
fringes are measured. The height difference between the maxima could be explained
with a non perfect balancing of the beamsplitter. Fitting the data with the squared
function for the output amplitude given in equation (3.13) resulted in a mismatch of
∆bs = |r2

m − t2m| = 0.0012. The reached contrast was C = 0.997.
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was a stochiometric membrane. The additional tension on the material had an addi-

tional influence on its refractive index. Also the thickness might not have been exact

due to its production process, which caused another error. Considering these points,

the discrepancy between the theoretical and the experimental value was reasonable.

On the right of figure 6.5 the measured transmission of the interferometer is shown.

As the Sagnac mode interfered almost completely constructively for an optimized

setup, this signal mainly showed the Michelson mode as a sinusoidal signal cause by

the scanned displacement of the membrane. The maxima had different heights as

predicted by the theory for the interferometer fringe for a non perfect beamsplitter

balancing. The theoretical function given in equation (3.13) was plotted in figure 3.3

for different splitting ratios. As the positioner of the membrane did not react perfectly

linearly to the applied voltage, the resulting fitted curve of the signal did not overlap

exactly. Nevertheless, it provided a value for the unbalancing of the beamsplitter.

With the applied adjustment techniques, a minimum unbalancing of

∆bs = |0.5006− 0.4994| = 0.0012 (6.8)

and a maximum contrast of

C = 0.997 (6.9)

was reached.

6.2.3 The Influence of Laser Amplitude Noise

The laser amplitude noise and its contribution to the total noise of the interferom-

eter output needed to be considered for the goal to reach the quantum regime with

the displacement spectral density. The used laser in this experiment was a Koheras

BoostiK system by NKT Photonics, consisting of a seed laser and an amplifier with

fiber output. The system had a maximum output power of 5 W at a wavelength of

λ = 1550 nm. The relative intensity noise (RIN) was measured with a single pho-

todiode and a spectrum analyzer for a power of 2 mW for the direct output of the

laser and for the output of the pre-mode-cleaner cavity, which filtered the mode to

provide a clean TEM00 mode as shown in the setup in figure 3.2. The results are

given in figure 6.6. The high peak at 1.3 MHz showed the relaxation oscillation of

the laser. The peak at 330 kHz was caused by the amplifier of the laser system. The

lower frequency peaks were caused by resonances of the electronics of the measurement

photodiode. At 400 kHz close to the expected resonance frequency of the of the mem-
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Figure 6.6: Measured relative intensity noise (RIN) of the laser system: The
measured power with a single photodiode was 2 mW, the resolution bandwidth was
RBW = 5 kHz, the video bandwidth VBW = 1 kHz and the sweep time ST = 7.7 s.
The data was averaged 20 times. The RIN was measured in front of and behind the
pre-mode-cleaner cavity with the same broadband photodiode. The phase noise of
the laser was converted to amplitude noise in the cavity and therefore increased the
RIN for the transmitted light. The highest peak at 1.3 MHz was caused by the laser
relaxation oscillation. The peak at 330 kHz was caused by the amplifier of the laser
system. The peaks at lower frequencies showed resonances of the used photodiode.
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brane’s fundamental mode, the relative intensity noise was RINlas = 5 ·10−7 1√
Hz

before

and RINPMC = 4 · 10−6 1√
Hz

behind the resonator. This result shows that the laser had

high phase noise that was transformed into amplitude noise by the resonator. For the

future it might be interesting to deliberate whether the increased amplitude noise or

the ellipticity of the laser mode before filtering it has a stronger negative effect and if

it might make sense to remove the pre-mode-cleaner cavity.

In section 3.4.2 the impact of the laser amplitude noise on the displacement spec-

tral density was discussed. With the measured RIN, the input power limits for equal

technical laser amplitude noise and shot noise could be calculated. The first limit

follows from the impact of the laser amplitude noise because of the imperfect beam-

splitter balancing. To perform a quantum-noise dominated measurement, unequation

(3.44) had to be fulfilled. For the determined unbalancing of the beamsplitter given

in equation (6.8) the input power limit for dominating shot noise calculates as

Pin < 11 mW . (6.10)

The second limit occurred during the measurement with the photodiodes and was

calculated with unequation (3.45) for an output power in the dark fringe Pout,df =

r2
m(1−C)Pin. Using the measured values for the contrast from equation (6.9) and the

membrane reflectivity from equation (6.7) the corresponding limit for the input power

was

Pin < 28µW . (6.11)

In consequence, a quantum-noise limited sensitivity measured with a single photodi-

ode could only be reached for interferometer input powers below this value. However,

in the presented work a balanced homodyne detector as described in section 4.2.1 was

used. Due to its functionality, correlated amplitude noise, that is evenly distributed on

the two photodiodes, cancels out. In an ideal case, the splitting ratio of the homodyne

detector beamsplitter would be perfectly balanced for the local-oscillator light as well

as for the signal field and both photodiodes would have exactly the same quantum

efficiency and dark currents. In reality, the splitting ratio is adjusted by minimizing

the difference of the photocurrents for the local-oscillator field and in consequence

differences in the parameters of the photodiodes are compensated by beamsplitter

unbalancing. Therefore the common mode rejection for the signal field entering the

balanced homodyne detector from the other port of the beamsplitter is expected to

be imperfect. A realization of a maximum common mode rejection of 75.2 dB by
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parameter compensation of the photodiodes is described in [86]. Without this tech-

nique the impact of the laser amplitude noise of the signal is expected to dominate

the sensitivity of the presented Michelson-Sagnac interferometer for high laser pow-

ers. Nevertheless, it is assumed that a quantum-noise limited displacement spectral

density can be reached for higher powers than the limit given in equation (6.11).

An improvement of the contrast would increase the second limit. The first limit could

only be improved with a better beamsplitter balancing or a more stable amplitude of

the input light.

6.3 Squeezed States in the Michelson-Sagnac Interferometer

6.3.1 The Experimental Injection of Squeezed States

After a high contrast for the Michelson-Sagnac-interferometer modes was reached, the

squeezed-light source could be implemented into the optomechanical experiment. In

figure 6.7 the whole setup is shown. At different beamsplitters, the light coming out of

the pre-mode-cleaner cavity was split up into the input light for the Michelson-Sagnac

interferometer, the light for the SHG resonator, the adjustment field entering the PDC

resonator from the back and the local-oscillator field for the balanced homodyne de-

tector. The squeezed-light source was described in section 4.3.2, the Michelson-Sagnac

interferometer in section 3.2 and the balanced homodyne detection in section 4.2.1.

The field produced by the squeezed-light source was injected into the interferome-

ter through the output port. All light fields were initially polarized perpendicularly

to the optical table. The output field of the Michelson-Sagnac interferometer passed a

λ/2 waveplate and a Faraday rotator, each rotating the polarization by 45◦. The light

with the resulting parallel polarization transmitted through a polarizing beamsplitter

(PBS). The perpendiculary polarized squeezed states coming from the PDC resonator

were reflected by the same PBS and transmitted the Faraday rotator and waveplate in

the opposite direction. Their polarization was rotated by 45◦ in the rotator, but due

to the Faraday effect in the reverse direction compared to the interferometer signal.

Therefore the squeezed light was again perpendicularly polarized after passing the

λ/2 waveplate. As a consequence both fields inside the interferometer had the same

polarization and interfered. When the dark fringe condition was fulfilled, the squeezed

light was reflected by the interferometer and propagated with the dark signal field to

the balanced homodyne detector.
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Figure 6.7: The complete optomechanical experiment with implemented
squeezed-light source: At first the 1550 nm field from the NKT fiber laser was
filtered by the pre-mode-cleaner cavity to provide a clean TEM00 mode. The trans-
mitted beam was split up into the incoming field for the Michelson-Sagnac interfer-
ometer (see section 3.2), the field for the squeezed-light source (see section 4.3.2) and
the local-oscillator field for the balanced homodyne detector (see section 4.2.1). The
perpendicularly polarized squeezed vacuum field produced in the PDC was injected
into the output port of the interferometer via a polarizing beamsplitter (PBS) and
a Faraday rotator in combination with a λ/2 waveplate. Inside the interferometer it
interfered with the bright signal field. The resulting perpendicularly polarized field
coming out of the interferometer passed the waveplate and the rotator and transmit-
ted the PBS with a parallel polarization. It overlapped with the local-oscillator beam
on the balanced beamsplitter of the balanced homodyne detector.
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As optical losses had to be minimized to measure squeezed states as explained in

section 4.2.2, an optimization of the overlap of the squeezed vacuum field, the inter-

ferometer signal and the local oscillator on the beamsplitter of the balanced homodyne

detector was crucial. To achieve a good mode matching, a triangular resonator was

installed as a mode reference, the so called diagnose mode cleaner (DMC). For the

mode matching procedure a flip mirror was placed in front of one of the homodyne

detector photodiodes. The local-oscillator light was reflected to the resonator and the

transmission was measured with a photodiode.

Using two lenses in the path, the mode of the local-oscillator light was optimized

for a maximum transmission of the TEM00 mode through the DMC resonator. Subse-

quently this light was blocked and the interferometer output field was sent to the same

resonator. With two lenses in front of the homodyne detector beamsplitter, its mode

was also matched to the DMC and thus as well to the local-oscillator field. The third

step was to adjust the mode of the squeezed vacuum field with the other two fields

blocked. For this purpose the 1550 nm adjustment beam transmitting through the

PDC cavity from the back was used. Two lenses between the squeezed-light source and

the interferometer allowed the optimization of the mode reflected by the interferometer

to the resonator. The mode matching of the three fields to the diagnose-mode-cleaner

cavity gave an indication for the visibility between the fields on the beamsplitter of

the balanced homodyne detector.

Using this technique, a mode matching of the local oscillator to the resonator of 99.8 %

was reached. The mode matching of the bright interferometer output was 98.2 %, the

mode matching of the adjustment field in reflection of the interferometer was ≈ 98.5 %.

In addition, a path with flip mirrors between the PDC resonator and the balanced

homodyne detector was set up for the option to measure the squeezed states directly

before they entered the interferometer. With an additional lense set the adjustment

field was mode matched to the diagnose-mode-cleaner cavity to optimize the detection

efficiency. Here a mode matching of ≈ 99.5 % was reached.

