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Abstract

In this thesis, we present the computation of the four-point functions of 1/2-BPS operators
in planar N' = 4 SYM theory in the strong 't Hooft coupling limit. We perform the
calculation for all the operators with weights up to 8. Moreover, we consider several
high-weight correlation functions. The results are obtained from the effective type-11B
supergravity action, employing the AdS/CFT correspondence. The computation is done
by implementing the newly developed, simplified algorithm, in combination with the
harmonic polynomial formalism. These results are additionally used to check the recently
conjectured formula for correlators in Mellin space, and we indeed find an agreement.



Zusammenfassung

In dieser Dissertation présentieren wir die Berechnung der Vierpunkt-Funktionen von
1/2-BPS-Operatoren in der planaren N = 4 SYM-Theorie im Limes starker 't Hooft-
Kopplung. Wir fiithren die Berechnung fiir alle Operatoren mit Gewichten bis zu 8 durch.
Dariiber hinaus betrachten wir mehrere Korrelationsfunktionen mit hohem Gewicht. Die
Ergebnisse werden erhalten aus der effektiven Supergravitationswirkung von Typ IIB
unter Verwendung der AdS/CFT-Korrespondenz. Die Berechnung erfolgt durch Imple-
mentierung eines neu entwickelten, vereinfachten Algorithmus in Kombination mit dem
Formalismus der harmonischen Polynome. Die Ergebnisse werden auflerdem verwendet,
um die kiirzlich vermutete Formel fiir Korrelatoren im Mellin-Raum zu iiberpriifen, und
wir finden tatséchlich eine Ubereinstimmung.
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Chapter 1

Introduction

An old dream of theoretical physicists is to have a quantitative description of the hadronic
spectrum and their excitations. At high energies, quarks interact weakly, and the stan-
dard techniques based on Feynmann diagrams can be performed. However, Quantum
Chromo-dynamics (QCD) — the theory of strong interactions — fails to obtain analytical
results at low energies. At significant separation, the coupling constant becomes too large,
and the perturbation theory is not valid anymore. One has to use non-perturbative meth-
ods such as numerical calculations on the lattice. Thus, analytically describing Yang-Mills
theories at strong coupling regime is a great challenge for theoretical particle physics.

A new perspective in this direction comes with the famous AdS/CFT correspondence
conjectured by Maldacena [5]. It proposes the duality between two different physical
systems. Namely, certain quantum gauge theories enriched by conformal symmetry can
be described in terms of closed strings on a background, containing an Anti-de-Sitter
spacetime as a factor (the maximally symmetric space of constant negative curvature).
The most well-understood example involves maximally-supersymmetric four-dimensional
N = 4 Yang-Mills theory with gauge group SU(N) on the one side and its dual partner —
superstring theory of type IIB defined on the AdSs x S® background [6]. Though A = 4
SYM is quite similar to QCD, the latter is not conformal. Since there is no string dual
to QCD known, N/ = 4 SYM and its string partner serve as a toy model to understand
strongly coupled gauge theories in general. For instance, in selected cases, we can consider
any 4-dimensional gauge theory as N' = 4 SYM with some particles or interactions added
or removed.

In recent years significant progress was made in the spectral problem of the AdS/CFT
correspondence. It is a direct consequence of a hidden symmetry — integrability [6,7].
Indeed, in the planar limit, when the rank of the gauge group N — oo, one can solve
N =4 SYM exactly. To solve N' =4 SYM theory means to find anomalous dimensions
of local operators and to compute their three-point correlation functions. On the string
side, the limit N — oo corresponds to a free string theory described by a two-dimensional
quantum non-linear sigma model. The energy spectrum of the sigma model determines
the spectrum of the scaling dimensions of local operators in the dual gauge theory. The
fact that the corresponding sigma model is integrable allows one to find the spectrum for
strings on the AdSs x S® by using Thermodynamic Bethe Ansatz (TBA) techniques.

However, computing other observables, such as correlation functions or Wilson loops,
provides another non-trivial check of the AdS/CFT correspondence and sheds some light
on the gauge theories in general. In this thesis, we are interested in computing four-
point functions of local 1/2-BPS operators of planar N' = 4 SYM theory at strong
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coupling. In this particular limit, its dual string partner reduces to a classical supergravity
theory of type IIB defined on the AdSs x S° spacetime. A precise recipe for computing
the four-point functions in the framework of the AdS/CFT duality was proposed by
Witten [8] and Gubser, Klebanov, Polyakov [9], and is as follows: one interprets the on-
shell supergravity partition function as a generating functional for the four-point functions
in SYM theory with sources for the 1/2-BPS operators being the boundary values of
the Kaluza-Klein modes of the compactified on the sphere supergravity theory. Thus,
computation of an n-point function requires the knowledge of the effective supergravity
action - the action expanded up to the n-th order in perturbations of the fields around
their background values. Such an action for the case of four-point correlators was found
by Arutyunov, Frolov in [10-12] and several results were obtained. The first computed
correlators correspond to equal-weight 1/2-BPS operators with (lowest) weight & = 2
[13,14], k = 3 [15] and k = 4 [16]. The first four-point function featuring different-weight
operators was discussed in [17], which considers the correlator of two k = 2 and two k = 3
operators. This was shortly afterward generalized to the case in which the k = 3 operators
become arbitrary (but equal) weights [18]. The maximal amount of different operators
studied until the present was three in [19], where next-next-to-extremal correlators were
studied that generalize those in [18]. Finally, the only other explicitly known result is the
equal-weight correlation function of weight £ = 5, which was computed using a bootstrap
approach in [20]. These results, although restricted to 1/2-BPS operators, do in some
cases allow for the evaluation of correlation functions of other members of these 1/2-
BPS multiplets. For example, for operators belonging to the stress-energy multiplets it
was shown in [21] that all their four-point functions can be found from the equal-weight
correlator for 1/2-BPS operators of weight 2.

Recently the problem of finding holographic correlators in a planar strong coupling
limit has gained renewed interest. In [20,22] the Mellin space formalism was used to
analyze the structure of correlation functions of four 1/2-BPS local operators of arbitrary
weights. This culminated in an elegant conjectured closed formula for these correlators
in Mellin space, thereby extending the existing expression for equal-weight operators
proposed in [23]. The conjecture follows from reformulating the computation of four-
point functions as a bootstrap problem by imposing specific properties on the correlators
such as superconformal symmetry.

The existence of the simple Mellin-space formula is surprising when one considers
the only method known at present to compute these correlation functions explicitly. It
includes consideration of the tree-level Witten diagrams for the chosen operators, whose
vertices follow from the effective action of the Kaluza-Klein reduction of the type IIB
supergravity on the sphere S®. This computation becomes cumbersome quickly and yields
very unwieldy intermediate results, although the final result can usually be expressed in
a compact form, in turn suggesting that a simple formula such as the one conjectured
in [20] might exist. However, because of the difficulty of their computation, it is equally
possible that we have not explored far enough to discover four-point functions whose
final expression takes a less appealing form. Indeed, as of yet, all the explicitly computed
four-point functions are in some form not completely generic: they are either particularly
symmetric (equal-weights) or/and close to extremality condition where the computation
simplifies. In fact, not a single non-trivial correlation function has ever been computed
between four operators with four different weights. Also, apart from the equal weight case
for which an explicit formula has long ago been conjectured [23], no four-point functions
which go beyond the next-next-to-extremal case have been considered.
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In this thesis, we compute the four-point functions of operators with weights up to 8
plus {7,10,12,17} and {17,21,23,25}. This is a major improvement over the previously
available set of correlators. This computation became possible due to simplifications
of the algorithm used before, where for a given set of weights one firstly writes the
effective supergravity action by hand, evaluates it on-shell and then differentiates the
partition function over the sources. Already for known cases, this procedure becomes very
unpleasant because of the growing number of terms. However, we show that the procedure
can be streamlined to directly obtain the correlation function in terms of contact and
exchange Witten diagrams. These simplifications consist of a direct formula for the
exchange part and the contact part of the correlation function and can be automatized
using, for example, Mathematica.

It is convenient to express the result for the correlators in variables u and v, which
are the conformally invariant combinations of the coordinates x;. As an example, let us
present the simplified expression for the (3456) correlator. Any correlator can always be
split into the free and the interacting part, where the latter for {3,4,5,6} case takes a
form
V10 Ri23.4t24t3,

(U t14t23fl =+ uv t13t24F2 +v t12t34f3) .
N? x%zx%ﬂ%sx%ﬂ&

(3456) 1, =

All the notations are given in the next sections, and the dynamical F functions are written
in terms of contact Witten diagrams — the so-called D-functions, which are the known
special functions:

1 _ 5 ~ 7T - 5 -
Fi= —gv(Gu +28v 4+ 1) D567 — ZUD2468 — gUD2477 — gUD2558,
3 = 3 - _
Fo = _§UUD2657 - §UD2558 —3vDs567,
7 _ 1 _ 5 15 . -
F3 = —ZUU2D2666 - gv(lOu + 120+ 3)Dy567 — gUUD%'s? - §02D2576-

A particular — although not entirely new — feature of the newly computed correlators
is the presence of extended operators: it has been known for a long time that in general,
the supergravity scalar fields are not dual to the single-trace operators from the 1/2-
BPS multiplets, but instead to a linear combination of single- and double-trace operators
known as extended operators [24]. Nevertheless, for most purposes, this fact can be ig-
nored as in the supergravity limit it only affects the free part of the correlators containing
at least weight-4 operators. The only known correlators for which this effect was seen are
those from the family (22nn) for n > 3 discussed in [18]. We show the presence of the
extended operators by an explicit computation.

Our computations serve multiple goals. First of all, we present simplifications to the
algorithm that computes four-point correlation functions from the supergravity action
that, given sufficient computing power, should allow for the computation of further non-
trivial correlators. This algorithm — being a refined version of the procedure that has
been used to compute all the correlators [13-19] — is fully rigorous and does not include
any bootstrapping, like the coordinate method proposed in [20]. In particular, the simpli-
fications include an explicit formula for the exchange part in terms of Witten diagrams.
Also, we find a drastic simplification of the computation of the vertex building blocks. In
particular, we obtain new reduction formulae for different products of tensors appearing
in cubic and quartic couplings. These might even serve as a starting point to prove the
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aforementioned Mellin-space conjecture. Secondly, we use these simplifications to com-
pute a set of new previously unknown non-trivial correlators. Thirdly, all the correlators
are used to perform a non-trivial check of the Mellin-space formula for the four-point
functions of arbitrary-weight operators conjectured in [20,22]. We indeed find an agree-
ment with the conjecture. We also discuss how the Mellin-space conjecture can be used
to significantly simplify the expressions for the correlators in the coordinate space.

The thesis is set up as follows: in part I we discuss both dual theories, namely,
chapter 2 is dedicated to N’ = 4 SYM theory and the structure of the four-point functions,
while chapter 3 is about the AdS/CFT correspondence and the dual supergravity theory.
In part IT we present the main results. Chapters 1, 2 and 3 contain the aforementioned
simplifications of the algorithm. In chapter 4, we discuss the verification of the results
and demonstrate the presence of extended operators in the corresponding correlation
functions. Finally, in chapter 5, the Mellin-space conjecture is considered.
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Chapter 2

Correlators in N =4 SYM theory

The main goal of this thesis is to compute the four-point functions of 1/2-BPS operators
in planar N' = 4 SYM theory at strong coupling limit. Before proceeding with the direct
computation in the dual supergravity theory, in this chapter, we define our main object of
studies. After the discussion of the particle spectrum of A" =4 SYM theory, we describe
the representations of its symmetry group PSU(2,2|4) closely following [25]. 1/2-BPS
operators are then those who commute with half of the supercharges. They are the most
studied operators, their conformal dimension is protected, i.e., does not receive quantum
corrections, and thus, they are essential in testing the AdS/CFT correspondence.

2.1 N =4 SYM theory

We start by reminding the basic facts about the four dimensional N’ = 4 SYM theory. It
is maximally supersymmetric gauge theory which consists of a covariant derivative D,,,
constructed from the gauge bosons A,,, six massless real scalar fields ¢!, four chiral 2 and
four anti-chiral fermions v ,. Here the spacetime indices y take four values, while spinor
indices a, & = 1,2 belong to two independent su(2) algebras. Latin indices I, a refer to
the global su(4) ~ s0(6) symmetry, called an R-symmetry: the scalars transform in the
6, 1% in the 4 (raised a index) and 1, in the 4 (lowered a index) representations of the
R-symmetry algebra. All the elementary fields transform in the adjoint representation of
the SU(N) gauge group and are represented by traceless Hermitian N x N matrices.
The Lagrangian of the theory is unique and given by

1 1 .
L = Tr <waj./t:uy + §DH¢1DM§Z§] + djg(faﬁ,z)uw@a (211)

m
—%92 (0", ¢"1[ér, ds] — %igtbaad}l%aﬂ (07, wan) — %igigaibﬁdé 91, &Z]) :

The first three terms are the standard kinetic terms for the gauge field, scalars, and
spinors, while the interaction is presented via a quartic coupling of the scalars and a cubic
coupling of a scalar and two spinors. The matrices o* and o! are the chiral projections
of the gamma matrices in four and six dimensions respectively. The symbols € refer to
totally antisymmetric tensors of su(2). The action for the four-dimensional N' =4 SYM
theory can be obtained, for example, as the dimensional reduction on the torus 7° of the

d=10 N =1 SYM theory.
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The theory contains a unique coupling constant, the gauge coupling g = gy. It
has the vanishing S-function to all loops; thus, the theory is conformally invariant. The
conformal symmetry, the supersymmetry and the R-symmetry of N' = 4 SYM are parts of
a bigger symmetry group, the superconformal group PSU(2,2|4). The bosonic subgroup
of PSU(2,2|4), SU(2,2)xSU(4), splits into four-dimensional conformal group SU (2, 2) ~
SO(4,2) and the R-symmetry group SU(4).

In the next three sections, we will discuss more on the superconformal group PSU (2, 2|4)
and its irreducible representations.

2.2 Conformal algebra

Given a metric 1), = diag(—1,1,1,1) with p, v =0, 1,2, 3, the conformal algebra includes
10 Poincaré generators: 4 generators of spacetime translations, P,, and 6 generators of
the Lorentz SO(3, 1) transformations, M, = —M,,,. The others generate dilatations, D,
and special conformal transformation, four generators K. In total, 15 generators with

the following commutation relations:

[Mum PA] - i(n,u)\Pl/ — T ;4) ) [M/uu K/\] - i(n,u)\Ku - nu/\Ku) )
[M,LLI/7 M)\p] = Z'(77,u/\]\41/p - nu/\M,up - n,upMu)\ + anM,u)\) )
ID,P)=iP,, [D.KJ=—iK,, [KuPB)]=-2iM, —2in.D. (2.2.1)

Defining Map, A,B=0,1,...,5 by

M/w _%<PM_K#) _%(Pu""Ku)
Muag = ?R—Kﬁ 0 D , (2.2.2)
P+ K,) -D 0

one can see that the algebra corresponds to that for SO(4,2) with

[Map, Mcp| = i(nacMpp — npeMap — napMpc + nepMac) , (2.2.3)

and nap = diag(—1,1,...,1,—1).
The field-theoretic representations of the conformal group are carried by the quasi-
primary fields O;(x). It is said that O;(z) has a dimension A, if under the rescaling

r — Az it transforms as O(x) — A2O(Ax). The action of the conformal generators is
given by:

[P, O1(z)] =1i0,0,(x), (D, O;(x)] = i(z-0 + A)Oy(x),
(M, Or(2)] = i(2,0, — ©,0,)Or(x) + OJ(@(SW)JI )
(K, O;(2)] = i(2%0, — 23, 2-0 — 2A2,)O1(x) — 20,(2)(8,) 12", (2.2.4)

with (s,,)’; being the spin matrices satisfying the algebra of M,,.
Defining a conformal state as

0); = 0:(0)]0) , (2.2.5)
satisfying
K,|0); =0, D|0), =iA|0), , M |0); =10), (SMV)JI7 (2.2.6)
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we get the representation space spanned by vectors of the form
[17.10),. (2.2.7)

One can map the field-theoretic representations onto the so-called positive-energy
representations for which the norm and, therefore, the notion of unitarity can be defined.
Consideration of field-theoretic representations is, however, enough for our purposes.

2.3 Superconformal algebra

The generators of supersymmetry are fermionic and called the supercharges. These are
16 separate supercharges Q%, and Q;4, with ¢ = 1,...,4, which in combination with the
Poincaré generators define supersymmetry algebra with the following relations:

{Qiaa Qj}d} = 25ijPad ) {Qiaa Qjé} = :{Qio'm Q]/B}:}) ) o
(M, QL] =6,Q% — L6.°Q . [M%,Qu] = —0%Qis + 26%Qu . (2.3.1)

Here we defined

Pus = (0")aaPu Ko = (6")*K,,,
M = = 3i(0"0") My, M% = —3i(6"0") s M, (2.3.2)
and in new notations the commutators for M, reduce to
(M2 M) =6 M —6MP,  [M%, Ms] = —6%M7 4+ §sM%.  (2.3.3)

Finally, the combination of the supersymmetry with dilatations and special conformal
transformations makes a superconformal algebra. The commutators with D are

(D, Q%] = 31Q%, D, Qia) = 3iQiq - (2.3.4)
The special conformal generators do not commute with the supercharges
[K/u Qia] = _<0p)adgid ; [Kl“ Qid] == Sia(0#>ad y (235)

thus, creating new superconformal charges S%, and S;4, satisfying the following relations:

{5 81y = 205K, {54, 5) = (82,5} =0,
{Q, 57} = {57, Qja} = 0,

{Q'. 57} = 4(6%(M.7 — i/ D) — 6./ RY) |

{5, Qya} = 4(0% (M + 31 0°3D) — 6%RY) ,

(M2, 57 = =65 + 26,757, [M%,S7] = §158" — 16957
[D,S¢) = —4ise, D5 = —4iS™, |
PS5 = — (3,)°Q0. (P58 = Qu(3,)™. (2.3.6)

Here R;; are the 15 SU(4) R-symmetry generators for which the Lie algebra is
(R, RN) = 6% RY — 64 R"; . (2.3.7)
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All the conformal generators commute with R;;, while the action on the supercharges is
given by

[Rij> Qkoc] - 5kaia - }152 ka ) [Ri]‘, de] - —(Siijd —|— iéiijd s
(R, Si] = — 0% + 1055, (R}, S*4] = ¢%; 5% — 16,5k (2.3.8)

Given the structure of the superconformal algebra, we have everything to proceed with
building up its representations.
2.4 Superconformal representations and BPS-states

To find the unitary irreducible representations (irreps) of the PSU(2,2|4) group it suf-
fices to analyze the irreps of its bosonic subgroup SU(2,2) x SU(4). Acting on it by the
supercharges () one gets the irreps of the full superconformal group.

For SU(4) we consider the Chevalley basis, namely H;, Ef i = 1,2,3, with the
following commutation relations

where the Cartan matrix is
Kj=1-1 2 -1]. (2.4.2)

Then for any representation space, a convenient basis is given by the eigenvectors of H;:
H;| A1, Aoy Az) = Ni| A1, Aa, Az) (2.4.3)
with \; integers, and is uniquely determined by its highest weight state
Ef AL A )™ =0, A >0. (2.4.4)
Acting by the lowering operators £, , one obtains the remaining basis vectors.

Further, we write the generators of the Lorentz group as

Jy J o Jy
M = (Jf _}3) . M= (Jf _}3) (2.4.5)

where J., J3 and Ji, J3 are the standard generators of SU(2); and SU(2) ;. The highest-
weight state for the superconformal algebra then satisfies

EFIA 5,75 Ay Ao, A = JL A7, 75 A, gy A)™ = T4 AL 7,75 Aty dg, )™ = 0.
(2.4.6)

The supermultiplet is then generated by the action of the supercharges Q%, Qs on the
state with lowest conformal dimension A.
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Thus, the representations of the superconformal group are labeled by a conformal
dimension A, two spins j, j and three Dynkin labels [Aq, A2, As].

BPS-states
If some of the supercharges annihilate the highest-weight state, we obtain the shortening
of the supermultiplet

Qia|k>p7q;jaj>hwzo7 0521,2. (247)

One can obtain the following results

i=1,2 A=12x+2X), A =0, (2.4.8)
i:1,2,3 A:%)\g, )\1:)\2: s
i=1,2,3,4 A=0, M=X=X=0.

Equivalently shortening conditions can be obtained for the action of the @) supercharges

Qulk.p. @3, 5)™ =0, a=1,2. (2.4.9)
In this case we have
i=4 A =142 +3X3),
i=3,4 A =1\ +2)), A3=0, (2.4.10)
i=2,3,4 A=1i\, Xo=X3=0,
i:1,2,3,4 AZO, )\1:)\2:)\3:

In this thesis we are interested only in 1/2-BPS operators, those which commute
with half of the supercharges. One can see that intersection of (2.4.8) and (2.4.10) gives
representation [0, p, 0] with A = p.

2.5 The structure of four-point functions

The central objects of our study are the four-point correlation functions of 1/2-BPS op-
erators in the four-dimensional planar N = 4 SYM theory in the limit when the 't Hooft
coupling constant A = g%,; N — co. The planar limit consists of sending the rank of the
gauge group N — oo while keeping A constant. In this limit, all the nonplanar Feynman
diagrams are suppressed. We will start with a review of the structure of these correlation
functions — due to the presence of superconformal symmetry — here, see, e.g., [26], as it
will introduce a lot of our notation.

