
Electron Spin Resonance Studies on

Spin-Orbit Interactions in Graphene

Dissertation

zur Erlangung des Doktorgrades

an der Fakultät für Mathematik, Informatik und
Naturwissenschaften

Fachbereich Physik

der Universität Hamburg

vorgelegt von

Jonas Sichau

- Hamburg, 2019 -



GUTACHTER DER DISSERTATION:

Prof. Dr. Robert H. Blick

Prof. Dr. Hans P. Oepen

ZUSAMMENSETZUNG DER PRÜFUNGSKOMMISSION:

Prof. Dr. Robert H. Blick

Prof. Dr. Hans P. Oepen

Prof. Dr. Daniela Pfannkuche

Prof. Dr. Wolfgang J. Parak

Dr. Lars Tiemann

DATUM DER DISPUTATION:

30.09.2019

VORSITZENDE DER PRÜFUNGSKOMMISSION:

Prof. Dr. Daniela Pfannkuche

VORSITZENDER DES FACH-PROMOTIONSAUSSCHUSSES PHYSIK:

Prof. Dr. Michael Potthoff

LEITER DES FACHBEREICHS PHYSIK:

Prof. Dr. Wolfgang Hansen

DEKAN DER FAKULTÄT MIN:

Prof. Dr. Heinrich Graener



Abstract

In the early years of the rise of graphene, Kane and Mele [Phys. Rev. Lett. 95,
226801 (2005)] predicted that spin-orbit interactions would induce a topologi-
cal state of matter at sufficiently low energies. This spin-Hall insulating state
would be gapped in the bulk, while supporting spin transport along the sample
boundaries. The size of the intrinsic gap has been the subject of theoretical
discussions as it has not been measured until recently. Resistively-detected elec-
tron spin resonance at low temperatures is proven to be a suitable experimental
method to probe the low-energy regime in graphene by coupling charge carriers
of opposite spin in an external magnetic field via microwave excitation. The
observed features in the sample resistivity can be linked to the band structure
of graphene, which is described by a numerical model. The size of the intrinsic
spin-orbit bulk band gap of graphene is determined to be 42.2 µeV. The experi-
ments yield indications of a phase transition from the spin-Hall insulating state
to the Dirac semi-metallic state at an external magnetic field of 0.38 T. Additio-
nally, the robustness of the g-factor of the charge carriers against variations of
the sample geometry and the carrier density is confirmed. However, g shifts
between values of 1.81 and 2.03 when the external magnetic field direction is
altered. By employing a microscopic theory to the angular dependence of the
g-factor, the mixing parameter of the p- and d-orbitals in graphene as well as the
atomic spin-orbit coupling are extracted. In a separate experiment, graphene
is directly placed on Pt/Co/Pt magnetic nanoparticles, which are found to
enhance the features of the electron spin resonance in graphene by a factor ≥ 5
without affecting the value of the g-factor. Variations of the magnetic field angle
yield indications of interactions between the microwaves and the magnetic
moments of the nanoparticles, which affect the resistivity of the graphene.
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Zusammenfassung

Im Zeitraum nach der experimentellen Entdeckung von Graphen sagten Ka-
ne und Mele [Phys. Rev. Lett. 95, 226801 (2005)] voraus, dass die Spin-Bahn-
Wechselwirkung der Ladungsträger einen topologischen Zustand bei ausrei-
chend geringen Energien erzeugt. Dieser isolierende Spin-Hall Zustand weist
eine Bandlücke im Bulk auf, während Spin-Transport am Probenrand mög-
lich ist. Die Größe der intrinsischen Bandlücke ist Gegenstand von theoreti-
schen Debatten, da bis vor kurzem noch kein genauer Wert gemessen wurde.
Widerstands-detektierte Elektronen-Spin-Resonanz bei Tieftemperaturen stellt
sich als geeignete experimentelle Methode heraus, um den Niedrigenergie-
Bereich in Graphen zu messen. Hierbei werden Ladungsträger mit entgegen-
gesetztem Spin in einem Magnetfeld über Mikrowellenstrahlung gekoppelt.
Die beobachteten Widerstandsänderungen im Graphen spiegeln die Bandstruk-
tur wider, welche mit Hilfe eines numerischen Modells berechnet wird. Die
Größe der intrinsischen Bulk-Bandlücke von Graphen wird mit 42.2 µeV be-
stimmt. Die Experimente lassen Rückschlüsse zu auf einen Phasenübergang
vom isolierenden Spin-Hall-Zustand zum Dirac-Halbmetall-Zustand bei einem
äußeren Magnetfeld von 0.38 T. Zusätzlich wird die Invarianz des g-Faktors der
Ladungsträger gegenüber der Probengeometrie und der Ladungsträgerdichte
gezeigt. Allerdings variiert g zwischen Werten von 1.81 bis 2.03, wenn die Rich-
tung des äußeren Magnetfeldes geändert wird. Indem eine mikrospkopische
Theorie auf die Messergebnisse der Winkelabhängigkeit des g-Faktors ange-
wandt wird, kann sowohl der Misch-Paramter der p- und d-Orbitale in Graphen,
als auch die atomistische Spin-Bahn-Wechselwirkung extrahiert werden. In ei-
nem separaten Experiment wird Graphen direkt mit Pt/Co/Pt Nanopartikeln
in Kontakt gebracht, welche das Elektronen-Spin-Resonanz-Signal um einen
Faktor ≥ 5 erhöhen, ohne den g-Faktor zu beinflussen. Winkeländerungen
des äußeren Magnetfeldes lassen Rückschlüsse zu, die auf Wechselwirkungen
zwischen der Mikrowellenstrahlung und den magnetischen Momenten der
Nanopartikel hindeuten, welche wiederum den spezifischen Widerstand von
Graphen beeinflussen.
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Introduction 1
The experimental realization of graphene in 2004 [1, 2] has caused rapidly
increasing research activity on the subject, leading to more than 70,000 publica-
tions in the following years [3]. The main reasons for this vast interest are the
intrinsic two-dimensional nature and the unique band structure of graphene
[4–6]. It is often idealized as a Dirac semi-metal, with the valence and conduc-
tion bands touching at the so-called Dirac points of the Brillouin zone. Due to
the linear dispersion relation near the Dirac points, charge carriers behave like
free massless fermions [7, 8] and travel at the Fermi velocity vF ≈ c0/300, with
c0 being the speed of light in vacuum. The linear dispersion allows to study
quantum effects in graphene even at room temperature [9, 10]. In the early years
of the rise of graphene, Kane and Mele (2005) [11, 12] predicted that spin-orbit
interactions would induce a spin-Hall insulating state. This novel electronic
state of matter would be chiral and gapped in the bulk, i.e., near the Dirac
points, while supporting spin transport along the sample boundaries. The size
of the bulk gap has been estimated by controversial studies to be in the range
of 1 µeV to 100 µeV [11, 13–17]. The low energy regime is extremely difficult
to resolve and it took until 2012 before Mani et al. [18] were able to conduct
experiments with µeV accuracy in epitaxial graphene using resistively-detected
electron spin resonance, RD-ESR, performed at low temperatures. ESR is spin-
sensitive and couples charge carriers of opposite spin by microwave excitation,
which can be detected as a change of the resistance of the graphene. With this
experimental tool at hand, it is now possible to resolve the intrinsic band gap of
graphene and probe additional spin-related quantities, such as the magnitude of
the atomic spin-orbit coupling. In this thesis, resistively-detected electron spin
resonance is employed to explore intrinsic spin-related phenomena in graphene
in order to expand the understanding of its fundamental properties, which
is necessary to fuel future research. Additionally, the influence of extrinsic
parameters is studied, with the prospect of controlling the intrinsic properties
as well as enhancing the experimental technique of resistively-detected electron
spin resonance.
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1 Introduction

This thesis is structured as follows:

• Chapter 2 provides the reader with essential theoretical concepts regard-
ing the electronic properties of graphene as well as the experimental
techniques to probe these properties.

• Chapter 3 introduces the sample fabrication, which is based on an ap-
proach by T. Lyon et al. (2017) [19], and presents the investigated samples
in detail.

• Chapter 4 describes the experimental equipment and its operating princi-
ples.

• Chapter 5 analyzes the magnetoresistance properties and the intrinsic
spin-orbit coupling gap of graphene by employing the technique of
resistively-detected electron spin resonance. Additionally, a theory, devel-
oped by M. Prada, is presented to interpret the experimental findings.

• Chapter 6 investigates electron spin resonance in graphene at different
angles of the externally applied magnetic field. By studying the behavior
of the g-factor, it is possible to access additional intrinsic low-energy
quantities of graphene. The theoretical model was developed by M. Prada.

• Chapter 7 studies the influence of magnetic nanoparticles on graphene.
The electron spin resonance signal is found to be greatly enhanced and
possible spin-valve-like effects are discussed.

• Chapter 8 summarizes the findings of the preceding chapters and presents
the reader with future improvements to the experiments and ideas to tune
the intrinsic properties of graphene.

Various topics presented in this thesis have been part of peer-reviewed pub-
lications, such as the sample fabrication [19], the g-factor dependence on the
charge carrier density [20], and the determination of the size of the intrinsic
spin-orbit coupling gap in graphene [21]. Publications addressing the results of
the angle-dependent electron spin resonance as well as weak localization effects
are in preparation. Furthermore, the influence of strain on the Dirac point in
topological insulator nanowires has been investigated [22]. This topic is not
discussed in detail as it would have been beyond the scope of this work.

2



Theory 2
This chapter addresses the theoretical concepts necessary to interpret the re-
sults presented in this work. The following sections describe the fundamental
structural and electronic properties of graphene, the behavior of graphene in
magnetoresistance experiments, and the mechanisms behind spin-orbit cou-
pling and electron spin resonance.

2.1 Graphene Basics

2.1.1 Lattice and Band Structure

Graphene is a two-dimensional layer of carbon atoms which are arranged in a
hexagonal structure, i.e., a structure consisting of two interleaving triangular
sublattices A and B, as shown in Fig. 2.1. Each carbon atom has four valence
states; three of those form the in-plane σ bands by sp2 hybridization, which are
responsible for the robustness of graphene. The remaining valence state forms
an out-of-plane pz orbital that corresponds to the π band, which gives rise to a
cone-shaped dispersion [4, 15] being described in this section.

The lattice structure and the tight binding approach to derive the electronic
band structure of graphene were detailed by Castro Neto et al. (2009) [23] and
are summarized below. The lattice vectors are given by

a1 =
a

2
(3,

√
3), a2 =

a

2
(3, −

√
3), (2.1)

with a ≈ 1.42 Å being the distance between two neighboring carbon atoms.
The nearest neighbor vectors can be written as

δ1 =
a

2
(1,

√
3), δ2 =

a

2
(1, −

√
3), δ3 = −a(1,0), (2.2)
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2 Theory

a) b)

Fig. 2.1. (a) Graphene lattice structure in real space. Each colored dot represents a
carbon atom, with sublattices A and B denoted in blue and yellow, respectively. Vectors
a1,2 are the lattice vectors and δ1,2,3 the nearest neighbor vectors. (b) Graphene lattice in
momentum space. Regions of linear dispersion, the so-called ’Dirac cones’, are located
at the K and K’ points, which stem from the different sublattices.
Reprinted figure with permission from A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S.
Novoselov, and A. K. Geim. The electronic properties of graphene. Reviews of Modern Physics
81, 109162 (2009). Copyright 2009 by the American Physical Society [23].

while the second nearest neighbor vectors are given by

δ′
1,2 = ±a1, δ′

3,4 = ±a2, δ′
5,6 = ±(a2 − a1). (2.3)

In momentum space, the lattice vectors turn into

b1 =
2π
3a

(1,
√

3), b2 =
2π
3a

(1, −
√

3). (2.4)

The K and K’ points, or ’Dirac points’, in reciprocal space display extraordi-
nary properties and play an important role in the physics of graphene. Their
coordinates are given by

K =
(2π

3a
,

2π
3
√

3a

)

, K′ =
(2π

3a
, − 2π

3
√

3a

)

. (2.5)

A tight-binding Hamiltonian modeling electrons that can hop to nearest and
second nearest neighbor atoms in graphene can be written as

4



2.1 Graphene Basics

Ĥ0 =− t ∑
〈i, j〉,σ

(

â†
σ ,ib̂σ , j + H.c.

)

− t′ ∑
〈〈i, j〉〉,σ

(

â†
σ ,i âσ , j + b̂†

σ ,ib̂σ , j + H.c.
)

.
(2.6)

Here, t and t′ are the nearest neighbor and second nearest neighbor hopping
parameters, respectively, with energies t ≈ 2.8 eV and 0.02t . t′ . 0.2t [24].
The operator âσ ,i (â†

σ ,i) annihilates (creates) an electron with spin σ (σ =↑ , ↓)

on site Ri on sublattice A, and accordingly the operator b̂σ ,i (b̂†
σ ,i) on sublattice

B. This Hamiltonian results in the following energy bands:

E±(k) = ±t
√

3 + f (k)− t′ f (k),

f (k) = 2 cos
(√

3kya
)

+ 4 cos
(

√
3

2
kya

)

cos
(3

2
kxa

)

.
(2.7)

The + and - signs correspond to the π and π∗ bands (i.e., the cones), respec-
tively, and the resulting band structure is shown in Fig. 2.2. The dispersion
around the Dirac point shown in the zoomed-in region can be obtained by
expanding the energy bands of Eq. 2.7 in the vicintiy of K (and K’ accordingly)
by assuming k = K + q and |q| ≪ |K| [4]:

E±(q) ≈ ±vF|q|+ O[(q/K)2], (2.8)

where q is the momentum relative to K and vF = 3ta/2 ≈ 106 m/s is the
Fermi velocity. In graphene, the dispersion relation is linear in momentum in
the vicinity of the K and K’ points, as it is the case for free massless particles,
and vF is independent of energy and momentum. Thus, the charge carriers
follow the equation for massless Dirac fermions

vF[σ̂ · (−i∇)]Ψ(r) = EΨ(r), (2.9)

with σ̂ = (σx,σy,σz) being the Pauli matrix and Ψ(r) the fermion wave
function; therefore K and K’ are dubbed ’Dirac points’.

5



2 Theory

Fig. 2.2. Dispersion relation of a single layer of graphene, with the zoomed-in area
showing the region of linear dispersion near one of the Dirac points. States of positive
(negative) energy Ek, i.e., the upper (lower) cone, are electron-like (hole-like) states.
Reprinted figure with permission from A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S.
Novoselov, and A. K. Geim. The electronic properties of graphene. Reviews of Modern Physics
81, 109162 (2009). Copyright 2009 by the American Physical Society [23].

At the Fermi energy, |q| = kF and thus,

EF = h̄kFvF. (2.10)

The Fermi wave vector is defined as

kF =

√

4πn

gsgv
=

√
πn, (2.11)

with gs = 2 as the spin degeneracy due to the two spin states (↑ , ↓) and
gv = 2 as the valley degeneracy due to the two energetically equivalent valleys
K and K’ (stemming from the two sublattices A and B of the hexagonal lattice).
It is worth noting that kF solely depends on the charge carrier density n. The
Fermi wavelength is then given by

λF =

√

2π
n

. (2.12)
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2.1 Graphene Basics

2.1.2 Density of States

The density of states (DOS) for a hexagonal net was first described by Hobson
et al. (1953) [25] and was presented for ideal and infinite graphene specifically
by Castro Neto et al. (2009) [23]. Starting point is the tight-binding Hamiltonian
from Eq. 2.6, where the second nearest neighbor hopping parameter t′ = 0. An
analytical expression can be derived for this particular case:

ρ(E) =
4
π2

|E|
t2

1√
Z0

F

(

π

2
,

√

Z1

Z0

)

,

with

Z0 =











(

1 +
∣

∣

E
t

∣

∣

)2
−

[

(E/t)2−1
]2

4 , −t ≤ E ≤ t

4
∣

∣

E
t

∣

∣, −3t ≤ E ≤ −t ∨ t ≤ E ≤ 3t,

Z1 =











4
∣

∣

E
t

∣

∣, −t ≤ E ≤ t
(

1 +
∣

∣

E
t

∣

∣

)2
−

[

(E/t)2−1
]2

4 , −3t ≤ E ≤ −t ∨ t ≤ E ≤ 3t,

(2.13)

and F(π/2,x) being the complete elliptic integral of the first kind. The corre-
sponding diagram is shown in Fig. 2.3.

(a) (b)

Fig. 2.3. (a) Density of states per unit cell as a function of energy in units of the
hopping parameter t. (b) Zoom-in close to zero energy with an approximately linear
DOS ρ ∝ |ǫ|.
Reprinted figure with permission from A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S.
Novoselov, and A. K. Geim. The electronic properties of graphene. Reviews of Modern Physics
81, 109162 (2009). Copyright 2009 by the American Physical Society [23].

7



2 Theory

2.1.3 Spin and Sublattice Spin

As mentioned briefly in Section 2.1.1, in the vicinity of the Dirac points, the
charge carriers in graphene exhibit spin and valley degeneracy (which is con-
nected to the sublattice degeneracy) gs and gv, respectively, resulting in a
four-fold degeneracy. A mathematical description of those degeneracies and
their implications for the band structure are laid out in the following paragraphs
and were originally developed by Kane & Mele (2005) [11].

The spin degree of freedom can be written as {↑,↓}, while the sublattice
states around A and B atoms of the lattice are given by {uK

A,uK
B}. Due to the

similar formalism compared to real spin, the sublattice states are also referred
to as ’sublattice spin’ or ’pseudospin’ states. The wave function then becomes
ΨK = [{↑ , ↓} ⊗ {uK

A,uK
B}] [23, 26–28], and the Pauli matrices si and σi act on

real spin and pseudospin, respectively. The effective mass Hamiltonian for such
a wave function reads [11, 21, 29]

Ĥ(q,τ) = h̄vFI2 ⊗ (τσxqx +σyqy), (2.14)

with τ = ±1 labeling the valleys K and K’, and I2 being the unitary 2 × 2
matrix.

The four-fold degeneracy is protected by sublattice symmetry [27] only at K

and K’, while everywhere else σ̂ and q are collinear and thus eigenstates of the
Hermitian, unitary helicity operator [29–33]

ĥq = σ̂ · q/|q|. (2.15)

Note that in graphene, helicity is not defined as the projection of real spin
onto the direction of propagation, but as the projection of the pseudospin.
Additionally, helicity is equal to chirality and the latter term will be used in the
remainder of this work [29, 34].

It follows directly from Eq. 2.14 and 2.15 that near a fixed Dirac point, chirality
for electrons is inverted with respect to holes. Additionally, chirality for bands
in one valley is inverted with respect to the other valley, as shown in Fig. 2.4.
Thus, holes near the K point exhibit the same chirality as electrons near K’ and
vice versa.

8



2.1 Graphene Basics

Fig. 2.4. Schematic dispersion of graphene around the K and K’ points. The arrows
and colors represent chirality, with magenta being negative and green positive. Figure
adopted from private communications with M. Prada.