6.3.2 The Feedback Control Loops for the Phase Stabilization

Three feedback control loops for the phase relations between the different light fields

in the setup had to be implemented. The phase between the interferometer output
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light and the local-oscillator light defined the readout quadrature. When the squeezed

vacuum states were injected, their phase in respect to the field in the interferometer

needed to be stabilized as well. For this purpose a single-sideband field was used,

which entered the PDC cavity from the back. Its phase in relation to the pump field

and the local-oscillator light was controlled for a stable phase relation between these

two.

Stabilization of the MSI readout quadrature: To adjust the phase between the

signal beam and the local-oscillator field, a piezo-actuated mirror was placed in the

local-oscillator path. A constructive interference with ∆φ = π of the fields corre-

sponded to a readout in amplitude quadrature, a destructive interference with ∆φ = π
2

corresponded to a readout in phase quadrature. For a lock in phase quadrature the

DC output of the balanced homodyne detector served as error signal as it occurred in

its zero transient.

For a measurement in the amplitude quadrature, the derivative of the DC signal

was required to lock on the maximum of its amplitude. The therefore necessary com-

ponents are shown in figure 6.8. The local-oscillator beam passed an electro-optic

modulator, that generated sidebands at ΩEOM = 25 MHz. The DC output of the bal-

anced homodyne detector was high-pass filtered and demodulated with ΩEOM. The

result was low-pass filtered and provided the error signal, which had its zero transient

at the maximum of the DC output. It was used to actively stabilize the phase by

regulating the voltage on the piezo-actuated mirror. Positioning this mirror close to

the homodyne detector minimized pointing.

Stabilization of the squeeze angle: When squeezed states were injected into the

interferometer, their phase relative to the light in the interferometer and therefore to

the local-oscillator field had to be stabilized as well. The applied technique of a single-

sideband lock was developped by Henning Vahlbruch [39]. As the squeezed vacuum

field didn’t have an amplitude itself, a coherent control field was used, which was phase

stabilized in respect to the 775 nm pump field and to the local-oscillator field. For this

purpose, the single sideband with a frequency shift of ΩAOM = 27 MHz to the carrier
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Figure 6.8: Schematics of the control loops for the stabilization of the read-
out and squeeze angle: Using an electro-optic modulator (EOM), side bands at a
frequency of 25MHz were generated on the local oscillator. When the interferometer
signal and the local-oscillator field interfered at the balanced homodyne detector, fil-
tering its output signal and mixing it down at the modulation frequency delivered a
sinusoidal error signal with a zero crossing for a stabilization in the amplitude quadra-
ture. As the squeezed states didn’t have an amplitude, a frequency-shifted control field
at 27MHz was generated with an acoustooptic modulator (AOM) and sent through
the PDC cavity. With two feedback loops its phase relations to the 775 nm pump field
and to the local-oscillator field were stabilized. For the first one the signal of a pho-
todiode in reflection of the PDC cavity was demodulated with double the frequency.
The balanced homodyne detector signal was demodulated with the original frequency
to generate an error signal for the second control loop to determine the phase between
the control field and the local oscillator.
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frequency ω was created by modulating light of the fundamental frequency ω with an

acousto-optic modulator (AOM). The first order sideband beam was diffracted under

an angle to the fundamental beam and could be separated from it with a pinhole. It

entered the PDC resonator from the back through the high-reflective coated crystal

as illustrated in figure 6.8. Inside the crystal it induced a parametric down-conversion

process, which generated a second sideband with a frequency shift of −27 MHz. The

resulting field

Ess(t) ∝
1 + e2r

√
e2r

αΩ cos
(

(ω + ΩAOM)t
)
− 1− e2r

√
e2r

αΩ cos
(

(ω − ΩAOM)t− 2θ
)

(6.12)

with single sideband amplitude αΩ, squeeze parameter r and squeeze angle θ left the

resonator on both sides. To adjust the phases to the pump field and to the local

oscillator, piezo-actuated mirrors were placed in the pump field path in front of the

PDC resonator and in the path of the squeezed field right before the injection into the

interferometer via the Faraday rotator.

Behind the PDC resonator another Faraday rotator was placed, such that the po-

larization of the reflected single sideband was orthogonal to the polarization of the

incoming light. It was separated with a polarizing beamsplitter and detected with

a resonant photodiode. Its voltage was demodulated with the frequency difference

2ΩAOM = 54 MHz of the two sidebands. After low-pass filtering, the result was a sinu-

soidal error signal for the phase between the pump beam and the control beam. It was

used to actively stabilize their phase relation by sending a voltage to the piezo-electric

mirror in the pump field path.

The second step was the stabilization of the phase of the control field to the local

oscillator. In the case of a simple squeezed-states measurement this phase determined

the readout angle. In the case of squeezed states injected into the interferometer it

determined the squeeze angle of the light in relation to interferometer signal. For this

control loop the balanced homodyne detector DC signal was used. The fields measured

by the two photodiodes

EPD± ∝
1√
2

[
αLOe

−i(ωt+φ) ±
(1 + e2r

√
2e2r

αΩ cos((ω + ΩAOM)t)

− 1− e2r

√
2e2r

αΩ cos((ω + ΩAOM)t− 2θ)
)]

(6.13)
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with readout angle φ, the amplitude of the local-oscillator αLO and the amplitude of

the single sideband αΩ induced photocurrents, that were subtracted from each other.

This signal was high-pass filtered and demodulated with ΩAOM to receive an error

signal depending on the squeeze angle θ and the readout phase φ. θ was already fixed

by the pump phase control loop. φ was stabilized by using this error signal to send a

voltage to the piezo-actuated mirror in the path of the squeezed field. In the case of a

simple squeezing measurement, the squeezed field propagated directly to the balanced

homodyne detector and only a stable relation between φ and θ was relevant. In the

case of injecting squeezed states into the interferometer, θ had to be chosen relative

to the readout quadrature of the interferometer.
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7 The Performance of the Squeezed Cryogenic

Michelson-Sagnac Interferometer

This chapter presents the data, that was measured with the previously described

optomechanical setup. It includes a determination of the membrane resonance fre-

quencies followed by a characterization of the fundamental mode. The spectra were

measured at room temperature and at 100 K to examine the influence of the tempera-

ture on the noise contributions and on the quality factor. To receive the displacement

spectral density, the data was calibrated with the theoretical shot noise. It was firstly

aimed for a shot-noise limited interferometer sensitivity to demonstrate the enhancing

effect of squeezed states. In the next step the squeezed-light source was character-

ized. In the beginning the states were measured directly with the balanced homodyne

detector, secondly they were injected into the interferometer.

7.1 Measurement of the Membrane Resonance Frequencies

For the characterization of the membrane in the Michelson-Sagnac interferometer, an

input field with a power of Pin = (50± 5)µW was used. The displacement of the mem-

brane was chosen such, that the dark fringe condition from section 3.2 was fulfilled and

the output power was in its minimum Pout = r2
m(1−C)Pin with C being the contrast of

the MSI and r2
m being the membrane power reflectivity. The signal was measured with

the balanced homodyne detector as shown in figure 6.3. It was fed into a spectrum

analyzer to receive the noise spectral density. All spectra were recorded for a pres-

sure of < 10−6 mbar in the vacuum chamber. At first a broad spectrum was measured

to determine the membrane’s resonance frequencies. The result is plotted in figure 7.1.

The fundamental resonance peak, the (1,1) mode, was found at f 1,1
res = 414.72 kHz.

The deviation from the theoretical value calculated in equation (3.4) is 1 %. This

discrepancy is reasonable considering the unknown error for the thickness and tension

of the membrane and the purity of the material. The frequencies of the higher-order

modes were calculated with

fm,nres =
Ωm,n

res

2π
=
f 1,1

res√
2

√
m2 + n2 . (7.1)

This equation followed directly from equation (3.4) for a perfectly square membrane

with lx = ly. The calculated and measured resonance frequencies in the range of
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Figure 7.1: Broad spectrum of the Michelson-Sagnac interferometer noise
spectral density: The data was recorded for an input power of (50± 5)µW and a
local-oscillator power of 11 mW. It was normalized to the vacuum shot-noise level of
the local oscillator, which was measured by taking a spectrum without signal light
from the MSI. The resolution bandwidth of the spectrum analyzer was RBW = 2 Hz,
the video bandwidth RBW = 500 Hz and the sweep time ST = 10 s. The shown curve
was averaged 20 times. Within the frequency range, the resonance peaks f 1,1

res , f 1,2
res ,

f 2,1
res , f 2,2

res , f 1,3
res and f 3,1

res were detected, the frequency differences between the (1,2) and
the (2,1) mode, as well as between the (1,3) and the (3,1) mode were too small to be
visible in this graph’s scale.
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f 1,1
res f 1,2

res f 2,2
res f 1,3

res

measured 414.72 kHz 655.9 kHz 829.5 kHz 927.7 kHz
calculated 655.7 kHz 829.4 kHz 927.3 kHz

Table 2: Measured higher-order resonance frequencies of the membrane and
corresponding values calculated via equation (7.1) from the fundamental
mode.

the measured noise spectrum are given in table 2. The frequencies of the (1,2) and

the (2,1) mode only differed by 0.2 kHz and the resonances were therefore not visible

as separate peaks on the shown scale. For the (1,3) and the (3,1) only one peak

was detected. Thus, the assumption of an almost perfectly square membrane was

reasonable. The calculated values for the higher-order resonance frequencies confirmed

that the measured peaks were all caused by the membrane and not by other noise

sources as for example technical laser noise or electronic noise.

7.2 The Measurement and Calibration of Shot-Noise Dominated

Spectra at T = 293 K and T = 100 K

For an enhancement of the interferometer’s sensitivity by injecting squeezed states,

the spectrum must be quantum-noise limited. Concluding from the evaluations of

the relevant noise contributions in sections 3.3 and 3.4, the measurement of radiation

pressure noise was not possible with the current setup. Therefore it was aimed for a

shot-noise dominated displacement spectral density off resonance with a peak caused

by thermal noise.

In section 6.2.3 the relative intensity noise (RIN) of the laser was measured to quan-

tify the impact of laser amplitude noise. An input power limit of Pin < 28µW was

calculated in equation (6.11) for lower laser amplitude noise
√
Sln than shot noise√

SMSI
SN for the detection with a single photodiode. Due to the expected common noise

rejection of the correlated laser amplitude noise in the balanced homodyne detector, it

was examined if a shot-noise limited sensitivity can be reached for higher input powers.