Recall that the multiplets of 1/2-BPS operators are generated from their highest

weight vectors, which we will denote as Oy with k indicating the conformal dimension.
They can be decomposed as

5k _ 6i1.-~iktil oty (2.5.1)

with Q- carrying the dependence on the scalar fields ¢* and ¢ being a six-dimensional
null vector that keeps track of the SO(6) R-symmetry of the operator. Given four weights

17



(k1, k2, k3, ky) with k; > 2 the four-point correlation function of such operators is given
by

<k’1]{?2]{?3k‘4> = <6k1 (.731, tl) te 6k4 (.2174, t4)>, (252)
where the z; are spacetime coordinates, and we indicated the dependence on the null
vectors ti,...,ts.} The correlator splits into a free part and an interacting part:

<l€1]€2[€3]€4> = <k1k’2k’3k4>0 + <l€1k}2k3k’4>mt, (253)

where the first part (kikoksks)o is the Born approximation and can be computed by
applying the Wick’s theorem. After defining

Lyj )
dij = —j, with t;; =1, - t;, 2 = (2; — g;j)2 (2.5.4)

we can state the form of the free part as:

(kykaksks)o = an (H d““) , (2.5.5)

where the sum runs over all the sets a = {a;;} and the ¢, are constants. The partitions
a parametrize all the inequivalent ways one can pair the ¢ vectors, and they can be
represented as symmetric 4 X 4 matrices with nonnegative integer entries with zeroes on
the diagonal that satisfy for each ¢

4
j=1
JF

For a given set of weights, these equations have a finite number of solutions. For later
convenience we define

H Hos (2.5.7)

=1

1<)
where a; is the [th solution to the equations (2.5.6) in the ordered list of solutions: we order
solutions lexicographically as {aq2, a13, a14, ass, ass, ass}. In fact, the entire correlator can
be written in the form (2.5.5), where the constants ¢, then become functions of the
conformal cross ratios

2 2 2 .2
_ T12T3y _ Ti4T33
u=——5, =5 (2.5.8)
L13T24 T13%24
As it turns out, due to supersymmetry the correlator factorizes further: we can write the
interacting part as

(e kakeska)ine = 7;“34 Z (Hd ) Filu,v), (2.5.9)

Note that the subscript does not refer to a vector component, but is there to distinguish four different ¢
vectors.
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where 2 2 2 2 2 2 2 2 2 2 2 2
Ri234 = digds, w1973, + dizdy w1305, + diydys i oo,

+ dyadosdsady (1223, — 2212, — 23403
12023034 14( 13T 24 12034 14 23) (2_5_10)

2 .2 2 .2 2 .2

+ diodizdaadsy (23,235 — 21,25, — 27523,)
2 .2 2 .2 2 .2

+ dy3d14da3dos ($12$34 — L14%93 — %39524)

is the fully symmetric general prefactor [27]. This time the partitions b form a symmetric
4 x 4-matrix with zeroes on the diagonal, but they satisfy the modified equations

4
j=1
JF#i

This reduces the number of partitions a significantly, implying that the correlator can
be written as a sum over only a few independent functions F;, of u and v, which are
moreover conformally invariant by construction and carry all the dependence on the 't
Hooft coupling.

We will use this decomposition of the correlator for two purposes: firstly to be able to
present our computed correlators in a compact form {F}. Secondly, this decomposition
provides a non-trivial check whether these correlators are consistent with superconformal
symimetry.

C-tensors. The N = 4 SYM four-point functions can be represented in many forms
depending on the context. In particular, we will use the language of C-tensors to compute
some of the necessary intermediate objects. The C-tensors can be used to track the SO(6)
symmetry instead of the ¢ vectors, by writing (2.5.1) as

Op = Oy (2.5.12)

k)

with the tensor C' being totally symmetric and traceless in its indices. The vector space
of C-tensors with k indices forms a representation space for the traceless symmetric
SO(6) representation with Dynkin labels [0, &, 0]. Choosing a basis in this space amounts
to selecting a set of C-tensors which we label with an upper index [, that will appear
throughout this paper:

Cl with I, = 1,...,dim([0, k, 0]). (2.5.13)

yee )
The possible contractions of four C-tensors are characterized by the number of connec-
tions between the different C-tensors. Denoting the number of connections by a;; they
should satisfy a;; = aj;, a;; = 0 and the sum conditions for a’s (2.5.6), showing that the a
partitions indeed parametrize the possible tensor structures (2.5.7) for a given correlator
(2.5.2). C-tensors will be discussed in more detail in section 3.1 of part II.
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Chapter 3

Type IIB supergravity action on
AdSs x §°

In this chapter, we briefly formulate the relevant part of the AdS/CFT correspondence,
proposed by Maldacena in [5], and gather all the necessary ingredients for calculation of
the four-point functions. More details can be found in the reviews [28-30].

3.1 The AdS/CFT correspondence

Since the early days of string theory, there have been attempts to derive quantum field
theories by taking various limits of string or M-theories. A breakthrough appeared with
the paper of Maldacena [5]. He conjectured the duality between certain quantum field
theories with exact conformal spacetime symmetry (CFTs) and corresponding string
theories defined on a particular background. The latter is a product of an Anti-de-Sitter
(AdS) space and a compact manifold. In this formalism, the field theory is formulated
on the boundary of the AdS;y; — conformally flat d-dimensional Minkowski spacetime.
Thus, one sometimes refers to the CFT as to the boundary theory, and the dual string
theory as to the bulk theory.

Most attempts to test this duality were focused on its most symmetric couple: the
CFT partner is the four-dimensional N’ = 4 SYM theory, while on the other side we have
type IIB superstrings propagating on the AdSs x S° background. N' = 4 SYM has two
parameters: the 't Hooft coupling A = ¢g%,, N and rank N of the gauge group, where
gy is the coupling constant of the theory. The AdS/CFT correspondence relates them
to the string coupling constant g, and the string tension g = R?/2ma’, where R is the
radius of S® and o' is the Regge slope, as follows:

A=4rNg,, g=V\/2r. (3.1.1)

For every string observable at the boundary of AdSj, there is a corresponding observable
in the CFT,4 and vice versa. Their values are supposed to match. This statement, when
the conjecture holds for all the values of the theory parameters, is usually referred to
as the strong form of the duality. To check Maldacena’s conjecture, however, appears
to be very difficult in all the regions of the parameter space. Thus, different limits are
considered (see fig 3.1 [6]):

e The 't Hooft limit [31] consists of keeping the 't Hooft coupling A fixed while taking
the limit NV — oo. In the perturbative expansion of the gauge theories around A = 0
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Figure 3.1: Map of the parameter space of N' =4 SYM or strings on the AdSs x S° .

this limit corresponds to a topological 1/N expansion of the Feynman diagrams. It
appears that only the planar graphs — the diagrams which can be drawn on the
plane without crossing lines — survive. That is why this regime is also called the
planar limit. On the AdS side, since A is fixed, this limit corresponds to a weakly
coupled string theory.

e One can also consider the large and small \ limits. The region of parameter space
where \ is small is called the weak coupling regime. Here one can apply the Feynman
diagrammatic techniques to computations in SYM theory. From the dual string
theory side, this regime rather corresponds to the strong coupling, thus, providing
a suitable tool to investigate the theory via its dual CFT partner. Another limit
is called the strong coupling limit, referring to the gauge theory parameter A\ —
oo. Here, however, the strings are weakly coupled, which lets us study the strong
coupling limit of the SYM theory via its string partner.

In this thesis, we consider the strong coupling limit of the planar N’ =4 SYM theory. In
this regime, the dual string theory reduces to type IIB classical supergravity defined on the
AdS; x S5 space. According to the AdS/CFT correspondence, chiral primary operators
of four-dimensional N = 4 SYM theory are dual to the Kaluza-Klein modes of type 1IB
supergravity on the AdS; x S compactified on S°: Oy <— s,*(2), z € AdS;. Here, as
before, the index I runs over the basis of the corresponding SO(6) representation with
Dynkin labels [0, k, 0]. The precise duality between operators was conjectured by Witten
and independently by Gubser, Klebanov, Polyakov in [8,9]. The relation is as follows:
one computes the on-shell supergravity partition function exp(—S;;gp) as a function of
the boundary values of the fields, sk (¥) with x € 3AdS5, and subsequently interprets it
as the SYM partition function with sources for O, being s;*(7). Thus, in practice, the
correlation functions of interest can be determined from the expression:

(O (T1) O (32) O3 () O (7)) =

&4 g
55T (71)0T (F2)0sD (Z3)0sT (7) 0L~ 7)

sp—0

(3.1.2)
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3.2 Effective supergravity action

To compute an n-point function, one has to expand the action up to the n-th order in
perturbations of the fields around their background values. This becomes problematic
since there is no manifestly Lorentz-invariant action for type IIB supergravity because of
the presence of the self-dual 5-form field strength [32], though the covariant equations of
motion are known [33,34]. However, later on, it was possible to find the Lorentz-invariant
Lagrangian by including additional auxiliary fields [35,36].

This action was used in [10-12,37] to derive the relevant quadratic effective action for
the type IIB supergravity on the AdSs x S° . Representing the gravitational field and the
four-form potential as

Gun = gun +hun, Aunre = Aunro + aunrg, F=F+f, (3.2.1)

decomposing the action up to the second-order one gets the quadratic action. After
imposing the gauge conditions, elaborating the action term by term, and performing the
field redefinitions, one ends up with the covariant quadratic equations of motion which
admit lagrangian description.

To obtain cubic and quartic Lagrangian, it is necessary to know only the equations of
motion of the 4-form potential and the metric. These are:

Fuyov; = %GML..MIOFMG”'MIO ;
Ryn = %FMMl...M4FN MMy (3.2.2)
Here M, N,...=0,...,9 and
Fary v = 500 Aty i5) = Oty Adp.i; + 4 terms. (3.2.3)

The dual forms are given by:

6]\41...]\410 — GM1N1 . GM10N10

1
cor.o=V—-G, "= _\/?G ) €N;..Nig
1
(E) gy nr, = E€M1...M10FM’C“”'M1° = HENI'"NIOGMlNl SRR €5 VS NAD 3 N A N
(3.2.4)
The corresponding AdSs x S® background solution is as follows:
1 ) )
ds® = ﬁ(dxg + mijda’dr?) + dQZ = Gynda™ da™
0
Rabcd = _Gachd + GadGbc 5 Rab = _4Gab )
@a,@w& = Goe'yG,B(S i Ga(SGﬁ'y s Raﬁ = 4Goc,3 s
Fabcde = €abcdes Faﬁfy&e = €afvde (325)

where the Latin a,b,c, ... indices refer to AdS and the Greek «, 3,7, ... indices - to the
sphere, and 7;; is simply the 4-dimensional Minkowski metric.
The gauge symmetry let us impose the de Donder gauge:
1

Vahaa = Vah(aﬂ) = VaaM1M2M3a = 0, h(ag) = hag — ggagh:; . (326)
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These conditions imply that the following representation of the 4-form potential compo-
nents of the form aqg.s and aqq3, can be performed:

Aapys = Eaﬁ*y5eveb7 Qaafy = Ea5756V6¢Z . (327)

To proceed, we expand the fields into spherical components

he(z,y) =) ﬂx)yf( b(zyy) =) b (@)Y (y)

hao(z,y) = > hly@)Y'(y), VEYF = —k(k+ 4)Y’“ = —f(k)Yk,
haa(2,) = th NN ED R AC
( —4AYF = —(k+ 1)(k: - 3)Y’“ : (3.2.8)
J(@,y) =D ' @)Y ), (V2=10)Y)s = —(K +4k+8)Y(y),

and redefine the fields as follows:

7, = 10ks;, + 10(/{3 + 4)tk , b= —sp+ 1,
ey = o + JabTe + Va Vil

AR =pE 4k +3)¢F, CF=hF 4k +1)0F, (3.2.9)
4 4 2k(k — 1) 2k +4)(k + 5)
— t = -5 — .
s e L Kyl k+3 "

Together with (3.2.9) one has to perform other field redefinitions to make the equations
of motion lagrangian and to remove higher-derivative terms from quadratic terms in the
equations of motion.

This procedure was applied by Arutyunov, Frolov in [10-12,37] and the explicit ex-
pression for the relevant part of the action was obtained:

2

N
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Here the quadratic terms are given by

B 1 1
£§> = ZC(sk) (—ﬁvuskV“sk — §m,2§si) ,

k

k
1 1
£ = e (~5Vunvro - gt ) (3211)
k
A, 1 1
55 )= Z C(Auk) (—ZFiu,k(Amk) - §m?4Ai,k) )
k
C, 1 1
B0 = S e(Con) (- 3FRAC) — i CL).
k
1 , 1 1
ﬁgwy) - Z C(Puwk) <_va¢uv,kvp¢g + EV,OSOZMV/\%\MJC - §Vu90£,kv>\902’u
k
1 1oxTP LV 1 w1 P2
+ VeV + 2 = S + 2+ (e )
(3.2.12)
with the corresponding quadratic couplings being
32(k — 1)k(k +2) 32(k —2)k(k+1) 1
= t) = S
k k
C(Apk) 2 +1)’ (Cu) = 2k —1) C(Purw) =1 (3.2.13)
The cubic terms may be written as follows
£gs) == 511]2[38118[2813 y L::(gt) = T[1[2]3811 Sl2tl3 > £g¢) == (1)11[2]38[1 812¢I3 s
LM = A" VESPAR L = O st VSRR L) = G TR
(3.2.14)

where (...) denotes symmetrization and the stress-energy tensor 7),, has the form

1 1
Ty = Vus"V,s" — 9 (V’”shvpsb + §(mf +m3 — fk)511312> . (3.2.15)
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The corresponding cubic couplings are

256y ap az B (X2 —4) (B2 —1)
3(k1+1)(ko+1)(ks+1)

256 g (a3 — 2) (a3 — D ag (s + 1) (a3 +2) 2

(k1 +1) (k2 + 1) (ks — 1) 7

8 (as — 1) oz (25 — 2)
(k1 + 1) (ke +1) 7

) . 4agky D28 - 2)(28+2)

el B e ) (R + 1) (ks + 1)
16 (s —1)az(ag+ 1) k3 X

5111213 = 123

T111213 = Q123

(I)111213 = D123

C = ,
LIoT3 123 (o + 1) (ks + 1) (ks — 1)
8@3 (ag -+ 1) > (22 + 2)
G = a 3.2.16
LIaT3 123 e+ 1) (ka4 1) ( )
Finally, the quartic terms are computed as follows:
Li=Ly+ P+,
£(4) (S( ) + A(4) ) shy g2 (SISV“SLI)
I1151314 112131y 123 v )
LY = (SE) o+ AV 1) sV, s2slavmsts (3.2.17)
E = (511}21314 + A11121314) shslstsh,

The corresponding quartic couplings are listed in appendix C. The repeated indices
I, ..., I, here imply the summation over all possible [0, k, 0] representations as well as
summation over the basis of the representation space:

dim([0,k,0])
grs’ = Z Z 91,5 (3.2.18)
k>2 Ip=1
We also used the following notations
1 1 1
=§(k2+k3—]€1), Qg §(k1+k3—k2)7 063:§(k1+k’2—k’3),
1
Y §(k1 + ko + k3), (3.2.19)

CL123=/ YiyRy!s  pog

/ VOYIVIYRY B by = / veyhyyls,

Computation of the a-, t- and p-tensors for arbitrary weights k presents one of the
main difficulties and is discussed in chapter 3 of part II. Knowing them, one can easily
compute the necessary couplings and proceed further to computing the on-shell value
of the supergravity action. In the next part of the thesis, we present our main results,
namely, the simplifications which allow us to compute any four-point function of given
weights. This was used to check the recently conjectured analytic closed formula for the
four-point functions in the Mellin space for many different non-trivial combinations of
the weights.
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Part 11

Supergravity correlators
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Chapter 1

Contact part

Recall that the relevant for our purposes part of the effective action is given as follows:

S = N2 [dZ]([,Q + £3 + £4) (101)

872

where each of the terms was defined in the previous chapter. Here we use the Euclidean
5

d
AdS metric [dz] = —52, which leads to the change of the overall sign for the action. The
0

Lagrangian splits into a quadratic part Lo, a cubic part £3 and a quartic part £4. The
first two contribute to the so-called exchange part of the correlator because they give
rise to exchange interactions captured in Witten diagrams such as in fig. 2.1, while £4
forms the contact part as it leads to contact interactions (see fig. 1.1). In this and the
next chapter, we will present a streamlined method of how one can directly compute the
contribution to the four-point function coming from these two parts for a particular set
of weights separately, starting with the latter.

1.1 Simplifying the contact term

Let us remind the expression for the quartic lagrangian (3.2.17):

Li=LP+ P+,
£(4) (551}21514 + A(I?)IZLJLL) sh vusbvz(slavush)?
£(2 (551}21314 + A(I?TQI;;L;) s"'V 5P sl ksl (1.1.1)
ﬁz(xo = (551}21314 + A11121314) shsteslosh,
Mention again that the repeated indices I,...,I; here imply the summation over all

possible [0, k, 0] representations as well as a summation over the basis of the representation
space:

dim([0,%,0])
as' =D D st (1.1.2)
k>2 I=1

The various couplings S and A, see appendix C, depend on contractions of the previously
discussed C-tensors (via the products of a-, t- and p-tensors) which are Clebsch-Gordan
coefficients for the tensor product of SO(6) irreducible representations. Their explicit
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expressions depend on the chosen weights, and their computation becomes complicated
quite quickly. Luckily, there is a fast and straightforward approach to find all the neces-
sary terms. For this, we refer the reader to the chapter 3.

The explicit expressions for the quartic couplings, as can be seen from appendix C,
take up approximately ten pages. This ends up in expressions with huge rational num-
bers. However, in all the computed cases [14-19] the authors were able to simplify the
final expressions for the contact lagrangian using integration by parts and symmetries of
the tensor structures involved. To compute the contribution into the correlation function
coming from the contact part, according to (3.1.2), one has to evaluate the contact ac-
tion on-shell and calculate the variational derivatives. In this chapter, we show how this
procedure can be streamlined to get the contact part of the four-point function directly.
We found an analytic expression for the contact part for arbitrary weights k1, ..., k4. Note
that this expression does not contain any huge rational numbers when evaluated. How-
ever, it will not be presented in this thesis because we were not able to find an analytic
expression for the full correlator. Instead, we show how one can obtain the contact part
of the four-point function automatically in Mathematica. One can further use the Mellin
expression for the correlator to find a significantly simplified answer in the coordinate
space, see section 5.3.

The first simplification follows from a closer analysis of the four-derivative terms 5514):
it was shown in [24] that these terms can be made to vanish in the extremal ky = ko+ks+ky
and sub-extremal ky = ky + k3 + k4 — 2 cases. Moreover, in appendix B we show that
the four-derivative terms vanish for all four-point correlators of 1/2-BPS operators. This
observation was of big importance to prove since it is one of the assumptions for finding
the expression for four-point functions in the Mellin space. This part will be discussed
in chapter 5. To show this, one has to perform integration by parts in the expression for
Cf‘), which produces contributions to lower-derivative terms Effl_ﬂ) and £i4_>0). However,
in the same manner as in [3], using the reduction formulae (3.1.19) and (3.1.22), one can
show that the contribution ﬁffHO) vanishes identically. Thus, the full contact lagrangian

can be written as
£ 4 29 4 20, (1.1.3)

where
‘64(14_)2) = <S§f}213[4 (m% + mg + mg + mé21 - 4) - 4‘4%)121314) shV,UShSIBVMSLLa (114)

and m; denotes the AdS mass of the corresponding scalar field.

Now one has to compute the contact part of the on-shell action. For this we solve
the equations of motion for scalar fields perturbatively: si’“ = 5?“ + 52’“, where 52’“ is
the solution of the linearized equations of motion with fixed boundary conditions and
corrections §£’“ correspond to scalars with vanishing boundary conditions. The solution

of the boundary problem is given in [8]:
) = Cu [ 7K (e D (), (1.15)

where the bulk-to-boundary propagator reads as

Ky(z, &) = (ZZ—SHP)IQ (1.1.6)
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Figure 1.1: A contact Witten diagram.

