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Abstract

In this thesis, we present the computation of the four-point functions of 1/2-BPS operators
in planar N = 4 SYM theory in the strong ’t Hooft coupling limit. We perform the
calculation for all the operators with weights up to 8. Moreover, we consider several
high-weight correlation functions. The results are obtained from the effective type-IIB
supergravity action, employing the AdS/CFT correspondence. The computation is done
by implementing the newly developed, simplified algorithm, in combination with the
harmonic polynomial formalism. These results are additionally used to check the recently
conjectured formula for correlators in Mellin space, and we indeed find an agreement.
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Zusammenfassung

In dieser Dissertation präsentieren wir die Berechnung der Vierpunkt-Funktionen von
1/2-BPS-Operatoren in der planaren N = 4 SYM-Theorie im Limes starker ’t Hooft-
Kopplung. Wir führen die Berechnung für alle Operatoren mit Gewichten bis zu 8 durch.
Darüber hinaus betrachten wir mehrere Korrelationsfunktionen mit hohem Gewicht. Die
Ergebnisse werden erhalten aus der effektiven Supergravitationswirkung von Typ IIB
unter Verwendung der AdS/CFT-Korrespondenz. Die Berechnung erfolgt durch Imple-
mentierung eines neu entwickelten, vereinfachten Algorithmus in Kombination mit dem
Formalismus der harmonischen Polynome. Die Ergebnisse werden außerdem verwendet,
um die kürzlich vermutete Formel für Korrelatoren im Mellin-Raum zu überprüfen, und
wir finden tatsächlich eine Übereinstimmung.
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Chapter 1

Introduction

An old dream of theoretical physicists is to have a quantitative description of the hadronic
spectrum and their excitations. At high energies, quarks interact weakly, and the stan-
dard techniques based on Feynmann diagrams can be performed. However, Quantum
Chromo-dynamics (QCD) – the theory of strong interactions – fails to obtain analytical
results at low energies. At significant separation, the coupling constant becomes too large,
and the perturbation theory is not valid anymore. One has to use non-perturbative meth-
ods such as numerical calculations on the lattice. Thus, analytically describing Yang-Mills
theories at strong coupling regime is a great challenge for theoretical particle physics.

A new perspective in this direction comes with the famous AdS/CFT correspondence
conjectured by Maldacena [5]. It proposes the duality between two different physical
systems. Namely, certain quantum gauge theories enriched by conformal symmetry can
be described in terms of closed strings on a background, containing an Anti-de-Sitter
spacetime as a factor (the maximally symmetric space of constant negative curvature).
The most well-understood example involves maximally-supersymmetric four-dimensional
N = 4 Yang-Mills theory with gauge group SU(N) on the one side and its dual partner –
superstring theory of type IIB defined on the AdS5 × S5 background [6]. Though N = 4
SYM is quite similar to QCD, the latter is not conformal. Since there is no string dual
to QCD known, N = 4 SYM and its string partner serve as a toy model to understand
strongly coupled gauge theories in general. For instance, in selected cases, we can consider
any 4-dimensional gauge theory as N = 4 SYM with some particles or interactions added
or removed.

In recent years significant progress was made in the spectral problem of the AdS/CFT
correspondence. It is a direct consequence of a hidden symmetry – integrability [6, 7].
Indeed, in the planar limit, when the rank of the gauge group N → ∞, one can solve
N = 4 SYM exactly. To solve N = 4 SYM theory means to find anomalous dimensions
of local operators and to compute their three-point correlation functions. On the string
side, the limit N →∞ corresponds to a free string theory described by a two-dimensional
quantum non-linear sigma model. The energy spectrum of the sigma model determines
the spectrum of the scaling dimensions of local operators in the dual gauge theory. The
fact that the corresponding sigma model is integrable allows one to find the spectrum for
strings on the AdS5 × S5 by using Thermodynamic Bethe Ansatz (TBA) techniques.

However, computing other observables, such as correlation functions or Wilson loops,
provides another non-trivial check of the AdS/CFT correspondence and sheds some light
on the gauge theories in general. In this thesis, we are interested in computing four-
point functions of local 1/2-BPS operators of planar N = 4 SYM theory at strong
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coupling. In this particular limit, its dual string partner reduces to a classical supergravity
theory of type IIB defined on the AdS5 × S5 spacetime. A precise recipe for computing
the four-point functions in the framework of the AdS/CFT duality was proposed by
Witten [8] and Gubser, Klebanov, Polyakov [9], and is as follows: one interprets the on-
shell supergravity partition function as a generating functional for the four-point functions
in SYM theory with sources for the 1/2-BPS operators being the boundary values of
the Kaluza-Klein modes of the compactified on the sphere supergravity theory. Thus,
computation of an n-point function requires the knowledge of the effective supergravity
action - the action expanded up to the n-th order in perturbations of the fields around
their background values. Such an action for the case of four-point correlators was found
by Arutyunov, Frolov in [10–12] and several results were obtained. The first computed
correlators correspond to equal-weight 1/2-BPS operators with (lowest) weight k = 2
[13,14], k = 3 [15] and k = 4 [16]. The first four-point function featuring different-weight
operators was discussed in [17], which considers the correlator of two k = 2 and two k = 3
operators. This was shortly afterward generalized to the case in which the k = 3 operators
become arbitrary (but equal) weights [18]. The maximal amount of different operators
studied until the present was three in [19], where next-next-to-extremal correlators were
studied that generalize those in [18]. Finally, the only other explicitly known result is the
equal-weight correlation function of weight k = 5, which was computed using a bootstrap
approach in [20]. These results, although restricted to 1/2-BPS operators, do in some
cases allow for the evaluation of correlation functions of other members of these 1/2-
BPS multiplets. For example, for operators belonging to the stress-energy multiplets it
was shown in [21] that all their four-point functions can be found from the equal-weight
correlator for 1/2-BPS operators of weight 2.

Recently the problem of finding holographic correlators in a planar strong coupling
limit has gained renewed interest. In [20, 22] the Mellin space formalism was used to
analyze the structure of correlation functions of four 1/2-BPS local operators of arbitrary
weights. This culminated in an elegant conjectured closed formula for these correlators
in Mellin space, thereby extending the existing expression for equal-weight operators
proposed in [23]. The conjecture follows from reformulating the computation of four-
point functions as a bootstrap problem by imposing specific properties on the correlators
such as superconformal symmetry.

The existence of the simple Mellin-space formula is surprising when one considers
the only method known at present to compute these correlation functions explicitly. It
includes consideration of the tree-level Witten diagrams for the chosen operators, whose
vertices follow from the effective action of the Kaluza-Klein reduction of the type IIB
supergravity on the sphere S5. This computation becomes cumbersome quickly and yields
very unwieldy intermediate results, although the final result can usually be expressed in
a compact form, in turn suggesting that a simple formula such as the one conjectured
in [20] might exist. However, because of the difficulty of their computation, it is equally
possible that we have not explored far enough to discover four-point functions whose
final expression takes a less appealing form. Indeed, as of yet, all the explicitly computed
four-point functions are in some form not completely generic: they are either particularly
symmetric (equal-weights) or/and close to extremality condition where the computation
simplifies. In fact, not a single non-trivial correlation function has ever been computed
between four operators with four different weights. Also, apart from the equal weight case
for which an explicit formula has long ago been conjectured [23], no four-point functions
which go beyond the next-next-to-extremal case have been considered.
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In this thesis, we compute the four-point functions of operators with weights up to 8
plus {7, 10, 12, 17} and {17, 21, 23, 25}. This is a major improvement over the previously
available set of correlators. This computation became possible due to simplifications
of the algorithm used before, where for a given set of weights one firstly writes the
effective supergravity action by hand, evaluates it on-shell and then differentiates the
partition function over the sources. Already for known cases, this procedure becomes very
unpleasant because of the growing number of terms. However, we show that the procedure
can be streamlined to directly obtain the correlation function in terms of contact and
exchange Witten diagrams. These simplifications consist of a direct formula for the
exchange part and the contact part of the correlation function and can be automatized
using, for example, Mathematica.

It is convenient to express the result for the correlators in variables u and v, which
are the conformally invariant combinations of the coordinates xi. As an example, let us
present the simplified expression for the 〈3456〉 correlator. Any correlator can always be
split into the free and the interacting part, where the latter for {3,4,5,6} case takes a
form

〈3456〉int =

√
10

N2

R1,2,3,4 t24t
2
34

x2
12x

2
14x

2
23x

2
24x

6
34

(u t14t23F1 + uv t13t24F2 + v t12t34F3) .

All the notations are given in the next sections, and the dynamical F functions are written
in terms of contact Witten diagrams – the so-called D-functions, which are the known
special functions:

F1 = −1

8
v(6u+ 28v + 1)D̄2 5 6 7 −

5

4
vD̄2 4 6 8 −

7

8
vD̄2 4 7 7 −

5

8
vD̄2 5 5 8 ,

F2 = −3

2
uvD̄2 6 5 7 −

3

2
vD̄2 5 5 8 − 3vD̄2 5 6 7 ,

F3 = −7

4
uv2D̄2 6 6 6 −

1

8
v(10u+ 12v + 3)D̄2 5 6 7 −

5

8
uvD̄2 6 5 7 −

15

8
v2D̄2 5 7 6 .

A particular – although not entirely new – feature of the newly computed correlators
is the presence of extended operators: it has been known for a long time that in general,
the supergravity scalar fields are not dual to the single-trace operators from the 1/2-
BPS multiplets, but instead to a linear combination of single- and double-trace operators
known as extended operators [24]. Nevertheless, for most purposes, this fact can be ig-
nored as in the supergravity limit it only affects the free part of the correlators containing
at least weight-4 operators. The only known correlators for which this effect was seen are
those from the family 〈22nn〉 for n > 3 discussed in [18]. We show the presence of the
extended operators by an explicit computation.

Our computations serve multiple goals. First of all, we present simplifications to the
algorithm that computes four-point correlation functions from the supergravity action
that, given sufficient computing power, should allow for the computation of further non-
trivial correlators. This algorithm – being a refined version of the procedure that has
been used to compute all the correlators [13–19] – is fully rigorous and does not include
any bootstrapping, like the coordinate method proposed in [20]. In particular, the simpli-
fications include an explicit formula for the exchange part in terms of Witten diagrams.
Also, we find a drastic simplification of the computation of the vertex building blocks. In
particular, we obtain new reduction formulae for different products of tensors appearing
in cubic and quartic couplings. These might even serve as a starting point to prove the
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aforementioned Mellin-space conjecture. Secondly, we use these simplifications to com-
pute a set of new previously unknown non-trivial correlators. Thirdly, all the correlators
are used to perform a non-trivial check of the Mellin-space formula for the four-point
functions of arbitrary-weight operators conjectured in [20, 22]. We indeed find an agree-
ment with the conjecture. We also discuss how the Mellin-space conjecture can be used
to significantly simplify the expressions for the correlators in the coordinate space.

The thesis is set up as follows: in part I we discuss both dual theories, namely,
chapter 2 is dedicated toN = 4 SYM theory and the structure of the four-point functions,
while chapter 3 is about the AdS/CFT correspondence and the dual supergravity theory.
In part II we present the main results. Chapters 1, 2 and 3 contain the aforementioned
simplifications of the algorithm. In chapter 4, we discuss the verification of the results
and demonstrate the presence of extended operators in the corresponding correlation
functions. Finally, in chapter 5, the Mellin-space conjecture is considered.
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Chapter 2

Correlators in N = 4 SYM theory

The main goal of this thesis is to compute the four-point functions of 1/2-BPS operators
in planar N = 4 SYM theory at strong coupling limit. Before proceeding with the direct
computation in the dual supergravity theory, in this chapter, we define our main object of
studies. After the discussion of the particle spectrum of N = 4 SYM theory, we describe
the representations of its symmetry group PSU(2, 2|4) closely following [25]. 1/2-BPS
operators are then those who commute with half of the supercharges. They are the most
studied operators, their conformal dimension is protected, i.e., does not receive quantum
corrections, and thus, they are essential in testing the AdS/CFT correspondence.

2.1 N = 4 SYM theory

We start by reminding the basic facts about the four dimensional N = 4 SYM theory. It
is maximally supersymmetric gauge theory which consists of a covariant derivative Dµ,
constructed from the gauge bosonsAµ, six massless real scalar fields φI , four chiral ψaα and

four anti-chiral fermions ψα̇ a. Here the spacetime indices µ take four values, while spinor
indices α, α̇ = 1, 2 belong to two independent su(2) algebras. Latin indices I, a refer to
the global su(4) ' so(6) symmetry, called an R-symmetry: the scalars transform in the
6, ψaα in the 4 (raised a index) and ψα̇ a in the 4 (lowered a index) representations of the
R-symmetry algebra. All the elementary fields transform in the adjoint representation of
the SU(N) gauge group and are represented by traceless Hermitian N ×N matrices.

The Lagrangian of the theory is unique and given by

L = Tr

(
1

4
FµνFµν +

1

2
DµφIDµφI + ψ̄aα̇σ

α̇β
µ Dµψβa (2.1.1)

−1

4
g2[φI , φJ ][φI , φJ ]− 1

2
igψαaσ

ab
I ε

αβ[φI , ψβb]−
1

2
igψ̄aα̇σ

I
abε

α̇β̇[φI , ψ̄
b
β̇
]

)
.

The first three terms are the standard kinetic terms for the gauge field, scalars, and
spinors, while the interaction is presented via a quartic coupling of the scalars and a cubic
coupling of a scalar and two spinors. The matrices σµ and σI are the chiral projections
of the gamma matrices in four and six dimensions respectively. The symbols ε refer to
totally antisymmetric tensors of su(2). The action for the four-dimensional N = 4 SYM
theory can be obtained, for example, as the dimensional reduction on the torus T 6 of the
d = 10 N = 1 SYM theory.
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The theory contains a unique coupling constant, the gauge coupling g = gYM . It
has the vanishing β-function to all loops; thus, the theory is conformally invariant. The
conformal symmetry, the supersymmetry and the R-symmetry ofN = 4 SYM are parts of
a bigger symmetry group, the superconformal group PSU(2, 2|4). The bosonic subgroup
of PSU(2, 2|4), SU(2, 2)×SU(4), splits into four-dimensional conformal group SU(2, 2) '
SO(4, 2) and the R-symmetry group SU(4).

In the next three sections, we will discuss more on the superconformal group PSU(2, 2|4)
and its irreducible representations.

2.2 Conformal algebra

Given a metric ηµν = diag(−1, 1, 1, 1) with µ, ν = 0, 1, 2, 3, the conformal algebra includes
10 Poincaré generators: 4 generators of spacetime translations, Pµ, and 6 generators of
the Lorentz SO(3, 1) transformations, Mµν = −Mνµ. The others generate dilatations, D,
and special conformal transformation, four generators Kµ. In total, 15 generators with
the following commutation relations:

[Mµν , Pλ] = i(ηµλPν − ηνλPµ) , [Mµν , Kλ] = i(ηµλKν − ηνλKµ) ,

[Mµν ,Mλρ] = i(ηµλMνρ − ηνλMµρ − ηµρMνλ + ηνρMµλ) ,

[D,Pµ] = iPµ , [D,Kµ] = −iKµ , [Kµ, Pν ] = −2iMµν − 2iηµνD . (2.2.1)

Defining MAB, A,B = 0, 1, . . . , 5 by

MAB =

 Mµν −1
2
(Pµ −Kµ) −1

2
(Pµ +Kµ)

1
2
(Pν −Kν) 0 D

1
2
(Pν +Kν) −D 0

 , (2.2.2)

one can see that the algebra corresponds to that for SO(4, 2) with

[MAB,MCD] = i(ηACMBD − ηBCMAD − ηADMBC + ηBDMAC) , (2.2.3)

and ηAB = diag(−1, 1, . . . , 1,−1).

The field-theoretic representations of the conformal group are carried by the quasi-
primary fields OI(x). It is said that OI(x) has a dimension ∆, if under the rescaling
x → λx it transforms as O(x) → λ−∆O(λx). The action of the conformal generators is
given by:

[Pµ,OI(x)] = i∂µOI(x) , [D,OI(x)] = i(x·∂ + ∆)OI(x) ,

[Mµν ,OI(x)] = i(xµ∂ν − xν∂µ)OI(x) +OJ(x)(sµν)
J
I ,

[Kµ,OI(x)] = i(x2∂µ − 2xµ x·∂ − 2∆xµ)OI(x)− 2OJ(x)(sµν)
J
Ix

ν , (2.2.4)

with (sµν)
I
J being the spin matrices satisfying the algebra of Mµν .

Defining a conformal state as

|O〉I = OI(0) |0〉 , (2.2.5)

satisfying

Kµ |O〉I = 0 , D |O〉I = i∆ |O〉I , Mµν |O〉I = |O〉J (sµν)
J
I , (2.2.6)
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we get the representation space spanned by vectors of the form∏
n

Pµn |O〉I . (2.2.7)

One can map the field-theoretic representations onto the so-called positive-energy
representations for which the norm and, therefore, the notion of unitarity can be defined.
Consideration of field-theoretic representations is, however, enough for our purposes.

2.3 Superconformal algebra

The generators of supersymmetry are fermionic and called the supercharges. These are
16 separate supercharges Qi

α and Q̄iα̇, with i = 1, . . . , 4, which in combination with the
Poincaré generators define supersymmetry algebra with the following relations:

{Qi
α, Q̄jα̇} = 2δijPαα̇ , {Qi

α, Q
j
β} = {Q̄iα̇, Q̄jβ̇} = 0 ,

[Mα
β, Qi

γ] = δγ
βQi

α − 1
2
δα
βQi

γ , [M̄ α̇
β̇, Q̄iγ̇] = − δα̇γ̇Q̄iβ̇ + 1

2
δα̇β̇Q̄iγ̇ . (2.3.1)

Here we defined

Pαα̇ = (σµ)αα̇Pµ , K̃α̇α = (σ̄µ)α̇αKµ ,

Mα
β = − 1

4
i(σµσ̄ν)α

βMµν , M̄ α̇
β̇ = −1

4
i(σ̄µσν)α̇β̇Mµν , (2.3.2)

and in new notations the commutators for Mµν reduce to

[Mα
β,Mγ

δ] = δγ
βMα

δ − δαδMγ
β , [M̄ α̇

β̇, M̄
γ̇
δ̇] = −δα̇δ̇M̄ γ̇

β̇ + δγ̇β̇M̄
α̇
δ̇ . (2.3.3)

Finally, the combination of the supersymmetry with dilatations and special conformal
transformations makes a superconformal algebra. The commutators with D are

[D,Qi
α] = 1

2
iQi

α , [D, Q̄iα̇] = 1
2
iQ̄iα̇ . (2.3.4)

The special conformal generators do not commute with the supercharges

[Kµ, Q
i
α] = −(σµ)αα̇S̄

iα̇ , [Kµ, Q̄iα̇] = Si
α(σµ)αα̇ ; (2.3.5)

thus, creating new superconformal charges Siα and S̄iα̇, satisfying the following relations:

{S̄iα̇, Sjα} = 2δijK̃
α̇α , {S̄iα̇, S̄jβ̇} = {Siα, Sjβ} = 0 ,

{Qi
α, S̄

jα̇} = {Siα, Q̄jα̇} = 0 ,

{Qi
α, Sj

β} = 4
(
δij(Mα

β − 1
2
i δα

βD)− δαβRi
j

)
,

{S̄iα̇, Q̄jβ̇} = 4
(
δij(M̄

α̇
β̇ + 1

2
i δα̇β̇D)− δα̇β̇Ri

j

)
,

[Mα
β, Si

γ] = −δαγSiβ + 1
2
δα
βSi

γ , [M̄ α̇
β̇, S̄

iγ̇] = δγ̇β̇S̄
iα̇ − 1

2
δα̇β̇S̄

iγ̇ ,

[D,Si
α] = −1

2
iSi

α , [D, S̄iα̇] = −1
2
iS̄iα̇ ,

[Pµ, S̄
iα̇] = − (σ̄µ)α̇αQi

α , [Pµ, Si
α] = Q̄iα̇(σ̄µ)α̇α . (2.3.6)

Here Rij are the 15 SU(4) R-symmetry generators for which the Lie algebra is

[Ri
j, R

k
l] = δkjR

i
l − δilRk

j . (2.3.7)
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All the conformal generators commute with Rij, while the action on the supercharges is
given by

[Ri
j, Q

k
α] = δkjQ

i
α − 1

4
δijQ

k
α , [Ri

j, Q̄kα̇] = −δikQ̄jα̇ + 1
4
δijQ̄kα̇ ,

[Ri
j, Sk

α] = − δikSjα + 1
4
δijSk

α , [Ri
j, S̄

kα̇] = δkjS̄
iα̇ − 1

4
δijS̄

kα̇ . (2.3.8)

Given the structure of the superconformal algebra, we have everything to proceed with
building up its representations.

2.4 Superconformal representations and BPS-states

To find the unitary irreducible representations (irreps) of the PSU(2, 2|4) group it suf-
fices to analyze the irreps of its bosonic subgroup SU(2, 2)× SU(4). Acting on it by the
supercharges Q one gets the irreps of the full superconformal group.

For SU(4) we consider the Chevalley basis, namely Hi, E
±
i , i = 1, 2, 3, with the

following commutation relations

[Hi, Hj] = 0 , [Ei
+, Ej

−] = δijHj , [Hi, Ej
±] = ±KjiEj

± , (2.4.1)

where the Cartan matrix is

Kij =

 2 −1 0
−1 2 −1
0 −1 2

 . (2.4.2)

Then for any representation space, a convenient basis is given by the eigenvectors of Hi:

Hi|λ1, λ2, λ3〉 = λi|λ1, λ2, λ3〉 , (2.4.3)

with λi integers, and is uniquely determined by its highest weight state

Ei
+|λ1, λ2, λ3〉hw = 0 , λi ≥ 0 . (2.4.4)

Acting by the lowering operators E−i , one obtains the remaining basis vectors.

Further, we write the generators of the Lorentz group as

Mα
β =

(
J3 J+

J− −J3

)
, M̄ β̇

α̇ =

(
J̄3 J̄+

J̄− −J̄3

)
(2.4.5)

where J±, J3 and J̄±, J̄3 are the standard generators of SU(2)J and SU(2)J̄ . The highest-
weight state for the superconformal algebra then satisfies

Ei
+|∆, j, j̄; λ1, λ2, λ3〉hw = J+|∆, j, j̄; λ1, λ2, λ3〉hw = J̄+|∆, j, j̄; λ1, λ2, λ3〉hw = 0 .

(2.4.6)

The supermultiplet is then generated by the action of the supercharges Qi
α, Q̄iα̇ on the

state with lowest conformal dimension ∆.
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Thus, the representations of the superconformal group are labeled by a conformal
dimension ∆, two spins j, j̄ and three Dynkin labels [λ1, λ2, λ3].

BPS-states
If some of the supercharges annihilate the highest-weight state, we obtain the shortening
of the supermultiplet

Qi
α|k, p, q; j, j̄〉hw = 0 , α = 1, 2 . (2.4.7)

One can obtain the following results

i = 1 ∆ = 1
2
(3λ1 + 2λ2 + λ3) ,

i = 1, 2 ∆ = 1
2
(2λ2 + λ3) , λ1 = 0 , (2.4.8)

i = 1, 2, 3 ∆ = 1
2
λ3 , λ1 = λ2 = 0 ,

i = 1, 2, 3, 4 ∆ = 0 , λ1 = λ2 = λ3 = 0 .

Equivalently shortening conditions can be obtained for the action of the Q̄ supercharges

Q̄iα̇|k, p, q; j, j̄〉hw = 0 , α̇ = 1, 2 . (2.4.9)

In this case we have

i = 4 ∆ = 1
2
(λ1 + 2λ2 + 3λ3) ,

i = 3, 4 ∆ = 1
2
(λ1 + 2λ2) , λ3 = 0 , (2.4.10)

i = 2, 3, 4 ∆ = 1
2
λ1 , λ2 = λ3 = 0 ,

i = 1, 2, 3, 4 ∆ = 0 , λ1 = λ2 = λ3 = 0 .

In this thesis we are interested only in 1/2-BPS operators, those which commute
with half of the supercharges. One can see that intersection of (2.4.8) and (2.4.10) gives
representation [0, p, 0] with ∆ = p.

2.5 The structure of four-point functions

The central objects of our study are the four-point correlation functions of 1/2-BPS op-
erators in the four-dimensional planar N = 4 SYM theory in the limit when the ’t Hooft
coupling constant λ = g2

YM N →∞. The planar limit consists of sending the rank of the
gauge group N →∞ while keeping λ constant. In this limit, all the nonplanar Feynman
diagrams are suppressed. We will start with a review of the structure of these correlation
functions – due to the presence of superconformal symmetry – here, see, e.g., [26], as it
will introduce a lot of our notation.

Recall that the multiplets of 1/2-BPS operators are generated from their highest

weight vectors, which we will denote as Õk with k indicating the conformal dimension.
They can be decomposed as

Õk = Õi1...ikti1 · · · tik , (2.5.1)

with Õi1...ik carrying the dependence on the scalar fields φi and t being a six-dimensional
null vector that keeps track of the SO(6) R-symmetry of the operator. Given four weights
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(k1, k2, k3, k4) with ki > 2 the four-point correlation function of such operators is given
by

〈k1k2k3k4〉 := 〈Õk1 (x1, t1) · · · Õk4 (x4, t4)〉, (2.5.2)

where the xi are spacetime coordinates, and we indicated the dependence on the null
vectors t1, . . . , t4.1 The correlator splits into a free part and an interacting part:

〈k1k2k3k4〉 = 〈k1k2k3k4〉0 + 〈k1k2k3k4〉int, (2.5.3)

where the first part 〈k1k2k3k4〉0 is the Born approximation and can be computed by
applying the Wick’s theorem. After defining

dij =
tij
x2
ij

, with tij = ti · tj, x2
ij = (xi − xj)2 (2.5.4)

we can state the form of the free part as:

〈k1k2k3k4〉0 =
∑
a

ca

(∏
i,j

d
aij
ij

)
, (2.5.5)

where the sum runs over all the sets a = {aij} and the ca are constants. The partitions
a parametrize all the inequivalent ways one can pair the t vectors, and they can be
represented as symmetric 4× 4 matrices with nonnegative integer entries with zeroes on
the diagonal that satisfy for each i

4∑
j=1
j 6=i

aij = ki. (2.5.6)

For a given set of weights, these equations have a finite number of solutions. For later
convenience we define

Tl ≡
4∏

i,j=1
i<j

t
(al)ij
ij , (2.5.7)

where al is the lth solution to the equations (2.5.6) in the ordered list of solutions: we order
solutions lexicographically as {a12, a13, a14, a23, a24, a34}. In fact, the entire correlator can
be written in the form (2.5.5), where the constants ca then become functions of the
conformal cross ratios

u =
x2

12x
2
34

x2
13x

2
24

, v =
x2

14x
2
23

x2
13x

2
24

. (2.5.8)

As it turns out, due to supersymmetry the correlator factorizes further: we can write the
interacting part as

〈k1k2k3k4〉int =
R1,2,3,4

x2
13x

2
24

∑
b

(∏
i,j

d
bij
ij

)
Fb(u, v), (2.5.9)

1Note that the subscript does not refer to a vector component, but is there to distinguish four different t
vectors.
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where
R1,2,3,4 = d2

12d
2
34x

2
12x

2
34 + d2

13d
2
24x

2
13x

2
24 + d2

14d
2
23x

2
14x

2
23

+ d12d23d34d14

(
x2

13x
2
24 − x2

12x
2
34 − x2

14x
2
23

)
+ d12d13d24d34

(
x2

14x
2
23 − x2

12x
2
34 − x2

13x
2
24

)
+ d13d14d23d24

(
x2

12x
2
34 − x2

14x
2
23 − x2

13x
2
24

) (2.5.10)

is the fully symmetric general prefactor [27]. This time the partitions b form a symmetric
4× 4-matrix with zeroes on the diagonal, but they satisfy the modified equations

4∑
j=1
j 6=i

bij = ki − 2. (2.5.11)

This reduces the number of partitions a significantly, implying that the correlator can
be written as a sum over only a few independent functions Fb of u and v, which are
moreover conformally invariant by construction and carry all the dependence on the ’t
Hooft coupling.

We will use this decomposition of the correlator for two purposes: firstly to be able to
present our computed correlators in a compact form {Fb}. Secondly, this decomposition
provides a non-trivial check whether these correlators are consistent with superconformal
symmetry.

C-tensors. The N = 4 SYM four-point functions can be represented in many forms
depending on the context. In particular, we will use the language of C-tensors to compute
some of the necessary intermediate objects. The C-tensors can be used to track the SO(6)
symmetry instead of the t vectors, by writing (2.5.1) as

Õk = Õi1...ikCi1,...,ik , (2.5.12)

with the tensor C being totally symmetric and traceless in its indices. The vector space
of C-tensors with k indices forms a representation space for the traceless symmetric
SO(6) representation with Dynkin labels [0, k, 0]. Choosing a basis in this space amounts
to selecting a set of C-tensors which we label with an upper index Ik that will appear
throughout this paper:

CIk
i1,...,ik

, with Ik = 1, . . . , dim([0, k, 0]). (2.5.13)

The possible contractions of four C-tensors are characterized by the number of connec-
tions between the different C-tensors. Denoting the number of connections by aij they
should satisfy aij = aji, aii = 0 and the sum conditions for a’s (2.5.6), showing that the a
partitions indeed parametrize the possible tensor structures (2.5.7) for a given correlator
(2.5.2). C-tensors will be discussed in more detail in section 3.1 of part II.
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Chapter 3

Type IIB supergravity action on
AdS5 × S5

In this chapter, we briefly formulate the relevant part of the AdS/CFT correspondence,
proposed by Maldacena in [5], and gather all the necessary ingredients for calculation of
the four-point functions. More details can be found in the reviews [28–30].