Figure 7.2 shows the resonance peak of the fundamental mode for different input

powers Pin between 30µW and 2 mW measured at the dark fringe. To receive the

displacement spectral density, the data series were calibrated with the corresponding

shot noise. The theoretical shot noise levels for the used input powers calculated via
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Figure 7.2: Displacement spectral density around the (1,1) mode for differ-
ent input powers at room temperature: The data around the resonance frequency
of f 1,1

res = 414.7 kHz measured with the balanced homodyne detector was recorded for
powers from 30µW to 2 mW and calibrated to the calculated vacuum shot noise with
equation (7.2). The shot-noise levels from table 3 are given by the dashed lines. For
the lowest three powers the slopes approached the vacuum shot noise. For higher
powers the curves stayed above the shot noise level and could not be fitted with a the-
oretical sum of shot noise and thermal noise, which could be explained by the impact
of the laser amplitude noise. The data for each power was recorded for a resolution
bandwidth of RBW = 1 Hz, a video bandwidth of 1 Hz and a sweep time of ST = 1.9 s
and was averaged 20 times. The curve for the thermal noise

√
Sx

temp is a theoretical
model of the thermal noise given in equation (3.38) for the temperature T = 293 K,
the effective mass meff = (71± 5) ng and a quality factor Q = 2.7 · 105. It is shown
for reference and will be discussed further in section 7.3.2.
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Pin (mW)
√
SMSI

SN,x

(
m√
Hz

)

2± 0.05 (1.60+0.02
−0.02) · 10−15

1± 0.03 (2.26+0.04
−0.03) · 10−15

0.5± 0.01 (3.20+0.35
−0.33) · 10−15

0.25± 0.005 (4.53+0.33
−0.31) · 10−15

0.12± 0.005 (6.54+0.14
−0.13) · 10−15

0.06± 0.005 (9.24+0.41
−0.36) · 10−15

0.03± 0.005 (1.31+0.12
−0.10) · 10−14

Table 3: Calculated shot-noise levels following from equation (3.23) for
different input powers Pin.

equation (3.23) are given in table 3. The relative error of the powermeter to measure

the input power was higher for low light powers. The other used parameters were

the membrane power reflectivity r2
m = 0.19± 0.005 and the wavelength λ = 1550 nm.

With the spectrum analyzer the shot-noise level PdB, SN of the local-oscillator field in

dB was measured. Converted into power, this value scaled linearly with the squared

calculated shot-noise level SMSI
SN,x. The data points of the spectra, measured as noise

spectral density PdB, were transformed using the resulting relation

√
10

1
10

(PdB−PdB, shot)SMSI
SN,x =

√
SMSI

x . (7.2)

All measured spectra show the same shape of the oscillator transfer function caused by

the thermal noise. For reference the theoretical curve
√
Sx

temp following from equation

(3.38) is given for the temperature T = 293 K, the effective mass meff = (71± 5) ng

and a quality factor of Q = 2.7 · 105. Its analysis will be discussed further in section

7.3.2. For the powers Pin between 30µW and 125µW, the slopes went down to the

corresponding vacuum shot-noise level. The noise floor of the spectra for Pin = 250µW

and higher stayed above shot-noise level and their shape could not be fitted with the

theoretical sum of shot noise and thermal noise given in equation (7.5) as it will be

described in section 7.3.2. The explanation is the increasing impact of laser ampli-

tude noise. A shot-noise limited sensitivity could therefore be reached for powers

Pin ≤ 125 mW. In comparison to the power limit following from the RIN, the mea-

surement shows that the common noise rejection of the balanced homodyne detector

increased the maximum input power for a shot-noise limited sensitivity by a factor of

≥ 5.
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In the next step, the cryostat was used to cool the interferometer down to 100 K. The

temperature was measured with the thermometer attached to the membrane holder.

Despite choosing Invar as spacer material because of its low thermal expansion and

minimizing the deformation in the design, the contrast decreased to below 50 % when

the interferometer was cooled down. With the same adjustment procedure described

in section 6.2.2, a contrast of C = 99.7 % could be achieved again at 100 K. With the

installed system a minimum temperature of 15 K could be reached, however the high

contrast at this temperature could not be reproduced because the positioner for the

vertical membrane angle could not be moved anymore.

At a temperature T = 100 K the resonance frequency of the (1,1) mode was decreased

to f 1,1
res = 406.0 kHz. Figure 7.3 shows the displacement spectral density around the

resulting peak for different input powers at the dark fringe as in figure 7.2 at room

temperature. The data series were calibrated to the same corresponding theoretical

shot-noise levels given in table 3 using equation (3.38). The theoretical curve of the

on resonance dominating thermal noise
√
Sx

temp following from equation (3.38) is given

for the temperature T = 100 K, the effective mass meff = (71± 5) ng and a quality

factor of Q = 1.6 · 106. Its analysis will be discussed further in section 7.3.2. For the

input powers Pin from 30µW to 125µW the slopes again went down to the vacuum

shot noise levels shown as dashed lines. For higher powers the laser amplitude noise

was dominating the spectrum off resonance. Therefore the reached common noise

rejection of ≥ 5 from the room temperature measurement could be reproduced. For

both operating temperatures a quantum-noise limited displacement spectral density

could be reached for input powers Pin ≤ 125µW.

7.3 The Characterization of the Silicon Nitride Membrane

7.3.1 The Evaluation of the Measured Noise Spectral Density

The main focus of the presented work lays on the enhancement of the interferometer

sensitivity by injecting squeezed states. When this technique will be applied in the

future to measure and reduce radiation pressure noise, the signal-to-noise ratio and

therefore reaching high quality factors will become a matter of interest. For this

reason the membrane in the Michelson-Sagnac interferometer should be characterized.

Currently the option of a ring-down measurement as described in section 8.2 was not

given, as no mechanical excitement of the membrane mode was possible. Hence, the
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Figure 7.3: Displacement spectral density around the (1,1) mode for dif-
ferent input powers at 100 K: The data measured with the balanced homodyne
detector was recorded for powers from 30µW to 2 mW and calibrated to the vacuum
shot noise as in figure 7.6 with equation (7.2). The shot-noise levels from table 3 are
given by the dashed lines. Again for the three lowest powers Pin the slopes approached
the vacuum shot noise, for higher powers the curves stayed above the shot-noise level.
Compared to the data at room temperature the peak became smaller and narrower.
The data for each power was measured with a resolution bandwidth of RBW = 1 Hz,
a video bandwidth of VBW = 1 Hz and a sweep time of ST = 1.9 s and was averaged
20 times. The curve for the thermal noise

√
Sx

temp is a theoretical model of the ther-
mal noise given in equation (3.38) for the temperature T = 100 K, an effective mass
meff = (71± 5) ng and a quality factor Q = 1.5 · 106. It is shown for reference and will
be discussed further in section 7.3.2.
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spectra recorded with the spectrum analyzer were evaluated. This section addresses

three effects impacting the measurement, that need to be considered to interpret the

results: The functionality of the spectrum analyzer, the fluctuations of the peak height

and the instability of the readout quadrature.

The resolution bandwidth of the spectrum analyzer: For a proper understanding

of the data measured with a spectrum analyzer, its functionality needs to be taken into

account. The presented spectra were recorded in the frequency domain. In this case

the spectrum analyzer measures how much power is present for one frequency. Realis-

tically in such a measurement every data point gives the power in a defined frequency

band during a finite time interval. The resolution bandwidth (RBW) determines the

frequency band, over which one data point is measured. The video bandwidth (VBW)

has the effect of an adjustable low pass filter. If the cut off frequency is below the

RBW, the response to quick fluctuations is affected, resulting in a smoothing of the

spectrum. Thus, to measure narrow features, a video bandwidth VBW ≤ RBW should

be chosen [87].

Each measured data point is not the exact value of the noise power for a certain fre-

quency f , but the integral over a frequency interval [f− RBW
2
, f+ RBW

2
]. The spectrum

analyzer, that was used to record the presented spectra, had a minimum resolution

bandwidth of RBW = 1 Hz. Figure 7.4 illustrates its influence for the example of two

resonance peaks. The shown displacement-spectral-density functions of the thermal

noise in the experiment at a temperature T = 100 K were modeled with equation

(3.38) for a resonance frequency f 1,1
res = 406.0 kHz and an effective mass meff = 71 ng.

Two different quality factors were assumed. The left curve corresponds to a quality

factor of Q = 0.5 · 105 and a full width half maximum of FWHM = 8 Hz. In a mea-

sured spectrum with RBW = 1 Hz, the recorded data represents the actual noise quite

well. The data point on resonance given by the integral over [fres − RBW
2
, fres + RBW

2
]

only has a discrepancy of < 0.5 % to the theoretical noise power on the peak tip. The

right curve shows the function with a quality factor Q = 50 · 105 and a full width half

maximum of FWHM = 0.08 Hz. Using the same resolution bandwidth RBW = 1 Hz

an integral on resonance over [fres − RBW
2
, fres + RBW

2
] would result in a data point

that is 3 times smaller than the actual noise. It shows that the height of a membrane

peak narrower than the resolution bandwidth is impossible to be resolved with a spec-

trum analyzer. Next to the peak tip the slopes decrease. Thus, the integrals over a

bandwidth of 1 Hz off resonance, as pictured in the right model, conform to the actual
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Figure 7.4: The influence of the resolution bandwidth of the spectrum
analyzer on the measured data: The graphs show two theoretical displacement
spectral sensitivites caused by thermal noise for a resonance peak of the membrane
with f 1,1

res = 406.0 kHz and meff = 71 ng at a temperature of 100 K, assuming two
different quality factors. A measurement point of the analyzer is the integral over
the frequency band of the resolution bandwidth, in this case RBW = 1 Hz. The
peak on the left has a quality factor of Q = 0.5 · 105 and a full width half maximum
of FWHM = 8 Hz. The integral over 1 Hz around the resonance matches with the
maximum of the curve with a deviation of < 0.5 %. On the right a peak for a quality
factor of Q = 50 · 105 and a full width half maximum of FWHM = 0.08 Hz is pictured.
In this case the actual signal on resonance is three times higher than the measured
integral. On the slopes however the measured power values conform with the actual
peak shape.
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signal. In conclusion, the shape of the peak slopes have more significance for the data

evaluation than the points on resonance for a peak narrower than the RBW.

One can also take advantage of measurements with resolution bandwidths broader

than the peak. For example in [88] a high RBW was chosen on purpose to assure

that the data point on resonance is an integral over the whole peak width. Therefore

the measured value could be used to calculate the temperature directly with equation

(3.40) instead of determining the area under the peak from all measured data points

as it was done in the presented work in section 7.3.2.

