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Zusammenfassung

Aktuelle und kommende radioastronomische Himmelsvermessungen liefern weiterhin neue
Erkenntnisse über die Entstehung und Entwicklung von Galaxien, unseres kosmologischen
Modells und seiner Parameter. Die vorliegende Arbeit fasst unsere Arbeiten zu Tiefenlerntech-
niken für die Radioastronomie zusammen. Das Datenvolumen, das bei radioastronomische
Durchmusterungen anfällt, ist enorm und nimmt aufgrund von technologischen Verbesserun-
gen ständig zu. Dies führt zu einer steigenden Nachfrage nach der Entwicklung komplexerer
Tools zur Analyse der Daten, da manuelle Analysen nicht mehr möglich sind. Um diesen
Prozess zu vereinfachen, wurden maschinelle Lerntechniken entwickelt, die sich auf die Vo-
raussetzung stützen, dass sie zum Identifizieren von Mustern und Merkmalen in Daten ver-
wendet werden können. Der Schwerpunkt der vorliegenden Arbeit liegt auf der Analyse von
Radiodaten auf der Basis von Bildern mit Hilfe von Deep-Learning-Techniken, ein Ansatz,
der sich bei hochdimensionalen Daten bewährt hat. Mit Hilfe von Radio-Galaxien-Bildern
aus dem Radio Galaxy Zoo Citizen Science Project demonstrieren wir, dass es möglich ist,
drei verschiedene Klassen von Quellen zu klassifizieren. Anschließend testen unser Daten-
netzwerk mit Daten Release 1. Wir vergleichen die Leistung traditioneller, tief neuronaler
Faltungsnetzwerke mit der Leistung von Kapseln Netzwerke. Letztere sind eine in jüngerer
Zeit entwickelte Technik, bei der Gruppen von Neuronen verwendet werden, die Eigenschaften
eines Bildes einschließlich der relativen räumlichen Positionen von Merkmalen beschreiben.
Anhand von Bildern aus der LOFAR-Zwei-Meter-Himmelsvermessung (LoTSS) zeigen wir,
dass die herkömmlichen neuronalen Faltungsnetze für die Art der vorliegenden Funkgalax-
iendaten eine bessere Leistung erbringen. Schließlich entwickeln wir einen Quellensucher,
der auf einem Faltungsautocodierer basiert ist, und vergleichen ihn mit einem hochmodernen
Quellensucher unter Verwendung simulierter Quadratkilometer-Array-Daten. Wir stellen fest,
dass die Leistung zwischen den Quellenfindern je nach Belichtungszeit, Frequenz und Signal-
Rausch-Verhältnis sich variiert.
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Abstract

Current and forthcoming radio surveys continue to provide new insights in understanding
the formation and evolution of galaxies, our cosmological model and its parameters. The
current thesis summarises our work on deep learning techniques applied to radio astronomy.
The volume of data produced from radio surveys is vast and constantly growing due to
improvements to technology. This results in increasing demand to develop more sophisticated
tools to analyse the data, as manual analyses will become unfeasible. Machine learning
techniques have been developed to facilitate this process, and rely on the premise that they
can be trained to recognise patterns and features in data. The focus of the current thesis is
analysing radio data based on images using deep learning techniques, an approach which has
proven successful on high-dimensional data. Using radio galaxy images from the citizen science
project Radio Galaxy Zoo, we show that it is possible to classify between compact sources
and three classes of extended sources, and test our trained network on Data Release 1. We
compare the performance of traditional convolutional deep neural networks against Capsule
networks. The latter are a more recently developed technique using groups of neurons that
describe properties of an image including the relative spatial locations of features. Using
images from the LOFAR Two-metre Sky Survey (LoTSS), we show that for the type of radio
galaxy data at hand, the traditional convolutional neural networks perform better. Finally, we
develop a source finder based on a convolutional autoencoder, and compare the performance
against a state-of-the-art source-finder, using simulated Square Kilometre Array data. We
find the performance varies between the source-finders based on exposure time, frequency and
signal-to-noise ratio.
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1 Introduction

The introductory section is composed of three parts; the physics of sources in the radio
spectrum, radio surveys and finally machine learning and applications in astronomy, with
particular emphasis on its use in radio images.

1.1 Sources in the Radio spectrum

1.1.1 Introduction

Radio astronomy is the branch of astronomy concerned with the study of celestial bodies at
radio frequencies, which range from 15 MHz to 300 GHz (20m to 1mm in wavelength). The
low frequency limit is set by the opacity of the ionosphere and the high frequency limit is due
to the strong absorption from oxygen and water bands in the lower atmosphere. Observing
in radio enables us to see objects that are otherwise invisible at other wavelengths (Field &
Chaisson, 1985).

In the radio regime, there are two types of emission: spectral line emission and continuum
emission. Line emission refers to the radiation emitted at very narrow (discrete) frequency
bands, whereas continuum emission covers radio emission from a broad range spectrum of
radio wavelengths. Two types of continuum emission are possible; thermal and non-thermal
emission. The distinguishing feature is the shape of the spectrum: thermal emission follows
a black-body law whereas non-thermal emission shows a power-law spectrum.

Figure 1.1 shows an impression of what we could observe if we looked up at the sky, and
had the ability to see radio emission. The small white spots are radio galaxies and the larger
structures are supernova remnants.

1.1.2 Spectral line emission

In the radio regime, the 21 cm line is the most important line emission.

The 21 cm line was predicted by H.C. Van de Hulst in 1945, after being asked by his supervisor
Jan Hendrik Oort to identify and determine the frequencies of di�erent types of spectral lines
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Figure 1.1: An impression of what the sky would look like at radio wavelengths. The small individual
white spots are radio galaxies, the larger distortions are due to Supernova remnants.
Source: National Radio Astronomy Observatory, Associated Universities, Inc. National
Science Foundation
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that might exist at radio wavelengths. de Hulst chose to study hydrogen, given its high
abundance in the interstellar medium, after which he predicted that transitions in the energy
levels in hydrogen should produce radiation at 21 cm wavelengths (de Hulst, 1945). The
radiation was observed for the first time in 1951 using a microwave radiometer, appearing
as emission with a width of ≥ 80 kc. The detected source appeared to be extended and
approximately centred about the galactic plane (Ewen & Purcell, 1951).

The observation of the 21 cm line provided much knowledge about the structure and inter-
action of galaxies, both within our Galaxy and other galaxies in the Universe. For example,
observations of the 21 cm line of neutral hydrogen in the Milky way disk showed that the
disk extends to at least two to three times the radius of the solar circle, and that the HI disk
in the outer Galaxy is warped (see Dickey et al. (2009) and references therein). Detectable
HI is an exceptionally sensitive tracer of tidal interactions between galaxies (e.g. Lelli et al.
(2015) and references therein).

In terms of extragalactic observations, the manifestation of dark matter through galaxy ro-
tation curves has been observed using the 21cm line, one example being with the use of the
Westerbork Synthesis Radio Telescope (WSRT) (Rogstad & Shostak, 1972; Bosma, 1978).
The accurate detection of the 21cm line from the epoch of reionisation is a powerful tool to
investigate the neutral Intergalactic medium (IGM), which can be used to probe information
at high redshift such as matter density fluctuations and the thermal history of the IGM,
therefore informing about the evolution of the early universe (Colafrancesco, S. et al., 2016;
Pritchard & Loeb, 2012).

1.1.3 Thermal emission

Thermal emission, also known as black-body radiation, is emission due to the temperature of
the body. Radio emission from planets in our solar system was found to be thermal in origin.
One example of a study involved the use of the CSIRO 210-ft radio telescope in measuring
the thermal radio emission from several planets in the solar system between wavelengths of 6
and 48 cm (Kellermann & Pauliny-Toth, 1966).

1.1.4 Non-thermal emission

Non-thermal emission, which follows a power law, is independent of the temperature of the
source. Extragalactic non-thermal radio sources are the source type of focus in the current
work.

Two of the main mechanisms behind non-thermal emission are synchrotron radiation and
Compton/Inverse Compton radiation.
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Synchrotron radiation

Synchrotron radiation is a result of relativistic electrons spiraling around magnetic field
lines.

A single electron will emit radiation over a range of frequencies that peaks at some frequency
‹

max

, also known as the critical frequency. In realistic cases, the distribution of the energy
spectrum is composed of an ensemble of electron energies which all have their own individual
peak in frequency, as shown in Figure 1.2.

Since the energy spectrum of electrons emitting synchrotron radiation does not follow a
Maxwellian distribution, the emission is non-thermal and the distribution of electron energies
follows a power-law. If the relativistic plasma is transparent (optically thin) to its own
radiation, which occurs in the extended regions of radio sources, the power-law takes on the
form N(E) = KE

≠p (Kellermann & Owen, 1988), where N(E) is the relativistic electron
energy distribution, p is the index of the electron energy distribution, E = “mc

2, where the
Lorentz factor “ = 1Ò

1≠ v2
c2

. The radiation spectrum is a power law with

S(‹) Ã ‹

–

, (1.1)

where – ≥ 1≠p

2 is the radio spectral index. The slope of the spectrum is determined by
the electron energy distribution. Figure 1.3 shows the variation of radio spectral index (flux
density with respect to frequency) across four radio sources. This variation was first observed
in Cygnus A (Mitton & Ryle, 1969), where the radio spectral index flattens towards the
hotspots of the source, and is the second flattest compared to the compact core (Hargrave
& Ryle, 1976). The e�ect has been explained as the aging of the relativistic electrons due
to synchrotron emission. Electrons at higher frequency have a higher energy and will be
depleted first, resulting in a steeper slope over time (Scheuer & Williams, 1968). The age
of the electrons that generated the emission can therefore be determined by the slope of the
spectrum.

Synchrotron emission accounts for most of the radio emission from Active Galactic Nuclei
(AGN) thought to be powered by supermassive black holes in galaxies and quasars (Burbidge,
1956) and appears to be responsible for generating the morphologies observed in radio sources
(Fanaro� & Riley, 1974).

Re-absorption of the synchrotron electron radiation becomes important if the intensity of
synchrotron radiation within a source rises above a certain threshold, an e�ect referred to as
synchrotron self-absorption (Kellermann & Verschuur, 1988). It results in a drastic modifica-
tion of the spectrum at low frequencies.
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Figure 1.2: Showing the spectrum of an individual electron on the top right, as well as how the
spectrum from an ensemble of electrons is obtained. Figure taken from Carroll & Ostlie
(2006).

Figure 1.3 shows the spectra of flux density against frequency of four radio sources.

The magnetic fields responsible for synchrotron radiation have an e�ect on the interstellar
medium. Magnetic fields are an important factor driving star formation within star forming
clouds. Models generated on a supercomputer showed that stellar winds interacting with the
magnetic field of the cloud generated energy and influenced gas at far greater distances than
previously thought (S. R. O�ner & Liu, 2018).

Magnetic fields in interstellar and intergalactic space have traditionally been measured in
the four following ways (Beck & Wielebinski, 2013): (i) Observing starlight polarization and
polarized dust emission (Davis & Greenstein, 1951; Hoang & Lazarian, 2008). Interstellar
space contains tiny dust grains, generally aspherical in shape and rotated by the ambient
radiation, preferring to align their short axes with the local magnetic field, thereby making
it possible to measure a component of the interstellar magnetic field. (ii) Zeeman splitting of
emission or absorption lines (Troland & Heiles, 1982). The strength and direction of the mag-
netic field is provided by the circular polarisation driven by Zeeman Splitting. (iii) Through
detecting synchrotron radiation as it requires both relativistic electrons and a magnetic field
(Webber et al., 1980), by invoking the equipartition argument (Beck & Krause, 2005), where
it is assumed that the total energy is at a minimum when the magnetic field strengths and
energies of the relativitistic particles are approximately equal. (iv) Through Faraday rotation
as a result of a magnetic field amongst relativistic electrons (Burn, 1966). Measurements of
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Figure 1.3: Showing the spectra of four radio sources. The top left panel shows the radio source
3C 84 that has a very compact component, 3C 123 in the top right panel is transparent
across all frequencies, 3C 48 in the bottom left shows self-absorption below 100 MHz and
is transparent above this value, and the bottom right panel shows opaqueness at di�erent
frequencies. Figure taken from Kellermann & Verschuur (1988).

Faradays rotation measure on increasing numbers of extragalactic radio sources has led to a
more refined modeling of the large scale magnetic field structure.

Compton and Inverse Compton radiation

Compton scattering refers to the energy transferred from a photon to a charged particle,
usually an electron. Inverse Compton (IC) scattering occurs when the electron has significant
kinetic energy compared to the energy of the photon, which causes the scattered photon
to have a higher frequency, and energy is transferred from the electron to the photon. If
photons propagate through a distribution of energetic electrons, they can gain or lose energy
depending on their energy relative to the electron temperature.

Despite the low radiation density of ultra-relativistic electrons in intergalactic space, the
electrons might lose significant amounts of energy by the IC process (Feenberg & Primako�,
1948). The IC process has been under consideration in regard to whether it can account for
the observed X-ray background, as well as the role it plays in the synchotron radiation in
compact and intense radio sources, such as quasars (see Rees (1967) and references therein.)

It is inferred that IC scattering must occur in the lobes of radio sources, as the cosmic
microwave background permeates all of space, so every synchrotron radio structure should
have a corresponding X-ray structure. Feigelson et al. (1995) was the first to detect the IC
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radiation from X-rays in the lobes of nearby radio galaxy Fornax A.

1.1.5 Galaxies with significant radio emission

The early universe contained many small lumps of matter which coalesced to form galaxies.
This forms the basis of hierarchical cosmological models. A traditional approach to under-
standing the physics underlying galaxy formation is to use physical observables of galaxies
and their relations to each other, in order to test models (Conselice, 2012). The ability to per-
form simulations has played a major role in furthering our progress in understanding galaxy
formation.

A few established facts about galaxy formation are as follows. Galaxy formation is strongly
influenced by the Interstellar Medium (ISM), black holes also play a major part, and galaxies
form through the cooling of gas at the centers of dark matter halos, where the gas condenses
into stars (White & Rees, 1978).

Despite the existing knowledge, there are several remaining key questions regarding galaxy
formation. For example, how did the first stars and galaxies evolve to produce the galac-
tic structures that exist today? What are the underlying physical processes regulating the
structure of the ISM? The processes driving star formation and galactic outflows are not yet
understood. Another major theoretical challenge is understanding stellar and AGN Feed-
back in detail and to identify physically correct sub-resolution models taking into account all
relevant physical processes.

Radio astronomy has made important contributions to the study of galaxy formation and
evolution. Through production of the CMB map, it has provided information on the origins
of large-scale structure, as well as refined the values of cosmological parameters (Partridge,
2011). The following subsections describe the extragalactic sources detectable at radio wave-
lengths, namely star-forming galaxies (SFGs) and Active Galactic Nuclei (AGN), in regards to
the knowledge gained about them from radio surveys. The study and separation of these two
galaxy populations is important because they are fundamentally di�erent classes of objects
with di�erent properties.

Star-forming galaxies

There are two fundamental types of galaxies: red sequence and blue cloud galaxies, both
of which occupy di�erent regions on a color-magnitude diagram that plots the relationship
between luminosity and mass of the galaxy. Galaxies in the red sequence category tend to be
elliptical and contain relatively little gas and dust compared to the galaxies found in the blue
cloud category, which tend to be spiral and have higher star formation rates (SFR) (Strateva
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et al., 2001). Therefore, galaxy populations can be traced through star formation. SFR is
key in characterising galaxies, and observing how the average SFR changes is an important
factor influencing the evolution of the universe.

Star-forming galaxies (SFGs) are defined as those having a high SFR that is strongly corre-
lated with total stellar mass (Maragkoudakis et al., 2016). They can be used to help measure
the star formation rate in the Cosmos. There are three types of SFGs: normal late-type,
starburst and proto-spheroidal galaxies. SFGs show both thermal and non-thermal emis-
sion, emitting at radio wavelengths due to both synchrotron and free-free radiation processes;
they are characterised by steep GHz radio spectra, but also have a flat free-free component
(Padovani, 2016). The thermal emission can be due to the dust grains in these galaxies.

A fundamental ingredient for star formation is neutral atom hydrogen (HI), making it an
ideal candidate to probe the rate of star formation and therefore whether or not a galaxy can
be classed as being a SFG (Rhee et al., 2018). The HI content can also be used to separate
them from other types of galaxies that would contain less HI.

Although past radio surveys have detected a greater number of AGN, the increased sensitivity
of surveys over time has enabled the detection of an increasing number of SFGs, found to
constitute a significant fraction of the faint radio sky (Norris et al., 2006; Padovani et al.,
2014). This makes SFGs promising in being able to chart the cosmic history of star formation.
The study of SFGs in the radio regime has led to the discovery that their emission is tightly
correlated with the SFR (Kennicutt & Evans, 2012). As such, radio observations have been
used to measure the rate at which galaxies form new stars (Tabatabaei et al., 2017).

There also exists a correlation between the Far infrared (FIR) and radio emission of ordinary
and SFGs (Helou et al., 1985), which can be expressed as S1.4 = 10≠q

S

F IR

, where S1.4 is the
radio frequency flux density at 1.4 GHz and S

F IR

is the FIR flux. The exponent q appears to
be independent of the source luminosity as well as redshift, which has interesting consequences
for star and galaxy formation. The correlation holds over a very wide luminosity range,
although care should be taken to exclude potential AGN components of the radio emission,
as it would violate this relation. It is presumed that star formation produces both the dust re-
emission that dominates the FIR luminosity, as well as the supernovae that produce relativistic
electrons and hence the synchrotron radiation (Partridge, 2011).

Radio observations are able to probe very recent star formation activity and to some extent
trace its location (Padovani, 2016), due to the synchrotron emission from SFGs being a result
of relativistic plasma accelerated in supernova remnants that are associated with massive star
formation.
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Figure 1.4: Showing the optical image superimposed with the radio emission in the 3cm band (red)
in galaxy NGC 6946. The radio emission indicates regions of star formation. Image taken
from (Tabatabaei, 2017).

Active Galactic Nuclei (AGN)

AGN are the most luminous objects in the Universe, up to L = 1048 ergs s≠1. They are
powered by a super massive black hole (SMBH), which accretes gas and dust from its sur-
roundings. AGN come in di�erent types, such as Quasars, Seyfert-galaxies and radio galaxies.
The two main categories that AGN fall into are radio-loud, displaying powerful jets, and radio-
quiet, with very weak jets. There are many other ways of classifying AGN; the di�erent ways
constitute an entire AGN ‘zoo’ (Padovani, 2017). The majority of the current thesis is con-
cerned with classifying the morphologies arising from radio-loud AGN, which in the broadest
sense can be compact or extended in morphology.

In the past, AGN were mainly studied as laboratories in which to probe exotic high-energy
processes. Despite attempts to understand the role that the environment might play in
triggering or fueling the AGN, there was virtually no concept that AGN played any significant
role in the evolution of typical galaxies. The current status is very di�erent: there is very
strong evidence in support of the idea that the evolution between galaxies and AGN is strongly
linked (Heckman & Best, 2014).

There are two modes of AGN Feedback; radiative-mode and jet-mode. The radiative mode
occurs when most of the energy is released by radiation or strong winds originating from
the black holes accretion disk, usually associated with high luminosity AGN. The jet mode
is most likely the dominant mode in low-power AGN and is due to the presence of jets of
relativistic plasma depositing kinetic energy into the surrounding medium. AGN Feedback
mechanisms are used in both semianalytic models and numerical simulations to successfully
produce the properties observed in massive galaxies (Cattaneo et al., 2009; Fabian, 2012).

Due to their large luminosity, AGN are observable to very high redshifts (Mortlock et al.,
2011); therefore they serve as a cosmological probe to the early universe. For example, the
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absorption lines of some AGN types show hints of cosmic reionisation (Keel, 2007). AGN
provided evidence for the existence of supermassive black holes, such as through the study
of emission-line variability data in Seyfert 1 galaxies (Peterson & Wandel, 2000). AGN are
key players in the process of galaxy formation and evolution, as evidenced by the discovery of
the tight correlation between galaxies and properties of the central nucleus (Kormendy & Ho,
2013), and similar evolutionary trends between the growth histories of supermassive black
holes and galaxies (e.g. Boyle & Terlevich (1998), Marconi et al. (2004)). It is also possible
to probe galaxy evolution by investigating the role of supermassive black holes by measuring
the host galaxy stellar mass function (Bongiorno et al., 2016). AGN also have the ability to
heat, relocate and in some cases remove the surrounding gas from the host galaxy (Brienza,
2018).

The study of AGN has enabled the derivation of the SMBH mass function, defined as the
comoving number density of black holes per bin in log mass at a given redshift. Several
previous analyses reviewed in Heckman & Best (2014) indicate that there is a population of
more massive black holes produced at higher redshifts. Since a redshift of z ≥ 1, only the
population of black holes with masses below approximately 108 solar masses has been growing
significantly, and that the population of black holes with masses > 109 solar masses has been
largely in place by approximately z ≥ 2.

The use of AGN to study SMBH, together with using star formation as a tracer for galaxy
populations revealed that their evolution is very similar: a steep rise in both the star formation
rate (SFR) and SMBH growth rate by about a factor of 10 from redshift z = 0 ≠ 1, a broad
maximum in both rates at z ≥ 2 ≠ 3, and then a relatively steep decline at higher redshifts
(see Shankar et al. (2009) and references therein).

Radio galaxies

Radio galaxies fall into the category of radio-loud AGN that are some of the most unusual
and powerful objects in the Universe, having extents varying between the order of 1 pc or less,
up to the Mpc scale. They are powered mainly through the synchrotron emission mechanism
and tend to be elliptical galaxies (Rogstad & Ekers, 1969).

The main components of radio galaxies tend to be a core, jets and lobes. Energy is generated
in the core of the AGN and expelled from it in the form of two opposing relativistic beams
(Longair & Riley, 1979), which can travel vast distances before spreading out into giant,
radio-emitting lobes. The components (core, jet and lobes) have di�erent spectral shapes as
their relative strength depends on frequency. The structure and spectra of radio emission
from radio galaxies contains information on the history of AGN activity in the source (Saikia
& Jamrozy, 2009).



CHAPTER 1. INTRODUCTION 23

The jets are very well collimated structures (Blandford & Rees, 1974), with opening angles
of no more than a few degrees. They can be one-sided (Cohen & Unwin, 1984), meaning that
only one jet can be observed. There have been a couple of long-unresolved questions regarding
the origin of radio jets, such as from what energy reservoir the large radio luminosities (up to
1038 W between 10 MHz and 100 GHz) are drawn, and how does the AGN supply such high
luminosity relativistic particles and fields to the radio lobes (Bridle & Perley, 1984). There
have been mainly two theories regarding the origin of jets (Rees, 1982): (i) an ion-supported
torus (accreting disk) anchors magnetic fields which extract rotational energy from the hole
in the form of two collimated beams of relativistic particles and fields e.g. (Rees et al., 1982)
and (ii) a radiation-supported torus, where due to centrifugal e�ects greatly enhancing the
e�ective gravity along the cylindrical walls surrounding the axis of rotation, the radiation
might cause the ejection of jets e.g. (Jaroszynski et al., 1980). Almost all the information
available in regard to jets relates to their morphology and luminosity.

Fanaro� & Riley (1974) were the first to notice the correlation between radio luminosity and
the relative positions of high and low surface brightness in the lobes of extended extragalactic
radio sources. The pattern of the emission can be characterised into two main morphological
types; (1) FRI, where the brightest part of the emission is closest to the core of the source,
having typical luminosities of L

‹=1.4GHz 6 1032 ergs s≠1 Hz≠1, and (2) FRII, where the lobes
are the components having the brightest emission, with typical luminosities of L

‹=1.4GHz >
1032 ergs s≠1 Hz≠1. However, there is not a clear separation between the two classes.

The jets of FRI radio sources tend to be less collimated than those of FRIIs, indicating they
are weaker and show a deceleration (Laing & Bridle, 2002). The regions of high brightness
tend to be located closer to the host galaxy, and the sources become fainter towards the outer
parts of the lobes where the spectra are the steepest, indicating that the emitting particles
have aged the most (Kembhavi & Narlikar, 1999). Figure 1.5 shows the di�erent appearances
that FRI radio galaxies can have.

FRII radio sources often have jets between the compact core and the radio lobes, which
often show some internal structure, as well as hotspots at the outer edges of the radio lobes.
The jets tend to be more powerful compared to those from FRIs, and therefore have smaller
opening angles (Bridle & Perley, 1984). The FRIIs are likely to have supersonic jets, and the
hot spot might be where the jets meet the ambient medium and decelerate through a shock
transition. The emission pattern of the FRIIs suggests that energy is carried away from the
core to the lobes. Figure 1.6 shows a variety of morphologies available for FRIIs.

There are also smaller subgroups of morphologies such as Hybrids (Gopal-Krishna & Wiita,
2000), which display a mixture of FRI and FRII morphologies. Further classes include the
Wide-Angle Tail (WAT) (Begelman et al., 1979), Narrow-Angle Tail (NAT), double-double
(Schoenmakers et al., 2000) and HyMORs (KapiÒska et al., 2017) morphologies. Additionally,
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Figure 1.5: Common appearances of FRI radio galaxies. Source: Judith Croston and the LOFAR
Surveys team (private communication).

Figure 1.6: Common appearances of FRII radio galaxies. Source: Judith Croston and the LOFAR
Surveys team (private communication).
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some extended sources may have a compact morphology, and there has been some debate as to
whether they should form a class in their own right, or if they are FRI/FRII radio galaxies in
early stages of evolution, or whether they are short-lived sources (Miraghaei & Best, 2017).

One unresolved question is the origin of the FRI and FRII sources, also known as the
FRI/FRII dichotomy, and its resolution will help us to understand the processes which initi-
ated nuclear activity (Ferrarese & Celotti, 2002). The di�erences between the FRI/FRII jets
may be associated with the central engine and/or external medium. There are two competing
theories for explaining the dichotomy. The first theory is that there could be intrinsic di�er-
ences in the jet’s kinetic power between the sources (Baum et al., 1995) or fundamental AGN
parameters. The second is that the deceleration process of the jets causes the di�erences in
the sources (Kawakatu et al., 2009; Meliani & Keppens, 2009), attributed to the di�erent
physical conditions in the environment in which the radio source propagates. Gopal-Krishna
& Wiita (2000) presents a more detailed summary of the dichotomy.

The classification of radio galaxies, which can be done according to their morphology, is
important as the morphologies can provide information about the surrounding environment
of the radio galaxy, at di�erent redshifts. Some examples include the discovery that tailed
radio galaxies occur preferentially in high-density regions of the intracluster medium (Burns
et al., 1994), and can also trace its weather. At nearby redshifts (z < 0.5), FRIIs are often
found to be hosted by field galaxies while the FRIs are found to be located in galaxy clusters
(Saripalli, 2012). At higher redshifts, both FRI and FRII type radio sources are found in rich
environments (Hill & Lilly, 1991).

The broadest categories that radio galaxies can be divided into are compact or extended
sources. Sources may be compact due to being unresolved by the telescope, however it is
also possible to have a class of resolved compact sources (Baldi et al., 2016b). In terms of
spectral indices, compact sources tend to have flat spectra, whereas extended sources have
steep spectra. The way the radio galaxies are orientated must account for some observed
di�erences in their appearance. For example, the jets may radiate anisotropically giving the
appearance that one jet may be brighter than the other, whereas if the radio galaxy was
orientated di�erently the jets may appear equally bright.

A recent work by Hardcastle (2018) notes that the di�erence between the two morphological
classes is not the same as the di�erence between the two types of jets seen in the FRI and
FRII sources. Therefore, the distinction between the classes is much less clear than previously
thought.

There are other radio galaxy types that display di�erent morphologies. One such example
is remnant radio galaxies, where the remnant phase refers to the end of the radio galaxies
life cycle when the jets switch o�, usually displaying curved steep spectra and a relaxed
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morphology without compact components, however overall there is a range of morphologies
available to them (see Brienza et al. (2016) and references within). Another source type is
restarted radio galaxies which display remnant lobes associated with active jets. They usually
have a ‘double-double’ morphology, where the centre of the radio galaxy is in line with the
two radio lobes (Schoenmakers et al., 2000).

The duty cycle of radio galaxies refers to phases of high and low jet activity. Di�erent duty
cycles are likely to have resulted from the two AGN modes (radiative mode and jet mode), as
they are also related to two accretion modes acting on di�erent timescales. Radiative-mode
AGN produces highly energetic but short-lived AGN activity, whereas it is believed that jet-
mode AGN go through a self-regulated feeding and feedback loop, where the same gas fueling
the black hole gets regularly heated by it and stops it being accreted, resulting in cyclically
active behaviour for most of the galaxies life (Best et al., 2005).

Flux-limited radio surveys detect powerful radio sources such as FRIIs at relatively higher
redshifts, whereas the low-power radio sources such as FRIs are identified at lower redshifts.
The slope of the radio luminosity function leads to the prevalence of low power sources at
lower redshifts, resulting in a bias and therefore limited knowledge of the relative abundance
of low-power sources at higher redshifts (Saripalli, 2012). Radio luminosity functions suggest
that FRIs, which are located mainly in galaxy clusters, are frequently triggered and spend over
a quarter of their time in an active state whereas FRIIs are more rarely triggered, remaining
active for short periods of time (Best et al., 2005; Shabala et al., 2008).

The probability of a galaxy being radio–loud is a strong function of its optical luminosity,
a result shown using the bivariate radio–optical luminosity function (Auriemma et al., 1977;
Sadler et al., 1989; Ledlow & Owen, 1996). Other statistical studies of luminosity functions
such as Best et al. (2005) show that the fraction of galaxies which host radio–loud AGN is very
strongly related to both stellar and black hole mass. The distribution of radio luminosities
does not generally depend on black hole mass, and that within the range of radio luminosities
studied, radio and emission-line AGN activity are independent of each other. Shabala et al.
(2008) constructed a bivariate luminosity function and used it to constrain the time a radio
source is inactive. They found that radio and emission line AGN activity are independent
phenomena, and that the radio source lifetime and duration of the quiet phase of AGN activity
depends strongly on mass, where massive hosts possess longer-lived sources that are triggered
more frequently. Sabater et al. (2019) show that stellar mass is a more important driver of
radio-AGN activity than black hole mass, which suggests a possible connection between the
fuelling gas and the surrounding halo.

In regard to optical spectra, almost all FRI radio galaxies are Low-Excitation AGN, while
optical hosts of FRIIs usually have strong emission lines and are thus classified as High-
Excitation AGN. However, there is not a direct correspondence between the FR and emission
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line classes as many FRII radio galaxies are also Low-Excitation AGN (Evans et al., 2006).

1.1.6 Supernova remnants

Supernova remnants (SNRs) are the remains of a supernova explosion, and emit synchrotron
radiation. They are made up of material expanding from the explosion, bounded by a shock
wave. There are two ways that SNRs could form; either due to a massive star exhausting its
fuel and collapsing under its own gravity, or from the accretion of material in a likely dwarf
star binary system and undergoing a thermonuclear explosion upon reaching a critical mass.
Approximately 1051 ergs of mechanical energy are ejected in the interstellar medium as well
as several tens of solar masses of stellar material, regardless of the origin of the explosion.
The first SNRs were detected in our galaxy from radio observations.

1.2 Radio astronomical telescopes and surveys

The aim of performing astronomical surveys in general is to produce a catalogue of astro-
nomical objects using measurements from telescopes that describe properties of interest, such
as total flux, size and position. The subsequent analysis of individual sources in the cat-
alogue and/or source populations with the use of statistics, serves to improve our current
understanding of the Universe.

In contrast to the use of optical telescopes, there is more freedom in choosing the locations
where radio telescopes will be built; usually the constraint is that they should be located
in uninhabited places, away from radio transmission and television broadcasting, to reduce
interference e�ects.

The subsequent subsections discuss radio all-sky surveys, in particular the parameters, in-
struments and science goals, as well as discoveries from past and present radio surveys. We
also discuss surveys planned in the future and what they might find.

In addition to continuum surveys, three other types of surveys are possible at radio wave-
lengths, namely spectral line, polarisation and galactic plane surveys. The current thesis is
concerned with radio sources detected using continuum surveys.

1.2.1 Main parameters in surveys

Prior to exploring the di�erent radio surveys that have been done, are currently in progress
or surveys planned in the future, it is important to know the parameters that define them, as
di�erences in these help highlight the survey’s strengths and weaknesses as well as di�erences
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in properties of the detected sources. The key parameters involved in continuum surveys are
the frequency, sensitivity (depth), angular resolution, noise, as well as the survey area, speed
and field of view.

Frequency

At radio frequencies, the non-thermal synchrotron emission is enhanced whereas the thermal
(black-body) emission is dampened. The use of a frequency or range of frequencies in radio
surveys a�ects the type of radio sources that are selected (Simpson, 2017), as well as their
measured properties. For example, low frequencies reveal extended structures in greater
detail compared to when higher frequencies are used, therefore the same source across the
two frequencies will have a di�erence in size.

Early radio continuum surveys utilized low frequencies owing to technical limitations, but
also because most radio sources are stronger at low frequencies. However, they also tend to
have lower resolution and are a�ected by radio-frequency interference. Higher frequencies
o�er a higher resolution, positional accuracy and dynamic range, and are sensitive to free-free
emission, at the expense of being less sensitive to extended structures.

More recently, there has been renewed interest in utilising low frequencies for purposes such as
detecting neutral hydrogen at cosmological distances and investigating ultra-steep spectrum
radio galaxies at high redshifts (Brienza, 2018).

Sensitivity

Radio signals are relatively weak and typically measured in Janskys (10≠26W/m2/Hz). Sen-
sitivity is a measure of the weakest possible detectable source of radio emission (Wrobel &
Walker, 1999), and is synonymous with depth.

The radio sensitivity is proportional to the signal-to-noise ratio, which depends on the e�ective
area of the telescope and the system temperature, all of which are described in more detail
in the subsections below.

Angular resolution

The resolution determines the limit by which two objects that are known to be separate, can
also be seen as such. This depends on the aperture of a telescope. The radio waves di�ract
around the telescope aperture and produce a di�raction pattern.
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Resolution is defined in the same way as it is for optical telescope instruments: ◊ = ⁄/D,
where ⁄ is the wavelength and D is the diameter of the radio telescope or the baseline length,
if radio interferometry is used. The order of magnitude di�erence in wavelengths between
optical and radio causes a large di�erence in the resolution. Due to this di�erence, in the
early days of radio astronomy the angular resolution of a radio telescope was much weaker
compared to that achieved in optical astronomy.

In single radio telescopes, antennas with diameters of several kilometres are needed to achieve
the same optical resolution as that of an optical telescope, which is unfeasible. This is what
brought about the development of radio interferometers, which are radio antenna arrays used
simultaneously in astronomical observations, to mimic a single telescope with a very large
aperture.

Noise

The noise can be broadly defined as the uncertainty in the output signal that should be
dominated by statistical fluctuations in the photons that produce the signal and ideally free
of systematic e�ects.

The noise is expressed in terms of temperatures, where the noise terms add linearly:

Tsys = Tcmb + Trsb + �Tsource + [1 ≠ e

≠·A ]Tatm + Tspill + Tr + ..., (1.2)

where Tcmb is the cosmic microwave background, Trsb is the radio source background, �Tsource

is due to the astrophysical source, ·A is the optical depth, Tatm is the opacity of the atmosphere
due to the absorption of the signal and extra thermal emission, Tspill is due to the imperfect
illumination of the dish or subreflector, and Tr is the receiver background.

It is expected that longer integration times should reduce the noise levels. The radiometer
equation can be used to estimate the noise with respect to integration time (Johnson, 1928):

‡

T
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, (1.3)

where ‡T is the temperature fluctuation, Tsys is the noise, · is the integration time and �‹

is the bandwidth.

The source confusion is also considered to belong under the category of noise. Confusion
is defined as the inability to measure faint sources due to the presence of other sources.
Confusion usually limits the sensitivity of single-dish continuum observations at frequency
below approximately 10 GHz.
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Field of view

For a single dish antenna of diameter D, the width of the field of view of the antenna is equal
to its angular resolution. The field of view is also referred to as the beam, and determines
whether or not a source will be a point source, or an extended one. For point sources, the
flux density measured by a telescope is the brightness integrated over the entire source. For
extended sources, some part of the source will fall beyond the field of view, in which case the
brightness will be calculated over the beam size.