2.1.4 Intrinsic Spin-Orbit Coupling Gap

At energies very close to the Dirac points, the band structure of graphene
changes significantly when intrinsic spin-orbit coupling (ISOC) is introduced.
The possible mechanisms behind this ISOC dictate its magnitude and are dis-
cussed below. The corresponding Hamiltonian near the Dirac points [11, 12, 27]
is given by

ĤISOC = λIτsz ⊗σz, (2.16)

with λI accounting for the magnitude of the ISOC. Parity, time-reversal,
sublattice, and planar crystal symmetries are preserved. In combination with
the Hamiltonian from Eq. 2.14, the new eigenvalues can be calculated as

E(q) = ±
√

(vFq)2 + λ2
I . (2.17)

Thus, the resulting energy gap due to ISOC is ∆I = |2λI |, as shown in Fig. 2.5
and its size is a matter of vivid discussion. Kane et al. [12] (2005) first predicted
it to be in the range of 100 µeV, before Min et al. (2006) [13] and Yao et al. (2007)
[14] reported values of the order of 1 µeV. However, Gmitra et al. (2009) [15],
Konschuh et al. (2010) [16] and Boettger et al. (2007) [17] estimated values of
∼25-50 µeV using first-principles calculations. The difference between these val-
ues arises mainly from whether to take into account the nominally unoccupied
d orbitals in graphene. The findings of larger values for the ISOC gap support

9



2 Theory

Fig. 2.5. Schematic dispersion of graphene around the K and K’ points including the
intrinsic spin-orbit coupling gap of magnitude ∆I = |2λI |. The arrows and colors
represent chirality, with magenta being negative and green positive. Figure adopted
from private communications with M. Prada.

the view that the d orbitals can be used for hopping events by electrons (recall
Section 2.1.1) which results in a finite mean occupation and thus in a contribu-
tion to the ISOC. Furthermore, the d orbitals give the dominant contribution
to ∆I due to the higher overlap with the pz orbital (remember: pz corresponds
to the π bands and thus the carriers in the Dirac cones) compared to the sp2

orbitals. The splitting depends linearly on the splitting of the d states and only
quadratically on the splitting induced by the sp2 orbitals [15]. Nevertheless,
this debate is still ongoing, since no precise value has been found, mostly owed
to the small energy range making experimental accessibility difficult.

2.1.5 Rashba Spin-Orbit Coupling

In addition to the ISOC in graphene, extrinsic effects can influence the size
of the spin-orbit coupling (SOC) gap, i.e., the application of an electric field
perpendicular to the graphene plane or the interaction of graphene with a sub-
strate, dopants, and impurities break the planar mirror symmetry of the crystal
structure. These effects can give rise to an additional term in the Hamiltonian
[11, 35], most prominently the Rashba spin-orbit coupling:

ĤR = λR(σ̂xτsy − σ̂ysx), (2.18)
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(a) (b) (c)

Fig. 2.6. Schematic representation of the band structure (a) with no SOC (b) with an
ISOC gap determined by λI , and (c) with both intrinsic and extrinsic SOC, such that
λI > λR. Figure adopted from Sichau et al. (2019) [21], Supplemental Material.

with λR determining the magnitude of the Rashba SOC. This new term in the
Hamiltonian results in modified eigen-energies [15] given by

E(q) = µλr + ν

√

(h̄vFq)2 + (λr −µλI)2, (2.19)

where µ = ±1 and ν = ±1. As a consequence, the band structure exhibits
four energy bands instead of previously two, and the size of the band gap is
then ∆E = 2(λI − λr). The gap, and therefore the chirality picture, described
in the previous section stays intact as long as λI > λr. For λI ≤ λr, the gap
opens up again, but this time as a trivial insulator. Thus, in order to measure
the ISOC gap, it is necessary to keep the Rashba SOC contribution minimal. A
summary of the influence of the discussed types of SOC on the band structure
is displayed in Fig. 2.6.

2.2 Lateral Confinement Effects

2.2.1 Sample Boundaries

The previous sections described an ideal, infinite sheet of graphene. It is essen-
tial, however, to consider real-life finite graphene samples and the influence of
sample boundaries in order to understand and interpret experimental results.
There are two edge types, the armchair and the zigzag edges, as shown in
Fig. 2.7. Other edge types are either combinations of the two, or form due to
defects, e.g., vacancies or interstitials [36]. The calculations presented in this
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Fig. 2.7. Zigzag and armchair edges in graphene. The zigzag edge type exhibits only A
atoms on one edge and only B atoms on the opposing edge, while the armchair type
shows ABAB sequences on both sides.
Reprinted figure with permission from A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S.
Novoselov, and A. K. Geim. The electronic properties of graphene. Reviews of Modern Physics
81, 109162 (2009). Copyright 2009 by the American Physical Society [23].

work focus on the zigzag edge type. While all the aforementioned edge types
are likely to occur in real samples, they would yield qualitatively similar results,
since one can assume the bulk-edge correspondence and the continuum limit
[37] for the samples presented in this work.

The intrinsic energy gap at the Dirac points (see Section 2.1.4) is still present in
finite samples and originates from the bulk of graphene. Topologically protected
eigenstates emerge within the gap, connecting the bulk bands diagonally, i.e.,
electrons from K with holes from K’ and vice versa, because they share the
same chirality. A schematic drawing of the resulting band structure is shown in
Fig. 2.8. Those midgap states are localized at the sample boundaries and are
called ’edge states’. They exhibit collinear spin s and pseudospin σ̂ , which is
also collinear with q [21].

A quantitative analysis of the band structure is performed by numerical tight-
binding calculations for a honeycomb lattice that is infinite along one direction
and terminated by a zigzag edge along the perpendicular direction. A detailed
description of this calculation was presented by Sichau et al. (2017) [21]. The
first several hundred of the lowest energy bands were calculated and an excerpt
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Fig. 2.8. Schematic dispersion of graphene around the K and K’ points including the
intrinsic spin-orbit coupling gap of magnitude ∆I = |2λI | and the midgap states that are
located on the sample edges. The arrows and colors represent chirality, with magenta
being negative and green positive. Figure adopted from private communications with
M. Prada.

is shown in Fig. 2.9, with the bands colored according to their chirality (see
Eq. 2.15). The similarity between this figure and the schematic in Fig. 2.8 is
obvious, even though the bands within the gap are much flatter. This flatness
represents a high local density of states (LDOS), since many eigenstates exist in
a narrow window of energy.

Fig. 2.10a shows a 10,000-fold zoom into the low energy range at the band
gap to resolve the linear dispersion of the edge states. Here, the brightness of
the bands represents the LDOS, which is much higher at the edges than in the
bulk.

Additionally, for the sake of simplicity, the two-fold sublattice degeneracy
of the midgap states is artificially lifted by focusing on the eigenstates of one
edge (one sublattice) only, in this case edge E1 (see Fig. 2.10b). In this picture,
the focus lies on the electron spin, with spin-up states colored in green and
spin-down states in magenta. From the slope of the two crossing edge bands
one can extract the respective charge carrier velocity v = dE(k)/dk. On E1, it is
negative for carriers with spin down and positive for spin up. It is easy to
transfer this situation to edge E2, which is simply the mirror-reflected E1, i.e.,
spin up becomes spin down and vice versa, while the direction of transport
remains unchanged. This entails major consequences: The direction of transport
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Fig. 2.9. Energy bands of a finite graphene sample. The bulk is gapped at the K and K’

points, with helical edge states connecting the bulk bands diagonally through the gap.
However, they appear horizontal due to the size of the energy gap compared to the
scale of the whole band structure. The flatness of the edge states is associated with a
high LDOS. Figure adopted from Sichau et al. (2019) [21].

is spin-dependent at each edge, as depicted in Fig. 2.10b, and while the Fermi
energy lies within the gap, current can only flow at the edges. As mentioned
previously, these eigenstates are topologically protected, and this phase of
matter is termed spin Hall insulator (SHI).

2.2.2 Density of States with Edges

For graphene with boundaries, the density of states is calculated numerically
[38–41]. Defects in the lattice, deformations or impurities can lead to similar
effects [42–45]. The result is usually a finite DOS at zero energy and those states
are localized at the edges, as shown in Fig. 2.11.
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(a)

(b)

Fig. 2.10.

(a) Zoom-in on the edge states within the bulk band gap for edge E1. Green and
magenta denote spin up and spin down, respectively, while black indicates eigenstates
with bulk character. The bulk band gap ∆I is assumed to be caused by ISOC. Edge
states with spin up (down) travel with positive (negative) velocity, which can be
derived from the slope of the bands. Figure adopted from Sichau et al. (2019) [21]. (b)

Schematic illustration of the edge modes. Charge carrier transport is spin-dependent,
thus depicting the SHI phase of graphene.
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Fig. 2.11. Density of states for a graphene ribbon with zigzag edges. As opposed to
ideal, infinite graphene, there is a finite number of states around zero energy that are
localized at the edges.
Reprinted figure with permission from A. Carpio, L. L. Bonilla, F. de Juan, and M. A. H.
Vozmediano. Dislocations in graphene. New Journal of Physics, 10(5), 053021 (2008) [43].

2.2.3 Density of States with Doping

The consequences of introducing realistic carrier doping to the DOS calculations
are described by Sichau et al. (2017) [21]. Electron-electron interactions are
considered by employing a mean-field Hubbard model which adds an on-site
Coulomb repulsion term to the tight binding Hamiltonian of Eq. 2.6:

ĤMF
U = U ∑

i,σ
〈n̂i,σ〉n̂i,σ − UN ∑

i

〈n̂i↓〉〈n̂i↑〉. (2.20)

The result is a shift in the DOS, so that doping with electrons (holes) would
move the zero energy peak from Fig. 2.11 to E > 0 (E < 0). In Fig. 2.12, the shift
is calculated for a typical charge carrier density for the samples presented in this
work of ∼ 2 · 1011 cm−2 electrons. The Fermi energy EF is 0.8 meV away from
the peak at half-filling EHF. At absolute zero, all edge states would be filled.
Due to finite temperatures, however, charge carriers can be found at higher
energies and thus open up eigenstates within the band gap. This is important
for the interpretation of experimental data in the following chapters.
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(a) (b)

Fig. 2.12. (a) Density of states for a doped sample with n ≈ 2 · 1011 cm−2. The zero
energy peak is shifted to the right. (b) Zoom-in of the center DOS peak. It occurs at
half-filling EHF, with the Fermi energy shifted by 0.8 meV to the right. Figure adopted
from Sichau et al. (2019) [21], Supplemental Material.

2.2.4 Control of the Charge Carrier Density

The control of the charge carrier density via electrostatic gating is linked to the
capacitance between sample and (metallic) gate. This section summarizes the
work of T. Lyon (2017) [46] on the topic.

When graphene is placed on an insulator, typically an oxide like SiO2, the
charge carrier density n can be controlled by a back-gate. The geometric gate
capacitance is calculated as

n =
Cg

e
(Vg − VCNP) + n∗, (2.21)

where Vg is the applied gate voltage and VCNP the gate voltage of the Dirac
point or charge neutrality point (CNP). n∗ is the carrier density due to charged
impurities on the graphene and the SiO2-graphene interface. The calculation
of n∗ was developed by Adam et al. (2007) [47] and the details can be found in
their work. The value for the samples presented in this work is of the order of
n∗ ≈ 1.5 · 1011 cm−2 [19]. It is necessary to determine the gate capacitance as
precisely as possible to calculate the charge carrier density n. The geometric
capacitance is influenced by the thickness tox and the relative permittivity κ of
the oxide:

Cox =
κǫ0

tox
, (2.22)

with ǫ0 being the vacuum permittivity. In this work, all substrates have
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Fig. 2.13. Charge carrier density n versus gate voltage Vg for a real graphene sample
with VCNP = −4 V. The linear region away from the Dirac point is dominated by the
geometrical capacitance while the curved non-zero minimum is caused by charged
impurities.
Reprinted and modified figure with permission from T. J. Lyon et al. (2017) [20].

a tox = 300 nm thick layer of SiO2 with a relative permittivity of κ = 3.9,
resulting in a capacitance of Cox = 115 aF/µm2. Other capacitances like the
quantum capacitance [48] are modeled as being in series with the geometric
capacitance. However, they are negligible due to the oxide layer in the samples
being so thick. Since a thick oxide leads to a small Cox, it becomes the dominant
capacitance when modeled in series. In contrast to ideal graphene, the carrier
density vs. voltage dependence is slightly rounded and non-zero in the vicinity
of Vg = VCNP due to charged impurities [47] and the finite temperature that
thermally activates carriers. A typical example of carrier density in dependence
of gate voltage is shown in Fig. 2.13 [20].

2.3 Magnetoresistance

Magnetoresistance measurements can be performed to study the electrical resis-
tance of low-dimensional charge systems in an external magnetic field. This is
usually done at low temperatures in order to minimize the influence of phonons
and access the necessary energy scale to observe quantum effects, i.e., kBT ≈ EF.
The standard measurement setup for a two-dimensional (2D) system is a Hall
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Vxx

Vxyw

l

Ix

Bz

Fig. 2.14. Typical Hall bar geometry and measurement setup. The electrical current Ix

flows in x-direction, longitudinal and transverse voltages Vxx and Vxy, respectively, are
measured by the indicated contacts, and the magnetic field Bz is perpendicular to the
plane. Width w and length l of the setup are shown as well.

bar geometry as depicted in Fig. 2.14, with source and drain contacts for the
electrical current, along with additional contact pairs to measure longitudinal
and transverse voltages. The magnetic field is oriented perpendicularly to the
sample plane.

2.3.1 Hall and Quantum Hall Effects in Graphene

When a magnetic field B is applied perpendicularly to the current flow through
a conductor, the Lorentz force FL = qv × B accelerates the charge carriers to one
side of the conductor, where the accumulated charges generate an electric field
that acts perpendicularly to the current direction. The resulting Coulomb force
FC = qE compensates the Lorentz force and a constant Hall voltage, Vxy, can
be measured between opposite sample edges. For a 2D system like graphene,
the Hall resistivity is given by

ρxy =
Vxy

Ix
, (2.23)

while the longitudinal resistivity along the current direction can be written as

ρxx =
w

l

Vxx

Ix
, (2.24)

using the notation from Fig. 2.14. These quantities can also be expressed in
terms of the components of the conductivity and resistivity tensors [49], i.e.,
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ρxx =
σxx

σ2
xx +σ2

xy
, (2.25)

ρxy =
σxy

σ2
xx +σ2

xy
. (2.26)

In contrast to the three-dimensional case, the units of resistivity ρ (conduc-
tivity σ) and resistance R (conductance G) are identical and are given in Ω

(S). Magnetoresistance measurements are the tool of choice to determine a
multitude of transport properties, such as the charge carrier density n, which
can be extracted from the Hall resistivity [49]:

n =
B

eρxy
=

(

e
dρxy

dB

)−1
. (2.27)

The charge carrier mobility is given by

µ =
1

enρxx(B = 0)
, (2.28)

and both n and µ are necessary to obtain the mean free path lm of the charge
carriers, which describes the length scale of ballistic transport [50, 51]:

lm =
hµ

2e

√

n

π
. (2.29)

The corresponding transport scattering time τl is then given by

τl =
lm

vF
. (2.30)

The above quantities can be influenced by charged impurities [47], vacancies
in the lattice and grain boundaries[52–55], which are typical for graphene that
was manufactured by chemical vapor deposition. Another aspect distinct for
graphene are intrinsic ripples [56, 57] that occur even when placed on a flat
surface, inducing an electrochemical potential variation.

At sufficiently low temperatures and high magnetic fields, the charge carriers
are forced on discrete quantized orbits called Landau levels (LL). To define
their eigen-energies, it is necessary to introduce the magnetic length lB, which
is the smallest cyclotron radius possible due to the uncertainty principle. For
2D systems, it is in general given by [34]
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lB =

√

h̄

eB
, (2.31)

and for massless charge carriers as in graphene, the corresponding cyclotron
frequency

ωc =
√

2
vF

lB
= vF

√

2eB

h̄
, (2.32)

with the factor
√

2 stemming from the quantization of the system [23]. The
introduction of minimal coupling to Eq. 2.9, i.e., −i∇ → −i∇+ eA/c, results
in the LL eigen-energies [5]

EN = ±h̄ωc

√
N = ±vF

√
2eh̄BN, (2.33)

with the LL index N = 0,1,2,.... Each Landau level in graphene is four-fold
degenerate due to spin and sublattice degeneracy, and in real samples, these
sharp energies are broadened due to disorder.

The quantum Hall effect (QHE) can be observed if the separation of LLs is
greater than the thermal broadening of the Fermi edge, ∆EN ≫ kBT. Due to
the square root dependence of EN in graphene, this is possible even at room
temperature [9].

When the magnetic field is constant and the Fermi energy is shifted through
the spectrum of LLs, e.g., by changing the gate voltage Vg, there are no con-
duction channels available as long as EF is in between two levels, resulting in
σxx = 0. Thus, according to Eq. 2.26, ρxx = 0 and ρxy = 1/σxy = const. When
EF is crossing a LL, conduction is possible and ρxy changes. For graphene,
plateaus of constant resistivity (conductivity) appear at values of [34]

ρxy = ± h

νe2

(

σxy = ±ν
e2

h

)

, (2.34)

with + and - denoting electrons and holes, respectively, and the filling factor

ν = 4(N +
1
2
), (2.35)

where the factor 4 arises from the four-fold degeneracy, and N is again
the LL index. Hence, the distance between two neighboring conductivity
plateaus is 4e2/h. In contrast to other 2D systems such as two-dimensional
electron gases, no plateau appears at N = 0 due to the presence of a LL (see
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Eq. 2.33). Instead, possible filling factors are derived from half-integer values
(see Eq. 2.35), thus terming the phenomenon ’half-integer QHE’ [7, 8, 58]. An
exemplary measurement is shown in Fig. 2.15.

Fig. 2.15. Half-integer quantum Hall effect in graphene at B = 14 T and T = 4 K. The
Hall conductivity σxy (red) as a function of charge carrier density n exhibits plateaus at
half-integer values. Conductivity instead of resistivity is plotted to avoid the disconti-
nuity at n ≈ 0. The zero-resistivity minima of ρxx (green) coincide with the plateaus of
σxy. The inset shows the QHE for bilayer graphene.
Reprinted by permission from: Springer Nature. Nature. Two-dimensional gas of massless
Dirac fermions in graphene. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I.
Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov. Copyright 2005 [7].

2.3.2 Two Carrier Transport

As mentioned in Section 2.2.4, in graphene under realistic conditions, the charge
carrier density n is finite at the Dirac point. The main reasons are charged
impurities, random potential fluctuations responsible for electron and hole
puddles [59], and thermal broadening, which causes fluctuations in electron
and hole densities. Nevertheless, the point at which the charge carrier density is
at its minimum is referred to as the CNP, and electrons and holes exhibit equal,
yet finite concentrations in this regime, both contributing to transport [60, 61].

At magnetic fields where no Landau quantization is present (i.e., ωcτ << 1,
where ωc is the cyclotron frequency), one can evaluate transport by employing
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the Drude model, as presented by Hilke et al. (2014) [61]. Simple assumptions
are ρ

η
xx = σ−1

η , and ρ
η
xy = sign(qη)B/eη, with η = n or p for electron or hole

densities, respectively, and the total resistivity ρtot = (σ̂n + σ̂p)−1. The field
dependence of magnetoresistivity can then be written as

ρtot =
(np)2(σn +σp) + B2σnσp(n2σp + p2σn)

(np)2(σn +σp)2 + B2(σnσp)2(n − p)2 , (2.36)

and the relative field dependence is given by

∆ρxx

ρxx
=

ρxx(B)− ρxx(0)
ρxx(0)

=
(B/B0)

2

1 + (B/B1)2 , (2.37)

with

B0 =
enp(σn +σp)√
σnσp(pσn + nσp)

≈ en0ρ
2
max

ρxx
,

B1 =
enp(σn +σp)

|n − p|σnσp
≈ n0B0

|n − p| ,
(2.38)

where ρmax ≡ ρxx(0) at the CNP, and n0 is the residual charge carrier density
at the CNP. As long as B ≤ B1, Eq. 2.36 gives a parabolic contribution to the
resistivity.

2.3.3 Disorder Corrections

The quantum interference effect of weak localization (WL) stems from coherent
backscattering due to disorder under the assumption that the phase coherence
time τφ is much larger than the elastic scattering time τp. In diffusive transport,
charge carriers then have an increased probability to scatter in a closed loop
back to their point of origin, resulting in a reduced conductivity [62–65].

As shown in Fig. 2.16, charge carriers can be scattered by impurities and
they have a certain quantum mechanical probability amplitude of moving on
self-intersecting paths. The conductance diminishes at B = 0 if the enhanced
backscattering of the electrons leads to a mean non-zero phase difference and
an overall constructive interference.