The instability of the readout quadrature: In section 6.3.2 the feedback control

loop to stabilize the phase between the local-oscillator field and the interferometer

output field is described. This technique allowed to keep the readout angle stable in

the amplitude quadrature. To change the phase, one mirror in the local-oscillator path

was attached to a piezo-electric actuator, such that the path length could be controlled

by applying a voltage. The interference of the sidebands on the local oscillator and the

signal field resulted in a sufficient error signal. Unfortunately for the chosen low input

power, the error signal was not strong enough for a stabilized phase. In consequence

the voltage on the piezo-electric actuator could only be adjusted manually during the

measurements.

In figure 7.5 a zero-span measurement for an input power of Pin = 1 mW at the

resonance frequency f 1,1
res = 414.7 kHz is shown. For a stabilized readout amplitude

quadrature, such a measurement would result in a line on the level of the peak height

with the fluctuations of the thermal noise. In the shown graph, a triangular voltage

was applied on the actuator. As the thermal noise peak is measured as an amplitude

modulation, the spectral density was maximal in the amplitude quadrature. In the

phase quadrature, the peak completely disappeared and the spectral density reached

the shot-noise level. The measurement demonstrates the strong dependency of the

peak height on the readout angle. For the record of a proper resolved peak tip, it is

required to stay on the maximum of the curve for the sweep time of ST = 1.9 s. As

this stability was not given, a resulting error in the data needs to be considered.

The fluctuations of the peak height: As the readout angle in the experiment was

not stabilized, a minimal measurement time had to be chosen for the presented spectra.

Every data point recorded by the spectrum analyzer therefore was the representation
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Figure 7.5: Zero-span measurement of the noise spectral density at the
membrane resonance frequency f1,1

res = 414.7 kHz: This data was recorded
with an input power of Pin = 1 mW, a local-oscillator power of 11 mW, a resolution
bandwidth RBW = 10 kHz, a video bandwidth VBW = 10 kHz and a sweep time of
ST = 150 ms. It was normalized to the vacuum shot noise. The phase between the
local oscillator and the signal field was scanned by applying a triangular voltage on a
piezo-actuated mirror in the local-oscillator path. In the phase quadrature the curve
reached the shot noise. The membrane resonance peak only contributed to the noise
in the amplitude quadrature which corresponded to the maximum of the curve.
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of one short time interval. The peak is caused by the Brownian thermal noise. As

the Brownian motion inside the membrane is a stochastic process, the motion of the

particles is completely random. It induces fluctuations in the stress, the thickness

and the optical properties of the material [89]. Thus, a measurement of the noise on

resonance in a short time window is not representative for the maximum on a larger

time scale. Averaging the data over a longer time scale might allow a measurement of

better resolved peak tips. An alternative could be to choose a longer sweep time (ST)

of the analyzer to increase the time window for a single data point. The sweep time

determines the time for one measurement. It depends on how long a mixing product

stays in the bandpass of the intermediate-frequency filter of the analyzer. The ST is

directly connected to the resolution bandwidth via

ST =
k(span)

RBW
(7.3)

with a span-dependent proportionality constant k(Span). For Gaussian filters k(span)

has typical values in the 2 to 3 range [87]. Usually spectrum analyzer couple the

setting of the ST directly to the RBW and VBW. By increasing the automatic value,

the accuracy of the measurement could be improved.

7.3.2 The Quality Factor and the Mode Temperature of the Membrane

For the measurements presented in the following parts, an input power of Pin =

(50± 5)µW was chosen to assure that the laser amplitude noise stayed below the

vacuum shot-noise level and that the effect of the injected squeezed states was mea-

surable later on. To determine the quality factors and the mode temperatures, spectra

around the fundamental frequencies f 1,1
res = 414.7 kHz at a temperature T = 293 K and

f 1,1
res = 406.0 kHz at a temperature T = 100 K were recorded at the dark fringe. With

the measured membrane power reflectivity r2
m = 0.19± 0.005 from section 3.1 and the

wavelength λ = 1550 nm, the theoretical shot-noise level according to equation (3.23)

for the input power Pin = (50± 5)µW was:

√
SMSI

SN,x = (1.01+0.09
−0.07) · 10−14 m√

Hz
. (7.4)

With this value the measured noise spectral density was calibrated via equation (7.2).

The resulting displacement spectral density for T = 293 K is shown in figure 7.6. To fit

the theoretical data, the contributions of the thermal noise and the shot noise needed

102



10−14

10−13

10−12

10−11

414.5 414.7 415

d
is
p
la
ce
m
en
t
sp
ec
tr
al

d
en
si
ty

(m
/
√
H
z)

frequency (kHz)

MSI signal Pin = 50µW
shot noise theory
thermal noise fit

total noise fit

Figure 7.6: Displacement spectral density around the (1,1) resonance peak
of the membrane at room temperature: The used input power was (50± 5)µW.
The resolution bandwidth was RBW = 1 Hz, the video bandwidth VBW = 1 Hz and
the sweep time ST = 1.9 s. The shown data was averaged 20 times. The shot-noise
level was calculated from a 20 times averaged measurement without signal. The data
measured with the balanced homodyne detector was calibrated via equation (7.2) with
the theoretical value for the vacuum shot-noise level given in equation (7.4) to receive
the displacement spectral density in m/

√
Hz. For the shown model of the total noise

in green with the effective mass meff = (71± 5) ng and the temperature T = 293 K,
the data was fitted with the quality factor as free parameter, yielding to the value
Q293 ≈ 2.7 · 105. In the frequency range of ≈ ±50 Hz around the peak, the thermal
noise given by equation (3.38) and shown in blue was dominating.
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to be considered. The total noise calculated as:

√
SMSI

tot,x =
√
SMSI

SN,x + Sx
temp (7.5)

with the shot noise SMSI
SN,x given by equation (7.4) and the thermal noise Sx

temp given by

equation (3.38). To fit the model to the measured data with the quality factor Q293

as free parameter, the calculated effective mass meff = (71± 5) ng and the measured

temperature T = 293 K with the thermometer on the membrane holder were used.

For the resulting function shown in green, a quality factor of the membrane of

Q293 ≈ 2.7 · 105 (7.6)

was determined, which corresponded to a full width half maximum of

FWHM293 =
fres

Q293

≈ 0.7 Hz . (7.7)

The slopes of the model fit well to the shape of the data, whereas the height of the

measured peak of
√
SMSI

max, 293 = (2.5± 0.3) · 10−13 m√
Hz

was 6 times lower than the one

of function. The integral over [fres− RBW
2
, fres + RBW

2
] with RBW = 1 Hz for the model

would result in a value only 1 % below the theoretical maximum. The influence of the

resolution bandwidth explained in section 7.3.1 should therefore not be high. Therefore

it is assumed that the also discussed fluctuations of the peak height and the instability

of the readout quadrature caused this discrepancy. The pure theoretical thermal noise

Sx
temp given by equation (3.38) is shown for the determined quality factor in the blue

curves in figure 7.6 and 7.2. Its slopes off resonance fit to all the measured spectra

at room temperature for different input powers in the thermal noise dominated regime.

For the model it was assumed, that absorptions in the material didn’t induce a major

heating, such that the temperature measured at the membrane holder was valid for

the membrane as well. The mode temperature of the membrane is proportional to

the integral of the thermal displacement spectral density Sx
vis(Ω). It was calculated

by equation (3.40), which is independent of the quality factor and therefore could be

applied directly on the measured data. From the area under the measured spectrum

in the frequency range of ±75 Hz around the resonance frequency and the calculated

effective mass meff = (71± 5) ng followed a mode temperature of

TMSI
mode,293 = (341+129

−87 ) K. (7.8)
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The error bars result from the mass density of the membrane given in [54] and the

squared shot noise given in equation (7.4) that was used to calibrate the data. In

addition an error of 10 % was assumed due to the unstable readout quadrature as

explained in section 7.3.1. Within the error bars the determined mode temperature

conforms to the temperature measured with the thermometer. This result confirms

that the applied calibration method was valid.

The measurement was repeated at a temperature of 100 K. Figure 7.7 shows the

displacement spectral density around the fundamental mode for an input power of

(50± 5)µW calibrated with the same transformation given in equation (7.2) for the

theoretical shot-noise level given in equation (7.4). Two additional side peaks on the

slopes with a difference to the carrier frequency of ≈ ±20 Hz were visible. An explana-

tion could be so called satellite modes, modes of other components in the setup, that

were excited by acoustic vibrations coupling in. The resulting oscillations at much

lower frequencies beat with the membrane resonance and show as upper and lower

side bands distorting the peak’s shape. A probable origin of such modes could be the

stack of attocube positioners, onto which the membrane holder was attached. These

devices contained springs for the stepping mechanism, which made them possible can-

didates for the occurrence of oscillations. An older interferometer design described in

[34] had comparable positioners for its steering mirrors, that also were causing satel-

lite modes. During the measurement the turbo pump was running, which could be a

source of vibrations exciting the satellite modes. In addition oscillations of the mem-

brane silicon frame, induced by light hitting it on the edge, could have had an influence.

The shown model for the sum of the relevant noise sources
√
SMSI

tot,x given in equa-

tion (7.5) was fitted to the slopes for a temperature T = 100 K and an effective mass

meff = (71± 5) ng, which resulted in a quality factor of the membrane of

Q100 ≈ 1.5 · 106 , (7.9)

which corresponded to a full width half maximum of

FWHM100 =
fres

Q100

≈ 0.3 Hz . (7.10)

One expects an increase of the quality factor for lower temperatures [90], which could

also be observed in this case. For the fitted models, the quality factor was almost

an order of magnitude higher than at room temperature. In the measured data the
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Figure 7.7: Displacement spectral density around the (1,1) resonance peak
of the membrane at 100 K: The used input power was (50± 5)µW. The resolution
bandwidth was RBW = 1 Hz, the video bandwidth VBW = 1 Hz and the sweep time
ST = 1.9 s. The shown data was averaged 20 times. The shot-noise level was calculated
by averaging the data points off resonance. The data measured with the balanced
homodyne detector was calibrated via equation (7.2) with the theoretical value for the
vacuum shot-noise level given in equation (7.4) to receive the displacement spectral
density in m/

√
Hz. For the shown model of the total noise in green with the effective

mass meff = (71± 5) ng and the temperature T = 100 K, the data was fitted with
the quality factor as free parameter, yielding to the value Q100 ≈ 1.5 · 106. In a
frequency band of ≈ ±15 Hz the total noise was dominated by the thermal noise given
by equation (3.38) and shown in blue. At ≈ ±20 Hz satellite modes were visible on
the slopes.
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increase showed as a narrower peak at T = 100 K. However the measured height of

the peak
√
SMSI

max, 100 = (1.6 ± 0.4) · 10−13 m√
Hz

was a factor of 15 lower than the value

from the corresponding fit and therefore even smaller than the one at T = 293 K.

