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Abstract

Numerical models are essential tools to study the underlying drivers of the climate,
although many errors are currently present in realistic models, due to the lack of knowl-
edge of some physical mechanisms and the limitations imposed by the numerics. Since
it is not always possible to determine the relations between cause and effect, it is use-
ful to use simplified models, for which the restrictions due to computational time are
much less influential and the dynamics is better understood. In this thesis I dealt with
the issue of the numerical truncation of the resolved scales. Whenever the size of the
numerical grid box and of the numerical time step are set, phenomena evolving in a
smaller physical space or in a shorter time window cannot be reproduced by the nu-
merics. These are called sub-grid processes. Since the various atmospheric phenomena
interact nonlinearly with each other, the position of the numerical cut strongly influ-
ences the model outcomes. In particular the energy of the small unresolved scales can
no longer be backscattered into the large resolved scales and there is a depletion of
energy on the resolved modes. In order to reduce the error due to the numerical trun-
cation, parameterizations representing the sub-grid scales are being introduced into the
models.

I developed an energy conserving stochastic parameterization in the framework of the
2-layer Quasi-Geostrophic (QG) model. To some extent this can be considered as a real-
istic model of the atmosphere in the mid-latitudes, but it does not demand prohibitive
amounts of computational time. Hence it is a perfect test bed to analyze how to define
and structure the parameterization in order to include the effect of the sub-grid pro-
cesses and reduce the numerical error. In particular I ascertained that the projection
operator approach outlined by Frank and Gottwald (2013) can be applied also in case of
high dimensional systems. Furthermore the importance of the noise covariance struc-
ture within a Eulerian framework has been emphasized. In this setup it is essential to
define a dynamically consistent spatial correlation structure for the sub-grid processes in
order to preserve important statistical properties. For the definition of such a structure
I used tools from statistical analysis and dynamical systems theory. The former detects
patterns with long-lasting validity, while the modes identified by the latter need to be
regularly updated. The comparison between the two revealed that the use of climatic
patterns has larger uncertainties, and the individual ensemble members depart from
each other. On the other hand a dynamically adapted noise covariance is able to keep
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track of the large scale movements while introducing the effect of the sub-grid scales.
The main outcome of this thesis is a new method for the construction of the noise covari-
ance, with improved performances with respect to the currently most adopted method
in the literature.



Zusammenfassung

Numerische Modelle sind unerlässliche Instrumente für die Untersuchung des Klima-
systems, obwohl sogar realistische Klimamodellen immer noch viele Fehler beinhalten,
einerseits wegen mangelnder Kenntnisse bestimmter physikalischen Mechanismen und
andererseits wegen numerischer Begrenzungen. Da die Verbindung zwischen Ursache
und Wirkung nicht immer bestimmt werden kann, ist es nützlich, vereinfachte Modelle
zu verwenden. Solche Modelle werden durch die Begrenzungen aufgrund der Rechen-
zeit viel weniger beeinflusst und die Dynamik des simulierten Systems kann besser
verstanden werden. In meiner Doktorarbeit beschäftigte ich mich mit dem Thema der
numerischen Auflösung der simulierten Skalen. Wenn die Größe des numerischen Git-
ters und des Zeitschritts festgelegt sind, können Phänomene, die sich in einem kleine-
ren physikalischen Raum oder in einem kürzeren Zeitfenster entwickeln, nicht durch
die Numerik reproduziert werden. Diese Prozesse werden als subskalige Prozesse be-
zeichnet. Die numerische Auflösung beeinflusst die Modellergebnisse stark, weil die
verschiedenen atmosphärischen Phänomene nichtlinear miteinander interagieren. Ins-
besondere kann die Energie der kleinen unaufgelösten Skalen nicht mehr in die großen
aufgelösten Skalen zurückgestreut werden, und ein Teil der Energie der aufgelösten
Skalen verschwindet. Um die Ungenauigkeit aufgrund der numerischen Auflösung zu
verringern, werden die subskalige Prozesse in den Modellen parametrisiert.

Ich habe eine energieerhaltende stochastische Parametrisierung für ein quasi-geostrophisches
(QG) Zwei-Schichten-Modell entwickelt. Dieses Modell kann zu einem gewissen Grad
als realistisches Atmosphärenmodell für die mittleren Breiten betrachtet werden, erfor-
dert jedoch keine unerschwinglichen Mengen an Rechenzeit. Daher ist es ein perfektes
Instrument, um die Struktur der Parametrisierung zu überprüfen, um den Effekt der
subskaligen Prozesse wiederzugeben, um die numerische Ungenauigkeit zu verringern.
Insbesondere habe ich festgestellt, dass der von Frank and Gottwald (2013) beschriebe-
ne, auf einen Projektionsoperator basierende, Ansatz auch bei hochdimensionalen Syste-
men angewendet werden kann. Darüber hinaus wurde die Bedeutung der Struktur der
Rauschkovarianz aufgrund der Eulerschen Betrachtung hervorgehoben. In dieser An-
ordnung ist es wichtig, eine dynamisch konsitente räumliche Korrelationsstruktur für
die subskaligen Prozesse zu definieren, um wichtige statistische Eigenschaften zu erhal-
ten. Für die Definition einer solchen Struktur verwendete ich Methoden der statistischen
Analyse und der Theorie der dynamischen Systeme. Während die Erste für die Identi-
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fizierung langlebiger Muster verwendet werden kann, die Moden der Zweiten müssen
regelmäßig aktualisiert werden. Der Vergleich der beiden Methoden ergab einerseits,
dass die Verwendung von klimatischen Mustern größere Fehler zeigt und die einzelnen
Ensemblemitglieder voneinander abweichen. Andererseits kann eine dynamisch ange-
passte Rauschkovarianz sowohl die großskaligen Bewegungen als auch den Effekt der
subskaligen Prozesse wiedergeben.
Das Hauptergebnis dieser Dissertation ist eine neue Methode für die Entwicklung der
Rauschkovarianz, die eine verbesserte Leistung im Vergleich zu der derzeit am häufigsten
verwendeten Methode in der Literatur zeigt.
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1 Introduction

The Earth climate system is driven by the solar radiation. To prevent the temperature
of the planet from continuously increasing, the net solar energy absorbed by the at-
mosphere and the earth must equal in the mean the infrared energy radiated back to
space by the planet. Although the annual averaged solar heating is strongly dependent
on the latitude, with a maximum at the equator and minima at the poles, the latitude
dependency of the outgoing infrared radiation is very weak. As a consequence there is
a differential heating due to a radiation surplus at the equator and a radiation deficit
in the polar region. This differential heating warms the equatorial atmosphere rela-
tive to higher latitudes and creates a pole-to-equator temperature gradient. The latter
produces available potential energy, and enables processes, e.g. winds and convection,
with the aim of transporting heat poleward, in order to balance the radiation deficit
until the pole-to-equator gradient ceases to exist. At the same time, these phenomena
convert potential energy into kinetic energy, thereby maintaining the kinetic energy of
the atmosphere against the effects of frictional dissipation Holton and Hakim (2012).

This is a basic mechanism that every climate model, also known as general circulation
model (GCM), should resolve in order to correctly reproduce also the other dynamical
mechanisms. Computationally this is a great challenge. As a matter of fact the discrete
equivalent of a continuous system does not preserve, in general, the same properties.
This means that while the continuous system is energy conserving, this might not be
the case for its discrete counterpart. Arakawa (1966) provides an illustrative example for
the case of the Jacobian operator and its discrete formulations. Therefore it is crucial for
the models to correctly get the energy budget, i.e. the net flow of energy into and out
of the Earth system, particularly in the context of global warming and climate change.
Moreover whenever a continuous multi-scale system, as the atmosphere and the oceans
(see Figure 1.1 for a scheme of the different spatial and temporal ranges covered by
phenomena contributing to the atmospheric dynamics), is translated into a discrete nu-
merical model, a truncation due to the size of the spatial grid and of the time step is
introduced. Hence any dynamical mechanism developing in a physical space smaller
than the chosen grid box, or in a time frame smaller than the selected time step, is not
captured by the numerical model. This induces errors into the model dynamics, which
grow with the size of the spatial grid and of the time step. Because of these and other
issues, GCMs are currently not able to reproduce correctly all the different dynamics
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Figure 1.1: Spatial and temporal scales of typical atmospheric processes. Figure taken
from Cullen and Brown (2009).

involved in these complex systems.

One way to improve the numerical models is to include the effect of the sub-grid scales,
i.e. those processes not resolved by the model due to the numerical truncation, on the
resolved scales. It is generally assumed that the former develop much faster than the
latter, see also Figure 1.1. Hence their dynamics at t = tn + ∆t, where tn denotes an
instant in time and ∆t is the time step of the numerical model, is uncorrelated with
respect to their state at t = tn. This is a fundamental assumption that allows them to be
represented by means of stochastic processes, as first suggested by Hasselmann (1976).

In my thesis I further extend and analyze the method proposed by Frank and Gottwald
(2013) to parametrize the sub-grid processes through a stochastic formulation which
conserves the total energy of the stochastic system. They validated their formulation on
a 4-dimensional toy model of the atmosphere, but it is unclear whether this formulation
could be implemented also in case of more complex models. In particular I address the
following research questions:

1. can the projection operator approach, outlined by Frank and Gottwald (2013), be
employed also in case of high dimensional systems?

2. how should the noise covariance be defined such that it is dynamically consistent
and representative of the sub-grid processes?

2



1 Introduction

3. Vannitsem (2017) showed that, in case of spectral models, the error dynamics is
dependent on the scale where it is introduced; is it possible to choose the noise
scale also in case of grid point models?

4. how much do a priori assumptions on the noise covariance affect the outcomes of
the numerical model?

The first two research questions are addressed in PI, while the last two are answered in
PII. Furthermore PII proposes an alternative method for the noise covariance definition
and compares it to the most often used procedure in the context of stochastic parame-
terizations for climate models. Before giving a summary about the setups and the main
findings of the two papers, I briefly motivate why these questions need to be addressed.
In particular I will discuss from the point of view of numerical analysis and modeling.

1.1 Numerical modeling

Numerical models can be divided into two main categories: grid point and spectral
models. In what follows I give a short overview over the basic aspects and differences
between these two approaches. More details about the underlying functional analysis
as well as numerical analysis can be found, for instance, in Quarteroni (2017).

Let us consider a general partial differential equation (PDE) in the d+ 1 independent
variables x = (x1, . . . , xd)T and t

P(u,g) =
(

x, t,u,
∂u

∂t
,
∂u

∂x1
, . . . ,

∂u

∂xd
, . . . ,

∂p1+...+pd+ptu

∂x
p1
1 . . .∂xpd

d ∂t
pt

,g
)

= 0 , (1.1)

where u denotes the unknown function in the space variable x and in the time variable
t, g is the set of data on which the PDE depends, and p1, . . . ,pd,pt ∈ N. In order to
convert equation (1.1) into a numerical model, initial and boundary conditions must
be defined. Once this is done, the spatial domain can be approximated by means of
a grid, and the modeler can decide to employ either a grid point based or a spectral
discretization of the continuous equations.

In case of a grid point model the solution u is represented by its value at the grid points.
The system is solved for each point of the grid and derivatives are computed through
an approximation by means of Taylor expansions of

∂u

∂t
= lim

h→0

u(t+ h) − u(t)

h
,

∂u

∂xi
= lim

h→0

u(xi + h) − u(xi)

h
i ∈ {1, . . . ,d} ,
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1.2 The governing equations and the CFL condition

given that the regularity conditions are satisfied. In the numerical model h is strictly
bigger than zero and it would represent either the distance between two points in the ith

coordinate, or the time step in case of the time derivative. This determines a possible
source of errors in the model, which can be reduced either by considering more grid
points and higher order terms in the Taylor expansions, or by decreasing h and hence
increasing the total number of grid points and the amount of computations.

Spectral models instead use a set of basis functions in Rd, e.g. spectral harmonics, span-
ning the phase space, i.e. a space where all possible solutions are represented Strogatz
(1994), and the field u is written as a linear combination of these basis functions. Spatial
derivatives are easy to compute since the derivatives of the basis functions are known,
while temporal derivatives are computed as above. The model resolution is increased
by considering a larger set of basis functions. In this framework the computations are
done both in phase space and on the grid domain, since local processes must be com-
puted in the real space. Hence a lot of computational time is required to transform the
variables of interest from one space to the other. This is a significant limitation in case
of multi-scale systems, like the ocean and the atmosphere, with many local processes.

Given the huge variety of spatial and temporal resolutions of the numerous phenom-
ena interacting one with each other in the ocean or in the atmosphere (see Figure 1.1),
most GCMs are grid point based. Despite the difficulties in approximating the spatial
derivatives, this framework allows an easy inclusion of local processes, and hence of
most physical parameterizations.

1.2 The governing equations and the CFL condition

The water in the oceans and the air in the atmosphere are viscous fluids, whose motion
in a rotating framework is described by the Navier-Stokes equations

∂ρ

∂t
+∇ · (ρu) = 0 (1.2a)

∂u
∂t

+ (u · ∇)u + 2Ω× u = −
∇p
ρ

+ ν∇2u (1.2b)

where t stands for time, ρ for the fluid density, u is the three-dimensional fluid velocity,
Ω the three-dimensional angular velocity, p represents pressure and ν the kinematic vis-
cosity. ∇ and ∇2 denote the gradient and the Laplacian operators respectively. Equation
(1.2a) is derived by imposing the conservation of mass, which is by definition conserved
in time; while equation (1.2b) describes the conservation of momentum, in analogy
with the second law of Newton Vallis (2006); Badin and Crisciani (2018). Together with
an equation for the energy of the system, equations 1.2 are often referred as primitive
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1 Introduction

equations. If we focus on equation (1.2b), we can see that it is a set of three non-linear
hyperbolic balance laws, whose non-linearity is due to the advection term u · ∇u.

Many simplifying assumptions can be formulated and applied to the Navier-Stokes
equations. For instance in case of water it can be assumed that its density does not
change, i.e. it is incompressible, hence equation (1.2a) simplifies into

∇ · u = 0 ,

or, in case of a static fluid or with small vertical accelerations compared to gravity, the
momentum equation for the vertical coordinate can be approximated by the hydrostatic
balance relation:

∂p

∂z
= −ρg ,

where z denotes the vertical coordinate and g the gravitational force. Scaling analysis on
the magnitude of the physical quantities involved in system (1.2) can also be performed
leading, for example, to the planetary geostrophic equations. In this framework the
Rossby number

Ro =
U

fL

(with U typical velocity scale, L typical horizontal length and f the Coriolis force) and
the deformation radius

Ld =

√
gH

f

(with H typical vertical extent) are defined. When considering scales much larger than
the deformation radius, the time derivative and the advection terms are order Rossby
number smaller (Ro ≈ 0.1 for the atmosphere and Ro ≈ 0.01 for the oceans) than the
Coriolis and pressure terms, hence they can be neglected Vallis (2006). Nonetheless,
aside from this extremely simplified case, the time derivative and the advection terms
cannot be excluded and hence a set of hyperbolic equations has to be solved.

When solving hyperbolic partial differential equations, the numerical analysis of the
time integration schemes reveals a constraint, that the time step needs to satisfy for the
numerical scheme to converge to the exact solution. This constraint is called Courant-
Friedrichs-Lewy (CFL) condition, after the authors who first described it Courant et al.
(1928). In case of one-dimensional dynamics, the CFL condition reads

C =
u∆t

∆x
6 Cmax (1.3)

where C is a dimensionless quantity called the CFL (or simply Courant) number, u is
the magnitude of the one-dimensional velocity, ∆t indicates the time step and ∆x the
length interval. Cmax is an upper bound which varies according to the solver consid-
ered, in particular if it is explicit or implicit. In case of complex models explicit schemes
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1.3 Parameterizations

are generally preferred, since implicit methods require to calculate the inverses of large
matrices (operations which may not be well posed and might require lots of computa-
tions). For explicit schemes, we usually have Cmax = 1. It is easy to see that in case
of global circulation models, in order to consider a wider and wider range of scales,
and hence resolve faster and faster processes, prohibitive small values for ∆t and ∆x
are required. Hence the numerical model would need excessive amounts of time for the
computations, and it would not be useful for practical purposes.