In contrast to the three-dimensional case, the probability of self-intersecting
paths is much larger in 2D systems and WL potentially adds a large correction
to the classical Drude conductivity.
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e
-

Fig. 2.16. Schematic depiction of an electron being scattered by impurities. The blue
and red paths represent clockwise and counter-clockwise trajectories, respectively,
resulting in quantum corrections to the classical Drude conductivity.

By applying a magnetic field, however, the time-reversal symmetry between
the two paths is destroyed and the interference vanishes, which suggests em-
ploying a magnetic field to detect the effect.

Furthermore, if strong spin-orbit coupling is introduced to the system, the
spin will be associated with the momentum of the charge carriers and the wave
functions of clockwise and counter-clockwise paths are of opposite signs, i.e., an
effective π phase shift is induced. Hence, the interference becomes destructive,
backscattering is now suppressed and conductivity enhanced. This effect is
termed weak antilocalization (WAL).

Graphene is known to exhibit relatively weak spin-orbit coupling, but it is
peculiar in the regard that it has chiral charge carriers (see Section 2.1.3). Under
the condition that there is no scattering between the K and K’ valleys, chirality
results (similar to strong SOC) in a Berry phase of π , meaning that one trajectory
experiences a π phase shift after completing a closed loop with respect to the
counter-propagating trajectory, i.e., the WL effect is turned into WAL.

In a simple model, one can assume that if intervalley scattering is suppressed
and hence, intravalley scattering is dominant, WL can be observed. On the
other hand, intervalley scattering can be caused by ripples and sharp defects,
and, if dominant, favors WAL [66]. In terms of characteristic scattering times,
the condition is τ∗ ≪ τi for WL, and τi ≪ τ∗ for WAL, with τ∗ (τi) denoting
intravalley (intervalley) scattering.
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A mathematical model to evaluate localization effects in magnetoresistance
measurements in graphene was developed by McCann et al. (2006) [67]:

ρ(B)− ρ(0) = − e2ρ2

πh

[

F

(

B

Bφ

)

− F

(

B

Bφ + 2Bi

)

− 2F

(

B

Bφ + Bi + B∗

)]

,

F(z) = ln z + Ψ

(

1
2
+

1
z

)

,

Bφ,i,∗ =
h̄

4De
τ−1
φ,i,∗,

(2.39)

where Ψ is the digamma function, D is the diffusion constant, and τφ is the
phase coherence time.

With this model, it is possible to verify the assumptions about the scattering
rates from above. If ∆ρ ≡ ρ(B)− ρ(0) is negative, WL is observed and hence,
the first term in square brackets in Eq. 2.39 contributes to WL while the second
and third terms contribute to WAL accordingly. In a perfect system where both
intra- and intervalley scattering are absent, τi,∗ → ∞ and Bi,∗ → 0, meaning
∆ρ is dominated by −2F(B/Bφ), bringing the system into the WAL regime.
However, in the case of a realistic sample, scattering mechanisms are present
and their magnitude is important. For dominant intervalley scattering τi ≪
τ∗ < τφ and therefore B∗ + Bi ≈ Bi > Bφ, which results in ∆ρ > 0, and the
system shows WAL. When intravalley scattering is dominant, τ∗ ≪ τi and
B∗ ≫ Bi, the third term vanishes, ∆ρ < 0, and the system exhibits WL.

2.4 Electron Spin Resonance

The experimental technique of electron spin resonance (ESR) uses electromag-
netic radiation to study the interaction of electron spins with a magnetic field.
It is sensitive to the energy splitting which electrons experience due to the pos-
sible spin orientations with respect to the magnetic field vector. The radiation
frequency has to match the energy or time scale of the processes involved in the
study, and the magnitude of magnetic fields applied in this work corresponds
to frequencies in the GHz regime.

This chapter discusses the fundamental concepts of ESR and focuses specifi-
cally on resistively-detected electron spin resonance (RD-ESR), a technique that
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relies on the influence of electron spin excitation on the overall resistivity of a
sample.

2.4.1 Fundamentals of ESR

In this section, the basic principles of ESR are explained for the case of a single
electron. The electron spin s is associated with a magnetic moment µ = −gµBs,
where g is the g-factor (g ≈ 2.0023 for the free electron), and µB is the Bohr
magneton. When an external magnetic field, e.g., B = Bzêz, is applied, the
magnetic moment of the electron will align collinearly with the field, so that the
Zeeman energy can be written as

EZ = gµBs · B = gµBmSBz, (2.40)

with the eigenvalues ms = ±1/2, referred to as "spin-up" and "spin-down"
states of the z-component of the spin operator s. Note that there are 2s + 1
Zeeman levels in more complex systems, and −s ≤ ms ≤ s. The resulting
energy difference ∆EZ between the two states is termed Zeeman splitting. When
a photon γ with frequency ν fulfills the resonance condition (see Fig. 2.17)

Eγ = hν = gµB|∆ms|Bz = ∆EZ, (2.41)

a spin flip can be induced via interaction with the electron, i.e., for a transition
from spin down to spin up, the photon is absorbed by the electron, while it
is emitted in the reverse process. In addition to the energy of the photon, the
orientation of its magnetic field vector Bγ plays a significant role. In this work,
loop antennas are used to transmit linearly polarized light, and thus, Bγ has to
be perpendicular to the magnetic moment µ of the electron (and therefore the
external magnetic field B), so it can act as a tipping field to induce the spin flip.

In a more detailed analysis of the phenomenon (see Fig. 2.18), one finds that
µ does not align with the magnetic field, but precesses around B, while Bγ

oscillates in a direction perpendicular to B. However, this uniaxial oscillation
can be interpreted as a superposition of two circularly polarized fields that
precess in opposite directions around B. When µ and Bγ are in resonance, µ
flips by precessing around Bγ.
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∆Ez = hν

+1/2 gµBBz

-1/2 gµBBz

Bz = 0

Fig. 2.17. Zeeman splitting of electron spins in a magnetic field. A transition from
spin down to spin up state can be induced by absorption of a photon which meets the
resonance condition from Eq. 2.41.
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Fig. 2.18. (a) Orientation of the external magnetic field and the magnetic moment of
the electron in the spin-down configuration, with µ precessing around B. A photon γ

is about to interact with the electron e−. (b) The magnetic field vector Bγ of the linearly
polarized photon is oscillating perpendicularly to B. The resonance frequency is met
and µ is flipped. (c) The electron is in the spin-up state after photon absorption.

In addition to energy conservation, the angular momentum L has to be
conserved during the process, and in the case of graphene, this is also true for
the pseudospin σ (a photon does not carry pseudospin). Hence, the quantum
mechanical selection rules for ESR can be summarized as

∆s = 0, ∆ms = ±1, ∆σ = 0, ∆L = 0. (2.42)

Since, in the case of graphene, the Maxwell-Boltzmann distribution dictates
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that the spin down state is energetically favorable, more electrons are generally
found in this state which results in a net absorption of radiation. The Maxwell-
Boltzmann distribution for the ratio of electrons with opposing spins is given
by

N↑
N↓

= exp
(

− ∆EZ

kBT

)

= exp
(

− gµBBz

kBT

)

, (2.43)

with N↑ and N↓ representing the number of spin-down and spin-up states,
respectively, and kB being the Boltzmann constant. Assuming a g-factor of 1.952
[20] for graphene and a moderate magnetic field of 1 T yields a temperature-
dependent distribution of the electron spins, which is shown in Fig. 2.19. Up
to temperatures of around 20 K, the ratio is clearly distinguishable from 1.
However, even for higher temperatures there is a slight imbalance of carriers,
which, e.g., is exploited in magnetic resonance imaging, a technique used in the
medical field.

In a typical ESR measurement, a sample is placed into a variable magnetic
field, irradiated by microwaves of constant frequency, and the absorption is
measured by a spectrometer. The expected line shape [68] of an ESR spectrum
is shown in Fig. 2.20.
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Fig. 2.19. Maxwell-Boltzmann distribution in graphene for the ratio of spin-up and
spin-down electrons in dependence of temperature, assuming Bz = 1 T and g = 1.952
[20].
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Fig. 2.20. Expected line shape of a typical ESR measurement at constant frequency ν,
with the absorption spectrum (red) and its derivative (blue).

Resistively Detected ESR in Graphene

In order to resolve the band structure of graphene in the vicinity of the SOC gap
via RD-ESR, the Fermi energy should lie within the thermal energy range
∆E = kBT of the Dirac points. Thus, when a magnetic field is applied, a spin-
selective excitation of electrons from the lower Dirac cone to the upper one
is possible, while still respecting selection rules. The conductance (resistance)
then increases (decreases) under resonant absorption due to the activation of
charge carriers, resulting in a measurable effect.

However, in the RD-ESR spectra, various sources which might obscure the
resonance signal have to be considered. Since in such an experiment, microwave
radiation is applied to a sample at low temperatures (T ≤ 4 K), an overall ther-
mal increase of the conductance is observed as more charge carriers become
available at the Fermi energy. The changes in resistance due to thermal activa-
tion can mask the changes resulting from resonant absorption. Moreover, two
carrier transport and WL effects might result in dominant signals, depending
on the magnetic field strength, i.e., two-carrier transport at high fields, and
WL at low fields.

A simple method to enhance the resonance signal is to perform a background
measurement, which is subtracted from the subsequently acquired ESR data.
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Ideally, in addition to the resonance signal, only the WL feature will remain in
the adjusted data due to the temperature sensitivity of the WL effect.

2.4.2 The g-Factor

The g-factor of graphene can be determined by finding the dependence of the
radiation frequency ν on the resonance peak position in magnetic field Bres (see
Eq. 2.41), while already accounting for a possible energy gap ∆:

g =
h

µB

∂ν

∂Bres
+ ∆. (2.44)

The zero-field gap might occur when an electron is placed into an atomic
lattice, e.g., due to spin-orbit coupling corrections discussed in Section 2.1.
Moreover, the g-factor is not always isotropic in a lattice since electrostatic fields
can shift the orbital energies. Interaction between magnetic impurities can
also influence the resonance field and cause variations in the g-factor. Thus, a
description as a tensor needs to be introduced:

ĝ =







gx 0 0
0 gy 0
0 0 gz






. (2.45)

From this tensor, the effective g-factor can be derived as

geff =
√

g2
x sin2 Θ cos2 Φ+ g2

y sin2 Θ sin2 Φ+ g2
z cos2 Θ, (2.46)

with the angles Θ and Φ between magnetic field and the principal axis of ĝ.
In essence, angle dependent ESR measurements of the g-factor give access to the
tensor ĝ of the system. Note that the g-factor which is determined by ESR differs
from the enhanced g-factor that can be derived from the coincidence technique
(typically employed in semiconductor physics), where quantum oscillations of
the conductivity are studied in tilted magnetic fields. Here, the spin splitting is
enhanced by exchange interactions, resulting in higher values of g [69–71].

2.4.3 Spin Relaxation

Spin lifetimes in graphene are theoretically predicted to be in the microsecond
regime [72, 73], however, numerous experimental results prove a discrepancy
of a few orders of magnitude and range from tens of picoseconds to some
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nanoseconds [74–80]. The origin of this discrepancy is the subject of many
discussions [79, 81–86], and Han et al. (2014) [81] give a structured overview on
the possible spin relaxation mechanisms and examine their involvement in the
reduced lifetimes.

Mainly two processes have been attributed to spin relaxation in the past, the
Elliott-Yafet and the Dyakonov-Perel mechanisms.

In the Elliott-Yafet relaxation, spin flips are induced by scattering processes,
since SOC mixes the spin-up state with the spin-down state in the eigenstates
of the tight-binding Hamiltonian. The component of the opposite spin is rather
small in each respective spin state, but is sufficient to induce a flip after up to a
million scattering events, even if nominally, the impurity or phonon scattering
process is spin-conserving. This results in a spin relaxation rate of

1/τEY ≈ λI/(EFτp), (2.47)

where τp is the elastic scattering time (see Section 2.3.3), and λI is the SOC pa-
rameter (see Section 2.1.4). Calculating the spin relaxation time with character-
istic values for graphene results in τEY ≈ 1 µs [81].

For the Dyakonov-Perel mechanism, spin precession between two scattering
events is assumed and SOC results in a Rashba-like field along which the
electron spin precesses. With each scattering event, the SOC field changes its
orientation randomly and thus, the precession aligns accordingly. Simply put,
the higher the scattering rate, the more random the precession becomes and the
faster the spin information is lost. In contrast to the Elliott-Yafet mechanism,
the spin relaxation rate increases proportionally with the elastic scattering time:

1/τDP ≈ λ2
Rτp, (2.48)

with λR being the Rashba SOC parameter (see Section 2.1.5). Again, with
characteristic values for graphene, one receives τDP ≈ 1 µs [81], which is of
equal magnitude as the Elliott-Yafet mechanism.

In experimental studies, the Elliott-Yafet relaxation has been found to be
dominant in monolayer graphene [76, 77, 79] as the spin lifetime τs increases
with the diffusion constant D of the Drude model, where D = 1/2vFlm, such
that τs ∝ τp.

For bilayer graphene, the opposite has been observed (τs ∝ 1/τp), and hence,
the Dyakonov-Perel spin relaxation seems to be the governing mechanism here
[79, 87].
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However, some studies exist claiming that the Dyakonov-Perel relaxation in
monolayer graphene [88] and Elliott-Yafet in bilayer graphene [89], respectively,
are dominant, emphasizing that this topic remains unsolved.

In addition to the two types of spin relaxation discussed above, another
mechanism has been proposed by Tuan et al. (2014) [82], the pseudospin-driven
relaxation. Here, the entanglement of spin and pseudospin (see Section 2.1.4)
results in fast spin dephasing in the ballistic transport limit, i.e., in pristine
graphene, which, however, has not yet been experimentally realized.

Furthermore, the spin relaxation rate seems to be insensitive to the underlying
substrate [90–93] and thus charge carrier mobility [94], which excludes charged
impurity scattering as the source of short spin lifetimes.

One of the few possibilities left are scattering events due to magnetic moments
that can arise from adatoms or vacancies [95, 96]. These magnetic moments can
induce a spin flip similar to the process illustrated in Fig. 2.17, yielding spin
relaxation times of around 100 ps with only 1 ppm of magnetic impurities.

In summary, the topic of spin relaxation in graphene is still worth investigat-
ing.

Ultimately, in an ESR experiment, the spin lifetime τs can be extracted by
calculating

τs =
h̄

2∆Eres
, (2.49)

where

∆Eres = h
∂ν

∂Bres
∆Bres, (2.50)

with ∆Bres being the half-width of the resonance peak (see Fig. 2.18). This
yields access to the spin diffusion length

λs =
√

Dτs. (2.51)
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Sample Fabrication 3
In this chapter, the fabrication methods for the graphene samples presented
in this work are discussed in detail. This mainly includes in-house substrate
preparation and processing of graphene which was produced by chemical
vapor deposition (CVD). The intentions behind choosing CVD graphene are
to produce large-scale samples with the aim of facilitating mass-production
in the future. The procedure described in the following sections is based on
a wet transfer method and was established by X. Liang et al. (2011) [97] and
T. Lyon et al. (2017) [19]. Additionally, various substrate geometries and the
corresponding preparation methods are described.

3.1 Graphene Cleaning

The CVD graphene used in the majority of the presented experiments is pro-
vided on a sheet of Cu foil by the company Graphenea [98] (see Fig. 3.1a). In
the first step, the graphene is spin-coated with a protective layer of "Microchem
950 PMMA A4" at 6000 rpm for one minute and dried at room temperature. It
is then cut into pieces of ∼ 1 cm × 1 cm size which are placed to float on a 1:20
solution of Fe3(NO3)3 · 9H2O and deionized (DI) water for ten hours in order
to etch away the Cu (see Fig. 3.1b). Afterwards, the graphene/PMMA stack
is cleaned several times in pure DI water for a minimum of five minutes each
time to eliminate residues of the etching solution. Any remaining inorganic
contaminants are subsequently removed by placing the graphene into a 1:1:60
solution of HCl/H2O2/H2O for 15 minutes. After several intermediate cleaning
steps in DI water, organic contaminants are removed in a 1:1:300 solution of
NH4OH/H2O2/H2O for five minutes. In the last step, the graphene/PMMA
stack is cleaned again in DI water before it is ready to be transferred onto a
substrate, as shown in Fig. 3.1c.
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3.2 Substrate Preparation

The substrate for all the in-house fabricated samples is a p-doped Si wafer
with a 300 nm thick layer of thermally grown SiO2 on top. While other sub-
strate choices would be possible without significantly modifying the outlined
fabrication procedure, SiO2 on Si yields the advantage of being an affordable
and standard material in the semiconductor industry as well as offering the
opportunity to apply a back-gate voltage due to the insulating oxide.

The wafer is cleaved into ∼ 1.2 cm × 1.2 cm pieces, i.e., slightly bigger than
the graphene flakes in order to avoid overlap of the graphene with the substrate
edges, which can cause damage to the graphene layer. The wafer is then
sonicated and cleaned in acetone and isopropanol. At this point, lithography
can be employed to pattern the surface in any desired manner. The different
sample geometries and related procedures are described in the next section,
however, for now a flat substrate is assumed.

The wafer is exposed to an O2 plasma in a "TePla 100-E Plasma System" at
300 W for ten minutes. This process makes the substrate more hydrophilic and
enables the graphene to adhere to the surface more readily and reduces breakage
[19]. For optimal results, the transfer of the graphene onto the substrate should
be conducted within one minute after the plasma treatment [99]. The floating
graphene/PMMA stack is scooped up from underneath the surface with the
wafer and then dried in an oven at 150 ◦C for 15 minutes.

For optimal removal of the protective PMMA layer, the sample is placed into
acetic acid [100] and then cleaned with acetone and isopropanol. The result is
shown in Fig. 3.1d.

3.3 Hall Bar Definition

For the definition of a Hall bar structure, the sample is first spin-coated with lift-
off remover "Microchem LOR 5A" at 6000 rpm for one minute and then baked
at 160 ◦C for another minute, followed by a layer of photoresist "Microchem
S1805" spin-coated at 6000 rpm and a baking step at 115 ◦C for one minute
each. The sample is exposed to a contact pattern of a Hall bar geometry, as,
e.g., shown in Fig. 3.4a, by a 13 mWcm−2 UV lamp for 4.2 seconds and it is
developed in "Microchem MF-319" for 45 seconds. A 10 nm thick adhesion layer
of Ni and 100 nm of Au are deposited to form Ohmic contacts (see Fig. 3.2).
During lift-off in acetone, only the photoresist along with the excess Au is
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(a) (b)

(c) (d)

Fig. 3.1. Graphene at different stages in the fabrication process. (a) Monolayer
graphene on Cu foil supplied by Graphenea [98]. (b) Cu/graphene/PMMA stack
in the Fe3(NO3)3 etching solution with the center region already etched away. (c) Clean
graphene/PMMA in DI water. (d) Graphene transferred onto SiO2/Si with the PMMA
removed.
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SiO2/Si
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S1805
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Fig. 3.2. Side cut of the sample after metal deposition. The LOR forms an undercut to
assure well-defined Ni/Au contacts (center), while also protecting the graphene during
the subsequent lift-off (sides).

removed, while the layer of LOR protects the graphene from damage. Note
that it is of utmost importance to never sonicate the sample when performing
lift-off, otherwise the graphene will be severely damaged; it is advised to rather
squish acetone onto the submerged sample with a one-way pipette. Once the
lift-off is complete, the LOR is dissolved in "Microchem Remover 1165".