3.1 The AdS/CFT correspondence

Since the early days of string theory, there have been attempts to derive quantum field
theories by taking various limits of string or M-theories. A breakthrough appeared with
the paper of Maldacena [5]. He conjectured the duality between certain quantum field
theories with exact conformal spacetime symmetry (CFTs) and corresponding string
theories defined on a particular background. The latter is a product of an Anti-de-Sitter
(AdS) space and a compact manifold. In this formalism, the field theory is formulated
on the boundary of the AdSd+1 – conformally flat d-dimensional Minkowski spacetime.
Thus, one sometimes refers to the CFT as to the boundary theory, and the dual string
theory as to the bulk theory.

Most attempts to test this duality were focused on its most symmetric couple: the
CFT partner is the four-dimensional N = 4 SYM theory, while on the other side we have
type IIB superstrings propagating on the AdS5 × S5 background. N = 4 SYM has two
parameters: the ’t Hooft coupling λ = g2

YM N and rank N of the gauge group, where
gYM is the coupling constant of the theory. The AdS/CFT correspondence relates them
to the string coupling constant gs and the string tension g = R2/2πα′, where R is the
radius of S5 and α′ is the Regge slope, as follows:

λ = 4πNgs , g =
√
λ/2π . (3.1.1)

For every string observable at the boundary of AdS5, there is a corresponding observable
in the CFT4 and vice versa. Their values are supposed to match. This statement, when
the conjecture holds for all the values of the theory parameters, is usually referred to
as the strong form of the duality. To check Maldacena’s conjecture, however, appears
to be very difficult in all the regions of the parameter space. Thus, different limits are
considered (see fig 3.1 [6]):

• The ’t Hooft limit [31] consists of keeping the ’t Hooft coupling λ fixed while taking
the limit N →∞. In the perturbative expansion of the gauge theories around λ = 0
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Figure 3.1: Map of the parameter space of N = 4 SYM or strings on the AdS5 × S5 .

this limit corresponds to a topological 1/N expansion of the Feynman diagrams. It
appears that only the planar graphs – the diagrams which can be drawn on the
plane without crossing lines – survive. That is why this regime is also called the
planar limit. On the AdS side, since λ is fixed, this limit corresponds to a weakly
coupled string theory.

• One can also consider the large and small λ limits. The region of parameter space
where λ is small is called the weak coupling regime. Here one can apply the Feynman
diagrammatic techniques to computations in SYM theory. From the dual string
theory side, this regime rather corresponds to the strong coupling, thus, providing
a suitable tool to investigate the theory via its dual CFT partner. Another limit
is called the strong coupling limit, referring to the gauge theory parameter λ →
∞. Here, however, the strings are weakly coupled, which lets us study the strong
coupling limit of the SYM theory via its string partner.

In this thesis, we consider the strong coupling limit of the planar N = 4 SYM theory. In
this regime, the dual string theory reduces to type IIB classical supergravity defined on the
AdS5 × S5 space. According to the AdS/CFT correspondence, chiral primary operators
of four-dimensional N = 4 SYM theory are dual to the Kaluza-Klein modes of type IIB

supergravity on the AdS5 × S5 compactified on S5: Õk ←→ sIkk (z), z ∈ AdS5. Here, as
before, the index Ik runs over the basis of the corresponding SO(6) representation with
Dynkin labels [0, k, 0]. The precise duality between operators was conjectured by Witten
and independently by Gubser, Klebanov, Polyakov in [8, 9]. The relation is as follows:
one computes the on-shell supergravity partition function exp(−SIIB) as a function of
the boundary values of the fields, sIkk (~x) with x ∈ ∂AdS5, and subsequently interprets it

as the SYM partition function with sources for Õk being sIkk (~x). Thus, in practice, the
correlation functions of interest can be determined from the expression:

〈ÕI1
k1

(~x1)ÕI2
k2

(~x2)ÕI3
k3

(~x3)ÕI4
k4

(~x4)〉 =
δ4

δsI1k1
(~x1)δsI2k2

(~x2)δsI3k3
(~x3)δsI4k4

(~x4)
exp(−SIIB)

∣∣∣∣∣
sk→0

.

(3.1.2)
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3.2 Effective supergravity action

To compute an n-point function, one has to expand the action up to the n-th order in
perturbations of the fields around their background values. This becomes problematic
since there is no manifestly Lorentz-invariant action for type IIB supergravity because of
the presence of the self-dual 5-form field strength [32], though the covariant equations of
motion are known [33,34]. However, later on, it was possible to find the Lorentz-invariant
Lagrangian by including additional auxiliary fields [35,36].

This action was used in [10–12,37] to derive the relevant quadratic effective action for
the type IIB supergravity on the AdS5×S5 . Representing the gravitational field and the
four-form potential as

GMN = gMN + hMN , AMNPQ = ĀMNPQ + aMNPQ , F = F̄ + f , (3.2.1)

decomposing the action up to the second-order one gets the quadratic action. After
imposing the gauge conditions, elaborating the action term by term, and performing the
field redefinitions, one ends up with the covariant quadratic equations of motion which
admit lagrangian description.

To obtain cubic and quartic Lagrangian, it is necessary to know only the equations of
motion of the 4-form potential and the metric. These are:

FM1...M5 =
1

5!
εM1...M10F

M6...M10 ,

RMN =
1

3!
FMM1...M4F

M1...M4
N . (3.2.2)

Here M,N, ... = 0, ..., 9 and

FM1...M5 = 5∂[M1AM2...M5] = ∂M1AM2...M5 + 4 terms . (3.2.3)

The dual forms are given by:

ε01...9 =
√
−G, ε01...9 = − 1√

−G
, εM1...M10 = GM1N1 · · ·GM10N10εN1...N10 ,

(F ∗)M1...Mk
=

1

k!
εM1...M10F

Mk+1...M10 =
1

k!
εN1...N10GM1N1 · · ·GMkNkFNk+1...N10 .

(3.2.4)

The corresponding AdS5 × S5 background solution is as follows:

ds2 =
1

x2
0

(dx2
0 + ηijdx

idxj) + dΩ2
5 = GMNdx

MdxN ,

Rabcd = −GacGbd +GadGbc , Rab = −4Gab ,

Rαβγδ = GαγGβδ −GαδGβγ , Rαβ = 4Gαβ ,

F̄abcde = εabcde; F̄αβγδε = εαβγδε , (3.2.5)

where the Latin a, b, c, ... indices refer to AdS and the Greek α, β, γ, ... indices - to the
sphere, and ηij is simply the 4-dimensional Minkowski metric.

The gauge symmetry let us impose the de Donder gauge:

∇αhaα = ∇αh(αβ) = ∇αaM1M2M3α = 0 , h(αβ) ≡ hαβ −
1

5
gαβh

γ
γ . (3.2.6)
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These conditions imply that the following representation of the 4-form potential compo-
nents of the form aαβγδ and aaαβγ can be performed:

aαβγδ = εαβγδε∇εb , aaαβγ = εαβγδε∇δφεa . (3.2.7)

To proceed, we expand the fields into spherical components

hαα(x, y) =
∑

πI(x)Y I(y) , b(x, y) =
∑

bI(x)Y I(y) ,

hab(x, y) =
∑

hIab(x)Y I(y) , ∇2
βY

k = −k(k + 4)Y k = −f(k)Y k ,

haα(x, y) =
∑

hIa(x)Y I
α (y) , φaα(x, y) =

∑
φIa(x)Y I

α (y) ,

(∇2
β − 4)Y k

α = −(k + 1)(k + 3)Y k
α , (3.2.8)

h(αβ)(x, y) =
∑

φI(x)Y I
(αβ)(y) , (∇2

γ − 10)Y k
(αβ) = −(k2 + 4k + 8)Y k

(αβ) ,

and redefine the fields as follows:

πk = 10ksk + 10(k + 4)tk , bk = −sk + tk ,

hkab = ϕkab + gabηk +∇a∇bζk ,

Aka = hka − 4(k + 3)φka , Ck
a = hka + 4(k + 1)φka , (3.2.9)

ζk =
4

k + 1
sk +

4

k + 3
tk , ηk = −2k(k − 1)

k + 1
sk −

2(k + 4)(k + 5)

k + 3
tk .

Together with (3.2.9) one has to perform other field redefinitions to make the equations
of motion lagrangian and to remove higher-derivative terms from quadratic terms in the
equations of motion.

This procedure was applied by Arutyunov, Frolov in [10–12, 37] and the explicit ex-
pression for the relevant part of the action was obtained:

S =
N2

8π2

∫
[dz](L2 + L3 + L4). (3.2.10)
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Here the quadratic terms are given by

L(s)
2 =

∑
k

ζ(sk)

(
−1

2
∇µsk∇µsk −

1

2
m2
ks

2
k

)
,

L(t)
2 =

∑
k

ζ(tk)

(
−1

2
∇µtk∇µtk −

1

2
m2
tk
t2k

)
,

L(φ)
2 =

∑
k

ζ(φk)

(
−1

2
∇µφk∇µφk −

1

2
m2
φk
φ2
k

)
, (3.2.11)

L(Aµ)
2 =

∑
k

ζ(Aµ,k)

(
−1

4
F 2
µν,k(Aµ,k)−

1

2
m2
AA

2
µ,k

)
,

L(Cµ)
2 =

∑
k

ζ(Cµ,k)

(
−1

4
F 2
µν,k(Cµ,k)−

1

2
m2
CC

2
µ,k

)
,

L(ϕµν)
2 =

∑
k

ζ(ϕµν,k)

(
−1

4
∇ρϕµν,k∇ρϕµνk +

1

2
∇ρϕ

ρµ
k ∇

λϕλµ,k −
1

2
∇µϕ

ρ
ρ,k∇λϕ

λ,µ
k

+
1

4
∇ρϕ

µ
µ,k∇

ρϕνν,k +
1

4
(2− fk)ϕµν,kϕµνk +

1

4
(2 + fk)(ϕ

ρ
ρ,k)

2

)
,

(3.2.12)

with the corresponding quadratic couplings being

ζ(sk) =
32(k − 1)k(k + 2)

k + 1
, ζ(tk) =

32(k − 2)k(k + 1)

k − 1
, ζ(φk) =

1

2
,

ζ(Aµ,k) =
k

2(k + 1)
, z(Cµ,k) =

k

2(k − 1)
, ζ(ϕµν,k) = 1 . (3.2.13)

The cubic terms may be written as follows

L(s)
3 = SI1I2I3s

I1sI2sI3 , L(t)
3 = TI1I2I3s

I1sI2tI3 , L(φ)
3 = ΦI1I2I3s

I1sI2φI3 ,

L(Aµ)
3 = AI1I2I3s

I1∇µsI2AI3µ , L(Cµ)
3 = CI1I2I3s

I1∇µsI2CI3
µ , L(ϕµν)

3 = GI1I2I3T
I1I2
µν ϕµν,I3 ,

(3.2.14)

where (...) denotes symmetrization and the stress-energy tensor Tµν has the form

Tµν = ∇(µs
I1∇ν)s

I2 − 1

2
gµν

(
∇ρsI1∇ρs

I2 +
1

2
(m2

1 +m2
2 − fk)sI1sI2

)
. (3.2.15)
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The corresponding cubic couplings are

SI1I2I3 = a123
256α1 α2 α3 Σ (Σ2 − 4) (Σ2 − 1)

3 (k1 + 1) (k2 + 1) (k3 + 1)
,

TI1I2I3 = a123
256α1 α2 (α3 − 2) (α3 − 1)α3 (α3 + 1) (α3 + 2) Σ

(k1 + 1) (k2 + 1) (k3 − 1)
,

ΦI1I2I3 = p123
8 (α3 − 1)α3Σ (2Σ− 2)

(k1 + 1) (k2 + 1)
,

AI1I2I3 = t123
4α3 k3 Σ (2Σ− 2)(2Σ + 2)

(k1 + 1) (k2 + 1) (k3 + 1)
,

CI1I2I3 = t123
16 (α3 − 1)α3 (α3 + 1) k3 Σ

(k1 + 1) (k2 + 1) (k3 − 1)
,

GI1I2I3 = a123
8α3 (α3 + 1) Σ (2Σ + 2)

(k1 + 1) (k2 + 1)
. (3.2.16)

Finally, the quartic terms are computed as follows:

L4 = L(4)
4 + L(2)

4 + L(0)
4 ,

L(4)
4 = (S

(4)
I1I2I3I4

+ A
(4)
I1I2I3I4

) sI1∇µs
I2∇2

ν(s
I3∇µsI4),

L(2)
4 = (S

(2)
I1I2I3I4

+ A
(2)
I1I2I3I4

) sI1∇µs
I2sI3∇µsI4 , (3.2.17)

L(0)
4 = (S

(0)
I1I2I3I4

+ A
(0)
I1I2I3I4

) sI1sI2sI3sI4 .

The corresponding quartic couplings are listed in appendix C. The repeated indices
I1, . . . , I4 here imply the summation over all possible [0, k, 0] representations as well as
summation over the basis of the representation space:

gIs
I ≡

∑
k>2

dim([0,k,0])∑
Ik=1

gIks
Ik
k . (3.2.18)

We also used the following notations

α1 =
1

2
(k2 + k3 − k1), α2 =

1

2
(k1 + k3 − k2), α3 =

1

2
(k1 + k2 − k3),

Σ =
1

2
(k1 + k2 + k3), (3.2.19)

a123 =

∫
Y I1Y I2Y I3 , p123 =

∫
∇αY I1∇βY I2Y I3

(αβ), t123 =

∫
∇αY I1Y I2Y I3

α .

Computation of the a-, t- and p-tensors for arbitrary weights k presents one of the
main difficulties and is discussed in chapter 3 of part II. Knowing them, one can easily
compute the necessary couplings and proceed further to computing the on-shell value
of the supergravity action. In the next part of the thesis, we present our main results,
namely, the simplifications which allow us to compute any four-point function of given
weights. This was used to check the recently conjectured analytic closed formula for the
four-point functions in the Mellin space for many different non-trivial combinations of
the weights.
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Part II

Supergravity correlators
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Chapter 1

Contact part

Recall that the relevant for our purposes part of the effective action is given as follows:

S =
N2

8π2

∫
[dz](L2 + L3 + L4). (1.0.1)

where each of the terms was defined in the previous chapter. Here we use the Euclidean

AdS metric [dz] =
d5z

z5
0

, which leads to the change of the overall sign for the action. The

Lagrangian splits into a quadratic part L2, a cubic part L3 and a quartic part L4. The
first two contribute to the so-called exchange part of the correlator because they give
rise to exchange interactions captured in Witten diagrams such as in fig. 2.1, while L4

forms the contact part as it leads to contact interactions (see fig. 1.1). In this and the
next chapter, we will present a streamlined method of how one can directly compute the
contribution to the four-point function coming from these two parts for a particular set
of weights separately, starting with the latter.

1.1 Simplifying the contact term

Let us remind the expression for the quartic lagrangian (3.2.17):

L4 = L(4)
4 + L(2)

4 + L(0)
4 ,

L(4)
4 = (S

(4)
I1I2I3I4

+ A
(4)
I1I2I3I4

) sI1∇µs
I2∇2

ν(s
I3∇µsI4),

L(2)
4 = (S

(2)
I1I2I3I4

+ A
(2)
I1I2I3I4

) sI1∇µs
I2sI3∇µsI4 , (1.1.1)

L(0)
4 = (S

(0)
I1I2I3I4

+ A
(0)
I1I2I3I4

) sI1sI2sI3sI4 .

Mention again that the repeated indices I1, . . . , I4 here imply the summation over all
possible [0, k, 0] representations as well as a summation over the basis of the representation
space:

gIs
I ≡

∑
k>2

dim([0,k,0])∑
Ik=1

gIks
Ik
k . (1.1.2)

The various couplings S and A, see appendix C, depend on contractions of the previously
discussed C-tensors (via the products of a-, t- and p-tensors) which are Clebsch-Gordan
coefficients for the tensor product of SO(6) irreducible representations. Their explicit
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expressions depend on the chosen weights, and their computation becomes complicated
quite quickly. Luckily, there is a fast and straightforward approach to find all the neces-
sary terms. For this, we refer the reader to the chapter 3.

The explicit expressions for the quartic couplings, as can be seen from appendix C,
take up approximately ten pages. This ends up in expressions with huge rational num-
bers. However, in all the computed cases [14–19] the authors were able to simplify the
final expressions for the contact lagrangian using integration by parts and symmetries of
the tensor structures involved. To compute the contribution into the correlation function
coming from the contact part, according to (3.1.2), one has to evaluate the contact ac-
tion on-shell and calculate the variational derivatives. In this chapter, we show how this
procedure can be streamlined to get the contact part of the four-point function directly.
We found an analytic expression for the contact part for arbitrary weights k1, ..., k4. Note
that this expression does not contain any huge rational numbers when evaluated. How-
ever, it will not be presented in this thesis because we were not able to find an analytic
expression for the full correlator. Instead, we show how one can obtain the contact part
of the four-point function automatically in Mathematica. One can further use the Mellin
expression for the correlator to find a significantly simplified answer in the coordinate
space, see section 5.3.

The first simplification follows from a closer analysis of the four-derivative terms L(4)
4 :

it was shown in [24] that these terms can be made to vanish in the extremal k1 = k2+k3+k4

and sub-extremal k1 = k2 + k3 + k4 − 2 cases. Moreover, in appendix B we show that
the four-derivative terms vanish for all four-point correlators of 1/2-BPS operators. This
observation was of big importance to prove since it is one of the assumptions for finding
the expression for four-point functions in the Mellin space. This part will be discussed
in chapter 5. To show this, one has to perform integration by parts in the expression for

L(4)
4 , which produces contributions to lower-derivative terms L(4→2)

4 and L(4→0)
4 . However,

in the same manner as in [3], using the reduction formulae (3.1.19) and (3.1.22), one can

show that the contribution L(4→0)
4 vanishes identically. Thus, the full contact lagrangian

can be written as
L(4→2)

4 + L(2)
4 + L(0)

4 , (1.1.3)

where

L(4→2)
4 =

(
S

(4)
I1I2I3I4

(m2
1 +m2

2 +m2
3 +m2

4 − 4)− 4A
(4)
I1I2I3I4

)
sI1∇µs

I2sI3∇µsI4 , (1.1.4)

and mi denotes the AdS mass of the corresponding scalar field.
Now one has to compute the contact part of the on-shell action. For this we solve

the equations of motion for scalar fields perturbatively: sIkk = s̄Ikk + s̃Ikk , where s̄Ikk is
the solution of the linearized equations of motion with fixed boundary conditions and
corrections s̃Ikk correspond to scalars with vanishing boundary conditions. The solution
of the boundary problem is given in [8]:

s̄Ikk (z) = Ck

∫
d4~xKk(z, ~x)sIkk (~x), (1.1.5)

where the bulk-to-boundary propagator reads as

Kk(z, ~x) =

(
z0

z2
0 + (~z − ~x)2

)k
. (1.1.6)
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k1

k2

k3

k4

Figure 1.1: A contact Witten diagram.

For now, we will neglect the normalization factors Ck and take them into account when
computing the full correlator. According to [38], they are

C2 =
1

2π2
and Ck =

Γ(k)

π2Γ(k − 2)
for k > 2. (1.1.7)

To proceed, we define the so-called D functions1, or contact Witten diagrams (see fig.
1.1), as integrals over the AdS5 space, for details see e.g. [13,18]:

Dk1k2k3k4 ≡ Dk1k2k3k4(~x1, ~x2, ~x3, ~x4)

=

∫
[dz]Kk1(z, ~x1)Kk2(z, ~x2)Kk3(z, ~x3)Kk4(z, ~x4). (1.1.8)

and use the identity

∇µKk1(z, ~x1) ∇µKk2(z, ~x2) =

k1k2

(
Kk1(z, ~x1)Kk2(z, ~x2)− 2|~x12|2Kk1+1(z, ~x1)Kk2+1(z, ~x2)

)
.(1.1.9)

To compute a correlator with specific weights, one needs to compute the quartic couplings
corresponding to all the 24 permutations of the weights. Each of them is multiplied by the
correspondingly permuted set of D functions, as follows from carefully going through the
steps: to compute a correlator with fixed weights {k1, k2, k3, k4} one restricts the infinite
sum in (1.1.1) to representations which correspond to these weights. The sums over k’s
are not ordered; therefore there are 24 nonzero summands corresponding to the 24 permu-
tations of the indices {k1, k2, k3, k4}. Even when some of the weights are equal, potential
overcounting is compensated by functional differentiation when computing the correlator.
Let us illustrate this procedure on the two-derivative term2 g1234 s

1s2∇µs
3∇µs4, where

g1234 schematically denotes the corresponding coupling:∫
[dz] g1234 s

1s2∇µs
3∇µs4 = (1.1.10)∫

[dz]
(
g1234 s

1
k1
s2
k2
∇µs

3
k3
∇µs4

k4
+ g1234 s

1
k3
s2
k2
∇µs

3
k1
∇µs4

k4
+ ...

)
=

∫
d4~y1d

4~y2d
4~y3d

4~y4

×
[
g1234 k3k4

(
Dk1k2k3k4 − 2|~y34|2Dk1k2k3+1k4+1

)
s1
k1

(~y1)s2
k2

(~y2)s3
k3

(~y3)s4
k4

(~y4)

+ g1234 k1k4

(
Dk3k2k1k4 − 2|~y14|2Dk3k2k1+1k4+1

)
s1
k3

(~y1)s2
k2

(~y2)s3
k1

(~y3)s4
k4

(~y4) + ...
]
.

1Note, that the set of indices {k1, k2, k3, k4} in the notation for the D-functions is always ordered in such a
way that it corresponds to an ordered set of variables {~x1, ~x2, ~x3, ~x4}

2Here for simplicity we write the summation indices I1, ..., I4 as 1, ..., 4. The range of these summation indices
depends on the weight ki.
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Here the dots stand for the other 22 terms and we consequently used equations (1.1.5),
(1.1.9) and (1.1.8). Now, one differentiates over the boundary values of the fields
s1
k1

(~x1), . . . , s4
k4

(~x4) and gets

g1234 k3k4

(
Dk1k2k3k4 − 2|~x34|2Dk1k2k3+1k4+1

)
+g3214 k1k4

(
Dk1k2k3k4 − 2|~x14|2Dk1+1k2k3k4+1

)
+ ... (1.1.11)

Thus, in practice, one can avoid writing down the relevant part of the contact la-
grangian altogether and write its contribution to the correlator directly, by simply find-
ing the couplings corresponding to the 24 permutations of the weights and multiplying
them by a correspondingly permuted set of D functions as in (1.1.11). This will give
the contribution to the four-point function from the contact terms up to a normalization
factor, which will be taken into account after computing the exchange part in the next
chapter.
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Chapter 2

Exchange part

2.1 Simplifying the exchange term

The standard method of computing the exchange part, see, e.g., [14], is again to evaluate
the quadratic and cubic terms on-shell and differentiate over the boundary values of
the fields. For this one solves the equations of motion perturbatively and substitutes
the solution into the full exchange lagrangian. Writing down the latter becomes very
unpleasant for higher-weight cases because of the growing number of descendants coupled
to the scalars in the cubic terms. However, as for the contact part, the direct procedure
can be streamlined, and the contribution to the non-normalized four-point correlation
function coming from the quadratic and cubic terms can be written as the following sum
of the s, t and u channels:

〈k1k2k3k4〉Exchange =

{∑ 36

ζ(sk)
SI1I2IkSI3I4IkSkk1k2k3k4 +

∑ 4

ζ(tk)
T I1I2IkT I3I4IkSk+4

k1k2k3k4

+
∑ 4

ζ(φk)
ΦI1I2IkΦI3I4IkSk+2

k1k2k3k4
+
∑ 1

ζ(Aµ,k)
AI1I2IkAI3I4IkVk

k1k2k3k4

+
∑ 1

ζ(Cµ,k)
CI1I2IkCI3I4IkVk+2

k1k2k3k4
+
∑ 4

ζ(ϕµν,k)
GI1I2IkGI3I4IkTk

k1k2k3k4

}
s

+

{∑ 36

ζ(sk)
SI1I3IkSI2I4IkSkk1k3k2k4 +

∑ 4

ζ(tk)
T I1I3IkT I2I4IkSk+4

k1k3k2k4

+
∑ 4

ζ(φk)
ΦI1I3IkΦI2I4IkSk+2

k1k3k2k4
+
∑ 1

ζ(Aµ,k)
AI1I3IkAI2I4IkVk

k1k3k2k4

+
∑ 1

ζ(Cµ,k)
CI1I3IkCI2I4IkVk+2

k1k3k2k4
+
∑ 4

ζ(ϕµν,k)
GI1I3IkGI2I4IkTk

k1k3k2k4

}
t

+

{∑ 36

ζ(sk)
SI1I4IkSI2I3IkSkk1k4k2k3 +

∑ 4

ζ(tk)
T I1I4IkT I2I3IkSk+4

k1k4k2k3

+
∑ 4

ζ(φk)
ΦI1I4IkΦI2I3IkSk+2

k1k4k2k3
+
∑ 1

ζ(Aµ,k)
AI1I4IkAI2I3IkVk

k1k4k2k3

+
∑ 1

ζ(Cµ,k)
CI1I4IkCI2I3IkVk+2

k1k4k2k3
+
∑ 4

ζ(ϕµν,k)
GI1I4IkGI2I3IkTk

k1k4k2k3

}
u

.

(2.1.1)

Here the exchange Witten diagrams, S, V and T, are multiplied by the corresponding
combination of quadratic, ζ, and cubic, {S, T,Φ, A, C,G}, couplings that were derived
in [10–12] and were discussed in section 3.2 of part I . The appearing sums run over the
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Field sk Aµ,k Cµ,k φk tk ϕµν,k
Irrep [0, k, 0] [1, k − 2, 1] [1, k − 4, 1] [2, k − 4, 2] [0, k − 4, 0] [0, k − 2, 0]

m2 k(k − 4) k(k − 2) k(k + 2) k2 − 4 k(k + 4) k2 − 4

∆ k k + 1 k + 3 k + 2 k + 4 k + 2

Table 2.1: KK-modes contributing to the exchange Witten diagrams.

possible set of exchange fields, and the summation convention is the following:

∑
≡

∑
k∈{Exch. fields}

dim([0,k,0])∑
Ik=1

.

Note that the permutation of the weights {k1, k2, k3, k4} takes place together with the
permutation of the coordinates, e.g. Skk1k3k2k4

≡ Skk1k3k2k4
(~x1, ~x3, ~x2, ~x4). The exchange

fields which can show up in an exchange diagram are restricted by the SU(4) selection
rule. Namely, these are the fields which appear in the intersection of non-vanishing cubic
vertices, see table 2.1. This is determined by the following tensor product decomposition
of representations:

[0, k1, 0]⊗ [0, k2, 0] =

min(k1,k2)∑
r=0

min(k1,k2)−r∑
s=0

[r, |k1 − k2|+ 2s, r]. (2.1.2)

An exchange field must occur on the right-hand side of this decomposition for both the
ingoing and the outgoing fields.

The exchange Witten diagrams have representation in terms of exchange integrals,
which are defined as follows:

Skk1k2k3k4(~x1, ~x2, ~x3, ~x4) =

∫
[dz][dw]Kk1(z, ~x1)Kk2(z, ~x2)Gk(z, w)Kk3(w, ~x3)Kk4(w, ~x4),

Vk
k1k2k3k4(~x1, ~x2, ~x3, ~x4) =

=

∫
[dz][dw]Kk1(z, ~x1)

←→
∇ µKk2(z, ~x2)Gkµν(z, w)Kk3(w, ~x3)

←→
∇ νKk4(w, ~x4),

Tk
k1k2k3k4(~x1, ~x2, ~x3, ~x4) =

∫
[dz][dw]Tµν(z, ~x1, ~x2)Gkµν µ′ν′(z, w)Tµ

′ν′
(w, ~x3, ~x4), (2.1.3)

where Gk, Gk
µν and Gk

µν µ′ν′ are the scalar, vector, and the tensor bulk-to-bulk propagators
correspondingly. A simple method to compute the exchange integrals was introduced
in [39], and further generalizations appeared in [15] and [17]. As it turns out, they can
always be represented as a finite sum of D functions.

Further, we derive eq. (2.1.1) and in the next section, discuss how to compute the
exchange integrals.

2.1.1 Scalar exchange

Here we restrict ourselves to exchange by a scalar field sk with the mass mk in the s
channel (see the Witten diagram in fig. 2.1). The contribution from the other two
channels is obtained by the corresponding permutation. It can be easily generalized
further to an exchange by the scalar fields t and φ.
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k1

k2

k3

k4

sk

Figure 2.1: The exchange Witten diagram where a scalar of weight k is exchanged in the s
channel.

We start with the corresponding quadratic and cubic terms1, which can be found
in [12]:

L(s)
2 =

∑
k

ζ(sk)

(
−1

2
∇µsk∇µsk −

1

2
m2
ks

2
k

)
,

L(s)
3 = SI1I2I3s

I1sI2sI3 . (2.1.4)

From here we obtain the equations of motion:

ζ(sk)(∇2
µ −m2

k) sk = −∂L
(s)
3

∂sk
. (2.1.5)

We solve them perturbatively: sk = s̄k + s̃k, where

(∇2
µ −m2

k) s̄k = 0,

(∇2
µ −m2

k) s̃k = − 1

ζ(sk)

∂L(s)
3

∂sk

∣∣∣∣∣
s→s̄

, (2.1.6)

with fixed boundary conditions for s̄ and zero boundary conditions for s̃, and introduce
the bulk-to-bulk propagator Gk as the solution of

(∇2
µ −m2

k)G
k(z, w) = −δ(z, w). (2.1.7)

We find

s̃k(z) =
1

ζ(sk)

∫
[dw]

(
∂L(s)

3 (w)

∂sk

∣∣∣∣∣
s→s̄

)
Gk(z, w). (2.1.8)

Next, we use the equations of motion to get the contribution to the four-point function
coming from the quadratic term:

L(sk)
2 = −1

2

(
∂L(s)

3

∂sk

∣∣∣∣∣
s→s̄

)
s̃k. (2.1.9)

1In order not to obstruct the reading, we omit the representation index Ik and write sk ≡ s
Ik
k . However, in

the expressions similar to that one of L3, the usual summation convention as for (3.2.18) is assumed.
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The cubic term contributing to the four-point correlator must be of the form s̄s̄s̃ and can
be computed as follows:

L(sk)
3 =

(
∂L(s)

3

∂sk

∣∣∣∣∣
s→s̄

)
s̃k. (2.1.10)

In this way, we obtain the exchange part of the action:

SExchange(sk) =
1

2ζ(sk)

∫
[dz][dw]

(
∂L(s)

3 (z)

∂sk

∣∣∣∣∣
s→s̄

)
Gk(z, w)

(
∂L(s)

3 (w)

∂sk

∣∣∣∣∣
s→s̄

)
.