The integral over [fres − RBW
2
, fres + RBW

2
] of the given total noise function yields

to a value a factor of 2 below the theoretical maximum. Therefore the limited RBW

is an explanation why the peak tip at the lower temperature was resolved even worse

than the one at room temperature as explained in section 7.3.1.

The blue curves in the figures 7.6 and 7.2 show the impact of the thermal noise

Sx
temp given by equation (3.38) for the determined quality factor. For a frequency

band of ±50 Hz around the resonance frequency, the area under the measured dis-

placement spectral density was calculated from the data points. Using the effective

mass meff = (71± 5) ng, equation (3.40) yielded to a mode temperature of

TMSI
mode,100 = (81+38

−23) K . (7.11)

For the narrower peak a manual adjustment of the readout quadrature was more inac-

curate and therefore an error of 20 % was assumed because of the missing stabilization

as described in section 7.3.1. Combined with the errors for the mass and the scaling

factor given in equation (7.4), this results in the given uncertainty of the determined

mode temperature.

In conclusion, quality factors of Q293 ≈ 2.7 · 105 and Q100 ≈ 1.5 · 106 were deter-

mined at the temperatures T = 300 K and T = 100 K from calibrating and fitting

the data measured with the spectrum analyzer. The mentioned influences show, that

the measurement of quality factor values with this method is possible with a limited

accuracy.

7.4 The Enhancement of the Interferometer Sensitivity using

Squeezed States

7.4.1 The Detection of the Produced Squeezed States

Off resonance the displacement spectral density of the Michelson-Sagnac interfer-

ometer was limited by the vacuum shot noise around the resonance frequencies of

f 1,1
res = 414.7 kHz at room temperature and f 1,1

res = 406 kHz at T = 100 K for an input
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power of (50± 5)µW. Thus the condition to detect an enhancing effect of injected

squeezed states was fulfilled. But before taking this step, the squeezed-state source

was characterized. To measure the maximum detectable squeeze factor in the relevant

frequency range, the squeezed states were sent at first directly to the balanced homo-

dyne detector as illustrated in figure 4.9. The phase between the squeezed vacuum

field and the local oscillator was stabilized with a feedback loop using the frequency-

shifted control field described in section 6.3.2.

As explained in section 4.3.2, stabilizing the temperature of the PDC cavity was cru-

cial for the squeezed-state generation. In this case of a doubly-resonant PDC cavity,

the temperature had to be chosen such, that it could be resonant for the fundamental

and the doubled frequency for the same length. The closer this temperature was to the

phase matching temperature of the crystal, the higher was the efficiency as explained

in section 4.1.4. Within the range of the used temperature controller, this was possi-

ble for the three temperatures 25.3 ◦C, 37.8 ◦C and 49.6 ◦C. In [38] I characterized the

performance of the source for all three temperatures. For this work the temperature

of 37.8 ◦C was chosen, for which the highest squeezing could be reached.

The second important parameter was the pump power of the frequency-doubled light.

This power was varied to determine the power of the highest reachable shot-noise

reduction for a sideband frequency of 400 kHz close to the fundamental mode of the

membrane. The homodyne detector signal was fed into the spectrum analyzer and

zero-span measurements were recorded to examine the performance. The reached

squeeze and antisqueeze factors are plotted against the pump power in figure 7.8. The

values were normalized to the vacuum shot noise of the local oscillator. As expected

the antisqueeze factors were higher than the squeeze factors for all pump powers due

to optical loss. Above a pump power of 11.8 mW, the detected squeezing did decrease,

but the antisqueezing still increased.

Using equation (4.31) an average detection efficiency of

η2
direct = 0.878± 0.013 (7.12)

was reached for the data for the pump powers up to 11.8 mW. The optical losses

appeared at various points. An unavoidable loss was caused by the limited quantum

efficiency of the photodiodes for the homodyne detection. For a good adjustment the
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Figure 7.8: Measured squeeze and antisqueeze factor depending on the
pump power resulting from zero-span measurements at 400 kHz: The res-
olution bandwidth for the zero-span measurements was RBW = 50 kHz, the video
bandwidth VBW = 5 kHz and the sweep time ST = 0.2 s. The data measured with
the balanced homodyne detector was averaged 20 times. The local-oscillator power
was 20.5 mW, which resulted in a vacuum shot-noise level of 21.9 dB over dark noise
at this frequency. The data was normalized to the shot noise and the electronic dark
noise of the detector was subtracted. For different pump powers of the 775 nm light,
the reached squeeze and antisqueeze value were determined.
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loss was estimated to be ≤ 2 %. For the adjustment beam of the PDC cavity to the

diagnose mode-cleaner cavity a mode matching of 99.5 % was reached, for the local

oscillator 99.9 %. According to equation (4.34) this determined an upper limit for

the loss due to imperfect mode overlap of 1 − 0.9942 ≈ 1.2 %. All optics in the path

were superpolished and had high reflective coatings. The beamsplitter was made of

suprasil3001, a material with absorption in the order of magnitude of 1 ppm [91]. Thus,

the propagation loss given by equation (4.33) was assumed to be < 0.5 %. The escape

efficiency given by equation (4.36) depended on the transmission of the coupling mirror

and the round trip loss inside the PDC cavity. According to the specifications given by

the coating company Laseroptik GmbH, the losses at the antireflective coating on the

plane side of the crystal and the transmission at the high reflective curved side summed

up to ≈ 0.1 %. Following from the power transmission t2m = 0.15 of the coupling mirror

the calculated escape efficiency was η2
escape ≈ 0.99, which corresponded to a loss of 1 %.

The estimated sum of optical losses Ltot ≈ 5 % could not explain the experimen-

tally determined loss of (12.2± 1.3) %. Therefore one could assume the presence of

phase jitter, an unstable phase relation between the local oscillator and the signal field

degrading the detected squeezing as described in section 4.2.3. Two other indications

for this effect were observed. The first was the decrease of the detected squeeze factor

for pump powers above 11.8 mW. The second was, that a shot-noise reduction of

−10.2 dB was measured with the same PDC cavity in [38] at a sideband frequency

of 1 MHz and a pump power of 15 mW. As a consequence, the detection of higher

squeezing with higher pump powers was possible at higher frequencies with the setup.

Another cause for lower detected squeezing for higher pump powers was the reliability

of the control loop for the readout quadrature. The narrower the squeezing ellipse

became, the more fragile was the stabilization of the phase.

The maximum squeezing was detected for a pump power of 11.8 mW. A squeeze factor

of (−8.7± 0.2) dB and an antisqueeze factor of (17.9± 0.2) dB were achieved. In the

error bars a maximum fluctuation of 5 % of the local-oscillator power was considered,

that could have caused a shift of the vacuum shot-noise level over time. Subtracting

the electronic dark noise of the homodyne detector resulted in a squeeze factor of

(−8.9± 0.2) dB. The corresponding zero-span measurement without dark-noise cor-

rection is pictured in figure 7.9. Besides the squeezing and antisqueezing data for a

stabilized phase, a measurement for a varying readout phase is shown. A triangular

voltage was applied to the piezo-electric mirror resulting in a rotation of the squeezing
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Figure 7.9: Zero-span measurement of the squeezed and antisqueezed noise,
measured directly on the homodyne detector at 400 kHz: The pump power
of the 775 nm light in this measurement was Ppump = 11.8 mW, the resolution band-
width was RBW = 50 kHz, the video bandwidth VBW = 5 kHz and the sweep time
ST = 0.1 s. The local-oscillator power was 20.5 mW which resulted in a vacuum
shot-noise level of 21.9 dB over electronic dark noise at this frequency. The data was
normalized to the shot noise. The green curve shows the measurement for a scanned
phase between the local oscillator and the signal field, the other lines were averaged
20 times. The achieved squeeze factor was (−8.7± 0.2) dB, the corresponding anti-
squeeze factor was (17.9± 0.2) dB. In the graph, the electronic dark noise was not
subtracted, a subtraction resulted in a squeeze factor of (−8.9± 0.2) dB.
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Figure 7.10: Broad-spectrum measurement of squeezed states: The shown
measurements of the squeezed and antisqueezed noise were measured directly with the
homodyne detector and normalized to the vacuum shot noise. The data was averaged
20 times. The local-oscillator power was 20.5 mW which resulted in a vacuum shot-
noise level of ≥ 15 dB over dark noise in this range. The pump power of the 775 nm
light was Ppump = 9.2 mW. The resolution bandwidth was RBW = 30 kHz, the video
bandwidth VBW = 5 kHz and the sweep time ST = 0.5 s. As this spectrum of the
squeezed noise shows, the reached squeezing and antisqueezing values were consistent
over the frequency range of the lower-order resonance peaks of the membrane for the
used pump power. As the electronic dark noise varied over this range, it was subtracted
from the measurements.

ellipse in time.

As the laser amplitude noise decreased for higher frequencies, it could be an option

to choose a membrane with a higher resonance frequency or to look at higher-order

resonances of the current membrane in the future to be quantum-noise limited for

higher laser powers. For this reason the frequency dependence of the squeeze factor

was measured for the frequency range of sufficiently low electronic dark noise of the

used homodyne detector. In the range of 350 kHz to 950 kHz the shot-noise level was

at least 15 dB above dark-noise level for the local-oscillator power of 20.5 mW. The

resulting spectrum is shown in figure 7.10. The used pump power was 9.2 mW. As
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the darknoise was frequency dependent, it was subtracted.

The spectrum shows that the squeezing and antisqueezing factors were consistent

for this pump power in the chosen frequency range. In average a squeeze factor

of (8.4± 0.2) dB and an antisqueeze factor of (13.5± 0.2) dB were measured. The

squeeze factor was slightly higher than the dark-noise corrected one of a zero-span

measurement with the same pump power of (8.3± 0.2) dB. The discrepancy laid

within the error bars and could also be explained with an additional error in measur-

ing the pump power. The antisqueeze factor of the spectrum was also consistent with

the measured value of (13.6± 0.2) dB in the zero-span measurement at 400 kHz.