1.3 Parameterizations

Due to its much smaller vertical extent compared to its horizontal area, the atmosphere
can be considered in the limit as a two-dimensional system. In case of two dimensional
turbulence enstrophy transfers from larger to smaller scales, until it may be dissipated
at the eddy level, while energy propagates from smaller to larger scales Vallis (2006). In
Figure 1.2 a scheme of this mechanism is reported. As briefly mentioned above, in any

Figure 1.2: Plot of the energy and enstrophy transfer for two-dimensional turbulence.
The energy supplied at some rate ε is transferred to large scales, whereas
the enstrophy supplied at some rate η is transferred to small scales, where it
may be dissipated by viscosity. Figure taken from Vallis (2006).

GCM there is a numerical truncation to the scale of resolved phenomena. This trun-
cation interrupts the energy and enstrophy cascades, leading to a pile up of enstrophy
at the truncation level and preventing the energy to transfer back into the large scales.
In particular the growth of enstrophy at the truncation scale makes the model unstable
and more likely to blow up in finite time. As a consequence enstrophy has to be dissi-
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1 Introduction

pated also at larger scales when making use of coarse resolutions. This leads also to an
increased dissipation of energy Danilov et al. (2019). Therefore, due to the limited com-
putational capabilities, it is of fundamental importance to model the sub-grid processes
in an energetically consistent fashion.

As briefly mentioned above, stochastic processes are a useful tool to parameterize, i.e.
represent in terms of the resolved scales, the sub-grid processes. Thanks to the difference
in the temporal evolution between the slow resolved processes and the fast unresolved
scales, the latter can be regarded as noise with respect to the former. In fact the time
step in numerical models is tailored to resolve the slow modes, while in the same time
interval the fast sub-grid processes fully evolve and decorrelate; see Figure 1.3. There

Figure 1.3: Scheme of the different evolution times for slow and fast phenomena. The
evolution time scale of the small scales is much faster than the one of the large
scales, hence in one time step of the large scales, there are many smaller time
steps for the fast scales.

are several advantages in using stochastic parameterizations; the most important are:
gain in computational time compared to simulations resolved on a finer grid, reduction
of model errors, and systematic representation of uncertainties and model errors Palmer
et al. (2009); Berner et al. (2017). On the other hand, the introduction of extra terms into
the equations of motions might break the symmetries and the conservation laws of the
system, and hence also of the numerical model.

Since the 1970s much research on the topic has been carried out. Examples of some of
the most important outcomes are given by the works of Mémin (2014) and Holm (2015),
who derived stochastic formulations of the Navier-Stokes equations conserving either
the kinetic energy or the Kelvin circulation theorem, respectively. Although these works
have great potential, they also suffer from the numerical restrictions. Moreover in order
to include them in current GCMs, the models dynamical core might have to be rewritten.
Hence detailed analyses on their pros and cons are required. Other parameterizations
with a more straightforward numerical implementation, also in case of more complex
models, and with different purposes have been developed too. The range of phenomena
that need to be parametrized in the global circulation models is very wide and ranges
from scales proportional to the size of the model grid box to processes occurring at
the molecular level. To give a few examples, some of the parametrized phenomena
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1.4 Stochastic differential equations

are the representation of eddies, e.g. Porta Mana and Zanna (2014); Berloff (2015),
the re-injection of energy into the large scale, e.g. Jansen and Held (2014), and the
description of clouds formation and aggregation, e.g. Dorrestijn et al. (2016). Most of
these parameterizations are either data driven or they look for an analytical expression
describing the dynamics of interest Gottwald et al. (2017). The parameterization I used
has been analytically derived such that the total energy of the system is conserved, but
the definition of the noise covariance is data driven, i.e. data analysis techniques have
been used to detect and approximate the main modes of motion, which have in turn
been used to construct the noise covariance.

1.4 Stochastic differential equations

Here I briefly introduce a few basic notions about stochastic differential equations (SDEs)
and their integral interpretation. More details can be found, for instance, in Pavliotis
and Stuart (2008); Gardiner (2009).

Before introducing the integration rules for SDE, I state here the definition of a Brownian
motion, also known as Wiener process:
A 1-dimensional standard Brownian motion W(t) : R+ → R is a real-valued stochastic
process with the following properties:

• W(0) = 0;

• W(t) is continuous;

• W(t) has increments W(t) −W(s) that are independent on non-overlapping inter-
vals. Furthermore, for every t > s > 0 W(t) −W(s) has a Gaussian distribution
with mean 0 and variance t− s;

• a d-dimensional standard Brownian motion W(t) : R+ → Rd is a collection of d
independent 1-dimensional Brownian motions.

I wish to remark that, intuitively, since the variance of a Wiener process scales with time
t, dW scales approximately as

√
dt; see Gardiner (2009) for a rigorous proof.

SDEs can be interpreted by use of two integral forms: Itô and Stratonovich. Let us
consider first the Itô SDE for z(t) : R+ → Z ⊆ Rd

dz

dt
= γ(z) + σ(z)

dW

dt
, z(0) = z0 , (1.4)

with γ : Z → Rd a smooth vector valued function, W(t) a standard m-dimensional
Brownian motion, and σ : Z→ Rd×m a smooth matrix-valued function. The function γ
can be referred as the drift and σ as the diffusion coefficient. The term dW/dt is thought to
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1 Introduction

represent Gaussian white noise. The latter can informally be thought of as a Gaussian
process with zero mean and correlation δ(t − s)1 (with δ(0) = 1 and δ(t) = 0 other-
wise, and 1 identity function). Such a process exists only as a distribution, thus the
interpretation of (1.4) is as an integral equation for z(t)

z(t) = z0 +

∫t
0
γ(z(s))ds+

∫t
0
σ(z(s))dW(s) . (1.5)

For (1.5) to have a meaning, we need to define the stochastic integral against dW(s). The
Itô interpretation of

I(t) =

∫t
0
f(s)dW(s)

is defined as

I(t) := lim
K→∞

K−1∑
k=1

f(tk−1) (W(tk) −W(tk−1)) , (1.6)

where tk = k∆t and K∆t = t. The Stratonovich integral instead is determined by

Istrat(t) := lim
K→∞

K−1∑
k=1

1
2
(f(tk−1) + f(tk)) (W(tk) −W(tk−1)) , (1.7)

with tk and K∆t as above. Note that in case of Itô’s integral the function f is evaluated
only at the left end of each interval [tk−1, tk], which satisfies the martingale property,
i.e. given all prior events the expectation value of future stochastic events equals the
present value. In contrast, the Stratonovich approach evaluates f at both endpoints,
which abandons the martingale property and maintains the usual rules of calculus Moon
and Wettlaufer (2014). When using the Stratonovich interpretation, the resulting integral
form is written as

Istrat(t) =

∫t
0
f(s) ◦ dW(s) .

Since a Brownian motion does not have bounded variations, the limits (1.6) and (1.7)
differ. However when f and W are correlated through an SDE, as in (1.4), a formula
exists to convert between them. It can be shown that the solution of the Stratonovich
SDE

dz

dt
= γ(z) + σ(z) ◦ dW

dt
, z(0) = z0 ,

satisfies also the following Itô SDE:

dz

dt
= γ(z) +

1
2
∇ ·
(
σ(z)σ(z)T

)
−

1
2
σ(z)∇ ·

(
σ(z)T

)
+ σ(z)

dW

dt
, z(0) = z0 .

In general, it is easier to characterize the class of integrands for which the Itô integral
can be defined. Hence it is also the most often used in applications. Lastly, under some
regularity conditions on the the drift and the diffusion coefficients, and in case of an
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1.4 Stochastic differential equations

initial condition z0 independent of the Brownian motion, it can be proved that equation
(1.4) has a unique solution z(t) with

E

[∫T
0
|z(t)|2dt

]
<∞ ∀T <∞ ,

where E denotes the expectation operator.
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2 Summary of papers

Paper I

An important aspect of a parameterization is its applicability. In fact, parameterizations
giving excellent results but only in the cases of few simplified models might not be as
useful as other parameterizations with less good outcomes but much wider applicabil-
ity. Following this line of though, the objective in PI is to extend the projection operator
approach outlined in Frank and Gottwald (2013) to high dimensional system and ana-
lyze the issues related to its numerical implementation. The equations of a stochastic
energy conserving 2-layer Quasi-Geostrophic model with no external forcing and damp-
ing have been derived and turned into a grid-point based numerical model. The results
show that the choice of using a Eulerian, instead of Lagrangian, description affects also
the assumptions that could be done on the noise covariance matrix. As a matter of fact
in this setup the use of independent and identically distributed noise leads to unphys-
ical results, while the adoption of a spatial correlation structure, determined by means
of Empirical Orthogonal Functions (EOFs), retains important statistical properties and
improves the eddy length. Finally the total energy of the system is conserved with fluc-
tuations of less than 1% of the total energy, and this level of accuracy is not affected by
the introduction of the noise.

Paper II

As a consequence of the results of PI, the focus of PII is on the influence of the defini-
tion of the noise covariance matrix on the dynamics of the system. This aspect is here
further investigated by analyzing the outcomes of the forced and damped 2-layer QG
model when either EOF or Dynamic Mode Decomposition (DMD) are used to deter-
mine the noise covariance. While EOF focuses on the variance of the field, DMD is a
data driven procedure for the approximation of the Koopman operator, which encodes
the dynamics at a specific time. The main practical difference is that EOF looks at the
statistics of the dynamics, and hence requires very long time series and finds statistical
climatic patterns. On the other hand DMD considers much shorter time intervals, hence
its modes do not have long lasting validity and they should be periodically recomputed.
The patterns defined by the two techniques are similar, but also significantly different.

11



The comparison revealed that DMD is able to follow the meridional shift of the jet,
while the use of the EOF eigenvectors for the definition of the noise covariance does not
have as accurate performances. Moreover the uncertainties grow faster in case of a con-
stant covariance stencil hence, particularly in case of long run simulations, dynamically
adapted noise covariances should be adopted.

12



3 Paper I

This chapter consists of the paper Numerical Development and Evaluation of an Energy Con-
serving Conceptual Stochastic Climate Model, by myself and my supervisor, published on
the journal Mathematics for Climate and Weather Forecasting. The journal is open ac-
cess and the paper can be found at the following link:
https://www.degruyter.com/view/j/mcwf.2019.5.issue-1/mcwf-2019-0004/mcwf-2019-0004.xml
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Abstract: In this study we aim to present the successful development of an energy conserving conceptual
stochastic climate model based on the inviscid 2-layer Quasi-Geostrophic (QG) equations. The stochastic
termshave been systematically derived and introduced in such away that the total energy is conserved. In this
proof of concept studywe give particular emphasis to the numerical aspects of energy conservation in a high-
dimensional complex stochastic systemandwe analyzewhat kind of assumptions regarding the noise should
be considered in order to obtain physical meaningful results. Our results show that the stochastic model con-
serves energy to an accuracy of about 0.5% of the total energy; this level of accuracy is not a�ected by the
introduction of the noise, but is mainly due to the level of accuracy of the deterministic discretization of the
QG model. Furthermore, our results demonstrate that spatially correlated noise is necessary for the conser-
vation of energy and the preservation of important statistical properties, while using spatially uncorrelated
noise violates energy conservation and gives unphysical results. A dynamically consistent spatial covariance
structure is determined through Empirical Orthogonal Functions (EOFs). We �nd that only a small number
of EOFs is needed to get good results with respect to energy conservation, autocorrelation functions, PDFs
and eddy length scale when comparing a deterministic control simulation on a 512 ×512 grid to a stochastic
simulation on a 128 × 128 grid. Our stochastic approach has the potential to seamlessly be implemented in
comprehensive weather and climate prediction models.
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1 Introduction
The dynamics of the atmosphere and the oceans are by nature complex. Processes with di�erent time and
length scales interact with each other a�ecting the system as a whole. While climate and ocean models have
considerably improved over the last few decades, we still cannot resolve all important physical scales and
processes, see for instance [20, 6, 22]. The discretization of the continuous governing equations of motion
is limited by the model resolution, which determines the size of the smallest resolvable scale. Despite the
continued increase of computer power and, thus, of resolution, there are stillmany important processes in the
atmosphere and in the oceans that cannot be explicitly resolved. These include turbulentmotionswith scales
ranging froma few centimeters to the size of themodel grid box, aswell as processes that occur at amolecular
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scale, like condensation and evaporation. Anynumerical forecaster ormodeller has tomake adecision, based
on the targeted objectives, regarding the spatial and temporal scales to resolve. As a consequence of this
decision, each numerical scheme inevitably fails to resolve subgrid-scale processes.

These unresolved processes and scales cause many of the observed di�erences between models and ob-
servations. In order to represent these unresolvedprocesses, so-calledparameterizations are necessarywhich
take into account the in�uence that the unresolved have on the resolved processes, if they would be resolved
in high-resolution simulations [20]. Most parameterizations, however, are damping and do not take account
of the energy andmomentum �uxes from the unresolved to the resolved scales [34, 57]. This is a likely source
of many of the observed biases in climate and oceanmodels. Without the added dissipation, however, energy
and enstrophy would accumulate at the truncation scale and lead to a blow up in �nite time. Hence, it is
of fundamental importance to �nd systematic ways to parameterize the unresolved scales and processes of
models, and to improve the model performance and reduce the model biases at coarser resolutions.

As suggested already in 1976 byHasselmann [31], fastwaves canbe considered as noisewith respect to the
slowly evolving large-scale modes and, therefore, can be parameterized by stochastic processes [23]. Hence,
to ameliorate this problem of too large damping, stochastic parameterization schemes have been developed
(see recent reviews [20, 6, 22, 27]). There are several advantages in using stochastic parameterizations; the
most important are: gain in computational time compared to higher resolved simulations; reduction ofmodel
errors and systematic representation of uncertainties and model errors. Most operational stochastic parame-
terization schemes are rather ad hoc developments [7] and do not conserve energy or momentum. As a con-
sequence, current schemes have the disadvantage of the forfeiture of conservation laws and a likely loss of
important symmetries in the model equations. For climate simulations conservation properties are of impor-
tance because they are leading to stable and realistic climate simulations, and should be considered also for
stochastic parameterizations, not only for stability reasons, but also to respect the underlying dynamics of
geophysical �uid �ows.

From a mathematical perspective, there has been a growing interest over the last few decades in �nding
appropriate techniques to develop systematic methods to accurately and e�ciently represent fast variables
in multi-scale systems. Much fundamental work has already been done, e.g. Mémin [37] derived energy con-
serving geophysical �uid equations assuming that the velocity can be written as a mean state plus some
perturbations, while Holm [32] used stochastic variational principles to obtain new stochastic �uid equa-
tions conserving helicity and the Kelvin circulation theorem. Numerical models following these theoretical
approaches have been developed and show good performance and improved results with respect to the de-
terministic counterpart at the same resolution, see for example [51, 52] for numerical implementations and
results of [37] and [12, 11] for applications of [32].

Furthermore, Majda, Timofeyev and Vanden-Eijnden [43, 42, 44, 39, 38] developed a systematic strategy
for stochastic mode reduction starting from the assumption that the explicit nonlinear self-interaction of the
fastest scales involved can be represented by a linear stochastic operator. This procedure is mathematically
justi�ed only for large time scale separation but showed good performances also in case of a less pronounced
time scale separation. For its application to more complex atmospheric models see also [26, 19, 18, 50, 41].
A less theoretical, but still e�cient, approach is given by the stochastic kinetic energy backscatter scheme
(SKEBS) which is often used to represent model uncertainty arising from unresolved subgrid-scale processes
and their interactions with larger scales [56, 5, 22, 47, 21]. Connected to the idea of backscatter, di�erent de-
terministic and stochastic parameterizations aiming at representing the upscale turbulent cascades in eddy-
permitting simulations have been developed. Among others, noticeable examples are given by [33, 49, 62, 28,
15], which also showed that the stochastic backscatter is, in general, a more e�cient eddy parameterization
than its deterministic counterpart.