(2.1.11)

Writing down the cubic terms of interest explicitly:

L(sk)
3 = 6SI1I2Iks

I1
k1
sI2k2
sIkk + 6SI3I4Iks

I3
k3
sI4k4
sIkk , (2.1.12)

we find

SExchange(sk) =
∑
k

1

2ζ(sk)

∫
[dz][dw]

[
6SI1I2Ik s̄

I1
k1
s̄I2k2

+ 6SI3I4Ik s̄
I3
k3
s̄I4k4

]
(z) ·Gk(z, w)

·
[
6SI1I2Ik s̄

I1
k1
s̄I2k2

+ 6SI3I4Ik s̄
I3
k3
s̄I4k4

]
(w).

(2.1.13)

Finally, using the solution (1.1.5) of the boundary problem and computing variational
derivatives, we obtain the first term in (2.1.1).

2.1.2 Vector exchange

Let us now consider the exchange of the vector field Aµ,k with mass mA ≡ mA(k).
Knowing the quadratic and cubic lagrangian:

L(Aµ)
2 =

∑
k

ζ(Aµ,k)

(
−1

4
F 2
µν,k −

1

2
m2
AA

2
µ,k

)
,

L(Aµ)
3 = AI1I2I3s

I1∇µsI2AI3µ , (2.1.14)

we obtain the equations of motion for the vectors Aµ,k:

ζ(Aµ,k)
(
∇νFνµ,k −m2

AAµ,k
)

= −∂L
(Aµ)
3

∂Aµ,k
. (2.1.15)

We again write the solution as Aµ = Āµ + Ãµ, where Āµ correspond to the linearized

equations with fixed boundary conditions and Ãµ are the corrections with vanishing
boundary conditions:

∇νF̄νµ,k −m2
AĀµ,k = 0 ,

∇νF̃νµ,k −m2
AÃµ,k = − 1

ζ(Aµ,k)

∂L(Aµ)
3

∂Aµ,k

∣∣∣∣∣
s→s̄

. (2.1.16)
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Introducing the vector bulk-to-bulk propagator Gk
µν , satisfying the equation

∇ρ
(
∇ρG

k
µν −∇µG

k
νρ

)
−m2

AG
k
µν = −gµνδ(z, w) , (2.1.17)

we find

Ãµ,k =
1

ζ(Aµ,k)

∫
[dw]

(
∂L(Aµ)

3

∂Aν,k

∣∣∣∣∣
s→s̄

)
G ν,k
µ (z, w). (2.1.18)

With the help of the equations of motion we get the contribution to the four-point function
coming from the quadratic term:

L(Aµ,k)
2 = −1

2

(
∂L(Aµ)

3

∂Aµ,k

∣∣∣∣∣
s→s̄

)
Ãµ,k. (2.1.19)

The cubic term contributing to the four-point correlator must be of the form s̄∇µs̄Ãµ
and can be computed as follows:

L(Aµ,k)
3 =

∂L(Aµ)
3

∂Aµ,k

∣∣∣∣∣
s→s̄

Ãµ,k. (2.1.20)

Summing them up and substituting Ã, one gets the contribution to the exchange part of
the action:

SExchange(Aµ,k) =
1

2ζ(Aµ,k)

∫
[dz][dw]

(
∂L(Aµ)

3

∂Aµ,k

∣∣∣∣∣
s→s̄

)
Gk
µν(z, w)

(
∂L(Aµ)

3

∂Aν,k

∣∣∣∣∣
s→s̄

)
.

(2.1.21)

Writing down the cubic terms of interest, containing the exchange vector Aµ,k, explicitly

L(Aµ,k)
3 = AI1I2Iks

I1
k1

←→
∇ µsI2k2

AIkµ,k + AI3I4Iks
I3
k3

←→
∇ µsI4k4

AIkµ,k, (2.1.22)

we find

SExchange(Aµ,k) =
∑
k

1

2ζ(sk)

∫
[dz][dw]

[
AI1I2Ik s̄

I1
k1

←→
∇ µs̄I2k2

+ AI3I4Ik s̄
I3
k3

←→
∇ µs̄I4k4

]
(z)×

Gk
µν(z, w)

[
AI1I2Ik s̄

I1
k1

←→
∇ ν s̄I2k2

+ AI3I4Ik s̄
I3
k3

←→
∇ ν s̄I4k4

]
(w).

(2.1.23)

Finally, substituting the solution (1.1.5) of the boundary problem and computing varia-
tional derivatives, we arrive to the corresponding term in (2.1.1).

2.1.3 Tensor exchange

Finally, consider the exchange of the tensor field ϕµν,k with mass squared fk. Again we
start from the quadratic and cubic lagrangians:

L(ϕµν)
2 =

∑
k

(
−1

4
∇ρϕµν,k∇ρϕµνk +

1

2
∇ρϕ

ρµ
k ∇

λϕλµ,k −
1

2
∇µϕ

ρ
ρ,k∇λϕ

λ,µ
k

+
1

4
∇ρϕ

µ
µ,k∇

ρϕνν,k +
1

4
(2− fk)ϕµν,kϕµνk +

1

4
(2 + fk)(ϕ

ρ
ρ,k)

2

)
,

L(ϕµν)
3 = GI1I2I3T

I1I2
µν ϕµν,I3 , (2.1.24)
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where (...) denotes symmetrization and the stress-energy tensor Tµν has the form

Tµν = ∇(µs
I1∇ν)s

I2 − 1

2
gµν

(
∇ρsI1∇ρs

I2 +
1

2
(m2

1 +m2
2 − fk)sI1sI2

)
. (2.1.25)

From this we obtain the equations of motion

W ρλ
µν ϕρλ,k ≡ −∇ρ∇ρϕµν,k +∇µ∇ρϕρν,k +∇ν∇ρϕρµ,k −∇µ∇νϕ

ρ
ρ,k

+
(

(fk − 2)ϕµν,k +
1

3
(6 + fk)gµνϕ

λ
λ,k

)
= 2

∂L(ϕµν)
3

∂ϕµνk
− 2

3
gµν

(
∂L(ϕµν)

3

∂ϕρλk
gρλ

)
. (2.1.26)

We again represent the solution in the form ϕµν = ϕ̄µν + ϕ̃µν and introduce the bulk-to-
bulk propagator Gk

µν ρλ as follows:

W ρλ
µν G

k
ρλµ′ν′ =

(
gµµ′gνν′ + gµν′gνµ′ −

2

3
gµνgµ′ν′

)
δ(z, w) . (2.1.27)

This let us write the correction ϕ̃µν in the form

ϕ̃µν,k =

∫
[dw]G µ′ν′, k

µν (z, w)

(
∂L(ϕµν)

3

∂ϕµ
′ν′

k

∣∣∣∣∣
s→s̄

)
. (2.1.28)

After integration by parts L(ϕµν,k)
2 takes the form:

L(ϕµν,k)
2 = −1

4

[
W ρλ
µν ϕρλ,k +

2

3
gµν

(
∂L3

∂ϕρλ,k
gρλ
)]

. (2.1.29)

Using the equations of motion, one finds the contribution of the quadratic lagrangian to
the four-point function:

L(ϕµν,k)
2 = −1

2

(
∂L(ϕµν)

3

∂ϕµν,k

∣∣∣∣∣
s→s̄

)
ϕ̃µν,k. (2.1.30)

The contribution of the cubic term must be of the form T̄µνϕ̃
µν , where T̄µν = Tµν |s→s̄,

and can be computed as follows:

L(ϕµν,k)
3 =

(
∂L(ϕµν)

3

∂ϕµν,k

∣∣∣∣∣
s→s̄

)
ϕ̃µν,k. (2.1.31)

Thus, the corresponding part of the action is given by

SExchange(ϕµν,k) =
1

2

∫
[dz][dw]

(
∂L(ϕµν)

3

∂ϕµνk

∣∣∣∣∣
s→s̄

)
Gµν µ′ν′, k(z, w)

(
∂L(ϕµν)

3

∂ϕµ
′ν′

k

∣∣∣∣∣
s→s̄

)
.(2.1.32)

Writing down the cubic terms of interest, containing the exchange tensor ϕµν,k, explicitly

L(ϕµν,k)
3 = GI1I2IkT

I1I2
µν ϕµν,Ik +GI3I4IkT

I3I4
µν ϕµν,Ik , (2.1.33)
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we obtain

SExchange(ϕµν,k) =

∫
[dz][dw]

[
GI1I2Ik T̄

I1I2
µν +GI3I4Ik T̄

I3I4
µν

]
(z)×

Gk
µν µ′ν′(z, w)

[
GI1I2Ik T̄

I1I2
µ′ν′ +GI3I4Ik T̄

I3I4
µ′ν′

]
(w).

(2.1.34)

Finally, using the solution (1.1.5) of the boundary problem and computing variational
derivatives, we arrive to the corresponding term in (2.1.1).

2.2 Computing the exchange integrals

The method of computing the exchange integrals (2.1.3) was developed in [39], and further
generalizations appeared in [15] and [17]. If one concentrates only on the z-integrals, then
the idea is to use the conformal symmetry to bring the integral into a simple form. Next,
based on the conformal invariance, one can propose an ansatz for the z-integral. The
action of the wave operator reduces the problem of the direct computation of the z-
integrals to solving a system of differential equations. The latter presents no difficulty if
one writes a solution in a polynomial form. In some cases, it is possible to write down the
closed analytic formula for the exchange integrals, but in general, the computation can
be easily automatized, e.g., using Mathematica. Let us illustrate this method in more
detail for each case.

2.2.1 Scalar exchange

Here we consider the propagation of the scalar field of weight ∆ and mass m. The
integrals of interest are given by:

S∆
∆1∆2∆3∆4

(~x1, ~x2, ~x3, ~x4) =

∫
[dz][dw]K∆1(z, ~x1)K∆2(z, ~x2)G∆(z, w)K∆3(w, ~x3)K∆4(w, ~x4).

(2.2.1)

Let us concentrate on computing the z-integral first:

A(w, ~x1, ~x2) =

∫
dd+1z

zd+1
0

G∆(u)K∆1(z, ~x1)K∆2(z, ~x2) . (2.2.2)

Firstly, to simplify the integral (2.2.2), one performs the translation ~x1 → 0, ~x2 → ~x21 ≡
~x2 − ~x1 and the conformal inversion

~x12 =
~x′12

|~x′12|2
zµ =

z′µ
(z′)2

wµ =
w′µ

(w′)2
. (2.2.3)

The integral thus takes the form

A(w, ~x1, ~x2) = |~x12|−2∆2 I(w′ − ~x′12) (2.2.4)

where

I(w) =

∫
dd+1z

zd+1
0

G∆(u) (z0)∆1

(z0

z2

)∆2

. (2.2.5)
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Further, note that invariance of I(w) under the scale transformation wµ → λwµ and
under the d–dimensional Poincare subgroup of SO(d+ 1, 1) implies that I(w) must be of
the form

I(w) = (w0)∆12X(t) (2.2.6)

with t given by

t =
w2

0

w2
=

w2
0

w2
0 + |~w|2

(2.2.7)

and ∆12 ≡ ∆1 − ∆2. Applying the wave operator (−� + m2) to I(w) and use of the
equation of motion for the propagator G∆ leads to the inhomogeneous second order
differential equation for the function X(t)

4(t− 1)t2X ′′ + 4t [−∆12 + (∆12 + 1) t+ 1]X ′ +
(
(4−∆12) ∆12 +m2

)
X = t∆2 . (2.2.8)

It can be reduced further to a system of linear equations for the coefficients ak in the
polynomial expansion

X(t) =
∑
k

akt
k , (2.2.9)

which can be easily solved by equating the coefficients at equal powers of t. It appears
that the series (2.2.9) truncates, and after inverting back to the original coordinates, one
finally gets

S∆
∆1∆2∆3∆4

(~x1, ~x2, ~x3, ~x4) =
kmax∑
kmin

ak |~x12|−2∆2+2kD∆1−∆2+k,k,∆3,∆4 , (2.2.10)

with kmin = (∆−∆12)/2 and kmax = ∆2 − 1.

2.2.2 Vector exchange

The most general Witten diagram, describing the exchange of the vector field from the
multiplet (s∆, ...) with mass M , which is coupled to scalar fields s∆i

of different masses
m∆i

, has the following integral representation:

V∆
∆1∆2∆3∆4

(~x1, ~x2, ~x3, ~x4) =

=

∫
[dz][dw]K∆1(z, ~x1)

←→
∇ µK∆2(z, ~x2)G∆

µν(z, w)K∆3(w, ~x3)
←→
∇ νK∆4(w, ~x4).

(2.2.11)

To simplify the z-integrals

Aµ(w, ~x1, ~x2) =

∫
dd+1z

zd+1
0

G∆
µν(z, w)K∆1(z, ~x1)

←→
∇ νK∆2(z, ~x2),

we again use the invariance under translation Aµν(w, ~x1, ~x2) = Aµν(w− ~x1, 0, ~x12), where
~x12 ≡ ~x2 − ~x1, and the conformal inversion w′µ = wµ/w

2, x′µ = xµ/x
2. This leads to the

following form of the z-integral

Aµ(w, ~x1, ~x2) = |~x12|−2∆2
1

w2
Jµν(w)Iµ(w′ − ~x′12), (2.2.12)
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where Jµν(w) = δµν − 2
w2wµwν , and

Iµ(w) =

∫
dd+1z

zd+1
0

G∆
µν(w, z)z

∆1
0

←→
∇ ν

(z0

z2

)∆2

. (2.2.13)

We write the following ansatz, with ∆12 = ∆1 −∆2 and t = w2
0/w

2:

Iµ(w) = w∆12
0

wµ
w2
X(t) + w∆12

0

δµ0

w0

Y (t) . (2.2.14)

The next step is to apply the wave operator −∇ρ∇[ρIµ] + M2Iµ to both expressions for
Iµ(w) and use the equations of motion for the propagator G∆

µν . This will lead to the
coupled system of inhomogeneous differential equations for the functions X(t) and Y (t).
We omit the tedious calculations and present the result:

2∆12t
2 (X ′ + Y ′) + t∆2

12X +M2Y = −∆12t
∆2 ,

4(t− 1)t2 (X ′′ + Y ′′) + 2t ((∆12 + 4) t− 2∆12)X ′ (2.2.15)

+2t (4t−∆12)Y ′ +
(
M2 + ∆12 (−∆12 + 2t+ 2)

)
X = −2∆2t

∆2 .

It can be easily solved if we assume power series expansions

X(t) =
∑
k

akt
k, Y (t) =

∑
k

bkt
k, (2.2.16)

with kmin 6 k 6 kmax. Substituting this into the system (2.2.15) and equating the
coefficients at equal powers of t, one finds the coefficients ak and bk. It appears, that the
series terminates at

kmin =
3− 2∆12

4
+

1

4

√
9 + 4M2 , kmax = ∆2 − 1. (2.2.17)

To recover the vector z-integral in terms of the original coordinates we use

w′0 →
w0

w2
0 + (~w − ~x1)2

,

t =
w′0

2

(w′ − ~x′21)2
→ q = ~x2

21

w0

w2
0 + (~w − ~x1)2

w0

w2
0 + (~w − ~x2)2

,

1

w2
Jµλ(w)

(w′ − ~x′21)λ
(w′ − ~x′21)2

→ Qµ :=
(w − ~x2)µ
(w − ~x2)2

− (w − ~x1)µ
(w − ~x1)2

,

1

w2
Jµλ(w)

δλ0

w′0
→ Rµ :=

δµ0

ω0

− 2
(w − ~x1)µ
(w − ~x1)2

.

(2.2.18)

Computation of the remaining w-integral is straightforward.

2.2.3 Tensor exchange

Finally, consider the exchange of the tensor field from the multiplet (s∆, ...) with the mass
squared f , which is coupled to scalar fields s∆i

of different masses m∆i

T∆
∆1∆2∆3∆4

(~x1, ~x2, ~x3, ~x4) =

∫
[dz][dw]T µν(z, ~x1, ~x2)G∆

µνµ′ν′(z, w)T µ
′ν′(z, ~x3, ~x4)

(2.2.19)
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and the corresponding z-integral

Aµν(w, ~x1, ~x2) =

∫
dd+1z

zd+1
0

G∆
µνµ′ν′(z, w)T µ

′ν′(z, ~x1, ~x2). (2.2.20)

Here the stress energy tensor Tµν (2.1.25) is written in terms of the bulk-to-boundary
propagators (1.1.5):

T µν(z, ~x1, ~x2) = ∇(µK∆1(z, ~x1)∇ν)K∆2(z, ~x2)− 1

2
gµν [∇ρK∆1(z, ~x1)∇ρK∆2(z, ~x2)

+
1

2

(
m2

∆1
+m2

∆2
− f

)
K∆1(z, ~x1)K∆2(z, ~x2)

]
. (2.2.21)

To compute the z-integral we again use translation Aµν(w, ~x1, ~x2) = Aµν(w − ~x1, 0, ~x12)
and perform the conformal inversion w′µ = wµ/w

2, ~x′µ = ~xµ/x
2. This gives us

Aµν(w, ~x1, ~x2) =
1

2
|~x12|−2∆2

1

(w2)2
Jµλ(w)Jνρ(w)Iλρ(ω

′ − ~x′12), (2.2.22)

with

Iµν(w) =

∫
dd+1z

zd+1
0

G∆
µν

µ′ν′
(w, z)

{
∇(µ′z

∆1
0 ∇ν′)

(z0

z2

)∆2

−gµ′ν′
[
∇ρ′z

∆1
0 ∇ρ′

(z0

z2

)∆2

+
1

2
(m2

1 +m2
2 − f)z∆1

0

(z0

z2

)∆2
]}

.

(2.2.23)

We write the following ansatz

Iµν(w) = w∆12
0

[
gµνh(t) + PµPνφ(t) +∇µ∇νX(t) +∇(µ

(
Pν)Y (t)

)]
, (2.2.24)

where Pµ := δµ0/w0 and h(t), φ(t), X(t), Y (t) are four unknown scalar functions. Now
we act by Ricci operator on both expressions for Iµν(w) and use the wave equation for
the propagator G∆

µνµ′ν′(ω, z). Equating the coefficients of the different tensor structures
appearing in the ansatz for Iµν(w), we, thereby, reduce the problem of computing the
z-integral to solving the system of differential equations. We again present only the final
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expressions, leaving the computation behind:

∇µ∇ν

[
−3h− φ+

(
−∆2

12 + 2∆12 + f
)
X + 2∆12Y

]
= 0 ,

4t(t− 1)φ′ + 4φ+ 4
(
∆2

12 + ∆12

)
t(t− 1)X ′ + 2

(
2∆12 −∆2

12

)
X

+8∆12t(1− t)Y ′ − 2 (4∆12 + f)Y + 6∆12h = −4∆1t
∆2 + c1 ,

−6t∆12h
′ − 3 (∆12 + 1) ∆12h+ (f − 3∆12)φ

+6t∆2
12X

′ + 2t fY ′ + 2
(
3∆2

12 + f
)
Y = 0 ,

4t2(t− 1)h′′ +
(

4∆12(t− 1)t+ 4t(t+ 1)
)
h′ +

(
−∆2

12 + 7∆12 +
8

3
(f + 3)

)
h

+4t(t− 1)φ′ +

(
1

3
(f + 24)−∆12

)
φ

+4(1− t)t2
(

∆12 +
f

3

)
X ′′ +

(
−4

3
ft(t+ 1)− 8∆12t

)
X ′

+4(1− t)t
(

2∆12 +
f

3

)
Y ′ +

(
2∆2

12 − 16∆12 −
14

3
f

)
Y =

2

3
(m2

1 +m2
2 − f)t∆2 .

(2.2.25)

We pick up the trivial solution of the first equation

h =
1

3

(
−φ+ (f −∆2

12 + 2∆12)X + 2∆12Y
)

(2.2.26)

and, assuming the polynomial form of the solution

X(t) =
∑
k

akt
k, Y (t) =

∑
k

bkt
k, φ(t) =

∑
k

ckt
k , (2.2.27)

we solve the rest by equating the coefficients at equal powers of t.
The last step is again to perform the transformation (2.2.18) to original coordinates and
compute the remaining w-integral.
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Chapter 3

Couplings

In this chapter, we would like to present two different ways of computing the a-, t- and p-
tensors, which are the building blocks for constructing the couplings. In the first section,
we describe the straightforward way to compute them using only the definition. One
cannot use this method in practice because of the quickly growing complexity. Luckily,
there exists a straightforward and quick method – harmonic polynomial formalism – which
we review in the second section of this chapter. Though the straightforward method is not
practical, it still has some theoretical value. In particular, we obtained some new relations
between different products of a-, t- and p-tensors, which allowed to prove a significant
fact – the vanishing of the four-derivative lagrangian, see appendix B. This indeed was
observed before and was used as an assumption to conjecture the closed analytic formula
for the four-point functions in the Mellin space. Optimistically, those new reduction
formulae could be used to find a compact formula for the quartic lagrangian and prove
the Mellin conjecture analytically.

3.1 C-algebra: the painful way

The quartic couplings, see appendix C, and the product of cubic couplings, see eq. (2.1.1),
are represented as sums of products of Clebsch-Gordan coefficients for SO(6) irreps that
come in three types: a-, t- and p-tensors. In practice their computation can be cumber-
some due to the fact that they contain contractions of C-tensors, which carry the tensor
structure of the correlator as described in section 2.5 of part I. Since each C-tensor car-
ries roughly as many indices as the weight of the representation it belongs to this can
get unwieldy quickly, explaining why until now almost no correlators were known with
weights larger than four.1 We would firstly like to present here the simplified method
which lets us compute the products of a-tensors relatively fast. To find different prod-
ucts of t- and p-tensors, one has to use several reduction relations. We also present new
reduction formulae which let us find the couplings for the correlators 〈2345〉 and 〈3456〉.
However, this simplified algorithm cannot be applied for correlators with higher weights.
One way to deal with this would be to obtain more reduction relations. Ideally, they
could be used to find an analytic expression for the four-point functions in the coordinate
space, or at least could help to find significantly simplified expressions for quartic terms -
the fact which is believed to be true and was observed in all the computed cases. Luckily,

1The only exceptions are the family 〈22nn〉 for n > 1 in [18] and 〈5555〉 in [20], which both feature a large
degeneracy allowing for simplifications.
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there exists an incredibly simple and efficient method to compute products of a-, t- and
p-tensors - harmonic polynomial formalism. We firstly present our first method for the
reason for future use. At the end of the chapter, we review the harmonic polynomial
formalism, which we used in all our computations.

3.1.1 Definitions

To be more precise, following the notation from [12], we want to compute products of the
objects

a123 =

∫
Y I1Y I2Y I3 , t123 =

∫
∇αY I1Y I2Y I3

α , p123 =

∫
∇αY I1∇βY I2Y I3

(αβ), (3.1.1)

where the Y functions are spherical harmonics on the five-sphere and the round brackets
indicate traceless symmetrization. More precisely, we need to find expressions for a125a345,
t125t345 and p125p345, where 1, 2, 3, 4 refer to the weights k1, k2, k3, k4 of the correlator and
5 is an intermediate leg with a weight k5. The integrals (3.1.1) can be expressed using
so-called C-tensors (see for more details [12]). For example, a123 is defined as

a123 =

∏3
i=1

kiz(ki)
αi!

π
3
2 (σ + 2)! 2σ−1

〈
CI1

[0,k1,0]C
I2
[0,k2,0]C

I3
[0,k3,0]

〉
, (3.1.2)

where αi = αi(k1, k2, k3) = σ − ki for i = 1, 2, 3 and σ = σ(k1, k2, k3) = (k1 + k2 + k3)/2
and where〈

CI1
[0,k1,0]C

I2
[0,k2,0]C

I3
[0,k3,0]

〉
= CI1

i1...iα2j1...jα3
CI2
j1...jα3 l1...lα1

CI3
l1...lα1 i1...iα2

(3.1.3)

encodes the tensor structure of the correlator. The number of non-zero tensors is re-
stricted by representation theory and therefore finite.

Although the formulae for a125a345, t125t345 and p125p345 are fully explicit it is not straight-
forward to compute them. The main obstruction in performing this computation and,
therefore, in computing a correlation function from the lagrangian, is in the use of the
completeness relations for the C-tensors: for all of the a-, t- and p-tensors one has to
evaluate objects of the form ∑

I5

〈CI1
k1
CI2
k2
CI5
k5
〉〈CI3

k3
CI4
k4
CI5
k5
〉, (3.1.4)

where the sum is over the representation index of the k5 field. The completeness relations
allow us to evaluate this sum, such that only four C-tensors remain that encode the
tensor structure of the correlator. For a-tensors a closed formula for the completeness
relation exists (given below in (3.1.6)), but its evaluation can become impossible for
expressions for higher-weight operators due to computational limits. For t- and p-tensors
no such formula exists at present and the best we can do is to determine the completeness
relations for a fixed set of weights from the properties of C-tensors. Additionally, we can
use so-called reduction relations to reduce the total number of unknown a-, t- and p-
tensors. They are discussed in the next subsection 3.1.3. These relations allow us to
express the t- and p-tensors with the highest intermediate k5 weights in terms of a-, t-
and p-tensors we already know.
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To summarize, the procedure to obtain the a-, t- and p-tensors for a correlator with given
weights (k1, k2, k3, k4) is the following: we compute the necessary a-tensors using the
formula (3.1.2) involving a completeness relation that we will get back to in more detail
in the next section. Then we use the reduction relations discussed in section 3.1.3 to
express the highest weight t- and p-tensors using lower ones and some of the a-tensors we
computed. We compute the remaining necessary t- and p-tensors by explicitly finding the
completeness relations for the given weights by imposing all the properties of C-tensors
on an ansatz. This yields the complete set of needed a-, t- and p-tensors.

3.1.2 Simplifying completeness relations for a-tensors

To compute the a-tensors we need expressions for the completeness relation of C-tensors
that allow us to resolve the sum in (3.1.4). Here we will focus only on simplification of
the case for a-tensors, since there is an explicit formula available. Ultimately we need to
reduce (3.1.4) to a sum of the independent tensor structures of the form CI1CI2CI3CI4

that carry the tensor structure of the correlator only, meaning we should get rid of
the sum over the representation index I5. This can be done in principle as this sum
constitutes a completeness condition for the C-tensors, meaning it is expressable as a
linear combination of products of Kronecker delta functions carrying the indices, i.e.∑

I

CI
i1...in

CI
in+1...i2n

=
∑
σ∈S2n

Aσδiσ(1)iσ(2)
δiσ(3)iσ(4)

. . . δiσ(2n−1)iσ(2n)
, (3.1.5)

where Sn is the symmetric group of n objects and Aσ are coefficients that are to be
determined from the properties of the C-tensors: after taking into account the internal
symmetries of the product of delta functions, being symmetric under exchange of indices
belonging to the same Kronecker delta and permutation of these delta functions, the
number of coefficients is (2n)!/(2nn!). For the case 〈3456〉 the largest n one has to con-
sider is n = 9, yielding over 34 million terms.

Although this is indeed the whopping number of coefficients that needs to be computed
and stored to express the completeness condition (3.1.5) we can consider a simplified
version of it to compute the sum in formula (3.1.4), since the other C-tensors have
additional symmetries. Our starting point to derive this simplification is the fully explicit
formula given in B.5 of [15]:

CI
i1,...,in

CI
j1,...,jn

=

bn2 c∑
k=0

θk
∑
{l1...l2k}

δil1 il2 . . . δil2k−1
il2k
δ̃

(n−2k)

i1...̂il1 ...̂il2k ...in,(j2k+1...jn
δj1j2 . . . δj2k−1j2k),

(3.1.6)
where the sum over {l1 . . . l2k} runs over all subsets of {1, . . . , n} containing 2k elements
that yield inequivalent products of delta functions, (. . .) stands for symmetrization of

the indices and we use the definition δ̃
(p)
i1,...ip,j1,...jp

= δ
(p)
(i1,...ip),(j1,...jp) and δ

(p)
i1,...ip,j1,...jp

=∏p
k=1 δik,jk . The coefficients θk are known explicitly as

θ0 = 1, if k > 0 : θk =
(−1)k

2k(n+ 1) . . . (n+ 2− k)
. (3.1.7)

However, the rapidly growing number of summands makes this expression difficult to
work with for higher weights, also because it contains symmetrizations that lead to over-
counting in the intermediate stages. Since all the C-tensors are traceless and completely
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symmetric in their indices we can restrict the formula further. In order to provide a
succinct derivation we first discuss some theory related to a splitting of the symmetric
group.

