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Abstract

A large class of four dimensional N � 1 theories can be obtained by twisted com-

pactification along a Riemann surface C of six dimensional theories with N � p1, 0q
supersymmetry. When the p1, 0q theory is that of the theory on M5-branes on a

transverse C2{Zk singularity the resulting four dimensional theories are said to be

of class Sk. These are orbifolds of class S theories and as such, much structure is

inherited from the class S mother theory, for which a large number of results have

been computed and understood.

In this thesis we investigate exact results, to which we can obtain, for theories of

class Sk. We describe and define, via the orbifold inheritance structure, Higgs and

Coulomb branches of the moduli space of supersymmetric vacua for theories of class

Sk. This is in contrast to ‘generic’ N � 1 theories where no such distinction can be

made. The Hilbert series for these branches is computed for a variety of examples.

Certain distinguished limits, that would again not exist for generic N � 1 theories,

of the superconformal index are defined and exact results can be written in terms

of a matrix integral. In some cases the integrals can be explicitly performed. The

relation to dimensional deconstruction of N � p1, 1q LST is reviewed and we are able

to match the 1
2 -BPS partition functions of the class Sk theory and the LST, providing

another check of the dimensional deconstruction proposal of Arkani-Hamed, Cohen,

Kaplan, Karch and Motl. Holomorphic N � 1 curves encoding the low energy

superpotential on the Coulomb branch are derived for a variety of class Sk theories,

following the methodology of Seiberg and Intriligator. The N � 1 analogue of

Nekrasov’s partition function of instantons is computed and is matched to WkN

conformal blocks.

We also investigate N � 3 theories that arise from discrete gauging of an en-

hanced discrete symmetry which emerges at strong coupling of N � 4 SYM. We

study their moduli spaces, focusing on the Higgs and Coulomb branches. The

Hilbert series are computed. Moreover, in some cases we can also compute the

superconformal index. We compare some of the properties to the S-fold theories of

Garc̀ıa-Etxebarria and Regalado.

Lastly, BPS-strings in 6d N � p1, 0q SCFTs on R4 � T 2 in the presence of

surfaces defects are examined. The p1, 0q theories in question are the same ones

used to engineer class Sk theories however, in this case, the surface defects lie along

an R2 � R4 as opposed to on the Riemann surface C � T 2 such that we get an

N � 2 theory with a defect upon compactification. The strings wrap the T 2. The



elliptic genus partition function of the strings is computed.



Zusammenfassung

Eine umfangreiche Klasse der vierdimensionalen N � 1 Theorien kann mithilfe

einer getwisteten Kompaktifizierung einer sechsdimensional Theorie mit N � p1, 0q
Supersymmetrie entland einer riemannschen Fläche konstruiert werden. In dem

falle, dass die p1, 0q Theorie einer Theorie auf der transversen C2{Zk Singularität

auf M5-Branen entspricht, wird die resultierende Theorie in vier Dimensionen als der

Klasse Sk zugehörig bezeichnet. Diese Theorien sind Orbifaltigkeiten von Theorien

der Klasse S und dementsprechend wird einiges der Struktur der Muttertheorie, für

die sehr viele Ergebnisse berechnet und verstanden wurden, von der Tochtertheorie

übernommen.

In dieser Dissertation untersuchen wir exakte Resultate von Theorien der Klasse

Sk, soweit wir diese erziehlen könnnen. Unter Anwednung der Vererbungsstruktur

der Orbifaltigkeiten beschreiben und definieren wir den Higgs- sowie den Coulom-

bzweig des Modulraums der supersymmetrischen Vakua der Theorien der Klasse

Sk. Dies steht im Kontrast zu generischen N � 1 Theorien, in denen eine solche

Aufteilung nicht möglich ist. Die Hilbertreihe wird für eine Vielzahl dieser Zweige

beispielhaft berechnet. Einige bedeutende Grenzwerte des superkonformen Indexes,

die für generische N � 1 Theorien ebensowenig existieren würden, werden definiert

und die exakten Ergebnisse können zudem in Matrixintegralen ausgedrückt werden.

In manchen Fällen lassen sich die Integral explizit berechnen. Der Zusammenhang

mit der dimensionalen Dekonstruktion von N � p1, 1q LST wird besprochen und wir

gleichen die 1
2 -BPS Zustandsfunktionen der Theorien der Klasse Sk mit jenen der

LST ab, was einen zusätzlichen Test des dimensionalen Dekonstruktionsvorschlags

von Arkani-Hamed, Cohen, Kaplan, Korch und Motl darstellt. Holomorphe N � 1

Kurven, die das Niederenergiesuperpotential auf dem Coulombzweig kodieren, wer-

den nach der Methodik von Seiberg und Intriligator für einige der Theorien der

Klasse Nk hergeleitet. Das N � 1 Analog der nekrasovschen Zustandsfunktion der

Instantons wird berechnet und mit den konformen WkN Blocks verglichen.

Wir untersuchen des Weiteren N � 3 Theorien, die aus einer diskreten Eichung

einer erhöhten diskreten Symmetrie, die sich aus der starken Kopplung von N � 4

SYM ergibt, entstehen. Wir analysieren deren Modulräume, wobei wir uns auf

den Higgs- und den Coulombzweig fokussieren. Die Hilbertreihe wird berechnet.

Darüber hinaus ist es uns in einigen Fällen m—’oglich auch den superkonformen

Index zu berechnen. Wir vergleichen eine Reihe von Eigenschaften hiervon mit den

S-fold Theorien von Garcia-Etxebarria und Regalado.



Letztlich untersuchen wir BPS-Strings in sechs dimensionalen N � p1, 0q su-
perkonformen Feldtheorien auf R4 � T 2 in der Anwesenheit von Oberflächendefek-
ten. Die betrachteten p1, 0q Theorien sind dieselben wie bei der Konstruktion der
Theorien der Klasse Sk, wobei, in diesem Fall, der Oberflächendefekt, entgegen der
zuvor verwendeten riemannschen Oberfläche C � T 2 entlang eines R2 � R4 liegt,
sodass wir nach der Kompaktifizierung eine N � 2 Theorie mit einem Defekt erhal-
ten. Der String umwickelt den T 2. Die Zustandsfunktion des elliptischen Genus des
Strings wird berechnet.
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Chapter 1

Introduction

1.1 Recent Advances and Exact Results

In recent decades there has been huge interest towards the study and classification

of quantum field theories in various dimensions. One motivation for this study is

the desire to understand the ‘landscape’ of all permissible quantum field theories.

Some regions of this ‘landscape’ are somewhat understood, for example Yang-Mills

theories at high energies (UV). This is largely due to the framework for organising

the perturbation theory introduced by Feynman in the 1940’s. The importance of

perturbation theory cannot be overstressed; high precision tests of the electron g-

factor from the LHC agree with the theoretical predicitions of the standard model up

to 14 digits of precision [7]. Conversely, relatively little is known about about the low

energy (IR) behaviour of such theories because said perturbative techniques breaks

down. This is because because in Yang-Mills theories the coupling is a function of

the energy scale and the coupling is said to ‘run’ with the energy scale. Yang-Mills

theories are weakly coupled in the UV but as we flow to the IR the coupling grows and

non-perturbative phenomena, such as colour confinement and instantons, become

relevant; they are therefore said to be asymptotically free. Indeed, the perturbative

expansion is an asymptotic expansion in the coupling and convergence of the series

requires the inclusion of non-perturbative effects. Moreover, it has become clear that

the landscape of quantum field theories also contains a vast number of theories that

cannot be understood via the standard local Lagrangian/path integral formulation

found in introductory QFT textbooks.

If we restrict our attention to theories with a certain amount of supersymmetry

much more can be understood. This may be seen as a lowering of ambition (all

1



2 INTRODUCTION

though still an incredibly lofty undertaking) because supersymmetry is either yet

to be discovered or may not exist in nature. Nevertheless, supersymmetric theories

offer examples of consistent quantum field theories. Supersymmetric theories are

far from non-trivial and also offer many of the interesting phenomena expected in

non-supersymmetric theories, such as confinement, but in a more constrained and

controllable framework.

Supersymmetry is a fermionic spacetime symmetry which pairs bosons and fermions

together. The presence of this additional symmetry constrains the dynamics of the

theory and can often mean that supersymmetric theories are far more tractable

to study. In comparison to non-supersymmetric theories, where relatively little is

known outside of the perturbative regime, for supersymmetric theories there are by

now a large number of results and many of them will be reviewed and discussed

within this thesis.

As previously discussed, for non-supersymmetric theories, we, so far, have a

rather limited toolkit with which to study such theories; the main tool being per-

turbation theory.1 But, when we restrict our attention to QFTs with some amount

of supersymmetry, we can employ a plethora of new tools with which we can ac-

cess and study non-perturbative effects. An overview of these tools can be found in

[8, 9, 10, 11]. They can often allow us to compute exact results for these theories. In

other words, observables for the theory which are valid even for the non-perturbative

regime. Much of the computation and study of exact results has so far been dedi-

cated to theories with eight or more supercharges, in four dimensions this is N ¥ 2

supersymmetry. Additionally, aided by string/M/F-theoretic techniques, physicists

have been able to construct a vast number of so-called non-Lagrangian theories. As

we previously mentioned they do not admit a path integral description and usually

live as isolated conformal theories. They can nevertheless sometimes be partially un-

derstood using string/M/F-theoretic reasoning and often are related to Lagrangian

theories via strong/weak dualities.

1.2 Seiberg-Witten Theory

In 1994 Seiberg & Witten provided one of the first computations of an exact result in

a four dimensional gauge theory. They were able to compute the low-energy effective

1For very special (highly symmetrical) non-supersymmetric QFTs, such as topological, conformal
or integrable QFTs we have other tools and can often compute some non-perturbative results or
even ‘solve’ the theory.



3

action on the Coulomb branch for four-dimensionalN � 2 gauge theories based upon

a Lie-algebra g [12, 13] with Cartan subalgebra h.2 These theories are comprised

of N � 2 vector multiplets and a collection of hypermultiplets. The on-shell field

content of a N � 2 vector multiplet is the same as for a N � 1 chiral multiplet Φ

(containing a complex scalar φ and complex Weyl fermion ψ), anti-chiral multiplet

Φ and N � 1 vector multiplet V (Weyl fermion λ, anti-Weyl fermion λ and one-form

gauge potential A) all in the adjoint representation of the gauge algebra. The field

content of the hypermultiplet in a representation R `R, for R pseudo-real, is two

half-hypermultiplets pQ, rQq in the representations R and R. A half-hypermultiplet

is a N � 1 chiral multiplet. The decomposition g � `igi, with gi either simple

or up1q, induces the decomposition R � `Ri,a with Ri,a irreducible. The one-loop

beta function associated to the factor gi is then

βi � E
d

dE
gi � � g3

p4πq2 bi , bi � 2h_pgiq �
¸
a

c2pRi,aq
¹
j�i

dimRRj,a . (1.1)

Here h_pgq denotes the dual Coxeter number of g and c2pRq the quadratic Casimir

(Dynkin index) of the representation R.

Due to powerful non-renomalisation theorems [15, 16, 17, 18] this is an exact

statement valid to all orders in perturbation theory. In order for the theory to

be UV-complete we must have that bi ¥ 0. If each bi � 0 then the theory is

(perturbatively) conformal.

Such a theory has a moduli space of supersymmetric vacua M. This is the space

of zero-energy configurations of the theory and is schematically defined as

M :� tφ, q, rq|V pφ, q, rqq � 0u {G , (1.2)

here φ, q, rq denote the scalar components of Φ, Q, rQ, respectively and V pφ, q, rqq de-

notes the scalar potential. The Coulomb branch CB � M for a four dimensional

N � 2 theory is a particular submanifold reached by allowing constant vevs for

xφy � a P h while setting to zero vevs for xQy � x rQy � 0. The Coulomb-branch

is therefore parametrised by the generators ui�1,2,... rank g of the ring of g-invariant

polynomials in the φ and so dimC CB � rank g. By gauge transformation we can

take a to be diagonal and therefore the gauge algebra g is broken down to the sta-

2Their original computations were based off of g � sup2q with Nf � 0, 1, . . . , 4 fundamental
hypermultiplets or a single adjoint hypermultiplet (N � 2�). Over the years this has since been
generalised to a large number of N � 2 theories, see Section 4.5 of [14] for an exhaustive list.
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biliser subalgebra of g with respect to a. This is simply the Cartan subalgebra h � g,

i.e. the Lie algebra of CGpaq. Therefore, in the IR, we will have an abelian gauge

theory based on gauge group exp h � Up1qrank g. Due to N � 2 supersymmetry the

form of the effective action of this theory is highly constrained and depends only on

a single holomorphic function Fpaq called the prepotential [19]. The effective action

in N � 1 language reads

Seff � 1

4π
=
�»

d4θaDi ai �
1

2

»
d2θτijW

i
αW

αj

�
, (1.3)

τijpaq � B2Fpaq
BaiBaj , aDi paq �

BFpaq
Bai , (1.4)

i, j P t1, 2, . . . , rank gu . (1.5)

The task is then to compute Fpaq. The solution of Seiberg-Witten is that the

prepotential is encoded in a pair pXtuiu, λSWq, where Xtuiu denotes a Riemann surface

of genus g ¥ rank g called the Seiberg-Witten curve and λSW a meromorphic one-

form on Xtuiu. There are a family of Riemann surfaces X � tXtuiuu realised as a

fibration over the moduli space of Coulomb branch vacua CB, which is parametrised

by the ui. At a generic point on CB specified by the ui the fiber is Xtuiu and is

given in terms of a polynomial y2 � F px;ui, qq in two auxiliary variables x, y. We

will now sketch the derivation of this result for the case g � sup2q theory without

flavour, as first derived in [12]. The first point is to notice that Seff possesses an

SLp2,Zq S-duality group

SLp2,Zq � xS, T |S4 � 1, pST q3 � 1y � C4 � C3 , (1.6)

where Cn is the cyclic group |Cn| � n and � is the free product. An explicit

realisation is

S �
�

0 1

�1 0

�
, T �

�
1 1

0 1

�
. (1.7)

An element of SLp2,Zq acts on the vector paD aqT in the fundamental representation

while it acts on the effective gauge coupling via fractional linear transformation. In

particular S sends τpaq Ñ τDpaDq � �1{τpaq. In the weak coupling one can easily

see the appearance of non-trivial monodromies. The prepotential is [19]

Fpaq � i

2π
a2 log

a2

Λ2
�

8̧

i�1

ck
Λ4i

a4i
a2 , (1.8)



5

where Λ4 is the holomorphic dynamically generated scale. In the weak coupling

a " Λ and so, (after normalising u � trφ2{Λ2) looping around infinity on the

u-plane u ÞÑ e2πiu means�
aD

a

�
�

�
BF{Ba
a

�
ÑM8

�
aD

a

�
�
�
�1 2

0 �1

��
aD

a

�

�S2T�2

�
aD

a

�
.

(1.9)

Due to the R-symmetry u ÞÑ �u Seiberg and Witten conjectured that the u-plane

has three singular points, at u � 8,�1,�1. The monodromy at u � �1 can be

determined by appealing to the SLp2,Zq duality. By applying an S-transformation

aD becomes the good coordinate in which to write down the effective action in terms

of. Therefore, around the point u � �1, aD is a good coordinate and aD � bpu� 1q
for a constant b. Around this point the one-loop beta function shows τD � � i

π log aD

and so

apuq � �
»
τD daD � apu � 1q � i

π
aD log aD

� apu � 1q � i

π
bpu� 1q logpu� 1q .

(1.10)

The monodromy around u � 1 is therefore�
aD

a

�
ÑM1

�
aD

a

�
�

�
1 0

�2 1

��
aD

a

�
� ST 2S�1

�
aD

a

�
. (1.11)

The monodromy at u � �1 can now easily be computed by demanding

M�1 �M�1
1 M8 . (1.12)

If one supplements M1,M8 with �I (u is invariant under a Ñ �a) then it is not

too hard to show that those matrices generate the group Γp2q � SLp2,Zq where

Γpnq �
#�

a b

c d

�
P SLp2,Zq

�����a, d � 1 mod n , b, c � 0 mod n

+
, (1.13)

is the principal congruence subgroup of level n in SLp2,Zq. The solution of the

model is therefore to specify the the modular curve X � Xp2q � H{Γp2q which can
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be explicitly written down as as the set of a 1-parameter family of curves X � tXuu

Xu : y2 � F px;uq � px� uqpx� 1qpx� 1q . (1.14)

Recall that we have normalised u � trφ2{Λ2. Choosing a basis tA,Bu for the

2 rank g � 2 independent one-cycles the effective action is computed via the integrals

ai �
»
Ai

λSW , aDi �
»
Bi

λSW . (1.15)

See also Appendix D.3 for more information. As pointed out in [13, 20] the Seiberg-

Witten technology may also, in part, be applied to certain theories with only N � 1

supersymmetry. In particular, if the N � 1 theory has a Coulomb phase in which

the effective action is that of an abelian gauge theory the Seiberg-Witten technology

may be applied in order to compute the effective superpotential W . On the other

hand the Käher potential (which is fixed in terms of Fpaq for N � 2 theories,

K � =BaiFai) is left unfixed. We investigate this in Chapter 3.

1.3 Instantons

In the last decades much progress has been made towards understanding the non-

perturbative (exact) aspects of Yang-Mills theories. One particular class of solutions

to the Yang-Mills equations are called instantons. Yang-Mills instantons are, by

definition, solutions of the classical field equations on a Riemannian manifold with

finite action. Reviews of Yang-Mills instantons can be found in [21, 22, 23, 24] while

a more mathematical treatment may be found in [25].

We will consider pure Yang-Mills theory in d � 4 dimensions based on a Lie

algebra g on an orientable Riemannian manifoldM with metric g and volume form

ω P ΩdpMq. This is a theory of vector bundles V ÑM equipped with connection ∇
with curvature F � ad∇∇ P gb Ω2pMq associated to principal G-bundles P ÑM
where G is a connected Lie group of rank r with Lie algebra g. This theory has

action

S � � 1

2g2

»
M

trF ^ �F � � 1

2g2

»
M

trxF, F yω , (1.16)

here � denotes the Hodge star on M. The Yang-Mills equations are then

∇ � F � 0 . (1.17)
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Recalling that �2 � p�1qppd�pq on p-forms we can write

trxF, F y � 1

2
trxF � �F, F � �F y 	 trxF, �F y ¥ 	 trxF, �F y , (1.18)

we therefore have that the action minimising configurations satisfy F � � � F .

In a local trivialisation of V we write ∇ � d � A, A P g b Ω1pMq. We define

a G-framed Yang-Mills instanton as a solution to the (anti-)self-dual Yang-Mills

equations

F � � � F (1.19)

such that A approaches pure gauge at infinity. Using the Bianchi identity∇F � 0 we

can immediately see that any solution to (1.19) automatically solves the Yang-Mills

equations (1.17). In a given instanton bundle such solutions admit a topological

invariant - the instanton number

k �
»
M
c1pF q2 � 1

16π2

»
M

trF ^ F � 1

16π2

»
M

trxF, �F yω P Z . (1.20)

Here the trace is always normalised such that k is integral, c2
1pF q P H4pM, π3pGqq is

the square of the first Chern class and π3pGq � Z for any connected compact simple

Lie group. For generic G,M there may be other topological invariants besides

(1.20), for instance when the second Steifel-Whitney class w2pV q P H2pM,Z2q is

non-trivial there may be G bundles which do not lift to rG bundles where rG denotes

the universal cover of G [26]. For example it was shown in [27] that when G �
SOpnq and M is any 4-complex the associated bundles V are classified by a pair

pw2pV q, c2pF qq. Unless otherwise stated we will specialise to G � SUpNq and M �
R4 (possibly with Ω-deformation parameters ε1, ε2 turned on). Since H1,2,3pR4,Zq
(and also H1,2,3pS4,Zq) are all trivial such bundles are classified by (1.20) alone.

1.3.1 Instanton Moduli Space

We identify solutions to the self-dual instanton equations (1.19) if they are related

by gauge transformations gpxq P G. We therefore have a moduli space M of solu-

tions called instanton moduli space. Because of the topologically invariant instanton

number (1.20) the instanton moduli space formally admits a decomposition

M �
8à
k�1

qkMk . (1.21)
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Mk is called the k-instanton moduli space. The k-instanton moduli space is parametrised

by so-called collective coordinates. To compute its dimension we can consider the

case when the k-instanton solution looks like k 1-instanton solutions who’s centres

are well-separated and then superimpose them while adding corrections to satisfy

(1.19) (assuming that the dimension does not change as we do this). Let us describe

an explicit example, namely the moduli space of one g instanton on M � R4. In

that case collective coordinates are:

• Four parameters labelling the center of the instanton pX1, X2, X3, X4q P R4

• One parameter for the size of the instanton ρ2 P R¥0

• 4h_pgq � 5 embedding parameters sup2q Ñ g of the 1-instanton sup2q solution

into g

Therefore, the dimension of the k-instanton moduli space is dimR Mk � 4kh_pgq.
For the case G � SUpNq andM a general compact 4-manifold the dimension is [28]

dimR Mk � 4Nk � pN2 � 1qχpMq � σpMq
2

. (1.22)

Choosing local coordinates xµ on R4 the solution A � ApXµ, ρ, g, xµq to (1.19) for

G � SUp2q is

Aµdx
µ �

3̧

i�1

ρ2px�Xqνηiνµ
px�Xq2ppx�Xq2 � ρ2qpgpxqσ

igpxq:qdxµ . (1.23)

Explicit solutions for general N are harder to explicitly write down and we will come

back to these in the next subsection.

Denoting the collective coordinates by tXau, a � 1, . . . ,dimR Mk and a solution

A � ApXa, xµq to (1.19). The moduli space inherits a metric h given by

h �
�»

M
tr δaA^ �δbA



dXa b dXb (1.24)

where δaA � BA{BXa. One can also show that h defined this way is hyperKähler.

1.3.2 ADHM Construction

Due to Atiyah, Drinfeld, Hitchin and Manin [29] there is a powerful method to solve

the self-dual Yang-Mills equations for G � SUpNq on R4. The idea is to realise Mk
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as a hyperKähler quotient of a complex vector space. In order to specify a solution

one gives the so-called ADHM data. This is made up of a pair of complex vector

spaces V,W with dimC V � k , dimCW � N and a set of linear maps

B1, B2 : V Ñ V, I : V ÑW, J : W Ñ V. (1.25)

Subject to the ADHM (moment map) equations

µC � rB1, B2s � JI � 0, µR � rB1, B
:
1s � rB2, B

:
2s � JJ: � I:I � 0. (1.26)

Moreover there are natural Upkq : V Ñ V , UpNq : W ÑW actions which act by

pB1, B2, I, Jq ÞÑ pgB1g
:, gB2g

:, Ig:, gJq , g P Upkq (1.27)

pB1, B2, I, Jq ÞÑ pB1, B2, τI, Jτ
:q , τ P UpNq (1.28)

which respects the hyperKähler structure. The moduli space is

Mk,ζ :� tB1, B2, I, J |µC � 0 , µR � ζIku {Upkq . (1.29)

Note that here we have added a non-zero FI-term ζ. Mathematically; allowing for

non-zero ζ, means are actually considering the space obtained from the original

instanton moduli space by a series of blowups (resolutions of singularities) which

are smooth and we consider not only bundles but torsion free sheaves [30, 25, 31,

22, 32, 33]. Physicially this corresponds to studying instantons on non-commutative

R4 [33, 34] defined by

rz1, z1s � rz2, z2s � �ζ
2
, pz1, z2q � px1 � ix2, x3 � ix4q . (1.30)

In practical applications it is often more convenient to instead work holomorphically

with an equivalent form where we drop the real constraint and quotient out by

complexified gauge transformations

�Mk,ζ :� tB1, B2, I, J |µC � 0, stabilitypζqu {GLpk,Cq . (1.31)

The main point of [29] is that they were able to prove that

Mk � Mk,ζ�0 � �Mk,ζ�0 . (1.32)
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To construct the self-dual solutions explicitly we consider the pN � 2kq � 2k matrix

Y �

��� J: I

B:
2 � z:2 �B1 � z1

B:
1 � z:1 B2 � z2

�� . (1.33)

We then have

Y :Y �
�
f�1 µC

µ:C �µR � f�1

�
�

�
f�1 0

0 f�1

�
(1.34)

with f�1 :� JJ:�B2B
:
2�B2z

:
2�B:

2z2�B:
1z1�B1z

:
1� z:1z1� z:2z2 and therefore Y

factorises and is invertible (the inverse is simply Y �1 � fY :). Now, the basis vectors

for the null-space of Y : can be assembled into a pN � 2kq �N matrix U � Upxq

Y :U � 0 , U :U � IN . (1.35)

The k-instanton gauge potential is then given by

A � U : B
BxµUdx

µ . (1.36)

1.3.3 ADHM Construction from Type-II String Theory

For physical purposes one of the most natural ways to view the ADHM construction

is within string theory. String theory can be a powerful tool in understanding the

dynamics of gauge theories. Indeed one of the most important tools that we have

used in Chapter 4 of this thesis is the relationship between the ADHM construction

of instantons and Dpp� 4q-branes [35, 36, 37, 24, 38, 23, 39].

Let us suppose that we have a gauge theory in p � 1 dimensions which can be

embedded within Type-II string theory on R10 as a theory living on the worldvolume

of a stack of N Dp-branes with coordinates X1, . . . , Xp�1. We now further consider

inserting a stack of k Dpp� 4q-branes.

The Type-II string action contains terms of the form

¸
l

»
R10

Cl ^ J10�l (1.37)

with l � 0, 2, 4, 6, 8, 10 for IIB and l � 1, 3, 5, 7, 9 for IIA. Here Cl is the RR l-form

that couples (electrically) to the p10 � lq-form Dpl � 1q-brane current J10�l. The

Dp9� lq-brane is a source for Cl.
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If we take the l � p � 3 term while taking Cp�3 constant over the R10�pp�4q

transverse to the Dpp� 4q-branes we can write»
Rp�1

Cp�3 ^
�»

R9�p

J13�p



� 1

2g2

»
Rp�1

Cp�3 ^ F ^ F

� 8kπ2

g2

»
Rp�3

Cp�3 .

(1.38)

In other words an instanton with topological charge k gives rise to a source for

the RR-form. This is nothing other than the source induced by a Dpp � 4q-brane.

Therefore we have that

|k| (A)SD instantons in a Dp-brane � |k| (anti-)Dpp� 4q-branes . (1.39)

Demanding that Cp�3 constant over the transverse R9�p is equivalent to the state-

ment that the Dpp�4q-branes are confined to live within the Dp-branes. This is the

Higgs-branch of the theory on the Dpp� 4q-branes. Therefore, the moduli space of

k-instantons for the gauge theory living on the Dp-branes, Mk, is isomorphic to the

Higgs branch of the theory living on the Dpp� 4q-branes

Mk � HBk Dpp� 4q (1.40)

�  tφu|Vp�3 � 0 , Xp�2 � Xp�3 � � � � � X10
( {Upkq (1.41)

where tφu collectively denotes all of the scalars of theory on the Higgs branch and

Vp�3 �
° |F |2� 1

2D
2 is the scalar potential of the pp�3q-dimensional theory living on

the worldvolume of the Dpp� 4q-branes. The vanishing of the potential F � D � 0

translate into the ADHM constraints [39, 23] as we will explicitly demonstrate for a

specific example in the next section.

When supersymmetry is present the Higgs branch is protected from quantum

corrections [8] and the fluctuation determinants in the instanton measure cancel

[39, 23, ?]. The action of the theory on the Dpp � 4q-branes is then equivalent to

the action of the theory evaluated on the given instanton configuration. Hence the

partition function of the theory of k Dpp � 4q-branes is then nothing else but the
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partition function of k instantons for the theory living on the Dp-branes

Zkpa, εi, . . . q �
»
Mk

e�S
pkq
instpa,... q (1.42)

� TrHk
p�1qF eaAhA�

°
i εiji (1.43)

� ZextrapεiqZHiggspa, εi, . . . q , (1.44)

where Hk denotes the Hilbert space of the worldvolume theory on k Dpp�4q-branes.

We will more carefully define this quantity in Section 1.4 where we will discuss how

it may also be computed using localisation (see equation (1.74)). The factor Zextra

is often present due to the fact that the theory on the Dpp � 4q-branes provides a

UV completion of the ADHM sigma model [40, 41] and therefore it may contain

extra degrees of freedom which do not appear in the ADHM construction (such as a

non-trivial Coulomb branch) which should be excluded from the instanton calculus.

Those extra degrees of freedom generally decouple from the the ADHM degrees of

freedom and the partition function factorises as above.

1.3.4 Example: ADHM for N � 4 SYM

Let us now demonstrate the power of the string-theoretic realisation of the ADHM

construction. We consider p � 3 with a stack of N D3-branes along X1, X2, X3, X4.

In the low energy limit quantisation of open D3–D3 strings gives rise to the fa-

miliar G � UpNq N � 4 SYM theory. The self-dual instantons are realised as

Dp�1q-branes. The number of supercharges preserved by this brane configuration

is 32{p22q � 8 as required for 1
2 -BPS instantons of N � 4 SYM.

Quantisation of open Dp�1q–Dp�1q strings gives rise to the reduction to zero

dimensions of 4d N � 4 SYM with gauge group Upkq. This has on-shell bosonic

field content as a 4d theory of Aµ�7,8,9,10, z � X1� iX2 rz � X3� iX4, φ � X5� iX6

all in the adjoint representation of upkq.
Dp�1q–D3 strings gives rise to the dimensional reduction of 4d N � 2 hyper-

multiplets pq, rqq in the kbN representation of Upkq�UpNq. The coupling of these

bifundamental hypers to the maximally supersymmetric Upkq theory is fixed by

demanding N � 2 supersymmetry. As a 4d theory the superpotential is

W � qφrq � tr prφ, zsrz �WαW
αq . (1.45)
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The bosonic part of the action reduced to zero dimensions is

Lbos � 1

2
tr
�rXµ, Xνs2 � |rXµ, φs|2 � |rXµ, zs|2 � |rXµ, rzs|2�

� q:XµXµq � rq:XµXµrq �
�� ¸
fPtq,rq,z,rz,φu

tr

�BW
Bf Ff � F 2

f



� h.c.

�
� tr

�
1

2
D2 �D

�rφ, φ:s � rrz, rz:s � rz, z:s � qq: � rq:rq � ζ
�


.

(1.46)

Here we have added Fayet-Iliopoulos parameters ζ1 � ζ2 � � � � � ζk � ζ for Up1qk Ñ
Upkq; without loss of generality for the instanton discussion we may take them to be

all equal since their precise values will not be important, only that they are non-zero.

The F terms are

Fφ � �qrq � rz, rzs , Fq � �φrq , Frq � �qφ , (1.47)

Fz � rφ, rzs , Frz � rφ, zs , (1.48)

and the D-term is

D � �qq: � rq:rq � rz, z:s � rrz, rz:s � rφ, φ:s � ζIk � 0 . (1.49)

As we mentioned in the previous section, to reach the correspondence with instantons

we must move to the Higgs branch of this theory. The Higgs branch is reached by

setting φ � Xµ�7,8,9,10 � 0 while enforcing that the scalar potential vanishes D � 0,

and Ff � 0

HBk Dp�1q � tq, rq, z, rz|Fφ � 0 , D � 0u {Upkq (1.50)

Fφ � �qrq � rz, rzs � 0 , D � �qq: � rq:rq � rz, z:s � rrz, rz:s � ζIk � 0 (1.51)

These are precisely the ADHM equations (1.26)

µC � �Fφ � 0 , µR � ζIk � �D � 0 (1.52)

with z � B1, rz � B2, q � J and rq � I. And therefore we have

HBk Dp�1q � Mk,ζ . (1.53)
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1.4 Partition Functions and Supersymmetric Localisa-

tion

In any quantum mechanical or statistical model a basic quantity one would like to

compute is the partition function. The partition function is a counting device which

counts the number of microstates weighted by fugacities. Formally the canonical

partition function of a thermodynamical system of temperature T and of fixed vol-

ume and number of particles N may be defined as

Zpβ;Nq � Tr e�βH �
»̧
s

e�βEs (1.54)

here H denotes the Hamiltonian and β � 1
kBT

is the conjugate variable to the

Hamiltionian. Tr denotes the summation/integral over all microstates, the space of

all microstates tsu can be discrete/continuous. The partition function is a useful

quantity to compute because it encodes many quantities of the system. In particular,

the probability Ps of the system to be in a microstate of energy Es is given by

Ps � Z�1e�βEs . Then the expectation value of the energy and the entropy are

respectively given by

xEy :�
»̧
s

EsPs � �Bβ logZ , (1.55)

S :� �kB
»̧
s

Ps logPs � kBplogZ � βxEyq . (1.56)

So Z � e�βF with F :� xEy � TS the Helmholtz free energy.

The system of interest may have a set of observables tHiu, rHi, Hjs � 0 of

interest. In those cases one may compute a generalised version of (1.54)

Zpβ1, β2, . . . q � Tr e�
°
i βiHi . (1.57)

Note that the tHiu need not be conserved for the above definition to hold. An

example of this is when the particle number of the system is not fixed. In that case,

the appropriate quantity to compute is the grand partition function

Zpβ, zq � Tr zNe�βH , z � eβµ (1.58)

where N is the particle number operator (which is not conserved) and µ is the
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chemical potential conjugate to N . z is called the fugacity. The grand partition

function may be written as a formal sum

Zpβ, zq �
¸
n

znZpβ;nq (1.59)

where Z is the canonical partition function (1.54).

We are ultimately interested, not in quantum mechanics or statistical systems

but rather, in QFTs. In QFTs it is possible to define a large number of partition

functions by considering placing the QFT on various manifolds. The direct analogue

of the partition function (1.54) is the Euclidean partition function on S1 � R3

Zpβ; S1 � R3q � TrH e
�βH �

»
CpS1�R3q

rDφpτ, ~xqs e�Srφpτ,~xqs , (1.60)

here CpS1 �R3q denotes the space of field configurations on S1 �R3 over which we

choose to integrate. For a theory containing only scalars a sensible choice could be

CpS1 � R3q � tφpτ, ~xq P C8pS1 � R3q|φpτ, ~xq � φpτ � β, ~xq, . . . u (1.61)

here the dots indicate other conditions which we may like to impose (such as certian

integrability conditions, etc). This space is an infinite dimensional Banach space and

it is a theorem that such spaces have no analogue of a Lebesgue measure [42, 43].

In particular the rDφs in the above expression must be carefully defined, indeed

the measure contains essentially all of the quantum physics of the system, we will

come back to discuss this point shortly. Note that in (1.60) β is unrelated to the

temperature (the system is at strictly zero temperature) but rather β is the radius of

the circle. The trace is taken over the Fock space of the theory. Note that the second

equality is only valid when the QFT of interest has a Lagrangian description while

the first equality is valid regardless. Here Z is formally divergent but nevertheless

can be assigned physical meaning after removing the overall infinite constant.

Another useful quantity is the generating function of connected correlators which

is defined for a Lagrangian QFT on a manifold M as

W rJ1, J2, . . . s � log

»
CpMq

rDφs e�Srφs�
°
i

³
M Oi^�Ji (1.62)

here we collectively denote the local operators of the theory by Oi � Oipxq and
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CpMq denotes the space field configurations over which we choose to integrate. Ji

is a source for Oi. Connected correlation functions can then be computed using

x
n¹
j�1

Oij pxjqyconn. � δJi1 . . . δJinW rJ1, J2, . . . s
���
Jj�0

. (1.63)

These are related to the usual correlation functions

x
n¹
j�1

Oij pxjqy �
xx±n

j�1Oij pxjqyy
xx1yy , (1.64)

xxfpφqyy :�
»

CpMq

rDφs e�Srφsfpφq , (1.65)

via,

xxexp

��¹
ij

Oijzij

�yy �¹
nij

exp

��x¹
ij

O
nij
ij
yconn.

¹
ij

z
nij
ij

nij !

� . (1.66)

For a generic interacting QFT partition functions such as (1.60) & (1.62) are gener-

ally very hard to compute exactly and one must resort to evaluating the functional

integrals in a perturbative series. Again, in these cases, a rigorous definition of the

measure rDφs is lacking in all but a few special examples. In some cases of super-

symmetric QFTs it is possible to employ powerful localisation techniques [44, 45]

in order to avoid these issues and compute partition functions and correlators of

certain operators exactly. The basic idea of supersymmetric localisation goes as fol-

lows. Consider a theory with the existence of an anomaly free fermionic symmetry

generator Q such that the action Srφs obeys QSrφs � 0 and Q squares to a collec-

tion of bosonic symmetry generators. Depending on the manifold M upon which

the theory lives, it may or may not be possible to find such a symmetry [46]. We

then consider a deformation to the action by a Q exact term Srφs Ñ Srφs� tQV rφs
where Q2V rφs � 0 and t P R. The partition function is then defined as

Zptq � xx1yyt , xxfpφqyyt :�
»

CpMq

rDφs e�Srφs�tQV rφsfpφq . (1.67)

The point is that, under reasonable assumptions, Zptq and more generally the cor-

relation functions of any operators tOiu obeying QOi � 0 is actually independent
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of the parameter t

d

dt
xx

n¹
j�1

Oijyyt � xxVQ

�
n¹
j�1

Oij

�
yyt � xxQ

�
V

n¹
j�1

Oij

�
yyt � 0 (1.68)

The first term vanishes identically due to QOi � 0 while for the second we assume

that the path integral measure can be defined in such a way that it is Q-invariant.

We therefore have that the result is independent of t and so

xx
n¹
j�1

Oijyyt�0 � xx
n¹
j�1

Oijyyt � lim
tÑ8

»
CpMq

rDφs e�Srφs�tQV rφs
n¹
j�1

Oij . (1.69)

Writing φ � φ0 � t�1{2δφ we can expand the action for large t

Srφs � tQV rφs � Srφ0s � δ2QV rφs
δφ2

����
φ�φ0

pδφq2 �Opt�1{2q . (1.70)

Integrating out the fluctuations by performing the Gaussian integrals over δφ we are

schematically left with

xx
n¹
j�1

Oijyyt �
»

CBPSpMq

rDφ0s e�Srφ0s

SDet
�
δ2QV rφ0s

δφ2
0

� n¹
j�1

Oij |φ�φ0 , (1.71)

and the path integral localises onto a reduced space of field configurations

CBPSpMq � tφ0 P CpMq|QV rφ0s � 0u . (1.72)

In many cases the space CBPSpMq is finite dimensional and the functional inte-

gral (1.69) reduces to a normal integral over a finite number of variables. Note

that this technique bypasses the main two issues we mentioned earlier. Firstly, for

the localisation above, the actual definition of the path integral measure was not re-

quired, one need only that there exists any definition obeying the desired properties.

Moreover, when CBPSpMq is finite dimensional, one may simply use the standard

Lebesgue measure to perform the remaining integrations. Secondly, because of the

reduced space of field configurations, the path integral can sometimes be performed

either exactly or numerically allowing us to extract non-pertubative results about

the theory.
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1.4.1 Nekrasov Partition Function

In [47, 32] Nekrasov was able to give a UV derivation of the results of Seiberg &

Witten. Nekrasov was able to successfully perform the localisation procedure for

(topolgically twisted) N � 2 gauge theories on a deformed version of R4 called the

Ω-background. The Ω-background preserves a Up1q�Up1q � Spinp4q which acts by

Up1q � Up1q : pz1, z2q Ñ peiε1z1, e
iε2z2q ,

z1 � x1 � ix2

z2 � x3 � ix4
. (1.73)

The (anti-)topologically twisted theory [48] in this background preserves atleast a

single scalar supercharge Q. Nekrasov was able to show that the path integral

localises to a set of finite dimensional integrals over (anti-)self-dual instanton moduli

spaces. The partition function is then given by

ZNekpa, q; ε1, ε2q �
¸
k¥0

qk
»
Mk,ζ

e�S
pkq
instpa,... q �

¸
k¥0

qk
»
Mk,ζ

1

� Zpert.pa, q; ε1, ε2q
¸
k¥0

qkZkpa; ε1, ε2q

� Zpert.pa, q; ε1, ε2qZinst.pa, q; ε1, ε2q

(1.74)

here Mk,ζ is (a smooth version of) the moduli space of k framed instantons, which

we have defined and reviewed in Section 1.3. The Zk’s appearing in this quantity are

precisely equal to those we presented in (1.42). The Coulomb branch parameter(s)

a � limxÑ8 φpxq where φpxq is the scalar field in the N � 2 vector multiplet(s).

S
pkq
inst denotes the action of the theory evaluated on the instanton configuration, i.e.

by plugging the k-instanton solution (1.36) into the action S of the theory. For the

topologically twisted theory S
pkq
inst (and likewise S) turns out to be a Q-exact quantity

and is hence cohomologically equivalent to the identity. Finally q is the instanton

counting parameter of the theory. We demonstrate various ways to compute the

Zk’s, in addition to the example that we will shortly present, for various theories in

Chapters 4 and 6 and Appendix I. Nekrasov was able to prove that

Fpa, qq � � lim
ε1,ε2Ñ0

ε1ε2ZNekpa, q; ε1, ε2q (1.75)

where F is the prepotential of the previous section.
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Example: Instanton Counting for 5d N � 1� Theory

Let us perform an example computation of Nekrasov’s computation using the lo-

calisation method. We will perform a slightly more general theory from Nekrasov’s

original computations by considering the 5d gauge theory on S1
β�R4

ε1,ε2 . Taking the

limit that the circle radius β Ñ 0 in the end will return us to the expressions for 4d

theories. For simplicity we will consider the 5d N � 1� theory with gauge algebra

psqupNq. This is the theory of a N � 1 vector multiplet and hypermultiplet in the

adjoint representation of the gauge algebra.

The instanton partition function is computed from equivariant integration over

the moduli space Mk of k pSqUpNq instantons. Mk carries a torus action T :�
T 3
ε1,ε2,m � T pUpNqq ýMk where T pGq denotes a maximal torus of G. The instan-

ton moduli space Mk may be described as an algebraic variety using the ADHM

construction, as we discussed in Section 1.3. Let V,W be vector spaces of dimension

dimC V � k and dimCW � N . Let us introduce linear maps

Bl : V Ñ V , J : W Ñ V , I : V ÑW . (1.76)

for l � 1, 2, 3, 4. The ADHM equations are

µ
p1q
C :� rB1, B2s � rB:

3, B
:
4s � JI , (1.77)

µ
p2q
C :� rB1, B3s � rB:

2, B
:
4s (1.78)

µ
p3q
C :� rB1, B4s � rB:

2, B
:
3s , (1.79)

µR :�
4̧

l�1

rBl, B:
l s � JJ: � I:I . (1.80)

Note that these are slightly modified with respect to (1.26) due to the additional

matter content of the theory. The moduli space is given by

Mk :�
!
Bl , J , I

���µpiqC � µR � 0
)
{Upkq , (1.81)

where the g P Upkq acts by

pBl, J, Iq ÞÑ
�
gBlg

�1, gJ, Ig�1
�
. (1.82)
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The torus action T 3
ε1,ε2,m acts on the ADHM data by

pBl, J, Iq ÞÑ peεlBl, J, e2ε�Iq , (1.83)

where ε3 :� m � ε�, ε4 :� �m � ε� and 2ε� � ε1 � ε2. The fixed points of the

torus action are labelled by N -tuples of Young diagrams ~µ such that |~µ| � k (see

Appendix A.1.4 for our conventions). Choosing bases

W � spanC twI |I � 1, 2, . . . , Nu , (1.84)

V � spanC

!
v
pi,jq
I

���I � 1, 2, . . . , N, s � pi, jq P µI
)
. (1.85)

The torus action T acts by

wI ÞÑ eαIwI , v
pi,jq
I ÞÑ ep1�iqε1�p1�ε2qvpi,jqI . (1.86)

Then

B1v
pi,jq
I � v

pi�1,jq
I , B2v

pi,jq
I � v

pi,j�1q
I , JwI � v

p1,1q
I , (1.87)

I � B3 � B4 � 0 . (1.88)

The tangent space TMk at the fixed point labelled by ~µ is then most conveniently

desribed by the cohomology Ker d2{ Im d1 of the following complex specified by the

data pB1, B2, 0, 0, J, 0q [49, 50, 51, 52]

HompV, V q

HompV, V q b Tε1

`
HompV, V q b Tε2

`
HompW,V q

`
HompV,W q b Tε1 b Tε2

HompV, V q b Tε1 b Tε2
d1 d2

Here

d1pxq �

������
rx,B1s
rx,B2s
xJ

0

����� , d2

������
C1

C2

P

Q

������ rB1, C2s � rC1, B2s � JQ . (1.89)
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The character of the tangent space at fixed point ~µ is given by

χVec
~µ �TrKer d2{ Im d1

eε1Tε1eε2Tε2emTm
N¹
I�1

eαI tI

� �
W �V � e2ε�V �W � p1� eε1qp1� eε2qV �V

�¸
tPZ

e
2πt
r .

(1.90)

Here we abused notation an identified the vector spaces with their characters:

V �
Ņ

I�1

¸
pi,jqPµI

eαI�p1�iqε1�p1�jqε2 , W �
Ņ

I�1

eαI , (1.91)

where the conjugation flips the sign of the exponents. We also added the dressing

by momentum factors along the S1. Using the identity (A.32) it can be shown that

χVec
~µ �

¸
tPZ

e
2πt
r

Ņ

I,J�1

¸
sPµJ

�
eEIJ psq � e2ε��EIJ psq

	
, (1.92)

where,

EIJpsq :� αI � αJ � pµT
J ;j � iqε1 � pµI;i � j � 1qε2 . (1.93)

There is also a contribution from the adjoint hypermultiplet matter which is given

by

χHyp
~µ � �em�ε�χVec

~µ . (1.94)

Writing,

χ~µ :� χVec
~µ � χHyp

~µ , (1.95)

the contribution of the fixed point ~µ to the instanton partition is obtained from the

character by

χ~µ :�
¸
i

nie
wi Ñ z~µ �

¹
i

w�nii . (1.96)

Using the Euler infinite product representation for the sine function (A.21) the

instanton partition function is given by a weighted sum over all possible N -tuples ~µ

Zinst

�
~α,m, ε1, ε2, r, g

2
YM

� �¸
~µ

q|~µ|z~µ p~α,m, ε1, ε2, rq , (1.97)

z~µ p~α,m, ε1, ε2, rq �
N¹

I,J�1

¹
sPµJ

sin rpEIJ psq�m�ε�q
2 sin rpEIJ psq�m�ε�q

2

sin rEIJ psq
2 sin rpEIJ psq�2ε�q

2

, (1.98)
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where q :� e�4π2r{g2
YM � e�2πr{β and 2ε� � ε1�ε2. Note that, pm, ε1, ε2q are periodic

in 2π
r shifts.

1.4.2 Sd Partition Function

Applying the localisation procedure Pestun was able to compute a large number of

exact results for N � 2 gauge theories on the round M � S4 [53]. These results we

generalised to the squashed four-sphere S4
ε1,ε2 in [54] where

S2n
ε1,...,εn :� t~x P R2n�1|x2

1 �
ņ

i�1

ε2i px2
2i � x2

2i�1q � 1u , (1.99)

is the squashed d � 2n-sphere and the round S2n � S2n
1,...,1. These results have been

generalised to other theories for the cases of d � 2, 3, 4, 5 a comprehensive list of

references can be found in [10].

Quantities which lend themselves accessible via localisation are the partition

function, certain correlation functions and expectation values of certain extended

operators, such as Wilson loops. Wilson loops are defined as

W � trR P exp

��¾
C

pi 9xµAµ � | 9x|φq
�� , (1.100)

where P exp denotes the path-ordered exponential. In the Nekrasov form the parti-

tion function for a four dimensional N � 2 theory takes the form [55]

ZS4 �
»
rdas |ZNek.pa, q; ε1, ε2q|2 . (1.101)

It is comprised of two copies of the Nekrasov partition function (1.74), this corre-

sponds to the fact that the S4
ε1,ε2 partition function localises onto self-dual instanton

configurations at the north pole and anti-self-dual configurations at the south pole.

The integration over a is the integration over the scalar zero modes of the vector

muliplet scalars φ. The Ω-deformation parameters ε1,2 play the role of the squashing

parameters of the S4
ε1,ε2 .
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r ε1 ε2 m

Z
p1q
Nek

2π
ω1

ω2 ω3 µ� 3
2ω1

Z
p2q
Nek

2π
ω2

ω3 ω1 µ� 3
2ω2

Z
p3q
Nek

2π
ω3

ω1 ω2 µ� 3
2ω3

Table 1.1: Arguments for the Nekrasov partition functions associated to the three
localisation circles.

Example: N � 1� S5 Partition Function

The S5 partition function of N � 1� with gauge algebra g � upNq can be expressed

as [56, 57, 58, 59, 60, 61]

ZS5 �
»
rdαse

2π2p~α,~αq
βω1ω2ω3

3¹
i�1

Z
piq
Nek

�
~α, µ� 3ωi

2
, ωi�1, ωi�2,

2π

ωi
, 2πβ



, (1.102)

where the index i is taken modulo 3 and p�, �q denotes the standard metric on t�

where t � g is a Cartan subalgebra. The domain of integration is iRN and the

integration measure is given by

rdαs � iN

N !

N¹
I�1

dαI . (1.103)

The partition function is expressed as three copies of the K-theoretic Nekrasov par-

tition function Z
piq
Nekp~α,m, ε1, ε2, r, g2

YMq on S1
r � R4

ε1,ε2 where the radius is r. The

Nekrasov partition function includes both the perturbative and instanton contribu-

tions
Z
piq
Nekp~α,m, ε1, ε2, r, g2

YMq �Zpiq
pertp~α,m, ε1, ε2, rq
� Z

piq
instp~α,m, ε1, ε2, r, g2

YMq.
(1.104)

Each of the three factors corresponds to the fact that the Localisation locus L �²3
i�1 S1

2π{ωi on S5 factorises into three fixed circles of the Up1q3 action (1.120). We

collect all of the perturbative factors Zpert �
±3
i�1 Z

piq
pert. The perturbative piece

factorise into a contribution from the vector multiplet and adjoint hypermultiplet

Zpert p~α, ω1, ω2, ω3, µq � Zvec p~α, ω1, ω2, ω3qZhyp p~α, ω1, ω2, ω3, µq . (1.105)
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They are given by [56, 57, 60]

Zvec p~α, ω1, ω2, ω3, µq �
N¹

I,J�1

S13 pαI � αJ |~ωq , (1.106)

Zhyp p~α, ω1, ω2, ω3, µq �
N¹

I,J�1

1

S3

�
αI � αJ � µ� 3

2 |~ω
� , (1.107)

where S3pz|~ωq is the triple sine function defined in (A.25). The prime indicates that

when I � J the n1 � n2 � n3 � 0 term in the infinite product product of the triple

sine function should be removed. The instanton contribution is given in (1.97).

1.4.3 S1 �Md�1 Partition Function

The localisation procedure can also be applied when the manifold is of the form

M � S1 �Md�1. The partition function for a supersymmetric theory with a

global group symmetry G (which can be also be conformal & spacetime symmetries,

R-symmetries and/or other global or discrete symmetries) with algebra g can be

expressed as a trace [62, 63, 64, 65]

ZS1�Md�1
� e�βECasimirIMd�1

, IMd�1
:� TrMd�1

p�1qF e�βH
rankG¹
i�1

zhii . (1.108)

Here β can be identified with the radius of the S1 and ECasimir is the Casimir energy

of the theory. The trace is taken over the Hilbert space of the theory on Md�1,

F is the fermion number operator and H � tQ,Q:u where Q is a distinguished

supersymmetry generator of the theory. Finally, in analogy with (1.54)-(1.58), the

zi are called fugacities and parametrise the maximal torus pz1, . . . , zrankGq P T pGq
and hi P h � g are elements of the Cartan subalgebra of g and must also commute

rQ, his � 0. In this way the index IMd�1
can be thought of as a mapping from

a supersymmetric QFT onto the group G. When the theory has a Lagrangian de-

scription one can equivalently write (1.107) as a path integral with twisted boundary

conditions around the S1.

IMd�1
counts (with signs) cohomology classes of the distinguished supercharge

Q. For unitary theories H ¥ 0, additionally it is not too difficult to show that

states with H � 0 always come in pairs with opposite values for p�1qF and they

cancel in the trace. Therefore (1.107) receives non-zero contribution only from those

states with H � 0 and IMd�1
is therefore formally independent of β. It is a general
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result due to [65, 48] that partition functions on such manifolds are independent

of continuous deformations of the theory.3 In particular this implies that IMd�1

is independent of the energy scale at which the theory is defined. This fact often

makes these type of partition functions particularly simple to compute since, if the

theory of interest has a region of parameter space in which the theory becomes free,

it is possible to treat the computation of IMd�1
simply as a free field combinatorics

problem.

Of particular importance is the case Md�1 � Sd�1. In this case I :� ISd�1 is

called the supersymmetric index (or superconformal index ) of the theory. This was

first defined and computed in [62, 64] and in-depth reviews of the current state-of-

the-art can be found in [5, 66].

Since I is independent of the energy scale and also because S1 � Sd�1 is confor-

mally equivalent to Rd the quantity I has the interpretation of counting operators

in the CFT (or family of CFT’s if there is a conformal manifold) obtained at the

conformal fixed point of the theory. More formally, the Hilbert space of the theory

on S1 � S3 carries a unitary representation of the superconformal algebra

Hpτq �à
i

nipτqRi (1.109)

where Ri are representations of the superconformal algebra. Note that this Hilbert

space depends on the parameters τ of the theory. Among the representations Ri
some are generic, a.k.a. long representations A while others are non-generic, a.k.a.

short representations S and they contain non-generic states which saturate H ¥
0. By construction, I counts states with H � 0, they must therefore belong to

short representations of the corresponding conformal algebra. In a CFT, the precise

spectrum of short representations can change upon deformation of the theory. When

the unitary bound is saturated a long multiplet A decomposes

A �à
i

Si . (1.110)

By construction I counts the short representations modulo those that can combine

into long representations of the above CFT and the space of those representations

is independent of the continuous parameters of the theory.

3By this we mean, for example, mass parameters mÑ m� δm, coupling constants τ Ñ τ � δτ ,
etc. I.e. those associated to conserved currents (Tµν , jµ, etc). In the case of discrete parameters
the above arguments can be bypassed since they can not be associated to conserved currents.
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The index I then has a formal supercharacter expansion

Ipziq � χHpτqpziq �
¸
i

nipτqχRipziq �
¸

tSu mod recomb.

χSpziq (1.111)

where χRpziq denotes a certain supercharacter of the representation R.

In the following we present two example computations. We provide many other

explicit computations of I for various theories in Chapters 2, 4, 5 and 6.

Example: Index of 4d N � 1 Gauge Theories

To demonstrate let us compute the right-handed superconformal index computed

with respect to rQ 9� of a 4d N � 1 gauge theory with matter with gauge group

U and global flavour symmetry group Y . This contains a vector multiplet in the

adjoint of U and trivial representation of G and a collection of chiral multiplets Φi

in representations Pi of U and Ri of Y . This index can be written as

Ipp, q,yq � Trp�1qF pj1�j2� r
2 q�j1�j2�

r
2 e�βrδ 9�

rankY¹
n�1

yhnn . (1.112)

Here j1, j2 are Cartans for sop4q � sup2q1 ` sup2q2, r is the generator for the N � 1

up1qr R-symmetry. F is the fermion number operators and, by the spin-statistics

theorem, can be taken to be F � 2j1 � 2j2. The superconformal index (1.111)

receives contributions only from those states satisfying

rδ 9� � 2t rQ 9�, rS 9�u � E � 2j2 � 3

2
r � 0 , (1.113)

where E is the conformal energy generator. The single letter contributions of N � 1

chiral multiplets and vector multiplets may be computed by enumerating all letters

with rδ 9� � 0. These are listed in Table 1.2. The single letter contribution of a chiral

multiplet Φ � tφ, ψ, F u and its conjugate Φ � tφ, ψ, F u is given by

iΦpp, qq �
ppqq rΦ2 χPipuqχRipyq � ppqq

2�rΦ
2 χPipuqχRi

pyq
p1� pqp1� qq , (1.114)
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EUV j1 j2 rUV rIR Index

φ 1 0 0 2
3 rΦ ppqqrΦ{2

ψ 9� 3{2 0 �1
2

1
3 �rΦ � 1 �ppqq1�rΦ{2rF 9� 9� 2 0 1 0 0 pq

λ� 3{2 �1
2 0 1 1 �p, �q

Bλ � 0 5{2 0 �1
2 1 1 pq

B� 9� 1 �1
2 �1

2 0 0 p, q

Table 1.2: Letters with δ � 0 of a free chiral multiplet Φ, its conjugate Φ and free
vector multiplet V . For the vector multiplet we must take into account the equation
of motion Bλ � B� 9�λ� � B� 9�λ� � 0.

here, rΦ :� rIRrΦs. Similarly, the single letter contribution for a vector multiplet

V � tλα, λ 9α, Fαβ, rF 9α 9β, D,Du is given by

iV pp, qq � �
�

p

1� p
� q

1� q



χadj.puq . (1.115)

The vector multiplet also comes with an integral over the gauge group (A.61). The

index can then be expressed as a matrix integral

Ipp, q,yq �
¾
dµU puqPE

�
iV pp, qq �

¸
i

iΦipp, qq
�
, (1.116)

here dµU puq denotes the Haar measure of the group U and PE denotes the Plethystic

Exponential, defined in (A.1).

For concreteness, let us write down the index of N � 4 SYM based on gauge

group U � SUpNq. Considered as an N � 1 theory this is the theory of a N � 1

Vector multiplet and three chiral multiplets in the pΦ, Q, rQq in the 3 of the Y �
SUp3q � SUp4q flavour symmetry, the adjoint of U and which all have rIR � rUV �
2{3. The index is therefore explicitly given by

Ipp, q,yq �¾
dµSUpNqpuqPE

�
�p� q � 2pq � ppqq 1

3χ3pyq � ppqq 2
3χ3pyq

p1� pqp1� qq χadj.puq
�

� κ

N !

¾
|uA|�1

N�1¹
A�1

duA
2πiuA

±N
A,B�1

±3
b�1 Γe

�
ppqq 1

3 yb
uA
uB

	
±
A�B Γe

�
uA
uB

	
(1.117)
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The measure dµSUpNq is defined in (A.61), the characters in (A.59), κ � pp; pqN�1pq; qqN�1

and Γe denotes the Elliptic Gamma function (A.22). The fugacities obey
±N
A�1 uA �±3

b�1 yb � 1.

Example: Index of the 6d N � p2, 0q Theory

Let us apply the above disucssion to theories with N � p2, 0q supersymmetry in

six dimensions. This will demonstrate the remarkable power of the supersymmetric

index, because the N � p2, 0q theories have no known Lagrangian description, nev-

ertheless we will still be able to define the index and even compute it explicitly in

certain limits.

The 6d N � p2, 0q theories are strongly coupled, isolated SCFTs and (at the

level of the local operator spectrum) are in one to one correspondence with the

finite subgroups of SUp2q [67, 68, 69, 70, 71, 72, 71, 73, 74]. It is therefore common

to label them of type g � ADE. We will focus on the theory of type g � AN�1.

This theory can be realised as the worldvolume theory on a stack of N parallel and

coincident M5-branes.

The N � p2, 0q superconformal algebra is ospp8|4q. Representations of ospp8|4q
are labelled by the Cartans of the maximal bosonic subalgebra

sop1, 7q ` uspp4q � up1qE ` sop6q ` uspp4q . (1.118)

The Cartans are pE, h1, h2, h3, pR1 � R2q{2, pR1 � R2q{2q, where E corresponds to

dilatations, ph1, h2, h3q to 2-plane rotations in R6 and R1, R2 to sop5q � uspp4q
Cartans. The theory has 16 Poincaré supercharges QR1R2

h1h2h3
with �8h1h2h3 � 2E � 1

and 16 conformal supercharges with �8h1h2h3 � 2E � �1.

We will define the superconformal index with respect to the supercharge Q :�
Q��
��� and its conjugate Q: � Q��

��� which have R1 � R2 � 2E � �2hi � 1 and

R1 �R2 � 2E � �2hi � �1 respectively. The superconformal index is then defined

to be [63, 56, 62, 57, 64, 75]

I pq1, q2, q3, pq � TrS5p�1qF e�βδqh1�R1�R2
2

1 q
h2�R1�R2

2
2 q

h3�R1�R2
2

3 pR2�R1 (1.119)

The trace is taken over the Hilbert space on S5. We also defined

qi :� e�βpai�1q � e�βωi , p :� e�βµ{2 . (1.120)
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Here the ai � ωi � 1 are related to Up1q3 ýC3 corresponding to

pz1, z2, z3q ÞÑ peia1z1, e
ia2z2, e

ia3z3q . (1.121)

The index (1.118) receives contribution only from states satisfying

δ :� 2
 
Q,Q:( � E � h1 � h2 � h3 � 2R1 � 2R2 � 0 . (1.122)

Since (1.118) receives contribution only from states with δ � 0 it is; considered as a

formal power series in the qi & p, independent of β.

Let us now discuss a few useful limits of the N � p2, 0q supersymmetric index.

Firstly, perhaps the most simple limit of the index, is called the 1
2 -BPS limit of the

index. It is given by taking

qi Ñ 0, pÑ 0 with x �
?
q1q2q3

p
held fixed . (1.123)

In this limit the index becomes

I
1
2

-BPSpxq :� lim
qiÑ0
Ipq1, q2, q3,

?
q1q2q3

x
q � Tr1p�1qF xE�R1 . (1.124)

here Tr1 denotes the restriction of TrS5 to states with hi�1,2,3�R2 � 0. I
1
2

-BPS then

receives extra superconformal shortening from the supercharges with δ � E�R1 � 0.

All in all I
1
2

-BPS counts states annihilated by eight supercharges

Q , Q: , Q��
���������

, Q��
���������

. (1.125)

One therefore expects I
1
2

-BPS to be a 1
4 -BPS object, however as we will shortly

demonstrate it is infact a 1
2 -BPS object.

A slightly less restrictive limit is the so-called chiral algebra limit. This is ob-

tained by considering the limit

pÑ
c

q1q2

q3
. (1.126)

The index becomes

ISpq3, sq � I
�
q1, q2, q3,

c
q1q2

q3



� TrS5p�1qF qE�R1

3 sh1�R2 , (1.127)
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where we have defined s � q1{q2. In this limit there is enhanced supersymmetry by

a second supercharge and IS counts states annihilated by

Q , Q: , Q��
��� , Q��

��� . (1.128)

The index, in this limit, can be interpreted as the vacuum character of the associated

chiral algebra on the h3 two-plane [76]. Indeed, using the existence of the chiral

algebra correspondence the authors of [76] were able to provide a conjecture for this

limit of the index

ISpq3, sq � PE

�� ¸
nPexponentspgq

qn�1
3

1� q3

�� , (1.129)

where exponentspgq denotes the set of exponents for the Lie algebra g, for example

exponentspAN�1q � t1, 2, . . . , N � 1u; see also Table 5.2. Having defined the index

for the N � p2, 0q theory we would now like to compute it. However, because very

little is understood about these theories; precisely because there is no Lagrangian

description of them, we are forced to either restrict ourselves to to special cases,

limits as well as ‘indirect’ computation.

Let us begin with the most simple case, which is the free theory.

The Index of the g � up1q Free Tensor Multiplet Since this theory is free

we may use letter counting. The free p2, 0q tensor multiplet contains a scalar φ

in the fundamental representation of sop5q, sixteen chiral fermions λR1R2
h1h2h3

with

8h1h2h3 � �1 and a self-dual threeform H. The free tensor multiplet index can

then be written down as

Ipq1, q2, q3, pq � PE ripq1, q2, q3, pqs . (1.130)

The plethysic exponent i is the single letter index and is computed by enumerating

the single letters, these are listed in Table 1.3. The single letter index is given by

ipq1, q2, q3, pq �
�
p� p�1

�?
q1q2q3 � q1q2 � q1q3 � q2q3 � q1q2q3

p1� q1q p1� q2q p1� q3q . (1.131)

Let us write down the 1
2 -BPS index (1.122) for this theory. The single letter index is

iÑ x this is simply counting the top sop5q component φ � φ1 with pR1, R2q � p1, 0q.
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Letters E h1 h2 h3 R1 R2 ipq1, q2, q3, pq
φ1 2 0 0 0 1 0 p�1?q1q2q3

φ3 2 0 0 0 0 1 p
?
q1q2q3

λ����� 5{2 1{2 1{2 �1{2 1{2 1{2 �q1q2

λ����� 5{2 1{2 �1{2 1{2 1{2 1{2 �q1q3

λ����� 5{2 �1{2 1{2 1{2 1{2 1{2 �q2q3

Bλ � 0 7{2 1{2 1{2 1{2 1{2 1{2 q1q2q3

Bzi�1,2,3 1 1, 0, 0 0, 1, 0 0, 0, 1 0 0 q1, q2, q3

Table 1.3: Letters with δ � 0 of the abelian N � p2, 0q free tensor multiplet.

φ constitutes the entire 1
2 -BPS ring for the up1q p2, 0q theory. The index becomes

I
1
2

-BPS � PErxs � 1

1� x
. (1.132)

The 1
2 -BPS ring for the g � upNq theory (this is the same as the g � AN�1 theory

only with an additional decoupled free up1q tensor multiplet) may be obtained as

the N th symmetric product of the N � 1 case. Therefore, the 1
2 -BPS index can be

obtained as

I
1
2

-BPS � 1

N !

BN
BvN PE

�
v

1� x

�����
v�0

� 1

N !

BN
BvN

8̧

n�0

PE

�
ņ

i�1

xi

�
vn

�����
v�0

� PE

�
Ņ

i�1

xi

�
� px; xq�1

N .

(1.133)

Indeed, the 1
2 -BPS ring is simply given by Crφsg � Crtrφ, trφ2, . . . , trφN s. We can

also discuss the chiral algebra limit for the up1q theory. It is

IS � PE
�
ipq1, q2, q3,

a
q1q2{q3q

�
� PE

�
q3

1� q3

�
� 1

pq3; q3q . (1.134)

This index is simply counting the letters Bnz3φ, i.e. φ and it’s h3-plane descendants.

Large N Limit To compute the index in the large N limit we can appeal to the

AdS/CFT correspondence [77]. The g � AN p2, 0q theory is conjectured to be dual

to M-theory on AdS7 � S4 with N units of four-form flux on S4. In the strict large

N limit the of the dual theory is a gas of free supergravitions in the 11d SUGRA

on AdS7 � S4 [78, 79, 77, 80]. The protected spectrum of the A8 p2, 0q theory is

therefore dual to the former. The full supergravition spectrum is listed in [63] in
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E sop6q sop5q p�1qF
p ¥ 1 2p p0, 0, 0q pp, 0q �
p ¥ 1 2p� 1

2 p1
2 ,

1
2 ,

1
2q p2p�1

2 , 1
2q �

p ¥ 2 2p� 1 p1, 0, 0q pp� 1, 1q �
p ¥ 3 2p� 3

2 p1
2 ,

1
2 ,�1

2q p2p�3
2 , 3

2q �
p � 1 7

2 p1
2 ,

1
2 ,�1

2q p1
2 ,

1
2q �

Table 1.4: AdS6 � S4 supergravition spectrum that contain δ � 0 states.

Table 1.4 we list only those containing δ � 0 states. The primaries of the spectrum

are labelled by E � R1 � 2p, R2 � h1 � h2 � h3 � 0 for p a positive integer. In the

notation of [1] these are D1r0, 0, 0sp
p
2
, p
2
q

2p multiplets. The single particle index is then

simply a formal sum of supercharacters for said representations

is.p.pq1, q2, q3, pq �
8̧

p�1

χ
D1r0,0,0sp

p
2 ,
p
2 q

2p

pq1, q2, q3, pq

� qχ1ppq � q2
°3
i�1pq�1

i � qiq � χ1ppqq3

p1� pqqp1� p�1qqp1� q1qp1� q2qp1� q3q

(1.135)

where q :� pq1q2q3q1{2. The full index is then given by

Ipq1, q2, q3, pq � PEris.p.pq1, q2, q3, pqs . (1.136)

Indeed, if one considers the 1
2 -BPS limit we simply have that is.p. Ñ x

1�x �
°N�8
i�1 xi,

in agreement with (1.132). Moreover, in the chiral algebra limit (1.125) we have

is.p. Ñ q3{p1� q3q2.

Casimir Energy As we wrote in equation (1.107) the superconformal index (1.118)

is expected to be equal to the S1
β � S5 partition function ZS1

β�S5 up to an overall

Casimir energy factor [81, 82, 60, 56], namely,

ZS1
β�S5pq1, q2, q3, pq � e�βEpgqIpq1, q2, q3, pq . (1.137)

It is conjectured that the Casimir energy Epgq is equal to an equivariant integral of

the anomaly polynomial of the N � p2, 0q theory of type g [82]

Epgq � �
»
A8pgq . (1.138)
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For g � up1q (we use this notation to denote the free theory on a single M5-brane)

and g � ADE the anomaly polynomial is respectively given by [83, 84, 85]

A8pup1qq � 1

48

�
p2pNMq � p2pTMq � 1

4
pp1pNMq � p1pTMqq2

�
, (1.139)

A8pgq � rank gA8pup1qq � dim gh_pgqp2pNMq
24

. (1.140)

Here NM and TM denote the normal and tangent bundles to the six-manifold

M � S1 � S5 and pjpV q denotes the jth Pontryagin class of the bundle V . The

integral (1.137) may be promoted to an equivariant integral with respect to the

Up1q4 ýS1 � S5 action [82]

Epup1qq � � �1

16β

� 1

48ω1ω2ω3

��1

8

¹
l1,l2Pt1,�1u

pω1 � l1ω2 � l2ω3q � µ2p2µ2 �
3̧

i�1

ω2
i q
�� ,

(1.141)

Epgq � rank gEpup1qq � dim gh_pgq
�

9
4 � β2µ2

�2

24β
. (1.142)

Relation to the 5d N � 2 SYM So far we have only been able to discuss the

index in a few special cases, primarily the g � up1q, up8q cases. We would like to

have an expression that is valid for any N . To go someway to achieving this it is

possible to appeal to the following conjecture [73, 86, 61, 87, 88, 56, 89, 90]:

Compactification of the theory of type g on a circle with radius β Ñ 0 gives rise

to the 5d N � 2 SYM theory with gauge algebra g. It is conjectured that (atleast at

the level of the BPS spectrum) that the 6d N � p2, 0q theory of type g on S1
β �M5

is equivalent to the 5d N � 2 theory with gauge algebra g and gauge coupling

g2
YM � 2πβ on the compact 5-manifold M5. Roughly speaking, the instantonic

configurations of the 5d SYM should reproduce the Kaluza-Klein modes around the

S1 of the 6d theory.

It is therefore believed that the M5 partition function for the 5d theory should

reproduce the S1
β �M5 partition function for the N � p2, 0q theory. For the case

M5 � S5 with g � up1q, up8q, this conjecture has been supported for [56, 61]

by matching the S5 partition functions to the superconformal index computations
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known from free field theory and AdS/CFT, respectively. In summary,

ZS1
β�M5

p6d p2, 0q of type gq � ZM5

��� 5d N � 2 SYM

gauge algebra � g

g2
YM � 2πβ

�� . (1.143)

For example, let us revist the S5 partition function for the 5d theory that we dis-

cussed in the previous subsection. We want to consider the chiral algebra limit

(1.125) µ � 1
2pω1 � ω2 � ω3q. This has been studied in in [58, 76, 61]. In this limit

one can see that the perturbative piece simply becomes

Zpert

�
~α, ω1, ω2, ω3, ω1 � ω2 � 3

2



�

¹
I¡J

4 sinh
αIJ
ω1

sinh
αIJ
ω2

, (1.144)

with αIJ :� αI � αJ . For the instanton pieces, in this limit, using the periodicity

of the variables, Table 1.1 reduces to that of Table 1.5. From Table 1.5, in the 5d

r ε1 ε2 m

Z
p1q
Nek

2π
ω1

ω2 ω3 2ω1 � ω2�ω3
2 � ω2�ω3

2 � ε�
Z
p2q
Nek

2π
ω2

ω3 ω1 2ω2 � ω1�ω3
2 � ω1�ω3

2 � �ε�
Z
p3q
Nek

2π
ω3

ω1 ω2 ω3 � ω1�ω2
2 � ω1�ω2

2 � ε�

Table 1.5: Unrefined limits of the Nekrasov partition functions.

description, the chiral algebra limits correspond to studying the Instanton partition

function in the cases m � �ε� and ε� � m. In these limits

zµp~α,m � �ε�, ε1, ε2, r, g2
YMq � 0 , (1.145)

zµp~α,m � �ε�, ε1, ε2, r, g2
YMq � 1 . (1.146)

So, in the former cases the partition function gets non-zero contributions only from

the zero instanton sector. In the latter case, the instanton partition function is

simply counting coloured young diagrams with a single fugacity q for the number of

boxes:

Zinst

�
~α,m � ε�, ε1, ε2, r, g2

YM

� �¸
~µ

q|~µ| � q�N{24pq; qq�N � ηpqq�N . (1.147)
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So, in total, in this limit (1.101) becomes

ZS5 � 1

ηpe� 4π2

βω3 qN

»
rdαse

2π2p~α,~αq
βω1ω2ω3

¹
I¡J

2 sin
αI � αJ
ω1

2 sin
αI � αJ
ω2

. (1.148)

This integral was computed in [61] and in total reads

ZS5 � e�βEp�1pupNqq
N¹
I�1

1

pqI3; q3q
� e�βEp�1pupNqq PE

�
Ņ

I�1

qI3
1� q3

�
. (1.149)

We can see that this is in agreement with the chiral algebra limit for the N � 1,8
cases discussed in the preceding subsection aswell as the conjecture coming from the

chiral algebra (1.128).

There are also conjectures stating that a similar correspondence also holds be-

tween 6d N � p1, 0q theories and 5d N � 1 theories. For instance the p1, 0q theory

on N M5-branes on transverse ADE singularities and 5d N � 1 affine ADE shaped

quivers with UpNq gauge groups.

1.5 Hilbert Series and Operator Counting

We now move to describing another type of partition function that will be of interest

in this thesis. The partition function of interest is known as the Hilbert(-Poincaré)

series. In Section 1.2 we have already seen an example of the interplay between

geometry and supersymmetric QFTs. The Hilbert series is a mathematical tool

that can be used firstly to count operators and secondly to better understand the

geometry of the moduli spaces of supersymmetric vacua (1.2). The relevant math-

ematical definitions and theorems about algebraic geometry have been collected in

Appendix B. Mathematical reviews can be found in [91, 92, 93, 94] while physics

oriented reviews can be found in [95, 96, 97].

In this thesis we are mostly interested in four dimensional theories and hence

in this subsection we will mainly focus on four dimensional N � 1 theories. The

computation of the Hilbert series for four dimensional theories often reduces simply

to classical operator counting. This is to be compared to three dimensional N � 2

theories, which in recent years have attracted a lot of attention, where one must

include ‘t Hooft monopole operators which are purely quantum operators that sit in

chiral multiplets.

Let us first review some basic facts about N � 1 supersymmetric gauge theories.
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An in-depth review can be found in [98]. The N � 1 supersymmetry algebra is

an extension of the Poincaré algebra iop4q. The N � 1 supersymmetry algebra

has a bosonic subalgebra iop4q ` up1qr. The Poincaré algebra on Euclidean space is

generated by the standard generators Mµν , Pµ with µ, ν P t1, 2, 3, 4u and up1qr is

generated by r. The generators Qα, rQ 9α have the following relations

rQα,Mµνs � pσµνqβαQβ , r rQ 9α,Mµνs � prσµνq 9α
9β
rQ 9β , (1.150)

rQα, Pµs � r rQ 9α, Pµs � 0 , rr,Qαs � �Qα , rr, rQ 9αs � rQ 9α , (1.151)

tQα, rQ 9αu � 2pσµq 9α
αP

µ , tQα,Qβu � εαβC , t rQ 9α, rQ 9βu � ε 9α 9β rC , (1.152)

C, rC are central elements which, for simplicity, we take to vanish C � rC � 0.

The fields of any N � 1 field theory sit in representations of the above algebra.

The local operator content of an N � 1 gauge theory can be specified in terms of

the following data [99, 100, 101]:

• Gauge group G with lie algebra g � LiepGq in which a vector multiplet sits in

the adjoint representation.

• Representation R of G to which chiral multplets Xi�1,...,dimR belong to.

• G-invariant holomorphic polynomial W pXiq of R-charge rrW s � 2.

The scalar potential is then

V pX,Xq �
dim Ŗ

i�1

|FipXq|2 � g2

2

rank g¸
a�1

DapX,Xq2 . (1.153)

The moduli space of supersymmetric vacua is then

M �
!
Xi, X

i
���V pX,Xq � 0

)
{G �  

Xi
��FjpXq � 0

( {GC :� F{GC , (1.154)

for the second equality we used the fact that M has an equivalent holomorphic de-

scription obtained by dropping the real D-term constraints and quotienting instead

by complexified gauge transformations [102, 103, 104]. F is often referred to as mas-

ter space [105, 106, 96, 107, 108]. F is a complex affine variety written in terms of

the coordinates Xi defined by the vanishing of the F-terms FjpXq P CrX1, X2, . . . s.
Four-dimensional N � 1 supersymmetry implies that M is Kähler [109]. We

can see this by first noting that, almost by construction, M is a complex mani-
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fold with complex structure I � �iσ2, I2 � �1 provided by the supersymmetry

transformations

Q 9αQα

�
<Xi

=Xi

�
� σµ9ααBµI

�
<Xi

=Xi

�
(1.155)

and Kähler metric B2K{BXiBXj
. Note that if the theory in question is an N � 2

supersymmetric theory without vector multiplets (for example the Higgs branch

HB � M of an N � 2 gauge theory) the moduli space (or appropriate subvariety)

is hyperKähler. This is because we now have three complex structures Ipc�1,2,3q

provided by

Qpcq9α Qpcqα

�
<Xi

=Xi

�
� σµ9ααBµIpcq

�
<Xi

=Xi

�
,
Qpcqα � c1Q1

α � c2Q2
α ,

|c1|2 � |c2|2 � 1 .
(1.156)

One can show that pIp1q, Ip2q, Ip3qq � pI, J,Kq satisfy I2 � J2 � K2 � IJK � �1

and thus form a quaternionic algebra; giving the hyperKähler structure.

Directly studying M as an affine variety can often be rather complicated. In-

stead, it is much easier to work with its coordinate ring. The coordinate ring of F

is

F � CrX1, X2, . . . s{I , I � xF1, F2, . . . y � IpFq , (1.157)

here IpVq is the map that associates to an affine variety V � Kn an ideal IpVq �
Krx1, . . . , xns; see (B.8) for the full definition. From F we can easily construct the

coordinate ring of M as

M � pF qG � CrO1,O2, . . . s{Ĩ , (1.158)

pF qG simply means to take the G-invariant polynomials in F . Mathematically speak-

ing the ideal is [110]

Ĩ � Im
�
F

ρÝÑ CrO1,O2, . . . s
	
, (1.159)

where ρ defines a ring map

ρ : CrX1, X2, . . . s Ñ CrO1,O2, . . . s . (1.160)

Under some conditions it is then possible to reconstruct M from M in a one-to-one

fashion, see Appendix B, by the map

M � VpĨq , (1.161)
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where V is defined in (B.9).