Survey speed, depth, area

The survey speed is the amount of time required to complete a survey, and is proportional
to the number of sub-arrays in the collecting area, the field of view and their number, and
inversely proportional to the integration time per sky position.

Di�erent radio surveys detect sources in di�erent areas of the sky. The area of a survey is
usually measured in deg2. The smaller the survey area, the greater the cosmic variance and
increased likelihood that they would miss intrinsically small objects. On the other hand,
surveys that have covered wider areas have been relatively shallow, and so may have missed
the most active epochs of galaxy formation (Norris et al., 2006).

The depth of a survey is synonymous with the sensitivity. The number of sources detected in
a survey is a�ected by the survey area and sensitivity. There is usually a trade-o� between
the two; the number of sources detected can be increased by focusing on a smaller area but
at greater sensitivity, or over a larger area at decreased sensitivity. Technological limitations,
cost and time required are obstacles in maximising both the sensitivity and area.

Surveys can cover parts of the two hemispheres, for example FIRST and NVSS examined the
northern hemisphere, which is currently undertaken with LOFAR. The PARKES telescopes
examined the southern hemisphere and will be covered by the SKA in the future. There have
been several all-sky surveys such as TIFR GMRT Sky Survey (TGSS), The GaLactic and
Extragalactic All-Sky MWA Surve (GLEAM), and VLASS at present.

Figure 1.7 is a plot of the logarithm of area in units of degrees versus the logarithm of
sensitivity across a selection of radio telescopes, in units of mJy. It shows the trend of their
increasing sensitivity with respect to area.

1.2.2 Science goals and purpose of surveys

Undertaking continuum surveys in the radio regime helps us to understand the formation and
evolution of galaxies in the early Universe. In particular, continuum surveys shed light on
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Figure 1.7: The logarithm of area versus limiting sensitivity across the large-scale surveys. Figure
taken from (Norris, 2017a).
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the evolution of star formation and AGN, galaxy clusters and the detection of dark matter,
cosmology and the determination of its parameters, as well as making unexpected discoveries,
all of which are discussed in further detail in the following subsections.

The physics and evolution of star formation

There are several scientific aims that radio surveys will attempt to address in regard to learning
about SFGs, such as a better understanding of the cosmic history of star formation and star
formation rate density (SFRD) curve, uncovering the physical basis of the FIR correlation,
being better able to distinguish between radio-loud AGN and SFGs using the FIR correlation
in SFGs, measuring star formation rate (SFR) accurately (Norris, 2017a), as well as modeling
the evolution of the luminosity function of SFGs (Bonato et al., 2017).

The cosmic history of star formation is one of the most fundamental observables in astro-
physical cosmology. Its study can help astronomers to map the transformation of gas into
stars, investigate the production of heavy elements, as well as the reionisation of the Universe
from the dark ages to the present epoch. Determining the early history of star formation is
required to help establish whether massive stars in young SFGs are responsible for cosmic
reionisation (Madau & Dickinson, 2014).

Di�erent methods of measuring the SFR have given di�erent values, largely due to the in-
accurate determinations of extinction corrections (Madau et al., 1998). Future surveys will
enable a better characterisation of the SFRD curve, as many more SFGs will be discovered
compared to in previous surveys.

Future radio surveys will detect more SFGs compared to using FIR surveys, therefore giving
larger sample sizes, including up to high redshifts. Radio waves provide a more reliable way
to measure SFR as they are not a�ected by dust extinction compared to using FIR emission
(Calzetti, 2001; Mancuso et al., 2015). As such, radio surveys o�er a good way to measure
the cosmic star formation history of the universe. However, special care needs to be taken
to disregard radio emission from a potential AGN component. By discovering the physical
basis of the FIR correlation, it will shed light on how the many physical processes such as
the propagation of relativistic electrons, strength and structure of the magnetic field, size
and composition of the dust grains, must work together to produce the observed relation (see
Mancuso et al. (2015) and references within.)

Assessing the relationship between radio continuum luminosity and SFR is of crucial impor-
tance to make reliable predictions for upcoming ultra-deep radio surveys and in using their
results to measure the cosmic star formation history (Bonato et al., 2017).
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The physics and evolution of AGN

One of the biggest questions yet to be resolved in astronomy is understanding the di�erence
between radio-loud and radio-quiet AGN. For example, investigating why the host properties
of radio-loud AGN depend on redshift is of great interest. Many papers have discussed the
potential mechanisms responsible for the radio emission observed in radio-quiet AGN (see
Padovani et al. (2014) and references therein). Despite evidence that SMBHs and their
host galaxies have co-evolved, the mechanisms driving this co-evolution remains uncertain
(Shankar et al., 2009; Kormendy & Ho, 2013; Heckman & Best, 2014).

The brightness of a SMBH in an AGN can be influenced by the host galaxy’s environment,
making AGN important tools for understanding the evolution and formation of structure in
the Universe (see Bieri (2016) and references within).

Future radio surveys will hopefully help uncover the physics driving the origin of the FRI/FRII
dichotomy and the mechanism driving jets.

The study of the duty cycle (phases of high and low jet activity) in AGN has recently gained
new relevance due to the role of AGN Feedback in galaxy evolution (Brienza et al., 2018),
as jets can have a major impact on the interstellar and intergalactic medium. Future radio
surveys should help to reveal a more detailed picture of the duty cycle.

Radio galaxies appear to follow a life cycle, where they pass through di�erent evolutionary
states, ending when the nuclear activity drops or ceases and the jet fuel supply is exhausted.
At this stage they are referred to as remnant radio galaxies. Understanding the evolution
of remnants is important to see whether or not they can have a long-term e�ect on the
cluster (Basson & Alexander, 2003). There are relatively few continuum observations of
remnants (Giovannini et al. (1988), Brienza (2018) and references within), therefore limiting
the possibility of studying them in a statistical sense (Mahatma et al., 2018). Future surveys
will detect a larger sample of remnant radio galaxies, enabling better quality population
studies and to help develop more accurate models that describe how the radio galaxies evolve
after the jets switch o�. Larger samples will also reveal higher numbers of unusual remnant
sources such as those displaying a steep spectrum at low radio frequencies, which is important
in understanding their rarity and the role they play in feedback processes (Brüggen et al.,
2018).

Restarted radio galaxies, which display a ‘double-double’ radio morphology composed of rem-
nant lobes associated with active jets, are one of the most indicative sources of episodic
activity in radio galaxies and provide a way to investigate their duty cycle. It is important
to identify more examples of such sources to understand the episodic activity of the jets and
constrain the time scales over which it occurs, and for studying the propagation of jets in
di�erent media (Saikia & Jamrozy, 2009).
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Giant Radio Galaxies (GRGs) are defined as those having sizes greater than or equal to a
Mpc (Willis et al., 1974; Ishwara-Chandra & Saikia, 1999). Despite the discovery of hundreds
of thousands of radio galaxies to date, only a few hundred GRGs have been found. The mech-
anism that explains their enormous size is still unknown (Dabhade et al., 2019). Although
several hypotheses have been proposed, larger samples of GRGs are required to provide fur-
ther evidence for any hypothesis, which will be available from future surveys. Analyses of
smaller samples have led to contradictory results. For example Subrahmanyan et al. (1996)
find that GRGs are very old radio galaxies and have had su�cient time to expand over large
distances, whereas Mack et al. (1998) found evidence that the ages of GRGs in their sample
are similar to that of normal sized radio galaxies.

Other open questions are the connection between the accretion disk and the jet, and the
origin and launching mechanism of the ionised winds in AGN (Mehdipour & Costantini,
2019). Hopefully, upcoming radio surveys will shed some light on the mechanisms driving
these phenomena.

Future surveys will help to understand the relationship between AGN and star formation
evolution and their role in AGN Feedback. At high redshift, the dominant mode of accretion
onto a SMBH is cold mode accretion, whereas the dominant mode at low redshift is hot mode
accretion (Kereö et al., 2005). These di�ering mechanisms cause a change in the space density
and luminosity functions of radio sources (Norris, 2017a). AGN Feedback may explain the
close correlation between the high evolution rate of cosmic star formation and the peak of
AGN activity at redshifts between z = 1 ≠ 2 (Silk, 2011).

Many more millions of AGN sources will be observed in future surveys and they will make up
an important part of multiwavelength studies of galaxy evolution (Padovani et al., 2014).

Clusters of galaxies

Galaxy clusters are the largest organised structures in the Universe that appear bounded
by gravity. They are made up of galaxies in a cloud of intergalactic gas, located at the
intersections of filaments and sheets of the cosmic web. Synchrotron radiation in the intra-
cluster magnetic field causes the di�use radio emission observed in galaxy clusters (Feretti et
al. 2012). Depending on its morphology, location, and size, a galaxy cluster can be classified
as a di�use elongated object (radio relic), a large di�use halo, or a mini halo (Brunetti &
Jones, 2014; van Weeren et al., 2019). Galaxy clusters should contain very large populations
of relativistic electrons and ions as a result of particle acceleration in shocks (Sarazin, 2002;
Brüggen et al., 2012; Kang, 2018).

Di�use synchrotron radiation from the ICM is detected in a variety of radio observations (e.g.
Brown & Rudnick (2011)), providing evidence for non-thermal particles, which introduced
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fundamental questions about their origins and impact on the physics of the ICM and evo-
lution of galaxy clusters (Kaastra et al., 2008). Upcoming radio telescopes will explore new
parameter space and reach unrivaled sensitivities to cluster scale emission over a wide fre-
quency range, enabling more detailed studies of non-thermal components in galaxy clusters.
These telescopes will also probe cluster scale magnetic fields, through polarization and Fara-
day Rotation studies of background and cluster radio sources with unprecedented statistics,
frequency and dynamic range (Brunetti & Jones, 2014).

Narrow-Angle Tail (NAT) and Wide-Angle Tail (WAT) galaxies, which are a subset of ex-
tended (radio-loud AGN) structures, are tracers of weather in the ICM (Clarke et al., 2014).
Therefore, radio surveys can be used to investigate the AGN population in galaxy clusters.
Observing the radio emission originating from dominant galaxies in galaxy clusters enables
study of the feedback between the ICM and AGN (Gitti et al., 2012; Blanton et al., 2010).

The radio data currently available contains only a handful of galaxy clusters, which may be
a biased sample as they were initially discovered at X-ray wavelengths. Large samples of
clusters are important in the study of cosmology and large-scale structure formation; and to
this e�ect, upcoming radio surveys will discover hundreds more clusters (Norris, 2017a).

Dark matter annihilation can result in the production of stable Standard Model particles that
lose energy through synchrotron radiation due to the presence of magnetic fields, which can
be observed through radio emission. Galaxy clusters are excellent targets to search for or
constrain the rate of dark matter annihilation, due to their large structure and dark matter
composition (Storm et al., 2013). The results of future radio surveys should achieve better
constraints on the rate of dark matter annihilation.

Future surveys may help to address the open questions surrounding the origin of cosmic mag-
netism, such as when and how the first fields were generated, whether present-day magnetic
fields are a result of dynamo action or whether they represent persistent primordial mag-
netism, and the role that magnetic fields play in turbulence, cosmic ray acceleration and
galaxy formation (Gaensler et al., 2004). However, the particle acceleration mechanism in
galaxy clusters is uncertain, which surveys in the future are hoped to reveal. Several potential
mechanisms are reviewed in Petrosian & Bykov (2008).

Cosmology and cosmological parameters

A couple of the first successes of radio surveys with respect to cosmology are ruling out
the steady-state theory of the Universe (Shakeshaft et al., 1955; Schmidt, 1963) and the
measurement of the cosmic dipole (Blake & Wall, 2002).

Radio continuum surveys in the future are expected to reveal more about cosmology, such
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as the source autocorrelation function, the cross-correlation of radio sources with foreground
objects resulting from cosmic magnification, and a joint analysis involving the CMB power
spectrum and supernovae. The cross-correlation can be used to test and constrain cosmo-
logical issues, such as the evolution and clustering of structures, models of dark energy and
alternative models for the gravitational potential (see Raccanelli et al. (2012) and references
therein). Future radio surveys are expected to produce the most significant measurement
of the integrated Sachs-Wolfe e�ect (the cross-correlation between radio sources and cosmic
microwave background (CMB) maps), as well as bring complementary measurements to other
experiments (Raccanelli et al., 2012).

Cosmological reionisation is key in understanding the early phases of structure formation and
evolution. Radio surveys, together with CMB surveys, will o�er unique and specific ways of
studying the evolution and energetics of the reionisation process simultaneously, which will
provide both global and cross-sectional structure information (Trombetti & Burigana, 2018).
The WEAVE/LOFAR survey is expected to find tens of radio galaxies at z > 6 and together
with using the 21cm forest, it will enable examination of the IGM structure during the Epoch
of Reionisation (Simpson, 2017).

A long-standing problem of cosmology is that of the missing baryons, where there are < 60% of
confirmed baryons compared to the total amount predicted (see Nicastro (2016) and references
therein). The missing baryons are expected to be located in the hot and tenuous filamentary
gas connecting galaxies, also known as the warm-hot intergalactic medium (WHIM). To date,
they have been observed in very few absorption lines, for example there have been X-ray
observations of filamentary structures of gas at 107 K associated with the galaxy cluster Abell
2744 (Eckert et al., 2015), and Nicastro et al. (2018) used observations of two highly ionized
oxygen (OVII) intervening absorbers in the exceptionally high signal to noise X-ray spectrum
of a quasar at z > 0.4. It should be possible to use upcoming radio polarisation observations
such as that of the SKA, whose increased sensitivity will enable improved detections of the
cosmic web and therefore increase our knowledge about its constituents. As such, Locatelli
et al. (2018) use numerical simulations of galaxy clusters to address the possible detection of
the terminal part of the magnetised cosmic web, by focusing on observations of intracluster
filaments connected to massive galaxy clusters via the Faraday Rotation e�ect.

Unexpected discoveries

When telescopes enter previously unchartered areas of observational space, they make unex-
pected discoveries, which often outshine the original goals for which they were built (Norris,
2017b). In fact, out of 18 major astronomical discoveries in the past 60 years, only 7 were
planned (Ekers, 2010). One example is pulsars, which were discovered when the radio sky
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was studied for the first time with high time resolution, to study interstellar scintillation. The
use of high time resolution represented new paramater space at the time. Intimate knowl-
edge of the instrument enabled recognising that the observed noise was not due to terrestrial
interference (Bell Burnell, 1969).

In light of future surveys, unexpected discoveries require the development of algorithms that
can mine the data for the unexpected. One such example is searching for unusual spectra to
enable ‘weird’ galaxies to be identified in Sloan Digital Sky Survey (SDSS) data (Baron &
Poznanski, 2016).

1.2.3 Past and present (large-scale) surveys

We describe a selection of large-scale radio surveys performed over time, which achieved major
results in radio astronomy.

2C and 3C surveys

The first large-scale astronomical survey performed was the 2C Survey (Shakeshaft et al.,
1955), the first of 10 done by the Cambridge Surveys. The survey detected O(1000) sources
at a frequency of 81.5 MHz. Despite the detection of spurious sources in the 2C survey, which
were subsequently corrected for, it was the first survey to give evidence for the Big Bang
model of the Universe as opposed to the steady state theory.

The subsequent survey (3C) published in 1959, was performed at 159 MHz. The revised 3C
survey used observations at 178 MHz, which listed the brighter radio sources in the Northern
Hemisphere, detecting several hundred sources in total. The updated version included more
recent information about the sources already detected by the original 2C survey, as well as
newer sources (Bennett & Simth, 1962). The 3C surveys were also the first without major
errors that showed evidence of the strong evolution of radio sources in favour of the Big Bang
model.

FIRST/NVSS

Approximately 4 decades after the 3C survey, there was a monumental increase in the number
of sources detected, from the order of tens of thousands up to a few million. Two examples of
such surveys were FIRST and NVSS, both operating in parallel, using the Very Large Array
(VLA).

The NRAO VLA Sky Survey (NVSS) covered the northern sky and was conducted at a
frequency of 1.4 GHz and resulted in the catalogue of ≥ 1.8 million sources (Condon et al.,
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1998). Although it is the largest radio survey to date, it is relatively shallow.

A survey performed in parallel with the NVSS survey is the VLA Faint Images of the Radio
Sky at Twenty-cm (FIRST) survey (Becker et al., 1995). FIRST covers a smaller area of the
Northern sky and contains over 800,000 unique sources.

The FIRST survey has a higher angular resolution compared to NVSS, as well as a greater
depth. The resolution of the survey was chosen to enable identification of optical counterparts
to the radio sources as well as their radio morphology. Additionally it should enable the
multiple components of a radio source to be resolved (Becker et al., 1994).

In light of current surveys, one drawback of the FIRST survey was the relatively poor angular
resolution and the low sensitivity to extended low surface brightness structures, which limited
the ability to determine both source sizes and peak locations, particularly for smaller sources
(Miraghaei & Best, 2017).

LOFAR

Whereas the FIRST/NVSS radio surveys were conducted at GHz frequencies, LOFAR (van
Haarlem, M. P. et al., 2013) is conducted in the MHz regime. Due to the compact core and
long baselines of LOFAR, the images provide excellent sensitivity to both highly extended
and compact emission (W. Shimwell et al., 2016).

The LOFAR Two-metre Sky Survey (LoTSS; Shimwell, T. W. et al. (2019)) continuum survey
consists of three tiers. The survey has detected more than 325,000 sources to date, achieving
a signal of 5 times the noise. The source density is a factor of approximately 10 times higher
than the most sensitive existing very wide-area radio-continuum surveys.

VLASS

The VLA Sky Survey (VLASS1) is currently underway, with preliminary results available.
The survey is performed using the Jansky Very Large Array (VLA) at a frequency of 2-4
GHz. Over the last few years, half of the sky north of -40 degrees declination was observed.
By completion, it is expected to detect approximately 5 million sources.

1
https://science.nrao.edu/science/surveys/vlass
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Future Surveys

A selection of upcoming surveys include the SKA2, Evolutionary Map of the Universe (EMU)
(Norris et al., 2011) and MeerKAT3.

The SKA will survey part of the Southern hemisphere in great detail, as it is expected that
the angular resolution and survey speed will exceed those of current surveys by thousands
of times. It will make extremely deep observations over small areas of sky (Norris, 2017a),
where the sensitivity is expected to be two orders of magnitude greater than that of current
surveys. The SKA will be divided into two phases, with the first one planned to be completed
around 2023, with the second one being a decade later.

EMU, the continuum survey of ASKAP, is considered to be an ‘all sky’ survey and expected to
find around 70 million radio sources including most of the SFGs in the Universe and the first
black holes (Norris et al., 2011). It will have O(10) more sensitivity and 5 times the angular
resolution compared to NVSS (Norris & the Emu team, 2009). Although the reliability of
identifying the optical/infrared counterparts to radio sources does not su�er significantly at
the resolution used, the depth of the complementary data has a major e�ect, which will be
the main limitation in trying to extract the maximum from all-sky surveys such as EMU
(Simpson, 2017).

MeerKAT is the South African SKA pathfinder telescope, with 64 antennas spanning an
area 8 km in diameter. It is a precursor to the SKA. Continuum surveys with MeerKAT will
probably include the MIGHTEE survey (Jarvis et al., 2016) which will be conducted at about
1.4 GHz and detect about 200,000 sources.

Cross-matching surveys

One of the main advantages of modern large radio surveys is the ability to perform the
essential task of cross-matching with surveys at other wavelengths in order to identify the
multiwavelength counterparts of radio sources, to enable statistical studies of their source
populations and host galaxy properties (Williams, W. L. et al., 2019). The majority of radio
sources are compact, which allows for relative ease of cross-matching with the optical coun-
terpart using automated statistical methods, such as the Likelihood Ratio test (Sutherland
& Saunders, 1992).

However, there remains a smaller fraction of radio sources usually belonging to the radio-
loud AGN class, that can be di�cult to classify. In particular, some of these radio-loud AGN
display large and complicated source structures. One example that illustrates obstacles to the

2
https://www.skatelescope.org

3
http://public.ska.ac.za/meerkat/meerkat-large-survey-projects



1.2. RADIO ASTRONOMICAL TELESCOPES AND SURVEYS 40

cross-identification of radio sources is when there are two unresolved nearby radio components,
where the optical host lies halfway in between. The two components may be the lobes of an
FRII, or they may be two independent sources (Norris, 2017a). One way to resolve such a
case would be to visually inspect the radio emission pattern and classify it accordingly.

For surveys detecting relatively few O(1000) sources, visual inspection is commonly used to
perform the cross-identifications of such sources. This is where citizen scientists have been
proven to be useful, where non-expert astronomers are trained to classify objects based on a
few simple rules, such as in the Radio Galaxy Zoo (Banfield et al., 2015). However, there is
an increased need to automate the cross-matching procedure as many surveys are detecting
on the order of many thousands, up to several million sources. The classification of citizen
scientists can be used to train a machine learning algorithm. In particular, a convolutional
neural network has been used on Radio Galaxy Zoo and was found to produce comparable
results to the cross-identifications performed by experts. However, the performance was
limited by sample size (Alger et al., 2018).

Another major di�culty in performing cross-matching is being able to distinguish between
radio-loud AGN and SFGs. One way to address this is to use the FIR correlation in SFGs.

Summary of radio surveys

The current section has included a description of the parameters on which surveys depend and
how they a�ect the properties of the sources detected. A small selection of large surveys that
represented significant milestones in radio astronomy have been reviewed. These surveys have
included providing increasing evidence for the big bang model of the Universe and detecting
larger populations of faint radio sources including at higher redshifts, which has given a clearer
picture about the composition of the Universe and how it has evolved.

In time, radio surveys have achieved substantial increases in the number of sources detected,
as a result of significant improvements in sensitivity, resolution and/or area. Figure 1.8 shows
the logarithm of the number of sources versus the date a particular survey was first published,
since the near-beginning of radio astronomy up to the year 2020. The details of a few future
surveys, as well as what is expected to be found from them, has also been discussed.

The ability to cross-match the results of surveys across di�erent wavelengths enables more
accurate studies of individual source properties and populations.
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Figure 1.8: Showing the log of the number of sources detected/expected to be detected vs year, from
1940 up to 2020 across the large-scale radio surveys. There is an exponential growth
in the number of sources versus time, since radio astronomy began. Figure taken from
(Norris, 2017a).

1.3 Machine learning and applications to astronomy

Machine learning involves the use of algorithms and statistical models which aim to learn,
infer structure and recognise patterns in data. It belongs under the category of Artificial
Intelligence (AI), which can be broadly defined as the intelligence demonstrated by machines,
where they have the capacity to perform functions associated with the human mind, such as
learning or problem solving (Russell & Norvig, 2009).

A major goal of machine learning is to construct a model, or hypothesis, that can make
predictions based on the data provided. The learning process usually takes place on a sample
set of (training) data, and after the models are trained they are applied to a sample of test
data to evaluate their performance. In some cases, the progress of learning can be evaluated
on a separate part of the data called a validation set, which in some circumstances can also
be used as the test data.

Machine learning is di�erent to data mining, although both stem from the field of data
science. Data mining aims to use intelligent methods to extract information from a dataset
and transform it into a usable form for future purposes (Hastie et al., 2009), whereas machine
learning aims to learn from data.
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There are many applications of machine learning, especially as the development of technology
yields increasing amounts of rich and complex data, requiring sophisticated algorithms to
extract information from and analyse. It is used in most industries that work with data,
including across all areas of science, for example in genomics, where it can be used to identify
patterns in genetic sequences e.g. Libbrecht (2015). Machine learning is heavily utilised in
social media platforms such as Facebook and Youtube, where the algorithms can for example
predict what advertisements to show based on the items that people click and their reactions
to them. Another example of its use is in financial services, for example in detecting fraud
(Ngai et al., 2011). Machine learning is becoming increasingly important in astronomical
applications, as a result of continuously developing telescope and survey technologies (Ball &
Brunner, 2010). The application of machine learning to astronomy is the main focus of the
current section.

The main categories that machine learning techniques fall into are Supervised and Unsuper-
vised learning. In Supervised learning, labels (outputs) are provided with the training data
(inputs). Unsupervised learning does not involve the use of labels, so the algorithm must
infer structure using the input data only. A third smaller category, semi-supervised learning,
is when labels are provided for some of the inputs.

1.3.1 Supervised learning and common techniques

Examples of tasks involved in supervised learning are classification and regression. In classi-
fication, discrete labels are given and the algorithms learn to separate the data into at least
two distinct classes, based on their features. A common example is detecting spam in emails,
where one can use a set of emails labeled as being ‘spam’ or ‘not spam’ as training data for a
machine learning algorithm to learn the features that di�erentiate between the two classes.

In regression problems, continuous values such as measurements of properties are provided,
which the algorithm learns from and predicts continuous values for unseen samples. An
example is the prediction of house prices, based on properties such as location, size and
number of rooms.

Several common supervised machine learning methods that have also had numerous astro-
nomical applications are decision trees (Belson, 1959), random forests (Breiman, 2001) and
support vector machines (SVMs; Boser et al. (1992)). Comprehensive reviews include Kot-
siantis (2013) for decision trees, Parmar et al. (2019) for random forests and Nalepa & Kawulok
(2019) for SVMs. These methods are not described in further detail here since they are not
utilised in the current thesis, however we discuss their use in astronomy in a later section.

The following two subsections describe the methods that form the basis of this thesis, namely
deep learning techniques and the neural networks from which they stem.
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Figure 1.9: Showing the basic architecture of a neural network with an input layer, hidden layer and
output layer. Figure taken from Hong (2019).

Artificial Neural networks

Artificial Neural networks (ANNs), in the context of machine learning or artificial intelligence,
are inspired by the neural networks in the brains of animals (McCulloch & Pitts, 1943). They
can be used in a supervised or unsupervised setting. The terms that underlie the functioning
of neural networks are in boldface.

Neural networks consist of an input layer, an output layer and at least one intermediate (hid-
den) layer. The layers consist of nodes, which in traditional neural networks are completely
interconnected between adjacent layers. A weight, and generally a bias, governs the con-
nections between nodes. The output of nodes is mediated through the use of an activation
function, which produces an output signal based on some usually nonlinear combination
of weights, inputs and biases. The weights are the strength of the connections between the
nodes in subsequent layers, usually initialised from a random distribution. A simple neural
network architecture is shown in Figure 1.9, containing an input layer having input matrix X,
a hidden layer and an output layer, which outputs predictions ŷ. The weights, which connect
the nodes between consecutive layers are shown with subscripts. The inputs to a particular
node are a sum (referred to as �) of the inputs from the previous layer multiplied by the
weights. The activation function of a particular node is denoted using f . The activity of the
third layer z

(3) is expressed as the activity of the second layer a

(2) multiplied by the weights
in the second layer W

(2).
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The data, and corresponding labels in the case of supervised learning, are fed into the input
layer and propagated through the network, where a prediction is given at the output layer.
The di�erence between the prediction and true label is computed, which constitutes the error.
This error is sent back through the network, and the weights and biases are adjusted in order to
minimise the error, using the gradient descent algorithm (Cauchy, 1847), discussed in more
detail in a later subsection. The process of sending the data back through the network and
adjusting the weights to minimise the cost function is called backpropagation (Rumelhart
et al., 1986). The procedure is repeated for a certain number of samples at a time, as specified
by the batch size until the entire training set is cycled through, after which the weights are
applied to the validation set. The network is said to be trained for a certain number of
epochs, referring to the number of times the entire training set is cycled through. Ideally,
the network should keep being trained until the training and validation losses both reach a
(global) minimum. If the training loss continues to decrease and the validation losses start
to increase, this signals that the network has begun to overfit, which can be remedied with
the use of early stopping (Caruana et al., 2000), where one specifies a number of epochs
to wait and see whether or not the validation loss will decrease once more. If not, training is
stopped.

The more complex the data is, the larger the neural networks need to be (in terms of number of
layers and nodes per layer), in order to capture the patterns better. At some point the network
will reach a level of complexity such that the signals propagated through the layers continue
to decrease and can eventually approach zero. This is known as the vanishing gradient
problem (Hochreiter, 1998). It is remedied by reducing the number of parameters in the
network, through techniques such as deep learning, discussed in the following subsection.

Deep learning

Deep neural networks (DNNs) are neural networks containing many layers. Traditionally, all
the nodes in neural networks are interconnected between the subsequent layers. When the
data becomes high-dimensional it can lead to the vanishing gradient problem, as discussed in
the previous subsection. The problem can be remedied with the use of convolutional neural
networks (CNNs), which use convolutional layers containing a number of user-defined filters,
that are smaller 2D windows of a certain size as specified by the user, that scan across the
image and detect features. The use of filters greatly reduces the number of parameters in the
network, while simultaneously enforcing translational invariance. The number of pixels by
which the filters are moved across the image are also specified by the stride. The number of
parameters can also be reduced by using pooling layers, which summarise the pixel intensities
over a small region of the image, as specified by the user. However, pooling results in the loss
of some information.
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An example architecture of a CNN as shown in Figure 1.10 has stacked layers of convolutional
and pooling layers, which achieve a hierarchical extraction of features, followed by up to a few
dense layers at the end, which serve to tie together the global features in the image, before
outputting the classification, or regression scores, at the final layer.

CNNs are very useful in high-dimensional problems such as image classification. One ad-
vantage is that the original data can be input into the network, which performs the feature
extraction, rather than using features extracted from another method. The data usually has
some form of pre-processing applied to ensure that it is all on the same scale, for example.

A powerful method to boost the performance of CNNs is to artificially increase the training
set size using image augmentation (Krizhevsky et al., 2012), where many more training
samples can be generated through the use of label-preserving a�ne transformations, such as
translations, rotations, flipping, adding random noise and whitening.

One perceived drawback of using CNNs is that despite being translationally invariant, they
are not rotationally invariant, as the pooling operation causes the loss of relative feature
information within the image. The local features are preserved, however their relationship
on a global scale tends to degrade. This problem motivated the introduction of Capsule
networks (Sabour et al., 2017), which consist of groups of neurons that aim to preserve all
relative feature locations in the data.

There have been many CNN architectures that have been developed for certain applications,
with some examples as follows. Recurrent CNNs incorporate recurrent connections into each
convolutional layer (Liang & Hu, 2015), ResNets utilise skip connections between convolu-
tional layers if the classification accuracy does not improve with the addition of layers (He
et al., 2015b), Generative Adversarial Networks (GANs) are made up of an image generator
and discriminator, which has the function of di�erentiating between real and generated images
(Isola et al., 2016), Conditional Adversarial Networks are based on GANs, which condition
the generative model on additional information and have been investigated as practical so-
lutions for image-to-image translation problems. Regional proposal networks extract regions
of interest within images prior to computing the CNN features (Girshick et al., 2013), and
localise objects.

Instead of building a new neural network for every specific task, it is possible to initialise a
network using the weights from networks that have been trained on large image databases
such as ImageNet (Russakovsky et al., 2014), a method known as transfer learning (Pratt
et al., 1991). Transfer learning is popular given the computing power and time required to
train a deep learning model from scratch, and usually increases the rate of error convergence
and achieves improved classification metrics. The application of a transfer learning model
must take into account that the earlier layers will detect common features between di�erent
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Figure 1.10: An example of a convolutional network architecture. Convolutional layers are generally
stacked with pooling layers in between to achieve a hierarchical extraction of features.
Figure taken from (Britz, 2019).

datasets, whereas the last few layers are problem specific (Yosinski et al., 2014). As such,
it has traditionally been used between datasets that are similar in nature (Tan et al., 2018).
Transfer learning can boost the classification performance for small training sets (Quattoni
et al., 2008).

A criticism for machine learning techniques, in particular DNNs is that they are considered
to be a ‘black box’ approach in that one is uncertain how the network came to a particular
decision given the data provided. As the use of machine learning becomes more integral
in real-world data problems, it is becoming increasingly important to attempt to unravel
the inner workings of the network. For example, not understanding the mechanism of the
algorithm behind self-driving cars can have fatal consequences.

Several approaches have been developed to address these issues, which work on the two
di�erent levels based on interpretability and explanation of a deep learning model (Montavon
et al., 2017). Direct interpretability models incorporate interpretability into the structure
of the model. Post-hoc interpretability models (which seek to understand what the model
predicts based on the input) include those based on activation maximisation, which searches
for an input pattern that produces a maximum response for a quantity of interest and extends
to the use of GANs. Techniques to explain the decisions made by a machine learning model
include those based on backpropagation, such as deconvolution (a visualization technique
that gives insight into the function of intermediate feature layers and the operation of the
classifier) (Zeiler & Fergus, 2013) and layer-wise propagation (LRP) (Bach et al., 2015). LRP
allows one to visualise the contributions of single pixels to predictions.

Another criticism specific to DNNs has been regarding their generalisation ability. In some
cases, DNNs can misclassify samples when small pertubations are applied to the inputs
(Szegedy et al., 2013; Goodfellow et al., 2014). Zahavy et al. (2016) find the use of a technique
called ensemble robustness, which centers around the robustness of a collection of hypotheses,
improves their ability to generalise.
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1.3.2 Unsupervised learning and common techniques

Unsupervised learning techniques seek to infer structure by forming groups from the data,
when labels are not provided. They can be used to reduce the dimensionality of the input
data and extract the discriminating features between the groups.

Common unsupervised learning techniques include Principal Component Analysis (PCA)
(Pearson, 1901), hierarchical clustering (Rokach & Maimon, 2005), k-means clustering (Lloyd,
1982) and self-organising maps (Kohonen, 1989). Neural network architectures can also be
used in the context of unsupervised learning, with autoencoders being one example, which
are discussed next in further detail as they are used in the current thesis.

For more details on the afore-mentioned methods, useful reviews include Jolli�e & Cadima
(2016) for PCA, Murtagh & Contreras (2012) for hierarchical clustering, Ankita Dubey (2017)
for k-means and Miljkovic (2017) for SOMs.

Autoencoders

Autoencoders are neural networks that are made up of an encoder, whose purpose is to
compress the input into a hidden representation having a lower dimensionality (bottleneck)
(Tishby et al., 1999), and a decoder which aims to reconstruct the input using the hidden
representation. In mathematical terms, if the encoder is expressed using function h = f(x)
and the decoder is r = g(h), the autoencoder function is r = g(f(x)). The autoencoder aims
to use the hidden representation to achieve as close a reconstruction r as possible, to the
original data x (Vincent et al., 2008). When the most accurate possible reconstruction is
achieved, the loss (error), which is some function of the di�erence between the reconstruction
and the input, will be minimised. It is common to use the mean squared error (MSE) or the
sum of squares error (SSE).

Autoencoders were used for the first time to perform unsupervised pre-training of neural
networks (Ballard, 1987), to initialise the weights in a neural network, a purpose for which
they continue to be used, rather than initialising from a random distribution. Other common
applications of autoencoders are non-linear dimensionality reduction, denoising and visual-
isation. A simple autoencoder architecture is shown in 1.11. To help avoid the vanishing
gradient problem for high complexity datasets, one can construct an autoencoder using a
combination of convolutional layers and dense layers, instead of using only dense layers.
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Figure 1.11: A simple autoencoder structure having an input layer, one hidden layer and an output
layer. Figure taken from Khandelwal (2018).

1.3.3 Machine learning theory

Machine learning techniques have several aspects in common. As mentioned previously, the
aim is to construct a model that can make predictions based on the data provided, or map
inputs to outputs. The success of many machine learning algorithms largely depends on the
training set size, and the choice of a particular algorithm depends on the task at hand, the
data available and its complexity. From hereon in, the underlying concepts concerning many
machine learning techniques are highlighted in boldface.

Prior to the application of any machine learning technique, it is necessary to pre-process
the data to convert it into a form amenable for analysis. A common method is to use
normalisation, to ensure all the data is on the same scale. The type or sequence of steps
involved in pre-processing usually depends on the data at hand and the problem to be solved
(Ball & Brunner, 2010).