In this paper we systematically further develop the projector approach outlined by Frank and Gottwald
[16]. Here the stochastic noise is projected onto the energy manifold. This approach has the main advantage
that it can be straight forwardly implemented in existing models while the above approaches [37, 32, 43] de-
rive new equations of motions which are harder to implement in already existing and operational models.
Frank and Gottwald [16] tested their scheme with a 4-dimensional toy-model for the large-scale dynamics of
the atmosphere by means of a Lagrangian description of the dynamics. Here instead we apply it to a high-
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dimensional conceptual climate model, i.e. the inviscid 2-layer QG model, in a Eulerian framework. The pur-
pose of our study is a proof of concept whether this scheme can also be applied to high-dimensional models.
Thus, themain research questions we aim to address in this study is: (i) Canwe accurately conserve energy in
a high-dimensional QGmodel? and (ii)What conditions dowe need to impose on the spatial noise covariance
matrix for this? Hence, in this work we focus on the technical aspects of this approach, analyzing potential
issues due to the discretization of the continuous equations or to the numerical implementation in general.
With this intention, we choose to apply this projection operator scheme to an energy conserving QGmodel as
a hard numerical test case.While our particular set upmight not seem interesting from a geophysical �uid dy-
namics point of view, we still consider it numerically challenging and hence a valuable benchmark in testing
the numerical aspects and accuracy of our stochastic system in a high-dimensional geophysical model.

The remainder of this paper is organized as follows: in Section 2 we present the inviscid 2-layer energy
conserving QG model both in its deterministic and stochastic formulations. Details on the numerics, like
the choice of the numerical solvers and the de�nition of the spatio-temporal noise structure are provided
in Section 3. Section 4 displays and discusses the outcomes of our stochastic model experiments. Finally in
Section 5, we give a brief summary of our �ndings and outlook of future research directions.

2 The 2-Layer QG Model

2.1 The deterministic equations

As mentioned above, we start from the non-dimensional inviscid 2-layer QG equations presented in [59] on a
β-plane with double-periodic boundary conditions

∂qB
∂t = −J(ψB , qB) − J(ψT , qT) , (1a)

∂qT
∂t = −J(ψT , qB) − J(ψB , qT) , (1b)

qB = ∇2ψB + βy , (2a)
qT = ∇2ψT − k2

dψT , (2b)

where qB = qB(x, t), ψB = ψB(x, t) and qT = qT(x, t), ψT = ψT(x, t) represent, respectively, potential vorticity
(PV) and streamfunction of the barotropic and baroclinic mode on the horizontal plane x ∈ R2 at time t ∈ R,
∇ is the horizontal gradient,∇2 the Laplacian and J the Jacobian operator

J(A, B) = ∂A
∂x

∂B
∂y − ∂A∂y

∂B
∂x .

Since we employ a non-dimensional description, the domain has been rescaled to a 2π × 2π square. Double
periodic QGmodels on a β-plane have been widely used in theoretical studies [8, 9, 29, 45]. Here we consider
layers of equal thickness and the parameter kd (given by the relation k2

d/2 =
(

2f0/Nh
)2 where N = 1.2 · 10−2

is the Brunt-Väisälä frequency, h the mean depth of the layers and f ≈ f0 + βy the approximate Coriolis term
where f0 = 1 and β = 0.509) determines the strength of the shear between the two layers and hence also the
intensity of the baroclinic instability. For most simulations in this study we are using a deformation radius of
about 0.042 non-dimensional units and, thus, are in an ocean like eddy-permitting regime. In this setting,
one non-dimensional time unit corresponds to roughly 2.5 days.

Since we want to focus on the energy conservation properties of our numerical scheme we do not intro-
duce terms accounting for external forcing or eddy dissipation, and instead consider an initial value problem.
We want to stress, that we want to focus in this study on the numerical and accuracy aspects of energy con-
servation in a stochastic setting and not on geophysical �ow realism (see section 2.2 below).
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The system given by equations (1)-(2) conserves its total energy E and enstrophy Z:

E(qB , qT) = 1
2

∫

A

[
(∇ψB)2 + (∇ψT)2 + k2

dψT
2
]
dA , Z(qB , qT) = 1

2

∫

A

(
q2
B + q2

T

)
dA .

Details about conservation properties and how to derive them can be found in [59].
The Hamiltonian H of the system is given by its total energy, thus it reads

H(qB , qT) = 1
2

∫

A

[
(∇ψB)2 + (∇ψT)2 + k2

dψT
2
]
dA . (3)

It can be shown that

δH = +
∫

A

(
∇ψB · δ∇ψB +∇ψT · δ∇ψT + k2

dψT · δψT
)
dA

= −
∫

A

(
ψB · δ∇2ψB + ψT · δ∇2ψT − ψT · k2

dδψT
)
dA

= −
∫

A

(ψB · δqB + ψT · δqT) dA ,

which implies

∂H
∂qB

= −ψB ,
∂H
∂qT

= −ψT .

For a general review of Hamiltonian mechanics and its application to geophysical �uid dynamics see [2] and
[55]. The following notation will be employed

A : B = aijbij = Tr(ABT) .

2.2 The stochastic formulation

In this sectionwederive a stochastic energy conserving versionof the 2-layerQGequations. In our formulation
we include unresolved fast sub-grid processes by means of a stochastic forcing, modeled as an Ornstein-
Uhlenbeck process, which we assume to act �rst on the baroclinic mode and then, because of the coupling
between the two modes, to a�ect also the slower barotropic mode. For this choice we relate to the idea of
backscatter, where energy goes from the smaller scales back into the larger processes. Therefore, we add a
simple 2-dimensional stochastic �eld only to the fast baroclinic mode. The source terms so introduced would
lead the dynamics to leave the manifold of constant energy on which the deterministic model (1)-(2) evolves.
In order to balance the stochastic �uctuations that would a�ect the aforementioned manifold, we introduce
an auxiliary 2-dimensional stochastic process dYt. This procedure follows the method introduced by Frank
andGottwald in [16],with thedi�erence thatwe consider ahigh-dimensional system in aEulerian framework,
and not a 4-dimensional system with a Lagrangian description. The following set of equations is therefore
proposed:

dqB =
(
−J(ψB , qB) − J(ψT , qT)

)
dt , (4a)

dqT =
(
−J(ψT , qB) − J(ψB , qT)

)
dt − ΓqTdt + ΣdWt + dYt , (4b)

dYt = StdWt + Btdt , (4c)

where dWt denotes a 2-dimensional Wiener process, Γ, Σ, St ∈ R2×2 and Bt ∈ R2. The choice of adding the
stochastic terms on the equation of the baroclinic PV not only reconnects to the concept of backscatter, but
allows potentially also the application of stochastic mode reduction, as Frank and Gottwald did in their work
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[16]. For instance, one could derive a reduced order stochastic model for just the barotropic modes [43, 42,
44, 19, 18].

Instead of dealing with two di�erent stochastic processes, we want to write St and Bt as functions of Σ
and Γ. For that purpose, we write the increment of H as a sum of two parts, a deterministic part µH including
all the terms multiplied by dt, and a stochastic part σH containing those with the Wiener process. By Ito’s
theorem we have

dH = ∂H
∂qB

· dqB + ∂H
∂qT

· dqT + 1
2

∂2H
∂qT∂qT

: dqTdqTT

= − ψB ·
(
−J(ψB , qB) − J(ψT , qT)

)
dt

− ψT ·
(
−J(ψB , qT) − J(ψT , qB) + Bt

)
dt

+
(

1
2

∂2H
∂qT∂qT

: (Σ + St)(Σ + St)T
)
dt

− ψT · (−ΓqT) dt − ψT · (Σ + St) dW
= µHdt + σHdWt ,

where the transposed is denoted by the superscript T , and

µH = ψB ·
(
J(ψB , qB) + J(ψT , qT)

)
+ ψT ·

(
J(ψT , qB) + J(ψB , qT) − Bt

)

+ ψT · ΓqT + 1
2

∂2H
∂qT∂qT

: (Σ + St)(Σ + St)T

= −∇qBH ·
(
J(ψB , qB) + J(ψT , qT)

)
−∇qTH ·

(
J(ψT , qB) + J(ψB , qT)

)

+∇qTH · Bt −∇qTH · ΓqT + 1
2

∂2H
∂qT∂qT

: (Σ + St)(Σ + St)T

(5)

σH = − ψT · (Σ + St)
= ∇qTH · (Σ + St) .

Sincewewant to conserve the total energy, dH has to be zero. Thereforewe impose both µH and σH to be zero.
Following the reasoning outlined in [16], the auxiliary stochastic process dYt shouldnot perturb thedynamics
on the tangent space and should be constructed only to counterbalance those components of the OU process
which are orthogonal to themanifold of constant energy, thuswe de�ne a projection operatorP ∈ R2×2. Since
theWiener process a�ects only the evolution equation of the baroclinic PV, it will be su�cient to project with
respect to the manifold of constant baroclinic energy:

P = I − 1
|∇qTH|2

∇qTH(∇qTH)T

= I − 1
|ψT |2

ψTψTT ,

where I ∈ R2×2 stands for the identity matrix. Since P (∇qTH) = 0, P projects onto the tangent space of the
baroclinic kinetic energy surface. Consequently, we want St and Bt to satisfy

PSt = 0 , PBt = 0 . (6)

From the assignment σH = 0 we can easily determine St. In fact, since ∇qTH is in the kernel of P, imposing
σH = 0 is equivalent to requiring Σ + St = P(Σ + St). Thus, using Eq. (6), we obtain

St = − (I − P) Σ . (7)
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Substituting Eq. (7) into Eq. (5) and considering only the terms arising from the inclusion of the stochastic
processes into the deterministic set of equations (since the deterministic model conserves energy, the other
terms do not contribute to the variation of total energy), we can determine Bt from the requirement µH = 0:

Bt = (I − P) ΓqT + 1
2 |ψT |2

(
∂2H

∂qT∂qT
: PΣΣTP

)
ψT . (8)

Placing Eq. (7) and Eq. (8) into Eq. (4), after some manipulations, we get the following set of equations

dqB =
(
−J(ψB , qB) − J(ψT , qT)

)
dt , (9a)

dqT =
(
−J(ψT , qB) − J(ψB , qT)

)
dt + PΣdWt

−
(
PΓqT −

1
2 |ψT |2

(
∂2H

∂qT∂qT
: PΣΣTP

)
ψT
)
dt . (9b)

Equations (2)-(9) constitute our stochastic energy conserving 2-layerQG system.Adetailed derivation of equa-
tions (8) and (9) is reported in Appendix A. As can be seen, the resulting set of equations contains multiplica-
tive noise and nonlinear damping, due to the speci�c de�nition of the projection operator. Themultiplicative
noise is in fact a correlated additive multiplicative (CAM) noise [38, 53, 17].

3 Numerical implementation
Since we aim to analyze possible applications of this approach to climate and ocean models, which are typ-
ically formulated in terms of �nite volumes or �nite di�erences, we discretize equations (2)-(9) in terms of
�nite di�erences in the framework of a grid-point based code. Our discretization of the QG model is based
on the energy and enstrophy conserving discretization scheme by Arakawa [1]. This scheme ensures that en-
ergy and enstrophy are conserved for all truncations. Especially this scheme does not require any numerical
di�usion or dissipation for numerical stability. This property a�ects the energy and enstrophy cascades by au-
tomatically redistributing the energy and enstrophy at the truncation scales, making the model simulations
unrealistic. However, using this discretization scheme will allow us to focus on the accuracy of the energy
conservation of our stochastic approach.

For the time stepping we employ explicit Runge-Kutta (RK) methods (whose order will be a matter of dis-
cussion in the following section), and we use a Fast Fourier Transform (FFT) to invert the Laplacian operator
and obtain the streamfunctions from the corresponding PV. Since FFT is an exact numerical method and the
Arakawa scheme is designed to conserve energy and enstrophy for any truncation, the only spurious e�ect
on the energy due to the numerics is given by the RK method, which is known to be to a small extent dissi-
pative in time. When dealing with the stochastic terms, we integrate them using either the Euler-Maruyama
or Milstein schemes [48]. Finally, the initial distributions of the barotropic and baroclinic streamfunctions
are generated using a pseudo-random number generator, i.e. no a-priori structure is given as input, and we
de�ne the corresponding PV by equations (2). We do not change the seed when de�ning the initial condition,
thus all simulations at resolution 128 × 128 start from the same initial condition. Once the initial condition
is de�ned, we set a new seed for the noise generator. Even though we do not have any forcing the model does
not settle into a barotropic regime; the baroclinic modes are still active with active barotropic and baroclinic
mode interactions (not shown). Furthermore, the probability density functions of the barotropic-baroclinic
energy transfer terms are symmetric (not shown), suggesting an active interaction between barotropic and
baroclinic modes.
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3.1 Deterministic model

Beforemoving to the stochastic set of equations and related results, we test di�erent orders of accuracy of our
numerical scheme in the implementation of the deterministic 2-layer QGmodel (equations (1)-(2)) in order to
�nd the optimal balance between accuracy and computational time.

In our code, we solve the above evolution equations (1) for the PVs and then we compute the correspond-
ing streamfunctions through equations (2). We use explicit Runge-Kutta 2nd and 4th order methods for the
time integration, Arakawa 2nd and 4th order discretizations of the Jacobian [1] and a Fast Fourier Transform
to invert the Laplacian operator. While performing our tests, we also consider di�erent values of the mean
depth of the �uid h; in particular we consider the cases h = 1, 10, 100. These tests are performed over a
128 × 128 spatial grid with a time step of ∆t = 10−3.

We do not report here all the statistics and energy graphs obtained with the di�erent combinations of
solvers, but show only those motivating our choice to employ RK4 and Arakawa 4th order in the following.
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(a) h = 100; RK2 & Arakawa 2nd order.
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(b) h = 100; RK2 & Arakawa 4th order.
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(c) h = 100; RK4 & Arakawa 4th order.

Figure 1: ACF for the case with h = 100 and di�erent combinations of deterministic numerical solvers. By using the second
order method both for RK and Arakawa schemes, the baroclinic mode and the barotropic PV decorrelate more slowly.
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(c) h = 1; RK4 & Arakawa 4th order.

Figure 2: Total energy graphs with h = 1 and di�erent combinations of deterministic numerical solvers. It can be seen that also
after the initial spin up period, which has been here neglected, energy increases in time when solving with RK2 and 4th order
Arakawa.

Figure 1 shows that the lower order combination of RK2 with Arakawa 2nd order does not reproduce accu-
rately the autocorrelation function (ACF) in the case h = 100 and that just increasing the order of Arakawa’s
discretization is enough to capture correctly the ACF. However, when combinedwith RK2 it does not conserve
energy in the case h = 1 also after the initial spin up period (Fig. 2, where the spin up period has been ne-
glected). More generally, we found that RK4 with Arakawa 4th order is more reliable and that the scenario
with h = 10 has a less discernible spin up period and it is the best reproduced case study with all the con-
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sidered solvers, therefore we decided to employ this higher order numerical implementation and we �xed
h = 10. As a consequence of this choice, the Rossby deformation radius 1/kd is approximately 0.042 and
we are in a ocean-like regime with small eddies. Furthermore, while the energy �uctuates around a mean
value the �uctuations are relatively small; the energy �uctuation amplitude is less than 1% of the total en-
ergy. With the chosen numerical solvers also enstrophy is conserved by the system to a similar accuracy, as
in the continuous scenario (not shown).

3.2 Stochastic equations

As in the deterministic case, we �rst solve the stochastic evolution equations (9) for the PVs and then we get
the corresponding streamfunctions through equations (2). As a consequence of the analyses in the previous
paragraph, we use an explicit RK 4th order method for the time integration, Arakawa 4th order discretization
of the Jacobian [1] and FFT to invert the Laplacian operator. The stochastic terms are integrated using either
the Euler-Maruyama or Milstein schemes [48]. Later we will analyze di�erences in the outcomes due to the
stochastic solver. In the stochastic simulations we employ a 128 × 128 spatial grid with a time step of size
∆t = 10−3. As a consequence ∆x ≈ 0.049 and the model is in the eddy permitting regime.