Here the Oi span a basis for the gauge invariant polynomials in the Xi, operators

of this type belong to the N � 1 1
2 -BPS chiral ring [111]. This is the scalar sector of

the rQ 91 X rQ 92-Cohomology of the theory4 and consists of local operators satisfying5

rQ 9αOipxq �MµνOipxq � 0 . (1.162)

Note that, from (1.151), one can see that

tQα, rQ 9αu � 2ipσµq 9α
αBµ (1.163)

and therefore spacetime-derivatives of the Oi are rQ 9α-exact. This means that we can

identify Oipxq � Oi as long as we are in the cohomology. Moreover this implies that

the correlation function of a product of chiral operators decomposes into a product

of one-point functions

x
n¹
i�1

Oipxiqy �
n¹
i�1

xOipxiqy �
n¹
i�1

xOiy . (1.164)

These operators therefore have a commutative product

OiOj � OjOi � clijOl � rQ 9αp. . . q 9α , (1.165)

by passing to the rQ 91 X rQ 92-Cohomology it is easy to see that this product satisfies

all of the properties of Definition 1 required in order to have a graded commutative

ring. The grading is provided by the up1qr charge normalised such that it is integral

(for superconformal theories this is always possible).

Let us now move to the main object we wish to compute. This is the Hilbert

series for the ring M . A mathematical treatment of this quantity can be found in

Appendix B.3. For the physical purpose is suffices to write

HSpτ ;Mq :� TrM τE (1.166)

namely we can consider the Hilbert series as a partition function over the moduli

4The full N � 1 1
2
-BPS chiral ring, in the sense of [111], is the one obtained by relaxing the

scalar condition and taking the rQ 91 X rQ 92-Cohomology. This contains glueball operators such as
trWαWβ amongst others.

5Here we are abusing the notation where we now pass to a representation of the algebra as
differential operators on C8pR4q.
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space; it is simply counting all operators parametrising M . For a gauge theory the

general form for the Hilbert series for M � pF qG is then given as an integral over

the Hilbert series for the master-space F

HSpτ ;Mq �
¾
dµGpzqHSpτ, z;F q , (1.167)

here, with respect to (1.165), (B.16) we take E9r with the proportionality fixed

by demanding E ¥ 1 be integral. dµGpzq denotes the Haar measure for the gauge

group G and it projects onto G-invariants. In the case when the polynomials Fj

generating the ideal I � xF1, F2, . . . y (F � R{I) form what is known as a regular

sequence (roughly speaking this is a statement about the algebraic independence

of the Fj , see Definition 14) the Hilbert series HSpτ, z;F q is particularly simple to

compute since one can apply letter counting techniques much like one does for the

computation of the supersymmetric index of the previous section (1.115). In the case

when the Fj do not form a regular sequence the computation generally requires the

use of Gröbner-Bases and one must resort to using an algebraic-geometry computer

package, such as Macaulay2 [112].

Let us see how the above works in practise for gauge theories. We consider a

simple model that will capture many of the ideas we have presented so far within a

few simple examples. The simplest model one can write down is the 4d G � Up1qz
N � 4 SYM theory. In N � 1 notation this theory has three chiral multiplets

X,Y, Z in the adjoint of up1qz and vanishing superpotential W � rX, rY, Zss � 0.

For Up1q this theory is free. Therefore the quotient by GC is trivial and moduli

space is simply

M � F{GLp1,Cq � F � tX,Y, Zu � C3 Ø CrX,Y, Zs . (1.168)

We wrote the Hilbert series for Cn�3 in Appendix B, keeping track of the three

independent gradings for X,Y, Z it reads

HSpτ1, τ2, τ3;CrX,Y, Zsq � 1

p1� τ1qp1� τ2qp1� τ3q . (1.169)

We discuss the Hilbert series for the non-abelian N � 4 SYM theories in Chapter 5.

Another simple model we consider is a Up1q gauge theory with three chiral multiplets

X,Y, Z with superpotential W � XY Z. We give X,Y, Z charges �1,�1, 0 under the

Up1qz gauge group and E � 3
2r � �1,�1,�1 under the R-symmetry. This is similar
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to the previous N � 4 model but now we allow for different Up1qz representations

to appear. The master space is given by

F � tX,Y, Z|XY � XZ � Y Z � 0u Ø F � CrX,Y, Zs
xXY,XZ, Y Zy . (1.170)

The Hilbert series for F can easily be computed using Macaulay2 [112]

HSpτ1, τ2, τ3, z;F q � 1� τ1τ2 � zτ1τ3 � z�1τ2τ3 � 2τ1τ2τ3

p1� zτ1q p1� z�1τ2q p1� τ3q , (1.171)

here we refined the standard expression by keeping track of the powers of X,Y, Z

using τ1, τ2, τ3. One can see the denominator encodes the three generators X,Y, Z of

the ring. Denoting F1 � Y Z, F2 � XZ, F3 � XY the minus signs in the numerator

implements the F -term relations F1 � F2 � F3 � 0 while the term�2τ1τ2τ3 accounts

for the syzygies (relations-between-relations) XF1 � Y F2 � ZF3. The Hilbert series

for M is then given by

HSpτ1, τ2, τ3;Mq �
¾

|z|�1

dz

2πiz
HSpτ1, τ2, τ3, z;F q � 1

1� τ3
, (1.172)

recall that 0 ¤ τi ¤ 1 and therefore only the poles z � 0, τ2 are picked up. The

interpretation of the result is straightforward: the only gauge invariant operators

are those of the form pXY qpZq with p, q ¥ 0 integer. But the F-term F3 � XY � 0

demands p � 0 leaving only arbitrary powers of Z. This implies that M � C. In

Sections 2 & 5 we provide more examples of the Hilbert series applied to a variety

of N ¥ 1 theories in four dimensions.

1.6 Compactifications of Six Dimensional SCFTs

As we have touched upon, over the last decade much effort has be devoted towards

understanding the ‘space’ or ‘landscape’ of all consistent, UV complete, quantum

field theories. It is not clear how to begin to answer, or to even discuss the well-

posedness of, the question. Along the same lines one can ask, for example, what is

the complete set of data which uniquely specifies any QFT? Trying to answer these

types of question for all QFTs is a goal that seems vastly out of reach. However

some progress has been made in understanding ‘subspaces’ of the ‘space’ of all QFTs.

In particular those QFTs with some amount of supersymmetry. See Figure 1.1 for



41

SUSY CFTs

All QFTs

S

4d N � 4 SYM 6d N � p2, 0q

Figure 1.1: Schematic overview of the ‘landscape’ of quantum field theories.

a schematic overview. For example, four dimensional theories with N � 4 super-

symmetry are believed to be completely specified by the following data: pG, τ, tθiuq
where G denotes the gauge group, τ the complexified gauge coupling and tθiu a set

of discrete θ-angle like parameters [26]. This data is an over-parametrisation and

one must also quotient by S-duality [113, 114], see Section 5.2.2.

A more ambitious goal that has been initiated is to classify/construct all possible

four dimensional N � 2 theories [115, 116, 14, 117, 118, 119, 120].

1.6.1 Class S

A particularly useful tool to construct a large class of 4d N � 2 theories has been

via compatification of the 6d N � p2, 0q theories [121, 122]. We discussed these

theories in Section 1.4.3 of this chapter. Again we focus on the theories of AN�1

type; realised as the worldvolume theory of a stack of N parallel and coincident

M5-branes.

The 4d N � 2 theories engineered by compactifying this theory on a Riemann

surface C are said to be of ‘class S’. Note that in order to preserve supersymmetry

we must partially twist the p2, 0q theory. This is achieved as follows. The supercon-

formal algebra is [123, 124]

ospp8�|4q � sop6q ` sop5qR , (1.173)

in particular, the supercharges Q transform in the p4,4q representation of the sub-
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algebra. Because we put the 6d theory on a product manifold R4 � C we decom-

pose sop6q � sop4q ` up1qs. For the purposes of the twisting we also decompose

sop5qR � sup2qR ` up1qr. Under the decomposition sop4q ` up1qs ` sup2qR ` up1qr
the supercharges transform as

Q P p2, 1

2
,2,

1

2
q ` p2, 1

2
,2,�1

2
q ` p2,�1

2
,2,

1

2
q ` p2,�1

2
,2,�1

2
q . (1.174)

The twisting procedure then involves replacing the holonomy algebra with the di-

agonal subgroup up1qs Ñ up1qs1 � up1qr ` up1qs. After the twisting, under sop4q `
sup2qR ` up1qr ` up1qs1 ,

Q P p2,2, 1, 1

2
q ` p2,2, 0,�1

2
q ` p2,2, 0, 1

2
q ` p2,2,�1,�1

2
q , (1.175)

in particular we identify the eight up1qs1 scalar supercharges with the N � 2 su-

percharges. Therefore, protected quantities of the 4d theory are independent of the

choice of metric on C and depend only on the complex structure moduli. More

rigorously, the space of UV gauge couplings is identified with the space of complex

structure deformations E of the underlying surface C. We have an isomorphism

E � TeichpCq{MCGpCq (1.176)

where TeichpCq is the Teichmüller space of C and is parametrised by the same cross

ratios q appearing in the Seiberg-Witten curve. MCGpCq is the mapping class

group of C, in physics terms this is the ‘generalised S-duality group’. Moreover,

the Seiberg-Witten curve for the class S theory is then obtained as a rank g cover

of the underlying Riemann surface Xu
rank g:1ÝÝÝÝÝÑ C. In addition, many protected

quantities, such as partition functions and correlation functions of BPS operators,

in class S SCFTs may be computed as observables of a 2d theory which lives on C
[125, 126]. One manifestation of this 4d/2d relation is that the partition function

on an ellipsoid S4
ε1,ε2 (1.100) is equal to correlators in Liouville/Toda CFT [125,

127]. In particular, the 2d Virasoro/W-algebra conformal blocks are mapped to

Nekrasov’s instanton partition function. Another manifestation of a 4d/2d relation

is the partition function on S3 � S1 (1.107) which can be recast as a correlator of a

2d TQFT living on C [128, 129].

Using the above compactification procedure we can generate an infinite number

of 4d N � 2 theories labelled by compact Riemann surfaces C. These Riemann

surfaces also carry marked punctured, corresponding to inserting a variety (while still
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NN �
. . . . . .

Figure 1.2: N � 2 hypermultiplets in the class S description. The dot represents
the N � pN � 1q � 1 minimal puncture.

N NN �
. . .

0

. . .

8

1 q

Figure 1.3: N � 2 SQCD with Nf � 2N hypermultiplets in the class S description.

preserving eight supercharges) of defect operators of the 6d theory at the punctures.

For the case of g � AN�1 these 1
2 -BPS defect operators are labelled by Young

tableaux [122, 121] with N boxes. The two main punctures that we will discuss are

‘maximal’ punctures labelled by tableaux of type N � 1� 1� � � � � 1 and ‘minimal’

punctures of type N � pN � 1q � 1.

For example, the N � 2 hypermultiplet is obtained by compactification of the

p2, 0q theory on a sphere with a minimal puncture and two maximal punctures, this

is pictured in Figure 1.2. From this basic building block we can construct linear

and affine quivers with n gauge nodes, corresponding to spheres with n� 1 minimal

plus two maximal punctures and tori with n minimal punctures, respectively. For

example, conformal N � 2 Nf � 2N SQCD can be made by gluing two of these

three-punctured spheres together with a tube connecting the punctures, interpreted

as gauging the flavour symmetry. This is pictured in Figure 1.3. The punctures can

be mapped, via conformal transformation, to z � 0, 1, q,8 and q is identified with

the complexified gauge coupling via q � e2πiτYM .

Within this class the majority of theories do not admit known Lagrangian de-

scriptions. Indeed, with generic defect operators inserted, any other type of descrip-

tion of the resulting 4d theory is often lacking. Examples of non-Lagrangian theories

that may be engineered within class S are the so-called TN SCFTs [121]. These cor-

respond to spheres with three maximal punctures. For example, the T3 theory. This
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3 33 �

q Ñ 1���
0 8

z � 1 z � q

2 1T3 � �

0 1

8

Figure 1.4: Description of the T3 �MNpE6q SCFT in class S description.

theory is the same as the rank one E6 SCFT of Minihan and Nemeschansky [130],

T3 � MNpE6q. To find this SCFT we begin with the N � 3, Nf � 2N � 6 su-

perconformal QCD, described in Figure 1.3. According to Argyres-Seiberg duality

[131] in the τYM Ñ 1 region of this theory it admits a dual description in terms

of the MNpE6q SCFT weakly coupled to a single SUp2q hypermultiplet. This is

neatly illustrated within class S as we begin with the four punctured sphere and

consider the limit where we collide the two minimal punctures at z � 1, q together,

see Figure 1.4. These types of manipulations may be used to also find the class S
descriptions of the MNpE7q & MNpE8q SCFTs [132]. Moreover, applying the same

logic new strong-weak dual descriptions are able to be conjectured, see e.g. [8] for

more information on these points.

1.6.2 Class Sk

N � 1 variations of the class S construction have been proposed in [133, 134,

135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146]. The idea is to obtain 4d

N � 1 theories via (twisted) compactification of 6d p1, 0q SCFTs again on punctured

Riemann surfaces C. 1
2 -BPS defect operators of the p1, 0q theory can then be localised

at the punctures on C to create a wide variety of N � 1 theories.

The landscape of 6d p1, 0q SCFTs is far richer than that of p2, 0q theories; in

addition to their respective superconformal symmetries p2, 0q theories can have only

discrete global symmetries while p1, 0q theories can also have continuous flavour

symmetry groups (this is analagous to the difference in the possible 4d N � 4 versus
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N � 2 theories). An F-theoretic classification of p1, 0q theories has been explored in

[147, 148, 149, 150] but a complete field theoretic understanding is currently lacking.

Let us outline the twisting procedure for the p1, 0q theories. The R-symmetry is

now sup2q under which the supercharges are in the fundamental representation and

again in the spinor represenation of sop6q. In this case one chooses a sop4q`up1qs �
sop6q and up1qr1 � sup2qR. Under sop4q ` up1qs ` up1qr1

Q P p2, 1

2
,
1

2
q ` p2, 1

2
,�1

2
q ` p2,�1

2
,
1

2
q ` p2,�1

2
,�1

2
q . (1.177)

Now replacing up1qs Ñ up1qs1 � up1qr1`up1qs we have four up1qs1-scalar supercharges

which are identified with the supercharges of the 4d N � 1 superalgebra.

An interesting subset of 6d p1, 0q theories are those which may be engineered

within M-theory by considering the low energy theory living on N coincident and

parallel M5-branes at the tip of a transverse Γ � ADE singularity. These p1, 0q
theories are orbifolds of the g � AN�1 p2, 0q theory, which we denote by p1, 0qΓ.

4d N � 1 theories obtained in this way are said to lie within ‘class SΓ’ [133, 135].

The 4d theories of type Γ � Ak�1 will be one of the primary subjects of this thesis;

theories of this type will be designated to be that of ‘class Sk’.
In contrast to the p2, 0q theories (who’s 1

2 -BPS defect operators are simply clas-

sified by Young’s tableaux) the permissible defect operators for the p1, 0qΓ theories

have a very complicated classification [135]. Moreover, descriptions of the resulting

4d N � 1 theories upon compactification are currently lacking for all but a few

configurations of punctures.

In [133] the superconformal index was computed for a variety of class Sk theories

and most strikingly it was recast as a correlator of a 2d TQFT establishing the first

2d/4d relation for class Sk. Subsequently, in [151, 152], the index and its TQFT de-

scription was also computed in the presence of 1
2 -BPS surface defects. Additionally,

in [137], SW curves were computed and some of their properties explored. In [153],

guided by the SW curves, the existence of an AGT-like correspondence for the class

Sk, denoted AGTk correspondence, was conjectured. Furthermore, the instanton

partition function was proposed via a relation to WkN conformal blocks.

4d N � 1 Class Sk Quiver Gauge Theories

In this section we review some basic details of the ‘core theories’ in class Sk intro-

duced in [133]. We will mostly follow the notation of [154].
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As we have discussed, we realise the theories in the class Sk as twisted com-

pactifications along a Riemann surface of genus g with ` punctures of the p1, 0qAk�1

SCFT. The 6d theory has a up1qt` supkqβ ` supkqγ global symmetry. The compact-

ifications typically preserve only a Cartan subalgebra up1qt ` up1q`k�1
β ` up1q`k�1

γ

which are ‘intrinsic’ global symmetries carried by all class Sk theories. There is also

the N � 1 up1qr R-symmetry. The punctures carry additional data associated to

inserting a variety of defect operators localised at the punctures in six dimensions

[133, 144, 135], in this paper we will focus only on maximal and minimal punctures.

Maximal punctures are labelled with a colour c P t1, 2, . . . , ku, a sign σ � �1

and an orientation o � l{r. We will label these maximal punctures with the notation

so,σc . Maximal punctures also carry an associated supNq`k flavour symmetry algebra.

Minimal punctures carry a up1q symmetry under which the baryonic operators of the

form detQi, det rQi and det Φi are charged while mesonic operators are uncharged.

The core theories that we will focus on are associated to spheres with ` � 2

minimal punctures and two maximal punctures sl,�cl & sr,�cr with cr � pcl � ` �
2q mod k, and 1

2k unit of flux for Up1qt. These admit a quiver description, as shown

in FIgure 1.8.

This theory admits a weakly coupled Lagrangian description associated to a pair

of pants decomposition of the Riemann surface into a chain of n � 0, 1, . . . , ` � 3

spheres with one minimal puncture and two maximal punctures sl,�cl�n & sr,�cl�n�1.

These three punctured spheres correspond to quiver theories of bifundamental chiral

multiplets called the free trinion and is pictured in Figure 1.5. The maximal punc-

tures of equal colour, opposite orientation and equal sign of the nth and pn � 1qth
three punctured spheres are then glued with tubes associated to spheres with two

maximal punctures sl,�cl�n�1 & sr,�cl�n�1. This gluing corresponds to gauging the diag-

onal supNq`kz � supNq`kzl
` supNq`kzr of the two maximal punctures with free N � 1

vector multiplets and k bifundamental chiral multiplets Φi. This type of gluing

is called Φ-gluing and is pictured in Figure 1.6. This leads to quiver theories of

the type pictured in Figure 1.8. The representations of the fields under the global

symmetries are summarised in Table 2.3 and will be used later.

From these theories it is possible to construct theories associated to tori with `�2

minimal punctures by Φ-gluing the ‘open’ maximal punctures sl,�cl & sr,�cr , these are

Zk�Z`�2 orbifold theories of N � 4 SYM. Unless cr� cl � 0 mod k (or equivilantly

` � 2 mod k � 0) this procedure breaks the up1q`k�1
β ` up1q`k�1

γ symmetry. The

quiver diagram of such theories can be found in Figure 1.7. This leads to quiver

theories of this type shown in Figure 1.7.
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Figure 1.5: Quiver diagram for the free trinion theory of bifundamental chiral multi-
plets, associated to a sphere with one minimal puncture and two maximal punctures
sl,�c and sr,�c�1.
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Figure 1.6: Quiver associated to Φ-gluing.
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Finally, a general Lagrangian theory in class Sk, made using the above ingredi-

ents, associated to a genus g Riemann surface with ` punctures has superpotential

WSk �
3g�3�`¸
n�1

ķ

i�1

tr
� rQpi,n�1qQpi,n�1qΦpi,nq �Qpi�1,nq rQpi,nqΦpi,nq

	
�

3g�3�`¸
n�1

ķ

i�1

τYM,ni

8πi
trWα

niWni,α .

(1.178)

One may also generate other Lagrangian theories associated to spheres with one

minimal puncture and two maximal puncture with a variety of different configura-

tions so,σc by, for example, turning on flux for Up1qt. We will not consider these

theories in this thesis.

Type-II Description

In this section we present the brane setups which we use to ‘engineer’ Lagrangian

theories in class Sk. We begin with the toroidal N � 1 quiver theories in class Sk
which are obtained using Type-IIB string theory with N D3 branes probing a Z`�Zk
orbifold singularity (Table 1.6). They are examples of N � 1 orbifold daughters of

N � 4 SYM [155, 156] and were extensively studied in the early days of AdS/CFT.

After T-duality we land on Type-IIA string theory with N D4 and ` NS5 branes in

the presence of a Zk orbifold singularity, which was used in [133], this is the Hanany-

Witten picture. From the Type-IIA setup we can consider a decoupling limit upon

which we arrive at the ’core theories’ corresponding to spheres with two maximal

punctures and a collection of minimal punctures.

Type-IIB Consider Type-IIB string theory on R4 � R6{Γ with Γ � Z` � Zk with

`, k P Z�. Our goal is to engineer the class Sk theories corresponding to a torus with

` minimal punctures within Type-IIB string theory. Hence, we add a set ofN parallel

and coincident D3 branes along the R4 as described in Table 1.6. We parametrise

the worldvolume of the D3 branes with four real coordinates X1, X2, X3, X4, which

arrange themselves into the vector representation of Spinp4q � SUp2qα � SUp2q 9α.

The Cartans j1, j2, of sup2qα, sup2q 9α are defined such that lower α � 1, 2 have

j1 � �1
2 ,�1

2 and 9α � 91, 92 have j2 � �1
2 ,�1

2 . The R6 � C3 is parametrised by

six real coordinates X5, X6, X7, X8, X9, X10 and the isomorphism is made by the
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X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

N D3 – – – – � � � � � �
A`�1 � � � � � � � � � �
Ak�1 � � � � � � � � � �

Table 1.6: Type-IIB setup engineering Lagrangian 4d SCFTs in class Sk.

choice of arrangement into the complex coordinates

z1 :� X5 � iX6

?
2

� Φ|θ�0, z2 :� X7 � iX10

?
2

� Q|θ�0, (1.179)

z3 :� X8 � iX9

?
2

� rQ|θ�0 (1.180)

and their hermitian conjugates. The orbifold Γ acts on those coordinates (1.178) as

pz1, z2, z3q ÞÑ pωkz1, ω`z2, ω
�1
` ω�1

k z3q , ωkk � ω`` � 1 . (1.181)

Before the orbifold action, fundamental strings stretching between D3 branes give

rise to the SUpNq N � 4 SYM theory on their worldvolume; with R-symmetry

Spinp6qR � SUp4qR, the rotation group of the transverse R6. In N � 1 superspace

the theory contains a vector multiplet V and three chiral superfields in the adjoint

of the gauge group:
�

Φ, Q, rQ	 transforming in the 3 of SUp3qR � SUp4qR. The

superpotential is given by

WN�4 � tr ΦrQ, rQs � τYM
8πi

trWαWα . (1.182)

The chiral superfields are identified with transverse coordinates (1.178) hence the

action of Γ on C3 lies diagonally inside SUp3qR in the form

M :�

���ωk 0 0

0 ω` 0

0 0 ω�1
` ω�1

k

��P SUp3qR . (1.183)

Note that Γ also has an action inside the gauge group, SUpNq [157]. Its action can

be conjugated to an element h of the maximal torus T pSUpNqq � Up1qN�1. After

scaling N Ñ |Γ|N � `kN this action breaks GÑ±`
n�1

±k
i�1 SUpNniq specified by

a partition of `kN � °
n,iNni into `k integers. Note we always take the orbifold

indices to be n,m � 1, . . . , ` and i, j � 1, . . . , k and we impose orbifold periodicity
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n � n� `, i � i� k. To obtain the correct SCFT in class Sk; we choose the action

of Γ such that Nni � N for all n, i. Hence h may be written as

h � diag
�
ω`ω

�1
k I, . . . , ω`ω�kk I, . . . , ω``ω

�1
k I, . . . , ω``ω

�k
k I

	
(1.184)

where I denotes the N �N identity matrix. Quotienting by Γ imposes the identifi-

cations

V � h:Vh ,

���Φ

QrQ
���M

���h
:Φh
h:Qh
h: rQh

�� . (1.185)

After performing these identifications the resulting theory is an N � 1 torodial

quiver gauge theory with gauge group SU pNq`k and superpotential given by (1.177).

The fields now transform as Φpn,iq P pNni, Nnpi�1qq, Qpn,iq P pNni, N pn�1qiq andrQpn,iq P pNnpi�1q, N pn�1qiq under the gauge group
±
n,i SUpNniq � SU pNq`k. We

summarise the field content in the quiver diagram of Figure 1.7. Horizontal lines

between node pi, nq and pi, n � 1q denote Qpi,nq fields. Vertical lines between node

pi, nq and pi � 1, nq denote Φpi,nq fields. Diagonal lines between pi � 1, n � 1q and

pi, nq denote rQpi,nq fields. See also Section 2.2. The quiver should be periodically

identified in both directions, such that it has the topology of a tessellation of the

torus. The individual couplings for each gauge node g2
YM,ni are given by integration

of a non-zero B-field flux over the two-cycles Cni of the space obtained by resolving

the C3{Γ singularities »
Cni

B � 4π2

g2
YM,ni

,
¸
n,i

1

g2
YM,ni

� 1

g2
YM

. (1.186)

These are precisely the same class of N � 1 SCFTs which we expect to describe, at

low energies, the 4d theory obtained by placing N M5-branes at the tip of an Ak�1

singularity), compactified on T 2 with ` punctures and complex structure τYM �
4πi
g2
YM

� θ
2π [133].

Type-IIA By performing a T-duality along, say, X7 to the setup of Table 1.6 we

may obtain the Hanany-Witten description of the above class Sk theories in Type-

IIA as described in [133]. To perform the T-duality we may partially resolve the

C3{Γ singularity. Resolving the A`�1 singularity gives rise to an ALE space which
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p1, 1q p1, 2q p1, 3q p1, 4q p1, 5q

p2, 1q p2, 2q p2, 3q p2, 4q p2, 5q

p3, 1q p3, 2q p3, 3q p3, 4q p3, 5q

Figure 1.7: Section of the quiver diagram of the Zk � Z` orbifold theory of N � 4
SYM. Circular nodes denote pSqUpNq vector multiplets and directed arrows denote
chiral multiplets.

is equivalent to the λÑ8 limit of the `-centred Taub-Nut space TN` with metric

ds2 � V �1
�
dΘ� ~A � d~x

	2
� V d~x2, V �

`̧

n�1

1

|~x� ~xn| �
1

λ2
(1.187)

subject to the condition ~∇V � �~∇ � ~A. The underlying geometry is that of an

S1 fibered over an R3 base. To perform the T-duality we hence replace C3{Γ by

pC� TN`q {Zk where C is parametrised by z1, z1 and TN` is parametrised by Θ �
X7, ~x � �

X8, X9, X10
�
. We may then T-dualise along the TN` circle (which is

invariant under the Zk action). We hence obtain the Hanany-Witten description

shown in Table 1.7. Under the T-duality the ` centers of TN` become ` NS5-branes

fixed at positions Θn and ~xn in the transverse directions.

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

N D4 – – – – � � – � � �
` NS5 – – – – – – � � � �
Ak�1 � � � � � � � � � �

Table 1.7: The Type-IIA setup obtained by a T-duality along X7 to Table 1.6.

By performing a decoupling limit τ`i � 0 we can ‘open’ the quiver and arrive at the

theories corresponding to a sphere with `� 2 minimal punctures and two maximal

punctures. This corresponds to replacing the S1 parametrised by X7 with a finite



52 INTRODUCTION

p1, 1q p1, 2q p1, 3q p1, 4q p1, 5q

p2, 1q p2, 2q p2, 3q p2, 4q p2, 5q

p3, 1q p3, 2q p3, 3q p3, 4q p3, 5q

Figure 1.8: Open quiver corresponding to a sphere with two maximal punctures and
` � 2 � 4 minimal punctures. The quiver is still periodically identified in the ‘k’-
direction.

interval and terminating the open NS5-branes with D6-branes. This gives quivers

of the type shown in Figure 1.8.

1.7 Thesis Overview

This thesis begins a programme towards the computation of exact results for N � 1

supersymmetric theories in four dimensions, particularly those of class Sk.
In Chapter 2 we analyse the moduli spaces M of theories of class Sk. In particular

we demonstrate that N � 1 analogues of Higgs and Coulomb branches may be

defined. This definition relies on the orbifold structure. As for N � 2 theories these

branches often have special properties, making them particularly nice to study. For

example, the Coulomb branch chiral ring is freely generated [154]. The main tool

that we use to characterise these branches is the Hilbert series. We compute the

Hilbert series for a variety of theories in class Sk. In some cases the Hilbert series

for the Higgs branch is equal to a certain limit of the superconformal index which,

in N � 2 nomenclature, we refer to as the Hall-Littlewood index.

In Chapter 3 we focus on the Coulomb branch for certain theories within class Sk.
Following Seiberg and Intriligator [20] we derive the N � 1 holomorphic curves that

encode the low energy superpotential for theory on the Coulomb branch. The curves

contain information regarding the effective coupling matrix as well as potentially

knowing about various dualities, as for class S theories [121].



53

Chapter 4 is dedicated to instantons in a certain subset of class Sk. These

theories are those living on a stack of N D3-branes on transverse C3{pZk � Z`q in

Type-IIB sring theory. Using the correspondence between instantons and Dp�1q-
branes we describe the ADHM construction for these theories as a matrix model. We

then compute the partition function of this matrix model. This partition function

is identified with the partition function over instanton configurations for this N � 1

gauge theory; the analogue of the Nekrasov partition function. This computation is

performed by uplifting the matrix model to a two dimensional gauge theory in the

presence of a defect; the Elliptic genus (2d supersymmetric index) of the 2d theory

with defect is computed. The matrix model partition function is then obtained as

the zero area limit of the Elliptic genus. This partition function is then identified

with conformal blocks of the WkN algebra, verifying a conjecture given in [153].

In Chapter 5 we change our attention to four dimensional N � 3 theories.

This is motivated by the recent discovery [158] of genuine N � 3 supersymmetric

theories engineered using a special quotient geometry within F-theory dubbed S-

fold. The existence of yet more new N � 3 theories was conjectured in [159], by

means of gauging a discrete symmetry of N � 4 that emerges at strong coupling.

These constructions bypasses the no-go theorems stating that every CPT-complete

N � 3 theory automatically enhances to N � 4 supersymmetry; by means of the

theories having no Lagrangian description. We focus out attention on the theories

constructed as in [159] and their higher rank generalisations. We review the details

regarding both the construction of these theories as well as their various universal

properties. We then focus on the computation of two type of exact results for these

theories; being the Coulomb limit of the supersymmetric index and the Hilbert

series for the Higgs branch. These quantities encode several important features of

the moduli space of supersymmetric vacua for these theories. In certain special cases

we are also able to compute the fully refined supersymmetric index.

Chapter 6 is dedicated to 1
2 -BPS defects in six dimensional N � p1, 0q SCFTs.

The SCFTs that we focus on, when compactified on a punctured Riemann surface

C, are precisely those which give rise to theories of class Sk, namely the p1, 0qAk�1

theories of type g � AN�1. The 1
2 -BPS defects are amongst those which may be

inserted at the punctures to engineer various Sk theories. In this chapter we focus on

the self-dual (tensionless) strings of the 6d theories in the presence of the defect. In

the class Sk picture wrapping these strings on C gives rise to point-like BPS states

in the 4d theory. The strings admit a dual effective 2d-gauge theory description

living on their worldvolume. We describe this gauge theory and compute its Elliptic
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genus. These strings provide the main contribution to the T 2 � R4 BPS-partition

function for the 6d theory and it can be written in a expansion over Elliptic genera.

We also perform a similar computation for the supersymmetric index of 5d N � 1

theories in the presence of defects.

Appendix A collects the various definitions, identities and special functions used

throughout the thesis. Appendix B provides a mathematical overview of the relevant

statements & theorems algebraic geometry that are necessary to understand affine

varieties, coordinate rings and Hilbert series. Appendices C-G are chapter specific

appendices. Appendix H provides additional details regarding the relationship be-

tween the Hall-Littlewood index and the Higgs branch Hilbert series for theories

of class S. Finally, Appendix I contains a generalisation of the ramified instanton

counting performed in Section 6.



Chapter 2

The Higgs and Coulomb

Branches of Theories of Class Sk

The work in this chapter is based on [160].

2.1 Introduction

We have seen that supersymmetric theories have a moduli space M (1.153) of super-

symmetric vacua parametrised by vevs for gauge invariant, scalar, chiral operators.

Moreover, for theories with eight or more supercharges we can define two interesting

sub-branches of M, namely the Coulomb branch CB (in which the gauge group is

typically broken to an abelian subgroup G Ñ Up1qdimCB) and the Higgs branch

HB (in which the gauge group is typically completely broken G Ñ t1u). For con-

creteness let us specialise to four dimensions. Then the Coulomb branch is reached

by allowing the scalars Φ in vector multiplets to acquire vevs while setting to zero

hypermultiplet vevs pQ, rQq, hence the operators on CB satisfy E � �rN�2 and

RN�2 � 0. On the other hand the Higgs branch is reached by the opposite; setting

φ � 0 while allowing pQ, rQq to be non-zero, these have rN�2 � 0 and E � 2RN�2.

As we have seen, HB defined in this way turns out to be a hyperKähler manifold.

Now, for generic 4d N � 1 theories, there is typically no sensible definition for

analogues of CB and HB. This is because, with only N � 1 supersymmetry, there

is only one type of chiral multiplet who’s lowest components is a scalar, whereas

for N � 2 there are two (vector multiplets and hypermultiplets). Put another way,

N � 2 supersymmetry has a rank psup2qRN�2
` up1qrN�2q � 2 R-symmetry algebra

with which to select operators; N � 1 theories have only rank up1qr � 1.

55
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As we will show in this chapter, if we consider a class of non-generic N � 1

theories; namely those of class Sk, it is possible to define analogues of CB and HB.

Because theories of class Sk arise as orbifolds of N � 2 theories we can exploit the

orbifold structure to define them.

2.2 Moduli Space of Supersymmetric Vacua

Gauge theories with N � 1 supersymmetry can often have a moduli space of su-

persymmetric vacua M given by the space of solutions to the F-term and D-term

constraints modulo gauge transformations by gauge group G. It is well known [104],

at the level of the moduli space, that setting the D-terms to zero and modding out

by G is equivalent to dropping the D-term constraints and modding out by com-

plexified gauge transformations GC. Therefore the moduli space can be described by

the following symplectic quotient between the master space F and the complexified

gauge group

M � F{GC , F � tpv1, v2, . . . q|F1 � F2 � � � � � 0u , (2.1)

here vi denotes the scalar vevs and Fi � BW {Bvi are the F-term constraints, where

W is the superpotential. F is a complex algebraic variety. It can be characterised

in terms of a quotient ring R{I where R � Crv1, v2, . . . s is the polynomial ring in

the vi and I � xF1, F2, . . . y is the ideal generated by the F-terms (see Appendix B

for more details regarding the algebra-geometry dictionary) .

In generic N � 1 gauge theories, the superpotential can receive quantum correc-

tions up to 1-loop in perturbation theory, or from non-perturbative effects encoded

in Wn.p.; for example the ADS-superpotential [161]. The full superpotential can

then be written as

W �WClassical �W1-loop �Wn.p. . (2.2)

The definition (2.1) can also be applied to define the moduli space of the classical

theory

MClassical � FClassical{GC , (2.3)

FClassical �
"
pv1, v2, . . . q

����BWClassical

Bv1
� BWClassical

Bv2
� 0

*
. (2.4)

In general M �� MClassical.
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2.2.1 The Moduli Space M and its Branches

In [96] and [162, 105, 106] the moduli spaces of a large class of 4d N ¥ 1 have

been studied. The authors of these articles considered QFTs living on a stack of

N D3-branes with transverse space X a Calabi-Yau three-fold. They focused their

attention on the IR physics of this system, where all the abelian symmetry decouples

and the gauge symmetry is completely non-Abelian. Therefore all the abelian factors

are not gauged and appear only as global symmetry of the QFT taken into account.

In general the full moduli space M can have several branches, such as mesonic

and baryonic branches or Coulomb and Higgs branches. Moreover these branches

do not necessarily appear as irreducible components of the full moduli space but

in general could be non-trivially merged into each other. Nevertheless, even if in

general the baryonic and the mesonic branch are mixed, it is still makes sense to

define the mesonic moduli space mesM as a sub-branch of M.

In order to do this, following [96], let’s begin considering the case of just one

D3-brane probing the Calabi-Yau three-fold X . The corresponding IR theory is

free, therefore the moduli space M coincides with the master space F. The mesonic

moduli space is obtained imposing the Up1qD D-term constraints. It is given by the

symplectic quotient
mesM :� M{{Up1qD . (2.5)

From a physical point of view the above quotient corresponds to eliminating from the

spectrum all the gauge invariants operators that are charged under the set of Up1qD
symmetries. Therefore the branches that are eliminated taking the above quotient

correspond to baryonic directions. Clearly, for the case of just one D3-brane, it’s not

possible to talk about baryons and the above directions are interpreted as turning

on VEVs for Fayet-Iliopoulos background fields.

For the N � 1 case of a single D3-brane the mesonic moduli space is simply

the Calabi-Yau itself mesM � X . The N ¡ 1 result is then obtained as the N th-

symmetric product of the N � 1 case [163], i.e.

mesM � SymN pX q . (2.6)

The approach used in [96] is based on the so called geometry-algebra dictionary. One

of the main outcomes is that, at least for the N � 1 case, the master space always

has an irreducible component that turns out to be a mesonic branch. Moreover,

on this branch, the scalar fields arising from all N � 1 chiral multiplet can have a
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Up1q Up1q

Q1, Q2

rQ1, rQ2

Φ1 Φ2

Figure 2.1: Quiver for the X � C2{Z2 � C theory.

non-trivial VEV.

This algebraic approach has the advantage of providing a systematic procedure

to decompose the master space of a theory into irreducible components. However,

from our perspective, this procedure suffers of two main limitations:

• The decomposition of the master space F into irreducible components does

not necessarily provide a decomposition of the moduli space M into irreducible

components (an irreducible decomposition of F does not necessarily descend

to one for the quotient F{GC).

• The decomposition of the master space does not necessarily provide a clear

identification of the Higgs branch and Coulomb branch of the theory as defined

in Section 2.2.2.

An Example: X � C� C2{Z2 Theory

In order to exemplify the above statements and see how the algebraic procedure

works let’s review the X � C � C2{Z2 theory. This theory has enhanced N � 2

supersymmetry. The quiver diagram for this theory can be found in Figure 2.1. The

corresponding superpotential reads

W � Φ1pQ1
rQ1 �Q2

rQ2q � Φ2p rQ2Q2 � rQ1Q1q . (2.7)

After primary decomposition the F-terms ideal can be rewritten as

I � J1 X J2 , J1 � xΦ1 � Φ2, Q1
rQ1 �Q2

rQ2y , J2 � xQ1, Q2, rQ1, rQ2y , (2.8)

one can check that J1, J2 are prime ideals. Therefore the master space F reads

F � VpJ1q YVpJ2q , (2.9)
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where V is the map that associates to each prime ideal J the corresponding irre-

ducible variety VpJq, defined in (B.9). VpJ1q � C�C, is a the trivial bundle between

a conifold (parametrized by tQi�1,2, rQi�1,2u) and a C-line (defined by Φ1 � Φ2). On

the other hand VpJ2q is a C2 space parametrized by tΦ1,Φ2u. Let’s now consider the

moduli space M. After integration over the gauge group we observe that the variety

VpJ1q becomes C2{Z2 �C, where we can take the factor C2{Z2 to be parametrized

by the gauge invariant combinations tx � Q1
rQ1, y � Q1

rQ2, z � Q2
rQ1u that sat-

isfy the relation x2 � yz. On the other hand the C-line factor is parametrized by

v � Φ1 � Φ2. While the second variety VpJ2q does not change after the projection

to gauge invariant operators. Therefore mesM is given by the union of two branches

that intersect in a non-trivial way. Therefore, even in this simple N � 2 example,

there is not a clear separation between the Higgs branch (where only the scalars

inside the N � 2 hypermultiplets are taking a VEV) and Coulomb branch of the

theory (that is parametrized by the VEV of the scalars inside the N � 2 vector

multiplet).

Therefore in this chapater we plan to provide a definition of the Higgs branch

of a particular class of N � 1 theories without refering to the algebra-geometry

dictionary. We will then outline the relation between the Higgs branch and the the

mesonic branch (2.5), at least in the case of the abelian theories discussed in [96].

2.2.2 Higgs and Coulomb Branches for Class Sk

Now let us specialise our discussion to theories in Class Sk. The full moduli space

for these theories is typically very rich. They share many similarities with N � 2

theories, in particular they possess Coulomb, Higgs and mixed phases. On the other

hand our ‘core theories’ (see Section 1.6.2) possess the nice property that their

quantum moduli space M (2.1) coincides with the classial moduli space MClassical

(2.3) in the sense that, althought there may be dependence on the quantum scale

Λ it is possible always to find an isomorphism M � MClassical. This can be seen as

follows: from the point of view of the pi, nqth gauge node, see the quivers diagrams

of Figures 1.8 & 1.7, the theory is SQCD with Nf � 3Nc. It is known that the

quantum moduli space of SQCD with Nf ¥ Nc � 1 coincides with the classical one

[164]. Therefore we have

M � MClassical , (2.10)

this also follows for all sub-branches, hence from now on we will refer only to M.

The Coulomb moduli spaces of these theories have been studied in [137, 154].
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Here we will mainly focus on two truncations of the full moduli space which, in

N � 2 nomenclature, we will refer to as Higgs and Coulomb branches.

The Higgs Branch

Let us first present the definition for the Higgs branch for theories of class Sk. This

definition is valid for theories either with a Lagrangian description or those related

to theories with a Lagrangian description by dualities and can be made by restricting

to scalar operators that have

E � 2RN�2 � r � 2qt
3
, rN�2 � 2qt

3
� r

2
� 0 , (2.11)

where qt and r denote the generators of the up1qt and N � 1 up1qr R-symmetry

respectively. Provided that the R-symmetry is not broken (which is true for any

N � 1 SCFT) and that up1qt is also non-broken we can always decompose the ring

R under the up1qr ` up1qt grading.

For our basic core theories corresponding to spheres with two maximal and a

collection of minimal punctures (obtained by Φ-gluing collections of three punctured

spheres) this definition coincides with turning on generic diagonal vevs for scalars

in the chiral multiplets associated to the free trinion while setting to zero vevs for

the scalars in the chiral multiplets coming from Φ-gluing. Those choices of vevs

completely breaks the SUpNq gauge symmetry at each node. Hence, we refer to this

sub-branch of M as the Higgs branch

HB � FH{GC , FH �
!
Qpi,nq, rQpi,nq

���Fpj,mq � 0
)
. (2.12)

whereQpi,nq, rQpi,nq are those scalar vevs of the theory which have rN�2 � 0. The only

non-trivial F-terms in a Lagrangian theory using the building blocks we described

in Section 1.6.2 associated to a Riemann surface of genus g with ` punctures on this

branch are therefore just Fpi,nq � BWSk{BΦpi,nq where WSk is given in (1.177). The

space HB is a Kähler manifold, as we have explained in Section 1.5.

The coordinate ring of FH can be described as the quotient ring FH � RH{IH
where

RH � CrQpi,nq, rQpi,nqs , (2.13)

IH � xFp1,1q, . . . , Fpk,1q, . . . , Fp1,3g�3�`q, . . . , Fpk,3g�3�`qy . (2.14)
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The coordinate ring HB of HB is given by taking the G-invariant polynomials

HB � pRH{IHqG.

We are now in a position to define the Higgs branch Hilbert series for our class

Sk theories. The grading on the ring RH can be paramterised by a fugacity τ for

the generator E � 2qt � 3
2r, from the conditions (2.11), as well as the fugacities

for Up1qk�1
β � Up1qk�1

γ and any other global symmetries. The Higgs branch Hilbert

series is then defined to be [107, 108]

HSpτ ;HBq :� TrHB τ
Ee�J , (2.15)

where TrHB denotes the trace over the space of operators parametrising the Higgs

branch (2.12) and e�J collectively denotes the fugacities for the remaining intrinsic

Up1qk�1
γ �Up1qk�1

β and any other global symmetries. See also [110, 165] for a detailed

analysis of the Hilbert series for N � 1 SQCD. For gauge theories (2.15) takes the

general form of a integral over the gauge group G of the Hilbert series of the master

space FH which we denote by f 5H

HSpτ ;HBq �
¾
dµGpzqf 5Hpτ, z, . . . q , (2.16)

where dµGpzq denotes the Haar measure of G.

Examining Table C.3, where short representations of the N � 1 superconformal

algebra are listed, it is clear that the Hilbert series (2.15) counts the top compo-

nents of Dp0,0q and Br,p0,0q multiplets of the N � 1 superconformal algebra. These

multiplets have E � 3
2r and j1 � j2 � 0. We can therefore see that, for k � 1, this

definition does indeed coincide with the usual Higgs branch definition for N � 2

theories.

The Coulomb Branch

We can also make a similar definition for the Coulomb branch. Namely, analogously

to N � 2 theories, we may define a consistent truncation of the moduli space by

restricting those operators which have

E � �rN�2 � �2qt
3
� r

2
, RN�2 � r

2
� qt

3
� 0 . (2.17)

For Lagrangian theories this coincides with setting the scalars arising from the free

trinions to zero while giving the scalar in the chiral multiplets coming from the Φ-
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gluing generic diagonal vevs. On this branch the gauge symmetry is broken down

to the stabiliser subgroup of SUpNqkp3g�3�`q with respect to the vevs Φpi,nq which

is given by Up1qpk�1�δk,1qp3g�3�`q where ` is the number of punctures. We have that

CB � FC{GC , FC �  
Φpi,nq

(
, (2.18)

where the Φpi,nq are those scalar vevs of the theory that have RN�2 � 0. On this

branch all of the F-terms in a Lagrangian theory are trivial because they are all

proportional to either a Q or rQ. Therefore FC is simply associated to the freely

generated ring RC � CrΦpi,nqs. Consequently CB � pRCqG. Similarly, we may also

define the Hilbert series for the Coulomb branch

HSpT ;CBq :� TrCB T
Ee�J , (2.19)

where TrCB denotes the trace over the space of operators parametrising (2.18). In

other words, the space of scalar operators of the theory satisfying (2.17) pE � 3
2r �

�qtq. Because the F-terms are trivial, for Lagrangian theories the F-flat Hilbert

series (2.19) may be computed by multiplying the contribution coming from each Φ-

multiplet and integrating over the gauge group. One extra simplification that arises

is the fact that, because Q � rQ � 0, the pi, nqth node in the quiver is not coupled

to the pj,m � nqth. Therefore (2.19) reduces to a product of factors associated to

the Φ-gluing of colour c and positive sign σ � �

HSpT ;CBq �
¹
Φ�
c

hΦ�
c
, hΦ�

c
�

¾
dµ fΦ�

c
, (2.20)

fΦ�
c
�

k¹
i�1

p1� T qδ1,k±N
A,B�1

�
1� T γi

βi�c�2

zi,A
zi�1,B

	 , (2.21)

the z’s denote fugacities for the product gauge group, which are integrated over using

the invariant measure dµ. We notice that the factor fΦ�
c
� IC

Φ�
c

is precisely that

of the Coulomb limit of the index of the Φ-gluing factor (2.42). Therefore, we can

conclude, for these Lagrangian theories that HSpT ;CBq � IC where the Coulomb

branch index is defined in (2.41). The integrals hΦ�
c

have been computed in [154]

hΦ�
c
� PE

�
ķ

i�1

γNi
βNi�c�2

TN �
N�1̧

A�1

TAk � δ1,kT

�
, (2.22)
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where PE is defined in (A.1).

2.3 The Superconformal Index and Unrefined Limits

The right-handed N � 1 superconformal index computed with respect to rQ 9� is

given by [62, 64]

I pt, p, q, . . . q �Trp�1qF pj1�j2� r
2
� 2qt

3 q�j1�j2�
r
2
� 2qt

3 tqte�J e�βrδ 9�

�Trp�1qFσ 1
2
δ1�ρ

1
2
δ1�τ

1
2
rδ2 9�e�J e�β

1rδ
9�

(2.23)

where Tr denotes the trace over the Hilbert space on S3 in the radial quantisation,

pE, j1, j2, rq denote the Cartans of the maximal compact bosonic subalgebra up1qE`
sup2q1`sup2q2`up1qr � sup2, 2|1q, qt denotes the generator for the ‘intrinsic’ global

up1qt symmetry and we have defined

δ1� � E � 2j1 � r

2
� 4qt

3
, rδ2 9� � E � 2j2 � r

2
� 4qt

3
, (2.24)

p � τσ , q � τρ , t � τ2 . (2.25)

The superconformal index (2.23) receives contributions only from those states sat-

isfying rδ 9� � rδ1 9� � 2t rQ 9�, rS 9�u � E � 2j2 � 3

2
r � 0 . (2.26)

Special attention should be paid to the fugactity t; when k � 1 the combinations

RN�2 � r

2
� qt

3
, rN�2 � 2qt

3
� r

2
, (2.27)

and (2.24) are elements of the enhanced sup2, 2|2q superconformal algebra, see Table

2.1. When k ¥ 2 there is generically no N � 2 enhancement and qt generates a

global Up1qt symmetry of the corresponding theory. Finally, e�J collectively denotes

the fugacities for the remaining intrinsic Up1qk�1
γ � Up1qk�1

β and any other global

symmetries. Note that if the lowest component of a chiral superfield is given by f

then the fermion which also contributes to the index has

δ1�r rQ 9�f s � 2� δ1�rf s , rδ2 9�r rQ 9�f s � 4� rδ2 9�rf s . (2.28)
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Q j1 j2 RN�2 rN�2 r qt δ � 2tQ,Su
Q1� �1

2 0 �1
2 �1

2 �1
3 �1 δ1� � E � 2j1 � r

2 � 4qt
3

Q� � Q2� �1
2 0 �1

2 �1
2 �1 0 δ� � δ2� � E � 2j1 � 3r

2rQ 9� � rQ1 9� 0 �1
2 �1

2 �1
2 �1 0 rδ 9� � rδ1 9� � E � 2j2 � 3

2rrQ2 9� 0 �1
2 �1

2 �1
2 �1

3 �1 rδ2 9� � E � 2j2 � r
2 � 4qt

3

Table 2.1: Supercharges of the sup2, 2|2q superalgebra and its sup2, 2|1q subsuper-
algebra. The orbifold breaks sup2, 2|2q ÝÑ sup2, 2|1q ` up1qt and projects out any
supercharge with qt � 0. In radial quantisation S � Q:.

j1 j2 r qt Index δ1� δ1� rδ2 9�
Qi 0 0 2

3
1
2

?
tβi�c�1

α χl,iχr,i 0 0 2

ψ 9�i 0 �1
2

1
3 �1

2 � pq?
t

α
βi�c�1

χr,iχl,i 2 2 2rQi 0 0 2
3

1
2

?
t αγiχr,i�1χl,i 0 0 2rψ 9�i 0 �1

2
1
3 �1

2 � pq?
t

γi
α χl,iχr,i�1 2 2 2

B� 9� �1
2

1
2 0 0 p, q 0, 2 2, 0 2, 2

Table 2.2: Letters satisfying the BPS condition (2.26) for the free trinion theory
associated to a sphere with one minimal puncture (with associated Up1q valued fu-

gacity α) and two maximal punctures sl,�c and sr,�c�1. Here χo,i � χp1,0,...,0qpzo,iq,
χo,i � χp0,0,...,1qpzo,iq are shorthand for the characters of the fundamental and anti-
fundamental representations of SUpNq, defined in (A.59). We importantly note that
δ1�, rδ2 9� ¥ 0.

This implies that, for any chiral superfield f , the condition that each state con-

tributing to the index has δ1�, rδ2 9� ¥ 0 is equivalent to

0 ¤ δ1�rf s ¤ 2 , 0 ¤ rδ2 9�rf s ¤ 4 . (2.29)

We reviewed the construction of the basic Lagrangian theories in class Sk in Section

1.6.2. The letters of the free trinion of Figure 1.5 that contribute to the index are

listed in Table 2.2. The free trinion contributes to the index a factor

I
sl,�c ,sr,�c�1

�
k¹
i�1

N¹
A,B�1

Γe

�?
tβi�c�1

α

zl,i,B
zr,i,A



Γe

�?
tα

γi

zr,i�1,B

zl,i,A



, (2.30)

where Γepzq denotes the Elliptic Gamma function, defined in (A.22) and with±k
i�1 γi �

±k
i�1 βi � 1. We will also sometimes adopt the notation I

sl,�c ,sr,�c�1
�
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j1 j2 r qt Index δ1� δ1� rδ2 9�
Φi 0 0 2

3 �1 pq
t

γi
βi�c�2

χiχi�1 2 2 0

λ 9�i 0 �1
2 �1

3 �1 �tβi�c�2

γi
χi�1χi 0 0 4

λ�i �1
2 0 1 0 �pχadj.

i , �qχadj.
i 0, 2 2, 0 2, 2rF 9� 9�i 0 1 0 0 pqχadj.

i 2 2 4

Bλi � 0 0 �1
2 1 0 pqχadj.

i 2 2 4

B� 9� �1
2

1
2 0 0 p, q 0, 2 2, 0 2, 2

Table 2.3: Letters satisfying the BPS condition (2.26) of the free N � 1 theory
corresponding to a tube which implements the Φ-gluing of two punctures of equal
colour, opposite orientation and sign σ � �. For the vector multiplet piece we
must take into account the equation of motion Bλ � B� 9�λ� � B� 9�λ� � 0. Here

χi � χp1,0,...,0qpziq, χi � χp0,0,...,1qpziq and χadj.
i � χp1,0,...,1qpziq are shorthand for

the characters of the fundamental, anti-fundamental and adjoint representations of
SUpNq, defined in (A.59). We importantly note that δ1�, rδ2 9� ¥ 0.

I zr
zlα

, leaving implicit the colour of the punctures. The contribution from the Φ-

gluing of two maximal punctures of the same sign σ � �, of colour c and opposite

orientation is listed in Table 2.3. Enumerating those letters gives1

IΦ�
c
�

k¹
i�1

κ
±N
A,B�1 Γe

�
pq
t

γi
βi�c�2

zi,B
zi�1,A

	
Γe

�
pq
t

�δk,1 ∆pziq
±
A�B Γe

�
zi,A
zi,B

	 . (2.31)

The factors κ and ∆ are given by

∆pzq �
¹
A�B

�
1� zA

zB



, κ :� pp; pqN�1pq; qqN�1 . (2.32)

Note that in the above, and throughout, products and sums over i shall always be

taken modulo k, i.e. i� k � i unless otherwise stated. For instance, we denote the

Φ-gluing of two three punctured spheres to obtain the theory associated to a sphere

with two minimal and two maximal punctures at the level of the index by

I
sl,�c ,sr,�c�2

�
¾ k¹
i�1

dµi Isl,�c ,sr,�c�1
IΦ�

c�1
I
sl,�c�1,s

r,�
c�2

� I v
uαδ , (2.33)

1The factor δk,1 is to account for the fact that for k � 1 Φ sits in the adjoint of supNq adj. �
NbN� 1, while for k ¡ 1 Φ sits in bifundamenal representations.
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For example, setting k � N � c � 1 � 2, we can expand (2.33) in terms of N � 1

index equivalence classes Irrr,j1s� (C.15) [166, 4, 167] as

I v
uαδ � 1� 1

t12

�
1� β2

γ2
� γ2

β2

�
Ir� 2

3
,0s� �

2̧

i�1

t1
�
β2
i

�
1

α2
� 1

δ2



� γ2

i

�
α2 � δ2

�� �
α

δ
� δ

α



βi
γi
χ1puiqχ1pvi�1q � βiγiχ1pviqχ1pvi�1q

� βiγiχ1puiqχ1pui�1q �
�
αδ � 1

αδ



χ1puiqχ1pviq

�
Ir� 2

3
,0s�

�
2̧

i�1

��
αδ

βiγi
� βiγi

αδ



χ1puiqχ1pvi�1q

�χ2puiq � χ2pviq � 4

�
Ir0,0s� �

2̧

i�1

��
β3
i

αδγi
� αδβi

γ3
i



χ1puiqχ1pvi�1q

�γ
2
i

β2
i

pχ2pui�1q � χ2pviq � 1q
�
Ir0,0s� �Opppqq4{3q

(2.34)

where β � β1 � β�1
2 and γ � γ1 � γ�1

2 ; we have defined t1 :� t{ppqq2{3 so that the

expansion is made using the free R-symmetry. The equivalence class r1
3 ,

1
2 s�, which

has only a single representative Ĉp 1
2
,0q, contains a spin 3{2 current and contributes

to the index a factor proportional to �ppqq2{3pp� qq{p1� pqp1� qq, is absent. This

implies that either the theory has no supersymmetry enhancement, or that it con-

tains a number of B 7
3
p 1

2
,0q multiplets (which is the single representative of the r1

3 ,
1
2 s�

equivalence class) [167]. Note that all of the equivalence classes in the above con-

tain only a single representative. In particular one can replace Ir� 2
3
,0s� � IB 4

3 ,p0,0q
,

Ir0,0s� � IĈp0,0q and Ir0,0s� � IB2,p0,0q
. The net degeneracy [4], defined in (C.16), of

the r0, 0s� equivalence classes counts

NDr0, 0s �#r0, 0s� �#r0, 0s� � #B2,p0,0q �#Ĉp0,0q
�#marginal operators�#conserved currents

�30� 36 .

(2.35)

When k � 1 the index (2.23) admits various interesting limits involving the three

fugacities p, q, t (or ρ, σ, τ) in which the index recieves contribution only from states

annihilated by two or more N � 2 Poincaré supercharges (one of them, of course,

always being rQ 9�) [168].

Because rδ 9�rQαs � 0 and rδ 9�r rQ 9�s � 0 the index of a generic N � 1 SCFT admits
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no non-trivial limits in which the states contributing to it are annihilated by more

than one supercharge. However, when the N � 1 SCFT has flavour symmetry, we

may consider taking limits also involving the flavour fugacities. For generic theories

there is no guarantee that such limits are well defined. Moreover, the index in

certain limits; although not leading to extra superconformal shortening, can often

admit drastic simplifications. Similar ideas have also been deployed in studying

‘non-generic’ N � 1 SCFTs in e.g. [4, 133, 5].

2.3.1 The Hall-Littlewood Limit of the Index

We can study the limit which, for N � 2 theories, is equivalent to the so-called

Hall-Littlewood limit of the index [168] 2

σ Ñ 0 , ρÑ 0 , τ fixed, (2.36)

or, equivalently, p, q Ñ 0 with t held fixed. From (2.30) and (2.31) we see that

the Hall-Littlewood limit of the indices for the Lagrangian building blocks is well

defined, we can therefore write

HLpτ, . . . q :� lim
σ,ρÑ0

I � TrHLp�1qF τ2qte�βrδ 9�e�J , (2.37)

here TrHL denotes the restriction of Tr to the states satisfying δ1� � 0, i.e. 2qt �
3
2r � 3j2 � E � j2 and j1 � 0. The indices for the building blocks (2.30) and (2.31)

become

HL
sl,�c ,sr,�c�1

�
k¹
i�1

N¹
A,B�1

1�
1� τ βi�c�1

α
zl,i,B
zr,i,A

	�
1� τ αγi

zr,i�1,B

zl,i,A

	 (2.38)

HLΦ�
c
�

±k
i�1

±N
A,B�1

�
1� τ2 βi�c�2

γi

zi�1,A

zi,B

	
p1� τ2qδk,1

. (2.39)

The existence of this limit is equivalent to the fact that each letter contributing to

the basic building building blocks have δ1� ¥ 0 (see Tables 2.2 and 2.3), as is the

case for all N � 2 theories.

As pointed out in [168, 170], for class S theories at genus g � 0, the Hall-

Littlewood limit of the index coincides with the Hilbert series of the Higgs branch.

For Lagrangian theories this can be explicitly proved and can be argued to extend

2This limit has also been considered for N � 1 theories in [169, 5]. Geometrically it corresponds
to collapsing the S3 to a point.



68 THE HIGGS AND COULOMB BRANCHES OF THEORIES OF CLASS Sk

to theories related to Lagrangian theories by S-duality [171]. To the best of the

authour’s knowledge a full proof that extends to all class S theories is currently

lacking. In Section 2.4 we will demonstrate that the same property also holds for

Lagrangian theories made using Φ-gluing in class Sk at genus g � 0.

2.3.2 The Coulomb Limit of the Index

The Coulomb limit of the index for N � 2 theories is given by

τ Ñ 0 , ρ, σ fixed, (2.40)

or, equivalently, t, p, q Ñ 0 with T :� pq{t � σρ and V :� p{q � σ{ρ held fixed.

An extensive study of this limit of the index was given in [154]. For generic N � 1

theories we would have no reason to believe that this limit exists since rδ2 9� ¥ 0 is

no longer guaranteed. However, let us assume that it does. In this limit the index

would take the form

ICpT, V, . . . q � TrCp�1qFTE�j2V j1e�J e�β
1rδ

9� (2.41)

Here TrC denotes the restriction of Tr to states with rδ2 9� � 0. Indeed, we can see at

the level of the Lagrangian building blocks that the limit does exist and, moreover,

is conjectured to exist for all theories in class Sk of type AN�1 [154]. The indices

for the Lagrangian building blocks (2.30) and (2.31) become

IC
sl,�c ,sr,�c�1

� 1 , IC
Φ�
c
�

k¹
i�1

p1� T qδk,1±N
A,B�1

�
1� T γi

βi�c�2

zi,B
zi�1,A

	 . (2.42)

For Lagrangian theories made with Φ gluing the interpretation of this limit of the

index is clear. The Coulomb limit of the index is simply counting the possible

gauge invariants that can be made from the bifundamental scalar fields in the chiral

multiplets Φ. These operators are the top components of the 1
2 -BPS multiplets Dp�1q

p0,0q
and Bp�

2r
3
q

r,p0,0q which simultaneously have E � 3
2r � �qt and j1 � j2 � 0 (see Appendix

C.1). Indeed we will demonstrate in Section 2.2.2 that, for those theories, IC can

be given the interpretation of a Hilbert series constructed to count the above 1
2 -BPS

multiplets on the Coulomb branch.
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2.3.3 The Schur & Madonald Limits of the Index

For completeness of our discussion we can also define analogues of the Schur and

Macdonald limits of the index of [168]. The analogue of the Macdonald index is

obtained by taking σ Ñ 0, which is well defined for Lagrangian theories because

each letter has δ1� ¥ 0, while holding ρ, τ fixed

IM pq, t, . . . q � TrM p�1qF q�j1�j2� r
2
� 2qt

3 tqte�J e�βrδ 9� , (2.43)

where TrM denotes the restriction of Tr to states with δ1� � 0. The Schur index is

defined by setting ρ � τ , or q � t

ISpq, p, . . . q � Trp�1qF pj1�j2� r
2
� 2qt

3 q�j1�j2�
r
2
� qt

3 e�J e�βrδ 9� . (2.44)

Note that, unlike for N � 2 theories, the Schur index (2.44) is dependent on σ �
p{?q. However, for Lagrangian theories we have δ1� ¥ 0 and therefore we can

consider a further limit, which we will call the reduced Schur index

IRSpq, . . . q :� lim
pÑ0
IS � TrM p�1qF qE� r

2
� qt

3 e�J e�βrδ 9� � IM |q�t . (2.45)

In particular, for the index IRS , the Lagrangian building blocks become

IRS
sl,�c ,sr,�c�1

�
k¹
i�1

N¹
A,B�1

1�?
q βi�c�1

α
zl,i,B
zr,i,A

; q
	�?

q αγi
zr,i�1,B

zl,i,A
; q
	 , (2.46)

IRS
Φ�
c
� pq; qqk�δk,1

k¹
i�1

N¹
A,B�1

�
q
βi�c�2

γi

zi�1,A

zi,B
; q


�
q
zi,A
zi,B

; q



. (2.47)

For the k � N � 2 theory associated to a sphere with two minimal punctures



70 THE HIGGS AND COULOMB BRANCHES OF THEORIES OF CLASS Sk

and two maximal punctures sl,�1 , sr,�3 the reduced Schur index can be expanded as

IRS � 1�
�
χ1pm2q

�
a2r0, 1, 0; 0, 0, 0s � 1

a2
r0, 0, 0; 0, 1, 0s



� r1, 0, 0; 0, 0, 1s � r0, 0, 1; 1, 0, 0s

�
q

�
� 1

a2
χ1pm2q pr0, 0, 1; 1, 1, 0s � r1, 0, 0; 0, 1, 1sq

� a2χ1pm2q pr1, 1, 0; 0, 0, 1s � r0, 1, 1; 1, 0, 0sq � r0, 1, 0; 0, 1, 0s
� r1, 0, 1; 1, 0, 1s � r2, 0, 0; 0, 0, 2s � r0, 0, 2; 2, 0, 0s

� χ2pm2q
�
a4r0, 2, 0; 0, 0, 0s � 1

a4
r0, 0, 0; 0, 2, 0s � r0, 1, 0; 0, 1, 0s


�
q2

�Opq3q .

(2.48)

Note that here, we used the symmetry enhancement of this theory (2.60), which we

will discuss in more detail in Section 2.4.3. Here rd1, d2, d3; d11, d
1
2, d

1
3s denotes the

character of the enhanced SUp2Nqk � SUp4q2 symmetry.

For theories with N ¥ 2 supersymmetry the quantity IS (which, for N ¥ 2

supersymmetry, equals IRS) plays a pivotal role in the chiral algebra 2d/4d cor-

respondence [172]. In particular IS is identified with the vacuum character of the

associated chiral algebra.

The stress tensor of the associated chiral algebra is identified with the top com-

ponent of the sup2qRN�2
current, namely jµ11. This current lives in the stress tensor

multiplet Ĉ0p0,0q which contains conserved sup2qRN�2
and up1qrN�2 currents jµpIJq and

jµ with I, J � 1, 2 sup2qRN�2
indices. This current enters the Schur index IS with a

factor ISĈ0p0,0q
� q2{p1� qq. Under the decomposition sup2, 2|2q Ñ sup2, 2|1q ` up1qt

the N � 2 stress tensor multiplet decomposes as

Ĉ0p0,0q � pĈp0,0q, 0q ` pĈp 1
2
,0q,�1q ` pĈp0, 12q,�1q ` pĈp 1

2
, 1
2q, 0q . (2.49)

Correspondingly, the index can be written as

IĈ0p0,0q
� �pq
p1� pqp1� qq �

tpp� qq
p1� pqp1� qq �

t�1p2q2

p1� pqp1� qq
� �pqpp� qq
p1� pqp1� qq ;

(2.50)

see Figure 2.2. Since, the stress tensor multiplet of the mother SCFT sits in trivial

representations of any flavour symmetries (e.g. it sits in a trivial SUpNf q represen-
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r0, 0sp0q2

r1
2 , 0s

p�1q
5
2

,
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2
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,
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r1
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p0q
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2 ,
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2
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3
q

7
2

r1, 1sp0q4

Figure 2.2: Branching of Ĉ0p0,0q � Ĉp0,0q ` Ĉp 1
2
,0q ` Ĉp0, 12q ` Ĉp 1

2
, 1
2q. Underlined are

those states, with given j2, which have rδ 9� � E�2j2� 3
2r � 0 and thus can contribute

to the right-handed index (2.23).

tation) under the Zk orbifold the projection of the stress tensor should simply be

Ĉ0p0,0q
ZkÝÑ Ĉp0,0q` Ĉp 1

2
, 1
2q. Indeed the multiplets Ĉp 1

2
,0q and Ĉp0, 12q contain additional

supersymmetry currents which would lead to enhanced N ¥ 2 supersymmetry if

present.

We can identify in the decomposition the Ĉp0,0q as the up1qt flavour current mul-

tiplet while Ĉp 1
2
, 1
2q is of course the N � 1 stress tensor multiplet whose lowest com-

ponent is the up1qr current. They are built from linear combinations of jµ12 � jµ21

and jµ in accordance with (2.27). .

The currents jµ11 and jµ22 belong to Ĉp 1
2
,0q and Ĉp0, 12q, respectively and are expected

to be projected out by the orbifold. In particular we note that a factor q2{p1� qq in

a trivial flavour symmetry representation does not appear in the expansion (2.48).
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2.4 Genus Zero Theories

In this section we consider class Sk theories at genus g � 0. We show that, for this

subclass of theories, the Hall-Littlewood limit of the index coincides with the cor-

responding Higgs branch Hilberts series. Then we provide a closed form expression

for the Higgs branch Hilbert series of some Lagrangian genus zero theories, namely

the free trinion and the interacting SCFT associated to a sphere with two maximal

and two minimal punctures.

2.4.1 Hilbert Series and the Hall-Littlewood Limit of the Index

We are now in a position to show that the Hall-Littlewood limit of the index coin-

cides with the Higgs branch Hilbert series at genus g � 0 for Lagrangian theories

made using Φ-gluing. For the theory corresponding to a sphere with `� 2 minimal

punctures and two maximal punctures the relevant F-terms for the Higgs branch are

Fpi,nq :� BWSk
BΦpi,nq

� rQpi,n�1qQpi,n�1q �Qpi�1,nq rQpi,nq � 0 , (2.51)

for n � 1, . . . ,�3�` and i�k � i � 1, . . . , k. For genus g � 0 these constitute kp�3�
`q independent constraints on the Qpi,nq and rQpi,nq. More precisely the ideal IH

comprised of the list of the Fpi,nq forms a regular sequence in RH � CrQpi,nq, rQpi,nqs,
see Appendix B. This means that the variety whose coordinate ring is given by the

quotient ring RH{IH is a complete intersection and we may apply letter counting

techniques to compute the Hilbert series for the master space FH.

The Hilbert series of the Higgs branch of the theory associated to the a sphere

with `�2 minimal punctures and two maximal punctures sl,�1 , sr,�`�1 is precisely given

by

HSpτ, . . . ;HBq �
¾ k¹
i�1

`�2¹
n�2

dµpi,nqf 5Hpτ, . . . q (2.52)

f 5H �
PE

�°`�2
n�1

°k
i�1

°N
A,B�1

�
τ βi�n�1

αn

zpi,nq,B
zpi,n�1q,A

� τ αnγi
zpi�1,n�1q,B

zpi,nq,A

	�
PE

�°`�2
n�2

°k
i�1

°N
A,B�1 τ

2 βi�n�2

γi

zpi�1,nq,A

zpi,nq,B
� p3� `qτ2δk,1

� (2.53)

and we see that f 5H �±`�2
n�1 HL

sl,�n ,sr,�n�1

±`�2
n�2 HLΦ�

n
and therefore HS � HL for this

class of genus zero theories. The contribution of the λ 9�pi,nq to the Hall-Littlewood

index coming from Φ-gluing precisely plays the role of the F-term constraints (2.51)

in the Higgs-branch Hilbert series.
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In other words, we see that for this class of theories TrHL � TrHB. Indeed, one

can see that if one further introduces the condition j2 � 0 into those defining the

Hall-Littlewood limit of the index rδ 9� � δ1� � 0 we have E � 2qt � 3
2r, j1 � j2 � 0

which are precisely the conditions defining the Higgs branch (2.12).

2.4.2 The Free Trinion

Let us consider the Hall-Littlewood index/Hilbert series of the g � AN�1 theory

associated to a sphere with one minimal puncture with fugacity α and two maximal

punctures sl,�1 and sr,�2 a.k.a. the free trinion. The expression for the Higgs branch

Hilbert series was given in (2.38) and it reads

HS
sl,�1 ,sr,�2

�
k¹
i�1

N¹
A,B�1

1�
1� τ βiα

ui,A
vi,B

	�
1� τ αγi

vi�1,B

ui,A

	 (2.54)

note that we set zl � u and zr � v with respect to (2.38). We checked for various

low values of N in expansion around τ � 0 that the identity

N¹
A,B�1

1

1� aτ uAvB
�

¸
l¥0

¸
λ

paτqNl�
°N�1
A�1 ApλA�λA�1qsλpuqsλpvq

�
¸

tn1,...,nN u¥0

paτq
°N
A�1 AnAχpn1,n2...,nN�1qpuqχpnN�1,nN�2,...,n1qpvq

(2.55)

holds, with
±N
A�1 uA �

±N
A�1 vA � 1 and where the SUpNq characters are defined in

(A.59). In the second line we rewrote the expression in terms of Schur polynomials,

the relevant definitions and identities can be found in Appendix A. Therefore, we

can write (2.54) as

HS
sl,�1 ,sr,�2

�
¸

lpjq,mpjq¥0

¸
λpjq,µpjq

k¹
i�1

#
sλpiqpuiqsµpiqpuiqsλpiqpviqsµpiqpvi�1q±N�1

A�1

�
βiτ
α

	ApλpiqA�1�λ
piq
A q�Nlpiq �

ατ
γi

	ApµpiqA�1�µ
piq
A q�Nmpiq

+
.

(2.56)
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Applying (A.48)

HS
sl,�1 ,sr,�2

�

¸
λpjq,µpjq,νpjq,ηpjq

k¹
i�1

cη
piq

λpiqµpiq
cν

piq

µpi�1qλ
piqsηpiqpuiqsνpiqpviqPE

�
αN

γNi
τN � βNi

αN
τN

�
±N�1
A�1

��
βiτ
α

	ApλpiqA�1�λ
piq
A q �

ατ
γi

	ApµpiqA�1�µ
piq
A q

� .
(2.57)

Specialising to the case g � A1, where we explicitly know the Littlewood-Richardson

coefficients cνλµ, we have

HS
sl,�1 ,sr,�2

�
k¹
i�1

¸
ni,n1i¥0

ni�n1i¸
di�|ni�n1i|

ni�n1i�1¸
d1i�|ni�n1i�1|

#
χdipuiqχd1ipviq�

1� β2
i
α2 τ2

	�
1� α2

γ2
i
τ2
	 �

βiτ

α


ni �ατ
γi


n1i +
.

(2.58)

2.4.3 Core Interacting Theories

Let us first consider the Hall-Littlewood index/Higgs-branch Hilbert series for the

interacting SCFT associated to a sphere with two minimal punctures and two max-

imal punctures sl,�1 , sr,�3 . It is given by

HL
sl,�1 ,sr,�3

� HL v
uδα �

k¹
i�1

¾
dµi HL

sl,�1 ,sr,�2
HLΦ�

2
HL

sl,�2 ,sr,�3

�
k¹
i�1

¾
dµi

PE
�°N

A,B�1
τβi
δ
ui,A
zi,B

� τα
γi

vi�1,A

zi,B
� τβi�1

α
zi,B
vi,A

� τδ
γi

zi�1,B

ui,A

�
PE

�
�τ2δk,1 �

°N
A,B�1 τ

2 βi
γi

zi�1,A

zi,B

� .

(2.59)

An important observation that will allow us to write down the Highest Weight

Generating (HWG) function [173] for the Hilbert series for this theory is the fact

that there is, at the level of the Lagrangian, a symmetry enhancement

SUpNq2k � Up1qk�1
γ � Up1qk�1

β � Up1qδ � Up1qα
Ñ SUp2Nqk � Up1qk�1

a � Up1qm ,
(2.60)
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which we can make manifest in (2.59) by writing

xi �
�c

γiβi
δα

ui,

d
δα

γiβi
vi�1

�
, ai �

d
βi
γi
, m �

c
α

δ
, (2.61)

corresponding to writing qi � pQLi , rQRi�1q, rqi � p rQLi , QRi�1q in the decomposition

2N Ñ pN,1q1 ` p1,Nq�1 under SUp2Nq Ñ SUpNq � SUpNq � Up1q and QLi ,
rQLi

are the bifundamental chiral multiplets of the first free trinion and QRi ,
rQRi the

second. Then the Hall-Littlewood index / Hilbert series can be written as

HS
sl,�1 ,sr,�3

�

k¹
i�1

¾ N�1¹
A�1

dzi,A
2πizi,A

±
1¤A B¤N

�
1� zi,B

zi,A

	±N
A,B�1

�
1� τ2a2

i
zi�1,A

zi,B

	
p1� τ2qδk,1

N±
A�1

2N±
B�1

�
1� τaim

xi,B
zi,A

	�
1� τ aim

zi�1,A

xi,B

	 . (2.62)

The symmetry enhancement (2.60) allows us to conjecture the following expression

for the Highest Weight Generating (HWG) function for the Hilbert series as

HWG
sl,�1 ,sr,�3

� PE

�
δ1,kτ

2 �
ķ

i�1

N�1̧

A�1

µ
piq
A µ

pi�1q
2N�Aa

A
i a

A
i�1τ

2A

�
ķ

i�1

µ
piq
N a

N
i

�
mN � 1

mN



τN

�
,

(2.63)

where tµpiqA u denotes a set of highest weights for the ith flavour node. From the

HWG one then obtains the Hilbert series by replacing

2N�1¹
A�1

µ
piq
A

dA Ø rd1, d2, . . . , d2N�1sxi (2.64)



76 THE HIGGS AND COULOMB BRANCHES OF THEORIES OF CLASS Sk

where rd1, d2, . . . , d2N�1sx � χpd1,d2,...,d2N�1qpxq denotes the character of SUp2Nq,
defined in (A.59). The Hilbert series is given by

HS
sl,�1 ,sr,�3

� �
1� τ2

��δ1,k ¸
tnpiqA ,ppiq,lpiq¥0u

k¹
i�1

#
�
n
piq
1 , n

piq
2 , . . . , n

piq
N�1, p

piq � lpiq, npi�1q
N�1 , n

pi�1q
N�2 , . . . , n

pi�1q
1

�
xi

mNppiq�NlpiqaNp
piq�Nlpiq�°N�1

A�1 An
piq
A

i a
°N�1
A�1 An

pi�1q
A

i�1 τNp
piq�Nlpiq�2

°N�1
A�1 An

piq
A

+
.

(2.65)

We checked in an expansion around τ � 0 that (2.65) agrees with (2.62) for pN, kq �
tp2, 2q, p2, 3q, p3, 2qu. For theories associated to `-punctured spheres with two maxi-

mal punctures and `� 2 ¡ 2 minimal punctures there is no symmetry enhancement

(2.60) and the number of monomials in the PLog of the HWG is not finite. This

means that it is not practically possible to write down a closed form expression for

the HWG.

We can however perform the expansion of the integral (2.52) around τ � 0. For

example, for k � N � 2, `� 2 � 3 we have

HS � 1�
�
χL2χ

L
1

�
β

γ
� γ

β




� χR2 χ
R
1

�
βγ � 1

βγ



�

3̧

n�1

2̧

i�1

�
β2
i

α2
n

� γ2
i α

2
n


�
τ2

�
��

α3α2

α1
� α1α2

α3
� α1α3

α2
� 1

α1α3α2


 2̧

i�1

βiχ
L
i χ

R
i

�
�
α2α3α1 � α1

α2α3
� α3

α2α1
� α2

α3α1


 2̧

i�1

γi�1χ
L
i χ

R
i�1

�
τ3 �Opτ4q

(2.66)

where β1 � 1
β2
� β, γ1 � 1

γ2
� γ and χLi � χ1pzpi mod k,1qq, χRi � χ1pzpi mod k,4qq de-

notes the characters of the fundamental representation of the corresponding SUp2q’s.