In constructing a machine learning model, we can assume that in the simplest case, our
prediction ŷ has a linear dependence on the input data x, and that our data is continuous,
which can be expressed as the following:

ŷ = —0 + —1x (1.4)

where ŷ is the prediction vector, —0 and —1 represent the coe�cients of the estimates, and x

is the input data vector.

One important quantity is the di�erence between the true value y (given data x) and the
predicted value ŷ, which forms the basis of any cost function (Wald, 1949), where the error
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can be expressed as ŷ ≠ y. The cost function is some function of the di�erence between ŷ and
y, and there are many available for use. A common cost function used in machine learning is
the mean squared error (MSE), which is the average of the sum of di�erences squared:

MSE = 1
2m

mÿ

i=1
(ŷ(i) ≠ y

(i))2
, (1.5)

where m is the number of samples in the dataset, i is a particular sample in the dataset, ŷ

(i)

is the prediction for sample i, and y

(i) is the true value for sample i.

Other common cost functions are the mean absolute error, cross-entropy and log-loss. The
choice of method depends on the problem at hand and the type of data available. One
usually wants to minimise the cost function such that the errors approach 0. Consequently,
the prediction ŷ will be as close to the true y.

Substituting ŷ

(i) = —0 + —1x

(i) and denoting the cost function, with parameters —0 and —1 as
J(—0, —1):

J(—0, —1) = 1
2m

mÿ

i=1
((—0 + —1x

(i)) ≠ y

(i))2 (1.6)

To find the minimum of the cost function we can di�erentiate with respect to parameters
—0 and —1 and set the cost function to 0. This method is known as gradient descent. It
is also possible to see how much the cost function changes with small modifications to each
parameter ˆJ(—0,—1)

ˆ—0
and ˆJ(—0,—1)

ˆ—1
.

Seeing what modifications to —0 and —1 will result in a reduction in cost function J(—0, —1),
the updated parameters —

ú
0 and —

ú
1 are calculated as such:

—

ú
0 = —0 ≠ –

ˆJ(—0, —1)
ˆ—0

(1.7)

and
—

ú
1 = —1 ≠ –

ˆJ(—0, —1)
ˆ—1

(1.8)

where – is the learning rate, which is important to tune correctly as choosing values that are
too small make the cost function take a longer time to converge to a minimum, whereas values
that are too large cause erratic changes to the cost function and may cause it to overshoot
the minimum.

Depending on the number of parameters, the cost function can be thought of as being in
a high-dimensional space consisting of many minima, such as shown in Figure 1.12. It is
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Figure 1.12: The cost function can be viewed as a higher-dimensional space that depends on the
number of parameters. Figure taken from (Daniel, 2019)

possible for the cost function to converge on a local minimum rather than a global one.

It can be di�cult to manually tune the various parameters to find the global minimum to the
cost function. One way to make the search easier is to use a grid search (Bergstra & Bengio,
2012).

One fundamental function of machine learning algorithms is the detection and extraction of
features, which are individual measurable properties or observed characteristics in the data
(Deng & Yu, 2014). Choosing discriminative and independent features is important in being
able to distinguish between classes of interest. Features can be expertly chosen (extracted),
based on ones expert domain knowledge, or this could be done using a machine learning
algorithm. However, given that the process reduces the dimensionality of the data, feature
extraction inevitably results in some information loss.

The curse of dimensionality is a problematic phenomenon that occurs in machine learning
as well as other fields, when analysing and organising data in high-dimensional, rather than
low-dimensional spaces such as that of the everyday world (Bellman, 2003). To combat this
e�ect, one needs to use a su�cient amount of training data, to ensure that there are several
data examples for each dimension in the representation.

Another undesired e�ect which can result from training a machine learning algorithm is
overfitting, which is where the model memorises the training samples on which it achieves
good results but is not able to achieve equivalent performance on a set of test/validation
data; the model fails to generalise to an independent data set (Baum & Haussler, 1989). This
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Figure 1.13: Showing an example of overfitting when training a neural network. Training should
continue if the training and validation losses both continue to decrease, however if the
validation losses start to increase while the training loss is still decreasing, this indicates
that overfitting has started to occur. The dashed line represents the ideal time when
training should be stopped. Figure taken from Avendi (2018).

generally occurs when there is an excess of parameters compared to the complexity and/or
size of the dataset. There are di�erent methods available that can help reduce the e�ect of
overfitting, but some are common only to certain machine learning approaches. For example
there are ways to reduce overfitting in neural networks which do not apply to other machine
learning methods. A graphical example of overfitting is shown in Figure 1.13.

However, one common way among many machine learning methods to reduce overfitting is to
use regularisation (Buehlmann & van de Geer, 2011), explained in further detail below.

Considering the learned relation Y , and — represents the coe�cients estimates for di�erent
predictors X,

Y ¥ —0 + —1X1 + —2X2 + ... + —

n

X

n

¥ —0 +
p=nÿ

p=1
—

p

X

p

(1.9)

To fit such a model requires the introduction of a loss function, known as a residual sum of
squares or RSS, which will minimise the coe�cients —.

RSS = (Y ≠ (—0 +
p=nÿ

p=1
—

p

X

p

))2 (1.10)

Real life data contains noise, which means Equation 1.10 may not generalise well. To account
for this, an extra (regularisation) term is added to the RSS loss function;
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RSS = (Y ≠ (—0 +
p=nÿ

p=1
—

p

X

p

))2 + ⁄

i=nÿ

i=1
—

2
i

, (1.11)

where ⁄ represents the shrinkage quantity, which determines the extent to which flexibility
in the model is penalised. Making the model more flexible requires the — coe�cients to have
higher values, however at the same time the cost function should be minimised. Therefore
the added term prevents these coe�cients from becoming too high. As ⁄ ≠æ 0, the equation
becomes just the simple sum of squares, whereas as ⁄ ≠æ inf the coe�cients —

i

will be very
small, therefore the model will not be as flexible. Formula 1.11 is referred to as weight decay
in machine learning, or ridge regression in statistics (Tikhonov & Arsenin, 1977).

The regularisation method helps to reduce overfitting by ensuring the predictor coe�cients
do not become too high.

Evaluating performance

There are several methods that can be used to evaluate the performance of machine learning
techniques designed for classification. Some popular metrics are precision, recall, F1 score
and accuracy. These metrics are some function of at least two of the following: true positives,
true negatives, false positives and false negatives.

Precision = TP
TP + FP (1.12)

Recall = TP
TP + FN (1.13)

F1 score = 2 ◊ Precision ◊ Recall
Precision + Recall (1.14)

Accuracy = TP + TN
TP + FP + TN + FN , (1.15)

where TP refers to the true positives (when the positive class is predicted and matches the
label), TN refers to true negatives (when the negative class is predicted and matches the
label), FP refers to the false positives (when the positive class is incorrectly predicted) and
FN refers to false negatives (when the positive class is predicted to be in another class).

Precision refers to the fraction of true positives returned among all returned positive instances,
also commonly called ‘reliability’. Recall is the fraction of true positives that are identified
correctly, which also gives an indication of the sensitivity of the classifier, also commonly
called ‘completeness’. The F1 score can be interpreted as the average of the precision and
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recall values. The accuracy is the total proportion of correct predictions.

Many classifiers use the classification accuracy only to evaluate their performance. However,
its downfalls include less distinctiveness, discriminability, informativeness, and bias towards
the class having most data (Hossin & M.N, 2015). A more complete picture of the classifier
performance is given by additionally considering the precision, recall and F1 score metrics,
as they take the minority class into account.

Another way to evaluate classifier performance is to plot a Receiver Operating Characteristic
(ROC) curve, which is the true positive rate versus the false positive rate (Fawcett, 2006). A
larger area under the ROC curve indicates better classifier performance. However, evaluating
the classifier performance using ROC plots may be problematic when datasets are imbalanced
(Saito & Rehmsmeier, 2015). Precision-Recall (PR) curves have been proposed as an alter-
native to ROC curves for tasks with a large class imbalance (see Davis & Goadrich (2006)
and references therein).

To handle the issue of imbalanced datasets, it can be possible to oversample items in the
minority class. For example, in the context of image classification, image augmentation can
be used to generate supplementary images if there are relatively few in a given class. It is
also possible to use a larger weight in the cost function for incorrect classifications of positive
instances (Vluymans, 2018).

Confusion matrices can also be used to evaluate the performance of a classifier. It is a
2D matrix of the number of matches between the true label and predicted label across all
categories (Stehman, 1997).

1.3.4 Machine learning techniques applied to astronomy

A selection of both supervised and unsupervised machine learning techniques have been ap-
plied to astronomical datasets, where a few of the most popular applications include the
estimation of photometric redshifts, classifying objects such as stars and galaxies (including
morphology), as well as di�erent types of AGN (Du Buisson, 2015). The following subsections
describe the application of a particular machine learning technique in the astronomical data
setting.

Decision trees

Decision trees have been useful in interpreting astronomical data, owing to the simplicity in
the way their results are presented.
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In astronomy, decision trees have been applied to the star/galaxy separation problem, with
a few examples as follows. Weir et al. (1995) determine a set of highly informative object
attributes on which decision tree induction was applied, to infer the rules for distinguishing
between objects in the high-dimensional space, using images. Another study (Ball et al.,
2006) involves the classification of more than a million photometric objects in SDSS-DR3,
where they demonstrate that the star/galaxy classifications performed using decision trees
are expected to be reliable for a substantial fraction of objects, over a range of magnitudes.
Comparable or improved metrics were observed over the same range of object magnitudes
by Vasconcellos et al. (2011), who use a number of di�erent decision tree algorithms applied
to hundreds of thousands of photometric objects in SDSS-DR7, and find that the Functional
Tree algorithm (which combines a standard univariate decision tree with linear functions of
the attributes using linear regressions) works best on the star/galaxy classification problem.

Another application of decision trees has been in selecting quasars for surveys. One such
example is White et al. (2000), who obtained the first optically bright radio-selected sample
of quasars that was competitive in size with optically selected quasar surveys at the time.

Random forest

Random forests use a collection of decision trees and as a result, tend to be more robust.
Several applications of random forests to astronomical data are as follows.

Random forests have been used to identify quasars from the FIRST survey (Breiman et al.,
2003). A related application has been in studying the separation of quasars from stars, as well
as the classification of quasars, stars and galaxies, using multiwavelength data (Gao et al.,
2009).

They have also been used to estimate photometric redshifts, for example Carliles et al. (2008)
employ a random forest trained on color features and spectroscopic redshifts from tens of
thousands of randomly chosen primary galaxies from SDSS-DR6, to produce a mapping from
color to redshift. They achieve redshift estimates with a tight RMS scatter, which is consistent
with the results from previous studies using similar datasets. In Carliles et al. (2010), they use
random forest regression to provide independent constraints on the redshift of each galaxy,
and find that it improves the utility of redshift estimates by giving good measurements of the
estimation error.

Several other uses of random forests include the construction of a large, deep catalog of point
sources utilizing Pan-STARRS1 (PS1) 3fi survey data, where they are found to outperform
several alternative models (Tachibana & Miller, 2018). In the context of galaxy mergers,
Snyder et al. (2019) presents their image-based evolution from the Illustris cosmological sim-
ulation at di�erent time-steps for redshifts between 0.5 and 5. They train redshift-dependent
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random forests, yielding improved measurements of the late-stage merger fraction compared
to conventional approaches. An outlier detection technique has also been developed using
an unsupervised random forest algorithm (Baron & Poznanski, 2016) and found to be suc-
cessful in being able to detect unusual objects, such as those having extreme emission line
ratios, abnormally strong absorption lines, unusual continua, as well as extremely reddened
galaxies.

SVMs

Due to their ability to generalise well, excellent performance and ease of adjusting the model
parameters (Zhang & Zhao, 2014), SVMs have proven to be useful in numerous astronomical
contexts, both in classification and regression tasks.

SVMs have been used to estimate photometric redshifts. For example, Wadadekar (2005)
use SVMs on a combination of many thousands of galaxy samples from the SDSS-DR2 and
the hybrid galaxy formation code GalICS. Another use is in the identification of potential
supernovae using photometric and geometric features obtained from astronomical imagery
(Romano et al., 2006). SVMs have also been used to quantify morphologies of seeing-limited
galaxies from a simulated sample built from a local visually classified sample from the SDSS,
and show that a qualitative separation between late-type and early-type galaxies, which have
a di�erent morphology, can be obtained (Huertas-Company, M. et al., 2008).

Across broader astrophysical scales, Hartley et al. (2017) apply SVMs in the context of grav-
itational lensing, where they are used to provide learning criteria for separation of lenses and
non-lenses in simulated data. Systems with small Einstein radii are found to constitute most
of the lensing objects in the sky, however they are di�cult to detect by eye without very
careful subtraction of the potential lensing galaxy, whereas the SVM is able to find these ob-
jects successfully. A SVM approach has also been taken to study imprints of environmental
e�ects on the mass assembly of haloes. As such, Hui et al. (2018) discover strong connections
between the cosmic environment and the shape and depth of the merger tree, formation time
and galaxy density.

ANNs

ANNs have been very useful in astronomical applications as their flexible structure allows
them to perform many di�erent tasks such as clustering and dimensionality reduction, in
addition to the usual classification and regression (Baron, 2019). Their flexibility also o�ers
greater control over the parameters, which tend to be more fixed in other machine learning
methods. Shallow ANNs, having relatively few layers, are generally applied to problems
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having dimensions on the order that would also be analysed using lower-level machine learning
algorithms such as decision trees and random forests.

Several applications of shallow ANN architectures are as follows. In addition to estimating
photometric redshifts with other machine learning methods, neural networks have also been
used, for example on SDSS data (Firth et al., 2003; Tagliaferri et al., 2003). The mapping
from photometry to spectroscopic redshifts is derived, and the best-fit solution is applied to
the photometry data only. However, this requires well-controlled and representative training
sets. To this e�ect, Bilicki, M. et al. (2018) applies two neural-network based methods on
survey data which is a precursor to the data from future surveys that will have limited
spectroscopic data available. They show that at the bright, low-redshift end, the two neural
network methods perform better than the Bayesian Photometric Redshift in most statistics.

Storrie-Lombardi et al. (1992) use an artificial neural network (ANN) to classify galaxies
morphologically into several categories, using a set of galaxy parameters. The trained network
outperformed another popular method used at the time, using photometric and structural
parameters (Lauberts & Valentijn, 1989).

Neural networks have also been used in the star/galaxy separation problem (Andreon et al.,
1999) and found to be competitive with traditional methodologies.

Another application has been in the classification of stellar spectra. As such, Weaver & Torres-
Dodgen (1997) use ANNs to classify stellar spectra across all temperature and luminosity
classes with the same accuracy as human experts.

CNNs

CNNs, belonging under the category of deep learning, are a type of artificial neural network
having many layers. CNNs have been used across varying astronomical scales, from stars up
to grand cosmological scales, at di�erent wavelengths, on mainly image data.

Applications to stars

The application of CNNs in the stellar regime includes the implementation of a DNN ar-
chitecture to identify signatures of stellar feedback in simulated molecular clouds (Van Oort
et al., 2019). The network is applied to the two tasks of dense regression and segmenta-
tion, on simulated density and synthetic 12CO observations, and found to perform well on
two segmentation tasks and related regression tasks. A related study is the use of a CNN
for the recognition of the predefined magnetic types in sunspot groups, using three di�erent
models that take magnetograms, continuum images, and two-channel pictures as input (Fang
et al., 2019). They show that the CNN is able to identify the magnetic types in solar active
regions.

Recurrent convolutional neural network (RCNN) have been useful for time-varying data. As
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such, Carrasco-Davis et al. (2019) propose the use of such a sequential classification model
for time-varying astronomical objects such as variable stars and supernovae, using sequences
of images as inputs, instead of light curves. They also generate synthetic image sequences,
aiming to mimic real data, which they then use to train the RCNN classifier and evaluated
the model on real images. The RCNN model showed good classification performance on the
simulated test set as well as the real dataset after fine tuning. This work was the first time
that a sequential classifier was used in time-domain astronomy.

Applications to optical galaxy classification

CNNs have been used in regard to optical galaxy classification, with a few examples as fol-
lows. The use of a CNN architecture was the winning solution to the Kaggle Galaxy Zoo
challenge, where the competitors were tasked with implementing a regression technique to
predict how citizen scientists would respond to questions about optical galaxy morphologies,
such as whether it is round, smooth or had a bulge (Dieleman et al., 2015b). Following this,
Domínguez Sánchez et al. (2018) uses CNNs to obtain classifications for a morphological cat-
alogue for galaxies in SDSS based on two classification schemes: T-type based on the Hubble
sequence, and the Galaxy Zoo 2 (GZ2) classification scheme. On T-type galaxies, the results
show smaller o�set and scatter compared to previous models using SVMs. High performance
metrics are achieved using the GZ2 classification scheme. Using similar galaxy morphology
classifications, Zhu et al. (2019) proposes a variant of residual networks (ResNets) on im-
ages from the GZ2 dataset. Various performance metrics show that the proposed network
achieves state-of-the-art classification performance among networks such as Dieleman and
other ResNets.

Application to merger classification

Pearson et al. (2019) develop a CNN architecture in the context of galaxy mergers, to test
whether it can reproduce visual classification of observations and physical classification of
simulations, and highlight any di�erences between the two. Their results overall suggest
that most of the simulated mergers do not have obvious merger features, and visually identi-
fied merger catalogues from observations are incomplete and biased towards certain types of
mergers.

Applications to radio galaxy classification

Applications of CNNs to radio astronomy are the focus of the current thesis. The first
work to use CNNs in classifying radio galaxy morphologies was Aniyan & Thorat (2017)
where they classify radio galaxies into FRI, FRII and Bent-tailed classes, however despite
the use of aggressive augmentation there were problems in regards to overfitting, due to
having an insu�cient number of original training samples. Following this, in Lukic et al.
(2018) we show it is possible to classify RGZ data into three classes of extended objects and
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one class of compact objects, applying the trained network on the RGZ DR1 dataset and
find it can reproduce most of the citizen scientists classifications. In a similar application,
Alhassan et al. (2018) train a CNN to classify radio sources from FIRST, into the classes
of Compact, FRI, FRII and Bent-tailed morphologies. A more specialised neural network
approach trained to pay attention to relevant regions in radio galaxy images is by Wu et al.
(2018), who use a region-based convolutional network (ClaRaN) to recognize, detect and
classify radio galaxies, achieving optimal results when using radio contour data overlaid on
infrared data, and masking out unassociated emission. In Lukic et al. (2019) we take a
di�erent specialised approach using Capsule networks (a type of network designed to preserve
the relative location of features) and compare their performance against CNNs, and find
that CNNs always outperform the Capsule networks for the given dataset. This may be due
to the pooling operation in CNNs o�ering increased robustness to the noise present in the
images, and more freedom for the variations in morphology within the classes. It could also be
the case that Capsule networks require a larger original sample size compared to traditional
convolutional networks.

Applications across extragalactic scales

Additional uses of CNNs have been across wider astronomical scales. For example, Gheller
et al. (2018) develops a CNN called COSMODEEP to detect extended extragalactic radio
sources in existing and upcoming surveys, which proves to be accurate and fast in detecting
very faint sources in the simulated radio images, and comparable in performance to that of a
standard source-finding technique such as PyBDSF.

CNNs have also been applied to gravitational lensing. As such, they have been used to
quantify image distortions caused by strong gravitational lensing and estimate the lensing
parameters (Hezaveh et al., 2017). In contrast, George & Huerta (2018) uses time-series
inputs to a CNN to rapidly detect and characterise gravitational wave signals. A di�erent
problem is the consideration of noise in weak gravitational lensing maps. As such, Shirasaki
et al. (2019) explores the use of an image-to-image translation technique with conditional
adversarial networks (CANs) in the reduction of noise in such maps, where a successful
reduction of 30-40% is achieved when using observational data from ongoing and upcoming
galaxy imaging surveys.

Ntampaka et al. (2019) estimates galaxy cluster masses from Chandra mock images using
a CNN trained and tested on a sample of Chandra X-ray mock observations, based on 329
massive clusters from the IllustrisTNG simulation. The CNN learns from a low resolution
spatial distribution of photon counts, instead of spectral information. They find that the
CNN has learned to ignore the central regions of clusters, which are known to have high
scatter with mass.
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Application to noise removal

CNNs have also been investigated in the context of noise removal. For example, Kerrigan
et al. (2019) explore the use of deep learning methods in regard to the identification and re-
moval of Radio Frequency Interference (RFI). They apply a Deep Fully Convolutional Neural
Network on interferometric data, using both amplitude and phase information simultaneously
to identify RFI.

Transfer learning

A very useful approach in training neural networks, that speeds up the rate of convergence
and improves metrics, is transfer learning. This method has not been utilised as much in
astronomy compared to building and training a neural network from scratch.

In the context of optical galaxy classification, Domínguez Sánchez et al. (2019) tests the
performance of deep learning models, trained with SDSS data, on the Dark Energy survey
(DES) using images of several thousand galaxies with a similar redshift distribution to SDSS.
The use of pre-loaded weights trained on SDSS data and fine-tuning them by training the
models with a small DES sample of several hundred galaxies outperforms the results obtained
using a direct application of the models to DES data. In a very similar application, Khan
et al. (2019) demonstrate that DNNs pre-trained with real-object images can be transferred
to classify galaxies that overlap both SDSS and DES, achieving state-of-the-art accuracy. The
network is used to label DES galaxies that are not present in previous surveys, and also use
the network as a feature extractor for unsupervised clustering, finding that unlabelled DES
images can be grouped together in two distinct galaxy morphology classes.

Tang et al. (2019) employ a transfer learning approach in regard to the radio galaxy classifi-
cation problem. Their machine learning models trained using a random initialisation achieve
similar accuracies to that of other radio galaxy classification algorithms. When applying
transfer learning, they find that using weights pre-trained on FIRST images can improve the
model performance applied to lower resolution NVSS data, however the use of a pre-trained
weights from NVSS applied to FIRST data impairs the performance of the classifier.

Ackermann et al. (2018) investigate the use of deep CNNs and transfer learning for automatic
visual detection of galaxy mergers, and find them to perform significantly better than current
state-of-the-art merger detection methods. The resulting metrics are also slightly better com-
pared to the results obtained by using a normal CNN architecture without transfer learning
(Pearson et al., 2019), although the authors note di�erences between the studies.
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Autoencoders

Autoencoders are useful in astronomical applications given their ability to achieve a non-
linear dimensionality reduction and form a generalization of linear methods such as principal
component analysis (PCA) (Gra� et al., 2014).

A neural network training algorithm for astronomy called SKYNET makes use of autoencoders
for the purposes of compressing and denoising galaxy images, and unsupervised pretraining
(Gra� et al., 2014). Lucas et al. (2018) describe the use of an autoencoder in a purely
denoising application where it is trained on a selection of noiseless and noisy astronomical
images and applied to previously unseen data in order to reconstruct a corrected bispectra.
Another denoising application has been in gravitational wave data, where Shen et al. (2017)
find their autoencoder model achieves superior recovery performance for gravitational wave
signals embedded in real non-Gaussian LIGO noise.

Regier et al. (2015) describe the first use of an autoencoder as a generative model for optical
galaxy images. In addition to their capacity to generate images, autoencoders can also be used
for feature extraction. For example, Iwasaki et al. (2019) apply an autoencoder architecture
to X-ray data from Tycho’s supernova remnant. They use a variational autoencoder, which
reduces the observed dimensions in the observed spectral data, with a Gaussian mixture
model, used to perform clustering in feature space, to the spatio-spectral analysis of the X-
ray data. They find that the use of spectral properties only is enough for the method to
automatically recognise characteristic spatial structures.

In Lukic et al (2019); submitted to Galaxies, we use a convolutional autoencoder (AutoSource)
as a novel approach to source-finding in radio astronomical data at di�erent signal-to-noise
ratios, and find the performance competitive to the state of the art Gaussian-fitting technique,
PyBDSF.

Principal Components Analysis (PCA)

Given the ability of PCA to perform dimension reduction of relatively high-dimensional data,
they are able to extract meaningful information from astronomical datasets.

A popular application of PCA in astronomical tasks has been in spectral classification. Con-
nolly et al. (1995) finds a strong correlation in the mean between the spectral classifications
obtained from applying PCA, and those from morphological classifications in the literature.
A similar spectral classification application is in Ronen et al. (1999), who identify principal
components of variance in the synthetic spectra of galaxies and find that with a high enough
signal-to-noise ratio, the age, star formation history and metallicity can be derived. Yip et al.
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(2004) perform classification of galaxy spectra from SDSS and find the galaxy populations
can be divided into three classes corresponding to early late to intermediate late types.

A couple of applications of PCA have been in characterising aspects of quasars, with a couple
of examples as follows. Bailey (2012) uses PCA on quasars and quasi-stellar source spectra
from the SDSS, a comparatively noisy dataset containing missing values. The measurement
error is estimated and used to weight the input data such that the resulting eigenvectors are
more sensitive to the underlying signal variations. Delchambre (2016) determines the redshift
of quasars from the twelfth SDSS quasar catalog and derive the proper spectral reduction and
redshift selection methods using PCA. The redshift uncertainty and associated confidence is
derived and it is found that the results of this application are similar to the performance of
the SDSS pipeline.

Self-Organising Maps (SOMs)

SOMs are another dimensional reduction technique that groups similar objects together on a
map, which makes them useful in organising astronomical data.

They have been applied to the visualisation, exploration and mining of catalogues in large
astronomical surveys, for example COSMOS (Geach, 2012).

Another application of SOMs has been in automatically classifying light curves to identify
variable stars. To this e�ect, Brett et al. (2004) find their maps successfully distinguish
between light curve types in both synthetic and real datasets and are robust to the chosen
learning parameters. Sarro et al. (2006) presents a refined SOM map for classifying light
curves of eclipsing binaries.

SOMS have also been used to characterise AGN types. For example, Torniainen et al. (2008)
applies an SOM to gigahertz peaked spectrum sources, and find that the sources form dis-
tinctive clusters on the map, indicating the presence of di�erent subpopulations, besides the
expected galaxy-quasar dualism. In regard to investigating AGN of a di�erent nature, Faisst
et al. (2019) find that SOMs are successfully able to find galaxies with brightness-variable
AGN.

Particular applications to radio astronomy include Parallelized rotation/flipping Invariant
Kohonen-maps (PINK; Polsterer et al. (2016)) which uses a rotation and flipping invariant
similarity measure on self-organizing maps (SOM) to obtain a visual representation of the
input data. The method is applied to Radio Galaxy Zoo image data, where the SOM is
trained on hundreds of thousands of images. PINK software is also used to produce a multi-
channel SOM using images based on RGZ DR1 (Galvin et al., 2019). The resulting SOM
exhibits a range of morphologies that are representative prototypes of the training objects
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used, and they are able to achieve a visible clustering of labels given by RGZ volunteers, on
the surface of the SOM map.

Comparisons/combinations of machine learning techniques

There are many examples in the astronomical literature that use several machine learning
techniques and compare the results to see which one performs the best for the dataset in
question. Also, it is possible to combine a number of approaches into a single classifier
optimised for a particular dataset. Some such examples are outlined below.

Wright et al. (2015) apply artificial neural networks, support vector machines and random
forests to the identification of astronomical transients, and find that the random forest clas-
sifier outperforms the others.

In regard to galaxy applications, Hocking et al. (2018) presents an unsupervised machine
learning technique, composed of a combination of three unsupervised algorithms, to auto-
matically segment and label galaxies in astronomical imaging surveys using only pixel data.
The algorithm is able to clearly separate early and late type galaxies by training it on galaxies
from one field and applying the result to another field. Liu et al. (2019) show another exam-
ple applied to galaxies, that instead compares the performance of di�erent machine learning
techniques on multiwavelength images. A training set is constructed that consists of a com-
bination of magnitudes and other derived features, and used to determine how to identify
submillimetre galaxy counterparts. They find that a DNN performs the best, compared to
other machine learning approaches such as SVMs, decision trees, random forests and normal
neural networks.

With respect to studying galaxies in the radio, Ralph et al. (2019) use a combination of a self-
organising map and convolutional autoencoder to perform unsupervised clustering on radio
astronomical images from the Radio Galaxy Zoo. The method is capable of separating outliers
accurately on a SOM with neighbourhood similarity, and achieves a K-means clustering with
a distinct class of a small number of highly complex sources.

A study that utilises galaxy properties is in Wu & Boada (2019), who train a deep residual
CNN to predict the gas-phase metallicity of galaxies derived from spectroscopic information
using images from SDSS. The CNN outperforms a trained random forest algorithm. They
were able to use predicted metallicity from the CNN and independently measured stellar
masses to recover a mass-metallicity relation. Their results suggest that by utilising optical
imaging, the CNN has learned a representation of the gas-phase metallicity, which would not
be available from using oxygen spectral lines.
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2 Compact and Extended Radio Source
Classification

The following chapter presents work as it is published by Lukic et al. (2018).

2.1 Introduction

Extragalactic radio sources are among the most unusual and powerful objects in the universe.
With sizes sometimes larger than a megaparsec, they have radio luminosities that are typically
100 times those of star-forming galaxies for example (van Velzen, Sjoert et al., 2012), and
display a wide range of morphologies. A new generation of wide-field radio interferometers
are undertaking e�orts to survey the entire radio sky to unprecedented depths making manual
classification of sources an impossible task. Among the current and upcoming radio surveys
that will detect such high numbers of radio sources are the LOw Frequency ARray (LOFAR1)
surveys, Evolutionary Map of the Universe, the largest of such surveys in the foreseeable
future (Norris et al., 2011), VLA Sky Survey (VLASS2) and surveys planned with the Square
Kilometre Array (SKA3). The SKA alone will discover up to 500 million sources to a sensitivity
of 2 µJy/beam rms (Prandoni & Seymour, 2015). Radio interferometry data often display
high levels of noise and artefacts (Yatawatta, 2008), which presents additional challenges to
any method of obtaining information from the data, such as extracting sources, detecting
extended emission or detecting features through deep learning.

Machine learning techniques have been increasingly employed in data-rich areas of science.
They have been used in high-energy physics, for example in inferring whether the substructure
of an observed jet produced as a result of a high-energy collision is due to a low-mass single
particle or due to multiple decay objects (Baldi et al., 2016a). Some examples in astronomy
are the detection of ‘weird’ galaxies using Random Forests on Sloan data (Baron & Poznanski,
2016), Gravity Spy (Zevin et al., 2017) for LIGO detections, optimizing the performance and
probability distribution function of photo-z estimation (Sadeh et al., 2016), di�erentiating

1
http://www.lofar.org

2
https://science.nrao.edu/science/surveys/vlass

3
https://www.skatelescope.org



2.1. INTRODUCTION 64

between real vs fake transients in di�erence imaging using artificial neural networks, ran-
dom forests and boosted decision trees (Wright et al., 2015) and using convolutional neural
networks in identifying strong lenses in imaging data (Jacobs et al., 2017).

Traditional machine learning approaches require features to be extracted from the data before
being input into the classifier. Convolutional neural networks, a more recent machine learn-
ing method falling within the realm of deep learning, is able to perform automatic feature
extraction. These su�er less information loss compared to the traditional machine learning
approaches, and are more suited to high-dimensional datasets(LeCun et al., 2015). These
are based on neural networks that contain more than one hidden layer (Nielsen, 2015). Each
layer extracts increasingly complex features in the data before performing a classification or
regression task. The raw data can be input into the network, therefore minimal to no feature
engineering is required (LeCun et al., 1989), and the network learns to extract the features
through training. However, it should still be noted that convolutional neural networks do not
always capture the data features.

The classification of optical galaxy morphologies is based on a few simple rules that makes
it suitable for machine learning. It also lends itself to citizen science, where these rules can
be taught to non-experts. The Kaggle Galaxy Zoo (Willett et al., 2013) was a competition
where the aim was to predict the probability distribution of the responses of citizen scientists
about a galaxy’s morphology using optical galaxy image data, and the winning solution used
convolutional neural networks (Dieleman et al., 2015b).

The convolutional neural network approach has only very recently started to be applied to
radio galaxy images. One example has been in using convolutional neural networks to infer
the presence of a black hole in a radio galaxy (Alger, 2016). Another example is in a recently
published paper by Aniyan & Thorat (2017), where the authors present their results on
classifying radio galaxy images using convolutional neural networks into the classes of Fanaro�
& Riley Type 1 or 2 (FRI/ FRII) (Fanaro� & Riley, 1974) and bent-tailed radio galaxies
using a few hundred original images in each class and producing a highly augmented dataset.
They use a fusion classifier to combine the results of the three groups because poor results
were achieved when attempting to do the three all together. Despite obtaining classification
accuracies of above 90% on the FRI and FRII classes, the authors have commented on issues
with regards to overfitting due to having few representative samples in each class prior to
augmentation, resulting in a small feature space and the fact that the network was highly
sensitive to the preprocessing done to the images.

In the case that outputs or labels are not provided alongside the input data to train on, one
can use unsupervised machine learning techniques. In regards to machine learning with radio
galaxy images, one method uses an unsupervised learning approach involving Kohonen maps
(Parallelized rotation/flipping INvariant Kohonen maps, abbreviated to PINK) to construct
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prototypes of radio galaxy morphologies (Polsterer et al., 2016).

There are also automated methods that can help to generate labels, therefore the task becomes
a supervised machine learning problem. In the astronomical context for example, there are
source finding tools that can provide structure to data, and one such tool is PyBDSF (Ra�erty,
2016). This is the approach taken in the current work to provide the training labels.

The current work initially aims to classify radio galaxy morphologies into two very distinct
classes, consisting of compact sources in one class and multiple-component extended sources in
another class using convolutional neural networks. This setup we call the two-class problem.
Once an optimal setup of parameters is found, we will test how it will work for the four-class
problem of classifying into compact, single-component extended, two-component extended
and multiple-component extended sources.

A compact source is an unresolved single component or point source, and an extended source is
a resolved source, having at least one component. The detection of point sources is important
as they are used for calibration purposes and they are also easier to match to their host galaxy.
Making a proper census of unresolved sources is important for mapping out phase calibrators
for radio interferometry (Jackson, N. et al., 2016). Although there are more conventional
techniques to detect point sources, deep learning provides an alternative approach.

The Lasagne 0.2.dev1 library4 is used to build a deep neural network to di�erentiate between
di�erent classes of images of radio galaxy data. We compare the classifier metrics obtained
on test samples, between the di�erent models.

This paper is outlined as follows: Section 3.4.1 covers some basic theory about neural net-
works, and the advantages of using deep neural networks. In Section 3.3 we discuss the data
provided from Radio Galaxy Zoo, the minor pre-processing steps, and the use of algorithms to
help select an image dataset consisting of compact and extended sources. Section 2.4 explores
the two-class problem of distinguishing between compact and multiple-component extended
sources. It documents the parameters and classifier metrics used. Section 2.5 applies the
optimal setup and parameters that were identified in Section 2.4 to the four class problem
of classifying between compact and three classes of extended sources. The best-performing
setup is also tested to see how well it replicates the findings in Data Release 1 (DR1; Wong
et al. in preparation) of the citizen science project Radio Galaxy Zoo.

4
https://lasagne.readthedocs.io/en/latest/
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2.2 Deep neural networks

Neural networks can be used to perform classifications of data. If the input data is in the
form of pixels of an image, along with corresponding labels for the image, this information is
fed into the input layer of the network (Nielsen, 2015). Neural networks are initialised with a
set of weights and biases in the hidden layers (Bishop, 1995). The data is propagated through
the network and the output layer computes a prediction. An error is calculated at the output
layer using a cost or loss function, which is based on the di�erence between the true output
and the predicted output (LeCun et al., 2012). This error is back-propagated through the
network, and the network adjusts the weights and biases to reduce the error (Rumelhart et al.,
1986). These steps are iterated a number of times until the cost function is minimised. This
is known as training a neural network.