In order to etch away the excess graphene, the sample undergoes a pho-
tolithography procedure with identical parameters as described above, with the
difference of applying a thicker resist, "Microchem S1813", as well as a different
exposure pattern, i.e., one that compliments the Hall bar structure (see Fig. 3.4b).
The graphene is then removed by placing the sample into the aforementioned
O2 plasma for four minutes at 300 W. A summary of the entire work flow is
shown in Fig. 3.3.

3.4 Sample Geometries

In order to study the influence of extrinsic factors on the electronic structure of
graphene, samples of various geometries are prepared. Detailed information
about all the samples presented in this work is listed in this section, and in ad-
dition, fabrication steps complementing the ones outlined above are described
if necessary. An overview of all the samples is given in Tab. 3.1.
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Fig. 3.3. Work flow diagram of the sample fabrication. The sample is spin-coated
with PMMA (a), before the copper is etched away (b), and the graphene is cleaned
of inorganic (c) and organic (d) contaminants. It is then transferred onto an SiO2/Si
wafer (e), dried (f), and the PMMA is removed (g), with the result shown in (h). Ohmic
contacts are deposited (i) and lift-off is performed (j), before the excess graphene is
removed and the sample is completed (k).
Reprinted figure from T. J. Lyon et al. (2017) [19], with permission from AIP Publishing.

37



3 Sample Fabrication

Tab. 3.1. Overview of the three sample types. They differ in terms of the contact layout,
the structure of the substrate, and the size of the graphene sheet.

Component Substrate Structure Period (nm) Length (µm) Width (µm)

1 Corrugation 200 200 22
2 Flat None 1920 66
3 Pt/Co/Pt Nanodot Array 70 200 22

3.4.1 Sample 1

Sample 1 is a 200 µm × 22 µm graphene sheet in a classical Hall bar geometry
with a distance of 100 µm between the inner longitudinal probe contacts and of
16 µm between the transverse contacts, as shown in Fig. 3.4.

The SiO2 substrate is corrugated, with a period of 200 nm and a depth of
∼ 20 nm, resulting in an effective one-dimensional potential along the Hall bar
(see Fig. 3.5). The trenches are patterned prior to the graphene transfer, which
requires electron beam lithography (EBL) due to the dimensions of the structure.
In order to make the EBL process compatible with the photolithography of
Section 3.3, alignment markers are necessary.

Therefore, the alignment markers are patterned by spin-coating the 1.2 cm ×
1.2 cm wafer piece from Section 3.2 with "Microchem S1805" at 6000 rpm for
one minute and baking it at 115 ◦C for another minute. Afterwards, it is exposed
to the photolithography mask shown in Fig. 3.6a, and developed in "Microchem
MF-319" for 45 seconds. Subsequently, a 40 nm layer of Au/Pd is sputtered
onto the substrate, before lift-off is performed.

The EBL recipe used here requires to spin-coat the sample with "Microchem
950 PMMA A4" at 6000 rpm for one minute, followed by a baking step at 160 ◦C
for two minutes. The sample is exposed to the pattern shown in Fig. 3.6b with
an area dosage of 100 µC/cm2 using a "Zeiss SUPRA 55" scanning electron
microscope (SEM), before the sample is developed in "Allresist Developer AR
600-56" for five minutes. Note that after development, isopropanol is commonly
used as a stopper for EBL resists as opposed to DI water for photolithography
resists.

The PMMA structure on top of the substrate can now be used as a mask
for reactive ion etching, which is a mostly unidirectional etching process, and
hence, is preferred over more uniform processes like HF wet etching.

A "Sentech ICP-RIE plasma etcher SI 500" with an ICP power of 225 W,
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(a)
100µm

16µm

(b)

 

400µm

22µm

Fig. 3.4. (a) Contact pattern for an array of Hall bar structures for the whole wafer and
the zoom-in to one single structure. (b) Layout which complements the pattern from (a)
to protect the graphene between the contacts during the etching process (see Fig. 3.3k),
with the whole wafer mask on the left, single bar on the right. Note that the protected
area of 400 µm length is larger than the distance of 200 µm between the outer contacts
to ensure overlap between the graphene and the contacts.

SiO2

Si

100nm 100nm 20nm

Fig. 3.5. Schematic side view of the substrate of sample 1. Trenches of the indicated
dimensions are etched into the SiO2. Not to scale.
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8.95mm

(a)

 

 

115µm

1µm

100µm

(b)

Fig. 3.6. (a) Alignment marker pattern to ensure compatibility of EBL and photolithog-
raphy processes. (b) EBL structure with a 5 × 5 array of trench patterns with a 200 nm
period.

an RF power of 45 W, a C4F8 gas flow of 20 sscm, and an etch time of 15
seconds is used to etch trenches of ∼ 20 nm depth into the SiO2. As a general
empirical guideline, the etch depth should not exceed ∼ 20 % of the trench
width, since otherwise the graphene tends to break due to stress when put on
such a structure.

After removing the PMMA in acetone and following the remaining steps
described in Section 3.2, the substrate is ready for graphene transfer and Hall
bar definition.

An optical image of the finished sample 1 is shown in Fig. 3.7, along with an
SEM image and an atomic force microscopy (AFM) trace to verify the geometry
of the trenches.

3.4.2 Sample 2

Sample 2 is a flat 1.92 mm× 66 µm graphene sheet in a classical Hall bar geome-
try, and is one order of magnitude larger than sample 1. Additionally, a different
contact layout for the Hall bar definition is used. Due to the availability of
space, there are six inner contacts instead of four, and the longitudinal distance
between two neighboring (opposing) contacts is 500 µm (60 µm), as shown in
Fig. 3.8. An optical image of the finished sample is shown in Fig. 3.9.
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Fig. 3.7. (a) Optical micrograph of the finished sample 1. The Au contacts are shown in
light yellow, while the three shades of blue are, from light to dark, the graphene bar, the
flat substrate, and the etched corrugation underneath the graphene, respectively. Some
small contaminants on the right side are visible, but they are sufficiently far away from
the probing contacts. Contrast is enhanced for visibility. (a) SEM image of graphene
on the corrugated pattern (light gray, right) and the pattern without graphene on top
(dark gray, left). (b) AFM trace on an arbitrary spot of the corrugated structure. The
average etch depth is ∼ 20 nm.
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500µm
60µm

Fig. 3.8. Cutout of the photolithography mask for sample 2. The distance between the
outer contacts is 1.92 mm, the other dimensions are as indicated.

Fig. 3.9. Optical micrograph of sample 2 [46]. Dark and light blue denote substrate
and graphene, respectively, while the Au contacts are shown in ocher. Considering the
millimeter size of the graphene sheet, it is more or less free of any visible imperfections.
Contrast is enhanced for visibility.
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3.4.3 Sample 3

The substrate of sample 3 is a flat Si wafer with a 290 nm thick layer of ther-
mally grown SiO2 on top. Prior to the graphene transfer, magnetic nanodots
are deposited on the substrate by the group of Prof. H. P. Oepen from the
Universität Hamburg, Germany. The fabrication and characterization of these
nanodots are detailed in the works of Stillrich et al. (2008) [101] and Neumann
et al. (2012) [102], and a short outline of the fabrication processes is given in this
section.

A Pt/Co/Pt film with perpendicular magnetic anisotropy and a total thick-
ness of around 6 nm is deposited on the substrate via magnetron sputtering.
Afterwards, diblock copolymer micelles with a SiO2 core are used to create a
closely packed array on top of the Pt/Co/Pt film. The average distance between
the cores is around 70 nm. An O2 etching step then removes the polymer and
leaves only the SiO2 cores on the surface, which can subsequently be used as a
mask for ion milling. This transfers the structure of the cores to the magnetic
film, and thus, an array of magnetic nanodots is produced. A schematic depic-
tion of this process is shown in Fig. 3.10, while Fig. 3.11 is an SEM image of
the final structure. It is apparent that the resulting dots exhibit a short-range
hexagonal order, but the lack of any type of long-range order.

The graphene is then transferred onto the substrate and patterned into a
Hall bar layout (200 µm × 22 µm) as outlined in Section 3.3, with the graphene
being in contact with the magnetic nanodots. An optical micrograph of the final
sample 3 is shown in Fig. 3.12.

3.5 Bonding and Sample Mount

Before the sample is glued into the chip carrier, the bottom of the carrier has to
be cut off (see Fig. 3.13) to provide close-proximity access for the microwave
frequency antenna, which is necessary for the ESR experiments. Thus, the
sample is glued as close as possible to the cut, with the graphene Hall bar being
parallel to the edge. "Leitsilber mit Pinsel 3 g Inhalt" from "Conrad Electronic
SE" is used as glue, which is a conductive silver paint and thus allows for the
application of a back-gate voltage during the measurements.
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Fig. 3.10. Schematic depiction of the sample processing steps. (a) An array of diblock
copolymer micelles with a SiO2 core is placed on top of a ∼ 6 nm thick Pt/Co/Pt
magnetic multilayer. (b) The micelles are etched away by O2 plasma, leaving behind
the SiO2 cores. (c) The cores are used as a shadow mask to transfer their structure to
the multilayer via ion milling, resulting in an array of magnetic nanodots.
Reprinted figure with permission from H. Stillrich, A. Frömsdorf, S. Pütter, S. Förster, and
H. P. Oepen. Sub-20 nm Magnetic Dots with Perpendicular Magnetic Anisotropy. Advanced
Functional Materials, 18.1, 76-81 (2008). Copyright 2008 WILEY-VCH Verlag GmbH & Co.
KGaA, Weinheim [101].

1 µm

Fig. 3.11. SEM image of an array of Pt/Co/Pt nanodots (light gray dots) on top of a
SiO2/Si substrate (dark gray). The average distance between the dots is ∼ 70 nm and a
hexagonal short-range order is discernible.
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20 µm

Fig. 3.12. Optical micrograph of the finished sample 3. Dark and light blue denote
substrate and graphene, respectively, while the Au contacts are shown in dark yellow.
Some tears in the graphene are visible as dark blue patches in the Hall bar, as well as
some PMMA residues (turquoise).

(a) (b)

Fig. 3.13. (a) Leadless ceramic chip carrier with Au contacts. (b) Chip carrier with the
bottom part cut off.

Once the glue has dried, a lot of care should be taken during the wire bonding
procedure to avoid cracks in the thin oxide layer of the wafer, and thus leakage
currents when applying a back-gate voltage. Instead of bonding directly from
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Fig. 3.14. Optical micrograph of the bonded sample 1. The wires are glued to the Au
contacts pads with small drops of conductive silver paint.

the Au contact pads of the chip carrier to those of the Hall bar, it is advised to
bond from the pads of the carrier to the bottom area of the carrier in the vicinity
of the Hall bar. Subsequently, the latter bond should be detached, the wire
bent manually onto the desired pad of the Hall bar, and finally glued to said
pad with a small drop of silver paint. As an example, the successfully bonded
sample 1 is shown in Fig. 3.14.

3.5.1 Thermal Annealing

Thermal annealing is an essential step in the fabrication of high quality CVD graphene
samples, as it removes charged impurities, such as water [1], from the surface
and therefore shifts the CNP close to zero back-gate voltage, which is illustrated
in Fig. 3.15. A detailed discussion regarding the benefits of thermal annealing
of the described samples was presented by T. Lyon et al. (2017) [19].
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Fig. 3.15. Total sample resistance versus back-gate voltage before (blue) and after (red)
the annealing step. The CNP shifts from Vg,pre = 27 V to Vg,post = −4 V while the
peak resistance increases substantially, which indicates that impurities responsible for
p-doping of the graphene, e.g., water [1], have been removed during annealing.
Reprinted figure from T. J. Lyon et al. (2017) [19], with permission from AIP Publishing.

There are two thermal annealing steps: First, the sample is placed into a
rapid thermal annealing oven under vacuum and baked at 350 ◦C for 16 hours.
Second, it is quickly removed and placed into a probe and baked in a tube
oven under vacuum at 130 ◦C for 72 hours. Since the probe can be sealed, the
sample is not exposed to atmosphere while it is placed from the oven into the
measurement setup. However, a small amount of (inert) He exchange gas is
introduced into the probe to speed up the sample cool-down. An alternative
to the annealing steps would be the introduction of a capping layer to prevent
the graphene from adsorbing impurities, but empirically, such a layer has
negatively influenced the ESR signal in graphene.
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This chapter describes the various experimental setups that are used to perform
low-temperature magnetoresistance and RD-ESR measurements of the samples
presented in Chapter 3. All cryostat systems are from the company "Oxford
Instruments", and are called "Hermes", "Kronos", and "Prometheus" for easier
referral in the text. The systems are detailed with their respective features and
temperature ranges, followed by the corresponding electrical equipment, i.e.,
lock-ins, frequency generators, and source measure units.

4.1 Hermes: Cryostat with 4.2K Constant Temperature

Hermes is a liquid 4He cryostat with a superconducting magnet which can
reach fields of |B| = 8 T. The temperature is kept constant at 4.2 K for the
measurements presented in this work. The probe for this system is placed into
the liquid He bath, but it can be evacuated to a pressure of ∼ 1 · 10−3 mbar
which is essential to the sample quality (see Section 3.5.1). The probe features a
high-frequency semi-rigid coaxial cable ending in a loop antenna close to the
sample mount (see Fig. 4.1). Through this antenna, a microwave frequency sig-
nal can be applied during the RD-ESR measurements. A schematic of Hermes
and the probe is shown in Fig. 4.2.

4.2 Kronos: Cryostat with Variable Temperature Insert

Kronos is a cryostat with a variable temperature insert (VTI), i.e., the space for
the probe is thermally separated from the liquid He bath, however, the He flow
into that space can be controlled via a needle valve. By pumping on the sample
space and adjusting the He flow, it is possible to reach temperatures down to
1.4 K, as depicted in the phase diagram in Fig. 4.3. The superconducting magnet
is capable of producing fields of |B| = 10 T. Similar to Hermes, the probe for
this system can be evacuated to ∼ 1 · 10−3 mbar and features a coaxial line with
an antenna for microwave frequency transmission to the sample. A schematic
drawing of Kronos is shown in Fig. 4.4.
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Fig. 4.1. Picture of the probe with the loop antenna next to a sample.

probe

outer vacuum

chamber (OVC)
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Fig. 4.2. Schematic drawing of the Hermes cryostat with the probe inside.
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Fig. 4.3. Phase diagram for 4He [103]. At pressures of around 10 mbar (1 kPa), the He
vapor reaches temperatures of ∼ 1.4 K.
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Fig. 4.4. Schematic drawing of the Kronos cryostat with the probe inside.

4.3 Prometheus: Cryostat with Variable Temperature

Insert and Vector Magnet

Prometheus is a cryostat with a VTI, but in contrast to Kronos, a heating coil
is wrapped around the needle valve. Since all the He entering the sample
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space passes the heater, Prometheus enables access to temperatures ranging
from 1.4 K to room temperature. Additionally, the system is equipped with a
vector magnet with x-, y-, and z-components (the magnetic field orientation
with respect to the sample will be described in a following chapter). Thus,
through superposition, a sphere with a radius of up to |B| = 1 T can be swept.
A measurement with only a z-component can be performed to a maximum field
of |B| = 7 T.

The probe for Prometheus has a microwave antenna, but no vacuum shield,
resulting in a slightly different second annealing step: The sample has to be
annealed in a separate vacuum tube and afterwards always kept under a N2

atmosphere using a glove bag, then mounted into the probe and inserted into
the VTI. A schematic drawing of Prometheus is shown in Fig. 4.5.
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liquid helium

superconducting

vector magnet system
sample

loop antenna

coaxial cable

needle valve

with heater

inner vacuum

chamber (IVC)

vacuum

pump

Fig. 4.5. Schematic drawing of the Prometheus cryostat with the probe inside.

4.4 Frequency Generators and Antennas

In the experimental setups where the probe features an antenna for microwave
signal transmission, i.e., Hermes, Kronos and Prometheus, there are frequency
generators of the type "Agilent Technologies E8257D PSG Microwave Analog
Signal Generator". They have specified frequency ranges from 250 kHz to either
40 GHz or 67 GHz, depending on the purchased option, and the resolution is
0.01 Hz.
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The signal output is a 1.85 mm connector, and via an adapter to SMA, the
signal is transferred to the 50Ω coaxial cable in the respective probes. Experi-
ments have shown that a noticeable signal is only transmitted to the graphene
samples for frequencies of up to ∼ 40 GHz, most likely due to the frequency
limitations of the coaxial cables and SMA connectors, where the component
with the lowest rating is the SMA connector at 18 GHz. Since the absorption
spectra for the three systems are qualitatively similar, a
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Fig. 4.6. Absorption spectrum for Kronos with the probe at 1.4 K. The damping of the
signal for frequencies ν > 10 GHz is of the order of ∼ −20 dB. Since the output power
of the signal generator is around 20 dB m over a wide spectrum, a signal with a power
of circa 0 dB m = 1 mW is emitted from the antenna. Signals of up to 40 GHz have
been observed to produce an ESR response, although the recording of the absorption
spectrum is limited to 20 GHz due to the available equipment.

representative example is shown in Fig. 4.6. An estimate of the magnetic field
reaching the sample can be calculated as [46]

Bsample =

√

µ0P

2πc0d2 , (4.1)

where µ0 is the vacuum permeability, P ≈ 1 mW the output power of the
antenna, c0 the speed of light, and d ≈ 5 mm the distance between the antenna
and the sample. The result is a local magnetic field of Bsample = 163 nT, and
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Fig. 4.7. Dual lock-in configuration. Lock-in 1 provides the AC voltage and transmits
its frequency to lock-in 2 as a reference. Both lock-ins measure the voltage between the
indicated contacts simultaneously.

hence it only plays a perturbative role compared to the fields that are produced
by the superconducting magnets.

4.5 Magentoresistance and Lock-In Amplifiers

Each setup is equipped with two lock-in amplifiers of the type "Stanford Re-
search Systems SR830 DSP Lock-In Amplifier". The working principle is de-
tailed in the provided manual [104]. In essence, very small alternating current
signals in the nV range can be detected despite potentially low signal-to-noise
ratios.

Magnetoresistance is measured in a dual lock-in configuration, as depicted
in Fig. 4.7. The resistance of the presented graphene samples is of the order
of several 10 kΩ. Thus, when placed in series with a 100 MΩ resistor, the
alternating current (AC) output voltage of VRMS = 0.1 V and f = 37 Hz applied
by lock-in 1 results in a nearly constant current of Ix = 1 nA through the sample.
A reference signal is transmitted to lock-in 2, so that longitudinal and transverse
resistances of the Hall bar can be measured simultaneously.
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4.6 Source Measure Units

4.6 Source Measure Units

Each setup is equipped with a "Keithley 2400 Source Measure Unit" which
serves multiple purposes. One is the measurement of the contact resistances of
a sample before and after cool-down. It is found to be of the order of 1 kΩµm
[46], which is reasonable considering the sample fabrication where no emphasis
was put into optimizing contact resistance [105].

The other purpose of the source measure units is the application of a back-
gate voltage to a sample (see Section 2.2.4) while preventing it from a potential
current flow in case of an undesired gate leakage. In this manner, the charge
carrier density in the graphene can be controlled with minimal risk of damaging
the sample.

The voltage that can be applied ranges from 100 nV to 200 V, and at the same
time, a current between 10 fA and 10 A can be measured.
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The ISOC Gap in Graphene 5
ESR measurements have been performed on samples 1 and 2 which mainly
differ in terms of substrate geometry and the dimensions of the Graphene
Hall bar. The results are analyzed and a model is presented which allows
for the determination of the size of the ISOC gap in graphene. As a further
implication of this analysis, graphene is found to undergo a phase transition
from a spin-Hall insulator to a Dirac semi-metal at a critical magnetic field
value.

Furthermore, the influence of an electric field on the SOC gap is studied. Not
only does an electric field control the charge carrier type and density, but it
introduces Rashba SOC to the system, which could potentially influence the
size of the gap depending on its coupling strength (see Section 2.1.5).