2.5 Genus One Theories

In this section we consider some theories that are closely related to class Sk theories

at genus one. The theories that we study are the N � 1 upNq``k toroidal quiver

gauge theories realised as the ls Ñ 0 limit of the worldvolume theory on a stack of
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N D3-branes probing a transverse C3{pZ` �Zkq singularity where the quotient acts

by

pz1, z2, z3q ÞÑ pωkz1, ω`z2, ω
�1
` ω�1

k z3q , ωkk � ω`` � 1 . (2.67)

These are orbifolds of N � 4 SYM; we discussed them at length in Section 1.6.2. In

the case where the up1q``k � upNq``k is not gauged, these are precisely the theories

in class Sk associated to Riemann surfaces of genus one with ` punctures.

The action (2.67) is an element of the SOp6qR R-symmetry group of N � 4 SYM.

If we denote the N � 4 supercharges by Qq1q2q3α with 8q1q2q3 � �1 and Qq1q2q39α with

8q1q2q3 � �1 where the qi � �1
2 . The orbifold acts by

Qq1q2q3α ÞÑ ωq1�q3k ωq2�q3` Qq1q2q3α , Qq1q2q39α ÞÑ ωq1�q3k ωq2�q3` Qq1q2q39α . (2.68)

The surviving supercharges are those with q1 � q2 � q3

Q���α � Qα , Q���9α � Q 9α . (2.69)

The Cartans q1, q2, q3 of sop6qR are related to the more natural N � 1 symmetries

by

r � 2

3
pq1 � q2 � q3q , qt � �q1 � 1

2
pq2 � q3q , qb � �q2 � q3 , (2.70)

there is also the overall Up1q generated by b.

It will later be useful to have to hand the Hilbert series for this quotient space.

This is given by the Molien series

Mpτ1, τ2, τ3;C3{pZ` � Zkqq � 1

`k

¸
gPZ`
hPZk

PE
�
hτ1 � gτ2 � g�1h�1τ3

�

�
°LCMp`,kq�1
r�0 pτ1τ2τ3qrτ�t r

k
uk

1 τ
�t r

`
u`

2

p1� τk1 qp1� τ `2qp1� τ
LCMp`,kq
3 q

,

(2.71)

where τ1, τ2, τ3 are related to the SOp6qR � Up1q3 ü C3 toric action generated by

q1, q2, q3. Moreover LCMp`, kq denotes the Lowest Common Multiple of ` and k.

For ` � k these varieties are complete intersections since

Mpτ1, τ2, τ3;C3{pZk � Zkqq � PE

�
3̧

n�1

τkn � τ1τ2τ3 � τk1 τ
k
2 τ

k
3

�
. (2.72)
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N

N

rQ1

Q1

Φ1

Φ2Φi

` nodes

Figure 2.3: The circular quiver with gauge group UpNq`

This space can be realised as C3{pZk � Zkq ãÑ C4 defined by the equation

w1w2w3 � wk4 � 0 , (2.73)

with wi � zki , w4 � z1z2z3. As a warm up we will now review the computation for

k � 1.

2.5.1 Class S

We reviewed this theory and it’s moduli space M for ` � 2 in detail in Section 2.2.1.

The quiver diagram for this theory is given in Figure 2.3.

Hilbert Series

We begin with the computation of the mesonic moduli space mesM. Let us begin

with the case of N � 1. The master space for M is then associated to R{I with

R � rQ1, . . . , Q`, rQ1, . . . , rQ`,Φ1, . . . ,Φ`s , (2.74)

I � xFQ1 , . . . , FQ` , F rQ1
, . . . , F rQ` , FΦ1 , . . . , FΦ`y , (2.75)
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FQn � rQnpΦn�1 � Φnq , F rQn � QnpΦn�1 � Φnq , (2.76)

FΦn � Qn�1
rQn�1 �Qn rQn , (2.77)

where n � n � `. We perform a primary decomposition of the above ideal and we

select the prime ideal corresponding to a mesonic branch, the corresponding Hilbert

series is

mesf 5 � PE

�
`̧

n�1

�
τ1 � zn

zn�1
τ2 � zn�1

zn
τ3



�

`�1̧

n�1

pτ2τ3 � τ1q
�
. (2.78)

The τi are the same as those in (2.71). Explicitly, in terms of the parameters

appearing in (2.23)

τ1 � pq

t
� T , τ2 �

?
t

b
� τ

b
, τ3 � b

?
t � bτ (2.79)

where b` � ±`
n�1 αn is the product of all of the fugacities for minimal punctures.

So, the Hilbert series for the coordinate ring of mesM is given by

HSpτ1, τ2, τ3; mesMq �
¹̀
n�1

¾
|zn|�1

dzn
2πizn

mesf 5

� 1� τ `2τ
`
3

p1� τ1qp1� τ2τ3qp1� τ `2qp1� τ `3q

(2.80)

We observe that HSpτ1, τ2, τ3; mesMq � Mpτ1, τ2, τ3;C � C2{Z`q. The Higgs branch

of this theory is purely mesonic, hence the Hilbert series for the Higgs branch can

easily obtained by considering the τ1 Ñ 0 limit

HSpτ2, τ3;HBq � lim
τ1Ñ0

HSpτ1, τ2, τ3; mesMq (2.81)

� PE
�
τ2τ3 � τ `2 � τ `3 � τ `2τ

`
3

�
. (2.82)

As we can see, taking the PLog of (2.82), the Higgs branch is generated by one gen-

erator m � Q1
rQ1 � � � � � Q` rQ` of dimension 2 and two generators B � ±`

n�1Qn,rB �±`
n�1

rQn of dimension `. They satisfy the following relation at order 2`

m` � B rB , (2.83)
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this corresponds to the variety C2{Z`. The Coulomb branch is simply a copy of C`

parametrised by tΦ1, . . . ,Φ`u

HSpτ1;CBq � lim
τ1Ñ0

HSpτ1, τ2, τ3;Mq � PE r`τ1s . (2.84)

The mesonic Coulomb branch is the subvariety defined by Φ1 � Φ2 � � � � � Φ`.

For general N the mesonic moduli space can be obtained as the N th symmetric

product of the N � 1 case [107, 108, 74, 174, 96] and

mesM � SymN
�
C� C2{Z`

�
(2.85)

and the Hilbert series is given by

HS pτ1, τ2, τ3; mesMq � 1

N !

BN
BνN PE

�
νM

�
τ1, τ2, τ3;C� C2{Z`

������
ν�0

. (2.86)

Hall-Littlewood Index

Let’s now move to the computation of the Hall-Littlewood index of the theory in

Figure 2.3. Let’s begin the case with N � 1 and generic ` the computation can be

explicitly performed and we get

HLpτ2, τ3q �
¹̀
n�1

¾
|zn|�1

dzn
2πizn

PE

�
`̧

n�1

�
α�1
n

zn
zn�1

τ � αn
zn�1

zn
τ � τ2


�

�PErτ `2 � τ `3 � τ `2τ
`
3s ,

(2.87)

therefore the ratio between the Higgs branch Hilbert series (2.82) and the above

index reads

HLpτ2, τ3q
HSpτ2, τ3;HBq � PEr�τ2τ3s � PEr�τ2s � PErHLD0,p0,0q

s , (2.88)

here HLD0,p0,0q
denotes the Hall-Littlewood index of the free N � 2 vector multiplet

[168, 2]. We now want to compute the expression of the Hall-Littlewood index for a

generic value of N . Since D0,p0,0q is a free field multiplet it naturally decouples from

the theory.

We would like to conjecture that the Hall-Littlewood index for general N can be
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N N
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τ
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α2
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γ1
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γ1
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γ2
τ rQR2 : α2

γ2
τ

ΦL
i : γi�1

βi
ρσ ΦR

i : γi�1

βi�1
ρσ

Figure 2.4: Quiver diagram of the k � 2 theory associated to a torus with ` � 2
minimal punctures.

obtained as the coefficient HL`N of the following expansion

PErνHL`N�1pτ2, τ3qs �
8̧

N�1

νNHL`N pτ2, τ3q , (2.89)

HL`N�1pτ2, τ3q � PErτ `2 � τ `3 � τ `2τ
`
3s . (2.90)

We verified this this conjecture for various low values N and `, that is to say for

p`,Nq � tp1, 2q, p2, 2q, p3, 2q, p1, 3q, p2, 3q, p1, 4qu.

2.5.2 Class Sk

Let us move to the case of general values of k, `, while again focusing on N � 1.

Let’s firstly consider k � ` � 2. The quiver diagram is given in Figure 2.4. Using

Macaulay2 we can compute the Hilbert series for R{I. The full moduli space M is

then given as a projection onto gauge invariants

HSpτ1, τ2, τ3;Mq �
¾ 4¹
A�1

�
dzA

2πizA



f 5pτ1, τ2, τ3, α, δ, γ, β; zAq , (2.91)

of the Hilbert series for F

f 5 � z1z2z3z4P pτ1, τ2, τ3, α, δ, γ, β; zAq
pβτ1z1 � γz2q pβz1 � γτ1z2q pαβz1 � τ3z3q pβτ3z1 � δz3q
� 1

pατ2z1 � γz4q pz1 � γδτ2z4q pαγτ2z2 � z3q pγz2 � δτ2z3q
� 1

pτ1z3 � βγz4q pz3 � βγτ1z4q pαz2 � βτ3z4q pτ3z2 � βδz4q

(2.92)
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with P polynomial in the zA and τ1,2,3 and we have set γ � γ1, β � β1, α � α1 and

δ � α2. After performing the integrals, we have

HSpτ1, τ2, τ3;Mq �
PE

�
2τ2

1 � 2τ2
2 � 2τ2

3

� �
τ2

2 τ
4
3 τ

4
1 � τ2

2 τ
4
1 � τ4

2 τ
2
3 τ

4
1 � 4τ2

2 τ
2
3 τ

4
1 � τ2

3 τ
4
1

� τ3
2 τ

3
3 τ

3
1 � τ2τ

3
3 τ

3
1 � τ3

2 τ3τ
3
1 � τ2τ3τ

3
1 � τ4

2 τ
2
1 � τ4

2 τ
4
3 τ

2
1 � 4τ2

2 τ
4
3 τ

2
1

� τ4
3 τ

2
1 � 3τ2

2 τ
2
1 � 4τ4

2 τ
2
3 τ

2
1 � 11τ2

2 τ
2
3 τ

2
1 � 3τ2

3 τ
2
1 � τ3

2 τ
3
3 τ1 � τ2τ

3
3 τ1

�τ3
2 τ3τ1 � τ2τ3τ1 � τ2

2 τ
4
3 � τ4

2 τ
2
3 � 3τ2

2 τ
2
3 � 1

�
.

(2.93)

Note that the final expression is independent of α
δ and both γ and β. This is be-

cause for the quivers with UpNq gauge groups the Up1q transformations generated

by qαn mod b, qγi , qβi are isomorphic to gauge transformations, while for SUpNq gauge

groups they are global symmetries. As before the Higgs branch is reached by con-

sidering the τ1 Ñ 0 limit

HSpτ2, τ3;HBq � lim
τ1Ñ0

HSpτ1, τ2, τ3;Mq � 1� 3τ2
3 τ

2
2 � τ2

3 τ
4
2 � τ4

3 τ
2
2�

1� τ2
2

�2 �
1� τ2

3

�2

� PErτ2
2 � τ2

3 s � PEr2τ2
2 s � PEr2τ2

3 s � PErτ2
2 s � PErτ2

3 s .
(2.94)

We notice that the Hilbert series splits into that for C2{pZ2�Z2q (the mesonic Higgs

branch moduli space), and two copies of pC{Z2q2, minus the two common C{Z2-line

intersections. From the Plethystic Logarithm

PLogrHSpτ2, τ3;HBqs � 2τ2
2 � 2τ2

3 � 3τ2
3 τ

2
2 � τ2

3 τ
4
2 � τ4

3 τ
2
2 � . . . , (2.95)

we recognise the generators as Bi � QLi Q
R
i , rBi � rQLi rQRi�1. At the next order we

have the relations B1
rB1 � B1

rB2 � B2
rB1 � B2

rB2 thanks to the F-terms rQLi QLi �
QRi

rQRi�1. The higher order terms are Hilbert syzygies (a.k.a. relations between

relations). This should be compared with PLogrMp0, τ2, τ3;C2{pZ2�Z2qqs � τ2
2 �τ2

3

which is counting only a particular subset of allowed operators.

We can also consider the Coulomb limit

lim
τ2Ñ0

lim
τ3Ñ0

HSpτ1, τ2, τ3;Mq � HSpT ;CBq � PE
�
2T 2

�
(2.96)

corresponding to the operators
±k
i�1 ΦL

i ,
±k
i�1 ΦR

i which indeed have dimension two

and have fugacity
±k
i�1

γi
βi�1

� 1 and
±k
i�1

γi
βi
� 1 under the intrinsic symmetries.



83

For higher values of k, ` the computations of the Hilbert series become increas-

ingly complex, due to the requirement of making primary decomposition in a larger

number of variables using Macaulay2. We were able to compute the Higgs-branch

Hilbert series for k � ` � 3.

HSpτ2, τ3;HBq � PErτ3
2 � τ3

3 s � PEr3τ3
2 s � PEr3τ3

3 s � PErτ3
2 s � PErτ3

3 s (2.97)

we note that γi, βi do not appear and αn enters only via α1α2α3 � b3 in the Hilbert

series for the Higgs Branch. Moreover, we conjecture that the form of the Hilbert

series for arbitrary k � ` reads

HSpτ2, τ3;HBq � PErτ `2 � τ `3s � PEr`τ `2s � PEr`τ `3s � PErτ `2s � PErτ `3s . (2.98)

This form for the Hilbert series implies that the moduli space is made up of a copy

C2{pZ`�Z`q, two copies of pC{Z`q` minus C{Z` common intersections. Importantly,

we have that our definition for the Higgs branch, in general, does not coincide with

the mesonic moduli space C2{pZk � Z`q. Therefore, in general one cannot obtain

the result for general N by simply taking the N th symmetric product of the N � 1

result.

Hall-Littlewood Index

We can also compute the corresponding Hall-Littlewood index for our theories. The

general expression is given by

HLpτ2, τ3q �
¾ ¹̀
n�1

k¹
i�1

#
dzn,i

2πizn,i

� PE

��
βi�n�1

αn

zn,i
zn�1,i

τ � αn
γi

zn�1,i�1

zn,i
τ � βi�n�1

γi

zn�1,i�1

zn�1,i
τ2


�+
.

(2.99)

For example, for k � ` � 2, N � 1 we have

HLpτ2, τ3q � 1� 4τ2
2 τ

2
3 � 2τ2

2 τ
4
3 � 2τ4

2 τ
2
3 � τ4

2 τ
4
3

p1� τ2
2 q2p1� τ2

3 q2
. (2.100)

For general ` � k with N � 1 we were propose the following conjecture, which we

checked for various low values of ` � k,

HLpτ2, τ3q � PEr`τ `2s � PEr`τ `3s � 1 . (2.101)
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The ratio HL{HS is then counting, with signs, the protected operators of the theory

which have j1 � j2 ¥ 1
2 and r � 2j2 � 4

3qt.

It is possible compute the Hall-Littlewood index for the class Sk theories with

SUpNq gauge groups. For k � ` � 2 with SUp2qk` gauge group this reads

HLα1α2 �

¾ ¹̀
n�1

k¹
i�1

���� dzn,i
4πizn,i

�
1� z�2

n,i

	�
1� βi�n�1

γi

z�1
n�1,i�1

z�1
n�1,i

τ2



�

1� βi�n�1

αn

z�1
n,i

z�1
n�1,i

τ


�
1� αn

γi

z�1
n�1,i�1

z�1
n,i

τ



��� .

(2.102)

Expanding and then taking the PLog we have

PLog rHLα1α2s �
2̧

i�1

�
2̧

n�1

�
β2
i

α2
n

� γ2
i α

2
n



�
�

1

α1α2
� α1α2


�
τ2

�
2̧

n�1

�
α2
n

α2
n�1

�
2̧

i�1

αn
αn�1

�
β2
i �

1

γ2
i



�

2̧

i�1

β2
i�n�1

γ2
i�1

�
τ4 �Opτ6q ,

(2.103)

recall we also have γ2 � γ�1
1 , β2 � β�1

1 and the sums over i, n are taken modulo

k � 2 and ` � 2, respectively. The operators with qt � 1 correspond to ‘baryonic

type’ detQoi , det rQoi , with o � L{R and ‘mesonic type’ trQLi Q
R
i and tr rQLi rQRi . At

the next order we have bosonic operators tr rQo1Qo1 rQo2Qo2 and fermionic operators of

the form detQRi
rQLi�1λ

L
j , detQLi

rQRi�1λ
R
j and finally trQoi

rQoi�1λ
o
i . Here λ

o
i � λ

o
i 9�

denotes fermion in the superfield expansion Φ
o
i � Φ

o
i � θ

9α
λ
o
i 9α � . . . .

The unrefined αn � γi � βi � 1 limit can be computed exactly and reads

HLδα � 1� 6τ2 � 11τ4 � 12τ8 � 4τ10

p1� τ2q6 . (2.104)

2.5.3 Deconstruction Limit

There have been many precision tests [175, 176, 177, 178] of the deconstruction

proposal [179]. Of most interest to us in this subsection is the fact that [175, 97]

were able to show that the 1
2 -BPS partition function of the N � p2, 0q LST is equal

to the Higgs branch Hilbert series of the corresponding 4d N � 2 theory in the

deconstruction limit. This naturally leads one to expect that a similar story should

also exist for the N � p1, 1q LST. The N � p1, 1q LST arises as the worldvolume

theory on a stack of N parallel NS5-branes in type IIB string theory [180, 181, 70,
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182, 183]. The basic deconstruction proposal is that the 6d N � p1, 1q LST may

be effectively described by considering the N � 1 upNq``k toroidal quiver gauge

theory realised as the ls Ñ 0 limit of the worldvolume theory on a stack of N D3-

branes probing a transverse C3{pZ` � Zkq singularity where the quotient acts as in

(2.67). We then go to the point in parameter space where the vevs v5 � xQpi,nqy,
v6 � xΦpi,nqy (this is a mixed branch in our language) and couplings G � gYM

pi,nq are

equal for all nodes in the quiver and then take the limit3

`Ñ8 , k Ñ8 , GÑ8 , v5,6 Ñ8 , (2.105)

while holding 2πR5Gv5 � ` and 2πR6Gv6 � k fixed. The main point is that, in this

limit, the transverse C3{pZ` �Zkq can be approximated by T 2 �R4 where the radii

of the torus are r5 � v5{k and r6 � v6{`. Performing T-duality along the two circles

and then S-duality gives the rank N N � p1, 1q LST on a torus with radii R5, R6.

Representations of the N � p1, 1q supersymmetry algebra may be decomposed

into a finite sum of representations of the bosonic subalgebra given by the sum of

Lorentz algebra sop6q and R-symmetry algebra sop4q � sup2qR1 ` sup2qR2 . The

supercharges sit in the representations Q P r0, 1, 0sp
1
2
,0q

1
2

and rQ P r0, 0, 1sp0,
1
2q

1
2

with

representations labelled by rh1, h2, h3spR1,R2q
E . In other words Qah1h2h3

with hi � �1
2

such that 8h1h2h3 � �1 and rQ 9a
h1h2h3

with 8h1h2h3 � �1. They obey

tQa,Qbu � εabηµpµ , trQ 9a, rQ9bu � ε 9a9brηµpµ , tQa, rQ9bu � 0 , (2.106)

where ηµ, rηµ, µ � 1, 2, . . . , 6 denote the ‘t Hooft symbols which intertwine between

sup4q and sop6q. The 4d N � 1 supersymmetry algebra plus the residual global

up1qt ` up1qb symmetry algebras can be embedded into the 6d N � p1, 1q algebra

with the relations4

2j1 � h2 � h3 , 2j2 � h2 � h3 , (2.107)

3

2
r � 2h1 �R1 , 2qt � �h1 �R1 � 3R2 , qb � h1 �R1 �R2 . (2.108)

3Our parameters are related to those of [179] by N5 � k, N6 � `.
4These can be obtained in the following way: the first two relations are simply the identifications

one would make between the Cartans for sup2q1 ` sup2q2 � sop4q � sop6q. When compactifying the
6d theory on T 2 the spinor label h1 h1 � H � HR �HL on T 2 and 2HL � q1, 2HR � q2. Finally
2R2 � q1 � q2 is fixed by demanding that R2 evaluates to zero on the N � 1 subsector. This then
fixes q3 � R1. The identifications (2.70) then give (2.108).
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6d N � p1, 1q ph1, h2, h3, R1, R2q pj1, j2q r qt qb 4d N � 1

Q1��	 p�1
2 ,�1

2 ,	1
2 ,�1

2 , 0q p0,�1
2q �1 0 0 rQ 9�

Q1��� p�1
2 ,�1

2 ,	1
2 ,�1

2 , 0q p�1
2 , 0q �1

3 1 �1

Q2��	 p�1
2 ,�1

2 ,	1
2 ,�1

2 , 0q p0,�1
2q �1

3 �1 �1

Q2��� p�1
2 ,�1

2 ,�1
2 ,�1

2 , 0q p�1
2 , 0q �1 0 0 Q�rQ 91��� p�1

2 ,�1
2 ,�1

2 , 0,�1
2q p�1

2 , 0q �2
3 �1 0rQ 91��	 p�1

2 ,�1
2 ,	1

2 , 0,�1
2q p0,�1

2q �2
3 �1

2 �1rQ 92��� p�1
2 ,�1

2 ,�1
2 , 0,�1

2q p�1
2 , 0q �2

3 �1
2 �1rQ 92��	 p�1

2 ,�1
2 ,	1

2 , 0,�1
2q p0,�1

2q �2
3 �1 0

Table 2.4: One choice of embedding of the 4d N � 1 superalgebra into the 6d
N � p1, 1q superalgebra.

The relationship between the 4d and 6d supercharges is given in Table 2.4.

Let us now move to our candidate set of operators on the 4d side that will

ultimately reproduce the 1
2 -BPS scalar operators in the p1, 1q LST. Let’s assume

that, after primary decomposition, we can always identify a irreducible branch
mesM � M{{Up1qD inside the full moduli space M. mesM will be our candidate for

reproducing the 6d 1
2 -BPS ring. For any N � 1 theory, the operators parametrising

M are themselves 1
2 -BPS with respect to the N � 1 supersymmetry algebra, namely

they are annihilated by rQ 9α.

One may wonder why we have picked the subvariety mesM as opposed to the full

moduli space M. Shortly we will prove that that, for the theory with UpNq gauge

groups, in the k, `Ñ8 limit that mesM coincides with M.

Let us first focus on the N � 1 case. We can set, without loss of generality in

this limit, k � `. The possible gauge invariant operators parametrising M for the

theory with Up1q gauge groups are in correspondence with the number of closed,

directed paths that one can draw on the quiver diagram. There are four main types

of operators. There are those which involve an equal number p ¤ k � ` of Q, rQ and

Φ fields. Such an operator enters the Hilbert series with fugacity τp1 τ
p
2 τ

p
3 . Operators

of this form correspond to picking a base node, say pi � 1, n � 1q, and drawing

a closed loop involving p vertical steps, p horizontal steps and p diagonal steps.

However, recall the F-terms set

FΦpi,nq
� rQpi,n�1qQpi,n�1q �Qpi�1,nq rQpi,nq � 0 , (2.109)

FQpi,nq
� Φpi,n�1q rQpi,nq � rQpi�1,nqΦpi�1,nq � 0 , (2.110)
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Figure 2.5: Visualisation for the example of p � 3.

F rQpi,nq
� Qpi,nqΦpi,n�1q � Φpi,nqQpi�1,nq � 0 . (2.111)

In terms of the quiver diagram Figure 1.7, this means that the operations of moving

right, up or diagonally all commute. In other words this means that the associated

operator is independent of the choice of base node and of the specific path chosen,

it depends only on the length 3p. See Figure 2.5 for a diagrammatic example for

p � 3. In that example on the left we have the operator

Qpi,nqQpi,n�1qQpi,n�2qΦpi,n�3qΦpi�1,n�3q rQpi�1,n�2qΦpi�1,n�2q rQpi�1,n�1q rQpi,nq which is

reduced to
±2
m�0Qpi,n�mqΦpi,n�m�1q rQpi,n�mq. Again further applying the F-terms

means this operator can be written simply asmp � m3 with, say, m � rQp1,`qQp1,`qΦp1,1q.
We can therefore write these operators as mp. The other types of operators involve

only Q’s, rQ’s or Φ’s. They can be written as powers of

BΦn �
¹̀
i�1

Φpi,nq , BQi �
¹̀
n�1

Qpi,nq , B rQi �
¹̀
j�1

rQpi�j,i�jq , (2.112)

they enter the Hilbert series with fugacity τ `1 , τ `2 and τ `3 , respectively. In degree

¥ minpk, `q there can be complicated relations and higher syzgies between m, BQi ,

B rQi and BΦn , leading to a complicated structure for M. However, the main point

is that in the ` � k Ñ 8 limit the BQi , B rQi and BΦn operators all become infinity

heavy and their dimensions E � k � ` tend to infinity, in particular lim`Ñ8 τ `1,2,3 Ñ
0 and their contribution to the Hilbert series vanishes. This also implies that the

corresponding ring becomes freely generated, since there are no relations between

the operators in degree smaller than minpk, `q Ñ 8. Only the dimension of m

remains finite in the limit. m is a purely mesonic operator and therefore, in this

limit, one indeed expects mesM to coincide with M.

The above arguments can be simply extended to the case N ¥ 2 by taking



88 THE HIGGS AND COULOMB BRANCHES OF THEORIES OF CLASS Sk

traces. Each path with an equal number p of Q, rQ and Φ’s now corresponds to

A � 1, . . . , N operators of dimension 3pA corresponding to operators schematically

of the form trpQp rQpΦpqA. As long as we consider the traces we can apply the same

rules that we did for N � 1, namely that the operations of moving right, up or

diagonally commute. This again means any path of length 3p can be written as the

loop given by mp with, say, m � rQp1,`qQp1,`qΦp1,1q which is now a N � N matrix.

The N operators corresponding to one of these closed paths can then be written as

mp
pAq with

mpAq :� trmA � tr
� rQp1,`qQp1,`qΦp1,1q

	A
. (2.113)

As before the mpAq can have complicated relations with the operators which are of

the form trBA
Qi

, trBArQi and trBA
Φi

but the dimensions of the latter are Ak � A`Ñ8.

We therefore arrive at the conclusion that, in the deconstruction k, `Ñ8 limit

M coincides with mesM for all N .

For the N � 1 case we can identify mesM � C3{pZ` � Zkq, so the Hilbert series

for the N � 1 case is given by (2.71). Therefore, the Hilbert series for general N is

given by

N !HSpτ1, τ2, τ3; mesMq � BN
BνN PE

�
νMpτ1, τ2, τ3;C3{pZ` � Zkqq

���
ν�0

. (2.114)

Let us now consider the deconstruction limit. Taking the limit on the N � 1 result,

recalling that |τ1,2,3|   1, gives

lim
k,`Ñ8

Mpτ1, τ2, τ3;C3{pZ` � Zkqq

� lim
kÑ8

PE
�
τ1τ2τ3 � τk1 � τk2 τ

k
3 � τk1 τ

k
2 τ

k
3

�
� PE rτ1τ2τ3s � PErpqs .

(2.115)

Therefore, for general N , we have

lim
`,kÑ8

HSpτ1, τ2, τ3; mesMq � PE

�
Ņ

p�1

pτ1τ2τ3qp
�
� 1

pτ1τ2τ3; τ1τ2τ3qN . (2.116)

The coordinate-ring of M for this theory in the k, ` Ñ 8 limit is therefore simply

M � Crmp1q,mp2q, . . . ,mpNqs.
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Computation of the 1
2-BPS Partition Function for p1, 1q LST

Let us now move to the computation of the 6d quantity that we would like to match

to the 4d quantity (2.116). We can use the fact that, at low energies, the N � p1, 1q
LST admits an effective description as 6d maximally supersymmetric SYM theory

with gauge group UpNq. The on-shell degrees of freedom of the p1, 1q SYM theory

contains a 2-form gauge field strength F P r0, 1, 1sp0,0q2 , scalars X P r0, 0, 0sp
1
2
, 1
2
q

2

and fermions λ P r0, 1, 0sp0,
1
2
q

5
2

, rλ P r0, 0, 1sp 1
2
,0q

5
2

all in the adjoint of g � upNq. The

supersymmetry transformations of interest to us are

QaXb9b � 1?
2
εabλ

9b , rQ 9aXb9b � 1?
2
ε 9a9brλb . (2.117)

We can therefore construct 1
2 -BPS multiplets whose highest weight state is annihi-

lated by both Q1 and rQ 91. The supersymmetric primary of these multiplets is given

by

OA :� tr
�
X1 91

	A
(2.118)

which are independent for A � 1, . . . , N . These have

h1 � h2 � h3 � 0 and E � 4R1 � 4R2 � 2A . (2.119)

By acting with all possible supersymmetries Q, rQ and sop6q ` sup2qR1 ` sup2qR2

generators we can generate the entire 1
2 -BPS multiplet by acting on the highest

weight state OA. We can define a 1
2 -BPS partition function (Hilbert series) by

passing to the scalar sector of the Q1 X rQ 91 -cohomology

Z
p1,1q
1
2

-BPS
� TrH x

2R1 , (2.120)

H � tCrOsg|E � 4R1 � 4R2 , h1 � h2 � h3 � 0u . (2.121)

With this definition we have constructed an object which is counting only the gauge

invariant words comprised of scalar component X1 91 in the p1, 1q SYM theory. Using

letter counting we can compute

Z
p1,1q
1
2

-BPS
�

¾
dµUpNq PE rxχadjpzqs � 1

px;xqN , (2.122)
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this is the Hilbert series for CrO1,O2, . . . ,ON s. Identifying x � τ1τ2τ3 � pq we have

matched Z
p1,1q
1
2

-BPS
with (2.116) and the map between the operators is just

mpAq
4d:6dÐÝÝÑ OA . (2.123)

These operators can be expected to be found as a subset of those counted by the S1�
S5 partition function. By the Nahm classification [124], there is no superconformal

algebra associated to N � p1, 1q SUSY in 6d so there is no superconformal index

associated to this theory nevertheless we can define the S1 � S5 partition function

of the theory

Z
p1,1q
S1�S5px, y, p1, p2q9TrS5p�1qF e�βHxE�R1yR2ph1�h3

1 ph2�h3
2 (2.124)

where H � tQ,Q:u � E � h1 � h2 � h3 � 4R1 with Q :� Q1���. The partition

function (2.124) can be computed using the elliptic genus method [184, 185, 186]

or using the refined topological string [187, 57]. Z
p1,1q
S1�S5 is expected to receive both

perturbative contributions aswell as non-perturbative contributions from 6d SYM

instanton string states.

If we consider taking xy � p1 � p2 � 1 then

Z
p1,1q
S1�S5px, x�1, 1, 1q9TrS5p�1qF e�βHxE�R1�R2 (2.125)

receives extra shortening and is annihilated by Q and rQ 91��� ,rQ 91���, rQ 91���. There-

fore the unrefined limit (2.125) receives non-zero contributions only from states with

h1 � h2 � h3 � E � 4R2 and E � 2R1 � 6R2. H is clearly contained as a subset of

those states when E � 4R2.

We also note that (2.120) is equal to the 1
2 -BPS limit of the index of the

N � p2, 0q theory of type g � upNq, which we have computed in (1.132). Our

result therefore falls into the general result that, in all known examples, the 1
2 -BPS

partition function seems to be a universal quantity in all maximally supersymmet-

ric theories in 3, 4 and 6 dimensions [59]. Additionally, the p1, 1q and p2, 0q LSTs

are related by T-duality. T-duality exchanges winding and momentum modes along

the temporal S1. Since, by definition, Z
p1,1q
1
2

-BPS
and the analogous quantity Z

p2,0q
1
2

-BPS

[188, 61] defined for the p2, 0q theory count operators only in the zero winding and

zero momentum sectors one naturally expects Z
p1,1q
1
2

-BPS
� Z

p2,0q
1
2

-BPS
. It would be in-

teresting to further investigate if it is possible to obtain the more general partition
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Figure 2.6: Three ‘S-dual’ frames of the basic A1 four punctured sphere in class S2.
On the top is the canonical weakly coupled frame with fluxes for Up1qβ�Up1qγ�Up1qt
given by F � p0, 0, 1q. In the middle is the S-dual frame obtained by gluing a quiver
tail to the TB theory with flux FB � p�1

4 ,
1
4 , 1q. On the bottom is the S-dual frame

obtained by gluing a quiver tail to the TA theory with fluxes FA � p1
4 ,

1
4 , 1q. Green

(red) circles indicate maximal punctures of colour c � 0 (c � 1). o � l, r indicates
the orientation of a maximal puncture. Dots indicate minimal punctures.

functions, such as (2.124) and (2.125), from 4d class Sk quantities using deconstruc-

tion [175, 176, 177].

2.6 Interacting Trinion SCFTs

As pictured in Figure 2.6 the basic A1 four punctured sphere in class S2 admits three

‘S-dual’ descriptions. The first is the most familiar, being the standard Lagrangian

frame, and is given in Figure 2.7. The other descriptions involve strongly interacting

SCFTs, associated to spheres with three maximal punctures, with an SUp2q gauging

to a quiver tail. These SCFTs, denoted TA & TB in [136] carry global symmetries

of, at least sup2q2z ` sup2q2v ` sup2q2u` up1qγ ` up1qβ ` up1qt. The field content of the

B-type quiver tails is listed in Table 2.5. The superpotential for that theory is

WB �
¸
a��

�
qpaqΦ1p�qB1,a� � qpaqΦ1p�qB2,a�

	
� qp�qqp�qT0 , (2.126)
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u1 v2b

au2 v1

Q�
1 , δγ

?
t

Q�
2 , δ

γ

?
t

Q1
2
� , α

γ

?
t

Q1
1
� , αγ

?
t

Q
�
2
,

1
δβ

? t

Q
1
2
� ,

1
αβ

? tQ�
1 , β

δ
?
t

Q 1
1
�
, β
α
?
t

Φ2 , γβ
pq
t

Φ1 ,
1
γβ

pq
t

Figure 2.7: Quiver diagram of the theory associated to a sphere with two minimal
punctures and two maximal punctures of colour cl � cr � 0 in the canonical weakly
coupled frame.

Similarly, the field content of the A-type quiver tails can be found in Table 2.6.

Field(s) sup2qz2 up1qδ up1qα up1qr up1qβ up1qγ up1qt δ1� rδ2 9�
qp�q 2 �1 	1 0 1 �1 0 0 0

Φ1p�q 2 	1 	1 2{3 	1 	1 �1 2 0
B2,�� 1 �1	 1 �1� 1 4{3 �2 0 1 0 4
B1,�� 1 1	 1 1� 1 4{3 0 2 1 0 4
T0 1 0 0 2 �2 2 0 2 4

Table 2.5: Field content associated to the type B ‘quiver tail’ in class S2 correspond-
ing to a sphere with two minimal punctures α, δ and a ‘pinched’ maximal puncture
pz1 � αδ, z2q which can be glued to a maximal puncture to convert it to two minimal
punctures. Each field is an N � 1 chiral multiplet. In the final columns we firstly
list the value of δ1� � r�2j2� 4

3qt�2j1 and rδ2 9� � 4j2�2r� 4
3qt of the corresponding

field.

The superpotential is

WA �
¸

a,b��
qpaqΦ1pbqB1,ab � qp�qqp�qT0 . (2.127)

The respective TB & TA SCFTs have mesonic operators Mu�,Mv�,M z� which are

in the bifundamental representation of the corresponding sup2q`2 and in the �1

representation of up1qt. In the case of the TB theory Mu�,Mv� have charge �1 under

up1qγ and 	1 up1qβ while M z� has �1, �1. In the case of the TA theory Mu�,Mv�,M z�
all have charge �1 under up1qγ and 	1 up1qβ. The tails couple to their respective
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Field(s) sup2qz2 up1qδ up1qα up1qr up1qβ up1qγ up1qt δ1� rδ2 9�
qp�q 2 �1 	1 0 �1 �1 0 0 0

Φ1p�q 2 	1 	1 2{3 �1 	1 �1 2 0
B1,�� 1 0 �2 4{3 1	 1 1� 1 1 0 4
B1,	� 1 �2 0 4{3 1	 1 1� 1 1 0 4
T0 1 0 0 2 2 2 0 2 4

Table 2.6: Field content associated to the type A ‘quiver tail’ in class S2 correspond-
ing to a sphere with two minimal punctures α, δ and a ‘pinched’ maximal puncture
pz1 � αδ, z2q which can be glued to a maximal puncture to convert it to two minimal
punctures. Each field is an N � 1 chiral multiplet. In the final columns we firstly
list the value of δ1� � r�2j2� 4

3qt�2j1 and rδ2 9� � 4j2�2r� 4
3qt of the corresponding

field.

trinions through superpotentials

∆WB �
¸
a��

Φ1paqM z
a , ∆WA �

¸
a��

Φ1paqM z
a . (2.128)

Ultimately we have the following identity between the indices

I v
uδα � I z

uδ � I v
zα � IpBqzδα � IpTBqvzu � IpAqzδα � IpTAqvzu (2.129)

and we set z � pαδ, z2q. The expression for I v
uδα is given in (2.33). The final two

expressions read [133, 136]

IpBqzδα � IpTBqvzu �
¾
κdz2

4πiz2
δ

�
z2, s;

β

γ


 Γe

�
t γβ pβγz1q�1s�1

	
Γe

�
tpγβz1q�1z�1

2

� IpTBqvzu ,

IpAqzδα � IpTAqvzu �
¾
κdz2

4πiz2
δ

�
z2, s;

1

βγ


 Γe

�
tβγ

�
z1γ
β

	�1
s�1



Γe

�
t
�
z1γ
β

	�1
z�1

2


 IpTAqvzu ,

(2.130)

where we have defined s � δ
α and z1 � αδ and the function δpx, y;T q is defined in

(A.54). We now need to apply the Spiridonov-Warnaar inversion formula [189] to

invert the above integrals.



94 THE HIGGS AND COULOMB BRANCHES OF THEORIES OF CLASS Sk

2.6.1 TB Theory

Hall-Littlewood and Coulomb Indices

Applying (A.56) the index for the TB theory is

IpTBqvzu � Γe
�
tpγβz1q�1z�1

2

� ¾
Cz2

κds

4πis

δ
�
s, z2; γβ

	
I v
u
?
sz1
?

z1
s

Γe

�
t γβ pβγz1q�1s�1

	 , (2.131)

where Cz2 is a deformation of the unit circle which encloses s � γ
β z

�1
2 and excludes

s � β
γ z

�1
2 . The same expression was also given in (A.1) and (5.20) of [136] so we

will not analyse the full expression. But rather let us focus on the Hall-Littlewood

limit p?
t
, q?

t
Ñ 0 of (2.131). We know that this limit is well defined for the original

Lagrangian four punctured sphere theory. We can also see from Table 2.5 that each

letter for the tail has δ1� ¥ 0, meaning that the limit is also well defined for the

B-type tail theory; implying that the Hall-Littlewood limit of the index for the TB

theory is also expected to be well defined. In this limit the three punctured sphere

index becomes

HL
pTBqv
zu �

�
1� γ2

β2

	
�
1� τ2pγβz1q�1z�1

2

�
�

¾
Cz2

ds

4πis

�
1� s�2

� �1� τ2 γ
β pβγz1q�1s�1

	
�

1� γ
β s

�1z�1
2

	 HL v
u
?
sz1
?

z1
s

(2.132)

where HL v
u
?
sz1
?

z1
s

is given in (2.59). The global symmetry of this theory does not

enhance from the expected one and is given by gpTBq � sup2q2z ` sup2q2v ` sup2q2u `
up1qγ ` up1qβ ` up1qt. In expansion around τ � 0 and γ

β � 0

HL
pTBqv
zu � 1� P1τ

2 � P2τ
4 �Opτ6,

γ6

β6
q (2.133)

with

P1 �f�1 pr0; 0; 0; 0; 1; 1s � r0; 0; 1; 1; 0; 0sq � f�1 r1; 1; 0; 0; 0; 0s
� γ2r0; 1; 1; 0; 1; 0s � r1; 0; 0; 1; 1; 0s � r1; 0; 1; 0; 0; 1s
� 1

β2
r0; 1; 0; 1; 0; 1s ,

(2.134)
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P2 � 1� f�2 pr0; 0; 0; 0; 2; 2s � r0; 0; 2; 2; 0; 0sq � f�2 r2; 2; 0; 0; 0; 0s

� β2

γ2
� �

f�2 � 1
� r0; 0; 1; 1; 1; 1s � f�1 f

�
1 r1; 1; 1; 1; 0; 0s

� f�1 f
�
1 r1; 1; 0; 0; 1; 1s � f�1 pr1; 0; 1; 0; 1; 0s � r1; 0; 0; 1; 0; 1sq

� f�1 pr0; 1; 1; 0; 0; 1s � r0; 1; 0; 1; 1; 0sq � r2; 0; 1; 1; 1; 1s

� γ2

β2
r0; 2; 1; 1; 1; 1s � 1

β2
r1; 1; 1; 1; 0; 2s � γ2r1; 1; 1; 1; 2; 0s

� γ2r1; 1; 2; 0; 1; 1s � 1

β2
r1; 1; 0; 2; 1; 1s � γ2f�1 r0; 1; 2; 1; 1; 0s

� f�1 pr1; 0; 1; 0; 1; 2s � r1; 0; 0; 1; 2; 1s � r1; 0; 1; 2; 1; 0sq
� f�1 r1; 0; 2; 1; 0; 1s � γ2f�1 r0; 1; 1; 0; 2; 1s � 1

β2
f�1 r0; 1; 1; 2; 0; 1s

� 1

β2
f�1 � r0; 1; 0; 1; 1; 2s � f�1 pr2; 1; 1; 0; 0; 1s � r2; 1; 0; 1; 1; 0sq

� γ2f�1 r1; 2; 1; 0; 1; 0s � 1

β2
f�1 r1; 2; 0; 1; 0; 1s � γ4r2; 2; 2; 2; 2; 2s

� r2; 0; 2; 0; 0; 2s � 1

β4
r0; 2; 0; 2; 0; 2s � pr2; 0; 0; 0; 0; 0s � perms.q

(2.135)

where we write the character of SUp2qz1�SUp2qz2�SUp2qv1�SUp2qv2�SUp2qu1�
SUp2qu2 as rn1;n2;n3;n4;n5;n6s. In order to condense the notation we have also

defined f�n � °n
i�0 γ

n�2iβ�pn�2iq. Note the appearance of the Mesonic generators

Mu�,Mv�,M z� in the first line of (2.134). We also have additional generators, in

the second line of (2.134), in trifundamental representations of the corresponding

SUp2q3’s. The conformal R-symmetry of the TB theory is [136]

rc � r � 0.0985pqγ � qβq � 0.043523qt , (2.136)

where r denotes the free R-symmetry, for the Hall-Littlewood index this can be

easily computed by using r � �2j2� 4
3qt from (2.37). Operators contributing to the

Hall-Littlewood limit of the index therefore have conformal dimension

Ec � 2j2 � 3

2
rc � �j2 � 0.14775pqγ � qβq � 1.93472qt . (2.137)

Recall for unitarity that Ec ¥ 1, this implies that the (bosonic) operators with qt � 1

appearing in (2.134) must have j2 � 0. This, in particular, implies that they all are

the top components of Brc,p0,0q multiplets and therefore are Higgs branch operators,

in the definition of Section 2.2.2. Therefore, the Higgs branch of the TB theory
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Ec sup2q2z sup2q2v sup2q2u qγ qβ qt

Mu� 2.23022 p1,1q p1,1q p2,2q �1 �1 1
Mu� 1.63922 p1,1q p1,1q p2,2q �1 �1 1
Mv� 2.23022 p1,1q p2,2q p1,1q �1 �1 1
Mv� 1.63922 p1,1q p2,2q p1,1q �1 �1 1
M z� 1.93472 p2,2q p1,1q p1,1q �1 �1 1
B211 2.23022 p1,2q p2,1q p2,1q 2 0 1
B121 1.93472 p2,1q p1,2q p2,1q 0 0 1
B112 1.93472 p2,1q p2,1q p1,2q 0 0 1
B222 2.23022 p1,2q p1,2q p1,2q 0 �2 1

Table 2.7: (Subset of) Higgs branch operators of the TB SCFT. We write
sup2q2z,v,u � sup2qz1,v1,u1 ` sup2qz2,v2,u2.

contains at least the operators listed in Table 2.7. It is tempting to conjecture that

Table 2.7 is actually the complete list of operators on the Higgs branch. Expansion

of the Plethystic Logarithm PLog HLpTBq � 1 � L1τ
2 � L2τ

4 � . . . , P1 � L1 shows

that every coefficient in L2 is negative implying those operators are all fermionic and

there are no new scalar operators appearing at order τ4. This of course does not rule

out the possibility of the existence of additional scalar operators that are cancelled

by fermionic operators due to the factor p�1qF or new operators appearing with

qt ¥ 3. We can consider an unrefined z � u � v � 1, γβ � 1 limit. In this limit we

were able to cast HL 1

1
?
s
b

1
s

into a relatively closed form and the three punctured

sphere index becomes

HL
pTBq1
11

���
γβ�1

�
¾
C1

ds

2πi

#
1�

β
γ � s

	2 �
sβ
γ � 1

	2

� P ps, γβ�1, τq
ps� τ2q6 psτ2 � 1q6

�
τ2β
γ � s

	2 �
sτ2β
γ � 1

	2

+ (2.138)

where P ps, γβ�1, τq is a polynomial in s of degree 17. We then have to collect the

residues of the poles in the interior of C1; located at s � γ
β , τ

2, τ
2β
γ . The final result

is given by

HL
pTBq1
11

���
γβ�1

� τ19γ2

β2

QB

�
β
γ ,

1
τ

	
�QB

�
γ
β , τ

	
�

1� β
γ τ

2
	7 �

1� γ
β τ

2
	9
p1� τ2q11

, (2.139)
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where QBpγβ�1, τq is a degree 19 polynomial in τ . For brevity we relegate the full

expression of QBpγβ�1, τq to Appendix C.2 and quote only the result for γ � β � 1

HL
pTBq1
11

���
γ�β�1

� 1

p1� τ2q18

�
τ20 � 38τ18 � 474τ16 � 2582τ14

�6895τ12 � 9516τ10 � 6895τ8 � 2582τ6 � 474τ4 � 38τ2 � 1
�
.

(2.140)

Note that the numerator of (2.140) possesses a palindromic symmetry. We can also

compute the Coulomb limit of the index (p, q, t Ñ 0, pq
t Ñ T ); this was originally

given in [154]. We have that

IC pTBqvzu � �
1� T pγβz1q�1z�1

2

�
�

¾
Cz2

ds

4πis

�
1� γ2

β2

	
p1� s�2q�

1� γ
β z

�1
2 s�1

	 IC v
u
?
sz1
?

z1
s�

1� T β
γ pβγz1q�1s�1

	 . (2.141)

The Coulomb index for the 4-punctured sphere was given in (2.22) and is given by

IC v
u
?
sz1
?

z1
s

� PE

��
γ2β2 � 1

γ2β2
� 1



T 2

�
, (2.142)

notice that it is independent of s and therefore we can easily compute the above

integral by collecting the residues of the poles inside Cz2 at

s � Tβ2z1,
T
γ2z1

, γβ z
�1
2 . The final result is

IC pTBqvzu � PE

��
γ2β2 � 1

γ2β2
� β2

γ2



T 2

�
. (2.143)

Higgs and Coulomb Branch Hilbert Series

We would also like to apply the duality conjecture to compute the Hilbert series for

the TB SCFT. We can write an expression similar to that of (2.129), the duality

implies that

HSpτ ;HB4-puncq �
¾
dz2

4πi
p1� z�2

2 q gz2 HSpτ ;HBBqHSpτ ;HBTB q

� HL v
u
?
sz1
?

z1
s

.
(2.144)

Here, (2.144) is the Hilbert series for the 4-punctured sphere theory which, as dis-

cussed in Section 2.4.1, is equal to the Hall-Littlewood limit of the index for that
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theory. HSpτ ;HBBq ,HSpτ ;HBTB q denote the Higgs branch Hilbert series for the

B-type quiver tail and the TB theory, respectively. Finally gz2 denotes a possible

gluing factor which takes into account the coupling between the tail and TB through

the superpotential (2.128).

Firstly, we can compute the Coulomb/Higgs branch Hilbert series for the B-

type quiver tail, this is particularly simple, we can simply enumerate all of the

letters which satisfy the corresponding shortening condition from Table 2.5, taking

into account the F -terms generated by the superpotential WB. Considering first the

Hilbert series for the Higgs branch, we have

HBB � Crqp�q, B2,��, B1,��s
xB1,��qp�q �B1,��qp�q, B2,��qp�q �B2,��qp�q, qp�qqp�qy

. (2.145)

It’s easy to check with Macaulay2 that the above list is not a regular sequence. We

then need to compute

HSpτ, . . . ;HBBq :� TrHBB τ
2qtz

jz2
2 δqδαqαβqβγqγ . (2.146)

The above quantity can be computed using Macaulay2 and the full expression reads

HSpτ, . . . ;HBBq � PE

�
e
β

γ
r1; 1; 0s � e

γ

β
r0; 1; 1sτ2

�"
�β
γ
τ4e5r1; 1; 0s

�β
γ
τ2e3r0; 1; 1s � τ4e4r2; 0; 0s � τ2e2r1; 0; 1s � β2

γ2
τ4e6 � β2

γ2
e2 � 1

* (2.147)

where, as before, s � δ{α and z1 � αδ and here rn;m; ls � χnpz2qχmpsqχlpβγz1q.
Note that we also made explicit the extra fugacity e for the UV energy generator E

under which each of the letters of (2.145) have charge �1. This fugacity is simply

counting the number of ‘letters’ making up a given ‘word’ and the above should be

strictly speaking always be evaluated on e � 1. Observe that

HL
pBqz
δα �PE

�
β

γ
r1; 1; 0s � γ

β
r0; 1; 1sτ2 � β2

γ2
� r1; 0; 1sτ2

�
�HSpτ ;HBBq ,

(2.148)

namely that for the B-type tail, associated to a sphere with two minimal and one

maximal puncture, it Higgs-branch Hilbert series does not coincide with the Hall-

Littlewood limit of its superconformal index.

Now, we come across two problems in trying to fix the Hilbert series for the TB
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theory. The first problem that arises is that the form of (2.144) does not lend itself

to apply the elliptic inversion formula. Secondly, it is unclear how to compute the

gluing factor gz2 . In the, analagous to our case, Class S T3 theory the gluing factor,

on the Higgs branch, is simply taken into account by adding in the new F-term

relations for φ arising due to the sup2q gauging [190]. These set a relation between

the Up1q hypermultiplet and T3 mesonic operators Q rQ � M . In our current case,

due to having only N � 1 supersymmetry, the superpotentials (2.126), (2.128) are

more complicated.

However, we can try to follow the prescription that isolates the spectrum of TB

theory within the 4-punctured sphere theory, given in [136, 133]. This prescription

was demonstrated to work at the level of the index. The steps, starting with the

4-punctured sphere theory, are as follows:

• Add matter:- we add the following chiral fields to the 4-punctured sphere the-

ory with superpotential (2.149) where

Field(s) sup2qz2 up1qδ up1qα up1qr up1qβ up1qγ up1qt δ1� rδ2 9�rqp�q 2 �1 	1 0 �1 1 0 0 0
b1,�� 1 1� 1 1	 1 2{3 2 0 �1 2 0
b2,�� 1 �1� 1 �1	 1 2{3 0 �2 �1 2 0
t0 1 0 0 2 2 �2 0 2 4

φ1p�q 2 �1 �1 4{3 �1 �1 1 0 4

b1 � pb1,��, b1,��q, b2 � pb2,��, b2,��q, rq � prqp�q, rqp�qq are SUp2qs dou-

blets. We will use the notation dets , trs to distinguish between det, tr taken

over the original 4-punctured sphere gauge groups. It is clear that the only

gauge invariant operators in the Higgs branch sector are those made up of

Q�
l , Q

1�
l , rqp�q, φ1p�q.

• Go to the infinite coupling limit and gauge the enhanced sup2qs, s � δ
α sym-

metry (using the integration contour Cz2)

∆W � b2 �
�

detQ1�
1

detQ�
1

�
� b1 �

�
detQ�

2

detQ1�
2

�
� t0 det

s
rq � φ1p�qrqb2 � φ1p�qrqb1 (2.149)

By examining (2.131) one can see that, at the level of the index, this prescription is

precisely mirroring that of the Elliptic inversion formula and therefore this prescrip-

tion is correct, atleast at the level of the protected spectrum of the theory. Since, by

construction, our Hilbert series’ are 1
2 -BPS objects, we also naively expect that this
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prescription should also yield the correct result for the Hilbert series. Therefore, all

in all, the coordinate ring of the Higgs branch of the TB theory can be expected to

be described as the following quotient

HBTB � pFHTB qG , FHTB � R{I , (2.150)

G � SUp2qa � SUp2qb � SUp2qs , R � CrQ�
l , Q

1�
l , rqp�q, φ1p�qs , (2.151)

I � xQ�
1 Q

�
1 �Q1�

1 Q
1�
1 , Q

1�
2 Q

1�
2 �Q�

2 Q
�
2 , rqp�qrqp�q,

detQ�
1 � φ1p�qrqp�q, detQ1�

1 � φ1p�qrqp�q,
detQ�

2 � φ1p�qrqp�q, detQ1�
2 � φ1p�qrqp�qy .

(2.152)

The F-terms coming from the new fields have fugacities γ2

β2 ,
z1
s γ

2τ, z1sγ
2τ . We there-

fore have to compute

HSpτ, . . . ;HBTB q �
¾
Cz2

dµs

¾
dµa

¾
dµb HSpτ, . . . ;FHTB q , (2.153)

where the Hilbert series for FHTB
is

HSpτ, . . . ;FHTB q � TrR{I τ2qta2jab2jbz
2jz2
2 δqδαqαβqβγqγ

2¹
i�1

u
2jui
i v

2jvi
i . (2.154)

The expression for HSpτ ;FHTB q is rather complicated, however, it can be computed

using Macaulay2. In a series expansion around τ � 0, γ
β � 0 it reads

HSpτ ;HBTB q � 1�
��

β

γ
� γ

β



pr0; 0; 0; 0; 1; 1s � r0; 0; 1; 1; 0; 0sq

�
�
βγ � 1

βγ



r1; 1; 0; 0; 0; 0s � γ2r0; 1; 1; 0; 1; 0s � r1; 0; 0; 1; 1; 0s

�r1; 0; 1; 0; 0; 1s � 1

β2
r0; 1; 0; 1; 0; 1s

�
τ2 �Opτ4,

β2

γ2
q .

(2.155)

At order τ2 our expression for the Hilbert series matches that of the Hall-Littlewood

index (2.132), but the two expressions begin to differ at τn¥4. In particular, frac-

tional coefficients begin to appear in the expansion for τn¥4. For example

�7
2
β
γ r1; 0; 1; 0; 1; 0sτ4. This can be attributed to the fact that HSpτ, . . . ;FHTB q does

not actually exhibit the SUp2qs enhancement, namely that it is not invariant under

the action of the Weyl group of sup2qs which acts by exchanging sÑ s�1 and there-
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fore can not be expanded in SUp2qs characters. Thus the prescription, while true

for the index, gives an incorrect result for the Hilbert series (where we would expect

only positive integer coefficients to appear). One possible reason for this is that the

index is insensitive to the precise form for the superpotentials, whereas the Hilbert

series is highly dependent on such choices.

We can perform a similar analysis for the Coulomb branch. We count only scalar

operators (j1 � j2 � 0) and we impose the conditions rδ1 9� � rδ2 9� � 0, therefore we

have r � �2
3qt. Let us first discuss the B-type tail theory. From Table 2.5 the

Coulomb ring is simply Crqp�q,Φ1�s, the F-terms ideal is

xqp�qΦ1p�q, qp�qΦ1p�q, qp�qΦ1p�q, qp�qΦ1p�q, qp�qqp�qy . (2.156)

The Hilbert series can be computed using Macaulay2 and, using the notation

rn;m; ls � χnpz2qχmpsqχlpβγz1q, reads

HSpT ;CBBq �PE

�
γ

β
r1; 1; 0se� r1; 0; 1seT

�"
�β

3e5

γ3
r1; 1; 0sT 2

� 1� β2e2

γ2
� βe2T

γ
r0; 1; 1s

�β
4

γ4
e6T 2 � β2e4T 2

γ2
r0; 2; 0s � β2e3T

γ2
r1; 0; 1s

* (2.157)

Using the prescription outlined in Section 2.6.1 we can also compute the Coulomb

branch Hilbert series for the TB theory. In total the coordinate ring is

CBTB � pFCTB qG , FCTB �
CrΦi, rq, b1, b2s
xdets rq, rqb2, rqb1y , (2.158)

The Hilbert series for FC can be easily computed using Macaulay2 and

HSpT ;CBTB q �
¾
Cz2

dµs

¾
dµg1

¾
dµg2HSpT ;FCTB q (2.159)

�PE

��
1� β2γ2 � 1

β2γ2
� β2

γ2



T 2

�
(2.160)

�PErT 2s IC pTBqvzu . (2.161)

The generators corresponding to
�

1� β2γ2 � 1
β2γ2

	
T 2 may be thought of as comp-

ing from the original 4-punctured sphere theory tr Φ1Φ2, det Φ1, det Φ2. The the
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other possible G-invariant generators are dets rq, trs rqb1, trs rqb2, dets b1, dets b2 and

trs b1b2. The first three are set to zero by the F-terms while dets b1, dets b2 are not

selected by the contour. Therefore

CBTB � Crtr Φ1Φ2, det Φ1,det Φ2, trs b1b2s.

2.6.2 TA Theory

Hall-Littlewood and Coulomb Indices

Applying (A.56) the index for the TA theory is

IpTAqvzu �Γe

�
t

�
γz1

β


�1

z�1
2

�
κ

�
¾
Cz2

ds

4πis
δ ps, z2;βγq

I v
u
?
sz1
?

z1
s

Γe

�
tβγ

�
z1γ
β

	�1
s�1


 ,
(2.162)

where now Cz2 encloses s � βγz�1
2 and excludes s � 1

βγ z
�1
2 . The same expression

was also given in (B.3) and (5.17) of [136]. As pointed out in [136] the flavour

symmetry enhances sup2q2z ` sup2q2v ` sup2q2u ` up1qγ ` up1qβ ` up1qt Ñ gpTAq �
sop8qw ` sup2qz2 ` sup2qv1 ` sup2qu1 ` up1qγβ ` up1qt. The enhancement to sop8q
is made manifest by identifying w � p γβu2,

β
γ

1
u2
, βγu2,

γ
β

1
u2
, v2z1,

1
v2z1

, v2
z1
, z1v2

q as the

SOp8q fugacities. We can again take the Hall-Littlewood limit. In an expansion

around τ � 0, βγ � 0 the Hall-Littlewood index reads

HL
pTAqv
zu �

1�
�
r1, 0, 0, 0; 0; 0; 1s � r0, 0, 1, 0; 0; 1; 0s � r0, 0, 0, 1; 1; 0; 0s

� γ2β2r0, 0, 0, 0; 1; 1; 1s
�
τ2 �

�
γ4β4r0, 0, 0, 0; 2; 2; 2s

� γ2β2pr1, 0, 0, 0; 1; 1; 2s � r0, 0, 1, 0; 1; 2; 1s � r0, 0, 0, 1; 2; 1; 1sq
� r2, 0, 0, 0; 0; 0; 2s � r0, 0, 2, 0; 0; 2; 0s � r0, 0, 0, 2; 2, 0, 0s
� r1, 0, 1, 0; 0; 1; 1s � r1, 0, 0, 1; 1; 0; 1s � r0, 0, 1, 1; 1; 1; 0s
� r0, 1, 0, 0; 0; 0; 0s � γ2β2

�
τ4 �Opτ6, β6γ6q

(2.163)

where we denote the character of SOp8qw � SUp2qz2 � SUp2qv1 � SUp2qu1 by

rd1, d2, d3, d4; d5; d6; d7s. Notice the �γ2β2τ4 coefficient in the expansion of HL
pTAqv
zu ,

we can see from Table C.3, Table C.4 and equations (C.18)-(C.22) that this multiplet
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(since the TA theory is interacting it can not have higher spin free fields) must be

a C 2
3
p0,0q multiplet with up1qt charge qt � 2 and qβ � qγ � 2. In particular the

negative coefficient appearing in the expansion of the Hall-Littlewood index means

that the Hall-Littlewood index for generic genus zero class Sk theories is, in general,

not equal to the Hilbert series for its Higgs branch (as per the definition of Section

2.2.2) whose expansion coefficients must all be positive.

The expansion of the Hall-Littlewood limit of the index of the four punctured

sphere theory has all positive coefficients, in particular it does not contain a C 2
3
p0,0q

multiplet with qt � qβ � qγ � 2. As we approach the complete decoupling limit

where the SUp2qz2 is ungauged the four punctured sphere theory decomposes into

the TA SCFT plus the A-type tail theory. As we approach that limit a long multiplet

A3
2
3
,p0,0q of the four-punctured sphere theory decomposes via the recombination rule

(C.4)

A3
2
3
,p0,0q � C 2

3
,p0,0q ` B 8

3
,p0,0q . (2.164)

The B 8
3
,p0,0q with qt � qβ � qγ � 2 lives in the A-type quiver theory. Going through

the list of Hall-Littlewood (δ1� � 0) operators with p�1qF � �1, qt � qβ � qγ � 2

in the tail theory Table 2.6 gives an operator in the 2b 2 � 3` 1 of the enhanced

SUp2qs�δ{α

BIJ :�
�
B1,��B1,�� B1,��B1,��
B1,��B1,�� B1,��B1,��

�
IJ

� BpIJq �BrIJs (2.165)

with I, J � 1, 2 SUp2qs indices. Since the TA theory contains only SUp2qs singlets

we are instructed to take the 1 in the decomposition and we conclude that the

operator

BrIJs �
1

2
pB1,��B1,�� �B1,��B1,��qεIJ (2.166)

is the top component of the B 8
3
,p0,0q multiplet in the above recombination rule. The

conformal R-symmetry of the TA theory is [136]

rc � r � 0.0689pqγ � qβq � 0.044777qt . (2.167)

Therefore, operators contributing to the Hall-Littlewood limit of the index have

conformal energy

Ec � 2j2 � 3

2
rc � �j2 � 1.93283qt � 0.10335pqγ � qβq . (2.168)
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Ec sop8qw sup2qz2 sup2qv1 sup2qu1 qγ � qβ qt

Mv 1.93283 8v 1 1 2 0 1
M c 1.93283 8c 1 2 1 0 1
M s 1.93283 8s 2 1 1 0 1
B 2.34623 1 2 2 2 4 1

Table 2.8: (Subset of) Higgs branch operators of the TA SCFT.

By the same arguments as the ones made for the TB theory the operators with qt � 1

appearing in the expansion (2.163) have j2 � 0. Therefore the operators of Table

2.8 comprise, at least a subset of, the possible operators on the Higgs branch of the

TA SCFT. In the notation of Table 2.7 we have combined Mv � tMu�,Mu�, B121u,
M c � tMv�,Mv�, B112u, M s � tM z�,M z�, B222u and B � tB211u. The expansion of

PLog HLpTAq � L̃1τ
2� L̃2τ

4� . . . with the coefficients of L̃2 all being negative again

does not rule out the possibility that Table 2.8 is in fact the complete list of Higgs

branch generators for the TA theory and that new generators do not appear at higher

orders. We were able to obtain a closed expression in the unrefined z � v � u � 1,

γβ�1 � 1 limit:

HL
pTAq1
11

���
γ
β
�1
�
¾
C1

#
1

ps� βγq2pβγs� 1q2

�
rP ps, γβ, τqds

pβγs� τ2q5 psτ2 � βγq5 ps� βγτ2q3 pβγsτ2 � 1q3

�β5γ5τ15QApτ, βγq �QApτ�1, β�1γ�1q
p1� τ2q19p1� γ2β2τ2q4

(2.169)

where rP ps, γβ, τq is a polynomial in s and in the second line we took the residues at

s � βγ, pβγq�1τ2 and QApτ, βγq is a polynomial of degree 15 in τ . We list the full

expression for it in (C.27) and quote here only the result for γ � β � 1 which reads

HL
pTAq1
11

���
γ�β�1

� 1

p1� τ2q18

�
τ20 � 38τ18 � 474τ16 � 2582τ14

�6895τ12 � 9516τ10 � 6895τ8 � 2582τ6 � 474τ4 � 38τ2 � 1
�
,

(2.170)

again, note the palindromic structure of the numerator. Also note that in the fully

unrefined limit HL
pTAq1
11

���
γ�β�1

� HL
pTBq1
11

���
γ�β�1

. This is expected since the TA

& TB SCFTs differ only by choices for fluxes for Up1qγ and Up1qβ. This equality

no longer holds with refinement turned on, since TA and TB have different global
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symmetry algebras.

The Coulomb index for the TA theory can also be computed, the computation

is identical to the TB case and it reads

IC pTAqvzu � PE

��
β2γ2 � 2

β2γ2



T 2

�
. (2.171)

Higgs and Coulomb Branch Hilbert Series

We can perform the analagous computation to the one that we performed for the TB

theory. Let us compute the Higgs branch Hilbert series for the A-type tail theory.

This coordinate ring can be described as

HBA �
Crqp�q, B1,��1s

xB1,��qp�q �B1,��qp�q, B1,��qp�q �B1,��qp�q, qp�qqp�qy
. (2.172)

At the level of the tail theory can can see that (2.172) and (2.145) are isomorphic

as graded rings, where the isomorphism is made by B1,�� Ñ B2,�� B1,�� Ñ B2,��
while redefining the grading β Ñ 1

β . Therefore, we have

HSpτ, β, γ, s, z1;HBAq � HSpτ, β�1, γ, s, z1;HBBq . (2.173)

To obtain an expression for the Hilbert series for the TA SCFT we again follow

the prescription of [136]

• Add matter:- we add the following chiral fields to the 4-punctured sphere the-

ory with superpotential (2.174) where b11 � pb1,��, b1,��q,

Field(s) sup2qz2 up1qδ up1qα up1qr up1qβ up1qγ up1qt δ1� rδ2 9�rqp�q 2 �1 	1 0 1 1 0 0 0
b1,�� 1 0 	2 2{3 �1� 1 �1	 1 �1 2 0
b1,	� 1 	2 0 2{3 �1� 1 �1	 1 �1 2 0
t0 1 0 0 2 �2 �2 0 2 4

φ1p�q 2 �1 �1 4{3 	1 �1 1 0 4

b1 � pb1,��, b1,��q, rq � prqp�q, rqp�qq are SUp2qs fundamental doublets. We

again use the notation dets, trs to distinguish between det, tr taken over the

original 4-punctured sphere gauge groups. It is clear that the only gauge invari-

ant operators in the Higgs branch sector are those made up of Q�
l , Q

1�
l , rq, φ1p�q.
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• Go to the infinite coupling limit and gauge the enhanced sup2qs, s � δ
α sym-

metry (using the integration contour Cz2)

∆W � b11 �
�

detQ1�
1

detQ�
1

�
� b1 �

�
detQ�

1

detQ1�
1

�
� t0 det

s
rq � φ1p�qrqb11 � φ1p�qrqb1 (2.174)

Therefore, the coordinate ring of Higgs branch of the TA SCFT can be expected to

be described as the following quotient

HBTA � pFHTAqG , FHTA � R{I , (2.175)

G � SUp2qa � SUp2qb � SUp2qs , R � CrQ�
l , Q

1�
l , rq, φ1p�qs , (2.176)

I � xQ�
1 Q

�
1 �Q1�

1 Q
1�
1 , Q

1�
2 Q

1�
2 �Q�

2 Q
�
2 , rqp�qrqp�q,

detQ1�
1 � φ1p�qrqp�q,detQ�

1 � φ1p�qrqp�q,
detQ�

1 � φ1p�qrqp�q, detQ1�
1 � φ1p�qrqp�qy .

(2.177)

We can perform a similar analysis for the Coulomb branch. The computation is

the same as that for the TB theory of the previous section. The Coulomb ring for

the A-type tail is the same as for the B-type tail simply with β Ñ 1
β while leaving

everything else fixed. So,

HSpT, γ, β, s, z1;CBAq � HSpT, γ, β�1, s, z1;CBBq . (2.178)

Using the prescription outlined in the previous section we can also compute the

Coulomb branch Hilbert series for the TA theory. In total

CBTA � pFCTAqG , FCTA �
CrΦi, rq, b1, b11s
xdets rq, rqb1, rqb11y . (2.179)

It is not too difficult to see that CBTA � CBTB as graded rings. Here, the isomor-

phism is made by b11 Ñ b2, however, we also have to exchange the grading β Ñ 1
β

of rq, b1, b11 while keeping the gradings of the four-punctured sphere fields Φi fixed.

Therefore, we simply have that

CBTA � Crtr Φ1Φ2,det Φ1,det Φ2, trs b1b
1
1s and the Hilbert series is

HSpT, . . . ;CBTAq � PE

��
1� γ2β2 � 2

β2γ2



T 2

�
� PErT 2s IC pTAqvzu . (2.180)
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2.7 Outlook and Open Problems

In this chapter we have defined Higgs and Coulomb branches for N � 1 theories of

class Sk. As we have stressed, for generic N � 1 theories these branches generally

cannot be distinguished and are merged into one another. On the other hand,

theories of class Sk inherit the Higgs and Coulomb branch definitions from the

N � 2 theory from which they arise as orbifolds from. We were also able to compute

the Hilbert series for the Higgs and Coulomb branches for a large variety of class

Sk theories. Such quantities have been integral to the study the reductions to three

dimensions of class S theories, in particular, when one dimensionally reduces theories

of class S on a circle a three dimensional N � 4 theory is obtained. These theories

often lack a Lagrangian description, however the 3d mirror is a Lagrangian theory

[191]. Under 3d mirror symmetry the Higgs and Coulomb branches are exchanged.

Since the Higgs branch is invariant under circle reduction the Higgs branch Hilbert

series for the 4d class S theory is equal to Coulomb branch Hilbert series of the 3d

mirror, hence the Hilbert series can be a very useful tool to check the mirror theory.

It would be very interesting to investigate this story for theories of class Sk.
Additionally, we have also been able to define analogues of the Hall-Littlewood,

Coulomb, Macdonald and Schur limits of the superconformal index for theories of

class Sk. For theories of class S the TQFT structure constants in the given limit are

diagonalised by the corresponding polynomials [168]. For class Sk this is no longer

true, and an explicit description for the polynomials that diagonalise the structure

constants is not known. It would be very useful to have such an explicit description,

knowing this would allow one to write down the superconformal index for any class

Sk theory, in the given limit.

It would be interesting to further study the theories of SΓ�D,E . However, in this

case, a direct generalisation of the work carried out in this chapter is not immedi-

ate. The basic reason is that, integral to our work defining the Higgs and Coulomb

branches and the unrefined limits of the superconformal index for the Γ � A the-

ories was the existence of the intrinsic up1qt symmetry; in addition to the up1qr
R-symmetry. For the case Γ � D,E such symmetry typically is not present. The

geometric interpretation is that the space C2{Ak�1 has an additional Up1q holomor-

phic isometry (for k � 1, 2 this enhances to SUp2q). This can be seen from the defin-

ing equations xy � wk and we see that we can give Up1q charges �1,�1, 0 to x, y, w.

This symmetry is identified with Up1qt. On the other hand, when Γ � DE we have

no such Up1q. For example the defining equations for C2{Dk�2 is x2 � y2w � wk�1
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and has empty isometry group.



Chapter 3

Seiberg-Witten Curves for

Theories of Class Sk

3.1 Introduction

Shortly after the seminal work by Seiberg and Witten on N � 2 gauge theories

[12, 13] Seiberg and Intriligator pointed out that similar techniques may be deployed

to study N � 1 gauge theories that possess a pure abelian Coulomb branch [20].

When supersymmetry is unbroken the theory may often possess several inequivalent

ground states for any given values of the moduli tuiu of the theory. The ground

states are generically in different ‘branches’ or ‘phases’ of the theory. These phases

may be Coulomb, Higgs, Confining or, more generally, a mixture between them. In

many cases the moduli space M is a manifold parametrised by the ui. In particular,

they were able to write down a family of holomorphic curves X encoding the low

energy superpotential on the Coulomb branch. It is useful to think of the total space

X as a fibration of holomorphic curves fibered over the moduli space base

X �
X

CB

(3.1)

here X is a tuiu dependent Riemann surface specified by a polynomial in two aux-

iliary variables x, y and the various coupling constants q and masses,

X : y2 � F px;ui, q,mq . (3.2)

109
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The low energy effective coupling matrix then is computed by inverting»
Bj

ωi �
ģ

l�1

τil

»
Al

ωj , (3.3)

where ω P Ω1,0pX q with Ωp,qpX q is the space of closed pp, qq-forms on the genus g

curve X at fixed ui.

In contrast to N � 2 gauge theory, where the techniques of Seiberg and Witten

allows one to compute the low energy Wilsonian effective action and the masses of

the lightest single particle states exactly, computing the Seiberg-Intriligator curve

for an is not enough to ‘solve’ the Coulomb branch of N � 1 theory. In particular,

in the case of a generic N � 1 gauge theory, supersymmetry does not relate the

superpotential to the Kähler part of the action. Furthermore, the lack of a BPS

bound means that there is no direct way to compute the masses of the lightest

states.

On the contrary, the N � 1 curves still encode a large amount of information

and may be particularly instructive in, for example, a Gaiotto type classification for

theories of class Sk [121, 122].

3.2 Review of N � 1 Seiberg-Intriligator Curves

In this section we wish to provide a brief review of a few rank one examples of the

N � 1 curves proposed by Seiberg and Intriligator [20]. Guided by the following

basic assumptions:

• The low energy effective action has an SLp2,Zq duality group meaning that τ is

not a single valued function but rather a section of an SLp2,Zq bundle over CB

which can be identified with the period matrix of a genus g Riemann surface

Xu which is given by a ratio of the periods τ � ³
B ω{

³
A ω where A,B are

independent 1-cycles, the so called electric and magnetic cycles respectively.

• Because τ is a global holomorphic section in the light fields and the various

coupling constants, over CB, the curve X should be holomorphic in them too.

• The curve should respect the global symmetries.

• The curve should be described by a polynomial of the form y2 � F px;u, q,mq.
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they were able to write down the family of holomorphic curves X encoding the low

energy superpotential on the Coulomb branch.

3.2.1 Examples

N � 2 Ñ N � 1 Mass Deformation of Pure SUp2q N � 2 Gauge Theory

The first example they considered is the mass deformation of pure SUp2q N � 2

gauge theory. The N � 2 Ñ N � 1 deformation is given by adding W Ñ W �mu

where u � 1
2 trφ2 and φ is the adjoint chiral multiplet of the N � 2 vector multiplet.

The curve of this N � 1 theory is given by

y2 � x3 �mux2 � Λ6
dx. (3.4)

N � 1 SUp2q � SUp2q Gauge Theory

Perhaps the most relevant example for us that was studied in [20] is N � 1 gauge

theory with G � SUp2q1 � SUp2q2 with two chiral superfields Φia1a2 in the p2,2q
representation of G, labelled by a1, a2 � 1, 2 respectively. The theory has a SUp2qF
flavour symmetry Φi Ñ fijΦj where fij P SUp2qF . The theory can, on one hand,

be understood as a Z2 orbifold of the above N � 2 pure SUp2q gauge theory.

Equivalently, the theory can be obtained by compactifying the 6d p1, 0qA1 theory

on a punctured Riemann surface C of genus zero in the presence of a certain set

of defect operators associated to so called ‘wild’ punctures. As in N � 2 theories

the Seiberg-Intriligator curve X is a double covering of C. The theory has a three

complex dimensional moduli space of supersymmetric vacua parametrised by the

gauge invariant quantities Mij :� det ΦiΦj where the determinant is taken over G.

This theory has an one complex-dimensional abelian coulomb branch where

SUp2q1 � SUp2q2 Ñ Up1qD � SUp2qD and SUp2qD denotes the diagonal subgroup

of SUp2q1 � SUp2q2. The moduli space CB of gauge inequivalent coulomb vacua is

parametrised by a single gauge and flavour singlet u � detijMij . The holomorphic

gauge coupling in this phase is τD � τD
�
u,Λ4

1,Λ
4
2

�
where Λ4

i :� µ4e2πiτi are the

instanton parameters. We may deduce the form of the curve describing the moduli

space by considering a few limits. Firstly consider the limit where Φ1 acquires a large

diagonal vev but the vev of Φ2 is vanishing. The gauge group is broken to SUp2qD.

Φ2 decomposes into 2b 2 Ñ 3` 1 of SUp2qD. There is also the heavy singlet field

M11. If we assume that the singlets decouple then the theory is approximately pure
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N � 2 SUp2qD gauge theory - the curve of that theory is

y2 � x3 � uDx
2 � 1

4
Λ4
Dx , for large u (3.5)

where

uD � trφ2 � 2u

M11
, Λ4

D � 16Λ4
1Λ4

2

M11
. (3.6)

After rescaling x, y, by the AutpQuiverq � Z2 symmetry acting by 1 Ø 2, agreement

at large u with (3.5), analyticity and dimensional analysis the most general form of

the N � 1 curve is

y2 � x3 � �
u� αpΛ4

1 � Λ4
2q
�
x2 � Λ4

1Λ4
2x . (3.7)

To fix α it is useful to focus on one of the two gauge nodes, say the SUp2q2 node,

from that point of view it sees SUp2q SQCD with Nf � 2 with holomorphic scale

given by Λ2 .1,2 For SQCD we have the following quantum constraint

Pf V � u� Eru � Λ4
2 (3.8)

with E some energy scale and ru � tr rφ2, rφ � 1
E

�
Φ1Φ2 � 1

2 tr Φ1Φ2

�
. To then fix α

consider the limit where the second gauge group is very strongly coupled Λ2 Ñ 8,

Λ2 " Λ1. On one hand, in this limit, the theory is approximately SUp2q1 gauge

theory coupled to the adjoint field rφ and singlets det Φ2
1, det Φ2

2, tr Φ1Φ2. Assuming

that the singlets decouple, the theory is approximately pure N � 2 gauge theory

with holomorphic scale Λ1 which has curve

y2 � x3 � rux2 � 1

4
Λ4

1x . (3.9)

and is singular at ru � 1

E

�
Λ4

2 � u
� � �Λ2

1 . (3.10)

On the other hand (3.7) is singular at u � α
�
Λ4

1 � Λ4
2

� � 2Λ2
1Λ2

2 � αΛ4
2 � 2Λ2

1Λ4
2.

Comparing with (3.10) implies that α � 1 and therefore curve Xu of this theory is

1By SUpNq SQCD with Nf flavours to be the theory consisting of an N � 1 SUpNq vector

multiplet coupled to Nf chiral multiplets Qi in the N of SUpNq and Nf chiral multiplets rQi in the
N̄ possibly with non-trivial superpotential.