For now, we will neglect the normalization factors Cj and take them into account when
computing the full correlator. According to [38], they are

1 r
02 = — and Ck = <k)

W 2. 1.1,
on? Tk —2) k> (1.1.7)

To proceed, we define the so-called D functions', or contact Witten diagrams (see fig.
1.1), as integrals over the AdS; space, for details see e.g. [13,18]:

Dk1k2k3k4 = Dk1k2k3k4($1,3§2,3§'3,$4)

= /[dZ] Kkl(z,fl)KkQ(Z,fQ)KkS(Z,fg)Kk4(Z,f4). (118)

and use the identity

V;LKm(Z,fl) V”Kkz(z,j)g) =
klkg (Kk1 (Z,fl)KkQ(Z,fg) — 2|f12|2Kk1+1(Z,fl)Kk2+1(Z,f2)) (119)

To compute a correlator with specific weights, one needs to compute the quartic couplings
corresponding to all the 24 permutations of the weights. Each of them is multiplied by the
correspondingly permuted set of D functions, as follows from carefully going through the
steps: to compute a correlator with fixed weights {kq, ko, k3, k4} one restricts the infinite
sum in (1.1.1) to representations which correspond to these weights. The sums over k’s
are not ordered; therefore there are 24 nonzero summands corresponding to the 24 permu-
tations of the indices {k1, k2, k3, k4 }. Even when some of the weights are equal, potential
overcounting is compensated by functional differentiation when computing the correlator.
Let us illustrate this procedure on the two-derivative term? gia34 s's*V,s3V*s*, where
g1234 schematically denotes the corresponding coupling:

/[dz] J1234 3152Vus3V“54 = (1.1.10)

/[dz] (91234 S5, 57, V uSp, VP sp, 4 Gr23a S, S, Vusp, Vs, +..) = /d4 1d od g3 d

— —

X [g1231 ksks (Dryioksks — 2|5a]” Diykoksr1kat1) S, (51)Sn, (G2) S5, (F3) 55, ()

+ g1234 k1ka (Digrokrky — 21514)* Drghoks +1k0+1) Shy (1)1, (o) s, () sy, () + P

'Note, that the set of indices {ki, k2, k3, ks} in the notation for the D-functions is always ordered in such a
way that it corresponds to an ordered set of variables {Z1, &2, T3, T4}

2Here for simplicity we write the summation indices I1, ..., Is as 1,...,4. The range of these summation indices
depends on the weight k;.
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Here the dots stand for the other 22 terms and we consequently used equations (1.1.5),
(1.1.9) and (1.1.8). Now, one differentiates over the boundary values of the fields
sp (@1), ..., st (Z4) and gets

1234 kska (Diykaksks — 2|Z34]° Dy gkt 1k0+1)
+g3214 k1ka (Diy kg — 2| 14> Diey 4 1kakskas1) + - (1.1.11)

Thus, in practice, one can avoid writing down the relevant part of the contact la-
grangian altogether and write its contribution to the correlator directly, by simply find-
ing the couplings corresponding to the 24 permutations of the weights and multiplying
them by a correspondingly permuted set of D functions as in (1.1.11). This will give
the contribution to the four-point function from the contact terms up to a normalization
factor, which will be taken into account after computing the exchange part in the next
chapter.
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Chapter 2

Exchange part

2.1 Simplifying the exchange term

The standard method of computing the exchange part, see, e.g., [14], is again to evaluate
the quadratic and cubic terms on-shell and differentiate over the boundary values of
the fields. For this one solves the equations of motion perturbatively and substitutes
the solution into the full exchange lagrangian. Writing down the latter becomes very
unpleasant for higher-weight cases because of the growing number of descendants coupled
to the scalars in the cubic terms. However, as for the contact part, the direct procedure
can be streamlined, and the contribution to the non-normalized four-point correlation
function coming from the quadratic and cubic terms can be written as the following sum
of the s, t and u channels:

_ I Dol olsIaT ok Iy Io T rols I I qkitd
(k1k2ksks)Exchange = { E C S VR SIS hokska T § a( tk T R S ko kaka
Z oLy o Is LT k42 Z LIy gTsIaTeyk
+ C (b Sk1k2k}3k4 + C A A Vk1k2k3k4
Iy IoTg T LaTux 7 k42 Iy oIy I3 LaTx ok
+ E , C c Vibaksks T E : G G Tk1k2k3k4}
C 1, k C Puv, k s

k4
N {ZQ Slllglkslﬂdksklhkzh + Z tk TIlISIkTIZIUkSkJFkngm
I IsTp o I Ta I k42
+ ZC ¢k Phlslilzla kSk1k3k2k4+ZC
I IsTe ~IoLaTexrk+2
+ Z C(Cﬂ C sl Izl ka1k3k2k4 +Z
" {Zc
1 L IuTe ATaIsTuxrk
+ Z <(¢ krkakoks T ZC A VAT ARV ok

1 I 141 IPYEYS k+2
+ 2 o) TR YT +Z

Izl Al2lslkngk
k A A Vk?1k}3k}2k}4
IL

I I3y Iyl
Ghislng Tklkm}

C‘Puuk t

4 L LD Il qhtd
+Z C(tk T 144 kT 243 kSk1k4k2kd

I 141y I I3y
Gt Tklmm}
pu,

u

(2.1.1)

Here the exchange Witten diagrams, S, V and T, are multiplied by the corresponding
combination of quadratic, ¢, and cubic, {S,T,®, A, C, G}, couplings that were derived
in [10-12] and were discussed in section 3.2 of part I . The appearing sums run over the
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Field Sk Ak Cuk Pk Uk Puvk

Irrep | [0,k,0] | [1,k—2,1] | [1,k—4,1] | [2,k—4,2] | [0,k —4,0] | [0,k — 2,0]
m? | k(k—4) | k(k—2) k(k +2) k% — k(k+4) k% —4
A k k+1 k+3 k+2 k+4 k+2

Table 2.1: KK-modes contributing to the exchange Witten diagrams.

possible set of exchange fields, and the summation convention is the following:

dim([0,%,0])

2= 2. 2

ke{Exch. fields}  [=1

Note that the permutation of the weights {k1, ks, k3, k4} takes place together with the
permutation of the coordinates, e.g. SF . r.x. = S rkoks (€1, T3, T2, T4). The exchange
fields which can show up in an exchange diagram are restricted by the SU(4) selection
rule. Namely, these are the fields which appear in the intersection of non-vanishing cubic
vertices, see table 2.1. This is determined by the following tensor product decomposition
of representations:

min(k1,k2) min(kq,k2)—

- XX

An exchange field must occur on the right-hand side of this decomposition for both the

ingoing and the outgoing fields.
The exchange Witten diagrams have representation in terms of exchange integrals,
which are defined as follows:

0, k1,0] [0, ks, 0] [ er — Ko + 25, 7. (2.1.2)

ST kakska (T1, T2, T3, B4) = /[dz][dw} K, (2, 31) K, (2, 82)G* (2, w) K, (w, @3) K, (w, Ty),

k —
Vk1k2k3k4 (Z1

- / [d2)[dw] Ky, (2, 71) V1 I, (2, 82)GE (2, w) Ky (w, £3) V¥ Ky (w0, 74),

ng

T kahois (F1, T2, T3, Ta) = / [de][dw] T (2, &1, T2)GE, 0,y (2,w0) T (w, &3, £4), (2.1.3)
where G*, wa and wa v are the scalar, vector, and the tensor bulk-to-bulk propagators
correspondingly. A simple method to compute the exchange integrals was introduced
in [39], and further generalizations appeared in [15] and [17]. As it turns out, they can
always be represented as a finite sum of D functions.

Further, we derive eq. (2.1.1) and in the next section, discuss how to compute the
exchange integrals.

2.1.1 Scalar exchange

Here we restrict ourselves to exchange by a scalar field s; with the mass my in the s
channel (see the Witten diagram in fig. 2.1). The contribution from the other two
channels is obtained by the corresponding permutation. It can be easily generalized
further to an exchange by the scalar fields ¢ and ¢.
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k?z k4

Figure 2.1: The exchange Witten diagram where a scalar of weight k is exchanged in the s
channel.

We start with the corresponding quadratic and cubic terms!, which can be found
in [12]:

. 1 1
£ = Z C(sk) <—§VMSkV“Sk — §m28i) ,
K

L;(y,s) = 511[2]3811 812513. (214)
From here we obtain the equations of motion:

aﬁ(s)
2 2 _ 3
C(sk)(Vu —my) Sk = — B (2.1.5)
We solve them perturbatively: s, = 5 + i, where

(Vi - mi) Sp = 0,

1 oL
C(sk) Osp |
S$—S

with fixed boundary conditions for § and zero boundary conditions for §, and introduce
the bulk-to-bulk propagator G* as the solution of

(V2 —m}) GF(z,w) = —0(z,w). (2.1.7)

| oLy (w)
51(2) = o [l (—ask

Next, we use the equations of motion to get the contribution to the four-point function
coming from the quadratic term:
> Sk- (2.1.9)
S—8

(s)

e _ _1 0L

g =
2 0s k

n order not to obstruct the reading, we omit the representation index I and write s, = 5£k~ However, in

the expressions similar to that one of L3, the usual summation convention as for (3.2.18) is assumed.

(VZ - mi) §k =

: (2.1.6)

We find

) G*(z,w). (2.1.8)

S$—S
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The cubic term contributing to the four-point correlator must be of the form §55 and can

be computed as follows:
oLy
R e 5. 2.1.10
3 ( aSk i Sk ( )
S—S
In this way, we obtain the exchange part of the action:
s—>§>

1 oLy (z) oLy (w)
Sexann() = gy @l (a—k %> cle (a—k

(2.1.11)
Writing down the cubic terms of interest explicitly:
LS = 6551, 51512 51 + 651,151 51 sk, (2.1.12)

we find

SEXChange (Sk) = Z
k

1
2C(5k) /[dZ] [d’LU] [6311121k§£11§£22 + 6SI3I4I’€§£;§£1:| (Z) . Gk(z7w)

’ [65111211@5?15?2 + 65[3I4Ik§£?;,§£i] (w>
(2.1.13)

Finally, using the solution (1.1.5) of the boundary problem and computing variational
derivatives, we obtain the first term in (2.1.1).

2.1.2 Vector exchange

Let us now consider the exchange of the vector field A, with mass ma = ma(k).
Knowing the quadratic and cubic lagrangian:

A 1
[é 2 = ZC 1 k < ,uz/k QmAQAAi,k) !
ﬁz(J,AH) _ A11[213811 VNSIQA{;S’ (2.1.14)

we obtain the equations of motion for the vectors A, ;:

oLy
AR

C(Auk) (VY Fypp —miAus) = — (2.1.15)

We again write the solution as A, = flu + flu, where flu correspond to the linearized
equations with fixed boundary conditions and A, are the corrections with vanishing
boundary conditions:

VVFWV'“,]C — miA#,k = O,
1 ack™
C(Apr) OAIF

VY Eyupe —mA A, = — (2.1.16)

S—S
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Introducing the vector bulk-to-bulk propagator G, satisfying the equation

pv
\%a (VpGﬁl, - VNG';p) - mZGZV = —gwi(z,w), (2.1.17)
we find
- 1 aﬁ(Au) 5
A#,k = m/[dw] ( 8/:131’71“ > G# ’k(z,w). (2.1.18)
H —5

With the help of the equations of motion we get the contribution to the four-point function
coming from the quadratic term:

E(A,u,k) — _1 aﬁéA“)
2 2\ 0A,,

) Ak (2.1.19)

The cubic term contributing to the four-point correlator must be of the form §V“§f~1u
and can be computed as follows:

&C(Au) ~
Lier) = 223 A (2.1.20)
0A, i s
S—S

Summing them up and substituting A, one gets the contribution to the exchange part of

the action:
1 8£(AH) aL(Au)
SExchange(Au,k) — M/[dZ] [dw] ( 8143 i ) Gfa/(Z)w) ( azj B .
Hs UL PRI 7T s

(2.1.21)
Writing down the cubic terms of interest, containing the exchange vector A, ;, explicitly
A

Eé ) = Aflfﬂkséll ?usg‘/élﬁjk + A1314Ik8£ivuséi14/i}jk’ (21.22)

we find

1 _ _ _ _
Stxenange () = 3 527e) / [d2][dw] [Ahmksg Vsl 4 Ay, 50 Vel } (2) x
k
wa(zaw) [Alﬂszgéllvygg + Af3f4fk‘§£§,?y‘§£ﬂ (w)

(2.1.23)

Finally, substituting the solution (1.1.5) of the boundary problem and computing varia-
tional derivatives, we arrive to the corresponding term in (2.1.1).

2.1.3 Tensor exchange

Finally, consider the exchange of the tensor field ¢,, , with mass squared f;. Again we
start from the quadratic and cubic lagrangians:

v 1 v 1 1
ng ) _ Z (——Vpgoﬂ,,,kvpsoif 4+ §vp¢£uvxgpmk — —VMSOZ,kVA¢2’u

- 4 2
1 M P, AV 1 o4 1 P \2
+ VeV ok + 2 = fe)tuwer” + 2+ f)(Gn)” )
Eé@uu) _ Gh]glg,Tlfll,IZSOMV’IS 7 (2.1.24)
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where (...) denotes symmetrization and the stress-energy tensor 7),, has the form
n L1 phie Jo . Lo oo 2 L I
Ty =V (us'tVys? — 39w VP sV 52 + §(m1 +m;— fr)sts? ] . (2.1.25)

From this we obtain the equations of motion

Wwe)\@p)\,k = —vap%w,k + vuvp@pu,k + vuvpsop,u,k - VMVVSOQIC
1
(U = 2+ 56+ f)geis)
aﬁ(@w) 2 &C(SDW)
p et B 3 P 2.1.26
9 30 o g ( )

We again represent the solution in the form ¢,, = ¢,, + ¢, and introduce the bulk-to-
bulk propagator wa o as follows:

2
WNLJAG]PC)\M/V' = (guu’gw/ + G Go — §9W9u/1/’> 6z, w). (2.1.27)
This let us write the correction ¢,,, in the form
1 oLy
Pk = /[dw] G " w) | = . (2.1.28)
ol _
S—S
After integration by parts £§“"W’“) takes the form:
(L) 1 2 0Ls
£2Lp'u k) _ _Z_l |:Wlily)>\goﬂ/\’k + ggl“’ (agpp)\kgp)‘ . (2129)

Using the equations of motion, one finds the contribution of the quadratic lagrangian to
the four-point function:

E(@uu,k) — _1 a[,gp“”)
? 2 a@uv,k _
S5—S

) Bk (2.1.30)

The contribution of the cubic term must be of the form Tu,,gé“”, where T;w =
and can be computed as follows:

(Ppv)

E(‘Puu,k): 853%
’ 0Pk _
S—S

/“’|s—>§7

) B - (2.1.31)

Thus, the corresponding part of the action is given by

(®ur) (Pur)
a‘ci;p ) Guuwu’,k(zjw) <8£3§0

1
SExchange (Sopu,k) =3 [dZ] [dw] nv 7
2 Oy o
k = k

S—S

) (2.1.32)

Writing down the cubic terms of interest, containing the exchange tensor ¢, x, explicitly

Ez(fuv,k) = Gh[zIkT;fl]QSOuka + GI3I4IkT,L{iI4S0MVJk7 (2133)

v
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we obtain

SExChange((p,Lw,k) = /[dz] [dw] [thzlkT;{rl/IZ + GI31411€T£;I4] (Z) X

Gy (2,0) [Grinn, T + Grnn Tt (w).
(2.1.34)

Finally, using the solution (1.1.5) of the boundary problem and computing variational
derivatives, we arrive to the corresponding term in (2.1.1).

2.2 Computing the exchange integrals

The method of computing the exchange integrals (2.1.3) was developed in [39], and further
generalizations appeared in [15] and [17]. If one concentrates only on the z-integrals, then
the idea is to use the conformal symmetry to bring the integral into a simple form. Next,
based on the conformal invariance, one can propose an ansatz for the z-integral. The
action of the wave operator reduces the problem of the direct computation of the z-
integrals to solving a system of differential equations. The latter presents no difficulty if
one writes a solution in a polynomial form. In some cases, it is possible to write down the
closed analytic formula for the exchange integrals, but in general, the computation can
be easily automatized, e.g., using Mathematica. Let us illustrate this method in more
detail for each case.

2.2.1 Scalar exchange

Here we consider the propagation of the scalar field of weight A and mass m. The
integrals of interest are given by:

S§1A2A3A4(fl,fg,fg,f4) = /[dz][dw] KAl(z,fl)KAQ(z,fQ)GA(z,w)KAS(w,f3)KA4(w,f4).

(2.2.1)
Let us concentrate on computing the z-integral first:
dd+lz A
A(w, 21, 25) = / o G2 (u)Ka, (2, 71)Ka, (2, 79) . (2.2.2)
0
Firstly, to simplify the integral (2.2.2), one performs the translation ¥} — 0, ¥y — Z9; =
To — &7 and the conformal inversion
LTy 2 Wy
Z Z, = w, = 2.2.3
e TR T Wy 229
The integral thus takes the form
A(U}, fl, fg) = |f12‘72A2 [(U)/ — ’f/12) (224)

where

Iw) = [ o cAw ™ (2)™ (2:25)



Further, note that invariance of I(w) under the scale transformation w, — Aw, and
under the d-dimensional Poincare subgroup of SO(d+ 1,1) implies that /(w) must be of
the form

I(w) = (we)*2 X (t) (2.2.6)

with ¢ given by
2 2
p=do_ W (2.2.7)

w? = wd [

and Ay = Ay — A, Applying the wave operator (— + m?) to I(w) and use of the
equation of motion for the propagator G leads to the inhomogeneous second order
differential equation for the function X (t)

A4t —DEX" + 4t [~ A+ (A + D)t + 1 X + (4 — Ap) Ap+m?) X =22, (2.2.8)

It can be reduced further to a system of linear equations for the coefficients a; in the
polynomial expansion

X(t) =) wt*, (2.2.9)

which can be easily solved by equating the coefficients at equal powers of ¢t. It appears
that the series (2.2.9) truncates, and after inverting back to the original coordinates, one
finally gets

kmax
SﬁlA2A3A4 (fb 527 f37 f4) = Z ag ’IElQ|72A2+2kDA17A2+k,k,A37A4 ; (2210)

kmin

with kmin = (A — Alg)/Q and kmax = AQ — 1.

2.2.2 Vector exchange

The most general Witten diagram, describing the exchange of the vector field from the
multiplet (sa,...) with mass M, which is coupled to scalar fields s, of different masses
ma,, has the following integral representation:

V21A2A3A4 (flv f?7 537 CC_t4) -
/ (d2][dw] Ka, (2, 71) VK, (2, 5) G5 (2, 0) K ay (10, 75) VK, (w, 7).
(2.2.11)

To simplify the z-integrals

d+1
20

L dd+1z ~ ~
A (w, 2, 7s) = /—Gﬁy(z,w) KAl(z,xl)?”KAQ(z,xg),

we again use the invariance under translation A, (w, 1, 72) = A, (w — 24,0, Z12), where
T19 = Ty — 71, and the conformal inversion w), = w,,/w?, x, = x,/x*. This leads to the
following form of the z-integral

1

Ay (w, 7y, 7o) = |flg|*2ﬁ2ﬁjw(w)fﬂ(w’ — 7)), (2.2.12)
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where J,,(w) = 0,, — %w#wy, and
ditly L (20 A2
L(w) = /F%(w,z)z@l‘? (Z—g) . (2.2.13)

We write the following ansatz, with A1y = A} — Ay and t = wd /w?:
A Wy A 5,u0
I,(w) = wy =S X(t) +wy ==Y (t). (2.2.14)
w Wo

The next step is to apply the wave operator —V*V [, + M 2], to both expressions for
I,(w) and use the equations of motion for the propagator Gi,. This will lead to the
coupled system of inhomogeneous differential equations for the functions X (¢) and Y'(¢).
We omit the tedious calculations and present the result:

2Nt (X +Y") + tALX + MY = —Apt2,

4t = DE (X" +Y") 42t (A +4)t — 2A55) X (2.2.15)
+2t (4t — App) Y+ (M + App (—A1p + 2t +2)) X = —2A,¢%

It can be easily solved if we assume power series expansions
X)) = att, V()= Wt (2.2.16)
k k

with kpin < k < kpae. Substituting this into the system (2.2.15) and equating the
coefficients at equal powers of ¢, one finds the coefficients a; and b,. It appears, that the
series terminates at

3—2A 1
Knin = T” +VIHAME ke = Bp — 1. (2.2.17)
To recover the vector z-integral in terms of the original coordinates we use
wy — o
0 U}% + (U7 - l_"1)27
2
w =2 Wo Wo
t =
(w =2 T g (0 = )P+ (0 - )
P S - (2.2.18)
1 \(w) (W — @) Q.- (w—125),  (w—71),
w2 I (w = &) (w3 (w— )P
1 9o 00 (w — )
J, = S R, =12 L
7/ )w6 T w (w — 7)?

Computation of the remaining w-integral is straightforward.

2.2.3 Tensor exchange

Finally, consider the exchange of the tensor field from the multiplet (s, ...) with the mass
squared f, which is coupled to scalar fields sa, of different masses ma,

TR, a,nu0, (T1s o, Ta, Ta) = / [d2][dw] T (2, 1, T2) Gy (2, w) T (2, T3, Ty)
(2.2.19)
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and the corresponding z-integral

dlz A '
A (w, 71, B) = / it Gl (20T (2,1, ). (2.2.20)
0

Here the stress energy tensor 7}, (2.1.25) is written in terms of the bulk-to-boundary
propagators (1.1.5):

— — — v — ]' v — —
TH (2, %1, %) = VKA (2, 7)VY K, (2, 7o) — 59“ [V, Ka, (2,21)VP K, (2,75)

+5 (ma, +ma, — f) Ka, (2,8 Kay(2,3) | - (2.2.21)

N | —

To compute the z-integral we again use translation A, (w, ¥, T2) = A, (w — 71,0, 712)
. . !/ 2 = = 2 . .
and perform the conformal inversion w;, = w,/w*, ¥, = ¥, /z*. This gives us

Lo L. - 1 .,
AMV(waxbm?) = §|.T12| 282 Jﬂ)\(w)JVp(w)[)\/J(w, - x/12)> (2'2'22)

(w?)?

with

dd+12 I 2 Ao
L (w) = / A (w,z){VWZOAlVV,) (3)

<0
/ Z A 1 2 Ag
o [958 () S emt= s (2)°]
(2.2.23)
We write the following ansatz
Lo (w) = w [guh(t) + PuPo(t) + V.V, X (1) + V(. ()Y (®)] , (2.2.24)

where P, := 6,0/wo and h(t), ¢(t), X (), Y(t) are four unknown scalar functions. Now
we act by Ricci operator on both expressions for 7, (w) and use the wave equation for
the propagator Gﬁw,y, (w, z). Equating the coefficients of the different tensor structures
appearing in the ansatz for I,,(w), we, thereby, reduce the problem of computing the
z-integral to solving the system of differential equations. We again present only the final
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expressions, leaving the computation behind:
V.V, [-3h — ¢+ (=AL +2A0 + f) X +2A,Y] =0,

A4t —1)¢ + 49+ 4 (A, + Ap) tt — )X +2 (241 — AL) X
+8A (1 — )Y —2(4A1 + )Y + 6A10h = —4A1% 4 ¢

—GtAlgh, -3 (A12 + 1) Axh + (f — 3A12) )
+6tALX + 20 fY' +2 (3A%L, + f)Y =0,

8
487 (t — DA + <4A12(t — 1)t +4t(t + 1)) h' + (—A%Z + 7TAq2 + g(f + 3)) h

+4t(t — 1)¢ + (%(f +24) — A12) ¢

+4(1 — )t (A12 + g) X"+ (—%ft(t +1) — 8A12t) X’
+4(1 —t)t (mu + g) Y+ (2A§2 — 16A5 — %f) Y = g(m% +m3 — [tz
(2.2.25)
We pick up the trivial solution of the first equation
h= % (—¢+ (f — Al +2A15) X +2A,Y) (2.2.26)
and, assuming the polynomial form of the solution
X(t)=> ath,  Y()=) bt*, o) =) att, (2.2.27)
k k k

we solve the rest by equating the coefficients at equal powers of ¢.
The last step is again to perform the transformation (2.2.18) to original coordinates and
compute the remaining w-integral.
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Chapter 3
Couplings

In this chapter, we would like to present two different ways of computing the a-, t- and p-
tensors, which are the building blocks for constructing the couplings. In the first section,
we describe the straightforward way to compute them using only the definition. One
cannot use this method in practice because of the quickly growing complexity. Luckily,
there exists a straightforward and quick method — harmonic polynomial formalism — which
we review in the second section of this chapter. Though the straightforward method is not
practical, it still has some theoretical value. In particular, we obtained some new relations
between different products of a-, t- and p-tensors, which allowed to prove a significant
fact — the vanishing of the four-derivative lagrangian, see appendix B. This indeed was
observed before and was used as an assumption to conjecture the closed analytic formula
for the four-point functions in the Mellin space. Optimistically, those new reduction
formulae could be used to find a compact formula for the quartic lagrangian and prove
the Mellin conjecture analytically.