5.1 Experimental Results

As described in Section 2.4, in a standard RD-ESR measurement, a constant
current is applied to the sample and the antenna frequency is set to a fixed
value, while the magnetic field is swept and the longitudinal voltage of the
sample is recorded. This measurement can be repeated at various charge carrier
densities by applying an appropriate voltage to a back-gate. The experimental
setup for both samples, with the orientation of the antenna, the current flow,
and the magnetic field, is depicted in Fig. 5.1. Due to the large attenuation of
the coaxial wire and the antenna for frequencies exceeding 40 GHz and due to
the expected g-factor of around 2 [18, 20], measurements are limited to range
of |B| ≤ 2 T (see Eq. 2.41). The response of the longitudinal resistivity under
resonance is generally very weak and not discernible from heating effects. In
order to resolve the resonance signal, a background measurement is performed
with the microwave signal switched off, which is subsequently subtracted from
the individual ESR measurements.
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Bz

Vg

Fig. 5.1. Experimental setup of the ESR measurements. The external magnetic field is
oriented in z-direction, i.e., perpendicular to the sample plane, while the AC antenna
field points along the y-axis. A constant current is applied in x-direction and the
longitudinal voltage Vxx is measured. The charge carrier density can be controlled via
the back-gate voltage Vg. The trenches in the substrate are a schematic and correspond
to sample 1.

5.1.1 Sample 1

Sample 1 is a 200 × 22 µm2 graphene sheet in a Hall bar configuration which
is placed on a corrugated Si/SiO2 substrate with a modulation period and
amplitude of 200 nm and 20 nm, respectively (see Section 3.4). This substrate
geometry results in a one-dimensional potential along the x-direction of the
sample. It is measured in the Hermes setup at a temperature of 4.2 K. A current
of Ix = 0.8 nA is applied and the back-gate voltage Vg is swept from -10 to 10 V
in increments of 10 mV, while recording the longitudinal resistivity ρxx. The
CNP is found to be at VCNP ≈ −1.5 V, as indicated in Fig. 5.2.

The back-gate is then set to Vg = 0, or ∆VCNP = Vg − VCNP = 1.5 V, and
the background measurement without microwave irradiation is performed by
sweeping the magnetic field from -2 to 2 T in increments of 10 mT and recording
ρxx.

From this background measurement and the previous gate sweep, it is pos-
sible to extract the charge carrier density n(Vg = 0) ≈ 2.6 · 1011 cm−2 and
the mobility µ ≈ 1160 cmV−1s−1 of the sample, using Eq. 2.21 and Eq. 2.28.
Note that these values are only estimates, since close to the CNP, n(Vg) does
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Fig. 5.2. Longitudinal resistivity versus back-gate voltage at B = 0 and T = 4.2 K, with
the CNP at VCNP ≈ −1.5 V indicated by the red line. The cartoons illustrate the regions
dominated by hole (h+) and electron (e−) transport, respectively.

not behave linearly as it is assumed for Eq. 2.21. A correction would result
in a lower charge carrier density and higher mobility, which would be more
consistent with the results of T. Lyon et al. (2017) [20], i.e., n ≈ 1.5 · 1011 cm−2

and µ ≈ 3700 cmV−1s−1, where the same batch of graphene and fabrication
methods were used.

For the frequency-dependent measurements, the radiation power and fre-
quency of the microwave signal are set to 17 dBm and 0.5 GHz, respectively,
and magnetoresistance is measured. After each magnetic field sweep, the fre-
quency is raised by 0.5 GHz up to the maximum value of 40 GHz. The radiation
power of 17 dBm has been determined as the maximal output power over this
frequency range. Despite the ambient temperature of 4.2 K, the antenna radia-
tion heats the sample locally. It is estimated to reach an effective temperature
of the order of several tens of Kelvin. This value is obtained by employing a
simplified "radiation heat transfer" model given by

P = AǫσT4/S, (5.1)

where P is the radiation power, A = 4πr2 is the surface area of the radiant
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heat source, with r being its radius, ǫ is the emissivity coefficient, T is the
temperature, and S is the irradiated surface area. In this simplified model, the
radiation source is assumed to originate from the point at the center of the
antenna in a spherical and homogeneous manner. The intensity at a certain
distance r is then P/A(r). P is assumed to be of the order of 1 mW, r ≈ 5 mm
is the distance between the antenna and the sample (see Section 4.4), and the
emissivity for Cu is around 0.05. Additionally, the effective surface area of the
graphene sheet has to be considered, which is its area perpendicular to the
radiation source. Here, the assumption of the point emitter has to be repealed.
When assuming an antenna diameter of 4 mm the average angle between the
top half of the antenna and the graphene sheet is approximately 10°, and
one obtains S = 200 µm · 22 µm · tan(10°) ≈ 800 µm2. When solving for the
temperature, the result is T ≈ 20 K. This seems to be an acceptable estimate
when comparing it to the experimental results by Mani et al. (2012) [18], who
determined a value of 13 K for the same power via temperature dependent
measurements.

The data for the background and an ESR measurement at 17 GHz are shown
in Fig. 5.3. In both measurements, the parabolic behavior in the range of
0.4 T . |B| . 0.8 T is an indicator for two-carrier transport [61]. For magnetic
fields exceeding the upper limit, standard linear behavior of magnetoresistance
without quantization is observed. The peak at zero field is evidence of weak
localization, as described in Section 2.3.3.

The frequency data exhibit a lower resistivity over the whole magnetic field
range than the background measurement due to the antenna radiation effec-
tively heating the sample and hence, additional charge carriers being thermally
activated for transport. This behavior has been observed in previous studies,
and in general, a higher radiation power results in a lower sample resistivity
[18, 20].

A noticeable feature is observed near B = 0.5 T, where the magnetoresistance
under microwave irradiation shows a very weak peak which is not present in
the background measurement. In order to investigate this feature, the difference
between both measurements

∆ρxx,ν(B) = ρxx,background(B)− ρxx,ν(B) (5.2)

is calculated. ∆ρxx,ν(B) is presented in Fig. 5.4 for various frequencies ν. The
data for each individual measurement are normalized in order to compensate
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Fig. 5.3. Raw magnetoresistance data of the background (black) and an ESR measure-
ment at 17 GHz (red), with the zoomed-in region highlighting the feature near 0.5 T.
The measurements are taken at T = 4.2 K and Vg = 0, with a microwave radiation
power of 17 dBm for the 17 GHz line.

for the power absorption of the coaxial line and antenna, which is dependent on
the frequency (see Section 4.4). The center peak is caused by the aforementioned
WL in the sample, and since it is sensitive to temperature, it remains in the
subtracted data. The remaining peaks are caused by ESR and are symmetric in
B, due to +B and −B resulting in the same energy splitting ∆EZ.

The derivative d[∆ρxx,ν(B)]/dB is calculated to resolve the resonance peaks
more clearly, and the result for the entire frequency range is shown in Fig. 5.5.
It is apparent that below a cut-off frequency of ν ≈ 11 GHz, the ESR signal
vanishes, while it can be observed for the whole range above the cut-off.

In order to determine the exact resonance positions under the magnetic field,
a Lorentzian fit (the line shape is caused by exchange interactions between
localized and conduction electrons [68]) is performed on the ESR peaks for each
individual measurement, and subsequently, the frequency is plotted against the
peak position. As the shift for both peaks is clearly linear, a linear regression is
performed and the result is shown in Fig. 5.6.
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Fig. 5.4. ∆ρxx,ν(B) for various frequencies. Two ESR peaks, which are symmetric in B,
shift linearly with the applied microwave frequency (indicated by the dashed lines),
while the peak at zero field stems from the the weak localization in the sample. The
measurements are normalized and offset for clarity. The data are recorded at T = 4.2 K
and Vg = 0, with a microwave radiation power of 17 dBm.

Fig. 5.5. Derivative of the ESR measurements recorded for 0.5 GHz ≤ ν ≤ 40 GHz.
The resonance signals vanish abruptly for frequencies ν . 11 GHz. The data are
recorded at T = 4.2 K and Vg = 0, with a microwave radiation power of 17 dBm.
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Fig. 5.6. Antenna frequency versus ESR peak position in magnetic field for the data
from Fig. 5.5. The red circles correspond to the peak positions of the upper "V" feature
of Fig. 5.5, while the black squares stem from the lower "V". A linear regression yields
an intercept of the red line with the frequency axis of 10.21 GHz, which corresponds
to an energy of 42.2 µeV. The extrapolation of the black data points passes through
the origin, with only a small offset, as expected from traditional Zeeman splitting. The
slopes of both graphs yield similar g-factors of g ≈ 1.95.

The errors of the peak positions are estimated to be around ±10 mT, origi-
nating from the inaccuracy of the magnet power supply (3 mT), the error of
the resonance peak fit (3 mT) and a potential tilt angle of the sample of up to 5°
with respect to the magnetic field (4 mT).

The slopes of the two graphs are [dν/dB]upper = (27.44 ± 0.39)GHzT−1

and [dν/dB]lower = (27.27 ± 0.16)GHzT−1 for the upper and lower peak,
respectively. These values correspond to g-factors of gupper = 1.96 ± 0.03 and
glower = 1.95 ± 0.01 (see Eq. 2.44), which are in good agreement with previous
studies [18, 20, 21, 46].

From the slope and the ESR peak width ∆B, the spin lifetime of the charge
carriers can be calculated (see Eq. 2.49). The average width for all frequencies
is ∆B ≈ 40 mT, which corresponds to a lifetime of τs ≈ 73 ps. Note that the
peak width (and position), and therefore the spin lifetime, is constant over
the accessible range of radiation power, i.e., temperatures of 10 K . T . 40 K
according to Eq. 5.1 in combination with the data of Lyon et al. (2017) [20, 46].

The lower line intercepts the frequency axis at ν0 = (0.02 ± 0.16)GHz, i.e.,
nearly at the origin of the graph, as it would be expected from traditional Zee-
man splitting. However, the upper line extrapolates toν1 = (10.21 ± 0.24)GHz,
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which corresponds to an energy of E1 = hν1 = (42.2 ± 1.0)µeV.
The appearance of the additional ESR peak is unexpected and the finite

intercept of this second peak with the frequency axis suggests that an energy
gap exists in the band structure of graphene. It is the central topic of this chapter
to investigate the nature of this gap.

In order to rule out the one-dimensional potential as the cause, which is
present in sample 1 due to the corrugated substrate, the ESR measurements
have also been performed on sample 2. Here, the Hall bar is much larger than
in sample 2, and the substrate is flat SiO2 on Si (see Section 3.4).

5.1.2 Sample 2

Sample 2 is a 1920 × 66 µm2 graphene sheet in a Hall bar configuration which
is situated on a flat Si/SiO2 substrate. It is measured in the Prometheus system
with the temperature set to ∼ 1.4 K. Note that there are always minor tempera-
ture fluctuations over long times in such a system (∼ 0.1 K), which however,
do not seem to influence the results of the measurements. This is most likely
due to the negligible size of the fluctuations when compared to the radiation
heating of approximately 20 K.

The back-gate voltage is swept from −10 V to 10 V in increments of 10 mV.
From the obtained data, which are presented in Fig. 5.7, it is not possible to
extract the position of the CNP. The positive slope of the curve indicates that
the Fermi energy lies below the Dirac point in the measured voltage range. The
voltage is limited to |Vg| = 10 V to protect the graphene from a potentially
harmful gate leakage current.

The magnetic field range is limited to −1 T ≤ B ≤ 1 T and the step size
is 5 mT. Additionally, the frequency range is 1 GHz ≤ ν ≤ 30 GHz, with
increments of 1 GHz. The power is set to 21 dBm, which has been determined
as the maximal output power over this frequency range. The magnetoresistance
data for the background and an ESR measurement at ν = 18 GHz are presented
in Fig. 5.8.

Identically to Section 5.1.1, ∆ρxx,ν(B) is calculated and the results for four
individual frequencies are shown in Fig. 5.9. The normalized curves for the
entire frequency range are displayed in Fig. 5.10.

Although the signal-to-noise ratio is significantly worse compared to sample
1, two resonance peaks appear which are symmetric in B and shift linearly with
frequency.
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Fig. 5.7. Longitudinal resistivity versus back-gate voltage at B = 0 and T = 1.4 K, with
VCNP > 10 V. The cartoon indicates the Fermi level in this regime.

Fig. 5.8. Raw magnetoresistance data of the background (black) and an ESR measure-
ment at 18 GHz (red), with the zoomed-in region highlighting the additional features of
the red curve. The data are recorded at T = 1.4 K, Vg = 0, with a microwave radiation
power of 21 dBm for the 18 GHz line.
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Fig. 5.9. ∆ρxx,ν(B) for various frequencies. Two ESR peaks, which are symmetric in B,
shift linearly with the applied microwave frequency (indicated by the dashed lines),
while the peak at zero field stems from the the weak localization in the sample. The
inner resonance signal is hardly visible in this presentation of the data (improved
visibility in the normalized contour plot in Fig. 5.10) and therefore, the corresponding
dashed lines serve as a guide to the eye. The measurements are normalized and offset
for clarity. The data are recorded at T = 1.4 K, Vg = 0, with a microwave radiation
power of 21 dBm.

Fig. 5.10. Normalized ESR measurements recorded for 1 GHz ≤ ν ≤ 30 GHz. The
resonance signal is present over a wider range of frequencies. The data are taken at
T = 1.4 K, Vg = 0, with a microwave radiation power of 21 dBm.
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Fig. 5.11. Antenna frequency versus ESR peak position in magnetic field. The red
circles correspond to the peak positions of the upper "V" feature of Fig. 5.10, while the
black squares stem from the lower "V". A linear fit to the black squares, which is guided
through the origin, yields a g-factor of gcorr = 1.95 ± 0.01. When the g-factor for both
resonances is assumed to be equal, the intercept of the red graph with the frequency
axis corresponds to an energy gap of Ecorr = 42.6 µeV. The values for the free fits are
stated in the main text.

Strong unintentional surface doping (see Fig. 5.7) and local defects are the
most likely causes for the poor signal-to-noise found in sample 2. It is also
possible that temperature fluctuations couple differently to the sample due to
the He gas flow of the VTI system which may vary under microwave irradiation.

Lorentz fits are performed and the frequency is plotted against peak position
in Fig. 5.11.

Here, the error bars of ±10 mT include once more the inaccuracy of the
magnet power supply, the error from the resonance peak fit and the potential
tilt angle of the sample of up to 5° with respect to magnetic field. The average
resonance peak width of ∆B ≈ 40 mT is comparable with sample 1, returning a
spin relaxation time of τs ≈ 73 ps.

When performing the linear regression for the black squares in Fig. 5.11, i.e.
the lower "V" feature in Fig. 5.10, without boundary conditions, the intercept
with the frequency axis is found at ν0 = (0.46 ± 0.28)GHz. The y-axis inter-
cept of the upper "V" feature (red circles) is at ν1 = (10.89 ± 0.26)GHz. This
corresponds to an energy difference of ∆E = h(ν1 − ν0) = (43.0 ± 2.2)µeV,
which is consistent with the result for sample 1. The slope of the upper reso-
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nance is [dν/dB]upper = (26.22 ± 0.50)GHzT−1 and for the lower resonance
feature [dν/dB]lower = (26.68 ± 0.40)GHzT−1. These results yield g-factors
of gupper = 1.87 ± 0.04 and glower = 1.91 ± 0.03, respectively. They differ sig-
nificantly from those calculated for sample 1, and also from the ones found in
literature [18, 20, 21, 46].

With the boundary condition that the Zeeman splitting should be zero at B
= 0 T, the fit for the black squares in Fig. 5.11 runs through the origin, and the
slope becomes [dν/dB]new = (27.31 ± 0.08)GHzT−1, which corresponds to
a corrected g-factor of gcorr = 1.95 ± 0.01. Additionally, by setting the slope
of the regression for the red circles to the new value, the y-axis intercept is
then νcorr = (10.35 ± 0.09)GHz and the resulting energy gap is now Ecorr =

hνnew = (42.6 ± 0.1)µeV. Hence, although the g-factor is corrected, the energy
gap stays nearly constant, and all results are in good agreement with previous
studies as well as those of sample 1.

5.1.3 Back-Gate Dependence

After receiving similar results for samples 1 and 2 with the back-gate voltage
set to zero, ESR is probed in dependence of the back-gate voltage to test the
strength of the Rashba spin-orbit interaction, which would be reflected in the
size of the energy gap (see Section 2.1.5). In addition to introducing Rashba
SOC to the system, the gate voltage also controls the position of the Fermi
energy and the charge carrier density in graphene. The results of sample 1 and
2, which, up until now, were measured in the electron- and hole-like regime of
the band structure, respectively, are in good agreement with the data by Lyon et

al. (2017) [20], who showed that the g-factor in graphene is independent of the
charge carrier density.

Since Rashba SOC should only depend on the applied gate voltage relative
to zero, it is desirable to measure both positive and negative voltages. The
available data for sample 1 are presented, before a more systematic approach
is taken with sample 2, where the back-gate voltage range is extended and the
step size reduced.

For sample 1, ESR measurements are performed in Hermes at T = 4.2 K, ν =

19 GHz, and a power of 17 dBm (see Section 5.1.1) for five different gate volt-
ages −10 V . ∆Vg . 10 V, or, relative to the CNP, −8.5 V . ∆VCNP . 11.5 V.
The corresponding charge carrier densities are in the range of −7.6 · 1011 cm−2 .

n . 9.7 · 1011 cm−2. ∆ρxx,19GHz(B) is displayed in Fig. 5.12, with the nominal
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Fig. 5.12. ESR measurements in sample 1 for five different back-gate voltages. The
dashed lines indicate the ESR peak positions calculated for g = 1.95 and an energy gap
of 42 µeV. Red (blue) color represents the Fermi energy being in the hole-(electron-)like
regime. Both resonance positions are insensitive to the applied voltage. The CNP is at
VCNP = −1.5 V. The individual curves are normalized and offset for clarity. The data
are recorded at T = 4.2 K, with a microwave radiation power of 17 dBm.

values of the resonance peaks indicated by the dashed lines, assuming g = 1.95.
The invariance of the peak at |B0| = 0.7 T supports the g-factor independence
claimed by Lyon et al. (2017) [20], while the constant position of the resonance
at |B1| = 0.32 T indicates a fixed energy gap.

More data are available for sample 2, measured by T. Anlauf. For these
measurements, the sample was transferred to the Kronos system, where the
back-gate voltage can be set to values of up to |Vg| = 100 V. The temperature is
held constant at 1.4 K, with minor fluctuations over time as mentioned in the
previous section. A gate sweep determines the CNP to be at VCNP = 47.0 V
and the result is shown in Fig. 5.13. Note that the position of the CNP here is
not necessarily comparable to the measurement performed in the Prometheus
system as the CNP can vary over multiple cool-downs of the sample due to
unintentional and varying surface doping.

Due to the appearance of the CNP at high gate voltage, only positive voltages
can be applied in order to probe the influence of Rashba SOC on the energy
gap.
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Fig. 5.13. Longitudinal resistivity ρxx versus back-gate voltage at B = 0 and T = 1.4 K,
with VCNP = 47.0 V. The cartoons indicate the regions dominated by hole (h+) and
electron (e−) transport, respectively.

ESR measurements are performed at a constant frequency of 22 GHz and a
power of 21 dBm, while the back-gate voltage is systematically tuned in the
range of 7 V ≤ ∆Vg ≤ 91 V in steps of 1 V. The magnetic field is swept from 0
to 1 T in steps of 10 mT. The results for selected gate voltages are displayed in
Fig. 5.14.

For 21 V . Vg . 85 V, or, relative to the CNP, −26 V ≤ ∆VCNP ≤ 38 V
both peaks are visible and their positions are insensitive to changes of the gate
voltage. The corresponding charge carrier densities are −2.01 · 1012 cm−2 ≤
n ≤ 2.87 · 1012 cm−2. Beyond this range, the resonance at 0.83 T stays at a
constant position, while the peak at 0.43 T vanishes in the background. Despite
not being able to verify the invariance of the gap for negative gate voltages in
sample 2, the results of both samples combined suggest that the energy gap
in graphene does not depend on the back-gate voltage, and therefore Rashba
SOC effects are negligible in the studied range.