Decomposing the symmetric group

To simplify the completeness condition it will be convenient to decompose elements of the
symmetric group Sn as follows: consider two natural numbers p, q such that p + q = n,
then Sp and Sq are subgroups of Sn but generically they will not be normal such that the
quotient Sn/Sp is not well-defined as a group. Nevertheless, it is possible to decompose
any element σ ∈ Sn as a product σ = ρσqσp, where σp only permutes the first p objects,
σq only permutes the last q objects and ρ is a product of transpositions that each swap
one object from the first p with one of the last q. The only complication is that, in the
cases in which Sp and/or Sq are not normal subgroups, the set of elements ρ, which we
will denote by

Sn // (Sp × Sq) or simply S(p,q)
n (3.1.8)

is not a subgroup as it is not even closed under multiplication. It is also not uniquely
defined, as multiplication by an element from Sp or Sq gives a new set with the same
properties. This is ultimately not problematic as any set of representatives will do to
perform the sums we are interested in. We will present here one choice for this set.2

A characterization of Sn // (Sp × Sq)

First of all, the counting tells us that S
(p,q)
n should have n!

p!q!
elements which should all

be independent, i.e. should not be expressable as a product of other elements in the set.
Secondly, since Sp and Sq already take care of all the rotations in the first p and last q
objects we can consider only those permutations which are built up from transpositions
that lie outside both Sp and Sq. The remaining transpositions are necessarily of the form
(ij) with 1 6 i 6 p and n > j > p. Thirdly, if in a product of transpositions two of them
contain the same number i this can be taken away by a suitable transposition from either

Sp or Sq. From this we conclude that S
(p,q)
n contains all the permutations that can be

built from the transpositions (ij) with i 6 p and j > p such that all of them are disjoint.
Their number is easily computed:

• The identity transposition: 1 element

• All single transpositions: there are pq of them

• All products of two disjoint transpositions: there are pq(p − 1)(q − 1)/(2! · 2!) of
those

• In general the products of r disjoint transpositions are∏r−1
k=0(p− k)(q − k)

r! · r!
(3.1.9)

in number.
2It seems unlikely that the group theory, decomposition and choice of representatives we present here are all

novel, but despite a considerable effort we have not managed to find other accounts. Since it helps to simplify
the contraction of symmetric tensors one could nevertheless fathom a number of applications where it could help
speed up computations. The authors would welcome seeing any application of these principles, for example an
implementation into Form.
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This means that we have formed a set containing

min(p,q)∑
l=0

1

(l!)2

l−1∏
k=0

(p− k)(q − k) =
(p+ q)!

p!q!
(3.1.10)

elements. Since the three sets Sp, Sq and S
(p,q)
n are all disjoint and independent we see

that our characterization results in the correct number of elements σ = ρσqσp, namely n!,
implying that this description will work to decompose σ. Finally, we will use the notation

S
(p,q)
n (k) to denote the part of S

(p,q)
n containing those elements built up from exactly k

transpositions.

Example

As an example we present the set S
(4,3)
7 , which contains the 35 elements listed in the

following table:

part of S
(4,3)
7 # elements

S
(4,3)
7 (0) 1 id

S
(4,3)
7 (1) 12 (1, 5), (1, 6), (1, 7), (2, 5), (2, 6), (2, 7), (3, 5), (3, 6), (3, 7), (4, 5),

(4, 6), (4, 7)

S
(4,3)
7 (2) 18 (1, 5)(2, 6), (1, 5)(2, 7), (1, 5)(3, 6), (1, 5)(3, 7), (1, 5)(4, 6),

(1, 5)(4, 7), (1, 6)(2, 7), (1, 6)(3, 7), (1, 6)(4, 7), (2, 5)(3, 6),
(2, 5)(3, 7), (2, 5)(4, 6), (2, 5)(4, 7), (2, 6)(3, 7), (2, 6)(4, 7),
(3, 5)(4, 6), (3, 5)(4, 7), (3, 6)(4, 7)

S
(4,3)
7 (3) 4 (1, 5)(2, 6)(3, 7), (1, 5)(2, 6)(4, 7), (1, 5)(3, 6)(4, 7), (2, 5)(3, 6)(4, 7)

Simplifying the completeness condition

We can now simplify the completeness condition using the fact that the indices I =
(i1, . . . in) and J = (j1, . . . jn) are contracted with the indices of traceless symmetric
C-tensors in the expression (3.1.4): explicitly we can write (3.1.4) as∑

I5

∑
K1,K2

∑
I,J

CI1
I2K1

CI2
K1I1C

I5
I1I2C

I3
J2K2

CI4
K2J1

CI5
J1J2

, (3.1.11)

where I = I1 ∪ I2 and J = J1 ∪ J2 are multi-indices that are summed over with
constituents

I1 = {i1, . . . , iα1(k1,k2,k5)}, J1 = {j1, . . . , jα1(k3,k4,k5)},
I2 = {iα2(k1,k2,k5)+1, . . . , in}, J2 = {jα2(k3,k4,k5)+1, . . . , jn},

(3.1.12)

and K1,K2 are other multi-indices containing α3(k1, k2, k5) and α3(k3, k4, k5) indices re-
spectively. In the following we will leave the sums implicit. We will now insert (3.1.6):

CI1
I2K1

CI2
K1I1C

I3
J2K2

CI4
K2J1

CI5
I1I2C

I5
J1J2

= CI1
I2K1

CI2
K1I1C

I3
J2K2

CI4
K2J1
×

bn2 c∑
k=0

θk
∑
{l1...l2k}

δil1 il2 . . . δil2k−1
i2k δ̃

(n−2k)

il1 ...̂il1 ...̂il2k ...in,(j2k+1...jn
δj1j2 . . . δj2k−1j2k).

(3.1.13)
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Let us first note that the first product of delta functions δil1 il2 . . . δil2k−1
i2k is being con-

tracted with two traceless tensors. This implies that whenever lr, ls belong to the same
index set I1 or I2 the contraction will make its contribution vanish. Interestingly, this
implies that we can restrict the sum over subsets {l1, . . . , l2k} further using our newly

defined subsets S
(p,q)
n (k). Let τ = (n1n2) . . . (n2k−1n2k) be a product of k transpositions,

then we define

δτ := δn1,n2 . . . δn2k−1n2k
. (3.1.14)

Let us further define Iτ = {in1 , in2 , . . . , in2k
} and Icτ = I \Iτ . To simplify the second and

third set of deltas we recognize that in the definition of δ̃p the symmetrization over the i
indices is unnecessary and the symmetrization over the j can be restricted: splitting the
action of Sn on the j indices as S2k,n−2k

n we can write the total contraction as

CI1
I2K1

CI2
K1I1C

I3
J2K2

CI4
K2J1

bn2 c∑
k=0

θk
∑

τ∈S(|I1|,|I2|)
n (k)

δτ
1

n!
×

∑
σ1∈Sn−2k

ρ∈S(2k,n−2k)
n

δ
(n−2k)
Icτ ,σ1◦ρ(j2k+1)...σ1◦ρ(jn)

∑
σ2∈S2k

δσ2◦ρ(j1)σ2◦ρ(j2) . . . δσ2◦ρ(j2k−1)σ2◦ρ(j2k),
(3.1.15)

Note that the element ρ effectively selects which j indices occur in the delta functions
together with the i’s. To simplify this expression further we need to identify which indices
are contracted: this unfortunately complicates the expression even more, but we will see
that the result is simple enough to work with. The idea is to split the elements σ1 and
σ2 further into products using the decomposition of S2k and Sn−2k: depending on ρ the
j indices are split into two parts containing the first 2k and last n− 2k elements, let us
denote them as J2k and Jn−2k. The set J2k describing the third set of delta functions
overlaps with indices from J1 and J2, each of which forms a completely symmetric set
of indices. Therefore symmetrizing indices belonging to J1 or J2 is unnecessary and we
can restrict the sum over permutations to those which permute J1 indices to J2 indices
and vice versa. A similar thing is true for the second set of delta functions. However, in
this case there are two equivalent ways of doing it, although computationally usually one
of the two ways is faster as it will result in less summands: as previously, the indices in
Jn−2k overlap with J1 and J2, leading to a natural splitting of Sn−2k. However, the fact
that in these delta functions the j are always paired with an i allows us to exploit the
overlap of Icτ with I1 and I2 instead. Since this yields better results for the present case
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we use this second splitting. This leads to the following rewriting of (3.1.15):

CI1
I2K1

CI2
K1I1C

I3
J2K2

CI4
K2J1

bn2 c∑
k=0

θk
∑

τ∈S(|I1|,|I2|)
n (k)

δτ
1

n!
×

∑
ρ∈S(2k,n−2k)

n

∑
σ

(1)
1 ∈S|I1∩Icτ |
σ

(2)
1 ∈S|I2∩Icτ |

ρ1∈S
(|I1∩I

c
τ |,|I2∩I

c
τ |)

n−2k

δ
(n−2k)

Icτ , ρ1◦σ(1)
1 ◦σ

(2)
1 ◦ρ(j2k+1)...ρ1◦σ(1)

1 ◦σ
(2)
1 ◦ρ(jn)

× (3.1.16)

∑
σ

(1)
2 ∈S|J1|

σ
(2)
2 ∈S|J2|

ρ2∈S
(|J1|,|J2|)
2k

δ
ρ2◦σ(1)

2 ◦σ
(2)
2 ◦ρ(j1),ρ2◦σ(1)

2 ◦σ
(2)
2 ◦ρ(j2)

. . . δ
ρ2◦σ(1)

2 ◦σ
(2)
2 ◦ρ(j2k−1),ρ2◦σ(1)

2 ◦σ
(2)
2 ◦ρ(j2k)

.

Using the symmetry of the index sets I1, I2 and J1 and J2 we can now simplify this
result, as the summands in the sums over the four different types of σ permutations are
all the same. This means that the following reduction is possible:

CI1
I2K1

CI2
K1I1C

I3
J2K2

CI4
K2J1

bn2 c∑
k=0

θk
∑

τ∈S(|I1|,|I2|)
n (k)

δτ
1

n!
×

∑
ρ∈S(2k,n−2k)

n

∑
ρ1∈S

(|I1∩Icτ |,|I2∩Icτ |)
n−2k

|I1 ∩ Icτ |! |I2 ∩ Icτ |! δ
(n−2k)
Icτ , ρ1◦ρ(j2k+1)...ρ1◦ρ(jn)×

∑
ρ2∈S

(|J1|,|J2|)
2k

|J1|! |J2|! δρ2◦ρ(j1),ρ2◦ρ(j2) . . . δρ2◦ρ(j2k−1),ρ2◦ρ(j2k)

(3.1.17)

and after noting that the final sum is still overcounting due to symmetries of the delta
functions we note that finally we can rewrite our expression as

CI1
I2K1

CI2
K1I1C

I3
J2K2

CI4
K2J1

bn2 c∑
k=0

θk
∑

τ∈S(|I1|,|I2|)
n (k)

δτ
1

n!
×

∑
ρ∈S(2k,n−2k)

n

∑
ρ1∈S

(|I1∩Icτ |,|I2∩Icτ |)
n−2k

|I1 ∩ Icτ |! |I2 ∩ Icτ |! δ
(n−2k)
Icτ , ρ1◦ρ(j2k+1)...ρ1◦ρ(jn)×

∑
τ2∈S

(|J1|,|J2|)
2k (k)ρ

|J1|! |J2|! 2kk! δτ2 .

(3.1.18)

Here τ2 is an element of S
(|J1|,|J2|)
2k (k)ρ, with which we mean that τ2 is one of the elements

of S
(|J1|,|J2|)
2k (k) consisting of k transpositions as it acts on the first 2k indices of the index

set ρ (J ). This is our final result, which plays an important role in the computation
of the 〈3456〉 correlator: as stated before, the computation of this tensor contraction
was unfeasible with the previously known tools, rendering the computation of the 〈3456〉
correlator from the lagrangian infeasible as well. Using our new formula we were able to
obtain the most complicated a-tensor for 〈3456〉 with intermediate field with weight 9 in
10 minutes on a standard computer.
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3.1.3 Reduction formulae

Formulae

There is no explicit summation formulae as (3.1.6) known for the product of C-tensors
corresponding to [1, k, 1] and [2, k, 2] SO(6) representations to simplify the computation
of t- and p-tensors. However, one can generate the completeness conditions for sums
involving lower weight representations. For the remaining sums one can obtain a system
of linear equations, using the reduction formula (3.1.19), (3.1.20) derived in [12]: writing
fi ≡ f (ki) = ki(ki + 4) they read3

t125t345 = −(f1 − f2)(f3 − f4)

4f5

a125a345 −
1

4
f5(a135a245 − a145a235),

f5 t125t345 = −(f1 − f2) (f3 − f4) (f5 − 3)

4f5

a125a345

−1

4
(f1 + f2 + f3 + f4 − f5 − 3) f5 (a135a245 − a145a235) , (3.1.19)

p125p345 = −(f1 − f2) (f3 − f4)

2 (f5 − 5)
t125t345 −

1

20
(f1 + f2 − f5) (f3 + f4 − f5) a125a345

+
1

8
(f1 + f3 − f5) (f2 + f4 − f5) a135a245

+
1

8
(f1 + f4 − f5) (f2 + f3 − f5) a145a235 −

5

4 (f5 − 5) f5

d125d345

f5 p125p345 = −g1324 − g1423 −
5 (f5 − 8)

4 (f5 − 5) f5

d125d345 −
1

2
(f1 − f2) (f3 − f4) t125t345

− 1

20
(f1 + f2 − f5) (f3 + f4 − f5) (f5 + 2) a125a345

+
1

8
(f1 + f2 − 6) (f1 + f3 − f5) (f2 + f4 − f5) a135a245

+
1

8
(f1 + f2 − 6) (f2 + f3 − f5) (f1 + f4 − f5) a145a235, (3.1.20)

where we denoted

g1234 =
1

4
(f1 + f2 − f5 − 3) (f3 + f4 − f5 − 3) t125t345

−(f 2
1 − (f5 − f2) 2) ((f5 − f4) 2 − f 2

3 )

16f5

a125a345,

d125 =
1

20

(
−5 (f1 − f2) 2 + 3f 2

5 + 2 (f1 + f2) f5

)
a125. (3.1.21)

3Summation over the fifth leg is assumed.
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We would also like to attract the reader’s attention to the formula, derived in appendix B:

(f5 − 2)2(t135t245 + t145t235) =

−a135a245
24f5

(
− 2f45 + 2(3f1 + 3f2 + 3f3 + 3f4 − 28)f35 − 2(2f21 − (f2 − 5f3 − 8f4 + 28)f1

+2f22 + 2f24 + 2(f3 − 12)(f3 − 2)− (f3 + 28)f4 + f2(8f3 + 5f4 − 28))f25

+((f2 + 3f3 + 4f4 − 12)f21 + (f22 + 4(f3 + f4 − 20)f2 + 3(f3 − 4)2 + 4f24 + 4(f3 + 4)f4)f1

+(3f2 + f3 − 12)f24 + 4((f3 − 3)f22 + (f3(f3 + 4) + 12)f2 − 3(f3 − 4)f3) + (3(f2 − 4)2

+f23 + 4(f2 − 20)f3)f4)f5 + 96(f1 − f3)(f2 − f4)
)

−a145a235
24f5

(
− 2f45 + 2(3f1 + 3f2 + 3f3 + 3f4 − 28)f35 − 2(2f21 − (f2 − 8f3 − 5f4 + 28)f1

+2f22 + 2f24 + 2(f3 − 12)(f3 − 2)− (f3 + 28)f4 + f2(5f3 + 8f4 − 28))f25

+((f2 + 4f3 + 3(f4 − 4))f21 + (f22 + 4(f3 + f4 − 20)f2 + 4f23 + 3(f4 − 4)2 + 4f3(f4 + 4))f1

+(4f2 + f3 − 12)f24 + 3(f2 − 4)(f3 − 4)(f2 + f3)

+(4f22 + 4(f3 + 4)f2 + (f3 − 80)f3 + 48)f4)f5 + 96(f2 − f3)(f1 − f4)
)

+
a125a345

24

(
− 4f35 + 4(3f3 + 3f4 − 28)f25 − 4(2f24 + 5f3f4 − 28f4 + 2(f3 − 14)f3 + 48)f5

+6(f3 − 4)(f4 − 4)(f3 + f4) + f2(5f23 + 8f4f3 − 64f3 + 5f24 + 12f25 − 64f4

−14(f3 + f4 − 8)f5 + 96) + f1(6f22 + 4(2(f3 + f4 − 6)− 5f5)f2 + 5f23 + 5f24 + 12f25

−64f3 + 8f3f4 − 64f4 − 14(f3 + f4 − 8)f5 + 96) + f22 (5f3 + 5f4 − 8(f5 + 3))

+f21 (6f2 + 5f3 + 5f4 − 8(f5 + 3))
)
. (3.1.22)

With its help, the sum of two quadratic tt’s can be completely reduced to different
products of a-tensors.

We also obtained new reduction formulae for similar combinations of quadratic pp’s.
They are a direct consequence of the following identities:

(f5 − 2)2 p125p345 = P1234 +R1234,

R1234 = −(f1 − f2) (f3 − f4) (f5 − 7) 2

2 (f5 − 5)
t125t345 −

(−5 (f1 − f2) 2 + 2 (f1 + f2) f5 + 3f 2
5 )

320 (f5 − 5) f5

× (f5 − 10) 2(−5 (f3 − f4) 2 + 3f 2
5 + 2 (f3 + f4) f5) a125a345,

P1234 = 2 (Y1234 + Y1243)− 1

20
(f1 + f2 − f5) (f3 + f4 − f5) f 2

5 a125a345

−(f2 + f3 − f5) (f1 + f4 − f5)

16f5

(
(f1 + f2 + f3 + f4 − 16) f 2

5 (3.1.23)

−(f 2
1 + 2 (f2 − 8) f1 + (f2 − 16) f2 + (f3 + f4 − 16) (f3 + f4))f5

−128f5 + (f2 − f3) (f1 − f4) (f1 + f2 + f3 + f4 − 16)
)
a145a235

−(f1 + f3 − f5) (f2 + f4 − f5)

16f5

(
(f1 + f2 + f3 + f4 − 16) f 2

5

−
(
f 2

1 + 2 (f2 − 8) f1 + (f2 − 16) f2 + (f3 + f4 − 16) (f3 + f4)
)
f5

−128f5 + (f1 − f3) (f2 − f4) (f1 + f2 + f3 + f4 − 16)
)
a135a245

−1

4
(f1 + f2 + f3 + f4 − 16) (f1 + f3 − f5 − 3) (f2 + f4 − f5 − 3) t135t245

−1

4
(f1 + f2 + f3 + f4 − 16) (f2 + f3 − f5 − 3) (f1 + f4 − f5 − 3) t145t235,

53



where Y1234 is defined by (3.1.42) and has the following symmetry properties:

Y1234 = Y1324 = Y2143 = Y3412. (3.1.24)

We were not able to reduce Y1234, but rather Y12[34] ≡
1

2
(Y1234 − Y1243):

Y12[34] =
1

8
(f1 + f2 − f5 − 5) (f3 + f4 − f5 − 3) (f5 + 3) t125t345

−1

8
(f1 + f3 − f5 − 3) (f2 + f4 − f5 − 3) t135t245

+
1

8
(f2 + f3 − f5 − 3) (f1 + f4 − f5 − 3) t145t235

1

32f5

(
f 2

1 − (f3 − f5) 2
) (

(f4 − f5) 2 − f 2
2

)
a135a245

− 1

32f5

(
f 2

2 − (f3 − f5) 2
) (

(f4 − f5) 2 − f 2
1

)
a145a235. (3.1.25)

Thus, using (3.1.23)-(3.1.25), one is able, similar to (3.1.22), to find an expression only for
the difference of two quadratic pp’s. In fact, it has the following structure (schematically):

f 2
5 (p135p245 − p145p235) =

1

2
f 3

5 t125t345 + {...}, (3.1.26)

where {...} contains only quadratic tt’s and different aa’s.
From (3.1.26) it directly follows another useful reduction formula:

f 3
5 (t1234 − t1324 + t1423) = Σ1234 − Σ1324 + Σ1423,

Σ1234 = (f1 + f2 + f3 + f4 − 13)f 2
5 t125t345

+
(

(10f3 + 10f4 − f1(f3 + f4 − 8)− f2(f3 + f4 − 8)− 51)f5

+(−5f1 − 5f2 + 21)(f3 + f4 − 3)
)
t125t345 (3.1.27)

+
(f3 − f4) ((f2 − f5) 2 − f 2

1 ) (f3 + f4 − f5)

2f5

a125a345.

These new reduction formulae are used as an intermediate check when computing the
correlator.

Proof

Let us show how the new formula (3.1.23) can be obtained4. To do the calculation we
need to use

c125 =

∫
∇α∇βY I1∇α∇βY

I2Y I5 =
1

4
(f1 + f2 − f5 − 8) (f1 + f2 − f5) a125,

µ125 =
f2 − f1

f5 − 5
t125, ν125 =

5

4f5(f5 − 5)
d125,

d125 =
1

20

(
−5 (f1 − f2) 2 + 3f 2

5 + 2 (f1 + f2) f5

)
a125.

(3.1.28)

4We thank Sergey Frolov for sharing this calculation with us.

54



which are used in the relation

∇(αY
1∇β)Y

2 = p125Y
5

(αβ) + µ125∇(αY
5
β) + ν125∇(α∇β)Y

5 ., (3.1.29)

where from now on the round bracket denote traceless symmetrization. Then we need
the formulae

∇2Y 5 = −f5Y
5 , ∇2∇αY

5 = (4− f5)∇αY
5 ,

∇2∇α∇βY
5 = (10− f5)∇α∇βY

5 + 2gαβf5Y
5 ,

∇2∇(α∇β)Y
5 = (10− f5)∇(α∇β)Y

5 ,

∇2Y 5
α = (1− f5)Y 5

α , ∇2∇αY
5
β = (5− f5)∇αY

5
β + 2∇βY

5
α ,

∇2∇(αY
5
β) = (7− f5)∇(αY

5
β) , ∇2Y 5

(αβ) = (2− f5)Y 5
(αβ) .

(3.1.30)

These formulae and (3.1.29) give

(2− f5)p125Y
5

(αβ) = ∇2
(
∇(αY

1∇β)Y
2
)
− (7− f5)µ125∇(αY

5
β) − (10− f5)ν125∇(α∇β)Y

5 ,
(3.1.31)

and

(2− f5)2p125p345 =

∫
∇2
(
∇(αY

1∇β)Y
2
)
∇2
(
∇(αY

3∇β)Y
4
)

− (7− f5)2µ125

∫
∇(αY

5
β)∇(αY

3∇β)Y
4 − (7− f5)2µ345

∫
∇(αY

5
β)∇(αY

1∇β)Y
2

− (10− f5)2ν125

∫
∇(α∇β)Y

5∇(αY
3∇β)Y

4 − (10− f5)2ν345

∫
∇(α∇β)Y

5∇(αY
1∇β)Y

2

− 1

2
(5− f5)(7− f5)2µ125µ345 −

4

5
f5(5− f5)(10− f5)2ν125ν345 ,

(3.1.32)
where we took into account that∫

∇(αY
5
β)∇(αY

5
β) = −1

2
(5− f5) ,∫

∇(α∇β)Y
5∇(α∇β)Y

5 = −4

5
f5(5− f5) ,∫

∇(αY
5
β)∇(α∇β)Y

5 = 0 .

(3.1.33)

Using integration by parts and the definitions (3.1.1) and

b123 =

∫
∇αY I1∇αY

I2Y I3 = 1
2

(f1 + f2 − f3) a123 (3.1.34)

we can reduce the second and the third line to t and a contributions:

(2− f5)2p125p345 =

∫
∇2
(
∇(αY

1∇β)Y
2
)
∇2
(
∇(αY

3∇β)Y
4
)

+R1234,

R1234 = −1

2
(10− f5)2ν125(f3b453 + f4b354 − f5b345)

− 1

2
(10− f5)2ν345(f1b251 + f2b152 − f5b125)

+
1

2
(5− f5)(7− f5)2µ125µ345 −

4

5
f5(5− f5)(10− f5)2ν125ν345

− f5

5
(10− f5)2(b125ν345 + ν125b345) .

(3.1.35)
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So, the main problem is to evaluate

P1234 ≡
∫
∇2
(
∇(αY

1∇β)Y
2
)
∇2
(
∇(αY

3∇β)Y
4
)
. (3.1.36)

We have

P1234 =
1

2

∫
∇2
(
∇αY

1∇βY
2
)
∇2
(
∇αY

3∇βY
4 +∇αY

4∇βY
3 − 2

5
gαβ∇γY

3∇γY
4
)

=
1

2

∫
∇2
(
∇αY

1∇βY
2
)
∇2
(
∇αY

3∇βY
4 +∇αY

4∇βY
3
)

− 1

5

∫
∇2
(
∇αY

1∇αY
2
)
∇2
(
∇γY

3∇γY
4
)

=
1

2

∫
∇2
(
∇αY

1∇βY
2
)
∇2
(
∇αY

3∇βY
4 +∇αY

4∇βY
3
)
− 1

5
f 2

5 b125b345 ,

P1234 =
1

2

∫ (
(8− f1 − f2)∇αY

1∇βY
2 + 2∇γ∇αY

1∇γ∇βY
2
)

×
(

(8− f3 − f4)∇αY
3∇βY

4 + 2∇ρ∇αY
3∇ρ∇βY

4

+ (8− f3 − f4)∇αY
4∇βY

3 + 2∇ρ∇αY
4∇ρ∇βY

3
)
− 1

5
f 2

5 b125b345,

P1234 = P
(8)
1234 + P

(6)
1234 + P

(4)
1234 −

1

5
f 2

5 b125b345 ,

(3.1.37)
where we denote

P
(4)
1234 ≡

1

2

∫
(8− f1 − f2)(8− f3 − f4)∇αY

1∇βY
2
(
∇αY

3∇βY
4 +∇αY

4∇βY
3
)
,

P
(6)
1234 ≡

∫ (
(8− f1 − f2)

(
∇αY

1∇βY
2∇ρ∇αY

3∇ρ∇βY
4 +∇αY

1∇βY
2∇ρ∇αY

4∇ρ∇βY
3
)

+ (8− f3 − f4)
(
∇αY

3∇βY
4∇γ∇αY

1∇γ∇βY
2 +∇αY

4∇βY
3∇γ∇αY

1∇γ∇βY
2
))
,

P
(8)
1234 ≡ 2

∫
∇γ∇αY

1∇γ∇βY
2
(
∇ρ∇αY

3∇ρ∇βY
4 +∇ρ∇αY

4∇ρ∇βY
3
)
.

(3.1.38)
We immediately find

P
(4)
1234 =

1

2
(8− f1 − f3)(8− f2 − f4)(b135b245 + b145b235) . (3.1.39)

To reduce the six-derivative terms we use

∇β∇αY
1∇βY

2 = t
(2)
125 Y

5
α + b

(2)
152∇αY

5 ,

t
(2)
125 =

1

2
(f1 + f2 − f5 − 3)t125 ,

b
(2)
152 =

(f1 + f2 − f5)(f1 − f2 + f5)

4f5

a125 .

(3.1.40)

Then we get

P
(6)
1234 = (8− f1 − f2)

(
t
(2)
135t

(2)
245 + f5b

(2)
351b

(2)
452 + t

(2)
145t

(2)
235 + f5b

(2)
451b

(2)
352

)
+ (8− f3 − f4)

(
t
(2)
135t

(2)
245 + f5b

(2)
153b

(2)
254 + t

(2)
145t

(2)
235 + f5b

(2)
154b

(2)
253

)
.

(3.1.41)
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Introducing

Y1234 =

∫
∇γ∇αY

1∇γ∇βY
2∇ρ∇αY

3∇ρ∇βY
4 , (3.1.42)

we find the last term

P
(8)
1234 = 2(Y1234 + Y1243) . (3.1.43)

It remains to compute Y12[34] ≡
1

2
(Y1234 − Y1243). Integration by parts gives:

Y12[34] = Y[12]34 =∇α∇βY
[1∇γ∇βY 2]∇α∇δY

3∇γ∇δY 4

=−∇γ∇β∇αY
[1∇γ∇βY 2]∇α∇δY

3∇δY 4

−∇α∇βY
[1∇2∇βY 2]∇α∇δY

3∇δY 4

−∇α∇βY
[1∇γ∇βY 2]∇γ∇α∇δY

3∇δY 4 .

(3.1.44)

With the help of the following identity:

[∇α , ∇β] ξγ = gαγξβ − gβγξα , (3.1.45)

one finds the last line in (3.1.44):

∇α∇βY
[1∇γ∇βY 2]∇γ∇α∇δY

3∇δY 4 =
1

2
∇α∇βY

[1∇γ∇βY 2][∇γ,∇α]∇δY
3∇δY 4

= ∇α∇βY
[1∇γ∇βY 2]∇αY [3∇γY 4] .

Finally, using

∇γ∇β∇αY
1∇γ∇βY

2 = t
(4)
125 Y

5
α + b

(4)
152∇αY

5 ,

t
(4)
125 =

1

4
(f1 + f2 − f5 − 3)(f1 + f2 − f5 − 13)t125 + f1t125 ,

b
(4)
152 =

(f1 + f2 − f5)(f1 + f2 − f5 − 10)

4f5

b152 −
f1

f5

b251 .

(3.1.46)

we find

Y12[34] = −1

2
(t

(4)
125 − t

(4)
215)t

(2)
345 −

1

2
f5(b

(4)
152 − b

(4)
251)b

(2)
354

− 1

2

(
(4− f2)t

(2)
125 − (4− f1)t

(2)
215

)
t
(2)
345 −

1

2
f5

(
(4− f2)b

(2)
152 − (4− f1)b

(2)
251

)
b

(2)
354

− 1

2
(t

(2)
135t

(2)
245 − t

(2)
145t

(2)
235)− 1

2
f5(b

(2)
153b

(2)
254 − b

(2)
154b

(2)
253) .

(3.1.47)
We would also like to note, that the method, similar to the one used in appendix B,

gives precisely the same relations between cubic tt’s, like those derived from the relations
for quadratic pp’s.

