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Abstract

Abstract
Dexterous grasping of unknown objects is a fundamental functionality for robots, which
plays a critical role in industrial and home-assistant applications. However, stable dex-
terous grasping in a daily-life environment remains a challenging problem. Despite the
inherent complexity of object grasping, humans are capable of accomplishing a vari-
ety of grasping tasks. Human hands inspire a variety of functions such as perception
and demonstrate dexterous grasping and manipulation in daily activities. Our aim is to
endow robots with human-like grasping and manipulation capabilities.

For this purpose, this thesis focuses on two important research topics in the area of
robotics: robotic perception and grasping. A good perception of the environment helps
robots to not only understand task requirements and object properties, but also reduce
uncertainties during grasp planning. Among all aspects involved in the implementation
of dexterous grasping, grasp planning is the crucial component. Four challenges relevant
to the two research topics are addressed in this thesis. They are stable grasp during
implementing manipulation tasks, generalization of grasp planning, stability of grasps
under uncertainties and complexity of in-hand manipulation learning.

First, we address the stable grasping problem during the implementation of reach-
to-grasp movements. Finding a feasible grasp configuration and generating a constraint-
satisfied trajectory to reach it are challenging. We propose an optimization framework
that combines grasp planning with trajectory generation. A Bayesian-based search algo-
rithm is proposed to find the grasp configuration with the highest grasp quality computed
by a trained network. For reaching movements, a model-based trajectory generation
method inspired by human internal model theory is designed to generate a constraint-
satisfied trajectory. The presented framework is validated both through a comparative
analysis and in real-world experiments.

Thereafter, we explore the general-purpose problem of grasp planning. It is a natural
behavior for humans to choose a feasible grasp type from multiple grasp types to grasp
objects. We present an attention-based visual analysis framework that computes grasp-
relevant information for fast grasp planning by a multi-fingered robotic hand. A com-
putational visual attention model is employed to locate regions of interest in a scene. A
deep convolutional neural network is trained to detect the grasp type and the grasp atten-
tion point for a sub-region of the object presented in a region of interest. We demonstrate
the proposed framework with object-grasping tasks. Furthermore, a general-purpose
grasp planning framework is proposed to allow various robotic hands with an arbitrary
number of fingers to grasp objects considering the use of grasp types. A novel definition
of pregrasping opposition is introduced, which is taken as a waypoint for grasp forma-
tion. A dual-stage grasp planning module beginning with pregrasping opposition prior
to planning a feasible grasp configuration for object grasping is proposed. Complex
grasp configurations are generated from the simper pregrasping opposition. Moreover,
the proposed framework takes grasp types into consideration in grasp planning. The
proposed framework is evaluated both in simulated experiments and in real-world ex-
periments.

Tactile sensing is an essential element of dexterous grasping, which allows robotic
hands to adapt to changes in their environments. In the next step, we present an object
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Abstract

stabilization framework for a multi-fingered robotic hand to stabilize unknown objects
without prior knowledge of their shape or physical properties. The proposed framework
consists of three components: an online detection model, a force estimation method,
and an object stabilization controller. The online detection model based on a deep neural
network is built to detect online contact events and object materials simultaneously from
tactile data. A force estimation method based on a Gaussian mixture model is proposed
to compute the contact norm force and location based on tactile data. By exploiting the
results of tactile sensing, an object stabilization controller is employed to drive a robotic
hand to adjust online the contact configuration for object stabilization. The effectiveness
of the proposed method was evaluated with a Shadow Dexterous Hand in a real-world
experiment.

Last, we also exploit grasp types as guidance for learning in-hand manipulations.
Owning to the high dimensionality of robotic hands and intermittent contact dynam-
ics, effectively programming a robotic hand for in-hand manipulations remains a chal-
lenging problem. This thesis proposes a Multi-agent Reinforcement Learning (MARL)
algorithm to learn in-hand manipulation with a multi-fingered robotic hand. Two addi-
tional rewards are designed based on both the analysis of hand synergies and its learn-
ing history. The two additional rewards cooperate with an extrinsic reward to assist in
manipulation learning. Three agents represented by value functions are trained jointly
concerning their reward functions. They then cooperate to optimize a control policy.
The experimental results demonstrate that the proposed MARL algorithm allows a five-
fingered robotic hand to learn in-hand manipulation effectively.
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Zusammenfassung
Geschicktes Greifen unbekannter Objekte ist eine grundlegende Funktionalität für Ro-
boter, die in Industrie- und Heimassistenzanwendungen eine entscheidende Rolle spielt.
Stabiles, geschicktes Greifen in einer alltäglichen Umgebung bleibt jedoch eine Her-
rausforderung. Trotz der inhärenten Komplexität, ist der Mensch in der Lage, eine
Vielzahl dieser Probleme zu lösen. Menschliche Hände inspirieren Funktionen wie
Wahrnehmung und demonstrieren geschicktes Greifen und Manipulation in täglichen
Anwendungen. Unser Ziel ist es, Robotern menschenähnliche Greif- und Manipula-
tionsfähigkeiten zu ermöglichen.

Zu diesem Zweck konzentriert sich diese Arbeit auf zwei wichtige Forschungsthe-
men auf dem Gebiet der Robotik: Greifen und Wahrnehmen mit Robotern. Eine gute
Wahrnehmung der Umgebung hilft Robotern nicht nur die Aufgabenanforderungen und
Objekteigenschaften zu verstehen, sondern auch Ungewissheiten bei der Ausführung
von Aufgaben zu verringern. Bei allen Aspekten des autonomen Greifens ist Planung die
entscheidende Komponente. In dieser Arbeit werden vier Herausforderungen behandelt,
die für die beiden Forschungsthemen relevant sind: Griffstabilität während Manipula-
tionsaufgaben, Generalisierung der Griffplanung, Griffstabilität unter Ungewissheiten
und die Komplexität des Lernens von In-Hand-Manipulation.

Zuerst befassen wir uns mit dem Problem der Stabilität während dem Greifen von
unbekannten Objekten. Eine realisierbare Griffkonfiguration und eine kollisionsfreie
Bewegung zu dem Objekt zu finden ist eine groe Herausforderung. Wir stellen ein Opti-
mierungsframework vor, das Griffplanung mit Trajektoriengenerierung kombiniert. Ein
Bayes-basierter Suchalgorithmus wird eingeführt, um die Greifkonfiguration mit der
höchsten Qualitöt zu finden, die von einem trainierten Netzwerk berechnet wird. Um
Bewegungen zu erreichen, wird eine modellbasierte Methode zur Trajektoriengener-
ierung entwickelt, die von der Theorie des internen menschlichen Modells inspiriert
ist. Das vorgestellte Framework wird sowohl durch eine vergleichende Analyse als auch
in realen Experimenten validiert.

Anschlieend Es ist für Menschen ein natürliches Verhalten, aus mehreren möglichen
einen geeigneten Grifftyp auszuwählen, um Objekte zu greifen. Wir präsentieren ein auf
dem Prinzip der Aufmerksamkeit basierendes visuelles Analyseframework, zur Berech-
nung relevanter Informationen für eine schnelle Griffplanung mit einer Roboterhand mit
mehreren Fingern. Ein berechnetes visuelles Aufmerksamkeitsmodell wird verwendet,
um interessante Regionen in einer Szene zu lokalisieren. Ein tiefes neuronales Fal-
tungsnetzwerk (CNN) wird trainiert, um den Grifftyp und den Griffschwerpunkt für
den Teil des Objekts zu finden, der in dem interessanten Bereich liegt. Das vorgestellte
Framework wird anhand von Greifbewegungen demonstriert. Auerdem wird das generel-
le Griffplanungsproblem untersucht. Ein Framework wird vorgestellt, das verschiede-
nen Roboterhänden, mit einer beliebigen Anzahl von Fingern, ermöglicht, Objekte zu
greifen. Eine neue Definition des Oppositionsprgriff wird eingeführt, der als Wegpunkt
bei der Bildung der gesamten Bewegung dient. Ein zweistufiges Greifplanungsmodul,
beginnend mit dem Oppositionsprägriff und anschlieender Planung einer möglichen
Griffkonfiguration wird vorgestellt. Komplexe Griffkonfigurationen werden dabei aus
dem simpleren Oppositionprägriff generiert. Darüber hinaus berücksichtigt das vorges-
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chlagene Framework die Grifftypen während der Planung. Das Framework wird sowohl
in simulierten als auch in realen Experimenten evaluiert.

Tastsensorik, als wesentliches Element des geschickten Greifens, ermöglicht einem
Roboter sich an Veränderungen seiner Umgebung anzupassen. Im nächsten Schritt
präsentieren wir ein Framework zur Objektstabilisierung für eine Roboterhand mit mehr-
eren Fingern, um unbekannte Objekte ohne vorherige Informationen über Form und
physikalischen Eigenschaften zu stabilisieren. Das vorgestellte Framework besteht aus
drei Komponenten: einem Echtzeitmodell zur Erkennung, einem Verfahren zur Kraftab-
schätzung und einem Controller zur Objektstabilisierung. Das Echtzeitmodell zur Erken-
nung basiert auf einem tiefen neuronalen Netzwerk und erkennt Kontaktereignisse und
Materialien gleichzeitig aus taktilen Daten. Das Verfahren zur Kraftabschätzung basiert
auf einem Gauschen Mischverteilungsmodell und berechnet die Normalkraft und den
Ort des Kontakts basierend auf taktilen Daten. Die Ergebnisse der Tastsensorik werden
von dem Controller zur Objektstabilisierung verwendet, um die Kontaktkonfiguration
einer Roboterhand für die Objektstabilisierung in Echtzeit anzupassen. Die Effektivität
der vorgestellten Methode wurde mit einer Shadow Dexterous Hand in einem realen
Experiment evaluiert.

Zuletzt benutzen wir Grifftypen als Leitlinie für das Erlernen von In-Hand Ma-
nipulationen. Aufgrund der hohen Dimensionalität von Roboterhänden und der inter-
mittierenden Kontaktdynamik bleibt die effektive Programmierung einer Roboterhand
für In-Hand Manipulationen eine Herausforderung. In dieser Arbeit wird ein Multi-
Agenten Reinforcement Learning Algorithmus (MARL) zum Erlernen der In-Hand-
Manipulation mit einer Roboterhand mit mehreren Fingern vorgestellt. Die beiden
zusätzlichen Belohnungen basieren sowohl auf der Analyse von Handsynergien als auch
auf der Lernhistorie. Drei Agenten die durch Wertefunktionen repräsentiert werden,
werden hinsichtlich ihrer Belohnungsfunktionen gemeinsam trainiert. Diese arbeiten
zusammen, um eine Kontrollstrategie zu optimieren. Die experimentellen Ergebnisse
zeigen, dass der vorgeschlagene MARL-Algorithmus einer Roboterhand, mit fünf Fin-
gern, ermöglicht die In-Hand-Manipulation effektiv zu erlernen.
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Chapter 1

Introduction

1.1 Motivation

Autonomous grasping is one of the fundamental abilities of robots when they implement
manipulation tasks, and it plays a critical role in industrial and home-assistant applica-
tions. Advances in the grasping ability of robots to hand objects could have an enormous
impact on many critical application areas. For example, autonomous grasping by robotic
hands could help a manufacturer to increase productivity and reduce costs significantly.
Service robots for personal and private use also require stable grasping to accomplish
manipulation tasks. With the ability of stable grasping, a robot could effectively help
older people live independently by assisting them. There is also an increasing impact in
the medical world. The development of hand rehabilitation robotics helps people suf-
fering from stroke to recover their hand functions. However, despite the development of
control and sensing technology, the robotic hands almost exclusively implement highly
repetitive tasks in conditioned operating environments. It would be highly beneficial if
robots had the ability to perceive and grasp a variety of unknown objects in an unstruc-
tured environment

Over the past two decades, robotic grasping has attracted much attention from a
wide range of researchers. Although considerable effort has been made, stable robotic
grasping in daily-life environments is still a challenging problem. Finding a feasible
grasp configuration for a robotic hand involves multiple tasks ( such as robotic percep-
tion and grasp planning). Despite the inherent complexity of object grasping, humans
can effortlessly accomplish a variety of grasping and manipulation tasks. Human hands
demonstrate a variety of functions, from perception to delicate grasping and manipu-
lation, in daily activities. In terms of object perception, the skin of human hands has
mechanoreceptors that provide feedback signals for grasp control. The human hand can
maintain an adaptive contact force to grasp objects stably. In terms of the motor control
of human hands, studies from neuroscience have explained that human Central Nervous
System (CNS) coordinates the neural activation of groups of hand muscles. The human
hand quickly generates a remarkable degree of dexterity in its capacity to grasp objects.
Moreover, humans are capable of exploiting a prior domain knowledge (e.g., experience
and culture) to infer and understand the objects and tasks. Humans can effectively grasp
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a variety of objects to achieve complex manipulation tasks (e.g., writing and tool usage).
The amazing abilities of the human hand motivate researchers in the robotics commu-
nity to develop novel robotic techniques to achieve similar grasping and manipulation
abilities.

Among all the aspects involved in the implementation of dexterous grasping, grasp
planning is a crucial component. The aim of grasp planning is to find a feasible grasp
configuration (including the 6D pose of the hand relative to the object and the finger
configuration) for robotic hands. The planned grasp configuration should satisfy a user-
defined grasp quality metric. Stability is the most crucial consideration during grasp
planning. Traditionally, researchers defined a quality metric (such as form- or force-
closure) geometrically to consider stable constraints for object grasping. However, these
geometric methods rely on an accurate object model that is difficult to obtain. Owing
to the uncertainties arising from sensor noise, the planned grasps based on a geometric
metric might end up being unstable in a real-world environment. Thanks to the power
of deep neural networks, more recent works employed deep learning techniques to ap-
proximate a grasp quality metric. These learning-based methods could predict grasp
quality directly from visual data (such as RGB-D images or point clouds ). Dexterity is
another crucial characteristic of a robotic hand, especially for a multi-fingered robotic
hand. Previous work has rarely discussed how to exploit the dexterity of robotic hands
to perform complex grasping tasks. It is a natural behavior for humans to choose a
feasible grasp type from multiple grasp types to grasp an object. If a robotic hand is
able to grasp an object with multiple grasp types, it could carry out more dexterous
manipulation tasks. The generalization of grasp planning is also important, but has not
been addressed well in the past. Most of the previous grasp planning methods are de-
signed for one specific robotic hand and only consider one specific grasp type (such as
power grasp). Little work was done to address the general-purpose problem of grasp
planning. These requirements (i.e., stability, dexterity, and generalization) for a grasp
implemented in a real-world environment still highlights the need to develop advanced
grasp planning techniques for robotic hands, especially for multi-fingered robotic hands.

Robotic perception is of critical importance for a robot to plan and operate in real-
world environments. Robotic perception could allow a robot to learn from sensory data
and make decisions to interact with its environment. Previous work on robotic percep-
tion mainly focuses on constructing object models from visual data. Apart from model
reconstruction, another important application of robotic perception is to learn meaning-
ful information (such as object class, visual relationship, and grasping affordance) from
sensory data. The ability to rapidly extract relevant information from sensor inputs is
an important mechanism and a natural behavior for humans. For example, humans can
rapidly determine where and how to grasp an object through visual sensing. This ability
is also essential for robots. Visual analysis methods should be proposed for the robot
to compute relevant information that could be taken as guidance for grasp planning.
Tactile sensors provide another important sensory modality for robots to perceive their
environments. As stated above, the mechanoreceptors in the skin of human hands pro-
vide feedback signals for grasp control. With the development of sensing technology,
robots have the potential to use various types of tactile sensors to sense objects and their
surroundings. For example, multimodal tactile sensors (such as BioTac sensors) could
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be used to detect the contact force, vibration, and temperature when a robot is grasping
an object. Given multiple sensory modalities as feedback, a core problem is how to
process and represent sensory data for robotic grasping and manipulation.

The objective of this thesis is to endow a robot with human-like grasping ability.
This thesis mainly focuses on the two important research topics of robotic perception
and grasping in the area of robotics. Effectively perceiving an environment is of crit-
ical importance for autonomous robots that are expected to interact with a variety of
objects. A good perception of the environment not only reduces the uncertainties of
grasp execution but also provides an understanding of the task goal and object prop-
erties. We expect that robotic hands with human-like dexterity to perform stable and
robust grasping tasks. To this end, this thesis addresses the following four challenges:
stable grasping during manipulation tasks, generalization of grasp planning, stability of
grasps under uncertainties and complexity of in-hand manipulation learning. This the-
sis proposes novel algorithms and approaches to address these four challenges inspired
by the analysis of human grasping behavior, exploiting the benefits of machine learn-
ing techniques and combining perception, planning and learning methods. Addressing
these open challenges in the area of robotic perception and grasping has the potential of
allowing robots to accomplish stable and robust grasping and manipulations in daily-life
environments.

1.2 Problem Statement and Research Objectives
Dexterous grasping and manipulation of objects are two fundamental abilities for robotic
hands that have to interact with their environments. Owing to uncertainties arising
from the environments and the complex dynamics of robotic hands, effective imple-
mentations of dexterous grasping and manipulation are still difficult for robotic hands.
Robotic grasping and manipulation are two core research topics in the area of robotics,
which have attracted much attention in the past. Despite there has been much progress,
robotic hands are still far from being capable of implementing dexterous grasping and
manipulation like humans. To allow robotic hands to implement dexterous grasping and
manipulation effectively, in this thesis, we explore the following four open challenges.

• Stable grasping during manipulation tasks: We address the stable grasping
problem of the implementation of reach-to-grasp (RTG) tasks in an unstructured
environment. There are three main sub-tasks required to complete RTG tasks:
detecting the object of interest from the table, determining a feasible grasp con-
figuration, and generating a collision-free trajectory to reach it. Due to the lack
of object models and uncertainties from perceptual noise or kinematic errors of
robots, the stable implementation of RTG tasks remains an open problem. The
first objective of this thesis is to investigate a unified framework that allows robots
to reach to grasp the object of interest stably. In particular, we expect that the pro-
posed framework to combine grasp planning and trajectory generation together.

• Generalization of grasp planning: Most of the state-of-the-art grasp planning
approaches are designed for one specific robotic hand. In real-world robotic ap-
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plications, multiple robots with different kinds of robotic hands may work to-
gether. This requires generalizing grasp planning approaches across different
robotic hands. Moreover, previous grasp planning approaches only consider two
grasp types (i.e., power and precision grasp) for robotic hands to implement ob-
ject grasping tasks. It is a natural behavior for humans to choose a feasible grasp
type from multiple possible grasp types to grasp objects. This ability is also es-
sential for robots. However, little previous work addresses the general-purpose
problem of grasp planning. The second objective of this thesis is to develop a
general-purpose grasp planning approach. We expect that the proposed approach
suits various robotic hands with an arbitrary number of fingers to grasp objects
considering the use of grasp types.

• Stability of grasps under uncertainties: Realizing stable object grasping with a
multi-fingered robotic hand under uncertainties is a challenge. The uncertainties
may arise from sensor noise, slippage or external disturbances. In real-world ap-
plications, the uncertainties may cause a planned-to-be stable grasp to be unstable.
Humans are capable of reacting to the unstable through tactile sensing. However,
the ability of object stabilization through tactile sensing for robotic hands is still
missing. To stabilize a grasped object effectively with a robotic hand, three related
problems should be addressed: (1) How to detect the properties (such as material)
of the grasped object. (2) How to perceive the contact event (i.e., slippage or
not) effectively. (3) How to correct the contact configuration of a robotic hand
online through tactile sensing to avoid slippage. The third objective of this thesis
is to enable robotic hands to make use of tactile sensing for object stabilization.
We expect to take advantage of the spatial-temporal characteristics of tactile data
to perceive the grasped object and the contact between the robotic hand and the
object.

• Complexity of in-hand manipulation learning: Owing to the high dimension of
multi-fingered robotic hands and intermittent contact dynamics, effectively pro-
gramming a robotic hand for in-hand manipulations is still a challenge in the area
of robotics. Deep reinforcement learning (DRL) algorithms have been previously
employed to learn manipulations directly from interactions with the environments.
However, learning complex manipulations (such as in-hand manipulation) with
DRL is usually slow and unstable. The sample complexity limits the applicabil-
ity of DRL to learn complex manipulations. The last objective of this thesis is to
explore a learning method that exploits domain knowledge to assist in in-hand ma-
nipulation learning. In particular, we look at how the information extracted from
the analysis of hand synergies can be used to improve the learning performance
of the DRL.

1.3 Novelty and Contribution of the Thesis
This thesis presents approaches that integrate visual/tactile perception with optimization
methods for both grasp planning and manipulation learning. All these approaches are
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designed to address the problem statement of this thesis. The main contributions of this
thesis are summarized in the following points:

• Optimization for reach-to-grasp movements: Implementing RTG tasks stably
is an essential ability for a robot. The implementation of RTG tasks typically con-
tains three main aspects: object detection, stable grasp planning, and trajectory
generation. To achieve RTG tasks, we propose an optimization framework that
combines stable grasp planning with model-based trajectory generation. Different
from previous methods, we address the grasping and trajectory generation prob-
lem jointly when implementing RTG tasks. The proposed optimization framework
covers the complete path from perception to decision-making when implementing
RTG tasks. In terms of stable grasping, most of the state-of-the-art grasp planning
approaches detect a feasible grasp directly from visual data. They may not be
robust to uncertainties. This thesis trains a grasp quality metric with a deep neu-
ral network and employs a Bayesian-based search algorithm for determining high
quality grasps. In this way, grasp stability is improved. Moreover, the proposal
grasp planning method does not rely on an accurate object model or pose estima-
tion. A model-based trajectory generation approach inspired by human internal
model theory is presented to produce collision-free reaching movements. The pro-
posed model-based trajectory generation approach can generalize quickly to new
tasks.

• General-purpose grasp planning with visual analysis: Developing general-
purpose grasp planning approaches is a necessity for intelligent robots. This the-
sis proposes a general-purpose grasp planning approach that suits various robotic
hands with an arbitrary number of fingers to grasp objects considering the use of
grasp types. We train a grasp type detection model with a deep neural network,
which can detect a feasible grasp type directly from visual data. Moreover, the
concept of pregrasping opposition is proposed to encode the grasp type infor-
mation. A dual-stage grasp planning method with the pregrasping opposition is
proposed to find a feasible grasp configuration involving a set of contact points.
The use of the pregrasping opposition not only reduces the computation complex-
ity of grasp planning but also provides a way to generalize the grasp planning
approach across different robotic hands.

The proposed approach has three advantages compared to the state-of-the-art: (1)
It trains a deep neural network to detect grasp type directly from visual data. Six
different grasp types are considered. Moreover, the proposed detection method
does not rely on handcrafted features. (2) The grasp-relevant information (i.e.,
grasp type and grasp attention point) extracted from visual data is used as guidance
for grasp planning. (3) The proposed approach suits various robotic hands with
an arbitrary number of fingers to grasp objects considering the use of grasp types.

The proposed general-purpose grasp planning approach suits scenarios where
multiple robots with different robotic hands work together. Instead of design-
ing different grasp planning methods for different robotic hands, the proposed
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approach is able to plan feasible grasp configurations for various robotic hands
with an arbitrary number of fingers.

• Dynamic object stabilization through tactile sensing: We present an object
stabilization framework for multi-fingered robotic hands to stabilize unknown ob-
jects without a prior domain knowledge of their shape or physical properties. The
proposed framework consists of three components: an online detection model,
a force estimation method, and an object stabilization controller. There are two
main differences between the proposed tactile sensing method and the state-of-
the-art: (1) The proposed method addresses the slip detection, material detection,
and force estimation problems jointly. The spatial-temporal characteristics of tac-
tile data are exploited for perception. (2) The proposed method uses deep learning
techniques to learn the latent representation of tactile data for multi-task classifica-
tions. In this way, we do not need to compute features of tactile data manually for
classification. By exploiting the results of tactile sensing, an object stabilization
controller is employed to control a robotic hand to adjust its contact configuration
online.