In feed forward neural networks, the nodes in the hidden layers are fully connected to the nodes
in the adjacent layers. Therefore, the deeper the network becomes, the more computationally
intensive and time consuming it is to train, and often leads to the vanishing gradient problem
(Hochreiter, 1991). Convolutional neural networks have been shown to work much more
e�ciently in high-dimensional data such as image data (Krizhevsky et al., 2012) and although
they still su�er from the vanishing gradient problem, one can lessen the impact by proper
initialisation of the weights and biases, choosing an appropriate activation function and by
doing layer wise pre-training. Such networks employ a number of filters of a certain size, as
specified by the user. The receptive field is also referred to as the filter size. The filters are
initialised with weights and biases from some distribution, and are connected to a small spatial
portion of the input data. Features of the input data are learned through training. In image
data, one can achieve a dramatic reduction in the number of parameters through parameter
sharing, under the assumption of translational invariance. For example, if one feature is useful
to compute at a particular spatial position, it should also be useful to compute at a di�erent
spatial position. Parameter sharing is achieved through the use of filters (Karpathy, 2016).
One can reduce the computational complexity through data reduction with the use of pooling,
in essence a subsampling method. There are several methods of implementing pooling such as
max pooling and average pooling (Lee et al., 2016). The current work uses max pooling, where
the maximum value within a window of the input feature map is chosen. The convolutional
and pooling layers are stacked with the end result being a hierarchical extraction of features.
These layers are usually followed by one or more fully-connected layers, before finishing at
the output layer, where a prediction is given (Karpathy, 2016).

One problem that occurs with neural networks is overfitting, which is when the architecture
and parameters in the neural network fail to generalise to a separate dataset extracted from
the same source, that has not been trained on. In this case, the model captures the noise in
the data rather than the underlying signal, or there are real features in the training set that
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may be peculiar to individual sources but not common to the class as a whole. Overfitting
is evident if the validation error is higher than the training error. To reduce the e�ect of
overfitting, one can use image augmentation to artificially generate more images from the
original data (Krizhevsky et al., 2012). Another method is to use dropout in the dense or
fully-connected layers, where a certain proportion of connections to nodes in adjacent layers
are dropped to stop the network relying on the presence of particular neurons, hence it is
made to be more robust (Srivastava et al., 2014). Although early stopping is recommended
to address the behaviour exhibited by deep neural networks trained on noise, defined as
the memorization e�ect by Arpit et al. (2017), they find that such networks trained with
Stochastic Gradient Descent learn patterns before memorizing, even in the presence of noise
examples.

2.3 Methods

We utilise the radio galaxy images from the Radio Galaxy Zoo project (Banfield et al., 2015),
which uses 1.4 GHz radio galaxy images from the Faint Images of the Radio Sky at Twenty
Centimeters (FIRST). The original FIRST data reached a 1‡ noise level of 150µJy beam≠1

at 5ÕÕ resolution (Becker et al., 1995). There are 206399 FITS files in total that contain single-
channel image data. The size of the images is mainly (132,132) pixels resampled to a pixel
size of 1.37ÕÕ.

2.3.1 Pre-processing

The pixel values, representing brightness in mJy/beam were normalised by dividing by 255
such that the values are contained within the [0,1] range. Any ‘NaN’ pixel value was converted
to 0. The images were cropped to (110,110) pixels in order to slightly reduce the amount
of data fed into the neural network. We were reluctant to do any further cropping because
some of the extended sources tended to be very close to the image boundaries, which is
information we did not want to remove. These were the only pre-processing steps taken
to the original data. Later on we explore the e�ect of sigma clipping5 using a standard
deviation of 3 to remove the background noise. This involves calculating the median (m) and
standard deviation (‡) of the pixel values, and removing any value above m + 3‡ and below
m ≠ 3‡. However, deep neural networks should be able to account for the noise in the data
without performing additional background noise removal. No procedure has been performed
to remove artefacts in the data. As strong sidelobe emission is observed more often in the
synthesis imaging of compact radio sources, sidelobe artefacts are expected to be minimal in

5
http://docs.astropy.org/en/stable/api/astropy.stats.sigma_clip.html
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RGZ and similarly so, for the purposes of this paper. Banfield et al. (2015) added 5% of the
total sources as compact radio sources thus resulting in a smaller number where the sidelobe
pattern could pose an issue. Therefore, we do not expect large numbers of artefacts in the
images to be misidentified as radio sources or components to cause an issue with our method.
RGZ has a biased selection towards extended sources from the FIRST catalogue.

In order to provide an estimate of the presence of artefacts, we considered the sources in the
two-component extended class from the four-class problem and found that 18 out of 11939
sources (0.15%) contained one component having a total flux that was at least 50 times that
of the other component.

2.3.2 PyBDSF

PyBDSF (the Python Blob Detector and Source Finder, formerly PyBDSM) by Mohan &
Ra�erty (2015a) is a tool designed to decompose radio interferometry images into sources
composed of a set of Gaussians, shapelets, or wavelets. For the purposes of the current work,
we assume that each image is of a single source or radio galaxy. Therefore, PyBDSF will
detect the components belonging to the source.

In order to provide some initial structure to the data, we used the default settings of the
PyBDSF version 1.8.11 ‘process_image’ task to help count the number of components in
each image. The default settings include using 5-sigma for the pixel threshold and 3-sigma for
island boundaries. The number of output lines in the resulting .srl file from running PyBDSF
provides the user with the number of components that were able to be fit, using Gaussian
fitting. The images were all initially run through PyBDSF. Out of the original 206399 images,
30945 produced an error, either due to the image having all blanked pixel values, presenting
as NaNs (94.6%), or there were no components detected in the image (5.4%). 175454 images
were successfully able to be processed by PyBDSF, and produced source list (srl) files that
contained information about each detected source. In the successfully processed images, 99.7%
contained an NaN pixel percentage in the range between 0 and 10%. The highest percentage
of NaN pixel values was 93.2% and the median was 1.9%. The NaN values occur only along
the edges of the images and are due to observations at the edges of fields. Table 2.1 lists the
number of components detected in each image by PyBDSF, showing the results up to eleven
components.

There are sometimes discrepancies between the number of components that PyBDSF had
detected and how many there visually appeared to be in the image, therefore PyBDSF does
not always perform as a human would in counting the number of components in the image.
These inconsistencies remained even if the grouping parameters were altered. It was found
that the number of inconsistencies detected increased with the number of components in the
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Table 2.1: The number of components detected by PyBDSF including how many of these sources
there are, for up to 11 components.

PyBDSF number of components Number of sources
1 63051
2 66589
3 29482
4 10437
5 3517
6 1136
7 510
8 264
9 163
10 79
11 48

image.

2.3.3 Image augmentation

The classification accuracy of deep neural networks increases with the size of the training
set. It is possible to generate more images through label-preserving transformations such
as horizontal, vertical translation and rotations (Krizhevsky et al., 2012). This method is
called augmentation and reduces the amount of overfitting to the data. It can also improve
performance in imbalanced class problems (Wong et al., 2016).

We augmented our images using translation, rotation and flips but not skewing or shearing the
data since such transformations applied to compact sources can make them appear as having
extended emission, which would render the label incorrect. The amount by which the images
are translated is within the range of 0 to 22 pixels of the image width and height. Since no
boundary conditions have been applied to the images, it is likely that 2.9% of images in the
two-class problem and 1.0% in the four-class problem are likely to have components that have
been shifted out of the image. The images are rotated by any random angle between 0 and
360 degrees. The Keras6 package 2.0.3 was used to produce the augmented images. Keras is
a high-level neural networks API, developed with the aim of enabling fast experimentation.
It is written in the Python language and able to be run on top of either TensorFlow 7 or
Theano8.

Fig. 2.1 shows examples of rotation, shifting and flipping on a source with extended emission.
The image is an example of how some extended sources that have a small amount of extended

6
https://keras.io/preprocessing/image/

7
https://www.tensorflow.org

8
http://deeplearning.net/software/theano/
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Figure 2.1: Examples of image augmentations with an extended source. The original image is shown
on the top left. The transformations, from left to right, top to bottom are a random
rotation, shift and flip. The size of the images is (110,110) pixels, with an angular
resolution of 1.14”. The colour bar represents the normalised flux densities.

emission can look similar to compact sources, therefore presenting challenges for deep learning
methods or other programs used to extract information from images.

2.3.4 Deep learning algorithms

There are several deep learning implementations currently available for use. The present
work uses Lasagne 0.2.dev1 (Dieleman et al., 2015a), a lightweight library to build and train
neural networks in Theano using the Python language. Python version 2.7.12 is used and the
Theano version is 0.9.0dev2. Theano is a Python library that allows the user to define, op-
timize, and evaluate mathematical expressions involving multi-dimensional arrays e�ciently.
Some features of Theano include the ability to use Numpy arrays in Theano-compiled func-
tions, the transparent use of a graphics processing unit (GPU), which enables data intensive
computations to be accomplished much faster than on a CPU, and the ability to compute
derivatives for functions with one or many inputs. The python library Lasagne is built on
top of Theano, but leaves the Theano symbolic variables transparent, so they can be easily
altered to make changes to the model or learning procedure, as desired. This provides the
user with more flexibility compared to that of other libraries.

Several network models built using the Lasagne library have been trained, in order to see
the setup of parameters that results in the optimal test classification accuracy. The learning
rate was set to 0.001 at the beginning and reduced by a factor of 10 at four points during
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training. 1000 training epochs in total were used for all the models shown. The network
parameters at the 1000th epoch were chosen for the final validation of the results. Training
was stopped at this time because the training and validation losses appeared to reach their
minimum and only fluctuated around this value, without the validation loss becoming higher
than the training loss in the attempt to avoid overfitting, unless otherwise stated.

A simple manual tuning strategy was used to optimise the hyper-parameters, that involved
experimenting with batch sizes of 8, 16 and 32 against di�erent chunk sizes and learning
rates. A batch size of 8 was found to give optimal results. The batch Stochastic Gradient
Descent method (Bottou, 1998) was used, where the gradient is computed using the input
dataset with a specified batch size, rather than using a single sample. The momentum update
method used was Nesterov, with a momentum of 0.9 and a weight decay of 0. The Nesterov
momentum update evaluates the gradient at the future rather than current position, resulting
in better informed momentum updates and hence improved performance (Sutskever, 2013).
The validation step is done every 10 training epochs. The networks were trained on a single
NVIDIA Tesla K20m GPU, with CUDA version 8.0.61. The categorical cross-entropy9 cost
function was used, which has the following form:
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represents the predictions. Equation (2.1) is used for predictions falling in the range
(0,1) such as the softmax output of a neural network. The outputs of the softmax function
represent the probabilities that the images belong to the given classes, and add up to 1. The
predictions are clipped to be between 10≠7 and 1 ≠ 10≠7 in order to make sure that they fall
within the (0,1) range. There are over 1.6M parameters to train in total.

At the conclusion of training, the predictions at the final layer of the network are rounded
to 0 or 1. In the two-class problem, the output [1,0] represents a compact source and [0,1]
represents a multiple-component extended source. Training, validation and test classification
accuracies are calculated using the proportion of rounded predictions that matched the labels.
The image and label data have had the rows shu�ed at two stages to make sure that there
was no sampling bias when choosing the training, validation and test sets. A dropout of
50% has been applied to the dense layers. The ReLU activation function (Glorot et al.,
2011) was used in the convolutional layers. The ReLU function is max(0,x), therefore only
positive inputs are sent forward, and the negative ones are set to 0. This makes the network
more sparse, therefore more e�cient. Since the output is linear only in parts of the network,

9
http://lasagne.readthedocs.io/en/latest/modules/objectives.

html#lasagne.objectives.categorical_crossentropy
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this ensures that the gradients flow across the active neurons, hence avoiding the vanishing
gradient problem. The PReLU activation function (He et al., 2015a), which uses a negative
linear function with a coe�cient to control the negative part of the function was also tried,
however it resulted in slightly worse accuracies compared to using the ReLU. In the dense
layers, the identity activation function was used. The weights were initialised with the Uniform
Glorot distribution (Glorot & Bengio, 2010), which has the following form when the ReLU
activation function is used:

‡ =
Û

2
(n1 + n2) · f

, (2.2)

where n1 and n2 is the number of connections coming in and out of the layer respectively,
and f is the receptive field size. The biases were initialised with the constant 0.

In section 2.4, we explore the e�ect of varying the number of convolutional layers. Section 2.4
investigates the e�ect of adding augmented data for varying chunk sizes, and section 2.4
explores the e�ect of using only a subset of the original provided images. The chunk size
refers to the number of data examples per iteration and should be divisible by the batch size
for optimal performance.

2.3.5 Selection of sources for two-class classification

In a first step, we applied a deep learning approach to two very distinct classes of radio sources:
compact sources and multiple-component extended sources. Once this setup is optimised, we
consider classification involving four classes.

In the current work, we define our sample of compact sources from the images where PyBDSF
detected a single component, and additionally using Equation (2.3) from Kimball & IveziÊ
(2008) as follows:

◊ =
1

Fint
Fpeak

2 1
2
, (2.3)

where Fint and Fpeak are the integrated and peak flux intensities, respectively. According to
this definition, values of ◊ ≥ 1 are highly concentrated (unresolved), while components with
larger ◊ are extended (resolved). Kimball & IveziÊ (2008) adopt ◊ ¥ 1.06 as the value sepa-
rating resolved and unresolved components, where components above ◊ ¥ 1.06 are resolved.
We therefore define our compact components as those having values ◊ < 1.06. If there was
only one compact component in the image, then it was classified as a ‘compact’ source; there
were 2682 such cases. The Fint and Fpeak values were extracted from the provided FITS files,
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Table 2.2: Summarising the number of images used for the two-class problem
Source/Image type # Original # Augmented
Compact 2682 15558
Multiple-extended 18000 144633
Total 20682 160191

using the ‘imfit’ function from CASA Version 4.7.2-REL. Several batches of samples assigned
to the ‘compact’ class were additionally examined visually to verify that they truly appeared
to be compact sources.

The choice of multiple-component extended sources was taken from a random sample of 18000
images where PyBDSF had detected at least 3 components. This sample can include images
of multi-component compact sources.

Taking this sample of compact and extended sources, there are 20682 images all together
that can be divided into a training, validation and test data set for the initial deep learning
approach. The number of images used for the two-class problem is summarised in Table 2.2.
Fig. 2.2 shows some typical examples of compact and multiple-component extended sources. It
should be noted that there are many more examples of multiple extended sources compared
to compact sources, however the compact sources display a very well defined morphology
compared to the multiple extended sources, which can assume an almost infinite number of
unique morphologies.

In examining the images where PyBDSF had detected at least three components, it appears
that some of the images contain superpositions, or have fewer than three components in
the image. Upon closer inspection of a random sample of 250 images where PyBDSF has
detected at least three sources, there were roughly 44% that appeared to be superpositions or
that visually had fewer than three components in the image. This means that a substantial
number of images assigned to the multi-component class do not truly belong, however there
is still a stark contrast in morphology compared to the sources chosen for the compact class,
therefore it should not have an overly detrimental e�ect on the classification accuracies. We
attempt to eliminate these contaminated images when choosing sources for the four-class
problem.

2.3.6 Selection of sources for four-class classification

Assuming there is an optimal choice in hyper-parameters that results in a high classifica-
tion accuracy for the two-class problem of distinguishing between compact and multiple-
component extended sources, we also wanted to see how such a setup would be able to
distinguish between sources belonging to four classes. We chose the images belonging to cate-
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Figure 2.2: Examples of compact and multiple component extended source classifications that we
initially aim to make our deep neural networks di�erentiate between. The top row of im-
ages represents compact sources, whereas the bottom row represents multiple component
extended sources. The colour bar represents the normalised flux densities.

gories of compact sources, single component extended, two component extended and multiple
component extended sources. The compact sources are the same ones as were used for the two-
class problem, and the multiple-component extended sources are a subset of the ones used for
the two-class problem. The single-component extended and two-component extended classes
are the new classes, and the images belonging to them have not previously been used for the
deep learning approach.

The labels for the images were able to be generated with the help of the ‘S_code’ output of
PyBDSF. The S_code quantity defines the component structure (Mohan & Ra�erty, 2015a)
and the output values are defined as such:

• ‘S’ = a single-Gaussian component that is the only component in the island

• ‘C’ = a single-Gaussian component in an island with other components

• ‘M’ = a multi-Gaussian component

The four classes are described below:

• Compact source: Sources where PyBDSF has detected one component and choosing
sources as defined by Equation (2.3) from Kimball & IveziÊ (2008). The same set of
compact sources were used for the two-class problem.

• Single component extended source: Sources where PyBDSF has detected one compo-
nent, and the S_code quantity contains an ‘M’ (multi-Gaussian component).

• Two component extended sources: Sources where PyBDSF has detected two compo-
nents, and the S_code quantity contains an ‘M’ (multi-Gaussian component) for both
components.
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• At least three component extended sources: Sources where PyBDSF has detected at
least three components. We started with the set of 18000 images as for the two-class
problem, required that the S_code quantity contains at least two ‘M’s, and any number
of ‘C’s. Additionally, two blob-detection algorithms (logarithm of gaussian and dif-
ference of gaussian) were run using the scikit-image 0.17.1 package in Python10. The
images were also all inspected visually in an attempt to ensure that each image con-
tained at least three extended components that appeared to be part of the same source,
rather than being superpositions of sources. After this, there were 577 images remain-
ing. However upon cross-checking with several optical/IR images, more than 40% of
this subset of images still appeared to contain superpositions of components associated
with more than one AGN. Therefore, although the classification successfully identifies
multiple-component structures, they are contaminated by such superpositions in com-
parison with Radio Galaxy Zoo classifications.

The condition ‘S_code=S’ was not found to be useful in characterising components. Occa-
sionally there was a source that appeared as though it should belong to another class, so
a small level of label contamination must be accepted. The number of images used for the
four-class problem is summarised in Table 2.3 and Fig. 2.3 shows some example images for
each of the four classes. The four-class classification scenario also contains an imbalance in
the number of original images for each class, however this can be alleviated by augmenting
the classes of data displaying richer morphologies more (single, two extended and multiple
component extended sources), compared to the compact sources.

The existence of the remaining superpositions of sources in the multiple-component extended
class in the training set means that the deep learning algorithm will not be able to make the
distinction between images that contain superpositions, and images with components that
are likely to be part of the same source. Even radio galaxy experts cannot always reach a
consensus about these di�erences.

The fact that the compact and single-component extended sources all come from the set of
images where PyBDSF has detected a single source mean that the deep learning algorithm is
doing more than just learning the method by which PyBDSF counts components. It is also
performing the source structure functions of PyBDSF, with the advantage that it uses solely
image data to learn about the di�erences in morphology between compact sources and single
component extended sources.

10
http://scikit-image.org/docs/dev/auto_examples/

features_detection/plot_blob.html
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Table 2.3: Summarising the number of images used for the four-class problem.
Source/Image type # Original # Augmented
Compact 2682 15558
Single-extended 6735 43099
Two-extended 11939 35994
Multiple-extended 577 46381
Total 21933 141032

Figure 2.3: Examples of compact, single-extended, two-component extended and multiple-component
extended sources, for a deep neural network to di�erentiate between. Top row: Compact
sources. Second row: Single-component extended sources. Third row: Two-component
extended sources. Fourth row: Multiple-component extended sources.
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2.4 Results for two classes

Our first aim is to see how well a deep neural network is able to distinguish between two classes
of data that are very morphologically distinct: compact sources and multiple component
sources. There were 2682 compact and 18000 multiple-component extended sources, giving
a total of 20682 images provided as input data for classification by the convolutional neural
network designed in Lasagne. When the augmentation data is used as well, there are a total
of 180873 images. The number of sources and augmented images used is summarised in Table
2.2.

The results shown are the classifier metrics on the validation and test data sets. The extended
source class is used as the positive class for the metrics, therefore a true positive (TP) is defined
as when an extended source is predicted that is also labelled as an extended source. A false
positive (FP) is defined when an extended source is predicted, but is labelled as a compact
source. A false negative (FN) is defined when a point source is predicted, but is labelled as
an extended source. The following four metrics are used to evaluate the performance of the
classifier:

• Precision = TP/(TP+FP)

• Recall = TP/(TP+FN)

• F1 score =(2◊Precision◊Recall)/(Precision + Recall)

• Accuracy = (TP+TN)/(TP+FP+TN+FN)

where FP, FN and TN denotes false positives, false negatives and true negatives respectively.
For the current task of classifying between extended and point sources, precision represents
the classifier’s ability to not classify point sources as extended sources. Recall evaluates the
classifiers ability to not classify extended sources as point sources, hence provides an estimate
of the sensitivity of the classifier, in whether it can correctly predict the labeled extended
sources. It is worth noting that in the literature, precision is often called “reliability" and recall
is often called “completeness" (e.g. Hopkins et al. (2015)). The F1 score can be interpreted as
the weighted average of precision and recall. The accuracy is the overall classification accuracy
across the classes, how many correct predictions for the labeled point and extended sources
were made overall. The F1 and accuracy scores tend to correlate highly. The precision,
recall, F1 score and accuracy metrics were calculated for both the validation and test data
sets to assess the performance of each deep neural network model. It should be noted that in
machine learning theory, the precision scores are a better assessor of performance compared to
accuracy in imbalanced dataset problems. However, we address the imbalance in our dataset
through augmentation, therefore use the classification accuracy to assess the performance of
the classifiers. The training and validation losses are also plotted as a function of epochs for
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several chosen models.

In order to assess which models are significantly better than others, rather than arising as a
result of random fluctuations, we use the root mean square error (RMSE) measure to quantify
the scatter in the overall accuracies, for the original data. The RMSE is defined according to
Equation 2.4.

RMSE =
ı̂ıÙ 1
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where i, j denotes the classes and observations respectively, n is the total number of obser-
vations, t

i,j

represents the targets and p

i,j

represents the predictions. We consider any value
beyond two times the RMSE value to be significant in terms of metrics. This error estimate
is conservative in that it is a measure of the actual scatter, as opposed to the derived error
in the mean accuracies.

E�ect of increasing convolutional layers

We first explore the e�ect of increasing the number of convolutional layers, in order to see
the e�ect the model complexity has on obtaining better classification accuracies, without
excessive overfitting.

The results in Tab. 2.5 and Fig. 2.4 show the e�ect of adding an increasing number of layers
to the network. Simply using two dense layers results in precision, recall and F1 scores above
0.95 and a test accuracy above 93%. The addition of two adjacent convolutional layers and
the use of sigma clipping produces a classification accuracy of 97.0%. Taking into account
the RMSE values to establish random fluctuations in accuracy, the model that is significantly
better than all others is the three convolutional and two dense layer model with sigma clipping
(model F), achieving the optimal accuracy of 97.5%. However, this setup results in overfitting
as shown in Fig. 2.5, and hence we exclude this model. The next best-performing models that
are significantly better than the others, without causing overfitting, are models D and E.

Using two adjacent convolutional layers followed by a pooling layer as opposed to using a single
convolutional layer followed by a pooling layer reduces the number of parameters, given that
the two filter sizes of the adjacent convolutional layers are smaller compared to using a single
larger one (Simonyan & Zisserman, 2014). When putting a max pooling layer in between the
first and second convolutional layer, it had a detrimental e�ect on the test accuracy, reducing
it by almost 1% which is significant given the RMSE values, and it took more training epochs
to attain a smaller training loss (results not shown). The radio galaxy images with extended
emission generally have structure that span across large portions of the image, yet it would
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Table 2.4: The deep learning models that were explored.
Code Model # Pooling layers
A 2 dense 0
B 1 conv + 2 dense 1
C 2 conv + 2 dense 1
D 2 conv + 2 dense sigma clip 1
E 3 conv + 2 dense 2
F 3 conv + 2 dense sigma clip 2

increase the number of parameters by too much of a factor if a single convolutional layer with
a very large receptive field, or filter size was used. Therefore, it is better to combine two
adjacent convolutional layers that have smaller receptive fields.

The deep learning algorithm appears to be robust to the classes being imbalanced; there are
approximately 9 times more examples of the multiple extended class images compared to the
compact source images. However, the compact sources have a much more stable morphology,
largely consisting of a source in the centre of the image, compared to the multiple component
extended class images, which can be spread out all over the image.

Considering the results for the test data set and taking into account the RMSE values, the
precision (reliability) values are on average significantly higher compared to the recall (com-
pleteness) values. This implies that the classifier is better at not classifying the multiple-
component extended sources as point sources but is not as sensitive in identifying all the
labeled multiple-component extended sources. The training losses begin at a low value of
around 0.27 and quickly settle to their minimal value for a particular model by 200 epochs.
A likely reason why the losses begin and remain low during training is because the classes
contain images that are morphologically very di�erent; one containing a single concentrated
source in the centre of the image and the other generally containing multiple sources that are
spread throughout the image.

The fact that a very substantial number of images belonging to the multiple-component ex-
tended class appear to contain superpositions or visually appear as though they contain fewer
than three components probably does not hinder the classification accuracies significantly,
since the contents of the images are very di�erent between the two classes.

The memory requirements for a typical run using the three convolutional layer architecture
is 1.87 GB, with a computational time of 192 minutes using a single NVIDIA Tesla K20m
GPU, with CUDA version 8.0.61.
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Table 2.5: E�ect of increasing the number of convolutional layers for the original images. The preci-
sion, recall, F1 score and accuracy values are shown for both the validation and test data
sets, calculated over 1000 training epochs. The validation set is used every 10 epochs, and
the final trained parameters are used on the test data set after training is complete. 20682
images were used in total, with a chunk size of 6000, and the training samples make up
60% of the total data.

Valid. Prec. Recall F1 score Accuracy RMSE
A 96.6% 95.6% 96.1% 93.3% 0.27
B 97.9% 97.0% 97.4% 95.6% 0.22
C 97.4% 97.5% 97.4% 95.6% 0.20
D 98.2% 96.9% 97.5% 95.7% 0.21
E 98.6% 97.5% 98.0% 96.6% 0.19
F 98.4% 97.5% 97.9% 96.4% 0.19

Test. Prec. Recall F1 score Accuracy RMSE
A 97.4% 95.7% 96.6% 94.0% 0.26
B 98.2% 96.3% 97.3% 95.3% 0.22
C 97.7% 96.7% 97.2% 95.1% 0.21
D 98.1% 98.4% 98.3% 97.0% 0.19
E 98.2% 97.8% 98.0% 96.5% 0.21
F 98.7% 98.3% 98.5% 97.5% 0.18

Figure 2.4: Plot of training and validation losses as a function of training epochs, for models A and
D in Table 2.4. The higher training and validation losses are from using only 2 dense
layers and no convolutional layers, which are the highest losses amongst the six models
and consequently produced the lowest classification accuracies. Adding 2 convolutional
layers produces lower training and validation losses, and therefore improved classification
accuracies. The 2 convolutional and 2 dense layer architecture with sigma clipping was
one of two models that performed the best out of all the models considered for this set
of images.
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Figure 2.5: Plot of training and validation losses as a function of training epochs, for a three convo-
lutional and two dense layer model with sigma clipping (model F). Despite this model
achieving the highest test accuracy for the original set of images, overfitting is evident
as the validation losses are higher than the training losses.

E�ect of including augmented data

Next we studied the e�ect of image augmentation on the classification accuracies. Table 2.6
and Fig. 2.6 shows that when the full set of augmented data is used in addition to the original
images, it results in overall significantly improved F1 scores, validation and test accuracies,
compared to when the original data is used. The use of the augmented images enables the
choice of the larger chunk size leading to improved accuracy without causing the network
to overfit, hence a chunk size of 20000 is used, compared to the previous size of 6000. The
chunk size should be made as large as possible for a given set of data, since the more training
examples are seen simultaneously, the more accurately the weights can be adjusted to produce
a lower training loss. The best performing architecture with the original and augmented
images is the three convolutional and two dense layer architecture, with no sigma clipping
(model E). This setup achieves the highest observed test accuracy for the two-class problem of
97.4%. Model D performs equally well in terms of overall accuracy when taking into account
the RMSE values, however there is a greater di�erence in the training loss compared to the
validation loss, as is evident in Fig. 2.6. Therefore, model E is the overall best-performing
model, since the training and validation losses are closer together.

The most likely reason why a higher accuracy is unable to be achieved is that there is a small
amount of label contamination, for example a few of the images in the multiple component
extended class may look more like compact sources. This is due to PyBDSF detecting multiple
components in an image, even though visually the image appears to only contain a compact
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Table 2.6: E�ect of using all augmented images in addition to original data. The precision, recall, F1
score and accuracy values are shown for both the validation and test data sets, calculated
over 1000 training epochs. The validation set is used every 10 epochs, and the final trained
parameters are used on the test data set after training is complete. 180873 images were
used in total, with a chunk size of 20000, and the training samples make up 60% of the
total data

Valid. Precision Recall F1 Accuracy
C 97.0% 98.2% 97.6% 95.7%
D 98.3% 98.3% 98.3% 96.9%
E 98.8% 97.9% 98.4% 97.0%
F 98.6% 97.8% 98.2% 96.8%

Test Precision Recall F1 Accuracy
C 96.6% 98.5% 97.6% 95.6%
D 98.7% 98.4% 98.5% 97.4%
E 99.2% 97.9% 98.6% 97.4%
F 98.7% 97.8% 98.2% 96.9%

Table 2.7: Details of the layer parameters used for the best-performing model. The # of parameters
gives a cumulative sum at each layer. There are 1676914 trainable parameters in total.

Layer Depth Filter Size Stride length #Parameters
Conv2D 16 8 3 1040
Conv2D 32 7 2 26160
MaxPool2D 32 3 - 26160
Conv2D 64 2 1 34416
MaxPool2D 64 2 - 34416
Dense 1024 - - 625264
Dense 1024 - - 1674864
Softmax 2 - - 1676914

source, as shown in Fig. 2.7. The three convolutional and two-dense layer architecture is
shown in Fig. 2.8, and the details of the layers with the number of parameters used are shown
in Tab. 2.7.

Fig. 2.10 shows the features that are learnt in the first and third convolutional layers for the
three convolutional layer architecture, halfway through training at 500 epochs.

E�ect of using a subset of images

Next we explored the e�ect of using only a subset of images. Using a subset of the available
images (1000 original and 1000 augmented) tended to significantly reduce the validation and
test scores compared to when using the full set of original images, as shown in Tab. 2.8, caused
greater fluctuations during training, and introduced a higher level of overfitting as shown in
Fig. 2.9. The larger fluctuations during training are most likely due to the algorithm not
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Figure 2.6: Plot of training and validation losses for the 2 conv + 2 dense layer with sigma clipping
(model D) and 3 conv + 2 dense layer (model E), when using the original and augmented
data. The training and validation losses are higher and fluctuate more for model D,
and there is a greater di�erence between the training and validation losses compared to
model E, despite achieving a similar test classification accuracy. Taking these factors
into account, model E performs better overall.

Figure 2.7: Example of an image where PyBDSF has detected 3 components, even though the image
appears to be that of a point source.
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Figure 2.8: The 3 conv + 2 dense architecture, which constituted the best performing model. The
colours are arbitrarily chosen to represent the di�erent layers used.

Table 2.8: E�ect of using a subset of the original and augmented images. The precision, recall, F1
score and accuracy values are shown for both the validation and test data sets, calculated
over 1000 training epochs. The validation set is used every 10 epochs, and the final trained
parameters are used on the test data set after training is complete. 1000 original and 1000
augmented images were used (2000 in total) with a chunk size of 400, and the training
samples make up 60% of the total data.

Valid. Precision Recall F1 Accuracy
C 94.1% 97.8% 95.9% 92.7%
D 95.2% 96.4% 95.8% 92.6%
E 95.3% 96.2% 95.7% 92.4%
F 95.3% 96.3% 95.8% 92.5%

Test Precision Recall F1 Accuracy
C 96.5% 94.0% 95.2% 91.4%
D 93.8% 98.1% 95.9% 93.0%
E 95.3% 95.3% 95.3% 92.2%
F 94.4% 91.8% 93.1% 88.3%

seeing as large a number of samples at a time compared to when the full set of images is used,
hence the weights cannot be estimated as accurately for each subsequent training epoch. The
validation and test accuracies however still remained above 90%, with the exception of model
F (three convolutional and two dense layer setup with sigma clipping.)

Tensorflow for Poets

‘Tensorflow for Poets’ uses the ‘Inception v3’ network, a pre-trained deep neural network
that is trained for ImageNet Large Visual Recognition Challenge. It is able to di�erentiate
between 1000 di�erent classes. We used this approach to perform classifications and compare
the results to the custom-designed networks using the Lasagne library, however we found the
results to be inferior. This poorer performance can be explained by the fact that the class
types trained on are mainly examples of every-day objects and animals rather than scientific
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Figure 2.9: Training and validation losses when using only 1000 original and 1000 augmented images,
when using the 2 convolutional and 2 dense layer setup with sigma clipping (model D).
The training losses are around the same compared to when using the full set of 20682
images, and the fluctuations are greater. There is also some amount of overfitting.
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Figure 2.10: Showing the input image, first and third convolutional feature map activations at 100
epochs into training using the three convolutional and two dense layer architecture. The
colours in the architecture are arbitrarily chosen to represent the di�erent layers used.
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Table 2.9: Results for four-class model. The di�erence between using sigma clipping or not is very
minor, and can be attributed to random fluctuations for each subsequent run.

Valid. Precision Recall F1 Accuracy
E 92.6% 92.7% 92.7% 92.0%
F 93.2% 93.3% 93.2% 92.7%

Test Precision Recall F1 Accuracy
E 94.0% 94.1% 94.0% 93.5%
F 94.0% 93.9% 93.9% 93.5%

images. Another reason is that using a custom-designed network has much more freedom in
adjusting parameters compared to using a ‘black-box’ approach, where more parameters are
fixed.

2.5 Results for four classes

In the previous section we have explored varying several parameters using the custom designed
network in Lasagne and found the optimal one that results in the highest test classification
accuracy for the two-class problem of distinguishing between compact and multiple compo-
nent extended sources, which was the 3 convolutional and 2 dense layer architecture without
sigma clipping (model E), using both original and augmented images. Given these results, we
wanted to see how well such a deep neural network setup could distinguish between two addi-
tional classes of data, consisting of single component extended and two component extended
sources.

The same parameters were used as was described in Section 2.3.4. Two models were explored
for the task of four-class classification; the 3 convolutional and 2 dense layer architecture with
and without sigma clipping, using both original and augmented images. This architecture
and set of images performed best on the two-class problem, which is why it was chosen for
the four-class problem. The numbers of images used are summarised in Table 2.3. The issue
with class imbalance was addressed by augmenting the single, two and multiple-component
images to achieve roughly the same number of images for these extended sources. We used
the same set of original and augmented images for the compact sources as for the two-class
problem. The results shown in Table 2.9 are the classifier metrics on the validation and test
data sets, as was done similarly for the two-class problem, however applying a ‘macro’ average
over the four classes to obtain an overall summary of the number of true and false positives
and negatives across the confusion matrix.

The inclusion of an additional two classes of data results in a significantly reduced performance
compared to when only two classes are used. This is likely due to the low-level amount of label
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Table 2.10: Individual precision and recall values computed from the confusion matrix for the 4-class
test set, using the original and augmented images, for model E.

Precision Recall
Compact 96.9% 97.4%
Single-extended 93.4% 95.3%
Two-component extended 91.1% 87.6%
Multiple-component extended 94.6% 96.1%

Figure 2.11: Training and validation losses shown when using a chunk size of 20000 with a 3 conv
+ 2 dense model with no sigma clipping (model E), for the four-class problem. The
training losses are much higher at the start compared to what was observed in the
2-class problem, and settle to a loss of around 0.2 by 400 training epochs.
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contamination in the new classes, in addition to the level already present in the previous two
classes. The manually chosen images for the multiple-component extended source class still
contain a substantial number of images that are superpositions. Despite this, the accuracies
remain above 93%.

Note that our machine learning algorithms are still making the correct decision in determining
membership in each of the four classes, in that they were trained to simply recognise the
number of extended components in close proximity. The information required to identify
some of these images as superpositions of more than one physical radio galaxy requires more
detailed information about both the radio morphology and the location of possible optical/IR
counterparts. This is a future task for machine learning algorithms to make use of labels with
higher-level information, for example from Radio Galaxy Zoo.