3.2 Harmonic polynomial formalism

However, as was already mentioned, the computation of the a-, p- and t-tensors simplifies
incredibly in the harmonic polynomial formalism, developed in [40, 41] and applied to
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compute some supergravity correlators in [18, 19]. It turns out that, after an appropri-
ate normalization, the a-, p- and t-tensors can be expressed as harmonic polynomials

Y
(a,b)
nm (σ, τ) in the new variables σ and τ

σ ≡ t13t24

t12t34

and τ ≡ t14t23

t12t34

, where tij ≡ ti · tj, (3.2.1)

which carry the non-trivial dependence on the null vectors ti. These functions are gener-
alized eigenfunctions of the SO(6) Casimir operator L2, satisfying

L2
(
ta14t

b
24Y

(a,b)
nm (σ, τ)

)
= −2Cnmt

a
14t

b
24Y

(a,b)
nm (σ, τ), (3.2.2)

with Cnm being the corresponding eigenvalue. Moreover, one can solve this equation [41]

and find that the Y
(a,b)
nm can be expressed explicitly in terms of Jacobi polynomials P

(a,b)
n :

Y (a,b)
nm (σ, τ) =

2(n+ 1)!(a+ b+ n+ 1)!

(a+ 1)m(b+ 1)m(a+ b+ 2n+ 2)!
P (a,b)
nm (σ, τ) , (3.2.3)

where (. . .)m is the usual Pochhammer symbol and

P (a,b)
nm (y, ȳ) =

P
(a,b)
n+1 (y)P

(a,b)
m (ȳ)− P (a,b)

m (y)P
(a,b)
n+1 (ȳ)

y − ȳ
, (3.2.4)

which can be related to the original σ and τ variables via

σ =
1

4
(y + 1)(ȳ + 1) and τ =

1

4
(1− y)(1− ȳ). (3.2.5)

It was discussed in [19], that the product of C-tensors appearing in the product of scalar
a125a345, vector t125t345 and tensor p125p345 harmonics for arbitrary weights with fixed

exchange leg k5 are proportional to these Y
(a,b)
nm :

a125a345 ∼ 〈CI1
k1
CI2
k2
CI

[0,a+b+2m,0]〉〈C
I3
k3
CI4
k4
CI

[0,a+b+2m,0]〉 = T BaY (a,b)
mm ,

t125t345 ∼ 〈CI1
k1
CI2
k2
CI

[1,a+b+2m,1]〉〈C
I3
k3
CI4
k4
CI

[1,a+b+2m,1]〉 = T BtY (a,b)
m+1,m,

p125p345 ∼ 〈CI1
k1
CI2
k2
CI

[2,a+b+2m,2]〉〈C
I3
k3
CI4
k4
CI

[2,a+b+2m,2]〉 = T BpY (a,b)
m+2,m,

(3.2.6)

where the t-dependent prefactor T is given by

T = tk3
12t

b
13t

a
14t

k1+k2+k3−k4
2

34 (3.2.7)

and k5 satisfies

k5 = a+ b+ 2m, k5 = a+ b+ 2m+ 1 or k5 = a+ b+ 2m+ 2 (3.2.8)

for some nonnegative integer m respectively. The proportionality coefficients B were
worked out in [19]: given a set of weights k1, k2, k3, k4 ordered such that

a =
k1 + k4 − k2 − k3

2
, b =

k2 + k4 − k1 − k3

2
(3.2.9)
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are nonnegative5 and an intermediate weight k5 satisfying (3.2.8) they take the following
form:

Ba =
α251!α512!α453!α534!

a!b!k5!
,

Bt =
(k5 + 1)(α251 − 1

2
)!(α512 − 1

2
)!(α453 − 1

2
)!(α534 − 1

2
)!

a!b!k5!
,

Bp =24 · α251!α512!α453!α534!

a!b!k5!(k5 + 1)!
,

(3.2.10)

where α123 = k1+k2−k3

2
. This now allows for a straightforward evaluation of a125a345,

t125t345 and p125p345 for any weights as all the complicated tensor structure is captured
by Jacobi polynomials. To obtain the corresponding tensors in the t and u channel, e.g.
a135a245 and a145a235, one simply reshuffles the ti.

5This might require a shuffle {k1, k2, k3, k4} → {k3, k4, k1, k2}, which is certainly possible in all cases.
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Chapter 4

Analyzing the results

4.1 Normalisation

Before passing to discussion of the results, we must mention the final step in computing
the normalized connected four-point function. One has to multiply the sum of the con-
tact part mentioned above(1.1.3) and the exchange part (2.1.1) by the following overall
coefficient:

N2

8π5

∏
k∈{k1,...,k4}

COkCk,

CO2 =
4
√

2π2

N
, COk =

2
√

2π2

N(k − 2)
√

(k − 1)
, k > 2,

(4.1.1)

where Ck are given in (1.1.7) and the coefficients COk provide the canonical normalization
for the two-point functions [14], [38]. Note also that the minus sign coming from the
Euclidean version of the AdS action compensates the minus sign in (3.1.2).

4.2 Results

The aforementioned simplifications of the algorithm, sections 1 and 2, in combination
with the harmonic polynomial formalism, reviewed in section 3.2, allow one to compute
supergravity four-point functions of 1/2–BPS operators in (2.5.2) of any reasonably given
weights in very little time. We implement the entire algorithm in Mathematica and
compute all the non-trivial connected four-point functions 〈k1k2k3k4〉 with 2 6 k1 6 k2 6
k3 6 k4 6 8 (94 in total and including 64 previously unknown correlators), which can
be found in the database attached to the publication [1]. Additionally, we compute two
very high-weight cases, namely 〈7 10 12 17〉 and 〈17 21 23 25〉. The computation of these
latter correlation functions takes 1 minute and 40 minutes, respectively, on a standard
computer. For each correlation function the database contains a subfolder with the name
k1 k2 k3 k4 with up to five plain txt files:

• Fullcorrelatork1 k2 k3 k4.txt contains the full correlator as we compute it di-
rectly from the action,

• Freepartk1 k2 k3 k4.txt contains the free part as we extract it from consistency
with superconformal symmetry ,
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• Hk1 k2 k3 k4.txt contains a coordinate-space expression for the dynamical function
H in the notation of [20,22] as it follows from our direct computation,1

• HfromMellink1 k2 k3 k4.txt contains a much shorter coordinate-space expression
for H in the notation of [20, 22] and has been derived from its Mellin-space form
(the construction of which we discuss in the appendix),

• RZconjk1 k2 k3 k4.txt contains two entries: if this four-point function coincides
with the Mellin conjecture the first entry is yes and if not it would read no. The
second entry is the value for the overall scaling function f(k1, k2, k3, k4).

4.3 Consistency with the structure

The direct results for the correlators are very complicated, warranting the need for good
checks of the result. Apart from checking the expressions for the coupling building blocks
known as a-, p- and t-tensors using the identities in section 3.1, the most important check
of the final result is verifying consistency with the structure explained in section 2.5.

In order to do this, we need to separately compute the free part of the correlator
〈k1k2k3k4〉0. In principle, this computation is straightforward, but a subtlety concerning
the identification of field theory operators with supergravity fields requires a discussion.
We will address this subtlety – due to the presence of extended operators – in section 4.4.

Assuming we have computed 〈k1k2k3k4〉0 we can find the interacting part of the cor-
relator. For the interacting part we can check whether it obeys the structure given in
(2.5.9). This goes as follows: suppose the interacting part is provided as

|{a}|∑
l=1

αl Tl (4.3.1)

and we write the structure in (2.5.9) as

|{a}|∑
m=1

βm Tm, (4.3.2)

where the βm follow explicitly from (2.5.9) and depend linearly on the Fb. Since we
know that the number of independent functions describing the correlator is |{b}|, which
is always strictly smaller than |{a}|, equating the expressions (4.3.1) and (4.3.2) yields
an overdetermined system of equations for the unknowns Fb. The fact that our results
satisfy this system provides a highly non-trivial check of the correlators.

In fact, quite similar to the coordinate space method from [20], this system allows
one to determine many of the numbers one has to compute during the computation. For
example, in all our cases, this provided an independent check of the symmetry factors in
(2.1.1), and with a small modification, we used it to verify the free part of our correlators.

We can further analyze our results by comparing it to the closed Mellin-space for-
mula that was conjectured for any four-point function of 1/2-BPS operators [22]. This
conjecture is based on physical arguments and consistency with all the known results
and subsequently tested on one new result (the 〈5555〉 correlator) [20]. The computed

1This expression has not been simplified and is therefore much longer than what is predicted from the Mellin-
space conjecture.
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correlators, therefore, provide a new test of this conjecture, in particular, because of their
genericness. We also performed this check for all our cases. We obtained a match between
the expressions coming from our results and those from the conjecture. See chapter 5 for
more details on the Mellin-space correlators.

4.4 Computing the free part: extended operators

In principle the computation of the free part is a straightforward procedure. We can
compute it in the field theory picture using the (free) operators dual to the scalar fields
sIkk , simply performing the relevant Wick contractions to obtain the free correlator. For

small k < 4 the correspondence between fields and operators is simple, namely sIkk ∼ O
Ik
k

where, remembering the decomposition (2.5.1), the field dependence is given by

Oi1...ik = κkTr
(
φi1 . . . φik

)
, (4.4.1)

where κk is the k-dependent normalization determined by demanding canonical two-point
functions which in the planar limit can be taken to be κk =

√
2k/(kNk). The operators

with this exact field-dependence are known as single-trace and we distinguish them by
omitting the tilde. However, as first noticed in [42] and later further analyzed in [24] this
correspondence cannot hold when k > 4: the fact that extremal three-point functions
〈sI1k1

sI2k2
sI3k3
〉 vanish when computed from the supergravity lagrangian, whereas the quantity

〈OI1k1
OI2k2
OI3k3
〉 (4.4.2)

in the field theory in general is non-vanishing shows that this correspondence cannot
continue to hold. The resolution presented in [24] is that the scalar fields are not dual to
single-trace, but to so-called extended operators2:

sI1k1
∼ ÕI1k1

= OI1k1
− 1

2N

∑
k2,k3>2
k2+k3=k1

CI1I2I3OI2k2
OI3k3

, (4.4.3)

where CI1I2I3 =
√
k1k2k3〈CI1CI2CI3〉, defined in section 3.1. For convenience we also give

the decomposition (2.5.1) for the extended case: decomposing as in (2.5.1) we can write
the field-dependence as

Õi1,...,ik1 = κk1Tr
(
φi1 . . . φik1

)
−

∑
k2,k3>2
k2+k3=k1

λk1,k2,k3

2N
κk2κk3Tr

(
φi1 . . . φik2

)
Tr
(
φik2+1 . . . φik1

)
,

(4.4.4)
where λk1,k2,k3 = CI1I2I3 and where we omitted symmetrization over all the indices since

this is enforced by contraction with the t vectors. Even though the prescription for ÕI1k1

is completely explicit it can be quite non-trivial to compute the coefficient directly, due
to the complexity of the required tensor contractions. Luckily we can circumvent this by
noting that the extended operators are required to have vanishing extremal three point
functions. Since the number of terms in the summation is exactly equal to the number of

2One could alternatively leave the field operators unaltered and modify the supergravity lagrangian instead,
by a field redefinition that adds boundary terms such that the three-point correlation functions reflect the field
theory result [24].
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extremal three-point functions containing ÕIk one can find the coefficients by demanding
vanishing of these three-point functions. For example, we can list the values of the λ for
the first few cases:

λ422 = 4, λ532 = 2
√

30, λ642 = 8
√

3, λ633 = 3
√

6, (4.4.5)

thereby completely defining the extended operators dual to s4, s5 and s6.

The free part of the supergravity correlators should generically be computed using Wick
contractions of the extended operators and then taking the large N limit. However,
the leading (planar) order in this computation follows from general considerations of
the topology of the diagram combined with some combinatorics. In particular, from
these considerations it follows that for connected diagrams the effect of the presence of
extended operators was undetectable except for the extremal cases, such that in practice
one did not have to consider this complication. Indeed, for the 〈4444〉 correlator, one of
the few known correlators for which the weights are high enough to potentially feel this
effect, the free part was computed in [16] without explicitly tracking it. Consistency with
superconformal symmetry was shown, thereby indicating that the fact that the operators
are extended should not play a role. However, the first signs that one should take this
effect seriously were presented in the paper [18], that discusses the family of correlators
of the form 〈22nn〉 for n > 2: already there it was noted that there exists a discrepancy
between the free part of the correlator as computed from supergravity as opposed to the
result from field theory using non-extended operators when n > 3, but its origin remained
unexplained. It was argued in [20] that this discrepancy is resolved by computing the
free part using extended operators. We confirm this with the explicit computation of the
〈22nn〉 correlator for n = 4, 5, 6, for which we conclude that the presence of extended
operators does play a role.

Moreover, since the computation only concerns the planar diagrams it is possible
to prove when it is necessary to take into account that the operators are extended:
in the planar limit, only the leading order in N of the free correlator described by a
diagram is relevant. From basic observations, we know that, when depicted using the
double-line notation, this leading order goes as N I with I the number of index loops [31].
Extendedness of an operator adds to a diagram a contribution of a second diagram, in
which one of the vertices has been split into two parts. As an example, splitting the third
vertex looks like

Ak1,k2,k3,k4 → Ak1,k2,k3,k4 −
#

N
A
k1,k2,k

(1)
3 ,k

(2)
3 ,k4

, (4.4.6)

where k
(1)
3 + k

(2)
3 = k3. In terms of the index loops, splitting the vertex will generically

reduce the number of index loops by 1, which when combined with the extra 1/N in front
of the second diagram implies that its contribution is subleading and can be discarded.
Only in the special case in which one of the vertices is singly-connected to the rest of
the diagram and can be split off completely by one of the extensions – hence yielding
a disconnected diagram – can the effect be leading: in that case the number of index
loops increases by 1 due to the splitting, which when compensated by the 1/N prefactor
yields a contribution to the leading term and hence to the planar free correlator. We
have illustrated these ideas in fig. 4.1.

In particular, it follows that the presence of extended operators plays a role for all the
correlators presented in the previous section. For the more empirically inclined reader we
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Figure 4.1: An example of a singly-connected graph which has more index loops after splitting:
the number of external index loops Le (loops outside of the lines that connect the nodes) before
splitting is 2, whereas after splitting the total number is 2 + 1 = 3.

provide an overview of the (extended and non-extended) free parts of all the non-trivial
four-point functions with weights up to and including 5 in table 4.1. When a difference
exists we list both the result for non-extended (upper part) and extended operators (lower
part). Although in principle one can use combinatorics to compute the planar limit of the
free part3 we have computed them using a straightforward implementation in Mathemat-
ica of Wick contractions between scalars in N = 4 SYM using the formulae in [43], with
the exception of 〈5555〉 which we took from [23]. The correlators which are not listed
vanish identically. This computation indeed showes that the Kaluza-Klein modes sIkk are
dual to the extended (4.4.4) rather than to single-trace operators, and together with the
procedure discussed in the previous section verifies that the implemented algorithm gives
the correct result.

3A hint of this fact can be found in the regularity of the appearing numbers: after factoring an overall constant
only simple integers remain.
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Correlator Planar free part coefficients 1
N2 {cal}

〈2222〉 {N2, 4, N2, 4, 4, N2}

〈2233〉 {0, 12, 0, 6, 6, N2}

〈2244〉 {16, 24, 16, 8, 8, N2}
{ 0, 24, 0, 8, 8, N2}

〈2255〉 {30, 40, 30, 10, 10, N2}
{ 0, 40, 0, 10, 10, N2}

〈2334〉
√

2{12, 12, 0, 12, 6, 0}√
2{ 0, 12, 0, 12, 6, 0}

〈2345〉
√

30{6, 6, 4, 4, 2, 0}√
30{0, 6, 0, 4, 2, 0}

〈2444〉
√

2{16, 16, 16, 16, 16, 16}√
2{ 0, 16, 0, 16, 16, 0}

〈2455〉
√

2{30, 30, 30, 20, 20, 20}√
2{ 0, 30, 0, 20, 20, 0}

〈3333〉 {N2, 9, 9, N2, 9, 18, 9, 9, 9, N2}

〈3344〉 {0, 24, 24, 0, 12, 24, 12, 12, 12, N2}

〈3355〉 {30, 45, 45, 30, 15, 30, 15, 15, 15, N2}
{ 0, 45, 45, 0, 15, 30, 15, 15, 15, N2}

〈3456〉
√

10{0, 18, 18, 0, 12, 12, 6, 12, 6, 0}

〈3555〉
√

15{10, 10, 10, 10, 10, 10, 10, 10, 10, 10}√
15{ 0, 10, 10, 0, 10, 10, 10, 10, 10, 0}

〈4444〉 {N2, 16, 16, 16, N2, 16, 32, 32, 16, 16, 32, 16, 16, 16, N2}

〈4455〉 {0, 40, 40, 40, 0, 20, 40, 40, 20, 20, 40, 20, 20, 20, N2}

〈5555〉 {N2, 25, 25, 25, 25, N2, 25, 50, 50, 50, 25, 25, 50, 50, 25, 25, 50, 25, 25, 25, N2}

Table 4.1: Free parts of all non-trivial four-point correlators with weights up to 5 and that of
〈3456〉 in the leading order of the planar limit, split to the coefficients in its decomposition (2.5.5)
as a list 1

N2 {cal} with 1
N2 factored out. If there is a difference between the correlator of non-

extended operators and that of the extended ones we list both results with the non-extended
correlator appearing first.
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Chapter 5

Correlators in the Melling space

5.1 The Mellin amplitude

The idea to represent the CFT correlators in the Mellin space, where their analytic
structure becomes transparent, was proposed by Mack in [44], and further studied in
[45–51] in the framework of the AdS/CFT. As was observed, in the planar limit, the four-
point Mellin amplitudes are simple meromorphic functions. Their poles and residues are
entirely determined by two and three-point functions of single-trace operators. Further,
based on symmetry, physical assumptions and the known results [13–19] , the authors
of [20, 22] conjectured the general formula for the holographic correlators in the Mellin
space. In this section, we sketch their work and present their results.

We first reorder the full correlator 〈k1k2k3k4〉 such that the weights satisfy k1 > k2 >
k3 > k4, and distinguish it by writing Gk1k2k3k4 instead. Then using the invariance under
the conformal and R-symmetry groups, we write the correlator via the conformal, u and
v, and R-symmetry, σ and τ , cross ratios:

Gk1k2k3k4

(
~x,~t

)
=
∏
i<j

(
tij
x2
ij

)γ0
ij
(
t12t34

x2
12x

2
34

)L
Gk1k2k3k4 (u, v, σ, τ) , (5.1.1)

where the exponents γ0
ij are

γ0
12 = 1

2
(k1 + k2 − k3 − k4), γ0

13 = 1
2
(k1 + k3 − k2 − k4) ,

γ0
34 = γ0

24 = 0, γ0
14 = k4 − L ,

γ0
23 = k4 − L− 1

2
(k1 + k4 − k2 − k3) , (5.1.2)

and L is defined as follows:

L =

{
k4, if k1 + k4 6 k2 + k3

1
2
(k2 + k3 + k4 − k1), if k1 + k4 > k2 + k3 .

(5.1.3)

The rest is defined as usual:

xij = xi − xj , tij = ti · tj ,
u = (x12)2(x34)2

(x13)2(x24)2 , v = (x14)2(x23)2

(x13)2(x24)2 ,

σ = t13t24

t12t34
, τ = t14t23

t12t34
. (5.1.4)
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Next, one uses the invariance under the full superconformal group, which implies the
superconformal Ward identity [27, 41]. It splits the correlator into the free (the result in
free SYM theory) and dynamical part:

G(u, v, σ, τ) = Gfree(u, v, σ, τ) +RH(u, v, σ, τ) , (5.1.5)

where

R = τ + (1− σ − τ)v + (−τ − στ + τ 2)u+ (σ2 − σ − στ)uv + σv2 + στu2 . (5.1.6)

From now on we consider only the connected part of the four-point function, Gconn,
and define the Mellin amplitudes of Gconn and its dynamical part H as follows:

M(s, t, σ, τ) =
M(s, t, σ, τ)

Γk1k2k3k4

and M̃(s, t, σ, τ) =
M̃(s, t, σ, τ)

Γ̃k1k2k3k4

, (5.1.7)

where

M(s, t, σ, τ) =

∫ ∞
0

∫ ∞
0

du dv v−
t
2

+
min{k1+k4,k2+k3}

2
−1u−

s
2

+
k3+k4

2
−L−1 Gconn(u, v, σ, τ) ,

M̃(s, t, σ, τ) =

∫ ∞
0

∫ ∞
0

du dv v−
t
2

+
min{k1+k4,k2+k3}

2
−1u−

s
2

+
k3+k4

2
−L−1 H(u, v, σ, τ) ,

(5.1.8)

and Γ̃k1k2k3k4 is obtained by replacing u ≡ k1 +k2 +k3 +k4−s−t→ ũ = u−4 in Γk1k2k3k4 :

Γk1k2k3k4 = Γ[
k1 + k2 − s

2
]Γ[
k3 + k4 − s

2
]Γ[
k2 + k3 − t

2
]

Γ[
k1 + k4 − t

2
]Γ[
k1 + k3 − u

2
]Γ[
k2 + k4 − u

2
] . (5.1.9)

The authors of [20,22] have analyzed the properties of the Mellin amplitudes:

• Superconformal symmetry, as was mentioned, implies the Ward identity. The latter
translated to the Mellin space turns to the following identity the Mellin amplitudes
must satisfy to:

M(s, t, σ, τ) = R̂ ◦ M̃(s, t, σ, τ) , (5.1.10)

where R̂ is the difference operator analogue of R, defined in (5.1.6):

R̂ = τ 1 + (1− σ − τ) v̂ + (−τ − στ + τ 2) û+ (σ2 − σ − στ) ûv + σv̂2 + στ û2 ,

(5.1.11)

with the following action of monomials

ÛmV n ◦ M̃(s, t, σ, τ) = M̃(s− 2m, t− 2n, σ, τ) × (5.1.12)(
k1+k2−s

2

)
m

(
k1+k3−u

2

)
2−m−n

(
k1+k4−t

2

)
n(

k2+k3−t
2

)
n

(
k2+k4−u

2

)
2−m−n

(
k3+k4−s

2

)
m
,

and (a)n = Γ[a+n]
Γ[a]

denotes the Pochhammer symbol.
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• Bose symmetry requires the Mellin amplitudeM to be invariant under the permu-
tation of the Mandelstam variables s, t and u when the external quantum numbers

are also permuted accordingly. By construction, the amplitude M̃ shares the same
property under the permutation of the shifted Mandelstam variables s, t, and ũ. In
the case of equal weights, k1 = ... = k4 this transforms to usual crossing symmetry
relations.

• Asymptotics. In addition, the authors assume thatM grows linearly at large values
of the Mandelstam variables:

M(βs, βt, σ, τ) ∼ O(β) for β →∞ . (5.1.13)

On the language of dual string theory, this assumption means that holographic
correlators can get contributions from vertices with at most two derivatives, i.e., the
four-derivative contact terms must vanish. This was observed in all the previously
known examples, and we prove this statement in full generality in Appendix B.

• Analytic structure. M has a finite number of simple poles in s, t, u, which are
located at

s0 = sM − 2a , s0 > 2

t0 = tM − 2b , t0 > 2

u0 = uM − 2c , u0 > 2 , (5.1.14)

with

sM = min{k1 + k2, k3 + k4} − 2 ,

tM = min{k1 + k4, k2 + k3} − 2 ,

uM = min{k1 + k3, k2 + k4} − 2 ,

and a, b, c are non-negative integers. Moreover, it turns that the residue at each
pole is a polynomial in the other Mandelstam variable.

One also can notice that the R-symmetry implies that the amplitudesM and M̃ are
the polynomials in σ and τ of degree L and L − 2 respectively. Experimentation with
the known results for the supergravity correlators allowed the authors to conjecture the

following formula for M̃, satisfying all the properties mentioned above:

M̃(s, t, ũ, σ, τ) =
∑

i + j + k = L− 2,

0 6 i, j, k 6 L− 2

aijkσ
iτ j

(s− sM + 2k)(t− tM + 2j)(ũ− uM + 2i)
, (5.1.15)

with the coefficients aijk being

aijk =
Ck1k2k3k4

(
L−2
i,j,k

)
(1 + |k1−k2+k3−k4|

2
)i(1 + |k1+k4−k2−k3|

2
)j(1 + |k1+k2−k3−k4|

2
)k
, (5.1.16)

where
(
L−2
i,j,k

)
is the trinomial coefficient and the overall normalization term

Cp1p2p3p4 =
f(k1, k2, k3, k4)

N2
(5.1.17)
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remained unknown. However, this coefficient still can be determined.
Let us comment on the subtlety related to the validity of the procedure described

above. The Mellin transform of the free part Gfree is ill-defined and was ignored (set to
zero). However, it is completely recovered as a regularization effect when transforming
back to the coordinate space. The inverse Mellin transform requires to choose the appro-
priate contour of integration - one must integrate inside the regions where the integrals

converge. The operator R̂ splits those regions into several domains which may not inter-
sect. The way to proceed is to perform an infinitesimal shift such that they overlap. This
regularization recovers the correct answer for Gfree and allows to determine the unknown
factor f(k1, k2, k3, k4) by requiring the result to match with Gfree computed by Wick’s
theorem. Later this factor was derived in [52] by analyzing the light-like limit.

5.2 Consistency with the Mellin formula

Having the correlator computed in the coordinate space, we can go one step further
by checking whether the result matches the conjectured formula (5.1.15) from [20, 22].
Using the free part extracted in the verification process, see section 4.3, or computed
via performing Wick contractions, as in section 4.4, we can easily find an expression for
RH. We can furthermore find H in terms of D̄ functions by solving a set of linear equa-
tions obtained from the decomposition into different tensor components. The resulting
expressions for H are expressed as a linear combination of D̄ functions:∑

ak1k2k3k4(u, v)D̄k1k2k3k4 +
∑

bk1k2k3k4(u, v), (5.2.1)

where the sums are finite and run over the ki, and a and b are rational functions of u
and v. Here we suppress their polynomial dependence on σ and τ . It is straightforward
to find the corresponding Mellin-space expression: as discussed we can consistently send
the functions b to zero and use that

D̄∆1...∆4(u, v) = 2

∫
ds

2

dt

2
u
s
2
−∆1+∆2

2 v
t
2
−∆2+∆3

2 Γ
(−s+∆1+∆2

2

)
Γ
(−s+∆3+∆4

2

)
× (5.2.2)

Γ
(−t+∆1+∆4

2

)
Γ
(−t+∆2+∆3

2

)
Γ
(
s+t−∆2−∆4

2

)
Γ
(
s+t−∆1−∆3

2

)
,

to find the Mellin transform (5.1.8) of H. The resulting Mellin-space expressions are
rational functions in the coordinates s and t, and further simplification of them yields an
exact match with the conjecture for all checked correlation functions up to an expected
normalization constant f (5.1.17): these are all the 91 (of which 61 new) correlation
functions with weights, up to and including 8 except for the three with lowest weight k1 >
7,1 as well as 〈7 10 12 17〉. In particular, we find agreement with the derived normalization
function from [52], which in our notation becomes

f(k1, k2, k3, k4) =
24
√
k1k2k3k4(

k4−k3+k2−k1

2

)
!
(
k4+k3−k2−k1

2

)
!
(
|k4−k3−k2+k1|

2

)
! (L− 2)!

. (5.2.3)

This, therefore, corroborates the conjecture.

1This exception is due to computational limits.
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5.3 From Mellin to coordinate representation

Another interesting task is to recover the correlation function in the position space know-
ing its Mellin-space representation. To see how one can do this we only need to consider
a single summand: so let us for simplicity assume

M∼ 1

(s− s0)(t− t0)(ũ− ũ0)
, (5.3.1)

with ũ = k1 + k2 + k3 + k4 − 4 − s − t and s0, t0, ũ0 non-negative integers. The inverse
Mellin transform is defined as

H =

∫
ds

2

dt

2
u
s
2
−k3+k4

2
+Lv

t
2
−

min(k1+k4,k2+k3)
2 M(s, t)Γk1k2k3k4 . (5.3.2)

Let us consider part of the integrand in (5.3.2), namely

Γk1k2k3k4

(s− s0)(t− t0)(ũ− ũ0)
. (5.3.3)

If we manage to rewrite this expression as a linear combination of the Γp1p2p3p4 , each
summand in that sum gives rise to an integral of the form (5.2.2) after an appropriate
identification of the ∆i with the pi. Therefore, the problem of finding a coordinate-space
expression is reduced to finding a linear combination of Γp1p2p3p4 such that

Γk1k2k3k4

(s− s0)(t− t0)(ũ− ũ0)
=
∑

cp1p2p3p4Γp1p2p3p4 , (5.3.4)

where the c are numbers and the sum is finite over the pi. The representation on the right-
hand side of (5.3.4) is usually not unique, which reflects the fact that the D̄ functions
are not independent.

The first step towards an expression as in the right-hand side of (5.3.4) is to rewrite
its left-hand side as a pure product of gamma functions and linear factors. This can
be done by applying the basic property xΓ(x) = Γ(x + 1) repeatedly to some of the
gamma functions in the numerator, such that finally factors in the numerator cancel the
denominator. For example

Γ(−s+5
2

)

(s− 1)
=
−s+3

2
−s+1

2
Γ(−s+1

2
)

(s− 1)
= −1

2

−s+ 3

2
Γ

(
−s+ 1

2

)
. (5.3.5)

This yields the intermediate form

C
−s+ s1

2
. . .
−s+ sn

2

−t+ t1
2

. . .
−t+ tm

2
. . .
−ũ+ ũ1

2
. . .
−ũ+ ũl

2
Γ(x1) . . .Γ(x6),

(5.3.6)
with C some constant and x1,2 a linear factor in s, x3,4 a linear factor in t and x5,6 a
linear factor in ũ. Note that it could happen that each of the three sets of prefactors in s,
t and ũ might be empty. Suppose first for simplicity that there is only one factor −s+s1

2
.