7.4.2 The Detection of the Squeezed States Injected into the Interferometer

Before sending bright input light and squeezed states into the Michelson-Sagnac Inter-

ferometer simultaneously as shown in the setup in figure 6.7, only the squeezed states

injected into the interferometer were measured. The bright input light was only used

to adjust the membrane displacement for the dark fringe and was blocked afterward.

This step was crucial to avoid optical losses because of a too high transmission of the

interferometer for the squeezed states.

Compared to the direct squeezing measurement from section 7.4.1, the phase con-

trol loops and the length of the PDC resonator were less stable. An explanation could

be, that the isolation of the Faraday rotator was not perfect, such a that part of the

signal was reflected back to the PDC resonator disturbing its length stabilization.

This effect also showed in a reduction of the threshold power. For pump powers above

11 mW the cavity was lasing. A pump power lower than for the direct detection proved

to provide a maximum squeezing value. This was an indication that additional phase

noise appeared in the interferometer, causing an additional jitter of the readout phase.

Figure 7.11 shows a zero-span measurement of the detected squeezed and antisqueezed

noise in reflection of the Michelson-Sagnac Interferometer with blocked input light Pin

of the interferometer at a frequency of 400 kHz. The pump power was 9.2 mW and the

phase for the squeezed and antisqueezed data series was stabilized. The green curve

shows the noise for a a measurement with a scanned phase. Therefore a triangular

voltage was applied on the piezo-actuated mirror. To compare the measurement with

the directly detected squeezing as measured in section 7.4.1, the corresponding data

for the same pump power is given by the dashed lines. When the squeezed states
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Figure 7.11: Zero-span measurement of the squeezed and antisqueezed noise
after the injection into the Michelson-Sagnac interferometer at 400 kHz
without bright input light: The pump power of the 775 nm light in this mea-
surement was Ppump = 9.2 mW, the resolution bandwidth was RBW = 50 kHz, the
video bandwidth VBW = 5 kHz and the sweep time ST = 0.1 s. The data measured
with the balanced homodyne detector was normalized to the vacuum shot noise. The
local-oscillator power was 20.5 mW which resulted in a vacuum shot-noise level of
21.9 dB over the electronic dark noise at this frequency. The green curve shows the
measurement for a scanned phase between the local oscillator and the signal field, the
other lines were averaged 20 times. The dashed lines show the measured signals for a
direct squeezing measurement without injection into the interferometer for the same
pump power. In reflection of the interferometer, the antisqueezing value dropped
from (13.6± 0.2) dB to (13.0± 0.2) dB and the squeezing from (−8.1± 0.2) dB to
(−4.8± 0.2) dB. The electronic dark noise was not subtracted.
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were detected directly, a squeeze factor of (−8.1± 0.2) dB and an antisqueeze fac-

tor of (13.6± 0.2) dB were detected. In reflection of the interferometer these values

were degraded to a squeeze factor of (−4.8± 0.2) dB and an antisqueeze factor of

(−13.0± 0.2) dB. Subtracting the electronic dark noise resulted in a squeeze factor

of (−4.9± 0.2) dB. As a consequence the detection efficiency calculated via equation

(4.31) decreased from η2
direct = 0.878± 0.013 to

η2
MSI = 0.701± 0.015 . (7.13)

In the error bars of the given values a maximum fluctuation of 5 % of the local-oscillator

power was considered again, that could have caused a shift of the shot-noise level over

time.

The squeezed states reflected by the interferometer experienced additional optical

losses. Their path is shown in figure 6.7. The used Faraday rotator by the com-

pany Qioptiq was hand-selected by the distributor soliton to guarantee a minimum

transmission of t2f = 0.96. My measurement of the transmission delivered a value

of t2f ≈ 0.985 for a clean TEM00 mode and t2f ≈ 0.98 for a slightly elliptical beam.

The used polarizing beamsplitter showed a maximum reflection of r2
PBS,s ≈ 0.995 and

a maximum transmission t2PBS,p ≈ 0.99 for the optimized polarizations. Considering

that the squeezed vacuum states were reflected by the beamsplitter, passed the Fara-

day rotator twice and transmitted through beamsplitter, the loss added up to ≈ 5.5 %.

The imperfect contrast of the interferometer caused another 1 − 99.7 % = 0.3 % loss.

In addition the reached mode matching of the adjustment beam to the reference cav-

ity was 1 % lower than for the degraded case. Therefore an increase of the resulting

optical loss of 2 % due to a decreased visibility was assumed.

Again the sum of additional optical losses of ≈ 8 % could not explain the observed

degrading of the detection efficiency. Therefore additional phase jitter caused by com-

ponents of the Michelson-Sagnac interferometer was assumed to be the cause for the

lower than expected measured squeeze factor.

As in section 7.4.1 a spectrum of the squeeze and antisqueeze factor for a broad fre-

quency range was measured with the same pump power. The data is shown in figure

7.12. As the electronic dark noise was frequency dependent, it was subtracted. The

measurement shows that the achieved squeezing and antisqueezing is consistent over
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Figure 7.12: Broad-spectrum measurement of squeezed states injected into
the Michelson-Sagnac interferometer without bright input light: The shown
data of the squeezed and antisqueezed noise was normalized to the vacuum shot noise.
The data measured with the balanced homodyne detector was averaged 20 times.
The local-oscillator power was 20.5 mW which resulted in a vacuum shot-noise level
of ≥ 15 dB over dark noise in this range. The pump power of the 775 nm light was
Ppump = 9.2 mW. The resolution bandwidth was RBW = 30 kHz, the video bandwidth
VBW = 5 kHz and the sweep time ST = 0.1 s. As this spectrum of the squeezed
noise shows, the reached squeezing and antisqueezing values were consistent for this
pump power in the frequency range of the lower-order resonance peaks of the used
membrane. As the electronic dark noise varied over this range, it was subtracted from
the measurements.
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this range from 350 kHz to 950 kHz. In average an antisqueeze factor of (12.9± 0.2) dB

and a squeeze factor of (−4.43± 0.20) dB were measured. These values were consistent

with the results from the zero-span measurement at 400 kHz.

7.4.3 The Enhancement of the Interferometer Sensitivity

Up to this point the interferometer displacement spectral density with bright input

light and the squeezed states injected into the interferometer were measured sepa-

rately. The next step was to measure the displacement spectral density with bright

interferometer input light and injected squeezed vacuum states. The interferometer

input power at 1550 nm was Pin = (50± 5)µW to assure that the signal off resonance

was shot-noise limited and the results were comparable to the measurement with only

coherent light in the figures 7.6 and 7.7. For the squeezed-light source a 775 nm pump

power of 9.2 mW was used, as for this power the maximum squeezing was achieved

in the measurement shown in figure 7.11. The membrane was placed such, that the

dark fringe condition was fulfilled to achieve a minimum output power and minimum

optical losses. The squeezing angle was stabilized using the feedback control loops

from section 6.3.2. The power of the interferometer input field of the interferometer

was too low to receive an error signal for the stabilization of its phase relation to the

squeezed states and the local oscillator. Therefore this phase needed to be adjusted

manually by applying a voltage to the piezo-actuated mirror in the path.

The recorded spectrum around the resonance frequency f 1,1
res = 414.7 kHz of the (1,1)

mode at room temperature is shown in figure 7.13. The data was calibrated with the

theoretically calculated shot noise with the transformation given in equation (7.2). To

reduce the shot noise, the injected nonclassical states needed to be squeezed in the

phase quadrature in respect to the bright light in the interferometer. By injecting

states, that were squeezed in the amplitude quadrature and antisqueezed in the phase

quadrature, the shot noise could be amplified. As comparison the spectrum is also

shown for the initial signal with blocked PDC resonator output. This peak’s slopes

went down to the vacuum shot-noise level of the local oscillator. Unfortunately the

electronic dark noise of the homodyne detector contained several peaks around this

resonance frequency. Thus, the dark noise needed to be subtracted from the data to

achieve the shown enhancement.

From the data off resonance followed a squeeze factor of (3.1± 0.2) dB and an anti-

squeeze factor of (11.8± 0.2) dB. The error bars were caused by a possible maximum
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Figure 7.13: Enhanced displacement spectral density around the (1,1) res-
onance peak of the membrane with injected squeezed states at room tem-
perature: The shot noise of the initial signal for an input power of (50± 5)µW
could be reduced by (3.1± 0.2) dB by injecting states, that were squeezed in the
phase quadrature in respect to the bright light in the MSI. This corresponded to a
sensitivity improvement by a factor of

√
2. By injecting states, that were squeezed in

the amplitude and antisqueezed in the phase quadrature, the shot noise was increased
by (11.8± 0.2) dB. The pump power of the 775 nm light was Ppump = 9.2 mW. The
resolution bandwidth was RBW = 1 Hz, the video bandwidth VBW = 1 Hz and the
sweep time ST = 1.9 s. The shown data was averaged 8 times for the antisqueezed and
squeezed measurement and 20 times for the measurement without injection. The shot
noise level was averaged 20 times and the average value is shown as reference. Because
of the peaks in the electronic noise of the homodyne detector at this frequency, the
dark noise was subtracted.
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fluctuation of 5 % of the local-oscillator power, that could cause a shift of the shot-noise

level over time. Compared to the measurement without bright input light, the squeeze

factor decreased. One reason could be the laser amplitude noise, that had more impact

for lower shot noise. Another explanation was the missing phase stabilization of the

signal field in respect to the local oscillator during the measurement. Therefore the

phase might have drifted during the sweep time of ST = 1.9 s. When bright light was

sent into the interferometer, the length stabilization of the PDC resonator became

more fragile because of signal light reflected by the polarizing beamsplitter due to the

imperfect Faraday rotator. This effect might have caused additional phase noise. Nev-

ertheless, the enhancement of the displacement spectral density by injecting squeezed

states was successfully demonstrated with a shot-noise reduction by a factor of
√

2.

The same measurement was repeated at a temperature of 100 K. The resulting dis-

placement spectral density is shown in figure 7.14. At the shifted resonance frequency

of f 1,1
res = 406.0 kHz, the homodyne detector showed a constant dark-noise clearance

of 20.7 dB for the used 19.5 mW local-oscillator power, such that the electronic dark

noise didn’t need to be subtracted. From the data off resonance followed a reached

squeeze factor of (3.1± 0.2) dB and an antisqueeze factor of (11.4± 0.2) dB. Therefore

at 100 K the reached enhancement from the room temperature could be reproduced

without the subtraction of electronic noise.