3.1 C-algebra: the painful way

The quartic couplings, see appendix C, and the product of cubic couplings, see eq. (2.1.1),
are represented as sums of products of Clebsch-Gordan coefficients for SO(6) irreps that
come in three types: a-, t- and p-tensors. In practice their computation can be cumber-
some due to the fact that they contain contractions of C-tensors, which carry the tensor
structure of the correlator as described in section 2.5 of part I. Since each C-tensor car-
ries roughly as many indices as the weight of the representation it belongs to this can
get unwieldy quickly, explaining why until now almost no correlators were known with
weights larger than four.! We would firstly like to present here the simplified method
which lets us compute the products of a-tensors relatively fast. To find different prod-
ucts of t- and p-tensors, one has to use several reduction relations. We also present new
reduction formulae which let us find the couplings for the correlators (2345) and (3456).
However, this simplified algorithm cannot be applied for correlators with higher weights.
One way to deal with this would be to obtain more reduction relations. Ideally, they
could be used to find an analytic expression for the four-point functions in the coordinate
space, or at least could help to find significantly simplified expressions for quartic terms -
the fact which is believed to be true and was observed in all the computed cases. Luckily,

'The only exceptions are the family (22nn) for n > 1 in [18] and (5555) in [20], which both feature a large
degeneracy allowing for simplifications.
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there exists an incredibly simple and efficient method to compute products of a-, t- and
p-tensors - harmonic polynomial formalism. We firstly present our first method for the
reason for future use. At the end of the chapter, we review the harmonic polynomial
formalism, which we used in all our computations.

3.1.1 Definitions

To be more precise, following the notation from [12], we want to compute products of the
objects

123 = /Y11Y12Y13, 123 :/Vayllylzyc?» P123 = /VQYIIVBYIQY(SB)? (3-1-1)

where the Y functions are spherical harmonics on the five-sphere and the round brackets
indicate traceless symmetrization. More precisely, we need to find expressions for aq5a345,
t195t345 and piospsas, where 1,2, 3, 4 refer to the weights ky, ks, k3, k4 of the correlator and
5 is an intermediate leg with a weight k5. The integrals (3.1.1) can be expressed using
so-called C-tensors (see for more details [12]). For example, ajo3 is defined as

H3 X kiZ(l'%)
= Qi I I I
- <C[0{k170]0[(;,?270]0[(;,%0]> , (3.1.2)
2 (o +2)!120-1

where Q; = Oéi<k'1, k‘g, ]{33) =0 — ]{31 for i = 1,2,3 and o = O'(l{?l,kg,kg) = (1{31 + k‘z + ]fg)/Q
and where
I I I I I I
<C[<ik1,0}C[oz,kmq(ikgm> = O3 vinyitdos Ot gttty Ol it i (3.1.3)
encodes the tensor structure of the correlator. The number of non-zero tensors is re-
stricted by representation theory and therefore finite.

Although the formulae for ajo5a345, t125t345 and prospass are fully explicit it is not straight-
forward to compute them. The main obstruction in performing this computation and,
therefore, in computing a correlation function from the lagrangian, is in the use of the
completeness relations for the C-tensors: for all of the a-, t- and p-tensors one has to
evaluate objects of the form

D (CLCECENCECECE), (3.1.4)

I5

where the sum is over the representation index of the ks field. The completeness relations
allow us to evaluate this sum, such that only four C-tensors remain that encode the
tensor structure of the correlator. For a-tensors a closed formula for the completeness
relation exists (given below in (3.1.6)), but its evaluation can become impossible for
expressions for higher-weight operators due to computational limits. For ¢- and p-tensors
no such formula exists at present and the best we can do is to determine the completeness
relations for a fixed set of weights from the properties of C-tensors. Additionally, we can
use so-called reduction relations to reduce the total number of unknown a-, t- and p-
tensors. They are discussed in the next subsection 3.1.3. These relations allow us to
express the - and p-tensors with the highest intermediate ks weights in terms of a-, t-
and p-tensors we already know.
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To summarize, the procedure to obtain the a-, t- and p-tensors for a correlator with given
weights (ky, ko, k3, k4) is the following: we compute the necessary a-tensors using the
formula (3.1.2) involving a completeness relation that we will get back to in more detail
in the next section. Then we use the reduction relations discussed in section 3.1.3 to
express the highest weight t- and p-tensors using lower ones and some of the a-tensors we
computed. We compute the remaining necessary t- and p-tensors by explicitly finding the
completeness relations for the given weights by imposing all the properties of C-tensors
on an ansatz. This yields the complete set of needed a-, t- and p-tensors.

3.1.2 Simplifying completeness relations for a-tensors

To compute the a-tensors we need expressions for the completeness relation of C-tensors
that allow us to resolve the sum in (3.1.4). Here we will focus only on simplification of
the case for a-tensors, since there is an explicit formula available. Ultimately we need to
reduce (3.1.4) to a sum of the independent tensor structures of the form ChCR2CEBCh
that carry the tensor structure of the correlator only, meaning we should get rid of
the sum over the representation index [I;. This can be done in principle as this sum
constitutes a completeness condition for the C-tensors, meaning it is expressable as a
linear combination of products of Kronecker delta functions carrying the indices, i.e.

z : i1...0n Zn+1 12n Z : A 50—(1)7'0-(2) 3)Z 4) °° 6i0(2n71)ia(2n)7 (315)

0’63271

where S,, is the symmetric group of n objects and A, are coefficients that are to be
determined from the properties of the C-tensors: after taking into account the internal
symmetries of the product of delta functions, being symmetric under exchange of indices
belonging to the same Kronecker delta and permutation of these delta functions, the
number of coefficients is (2n)!/(2"n!). For the case (3456) the largest n one has to con-
sider is n = 9, yielding over 34 million terms.

Although this is indeed the whopping number of coefficients that needs to be computed
and stored to express the completeness condition (3.1.5) we can consider a simplified
version of it to compute the sum in formula (3.1.4), since the other C-tensors have
additional symmetries. Our starting point to derive this simplification is the fully explicit
formula given in B.5 of [15]:

I o! (n— 2k)
Cm -5t 31, wJn Zek Z 5“1”2 o ”2k 1”%511 111 ...in,(j2k+1...jn5]172"'51276*13%)’

=0 {ho o} o
(3.1.6)
where the sum over {l; ...ly} runs over all subsets of {1,...,n} containing 2k elements
that yield inequivalent products of delta functions, (...) stands for symmetrization of

T o 5() _ 5 (p) —
ths indices and we use the definition o; ; - . = o5 . o and & o=
5
k=1

injr- Lhe coefficients 05, are known explicitly as

: (=1)*
Oh=1, iftk>0:6,= . 3.1.7
0 P+ 1) . (n+2—k) (3:-1.7)
However, the rapidly growing number of summands makes this expression difficult to
work with for higher weights, also because it contains symmetrizations that lead to over-
counting in the intermediate stages. Since all the C-tensors are traceless and completely
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symmetric in their indices we can restrict the formula further. In order to provide a
succinct derivation we first discuss some theory related to a splitting of the symmetric

group.

Decomposing the symmetric group

To simplify the completeness condition it will be convenient to decompose elements of the
symmetric group .S, as follows: consider two natural numbers p, ¢ such that p + ¢ = n,
then S, and S, are subgroups of S,, but generically they will not be normal such that the
quotient S,,/S, is not well-defined as a group. Nevertheless, it is possible to decompose
any element o € S, as a product o = po,0,, where o, only permutes the first p objects,
o, only permutes the last ¢ objects and p is a product of transpositions that each swap
one object from the first p with one of the last q. The only complication is that, in the
cases in which S, and/or S, are not normal subgroups, the set of elements p, which we
will denote by

Sn J (S, x S,) or simply S (3.1.8)

is not a subgroup as it is not even closed under multiplication. It is also not uniquely
defined, as multiplication by an element from S, or S, gives a new set with the same
properties. This is ultimately not problematic as any set of representatives will do to
perform the sums we are interested in. We will present here one choice for this set.?

A characterization of S, / (Sp X Sq)

First of all, the counting tells us that S%9 should have %_ elements which should all
be independent, i.e. should not be expressable as a product of other elements in the set.
Secondly, since S, and S, already take care of all the rotations in the first p and last ¢
objects we can consider only those permutations which are built up from transpositions
that lie outside both S, and S;. The remaining transpositions are necessarily of the form
(1j) with 1 < i < pandn > j > p. Thirdly, if in a product of transpositions two of them
contain the same number ¢ this can be taken away by a suitable transposition from either
S, or S,. From this we conclude that SP? contains all the permutations that can be
built from the transpositions (ij) with ¢ < p and j > p such that all of them are disjoint.

Their number is easily computed:
e The identity transposition: 1 element
e All single transpositions: there are pq of them

e All products of two disjoint transpositions: there are pg(p — 1)(¢ — 1)/(2! - 2!) of
those

e In general the products of r disjoint transpositions are

vo(p— k) (g — k)

rl-r!

(3.1.9)

in number.

2Tt seems unlikely that the group theory, decomposition and choice of representatives we present here are all
novel, but despite a considerable effort we have not managed to find other accounts. Since it helps to simplify
the contraction of symmetric tensors one could nevertheless fathom a number of applications where it could help
speed up computations. The authors would welcome seeing any application of these principles, for example an
implementation into Form.
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This means that we have formed a set containing

min(p,q)

-1
1 _(r+q)
— | | p—k)(qg—k)="—~ (3.1.10)
=0 ( k=0 pl!

elements. Since the three sets S,, S, and SP9) are all disjoint and independent we see
that our characterization results in the correct number of elements ¢ = po,0,, namely n!,
implying that this description will work to decompose o. Finally, we will use the notation

S (k) to denote the part of S¥? containing those elements built up from exactly k
transpositions.

Example

As an example we present the set S§4’3), which contains the 35 elements listed in the
following table:

part of S§4’3) # | elements

53 (0) 1 |id

S (1) 12 | (1,5), (1,6), (1,7), (2,5), (2,6), (2,7), (3,5), (3,6), (3,7), (4,5)
(4,6), (4,7)

Si9(2) 18 | (1,5)(2,6), (1,5)(2,7), (1,5)(3,6), (1,5)(3,7), (1,5)(4,6),
(L,5)(4,7), (1,6)(2,7), (1,6)(3,7), (1,6)(4,7), (2,5)(3,6),
(2,5)(3,7), (2,5)(4,6), (2,5)(4,7), (2,6)(3,7), (2,6)(4,7),
(3,5)(4,6), (3,5)(4,7), (3,6)(4,7)

SE(3) 4 1(1,5)(2,6)(3,7), (1,5)(2,6)(4,7), (1,5)(3,6)(4,7), (2,5)(3,6)(4,7)

Simplifying the completeness condition

We can now simplify the completeness condition using the fact that the indices Z =
(11,...1,) and J = (J1,...Jn) are contracted with the indices of traceless symmetric
C-tensors in the expression (3.1.4): explicitly we can write (3.1.4) as

Il IQ 15 13 14 15
Z Z ZOIZIClC’ClzlOIII2CJQKQCICQJ10J1\72’ (3’1‘11)
Is Ki,K2 2,7

where 7 = 7y UZy and J = J; U J» are multi-indices that are summed over with
constituents

7, = {ila cee 7ia1(k1,k2,k5)}7 T = {j17 ce 7ja1(k3’k4:k5)}’

. . | . (3.1.12)
IQ = {Zaz(kl,kz,ks)Jrla cee 7271}7 \72 = {jag(kg,k4,k5)+17 v 7jn}a

and K1, Ky are other multi-indices containing as(ky, ks, k5) and ag(ks, ky, ks) indices re-
spectively. In the following we will leave the sums implicit. We will now insert (3.1.6):

Iy Iz I3 1y 15 Is _ I 1> I3 1y
CIQK10K111CJQKQCKQJ1 01112071]2 - CIQ’C1 CIC1I1 CJ2IC2C’C2]1 x

<(n—2k)
S i . 52k T T
Z Z Uy iy ng 12k Y Ly iy iy (o1 102 Jok—1J2k)

Iy oy
k= {l1...la}

l\?lz

(3.1.13)
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Let us first note that the first product of delta functions 0;, i, ... 0;,, iy
tracted with two traceless tensors. This implies that whenever [,, [, belong to the same
index set Z; or Z, the contraction will make its contribution vanish. Interestingly, this
implies that we can restrict the sum over subsets {l,...,lo} further using our newly

is being con-

defined subsets ST(Lp’q)(k:). Let 7 = (ning) ... (ngk_1n9x) be a product of k transpositions,
then we define

8y = Oy - 0 (3.1.14)

* N2k —1M2k *

Let us further define Z, = {i,,,, iny, - - ., in,, } and ZS = T\ Z,. To simplify the second and
third set of deltas we recognize that in the definition of 4 the symmetrization over the
indices is unnecessary and the symmetrization over the j can be restricted: splitting the
action of S, on the j indices as S?"~2% we can write the total contraction as

n

3 1

I I I3 14 _
O, Ok 1. C 7, Okt Z O Z 5Tn! 8

R=0 resTibizh g (3.1.15)
(n—2k)
Z 5I$,010p(j2k+1)...010p(jn) Z Og30p(j1)o20p(s2) - + - Doaop(iak—1)7200(jok)
01€Sn_2k T2€ 52k
p65£2k7n72k>

Note that the element p effectively selects which j indices occur in the delta functions
together with the i’s. To simplify this expression further we need to identify which indices
are contracted: this unfortunately complicates the expression even more, but we will see
that the result is simple enough to work with. The idea is to split the elements o; and
oy further into products using the decomposition of Sy and S, _o: depending on p the
7 indices are split into two parts containing the first 2k and last n — 2k elements, let us
denote them as Jo; and J,_ox. The set Jo; describing the third set of delta functions
overlaps with indices from J; and [J,, each of which forms a completely symmetric set
of indices. Therefore symmetrizing indices belonging to J; or J> is unnecessary and we
can restrict the sum over permutations to those which permute J; indices to J> indices
and vice versa. A similar thing is true for the second set of delta functions. However, in
this case there are two equivalent ways of doing it, although computationally usually one
of the two ways is faster as it will result in less summands: as previously, the indices in
Tn_2k overlap with J; and 7, leading to a natural splitting of S,,_ox. However, the fact
that in these delta functions the j are always paired with an ¢ allows us to exploit the
overlap of Z¢ with 7; and Z, instead. Since this yields better results for the present case
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we use this second splitting. This leads to the following rewriting of (3.1.15):

1
Il I3 -
CZQ’Cl C/C1110721C2 1C2j1 Z Ok Z Or ! X

k=0 cgUTihiTab

9k
E: E: 5 )<> ) W@ X (3.1.16)
o o T¢, prooy ooy 0p(Jok1)---p100y 00y 0p(jn)
pGSn ’ a4 €S|IlﬁZ7C.|
oy )€S|I2QI(‘|
(171 NZE, I ToNTE])
eSn 12k 2
§ d0 @ M. (2 Y @ )
p2005 ° 005 0p(j1),p2005 " 005 0p(j2) p2003) 008 0p(jar—1).p2005 ) 00s 0p(jar)”
1
O’é)ES‘jﬂ
2
0'§>ES“72|

pQESé\lel,IJQI)

Using the symmetry of the index sets Z;, Z, and J; and [J, we can now simplify this
result, as the summands in the sums over the four different types of o permutations are
all the same. This means that the following reduction is possible:

1
I I3
CI2/C1 C/Clzl CJQICQ /CQJ1 Z ek Z 57’; X

k=0 SL‘I“"IQD(IC)

> > 1T, N TN T N T 620 X (3.1.17)

TC 7P10P(]2k+1)-~P10P(]n)
2k,n—2k 7 I$|,|ZoNZE
pes'r(z " ) plESil 121, ‘ | D

Z VABNAL Opa0p(j1)p20p(s2) + - - Op20p(ia—1),p20p(izt)

pres{T1H120

and after noting that the final sum is still overcounting due to symmetries of the delta
functions we note that ﬁnally we can rewrite our expression as

1
I3
CIzIC1 C’C111 T2Kz ’Czjl Z O Z 5T5X
ES”(L‘Il‘v‘I2|>(k)

3 S 1T, NI [T, N ZE| 6020 " (3.1.18)

N PIOP(J2k+1)~~-PIOP(]n
_ C c
cg(2hn=2k) ) S(|I§:IT\,|IQOIT\)

PR NANINA AR

TQESéLJ1|’|j2D(k)P

Here 75 is an element of Sg,{ll"‘%‘)(k) p, with which we mean that 7, is one of the elements

of Sé',fl'"j?‘)(k) consisting of k transpositions as it acts on the first 2k indices of the index
set p(J). This is our final result, which plays an important role in the computation
of the (3456) correlator: as stated before, the computation of this tensor contraction
was unfeasible with the previously known tools, rendering the computation of the (3456)
correlator from the lagrangian infeasible as well. Using our new formula we were able to
obtain the most complicated a-tensor for (3456) with intermediate field with weight 9 in
10 minutes on a standard computer.
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3.1.3 Reduction formulae
Formulae

There is no explicit summation formulae as (3.1.6) known for the product of C-tensors
corresponding to [1,k, 1] and [2, k,2] SO(6) representations to simplify the computation
of t- and p-tensors. However, one can generate the completeness conditions for sums
involving lower weight representations. For the remaining sums one can obtain a system
of linear equations, using the reduction formula (3.1.19), (3.1.20) derived in [12]: writing
fi = f (ki) = ki(k; + 4) they read?

t1o5t34s = — (1= f24)(f3 — f4)a1250345 — 1f5(al35<1245 — (1450235,
B 1
Jstiostsss = — U = f2) s = fo) (F5 = 3)CL125(1345
4fs
—i (fi+ fot fs+ fa— f5 = 3) [5 (a135a245 — Q1a50a235) , (3.1.19)
P125P345 = — (s _2{;3) <_f35)_ f4)t125t345 - % (fi+ fo—f5) (fs+ f1— [f5) ar25a345
+% (fr+ fs = f5) (fa + fa — [5) a1350245
+% (fid+ fo—f5) (fa+ f5s = f5) arasa235 — mdl%d&;s
J5P125P345 = —G1324 — J1423 — Mdl%d?;% ! (f1 = f2) (f3 — fa) tizstass
4(fs —=5) fs 2

—% (fr+ fo—=1f5) (fa+ fa— f5) (fs +2) ara5a345
4% (i +fa=6)(fr+ fs— f5) (fo+ fa— [5) a1350245

+% (fi4+ fo=6)(fat fs— f5) (fi + fa — [5) a1450035, (3.1.20)

where we denoted

1234 = }l(f1+f2—f5—3)(f3+f4—f5—3)t125t345
(ff = (s —=f)) ((fs = f) > = £3)

- 1250345,

16 f5
1

dis = 55 (=5 (L= f2)* +3f +2(fi + fo) f5) aazs. (3.1.21)

3Summation over the fifth leg is assumed.
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We would also like to attract the reader’s attention to the formula, derived in appendix B:

(fs — 2)*(t13stous + tiastass) =

,(11;2?545 ( —2f3 +203f1 +3f2+3fs +3f1 — 28) 2 — 2(2f7 — (f2—5fs — 8fs + 28) f1

1215 +2f7 +2(f3 — 12)(f3s — 2) — (f3 + 28) f1 + fo(8f3 + 5fs — 28)) f2
+((fa+3fs+4fs —12)f2 + (f3 +4(fs + f1—20)fo +3(fs —4) > +4fF +4(fs +4) fa) fu
F(Bfo+ f3—12)fF +A((fs = 3)f3 + (f3(f3 +4) +12) f2 — 3(f3 — 4)f3) + (3(fo — 4)?