2Recall that the 2 of SUp2q is pseudo-real and therefore isomorphic to the 2̄.
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given by

y2 � x3 � p�u� Λ4
1 � Λ4

2qx2 � Λ4
1Λ4

2x . (3.11)

Interestingly, the solution of this SUp2q � SUp2q N � 1 gauge theory is isomorphic

to that of SUp2q N � 2 gauge theory with the isomorphism X � XN�2 � H{Γ0p4q
provided by the mapping which shifts f : uN�2,ΛN�2 ÞÑ u� Λ4

1 � Λ4
2,Λ1Λ2.

3.3 Core Theories in Class Sk

In this section we derive the N � 1 Seiberg-Intriligator curves for the ‘core theories‘

in class Sk, namely those associated to spheres with two maximal and `�2 minimal

punctures.

3.3.1 Classical Analysis

The theory admits a rather intricate phase structure however, we may restrict our

attention to the Coulomb branch defined by giving non zero vevs to Φ’s while Q, rQ
have vanishing vevs. For generic vevs the gauge group is broken from SUpNqk` Ñ
Up1qpN�1q`. The branches don’t mix because they may be differentiate using the

Up1qt symmetry, as we have shown in Chapter 2.

We first define Φn :�±k
i�1 Φpi,nq, the Coulomb branch may be parametrised by

the following N gauge invariants

ulk,n :�
$&%1

l tr
�
Φn � 1

N tr Φn

�l
2 ¤ l ¤ N

tr Φn l � 1
(3.12)

of dimension lk and k ‘baryonic’ gauge invariant objects

Bi,n :� 1

pN !q2 εa1...aN ε
b1...bNΦa1

pi,nqb1 . . .Φ
aN
pi,nqbN � det Φpi,nq , (3.13)

of dimension N . Classically there is a relation

detMi�1,n �Bi,nBi�1,n � 0 , pMi�1,nqac :� Φa
pi,nqbΦ

b
pi�1,nqc , (3.14)

this relation is modified quantum mechanically [164]

detMi�1,n �Bi,nBi�1,n � Λ2N
i�1,n (3.15)
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here Λ2N
i�1,n is the effective holomorphic scale of the pi� 1, nqth gauge group. It can

be written in terms of the gauge couplings qpj,nq and the masses for hypermultiplets

which we will discuss in detail in the next section.

Note that there is an over-parametrisation since the ulk,n and Bi,n are not all

independent but rather related by the applying the Cayley-Hamilton theorem to the

matrix Φn:

ppΦnq �
Ņ

l�1

cl,nΦl
n � p�1qN det ΦnIN � 0 (3.16)

where

cN�l,n � p�1ql
l!

BEl

�
uk,n,�1!u2k,n, . . . , p�1ql�1pl � 1q!ulk,n

	
, (3.17)

with cN � 1 and BEl is the lth complete exponential Bell polynomial and we de-

fined ulk,n :� tr Φl
n. The ulk,n may be expressed in terms of the ulk,n as ulk,n �

1
l

°l
p�0

�
l
p

� �� 1
N uk,n

�p
upl�pqk,n. Taking the trace of (3.16) implies, for generic Φpi,cq,

a single relation between (3.12) and (3.13)

tr ppΦnq �
Ņ

l�1

cl,nulk,n � p�1qNN
k¹
i�1

Bi,n � 0 . (3.18)

In particular, this implies that uNk,n can be completely written in terms of the Bi,n

and the ulk,n 1 ¤ l ¤ N � 1. Hence, the coordinate ring of the Coulomb branch for

k ¥ 2 is expected to be a freely generated ring of dimension p3g� 3� `qpk�N � 1q

CB � Crulk,n, Bi,ns ,
l P t1, 2, . . . , N � 1u ,
i P t1, 2, . . . , ku ,
n P t1, 2, . . . , 3g � 3� `u .

(3.19)

3.3.2 Mass Parameters

We may regard the masses corresponding to the flavour symmetries for

SUpNqpi,0q � SUpNqpi,Lq and SUpNqpi,`�1q � SUpNqpi,Rq as expectation values for

background superfields Φpi,0q �ML
i , Φpi,`�1q �MR

i . Hence we may construct flavour
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invariant combinations of masses in the same fashion, to that end we define

µLlk :� tr

�
k¹
i�1

ML
i

�l

, µRlk :� tr

�
k¹
i�1

MR
i

�l

, (3.20)

JLi :� detML
i , JRi :� detMR

i , (3.21)

for 1 ¤ l ¤ N . Moreover, M
L{R
i may be diagonalised by SUpNq transformations

such that they take they form

M
L{R
i � diag

�
m
L{R
i,1 , . . . ,m

L{R
i,N

	
. (3.22)

Additionally, when ` � 1, the SUpNq2k flavour symmetry enhances to SUp2Nqk and

in that case we find it convenient to instead combine the mass parameters as

Mi :�ML
i `MR

i :� diag
�
mpiq,1, . . . ,mpiq,2N

�
, (3.23)

and to write the invariants as

µlk :� tr

�
k¹
i�1

Mi

�l

, Ji :� detMi , (3.24)

where now 1 ¤ l ¤ 2N . After giving vevs in the UV each Up1q factor is decoupled

and the corresponding coupling matrix τUV
ab,n is diagonal and they are related to the

SUpNqpi,nq gauge couplings by

τUV
ab,n � 2δa,b

ķ

i�1

τpi,nq (3.25)

3.3.3 Curves for N � k � 2

We will now compute the curve for the simplest of our theories, namely the k � 2

quiver with N � 2 and ` � 1. We will drop the ‘n’ index for compactness, e.g. here

Φpi,nq � Φpi,1q :� Φpiq.

Diagonal Limit

Initially let us consider the limit where, say, Φp1q gets a large diagonal vev
〈
Φp1q

〉 �
diagpa, aq, by examining the Lagrangian one sees that the gauge group is broken
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down to a SUp2qD diagonal subgroup just as in [20], under which both bifundamen-

tals decompose into an adjoint and a singlet, of which the adjoint associated to Φp1q
becomes the longitudinal modes of the massive pSUp2qp1q�SUp2qp2qq{SUp2qD gauge

bosons, while the (anti)fundamentals of the SUp2q’s decompose into (anti)fundamentals

of the SUp2qD.

The uneaten adjoint is φ � Φp2q � 1
2 tr Φp2q. Below the scale a the quarks Qp1,0q,

Qp2,1q, Q̃p1,0q, Q̃p1,1q can be integrated out, the super potential (without the singlets)

is then 3 In general there will also be the singlet u2 � tr Φp1qΦp2q of which there be

an associated mass deformation to the diagonal superpotential WD

WD ÑWD �msu2 (3.26)

Then below ms the singlet u2 can be integrated out.4 then below the scale a the

theory flows to N � 2 QCD with Nf � 4 flavors [194] which was studied in [12].

The curve for that theory in quartic form5 is [195, 13]

y2 � px2 � uDq2 � 4qD
p1� qDq2

4¹
j�1

�
x� µ̃j � qD

2p1� qDq
4̧

m�1

µ̃m

�
(3.27)

where µ̃j � mp1q,jmp2q,j{a, uD :� 1
2 trφ2 � u4{a2 � pu4�u2

2q{2a2 and qD � e2πiτD �
qp1qqp2q is associated to the coupling for the SUp2qD. After rescaling x Ñ x{a,

y Ñ y{a2 and substituting in the above relations we have

y2 � px2 � u4q2 � 4q

p1� qq2
4¹
j�1

�
x�mp1q,jmp2q,j �

q

2p1� qqµ2



(3.28)

where q :� qp1qqp2q and µ2 is defined as in (3.24). Now consider integrating out all

of the flavours from this N � 2 curve, leaving us with pure SUp2q N � 2 gauge

theory; [195] tells us to hold fixed, in our conventions, the relation

Λ4
D � 4qD

p1� qDq2
4¹
j�1

µ̃j �
4qp1qqp2q

p1� qp1qqp2qq2
4¹
j�1

mp1q,jmp2q,j
a

(3.29)

3The ”diagonal” quark masses can be calculated by solving the F-term’s for Qp1,0q, Qp2,1q, Q̃p1,0q,

Q̃p1,1q.
4In [20, 192, 193] the assumption that the singlet does not enter the gauge dynamics appears to

be consistent assumption, atleast below the scales ms where the singlet can be integrated out.
5The interested reader may consult Appendix D.1 for the explicit details regarding the change

of variables in order to move between quartic and cubic forms.
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On the other hand, from [20] we have that 6

Λ4
D � 4

Λ4
p1qΛ

4
p2q

a4
(3.30)

should be held fixed. Equating them implies that

Λ4
p1qΛ

4
p2q �

qD
p1� qDq2

4¹
j�1

mp1q,jmp2q,j �
qp1qqp2q

p1� qp1qqp2qq2
J1J2 (3.31)

should be held fixed under the limit, with Ji defined in (3.24). By the AutpQuiverq
symmetry we must have that the matching condition is

Λ4
piq � � qpiq

1� qp1qqp2q
Ji. (3.32)

Positivity of <Λ4
piq demands that we take the positive sign.

Hence, the most general form of the curve which is both polynomial in masses

and Coulomb moduli, is invariant under all of the symmetries and reproduces (3.28)

in the N � 2 limit is

y2 � �
x2 � u4 � a12J1 � a21J2 � bµ2

2 � cµ2u2 � dµ4

�2

� 4qp1qqp2q
p1� qp1qqp2qq2

4¹
j�1

�
x�mp1q,jmp2q,j �

qp1qqp2q
2p1� qp1qqp2qq

µ2



(3.33)

where a12 :� apqp1q, qp2qq, a21 :� apqp2q, qp1qq and b, c, d are all symmetric functions in

qp1q, qp2q. Note however that we may immediately restrict the dependence of b, c, d

on qp1q, qp2q by demanding agreement with the curves [196, 20] upon integrating out

some of the flavours. To have a well defined limit we must have that b, c, d are

functions of only the product qp1qqp2q e.g. b � bpqp1qqp2qq and, moreover, that as

power series in qp1qqp2q the leading terms of b, c, d are proportional to qnp1qq
n
p2q for

n ¥ 1, e.g. bpqp1qqp2qq �
°
n¥0 bnq

n
p1qq

n
p2q and b0 � 0.

qp2q " qp1q Limit

We can now consider a similar limit as taken in [20], namely where, say qp2q " qp1q.
Below the scale set by the matching condition Λ4

2 � qp2q
1�qp1qqp2qJ2, from the point

6Note that to save on various factors of
?

2 we prefer to use uD � 1
2

trφ instead of uD � trφ,
accounting for factor 4 instead of 16
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of view of SUp2q1 the theory is approximately described by a single SUp2q gauge

theory with an adjoint field φ̃ � 1
E pΦ1Φ2 � 1

2 tr Φ1Φ2q and the singlets b1, b2 and

u2. There are also singlets involving fundamental Q, rQ’s which do not appear in

the curve for reasons discussed earlier. If we assume that the singlets do not enter

into the gauge dynamics in the Coulomb phase then in the above limit the theory is

approximately a N � 2 SUp2q1 Nf � 4 gauge theory with instanton parameter qp1q
and with mass matrix given by M1.

The fields are constained, implementing the matching relation, by the quantum

result [164]

Pf V � u� E2ũ � qp2q
1� qp1qqp2q

J2 , (3.34)

with ũ � 1
2 tr φ̃2 and E some energy scale.

To fix a12, a21 we need only consider the mass configurations M1 � 0, M2 � EI4.

Then the N � 2 theory has an order 4 singularity, associated to the quarks becoming

massless, when ũ � 0. For these mass configurations the discriminant of (3.33) has

a point of vanishing order 4 at

u4 �
qp2q

1� qp1qqp2q
J2 (3.35)

which implies that a21 � qp2q
1�qp1qqp2q and therefore a12 � qp1q

1�qp1qqp2q .

Following this we may appeal to a simple argument to fix the remaining functions

b, c, d: Consider the limit of integrating out all of flavours coupled to, say, the SUp2q2
by taking qp2q Ñ 0 mp2q,j Ñ 8 while holding fixed the matching condition (3.32).

However, since qp1q is an independent parameter we are free to also take qp1q Ñ 8
while also holding qp1qqp2q91 fixed. We expect the resulting curve to describe a

N � 1 SUp2q1 � SUp2q2 quiver theory with instanton parameters qp1q,Λ4
p2q with 4

chiral multiplets in p2,1q and 2 in p2,2q. However, in order for the resulting curve
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to we well defined we require that b � c � d � 0 . 7 The curve is therefore:

y2 �
�
x2 � u4 �

qp1q
1� qp1qqp2q

J1 �
qp2q

1� qp1qqp2q
J2


2

� 4qp1qqp2q
p1� qp1qqp2qq2

4¹
j�1

�
x�mp1q,jmp2q,j �

qp1qqp2q
2p1� qp1qqp2qq

µ2



,

(3.36)

Ji � detMi �
4¹
j�1

mpiq,j , µ2 � trM1M2 �
4̧

j�1

mp1q,jmp2q,j . (3.37)

Checks

It can be immediately verified that our curve (3.36) reproduces those of [196, 20]

Let us again consider the qp2q " qp1q limit and check consistency for a few mass

configurations:

Mi � diagpm,�m,m,�mq, M2 � EI4 In this configuration the adjoint field of

SUp2q1 is singular at the order 4 quark singularity ũ � m2 whilst the corresponding

vanishing order 4 point of (3.36) is at

u4 � m2E2 � qp1q
1� qp1qqp2q

m4 � qp2q
1� qp1qqp2q

E4

� m2E2 � qp2q
1� qp1qqp2q

E4
(3.38)

which agrees nicely with (3.34).

M1 � diagpm,m,m, 0q, M2 � EI4 The N � 2 curve has an order 3 quark singu-

larity at 4ru � m2p2� qp1qq2{p1� qp1qq2 � 4m2 �Opqp1qq. On the other hand (3.36)

has a vanishing order 3 point at

u4 �
qp2q

1� qp1qqp2q
E4 � E2m2 � 3p1� qp1qqp2qq

1� qp1qqp2q

� qp2q
1� qp1qqp2q

E4 � 4E2m2 �Opqp1qq
(3.39)

again, in agreement with (3.34).

7For example consider the term lim bpqp1qqp2qqµ4 � bp1q82 � 82 hence b � 0 in order to get a
well defined result.
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M1 � diagpm,m,m,mq, M2 � EI4 The N � 2 curve has an order 4 quark singu-

larity at ru � m2p1 � qp1qq2{p1 � qp1qq2 � m2 � Opqp1qq. The discriminant of (3.36)

has a zero of degree 4 located at

u4 �
qp1q

1� qp1qqp2q
m4 � qp2q

1� qp1qqp2q
E4 � p1� qp1qqp2qq2

p1� qp1qqp2qq2
m2E2

� qp2q
1� qp1qqp2q

E4 �m2E2

(3.40)

again, in agreement with (3.34).

3.3.4 Curve for k � 2 General N

The generalisation to SUpNq is rather straightforward. We again consider the diag-

onal limit.

Diagonal Limit

The same diagonal limit is reached by giving diagonal vev xΦp1qy � aIN . In this

limit the theory is again approximately N � 2 SUpNq gauge theory with Nf � 2N

flavours and the adjoint field is φ � Φp2q � 1
N tr Φp2q. The curve of that theory is

given by [195]

y2 �
�
xN �

Ņ

l�2

uD,lx
N�l

�2

� 4qD
p1� qDq2

2N¹
j�1

�
x� µ̃j � qD

Np1� qDq
2Ņ

m�1

µ̃m

� (3.41)

where µ̃j � mp1q,jmp2q,j{a, uD,l :� 1
l trφl � u2l{al and qD � qp1qqp2q is associated to

the coupling for the SUp2qD. After rescaling xÑ x{a, y Ñ y{a2N and substituting

in the above relations we have

y2 �
�
xN �

Ņ

l�2

u2lx
N�l

�2

� 4qp1qqp2q
p1� qp1qqp2qq2

2N¹
j�1

�
x�mp1q,jmp2q,j �

qp1qqp2q
Np1� qp1qqp2qq

µ2



.

(3.42)
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Now consider integrating out all of the flavours from this N � 2 curve, leaving us

with pure SUp2q N � 2 gauge theory; [195] tells us to hold fixed the relation

Λ2N
D � 4qD

p1� qDq2
2N¹
j�1

µ̃j �
4qp1qqp2q

p1� qp1qqp2qq2
2N¹
j�1

mp1q,jmp2q,j
a

(3.43)

On the other hand, from [192] we have that

Λ2N
D � 4

Λ2N
p1qΛ

2N
p2q

a2N
(3.44)

should be held fixed. Equating them implies that

Λ2N
p1qΛ

2N
p2q �

qp1qqp2q
p1� qp1qqp2qq2

J1J2 (3.45)

should be held fixed under the limit, with Ji defined in (3.24). By the AutpQuiverq
symmetry we must have that

Λ2N
piq � � qpiq

1� qp1qqp2q
Ji . (3.46)

Positivity of <Λ2N
piq demands that we take the positive sign.

We have have then the most general ansatz for the curve

y2 �
�
xN �

Ņ

l�2

�
u2l � fl

�
un, µm; qp1qqp2q

��
xN�l � a12J1 � a21J2

�2

� 4qp1qqp2q
p1� qp1qqp2qq2

2N¹
j�1

�
x�mp1q,jmp2q,j �

qp1qqp2q
Np1� qp1qqp2qq

µ2


 (3.47)

where fl
�
u2n, µm; qp1qqp2q

�
is a function with mass dimension (or equivalently R-

charge) 2l which satisfies limµmÑ0 fl
�
u2n, µm; qp1qqp2q

� � 0. In other words the fl

are always subdominant compared to u2l in the large u2l limit. For the same reasons

as before fl is also a function only of qp1qqp2q. On the other hand, the same steps as

for the N � 2 case may now be simply run.

qp2q " qp1q Limit

We may again consider the qp2q " qp1q limit. In that limit, from the point of

view of the SUpNq1 the theory is approximately N � 2 SUpNq1 gauge theory
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with Nf � 2N and instanton parameter qp1q. There is the adjoint field rφ �
1
E

�
Φp1qΦp2q � 1

N tr Φp1qΦp2q
�
. There is also a quantum modified constraint on moduli

space [164]

det Φp1qΦp2q �B1B2 �
qp2q

1� qp1qqp2q
J2 . (3.48)

This is implemented on the curves by

rul �
$&%
u2l

El
l � N

1
El

�
u2N � qp2q

1�qp1qqp2qJ2

	
l � N

(3.49)

Now we may fix a12pqp1q, qp2qq � a21pqp2q, qp1qq. The massless M1 � 0 N � 2,

Nf � 2N theory is singular when rul � 0. On the other hand, our curve (3.47) with

M1 � 0 is singular when

u2l �
$&%0 l � N

a21J2 l � N
(3.50)

Comparison with (3.49) implies a21 � qp2q
1�qp1qqp2q . We may then run the argument

that we used below equation (3.35) to immediately set all of the fl � 0. Hence the

curve for k � 2 is

y2 �
�
xN �

Ņ

l�2

u2lx
N�l � qp1q

1� qp1qqp2q
J1 �

qp2q
1� qp1qqp2q

J2

�2

� 4qp1qqp2q
p1� qp1qqp2qq2

2N¹
j�1

�
x�mp1q,jmp2q,j �

qp1qqp2q
Np1� qp1qqp2qq

µ2



.

(3.51)

3.3.5 Curve for general N & k

The generalisation to arbitrary k is largely the same. It is the extension of [192] to

include flavours. The only new phenomena is the implementation of the quantum

relation (3.48) for the quiver. We will simply state the result. The curve may be

written as

y2 �
�

Ņ

l�1

clulkx
N�l � p�1qN

k¹
i�1

Bi �
�
BiBi�1 Ñ qi�1

1� q
Ji�1


�2

� 4q

p1� qq2
2N¹
j�1

�
x�mj � q

Np1� qqµk


,

(3.52)
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here the cl are defined by (3.16), q :� ±k
i�1 qpiq, mj :� ±k

i�1mpiq,j . Finally the

brackets mean to replace the pairs BiBi�1 appearing in p�1qN ±k
i�1Bi with the

corresponding mass condition in all possible ways, for example at k � 4 the brackets

should be read as

p�1qN �
BiBi�1 Ñ Λ2N

i�1

� �Λ2N
2 B3B4 �B1Λ2N

3 B4 �B1B2Λ2N
4

� Λ2N
1 B2B3 � Λ2N

2 Λ2N
4 � Λ2N

1 Λ2N
3 ,

(3.53)

for shorthand we use Λ2N
i � qiJi{p1� qq.

3.4 Comparison to M-Theory Curves

We can place our curves into Gaiotto form. We would like to match with [137]. Let

us begin by review the change of variables needed for the class S case.

3.4.1 Review of k � 1 Class S

The Seiberg-Witten curve in the original form reads [195]

y2 �
�
xN �

Ņ

l�2

ulx
N�l

�2

� 4q

p1� qq2
2N¹
j�1

px�mjq (3.54)

where we have defined mj :� �mj� q
Np1�qqµ1. px, yq have dimension (equal to minus

Up1qrN�2 charge) p1, Nq. Now we make the change of variables

y � � 2t

1� q

N¹
j�1

px�mjq �
�
xN �

Ņ

l�2

ulx
N�l

�
. (3.55)

Which results in

N¹
i�1

px�mL
i qt2 � p1� qq

�
xN �

Ņ

l�2

ulx
N�l

�
t� q

N¹
i�1

px�mR
i q � 0 (3.56)

and matches the computation from Type-IIA side [197]. This curve can be placed

in ‘Gaiotto form’

zN �
Ņ

i�1

zN�lφlptq � 0 , (3.57)
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where φlptqdtl are degree l differentials on the Riemann surface C 1:NÐÝÝ X . t is a local

coordinate on C and pz, tq on T �C. We write x � tz. Considering first the massless

mi � 0 case the curve is

zN �
Ņ

l�2

zN�l
p1� qqul

tl�1pt� 1qpt� qq � 0 . (3.58)

In the massive case, expanding
±N
l�1px�m

L{R
l q � xN �°N

l�1 x
N�lflpmL{R

l q we have

zN �
Ņ

l�1

zN�l
t2flpmL

p q � p1� qqtul � qflpmR
p q

tlpt� 1qpt� qq � 0 . (3.59)

So, the differentials are

φlptqdtl �
t2flpmL

p q � p1� qqtul � qflpmR
p q

tlpt� 1qpt� qq dtl . (3.60)

Notice that at t � 0,8 (recall that t is a coordinate on C) φl has order l poles.

These are interpreted as maximal punctures. On the other hand, at t � 1, q φl has

simple poles, these are the locations of the minimal punctures.

3.4.2 Class S2

Let us perform the same manipulations to the k � 2 case. The curve (3.51) is

y2 �
�
xN �

Ņ

l�2

u2lx
N�l � qp1q

1� qp1qqp2q
J1 �

qp2q
1� qp1qqp2q

J2

�2

� 4qp1qqp2q
p1� qp1qqp2qq2

2N¹
j�1

�
x�mp1q,jmp2q,j �

qp1qqp2q
Np1� qp1qqp2qq

µ2



.

(3.61)

The dimensions of px, yq is now pk,Nkq. We perform the change of variables

y � � 2t

1� qp1qqp2q

N¹
j�1

px�mjq �
�
xN �

Ņ

l�2

u2lx
N�l �

2̧

i�1

qpiq
1� qp1qqp2q

Ji

�
(3.62)
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with mj :� �mp1q,jmp2q,j � qp1qqp2q
Np1�qp1qqp2qqµ2; as before q :�±k

i�1 qpiq. Then the curve

becomes

0 �
N¹
i�1

px�mL
i qt2 � p1� qq

�
xN �

Ņ

l�2

u2lx
N�l �

2̧

i�1

qpiq
1� q

Ji

�
t

� q
N¹
i�1

px�mR
i q .

(3.63)

If we would like to again have the interpretation of pz, tq being canonical coordinates

on T �C we require that pz, tq have dimension p1, 0q. Therefore we must write write

x � tzk. Plugging this in we find

zkN �
Ņ

l�1

zkN�klφklptq � 0 , (3.64)

φklptq �

$'''&'''%
t2f1pmLp q�qf1pmRp q

tpt�1qpt�qq l � 1 ,
t2flpmLp q�qflpmRp q�p1�qqtu2l

tlpt�1qpt�qq 1   l   N ,

� qp1qJ1�qp2qJ2

tN�1pt�1qpt�qq l � N .

(3.65)

Notice that φkl again has order l poles at t � 0,8 and simple poles at t � 0, q.

These signify the locations of the maximal and minimal punctures, respectively. If

we consider the massless case the answer simplifies to

zkN �
°N
l�2p1� qqzkpN�lqu2l

tl�1pt� 1qpt� qq � 0 . (3.66)

3.5 Conclusions

In this chapter we have derived curves, à la Seiberg and Intriligator, encoding the

low energy behaviour of a certain class Sk theories on the Coulomb branch. We

are able to place these curves in ‘Gaiotto form’ and in that case we can give an

interpretation as a curve embedded in T �C where C is the Riemann surface that

gives rise to the class Sk theory from the 6d p1, 0qAk�1
SCFT. We have matched the

curves to those computed from M-theory [137].

The curves, while not encoding enough information to ‘solve’ the low energy

effective theory due to the Kähler part of the action being unconstrained by holo-

morphicity, are believed to still encode a large amount of information regarding
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the theory. In particular, they may prove invaluable for deriving new theories and

dualities, as was performed for class S in [121].



Chapter 4

Instanton Counting for Theories

of Class Sk

The work in this chapter is based on [198].

4.1 Introduction

Using the localisation procedure outlined in Section 1.4.1 Nekrasov was able to verify

the results of Seiberg & Witten [12, 13] from a purely field theoretic perspective and

derive the instanton partition function for N � 2 gauge theories by performing the

integration over instanton moduli space [47, 32]. From his work it is possible to

write down the instanton partition functions for general Lagrangian theories in class

S.

While the localisation procedure used in Nekrasov’s computation relies on N � 2

supersymmetry (in order to preserve a supersymmetry via topological twisting on

Ω-background) one can also consider the analagous quantity for theories with less (or

no) supersymmetry. Indeed, the idea of expanding the path integral around instan-

ton configurations and integrating over instanton moduli space is an idea that dates

back to ‘t Hooft [199]. However, for non-supersymmetric theories the fluctations

around the instanton background at strong coupling are very hard to perform; while

for supersymmetric theories the fluctations cancel. See also [22, 23] for reviews.

In this chapter we will compute the instanton partition functions and verify the

proposal of [153] for a subset of class Sk theories with a Lagrangian description; we

take the compactification surface C to be either an `-punctured torus T 2ztp1, . . . , p`u
or an `�2-punctured sphere CP1ztp1, . . . , p`�2u. We discussed these theories in detail

127
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in Section 1.6.2. These theories are conformal and have weakly coupled Lagrangian

descriptions in terms of toroidal or cylindrical N � 1 quiver theories.

Because of their orbifold constructions class Sk theories suggest an ideal starting

point to begin to look for exact results and 2d/4d relations in 4d N � 1 theories

which, so far, have been largely unexplored. Often the orbifolded daughter theory

possesses many similarities with their mother theory [200, 201].

We engineer the toroidal N � 1 quiver theories of class Sk in Type-IIB string

theory as Z` � Zk orbifolds of D3-branes; as in Section 1.6.2. We can then study

the dynamics of K instantons on the Dp-branes via the correspondence between the

ADHM construction [29] and Dp�1q-branes within D3-branes; explained in Section

1.3.3. The instanton moduli space on D3-branes is isomorphic to the Higgs branch

of the theory on Dp�1q-branes. The partition function of the supersymmetric ma-

trix model theory on the worldvolume of K Dp�1q-branes is then equal to the K

instanton partition function of the corresponding class Sk theory.

Instantons of orbifold daughters of N � 4 SYM were intensively studied in the

early days of AdS/CFT [202, 203, 204, 205, 206, 207, 208] and recent computations in

theories with eight or more supercharges in various dimensions [40, 89, 185, 209, 210]

have been possible due to significant improvement of the old techniques.

Using T-duality on the setup of D3-branes in the presence of a Z` � Zk orbifold

singularity we land on D5-branes in the presence of a Z`�Zk orbifold which engineers

a 6d (elliptic) uplift of the 4d theories we are interested in. The matrix model

describing pointlike instantons of the 4d theory living on D3-branes is lifted to a 2d

gauge theory, the superconformal index of which computes the instanton partition

function of the corresponding 6d gauge theory on T 2, living on the worldvolume of

the D5-branes. The 2d superconformal calculation is very well studied [211, 212,

213, 214, 215, 216]. Taking the 4d limit of the 6d instanton partition function we

obtain the instanton partition function of the 4d class Sk theory.

4.2 Brane Setup

In this paper our primary interest will be that of the theory living on the Dp�1q/D0-

branes in the setups of Tables 1.6 and 1.7. In both cases these are supersymmetric

matrix models invariant under at least two supercharges. We could choose to work

directly with these matrix models, however we find it more convenient to work

instead with the two dimensional uplift of those matrix models. Hence, we instead

work with the brane setup of Table 4.1. Before performing the T-duality we also
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X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

N D5 – – – – – – � � � �
A`�1 � � � � � � � � � �
Ak�1 � � � � � � � � � �
K D1 � � � � – – � � � �

Table 4.1: Type IIB setup engineering a 6d uplift of the 4d N � 1 theories.

assume that X5 may be safely decompactified such that it parametrises a space with

the topology of R. The T-duality may again be performed by replacing A`�1 with

TN` , we then T-dualise along the TN` circle, landing us on the setup of Table 4.1 .

The Spinp6qR R-symmetry group has been broken to a subgroup Up1q56�Spinp4qR
which acts by rotations along R2, R4 parametrised by X5, X6 and X7, X8, X9, X10

respectively. The Z` orbifold further breaks the Spinp4qR R-symmetry group down

to a subgroup SUp2qR corresponding to the isometry group of TN`, while, the Zk
orbifold breaks the Up1q56 � SUp2qR down to the maximal torus of SUp2qR.

6d p2, 0q

5d MSYM

6d T N`

5d NN,`

4d class S

S1
6 S1

6

S1
5

S1
5

Nahm pole BCs

(a)

6d p1, 0qAk�1

5d NN,k

6d T N`
+ defect

5d NN,`
+ defect

4d class Sk

S1
6 S1

6

S1
5

S1
5

‘Orbifold’-
Nahm pole BCs

(b)

Figure 4.1: Left: Schematic overview for k � 1 of two alternate ways to obtain the
4d N � 2 Ã`�1 circular quivers with SUpNq` gauge group in class S from compact-
ifications of 6d theories. Right: A schematic overview of the k ¡ 1 generalisations
of 6d compactifications. The resulting 4d SCFTs are N � 1 Ã`�1 � Ãk�1 torodial
quivers in class Sk with gauge group SUpNq`k.

We can discuss the 6d theory on D5-branes. Let us begin with the k � 1 case.

Without the A`�1 transverse orbifold the theory on N D5-branes is simply the 6d

N � p1, 1q SYM theory. Upon performing the Z` quotient we have a 6d N � p1, 0q
quiver theory of vector multiplets with bifundamental hypermultiplets, which we

will call T N` , see Figure 4.2. Compactifying on S1
6 gives 5d N � 1 circular quivers
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N

N

N

N

N

Figure 4.2: 6d circular (necklace) quiver T N` for ` � 5. Circular nodes denote
N � p1, 0q vector multiplets and solid lines connecting them denote bifundamental
N � p1, 0q hypermultiplets. S1{T 2 reduction of T N` results in the 5d/4d circular
Ã`�1 affine quiver theories.

NN,` with ` nodes denoting SUpNq gauge groups and ` links denoting bifundamental

hypermultiplets. Further compactification on S1
5 results in 4d N � 2 Ã`�1 circular

quiver theories. The Ã`�1 theory may also be realised via the well known class S
construction obtained by compactifying the AN�1 p2, 0q theory on the ` punctured

torus with certain 1
2 -BPS Nahm pole boundary conditions specified at the punctures

[217, 218, 219], see Figure 4.1a.

When k ¡ 1 the resulting 6d theory corresponds to T N` in the presence of a

codimension-two Gukov-Witten [220, 221] surface operator associated to ` copies of

the partition

kN � N1 � � � � �Nk � N � � � � �N (4.1)

for the factors of SU pkNq`. Finally, KK reducing along the circle leads to the 5d

N � 1 circular/necklace quiver gauge theory NN,` on R4 � S1
5 in the presence of

the defect along the circle (see Figure 4.1b). Analogously, there is also the class Sk
construction obtained by compactification of the p1, 0qAk�1

SCFT associated to N

M5-branes on transverse Ak�1 singularity on a torus with ` punctures with ‘orbifold’

Nahm pole boundary conditions specified at each puncture [133, 135, 144].

4.2.1 Supersymmetry of the D1/D5 System

Type IIB string theory has 32 supersymmetries parametrised by two 32 component

spinors εL , εR of positive chirality Γ11εL{R � �εL{R where Γ11 � Γ1 . . .Γ10 and

ΓM are the 32 � 32 Gamma matrices. The D5/D1 system preserves 1{4 of the 32

supersymmetries. Between them they preserve only those supersymmetries of the
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form

εL � Γ1Γ2Γ3Γ4Γ5Γ6εR , εL � σΓ5Γ6εR , (4.2)

with σ � �1 corresponding to whether we choose to insert D1- or anti-D1-branes.

The theory living on the (anti-)D1-branes then possesses pp, qq supersymmetry with

p � q � 32{4 � 8. By choosing an explicit representation for the Gamma matrices

it can be shown that p � q � 4 and that the preserved supercharges are

Qαa
� , Qα 9a

� , if σ � �1 (4.3)rQ 9α 9a
� , rQ 9αa

� , if σ � �1 (4.4)

where a, 9a � 1, 2 are indices of Spinp4q � SUp2qa � SUp2q 9a and the subscript � on

fermions denotes the �1
2 representation under the Up1q56 which acts as the Lorentz

group of the D1-brane worldvolume theory.

The SUp2qa � SUp2q 9a rotates the two planes of the C2 parametrised by z2, z3

into one another. The Cartans of sup2qa, sup2q 9a jL, jR may be expressed in terms of

the generators J710 and J89 of Up1q rotations in their respective planes as

jL � 1

2
pJ710 � J89q , jR � 1

2
pJ710 � J89q , (4.5)

which are defined such that lower a � 1, 2 have jL � �1
2 ,�1

2 and lower 9a � 91, 92 have

jR � �1
2 ,�1

2 . Hence the Γ action on the supercharges is

Γ :
�

Qαa
� ,Qα 9a

�
	
ÞÑ ω2jL

` ωJ56�jL�jR
k

�
Qαa
� ,Qα 9a

�
	
, (4.6)

Γ :
�rQ 9α 9a

� , rQ 9αa
�
	
ÞÑ ω2jL

` ωJ56�jL�jR
k

�rQ 9α 9a
� , rQ 9αa

�
	
. (4.7)

Hence, the supercharges which survive the orbifold action are Qα 91� for σ � �1 orrQ 9α 92� for σ � �1. We will use one of them to compute the superconformal index in

the next section.

4.3 Instantons for 4d N � 2� SYM

In this section we warm up for our main calculation that we perform in the next

section by reproducing the well known instanton partition function of N � 2� via

a 2d superconformal index calculation. We parameterise our partition function and

use a supercharge that survives the orbifold projection (4.6) (4.7) so that we are
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well prepared for the next section.

As discussed in Section 1.3, there is a correspondence between the ADHM con-

struction of instantons [29] and Dpp� 4q-branes [35, 36, 37, 24, 38]. Since the class

Sk gauge theories of interest in this chapter may be realised within Type-II string

theory as a theory living on the worldvolume of Dp-branes we may use this corre-

spondence to derive its ADHM construction. The case that interests us is the case

p � 5, i.e. D5-branes on R4 � T 2, thus we have to compute the partition function

of the 2d gauge theory living on the world volume D1-branes wrapping a T 2. This

partition function is the 2d superconformal index a.k.a. flavoured elliptic genus.

4.3.1 D1 Worldvolume Theory

Before discussing the supersymmetric index we must first discuss the worldvolume

theory living on the D1-branes in the low energy limit in the presence of the D5s.

D1-D1 The theory arising from quantising open strings stretching between K

parallel and coincident Dp-branes is given by p � 1 dimensional Yang-Mills theory

with 16 supercharges, for p � 1 that is the well known N � p8, 8q SYM theory. In

terms of multiplets under the N � p4, 4q subalgebra given by rQ 9α 9a� , rQ 9αa� they form

a N � p4, 4q vector multiplet V and hypermultiplet H, which can be thought of as

the reduction to 2d of a 4d N � 2 vector multiplet and hypermultiplet respectively.

V contains a 2d gauge field A�, four scalars degrees of freedom Ya 9a, right moving

fermions λ
9αa
� and left moving fermions ξ

9α 9a
� . H contains scalars Xα 9α, right moving

fermions ξα 9a� and left moving fermions λαa� .

D1-D5 Open D1-D5 strings preserve N � p4, 4q supersymmetry and gives rise to a

N � p4, 4q hypermultiplet U in the bifundamental representation of UpKq�SUpNq.
U contains two complex scalars φ 9α and their conjugates φ:9α, and fermions χ 9a�, ψa�
plus their conjugates χ:� 9a, ψ

:
�a. Finally, the field content may be conveniently

summarised in the quiver diagram of Figure 4.3. There, using N � p4, 4q notation,

solid lines denote hypermultiplets, while the circular node denotes the UpKq vector

multiplet.

ADHM Equations We can easily obtain the BPS equations on the Higgs-branch

of this system. As we elucidated in Section 1.3 these translate to the ADHM equa-

tions (1.26) F � µC � 0, D � µR� ζIK � 0. The Higgs branch is reached by setting

Ya 9a � 0.
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K

N

Figure 4.3: The N � p4, 4q 2d quiver of the gauge theory on K D1-branes in the
presence of N D5-branes.

Before the Zk � Z` orbifolding the non-zero F - and D-term equations on the

Higgs-Branch read

D � ζIK � µR � JJ: � I:I � rB1, B
:
1s � rB2, B

:
2s � ζIK , (4.8)

F � µC � JI � rB1, B2s � 0 . (4.9)

where J � φ
91, I � φ

91
, B1 � X1 91 and B2 � X2 91. The orbifolding acts rather simply

on those fields since they all have jL � J56 � 0. The only non-trivial action is due

to the gauge (4.64) and flavour (1.183) holonomies. We have

Dni � ζIKni � µ
pniq
R � JniJ

:
ni � I:niIni � rB1,ni, B

:
1,nis � rB2,ni, B

:
2,nis , (4.10)

Fni � µ
pniq
C � IniJni � rB1,ni, B2,nis . (4.11)

The Higgs-branch, or equivalently the tK11, . . . ,K`ku-instanton moduli space is then

MtKniu � HB

�
!
B1,ni , B2,ni , Ini , Jni |µpniqR � ζIKni , µ

pniq
C � 0

)
{
�¹
i,n

UpKniq
�
.

(4.12)

4.3.2 Elliptic Genus Computation

We now turn to the computation of the supersymmetric index a.k.a flavoured elliptic

genus partition function for ourN � p4, 4q theory. The supersymmetric index can be

understood as the Witten index of the theory quantised on S1�R refined by fugacities

which keep track of further relevant quantum numbers and it is independent of

the coupling constants of the theory. Since our theory admits a free field limit,
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computing the index is equivalent to enumerating all gauge invariant operators of

the theory on R2 [211, 222, 212, 213, 214, 215, 216]. For theories with a Lagrangian

description the index can also be obtained using localisation techniques [223, 224]

and explicitly performing the path integral of the 2d theory on T 2, however for

simplicity we will follow the former approach.

We also choose to view our N � p4, 4q theory as an N � p0, 2q theory with

additional flavour symmetry. We choose the N � p0, 2q supercharges to be

Q :� rQ 92 91
� , rQ :� rQ 91 92

� . (4.13)

2d N � p0, 2q theories have a single right moving Up1qR R-symmetry. The N �
p0, 2q IR R-symmetry for this model was computed in [225] and it is given by1

RIR � �2j2 , (4.14)

under which RIRrQs � �1 and RIRrrQs � �1. We will compute the index which

counts cohomology classes of rQ. Since rQ and its conjugate rQ: � rS commutes

with SUp2qα and SUp2qa we may include fugacities v and w for their Cartans.

Furthermore, they also commute with the diagonal subgroup SUp2qD � SUp2q 9α �
SUp2q 9a hence we also include a fugacity z for its Cartan jD � j2 � jR. Recall that2

the Cartans of sup2qα, sup2q 9α, sup2qa and sup2q 9a all commute with the orbifold and

the fugacities v, w and z that we introduced here will still be meaningful for our

calculation in the next section. We also include fugacities xA for the Cartans fA of

supNq and yI for the Cartans gI of upKq. The index is then defined as

Z6d
K pq, v, w, z, xAq � Trp�1qF qH�qδv2j1w2jLz2j2�2jR

N¹
A�1

xfAA

K¹
I�1

ygII (4.15)

where F � F��F� is the fermion number and H�, H� are the left and right moving

Hamiltonians, respectively. In Euclidean signature we define 2H� � H 	 iP and

q :� e2πiτ with τ the complex structure of the T 2 is generated by ω � ω�1 � ω� τ .

Explicitly, we will work with the square torus with complex structure τ � iβ6{β5

with β5, β6 the radii of the two S1 factors. In radial quantisation the conformal

map from the plane to the cylinder is z1 � e2πiω, where ω :� σ � it and Lorentz

1Our D5/D1 setup is precisely that of [225] with Q�
5 � N , Q�

5 � 0, R� � �2j2 and R� � �2jR.
2The Cartans of sup2qa and sup2q

9a denoted as jL and jR can be written in terms of the generators
J710 and J89 which are the Up1q rotations in the respective planes (4.5).
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transformations z1 ÞÑ eiθz1 are then mapped to translations around the S1 factor of

the cylinder

pσ, tq ÞÑ
�
σ � θ

2π
, t



(4.16)

generated by P � iJ56.

One of the crucial properties of the quantity (4.15) is that it receives contribu-

tions only from those states which satisfy

δ �
!rQ, rS) � H� � 1

2
R � 0 (4.17)

where R is the N � p0, 2q R-symmetry; the index is independent of q. Furthermore

the index (4.15) is also independent of all continuous parameters such as coupling

constants and Fayet-Iliopoulos parameters [65, 62], hence we can compute the index

in the free field limit where it reduces to a counting problem.

In the free field limit we have a N � p0, 2q superconformal theory with Vir `
sVirNS symmetry where Vir is the standard pN � 0q left-moving Virasoro algebra

generated by tLn, cu, sVirNS is the N � 2 super-Virasoro algebra in the NS sector

generated by
!
Ln, G

�
r , Jn, c

)
and n, r � 1

2 P Z. Our choice of the Neveu-Schwarz

basis over the Ramond basis is purely for calculational convenience and the index is

independent of this choice up to an overall factor [216]. We will require the following

brackets of the sVirN�2,NS algebra:

!
G
�
r , G

�
s

)
� Lr�s � 1

2
pr � sqJr�s � c

6

�
r2 � 1

4



δr�s,0 , (4.18)�

L0, G
�
r

�
� �rG�

r ,
�
J0, G

�
r

�
� �G�

r . (4.19)

In the free field limit, we identify

H� � L0, H� � L0 , R � J0 , (4.20)

Q � G
�
� 1

2
, S � G

�
� 1

2
, rQ � G

�
� 1

2
, rS � G

�
� 1

2
. (4.21)

Away from the free limit, the theory is not conformal and we have an RG flow from

the free UV fixed point to an IR fixed point. This IR fixed point is expected to

be precisely the ADHM sigma model with target space the instanton moduli space

(4.12). The R-charge assignments generally change along RG flow. Nonetheless, the

index is RG invariant and we can evaluate the index at the IR fixed point by using

the non-anomalous R-symmetry assignment in the IR which, in our case, is (4.14).
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At the UV fixed point the shortening condition (4.17) can be written as

δ �
!
G
�
� 1

2
, G

�
� 1

2

)
� L0 � 1

2
J0 � 0 . (4.22)

and the states contributing to the index must have J0 � 2L0 in the UV. The IR

R-symmetry (4.14) is then taken into account by shifting qL0 Ñ qL0�L0� 1
2
RIR in the

index.

Letter Counting

As stressed earlier the index may be computed in the free field limit. This is done

by identifying all ‘letters’ with δ � 0. The single letter partition functions for the

N � p4, 4q multiplets may be easily read off from Tables E.1, E.2, E.3 in Appendix

E.1. They are given by

iV pq, w, z, yIq �
��
w � w�1

� �
z � qz�1

�� qz�2 � z2 � 2q

1� q

�
Ķ

I,J�1

yIy
�1
J , (4.23)

iHpq, v, w, z, yIq �
�
q

1
2

�
v � v�1

� �
z � z�1 � w�1 � w

�
1� q

�
Ķ

I,J�1

yIy
�1
J , (4.24)

iU pq, w, z, xA, yIq �
�
q

1
2

�
z � z�1 � w�1 � w

�
1� q

�
Ķ

I�1

Ņ

A�1

�
yI
xA

� xA
yI



. (4.25)

The full index is then by enumerating all possible ‘words’ and then projecting onto

gauge singlets by integrating over the Haar measure dµG of the G � UpKq gauge

group, given in (A.38). The full index is then given by

Z6d
K pq, v, w, z, xAq �

¾
dµUpKq Zp0q ¹

P�V,H,U
ZP (4.26)

where Zp0q is the Casimir contribution which may, apriori, depend on all fugacities.

It is given by [81, 226, 227, 5, 82, 228, 229, 56]

Zp0q � Zp0qpq, v, w, zq � q
1
2
ECasimir , ECasimir � Finite

qÑ1

�¸
P

BiP
B log q

�
. (4.27)

and

ZP � ZP pq, v, w, z, xA, yIq :� PE riP pq, v, w, z, xA, yIqs , (4.28)
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where PE denotes the Plethystic exponential; defined in (A.1) and iP are the single

letter partition functions (4.23), (4.24) and (4.25). Explicitly:

ZV pq, w, z, yIq �
K¹

I,J�1

�
q yIyJ ; q

	2
θ
�
qz�2 yI

yJ
; q
	

θ
�
wz yIyJ ; q

	
θ
�
qwz�1 yI

yJ
; q
	 , (4.29)

ZHpq, v, w, z, yIq �
K¹

I,J�1

θ
�
q

1
2 vw yI

yJ
; q
	
θ
�
q

1
2 v�1w yI

yJ
; q
	

θ
�
q

1
2 vz�1 yI

yJ
; q
	
θ
�
q

1
2 v�1z�1 yI

yJ
; q
	 , (4.30)

ZU pq, w, z, xA, yIq �
K¹
I�1

N¹
A�1

θ
�
q

1
2w xA

yI
; q
	
θ
�
q

1
2w yI

xA
; q
	

θ
�
q

1
2 z�1 xA

yI
; q
	
θ
�
q

1
2 z�1 yI

xA
; q
	 , (4.31)

where θpx; qq and px; qq are the q-theta function and q-Pochammer symbol; defined

in (A.13) and (A.12) respectively. Finally, we conclude that the full index is given

by

Z6d
K �pq; qq

2K

K!

¾
T pGq

K¹
I�1

dyI
2πiyI

K¹
I�1

N¹
A�1

θ
�
q

1
2w xA

yI
; q
	
θ
�
q

1
2w yI

xA
; q
	

θ
�
q

1
2 z�1 xA

yI
; q
	
θ
�
q

1
2 z�1 yI

xA
; q
	

� Zp0q
K¹

I,J�1

θ
�
yI
yJ

; q
	1
θ
�
qz�2 yI

yJ
; q
	
θ
�
q

1
2 vw yI

yJ
; q
	

θ
�
wz yIyJ ; q

	
θ
�
qwz�1 yI

yJ
; q
	
θ
�
q

1
2 vz�1 yI

yJ
; q
	

�
K¹

I,J�1

θ
�
q

1
2 v�1w yI

yJ
; q
	

θ
�
q

1
2 v�1z�1 yI

yJ
; q
	

(4.32)

where the prime means to remove those factors θp1; qq and we used the identity

px; qq � p1� xq pqx; qq. It also useful to assemble the grand partition function

Z6dpq, v, w, z, xA; q6dq :�
¸
K¥0

qK6dZ
6d
K pq, v, w, z, xAq (4.33)

with q6d a formal dimensionless parameter. When considering our 6d theory on

R4 � S1
5 � S1

6 as a 5d theory on R4 � S1
5 dressed by KK modes along S1

6 we may

regard q6d as a fugacity for the topological Up1q global symmetry associated to the

conserved current �5dJ � 1
8π2 trF ^ F .
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4.3.3 The 6d Instanton Partition Function

The countour integrals (4.32) may be computed via the Jefferey-Kirwan residue

prescription [230, 223, 224]. Using (A.17), we can perform the residue prescription.

The integrand of (4.33) has simple poles at

yI � yJ pzwq�1 , yI � yJ

�
z

qw


�1

, (4.34)

yI � yJ

�
vz

q1{2


�1

, yI � yJ

�
z

vq1{2


�1

, yI � xA

�
z

q1{2


�1

. (4.35)

As explained in [89, 41] only residues arising from the poles (4.35) should be kept.

We assume that the xA’s are sufficiently generic and furthermore we close the contour

such that we collect residues coming from poles with the positive sign exponents.

The solutions to (4.35) may be classified by N -coloured Young’s diagrams ~µ �
tµ1, . . . , µNu with each diagram µA containing |µA| boxes such that |~µ| :� °

A |µA| �
K. Given a Young’s diagram µA a box s is labelled by coordinates pl, pq and the

corresponding pole is given by

ypsq � xA

�
z

q1{2


l�p�1

vl�p . (4.36)

The residue for a fixed coloured Young diagram is then

Z6d
~µ � Zp0q

N¹
A,B�1

¹
sPµA

θ
�
q�1zw�1EAB; q

�
θ pzwEAB; qq

θ pEAB; qq θ pq�1z2EAB; qq , (4.37)

where we defined

EBA :� xB
xA

�
vz

q1{2


LApsq�q1{2v
z

�ABpsq�1

(4.38)

and where LBpsq and ABpsq denote the distance from the box s to the right end and

the bottom of the Young diagram µB respectively. Zp0q � q
1
2
ECasimir is the Casimir

contribution (4.27). To compute it one is forced to specify the q-dependence of the

fugacities, we hence define

v :� q
β5ε�
2iπ , wq

1
2 :� q

β5m
iπ , zq�

1
2 :� q

β5ε�
2iπ , xA :� q

β5aA
iπ , (4.39)
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where we used the shorthand notation

ε� :� ε1 � ε2 . (4.40)

Zp0q is then a constant and is given by

Zp0q � q
β2
5NK

π2

�
ε�
2
�m� iπ

β5

	
p ε�2 �mq

. (4.41)

The K instanton partition function (4.32) is then given by summing over all coloured

Young diagrams ~µ. Hence, equation (4.33) finally reads

Z6d :�
¸
K¥0

qK6d
¸
~µ

|~µ|�K

Z6d
~µ �

¸
~µ

q
|~µ|
6dZ

6d
~µ . (4.42)

4.3.4 Reduction to Five and Four Dimensions

Reducing the D5/D1 system on S1
6 by taking β6 Ñ 0 results in 5d N � 2 SYM

with gauge group SUpNq at Chern-Simons level κ � 0. Hence by either taking the

5d limit directly to (4.42) or taking the limit directly the contour integral (4.32) we

expect to obtain the instanton partition function for the 5d theory. Here we take the

first approach but we detail the limit of the contour integral expression in Appendix

E.2.1.

Recall that q � e2πiτ and τ � iβ6{β5 therefore this limit corresponds to taking

q Ñ 1 . (4.43)

Further note that, by definition (4.27),

lim
qÑ1

Zp0q � q
1
2
ECasimir � 1 . (4.44)

Applying (A.20) to (4.42) yields

Z5d �
¸
~µ

q
|~µ|
5dZ

5d
~µ (4.45)

Z5d
~µ �

N¹
A,B�1

¹
sPµA

sinhβ5

�
EAB � ε�

2 �m
�

sinhβ5

�
EAB � ε�

2 �m
�

sinhβ5 pEABq sinhβ5 pEAB � ε�q (4.46)



140 INSTANTON COUNTING FOR THEORIES OF CLASS Sk

where we have defined

EBA � aB � aA � ε1LApsq � ε2 pABpsq � 1q , (4.47)

such that EAB � q
EAB

iπ and we take q5d � limqÑ1 q6d. This reproduces the instanton

partition for the mass deformed 5d N � 2 theory (a.k.a. N � 1�) on R4 � S1
5 in

the Ω-background, which was computed via localisation of the path integral of the

ADHM quantum mechanics in e.g. [40, 89, 231]. Hence we indeed identify

Z5d � Z5d
inst,N�1� . (4.48)

Armed with the above, the equivalence of Z5d in the 4d limit pβ5 Ñ 0q with the

instanton partition function Z4d
inst,N�2� for the 4d N � 2� theory is essentially trivial

to prove. Taking the β5 Ñ 0 limit of (4.46) or equivalently evaluating the contour

integrals (E.21) we obtain

Z4d �
¸
~µ

q
|~µ|
4dZ

4d
~µ � Z4d

inst,N�2� (4.49)

Z4d
~µ �

N¹
A,B�1

¹
sPµA

�
EAB � ε�

2 �m
� �
EAB � ε�

2 �m
�

EAB pEAB � ε�q (4.50)

we then identify m as the hypermultiplet mass in the Ω-background [232] and set

q4d � limβ5Ñ0 q5d. It may be shown [52, 233, 234] that the vector multiplet contri-

bution to the instanton partition function from the fixed point labelled by ~µ is given

by

zvecpa, ~µq �
N¹

A,B�1

¹
sPµA

1

EAB pEAB � ε�q (4.51)

and the contribution from the adjoint hypermultiplet is

zadjpa,m, ~µq �
N¹

A,B�1

¹
sPµA

�
EAB � ε�

2
�m

	�
EAB � ε�

2
�m

	
(4.52)

also note that

zadj

�
a,
ε�
2
, ~µ
	
� 1

zvecpa, ~µq . (4.53)
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4.4 Orbifolding to 4d N � 1, 2 Periodic Quivers

The main goal of this chapter is to compute the 2d index in the presence of the

Γ � Z`�Zk orbifold before reducing to the zero dimensional matrix model partition

function which is expected to be equal to the partition function of instantons for the

class Sk theory.

In principle we could work directly with the 2d orbifolded theory by working

out the projections and writing down the Lagrangian and computing it’s partition

function. However we prefer instead to work with the SCI interpreted as a counting

device to which we implement projection onto Γ-invariant states.

We take the same approach, as one takes when computing, e.g. the supersym-

metric Lens space Lp1, rq � S1 indices [81, 235, 236, 237, 238].

4.4.1 Orbifolding the Supersymmetric Index

If we denote some (mother) theory by M we may obtain a new (daughter) theory

D �M{Γ by quotienting out by an orbifold group Γ which is generically embedded

inside both the global symmetry group FM and gauge group GM of M . We col-

lectively denote the generators of Γ by γ. If M is a supersymmetric theory with a

supercharge Q, then it is possible to count cohomology classes of Q, i.e. to compute

the supersymmetric index of M for the supercharge Q which, providing that M

admits a suitable free field limit such that standard letter counting techniques can

be applied, is schematically defined to be

IM paq � TrHp�1qF e�βtQ,Q:uafM (4.54)

where fM collectively denotes the subset of linearly independent generators of FM

such that rQ, fM s � 0 and a their fugacities. If we assume that Γ is abelian and

furthermore commutes with both Q and its conjugate

rQ, γs � rQ:, γs � 0 (4.55)

then the theory D will also generically possesses at least one supersymmetry, namely

Q. D also has reduced global and gauge symmetry groups FD � CFM pΓq, GD �
CGM pΓq where CGpSq denotes the centraliser of S in G which, of course, depends on

the choice of embedding Γ ãÑ FM �GM . One may then obtain the supersymmetric
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index of D for the supercharge Q by means of projection:

IDpaq �
¸
ρ

TrHρ

»
rdΓsεγp�1qF e�βtQ,Q:uaf . (4.56)

The ‘integral’ over the invariant Haar measure of the group Γ implements the pro-

jection onto Γ-invariant states. When Γ is discrete and abelian the Haar measure is

simply given by summing over all elements of the group and dividing by the number

of elements of the group »
rdΓs � 1

|Γ|
¸
εPΓ

. (4.57)

Since H is a Hilbert space with grading by global symmetries, it may be decomposed

H � `ρHρ according to the Γ action. To include states which can also be twisted

in the ‘time’ direction we must also sum over different vacuua Hρ. This definition

automatically receives contributions from both untwisted sectors as well as sectors

which may be twisted by global or gauge symmetries. Note that in the computation

of ID, since GM was gauged, one should ‘integrate’ over all independent (up to

GM{CGM pΓq gauge transformations) embeddings Γ ãÑ GM . Note also that in some

cases one may also choose to instead use a weighted sum over embeddings, for

example discrete theta angles [236]. On the other hand FM is not gauged and hence

one should fix a particular embedding Γ ãÑ FM which in turn specifies the global

symmetry of the daughter theory D.

Toy Example - Orbifold Index of a Free Fermi Multiplet

Let us proceed with a simple toy example. Staying in 2d, since that is the most

relevant for us, we let M be the theory of a free N � p0, 2q Fermi multiplet ψ�, ψ�.

Both left moving fermions have L0 � J0 � 0 and hence both satisfy the BPS

condition δ �  
Q,Q:( � 0 (4.22) furthermore they both have L0 � 1

2 . The free

Fermi multiplet admits a Up1qf flavour symmetry generated by f under which ψ�,

ψ� have charges f � �1,�1. The total global symmetry is then FM � Up1qf �
IsopT 2q � Up1qR. In particular R2 � isopT 2q is the algebra of translations around

the two cycles of the torus, where L0�L0 generates radial translations and L0�L0

generate time translations. Up1qR is the R-symmetry generated by J0 � R under

which Q,Q: have charges R � �1,�1 as before. Enumerating the letters of Table
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Letter L0 L0 J0 f Index Orb Index

ψ� 1{2 0 0 �1 q
1
2a �q1{2a

ψ� 1{2 0 0 �1 q1{2a�1 �ε�1q1{2a�1

B� 1 0 0 0 q ε�1q

Table 4.2: Letters of the Fermi multiplet.

4.2 we obtain

IM pa, qq � TrHp�1qF qL0af � PE

�
�q

1
2

�
a� a�1

�
1� q

�
� θ

�
aq

1
2 ; q

	
, (4.58)

this is simply counting, with signs, all operators of the form Bn�ψm�ψl�. We consider

the theory obtained by the Zk orbifold D �M{Zk where Zk has an action inside all

three factors of FM . To preserve the supercharge Q we require that Zk translation

in IsopT 2q and rotation by Up1qR acts by equal but opposite amounts. Hence the

Zk group elements are of the form

e
2πi
k
γ P Zk , γ � f

2
� �

L0 � L0

�� R

2
. (4.59)

Since the quotient acts in the radial direction only ID is simply obtained by taking

the Pleythistic exponent of the orbifolded single letter index

ipa, qq �1

k

¸
εPZk

�
�
�
ε�

1
2 q

1
2 ε

1
2a� ε�

1
2 q

1
2 ε�

1
2a�1

	� ¸
n¥0

ε�nqn (4.60)

�1

k

¸
εPZk

�
�q 1

2a� q�
1
2a�1

� ¸
ñ¥0

qkñ
k�1̧

j�1

ε�jqj � q�
1
2a�1 (4.61)

�� aq
1
2 � a�1qk�

1
2

1� qk
(4.62)

where we used the basic fact that
°
εPZk

ε � 0. The index for the theory D for the

supercharge Q is then

IDpa, qq � PE ripa, qqs � PE

�
�aq

1
2 � a�1qk�

1
2

1� qk

�
� θ

�
aq

1
2 ; qk

	
. (4.63)

The counted operators are simply Bnk� ψm� pBiψ�ql. We now move to apply this general

discussion to the D1-brane worldvolume theory.
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4.4.2 Computing the Orbifolded Elliptic Genus

The orbifold acts on the coordinates X1, . . . , X10 as in (1.180). The orbifold action

is also embedded in the SUp`kNq flavour group as in (1.183), where we also scaled

N Ñ `kN with respect to the previous section. Furthermore, the orbifold also

has an action inside the UpKq gauge group of the D1 worldvolume theory breaking

UpKq Ñ ±`
n�1

±k
i�1 UpKniq,

°
n,iKni � K and Up0q is defined to be the trivial

group. As in equation (1.183) the action may be conjugated to an element of the

maximal torus g P T pUpKqq

g � diag
�
ω`ω

�1
k IK11 , . . . , ω`ω

�k
k IK1k

, . . . , ω``ω
�1
k IK`1 , . . . , ω

`
`ω

�k
k IK`k

	
. (4.64)

The only difference is that we do not fix Kni but rather ‘integrate’ over all possible

Kni satisfying
°
n,iKni � K which indeed are in one-to-one correspondence with em-

beddings Γ ãÑ UpKq up to gauge transformations. In the language of the discussion

in Section 4.4.1 we consider GM � UpKq, FM � SU p`kNq � Iso
�
T 2

� � Spinp4qR
and Γ � Z` � Zk. Then CSUp`kNq pΓq3 coincides with SUpNq`k. On the other

hand CGM pΓq �
±
n,i UpKniq corresponding to the (unordered) partition K �

K11 � � � � �K`k but since GM was gauged we sum over all partitions.

For convenience we choose to split the Cartans fA, A � 1, . . . , `kN of sup`kNq
into Cartans fni,A, A � 1, . . . , N of `nisupNq we also do the same with the upKq
Cartan generators gI , I � 1, . . . ,K into Cartans gni,I , I � 1, . . . ,Kni of `niupKniq.
Following the above discussion, recalling that the supercharge rQ (given in (4.13))

and its conjugate rS commute with the orbifold action, we compute

Z6d,`,k
K pq, v, w, z, xni,Aq � Tr

���� 1

`k

¸
ε`PZ`
εkPZk

εγ`` ε
γk
k

¹
n,i

N¹
A�1

�
εn` ε

i
k

�fni,A

�
Kni¹
I�1

�
εn` ε

i
k

�gni,I p�1qF qH�v2j1w2jLz2jR�2j2
¹
n,i

N¹
A�1

x
fni,A
ni,A

Kni¹
I�1

y
gni,I
ni,I

���� ,

(4.65)

where the first line corresponds to the projection operator
³ rdΓs εγ of (4.56) imple-

menting the Douglas-Moore orbifold procedure with:

γ` � J710 � J89 :� 2jL , γk :� J56 � J89 � J56 � jL � jR . (4.66)

3Note that here CSUp`kNq pΓq is equivalent to the Levi subgroup L specified by ` copies of (4.1).
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Recall that in computing the index previously we mapped the plane to the cylinder

z1 � e2πipσ�itq hence, rotations of the plane Z1 ÞÑ eiθz1 are mapped to translations

σ ÞÑ σ � θ
2π (4.16). Hence, quotienting out by rotations on the plane corresponds,

after the conformal map, to quotienting out translations generated by L0 � L0 on

the torus.

We assume that the IR R-symmetry RIR does not change under the orbifold;

in which case, relegating the explicit derivation to Appendix E.1, we obtain the

orbifolded single letter indices which are denoted by iΓV , iΓH , iΓU and are given by

equations (E.11), (E.12), (E.13) respectively. In addition, for a fixed partition tKniu
the Haar measure becomes

¹̀
n�1

k¹
i�1

1

Kni!

¾
T pUpKniqq

Kni¹
I�1

dyni,I
2πiyni,I

¹
I�J

�
1� yni,I

yni,J



�

¾ ¹
n,i

dµUpKniq (4.67)

which coincides with the Haar measure for the product group
±
n,i UpKniq. The

‘orbifolded’ index for a fixed partition tKniu is then

Z6d,`,k
tKniupq, v, w, z,xni,Aq :�

¾ ¹
n,i

dµUpKniqZ
p0q
tKniupq, . . . q

¹
P�V,H,U

ZΓP pq, . . . q .

(4.68)

The Casimir contribution Z
p0q
tKniu is defined in the same way as (4.27). The ‘orb-

ifolded’ single letter partition function are defined as in (4.28) and are explicitly

given by

ZΓV �
�
qk; qk

	2K ¹
n,i

¹
I�J

θ
�
yni,I
yni,J

; qk
	

�
1� yni,I

yni,J

	 ¹
i�j

Kni,Knj¹
I,J�1

θ

�
qLij

yni,I
ynj,J

; qk



�
¹
n,i,j

±Kni,Knj
I,J�1 θ

�
z�2qLij�1 yni,I

ynj,J
; qk

	
±Kni,Kpn�1qj

I,J�1 θ
�
wzqLij

yni,I
ypn�1qj,J

; qk
	
θ
�
z�1wqLij�1 yni,I

ypn�1qj,J
; qk

	 ,
(4.69)

ZΓH �
¹
n,i,j

±Kni,Kpn�1qj

I,J�1 θ
�
wvqLij�

1
2

yni,I
ypn�1qj,J

; qk
	
θ
�
w
v q

Lij� 1
2

yni,I
ypn�1qj,J

; qk
	

±Kni,Knj
I,J�1 θ

�
v
z q
Lij� 1

2
yni,I
ynj,J

; qk
	
θ

�
qLij�

1
2

vz
yni,I
ynj,J

; qk

 , (4.70)

ZΓU �
¹
n,i,j

N,Kni¹
A,I�1

θ
�
wqLij�

1
2

yni,I
xpn�1qj,A

; qk
	
θ
�
w�1qk�Lji�

1
2

yni,I
xpn�1qj,A

; qk
	

θ
�
z�1qLij�

1
2
yni,I
xnj,A

; qk
	
θ
�
zqk�Lji�

1
2
yni,I
xnj,A

; qk
	 . (4.71)
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Here

Lij :� t# P Z | 0 ¤ # ¤ k � 1 and # � i� j mod ku (4.72)

is a unique integer and is equivalent to the Lij � rri � jss as defined in [81]. It

satisfies the important relation

Lij �
$&%k � Lji i� j � 0 mod k ,

0 i� j � 0 mod k .
(4.73)

It also satisfies Lpi�kqj � Lij � Lipj�kq allowing us to consistently abuse the orbifold

condition i � i� k within products, etc.

We also consider a rewriting of (4.68) in which many simplifications become

manifest. We change integration variables and define shifted variables

yni,I Ñ qk�iyn,I , xni,A :� qk�ix̃n,A , (4.74)

we also combine the indices such that A � A � Npi � 1q � 1, . . . , kN and I �
I �Knpi� 1q � 1, . . . ,Kn where Kn :� °k

i�1Kni.

The shifts may be interpreted in the following way: since the effect of a non-

trivial holonomy may always be locally removed by a gauge transformation, the shift

of the fugacities x can be thought of as a gauge transformation on the D5 theory. On

the other hand, the shift of the y’s may always be made by a change of integration

variables.

Those variables allow us to make rewritings of the form

k¹
i,j�1

θ
�
qLij�i�jx; qk

	
� θ

�
x; qk

	k¹
i¡j

θ
�
x; qk

	¹
j¡i

θ
�
qkx; qk

	
(4.75)

�
k¹

i,j�1

θ
�
x; qk

	¹
j¡i

��1

x



(4.76)

where the second line follows by applying the definition (4.72) and the relation (4.73)

while the third line is courtesy of the identity �xθ pqx; qq � θ px; qq. In terms of those
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variables we have

Z6d,`,k
tKniupq, v, w, z, xn,iAq �

Z
p0q
tKniu

¹̀
n�1

�
k¹
i�1

�
qk; qk

�2Kni

Kni!

� ¹̀
n�1

¹
j¡i

N¹
A�1

�
x̃n�1,jAx̃n�1,jA

x̃2
n,jA

�Kni

�
¹̀
n�1

¾ Kn¹
I�1

dyn,I
2πiyn,I

kN,Kn¹
A,I�1

θ
�
wq

1
2

yn,I
x̃n�1,A

; qk
	
θ
�
w�1q�

1
2

yn,I
x̃n�1,A

; qk
	

θ
�
z�1q

1
2
yn,I
x̃n,A

; qk
	
θ
�
zq�

1
2
yn,I
x̃n,A

; qk
	

�
¹̀
n�1

Kn¹
I,J�1

θ
�
yn,I
yn,J

; qk
	
θ
�
z�2q

yn,I
yn,J

; qk
	

θ
�
vz�1q

1
2
yn,I
yn,J

; qk
	
θ
�
v�1z�1q

1
2
yn,I
yn,J

; qk
	

�
Kn,Kn�1¹
I,J�1

θ
�
wvq

1
2

yn,I
yn�1,J

; qk
	
θ
�
wv�1q

1
2

yn,I
yn�1,J

; qk
	

θ
�
wz

yn,I
yn�1,J

; qk
	
θ
�
z�1wq

yn,I
yn�1,J

; qk
	 ,

(4.77)

the prime means that the I � J term should be excluded from the product. The

full ‘orbifolded’ index (4.65) is then given by summing over all partitions tKniu of

K. However, in analogy with (4.33) from the 5d point of view we expect to have

a Up1q`k topological symmetry associated to the currents �5dJni � 1
8π2 trFni ^ Fni

for the pi, nqth gauge node in the quiver. Since the D-instantons serve as sources for

those currents and the associated instanton number Kni is related to the partition

tKniu following our discussion in Section 4.4.1 we may weight each contribution with

fugacities q6d,ni for each current and assemble the grand partition function

Z6d,`,kpq, . . . ; q6d,niq �
¸

tKniu

�¹
n,i

qKni6d,ni

�
Z6d,`,k
tKniupq, . . . q (4.78)

the sum over all possible partitions of K is equivalent to summing over all embed-

dings Γ ãÑ UpKq up to gauge transformation.

4.4.3 The 6d Orbifolded Instanton Partition Function

In this section we check that for k � 1 our partition function indeed reproduces the

known result for the partition function for tK1, . . . ,K`u D1-branes in the presence

of `N D5-branes on A`�1 singularity as computed in [239]. Furthermore we show

that the Zk orbifolded index may be obtained from the partition function without

orbifold (up to an overall shift in the Casimir contribution) with the substitution
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rule xÑ x̃ and q Ñ qk.

We must first evaluate the contour integrals (4.68). It bares many resemblances

with the unorbifolded p` � k � 1q partition function (4.33) discussed in Section 4.3.

In particular, the poles are now located at

yn,I � yn�1,J pzwq , yn,I � yn�1,J

�
z

qw



, (4.79)

yn,I � v�
11yn,J

�
vz

q1{2


�1

, yn,I � x̃n,A

�
z

q1{2


�1

. (4.80)

Proceeding in an analogous way to the unorbifolded index we again assume that

the x̃’s can be made sufficiently generic and that the correct residues to collect

are again those coming from the poles (4.80). Solutions to (4.80) are then in fact

classified by ` lots of kN -coloured Young’s diagrams which we label by ~µn � tµn,Au �
tµn,1, . . . , µn,kNu again with each diagram µn,A containing |µn,A| boxes such that

|~µn| :� °
A |µn,A| � Kn where Kn :� °k

i�1Kni as before. Given a Young’s diagram

µn,A a box s is labelled by coordinates pl, pq and the corresponding pole is given by

ynpsq � x̃n,A

�
z

q1{2


l�p�1

vl�p (4.81)

Hence, for a fixed partition tKniu the residue of (4.68) for a fixed set of kN -tuples

~µ1, . . . , ~µ` is

Z6d,`,k
tKniu,t~µnu �Z

p0q
tKniu,t~µnu

¹̀
n�1

#�
Kn!±k
j�1Kni!

�¹
j¡i

N¹
A�1

�
x̃n�1,jAx̃n�1,jA

x̃2
n,jA

�Kni

�
kN¹

A,B�1

±
sPµn�1,A

θ
�
q�1zw�1Epn�1qn,AB; qk

�±
sPµn,A θ pEnn,AB; qkq

�
kN¹

A,B�1

±
sPµn,A θ

�
zwEnpn�1q,AB; qk

�±
sPµn,A θ pq�1z2Enn,AB; qkq

+
(4.82)

where we defined

Enm,AB :� x̃n,A
x̃m,B

�
vz

q1{2


Lm,Bpsq�q1{2v
z

�pAn,Apsq�1q
(4.83)

where Ln,Apsq and An,Apsq denote the distance from the box s to the right end and

the bottom of the Young diagram µn,A respectively. Furthermore, we also notice
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the multinomial coefficient Kn!{±k
i�1Kni! �

� °
iKni

Kn1,...,Knk

�
.

We are still yet to describe the Casimir contribution. Again we must specify the

q-dependence of the fugacities. We write

v :� q
β5kε�

2iπ , wq
1
2 :� q

β5km
iπ , zq�

1
2 :� q

β5kε�
2iπ , x̃n,A :� q

β5kãn,A
iπ . (4.84)

The Casimir contribution is explicitly given in equation (E.14) and after evaluating

its residue for a fixed kN -tuples t~µnu is

Z
p0q
tKniu,t~µnu �

¹̀
n�1

kN¹
A�1

q
kKnβ

2
5

2π2 r2ã2
n,A�ã2

n�1,A�ã2
n�1,A�2mpãn�1,A�ãn�1,Aqs

� q
�k2KNβ2

5
iπ p ε�2 �mq

�
ε�
2
�m� 1

β5iπ

	

�
¹̀
n�1

kN¹
A,B�1

¹
sPµn,B

q
β2
5

2π2 pφnpsq� ε�
2 qpãn�1,A�ãn�1,A�2ãn,Aq ,

(4.85)

where as before we must use the definitions (4.84). For a box s P µn,A the function

φnpsq is given by

φnpsq � ãn,A � pl � 1qε1 � pp� 1qε2 . (4.86)

Equation (4.77) is then obtained by summing over all ~µn

Z6d,`,k
tKniupq, v, w, z, xni,Aq �

¸
~µ1,..., ~µ`
|~µn|�Kn

Z6d,`,k
tKniu,t~µnupq, v, w, z, xni,Aq . (4.87)

4.4.4 Five Dimensional Limit

We can again take the 5d β6 Ñ 0 pq Ñ 1q limit. For k � 1 the resulting 5d theories

are the N � 1 circular quivers denoted by NN,` on R4 � S1
5. For k ¡ 1 we expect

the resulting 5d theory is NkN,` with k codimension 1 defects which fill the R4 and

are located at points Θ � Θj�1,...,k where Θ � Θ� 2π is the coordinate of S1
5.

Following the same procedure as before and making the identifications (4.84),

we find

Z5d,`,k
tKniu �

¸
~µ1, ~µ2,..., ~µ`
| ~µn|�Kn

¹̀
n�1

�
Kn

Kn1, . . . ,Knk


 kN¹
A,B�1

¹
sPµn,A

� sinhβ5

�
Enpn�1q,AB � ε�

2 �m
�

sinhβ5

�
Epn�1qn,AB � ε�

2 �m
�

sinhβ5 pEnn,ABq sinhβ5 pEnn,AB � ε�q

(4.88)
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N N N N N N

Figure 4.4: The 5d NN,` quiver for ` � 5 after taking the decoupling limit obtained
by sending one of the couplings to zero. Circle reduction gives 4d N � 2 linear A`�1

quivers.

again limqÑ1 Z
p0q
tKniu � 1 and the function Enm,AB is defined as

Enm,AB :� ãn,A � ãm,B � ε1Ln,Apsq � ε2 pAn,Bpsq � 1q . (4.89)

As before the instantons partition function of the resulting 5d theory is given by

Z5d,`,k �
¸

tKniu

�¹
n,i

qKni5d,ni

�
Z5d,`,k
tKniu . (4.90)

4.4.5 Four Dimensional Limit

Finally, we take the 4d β5 Ñ 0 limit. We expect that by taking the 4d limit we land

on the 4d torodial quiver SCFTs in class Sk. In particular, we want to compare our

expression in this limit with the expression proposed in [153]. Applying the 4d limit

to (4.88) yields:

Z4d,`,k
tKniu �

¸
~µ1, ~µ2,..., ~µ`
| ~µn|�Kn

¹̀
n�1

�
Kn

Kn1, . . . ,Knk


 ¹̀
n�1

kN¹
A,B�1

�
±
sPµn�1,A

�
Epn�1qn,AB � ε�

2 �m
�±

sPµn,B
�
Enpn�1q,AB � ε�

2 �m
�±

sPµn,A pEnn,ABq
±
sPµn,A pEnn,AB � ε�q

(4.91)

and the partition function of instantons reads

Z4d,`,k �
¸

tKniu

�¹
n,i

qKni4d,ni

�
Z4d,`,k
tKniu � Z4d

inst,Ã`�1�Ãk�1
. (4.92)

For k � 1 (4.91) may be compared with the partition function of instantons for the

4d N � 2 Ã`�1 circular quiver theories.
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4.4.6 From Necklace/Toroidal to Linear/Cylindrical Quivers

In this subsection we want to briefly explain, for the sake of the non-expert reader,

how we can obtain the instanton partition functions for linear N � 2 (generic `,

k � 1) or cylindrical N � 1 quivers (generic ` and k) from the formulas we have just

derived that are for necklace N � 2 (generic `, k � 1) and toroidal N � 1 (generic

` and k) quivers respectively. Firstly, for the N � 2 theories with generic ` and

k � 1, we choose a fugacity q6d,n for one n corresponding to one coupling constant

of the nth gauge node and send it to zero in equation (4.78). This corresponds to

ungauging this gauge factor and breaks the necklace at this node. See Figure 4.2

and Figure 4.4. It is useful for notational clarity to ungauge the node with n � `.

Then the hypermultiplets that couple to this node from the left and from the right

become fundamental and the Coulomb branch parameters a1 � mL and a` � mR are

interpreted as anti-fundamental and fundamental masses, respectively. Moving on

to the toroidal N � 1 quivers with generic ` and k, we can obtain cylindrical N � 1

quivers via ungauging all of the k-nodes with n � `, setting in (4.78) q6d,`i � 0

for all i � 1, . . . , k. See Figure 1.7 and Figure 1.8. Finally, let us stress that this

ungauging procedure can be done for all 6d, 5d and 4d instanton partition functions.

4.5 Conclusions

In this chapter we have computed the instanton partition function of 4d N � 1

theories in class Sk and a 5d and 6d uplift of them, which correspond to 5d N � 1

and 6d p1, 0q theories in the presence of a 1
2 -BPS defect. We further observed that

class Sk instanton partition functions can be obtained from the 4d N � 2 theories

in class S and their 5d and 6d uplifts: the 5d N � 1 necklace quiver NN,` and the

6d p1, 0q theory T N` (without the defect) via imposing the ‘orbifold condition’ on

the Coulomb moduli and mass parameters as

Z
Sk,SUpNq
inst paAq � Z

S,SUpkNq
inst paAq with aA Ñ aAe

2πij{k (4.93)

with A � A � Npj � 1q being an SUpkNq fundamental index, A � 1, . . . , N an

SUpNq index and j � 1, . . . , k counting the number of the mirror images.