• Learning synergies-based in-hand manipulation: We propose a multi-agent re-
inforcement learning (MARL) algorithm for a multi-fingered robotic hand to learn
in-hand manipulation. Manipulation learning with a DRL algorithm is usually
slow and unstable, especially when the reward is sparse. For effective manipula-
tion learning, we propose to extract information from both the analysis of hand
synergies and the learning history. Two additional rewards are designed to en-
code the extracted information into the DRL algorithm. The use of additional re-
wards not only improves the exploration efficiency of the DRL but also provides a
way to incorporate domain knowledge. The experimental results demonstrate that
exploiting domain knowledge (i.e., grasp type) is effective for learning in-hand
manipulation with a multi-finger robotic hand.

1.4 Structure of the Thesis
This section briefly summarizes the remaining contents of this thesis. Figure 1.1 illus-
trates the structure of this thesis.

• Chapter 2-Background and related work: First, we give an overview of the
analysis of human grasping behavior. The representation of human grasps and
the mechanism of human grasp choices are considered, which inspire the devel-
opment of robotic grasping techniques. Then, we review related work in the area
of robotic grasping and focus on the two main research directions: perception
for robotic grasping and robotic grasping. Finally, we introduce related work on
in-hand manipulation with multi-fingered robotic hands.

• Chapter 3-Optimization for reach-to-grasp movements: In this chapter, we
address the problem of the implementation of RTG tasks. The two key tech-
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Figure 1.1: The structure of this thesis.

niques, i.e., grasp planning and trajectory generation, are studied. An optimiza-
tion framework that combines stable grasp planning with trajectory generation is
proposed for the implementation of RTG tasks. We show that the grasp quality
metric could be learned by using a deep neural network. We also show that the
proposed Bayesian search algorithm has the potential to find more stable grasp
configurations. A model-based trajectory generation method inspired by human
internal model theory is designed to generate reaching movements for the robots.
The proposed optimization framework is evaluated with object grasping tasks in
real-world experiments.

• Chapter 4-Grasp type detection for fast grasp planning: The focus here is vi-
sual analysis for fast grasp planning. We introduce an attention-based visual anal-
ysis framework to compute grasp-relevant information that is used as guidance
for fast grasp planning. A deep convolutional neural network (CNN) is trained
for grasp type detection. A search-based grasp planning approach is proposed to
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determine feasible grasp configurations. We demonstrate that grasp-relevant in-
formation (i.e., grasp type and grasp attention point) can be extracted from visual
data. We also show that the extracted information helps to reduce the configura-
tion space of grasp planning and to accelerate the formation of the final grasp. We
evaluate the proposed framework with object grasping tasks.

• Chapter 5-General-purpose grasps planning with pregrasping opposition:
Here we aim to design a general-purpose grasp planning approach suited various
robotic hands with an arbitrary number of fingers. Moreover, we expect that the
robotic hand can automatically choose a feasible grasp type to operate the target
object. We introduce the new concept of pregrasping opposition that is taken as
a waypoint for grasp formation. A dual-stage grasp planning approach exploiting
the pregrasping opposition is proposed. We show that the use of the pregrasping
opposition not only reduces the computational complexity but also provides a way
to generalize the grasp planning method to various robotic hands. It can enable
a robotic hand to realize different grasp types. A PR2 robotic platform equipped
with a five-fingered robotic hand and a two-fingered gripper is used for evaluation.

• Chapter 6-Dynamic object stabilization through tactile sensing: In this chap-
ter, we study how to exploit tactile information for object stabilization with multi-
fingered robotic hands. We proposed an object stabilization framework that com-
bines tactile sensing with feedback control. We train an online detection model
based on a deep neural network to detect the contact event and object material
simultaneously from tactile data. We show that the contact information (i.e., the
contact force and contact location) can be extracted by using the spatial properties
of the tactile data. An object stabilization controller exploiting the detected results
is applied to adjust the contact force online to ensure the stability of grasps. The
effectiveness of the proposed framework is evaluated in a real-world experiment
with a Shadow Dexterous Hand.

• Chapter 7-Learning in-hand manipulation with reward shaping: We present
a MARL algorithm for a multi-fingered robotic hand to learn in-hand manipula-
tions. The basic idea of the proposed algorithm is that information extracted from
both the analysis of hand posture synergies and the learning history could guide in-
hand manipulation learning. Two additional reward functions, i.e., a hand-based
reward and an uncertainty-based reward, are designed to encode the extracted in-
formation. Three independent agents represented by value functions are trained
jointly concerning their rewards and then cooperate to optimize a control policy.
The performance of the proposed MARL algorithm is evaluated in a physical sim-
ulator. The experimental results demonstrate that the proposed MARL algorithm
allows multi-fingered robotic hands to learn in-hand manipulation effectively.

• Chapter 8-Conclusion and future work: In this final chapter, we conclude the
thesis by providing a summary of this work. Furthermore, we discuss the pro-
posed approaches. Finally, we point out what we believe to be the most promising
directions for future research.
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Chapter 2

Related Work

Grasping is one of the most critical abilities of humans and robots when implementing
a variety of manipulation tasks. Humans are capable of performing grasping stably to
achieve a variety of manipulation tasks. Currently, object grasping with robotic hands
is still limited to certain simple applications where certain simple robotic hands im-
plement some specific tasks in a structured environment. Stable grasping, especially
stable dexterous grasping, in a real-world environment is still a challenge for the robots.
Many efforts from the neuroscience, physiology, and robotics communities have been
conducted to address this challenge from different aspects. In the neuroscience and
physiology communities, human grasping behavior has been widely studied to under-
stand the mechanics of grasp formation in recent decades. Many results on the mech-
anism of human grasp choice and the representation of human grasping posture have
been introduced. In the robotics community, the research of robotic grasping mainly
focuses on the problem of planning and learning feasible grasp configurations of robotic
hands. To implement dexterous grasping tasks successfully, robots are required to per-
ceive their environments, understand task goals, and plan feasible grasp configurations.
Many methods of robotic perception and grasping planning have been previously intro-
duced to allow robots to perform stable grasping.

In the rest of this section, we first review the studies on human grasping behavior
Section 2.1. The representation of human grasping posture and the mechanism of human
grasp choice are introduced. Section 2.2 introduces previous work on robotic perception
for grasping. Section 2.3 presents four important research topics in the area of robotic
grasping. Finally, we review existing works on in-hand manipulation in Section 2.4.

2.1 Human Grasping

Humans are capable of grasping a variety of unknown objects to achieve manipulation
tasks. In recent decades, many efforts have been conducted in the neuroscience and
physiology communities to analyze human grasping behavior from different aspects.
Previous studies on human grasping behavior help to understand the process of grasp
formation. In this section, we mainly review related work on the representation of hu-
man grasping posture and the mechanism of human grasp choice.
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2.1.1 Representation of Human Grasping Postures

A basic question relevant to the analysis of human grasping behavior is how to represent
human grasping postures and reveal their underlying function during grasp formation.
Human grasping postures can be basically described from two viewpoints: the geometric
viewpoint and the abstraction viewpoint. In terms of the geometric viewpoint, human
grasping postures are represented by the joint angles of a hand recorded by a motion
tracking system [53]. Owing to the complicated anatomical structure of human hands,
the representation with joint angles has high complexity. Moreover, it is easily affected
by sensor noises and the tracking performance of a motion tracking system.

Studies from neuroscience suggested that the CNS of humans adopted a simple strat-
egy to coordinate a large number of degrees of freedom in motor control [37]. The
concept of the synergies has been introduced as a strategy to describe the movement
control involving multiple degrees of freedom. This concept has also been widely used
to analyze human grasping behavior. Santello et al. [149] used principal components
analysis (PCA) to analyze human grasping postures. They demonstrated that the first
two principal components contained more than 80% of the hand posture information.
Chen et al. [24] also used the PCA to decompose human hand movements into the
primary and secondary motions. The decomposition guided the design of an artificial
hand. The primary motion was taken as a free motion controlled by actuators, and the
secondary motion was implemented with mechanical compliance. Additionally, Ciocar-
lie et al. [29] exploited the synergies for grasp planning. The concept of the Eigengrasp
was introduced to represent a low-dimensional posture subspace for dexterous grasping.
Based on the analysis of hand synergies, a few principal components could be used to
represent hand grasping postures. The use of the synergies helped to reduce the repre-
sentation complexity of grasping postures.

The representation methods with joint angles were unable to reveal the underlying
functions of human grasps. To illustrate the conceptual functions of human grasping,
several concepts are introduced from an abstraction viewpoint. One of the most impor-
tant concepts was the grasp type. Different taxonomies of grasp types have been pro-
posed, in which human grasping postures were classified into different grasp types. Tra-
ditionally, grasps were divided into to two categories: power or precision grasps [125].
The power grasp used the fingers and the palm of a hand to hold an object firmly. The
precision grasped only used fingertips to stabilize an object. However, this two-category
grasp taxonomy was not sufficient to convey information about hand grasping configura-
tions. The most recent work [28] extended the taxonomies [46, 54] and developed a new
taxonomy including 33 different grasp types, as shown in Figure 2.1. Grasp type was
a way of representing how a hand handles objects. For example, once a feasible grasp
type is detected for the target object, robotic systems can make sense of how to used
its fingers to contact and grasp the object. These grasp taxonomies help us to develop
advanced grasp planning techniques.

In addition, grasping is a process in which a hand applies forces on contact points to
stabilize an object. Apart from only considering the appearance of human grasping pos-
tures, it was important to analyze the physical characteristic of human grasping. Arbib
et al. [4] introduced the concept of virtual fingers (VFs) to represent grasp formation.

10



2.1. Human Grasping

Fi
gu

re
2.

1:
G

ra
sp

ta
xo

no
m

y
in

tr
od

uc
ed

by
[2

8]
th

at
in

cl
ud

es
33

di
ff

er
en

tg
ra

sp
ty

pe
s.

11



Chapter 2. Related Work

A VF was a collection of individual hand fingers that worked together to apply an op-
positional force. Based on the VFs, a stable grasp was taken as a combination of two
VFs. The two VFs were brought together against the object surface to form a grasp con-
figuration. Wimbock et al. [177] exploited the concept of VFs to design an object-level
grasp controller for fine manipulation tasks. Furthermore, when grasping an object, hu-
man hands are required to apply a pair of opposing forces on the object surface. Based
on this hypothesis, Iberall et al. [75] introduced the concept of opposition to describe
human grasping postures. In that work, three types of oppositions primitive (i.e., Pad
opposition, Palm opposition, and Slid opposition) were introduced. Additionally, Iber-
all et al. correlated the opposition and the VFs to describe human grasping postures.
Each opposing part was taken as a VF, and two VFs formed an opposition. Souza et
al. [35] extended the definition of opposition in [76] by introducing more opposition
primitives. They defined the choice of hand-parts during grasp formation as the grasp
intention. The grasp intention was modeled as a mix of opposition between hand parts.
Figure 2.2 illustrates human grasping postures grouped by the opposition and the virtual
finger. The opposition and the VF serve as two abstract representations that encode the
underlying function of hand grasping.

Overall, human grasping postures can be described from different viewpoints. Sev-
eral concepts (such as grasp type, opposition, VF, and grasp intention) were introduced
to represent human grasping postures. The concepts can be used to describe the ap-
pearance of human grasping postures or to analyze the physical characteristic of human
grasping. These studies on the representation of human grasping postures can benefit
research in the robotics community, such as on the design of artificial hands and the
development of grasp planning techniques.

2.1.2 Human Grasp Choice
Another fundamental question relevant to hand grasping behavior is how humans choose
a grasp to operate an object for implementing manipulation tasks. The study of human
grasp choice has also attracted considerable attention from researchers across differ-
ent communities. Naturally, when humans grasp different objects, the final grasping
postures are different. For example, the grasping postures are typically different when
a hand grasps a pencil and an apple. Humans can effortlessly choose feasible grasp
configurations to operate a variety of objects. There exist several factors that influence
grasp formation. It is interesting to study the types of factors that influence the choice of
human grasps and to build a relationship between the grasping posture and these factors.

Fei et al. conducted a series of experiments with a wide range of unstructured tasks
to analyze the mechanism of human grasp choice [45, 44]. First, Feix et al. [45] in-
vestigated the relationship between grasps and object properties. The concept of grasp
location was defined as the local part of an object surface. Humans first determined
the grasp location on an object and then inferred a feasible grasp posture based on the
object geometry. They also suggested that humans had a high probability of using the
same grasp for specific types of objects. Furthermore, Feix et al. [44] correlated the
relationship among the task, object properties, and grasps. They suggested that the task
requirement and object properties were the two essential factors that influenced human
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grasp choices. Different from Fei et al.’s works that were based on human grasping
datasets collected in a laboratory setting, some recent works employed computer vision
techniques to analyze the mechanism of human grasp choice. Cai et al. [16] recognized
hand grasp types, object attributes, and manipulation tasks from RGB images. The rela-
tionship among grasp types, object attributions, and manipulation actions was built with
a unified computational model.

Previous work mainly demonstrated that task requirements and object properties
were the two important factors that influence human grasp choice [31, 44]. However,
Cini et al. [28] pointed out that human experience and social environment also influence
human grasp choice. They suggested that the following five major factors influence
human grasp choice:

• Object properties (e.g., object shape, and object function)

• Task constraints (e.g., object state and contact force)

• Gripper constraints (e.g., hand kinematic and hand size)

• Habits of humans (e.g., experience, preference and social convention)

• Chance (e.g., environmental constraints and the initial position of the object)

In general, the five factors influenced human grasp choice, but they did not have the
same contribution to the formation of grasp configurations. The final grasp selected by
humans was characterized by a subset of the five factors. The contribution of each factor
may change in different situations and vary over time.

2.2 Perception for Robotic Grasping
Perceiving the target object is the first step in robotic grasping. Grasp planning re-
quires information about the shapes and physical properties of objects. Different sen-
sory modalities have been previously applied for object perception, such as visual and
tactile sensors.

Visual perception plays an important role in robotic grasping. In recent decades,
many visual analysis methods have been proposed to analyze visual data of objects and
compute meaningful information for grasp planning. Traditionally, visual data (such as
point clouds) were registered by associating it with the point clouds of an object mesh
mode. Registration techniques [162], such as Iterative Closest Point (ICP) [117], have
been developed to realize the point-to-point association. After object registration, grasp
configurations of robotic hands were planned on object mesh modes. These registration-
based methods typically required 3D object mesh models that were often not available.
Some works proposed to reconstruct object models directly from point clouds of objects.
Quispe et al. [137] generated object mesh models from partial point-clouds based on the
analysis of symmetry and extrusion patterns in observed shapes. Vezzni et al. [173]
used superquadric functions to fit object point clouds to obtain object models. More
recent works have used deep learning techniques for object shape completion. Varley et
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al. [168] employed a 3D CNN that takes a 2.5 D point clouds as input and performed
object shape completion.

In addition, there have been some recent works that detected object grasping affor-
dances from visual data. Object grasping affordance provides certain critical informa-
tion about the functions of objects and their parts. Myers et al. [124] localized object
parts and identified their functions from the geometric features of objects. In that work,
seven affordances were considered: grasp, cut, scoop, contain, pound, support, and
wrap-grasp. Given the results of affordance detection, robots can make sense of how
and where to operate objects. Different from Myers et al.’s work, Nguyen et al. [126]
hypothesized that an object could have multiple affordances. A CNN was employed to
predict the affordances of object parts which was represented by a rectangular box. De-
try et al. [41] identified grasp-suitable regions in a depth image by using a CNN-based
semantic model. Object grasping affordances detected from visual data help us not only
to obtain an understanding of the objects but also to develop novel grasp planning tech-
niques.

Tactile sensors provide additional critical information about interactions between
hands and objects. Studies from neuroscience suggested that humans continually mon-
itor contact events and correct any mistakes given the signals in tactile afferent neurons
and central processes [81]. Cutkosky et al. [32] introduced that human skins were en-
dowed with fast- and slow-acting (FA and SA) mechanoreceptors. The FA mechanore-
ceptors responded to high-frequency signals of an event. The SA mechanoreceptors
responded to steady skin deformation. Owing to the uncertainties arising from the en-
vironmental changes or unknown of object properties, humans could adapt the grasping
postures to maintain grasping stability. In the robotics community, many efforts have
been made to process and represent tactile information to achieve robotic grasping and
manipulations. Tactile information has been used to detect contact events between the
hand and object [170, 169], to measure grasp qualities [8], and to recognize object’s
physical properties [27, 60, 25]. A good survey on the tactile perception of object prop-
erties can be found in Luo et al. [111]. The perceived results from tactile sensing can
help robots to reduce uncertainties and improve task performance.

Vision perception can provide global information about the geometries of objects
and their space states. However, the effectiveness of visual perception is easily affected
by lighting conditions and occlusion. Moreover, visual perception is unable to perceive
object physical properties. Tactile sensing can be used to detect object properties and
contact events between the hand and the objects. Hence, It is necessary for robots to fuse
visual and tactile information to perceive objects and environments. To date, visual-
tactile fusion for robotic perception has attracted much attention. Sparse coding has
been widely used to fuse visual and tactile information [153]. Liu et al. [110] designed a
joint group kernel sparse coding (JGKSC) method for object recognition. In that work,
visual and tactile modalities were combined to address the recognition of objects. More
recent works have used deep learning techniques for visual-tactile fusion. Gao et al. [50]
trained a deep neural network to learn and fuse visual and tactile data for object material
detection. Li et al. [103] combined tactile and visual information based on a deep neural
network for slip detection.
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2.3 Robotic Grasping
Robotic grasping is a fundamental ability for robotic hands that interact with their en-
vironments. Reviewing previous research on robotic grasping helps us to understand
the developments of these techniques. In this section, we mainly focus on four active
research topics in the area of robotic grasping: grasp quality measures, grasp planning,
grasp learning, and adaptive grasping under uncertainty.

2.3.1 Grasp Quality Measure
Grasp quality measure is an essential component of grasp planning. Grasp configu-
ration of robotic hands is typically determined by optimizing with respect to a user-
defined quality metric. A grasp quality metric is an index or function that quantifies
the performance of candidate grasps. Grasp quality measure methods can be basically
categorized into two groups: analysis-based and data-driven methods. Analysis-based
methods considered the physical and mechanical properties involved in grasping. Roa
et al. [143] classified geometric methods into three subgroups: measures based on al-
gebraic properties of the grasp matrix G, measures based on geometric relations of the
contact points and measure, and measures considering limitations on the finger forces.
These methods took into account form- or force-closure constraints during grasp quality
measures. These methods were unable to respond to unexpected disturbances. Hence,
certain works made use of tactile information to grasp quality measures. Krug et al. [93]
predicted the grasp quality by using wrench-based reasoning from tactile information.
In that work, the grasp quality metric was approximated with a linear program. More-
over, task constraints should also be considered in grasp quality measures. In addition,
Borst et al. [13] proposed the concept of Task Wrench Space (TWS), in which tasks
were characterized by a set of wrenches. The TWS could be approximated by a convex
centered at the object origin. Analysis-based methods could be quickly transferred to
different objects and grippers. However, one shortcoming of these analysis-based meth-
ods was that they required prior knowledge of the object model and contact positions.

Recent works have focused more on data-driven methods that tackled the grasp qual-
ity measure problem with machine learning. Grasp quality metrics were learned from
certain existing grasping examples generated from human demonstrations or simula-
tions. Johns et al. [82] trained a CNN to approximate a grasp quality function. In that
work, the CNN took a depth image as input and outputted the scores of candidate grasps.
Similarly, Mahler et al. [112] introduced a Grasp Quality CNN (GQ-CNN) that pre-
dicted the success probability of grasps directly from depth images. Apart from visual
data, there have been some works that predicted grasp quality from tactile data [9, 175].
In these works, sensor features were first extracted from tactile data and then used to
train classifiers that approximate the grasp quality functions. Because visual and tactile
are two important sensory modalities, some researchers proposed combining visual and
tactile modalities to measure grasp qualities [58, 18]. In contrast to analysis-based meth-
ods, data-driven methods can predict grasp quality directly from sensory data without
accurate object models. However, data-driven methods also suffer certain shortcomings.
A major issue of data-driven methods is that they require many grasping examples for
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model training. Moreover, data-driven methods are difficult to generalize to new tasks
or new robotic hands.

2.3.2 Grasp Planning
The objective of grasp planning is to find feasible grasp configurations of robotic hands
to achieve object grasping tasks. Typically, a feasible grasp configuration of a robotic
hand consists of four components [11]:

• Approach vector with that a robot hand approaches the target object.

• Hand pose (i.e., hand position and orientation).

• Grasping/contact points on the object surface.

• Hand joint configuration.

Most of the previous works formulated grasp planning as a constrained optimization
problem with respect to grasp quality metrics. Classical works on grasp planning fo-
cused on finding feasible grasp configurations by considering form- or force-closure as
the grasp quality measure [143]. Owing to task requirements and gripper constraints
could affect the grasp choice, Gori et al. [55] implemented three-finger precision grasp
planning on incomplete 3D point clouds. Those works optimized grasp configurations
accounting for both feasibility and stability requirements. EI-Khoury et al. [43] formu-
lated the planning of dexterous grasping as a constrained optimization problem. In that
work, the feasible grasp configuration was generated subject to both hand kinematics
and grasp stability. Because object grasping is intrinsically complicated, the optimiza-
tion objective and constraints are typically difficult to construct. To reduce the com-
plexity of grasp planning. The whole configuration space of a robotic hand is usually
high-dimensional, especially for multi-fingered robotic hands. Several approaches have
been introduced to reduce the search complexity of gasp configurations for fast grasp
planning. Ciocarlie et al. [29] analyzed human hand synergies and introduced eigen-
grasps that represented low-dimensional posture subspaces. Their experimental results
showed that eigengrasps could be instrumental in deriving practical pre-grasp shapes
for several complicated robotic hands. The same idea could also be found in [49]. There
have also been some works that reduced the complexity of grasp planning by generating
a set of hand pre-shapes [119] or detecting the grasp point on an object surface [6]. In
addition, Hang et al. [62] proposed the hierarchical fingertip space (HFTS) for multi-
fingered precision grasp planning. This space was defined as a hierarchy of surrogate
solution spaces of grasping. The final solution was searched in the HFTS (a local space)
instead of the high-dimension configuration space.

The performance of grasp planning can be affected by uncertainties arising from
sensor noise and environmental changes. There have been previous works considering
uncertainties in grasp planning. Hsiao et al. [70] addressed the grasp planning prob-
lem considering uncertainties. A Bayesian framework was proposed to evaluate the
probability of grasp success, considering the uncertainty in object identification, gripper
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positioning, and hand pose. Weisz et al. [176] evaluated the probability of force clo-
sure subject to the uncertainty in object pose. Their experimental results demonstrated
that the probability of force closure was more robust than that of deterministic wrench
space metrics. In terms of the object shape uncertain, Laskey et al. [97] considered 2D
grasp planning with uncertainties. In that work, shape uncertainty was represented with
a Gaussian process implicit surface. Some works took advantage of tactile sensing to re-
duce uncertainties. In addition, Hsiao et al. [71] presented a decision-theoretic approach
for robust grasping under object pose uncertainty. Tactile sensing was used to update
the belief state. The grasp configuration was optimized continuously until a high degree
of robustness was reached.

2.3.3 Grasp Learning
Although analysis-based methods have demonstrated their effectiveness in implement-
ing certain specific grasping tasks, analysis-based grasp planning methods largely relied
on prior information about objects and robotic hands. Many researchers have explored
machine learning methods for robotic grasping. Rapid advances in machine learning
bring a lot of progress in robotic grasping. Learning-based methods allowed robots
to plan grasp configurations directly from sensory data (such as depth images or point
clouds). In recent decades, several machine learning methods (such as supervised learn-
ing, self-supervised learning, and RL) have been employed for robotic grasping.