The presented measurements show a reduction of the shot noise of above 3 dB, which

corresponds to a factor of
√

2. Thus the sensitivity-enhancing effect of injected

squeezed states for a quantum-noise limited spectrum in an optomechanical mea-

surement was successfully demonstrated at room temperature and at 100 K. For an

optimized setup that allows the usage of higher coherent input powers for the inter-

ferometer, a stabilization of the signal-field phase in respect to the local oscillator will

be possible. Then probably higher squeeze factors will be reachable. Using techniques

further explained in chapter 8 in the future, a radiation-pressure-noise limited dis-

placement spectral sensitivity might be realized. Then the total quantum noise could

be reduced below the standard quantum limit by injecting squeezed states.
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Figure 7.14: Enhanced displacement spectral density around the (1,1) res-
onance peak of the membrane with injected squeezed states at 100 K: The
shot noise of the initial signal for an input power of (50± 5)µW could be reduced
by (3.1± 0.2) dB by injecting states, that were squeezed in the phase quadrature
in respect to the bright light in the MSI. The sensitivity improvement by a factor
of
√

2 from room temperature was therefore reproduced. By injecting states, that
were squeezed in the amplitude and antisqueezed in the phase quadrature, the shot
noise was increased by (11.4± 0.2) dB. The pump power of the 775 nm light was
Ppump = 9.2 mW. The resolution bandwidth was RBW = 1 Hz, the video bandwidth
SBW = 1 Hz and the sweep time ST = 1.9 s. The shown data measured with the bal-
anced homodyne detector is averaged 6 times for the antisqueezed and squeezed curve
and 20 times for the case without injection. The shot-noise level was calculated from
the signal off resonance without the injection of nonclassical states. It was 20.7 dB
above the electronic dark noise for the used local-oscillator power of 19.5 mW. This
data was not dark-noise corrected.
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8 Next Steps

The presented results in the previous chapter demonstrate the enhancement of the

sensitivity of an optomechanical experiment, the Michelson-Sagnac interferometer, by

injecting externally produced squeezed states. With a few upgrades it will be possible

to perform measurements at lower temperatures, to improve the contrast and to reach

higher squeeze factors. In the future the quality factor of the membrane will be

determined with a ring-down measurement. To take advantage of the squeezed states

to reach the radiation pressure noise and to overcome the standard quantum limit,

the implementation of an active laser amplitude stabilization and of a signal-recycling

mirror will be required.

8.1 General Upgrades to Improve the Setup

The membrane positioner: Even though a temperature of 15 K at the membrane

holder could be reached, the presented measurements were recorded at a tempera-

ture of 100 K in figure 7.7. At lower temperatures, one of the attocube positioners to

adjust the membrane angle did not move anymore, thus no sufficient contrast could

be reached. An exchange of this part will allow to perform the experiment at the

minimum temperature that the cryostat provides.

The stack of attocube positioners for the membrane adjustment is a possible can-

didate for the origin of the satellite modes, that appeared in the spectrum at 100 K. If

the upgrade of the positioner doesn’t have a positive effect on the peak shape, it will

be investigated how to stabilize the membrane holder to damp vibrations. One idea

is to implement springs between the membrane holder and the interferometer spacer.

Another improvement could be achieved by screwing the membrane onto the holder

using clamps instead of creating a stiff connection with glue to reduce the occurrence

of stress on the frame.

The beamsplitter: During the adjustment process described in section 6.2.2 one is-

sue was clipping of the beam inside the interferometer. To avoid hitting the frame

of the membrane, a waist size much smaller than the membrane size must be chosen.

However the smaller the waist is, the more the beam diverges and the probability, that

it gets cut off on the edges of the steering mirrors, the beamsplitter or the vacuum

tank windows, increases. The observed clipping is suspected to occur at the beam-
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splitter holder due to its long distance from the waist position and the small size of

the hole in the current design. In the presented work a trade-off between a small waist

size on the membrane and avoiding clipping at the other components had to be made.

The measured waist diameter was 270µm. Nevertheless, the satellite modes on the

detected peak might be caused by light hitting the membrane frame.

A first step to avoid this clipping is the redesign of the beamsplitter holder. The

used optic had a diameter of 1 inch, but the holder only had a 0.5 inch wide opening.

This size can easily be increased. As a second step, the beamsplitter will be exchanged.

Even though the design angle for perfect balancing was 45◦, the best balancing was

reached for 45.5◦. As the interferometer is designed symmetrically, this error results

in a discrepancy between the configuration for hitting the optics in the middle and

the configuration for perfect balancing. A new beamsplitter with 50/50 splitting ratio

at 45◦ will solve this issue. The quality of the new beamsplitter’s antireflective coat-

ing has been measured by Pascal Gewecke in [81]. Its reflective coefficient is below

100 ppm, which is lower than the reflective coefficient of the coating of the current

beamsplitter of 170 ppm for 45◦ and 260 ppm for 45.5◦ [34]. Thus the exchange of the

beamsplitter could allow to reach higher contrast values, such that the laser amplitude

noise at the dark fringe will be reduced. In addition, the contribution of the laser am-

plitude noise occuring on the beamsplitter will decrease for a better balancing, such

that a total reduction of the laser amplitude noise in the output signal is expected.

Reducing incoupling vibrations of the vacuum pumps: During the presented mea-

surements the turbo pump was running to keep the low pressure in the vacuum cham-

ber stable. Due to its functionality, it produces vibrations, that might have coupled

into the experiment despite the oscillation damping by the isolation stage. Using an

ion-getter pump instead could reduce the vibrations, that excite the satellite modes.

Reducing the Phase Noise of the Squeezed Light The squeezed states for the

injection into the interferometer were produced with a comparably low pump power

for the PDC resonator. Higher squeezing values could be detected directly with the

balanced homodyne detector for higher pump powers, however the length stabilization

of the resonator showed fluctuations when the states were injected into the interferom-

eter. In figure 6.7 the setup with the injection via the Faraday rotator and a polarizing

beamsplitter was shown. Due to the imperfection of these components a small fraction

of the light from the interferometer was reflected to the PDC resonator and disturbed
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its length stabilization. This effect will be suppressed by adding an isolator in the

path of the squeezed states. In combination with a λ/2 waveplate and two polarizing

beamsplitters, a second Faraday rotator will rotate the polarization of the incorrectly

reflected light such, that it can be filtered out with the PBS. This isolation will im-

prove the stability of the PDC resonator length, such that higher pump powers can

be used. Thus, the squeeze factor of the injected states can probably be increased.

8.2 Determination of the Quality Factor via Ring-Down

Measurement

To measure radiation pressure noise, reaching a high quality factor of the silicon ni-

tride membrane will become of interest. As the presented evaluation of the spectra

showed, a determination from the spectrum analyzer data is only possible by fitting

the slopes of the peak with a theoretical model. In the future a more exact value will

be required for a proper interpretation of the data. A common approach to measure

the quality factor are so called ring-down measurements.

The membrane is excited with its known resonance frequency and the resulting fluc-

tuation of the light power is measured with a photodetector. Depending on the decay

time τ , the initial power P0 decreases exponentially with the time t to

P = P0e
t
τ . (8.1)

From a measurement of this dependence, τ can be determined, which is directly con-

nected to the quality factor via [88]

Q = πfresτ . (8.2)

The challenge occurring for the presented Michelson-Sagnac interferometer is the ex-

citement of the silicon nitride membrane. The quality factor strongly depends on the

stress induced by the clamping or gluing as well as on the attached components. Ad-

ditionally it is temperature dependent and changes when the membrane is cooled to

cryogenic temperatures. Therefore it is no option to perform the ring-down measure-

ment before implementing the membrane into the interferometer.

The interferometer and therefore the membrane are isolated from incoupling vibrations

with the damping stage shown in section 6.1.2, which is designed to suppress exactly

123



the relevant frequency band. A common approach is the attachment of a piezo-electric

actuator directly to the experiment or to the vacuum tank. By applying a voltage,

the membrane can be excited [92][88]. In the presented setup a vibration from outside

would not couple into the experiment, thus the actuator would have to be inside the

tank. However these devices are usually not suitable for a performance at low tem-

peratures and they would be an additional component that could cause oscillations

disturbing the spectrum. Therefore an attachment directly onto the interferometer or

the membrane holder should be avoided.

The oscillations of the membrane could also be excited by an amplitude modula-

tion of the incoming light, but in the case of equal light powers on both sides with the

same arm lengths, the pressures would cancel each other out. Thus, this option could

only be realized if one arm was blocked or misaligned on purpose. But even then the

incoming light would have to be blocked to measure the decay time and an additional

probe beam would be required for the readout.

As the interferometer already contains cryogenic actuators, one could consider to ap-

ply a voltage with the resonance frequency on them to excite the membrane. However,

they are not designed for frequencies in this order of magnitude. The maximum fre-

quency to apply on the Janssen positioners given by the company is 600 Hz, thus they

can not be used for this purpose [84]. The classification of the attocube positioners

states a maximum drive velocity of 1 mm
s

[83]. The controller by the company does not

allow output frequencies in the kHz regime, however one could consider to connect

self-built electronics. Because of the velocity limit, only a low amplitude could be

applied after consulting the manufacturer. Nevertheless, as the membrane is directly

attached to the actuator, the resulting excitement should be sufficient for a ring-down

measurement.

8.3 The Laser Amplitude Stabilization

The presented measurements with the Michelson-Sagnac interferometer were taken

with an input power of Pin = 50µW to avoid a domination of technical laser am-

plitude noise. Besides the resulting low radiation pressure noise, the performance of

the experiment at such a low power had another disadvantage. The error signal to

stabilize the phase between the local oscillator and the interferometer output signal

was too small to keep the readout quadrature stable. To allow measurements with

higher input powers, the amplitude of the used light will be actively stabilized in the
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Figure 8.1: Example setup for an active laser stabilization for the inter-
ferometer input field: The electro-optic amplitude modulator (EOAM) serves as a
power actuating device. The photodiode measures a fraction of the transmitted power
as a reference value for an error signal. With a feedback loop the voltage on the mod-
ulator is regulated, determining the transmission through the polarizing beamsplitter.

future.

For such a scheme, a power actuating device, as for example an electro-optic am-

plitude modulator (EOAM), needs to be implemented as shown in figure 8.1. In

transmission of the device a small fraction of the power is detected as a reference. The

measured power is compared to a defined value and their difference is used as an error

signal for a feedback loop regulating the voltage on the EOAM. By controlling this

voltage, the transmitted light through the polarizing beamsplitter will have a more

stable amplitude [35]. The successful performance of this technique was demonstrated

in [93].