13+ A(f = 20)fa) fa) 5+ 96(f1 — fo)(fo — fa)
T (2R 20 B + 35+ 3fa — W)~ 2] — (2~ 85~ 5L+ 29)f
1213 +2f5 +2(fs —12)(f3 — 2) = (fs + 28) fa + fo(5f3 + 8fs — 28)) f2
+((fo+4fs+3(fa— )T+ (5 +4(fs+ fa—20)f2 +4f5 +3(f1 — 4> +4f3(fa+ D) f1
+(4fa+ f3—12)f7 +3(f2 — ) (fs —D(f2 + f3)

FSZ + A5 + D) o+ (fo = 80)fs +48) 1) f5 +96(f> — f) (1 — i)

a12;Z345 ( — 4f53 +4(3f5 +3fs — 28)f52 — 4(2f42 + 5f3fs — 28f4 + 2(f3 — 14) f3 + 48) f5

+6(f3 —4)(fa — 4)(f3 + fa) + f2(5fF + 8fafs — 64f3 + 57 + 12fF — 64 f4
—14(f3 + f2 — 8)f5 + 96) + f1(65 +4(2(fs + fa — 6) —5f5)f2 + 5f5 + 57 + 123
—64f3 + 8f3fs — 64fs — 14(fs + f1 — 8)f5 +96) + f5(5f3 + 5f1 — 8(f5 + 3))

+IR6F2+ 5 5 + 51— 8(f5+3))) (3.1.22)

_|_

With its help, the sum of two quadratic tt’s can be completely reduced to different
products of a-tensors.
We also obtained new reduction formulae for similar combinations of quadratic pp’s.
They are a direct consequence of the following identities:

(fs — 2)22912517345 = Piozq + Ry,
(fr—=f2) (fs = fu) (fs — 7)216 P G € f2)2+2(fi+ fo) f5 +313)
2(fs —5) e 320 (fs — 5) fs
X (fs —10)* (=5 (fs — fa)* + 3f§ + 2 (f3 + fa) f5) a125a345,

Piogs = 2 (Yiaga + Yiou3) — 2—10 (fi+ fo—f5) (fs + fo— f5) 2 ar25a345

(et =) A+ fa— ) ((f1 Yot ot fo—16) £2 (3.1.23)
16 f5

—(fi+2(fa=8) i+ (fo—16) fo+ (fs + fs — 16) (fs + f1)) f5
—128fs + (fo— f3) (fi — fa) (1 + fo+ fa + fa — 16)) 1450235

_%+ﬁ—€éf+ﬁ_m(m+ﬁ+ﬁ+h—mﬂg

—(ff+2(f2=8) fr+ (f2—16) fo+ (fs + f1 — 16) (fs + f1)) f5
—128f5 + (f1 — f3) (fo — fa) (f1 + fo + f3 + fa — 16) >a135a245

(it fot fo+ fo—=16) (fr + fs— f5 = 3) (fo+ fa — f5 — 3) tizstass

R1234 = -

1
4
_}l (fi+fot fo+ fo—16) (fo+ fs — f5 = 3) (f1 + fa — f5 — 3) t1astass,
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where Yig34 is defined by (3.1.42) and has the following symmetry properties:

Y1234 = Y1324 = Youu3 = Yauro. (3.1.24)
We were not able to reduce Y}934, but rather Yyo34 = % (Y1934 — Yiou3):
Yiopg = % (fi+fo=fs=5)(fs+ fa— f5 —3) (f5s +3) tizstsss

—% (fit+fo—fs=3)(fot fa— f5 — 3) tisstous

+% (fat+fas—f5s =3) (fi+ fa— f5 — 3) tisstoss

s (72 = (fa= 19)7) (s = 197 = F3) ansass

—ﬁ (f5 = (fs—f5)2) ((fa— f5) 2 = fT) arasaass. (3.1.25)
5

Thus, using (3.1.23)-(3.1.25), one is able, similar to (3.1.22), to find an expression only for
the difference of two quadratic pp’s. In fact, it has the following structure (schematically):

1
f2(P135P245 — P1asPazs) = §f§ tiostaas + {...}, (3.1.26)

where {...} contains only quadratic ¢t’s and different aa’s.
From (3.1.26) it directly follows another useful reduction formula:

f2(tiaza — tizea + tiaos) = Sio34 — Dizoa + L1403,
Siosa = (fi + fo+ f3 + fo — 13) f2 tiostass
+((10f3 +10f1 = filfs + f1 = 8) = folfa + f1 = 8) = 51)fy

(=51 = 5f2+21)(fs + f1 = 3) Jhastass (3.1.27)

(fs—f0)(fo—Fs)2 = f2) (fs+ fa— [5)
2fs

These new reduction formulae are used as an intermediate check when computing the
correlator.

+

1250345

Proof

Let us show how the new formula (3.1.23) can be obtained?. To do the calculation we
need to use

1
C125 = /VaVBYIlVaVﬂYIQYIE’ =1 (fi+fo=fs =8) (i + fa— [5) aizs,

— 5
Pazs = %tms, Vigs = mdlz5; (3.1.28)

dizs = % (—5 (fi—=f2)2+3f2+2(f+ fo) f5) @125-

“We thank Sergey Frolov for sharing this calculation with us.
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which are used in the relation
VY 'V Y? = p1osYis) + VY3 + 1125V Vi Y7 (3.1.29)

where from now on the round bracket denote traceless symmetrization. Then we need
the formulae

VY® = —f;Y?, V2V,Y? = (4— f5)V,Y?,
VAV, V3Y? = (10 — f5)VaVeY? 4+ 2905 fsY?
ViV VY = (10 — f5)Vu VY7, (3.1.30)
VP = (1— f5)Y2, VAV.YE = (5 f5)VaY3 +2VY7,
VQV(aygs) = (7— f5)v(aY55) ) VQY(iﬁ) =(2- f5)Y(‘Z[3) .
These formulae and (3.1.29) give

(2 - f5)p125Y(im =V? (V(aYIVB)YQ) - (7 - f5)/L125V(aY,§)) - (10 - f5>V125V(aV6)Y5 )
(3.1.31)
and

(2 = f5)*Praspsss = /V2 (V(aylvg)Yz)Vz (V(QY?’VB)Y"‘)
= (7= f5)’pm2s / VY3 VY VY — (7 — f5)*sas / VY5 VY Vg Y?
— (10 — f5)2u125/v(avva(aYSvB)Y“ — (10 — f5)2y345/v(avﬁ)Wv(aYlvﬁ)Y?

- %(5 — f5)(7 = f5)? 125 phaas — Zglfs(5 — f5)(10 = f5)*11250345

(3.1.32)
where we took into account that
/ VaY§VaYs = 56— fo).
/V<aVﬁ)Y5V(aVﬁ>Y5 = —%1%(5 —f5), (3.1.33)
/V(QYE)V(QVB)Y‘:’ =0.
Using integration by parts and the definitions (3.1.1) and
bias = / VYV YRY B =L (fi+ fo— f3) aios (3.1.34)
we can reduce the second and the third line to ¢t and a contributions:
(2 = f5)°Pr2spsas = /V2 (VY'VY?)V (VWY V)Y?) + Rigs,
Rigss = —%(10 — f5)*1125(fabass + fabssa — [5bsas)
— 500 )P0t + fobrsa — fobiz) (3.3
+ %(5 — f5)(7 = f5)*tizsptaas — §f5(5 — f5)(10 = f5)* 125305
- %(10 — f5)*(b1asvsas + V125b3as) -
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So, the main problem is to evaluate
Piyzy = / V(VWY'VaY?) VAV Y V4 Y?). (3.1.36)
We have

Progy = % / VA(VY'VY2 )V (VY VY ! 4V, YVY? — ggaﬁvai‘vyy‘*)
= % / VH(VaY'VsY?)V (Vo YPVY ! + VY VY?)
— % / V(VoY'V,.Y?)V(V, YV, YY)

1 1
=3 / V2 (Vo Y'VaY )V (V,YPVY 't + V,YVY?) — = f2biasbays
1

Progy = 5/ ((8 —fi— fQ)VaY1V5Y2 + QV,YVQYIVWVBYQ)

X ((8 — fs— f)VLY VY 4 2V, VYRV, VY
1
(8= fs— f)VaYIVY? + 2v,,vay4vpvﬁy3> — = F2biasbass

Pioss = Pl + Pighy + Plahy — %f§b12sb345 :
(3.1.37)
where we denote
1
2
PR, = / RIS NAR AR ARG ARCER AR NG ANSANS

Py, = /(8 — fi= )8 = f3— f)VY' VY ?(V,Y?VeY* + V,YV5Y?)

+ (8= fs = 1) (VoY VYV, VoYV, VY + VaY4V/3Y3V7VaYIV7V6Y2)> :

Py, =2 / V, VoYV VY2(V, V.YV, VY 4+ V, V. YV, V5Y?).

(3.1.38)
We immediately find
P1(2:)z,4 = (8 — fi— f3)(8 = fa — f1)(bi3sb2as + brasbass) - (3.1.39)
To reduce the six-derivative terms we use
vﬁv Ylvﬁw =t Y5+ b2 v, Y7,
125 (f1 + fo— f5 = 3)tias, (3.1.40)
B2 _ (fl + fo = f5)(fi = fot [5)
152 — Q125
4fs
Then we get
P1(g§4 =@8—fi—fo )(t§3)5t245 + f5 351 45)2 + tﬁ%t%&s + /5 451b§?2) (3.1.41)

2
+ (8~ fs— fa )(t(3)5t245 + f5b 153555)4 + t14)5t235 + f5b 154b253)-
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Introducing

Yigs4 = /VyvaylvyvlaYQvaaY?’VpVgY‘l,

we find the last term

P1(2:)),4 = 2(Y1234 + Y1243) -
1
It remains to compute Yigzy = 3 (Y1934 — Yi243). Integration by parts gives:

Viga) = Yiosa =Va VYV, VYIVOV; Y3V IVIY?
= — V, V3V, YUV VY Avevy3vey!
— V. VY IV2VAY2yeysy3voyt
— V. VYV VYAV Ivevsy3vey?,
With the help of the following identity:

[va 5 vﬁ] 57 - gowgﬁ - g,@vfa s
one finds the last line in (3.1.44):

(3.1.42)

(3.1.43)

(3.1.44)

(3.1.45)

AR v A VAR v TR A VAAVAR VA A VA %vavﬂyﬂvvvﬁyﬂ V7, VeV 3Voy™

= V. VYV, vovaveyByryd,
Finally, using
v vgv VIV VY2 =t Yo 408 v, vo
125 (f1+f2 J5 = 3)(fi + fo — f5 — 13)t1os + fitios,

B4 (f1+f2 f5)(f1+f2—f5—10)b —ﬁb
152 — 4f5 152 f5 251 -

we find
1
}/12[34]:_2(%)5 tgi)k%)t345__f5( biss bg?l)b354
O f1)t215)t345 SAs (4= W — (4= B

1 2) ,(2 2) ,(2 (2 2 2
- _(t§3)5té4)5 - t§4)5tg3)5> f5( 153 25)4 - b(15)4b§5)3)

(3.1.46)

) 354

(3.1.47)

We would also like to note, that the method, similar to the one used in appendix B,
gives precisely the same relations between cubic tt’s, like those derived from the relations

for quadratic pp’s.

3.2 Harmonic polynomial formalism

However, as was already mentioned, the computation of the a-, p- and t-tensors simplifies
incredibly in the harmonic polynomial formalism, developed in [40,41] and applied to
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compute some supergravity correlators in [18,19]. It turns out that, after an appropri-
ate normalization, the a-, p- and t-tensors can be expressed as harmonic polynomials

Y.\ (5. 7) in the new variables ¢ and 7

_ t13t24 — t14t23

and where  t,;, =t -, (3.2.1)

 tiotay  liatsy
which carry the non-trivial dependence on the null vectors ¢;. These functions are gener-
alized eigenfunctions of the SO(6) Casimir operator L?, satisfying

L? (t‘f4tg4Yn(ﬁ;b)(a, 7)) = —2C,ntf4t 5, v (@) (5 1), (3.2.2)

with C,,,,, being the corresponding eigenvalue. Moreover, one can solve this equation [41]

and find that the Yn(ﬁ{b) can be expressed explicitly in terms of Jacobi polynomials P,ga’b):

2(n+1)a+b+n+1) (a.b)
(a+ 1)+ 1)u(a+b+2n+2)1 ™

Yéﬁl’b)(o, T) = (o,7), (3.2.3)

where (...),, is the usual Pochhammer symbol and

PP ) - P )P
P,(L‘;;b)(y,y): (W) (;_g (y) Py ( )7 (3.2.4)

which can be related to the original o and 7 variables via

= HDE Y and r= (- y)(1 ) (3.2.5)

It was discussed in [19], that the product of C-tensors appearing in the product of scalar
(1250345, vector tiostsss and tensor piaspsss harmonics for arbitrary weights with fixed

exchange leg k5 are proportional to these Yéﬁ;b):

A125A345 ~~ <C C COa+b+2m 0]><C C C[o a+b+2m 0]> T8, Ym%)7
a,b)
tiostass ~ (CrlCCh avisom ) (CRCRCL aiproma)) = TBYN o (3.2.6)

I I I I a,b
Przspsss ~ {CL OO wihioma OO Ch ashioma) = TBYaid .

where the t-dependent prefactor 7 is given by

k1+ko+kz—kyg

T =ittty (3.2.7)
and ks satisfies
ks=a+b+2m, ks=a+b+2m+1 or ks=a+b+2m-+2 (3.2.8)

for some nonnegative integer m respectively. The proportionality coefficients B were
worked out in [19]: given a set of weights ki, ks, k3, k4 ordered such that

ki + kg — ko — ks ko + ky — ki — k3

= b= 2.
a 5 : 5 (3.2.9)
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are nonnegative® and an intermediate weight ks satisfying (3.2.8) they take the following

form:

B _06251!04512!04453!04534!

“ alblks! ’
(ks + 1) (a5t — 5)(s12 — 3)!(uss — §)!(as3a — 3)!
alblks! ’
B. —94. as1! 510! ugs3l o3y
P alblks! (ks + 1) 7

B, = (3.2.10)

where a3 = mj_k:” This now allows for a straightforward evaluation of ajs5a345,

t195t345 and piospsss for any weights as all the complicated tensor structure is captured
by Jacobi polynomials. To obtain the corresponding tensors in the ¢t and u channel, e.g.
(1350245 and aq45a935, one simply reshuffles the ¢;.

>This might require a shuffle {ki, k2, k3, ka} — {k3, ka, k1, k2}, which is certainly possible in all cases.
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Chapter 4

Analyzing the results

4.1 Normalisation

Before passing to discussion of the results, we must mention the final step in computing
the normalized connected four-point function. One has to multiply the sum of the con-
tact part mentioned above(1.1.3) and the exchange part (2.1.1) by the following overall

coefficient:
N2
% H OOkOku
ke{ki,....ka} (411)
427 2v/2m°
OOQ = ) O, = y k>2
N N(k—2)\/(k—1)

where Cy, are given in (1.1.7) and the coefficients Cp, provide the canonical normalization
for the two-point functions [14], [38]. Note also that the minus sign coming from the
Euclidean version of the AdS action compensates the minus sign in (3.1.2).

4.2 Results

The aforementioned simplifications of the algorithm, sections 1 and 2, in combination
with the harmonic polynomial formalism, reviewed in section 3.2, allow one to compute
supergravity four-point functions of 1/2-BPS operators in (2.5.2) of any reasonably given
weights in very little time. We implement the entire algorithm in Mathematica and
compute all the non-trivial connected four-point functions (kjkoksks) with 2 < by < ke <
ks < ky < 8 (94 in total and including 64 previously unknown correlators), which can
be found in the database attached to the publication [1]. Additionally, we compute two
very high-weight cases, namely (7101217) and (17212325). The computation of these
latter correlation functions takes 1 minute and 40 minutes, respectively, on a standard
computer. For each correlation function the database contains a subfolder with the name
k1_ko_ks_k, with up to five plain txt files:

e Fullcorrelatork;_ky_ks_k,.txt contains the full correlator as we compute it di-
rectly from the action,

e Freepartk;_ko_k3_k,.txt contains the free part as we extract it from consistency
with superconformal symmetry ,
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e HEy ko k3 k4.txt contains a coordinate-space expression for the dynamical function
H in the notation of [20,22] as it follows from our direct computation,’

e HfromMellink;_ko_k3_ks.txt contains a much shorter coordinate-space expression
for 7 in the notation of [20,22] and has been derived from its Mellin-space form
(the construction of which we discuss in the appendix),

e RZconjky_ky_ks_k,.txt contains two entries: if this four-point function coincides
with the Mellin conjecture the first entry is yes and if not it would read no. The
second entry is the value for the overall scaling function f(ky, ks, k3, k).

4.3 Consistency with the structure

The direct results for the correlators are very complicated, warranting the need for good
checks of the result. Apart from checking the expressions for the coupling building blocks
known as a-, p- and t-tensors using the identities in section 3.1, the most important check
of the final result is verifying consistency with the structure explained in section 2.5.

In order to do this, we need to separately compute the free part of the correlator
(k1koksks)o. In principle, this computation is straightforward, but a subtlety concerning
the identification of field theory operators with supergravity fields requires a discussion.
We will address this subtlety — due to the presence of extended operators — in section 4.4.

Assuming we have computed (k1k2ksky)o we can find the interacting part of the cor-
relator. For the interacting part we can check whether it obeys the structure given in
(2.5.9). This goes as follows: suppose the interacting part is provided as

I{a}|

> aT (4.3.1)
=1

and we write the structure in (2.5.9) as

[a}]
> BT, (4.3.2)
m=1

where the f,, follow explicitly from (2.5.9) and depend linearly on the F,. Since we
know that the number of independent functions describing the correlator is [{b}|, which
is always strictly smaller than |{a}|, equating the expressions (4.3.1) and (4.3.2) yields
an overdetermined system of equations for the unknowns F,. The fact that our results
satisfy this system provides a highly non-trivial check of the correlators.

In fact, quite similar to the coordinate space method from [20], this system allows
one to determine many of the numbers one has to compute during the computation. For
example, in all our cases, this provided an independent check of the symmetry factors in
(2.1.1), and with a small modification, we used it to verify the free part of our correlators.

We can further analyze our results by comparing it to the closed Mellin-space for-
mula that was conjectured for any four-point function of 1/2-BPS operators [22]. This
conjecture is based on physical arguments and consistency with all the known results
and subsequently tested on one new result (the (5555) correlator) [20]. The computed

!This expression has not been simplified and is therefore much longer than what is predicted from the Mellin-
space conjecture.
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correlators, therefore, provide a new test of this conjecture, in particular, because of their
genericness. We also performed this check for all our cases. We obtained a match between
the expressions coming from our results and those from the conjecture. See chapter 5 for
more details on the Mellin-space correlators.

4.4 Computing the free part: extended operators

In principle the computation of the free part is a straightforward procedure. We can
compute it in the field theory picture using the (free) operators dual to the scalar fields
si"', simply performing the relevant Wick contractions to obtain the free correlator. For
small £ < 4 the correspondence between fields and operators is simple, namely si’“ ~ (’)é’“
where, remembering the decomposition (2.5.1), the field dependence is given by

O = g Tr (¢ ... ™), (4.4.1)

where kj, is the k-dependent normalization determined by demanding canonical two-point
functions which in the planar limit can be taken to be kx = 1/2%/(kN¥). The operators
with this exact field-dependence are known as single-trace and we distinguish them by
omitting the tilde. However, as first noticed in [42] and later further analyzed in [24] this
correspondence cannot hold when k£ > 4: the fact that extremal three-point functions

(3?1 sgsi‘;) vanish when computed from the supergravity lagrangian, whereas the quantity

(0102 02) (4.4.2)

in the field theory in general is non-vanishing shows that this correspondence cannot
continue to hold. The resolution presented in [24] is that the scalar fields are not dual to
single-trace, but to so-called extended operators?:

~ 1
11 Il _ Il 142 12 1I:
Sin ~ O = O — 3 > CchEboRof, (4.4.3)

ko,k3>2
ko+k3=k1

where CTt125s = \ /i ko k3 (CT1C2C'™3), defined in section 3.1. For convenience we also give
the decomposition (2.5.1) for the extended case: decomposing as in (2.5.1) we can write
the field-dependence as

6i17“"ik1 — /{leI' (Qb“ o ¢zk1) . Z )\k’;,;\zf,k’;; K'/k;QI{/k?,Tr <¢Z1 o ¢Zk2) Tr (¢ik2+1 o ¢Zk1) ,
k2,k3>2

ko+kz=k1

(4.4.4)

where \g, g, ks = CT253 and where we omitted symmetrization over all the indices since

this is enforced by contraction with the ¢ vectors. Even though the prescription for (?)/,ﬁ
is completely explicit it can be quite non-trivial to compute the coefficient directly, due
to the complexity of the required tensor contractions. Luckily we can circumvent this by
noting that the extended operators are required to have vanishing extremal three point
functions. Since the number of terms in the summation is exactly equal to the number of

20ne could alternatively leave the field operators unaltered and modify the supergravity lagrangian instead,
by a field redefinition that adds boundary terms such that the three-point correlation functions reflect the field
theory result [24].
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extremal three-point functions containing O one can find the coefficients by demanding
vanishing of these three-point functions. For example, we can list the values of the \ for
the first few cases:

Aizo =4, sz =230, Nesa = 8V3, Nezz = 3V6, (4.4.5)

thereby completely defining the extended operators dual to s4, s5 and sg.

The free part of the supergravity correlators should generically be computed using Wick
contractions of the extended operators and then taking the large N limit. However,
the leading (planar) order in this computation follows from general considerations of
the topology of the diagram combined with some combinatorics. In particular, from
these considerations it follows that for connected diagrams the effect of the presence of
extended operators was undetectable except for the extremal cases, such that in practice
one did not have to consider this complication. Indeed, for the (4444) correlator, one of
the few known correlators for which the weights are high enough to potentially feel this
effect, the free part was computed in [16] without explicitly tracking it. Consistency with
superconformal symmetry was shown, thereby indicating that the fact that the operators
are extended should not play a role. However, the first signs that one should take this
effect seriously were presented in the paper [18], that discusses the family of correlators
of the form (22nn) for n > 2: already there it was noted that there exists a discrepancy
between the free part of the correlator as computed from supergravity as opposed to the
result from field theory using non-extended operators when n > 3, but its origin remained
unexplained. It was argued in [20] that this discrepancy is resolved by computing the
free part using extended operators. We confirm this with the explicit computation of the
(22nn) correlator for n = 4,5,6, for which we conclude that the presence of extended
operators does play a role.