In a subsequent analysis, the resonance peak height ∆ρpeak is plotted with
respect to the applied gate voltage (see Fig. 5.15). The height of the resonance
peaks increases when the Fermi energy moves towards the CNP.
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Fig. 5.14. ESR measurements for various gate voltages. The color indicates the position
of the Fermi energy with respect to the Dirac point, with blue (red) indicating EF > 0
(EF < 0). (a) The resonance peak positions are insensitive to gate voltage. However, the
height of both peaks diminishes with increasing distance from the CNP (represented
by lighter shades of blue), until the resonance at 0.43 T vanishes at around 85 V. (b)

Similar behavior is observed as in (a), with the vanishing lower-field resonance at
approximately 21 V. The data are recorded at T = 1.4 K, with a microwave radiation
power of 21 dBm.
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Fig. 5.15. Peak height versus back-gate voltage in comparison with the longitudinal
resistivity ρxx(0,Vg). (a) Analysis of the resonance at 0.83 T. The peak height (black
data points) follows the behavior of the longitudinal sample resistivity (red solid line),
however, there seems to be a slight horizontal mismatch between the two datasets. (b)

Analysis of the resonance at 0.43 T. Two outliers have been eliminated. Compared to
(a), the number of data points is reduced, since the peak fit does not converge for the
missing voltages. The peak height follows the sample resistivity. The corresponding
data have been recorded at T = 1.4 K and ν = 22 GHz, with a radiation power of
21 dBm.
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Fig. 5.16. Peak height and sample resistivity in dependence of back-gate voltage.
The data are recorded from a different sample cool-down than Fig. 5.15, with the
CNP at VCNP = 16.5 V. The corresponding data have been recorded at T = 1.4 K and
ν = 22 GHz, with a radiation power of 21 dBm.

Thus, it reproduces the trend of the sample resistivity versus back-gate volt-
age from Fig. 5.13. The number of data points is low for the 0.43 T resonance
since an analytical identification of the peak is not possible for all values of Vg.

In Fig. 5.15a, there is a horizontal offset between the two datasets. This is
unexpected, since in a simple picture, ∆ρpeak ∝ (n↑ − n↓)−1 and ρxx(Vg) ∝
(n↑ + n↓)−1, with n↑ (n↓) representing carrier densities of the spin up (down)
state. The result is then ∆ρpeak(Vg)/ρxx(Vg) ≈ constant.

Indeed, in a second set of data, which has been previously recorded during
another cool-down cycle of the sample, the horizontal mismatch is not observed
(see Fig. 5.16). A major difference here is the position of the CNP which is found
at VCNP = 16.5 V. Therefore, one can speculate that the reason for the mismatch
at a higher CNP might be charged impurities on the graphene, influencing the
availability of charge carriers that contribute to the resonance signal. However,
further studies need to be carried out to determine the origin of this shift with
certainty.
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5 The ISOC Gap in Graphene

5.2 Theoretical Interpretation

As shown in section Section 5.1.3, the electron spin properties of graphene seem
to be invariant within the accessible parameters of temperature, sample size,
carrier type and density (through the application of a gate voltage) or the topol-
ogy of the SiO2 substrate. The large scale (hundreds of µm) CVD graphene used
in this work contains hundreds of individual domains with various orientations,
which limits the mobility and enhances (intervalley) scattering [106]. Yet, the
observed energy gap and g-factor are comparable to those determined by Mani
et al. (2012) [18], measured by ESR on epitaxially grown graphene (several µm2

in size) on a SiC substrate, where graphene quality and substrate interaction
should be very different.

All these experimental facts demonstrate that the observed properties are
particularly robust against external influences and imply that they are most
likely intrinsic to graphene. In the following paragraphs, a model, which was
developed by M. Prada, is presented to complement these observations.

The theory that is discussed in Section 2.1 serves as a starting point, and
Fig. 5.17 is displayed as a reminder. Intrinsic SOC leads to the existence of
an energy gap ∆I in the bulk, which is denoted in black. The flat edge bands,
shown in green and magenta, possess a fixed chirality and high DOS that
cross the gap at the Γ point at zero magnetic field. Here, the occupation of the
edge bands is maximal (indicated by color brightness), and spreads over the
bandwidth h∆ν ∼ ∆I . Fig. 5.17a shows the band structure for edge E1 (An
equivalent consideration can be made for edge E2, where the magenta (green)
band corresponds to spin up (down)). Fig. 5.17b is a cartoon depicting the
resulting SHI state. Rashba SOC is neglected for the moment.

When a moderate magnetic field (gµBB < ∆I , or B < 0.38 T) is applied, the
bands of opposite spin move in opposite directions along the energy axis. This
causes the band crossing of E1 to be shifted to negative values of k, while still
keeping the edge character intact. The observation of an ESR signal in the edge
bands is prevented due to the aforementioned bandwidth h∆ν, and excitations
occur over a range of k-vectors as indicated by the red arrows in Fig. 5.18a.
In contrast, a bulk signal that fulfills the condition hν = gµBB + ∆I is always
observable, as it is indeed the case (upper "V" feature, Fig. 5.5). In this regime,
graphene is in the SHI state.

When the magnetic field is increased, the band crossing occurs in the bulk
and the edges are energetically separated allowing for an observable resonance
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(a)

hΔν

(b)

Fig. 5.17. (a) Band structure for the bulk and edge E1. Green and magenta denote spin
up and down, respectively, while black indicates eigenstates with bulk character. The
bulk band gap ∆I is assumed to be caused by ISOC. The edge band broadening ∆ν

is indicated in blue. Figure adopted from Sichau et al. (2019) [21]. (b) Schematic illus-
tration of the edge modes. Charge carrier transport is spin-dependent, thus depicting
graphene in the SHI phase.

signal of hν = gµBB in addition to the bulk resonance (see Fig. 5.18b). This edge
signal, however, is broadened due to the bandwidth h∆ν. A cartoon illustrating
the energy levels and the corresponding ESR transitions in a simplified manner
is shown in Fig. 5.19. Due to the band crossings occurring in the bulk (at K,
and K′ when including E2) at these higher magnetic fields, graphene is in the
semi-metallic state.

Fig. 2.6, which shows the bulk bands at one of the K points, suggests that
the size of the gap varies with the Rashba field, which seems to contradict the
results of the back-gate dependent measurements with a constant gap shown
in Section 5.1. However, since a photon carries spin but no sublattice spin, the
selection rule dictates that only transitions between bands of the same color can
be induced.
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(a)

g
µ

B
B

 +
 Δ

I

(b)

gµBB gµBB+ΔI

hΔν

Fig. 5.18. (a) Band structure for a moderate magnetic field. Transitions between the
edge bands are possible in the entire indicated range (red double-headed arrows),
resulting in an undetectable resonance signal. The bulk resonance is always observed
and follows the condition hν = gµBB + ∆I . Graphene is in the SHI state. (b) Band
structure for a magnetic field which surpasses the size of the energy gap ∆I . The edge
signal is now visible and it is broadened by h∆ν = ∆I . Graphene is in the semi-metallic
state. Figure adopted from Sichau et al. (2019) [21].
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B > ΔI

Fig. 5.19. Cartoon indicating the ESR transitions for large magnetic fields: The edge sig-
nal has a resonant condition given by the Zeeman splitting, hνedge = gµBB, with
a spread given by the energetic dispersion, ∆I = h∆ν, whereas the bulk fulfills
hνbulk = hνedge + ∆I . The color gradient indicates the LDOS, with bright (dark) colors
representing a high (low) occupation.

Fig. 5.20. Schematic representation of the band structure in the vicinity of the K point,
with ISOC and Rashba SOC dictating the position of the bands. As long as λI > λr,
the gap between bands with identical sublattice spin is always ∆I = 2λI . The vector q

represents the momentum with respect to K. Figure adopted from Sichau et al. (2019)
[21], Supplemental Material.
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5 The ISOC Gap in Graphene

The Rashba Hamiltonian (see Eq. 2.18), carries opposite sign for valence and
conduction bands, which results in a constant gap between bands with the
same sublattice spin. Hence, ESR does not allow to probe the gap 2λI − 2λr,
but only the pure intrinsic SOC; this is illustrated in Fig. 5.20.

As long as the contribution from the ISOC, λI , is larger than the Rashba SOC,
λr, (λI > λr) the model is consistent with the experimental results, since the
edge bands cross diagonally (as described above), making the SHI observable at
low magnetic fields [11]. For the case of λI < λr, graphene is transformed into a
trivial insulator with the edge bands connecting the bulk bands horizontally and
the graphene becomes gapped. The consequence of the latter is an observable
ESR signal in the entire frequency range, including ν < 11 GHz, as there is
no SHI state anymore. This seems to be the case in sample 2 (Fig. 5.9), most
likely owed to the charged impurities on the surface, which is reflected in the
large distance to the CNP. Note that the strength of the Rashba coupling λr is
different for every sample and cool-down cycle.

Finally, addressing the involved energy scales is crucial to the model. The
ISOC gap of 42.2 µeV is smaller than the thermal energy of kBT ≈ 360 µeV by
an order of magnitude. However, this is no hindrance to resolving the gap,
since the spin imbalance dictated by the Maxwell-Boltzmann distribution is
still significant (see Section 2.4). In contrast, the thermal energy is pivotal, as
it provides access to the gap even when the Fermi level is far away from the
Dirac points.
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Angle-Dependent RD-ESR 6
In this chapter, it will be shown that the g-factor measured in Chapter 5 is
merely an effective g-factor for a specific external magnetic field orientation, in
this case perpendicular to the sample plane. However, through the ISOC and
Rashba mechanisms, additional effective magnetic fields are introduced to the
graphene, altering the perceived g-factor for varying external magnetic field
angles. In the following sections, the effective g-factor is determined for various
directions of the external B-field in order to establish a model which allows
for the description of the behavior of the g-factor as well as the extraction of
characteristic atomic quantities of graphene.

ESR measurements have been performed on sample 2 in Prometheus, with
the experimental setup and the variable magnetic field being shown in Fig. 6.1.

  Vxx

R V x
y

z

Vg

B

Fig. 6.1. Schematic setup of the ESR measurements for sample 2. The external magnetic
field can be freely oriented in space with an absolute strength of |B| ≤ 1 T, while
the AC antenna field is pointing along the y-axis. A constant current is applied in
x-direction and the longitudinal voltage Vxx is measured. The charge carrier density
can be controlled via the back-gate voltage Vg.
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6 Angle-Dependent RD-ESR

6.1 Axial Magnetic Field Sweeps

In addition to the measurement of B along the z-direction presented in Chap-
ter 5, the magnetic field is oriented along the x- and y-axes, respectively. Also,
the three diagonals of the x-y, x-z, and y-z-planes are probed by ESR. For each
direction i, the magnetic field is swept in the range of −1 T ≤ Bi ≤ 1 T in
increments of 5 mT, and the frequency is tuned between 1 and 30 GHz in steps
of 1 GHz. A current of Ix = 1 nA is applied and the back-gate is grounded. The
base temperature of the system of T ≈ 1.4 K showed fluctuations of the order of
0.5 K and had a reduced cooling power due to problems with the Helium nee-
dle valve. Signatures of these variations can be observed as a field-dependent
background in the magnetoresistance data, but do not influence the value of
the g-factor.

6.1.1 Magnetic Field in x-Direction

The data analysis for ESR in x-direction is identical to that of the previous
experiments along the z-axis. The differential resistivity ∆ρxx,ν is calculated
from the recorded magnetoresistance data, a Lorentzian fit is performed for
each resonance peak, and the applied microwave frequency is plotted versus
the resonance peak position. Finally, the g-factor is determined from the slope
of these data points. Fig. 6.2 shows ∆ρxx,ν for the entire frequency range, with
each frequency curve normalized in order to emphasize the resonance feature.
Only a single ESR peak line is visible in this measurement, although a faint
difference in contrast indicates the existence of a second line. An analytical
approach, however, could not reliably distinguish this second peak from the
noise. The overall gradient in resistivity from left to right is an artifact arising
from heating when the magnetic fields is swept to its starting position at −1 T
and a low cooling power due to the aforementioned issues with the needle
valve of the cryostat.

When the fit is set through the origin (see Fig. 6.3), the main resonance
has a slope of (25.36 ± 0.07)GHzT−1 and the corresponding g-factor is gx =

1.81± 0.01. The errors originate from the same sources that have been discussed
for the z-direction in Chapter 5.
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6.1 Axial Magnetic Field Sweeps

(b)

Vg

Bx

(a)

Fig. 6.2. (a) Schematic depiction of the magnetic field orientation in the sample. (b)

Normalized ESR measurements with the magnetic field B = Bx êx. The resonance in
shape of a "V", which originates at Bx = 0, is present over a wide range of frequencies.
The gradient in resistivity from left to right is a temperature-related artifact. The data
are recorded at T = 1.4 K and Vg = 0, with a radiation power of 21 dBm.
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Fig. 6.3. Microwave frequency in dependence of the ESR peak position. The slope of
the linear fit yields a g-factor of gx = 1.81 ± 0.01.
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6.1.2 Magnetic Field in y-Direction

The normalized data from the ESR measurements with the magnetic field
oriented along the y-direction is shown in Fig. 6.4. The fit in Fig. 6.5 yields
a slope of (28.46 ± 0.10)GHzT−1, which corresponds to a g-factor of gy =

2.03 ± 0.01 This is very close to the free electron g-factor of g = 2.0023. The
large region of high resistivity at magnetic fields between −0.5 T and 0 is a
temperature-related artifact.

Vg

By

(a) (b)

Fig. 6.4. (a) Schematic depiction of the magnetic field orientation in the sample. (b)

Normalized ESR measurements with the magnetic field B = By êy. The resonance in
shape of a "V", which originates at By = 0, is present over a wide range of frequencies.
The high resistivity in the range between ∼ −0.5 T and ∼ 0 T is a temperature-related
artifact. The data are recorded at T = 1.4 K and Vg = 0, with a radiation power of
21 dBm.
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Fig. 6.5. Microwave frequency in dependence of the ESR peak position. The slope of
the linear fit yields a g-factor of gy = 2.03 ± 0.01.

6.1.3 Magnetic Field in x-y-Direction

In order to achieve a more coherent understanding of the angular dependence
of the g-factor for more than just the main axes of the coordinate system, the
magnetic field directions at various angles are studied, starting with the diago-
nal of the x-y-plane, i.e., B = Bx−y = Bx êx + By êy ≡ Bx−y · (êx + êy)/

√
2, with

êi being the unit vectors in i-direction, and with equal values of the magnetic
fields, Bx = By.

The normalized data are plotted in Fig. 6.6 and the resonance peak positions
are analyzed in Fig. 6.7. The correction of the linear fit is performed as before
and the resulting slope is (26.79 ± 0.12)GHzT−1, which corresponds to a g-
factor of gx−y = 1.91± 0.01. This value lies in between gx = 1.81 and gy = 2.03.
Various temperature artifacts are visible for negative magnetic fields as well as
for the measurement at 15 GHz.
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Vg

Bx-y

(a) (b)

Fig. 6.6. (a) Schematic depiction of the magnetic field orientation in the sample. (b)

Normalized ESR measurements with the magnetic field B = Bx−y. The resonance
in shape of a "V", which originates at Bx−y = 0, is present over a wide range of
frequencies. The gradient in resistivity from negative to positive fields is a temperature-
related artifact. The data are recorded at T = 1.4 K and Vg = 0, with a radiation power
of 21 dBm.
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Fig. 6.7. Microwave frequency in dependence of the ESR peak position. The slope of
the linear fit yields a g-factor of gx−y = 1.91 ± 0.01.
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6.1.4 Magnetic Field in x-z-Direction

When ESR is measured with the external magnetic field along the direction
of B = Bx−z = Bx−z · (êx + êz)/

√
2, a different g-factor is obtained yet again.

The experimental results are displayed in Fig. 6.8 and the analysis is presented
in Fig. 6.9, yielding gx−z = 1.87 ± 0.01. This result supports the previous
speculation of the g-factor value shifting with the applied magnetic field an-
gle. The measurement at 20 GHz shows a step-like artifact from temperature
fluctuations.

Vg

Bx-z

(a) (b)

Fig. 6.8. (a) Schematic depiction of the magnetic field orientation in the sample. (b)

Normalized ESR measurements with the magnetic field B = Bx−z. The resonance in
shape of a "V", which originates at Bx−z = 0, is present over a wide range of frequencies.
The data are recorded at T = 1.4 K and Vg = 0, with a radiation power of 21 dBm. The
measurement at 20 GHz shows artifacts due to varying temperature.
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Fig. 6.9. Microwave frequency in dependence of the ESR peak position. The slope of
the linear fit yields a g-factor of gx−z = 1.87 ± 0.01.

6.1.5 Magnetic Field in y-z-direction

The data in Fig. 6.10 show the results of the ESR experiments when the magnetic
field is swept along B = By−z = By−z · (êy + êz)/

√
2. The temperature is stable

over the entire measurement apart from a small step-like artifact at 25 GHz. The
analysis of the resonance peak position in Fig. 6.11 results in gy−z = 1.99± 0.01,
with gz < gy−z < gy.
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Fig. 6.10. (a) Schematic depiction of the magnetic field orientation in the sample. (b)

Normalized ESR measurements with the magnetic field B = By−z. The resonance in
shape of a "V", which originates at By−z = 0, is present over a wide range of frequencies.
The data are recorded at T = 1.4 K and Vg = 0, with a radiation power of 21 dBm
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Fig. 6.11. Microwave frequency in dependence of the ESR peak position. The slope of
the linear fit yields a g-factor of gy−z = 1.99 ± 0.01.

87
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6.2 Radial Magnetic Field Sweeps

An overview of the determined g-factors for six directions of the magnetic field
is given in Tab. 6.1. With the present approach, the g-factor can be measured
with an error of less than 5 % for the main axes of the magnetic field. For
arbitrary (diagonal) directions, however, this approach is very time-consuming,
since the two magnetic field components have to be swept separately for each
data point.

To reduce the measurement time, the g-factor can be deduced from the
resonance of a constant microwave frequency under various angles of the
magnetic field direction B. This approach, however, is limited to a narrow
window around |B| and works at the expense of accuracy of the determined
g-factor. It is possible to measure the behavior of the g-factor over an entire
coordinate plane with an angular resolution of 3° in a reasonable amount of time.
A microwave frequency of νres = 19 GHz with a power of 21 dBm produces
a clear resonance for all directions that have been probed. Corresponding to
the g-factors listed in Tab. 6.1, a resonance can then be expected in the range of
0.66 T . |B| . 0.75 T. The magnetic field is therefore swept in a slightly bigger
range of 0.6 T ≤ |B| ≤ 0.8 T, always in radial direction, with a step size of 5 mT.
The temperature is T = 1.4 K and the back-gate voltage is set to 0.