Recently, deep neural networks have achieved massive success in a variety of fields,
such as computer vision [52] and audio processing [66]. Some researchers have used
deep neural networks to detect grasp configurations. Redmon et al. [139] presented a
real-time approach based on CNN for robotic grasp detection. The network approxi-
mated a mapping from an RGB image to graspable bounding boxes for object grasping.
Guo et al. [57] proposed a shared CNN to implement object discovery and grasp detec-
tion simultaneously. Pas et al. [134] detected grasp configurations directly from point
clouds by using deep learning techniques. Some other similar detection approaches
have also been presented, but they had different representation methods of grasp con-
figurations (such as grasp region [150], grasp rectangle [139], or two-point grasp [57]).
These methods relied on a strong assumption that each object contained one single grasp
configuration, which limited their practical application. Instead of detecting grasp con-
figurations directly from visual data, some recent work used deep neural networks to
approximate grasp quality metrics that were used to guide the research of feasible grasp
configurations. Mahler et al. [112] employed deep learning to plan grasps with synthetic
points dataset and analytic grasp metrics. The synthetic points dataset was called as
Dex-Net 2.0, which included point clouds, grasp configuration, and analytic grasp met-
rics. Levine et al. [101] used deep learning to learn hand-eye coordination for robotic
grasping. In that work, CNN was trained to predict the grasp quality. In this case, one
key problem was how to search for the grasp configuration with the highest quality in
high-dimensional configuration space. To address this problem, Mahler et al. randomly
sampled a set of candidate grasps and ranked them to find the grasp with the highest
quality [112]. In addition, Johns et al. learned a quality function considering gripper
pose uncertainty and then used a random search algorithm to find a feasible grasp con-
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figuration [82].
Supervised learning-based approaches were highly reliant on a large number of la-

beled samples. However, data collection required either tedious human labeling. The
labeling of samples was highly dependent on expert knowledge. Some works used self-
supervised learning approaches to build a dataset for grasp planning [113, 123]. Murali
et al. [123] presented a curriculum accelerated self-supervised learning approach that
detected grasps directly from visual information. This approach ordered the sampling
of training data with respect to control dimensions.

RL algorithms have been widely used for grasp planning. Different from supervised
learning-based methods that relied on certain existing datasets, RL algorithms allowed
robots to learn grasp configurations from interactions with their environments. Gualtieri
et al. [56] formulated the grasping problem as a Markov Decision Process (MDP). To
solve it, they built a deep RL to train a robot to focus on task-relevant parts of an object
and grasp it. Osa et al. [132] presented a hierarchical RL framework to learn grasping
policies. Li et al. [107] presented an RL strategy for object grasping with a mobile ma-
nipulator. In that work, RL was employed to learn the trajectories that were represented
with Dynamic Movement Primitives (DMPs) in the joint space. In addition, Gbrain et
al. [136] explored deep RL for vision-based robotic grasping. A variety of RL methods,
including Q-learning, have been evaluated in a realistic simulated benchmark. Instead
of only learning grasp actions, RL algorithms can be used to multiple manipulation
skills simultaneously. Zeng et al. [181] used model-free deep RL to learn synergies be-
tween pushing and grasping. Two CNNs were trained to map from visual observations
to actions (i.e., pushing and grasping). Mohammadi et al. [120] proposed mixed-reality
deep RL for a reach-to-grasp task. In that work, they carried out DRL for grasping in
simulation before actual actions were carried out in the physical environment.

Compared with analysis-based methods, learning-based approaches determine fea-
sible grasp configurations directly from sensory data (such as RGB-D or point clouds)
without accurate object models. However, current learning-based methods are essen-
tially limited to certain simple parallel-jaw grippers and specific scenes. A computa-
tional model trained by supervised learning for grasping is not allowed to be directly
used in a new situation and new task. Meanwhile, because RL suffers from the curse of
dimensionality, it is still a challenge to learn a grasping skill for a multi-fingered robotic
hand with high-dimensionality.

2.3.4 Adaptive Grasping under Uncertainty
In real-world applications, unpredictable disturbances and uncertainties arising from
perception may occur when robotic hands implement object grasping tasks. These dis-
turbances and uncertainties may cause a planned-to-be stable grasp to be unstable. Iber-
all et al. [75] summarized the functional demands of stable grasps as follows:

• The fingers of a hand apply forces on an object surface in order to react to the
object’s weight and friction.

• The fingers contact the object and impart motion to the object in order to achieve
some task (e.g., pick-and-place object.)
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• Sensor information is gathered as feedback to describe contact states between the
hand and the object in order to enable grasping stability.

Numerous grasp adaptation strategies have been introduced for robots to adjust current
grasp configurations to improve grasp stability. Previous works on grasp adaptation can
be basically categorized into two groups: grasp adaption by adjusting the contact points
and grasp adaption by adapting the contact force between hands and objects.

One of the grasp adaptation strategies is to adjust the contact points to improve
the performance of object grasping under uncertainties. Xue et al. [178] searched for
the optimal contact points by moving the fingers to their neighboring joint positions
until the local maximum grasp quality was reached. Mavrogiannis et al. [116] gradu-
ally improved the grasp quality subject to both geometric and mechanical constraints.
In that work, they implemented sequential perturbations on the contact points to de-
rive the optimal grasp. Usually, it is difficult to search for the optimal contact point
in the high-dimension configuration space. To reduce the complexity of grasp adap-
tation, some works used prior good grasp examples as guidance for grasp adaptation.
Dang et al. [33] introduced a grasp adjustment strategy by utilizing local geometric sim-
ilarity. The proposed method adjusted the grasp configuration by finding similar local
geometries of novel objects. Information from tactile sensors can be used to improve
the performance of object grasping. Chebotar et al. [21] used RL to learn re-grasping
behavior. In that work, the robotic hand adjusted the unstable grasps based on tactile
perception and improved them over time. In addition, Hogan et al. [67] took advantage
of tactile information to search for a grasp adjustment to improve grasp stability.

One other way for grasp adaptation is to adapt the contact force between hands and
objects. Robots that operate in real-world environments should be able to maintain fea-
sible contact forces on objects without dropping or crushing them. Tactile feedback has
been widely used to perceive the interactions between robotic hands and objects. There
have been some works making use of tactile information to guide the adjustment of the
grasp force. Delgado et al. [36] adapted the contact configuration regarding the position
and magnitude of the contact force in order to avoid sliding. The tactile information was
represented by a tactile image that was a combination of multiple dynamic Gaussian.
Additionally, Romano et al. [146] developed a human-inspired grasp controller that ad-
justed the contact force according to tactile feedback. In that work, the contact force
could also be estimated from tactile data as a feedback signal for grasp control. Some
works integrated a slip detector with a force feedback controller to adapt the contact
force. Apart from using tactile information to estimate contact force, some works used
tactile information for slip detection. Veiga et al. [171] used a random forest classifier
to detect the presence or absence of slippage during grasping. Given the detected re-
sults, a force feedback controller was employed to adjust the contact force to stabilize
the objects. Furthermore, Veiga et al. [169] proposed an independent tactile grip stabi-
lization controller to ensure that slippage did not occur locally. The slip detection was
realized by training an SVM. In addition, Su et al. [158] combined force estimation with
slip detection for grasp control. They used a force feedback controller, exploiting the
estimated results to pick up objects with various weights and texture.
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2.4 In-hand Manipulation
In-hand manipulations using multi-fingered robotic hands requires finding a feasible ac-
tion sequence to change the object pose. Programming a multi-fingered robotic hand
to achieve in-hand manipulation is still a challenging problem. Traditionally, trajec-
tory optimization methods have been proposed, which formulate the manipulation plan-
ning problem as a constrained optimization problem. Mordatch et al. [122] proposed a
contact-invariant optimization method for the synthesis of dexterous hand manipulation.
In addition, Kumar et al. [94] employed a model Predictive Control (MPC) algorithm to
perform online trajectory optimization for dexterous manipulation. Owing to the high
dimensionality of the robotic hand and the non-linearity of the constraints, the optimiza-
tion formula of in-hand manipulation is difficult to construct accurately.

Some works employed imitation learning methods to learn in-hand manipulation
from humans. Jakel et al. [80] used multiple human demonstrations to learn a plan-
ning model for dexterous manipulations. In addition, Gupta et al. [59] took human-
demonstrated motions as desired motions and used a policy search method to optimize
a policy for in-hand manipulations. These methods largely rely on high-quality human
demonstrations, which are difficult to obtain. There exists an inconsistency between the
human hand and robot hand structures.

More recent works focus on using deep reinforcement learning (DRL) algorithms
to learn in-hand manipulation. DRL uses experiences obtained from interactions with
the environment to learn manipulation behaviors that maximize a reward function. Zhu
et al. used a DRL algorithm for a multi-fingered robotic hand to learn valve rotation,
box flipping, and door opening [182]. The OpenAI team demonstrated that a real phys-
ical Shadow Hand could learn dexterous manipulation using a DRL algorithm [131].
Compared with trajectory optimization and imitation learning methods, DRL algorithms
enabled agents to learn in-hand manipulation directly from interactions with its environ-
ment. However, one shortcoming of DRL algorithms is their sample complexity, which
limits their application in learning complex manipulations. Some works that exploited
external knowledge have been proposed to reduce the sample complexity of DRL algo-
rithms. Rajeswaran et al. [138] incorporated human demonstrations into a model-free
DRL. In that work, they pre-trained a control policy with demonstration data and subse-
quently fine-tuned the policy with DRL. With a number of human demonstrations, the
sample complexity of the DRL could be reduced dramatically. Exploration is a key pro-
cess in manipulation learning with DRL, especially for complex in-hand manipulations.
There have been some works that designed heuristic exploration strategies to reduce the
sample complexity of DRL. In addition, Achiam et al. [2] designed surprise-based in-
trinsic motivation for DRL. They formulated surprise as the KL-divergence of the state
transition probability distribution, which guides the exploration. The incorporation of
external knowledge learned from human demonstration, or its learning history is crucial
to improve the learning efficiency of DRL.
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Chapter 3

Optimization for Reach-to-grasp
Movements

3.1 Introduction

The rapid development in robotic research has enabled robots to work autonomously in
unstructured environments. One essential ability for the robots is to implement RTG
tasks stably [108, 165]. There are three main sub-tasks required to complete the RTG
task: detecting the object of interest from the table, determining a feasible grasp con-
figuration, and generating a collision-free trajectory to reach it. Therefore, the imple-
mentation of RTG tasks contains typically three main aspects: object detection, grasp
planning, and trajectory generation. Due to the lack of object models and uncertainties
from perceptual noise or kinematic errors of the robots, the stable implementation of
RTG tasks remains an open problem.

To grasp the object of interest stably, a feasible grasp configuration is required. Typi-
cally, grasp planning is formulated as a constrained optimization problem. Several grasp
planning methods have been proposed [12, 148, 40, 105]. Most of these methods em-
ploy numerical optimization [105] or search algorithms [40] methods to solve it. Most
of these methods suffer from two drawbacks. First, these methods rely on accurate
object models or good grasping examples. However, objects in unstructured environ-
ments are always partially perceived due to visibility constraints. Thus, these methods
are limited to grasp known or familiar objects and difficult to generalize to unknown
objects. Second, these methods use a handcrafted quality metric to evaluate the per-
formance of candidate grasps. Since the grasping process is intrinsically complicated,
the grasp quality metric is typically difficult to construct manually. Their performance
decreases when implementing in unstructured environments. In this work, the objective
is to design a grasp planning approach, especially considering unknown objects in an
unstructured environment.

Recently, there have been several interesting approaches that use deep learning tech-
niques for grasp planning [99, 139, 100]. These approaches formulate grasp planning as
a regression problem, where a CNN is trained to build a mapping function from images
to grasp configurations. However, most of these methods make a strong assumption that
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each object contains a single grasp configuration, which is not robust to uncertainties.
Instead of directly predicting a grasp configuration from the image, the proposed grasp
planning method first learns a quality function using CNN. A Bayesian-based search
algorithm is designed to find a feasible grasp configuration with the highest quality. In
this way, the uncertainties are taken into account and the grasp with the highest quality
is found. Most similar to us are [82, 112, 134]. However, there are two differences
between the mentioned methods and the proposed method. First, the proposed method
takes advantage of the information (i.e., object identity and location) computed from ob-
ject detection to assist the grasp planning. Second, we employ a Bayesian-based search
algorithm instead of random searching algorithms [112] to determine the grasp configu-
ration with the highest quality iteratively. That is important to grasp the object of interest
stably.

Another critical challenge is to generate a collision-free trajectory that drives a grip-
per to reach the object of interest. Modeling and reproducing natural human movements
have been widely studied in recent years. The most direct approach is to employ function
approximation methods to represent human demonstrated trajectories and then general-
ize it to new environments. The existing approaches for trajectory representation mainly
include two categories: dynamic-based and probability-based approaches. Dynamic-
based approaches represent human movements as a set of dynamic systems [77, 39].
Probability-based approaches compute the probability distribution of the occurrence of
robot state [19, 85]. Most of these methods only suit for simple movements and are
easily affected by uncertainties. Some studies learn a cost function from human demon-
strations as optimal criteria and then use optimization techniques to produce the desired
trajectory. The idea is usually found in inverse reinforcement learning methods [1] or
inverse optimal control methods [121]. However, a true cost function is difficult to be
learned due to the stochastic of human movements. Although these methods do well in
some motion planning applications, these methods are limited to generate simple move-
ments and have a poor generalization ability. In RTG tasks, the trajectory generation
method is required to generalize quickly adapt to the changing environment.

Studies of neuroscience demonstrated that human motor control is based on an in-
ternal model theory that the human maintains a dynamic model that predicts the conse-
quences of motor commands and employs an inverse model to produce motor commands
to achieve the desired movement [84, 78]. Inspired by this theory, a model-based trajec-
tory generation method is proposed in this work. A forward dynamic model in Cartesian
space is learned from human demonstrations to reproduce the state transition behavior
of the human arm and an inverse model constructed as a linear Gaussian model is on-line
learned to produce robot control inputs. Compared with the previous trajectory gener-
ation methods [19, 72], the proposed model-based trajectory generation approach can
generalize quickly to new tasks.

In this work, we address the problem of the implementation of RTG tasks in an
unstructured environment. The objective is to reach to grasp the object of interest stably
in an unstructured environment. The two essential techniques (i.e., stable grasp planning
and trajectory generation) are studied in this work. The following three contributions are
presented.
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Figure 3.1: Overview of the proposed optimization framework for RTG tasks. Firstly,
given a personal instruction and an RGB-D image of the table scene as inputs, the ob-
ject of interest is recognized and segmented out from the table scene. A Bayesian-based
search algorithm determines the grasp configuration with the highest grasp quality com-
puted by a trained network. The planned 2D grasp configuration in the image frame
is further projected to a 3D grasp pose in the robot frame. At the same time, the ap-
proximated poses of obstacles, i.e., other objects around the object of interest, are com-
puted. Secondly, a model-based trajectory generation approach is employed to generate
a collision-free trajectory. Finally, the robot executes the reaching movement and the
grasp operation to implement the RTG task.

• An optimization framework that combines stable grasp planning with trajectory
generation is proposed for the implementation of RTG tasks.

• A Bayesian-based search algorithm is proposed for grasp planning. Compared
with random search algorithms, the proposed search algorithm has a chance to
find a more stable grasp configuration.

• Inspired by human internal model theory, a model-based trajectory generation
method is designed to generate collision-free reaching movement for the robots.

In the rest of this section, Section 3.2 introduces the stable grasp planning approach.
The model-based trajectory generation is presented in Section 3.3. Experiments and
their results are presented in Section 3.4. Finally, the conclusion and future work are
discussed in Section 3.5.

3.2 Stable Grasp Planning with a Learned Quality Met-
ric

To implement RTG tasks effectively, we proposed an optimization framework that con-
tains two main components: a stable grasp planning method and a trajectory generation
method. Figure 3.1 illustrates an overview of the proposed optimization framework
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(a)

(b)

Figure 3.2: Examples of object detection. The texture represents the object identity, and
the bounding boxes approximately denote the location of the object of interest.

for RTG tasks. In this section, we introduce the stable grasp planning approach and
its components, like object detection, the method for evaluating the grasp quality, the
Bayesian-based search algorithm.

3.2.1 Object Detection

Object detection aims not only to recognize the object of interest but also to segment the
object from a table for grasp planning. In contrast to previous work that uses feature ex-
traction methods to detect objects [183], a learning-based detection method is employed
to localize and recognize the object of interest in an unstructured environment.

The proposed object detection model refers to the architecture proposed by Redmon
et al. [140]. Since the public object datasets, like the COCO 1 and VOC 2 dataset,
mainly focus on outdoor scenes instead of the table scene and the household objects, it is
infeasible to directly use these datasets to train the object detection model for RTG tasks.
To meet the requirement of RTG tasks, a Table Object Class (TOC) dataset containing
16 household objects is collected to fine-tune the object detection model further. The
details of the TOC dataset are introduced in Section 3.4.

During the model training phase, the COCO dataset is first used to pre-train the
proposed object detection model. The TOC dataset is used to fine-tune the model further.
The training of the proposed object detection model is detailed in Section 3.4. The object
detection model takes an RGB image as an input and outputs the recognized identity
and bounding box of objects on the table. Figure 3.2 shows the two examples of object
detection.

1http://cocodataset.org/
2http://host.robots.ox.ac.uk/pascal/VOC/
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Figure 3.3: Representation of grasp configuration. (a) The gripper grasps the object
from top to down when d <= dg. (b) The gripper is parallel to the table plane to grasp
the object when d > dg.

3.2.2 Learning Grasp Quality Metric

Evaluating the quality of a grasp configuration is an important aspect of grasp planning.
In this work, a deep neural network is employed to learn a quality function q = Q(g, I)
that predict a quality q concerning a depth image of an object I and a grasp configuration
g.

In this work, the robot uses a parallel-jaw gripper for RTG tasks. Referred to the
two-point grasp representation [57], in the work, the grasp configuration is represented
by g = {x,y,z,θ}, as shown in Figure 3.3. {x,y,z} denote the grasp center point relative
to the camera frame and the angle θ is the rotation angle in the table plane. The dis-
tance between the two points is set to a fixed value in advance according to the gripper
mechanism. The grasp configuration specifies the target pose of the gripper before the
robot grasps an object. During the grasp execution phase, the gripper is kept perpendic-
ular to or parallel to the table plane. The 2D grasp configuration in the image frame is
converted to a 3D grasp pose in the robot frame. The coordinate transformation in RTG
tasks is detailed in Section 3.4.

To measure the performance of grasp configurations, a quality network based on
CNN is trained. Figure 6.4 shows the architecture of the proposed quality network. The
quality network uses four convolutional layers to learn the hierarchical features from
depth images. In each convolutional layer, the input of the layer is first multiplied with
a set of filter and then an activation function (i.e., a rectified linear unit) is applied to
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Figure 3.4: The proposed architecture of the quality network. The first four convolution
layers are used for image feature extraction. The feature points of the feature maps are
concatenated with the grasp configuration and then pass through two fully connected
layers to predict the quality score.

compute the output of the layer. Following the four convolutional layers, three fully-
connected layers are used to combine the learned feature with a grasp configuration for
high-level reasoning. Finally, the last fully-connected layer is passed through a soft-max
function to predict the quality score concerning a queried image and a grasp configura-
tion.

P(y = 1) =
eQ

eP + eQ (3.1)

Where P and Q denotes the two outputs of the last fully-connected layer. At the train-
ing phase of the quality network, the cross-entropy function is used to define the loss
function. The quality network is fitted finally to a probability of quality condition on
an object image and a candidate grasp. The training and evaluation processes of the
proposed quality network are detailed in Section 3.4.

3.2.3 Grasp Configuration Optimization with Bayesian-based Search
Given the trained quality function Q(I,g), the grasp planning problem is formulated as
an optimization problem. The objective is to find the best grasp g∗ to maximize the
quality function Q(I,g).

g∗ = argmax
g∈G

Q(I,g) (3.2)

Due to the complexity of solving the grasp optimization problem, previous work mainly
uses search algorithms to find the feasible grasp configuration for objects [134]. The
Monte Carlo (MC)-based search algorithm is a popular search algorithm, which first
samples randomly a large set of candidate grasps and ranks all the candidate grasps to
find the grasp configuration with the highest quality [112, 134]. However, for a sta-
ble grasp, exploring the quality function directly only is relieve complexity. Therefore,
it is essential to employ a more efficient search algorithm to find the feasible grasp
configuration, in particular, considering the uncertainties. In this work, a search al-
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Figure 3.5: Illustration of the proposed Bayesian-based search algorithm. Firstly, an
initial set of candidate grasps is first sampled from a depth image to form a grasp dataset.
The grasp dataset is used to fit the GP model. Secondly, the local optimum is then
determined by maximizing Eq. 3.6. The quality of the determined grasp configuration
is computed using the trained network. Then Bayesian optimization determines a new
grasp configuration (Green) with a higher quality score for the next query point. The
search procedure is iterated for each optimum until convergence.

gorithm based on Bayesian optimization is introduced to determine the feasible grasp
configuration. Bayesian optimization is a popular global optimization technique for
the black-box function and has been successfully applied in solving non-convex opti-
mization problems [83]. Compared with the MC-based search algorithm, the proposed
Bayesian-based search algorithm does not require maintaining a large set of candidate
grasps significantly.

During the search phase, Bayesian optimization mainly contains two ingredients [128].
The first one is a surrogate model which represent a distribution over the family of the
quality function, and the second one is an acquisition function which select the next
query point to achieve the good sampling performance. Hence, instead of exploring
the quality function directly, the behaviour of the quality function is first learned by the
surrogate model which fitted by a GP model. In the GP model, the distribution of the
quality score qgp is fully specified by a mean function m(g) and covariance function
k(g,g′).

qgp(g)∼ G P(m(g),k(g,g′)) (3.3)

where a zero mean function is assumed, i.e., m(g) = 0. The squared exponential covari-
ance kernel function is defined as the covariance function

k(gi,g j) = σ
2
f exp(−

‖ gi−g j ‖2

2l2 )+σ
2
n δ (gig j) (3.4)

where l is the bandwidth of the kernel, σ2
f and σ2

n are the function and noise variances.
δ (gi,g j) is the Kronecker delta function. These parameters {l,σ2

f ,σ
2
n} are the hyper-

parameters of the GP model, which learned from the training data.
To fit the GP model, an initial set of candidate grasps from the depth image is re-

quired to be sampled. In this work, the sampling method presented by Smith et al. [155]
is adopted to determine the candidate grasps. These candidate grasps Gn = {gi}n

i=1
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and its corresponding quality score Qn = {qi}n
i=1 are formed an initial grasp database

Dn
grasp = {(gi,qi)}n

i=1. Once the GP model is fitted, the quality score qgp(gn+1) for a
new grasp configuration gn+1 given a dataset Dn

grasp follows a posterior distribution.

p(qgp(gn+1)|gn+1,Dn
grasp)∼N (µ(gn+1|Dn

grasp),σ
2(gn+1|Dn

grasp)) (3.5)

where the mean and the covariance function of the posterior distribution are given by

µ(gn+1) = K(gn+1,Gn)K(Gn,Gn)−1Qn

σ
2(gn+1) = K(gn+1,gn+1)−K(gn+1,Gn)K(Gn,Gn)−1K(Gn,gn+1)

After fitting the GP model, we need to determine a new grasp configuration ĝ for
exploration given the grasp dataset Dgrasp at each iteration. To trade-off between the
exploration and exploitation, we define the Upper Confidence Bound (UCB) policy as
the acquisition function aUCB [128]. Hence, the new grasp configuration ĝ is selected as
the next query point by maximizing the acquisition function, as shown in Eq. 3.6. where
β denotes a constant weight that trade-off between the exploration and exploitation.

aUCB(gn+1|Dn
grasp) = µ(gn+1|Dn

grasp)+βσ
2(gn+1|Dn

grasp) (3.6)

Figure 3.5 shows the search process using the proposed Bayesian-based search algo-
rithm. The proposed Bayesian-based search algorithm produces the probability of the
quality of each grasp. That allows us to select the grasp configuration that is robust to
the uncertainties. The pseudo-code of the proposed stable grasp planning approach is
shown in algorithm 1. In the beginning, the object detection model is used to recognize
and segment the object of interest based on the individual instruction and the image of
the table scene. Then, the Bayesian-based search algorithm is used to find the grasp
configuration with the highest probability of success using the quality network.