Moreover, since the computation only concerns the planar diagrams it is possible
to prove when it is necessary to take into account that the operators are extended:
in the planar limit, only the leading order in N of the free correlator described by a
diagram is relevant. From basic observations, we know that, when depicted using the
double-line notation, this leading order goes as N! with I the number of index loops [31].
Extendedness of an operator adds to a diagram a contribution of a second diagram, in
which one of the vertices has been split into two parts. As an example, splitting the third
vertex looks like

A eaeaes = Aok = 37 A, gy 10 12 gy (4.4.6)

where kél) + k§2) = k3. In terms of the index loops, splitting the vertex will generically
reduce the number of index loops by 1, which when combined with the extra 1/N in front
of the second diagram implies that its contribution is subleading and can be discarded.
Only in the special case in which one of the vertices is singly-connected to the rest of
the diagram and can be split off completely by one of the extensions — hence yielding
a disconnected diagram — can the effect be leading: in that case the number of index
loops increases by 1 due to the splitting, which when compensated by the 1/N prefactor
yields a contribution to the leading term and hence to the planar free correlator. We
have illustrated these ideas in fig. 4.1.

In particular, it follows that the presence of extended operators plays a role for all the
correlators presented in the previous section. For the more empirically inclined reader we
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Figure 4.1: An example of a singly-connected graph which has more index loops after splitting:
the number of external index loops L. (loops outside of the lines that connect the nodes) before
splitting is 2, whereas after splitting the total number is 2 + 1 = 3.

provide an overview of the (extended and non-extended) free parts of all the non-trivial
four-point functions with weights up to and including 5 in table 4.1. When a difference
exists we list both the result for non-extended (upper part) and extended operators (lower
part). Although in principle one can use combinatorics to compute the planar limit of the
free part® we have computed them using a straightforward implementation in Mathemat-
ica of Wick contractions between scalars in N/ =4 SYM using the formulae in [43], with
the exception of (5555) which we took from [23]. The correlators which are not listed
vanish identically. This computation indeed showes that the Kaluza-Klein modes si’“ are
dual to the extended (4.4.4) rather than to single-trace operators, and together with the
procedure discussed in the previous section verifies that the implemented algorithm gives
the correct result.

3 A hint of this fact can be found in the regularity of the appearing numbers: after factoring an overall constant
only simple integers remain.

65



Correlator | Planar free part coefficients ﬁ{cal}

(2222) {N? 4,N? 4,4, N?}

(2233) {0,12,0,6,6, N2}

{16,24,16,8,8, N?}

2244

< > { 0,24, 078787]\[2}
30,40, 30,10, 10 N2}

2255 { ? ’ ) 5 5

< > { 0,40, 0,10, 10,N2}

(o334) | V2{12,12,0,12,6,0}

v2{ 0,12,0,12,6,0}

v/30{6,6,4,4,2,0}
2345 ) ) ) ) )
(2345) v/30{0,6,0,4,2,0}

V/2{16, 16,16, 16, 16,16}

2444
(2444) v2{ 0,16, 0,16,16, 0}

v/2{30, 30, 30, 20, 20, 20}

2455
(2435) v/2{ 0,30, 0,20,20, 0}

(3333) {N2,9,9,N2,9,18,9,9,9, N2}

(3344) {0,24,24,0,12,24,12,12,12, N2}

{30, 45, 45, 30, 15, 30, 15, 15, 15, N2}

3355
< ) { 0,45,45, 0,15,30,15,15,15, N?}

(3456) v/10{0,18,18,0,12,12,6,12,6,0}

V15{10, 10, 10, 10, 10, 10, 10, 10, 10, 10}

3555
(3555) V15{ 0,10,10, 0,10,10,10,10,10, 0}

(4444) {N?16,16,16, N2, 16, 32,32, 16,16, 32,16, 16,16, N2}

(4455) {0, 40, 40, 40, 0, 20, 40, 40, 20, 20, 40, 20, 20, 20, N2}

(5555) {N2,25,25,25,25, N2, 25,50, 50, 50, 25, 25, 50, 50, 25, 25, 50, 25, 25, 25, N2}

Table 4.1: Free parts of all non-trivial four-point correlators with weights up to 5 and that of
(3456) in the leading order of the planar limit, split to the coefficients in its decomposition (2.5.5)
as a list xz{cq, } with 7 factored out. If there is a difference between the correlator of non-
extended operators and that of the extended ones we list both results with the non-extended

correlator appearing first.
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Chapter 5

Correlators in the Melling space

5.1 The Mellin amplitude

The idea to represent the CFT correlators in the Mellin space, where their analytic
structure becomes transparent, was proposed by Mack in [44], and further studied in
[45-51] in the framework of the AdS/CFT. As was observed, in the planar limit, the four-
point Mellin amplitudes are simple meromorphic functions. Their poles and residues are
entirely determined by two and three-point functions of single-trace operators. Further,
based on symmetry, physical assumptions and the known results [13-19] , the authors
of [20,22] conjectured the general formula for the holographic correlators in the Mellin
space. In this section, we sketch their work and present their results.

We first reorder the full correlator (kjksoksk,) such that the weights satisfy ky > ko >
ks > k4, and distinguish it by writing G, g,ksk, instead. Then using the invariance under
the conformal and R-symmetry groups, we write the correlator via the conformal, v and
v, and R-symmetry, o and 7, cross ratios:

0
- i\ [ tiotss \*
lek2k3k4 (I,t ) = H (—2]> (%) gk1k2k3k4 (u, v, 0, 7') y (511)

icj \Vij L12¥34
where the exponents fy?j are

Mo = 5k +ky — ks — k), 0y = 5(k1 + ks — ky — ka),
7??4:7(2)4:0a 7(1)427434—[/7
733:]‘74_L_%(k1+/€4—/€2—/€3), (5.1.2)

and L is defined as follows:

~ ky, if by + ky < ko + ks (5.1.3)
%(k2+k3+k4—k1), 1fk1+k‘4>l{?2+k3 o
The rest is defined as usual:

Tij = X — Tj, tij =1t; - ty,

_ (w12)*(w34)? _ (w14)*(w03)?

U= P @? U (o) e

_ tigt _ tuat

0= tnt T = ot - (5.1.4)
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Next, one uses the invariance under the full superconformal group, which implies the
superconformal Ward identity [27,41]. It splits the correlator into the free (the result in
free SYM theory) and dynamical part:

G(u,v,0,7) = Geo(u,v,0,7) + RH(u,v,0,7), (5.1.5)
where
R=74+(1-0c—1)v+ (-7 —or+7)u+ (0> — 0 —or)uv + ov® + oru®. (5.1.6)

From now on we consider only the connected part of the four-point function, Geonn,
and define the Mellin amplitudes of G..,, and its dynamical part H as follows:

M(s,t —~ M(s,t
Mfs,t,0.7) and M(s,t,an‘)zM, (5.1.7)

Dk kokska Dk koksk

M(s,t,o,71) =
where
oo o
ot tt\in{k1+k4,k2+k3}_ _ s k'3+k'4_ _
M(s,t,o,17) = / / dudvv 2t 2 b=zt g (w0, 0,7)
o Jo

(o) o0
— _t min{k1+k4,k2+k3}_ s k3+k4_ _
M(s,t,o,7) = / / dudvv™ 2™ 2 L=t L Y (w0, 7)),
o Jo
(5.1.8)

and fk1k2k3k4 is obtained by replacing u = k1 +ko+ks+ks—s—t > u=u—41n g koksk,:

ki4+ko—s,  ks+ky—s. kot ks—1t
Fk1k2k3k4 = F[ - 22 ] [3 24 ] [2 23 ]
btk —t Kbk — o ks kg —
r[1+24 ]r[1+23 “]r[2+24 “. (5.1.9)

The authors of [20,22] have analyzed the properties of the Mellin amplitudes:

e Superconformal symmetry, as was mentioned, implies the Ward identity. The latter
translated to the Mellin space turns to the following identity the Mellin amplitudes
must satisfy to:

M(s,t,0,7) = Ro M(s,t,0,7), (5.1.10)
where R is the difference operator analogue of R, defined in (5.1.6):

R=71+(1—-0—-1)0+(—T—07+ )0+ (0 — 0 — o7) Wb + 00* + o712,

(5.1.11)
with the following action of monomials
WOM\/(S,t,U,T) :J/\/lv(s—Qm,t—Qn,a,T) X (5.1.12)

(k) (), (),

(k2+§3_t)n (k2+§4_u)27m7n (%)m )

and (a), = % denotes the Pochhammer symbol.
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e Bose symmetry requires the Mellin amplitude M to be invariant under the permu-
tation of the Mandelstam variables s, ¢ and « when the external quantum numbers
are also permuted accordingly. By construction, the amplitude M shares the same
property under the permutation of the shifted Mandelstam variables s, ¢, and @. In
the case of equal weights, k; = ... = k4 this transforms to usual crossing symmetry
relations.

o Asymptotics. In addition, the authors assume that M grows linearly at large values
of the Mandelstam variables:

M(Bs,Bt,o,7) ~O(B) for f — 0. (5.1.13)

On the language of dual string theory, this assumption means that holographic
correlators can get contributions from vertices with at most two derivatives, i.e., the
four-derivative contact terms must vanish. This was observed in all the previously
known examples, and we prove this statement in full generality in Appendix B.

e Analytic structure. M has a finite number of simple poles in s, ¢, u, which are

located at

S = Sy —2a, Sg=2

t[) - tM - 2b, to 2 2

uy = upy —2c, uy =2, (5.1.14)
with

sy = min{ky + ko, ks + ks } — 2,
tM = min{k1 + k’4, k‘Q + kg} - 2,
Upnr = min{k‘l + ]{?3, ]{?2 + ]{4} — 2,

and a, b, ¢ are non-negative integers. Moreover, it turns that the residue at each
pole is a polynomial in the other Mandelstam variable.

One also can notice that the R-symmetry implies that the amplitudes M and M are
the polynomials in ¢ and 7 of degree L and L — 2 respectively. Experimentation with
the known results for the supergravity correlators allowed the authors to conjecture the

following formula for M, satisfying all the properties mentioned above:

—~ _ aijro' !
" = ¥ J 5.1.15
M(s,t,t,0,7) (s — sy + 2k)(t — tag + 2)(G — upg + 2i) ( )

i+j+k=1L-2,
0<i,jk<L—2

with the coefficients a;;;, being

Ckl kokska (ij—j)

Ajit = — — — —— , (5.1.16)
J (1 + [k1 kzw;ks k4|)i(1 + \k1+k42k‘2 ksl)j(l + \k‘1+k22k3 k4\)k
where (f]_,f) is the trinomial coefficient and the overall normalization term
f(kh k?? k3a k4)
Cp1p2p3p4 = (5'1’17)

N2
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remained unknown. However, this coefficient still can be determined.

Let us comment on the subtlety related to the validity of the procedure described
above. The Mellin transform of the free part G is ill-defined and was ignored (set to
zero). However, it is completely recovered as a regularization effect when transforming
back to the coordinate space. The inverse Mellin transform requires to choose the appro-
priate contour of integration - one must integrate inside the regions where the integrals
converge. The operator R splits those regions into several domains which may not inter-
sect. The way to proceed is to perform an infinitesimal shift such that they overlap. This
regularization recovers the correct answer for Gg.. and allows to determine the unknown
factor f(ki, ko, ks, ks) by requiring the result to match with Gge. computed by Wick’s
theorem. Later this factor was derived in [52] by analyzing the light-like limit.

5.2 Consistency with the Mellin formula

Having the correlator computed in the coordinate space, we can go one step further
by checking whether the result matches the conjectured formula (5.1.15) from [20, 22].
Using the free part extracted in the verification process, see section 4.3, or computed
via performing Wick contractions, as in section 4.4, we can easily find an expression for
RH. We can furthermore find # in terms of D functions by solving a set of linear equa-
tions obtained from the decomposition into different tensor components. The resulting
expressions for H are expressed as a linear combination of D functions:

Z k1 kokska (u’ U)Dk1k2k3k4 + Z bk1k2k3k4 (u’ U)? (521)

where the sums are finite and run over the k;, and a and b are rational functions of u
and v. Here we suppress their polynomial dependence on ¢ and 7. It is straightforward
to find the corresponding Mellin-space expression: as discussed we can consistently send
the functions b to zero and use that

Ag+Ag
2

ds dt S5 _A1t+Ag
2 2

Day.as(uv) =2 [ —Zu [ (=stfutfe) P (=st8atha) o (5.2.2)

r (—t+A21+A4) r (—t+A22+A3) r (s+t—%2—A4) r (S+t—A21—A3)

t_
V2

Y

to find the Mellin transform (5.1.8) of H. The resulting Mellin-space expressions are
rational functions in the coordinates s and ¢, and further simplification of them yields an
exact match with the conjecture for all checked correlation functions up to an expected
normalization constant f (5.1.17): these are all the 91 (of which 61 new) correlation
functions with weights, up to and including 8 except for the three with lowest weight ky >
7,1 as well as (71012 17). In particular, we find agreement with the derived normalization
function from [52], which in our notation becomes

k1kokska

(k4—k3—5k2—k1)! (k4+k3;k2—k1)! (lkrksgkﬁkl\)! (L —2)! '

[y, ko, k3, ky) = (5.2.3)

This, therefore, corroborates the conjecture.

!This exception is due to computational limits.
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5.3 From Mellin to coordinate representation

Another interesting task is to recover the correlation function in the position space know-
ing its Mellin-space representation. To see how one can do this we only need to consider
a single summand: so let us for simplicity assume
1
(S — 80)(t — to)(ﬂ — 110)’
with @ = k1 + ko + ks + k4 — 4 — s — t and sg, tg, Uy non-negative integers. The inverse
Mellin transform is defined as

M ~

(5.3.1)

i min(k1+ka,k2+k3)
V2 2 M(S,t)rklk2k3k4 . (532)

Let us consider part of the integrand in (5.3.2), namely

D'k koks ke
(S — 80)<t — to)(?j — 110) '

If we manage to rewrite this expression as a linear combination of the Iy, ,,p.p,, €ach
summand in that sum gives rise to an integral of the form (5.2.2) after an appropriate
identification of the A; with the p;. Therefore, the problem of finding a coordinate-space
expression is reduced to finding a linear combination of I'y, ,,,p, such that

(5.3.3)

Dk koksks
(S — So)(t — to)(fb — ?10)

where the ¢ are numbers and the sum is finite over the p;. The representation on the right-
hand side of (5.3.4) is usually not unique, which reflects the fact that the D functions
are not, independent.

The first step towards an expression as in the right-hand side of (5.3.4) is to rewrite
its left-hand side as a pure product of gamma functions and linear factors. This can
be done by applying the basic property zI'(x) = T'(z + 1) repeatedly to some of the
gamma functions in the numerator, such that finally factors in the numerator cancel the
denominator. For example

F(fs2+5) B fs2+3 fs2+1F(752+1) 1_$+3F (—8+1)

= Z Cpipapspal pipapspa (5.3.4)

(s—1) (s—1) 22 (53.5)

B 2
This yields the intermediate form

-5+ s —Ss+ s, —t+1t; —t 4+t —Uu 4+ Uy —U + Uy

C 5 T g I

F(ZL‘l) ce F(l’ﬁ),
(5.3.6)

with C some constant and z;2 a linear factor in s, x34 a linear factor in ¢ and z56 a
linear factor in #. Note that it could happen that each of the three sets of prefactors in s,
t and @ might be empty. Suppose first for simplicity that there is only one factor s; =

Let us consider the linear equation

_5+“' E:A@ (5.3.7)
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for the six unknowns \;. Working out the arguments z; one sees that there are four
independent equations (one for s, t and @ and one for the constant part), such that we
are guaranteed a solution. With this solution we can now rewrite

6

[(z1)...T(zg) = Z Niwil(x1) .. T(we) = > AT(1) ... T(; +1) ... ()

i=1

(5.3.8)
and see that we have succeeded in our goal: by repeating the procedure described above
recursively for the list of factors in (5.3.6) we can find a linear combination of products
of gamma functions that are equal to (5.3.3), such that we have found a representation
as in (5.3.4). Exchanging sum and integral we find that each summand is of the form
(5.2.2) such that after matching the coefficients we find an expression for the inverse
Mellin-transform in terms of D functions.

We have applied this algorithm to all the correlation functions in our database. All
cases have been checked explicitly with our coordinate-space results. In some cases,
a more minimal representation may exist, but due to the automatized nature of our
application, this is unavoidable. It is noteworthy that in exchanging the sum and integral,
we do not run into any domain issues that exist for the full correlator, as described in [20],
that give rise to the free part upon inverse Mellin-transforming. After all, all we are doing
is rewriting the integrand using a global property of the gamma function.

—S + 81
2
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Appendix A

D-functions

Here we collect the useful identities involving the D-functions. They are defined as
integrals over AdSs:

Dy nsngn, (T1, Ta, T3, Ty) :/_25 Ka, (2, 71) K, (2, %9) Kay (2, 73) Ka (2, 74)  (A.0.1)
0
with
A
Ka(z,7) = S (A.0.2)
alz, ey 0.

D-functions have also a representation in terms of integrals over Feynman parameters:

2 A1 J O —
1;@ 2)F)<E)/1;[d06jaj] ( 2 ! (A.0.3)

Daynynsng (1, T2, T3, Z4) = -
PpmemamEE [T (A, Zk<l akalx%l)z’

where ¥ = £ 3" A, B
It is convenient to define the corresponding D-functions, which are functions of conformal

: : : m%2x§4 r%49c23
invariant ratios, u = 3%3* and v = =43 by:
Ti3To4 T13To4

DA Ao ALA (u ?}) — K ’531’22_2A4|f24|2A2 DA Ao ALA (A04)
182838411 |41 [25281 200 | 7y [25-200 28, A1 82888
where
o= 2 TAINBNAIN(BY). N
T [ —2)
By applying differential operators, one can obtain identities relating different D-functions
DA1+1A2+1A3A4 = _auDAlAQAISAél )
Daynot1ns11a, = —0uDansasa,
Dansns+ingsr = (As+ Ay — X —udy)Da,npasn,
Days1aonsntt = (D1 + Ay =% —00,)Daynsasa, s
Daynot1nsa+r = (Do +udy + v8,)Da,ayasn,
Dayi1asng1a, = (8= Ay +udy +v0,)Da,annsn, - (A.0.6)

This allows one to reduce any D-function to a Dy13; = ®(u,v) by appropriate differen-
tiation with respect to w and v. The function ®(u,v) is given in terms of a standard
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four-dimensional one-loop (box) integral and has an explicit representation in terms of
the dilogarithm function Liy [53]:

1 , , 1+ ?
O (u,v) = X{Z(ng(—pu) + L12(—pv)> +1In % In T /[j:i + In(pu) In(pv) + %} . (A.0.7)

with !

Mu,v) = /(1 —u— )2 — 4uw, plu,v) =2(1—u—v+ )" . (A.0.8)

The action of the derivatives on ® is given by [27]

0u®(u,v) = %(@(u,v)(l—u+v)+21nu—%v_11nv> ,
1 -1
0y ®(u,v) = v (@(u,v)(l —v+u)+2lnv — % lnu) : (A.0.9)

By repeated use of (A.0.6) one can obtain additional identities which relate D-functions
with different values of Xi:

(AQ + A4 - E)DA1A2A3A4 - DA1A2+1A3A4+1 - DA1+1A2A3+1A4
(A1 + Ay = E)Dajaonsa; = Dajrinsnsasst —vDajasrins11a,
(A3 + Ay = X)Dajasagns = Dayasngring+1 — uDaj11a,11854,  (A0.10)

Furthermore, there are identities relating D-functions with the same X:

A41)A1A2A3A4 = DA1A2A3+1A4+1 + DA1A2+1A3A4+1 + DA1+1A2A3A4+1 (AOll)

Another useful identities involve the various symmetries that these functions exhibit. By
means of conformal symmetry, one can see that:

Dasonsa, (U,0) = 0722Da apn,n, (u/v,1/0)
DA, ayasn, (U, ) v Dy, asn, (10, 1/0)
Daynsagas(u,v) = 02242 D a a, (u,0)
Dy nsaga, (u,v) UTAITED A A ana, (U, 0)
DA, ngngn, (u,v) Dpgnsain, (v, )

(u, v)

Ds_ays—ns-ars—a, (U, v) (A.0.12)

The case A2 > 0 is assumed; the case A < 0 requires an appropriate analytic continuation.
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Appendix B

Vanishing of L)

As has been already discussed, the vanishing of the four-derivative quartic Lagrangian was
observed in all the previously computed correlators and is believed to be true. Proving
this statement, in general, became important: it is one of the assumptions under which
the authors of (5.1.15) conjectured the Mellin-space formula for the four-point functions
of arbitrary weights. In this appendix, we provide an explicit computation showing that
these terms indeed vanish identically. The proof is based on the new reduction formulae
relating sums of products of different tensor structures which the quartic couplings depend
on.

B.1 Quartic couplings with four derivatives

Remind that the quartic Lagrangian for the fields s’ with four derivatives was found to
be of the following form

54(14) - Z ( ng + A%)?A) 5'Vas?Vi(s*Vs). (B.1.1)
12,34
Here V, is a covariant derivative along AdS space and each summation label j =1,...,4

stands for a concise notation for the representation index [; running over a basis of of
an irreducible representation [0, k;, 0] of SU(4). The couplings Aja34 and Ste34 have the
following symmetry properties
4 4 4
Agz):m = —A§1)34 = A:(>,4)12 )

(B.1.2)
4 4 4
5522),4 - 55124,4 - 5:2,4)12 .