Tab. 6.1. g-factors for various directions of the external magnetic field B. These values
have been obtained for T = 1.4 K and Vg = 0.

gx gx−y gy gy−z gz gx−z Error

1.81 1.91 2.03 1.99 1.95 1.87 0.01

6.2.1 Magnetic Field in the x-y-Plane

The ESR data in Fig. 6.12 show the normalized differential resistivity for the
radial magnetic field sweeps in the x-y-plane, with the experimental parameters
from Section 6.2. The magnetic field vector can be written as

Bx−y = Bx−y · cos(θx−y) · (êx + êy)/
√

2, (6.1)

where θx−y is the angle between Bx−y and the y-axis in the x-y-plane. Res-
onances, which have a large differential resistivity, appear in red whereas the
off-resonance conditions are shown in blue.
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6.2 Radial Magnetic Field Sweeps

θx-y

Bx-y
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Vg

Bx-y
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Fig. 6.12. (a) ESR data of the normalized differential resistivity for the radial magnetic
field sweeps in the x-y-plane. The resonance peaks are relatively wide compared to
the measured magnetic field range, which results in a low color contrast. However,
the resonance feature is visibly shifted to lower absolute fields near angles of 0° and
180° (indicated in dark red). The data are recorded at T = 1.4 K and Vg = 0, with a
microwave frequency of ν = 19 GHz and a power of 21 dBm. (b) Schematic depiction
of the magnetic field orientation in the sample. (c) Cross-section of the experimental
data of (a) at θx−y = 0° (black) and a Lorentzian peak fit (red) with its center at
(0.67 ± 0.01) T. The theoretical position is calculated to be 0.68 T.
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Fig. 6.13. Dependence of the g-factor on the magnetic field angle θx−y. The data have
been extracted from the measurement in Fig. 6.12 by performing a Lorentzian peak
fit [68] for each angle and converting the peak position to the corresponding g-factor.
The g-factors of the main directions of the coordinate system are indicated by the blue
dashed lines. Note that for certain angles, the resonance peak fit did not converge,
resulting in missing data points.

The resonance peaks are relatively broad compared to the measured field
range, resulting in large regions of red color. Near θx−y = 0° and 180°, the
resonance is clearly shifted to lower values of |Bx−y| and blue off-resonance
regions dominate the higher field range, while the opposite is true for θx−y =

90°. Over the measured range, the resonance position, and thus the g-factor,
shifts smoothly with the magnetic field angle.

After a Lorentzian fit [68] to the resonance peak is performed for each angle,
the obtained resonance positions can be translated to their respective g-factors:
Each resonance can be interpolated to the origin in the parameter space of
frequency versus resonance position (similar to, e.g., Fig. 6.7), and thus Eq. 2.44
can be used to calculate g. The g-factor is then plotted with respect to the
magnetic field angle θx−y and the result is shown in Fig. 6.13.

A thorough physical explanation of the data will be given after the results
for the two remaining planes of the coordinate system are presented. For this
purpose, a theoretical model will be introduced in Section 6.3 which includes
the Rashba and ISOC mechanisms.
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6.2 Radial Magnetic Field Sweeps

6.2.2 Magnetic Field in the x-z-Plane

The angle-dependent ESR measurements with the external magnetic field in
the x-z-plane are performed with the parameters outlined in Section 6.2. In
Fig. 6.14, the normalized differential resistivity versus the angle-dependent
magnetic field is shown, which, analogous to the x-y-plane, can be written as

Bx−z = Bx−z · cos(θx−z) · (êx + êz)/
√

2, (6.2)

where θx−z is the angle between Bx−z and the x-axis in the x-z-plane. Al-
though the signal-to noise ratio is lower than in the measurement of the x-y-
plane, the resonance positions for various angles can be extracted. The regions
around θx−z = 0° and 180° exhibit resonances (red) at higher absolute values
of the magnetic field than at around 90°.

Identically to Section 6.2.1, Lorentzian peak fits [68] are performed for each
radial magnetic field sweep, and the g-factor corresponding to the determined
resonance position is plotted against the angle, as shown in Fig. 6.15. The large
errors for the individually determined values of g reflect the large resonance
peak width and a low signal-to-noise ratio. At θx−z = 0° and 90°, values close
to gx and gz should be found, respectively. However, there is a significant
deviation from this expectation, which indicates that the accuracy of the experi-
mental method of determining g from only one frequency might be unreliable
in some cases. The deviation could also be caused by a slight misalignment
of the sample with respect to the specified coordinate system, although the
extremal values for g are found near 0°, 90°, and 180° as expected. A detailed
theoretical model will be presented in Section 6.3.

91



6 Angle-Dependent RD-ESR

θx-z

Bx-z

Bx-z

(a) (b)

Fig. 6.14. (a) Schematic depiction of the magnetic field orientation in the sample. (b)

ESR data of the normalized differential resistivity for the radial magnetic field sweeps
in the x-z-plane. The signal-to-noise ratio is rather low, which makes the resonance
positions difficult to determine. However, for some angles, the resonance feature is
visible, and it is shifted to higher absolute fields near angles of 0° and 180° (indicated
in red) compared to angles near 90°. The data are recorded at T = 1.4 K and Vg = 0,
with a microwave frequency of ν = 19 GHz and a power of 21 dBm.
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Fig. 6.15. Dependence of the g-factor on the magnetic field angle θx−z. The data have
been extracted from the measurement in Fig. 6.12 by performing a Lorentzian peak
fit [68] for each angle and converting the peak position to the corresponding g-factor.
The g-factors of the main directions of the coordinate system are indicated by the blue
dashed lines. Note that for certain angles, the resonance peak fit did not converge,
resulting in missing data points.
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6.2.3 Magnetic Field in the y-z-Plane

The angle-dependent ESR measurements with the external magnetic field in the
y-z-plane are performed with the parameters outlined in Section 6.2. In Fig. 6.16,
the normalized differential resistivity is plotted against the angle-dependent
magnetic field, which, analogous to the x-y-plane, can be written as

By−z = By−z · cos(θy−z) · (êy + êz)/
√

2, (6.3)

where θy−z is the angle between By−z and the y-axis in the y-z-plane. The
single radial measurements exhibit a high signal-to-noise ratio as well as narrow
resonances and therefore provide good accuracy for the determination of the
angle-dependent g-factor. When the magnetic field angle θy−z makes a 360°
turn, the resonance (red) in Fig. 6.16 follows an oval. For θy−z = 0° and 180°,
the resonance appears at lower absolute values of the magnetic field than at 90°
or 270°.

θy-z

By-zVg

By-z

(a) (b)

Fig. 6.16. (a) Schematic depiction of the magnetic field orientation in the sample. (b)

ESR data of the normalized differential resistivity for the radial magnetic field sweeps
in the y-z-plane. The resonance peaks are shown in red and they are visibly shifted
to lower absolute fields near angles of 0° and 180° as compared to angles of 90° and
270°. Overall, the resonance position varies smoothly with the magnetic field angle
θy−z. The data are recorded at T = 1.4 K and Vg = 0, with a microwave frequency of
ν = 19 GHz and a power of 21 dBm.
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Fig. 6.17. Dependence of the g-factor on the magnetic field angle θy−z. The data have
been extracted from the measurement in Fig. 6.16 by performing a Lorentzian peak
fit [68] for each angle and converting the peak position to the corresponding g-factor
(black squares). The resulting behavior seems to follow a sine function (red solid line).
The g-factors of the main directions of the coordinate system are indicated by the blue
dashed lines. Note that for certain angles, the resonance peak fit did not converge,
resulting in missing data points.

After the resonance position for each radial magnetic field sweep is deter-
mined and converted to the corresponding g-factor (see Section 6.2.1), g is
plotted in dependence of the magnetic field angle θy−z, as shown in Fig. 6.17.
Most g-factors exhibit an acceptable error of around 10 % and stay within the
expected boundaries, which are set by gy and gz. The angular dependence
seems to be of sinusoidal nature, spanning two periods over the 360° range and
exhibiting extrema near 0°, 90°, 180°, 270°, and 360°.

Extensive tests have been performed to exclude external sources as the origin
of the g-factor fluctuations, such as the calibration of the magnet power supplies,
the frequency generators, and the lock-ins. The sample and magnetic field
orientation have been checked as well as the wiring. It can be concluded that
the g-factor varies with respect to the magnetic field angle due to the properties
of the graphene, which is the subject of the following section.
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6.3 Theoretical Model

In this section, a theoretical model is presented to interpret the angle-dependent
data. For this purpose, a microscopic theory for the effective g-factor was
developed by M. Prada, which does not only describe the observations, but
also grants access to the scale of the involved quantities, i.e., the mixing of the
p- and d-orbitals, the energy of the d-orbitals, and the atomic SOC. In general,
the Zeeman Hamiltonian describing an electron in a magnetic field which has
an angular momentum L and a spin angular momentum S is given by

ĤZeeman = µBB(L + g0S), (6.4)

with g0 being the g-factor of the free electron. In contrast, one can describe
the same electron via an effective spin model, where the effect of the angular
momentum alters the strength of the external magnetic field seen by the electron.
Hence, in the effective spin model, the g-factor has to be adjusted, and the
effective Hamiltonian can be written as

Ĥeff = µBBg̃S, (6.5)

where g̃ is a tensor which describes the effective g-factor in three dimensions
according to the theory presented in Section 2.4.2, i.e.,

g̃ =









gx 0 0

0 gy 0

0 0 gz









, (6.6)

and the effective g-factor

geff =
√

g2
x sin2θ cos2 γ + g2

y sin2θ sin2 γ + g2
z cos2θ, (6.7)

with the angles θ and γ being shown in Fig. 6.18. The model according to
Eq. 6.7 is plotted together with the angle-dependent experimental data for the
three magnetic field planes in order to verify the viability of the theory. The
only input are the experimentally determined values for gx, gy, and gz. The
results are shown in Fig. 6.19-6.21. A slight horizontal offset between the model
and the data might originate from a slight misalignment of the sample with
respect to the magnetic field axes. However, Eq. 6.7 generally describes the
experiment with high accuracy. A corresponding visualization of the g-factor
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6 Angle-Dependent RD-ESR

of graphene in three dimensions is displayed in Fig. 6.22.

Bz
y

x

γ

θ

Fig. 6.18. Orientation of the magnetic field (red) with respect to the coordinate system
(black), with the orientation of B being defined by the angles θ and γ.
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Fig. 6.19. Dependence of the g-factor on the angle γx−y in the x-y-plane. The theoretical
model (red solid line, Eq. 6.7) is in good agreement with the experimental data (black
squares). The slight horizontal offset between the model and the experiment could be
caused by a slight misalignment of the sample with respect to the main axes of the
magnetic field.
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Fig. 6.20. Dependence of the g-factor on the angle θx−z in the x-z-plane. The theoretical
model (red solid line, Eq. 6.7) is in good agreement with the experimental data (black
squares).

Fig. 6.21. Dependence of the g-factor on the angle θy−z in the y-z-plane. The theoretical
model (red solid line, Eq. 6.7) is in good agreement with the experimental data (black
squares). The slight horizontal offset between the model and the experiment could be
caused by a slight misalignment of the sample with respect to the main axes of the
magnetic field.
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(a)

(b)

θ

γ

Fig. 6.22. The g-factor of graphene in three dimensions. (a) Spherical magnetic field
representation with the origin at the center of the sphere. The color gradient on
the surface indicates the g-factor for the respective field orientation. The sphere is
characterized by the polar angle γ and the azimuthal angle θ, which are used to define
a planar projection of the surface in (b). A periodicity in both γ and θ of 180° can be
observed.
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The tensor g̃ in Eq. 6.5 is constructed in such a way that the resulting energies
of ĤZeeman and Ĥeff are always equal. For an electron with ground state |φ〉, it
is required that

〈φ|ĤZeeman|φ〉 = 〈φ|Ĥeff|φ〉, 〈φ|B(L + g0S)|φ〉 = 〈φ|Bg̃S|φ〉. (6.8)

6.3.1 z-Direction

For the z-direction of the magnetic field, the Hamiltonians ĤZeeman and Ĥeff in
the microscopic crystal field model become fairly simple, yielding

〈(gz Ŝz)〉 = 〈(L̂z + g0 Ŝz)〉. (6.9)

In order to derive the equation for the effective g-factor for this direction,
the ground states |φ〉 have to be calculated. The leading corrections of the
g-factor can be attributed to the d-orbital mixing in graphene [15, 17]. Thus, by
employing perturbation theory and the Slater-Koster matrix elements [107], the
corrections can be expressed as

|φ〉 ≃ cA|pA
z 〉+ cB|pB

z 〉 −
cA

εd
(〈dB

xz|V̂|pA
z 〉|dB

xz〉+ 〈dB
yz|V̂|pA

z 〉|dB
yz〉)

− cB

εd
(〈dA

xz|V̂|pB
z 〉|dA

xz〉+ 〈dA
yz|V̂|pB

z 〉|dA
yz〉),

(6.10)

where the indices A and B indicate the respective sublattices of graphene. Fur-
thermore, cA = ±cB exp(iφτ), with + (-) representing the conduction (valence)
band, and τ = ±1, with +1 (−1) relating to the K (K’) point. Additionally,
|cA|2 + |cB|2 ≃ 1, and εd is the energy of the d-orbitals. The matrix elements
〈dαi |V̂|pβz 〉 describe the coupling between the p- and d-orbitals and are given by

∑
i

〈φA
pz
|V̂|φB

dyz
〉 exp(ik · δi) ≃ i

3
2
τVpdπ(1 − a

2
(τqx − iqy)), (6.11)

and

∑
i

〈φB
pz
|V̂|φA

dxz
〉 exp(ik · δi) ≃

3
2

Vpdπ(1 +
a

2
(τqx + iqy)), (6.12)
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with the relations

〈φA
pz
|V̂|φB

dyz
〉 = −〈φB

pz
|V̂|φA

dyz
〉∗ = 〈φA

dyz
|V̂|φB

pz
〉, (6.13)

and

〈φA
pz
|V̂|φB

dxz
〉 = −〈φB

pz
|V̂|φA

dxz
〉∗ = 〈φA

dxz
|V̂|φB

pz
〉, (6.14)

respectively. It is assumed that one is close to the K point, i.e., k = K + q and
q ≪ K, a is the distance between two neighboring carbon atoms in graphene,
and Vpdπ is the mixing potential of the p- and d-orbitals forming π bonds.
Eq. 6.13 and 6.14 represent a swap of the sublattices A and B, resulting in a
minus sign, which is exactly what the chirality operator ĥq = σ̂ · q/|q| does to
the Hamiltonian [108]. Without the property of chirality, the matrix elements
would be zero. Additionally, they are spin-diagonal, i.e., they do not contain
spin up-spin down mixing terms to leading order. Hence, only the expectation
value 〈L̂z〉 needs to be calculated in order to access the g-factor, and by using
〈dαi |L̂z|pz〉 = 0 and 〈dαxz|L̂z|dβyz〉 = iδαβ, one obtains

〈φ|L̂z|φ〉 ≃
cAc∗A
ε2

d

(〈pB
z |V̂|dA

xz〉〈dA
xz|L̂z|dA

yz〉〈dA
yz|V̂|pB

z 〉

+ 〈pB
z |V̂|dA

yz〉〈dA
yz|L̂z|dA

xz〉〈dA
xz|V̂|pB

z 〉)

+
cBc∗B
ε2

d

(〈pA
z |V̂|dB

xz〉〈dB
xz|L̂z|dB

yz〉〈dB
yz|V̂|pA

z 〉

+ 〈pA
z |V̂|dB

yz〉〈dB
yz|L̂z|dB

xz〉〈dB
xz|V̂|pA

z 〉)

= − 2i2τ
α2

ε2
d

(|cA|2 − |cB|2) = 2τσz
α2

ε2
d

,

(6.15)

where α = 3
2 Vpdπ is a factor that is linearly proportional to the orbital cou-

pling potential. The result for the g-factor in z-direction can then be written
as

gz = g0 + 2τ
α2

ε2
d

σz = g0 + ∆gz. (6.16)

With this equation and comparing g0 to the experimental data (summarized
in Tab. 6.1), it is apparent that ∆gz ≈ −0.05, i.e., σzτ < 0, which corresponds to
the molecular ground state of graphene (〈σzτ〉 is obtained through third order
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corrections). Interestingly, the quantityα/εd ≃ 0.0871 has already been deter-
mined via density functional theory by Konschuh et al. (2010) [16], resulting in
an upper limit of

∆gz = 2
α2

ε2
d

〈τσz〉 = −2
α2

ε2
d

≃ −0.015. (6.17)

which deviates from the experimentally determined value of −0.05. How-
ever, the theoretical value has lead to underestimating the intrinsic band gap ∆I

of graphene as 24 µeV [16] instead of 42 µeV. One could therefore argue to use
the experimental value of gz in order to improve the theoretical parameters:

|∆gz| = 0.05 = 2
α2

ε2
d

→ α

εd
= 0.1581, (6.18)

which is roughly a factor of two larger than the theoretical value, and could
explain the originally underestimated gap. Additionally, α/εd determines
the mixing of the p- and the d-orbitals, and the experimentally determined
value results in a contribution of the d-orbitals which is around 6 % larger
than expected. Moreover, this mixing parameter allows to calculate the atomic
SOC χd, which is dominated by the contribution of the d-orbitals:

∆I = 42 µeV = 4
α2

ε2
d

χd → χd ≃ 0.42 meV, (6.19)

while the value estimated via density functional theory is 0.8 meV [16].

6.3.2 x-Direction

In contrast to the z-direction, an effective spin model is employed for the x-
direction, which is oriented in plane and parallel to the current through the
graphene. This minimal model is defined in a spin and pseudospin (bi-spinor)
basis of s ⊗σ = {A ↑ ,B ↑ ,A ↓ ,B ↓}, and the Hamiltonian is given by

Ĥ = g0µ0B(ŝx ⊗ I) +αk(I⊗ σ̂x) + λR(ŝx ⊗ σ̂y − ŝy ⊗ σ̂x)

+ λI(ŝz ⊗ σ̂z),
(6.20)

where I is the 2D identity matrix, αk = h̄vFkx, and ŝα and σ̂β are the Pauli
matrices acting on spin and pseudospin, respectively. The four terms are, in
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6 Angle-Dependent RD-ESR

order, the Zeeman term, the Dirac term, the Rashba SOC term, and the intrinsic
SOC term. The Zeeman term dictates that the spin of the eigenstates points
along x, while the Dirac term quantizes the pseudospin along the same direction,
since transport is along x. This is also the reason why a Dirac term including
σ̂y can be neglected here. Both SOC terms mix spin-up and spin-down states.
Note that this Hamiltonian includes additional relevant components compared
to the z-direction as the Dirac and the Rashba terms did not play a role before
(they are oriented in plane).

For convenience, the order of spin and pseudospin degrees of freedom is
swapped, resulting in an altered bi-spinor basis {+x ↑x,+x ↓x,−x ↑x ,−x ↓x},
where the sublattice spin A and B has been replaced by + and -, respectively,
and the index x represents the collinear alignment with the x-direction.