As we will demonstrate below, for the dynamical consistency between deterministic and stochastic mod-
els it is crucial to consider spatially correlated noise. To demonstrate this, we consider two scenarios: in the
�rst we assume that the noise on each grid point behaves as independent and identically distributed (iid)
random variables, while in the second we allow for correlation between di�erent grid points. In the follow-
ing subsection a more detailed description of how the correlation matrix of the noise is constructed can be
found. Finally, in order to generate the noise, we �rst produce uniformly distributed random numbers using
the Mersenne-Twister algorithm [46], and then we reshape them through the Box-Muller procedure in such
a fashion that they are sampled from a Gaussian distribution with the desired mean and variance, which in
our case is N

(
µ = 0, σ2 = ∆t

)
. We compare the outcomes with a reference solution given by a deterministic

simulation with 512×512 grid points and ∆t = 10−4. For a fair comparison, we project the �ne grid data onto
a grid with the same resolution as for the stochastic simulations.

3.3 Spatial noise structure

For allowing spatial correlations amongdi�erent grid points, we need to determine the elements of thematrix
Σ. We do this using eigenvectors obtained from a dimension reduction technique. Here we employ Empiri-
cal Orthogonal Functions (EOFs) [58]. We derive the EOFs from the high-dimensional deterministic control
simulation.

Once the eigenvectors and the corresponding eigenvalues are computed, we select a number of EOFs and
de�ne Σ as a convex combination of the chosen eigenvectors Ei. Such technique has been applied already
in [25, 24]. A more general linear combination could be used and it would be easy to modify this constraint
in order to attribute a stronger (or weaker) amplitude to the noise. The weights ωi are selected as uniformly
distributed random numbers, i.e.,

Σ =
∑

i
ωiEi ,

∑

i
ωi = 1 , ωi ∼ U{0, 1} ,

where the eigenvectors are matrices with dimensions equal to the grid size. Coe�cients related to the redun-
dant eigenvectors are set to be zero. In view of the fact that the noise is only in the equation of the baroclinic
mode, we use ψT -EOFs computed with respect to the L2 norm using the data of the high resolution run pro-
jected onto the coarser grid. Considering that the weights ωi are chosen randomly in each simulation, no
particular direction is preferred with respect to the others reducing possible biases in the results due to how
the EOFs have been computed.
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4 Results of the stochastic simulations

4.1 Space-time independent noise

For reasons that will become evident later, in this scenario we perform the stochastic integration only with
the Euler-Maruyama scheme. As assessment criteria, we �rst look at the conservation of energy and then at
other statistical properties like the autocorrelation function (ACF) and probability density function (PDF).
Here we consider iid white noise with zero mean and variance equal to the time step. Therefore, the matrices
Σ and Γ can be written as

Σ = σI , Γ = γI

where I ∈ R2×2 stands for the identity matrix and σ, γ ∈ R. We show the results for the case σ = 1 and γ = 1.

4.1.1 Numerical results

In this case, after a positive jump at the beginning of the simulation (because of the forcing, the systemmoves
to the closest stable state, which has a di�erent amount of total energy), energy is conserved (see Figure 3a)
with very small �uctuations in time (see Figure 3b). In fact, when compared to a deterministic run at the
same resolution (see Figure 3c), quite unexpectedly, variations in the total energy graph are smaller in the
stochastic simulation. Still, looking at Figure 3b, it is possible to notice a small decreasing trend suggesting
that the parameterization is damping in the long run which is likely due to the Runge-Kutta scheme, which
is known to be damping for.
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(a) Total energy of the system.
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(b) Total energy anomalies of the system.
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(c) Total energy anomalies of a low reso-
lution deterministic run.

Figure 3: Total energy graph for the 2-layer stochastic QG model, with iid white noise and σ = 1 , γ = 1. After an initial positive
jump, energy is conserved. Graph (c) shows the total energy anomalies of a deterministic run at the same resolution. It can be
noticed that, surprisingly enough, oscillations are smaller in the case of the stochastic system.

A less reassuring result is given by the contour plot of the baroclinic mode. In Figure 4 we show the baro-
clinic streamfunction (but a very similar result can be observed also for the baroclinic PV) at time t = 200
(left) and the plot of the same �eld at the same time given by our reference solution (right). What immediately
stands out is the di�erent pattern presented by the two �gures. Furthermore, at a closer look it can also be
noticed that the di�erent colors in Figure 4a represent di�erences in the order of 10−4 and they become even
smallerwhen looking at the contour plot for later times (not shown),meaning that the �eld ismoving towards
a constant state in space. This explains the smaller amplitude of the �uctuations in the energy graph with
respect to the deterministic scenario, and it is re�ected also in the ACF and in the PDF (see Figures 5-6). The
former displays longer decorrelation times in general and, more speci�cally, the baroclinic streamfunction
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(a) Baroclinic streamfunction. (b) Baroclinic streamfunction: reference solution.

Figure 4: Contour plot for the baroclinic streamfunction given by the stochastic system with iid white noise, σ = 1 , γ = 1 (left)
and by the high resolution deterministic simulation (right). The reader will immediately notice the di�erent patterns displayed
by the two pictures and, at a closer look, that the colors in the left graph represent di�erences in the order of 10−4, which get
even smaller with the developing of the simulation, implying that the �eld is moving towards a constant state in space.

seems to require a longer decorrelation time with respect to the barotropic streamfunction which is in con-
trast with the physics. The latter instead shows no Gaussian distribution for the baroclinic mode and smaller
variance for the barotropic mode.
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(a) Auto-correlation functions.
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(b) Auto-correlation functions: reference solution.

Figure 5: ACF resulting from the stochastic system with iid white noise, σ = 1 , γ = 1 (left) and from the high resolution de-
terministic simulation (right). The stochastic simulation does not well reproduce the ACF of the reference solution but displays
longer decorrelation times.

In their paper [16] Frank and Gottwald used iid noise obtaining conservation of energy and physically
reasonable outcomes. As already stated earlier, they employ a Lagrangian discretization of the system, while
we consider the dynamics from a Eulerian point of view. Since Lagrangian descriptions of motion follow the
trajectories of the single particles, and not the �uid as a whole in a �xed domain, in this frame the main pur-
pose of thenoise is simply to perturb the trajectorywhile remaining on themanifold of constant energy.Hence
any spatial information added to the noise is not strictly necessary. On the other hand, Eulerian descriptions
focus on what happens inside a well-de�ned domain and do not care about the behavior of the single par-
ticles. Thus in this framework spatial iid noise means that each grid point does not feel the in�uence of its
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(a) Probability density functions.
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(b) Probability density functions: reference solution.

Figure 6: PDF rising from the stochastic system with iid white noise, σ = 1 , γ = 1 (left) and from the high resolution determin-
istic simulation (right). The baroclinic mode of the stochastic set of equations does not have a Gaussian distribution. Moreover
the barotropic mode displays less variance.

neighbors, hence the noise would represent phenomena which fully evolve and decorrelate inside the cell;
the gap between the large resolved scales and such small phenomena is too big to be correctly resolved by the
numerics. Therefore it appears crucial to de�ne a spatial structure of the noise in order to characterize how
the noise should behave inside the domain and interact with the deterministic dynamics. The next section
discusses in more detail our results.

4.2 Space-time correlated noise

To ease computations, we neglected the Γ term in equation 9b, i.e. Γ = 0. For both the Euler-Maruyama and
Milstein schemes, we run an ensemble of 40 simulations using a convex combination of the �rst two EOFs to
build the covariancematrix Σ.We tried also combinationswith a di�erent number of EOFs.When considering
up to the �rst 10 EOFs, similar results to those we report here are obtained. With 20 or more EOFs we noted
slightly worse performances of the scheme. Because of the constraint

∑
i ωi = 1, when considering relatively

many EOFs, each of them has a small amplitude and then the patterns contrast with each other resulting in a
not well-de�ned structure. On the other hand, a combination of a smaller number of EOFs can still maintain
the individual patterns while allowing interaction with each other. In what follows, we opted for using only
the �rst two main patterns.

As evaluation criteria, we employ the same analyses as before. Regarding the PDF, we also compute the
�rst and second moments of the centers in order to investigate the ensemble variance. In addition we com-
pare to the reference solution: the total variance and eddy length (computed through space correlations as
presented in [3]).

4.2.1 Energy conservation

In each simulation the total energy �uctuates in time around a constant value. Di�erently from the previous
case, there is no jump to a di�erent stable state at the beginning of the time integration, meaning that our
stochastic system keeps its evolution on the manifold de�ned by the initial condition. In both ensembles, if
we compare the amplitude of the anomalies AAnom with respect to the mean value of the energy µEn, we see
that AAnom is, for most of the running time, around 0.5 % of µEn with spikes no greater than 0.7 %. Wewould
like to point out that, even though for each individual simulation the evolution of the �eld variables is dif-
ferent (and this is shown by the fact that the PDFs of each individual run are centered in di�erent locations),
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the total energy of the system is almost the same at each time step, with di�erences in the order of 10−6, for
each ensemble member. This implies that, starting from the same initial condition the model is exploring
di�erent possible con�gurations available with the de�ned amount of total energy. In Figure 7 we show the
time-evolution of the energy anomalies for an individual Euler-Maruyama (Milstein) ensemble member to-
gether with the total energy anomalies graph of a deterministic simulation at the same resolution. It can be
seen that �uctuations are roughly of the same amplitude for both the deterministic and the stochastic system.
Thus, the energy �uctuations are mainly a result of the deterministic numerical scheme and not of the used
stochastic scheme. This shows that the projection operator works very well in high-dimensional models and
suggests that one should improve the discretization of the deterministic part in order to ameliorate energy
conservation of the stochastic system.
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(a) Euler-Maruyama.
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(b)Milstein.
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(c) Deterministic run.

Figure 7: Total energy anomalies, displayed as a percentage of the mean total energy value, of an individual member of the
Euler-Maruyama (Milstein) ensemble. On the right we also show the total energy anomalies graph for a deterministic run at the
same resolution. The reader can notice that the fluctuations have roughly the same amplitude.

4.2.2 ACF

Every ensemble member shows roughly the same ACF pattern, independent of the stochastic solver. Di�er-
ently from the previous case with iid white noise, in both ensembles we obtain decorrelation times very close
to the reference. The barotropic streamfunction displays a longer decorrelation time with respect to the baro-
clinic streamfunction, suggesting that in future work a stochastic mode reduction might be performed for
eliminating the baroclinic modes and having a stochastic barotropic model as in [43, 42, 44, 19, 18]. In Figure
8 we show the ACF for one stochastic simulation of the Euler-Maruyama (Milstein) ensemble together with
the reference solution.

4.2.3 PDF

In contrast to the case with iid noise, in each run of both ensembles we recover the Gaussian behavior of the
baroclinicmode displayed by the reference solution andmore variance for the barotropic, see Figure 9 for the
PDF graph of an individual Euler-Maruyama (Milstein) ensemble member and the reference solution. On the
other hand, the PDF of an individual stochastic run shows less variance with respect to the reference solution
except for the barotropic streamfunctionwhich, in the comparison, showsmore (this can be noticed in Figure
9). Hence we decided to investigate the variance of the ensemble by looking at the �rst and second moment
of the center of the PDFs of the ensemble members. While we are not too much interested in the exact value
taken by the �rstmoment, due to the chaotic nature of the system,wewould like to point out that, theMilstein
ensemble displays more variance with respect to the Euler-Maruyama scheme. In Table 1 we report the 95%
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(a) Euler-Maruyama.
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(b) Milstein.
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(c) Reference solution.

Figure 8: ACF of a particular Euler-Maruyama (Milstein) ensemble member and reference solution. Both ensembles well catch
and reproduce the ACF shown by the high resolution deterministic simulation.

con�dence interval (CI) of the centers of the PDFs; those related to the Milstein scheme span a wider range
of values. We would like to remind the reader that the Euler-Maruyama and Milstein schemes have the same
order of weak convergence (i.e. it is 1 for both schemes), but di�erent order of strong convergence (0.5 for
Euler-Maruyama and 1 for Milstein). Hence, since we are considering long time simulations, statistical prop-
erties of the �eld variables are more sensitive to weak convergence, while the evolution of trajectory paths is
more sensitive to strong convergence. This explains why both ensembles catch the right shape of the PDF but
at the same time the Milstein ensemble displays more variance. It could be argued that 0.5 might not be a
meaningful di�erence; on the other side, high order stochastic integrationmethods include complicated cor-
recting termswhichmight be hard to implement, see for instance [54] for an example of necessary conditions
that have to be satis�ed by a class of stochastic integration methods with (strong) order 1.5. Hence here we
tried to analyze two of the most likely employed methods in complex climate models. We also checked the
total variance of the stochastic ensemble and compared to a deterministic run at the same resolution and to
the high resolution deterministic simulation. Unfortunately our stochastic parameterization is still not able
to mend for the variance lost with the coarsening of the grid (see Table 1).
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(a) Euler-Maruyama.
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(b) Milstein.
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(c) Reference solution.

Figure 9: PDF of an individual member of Euler-Maruyama (Milstein) ensemble and reference solution. The careful reader might
notice that an individual ensemble run displays less variance with respect to reference for almost all �eld variables, inducing
us to investigate the ensemble variance (see Table 1).
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4.2.4 Eddy length

When looking at the contour plots for the baroclinic (but also the barotropic) mode, we can see that in this
scenario the stochastic simulations reproduce a similar pattern as for the case of the reference solution (see
Figure 10 for a representation of the barotropic and baroclinic streamfunctions in the di�erent setups). In
order to have a more objective comparison criterion, we computed the eddy length for the two streamfunc-
tions as a measure of the correlation among di�erent grid points at a �xed time and looked at the e-folding
scale; see for instance [3] for a more detailed description. In Table 1 we report the outcomes for the reference
solution, a coarse deterministic simulation, Euler-Maruyama and Milstein ensemble. When considering the
baroclinic mode, our stochastic parameterization does not improve the eddy length. In both ensembles it is
about half of the baroclinic eddy length displayed by the high resolution simulation, remaining close to the
outcome of a coarse deterministic run (see Table 1). A di�erent conclusion is valid for the barotropic mode.
In fact, in the case of the low resolution deterministic run we get an eddy length of circa 0.524 both in zonal
and meridional direction, while in the stochastic Euler-Maruyama (Milstein) ensemble it can vary between
≈ 0.511 (≈ 0.510) and ≈ 0.570 (≈ 0.560). Comparing these results with the reference solution, we can notice
that we still did not manage to reproduce the high resolution eddy length (≈ 0.714 − 0.716) but we obtained
an improvement of circa 9% with respect to the low resolution deterministic simulation (see Table 1). This
result suggests that the perturbation induced by the noise is still not strong enough, but we are heading in the
right direction. Furthermore, as has already been shown in [60] and references therein, the error dynamics
considerably depends on the speci�c scale at which it is introduced, with a faster growth when located at
small spatial scales. Here the noise structure is built with the �rst two EOFs, hence it can be regarded as a
perturbation on the large spatial scales, which is in good agreement with the improved eddy length for the
slowermode. Nevertheless, as stated in [58], if the �rst EOF can be associatedwith a de�nite physical process,
this is more di�cult already with the second (and even harder for higher-order) EOF because of the orthog-
onality constraint. On the other hand, real-world processes might not have orthogonal patterns. In fact, the
patterns that most e�ciently represent variance do not necessarily have anything to do with the underlying
dynamical structure.

5 Conclusions and perspectives
We described the numerical implementation and evaluation of an energy conserving high-dimensional
stochastic conceptual climate model. Our main focus here is the proof of concept whether the projection
operator approach [16] can be applied to high-dimensional complex geophysical �ow systems in a Eulerian
setting ([16] developed this approach in a Lagrangian setting for a low-order model). Furthermore we inves-
tigate which assumptions regarding the noise should be considered in order to obtain not only energy con-
servation but also dynamically consistent results. For this purpose we used our QG model without forcing,
dissipation and hyperdi�usion. Even though, the resulting circulations are less realistic when comparedwith
the atmosphere and the oceans, this setup provides an ideal test bed for the numerical evalution of energy
conservation of our numerical scheme.