Algorithm 1 : Stable grasp planning with a learned quality metric
1: Requires:the object detection model, the trained quality network Q(I,g).
2: Acquire an RGB-D image I of the table scene.
3: Receive the human instruction, i.e., the name of object identity.
4: Obtain the segmented image Io of the object o from the image I using the object

detection model
5: Sample an initial set of candidate grasps in Io to form a dataset Dgrasp
6: Repeat
7: Fit the GP model with Dgrasp
8: Search a local optimum:ĝ = argmaxg aUCB(g|Dgrasp)
9: Compute the quality with the quality network:q̂ = Q(I, ĝ)

10: Dgrasp← Dgrasp∪ (ĝ, q̂)
11: until the grasp configuration with highest quality g∗
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3.3 Model-based Trajectory Generation
After determined the grasp configuration for the object, the next step is to generate a
trajectory that drives the end-effector to reach the object. Inspired by human internal
model theory, a model-based trajectory generation approach is designed, as shown in
Figure 3.6. The approach comprises a dynamic model and an inverse model. Moreover,
the trajectory adaptation is to makes on-line movement corrections as so to improve its
performance. This subsection explains the development of these components.

3.3.1 Learning a Forward Dynamical Model for Optimization
Robot forward dynamic model is learned from human demonstrations to encode the
impedance behaviour of the human arm in the Cartesian space. The main assumption
underlying the proposed approach is that the forward dynamical model represents the
expected state transition of the human arm. This assumption is also made by the trajec-
tory representation method introduced by Ijspeert et al. [77]. Therefore, the following
impedance model is defined in Cartesian space to represent human movement behaviour.

Mẍ(t)+Cẋ(t)+K(x− xg) = ft (3.7)

where x(t), ẋ(t), ẍ(t) ∈ R3 are the Cartesian position, velocity and acceleration of the
human hand, respectively. M,C,K ∈ R3×3 are the virtual mass, damping, and spring
matrices, respectively. xg ∈ R3 is the attractor state of the human hand and ft ∈ R3

denotes virtual human controls in the Cartesian space.
Different from the previous methods [77] in which a control policy is directly learned

from human demonstrations, this work learn a forward dynamic model from human
demonstrations that used to predict the state transition. Based on the above defined
human impedance model,the following impedance model is defined in Cartesian space
for robots to represent robot movement behavior.

Mẍ(t)+Cẋ(t)+K(x− xg) = ft +ut (3.8)

where ut ∈ R3 is the virtual robot control input in the Cartesian space and ft ∈ R3 is
the virtual human control that forces the impedance model to match the demonstrator
expectation.

By approximating the human control f , the robot impedance model is able to repro-
duce the internal behaviour of human movement, i.e., the state transition. Furthermore,
the impedance model is used as the forward dynamical model for the robot control. In
this work, a function approximation method is used to compute the non-linear virtual
human control f . The virtual human control f is defined as a linear combination of
Gaussian kernel function.

f (x) =
∑

k
i=1 ωiψi(x)

∑
k
i=1 ψi(x)

(3.9)

where ψi(x) = exp(−(x−ci)
2/2σ2

i ) represents the Gaussian kernel with a center µi and
width σi. ωi is the weight of the Gaussian kernels. Hence, the virtual human control f
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Figure 3.6: Overview of the model-based trajectory generation approach. Combining
a forward dynamic model with the inverse model to produce control inputs for robot
reaching movements. Trajectory adaptation adjusts the inverse model to correct the
movement with respect to new environment.

is fully determined by weights ω . With the recorded human demonstrated trajectories,
finding the weights ω is a supervised learning problem. In this work, the Local Weight
Regression (LWR) algorithm introduced by Ijspeert et al. [77] is used to a expected sum
squared error that computed by using Eq. 3.7 and Eq. 3.9 and then calculate the weights
ω . For further analysis, we rewrite Eq. 3.7 into a state-space form of a discrete time
system.

zt+1 = Azt +B1ut +B2 ft +B3xg (3.10)

with

A =

[
03×3 I3×3

M−1K M−1C

]
,B1 = B2 =

[
03×3

M−1

]
,B3 =

[
03×3

M−1K

]
,

where z(t) = [x, ẋ]T denotes the robot state that includes the position and velocity of the
gripper. 03×3 and I3×3 are the 3× 3 zero and identity matrices, respectively. Further,
the forward dynamic model is written simply as zt+1 = F(zt ,ut , ft). During the robot
motion control, the reference velocity in the joint space is required, which produces the
desired trajectory for the gripper derived from Eq. 3.10. Hence, the inverse kinematics
problem needs to be solved, as defined in Eq. 3.11. For the continuity of the motion
control, the pseudo-inverse of the Jacobian matrix J is used. qt denote the joint angle in
the joint space and ẋt is the velocity in the Cartesian space.

q̇t = (JT J+ γI)−1JT ẋt (3.11)
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3.3.2 Optimization of the Inverse Model

After the forward dynamic model is learned, we further construct and optimize the in-
verse model that produces the robot control u for the reaching movement. In this work,
the inverse model is constructed as a time-varying linear-Gaussian controller that de-
fines the robot control u as a function of the robot state z = [x, ẋ]t corrupted by Gaussian
noise. The probability of the robot control u is modeled as:

p(ut |xt) = N (Kt(xt− xt)+ kt +ut ,Σt) (3.12)

where xt and ut are the robot position and the robot control of the current iteration,
while xt ,ut are sampled from the previous iteration. Kt and kt are the two important
gain matrices of the inverse model that determine the reactive behavior of the robot
movement. Σt is the variance of robot controls. To adapt to the changing environment,
the two gain matrices of the inverse model should be updated according to the new
environment. Therefore, a trajectory optimization method is employed to update the
two gain matrices of the inverse model iteratively for the desired reaching movements.

In this work, the trajectory optimization is considered in an episodic optimal control
setting with episode length T . The Model Predictive Control (MPC) method is employed
to adjust the two gain matrices of the inverse model to generate an optimal control
sequence U = {u0,u1, · · · ,uT}. At each time-step t, a H-horizon state-action trajectory
{Z̃t ,Ũt} is defined as a sequence of state Z̃t = {zt ,zt+1, · · · ,zt+H} resulted from a control
sequence Ũt = {ut ,ut+1, · · · ,ut+H}. H ≤ T denotes the MPC horizon. Based on the
forward dynamic model introduced in Subsect. 3.3.1, the objective is to find a H-horizon
optimal control sequence Ũ∗t at each time-step t by solving the following H-horizon
optimization problem.

argmin
Ũt

t+H

∑
i=t

l(xi,ui)

s.t. zi+1 = F(zi,ui, fi),∀i ∈ t, · · · , t +H

(3.13)

where l(xi,ui) is a user-defined cost function. The forward dynamic model zi+1 =
F(zi,ui, fi) governs the state transition given the robot control ui, the virtual human
control fi and the robot state zi.

In RTG tasks, the cost function for trajectory optimization is designed according to
the following three criteria. (1) Reaching the target pose at the end of an episode, i.e., the
grasp pose of an object in the robot coordinates. (2) The minimum robot controls. (3)
Avoiding the obstacles, i.e., the approximated poses of other objects around the object
of interest. For the criteria 1) and 3), a quadratic cost function is designed as follows

l(xi,ui) = (xi− xd)
T Q1(xi− xd)+ ẋi

T Q2ẋi +uT
i Rui (3.14)

where xi, ẋi ∈R3 are the Cartesian position and velocity of the gripper, respectively. xd is
the desired position of the gripper. xd is the target position when i= T . Q1,Q2,R∈R3×3

are the position cost, velocity cost and input cost weighting matrices respectively.
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In the optimal control problem, the obstacle avoidance problem is mainly addressed
by adding some inequality equations into the optimization problem [51]. To avoid solv-
ing a non-convex optimization problem, the obstacle constraints are designed in this
work as follows

(xi− xo)
T Q1(xi− xo)

√
ρp

2
exp(−

ρp

2
(t− tp)

2)≥ d (3.15)

where xo is the position of an obstacle and d is the allowed shortest distance between
the gripper and an obstacle. Q2 ∈ R3×3 is a weight matrix of the obstacle cost and ρp
is the temporal spread of the obstacle. This soft obstacle constraint enforces trajectories
outside of the obstacles.

Given the learned forward dynamic model and cost function, an iteration Linear-
Quadratic-Regulator (iLQR) method is implemented within the MPC context to perform
trajectory optimization. The iLQR method updates the inverse model by perform two
phases iteratively, i.e., a backward pass and a forward pass, with respect to an initial
condition {z0,uo}, where z0 is set according to the robot initial position and u0 is set
to 0. In the backward pass, the iLQR method compute the Q-value function Q(xt ,ut)
and the value function V (xt) at each time step t. These functions are quadratic and
computing according to the following recurrence:

Qx,t = lx,t +FT
x,tVx,t+1

Qu,t = lu,t +FT
u,tVx,t+1

Qxx,t = lxx,t +FT
x,tVxx,t+1Fx,t +Vx,t+1Fxx,t

Qux,t = lux,t +FT
u,tVxx,t+1Fx,t +Vx,t+1Fux,t

Quu,t = luu,t +FT
u,tVxx,t+1Fu,t +Vx,t+1Fuu,t

Vx,t = Qx,t−QT
ux,tQ

−1
uu,tQu,t

Vxx,t = Qxx,t−QT
ux,tQ

−1
uu,tQux,t

where Qx,t and Qu,t denote the first derivations of Q-value function Q(xt ,ut) with
respect to xt and ut , respectively. Qxx,t ,Qux,t and Quu,t are the second derivations. Vx,t
and Vxx,t are the first and second derivations of the value function V (xt), respectively.
Fx,t and Fxx,t are the first and second derivations of the forward dynamic model zi+1 =
F(zi,ui, fi), respectively.

In the forward pass phase, given the computed Q-value function, the inverse model is
then updated. the optimal update of robot controls is to minimize the Q-value function.

δu∗t = argmin
δut

Q(δxt ,δut) (3.16)

where Q(δxt ,δut) denotes the change in the Q-value function at (xt ,ut) as a result of
small perturbations δxt ,δut . To update the inverse model, the optimization problem is
solved according to [10] and it solution is a linear relationship between δut and δxt ,
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given by
δut = Ktδxt + kt (3.17)

where Kt =−Q−1
uu,tQux,t and kt =−Q−1

uu,tQu,t . Furthermore, the inverse model is further
rewritten as

ut = N (−Q−1
uu,tQux,t(xt− xt)+−Q−1

uu,tQu,t +ut ,Q−1
uu,t) (3.18)

where the variance of robot controls is set to Q−1
uu,t [102]. xt and ut are the robot position

and control sampled from the previous iteration.
By iteratively evaluating and updating the inverse model, the two gain matrices of

the inverse model, i.e., K and k, are found concerning the current environment. Finally,
the robot executes the control inputs U produced by the optimized inverse model to
finish the reaching movement. The Pseudocode of the model-based trajectory generation
approach is shown in Algorithm 2.

Algorithm 2 : Model-based trajectory generation
1: Requires: the weights Q11, Q2 and R in the cost function; the mini-distance d and

the number of Gaussian kernel k; human demonstrated dataset Dtra j.
2: Using the LWR algorithm to approximate human control f with the dataset Dtra j.
3: Build the forward dynamic model żt = f (zt ,ut , ft) for the robot.
4: for iteration k = 1 : K do
5: Reset the robot state.
6: for time-step t = 1 : T do
7: Collect H-horizon state-control trajectory {X̃t ,Ũt} and human control ft:t+H

using Eq. 3.10
8: Update the two gain matrices Kt , kt using Eq. 3.16
9: Compute the new action u∗t using the inverse model.

10: Compute the desired velocity ẋt using Eq. 3.10.
11: Compute the desired joint velocity q̇t using Eq. 3.11
12: end for
13: end for

3.4 Experiments
This section presents a set of experiments to evaluate the proposed optimization frame-
work for RTG movements and discusses the experimental results.

3.4.1 Evaluation of Stable Grasp Planning
Implementation

As introduced in Section 3.2, the TOC dataset that specific for RTG tasks is required.
For this purpose, 16 household objects were chosen to create the TOC dataset, as shown
in Figure 5.11. During the construction phase of the dataset, multiple objects from the
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Figure 3.7: Objects contained in the TOC dataset.

object categories were randomly selected and separately placed on the table. Kinect
depth sensor captured an RGB-D image of the table scene. A total of 1051 images of ta-
ble scenes were collected. Then, objects in each image were labeled with ground-truth
bounding boxes and object identities. To further augment the TOC dataset, the rota-
tion and translation transformations were performed to generate more samples. During
transformations, the corresponding label of each image was also adjusted. The final
augmented TOC dataset resulted in 6306 samples. The TOC dataset was split randomly
into a training set (90%) and a testing set (10%).

Training the proposed quality network required a grasping dataset that contains nu-
merous objects and ground-truth labeled grasps. However, it is difficult to construct such
grasping dataset, due to the lack of object mesh model and the amount of time required
to label the objects. Therefore, an public grasping dataset (Dex-net2.0) proposed by
Mahler et al. [112] was utilized. This grasping dataset contained 6.7 million 3D object
models that labeled with multiple ground-truth parallel-Jew grasps and the correspond-
ing quality. A subset of 190000 samples was extracted from this grasping dataset. A
3-tuples formed each sample: a raw depth image, a ground-truth labeled grasp, and a
quality. Similarly, the subset was randomly split into a training set(90%) and a testing
set(10%), respectively.

The training parameters of the proposed quality network are set as follows: the
quality network was trained for 20 epochs. One epoch performs one forward pass and
one backward pass of all the training examples. The batch size of the training was set
as 64, which defines the number of samples that are going to be propagated through the
quality network. The initial learning rate was 0.005, and an exponential decay with a
decay rate of 0.96 was applied to lower the learning rate as the training progressed. To
avoid the over-fitting problem, a drop-out layer with a probability of 0.5 is applied after
the first fully-connected layer. The Stochastic Gradient Descent (SGD) method with a
momentum rate of 0.9 was employed to optimize the weights of the quality network.

36



3.4. Experiments

Figure 3.8: Examples of discovering an object of interest on a table. Nine household
objects were recognized and localized from multi-objects. The bounding box of each
object gives an approximate location of the object, and the texture of the box denotes its
identity.

Experimental Results and Discussions

The performance of the object detection model is first evaluated. The fine-tuned de-
tection model is compared with the original detection model that trained on the COCO
dataset. During the evaluation phase, the two models predicted the bounding box and
object identity of the object in the testing set. The detection accuracy of the original
detection model and the fine-tuned detection model are 78.6% and 82%, respectively.
After the object detection model is fine-tuned, the detection accuracy obtained a 3.4%
improvement. Moreover, the original model had a low probability of detecting the small-
scale object correctly, like, the pen and the sports ball. The main reason was that the
table scene for RTG tasks was seldom taken into consideration in the COCO dataset.
After fine-tuning the object detection model, its performance was improved and can suit
for the stable grasp planning for the RTG task. Figure 3.8 shows some examples of
object detection.

The prediction accuracy of the proposed quality network is important for grasp plan-
ning. Hence, we use the testing dataset to validate its prediction accuracy. Figure 3.9
shows the prediction accuracy. The quality network finally converged to high accuracy
(about 93%). The high accuracy of the quality network is a necessary condition for
the proposed Bayesian-based search algorithm to find the feasible grasp configuration.
Hence, the trained quality network can meet the requirement of grasp planning.

Next, the performance of the proposed Bayesian-based search algorithm was evalu-
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Figure 3.9: The prediction accuracy of the quality network.

ated. The MC-based search algorithm is a popular search algorithm and has been used in
several existing grasp planning approaches [112, 134]. Hence, the proposed Bayesian-
based search algorithm was compared with the MC-based search algorithm. Figure 3.10
shows the search process of the two different algorithms. In the MC-based search algo-
rithm, a large set of candidate grasps was first sampled from an image and then ranked
using the quality function to find the grasp configuration with the highest quality. From
figure 3.10.a, it can be seen that there were many bad grasps with low quality among the
candidate grasps. Thus, the MC search algorithm only converged to a local optimum
due to its sparse sampling. Bayesian optimization is a sequential algorithm for global
optimization of the quality function. Although the quality function was considerable
complex, the Bayesian optimization explored the behavior of the quality function itera-
tively to find a feasible solution. From Figure 3.10.b, we find that the new grasp with the
higher expected quality than the previously determined grasp is obtained. The search
procedure was iterated for each optimum until convergence. Here, six iterations were
carried out in the search process. Compared with the MC-based search algorithm, the
Bayesian-based search algorithm was able to find the grasp configuration with higher
quality. Hence, the Bayesian-based search algorithm was more efficient than the MC-
based search algorithm. Figure 3.13 shows some examples produced by the proposed
grasp planning method.

To analyze the parameter β , a sensitivity analysis experiment was carried out. In the
experiment, five groups of experiments were implemented, and seven different parame-
ter value β ∈ [1,4] were tested in each group. The maximum quality was collected after
the fifth search step in each group. Figure 3.11 shows the collected maximum quality
under different parameter values in the five groups of experiments. It was observed that
when the parameter β ∈ [2.5,3], it was more likely to get the maximum quality score.

Robotic grasping in a cluttered environment is a challenge. The performance of the
proposed grasping planning approach in a cluttered environment is also evaluated. In
experiments, the clutter levels varied from mild to complex. Figure 3.12 shows the re-
sults of the grasp planning for three different objects considering different clutter levels.
It can be seen that the proposed planning method performs well in mild clutter environ-
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Figure 3.10: A comparison of the results from two different search algorithms. (a) The
MC-based search algorithm, (b) the Bayesian-based search algorithm.
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Figure 3.11: The collected maximum quality under different parameter values
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Figure 3.12: Examples of grasp planning in a cluttered environment.

ments. However, in the complex, cluttered environment, the performance of the grasp
planning decreases.

The computing time was another ability of the search algorithm. The MC-based
search algorithm takes about 3.2 seconds at each time. Bayesian-based search algorithm
takes a long time due to the need to solve an optimization problem. A longer search
time helped to find a more robust grasp configuration. However, the time required in
the Bayesian-based search algorithm could be reduced by enlarging the initial grasping
dataset.

Different from the approach introduced in [112, 134] that made a strong assumption
that each object contains a single grasp configuration, the proposed approach searches
the grasp configuration with the highest quality from the entire grasping space. More-
over, the Probability characteristics of the Bayesian-based search algorithm determines
the predicted grasp quality priorities the uncertainty in the prediction. Although the
proposed approach successfully finds the feasible grasp, the proposed algorithm still
suffered a shortfall that an initial grasp dataset sampled randomly from images was
required as a prior. However, the initial grasp dataset usually contained multiple bad
grasps that decreased the convergence speed of the search algorithm. The grasp sam-
pling method is important for grasp planning and is the authors’ future consideration.

3.4.2 Evaluation of Trajectory Generation

Implementation

To learn the forward dynamic model for the robot, 10 demonstrations of the reaching
movements were implemented by the human. As discussed in subsection 3.3.1, the
forward dynamic model of the robot was defined by the impedance control Eq. 3.8,
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Figure 3.13: Examples of grasp planning. Ten grasp results for ten objects from the
proposed object categories were shown. The red line denoted the searched grasp con-
figuration.

where M = 2I3×3, C = 25I3×3 and K = 156.5I3×3. The virtual human control f was
approximated by the demonstrated data and the number of Gaussian kernel was selected
as k = 20.

During the trajectory adaptation phase, the inverse model was optimized iteratively
by using the MPC method. The control objective was to reach the target position and
to avoid a collision with other objects. Hence, the initial weights of the cost function
were set as follows: (1) For each waypoint: Q1 = 5I3×3, Q2 = I3×3 and R = 0.5I3×3. (2)
For obstacles: Q1 = 1000I3×3, Q2 = 0.5I3×3 and R = I3×3. (3) For the end-point of the
trajectory: Q1 = 100I3×3, Q2 = 10I3×3 and R = 03×3.

Experimental Results and Discussions

The proposed trajectory generation approach was compared two trajectory generation
approaches, i.e., the Dynamic Motor Primitives(DMPs) method introduced in [77], and
the sampling-based planning method implemented in the MoveIt! software frame-
work [160]. Figure 3.14(b) shows the example scene, where the robot was controlled to
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(a)

(b)

Figure 3.14: Comparison of the three different trajectory generation methods. (a) The
trajectories produced by the three different methods, (b) The table scene where the robot
was controlled to reach the apple. Other objects are considered as obstacles.

pick up the apple on the table. Given the new target pose, i.e., the grasp pose of the apple
and the pose of other objects, the trajectories were generated using the three different
approaches, as shown in Figure 3.14(a). The blue curve represents the demonstrated tra-
jectory. The green curve represents the trajectory generated by the DMPs method. The
DMPs could generalize over different target pose from human demonstrated movements.
However, it was unable to avoid the multiple obstacles in the reaching tasks. Here, the
trajectory generated by the DMPs collides with the bottle. The black curve denotes
the trajectory generated by the sampling-based planning method. This trajectory was
searched in a pre-defined collision-free space. Hence, the planning scene was required
to be reconstructed before the trajectory planning. In this way, the resulted trajectory
was collision-free. However, this method failed easily due to clutter or missing ob-
ject information. Moreover, this trajectory was less efficient than human demonstrated
movement. The red curve represents the trajectory produced by the proposed approach.
First, the proposed approach was able to reproduce the natural movement of humans.
Similar to the DMPs method, the proposed approach could generalize over different tar-
get positions from human demonstrated movements. Different from the DMPs method,
the proposed approach considered the constraints of the environment and adapted to the
new situation. Second, without constructing a planning scene, the proposed approach
effectively avoids multiple obstacles by adding constraints.

Next, we validate the adaptability of the proposed approach. The MPC method is
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Figure 3.15: Comparison of two different trajectory optimization approaches. The tra-
jectory produced by the DMPs has used a baseline.

employed to optimize the inverse model to adapt to the new environment. For adapting
to a new environment, most of learning from human demonstration approaches em-
ploy optimization methods, like reinforcement learning, to optimize the parametrized
control policy [88]. A comparison between the two different trajectory adaptation ap-
proaches was performed. The Policy Learning by Weighting Exploration with the Re-
turns (PoWER) introduced by Kober et al. [88] was used to optimize the DMPs policy
learned from human demonstrations. Figure 3.15 shows the two optimized trajectories
for the reaching task. It can be seen that the two trajectories reach the target position suc-
cessfully. However, there were three differences between the two approaches. First, the
proposed trajectory adaptation approach required 2 iterations, while the policy search
method required 200 iterations to ensure convergence. Typically, the model-free pol-
icy search method required a longer computational time than the model-based method.
Hence, the proposed model-based trajectory generation method adapted to the new sit-
uation. Second, the proposed approach on-line improves trajectory, while the policy
search method only optimized one time in an episode. The proposed approach was
more similar to the humans who maintain a forward model. Third, the policy-search
method optimized all the policy parameters. Hence, its resulted trajectory was quite
different from the trajectory generated from human demonstration. While the proposed
approach almost maintained the natural movement behavior of humans.

3.4.3 Real-world Robotic Experiment

Implementation

The proposed learning framework was further evaluated in a real-world experiment.
Robotic experiments were performed with a 7 DOF Light Weight KUKA robot arm 3

3https://www.kuka.com/de-de/produkte-leistungen/robotersysteme
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Figure 3.16: Setup of the real-word robotic experiment.

equipped with a WSG 50 parallel-jaw gripper 4, as shown in Figure 3.16. Kinect depth
sensor was mounted on the top of the table and used to capture the RGB-D image of the
table scene. In the RTG tasks, the target pose was the grasp pose of the object of interest
in the robot frame. The poses of the obstacles were computed approximately from the
other object on the table. Figure 3.17 shows the coordinates transformation of frames in
RTG tasks. Given the dynamic transformation, a grasping pose in the image frame was
transformed into a target pose in the robot frame by a sequence of transformation:

Tro = TrtT−1
ct Tcog (3.19)

where Tro is the target grasp configuration in the robot frame Or. Trt is the transfor-
mation between the robot frame Or and the tag frame Ot , which was initially designed by
users. Tct is the transformation between the tag frame Ot and the camera frameOc, which
was real-time detected by the Kinect depth sensor. Tco is the projection transformation
between the 2D image frame and the 3D camera frameOc. g is a grasp configuration
produced by the proposed grasp planning approach.

Experimental Results and Discussions

Figure 3.18 shows three consecutive snapshots which demonstrate the implementation
process of RTG tasks. During the implementation of RTG tasks, multiple objects were
randomly selected and separately placed in a random position on the table. The human
then inputted the object identity hoping to be grasped into the robot. With the captured
RGB-D image of objects, the results of object detection, grasp planning, and trajectory
generation were obtained sequentially by using the proposed optimization framework.
Lastly, the robot was controlled to implement the reaching movement and grasp opera-
tion.