For the g-factor calculation, perturbation theory is employed in the absence of
a magnetic field (no Zeeman term), with the Dirac term being the unperturbed
term, while the two SOC terms represent the perturbation mixing spin-up and
spin-down states. In other words, one starts with a symmetry-broken eigenstate
and calculates the correction that arises from SOC. One receives for the zeroth
order of perturbation

Ĥ0 = αk(I⊗ σ̂x) = αk















1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1















, (6.21)

and for the first order

Ĥ1 = −λR(ŝy ⊗ σ̂x)















0 1 0 0

1 0 0 0

0 0 0 −1

0 0 −1 0















+ λI















0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0















. (6.22)

In the zeroth order, the ground state is given by |φ0
GS〉 = |−x〉, a degenerate

state with negative sublattice spin and arbitrary real spin, and the eigenenergy
E0

0 = −αk. The first term (Rashba) in Eq. 6.22 does not yield any net contribu-
tions as it does not mix the two degrees of freedom. However, the second term
(ISOC) mixes spin and pseudospin, breaking the degeneracy.
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When applying degenerate perturbation theory to the first order on one of
the ground states, in this case |φ0

GS〉 = |−x ↓x〉, one receives

|φGS〉↓ ≃
1
cn

(

|φ0
GS〉↓ +∑

j

1
E0

0 − E0
j

〈 j|Ĥ1|φ0
GS〉| j〉

)

=
1
cn
(|−x ↓x〉+β|+x ↑x〉),

(6.23)

with

β =
λI

2αk
, c2

n = 1 +β2. (6.24)

Note that the Rashba term plays no role in the degenerate perturbation theory,
since it does not lift any degeneracies (ones in the off-diagonal elements). Now
that the ground state |φGS〉↓ is known, the expectation values of the effective
Hamiltonian Ĥeff and the Zeeman Hamiltonian ĤZeeman need to be matched in
order to access the g-factor (similar to the z-direction). They are given by

〈Ĥeff〉↓ = gxµBBx〈ŝx〉↓ = −1
2

gxµBBx, (6.25)

and

〈ĤZeeman〉↓ = 〈φGS|ĤZeeman|φGS〉↓ ≃ g0µBBx〈φGS|ŝx|φGS〉↓

≃ −1
2

g0µBBx

(

1 −β2

c2
n

)

.
(6.26)

The comparison between those results yields the g-factor in x-direction

gx ≃ g0
1 −β2

c2
n

= g0
1 −β2

1 +β2 ≃ g0(1 − 2β2), (6.27)

and the correction to the free electron g-factor

∆gx =
λ2

I

2h̄2v2
Fk2

x

. (6.28)

With the experimental results gx = 1.81, ∆gx = 0.19, and λI = ∆I/2 ≃
21 µeV, one receives h̄vFkx ≃ 34 µeV, or vFkx ≃ 5.17 · 1010 s−1. Inserting the
Fermi velocity of ideal graphene yields kx ≃ 104 m−1.
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6.3.3 y-Direction

At the time of writing this thesis, the theory for the y-direction is a work in
progress. The Hamiltonian would be similar to the one presented for the
x-direction, with the difference of the magnetic field resulting in a different
quantization direction of the electron spin. The overall correction to the g-factor
calculated from perturbation theory should be close to zero as the experiment
suggests (gy = 2.03 ≃ g0). Preliminary results show that the factor λ2

I from
Eq. 6.28 would become (λI + λR)

2, resulting in the condition λI ≈ −λR, which,
in principle, would be possible.
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Enhancement of ESR by Magnetic

Nanoparticles

7

In this chapter, the influence of magnetic nanoparticles on the ESR signal is
studied. When graphene is placed directly on such particles, the resonance
peak height is found to increase drastically. When external in-plane fields are
applied, the magnetization of the nanomagnets appears to rotate following the
field direction and strength. When additional in-plane AC fields are applied,
the magnetization seems to instantaneously switch. Both effects are observed
in the resistivity of the graphene layer. Preliminary experimental results as well
as theoretical speculations about the origin of these effects will be presented in
the following sections.

7.1 Magnetoresistance and ESR in Out-of-Plane

Direction

The ESR studies are performed on sample 3, a 200 µm × 22 µm graphene Hall
bar, which is placed on Pt/Co/Pt magnetic nanoparticles. These nanodots
exhibit a perpendicular magnetic anisotropy as well as a hexagonal short-range
order with a mean spacing of around 70 nm. The Si/SiO2 substrate allows to
apply a back-gate voltage. A detailed description of the sample can be found in
Section 3.4.3.

Preliminary ESR measurements for a magnetic field Bz along the z-direction
(for a schematic of the setup, see Fig. 7.1) have been performed in Kronos at
a temperature of 1.4 K, while ongoing measurements probe all magnetic field
directions in the Prometheus system, also at 1.4 K.

Initially, a sweep of the back-gate voltage Vg at Bz = 0 is performed in
Kronos by applying a constant current of 2 nA to the sample, while increasing
the gate voltage from 0 to 100 V in steps of 10 mV and recording the longitudinal
voltage. As shown in Fig. 7.2, the CNP lies beyond the maximal gate voltage of
Vg = 100 V, indicating hole-transport in the experimentally accessible regime.
The resistivity change of around 200Ω over the entire voltage range is low
compared to the measurements of the graphene samples in Chapter 5, where
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 Vxx

R V x
y

z

Bz

Vg

Fig. 7.1. Experimental setup for the magnetoresistance and ESR measurements of
sample 3. The external magnetic field is oriented in z-direction, i.e., perpendicular
to the sample plane, while the AC antenna field points along the y-axis. A constant
current is applied in x-direction and the longitudinal voltage Vxx is measured. The
charge carrier density can be controlled via the back-gate voltage Vg.

the change is up to two orders of magnitude higher. This indicates that the
metallic nanodots might be shielding the graphene from the electric field which
is applied through the back-gate.

For further sample characterization, the magnetoresistance at Vg = 0 is
probed by applying a current of 2 nA to the sample, while sweeping the mag-
netic field from −10 T to 10 T in steps of 20 mT. The measured total Hall
resistivity ρtot exhibits a longitudinal component due to a non-ideal contact
symmetry, i.e., a slight misalignment of the probing contacts with respect
to the current direction. By assuming zero Hall resistivity at zero magnetic
field, the Hall data can be symmetrized as follows [22]: The measured Hall
resistivity can be expressed as ρtot = ρlong + ρxy, where the longitudinal com-
ponent obeys ρlong(−B) = ρlong(B), while the transverse component follows
ρxy(−B) = −ρxy(B). One can then extract the transverse (Hall) resistivity as
ρxy(B) = ρtot(B)−ρlong(B) = ρtot(B)− 1/2(ρtot(B)+ρtot(−B)). The longitudi-
nal measurement of ρxx does not exhibit an asymmetry and is displayed as raw
data in Fig. 7.3. The results yield a charge carrier density of n = 1.86 · 1013 cm−2

and a charge carrier mobility of µ = 70.9 cm−2V−1s−1. The density is rather
high compared to the graphene samples 1 and 2, while the mobility is very
low, which is most likely caused by the metallic nanodots, which are in contact

106



7.1 Magnetoresistance and ESR in Out-of-Plane Direction

h
+

EF

Fig. 7.2. Longitudinal resistivity in dependence of the back-gate voltage at T = 1.4 K
and B = 0. The CNP lies beyond the maximal value of Vg = 100 V, i.e, only the
hole-transport regime is accessible in the experiment, as indicated by the schematic
drawing in the inset.

with the graphene and act as impurities. The negative slope of the transverse
resistivity confirms the hole-like nature of the transport. Additionally, the
magnetoresistance data shows no hysteresis in a reverse magnetic field sweep.

During the subsequent ESR measurements, the current is set to 2 nA and the
back-gate voltage is kept constant at Vg = 0. The frequency ν is set to values
between 15 GHz and 30 GHz in increments of 1 GHz with a radiation power
of 19 dBm, and for each frequency, the magnetic field is swept between −1.5 T
and 1.5 T in steps of 5 mT. A background measurement without radiation is
performed for each back-gate voltage.

The background measurement and and an exemplary measurement at ν =

30 GHz are shown in Fig. 7.4. The resonance peak, which is ∼ 30Ω in height,
can be resolved without calculating ∆ρxx. This is surprising, since in Sec-
tion 5.1.3, and especially in Fig. 5.15, the measurements show that the peak
height decreases (and eventually vanishes) with increasing distance from the
CNP. The high charge carrier density in sample 3 suggests that the distance
to the CNP is even greater than in the measurements from Fig. 5.15. A peak
height of 30Ω this far away from the CNP is therefore an improvement of at
least a factor of 5 compared to the samples without magnetic nanoparticles
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Fig. 7.3. Longitudinal (black) and Hall resistivity (red) in dependence of the external
magnetic field at T = 1.4 K and Vg = 0. The measurements yield values for the
charge carrier density and mobility of n = 1.86 · 1013 cm−2 and µ = 70.9 cm−2V−1s−1,
respectively. The negative slope of the transverse resistivity is an indication for hole-like
transport.

(∆ρPeak < 5Ω). A feasible explanation could be based on the local electron spin
polarization in the vicinity of the nanomagnets which is enhanced compared
to the prediction of the Maxwell-Boltzmann distribution (see Section 2.4). The
increased change in resistance can then be explained in terms of a larger number
of spin-flips that can be induced by the microwave radiation. This concept is
illustrated in Fig. 7.5

The second (lower-field) ESR peak (see Chapter 5) is not sufficiently resolved
using the Kronos setup. This might be due to the noise in the data whenever a
frequency is applied, which does not appear in measurements performed on
the same sample in the Prometheus setup. These issues are probably related to
insufficient thermal contact with the 1.4 K bath.

The results for various frequencies are presented in Fig. 7.6 where the raw
frequency data are shown, i.e., no background signal is subtracted to enhance
the visibility of the resonances. Additionally, the ESR features do not appear as
a peak for all frequencies. The type of feature seems to be frequency-dependent
as low frequencies tend to rather produce resonance dips and higher frequencies
resonance peaks. This behavior has not been studied extensively, however, one
could speculate that the effective sample temperature plays an important role,
since it is frequency-dependent due to the power absorption of the signal line
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Fig. 7.4. Longitudinal magnetoresistance without radiation (black) and with ν =
30 GHz and a power of 19 dBm (red). Large resonance peaks with a height of ∼ 30Ω
are visible around |B| = 1 T. The data have been recorded at T = 1.4 K and Vg = 0.

Fig. 7.5. Density of spin states for graphene (a) without and (b) with magnetic nanopar-
ticles. Without the nanodots, the spin polarization is given by the Maxwell-Boltzmann
distribution, and it is low compared to the (locally) enhanced polarization when the
dots are present. Image courtesy of T. Anlauf.
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Fig. 7.6. ρxx,ν(B) for various frequencies between 15 GHz and 30 GHz. The ESR peaks,
which are symmetric in B, shift linearly with the applied microwave frequency (in-
dicated by the dashed lines), while the peak at zero field stems from the the weak
localization in the sample. The measurements are offset for clarity. The data are
recorded at T = 1.4 K and Vg = 0, with a microwave radiation power of 19 dBm.

(see Section 4.4). In a simplified picture, the sample temperature is influenced
by the resonant absorption and radiative heating leading to the excitation of a
significant number of charge carriers to higher energetic (spin) states, causing a
scenario comparable to a population inversion. The result would then be visible
in the resistivity as an "inversion" of the resonance feature. This topic has to be
studied more thoroughly, e.g., by performing a peak analysis for varying signal
power at a constant frequency.

The g-factor for this direction of the magnetic field, deduced from the slope
in Fig. 7.7 as gz = 1.94 ± 0.02, does not seem to be influenced significantly by
the magnetic nanoparticles. A more extensive set of data would be necessary in
order to determine whether the nanoparticles contribute a significant magnetic
field to the ESR measurements. In this case, a positive x-intercept of the linear
fit would be expected without affecting the slope, indicating a remnant field
when the external field is set to zero. However, the particles cover only ∼ 10 %
of the sample area, and the stray field at the nanoparticle/graphene interface is
< 50 mT [109]. Thus, one would expect a rather small x-intercept, which cannot
be resolved with the limited amount of frequencies available in this preliminary
data set.
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Fig. 7.7. Antenna frequency versus ESR peak position in magnetic field corre-
sponding to the data from Fig. 7.6. The slope of the linear fit is calculated as
(27.17 ± 0.25)GHzT−1, which corresponds to a g-factor of gz = 1.94 ± 0.02, and
does not seem to be influenced significantly by the magnetic nanoparticles. An outlier
at 20 GHz has been removed.

Therefore, similar to the data analysis in Chapter 5 and Chapter 6, the fit in
Fig. 7.7 is set through the origin. The errors of the peak positions are estimated
to be around ±10 mT, originating from the inaccuracy of the magnet power
supply (3 mT), the error of the resonance peak fit (3 mT), and a potential tilt
angle of the sample of up to 5° with respect to the magnetic field (4 mT).

7.2 Magnetoresistance and ESR in the In-Plane

Directions

In this section, the most important preliminary results for the in-plane magnetic
field directions are presented. These and ongoing measurements are performed
by T. Anlauf, and a more in-depth analysis is available in his thesis [110].

Magnetoresistance for the in-plane directions of the magnetic field Bx and By

has been probed in the Prometheus system at a temperature of T = 1.4 K and a
back-gate voltage of Vg = 0. A schematic overview of the orientation of sample
3 is shown in Fig. 7.8. A constant current of 2 nA is applied to the sample, while
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x
y

z

By Bx
Fig. 7.8. Experimental setup for the magnetoresistance and ESR measurements of
sample 3. The external magnetic field is oriented in either x- or y-direction, while the
AC antenna field always points along the y-axis.

the magnetic field is swept between −1 T and 1 T (and in reverse) in steps of
5 mT for each of the two directions x and y. The resulting data is displayed
in Fig. 7.9. A slight hysteresis is observed in both cases, indicating a response
of the magnetic nanoparticles to the external field. By applying an in-plane
field, they are forced to rotate their magnetic orientation from the intrinsic
out-of-plane direction to the energetically less favorable in-plane direction x or
y, respectively.

The sample was irradiated with microwaves of various frequencies between
10 GHz ≤ ν ≤ 30 GHz with a power of 19 dBm to the sample while sweeping
the magnetic field. In x-direction, the hysteresis is enhanced once the mi-
crowaves are turned on, as illustrated in Fig. 7.10a. Additionally, the obtained
data resembles a two-level system regarding the sample resistivity, with the
critical "switching" field varying with the sweep direction. A feasible model
that explains this behavior is based on microwave-assisted switching of the
magnetic orientation: When sweeping from a high to a low absolute in-plane
field, the nanomagnets are less likely to stay in the energetically unfavorable
in-plane orientation with diminishing field. The sum of the magnetic moments
of all nanoparticles, which is reflected in the sample resistivity, varies smoothly
(approximately linearly) with Bx in the absence of radiation (see Fig. 7.8a).

When the radiation is switched on, the microwaves provide the required
energy for the nanomagnets to switch instantaneously to their preferred out-
of-plane orientation at a certain threshold field, which seems to be |Bx| ≈ 0.5 T.
Subsequently, the nanomagnets stay in this orientation until Bx overcomes this
threshold, again at |Bx| ≈ 0.5 T. The resistance of the graphene layer responds
strongly to changes in the orientation of the magnetic domains of the nanopar-
ticles. While the electron spin is always collinear with the external field, the
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(a)

(b)

Fig. 7.9. Magnetoresistance for the x-direction (a) and the y-direction (b) of the external
magnetic field. The data are recorded at T = 1.4 K and Vg = 0. The black line indicates
a magnetic field sweep from negative to positive values, and the reverse direction for
the red line. A slight hysteresis is observed for both orientations Bx and By, respectively.
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(a)

(b)

Fig. 7.10. Magnetoresistance under microwave irradiation for the x- and y-directions
of the external magnetic field, respectively. The data are recorded at T = 1.4 K, Vg = 0
and a radiation power of 19 dBm. (a) The applied microwave frequency is 15 GHz.
Two resistivity levels appear as well as a clear hysteresis. The critical field of the
resistivity change is independent of frequency [110] and no ESR signal is observed.
(b) Two different frequencies exhibit ESR features and a WL peak. The peak positions
correspond to gy ≈ 2, which is consistent with the data of Chapter 6. Speculations
about the origin of the observed features in (a) and (b) can be found in the main text.
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magnetic moments of the nanoparticles are either aligned perpendicularly to
the spin (|Bx| . 0.5 T) or parallel (|Bx| & 0.5 T). The perpendicular configura-
tion hinders transport, which can be observed as a rise in resistivity. Note that
these speculations are preliminary and demand for a thorough investigation in
the future.

In the y-direction, the hysteresis vanishes and instead, a WL peak appears
at zero field, as well as the ordinary spin resonance which is symmetric in By

(see Fig. 7.10b). The presented resonance positions correspond to a g-factor
of gy ≈ 2, which is consistent with the results of Chapter 6. The absence of
the WL feature without radiation (see Fig. 7.9b) indicates that there might be
a remnant magnetic field even when By = 0 due to the nanoparticles. When
the microwaves are switched on, the remnant field seems to disappear, or
might rather be averaged to zero over time due to the antenna tipping the
magnetic moments of the nanoparticles repeatedly, hence the reappearance of
the WL peak.

The different behavior for x- and y-directions could be explained in terms of
the relative orientations of magnetic field and the microwave field, generated by
the antenna. When Bx is applied, the AC field is perpendicular to the magnetic
moments and can act as a "tipping" field for the magnetic orientation. In contrast,
for sufficiently high By the nanoparticles are collinear with the microwave
field and stay unaffected. However, similar to the x-direction of the magnetic
field, many questions remain unanswered and additional experimental proof is
required to establish a consistent theoretical model.
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Conclusions and Outlook 8
The magnetoresistance and resistively-detected electron spin resonance mea-
surements presented in this work shed light on various intrinsic properties
of graphene. The ESR experiments with the magnetic field perpendicular to
the sample plane were employed to measure the band gap in graphene of
∆I = 42.2 µeV, which is caused by intrinsic spin-orbit coupling. The size of this
gap is in the theoretically predicted range of 1 µeV − 100 µeV [11, 13–17]. It was
shown that graphene undergoes a phase transition from a spin-Hall insulator to
the semi-metallic state at a critical magnetic field of |B| = 0.38 T. The g-factor
was extracted as gz = 1.95 and was found to be independent of the applied
back-gate voltage. In the presented theory, numerical tight binding calculations
were performed by M. Prada, illustrating the band structure of graphene close
to the Dirac points and the spin transitions of the charge carriers involved in
the experimental observations. These findings have been published recently as
a peer-reviewed journal article [21].

The effective g-factor of graphene was determined in dependence of the mag-
netic field angle, and a significant variation between gx = 1.81 and gy = 2.03
for the x- and y-directions of the B-field was found. With these values, a mi-
croscopic model was established by M. Prada, and employed to extract the
mixing parameter of the p- and d-orbitals in graphene α/ǫd = 0.1581 as well
as the atomic spin-orbit coupling χd = 0.42 meV. These values had previ-
ously been estimated via density functional theory to be (α/ǫd)est. ≈ 0.0871
and χd,est. ≈ 0.8 meV, respectively [16]. The presented results constitute an
improvement of the theoretical predictions and contribute to the basic un-
derstanding of graphene. The presented theory is a work in progress which
might reveal the role of Rashba and other spin-orbit coupling mechanisms
in graphene. The findings from the angle-dependent ESR measurements are
currently prepared for publication.

A sample with magnetic nanoparticles between substrate and graphene was
prepared in collaboration with the group of Prof. Oepen [101, 102]. In magne-
toresistance measurements, it was found to exhibit an unusually high charge
carrier density of n = 1.86 · 1013 cm−2. With the magnetic field perpendicular
to the sample plane, the ESR signal was greatly improved, which is probably
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related to a local spin polarization in the graphene layer in the vicinity of the
magnetic nanodots. The magnetoresistance measurements with an in-plane
B-field showed an unexpected and direction-dependent response to microwave
radiation. The microwave signal appears to induce switching in the magnetiza-
tion of the magnetic nanoparticles, which can be observed in the resistivity of
the graphene. An in-depth analysis can be found in the Master’s thesis by T.
Anlauf [110].

The presented measurements for graphene on magnetic nanoparticles offer
a rich playground for future spin-related experiments. ESR studies with a
high density of data points as well as high accuracy can be performed in order
to determine the effective magnetic field of the nanoparticles, which should
reveal a finite x-intercept in the linear resonance peak fit. Varying densities of
nanoparticles on the substrate should be investigated in order to determine
whether they could act as a spin-barrier for the charge carriers. Data acquisition
for the current sample and the preparation for the abovementioned experiments
are ongoing.

Complementary experiments can be performed with the available experimen-
tal systems. Prometheus has the capability of inducing a tunable strain in the
graphene using a piezo-electric motor. The strain should impact the intrinsic
spin-orbit coupling and thus, allow for the precise control of the band gap in
graphene. First results are detailed in the thesis of J. L. Riemann [111]. Related
experiments on Bi2Se3 topological insulator nanowires have been performed
by C. Schindler, where the strain was demonstrated to shift the position of the
Dirac point in the band structure. The details can be found in our publication
[22], as multiple additional chapters would have been beyond the scope of this
work.
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