It is important to stress that our result for the class Sk instanton partition func-

tions match with the prediction of [153] coming from a calculation of a completely

different type. In [153] based on the anticipation of an AGT type correspondence

for theories in class Sk, and the comparison of the spectral curves of theories in class
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N N

N N

q4d,11 q4d,21

q4d,22q4d,12

q4d,2i � 0

N 2N

N 2N

q4d,11

q4d,12

q4d,12 � 0
N 3N

q4d,11

Figure 4.5: Left: Ã1 � Ã1 quiver. Middle: Decoupling limit giving SCQCD2. Right:
Further decoupling limit giving N � 1 SQCD with Nf � 3N theory.

Sk with 2d CFT blocks, the 2d CFT symmetry algebra and its representations that

should underlie AGTk were identified. These conformal blocks led to a prediction

for the instanton partition functions of the 4d N � 1 SCFTs of class Sk which we

precisely reproduce here. N � 1 SQCD with Nf � 3N can be obtained from the

Z2�Z2 class Sk theory depicted in Figure 4.5 in the limit where three of the coupling

constants go to zero as shown in the figure. It would be very interesting to learn how

to isolate the instantons of the N � 1 SQCD with Nf � 3N . Moreover, we would

like to bring to the attention of the reader the fact that the N � 1 instanton par-

tition function we derived is a product of an orbifolded vector and a bifundamental

hyper multiplet contributions

Zinst �
¹

quiver

zorb
vec z

orb
bif (4.94)

directly arising from their N � 2 mother theory construction. An important ques-

tion is if the instanton partition function may be further reorganised, for the Sk
theory, as

Zinst
?�

¹
quiver

zN�1
vector z

N�1
chiral . (4.95)

At this stage it is unclear to us if this is even possible, however we believe that

carefully studying the SW curves away from the orbifold point will be illuminating.

A comment concerning our strategy is in order. For the computation of the

instanton partition function we have decided, instead of computing the matrix model

path integral of the 0d theory that lives on the Dp�1q-branes, to compute the 2d

superconformal index of the gauge theory which lives on the K D1-branes for the

following reasons. First of all, the superconformal index computation is very well
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studied and understood and is rather more tractable than directly localising the

matrix model. Secondly, along the way to the instanton partition function of the

4d theories of interest we also computed the partition functions for certain 6d p1, 0q
theories in the presence of half-BPS surface operators, which is a very interesting

result in its own right. It would be very interesting to attempt localisation and

compute the 2d partition function that we have computed, in analogy with the

localisation computation of the Lens space index [81, 237]. Another very interesting

alternative to our strategy is the Origami approach of Nekrasov [240].

Our strategy may be applied to several other interesting cases such as computing

partition functions of p1, 0q theories in the presence of a surface operator lying along

C � C2
ε1ε2 . Some results along these lines already exist in the literature [49, 241,

242, 243, 244]. We will have more to say about this in Chapter 6. Finally, one could

also try to compute partition functions in class Sk in the presence of defects via

combining the two orbifold constructions.

In an orthogonal direction, and in connection with [153], it would be instructive

to try to repeat the method of [245], who, starting from the p2, 0q theory in 6d,

were able to obtain a direct derivation of the AGT correspondence, for the N � 1

theories of class Sk.
Finally, using our results and taking the large N limit, one could learn about

the gravity dual of N � 1 theories in class Sk following the work of [202, 203].



154 INSTANTON COUNTING FOR THEORIES OF CLASS Sk



Chapter 5

N � 3 SCFTs from Discrete

Gauging

The work in this chapter is based on [246].

5.1 Introduction

Very recently Garćıa-Etxebarria and Regalado have proposed a construction of gen-

uine 4dN � 3 supersymmetric theories [158]. Much progress has been made towards

understanding the properties of 4d N � 1, 2, 4 theories but the N � 3 case had been

long ignored. This is due to the fact that, preceding their work, no example of an

N � 3 SCFT that did not enhance to N � 4 supersymmetry was known.

One reason for this is the fact that the only multiplet of N � 3 supersymmetry

that one can use to write down a renormalisable, local Lagrangian density is the free

vector multiplet which, after imposing CPT invariance, has identical field content

to the N � 4 vector multiplet. Thus, there are no free genuinely N � 3 theories

and all genuinely N � 3 theories have to be strongly coupled.

Garćıa-Etxebarria and Regalado considered N � 3 theories embedded in type

IIB string theory (F-theory) by generalizing the well known orientifold construction

to N � 3 preserving S-folds. The S-fold includes a Zk projection on both the R-

symmetry directions as well as the SLp2,Zq S-duality group of Type-IIB (the torus

of F-theory). As pointed out in [247], via a classification of different variants of

S-folds, one may create a large variety of N � 3 theories further distinguished by

an analogue of discrete torsion. More new N � 3 SCFTs were also proposed [159]

via gauging a discrete subgroup of the global symmetry group of N � 4 SYM.

155
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The first to seriously consider the consequences of N � 3 supersymmetry was

[248] who, by studying the N � 3 superconformal algebra representations, were able

to reveal several basic properties that consistent N � 3 QFTs should possess; were

they to exist. These properties include:

• Conformal anomalies: a � c (as is the case for N � 4 theories, while generic

N � 2 theories have a � c).1

• Global symmetries: SUp2, 2|3q �H, where H is discrete.

• Trivial conformal manifold: No marginal couplings, they are strongly coupled

isolated fixed points; no Lagrangian description.

• No N � 3 preserving relevant deformations (because there are no continuous

flavour symmetries).

• Viewed as N � 2 theories there is a Up1qf flavour symmetry SUp2, 2|2q �
Up1qf � SUp2, 2|3q.

Because N � 3 SCFTs do not have a Lagrangian description they can be studied

only with certain tools. Representation theory alone has taken us very far [248, 249,

167]. String-, F- and M-theoretic constructions provide the primary way that we

have to study N � 3 SCFTs [158, 250]. The Type-IIB description allows for an

AdS gravity dual description which can be used to examine the properties of N � 3

theories in the large N limit [158, 247, 251]. Moreover, N � 3 theories have Seiberg-

Witten solutions [13, 12] which encode the low energy effective action of the theory

on the Coulomb branch. Various aspects of the Coulomb branches for these theories

have been studied in [252, 116, 115, 253, 247, 248, 159, 254]. Another powerful tool

is the superconformal bootstrap which has been employed in [255]. The bootstrap

can also be suplemented with chiral algebra techniques [172] and has been studied

in [256, 255]. Further techniques have been developed in [257, 258].

In this chapter we will focus on the moduli spaces of those N � 3 SCFTs that

may be obtained by gauging a discrete symmetry of N � 4 SYM. We will bestow

particular emphasis towards the Hilbert series for the moduli spaces of these theories

aswell as certain limits of the superconformal index.

1Recall that these are the coefficients appearing in the 1-point function of the trace of the
stress-tensor

xtrT y � c

16π2
C2 � a

2
| det g| � e (5.1)

where C is the Weyl tensor and e � 1
4π2 PfpRiemq is the d � 4-form Euler density, with Riem the

Riemann Tensor of the Levi-Civita connection associated to metric g.
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This chapter is organized as follows: In Section 5.2 we review the possible con-

structions of N � 3 SCFTs; both S-folding and discrete gauging. This gives us the

opportunity to discuss in detail the symmetries of both the mother and the daughter

theories and to embed the discrete subgroup that we want to gauge in the SUp4q
R-symmetry group and the SLp2,Zq S-duality group of N � 4 SYM. In Section 5.3

we gather some facts about the representation theory of sup2, 2|N q superconformal

algebras that we will need for the index computation and interpretation. In Sec-

tion 5.4 we introduce the refined version of the superconformal index, its Coulomb

branch limit and the Higgs branch Hilbert series; the discrete gauging prescription

is presented. Section 5.5 is devoted to rank one examples. Section 5.6 deals with

higher rank examples. We focus on the Coulomb and Higgs branches. Our higher

rank computations allow us to make new predictions for these theories. Finally, in

Section 5.7 we compute the single trace index in the large N limit and compare to

the AdS/CFT result of [251].

5.2 Constructions of N � 3 SCFTs

5.2.1 S-Folds

One possible way to realise N � 3 SCFTs is via S-folds. S-folds were originally intro-

duced in [158] and are non-perturbative generalisations of the standard orientifolds

in string theory. The construction introduced in [158] goes as follows: consider F-

theory on R4 � �
R6 � T 2

� {Zk. The Zk � Spinp6q � SLp2,Zq and we denote its

generator in sup4q � sop6q to be rk which acts on the coordinates Xi, i � 1, . . . , 6

of R6 by rotation corresponding to

Rk � e
2πi
k
pq1�q2�q3q �

���R̂k 0 0

0 R̂k 0

0 0 R̂�1
k

��P SOp6q , (5.2)

where R̂k denotes rotation by 2π{k in the corresponding 2-plane. q1, q2, q3 P sop6q
denote the Cartan generators of sop6q. The corresponding element in SUp4q �
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Spinp6q is just

rRk � e
2πi
k
rk � e

2πi
k
pR1

2
�R2� 3R3

2
q �

������
eiπ{k 0 0 0

0 eiπ{k 0 0

0 0 eiπ{k 0

0 0 0 e�3iπ{k

�����P SUp4q . (5.3)

We choose a basis for the Cartans R1, R2, R3 P sup4q given by2

R1 � diagp1,�1, 0, 0q , R2 � diagp0, 1,�1, 0q , (5.4)

R3 � diagp0, 0, 1,�1q . (5.5)

On the other hand the quotient on the torus acts as an involution of the torus

only for k � 1, 2, 3, 4, 6. Moreover k � 3, 4, 6 require fixed complex structure of

τ � eiπ{3, i, eiπ{3 respectively. In that case we denote the generator of Zk � SLp2,Zq
by sk. sk acts on the coordinate x � τy of the T 2 corresponding to Sk P SLp2,Zq
with

S2 �
�
�1 0

0 �1

�
, S3 �

�
0 1

�1 �1

�
, (5.6)

S4 �
�

0 1

�1 0

�
, S6 �

�
0 �1

1 1

�
. (5.7)

The elements of Zk � Spinp6q�SLp2,Zq are of the form e
2πi
k
prk�skq , corresponding

to the combined action (5.3) and (5.6).

After taking the Type-IIB limit of F-theory the singular geometry can be probed

with a stack of N D3-branes. The resulting low energy theory on the D3-branes (for

k � 3, 4, 6) is a strongly interacting N � 3 SCFT. In Appendix F.1 we explicitly

show the supercharges that are preserved by the Zk quotient.

A careful analysis [247] of the discrete global symmetries indicates, as for the

pk � 2q O3�, �O3
�

perturbative orientifolds, the k � 3, 4, 6 S-folds are characterised

by different Zp � Zk global symmetries. The S-fold variants are then labelled by

k, ` � k{p. We denote the theory of N D3-branes by SNk,` and it has Coulomb branch

2We use the same conventions as in [62] and the sop6q Dynkin labels pq1, q2, q3q are related to
the sup4q Dynkin labels pR1, R2, R3q by

q1 � R1

2
�R2 � R3

2
, q2 � R1

2
� R3

2
, q3 � R1

2
� R3

2
.
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operators of dimension

k , 2k , . . . , pN � 1qk ; N` , (5.8)

corresponding to Coulomb branch operators
�°N

i�1 z
jk
i

	
, j � 1, . . . , N � 1, and the

Pfaffian-like operator pz1z2 . . . zN q` where zi denote the positions of the D3-branes

in C{Zk. Consequently the theory has central charge given by [259, 260, 247]

ak,` � ck,` � kN2 � p2`� k � 1qN
4

. (5.9)

The theory SNk,` associated to each value of k, ` has a global symmetry of (at least)

Zp � Zk{` which acts on the Pfaffian-like operator

pz1z2 . . . zN q` ÞÑ pe2πi{kz1z2 . . . zN q` � e2πi{ppz1z2 . . . zN q` while acting trivially on

every other Coulomb branch operator. By gauging Zp1 � Zp � Zk discrete symmetry

we obtain further theories

SNk,`
Zp1 gaugingÝÝÝÝÝÝÝÑ SNk,`,p1 , (5.10)

which, since they arise as discrete gauging of a ‘parent’ theory, have central charge

(5.9) and the theory SNk,`,p1 has Coulomb branch operators of dimension

k , 2k , . . . , pN � 1qk ; Np1 . (5.11)

Since the Zp1 acts non-trivially only on a single operator quotienting by Zp1 does not

introduce relations and the corresponding ring is freely generated.

5.2.2 Discrete Gauging

In this paper we use a different construction to the one described in Section 5.2.1.

Consider instead N � 4 SYM with gauge group G. The theory has an exactly

marginal gauge coupling τ . N � 4 SYM (on R4) has an S-duality group generated

by [113, 114, 261, 262, 263, 264, 265]

pτ ,Gq ÞÑ pτ � 1 , Gq and pτ ,Gq ÞÑ
�
� 1

λ2
qτ
, LG



, (5.12)

where λq � 2 cos πq and LG denotes the Langlands dual of G. The action on τ forms

a group known as a Hecke group Hpλqq � SLp2,Z rλqsq. Hpλqq can be represented

by

Hpλqq � xS, T |S4 � 1, pST q2q � 1y � C4 � C2q . (5.13)
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An explicit matrix representation is given by

T �
�

1 1

0 1

�
, S �

�
0 �λ�1

q

λq 0

�
. (5.14)

For q � 3 Hpλ3q � Hp1q � SLp2,Zq. Let g � LiepGq. When g � ADE (or

upNq) q � 3 while for g � BCF q � 4 and for g � G2 q � 6. We define the self-

duality group of the theory with gauge group G to be the subset of transformations

τ ÞÑ τ 1 in Hpλqq which map the theory to itself. When one considers non-local

operators this subset of transformations is generally a subgroup of Hpλqq due to the

fact that G ÞÑ LG clearly changes the global structure of the theory and therefore

the spectrum of non-local operators. However, at the level of local operators, when

g � ADE (or upNq) we have g � Lg and then at the level of local operators the self-

duality group is simply the full SLp2,Zq. On the other hand when g � BCFG then

g � Lg. In particular BN � LBN � CN , F4 � LF4 � F4 and G2 � LG2 � G2
3 and

the self-duality group even at the level of local operators is reduced to a subgroup

of Hpλqq.4 In this paper we will discuss only the cases when g � Lg.

Let us now discuss the possible symmetry enhancements. Hpλqq has finite cyclic

subgroups given by

Hpλqq � Zn for n � t2, 4, q, 2qu (5.15)

fixes τ �
#

any,
i

2 cos πq
,�1

2
� i

2
tan

π

q
,�1

2
� i

2
tan

π

q

+
, (5.16)

where we take only those fixed points with Im τ ¥ 0. For q � 3 these of course

reduce to the usual order n � 4, 3, 6 SLp2,Zq fixed points at τ � i, eiπ{3, eiπ{3.

At a generic point on the conformal manifold the global symmetry group of

the theory is at least PSUp2, 2|4q. On the other hand, for τ fixed as in (5.15),

the global symmetry group (acting on local operators) has a Zn enhancement for

n � 3, 4, 6 where the Zn is generated by (5.6). We use the notation Zn since n

should generally be considered unrelated to the parameters k, `, p1 appearing in the

3S-duality transformations for non-simply-laced Lie algebras are more complicated. In the par-
ticular cases of G2 and F4 Lie algebras we can perform a rotation on the root system of the
corresponding Langland dual algebras LG2 � G

1

2 and LF4 � F
1

4 such that these turn out to be
isomorphic to the initial one [262].

4The Langlands dual algebra is obtained by exchanging α ÞÑ α_ � 2
pα�αq

α. For simply laced

algebras we have α_ � α and g � Lg. On the other hand, when g is not simply laced α_ � α if α
is a long root and g � Lg.
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S-fold construction of the previous section. From now one we restrict out attention

to q � 3. We therefore have a discrete global symmetry

Zn � SUp4q � SLp2,Zq (5.17)

generated by rn�sn. We may consider gauging the Zn (or in the case when n is not

prime, subgroups of the Zn) global symmetry [159]. Doing so results in a new theory

with a different spectrum of local and non-local operators, but, with equivalent local

dynamics and therefore the same values for the a and c anomaly coefficients. One

may also worry that this Zn may have non-vanishing ’t Hooft anomalies. We give

an argument that this is not the case (at least for the topologically twisted theory

on S1 � S3) in Appendix F.4. The action (5.17) preserves the same supercharges as

the Zk S-fold, i.e. the n � 3, 4, 6 discrete gaugings preserves four dimensional N � 3

supersymmetry. Therefore, the theories we will construct are to be labelled by the

parent N � 4 theory and the discrete group to be gauged. The possible parent

theories are labelled by a choice of gauge group G. We will only consider parent

theories where G is connected.

Moreover, since we will eventually be interested in computing quantities sensitive

only to the local operator spectrum, the global form of the gauge group will not play

a role in the computations5 and therefore the theories can rather be labelled by the

Lie algebra g of G.

Coulomb Branch

Let us now briefly compare with the construction in the previous subsection. Con-

sidered as an N � 2 theory we have algebraically independent (over C) Coulomb

branch operators uj , 1 ¤ j ¤ N , N :� rank g, of dimension Epujq. In the notation

of [266] the uj ’s are the highest weight states of the chiral Er,p0,0q multiplets, with

conformal dimension Epujq � rpujq where rpujq is the charge under the up1qr of the

N � 2 superconformal algebra (see Table F.1). They are built up out of g-invariant

combinations of the scalar X P h in the N � 2 vector multiplet, where h is a Cartan

subalgebra of g, while setting the adjoint hypermultiplet scalars Y � Z � 0. Let us

now go to a point on the conformal manifold where we have an enhanced Zn global

symmetry generated by rn� sn. In comparison with the discussion (5.9)-(5.11) this

Zn global symmetry acts non-trivially on multiple Coulomb branch operators of the

5Since π1

�
S3

� � π2

�
S3

� � t1u the superconformal index (S3�S1 partition function) is sensitive
only to the spectrum of local operators i.e., for connected groups, a choice of Lie algebra g.
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parent theory, namely

Zn : uj ÞÑ e
2πi
n
Epujquj . (5.18)

It is clear that this Zn action does not generically generate a complex reflection

group GpN,m, nq6 on the Coulomb branch chiral ring

CBg :� C ru1, u2, . . . , uN s , N :� rank g � dimCCBg . (5.19)

Therefore, by the Chevalley-Shephard-Todd theorem [267, 247], the resulting quo-

tient ring generically has relation(s). Hence, when rank g ¥ 2 and n ¥ 2, the

quotient of the Coulomb branch of the parent theory CBg by (5.18)

CBg,n :� CBg{Zn (5.20)

generally has a non-planar topology. We will see that the structure of the coordinate

ring can be often be deduced by studying the Coulomb branch index. Some prop-

erties of non-freely generated Coulomb branch chiral rings have been described in

[268]. We would also like to point out that in [247] discrete gauging which results in

non-freely generated Coulomb branches was explicitly not considered. They consid-

ered discrete gauging of the parent theories SNk,` of only Zp1 � Zk{` discrete symmetry

which acts non-trivially only on a single Coulomb branch operator. However these

theories may have larger discrete symmetry groups which may act non-trivially on

multiple Coulomb branch operators. Upon gauging such discrete symmetries one

can obtain theories with non-freely generated Coulomb branches. Because the dis-

crete gauging does not change the values of a and c we expect them to be equal to

those of the N � 4 parent theory. If the Coulomb branch operators of the N � 4

parent theory have dimension Epuiq then the a and c anomaly coefficients are given

by [259, 260]

a � c �
rank g¸
i�1

2Epuiq � 1

4
. (5.21)

Higgs Branch

Considered as a N � 2 theory the Higgs branch is reached by setting X � 0 and

by giving diagonal vevs to the adjoint hypermultiplet scalars Y, Z P h. The Higgs

branch HBg is then parametrised by g-invariant combinations W
pfq
i of the Y,Z that

transform in the f -representation of Up1qf . Where Up1qf is the flavour symmetry

6See equation (2.10) of [247] for a definition.
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that all N � 3 theories have when seen as N � 2 theories; we will review this

in Section 5.3. In the notation of [266] the W
pfq
i are the highest weight states of

B̂R multiplets and have E � 2R and r � 0, where R is the Cartan of the sup2qR
R-symmetry of the N � 2 superconformal algebra (see Table F.1). When g is non-

abelian the Higgs branch-chiral ring HBg (the coordinate ring of the variety HBg)

is generically non-freely generated. Since Y,Z have sn � 0 and rn � r � f � f the

Zn acts by

Zn : W
pfq
i ÞÑ e

2πi
n
fW

pfq
i . (5.22)

Therefore, after the discrete gauging, the Higgs branch is given by the quotient of

the Higgs branch of the parent theory HBg by the Zn action (5.22)

HBg,n :� HBg{Zn . (5.23)

In Section 5.4 we discuss how to compute the Hilbert series of (5.23).

5.3 sup2, 2|N q Representation Theory

In this section we will describe some basic facts about representations of (the com-

plexification of) sup2, 2|N q and their decompositions into subalgebras.

5.3.1 psup2, 2|4q Ñ sup2, 2|3q Decomposition

The superconformal symmetry algebra of 4d N � 4 SYM is given by sup2, 2|4q. We

are interested in unitary representations of psup2, 2|N q that can be induced from

representations of a bosonic subalgebra b. Unitary representations of psup2, 2|N q are

necessarily non-compact. the representations are labelled by pE, j1, j2, R1, R2, R3q
which label representations under the maximal bosonic subalgebra

b � up1qE ` sup2q1 ` sup2q2 ` sup4q � psup2, 2|4q . (5.24)

Here E labels the conformal dimension, j1, j2 label spin representations and

R1, R2, R3 are the Dynkin labels of sup4q.
As we discussed in Section 5.2, upon the Zn discrete gauging psup2, 2|4q super-

conformal symmetry is broken down to sup2, 2|3q (for n � 3, 4, 6). Representations of

this algebra are labelled by pE, j1, j2, R1, R2, rN�3q of the maximal compact bosonic
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subalgebra

up1qE ` sup2q1 ` sup2q2 ` sup3q ` up1qrN�3 � sup2, 2|3q . (5.25)

In particular sup4q Ñ sup3q`up1qrN�3 . The surviving supercharges are simply given

by QI�1,2,3
α , rQ 9αI�1,2,3 and their conjugates. The Cartans of sup3q are given by R1, R2

and up1qrN�3 is generated by

rN�3 � R1

3
� 2R2

3
�R3 (5.26)

under which the QI�1,2,3
α have rN�3 � 1

3 and rQ 9αI�1,2,3 have rN�3 � �1
3 .

One of the most important multiplets of psup2, 2|4q are the half-BPS multiplets

called B
1
2
, 1
2

r0,R2,0s in the language of [266]. These multiplets obey maximal shortening

given by R2 � E. The superconformal primaries of these multiplets are given by

single trace operators of the form trφpI1J1 . . . φImJmq (see Table 5.1 for conventions)

with pE, j1, j2, R1, R2, R3q � pR2, 0, 0, 0, R2, 0q. Under psup2, 2|4q Ñ sup2, 2|3q these

multiplets decompose as

B
1
2
, 1
2

r0,R2,0s �
R2à
i�0

B̂rR2�i,is . (5.27)

Note that this is a simple consequence of the branching of sup4q Ñ sup3q` up1qrN�3

r0,R2,0s Ñ
R2à
i�0

rR2 � i, is 4i
3
� 2R2

3

, (5.28)

where the subscript denotes the up1qrN�3 charge. The multiplets B̂rR1,R2s obey the

shortening condition E � R1 � R2, rN�3 � 2
3pR2 � R1q. The superconformal

primary of these multiplets is given by an operator with pE, j1, j2, R1, R2, rN�3q ��
R1 �R2, 0, 0, R1, R2,

2R2�2R1
3

�
corresponding to the decomposition of

trφpI1J1 . . . φImJmq under the branching (5.28) .

5.3.2 sup2, 2|3q Ñ sup2, 2|2q Decomposition

For practical applications, rather than dealing with sup2, 2|3q representations, it is

often convenient to choose a sup2, 2|2q � sup2, 2|3q subalgebra. Representations of

this algebra are labelled by pE, j1, j2, R, rq under the maximal bosonic subalgebra

up1qR ` sup2q1 ` sup2q2 ` sup2qR ` up1qr � sup2, 2|2q . (5.29)
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There are essentially three different choices of such subalgebras. Throughout this

paper we will require only one and we choose it to contain QI�1,2
α and rQ 9αI�1,2 as the

N � 2 supercharges. This corresponds to sup3q`up1qrN�3 Ñ sup2qR`up1qr`up1qf .

The Cartan of sup2qR is given by R and we take7

r � R1

2
�R2 � R3

2
, R � R1

2
, f � R3 . (5.30)

Let us now list the branching of the multiplets B̂rR1,R2s under sup2, 2|3q Ñ sup2, 2|2q`
up1qf . For sup2, 2|2q multiplets we use the notation of [266]. See also [1, 255] for more

general N � 3 Ñ N � 2 multiplet decompositions. We have, valid for R1R2 � 0,

B̂rR1,R2s � B̂pR2�R1q
R1�R2

2

`DpR2�R1�1q
R1�R2�1

2
p0,0q `D

pR2�R1�1q
R1�R2�1

2
p0,0q ` Ĉ

pR2�R1q
R1�R2�2

2
p0,0q

`
R2�2à
i�0

�
Bpi�R1q
R1�i

2
,R2�ip0,0q

` Cpi�R1�1q
R1�1�i

2
,R2�i�1p0,0q



`
R1�2à
i�0

�
BpR2�iq
R2�i

2
,i�R1p0,0q ` C

pR2�i�1q
R2�i�1

2
,i�1�R1p0,0q



,

(5.31)

here the superscript lists the up1qf charge. Moreover, the above is written with

the understanding that any multiplet labelled with a negative value of R is set to

zero. The stress-tensor is contained in (5.31) for R1 � R2 � 1. We also stress

that the � symbol means that the decomposition (5.31) holds only modulo long

multiplets which begin to appear in the decomposition for R1R2 ¥ 4. For R2 � 0

the decomposition is

B̂rR1,0s � B̂p�R1q
R1
2

`Dp1�R1q
R1�1

2
p0,0q ` E

p0q
�R1p0,0q `R1�2

i�1 Bpi�R1�1q
R1�i�1

2
,�i�1,p0,0q , (5.32)

while its conjugate with R1 � 0 is given by

B̂r0,R2s � B̂pR2q
R2
2

`DpR2�1q
R2�1

2
p0,0q ` E

p0q
R2p0,0q `

R2�2
i�1 BpR2�i�1q

R2�i�1
2

,i�1,p0,0q , (5.33)

and contains N � 2 Coulomb branch operators. We stress that here we use the

symbol � to indicate that the decompositions (5.32) and (5.33) are exact. It is

interesting to note that, simply by examining (5.31)-(5.33), we realize that once

we know the Higgs branch (B̂R multiplets) we can predict the Coulomb branch

(Er,p0,0q multiplets) but not vice-versa. Note that, as a check, our above syntheses

7Our conventions for r,R, f are chosen to match those of [256].



166 N � 3 SCFTS FROM DISCRETE GAUGING

and decompositions in terms of sup2, 2|3q representations are compatible with the

decomposition [266]:

B
1
2
, 1
2

r0,R2,0s �pR2 � 1qB̂R2
2

` ER2,p0,0q ` E�R2,p0,0q � pR2 � 1qĈR2�2
2

,p0,0q

`R2DR2�1
2

,p0,0q `R2DR2�1
2

,p0,0q

`
R2�2à
i�1

pi� 1q
�
B i

2
,R2�i,p0,0q ` B i

2
,i�R2,p0,0q

	
`
R2�3à
i�0

pi� 1q
�
C i

2
,R2�i�2,p0,0q ` C i

2
,i�R2�2,p0,0q

	
`
R2�4à
i�0

R2�i�4à
j�0

pi� 1qAR2
i
2
,R2�i�4�2j,p0,0q .

(5.34)

5.4 Indices and the Discrete Gauging Prescription

Let us introduce the various quantities that we plan to discuss in this paper.

5.4.1 The Superconformal Index

The superconformal index forN � 4 SYM with respect to the superchargeQ � QI�1�
is defined as [62, 64]

Ig pt, y, p, qq �TrS3p�1qF t2pE�j1qy2j2pR2qR2�2R3

�TrS3p�1qF t2pE�j1qy2j2ppqqr�Ruff
(5.35)

in the second line, since we often wish to treat N � 4 SYM as an N � 2 theory,

we used (5.30) to write the generators in N � 2 language. We also defined u2
f �

q3{p. The trace is taken over the Hilbert space of N � 4 SYM with gauge algebra

LiepGq � g in the radial quantisation. In radial quantisation we can take Q: � S.

The index (5.35) receives contributions only from those states satisfying

δ :� 2 tQ,Su �E � 2j1 � 1

2
p3R1 � 2R2 �R3q (5.36)

�E � 2j1 � 2R� r � 0 . (5.37)
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Letters E j1 j2 R1 R2 R3 ipt, y, p, qq
F�� 2 1 0 0 0 0 t6

λ̄I�1
9�

3
2 0 �1

2 1 0 0 �t3py � y�1q
λ�I�2,3,4

3
2

1
2 0 1, 0, 0 �1, 1, 0 0,�1, 1 �t4

�
1
pq � p

q � q2
	

X,Y, Z 1 0 0 0, 1, 1 1,�1, 0 0, 1,�1 t2
�
pq � q

p � 1
q2

	
Bλ̄1 � 0 5

2
1
2 0 1 0 0 t6

B� 9� 1 1
2 �1

2 0 0 0 t3y , t3y�1

Table 5.1: Letters with δ � 0 of the free N � 4 vector multiplet.

The superconformal index is independent under continuous deformation of the cor-

responding QFT. In particular

B
Bτ I

g pt, y, p, qq � 0 , (5.38)

that is to say (5.35) is independent of the gauge coupling τ of N � 4 SYM. Fol-

lowing (5.38) the superconformal index (5.35) may be computed in the free theory

by enumerating all of the components of the N � 4 field strength multiplet that

obey (5.36) and then projecting onto gauge invariants. The projection onto gauge

invariants is implemented by integration over the gauge group G. The index (5.35)

then takes the form

Igpt, y, p, qq �
»
dµGpzqPE

�
ipt, y, p, qqχGadjpzq

�
, (5.39)

dµG denotes the Haar measure of the gauge group G and χGadj the character of its

adjoint representation. The Plethystic exponential is defined in (A.1). The single

letter index ipt, y, p, qq may be computed by enumerating all letters with δ � 0, listed

in Table 5.1. The on-shell degrees of freedom of the N � 4 field strength multiplet

are Fαβ, rF 9α 9β, λαI , λ̄
I
9α, φIJ with I � 1, 2, 3, 4 and φIJ is in the r0,1,0s of sup4q.

We define X � φ12, Y � φ13 and Z � φ14. Bλ̄1 denotes the equation of motion

B� 9�λ̄
1
9� � B� 9�λ̄

1
9� � 0 which enters with opposite statistics. Equivalently, one can

evaluate the index of the psup2, 2|4q multiplet B
1
2
, 1
2

r0,1,0s, which is the free N � 4 vector
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multiplet plus conformal descendents. It is given by

ipt, y, p, qq �
�
p�1q � pq � q�2

�
t2 � �

q2 � p�1q�1 � pq�1
�
t4

p1� t3yqp1� t3y�1q
� t3y

1� t3y
� t3y�1

1� t3y�1
,

(5.40)

where χ2j2pyq denotes the SUp2q character given by

χspyq � χs � ys � ys�2 � � � � � y�s . (5.41)

The index (5.35) counts short representations of the sup2, 2|4q superconformal al-

gebra, modulo recombination. Meaning that all short multiplets, see (F.14)-(F.19),

contribute to the index, however, when they satisfy the recombination rules (F.8)-

(F.13) they sum to zero. Recombination happens when a long multipletAErR1,R2,R3s,pj1,j2q
hits the unitary bound and decomposes into semi-direct sums of short representa-

tions. We list the possible recombination rules, viewing as an N � 2 theory, in

equations (F.8)-(F.13). The index (5.35) can therefore be expanded in the following

form

Igpt, y, p, qq �
¸

SN�4Pshorts

ISN�4
pt, y, p, qq , (5.42)

where the sum is taken over the short multiplets of the theory, modulo those that can

recombine into long multiplets. We list the indices of multiplets of an sup2, 2|2q �
psup2, 2|4q subalgebra in Appendix F.2. As we discussed in Section 5.2 at τ �
eπi{3, i, eπi{3 the global symmetry group (at the level of local operators) of the theory

has a Zn enhancement. Correspondingly the Hilbert space carries an extra Zn
grading at those values of the coupling. Therefore one may define a further refined

version of the superconformal index given by

Ig pt, y, p, q, εq � TrS3p�1qF t2pE�j1qy2j2ppqqr�Ruff εrn�sn , (5.43)

where we introduced the Zn-valued fugacity ε in order to keep track of the discrete

symmetry. We stress that the Zn is a global symmetry only at τ � eπi{3, i, eπi{3.

As we showed in Appendix F.1 the Zn commutes with the supercharges QI�1� and

S�I�1 that we used to compute the index (5.35) with respect to. Moreover, we

also demonstrated that the Zn preserves a sup2, 2|3q � psup2, 2|4q subalgebra and

it therefore preserves the recombination rules (F.8)-(F.13). Therefore, the refined



169

index (5.43) can again be expanded

Igpt, y, p, q, εq �
¸

SN�4Pshorts

ISN�4
pt, y, p, q, εq

�
¸

À
i S

piq
N�3Pshorts

εrnpSN�3q�snpSN�3qISN�3
pt, y, p, qq . (5.44)

In the final equality, we firstly used the fact that any short multiplet SN�4 of

psup2, 2|4q can be decomposed into multiplets of a sup2, 2|3q subalgebra SN�4 �À
i S

piq
N�3. Secondly we used the fact that the action of rn � sn preserves the

sup2, 2|3q � psup2, 2|4q subalgebra and by rnpSN�3q� snpSN�3q we mean the gener-

ator of Zn evaluated on the given multiplet. For example, using (5.27), the refined

index on the free N � 4 vector multiplet is given by

I
B

1
2 ,

1
2

r0,1,0s

pt, y, p, q, εq � ε�1 IB̂r1,0spt, y, p, qq � ε IB̂r0,1spt, y, p, qq (5.45)

Where

IB̂r1,0spt, y, p, qq �
q�2t2 � �

p�1q�1 � pq�1
�
t4 � t6

p1� t3yqp1� t3y�1q (5.46)

IB̂r0,1spt, y, p, qq �
p�1qt2 � pqt2 � py � y�1qt3 � q2t4 � t6

p1� t3yqp1� t3y�1q (5.47)

We may then gauge the discrete Zn symmetry by making the projection

IgZnpt, y, p, qq :� 1

|Zn|
¸
εPZn
Igpt, y, p, q, εq . (5.48)

The discrete gauging restricts each contribution, in terms of either sup2, 2|3q or

sup2, 2|2q multiplets, to satisfy

rn � sn � r � f � sn � 0 mod n . (5.49)

We demonstrate in Section 5.7 that (5.44) reproduces the refined superconformal

index (5.43) at large N by matching with the KK supergraviton index (5.137) ob-

tained by the AdS/CFT computation of [251]. We would like stress that the final

expression for KK supergraviton index is not equal to the index of a theory obtained

through an S-fold projection. Since, as shown in Section 5.7, this last expression

is obtained implementing the orbifold projection at the level of the single particle
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index.

5.4.2 Coulomb Branch Limit

The graded index (5.43) may be rewritten as [168]

Ig pt, y, p, q, εq � TrS3p�1qF τ 1
2
δ2
�σ

1
2
rδ

9�2ρ
1
2
rδ

9�2uff ε
rn�sn , (5.50)

with

τ :� t2?
pq
, σ :� ty

?
pq , ρ :� t

?
pq

y
, uf :�

d
q3

p
, (5.51)

and

δ2
� :� 2

!
Q2
�,

�
Q2
�
�:) � E � 2j1 � 2R� r , (5.52)

rδ 9�2 :� 2

" rQ 9�2,
� rQ 9�2

	:*
� E � 2j2 � 2R� r . (5.53)

In the parametrisation (5.50) the Coulomb branch limit of the superconformal index

is defined to be [168]

τ Ñ 0 , ρ , σ fixed, (5.54)

which is well defined since δ2� ¥ 0. In this limit the index is then given by

IgCB pρ, σ, uf , εq � TrS3|δ2
��0p�1qFσ 1

2
rδ

9�2ρ
1
2
rδ

9�2uff ε
rn�sn . (5.55)

Defining

ρσ � x , ρ{σ � v , (5.56)

the single letter index (5.40) in the Coulomb branch limit becomes

iCBpxq � x . (5.57)

In our N � 2 decomposition this is simply the contribution of the single letter X

described in Table 5.1. Since, for our theories, it is independent of both the ratio

v � ρ{σ and uf then, due to
�rδ 9�2 � rδ 9�2

	
Q1
α �

�rδ 9�2 � rδ 9�2

	
Q2� � 0, (5.55) is

further shortened and preserves Q1�, Q2�. This allows us to write

E � r , j1 � j2 � f � R � 0 , (5.58)
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g exponentspgq
upNq 0, 1, 2, . . . , N � 1

AN 1, 2, 3, . . . , N

DN 1, 3, 5, . . . , 2N � 3; N � 1

E6 1, 4, 5, 7, 8, 11

E7 1, 5, 7, 9, 11, 13, 17

E8 1, 7, 11, 13, 17, 19, 23, 29

Table 5.2: Exponents of the Lie algebra g.

these are the highest weight states of Er,p0,0q multiplets that generate the N � 2

Coulomb branch chiral ring. Therefore the only non-zero contributions to (5.55) are

from

IEr,p0,0qpx, ε � 1q � xr . (5.59)

Hence, following (5.18), the prescription (5.44) can be implemented simply by

xÑ εx , (5.60)

and the index can be written as

IgCB px, εq � TrS3|δ2
��0 rεrxrs �

»
dµGpzqPE

�
iCBpεxqχGadjpzq

�
. (5.61)

We would like to stress that the Er,p0,0q multiplets do not recombine [266] and there-

fore turning on the refinement ε for the discrete symmetry commutes with the in-

tegration over G. Let G be connected then, as pointed out in [168], (5.61) may be

explictly evaluated thanks to Macdonald’s constant-term identities [269, 270]

IgCB px, εq � PE

�� ¸
jPexponentspgq

εj�1xj�1

�� , (5.62)

where exponentspgq denotes the set of exponents of the Lie algebra g � LiepGq.
The elements of exponentspgq are in one-to-one correspondence with the degrees

of the generators of the ring of g-invariant polynomials. We list the elements of

exponentspgq for g � ADE and upNq in Table 5.2. According to (5.48), upon the



172 N � 3 SCFTS FROM DISCRETE GAUGING

discrete gauging, we then have

IgZn,CB pxq �
1

|Zn|
¸
εPZn
IgCB px, εq . (5.63)

Since, in all known examples, (5.63) counts only gauge invariant chiral operators

with j1 � j2 � 0, it is equal to the Coulomb branch Hilbert series for the discretely

gauged theory

IgZn,CB pxq � HSpx;CBg,nq (5.64)

Therefore the rank, i.e. the complex dimension of the Coulomb branch chiral ring

is equal to [95]

dimCCBg,n �
�

Order of pole at x � 1 of IgZn,CBpxq
	
. (5.65)

We of course expect that dimCCBg,n � rank g. In the following sections we analyse

some examples.

5.4.3 Higgs Branch Hilbert Series

In general the Hilbert series [108, 107] counts gauge invariant chiral operators graded

by their charges under a maximally commuting subalgebra of the global symmetry

algebra. We will be interested in computing the Hilbert series for the Higgs branch

HBg of N � 4 SYM (using the N � 2 decomposition (5.30)). This is given by

HSpτ, uf , ε;HBgq � HSgpτ, uf , εq :� TrHBg τ
2Ruff ε

rn�sn , (5.66)

where HBg � tOi| rQI9αOi � 0 ,MµνOi � 0 , rOi � 0u is the Higgs branch chiral

ring, i.e. the space of scalar, g-invariant chiral operators that parametrize the Higgs

branch moduli space of vacua. In the language of the previous section (5.66) is

counting B̂R operators with E � 2R and r � j1 � j2 � 0. We stress that there is

no recombination rule (F.8)-(F.13) involving only B̂R operators.

The Hilbert series for the Higgs branch is closely related to a certain limit of the

superconformal index known as the Hall-Littlewood limit [168]. In fact, for genus

zero theories in class S they are conjectured to be equal, with τ of (5.66) the same

as for (5.50). For genus one (this is the relevant case for N � 4 SYM) and greater

the Hall-Littlewood operators contain the Higgs branch operators as a subset. See

Appendix H for more discussion on this point.
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In the N � 2 decomposition that we used in Section 5.3, the Higgs branch for

our theories is reached by setting equal to zero the scalar field X in the N � 2

vector multiplet. Therefore there is only one relevant F-term that we must take into

account

BXW � rY, Zs � 0 , (5.67)

where W is the superpotential for N � 4 SYM. Unfortunately, due to the fact

that the gauge group is not completely broken on the Higgs branch, letter counting

techniques cannot be used to compute (5.66). Instead, in order to compute (5.66), we

use the package Macaulay2 [112]. By inputting the ring of polynomials R � CrY,Zs
and the ideal I � xrY,Zsy given by (5.67), Macaulay2 can compute the Hilbert series

for R{I.

Since both r and sn act trivially on the fields Y, Z; on the Higgs branch rn�sn �
f . Therefore the extra grading may be implemented by uf Ñ εuf . The Higgs branch

Hilbert series then takes the form

HSgpτ, uf , εq �
»
dµGpzqf 5pτ, εuf , zq , (5.68)

where f 5pτ, uf , zq :� HSpτ, uf , z;R{Iq denotes the Hilbert series for the ring R{I.

The discrete gauged Higgs branch Hilbert series reads

HSpτ, uf ;HBg,nq :� HSg
Znpτ, uf q �

1

|Zn|
¸
εPZn

HSgpτ, uf , εq . (5.69)

One important piece of information carried by (5.66) is the dimension of the Higgs

branch

dimCHBg,n �
�
Order of pole at τ � 1 of HSg

Znpτ, 1q
�
. (5.70)

A particularly useful quantity is the Plethystic logarithm of the Hilbert series

hgZnpτ, uf q :� PLog
�
HSg

Znpτ, uf q
�
. (5.71)

The Plethystic logarithm is defined in (A.2). The Plethystic logarithm of the Hilbert

series satisfies [108, 271]:

• When the moduli space is a complete intersection variety hgZn is a polynomial

of finite degree. When it is not the hgZn is an infinite series in τ .

• It has been conjectured in [107, 108] that when the moduli space is a complete
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intersection variety the first coefficients with positive sign in the polynomial

hgZn encode the generators of the variety. Negative coefficients encode relations.

When the moduli space is not a complete intersection the generators of the

moduli space are generally still captured by the first positive terms. However,

in this last case, most of the contributions in the PLog expansion represent

Hilbert syzygies.

5.5 Rank One Theories

Having introduced the main quantities that we wish to compute we will now go

ahead and compute them for the possible N � 3 rank one theories that can be

obtained via discrete gauging of N � 4 SYM. As we mentioned previously, if we

restrict to connected groups then, from the point of view of the superconformal index

there are only two distinct possibilities, labelled by the two choices of Lie algebras

of rank one i.e. g � up1q and g � sup2q.

5.5.1 g � up1q

Let us begin with the Zn gauging of g � up1q N � 4 SYM.

Superconformal Index

Since the up1q N � 4 theory is free the index for the discrete gauging can be

computed explicitly. Using (5.45), it is given by

Iup1qZn pt, y, p, qq � 1

|Zn|
¸
εPZn
Iup1qZn pt, y, p, q, εq

� 1

|Zn|
¸
εPZn

PE
�
ε�1 IB̂r1,0s � ε IB̂r0,1s

�
.

(5.72)

The index may be equivalently expressed in terms of Elliptic Gamma functions [272]

Iup1qZn � 1

|Zn|
¸
εPZn

Γ
�
εqt2

p ; t3y, t
3

y

	
Γ
�
t2

εq2 ; t3y, t
3

y

	
Γ
�
εpqt2; t3y, t

3

y

	
pεt3y; t3yq�1

�
t3y
ε ; t3y

	�1
Γ
�
t3

εy ; t3y, t
3

y

	 . (5.73)

The Elliptic Gamma function and q-Pochammer symbol are defined in equations

(A.22) and (A.12) respectively. When n � 2 the expression (5.72) is exactly the

index for the G � Op2q N � 4 theory which matches the expectation that the this
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theory is nothing but the usual O3� orientifold theory. We can perform several

other checks of our expression (5.72) by studying the various limits that we outlined

in Section 5.4.

Coulomb Branch Limit

After taking the Coulomb branch limit (5.54) we find, for the discrete gauging of

the g � up1q theory,

Iup1qZn,CB pxq �
1

n

¸
εPZn

PE rεxs � PE rxns . (5.74)

This implies that the Coulomb branch is freely generated by ru � un with u � X the

parent Coulomb branch parameter. Therefore Epruq � rpruq � n which implies that

the ru is the superconformal primary of the sup2, 2|2q multiplet En,p0,0q � B̂r0,ns. The

topology is simply CBup1q,n � Crrus and so CBup1q,n � C. We wish to point out that

(5.74) is in perfect agreement with the expected spectrum of Coulomb operators

(5.11) coming from the S-fold analysis [247] and the Seiberg-Witten curve analysis

for the quotient of the I0 geometry in the discussion below equation (2.8) of [159].

Higgs Branch Hilbert Series

We now compute the Higgs branch Hilbert Series for these theories. For g � up1q
the superpotential (5.67) is trivial and we may actually use letter counting. We find

that f 5pτ, uf , εq � PE
�
εufτ � ε�1u�1

f τ
�
. The integration over the gauge group is

trivially performed and we get

HS
up1q
Zn pτ, uf q �

1

|Zn|
¸
εPZn

f 5pτ, εuf q � PE
�
τ2 � punf � u�nf qτn � τ2n

�
� Hilbert Series of C2{Zn .

(5.75)

The generators are simply given by

W� � Y n , W� � Zn , J � Y Z . (5.76)

They satisfy the relation W�W� � Jn. For n � 1, 2 (5.75) can be expanded

in sup2quf characters (in agreement with the fact that these theories have N � 4

supersymmetry) while for n � 3, 4, 6 there is only up1quf . In terms of sup2, 2|3q
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multiplets this is equivalently expressed as

B̂rn,0sB̂r0,ns �
�
B̂r1,1s

	
n . (5.77)

The topology of the moduli space and relation are in perfect agreement with equa-

tions (2.1) and (2.16), respectively, of [256, 255].

Schur Limit

The Schur limit of the index given by setting [168]

t � ypq . (5.78)

Hence, in the Schur limit:

IgZk,Schurpτ, uf q � TrS3p�1qF τ2E�2Ruff , (5.79)

where τ � t2?
pq . Writing τ2 � q � eβ it may be argued that [273, 229, 274, 275]

lim
τÑ1

log IgZk,Schurpτ, 1q �
4π2pa� cq

β
�Opβ0q , (5.80)

where c, a denote the central charge and weyl anomaly coefficient for the 4d SCFT.

For any 4d N ¥ 3 SCFT [248]

a � c . (5.81)

We find

Iup1qZk,Schurpτ, uf q �
1

k

¸
εPZk

�
ε�1τ2; τ2

� �
ετ2; τ2

��
ε�1u�1

f τ ; τ2
	
pεufτ ; τ2q

. (5.82)

We can now check a
?� c which we of course expect to hold for any N � 3 theory.

It can be shown that

log pqx; qq � �Lqp�1, xq (5.83)

where

Lqps, xq �
8̧

j�1

jsqjx

1� qj
(5.84)
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is the Lambert series. For s � �1 it may be expressed as [276]

Lqp�1, xq � �
8̧

n�0

logpn� xq �B1pxq logp�βq �
8̧

n¥0
n�1

ζp2� nq
n!

Bnpxqβn�1 (5.85)

where Bnpxq is the nth Bernoulli polynomial. Bnpxq satisfies limxÑ8Bnpxq � xn.

Let us suppose x � pσ � ηβq{β with σ, η c-numbers independent of β then the

leading divergence is

lim
βÑ0
Lq

�
�1,

σ � ηβ

β



� �ζp2q

β
� 1

β

8̧

n�2

ζp2� nq
n!

an � . . . (5.86)

where the dots indicate less singular terms. In particular, this implies that

lim
βÑ0

log

�
q
σ�βη
β ; q

	
�
q
γ�βρ
β ; q

	 � lim
βÑ0

�
Lq

�
�1,

γ � ρβ

β



� Lq

�
�1,

σ � ηβ

β


�

� 1

β

8̧

n�2

ζp2� nq
n!

pσn � γnq � . . . .

(5.87)

Using (5.84) to rewrite (5.82) at uf � 1 as

1

k

ķ

l�1

e
�Lq

�
�1,β�πil{k

β

	
�Lq

�
�1,β�πil{k

β

	
�Lq

�
�1,β{2�πil{k

β

	
�Lq

�
�1,β{2�πil{k

β

	
. (5.88)

Taking the logarithm and applying the formula (5.86), (5.87) we find

lim
τÑ0

log Iup1qZk,Schurpτ, 1q �
0

β
� . . . , (5.89)

where the dots indicate less divergent terms. Applying (5.80) implies that indeed

a � c for this theory.

5.5.2 g � sup2q

For g � sup2q it is very difficult to compute (5.35) in closed form. For this reason we

will instead study only the Coulomb branch limit of the index and the Higgs branch

Hilbert series.
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Coulomb Branch Limit

Let us now study the Coulomb branch limit (5.63). The corresponding computation

can be easily performed and we get

Isup2qZn,CBpxq �
1

|Zn|
¸
εPZn

PE
�
ε2x2

� �
$'''&'''%

PE
�
x2
�

n � 1

PE rxns n � 2, 4, 6

PE
�
x6
�

n � 3

. (5.90)

In each case is CBsup2q,n � C rrus and so CBsup2q,n � C. For n � 2, 4, 6 the Coulomb

branch ring of the discretely gauged theory, CBsup2q,n, is generated by ru � un{Epuq

where u � 1
2 trX2 is the Coulomb branch parameter of the parent theory. Therefore

Epruq � rpruq � n which belong to En,p0,0q � B̂r0,ns for n � 2, 4, 6. This matches

with the discussion below equation (2.8) of [159] for the I4-series I�0 geometries.

The n � 3 case is slightly different since Epuq � 2 is not a divisor of n � 3 and

CBsup2q,3 is generated by ru � un � u3. Nevertheless this is in perfect agreement with

the discussion below equation (A.7) of [159] for the I2-series I�0 geometries. These

parent theories do not come from S-folds and so do not fall into the considerations

of [247].

Higgs Branch Hilbert Series

Let us now compute the Higgs branch Hilbert series (5.66). For the case at hand the

gauge group is not completely broken and we cannot use letter counting. Therefore

we compute the F-flat Hilbert series using Macaulay2. We obtain

f 5pτ, εuf , zq �
�

1� χ2pzqτ2 �
�
εuf � 1

εuf



τ3



� PE

�
τ

�
εuf � 1

εuf



χ2pzq

�
.

(5.91)

Note that the same result was already found, for n � 1, in [277]. After the integration

over the SUp2q gauge group we get

HS
sup2q
Zn pτ, uf q � 1

|Zn|
¸
εPZn

»
dµSUp2qpzqf 5pτ, εuf , zq

� 1

n

¸
εPZn

PE

��
1� u2

f ε
2 � 1

u2
f ε

2

�
τ2 � τ4

�
.

(5.92)
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Summing over the possible values of ε we get

HS
sup2q
Zn pτ, uf q �

$''''''&''''''%

PE
��

1� u2
f � u�2

f

	
τ2 � τ4

�
n � 1

PE
�
τ2 �

�
unf � u�nf

	
τn � τ2n

�
n � 2, 4, 6

PE
�
τ2 �

�
u6
f � u�6

f

	
τ6 � τ12

�
n � 3

. (5.93)

We again define the generators

W� � 1

2
trY n , W� � 1

2
trZn , J � 1

2
trY Z . (5.94)

For n P t2, 4, 6u we have W�W� � Jn and the topology of the Higgs branch is

C2{Zn. The n � 1 case is the same as n � 2. The n � 3 case is also the same as

n � 6. In terms of sup2, 2|3q multiplets, after discarding the n � 3 case, we again

have

B̂rn,0sB̂r0,ns �
�
B̂r1,1s

	
n . (5.95)

We again find agreement with [256, 255].

5.6 Higher Rank Theories

Having studied in detail the rank one theories we now turn our attention to Zn
discrete gauging of higher rank theories. We limit most of our attention to the cases

of g � AD and g � upNq where the S-duality group (5.12) acting on local operators

is given by SLp2,Zq. In general the computation of the full discretely gauged index

(5.48) for g � upNq, A,D is very difficult to perform. Therefore, also for this class of

theories, we decide to focus our attention only on the Coulomb branch limit of the

index (5.63) and on the Higgs branch Hilbert series (5.69). For the Hilbert series we

only explicitly present the rank 2 cases. In the final subsection we will discuss the

Coulomb branch index for the cases g � E6, E7, E8.
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5.6.1 g � upNq

Coulomb Branch Limit

Let us study the Coulomb branch limit (5.54). Applying (5.62) we find

IupNqZn,CBpxq �
1

|Zn|
¸
εPZn

PE

�
Ņ

j�1

εjxj

�
. (5.96)

We list a few cases for low rank. We define for n � 1 the generators of CBupNq to be

uj � 1
j trXj . For N � 2 we collate the results for the Coulomb branch index below

Iup2qZn,CBpxq n Generators Relation

PE
�
x� x2

�
1 u1, u2 ä

PE
�
2x2

�
2 ru1 � u2

1, u2 ä

PE
�
2x3 � x6 � x9

�
3 ru1 � u3

1, ru2 � u1u2, ru3 � u3
2 ru1ru3 � ru3

2

PE
�
3x4 � x8

�
4 ru1 � u4

1, ru2 � u2
2, ru3 � u2

1u2 ru1ru2 � ru2
3

p1� 2x6qPE
�
2x6

�
6 Not complete intersection

By ä we mean that the corresponding variety is freely generated with no relation.

For n � 3, 4 CBup2q,n is not freely generated. Moreover for n � 6 we find that

Coulomb branch is not a complete intersection. This is in agreement with the

expectation that we outlined above (5.20). The dimension of Coulomb branch, as

a complex manifold, is given by applying (5.65) and dimCCBup2q,n � 2 in each

case. For the case when CBupNq,n is non-planar but a complete intersection one can

easily read off the generators and relation. Conversely when it is not a complete

intersection some more effort is required. The expansion of the Plethystic logarithm

of the n � 6 Coulomb branch index reads

PLog
�
Iup2qZ6,CBpxq

�
� 4x6 � 3x12 � 2x18 �Opx24q . (5.97)

The generators at x6 are

ru1 � u3
2 , ru2 � u6

1 , ru3 � u2u
4
1 , ru4 � u2

2u
2
1 , (5.98)

they are primaries of the multiplets E6,p0,0q. There are three relations at x12

I1 : ru1ru2 � ru3ru4 � 0 , I2 : ru2
4 � ru3ru1 � 0 , I3 : ru2

3 � ru2ru4 � 0 . (5.99)
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However these relations are not all independent; at x18 we have syzygies

ru3I1 � ru2I2 � ru4I3 � 0 , ru4I1 � ru3I2 � ru1I3 � 0 . (5.100)

Generally the moduli space should be characterised by (5.98), (5.99) and (5.100).

For N � 3 the Coulomb branch index is given by

Iup3qZn,CBpxq n Generators Relation

PE
�
x� x2 � x3

�
1 u1, u2, u3 ä

PE
�
2x2 � x4 � x6 � x8

�
2

ru1 � u2
1, u2, ru1ru3 � ru2

2ru2 � u1u3, ru3 � u2
3

PE
�
3x3 � x6 � x9

�
3

ru1 � u3
1, ru2 � u1u2, ru1ru3 � ru3

2
u3, ru3 � u3

2

p1�x4qp1�x4�2x8q
p1�x4q3p1�x4�x8q 4 Not complete intersection

p1� 4x6 � x12qPE
�
3x6

�
6 Not complete intersection

For N � 4 the Coulomb branch index is given by

Iup4qZn,CBpxq n Generators Relation

PE
�
x� x2 � x3 � x4

�
1 u1, u2, u3, u4 ä

PE
�
2x2 � 2x4 � x6 � x8

�
2

u2, ru1 � u2
1, u4, ru1ru3 � ru2

2ru2 � u1u3, ru3 � u2
3

p1�x3�x6qp1�2x6q
p1�x3q4p1�x3q2p1�x6q 3 Not complete intersection

p1�x4qp1�x4�2x8q
p1�x4q4p1�x4�x8q 4 Not complete intersection

p1�2x6qp1�4x6�x12q
p1�x6q4p1�x6q 6 Not complete intersection

We would like to point out that the dimension formula (5.65) is in perfect agreement

with the above results. We checked up to N � 60 and order x70 that CBupNq,n for

n ¥ 2 is not a complete intersection for all N ¥ 5. In principle the analysis that we

performed (5.97) - (5.100) can be repeated for each case, however doing so is beyond

the current scope of this article. Further note that for each N and n ¥ 3 we do not

have Coulomb branch operators of dimension one or two, implying that we indeed

have genuine N � 3 supersymmetry [248].
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Higgs Branch Hilbert Series

Let us now analyse the Higgs branch for these theories. We restrict our attention

to the case g � up2q. Using Macaulay2 and performing the integration over Up2q
gauge group the Higgs branch Hilbert series reads

HS
up2q
Zn pτ, uf q �

1

|Zn|
¸
εPZn

PE
��
εuf � ε�1u�1

f

	
τ �

�
1� ε2u2

f � ε�2u�2
f

	
τ2 � τ4

�
.

(5.101)

After performing the sum over Zn (5.101) becomes

HS
up2q
Zn pτ, uf q �$'''''''''''''''''&'''''''''''''''''%

PE
�
puf � u�1

f qτ � p1� u2
f � u�2

f qτ2 � τ4
�

n � 1

PE
�
2p1� u2

f � u�2
f qτ2 � 2τ4

�
n � 2

pτ6pu6
f�u�6

f q�τ3p1�τ2qp1�τ2�τ4qpu3
f�u�3

f q�3τ4�3τ8�°6
a�0 τ

2aq
p1�τ2q�1p1�τ6�τ3pu3

f�u�3
f qq2p1�τ6�τ3pu3

f�u�3
f qq n � 3

p1�τ2q2pu4
f�τ4p1�p4�τ4qu4

f�u8
f qq

p1�τ8�τ4pu4
f�u�4

f qq
2

n � 4

p1�τ2q2p2τ6p1�τ4q�p1�4τ4�9τ8�4τ12�τ16qu6
f�2τ6p1�τ4qu12

f q
p1�τ12�τ6pu6

f�u�6
f qq2 n � 6

(5.102)

When n � 1, 2 we get a complete intersection. Moreover, in an expansion around

τ the dependence on uf in (5.101) arranges itself into characters of SUp2q implying

that the Up1qf isometry of the Higgs branch is enhanced to SUp2qf for these theories.

This is of course due to the fact that supersymmetry is enhanced to N � 4 for

n � 1, 2. For n � 3, 4, 6 we do not have complete intersections, nonetheless we may

identify the first generators and their relation. Moreover, for each n, by applying

the dimension formula (5.70) we find that the Higgs branch is a manifold of complex

dimension four. We define

Wj,m � 1

j �m
trY jZm . (5.103)

For n � 1, by taking the Plethystic logarithm of (5.101), we find that the Higgs

branch is generated by the Wj,0, W0,j for j � 1, 2 and W1,1. There is a relation of

dimension 4 between them given by 2W1,1p2W1,1�W0,1W1,0q�W 2
0,1W2,0�W 2

1,0W0,2 �
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0. The variety is HBup2q,1 � Sym2
�
C2

�
[31, 107].

For n � 2 the Higgs branch is generated by W0,2, W2,0 W1,1 , �W � W1,0
2,rV � W0,1

2 and rJ � W1,0W0,1 and there are two relations of dimension 4. The

variety is HBup2q,2 �
�
Sym2

�
C2

�� {Z2 � C2{Z2 � C2{Z2.

At n � 3 we do not get a complete intersection, nevertheless we can expand the

Plethystic logarithm of (5.101)

PLog
�
HS

up2q
Z3

pτ, uf q
�
�2τ2 � 2τ3

�
u3
f � u�3

f

	
� 2τ4 � τ5

�
u3
f � u�3

f

	
� τ6

�
u6
f � u�6

f � 4
	
�O �

τ7
�
.

(5.104)

The generators are W1,1, rJ1 � W0,1W1,0, �W1 � W1,0
3, rV1 � W0,1

3, �W2 � W2,0W1,0,rV2 � W0,2W0,1, rJ2 � W2,0W0,2, W2,2, �W3 � W 2
2,0W0,1, rV3 � W0,2

2W1,0, �W4 � W0,2
3

and rV4 � W2,0
3. There are four relations of dimension six between them. In terms

of sup2, 2|3q mutiplets these have the correct quantum numbers to be

B̂r1,1s , B̂r1,1s , B̂r3,0s , B̂r0,3s , B̂r3,0s , B̂r0,3s ,

B̂r2,2s , B̂r2,2s , B̂r4,1s , B̂r1,4s , B̂r6,0s , B̂r0,6s .
(5.105)

Note that, using (5.31)-(5.33), it is easily checked that (5.105) agrees with the spec-

trum of Coulomb branch operators that we found for the up2q Zn�3 theory (5.96).

Note that in (5.104) two generators appear which have the correct quantum numbers

to belong to B̂r1,1s multiplets. This implies that the theory contains two conserved

spin two currents (which lie inside Ĉ0,p0,0q multiplets in N � 2 language).

At n � 4, 6 we again do not get complete intersection varieties. One can perform

a similar analysis for those cases as we did for n � 3.

We note that for upNq it is possible, in principal, to obtain the result for any

value of N . Since, for upNq N � 4 SYM the Higgs branch is purely mesonic, it can

be obtained as the N th symmetric product of the up1q case [107, 108, 74, 174, 96].

That is to say

HBupNq,1 � SymN
�
HBup1q,1

� � SymN
�
C2

�
. (5.106)

It therefore follows that the result for the Zn discrete gauging is simply

HBupNq,n � HBupNq,1{Zn �
�
SymN

�
C2

�� {Zn . (5.107)

The Hilbert series for the variety M � SymN pVq can be obtained by the following



184 N � 3 SCFTS FROM DISCRETE GAUGING

formula [31, 108, 107]

HSpτ ;Mq � 1

N !

BN
BνN PE rνHSpτ ;V qs|ν�0 . (5.108)

Applying the formula (5.108) we therefore have

HS
upNq
Zn pτ, uf q � 1

|Zn|
¸
εPZn

1

N !

BN
BνN PE

�
νHS

up1q
Z1

pτ, εuf q
����
ν�0

(5.109)

� 1

|Zn|
¸
εPZn

1

N !

BN
BνN

1±
i,j¥0p1� νui�jf εi�jτ i�jq

�����
ν�0

. (5.110)

For generic large values of N evaluating the derivative is rather tricky. For N � 2

we explicitly checked (5.110) against (5.101) finding precise agreement. For higher

values of N explicit evaluation of the Hilbert series using Macaulay2 is no longer

possible. But the agreement for N � 2 provides strong evidence that (5.107) &

(5.110) are true for general N . We also discuss the case of N � 8 in Section 5.7.

5.6.2 g � supN � 1q

Coulomb Branch Limit

Let us study the Coulomb branch limit. From (5.62) we have

IsupN�1q
Zn,CB pxq � 1

|Zn|
¸
εPZn

PE

�
N�1̧

j�2

εjxj

�
. (5.111)

Let us examine a few cases for low rank. We define the generators of CBsupN�1q for

the parent theory to be given by uj � 1
j trXj . For N � 1 � 3 we have

Isup3qZn,CBpxq n Generators Relation

PE
�
x2 � x3

�
1 u2, u3 ä

PE
�
x2 � x6

�
2 u2, ru1 � u2

3 ä

PE
�
x3 � x6

�
3 u3, ru1 � u3

2 ä

PE
�
x4 � x8 � x12 � x16

�
4 ru1 � u2

2, ru2 � u2u
2
3, ru3 � u4

3 ru1ru3 � ru2
2

PE
�
2x6

�
6 ru1 � u3

2, ru2 � u2
3 ä

When n � 1, 2, 3, 6 CBsup3q,n is freely generated, in agreement with our discussion

above (5.20). For N � 1 � 4 we have
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Isup4qZn,CBpxq n Generators Relation

PE
�
x2 � x3 � x4

�
1 u2, u3, u4 ä

PE
�
x2 � x4 � x6

�
2 u2, u4, ru1 � u3

2 ä

PE
�
x3 � 2x6 � x12 � x18

�
3

u3, ru1 � u3
2, ru1ru3 � ru3

2ru2 � u2u4, ru3 � u3
4

PE
�
2x4 � x8 � x12 � x16

�
4

ru1 � u2
2, u4, ru1ru3 � ru2

2ru2 � u2u
2
3, ru3 � u4

3

PE
�
3x6 � x12 � x18

�
6

ru1 � u3
2, ru2 � u2

3, ru1ru4 � ru3
3ru3 � u2u4, ru4 � u3

4

For N � 1 � 5 we have

Isup5qZn,CBpxq n Generators Relation

PE
�°5

A�2 x
A
�

1 u2, u3, u4, u5 ä

PE
�°5

A�1 x
2A � x16

�
2

u2, u4, ru1 � u2
3, ru3ru1 � ru2

2ru2 � u3u5, ru3 � u2
5

1�x6�2x9�2x12�x15�2x18

p1�x3q4p1�x3q2p1�px3�x6�x9qp1�x3�x9qq 3 Not complete intersection

p1�x8qp1�x8�x12�x16q
p1�x4q4p1�px4�x8qp2�2x4�2x8�x12�x16qq 4 Not complete intersection

1�x6�4x12�4x18�3x24�3x30�2x36

p1�x6q4p1�2x6�2x12�2x18�2x24�2x30q 6 Not complete intersection

Out of the theories with N � 1 ¡ 5 we find that, apart from n � 2, N � 1 � 6, the

Coulomb branch for n � 2, 3, 4, 6 is never a complete intersection. We checked this

up toN � 60 and x70. In each case the dimension formula (5.65) holds and is equal to

N as expected. In the cases where the moduli space is not a complete intersection

variety the analysis that we demonstrated (5.97) - (5.100) can, in principle, be

repeated. Again, for each N , with n ¥ 3 we do not have Coulomb branch operators

of dimension one or two implying genuine N � 3 supersymmetry [248].

Higgs Branch Hilbert Series

Let us turn to analysing the Higgs branch for these theories. We restrict ourselves

only to the case g � sup3q. Using Macaluay2 and performing the integration over
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the gauge group the Higgs branch Hilbert series reads

HS
sup3q
Zn pτ, uf q �

1

n

¸
εPZn

1� τ2 �
�
uf ε� 1

uf ε

	
τ3 � τ4 � τ6�

1� τ2

u2
f ε

2


�
1� τ2u2

f ε
2
	�

1� τ3

u3
f ε

3


�
1� τ3u3

f ε
3
	 . (5.112)

We find that, for all n, the corresponding moduli space is never a complete inter-

section. Moreover, applying (5.70), we find that in each case the Higgs branch is of

complex dimension four. A complete analysis of the Higgs branches of these theories

is beyond the scope of this paper. However, as we did for the up2q case we would

like to demonstrate with an example. The generators of the parent pn � 1q theory

are Wj,0 and W0,j for j P t2, 3u, W1,1, W2,1 and W1,2 where, as before,

Wj,m � 1

j �m
trY jZm . (5.113)

As an example let us expand the Plethystic logarithm of (5.112) for n � 3

PLog
�
HS

sup3q
Z3

pτ, uf q
�
�τ2 � pu�3

f � u3
f qτ3 � τ4 � pu�3

f � u3
f qτ5

� pu�6
f � u6

f qτ6 � τ8 � pu�6
f � u6

f qτ9

� p1� u�6
f � u6

f qτ10 �Opτ11q .
(5.114)

The generators are W1,1, W3,0, W0,3, rJ �W2,0W0,2, �W1 �W2,1W2,0, rV1 �W1,2W0,2,�W2 �W2,0
3 and rV2 �W0,2

3. In terms of sup2, 2|3q multiplets these have the correct

quantum numbers to correspond to

B̂r1,1s , B̂r3,0s , B̂r0,3s , B̂r2,2s , B̂r4,1s , B̂r1,4s , B̂r6,0s , B̂r0,6s . (5.115)

We can again write down the result for any value of N . The Higgs branch moduli

space for supN � 1q N � 4 SYM can though of as a hypersurface living inside the

upN � 1q case defined by the equations W0,1 �W1,0 � 0. Therefore we have [74, 96]

HBsupN�1q � C2N{SN�1 � HBupN�1q (5.116)

The Hilbert series for this variety is simply

HS
supN�1q
Z1

pτ, uf q � p1� ufτqp1� u�1
f τqHSupN�1qpτ, uf q (5.117)
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with HS
upN�1q
Z1

defined in (5.110). By definition

HBsupN�1q,n �
�
C2N{SN�1

� {Zn . (5.118)

And the Hilbert series is

HS
supN�1q
Zn pτ, uf q � 1

|Zn|
¸
εPZn

HS
supN�1q
Z1

pτ, εuf q . (5.119)

For N � 2 we explicitly checked (5.119) against (5.112) finding precise agreement.

For higher values of N explicit evaluation of the Hilbert series using Macaulay2 is

no longer possible.

5.6.3 g � sop2Nq

Coulomb Branch Limit

The Coulomb branch limit (5.62) reads

Isop2NqZn,CB pxq �
1

|Zn|
¸
εPZn

PE

�
εNxN �

N�1̧

j�1

ε2jx2j

�
. (5.120)

We would like to discuss firstly the n � 2 case where there are two distinct cases.

Namely when N � 2M or N � 2M � 1 for M P Z. Let the us choose a basis for the

Coulomb branch chiral ring given by

u2j � trX2j , 1 ¤ j ¤ N � 1 and ûN � Pf X , (5.121)

where Pf denotes the Pfaffian. The dimensions of the above operator are Epujq � 2j,

EpûN q � N . When g � sop4Mq we can write

X � diag px1σ2, x2σ2, . . . , x2Nσ2q then the Z2 acts by r2 � s2 : X ÞÑ �X � g�1Xg

with g � diag pσ3, σ3, . . . , σ3q P SOp4Mq, where σi denotes the Pauli matrices, and

thus r2 �s2 is isomorphic to a gauge transformation and therefore the n � 2 case with

N � 2M should lead to exactly the same theory as the n � 1 case. This is to be com-

pared to the case when g � sop4M�2q. Writing X � diag px1σ2, x2σ2, . . . , x2N�1σ2q
as before we have r2 � s2 : X ÞÑ �X � g�1Xg now with g � diag pσ3, σ3, . . . , σ3q R
SOp4N � 2q, infact, g P Op4N � 2q and in this case the Z2 does generate a genuine

global symmetry which, when gauged, will lead to a distinct theory. Indeed we find
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that for N � 2M

Isop4Mq
Z2,CB pxq � PE

�
x2M �

2M�1¸
j�1

x2j

�
� Isop4Mq

Z1,CB pxq . (5.122)

On the other hand, for N � 2M � 1

Isop4M�2q
Z2,CB pxq � PE

�
x4M�2 �

2M�2¸
j�1

x2j

�
, (5.123)

and the new Coulomb branch operators are simply given by u2, u4, . . . , u4M�4 andru � pû2M�1q2 � detX. Let us now turn on the cases n � 3, 4, 6 for different values

of N . In the following we collate the results that we found.

For N � 2 we have

Isop4qZn,CBpxq n Generators Relation

p1� 2x6qPE
�
1� 2x6

�
3 Not complete intersection

PE
�
3x4 � x8

�
4 ru1 � u2û2, ru2 � u2

2, ru3 � û2
2 ru2

1 � ru2ru3

p1� 2x6qPE
�
1� 2x6

�
6 Not complete intersection

Note that, since sop4q � sup2q ` sup2q, for n � 1, 2 we have

Isop4qZn�1,2,CB �
�
Isup2qZn�1,2,CB

	2
. On the other hand, for n ¥ 3,

Isop4qZn�3,4,6,CB �
�
Isup2qZn�3,4,6,CB

	2
. Since sop6q � sup4q the Coulomb branch index for

N � 3 is the same as for the Coulomb branch index for the g � sup4q theory (5.111)

and therefore

Isop6qZn,CBpxq � Isup4qZn,CBpxq.
For N � 4 we find

Isop8qZn,CBpxq n Generators Relation

1�2x6�5x12�x18

p1�x6q4p1�x6q2 3 Not complete intersection

PE
�
3x4 � x8 � x12 � x16

�
4

u4, û4, ru1 � u2
2, ru2

2 � ru1ru3ru2 � u2u6, ru3 � u2
6

1�2x6�5x12�x18

p1�x6q4p1�x6q2 6 Not complete intersection

Out of the theories with N ¡ 4 we find that, apart from the n � 2 cases, which

we discussed separately, the Coulomb branch for n � 3, 4, 6 is a not a complete

intersection. We again checked this up to N � 60 and x70. In each case the
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dimension formula (5.65) holds and the dimension is equal to N as expected. With

n ¥ 3 we do not have Coulomb branch operators of dimension one or two, implying

that we indeed have genuine N � 3 supersymmetry [248].

Higgs Branch Hilbert Series

Using the software Macaulay2 we did the computation of the Higgs branch Hilbert

series for the theory with Lie algebra g � sop4q � sup2q`sup2q. After the integration

over the gauge group we get

HS
sop4q
Zn pτ, uf q � 1

|Zn|
¸
εPZn

PEr2τ2 � 2pε2u2
f � ε�2u�2

f qτ2 � 2τ4s . (5.124)

We observe that the above Hilbert series has a pole of order four at τ � 1 and

therefore, by (5.70), the complex dimension of the Higgs branch is four. For n � 1, 2

we get a complete intersection variety with Hilbert series

HS
sop4q
Z1,2

pτ, uf q � PEr2p1� u2
f � u�2

f qτ2 � 2τ4s �
�

HS
sup2q
Z1

pτ, uf q
	2

. (5.125)

At n � 1, 2 it is clear that the Higgs branch moduli space is equal to two copies of the

sup2q case. We discussed that in Section 5.5.2. The topology of the moduli space is

therefore
�
C2{Z2

�2
. For n � 3, 4, 6 we observe that the corresponding Hilbert series

is not a complete intersection. Moreover the Hilbert series for n � 3, 6 are equal.

5.6.4 g � EN

In this subsection, since we can make use of (5.62), we focus on the Coulomb branch

limit of the index for E6, E7 and E8.

g � E6

The Coulomb branch index reads

IE6
Zn,CBpxq �

1

|Zn|
¸
εPZn

PE

�� ¸
iPt2,5,6,8,9,12u

εixi

�� . (5.126)
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For n � 2 the Coulomb branch is no longer freely generated. The Coulomb branch

index reads

IE6
Z2,CBpxq � PE

�
x2 � x18 �

7̧

j�3

x2j � x28

�
. (5.127)

The generators and relation are

u2, u6, u8, ru1 � u2
5, u12, ru2 � u5u9, ru3 � u2

9 ; ru2
2 � ru1ru3 , (5.128)

where the uj are E6-invariant polynomials of degree j. For n � 3, 4, 6 the variety is

not a complete intersection. To save on lengthy formulas we will list, as an example,

only the case of n � 6. In that case the Coulomb branch index reads

IE6
Z6,CBpxq �

�
1� x6 � 3x12 � 3x24 � 3x36 � x42 � x48

�
PE

�
6x6

�
p1� 11x24 � 11x30 � x54 �°3

a�1 3apx6a � x54�6aqq . (5.129)

g � E7

By applying (5.62) we have

IE7
Zn,CBpxq �

1

|Zn|
¸
εPZn

PE

�� ¸
iPt2,6,10,12,14,18u

εixi

�� . (5.130)

Clearly IE7
Z1,CBpxq � IE7

Z2,CBpxq. This is to be expected since OutpE7q is trivial. For

n � t3, 4, 6u we do not get a complete intersection.

g � E8

The Coulomb branch index reads

IE8
Zn,CBpxq �

1

|Zn|
¸
εPZn

PE

�� ¸
iPt2,8,12,14,18,20,24,30u

εixi

�� . (5.131)

We observe that IE8
Z1,CBpxq � IE8

Z2,CBpxq again, this is to be expected due to the fact

that OutpE8q � 1. While it’s easy to check that for n � 3, 4, 6 the space is no longer

freely generated.
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5.7 Large N Limit

The large N limit of the index of G � UpNq SYM may be written as [62]

Iup8qpt, y, p, qq � PE
�
ZS.T.pt, y, p, qq� (5.132)

where

ZS.T.pt, y, p, qq �
8̧

R2�1

I
B

1
2 ,

1
2

r0,R2,0s

pt, y, p, qq �
8̧

R2�1

R2̧

i�0

IB̂rR2�i,is
pt, y, p, qq , (5.133)

where, in the second line we made us of (5.27). By applying rn � sn given in (5.3)

and (5.6) we can write the single letter index corresponding to the refined index

(5.43), it is given by

ZS.T.pt, y, p, q, εq �
8̧

R2�1

R2̧

i�0

εR2�2i IB̂rR2�i,is
pt, y, p, qq , (5.134)

where we used that

prk � skqB̂rR1,R2s � pR2 �R1qB̂rR1,R2s . (5.135)

The refined index, at large N is then given by

Iup8qpt, y, p, q, εq � PE
�
ZS.T.pt, y, p, q, εq� . (5.136)

The KK supergraviton index graded by ε for rk � sk, as computed from AdS/CFT,

reads [251]

IKK pt, p, q, y, εq � � 1� ε�1t6

p1� t3yq p1� t3{yq

�
�
1� ε�1t3y

� �
1� ε�1t3{y� �1� t4

�
ε
pq � εp

q � q2

ε

	
� p1� εq t6

	
p1� t3yq p1� t3{yq p1� t2pq{εq p1� t2q{pεq p1� t2ε{q2q .