The individual precision and recall values were computed for each of the four classes in
Table 2.10. The results show that the precision and recall values are the highest for the
compact sources, so the deep learning algorithm is able to identify all the compact sources
and not confuse them with any other source, with most accuracy. This is to be expected since
they have a very well-defined morphology with the least variability amongst the classes. The
deep learning algorithm however produces the lowest scores for the two-component extended
sources, and this is likely because there is the most overlap between these sources and the
two classes on either side; the single-extended and multiple-extended sources.

These higher-level classes of data can be used as an initial step to facilitate the generation of
more specific radio morphology classes of scientific interest.

2.5.1 Comparing results with Data Release 1 of the Radio Galaxy Zoo

Radio Galaxy Zoo classification is a two-step process. For a single classification, users firstly
select all radio emission they consider to be originating from a single radio galaxy. After
selecting the radio components, users will try to match it with a galaxy in the near-IR data.
If there are multiple radio sources in the image, users can repeat both steps to identify other
radio galaxies. Individual classifications are aggregated to provide a consensus classification
of the image based on the majority vote (Willett, 2015).

Data Release 1 of the Radio Galaxy Zoo (DR1; Wong et al. in preparation) was made with
the purpose of obtaining citizen-scientists input in identifying which components belonged
together in a source. The ‘Number of components’ is defined as the number of discrete radio
components that a source encompasses, that also depends on the lowest radio contour level
chosen. The ‘Number of peaks’ that examines the components identified by RGZ participants,
refers to how many peaks are present in the radio source as determined by an automatic
pipeline processor. DR1 consists of 74627 sources where user weightings have been applied to
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the consensus levels, retaining the sources which have a consensus level of 0.65 or higher. The
minimum reliability of DR1 is 75% for a minimum weighted consensus level of 0.65 for the
classifications of the FIRST survey. Using the dataset for the four-class problem consisting
of 21933 images, there are 10722 (14.4%) images in common with the DR1 dataset, where
the matching is done based on the source name. After removing the sources that contained
invalid entries in the ‘matchComponents’ and ‘WISECATmismatch’ columns, there were 9537
remaining (12.8%).

Using the ‘Number of components’ and ‘Number of peaks’ information provided that orig-
inated from the citizen scientists’ and the post-processing pipeline, along with the images
in the DR1 dataset, we were able to generate labels for the overlapping dataset of 9537 im-
ages. Since there is no way of distinguishing between compact sources and extended sources
based on this information alone, we decided to make a single class composed of compact and
single-component extended images. The labels for the classes were generated using the rules
as shown in Table 2.11. These sources make up the test set, to assess how well the custom
designed network in Lasagne is able to reproduce the labels generated based on the citizen-
scientists input. The sources where no class could be assigned were removed, leaving 6966
sources. The remaining images that were not part of the test set of intersected images formed
the training and validation set. These numbers are summarised in Table 2.12. It is worth
noting that the original set of images again contains an imbalance in the number of sources
belonging to each class, where there are fewer compact/single-extended sources and the fewest
multiple-component extended sources. This imbalance is compensated by augmenting these
classes more.

The architecture used is the three convolutional and two dense layer architecture since this is
the overall best-performing architecture. Two datasets are used; the first one using just the
original images that contain imbalanced classes, as well as the original and augmented images
that contain much more balanced numbers of images in the classes. The parameters used for
these two datasets are summarised in Table 2.13.

The results show that when using just the original images, the precision and recall metrics
are quite low overall, as shown in the first row of Table 2.14. Upon exploring the individual
metrics for the three classes in Table 2.15, the deep learning algorithm is able to identify
the compact/single-extended sources e�ectively, however it struggles more with identifying
the two-component extended sources, despite there being more examples of this class to
train on. The most likely reason is that the DR1 data contains more information for each
source compared to what the deep learning algorithm is trained on. Based on the input
from the citizen scientists, it will take a 2 component extended source and divide it into two 1
component sources, depending on the WISE ID status. The deep learning algorithm performs
exceptionally poorly with the multiple-component extended images, which is not surprising
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given that there are only several hundred examples of this class of images to train and validate
on.

In using the augmented images that have been generated to even out the class imbalance, in
addition to the original images, all the average metrics are improved, as can be seen in the
second row of Table 2.14. Upon examining the individual metrics for each class in Table 2.16,
the precision values are improved across all the classes. The recall values are improved for
the compact/single-extended class, and are substantially higher for the multiple-component
extended class compared to when only the original images are used, however they still remain
quite low for this class. The deep learning algorithm is therefore much less precise and
sensitive in identifying the images belonging to the multiple-component extended class, when
the labels are generated according to citizen scientists input, compared to the other two
classes. It does not perform as well in detecting the images that are labelled as multiple-
component extended sources, and it also predicts images as being in this class when they are
labelled as belonging to another class. A couple of reasons are as follows. There were only
on the order of a few hundred (475) original images to train on for images in the multiple-
component extended source class, and although they are augmented to generate a set of images
that has a roughly the same number compared to the other classes, there are perhaps not
enough original examples of the di�erent morphologies that can exist, therefore making the
feature space smaller for this class. Additionally, although the multiple-component extended
sources in the training and validation set were inspected in an attempt to ensure that the
images contain at least three components that are part of the same source, which was the
classification scheme used by RGZ users, there were still found to be a substantial number
of images that contained source superpositions, upon cross-checking with several optical/IR
images. However it is important to keep in mind that the deep learning algorithm was trained
to recognise the number of extended components in close proximity, using radio galaxy images
only. It should be noted that all multi-component sources, whether they are superpositions
or not, belong in the multi-component class.

Presumably, the higher the number of components an image appears to contain, the more
likely it is that the images are superpositions of sources. This would explain why the
compact/single-extended and two-component extended sources are not a�ected as much in
terms of the precision and recall metrics as the multiple-component extended class. It should
further be noted that 77.6% of images belong to the compact/single-component extended
class, which explains the overall high classification accuracies in Table 2.14.

The generation of augmented images to even out the imbalance in classes in the original data
overall improves the metrics in predicting the labels that are generated using citizen-scientists
input.
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Table 2.11: Rules by which labels were generated for the DR1 dataset, based on citizen scientists
input, to test the best-performing Lasagne convolutional neural network architecture.
The number given refers to both the number of components and number of peaks in
a given image. For example, the Compact/Single-extended class is defined as having 1
component and 1 peak.

# components and # peaks Label
1 Compact/Single-extended
2 Two-component extended
Ø 3 Multiple-component extended

Table 2.12: Summary of the numbers of sources used for training, validation and testing of the
labels generated from the DR1 data, for both the original (Orig.) and augmented (Aug.)
images.

Data # Orig. # Orig. + Aug.
DR1 74627
Final intersected dataset (Test) 6966
Compact/Single-extended (Train) 4147 14588
Two-component extended (") 10306 14306
Multiple-component extended (") 475 15177

Table 2.13: Chunk sizes and percentage of data used for training, validation and testing for the
Lasagne deep learning network in the DR1 cross-check analysis.

Chunk size % Train. % Valid. % Test
Orig. 1000 59% 9% 32%
Orig.+Aug. 3000 78% 8% 14%

Table 2.14: Validation and Test metrics for the DR1 cross-check analysis.
Valid. Precision Recall F1 Accuracy

Orig. 89.7% 58.7% 58.2% 86.4%
Orig.+Aug. 90.6% 90.6% 90.5% 90.7%

Test Precision Recall F1 Accuracy
Orig. 75.6% 62.6% 61.6% 92.8%
Orig.+Aug. 79.6% 81.6% 80.6% 94.8%

Table 2.15: Individual precision and recall values computed from the confusion matrix for the DR1
test set of 6966 images, when training on just the original images.

Precision Recall
Compact/Single-extended 97.2% 95.0%
Two-component extended 79.5% 90.7%
Multiple-component extended 50.0% 2.1%
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Table 2.16: Individual precision and recall values computed from the confusion matrix for the DR1
test set of 6966 images, when training on both the original and augmented images.

Precision Recall
Compact/Single-extended 97.5% 96.9%
Two-component extended 88.0% 89.5%
Multiple-component extended 53.4% 58.5%

2.6 Conclusions

This is a methods paper that explored the use of deep neural networks for classifying com-
pact and various classes of extended sources in radio astronomical data. We have found
an optimal set of parameters obtained from examining the two-class problem of distinguish-
ing between two well-defined classes of data composed of compact and multiple-component
extended sources, and applied this to a classification scenario involving more classes, and
have shown that the classification accuracies remain high without excessive overfitting. The
results were cross-checked on the Radio Galaxy Zoo DR1 dataset, where the generation of
augmented images in order to address the class imbalance highly influenced the accuracies to
predict the labels generated based on the citizen scientists input. However, the predictions
for the multiple-component extended class remained poor, most likely because this dataset
contained the fewest number of original images to train on, and did not have the additional
information of which components made up a radio source and how many peaks were contained
in the source, which was the additional information provided in the DR1 dataset.

The first part of the results explored various architectures and identified the optimal param-
eters for distinguishing between the two morphological extremes of compact and multiple-
component extended sources. We found that the three convolutional and two dense layer
architecture using the original and augmented images with no sigma clipping produced the
maximal accuracy of 97.4% for the two-class problem, which is significantly better compared
to using just the original images with the same architecture. Although the equivalent archi-
tecture with sigma-clipping produced an accuracy in the same range, the di�erence between
the training and validation loss was greater. A better model is ensured if the training and
validation losses are closer together. The largest influence of performance other than the
model architecture was to use a relatively large chunk size, since the more examples that are
seen simultaneously, the better the estimate can be for adjusting the weights to achieve a
lowered cost function. This is where the use of augmented data is useful, as it allows one to
use a larger chunk size. Another important impact on the performance of the deep neural
network is to use quite a small learning rate at the start and make it smaller by a factor of
10 at certain points during training, and using a small batch size of 8 samples.

When training deep neural networks with a large enough number of images, removing noise
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through the use of sigma clipping appears to o�er no significant benefit. Given there is an
adequate number of images belonging to the available classes in question, with varying levels
of noise, the deep learning network can learn these properties and become robust to them.

Using the knowledge gained from the factors that influence the performance of the classifier in
the two-class problem, we assumed that the setup would perform similarly for distinguishing
between an additional two classes of images. It is unclear what the e�ect would have been, had
two classes been chosen that were not extreme examples of morphologies. For the four-class
problem of distinguishing between compact, single, two-component and multiple-component
extended sources, and using the three convolutional and two dense layer setup with original
and augmented images, we were able to achieve a classification accuracy of 93.5%. The
fact that the compact and single-component extended sources are both chosen from where
PyBDSF has detected one component, and that the deep learning algorithm is able to achieve
high precision and recall values for these two classes, means that the deep learning algorithm
is doing more that just counting the number of components in the images.

Both the two-class and four-class problems contain di�erent numbers of original images in
each class. This did not appear to dramatically a�ect the performance of the classifier when
using the original set of images in the two-class problem, most likely because the minority set
of images was comprised of compact sources that have a very specific morphology, and the
sources are almost always found the in the centre of the image.

It is worth noting that at least 44% of images in the multiple-component extended class in
the two-class problem appeared to contain superpositions, or fewer than three components.
Although we attempted to remove these images in the four-class problem by manually selecting
the sources, a substantial number of images with superpositions remained, upon cross-checking
with several optical/IR images. However, the deep learning algorithm was trained to identify
extended components in close proximity in a radio galaxy image, so it is still making the
correct decisions in determining class membership based on using the image data alone.

The other classes explored apart from compact sources display a much richer variety of mor-
phologies, which is why it is important to augment those images much more in comparison
to the compact sources. Roughly equal augmented datasets were generated for the extended
source classes in the four-class problem, to make up for the class imbalance present in the
original images. This was especially important for the DR1 analysis, where the deep learning
algorithm was much better able to predict the labels generated based on citizen scientists
input when the augmented data was used in addition to the original data, to compensate for
uneven classes. Although the precision and recall values for the compact/single-component
extended sources is quite high, it is possible to use linear regression and simple positional
matches to identify such sources. The metrics were moderately high for the two-component ex-
tended sources. The deep learning algorithm however struggles more to identify the multiple-
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component sources when the labels are generated using input from the citizen-scientists, as is
evidenced from the poorer precision and recall values for this class of images. This indicates
the need for both more original images and labels with higher-level information from citizen
scientists to make up the training and validation set, in order to predict these sources more
accurately. The value in using both data from the RGZ as well as the help of computer
algorithms is the ability to connect discrete individual components that may be associated
with a source.

The first example of using convolutional neural networks to classify radio morphologies was
in Aniyan & Thorat (2017), where they choose a couple of hundred examples of FRI, FRII
and Bent-tailed galaxy morphologies, perform sigma clipping, apply a high amount of aug-
mentation, and build a fusion classifier to combine the results for the three classes. However,
the authors run into problems of substantial overfitting, due to not using enough examples of
di�erent varieties of FRI, FRII and Bent-tailed classes. An earlier study using an unsuper-
vised learning approach consisting of Kohonen maps has shown that when categorising radio
galaxies into FRI and FRII type sources, sigma clipping and other pre-processing may be
necessary (Polsterer et al., 2016). In contrast, the current work has shown that with enough
examples of broad classes of radio galaxy morphologies, it appears that pre-processing and
noise removal through sigma clipping does not o�er a significant advantage and that it is pos-
sible to classify radio galaxy morphologies into more than two classes using only convolutional
networks, without a high level of overfitting.

The use of deep learning networks appears to be very well suited to source classification in
radio surveys. However one must keep in mind that the deep learning algorithm will only able
to make predictions that are as good as the level or complexity of information that is input
into it. When there are a limited number of people to make the classifications, one option
to sift through the vast amount of data is to use automated techniques such as PyBDSF or
blob-detection algorithms, to assist in providing structure. However these techniques do not
always reflect how humans would classify images; they are poorer at making the distinction
between images containing superpositions, and images containing sources that have multiple
components associated with each other. They can also detect components that a human
would identify as noise, as shown in Fig. 2.7. Therefore it is more likely that there will
be contaminations in the training set. However, given access to the classifications from an
increasing consensus of people that are trained to identify which components belong together
in a particular image, the training labels will be more accurate, as will the predictions. Citizen
Science projects like RGZ are an excellent way of generating training sets, and appear to have
a reliability similar to that of trained astronomers.

When there are few people available to make classifications, there are limitations in the extent
of human intervention that can be applied to reduce contamination in the data. In this case,
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the results shown indicate that it is better to devote more time in further classifying the
images where PyBDSF has detected only up to a few components, as they are less likely to
contain superpositions.

The labels generated with the help of algorithms such as PyBDSF are able to attain a certain
level of concordance when compared to labels used from citizen-scientists. However, they
appear unable yet to replace input from humans, who are able to detect finer-scale structures
and subtle aspects of morphologies such as the amount and direction in which the bulges
in the edges of radio components are pointing and how far apart they are, that influences
whether the components are associated with each other, for a source in question. With the
availability of higher-level training labels provided by humans as opposed to the lower-level
ones provided by automated techniques such as PyBDSF, deep-learning techniques should
exceed the performance of PyBDSF in the future.

Another consideration is the identification of rare sources such as radio relics that make up
a small fraction of the overall observed morphologies. Although they are more likely to be
found in those images where PyBDSF has detected a multitude of components, these images
contain an increasing number of source superpositions, so it is still necessary to have humans
to visually inspect the source to see whether they are true relics or not, since PyBDSF
has certain ways of grouping the gaussians that are fit to the sources, that may not match
how a person would associate them, even when changing parameters that control how the
components are grouped.

In future work, we aim to optimise deep neural network setups for more complex morphological
classifications and will use them on LOFAR survey data (LOTSS, W. Shimwell et al. (2016)).
We will also explore neural networks that perform cross-identification with optical/IR surveys
(Norris, 2016).
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3 Convolutional vs Capsule networks

The following chapter presents work as it is published by Lukic et al. (2019).

3.1 Introduction

Active Galactic Nuclei (AGN) are energetic, astrophysical sources powered by accretion onto
super-massive black holes in galaxies (Padovani, 2017; Fabian, 1999). There are many classes
of AGN, where one subset is radio-loud AGN, also known as radio galaxies. The two main
ways of classifying radio galaxies is by the properties of optical emission lines (Hine & Longair,
1979) or by the radio morphology of the jets (Bicknell, 1995). The classification of radio galaxy
morphology is of research interest in wide-field radio surveys as it correlates with physical
properties of the galaxy such as the total power, dust distribution, surrounding environment,
and galaxy and cluster evolution (Saripalli, 2012). Radio galaxies can present compact or
extended radio morphologies (Miraghaei & Best, 2017) and are often classified into either the
FRI (core-bright) or FRII (edge-bright) galaxies (Fanaro� & Riley, 1974). Rarer are hybrid
galaxies, which fall in between FRI and FRII galaxies (Gopal-Krishna & Wiita, 2000). There
are physical di�erences between the two classes. The jets of FRIs are less powerful, and are
disrupted quite close to the core of the radio galaxy, while the jets of FRII are more powerful
and stay relativistic for much larger distances, terminating in a shock (Contopoulos et al.,
2015). The transition from FRII to FRI radio galaxies is thought to occur as the jet becomes
sub-relativistic (Bicknell, 1994). As the environment plays a large role in the morphology of
radio galaxies, it is not unusual for both lobes to have di�erent appearances, especially the
FRIs. The dynamics of the ambient gas and the motion of the host galaxy can create tails
or distort the jets through ram pressure stripping (Feretti, 2003). Compact radio sources
may be either scaled-down (young) versions of the FRI or FRII sources, or may represent a
physically distinct population (Baldi et al., 2015).

Radio surveys map ever-increasing numbers of radio sources. The visual classification of
such sources becomes increasingly time-consuming and will be completely unfeasible with
the rapidly increasing data volumes. Recent and upcoming surveys, such as the LOFAR
Two-Metre Sky Survey (LoTSS; Shimwell, T. W. et al., 2017), the Evolutionary Map of the
Universe (EMU; Norris et al., 2011) and surveys with the Square Kilometre Array (SKA;
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Prandoni & Seymour, 2015) will detect many millions of galaxies. Citizen science projects
have been used for classifying astronomical sources, for example in Galaxy Zoo 2 (Willett
et al., 2013) and Radio Galaxy Zoo (Banfield et al., 2015). It is also possible to use automated
techniques to classify images. Ultimately, these approaches can be used as a training set for
machine learning algorithms, in particular deep learning algorithms, when the data is high-
dimensional (Wu et al., 2018).

The most prominent wide-area radio surveys, such as the Faint Images of the Radio Sky at
Twenty centimetres (FIRST; Becker et al., 1995) and the NRAO VLA Sky Survey (NVSS;
Condon et al., 1998), have mostly been conducted at GHz frequencies. In contrast, the
LoTSS survey, which is the focus of the current work, has been carried out at 150 MHz with
the Low Frequency Array (LOFAR). As such, LOFAR can detect synchrotron emission from
older populations of relativistic electrons (which have steeper spectra) found in the extended
regions of sources. Furthermore, with its combination of long and short baselines, LoTSS
o�ers both a high angular resolution (¥ 6ÕÕ) for detailed mapping, and a high sensitivity to
extended emission.

The cross-identification of radio sources with their optical or infrared hosts helps to associate
radio components to sources and to determine properties, such as host galaxy redshift and
mass. Previously, cross-identification has been done using visual input from citizen scientists
input in Radio Galaxy Zoo (Banfield et al., 2015), and automated methods in cross-identifying
radio emission with infrared counterparts have been explored (Alger et al., 2018). In the
LoTSS survey (Shimwell, T. W. et al., 2019) the radio sources have been cross-matched with
their optical counterparts. For the majority of sources a maximum-likelihood ratio test was
adequate because the sources are small and unresolved. For sources that are too large or
complex, a visual host identification has been applied (Williams, W. L. et al., 2019).

The first published work on the automated image classification of radio sources using deep
learning algorithms was Aniyan & Thorat (2017) where they use a limited number of original
radio galaxy images and apply aggressive augmentation to classify sources into FRI, FRII
and bent-tailed classes. In previous work, we have shown that it is possible to classify radio
sources into four categories based on the number of components belonging to the radio source
and produced a classification accuracy of 94.8 % (Lukic et al., 2018) on the Radio Galaxy Zoo
(RGZ) DR1 catalogue (Wong et al, in prep). Alhassan et al. (2018) developed a convolutional
neural network model to classify FIRST sources into four classes including compact, FRI,
FRII and bent-tail sources, achieving overall accuracies >90%. Wu et al. (2018) use regional
convolutional networks to localise, recognise and classify sources, the best model obtaining a
final mean average precision of 83.4%, using the number of peaks and number of components
of a particular radio source. This approach, however, does not always lend itself easily to
clear morphological classifications in the FRI or FRII cases because the relative orientations
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of components are not taken into account.

The aim of the current work is to compare the performance of two setups of deep learning
networks (capsule networks and convolutional networks) in the classification of radio sources.
As a data set, we used the first data release of the LoTSS survey (Shimwell, T. W. et al., 2019).
Capsule networks are a more recently developed deep learning technique, invented to help
preserve the local feature information within an image, which can be degraded in traditional
convolutional networks, owing to the pooling operation. In the context of radio galaxies,
the orientation and pattern of the emission is important as it determines the morphological
classification. The data from the LOFAR LoTSS survey reveals sources in unprecedented
detail, therefore one source that had a particular morphology in an earlier survey may be
revealed to have a di�erent one when imaged with LOFAR.

This paper is outlined as follows: Section 3.2 describes the LOFAR dataset, including cata-
logue information and image data as well as how the classifications are generated. Section 3.3
discusses the pre-processing and augmentation applied to the original images. Section 3.4
describes the theory behind the two deep learning approaches explored, namely convolutional
neural networks and capsule networks. Section 3.5 explores the performance of di�erent cap-
sule network models against standard convolutional neural network setups, including transfer
learning on the LOFAR data, when training on di�erent sets of images. The results are also
discussed in Section 3.5. Section 3.6 summarises our overall findings.

3.2 LOFAR HETDEX v1.0 dataset

3.2.1 Source cutouts

The sources in our dataset originate from a 424 square degree region of the HETDEX Spring
Field, mapped from the LOFAR Two-metre Sky Survey (LoTSS), and release as Data Release
1 (Shimwell, T. W. et al., 2019). The LoTSS survey detects a total of 325,694 sources where
the signal is five times that of the noise and the density of sources is a factor of approximately
10 times higher than the most sensitive existing very wide-area radio-continuum surveys. We
use v1.0 of the value-added catalogue for the HETDEX-area data release of LoTSS. The
first step in creating the value-added catalogue involved using PyBDSF1 to produce a radio
source catalogue for the field, after which a decision tree was used to further categorise the
sources, with details provided in (Williams, W. L. et al., 2019). After filtering the 325,694
sources to only include those classified as resolved leaves 24,096 sources (Shimwell, T. W.
et al., 2019). The catalogue also contains 180 columns describing the properties, such as
redshift, position etc, of the sources. In order to exclude star-forming galaxies and sources

1
http://www.astron.nl/citt/pybdsf/
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Figure 3.1: Histogram of sizes (in pixels per side) of the filtered cutout images. The total number of
images is 6708.

with less certain redshift values, we made use of the AGN subsample of the LoTSS catalogue,
derived by Hardcastle et al. (2019) leaving 6708 sources. We note that this is a substantial
limitation of the machine learning approach when using radio galaxy image data only, as
it is generally not always possible to filter out the star-forming galaxies without the use of
additional data at other wavelengths. The source classifications were only available for those
6708 sources classified as AGN and with known redshifts, therefore the analysis is restricted to
this set. However, the accurate knowledge of redshift is not strictly required for morphological
classification.

Finally, we assume that there is one source per image. Square cutouts of each source are
produced from the fits images, where the cutout size is determined by the catalogued size
of the radio source. These range from size (66,66) pixels up to (2342,2342) pixels. The size
of the pixels is roughly 1.5x1.5ÕÕ. Figure 3.1 shows the histogram of the side length in pixels
of the images for these 6708 samples.

3.2.2 Classifications

The LoTSS association and cross-identification e�ort (Williams, W. L. et al., 2019) was a
project in which expert astronomers were tasked with characterising the radio emission for
sources larger than 15ÕÕ. Indicated were the locations of the peaks and extents of the emission,
and whether there was one or more sources present.

The 6708 source sample (see Section 3.2.1) were classified into 6 classes using an automated
technique (Mingo et al. in prep). The 6 classes are Unresolved-1, FRI, FRII, Hybrid-1,
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Hybrid-2 and Unresolved-2, all of which are described in further detail as follows. After the
host galaxy location had been identified through the LoTSS identification e�ort (Williams,
W. L. et al., 2019), the distances, d1 and d2, were determined as the distances in pixels
from the host galaxy to the brightest peaks of emission on both sides of the source (shown
with points marked with Y/inverted Y in Figure 3.2). Similarly, Maxd1 and Maxd2 were
determined as the maximum extents of the source in each direction (marked with triangles
on the plots), out to the masked 4rms limit. A 120 degree aperture cone is used to find those
along the direction of d1, d2. The comparison of d1/Maxd1 and d2/Maxd2 is then used to
classify the sources. If, on both sides, the peak is less than half of the distance between the
position of the host galaxy and the maximum extent of the emission (ie. d1/Maxd1 < 0.5
and d2/Maxd2 < 0.5) then the source is classified as an FRI, making up 15% of the total
sources. Likewise, if it is more than half of the distance (d1/Maxd1 > 0.5 and d2/Maxd2 >
0.5) then the source is classed as an FRII. The FRIIs make up 7% of the total sources.

In addition to the FRI and FRII labels, four further labels were defined. Hybrid-1 and Hybrid-
2 classes refer to sources which show FRI morphology on one side of the source and FRII in
the other, with the ‘1’ or ‘2’ reflecting the classification of the brighter of the two sides. The
Hybrid classes together make up 6% of the sources. Unresolved-1 sources correspond to those
images that have less than 5 pixels of signal above 4rms, making up 22% of the sources. This
class is useful as it indicates which images are too noisy to be characterised into a particular
class (note that it is di�erent from the Unresolved sources previously discussed, which were
based on the extent of the overall radio emission). Finally, the Unresolved-2 class contains a
collection of mostly FRI and FRII sources that were unable to be classified accurately by the
automated algorithm as they were too small, which makes up 50% of the sources. Figure 3.2
shows an example image source, demonstrating how the classification labels were generated.

In the current work, we have chosen the Unresolved-1 (henceforth called Unresolved), FRI
and FRII classes to evaluate the performance of our deep learning algorithms, as these had the
most confident classifications. There are 2901 original images in total, as shown in Table 3.1.

The automated classification technique (Mingo et al. in prep) involved using masked 4rms
arrays (where emission below 4rms is removed and potential unassociated emission is masked),
rather than the raw fits data. We define unassociated emission as radio emission which does
not appear to belong to the radio source in question. A flood-filling algorithm2 and masking
techniques have additionally been applied in order to identify and use associated structures
and consequently remove unassociated emission from the image (Mingo et al. in prep). On
the other hand, the current work emphasises using the raw fits images as the input to the
deep learning algorithms, to see if they could be trained to cope with unassociated emission

2
http://scikit-image.org/docs/dev/api/skimage.measure.html

#skimage.measure.label
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Figure 3.2: The masked array from which classifications are generated. The red cross indicates
the position of the optical source, the black Y’s indicate the peaks of the emission and
the blue triangles indicate the maximum extents of emission. The optical position is
calculated from the user’s clicks on the LOFAR Two-metre Sky Survey images, or from the
maximum likelihood method. The Y’s and blue triangles are outputs from the automated
classification code.

and unfiltered noise. After visual inspection we found there were approximately 1% of images
containing potentially unassociated emission, whereas the majority of the images contain
varying levels of noise.

In cases where the calibration did not perform as expected, the source will not be de-convolved
accurately, causing flux leakage. This could result in the source being misclassified, leading
to label errors. After inspecting several batches of images, we estimated the amount of labels
containing errors to be less than 6%, when considering both FRIs and FRIIs. Since larger
sources are easier to classify, there is a decreased likelihood that they will be mislabeled,
therefore the size of the source a�ects the presence of noisy labels. However, pre-filtering is
applied to ensure the e�ect is not very large.

Figure 3.3 shows typical examples of source types across the three classes. It is evident that
there are varying levels of noise present in the images, presenting the largest hindrance to
the deep learning algorithms’ ability to classify the sources accurately. One of the aims of
the current work is to see how well the algorithms can classify the sources in the presence of
such undesirable features, present in the original radio images (fits files). We also compare
the results obtained when using the masked 4rms clipped arrays (see Section 3.5.3), where
emission below 4rms is removed and potential unassociated emission is masked.
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Figure 3.3: Showing morphology samples of the fits cutouts when converted to png images using
the ‘hot’ colormap. The top row shows the ‘Unresolved class’, middle row shows the
FRI class, bottom row shows FRII. There are varying levels of noise and the occasional
potentially unassociated emission present in the images.
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3.3 Methods

We use the radio galaxy image fits cutouts from version 1.0 of the LoTSS DR1 value-added
catalogue (Williams, W. L. et al., 2019). The extended source identifications do not di�er
from the final version to a large extent.

3.3.1 Pre-processing

Since the size of each cutout varies, they first need to be made the same size. The fits images
have been resized to (200,200) pixels, where the smaller images have been padded with zeros
around the edges, and the larger images have been downsampled, using bicubic interpolation.
The sizes of the arrays varies across all three classes. Following this, the images are centred on
the position of the optical source, ensuring its position is at (100,100). We crop to the inner
(100,100) pixel part of the image as the source is likely to be contained in this interval and to
reduce the amount of data input into the network. The pixel values, representing brightness
in mJy/beam were normalised by dividing by the maximum value in each image, therefore the
values are contained within the [0,1] range. The images are taken at 150MHz. We apply the
‘hot’ colormap from the python matplotlib library, which converts the images from a single
channel numpy array to a RGB png image. This is done by assigning a color (RGB vector)
according to the value in the single channel array. For example, values close to 1 are bright
yellow in the ‘hot’ colormap scheme, therefore (r,g,b) ¥ (1,1,0.99). The conversions to the
RGB vector are provided3. The conversion is done to make the arrays more amenable to deep
learning analysis and has no bearing on the flux values. The number of sources in each class
is given in Table 3.1.

Cropping the images to (100,100) pixels, instead of using the originally resized images of
(200,200) pixels, reduces the impact of radio emission that is potentially unassociated with
the main source in the centre. We have also experimented with using central sizes other
than (100,100) pixels, however they resulted in worsened performance metrics. Smaller im-
ages tended to have some associated emission truncated, whereas larger images encapsulated
more unassociated emission. The cropping still preserved the general noise characteristics
surrounding the source.

The upsizing of images should not have any detrimental e�ects on image quality, however
the downsizing may cause e�ects such as as slight distortion of the radio emission due to the
interpolation.

3
y =(0,0.36): (r,g,b) ¥ (x=y/0.36,0,0)

y = (0.36,0.74): (r,g,b) ¥ (1,x=(y-0.37)/0.37,0)

y = (0.74,1): (r,g,b) ¥ (1,1,x=(y-0.75)/0.25)
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Table 3.1: The number of original and augmented sources, divided into training and testing sets.
The percentage of samples in each class is also given for the test set. Since only original
images should be used in the test set, the augmented images are used for training only.

Class # Orig.(Train) # Orig.(Test) # Aug. # Total
Unres. 1156 301 (50.2%) 4371 5828
FRI 765 219 (36.5%) 5904 6888
FRII 380 80 (13.3%) 2760 3220
Total 2301 600 13035 15936

3.3.2 Image augmentation

Deep learning algorithms generally require large numbers of labeled images in order to make
predictions more successfully and to reduce the e�ect of overfitting, in which the algorithm
memorises the training samples and therefore the model fails to generalise on an independent
dataset. More images can be generated artificially, by performing simple transformations
to the original data (Krizhevsky et al., 2012). As such, we apply translation, rotation and
flipping to generate more images. In using translation, we initially use a random number that
shifts the image between 0 and 20 pixels in any of the four directions, using the condition that
if such a translation moves the brightest pixel out of the image, the translation is reduced to
10% of the original value. This is to reduce the possibility that part of a radio component will
be shifted out of the image. The images have been rotated randomly in multiples of 90 degrees
only in order to avoid interpolation artefacts. We note that since there is a limited range
of rotation applied, it is not enough to ensure complete rotational invariance in our models.
Both horizontal and vertical flipping has been applied at random. The augmentation of the
FRI and FRII sources has been done keeping their overall proportions similar in number to
the original dataset as this resulted in improved performance. The number of original and
augmented images used in the current work is given in Table 3.1. Image augmentation is
applied on both the original LOFAR images, as well as the masked 4rms arrays.

3.4 Deep Learning algorithms

The most successful class of machine learning methods in the context of extracting information
from high-dimensional data is deep learning, which has achieved unprecedented performance
in a variety of domains such as image recognition, sentiment analysis and genomics (LeCun
et al., 2015). Their ability to learn multiple representations of data lies in their stacked layer
architecture. The most commonly used implementation of deep learning has to date been
convolutional neural networks. However, more recent advances were made in addressing the
lack of rotational invariance in convolutional neural networks through the development of
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capsule networks.

3.4.1 Convolutional Neural Networks

Neural networks and deep learning algorithms are generally trained using the backpropaga-
tion algorithm, where a gradient descent optimisation algorithm is used to minimise the error
between the predictions of the network and the input labels by calculating the gradients and
adjusting the weights accordingly (Rumelhart et al., 1986). A deep fully connected neural net-
work becomes time-consuming and computationally intensive to train. Convolutional neural
networks employ smaller sized filters that scan across the image and extract features, which
greatly reduces the dimensionality compared to using adjacent layers of fully connected neu-
rons and enforces parameter sharing and therefore translational invariance (Karpathy, 2016).
Spatial pooling layers are typically inserted between at least one convolutional layer which fur-
ther reduces the dimensionality of features propagated through the network. In max pooling,
the maximum value of a certain region of the image is output into the next layer. However,
since the pooling operation summarises the information in a local part of the image, the global
feature information within the image tends to degrade.

3.4.2 Capsule networks

Capsule networks (Sabour et al., 2017) have been developed to preserve the relative locations
of features within images and thus model the hierarchical relationships better. Whereas
traditional neural networks output a single activation value, capsule networks are higher
dimensional and output a vector representing a group of parameters such as orientation, skew,
thickness etc., depending on the input. The overall length of these vectors give the probability
that the entity exists. Capsule networks have achieved state of the art performance on the
MNIST dataset (Lecun et al., 1998) without data augmentation (Xi et al., 2017).

In the context of radio galaxy classification, capsule networks should be able to preserve the
emission pattern features over a large spatial extent, given an adequate training set size.

Below we summarize the theory behind capsule networks but see Sabour et al. (2017) for a
detailed description. For all capsules above the first layer of capsules, the input to a capsule
s

j

is a weighted sum over all prediction vectors from the capsules in the layer below, given
by multiplying the coupling coe�cients c

ij

by the output u
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of a capsule in the layer below
by a weight matrix W
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, as shown in Equation 3.1
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The coupling coe�cients c

ij

are determined by a routing softmax function given by Equa-
tion 3.2
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The coupling coe�cient c

ij

is the level of agreement between the predicted output of capsules
in a layer, to their parent capsules in the layer above. b

ij

gives the log prior probabilities that
capsule i should be coupled to capsule j.

The vector length is calculated as shown in Equation (3.3)
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where v

j

is the vector output of capsule j and s

j

is its total input. This output gives the
probability that a specific property exists in the input to the capsule, that is represented
by the capsule. The vector output v

j

is an activation function, that is also referred to as a
squashing function as it shrinks short vectors to near zero if a property is not present in the
capsule, and long vectors to lengths close to 1 if the property exists.

The agreement a

ij

for updating log probabilities and coupling coe�cients is given by Equa-
tion (3.4)

a

ij

= v

j

.W

ij

u

i

(3.4)

A margin loss function is used in order to determine whether a radio galaxy of a particular
class is present, which has the form given by Equation (3.5):

L

k

= T

k

max(0, m

+ ≠ ||v
k

||)2 + ⁄(1 ≠ T

k

) max(0, ||v
k

|| ≠ m

≠)2
, (3.5)

where T

k

= 1 if a radio galaxy of class k is present and m

+ = 0.9 and m

≠ = 0.1, to ensure
that the vector length remains within reasonable bounds. The ⁄ down-weighting function is
introduced for numerical stability and suggested to be set at 0.5.