In their paper, Frank and Gottwald [16] derived an energy conserving stochastic formulation for a 4-
dimensional multi-scale toy model of the atmosphere. In order to preserve the conservation of energy they
projected the noise with respect to the manifold of constant energy in such a fashion that those components
of the noise, which would lead the trajectory to leave this manifold, are eliminated. In this paper we brought
forward this approach and applied it to the high-dimensional 2-layer QG model through its Hamiltonian for-
mulation. With the idea of analyzing the applicability of this procedure, not just to simple models but to a
wider range of models with di�erent degrees of complexity, we discretized the evolving equations in a Eule-
rian framework by means of �nite di�erences, i.e. in a similar setup as most climate and ocean models. We
could also introduce a time-scale separation parameter ε, depending on the di�erent time scales of barotropic
and baroclinic modes, to account for the time scale separation between the twomodes. Even though here we
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(a) Barotropic streamfunction: Euler-
Maruyama.

(b) Barotropic streamfunction: Milstein. (c) Barotropic streamfunction: reference
solution.

(d) Baroclinic streamfunction: Euler-
Maruyama.

(e) Baroclinic streamfunction: Milstein. (f) Baroclinic streamfunction: reference
solution.

Figure 10: Contour plot for the barotropic (top) and baroclinic (bottom) streamfunctions for an individual member of Euler-
Maruyama (Milstein) ensemble and for the reference simulation. The patterns are similar, even though the stochastic simu-
lations still do not have the same eddy length as the high resolution deterministic run (see Table 1).

focused on other issues and did not consider any time scale separation in our numerical simulations, stochas-
tic mode reduction is a possible research direction to be followed.

In particular, we investigated the delicate step from a continuous to a discrete formulation and found
that the numerics can be sensitive to the mean depth of the �uid, and hence chose solvers that reproduce
correctly the properties of the system, e.g. conservation of energy, in the most general scenario. Once this as-
pect had been settled, we analyzed the e�ects on the system dynamics and statistics due to the introduction
of the stochastic process. Mainly we compared the results for two di�erent scenarios: in the �rst, the noise
of each grid point behaves like an iid random variable while, in the second, we considered spatio-temporal
correlations. We found that employing iid noise leads to either that energy is not conserved or to unphysi-
cal results and hence de�ning a spatio-temporal structure is important to respect the underlying dynamics
of geophysical �ows and for the conservation of energy and the preservation of important statistical prop-
erties, e.g. PDF. This is due to the Eulerian nature of our implementation. Frank and Gottwald employed a
Lagrangian description which follows the trajectories of the single elements. Hence in their model the noise
had the unique purpose of perturbing the trajectories while remaining on the manifold of constant energy.
On the other hand, a Eulerian point of view looks at awell-de�ned domain and considers the �uid as awhole.
Therefore in this frame the noise should perturb the dynamics while conserving energy and preserving the
main properties of the �uid.

In the present work a convex combination of the �rst two EOFs, computed on the data of a high resolution
deterministic run, have been used to de�ne the spatio-temporal correlations consistent with the behavior of
the deterministic system; other dimension reduction techniques, such as [4, 10, 14], could be used too. We
did not recover the same amount of variance as in the high resolution simulation, but the eddy length in
the barotropic mode is improved. This suggests that the stochastic perturbations are not strong or spatially
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Table 1: Summary of some of the previously discussed analyses in the cases of, from left to right: the reference solution, a de-
terministic run at the coarse resolution, Euler-Maruyama and Milstein ensembles. In particular we report: location of the center
of the PDF and, in case of the ensembles, its 95% CI, total variance and eddy length (the latter computed only for barotropic
and baroclinic streamfunctions).

Field variable 512 × 512 det. 128 × 128 det. Euler-Maruyama Milstein
Mean
ψB −3.5687 · 10−3 −2.4223 · 10−3 −6.3485 · 10−4 −4.4880 · 10−4

ψT 2.6234 · 10−2 1.987 · 10−2 2.5108 · 10−2 2.4466 · 10−2

qB 1.0412 −5.1523 1.1737 −0.2762
qT −14.6414 −32.4428 −14.9759 −12.0254

95% CI
ψB [−0.0078, 0.0066] [−0.0070, 0.0061]
ψT [0.0212, 0.0290] [0.0199, 0.0291]
qB [−9.5180, 11.8654] [−13.8563, 13.3039]
qT [−28.8209, −1.1308] [−28.0849, 4.0342]

Total variance
ψB 2.6302 · 10−4 3.5852 · 10−4 3.6169 · 10−4 3.6100 · 10−4

ψT 1.6564 · 10−4 1.0931 · 10−4 1.0931 · 10−4 1.0931 · 10−4

qB 1698.6409 830.2853 829.9909 829.9071
qT 1796.2310 1066.7904 1067.1422 1067.1993

Eddy length
ψB zonal 7.1428 · 10−1 5.2422 · 10−1 [0.51124, 0.56958] [0.50976, 0.56011]
ψB merid. 7.1632 · 10−1 5.2406 · 10−1 [0.51151, 0.56854] [0.50994, 0.56006]
ψT zonal 1.4918 · 10−1 7.4597 · 10−2 [0.07452, 0.07459] [0.07451, 0.07459]
ψT merid. 1.4918 · 10−1 7.4577 · 10−2 [0.07451, 0.07460] [0.07451, 0.07460]

coherent enough. Another possible explanation is the lack of temporal memory in our scheme [27]. Memory
terms have been included inmany techniques, such asmulti-level regressionmodels [36, 35, 40, 30], showing
encouraging results. However they might be rather complicated to implement and might lead to unstable
and diverging simulations as reported in [13] in the case of the Wouters and Lucarini parameterization [61].
Investigating the impact of spatial coherence and memory in the noise will be part of our future research.

Two basic arguments are that the constraint
∑

i ωi = 1 for the noise amplitude was arbitrary and it could
be changed in order to attribute a stronger (or weaker) amplitude to the noise; moreover we computed the
EOFs with respect to the Euclidian norm and not to the total energy norm. A more philosophical discussion
regards instead the usage of the EOF technique itself. In fact it is sensible that using the �rst two EOFs im-
proves the dynamics of the large scales since the �rst EOFs can be easily associated to large scale dynamics.
Going down the ladder, because of the orthogonality constraint, it becomes harder and harder to associate
EOFs to well-de�ned physical phenomena and hence also to the smaller scales [58]. As has already been
shown in [60] and references therein, the error dynamics is considerably dependent on the speci�c scale
at which it is introduced, with a faster growth when located at small spatial scales. In spectral models this
obstacle is easily resolved, since the wavenumber where the noise should be introduced (choosing therefore
its spectral properties) can be selected directly. In a grid-point framework this is not the case. Further studies
in this direction will be done in order to gain this ability also when using a grid-point discretization since
most climate and ocean models are based on this type of numerics and will be reported elsewhere.
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A Derivation of the stochastic 2-layer QG model
We report here a more detailed description of the procedure to derive equations (8) and (9) starting from the
system (4), and making use of (7) and of the energy conservation property of the deterministic system (1)-(2).

As alreadymentioned, once (7) is obtained we substitute it into Eq. (5). Nowwe notice that the increment
of total energy of the system (1)-(2) is

dHdet = ∂H
∂qB

· dqB + ∂H
∂qT

· dqT

= − ψB ·
(
−J(ψB , qB) − J(ψT , qT)

)
− ψT ·

(
−J(ψT , qB) − J(ψB , qT)

)

= 0 ,

due to energy conservation of the deterministic equations. Hence we need to consider only the remaining
terms arising from the inclusion of the stochastic processes in the deterministic equations; we impose them
to equal zero. Computations proceed as follows

−ψT · Bt + ψT · ΓqT + 1
2

∂2H
∂qT∂qT

: (Σ + St)(Σ + St)T = 0

−ψT · Bt + ψT · ΓqT + 1
2

∂2H
∂qT∂qT

: (Σ − Σ + PΣ)(Σ − Σ + PΣ)T = 0

−ψT · Bt + ψT · ΓqT + 1
2

∂2H
∂qT∂qT

: PΣΣTP = 0

−ψTTBt + ψTTΓqT + 1
2

∂2H
∂qT∂qT

: PΣΣTP = 0 .

At this stage we multiply from the left by 1
|ψT |2 ψT obtaining

− 1
|ψT |2

ψTψTTBt + 1
|ψT |2

ψTψTTΓqT + 1
|ψT |2

ψT
(

1
2

∂2H
∂qT∂qT

: PΣΣTP
)

= 0 .

Here we note that 1
|ψT |2 ψTψTT = I − P and that the term ∂2H

∂qT∂qT : PΣΣTP is a scalar. Hence we can rewrite the
previous equation as

−(I − P)Bt + (I − P)ΓqT + 1
|ψT |2

(
1
2

∂2H
∂qT∂qT

: PΣΣTP
)
ψT = 0 .

Now, making use of properties (6) and solving for Bt we recover

Bt = (I − P) ΓqT + 1
2 |ψT |2

(
∂2H

∂qT∂qT
: PΣΣTP

)
ψT ,
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which is Eq. (8). Once relations (7)-(8) have been derived, we can include Eq. (4c) in the evolution equation
of the baroclinic PV (4b) and drop it, since drift and di�usion of the process dY can now be written as a
function of Σ and Γ. Then, replacing S and B with the corresponding expressions as functions of Σ and Γ,
manipulations of Eq. (4b) proceed as follows:

dqT =
(
−J(ψT , qB) − J(ψB , qT)

)
dt − ΓqTdt + ΣdW + StdW + Btdt

=
(
−J(ψT , qB) − J(ψB , qT)

)
dt − ΓqTdt + ΣdW − (I − P) ΣdW

+
(

(I − P) ΓqT + 1
2|ψT |2

(
∂2H

∂qT∂qT
: PΣΣTP

)
ψT
)
dt

=
(
−J(ψT , qB) − J(ψB , qT)

)
dt − ΓqTdt + ΣdW − ΣdW + PΣdW

+ ΓqTdt − PΓqTdt + 1
2|ψT |2

(
∂2H

∂qT∂qT
: PΣΣTP

)
ψTdt

= −
(
J(ψT , qB) + J(ψB , qT)

)
dt + PΣdWt

−
(
PΓqT −

1
2 |ψT |2

(
∂2H

∂qT∂qT
: PΣΣTP

)
ψT
)
dt ,

while the equation of the barotropic PV (4a) remains unchanged. The above derived stochastic evolution
equation of the baroclinic PV, together with Eq. (4a) and the corresponding streamfunctions described by Eq.
(2), de�nes our stochastic 2-layer QG system.
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Abstract

We apply an energy conserving stochastic parameterization to the forced and damped 2-layer Quasi-
Geostrophic (QG) equations. In order to obtain physically feasible results with this kind of parame-
terization, the introduction of noise with dynamically consistent spatial covariance is of fundamental
importance. In this study we investigate this aspect by comparing two different approaches for the
definition of the noise covariance matrix. In particular we compare a statistical technique, i.e. Em-
pirical Orthogonal Functions (EOFs), and a dynamical approach, i.e. Dynamic Mode Decomposition
(DMD). While EOF focuses on explaining large portions of variance of the field, DMD induces an
approximation of the Koopman operator, and hence encodes the dynamics at a specific time. The
comparison reveals that individual DMD-forced realizations are more energy conserving. Moreover
the use of EOFs leads to a significant growth of the ensembles uncertainties, and to a misplacement
of the bi-modal eddy kinetic energy structure. DMD instead well catches the jet movement, and the
ensemble uncertainties grow more slowly. Lastly the DMD-forced realizations show less noisy dynam-
ics. This reveals that it is important to design stochastic parameterizations with dynamically adapted
spatial correlations, rather than relying on statistical climatic spatial patterns.

Keywords: Koopman operator, Dynamic Mode Decomposition, Empirical Orthogonal Functions,
stochastic parameterization, dynamically adapted noise covariance

1 Introduction

Complex dynamical systems, like the oceans and the atmosphere, involve phenomena with vastly
different spatial and temporal ranges, which interact with each other. To obtain accurate long time
simulations, a model should cover the whole range of scales. This poses a great computational chal-
lenge: whenever these continuous multi-scale systems are translated into a discrete numerical model,
a truncation due to the size of the spatial grid and of the time step is introduced. Hence any phe-
nomenon, developing in a physical space smaller than the chosen grid box or in a time frame smaller
than the selected time step, is not resolved by the numerical model. These events are called sub-grid
processes and are commonly parametrized, i.e. formulated in terms of other resolved processes, inside
the models in order to represent their effect on the larger scales.
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The numerical truncation has also other side effects. For instance, it is well known that in the
atmosphere the enstrophy transfers from larger to smaller scales, until it reaches the dissipation scales
at the eddy level, while the smaller scales re-inject kinetic energy into the larger scales [30, 8]. For
the majority of models, as for instance in the case of general circulation models, the truncation due
to the numerics occurs at scales much larger than the dissipation range. Subsequently, the enstrophy
piles up at the truncation level, making the numerical model unstable and likely to blow up. In order
to guarantee numerical stability, most parameterizations include some kind of hyperviscosity, which is
expressed in terms of a power of the Laplacian of the field variable. This translates into an increased
viscosity of the fluid, which dissipates also the kinetic energy. The energy input into the Earth system
due to the solar radiation is the driver of all motions in the atmosphere and in the oceans, hence it is
of utmost importance to resolve it as accurately as possible in climate and ocean models.

In the latest years there has been an extensive interest in the development of parameterizations
for the sub-grid scale processes, and a growing concern for energy consistency. Many deterministic
and stochastic parameterizations have, and are, being developed following two different approaches.
The first technique is to derive an expression for extra terms that could be included in the equations
in order to, for example, represent eddies or to re-inject energy, see for instance [3, 4, 13, 14, 23]. The
second strategy instead is to derive new stochastic expressions of the Navier-Stokes equations such that
they still conserve, for instance, energy [20] or the Kelvin circulation theorem [12]. Both procedures
have pros and cons: the former is of easier and faster implementation in already existing models but
might be case specific, while the latter has more general properties but it requires fundamental changes
in the models dynamical core.

Here we employ the projection operator approach outlined in [9], which belongs to the first group
of stochastic parameterizations. We perform our analyses in the framework of the forced and damped
non-dimensional 2-layer Quasi-Geostrophic (QG) model, where we employ a Eulerian description of
the dynamics with a grid point based discretization, as in most ocean and climate models. With very
similar settings, [11] showed that giving a spatial structure to the noise covariance is necessary for
this parameterization to have physically meaningful results. Hence we inquire into this aspect and
analyze the importance of a-priori assumptions regarding the noise covariance. For this purpose we
will compare two dimension reduction techniques, Empirical Orthogonal Function (EOF) [32] and
Dynamic Mode Decomposition (DMD) [16]. These methods identify the main directions of the system
evolution adopting two different approaches, statistical and dynamical respectively. While EOFs derive
the dominant patterns of variability from a statistical field, DMD is closely related to the Koopman
operator. The latter is an abstract concept in dynamical systems theory encoding the dynamics of
a system, and it propagates observables from one instance of time to another instance of time [17].
These different starting points for the noise covariance definition affects deeply its construction. As we
will show in the remainder of this work, the use of pieces of information about the Koopman operator
requires the DMD modes, and hence also the noise covariance matrix, to be recomputed periodically.
This has the advantage of using information of the system during its development, with no additional
information.

The remainder of this paper is structured as follows. In Section 2 we introduce the deterministic
evolving equations, while Section 3 describes the stochastic parameterization here considered. A brief
overview of the theory of EOF and DMD, with details about their application to our problem, are
given in 3.1 and 3.2 respectively. A description of the resulting noise covariance structure is also to be
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found in the same Section. The numerical outcomes are reported in Section 4, and we conclude with
a discussion in Section 5.