Let us consider the linear equation

−s+ s1

2
=

6∑
i=1

λixi (5.3.7)
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for the six unknowns λi. Working out the arguments xi one sees that there are four
independent equations (one for s, t and ũ and one for the constant part), such that we
are guaranteed a solution. With this solution we can now rewrite

−s+ s1

2
Γ(x1) . . .Γ(x6) =

6∑
i=1

λixiΓ(x1) . . .Γ(x6) =
6∑
i=1

λiΓ(x1) . . .Γ(xi + 1) . . .Γ(x6)

(5.3.8)
and see that we have succeeded in our goal: by repeating the procedure described above
recursively for the list of factors in (5.3.6) we can find a linear combination of products
of gamma functions that are equal to (5.3.3), such that we have found a representation
as in (5.3.4). Exchanging sum and integral we find that each summand is of the form
(5.2.2) such that after matching the coefficients we find an expression for the inverse
Mellin-transform in terms of D̄ functions.

We have applied this algorithm to all the correlation functions in our database. All
cases have been checked explicitly with our coordinate-space results. In some cases,
a more minimal representation may exist, but due to the automatized nature of our
application, this is unavoidable. It is noteworthy that in exchanging the sum and integral,
we do not run into any domain issues that exist for the full correlator, as described in [20],
that give rise to the free part upon inverse Mellin-transforming. After all, all we are doing
is rewriting the integrand using a global property of the gamma function.
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Appendix A

D-functions

Here we collect the useful identities involving the D-functions. They are defined as
integrals over AdS5:

D∆1∆2∆3∆4(~x1, ~x2, ~x3, ~x4) =

∫
d5z

z5
0

K∆1(z, ~x1)K∆2(z, ~x2)K∆3(z, ~x3)K∆4(z, ~x4) (A.0.1)

with

K∆(z, ~x) =

(
z0

z2
0 + (~z − ~x)2

)∆

. (A.0.2)

D-functions have also a representation in terms of integrals over Feynman parameters:

D∆1∆2∆3∆4(~x1, ~x2, ~x3, ~x4) =
π2Γ(Σ− 2)Γ(Σ)

2
∏

i Γ(∆i)

∫ ∏
j

dαjα
∆j−1
j

δ(
∑

j αj − 1)

(
∑

k<l αkαlx
2
kl)

Σ
, (A.0.3)

where Σ = 1
2

∑
i ∆i.

It is convenient to define the corresponding D̄-functions, which are functions of conformal

invariant ratios, u =
x2

12x
2
34

x2
13x

2
24

and v =
x2

14x
2
23

x2
13x

2
24

, by:

D̄∆1∆2∆3∆4(u, v) = κ
|~x31|2Σ−2∆4 |~x24|2∆2

|~x41|2Σ−2∆1−2∆4|~x34|2Σ−2∆3−2∆4
D∆1∆2∆3∆4 , (A.0.4)

where

κ =
2

π2

Γ(∆1)Γ(∆2)Γ(∆3)Γ(∆4)

Γ(Σ− 2)
. (A.0.5)

By applying differential operators, one can obtain identities relating different D̄-functions

D̄∆1+1∆2+1∆3∆4 = −∂uD̄∆1∆2∆3∆4 ,

D̄∆1∆2+1∆3+1∆4 = −∂vD̄∆1∆2∆3∆4 ,

D̄∆1∆2∆3+1∆4+1 = (∆3 + ∆4 − Σ− u∂u)D̄∆1∆2∆3∆4 ,

D̄∆1+1∆2∆3∆4+1 = (∆1 + ∆4 − Σ− v∂v)D̄∆1∆2∆3∆4 ,

D̄∆1∆2+1∆3∆4+1 = (∆2 + u∂u + v∂v)D̄∆1∆2∆3∆4 ,

D̄∆1+1∆2∆3+1∆4 = (Σ−∆4 + u∂u + v∂v)D̄∆1∆2∆3∆4 . (A.0.6)

This allows one to reduce any D̄-function to a D̄1111 = Φ(u, v) by appropriate differen-
tiation with respect to u and v. The function Φ(u, v) is given in terms of a standard
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four-dimensional one-loop (box) integral and has an explicit representation in terms of
the dilogarithm function Li2 [53]:

Φ(u, v) =
1

λ

{
2
(

Li2(−ρu) + Li2(−ρv)
)

+ ln
v

u
ln

1 + ρv

1 + ρu
+ ln(ρu) ln(ρv) +

π2

3

}
, (A.0.7)

with 1

λ(u, v) =
√

(1− u− v)2 − 4uv, ρ(u, v) = 2 (1− u− v + λ)−1 . (A.0.8)

The action of the derivatives on Φ is given by [27]

∂uΦ(u, v) =
1

λ2

(
Φ(u, v)(1− u+ v) + 2 lnu− u+ v − 1

u
ln v

)
,

∂vΦ(u, v) =
1

λ2

(
Φ(u, v)(1− v + u) + 2 ln v − u+ v − 1

v
lnu

)
. (A.0.9)

By repeated use of (A.0.6) one can obtain additional identities which relate D̄-functions
with different values of Σ:

(∆2 + ∆4 − Σ)D̄∆1∆2∆3∆4 = D̄∆1∆2+1∆3∆4+1 − D̄∆1+1∆2∆3+1∆4

(∆1 + ∆4 − Σ)D̄∆1∆2∆3∆4 = D̄∆1+1∆2∆3∆4+1 − vD̄∆1∆2+1∆3+1∆4

(∆3 + ∆4 − Σ)D̄∆1∆2∆3∆4 = D̄∆1∆2∆3+1∆4+1 − uD̄∆1+1∆2+1∆3∆4 (A.0.10)

Furthermore, there are identities relating D̄-functions with the same Σ:

∆4D̄∆1∆2∆3∆4 = D̄∆1∆2∆3+1∆4+1 + D̄∆1∆2+1∆3∆4+1 + D̄∆1+1∆2∆3∆4+1 (A.0.11)

Another useful identities involve the various symmetries that these functions exhibit. By
means of conformal symmetry, one can see that:

D̄∆1∆2∆3∆4(u, v) = v−∆2D̄∆1∆2∆4∆3(u/v, 1/v)

D̄∆1∆2∆3∆4(u, v) = v∆4−ΣD̄∆2∆1∆3∆4(u/v, 1/v)

D̄∆1∆2∆3∆4(u, v) = v∆1+∆4−ΣD̄∆2∆1∆4∆3(u, v)

D̄∆1∆2∆3∆4(u, v) = u∆3+∆4−ΣD̄∆4∆3∆2∆1(u, v)

D̄∆1∆2∆3∆4(u, v) = D̄∆3∆2∆1∆4(v, u)

D̄∆1∆2∆3∆4(u, v) = D̄Σ−∆3Σ−∆4Σ−∆1Σ−∆2(u, v) (A.0.12)

1The case λ2 > 0 is assumed; the case λ2 < 0 requires an appropriate analytic continuation.
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Appendix B

Vanishing of L(4)

As has been already discussed, the vanishing of the four-derivative quartic Lagrangian was
observed in all the previously computed correlators and is believed to be true. Proving
this statement, in general, became important: it is one of the assumptions under which
the authors of (5.1.15) conjectured the Mellin-space formula for the four-point functions
of arbitrary weights. In this appendix, we provide an explicit computation showing that
these terms indeed vanish identically. The proof is based on the new reduction formulae
relating sums of products of different tensor structures which the quartic couplings depend
on.

B.1 Quartic couplings with four derivatives

Remind that the quartic Lagrangian for the fields sI with four derivatives was found to
be of the following form

L(4)
4 =

∑
1,2,3,4

(
S

(4)
1234 + A

(4)
1234

)
s1∇as

2∇2
b(s

3∇as4) . (B.1.1)

Here ∇a is a covariant derivative along AdS space and each summation label j = 1, . . . , 4
stands for a concise notation for the representation index Ij running over a basis of of
an irreducible representation [0, kj, 0] of SU(4). The couplings A1234 and S1234 have the
following symmetry properties

A
(4)
1234 = −A(4)

2134 = A
(4)
3412 ,

S
(4)
1234 = S

(4)
2134 = S

(4)
3412 .

(B.1.2)

Explicitly, A1234 is given by the sum of the following individual terms

(A3)
(4)
1234 =

1

4δ
f 3

5 (a145a235 − a135a245) .

(A2)
(4)
1234 = − 1

4δ
(3(f1 + f2 + f3 + f4)− 28)f 2

5 (a145a235 − a135a245) .

(A1)
(4)
1234 = − 3

4δ
(f1 − f2)(f3 − f4)f5a125a345

+
1

2δ
(f1 + f2 + f3 + f4 − 2)(f1 + f2 + f3 + f4 − 12)f5 (a145a235 − a135a245) .
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(A0)
(4)
1234 =

21

4δ
(f1 − f2)(f3 − f4)a125a345.

(A−1)
(4)
1234 = −12

δ
(f1 − f2)(f3 − f4)f−1

5 a125a345.

(At2)
(4)
1234 = −3

δ
(f5 − 1)2t125t345.

The symmetric coupling is

S
(4)
1234 =

7

4δ
(2f1f2 + 2f3f4 − (f1 + f2)(f3 + f4)) a125a345.

In the formulae above fi ≡ f(ki) = ki(ki + 4), δ =
∏4

i=1(ki + 1) and summation over the
index 5 is assumed. The couplings a123 and t123 are given as the following integrals over
the five-sphere of the spherical harmonics

a123 =

∫
Y 1Y 2Y 3 , t123 =

∫
∇αY 1Y 2Y 3

α . (B.1.3)

Here Y k are scalar spherical harmonics and Y k
α are vector spherical harmonics satisfying

the irreducibility condition ∇αY k
α = 0. Both Y k and Y k

α are eigenvalues of the sphere
Laplacian ∇2 with the following eigenvalues

∇2Y k = −fkY k , ∇2Y k
α = (1− fk)Y k

α . (B.1.4)

In what follows we will also need the following product formulae which follow from the
orthogonality relation for scalar harmonics

Y 1Y 2 = a125Y
5, ∇αY 1∇αY

2 = b125Y
5, ∇α∇βY 1∇α∇βY

2 = c125Y
5 , (B.1.5)

where the coefficients are1

b123 =

∫
∇αY 1∇αY

2Y 3 =
1

2
(f1 + f2 − f3)a123,

c123 =

∫
∇α∇βY 1∇α∇βY

2Y 3 =
1

2
(f1 + f2 − f3 − 8)(f1 + f2 − f3)a123 .

(B.1.6)

This completes our discussion of the known results on the quartic Lagrangian with four-
derivative vertices, for further information and derivation of the above formulae we refer
the reader to [12].

To proceed with proving, we employ the same strategy as in [24], where the vanishing
of quartic four-derivative-vertices were shown for the so-called sub-extremal and sub-sub-
extremal cases. Recall that we are ultimately interested in the four-point function of
BPS operators corresponding to arbitrary weights k1, . . . k4. We can therefore restrict the
infinite sum in (B.1.1) to representations which correspond to these weights. The sum in
(B.1.1) is not ordered and, therefore, there are 24 ordered sets of the indices k1, . . . , k4

which split into 3 equivalence classes due to the symmetries (B.1.2). Further, integrating

1The formula for c123 in terms of a123 is different from the one in [12], because there the combination ∇α∇β
stands for the traceless symmetric combination of derivatives ∇α∇β ≡ ∇(α∇β).
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by parts and using (B.1.2), we represent the part of the Lagrangian (B.1.1) contributing
to the four-point function 〈k1k2k3k4〉 in the form similar to that in [24]

L(4),k1k2k3k4

4 = − 8
∑

1,2,3,4

(
S

(4)
1234 + A

(4)
1324 + A

(4)
1423

)
∇as

1∇as2∇bs
3∇bs4

− 8
∑

1,2,3,4

(
S

(4)
1324 + A

(4)
1234 + A

(4)
1432

)
∇as

1∇as3∇bs
2∇bs4 (B.1.7)

− 8
∑

1,2,3,4

(
S

(4)
1432 + A

(4)
1342 + A

(4)
1243

)
∇as

1∇as4∇bs
2∇bs3 .

Since we are interested here in the four-derivative vertices only, in the above formula
we have omitted the contribution of two-derivative terms and terms without derivatives
which arise upon integrating by parts and using equations of motion. There terms however
should be taken into account in subsequent analysis of the remaining part of the quartic
effective action. We also note that the meaning of the sums in (B.1.7) is different from
that in (B.1.1) – in (B.1.7) the sums are ordered, i.e. summation over 1 means summation
over index I1 corresponding to the representation with a given weight k1 and so on. It is
now obvious that it is enough to analyse the coupling

C1234 ≡ S
(4)
1234 + A

(4)
1324 + A

(4)
1423 , (B.1.8)

because the other two couplings in (B.1.7) differ from it by permutation of indices only.

Obviously, among the couplings there is a distinguished one, namely, (At2)
(4)
1234, as

the latter involves vector spherical harmonics. Its contribution into (B.1.8) comes in the
combination

W 1234 ≡ (f5 − 1)2(t135t245 + t145t235) . (B.1.9)

Our further strategy will be to reduce this combination to structures of the type fn5 a125a345

and permutations thereof. After this is done, all the couplings become comparable and
we can add them up according to (B.1.8).

B.2 Reduction formula

The reduction of (B.1.9) is based on the following formula [12]

∇αY
1Y 2 = t125Y

5
α +

b152

f5

∇αY
5 . (B.2.1)

In what follows it appears advantageous to split (B.2.1) into anti-symmetric and sym-
metric part with respect to indices 1 and 2, namely,

∇αY
[1Y 2] ≡ 1

2
(∇αY

1Y 2 −∇αY
2Y 1) = t125Y

5
α +

f1 − f2

2f5

a125∇αY
5 , (B.2.2)

∇α(Y 1Y 2) = a125∇αY
5 . (B.2.3)

Acting on (B.2.2) with the Laplacian and taking into account that

∇2∇αY
k = −(fk − 4)∇αY

k , (B.2.4)
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we obtain

(1− f5)t125Y
5
α = ∇2(∇αY

[1Y 2])− f1 − f2

2f5

(4− f5)a125∇αY
5 . (B.2.5)

Now we multiply this relation with a similar one where indices 1, 2, 5 are replaced by 3, 4, 6
and integrate over the five-sphere. The orthogonality relation for the vector spherical
harmonics together with (B.2.4) used upon integrating the Laplacian by parts leads to
the following formula

(f5 − 1)2t125t345 =

∫
∇2(∇αY

[1Y 2])∇2(∇αY [3Y 4])−

− (4− f5)2

4f5

(f1 − f2)(f3 − f4)a125a345 ,

which for (B.1.9) implies the following relation

W 1234 = K1234 − (4− f5)2

4f5

(
(f1 − f3)(f2 − f4)a135a245 + (f1 − f4)(f2 − f3)a145a235

)
,

where K1234 is the following integral

K1234 =

∫ (
∇2(∇αY

[1Y 4])∇2(∇αY
[2Y 3]) +∇2(∇αY

[1Y 3])∇2(∇αY
[2Y 4])

)
(B.2.6)

with the symmetry properties

K1234 = K2134 = K1243 = K3412 . (B.2.7)

Thus, we have reduced evaluation of our main quantity W 1234 to the computation of the integral
K1234. In order not to overload our discussion with heavy formulae we perform the computation
of K1234 in the next section and here present only the final reduction formula for W 1234:

W 1234 =

−a135a245
24f5

(
− 2f45 + 2(3f1 + 3f2 + 3f3 + 3f4 − 28)f35 − 2(2f21 − (f2 − 5f3 − 8f4 + 28)f1

+2f22 + 2f24 + 2(f3 − 12)(f3 − 2)− (f3 + 28)f4 + f2(8f3 + 5f4 − 28))f25

+((f2 + 3f3 + 4f4 − 12)f21 + (f22 + 4(f3 + f4 − 20)f2 + 3(f3 − 4)2 + 4f24 + 4(f3 + 4)f4)f1

+(3f2 + f3 − 12)f24 + 4((f3 − 3)f22 + (f3(f3 + 4) + 12)f2 − 3(f3 − 4)f3) + (3(f2 − 4)2

+f23 + 4(f2 − 20)f3)f4)f5 + 96(f1 − f3)(f2 − f4)
)

−a145a235
24f5

(
− 2f45 + 2(3f1 + 3f2 + 3f3 + 3f4 − 28)f35 − 2(2f21 − (f2 − 8f3 − 5f4 + 28)f1

+2f22 + 2f24 + 2(f3 − 12)(f3 − 2)− (f3 + 28)f4 + f2(5f3 + 8f4 − 28))f25

+((f2 + 4f3 + 3(f4 − 4))f21 + (f22 + 4(f3 + f4 − 20)f2 + 4f23 + 3(f4 − 4)2 + 4f3(f4 + 4))f1

+(4f2 + f3 − 12)f24 + 3(f2 − 4)(f3 − 4)(f2 + f3)

+(4f22 + 4(f3 + 4)f2 + (f3 − 80)f3 + 48)f4)f5 + 96(f2 − f3)(f1 − f4)
)

+
a125a345

24

(
− 4f35 + 4(3f3 + 3f4 − 28)f25 − 4(2f24 + 5f3f4 − 28f4 + 2(f3 − 14)f3 + 48)f5

+6(f3 − 4)(f4 − 4)(f3 + f4) + f2(5f23 + 8f4f3 − 64f3 + 5f24 + 12f25 − 64f4

−14(f3 + f4 − 8)f5 + 96) + f1(6f22 + 4(2(f3 + f4 − 6)− 5f5)f2 + 5f23 + 5f24 + 12f25

−64f3 + 8f3f4 − 64f4 − 14(f3 + f4 − 8)f5 + 96) + f22 (5f3 + 5f4 − 8(f5 + 3))

+f21 (6f2 + 5f3 + 5f4 − 8(f5 + 3))
)
. (B.2.8)

Finally, we sum −3
δW

1234 with the remaining couplings in (B.1.8) and observe that all the terms
are neatly canceled delivering thereby C1234 = 0. In this way, we have shown that the quartic
four-derivative couplings of the effective supergravity action vanish.
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B.3 Evaluation of K1234

In this part we compute the integral (B.2.6) in terms of structures fn5 a125a345 and permutations
thereof. In the computation process the following identity valid for any co-vector ξα

[∇α , ∇β] ξγ = gαγξβ − gβγξα . (B.3.1)

will be heavily used. Here gαβ is the metric of the unit five-sphere. Note also that on a scalar
function two covariant derivatives commute.

We start with computing

∇2(∇αY 1Y 4) = 2∇β∇αY 1∇βY 4 − (f1 + f4 − 4)∇αY 1Y 4 . (B.3.2)

The latter formula gives rise to the following identity

∇2(∇αY 1Y 4)∇2(∇αY 2Y 3) = 4∇β∇αY 1∇βY 4∇γ∇αY 2∇γY 3 (B.3.3)

−2(f2 + f3 − 4)∇β∇αY 1∇βY 4∇αY 2Y 3 − 2(f1 + f4 − 4)∇αY 1Y 4∇γ∇αY 2∇γY 3

+(f1 + f4 − 4)(f2 + f3 − 4)∇αY 1Y 4∇αY 2Y 3

and a similar one with indices 3 and 4 interchanged. To simplify our presentation, in the sequel
we will drop the integration sign and always identify expressions differing by a total derivative.
Using (B.3.3) we then get

K1234 = U1234 + V 1234 , (B.3.4)

where

U1234 = (B.3.5)

−2(f2 + f3 − 4)∇β∇αY [1∇βY 4]∇αY [2Y 3] − 2(f2 + f4 − 4)∇β∇αY [1∇βY 3]∇αY [2Y 4]

−2(f1 + f4 − 4)∇αY [1Y 4]∇γ∇αY [2∇γY 3] − 2(f1 + f3 − 4)∇αY [1Y 3]∇γ∇αY [2∇γY 4]

+(f1 + f4 − 4)(f2 + f3 − 4)∇αY [1Y 4]∇αY [2Y 3]

+(f1 + f3 − 4)(f2 + f4 − 4)∇αY [1Y 3]∇αY [2Y 4] .

and

V 1234 = 4
(
∇β∇αY [1∇βY 4]∇γ∇αY [2∇γY 3] +∇β∇αY [1∇βY 3]∇γ∇αY [2∇γY 4]

)
. (B.3.6)

We continue our further treatment with evaluating the quantity U1234. To this end, we compute

∇β∇αY [i∇βY j]∇αY [kY l]

= −∇αY [i∇2Y j]∇αY [kY l] −∇αY [i∇βY j]∇β∇αY [kY l] −∇αY [i∇βY j]∇αY [k∇βY l]

=
1

4
(fj∇αY iY j − fi∇αY jY i)(∇αY kY l −∇αY lY k)

−1

4
(∇αY i∇βY j −∇αY j∇βY i)(∇αY k∇βY l −∇αY l∇βY k) (B.3.7)

=
1

4
fj(bik5ajl5 − bil5ajk5)− 1

4
fi(bjk5ail5 − bjl5aik5)− 1

2
(bik5bjl5 − bil5bjk5)

=
1

8
((f5 − fk)(f5 − fl)− fifj)(ail5ajk5 − aik5ajl5) ,
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and

∇αY [iY j]∇αY [kY l] =
1

4
(∇αY iY j −∇αY jY i)(∇αY kY l −∇αY lY k)

=
1

4
(bik5ajl5 − bil5ajk5)− 1

4
(bjk5ail5 − bjl5aik5)

=
1

8
(−fi − fj − fk − fl + 2f5)(ail5ajk5 − aik5ajl5) .

(B.3.8)

As the result, for the quantity U1234 we get

U1234 =
1

8
(−2(f1 + f4 − 4)((f5 − f1)(f5 − f4)− f2f3)

− (f1 + f4 − 4)(f2 + f3 − 4)(f1 + f2 + f3 + f4 − 2f5)

− 2(f2 + f3 − 4)((f5 − f2)(f5 − f3)− f1f4))(a135a245 − a125a345)

+
1

8
(−2(f2 + f4 − 4)((f5 − f2)(f5 − f4)− f1f3)

− (f1 + f3 − 4)(f2 + f4 − 4)(f1 + f2 + f3 + f4 − 2f5)

− 2(f1 + f3 − 4)((f5 − f1)(f5 − f3)− f2f4))(a145a235 − a125a345) .

(B.3.9)

In this way U1234 has been reduced to the desired structure.
Now we look for a similar reduction of the quantity V 1234. Here we perform a sequence of

the following transformations. First, we have

V 1234 = 4
(
−∇αY [1∇2Y 4]∇γ∇αY [2∇γY 3] −∇αY [1∇βY 4]∇β∇α∇γY [2∇γY 3]

−∇αY [1∇βY 4]∇γ∇αY [2∇β∇γY 3]

−∇αY [1∇2Y 3]∇γ∇αY [2∇γY 4] −∇αY [1∇βY 3]∇β∇α∇γY [2∇γY 4]

−∇αY [1∇βY 3]∇γ∇αY [2∇β∇γY 4]
)
.

(B.3.10)

Here the combinations ∇αY [1∇βY 4] and ∇αY [1∇βY 3] entering in the 2nd and 5th terms are
anti-symmetric in α and β and, therefore, in these terms one can replace ∇β∇α∇γ with
1
2 [∇β,∇α]∇γ and then apply identity (B.3.1). In this way we get

V 1234 = −4
(
∇αY [1∇βY 4]∇γ∇αY [2∇β∇γY 3] +∇αY [1∇βY 3]∇γ∇αY [2∇β∇γY 4]

+ ∇αY [1∇2Y 4]∇γ∇αY [2∇γY 3] −∇αY [1∇βY 4]∇βY [2∇αY 3] (B.3.11)

+ ∇αY [1∇2Y 3]∇γ∇αY [2∇γY 4] −∇αY [1∇βY 3]∇βY [2∇αY 4]
)
.

As the next step, we consider the first line in the expression above and transform it in the
following way

I1234 ≡ −4
(
∇αY [1∇βY 4]∇γ∇αY [2∇β∇γY 3] +∇αY [1∇βY 3]∇γ∇αY [2∇β∇γY 4]

)
= −(∇γY 1∇βY 4 −∇γY 4∇βY 1)(∇γ∇αY 2∇β∇αY 3 −∇γ∇αY 3∇β∇αY 2)

−(∇γY 1∇βY 3 −∇γY 3∇βY 1)(∇γ∇αY 2∇β∇αY 4 −∇γ∇αY 4∇β∇αY 2)

= −2∇β∇αY 3∇βY 4∇γ∇αY 2∇γY 1 + 2∇β∇αY 3∇βY 1∇γ∇αY 2∇γY 4

−2∇β∇αY 4∇βY 3∇γ∇αY 2∇γY 1 + 2∇β∇αY 4∇βY 1∇γ∇αY 2∇γY 3 . (B.3.12)

The resulting expression undergoes further transformation

I1234 = −2∇α(∇βY 3∇βY 4)∇γ∇αY 2∇γY 1 (B.3.13)

+2
(
∇β∇αY [3∇βY 1] +

1

2
∇α(∇βY 3∇βY 1)

)(
∇γ∇αY [2∇γY 4] +

1

2
∇α(∇γY 2∇γY 4)

)
+2
(
∇β∇αY [4∇βY 1] +

1

2
∇α(∇βY 4∇βY 1)

)(
∇γ∇αY [2∇γY 3] +

1

2
∇α(∇γY 2∇γY 3)

)
,
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which finally results into

I1234 = − 2
(
∇β∇αY [1∇βY 4]∇γ∇αY [2∇γY 3] +∇β∇αY [1∇βY 3]∇γ∇αY [2∇γY 4]

)
−∇β∇αY [1∇βY 3]∇α(∇γY 2∇γY 4) +∇α(∇βY 3∇βY 1)∇γ∇αY [2∇γY 4]

+
1

2
∇α(∇βY 3∇βY 1)∇α(∇γY 2∇γY 4) (B.3.14)

−∇β∇αY [1∇βY 4]∇α(∇γY 2∇γY 3) +∇α(∇βY 4∇βY 1)∇γ∇αY [2∇γY 3]

+
1

2
∇α(∇βY 4∇βY 1)∇α(∇γY 2∇γY 3)− 2∇α(∇βY 3∇βY 4)∇γ∇αY 2∇γY 1 .

Comparing the first line in the above formula with the original expression (B.3.6) for V 1234 we
observe that it coincides with −1

2V
1234. This allows us to find the following answer for V 1234

V 1234 =
2

3

(
∇2∇βY [1∇βY 3]∇γY 2∇γY 4 −∇βY 3∇βY 1∇2∇γY [2∇γY 4]

−1

2
∇βY 3∇βY 1∇2(∇γY 2∇γY 4)− 1

2
∇βY 4∇βY 1∇2(∇γY 2∇γY 3)

+∇2∇βY [1∇βY 4]∇γY 2∇γY 3 −∇βY 4∇βY 1∇2∇γY [2∇γY 3] (B.3.15)

+2∇βY 3∇βY 4∇γ∇αY 2∇α∇γY 1 + 2∇βY 3∇βY 4∇2∇γY 2∇γY 1

−4∇αY [1∇2Y 4]∇γ∇αY [2∇γY 3] + 4∇αY [1∇βY 4]∇βY [2∇αY 3]

−4∇αY [1∇2Y 3]∇γ∇αY [2∇γY 4] + 4∇αY [1∇βY 3]∇βY [2∇αY 4]
)
.

All the terms in the right hand side of the last formula are reducible, i.e. by using eqs.(B.1.4),
(B.1.5), (B.1.6), (B.2.4) they can be written via fn5 a125a345 and permutations thereof. For
instance,

∇2∇βY [1∇βY 3]∇γY 2∇γY 4 =
1

2
(−f1∇βY 1∇βY 3 + f3∇βY 3∇βY 1)∇γY 2∇γY 4

=
1

2
(f3 − f1)b135b245 . (B.3.16)

Proceeding in a similar manner, after tedious computation we find

V 1234 =
1

6
a125a345

(
− (f3 + f4 − f5)f2

1 + (−f2
3 + (2(f2 + f4 − 2) + f5)f3

− (−2f2 + f4 + 4)(f4 − f5))f1 − (f2 − f5)(f2
3 + (f2 − 2f4 + 4)f3

+ (f4 − f5)(f2 + f4 + f5 + 4))
)

+
1

12
a145a235

(
(f2 + f3 − f5)f2

1 + (f2
2 − (2(f3 + f4 − 2) + f5)f2

+ (f3 − 2f4 + 4)(f3 − f5))f1 + (f4 − f5)(f2
2 + (−2f3 + f4 + 4)f2

+ (f3 − f5)(f3 + f4 + f5 + 4))
)

+
1

12
a135a245

(
(f2 + f4 − f5)f2

1 + (f2
2 − (2(f3 + f4 − 2) + f5)f2

+ (−2f3 + f4 + 4)(f4 − f5))f1 + (f3 − f5)(f2
2 + (f3 − 2f4 + 4)f2

+ (f4 − f5)(f3 + f4 + f5 + 4))
)
,

(B.3.17)
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which according to eq.(B.3.4) gives the final result for K1234

K1234 =
1

24
a125a345

(
− 4f35 + 4(3f3 + 3f4 − 28)f25 − 4(2f24 + 5f3f4 − 28f4 + 2(f3 − 14)f3 + 48)f5

+6(f3 − 4)(f4 − 4)(f3 + f4) + f2(5f23 + 8f4f3 − 64f3 + 5f24 + 12f25 − 64f4

−14(f3 + f4 − 8)f5 + 96) + f1(6f22 + 4(2(f3 + f4 − 6)− 5f5)f2 + 5f23 + 5f24 + 12f25 − 64f3

+8f3f4 − 64f4 − 14(f3 + f4 − 8)f5 + 96) + f22 (5f3 + 5f4 − 8(f5 + 3))

+f21 (6f2 + 5f3 + 5f4 − 8(f5 + 3))
)

+
1

24
a145a235

(
6(−f2 − f4 + 4)((f2 − f5)(f4 − f5)− f1f3)

−3(f1 + f3 − 4)(f2 + f4 − 4)(f1 + f2 + f3 + f4 − 2f5)− 8f1f4(f2 + f3 − f5)

−8f2f3(f1 + f4 − f5) + 2(f2 − f3)(f2 + f3 − f5)(f1 + f4 − f5)

+4(f1 + f3)(f2 + f3 − f5)(f1 + f4 − f5) + 2(f4 − f1)(f2 + f3 − f5)(f1 + f4 − f5)

+8(f2 + f3 − f5)(f1 + f4 − f5) + 2(f2 + f3 − f5)(f1 + f4 − f5)f5

+6(−f1 − f3 + 4)((f5 − f1)(f5 − f3)− f2f4)
)

+
1

24
a135a245

(
6(−f1 − f4 + 4)((f1 − f5)(f4 − f5)− f2f3)

−3(f2 + f3 − 4)(f1 + f4 − 4)(f1 + f2 + f3 + f4 − 2f5)− 8f2f4(f1 + f3 − f5)

−8f1f3(f2 + f4 − f5) + 2(f3 − f1)(f1 + f3 − f5)(f2 + f4 − f5)

+2(f2 − f4)(f1 + f3 − f5)(f2 + f4 − f5) + 4(f1 + f4)(f1 + f3 − f5)(f2 + f4 − f5)

+8(f1 + f3 − f5)(f2 + f4 − f5) + 2(f1 + f3 − f5)(f2 + f4 − f5)f5

+6(−f2 − f3 + 4)((f5 − f2)(f5 − f3)− f1f4)
)
. (B.3.18)
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Appendix C

Quartic couplings

Here we collect the quartic couplings of the scalars sI . The following notations are used

x ≡ k1, y ≡ k2, t ≡ k3, w ≡ k4, z ≡ k5,

δ = (x+ 1)(y + 1)(t+ 1)(w + 1).