(5.137)

Expansion around t � 0 (we checked up to order t20) verifies that

ZS.T.pt, y, p, q, εq � IKK pt, p, q, y, εq . (5.138)
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The index for the Zn discrete gauging of the upN � 8q theory is therefore

Iup8qZn pt, y, p, qq � 1

|Zn|
¸
εPZn

PE
�
ZS.T.pt, y, p, q, εq� . (5.139)

On the other hand, as computed in [251], we may also obtain the index for the k �
1, 2, 3, 4, 6 N � 3 S-fold SCFTs at large N , S8k,`, by implementing the projection at

the level of the single letter index. The spectrum of protected single trace operators

in the S-fold S8k,` theory is given by

ZS.T
k pt, y, p, qq :� 1

|Zk|
8̧

R2�1

R2̧

i�0

¸
εPZk

εR2�2iIB̂rR2�i,is
pt, y, p, qq , (5.140)

for k � 1, 2, 3, 4, 6. Note that, at large N , the index does not distinguish between

theories with different values of ` [251]. One advantage of (5.140) is that it manifestly

organises expression into multiplets of sup2, 2|3q. The index for the S-fold at large

N is then given by

IN�8Zk S-foldpt, p, q, yq � PE
�
ZS.T
k pt, p, q, yq� . (5.141)

Note that the procedure (5.140) is a S-fold and not a discrete gauging since it is

implemented at the level of the single particle index. It is clear that

Iup8qZn�kpt, y, p, qq � I
N�8
Zk S-foldpt, p, q, yq . (5.142)

We can also discuss the Higgs branch Hilbert series of this these theories. The result

for upNq N � 4 SYM in the N Ñ 8 limit can be obtained by application of the

formula of [108] which claims that

HS
up8q
Z1

pτ, uf q � PE rf8pτ, uf qs , (5.143)

f8pτ, uf q � HS
up1q
Z1

pτ, uf q � PE
�
puf � u�1

f qτ
�
. (5.144)
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Therefore, for the Zn-gauged theory the Hilbert series is given by

HS
up8q
Zn pτ, uf q � 1

|Zn|
¸
εPZn

exp

� 8̧

j�1

f8pτ, εuf q � f8p0, 0q
j

�
(5.145)

� 1

|Zn|
¸
εPZn

¹
i,j¥0

p1� ui�jf εi�jτ i�j�2q
p1� ui�j�1

f εi�j�1τ i�j�1qp1� ui�j�1
f εi�j�1τ i�j�1q

, (5.146)

which is the Hilbert series for
�
Sym8pC2q� {Zn. For example, for n � 4 we have

HS
up8q
Z4

pτ, uf q �1� 2τ2 � p4� 5b4qτ4 � p12� 19b4qτ6

� p32� 55b4 � 22b8qτ8 �Opτ9q
(5.147)

where bnp �
°2p
i�0 u

npp�iq
f � unpf �unp�nf � � � ��u�npf . Conversely, for the S8k,` S-fold

theory the Hilbert series reads

HS
up8q
Zk S-foldpτ, uf q � PE

�
1

k

¸
εPZk

f8pτ, εuf q
�

� PE

�
1� τ2k

p1� τ2qp1� ukfτ
kqp1� u�kf τkq

�

�
¹
i,j,l¥0

���
�

1� u
kpi�jq
f τ2l�kpi�j�2q

	2�
1� u

kpi�jq
f τ2�2l�kpj�iq

	�
1� u

kpi�jq
f τ2�2l�kpj�i�2q

	
�

�
1� u

kpi�j�1q
f τ2�2l�kpj�i�1q

	�
1� u

kpi�j�1q
f τ2�2l�kpj�i�1q

	
�

1� u
kpi�j�1q
f τ2l�kpj�i�1q

	�
1� u

kpi�j�1q
f τ2l�kpj�i�1q

	
��

(5.148)

which is the Hilbert series for Sym8pC2{Zkq. For k � 4 this has the expansion

HS
up8q
Z4 S-foldpτ, uf q �1� τ2 � p1� b4qτ4 � p1� 2b4qτ6

� p2� 2b4 � 2b8qτ8 �Opτ9q .
(5.149)

5.8 Conclusions

In this chapter we have presented a prescription on how to implement the discrete

gauging of a four dimensional N � 4 mother theory, resulting in a N � 3 daughter

theory, at the level of the superconformal index.

We explicitly computed the Coulomb branch limit of the index as well as the
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Higgs branch Hilbert series for a number of theories based on simply laced groups.

For rank one theories, the Coulomb branch index and Higgs branch Hilbert series

we computed reproduce precisely all known results, while, for higher rank theories

we make concrete predictions for the Coulomb and Higgs branches of these N � 3

theories. Most strikingly we find that, in general, the higher rank theories, have

non-freely generated Coulomb branches. In a few cases the Coulomb branch is a

complete intersection variety and, using the Coulomb branch index, we were able to

read off the topology of the corresponding space. Generally the Coulomb branch of

the theory after the discrete gauging is not a complete intersection and the topology

becomes harder to extract. It would be interesting to further study this aspect in

the future.

Since the superconformal index of the up1q theory is easily reorganised intoN � 3

multiplets we were able to compute the full superconformal index for the discrete

gauging of it, given in equation (5.73). Moreover, in the large N limit, a similar

reorganisation happens meaning that it is also possible to compute the superconfor-

mal index for the discrete gauging, given in equation (5.139). For general rank the

computation of the full index, or other more refined limits such as the Schur limit, is

much more difficult and we leave it for future work. However, we can easily compute

the Coulomb branch limit of the superconformal index and the Higgs branch Hilbert

series. Other, more refined, limits contain more types of short multiplets, which of

course contain more interesting information. In particular the Schur index is related

to the vacuum character of chiral algebras. The latter allows for the computation

of correlation functions in a protected sector [172]. For N � 3 theories the study of

chiral algebras was initiated in [256, 255] and it would be very interesting to further

pursue. With the help of the superconformal index, we can construct and analyse

the corresponding chiral algebras for the discrete gauging that we studied in this

paper.

It is important to note that the spectrum of non-local operators may reduce the

possible Zn’s that can enhance to symmetries of the theory and therefore be gauged.

The standard superconformal index that we studied in this paper can say nothing

about the non-local operator spectrum. It captures only the spectrum of protected

local operators. Using our current tools we only claim that if a theory exists we can

compute its index, but we have no way of deciding if a theory actually exists. To

break this impasse, a very interesting quantity to compute for the theories obtained

via discrete gauging is the Lens space index [81, 237, 235, 236]. It is a generalisation

of the standard superconformal index that has a representation as a path integral
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on S1 � S3{Zr. For r � 1 this reduces to the usual superconformal index, however,

since π1

�
S3{Zr

� � Zr the Lens space index has the advantage that it is sensitive to

the spectrum of line operators of the theory. Our construction can be immediately

generalized for r � 1.

In a similar spirit it is also possible to compute the index in the presence of

certain extended operators [278, 279]. These should also shed light to the possible

discrete gaugings allowed for a given theory. Computing such quantities may be

able to teach us more about, the currently mysterious, ‘new’ N � 4 theories [159]

and discrete gaugings thereof.

Finally, our procedure can also be applied to discrete gauging that preserves

N � 2 or N � 1 superconformal symmetry as in [159] to generate new novel

theories that inherit a large amount of structure from their N � 4 mother theory.
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Chapter 6

N � p1, 0q Strings and Surface

Operators

6.1 Introduction

The p1, 0qΓ SCFTs, associated to M5-branes on a transverse C2{Γ singularity, admit

a wide variety of 1
2 -BPS surface defects. As we have discussed in detail throughout

this thesis, this theory and those defects are used to engineer the 4d theories within

class SΓ. Amongst the permissible 1
2 -BPS, codimension 2 surface defects are those

of of Gukov-Witten type [221, 122, 121]. Closely related are defects in 6d N � p2, 0q
theories which have been studied in, to name a few, [217, 280, 281, 76, 122, 58].

The N � p1, 0q theories that we will focus on are p1, 0qAN�1
theories; the world-

volume theory on M M5-branes probing an AN�1 singularity. The surface defects

may be realised in M-theory by additional M5-brane stacks intersecting codimension

2 surfaces of the original M5-brane stack, or, by an orbifold construction. In this

chapter we compute the elliptic genus partition function of the 2d theory describing

the tensionless BPS strings of these theories in the presence of the defect by studying

a dual Type-IIB geometry. The M-string elliptic genus is expected to be equal to

the T 2 � R4 partition function of the 6d theory, up to a perturbative contribution

(see [282] for a complete review and list of references). We also compute the S1�S4

partition function of 5d N � 1 circular quiver theories in the presence of defects

operators inserted at north and south poles.

197
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6.2 Self-Dual Strings with Surface Operators

In this section we describe the details of the self dual strings in the presence of the

surface operators for the p1, 0q theories of interest. In particular we derive a dual

2d UV gauge theory description. We then describe the computation of the Elliptic

genus and of the BPS partition function.

6.2.1 M-Theory Description

To describe the the surface defects it is useful to first deform the p1, 0qAN�1
theory

by moving away from the conformal point to a ‘Coulomb’ branch. We separate

the M5-branes in, say, the X7 direction so that the nth brane lies at position an.

The dynamics is now described by a theory of strings which couple to the 2-form

potentials B for the self-dual field strengths dB � H � �H in the M � 1 N � p1, 0q
tensor multiplets. The strings arise as M2-branes which are of codimension 4 with

respect to the M5-branes and which sit in one direction transverse to the M5-branes.

The tension between the nth and mth string is then [283]

Cε1 Cε2 T 2 S1 Γ-ALF
X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11

M M5 – – – – – – � � � � �
K M2 � � � � – – – � � � �
k M51 � � – – – – � – – � �

Table 6.1: M-theory description of the surface defects.

tn,m �
����» an
am

dx^ dz

z

���� � ����pan � amqdz
z

���� , (6.1)

where z denotes the coordinate on the T 2 and x � X7p11q where

Xij :� Xi � iXj

?
2

, i, j P t1, 2, . . . , 11u . (6.2)

an denotes the position of the nth brane in the x direction. At the conformal point

an � am and the strings become tensionless.

We wish to study these strings in the presence of 1
2 -BPS codimension 2 defects.

We often use the phrases ‘defect’, ‘surface operator’ and ‘surface defect’ interchange-

ably. The defect can be realised by inserting k M5’-branes as in Table 6.1. The data
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specifying the defect is given by a homomorphism ρ � ÀN
A�1 ρA : sup2qN Ñ ANM�1

labelled by choices of partition of MA into k integers for A � 1, . . . , N

ρ � rρ1, ρ2, . . . , ρN s , ρA � rMA1,MA2, . . . ,MAks , (6.3)

and MA �
°N
A�1MA,i. This describes MAi M5-branes ending on the Ath centre of

the Γ-ALF space and intersecting the ith M5’-brane.

So called ‘minimal’ defects of type ρA � r1, 1, . . . , 1, pMA�nqs have been studied

from the point of view of topological strings in [284, 285, 286, 287]. The relation be-

tween M-strings and the refined topological string partition function in the presence

of a defect of type 2 � 1� 1 has been studied in [284]. We review this in Appendix

G.3. In this chapter we wish to present a method to compute the partition functions

for any choice of ρ, by using the Elliptic genus method.

Before inserting the surface operator there is a Spinp4q � SUp2qα � SUp2q 9α

symmetry acting on C2 � R4 parametrised by X12 and X34. The C2{Γ singularity

admits a resolution to a Γ-ALF space. This is parametrised by X89, Xp10qp11q and

has a SUp2q � Up1qb isometry, where Up1qb is generated by J89 � Jp10qp11q and Jij

denotes the generator of Up1qij rotations in the two-plane parametrised by Xij .

When Γ � A the Γ-ALF space is the multi-centred Tau-Nut space TNN and there

is a also Up1qf holomorphic isometry generated by J89 � Jp10qp11q.

We introduce the Ω-background parameters by fibering non-trivially the Γ-ALF

space and the R4 � C2 over the S1 parametrised X5 such that as we go around the

S1 we rotate by

Up1qε1 � Up1qε2 :
pX12, X34q ÞÑ

�
e2πiε1X12, e

2πiε2X34

�
,

pX89, Xp10qp11qq ÞÑ
�
e�

ε1�ε2
2 X89, e

� ε1�ε2
2 Xp10qp11q

	
.

(6.4)

When Γ � A we may also fiber non-trivially the TNN over the S1 parametrised by

X6 such that we rotate by

Up1qf � Up1qm : pX89, Xp10qp11qq ÞÑ pe2πimX89, e
�2πimXp10qp11qq (6.5)

upon going around the circle.

With the surface operator the geometry preserves 32{16 � 2 real supercharges. In

particular, the 2d theory describing self-dual strings has N � p0, 2q supersymmetry.
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An Alternative M-Theory Realisation of the Surface Operator from Orb-

ifolding

When Γ � A there is an equivalent description of the surface operator of interest. It

relies on the additional Up1qf isometry of the A-type ALF space TNN . In particular

we can define the surface operator as a orbifold singularity at X12 � 0. We begin

with the M-theory setup of Table 6.2. In particular, the space C3{pZN �Zkq admits

Cε1 Cε2 T 2 S1 TNN

X1 X2 X3 X4 X5 X6 X9 X7 X8 X10 X11

M M5 – – – – – – � � � � �
K M2 � � � � – – – � � � �
Zk � � � � � � � � � � �

Table 6.2: Orbifold description of the surface operator.

a partial resolution as pC � TNN q{Zk. At the origin TNN may be parametrised as

AB � CN with A � X7p10qN , B � X8p11qN and C � X8p11qX7p10q.1 Clearly both

Up1q7p10q and Up1q8p11q leave this description invariant and therefore the orbifold

action

Zk : pX12, X7p10qq ÞÑ γJ12�J7p10qpX12, X7p10qq � pγX12, γ
�1X7p10qq , (6.6)

γ � e2πi{k, is well defined.

One can see that (atleast at the level of the BPS strings of the 6d theory) that the

descriptions of Table 6.1 and Table 6.2 are equivalent in the following sense: We first

obtain a Type-IIA description by taking the setup of Table 6.1 and compactify by

taking the M-theory circle to be the TNN circle X11. We then perform a T-duality

along X7 to find the Type-IIB description of Table 6.3. Whilst we are unaware of

Cε1 Cε2 T 2 C2

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

ZM � � � � � � � � � �
K D1 � � � � – – � � � �
N D5 – – – – – – � � � �
Zk � � � � � � � � � �

Table 6.3: Type-IIB setup obtained by compactifying the M-theory geometry of Table
6.1 on T 2 parametrised by X7 and X11.

1Descriptions of the orbifolds C2{Γ can be found in 3.9 of [108].
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an explicit metric of the CY3 geometry dual to the NS5-NS5’ system, if we allow

ourselves to decompactify the S1 parameterised by X7 (which is irrelevant from the

point of view of the theory living on X1, . . . , X6 provided we keep only the X7 zero

modes) then the dual geometry admits a description as the orbifold C3{pZk � ZM q
[288]. The orbifold action is given by

ZM :
�
X12, X7p10q, X89

� ÞÑ ωJ7p10q�J89
�
X12, X7p10q, X89

�
, ω � e2πi{M ,

Zk :
�
X12, X7p10q, X89

� ÞÑ γJ12�J7p10q
�
X12, X7p10q, X89

�
, γ � e2πi{k .

(6.7)

Alternatively, if one takes the description of the surface operator of Table 6.2 and

compactifies on X11 and then T-dualises on X9 one obtains the same Type-IIB

geometry as Table 6.3.

Surface Operator Data in the Type II Description

One may worry that the data (6.3) specifying the surface operator has been lost upon

compactifying to a Type-II description. However it can be recovered by tracking the

T-duality carefully. Let us first describe the case without surface operator, i.e. the

k � 1 case (when k � 1 we can pull out the M5’-brane of Table 6.1).

Before the reduction to the Type-II description we have M M5-branes on N -

centred Taub-Nut space. We have MA � M{N fractional branes ending on the

Ath center ~xA with M � °N
A�1MA. After moving to the Type-II description the

TNN space becomes N Dpp � 5, 6q-branes with the Ath brane located at ~xA in

the transverse space. In the Type-IIA description, the M M5-branes have become

M NS5-branes of which MA are fixed at ~xA in the transverse space. In the Type-

IIB description the M5-branes have become a transverse TNM space of which MA

centres have been collided. Therefore, in the Type-II description the original brane

setup is now described by a partition of N into M integers

ρ̃ �rρ̃1, ρ̃2, . . . , ρ̃M s (6.8)

�
�
N

M1
, . . . ,

N

M1l jh n
M1 times

,
N

M2
, . . . ,

N

M2l jh n
M2 times

, . . . ,
N

MN
, . . . ,

N

MN

�
l jh n

MN times

. (6.9)

The case with surface operator is essentially the same. The surface operator de-

scribed by k M5’-branes. MAi M5-branes end on the ~xAth center and ith M5’-brane.

After moving to the IIA description we have Ni, N � °k
i�1Ni fractional D6-branes
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ending on a stack of intersecting MAi NS5-branes, therefore the surface operator

data may be recast in the following form:

ρ̃n � rρ̃n1, ρ̃n2, . . . , ρ̃nks

�
�
N

MA1
, . . . ,

N

MA1l jh n
MA1 times

,
N

MA2
, . . . ,

N

MA2l jh n
MA2 times

, . . . ,
N

MAk
, . . . ,

N

MAk

�
l jh n

MAk times

, (6.10)

with ρ̃ � rρ̃1, ρ̃2, . . . , ρ̃M s.

6.2.2 2d Gauge Theory

The goal of this section is to find a description of the CFT describing the low

energy theory of self-dual strings in the p1, 0qA theories in the presence of the surface

operator.

The CFTs describing the dynamics of self-dual strings tend to be rather com-

plicated NLSMs [282]. However, because we are ultimately interested in computing

the torus partition function (elliptic genus) of said CFTs and because that quantity

is constant under RG flow it suffices to consider, if it exists, a UV description that

flows to the CFT of interest in the IR.

In this case, the CFT of interest is not an isolated fixed point and can be realised

as the IR fixed point of the 2d gauge theory on D1-branes in the Type-IIB setup of

Table 6.3. The elliptic genus of that 2d gauge theory is then expected to be equal

to the elliptic genus for the IR CFT describing dynamics of self-dual strings.

Before computing the elliptic genus we must first discuss the worldvolume theory

living on the D1-branes in the low energy limit. Let us first discuss the supersym-

metries preserved by the 2d theory in the presence of the surface operator.

Type-IIB string theory has 32 supersymmetries parametrised by a 32 component

spinors ε � εL� εR of positive chirality Γ11εL{R � �εL{R where Γ11 � Γ1 . . .Γ10 and

Γ1, . . . ,Γ10 are the 32 � 32 Gamma matrices. The D5/D1 system preserves 1{4 of

the 32 supersymmetries. Between them they preserve only those supersymmetries

of the form

εL � Γ1Γ2Γ3Γ4Γ5Γ6εR, εL � σΓ5Γ6εR, (6.11)

with σ � �1 corresponding to whether we have D1- or D1-branes. The theory living

on the (D1-)D1-branes then possesses pp, qq supersymmetry with p� q � 32{4 � 8.

By choosing an explicit representation for the Gamma matrices it can be shown that
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p � q � 4 and that the preserved supercharges are

Qαa
� , Qα 9a

� if σ � �1 , rQ 9α 9a
� , rQ 9αa

� if σ � �1 , (6.12)

where α, 9α � 1, 2 are indices for Spinp4q � SUp2qα � SUp2q 9α and a, 9a � 1, 2 are

indices of Spinp4qR � SUp2qa � SUp2q 9a and the subscript � denotes the spin-

�1
2 representation under Up1q56 which acts as the Lorentz group of the D1-brane

worldvolume theory.

The Spinp4q � SUp2qα�SUp2q 9α rotates the two planes of the C2 parametrised by

pX12, X34q into one another. The Cartans JL, JR of sup2qα, sup2q 9α may be expressed

in terms of the generators J12 and J34 of Up1q rotations in their respective planes as

JL � 1

2
p�J12 � J34q , JR � �1

2
pJ12 � J34q , (6.13)

which are defined such that lower α � 1, 2 have JL � �1
2 ,�1

2 and lower 9α � 91, 92 has

JR � �1
2 ,�1

2 .

On the other hand Spinp4qR � SUp2qa � SUp2q 9a rotates the two planes of

the C2 parametrised by
�
X7p10q, X89

�
into one another. The Cartans JRL , J

R
R of

sup2qa, sup2q 9a may be expressed in terms of the generators J710 and J89 of Up1q
rotations in their respective planes as

JRL � 1

2
pJ710 � J89q , JRR � 1

2
pJ710 � J89q , (6.14)

which are defined such that lower a � 1, 2 have JRL � �1
2 ,�1

2 and lower 9a � 91, 92 has

JRR � �1
2 ,�1

2 . We can then write J12 � J710 � � �
JR � JL � JRR � JRL

�
. Hence the

total preserved supersymmetries are

Q1 92
� , Q2 91

� if σ � �1 , rQ 91 92
� , rQ 92 91

� if σ � �1 . (6.15)

Because parity exchanges D1 Ø D1 we may take σ � �1 without loss of generality.

D1-Worldvolume Theory Without Surface Operator

Let us first discuss the worldvolume theory without surface operator. In the Type-

IIB description the theory can be understood as a ZM orbifold of the well known

D5/D1-system.

The theory arising from quantising open strings stretching between K parallel
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p4, 4q p0, 2q UpKq SUpNq J56 JL JR JRL JRR On-shell D.O.F.

V

Υ adj. 1 �1
2 0 �1

2 0 �1
2 ζ

92 91� , F��
ζ adj. 1 �1

2 0 �1
2 0 �1

2 ζ
91 91�

Y adj. 1 0 0 0 �1
2 �1

2 Y 2 92, ε
922�rY adj. 1 0 0 0 �1

2 �1
2 Y 1 92, ε

921�

H

X adj. 1 0 �1
2 �1

2 0 0 X1 91, ξ1 91�rX adj. 1 0 �1
2 �1

2 0 0 X2 91, ξ2 91�
λ adj. 1 �1

2 �1
2 0 �1

2 0 λ12�rλ adj. 1 �1
2 �1

2 0 �1
2 0 λ11�

U

φ 0 0 �1
2 0 0 φ

91, χ
91�rφ 0 0 �1

2 0 0 φ
91
, χ

91�
ψ �1

2 0 �1
2 0 0 ψ1�rψ �1

2 0 �1
2 0 0 ψ

1
�

Table 6.4: Gauge covariant field content with δ � 0 of the N � p4, 4q vector multiplet
V . The charges are displayed for the lowest component of the relevant multiplet.

and coincident Dp-branes is given by p � 1 dimensional Yang-Mills theory with

16 supercharges, for p � 1 that is the well known N � p8, 8q SYM theory. In

terms of multiplets under the N � p4, 4q subalgebra given by rQ 9α 9a� , rQ 9αa� they form a

N � p4, 4q field strength multiplet V and hypermultiplet H, which can be thought

of as the reduction to 2d of a 4d N � 2 field strength multiplet and hypermultiplet

respectively. V contains a 2d field strength F�� � �F��, four scalars degrees of

freedom Y a 9a, right moving fermions ε 9αa� and left moving fermions ζ 9α 9a� . H contains

scalars Xα 9α, right moving fermions ξα 9a� and left moving fermions λαa� .

Open D1-D5 strings preserves that N � p4, 4q supersymmetry and gives rise to a

N � p4, 4q hypermultiplet U in the bifundamental representation of UpKq�SUpNq.
U contains two complex scalars φ 9α and their conjugates φ 9α, and fermions χ 9a�, ψa�
plus their conjugates χ� 9a, ψ�a.

Since the surface operator and ZM orbifold eventually picks out a favoured N �
p0, 2q algebra (6.15) it is convenient to describe the field content in terms of that

N � p0, 2q subalgebra given by the supercharges

Q :� rQ 92 91
� , rQ :� rQ 91 92

� . (6.16)

We list the field content (minus conjugates) under this N � p0, 2q subalgebra in

Table 6.4. In words: V splits into a N � p0, 2q field strength Fermi multiplet Υ, a
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Fermi multiplet ζ and their conjugates Υ, ζ and finally chiral multiplets Y , rY and

their anti-chiral conjugates Y , rY . H decomposes into chiral multiplets X, rX and

their conjugates X, rX and a pair of Fermi multiplet λ, rλ and their conjugates λ, rλ.

The bi-fundamental U decomposes into two chiral multiplets φ, rφ in bi-fundamental

representations K bN , N bK of UpKq � SUpNq aswell as their conjugates φ, rφ in

conjugate representations. Furthermore there are Fermi multiplets ψ, rψ and their

conjugates ψ, rψ in bi-fundamental representations of UpKq � SUpNq.
Note that on N � p0, 2q superfields means conjugation with respect to the

algebra (6.16), namely it acts by conjugation on all of the quantum numbers barring

J56 in Table 6.4.

ZM Orbifold To obtain the effective theory of M-strings for the p1, 0qA theory,

without surface operator, we perform the ZM orbifold on the above D1-brane world-

volume theory via the standard Douglas-Moore orbifold procedure [157]. For a field

f in representations R : UpKq � SUpNq Ñ EndV where V corresponds to the

Chan-Paton space, then the ZM orbifold acts by identification

f � ω2JRLR pτ, gq f (6.17)

where τ, g are elements of ZM subgroups of UpKq and SUpNq respectively. The

partitions κ̃ � rK1,K2, . . . ,KM s and (6.8) determine the embedding of ZM into the

respective groups. Note that, to get the correct M-string description we must set

KM � 0 [209]. By conjugation with elements of UpKq{±n UpKnq and

SUpNq{S p±n UpNnqq we may take them to be block diagonal, explicitly:

τ � diag
�
ωIK1 , . . . , ω

nIKn , . . . , ωM IKM
� P UpKq , (6.18)

g � diag
�
ωIN1 , . . . , ω

nINn , . . . , ωM INM
� P SUpNq . (6.19)

In particular

Υ � τΥτ : , ζ � τζτ : , X � τXτ : , rX � τ rXτ : , (6.20)

Y � ωτY τ : , rY � ω�1τ rY τ : , λ � ωτλτ : , rλ � ω�1τrλτ : , (6.21)

φ � τφg: , rφ � grφτ : , ψ � ω�1τψg: , rψ � ω�1g rψτ : . (6.22)

The field content of the orbifolded theory is then given by solving the equations

(6.20), (6.21) and (6.22). The field content is summarised, after setting k � 1, in
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UpK1q

SUpN1q

UpK2q

SUpN2q

UpK3q

SUpN3q

UpK4q

SUpN4q

UpK5q

SUpN5q SUpN6qSUpN6q

Figure 6.1: Quiver diagram in N � p0, 2q notation describing M-strings for the
p1, 0qAM�1

theory with M � 6, ρ̃ � rN1, N2, . . . , N6s and
κ̃ � rK1,K2,K3,K4,K5,K6s, K6 � 0.

Table 6.5. From (6.20) we end up with UpKnq, n � 1, . . . ,M vector multiplets

with field strengths Υn with chiral multiplets Xn, rXn and Fermi multiplet ζn all in

the adjoint representation of upKnq. Between each UpKnq vector multiplet we have

chiral multiplets Yn, rYn in representations KnbKn�1, KnbKn�1 of
±
n U pKnq and

Fermi multiplets λn, rλn also in representations KnbKn�1, KnbKn�1 respectively.

From (6.22) there are Chiral multiplets φn, rφn in representations KnbNn, NnbKn

respectively. There are also Fermi multiplets ψn, rψn in representations Kn bNn�1,

Nn�1bKn. Note that we identify n � n�M with the understanding that KM � 0.

This can be conveniently summarised in the quiver diagram of Figure 6.1 where

circular nodes denote vector multiplets, arrows denote chiral multiplets and dashed

lines denote Fermi multiplets.

D1 Worldvolume Theory & ‘Chain-Saw’ Quiver

The theory of M-strings in the presence of the defect is then given by performing a

further Zk orbifold of the above quiver theory of Figure 6.1. Since the Zk orbifold

action preserves the N � p0, 2q supercharges Q, rQ we may proceed as before. For

a N � p0, 2q superfield f in representation R :
±
n UpKnq � S

±
n UpNnq Ñ EndV

the orbifold identifies

f � γJ12�J710R pτ1 b � � � b τM , g1 b � � � b gM q f , (6.23)

where

τn � diag
�
γIKn1 , . . . , γ

iIKni , . . . , γ
kIKnk

	
P UpKnq , (6.24)

gn � γ
1
2 diag

�
γINn1 , . . . , γ

iINni , . . . , γ
kINnk

	
P UpNnq , (6.25)
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UpK11q UpK21q

UpK12q UpK22q

UpN11q UpN21q UpN31q

UpN12q UpN22q UpN32q

UpN31q

UpN32q

UpN22q

UpN21q

Figure 6.2: Quiver diagram in N � p0, 2q notation describing M -strings for the
p1, 0qAM�1

theory with M � 3, k � 2 MkN � °
n,iNni and κ̃n�1,2 � rKn1,Kn2s,

κ̃3 � r0s.

corresponding to ρ̃n � rNn1, . . . , Nnks and κ̃n � rKn1, . . . ,Knks.
Note that we also shifted the Zk holonomy in SUpNnq as in [58, 49]. Explicitly

Υn � τnΥnτ
:
n , ξn � γτnξnτ

:
n , Xn � γτnXnτ

:
n , X̃n � τnX̃nτ

:
n , (6.26)

Yn � γ�1τnYnτ
:
n�1 , Ỹn � τnỸnτ

:
n�1 , λn � τnλnτ

:
n�1 , (6.27)

φn � γ
1
2 τnφng

:
n , λ̃n � γ�1τnλ̃nτ

:
n�1 , (6.28)

φ̃n � γ
1
2 gnφ̃nτ

:
n , ψn � γ

1
2 τnψg

:
n�1 , ψ̃n � γ

1
2 gn�1ψ̃τ

:
n . (6.29)

Solving the above equations (6.26)-(6.29) we end up with the field content of Table

6.5. Namely we have a set of U pKniq field strength multiplets Υni. At each node

we have a chiral superfield rXni in the adjoint. On the other hand along the ‘Zk’
direction of the quiver nodes are connected by chiral multiplets Xni and Fermi

multiplets ζni in Kni b Knpi�1q. In addition there are also the chiral multiplets

Yni, rYni in Kni bKpn�1qpi�1q, Kni bKpn�1qi aswell as Fermi multiplets λni, rλni in

Kni bKpn�1qi, Kni bKpn�1qpi�1q. Coupling to SUpNniq global symmetries we have

chirals φni, rφni in representations Kni b Nni, Nnpi�1q b Kni and Fermi multiplets

ψni, rψni in Kni b Npn�1qi, Npn�1qpi�1q b Kni representations. The field content

can be summarised in the quiver diagram of Figure 6.2. This is a generalisation of

the chainsaw quiver of [49]. Circular nodes denote vector multiplets, arrows denote
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p0, 2q ±
n,i UpKniq

±
n,i SUpNniq J56 JL JR JRL JRR

Υni adjni 1 �1
2 0 �1

2 0 �1
2

ζni ni b npi�1q 1 �1
2 0 �1

2 0 �1
2

Yni ni b pn�1qpi�1q 1 0 0 0 �1
2 �1

2rYni ni b pn�1qi 1 0 0 0 �1
2 �1

2

Xni ni b npi�1q 1 0 �1
2 �1

2 0 0rXni adjn 1 0 �1
2 �1

2 0 0

λni ni b pn�1qi 1 �1
2 �1

2 0 �1
2 0rλni ni b pn�1qpi�1q 1 �1

2 �1
2 0 �1

2 0

φni ni ni 0 0 �1
2 0 0rφni ni npi�1q 0 0 �1
2 0 0

ψni ni pn�1qi �1
2 0 �1

2 0 0rψni ni pn�1qpi�1q �1
2 0 �1

2 0 0

Table 6.5: Gauge covariant field content with δ � 0 of the N � p4, 4q vector multiplet
V .

chiral multiplets and dashed lines denote Fermi multiplets. Coloured in red are

those, and only those, fields which couple to UpNniq global symmetries. Again we

always identify n � n�M , i � i� k and we take KMi � 0.

BPS Equations

For completeness we list the BPS equations of the 2d gauge system. In other words,

the vanishing of the F- and D-term equations. The BPS equations are

φφ� rφrφ� rX,Xs � r rX, rXs � zIK , φrφ� rX, rXs � 0 , (6.30)

where here we abuse the notation such that, for example, X denotes the scalar in

the X chiral multiplet. We also added in the Fayet-Iliopoulos deformation z. These

are nothing but the ADHM equations for K UpNq instantons. See also Section 1.3.

By implementing the projections (6.20), (6.21), (6.22), (6.26), (6.27) and (6.29) to

(6.30) we obtain the BPS equations of the system in the presence of the surface

operator

φniφni � rφnirφni �XniXnpi�1q �Xnpi�1qXnpi�1q � r rXni, rXnis � zIKni , (6.31)

φnirφnpi�1q �Xni
rXnpi�1q � rXniXni � 0 . (6.32)
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6.2.3 BPS Partition Function on T 2 � R4
ε1,ε2

The T 2 � R4
ε1,ε2 partition function for the p1, 0qA theories with surface operator

labelled by ρ (or equivilently ρ̃) can be defined as the following trace over the Hilbert

space H of the theory [185, 63, 184]

Zρ � TrH

�
p�1qFQH�

τ Qτ
H� pqtq�JL

�
t

q


JR�JRR
c2J

R
L

�
M¹
n�1

k¹
i�1

�
wKnini

N¹
A�1

x
fni,A
ni,A

��
.

(6.33)

Here F � F��F� is the fermion number, H� � 1
2pH�P q are the right/left-moving

Hamiltonians on T 2 and Qτ � e2πiτ is the modular parameter of the torus. Using

the 6d supersmmetry generators Qα 9a��, rQ 9α 9a��. We identify

Q :� rQ 91 92
�� � Q , rQ :� rQ 92 91

�� � rQ . (6.34)

Then, the right-moving Hamiltonian can be written as H� � tQ, rQu which is also

preserved by the surface operator. Since Q, rQ commute with SUp2qα and SUp2qa
we may include fugacities for their Cartans. Furthermore they commute with the

diagonal subgroup SUp2qD � SUp2q 9α�SUp2q 9a hence we also include a fugacity for

its Cartan JD � JR � JRR . We also include fugacities xni,A for the Cartans fni,A of

upNniq. We also include fugacity win for the string winding number Kni. Moreover,

q, t, c are related to the torus action Up1qε1 � Up1qε2 � Up1qm of (6.4), (6.5) on C3

by

q � e2πiε1 , t � e�2πiε2 , c � e2πim . (6.35)

The partition function Z counts states annihilated by both Q and rQ. In particular

it factorises as

Zρ � ZρpertZ
ρ
string , Zρstring �

¸
Kni¥0
KMi�0

�
M¹
n�1

k¹
i�1

wKnini

�
Ellρ̃κ̃�rK11,...,KMks (6.36)

where Zpert is the contribution from the BPS particles. Due to the Ω-background

the BPS strings are localised to sit at the origin of R4
ε1,ε2 and wrap the T 2. This

gives rise to the effective 2d description that we described in the previous section.

Ellρ̃κ̃ is the Elliptic genus partition function, which will be defined in Section 6.2.4, of
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sup2qL sup2qR sup2qRR up1qH� i

Half-Hyper
φ 1 1 2 0

b
q
t �

b
t
q

ψ 2 1 1 0 �?qt�
b

1
qt

Tensor
σ 1 1 1 0 1
λ 2 1 2 0 �q� t� 1

q � 1
t

B 3 1 1 0 qt� 1� 1
tq

Bα 9α 2 2 1 0 q, t, 1
q ,

1
t

B� 2 1 1 1 Qτ

Table 6.6: Letters contributing to Zρpert.

said 2d theory and Ellρ̃r0,0,...,0s � 1. The perturbative piece is given by enumerating

all letters of Table 6.6 [185, 184], for the case without defect ρ � H it reads

Zρ�Hpert � PE ris , i � pihyp � iTensorq qt
p1�Qτ qp1� qq2p1� tq2 (6.37)

ihyp �
�c

q

t
�
c

t

q
�?qt�

c
1

qt


�
c� c�1

� M̧

n�1

Ņ

A�1

xn,Ax
�1
n�1,B (6.38)

iTensor � NM

�
2� qt� 1

tq
� q� t� 1

q
� 1

t



. (6.39)

We can also compute the perturbative piece for the T 2 � R4
ε1,ε2 partition function

for the theory in the presence of the defect by performing the orbifolding procedure

to the letters of Table 6.6.

Zρpert � PE
�
iorb

�
, iorb � 1

|Zk|
¸
γPZk

�
iorb
hyp � iorb

Tensor

	
γqt

p1�Qτ qp1� γqq2p1� tq2 (6.40)

iorb
hyp �

�
γ

c
q

t
�
c

t

q
� γ

?
qt�

c
1

qt


�
c

γ
� 1

c




�
ķ

i,j�1

M̧

n�1

Nni̧

A�1

Npn�1qj¸
B�1

γi�jxni,A
xpn�1qj,B

(6.41)

iorb
Tensor � NM

�
2� γtq� γ

tq
� γq� t� γ

q
� 1

t



. (6.42)
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6.2.4 M-String Elliptic Genus Without Surface Operator

We now turn towards computing the supersymmetric index a.k.a flavoured elliptic

genus partition function for our theory. In this section we begin by reviewing the

index computation for the case without surface operator pk � 1q i.e K M-strings

inside M M5-branes sitting at the tip of a AN�1 singularity without surface operator.

Following that we compute the M-string elliptic genus partition function with the

surface operator.

This index may be viewed either as a path integral of the theory on T 2 in which

case it may be computed from localisation techniques [223, 224] or, since our theory

admits a free field limit, as a counting problem on T 2 in the radial quantisation in

which case it may be computed via ‘letter counting’ [211, 222, 212, 213, 214, 215,

216, 198].

The elliptic genus for a fixed string number configuration

κ̃ � rK1,K2, . . . ,KM�1,KM � 0s and ρ̃ � rN1, . . . , NM s is then defined to be

Ellρ̃κ̃pQτ , q, t, c, ~xnq �

TrR

�
p�1qFQH�

τ pqtq�JL
�
t

q


JR�JRR
c2J

R
L

M¹
n�1

N¹
A�1

x
fn,A
n,A

�
.

(6.43)

Here F � F� � F� is the fermion number and the trace is taken over the Hilbert

space on S1 in the radial quantisation. The full index is then given by

Ellρ̃κ̃pQτ , q, t, c, ~xnq �
M¹
n�1

1

Kn!

¾ Kn¹
I�1

dyn,I
2πiyn,I

¹
P

EllP pQτ , q, t, c, ~xn, ~ynq (6.44)

where the product over P denotes the product over all N � p0, 2q multiplets of the

theory and EllP their contributions to the index, which are listed in Appendix G.1.1.

It is convenient to rewrite the index as

Ellρ̃κ̃ �
M¹
n�1

1

Kn!

¾ Kn¹
I�1

dyn,I
2πiyn,I

Elltens
κ̃ Ellhyp

κ̃ ; (6.45)

we have divided up the corresponding contributions from 6d N � p1, 0q tensor
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multiplets (uncharged under c)

Elltens
κ̃ �

¹
PPtΥ,ζ,X, rX,φ,rφu

EllM

�
M¹
n�1

piηpQτ qq3Kn
±
I�J θ1

�
yn,I
yn,J

;Qτ

	±Kn
I,J�1 θ1

�
q
t
yn,I
yn,J

;Qτ

	
±Kn
I,J�1 θ1

�
t�1 yn,I

yn,J
;Qτ

	
θ1

�
q
yn,I
yn,J

;Qτ

	
�

M¹
n�1

Kn¹
I�1

N¹
A�1

piηpQτ qq2
θ1

�b
q
t
xn,A
yn,I

;Qτ

	
θ1

�b
q
t
yn,I
xn,A

;Qτ

	
(6.46)

and N � p1, 0q hypermultiplets (charged under c)

Ellhyp
κ̃ �

¹
PPtλ,rλ,Y,rY ,ψ, rψu

EllP

�
M¹
n�1

Kn¹
I�1

±Kn�1

J�1 θ1

�
c
b

1
qt
yn�1,J

yn,I
;Qτ

	±Kn�1

J�1 θ1

�
c�1

b
1
qt
yn�1,J

yn,I
;Qτ

	
±Kn�1

J�1 θ1

�
c�1

b
t
q

yn,I
yn�1,J

;Qτ

	±Kn�1

J�1 θ1

�
c
b

q
t
yn,I
yn�1,J

;Qτ

	
�

M¹
n�1

Kn¹
I�1

N¹
A�1

θ1

�
c
xn�1,A

yn,I
;Qτ

	
θ1

�
c

yn,I
xn�1,A

;Qτ

	
piηpQτ qq2 .

(6.47)

See Appendix G.1 for the definition of the θ1 function and various properties. We

identify n � n �M orbifold indices within the products. The countour integrals

(6.45) should be computed using the Jefferey-Kirwan residue prescription [230, 223,

224]. Equation (6.43) may be expressed as a sum of residues associated to poles

classified by M N -coloured Young’s diagrams ~µn such that |~µn| :� °
A |µn,A| � Kn.

We choose the �°
y JK prescription. The pole corresponding to the box s � pl, pq P

µn,A is then

ynpsq � xn,Aq
l� 1

2 t�p�
1
2 . (6.48)

As explained in [89, 41] only residues arising from these poles should be kept. We

also assumed that the x’s can be made sufficiently generic. The residue for a fixed

coloured Young diagram is then

Ellρ̃κ̃,~µn � Elltens
κ̃,~µnEllhyp

κ̃,~µn
(6.49)
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where

Elltens
κ̃,~µn �

M¹
n�1

N¹
A,B�1

$'''&'''%
¹

pl1,p1qPµn,A
pl2,p2qPµn,B

θ1

�
ql1�l2t�p1�p2

xn,A
xn,B

;Qτ

	
θ1

�
ql1�l2t�p1�p2�1 xn,A

xn,A2
;Qτ

	
¹

pl1,p1qPµn,A
pl2,p2qPµn,B

θ1

�
ql1�l2t�p1�p2 q

t
xn,A
xn,B

;Qτ

	
θ1

�
ql1�l2�1t�p1�p2

xn,A
xn,B

;Qτ

	
¹

pl,pqPµn,B

1

θ1

�
q�l�1tp�1 xn,A

xn,B
;Qτ

	
θ1

�
qlt�p xn,Bxn,A

;Qτ

	
,.- ,

(6.50)

and

Ellhyp
κ̃,~µn

�
M¹
n�1

N¹
A,B�1

# ¹
pl1,p1qPµn,A
pl2,p2qPµn�1,B

θ1

�
c�1ql1�l2�

1
2 t�p1�p2� 1

2
xn,A
xn�1,B

;Qτ

	
θ1

�
cq�l1�l2�

1
2 tp1�p2� 1

2
xn�1,B

xn,A
;Qτ

	
¹

pl1,p1qPµn,A
pl2,p2qPµn�1,B

θ1

�
cq�l1�l2�

1
2 tp1�p2� 1

2
xn�1,B

xn,A
;Qτ

	
θ1

�
c�1ql1�l2�

1
2 t�p1�p2� 1

2
xn,A
xn�1,B

;Qτ

	
¹

pl,pqPµn,B
θ1

�
cq�l�

1
2 tp�

1
2
xn�1,A

xn,B
;Qτ



θ1

�
cql�

1
2 t�p�

1
2
xn,B
xn�1,A

;Qτ


+
.

(6.51)

Note that the above function contains various factors of θ1p1;Qτ q albeit which cancel

between numerator and denominator, thus rendering (6.49) well defined. Equation

(6.49) may be simplified by means of the identity (A.32) where the sums over mono-

mials are translated into products over Jacobi theta functions. Hence we may write

(6.49) as

Ellρ̃κ̃,~µn �
M¹
n�1

N¹
A,B�1

¹
pl,pqPµn,A

$&%θ1

�
cql�µ

T
n�1,B;p� 1

2 t�µn,A;l� 1
2
�p xn�1,B

xn,A
;Qτ

	
θ1

�
ql�µ

T
n,B;pt�1�µn,A;l�p xn,A

xn,B
;Qτ

	
�
θ1

�
cqµ

T
n�1,B;p�l� 1

2 t�p�µn,A;l� 1
2

xn,A
xn�1,B

;Qτ

	
θ1

�
q1�µT

n,B;p�lt�p�µn,A;l
xn,B
xn,A

;Qτ

	
,.- .

(6.52)

Summing over all coloured Young diagrams ~µn with exactly Kn boxes means equa-
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tion (6.43) reads

Ellρ̃κ̃pQτ , q, t, c, ~xnq :�
¸
~µn

|~µn|�Kn

Ellρ̃κ̃,~µnpQτ , q, t, c, ~xnq . (6.53)

The grand partition function obtained by ‘integrating’ over all partitions κ̃ which we

weight by fugacity wn (wM � 0 to enforce KM � 0) is then the total self dual-string

contribution to the partition function:

ZρstringpQτ , q, t, c, ~xn;wnq :�
¸
~µn

�
M¹
n�1

w|~µn|n

�
Ellρ̃κ̃,~µnpQτ , q, t, c, ~xnq . (6.54)

Considering (6.54) as a generating function for the partition functions of a κ̃ M-string

configurations in which case wn � e2πitn,n�1 is related to the separation between the

nth and pn � 1qth M5-brane (6.1) [209]. It was demonstrated in [209] that (6.54),

combined with the perturbative piece (6.37) reproduces the worldvolume theory

of M M5-branes on a transverse AN�1 singuarity, as computed using the refined

topological vertex.

6.2.5 M-String Elliptic Genus With Surface Operator

We now turn to the case with defect. The partition function we compute is equivalent

to the K-theoretic version of the one computed in [49] further generalised to quiver

theory with flavour. The elliptic genus for the theory of defect M-strings is defined

in mostly the same way as before. The only difference in the definition is that we

now have fugacities ~xni for the Cartans fni of u pNniq. For a fixed string partition κ̃

we have

Ellρ̃κ̃pQτ , q, t, c, ~xniq �

TrR

�
p�1qF qH� pqtq�JL

�q
t

	�JR�JRR
c2J

R
L

¹
n,i

Nni¹
A�1

x
fni,A
ni,A

�
.

(6.55)

The elliptic genus then takes the form

Ellρ̃κ̃pQτ , q,t, c, ~xniq :�
M¹
n�1

k¹
i�1

1

Kni!

¾ Kni¹
I�1

dyni,I
2πiyni,I

¹
P

EllZkP pQτ , q, t, c, ~xni, ~yniq ,
(6.56)
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where the 1-loop determinants EllZkP for each multiplet P is given in Appendix G.1.2.

At the level of the elliptic genus the orbifold action (6.7), (6.23) in the IIB description

may be traded for an action on the fugacities

Zk : q ÞÑ γq , c2 ÞÑ γ�1c2 , ~xni ÞÑ γi�
1
2~xni , ~yni ÞÑ γi~yni , (6.57)

with trivial action on all other fugacties. As before, the terms attributed to 6d

N � p1, 0q tensor multiplets are uncharged under the c fugacity while those coming

from p1, 0q hypermultiplets are charged under c. We may now perform the integrals.

After the orbifolding the solutions are again labelled by M N -tuples of Youngs

diagrams ~µn � tµni,Au with n � 1, . . . ,M i � 1, . . . , k and A � 1, . . . , Nni. Each

N -tuple has |~µn| �
°k
i�1Kni � Kn. For a box s � pl, pq P µni,A in the �°

y

JK-prescription the corresponding pole is given by

ynjpsq � xni,Aq
l� 1

2 t�p�
1
2 |i�l�j mod k (6.58)

i.e. the Zk invariant part of (6.48). In [243] the contour integral representation for

the partition function of C�C{Zk instantons for 4d N � 2 theories was analysed in

detail. It was shown that to evaluate the contour integral is equivalent to projecting

onto Zk invariant terms in the original Nekrasov expression. As in the case without

surface operator, the partition function (6.56) may be thought of as the elliptic uplift

of [243]. Hence our integrals may be computed by projecting onto the Zk invariant

parts of (6.49). The string number Kni for each factor in
±
n,i UpNniq is hence given

by the height of the lth row in a given µni,A and then summing over all contributions

Knj � Knjp~µniq �
8̧

l�0

Nnpi�1�lq¸
A�1

µT
npi�1�lq,A;l . (6.59)

The Zk invariant part of (6.53) is [243, 49] 2

Ellρ̃κ̃,~µni � Elltens
κ̃,~µni

Ellhyp
κ̃,~µni

(6.60)

2Upon taking a decoupling limit where we discard all θ1 which depend on c and then take, for
example Npn�1qi � Ni, Npn�1qi � 0 (6.61) is to be compared with the elliptic version of equation
(2.43) of [49]. Sending back εthem

2 {k ÞÑ εthem
2 and εthem

1 Ø εthem
2 then our parameters are related

(up to various factors of 2πi) by x1i,A � eiε
them
1 �athemA,i , t�1 � eε

them
1 , q � eε

them
2 .
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where the contribution from tensor multiplets is

Elltens
κ̃,~µni

�
M¹
n�1

k¹
u,i,j�1

Nnpu�i�1q,Nnpu�j�1q¹
A1,A2�1
pkl1�i,p1q
pkl2�j,p2q

θ1

�
qγij t�p1�p2

xnpu�i�1q,A1
xnpu�j�1q,A2

;Qτ

	
θ1

�
qγij t�p1�p2�1 xnpu�i�1q,A1

xnpu�j�1q,A2
;Qτ

	

�
M¹
n�1

k¹
u,i,j�1

Nnpu�iq,Nnpu�j�1q¹
A1,A2�1
pkl1�i,p1q
pkl2�j,p2q

θ1

�
qγpi�1qj t�p1�p2�1 xnpu�iq,A1

xnpu�j�1q,A2
;Qτ

	
θ1

�
qγpi�1qj t�p1�p2

xnpu�iq,A1
xnpi�j�1q,A2

;Qτ

	

�
M¹
n�1

k¹
i,j�1

Nni¹
A�1

1
Nnpi�j�1q±
B�1

plk�j,pq
θ1

�
q�γj t�1�p xni,A

xnpi�j�1q,B
;Qτ

	

�
M¹
n�1

k¹
i,j�1

Nni¹
A�1

1
Nnpi�jq±
B�1

pkl�j,pq
θ1

�
qγj�1t�p xnpi�jq,Bxni,A

;Qτ

	 .
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and, from hypers,

Ellhyp
κ̃,~µni

�
M¹
n�1

k¹
i,j�1

#Npn�1qi¹
A�1

Nnpi�jq¹
B�1

pkl�j,pq

θ1

�
cq�γj�1� 1

2 tp�
1
2
xpn�1qi,A
xnpi�jq,B

;Qτ




k¹
u�1

Npn�1qpu�i�1q,Nnpu�jq±
A1,A2�1
pkl1�i,p1q
pkl2�j,p2q

θ1

�
cqγipj�1q� 1

2 t�p1�p2� 1
2
xpn�1qpu�i�1q,A1

xnpu�jq,A2
;Qτ

	

Nnpu�i�1qNpn�1qpu�j�1q±
A1,A2�1
pkl1�i,p1q
pkl2�j,p2q

θ1

�
c�1qγij�

1
2 t�p1�p2� 1

2
xnpu�i�1q,A1

xpn�1qpu�j�1q,A2
;Qτ

	

�
k¹

u�1

Npn�1qpu�i�1q,Nnpu�j�1q±
A1,A2�1
pkl1�i,p1q
pkl2�j,p2q

θ1

�
cqγij�

1
2 t�p1�p2� 1

2
xnpu�i�1q,A1

xpn�1qpu�j�1q,A2
;Qτ

	

Nnpu�i�1q,Npn�1qpu�jq±
A1,A2�1
pkl1�i,p1q
pkl2�j,p2q

θ1

�
cqγipj�1q� 1

2 t�p1�p2� 1
2
xnpu�i�1q,A1
xpn�1qpu�jq,A2

;Qτ

	

�
Npn�1qi¹
A�1

Nnpi�j�1q¹
B�1

pkl�j,pq

θ1

�
cqγj�

1
2 t�p�

1
2
xnpi�j�1q,B
xpn�1qiq,A

;Qτ


+
,

and we understand

γj :� �k
Z
i� j

k

^
� j � 1� kl , (6.61)

γij :� �k
Z
u� i

k

^
� k

Z
u� j

k

^
� i� j � kpl1 � l2q , (6.62)

within the products, where t�u is the floor function. For the sake of compactness we

write
Nni,Nmj¹
A,B�1

pl1,p1qPµni,A
pl2,p2qPµmj,B

�
Nni¹
A�1

Nmj¹
B�1

¹
pl1,p1qPµni,A

¹
pl2,p2qPµmj,B

. (6.63)

As before we may then define the grand partition function

Zρstring pQτ , . . . ;wniq :�
¸
~µni

�¹
n,i

w
Knip~µniq
ni

�
Ellρ̃κ̃,~µni pQτ , . . . q , (6.64)
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UpMqUpMq

UpMq

UpMq UpMq

UpMq

Figure 6.3: 5d N � 1 necklace quiver NM,N for N � 6.

with Kni determined by (6.59).

Combining (6.64) with the perturbative piece (6.40) is then expected to compute

the T 2 �R4
ε1,ε2 partition function for the worldvolume theory of M M5-branes on a

transverse AN�1 singularity in the presence of k M5’-branes intersecting the original

stack along co-dimension 2 planes.

6.3 5d Theories With Surface Operators

We now turn our focus towards 5d gauge theories with surface operators. We focus

on the theories which can be obtained by reducing the p1, 0qAN�1
theories, described

in the previous section, with GW surface operator on a circle. Taking instead the

M-theory circle of Table 6.2 to be X6 we obtain the brane setup of Table 6.7.

The theory on D4-branes without surface operator admits a description in terms

Cε1 Cε2 T 2 TNN

X1 X2 X3 X4 X5 X9 X7 X8 X10 X11

M D4 – – – – – � � � � �
K F1 � � � � – – � � � �
Zk � � � � � � � � � �

Table 6.7: Type-IIA description of the 5d NM,N quivers with a codimension two
surface operator.

of a 5d elliptic quiver theory which we denote by NM,N . The surface operator is

characterised by the partition ρ (6.3) which specifies the embedding into each factor

Zk ãÑ UpM � MAq. We called this resulting theory N ρ
M,N . We first briefly review

the case without defect before turning to the computation with the defect present.
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6.3.1 Review of S1 � S4 Partition Function for NM,N

We first review the computation for the case without defect, i.e. k � 1. The partition

function is defined as

Z ps, p, v,qAq � TrS4

�
p�1qF e�βδs�2JR�2JRR p�2JLv2JRL

N¹
A�1

qKAA

�
(6.65)

where

s :� eiβε�{2 , p :� eiβε�{2 , v :� eiβm , (6.66)

with ε� � ε1 � ε2 as before. The trace is taken over the Hilbert space of the theory

on S4 in the radial quantisation. The NN,M theories have 5d N � 1 supersymmetry

with supercharges Qα 9a, rQ 9α 9a. We compute the partition function with respect to rQ :�rQ 91 92 and in the radial quantisation rS � rQ: its conjugate. Z is formally independent

of β since it receives contributions only from those states which satisfy

δ :�  rQ,rS( � E � 2JR � 3JRR � 0 , (6.67)

qA are fugacities for the topological Up1q’s associated to the conserved currents

�5 JA � 1

4π2
FA ^ FA (6.68)

corresponding to each gauge node. Z can be computed from localisation, which we

review in Appendix G.2, and takes the following form

Z �
¾ N¹
A�1

rdaAsZsouthZnorth �
¾ N¹
A�1

rdaAs |ZNek|2 (6.69)

where

MA!rdaAs � ∆paAq
MA¹
n�1

daA,n
2π

�
MA¹
n�1

daA,n
2π

¹
m�n

2 sin
aA,n � aA,m

2
(6.70)

is the Haar measure for UpMA �Mq. Here ZNek is the Nekrasov partition function

for self-dual instantons

ZNek � Zsouth � Z1-loop
south Zinst . (6.71)
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1-Loop Contributions

The one-loop contributions factor into contributions from vector and hypermultiplets

Z1-loop
south � Z1-loop

south,vecZ
1-loop
south,hyp . (6.72)

Let us begin with the vector multiplets.

Vector Multiplet Contributions The 1-loop contribution for the vectors given

by expansion of the equivariant index (G.48). At the south pole we should take

|eiε1 |, |eiε2 | ¡ 1 hence

Z̃ �
¹
pPZ

8¹
µ,ν�0

N¹
A�1

¹
n�m

#�
2πp

β
� µε1 � νε2 � aA,n � aA,m

β

� 1
2

�
�

2πp

β
� pµ� 1qε1 � pν � 1qε2 � aA,n � aA,m

β

� 1
2

+
.

(6.73)

The partition function is defined only up to an overall constant and � denotes

that the divergent factor, which is independent of all chemical potentials, has been

removed.

Z̃ �
8¹

µ,ν�0

N¹
A�1

¹
n�m

#
sin

�
aA,n � aA,m � µβε1 � νβε2

2

� 1
2

� sin

�
aA,n � aA,m � pµ� 1qβε1 � pν � 1qβε2

2

� 1
2

+

�e
βε�E0

2

�
N¹
A�1

∆paAq
1
2

�
PE

�
� spp� p�1q

2p1� spqp1� sp�1q
Ņ

A�1

¸
n�m

xA,n
xA,m

�

�
�

N¹
A�1

∆paAq
1
2

�
Z1-loop

south,vec .

(6.74)

In the final line E0 is the Casimir energy. We also defined xA,n :� eiaA,n and then

factored out the Vandermonde determinants

∆paAq � exp

�
�

8̧

l�1

1

l

¸
n�m

�
eiaA,n�iaA,m

�l� � PE

�
�

¸
n�m

xA,nx
�1
A,m

�
, (6.75)
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Letter E JR JRR JL JRL Index

ϕ
92 3{2 0 �1{2 0 �1{2 sv

ϕ̄
92 3{2 0 �1{2 0 �1{2 sv�1

B1 91 1 �1{2 0 �1{2 0 sp

B2 91 1 �1{2 0 �1{2 0 sp�1

Table 6.8: The letters of the Hypermultiplet with δ � 0.

which arises from the zero modes of the vector multiplets. Moreover, the vector

contribution is invariant under conjugation so

Z1-loop
north,vec �

�
Z1-loop

south,vec

	�
� Z1-loop

south,vec . (6.76)

Hypermultiplet Contributions Here we compute the contributions from hy-

permultiplets. The hypermultiplet contains complex scalars ϕ 9a and fermions ψ

plus their conjugates. Note ϕ
91, ϕ

92 are identified with X:
89, X710 and hence have

charges �1
2 under JRL . The multiplets live in bifundamental representations of

SUpMAq � SUpMA�1q. Since there are no-zero modes coming from the hyper-

multiplet its contribution to the index may be computed via letter counting. The

contribution to the index from hypermultiplets is given by enumerating all ‘letters’

listed in Table 6.8. We may identify the contribution localised at the south pole as

coming from a half-hypermultiplet (G.50)

Z1-loop
south,hyp � e

�βε�E0
2 PE

�
Ņ

A�1

MA̧

n�1

MA�1¸
m�1

sv

p1� spqp1� sp�1qxA,nx
�1
A�1,m

�
. (6.77)

At the north pole the anti-half-hypermultiplet contribution is localised

Z1-loop
north,hyp � e

�βε�E0
2 PE

�
Ņ

A�1

MA̧

n�1

MA�1¸
m�1

sv�1

p1� spqp1� sp�1qx
�1
A,nxA�1,m

�
. (6.78)

Instanton Contributions

Recall from the localisation that (anti-)self-dual instantons (F� � 0) F� � 0 can

be localised at (north)south-pole. The instanton contribution may be computed

from equivariant integration over the moduli space MK of K � °
AKA UpMqN

instantons. See Sections 1.3 & 1.4.1. MK carries a torus action T :� T 3
ε1,ε2,m �

T pUpNqqM ýMK where T pGq denotes a maximal torus of G. ε1, ε2, m and ~a P t
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. The instanton moduli space MK may be described as a algebraic variety using

the ADHM construction [29]. The fixed points of the torus action T on the ADHM

data are labelled by N M -tuples of Young diagrams ~µA such that |~µA| � KA. The

character of the tangent space TMK at the fixed point labelled by a set of M -tuples

t~µAu is then

χt~µAu pTMKq :� χvec
t~µAu � χhyp

t~µAu , (6.79)

where

χvec
t~µAu �

Ņ

A�1

pW �
AVA � eε�V �

AWA � p1� eε1qp1� eε2qV �
AVAqP , (6.80)

χhyp
t~µAu � �em̃

Ņ

A�1

�
W �
A�1VA � eε�V �

AWA�1

�p1� eε1qp1� eε2qV �
AVA�1qP .

(6.81)

Where m̃ � m� ε�
2 and

VA �
M̧

n�1

¸
pl,pqPµA,n

eaA,n�p1�lqε1�p1�pqε2 , WA �
M̧

n�1

eaA,n , (6.82)

and the conjugation flips the sign of the exponents. We also added the dressing by

momentum factors along the S1, with radius r � β

P :�
¸
tPZ

e
2πt
r . (6.83)

We have arrived at these expressions in precisely the same way we used in Section

1.4.1. Using the identity (A.32) it can be shown that

χvec
t~µAu �

Ņ

A�1

M̧

n,n1�1

¸
sPµA,n1

�
eEAA,nn1 psq � eε��EAA,nn1 psq

	
P , (6.84)

χhyp
t~µAu �

Ņ

A�1

M̧

n,n1�1

¸
sPµA,n1

em̃
�
eEApA�1q,nn1 psq � eε��EApA�1q,nn1 psq

	
P , (6.85)

where, for a box s � pl, pq,

EAB,nn1psq :� aA,n � aB,n1 � pµT
B,n1;j � lqε1 � pµA,n;i � p� 1qε2 . (6.86)
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The contribution of the fixed point t~µAu to the instanton partition is obtained from

the character by

χt~µAu pTMKq :�
¸
i

nie
wi Ñ z~µ �

¹
i

w�nii . (6.87)

Finally, after applying the infinite product (A.21) for the sine function, the instanton

partition function is given by a weighted sum over all possible N -tuples ~µA

Zinst p~aA,m, ε1, ε2,qA, βq �
¸
~µA

�
N¹
A�1

q
|~µA|
A

�
zt~µAu p~aA,m, ε1, ε2, βq , (6.88)

zt~µAu �
N¹
A�1

M¹
n,n1�1

¹
sPµA,n1

#
sin β

2

�
EApA�1q,nn1psq � m̃

�
sin β

2

�
EApA�1q,nn1psq � m̃� ε�

�
eκAφA,npsq sin β

2EAA,nn1psq sin β
2

�
EAA,nn1psq � ε�

� +
,

(6.89)

where m̃ :� m � ε�
2 we also allowed for non-zero Chern-Simons levels κA and the

function φA,npsq is defined to be

φA,npsq :� aA,n �
�
l � 1

2



ε1 �

�
p� 1

2



ε2 . (6.90)

6.3.2 S1 � S4 Partition Function for N ρ
M,N

We now come to the calculation in the presence of the defect. The defect is supported

along a codimension 2 hypersurface within S1 � S4. For simplicity we will consider

only the following: choose a local coordinate patch R4 � Cε1 � Cε2 parametrised

by pz1, z2q, at the either pole we may choose for a defect of type ρ to be supported

along either S1�Cε1 or S1�Cε2 . Requiring that the defect preserves atleast rQ � rQ 91 92

means we can only choose the latter. Recall that the surface operator is defined by

demanding singular behaviour of the gauge fields, in local coordinates let z2 � reiθ

then

AA,µdx
µ �AA,5dx

5 � diag pαA1, . . . , αAkq idθ , (6.91)

which breaks the gauge group

N¹
A�1

UpMAq Ñ
N¹
A�1

k¹
i�1

UpMAiq . (6.92)
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We then compute

Zρ ps, p, v,qAiq � TrS4

�
p�1qF e�βδs�2JR�2JRR p�2JLv2JRL

N¹
A�1

k¹
i�1

qKAiAi

�
. (6.93)

Where

qAi � q
αAi�αApi�1q

A , i � i� k . (6.94)

Since the partition function localises on the north and south poles, it is expected that

the insertion of a defect at e.g. the south pole does does not affect the contributions

localised at the north pole. We hence assume that the index may again be expressed

as

Zρ �
» ¹

A,i

rdaAisZρsouth p~aAi, ε1, ε2,m,qAiqZρnorth p~aAi, ε1, ε2,m,qAiq . (6.95)

In the neighbourhood of the defect we may employ the Zk orbifold description of

the surface operator at the north and south poles. For example, at the south pole

the defect may be effectively described by Cε1 � Cε2{Zk acting by

Zk : pz1, z2q ÞÑ pz1, ωkz2q (6.96)

in order to preserve supersymmetry we also twist the coordinate Up1qε2 action on z2

with a Up1q � SUp2q of the R-symmetry group as in (6.7). The Zk actions commute

with the localising supercharge. We employ the similar description of the surface

defect at the north pole.

1-Loop Contributions

To compute the 1-loop factors in the presence of the defect we employ the orbifold

description of the defect. Since the Zk actions commute with (G.44) the vector

multiplet 1-loop contributions at north & south pole may be obtained by computing

the equivariant index of the Zk invariant part of the complexes (G.46) & (G.47)

respectively. The 1-loop contributions from the hypermultiplet may be obtained in

a similar fashion, by restricting to the Zk invariant part of the Dirac complex (G.49).

Equivalently, we may also count only Zk invariant letters of Table 6.8.
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Vector Multiplets For concreteness let us describe the defect ρ at the south pole.

In terms of C2 local coordinates pz1, z2q the orbifold acts by

Zk : ε2 ÞÑ ε2 � 2πi

βk
j , aAi,n ÞÑ aAi,n � 2πi

k
j

�
i� 1

2



. (6.97)

Keeping only orbifold invariant factors leads to the modified 1-loop determinant

rZρpε1, ε2,~aAiq �
�

N¹
A�1

k¹
i�1

∆paAiq
1
2

�
Z1-loop,ρ

south,vectorspε1, ε2,~aAiq

�
8¹

µ,ν�0

N¹
A�1

#
k¹
i�1

¹
n�m

�
sin

�
aAi,n � aAi,m � µβε1 � νkβε2

2

� 1
2

� sin

�
aA,n � aA,m � pµ� 1qβε1 � pν � 1qkβε2

2

� 1
2

�¹
i�j

MAi,MAj¹
n,m�1

�

� sin

��aAi,n � aAj,m � p1� µqβε1 � pνk � rrj � issqβε2
2

� 1
2

� sin

��aAi,n � aAj,m � µβε1 � pkν � 1� rrj � i� 1ssqβε2
2

� 1
2

�+

(6.98)

where, as before, we dropped the overall, fugacity independent, infinite constant and

rrxss :� t# P Z | 0 ¤ # ¤ k � 1 and # � x mod ku �
���x� k

Yx
k

]��� . (6.99)

We may also write (6.98) more compactly in terms of the Pletystic exponent

Z1-loop,ρ
south,vectorspε1, ε2,~aAiq � e

βε�E
Zk
0

4 �

PE

���� ķ

i,j�1

eiβε1eiβrrj�issε2 � eiβprrj�1�iss�1qε2

2p1� eiβε1qp1� eiβkε2q
Ņ

A�1

MAi,MAj¸
n,m�1

n � m if i � j

eiaAi,n

eiaAj,m

��� .
(6.100)

At the north pole, the conribution is the same and Z1-loop,ρ
south,vec � Z1-loop,ρ

north,vec for any ρ.

Hypermultiplets For the hypermultiplet, in addition to the action (6.97) there

is also the additional action on the mass parameter

Zk : m ÞÑ m� 2πi

βk

j

2
. (6.101)



226 N � p1, 0q STRINGS AND SURFACE OPERATORS

In the presence of the defect at the south pole we have

Z1-loop,ρ
south,hypers �

PE

�� Ņ

A�1

ķ

i,j�1

MAi,MpA�1qj¸
n,m�1

eiβ
ε�
2 eiβmeiβrrj�issε2eiaAi,n�iapA�1qj,m

p1� eiβε1qp1� eiβkε2q

�� .
(6.102)

On the other hand, at the north pole

Z1-loop,ρ
north,hypers �

PE

�� Ņ

A�1

ķ

i,j�1

MAi,MpA�1qj¸
n,m�1

eiβ
ε�
2 e�iβme�iβrrj�1�issε2e�iaAi,n�iapA�1qj,m

p1� eiβε1qp1� eiβkε2q

�� .
(6.103)

Because the conjugation exchanges mÑ �m, in the presence of defects

Z1-loop,ρ
north,hypers �

�
Z1-loop,ρ

south,hypers

	�
.

Instanton Contributions

After the orbifolding the character of the tangent space TMK at the fixed point

labelled by a set of M -tuples t~µAu with t~µAu � tµAi,nu with A � 1, . . . , N , i �
1, . . . , k, n � 1, . . . ,MAi is given by restricting to the fixed point of the action

(6.97), (6.101). It is given by

χorb
t~µAu pTMKq :� χvec,orb

t~µAu � χhyp,orb
t~µAu , (6.104)

where,

χvec,orb
t~µAu �

Ņ

A�1

ķ

i�1

�
W �
A,iVA,i � eε�V �

A,i�1WA,i � p1� eε1qV �
A,iVA,i

�p1� eε1qeε2V �
A,i�1VA,i

�
P ,

(6.105)

χhyp,orb
t~µAu �� em̃

Ņ

A�1

ķ

i�1

�
W �
A�1,i�1VA,i � eε�V �

A,iWA�1,i

�p1� eε1qV �
A,i�1VA�1,i � p1� eε1qeε2V �

A,iVA�1,i

�
P .

(6.106)
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Where

VA,i �
ķ

j�1

MApi�j�1q¸
n�1

¸
pl,kp�jqPµApi�j�1q,n

evA,ij,npl,pq , WA,i �
MAi̧

n�1

eaAi,n , (6.107)

vA,ij,npl, pq :� aApi�j�1q,n � p1� lqε1 � p1� pk � jqε2 � k

Z
i� j

k

^
ε2 (6.108)

and the conjugation flips the sign of the exponents. We also added the dressing by

momentum factors along the S1. Converting the character using (6.87) gives

zorb
t~µAu � zvec,orb

t~µAu zhyp,orb
t~µAu , (6.109)

zvec,orb
t~µAu �

¹
A,i,j,n,n1

# ¹
pl,kp�jqPµApi�j�1q,n

sin
r

2

�
vA,ij,npl, pq � aAi,n1

�
�

¹
pl,kp�jqPµApi�j�1q,n

sin
r

2

��vA,ij,npl, pq � aApi�1q,n1 � ε�
�

�
¹
j1

¹
pl,kp�jqPµApi�j�1q,n

pl1,kp1�j1qPµApi�j1�1q,n1

sin r
2

�
vA,ij,npl, pq � vA,ij1,n1pl1, p1q � ε1

�
sin r

2

�
vA,ij,npl, pq � vA,ij1,n1pl1, p1q

�

�
¹
j1

¹
pl,kp�jqPµApi�j�1q,n

pl1,kp1�j1qPµApi�j1q,n1

sin r
2

�
vA,ij,npl, pq � vA,pi�1qj1,n1pl1, p1q � ε2

�
sin r

2

�
vA,ij,npl, pq � vA,pi�1qj1,n1pl1, p1q � ε�

�+ ,

(6.110)

zhyp,orb
t~µAu �

¹
A,i,j,n,n1

# ¹
pl,kp�jqPµApi�j�1q,n

1

sin r
2

�
vA,ij,npl, pq � apA�1qpi�1q,n1 � m̃

�
�

¹
pl,kp�jqPµApi�j�1q,n

1

sin r
2

��vA,ij,npl, pq � apA�1qi,n1 � m̃� ε�
�

�
¹
j1

pl,kp�jqPµpA�1qpi�j�1q,n

pl1,kp1�j1qPµApi�j1�2q,n1

sin r
2

�
vA�1,ij,npl, pq � vA,pi�1qj1,n1pl1, p1q � m̃

�
sin r

2

�
vA�1,ij,npl, pq � vA,pi�1qj1,n1pl1, p1q � ε�

2 �m
�

�
¹
j1

pl,kp�jqPµpA�1qpi�j�1q,n

pl1,kp1�j1qPµApi�j1�1q,n1

sin r
2

�
vA�1,ij,npl, pq � vA,ij1,n1pl1, p1q � m̃� ε�

�
sin r

2

�
vA�1,ij,npl, pq � vA,ij1,n1pl1, p1q �m� ε�

2

�+ .
(6.111)
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All in all, the instanton partition function with surface operator is given by

Zorb
inst p~aAi,m, . . . ; qAiq �

¸
~µA

�
N¹
A�1

k¹
i�1

q
KAip~µAq
Ai

�
zorb
t~µAu p~aAi, . . . q , (6.112)

where

KAi � dAip ~µAq �
8̧

p�1

MApi�1�jq¸
n�1

µApi�1�jq,n;p . (6.113)

A generalisation of this result for generic orbifold action pz1, z2q ÞÑ pωq1k z1, ω
q2
k z2q for

the case of 5d N � 1� theory can be found in Appendix I. It would be interesting

to investigate whether this result can be used to study the partition functions of 5d

theories in the presence of more general defects.

6.3.3 Unrefined Limits for 5d MSYM

In certain special limits the index without defect (6.65) is known to admit drastic

simplifications. We would like to investigate whether this holds true also when one

considers the case with defect (6.69).

We restrict ourselves to the case N � 1 then we have a theory of a single UpMq
N � 1 vector multiplet with an adjoint hypermultiplet, i.e. the UpMq N � 2 theory.

This theory has additional supersymmetry, namely 16 supercharges Qαa, rQ 9α 9a; aswell

as Qα 9a and rQ 9αa from before. In particular, rQ 91a commute with the distinguished

supercharge rQ � rQ 91 92. Moreover, those preserved by the ε2-plane defects are

rQ 91 92 , rQ 92 91 , rQ 912 , rQ 921 , Q12 , Q21 , Q1 92 , Q2 91 . (6.114)

We can consider some unrefined limits of the index (6.65).

2m � �ε�
The first one we consider is s � v�1 or 2m � �ε�. In this limit the index (6.69)

becomes

Zρ
�
s, p, s�1,qi

� � TrS4

�
p�1qF e�βδs�2JR�2JRR�2JRL p�2JL

k¹
i�1

qKii

�
. (6.115)

In this limit the index is, atleast, a 1
4 -BPS object annihilated by both rQ and rQ 912

which also has E � 2JR � 3JLR � 0, implying that this limit of the index recieves
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non-zero contributions only from states with JRL � JRR .

Without Defect Let us first consider the case without defect. We consider the

specialisation of to 2m � �ε�. In this case, one can check that the perturbative

contributions receive large amounts of cancellations and

∆paqZ1-loop
south,vecZ

1-loop
north,vecZ

1-loop
south,hypZ

1-loop
north,hyp Ñ 1 (6.116)

One can also easily see from (6.89) that the contribution for each instanton fixed

point is simply z~µ � 1. It is particularly simple to see by realising that, in this limit,

χvec
t~µAu � �

�
χhyp
t~µAu

	�
. Therefore the instanton partition function is simply counting

the number of fixed points

Zinst Ñ
¸
~µ

q|~µ| �
8¹
n�1

1

p1� qnqM � PE

�
M

q

1� q

�
. (6.117)

The total partition function (6.115) is then simply

Zps, p, s�1,qq �
¾
rdas

����PE

�
M

q

1� q

�����2 � ���pq; qqM
���2 . (6.118)

With Defect We now consider the limit in the presence of the defects. It is not

too hard to again show that�
k¹
i�1

∆paiq
�
Z1-loop,ρpε1, ε2,m � �ε�

2
,~aiq � 1 (6.119)

zorb
t~µu

�
~ai,m � �ε�

2
, ε1, ε2, β

	
� 1 (6.120)

due to cancellations between vector and hypermultiplets. The instanton piece simply

counts the number of fixed points

Zorb
inst

�
~ai,m � �ε�

2
, ε1, ε2,qi, β

	
�

¸
~µA

�
k¹
i�1

q
dip~µq
i

�
� 1

� pq; qq�M
k¹
i�1

8¹
p�1

�
1�

i�p�1¹
j�1

qj

��Mi

� PE

�
M

q

1� q
�

ķ

i�1

ķ

j�i�1

Mi

±j
p�i qp

1� q
�

ķ

i�2

i�1̧

j�1

Mi

q
±j
p�i qp

1� q

�
,

(6.121)
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the first equality was given in [49] and the second conjectured in [58]. Therefore, in

this limit, the partition function with defects at north and south poles reduces to

Zρps, p, s�1,qiq ������PE

�
M

q

1� q
�

ķ

i�1

ķ

j�i�1

Mi

±j
p�i qp

1� q
�

ķ

i�2

i�1̧

j�1

Mi

q
±j
p�i qp

1� q

������
2

(6.122)

2m � �ε�

We can also consider the limit v � p�1 or 2m � �ε�. In this limit the index becomes

Zρ
�
s, p, p�1,qi

� � TrS4

�
p�1qF e�βδs�2JR�2JRR p�2JL�2JRL

k¹
i�1

qKii

�
(6.123)

Without Defect As before, we again consider the case without any defect. For

the perturbative piece, is it simple to show that, for v � p�1

Z1-loop
south Z

1-loop
north � PE

�
M

sp� sp�1

p1� spqp1� sp�1q
�

(6.124)

Moreover, one can show, for the instanton piece that for |~µ| ¡ 0

zt~µu
�
~ai,m � �ε�

2
, ε1, ε2, β

	
� 0 . (6.125)

Therefore, in this limit, the partition function simply becomes

Zρ
�
s, p, p�1,qi

� � PE

�
M

sp� sp�1

p1� spqp1� sp�1q
�
. (6.126)

With Defect In the case of inserting the defect, for m � �2ε� the perturbative

piece takes on a similar form

Z1-loop,ρ
south Z1-loop,ρ

north � PE

�
M

sp� skp�k

p1� spqp1� skp�kq
�
, (6.127)

with M � °k
i�1Mi. It was also shown in [58] that, for the ramified instanton

partition function, for |~µ| � 0

zρt~µu
�
~ai,m � �ε�

2
, ε1, ε2, β

	
� 0 . (6.128)
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and therefore, the partition function in the precense of the defects is

Zρ
�
s, p, p�1,qi

� � PE

�
M

sp� skp�k

p1� spqp1� skp�kq
�
. (6.129)

6.4 Conclusions

We have computed the elliptic genus partition functions of the self-dual strings of

N � p1, 0q theories associated to M M5-branes on AN�1 singularities in the pre-

cense of codimension two surface defects labelled by partitions ρA � rMA1, . . . ,MAks.
These BPS strings capture (up to a ‘perturbative’ pre-factor) the states contributing

to the S4 � T 2 partition function of the 6d theory. So called ‘minimal’ defects of

type ρ � r1, . . . , 1, pM � pqs have been studied from the point of view of topological

strings in [284, 285, 286, 287]. Our method allows straightforward generalisation to

obtain the partition functions for any choice of embedding ρ’s, which engineer the

generic GW-surface operators. The relation between M-strings and refined topo-

logical string partition function in the presence of a defect of type 2 � 1 � 1 has

been studied in [284]. It is therefore expected that our M-strings computation cap-

tures the information about the refined topological string partiton function for the

M-theory background 6.1.