2 The QG model

We start from the 2-layer QG non-dimensional equations on a β plane with double periodic boundary
conditions as presented in [30]. We consider also a biharmonic viscosity term representing the sub-
grid eddies and the bottom friction in the lower level (i.e. i = 2), while in the upper layer (i.e.
i = 1) a prescribed background-flow zonal velocity U = 0.6 is considered, as, for instance, in [6, 13].
Since we consider a non-dimensional description, the horizontal extensions have been rescaled to a
2π×2π square. Furthermore we assume that the two layers have equal thickness. Finally the evolution
equations for the potential vorticities (PVs)

qi(x, t) = ∇2ψi + (−1)i
k2
d

2
(ψ1 − ψ2) i ∈ {1, 2}

on the horizontal plane x ∈ R2 read

dq1 = − J (ψ1 − Uy, q1) dt−∇2
(
ν∇4ψ1

)
dt , (1a)

dq2 = − J (ψ2, q2) dt−∇2
(
ν∇4ψ2

)
dt− τ−1

f ∇2ψ2dt , (1b)

where ψi(x, t) i ∈ {1, 2} are the corresponding streamfunctions, τf = 10 time units the frictional
time-scale and ν the biharmonic viscosity coefficient. ∇ and ∇2 denote, respectively, the horizontal
gradient and the Laplacian operator, while J stands for the Jacobian operator

J(A,B) =
∂A

∂x

∂B

∂y
− ∂A

∂y

∂B

∂x
.

The term k2
d/2 = (2f0/Nh)2 determines the strength of the shear between the two layers and hence

also the intensity of the baroclinic instability (N = 1.2 · 10−2 being the Brunt-Väisälä frequency,
h = 200 the mean depth of the layers and f ≈ f0 +βy the approximate Coriolis term with f0 = 1 and
β = 0.509). Given these values of the parameters, the Rossby deformation radius is about k−1

d ≈ 0.85,
corresponding to an atmosphere-like setting.

We set ν as in [13] which, following the argument of [18], defines it as

ν = CLeith∆6
∣∣∇4ψi

∣∣

where CLeith = 0.005 is an empirical constant and ∆ is the grid-spacing. We would like to point out
that ν is non-constant. This will reveal to be an important feature when rewriting the system in terms
of barotropic and baroclinic mode.

In order to have a better defined distinction between slow and fast modes, we rewrite equations
(1) as barotropic and baroclinic modes by assuming that barotropic modes evolve more slowly then
baroclinic modes. Barotropic and baroclinic streamfunctions, ψB and ψT , can be defined as:

ψB =
1

2
(ψ1 + ψ2) , ψT =

1

2
(ψ1 − ψ2) ;
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which lead to the corresponding barotropic and baroclinic potential vorticities, qB and qT ,

qB = ∇2ψB + βy , qT = ∇2ψT − k2
dψT . (2)

It can easily be shown that barotropic and baroclinic PVs can also be written as

qB =
1

2
(q1 + q2) , qT =

1

2
(q1 − q2) ,

and we can use these relations to determine the evolution equations for qB and qT from (1). After
some manipulations we obtain

dqB = −
(
J(ψB −

1

2
Uy, qB) + J(ψT −

1

2
Uy, qT )

)
dt− 1

2
τ−1
f

(
∇2ψB −∇2ψT

)
dt

− 1

2
∇2
(
CLeith∆6

∣∣∇4(ψB + ψT )
∣∣∇4(ψB + ψT ) + CLeith∆6

∣∣∇4(ψB − ψT )
∣∣∇4(ψB − ψT )

)
dt ,

(3a)

dqT = −
(
J(ψT −

1

2
Uy, qB) + J(ψB −

1

2
Uy, qT )

)
dt+

1

2
τ−1
f

(
∇2ψB −∇2ψT

)
dt

− 1

2
∇2
(
CLeith∆6

∣∣∇4(ψB + ψT )
∣∣∇4(ψB + ψT )− CLeith∆6

∣∣∇4(ψB − ψT )
∣∣∇4(ψB − ψT )

)
dt ,

(3b)

where the biharmonic coefficient has been decomposed in its constant and non-constant parts. The
system (3) is Hamiltonian with Hamiltonian H given by

H(qB, qT ) =
1

2

∫

A

[
(∇ψB)2 + (∇ψT )2 + k2

dψT
2
]
dA .

It can be shown that

δH = −
∫

A
(ψB · δqB + ψT · δqT ) dA ,

which implies
∂H

∂qB
= −ψB ,

∂H

∂qT
= −ψT .

For a general review of Hamiltonian mechanics and its application to geophysical fluid dynamics see
for example [25, 28, 2].

Due to the high dimensionality of the QG model, the numerical truncation affects deeply the
dynamics by introducing a larger error at coarser resolutions. Since high resolution simulations are
computationally expensive, and it is not always possible to use a fine enough grid, we aim at repro-
ducing the dynamics of equations (3)-(2) as resolved on a fine grid by correcting the numerical error
at lower resolutions through the introduction of a stochastic parameterization for the sub-grid scales.
The introduction of a stochastic source term breaks the energy balance of the system, hence extra care
is to be taken in order to guarantee that the total energy of the stochastic QG model is conserved.
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3 Energy conserving stochastic parameterization

As developed in [9] and further extended to high dimensional systems in [11], the stochastic terms are
added by means of a projection operator, which ensures the conservation of the total energy of the
system in absence of external forcing, viscosity and bottom friction. For sake of simplicity, we simplify
here the stochastic perturbation considering white noise instead of red noise. As in [11], we represent
the unresolved fast sub-grid processes by means of a stochastic forcing, which we assume to act directly
on the baroclinic mode and indirectly on the barotropic mode. The underlying stochastic modeling
assumption is that there are many fast baroclinic modes which are mixing, and can be efficiently
represented by a stochastic Ansatz. We refer the interested reader to [11] for more details of the
derivation, here we report only the main steps and results. After including a 2-dimensional Wiener
process Wt enacting the sub-grid processes, we further add an auxiliary 2-dimensional stochastic
process dYt in order to balance the stochastic forcing just introduced and ensure conservation of
energy. We wish to stress that energy will still be affected by the deterministic forcing and damping
terms. At this stage, the evolution equations for the potential vorticities read

dqB = −
(
J(ψB −

1

2
Uy, qB) + J(ψT −

1

2
Uy, qT )

)
dt− 1

2
τ−1
f

(
∇2ψB −∇2ψT

)
dt

− 1

2
∇2
(
CLeith∆6

∣∣∇4(ψB + ψT )
∣∣∇4(ψB + ψT ) + CLeith∆6

∣∣∇4(ψB − ψT )
∣∣∇4(ψB − ψT )

)
dt ,

dqT = −
(
J(ψT −

1

2
Uy, qB) + J(ψB −

1

2
Uy, qT )

)
dt+

1

2
τ−1
f

(
∇2ψB −∇2ψT

)
dt

− 1

2
∇2
(
CLeith∆6

∣∣∇4(ψB + ψT )
∣∣∇4(ψB + ψT )− CLeith∆6

∣∣∇4(ψB − ψT )
∣∣∇4(ψB − ψT )

)
dt

+ ΣdWt + dYt ,

dYt = Btdt+ StdWt ,

where we included the evolution equation for dYt; Bt ∈ R2 and Σ, St ∈ R2×2. Instead of dealing with
two different stochastic processes, we want to write St and Bt as functions of Σ. For that purpose,
we write the increment of H as a sum of two parts, a deterministic part µH including all the terms
multiplied by dt, and a stochastic part σH containing those with the Wiener process. By Ito’s theorem
we have

dH =
∂H

∂qB
· dqB +

∂H

∂qT
· dqT +

1

2

∂2H

∂qT∂qT
: dqTdq

T
T

= µHdt+ σHdWt ,
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where A : B = aijbij = Tr(ABT ), and

µH = + ψB ·
(
J(ψB −

1

2
Uy, qB) + J(ψT −

1

2
Uy, qT ) +

1

2
τ−1
f

(
∇2ψB −∇2ψT

))

+
1

2
ψB · ∇2

(
CLeith∆6

∣∣∇4(ψB + ψT )
∣∣∇4(ψB + ψT ) + CLeith∆6

∣∣∇4(ψB − ψT )
∣∣∇4(ψB − ψT )

)
dt

+ ψT ·
(
J(ψT −

1

2
Uy, qB) + J(ψB −

1

2
Uy, qT )− 1

2
τ−1
f

(
∇2ψB −∇2ψT

)
−Bt

)

+
1

2
ψT · ∇2

(
CLeith∆6

∣∣∇4(ψB + ψT )
∣∣∇4(ψB + ψT ) + CLeith∆6

∣∣∇4(ψB − ψT )
∣∣∇4(ψB − ψT )

)
dt

+
1

2

∂2H

∂qT∂qT
: (Σ + St)(Σ + St)

T ,

σH = − ψT · (Σ + St)

= ∇qTH · (Σ + St) .

Our aim is to control the stochastic forcing. This might be of particular importance for more complex
models, such as primitive equation based climate models, where one wants to inject the stochastic
forcing only into the balanced or unbalanced flow components. Hence, in order to guarantee the total
energy not to be affected by the stochastic forcing, we set σH and the sum of those terms in µH due
to the stochastic processes to be zero.

Following the reasoning outlined in [9], the auxiliary stochastic process dYt should not perturb the
dynamics on the tangent space, and should be constructed only to counterbalance those components
of the stochastic process which are orthogonal to the manifold of constant energy. Thus we define a
projection operator P ∈ R2×2. Since the Wiener process affects only the evolution equation of the
baroclinic potential vorticity, it will be sufficient to project with respect to the manifold of constant
baroclinic kinetic energy:

P = I− 1

|∇qTH|2
∇qTH(∇qTH)T

= I− 1

|ψT |2
ψTψ

T
T ,

where I ∈ R2×2 stands for the identity matrix. Note that P (∇qTH) = 0. Consequently, we want St
and Bt to satisfy

PSt = 0 , PBt = 0 .

As in [11], the constraint σH = 0 provides an expression for St, while it is possible to determine Bt
by considering only the terms of µH due to the introduction of the stochastic processes:

St = − (I− P) Σ ,

Bt = +
1

2 |ψT |2
(

∂2H

∂qT∂qT
: PΣΣTP

)
ψT .
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Finally we get the following set of equations

dqB = −
(
J(ψB −

1

2
Uy, qB) + J(ψT −

1

2
Uy, qT )

)
dt− 1

2
τ−1
f

(
∇2ψB −∇2ψT

)
dt

− 1

2
∇2
(
CLeith∆6

∣∣∇4(ψB + ψT )
∣∣∇4(ψB + ψT ) + CLeith∆6

∣∣∇4(ψB − ψT )
∣∣∇4(ψB − ψT )

)
dt ,

(4a)

dqT = −
(
J(ψT −

1

2
Uy, qB) + J(ψB −

1

2
Uy, qT )

)
dt+

1

2
τ−1
f

(
∇2ψB −∇2ψT

)
dt

− 1

2
∇2
(
CLeith∆6

∣∣∇4(ψB + ψT )
∣∣∇4(ψB + ψT )− CLeith∆6

∣∣∇4(ψB − ψT )
∣∣∇4(ψB − ψT )

)
dt

+ PΣdWt +
1

2 |ψT |2
(

∂2H

∂qT∂qT
: PΣΣTP

)
ψTdt . (4b)

Equations (2)-(4) constitute our stochastic energy conserving 2-layer QG system. The interested
reader may find more details about the necessary steps for the derivation of (4) in [11]. As it can be
seen, the resulting set of equations contains multiplicative noise and nonlinear damping, due to the
specific definition of the projection operator. The multiplicative noise is in fact a correlated additive
multiplicative (CAM) noise [19, 26].

In equations (4) the variable Σ is still unknown, and as shown in [11], it is crucial when using this
parameterization in a Eulerian framework to give a dynamically consistent spatial structure to the
noise covariance. Hence we look for

Σ =
l∑

i=1

γiψi(q) (5)

where l ∈ N is the total number of patterns considered, γi ∈ R ∀i, and ψi(q) ∈ R2×2 ∀i is a dynamically
consistent pattern, which depends on the state variable q.

It is common in the context of stochastic parameterizations to use Empirical Orthogonal Functions
(EOFs), see for instance [7, 24]. EOF is a statistical technique looking at stationary coherent structures
explaining large portions of variance, and has been widely used in climate models, thanks to their
easy and robust computation and the large availability of data. Nonetheless they have limitations.
In particular, their physical interpretation is restricted. While it is possible to associate the first
EOF with a known physical process, this becomes more and more complicated with higher-order
eigenvectors because of the orthogonality constraint [32]. More details about EOF and their usage in
the present work are provided in Section 3.1.

In this work we aim to analyze how the definition of the noise covariance, i.e. equation (5),
influences the outcomes. For this purpose we employ here Dynamic Mode Decomposition (DMD)
[27, 29, 16]. DMD is a data-driven algorithm for computing the Koopman modes, and it is, hence,
related to the generator of the dynamics. The Koopman operator has been developed in the framework
of dynamical systems theory [15]. In Section 3.2 we provide a brief exposition about the relation
between the Koopman operator and dynamic mode decomposition; for a more exhaustive commentary
on the topic, we invite the reader to see, among others, the review papers [5, 21]. Details about the
inclusion of DMD in the stochastic QG model are also provided.
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3.1 Empirical Orthogonal Functions

3.1.1 Theory

In this section we provide a brief description of the theoretical framework of EOF. More information can
be found in [31, 32]. EOF, also known as Principal Component Analysis (PCA) or Proper Orthogonal
Decomposition (POD), is a multivariate analysis technique that derives the dominant patterns of
variability from a statistical field, usually indexed by location in space. Let X be an n-dimensional
random vector, whose mean is assumed to be zero; otherwise the anomalies of the field with respect
to the mean should be considered. At its first stage the EOF analysis computes the vector φ1 with∥∥φ1

∥∥ = 1 such that

ε1 = E
(∥∥X− 〈X, φ1〉φ1

∥∥2
)

(6)

is minimized, where we denoted with E the expectation operator, the vector norm by
∥∥·
∥∥ and the inner

product with 〈·, ·〉. Equation (6) describes the projection of the field X onto a 1-dimensional subspace
spanned by the vector φ1. Minimizing ε1 is equivalent to maximizing the variance of X contained in
this subspace, in fact it can be shown that

ε1 = Var(X)−Var(〈X, φ1〉) ,
where the variance of X is defined to be the sum of the variances of its elements. Let Γ denote the
covariance matrix of X. Then we can write

Var(〈X, φ1〉) = φ†1Γφ1 ,

where † denotes the complex transpose. The minimization of ε1 under the constraint
∥∥φ1

∥∥ = 1 leads
to

d

dφ1

[
−φ†1Γφ1 + λ1

(
φ†1φ1 − 1

)]
= −2Γφ1 + 2λ1φ1 = 0

where λ1 is the Lagrange multiplier associated with the constraint
∥∥φ1

∥∥ = 1. This is equivalent to
say that φ1 is an eigenvector of the covariance matrix Γ with corresponding eigenvalue λ1. Therefore,
the minimum of equation (6) is achieved by the vector associated to the largest eigenvalue of Γ, i.e.
vector φ1.

The same procedure is repeated to find the second EOF, which is the vector φ2 with
∥∥φ2

∥∥ = 1
minimizing

ε2 = E
(∥∥(X− 〈X, φ1〉φ1)− 〈X, φ2〉φ2

∥∥2
)
,

and corresponding to the second largest eigenvalue λ2 of Γ. Finally we remark that Γ is an Hermitian
matrix, hence its eigenvectors are orthogonal to one another. Moreover in case of translationally
invariant systems they are Fourier modes.

3.1.2 Constructing Σ using EOF

In case of EOFs we build Σ as in (5) where the weights γi are selected to be the square roots of the
EOFs eigenvalues λEOF , i.e.