To validate the effectiveness of the proposed optimization framework, the above
described RTG task was executed three times for each object contained in the TOC

4https://www.weiss-robotics.com/en/produkte/gripping-systems/performance-line-en/wsg-50-en/
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Figure 3.17: Coordinate transformation of the experimental setup in RTG tasks.

Table 3.1: The overall performance of the proposed optimization framework.

Component Success rate

Object detection 95.8%(46/48)
Robot grasping operation 81.2%(39/48)
Robot reaching movement 100%(48/48)

dataset. At each time, objects were selected and placed at a random position on the table.
As a result, 48 RTG tasks were implemented. The experimental results are detailed
in Table 3.1. The results show 46 successful object discoveries out of the 48 trials
(95.8%). The two failures were due to the recognition error of the object identity. The
grasp planning results are 38 successes out of the 48 trials (81.2%). Parts of the failures
were due to the infeasible of the detected grasp configuration. The other failure case
was due to the object drop out of the gripper during lifting. There were two failures
while grasping the bowl, although the detected grasp configuration was feasible. That
was because the grasp force was not enough, or the object surface was slippery. The
executed trajectories in all 48 trials avoided the obstacles. The experimental results show
that the proposed approach can efficiently implement the RTG task in an unstructured
environment.

From the experimental results, it can be seen that the proposed approach can find
feasible grasp configurations for objects grasping in RTG tasks. The model-based tra-
jectory generation method enables the robot to move to the target subject to constraints
successfully. However, the proposed grasp planning approach still suffers a shortcom-
ing. The planned grasp may fail due to the slippage or the irregular shape of the objects,
like the bowl. Hence, the grasp closure representing a kind of equilibrium was only
a necessary but not sufficient condition for a stable grasp. Bohg et al. [12] pointed out
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(a) (b) (c)

Figure 3.18: Three consecutive snapshots during the execution of an RTG task. (a) The
object of interest, i.e., the apple, was recognized and localized. (b) A grasp configuration
was determined for the apple, and the robot grasps the apple. (c) The robot picks up the
apple.

that the stability of grasp can only be defined when considering the grasp as a dynamical
system. Hence, it is preferred to employ tactile sensors for grasp adaptation to prevent
slippage and increase the stability of the grasps, which will be addressed in future work.

3.5 Conclusion and Future Work
In this work, for stable implementation of RTG tasks, an optimization framework is pre-
sented, which combines stable grasp planning with trajectory generation. The proposed
optimization framework covers the complete path from perception to decision-making
in RTG tasks. By using this framework, the object of interest is first localized and
recognized by using a proposed object detection model. The Bayesian-based search al-
gorithm is used to find the grasp configuration with the highest grasp quality computed
by a trained network. Then, a model-based trajectory generation approach inspired by
human internal model theory is presented to produce robot controls for reaching move-
ments. The effectiveness of the proposed optimization framework is demonstrated and
validated in the comparative analysis and on real-world experiments. Results demon-
strated that the proposed stable grasp planning method could effectively find the feasible
grasp configuration. Moreover, the proposed grasp planning method does not rely on an
object mesh model and an accurate pose estimation. The experimental results demon-
strate that the proposed optimization framework enables the robots to implement the
RTG tasks stably.

Further improvements can be achieved from the following two directions: first, this
work only uses the object identified as the semantic information in grasp planning. For a
more practical application, it is natural to incorporate the object affordance. Second, de-
termining a possible grasp configuration in multi-finger grasping is more complicated,
due to the mathematical complexity of multi-finger gripper. The multi-finger grasp plan-
ning requires considering not only the geometry constraints of an object but also kine-
matics and dynamics of the gripper and contact models between the fingers and the
objects. The authors plan to use deep learning techniques to address the multi-fingered
grasp planning problem in the future.
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Attention Based Visual Analysis for
Fast Grasp Planning

4.1 Introduction

Imagine a toddler is in front of a tabletop with several objects, very likely he or she
would interact with those objects by trying to pick up the red mug either by the han-
dle or the rim or trying to grasp the green ball. The ability to rapidly extract relevant
information from visual input is an important mechanism and natural behavior for hu-
mans to conduct various activities. The majority of visual analysis approaches for grasp
planning with multi-fingered robotic hands follow a pipeline containing object local-
ization, recognition, and representation [152]. For most existing approaches, finding a
target object in a scene is the first step for robotic grasping. However, reliable object
detectors such as deep-learning based approaches require vast amounts of training data,
as well as suitable hardware to achieve a reasonable time performance for robotic ap-
plications, while handcrafted feature-based approaches cannot handle the dynamics in
real-life scenarios.

Many saliency approaches have been proposed in the last two decades. Traditional
models are usually based on the feature integration theory (FIT) [163] to compute sev-
eral handcrafted features which were fused to a saliency map (e.g., the iNVT [79, 174]
and the VOCUS system [47]). Frintrop et al. [48] proposed a simple and efficient system
which computes multi-scale feature maps using Difference-of-Gaussian (DoG) filters
for center-surround contrast and produces a pixel-precise saliency map. Deep learn-
ing based saliency detection mostly relies on high-level pre-trained features for object
detection tasks. Those learning-based approaches require massive amounts of training
data [73, 106, 127]. Kummerer et al. [115] used an AlexNet [91] pre-trained on Ima-
genet [38] for object recognition tasks. The resulting high-dimensional features are used
for fixation prediction and saliency map generation. Since most of the deep-learning
based approaches have a central photographer bias which is not desired in robotic ap-
plications, we choose to use a handcrafted feature based approach which gathers local
visual attributes by combing low-level visual features [48].

Grasp type and grasp attention point convey useful information for planning the con-
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figuration of a robotic hand. In the computer vision community, most previous works
sample human hand pose with a motion tracking system and use it to detect hand grasp
types [145, 17]. In the robotics community, few previous approaches try to integrate
grasp type detection into robotic grasp planning [64, 166]. In those works, only two
kinds of grasp types, i.e., power and precision [125], are considered, which is not suf-
ficient for exploring the potential of multi-fingered robot hands. Moreover, the desired
grasp type is determined manually for robotic hands. In terms of visual analysis, there
are approaches which use visual analysis to define heuristics or constraints for grasp
planning [69, 3, 166]. In comparison to those approaches, there are three main differ-
ences: (1) our approach learns features directly from raw sensor data, while most of the
previous approaches use handcrafted features. (2) six grasp types are considered while
the previous approaches only consider two grasp types. (3) Most of the previous work
only focuses on visual analysis by using computer vision techniques. This work uses the
results of the visual analysis for grasp planning with multi-fingered robotic hands. The
effectiveness of the proposed framework is evaluated in a real-world object grasping
experiment.

Information extracted from the visual analysis can be used to define heuristics or
constraints for grasp planning. Previous grasp planning methods can be divided into
geometric-based grasping and similarity-based grasping. In geometric-based grasp-
ing [69, 96, 166], geometric information of the object is obtained from color or depth
images, and it is used to define a set of heuristics to guide grasp planning. Hsiao et al.
proposed a heuristic which maps partial shape information of objects to grasp configu-
ration [69]. Aleotti et al. [3] proposed a 3D shape segmentation algorithm which firstly
over segments the target object and candidate grasps are chosen based on the shape of
the resulted segments [96]. In similarity-based approaches [65, 34, 90], the similarity
measure is calculated between the target object and the corresponding object model from
human demonstrations or simulation. The candidate grasp is then queried from datasets
based on similarity measures. Herzog et al. [65] defined an object shape template as the
similarity measure. This template encodes heightmaps of the object observed from var-
ious viewpoints. The object properties can also be presented with semantic affordance
maps [34] or probability models [90, 92]. Geometric-based approaches usually require
a multiple-stage pipeline to gather handcrafted features through visual data analysis.
Due to sensor noise, the performance of the geometric-based grasping is often unstable.
Meanwhile, similarity-based methods are limited to known objects and can not handle
unknown objects. In contrast to previous methods, our method increases grasp stability
by extracting more stable features from visual data using deep networks. Meanwhile, it
can handle unknown objects.

In this work, we address the problem of visual analysis of natural scenes for grasping
by multi-fingered robotic hands. The objective is to compute grasp-relevant information
from visual data, which is used to guide grasp planning. We proposes attention based
visual analysis framework which directly locates sub-regions of objects as regions of in-
terest (ROIs) and generates grasp-relevant information from visual data inside the ROIs
for grasp planning with a multi-fingered robotic hand. In particular, a computational
attention model is used to process visual data and outputs a pixel-precise saliency map,
from which salient regions are selected for further processing. Inside those salient re-
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Figure 4.1: The proposed attention based visual analysis framework. With an input RGB
image, an ROI is selected using the saliency map produced by a Saliency detection
model. Inside the ROI, grasp type and grasp attention point are computed based on
the six probability maps produced by the Grasp type detection network. The obtained
information containing grasp type and grasp attention point is then used as a prior to
guiding grasp planning. The planned grasp is executed by a robotic hand to verify its
quality.

gions, the grasp type and grasp attention point are predicted by a network. The grasp
attention point indicates the location on the object surface where the robot plans the
grasp. This information is used to guide grasp planning with a multi-fingered robotic
hand. A new Grasp Type Dataset (GTD) which considers six commonly used grasp
types and contains 12 household objects is also presented.

In the rest of this section, Section 4.2 introduces the proposed attention-based visual
analysis framework. Grasp planning with grasp-relevant information is described in
Section 4.3. Experimental results are presented in Section 4.4. Finally, the conclusion
and future work are discussed in Section 4.5.

4.2 Attention Based Visual Analysis
We proposed visual analysis framework contains two main components, a computational
visual attention model which gathers low-level visual features and selects ROIs for fur-
ther processing, and a grasp type detection model which learns higher-level features and
produces grasp-relevant information in the ROIs. Figure 4.1 illustrates an overview of
the proposed attention-based visual analysis framework.

4.2.1 Computational Visual Attention Model

The pixel-wise saliency map is computed using the computational visual saliency method
VOCUS2 [48]. In principle, any saliency system which has a real-time capability and
does not have a center-bias could be used. Center bias gives preference to the center
of an image, which is not desired in robotics applications. Unfortunately, this excludes
most deep-learning based approaches since they are usually trained on large datasets
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(a) Input RGB image (b) Pixel-level saliency map (c) Mean shift clustering (d) Output of visual attention

Figure 4.2: Saliency region detection with visual attention model. (a) The input RGB
image, (b) the pixel-wise saliency maps, (c) the result after clustering, (d) the output.
The red rectangle denotes the selected ROI, which has the highest average saliency
value. The blue rectangles denote the candidate ROIs for objects. The numbers are
indexing for bounding boxes.

of Internet images, which mostly have a central photographer bias. Therefore, the
VOCUS2 system was chosen, which belongs to the traditional saliency systems with
excellent performance on several benchmarks. In VOCUS2, an RGB input image is
converted into an opponent-color space, including intensity, red-green, and blue-yellow
color channels. DoG contrasts are computed with twin pyramids, which consist of two
Gaussian pyramids - one for the center and one for the surround of a region - which
are subtracted to obtain the DoG contrast. Finally, the contrast maps are fused across
multiple scales using the arithmetic means to produce the saliency map.

Given the produced saliency map, the pixels of the saliency map are clustered using
Mean Shift [30] to form saliency regions. The salient region, with the highest average
salient value, is selected as the ROI, and it is passed to the next stage for further process-
ing. Figure 4.2 shows an example of the saliency region detection. The visual attention
model takes the RGB image shown in Figure 4.2(a) as input and produces the saliency
map shown in Figure 4.2(b). After clustering, the desired saliency region is determined,
as shown in Figure 4.2(c).

4.2.2 Grasp Type Detection

Grasp type is a way of representing how a hand handles objects. Typically, the robotic
grasps are divided into power and precision grasp [125]. Power grasp uses the fingers
and palm to hold the object firmly, while precision grasp only uses fingertips to stabi-
lize the object. However, this two-category grasp taxonomy is not sufficient to convey
information about hand configuration. Feix et al. [46] introduced a GRASP taxonomy
in which 33 different grasp types used by humans are presented. All the 33 different
grasp types are classified into four groups: prismatic power, circular power, intermedi-
ate, prismatic precision, and circular precision. Considering the kinematic limitations of
the robotic hand as well as Feix’s GRASP taxonomy, we extend the above two-category
grasp taxonomy into six commonly used grasp types: large wrap, small wrap, power,
pinch, precision and tripod. Figure 4.3 illustrates the proposed grasp taxonomy.
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Large wrap Small wrap Power Pinch Precision Tripod

Figure 4.3: The proposed six commonly used grasp types.

In order to detect grasp types directly from visual data, we refer to the architecture
proposed by [23]. This architecture is based on a deep convolutional neural network
(VGG-16) [154]) and uses atrous convolution for signal down sampling. Since an object
may support multiple feasible grasp types [46], the grasp type detection is a multi-label
detection. Hence, we modify the output layer of the network and do not use the addi-
tional fully connected conditional random field. Corresponding to the six grasp types,
the modified network predicts six pixel-wise probability maps with the same resolution
as the input image. In order to train the modified network for grasp type detection, this
work introduces a grasp type detection (GTD) dataset, in which 12 household objects
are used, and all the instances are annotated following the proposed six grasp types. The
details of the GTD dataset are provided in Section 4.4.1. This work uses a cross-entropy
function to define the loss function which is defined as

L(θ) =
h

∑
i=1

w

∑
j=1

∑
s∈S

logP(ys
i, j|I,θ) (4.1)

where ys
i, j ∈ {0,1} indicates if the pixel yi, j belongs to the grasp type s ∈ S or not.

S = [1,2, · · · ,6] is the index of the six grasp types. I denotes an RGB image with height
h and width w. θ is the weight of the proposed detection model.In this work, the cross-
entropy based on the sigmoid function is defined in Eq. 4.2, where f is the trained
network.

P(ys
i, j|I;θ) = 1/(1+ exp(− f (ys

i, j|I;θ))) (4.2)

Given an RGB image I with height and width h×w as input, our network outputs
pixel-wise probability maps P(Y |I) for each grasp type s∈ S, where Y = {ys

i, j}i=1:h, j=1:w
. The predicted probability of pixel {[i, j]i=1:h, j=1:w} belonging to the grasp type s is de-
noted by ys

i, j. With the pixel-wise probability maps, the probability P(Y s|O) is computed
by summing the predicted probabilities of all the pixels inside the ROI O (defined in Sec-
tion 4.2.1), as shown in Eq. 4.3. The grasp type with the highest probability is used as
the final grasp type s∗.

P(Y s|O) =
1

hO×wO

hO

∑
i=1

wO

∑
j=1

P(ys
i, j|xi, j),∀s ∈ S. (4.3)

After determining the best grasp type s∗, we need to localize the grasp attention
point for the grasp type s∗ inside O. In order to find a stable grasp attention point p,
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Figure 4.4: The detection process of grasp type and grasp attention point. Six pixel-wise
probability maps corresponding to the six grasp types is first computed from the grasp
type detection network. Given the object location computed by the visual attention
model, these probability maps are clustered. Then the predicted probability of each
grasp type and the location of its grasp attention point are computed. Finally, the grasp
type with the highest probability and its grasp attention points are determined.

subregions with higher predicted probabilities are clustered. Mean Shift [30] is used to
find a grasp attention point p in O. Multiple clusters with multiple centers are produced,
and the cluster center with the highest probability is selected as the grasp attention point
p. Finally, the grasp relevant information Ω = {O,s∗, po}, i.e., ROI O, the grasp type
s∗ and the grasp attention point po, are generated from the proposed visual analysis
framework. Figure 5.5 illustrates the detection process of grasp type and grasp attention
point.

4.3 Grasp Planning with Grasp-relevant Information
The objective of grasp planning is to find the grasp configuration for a stable grasping.
Hence, grasp planning in this work is formulated as an optimization problem. A search-
based algorithm exploiting grasp-relevant information Ω generated from the proposed
visual analysis framework is proposed to find the grasp configuration with high grasp
quality. In this work, the search of the feasible grasp configuration is processed from
two steps: (1) the formation of the initial grasp configuration based on the grasp-relevant
information, (2) the determination of the feasible grasp configuration by the local trans-
formation.

In the first step, we take advantage of the grasp-relevant information Ω = {o,s∗, po}
to determine the initial grasp configuration and the number of the required finger. The
initial grasp configuration of the robotic hand is defined as follows:

1. The number of needed fingers is selected according to the grasp type s∗ and the

52



4.3. Grasp Planning with Grasp-relevant Information

gripper;

2. The grasp center ph is set to be a point that deviate a initial offset dinit from the 3D
grasp attention point p′o which is obtained from 2D grasp attention point p0 using
frame transformation.

3. The hand palm is controlled to approach the grasp attention point.

Using a multi-fingered robotic hand to grasp objects typically requires the relative pose
between the object and the robotic hand, as well as the hand joint configuration. Due
to the high dimensionality of the robotic hand and partially observably of objects, it
is challenging to find the optimal contact points on the object surface to form a grasp
configuration. In this work, we exploit the concept of Opposition introduced by [35] to
execute the grasp configuration. The robotic hand is controlled to reach the target pose
and close the two-finger groups to grasp an object.

Next, A local search method is used to find the grasp configuration with the highest
quality in a grasp search space. Due to the existence of uncertainties, the defined pre-
grasp configuration may fail to grasp objects. Hence, a local search is used to find the
grasp configuration with higher quality. During searching, the pre-grasp configuration
is used as the initial grasp configuration. We sample a set of candidate grasps with
coordinate transformation. The search space is a 4 dimensional space, S = {d,α,β ,γ},
where d = dinit±∆d is the offset of the 3D grasp attention point p′o. ∆d is a pre-defined
searching range. {α,β ,γ} denote the searching ranges of the rotate angles in the X ,
Y and Z axes of the hand coordinate respectively. During the search process, all the
candidates are evaluated by using force-closure method [159]. The force-closure method
has been widely used in grasp planning, which measures the grasp quality through the
evaluation of certain geometric relations of the contact points. A grasp is force-closure
if a hand can exert arbitrary force on the grasped object through a set of the contact
point. After the grasp quality measure, the grasp configuration with the highest quality
is chosen for object grasping. Finally, during executing candidate grasps, the fingers
move to contact with the object surface and hold it. The robotic arm lifts the object to
finish the grasping task.

Algorithm 3 shows the process of the grasp planning procedure.

Algorithm 3 : Attention-based visual analysis for grasp planning
1: Requires: a computational saliency model, a grasp type detection model
2: Acquire an RGB image I of the table scene.
3: Visual analysis framework returns the grasp-relevant information Ω = {O,s∗, po}.
4: Using the information Ω to initialize the pre-grasp configuration of the hand.
5: Using a local search method to find a list of feasible candidate grasps.
6: Find the grasp configuration with the highest quality from all the feasible grasps
7: Execute the grasp operation by using robotic hands.
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(a) 12 household objects (b) original image (c) image labeled with

 large wrap 

(d) image labeled with 

precision 

Figure 4.5: Illustration of GTD dataset. (a) Twelve household objects contained in the
GTD. (b) The original image. (c) A labeled image with large wrap. (d) A labeled image
with precision. Pixels that belong to a grasp type are marked with color and others are
background

4.4 Experiments

4.4.1 Dataset and Implementation

Existing datasets, such as the Yale human grasping datasets [14] and the UT grasp
dataset [15], are used for the analysis of human hand behavior. These datasets are
not suitable for grasp planning with robotic hands. Hence, we introduce a new grasp
type detection (GTD) dataset specified for robot grasping. The GTD dataset contains
RGB-D 1 images and ground-truth grasp type labels. There are 11000 annotated images
with resolution 640×480. In this dataset, six commonly used grasp types were consid-
ered, and 12 household objects with various shape attributes were chosen, as shown in
Figure 4.5(a). A MATLAB GUI is designed to annotate grasp types on collected data
manually. According to the GRASP taxonomy defined in [46], object parts in images
were labeled with different grasp types which enable multi-label detection, as shown in
Figure 4.5(b-c). The GTD dataset was split randomly into a training set (90%) and a
testing set (10%). The training parameters of the grasp type detection model are set as
follows. The initial learning rate was 0.00001, and a step delay policy is used to lower
the learning rate as the training progresses. Stochastic gradient descent (SGD) method
with a momentum rate of 0.9 is used.

4.4.2 Evaluation of Attention-based Visual Analysis

We first evaluated the accuracy of the grasp type detection on the proposed GTD dataset.
For comparison, another network based on the Segnet architecture introduced in [5] is
trained and evaluated. Segnet has an encoder-decoder architecture and is widely used
for image segmentation. For pixel-wise multi-label detection, we modified the output
layer of the Segnet network as introduced in subsection 4.2.2. The same training and
testing procedures are used for both networks described in 4.4.1. Table 4.1 shows the

1We use only RGB data in this work, and plan to exploit the depth data in the future.
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Figure 4.6: The confusion matrix of the six grasp types.

Intersection-over-union (IoU) of the two networks. Our approach achieves a higher
average detection accuracy and outperforms the segnet-based network by 10%.

Table 4.1: Performance over GTD dataset (IoU).

L-wrap S-wrap Power Pinch Precision Tripod Average

Ours 0.63 0.58 0.71 0.56 0.61 0.52 0.60
Segnet-based 0.51 0.56 0.41 0.61 0.46 0.48 0.50

A confusion matrix (Figure 4.6) is used to evaluate the overall quality of detected
the grasp type. The network predicts six labels corresponding to six grasp types for
each pixel. Each row of the matrix shows the predicted probabilities of each grasp
type for one ground-truth label. It shows that the proposed method can predict correct
grasp types with the highest probability since the diagonal elements have the highest
values. It is worth mentioning that several off-diagonal elements also have rather high
values. For example, the prediction results for Power type also show a high probability
for Precision, which means those two grasp types are easily mislabeled by the proposed
method. The reason is that those two types have a high correlation and share many
similar characters. Hence, the confusion matrix can also help to discover the similarity
among grasp types.

4.4.3 Grasp Planning in Simulator
The proposed visual analysis framework was further evaluated in object grasping tasks.
We implemented a grasping simulation based on the V-REP 2, which is a physical sim-
ulator that supports rapid verification, to conduct this experiment. The grasping ex-

2http://www.coppeliarobotics.com/
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periments were performed on a Shadow Dexterous Hand 3, a five-fingered robotic hand
which is an approximation of a human hand. During simulations, the hand configuration
and the contact force between the Shadow Dexterous Hand and objects were simulated
in real-time, which were used for measuring the qualities of candidate grasps.

In order to evaluate the performance of the visual analysis framework for grasp plan-
ning, we compared the proposed planning method with the method proposed by [172].
Veres et al. used a method which randomly samples a set of candidate grasps on the
normal of the object surface and then ranked all the candidates to find the best one.
Since there is no grasp type provided in this method, we use the commonly used power
type for the Shadow Dexterous Hand to grasp objects. In this comparison experiment,
six objects were selected, as shown in Figure 4.7. Ten trials are tested for each object.
For each trial, an object is placed on the tabletop, and a depth sensor is used to capture
the RGB-D image of the table scene. Then, the grasp configuration of the Shadow Dex-
terous Hand is planned in the simulator. The maximum number of search attempts for
both methods is limited to forty. For each object, the success rate of object grasping and
the average number of search attempts needed for finding a feasible grasp are shown in
Table 5.2.

Table 4.2: Performance of the proposed grasp planning.

Ours Veres et al. [172]
object success rate search attempt success rate search attempt

tomato soup can 8/10 2.5 8/10 20
tuna fish can 9/10 8.7 5/10 23.6

banana 9/10 2.1 5/10 21.6
apple 9/10 2.5 8/10 27.5

orange 8/10 2.8 7/10 19.4
chips can 10/10 2.7 10/10 11.4

Average 88.3% 3.5 71.6% 20.5

It can be seen that the proposed method obtained a higher success rate of grasp-
ing than the random search method. Moreover, the number of search attempts by the
proposed planning method is only 17.0% of the search attempts by the random search
method. It shows that the grasp-relevant information generated helps to reduce the
search time needed for grasp planning and to find the feasible grasp configuration in
the search space more accurately. It is worth mentioning that the random search method
with a power type quickly fails at grasping some small objects, such as the banana and
the tuna fish can. This limitation does not occur in the proposed planning method since
a feasible grasp type is predicted before grasping. Hence, for multi-finger robotic hands,
objects with different shape attributes should be handled with different grasp types.