8.4 Signal Recycling

In section 3.3.2 the order of magnitude of the quantum radiation pressure noise in

the Michelson-Sagnac interferometer was regarded theoretically. As a result, an input

power in the order of magnitude of 10 kW would be required to reach the standard

quantum limit over a broad frequency range for the current setup. Besides the fact,

that the used laser system does not provide such a high power, several issues would

occur. A high input power would cause a thermal lens in the beamsplitter, which

would decrease the contrast. On the other hand the balanced homodyne detector can

only handle a limited output power of the interferometer, thus the contrast of the

interferometer would have to be unrealistically high to allow a measurement at the
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Figure 8.2: The Michelson-Sagnac interferometer with signal-recycling mir-
ror: By placing a high-reflective mirror in the output, a signal-recycling cavity between
the mirror and the membrane is formed. If the cavity is resonant for the TEM00 mode,
the signal is amplified, such that a radiation-pressure-noise limited displacement spec-
tral density can be realized for lower input powers. In addition other modes than the
TEM00 mode are filtered out as they don’t fulfill the resonance condition.

dark fringe. In addition the membrane would heat up because of absorption [35].

To amplify the output signal of an interferometer without increasing the input power,

Meers suggested the concept of signal recycling [94]. In [31] the idea of using the

signal-recycling principle for a Michelson-Sagnac interferometer was proposed and it

has already successfully been applied in [30] to observe optomechanical cooling.

As illustrated in figure 8.2 a high-reflective mirror with tunable position is placed

into the output of the interferometer and a high fraction of the signal is retroreflected

to the membrane. The two components now form a cavity, that amplifies the output

field when the resonance condition is fulfilled. The cavity length is stabilized with a

feedback control loop using an additional control field. It should be mentioned, that

this scheme does not work for a perfect dark fringe as in this case any output light

to generate an error signal for the stabilization would be eliminated. To avoid loosing

signal through the input port of the interferometer, the cavity should be undercoupled,

which is the case for rMSI > rSR. In consequence the interferometer contrast limits the

reflectivity, that can be chosen for the signal-recycling mirror.
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Figure 8.3: Signal recycled quantum radiation pressure noise and shot noise
for Pin = 1 W and thermal noise for T = 1 K: The radiation pressure noise is
given by equation (8.5), the shot noise by equation (8.6) and the thermal noise by
equation (3.38). The signal-recycling mirror power reflectivity is r2

SR = 0.999. The
used parameters in this theoretical curves are a quality factor of Q = 106, a thickness
of dm = 100 nm, an effective mass of meff = (71± 5) ng and a resonance frequency of
fres = Ω0

2π
= 400 kHz. Due to the amplified signal, a radiation-pressure-noise dominated

displacement spectral density is reached for a 104 times lower input power than in figure
3.6, where an input power of 10 kW was suggested.
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For a distance l between the membrane and the beamsplitter, a cavity length lSR

and a signal-recycling mirror with a power reflectivity r2
SR the cutoff frequency is

ΩSR =
c(1− rSR)

2(lSR + l)
. (8.3)

The factor

GSR =
1 + rSR

1− rSR

(8.4)

is called the recycling gain factor. The shot-noise and the quantum-radiation-pressure

displacement spectral densities from equations (3.23) and (3.25) change to [31]:

√
SMSI, SR

SN,x =

√
~cλ

16πGSRr2
mPin

√
1 +

( Ω

ΩSR

)2

, (8.5)

√
SMSI, SR

RPN,x = |H(Ω)|
√

16π~GSRr2
mPin

cλ

√
1

1 + ( Ω
ΩSR

)2
. (8.6)

In figure 3.6 the quantum radiation pressure noise and shot noise without signal recy-

cling was pictured for an input power of Pin = 10 kW. Figure 8.3 shows a comparable

plot for a signal-recycled interferometer with power reflectivity r2
SR = 0.999 and an in-

put power of Pin = 1 W. Because of the cavity effect a radiation-pressure-noise limited

sensitivity can be reached for an input power that is 104 times lower. An additional

advantage is the suppression of other modes than the TEM00. The reflected light of

the antireflective coating of the beamsplitter or stray light most probably does not

fulfill the resonance condition and does not get amplified. Therefore a signal-recycling

mirror has a contrast-improving effect [35][34].

In the design for the Michelson-Sagnac-interferometer spacer presented in section 6.1.2,

the implementation of a signal-recycling cavity in the future was already considered.

With an additional triangular positioner by Janssen precision engineering, the signal-

recycling mirror can be attached to the gold coated Invar block in the output port.
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9 Summary and Outlook

The results of this work demonstrate, that the application of squeezed states can

enhance the sensitivity of optomechanical measurements. In this context a Michelson-

Sagnac interferometer with a silicon nitride membrane was presented and the principle

and setup of the used squeezed-light source was described and characterized.

The squeezed states for the application in the presented work were produced via

degenerate parametric down-conversion (PDC). To induce this nonlinear process, a

pump field of double the frequency was required, that was produced with the inverse

nonlinear process, the second-harmonic generation (SHG) [8]. For both processes crys-

tals of periodically poled potassium titanyl phosphate were inserted into resonators to

achieve a high conversion efficiency. The PDC cavity was resonant for both relevant

wavelengths to generate squeezed states with a low pump power.

In contrast to the injection of externally produced states for a sensitivity enhance-

ment, as applied in current gravitational-wave detectors, the squeezed states can also

be produced directly inside a cavity of a detector by inserting a nonlinear crystal as

suggested in [24]. Using the built squeezed-light source, a proof-of-principle experiment

was performed to demonstrate this effect. A phase-modulation signal of an interfer-

ometer was mimicked by generating side bands on a light field at several frequencies

using an electro-optic modulator. The light was sent through the PDC cavity, which

was simultaneously pumped with frequency-doubled light. This way, a Fabry-Perot

interferometer for optomechanical measurements with a nonlinear medium inside was

imitated. As a result the noise was reduced, but also the signal was affected. However,

the deamplification of the signal was lower than the squeezing of the noise, such that

an improvement of the sensitivity-bandwidth product of 36 % could be demonstrated

experimentally. In the future this technique could be applied in interferometric de-

tectors in addition to the injection of squeezed states from an external source to take

advantage of both effects [33].

The optomechanical experiment investigated in this work contained a silicon nitride

membrane as mechanical oscillator. Such membranes have high quality factors and low

masses which makes them good candidates to investigate radiation pressure noise. The

100 nm thick membrane for this experiment had a window size of 1 mm×1 mm and an

effective mass of (71± 5) ng. The measured power reflectivity was r2
m = 0.19± 0.005 .
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Therefore its transmission was too high to use it as an end mirror of an interferom-

eter without having to deal with high optical loss. For this reason the topology of a

Michelson-Sagnac interferometer as suggested in [31] was chosen. The two sides of the

membrane acted as end mirrors of both arms of a Michelson interferometer, the light

transmitted in both directions formed a Sagnac interferometer.

The measured total noise of the interferometer showed contributions of the ther-

mal noise, the laser amplitude noise and the shot noise. A future goal is to reach

a radiation-pressure-noise limited displacement spectral density. As theoretical esti-

mations have shown, the membrane needs to be cooled to decrease the thermal noise

beyond the radiation-pressure-noise level. Therefore the interferometer was designed

for a performance at low temperatures and placed inside a cryostat. Cryogenic po-

sitioners provided the option to adjust the membrane and the steering mirrors from

the outside with electronic controllers. The overlap of the outcoming modes was op-

timized such, that a contrast of 99.7 % with an unbalancing of the beamsplitter of

∆bs = |r2
bs − t2bs| = 0.12 % was achieved.

The measurements of the interferometer signal were taken at the dark fringe, the

point of destructive interference of the Michelson mode and therefore the lowest out-

put power. The fundamental mode of the inserted membrane was observed at a

frequency of f 1,1
res = 414.7 kHz for room temperature and at f 1,1

res = 406.0 kHz for a

temperature of T = 100 K. With an input power of 50µW, the laser amplitude noise

was low enough to realize a shot-noise limited sensitivity off resonance. The peak at

the lower temperature showed satellite modes on its slopes, that were probably caused

by low frequency resonances of other interferometer components. The measured noise

spectra were calibrated with the theoretical shot-noise level. By fitting the resulting

displacement spectral density on the peak slopes with the theoretical models for the

total noise, the quality factors of the membrane Q293 ≈ 2.7 · 105 at room temperature

and Q100 ≈ 1.5 ·106 for a temperature of T = 100 K were determined. The experimen-

tal mode temperatures TMSI
mode,300 = (341+129

−87 ) K and TMSI
mode,100 = (81+38

−23) K, calculated

from the area under the peaks, conformed to the temperatures measured with the

thermometer within the error bars .

A characterization of the squeezed-light source was performed via balanced homodyne

detection. A noise reduction of (−8.7± 0.2) dB below vacuum shot noise was mea-

sured at a sideband frequency of 400 kHz with a pump power of 11.8 mW. From the

130



corresponding antisqueezing factor of (17.9± 0.2) dB followed a detection efficiency

η2 = 0.878 ± 0.013. The estimated efficiency considering the known optical losses of

the setup was η2 ≈ 0.95. Because of this discrepancy and as the squeezing decreased

for higher pump powers, it is assumed that phase noise degraded the measured squeeze

factor.

The squeezed-light source was implemented into the optomechanical experiment and

the produced states were injected into the Michelson-Sagnac interferometer through

the output port. The squeeze angle was stabilized with feedback control loops using

the signal of a bright frequency-shifted control field. At both operating temperatures

T = 293 K and T = 100 K, the shot noise of the interferometer output signal was

squeezed by (3.1± 0.2) dB, which corresponds to a reduction by a factor of
√

2 in the

linear displacement spectral density.

In conclusion, the shown results demonstrate a squeezed-light-enhanced optomechan-

ical measurement. After upgrading the setup for the performance at lower tempera-

tures and for a higher input power, the implementation of a signal-recycling mirror

will allow the detection of radiation pressure noise over a broad frequency band. Then

the application of squeezed states, as successfully executed in the presented work, will

reduce the total quantum noise such, that an undercut of the standard quantum limit

can be realized. Therefore the presented results form a crucial step to increase the

sensitivity of future optomechanical experiments.
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