Quartic couplings of 4-derivative vertices

(A3)
(4)
I1I2I3I4

=
1

4δ
f3

5 (a145a235 − a135a245) .

(A2)
(4)
I1I2I3I4

= − 1

4δ
(3(f1 + f2 + f3 + f4)− 28)f2

5 (a145a235 − a135a245) .

(A1)
(4)
I1I2I3I4

= − 3

4δ
(f1 − f2)(f3 − f4)f5a125a345

− 1

δ
(f1 + f2 + f3 + f4 − 2)(f1 + f2 + f3 + f4 − 12)f5 (a145a235 − a135a245) .

(A0)
(4)
I1I2I3I4

=
21

4δ
(f1 − f2)(f3 − f4)a125a345.

(S0)
(4)
I1I2I3I4

=
7

4δ
(2f1f2 + 2f3f4 − (f1 + f2)(f3 + f4)) a125a345.

(A−1)
(4)
I1I2I3I4

= −12

δ
(f1 − f2)(f3 − f4)f−1

5 a125a345.

(At2)
(4)
I1I2I3I4

= −3

δ
(f5 − 1)2t125t345.

Quartic couplings of 2-derivative vertices

(A4)
(2)
I1I2I3I4

=
5

48δ
f4

5 (a145a235 − a135a245) .

(A3)
(2)
I1I2I3I4

= − 1

2δ
(k1 − k2)(k3 − k4)f3

5a125a345.

(S3)
(2)
I1I2I3I4

=
1

16δ

(
137− 80(k1 + k2 + k3 + k4) + 2(f1 + f2 + f3 + f4)

+ 32(k1k2 + k3k4) + 24(k1 + k2)(k3 + k4)

)
f3

5a125a345.

(A2)
(2)
I1I2I3I4

=
(k1 − k2)(k3 − k4)

4δ

(
40− 12(k1 + k2 + k3 + k4) + 2(f1 + f2 + f3 + f4)

+ 16(k1k2 + k3k4) + (k1 + k2)(k3 + k4)

)
f2

5a125a345.

(S2)
(2)
I1I2I3I4

= − 1

16δ

(
−3741 + 2984t− 342t2 − 56t3 + 31t4 + 2984w − 2272tw + 376t2w
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+ 128t3w − 342w2 + 376tw2 + 42t2w2 − 56w3 + 128tw3 + 31w4 + 2984x
− 1760tx+ 144t2x+ 88t3x− 1760wx+ 832twx+ 88t2wx+ 144w2x+ 88tw2x
+ 88w3x− 342x2 + 144tx2 + 40t2x2 + 144wx2 + 192twx2 + 40w2x2 − 56x3

+ 88tx3 + 88wx3 + 31x4 + 2984y − 1760ty + 144t2y + 88t3y − 1760wy
+ 832twy + 88t2wy + 144w2y + 88tw2y + 88w3y − 2272xy + 832txy + 192t2xy
+ 832wxy − 128twxy + 192w2xy + 376x2y + 88tx2y + 88wx2y + 128x3y − 342y2

+ 144ty2 + 40t2y2 + 144wy2 + 192twy2 + 40w2y2 + 376xy2 + 88txy2 + 88wxy2

+ 42x2y2 − 56y3 + 88ty3 + 88wy3 + 128xy3 + 31y4

)
f2

5a125a345.

(A1)
(2)
I1I2I3I4

=
(t− w)(x− y)

48δ

(
−1840− 1964t+ 160t2 + 156t3 + 16t4 − 1964w

+ 1312tw − 388t2w − 128t3w + 160w2 − 388tw2 − 120t2w2 + 156w3 − 128tw3

+ 16w4 − 1964x+ 645tx− 48t2x− 25t3x+ 645wx− 952twx− 73t2wx
− 48w2x− 73tw2x− 25w3x+ 160x2 − 48tx2 − 56t2x2 − 48wx2 − 328twx2

− 56w2x2 + 156x3 − 25tx3 − 25wx3 + 16x4 − 1964y + 645ty − 48t2y
− 25t3y + 645wy − 952twy − 73t2wy − 48w2y − 73tw2y − 25w3y + 1312xy
− 952txy − 328t2xy − 952wxy − 656twxy − 328w2xy − 388x2y − 73tx2y
− 73wx2y − 128x3y + 160y2 − 48ty2 − 56t2y2 − 48wy2 − 328twy2 − 56w2y2

− 388xy2 − 73txy2 − 73wxy2 − 120x2y2 + 156y3 − 25ty3 − 25wy3

− 128xy3 + 16y4

)
f5a125a345

(S1)
(2)
I1I2I3I4

=
1

48δ

(
20979− 53784t+ 18666t2 + 4056t3 − 1197t4 + 192t5 + 72t6

− 53784w + 59648tw − 17792t2w − 2816t3w + 1896t4w + 256t5w + 18666w2

− 17792tw2 + 2736t2w2 + 1344t3w2 + 98t4w2 + 4056w3 − 2816tw3 + 1344t2w3

+ 256t3w3 − 1197w4 + 1896tw4 + 98t2w4 + 192w5 + 256tw5 + 72w6

− 53784x+ 65168tx− 11900t2x− 3296t3x+ 1428t4x+ 208t5x+ 65168wx
− 53760twx+ 7296t2wx+ 4000t3wx+ 144t4wx− 11900w2x+ 7296tw2x
+ 1760t2w2x+ 104t3w2x− 3296w3x+ 4000tw3x+ 104t2w3x+ 1428w4x
+ 144tw4x+ 208w5x+ 18666x2 − 11900tx2 + 801t2x2 + 1488t3x2

+ 173t4x2 − 11900wx2 + 3840twx2 + 4472t2wx2 + 704t3wx2 + 801w2x2

+ 4472tw2x2 + 252t2w2x2 + 1488w3x2 + 704tw3x2 + 173w4x2 + 4056x3

− 3296tx3 + 1488t2x3 + 424t3x3 − 3296wx3 + 5632twx3 + 464t2wx3

+ 1488w2x3 + 464tw2x3 + 424w3x3 − 1197x4 + 1428tx4 + 173t2x4

+ 1428wx4 + 576twx4 + 173w2x4 + 192x5 + 208tx5 + 208wx5 + 72x6

− 53784y + 65168ty − 11900t2y − 3296t3y + 1428t4y + 208t5y + 65168wy
− 53760twy + 7296t2wy + 4000t3wy + 144t4wy − 11900w2y + 7296tw2y
+ 1760t2w2y + 104t3w2y − 3296w3y + 4000tw3y + 104t2w3y + 1428w4y
+ 144tw4y + 208w5y + 59648xy − 53760txy + 3840t2xy + 5632t3xy
+ 576t4xy − 53760wxy + 23040twxy + 3264t2wxy − 384t3wxy + 3840w2xy
+ 3264tw2xy − 128t2w2xy + 5632w3xy − 384tw3xy + 576w4xy − 17792x2y
+ 7296tx2y + 4472t2x2y + 464t3x2y + 7296wx2y + 3264twx2y + 40t2wx2y
+ 4472w2x2y + 40tw2x2y + 464w3x2y − 2816x3y + 4000tx3y + 704t2x3y
+ 4000wx3y − 384twx3y + 704w2x3y + 1896x4y + 144tx4y + 144wx4y + 256x5y
+ 18666y2 − 11900ty2 + 801t2y2 + 1488t3y2 + 173t4y2 − 11900wy2 + 3840twy2

+ 4472t2wy2 + 704t3wy2 + 801w2y2 + 4472tw2y2 + 252t2w2y2 + 1488w3y2

+ 704tw3y2 + 173w4y2 − 17792xy2 + 7296txy2 + 4472t2xy2 + 464t3xy2

+ 7296wxy2 + 3264twxy2 + 40t2wxy2 + 4472w2xy2 + 40tw2xy2 + 464w3xy2

+ 2736x2y2 + 1760wx2y2 − 128twx2y2 + 252w2x2y2 + 1344x3y2 + 104tx3y2
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+ 104wx3y2 + 98x4y2 + 4056y3 − 3296ty3 + 1488t2y3 + 424t3y3

− 3296wy3 + 5632twy3 + 464t2wy3 + 1488w2y3 + 464tw2y3 + 424w3y3

− 2816xy3 + 4000txy3 + 704t2xy3 + 4000wxy3 − 384twxy3 + 704w2xy3

+ 1344x2y3 + 104tx2y3 + 104wx2y3 + 256x3y3 − 1197y4 + 1428ty4 + 173t2y4

+ 1428wy4 + 576twy4 + 173w2y4 + 1896xy4 + 144txy4 + 144wxy4 + 98x2y4

+ 192y5 + 208ty5 + 208wy5 + 256xy5 + 72y6

)
f5a125a345.

(A0)
(2)
I1I2I3I4

= −(x− y)(t− w)

192δ

(
−144288 + 74776t+ 10752t2 − 5264t3

+ 992t4 + 440t5 + 32t6 + 74776w + 37504tw − 11664t2w
+ 2016t3w + 1400t4w + 128t5w + 10752w2 − 11664tw2 + 4512t2w2

+ 2088t3w2 + 176t4w2 − 5264w3 + 2016tw3 + 2088t2w3 + 256t3w3

+ 992w4 + 1400tw4 + 176t2w4 + 440w5 + 128tw5 + 32w6

+ 74776x− 26042tx− 5888t2x+ 3948t3x+ 888t4x+ 46t5x
− 26042wx− 7648twx+ 6380t2wx+ 1784t3wx+ 142t4wx− 5888w2x
+ 6380tw2x+ 1880t2w2x+ 170t3w2x+ 3948w3x+ 1784tw3x+ 170t2w3x
+ 888w4x+ 142tw4x+ 46w5x+ 10752x2 − 5888tx2 + 832t2x2

+ 1272t3x2 + 160t4x2 − 5888wx2 + 768twx2 + 1784t2wx2 + 144t3wx2

+ 832w2x2 + 1784tw2x2 + 16t2w2x2 + 1272w3x2 + 144tw3x2 + 160w4x2

− 5264x3 + 3948tx3 + 1272t2x3 + 5t3x3 + 3948wx3 + 1480twx3

− 91t2wx3 + 1272w2x3 − 91tw2x3 + 5w3x3 + 992x4 + 888tx4

+ 160t2x4 + 888wx4 + 208twx4 + 160w2x4 + 440x5 + 46tx5

+ 46wx5 + 32x6 + 74776y − 26042ty − 5888t2y + 3948t3y
+ 888t4y + 46t5y − 26042wy − 7648twy + 6380t2wy + 1784t3wy
+ 142t4wy − 5888w2y + 6380tw2y + 1880t2w2y + 170t3w2y + 3948w3y
+ 1784tw3y + 170t2w3y + 888w4y + 142tw4y + 46w5y + 37504xy
− 7648txy + 768t2xy + 1480t3xy + 208t4xy − 7648wxy + 448twxy
+ 1608t2wxy + 32t3wxy + 768w2xy + 1608tw2xy − 352t2w2xy + 1480w3xy
+ 32tw3xy + 208w4xy − 11664x2y + 6380tx2y + 1784t2x2y − 91t3x2y
+ 6380wx2y + 1608twx2y − 571t2wx2y + 1784w2x2y − 571tw2x2y − 91w3x2y
+ 2016x3y + 1784tx3y + 144t2x3y + 1784wx3y + 32twx3y + 144w2x3y
+ 1400x4y + 142tx4y + 142wx4y + 128x5y + 10752y2 − 5888ty2

+ 832t2y2 + 1272t3y2 + 160t4y2 − 5888wy2 + 768twy2 + 1784t2wy2

+ 144t3wy2 + 832w2y2 + 1784tw2y2 + 16t2w2y2 + 1272w3y2 + 144tw3y2

+ 160w4y2 − 11664xy2 + 6380txy2 + 1784t2xy2 − 91t3xy2 + 6380wxy2

+ 1608twxy2 − 571t2wxy2 + 1784w2xy2 − 571tw2xy2 − 91w3xy2 + 4512x2y2

+ 1880tx2y2 + 16t2x2y2 + 1880wx2y2 − 352twx2y2 + 16w2x2y2 + 2088x3y2

+ 170tx3y2 + 170wx3y2 + 176x4y2 − 5264y3 + 3948ty3 + 1272t2y3

+ 5t3y3 + 3948wy3 + 1480twy3 − 91t2wy3 + 1272w2y3 − 91tw2y3

+ 5w3y3 + 2016xy3 + 1784txy3 + 144t2xy3 + 1784wxy3 + 32twxy3

+ 144w2xy3 + 2088x2y3 + 170tx2y3 + 170wx2y3 + 256x3y3 + 992y4

+ 888ty4 + 160t2y4 + 888wy4 + 208twy4 + 160w2y4 + 1400xy4

+ 142txy4 + 142wxy4 + 176x2y4 + 440y5 + 46ty5 + 46wy5

+ 128xy5 + 32y6

)
a125a345.

(S0)
(2)
I1I2I3I4

=
1

576δ

(
−288576tw + 149552t2w + 21504t3w − 10528t4w

+ 1984t5w + 880t6w + 64t7w + 149552tw2 − 52084t2w2 − 11776t3w2

+ 7896t4w2 + 1776t5w2 + 92t6w2 + 21504tw3 − 11776t2w3 + 1664t3w3
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+ 2544t4w3 + 320t5w3 − 10528tw4 + 7896t2w4 + 2544t3w4 + 10t4w4

+ 1984tw5 + 1776t2w5 + 320t3w5 + 880tw6 + 92t2w6 + 64tw7

+ 144288tx− 74776t2x− 10752t3x+ 5264t4x− 992t5x− 440t6x
− 32t7x+ 144288wx+ 26752t2wx− 6400t3wx+ 1024t4wx+ 960t5wx
+ 96t6wx− 74776w2x+ 26752tw2x− 3520t2w2x+ 2368t3w2x+ 1104t4w2x
+ 144t5w2x− 10752w3x− 6400tw3x+ 2368t2w3x+ 1024t3w3x− 112t4w3x
+ 5264w4x+ 1024tw4x+ 1104t2w4x− 112t3w4x− 992w5x+ 960tw5x
+ 144t2w5x− 440w6x+ 96tw6x− 32w7x− 74776tx2 + 26042t2x2

+ 5888t3x2 − 3948t4x2 − 888t5x2 − 46t6x2 − 74776wx2 − 53504twx2

+ 1760t2wx2 + 2560t3wx2 + 480t4wx2 + 26042w2x2 + 1760tw2x2 + 96t3w2x2

+ 28t4w2x2 + 5888w3x2 + 2560tw3x2 + 96t2w3x2 − 256t3w3x2 − 3948w4x2

+ 480tw4x2 + 28t2w4x2 − 888w5x2 − 46w6x2 − 10752tx3 + 5888t2x3

− 832t3x3 − 1272t4x3 − 160t5x3 − 10752wx3 + 12800twx3 − 4928t2wx3

− 512t3wx3 + 176t4wx3 + 5888w2x3 − 4928tw2x3 − 192t2w2x3 + 128t3w2x3

− 832w3x3 − 512tw3x3 + 128t2w3x3 − 1272w4x3 + 176tw4x3 − 160w5x3

+ 5264tx4 − 3948t2x4 − 1272t3x4 − 5t4x4 + 5264wx4 − 2048twx4

− 1584t2wx4 − 64t3wx4 − 3948w2x4 − 1584tw2x4 − 56t2w2x4 − 1272w3x4

− 64tw3x4 − 5w4x4 − 992tx5 − 888t2x5 − 160t3x5 − 992wx5

− 1920twx5 − 144t2wx5 − 888w2x5 − 144tw2x5 − 160w3x5 − 440tx6

− 46t2x6 − 440wx6 − 192twx6 − 46w2x6 − 32tx7 − 32wx7

+ 144288ty − 74776t2y − 10752t3y + 5264t4y − 992t5y − 440t6y
− 32t7y + 144288wy + 26752t2wy − 6400t3wy + 1024t4wy + 960t5wy
+ 96t6wy − 74776w2y + 26752tw2y − 3520t2w2y + 2368t3w2y + 1104t4w2y
+ 144t5w2y − 10752w3y − 6400tw3y + 2368t2w3y + 1024t3w3y − 112t4w3y
+ 5264w4y + 1024tw4y + 1104t2w4y − 112t3w4y − 992w5y + 960tw5y
+ 144t2w5y − 440w6y + 96tw6y − 32w7y − 288576xy − 53504t2xy
+ 12800t3xy − 2048t4xy − 1920t5xy − 192t6xy − 53504w2xy − 512t2w2xy
− 768t3w2xy − 320t4w2xy + 12800w3xy − 768t2w3xy − 768t3w3xy − 2048w4xy
− 320t2w4xy − 1920w5xy − 192w6xy + 149552x2y + 26752tx2y + 1760t2x2y
− 4928t3x2y − 1584t4x2y − 144t5x2y + 26752wx2y + 256t2wx2y + 384t3wx2y
+ 160t4wx2y + 1760w2x2y + 256tw2x2y − 256t3w2x2y − 4928w3x2y + 384tw3x2y
− 256t2w3x2y − 1584w4x2y + 160tw4x2y − 144w5x2y + 21504x3y − 6400tx3y
+ 2560t2x3y − 512t3x3y − 64t4x3y − 6400wx3y + 384t2wx3y + 384t3wx3y
+ 2560w2x3y + 384tw2x3y + 512t2w2x3y − 512w3x3y + 384tw3x3y − 64w4x3y
− 10528x4y + 1024tx4y + 480t2x4y + 176t3x4y + 1024wx4y + 160t2wx4y
+ 480w2x4y + 160tw2x4y + 176w3x4y + 1984x5y + 960tx5y + 960wx5y
+ 880x6y + 96tx6y + 96wx6y + 64x7y − 74776ty2 + 26042t2y2

+ 5888t3y2 − 3948t4y2 − 888t5y2 − 46t6y2 − 74776wy2 − 53504twy2

+ 1760t2wy2 + 2560t3wy2 + 480t4wy2 + 26042w2y2 + 1760tw2y2 + 96t3w2y2

+ 28t4w2y2 + 5888w3y2 + 2560tw3y2 + 96t2w3y2 − 256t3w3y2 − 3948w4y2

+ 480tw4y2 + 28t2w4y2 − 888w5y2 − 46w6y2 + 149552xy2 + 26752txy2

+ 1760t2xy2 − 4928t3xy2 − 1584t4xy2 − 144t5xy2 + 26752wxy2 + 256t2wxy2

+ 384t3wxy2 + 160t4wxy2 + 1760w2xy2 + 256tw2xy2 − 256t3w2xy2 − 4928w3xy2

+ 384tw3xy2 − 256t2w3xy2 − 1584w4xy2 + 160tw4xy2 − 144w5xy2 − 52084x2y2

− 3520tx2y2 − 192t3x2y2 − 56t4x2y2 − 3520wx2y2 − 512twx2y2 + 512t3wx2y2

− 192w3x2y2 + 512tw3x2y2 − 56w4x2y2 − 11776x3y2 + 2368tx3y2 + 96t2x3y2

+ 128t3x3y2 + 2368wx3y2 − 768twx3y2 − 256t2wx3y2 + 96w2x3y2 − 256tw2x3y2

+ 128w3x3y2 + 7896x4y2 + 1104tx4y2 + 28t2x4y2 + 1104wx4y2 − 320twx4y2

+ 28w2x4y2 + 1776x5y2 + 144tx5y2 + 144wx5y2 + 92x6y2
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− 10752ty3 + 5888t2y3 − 832t3y3 − 1272t4y3 − 160t5y3 − 10752wy3

+ 12800twy3 − 4928t2wy3 − 512t3wy3 + 176t4wy3 + 5888w2y3 − 4928tw2y3

− 192t2w2y3 + 128t3w2y3 − 832w3y3 − 512tw3y3 + 128t2w3y3 − 1272w4y3

+ 176tw4y3 − 160w5y3 + 21504xy3 − 6400txy3 + 2560t2xy3 − 512t3xy3

− 64t4xy3 − 6400wxy3 + 384t2wxy3 + 384t3wxy3 + 2560w2xy3 + 384tw2xy3

+ 512t2w2xy3 − 512w3xy3 + 384tw3xy3 − 64w4xy3 − 11776x2y3 + 2368tx2y3

+ 96t2x2y3 + 128t3x2y3 + 2368wx2y3 − 768twx2y3 − 256t2wx2y3 + 96w2x2y3

− 256tw2x2y3 + 128w3x2y3 + 1664x3y3 + 1024tx3y3 − 256t2x3y3 + 1024wx3y3

− 768twx3y3 − 256w2x3y3 + 2544x4y3 − 112tx4y3 − 112wx4y3 + 320x5y3

+ 5264ty4 − 3948t2y4 − 1272t3y4 − 5t4y4 + 5264wy4 − 2048twy4

− 1584t2wy4 − 64t3wy4 − 3948w2y4 − 1584tw2y4 − 56t2w2y4 − 1272w3y4

− 64tw3y4 − 5w4y4 − 10528xy4 + 1024txy4 + 480t2xy4 + 176t3xy4

+ 1024wxy4 + 160t2wxy4 + 480w2xy4 + 160tw2xy4 + 176w3xy4 + 7896x2y4

+ 1104tx2y4 + 28t2x2y4 + 1104wx2y4 − 320twx2y4 + 28w2x2y4 + 2544x3y4

− 112tx3y4 − 112wx3y4 + 10x4y4 − 992ty5 − 888t2y5 − 160t3y5

− 992wy5 − 1920twy5 − 144t2wy5 − 888w2y5 − 144tw2y5 − 160w3y5

+ 1984xy5 + 960txy5 + 960wxy5 + 1776x2y5 + 144tx2y5 + 144wx2y5

+ 320x3y5 − 440ty6 − 46t2y6 − 440wy6 − 192twy6 − 46w2y6

+ 880xy6 + 96txy6 + 96wxy6 + 92x2y6 − 32ty7 − 32wy7

+ 64xy7

)
a125a345.

(A−1)
(2)
I1I2I3I4

= −4

δ
(f1 − f2)(f3 − f4)

(
36− 20(k1 + k2 + k3 + k4) + f1 + f2 + f3 + f4

+ 10(k1 + k2)(k3 + k4)

)
f−1

5 a125a345.

(S−1)
(2)
I1I2I3I4

= −8

δ
(f1 − f2)(f3 − f4)(k1 − k2)(k3 − k4)f−1

5 a125a345.

(At3)
(2)
I1I2I3I4

= −2

δ
(f5 − 1)3t125t345.

(At2)
(2)
I1I2I3I4

= −1

δ
(f5 − 1)2t125t345(k2

1 + k2
2 + k2

3 + k2
4

− 16(k1 + k2 + k3 + k4) + 10(k1 + k2)(k3 + k4) + 44).

(St2)
(2)
I1I2I3I4

= −2

δ
(k1 − k2)(k3 − k4)(f5 − 1)2t125t345.

(Sp2)
(2)
I1I2I3I4

=
2

δ
f2

5 p125p345

(
k2

1 + k2
2 + k2

3 + k2
4 − 2(k1 + k2 + k3 + k4) + 2(k1k2 + k3k4)− 4

)
.

(Sd)
(2)
I1I2I3I4

=
9a125a345

16δ(f5 − 5)
(−1 + k1 − k2)(1 + k1 − k2)(3 + k1 + k2)(5 + k1 + k2)

× (−1 + k3 − k4)(1 + k3 − k4)(3 + k3 + k4)(5 + k3 + k4).

Quartic couplings of non-derivative vertices

(S5)
(0)
I1I2I3I4

=
3

64δ
f5

5a125a345.

(S4)
(0)
I1I2I3I4

= − 1

192δ
f4

5a125a345

(
747− 368(k1 + k2 + k3 + k4) + 65(k2

1 + k2
2 + k2

3 + k2
4)

+ 132(k1k2 + k3k4)− 96(k1 + k2)(k3 + k4)

)
.

(S3)
(0)
I1I2I3I4

=
1

64δ
f3

5a125a345

(
−3293 + 4036t− 1012t2 − 96t3
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+ 35t4 + 4036w − 2428tw + 48t2w + 88t3w − 1012w2 + 48tw2

+ 122t2w2 − 96w3 + 88tw3 + 35w4 + 4036x− 2976tx+ 360t2x
+ 40t3x− 2976wx+ 1056twx− 8t2wx+ 360w2x− 8tw2x+ 40w3x
− 1012x2 + 360tx2 + 44t2x2 + 360wx2 − 8twx2 + 44w2x2 − 96x3

+ 40tx3 + 40wx3 + 35x4 + 4036y − 2976ty + 360t2y + 40t3y
− 2976wy + 1056twy − 8t2wy + 360w2y − 8tw2y + 40w3y − 2428xy
+ 1056txy − 8t2xy + 1056wxy − 8w2xy + 48x2y − 8tx2y − 8wx2y
+ 88x3y − 1012y2 + 360ty2 + 44t2y2 + 360wy2 − 8twy2 + 44w2y2

+ 48xy2 − 8txy2 − 8wxy2 + 122x2y2 − 96y3 + 40ty3

+ 40wy3 + 88xy3 + 35y4

)
.

(S2)
(0)
I1I2I3I4

= − 1

64δ
f2

5a125a345

(
8273− 20116t+ 9396t2 + 1008t3

− 1227t4 + 36t5 + 26t6 − 20116w + 25644tw − 2688t2w
− 3544t3w + 356t4w + 76t5w + 9396w2 − 2688tw2 − 2778t2w2

+ 664t3w2 + 46t4w2 + 1008w3 − 3544tw3 + 664t2w3 + 104t3w3

− 1227w4 + 356tw4 + 46t2w4 + 36w5 + 76tw5 + 26w6 − 20116x
+ 32384tx− 9032t2x− 1696t3x+ 492t4x+ 8t5x+ 32384wx
− 23776twx+ 224t2wx+ 1152t3wx− 104t4wx− 9032w2x+ 224tw2x
+ 1096t2w2x− 224t3w2x− 1696w3x+ 1152tw3x− 224t2w3x+ 492w4x
− 104tw4x+ 8w5x+ 9396x2 − 9032tx2 + 332t2x2 + 288t3x2

+ 60t4x2 − 9032wx2 + 2152twx2 − 96t2wx2 + 144t3wx2 + 332w2x2

− 96tw2x2 + 96t2w2x2 + 288w3x2 + 144tw3x2 + 60w4x2 + 1008x3

− 1696tx3 + 288t2x3 + 80t3x3 − 1696wx3 + 608twx3 + 32t2wx3

+ 288w2x3 + 32tw2x3 + 80w3x3 − 1227x4 + 492tx4 + 60t2x4

+ 492wx4 − 20twx4 + 60w2x4 + 36x5 + 8tx5 + 8wx5 + 26x6

− 20116y + 32384ty − 9032t2y − 1696t3y + 492t4y + 8t5y
+ 32384wy − 23776twy + 224t2wy + 1152t3wy − 104t4wy − 9032w2y
+ 224tw2y + 1096t2w2y − 224t3w2y − 1696w3y + 1152tw3y − 224t2w3y
+ 492w4y − 104tw4y + 8w5y + 25644xy − 23776txy + 2152t2xy
+ 608t3xy − 20t4xy − 23776wxy + 10496twxy + 32t2wxy − 128t3wxy
+ 2152w2xy + 32tw2xy + 168t2w2xy + 608w3xy − 128tw3xy − 20w4xy
− 2688x2y + 224tx2y − 96t2x2y + 32t3x2y + 224wx2y + 32twx2y − 16t2wx2y
− 96w2x2y − 16tw2x2y + 32w3x2y − 3544x3y + 1152tx3y + 144t2x3y
+ 1152wx3y − 128twx3y + 144w2x3y + 356x4y − 104tx4y − 104wx4y
+ 76x5y + 9396y2 − 9032ty2 + 332t2y2 + 288t3y2 + 60t4y2

− 9032wy2 + 2152twy2 − 96t2wy2 + 144t3wy2 + 332w2y2 − 96tw2y2

+ 96t2w2y2 + 288w3y2 + 144tw3y2 + 60w4y2 − 2688xy2 + 224txy2

− 96t2xy2 + 32t3xy2 + 224wxy2 + 32twxy2 − 16t2wxy2 − 96w2xy2 − 16tw2xy2

+ 32w3xy2 − 2778x2y2 + 1096tx2y2 + 96t2x2y2 + 1096wx2y2 + 168twx2y2

+ 96w2x2y2 + 664x3y2 − 224tx3y2 − 224wx3y2 + 46x4y2 + 1008y3

− 1696ty3 + 288t2y3 + 80t3y3 − 1696wy3 + 608twy3 + 32t2wy3

+ 288w2y3 + 32tw2y3 + 80w3y3 − 3544xy3 + 1152txy3 + 144t2xy3

+ 1152wxy3 − 128twxy3 + 144w2xy3 + 664x2y3 − 224tx2y3 − 224wx2y3

+ 104x3y3 − 1227y4 + 492ty4 + 60t2y4 + 492wy4 − 20twy4

+ 60w2y4 + 356xy4 − 104txy4 − 104wxy4 + 46x2y4 + 36y5
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+ 8ty5 + 8wy5 + 76xy5 + 26y6

)
.