Explicitly, Ais34 is given by the sum of the following individual terms

1

(A3)§A5)34 = 4—5f53 (1450235 — A1350245) -
(A2)ohy = —4—15(3(f1 + fo+ fa+ f1) — 28) f3 (a1450235 — arz5a015) -
(Al = — s = F)(fs = ) szt
b oo (it ot fot o= DU+ fot fo+ fa = 12)fs (arasass — arssans).
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(AO)%):)A - %(fl - f2)(f3 - f4)a125a345.
(A = _%(fl — fo)(fs — fo) f5 tar25asas.

(At2)%)34 = ——(f5 — 1)*t1astaus.

S| W

The symmetric coupling is

Sggﬂ = 4—75 (2fifa+2fsfa— (f1 + f2)(fs + fa)) a1250345.

In the formulae above f; = f(k;) = ki(k; +4), 6 = H?zl(k:i + 1) and summation over the
index 5 is assumed. The couplings ai23 and t193 are given as the following integrals over
the five-sphere of the spherical harmonics

Q193 = / YIvEY?®, tios = / Veyly?ys. (B.1.3)

Here Y'* are scalar spherical harmonics and Y are vector spherical harmonics satisfying
the irreducibility condition V*Y* = 0. Both Y* and Y are eigenvalues of the sphere
Laplacian V? with the following eigenvalues

In what follows we will also need the following product formulae which follow from the
orthogonality relation for scalar harmonics

VY2 = a105Y?, VoYWV, Y2 =b15Y?, VOVYIV, VY2 =5V, (B.1.5)

where the coefficients are!

1
biog = /VaYlVaY2Y3 = §(f1 + fo — f3)a12s,
1 (B.1.6)
Clo3 = /VaVﬁYlVaVBYQY?’ = §(f1 + fo— f3s = 8)(fi + fo— [3)a1as.

This completes our discussion of the known results on the quartic Lagrangian with four-
derivative vertices, for further information and derivation of the above formulae we refer
the reader to [12].

To proceed with proving, we employ the same strategy as in [24], where the vanishing
of quartic four-derivative-vertices were shown for the so-called sub-extremal and sub-sub-
extremal cases. Recall that we are ultimately interested in the four-point function of
BPS operators corresponding to arbitrary weights k1, ... k;. We can therefore restrict the
infinite sum in (B.1.1) to representations which correspond to these weights. The sum in
(B.1.1) is not ordered and, therefore, there are 24 ordered sets of the indices ki, ..., k4
which split into 3 equivalence classes due to the symmetries (B.1.2). Further, integrating

!The formula for ci23 in terms of a123 is different from the one in [12], because there the combination V*V?
stands for the traceless symmetric combination of derivatives VV# = v(@v#),
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by parts and using (B.1.2), we represent the part of the Lagrangian (B.1.1) contributing
to the four-point function (k;koksk,) in the form similar to that in [24]

Lkt g S (S{h + Al + Al ) Vas' V952V,
1,2,3,4
— 8 Z (5’%)24 + A%)M + Aﬁ%) V.s'Ves*V,s?Vist  (B.1.7)
1,2,3,4
= 83 (Sl + Al + AL ) Vas' Vs VTS

1,2,3,4

Since we are interested here in the four-derivative vertices only, in the above formula
we have omitted the contribution of two-derivative terms and terms without derivatives
which arise upon integrating by parts and using equations of motion. There terms however
should be taken into account in subsequent analysis of the remaining part of the quartic
effective action. We also note that the meaning of the sums in (B.1.7) is different from
that in (B.1.1) —in (B.1.7) the sums are ordered, i.e. summation over 1 means summation
over index [; corresponding to the representation with a given weight k; and so on. It is
now obvious that it is enough to analyse the coupling

4 4 4
Cra3a = 5522&4 + A§3)24 + A§4)23 ) (B.1.8)

because the other two couplings in (B.1.7) differ from it by permutation of indices only.

Obviously, among the couplings there is a distinguished one, namely, (Atg)gé)&l, as
the latter involves vector spherical harmonics. Its contribution into (B.1.8) comes in the
combination

W' = (fs — 1)*(tizstoas + tiastass) - (B.1.9)

Our further strategy will be to reduce this combination to structures of the type fZ'ai25a345
and permutations thereof. After this is done, all the couplings become comparable and
we can add them up according to (B.1.8).

B.2 Reduction formula

The reduction of (B.1.9) is based on the following formula [12]

b
Vo V'Y2 =105V + }—mvaw . (B.2.1)
5

In what follows it appears advantageous to split (B.2.1) into anti-symmetric and sym-
metric part with respect to indices 1 and 2, namely,

1 —
L Oayy? - v YY) = tyyys s 2
2 2f5

Vo(Y'Y?) = a1p5V,Y". (B.2.3)

V. Yiy?d = a195VaY?, (B.2.2)

Acting on (B.2.2) with the Laplacian and taking into account that
VAV YFE = —(fi —4)V, Y, (B.2.4)
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we obtain

(1 - f5)t125Ya5 = V2<VaY[1Y2]) B %

fs
Now we multiply this relation with a similar one where indices 1, 2, 5 are replaced by 3, 4, 6
and integrate over the five-sphere. The orthogonality relation for the vector spherical
harmonics together with (B.2.4) used upon integrating the Laplacian by parts leads to
the following formula

(4= f5)a1sVa Y™, (B.2.5)

(f5 - 1)2t125t345 - /V2(VQY[1Y2])V2<VQY[3Y4])—

_@-f2
4fs
which for (B.1.9) implies the following relation

2
Wisd — peiesd _ % ((f1 — f3)(f2 = fa)aissaous + (fr — fa)(f2 — f3)a145a235> ;

where K'234 is the following integral

(fl fz)(f:s - f4)@125a345,

K1234_/(vz(vay[ly4])v2(vay[2y3])+V2(VQYUY3])V2(VQY[2Y4})) (B.2.6)

with the symmetry properties
JO1234 2134 _ po1243 _ pe3412 (B.2.7)

Thus, we have reduced evaluation of our main quantity W 1234 to the computation of the integral
K123 Tn order not to overload our discussion with heavy formulae we perform the computation
of K134 in the next section and here present only the final reduction formula for TW1234;

W1234 —

_%(—Qfﬁﬂ@fl +3f2+3f3+3f1 —28)f3 =22/ — (f2=5f3 —8fs +28) /1
5

+2f3 + 217 +2(f5 —12)(f3 — 2) — (f3 + 28) fa + fo(8f3 +5f1 — 28)) f2
F((f2+3fs+4fs —12)f2 + (f3 +4(fs+ f1—20) fo + 3(fs — 4> + 42 +A(fs + D) fa) fu
+(3fo+ f3— 12)f7 +4((fs — 3)f3 + (f3(fs +4) +12) fo — 3(f3 — 4)f3) + (3(f2 — 4)?

13+ A2 — 20)f)fi) f5 + 96(f1 — fa) (2 — 1))
(2 4230 4384354 32— )3 20207 — (f2 — 85~ 5/ + 290
+2f5 +2f7 +2(f3 — 12)(f; i 2) — (fs + 28) fa+ fo(5f3 + 81 — 28)) f2
+((fa+4fs+3(fs— )P+ (f5 +4(fs + f1—20) fo + 4f5 +3(f1 — D? +4f:(f1 +4) fr
+Afo+ f3=12)fF +3(fo — ) (fs — D) (f2+ f3)

+(4fF +4(f3 +4) f2+ (fs — 80) f3 + 48) f4) f5 + 96(f2 — f3)(f1 — f4))

alzgzg4s ( —AfS +A(3f3+3f1 —28)f2 — A(2fF + 5f3fs — 28f4 + 2(f3 — 14) f3 + 48) fs

+6(fs = 4)(fa—4)(fs + fa) + fo (515 + 8fafs — 64f3 + 5[5 + 12f3 — 64fs

—14(f3 + fa— 8)f5 +96) + fL(6f3 +4(2(f3 + fa — 6) = 5fs) fo + 55 +5fF +12f]

—64f3 +8f3f1 — 64fs — 14(f3 + fa — 8)f5 +96) + f3(5f3 +5fs — 8(fs +3))

HIOR 450 55— 8(f5+3))). (B.2.8)
Finally, we sum —7W1234 with the remaining couplings in (B.1.8) and observe that all the terms

are neatly canceled delivering thereby %1234 = 0. In this way, we have shown that the quartic
four-derivative couplings of the effective supergravity action vanish.

+

78



B.3 Evaluation of K1234

In this part we compute the integral (B.2.6) in terms of structures ff'ajssasss and permutations
thereof. In the computation process the following identity valid for any co-vector &,

[v& ) vﬁ] fw = gavfﬁ - g,B'yga . (B.S.l)

will be heavily used. Here g,z is the metric of the unit five-sphere. Note also that on a scalar
function two covariant derivatives commute.

We start with computing
VAV YY) = 2VaVYIVAY? — (fi + f1 — 4V, YV (B.3.2)
The latter formula gives rise to the following identity

VAV YTYHVE(VOY?Y?3) = 4V,V,YIVAYIV, Vvoy2viys (B.3.3)
—2(fa+ f3 = 4)VV YIVIYIVOY2YS — o(f) + f1 — 4V, Y'YV, VOY2VTY3
H(f1+ fa = 4o+ f3 = VY YVIVOY?Y?
and a similar one with indices 3 and 4 interchanged. To simplify our presentation, in the sequel

we will drop the integration sign and always identify expressions differing by a total derivative.
Using (B.3.3) we then get

K1234 — U1234 + V1234 (B34)
where
1234 _ (B.3.5)
f2(f2 + f3 — )VﬂV Y[lvﬂy4]vay[2y3 (f2 + f4— )VBV Y[ vﬂy3}vay[2y4]
—2(f1 + f1 — HVLY YUV VYRV _o(f + 3 — 4)V, Y IYIV VoY Ryoyd
+(fi+ fa— ) (fo + f3 — 4V, YRV voyRys)
+(f1+ f3—D(fo + f1 — VLY IY3lvayRy4
and
VI = 4(VaV YV IV, vey Py Yl 4 vy, YEVAY Y vev vy ). (B.3.6)

We continue our further treatment with evaluating the quantity U234, To this end, we compute

VsV, YivAyilyeylkyl

= Vv, YIivyilyeylkyll v, viv,yilviveylkyll — v, vivyilveykyfyl

= i(ijaY’Yj — [VLYIYY)(VOYRY! - veylyk)

%(vayivgw — Vo YIVYH)(VOYEVAY! — vey!viyF) (B.3.7)

1

= zfj(biksajm — bisajrs) — Zfi(bj%ails — bjisains) — §(bz‘k5bjl5 — bisbjks)
1

= g((f5 — f)(fs = fi) = fifi)(aasajus — ansass)
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and
.y 1 L y
Vo Ylyilveylkyl — 1 (VoYY - VYY) (Veyky! — veyly®)

1 1
= Z(bik5aj15 — bisajis) — Z(bjk5ai15 — bjisQiks5) (B.3.8)
1
= g(—fi — fi = fx — fi +2f5)(ausajrs — airsajs) -
As the result, for the quantity U'23* we get

[ri2se _ é(_Q(fl + fa =) ((fs — f1)(fs — fa) — faf3)

(it fa—)(fot+ fs—D(fr + ot f3+ fa—2f5)
—2(fo+ f3 = 4)((fs = f2)(f5s — f3) = f1fa))(a135a245 — a1250345)

(2N fa= (s~ )5 — )~ i)

—(Ai+fs—d(fet fa—4(fr+ fa+ f3+ fa—2f5)
—2(fi+ f3 =4 ((fs — f1)(fs — [3) = fafa))(a1a5a235 — a125a345) -

U1234

(B.3.9)

has been reduced to the desired structure.
Now we look for a similar reduction of the quantity V1234, Here we perform a sequence of
the following transformations. First, we have

VI = 4 (- v, Y Ivylv, vey vy - vey vy dv,v, v,y Bvryd
— VYV viv, veyilyivrys
— Vo YEV2YIy vey Ryt - veyivAyslv,v, v, v By
— Vo YIVgviv, veyRBvAviyd)

In this way

(B.3.10)

Here the combinations VY VAY4 and V*YIVAY3l entering in the 2nd and 5th terms are
anti-symmetric in o and S and, therefore, in these terms one can replace VgV,V, with
%[Vﬁ, V4]V, and then apply identity (B.3.1). In this way we get
e T AV LA V% S v vl W vEA VAL I R G v S AV s il viaval i)
+ V. Yiviviv veylyrys - v, vy, vAviytyey? (B.3.11)
+ v YUy vy Ryl - v, v ivgysiveyyeyd)

As the next step, we consider the first line in the expression above and transform it in the
following way

'3 = 4(V,YUvey v, veyBvAvryd 4 v, vy, v, vey Byfviy)
—(VY'VAY - vVIVPY ) (V,V, Y 2VVOY3 -V, V, Y3V, VY 2)
—(VY'VAY3 - VV3VAY ) (V,V, Y2V VoY ! — V.V, YIVVeY?)

= —2VuV, Y3VAYIV, VYAV IY! 4 2V,V, YAVAY Y, VY2V Y Y
—2VV YAVAY3V, VOV2VIY!L 4 2V,V, VAVAYIV, VOv2vYs . (B.3.12)
The resulting expression undergoes further transformation
23 = 9y, (VaY3VPyh v, vey?2viy! (B.3.13)
1 1
+2(VaVaY PV 4 S Va (VoY VYY) (V, VoY BVIY Y 4 CVa(V,Y2V7YY)

1 1
+2(VaVa Yyl 4 iva(V5Y4V5Y1)) (v, Vveylyrysl 4 SV (VY PVIYY),
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which finally results into

'3 = (Vv YV Yy, vey By yd + vev, v IvAY Ry, vey Ry )
VsV YIVAYIVY(V, YEVIY ) 4 V, (VY 3VAY Y v, vey Byryd
3 Va(VaY TV T (V2T (B.3.14)
VsV YIVAYAVY(V, Y2VTY?) 4V, (VY 4VAY v vey Ry, vel
+%Va(V5Y4V'8Y1)V°‘(V7Y2V7Y3) — 2V (V3Y3VPYHvIvey?v, vt

Comparing the first line in the above formula with the original expression (B.3.6) for V1234 we
observe that it coincides with —%V1234. This allows us to find the following answer for V1234

Vst = §<v2vﬁyﬂvﬁy3lwy2vw4 — VaYAVOYIViy, v EVIY
1 1

—§vﬂy3vﬂylv2(vyy2vw4) — §V/3Y4V5Y1V2(V7Y2V7Y3)
+VAVY IVAYAY, v2vY S - vy ivAY ivRy, Y Yyl (B.3.15)
+2VRY3VAY IV, V, Y 2VOVTY ! 4 2V, VIVAYAVIY, Y2V Y !
—4v, YIvylvrvey 2y v3 4 4v, v v,y ey Byeys
—4v, YIv2ydlyrvey Ry y4l 4 4VQY[1V5Y3]V5Y[2V“Y4]> .

All the terms in the right hand side of the last formula are reducible, i.e. by using eqs.(B.1.4),

(B.1.5), (B.1.6), (B.2.4) they can be written via ff'ajgsasss and permutations thereof. For
instance,

1
V2VaYIVAYly viviyt = 5(—f1V5Y1V’8Y3+f3VgY3VBY1)V7Y2V7Y4

= %(fg — f1)51351)245 . (B.3.16)

Proceeding in a similar manner, after tedious computation we find

Vst — éa125a345< —(fs+fa—F) T+ (=f5+ Q2+ f1—2)+ f5)f3
—(2fo+ fa+ D) (fa— N — (f2= f5)(f5 + (fa—2fs+4) f3
+(fi— ) (o ft f5+4)))

+ qganssens((f+ o= )+ (5 = QU+ fu =2+ )8
+ (fs=2fa+4)(fs— fs)fr+ (fa = f5)(f5 + (—2fs+ fa+ 4) fo (B.3.17)

+ (fs = fs)(fs+ fa+ fs + 4)))

+ %a135a245 <(f2 dfa— ) (= 2(fs+ f1—2) + f5) f
+(=2fs+ fa+ D) (fr— )+ (fs— )2+ (fs—2fs+4) f2

+(fa—fs)(fs+ fat+ f5 +4))) ;
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which according to eq.(B.3.4) gives the final result for K234

K1234 —
i61125(1345 —Af3 4+ A(3f3 4+ 3fs — 28)f2 — 4(2fF +5f3fs — 28fs + 2(f3 — 14) f3 + 48) f5
24

+6(f3 —4)(fa — ) (fs + fa) + f2(5f5 + 8fafs — 64fs + 5fF + 12fF — 64f4

—14(f3+ f2— 8)f5 +96) + f1(6f3 + 4(2(f3 + fa — 6) — 5f5) fo + 5fs +5f7 + 12f2 — 64f3

+8f3fa — 64f1 — 14(fs + f1 — 8)f5 +96) + f2(5f5 + 5f1 — 8(f5 + 3))

262+ 5F5+ 51— 8(f5 +3)))
+ia145a235 (6(—f2 —fa+D((f2 = f5)(fa = f5) — ff3)

=B(fit+fa—A(fot fa—D(fr+ fot+ fs+fr—2fs) —8f1ifa(fo+ fs— f5)
—8fafs(f1+ fa— f5) +2(f2 = f3)(fo + f3 = f5)(fr + fa — f5)

+HA(fi+ f3)(fa+ fs = f5)(fi + fa— f5) +2(fa— f1)(fo+ f3 — f5)(f1 + fa— [5)
+8(fa+ f3 = f5)(fr + fa—f5) +2(fa+ f3 — f5)(fr + fa = f5) s

+6(—f1 = fo+ D((Fs = F)fs = fo) = fof))

+ogarssazss (60— = fi+ (s = F)(f = ) = o)

Bfe+fs—Dh+fa—O(fri+ Lot fas+ fa—2f5) = 8fafalfr + f3— f5)
=8f1fs(fo+ fa— f5) +2(f3 — f1)(fr + f3 — f5)(fa + fa — f5)

+2(f2 = f)(fi + fs = fs)(fo+ fa— f5) +4(fr + fO)(fr + fs = f5)(fa + fa — f5)
H8(fr+fa—fs)(fo+ fa—fs5) +2(f1 + fs = [5)(fa+ fa— f5) fs

+6(—f2 = fs + D ((fs — f2)(fs — f3) — f1f4)) . (B.3.18)
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Appendix C

Quartic couplings

Here we collect the quartic couplings of the scalars s’. The following notations are used

y=ky, t=ks, w=ky, z=ks,

§=(z+1)(y+1)t+1)(w+1).

xEkl,

Quartic couplings of 4-derivative vertices

4
(43) s
4
(A2)§1)121314

4
(A1)§1)121314

4
(AO)(11)121314

4
(50)§1)121314

4
(Afl)gl)lgfgﬂl

4
(At2)§1)121314

1
Efé” (a145a235 — a1350245) -

—%(3001 + fo+ f3+ fa) = 28)f5 (ara5a235 — ar350245) -
(= F2) s — i) frmasss

%(fl + ot fs+ fa=2)(fi+ fot fs + fa — 12) f5 (a1a5a235 — a1350245) -
2= R — Fa)ansass,

TR 2fsfs— (ot L)+ 12) mosss
*%(fl — f2)(fs = fa) f5  arzsas.

3
_g(ff) —1)%t125t345.

Quartic couplings of 2-derivative vertices

2
(A4)§1)12[314
2
(A3)§1)121314

2
(53)51)121314

2
(A2)§1)121314

2
(52)§1)121314

5

4
— a a —Qa a .
485f5( 1450235 — (1350245 )

€
26

1
65 (137 — 80(k1 + ko + k3 + ka) + 2(f1 + f2 + f3 + fa)

32(k1ks + ksky) + 24(ky1 + ko) (ks + k4)> fRarasazas.

(k1 — ko) (k3 — ka)
46

16(k1ko + kska) + (k1 + k2) (k3 + k4)> fRarasazas.

(k1 — ko) (k3 — ka) f2a195a345.

(40 —12(k1 + k2 + k3 + ka) + 2(f1 + fo + f3 + fa)

1
T (—3741 + 2984t — 342¢% — 563 + 31t + 2984w — 2272tw + 376t%w
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128t3w — 342w? + 376tw? + 42t°w? — 56w> + 128tw? + 31w* + 2984z

1760tz 4+ 144tz + 88t3x — 1760wz + 832twz + 88t2wx + 144wz + 88tw?x
88wz — 34222 + 144tx® + 40222 + 144wz? + 192twa? + 40w?x? — 5623
88tz + 88wx> + 31z + 2984y — 1760ty + 144t%y + 88t3y — 1760wy

832twy + 88t%wy + 144w’y + 88tw?y + 88w’y — 2272xy + 832txy + 192t%xy
832wzy — 128twzy + 192w?xy + 37622y + 88tx’y + 88wy + 12823y — 342>
144ty 4 40t%92 + 144wy® + 192twy? 4 40w?y? 4 3762y* + 88txy? + 88wry?

_l’_

+ o+t

42x2y? — 56> + 88ty> + 88wy® + 128zy> + 31y4> fRay195a345.

t — —
(AN _ =@ =9) (i0 1064t + 16062 + 15665 + 16t — 1964w

IWI2I31y — 485
1312tw — 388t%w — 1283w + 160w? — 388tw? — 120t%w? + 156w> — 128tw?
16w* — 1964z + 645tz — 48t%x — 25t3x + 645wz — 952twx — 73t2wx

— 48w’z — T3tw?x — 25wz + 1602% — 48tx? — 56t%2? — 48wax? — 328twa?

—  B6w?z? 4 156> — 25tz — 25w + 162* — 1964y + 645ty — 48t%y

— 2583y + 645wy — 952twy — T3t2wy — 48wy — T3twy — 25wy + 13122y

—  952tay — 328t2xy — 952wy — 656twry — 328wiry — 38822y — T3ta’y

—  T3wz’y — 12823y + 160y? — 48ty? — 56t%y? — 48wy? — 328twy?* — 56w3y>
—  388xy? — T3txy? — T3wxy® — 1202y? + 156y° — 25ty> — 25wy>

— 128zy® + 16y4> f5a125a345

1
(51) P nn = T (20979 — 53784t + 18666t> + 4056t> — 1197¢* 4+ 192¢> + 7215

—  53784w + 59648tw — 17792t>w — 2816t3w + 1896t w + 256t5w + 18666w?