In addition, we have also computed the S4 � S1 partition functions for the 5d

Nn,m theories in the presence of 1
2 -BPS codimension two defect operators labelled

by ρ inserted at the north and south poles.
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Chapter 7

Final Conclusions and Outlook

Over the past decades there has been huge interest in the study of supersymmetric

quantum field theories and in particular the computation of exact results. This study

is primarily carried out with the hope that a understanding supersymmetric theo-

ries will ultimately lead us towards a better understanding of non-supersymmetric

theories, such as the standard model of particle physics. This is also of great interest

from a mathematical point of view because such study may also lead us towards a

mathematically rigorous definition of quantum field theories, similar to that achieved

for conformal field theories in two dimensions.

Much of the recent study has been dedicated to theories with N � 2 supersym-

metry in four dimensions. In this thesis we have initiated a programme towards

the study and computation of exact results for certain four dimensional N � 1

theories, namely those said to lie within class Sk. They can be described in terms

of a twisted compactification of the 6d p1, 0qAk�1
SCFT on a Riemann surface C.

Within this class lies theories which are of similar type to that of N � 1 SQCD;

namely a theory of N � 1 vector multiplets coupled to chiral matter in fundamental

representations. N � 1 SQCD displays many of the same interesting phenomena

as non-supersymmetric QCD, such as confinement. However, class Sk presents a

framework for exploiting new dualities, due to the string and M-theory construc-

tions. Additionally they also inherit many similar properties from their class S
mother theories. Therefore, class Sk seems like an ideal starting point to begin to

compute exact results for N � 1 theories, with the hope of being able to understand

them as well as we understand N � 2 theories.

In this thesis we have, firstly, demonstrated that N � 1 analogues of Higgs and

Coulomb branches may be defined for theories of class Sk. We have computed the
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Hilbert series for them and described many of their properties. We have also defined

and discussed many interesting limits of the superconformal index. Following this

we have described the said Coulomb branch geometry by deriving explicit forms for

the Seiberg and Intrilligator curves for the class Sk theories corresponding to the

Riemann surface C being spheres with two maximal and two minimal punctures.

We have matched them to M-theory predictions. Moreover, they can be placed in

‘Gaiotto form’, embedded as a surface within T �C.
The second accomplishment of this thesis is the computation of the partition

function of instantons for a certian subset of class Sk theories. Our work relied on

the correspondence between instantons and Dp�1q-branes from which we derived the

ADHM construction for these theories as a matrix model. This partition function

is then identified with conformal blocks of the WkN algebra [153], pointing towards

the possible existence of further 2d/4d relations for class Sk theories. It would be

very interesting to understand this starting from the 6d p1, 0qΓ SCFTs and to try

to derive this from there, as in [245]. Along this direction we have investigated

some 1
2 -BPS defects in six dimensional N � p1, 0q SCFTs. We have computed the

elliptic genus of the 2d theory living on the world-volume of the BPS strings of the

6d theories in the presence of the defect. The strings provide the main contribution

to the T 2 � R4 BPS-partition function for the 6d theory and it can be written in a

expansion over Elliptic genera.

We have also studied N � 3 theories, obtained via discrete gauging of N � 4

SYM. The discrete group that we gauge lies within the SLp2,Zq S-duality group,

of which the subgroup enhances to a symmetry at certian points of the conformal

manifold, aswell as a factor within the SUp4q R-symmetry group. In particular we

focused on the structure of their moduli spaces and computed its Hilbert series. In

certain special cases we are also able to compute the fully refined supersymmetric

index. It would be worth trying to extend this computation to the fully refined

superconformal index, other limits of the superconformal index, or even other types

of partition function, e.g. the S4 partition function for both the S-fold theories and

discrete gaugings of N � 4 SYM.



Appendix A

Definitions, Identities and

Special Functions

The purpose of this Appendix is to collect the various definitions and identities used

through this thesis. Formulas and identities that are used only once will not be listed

here, but rather in the relevant place where they are used. Conversely, identities

used multiple times throughout the thesis will simply be stated in this Appendix

and then referred to from the main text.

A.1 Identities and Special Functions

A.1.1 Plethystics

The Plethystic Exponential is given by

PE rfpx1, . . . , xmqs :� exp

� 8̧

n�1

fpxn1 , . . . , xnmq � fp0, . . . , 0q
n

�
. (A.1)

Its inverse is called the Plethystic Logarithm

PE�1rfpx1, . . . , xmqs :�PLogrfpx1, . . . , xmqs

�
8̧

n�1

µpnq
n

log fpxn1 , . . . , xnmq ,
(A.2)

235



236 DEFINITIONS, IDENTITIES AND SPECIAL FUNCTIONS

where µpnq is the Möbius µ function. Some basic identities are

PErts � 1

1� t
, PEr�ts � 1� t ,

N�1̧

n�0

tn � 1� tN

1� t
� PErt� tN s . (A.3)

A.1.2 Modular Forms and Theta Functions

The Dedekind eta function is

ηpqq � q1{24
8¹
a�1

p1� qaq (A.4)

and

θ1px; qq � iq1{8px�1{2 � x1{2q
8¹
r�1

p1� qrqp1� xqrqp1� x�1qrq

� �iq1{8x1{2
8¹
r�1

p1� qrqp1� xqrqp1� x�1qr�1q

� �iq1{8x1{2
8̧

r��8
p�1qrpxq 1

2 qrq r
2

2

(A.5)

is the Jacobi theta function. Clearly

θ1 px; qq � �θ1

�
x�1; q

�
. (A.6)

We often also write

θ1 pz|τq � θ1 px; qq (A.7)

with x :� e2πiz and q :� e2πiτ . The Jacobi theta function satisfies the properties

θ1

�
xqa�b{τ ; q

	
� p�1qa�bx�aq�a2{2θ1 px; qq , θ1px; qq � �θ1px�1; qq . (A.8)

θ1 px; qq has simple zeros for x � qa�b{τ for a, b P Z and no poles. Furthermore, to

compute residues, note that

B
By θ1 py; qq |y�1 � 2πηpqq3 (A.9)

hence the residue is given by¾
y�qa�b{τ

dy

2πiy

1

θ py; qq �
p�1qa�bqa2{2

2πηpqq3 . (A.10)
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A.1.3 Other Special Functions

We will often use the shorthand notation

fpz�nq � fpznqfpz�nq . (A.11)

We use the following notation for the q-Pochammer symbols

pa; qqN �
N¹
n�0

p1� aqnq , pa; qq :� pa; qq8 � PE

�
a

1� q

�
. (A.12)

The q-theta function is

θ px; qq :� px; qq �qx�1; q
� � PE

�
x� qx�1

1� q

�
. (A.13)

They are related to the Jacobi theta function through

θ1px; qq � iq
1
12 ηpqqx� 1

2 θpx; qq . (A.14)

An obvious but important identity that we often employ is

xθ pqx; qq � �θ px; qq . (A.15)

The function θ py; qq has simple zeros for y � qa�b{τ for a, b P Z and no poles. To

compute residues note that

B
By θ py; qq |y�1 � �pq; qq2 . (A.16)

Using the identity xθ pqx; qq � �θ px; qq the residue is given by¾
y�qa�b{τ

dy

2πiy

1

θ py; qq � p�1qa�1 pq; qq�2 q
a
2
pa�1q . (A.17)

We are often interested in the q Ñ 1 limit of the above q-series’. To take the limit,

first note that the ratio of q-theta function may be rewritten as

θ pqa; qq
θ pqb; qq �

rasq
rbsq

8¹
n�1

rn� asq rn� asq
rn� bsq rn� bsq

(A.18)
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where rnsq :� p1� qnq{p1� qq is the q-number. The q-number has the property that

lim
qÑ1

rnsq � n (A.19)

and therefore, for q-independent a, b, we have

lim
qÑ1

θ pqa; qq
θ pqb; qq �

sinh iπa

sinh iπb
, (A.20)

where we have used the Euler infinite product representation for the sine function

sinpxq � x
8¹
t�1

�
1� x2

π2t2



. (A.21)

The Elliptic Gamma function is defined as

Γepzq :� Γpz; p, qq �
8¹

i,j�0

1� z�1pi�1qj�1

1� zpiqj
� PE

�
z � pq

z

p1� pqp1� qq
�
. (A.22)

An obvious, yet important, identity is

ΓepzqΓeppq{zq � 1 . (A.23)

Multiple gamma functions are defined as the regularised infinite products

Γrpz|~ωq �
8¹

n1,n2,...,nr�0

p~n � ~ω � zq�1 (A.24)

and ~n � ~ω � n1ω1 � n2ω2 � n3ω3. The multiple sine function is defined as the

regularised product

Srpz|~ωq � Γrpz|~ωq�1Γrp|~ω| � z|~ωqp�1qr

�
8¹

n1,n2,...,nr�0

p~n � ~ω � |~ω| � zq p~n � ~ω � zqp�1qr�1

,
(A.25)

with |~ω| � ω1 � � � � � ωr. It has the symmetry property

Srpz|~ωq � Srp|~ω| � z|~ωqp�1qr�1
. (A.26)



239

A.1.4 Young Diagrams

We use Greek letters η, µ, λ, ν to denote partitions of natural numbers. We denote

the empty partition by H. A non-empty partition is a set of integers λ

λ1 ¥ λ2 ¥ . . . λl ¥ � � � ¥ λ`pλq ¡ 0 , (A.27)

with λA P N and `pλq the number of parts of λ. This definition is also extended to

include λl¡`pλq � 0. λT is the transpose. We denote

|λ| :�
`pλq̧

l�1

λl , ||λ||2 :�
`pλq̧

l�1

λ2
l �

¸
pl,pqPλT

λl . (A.28)

We give a box s in the Young diagram coordinates s � pl, pq such that

λ � tpl, pq|l � 1, . . . , `pλq; p � 1, . . . , λlu . (A.29)

By definition ¹
pl,pqPλ

gpl, pq �
`pλq¹
l�1

λl¹
p�1

gpl, pq . (A.30)

We will also be interested in collections of Young diagrams in which case we will

give them labels, for example, λA in which case we write λA;l to denote the number

of boxes in the lth column of the diagram λA. An N -tuple of Young diagrams is

then

~µ � tµA|I � 1, 2, . . . , Nu . (A.31)

We will also make use the identity [31, 289]¸
pi,jqPµ

eiε1�jε2 �
¸

pi1,j1qPµ1
eε��pi

1ε1�j1ε2q

� p1� eε1qp1� eε2q
¸

pi,jqPµ

¸
pi1,j1qPµ1

epi�j
1qε1�pj�j1qε2

�
¸

pi,jqPµ
e�pµ

1T
j �iqε1�pµi�j�1qε2 � e2ε�

¸
pi1,j1qPµ1

e
pµT
j1
�i1qε1�pµ1i1�j1�1qε2 .

(A.32)
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with ε� � ε1 � ε2. We also use the identity

Nν,µpQ; q, tq :�
8¹

l,p�1

1�Qqνl�ptµ
T
p�l�1

1�Qq�pt�l�1
� NνT,µTpQ; t, qq (A.33)

�
¹

pl,pqPν

�
1�Qqνl�ptµ

T
p�l�1

	 ¹
pl,pqPµ

�
1�Qq�µl�p�1t�ν

T
p �l

	
. (A.34)

A.1.5 Schur and Skew-Schur Functions

The Schur functions sµpxq are functions which depend on a given young diagram µ.

They form an orthogonal basis for the ring of symmetric functions Λ. The basis is

orthogonal with respect to the Hall inner product:

xsηpxq, sνpxqy � δην . (A.35)

An explicit representation is given by

sλpxq �
detAB x

λB�N�B
A

detAB x
N�B
A

, (A.36)

which are orthogonal with respect to the measure

xsλ, sµy :�
¾
dµpxqsλpxqsµpxq � δλ,µ , (A.37)

¾
dµUpNqpzq �

¾
dµpzq � 1

N !

¾
|zA|�1

N¹
A�1

dzA
2πizA

¹
A�B

�
1� zA

zB



. (A.38)

Furthermore,

sλbµpxq � sλpxqsµpxq �
¸
η

cηλµsηpxq , (A.39)

where

cµνη � cµ
T

νTηT (A.40)

are Littlewood-Richardson coefficients. The skew Schur functions may then be de-

fined by

xsλ{µpxq, sνpxqy � xsλpxq, sµpxqsνpxqy (A.41)
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and sηpxq � sη{Hpxq. From (A.39) we have the identity

sλ1b���bλnpxq �
n¹
i�1

sλipxq �
¸

η1,...,ηn�1

cη1

λ1λ2

�
n�2¹
i�1

c
ηi�1

ηiλi�2

�
sηn�1pxq . (A.42)

Hence,

@
spλ1b���bλnq{µpxq, sνpxq

D � xsλ1b���bλnpxq, sµpxqsνpxqy (A.43)

�
¸

η1,...,ηn�1,σ

cη1

λ1λ2

�
n�2¹
i�1

c
ηi�1

ηiλi�2

�
cσµν

@
sηn�1pxq, sσpxq

D
(A.44)

�
¸

η1,...,ηn�1

cη1

λ1λ2

�
n�2¹
i�1

c
ηi�1

ηiλi�2

�
cηn�1
µν (A.45)

�
¸

η1,...,ηn�1,ρ

cη1

λ1λ2

�
n�2¹
i�1

c
ηi�1

ηiλi�2

�
cηn�1
µρ xsρpxq, sνpxqy , (A.46)

where we understand η0 :� H and cνHµ � 1. By the non-degeneracy of x�, �y we have

spλ1b���bλnq{µpxq �
¸

η1,...,ηn�1,ρ

cη1

λ1λ2

�
n�2¹
i�1

c
ηi�1

ηiλi�2

�
cηn�1
µρ sρpxq . (A.47)

The skew Schur function may be equivalently expressed as

sµ{νpxq �
¸
η

cµνηsηpxq . (A.48)

Therefore (A.47) may be written as

spλ1b���bλnq{µpxq �
¸

η1,...,ηn�1

cη1

λ1λ2

�
n�2¹
i�1

c
ηi�1

ηiλi�2

�
sηn�1{µpxq . (A.49)

The skew Schur functions satisfy the Cauchy identities

¸
η

sη{λpxqsη{µpyq �
8¹

l,p�1

p1� xlypq�1
¸
η

sµ{ηpxqsλ{ηpyq , (A.50)

¸
η

sηT{λpxqsη{µpyq �
8¹

l,p�1

p1� xlypq
¸
η

sµT{ηpxqsλT{ηTpyq , (A.51)

sµ{νpQxq � Q|µ|�|ν|sµ{νpxq . (A.52)
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For Schur polynomials of type A1 the Littlewood-Richardson coefficients are, of

course, simply

s2js2j1 �
2j�2j1¸

2j2�2|j�j1|
s2j2 , (A.53)

with 2j, 2j1, 2j2 P N.

A.1.6 Spiridonov-Warnaar Inversion Formula

Define

δpx, y;T q :� ΓepTx�1y�1q
ΓepT 2qΓepx�2q , (A.54)

and consider the integral

fpzq � κ

¾
dw

4πiw
δpw, z;T qf̂pwq , (A.55)

such that maxt|p|, |q|u   |T |2   1. A consequence of the Spiridonov-Warnaar theo-

rem is that [189, 290]

f̂pwq � κ

¾
Cw

dz

4πiz
δpz, w;T�1qfpzq , (A.56)

where Cw is a deformation of the unit circle that includes the poles at z � T�1w�1

but excludes those at Tw�1. Note that, if limp,qÑ0pf, f̂ , T q :� pf̃ , ˜̂
f, T q is smooth,

(A.56) implies

f̃pzq �
¾

dw

4πiw

p1� T 2qp1� w�2q
p1� Tw�1z�1q

˜̂
fpwq

ùñ ˜̂
fpwq �

¾
Cw

dz

4πiz

p1� T�2qp1� z�2q
p1� T�1w�1z�1q f̃pzq .

(A.57)

A.2 Lie Groups, Lie Algebras and Representations

A.2.1 SUpNq

Highest weight, irreducible representations Rpd1,d2,...,dN�1q of SUpNq may be labelled

by a Young diagram λ (A.27) of length `pλq � N with λN . The relations between
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the Dynkin labels of the representation and the Young diagram is

dA � λA � λA�1 , λA �
N�1̧

i�A
di . (A.58)

The conjugate representation Rpd1,d2,...,dN�1q � RpdN�1,dN�2,...,d1q is therefore associ-

ated to the Young diagram λ with λA � °N�1
r�A dN�r �

°N�1
r�A pλN�r � λN�r�1q �

λ1 � λN�A�1.

The characters for the representation Rpd1,d2,...,dN�1q are given by Schur polyno-

mials (A.36) for the Young diagram λ that specifies the representation

χpd1,d2,...,dN�1qpxq � sλpxq (A.59)

with λN � 0 and
±N
A�1 xA � 1. We also often abuse notation and denote these

characters simply by their Dynkin labels χpd1,d2,...,dN�1qpxq � rd1, d2, . . . , dN�1s. The

representation labelled by λ has dimension

|Rpd1,d2,...,dN�1q| � sλp1q �
¹

1¤A B¤N

λA � λB �A�B

�A�B
. (A.60)

The characters are orthogonal with respect to the Haar measure of SUpNq
¾
dµSUpNqpzq �

¾
dµpzqδ

�
N¹
A�1

zA � 1

�
, (A.61)

with dµ defined in (A.38). One fact that we will often use is, that for any class

function f : SUpNq Ñ C that is also invariant under the Weyl group of SUpNq we

can write¾
dµSUpNqpzqfpzq �

¾
|zA|�1

N�1¹
A�1

dzA
2πizA

¹
1¤A B¤N

�
1� zA

zB



fpzq . (A.62)

A.2.2 SOp2Nq

We will also sporadically make use of SOp2Nq characters. These are given by

ŝλpxq �
detAB

�
xλB�N�BA � x�λB�N�BA

	
detABpxA � x�1

A qN�B . (A.63)
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where the λ1 ¥ λ2 ¥, . . . ,¥ |λN | ¥ 0 is related to the Dynkin labels pd1, d2, . . . , dN q
by

λA � �dN�1δA,N � 1

2
pdN � dN�1q �

N�2̧

n�A
dn . (A.64)



Appendix B

Algebraic Geometry

The aim of this section is largely to present the relevant definitions that will be

required in order to understand the Hilbert series and the relation to supersymmetric

theories. Complete proofs and derivations are beyond the scope of this appendix

but can be found in [92].

B.1 Definitions

Definition 1 ((Graded) Rings:). A ring R is an abelian group with a multiplication

operation pa, bq ÞÑ ab and an identity element 1 satisfying

• Associativity: apbcq � pabqc

• Identity: 1a � a1 � a

• Distributivity : pb� cqa � ba� ca

for all a, b, c P R. R is commutative if ab � ba and for the remainder of the text

we will always take R to be commutative. A graded ring is a ring R together with a

direct sum decomposition

R � `8
i�0Ri such that RiRj � Ri�j for all i, j . (B.1)

Definition 2 (Invertible Elements). An invertible element in a ring R is an element

a P R such that ab � 1 with b � a�1 P R unique.

Definition 3 (Fields). A field K is a ring in which every nonzero element a P K is

invertible. For example K � Z,Q,R,C.

245
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Definition 4 (Polynomials). A polynomial f in x1, . . . , xn with coefficients in K is

a finite linear combination of monomials of the form f � °
α fα1...αnx

α1
1 . . . xαnn . The

set of all such polynomials is denoted by Krx1, . . . , xns. In particular Krx1, . . . , xns
forms a Zn-graded ring where the grading is provided by degree.

Definition 5 (Ideals). An ideal in a ring R is an additive subgroup I � R such that

ap P I for all a P R and p P I. An ideal is said to be generated by a subset S � R if

every element p P I can be written as

p �
¸
i

aisi (B.2)

for ai P R and si P S. In particular, for f1, . . . , fs P Krx1, . . . , xns

xf1, . . . , fsy �
#

ş

i�1

hifi|h1, . . . , hs P Krx1, . . . , xns
+

(B.3)

is an ideal of Krx1, . . . , xns which we call the ideal generated by f1, . . . , fs.

Definition 6 (Radical Ideals). An ideal I is radical if fm P I if for some m P Z�

implies f P I.

Definition 7 (Radical of an Ideal). The radical
?
I of an ideal I P Krx1, . . . , xns is

?
I � tf |fm P I for some m P Z�u . (B.4)

It follows I � ?
I (since f P I implies that f1 P I). Moreover the radical of an ideal

I is always a radical ideal.

Definition 8 ((Graded) Modules). Let R be a ring, an R-module M is an abelian

group with an action of R, R�M ÑM satisfying

• Associativity: apbmq � pabqm

• Identity: 1m � m1 � m

• Distributivity : pb� cqm � bm� cm, apm� nq � am� an

for all a, b P R and m,n P M Let R � À8
i�0Ri be a graded ring. Then a graded

module over R is a module M with a decomposition

M �
8à
�8

Mi such that RiMj �Mi�j for all i, j (B.5)



247

Definition 9 (Affine Spaces). Let K be a field and n P Z�. The n-dimensional

affine space over K is

Kn � tpa1, . . . , anq|a1, . . . , an P Ku . (B.6)

Definition 10 (Affine Varieties). Let f1, . . . , fs P Krx1, . . . , xns then the affine va-

riety defined by f1, . . . , fs is

Vpf1, . . . , fsq �tpa1, . . . , anq P Kn|fipa1, . . . , anq � 0@ i P t1, . . . , suu
�Kn

(B.7)

Definition 11 (Irreducible Varieties). An affine variety V � Kn is said to be

irreducible if whenever V is written in the form V � V1 YV2, where V1 and V2

are affine varieties, then either V1 � V or V2 � V.

B.2 Algebra-Geometry Correspondence

Given an affine variety V � Kn (this will play the role of the moduli space of

supersymmetric vacua M (1.2)). To this variety we can associate to it an ideal

IpVq � Krx1, ..., xns (this will play the role of an operator algebra, such as chiral

ring, etc) using the following map

IpVq � tf P Krx1, ..., xns | fpa1, . . . , anq � 0 @ pa1, . . . , anq P Vu , (B.8)

the proof that this indeed gives an ideal can be found in [91]. On the other hand,

given an ideal I � Krx1, ...xns we can associate to it a variety VpIq (see Definition

10)

Vpf1, . . . , fsq �tpa1, . . . , anq P Kn|fipa1, . . . , anq � 0@ i P t1, . . . , suu
�Kn .

(B.9)

It can be shown that VpIpVqq � V. We therefore have two maps which provide

a correspondence and affine varieties. However, in general, this correspondence is

not one to one. For example let us consider the family of distinct ideals xxny (with

n P N) in Crxs, then it’s easy to see that to the map (B.9) associates to each of them

the same variety, namely Vpxnq � t0u.

Theorem 1 (The (Strong) Nullstellensatz). Let K be algebraically closed and let
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Algebra Ø Geometry

Radical ideal I � ?
I Affine variety V � VpIq

Addition of ideals Intersection of varieties
I � J VpIq XVpJq

Product of ideals Union of varieties
IJ VpIq YVpJq

Prime ideal I Affine irreducible variety VpIq
Regular sequence Complete intersection

Table B.1: Summary of the algebra-geometry correspondence.

I � Krx1, . . . , xns be an ideal, then

IpVpIqq �
?
I . (B.10)

In particular, this theorem tells us that the maps (B.8)-(B.9) provide us a one to

one correspondence between affine varieties and radical ideals. This dictionary can

be extended reformulating in algebraic terms geometrical problems, see Table B.1.

A particular useful class of ideals is provided by the so called prime ideals

Definition 12 (Prime Ideals). An ideal I � Krx1, ..., xns is a prime ideal if f, g P
Krx1, ...xns and fg P I, implies either f P I or g P I.

It’s easy to prove that every prime ideal is also a radical ideal, and that moreover

there is a one-to-one correspondence between irreducible varieties and prime ideals

via the maps (B.8) & (B.9)[91].

Definition 13 (Noetherian Rings). A ring R is called Noetherian if there is no

infinite ascending sequence of left (or right) ideals. Therefore, given any chain of

left (or right) ideals,

I1 � . . . Ik�1 � Ik � Ik�1 . . . , (B.11)

there exists an n such that

In � In�1 � . . . . (B.12)

When R is a Noetherian ring, using the Lasker-Noether theorem, we can always

decompose and ideal of R as an irredundant intersection of a finite set tJiu of primary

ideals [91], this procedure is called primary decomposition. In particular we can take
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into account the ideal I and we get

I �
£
i

Ji . (B.13)

We can then consider the different radical ideals
?
Ji associated to each of the

primary ideals in (B.13). When the Ji are all prime ideals we have a one to one

correspondence between affine irreducible complex variates and the radical ideals?
Ji. This implies that the corresponding complex variety, can be written as

F �
¤
i

Vp
a
Jiq , (B.14)

in this way the algebraic approach turns out to be very powerful since it provides

a systematic way to decompose the F-flat moduli space F of a theory into different

irreducible branches. Remarkably, we can also establish when the space F is a

complete intersection.

Definition 14 (Regular Sequences). A sequence of non-constant polynomials

P1, P2, ...Pr is said to be regular if for all i � 1, ..., r, Pi is not a zero divisor modulo

the partial ideal pP1, ..., Pr�iq.

Given an ideal generated by a regular sequence the following theorem holds [291]

Theorem 2. Given the ring of polynomials R � Crx1, ...xns and the ideal I � R then

the algebraic variety associated to the quotient ring R{I is a complete intersection

if and only if I is generated by a regular sequence of homogeneous polynomials.

Therefore if the ideal is generated by a regular sequence of polynomials then we

can use letter counting for the computation of the corresponding Hilbert series. For

application of the above theorem in a different context see [97], we also refer the

interested reader to Appendix A of that paper for a more detailed discussion related

to this issue.

B.3 Hilbert Series

We are now in a position to define the Hilbert function and Hilbert series.

Definition 15. Hilbert function & Hilbert series Let M be a finitely generated graded

module over Krx1, . . . , xns graded by degree deg xi � 1 for all i � 1, . . . , n. The
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Hilbert function is defined to be

HFM psq :� dimKMs , (B.15)

note that HF is finite in every degree. The Hilbert series is then defined in a formal

power series as the generating function for the Hilbert function

HSpτ ;Mq :�
8̧

s�0

HFM psqτ s � TrM τE (B.16)

and here E : Ms Ñ Z stands for the operator which computes the degree of an

element y P Ms Epyq � s. If M is generated by d homogeneous elements of degrees

E1, . . . , Ed the Hilbert series takes the form

HSpτ ;Mq � P pτq±d
i�1 p1� τEiq

(B.17)

where P pτq is a polynomial in the formal parameter τ with integer coefficients.

For example, let M � Krx1, . . . , xns be a polynomial ring with degrees Epxiq � 1.

The Hilbert series is simply

HSpτ ;Mq � 1

p1� τqn . (B.18)

The Hilbert function is therefore

HFM psq �
±s�1
i�0 pn� iq

s!
. (B.19)

The results (B.16) & (B.17) may also be generalised to the case of rings with Zb

grading M �À
s1,s2,...,sb

Ms1s2...sb in which case the result takes the general form

HSpτ1, τ2, . . . , τb;Mq � TrM

b¹
l�1

τE
plq

l � P pτ1, . . . , τbq±d
i�1

�
1�±b

l�1 τ
E
plq
i

l


 . (B.20)

If we let M � VpIq be the algebraic variety defined as the set of zeros of the ideal

I � Krx1, . . . , xns then the Hilbert series of R � Krx1, . . . , xns{I (as written in the

form (B.17)) allows us to compute the dimension of M and the degree of M (the

number of intersection points of M with d � dimK M generic hyperplanes) deg M
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as

dimK M � dimKM � Order of pole at τ � 1 of HSpτ ;Mq � d , (B.21)

deg M � P p1q . (B.22)

B.4 Example Computations with Macaulay2

Let us present some example code for Macaulay2 [112]. We firstly focus on the

computations of the Hilbert series performed in the introduction 1.5.

Note that Macaulay2 represents elements of C via floating point approxima-

tions. C is an example of an inexact field. Macaulay2 uses Gröbner bases and the

algorithms it uses do not work over C. Therefore when performing practical com-

putations we must instead work over Q (or any other exact field of characteristic

zero will do) while using Macaulay2 before tensoring any final result with C. Ten-

soring with C can destroy some properties which may hold over Q. For example an

ideal that is prime over Q may fail to be prime after tensoring with C.1 Hence the

Macaulay2 output should always be read with the above caveat in mind; neverthe-

less, our main object of interest, the Hilbert series is expected to be independent of

the above.

The first example that we presented there was the most simple case of N � 4

SYM with gauge group G � Up1q (free theory). This computation can of course

simply be performed by hand. Nevertheless one can also use Macaulay2 by inputting

F � R{I with R � CrX,Y, Zs and I trivial.

i1 : R=QQ[X,Y,Z,Degrees=>{{1,0,0,0},{0,1,0,0},{0,0,1,0}}]

i2 : hilbertSeries(R)

This of course outputs the Hilbert series

1

o2 = ------------------------

(1 - T )(1 - T )(1 - T )

2 1 0

One then takes the output and sets τ1,2,3 � T0,1,2.

1See e.g. [292].
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For the second case presented in the introduction of the N � 1 G � Up1q
gauge theory with F � R{I, R � CrX,Y, Zs and I � xXY,XZ, Y Zy an example

Macaulay2 input is

i1 : R=QQ[X,Y,Z,Degrees=>{{1,0,0,1},{0,1,0,-1},{0,0,1,0}}]

i2 : I=ideal(X*Y,X*Z,Y*Z)

i3 : hilbertSeries(R/I)

i4 : primaryDecomposition I

i5 : radical I

i6 : isPrime I

This outputs

-1

1 - T T - T T T - T T T + 2T T T

0 1 0 2 3 1 2 3 0 1 2

o3 = -------------------------------------

-1

(1 - T )(1 - T T )(1 - T T )

2 1 3 0 3

o4 = {ideal (X, Y), ideal (X, Z), ideal (Y, Z)}

o5 = monomialIdeal (X*Y, X*Z, Y*Z)

o6 = false

Setting τ1,2,3 � T0,1,2 and z � T3 identifies o3 with (1.170).

We can also compute for more complicated non-abelian cases. Of course, the

computations become more and more complex with dimG. Let us take the case

of N � 4 SYM with gauge group G � SUp2q. In this case F � R{I with R �



253

CrX,Y, Zs where now X,Y, Z P sup2q

X �
�
X1 X2

X3 �X1

�
, Y �

�
Y1 Y2

Y3 �Y1

�
, Z �

�
Z1 Z2

Z3 �Z1

�
(B.23)

The ideal is I � xrX,Y s, rX,Zs, rY,Zsy coming from the superpotential trXrY,Zs.
We input

i1 : R=QQ[X1, X2, X3, Y1, Y2, Y3, Z1, Z2, Z3,

Degrees=>{{1, 0, 0, 0}, {1, 0, 0, -2}, {1, 0, 0, 2},

{0, 1, 0, 0}, {0, 1, 0, -2}, {0, 1, 0, 2},

{0, 0, 1, 0}, {0, 0, 1, -2}, {0, 0, 1, 2}}]

i2 : I=ideal(-*Y3*Z2 + *Y2*Z3, *Y3*Z1 - *Y1*Z3, -*Y2*Z1 + *Y1*Z2,

*X3*Z2 -*X2*Z3, -*X3*Z1 + *X1*Z3, *X2*Z1 - *X1*Z2,

-*X3*Y2 + *X2*Y3, *X3*Y1 - *X1*Y3, -*X2*Y1 + *X1*Y2)

i3 : hilbertSeries(R/I)

i4 : primaryDecomposition I

i5 : radical I

i6 : isPrime I

This outputs (here we have suppressed the output for the Hilbert series o3 in the

raw form to save on space, we present it in the simple form below)

o4 = {ideal (Y3*Z2 - Y2*Z3, X3*Z2 - X2*Z3, Y3*Z1 - Y1*Z3,

Y2*Z1 - Y1*Z2, X3*Z1 - X1*Z3, X2*Z1 - X1*Z2, X3*Y2 - X2*Y3,

X3*Y1 - X1*Y3, X2*Y1 - X1*Y2)}

o5 = ideal (Y3*Z2 - Y2*Z3, X3*Z2 - X2*Z3, Y3*Z1 - Y1*Z3,

Y2*Z1 - Y1*Z2, X3*Z1 - X1*Z3, X2*Z1 - X1*Z2, X3*Y2 - X2*Y3,

X3*Y1 - X1*Y3, X2*Y1 - X1*Y2)

o6 = true
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After converting the raw output for the Hilbert series as before we have

HSpτ1, τ2, τ3, z;F q � PErχ2pzqpτ1 � τ2 � τ3qs
!

1� τ2
1 τ

2
2 τ

2
3

� pχ4pzq � χ2pzqqτ1τ2τ3 � pτ1 � τ2qpτ1 � τ3qpτ2 � τ3q
� pτ1τ2 � τ1τ3 � τ2τ3qχ2pzq � χ2pzqpτ1 � τ2 � τ3qτ1τ2τ3

)
.

(B.24)



Appendix C

Appendices for Chapter 2

C.1 Representation Theory of sup2, 2|1q

In this appendix we discuss the representation theory of (the complexification of) the

sup2, 2|1q superalgebra. Unitary representations of sup2, 2|1q can be decomposed into

a finite sum of representations rj1, j2sprqE of the maximal compact bosonic subalgebra

up1qE ` sup2q1 ` sup2q2 ` up1qr � sup2, 2|1q . (C.1)

The sup2, 2|1q superalgebra has four Poincaré supercharges

Q P r1{2, 0sp�1q
1
2

, rQ P r0, 1{2sp1q1
2

. (C.2)

Note that with respect to [1] we use j � 2j1, j̄ � 2j2. The Q and rQ shortening

conditions are listed in Table C.1 and Table C.2 respectively. We list all possible

short unitary multiplets of the sup2, 2|1q superconformal algebra in Table C.3. Sev-

eral of these multiplets contain conserved currents; we list all multiplets that contain

conserved currents in Table C.4.

Name Primary Unitarity bound Q-Null state

L rj1, j2sprqE E ¡ 2� 2j1 � 3
2r None

A1 rj1 ¥ 1{2, j2sprqE E � 2� 2j1 � 3
2r rj1 � 1{2, j2spr�1q

E�1{2
A2 r0, j2sprqE E � 2� 3

2r r0, j2spr�2q
E�1

B1 r0, j2sprqE E � �3
2r r1{2, j2spr�1q

E�1{2

Table C.1: Q-shortening conditions.
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Name Primary Unitarity bound rQ-Null state

L rj1, j2sprqE E ¡ 2� 2j1 � 3
2r None

A1 rj1, j2 ¥ 1{2sprqE E � 2� 2j1 � 3
2r rj1, j2 � 1{2spr�1q

E�1{2
A2 rj1, 0sprqE E � 2� 3

2r rj1, 0spr�2q
E�1

B1 rj1, 0sprqE E � 3
2r rj1, 1{2spr�1q

E�1{2

Table C.2: rQ-shortening conditions.

CDI-notation Quantum number relations DO-notation

LLrj1, j2sprqE E ¡ 2�max
 
2j1 � 3

2r, 2j2 � 3
2r
(

AEr,pj1,j2q
B1Lr0, j2sprqE r   �2

3pj2 � 1q, E � �3
2r Br,p0,j2q

LB1rj1, 0sprqE r ¡ 2
3pj1 � 1q, E � 3

2r Br,pj1,0q
B1B1r0, 0sprqE E � r � 0 B̂
A`Lrj1, j2sprqE r   2

3pj1 � j2q, E � 2� 2j1 � 3
2r Cr,pj1,j2q

LA`rj1, j2sprqE r ¡ 2
3pj1 � j2q, E � 2� 2j2 � 3

2r Cr,pj1,j2q
A`A`rj1, j2sprqE r � 2

3pj1 � j2q, E � 2� j1 � j2 Ĉpj1,j2q
B1A`r0, j2sprqE E � �3

2r � 1� j2 Dp0,j2q
A`B1rj1, 0sprqE E � 3

2r � 1� j1 Dpj1,0q

Table C.3: Unitary representations of the sup2, 2|1q superconformal algebra. In the
above we have ` � 1 if j1 ¥ 1

2 , ` � 2 if j1 � 0, ` � 1 if j2 ¥ 1
2 and ` � 2 if

j2 � 0. In the first column we ist the notation of [1] and in third column we list the
corresponding Dolan & Osborn style notation [2] which was also used in [3, 4, 5, 6].

Conserved current multiplet(s) Comment(s)

Ĉp0,0q Flavour current

Ĉp 1
2
,0q, Ĉp0, 1

2
q Supersymmetric currents

Ĉp 1
2
, 1
2
q Stress tensor, contains up1qr current

Ĉpj1,j2q|j1�j2¡1 Higher spin currents

Dp0,0q pDp0,0qq Free (anti-)Chiral field Φ (Φ)

Dp 1
2
,0q (Dp0, 1

2
q) Free (anti-)vector superfield Wα pW 9αq

Dpj1¥1,0q, Dp0,j2¥1q Higher spin free fields.

Table C.4: Conserved current multiplets of sup2, 2|1q superconformal algebra.
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Using

Cr,p� 1
2
,j2q � Br�1,p0,j2q , Cr,pj1,� 1

2
q � Br�1,pj1,0q , (C.3)

the N � 1 recombination rules can be written as

A2�2j1� 3
2
r

r  2
3
pj1�j2q,pj1,j2q � Cr,pj1,j2q ` Cr�1,pj1� 1

2
,j2q , (C.4)

A2�2j2� 3
2
r

r¡ 2
3
pj1�j2q,pj1,j2q � Cr,pj1,j2q ` Cr�1,pj1,j2� 1

2
q , (C.5)

A2�j1�j2
2
3
pj1�j2q,pj1,j2q � Ĉpj1,j2q ` C 2

3
pj1�j2q�1,pj1� 1

2
,j2q ` C 2

3
pj1�j2q�1,pj1,j2� 1

2
q . (C.6)

The multiplets Dpj1,0q, Br  2
3
j1�2,pj1,0q and their complex conjugates have no recom-

bination rules and are therefore absolutely protected. We list below the contribution

of each multiplet to the right-handed index (1.111)

IAE
r,pj1,j2q

� IBr,p0,j2q � ICr,pj1,j2q � 0 , (C.7)

IĈpj1,j2q �
p�1q2j1�2j2�1ppqq 2

3
j2� 1

3
j1�1

p1� pqp1� qq χ2j1p
a
p{qq , (C.8)

ICr,pj1,j2q �
p�1q2j1�2j2�1ppqq r2�j2�1

p1� pqp1� qq χ2j1p
a
p{qq , (C.9)

IBr,pj1,0q �
p�1q2j1ppqq r2
p1� pqp1� qqχ2j1p

a
p{qq (C.10)

IDp0,j2q
� p�1q2j2�1ppqq 2

3
j2� 2

3

p1� pqp1� qq , (C.11)

IDpj1,0q
�
p�1q2j1ppqq j1�1

3

�
χ2j1p

a
p{qq � ?pqχ2j1�1p

a
p{qq

	
p1� pqp1� qq , (C.12)

where the character of the spin- s2 representation of SUp2q is

χspyq � pys�1 � y�s�1q{py � y�1q..

By construction the right-handed index of all multiplets of the type

XLrj1, j2sprqE is zero. In computing the above one must carefully deal with equations

of motion. If any given sop4, 2q representation appearing in a multiplet saturates

the unitarity bound then there will be a corresponding equation of motion which

must enter the index with opposite statistics. We list the the possible null states of

sop4, 2q in Table C.5.
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Primary Unitarity bound Null state

rj1 ¥ 1{2, j2 ¥ 1{2sE E ¥ 2� j1 � j2 rj1 � 1{2, j2 � 1{2sE�1

rj1 ¥ 1{2, 0sE E ¥ j1 � 1 rj1 � 1{2, 1{2sE�1

r0, j2 ¥ 1{2sE E ¥ j2 � 1 r1{2, j2 � 1{2sE�1

r0, 0sE E ¥ 1 r0, 0sE�2

r0, 0sE E � 0 r1{2, 1{2sE�1

Table C.5: Unitary representations of sop4, 2q. In the final column we list the asso-
ciated null state when the unitarity bound is saturated. The null states correspond
to equations of motion and as such their contribution must be subtracted from the
index.

C.1.1 N � 1 Index Equivalence Classes

By either examining the recombination rules (C.4)-(C.6), or, by directly observing

the contribution to the index from each multiplet (C.7)-(C.12) we can immediately

read off the (left-)right-handed index equivalence classes [166, 4, 167]. That is, the

set of multiplets with equal contribution to the (left-)right-handed index. Here we

focus only on the right-handed index. The equivalence classes (leaving implicit the

quantum number inequalities of Table C.3) are

rrr, j1s� :� tCr,pj1, rr�r2
q|rr � r P 2Z¥0u Y tĈpj1, 3rr�2j1

4
q|3rr � 2j1 P 4Z¥0u (C.13)

rrr, j1s� :�tCr,pj1, rr�r2
q|rr � r P �1� 2Z¥0u

Y tĈpj1, 3rr�2j1
4

q|3rr � 2j1 P 2� 4Z¥0u
(C.14)

and their contributions to the index are

Irrr,j1s� � �Irrr,j1s� �
p�1q2j1�1ppqq rr2�1

p1� pqp1� qq χ2j1p
a
p{qq . (C.15)

The cases in which we can extract the most information regarding the spectrum

from the index are those in which the equivalence class contains a small number of

representatives. For example, for example if rr P p2j1{3, 4{3� 2j1{3s then rrr, j1s� is

empty and rrr, j1s� can contain only Brr�1,pj1,0q. The multiplets Dp0,j2q and Dpj1,0q are

free fields and sit in their own equivalence classes. Finally the multiplets Ĉp 1
2
,0q and

Ĉp0, 1
2
q are the only representatives within the classes r1

3 ,
1
2 s� and r2

3 , 0s�, respectively.

r1
3 ,

1
2 s� and r2

3 , 0s� also contain only a single representatives, being B 7
3
p 1

2
,0q and
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Multiplet qt bound

Br,pj1,0q
r
2 � 2

3qt ¥ j1
Cr,pj1,j2q

r
2 � j2 � 1� 2

3qt ¥ j1
Ĉpj1,j2q 1� 2

3qt ¥ 2
3pj1 � j2q

Dp0,j2q j2 � 1� qt ¥ 0

Dpj1,0q �2j1 � 1� qt ¥ 0

Table C.6: Restrictions imposed on the up1qt representations implied by the existence
of the Hall-Littlewood limit of the index. In order that a multiplet contributes to the
Hall-Littlewood index it must have j1 � 0 and saturate the bound.

C 2
3
p0,0q respectively. We also define the net degeneracy

NDrrr, j2s :� #rrr, j2s� �#rrr, j2s� . (C.16)

C.1.2 Hall-Littlewood Limit

The indices (C.7)-(C.12) can of course enter into the character expansion of (2.23)

with factors of pτ{ρσq2qt{3 � pt{ppqq2{3qqt . By construction the Hall-Littlewood limit

of the index (2.37) counts only those operators with 2j2 � �r � 4
3qt and j1 � 0.

Assuming that this limit always exists for theories in class Sk we can extract bounds

for the value of up1qt charges for given multiplets appearing the character expansion

of the index. In particular, using the fact that

lim
σÑ0

lim
ρÑ0

pσρqaχ2j1

�a
σ{ρ

	
�

$'''&'''%
δj1,0 a � j1 ,

0 a ¡ j1 ,

8 a   j1 ,

(C.17)

with j1 ¥ 0 so that the limit exists only if a ¥ j1. Therefore, from (C.7)-(C.12) one

can see that the the up1qt charges of the multiplets contributing to the right handed

index must obey the constraints of Table C.6. By appying conjugation it is possible

to find similar bounds for multiplets appearing in the character expansion of the

left-handed index. One may also repeat such an exercise with the Macdonald limit

(σ Ñ 0) of the index. Defining HLSpqtq � limσ,ρÑ0 pτ{σρq2qt{3 IS and assuming that

the bounds of Table C.6 are satisfied (such that the limit always always exists) we

have

HLAE,pqtq
r,pj1,j2q

� HLBpqtq
r,p0,j2q

� HLCpqtq
r,pj1,j2q

� 0 , (C.18)
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HLBpqtqr,pj1,0q

� τ2qtδj1,0δ 3r
4
,qt
, (C.19)

HLCpqtqr,pj1,j2q

� p�1q2j2�1τ2qtδj1,0δqt, 32 pj2�1q� 3
4
r , (C.20)

HLĈpqtq
pj1,j2q

� p�1q2j2�1τ2qtδj1,0δqt,j2� 3
2
, (C.21)

HLDpqtq

p0,j2q

� p�1q2j2�1τ2qtδqt,j2�1 , HLDpqtq

pj1,0q

� τδj1,0δqt, 12
. (C.22)

so the only multiplets that can contribute to the right-handed index in the Hall-

Littlewood limit are

Bp
4r
3
q

r,p0,0q , Cp
3
2
pj2�1q� 3

4
rq

r,p0,j2q , Ĉpj2�
3
2
q

p0,j2q , Dpj2�1q
p0,j2q , Dp

1
2
q

p0,0q . (C.23)

Equality of the Hall-Littlewood limit of the index with the Hilbert series of the Higgs

branch at would imply that in those theories the Hall-Littlewood index receives

contribution only from Dp
1
2
q

p0,0q and Bp
4r
3
q

r,p0,0q multiplets.

C.2 Unrefined HL Index for Interacting Trinions

C.2.1 TB Theory

The Hall-Littlewood index for the three-punctured sphere TB theory in the unrefined

z � u � v � 1, γβ � 1 limit is given by

HL
pTBq1
11

���
γβ�1

� γ2

β2

τ19
�
QBpγ�1β, τ�1q �QBpγβ�1, τq��

1� β
γ τ

2
	7 �

1� γ
β τ

2
	9
p1� τ2q11

. (C.24)
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The polynomial QBpγβ�1, τq is given by

QBpγβ�1, τq � �3γ5τ9

β5
� 15γ5τ7

β5
� 17γ5τ5

β5
� 5γ5τ3

β5
� 21γ4τ11

β4

� 14γ4τ7

β4
� 6γ4τ5

β4
� 201γ4τ3

β4
� 45γ4τ

β4
� γ3τ17

β3
� 3γ3τ15

β3

� 55γ3τ11

β3
� 305γ3τ9

β3
� β3τ9

γ3
� 387γ3τ7

β3
� 11β3τ7

γ3
� 885γ3τ5

β3

� 919γ3τ3

β3
� 265β3τ3

γ3
� 298γ3τ

β3
� 818β3τ

γ3
� γ2τ19

β2
� 13γ2τ17

β2

� 231γ2τ11

β2
� 15β2τ11

γ2
� 1421γ2τ9

β2
� 149β2τ9

γ2
� 132γ2τ7

β2

� 714β2τ5

γ2
� 4332γ2τ3

β2
� 2327β2τ3

γ2
� 1484γ2τ

β2
� 4101β2τ

γ2

� 193γτ13

β
� 52βτ13

γ
� 805γτ11

β
� 308βτ11

γ
� 2208γτ9

β
� 81βτ9

γ

� 2933βτ7

γ
� 8621γτ5

β
� 4192βτ5

γ
� 5807γτ3

β
� 2504βτ3

γ

� 52τ15 � 36τ13 � 982τ11 � 1322τ9 � 3423τ7 � 9605τ5 � 1849τ3

� 1224γτ7

β
� 14421τ � 12360βτ

γ
� 156γ2τ13

β2
� 83γτ15

β

� 73γ4τ9

β4
� 36γ2τ15

β2
� 67γ3τ13

β3
� 3340γ2τ5

β2
� 582β2τ7

γ2
� 67β3τ5

γ3

� 7024γτ

β
� 15γτ17

β
.

(C.25)

C.2.2 TA Theory

The Hall-Littlewood index for the TA theory in the unrefined limit with γ � β reads

HL
pTAq1
11

���
γ
β
�1
� β5γ5τ15

�
QApτ, βγq �QApτ�1, β�1γ�1q�
p1� τ2q19p1� γ4β4τ2q4 (C.26)
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where

QApτ, βγq � �β5γ5τ15 � 29β5γ5τ13 � 274β5γ5τ11 � 1122β5γ5τ9

� 2222β5γ5τ5 � 1122β5γ5τ3 � τ3

β5γ5
� 274β5γ5τ � 29τ

β5γ5

� 525β3γ3τ9 � 4216β3γ3τ7 � 11048β3γ3τ5 � 4τ5

β3γ3
� 12523β3γ3τ3

� 6519β3γ3τ � 1524τ

β3γ3
� βγτ11 � 15βγτ9 � 350βγτ7 � 6τ7

βγ

� 286τ5

βγ
� 19741βγτ3 � 3706τ3

βγ
� 27485βγτ � 15982τ

βγ

� 19β3γ3τ11 � 144τ3

β3γ3
� 5418βγτ5 � 4β3γ3τ13 � 2222β5γ5τ7 .

(C.27)
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Appendices for Chapter 3

D.1 Quartic and Weierstrass Forms

The explicit transformations for transforming from Quartic to Weierstrass forms are

given in [293] Section 1.2. Here is an explicit check for our case. Given the curve

(3.11) define

z � x̃� 2γ

4
, w � ỹ

8
, γ :� �u� Λ4

1 � Λ4
2 (D.1)

gives

w2 � z3 � 2γz2 � 4pγ2 � 4Λ4
1Λ4

2pz � 2qq (D.2)

Then, let

w � 4

x3
pγ2 � 4Λ4

1Λ4
2qpy �

b
γ2 � 4Λ4

1Λ4
2 � ux2q (D.3)

z � 2

x2

b
γ2 � 4Λ4

1Λ4
2py �

b
γ2 � 4Λ4

1Λ4
2q (D.4)

Plugging into (3.11) yields the quadratic form for the curve [192]

y2 � px2 � u� Λ4
1 � Λ4

2q2 � 4Λ4
1Λ4

2 . (D.5)

D.2 Anomaly Free R-Symmetry

Here we verify that the up1qr R-symmetry for the core theories in class Sk are

anomaly free. The 1-loop running of the holomorphic UV coupling at the pi, nqth

263
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node is

τpi,nqpEq � τpi,nq,UV �
bpi,cq
2πi

log
E

Λpi,cq,UV
. (D.6)

From the point of view of the pi, nqth gauge group, there are 3N chiral multiplets in

the fundamental representation N and 3N in the anti-fundamental N and therefore

bpi,nq �E
d

dE

8π2

g2
pi,nq

(D.7)

�3c2padj.q � 3Nc2pNq � 3Nc2pNq (D.8)

�0 (D.9)

where c2pRq is the Dynkin index of a representation R of a compact, semi-simple

Lie algebra. For SUpNq, c2pNq � c2pNq � 1{2 and c2padj.q � N .

Suppose that under some combination of the Up1q symmetries of the Lagrangian

the gauginos and the fermion parts of matter fields coupled to the gauge group

labelled by pi, nq transform as

Φpi,nq|θ Ñeiαpi,nqΦpi,nq|θ (D.10)

Qpi,nq|θ Ñeiβpi,nqQpi,nq|θ (D.11)rQpi,nq|θ Ñeiγpi,nq rQpi,nq|θ (D.12)

λαpi,nq Ñeiσpi,nqλαpi,nq (D.13)

Where |θ � B
Bθ |θ�0 denotes the projection onto the theta component. Then, the

fermionic part of the path integral measure transforms, due to the zero modes, as

`�2¹
n�1

k¹
i�1

rDλαpi,nqDΦpi,nq|θD rQpi,nq|θDQpi,nq|θs Ñ

`�2¹
n�1

k¹
i�1

e2ifpi,nqKpi,nqrDλαpi,nqDΦpi,nq|θD rQpi,nq|θDQpi,nq|θs
(D.14)

where
fpi,nq �σpi,nqc2padj.q � pαpi,nq � βpi,n�1q � γpi,nqqNc2pNq

� pαpi�1,nq � βpi,n�1q � γpi�1,n�1qqNc2pNq
(D.15)

and

Kpi,nq �
1

16π2

»
R4

trFpi,nq ^ Fpi,nq P Z , (D.16)
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is the instanton number.

Therefore, a generic Up1q symmetry is anomalously broken by a non-zero instan-

ton number. Note that it can be compensated for by shifting the theta angle

θpi,nq Ñ θpi,nq � 2fpi,nq . (D.17)

This is only a symmetry when 2fpi,nq P 2πZ.

The Up1qr symmetry is anomaly free since

rrΦpi,nqs � 0 � 1� rrΦpi,nq|θs , (D.18)

rr rQpi,nqs � 1 � 1� rr rQpi,nq|θs , (D.19)

rrQpi,nqs � 1 � 1� rrQpi,nq|θs , (D.20)

rrλαpi,nqs � 1 , (D.21)

hence, plugging these charges into fpi,nq yields

fpi,nq � N � N

2
� N

2
� 0 . (D.22)

D.3 Some Elliptic Curve Theory

Given a compact Riemann surface X of genus g. We can consider the space of closed

holomorphic 1-forms Ω1,0pX q [294]. By the maximum principle all exact holomorphic

one forms are identically zero. One can show that dim Ω1,0pX q � dim Ω0,1pX q � g

where Ω0,1pX q is the space of antiholomorphic closed one forms, Ω1,0pX qXΩ0,1pX q �
0 and consequently that H1pX ,Cq � Ω1,0pX q ` Ω0,1pX q

One can also consider the meromorphic 1-forms on X , for any non-zero mero-

morphic 1-form λ we have that
°
PPX ordP pλq � 2g � 2 as a consequence of the

Riemann-Hurwitz formula, also,
°
PPX ResP pωq � 0.

Choosing a basis for the homology as tA1, . . . , Ag, B1, . . . , Bgu, because the is a

natural isomorphism H1pX ,Cq � Ω1,0pX q ` Ω0,1pX q � HompH1X ,Cq provided by

integration over one-cycles, there then exists a unique, linearly independent, basis

tω1, . . . , ωgu for Ω1,0pX q such that»
Aj

ωi � δji ,

»
Bj

ωi � τji . (D.23)

The period matrix is symmetric τji � τij and obeys =τ ¡ 0 (by Riemann’s bilinear
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relations). Explicitly, for a hyperelliptic curve y2 � F px, . . . q where, considered as a

polynomial in x, degF � 2N � 2g � 2, an explicit basis is given by ωi � xi�1dx{y.

Now define a mapping f : H1X ãÑ Λ � Cg given by γ ÞÑ p³γ ω1, . . . ,
³
γ ωgq which

is an embedding of H1X into the lattice Λ.

We now focus our attention to the case g � 1. Then X � C{pZ � τZq and the

pair of cycles A1 � r0, 1s and B1 � r0, τ s give a basis for H1X . Such a Riemann

surface can be thought of as a two-sheeted covering of S2 with 4-branch points, by a

Möbius transformation these branch points can be taken to be at x � 0, 1,8, q. We

can then take the curve y2 � xpx� 1qpx� qq then ω1 � ω � dx{y is the unique (up

to a constant multiple) holomorphic 1-form on X and hence satisfies all of the above

discussions. How is q related to the complex structure τ of the torus? To answer

this question we rewrite the curve as y2 � ±3
i�1px � eiq because the discriminant

∆ � 0 then e1 � e2 � e3 � 0. Then q � e2�e3
e1�e3 . After computing the periods (D.23)

and inverting one finds that

q � λpτq � θ2pτq4
θ3pτq4 . (D.24)

λpτq is called the modular lambda function.

For hyperelliptic curves, which can be realised as two-sheeted branch coverings

of S2, they have 2g�2 branch points and explicit computations of the period matrix

are harder to perform.

Relation to gauge theory In the Seiberg-Witten theory of the N � 2 gauge

theory we have

• The SW curve X � Xtuiu which is a rank g cover of a Riemann surface

Xtuiu
rank g:1ÝÝÝÝÝÑ C. The period matrix of Xtuiu, in turn, is identified with the

IR Up1q gauge couplings and therefore computes the pre-potential F . For a

SUpNq N � 2 gauge theory, we have the following relations

BaDi
Baj � τij (D.25)

we then define ai and aDi as integrals of the Ai and Bi cycles respectively over

a certain meromorphic differential λSW � λSW � df since the addition of an
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exact form df does not affect the integration under closed one-cycles.

ai �
»
Ai

λSW , aDi �
»
Bi

λSW . (D.26)

and we demand BλSW

Bui |fixed x � ωi � dfi (D.27)

furthermore we require that for all p P X RespλSW is at most linear in the

quark bare masses and that
°
pPXRespλSW � 0.

• For theories of class S the space of UV gauge couplings is identified with the

space of complex structure deformations E of the underlying surface C. We

have an isomorphism

E � TeichpCq{MCGpCq (D.28)

where TeichpCq is the Teichmüller space of C and is parametrised by the same

cross ratios q appearing in the SW curve. MCGpCq is the mapping class group

of C, in physics terms this is the ‘generalised S-duality group’.

D.3.1 Computation of the Period Matrix

We begin with the SW-curve for the pure sup2q N � 2 theory

y2 � px� Λ2qpx� Λ2qpx� uq . (D.29)

The curve becomes singular at u � �Λ2,�Λ2,8. The B-cycle is taken to enclose

�Λ2,�Λ2 while the A-cycle is taken from �Λ2, u. We first change coordinates by

x � Λ2p2x1 � 1q and y � p2Λ2q3{2y1

y12 � x1px1 � 1q
�
x1 � Λ2 � u

2Λ2



(D.30)

Defining q � Λ2�u
2Λ2 we arrive at the desired form

y2 � xpx� 1qpx� qq . (D.31)
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In these coordinates the singular points of the curve are mapped to q � 0, 1,8. So

we have to compute integrals of the form

ppγq �
¾
γ

ω �
¾
γ

dxa
xpx� 1qpx� qq . (D.32)

The we deform the cycle A to enclose 1, q and B to enclose 0, 1. So we can write

ppAq � 2

» q
1
ω �

¾
C1

ω �
¾
Cq

ω , ppBq � 2

» 1

0
ω �

¾
C0

ω �
¾
C1

ω (D.33)

where Cx0 denotes sphere centred around the point x � x0 with infinitesimal radius

ε. However, one can immediately see that¾
Cp

ω �
» π
�π

i
?
εeiθ{2dθb±

p1Pt0,1,quztpupp� p1q
� 4i

?
εb±

p1Pt0,1,quztpupp� p1q
Ñ 0 (D.34)

for any p P t0, 1, qu. Writing x � w2

» p
0

dxa
xpx� 1qpx� qq �

» ?
p

0

2dwa
pw2 � 1qpw2 � qq �

2?
q
F p?p; 1{?qq (D.35)

where F px; kq is the incomplete elliptic integral of the first kind in Jacobi form. We

can therefore write

ppAq � 4?
q
pF p?q; 1{?qq � F p1; 1{?qqq , ppBq � 4?

q
F p1; 1{?qq . (D.36)

Therefore the period matrix is

τ � ppAq
ppBq �

F p?q; 1{?qq
F p1; 1{?qq � 1 . (D.37)
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Appendices for Chapter 4

E.1 The Elliptic Genus Computation

In this appendix we review the computation of the Elliptic genus via letter counting.

E.1.1 Single Letter Indices

As the Witten index is independent of coupling constants we may compute the index

in the free field g Ñ 0 limit. To compute the index we list the gauge covariant field

content with δ � L0 � 1
2J0 � 0 in the UV. Only the ‘letters’ with δ � 0 contribute

to the index and their quantum numbers are listed in Tables E.1, E.2 and E.3. We

denote also the decomposition of N � p4, 4q multiplets into N � p0, 2q multiplets.

Since the N � p0, 2q field strength multiplet is not conformal extra care must be

taken to take the free field limit. In two dimensions the field strength multiplet Υ is

nothing but a Fermi multiplet with auxillary D� iF�� . The R-charge of Υ is fixed

to unity everywhere along the flow, i.e. R rΥs � J0 rΥs � 1 . Therefore the index

of the off-diagonal vector multiplet should be equal to that of a off-diagonal Fermi

multiplet of R-charge RIR � RUV � 1:

ZvecpyI � yJ , qq � ∆pyq�1ZFermipyI � yJ , qq � PE

�
� 2q

1� q

¸
I�J

yI
yJ

�
(E.1)

where ∆pyq is the Vandermonde determinant accounting for the Cartan zero modes.

The single letter indices were given in equations (4.23), (4.24) and (4.25). We
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N � p0, 2q Letter L0 L0 J0 2j1 2j2 2jL 2jR Index

Y, Y :
Y 2 92 0 0 0 0 0 �1 �1 wz

Y 1 91 0 0 0 0 0 �1 �1 w�1z�1

λ
911
� 0 1

2 �1 0 �1 �1 0 �w�1z�1

Ỹ :, Ỹ

Y 1 92 0 0 0 0 0 �1 �1 w�1z

Y 2 91 0 0 0 0 0 �1 �1 wz�1

λ
912
� 0 1

2 �1 0 �1 �1 0 �wz�1

ξ, ξ
: ξ

91 91
�

1
2 0 0 0 �1 0 �1 �qz�2

ξ
92 92
�

1
2 0 0 0 �1 0 �1 �z2

Υ,Υ: ξ
92 91
�

1
2 0 �1 0 �1 0 �1 �q

ξ
91 92
�

1
2 0 �1 0 �1 0 �1 �q

B�λ
911
� 1 1

2 �1 0 �1 �1 0 qw�1z�1

B�λ
912
� 1 1

2 �1 0 �1 �1 0 qwz�1

B� 1 0 0 0 0 0 0 q

Table E.1: Gauge covariant field content contributing to the index of the N � p4, 4q
vector multiplet V .
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N � p0, 2q Letter L0 L0 J0 2j1 2j2 2jL 2jR Index

X,X:
X1 91 0 0 0 �1 �1 0 0 q

1
2 v�1z�1

X2 92 0 0 0 �1 �1 0 0 q�
1
2 vz

ξ2 92� 0 1
2 �1 �1 0 0 �1 �q� 1

2 vz

X̃:, X̃

X2 91 0 0 0 �1 �1 0 0 q
1
2 vz�1

X1 92 0 0 0 �1 �1 0 0 q�
1
2 v�1z

ξ1 92� 0 1
2 �1 �1 0 0 �1 �q� 1

2 v�1z

λ, λ:
λ11�

1
2 0 0 �1 0 �1 0 �q 1

2 v�1w�1

λ22
� 1

2

1
2 0 0 �1 0 �1 0 �q 1

2 vw

λ̃:, λ̃
λ12�

1
2 0 0 �1 0 �1 0 �q 1

2 v�1w

λ21�
1
2 0 0 �1 0 �1 0 �q 1

2 vw�1

B�ξ2 92� 1 1
2 �1 �1 0 0 �1 q

1
2 vz

B�ξ1 92� 1 1
2 �1 �1 0 0 �1 q

1
2 v�1z

B� 1 0 0 0 0 0 0 q

Table E.2: Gauge covariant field content with δ � 0 of the N � p4, 4q hypermultiplet
H.
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N � p0, 2q Letter L0 L0 J0 2j1 2j2 2jL 2jR Index

φ, φ:
φ

91 0 0 0 0 �1 0 0 q
1
2 z�1

φ:91 0 0 0 0 �1 0 0 q�
1
2 z

χ:� 91
0 1

2 �1 0 0 0 �1 �q� 1
2 z

φ̃:, φ̃

φ:92 0 0 0 0 �1 0 0 q
1
2 z�1

φ
92 0 0 0 0 �1 0 0 q�

1
2 z

χ
92� 0 1

2 �1 0 0 0 �1 �q� 1
2 z

ψ, ψ:
ψ1�

1
2 0 0 0 0 �1 0 �q 1

2w�1

ψ:�1
1
2 0 0 0 0 1 0 �q 1

2w

ψ̃:, ψ̃
�ψ:�2

1
2 0 0 0 0 �1 0 �q 1

2w�1

ψ2�
1
2 0 0 0 0 1 0 �q 1

2w

B�χ:� 91
1 1

2 �1 0 0 0 �1 q
1
2 z

B�χ 92� 1 1
2 �1 0 0 0 �1 q

1
2 z

B� 1 0 0 0 0 0 0 q

Table E.3: Gauge covariant field content with δ � 0 of the N � p4, 4q hypermultiplet
U .
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again list them here

iV pq, w, z, yIq �
��
w � w�1

� �
z � qz�1

�� qz�2 � z2 � 2q

1� q

�
Ķ

I,J�1

yIy
�1
J , (E.2)

iHpq, v, w, z, yIq �
�
q

1
2

�
v � v�1

� �
z � z�1 � w�1 � w

�
1� q

�
Ķ

I,J�1

yIy
�1
J , (E.3)

iU pq, w, z, xA, yIq �
�
q

1
2

�
z � z�1 � w�1 � w

�
1� q

�
Ķ

I�1

Ņ

A�1

�
yI
xA

� xA
yI



. (E.4)

Finally, we also list the Casimir energy:

ECasimir � Finite
qÑ1

�¸
M

BiM
B log q

�
� β2

5

iπ
2NK

�ε�
2
�m

	� iπ

β5
� ε�

2
�m



. (E.5)

E.1.2 Orbifolded Single Letter Indices

The single letters for the Γ projected multiplets is given by enumerating all letters

in Tables E.1, E.2 and E.3 while also inserting fugacities for the Γ action embedded

in the global and gauge symmetries. Recall that

γ` :� 2jL � J710 � J89 , γk :� J56 � jL � jR � J56 � J89 . (E.6)

The projected single letters are thus given by

iΓV pq, w, z, yni,Iq � 1

`k

¸
εPZ`
εkPZk

¸
r¥0

qrε�rk
`̧

n,i

ķ

m,j

Kni̧

I�1

Kmj̧

I�1

εn�m` εi�jk yni,Iy
�1
mj,J

� ��
ε`w � ε�1

` ε�1
k w�1

� �
z � qz�1

�� qz�2 � ε�1
k z2 � pε�1

k � 1qq� ,
(E.7)

iΓHpq, v, w, z, yni,Iq � 1

`k

¸
εPZ`
εkPZk

��
z�1 � ε�1

k z � ε�1
` ε�1

k w�1 � ε`w
��

� q
1
2

�
v � v�1

� ¸
r¥0

qrε�rk
`̧

n,m

ķ

i,i

Kni̧

I�1

Kmj̧

I�1

εn�m` εi�jk yni,Iy
�1
jm,J ,

(E.8)
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iΓU pq, w, z, xni,A, yni,Iq � 1

`k

¸
εPZ`
εkPZk

�
q

1
2

�
z

εk
� z�1 � w�1

ε`εk
� ε`w


�

�
¸
r¥0

qrε�rk
`̧

n,m

ķ

i,j

Ņ

A�1

εn�m` εi�jk

��Kni̧

I�1

yni,I
tnixmj,A

�
Kmj̧

I�1

tnixni,A
ymj,I

� .

(E.9)

We now detail how to evaluate the sums over conformal descendants and over the

orbifold group. Note that here we rescaled xmj,A (which are fugacities associated

with S
�
UpNqk`� and satisfy

±k
i�1

±`
n�1

±N
A�1 xni,A � 1) to tnixni,A which now sat-

isfy satisfying
±N
A�1 xni,A � ±`

n�1

±k
i�1 xni,A � ±`

n�1

±k
i�1 tni � 1 corresponding

to S
�
UpNqk`� � Up1q`k

Up1q � SUpNq`k Firstly, to evaluate the sums over conformal de-

scendants we write to r :� Lij � r̃k ¥ 0 with Lij defined in (4.72). This enables one

to rewrite, for any fixed value 1 ¤ j ¤ k, to split the sum

¸
r¥0

qrε�rk �
ķ

i�1

qLijε
�Lij
k

¸
r̃¥0

qr̃k �
ķ

i�1

qLijε
�Lij
k

1� qk
, (E.10)

recall that εkk � 1. After this rewriting the sums over both Z`,Zk may be simply

carried out and is essentially equivalent to demanding that the exponents of ε`, εk

vanish modulo `, k in each term. Hence we have after, rearranging and applying the

identity (4.73),

iΓV pq, w, z, yni,Iq �
`̧

n�1

ķ

i,j�1

1

1� qk

���Kni̧

I�1

Knj̧

J�1

�
z�2qLij�1 yni,I

ynj,J
� z2qk�Lij�1 ynj,J

yni,I




�
Kni̧

I�1

Kpn�1qj¸
J�1

�
wqLij

yni,I
ypn�1qj,J

� w�1qk�Lij�1 ypn�1qj,J
yni,I


�
z � q

z

	

�
Kni̧

I�1

Knj̧

J�1

�
qLijyni,Iy

�1
nj,J �

�
qk�Lij � p1� qkqδLni,0

	
y�1
ni,Iynj,J

	�� ,

(E.11)
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iΓH pq, v, w, z, yni,Iq �
`̧

n�1

ķ

i,j�1

q
1
2

�
v � v�1

�
1� qk

��Kni̧
I�1

Knj̧

J�1

�
z�1qLij

yni,I
ynj,J

� zqk�Lij�1 ynj,J
yni,I




�
Kni̧

I�1

Kpn�1qj¸
J�1

�
wqLijyni,Iy

�1
pn�1qj,J � w�1qk�Lij�1y�1

ni,Iypn�1qj,J
	�� ,

(E.12)

iΓU pq, w, z, xni,A, yni,Iq �
`̧

n�1

ķ

i,j�1

Ņ

A�1

q
1
2

1� qk

�
��z�1qLij

��Kni̧

I�1

yni,Ix
�1
nj,A �

Knj̧

I�1

y�1
nj,Ixni,A

�
� zqk�Lij�1

��Kni̧

I�1

y�1
ni,Ixnj,A �

Knj̧

I�1

ynj,Ix
�1
ni,A

�
� wqLij

��Kni̧

I�1

yni,Ix
�1
pn�1qj,A �

Kpn�1qj¸
I�1

y�1
pn�1qj,Ixni,A

�
�w�1qk�Lij�1

��Kni̧

I�1

y�1
ni,Ixpn�1qj,A �

Kpn�1qj¸
I�1

ypn�1qj,Ix�1
ni,A

��� .

(E.13)

In this form the plethystics may be easily performed. For the sake of completeness

we also list the contribution from the Casimir energy (4.27)

ECasimir � kβ2
5

iπ

�
2NkK

�ε�
2
�m

	� iπ

β5
� ε�

2
�m




� kβ2

5

π2

`̧

n�1

kŅ

A�1

Kņ

I�1

un,I pãn�1,A � ãn�1,A � 2ãn,Aq

� kβ2
5

π2

`̧

n�1

kŅ

A�1

Kn

�
2ã2

n,A � ã2
n�1,A � ã2

n�1,A � 2mãn�1,A � 2mãn�1,A
�

(E.14)

where we also made the gauge transformation and redefinition (4.74) and used the

definitions (4.84).
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E.2 4d & 5d Contour Integral Representations

In this appendix we present the contour integral representations for the partition

functions for the 5d and 4d theories both in the precense of the orbifold and without.

These may be obtained by applying the limit directly to the respective 6d contour

integral expression. We follow mostly the prescription presented in [295]. We will

firstly take the 5d β6 Ñ 0 pq Ñ 1q limit.

E.2.1 5d Limit of the Contour Integral

Using the identifications (4.39) and setting yI � q
β5uI

iπ we have that

lim
qÑ1

∆pyIqZV �
K¹

I,J�1

sinhβ5 puIJq1 sinhβ5 puIJ � ε�q
sinhβ5 puIJ � m̃� ε�q sinhβ5 puIJ � m̃q , (E.15)

lim
qÑ1

ZH �
K¹

I,J�1

sinhβ5

�
uIJ � ε�

2 �m
�

sinhβ5

�
uIJ � ε�

2 �m
�

sinhβ5 puIJ � ε1q sinhβ5 puIJ � ε2q , (E.16)

lim
qÑ1

ZU �
K¹
I�1

N¹
A�1

sinhβ5 puI � aA �mq sinhβ5 puI � aA �mq
sinhβ5

�
uI � aA � ε�

2

�
sinhβ5

�
uI � aA � ε�

2

� , (E.17)

where uIJ :� uI � uJ and m̃ � m� ε�{2. By definition

lim
qÑ1

Zp0qpq, v, w, z, xA, yIq � 1 . (E.18)

Hence, all that remains is to perform the limit on the integration over the maximal

torus of UpKq:

lim
qÑ1

¾
T rUpKqs

K¹
I�1

dyI
2πiyI

� lim
β6Ñ0

p2τqK
» iπ

2τ

� iπ
2τ

K¹
I�1

duI
2πiβ5

�
» �8

�8

K¹
I�1

duI
2πiβ5

. (E.19)
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Putting all of the above ingredients together we write

Z5d
K :� lim

qÑ1
Z6d
K � 1

K!

» K¹
I�1

duI
2πiβ5

�
K¹
I�1

N¹
A�1

sinhβ5 puI � aA �mq sinhβ5 puI � aA �mq
sinhβ5

�
uI � aA � ε�

2

�
sinhβ5

�
uI � aA � ε�

2

�
�

K¹
I,J�1

sinhβ5 puIJq1 sinhβ5 puIJ � ε�q
sinhβ5 puIJ � ε1q sinhβ5 puIJ � ε2q

�
K¹

I,J�1

sinhβ5

�
uIJ � ε�

2 �m
�

sinhβ5

�
uIJ � ε�

2 �m
�

sinhβ5

�
uIJ � ε�

2 �m
�

sinhβ5

�
uIJ � ε�

2 �m
� .

(E.20)

E.2.2 4d Limit of the Contour Integral

It is then a straightforward exercise to take the 4d limit β5 Ñ 0. We have

Z4d
K :� lim

β5Ñ0
Z5d
K (E.21)

�
¸
K¥0

1

K!

» K¹
I�1

duI
2πi

K¹
I�1

N¹
A�1

puI � aA �mq puI � aA �mq�
uI � aA � ε�

2

� �
uI � aA � ε�

2

�
�

¹
I�J

uIJ

K¹
I,J�1

puIJ � ε�q
�
uIJ � ε�

2 �m
� �
uIJ � ε�

2 �m
��

uIJ �m� ε�
2

� �
uIJ �m� ε�

2

� puIJ � ε1q puIJ � ε2q
.

(E.22)

E.2.3 5d Limit of the Orbifolded Contour Integral

Taking this limit is largely the same procedure as for the ` � k � 1 case however we

instead use the slightly different set of variables (4.84). We are again interested in

the q Ñ 1 limit of the partition function (4.77). Setting yi,I � q
kuiI

iπ we have

lim
qÑ1

Z6d,`,k
tKiju :� Z5d,`,k

tKiju (E.23)
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�
¹̀
i�1

�
1±k

j�1Kij !

» Ki¹
I�1

dui,I
2πiβ5

¹
I�J

sinhβ5 pui,I � ui,J q

�
Ki¹

I,J�1

sinhβ5 pui,I � ui,J � ε�q
sinhβ5 pui,I � ui,J � ε2q sinhβ5 pui,I � ui,J � ε1q

�
Ki¹
I�1

Ki�1¹
J�1

sinhβ5

�
ui,I � ui�1,J �m� ε�

2

�
sinhβ5

�
ui,I � ui�1,J �m�� ε�

2

�
�

Ki¹
I�1

Ki�1¹
J�1

sinhβ5

�
ui,I � ui�1,J �m� ε�

2

�
sinhβ5

�
ui,I � ui�1,J �m� ε�

2

�
�

kN¹
A�1

Ki¹
I�1

sinhβ5 pui,I � ãi�1,A �mq sinhβ5 pui,I � ãi�1,A �mq
sinhβ5

�
ui,I � ãi,A � ε�

2

�
sinhβ5

�
ui,I � ãi,A � ε�

2

� �
.

(E.24)

E.2.4 4d Limit of the Orbifolded Contour Integral

As before it is straightforward to take the 4d limit β5 Ñ 0.

Z4d,`,k
tKiju :� lim

β5Ñ0
Z5d,`,k
tKiju (E.25)

�
¹̀
i�1

�
1±k

j�1Kij !

» Ki¹
I�1

dui,I
2πi

¹
I�J

pui,I � ui,J q

�
Ki¹

I,J�1

pui,I � ui,J � ε�q
pui,I � ui,J � ε2q pui,I � ui,J � ε1q

�
Ki¹
I�1

Ki�1¹
J�1

�
ui,I � ui�1,J �m� ε�

2

� �
ui,I � ui�1,J �m� ε�

2

��
ui,I � ui�1,J � ε�

2 �m
� �
ui,I � ui�1,J � ε�

2 �m
�

�
kN¹
A�1

Ki¹
I�1

pui,I � ãi�1,A �mq pui,I � ãi�1,A �mq�
ui,I � ãi,A � ε�

2

� �
ui,I � ãi,A � ε�

2

� �
.

(E.26)
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Appendices for Chapter 5

F.1 Preserved Superconformal Algebra

F.1.1 Even Subalgebra

The even subalgebra of psup2, 2|4q is b � sop5, 1q ` sup4q which we take to be

generated by Mµν ,Kµ, P
µ, E with µ, ν � 1, 2, 3, 4 and RJI , I, J � 1, 2, 3, 4. The

Cartans of sup4q are Ri � Rii � Ri�1
i�1 with i � 1, 2, 3. We wish to discuss which

generators are preserved by the S-folding/discrete gauging procedure. Recall that

SLp2,Zq transformations can be defined such that they commute with the generators

of b [265]. In particular rsk, bs � 0. Hence sk acts non-trivially only on the fermionic

subalgebra which we will discuss momentarily. Hence the subalegbra of b preserved

by the S-folding/discrete gauging is simply the centraliser of rk � R1
2 �R2 � 3R3

2 �
1
2

°3
i�1R

i
i� 3

2R
4
4 modulo k in b. Clearly rrk, sop5, 1qs � 0. On the other hand, using�

RJI , R
P
Q

�
� δJQR

P
I � δPI R

J
Q it can be shown that

rrk, RJI s �

$''''''&''''''%

0 I, J P t1, 2, 3u ,
0 I � J � 4 ,

2R4
I I P t1, 2, 3u , J � 4 ,

�2RJ4 I � 4 , J P t1, 2, 3u .

(F.1)

Therefore, the subalgebra of sup4q preserved by rk¥3 are given by the RJI with

I, J � 1, 2, 3 and R4
4. These generators span a sup3q ` up1q algebra. Note however

that, since we quotient by e
2πi
k
rk�sk , when k � 1, 2 the full sup4q is preserved.

279
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F.1.2 Odd Subalgebra

The odd subalgebra of psup2, 2|4q is spanned by nilpotent generators (supercharges)

which sit in representations of the bosonic subalgebra b. Any representation of b

can be decomposed into representations of a maximal compact subalgebra up1qE `
sup2q1 ` sup2q2 ` sup4q. The supercharges are then given by

QIα P
�

1

2
,2,1,4



, rQ 9αI P

�
1

2
,1,2,4



, (F.2)

SαI P
�
�1

2
,2,1,4



, rS 9αI P

�
�1

2
,1,2,4



. (F.3)

The action on the supercharges is then given by

rrk,QIαs �
$&%QIα I � 1, 2, 3

�3Q4
α I � 4

, rrk, rQ 9αIs �
$&%� rQ 9αI I � 1, 2, 3

3 rQ 9α4 I � 4
, (F.4)

rrk,SαI s �
$&%�SIα I � 1, 2, 3

3S4
α I � 4

, rrk, rS 9αIs �
$&%rS 9αI I � 1, 2, 3

�3 rS 9α4 I � 4
, (F.5)

On the other hand, sk acts on the supercharges by [265, 158, 250]

rsk,QIαs � �QIα , rsk, rQ 9αIs � rQ 9αI , (F.6)

rsk,SαI s � SαI , rrk, rS 9αIs � � rS 9αI . (F.7)

Therefore, for k ¥ 3, quotienting by e
2πi
k
prk�skq P Zk preserves 12 Poincaré su-

percharges and 12 conformal supercharges giving rise to N � 3 superconformal

symmetry in four dimensions. All in all, for k ¥ 3, a full sup2, 2|3q � psup2, 2|4q
superconformal algebra is preserved.