3https://www.shadowrobot.com/products/dexterous-hand/
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Figure 4.7: Examples of object grasping by the Shadow Dexterous Hand in the simula-
tor.

(a) Barret Hand (b) Baxter gripper

Figure 4.8: Examples of object grasping by the Barrett hand and the Baxter gripper.

We also noticed that there are several failures of object grasps using the proposed
planning method. The main reason for the failures is because the predicted grasp at-
tention point on the object surface is too close to the tabletop. Since the environmental
constraints are not considered in this work, the Shadow Dexterous Hand will collide
with the table and fail to grasp the object. In the future, it will be beneficial also to
consider the environment and task constraints.

In order to further evaluate the generalization of the proposed framework, we also
tested our framework with a 3-fingered Barrett hand 4 and a 2-fingered Baxter gripper 5,
Figure 4.8 shows some results of object grasping. In this experiment, the 2-fingered
Baxter gripper only used the pinch type to grasp objects. On average, Barrett’s hand has
90% success rate with four search attempts while Baxter gripper has 100% success rate
with 1.4 search attempts.

To further verify the effectiveness of the grasp planning with prior information, we
compared with the work from [29]. This work searches a grasp configuration for dex-
terous robotic hands in a hand posture subspace, which is determined by using grasp
synergies. In their work, the grasp planner only results in a power type, which means
their grasp planner may fail to grasp small objects. Their planning method needs a long
search time for finding a feasible solution, with over 70,000 attempts for each plan, and

4https://www.barrett.com/about-barrethand/
5https://www.rethinkrobotics.com/baxter/
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Input image
Result of visual 

attention

Result of grasp 

type detection
Ouput

Power

L-Wrap

Tripod

Precision

Figure 4.9: Example of the visual analysis on various objects. The first column is the
input RGB image. The second column is the pixel-wise saliency map, in which the
red rectangle denotes the selected ROI. The third column is six pixel-wise probability
maps. The images from top left to bottom right corresponds to the six grasp types( large
wrap, small wrap, power, pinch, precision and tripod).The cross in the probability maps
denote the cluster centers which is considered as the grasp attention point. Last column
is the output.

an average running time of 158 seconds [29]. Compared with their work, our method re-
quires fewer search attempts and enables the robotic hand to grasp objects with different
grasp types.
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Kinect 

UR5 arm

Robotic 

hand

Figure 4.10: Experimental setup with a UR5 arm and a three-fingered robotic hand.

Figure 4.11: Eight different objects for robotic experiments.

4.4.4 Real-world Robotic Experiment

The robotic experiments were conducted using the six DOF UR5 robot 6 and the three-
fingered Robotiq gripper 7. Figure 4.10 shows the experimental setup for the object
grasping tasks. A Kinect sensor was used to capture the RGB-D image of the table
scenes. Eight objects selected from YCB object set [20] were used for the evaluation,
as shown in Figure 4.11. It contains six unknown objects comparing to our dataset
(Figure 4.5). In the object grasping experiments, we adopted the following procedure.
Multiple objects were randomly selected and placed on the table. The proposed visual
analysis framework took the image captured by Kinect as input and outputted the grasp-
relevant information. Then, the grasp configuration was planned by taking advantage of
this computed information and sent to the UR5 robot for grasping.

Figure 4.9 shows the process of attention based on visual analysis. Given an input
RGB image, the ROI denoted by a rectangle in the saliency map is firstly selected by

6https://www.universal-robots.com/products/ur5-robot/
7https://robotiq.com/products/3-finger-adaptive-robot-gripper
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Figure 4.12: The relationship between coordination frame.

the attention model. Meanwhile, six pixel-wise probability maps are obtained from the
grasp type detection model. The grasp attention point denoted by the cross in each prob-
ability map is obtained by clustering. Finally, the grasp type with the highest probability
in the ROI is selected. As it is shown in Figure 4.9, our system is also able to produce
grasp type and grasp attention point results on unknown objects.

The performance of the whole system is evaluated based on object grasping tasks.
Four trails were tested for each object, and a total of 32 trials were implemented. Be-
cause the robotic gripper only had three-finger, we consider large wrap and small wrap
equivalent, and consider precision and tripod equivalent. So the numbers of the used
finger for precision and tripod were same. The experimental results were that 28 suc-
cessful grasps out of 32 trails (87.5%). The proposed method enabled the robotic hand to
find the feasible grasp configuration and successfully grasp it. Figure 4.13 shows some
examples of the object grasping using the proposed framework. As we can see, the
grasp-relevant information generated from the proposed framework was used as prior
information to guide the grasp formation. For each frame, ROI localization takes 1.8
seconds, grasp type detection takes 6.5 seconds, and the complete process takes 8.5
seconds on average. The proposed framework is implemented in python and runs on a
2.50GHz Intel i5 CPU.

It is worth mentioning that several failures of object grasping have occurred. As in
simulation experiments, when grasping the small object (e.g., apple), the planned grasp
pose was too close to the table, the UR5 robot failed to find a feasible kinematic solution.
Another cause was that the proposed visual attention method sometimes only locate a
small region of an object and a possible grasp configuration cannot be found. This is
caused by low color contrast between the object and its background. It also occurred
that the object fell out of the gripper during lifting. The uncertainty from the object
weight caused it. In the future, it will also be beneficial to incorporate grasp adaptation
into the proposed framework.
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(a) (b)

(c) (d)

Precision

Precision

Precision

Power

Tripod

Figure 4.13: Examples of object grasping using the UR5 robot. In each sub-figure, the
left showed the analyzed results and the right showed the robot grasped the object.

4.5 Conclusion and Future Work
This work proposes an attention-based visual analysis framework, which computes grasp-
relevant information directly from visual data for multi-fingered robotic grasping. By
using the visual framework, an ROI is firstly localized by a computational attention
model. The grasp type and grasp attention point on object segment presented in the ROI
is then computed using a grasp type detection model, which is used as prior informa-
tion to guide grasp planning. We demonstrated that the proposed method could give the
right prediction of grasp type and grasp attention point. Furthermore, the performance
of the proposed visual analysis framework has been evaluated in object grasping tasks.
Compared to previous methods without prior, the information generated from the visual
analysis can significantly speed up grasp planning. Moreover, by using a feasible grasp
type, the success rate of the grasping is also improved. Results show that the proposed
framework helps the robotic systems to know how and where to grasp objects accord-
ing to attributes of sub-regions of objects. Since our method does not rely on object
detection, it can also handle unknown objects.

For future work, several aspects will be considered. First, the current framework
is goal-driven, and it only learns how to grasp an object, so it will be interesting to
extend the proposed framework into a task-driven framework (e.g., grasping in human-
robot handover task). Second, currently, the choice of grasp type and grasp attention
point only depends on the attributes of sub-regions of objects. Since grasp planning is
also affected by environment and task constraints, those constraints will be taken into
consideration.
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Chapter 5

General-purpose Grasp Planning with
Pregrasping Opposition

5.1 Introduction

Autonomous grasping is one of the most fundamental abilities required for a robot to
handle manipulation tasks. Many grasp planning approaches, such as analysis-based [61,
43] and data-driven approaches [12], have been proposed to allow robotic hands to
achieve some specific grasping tasks. Most of the previous methods are designed for
one specific robotic hand. Few works address the general-purpose problem of grasp-
ing planning where the designed grasp planning methods should be suitable for various
hands with an arbitrary number of fingers. Moreover, previous grasp planning methods
only allow robotic hands to execute two grasp types (i.e., power and precision grasps),
which were introduced by Napier et al. [125]. It is a natural behavior for humans to
choose a feasible grasp type from multiple grasp types to grasp objects. The grasp type
could guide a robot on how to operate an object. Grasp type is still an underexplored
concept in robotic grasp planning. The generality of grasp planning methods has not
been addressed well. This work proposes a novel general-purpose grasp planning ap-
proach that allows various robotic hands with an arbitrary number of fingers to stably
grasp objects.

Grasp type conveys useful information for planning grasp configurations of a robotic
hand. However, previous grasp planning methods [142, 55, 63] mainly choose grasp
types manually for object grasping. Only two kinds of grasp types (i.e., power and pre-
cision grasps) are considered. These two grasp types are not sufficient for exploring
the potential of a multi-fingered robotic hand. Previous work [145, 17] on grasp type
detection mainly focuses on the analysis of human grasping behavior rather than robotic
grasping application. Hence, in this work, six commonly used grasp types extracted
from the grasp taxonomy [46] are considered in grasp planning. The grasp-relevant
information is computed based on the detected grasp type, which is further used as
guidance for grasp planning. There are also some approaches that use visual analy-
sis to define heuristics as guidance for grasp planning [69, 3, 166]. In comparison to
those approaches, there are two main differences: (1) Six commonly used grasp types
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are considered in the proposed method, whereas the previous approaches only consider
two grasp types. (2) The proposed approaches extract the grasp-relevant information di-
rectly from raw sensory data, whereas most of the previous approaches use handcrafted
features to estimate the grasp-relevant information.

Understanding grasp formation is important to design effective grasp planning ap-
proaches. Different concepts have been introduced to analyze human grasping behavior.
They include opposition [75, 35], VFs [74], caging [144] and grasp type [125, 46].
These concepts convey some important information about grasp formation. For exam-
ple, the opposition concept suggested that a prehensile posture can be interpreted as
an opposition between hand-parts. Meanwhile, the hand-part could be understood as
a VF. Based on the opposition concept, Iberall et al. [76] introduced three opposition
primitives (i.e., pad opposition, palm opposition and side opposition). Souza et al. [35]
extended the definition of opposition primitives in [76] and referred to the choice of
hand-parts during grasp planning as the grasp intention. In this way, a complex grasp
configuration is understood as a simple opposition primitive. These concepts have been
widely used for the analysis of human grasping behavior. However, little previous work
has incorporated these concepts into grasp planning. In this work, the opposition con-
figuration is taken as a starting grasp configuration that is further used to form more
complex grasp configurations. Specifically, this work introduces a new concept called
pregrasping opposition for grasp planning by exploiting two concepts (i.e., the oppo-
sition and the grasp type). The pregrasping opposition provides a way to generalize
the grasp planning approach across various robotic hands with an arbitrary number of
fingers.

One challenge in grasp planning is to find a set of feasible contact points on an
object surface for stable object grasping. Classical analysis-based methods [61, 43, 64]
typically formulated grasp planning as a constrained optimization problem. Owing to
the high dimensionality of robotic hands and the non-linearity of the constraints, the
computation of the optimization problem was intractable. Some works used data-driven
methods [12, 34, 90] to learn feasible grasp configurations from prior experience. The
performance of data-driven methods largely relied on a huge number of grasp examples.
Moreover, these grasp planning methods were limited to handling known objects using
a specific hand. They failed to generalize to new robotic hands and unseen objects. In
this work, a dual-stage grasp planning is designed to suit various robotic hands with
an arbitrary number of fingers. The use of pregrasping opposition helps to reduce the
computational complexity of grasp planning.

The objective of this work is to achieve general-purpose robotic grasping in a real-
world environment. We present a general-purpose grasp planning framework that allows
various robotic hands with an arbitrary number of fingers to grasp objects by consider-
ing the use of grasp types. The novel concept of pregrasping opposition is introduced to
encode grasp-relevant information (i.e., grasp type and grasp attention point). A dual-
stage grasp planning method beginning with pregrasping opposition is designed to find
feasible grasp configurations involving a set of contact points. The pregrasping oppo-
sition is taken as a waypoint for the formation of feasible grasp configurations. The
performance of the proposed grasp planning methods is evaluated in both simulations
and real-world experiments.
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Figure 5.1: Overview of the proposed general-purpose grasp planning framework.
Firstly, a depth sensor is used to capture visual data (i.e., the RGB image and point
clouds) of the table scene. Then, the grasp-relevant information is computed from vi-
sual data. A pregrasping opposition is then planned based on the computed information,
which used as a waypoint for the grasp formation. The final grasp configuration is op-
timized based on the pregrasping opposition. At final, the robotic hand executes the
planned grasp configuration.

.

The rest of this section is organized as follows. An overview of the proposed grasp
planning framework is introduced in Section 5.2. Section 5.3 introduce the representa-
tion of the pregrasping opposition and Section 5.4 present the dual-stage grasp planning
method. Experiments are presented in Section 5.5. Finally, the conclusion and future
works are discussed in Section 5.7.

5.2 Overview

In this section, we give an overview of the proposed grasp planning framework that
contains two main components: the representation of pregrasping opposition and a
dual-stage grasp planning method. Pregrasping opposition is introduced to encode the
grasp-relevant information (i.e., grasp type, grasp attention point, and object location)
computed from visual data. The dual-stage grasp planning method is used to determine
a feasible grasp configuration for object grasping. Pregrasping opposition is taken as
a waypoint for grasp formation. Figure 7.4 shows an overview of the proposed multi-
fingered grasp planning framework.

5.3 Definition of Pregrasping Opposition

This section introduces the novel concept of pregrasping opposition to encode the grasp-
relevant information extracted from visual data.
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5.3.1 Information Extraction Based on Grasp Type Detection

This subsection introduces the extraction of grasp-relevant information (including the
grasp type, the grasp attention point, and object class) for object grasping. Grasp type
is a way of representing how a hand handles objects. Grasp attention point is a location
on the object surface that a hand hopes to approach. The grasp-relevant information
can be used as guidance for grasp planning. Typically, the robotic hands are planned
with two types (i.e., the power and precision type) to grasp objects. Power grasp uses
the fingers and palm to hold the object firmly, and precision grasp only uses fingertips
to stabilize the object. However, this two-categories grasp taxonomy is not sufficient
to convey information about hand configuration, especially for multi-fingered robotic
hands. Six commonly used grasp types extracted from Feix’s GRASP taxonomy [46]
are considered in this work. They are large wrap, small wrap, power, pinch, preci-
sion and tripod. The detail of the grasp type detection method has been presented in
Chapter 4. Different from our previous work, this work combines grasp type detection
with a learning-based object detection method instead of saliency detection. The main
computation of grasp-relevant information extraction is introduced as follows.

Given an input RGB image, the object region O denoted by a rectangle and the ob-
ject class are first determined. In this work, YOLO-2, a state-of-the-art object detection
method, is used to find the object region O. Then, a grasp type detection model trained
by using a Convolutional Neural Network(CNN) takes an RGB image as an input and
output the probability for each grasp type in pixel-wise. Corresponding to the six grasp
types, the detection model predicts six pixel-wise probability maps with the same res-
olution as the input image. Given the predicted probability maps, the grasp-relevant
information is computed in two steps: (1) the predicted probabilities of all the pixels in
the object region O are summed. The predicted probability P(s|O)of each grasp type s
is obtained. The most appropriate grasp type s∗ is chosen according to the highest pre-
dicted probability, i.e., s∗ = argmaxP(s|O),∀s ∈ [1,2, ...,6]. (2) After determining the
best grasp type s∗, we can localize a grasp attention point patt for the grasp type s∗ inside
the object region O. The Mean shift algorithm is applied to the probability maps. The
cluster center with the highest probability is selected as the grasp attention point patt .
Finally, the grasp relevant information Ω = {O,s∗, patt}, i.e., the object region O, the
grasp type s∗ and the grasp attention point patt , are computed, which are used as guid-
ance for guiding the grasp planning. Figure 7.1 shows some examples of the extraction
of the grasp-relevant information.

5.3.2 Pregrasping Opposition

The introduction of pregrasping opposition drives from the opposition concept intro-
duced in [35] and the grasp taxonomy presented by Feix et al. [46]. According to the
opposition concept, a final grasp posture of a robotic hand is viewed as an opposition
between two hand-parts. Hence, this work makes a hypothesis that a complex grasp
configuration can generate from a simple opposition configuration. This work intro-
duces the concept of pregrasping opposition to represent this opposition configuration.
Moreover, the pregrasping opposition is taken as a waypoint for grasp formation. Dif-
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Figure 5.2: Examples of grasp-relevant information extraction. The red bounding box
denotes object locations. The text denotes grasp types (here, the lWrap denotes the
large-wrap). The red cross denotes the location of the grasp attention point.

ferent from the opposition primitives introduced in [76, 35], the introduced pregrasping
opposition consider not only the opposing hand-parts and the opposing points, but also
the requirement of grasp types. The concept of pregrasping opposition is defined as
follows.

Definition 1. (pregrasping opposition) is an opposition configuration of robotic hands,
in which a pair of opposing hand-parts exerts a pair of opposing force on the grasped
object within a hand-centric coordinate frame to realize the desired grasp type.

According to the above definition, this work introduces six different pregrasping
opposition specified for six different grasp types, which are defined as follows

Os
h1−h2(Co) = {O1

T S−FS(Co),O2
P−FS(Co),O3

T S−FS(Co),

O4
T T−FT (Co),O5

T T−FT (Co),O6
T T−FT (Co)}

(5.1)

where Os
h1−h2(Co) denotes a pregrasping opposition that determines an opposition be-

tween the hand-parts h1 and h2 under the grasp type s. Each opposing hand-part is
abbreviated by its starting letter (e.g., Thumb Surface = TS). The Co = (oc1,oc2) de-
notes a pair of opposing points. This work takes the regional center of hand-parts as the
opposing point. In addition, the grasp type s = {1,2, ...,6} represents the large-wrap,
small-wrap, power, pinch, precision and tripod, respectively. Figure 5.3 shows the six
pregrasping opposition specified for six different grasp types. From the figure, it can be
seen that the opposing hand-parts in the pregrasping opposition is a collection of fingers
or hand surface.

The construction of the pregrasping opposition requires to determine two ingredi-
ents, i.e., the grasp type s and a pair of opposing points Co on an object surface. The
desired grasp type s is computed with the proposed information extraction method in-
troduced in Section 5.3.1. Given the grasp type s, the hand-parts for object grasping
are specified. The next problem is to compute the Co from point clouds of an object.
Section 5.4 presents the detail of the computation of the grasp configuration. Once the
desired grasp type and the Co are determined, the pregrasping opposition is fully con-
structed, which is further used to guide the formation of the final grasp configuration.
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Figure 5.3: The top figure shows six different grasp types and the corresponding human
grasp examples. The bottom figure shows the hand parts, which includes five categories.
The blue dot at the regional center of the hand-part denotes the opposing points. The
middle figure shows the pregrasping opposition. The O4

FT−T T ,O
5
FT−T T , and O6

FT−T T
have the same hand-part, but the number of used fingers is different due to the different
grasp type.

5.4 From Pregrasping Opposition to Grasping
This section presents a dual-stage grasp planning method beginning with the pregrasp-
ing opposition. The proposed method finds feasible grasp configurations involving a set
of contacts for a robotic hand. The pregrasping opposition is taken as a waypoint for
grasp formation. The computation of the final feasible grasp configuration for object
grasping is achieved from the following two stages.

• At stage 1, we construct the pregrasping opposition Os
h1−h2(Co) by determining

a pair of opposing points Co = {c1
o,c

2
o} on an object surface. The computation of

the Os
h1−h2(Co) is guided by the desired grasp type s and the grasp attention point

patt .

• At stage 2, we plan the final grasp configuration g = (Cg,Jointg,Poseg) by search-

68



5.4. From Pregrasping Opposition to Grasping

ing a set of contact points Cg = {c1
g, ...,c

m
g } in a bounded searching space. The

pregrasping opposition Os
h1−h2(Co) serves as the starting configuration for grasp

planning at stage 2.

The objectives of the two planning stages are to find a configuration ĝ that maximizes
a grasp quality. Specifically, the ĝ is a pregrasping opposition Os

h1−h2(Co) at stage 1 and
is a final grasp configuration g at stage 2. Grasp quality measure in this work includes
three components: grasp stability measure S(ĝ), grasp reachability measure R(ĝ) and
grasp attention measure G(ĝ). The maximizing of the composition quality is a multi-
objective optimization problem. This work use the ε-constraint method to scalarize the
multi-objective optimization problem.

max
ĝ

ωRR(ĝ)+ωGG(ĝ)

s.t. S(ĝ)≥ ε

ĝ ∈Φĝ

(5.2)

where the grasp objective is denoted as Q = ωRR(ĝ) +ωGG(ĝ). ωR and ωG are the
weight of the R(ĝ) and G(ĝ) respectively. ε is a lower bounds for the grasp stability. Φĝ
is the solution space of the configuration ĝ.

5.4.1 Grasp Quality Measure
Grasp quality measure is to evaluate the performance of candidate grasps. This sub-
section presents the choice of the grasp quality measure. In this work, grasp quality
measure includes three components: grasp stability measure S(ĝ), grasp reachability
measure R(ĝ) and grasp attention measure G(ĝ)

• Grasp stability measure S(ĝ): The grasp stability is usually analyzed based on
force-closure methods [86, 159]. A grasp is force-closure if a hand can exert
arbitrary force and moment on the grasped object through a set of contacts. This
work applies the Grasp Isotropic Index (GII) reported in [86] to evaluate the grasp
stability, which is defined in Eq. 5.3. The GII tries to obtain a uniform contribution
of contact forces to the total wrench exerted on the grasped object.

S(ĝ) =
βmin(G)

βmax(G)
(5.3)

where βmin(G) and βmax(G) are the minimum and maximum singular value of
grasp matrix G, respectively.

• Grasp reachability measure R(ĝ): Grasp reachability measure mainly considers
the kinematic constraint of a robotic hand. It is time-consuming to computing an
inverse kinematic solution of the robotic hand in each optimization step. Most of
the previous work [55, 159] defined some heuristics to measure the grasp reacha-
bility. These previous methods adopted a hypothesis that the bigger the area cov-
ered by a grasp polygon is, the better the grasp will be. However, these methods
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ignored a fact that the higher the height from the centroid of the grasp polygon to
the hand palm is, the smaller the available workspace of the robotic hand is. This
work proposes a new reachability measure R(ĝ) that takes into account both the
area covered by the grasp polygon and the height from the centroid of the grasp
polygon to the hand palm. The reachability measure R(ĝ) is defined in Eq. 5.4.
The R(g) tries to drive robotic hands to maximize the feasible area covered by the
grasp polygon.

R(ĝ) =

{
cos(K(a−0.5amax))e−2h if h < hmax or a < amax

cos(−0.5K ·amax)e−2hmax Otherwise
(5.4)

where a is the area covered by a grasp polygon. When only two contact points are
required for a grasp, a is a line length formed by the two contact points. h denotes
the height from the centroid of a grasp polygon to a hand palm. amax and hmax are
the maximum area and the maximum height determined by robotic hands. K is a
weight.

• Grasp attention measure G(ĝ): When a robotic hand grasps an object, we ex-
pect that the approaching direction of a robotic hand is preferred to be consistent
with the normal direction natt of object surface at the patt . The patt defines the
desired approaching location of robotic hands. This work measures the grasp at-
tention quality to filter all the candidate grasps. Grasp attention measure G(ĝ) is
computed based on the relationship between the patt and the pair of the opposition
points (oc1,oc2), as defined in Eq. 5.5. The G(ĝ) is to encourage the line oc1−oc2
perpendicular to the normal direction natt of object surface at the patt .

G(ĝ) =−
∣∣∣∣arccos(

natt ·noc1−oc2

|natt | · |noc1−oc2|
)− π

2

∣∣∣∣ (5.5)

where natt is the the normal direction of an object surface at the grasp attention
point patt . The range of the G(ĝ) is set to [−π

2 ,0]. Figure 5.4 shows a example of
the grasp attention measure under the tripod grasp. The G(ĝ) tries to drive robotic
hands to grasp objects with a constrained approaching motion. In this figure, the
two contact points (c2,c3) is searched around the point oc2. These two points then
cooperate with the point oc1 to form the final set of the contact points.