—  17792tw? 4 2736t%w? + 1344t3w? + 98t*w? + 4056w — 2816tw? + 1344203
256t3w® — 1197w? + 1896tw? + 98t2w* + 192w + 256tw° + 72w°

— 53784z + 65168tz — 11900t%x — 3296t3x + 1428t*x + 208t°x + 65168wz
53760twz + 7296t2wx + 4000t3wz + 144t wr — 11900w?z + 7296tw?x
1760t>w?z + 104t3w?x — 3296wz + 4000tw3x + 104t2w3z + 1428w
144tw*z + 208wz + 1866622 — 11900t2% + 801¢222 4 1488t3 2>

173t422 — 11900wz? + 3840twz? + 4472t%wx? + 7043 wa? + 801w?2?
4472tw?x? + 2526%w%a? + 1488w>z? + 704tw3z? + 173w 2? + 405623

—  3296tx® + 1488t%23 + 4241323 — 3296w + 5632twa + 4642w

1488w + 464tw’a® + 424wz — 11972 + 1428t2* + 173¢%2*

1428wz + 576twz? + 173w’z 4+ 19225 + 208t2” + 208wa® + 7225

53784y + 65168ty — 11900t%y — 3296t3y + 1428t*y + 208t°y + 65168wy
53760twy + 7296t>wy + 4000t3wy + 144t wy — 11900w?y + 7296twy
1760t>w?y + 1043wy — 3296wy 4+ 4000tw3y 4+ 104t%w3y + 1428wy
144tw*y 4 208wy + 59648y — 53760tzy + 3840t%xy + 5632t3xy

576ty — 53760wxy + 23040twzy + 3264t%way — 384t3wzry + 3840wy
3264tw3zy — 128t2w?ry + 5632wry — 384twxy + 576wzy — 177922%y
7296t2%y + 447262 0%y + 46463 2%y + 7296wy + 3264twzy + 4062wy
4472w ay + 40tw? 2%y + 464w z?y — 281623y + 4000ty + 70433y
4000wzy — 384twady + 704w?ady + 1896ty + 144txty + 144waty + 25625y
18666y> — 11900ty + 801t%y? + 1488t3y? + 173t*y? — 11900wy? + 3840twy>
447262 wy? + 70483 wy? + 801w?y? + 4472twy? + 252t%w3y? + 1488w3y?
704tw3y? + 173wy? — 17792xy? 4 7296t xy> 4 447222y + 464327
7296wzy? 4 3264twzy® + 40t2wry? + 4472w xy? + 40tw zy® + 464w3zy?
2736x%y? + 1760wz?y? — 128twz’y? + 252w?x?y? + 134423y% + 104ta>y?

_l’_

+

|+ o+

R e i e e =
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_l’_

104wzy? 4 982y 4 4056y — 3296ty> + 1488t%y3 + 4243y

—  3296wy® 4 5632twy® 4 464t%wy> + 1488wy + 464tw?y> + 424w3y?

—  2816xy° + 4000tzy> + 70422y + 4000wxy® — 384tway® + 704w xyd
134422y + 104t22y® + 104wz?y> + 25623y — 1197y* + 1428ty + 173¢2y*
1428wy + 576twy* + 173w?y* + 1896zy* + 144tay* + 144way* + 98x%y*

192y° + 208ty° + 208wy° + 2562y° + 72y6) f5a125a345.

+ o+

1926
992t* 4 440t° 4 325 + 74776w + 37504tw — 11664t%w
2016t3w + 1400t*w + 128t°w + 10752w? — 11664tw? + 4512t>w?
2088t3w? + 176t*w? — 5264w> + 2016tw? + 2088t%w> + 256t3w*
992w* + 1400tw* + 176t>w* + 440w° + 128tw® + 32w
747762 — 26042tz — 5888t%x + 3948t3x + 888t*x 4 46t°x
26042wx — 7648twx + 6380t°wx + 1784t3wx + 142t*wx — 5888wz
6380tw2x + 1880t%w?x 4+ 17063 w?x + 3948wz + 1784tw3x + 1702wz
888wtz + 142twx 4+ 46w’z + 1075222 — 5888tx? + 832t%2:>
12726322 + 160t* 22 — 5888wx? + 768twx? + 1784t wx? + 144t3wa?
832w?x? + 1784tw*z? + 16t2w?x? + 1272w3x? + 144tw32? + 160wt 2>
52642 4 3948tz® 4 1272t%23 + 5t323 + 3948wa® + 1480twa>
912wz + 12720223 — 91tw?a® + 5w + 9922* + 888ta*
160t2z* + 888wzt + 208twz* + 160wz + 44025 + 46t2°
46wz’ + 3225 + 74776y — 26042ty — 5888ty + 3948t3y
888ty + 46t°y — 26042wy — 7648twy + 6380t2wy + 1784t3wy
1424wy — 5888wy + 6380twy + 1880t2wy + 170t w?y + 3948wy
1784tw3y + 17062w3y + 888wty + 142twy + 46w’y + 37504xy
7648txy + 768t2xy + 148063 xy + 208t zy — 7648wy + 448twry
1608t2wxy + 32t3wry + 768wizy + 1608tw?xy — 352t2w zy + 1480w zy
32tw3zy + 208wry — 116642y + 6380ty + 1784t%2%y — 91322y
6380wzy + 1608tway — 571t2way + 1784w’ sy — 571tw? 2%y — 9lw3z?y
201623y + 1784tx3y + 144223y + 1784wy + 32tway + 144w?23y
1400xty + 142t2ty + 142wty 4+ 12825y + 10752y% — 5888ty
832t2y% + 1272t3y% + 160t*y? — 5888wy + 768twy® + 1784t>wy?
144t3wy? + 832w?y? + 1784tw?y? + 16t°w?y? + 1272wy + 144tw>y>
160wy? — 11664xy? + 6380tzy> + 1784t%xy? — 91t3zy? + 6380wzy>
1608twzy® — 571t2way? + 1784w zy? — 571tw?xy? — 91wizy? + 45122%y>
1880tx2y? 4 16t22%y? + 1880wx?y? — 352twzy? + 16wxy? 4 2088z3y>
170t23y? + 170wz3y? 4+ 1762%y? — 526413 + 3948ty> + 1272ty
56393 4 3948wy + 1480twy® — 91t2wy> + 1272wy — 91tw?y?
5wy + 20162y + 1784txy® + 144t%xy® + 1784wxy® + 32tway®
144w?zy® + 208822y 4 170tz%y> + 170wx?y® + 2562°y> + 992y
888ty* + 160t%y* + 888wy* + 208twy* + 160wy* + 14002y*
142tzy® + 142way* + 1762%y* + 440y° + 46ty° + 46wy®

— t —
(A0) o, = _z=y)lt-w) <—144288 + 7ATT6 4+ 1075262 — 52644

++++ I+ ++++

e

T i e i i S S

128zy° + 32y6> 1250345

1
(S0) rr, = w65 <—288576tw + 149552t%w + 215043 w — 10528t w

1984t%w + 880t5w + 64t w + 149552tw? — 52084%w? — 11776t3w?
7896t*w? + 1776t°w? + 92t5w? + 21504tw® — 11776t%w> + 1664t3w>

+ +
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++ +

++++++++

+ 4+

_l’_

+ + |

e e e e e

+ o+ +

2544t4w® + 3208°w> — 10528tw* + 7896t w* + 2544¢3w* + 10t*w*

1984tw® + 1776t%w® + 320t3w> 4 880tw’ + 92t2w® + 64tw”

144288tx — TATT6t%x — 10752632 + 5264tz — 992t°x — 440t0%

32t7x + 144288wzx + 26752t wx — 6400t3wz + 1024t wx + 960t wx

96t5wax — 7TATT6w?x + 26752tw s — 35206%w3x + 2368t3w?xr + 1104t w e
144t°w%z — 107520z — 6400tw>z + 2368t2wz + 1024t3w3z — 112t w3z
5264wtz + 1024tw*s + 1104wz — 112683wrs — 992w’z + 960twx
144t%w°x — 44008z + 96twsz — 32w 2 — TATT6tz? + 26042222

5888t32% — 3948t* 12 — 888t°x? — 46022 — T4TT6wa? — 53504twa’

1760t2wa? + 2560t3wa? 4 480t wa? + 26042w?x? + 1760tw?z? + 96t3wa?
28t4w2x? 4 5888w3z? + 2560tw3x? + 96t2w3x? — 256¢3w3x? — 3948wix?
480tw*z? + 28t2whz? — 888w’ 2% — 46wSz? — 10752tx> + 5888t%1>

832t3x3 — 1272t%23 — 160t°2® — 10752wa> + 12800twa> — 4928t%wa?
512t3wa3 + 176t wa® + 5888w?a® — 4928tw?a? — 1926%w?a® + 1283 w23
832w3z® — 512tw3a® + 128t2w3x3 — 1272w 23 + 176tw*a® — 160w’z
5264tx* — 394824 — 1272632 — 5tz + 5264wz — 2048twa?

1584t2wa* — 64t3wa* — 3948w?x* — 1584tw?x* — 56t%wx* — 1272w32*
64tw3zt — swiat — 992tx® — 888225 — 160t32° — 992wa®

1920twaz® — 144t2wa® — 888w?a® — 144tw?z® — 160w3z® — 440t2°

46t%2% — 440wz® — 192twa® — 46w3x® — 32t2™ — 32wa”

144288ty — 74776t%y — 107523y + 5264ty — 992¢%y — 440ty

32t7y + 144288wy + 26752t2wy — 6400t3wy + 1024t wy + 960t>wy

96t5wy — T4TT6w3y + 26752tw>y — 3520t2wy + 2368t3wy + 1104t1w?y
1445wy — 10752w3y — 6400tw3y + 2368t%w3y + 1024t3w3y — 112t4w3y
5264wy + 1024twty + 1104t2why — 1123wy — 992w’y + 960tw’y

144t2wdy — 440w’y + 96twSy — 32w y — 2885762y — 535042y

12800632y — 2048t xy — 1920t°zy — 192t02y — 53504w’zy — 512t2wxy
768t3wrzy — 320t w?xy 4+ 12800wzy — 768t2w3xy — T68t3wizy — 2048wray
320t2whzy — 1920w zy — 19208zy + 14955222y + 26752txy + 176022y
49283 2%y — 1584t a2y — 144t° 2%y + 26752wx?y + 2561wy + 384t3wx?y
160t wzy + 1760w’z?y + 256tw?a’y — 256t°wxy — 4928w3z2y + 384tw %y
256t2w sy — 1584wrz?y + 160twiz?y — 144w’ 2y + 2150423y — 6400tz>y
25606223y — 512t323y — 6412y — 6400w’y + 3842wy + 384t3wasy
2560w2x3y + 384tw?23y + 5122w a3y — 512w3xy + 384twiady — 64wtady
105282ty + 1024tzty + 480t%z*y + 176t3zty + 1024wzty + 160t2wa’y
480w3zty + 160twasty + 176w3zty + 19842y + 960tz y + 960w’y

88025y + 96tz5y + 96w’y + 64xTy — T4TT6ty* + 26042t%>

5888t3y? — 3948t1y? — 888t°y% — 46t%y? — TATT6wy? — 53504twy>

1760t2wy? + 2560t3wy? + 480t wy? + 26042w?y? + 1760tw?y? + 96t3w>y?
28t4w?y? + 5888w3y? + 2560tw3y? + 96t%w3y? — 256t3w3y? — 3948wy?
480twhy? + 28t%2why? — 888woy? — 46w’y + 149552212 + 26752t x>
1760t%2y? — 49283 xy? — 1584t  zy? — 144t° 2y + 26752wzy? + 256t2wxy?
384t3waxy? + 160t wzy? + 1760wxy? + 256tway® — 256t3way? — 4928w3zy?
384twizy? — 256t2wizy? — 1584wizy? + 160tw*ry? — 144wdzy? — 52084222
3520tz%y% — 19232%y° — 56t12%y? — 3520wa’y? — 512tway? + 51263way?
192w322%y? + 512twz?y? — 56wrz?y® — 11776x3y? + 2368ty + 96t22°y>
128832392 + 2368way? — T68tway? — 256t2way? + 96w a3y? — 256twa>y?
128w3a3y? 4 7896zy% + 1104txty? + 28221y + 1104wzty? — 320twaty?
28w2azty? + 17762°y% + 144t2°y? + 144wzy? + 922542
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— 10752ty> 4 5888t2y3 — 832t3y3 — 1272t4y3 — 160ty — 10752wy?

+  12800twy® — 4928t%wy> — 512t3wy? + 176t wy® + 5888w?y>® — 4928tw?y>
— 192t2w%y3 + 12863w%y® — 832w3y® — 512tw3y> + 128¢2w3y® — 1272wy3

+ 176twy® — 160wy® + 21504zy> — 6400tzy> + 2560t2xy> — 512632y

— 64t1zy® — 6400wy + 384t2wxy® + 384t3way® + 2560wy + 384twxy?
+ 5122w xy? — 512wxy® + 384twizyd — 64wrazy® — 117762%y> + 2368t2%y>
+ 96t22%y> + 1283223 + 2368wzy® — T68tw’y® — 256t%way> + 96wizy>
—  256tw x2y3 + 128w x2y3 + 1664:1:33/3 +1024tz3y3 — 2561223y + 1024wa’y?
—  768twz’y’ — 256wy + 25442%y® — 112ty — 112way® + 3202%°

+  5264ty* — 39482y 1272753 4 5ttyt + 5264wy? — 2048twy?

— 1584t2wy4 64t3wy4 — 3948w2y4 — 1584tw2y4 — 56t2w3y* — 1272w3y*

— 64twy* — swhyt — 10528zy? + 1024ty + 480t%xy* + 176632y

+ 1024wzy* + 16()t2wacy4 + 480w?zy* + 160tw?ry* + 176w3xy* + 78962%y*
+  1104t2%y* + 28t%2%y* + 1104wa’y* — 320tway* + 28w3x?y* + 254423y*
— 112tz3y* — 112wx3y* + 102%y* — 992ty° — 888t%y° — 160t3y°
— 992wy’ — 1920twy® — 144t%wy® — 888w?y® — 144tw?y® — 160wy°
+  1984zy° + 960tzy’ + 960wy’ + 177622y + 144tay® + 144wa>y®
+  32023y° — 440ty°® — 46t%y° — 440wy’ — 192twy® — 46w?y°
+  880xy® + 96txy® + 96wy’ + 922%y° — 32ty" — 32wy’
+ 64a:y7 a1250345.
4
Ay, = —5lh = F)(fs—f) (36 = 20(k1 + ka + ks + ki) + fi+ fo+ s+ o
+ 10(k1 + k2) (ks + k4)> f5 taisazas.
2 8 _
(5—1)2)121314 = g(fl f2)(f3 = fa) (k1 — ko) (ks — ka) f5 " ar25a345.
2 2
(At3)§1)12[3[4 = —5Us- 1)*t195t345.
1
(At2)§?)121314 = —5(fs- 1)*t195t345 (k7 + k3 + k3 + kj
— 16(k1 + ko + ks + kq) + 10(k1 + ko) (ks + kq) + 44).
2
(St2)§3)12[3[4 = g(lﬁ ko) (ks — ka)(fs — 1)*t125t345.
2
(Sp2)§?)1’2]3[4 = Sf§p125p345 (kT + k3 + k3 + ki — 2(k1 + ko + k3 + ka) + 2(k1kz + ksks) —
9a125a
S hrs = B (kg — k) (14 ky — ko) (34 Ky + k) (5 + k1 + ko)

160(f5 — 5)
X (=14 ks—ka)(1+ ks —ka)(3+ ks + ka)(5+ k3 + ka).

Quartic couplings of non-derivative vertices

3
(55)§1)1“21314 = 5 —— fPais5az45.
1
(S4)§?)121314 = 1925f5 1250345 (747 368(k1 + ko + k3 + kg) + 65(k% + k3 + k3 4+ k3)

+ 132(]451]{32 + k3k4) - 96(]{?1 + kz)(k‘g + k‘4)>

1
<sg>g?}2 BL = G5 — f2a15a345 (—3293 + 4036t — 1012¢* — 96¢°
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35t% 4+ 4036w — 2428tw + 482w + 883w — 1012w? + 48tw?
12262w? — 96w + 88tw? + 35w* + 4036z — 2976tz + 360tz
4083z — 2976wz + 1056twz — 8t2wz + 360w’z — Stw’z + 40wz
101222 + 360tz? + 44t%2> + 360wz? — 8twr? + 44w’z — 9623
40tz + 40wa® + 35z 4 4036y — 2976ty + 360t%y + 4063y
2976wy + 1056twy — 8t2wy + 360w’y — 8tw?y + 40wy — 2428y
1056tzy — 8t2xy + 1056wzy — 8w?xy + 48z%y — 8ty — Swa’y
88x3y — 1012y% + 360ty> + 44t2y? + 360wy? — Stwy? + 44w?y?
48y — Stxy? — Swry? + 1222%y* — 963> + 40ty°

40wy® 4 88xy® + 35y4> .

L+ + +

_l’_

+ o+

1
(52)\ s = — o5 3 msases (8273 — 20116t + 9396¢” + 1008

— 1227t + 36t° + 26t° — 20116w + 25644tw — 2688t>w

—  354483w + 356t w + T6t°w + 9396w? — 2688tw? — 2778t w?
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1672wey* + 608tw4my4 + 268w xy* — 9496422y* — 68020t2%y*
1458t%2%y* 4 40564322y 56t4x2y4 — 68020wa2y* — 11588twax>y*
4136t2wx2y 1856t3wx y 1458w2x2y4 + 4136tw2 2yt — 3408t2w%ay
4056w 2%yt — 1856twz%y* — 56wizyt — 4676423y* + 6940ta:3y4
4056t2x3y 1096t3x3y4 + 6940wx3y + 896tway* — 1856t2wa> y
4056w2x3y 1856tway? 1096w 33yt 4+ 6638xy* + 16721590 y?
566224y + 1672waty* + 608th — 56w?aty? + 292027y

268t:n5y + 268wx’y* + 22425y* + 33444y5 — 17836ty°

—  31788t%y5 — 3076t3y° + 2920t*y° + 416t°y° — 17836wy”

- 57456twy5 — 2724t%wy® + 4000t3wy® + 268t wy® — 31788w?y°

— 2724tw?y® + 4296t2w%y° 4 592t3w3y° — 3076wy’ + 4000tw3y®
592t2w3y® + 2920wty® + 268twry’ + 416wy° — 17836xy°

— 57456ty — 2724t%xy® + 400063 2y° + 268t xy® — 57456wry’
4992twazy® + 2432t2wary® + 3843 wxy® — 2724w xy’ + 2432tw?xy’
1112¢62w2zy® + 4000w3zy® + 384twzy® + 268whzy® — 317883:2315
2724tx%y° + 4296t%22y° + 59263 2%y — 2724w$2y5 + 2432twa?y®
111262wa?y® 4 4296w?a?y® + 1112tw3x?y® + 592w2%y® — 307623y
4000t23y® + 592t223y5 4+ 4000wz3y® + 384tway® + 592w2 30
2020z1y° + 268tzy® + 268waty® + 4162°y° + 8640y°

26900ty° + 1416t%y° + 2640t3y° + 224t*4° — 26900wy°

5828twy’ + 1792t%wyb + 352t3wy’ + 1416wy% + 1792¢w?y°
848t2w?y® + 2640wy’ + 352twy® + 224wy’ — 26900zy°

5828txy® + 1792t 2% + 3526324 + 5828wy’ — 2112twxy®

688t2wxy® + 1792w?xy® + 688twxy® + 352w3xy® + 14162%°
1792tx%y% + 8482225 + 1792wa?y® + 688wy’ + 848w?2%y°
264023y° + 352ta3y° + 352wx3y6 + 224x%y5 — 5124y" + 132ty"
1136t%y" + 3363y 4+ 132wy” + 1024twy” + 272wy’

1136wy + 272tw?y” + 336w3y” + 1322y" + 1024tzy” + 272t%y”
1024way” — 384twzy” + 272wxy” + 11362%y™ + 272ta%y”

272wzy" + 33623y" — 618y° + 800ty® + 112t%9° + 800wy®

96twy® + 112w3y® + 800xy® — 96txy® — Y6wzy® + 11222y°

192y? + 32t° + 32wy® + 3229 + 24y10>

|+ o+

++ +

|+ o+

+ o+

_l’_

L+t

e e e i SIS

_l’_

(5—1)5?)121314 = §f51a125a345(k1 — ko) (k3 — ka)(f1 — f2)(f3 — fa)
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X

(-36+ 2k1 + ko + k34 ko) + fr+ fo+ f3+ fa — 2kiko — 2k3k4>-

0 f5 — 1)2t195t
(St2)§1)121314 = ( - ;5 225345 (kl - k2)(k3 - k4)(f1 + f2 + f3 + f4

+ 2(k‘1 + ko + ks + ]64) — 2(/€1k'2 + k3]€4) — 36).

0 1

(Sp3)§1)121314 = —gf§p125p345~
0 2

()i naryry = 5 JiProspaas(k K3+ 3+ kG — 20k + ko + ks + ka) + 2(kika + kska) — 4).
(0) _ 9a1250345

S, = m(*lﬂ”ﬁ —k2)(1+ k1 — k2)(3 + k1 + k2)(5 + k1 + ko)

(=14 kg — ka)(1 + k3 — ka)(3 + k3 + ka)(5 + k3 + ka)
(23 4 2k3 + 2k2 + 2k2 + dk1ko + dksky — 4(k1 + ko + k3 + k4) — 5).
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