F.2 Indices of sup2, 2|2q Multiplets

Long multiplets AER,r,pj1,j2q are generic, unitary, modules of the sup2, 2|2q supercon-

formal algebra. The multiplets are labelled by the values of the highest weight

state (superconformal primary) pE,R, r, j1, j2q under the maximal bosonic subal-

gebra (5.29). When the some of representation labels take on certain values the

superconformal primary is annihilated by (linear combinations of) some of the su-

percharges QIα, rQ 9αI and the multiplet is said to be shortened. The superconformal
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index (5.35) counts short multiplets modulo those that can recombine into long

multiplets. The recombination rules are given by [266]

A2R�r�2j1�2
R,r,pj1,j2q � CR,r,pj1,j2q ` CR� 1

2
,r� 1

2
,pj1� 1

2
,j2q , (F.8)

A2R�r�2j2�2
R,r,pj1,j2q � CR,r,pj1,j2q ` CR� 1

2
,r� 1

2
,pj1,j2� 1

2q , (F.9)

A2R�j1�j2�2
R,j1�j2,pj1,j2q �ĈR,pj1,j2q ` ĈR� 1

2
,pj1� 1

2
,j2q ` ĈR� 1

2
,pj1,j2� 1

2q
` ĈR�1,pj1� 1

2
,j2� 1

2q
. (F.10)

By formally allowing the j1, j2 to take on the value �1
2 we can write

CR,r,p� 1
2
,j2q � BR� 1

2
,r� 1

2
,p0,j2q , CR,r,pj1,� 1

2q � BR� 1
2
,r� 1

2
,pj1,0q , (F.11)

ĈR,p� 1
2
,j2q � DR� 1

2
,p0,j2q , ĈR,pj1,� 1

2q � DR� 1
2
,pj1,0q , (F.12)

ĈR,p� 1
2
,� 1

2q � DR� 1
2
,p0,� 1

2q � DR� 1
2
,p� 1

2
,0q � B̂R�1 , (F.13)

for R ¥ 0. Equations (F.8)-(F.13) constitute the most general recombination rules

for any unitary N � 2 SCFT. We have that

IEr,p0,j2q � t2rppqqr 1� tppqq�1χ1pyq � t2ppqq�2

p�1q2j2p1� t3yqp1� t3y�1q χ2j2pyq r ¥ 2 , (F.14)

ID0,p0,j2q
� pqt2χ2j2pyq � t3χ2j2�1pyq � t5pqχ2j2�1pyq � t6χ2j2pyq

p�1q2j2p1� t3yqp1� t3y�1q , (F.15)

ID0,pj1,0q
� t4j1�4

ppqqj1�1

1� ppqqt2
p�1q2j1�1p1� t3yqp1� t3y�1q , (F.16)

ICR,rpj1,j2q �
t4�4R�6j1�2r

ppqqR�1�r

�
1� t2pq

� �
t2pq � t3χ1pyq � t4

pq

	
p�1q2j1�2j2�1 p1� t3yq p1� t3y�1qχ2j2pyq , (F.17)

IĈRpj1,j2q �
t6�4R�4j1�2j2

ppqqR�j1�j2

�
1� t2pq

� �
t
pqχ2j2�1pyq � χ2j2pyq

	
p�1q2j1�2j2p1� t3yqp1� t3y�1q , (F.18)

IEr,pj1,0q � IE0,p0,0q
� ICR,rpj1,j2q � IAER,rpj1,j2q � 0 . (F.19)

These may be obtained from [168] by conjugation (exchanging r Ñ �r, j1 Ø j2) and

setting τ � t2ppqq�1{2, σ � typpqq1{2, ρ � ty�1ppqq1{2. By applying (5.31)-(5.33) in

combination with (F.11)-(F.19) one can compute the contribution to the index of
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Shortening Conditions Multiplet

B1 Q1α|R, ryh.w. � 0 j1 � 0 E � 2R� r BR,rp0,j2q
B2

rQ2 9α|R, ryh.w � 0 j2 � 0 E � 2R� r BR,rpj1,0q
E B1 X B2 R � 0 E � r Erp0,j2q
E B1 X B2 R � 0 E � �r Erpj1,0q
B̂ B1 X B2 r � 0, j1, j2 � 0 E � 2R B̂R
C1 εαβQ1β|R, ryh.w.α � 0 E � 2� 2j1 � 2R� r CR,rpj1,j2q

pQ1q2|R, ryh.w. � 0 for j1 � 0 E � 2� 2R� r CR,rp0,j2q
C2 ε 9α 9β rQ2 9β|R, ryh.w.9α � 0 E � 2� 2j2 � 2R� r CR,rpj1,j2q

p rQ2q2|R, ryh.w. � 0 for j2 � 0 E � 2� 2R� r CR,rpj1,0q
C1 X C2 R � 0 E � 2� 2j1 � r C0,rpj1,j2q
C1 X C2 R � 0 E � 2� 2j2 � r C0,rpj1,j2q

Ĉ C1 X C2 r � j2 � j1 E � 2� 2R� j1 � j2 ĈRpj1,j2q
C1 X C2 X C1 X C2 R � 0, r � j2 � j1 E � 2� j1 � j2 Ĉ0pj1,j2q

D B1 X C2 r � j2 � 1 E � 1� 2R� j2 DRp0,j2q
D B2 X C1 �r � j1 � 1 E � 1� 2R� j1 DRpj1,0q

E X C2 r � j2 � 1, R � 0 E � r � 1� j2 D0,p0,j2q
E X C1 �r � j1 � 1, R � 0 E � �r � 1� j1 D0,pj1,0q

Table F.1: Shortening conditions and short multiplets sup2, 2|2q.
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the sup2, 2|3q multiplets of B̂rR1,R2s.

F.3 Reduction to Three Dimensions

Let us define q � e�β where β is the radii of the S1 factor. Following [295, 296, 5]

let us write

t � q1{3 , y � qη , p � qρ , q � qγ . (F.20)

We can rewrite the Elliptic Gamma functions as

Γ
�
qα; q1�η, q1�η� � 8¹

n,m�0

r�α� 2� np1� ηq �mp1� ηqsq
rα� np1� ηq �mp1� ηqsq

(F.21)

where rnsq � p1�qnq{p1�qq is the q-number. The q-number satisfies limqÑ1rnsq � n.

The β Ñ 0 limit corresponds to qÑ 1. Therefore

lim
qÑ1

Γ
�
qα; q1�η, q1�η� � 8¹

n,m�0

�α� 2� np1� ηq �mp1� ηq
α� np1� ηq �mp1� ηq . (F.22)

We define η � p1� b2q{p1� b2q. We then have

lim
qÑ1

Γ
�
qα; q1�η, q1�η� � sb

�
iQ

2
p1� αq



. (F.23)

where Q � b � b�1 and sbpxq is the double sine function. Let us now discuss the

limit applied to the index (5.72). We may rewrite (5.72) as

Iup1qZk pt, y, p, qq � 1

k

k�1̧

l�0

#
Γ
�
q

2{3�ρ�γ� 2πil
kβ ; q1�η, q1�η

	
� Γ

�
q

2{3�γ�ρ� 2πil
kβ ; q1�η, q1�η

	
Γ
�
q

2{3�2γ� 2πil
kβ ; q1�η, q1�η

	
�

8¹
n,m�0

�
�2πil

kβ � pn� 1qp1� ηq �mp1� ηq
�
q�

�2πil
kβ � np1� ηq �mp1� ηq � 2

�
q

+

�
8¹

n,m�0

�
�2πil

kβ � np1� ηq � pm� 1qp1� ηq
�
q�

2πil
kβ � np1� ηq �mp1� ηq � 2

�
q

+
.

(F.24)
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It is useful to consider splitting the sum over l � 0, 1, . . . , k � 1 in order to isolate

the l � 0 term as follows

Iup1qZk pt, y, p, qq � 1

k

k�1̧

l�1

#
Γ
�
q

2{3�γ�ρ� 2πil
kβ ; q1�η, q1�η

	

�
Γ
�
q

2{3�2γ� 2πil
kβ ; q1�η, q1�η

	
Γ
�
q

2{3�ρ�γ� 2πil
kβ ; q1�η, q1�η

	
±8
n�0

�
�2πil

kβ � np1� ηq
�
q

�
�2πil

kβ � np1� ηq
�
q

8¹
n,m�0

�
�2πil

kβ � np1� ηq �mp1� ηq
�
q�

�2πil
kβ � np1� ηq �mp1� ηq � 2

�
q

8¹
n,m�0

�
�2πil

kβ � np1� ηq �mp1� ηq
�
q�

2πil
kβ � np1� ηq �mp1� ηq � 2

�
q

+

� 1

k

Γ
�
q2{3�γ�ρ; q1�η, q1�η�Γ

�
q2{3�2γ ; q1�η, q1�η�

Γ
�
q4{3�ρ�γ ; q1�η, q1�η�±8

n�0 rnp1� ηqsq rnp1� ηqsq
.

(F.25)

Due the form of the denominator in the second line it is clear that in the q Ñ 1

limit the factors with l � 0 vanish. Moreover, when l � 0 no regularisation is

required. On the other hand the product from l � 0 requires regularisation. The

usual prescription is simply to drop the overall infinite contribution [295], rendering

the limit finite. This regularisation is of course independent of k. Moreover, following

the presciprition of [295], we identify

η � 1� b2

1� b2
, γ � 1

12
� σ

iQ
, ρ � 1

4
� σ

iQ
. (F.26)

Applying (F.23) we therefore have that

lim
qÑ1
Iup1qZk pt, y, p, qq � 1

k
sb

�
iQ

4
� σ



sb

�
iQ

4
� σ



. (F.27)

F.4 Vanishing of Zn Anomalies

One possible obstruction to the ideas that we have discussed in this paper is the

potential that the Zn � SLp2,Zq has ’t Hooft-anomaly. Since the symmetry is only

emergent at strong coupling checking the Zn-anomalies is a non-trivial. In [261]

Vafa and Witten studied the S-duality conjecture in topologically twisted N � 4
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SYM with gauge group G with LiepGq � g simply laced on a four-manifoldM. The

partition function for the topologically twisted theory is given by [261]

ZGpτq � |ZpGq|b1pMq�1
¸

vPH2pM,π1pGqq
Zvpτq , (F.28)

with ZpGq the center of G and

Zvpτq � e�2πiτs
¸

KPZ� 1
2
xv,vy

χ pMK,vq e2πiτK , Ẑvpτq :� ηpτq�wZvpτq , (F.29)

where v � w2pP q P H2pM, π1pGqq is the second Stiefel-Whitney class of the G-

bundle P over M, x�, �y the intersection form on H2pM, π1pGqq and MK,v is the

moduli space of rank K anti-self-dual instantons onM. Additionally [261, 297, 298,

299]

s � prank g� 1qχpMq{4 , w � �χpMq . (F.30)

Under modular transformations (5.12) the partition function transforms as

Ẑvpτ � 1q � e�πip2s�w{12�xv,vyqẐvpτq , (F.31)

Ẑv

��1

τ



� � 1

|ZpGq|b2pMq{2
¸

uPH2pM,ZpGqq
e2πixv,uyẐupτq . (F.32)

Let M � S1 � S3. Its Poincaré polynomial is given by PS1�S3pxq � 1� x� x3 � x4

and therefore b2pS1 � S3q � χpS1 � S3q � 0. By Poincaré duality H2pS1 � S3q �
H2pS1 � S3q � t1u in particular this fixes v � 0. Therefore, on M � S1 � S3, the

partition function (F.28) satisfies

ZGpτ � 1q � ZG

��1

τ



� ZGpτq � ZLGpτq . (F.33)

Since the partition function (F.28) is fully SLp2,Zq invariant, following the argu-

ments of [300], we can conclude that on S1 � S3 the Zn � SLp2,Zq symmetries

at τ fixed as in (5.15) of (twisted) N � 4 SYM have vanishing ’t Hooft anomaly.

Therefore we expect that they can be consistently gauged.
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F.5 S-Fold
?
� Discrete Gauging

In a few cases some of the theories that can be obtained from Zn discrete gauging

of N � 4 SYM are equivalent to some of the theories SNk,`,p1 . However, as we will

now show, in most cases this is a possibility only when the parent S-fold theory

SNk,` has enhanced N � 4 supersymmetry. The strategy is simply to compute the

possibilities which allow for (5.9) to be equal to (5.21). A more refined strategy, via

the comparison of the 1
8 -BPS partition functions has been employed in [301].

In the following we limit the discussion to only the connected part of the gauge

group of the parent theories.

g � upNq Equating (5.21) with (5.9) we have

N2 � kN2 � p2`� k � 1qN . (F.34)

This has solution only for k � ` � 1 with N arbitrary (SN1,1) and N � ` � 1 with k

arbitrary (S1
k,1). However, in both cases, the S-fold parent theory has an operator

of dimension 1 and therefore supersymmetry is automatically enhanced to N � 4

[247, 248]. Therefore, performing a Zp1 gauging to the S-fold parent is automatically

equivalent to making a Zn � Zp1 discrete gauging to N � 4 SYM with gauge algebra

up1q since they are the same theory! In both cases, after the discrete gauging, we

have the theory S1
k,1,p1 .

g � supN � 1q � AN Equating (5.21) with (5.9) we have

N2 � 2N � kN2 � p2`� k � 1qN . (F.35)

The only solutions are N � 1 ` � 2 with k arbitrary, N � 2 k � 3 ` � 1 and N � 3

k � 2 ` � 1. The parent S-fold theory S1
k,2 does not exist as an S-fold for k � 2

[247]. S2
3,1 and S3

2,1 do but they automatically enhance to N � 4 supersymmetry

and are conjectured to be equivalent to the g � sup3q and g � sop6q N � 4 theories

with gauge coupling τ � eπi{3 and τ � any [247].

g � sop2Nq � DN Equating (5.21) with (5.9) gives

2N2 �N � kN2 � p2`� k � 1qN . (F.36)
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Again we have solution for N � ` � 1, k arbitrary as well as for k � 2, ` � 1 with

N arbitrary. The first case is the same as for g � up1q. For k � 2 we always have

enhancement to N � 4, in our language these theories are SN2,1.

g � sop2N � 1q � BN Equating (5.21) with (5.9)

2N2 �N � kN2 � p2`� k � 1qN . (F.37)

Which has solution only for k � ` � 2 with N arbitrary, N � 1 ` � 2 with k

arbitrary, k � 4 ` � 1 N � 2 and k � 3 ` � 1 N � 3. In the first three cases

SN2,2, S1
k,2 and S2

4,1 always have enhancement to N � 4 [247]. They have the correct

spectrum of Coulomb branch operators to be equivalent to the g � BN or CN , B1

and B2 � C2 N � 4 theories respectively. In the final case we find that the S-fold

S3
3,1 has the same central charges as the N � 4 sop7q theory. Clearly they are not the

same theory, however due to the matching of central charges we cannot rule out the

possibility that the discrete gauging S3
3,1,p1 may yield the same theory as a Zn � Zp1

gauging of N � 4 sop7q theory. Our analysis (5.15) would seem to imply that this is

infact not the case however, since the S3
3,1 theory has a discrete Z3 global symmetry

while the sop7q theory can only have Z2,Z4,Z4,Z8 discrete symmetry groups.

g � sppNq � CN Since the degree of the Casimir invariants for sppNq are the same

as for sop2N � 1q the discussion is the same as above.

g � E6

78 � 36k � 6p2`� k � 1q . (F.38)

There is solution for k � ` � 2, the corresponding S6
2,2 has a dimension 2 Coulomb

branch operator and thereforeN � 4 enhancement this S-fold is the standard g � B6

or C6 perturbative orientifold.

g � E7

133 � 49k � 7p2`� k � 1q , (F.39)

There is solution only for k � 3, ` � 1. There is no N � 4 enhancement of the

corresponding S7
3,1 theory.

g � E8

248 � 64k � 8p2`� k � 1q , (F.40)
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There is solution only for k � 4, ` � 2. There is no N � 4 enhancement however

S8
4,2 does not exist as an S-fold [247].

g � F4

52 � 16k � 4p2`� k � 1q , (F.41)

There is solution only for k � 4, ` � 1. There is no N � 4 enhancement.

g � G2

14 � 4k � 2p2`� k � 1q , (F.42)

There is solution only for k � 6 ` � 1 and k � 4, ` � 2. In the first case S2
6,1 exists

as an S-fold but there is N � 4 enhancement and it is believed to be equal to the

G2 N � 4 SYM theory with fixed gauge coupling. In the second case the S-folds of

type S2
4,2 do not fall into the classification of [247] and are believed to not exist as

S-folds.
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Appendices for Chapter 6

G.1 Elliptic Genus Computation

The Elliptic genus for 2d N � p0, 2q theories was computed via localisation in

[223, 224]. Writing schematically it is given by

Ellpq, aq � TrR

�
p�1qF qH�

¹
af
�
. (G.1)

A N � p0, 2q chiral multiplet Φ in representations R of G� F contributes to Ell

EllΦ,Rpq, aq �
¹
ρPR

i
ηpqq

θ1paρ; qq . (G.2)

Similarly, a N � p0, 2q Fermi multiplet Ψ contributes

EllΨ,Rpq, aq �
¹
ρPR

i
θ1paρ; qq
ηpqq . (G.3)

Finally we present the formula for the N � p0, 2q Vector multiplet V

EllV,Gpq, aq � piηpqqq2 rankG
¹
αPG

i
θ1paα; qq
ηpqq , (G.4)

which is that of a Fermi multiplet in the adjoint representation of G. The vector

multiplets should be paired with the corresponding integration over the maximal

289
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torus of G
1

|W pGq|
¾

T rGs

rankG¹
n�1

dan
2πian

, (G.5)

which is essentially the Haar measure divided by the Vandermonde determinant.

W pGq is the Weyl group of G and the contour is taken over |a| � 1.

G.1.1 M-Strings Index without Defect

The partition functions corresponding to each N � p0, 2q multiplet read

EllY �
M¹
n�1

Kn¹
I�1

Kn�1¹
J�1

i
ηpQτ q

θ1

�
c
b

t
q

yn,I
yn�1,J

;Qτ

	 , (G.6)

EllrY �
M¹
n�1

Kn¹
I�1

Kn�1¹
J�1

i
ηpQτ q

θ1

�
1
c

b
t
q

yn,I
yn�1,J

;Qτ

	 , (G.7)

Ellζ �
M¹
n�1

Kn¹
I,J�1

i
θ1

�
q
t
yn,I
yn,J

;Qτ

	
ηpQτ q , (G.8)

EllΥ �
M¹
n�1

piηpQτ qq2Kn
¹
I�J

i
θ1

�
yn,I
yn,J

;Qτ

	
ηpQτ q , (G.9)

EllX �
M¹
n�1

Kn¹
I,J�1

i
ηpQτ q

θ1

�
q
yn,I
yn,J

;Qτ

	 , (G.10)

Ell rX �
M¹
n�1

Kn¹
I,J�1

i
ηpQτ q

θ1

�
t�1 yn,I

yn,J
;Qτ

	 , (G.11)

Ellλ �
M¹
n�1

Kn¹
I�1

Kn�1¹
J�1

i
θ1

�
c
?
qt

yn,I
yn�1,J

;Qτ

	
ηpQτ q , (G.12)

Ellrλ �
M¹
n�1

Kn¹
I�1

Kn�1¹
J�1

i
θ1

�?
qt
c

yn,I
yn�1,J

;Qτ

	
ηpQτ q , (G.13)

Ellφ �
M¹
n�1

Kn¹
I�1

N¹
A�1

i
ηpQτ q

θ1

�b
q
t
yn,I
xn,A

;Qτ

	 , (G.14)
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Ellrφ �
M¹
n�1

Kn¹
I�1

N¹
A�1

i
ηpQτ q

θ1

�b
q
t
xn,A
yn,I

;Qτ

	 , (G.15)

Ellψ �
M¹
n�1

Kn¹
I�1

N¹
A�1

i
θ1

�
c�1 yn,I

xn�1,A
;Qτ

	
ηpQτ q , (G.16)

Ell rψ �
M¹
n�1

Kn¹
I�1

N¹
A�1

i
θ1

�
c�1 xn�1,J

yn,I
;Qτ

	
ηpQτ q . (G.17)

G.1.2 M-Strings Index with Defects

We now list the result of performing the Zk orbifold.

EllZkY �
M¹
n�1

k¹
i�1

Kni¹
I�1

Kpn�1qpi�1q¹
J�1

i
ηpQτ q

θ1

�
c
b

t
q

yni,I
ypn�1qpi�1q,J

;Qτ

	 , (G.18)

EllZkΥ �
M¹
n�1

k¹
i�1

piηpQτ qq2Kni
¹
I�J

i
θ1

�
yni,I
yni,J

;Qτ

	
ηpQτ q , (G.19)

EllZkrY �
M¹
n�1

k¹
i�1

Kni¹
I�1

Kpn�1qi¹
J�1

i
ηpQτ q

θ1

�
c�1

b
t
q

yni,I
ypn�1qi,J

;Qτ

	 , (G.20)

EllZkζ �
M¹
n�1

k¹
i�1

Kni¹
I�1

Knpi�1q¹
J�1

i
θ1

�
q
t

yni,I
ynpi�1q,J

;Qτ

	
ηpQτ q , (G.21)

EllZkX �
M¹
n�1

k¹
i�1

Kni¹
I�1

Knpi�1q¹
J�1

i
ηpQτ q

θ1

�
q

yni,I
ynpi�1q,J

;Qτ

	 , (G.22)

EllZkrX �
M¹
n�1

k¹
i�1

Kni¹
I,J�1

i
ηpQτ q

θ1

�
t�1 yni,I

yni,J
;Qτ

	 , (G.23)

EllZkλ �
M¹
n�1

k¹
i�1

Kni¹
I�1

Kpn�1qi¹
J�1

i
θ1

�
cqt

yni,I
ypn�1qi,J

;Qτ

	
ηpQτ q , (G.24)

EllZkrλ �
M¹
n�1

k¹
i�1

Kni¹
I�1

Kpn�1qpi�1q¹
J�1

i
θ1

�
qt
c

yn,I
ypn�1qpi�1q,J

;Qτ

	
ηpQτ q , (G.25)
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EllZkφ �
M¹
n�1

k¹
i�1

Kni¹
I�1

Nni¹
A�1

i
ηpQτ q

θ1

�b
q
t
yni,I
xni,A

;Qτ

	 , (G.26)

EllZkrφ �
M¹
n�1

k¹
i�1

Kni¹
I�1

Nnpi�1q¹
A�1

i
ηpQτ q

θ1

�b
q
t

xnpi�1q,A

yni,I
;Qτ

	 , (G.27)

EllZkψ �
M¹
n�1

k¹
i�1

Kni¹
I�1

Npn�1qi¹
A�1

i
θ1

�
c�1 yni,I

xpn�1qi,A
;Qτ

	
ηpQτ q , (G.28)

EllZkrψ �
M¹
n�1

k¹
i�1

Kni¹
I�1

Npn�1qpi�1q¹
A�1

i
θ1

�
c�1 xpn�1qpi�1q,A

yni,I
;Qτ

	
ηpQτ q . (G.29)

Clearly each EllZkP is invariant under the action (6.57).

G.2 Review of the 5d Index Localisation

We describe in more detail, following [41], the localisation of the superconformal

index

Z ps, p, v,qAq � TrHS4

�
p�1qF e�βδs�2JR�2JRR p�2JLv2JRL

N¹
A�1

qKAA

�
. (G.30)

It receives contributions only from those states which satisfy the BPS condition

(6.67). After Wick rotation to Euclidean time X5 � iτE the index Z admits a path

integral representation on S1 � S4

Zps, p, v,qAq �
»
CpS1�S4q

rDΦse�SErΦs . (G.31)

The insertion of chemical potentials results in twisted boundary conditions upon

going around the S1

ΦpτE � βq � p�1qF e�βp�2JR�3JRR qs�2JR�2JRR p�2JLv2JRL ΦpτEq . (G.32)

The twisted boundary conditions (G.32) may be taken into account by shifting time

derivatives

BτE Ñ B̂τE � BτE � p2� iε�qJR � p3� iε�qJRR � iε�JL � 2mJRL (G.33)
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and giving periodic boundary conditions to all fermions to account for the insertion

of p�1qF . To perform the localisation we deform the Lagrangian by the rQ exact term

LÑ L� t
 rQ, V ( , (G.34)

t may then be taken to infinity in which case the path integral localises around

the set of saddle points of trQ, V u � 0. The supersymmetry transformation rQ � rS is

parametrised by the Killing spinor

ε � εq � εs � e
1
2
θ1γ51

e
1
2
θ2γ12

e
1
2
θ3γ23

e
1
2
θ4γ34 �

εq0 � γ5εs0
�
. (G.35)

where εq0, εs0 are constant spinors corresponding to rQ, rS. ε satisfies the Killing spinor

equation

∇̂µε � 1

2
γµγ

5ε̃ (G.36)

where ∇̂ denotes the covariant derivative on S4�S1 with the twisted time derivative

(G.33) and ε̃ � �εq � εs. The square of the supercharge rQ� rS is then given by

δ2
ε � �iL B

BτE

� iG� ε�JR � ε�JRR � ε�JL � 2mJRL (G.37)

where Lv denotes the Lie derivative and G denotes a gauge transformation. We then

choose V such that

trQ, V u � δε

�
pδελq: λ

	
(G.38)

upon taking the t Ñ 8 limit the path integral for the vector multiplets localises

onto the critical points of the potential

pδελq: λ �FτEµF τEµ � cos2 θ1

2

�
F�
ij � ω�ijφ

	2
� sin2 θ1

2

�
F�
ij � ω�ij

	2

�
�
∇̂µφ

	2
�D2

(G.39)

which is positive semi-definite (recall that in Euclidean signature D is pure imagi-

nary) F�
ij � 1

2 pFij 	 �4Fijq and

ω�ij �
i

2 sin2 θ1
2

¯̃ε�γ5γijε� , ω�ij �
i

2 cos2 θ1
2

¯̃ε�γ5γijε� , (G.40)

ω�ijω
�ij � ω�ijω

�ij � 1 . (G.41)
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Here ε� � 1
2

�
1� γ5

�
ε, ε̃� � 1

2

�
1� γ5

�
ε̃. The classical saddle points of the poten-

tial (G.39) are given by FτEµ � DA � 0 while φ is covariantly constant everywhere

on S4. On the other hand, by the Bianchi identity, the second and third terms

of (G.39) imply that away from the north and south poles we have Fij � φ � 0.

Note also that (anti-)self-dual instantons (F� � 0) F� � 0 can be localised at

(north)south-pole. The index hence factorises as in (6.69)

Z �
» N¹
A�1

rdaAsZsouth paA,n, ε1, ε2,m,qAqZnorth

�
aA,n, ε1, ε2,m,q

�1
A

�
(G.42)

After the gauge fixing we have a BRST operator rQ � rS Ñ Q and may make a

cohomological formulation of the supercharge Q. The bosonic and fermionic fields

may be regarded as differential forms on a supermanifold X such that they form a

Q-complex

QΦb,f � Φ1
f,b , QΦ1

f,b � Q2Φb,f (G.43)

and
Q2 �L B

BτE

� a

β
� iε�pJR � JRR q � iε�JL � 2imJRL

�L B
BτE

� a

β
� iε1pJ12 � JRR q � iε2pJ34 � JRR q � 2imJRL .

(G.44)

We now study the Q2-equivariant cohomology of X . After expanding the gauge

fixed Q invariant terms to quadratic order the Gaussian integrals may be evaluated.

Due to cancelations due to pairing by the Q-complex (G.43) the 1-loop contributions

take the form [41]

Z1-loop �
d

detcokerDQ2|f
detkerDQ2|b (G.45)

where D is the quadratic operator in (G.38). Z1-loop may computed using the

equivariant Atiyah-Singer index theorem. The fixed point of the torus action of Q2

(G.44) are the north and south poles. In a neighbourhood of the north pole D is

isomorphic to the anti-self-dual complex pd, d�q

Ω0 dÝÑ Ω1 d�ÝÝÑ Ω2� , (G.46)

while at the south pole D is isomorphic to the self-dual complex pd, d�q

Ω0 dÝÑ Ω1 d�ÝÝÑ Ω2� , (G.47)
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where pΩ2�q Ω2� denotes the space of (anti-)self-dual 2-forms. For concreteness let

us focus on the south pole. At the south pole we may choose local coordinates z1, z2

parametrising C2. The torus action acts on those coordinates by

pz1, z2q ÞÑ peiε1z1, e
iε2z2q. Furthermore we expand the elements of the self-dual

complex in eigenmodes of the circle momenta Φ � °
pPZ Φpe

2πip
β . The equiviarint

index for the vectors multiplets is then given by

indvecD � � 1� eiβε�

2p1� εiε1qp1� εiε2q
Ņ

A�1

¸
n�m

e
i
β
paA,n�aA,mq ¸

pPZ
e

2πip
β . (G.48)

One may compute the 1-loop determinants for the hypermultiplets by localisation.

In that case the differential operator D for the hypermultiplet is isomorphic to a

Dirac complex

Ωp 1
2
,0q DDiracÝÝÝÝÑ Ωp0, 12q . (G.49)

The equivariant index at the south pole reads

indhyp � eiε�{2

p1� eiε1qp1� eiε2q
Ņ

A�1

MA̧

m�1

MA�1¸
n�1

e
i
β
paA,n�aA�1,mq�im

¸
pPZ

e
2πi
β
p
. (G.50)

G.3 Refined Topological String Computation

The partition function for M M5-branes on AN�1 is equivalent to the refined topo-

logical string partition function of certain Calabi-Yau 3-folds XM,N

Ztop
refined pXM,N q � ZM-theory

����pAN�1 � R4q 
 T 2l jh n
M M5-branes

�R

��� (G.51)

�
�

N¹
A�1

Z
pAq
Up1q

�
Z
AN�1

M , (G.52)

where Z
pAq
Up1q is the partition function for a single M5-brane. The Calabi-Yau 3-

folds arise as the M-theory lift of the dual pp, qq-brane web construction. The pp, qq
web is obtained by compactifying the setup of Table 6.1 along X6. This gives rise

to the 5d quiver gauge theories NM,N supported on the D4-branes with N � 1

supersymmetry. The defects become D4’-branes. T-dualising along the Taub-Nut

circle X8 results the setup of Table G.1 After turning on mass deformation we end
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Cε1 Cε2 S1 R S1 R3

X1 X2 X3 X4 X5 X7 X8 X9 X10 X11

N NS5 – – – – – – � � � �
M D5 – – – – – � – � � �
K F1 � � � � – – � � � �
k D31 � � – – – � � – � �

Table G.1: Type-IIB pp, qq-brane web.

up with a pp, qq-brane web. We may now lift the IIB setup on S1 to M-theory on

T 2. pp, qq-branes corresponds to the degeneration of the pp, qq cycle of the T 2 as we

vary along the X5, X7 base. Hence the pp, qq-brane web lifts to M-theory on a non-

compact, elliptically fibered CY3 whose toric diagram is given by the pp, qq-web itself.

We compute the refined A-model open string amplitude for the strip geometry using

the refined topological vertex formalism [302, 187]. The refined topological vertex

is labelled by three Young diagrams and is given by

Cλµνpt,qq �

t�
||µT||2

2 q
||µ||2�||ν||2

2 rZνpt, qq¸
η

�q
t

	 |λ|�|η|�|µ|
2

sλT{ηpt�ρq�νqsµ{ηpt�ν
T
q�ρq (G.53)

where ρ � t�1{2,�3{2,�5{2, . . . u, sλ{ηpxq is the skew Schur function and

rZνpt, qq � ¹
pl,pqPν

1

1� qνl�ptνT
p �l�1

. (G.54)

q, t are related torus action pz1, z2q ÞÑ pe2πiε1z1, e
2πiε2z2q on C2 by

q � e2πiε1 , t � e�2πiε2 . (G.55)

The framing factors are

fνpt, qq � p�1q|ν|t ||ν
T||2

2 q
�||ν||2

2 , rfνpt, qq � �
t

q


 |ν|
2

fνpt, qq . (G.56)
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λ2A�2

QA�1λ2A�3

λ2A

QAλ2A�1

λ2A�2

QA�1λ2A�1

λ2A�4

µT
A�1

µT
A

µT
A�1

νA�1

νA

νA�1

Qτ

QτA�1

QτA

Q1
τA

Q1
τA�1

Figure G.1: Strip geometry which builds the partition function of for the AN�1

geometry. Blue lines denote the direction of the refined topological vertex. The
dotted lines indicate the fact that we are dealing with the partial compactification of
the strip geometry.
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G.3.1 Without Defect - M-Strings Review

Applying the standard rules of the refined topological vertex formalism [187] the

partition function for the strip geometry Figure G.1 is

Zµ1,...µN
ν1...νN

pQA, QτA ,Q1
τA

; t, qq �
¸
tλu

N¹
A�1

!
p�QAq|λ2A�1| ��Q�1

A QτA
�|λ2A|

�CλT
2Aλ

T
2A�1µ

T
A

�
t�1, q�1

�
Cλ2A�2λ2A�1νA

�
q�1, t�1

� )
,

(G.57)

note that, since we partially compactify the strip geometry (dotted lines in the

figure) we identify the indices A � A�N . Qτ �
±N
A�1QτA �

±N
A�1Q

1
τA

. Inserting

the explicit expression for the vertex we have

Zµ1,...µN
ν1...νN

pQA, QτA , Q1
τA

; t, qq �
N¹
A�1

#
q�

||µT
A||

2

2 t�
||νA||

2

2 rZµT
A

�
t�1, q�1

�
rZνA �q�1, t�1

� ¸
tλu,tσu

�
p�QAq|λ2A�1|

�
�QτA
QA


|λ2A|
sλ2A{σ2A

�
tρqµ

T
A

	
sλT

2A�1{σ2A

�
qρ�

1
2 tµA�

1
2

	
sλT

2A�2{σ2A�1
pqρtνAq

sλ2A�1{σ2A�1

�
qν

T
A� 1

2 tρ�
1
2

	�+
.

(G.58)

The method for simplifying this product was given in [210, 209]. Consider

GpNqpXA, YA, ZA,WA;QA, QτAq :�
N¹
A�1

�
p�QAq|λ2A�1|

��QτA
QA


|λ2A|

�sλ2A{σ2A
pXAq sλT

2A�2{σ2A�1
pYAq sλT

2A�1{σ2A
pZAq sλ2A�1{σ2A�1

pWAq
	 (G.59)

with the products over A are defined modulo N . We now apply repeatedly the

identities (A.50), (A.51) and (A.52). We have

GpNqpXA, YA, ZA,WA;QA, QτAq �
N¹
A�1

��Q�1
A QτA

�|σ2A| p�QAq|σ2A�1|

� sσT
2A{λ2A

pYA�1q sσT
2A�1{λT

2A

��Q�1
A QτAXA

�
sσT

2A{λT
2A�1

p�QAWAq

� sσT
2A�1{λ2A�1

pZAq
8¹

l,p�1

�
1�Q�1

A QτAXA;lYA�1;p

� p1�QAZA;lWA;pq

(G.60)
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GpNqpXA, YA, ZA,WA;QA, QτAq �
N¹
A�1

p�QτAq|λ2A�1|

�
8¹

l,p�1

�
1�Q�1

A QτAXA;lYA�1;p

� p1�QAZA;lWA;pq
p1�QτAWA;lYA�1;pq

�
1�QAQ

�1
A�1QτA�1XA�1;lZA;p

�
� sλT

2A�1{σT
2A
pYA�1q sλ2A{σT

2A
p�QτAWAq sλT

2A{σT
2A�1

p�QA�1ZA�1q
� sλ2A�1{σT

2A�1

��Q�1
A�1QτA�1XA�1

�
(G.61)

GpNqpXA, YA, ZA,WA;QA, QτAq �
N¹
A�1

p�QτAq|σ2A|

�
8¹

l,p�1

# �
1�Q�1

A QτAXA;lYA�1;p

� p1�QAZA;lWA;pq
p1�QτAWA;lYA�1;pq

�
1�QAQ

�1
A�1QτA�1XA�1;lZA;p

�
� p1�QA�1ZA�1QτAWAq

�
1�Q�1

A�1QτAQτA�1XA�1YA�1

�+
� sσ2A{λT

2A�1

��Q�1
A�1QτA�1XA�1

�
sσ2A{λ2A

��QτA�1ZA�1

�
� sσ2A�1{λT

2A
pQτAWAq sσ2A�1{λ2A�1

pQτAYA�1q

(G.62)

GpNqpXA, YA, ZA,WA;QA, QτAq �
N¹
A�1

��Q�1
A QτA

�|λ2A| p�QAq|λ2A�1|

sλT
2A�1{σ2A

�
QA�1Q

�1
A QτAZA�1

�
sλ2A{σ2A

�
Q�1
A�1QτA�1QAXA�1

�
sλ2A�1{σ2A�1

�
QτA�1WA�1

�
sλT

2A�2{σ2A�1
pQτAYA�1q

8¹
l,p�1

# �
1�Q�1

A QτAXA;lYA�1;p

� p1�QAZA;lWA;pq
p1�QτAWA;lYA�1;pq

�
1�Q�1

A�1QτA�1QAXA�1;lZA;p

�
�
1�Q�1

A�1QτAQτA�1YA�1;lXA�1;p

��
1�QτAQA�1Q

�1
A�1QτA�1XA�1;lZA�1; p

�
p1�QτAQA�1WA;lZA�1;pq�
1�QτA�1QτAYA�1;lWA�1;p

�+ .

(G.63)
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Finally, this can be written as

GpNqpXA, YA, ZA,WA;QA, QτAq �
N¹
A�1

8¹
l,p�1

# �
1�Q�1

A QτAXA;lYA�1;p

� p1�QAZA;lWA;pq
p1�QτAWA;lYA�1;pq

�
1�Q�1

A�1QτA�1QAXA�1;lZA;p

�
�

�
1�Q�1

A�1QτAQτA�1YA�1;lXA�1;p

� p1�QτAQA�1WA;lZA�1;pq�
1�QτAQA�1Q

�1
A�1QτA�1XA�1;lZA�1; p

� �
1�QτA�1QτAYA�1;lWA�1;p

�+

GpNq
�
QτA�1QAXA�1

QA�1
, QτAYA�1,

QA�1QτAZA�1

QA
, QτA�1WA�1;QA, QτA



(G.64)

The steps (G.60)-(G.63) may then be iterated N � 1 more times until one finds

GpNqpXA, YA, ZA,WA;QA, QτAq �
GpNq pQτXA, QτYA, QτZA, QτWA;QA, QτAq

�
N¹

A,B�1

8¹
l,p�1

$&%
�
1�QτQ

�1
ABXA;lYB;p

� �
1�Q2

τQ
�1
ABXA;lYB;p

��
1� rQ1

ABZA;lXB;p

	�
1�Qτ rQ1

ABZA;lXB;p

	
p1�QABZA;lWB;pq p1�QτQABZA;lWB;pq�
1� rQABYA;lWB;p

	�
1�Qτ rQABYA;lWB;p

	
,.-

(G.65)

here Qτ �
±N
A�1QτA . Now we perform (G.60)-(G.65) an infinite number of times

and use the fact that

lim
rÑ8G

pNq pQrτXA, Q
r
τYA, Q

r
τZA, Q

r
τWA;QA, QτAq �

8¹
r�1

1

1�Qrτ
, (G.66)

provided |Qτ |   1. Hence

GpNqpXA, YA, ZA,WA;QA, QτAq �
8¹

r,l,p�1

p1�Qrτ q�N
2

N¹
A,B�1

8¹
r,l,p�1

�
1�QrτQ

�1
ABXA;lYB;p

� �
1�Qr�1

τ QABZA;lWB;p

��
1�Qr�1

τ
rQ1
ABZA;lXB;p

	�
1�Qr�1

τ
rQABYA;lWB;p

	 . (G.67)
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All in all, the partition function for the strip geometry reads

Zµ1...µN
ν1...νN

pQA, QτA , Q1
τA

; t, qq �
N¹
A�1

q�
||µT
A||

2

2 t
�||νA||

2

2 rZµT
A
pt�1, q�1q rZνApq�1, t�1q

�
N¹

A,B�1

8¹
l,p,r�1

�
1�Qr�1

τ QABt
µA;l�p�1{2qν

T
B;p�l�1{2

	
p1�Qrτ q

�
1�Qr�1

τ
rQBAtνB;l�p�1qν

T
A;p�l

	
�

N¹
A,B�1

8¹
l,p,r�1

�
1�QrτQ

�1
ABt

νB;l�p�1{2qµ
T
A;p�l�1{2

	
�

1�Qr�1
τ

rQ1
ABt

µA;l�pqµ
T
B;p�l�1

	

(G.68)

where we define Qτ :� ±N
A�1QτA . We may then define the domain wall partition

function

Dµ1...µN
ν1...νN

pQA, QτA , Q1
τA

; t, qq :� Zµ1...µN
ν1...νN pQA, QτA ; t, qq
ZH...H
H...H pQA, QτA ; t, qq

(G.69)

which may be expressed in terms of Nν,µpQ; q, tq (A.33)

Dµ1...µN
ν1...νN

pQA, QτA , Q1
τA

; t, qq �
N¹
A�1

q�
||µT
A||

2

2 t
�||νA||

2

2 rZµT
A
pt�1, q�1q rZνApq�1, t�1q

�
N¹

A,B�1

8¹
r�1

NµAνB
�
Qr�1
τ QAB

b
t
q ; t, q

	
NνBµA

�
QrτQ

�1
AB

b
t
q ; t, q

	
NµAµB

�
Qr�1
τ

rQ1
AB; t, q

	
NνAνB

�
Qr�1
τ

rQAB t
q ; t, q

	
(G.70)

where

QAB � QA

A�1¹
i�1

Qτi

N¹
j�B

Qτj mod Qτ , (G.71)

rQAB �
$'''&'''%
±A�1
i�B Qτi A ¡ B ,

Qτ A � B ,

Qτ {
±B�1
i�A Qτi A   B ,

(G.72)

rQ1
AB �

QA
QB

rQAB . (G.73)
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The M5-brane partition function on AN�1 singularity is then given by

ZM5

�
Qn,A, Qτn,A , Qf,n,A; t, q

� � Zrel.Z
AN�1

M

�
Qn,A, Qτn,A , Qf,n,A; t, q

�
(G.74)

where

Z
AN�1

M

�
Qn,A, Qτn,A , Qf,n,A; t, q

� �¸
t~µnu

�
M�1¹
n�1

N¹
A�1

p�Qf,n,Aq|µn,A|
�
Z
AN�1

M,t~µnu
�
Qn,A, Qτn,A ; t, q

�
,

(G.75)

Z
pnq
Up1q :� ZH...H

H...H
�
Qn,A, Qτn,A , Q

1
τn,A

; t, q
	
, (G.76)

Zrel. �
M¹
n�1

Z
pnq
Up1q , (G.77)

and

Z
AN�1

M,~µn

�
Qn,A, Qτn,A ; t, q

� � DH...H
µ1,1...µ1,N

�
Q1,A, Qτ1,A , Q

1
τ1,A

; t, q
	

�D
µ1,1...µ1,N
µ2,1...µ2,N

�
Q2,A, Qτ2,A , Q

1
τ2,A

; t, q
	

� � � � �D
µM�1,1...µM�1,N

H...H
�
QM,A, QτM,A , Q

1
τM,A

; t, q
	
.

(G.78)

Note that the gluing requires

Q1
τn�1,A

� Qτn,A ùñ rQ1
n�1,AB � rQn,AB . (G.79)

It may be shown that [209] (G.78) may be written as

Z
AN�1

M �¸
tµn,Au

M�1¹
n�1

N¹
A�1

�
Q
|µn,A|
f,n,A

	 ¹
pl,pqPµn,A

N¹
B�1

θ1 pzn,ABpl, pq|τq θ1 pwn,ABpl, pq|τq
θ1 pun,ABpl, pq|τq θ1 pvn,ABpl, pq|τq

(G.80)

where

e2πizn,ABpl,pq � Q�1
n�1,ABt

�µn,A;l�p�1{2qµ
T
n�1,B;p�l�1{2 (G.81)

e2πiwn,ABpl,pq � Q�1
n,BAt

µn,A;l�p�1{2qµ
T
n�1,B;p�l�1{2 (G.82)

e2πiun,ABpl,pq � pQ�1
n,BAt

µn,A;l�pqµ
T
n,B;p�l�1 (G.83)

e2πivn,ABpl,pq � pQ�1
n,ABt

µn,A;l�p�1q�µ
T
n,B;p�l (G.84)
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and

Qf,n,A �
�q
t

	N�1
2
Qf,n,A

�
N¹
A�1

Qn,A

�
, pQn,AB �

$&%1 A � B ,rQn,AB A � B .
(G.85)

The authors of [209] were, remarkably, able to show

Z
AN�1

M � Zstring (G.86)

where Zstring is the same as in (6.36).

G.3.2 With Minimal Defect

Let us consider the minimal type defects in the A0 theory. By minimal we mean the

defects of type

ρ � rpM � kq, 1, . . . , 1l jh n
k times

s . (G.87)

The relation between the string Elliptic genus and refined topological partition func-

tion in the presence of a defect of type 2 � 1� 1 has been studied in [284]. We can

compute the domain wall partition function (G.70) in the presence of a D3’-brane

ending on D5-brane. The effect of the Lagrangian brane is to insert the factor

trσT
1
pXq trσT

2

�
X�1

� � sσT
1
pxq sσT

2

�
x�1

�
. (G.88)

Where we assume that the brane has framing factor exponents p � 1. The refined

open topological string amplitude for the strip geometry with N � 1 with a single

Lagrangian brane

pZµν pQ1, Qτ , rQ, x; t, qq �¸
σ1,σ2,λ1,λ2

"
p�Q1q|λ2| ��Q�1

1 Qτ
�|λ1| �� rQ�1Q�1

1 Qτ

	|σ1| �� rQ	|σ2|

� sσT
1
pxq sσT

2

�
x�1

�
CpλT

1 bσ1qλT
2 µ

Tpt�1, q�1qCpλ1bσ2qλ2νpq�1, t�1q
)
.

(G.89)

From (G.89) after expanding out the topological vertex we have
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Q1

µT

ν

σ1

σ2

Qτ
Q�1

1 Qτ

Q�1
1 Qτ rQ�1

rQ

Figure G.2: Left: Assignment of Kähler parameters for the Lagrangian brane Right:
Strip geometry for the A0 singularity with a single Lagrangian brane corresponding
to the defect. The blue lines denote the preferred direction of the refined topological
vertex. The red lines denote the direction periodic identification.
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(G.90)

Using the identity (A.49) we have

pZµν pQ1, Qτ1 ,
rQ; t, qq � t�

||ν||2

2 q�
||µT||2
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�
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(G.91)
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Now apply the identity (A.48) to obtain

pZµν pQ1, Qτ1 ,
rQ; t, qq � t�

||ν||2

2 q�
||µT||2

2 rZµTpt�1, q�1q rZνpq�1, t�1q¸
λ1,λ2,η1,η2,γ1,γ2

#
p�Q1q|λ2|

��Qτ1
Q1


|λ1|
sγ1{λ1

�
Qτ1rQQ1
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q
x



sγ1{η2
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tρqµ

T
	

sγT
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� rQcq

t
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sλT

2 {η2

�c
q

t
tµqρ



sγT

2 {η1
pqρtνq sλ2{η1
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T
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*
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(G.92)

Therefore let us consider

GpX,Y, Z,W,A,B; a, bq �
¸

λ1,λ2,η1,η2,γ1,γ2

!
paq|λ1| pbq|λ2| sγ1{λ1

pAq

sγT
2 {λT

1
pBq sγ1{η2

pXq sλT
2 {η2

pY q sγT
2 {η1

pZq sλ2{η1
pW q

) (G.93)

GpX,Y, Z,W,U,A,B; a, bq �¸
λ1,λ2,η1,η2,γ1,γ2

!
paq|γ1| pbq|γ1| sλ1{γ1

paXq sλT
1 {γ2

pZq sηT
2 {λT

2
pW q

sηT
1 {λ2

pbY q sη1{γ2
pBq sη2{γ1

pbAq
) 8¹
l,p�1

p1� bYlWpq
p1�AlXpq p1�BlZpq

(G.94)

GpX,Y, Z,W,U,A,B; a, bq �
¸

λ1,λ2,η1,η2,γ1,γ2

!
paq|η2| pbq|λ1| sγT

1 {λ1
pbZq

� sγT
2 {λT
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paXq sλ2{ηT
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paW q sλT
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2 {η1
pbY q

)
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8¹
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p1�AlXpq p1�BlZpq

(G.95)

GpX,Y, Z,W,U,A,B; a, bq �
¸

λ1,λ2,η1,η2,γ1,γ2

!
paq|λ2| pbq|λ1| sλ1{γT

1
paW q

� sλT
1 {γT

2
pbY q sη2{λ2

paBq sη2{γT
1
pbZq sη1{λT
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pbAq sη1{γT
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)
�

8¹
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p1�AlXpq p1�BlZpq p1� abWlZpq p1� abYlXpq

(G.96)

Which is, again, rather similar to our original expressions:

GpX,Y, Z,W,A,B; a, bq � G pbZ, aW, aX, bY, aB, bA; a, bq

�
8¹

l,p�1

p1� bYlWpq p1� aXlZpq p1� bAlWpq p1� bYlBpq p1� bBlApq
p1�AlXpq p1�BlZpq p1� abWlZpq p1� abYlXpq

(G.97)
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So, repeating steps (G.94) to (G.96) again we have that

GpX,Y, Z,W,A,B; a, bq � G pQτX,QτY,QτZ,QτW,QτA,QτB; a, bq

�
8¹

l,p�1
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(G.98)

where Qτ :� ab so again iterating the steps (G.94) to (G.98) an infinite number of

times and using

lim
rÑ8G pQ

r
τX,Q

r
τY,Q

r
τZ,Q

r
τW,Q

r
τA,Q

r
τB; a, bq �

8¹
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1

1�Qrτ
(G.99)

we arrive at
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As before, we define the domain wall partition function; it turns out that it factorises

in the following fashion

pDµ
ν pQ1, Qτ , rQ, x; t, qq :�

pZµν pQ1, Qτ , rQ; t, qqpZH
H pQ1, Qτ , rQ; t, qq

� Dµ
ν pQ1, Qτ ; t, qqpdµν pQ1, Qτ , rQ, x; t, qq .

(G.102)

Where D is given by (G.70) and
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(G.104)

is the contribution of the defect to the partition function. It does not quite assemble

into a nice form in terms of θ1 functions. However, in the unrefined q � t limit:

pdµν pQ1, Qτ , rQ, x; q, qq �
8¹
p�1

#
q
|µ|�|ν|

2

¹
pl,qqPν
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¹
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1
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�
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1
rQ�1ql�1{2�qxp;Qτ

	+
(G.105)

We may then compute the M5-brane partition function in the presence of the defect

labelled by the partition (G.87) by gluing together k domain wall partitions of type

(G.102) with M � k of type (G.70). This builds the theory labelled by partition
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ρ � rM � k, 1, . . . , 1l jh n
k

s. Hence we write

ZM5,ρ �
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Z
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��
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Z
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Up1q,ρ

�
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where,

Z
pnq
Up1q,ρpQn,1, Qτ , rQn, xn; t, qq � pZH

H pQn,1, Qτ , rQn, xn; t, qq (G.107)
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(G.108)

By the factorisation (G.103) it is clear that
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Appendix H

Hall-Littlewood Index and

Hilbert Series

In this Appendix we discuss the relationship between the Hall-Littlewood limit of

the index and the Higgs-branch Hilbert series. For g � AN�1 Class S theories

associated to genus g � 0 theories it is conjectured that these two quantities are

equal. For g ¥ 1 it is known to no longer hold.

Here we will compare these two quantities, restricting most of our attention to

g � AN�1 class S SCFTs associated to g � 1 Riemann surfaces with a collection of

minimal punctures.

H.1 The Higgs Branch of Class S Theories

For N ¥ 2 SCFTs the Higgs branch is reached by giving zero vev to operators

with r � 0 while allowing vevs for those operators with r � j1 � j2 � 0. For

theories with N ¡ 2 this depends on a choice of embedding sup2, 2|2q ãÑ sup2, 2|N q.
The Higgs branch is protected from quantum corrections and thus, when the theory

has a Lagrangian description can be described as a purely classical object. The

coordinate ring of the Higgs-branch is known as the Higgs-branch chiral ring. By

abuse of notation we will identify the Higgs-branch as a complex affine variety with

it’s chiral ring. The Higgs branch (chiral ring) is given by

HB � tOi| rQI9αOi � 0 ,MµνOi � 0 , rOi � 0u . (H.1)

309



310 HALL-LITTLEWOOD INDEX AND HILBERT SERIES

For superconformal theories the Higgs branch is parametrised by the top components

of B̂R multiplets which have E � 2R and r � j1 � j2 � 0, where R is the Cartan

of the sup2qR R-symmetry of the N � 2 superconformal algebra. There is no

recombination rule (F.8)-(F.13) involving only B̂R operators. For gauge theories

based on a gauge group G with a collection of hypermultiplets whose scalars are

collectively denoted by Q, rQ the ring HB has a rather simple description. Firstly,

one constructs the coordinate ring associated to the master space (restricted to the

Higgs branch) which is

FH � R{I , R :� CrQ, rQs , I :� xBΦW y (H.2)

here W denotes the superpotential of the theory, and Φ collectively denotes the

vector multiplet scalars. Finally, to obtain HB one takes the G-invariant part of

FH

HB � pFHqG . (H.3)

The Hilbert series counts gauge invariant chiral operators graded by their charges

under a maximally commuting subalgebra of the global symmetry algebra. It is

given by

HSpτ, ui;HBq � HSpτ, uiq :� TrHB τ
2R

¹
i

ufii . (H.4)

For the case of N � 2 gauge theories the Hilbert series for the Higgs branch takes

the form

HSpτ, uiq �
»
dµGpzqHSF pτ, ui, zq , (H.5)

where HSF pτ, ui, zq denotes the Hilbert-series for F � R{I, defined as

HSF pτ, ui, zq � HSpτ, ui, z;F q � TrR{I τ2R
¹
i

ufii

rank g¹
a�1

zgaa . (H.6)

In the case of genus g � 0 class S theories gauge theories one can show that the set

of F-terms generating I form a regular sequence. This implies that the affine variety

F whose coordinate ring is F � R{I is a complete intersection, which further means

that it’s Hilbert series can be written as HSF � PErppτ, ui, zaqs with p a polynomial

in τ . This implies that for those theories one can use letter counting in order to

compute HSF .

For genus g ¥ 1 this fails to be the case and letter counting, in general, can-

not be used. In that case one must use an algebraic geometry package such as
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Macaulay2 [112]. By inputting the ring of polynomials R and the ideal I Macaulay2

can compute the Hilbert series for F � R{I.

H.2 The Hall-Littlewood Index

The superconformal index for a class S theory is defined as [62, 64]

I pρ, σ, τ, uiq � TrS3p�1qFρ 1
2
δ1�σ

1
2
δ1�τ

1
2
rδ2 9�

¹
ufii . (H.7)

The trace is taken over the Hilbert space of the theory in the radial quantisation.

The index (H.7) receives contributions only from those states satisfying

δ � rδ1 9� :� 2
! rQ1 9�, rS1 9�

)
� E � 2j2 � 2R� r � 0 . (H.8)

We also have

δ1� � E � 2j1 � 2R� r , rδ 9� � E � 2j2 � 2R� r . (H.9)

The superconformal index is independent under continuous deformation of the cor-

responding QFT. That means that, if the theory admits a free-field limit, (H.7) may

be computed in the free theory by enumerating all of the free fields that satisfy δ � 0

and then projecting onto gauge invariants. The projection onto gauge invariants is

implemented by integration over the gauge group G. The index (H.7) for a gauge

theory then takes the form

Ipρ, σ, τ, uiq �
»
dµGpzqPE ripρ, σ, τ, ui, zqs , (H.10)

dµG denotes the Haar measure of the gauge group G and PE rfpxqs denotes the

Plethystic exponential of a function fpxq, defined in (A.1). The single letter index

i may be computed by enumerating all free field ‘letters’ with δ � 0. The more

powerful statement, however, is that, for class S theories, the index (H.7) has the

interpretation as a partition function of a 2d TQFT living on the Riemann surface

C. Given a pair of pants decomposition of C into a collection of three-punctured

spheres (where each puncture carries an associated representation of An) and tubes.

The index of any class S theory can then be written in terms of the indices of the

elementary three point functions (three-punctured sphere indices), expanded in a
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basis

Iabc �
¸
α,β,χ

Cαβγf
αpaqfβpbqfχpcq , (H.11)

and propagators (indicies of tubes)

Iab � ηab �
»
µSUpNqpaq∆paqIV paqδpa,b�1q . (H.12)

The index (H.7) counts short representations of the sup2, 2|N q superconformal alge-

bra, modulo recombination. Recombination happens when a long multiplet hits the

unitary bound and decomposes into semi-direct sums of short representations. We

list the possible N � 2 recombination rules in equations (F.8)-(F.13).

The Hall-Littlewood index is defined as

HLpτ, uiq � lim
ρ,σÑ0

I pρ, σ, τ, uiq � TrS3|δ1��0
p�1qF τ2R�2j2

¹
i

ufii . (H.13)

This limit is always well defined since superconformal symmetry implies δ1� ¥ 0.

This limit of the index counts a restricted number of operators, namely those with

j1 � 0 , j2 � r , E � 2R� j2 . (H.14)

Note that the only superconformal multiplets contributing to the index in this limit

are

HLB̂Rpτq � τ2R , HLDRp0,j2qpτq � p�1q2j2�1τ2�2R�2j2 . (H.15)

We notice also that the Higgs branch chiral ring HB is contained as a subset of

Hall-littlewood operators. For genus zero theories it is conjectured that these two

rings are equal.

We plan to consider the quantity

HLpτ, uiq
HSpτ, uiq �

Partition function of operators

with j1 � 0, j2 � r ¥ 1
2 , E � 2R� j2

. (H.16)

Equivalently the ratio HL{HS has an expansion in terms of DRp0,j2q multiplet indices

HLpτ, uiq
HSpτ, uiq �

¸
R,j2PN{2

pR,j2puiqHLDRp0,j2qpτq , (H.17)

with pR,j2 K-symmetric polynomials in the ui with positive integer coefficients,
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where K is the global symmetry group of the theory. Note however that the Hall-

Littlewood index can distinguish only equivalence classes of multiplets, namely

rR̃s� � B̂R̃ Y tDR̃�j2�1p0,j2q|R̃� j2 � 1 ¥ 0, 2j2 P 2N� 1 Pu (H.18)

rR̃s� � tDR̃�j2�1p0,j2q|R̃� j2 � 1 ¥ 0, 2j2 P 2Nu (H.19)

and

HLrR̃s� � �HLrR̃s� � τ2R̃ . (H.20)

Note that the following multiplets contain only a single representative: r1{2s� � B̂ 1
2
,

r1s� � B̂1, r1s� � D0,p0,0q, r3{2s� � D1{2,p0,0q these correspond to free half-hypers,

moment map operator, free vector multiplet (chiral piece) and super-symmetry cur-

rent. Note that the multiplets D0pj1,0q contain free fields. As we just mentioned

when j1 � 0 this is a free vector multiplet, when j1 ¥ 1
2 these contain higher-spin

free fields.

We will also use the fact that the Plethystic Logarithm counts all single trace

operators, in other words

PLog rHLpτ, uiqs �
Partition function of single trace operators

with j1 � 0, j2 � r, E � 2R� j2
. (H.21)

H.3 N � 4 SYM Theories

From now we will label quantities by the Class S data, i.e. type g and the Riemann

surface data of genus g and n punctures. We will focus much of our attention to the

class S theory associated to a torus with a single puncture, n � 1, g � 1. This yields

the G � SUpNq, UpNq MSYM theory (depending on whether we choose to gauge

the c.o.m. degree of freedom). This example is particularly tractable because we

can compute the Hilbert series for any N . Viewed as an N � 2 theory N � 4 SYM

has a Up1q flavour symmetry associated to the puncture which we give fugacity u

for, this enhances to SUp2q on the Higgs-branch. As an affine variety, the Higgs

branch of this theory is given by

HB � C2r{W pGq (H.22)

where W pGq denotes the Weyl group of G and r � rankG. The chiral ring is

obviously just therefore HB � pCrx1, x2, . . . , x2rsqW pGq, although this description

can be rather cumbersome to work with in practise. The Hilbert series is then
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simply the Molien series

HSG1,1pτ, uq �Mpτ, u;C2r{W pGqq . (H.23)

The Hall-Littlewood index is expressed as the matrix integral

HLG1,1 �
¾
dµG PE

�
hpτ, uqχpadj.qG

�
, (H.24)

hpτ, uq � χ1puqτ � τ2 � χ1puqHLB̂1{2
�HLD0p0,0q

, (H.25)

here χkpuq � χk �
°k
i�0 u

k�2i is the character of the spin-k{2 SUp2q representation.

The Hall-Littlewood letters are the top components of half-hypers X � Q, Y � rQ
which transform in the 2 under the enhanced SUp2q flavour symmetry and λ � λ1 9�
in the 1 under the SUp2q. All the letters are in the adjoint representation of G.

Operators appearing in the expansion of the PLog of the Hall-Littlewood index are

of the form

trXnY mλ
k P

$&%B̂m�n
2

if k � 0

Dm�n�k�1
2

p0, k�1
2
q if k ¥ 1

(H.26)

due to SUp2q flavour symmetry these must occur symmetrically under mØ n.

H.3.1 G � UpNq

The Hilbert series for this theory was computed already in Chapter 5 and reads

HS
UpNq
1,1 � 1

N !

BN
BνN PE

�
ν

p1� uτqp1� u�1τq
�����
ν�0

. (H.27)

In particular, the Higgs branch of this theory as a variety is SymN pC2q.

N � 1

We can immediately write down the ratio

HL
Up1q
1,1

HS
Up1q
1,1

� PEr�τ2s � PErHLr1s�s � PErHLD0,p0,0q
s . (H.28)

I.e. the difference is simply an additional free vector multiplet.
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N � 2

The Hilbert series reads

HS
Up2q
1,1 � PE

�
χ1τ � χ2τ

2 � τ4
�
. (H.29)

The Hall-Littlewood index can be evaluated by means of residues and reads

HL
Up2q
1,1 � p1� τ2 � χ1τ

3qPE
�
χ1τ � χ2τ

2 � 2τ2
�
. (H.30)

The ratio is

HL
Up2q
1,1

HS
Up2q
1,1

�p1� τ2 � χ1τ
3qp1� τ2q2

1� τ4
�

�
1� χ1τ

3

1� τ2



PE

�
HLD0p0,0q

�
(H.31)

�
�

1� χ1

8̧

n�1

p�1qnτ2n�1

�
PE

�
HLD0p0,0q

�
(H.32)

�
�

1� χ1

8̧

m�1

�
HLr2m�1{2s� �HLr2m�1{2s�

��
PE

�
HLD0p0,0q

�
(H.33)

note that here we have factored out the contribution from a D0p0,0q multiplet, as we

know that this multiplet is always present for the upNq theory and corresponds to

the free decoupled up1q in the decomposition upNq � supNq ` up1q. The Plethystic

logarithm (spectrum of single-trace operators) is

PLog

�
HL

Up2q
1,1

HS
Up2q
1,1

�
� �τ2 � pu� u�1qτ3 � pu� u�1qτ5 �Opτ6q (H.34)

corresponding to trλ, trXλ, trY λ, trXλ
2
, trY λ

2
, past this order it is no longer

possible to uniquely determine the operators.

N � 3

The Hilbert series in this case is

HS
Up3q
1,1 �

�
χ1τ

3 �
3̧

n�0

τ2n

�
PE

�
3χ1τ � χ2τ

2 � τ2 � pχ1 � χ3qτ3
�

(H.35)

where we used the identity
°p
n�0 x

n � p1� xp�1q{p1� xq � PErx� xp�1s.
For N � 3 it is still possible to compute using residues and, after using some
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identities we arrive at

HL
Up3q
1,1 �

�
�χ2τ

4 � χ1τ
5 � pχ2 � 1qτ6 � pχ3 � χ1qτ7 �

4̧

n�0

τ2n

�
� PE

�
3χ1τ � χ2τ

2 � χ1τ
3 � 2τ2 � χ3τ

3
�
.

(H.36)

The ratio is

HL
Up3q
1,1

HS
Up3q
1,1

� PE
�
HLD0p0,0q

�
�
�

1� χ1τ
3 � χ2τ

4 � χ1τ
5 � pχ2 � 1qτ6 � pχ3 � χ1qτ7 � τ8

1� τ2 � χ1τ3 � τ4 � τ6



.

(H.37)

N � 8

In Chapter 5 we wrote a simple formula for the Up8q N � 4 Hilbert series, it reads

HS
Up8q
1,1 � PE

�
1

p1� uτqp1� u�1τq
�
� PE

�¸
k¥0

χkpuqτk
�
. (H.38)

The spectrum of single trace Higgs-branch operators is a collection of B̂R multiplets

in the spin R representation of the SUp2q global symmetry. In the large N limit the

Hall-Littlewood index can easily be written down by appealing to AdS/CFT [62] it

reads

HL
Up8q
1,1 � PE

�
HLKK

�
, HLKK � χ1puqτ � 2τ2

p1� uτqp1� u�1τq . (H.39)

So, the ratio is

HL
Up8q
1,1

HS
Up8q
1,1

� PE

� �τ2

p1� uτqp1� u�1τq
�
� PE

�¸
k¥0

χkpuqHLr1�k{2s�

�
(H.40)

H.3.2 G � SUpNq

The Hilbert series for this theory was computed already in Chapter 5 and is given

by

HS
SUpNq
1,1 � p1� uτqp1� u�1τqHS

UpNq
1,1 � HS

UpNq
1,1

HS
Up1q
1,1

. (H.41)
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The Higgs branch of this theory as a variety is C2N�2{SN � SymN pC2q, this is

the subvariety of the UpNq case defined by demanding tracelessness of the adjoint

representation. We checked via series expansion for various low values of N that

HL
SUpNq
1,1 � HL

UpNq
1,1

HL
Up1q
1,1

. (H.42)

So, we can apply the results of the previous section using

HL
SUpNq
1,1

HS
SUpNq
1,1

� HL
UpNq
1,1

HL
Up1q
1,1

HS
Up1q
1,1

HS
UpNq
1,1

� PErHLD0,p0,0q
sHL

UpNq
1,1

HS
UpNq
1,1

. (H.43)

H.4 Elliptic Quiver Theories

We now allow for n minimal punctures. For UpNq gauge groups this is the Zn
orbifold theory of N � 4 SYM.

H.4.1 G � UpNq

The Higgs branch of this theory as a variety is SymN pC2{Znq and the Hilbert series

is therefore

HS
UpNq
1,n � 1

N !

BN
BνN PE

�
νp1� τ2nq

p1� τ2qp1� unτnqp1� u�nτnq
�����
ν�0

. (H.44)

The Hall-Littlewood index is

HL
UpNq
1,n �

¾ n¹
i�1

�
dµUpNqi PE

��
ufif i�1 � u�1f ifi�1

�
τ � χ

padj.q
UpNqiτ

2
�	

(H.45)

where fi �
°N
a�1 zi,a, f i �

°N
a�1 z

�1
i,a , χ

padj.q
i � °N

a,b�1
zi,a
zi,b

we also take zi�n,a � zi,a.

N � 1

For N � 1 the results are rather simple

HS
Up1q
1,n � 1� τ2n

p1� τ2qp1� unτnqp1� u�nτnq (H.46)
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and

HL
Up1q
1,n � 1� τ2n

p1� unτnqp1� u�nτnq (H.47)

we again have that the two quantities differ by a free vector multiplet

HL
up1q
1,n

HS
up1q
1,n

� p1� τ2q � PE
�
HLD0p0,0q

�
. (H.48)

N � n � 2

The Hilbert series is

HS
Up2q
1,n � p1� τ2nq �p1� τ2nqp1� τ2�2nq � pu�n � unqpτ2�n � τ3nq�

p1� τ2qp1� τ4qp1� u�nτnqp1� u�2nτ2nq . (H.49)

For n � 2 this simplifies to

HS
Up2q
1,2 �

�
χ2τ

4 �
4̧

i�0

τ2i

�
PE

�pχ2 � 1qτ2 � pχ4 � χ2qτ4
�
. (H.50)

The Hall-Littlewood index is

HL
Up2q
1,2 � �

1� τ4 � pχ2 � 1qτ6
�

PE
�pχ2 � 1qτ2 � pχ4 � χ2 � 1qτ4

�
. (H.51)

The ratio is

HL
Up2q
1,2

HS
Up2q
1,2

� 1� τ8 � pχ2 � 1qτ6p1� τ4q
1� χ2τ4 � χ2τ6 � τ10

PEr�τ2s (H.52)

� �
1� χ2HLr2s� �HLr3s� � pχ4 � χ2qHLr4s� �Opτ10q�PErHLD0p0,0q

s (H.53)

H.4.2 Generic g � A1 Class S Theories

The Hall-Littewood index for the A1 theory associated to a genus g Riemann surface

with n punctures is [168]

HLSUp2qg,n � p1� τ2qχ
p1� τ2q1�g

8̧

λ�0

1

Pλpτ, τ�1|τqχ
n¹
I�1

PλpaI , a�1
I |τq

p1� a2
Iτ

2qp1� a�2
I τ2q (H.54)
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where χ � 2g � 2� n and the Hall-Littlewood polynomials are

Pλpa, a�1|τq �
$&%χλpaq � τ2χλ�2paq λ ¥ 1
?

1� τ2 λ � 0
(H.55)

with χλ � pa1�λ � a�1�λq{pa� a�1q the SUp2q characters. On the other hand, the

Hilbert series for the same theory is given by [277]

HSSUp2qg,n �p1� τ2qχ
p1� τ2q

�
p1� τ2q1�2g

n¹
I�1

1

p1� a2
Iτ

2qp1� a�2
I τ2q

�
8̧

λ�1

1

Pλpτ, τ�1|τqχ
n¹
I�1

PλpaI , a�1
I |τq

p1� a2
Iτ

2qp1� a�2
I τ2q

�
.

(H.56)

It is immediate that, when g � 0 we have HS
SUp2q
0,n � HL

SUp2q
0,n . Let us consider the

case of a theory associated to a genus g ¥ 1 surface without punctures, in which

case the sums can be performed explicitly

HL
SUp2q
g,0 � p1� τ2qχ{2pτχ � p1� τ2qχ{2p1� τχqq

p1� τχq (H.57)

while the corresponding Hilbert series becomes

HS
SUp2q
g,0 � PE

�
τ4 � τχ � τχ�2 � τ2χ�4

�
. (H.58)

The ratio then takes the form

HL
SUp2q
g,0

HS
SUp2q
g,0

� �
τ2g�2 � p1� τ2qg�1p1� τ2g�2q�
� PE

��pg � 1qτ2 � τ4 � τ2gp1� τ2gq� .
(H.59)
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Appendix I

Ramified Instanton Partition

Functions

In this appendix we discuss how to obtain the instanton partition function for the 5d

N � 1� theory on S1�C2{Zp. This is a more general result of the one computed in

Section 6.3.2 where we take the more generic Zp action on the coordinates pθ, z1, z2q
of S1 � C2 to be

Zp : pθ, z1, z2q ÞÑ pθ, γq1z1, γ
q2z2q , (I.1)

with γp � 1, q1, q2, p P Z and gcdpq1, pq � gcdpq2, pq � 1. This is generalisation of the

results computed in [49] and of Section 6.3.2 which were made with the specialisation

q1 � 0, q2 � 1, p � k. In the context of 1
2 -BPS defects this generalisation should

give rise to other types of defect configurations.

In the Nekrasov instanton counting the Ω-deformation forces the instantons to

sit at the origin z1 � z2 � 0. The instantons therefore sit at the fixed point of the

action (I.1). Note that in order to preserve the supercharges used in the instanton

localisation computation we have to turn on a background R-current. We assume

that the projections do not change the localisation structure. Under that assumption

the Nekrasov partition function takes the form of an ‘orbifolded’ Nekrasov partition

function rZorb
nek � Zorb

cl Zorb
inst. We have to project onto states left invariant by the

orbifold action

αA,I ÞÑ αA,I � 2πiA

p
, m ÞÑ m� 2πipq1 � q2q

2p
, (I.2)

ε1 ÞÑ ε1 � 2πiq1

p
, ε2 ÞÑ ε2 � 2πiq2

p
. (I.3)
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Using the same conventions as those in Chapter 1.4.3 we decompose the vector

spaces W , V (for a fixed momentum mode around the S1) with respect to their Zp
grading

W �
pà

A�1

WA , V �
pà

A�1

VA , (I.4)

of dimension dimCWA � NA and dimC VA � kA. Moreover, we also take the index

A � 1, . . . , p modulo p. Under the Zp action the ADHM data transforms as

Bplq ÞÑ γqlBplq , P ÞÑ P , Q ÞÑ γq1�q2Q , (I.5)

where q3 :� �q1 � q2, q4 :� 0. In order to have a non-trivial result, follow-

ing [157], we also quotient by a Zp ãÑ Upkq corresponding to (1.82) with g �
diag

�
γIk1 , γ

2Ik2 . . . ,
� P Upkq. This breaks Upkq Ñ±p

A�1 UpkAq with k � °p
A�1 kA.

The surviving components are

B
plq
A P Hom pVA, VA�qlq , PA P Hom pVA, VAq , (I.6)

QA P Hom pVA, VA�q1�q2q . (I.7)

The ADHM equations µ
piq
C,A � µR,A � 0 are given by performing the projections to

(1.77) and (1.80). The ramified instanton moduli space is then given by

M
Zp
tkAu,tNAu �

!
B
plq
A , PA , QA

���µpiqC,A � µR,A � 0
)
. (I.8)

The fixed points after the Zp quotient are still labelled by N -tuples of Young dia-

grams ~µ which we now label by ~µ � tµA,Iu. We choose bases

WA � spanC twA,I |I � 1, . . . , NAu (I.9)

VA�q1i�q2j � spanC

!
v
pi,jq
A�q1i�q2j,I

���I � 1, . . . , NA�q1i�q2j , pi, jq P µA,I
)
. (I.10)

The torus action acts by

wA,I ÞÑ eαA,IwA,I , v
pi,jq
A�q1i�q2j,I ÞÑ ep1�iqε1�p1�ε2qvpi,jqA�q1i�q2j,I . (I.11)

The fixed point configuration is given by the orbifold projection of (1.87), namely

B
p1q
A v

pi,jq
A,I � v

pi�1,jq
A�q1,I , B

p2q
A v

pi,jq
A,I � v

pi,j�1q
A�q2,I , PAwA,I � v

p1,1q
A,I , (I.12)

QA � B
p3q
A � B

p4q
A � 0 . (I.13)
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The dimension of VB is then given by

kB � kBp~µq � dimC VB �
p̧

A�1

NA̧

I�1

¸
pi,jqPypIqA,B

1 , (I.14)

where y
pIq
A,B is given by

y
pIq
A,B � tpi, jq|pi, jq P µA,I , A� q1i� q2j � B mod pu . (I.15)

For q1 � 0 and q2 � 1 equation (I.14) reduces to (2.37) of [49]. We demonstrate an

explicit example with p � 3, q1 � 1, q2 � �2, N1 � N2 � N3 � 1, µ1,1 � t4, 3, 2u,
µ2,1 � t2, 2u and µ3,1 � t3, 2u in Figure I.1. Because NA � 1 we drop the I indices,

for example v
pi,jq
A,1 � v

pi,jq
A . k1 � 7, k2 � 5 and k3 � 6; in agreement with (I.14).

Finally the character of TM
Zp
tkAu,tNAu at the fixed point ~µ is given by the Zp invariant

part of (1.95), namely

χ~µ

�
TM

Zp
tkAu,tNAu

	
:� χVec

~µ,Zp � χHyp
~µ,Zp , (I.16)

with

χVec
~µ,Zp �

¸
tPZ

e
2πt
r

p̧

B�1

�
W �
BVB � e2ε�V �

B�q1�q2WB � V �
BVB

�eε1V �
B�q1VB � eε2V �

B�q2VB � e2ε�V �
B�q1�q2VB

�
,

(I.17)

χHyp
~µ,Zp ��

¸
tPZ

e
2πt
r em�ε�

p̧

B�1

�
W �
B�q1�q2VB � e2ε�V �

BWB

�V �
B�q1�q2VB � eε1V �

B�q2VB � eε2V �
B�q1VB � e2ε�V �

BVB
�
.

(I.18)

As before conjugation reverses the signs of the exponents. We also abused the

notation and identified the vector spaces and their characters

VA �
p̧

C,D�1

Nq1C�q2D�A¸
I�1

¸
ppi�C�1,pj�D�1q
PypIqq1C�q2D�A,A

eαq1C�q2D�A,I�pC�piqε1�pD�pjqε2 , (I.19)

WA �
Np�A�1¸
I�1

eαp�A�1,I , (I.20)
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Figure I.1: Example of the fixed point structure for p � 3, q1 � 1, q2 � �2, N1 �
N2 � N3 � 1.
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under the orbifold Zp : VA,WA ÞÑ γAVA, γ
AWA. At this point it is very important

to stress that we understand A,B,C,D to be taken modulo p when and only when

they are considered as indices used to label quantities for example αA,I � αA�p,I .
These quantities are significantly more complicated than those of the case q1 � 0,

q2 � 1 of (6.107).

According to the conversion rule (1.96) we can, in principle, compute the parti-

tion function

χ~µ

�
TM

Zp
tkAu,tNAu

	
Ñ z

Zp
~µ p~α,m, ε1, ε2, rq . (I.21)

The instanton partition function then reads

Zorb
inst p~α,m, ε1, ε2, r; qAq �

¸
~µ

�
p¹

B�1

q
kBp~µq
B

�
z
Zp
~µ p~α,m, ε1, ε2, rq . (I.22)

In the limit m � �ε� the supersymmetry of the 5d theory enhances N � 1� Ñ
N � 2. Correspondingly the instanton partition drastically simplifies and one can

see that

χVec
~µ,Zp

���
m��ε�

� �
�
χHyp
~µ,Zp

	����
m��ε�

. (I.23)

From (1.96) we conclude that

z
Zp
~µ p~α,�ε�, ε1, ε2, rq � 1 . (I.24)

So,

Zorb
inst p~α,�ε�, ε1, ε2, r; qAq �

¸
~µ

�
p¹

B�1

q
kBp~µq
B

�
. (I.25)
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