The mean squared error di�erence between the reconstructed image from the decoder (the
part of the Capsule network after LabelCaps) and the input image acts as a regulariser for
the capsule network, such that near-perfect reconstructions will produce a near-zero error
and poor reconstructions will produce a large error. The reconstruction loss is scaled down
by 0.0005 so it does not dominate the margin loss during training, and the coe�cient for the
default model is designed for the MNIST digits which have an image size of 28x28, thus the
coe�cient is worked out to be 0.0005 ◊ 28 ◊ 28 = 0.392.
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Figure 3.4: The default architecture for CapsNet, using three classes. The input to the network
is a 100x100x3 image. The encoder is the part of the network that encapsulates the
convolutional layer up to and including the LabelCaps layer. The decoder refers to the
final three dense layers. An example of features detected by the PrimaryCaps layer prior
to reshaping and squashing is shown, for the given input image. There is a small amount
of extended emission to the top right of the image that appears to be unassociated with
the main source in the centre, which the capsule network preserves, suggesting that it is
not robust to potential unassociated sources. Additionally, the feature maps appear to
show extra distortion in the core of the source.

Table 3.2: Showing architecture for the default capsule network model
Layer Output shape # Params
Input_1 (None, 100, 100, 3) 0
conv2d (None, 92, 92, 256) 62464
PrimaryCap_conv2d (None, 42, 42, 6) 124422
PrimaryCap_reshape (None, 3528, 3) -
PrimaryCap_squash (None, 3528, 3) -
LabelCaps (None, 3, 3) 95256
Input_2 (None, 3) -
mask (None, 9) -
capsnet (None, 3) -
decoder (None, 100, 100, 3) 3878960
Total 4,161,102
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3.4.3 Deep learning parameters

There are several deep learning implementations currently available for use. The present work
uses Keras4 with the TensorFlow5 backend and Python version 2.7.14.

We use the Adam optimiser (Kingma & Ba, 2014) with the default learning rate of 0.001.
In order to keep more parameters the same between the models, both the convolutional and
capsule network models are trained using a batch size of 100, for 50 epochs.

The deep-learning task is a multi-classification problem, where the models output a 3-dimensional
vector representing the probability that the object belongs to each class. The predicted class
is chosen as the one with the largest probability value. As the probabilities are independent,
there is no constraint that they need to add to unity.

The models are trained using CPUs from 27 available Intel XEON CPU nodes with six
available cores per node on a computing cluster at the University of Hamburg.

ConvNet-4 parameters

We use an architecture of two pairs of stacked convolutional layers with pooling layers in
between, as shown in Figure 3.5, with parameters given in Table 3.3. This model is referred
to as ConvNet-4. Using two adjacent convolutional layers with smaller filter sizes obtained
improved results compared to using a single larger convolutional layer, and also reduced the
number of parameters (Simonyan & Zisserman, 2014). We use the categorical cross-entropy
cost function6 and 16 filters of size 5x5 across all layers, as well as the default learning rate
decay of 0. In order to reduce the e�ect of overfitting, dropout layers are used. A dropout
value of 0.25 is used after each pair of convolutional layers, and a value of 0.5 in between the
dense layers. A penalty term is added to the cost function using L2 regularisation (Ng, 2004)
in the first dense layer. All the convolutional layers use the ReLU activation function (Nair
& Hinton, 2010), and the softmax activation function at the final layer where classifications
are made. There are 5,022,467 trainable parameters in total.

ConvNet-8 parameters

In order to investigate the performance for more complex convolutional networks, we can
add additional layers. The ConvNet-8 model uses an architecture of four pairs of stacked
convolutional layers with pooling layers in between. There are also an increasing number

4
https://keras.io/preprocessing/image/

5
https://www.tensorflow.org

6
https://keras.io/losses/#categorical_crossentropy
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of feature maps with each subsequent double stacking of convolutional layers, as shown in
Table 3.4. The architecture also uses smaller feature maps of size 3x3. There are 7,446,259
trainable parameters in total.

CapsNet parameters

Finally, we explore several variations of capsule network models. We downloaded the origi-
nal CapsuleNet7 code implemented in Keras that was built for the MNIST dataset (Sabour
et al., 2017), and modified the code to use our datasets, vary the models from the original
architecture and to calculate the metrics. The original architecture contains approximately
58M parameters, which is more than 14x the number of parameters as for the ConvNet-4
model. We therefore simplified the architecture to one having just over 4M parameters, and
refer to this as the default model. The original CapsuleNet model is simplified in order to
have the same order of magnitude as the parameters in the ConvNets and to help prevent
overfitting.

The default architecture of CapsNet and decoder is illustrated in Figure 3.4 and the number
of parameters is given in Table 3.2. In essence it is comprised of an encoder and decoder.
The encoder consists of a convolutional layer, which extracts features in the image, which are
then input into the first capsule layer (PrimaryCaps), whose function is to take the 256x9x9
output of the convolutional layer and produce combinations of the detected features. The
output of the PrimaryCaps layer is then sent to the LabelCaps layer, which produces one 3D
capsule for each of the three radio galaxy classes. Routing is used between the PrimaryCaps
layer and the LabelCaps layer such that the level of agreement of feature existence can be
quantified and contribute to the vector length of the capsule. The decoder refers to the part of
the network after the LabelCaps layer (the three dense layers at the end). There are 4,161,102
free parameters in the default CapsNet model.

We use 256 filters in the first convolutional layer, a filter size of 9 in both the first Convolutional
layer and PrimaryCaps layer, 3 capsules in the PrimaryCaps and LabelCaps layers, 2 channels
in the PrimaryCaps and the decoder contains (64,128) nodes. We use the default setup of
three routings and a learning rate of 0.001 with a decay of 0.9. The first convolutional layer
uses the ReLU activation function. CapsNet has image augmentation built into the training
of the model, which we disable in order to use our augmentation technique, that allows more
control over which classes get augmented and the type of transformations that are used. For
the default CapsNet model, there are 4,161,102 parameters, which is a very similar number
of parameters that was used for ConvNet-4.

In addition to the default CapsNet model, we experiment with two other CapsNet models.
7
https://github.com/XifengGuo/CapsNet-Keras/blob/master/capsulenet.py
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In the first of these models (Inc. filtersize), we set the filter size to 24 and 18 in the first
Convolutional layer and PrimaryCaps layer respectively and slide the filters across using a
stride of 4 in the convolutional layer. The inc. filtersize model has 4,819,470 parameters.
In the second model (Inc. decoder), we increase the complexity of the decoder to (128,256)
nodes in the dense layers and the loss function of the decoder weight is increased from 0.392
to 5 respectively. The weight is calculated by taking the scaled-down reconstruction loss and
multiplying it by the size of the images 0.0005◊100◊100 = 5. There are 8,026,446 parameters
in the inc. decoder model.

We chose to increase the filters from a size of 9 pixels in the inc. filtersize model because
the original filter sizes that were designed for the MNIST image sizes of (28,28) pixels are
likely too small compared to what would be needed for our (100,100) pixel images. We also
experimented with increasing the number of nodes and weight loss of the decoder in the inc.
decoder model to better account for the noise and potential unassociated emission in the
dataset, as well as more variability in and between classes.

3.5 Results

Due to the inherent stochasticity of training deep learning models, each run can produce
slightly di�erent results. We therefore train each model five times. The training data is also
shu�ed for each run to ensure there is no correlation between subsequent samples. There
are several classification metrics that can help evaluate the performance of a classifier. In
imbalanced class problems, the classification accuracy alone has several weaknesses in distin-
guishing between the performance of models (Hossin & M.N, 2015). The precision, recall and
F1 scores are more informative measures of performance compared to using the classification
accuracy. Precision refers to the fraction of true positives returned among all returned posi-
tive instances, recall is the fraction of true positives that are identified correctly, which also
gives an indication of the sensitivity of the classifier. The F1 score is the harmonic mean of
precision and recall, and can be interpreted as the average of the precision and recall values.
The accuracy is the total proportion of correct predictions. Precision, recall, F1 score and
accuracy are defined in Eqs. (3.6)-(3.9).
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Precision = TP
TP + FP (3.6)

Recall = TP
TP + FN (3.7)

F1_score = 2 ◊ Precision ◊ Recall
Precision + Recall (3.8)

Accuracy = TP + TN

TP + FP + TN + FN

, (3.9)

where TP refers to the true positives, FP refers to the false positives and FN refers to false
negatives. A true positive is when the prediction matches the label. A false positive is
when the positive class is incorrectly predicted. A false negative is when the positive class is
predicted to be in another class.

We also calculate the 95% confidence interval using the mean and standard deviation of the
metrics to account for the variability in performance across the runs. We declare a model to
be statistically significantly better than another model if the mean of its metrics is higher than
the 95% confidence interval of the other models metrics. In order to ensure a fair comparison,
the same training and testing sets were used for the ConvNet and CapsNet architectures.

The same set of data is used for both validation and testing when running the models, with
the exception of the application of early stopping (results shown in Section 3.5.4). When
early stopping is used, the validation data is used to determine when to stop the training.
Otherwise, the use of the same dataset for validation and testing is of no consequence, as
the weights that are modified using the training set are applied to the validation/test set to
calculate the loss. No adjustment is made to the weights using the validation set. At the
conclusion of training, the final weights are applied to the validation/test set and the metrics
are calculated.

Section 3.5.1 of the results shows the classification metrics across the two deep learning
techniques when using the original data only, with 2301 (79%) samples for training, and 600
(21%) samples for both validation and testing. The fraction of samples in each class is given
in Table 3.1 for the test set. Section 3.5.2 makes use of augmented images in addition to the
original images and Section 3.5.3 explores the e�ects when the 4rms sigma-clipped data is
used.
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Table 3.3: ConvNet-4 architecture. A filter size of 5 is used in the convolutional layers.
Layer Output shape # Params
Input (None, 100, 100, 3) 0
conv2d (None, 100, 100, 16) 1216
conv2d (None, 100, 100, 16) 6416
maxpool2d (None, 50, 50, 16) -
dropout (None, 50, 50, 16) -
conv2d (None, 50, 50, 16) 6416
conv2d (None, 50, 50, 16) 6416
maxpool2d (None, 25, 25, 16) -
dropout (None, 25, 25, 16) -
flatten (None, 10000) -
dense (None, 500) 5000500
dropout (None, 500) -
dense (None, 3) 1503
Total 5,022,467

3.5.1 LOFAR original images

ConvNet-4 and ConvNet-8 models

We use the ConvNet-4 and ConvNet-8 models on the original 2901 images from LOFAR,
which have been classified into Unresolved, FRI and FRII sources. The results are shown in
Table 3.5 and Table 3.6. Each epoch consisting of 2301 training samples takes approximately
32 and 66 seconds to train for ConvNet-4 and ConvNet-8 respectively.

The models perform the best in recovering the images in the Unresolved class, which could
be due to the images being generally noisier and the sources smaller, compared to the other
images. The recovery of FRIIs is poorer however compared to the FRIs. This may be because
there are fewer examples of images in this class (460 FRIIs compared to 984 FRIs). Although
it can be argued that the morphological diversity is greater for the FRI class as they can be
straight, bent, or one-sided with a peak at one end, FRIIs contain lobes that may or may not
be connected, therefore the source can contain either one or two components. We have exper-
imented with using di�erent weights for the classes, giving proportionally greater weights for
the FRIIs such that wrong predictions are penalised more, however the performance remained
the same as before, across all classes. The recall (accuracy) tends to be higher compared to
precision for the FRIs, whereas it is lower compared to precision for the FRIIs. This is likely
due to it being easier to recover sources containing emission that is more concentrated in one
place (in the case of the FRIs), compared to emission that is further apart.

Examples of detected features in the ConvNet-4 model at the output of the second and fourth
convolutional layers, after max pooling are shown in Figure 3.5. The training and validation
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Table 3.4: ConvNet-8 architecture. A filter size of 3 is used in the convolutional layers.
Layer Output shape # Params
Input (None, 100, 100, 3) 0
conv2d (None, 100, 100, 32) 896
conv2d (None, 100, 100, 32) 9248
maxpool2d (None, 50, 50, 32) -
dropout (None, 50, 50, 32) -
conv2d (None, 50, 50, 64) 18496
conv2d (None, 50, 50, 64) 36928
maxpool2d (None, 25, 25, 64) -
dropout (None, 25, 25, 64) -
conv2d (None, 25, 25, 128) 73856
conv2d (None, 25, 25, 128) 147584
maxpool2d (None, 13, 13, 128) -
dropout (None, 13, 13, 128) -
conv2d (None, 13, 13, 256) 295168
conv2d (None, 13, 13, 256) 590080
maxpool2d (None, 7, 7, 256) -
dropout (None, 7, 7, 256) -
flatten (None, 12544) -
dense (None, 500) 6272500
dropout (None, 500) -
dense (None, 3) 1503
Total 7,446,259
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Table 3.5: The average metrics (in percentages) across each of the classes in (1) the original LOFAR
dataset, (2) the original and augmented dataset, (3) the original 4rms clipped dataset,
and (4) the original and augmented 4rms clipped dataset for the ConvNet-4 model. Five
runs were done in total, using 600 samples in the test set.

Class Precision Recall F1 score Accuracy
(1)
Unres. 95.7 ± 0.9 96.7 ± 1.4 96.2 ± 0.9 95.9 ± 0.9
FRI 86.2 ± 2.4 86.8 ± 1.1 86.5 ± 1.0 89.9 ± 0.9
FRII 68.0 ± 1.1 63.5 ± 2.1 65.6 ± 1.0 90.9 ± 0.2
Avg. 88.5 ± 0.8 88.7 ± 0.8 88.6 ± 0.9 93.1 ± 0.8
(2)
Unres. 98.1 ± 0.4 98.2 ± 0.5 98.1 ± 0.4 98.0 ± 0.4
FRI 92.3 ± 0.9 93.3 ± 1.3 92.3 ± 0.2 94.2 ± 0.1
FRII 80.9 ± 2.0 75.2 ± 4.9 77.8 ± 1.9 94.2 ± 0.2
Avg. 93.3 ± 0.2 93.4 ± 0.2 93.3 ± 0.2 96.2 ± 0.2
(3)
Unres. 97.9 ± 0.3 98.1 ± 0.5 98.0 ± 0.2 97.9 ± 0.2
FRI 90.4 ± 0.7 90.0 ± 0.6 90.2 ± 0.4 92.8 ± 0.3
FRII 72.1 ± 0.6 72.2 ± 1.6 72.1 ± 0.8 92.5 ± 0.2
Avg. 91.8 ± 0.2 91.9 ± 0.3 91.8 ± 0.3 95.5 ± 0.2
(4)
Unres. 98.7 ± 0.6 99.7 ± 0.2 99.2 ± 0.2 99.2 ± 0.2
FRI 91.5 ± 0.9 94.9 ± 0.6 93.1 ± 0.4 94.9 ± 0.3
FRII 88.1 ± 1.3 75.5 ± 2.3 81.3 ± 1.4 95.3 ± 0.3
Avg. 94.9 ± 0.2 94.7 ± 0.3 94.7 ± 0.2 97.3 ± 0.1



3.5. RESULTS 116

Table 3.6: The average metrics (in percentages) across each of the classes in (1) the original LOFAR
dataset, (2) the original and augmented dataset, and (3) the original 4rms clipped dataset,
and (4) the original and augmented 4rms clipped dataset, for the ConvNet-8 model. Five
runs were done in total, using 600 samples in the test set.

Class Precision Recall F1 score Accuracy
(1)
Unres. 96.6 ± 1.1 98.8 ± 0.3 97.7 ± 0.5 97.5 ± 0.6
FRI 88.7 ± 1.0 90.4 ± 0.7 89.6 ± 0.5 92.2 ± 0.4
FRII 75.2 ± 4.1 64.5 ± 2.8 69.3 ± 1.1 92.3 ± 0.4
Avg. 90.9 ± 0.4 91.2 ± 0.4 90.9 ± 0.5 94.9 ± 0.4
(2)
Unres. 98.2 ± 0.7 98.4 ± 0.2 98.3 ± 0.3 98.2 ± 0.3
FRI 92.5 ± 0.6 94.0 ± 0.5 93.2 ± 0.4 95.0 ± 0.3
FRII 84.5 ± 1.9 80.0 ± 1.0 82.2 ± 1.1 95.3 ± 0.3
Avg. 94.3 ± 0.2 94.3 ± 0.2 94.3 ± 0.2 96.7 ± 0.1
(3)
Unres. 99.6 ± 0.3 98.8 ± 1.0 99.2 ± 0.5 99.1 ± 0.5
FRI 92.7 ± 1.0 93.4 ± 3.3 93.0 ± 2.1 95.2 ± 1.7
FRII 83.4 ± 9.3 83.4 ± 2.8 83.1 ± 5.8 95.2 ± 1.8
Avg. 95.0 ± 1.6 94.9 ± 1.8 94.9 ± 1.7 97.3 ± 1.0
(4)
Unres. 99.6 ± 0.1 99.1 ± 0.4 99.3 ± 0.2 99.3 ± 0.2
FRI 94.4 ± 0.4 95.2 ± 0.7 94.8 ± 0.4 96.2 ± 0.3
FRII 86.0 ± 1.0 85.8 ± 1.5 85.9 ± 0.6 96.2 ± 0.1
Avg. 96.0 ± 0.2 95.9 ± 0.2 95.9 ± 0.2 97.9 ± 0.2
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Figure 3.5: The ConvNet-4 architecture. The input to the network is a 100x100x3 image. Showing
an example input image with features detected at the second and fourth convolutional
layers, after pooling, at the end of training (50 epochs). We show 4 feature maps for each
of the two outputs.

losses for a single run with the ConvNet-4 architecture are shown in Figure 3.6.

The use of a more complex architecture (ConvNet-8 compared to ConvNet-4) appears to
improve the classification metrics (Avg. Recall = 91.2 compared to 88.7 respectively).

CapsNet model

Each epoch consisting of 2301 training samples takes approximately 3.4 minutes for the default
model, 14 seconds for the inc. filtersize model and 3.5 minutes for the inc. decoder model.
The faster time for the inc. filtersize model is due to the fact that the feature maps are moved
across the image by 4 pixels (stride of 4) in the first convolutional layer as opposed to using
a stride of 1, therefore the feature maps are able to scan through the image faster.

Examples of detected features at the PrimaryCaps layer, prior to the reshape and squashing
functions are shown in Figure 3.4 for the default model. Figure 3.7 shows the training and
validation loss curve for the default model. Table 3.7 shows that the default model attains
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Figure 3.6: The training and validation losses for a single run with the ConvNet-4 architecture using
the cross-entropy loss, with 2301 (79%) samples for training and 600 (21%) samples for
testing.

Table 3.7: The average metrics (in percentages) across each of the classes in the original LOFAR
dataset, for the default CapsNet model. Five runs were done in total, using 600 samples
in the test set.

Class Precision Recall F1 score Accuracy
(1)
Unres. 92.7 ± 1.4 95.7 ± 0.7 94.2 ± 1.0 93.4 ± 1.2
FRI 78.3 ± 3.1 87.7 ± 1.6 82.7 ± 1.1 86.3 ± 1.3
FRII 66.6 ± 5.1 35.0 ± 13.0 43.1 ± 12.7 88.2 ± 0.8
Avg. 84.0 ± 1.3 84.7 ± 1.5 83.2 ± 2.6 90.1 ± 1.2
(2)
Unres. 96.4 ± 0.6 96.4 ± 0.9 96.4 ± 0.2 96.1 ± 0.2
FRI 85.5 ± 1.4 90.2 ± 0.2 87.8 ± 0.7 90.7 ± 0.6
FRII 75.8 ± 1.8 64.2 ± 0.5 69.6 ± 1.4 92.3 ± 0.4
Avg. 89.7 ± 0.5 89.9 ± 0.5 89.7 ± 0.5 93.7 ± 0.3
(3)
Unres. 97.3 ± 0.5 98.1 ± 0.1 97.7 ± 0.3 97.5 ± 0.3
FRI 90.9 ± 0.7 88.4 ± 0.8 89.6 ± 0.6 92.5 ± 0.5
FRII 72.0 ± 2.6 75.2 ± 3.3 73.6 ± 2.8 92.7 ± 0.8
Avg. 91.6 ± 0.7 91.5 ± 0.7 91.5 ± 0.7 95.0 ± 0.4
(4)
Unres. 98.4 ± 0.1 98.3 ± 0.1 98.3 ± 0.0 98.3 ± 0.0
FRI 92.0 ± 0.6 91.3 ± 1.2 91.7 ± 0.5 93.9 ± 0.4
FRII 80.4 ± 2.4 82.3 ± 1.8 81.2 ± 1.1 94.9 ± 0.4
Avg. 93.7 ± 0.3 93.6 ± 0.4 93.6 ± 0.3 96.2 ± 0.2
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Table 3.8: The average metrics (in percentages) across each of the classes in the original LOFAR
dataset, for the inc. filtersize CapsNet model. Five runs were done in total, using 600
samples in the test set.

Class Precision Recall F1 score Accuracy
Orig.
Unres. 89.6 ± 0.7 94.2 ± 0.3 91.8 ± 0.5 90.8 ± 0.5
FRI 80.4 ± 2.5 79.6 ± 2.9 79.9 ± 0.1 85.0 ± 0.5
FRII 63.2 ± 6.4 50.5 ± 10.8 54.2 ± 6.7 88.4 ± 0.2
Avg. 82.7 ± 0.5 83.0 ± 0.5 82.5 ± 1.1 88.4 ± 0.4

Table 3.9: The average metrics (in percentages) across each of the classes in the original LOFAR
dataset, for the inc. decoder CapsNet model. Five runs were done in total, using 600
samples in the test set.

Class Precision Recall F1 score Accuracy
Orig.
Unres. 90.6 ± 2.7 95.0 ± 0.8 92.7 ± 1.8 91.6 ± 2.2
FRI 75.1 ± 2.5 87.8 ± 1.9 80.9 ± 2.2 84.5 ± 1.9
FRII 65.8 ± 2.9 22.7 ± 9.0 32.3 ± 10.7 87.4 ± 0.8
Avg. 81.6 ± 2.0 82.7 ± 2.1 80.3 ± 3.0 88.5 ± 1.9

higher overall metrics compared to the other two CapsNet models (although this is not always
significant).

The inc. filtersize model, that was designed with larger filters to capture more extended
emission, for the most part performs as well as the default model and the metrics for the
FRIIs are improved. However, they tend to be lower for the Unresolved and FRI classes,
which make up the majority of samples. The results are shown in Table 3.8.

The inc. decoder model, which uses a more complex decoder, performs as well as the default
model in the metrics for the Unresolved and FRI classes. However, it performs worse overall
for the FRIIs, as shown in Table 3.9. This may be due to the more complex decoder confusing
radio emission from the FRIIs with noise.

As the default CapsNet model performs better overall compared to the other two CapsNet
models, it is chosen as the basis of comparison against the two ConvNet models across the
original fits and masked 4rms sigma-clipped datasets.

The default CapsNet model still performs significantly worse compared to the two ConvNets,
as it is beyond both their 95% confidence intervals, across all metrics. The variability in
metrics is higher for the original dataset compared to that of the two ConvNets, as is evident
in the generally increased confidence intervals of the CapsNet model, in Table 3.7, particularly
for the FRIIs.
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Figure 3.7: The training and validation losses for a single run with the default capsule network
architecture, using the margin loss as defined in Equation 3.5, with 2301 (79%) samples
for training and 600 (21%) samples for testing. The total loss is obtained by adding the
capsule network loss to the decoder weight multiplied by the decoder loss.

Figure 3.8: ROC curves for both a single run with the default CapsNet model and the ConvNet-4
model. The curves show that ConvNet-4 outperforms the default CapsNet across all the
classes.
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Figure 3.9: The real and reconstructed images using the default capsule network setup when training
on the original and augmented images, annotated with the corresponding labels. The
top row shows the real images, the second row shows the corresponding reconstructions.
The third row shows the real images and the final row shows the reconstructions. The
decoder always detects that there is an object in the centre of the image, however it is
unable to reconstruct the object accurately. Based on the reconstruction, we see that
CapsNet is determining class membership based on the characteristics of the sphere in
the centre.
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Table 3.10: The labels and corresponding probability vector of the default CapsNet network predic-
tions, using four examples of sources shown in Figure 3.10, having probabilities greater
than 50% across two classes.

Source Label CapsNet prediction
1 FRI 41% Unres., 50% FRI, 51% FRII
2 Unres. 51% Unres., 36% FRI, 62% FRII
3 FRII 34% Unres., 59% FRI, 57% FRII
4 FRII 16% Unres., 72% FRI, 70% FRII

Figure 3.8 shows the Receiver Operating Characteristic (ROC) curves across the default
capsule network and ConvNet-4. ROC curves plot the true positive rate (recall) against the
false positive rate.

In a first attempt to use the default CapsNet model (containing 58M free parameters), we
observed a clear overfitting, owing to the large number of free parameters compared to the
number of training images. Despite this, the model still achieved very similar results to the
models using many fewer parameters quoted in the current work.

Figure 3.10 shows four examples of radio galaxies in which the probabilites are greater than
50% across 2 classes, that the CapsNet could therefore not reliably classify. There are a total
of 55 out of 600 (9.2%) such cases. Table 3.10 shows the CapsNet probability vector across
the four examples. In Source 1, CapsNet gives similar probabilities between the FRI and
FRII classes, which could be because the source is quite faint, therefore it is having trouble
extracting the morphology. Source 2 is predicted more confidently as an FRII compared to
an Unresolved source, perhaps because it appears as though it has two lobes close together.
Sources 3 and 4 are labeled as an FRII, however the CapsNet predicts them more confidently
as an FRI compared to an FRII, as it may not detect the lobes.

3.5.2 LOFAR original and augmented images

We augmented the images with translation, rotation and flipping as outlined in Section 3.3.2,
keeping the distribution of FRI and FRII sources the same as in the original dataset. Table 3.1
gives the number of original and augmented images. There are again 79% and 21% of the
original samples used in training and testing respectively.

ConvNet-4 and ConvNet-8

We applied both ConvNet-4 and ConvNet-8 models to the original and augmented dataset,
with the results shown in Table 3.5 and Table 3.6. The overall metrics are significantly better
(Avg. Recall = 93.4 and 94.3) than was observed when the same model was used on the
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Figure 3.10: Examples of radio galaxies having probabilities greater than 0.5 in more than two
classes in the default CapsNet architecture, that are also incorrectly predicted. The
labels and predictions from left to right, top to bottom are [FRI,Unres.,FRII,FRII] and
[FRII,FRII,FRI,FRI] respectively. These sources are labeled as (1,2,3,4) in Table 3.10.
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Table 3.11: Confusion matrix for a single run with the ConvNet-4 architecture, after training on the
original and augmented images. The predictions are along the columns and the labels
are along the rows.

Unres. FRI FRII Total
Unres. 294 6 1 301
FRI 3 202 14 219
FRII 5 12 63 80
Total 302 220 78 600

original images (Avg. Recall = 88.7 and 91.2 for ConvNet-4 and ConvNet-8 respectively),
therefore both models benefit from data augmentation. The confidence intervals are also
usually reduced.

Although the classification metrics remain the poorest for the FRII class, they improved the
most when using the augmented data, despite the fact that there were more examples of
FRIs.

A confusion matrix is provided in Table 3.11 for the ConvNet-4 model, to see the numbers of
samples that are both correctly and incorrectly predicted.

CapsNet

The best-performing capsule network (the default model) was used to see whether an im-
provement in overall metrics could be obtained when using augmented images in addition to
the original images. The results are shown in Table 3.7. The confusion matrix for a single run
with the default CapsNet architecture, after training on the original and augmented images,
is given in Table 3.12.

The classification metrics are significantly improved when using the augmented images (Avg.
Recall = 89.3 with augmentation, compared to Avg. Recall = 84.2 ± 0.2 without), therefore
the capsule network also benefits from training on additional images. Despite the fact that
capsule networks output a vector describing the properties of images across the classes and
aim to extract the underlying patterns, they still benefit from the use of additional augmented
images, for the fits file dataset. The noise in the images could be preventing the network
from seeing the underlying morphology in the signal, and there is an insu�cient number of
images available across the classes, hence improved results are observed when more examples
are provided. Despite CapsNet benefiting from augmentation, the classification metrics are
still significantly lower compared to when augmentation is applied to the two ConvNets.

Figure 3.9 shows the real and reconstructed images for a single run of the default CapsNet
model when training on the original and augmented images. The labels match the predictions
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Table 3.12: Confusion matrix for a single run with the default CapsNet architecture, after training
on the original and augmented images. The predictions are along the columns and the
labels are along the rows.

Unres. FRI FRII Total
Unres. 289 12 0 301
FRI 4 198 17 219
FRII 6 24 50 80
Total 299 234 67 600

with the exception of the third and fourth images in the top two rows, where the true labels are
FRIIs but the predictions are FRIs. The reconstructions of the images are innaccurate, giving
the appearance that CapsNet is determining class membership based on the blurriness of the
reconstructed spheres. The images in the ‘Unresolved’ class are represented as concentrated
spheres, FRIs are less concentrated, blurrier spheres, and FRIIs are the most di�use. The
inaccuracy of the reconstructions is most likely due to the fact that CapsNet appears to have
trouble distinguishing signal from noise. Despite this, the average metrics are still above 89%
when training on the original and augmented images, as it does not appear to be necessary
to have accurate reconstructions to determine class membership. Overall, the FRII source
predictions appear to be the most a�ected by the noise level and/or potential unassociated
emission in the images; since the reconstructions tend to be blurrier spheres with only one
component, they become confused with FRIs and FRIIs, as FRIIs can have either both lobes
being connected, as well as disconnected.

Similar to what was observed in the ConvNet architectures, the metrics across the FRII class
are the poorest. However, after training with the original and augmented images, the FRII
metrics improved the most. The FRII class has the fewest examples of images compared to
the other two classes.

Despite the use of image augmentation, it is likely that the number of original training samples
available is insu�cient to train a capsule network.

3.5.3 Sigma-clipped images

In order to test whether the CapsNet performance could be improved by removing noise and
the occasionally unassociated emission, we used the sigma clipped images that mask out pixels
below 4rms. A flood-filling algorithm and masking techniques have additionally been applied
to the dataset to identify and connect associated emission (Mingo et al. in prep). We analyse
the results obtained from using the original sigma-clipped images, as well as both the original
and augmented images.

The performance of both ConvNets is significantly improved as shown in Tables 3.5 and 3.6
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(Avg. Recall = 91.9% compared to 88.7% for ConvNet-4, 94.9% compared to 91.2% for
ConvNet-8) when using the original sigma clipped images, compared to using the original
fits files that includes noise and potential unassociated sources. The use of the original
sigma clipped images is significantly worse compared to using the original and augmented
fits images for the ConvNet-4 model (Avg. Recall = 91.9% compared to 93.4%), and is
not significantly better for the ConvNet-8 model. The inclusion of augmented images on
the sigma-clipped dataset appears to benefit the ConvNet-4 model more compared to the
ConvNet-8 model.

The performance of CapsNet is significantly improved as shown in Table 3.7 when using
the sigma-clipped original images (Avg. Recall = 91.5% compared to 84.7% with the original
fits images, and compared to 89.9% with the original and augmented fits images). However,
CapsNet still performs worse compared to both ConvNet-4 and ConvNet-8. The use of image
augmentation on the sigma-clipped images appears to improve the performance (Avg. Recall
= 93.6% compared to 91.5%) The confidence intervals are also generally smaller compared to
when the fits images are used, therefore the performance is slightly more stable.

The use of the sigma clipped and masked arrays is also significantly better than using the
fits images, when comparing the performance within the original, and the original and
augmented datasets, across both ConvNet models and CapsNet models. Therefore, none of
the deep learning models can be trained to be completely robust to noise and potentially
unassociated emission.

In considering the results of one particular run with the ConvNet-8 model, out of 600 test
samples, there are 20 where the predictions do not match the labels. Figure 3.11 shows four
such examples of images from the 4rms sigma-clipped dataset. Upon inspection of all the
incorrectly predicted radio galaxies using the ConvNet-8 model, all 12 images that have been
labelled as an FRII are predicted to be an FRI. Out of 3 images labeled as ‘Unresolved’,
two are predicted to be an FRI and one is predicted to be an FRII. The remaining 5 images
labelled as FRI are predicted to be FRIIs. The wrongly classified galaxies mostly appear to
have an ambiguous morphology and therefore it could be argued that they are mis-classified
by the automated algorithm used to label them (see Section 3.2.2 and Mingo et al. (in
prep.)). For example, the top right and bottom left panels in Figure 3.11 do not appear to be
a representative examples of an FRII, and the bottom right panel appears more as an FRII,
whereas it is labeled as an FRI.

We note that the larger the proportion of sources that are mis-classified by the automated
algorithm, the more di�cult it will be for the models to learn.
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Figure 3.11: Examples of incorrectly classified radio galaxies from the 4rms sigma-clipped dataset
using the ConvNet-8 layer architecture. The labels and predictions from left to right,
top to bottom are [Unres.,FRII,FRII,FRI] and [FRI,FRI,FRI,FRII] respectively. The
top left image appears to have too few pixels to be reliably classified, thus belonging to
the ‘unresolved’ class, however the remaining three may have been misclassified by the
automated algorithm.
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Table 3.13: The average metrics (in percentages) across each of the classes in the (2) original and
augmented LOFAR dataset using a 5 convolutional layer model with no intermediate
dense layers. Five runs were done in total, using 600 samples in the test set.

Class Precision Recall F1 score Accuracy
(2)
Unres. 97.7 ± 0.6 96.9 ± 0.9 97.3 ± 0.3 97.2 ± 0.3
FRI 88.4 ± 1.7 92.8 ± 1.9 90.5 ± 0.1 92.8 ± 0.1
FRII 77.8 ± 2.9 69.0 ± 2.5 73.0 ± 1.3 93.1 ± 0.4
Avg. 91.6 ± 0.2 91.7 ± 0.1 91.6 ± 0.1 95.0 ± 0.1

3.5.4 Additional results

This section summarises other convolutional and capsule network architectures as well as
parameters, that were tried. These include transfer learning, the application of early stopping
and comparison of results with similar work.

ConvNet models

We also wanted to test the performance of a simple purely convolutional architecture using
5 layers (with no intermediate dense layer following the convolutions). The purpose of these
dense layers is to help model complex global patterns in the data. The metrics were signifi-
cantly lower compared to those of both ConvNet models, as shown in Table 3.13. Therefore,
at least one intermediate dense layer could be necessary for optimal performance in convolu-
tional networks. We also tested an architecture using 4 convolutional with no pooling layers,
and found the results to be inferior compared to using the ConvNet-4 model. Therefore, the
use of pooling is appears to be advantageous in the current dataset, perhaps because it allows
more degrees of freedom for the morphology within classes.

CapsNet models

Other variations on capsule network models included stacking two convolutional layers instead
of one, using 90% training data and 10% testing data, using an ensemble of capsule network
models, increasing the number of routing iterations, decreasing the filter size, changing the
batch size, adjusting the learning rate, using di�erent activation functions, applying dropout,
pooling and using a combination of increased filter sizes together with a more complex decoder,
all which resulted in similar or worsened performance metrics. The only possible improvement
could be the use of a larger sample of original training images.
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Transfer learning

Transfer learning (Pratt et al., 1991) involves applying the knowledge from one trained neural
network to help another learn a related task. In the deep learning context, weights are
typically pre-loaded from a network trained on a large dataset with many classes to another
unseen dataset.

We used the Inception ResNet model v2 (Szegedy et al., 2016), which combines Inception
and Residual network architectures. An inception network consists of a convolutional net-
work using filters of various sizes and pooling within the same layer, and a residual network
utilises skip connections between convolutional layers if the classification accuracy becomes
saturated with the subsequent stacking of layers. The Inception ResNet model is trained on
the ImageNet dataset (Deng et al., 2009), to classify over 14M images into 1000 categories.
Although the nature of the ImageNet dataset is di�erent to the radio galaxy images, pre-
loading weights from a network trained with such a dataset is better than initialising the
weights from a random distribution.