5.4.2 Grasp Configuration Optimization
As defined in Eq. 5.2, given point clouds P of an object, we aim at finding a set of contact
points Ĉ to form a grasp configuration ĝ that maximize the objective Q. The Ĉ is a pair
of opposing points Co = {c1

o,c
2
o} at stage 1 and is the final contact points Cg at stage

2. This work applies a simulated annealing algorithm [29] to solve the optimization
problem defined in Eq. 5.2.

Different from previous simulated annealing algorithms [29] which start from a ran-
dom initial state, this work exploits grasp-relevant information to define some reference
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Grasp 

pylogon
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o𝑐2

𝑐2 𝑐3

Figure 5.4: Illustration of grasp attention measure under the tripod grasp.

points pre f which are used to guide the search of configurations. In this work, the pre f
is the grasp attention point patt at stage 1 and is the pair of opposing points Co at stage
2. The neighborhood Φpre f of the pre f is a set of points closed to the pre f as defined
in Eq. 5.6. During optimization, this algorithm searches candidate grasp points in the
neighborhood Φpre f as the stages for configuration optimization.

Φpre f = {pi ∈ P |‖ pi− pre f ‖< λ}

with pre f =

{
patt at stage 1
Co at stage 2

(5.6)

where pre f denotes a reference point. pi is a candidate contact point. P is the point
clouds of the target object. λ is a threshold which controls the size of the neighborhood.
The use of patt and Co in this algorithm helps to reject infeasible contact points and
reduce the sampling complexity.

Given a new configuration ĝnew generated by the neighbor-generating function, this
algorithm uses criteria defined in Eq. 5.7 to accept or reject the ĝnew. It can be seen that
this algorithm accepts all new configurations that raise the grasp objective Q and still
accepts the ĝnew with a certain probability which lower the Q. By accepting points that
lower the Q, this algorithm can explore globally for more feasible grasp configurations.

P(ĝnew) =

{
1 if Q(ĝnew)> Q′
e−

Q′−Q(ĝnew)
t otherwise

(5.7)

where P(ĝnew) is the acceptance probability of the ĝnew. Q(ĝnew) is the grasp objective
obtained by the ĝnew and Q′ denotes the current highest sampled objective. t is the
current temperature of the simulated annealing.

In the proposed two-stage grasp planning method, at stage 1, the patt is used to guide
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the configuration search. The optimized result Co of this stage is used to construct the
pregrasping opposition On

h1−h2(Co). At stage 2, the On
h1−h2(Co) is used to guide the solu-

tion search. The optimized result Cg is used to further form the final grasp configuration
g = (Cg,Jointg,Poseg). In the proposed grasp planning method, because the pregrasp-
ing opposition is taken as a waypoint for grasp formation, the computation of complex
grasp configuration is reduced. Moreover, the proposed grasp planning method is gen-
eral purpose because it can determine feasible contact points for various robotic hands.
The pseudocode of the proposed grasp planning framework is shown in Algorithm 4.

Algorithm 4 : General-purpose grasp planning with pregrasping opposition.
1: Input: a grasp type detection model,
2: Output: grasp configuration g
3: Acquire an RGB image I and point clouds P of a table scene.
4: Performance grasp type detection to obtain six probability maps P(Y s|I).
5: Extracts the grasp-relevant information Ω = {O,s∗, patt}.
6: Plan the pregrasping opposition Os

h1−h2(Co) given the guidance of the information
Ω.

7: Plan the final grasp configuration g = (Cg,Jointg,Poseg) given the guidance of the
Os

h1−h2(Co).
8: Grasp execution.

5.5 Experiments

In this section, we evaluate the effectiveness of the proposed grasp planning framework
both in a simulation experiment and in a real-world experiment. The experimental set-
up, result, and discussion are provided in the following each subsection, respectively.

5.5.1 Evaluation of Grasp-relevant Information Execution

The performance of the grasp-relevant information execution is first evaluated. Chap-
ter 4 has evaluated the performance of grasp type detection. Here, we mainly demon-
strated the result of the grasp type detection when combining with a learning-based
object detection method. At each trial, multiple objects were randomly selected and
separately placed on the table. Kinect depth sensor captured an RGB-D image of the
table scenes. Figure 5.5 shows some results of the grasp-relevant information execution
on various objects. Given an input RGB image, the object region denoted by a rectangle
and its id are first determined. YOLO-2 is used to find the object region O is an RGB
image. Based on the detected ids, a human chooses the desired object to be grasped.
Six pixel-wise probability maps are obtained from the grasp type detection model. The
grasp attention points denoted by a blue cross in each probability map are obtained by
clustering. The grasp type with the highest probability in the object region is selected.
For each trial, the object detection takes 2.5 seconds, grasp type detection takes 4.2 sec-
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onds, and the whole computation of grasp-relevant information takes about 7.4 seconds.
The proposed method is implemented in python and runs on a 2.5GHz Intel i5 CPU.

Input image Object detection
Probability 

maps
Output

6

1 2 3

4 5

4 5

1 2 3

6

1 2 3

4 5 6

Figure 5.5: Example of of the grasp-relevant information extraction. First column is
the input RGB images captured by a Kinect sensor. Second column is the results of
object detection. The red rectangle denotes the object region and the texture above the
rectangle is the object id number. Third column is six pixel-wise probability maps in
the object region. From left-top to right-bottom, the probability maps corresponds six
grasp types: large wrap, small wrap, power, pinch, precision and tripod. The blue cross
denotes the grasp attention point for each grasp type. Last column is the output.

Extracting grasp-relevant information from visual data is important for robotic grasp-
ing and manipulation. Different from previous methods, this work takes advantage of
deep learning techniques to detects the grasp type and grasp attention point directly from
visual data. It is a natural behavior for humans to choose a feasible grasp type based on
the object image to grasp an object. Hence, the proposed grasp type detection method
enables a robotic system with similar grasping behavior as humans. We also noticed that
previous methods also used CNN to detection some information, for example, the grasp
affordance, the grasp region, and the grasp rectangle. Most of the previous methods
focus on visual analysis and do not be applied in robotic grasping applications. They
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(a) (b) (c)

Figure 5.6: Three robotic hands used in the simulation experiment. (a) The P-Grip4. (b)
The Barrett hand5. (c) The Shadow Dexterous hand6

Figure 5.7: Eight objects used for the simulation experiment.

use a simpler parallel-jaw gripper to realize the detection result. This work aims to ex-
tract grasp-relevant information for general-purpose grasp planning. The grasp-relevant
information is exploited into the general-purpose grasp planning method. In this way,
the extracted information helps the robotic system to implement more complex grasping
tasks.

5.5.2 Evaluation of General-purpose Grasp Planning

Implementation

The evaluations of the proposed general-purpose grasp planning method were conducted
in a V- REP 7 simulator. Three robotic hands with a different number of fingers were
used, as shown in Figure 5.6. They were the P-Grip 8 with two-fingers, the Barrett hand
9 with three fingers and the Shadow hand 10 with five fingers. The six grasp types are
considered in this evaluation. Eight objects with various shape attributes were chosen

7http://www.coppeliarobotics.com/
8https://www.fp-robotics.com/de/technology/
9https://www.barrett.com/about-barrethand/

10https://www.shadowrobot.com/products/dexterous-hand/
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(a) Grasp type detection
(b) The first planning 

stage

(c) The second planning 

stage
(d) Grasp execution

by the Shadow hand

Figure 5.8: An example of object grasping by using the Shadow hand. (a) The grasp-
relevant information extraction. The text was the detected grasp type, and the red cross
denoted the location of the grasp attention point. (b) the pregrasping opposition involv-
ing a pair of opposing points was constructed at stage 1. The curve describes the highest
quality sampled in each iteration using simulated annealing. (c) The final grasp config-
uration involving five contact points was generated at stage 2. The curve describes the
highest quality sampled in each iteration using simulated annealing. (d) The Shadow
hand executes the planned grasp configuration.

from YCB object set 11 for this evaluation, as shown in Figure 5.7. YCB object set
provides the point clouds of these objects. At each grasping trail, multiple objects were
placed on a table. A depth sensor was used to capture RGB images of a table scene.
Then, the proposed planning approach generated a feasible grasp configuration for a
robotic hand. Finally, the grasp configuration was executed by a robotic hand in the
V-REP simulator.

The setting of the proposed planning approach was as follows. A hard contact model

11http://www.ycbbenchmarks.com/
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was adopted, and the friction coefficient was chosen as 0.6. During grasp optimization,
the lower bound was set to ε = 0.7 in Eq. 5.2. At stage 1, the two weights in Eq. 5.2
were set as ωR = 0.3 and ωG = 0.7. At stage 2, the two weights in Eq. 5.2 were set
as ωR = 0.7 and ωG = 0.3. In this way, the grasp attention made a bigger contribution
in the first stage, and the grasp reachability made a bigger contribution in the second
stage. The maximum iteration number (i.e., maxInter1 and maxInter2) were set as 10%
of the number of candidate grasps and the maximum temperature (i.e., maxTemp1 and
maxTemp2) of the optimization method were set to be 25000.

Experimental Results

We first demonstrated the grasp planning process using the proposed approach. Taking
the test of the object grasping with the Shadow hand as an example, as shown in Fig-
ure 5.8. In this example, the proposed approach planed a feasible grasp configuration on
the tomato soup can. The Shadow hand grasped and lifted the can. It can be seen that
the Precision type was selected for the can and the patt on the object surface was chosen.
The patt also specifies the desired approaching location on the object surface. The pro-
posed dual-stage grasp planning approach was directly performed on point clouds of the
can. At stage 1, the pregrasping opposition O5

FT−T T (Co) involving a pair of opposing
points Co was constructed. The opposing points Co was optimized to get a high grasp
quality. At stage 2, the final grasp configuration involving five contact points was gen-
erated with the guidance of the O5

FT−T T (Co). Finally, the resulted grasp configuration
was successfully executed by the Shadow hand in the V-REP simulator. Figure 5.8 (b,c)
shows the curve of the highest objectives Q sampled during configuration optimization.
The Q were increasing during optimization at stage 1 and 2. It can be seen that the com-
plexity of configuration optimization has an exponential relationship with the number of
candidate contact points on the object. The use of the pregrasping opposition reduced
the complexity of precision grasp planning.

Next, the use of pregrasping opposition in grasp planning was also evaluated. We
compared the grasp planning approach with and without pregrasping opposition. The
optimization algorithm and the parameters of the two approaches kept same. The two
approaches were used to plan grasp configuration under the tripod grasp type for object
grasping with the Shadow hand. The final grasp configuration involved three contact
points. Table 5.1 shows the comparison results of the two approaches. It can be seen
that the number of possible solutions by the approach with pregrasping opposition (i.e.,
the size of the solution space Φg) is only 3.6% compared to that of the approach without
pregrasping opposition. The use of pregrasping opposition was able to ignore infeasible
solutions and reduces the feasible solution space. The results demonstrate that the use
of pregrasping opposition helps to reduce the complexity of the grasp planning. Mean-
while, it can be seen that the average consuming time required by the proposed approach
is 3.0% of that of the approach without pregrasping opposition. It also demonstrates that
the grasp planning with pregrasping opposition is more efficient in comparison to the
approach without pregrasping opposition.

To further evaluate the effectiveness of the proposed grasp planning approach, a set
of object grasping tasks was performed using the three robotic hands. Table 5.2 records
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Table 5.1: Evaluation of the use of pregrasping opposition in grasp planning.

With Os
H1−H2 Without Os

H1−H2

object (#points) size of Φg Time size of Φg Time

tomato soup can (120) 6256 1.8 1203 61.1
potted meat can (120) 7518 2.5 1203 59.3
mustard bottle (120) 4976 1.15 1203 57.5

Average 6253 1.81 1203 59.3

the statistic of the evaluations. Six objects from the YCB object data set were used
for the evaluations, as detailed in Table 5.2. A grasp is a success only if a hand can
stably grasp and lift an object to a distance from the table. From the table 5.2, it can
be seen that the P-Grip successfully grasped all the objects and obtained a 100% suc-
cess rate. The grasp configuration of the P-Grip only involved two contact points. We
used the pregrasping opposition that is determined at stage 1 as the final grasp config-
uration of the P-grip. The results demonstrate that the pregrasping opposition can be
used as the stable grasp configuration for the two-fingered robotic hand. Meanwhile,
the success rates of Barrett’s hand and the Shadow hand are 90.0% and 88.7%. The
proposed planning approach was able to find feasible grasp configurations for the three
and five-fingered robotic hands. The results demonstrate that the pregrasping opposition
can provide a way to generalize the grasp planning approach to various robotic hands.
Moreover, a complex grasp configuration can be generated from pregrasping opposi-
tion. We also notice that the success rates of Barrett’s hand and the Shadow hand have
decreased in comparison to the P-Grip. Most of the failures were due to the grasp force
was not enough to support the object weight. Although the planed grasp configurations
were feasible, the hands still failed to lift objects. For each grasping experiment, the
grasp-relevant information extraction takes 7.4 seconds, the grasp planning takes 2.4
seconds, and the complete process takes 11 seconds on average. The proposed approach
is implemented by Python in the Ubuntu laptop with a 2.50GHz Intel i5 CPU.

Figure 5.9 shows some examples of object grasping using the three robotic hands.
It can be seen that objects with different shape attributes have different desired grasp
types. Different grasp types required a different number of contact points. The number
in each sub-figure denoted the required number of contact points that was determined by
the desired grasp type and the robotic hand. For example, the precision grasping with
the Shadow hand includes five contact points. While the precision grasping with the
Barrett hand only contains three contact points. The precision grasp was most difficult
because it required finding more contact points. The results show that the proposed
planning approach allows various robotic hands to realize feasible grasp types during
object grasping. We also see that the P-Grip only uses the pinch type to grasp objects.
For the Barrett hand, the large wrap and the small wrap are same and the precision and
the tripod are also same. The Shadow Hand can execute all six grasp types. A robotic
hand with a more number of fingers is able to complete more dexterous grasping tasks,
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(a) object grasping with the P-Grip

(b) object grasping with the Barrett hand

(c) object grasping with the Shadow hand

4-Pinch 

2 2 2 2 2 2

32222 3

1-Large wrap
3-Power 4-Pinch 

6-Tripod

2 2 2 5 32

1-Large wrap 2-Small wrap 3-Power 4-Pinch 5-Precision 6-Tripod

Figure 5.9: Examples of object grasping using three different grippers considering six
different grasp types. The number in the rectangle of each image showed the required
number of the contact points.

Table 5.2: Performance of the proposed grasp planning.

object P-Grip Barret hand Shadow hand

tomato soup can 10/10 10/10 9/10
tuna fish can 10/10 8/10 8/10

plotted meat can 10/10 9/10 9/10
mustard bottle 10/10 8/10 10/10

banana 10/10 8/10 7/10
apple 10/10 10/10 9/10

orange 10/10 9/10 9/10
chips can 10/10 10/10 10/10

Average success rate 100% 90.0% 88.7%

78



5.5. Experiments

Kinect 

sensor

The Shadow Hand

The right arm

The left arm

The two-fingered 

gripper

Figure 5.10: The set-up of the real-world robotic experiment with a PR2 robotic plat-
form.

Figure 5.11: Ten objects used in the real-world robotic experiment.

such as the precision grasp. The experimental results also show that the proposed grasp
planning approach can find feasible grasp configurations for various robotic hands with
an arbitrary number of fingers.

5.5.3 Real-world Robotic Experiment

Implementation

The robotic experiments were conducted on a PR2 robotic platform that has two robotic
arms, as shown in Figure 5.10. The right arm equips a Shadow Dexterous Hand, i.e., a
five-fingered robotic hand. The end-effector of the left arm is a two-fingered gripper. A
Kinect sensor was used to capture the visual data (i.e., RGB-D image and point clouds)
of the table scenes. Ten objects selected from the YCB object set was used for the
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Point-clouds of 

objects

Figure 5.12: Example of the Segmented point clouds of objects on a table.

evaluation, as shown in Figure 5.11. In the object grasping experiments, we adopted the
following procedure. At each trial, multiple objects were randomly selected and placed
on the table. A human chose a robotic hand (i.e., the Shadow Dexterous Hand or the
two-fingered gripper) for object grasping. The point clouds of the objects on the table are
segmented from the table. The grasp-relevant information (i.e., the grasp type and grasp
attention point) is computed based on grasp type detection. Then the proposed dual-
stage grasp planning approach determines the feasible grasp configuration considering
the computed information. At final, the PR2 robotic platform executed the planned grasp
configuration.

Experimental Results

Different from the simulation experiments mentioned above, the object model is un-
known in the real-world robotic experiment. We use the Kinect sensor to capture the
point clouds of the table scene. The grasp planning is performed on the partially ob-
served point clouds of the target objects, which were segmented from the point clouds
of the scene. Figure 5.12 shows an example of the segmented point clouds of objects on
a table. It can be seen that the point clouds of multiple objects were segmented from the
table scene. Figure 5.13 shows some examples of the object grasping using the Shadow
Dexterous Hand. Although the point cloud of the target objects is not complete, the
feasible grasp configuration could still be determined by using the proposed framework.
The planing of the pregrasping opposition determines a pair of opposing points that
could ensure the stable of grasping. The detected grasp attention point guides the hand
to search the contact points on the observed point clouds of the target objects. The use
of the pregrasping opposition helps to reduce the sample complexity of grasp planning.
As shown in the experiments, different grasp types were used to grasp the objects with
different shape attributes. In the real-world application, it is an important ability for
the robotic hand to choose a feasible grasp type from different possible grasp types to
operate the objects. The Shadow hand can execute multiple grasp types. A robotic hand
with a more number of fingers could accomplish more sophisticated grasping tasks.
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(d) Tripod grasp (e) Tripod  grasp (f) Large Wrap grasp

(a) Precision grasp (c) Pinch grasp(b) Power  grasp

Figure 5.13: Examples of object grasping using the Shadow Dexterous Hand. In each
sub-figure, the shadow hand grasps the object using the detected grasp type.

Figure 5.14 shows some examples of the object grasping using the two-fingered
gripper. For the two-fingered gripper, only two contact points are required for a grasp.
Hence, we take the pregrasping opposition planned by the proposed framework as the
final grasp configuration. From the Figure 5.13 and Figure 5.14, it can be seen that the
pregrasping opposition can encode not only the grasp-relevant information and provide
a way to generalize the grasp planning method across different robotic hands.

It is worth mentioning that several failures of object grasping have occurred. The
main reason for the failure is because there are no complete point clouds of the target
object. The segmented point clouds of the target object contain noise, especially for the
small object. Another cause was that the robotic arms failed to find a feasible kinematic
solution. Because the workspace of the robotic arms is limited, the robotic hand is
unable to grasp the distant objects. It also occurred that the object fell out of the gripper
during lifting. The uncertainty from the object weight caused it. In the future, it will
also be beneficial to incorporate grasp adaptation into the proposed framework.
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(a) Power  grasp (b) Large Wrap grasp

Figure 5.14: Examples of object grasping with two-fingered gripper.

5.6 Discussions

Grasping is a fundamental ability for a robotic hand that has to interact with its envi-
ronments. Different types of robotic hands (such as two- or five-fingered robotic hands)
are required in the industrial and home-assistance applications. This work explores the
general-purpose problem of grasp planning, which is important for intelligent robots.
The motivation of this work includes two points: (1) To enable robotic hands to grasp
objects using a feasible grasp type as humans do. (2) To design a grasp planning method
that suits various robotic hands with an arbitrary number of fingers. In terms of motiva-
tion 1, previous grasp planning methods only consider two grasp types, i.e., the Power
and the Precision. Moreover, the grasp types are determined manually for the robotic
hands. However, humans are capable of operating objects by choosing a feasible grasp
type from multiple possible grasp types. Feix et al. introduced a novel grasp taxon-
omy in which 33 different grasp types are presented [28]. Hence, we proposed taking
advantage of deep learning techniques to detect grasp types directly from visual data.
A novel concept of pregrasping opposition, is introduced to encode the detected infor-
mation, which is used to guide the grasp planning. The experimental results showed
that the proposed methods enable a robotic hand to grasp objects with different grasp
types. In terms of motivation 2, few works have considered the general-purpose prob-
lem of grasp planning. Most previous grasp planning methods were designed for one
specific hand. To address this problem, a dual-stage grasp planning method beginning
with the pregrasping opposition is designed. Complex grasp configuration, such as the
precision grasp configuration, are generated from a simple pregrasping opposition. The
performance of the proposed framework is evaluated both in simulation and real-world
experiments. The proposed framework is quite suitable for the scenarios in which the
robots equipped with different robotic hands work together. Instead of designing dif-
ferent grasp planning methods for each robotic hand, the proposed framework can plan
grasp configurations for various hands with an arbitrary number of fingers.
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5.7 Conclusion and Future Work
This work presented a general-purpose grasp planning framework that suits various
robotic hands with an arbitrary number of fingers. By using the proposed framework,
grasp-relevant information (i.e., the grasp type and grasp attention point) is extracted
using a trained neural network. Given the extracted information as guidance, the pre-
grasping opposition involving a pair of opposing points is constructed. The final grasp
configuration involving a set of contact points is planned with the guidance of the pre-
grasping opposition. The use of the pregrasping opposition not only incorporates grasp-
relevant information into grasp planning but also provides a way to generalize the grasp
planning method to various robotic hands with an arbitrary number of fingers. The
dual-stage grasp planning method is also able to plan feasible grasps for various robotic
hands effectively. Furthermore, the performance of the proposed framework has been
evaluated both in simulation and real-world robotic experiments.

Improvements can be achieved in the following directions. First, the use of grasp
types is quite essential for multi-fingered robotic hands to implement object grasping
tasks. In this work, six commonly used grasp types are considered. It would be in-
teresting to consider more grasp types with reference to the grasp taxonomy of Feix et
al. [46] for multi-fingered grasp planning. Second, the choice of grasp type currently
only depends on the object attributes. Because grasp planning is also affected by task
constraints, those constraints should also be taken into consideration. One approach to
address this problem would be to use Bayesian methods to build the relationship among
the grasp type and the object attributes and task variables. Finally, we also plan to use
tactile information obtained from tactile sensors to avoid slippage and improve grasp
stability.
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Chapter 6

Dynamic Object Stabilization through
Tactile Sensing

6.1 Introduction

Stable grasping of unknown objects is one of the fundamental abilities for robots imple-
menting manipulation tasks in real-world environments. External disturbances caused
by environmental changes and uncertainties arising from perception may occur when a
robotic hand grasps a target object. This may cause a planned-to-be stable grasp into
an unstable grasp. Maintaining the in-hand stability of grasped objects over time is crit-
ically important for further robotic manipulations. Humans are capable of reacting to
quickly instabilities through tactile sensing. Studies from neuroscience have demon-
strated that tactile perception provides critical information about the physical properties
of the object and the contact event between the object and the hand [81]. Through tactile
sensing, humans take tactile information as feedback to adjust their grasp configurations
to improve the stability of objects. However, dynamic object stabilization through tac-
tile sensing for robotic hands is still unexplored. To effectively stabilize a grasped object
with a robotic hand, three related problems should be addressed: (1) How to detect the
properties (such as material) of the grasped object. (2) How to effectively perceive the
contact event (i.e., slippage or not). (3) How to correct the contact configuration of a
robotic hand online through tactile sensing to avoid slippage.

The goal of object stabilization is to maintain the contact between the robotic hand
and the object, and to avoid slippage. The instability of a grasped object may be caused
by the slipperiness of the object or an external disturbance. A slip occurs when the con-
tact force applied by the hand is insufficient. Online slip detection is of critical impor-
tance for robots to stabilize grasped objects. Once slippage is detected, the robotic hand
updates the contact configuration to avoid slippage. Tactile information has been used as
the main modality for slip detection. Previous methods usually formulated slip detection
as a classification problem, in which a classifier could be built with a SVM [22], random
forest [171] or neural network [167, 180]. However, these work requires to design hand-
crafted features for slip detection. It is also useful for robots to know the physical prop-
erties of the grasped object. These are usually unknown to robots, but they are essential
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for object stabilization. Information on the object material could help to decide how the
robotic hand interacts with the object in advance. Although some works [27, 50, 60] on
material detection have been introduced, few works have incorporated material detection
into object stabilization. There are two main differences between the proposed method
and these previous methods: (1) In contrast to previous methods that consider slip de-
tection and material detection separately, this work trains an online detection module to
detect the contact event and the material of the grasped object simultaneously. (2) Our
approach uses deep learning techniques to learn a latent representation of tactile data,
which captures the temporal property of tactile data and is a low dimension. In this way,
it is not necessary to design features of tactile data manually for classification.