Σ =
l∑

i=1

√
λEOFi φEOFi .
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In this way predominant patterns explaining larger portions of variance have a higher weight in the
linear combination, while vectors responsible for small portions of variance, and potentially subject to
noise and to a stronger numerical error, will play a less important role. EOFs are computed on the
data of a low resolution deterministic run, after the dynamics settled on the attractor. Since the noise
is inserted in the equation of the baroclinic mode, we use the baroclinic stream function ψT for their
computation.

As in the majority of cases, the spectrum of the singular values decreases very fast and only
few modes are physically relevant, while the others correspond to very small portions of variance
(λEOF10 ≈ 0.001) and hence might be considered in the limit as numerical noise (see Figure 1a). EOFs
1-2 (Figures 1b-1c) represent the predominant traveling wave included in the model, while EOFs 4-
5 (Figures 1e-1f) denote the subsequent mode. EOF 3 (Figure 1d) clearly does not represent any
wave but meridional shifts of the jet. In our numerical simulations, we use either only the first two
eigenvectors, or the first five EOFs.
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(a) Eigenvalues of the first 10 EOFs.
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(e) EOF number 4.
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(f) EOF number 5.

Figure 1: EOF singular values spectrum of the first 10 eigenvectors and first 5 EOF patterns.

9



3.2 Dynamic Mode Decomposition

3.2.1 DMD and the Koopman operator

Here we briefly present the Koopman operator and its connection with dynamic mode decomposition.
Detailed reviews about the Koopman operator can be found, for instance, in [5, 21], while theory and
applications of DMD are provided, among others, in [27, 29, 16].

Let ẋ = f(x) denote a general continuous-time dynamical system with initial condition x(0) =
x0 ∈ Rn. On the assumption that there exists a unique solution of this initial value problem, it is
possible to introduce the flow map ϕt such that x(t) = ϕt(x0). Define an arbitrary observable ψ(x).
The value of this observable ψ, which the system starting in x0 sees at time t, is

ψ(t, x0) = ψ(ϕt(x0)) .

The Koopman operator is a semigroup of operators Kt, acting on the space of observables parametrized
by time t

Ktψ(x0) = ψ(ϕt(x0)) .

If the observables coincide with the state variables, we have ψ(x) = id(x). The generator of the
Koopman semigroup is defined by

[Kψ] := lim
t→0

Ktψ − ψ
t

,

provided the limit exists. It is important to underline that the operator Kt is linear also in case of
non-linear dynamics f , thus it makes sense to consider its spectral properties, but the eigenfunctions
of the Koopman operator are not necessarily linear. Most often, there is no explicit representation of
the Koopman operator, and its behavior can be determined only by its action on an observable at a
finite number of initial conditions.

Dynamic mode decomposition is a data-driven technique for computing the Koopman modes. The
operational definition of DMD is provided in [29]. Consider a dynamical system as above, where the
observables coincide with the state variables (i.e. ψ(x) = id(x)), and two sets of data,

X =



| | |

x1 x2 · · · xm
| | |


 X′ =



| | |

x′1 x′2 · · · x′m
| | |




such that

xk = x(tk) ∈ Rn , x′k = x(tk + δt) = Kδtxk ,
xk = x(tk−1 + ∆t) = K∆txk−1 , x′k = x(tk−1 + δt+ ∆t) = K∆tx

′
k−1 ,

where m∆t defines the time window, and δt ≤ ∆t determines the accuracy of the reconstructed
dynamics. It is important to mention that matrices X and X′ are assumed to be tall and skinny, i.e.
it is assumed that the size n of a snapshot is larger than the number m− 1 of snapshots. In the DMD
algorithm the Koopman operator is approximated by means of a least square fit operator K relating
data X′ ≈ KX. The DMD modes are the eigenvectors of K, and each DMD mode corresponds to a
particular eigenvalue of K. Since the operator is linear, the decomposition gives the growth rates and
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frequencies associated with each mode. The numerically stable SVD-based algorithm outlined for the
first time in [27], and improved in [29], allows for a low-rank r ≤ m representation of the operator
K onto the first r EOF modes of matrix X. Details about the algorithm, as well as a MATLAB c©

function, are provided in [16].

3.2.2 Defining the noise covariance by means of DMD

From the theory, we know that the eigenvalues of the Koopman operator should lay on the complex
unit circle and that, aside from the eigenvalue corresponding to the mean mode, they are complex
conjugate. Therefore, when using DMD to build Σ, since

∣∣λDMD
i

∣∣ = 1 ∀i, it is not that straightforward
to build Σ such that the noise has the same amplitude as with EOFs. Here we report the procedure
we apply in order to guarantee equal amplitude to the stochastic forcing with both techniques:

1. re-order the DMD eigenmodes such that the first corresponds to the mean (i.e. its eigenvalue
is the closes to λm = 1), and the others come according to how close they are to λm while
remaining on the unit circle, up to a tolerance, in order to avoid numerically spurious modes;

2. after neglecting the mean mode (i.e. i = 0), we select the l eigenvectors, whose eigenvalues have
real part closest to 1. We consider just one mode for each complex conjugate pair, and define Σ
as

Σ =
l∑

i=1

(
Re(λDMD

i )Re(φDMD
i )− Im(λDMD

i )Im(φDMD
i )

)
;

3. finally we normalize the trace of ΣΣT to be the same as for EOF.

The coefficients related to the redundant eigenvectors are set to be zero, and the DMD modes are
recomputed for each m∆t time window. We would like to remark that, in principle, with the Koopman
operator it is possible to propagate the DMD modes for each δt in the following m∆t time window
before new computation; in the present work we keep them constant for sake of simplicity. As for
EOFs, also DMD uses the values of ψT , but they are computed on the fly, so the data have still low
resolution but they are also perturbed by the noise introduced at previous times.

In our numerical simulations we use the following set of parameters: l = 2, m = 16, r = 7, δt =
0.1, ∆t = 3δt. Hence with DMD we are considering time windows of length 4.8 time units, which
corresponds to roughly half an eddy turnover time. We normalized the trace of the matrix ΣΣT to
be equal either to σ2 = λEOF1 + λEOF2 ≈ 0.36 or σ2 =

∑5
i=1 λ

EOF
i ≈ 0.47. Other sets of parameters

corresponding to different time windows spanning between 2 time units and 10 time units have been
tested, but this particular choice was the only one among those tested which does not present two
eigenvalues with null imaginary part and real part very close to 1. This second mean-mode cannot
be excluded by our procedure since the module of its corresponding eigenvalue is still very close to 1,
but by plotting and comparing it to the other modes it can be seen that it is numerically spurious
and not dynamically meaningful. DMD is quite sensitive to the input data, hence it is very important
to filter out the numerical noise, and thus the spurious scales close to the truncation. This is done
by choosing an appropriate time window, so that the noise decorellates inside the datasets, and by
sub-sampling, i.e. we consider δt small such that the Koopman operator is well approximated, but
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we sample consecutive snapshots in the same dataset each ∆t > δt. We set r as the optimal value
determined by the criterion developed in [10]. We also tried with m = 48, r = 7, ∆t ≡ δt = 0.1, i.e.
we considered a time window of the same length and instead of sub-sampling we chose a small value of
r, but the results show that sub-sampling is more efficient in filtering out the numerical noise. When
starting the DMD forced stochastic simulations the matrix Σ was initialized by means of the first two
EOFs, and then regularly recomputed with DMD.
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(a) DMD eigenvalues spectrum.
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(b) Real part of DMD mode number 1.
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(d) Real part of DMD mode number 2.
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Figure 2: An example of DMD eigenvalues spectrum (a), real and imaginary parts of the first (b-c)
and second (d-e) DMD mode for m = 16, r = 7, ∆t = 3δt, δt = 0.1. The mean mode is neglected in
the computations and therefore not shown here; likewise only one mode for each complex conjugate
pair of eigenvalues is displayed.

In Figure 2 we show the eigenvalues and the first two DMD modes as computed in a particular
time window with the aforementioned set of parameters. The mode representing the mean has been
neglected and only one of the two modes corresponding to a complex conjugate pair of eigenvalues is
displayed. Since DMDs are recomputed along the simulation, its modes are not exactly the same for the
entire run, but they shift in the zonal direction. Besides the eddy meridional position of the first mode
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changes depending on the meridional shift of the jet. The eddy length instead remains unchanged,
since the system and the DMD parameters do not change and hence we are always targeting on the
same waves. Real and imaginary parts of DMD mode number 1 (Figures 2b-2c) resemble closely
EOFs 1-2, although in the DMD mode, and in particular in its imaginary part, the eddy patterns
look smaller and less regular. Furthermore the eddies are centered in slightly, but distinctly, different
meridional coordinates, this being shifted to higher values for EOFs 1-2. The DMD modes shown in
Figure 2 have been computed at early stages of the simulation (t ≈ 1150 time units). When looking
at the DMD modes at later times, the eddy meridional position follows the jet and is hence shifted
towards higher latitudes, more similar to EOFs 1-2 (not shown). EOFs 4-5 are the most comparable
eigenvectors to the second DMD mode (Figure 2d-2e), but significant differences can be spotted for
y ∈ [0.8, 1.8], where some eddy structure is present in the EOF vectors but is absent in the DMD
mode. This could be an artificial artifact due to the orthogonality constraint of the EOF algorithm.
A pattern such as EOF 3 is not to be found with DMD, and for short time windows of length m∆t it
is likely included into the mean mode due to the low frequency variability of the jet.

4 Model setup and results

We discretized equations (2)-(4) by means of finite differences in a grid-point based framework. Our
numerical code for the QG model is based on the energy and enstrophy conserving discretization
scheme by Arakawa [1]. This scheme ensures that energy and enstrophy are conserved for all trunca-
tions. In particular this scheme does not require any numerical diffusion or dissipation for numerical
stability. For the time stepping we employed a 4th order explicit Runge-Kutta method, while we used
the Fast Fourier Transform to invert the Laplacian operator and the Euler-Maruyama scheme for the
stochastic terms [22]. All stochastic simulations ran with a spatial resolution of 128× 128 grid points
and a time step of dt = 10−3. All started from the same initial condition, which we have assured
to be on the attractor by having employed a preceding integration of the deterministic equations at
resolution 128 × 128 for the long integration time of 8000 time units. We compare the outcomes of
the stochastic simulations with a deterministic low resolution and a deterministic high resolution run.
For the latter, which will be referred also as reference solution, we used the same initial condition
interpolated on a finer grid of 512× 512 grid points, and it ran with dt = 10−4. Its results have been
projected on the coarser 128× 128 spatial grid for a fairer comparison.

4.1 Total energy

Looking at the total energy graphs of the different realizations in the various setups with EOF (orange)
and DMD (green) reported in Figure 3, it can be noticed that on average the energy is conserved with
both techniques. Although the EOF ensemble members show more variance, when only the first two
EOFs are used, the system seems to be slightly dissipative in time. This is particularly evident when
looking at the ensemble mean (blue line in Figure 3a). The inclusion of EOFs 3-4-5 reduces the
dissipative effect, but realizations with a clear increasing trend can be present (Figure 3c). On the
other hand, the spread of the DMD ensemble members has less variance but well encloses the energy
graph of the reference solution. Individual runs are more energy conserving and the system seems to
be less dissipative (Figures 3b-3d). This might suggest that the usage of a dynamically adapted noise
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structure may help the numerical model to remain on the manifold of constant energy. In any case
deviations from the mean are less than 2%. Hence, according to the modeler target, they might be
considered as negligible.
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(a) EOFs 1-2, σ2 ≈ 0.36.
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(b) DMD, σ2 ≈ 0.36.
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(c) EOFs 1-2-3-4-5, σ2 ≈ 0.47.
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(d) DMD, σ2 ≈ 0.47.

Figure 3: Total energy graphs for stochastic simulations using EOFs 1-2, σ2 ≈ 0.36 (a), EOFs 1-2-3-4-
5, σ2 ≈ 0.47 (c); DMD l = 2, m = 16, r = 7, δt = 0.1, ∆t = 3δt, σ2 ≈ 0.36 (b), and DMD σ2 ≈ 0.47
(d). The colored lines represent different realizations of the stochastic system in the various settings.
The outcome of the high resolution deterministic run (black line) and the ensemble mean (blue line)
are also shown as reference.

14



4.2 Eddy kinetic energy

In order to compute the eddy kinetic energy (EKE), we first computed the horizontal velocities for
the barotropic and baroclinic modes from the respective streamfunctions using

u = −∂ψ
∂y

, v =
∂ψ

∂x
,

where u is the zonal and v the meridional velocity. Then we considered a time window of k time
units to compute the temporal mean velocities, i.e. ūB, v̄B and ūT , v̄T for barotropic and baroclinic
modes respectively. Afterwards for each time unit we computed the deviations from the mean, e.g.
u′B(t) = uB(t) − ūB, and used these quantities to compute the EKE for each grid point for all t.
As last step we either averaged in time and then also in the zonal direction, therefore the EKE is
displayed simply as a function of the meridional direction y (Figures 4-5); or we averaged only in the
zonal direction and looked at the time evolution of the EKE projected on y (Figure 6).

Due to the meridional movement of the jet, in our analyses we split the time series in time windows
of k = 1000 time units and consider each time window individually. Although the time-averaged EKE
shows a bi-modal behavior in all windows, the meridional location of the peaks varies according to the
jet movement. Hence we want to check how well the stochastic parameterization keeps track of the
jet shift. The time-averaged EKE of the baroclinic mode for t ∈ [1000, 2000] and for t ∈ [3000, 4000]
in the different stochastic setups with EOF (orange) and DMD (green) are reported in Figures 4 and
5 respectively. The EKE of the barotropic mode shows similar results as for the baroclinic mode,
hence, it is not reported here. Figure 6 shows the time evolution of the barotropic and baroclinic
EKE for t ∈ [3200, 3700] in case of one stochastic simulation with EOFs 1-2-3-4-5 and σ2 ≈ 0.47, one
realization with DMDs and σ2 ≈ 0.47, and in case of the reference solution.

Both for t ∈ [1000, 2000] and t ∈ [3000, 4000], it can be seen that the ensemble forced by EOFs
1-2 has overshoots, which are compensated in the mean (blue line in Figures 4 and 5) by simulations
with lower EKE. This is particularly evident at later times (Figure 5), where the uncertainties grow
in time and the single members do not display a coherent behavior, i.e. different realizations have
different meridional coordinate for the bi-modal structure and rather different EKE amplitudes. The
introduction of EOFs 3-4-5 reduces the overshoots, but has also lower undershoots and does not help
the ensemble members to maintain a coherent behavior for longer times. It can be further noticed in
Figure 5 that, both with EOFs 1-2 and with EOFs 1-2-3-4-5, the EKE of the stochastic realizations is
shifted to a too high meridional coordinate. On the other hand the DMD forced ensembles have less
variance and do not always enclose the reference solution, but they follow quite well the meridional
movement of the jet. This can be noticed also in the time evolution of the baroclinic EKE (Figure 6).
Both with EOFs and DMDs the meridional shift of the positive EKE at y ≈ 1 is detected, but the
amplitude and other minor features, like the positive EKE at y ≈ 2, are better resolved by the DMD
forced simulation. Furthermore in the DMD ensembles, the uncertainties grow much more slowly
in time, allowing the single members to display a coherent behavior also at later times. Lastly we
would like to remark that to an increased noise amplitude, corresponds an increased ensemble EKE.
Therefore also in the cases where the reference solution is not enclosed in the ensemble spread, it
might be achieved by simply increasing the noise amplitude.

Our results suggest that the use of dynamically adapted noise covariance in stochastic parameter-
izations might be better suited to model phenomena, which do not reach statistical equilibrium, while
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keeping track of the large scale dynamics. Moreover a dynamically adapted spatial correlation might
more easily foster the system towards tipping points.
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(a) EOFs 1-2, σ2 ≈ 0.36.

0 1 2 3 4 5 6

Baroclinic zonal-eddy KE 10 -4

-3

-2

-1

0

1

2

3

y

(b) DMD, σ2 ≈ 0.36.
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(c) EOFs 1-2-3-4-5, σ2 ≈ 0.47.
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(d) DMD, σ2 ≈ 0.47.