To use the pre-trained ResNet model in Keras requires images of size of at least 139x139
pixels. As such we padded our images with zeros for 20 pixels along the horizontal and
vertical directions, resulting in images of 140x140 pixels.

The pre-trained ResNet model is applied to the LOFAR original and augmented fits images,
to verify whether the classification metrics could be improved from those of our other models.
The results in Table 3.14 show that the classification metrics are not significantly better
(Avg. Recall = 94.5%) compared to when training on the same set of images from randomly
initialised weights with the ConvNet-8 architecture (Avg. Recall = 94.3%). The metrics are
significantly better than for the ConvNet-4 architecture (Avg. Recall = 93.4%). Optimal
results are still obtained when using the sigma clipped dataset, where noise and potentially
unassociated sources are removed.

We note that the results obtained with transfer learning may be improved if there is a neural
network trained on a similar astronomical classification task from which pre-trained weights
can be loaded. A successful implementation of transfer learning in classifying optical galaxy
morphology is in Domínguez Sánchez et al. (2019), and most recently in radio galaxy mor-
phology classification (Tang et al., 2019).

The pre-trained network converges faster; ConvNet-4 required 40 epochs of training to reach
the optimal validation accuracy as opposed to 30 epochs for the transfer learning model, when
averaged over five runs.
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Table 3.14: The average metrics (in percentages) across each of the classes in the (2) original and
augmented LOFAR dataset, for the transfer learning model. Five runs were done in
total, using 600 samples in the test set.

Class Precision Recall F1 score Accuracy
(2)
Unres. 98.7 ± 0.2 98.3 ± 0.4 98.5 ± 0.2 98.4 ± 0.2
FRI 91.8 ± 0.5 95.0 ± 0.4 93.4 ± 0.2 95.0 ± 0.2
FRII 85.4 ± 1.2 78.7 ± 2.7 81.9 ± 1.2 95.3 ± 0.2
Avg. 94.4 ± 0.2 94.5 ± 0.2 94.4 ± 0.2 96.8 ± 0.1

Early stopping

We also experimented with applying early stopping in the training of both the Capsnet
and ConvNet models. The implementation was such that if the validation accuracy did not
improve for 10 subsequent epochs, training was stopped and the metrics on the test set were
calculated. However, we found the performance to be the same for the ConvNet model, and
worse for the CapsNet model, compared to when training for a pre-defined number of 50
epochs (results not shown). In a work focused on the usage of early stopping, Montavon
et al. (2012) used a mix of more than 1000 training runs across 12 di�erent problems and
24 di�erent architectures and concluded that slower stopping criteria allow for ¥ 4% average
improvement in generalisation, at a cost of around a factor of four longer in training time.

Recent similar work

Recently, Katebi et al. (2019) applied a capsule network to classify optical galaxies based
on morphology, using the classes of spiral, elliptical and star/artefact. They find that their
capsule network classification accuracy surpasses that of their baseline convolutional network
(98.77% versus 96.96% respectively). The capsule network architecture has over 124M param-
eters, for a total of 61,578 images. In contrast, our best-performing capsule network uses just
over 4M parameters with up to 15,936 images using the original and augmented dataset.

We note that the di�erence in morphology between their classes is starker than in our case.
Additionally, the optical images show a much better contrast between object and background,
where noise is less prominent. The optical galaxy classifications were crowd-sourced, whereas
our labels originated from an automated algorithm which comes with some limitations, as
outlined in Section 3.2.2. The radio emission also produces sparser images compared to the
optical galaxy images.

It is di�cult to compare their work to ours as the number of images in each of their 3
classes is unknown. Hence, it is uncertain whether the classification accuracy is the best
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discriminator to use between the models (Hossin & M.N, 2015). Other classification metrics
are not provided, such as precision and recall, which may be more powerful in discriminating
models. There is also no indication of variability between runs, as well as the degree of
overfitting in the networks during training.

3.6 Conclusions

This paper explored two deep learning approaches in the classification of radio data from
the LoTSS HETDEX field across three classes of radio galaxies: Unresolved sources, FRI
and FRII galaxies. The labels were generated using an automated algorithm, which used a
catalogue of sources from the LoTSS DR1 source catalogue with optical IDs and associations
(Williams, W. L. et al., 2019). The radio galaxies belonging to the FRI and FRII classes
were additionally cross-checked to eliminate galaxies in which the radio emission is likely to
be dominated by star formation (Hardcastle et al., 2019). Despite the classifications being
generated using masked images that remove potentially unassociated sources and emission
below 4rms from the images, one of our aims was to test how robust our deep learning
algorithms could be when such e�ects were present.

We tested the performance of a four and eight layer convolutional neural network (ConvNet-4
and ConvNet-8) against various architectures of capsule networks (CapsNet), using the pre-
cision, recall, F1 score and accuracy, to evaluate the performance of the models. Python code
implementing v1.0 of the algorithms can be obtained from github8. Automated classifications
of LoTSS sources obtained with the algorithms will be presented in a future paper (Mingo et
al., in preparation).

The first CapsNet model explored was the default model, a simplified architecture of the
original model designed for the MNIST dataset, the second used larger filter sizes in the first
convolutional layer and Primary capsule layer, and a larger stride in the convolutional layer.
The third model used a more complex decoder and a higher loss for the decoder weight.
The second and third models were designed to better account for the increased complexity of
the data. Four di�erent sets of data were used to train and test the two ConvNets and the
variations on CapsNet architectures: (i) using the original fits images only, (ii) original and
augmented fits images, (iii) the original masked arrays that remove emission below 4rms and
potential unassociated sources and (iv) original and augmented masked 4rms arrays.

We found that the optimal CapsNet performance was obtained when using the default model,
in terms of the overall classification metrics.

The results showed that the ConvNet architectures always exceeded the performance of the
8
https://github.com/vlukic973/RadioGalaxy_Conv_Caps
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chosen CapsNet model, and ConvNet-8 always performed better compared to ConvNet-4,
most likely because the ConvNet-8 model has twice the number of convolutional layers and
parameters as ConvNet-4, therefore it is able to extract higher-dimensional features that are
particular to each class.

The use of transfer learning on the original and augmented images achieved the same results
as ConvNet-8. The performance of all deep learning models was optimised when using the
4rms sigma clipped numpy array, which is expected as the noise and potential unassociated
emission is removed. Some observations of di�erences in results between using ConvNet and
CapsNet architectures and the likely reasons are as follows:

• As CapsNet tends to capture and preserve the relative location of features in the images,
it is not as successful in distinguishing signal from noise, or dealing with the presence
of potentially unassociated emission, as the ConvNet architectures

• The use of pooling in the ConvNet architectures generally appears to be advantageous
in two respects: (i) increased likelihood that noise and potential unassociated sources
will be filtered out, (ii) allowing more degrees of freedom for variability in morphology
within the classes, when the undesirable e�ects have been removed through use of the
4rms dataset

• The removal of noise and potentially unassociated emission through the use of sigma-
clipped and masked arrays improves the performance of both deep learning approaches,
when considering the metrics within the original, and original and augmented datasets

• The use of image augmentation appears to benefit both ConvNets and CapsNet, when
using the fits files, which contain the original radio emission.

The LoTSS survey is the first wide-area survey to contain such faint sources. It is sensitive
to a larger range of source evolutionary states, and can also see structure on a wider range of
spatial scales due to the combination of well-sampled UV coverage and long baselines. These
features result in images having richer, more varied and sometimes ambiguous morphologies
that are more di�cult to categorise into distinct classes.

Across both deep learning algorithms, the ‘Unresolved’ class is recovered most successfully,
followed by the FRI class. The FRIIs tend to be the least well recovered. Although FRIs
display morphological diversity as they can be straight or bent, FRIIs have two peaks of
varying distances that may or may not be connected by extended emission with the host
galaxy. Therefore, FRIs are more likely to contain a single connected component whereas
FRII can contain either a single or two connected components. There are also fewer examples
of FRIIs in the dataset compared to FRIs. When we inspected some incorrectly predicted
galaxies using the sigma-clipped dataset, we found the morphologies to be ambiguous in most
cases, as shown in Figure 3.11.
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Traditional convolutional neural networks generally contain pooling layers in their architecture
in order to reduce the number of parameters. However, this can cause the relative locations
of features within the image to degrade, which capsule networks are designed to preserve.
Our results indicate that for the radio galaxy data in the current work, the performance of
capsule networks is inferior to that of convolutional neural networks. This could be due to the
number of original samples being insu�cient to train the capsule network. Another reason
may be that since they attempt to preserve the relative location of features, capsule networks
appear to interpret noise as signal and introduce extra distortion into the image, as shown in
Figure 3.4. This aspect has proven to be most detrimental in the recovery of FRII sources,
as they are more susceptible to the mingling of signal with noise due to the fact that they are
comprised of either one or two components. Additionally, the FRII class contains the fewest
examples of images.

In comparison with previous works that use convolutional neural networks to classify radio
galaxy morphologies (Aniyan & Thorat (2017), Lukic et al. (2018), Wu et al. (2018) and
Alhassan et al. (2018)), the current work explored the use of capsule networks, which are
designed to preserve the hierarchical feature information in an image, and finds their per-
formance to be inferior to that of standard convolutional network architectures. The data
from the LOFAR LoTSS survey reveals fainter and more detailed emission compared to the
data from the surveys which the previous works analysed, providing additional challenges for
classification. As such, our findings hold for surveys having a comparable setup, provided
they produce images with similar morphologies and noise profiles.

Based on the current results obtained, it appears that convolutional neural networks still hold
as the deep learning technique that should be used for future surveys. They are also faster
to train as they use fewer parameters. Capsule networks, in their present form, are generally
slower and require further development to be made more robust to noisy real data, however
the current performance may be improved by explicitly training them on cleaned data with
various examples of morphologies present within each class.

There are several limitations that would need to be overcome to apply these methods to large
samples, such as the need for ancillary data to separate star-forming galaxies. The exclusion
cannot be performed based purely on the radio galaxy morphology. The classes should also
be extended to encompass the hybrid sources, as well as other rare sources such as bent-tailed
and double-double sources.
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4 Source-finding with convolutional
autoencoders

The following chapter presents work as it is submitted by Lukic et al. (2019) to Galaxies.

4.1 Introduction

An ongoing task in astronomy is the ability to find astronomical sources. This is of importance
because it forms the basis by which a radio astronomical catalogue can be built. Modern radio
telescopes can observe many millions of radio sources and this number will only increase in
time owing to rapidly developing technologies (Norris, 2017a). It is therefore important that
the methods developed to find sources can keep up with the capabilities of the technology,
with respect to the quality of sources that are detected by the telescope.

In this section, we give a brief summary of the main factors a�ecting the ability to find sources
in radio data, the di�erent types of radio sources (star-forming galaxy or type of AGN), how
a machine learning approach can work, details about the simulated Square Kilometre Array
(SKA; Prandoni & Seymour, 2015) data used, as well as a brief review of the previous work
in this area.

4.1.1 Source-finding at radio frequencies

Radio telescopes measure the surface brightness of the radio sky across some frequency or
range of frequencies and produce a map of the surface brightness. What constitutes a source
is a collection of pixels above some value, which is determined by estimating the background,
or noise. The noise is usually composed of a combination of instrumental noise, observed
background emission and leftover system uncertainties (Savage & Oliver, 2007).

The first step involved in source-finding is usually pre-processing the image containing the
radio sources. This involves some transformations to the image, such as scaling the pixel
intensities, to facilitate the source-finding method by suppressing undesired distortions or
enhancing features (MiljkoviÊ, 2009), while preserving the physics of radio sources in the
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image. The second step is to estimate the background, after which a threshold can be chosen,
that defines where the sources are. Contiguous pixels above a certain threshold are considered
to form part of an object (Hopkins et al., 2002), after which a local peak search is performed
where maximum-value pixels are isolated.

In the presence of low SNR, which occurs when there is a relatively high background compared
to surface brightness (signal) from the source, it can be di�cult to group the pixels belonging
to a particular source. Additionally, the sizes and intensities of the astronomical bodies can
vary significantly (Zheng et al., 2015). As the SNR is increased, finding and extracting the
sources becomes easier as the pixels belonging to the source show a greater contrast compared
to the background. However, it is more frequently the case that shorter integration times are
used, which results in noisier data and it is not always easy to capture the background signal,
which may also vary across regions in the image. Another problem to consider is that of
source confusion, which is the inability to measure faint sources due to the presence of other
sources nearby. Also, at radio frequencies, the noise tends to be more correlated compared
to other frequencies (Radhakrishnan, 1999; Ellingson, 2011; Hale et al., 2019), posing further
challenges for source-finding and extraction.

Many algorithms have been developed to perform source-finding across di�erent wavelengths
such as optical, radio, infrared or x-ray, some of which use a combination of techniques. Masias
et al. (2012) presents the largest overview of the most common techniques, although there
have been more recent developments. For example, a source extractor originally developed
for source-finding in optical images (ProFound; Robotham et al. (2018)) can also successfully
be used at radio wavelengths (Hale et al., 2019).

One state-of the art source-finding algorithm is the Python Blob Detector and Source-Finder1

(PyBDSF;Mohan & Ra�erty (2015b)), which works as follows: After reading in the image, it
performs some pre-processing, for example computing the image statistics. Using a constant
threshold for separating the source and noise pixels, the local background rms and mean
images are computed. Adjacent islands of source emission are identified, after which each
island is fit with multiple Gaussians, or Cartesian shapelets. The fitted Gaussians or shapelets
are flagged to indicate whether they are acceptable or not. The residual fits images are
computed for both Gaussians and shapelets. Gaussians within a given island are then grouped
into discrete sources.

There have been a couple of recent works on using deep learning methods to perform source-
finding. ClaRAN (Wu et al., 2018) trained a source-finder on Radio Galaxy Zoo data (Banfield
et al., 2015) to learn two separate tasks; localisation and recognition, after which the source
is classified according to the number of peaks and components, with accuracies >90%. More
recently, DeepSource (Vafaei et al., 2019) presents a deep-learning algorithm to find point

1
https://www.astron.nl/citt/pybdsf/



CHAPTER 4. SOURCE-FINDING WITH CONVOLUTIONAL AUTOENCODERS 137

sources in simulated images and compares the results against PyBDSF, using di�erent signal-
to-noise ratios. In contrast, the current work examines the recovery of SFGs and two classes
of AGN as well as all sources combined, at di�erent SNRs using a convolutional autoencoder
(AutoSource) and compares the results against PyBDSF, and shows in which circumstances
one performs better than the other and the likely reasons why. DeepSource requires the
tuning of more hyperparameters, which are variables that need to be defined prior to applying
a machine learning algorithm. Autosource requires only the usual deep learning parameters
such as number and type of layers, batch size, cost function and gradient-descent method.

4.1.2 Types of radio sources

Galaxies exhibiting significant radio emission usually fall into one of two groups; star-forming
galaxies (SFGs) or Active Galactic Nuclei (AGN). Radio-loud AGN can be grouped based
on their appearance; they can be either ‘compact’ or ‘extended’. The two most influential
factors that govern whether a source will appear point-like, elongated or very resolved are the
distance of the source and the resolution. Di�erent radio source types can be characterised
by a di�erent spectral index –, which is related to the frequency ‹ and flux density S through
S(‹) Ã ‹

–. The slope of the spectrum is determined by the electron energy distribution.
Extended radio sources generally have a steep radio spectrum (typical values are – . ≠0.8
(de Gasperin et al., 2018)) and can be referred to as steep-spectrum AGN (AGN-SS), where
the majority of sources can be divided into two distinct classes depending on the morphology
of the radio lobes; FRI (core-dominated) and FRII (lobe-dominated) (Fanaro� & Riley, 1974).
Compact radio sources tend to exhibit a flat radio spectrum (typical values are – Æ ≠0.5)
and denoted as flat-spectrum AGN (AGN-FS) (Peterson, 1997). It should also be noted that
some steep-spectrum sources can be compact.

Since the relative strength of the emission from radio sources depends on frequency, di�erent
components of a radio source can have di�erent spectral shapes.

4.1.3 Deep learning

Deep learning methods have been successful in extracting information from high-dimensional
data such as images (Krizhevsky et al., 2012; Farabet et al., 2013; Zeiler & Fergus, 2013). The
use of filters in convolutional layers, which serve to scan across the images and detect features,
typically have sizes of a few pixels across and therefore greatly reduce the number of param-
eters compared to the fully connected layers in traditional neural networks. The stacking of
convolutional layers results in a hierarchical extraction of features. Convolutional networks
are more successful in avoiding the vanishing gradient problem compared to fully connected
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neural networks while simultaneously enforcing translational invariance (Goodfellow et al.,
2016).

The current work explores a novel approach to source-finding by training an autoencoder on a
solution map derived from knowledge of the source locations. Autoencoders are generally an
unsupervised learning technique (Liou et al., 2008), and are made up of an encoder, that aims
to compress the input into a lower dimensional representation, and a decoder, whose original
function is to reconstruct the original image from the compressed representation (Rumelhart
et al., 1986). For our purpose of source-finding, the output images we aim to produce are
those of the locations of the sources, rather than the original input source maps. Given that
the source locations can be transformed into image data, the source location map, along with
the original source map, can be segmented into smaller square images (having size 50x50
pixels in the current work), which are then used as the inputs to train the autoencoder to
predict the source locations.

We note that we only focus on the source-finding aspect in this work, rather than the source
characterisation and classification.

4.1.4 Simulated SKA data

The SKA aims to be the largest radio telescope built to date. It will eventually have a
collecting area of more than one square kilometre and operate over a wide range of frequencies
(50 MHz - 14 GHz in the first two phases of construction) and will be 50 times more sensitive
than any other radio instrument to date. In the meantime it is possible to use simulated data
products to generate data similar to what would be expected to be observed by the SKA.
The SKA Data Challenge 12 (SKA SDC1; (Bonaldi & Braun, 2018)) was a recent challenge
set for the community to develop or use existing source-finders to perform source-finding,
characterisation of the sources and source population identification (either SFG, AGN-steep
or AGN-flat).

Catalogues of objects to be included in the simulated maps were generated using the Tiered
Radio Extragalactic Continuum Simulation (T-RECS) simulation code (Bonaldi et al., 2018).
The radio sky was modelled in continuum, over the 150 MHz-20 GHz range, with two main
populations of radio galaxies: Active Galactic Nuclei (AGN) and Star-Forming Galaxies
(SFGs) and their corresponding sub-populations. The wide-ranging frequency has been en-
abled by allowing specific conditions for the spectral modeling. Across the AGN, the sources
are allowed to have a di�erent spectral index below and above ≥ 5GHz, constrained by the
modelled counts from Massardi et al. (2010) for the lower frequency range and de Zotti et al.
(2005) for the higher frequency range. In the SFG population, the spectral modelling in-

2
https://astronomers.skatelescope.org/ska-science-data-challenge-1/
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cludes synchrotron, free-free and thermal dust emission, all expressed as a function of the
star-forming rate. The redshift range of the simulation is z = 0 ≠ 8. The T-RECS simulation
output used for SDC1 contains all the sources in a 3x3 Field of View (FoV) with integrated
flux density at 1.4 GHz > 100 nJy (Bonaldi et al., 2018).

The data used in the current work is based on the simulated data products generated for
SDC1. There are three available frequencies (B1: 560MHz, B2: 1400MHz and B5: 9200MHz)
at 3 integration times (8 h, 100 h and 1000 h) for each frequency. There are 9 maps altogether
in the form of fits files. The size of the maps is 32768 ◊ 32768 pixels. The FoV was chosen
for each frequency to contain the primary beam for a single telescope pointing out to the first
null, giving a map size of 5.5, 2.2 and 0.33 degrees on a side for B1, B2 and B5 respectively,
with corresponding pixel sizes of 0.60, 0.24, and 0.037 arcsec. Properties of sources in a
training set area are also provided, across the three frequencies, to see how the sources are
characterised in a particular area so the source-finders can be calibrated or trained. We use
the generated data and focus on the source-finding aspect only.

In constructing the SDC1 image corresponding to the T-RECS source catalogue, sources
have been injected with a di�erent procedure depending on whether they were extended or
compact (major axis greater or smaller than 3 pixels respectively) with respect to the adopted
frequency-dependent pixel size. The SFGs have been modeled using an exponential Sersic
profile (Sérsic, 1963), projected into an ellipsoid using a given axis ratio and position angle.
The AGN populations (steep-spectrum and flat-spectrum) are treated as the same object type
viewed from a di�erent angle. Steep-spectrum AGN will assume FRI/FRII morphologies, and
flat-spectrum AGN are composed of a compact core with a single lobe, but pointing in the
direction of view. The steep-spectrum sources have been generated as postage stamps (that
includes a�ne transformations) from a library of scaled real high-resolution images. They
have also had a correction applied to the flux of the core in order to give it a flat spectral
index, thus the same AGN can have a di�erent core to lobe fraction when viewed at di�erent
frequencies. The flat-spectrum AGN are added as a pair of circular Gaussian components: a
compact core with a more extended end-on lobe.

A mild Gaussian convolution has been applied to the extended source images, using a FWHM
of two pixels. The three catalogues (SFGs, steep spectrum AGN and flat spectrum AGN) of
compact objects were added to the image as elliptical Gaussian components.

All the compact sources that belong to the classes of SFGs, steep and flat spectrum AGN are
described by an integrated flux density and a major and minor axis size. The compact flat
spectrum AGN are additionally described with a core fraction that indicates the proportion
of emission belonging to the core of the source compared to the source extent.

Visibility data files were generated using the SKA1-Mid configuration. There were two cases



4.1. INTRODUCTION 140

explored: (1) When the 64 Meerkat dishes were included there were 197 antenna locations
specified at B2, and (2) when the Meerkat dishes were not included, 133 antenna locations
were used at B1 and B5. Both cases are frequency-dependent and reflect the fact that Meerkat
will most likely not be equipped with feeds for B1 and B5.

The visibility sampling is based on 91 spectral channels that span a 30% fractional bandwidth,
using a time sampling which spanned -4h to 4h of Local Sidereal Time with an increment of 30
s integration time at an assumed Declination of -30. The visibility files were used to generate
the noise images and the point spread functions. The gridding weights for the visibility data
were determined by firstly accumulating the visibility samples in the visibility grid with their
natural weights. After this, a FFT-based convolution was applied to the visibility density grid
using a Gaussian convolving function with FWHM of 178 m. The convolving function width
was manually tuned to match as closely as possible to the sampling provided by the array
configuration. Uniform weights for the visibilities were formed by using the inverse of the local
smoothed data density. After this, a Gaussian taper was used such that it resulted in the most
Gaussian possible dirty beam with a target FWHM of (1.5, 0.60 and 0.0913) arcsec at (560,
1400 and 9200) MHz. The actual dirty beam dimensions were closely matched to the target
specification. There was a degradation of image noise compared to the naturally weighted
image noise, therefore they were rescaled in amplitude to represent realistic variations in
RMS for the di�erent integration times. Adding the various noise images to the convolved
sky model resulted in the final data products.

Additional files provided include the Primary Beam images, which are used to correct the
flux values in the original maps, the synthesised beam images and the training set files, which
include the properties of the sources such as flux, size, and class, for a particular area in the
entire map. There are three training set files, for the three frequencies. Therefore, the same
training set file is used across the 3 di�erent integration times within one frequency.

For more specific details on the generation of the simulated SKA data, please refer to Bonaldi
& Braun (2018).

The paper is outlined as follows: In section 4.2 we discuss the specifics about the the SKA sim-
ulated dataset, the pre-processing steps on the raw data, the parameters by which PyBDSF
is run, how the dataset has been generated prior to undertaking source-finding with Au-
toSource and PyBDSF, the background of autoencoders as well as how the images have been
augmented for AutoSource. Section 4.3 describes the major results summarised in F1 scores
that combine precision and recall. We also provide confusion matrices for some data subsets.
Section 4.4 summarises our overall findings. Appendix 4.5 contains the precision and recall
classification metrics.
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4.2 Methods

4.2.1 Convolutional autoencoders

In the context of neural networks, an autoencoder is made up of an encoder and decoder. The
encoder compresses the input into a latent space representation that usually has a smaller
dimensionality (referred to as a bottleneck), compared to the input data (Tishby et al.,
1999). The encoder can be represented by the function h = f(x). The aim of the decoder is
to reconstruct the input from the latent space representation, which can be represented by
r = g(h). The complete autoencoder function, which can be expressed as r = g(f(x)), aims
to achieve a reconstruction, r that is as close as possible to the original input data, x (Vincent
et al., 2008).

Autoencoders are generally an unsupervised learning technique (Liou et al., 2008) as they are
usually trained without labels. One of the aims is to detect determining features in the data,
that could help to characterise similar types of images and therefore infer properties that are
common to groups.

Some applications of autoencoders include denoising and dimensionality reduction, as well as
unsupervised pre-training to better initialise the weights of the neural network compared to
using a random distribution (Schmidhuber, 2015).

Autoencoders can be made up of fully connected layers, however this can be impractical for
image data as it is generally high-dimensional, and could cause learning to stall owing to
the saturating/declining gradients (Mao et al., 2016). Using convolutional layers reduces the
number of parameters, as they employ filters of a smaller size that scan across the network
and detect features.

In the most basic case, one possible application of an autoencoder on radio astronomy data
of the type explored in the current work, is to reconstruct the original input maps that
contain the sources as well as the background noise, which is an undesired feature. A better
application could be to investigate whether it is possible to derive maps similar to the 1000 h
maps using the 8 h emission maps, because the shorter integration time maps can be viewed
as noisier versions of the longer integration time maps. This can be the subject of a future
work.

The key idea behind AutoSource is to train an autoencoder r = g(f(x)), where x is the input
map data and r is the reconstruction of the solution map, where the sources of varying sizes
and emission patterns are collapsed to individual pixel locations, and the remainder of the
image is blank. The autoencoder is trained to do source-finding using segmented real maps
and the corresponding solution map, both having sizes of 50x50 pixels, across three SNR
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ratios of 1,2 and 5, and the results are compared with the sources found using PyBDSF.

It should be noted that this method of source-finding can be posed as an image-to-image
translation problem, as are many problems in the computer vision field (Isola et al., 2016),
which are generally solved using Generative Adversarial Networks (GANs). GANs consist of
a generator of images (usually an autoencoder), as well as a discriminator, whose job it is to
di�erentiate between real and generated images. The aim of using GANs is to generate images
in which the discriminator fails to distinguish between them and real images. In contrast, our
method requires only the use of an autoencoder as we are generating images having a much
lower level of complexity compared to the input maps; where the radio emission of sources is
collapsed to between one and a few pixels.

The present work uses Keras3 with the TensorFlow4 backend and Python version 2.7.15. We
use a convolutional network architecture of three consecutive convolutional layers and one
dense layer, having a total of 32,193 parameters.

Early stopping was used with a patience of 5 training epochs. A single training epoch is when
all training samples are passed through the network. 80% of the data is used for training,
and the remaining 20% is used for testing.

The AutoSource architecture, as shown in Table 4.1 and Figure 4.1, is made up of 3 convo-
lutional layers and one dense (fully-connected) layer. There are 16, 32 and 64 filters, with
a filter size of 7, 5 and 3 in the first, second and third convolutional layers respectively. A
dropout layer using a dropout fraction of 0.25 is inserted between the first and second con-
volutional layers to make the network more robust. We slide the filters along by one pixel in
each layer to ensure maximal information extraction. The batch size is set to 128. We use the
Adadelta optimiser (Zeiler, 2012) with a default learning rate of 1.0, decay of 0 and a rho of
0.99. Adadelta is based on Adagrad (Duchi et al., 2011) (an optimizer with parameter-specific
learning rates), however Adadelta adapts the learning rates based on a moving window of gra-
dient updates. We also use the binary cross-entropy cost function (Mannor et al., 2005). The
architecture shown in Figure 4.1 also contains an example of a real input map and solution
map, the features detected, and corresponding reconstructed map.

We note the absence of a bottleneck (a compressed representation of the inputs) in the
architecture. A bottleneck is not used because we are not attempting to see whether the
original map can be reconstructed from the input data using a lower-dimensional projection,
but to train the network to predict the location of the sources. The stacked convolutional
layers extract the signal from the noise, where each layer produces an output having the same
dimensions as the input, in order to directly see the detected signals that are propagated
through the network.

3
https://keras.io/preprocessing/image/

4
https://keras.io/losses/#categorical crossentropy



CHAPTER 4. SOURCE-FINDING WITH CONVOLUTIONAL AUTOENCODERS 143

Conv2D

Conv2D

Dense

Dropout

Conv2D

Figure 4.1: AutoSource architecture and examples of inputs (real maps and solution maps), features
detected at the output of the first and third convolutional layer, as well as the resulting
reconstructed image of the solution map.

Table 4.1: Architecture of the AutoSource model
Layer Output shape # Params
Input_1 (None, 50, 50, 1) 0
conv2d_1 (None, 50, 50, 16) 800
dropout_1 (None, 50, 50, 16) 0
conv2d_2 (None, 50, 50, 32) 12,832
conv2d_3 (None, 50, 50, 64) 18,496
dense_1 (None, 50, 50, 1) 65
Total 32,193
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4.2.2 Pre-processing

In order to ensure accurate flux values, we used the Primary Beam image and raw fits
files provided, and ran CASA (McMullin et al., 2007) to regrid the image and correct for
the Primary Beam. The resulting fits file was the one used to perform source-finding in
AutoSource and PyBDSF. Some tests were done using the non primary-beam corrected fits
files and we observed no change in performance regarding source-finding ability.

To determine the background noise level in the image, we output the background rms maps
when we ran PyBDSF, by specifying rms_map=True using the process_image com-
mand.

To perform source-finding in PyBDSF, we ran the process_image command using the
default parameters of thresh_isl=3.0 and thresh_pix=5.0.

4.2.3 Dataset generation

The solution maps have been generated using the training set files across each frequency.
Since we are only interested in the source-finding, we took note of the corresponding (x,y)
positions of each source in the training set. We focused only on the sources which could
be found given the noise. The source locations have been inserted into the solution maps as
single pixels, under the condition that the sources have a flux above a certain threshold (when
the sources have flux greater than one, two, and five times the mean noise level, referred to
as SNR=1,2 and 5.)

The SS, FS and SFG sources are encoded using the integers 1,2 and 3 respectively in the
original solution map. This is so we can calculate the recovery of each of these classes of
sources when testing AutoSource and PyBDSF. However, the solution map used for training
has all the sources encoded with 1, irrespective of class. Tables 4.2 and 4.3 show the number
of each class of sources across SNR=2 and SNR=5 respectively. It should be noted that
there are many more SFG sources compared to SS and FS sources, which is why we focus on
augmenting those source types to see if it improves the performance of AutoSource. There
are fewer sources available at higher SNRs compared to at lower SNRs, since the threshold
for inserting sources into the solution map is a lot higher.

Given there are very few sources available in the B5 dataset as shown in Tables 4.2 and 4.3,
we focus our attention on the B1 and B2 datasets only.

We verified that the noise level in the maps is uniform. Table 4.4 shows there are only
small proportional di�erences in the number of solutions obtained when taking the individual
quartile cut-o�s versus using the cut-o�s derived from the whole training set area.
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Figure 4.2: Left panel: Real map of a panel containing a combination of SFGs, SS and FS sources
at B1 at 1000 h. Middle panel: Solutions at SNR= 2. Right panel: Solutions at SNR=5.
The yellow, blue and green pixels indicate SFGs, SS and FS sources respectively. In this
particular case both the SS and FS sources are very close together and very faint, which
presents a challenge for both source-finders. The panels have a side length of 50x50
pixels.

Figure 4.3: Left panel: Real map of a panel containing a combination of SFGs, SS and FS sources
at B2 at 8 h. Middle panel: Solutions at SNR= 2. There are two SFGs and one each
ofSS and FS galaxies. Right panel: Solutions at SNR=5. At this SNR, only one SFG
and one SS source remain; the other SFG and FS sources had a total flux that was lower
than the cut-o� threshold at that SNR ratio. The yellow, blue and green pixels indicate
SFGs, SS and FS sources respectively. The panels have a side-length of 50x50 pixels.

The left panels of Figures 4.2 and 4.3 show a section from a real map of B1 at 1000 h and B2
at 8 h respectively, containing SFGs, SS and FS sources, along with the solutions injected at
an SNR of 2 and 5. The smaller the SNR, the more sources will appear in the solution map,
that look increasingly less obvious as they would be getting mixed with the noise background.
Conversely, the larger the SNR, the fewer sources in the solution map, and only increasingly
large and/or bright sources will appear.

To generate input image data for AutoSource, we divided the training set area (4000x4000
pixels) into 50x50 pixel blocks and moved these blocks across by increments of 50 pixels
(resulting in 6,400 images), ensuring that the segmented blocks cover the entire area. The
blocks may contain sources located on their boundaries, however all parts of the sources are
accounted for. We have also experimented with using 20 pixel increments (resulting in 39,204
images) instead of 50 pixel increments, such that the same part of a source is seen across at
least one other block and therefore sources on the boundary in one block will not be on the
boundary in a neighbouring one, and noted no significant improvement in results.
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In the 4000x4000 pixel area, there are 6400 images for training and testing altogether, with
5120 (80%) for training and 1280 (20%) for testing. We also investigate how much the
results can be improved when using image augmentation, so 5120 is the minimum number of
images with which we train. Similarly, we generated the input solution data for AutoSource
by inserting individual pixels to represent the true location of the source, with the position
obtained from the training set.

The image data has been multiplied by 10e6 because the pixel values are the surface bright-
ness, which can be very small with O(10e-6) in magnitude, and they can also be negative.
Applying a scaling to the original values ensures there is su�cient contrast between them,
which facilitates detection by the autoencoder. The scaling is also done to match the order of
magnitude of the values in the solution maps, which were generated by inserting ‘1’ against
a background of ‘0’. We note that we also experimented with multiplying the data by 10e9
and found no noticeable di�erence.

We use only the training set region out of the whole map, which consists of a 4000x4000 pixel
area across the B1 and B5 datasets, and 4200 pixel area across B2, as shown in Table 4.5. It
should be noted that the same area is not covered between the three frequencies - however it
is the same within the same frequency between the three integration times.

The solution maps have been generated in the same way as the input image maps, using 50x50
pixel blocks with increments of 50 pixels, where a ‘1’ has been inserted at the location of the
centroid position of the source. The blocks that contain no solutions are empty 50x50 blocks.
The source selection has been subject to a flux threshold, where only sources having a flux
greater than 1,2 or 5 times the background for each map have been selected. The background
maps have been determined using PyBDSF. Figure 4.4 shows the segmentation of part of the
training area into 50x50 pixel blocks, for both the original primary-beam corrected fits file
as well as the corresponding solution map generated.

We ran PyBDSF with the default parameters in order to perform source finding across the
whole map, which was later subset to only include the training set area in the images.

4.2.4 Image augmentation

Deep learning techniques are able to take advantage of image augmentation as it gener-
ates more training samples, which should improve the performance up to some threshold
(Krizhevsky et al., 2012). Since there are many fewer steep-spectrum (SS) and flat-spectrum
(FS) AGN sources compared to star-forming galaxies (SFGs), we wanted to see whether we
could improve on the metrics for these types of sources if we augmented the images that
contained them. We employed vertical and horizontal flipping, and rotation by 90, 180 and
270 degrees. The results show the metrics when applying no augmentation, augmenting the
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Figure 4.4: Left: Segmentation of a portion of the primary-beam corrected images in the training
set area. Right: Segmentation of the solution map in the same area. These images are
generated from the B1 1000 h dataset, using a SNR=5 to determine threshold of flux for
injecting the solutions. Each block forms a single 50x50 pixel image that is input into the
AutoSource algorithm; the blocks on the left make up the training set images (train_X),
and the blocks on the right make up the solution set images (train_Y).

Table 4.2: The total number of steep-spectrum AGN, flat-spectrum AGN and star-forming galaxies
across each integration time across all frequencies, when using SNR=2.