(S1)
(0)
I1I2I3I4

=
(w − x)(t− y)

288δ
f5a125a345

(
163692− 128440t+ 28616t2 + 2052t3

− 3460t4 + 484t5 + 80t6 − 128440w + 72314tw − 3096t2w
+ 393t3w + 468t4w − 119t5w + 28616w2 − 3096tw2 − 1208t2w2

− 864t3w2 + 184t4w2 + 2052w3 + 393tw3 − 864t2w3 + 41t3w3

− 3460w4 + 468tw4 + 184t2w4 + 484w5 − 119tw5 + 80w6 − 128440x
+ 72314tx− 3096t2x+ 393t3x+ 468t4x− 119t5x+ 88352wx
− 31064twx+ 13912t2wx− 2360t3wx− 392t4wx− 18716w2x+ 15049tw2x
− 5472t2w2x+ 641t3w2x− 416w3x− 1416tw3x+ 312t2w3x+ 1380w4x
− 335tw4x− 256w5x+ 28616x2 − 3096tx2 − 1208t2x2 − 864t3x2

+ 184t4x2 − 18716wx2 + 15049twx2 − 5472t2wx2 + 641t3wx2 − 880w2x2

− 4496tw2x2 + 2392t2w2x2 + 992w3x2 + 524tw3x2 + 104w4x2 + 2052x3 + 393tx3

− 864t2x3 + 41t3x3 − 416wx3 − 1416twx3 + 312t2wx3 + 992w2x3

+ 524tw2x3 − 368w3x3 − 3460x4 + 468tx4 + 184t2x4 + 1380wx4

− 335twx4 + 104w2x4 + 484x5 − 119tx5 − 256wx5 + 80x6

− 128440y + 88352ty − 18716t2y − 416t3y + 1380t4y − 256t5y
+ 72314wy − 31064twy + 15049t2wy − 1416t3wy − 335t4wy − 3096w2y
+ 13912tw2y − 5472t2w2y + 312t3w2y + 393w3y − 2360tw3y + 641t2w3y
+ 468w4y − 392tw4y − 119w5y + 72314xy − 31064txy + 15049t2xy
− 1416t3xy − 335t4xy − 31064wxy + 34928twxy − 15928t2wxy + 1664t3wxy
+ 15049w2xy − 15928tw2xy + 4313t2w2xy − 1416w3xy + 1664tw3xy − 335w4xy
− 3096x2y + 13912tx2y − 5472t2x2y + 312t3x2y + 15049wx2y − 15928twx2y
+ 4313t2wx2y − 4496w2x2y + 3488tw2x2y + 524w3x2y + 393x3y − 2360tx3y
+ 641t2x3y − 1416wx3y + 1664twx3y + 524w2x3y + 468x4y − 392tx4y
− 335wx4y − 119x5y + 28616y2 − 18716ty2 − 880t2y2 + 992t3y2

+ 104t4y2 − 3096wy2 + 15049twy2 − 4496t2wy2 + 524t3wy2 − 1208w2y2

− 5472tw2y2 + 2392t2w2y2 − 864w3y2 + 641tw3y2 + 184w4y2 − 3096xy2

+ 15049txy2 − 4496t2xy2 + 524t3xy2 + 13912wxy2 − 15928twxy2 + 3488t2wxy2

− 5472w2xy2 + 4313tw2xy2 + 312w3xy2 − 1208x2y2 − 5472tx2y2 + 2392t2x2y2

− 5472wx2y2 + 4313twx2y2 + 2392w2x2y2 − 864x3y2 + 641tx3y2 + 312wx3y2

+ 184x4y2 + 2052y3 − 416ty3 + 992t2y3 − 368t3y3 + 393wy3

− 1416twy3 + 524t2wy3 − 864w2y3 + 312tw2y3 + 41w3y3 + 393xy3

− 1416txy3 + 524t2xy3 − 2360wxy3 + 1664twxy3 + 641w2xy3 − 864x2y3

+ 312tx2y3 + 641wx2y3 + 41x3y3 − 3460y4 + 1380ty4 + 104t2y4

+ 468wy4 − 335twy4 + 184w2y4 + 468xy4 − 335txy4 − 392wxy4

+ 184x2y4 + 484y5 − 256ty5 − 119wy5 − 119xy5 + 80y6

)
.

(S0)
(0)
I1I2I3I4

=
1

576δ
a125a345

(
−18225− 24300t+ 292830t2 − 71028t3

− 111795t4 + 33444t5 + 8640t6 − 5124t7 − 618t8 + 192t9

+ 24t10 − 24300w − 256068tw − 66756t2w − 120628t3w + 177012t4w
− 17836t5w − 26900t6w + 132t7w + 800t8w + 32t9w + 292830w2

− 66756tw2 + 177178t2w2 + 160520t3w2 − 94964t4w2 − 31788t5w2 + 1416t6w2

+ 1136t7w2 + 112t8w2 − 71028w3 − 120628tw3 + 160520t2w3 − 11080t3w3

− 46764t4w3 − 3076t5w3 + 2640t6w3 + 336t7w3 − 111795w4 + 177012tw4

− 94964t2w4 − 46764t3w4 + 6638t4w4 + 2920t5w4 + 224t6w4 + 33444w5

− 17836tw5 − 31788t2w5 − 3076t3w5 + 2920t4w5 + 416t5w5 + 8640w6
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− 26900tw6 + 1416t2w6 + 2640t3w6 + 224t4w6 − 5124w7 + 132tw7

+ 1136t2w7 + 336t3w7 − 618w8 + 800tw8 + 112t2w8 + 192w9

+ 32tw9 + 24w10 − 24300x− 256068tx− 66756t2x− 120628t3x
+ 177012t4x− 17836t5x− 26900t6x+ 132t7x+ 800t8x+ 32t9x
− 256068wx+ 12816twx+ 319756t2wx+ 370976t3wx
− 220300t4wx− 57456t5wx+ 5828t6wx+ 1024t7wx− 96t8wx
− 66756w2x+ 319756tw2x+ 184632t2w2x− 247264t3w2x
− 68020t4w2x− 2724t5w2x+ 1792t6w2x+ 272t7w2x− 120628w3x
+ 370976tw3x− 247264t2w3x− 124960t3w3x+ 6940t4w3x+ 4000t5w3x
+ 352t6w3x+ 177012w4x− 220300tw4x− 68020t2w4x+ 6940t3w4x
+ 1672t4w4x+ 268t5w4x− 17836w5x− 57456tw5x− 2724t2w5x+ 4000t3w5x
+ 268t4w5x− 26900w6x+ 5828tw6x+ 1792t2w6x+ 352t3w6x+ 132w7x
+ 1024tw7x+ 272t2w7x+ 800w8x− 96tw8x+ 32w9x+ 292830x2

− 66756tx2 + 177178t2x2 + 160520t3x2 − 94964t4x2 − 31788t5x2

+ 1416t6x2 + 1136t7x2 + 112t8x2 − 66756wx2 + 319756twx2 + 184632t2wx2

− 247264t3wx2 − 68020t4wx2 − 2724t5wx2 + 1792t6wx2

+ 272t7wx2 + 177178w2x2 + 184632tw2x2 − 335076t2w2x2

− 134456t3w2x2 − 1458t4w2x2 + 4296t5w2x2

+ 848t6w2x2 + 160520w3x2 − 247264tw3x2 − 134456t2w3x2 + 7688t3w3x2

+ 4056t4w3x2 + 592t5w3x2 − 94964w4x2 − 68020tw4x2 − 1458t2w4x2

+ 4056t3w4x2 − 56t4w4x2 − 31788w5x2 − 2724tw5x2 + 4296t2w5x2 + 592t3w5x2

+ 1416w6x2 + 1792tw6x2 + 848t2w6x2 + 1136w7x2 + 272tw7x2 + 112w8x2

− 71028x3 − 120628tx3 + 160520t2x3 − 11080t3x3 − 46764t4x3

− 3076t5x3 + 2640t6x3 + 336t7x3 − 120628wx3 + 370976twx3

− 247264t2wx3 − 124960t3wx3 + 6940t4wx3 + 4000t5wx3 + 352t6wx3

+ 160520w2x3 − 247264tw2x3 − 134456t2w2x3 + 7688t3w2x3 + 4056t4w2x3

+ 592t5w2x3 − 11080w3x3 − 124960tw3x3 + 7688t2w3x3 + 6720t3w3x3

− 1096t4w3x3 − 46764w4x3 + 6940tw4x3 + 4056t2w4x3

− 1096t3w4x3 − 3076w5x3 + 4000tw5x3 + 592t2w5x3

+ 2640w6x3 + 352tw6x3 + 336w7x3 − 111795x4 + 177012tx4 − 94964t2x4

− 46764t3x4 + 6638t4x4 + 2920t5x4 + 224t6x4 + 177012wx4 − 220300twx4

− 68020t2wx4 + 6940t3wx4 + 1672t4wx4 + 268t5wx4 − 94964w2x4 − 68020tw2x4

− 1458t2w2x4 + 4056t3w2x4 − 56t4w2x4 − 46764w3x4 + 6940tw3x4 + 4056t2w3x4

− 1096t3w3x4 + 6638w4x4 + 1672tw4x4 − 56t2w4x4 + 2920w5x4 + 268tw5x4

+ 224w6x4 + 33444x5 − 17836tx5 − 31788t2x5 − 3076t3x5 + 2920t4x5

+ 416t5x5 − 17836wx5 − 57456twx5 − 2724t2wx5 + 4000t3wx5 + 268t4wx5

− 31788w2x5 − 2724tw2x5 + 4296t2w2x5 + 592t3w2x5 − 3076w3x5 + 4000tw3x5

+ 592t2w3x5 + 2920w4x5 + 268tw4x5 + 416w5x5 + 8640x6 − 26900tx6

+ 1416t2x6 + 2640t3x6 + 224t4x6 − 26900wx6 + 5828twx6 + 1792t2wx6

+ 352t3wx6 + 1416w2x6 + 1792tw2x6 + 848t2w2x6 + 2640w3x6 + 352tw3x6

+ 224w4x6 − 5124x7 + 132tx7 + 1136t2x7 + 336t3x7 + 132wx7

+ 1024twx7 + 272t2wx7 + 1136w2x7 + 272tw2x7 + 336w3x7 − 618x8

+ 800tx8 + 112t2x8 + 800wx8 − 96twx8 + 112w2x8 + 192x9 + 32tx9

+ 32wx9 + 24x10 − 24300y − 256068ty − 66756t2y − 120628t3y
+ 177012t4y − 17836t5y − 26900t6y + 132t7y + 800t8y + 32t9y
− 256068wy + 12816twy + 319756t2wy + 370976t3wy − 220300t4wy
− 57456t5wy + 5828t6wy + 1024t7wy − 96t8wy − 66756w2y
+ 319756tw2y + 184632t2w2y − 247264t3w2y − 68020t4w2y − 2724t5w2y
+ 1792t6w2y + 272t7w2y − 120628w3y + 370976tw3y − 247264t2w3y
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− 124960t3w3y + 6940t4w3y + 4000t5w3y + 352t6w3y + 177012w4y − 220300tw4y
− 68020t2w4y + 6940t3w4y + 1672t4w4y + 268t5w4y − 17836w5y
− 57456tw5y − 2724t2w5y + 4000t3w5y + 268t4w5y − 26900w6y
+ 5828tw6y + 1792t2w6y + 352t3w6y + 132w7y
+ 1024tw7y + 272t2w7y + 800w8y − 96tw8y
+ 32w9y − 256068xy + 12816txy + 319756t2xy + 370976t3xy − 220300t4xy
− 57456t5xy + 5828t6xy + 1024t7xy − 96t8xy + 12816wxy + 2404608twxy
− 48096t2wxy − 749568t3wxy − 41136t4wxy
+ 4992t5wxy − 2112t6wxy − 384t7wxy
+ 319756w2xy − 48096tw2xy − 403336t2w2xy − 128736t3w2xy − 11588t4w2xy
+ 2432t5w2xy + 688t6w2xy + 370976w3xy − 749568tw3xy − 128736t2w3xy
+ 39680t3w3xy + 896t4w3xy + 384t5w3xy − 220300w4xy − 41136tw4xy
− 11588t2w4xy + 896t3w4xy + 608t4w4xy
− 57456w5xy + 4992tw5xy + 2432t2w5xy
+ 384t3w5xy + 5828w6xy − 2112tw6xy + 688t2w6xy + 1024w7xy − 384tw7xy
− 96w8xy − 66756x2y + 319756tx2y + 184632t2x2y − 247264t3x2y − 68020t4x2y
− 2724t5x2y + 1792t6x2y + 272t7x2y + 319756wx2y − 48096twx2y
− 403336t2wx2y − 128736t3wx2y − 11588t4wx2y + 2432t5wx2y
+ 688t6wx2y + 184632w2x2y − 403336tw2x2y − 169560t2w2x2y
+ 17288t3w2x2y + 4136t4w2x2y + 1112t5w2x2y − 247264w3x2y
− 128736tw3x2y + 17288t2w3x2y + 2496t3w3x2y
− 1856t4w3x2y − 68020w4x2y − 11588tw4x2y + 4136t2w4x2y
− 1856t3w4x2y − 2724w5x2y + 2432tw5x2y
+ 1112t2w5x2y + 1792w6x2y + 688tw6x2y + 272w7x2y − 120628x3y
+ 370976tx3y − 247264t2x3y − 124960t3x3y + 6940t4x3y + 4000t5x3y
+ 352t6x3y + 370976wx3y − 749568twx3y − 128736t2wx3y + 39680t3wx3y
+ 896t4wx3y + 384t5wx3y − 247264w2x3y − 128736tw2x3y + 17288t2w2x3y
+ 2496t3w2x3y − 1856t4w2x3y − 124960w3x3y + 39680tw3x3y + 2496t2w3x3y
− 6912t3w3x3y + 6940w4x3y + 896tw4x3y
− 1856t2w4x3y + 4000w5x3y + 384tw5x3y
+ 352w6x3y + 177012x4y − 220300tx4y − 68020t2x4y + 6940t3x4y + 1672t4x4y
+ 268t5x4y − 220300wx4y − 41136twx4y
− 11588t2wx4y + 896t3wx4y + 608t4wx4y
− 68020w2x4y − 11588tw2x4y + 4136t2w2x4y − 1856t3w2x4y + 6940w3x4y
+ 896tw3x4y − 1856t2w3x4y + 1672w4x4y + 608tw4x4y + 268w5x4y − 17836x5y
− 57456tx5y − 2724t2x5y + 4000t3x5y + 268t4x5y − 57456wx5y + 4992twx5y
+ 2432t2wx5y + 384t3wx5y − 2724w2x5y
+ 2432tw2x5y + 1112t2w2x5y + 4000w3x5y
+ 384tw3x5y + 268w4x5y − 26900x6y + 5828tx6y + 1792t2x6y + 352t3x6y
+ 5828wx6y − 2112twx6y + 688t2wx6y + 1792w2x6y + 688tw2x6y + 352w3x6y
+ 132x7y + 1024tx7y + 272t2x7y + 1024wx7y − 384twx7y + 272w2x7y
+ 800x8y − 96tx8y − 96wx8y + 32x9y + 292830y2 − 66756ty2

+ 177178t2y2 + 160520t3y2 − 94964t4y2 − 31788t5y2 + 1416t6y2

+ 1136t7y2 + 112t8y2 − 66756wy2 + 319756twy2 + 184632t2wy2

− 247264t3wy2 − 68020t4wy2 − 2724t5wy2 + 1792t6wy2 + 272t7wy2

+ 177178w2y2 + 184632tw2y2 − 335076t2w2y2 − 134456t3w2y2 − 1458t4w2y2

+ 4296t5w2y2 + 848t6w2y2 + 160520w3y2 − 247264tw3y2 − 134456t2w3y2

+ 7688t3w3y2 + 4056t4w3y2 + 592t5w3y2 − 94964w4y2

− 68020tw4y2 − 1458t2w4y2 + 4056t3w4y2 − 56t4w4y2

91



− 31788w5y2 − 2724tw5y2 + 4296t2w5y2 + 592t3w5y2

+ 1416w6y2 + 1792tw6y2 + 848t2w6y2 + 1136w7y2 + 272tw7y2 + 112w8y2

− 66756xy2 + 319756txy2 + 184632t2xy2 − 247264t3xy2 − 68020t4xy2

− 2724t5xy2 + 1792t6xy2 + 272t7xy2 + 319756wxy2 − 48096twxy2

− 403336t2wxy2 − 128736t3wxy2 − 11588t4wxy2 + 2432t5wxy2

+ 688t6wxy2 + 184632w2xy2 − 403336tw2xy2 − 169560t2w2xy2

+ 17288t3w2xy2 + 4136t4w2xy2 + 1112t5w2xy2 − 247264w3xy2

− 128736tw3xy2 + 17288t2w3xy2 + 2496t3w3xy2

− 1856t4w3xy2 − 68020w4xy2 − 11588tw4xy2 + 4136t2w4xy2 − 1856t3w4xy2

− 2724w5xy2 + 2432tw5xy2 + 1112t2w5xy2 + 1792w6xy2 + 688tw6xy2

+ 272w7xy2 + 177178x2y2 + 184632tx2y2 − 335076t2x2y2 − 134456t3x2y2

− 1458t4x2y2 + 4296t5x2y2 + 848t6x2y2 + 184632wx2y2 − 403336twx2y2

− 169560t2wx2y2 + 17288t3wx2y2 + 4136t4wx2y2 + 1112t5wx2y2

− 335076w2x2y2 − 169560tw2x2y2 + 62988t2w2x2y2 + 10224t3w2x2y2

− 3408t4w2x2y2 − 134456w3x2y2 + 17288tw3x2y2 + 10224t2w3x2y2

− 9680t3w3x2y2 − 1458w4x2y2 + 4136tw4x2y2

− 3408t2w4x2y2 + 4296w5x2y2 + 1112tw5x2y2 + 848w6x2y2 + 160520x3y2

− 247264tx3y2 − 134456t2x3y2 + 7688t3x3y2 + 4056t4x3y2 + 592t5x3y2

− 247264wx3y2 − 128736twx3y2 + 17288t2wx3y2 + 2496t3wx3y2

− 1856t4wx3y2 − 134456w2x3y2 + 17288tw2x3y2 + 10224t2w2x3y2

− 9680t3w2x3y2 + 7688w3x3y2 + 2496tw3x3y2 − 9680t2w3x3y2

+ 4056w4x3y2 − 1856tw4x3y2 + 592w5x3y2

− 94964x4y2 − 68020tx4y2 − 1458t2x4y2 + 4056t3x4y2 − 56t4x4y2

− 68020wx4y2 − 11588twx4y2 + 4136t2wx4y2 − 1856t3wx4y2 − 1458w2x4y2

+ 4136tw2x4y2 − 3408t2w2x4y2 + 4056w3x4y2 − 1856tw3x4y2 − 56w4x4y2

− 31788x5y2 − 2724tx5y2 + 4296t2x5y2 + 592t3x5y2 − 2724wx5y2

+ 2432twx5y2 + 1112t2wx5y2 + 4296w2x5y2 + 1112tw2x5y2 + 592w3x5y2

+ 1416x6y2 + 1792tx6y2 + 848t2x6y2 + 1792wx6y2 + 688twx6y2

+ 848w2x6y2 + 1136x7y2 + 272tx7y2 + 272wx7y2 + 112x8y2

− 71028y3 − 120628ty3 + 160520t2y3 − 11080t3y3 − 46764t4y3

− 3076t5y3 + 2640t6y3 + 336t7y3 − 120628wy3 + 370976twy3

− 247264t2wy3 − 124960t3wy3 + 6940t4wy3 + 4000t5wy3 + 352t6wy3

+ 160520w2y3 − 247264tw2y3 − 134456t2w2y3 + 7688t3w2y3 + 4056t4w2y3

+ 592t5w2y3 − 11080w3y3 − 124960tw3y3 + 7688t2w3y3 + 6720t3w3y3

− 1096t4w3y3 − 46764w4y3 + 6940tw4y3 + 4056t2w4y3 − 1096t3w4y3

− 3076w5y3 + 4000tw5y3 + 592t2w5y3 + 2640w6y3 + 352tw6y3

+ 336w7y3 − 120628xy3 + 370976txy3 − 247264t2xy3 − 124960t3xy3

+ 6940t4xy3 + 4000t5xy3 + 352t6xy3 + 370976wxy3 − 749568twxy3

− 128736t2wxy3 + 39680t3wxy3 + 896t4wxy3 + 384t5wxy3 − 247264w2xy3

− 128736tw2xy3 + 17288t2w2xy3 + 2496t3w2xy3 − 1856t4w2xy3 − 124960w3xy3

+ 39680tw3xy3 + 2496t2w3xy3 − 6912t3w3xy3 + 6940w4xy3 + 896tw4xy3

− 1856t2w4xy3 + 4000w5xy3 + 384tw5xy3 + 352w6xy3 + 160520x2y3

− 247264tx2y3 − 134456t2x2y3 + 7688t3x2y3 + 4056t4x2y3 + 592t5x2y3

− 247264wx2y3 − 128736twx2y3 + 17288t2wx2y3 + 2496t3wx2y3

− 1856t4wx2y3 − 134456w2x2y3 + 17288tw2x2y3 + 10224t2w2x2y3

− 9680t3w2x2y3 + 7688w3x2y3 + 2496tw3x2y3 − 9680t2w3x2y3

+ 4056w4x2y3 − 1856tw4x2y3 + 592w5x2y3

− 11080x3y3 − 124960tx3y3 + 7688t2x3y3 + 6720t3x3y3 − 1096t4x3y3

− 124960wx3y3 + 39680twx3y3 + 2496t2wx3y3 − 6912t3wx3y3 + 7688w2x3y3
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+ 2496tw2x3y3 − 9680t2w2x3y3 + 6720w3x3y3 − 6912tw3x3y3 − 1096w4x3y3

− 46764x4y3 + 6940tx4y3 + 4056t2x4y3 − 1096t3x4y3 + 6940wx4y3

+ 896twx4y3 − 1856t2wx4y3 + 4056w2x4y3 − 1856tw2x4y3 − 1096w3x4y3

− 3076x5y3 + 4000tx5y3 + 592t2x5y3 + 4000wx5y3 + 384twx5y3

+ 592w2x5y3 + 2640x6y3 + 352tx6y3 + 352wx6y3 + 336x7y3

− 111795y4 + 177012ty4 − 94964t2y4 − 46764t3y4 + 6638t4y4

+ 2920t5y4 + 224t6y4 + 177012wy4 − 220300twy4 − 68020t2wy4

+ 6940t3wy4 + 1672t4wy4 + 268t5wy4 − 94964w2y4 − 68020tw2y4

− 1458t2w2y4 + 4056t3w2y4 − 56t4w2y4 − 46764w3y4 + 6940tw3y4

+ 4056t2w3y4 − 1096t3w3y4 + 6638w4y4 + 1672tw4y4 − 56t2w4y4 + 2920w5y4

+ 268tw5y4 + 224w6y4 + 177012xy4 − 220300txy4 − 68020t2xy4

+ 6940t3xy4 + 1672t4xy4 + 268t5xy4 − 220300wxy4 − 41136twxy4

− 11588t2wxy4 + 896t3wxy4 + 608t4wxy4 − 68020w2xy4 − 11588tw2xy4

+ 4136t2w2xy4 − 1856t3w2xy4 + 6940w3xy4 + 896tw3xy4 − 1856t2w3xy4

+ 1672w4xy4 + 608tw4xy4 + 268w5xy4 − 94964x2y4 − 68020tx2y4

− 1458t2x2y4 + 4056t3x2y4 − 56t4x2y4 − 68020wx2y4 − 11588twx2y4

+ 4136t2wx2y4 − 1856t3wx2y4 − 1458w2x2y4 + 4136tw2x2y4 − 3408t2w2x2y4

+ 4056w3x2y4 − 1856tw3x2y4 − 56w4x2y4 − 46764x3y4 + 6940tx3y4

+ 4056t2x3y4 − 1096t3x3y4 + 6940wx3y4 + 896twx3y4 − 1856t2wx3y4

+ 4056w2x3y4 − 1856tw2x3y4 − 1096w3x3y4 + 6638x4y4 + 1672tx4y4

− 56t2x4y4 + 1672wx4y4 + 608twx4y4 − 56w2x4y4 + 2920x5y4

+ 268tx5y4 + 268wx5y4 + 224x6y4 + 33444y5 − 17836ty5

− 31788t2y5 − 3076t3y5 + 2920t4y5 + 416t5y5 − 17836wy5

− 57456twy5 − 2724t2wy5 + 4000t3wy5 + 268t4wy5 − 31788w2y5

− 2724tw2y5 + 4296t2w2y5 + 592t3w2y5 − 3076w3y5 + 4000tw3y5

+ 592t2w3y5 + 2920w4y5 + 268tw4y5 + 416w5y5 − 17836xy5

− 57456txy5 − 2724t2xy5 + 4000t3xy5 + 268t4xy5 − 57456wxy5

+ 4992twxy5 + 2432t2wxy5 + 384t3wxy5 − 2724w2xy5 + 2432tw2xy5

+ 1112t2w2xy5 + 4000w3xy5 + 384tw3xy5 + 268w4xy5 − 31788x2y5

− 2724tx2y5 + 4296t2x2y5 + 592t3x2y5 − 2724wx2y5 + 2432twx2y5

+ 1112t2wx2y5 + 4296w2x2y5 + 1112tw2x2y5 + 592w3x2y5 − 3076x3y5

+ 4000tx3y5 + 592t2x3y5 + 4000wx3y5 + 384twx3y5 + 592w2x3y5

+ 2920x4y5 + 268tx4y5 + 268wx4y5 + 416x5y5 + 8640y6

− 26900ty6 + 1416t2y6 + 2640t3y6 + 224t4y6 − 26900wy6

+ 5828twy6 + 1792t2wy6 + 352t3wy6 + 1416w2y6 + 1792tw2y6

+ 848t2w2y6 + 2640w3y6 + 352tw3y6 + 224w4y6 − 26900xy6

+ 5828txy6 + 1792t2xy6 + 352t3xy6 + 5828wxy6 − 2112twxy6

+ 688t2wxy6 + 1792w2xy6 + 688tw2xy6 + 352w3xy6 + 1416x2y6

+ 1792tx2y6 + 848t2x2y6 + 1792wx2y6 + 688twx2y6 + 848w2x2y6

+ 2640x3y6 + 352tx3y6 + 352wx3y6 + 224x4y6 − 5124y7 + 132ty7

+ 1136t2y7 + 336t3y7 + 132wy7 + 1024twy7 + 272t2wy7

+ 1136w2y7 + 272tw2y7 + 336w3y7 + 132xy7 + 1024txy7 + 272t2xy7

+ 1024wxy7 − 384twxy7 + 272w2xy7 + 1136x2y7 + 272tx2y7

+ 272wx2y7 + 336x3y7 − 618y8 + 800ty8 + 112t2y8 + 800wy8

− 96twy8 + 112w2y8 + 800xy8 − 96txy8 − 96wxy8 + 112x2y8

+ 192y9 + 32ty9 + 32wy9 + 32xy9 + 24y10

)
.

(S−1)
(0)
I1I2I3I4

=
2

δ
f−1

5 a125a345(k1 − k2)(k3 − k4)(f1 − f2)(f3 − f4)
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×
(
−36 + 2(k1 + k2 + k3 + k4) + f1 + f2 + f3 + f4 − 2k1k2 − 2k3k4

)
.

(St2)
(0)
I1I2I3I4

=
(f5 − 1)2t125t345

2δ
(k1 − k2)(k3 − k4)(f1 + f2 + f3 + f4

+ 2(k1 + k2 + k3 + k4)− 2(k1k2 + k3k4)− 36).

(Sp3)
(0)
I1I2I3I4

= −1

δ
f3

5 p125p345.

(Sp2)
(0)
I1I2I3I4

=
2

δ
f2

5 p125p345(k2
1 + k2

2 + k2
3 + k2

4 − 2(k1 + k2 + k3 + k4) + 2(k1k2 + k3k4)− 4).

(Sd)
(0)
I1I2I3I4

=
9a125a345

64δ(f5 − 5)
(−1 + k1 − k2)(1 + k1 − k2)(3 + k1 + k2)(5 + k1 + k2)

× (−1 + k3 − k4)(1 + k3 − k4)(3 + k3 + k4)(5 + k3 + k4)

× (2k2
1 + 2k2

2 + 2k2
3 + 2k2

4 + 4k1k2 + 4k3k4 − 4(k1 + k2 + k3 + k4)− 5).
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