Figure 4: Baroclinic EKE for t ∈ [1000, 2000] for stochastic simulations using EOFs 1-2, σ2 ≈ 0.36
(a), EOFs 1-2-3-4-5,σ2 ≈ 0.47 (c), or DMD l = 2, m = 16, r = 7, δt = 0.1 ∆t = 3δt, σ2 ≈ 0.36
(b) and DMD, σ2 ≈ 0.47 (d). The outcomes for the high (black continuous), low (black dashed)
resolution deterministic system and ensemble mean (blue) are also shown, for reference. The shaded
area (orange for EOF and green for DMD) represents the area covered by different realizations of the
stochastic system in the respective settings.
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(a) EOFs 1-2, σ2 ≈ 0.36.
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(b) DMD, σ2 ≈ 0.36.
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(c) EOFs 1-2-3-4-5, σ2 ≈ 0.47.
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(d) DMD, σ2 ≈ 0.47.

Figure 5: Baroclinic EKE for t ∈ [3000, 4000] for stochastic simulations using EOFs 1-2 σ2 ≈ 0.36
(a), EOFs 1-2-3-4-5,σ2 ≈ 0.47 (c), or DMD l = 2, m = 16, r = 7, δt = 0.1 ∆t = 3δt, σ2 ≈ 0.36
(b) and DMD, σ2 ≈ 0.47 (d). The outcomes for the high (black continuous), low (black dashed)
resolution deterministic system and ensemble mean (blue) are also shown, for reference. The shaded
area (orange for EOF and green for DMD) represents the area covered by different realizations of the
stochastic system in the respective settings.
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(a) Barotropic EKE; EOFs 1-2-3-4-5,
σ2 ≈ 0.47.

(b) Barotropic EKE; DMD, σ2 ≈ 0.47. (c) Barotropic EKE; reference solution.

(d) Baroclinic EKE; EOFs 1-2-3-4-5,
σ2 ≈ 0.47.

(e) Baroclinic EKE; DMD, σ2 ≈ 0.47. (f) Baroclinic EKE; reference solution.

Figure 6: Time evolution of the barotropic (top) and baroclinic (bottom) EKE projected on the y-
axis. From left to right: stochastic simulation with EOFs 1-2-3-4-5, σ2 ≈ 0.47; DMD forced stochastic
simulation l = 2, m = 16, r = 7, δt = 0.1 ∆t = 3δt, σ2 ≈ 0.47; reference solution.

4.3 Flow dynamics

In Figure 7 we show the time evolution of the projection over the zonal coordinate x of the barotropic
and baroclinic potential vorticities for t ∈ [1950, 2000]. For a better comparison we removed the zonal
mean flow and plot the resulting eddies. The same graph is shown for one realization with EOFs
1-2-3-4-5, σ2 ≈ 0.47 (left), one with DMD l = 2, m = 16, r = 7, δt = 0.1, ∆t = 3δt, σ2 ≈ 0.47
(center), and the reference solution (right). Both techniques are able to capture the correct eddies
phase speed, but DMD retains a stronger and less noisy signal. This result confirms the ability of
DMD to include the sub-grid scales phenomena without weakening the signal of the larger scales.
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(a) Barotropic PV; EOFs 1-2-3-4-5,
σ2 ≈ 0.47.
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(b) Barotropic PV; DMD, σ2 ≈ 0.47.
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(c) Barotropic PV; reference solution.
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(d) Baroclinic PV; EOFs 1-2-3-4-5,
σ2 ≈ 0.47.
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(e) Baroclinic PV; DMD, σ2 ≈ 0.47.
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(f) Baroclinic PV; reference solution.

Figure 7: Time evolution of the barotropic (top) and the baroclinic (bottom) PVs anomalies with
respect to the zonal mean projected on the x-axis. From left to right: stochastic simulation with EOFs
1-2-3-4-5, σ2 ≈ 0.47; DMD forced stochastic simulation l = 2, m = 16, r = 7, δt = 0.1 ∆t = 3δt,
σ2 ≈ 0.47; reference solution.

5 Summary and discussion

In the framework of the forced and damped 2-layer QG model we considered an energy conserving
stochastic parameterization based on the projection operator approach [9], and employed two different
procedures to define the noise spatial structure. As shown in [11], the definition of the latter is of
fundamental importance for this parameterization to return physically meaningful results. In the
present work we analyzed a statistical and a dynamical approach to define the noise covariance by using
two different dimension reduction techniques, EOF and DMD. The former looks at the variance field of
the fluid, while the latter is strictly linked to the Koopman operator and hence to the generator of the
dynamics. EOF have been widely used in the literature, nevertheless their physical interpretation is
limited because of the orthogonality constraint [32]. Moreover, being a statistical technique, it requires

19



long time series in order to obtain reliable patterns. In flat opposition DMD is thought to work with
tall and skinny matrices [16], hence also with very short time series, and its modes are oscillating
waves. Therefore the choice of the length of the time series, m∆t, and the temporal shift between the
two input matrices, δt, are crucial and serve as scale selection. Since DMD gets pieces of information
about the dynamics for possibly short time windows, its modes, and thus the noise covariance, have
to be recomputed periodically. This is a new approach in stochastic parameterizations, since typically
a fixed noise stencil is used during the whole realization.

Total energy graphs reveal that the EOF ensembles are either more dissipative or might include
realizations with a clear increasing trend. On the other hand DMD runs are individually more energy
conserving, inducing us to think that a dynamically adapted noise structure might help the numerics
to stay on the manifold of constant energy. When looking at the eddy kinetic energy, it has been
discovered that in case of EOF the uncertainties grow faster, which induce the single ensemble members
to display the bi-modal behavior in different meridional positions. Furthermore the location of the bi-
modal structure of the EKE ensemble mean is moved to too high meridional coordinates. The DMD
forced ensembles instead are able to follow the jet meridional shift and well catch the meridional
location of the double-peak also at later times. Moreover the uncertainties grow more slowly, allowing
the individual members to display a coherent behavior also at later times. Finally, the field dynamics
time evolution in the DMD ensembles retain a stronger and less noisy signal.

As regards computational time, DMD is very cheap, uses possibly short time series and does not
need extra computations beforehand, but can be run alongside the main code. These aspects allow the
DMD algorithm to periodically reanalyze the dynamics and redefine the noise covariance accordingly.
Hence it is a very good candidate to parametrize scales undergoing phase transitions, or which do not
reach statistically stable profiles. Moreover, due to its tight link to the generator operator, it might
foster the system to reach tipping points.

Our results suggest that a dynamically adapted spatial structure should be considered in future
developments of stochastic parameterizations. This finds further motivation in the physics. Not only
the large scales are affected by the small scales, but also the fast processes are influenced by the slower
motions. Hence physically correct parameterizations of the unresolved scales should allow the sub-grid
processes to be influenced by the resolved modes. Future work might allow the DMD modes to be
propagated by the Koopman operator for the m∆t time window between one computation and the
next, and might include a sub-grid energy model resolving the amount of energy to be backscattered
at each time step. In conclusion, the propagation of the DMD modes by means of the Koopman
operator might be seen as a sort of memory term, but more in detail analysis is required to establish
what kind of relation, if any, exists between the propagation of the DMD modes and memory terms.

Data availability Model scripts are available upon request from the corresponding author. Data
have been generated by use of the aforementioned scripts.
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5 Conclusions

In this thesis I extended the projection operator approach described by Frank and
Gottwald (2013) to high dimensional systems in the framework of a grid-point based
numerical model with a Eulerian description of the dynamics. The extension has been
successfully carried out and it provided further insights into the numerical aspects of the
stochastic parameterization. More in detail, the choice of the numerical setup revealed
to strongly influence the structure of the noise covariance. As a matter of fact the use of
independent identically distributed (iid) noise led the dynamics to lose variability and
other fundamental statistical properties. This is due to the adopted Eulerian description
of the dynamics. In this framework a phenomenon behaving like an iid noise is not
influenced by its neighbors, which implies that it fully evolves and decorrelates inside
the grid cell. When running GCMs at coarse resolutions the surface area of a grid cell
can be in the order of 102 − 103 square kilometers, so it is possible to think about phe-
nomena bounded inside the grid box, e.g. clouds. On the other hand resolving a wave
requires at least 3 − 4 grid points in order to capture its oscillating behavior. Therefore
the numerical gap between the resolved scales and such sub-grid processes is too large,
and the latter are dissipated by the numerics. In order to limit this gap and obtain phys-
ically consistent results a spatial covariance structure has to be defined. The usage of the
first two EOF eigenvectors proved that a spatial correlation noise structure allows the
dynamics to retain its underlying statistical properties and improves the eddy length for
the barotropic mode. At this point one might wonder, whether EOF provides the best
initialization for the noise covariance, or if more suitable techniques are available.

To answer this question DMD has been used and its results compared to EOF. As men-
tioned above, EOF is a statistical technique, which detects patterns explaining large
portions of the fluid variance. On the other hand DMD is a data driven technique for
the approximation of the Koopman operator, which encodes the fluid dynamics at a
specific time. While the first technique requires long time series, the second can work
also with few data. In particular the length of the time series employed by the DMD
algorithm determines the scales to be detected: everything with period longer than
the selected time window cannot be identified as a wave, and it is hence included in
the mode representing the mean state, while processes with very high frequencies are
treated as noise. Hence the length of the time series for the DMD algorithm is crucial
and serves as scale selection. As a consequence, when computing the noise covariance
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structure, the same structure should be kept for long running times in case of EOF, since
EOFs have an asymptotic validity, while it should be regularly updated when making
use of DMD. The use of a dynamically adapted spatial correlation was not a computa-
tional burden, and disclosed advantages, like the ability of following the jet shift or a
more slowly increase of the uncertainties, that should be considered when developing
stochastic parameterizations for the sub-grid phenomena. In fact, for a correct represen-
tation of these phenomena, not only their effect on the large scales should be modeled,
but also the influence that the large scales have on the small scales.

I discuss now the main findings in terms of the research questions posed in the intro-
duction.

1. Can the projection operator approach, outlined by Frank and Gottwald (2013), be employed
also in case of high dimensional systems?

In this thesis I showed that the projection operator approach presented by Frank and
Gottwald (2013) can be applied also to high dimensional system. Furthermore it is
quite versatile. In fact here it has been used for the conservation of energy, but in
principle it could be employed also to conserve other quantities, for example enstrophy.
The requirements are: an equation describing the quantity of interest, and project with
respect to the manifold where this quantity is constant. Moreover this parameterization
offers quite some degrees of freedom, like the amplitude and color of the noise or the
noise covariance structure, that can be tuned for a better representation of the sub-grid
processes. Here the research focus was on the noise covariance, but other aspects, for
instance the inclusion of a memory term, should be analyzed too.

2. How should the noise covariance be defined such that it is dynamically consistent and repre-
sentative of the sub-grid processes?

The comparison between different noise covariances showed that some patterns, al-
though physically reasonable, when included into the numerical model, lead the dynam-
ics of the system towards unphysical results. This can be explained by the limitations
of the discrete model with respect to the continuous system. Hence any parameteri-
zation should be thought not only in the context of the continuous equations, but also
as part of a discrete numerical model. In particular, the results of PI showed that iid
noise should not be used in the context of Eulerian dynamics at coarse resolutions but a
spatial correlation for the noise should be defined. Its introduction by means of the first
two EOFs improved the eddy length for the barotropic mode, but not for the baroclinic
mode. Hence, the use of EOFs, despite its wide usage in the literature, might not be
optimal.

3. Vannitsem (2017) showed that, in case of spectral models, the error dynamics is dependent on
the scale where it is introduced; is it possible to choose the noise scale also in case of grid point
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5 Conclusions

models?

The answer to this question is not trivial. It strongly depends on which data analysis
techniques are employed, and hence on what the modeler thinks might work better. If
the choice is to rely on statistical climatic patterns, as those found with EOF, then it is
not possible to choose the scale where to introduce the noise. As shown in PII, EOFs
eigenvectors do not always represent waves, but they could also be representative of
other phenomena, like the jet meridional movement. Furthermore the first EOF can be
associated to large scale dynamics, but because of the orthogonality constraint it is hard
to associate higher order EOFs to the smaller scales. On the other hand there are other
techniques, e.g. DMD whose focus is to detect the most active waves in a given time
window, that give the possibility of choosing the noise scale. The drawbacks are that,
in order to detect fast evolving processes, shorter time series have to be considered and
hence the revealed modes do not have a long lasting validity, but they should be updated
regularly. Hence, particularly in case of computationally expensive models, the choice
of what kind of patterns to use will be a compromise between target, computational
expense and numerical stability.

4. How much do a priori assumptions on the noise covariance affect the outcomes of the numerical
model?

The a priori assumptions analyzed here regards either the choice of using climatic pat-
terns with long lasting validity, or of inserting the noise at a specific scale. As argued
in the previous paragraph, due to the characteristics of EOF and DMD, these assump-
tions can be stated also as either keeping the noise covariance constant during the whole
simulation, or updating it regularly. Although the patterns defined by EOF and DMD
look similar to a certain extent, significant differences can be spotted, which in turn
led to different ensembles behaviors. In particular, individual runs with the DMD in-
duced stochastic forcing are more energy conserving, ensemble uncertainties grow more
slowly, allowing the single members to display a coherent behavior for longer time, and
the parameterization is able to notice the jet meridional movement and adapts to it.
Finally the DMD algorithm is numerically stable and quite fast, hence it can be run
alongside the main code without significant computational burdens. These results show
that care should be taken when building the noise covariance. This was still quite a
simplified setup, but in more complex model it is reasonable to think that uncertain-
ties might grow faster, due to the nonlinear interaction between different phenomena.
Hence any additional error introduced by the parameterization might propagate and
amplify inside the model.

Lastly I wish to conclude with a short disclaimer.
PII dealt with two representative techniques, which required two different procedures
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for the noise covariance definition. The focus was on the proof of concept, that the use
of climatic patterns might not be always optimal, and that other methods are available.
As regards which particular technique should be used, I have to mention that the basic
versions of both algorithms have been used here. More advanced versions, like complex
EOFs von Storch and Zwiers (2003) or recursive DMD Noack et al. (2016), have and are
being developed. Therefore it is perfectly plausible that the best technique has not been
considered here.
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6 Outlook

I conclude with some brief thoughts on research questions left open by this work. The
first regards memory terms. In fact the inclusion of such a term would allow the noise to
hold a dynamically consistent behavior not just with respect to the larger scales, but also
with respect to its own dynamics at previous times. It would be particularly interesting
in case of a dynamically adapted noise covariance, since it would allow to keep track
of its different stages and hence of any trend, if present. It might be argued that the
propagation of the DMD modes by means of the Koopman operator can be seen as
some kind of memory term, but the relation between the two remains unclear at the
moment. Hence more study on the topic is required.

In the discussion section of PII, it is stated that DMD might foster the system towards
tipping points. These points represent critical transitions of the system. When the
system reaches such a point, some of its basic properties may change, for instance stable
solutions may become unstable, or new solutions may appear. If DMD does indeed
support the system towards such points, it would unravel a wide range of applications
ranging from weather forecasting to paleoclimate modeling. Therefore it is a research
direction that deserve further investigations and analyses. As a side comment, this
capability might be further ameliorated by the inclusion of memory terms.

The 2-layer QG model here used is still quite an idealized setting, and not many options
were available as for which variable should be used to compute either the DMD or
the EOF modes. In more realistic models the chosen variable and its relation with the
desired sub-grid process to be modeled will play a crucial role. Teleconnections might
provide some insights, but it might be also case specific.

The projection operator approach is concerned with the conservation of a desired quan-
tity, in this case energy. As mentioned in the introduction, an important problem to be
tackled is the re-injection of energy from the small scales into the large scales. Hence fu-
ture research might see it coupled to a sub-grid energy model, which learns the amount
of energy to be backscattered at each time step.

Finally, a dynamically adapted noise covariance has been tried as applied to just one
particular parameterization. In order to better assess its validity and its pros and cons,
it should be tested also when other stochastic parameterizations are employed.
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