Dataset #SS-AGN # FS-AGN # SFG
B1
8 h 342 117 13920
100 h 644 386 34158
1000 h 957 682 57797
B2
8 h 91 64 4028
100 h 166 151 9423
1000 h 278 294 17283
B5
8 h 3 1 26
100 h 4 2 103
1000 h 6 6 223
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Table 4.3: The total number of steep-spectrum AGN, flat-spectrum AGN and star-forming galaxies
across each integration time across all frequencies, when using SNR=5.

Dataset #SS-AGN # FS-AGN # SFG
B1
8 h 213 94 5717
100 h 395 208 16885
1000 h 605 366 31597
B2
8 h 59 25 1877
100 h 101 73 5096
1000 h 178 155 10251
B5
8 h 3 1 7
100 h 4 1 43
1000 h 4 3 114

Table 4.4: Percentage di�erence in the number of sources depending on whether the quartile threshold
from the training set are taken versus using the threshold obtained from the training set
as a whole, at an SNR=5.

Frequency 8 h 100 h 1000 h
B1 4.4 3.7 2.6
B2 4.5 3.6 2.8

Table 4.5: The x and y ranges of the training area, according to the locations within the whole map.
Frequency x range y range Area
B1 16300 - 20300 16300 - 20300 4000 pixels sq.
B2 16300 - 20500 16300 - 20500 4200 pixels sq.
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SS and FS sources, as well as augmenting all sources. There would be little merit in explicitly
augmenting the SFGs because they tend to appear more point-like.

4.3 Results

The results presented are the summary metrics of the sources across the di�erent classes; SS,
FS and SFG sources, and all sources as a whole.

The original reconstructed image output of AutoSource is composed of continuous pixel values
which are mainly close to zero. To determine the output predictions for the source locations,
we define a reconstruction threshold that ranges between 0 and 1. Then we choose the value
across all metrics depending on which reconstruction threshold produces the highest F1 score.
PyBDSF outputs only 0’s for sources not found and 1’s for sources found.

We allow a leniency of 3 pixels for the positions of sources found. To calculate the metrics,
we make the following definitions:

• TP: sum of pixels with values greater than the reconstruction threshold in the recon-
structed solution map that is less than 3 pixels of a source in true solution map

• FP: sum of pixels with values greater than the reconstruction threshold in the recon-
structed solution map that is equal to or greater than 3 pixels of a source in true
solution map

• TN: sum of pixels with values lower than the reconstruction threshold in the recon-
structed solution map that are also empty in the true solution map

• FN: sum of pixels with values lower than the reconstruction threshold in the recon-
structed solution map that are not empty in the true solution map

where TP refers to the true positives, TN refers to true negatives, FP refers to the false
positives and FN refers to false negatives.

Given that source-finding in the current work is defined as being directly related to the sum of
pixels output by the source-finders, the sum of the sources detected between the source-finders
is not expected to be constant.

Since the true catalogue is quite richly populated with sources, and given the 3 pixel leniency,
there could be some sources that are found across both algorithms by chance. Ideally there
should be zero chance findings, but in reality there will be some small fraction. We use the
SNR=1 dataset to test this e�ect, as this dataset has the highest population of sources in
the solution map (and also in the reconstructed map). Therefore, the SNR=1 dataset can be
considered to be the worst case scenario for chance matches. The e�ect of chance matches
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is tested by randomly rotating the reconstructed solution maps, comparing it with the real
solution map and calculating the metrics, as for the rest of the results.

The precision, recall and F1 score metrics, in the form of bar-plots are provided in the current
work. We do not include the accuracy because of the way the true negatives are defined; the
value is always very high leading to accuracies greater than 99% across both source-finders.
The metrics are defined in Equations 4.1 - 4.4.

Precision = TP
TP + FP (4.1)

Recall = TP
TP + FN (4.2)

F1 score = 2 ◊ Precision ◊ Recall
Precision + Recall (4.3)

Accuracy = TP + TN
TP + FP + TN + FN , (4.4)

The bar plots of the F1 score, defined as the harmonic mean across precision and recall, are
provided in the main text, as well as a subset of the confusion matrices. The precision and
recall bar-plots are given in Appendix 4.5.

We experimented with using pooling layers, by applying it to the B1 8 h dataset with no
augmentation. Pooling reduces the dimensionality of the layer by outputting the average
pixel value across some area whose size is defined by the user. Two di�erent architectures
were considered: placing a pooling layer after the first, or after the second convolutional
layer respectively. Due to the halved dimensions in the architecture as a result of pooling, an
upsampling layer had to be inserted prior to obtaining the output. In both cases, the resulting
metrics were all inferior to the equivalent model without pooling. The source locations tended
to be less precise and generally spanned an area of 4 square pixels, most likely because the
pooling operation lost the precise source location.

The use of pooling resulted in AutoSource identifying no true positives, and it generated a
few false positives due to the reconstruction of the source positions along the edges of the
image only. The likely explanation is that the true signal from the source only occupies a
small area, therefore when pooling is used it can ‘wash out’ these pixels, in some cases causing
the source to become lost among the background.

We also omit the results across the B5 dataset because both source-finders failed to recover
any sources across any integration time. This is most likely because of the dataset being the
noisiest, as well as having very few sources in the catalogue.
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4.3.1 Very low significance source metrics at SNR=1

Figure 4.5 shows the F1 score metrics across the di�erent classes of sources, as well as when
all are considered together. AutoSource almost always performs better across the SFGs and
all sources in the B1 dataset, for all integration times, whereas PyBDSF performs better for
the remaining datasets (SS and FS sources across B1 and B2, and SFGs and all sources at
B2.)

The better performance of AutoSource across the SFGs and all sources at B1 is most likely
due to the e�ect of chance matches, as shown in Figure 4.6, which shows the source-finding
metrics when the predicted source locations are randomised, to see how many sources are
found due to chance. On average, AutoSource is more a�ected by chance matches across the
SFGs and all sources. Some possible causes of the increased chance matches in AutoSource
are that the SFGs are highest in number, and that many sources found tend to be spread
over several pixels rather than confined to one. On the other hand, PyBDSF is more a�ected
on average by chance findings across the SS and FS sources. In AutoSource, at worst the
chance matches reach up to ≥ 26% compared to real findings, whereas in PyBDSF the e�ect
is more pronounced in the datasets where fewer sources are found overall. The worst case for
PyBDSF is across the SS sources in the B2 100 h dataset, where there are barely more real
matches compared to chance matches. It should also be noted that the SNR=1 dataset is
the noisiest one that also has the most densely populated solution and reconstruction maps,
which maximises the risk of chance findings, therefore represents the worst case scenario in
terms of datasets. We further note that the sources have very low significance at this SNR.

An improvement in the F1 score across the SFGs can be observed due to augmenting the
images containing all sources, since the vast majority of all sources are SFGs. However,
augmenting the SS and FS sources does not improve the SFG scores by much since we are
not giving the network more examples of SFGs to train on. Image augmentation does not
have the same e�ect on the randomised data, as shown in Figure 4.6.

Figure 4.7 may indicate possible reasons why the AutoSource performance is poorer overall
compared to PyBDSF, at an SNR=1. Since the solutions are injected into the map at the
threshold of the mean background noise level, there appear to be solutions that are not obvious
by eye, and can become confused with the background noise. It is therefore possible that
AutoSource has not successfully learnt to extract the sources at this SNR. For the examples
given, there is one SS source in each map, while the rest are SFGs. Both PyBDSF and
AutoSource recover the SS source in the top row, whereas AutoSource finds a false positive
and misses other SFGs. PyBDSF recovers one of the SFGs successfully but misses the others.
Neither PyBDSF nor AutoSource recover the SS source in the bottom row, and AutoSource
partially recovers one of the SFGs however the location is spread out over several pixels. It
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Figure 4.5: F1 scores at SNR=1, across the two frequencies B1 (560MHz) and B2 (1400MHz) and
the three integration times. There are three results given from AutoSource, depending on
the augmentation used when training. The blue bar represents no augmentation, orange
represents augmenting the SS and FS sources, and the green bar represents augmenting all
sources. The graphs show that PyBDSF usually performs better compared to AutoSource
at this SNR. Although it appears that AutoSource performs better across the SFGs and
all sources in the B1 dataset, for all integration times, the better performance appears
to be explained by the increased proportion of chance matches at this SNR, as shown
in Figure 4.6. However, it should be noted that these sources have very low significance
given the SNR.

misses the other SFGs and gets a couple of false positives. PyBDSF recovers only one SFG
in this example, and misses the others which result in a number of false negatives.

4.3.2 Low significance source metrics at SNR=2

Figure 4.8 shows the F1 score metrics across the di�erent classes of sources, as well as when
we consider them all together.

Across the SFGs/all sources at SNR=2, AutoSource performs better on average, where now
it recovers these sources better in the B2 8 h dataset, where one example is shown in Figure
4.9. However, PyBDSF generally performs better across the SS and FS sources.

Considering the F1 scores of the SS sources in the 8 h datasets, the augmentation of either
the SS/FS or all sources worsens the score, most likely because this dataset is the noisiest of
the three, therefore some signal would become lost in the noise. There are generally slight
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Figure 4.6: Showing the e�ect of randomly rotating the reconstructed matrix of source locations to
investigate the proportion of chance findings.

Figure 4.7: The top and bottom rows show a couple of examples of (first column) a real map for
B1 at 8 h, (second column) the solutions when injected into the map given the SNR=1
threshold, (third column) the predicted locations by AutoSource after training on the
original images only, and (fourth column) the predicted locations by PyBDSF.
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improvements with augmentation of the SS/FS at the other two integration times, as the
noise is reduced. The SS sources are the ones with the most varying morphology within the
class (they have the greatest amount of extended emission and give rise to FRI/FRII type
structures), however there are not many original examples of these. Additionally, the signal
threshold is set at only twice the noise threshold so there are more solutions in the map,
increasing the risk of sources being contaminated with noise. PyBDSF clearly outperforms
AutoSource across the SS sources.

Across the FS sources, there are two datasets in which AutoSource performs better than
PyBDSF (B2 at 8 h and B2 at 100 h), however for the remainder it does slightly worse than
PyBDSF. The augmentation of the SS/FS sources always improves the F1 score across these
FS sources, however it does not always improve when augmenting ’all’ sources since most of
these sources are SFGs, therefore proportionally there are fewer SS/FS sources to train on.
We note that when using AutoSource the performance is better across the FS sources as these
sources have a more defined morphology, which tend to be more compact compared to that
of the SS sources.

A similar pattern is observed at the SNR of 2, as was observed at SNR=1 in regard to
the e�ects of augmentation, where augmenting sources of the same type results in improved
metrics for those sources.

Table 4.6 shows the confusion matrices across the B1 and B2 datasets for the 8 h and 1000
h integration times, when comparing the test results after using AutoSource trained on the
augmentation of all sources, against PyBDSF. We exclude the true negative counts for brevity
as this denotes the total number of pixels where there is no solution as well as no predicted
source. Given that AutoSource sometimes produces reconstructed solutions that are spread
over several pixels and that true positives are defined as matches that occur over less than
3 pixels of the true solution locations, AutoSource detects more true positives. However, it
also detects more false positives compared to PyBDSF, but fewer false negatives. Therefore,
it misses fewer sources compared to PyBDSF.

4.3.3 High significance source metrics at SNR=5

The opposite trend to what was observed at SNR=2 is seen at SNR=5, as shown in Figure 4.10
where now PyBDSF performs better on the SFGs/all sources on average, whereas AutoSource
performs better on average on the SS and FS sources.

Therefore when there is a higher signal to noise, AutoSource can better extract the SS/FS
sources compared to the SFG/point sources. For the majority of times, better results are
achieved when augmenting either the SS and FS sources, or all. Whereas when the signal to
noise is lower, the performance of AutoSource across these extended sources su�ers, probably
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Figure 4.8: F1 scores at SNR=2, across the two frequencies B1 (560MHz) and B2 (1400MHz) and
the three integration times. There are three results given from AutoSource, depending on
the augmentation used when training. The blue bar represents no augmentation, orange
represents augmenting the SS and FS sources, and the green bar represents augmenting
all sources.

Figure 4.9: The top and bottom rows show a couple of examples of (first column) a real map for
B2 at 8 h, (second column) the solutions when injected into the map given the SNR=2
threshold, (third column) the predicted locations by AutoSource after training on the
original images only, and (fourth column) the predicted locations by PyBDSF.
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Source type SFG SS FS All
Method tp fp fn tp fp fn tp fp fn tp fp fn fp/tp fn/tp
B1_8 h
(3) 1473 635 261 23 282 0 26 163 0 1522 561 316 0.37 0.21
(4) 314 73 611 19 57 1 8 35 0 341 46 663 0.14 1.94
B1_1000 h
(3) 5351 2735 2026 58 2722 0 68 1551 0 5477 2592 2235 0.47 0.41
(4) 3326 506 4333 57 1306 0 50 765 0 3433 429 4555 0.13 1.33
B2_8 h
(3) 628 52 319 3 22 0 12 3 0 643 56 340 0.09 0.53
(4) 130 13 79 4 9 0 9 3 0 143 8 89 0.06 0.62
B2_1000 h
(3) 2476 1593 1608 11 330 1 42 289 0 2529 1531 1734 0.61 0.69
(4) 1897 290 1932 12 226 1 31 199 0 1940 245 2050 0.13 1.06

Table 4.6: Showing all of TP, FP, TN and FN across (3) = AutoSource augment all, (4) = PyBDSF,
at B1 8 h, B1 1000 h, B2 8 h and B2 1000 h, at an SNR=2.

Figure 4.10: F1 scores at SNR=5, across the two frequencies B1 (560MHz) and B2 (1400MHz) and
the three integration times. There are three results given from AutoSource, depending
on the augmentation used when training. The blue bar represents no augmentation,
orange represents augmenting the SS and FS sources, and the green bar represents
augmenting all sources.
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Figure 4.11: The top and bottom rows show a couple of examples of (first column) a real map for
B2 at 8 h, (second column) the solutions when injected into the map given the SNR=5
threshold, (third column) the predicted locations by AutoSource after training on the
original images only, and (fourth column) the predicted locations by PyBDSF.

because the emission from them tends to become lost in the noise, whereas the SFGs are
recovered better compared to when using PyBDSF at lower SNR ratios.

Figure 4.11 shows that AutoSource can recover the SFG and SS source in the top row, as
well as the SFG in the bottom row, however at the expense of a couple of false positives.
Meanwhile, PyBDSF does not recover any sources.

Table 4.7 shows the confusion matrices at SNR=5, for the same datasets and runs as was
included for SNR=2. There are fewer sources found by the source-finders overall as the SNR
is higher compared to before, however a similar trend is seen to before, where AutoSource
finds more true positives and false positives, whereas PyBDSF finds fewer true positives but
more false negatives. Although, the ratio is not as pronounced when compared to what was
observed at SNR=2, as the signal-to-noise is now higher.

Figure 4.12 shows the training and validation losses across the B1 and B2 frequencies, across
all integration times. In the left panel (B1 frequency; 560MHz) the training and validation
losses are roughly at the same level across the 8 h and 100 h integration times, whereas there
is some underfitting observed in the 1000 h dataset. The underfitting generally indicates that
a more complex architecture should be tried. In the right panel (B2 frequency; 1400MHz) the
8 h integration time loss curves are at the same level, whereas there is some level of overfitting
observed across the 100 h and 1000 h integration times. The B2 dataset on average is noisier
compared to the B1 dataset. It is interesting to note that for the same integration times
across the two di�erent frequencies, the same model tends to underfit on one dataset and
overfit on the other. This indicates that using the same model across all frequencies and
integration times is not ideal, that instead each model should be tuned to the specific dataset
at hand. Nonetheless, the resulting metrics are still competitive with that of PyBDSF, and
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Source type SFG SS FS All
Method tp fp fn tp fp fn tp fp fn tp fp fn fp/tp fn/tp
B1_8 h
(3) 444 175 225 20 41 1 11 11 0 475 164 256 0.35 0.54
(4) 304 60 172 18 38 0 8 15 0 330 40 193 0.12 0.58
B1_1000 h
(3) 3478 1422 629 35 1075 0 45 573 0 3558 1311 738 0.37 0.21
(4) 3070 663 1124 57 892 0 45 473 0 3172 554 1247 0.18 0.39
B2_8 h
(3) 332 44 70 7 13 0 8 0 0 347 47 80 0.14 0.23
(4) 128 13 29 4 8 0 8 1 0 140 8 34 0.06 0.24
B2_1000 h
(3) 1980 974 514 13 168 0 29 115 0 2022 923 567 0.46 0.28
(4) 1857 280 587 12 149 0 28 102 0 1897 224 637 0.12 0.34

Table 4.7: Showing all of TP, FP, TN and FN across (3) = AutoSource augment all, (4) = PyBDSF,
at B1 8 h, B1 1000 h, B2 8 h and B2 1000 h, at an SNR=5.

Figure 4.12: Training and validation losses across the 3 integration times at SNR=5 across B1 and
B2 datasets in the left and rights panels respectively.

have the potential to outperform PyBDSF given a more optimally tuned model.

4.3.4 Execution times

Both source finders were run on a computing cluster using CPUs from 27 available Intel
XEON CPU nodes, with a 3.5 GHz processor. There are six available cores per node.

Table 4.8 shows the source-finding execution times across AutoSource when performing no
augmentation, augmenting the FS and SS sources, and augmenting all sources. PyBDSF
takes more than two times longer to run compared to the AutoSource run when all images
are augmented. The execution times across AutoSource are subject to variability depending
on how many sources there are to augment, as well as the total training time, which depends
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B1_8 h (mins)
AutoSource none 27.5

AutoSource SS+FS 23.2
AutoSource all 63.6

PyBDSF 167.0

Table 4.8: Running times across AutoSource when augmenting di�erent sets of images, as well as
PyBDSF.

on the total number of images and epochs. The run where the SS and FS sources were
augmented took a shorter time to train and test compared to the one where no augmenta-
tion was used, because there were more epochs of training completed; the run that did not
utilise augmentation was a�ected by the early stopping condition at an earlier point during
training.

4.4 Discussion and Conclusions

In the current work we have shown how the use of a simple autoencoder composed of three
convolutional layers, a dropout layer and a dense layer, as shown in Figure 4.1 and Table
4.1, can be competitive with a state-of-the-art source-finder; PyBDSF. Both approaches have
been tested across di�erent frequencies, integration times and signal-to-noise ratios, and the
recovery metrics across the di�erent source types of SFGs, SS-AGN and FS-AGN sources
were derived. The code used to obtain both the AutoSource and PyBDSF results is available
on Github5. Given that AutoSource outputs continuous values in the reconstruction of the
solution map, as defined by a reconstruction threshold that ranges between 0 and 1, whereas
PyBDSF uses a fixed threshold, AutoSource could be more flexible as a method as it attributes
a probability to finding a source at a particular location.

AutoSource also sometimes outputs the source location spread over a few pixels rather than
being localised to a single one, which may provide additional information about the source; for
example it could be more extended or di�use. The fact that AutoSource spreads out the source
location over several pixels, which occurs more frequently at the lower SNR ratios and at
shorter exposure times, where there are more sources present and their emission is more likely
to get mixed with the noise, results in more true positives and fewer false negatives. However,
at the same time AutoSource also produces a larger number of false positives compared to
PyBDSF. A similar trend is seen at higher SNR ratios, although fewer true positives, false
positives and false negatives are found by both source-finders in comparison. For example,
the SNR=5 dataset has fewer solutions but also the strongest signal. On the other hand,

5
https://github.com/vlukic973/AutoSource
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PyBDSF misses many more sources compared to AutoSource, as the false negative counts are
almost always higher.

It is interesting to note that the metrics across the SS and FS sources tend to be relatively low
across both PyBDSF and AutoSource. In fact, they decrease with increasing integration time,
across all SNRs, with the dataset at the lowest frequency (B1) attaining the lowest metrics
overall. Possible reasons could be that the SS and FS sources are smallest in number and
their morphology is revealed as increasingly variable, as more extended emission is detected
with the longer integration times.

In regard to how well the two methods extract SFGs, SS, FS and all source types combined
across the SNRs, we see that PyBDSF performs better on average compared to AutoSource
at SNR=1. AutoSource appears to be more severely a�ected by chance matches at this
SNR compared to PyBDSF, however the sources have very low significance. In contrast,
AutoSource is better at extracting the SFGs and all sources at SNR=2, whereas PyBDSF is
better at extracting these at SNR=5. AutoSource is better at extracting the FS sources at
an SNR of 5, whereas PyBDSF is better for the FS sources at SNR= 2. AutoSource is worse
at extracting the SS sources at an SNR of 2, however half the time it is better than PyBDSF
at extracting them at an SNR of 5.

We have seen that image augmentation improves the AutoSource performance when the
relevant sources are augmented; generating more ‘all’ sources tends to improve the metrics
across SFGs and ‘all’ sources as these sources are largely made up of SFGs, and generating
more SS and FS sources tends to improve their recovery, but not that of SFGs and all sources.
Augmentation may also not work to improve the results as expected when the datasets are
noisier, the sources are few in number, or if their morphology is ambiguous.

PyBDSF takes longer to run in total (167 mins for the B1 dataset at 8 h), however it outputs
characteristics of the source such as size, flux, among other properties, whereas AutoSource
outputs the positions only.

Across the results for the low significance source metrics at SNR=2 and high significance
source metrics at SNR=5, AutoSource usually outperforms or has very similar performance
metrics to PyBDSF across the shortest integration time datasets (8 hrs). This may indicate
that it can more successfully model the noise at these SNRs and integration time compared to
PyBDSF. The only times that AutoSource performs visibly worse is in B2 at 8 hrs across the
SS sources at an SNR=2, and across all B2 at 8 hrs at SNR=1. It appears that AutoSource
has trouble modeling the noise as the SNR ratio decreases, especially for sources with more
extended emission. Potential ways to improve the performance of AutoSource at lower SNR
ratios could be to use a more complex network, and train for more epochs with a greater
reconstruction threshold when using early stopping. However, one of the purposes of the
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current work was to show how a simple convolutional network architecture can be used for
source-finding in radio astronomy.

The injection of sources and, in turn, the ability to be found by the source-finders, largely
depends on the characterisation of the background noise signal. In the current work, we use
PyBDSF to estimate the background noise, therefore if there are more false negatives/posi-
tives these missed/extra sources will be contaminating the background signal to some extent.
Sources displaying a more compact morphology are unlikely to a�ect the background signal
by much, since the emission is localised to a very small area. However, the e�ect will be larger
the more extended the source is. Some extended sources may have very faint and/or di�use
emission which can mingle with the noise.

It appears that AutoSource performs better overall at larger SNRs and shorter integration
times compared to PyBDSF, most likely because it has learned to model the noise in these
images better and the sources show a greater contrast against the background. The ratio of
false positives to true positives is larger for AutoSource, however the ratio of false negatives
to true positives is larger for PyBDSF. Therefore, AutoSource and PyBDSF perform better
in terms of recall and precision respectively. As the SNR increases, AutoSource becomes
increasingly better at recovering the extended (SS and FS) sources and tends to outperform
PyBDSF across most datasets at the highest SNR of 5. However, at the same time PyBDSF
becomes increasingly better at recovering the SFGs and sources as a whole. With a decreasing
SNR, AutoSource is increasingly successful at recovering the more compact sources (SFGs)
and all sources, whereas it performs worse with the extended sources, most probably because
it has not successfully learnt to extract the extended source signals out from the noise at
lower SNRs, on which PyBDSF does better.

Given that AutoSource tends to perform better in terms of recall (as shown in Appendix 4.5)
overall compared to PyBDSF (therefore it finds fewer false negatives and hence picks up some
sources that PyBDSF has missed), it could be used as part of a pipeline where AutoSource
is run first to find the sources, then PyBDSF is run to extract the precision values for these
sources, perform further filtering as well as characterise the sources.

The next step in developing AutoSource would be to derive properties from the sources found.
One way to do this may be to correlate the features detected by lower layers to the values
given in the catalogue, for example to match the total flux for a source in question to the
emission detected by one of the feature maps. Previously we had attempted a regression
technique to see if it could learn the continuous values provided in the catalogue, however
our network failed to learn any property successfully. AutoSource could also be made up of
individual models that are targeted to the dataset at hand, where the training and validation
losses are better matched. Another possible extension to the current work would be to train
an autoencoder to remove noise from data by generating 1000h maps from 8h or 100h ones.
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4.5 Appendix
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Figure 4.13: Precision values at SNR=1.

Figure 4.14: Recall values at SNR=1.
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Figure 4.15: Precision values at SNR=2.

Figure 4.16: Recall values at SNR=2.
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Figure 4.17: Precision scores at SNR=5.

Figure 4.18: Recall scores at SNR=5.
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5 Conclusions and Outlook

Radio astronomical continuum surveys are fundamental in furthering our understanding of
the Universe as they facilitate the study of galaxy formation and evolution, and cosmology in
general. Early radio surveys were able to provide conclusive evidence of the big bang model.
Over the last few decades there has been an increase in the number of radio sources detected,
owing to the increased capabilities of radio telescopes in terms of sensitivity and area. Larger
samples of radio sources are very useful to enable better quality source population studies
of the two fundamental galaxy types in terms of radio emission: AGN and SFGs, as well
as understanding the evolution of the radio luminosity function. Surveys over the last few
decades have provided larger samples of faint radio sources at higher redshifts, enabling a
view into the earliest stages of cosmological evolution.

The cross-correlation of surveys between di�erent wavelengths such as optical, infra-red and
radio is important in gaining a more complete understanding of galaxies. For example, it is
necessary to overlay radio and infrared emission to help determine whether components of
radio emission belong to a single radio source, or whether they are independent sources. One
important task in astronomy is that of classification In terms of radio sources, the range of
radio galaxy classes in existence is indicative of di�erent physical processes, such as those
governing the power of the jets, how the radio galaxy is formed, what environment it exists
in and what events preceded it.

The large number of radio sources detected will only increase in time, making manual anal-
yses by astronomers increasingly obsolete. Large numbers of citizen scientists, who are not
expert astronomers, can be taught to recognise patterns and therefore assist in characterising
properties of astronomical objects in order to classify them. However, even the use of citizen
scientists will be insu�cient to keep up with the pace of increasing data volumes. Machine
learning tools can be used, given their capacity to learn and distinguish features in data.
The input from citizen scientists can be used as training set from which machine learning
algorithms can learn from.

In regards to astronomy, machine learning tools have been proven useful in the estimation of
photometric redshifts, classifying objects such as stars and galaxies, as well as di�erent types
of AGN, and the morphological classification of galaxies. A particular type of neural network
– convolutional neural networks (CNNs) have had numerous successes in classification and
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regression tasks in high-dimensional data such as image data. The use of traditional neural
networks is generally unfeasible in the analysis of such data due to the size and complexity
of the network, and hence number of parameters, needed to capture the patterns needed to
discern features. CNNs on the other hand employ filters of smaller size that scan across the
image and detect features, which greatly reduces the number of parameters. Additionally,
the use of filters allows for parameter sharing and leads to translational invariance. Pooling
layers summarise the information over a range of pixels before sending it to the following layer,
which further decreases the number of parameters. The stacking of convolutional and pooling
layers leads to a hierarchical extraction of features in images. The information is merged at
the end and the network can calculate the error, based on the prediction and label. Machine
learning will be the most indispensable tool for analysing large amounts of astronomical data
in the future.

There are fundamental di�erences in images between astronomical/non-astronomical do-
mains. Many neural network architectures have been developed to distinguish between ev-
eryday subjects such as dogs, cats and cars, of which there are thousands of classes and
many examples within each class, and they tend to be well-defined in terms of appearance.
Astronomical subjects on the other hand tend to have fewer classes and examples, and the
subjects within the classes are usually more complex and abstract, as they can have very dif-
ferent emission patterns that also depends on the wavelength. As such, astronomical subjects
generally need larger and/or higher resolution images to capture the di�erences within and
between the classes. The fact that there are fewer examples of astronomical subjects leads
to smaller training sets, hence motivating the use of citizen scientists to provide more labels.
The di�erence in nature between astronomical and non-astronomical images is also an im-
portant consideration for applications of transfer learning, as the higher-level layers in neural
networks trained on everyday images will need to be fine-tuned to capture the subtleties in
classes based on the specific varieties of astronomical subjects.

The main focus of the current thesis has been on the classification of radio-loud AGN, namely
radio galaxies. The fundamental categories that can be used to separate radio galaxies is that
of compact and extended sources. Compact sources, also known as point sources, may be
unresolved by the telescope, or they may be a radio galaxy in their own right (FR0), or another
type of radio galaxy in the early stages of evolution. Extended sources are resolved by the
telescope and display a much larger morphological variety. In Chapter 2, we explored the
use of deep neural networks for classifying between compact and various classes of extended
sources in radio astronomical data from the Radio Galaxy Zoo, consisting mainly of images
from the FIRST survey. Beginning with a sample of more than 200,000 galaxies, we used
the Python Blob Detector and Source-Finder (PyBDSF) to separate them according to the
number of components they possess, under the assumption that there is one source per image.
The first analysis involved the two-class problem of distinguishing between compact sources
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and multiple-component extended sources. A 3 convolutional and 2 dense layer network
produced the highest test classification accuracy. Using the knowledge gained from the 2-
class problem, we applied the same architecture on the 4-class problem of classifying between
compact sources and 3 classes of extended (1-, 2- and >3 component) sources, achieving a
slightly lower test classification accuracy. Finally, we used the 4-class trained network on DR1
of the Radio Galaxy Zoo to see how well it matched predictions from citizen scientists, based
on the number of peaks and components of the radio sources, and were able to slightly improve
on the accuracies obtained compared to the 4-class problem. All three analyses also involved
generating augmented images which served to increase the classification metrics. We note that
the overall high accuracy on the RGZ DR1 is mainly influenced by the fact that the sources
in the compact/single-component have the simplest morphology and only one component and
are therefore the easiest to identify. The classification metrics tend to decrease as the number
of components increases; hence the classification metrics on the (>3 component) sources is the
poorest, which is most probably due to these sources having the most complex morphology
and the fewest original examples. Although the use of image augmentation improves results,
it is limited by the number of original examples of images one has in a particular class,
especially if the class displays increased morphological variety and complexity. Additionally,
the images were classified solely on the radio galaxy data, without integrating the infrared
data, therefore it is not possible to determine more conclusively whether or not the radio
emission in a particular image belongs to the same source. Additionally, since the majority
of the images originated from the FIRST survey, it is known that the survey failed to show
extended sources accurately due to the relatively poor angular resolution and low sensitivity
to extended low surface brightness structures.

The limitations of the FIRST survey prompted the development of radio surveys that would
achieve greater sensitivity and resolution. One such survey is the LOFAR survey. Due to
the compact core and longer baselines, it is able to better capture fainter and highly detailed
extended emission from further away. This aspect reveals a richer range of morphologies
compared to previous surveys, and it is important to develop methods to preserve these fine-
grained details. Despite the fact convolutional neural networks are translationally invariant,
they are not rotationally invariant. The local features within an image are preserved, however
how the features relate to each other on a global scale increasingly disintegrates due to the
use of the pooling layer, as it summarises the pixel information over a small localised area and
therefore results in some information loss. This downfall of convolutional networks motivated
the development of Capsule networks, which are networks composed of groups of neurons
whose aim is to preserve the relative location of features on a local and global scale, and
hence achieve both translational and rotational invariance. In the context of radio galaxies,
the orientation and pattern of the emission is important as it a�ects the morphological clas-
sification. As such, Chapter 3 compares the performance of Capsule networks against that of
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simpler 4- and 8- layer convolutional neural network setups using the classes of Unresolved,
FRI and FRII radio galaxies from the LOFAR LoTSS Hetdex survey, using 2900 original
sources, which were augmented to have over 15,000 in total. In contrast to the sources in
Chapter 2, these sources have optical IDs and have also had galaxies with radio emission
due to star-formation removed. We explored using the original FITS file data as well as the
sigma-clipped numpy arrays. The CNNs always supersede the performance of Capsule net-
works, with or without image augmentation. It appears as though the pooling operation is
advantageous for the radio galaxy images at hand as it appears make the CNNs more robust
to the presence of noise in images, as well as allowing more freedom in how the morphology
can vary within classes. The relatively poorer performance of the Capsule networks may also
be explained by the fact that the original sample size was insu�cient for them to capture the
underlying emission patterns.

In Chapter 4, we consider the problem of source-finding in radio astronomical data, using
simulated images from the SKA across 3 integration times, each at 3 di�erent frequencies.
The data was originally intended for the SKA data challenge, to develop algorithms to find
and characterise sources, that are suited to the real type of data that the SKA will produce.
Three classes of galaxies are simulated, namely flat-spectrum AGN, steep-spectrum AGN and
SFGs. The source-finder we developed is based on a deep learning approach, consisting of
a simple convolutional autoencoder (AutoSource) with 3 convolutional layers, trained on the
simulated maps that have been segmented into 50x50 pixel blocks and using the knowledge
of the source locations to generate a solution map, which provides the training ‘data’ and
‘labels’ respectively. The performance of AutoSource is compared to that of PyBDSF, a
state-of-the-art source finder based on fitting Gaussian components to sources, across di�erent
signal-to-noise ratios. We find that one method performs better than the other depending on
the type of source, dataset (varying in integration time and frequency), and signal-to-noise
ratio. There is not one method that performs better in all circumstances. AutoSource tends
to detect more true positives as well as true negatives, however it also detects more false
positives compared to PyBDSF. The competitive results produced by AutoSource indicate
that deep learning techniques such as convolutional autoencoders hold promise in locating
astronomical sources, especially with the use of image augmentation which can be used to
produce more instances of rarer radio galaxy classes and therefore improve the source-finding
ability for those source types. Furthermore, the technique of generating training images is
very flexible as it is possible to produce segmented blocks that are overlapping to varying
degrees, as well as being able to change the sizes of the blocks.

As evident from the introductory section discussing the application of machine learning tech-
niques to astronomical datasets, the type of machine learning approach to take depends on
the type of data, the complexity, the number of classes or variables, and the context. Deep
learning algorithms have shown the most promise so far in performing classification and re-
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gression tasks in high-dimensional data such as image data. Despite this, there is not yet one
single architecture to use in all circumstances; it is necessary to experiment with di�erent
architectures and hyper-parameters to see which ones perform better than the others. The
use of transfer learning has also proven to be useful, from using the stored weights from one
network and applying it to a similar dataset.

The development of deep learning algorithms in the current work has largely been through
trial-and error; we begin with simple neural network architecture and gradually increase the
complexity to see whether the metrics improve. The validation and training losses have been
monitored in order to see if the network was underfitting (indicating the data is more complex
than the model can describe), or overfitting (the model has too many parameters relative to
the data complexity). Additionally we looked at the features being learned by the network
on a layer-by-layer level by outputting the activations. A future development to our methods
would involve looking at their interpretability, for example examining which nodes are most
relevant in assigning a class to a particular image.

In conclusion, we have developed deep learning algorithms to classify radio galaxies based on
the number of components, as well as the Fanaro�-Riley class, and have also shown that deep
learning algorithms can be competitive source finders. This application is novel and deserves
further development. For example, incorporating the ability to attribute properties such as
flux, size and angle to radio sources through regression.

In future, the continual development and refinement of deep learning models will be necessary
as more surveys are performed, detecting sources at higher sensitivities and resolutions. The
more we know about existing sources enables us to tailor the algorithms to mine data for
unusual sources.

The use of transfer learning from networks trained on radio astronomical data should provide a
more e�cient and accurate way to obtain results from future astronomical datasets, compared
to always training from scratch. The development of more algorithms that can perform cross-
matching of sources between surveys will be of increasing importance as more sources are
detected. Existing region-based convolutional networks should also be improved so they can
be trained to pay attention to relevant parts of an image and be able to distinguish whether
radio emission belongs to one, or multiple sources in an image. An integrated approach
that accurately combines source-finding, cross-correlation, characterisation and classification
would be an ideal development.

Other potential future developments include the generation or simulation of realistic radio
images based on an exhaustive study of existing ones, to see whether a machine learning
algorithm is able to detect the di�erence between the real and simulated ones. If the algorithm
is unable to make the distinction, the simulated images can be used to increase the number
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of images in a training set, which is essentially another image augmentation technique.
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