Object stabilization relies on a feedback controller that drives the robotic hand to
adjust the contact configuration in order to track the desired contact configuration or to
avoid slippage. Tactile sensors could provide critical contact information between the
robotic hand and the object and have been widely used for object stabilization [146,
158, 36]. One important technique in object stabilization is to estimate the contact force
from tactile data. The estimated force is then taken as the feedback signal for the feed-
back controller. Because tactile data is usually high-dimensional, most of the previous
methods define the contact force as the weighted sum of the tactile data. These methods
do not consider the spatial property of tactile data. Moreover, these methods ignore the
computation of the contact region on the fingertip. This work proposed forming a tactile
image that captures the spatial property of tactile data. We use a GMM to determine
the contact region on the tactile image. The contact force and location are calculated
based on the tactile data features in the contact region. The proposed force estimation
method makes the tactile data more suitable for feedback control. Meanwhile, previous
methods mainly used a fixed desired contact force that was manually predefined as the
reference signal for the feedback controller. These methods were limited to handling
certain similar or known objects and were unable to grasp unknown objects. To address
this limitation, we integrate a force feedback controller with material detection stably.
The controller sets the desired contact force automatically according to the material de-
tection results.

In this work, we jointly address the problems of slip detection, object material de-
tection, and force feedback control. The objective is to enable the robot to make use
of tactile sensing for object stabilization. We propose a tactile sensing method for a
multi-fingered robotic hand to stably grasp unknown objects without prior knowledge
of their shape or physical properties. The proposed framework consists of three compo-
nents: an online detection module, a force estimation method and an object stabilization
controller. The online detection module detects the contact event and the object material
directly from tactile data. The online detection module consists of three components:
a Long Short-Term Memory (LSTM)-based encoder-decoder architecture that learns a
latent representation of tactile data, a slip classifier that predicts the contact event, and
a material classifier that predicts the object material. Here, the temporal property of the
tactile data is fully analyzed and used for detection. Next, by exploiting the detection
results, the force feedback controller is employed to drive the robotic hand to adjust
its contact configuration online. To represent tactile data as feedback signals for the
feedback controller, a novel force estimation method based on GMM is proposed to cal-
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culate the contact force and location. The force estimation method takes advantage of
the spatial property of tactile data. Hence, this work makes use of the spatio-temporal
property of tactile data for tactile sensing. The performance of the proposed framework
is demonstrated with a Shadow Dexterous Hand equipped with BioTac sensors. The
following contributions are made in this work.

• An online detection module is introduced, which trains a deep neural network to
detect contact events and object materials directly from tactile data. An LSTM-
based encoder-decoder is employed to reduce the dimension of tactile data and
capture the temporal property of tactile data. A new tactile dataset is introduced
for tactile sensing. The dataset contains twelve household objects with four dif-
ferent materials.

• A novel force estimation method based on GMM is proposed to calculate the
contact force and location when a robotic hand interacts with an object. The
proposed estimation method uses a tactile image to capture the spatial property of
tactile data.

• An object stabilization framework is introduced for a multi-fingered robotic hand
to stabilize the grasped object. In the framework, the results of slip and material
detection are exploited as guidance and an object stabilization controller is em-
ployed to adjust the contact force between the robotic hand and the object online.

The rest of the section is organized as follows. An overview of the proposed frame-
work is introduced in Section 6.1. Section 6.3 introduces the online detection module.
The force estimation method is presented in Section 6.4. Section 6.5 introduces the ob-
ject stabilization controller. Experiments and their results are presented in Section 6.6.
Finally, the conclusion and future work are discussed in Section 6.8.

6.2 Overview

In this section, we give an overview of the proposed object stabilization framework for a
multi-fingered robotic hand to grasp unknown objects stably. The proposed framework
consists of three components: an online detection module, a force estimation method,
and an object stabilization controller. The detection module based on a deep neural
network samples tactile sequences online from the tactile readings as inputs and pre-
dicts the object material and contact event simultaneously. A force estimation method
based on a GMM is employed to process the tactile data online and calculate the contact
information (i.e., normal contact force and contact location) of fingers. In the object
stabilization controller, by exploiting the processed results of the tactile data, an object
stabilization controller is employed to drive the robot hand to adjust its contact config-
uration online in order to track the desired contact configuration or to avoid slippage.
Figure 6.1 illustrates an overview of the proposed object stabilization framework.
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Figure 6.1: Overview of the proposed object stabilization framework. Firstly, the tactile
sequence tseq and the tactile image timg are sampling from the tactile readings. The
contact event cs and the object material cm are detected based on the tseq. Next, the
desired contact force fd is updated based on the detection results. And the current
contact force f is estimated based on the timg . Finally, the object stabilization control is
employed to drive the robotic hand to track the desired contact force fd .

19 distributed electrodes E

Thermistor T Pressure transducer P

(a) Shadow Dexterous Hand (b) Biotac tactile sensor

Figure 6.2: Shadow Dexterous Hand with BioTac sensors.

6.3 Online Detection Module for Slip and Material Recog-
nition

In this subsection, we present an online detection module that takes a tactile sequence
sampled from tactile readings as input and predicted the contact event and object ma-
terial simultaneously. In the following, we first introduced the sampling process of the
tactile sequence and then detailed the proposed online detection module.

In this work, we use a Shadow Dexterous Hand equipped with BioTac sensors for
tactile data collection and experiments, as shown in Figure 6.2. The BioTac sensor is a
multi-channel tactile sensor and it includes: (1) a pressure transducer P for pressure vi-
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(a) tactile readings (b) tactile sequence

Data sampling

Figure 6.3: Example of a tactile sequence sampled from a tactile reading. (a) tactile
readings: it is recorded from the BioTac sensor, which has 23 dimension tactile features.
(b) tactile sequence: it has a dimension 32∗23. The window size is set to 32.

brations sensing, (2) a thermistor T for measuring heat flow, (3) 19 distributed electrodes
E for detecting the local pressure at different locations of the sensor. The BioTac sensor
has multi-modal sensory capabilities and provides 23 dimension tactile features which
includes low-frequency fluid pressure (Pdc), high-frequency fluid pressure (Pac), core
temperature (Tdc), core temperature change(Tac) and 19 electrodes (E1, ...,E19). Tactile
data is recorded from the BioTac sensor at 100 Hz. To obtain a input for the detection
model, we sample a tactile sequence tseq with a window size l from the tactile readings,
i.e., tseq = [Pdc,Pac,Tdc,Tac,E1, ...,E19]. Thus, the tactile sequence tseq has a dimension
l ∗ 23 where l is the window size and 23 is the number of tactile features. Figure 6.3
shows that the sampling process of the tactile sequence tseq from the tactile readings.
The tactile sequence tseq capture the temporal property of tactile data which is taken as
the input of the proposed online detection module.

This work aims to solve a multi-task classification problem where the contact event
and object material are detected simultaneously based on tactile data. Instead of train-
ing two complex networks for the two detection tasks, this work proposed an online
detection module. The architecture of the proposed detection module is illustrated in
Figure 6.4. The proposed model first to learn a low-dimension latent representation of
the tactile sequence and take it as the input for slip and material detection. The use of
the low-dimension latent representation of the tactile sequence help to reduce the model
complexity and enable different classifiers to share the tactile feature.

An LSTM-based encoder-decoder is employed to learn the low-dimension latent
representation of a tactile sequence. The encoder-decoder consists of three parts: an
encoder E, a latent representation h, and a decoder D. The encoder takes the tactile
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Figure 6.4: The architecture of the online detection module. The detection model con-
sists of three components: an LSTM-based encoder-decoder, a slip classifier, and a
material classifier.

sequence tseq as input and outputs the latent representation h that is a feature vector with
a fixed length. The decoder takes the latent representation h as input and reconstructs
the inputted tactile sequence. Because the tactile sequence tseq is time series, we take
advantage of the LSTM to capture the temporal characteristics of the tactile sequence.
The LSTM is a kind of recurrent neural network which excels at time series processing.
Hence, this work employs LSTM recurrent units in the encoder and decoder. The LSTM
unit takes the current frame xt and the previous hidden states ht−1 as inputs and produces
its hidden state ht and the output ot . The forward pass of the LSTM unit is summered as
follows

it = σ(Wx,ixt +Whiht−1 +Wc,ict−1 +bi),

ft = σ(Wx, f xt +Wh, f ht−1 +Wc, f ct−1 +b f ),

gt = tanh(Wx,cxt +Wh,cht−1 +bg),

ct = ftct−1 + itgt ,

ot = σ(Wx,oxt +Wh,oht−1 +Wc,oct +bo),

ht = ottanh(ct),

(6.1)

where σ and tanh are the sigmoid function and the hyperbolic tangent function, respec-
tively. ct is the memory unit that stores the temporal information. The LSTM unit has
four gates, i.e., the input gate it , the forget gate ft , the cell gate gt and the output gate ot .
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The four gates control the reading or modifying of the memory unit ct . For more detail,
please refer to [156].

The training of the LSTM-based encoder-decoder is in an unsupervised setting.
Hence, we only requires tactile sequence tseq contained in the proposed tactile dataset.
In this work, the encoder-decoder run through four tactile sequences {tseq,i}i=1:4 and
produce four reconstructed tactile sequences {t ′seq,i}i=1:4. The squared loss between the
inputted tactile sequence and the reconstructed tactile sequence is calculated as the loss
function for the training of the encoder-decoder, as defined in Eq. 6.2.

L1 =
4

∑
i
||tseq,i− t

′
seq,i||22 (6.2)

Next, we employ a slip classifier f s(·) to achieve slip detection task, which classifies
the latent representation h of the tactile sequence produced by the encoder-decoder as
one of three different contact event cs, as defined in Eq. 6.3. In this work, the three
different contact events are the non-contact cs

non−c, the contact cs
contact and the slip cs

slip.
This work uses a feed-forward network to form the slip classifier f s(·). The network
consists of three full-connected layers. We use a rectified linear unit (ReLU) nonlinear-
ity at the two layers. The last full-connected layer is passed through a soft-max function
to predict the class of the contact event. Figure 6.3 show the architecture of the proposed
slip classifier. A cross-entropy function is used to define the loss function for training
the slip classifier.

cs = f s(h), cs ∈ {cs
non−c,c

s
contact ,c

s
slip} (6.3)

This work also trains a material classifier f m(·) for object material detection, which
classifies the latent representation h of the tactile sequence as one of the four different
materials cm, as defined in Eq. 6.4. The four different materials considered in this work
are the paper cm

paper, the foam cm
f oam, the plastic cm

plastic and the metal cm
metal . The material

classifier is trained with a feed-forward network which consists of three full-connected
layers. We use a rectified linear unit (ReLU) nonlinearity at the two layers. The last full-
connected layer is passed through a soft-max function to predict the contact event class.
A cross-entropy function is used to define the loss function for training the material
classifier. Figure 6.4 show the architecture of the proposed material classifier.

cm = f m(h), cm ∈ {cm
paper,c

m
f oam,c

m
plastic,c

m
metal} (6.4)

The online detection module is trained with the tactile dataset proposed in this work.
The training and evaluation process of the detection module are detailed in Section 6.6.
The online detection module takes the tactile sequence that online sampled from tactile
readings as an input and output the detection results, i.e., the contact event and the object
material. These detection results are used in the object stabilization control.
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Figure 6.5: Definition of the tactile image. (a) 19 electrodes that distributes at different
locations of the BioTac sensor. (2) tactile image that consist of a 8 ∗ 5 matrix. The
number denotes the corresponding electrodes. (3) tactile image after filling the empty
pixel in the tactile image. The pixel value of the tactile image represent the electrode
data.

6.4 Force Estimation Based on GMM
One important technique in object stabilization is to estimate contact force from tactile
data, which is then taken as a feedback signal for feedback control. This work pro-
poses a force estimation method based on GMM that computes the contact information
(i.e., contact force and contact point) of the robotic hand based on the tactile reading
obtained from the tactile sensor. In the previous subsection, the tactile sequence tseq that
captures the temporal property of tactile data is sampled as the input of the proposed
detection model. In term of force estimation, we focus on the spatial property of tactile
data. We take advantage of the electrodes data and their connectivity to compute the
contact information. As introduced in Section 6.3, the Biotec sensor has 19 electrodes
that are distributed at different locations of the sensor surface. Figure 6.5(a) illustrates
the layout of the ninth electrodes on the surface of the BioTac sensor. To capture the
spatial relationship among the 19 electrodes, we defines a tactile image timg consists of
a 8 ∗ 5 matrix in x-y plane according to the locations of the 19 electrodes, as shown in
Figure 6.5(b). The electrodes are arranged in matrix-like distribution within the surface
of the BioTac sensor. The electrodes data is used to fill the pixel of the timg. In this
work, the pixels of the timg are filled as follows. When a pixel of the timg corresponds to
an electrode, we take the electrode data as the pixel value. Otherwise, the pixel value is
filled with the mean of its surrounding non-empty pixel values. Figure 6.5(c) shows an
example of the tactile image timg after filling the empty pixels.

The tactile image timg is further used to calculate the contact information (i.e., contact
location and contact force) between the fingertip and the object. From the tactile image
shown in Figure 6.5(c), it can be seen that there is only a region with relative high pixel
value of the fingertip that contact the object during the robotic hand interacts with the
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object. Previous methods mainly defined the contact force as the weighted sum of all the
electronic impedance. These methods made a hypothesis that all the electronics were
supposed to contact the grasped object. In these works, the electronic values at the non-
contact region were considered in the computation of the contact force. These methods
may cause uncertainty from the non-contact region in object stabilization.

Different previous methods, we first determine the contact region on the sensor sur-
face and then computes the contact information based on the contacted electrodes. This
work makes a hypothesis for the segmentation of the contact region from the sensor sur-
face. The hypothesis is that the contact region contains the electrodes with a relatively
high electrode value. The hypothesis is reasonable because the contact between the fin-
gertip and the object increases the pressure in the contact region. The segmentation of
the contact region is processed as follows. The electronic impedance in the tactile im-
age timg is first clustered into several clusters. Then the electrodes with a related high
electrode data are grouped to form the contact region Ω. In this work, we used GMM
to cluster the tactile image. We use all the pixel value in the tactile image timg to fit
the GMM model denoted as Ω. The GMM is modeled as a mixture of K Gaussian
distribution. The likelihood of an input e under a GMM is defined as

P(e|timg) =
K

∑
k=1

πkN(e|µk,σk) (6.5)

Where K is the number of the Gaussian components used in the GMM Ω. The K is set
to 3 in this work. e is a pixel value in the tactile image timg . πk is the prior of the k th
Gaussian component. N(x|µk,σk) represents a cluster with mean µk and covariance σk.
The parameters {πk,µk,δk} are estimated by maximum likelihood on the timg.

After the GMM fitting, each cluster is described with its mean and covariance. The
probability of a pixel belonging to each of the clusters can be calculated. We denote the
cluster with related high electronic value as Pc(e) = N(e|uc,δc). A pixel e is said to be
contacted if the predicted probability Pc(e) is more than a threshold α , as defined as

f (e) =

{
contact Pc(e)>= α,

noncontact Pc(e)< α,
(6.6)

All the pixels that predicted as a contact are grouped to form the contact region
denoted as Cimg. After segmenting the contact region Cimg, we then calculate the contact
information (i.e., contact location and normal contact force). In term of the computation
of the contact location, we use a Gaussian component to fit the Cimg. The mean of the
fitted Gaussian component is used as the contact center denoted as p = {px, py}. In term
of the computation of the normal contact force, we discard the influence from the pixel
that predicted as non-contact during force estimation. We define the normal contact
force f as a weighted sum of the value of the pixels that belong in the Cimg, as defined in
Eq. 6.7. Where n is the number of pixels in the Cimg. Pc(ei) is the predicted probability
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Figure 6.6: The process of the estimation of the contact information. (a) The BioTac
sensor contacts with the object to produce tactile data. (b) The inputted tactile image
timg. (c) The tactile image is clustered based on GMM to obtain three different clusters
denoted by different colors. (d) The contact region Cimg is segmented and a Gaussian
distribution is used to fit the contact pixels. (e) The contact information between the
fingertip and the object is calculated.

of the pixel ei which reflects the degree of contact of the pixel ei.

f =
n

∑
i

Pc(ei)ei (6.7)

At final, The contact information, i.e., Ψ = {p, f ,Cimg}, between a robotic fingertip
and the object is computed from tactile data. Figure 6.6 shows the process of the esti-
mation of the contact information. The estimated contact information is then used for
feedback control.

6.5 Object Stabilization Controller
Object stabilization controller is employed to drive the robotic hand to keep a feasible
contact force to stabilize an object without damaging or dropping it. In this work, the
object stabilization controller is built based on force feedback control. The controller
controls the joint torque τi of each joint qi of the robotic hand to track the desired contact
force fd in the Cartesian space. The object stabilization controller is independently
performed in each joint of the robotic hand. Hence, each finger of the robotic hand is
controlled to maintain a desired contact with an object to ensure the stable of the grasped
object.

In this work, the desired contact force fd is online updated autonomously according
to the results of slip and material detection. The desired contact force is updated by
taking the following steps:

1. A initial contact force f0 is manually set for each fingers of the robotic hand.

2. We then update an initial contact force f0 as the f m
d according to the result of the

material detection, as shown in Eq. 6.8. Objects with different materials require a
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different contact forces exerted by the robotic hand to ensure the grasp stability.

f m
d =


f0 cm = cm

paper

f0−δ fm cm = cm
f oam

f0 cm = cm
plastic

f0 +δ fm cm = cm
metal

(6.8)

3. Once a slippage is detected during the grasping process, we increase the desired
contact force f m

d applied by a fixed amount of δ fs resulting in the f s
d . Otherwise

the desired contact force fds is set to equal to the f m
d , as shown in Eq. 6.9.

f s
d =


f0 cs = cs

noncontact

f m
d cs = cs

contact

f m
d +δ fs cs = cs

slip

(6.9)

4. The desired contact force fd is finally obtained by clipping the f s
d into a safety

region with the maximum and minimum value (i.e., fd,max and fd,min) for control
safety. During the grasping process, the desired contact force fd is updated con-
tinually, the feedback controller is employed to driven the robotic hand to track
the fd .

This work employ a force feedback controller for the robotic hand to stabilize an
object without damaging or dropping them. Figure 6.1 shows the diagram of the control
architecture. The controller first takes the estimated contact force f as a feedback signal.
The current contact force is compared with the desired contact force to calculate the
force error, i.e., ∆ f = fd − f . This work use a ProportionalIntegralDerivative (PID)
control for force control, which take the force error ∆ f as input and computed the target
torque. The target torque is then send to low-level torque controller to control the robotic
fingers. Algorithm 5 shows the process of object stabilization through tactile sensing.

6.6 Experiments
This section first introduces the proposed tactile dataset for tactile sensing. We evaluate
the performance of the proposed tactile sensing method. The effectiveness of the ob-
ject stabilization method is also demonstrated in a real-world robotic experiment. The
experiment results and their discussions are introduced.

6.6.1 Evaluation of Online Detection Module
Dataset and Implementation

A tactile dataset that suits for material recognition and slip detection simultaneously
is still missing in the robotic community. Hence, this work introduces a new tactile
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Algorithm 5 : Object stabilization through tactile sensing.
1: Requires: a trained online detection module, Tactile readings, a initial contact force

f0,
2: Repeat:
3: Sample a tactile sequence tseq and a tactile image timg from tactile readings.
4: Perform online detection based on tseq and output contact event cs and object

material cm.
5: Perform force estimation based on timg to calculate current contact information

Ψ = {p, f ,Cimg}.
6: If cs = cs

non−contact then
7: Perform position controller to control the joints of the robotic hand to reach

desired joint position.
8: else
9: Update the desired contact force fd based on cs and cm.

10: Perform force feedback control to tracking the desired contact force fd .

dataset 1 that includes the tactile data, the ground-truth of material and the ground-truth
of contact event. In this dataset, three contact events (i.e., non-contact, contact, and slip)
and four different materials (i.e., paper, foam, plastic, and metal) are considered.

For tactile data collection, a Shadow Dexterous Hand equipped with BioTac sensors
on its fingers was used. We used the three fingers (i.e., the thumb finger, first finger,
and middle finger) of the Shadow Dexterous Hand for data collection. The tactile data
was recorded from the BioTac sensor mounted on these three fingers. Twelve household
objects were selected and divided into four groups according to their different materials,
as shown in Figure 6.7. The data collection was performed to record the tactile data
across all the selected objects under three different contact events. We control these
objects manually to interact with the fingertip of the Shadow Dexterous Hand. The
tactile data are recorded at 100Hz and saved into the ROS bag files. The recorded tactile
readings have 23 dimension tactile features. As introduced in Section 6.3, the tactile
sequence tseq with a dimension l ∗ 23 is extracted from the tactile reading and taken as
the sample of the tactile dataset. Meanwhile, all the tactile sequences tseq are labeled
with the contact event (0: non-contact, 1: contact, 2: slip) and the material class (0:
paper, 1: foam, 2: plastic, and 3: metal).

The training of the proposed online detection module is performed as follows: this
work first used the proposed tactile dataset to train the LSTM-based encoder-decoder.
Then training of the encoder-decoder only requires the samples contained in the tactile
data set since the training process is in an unsupervised learning setting. The trained
encoder-decoder is used to compute the latent represents of all the samples (i.e., the
timg). In the encoder-decoder, the dimension of the representation of the samples is
chosen as 256. Next, exploiting the latent representation of the samples and their corre-
sponding labels, we trained the slip classifier and material classifier jointly. The training
parameters of the online detection module are set as follows: the number of epochs was

1https://tams.informatik.uni-hamburg.de/people/deng/index.php?content=research
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(a) paper (b) foam

(c)plastic (d) metal

Figure 6.7: Twelve household objects contained in the tactile dataset. These objects are
divided into four groups according to their different material.

10, and the batch size was 5. The learning rate was set as 0.00001. We use an Adam
optimization method to optimize these two classifiers.

Experimental Results

The performance of the proposed online detection module is first evaluated based on the
proposed tactile dataset. The tactile dataset was split randomly into a training set (90%)
and a testing set (10%). This work uses the training loss and the test accuracy for this
evaluation. Figure 6.8 illustrates the training loss and testing accuracy of the slip and
material detection. In term of slip detection, the training loss is reduced as the training
steps increase and converge a minimum. The slip classifier achieves a high accuracy of
about 98% at final. That means the slip classifier can correctly classify the samples in
the tactile data. The high accuracy of the slip detection is of critical importance to the
object stabilization since the accurate prediction of slippage guides the force feedback
control. In term of material detection, the final detection accuracy is about 95%. The
proposed material classifier predicts the right material basically for the samples in the
tactile data.

We make use of a confusion matrix to evaluate the overall quality of the proposed de-
tection models. Figure 6.9 shows the two fusion matrix that visualizes the performance
of the proposed two classifiers. In each confusion matrix, each row of the confusion
matrix shows that the predicted probabilities for each ground-truth label. In term of slip
detection, the proposed slip classifier could predict the contact event correctly since the
diagonal elements have the highest values. The three contact events can be easily clas-
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(a) slip detection

(b) material detection

Figure 6.8: Performance of the proposed slip and material detection models.

sified. The proposed material classifier is also able to predict correct material for the
object since the diagonal element has higher values than that of the other element in a
small row. The foam is the most easily classified material. It is worth mentioning that
several off-diagonal elements also have rather high values. For example, the prediction
results of the plastic material show a relatively high probability for the paper. In this
case, the proposed model may incorrectly predict both object materials (i.e., the paper
and the plastic). There is a confusion between the plastic and paper maybe because the
two material has similar physical properties, like the hardness.

Next, we analyse the sensitivity of the proposed online detection module concerning
two important parameters (i.e., the window size l and the sample rate f ). As introduced
in Section 6.3, this work sample the tactile sequence tseq with a fixed window size l and
sampling rate f from tactile readings for detection. The window size determines the
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Figure 6.9: Confusion matrices of slip detection (a) and material detection (b).

number of sequential sensor readings that are taken as the input of the detection module.
The sampling rate determines how fast the sensor readings are taken. We evaluate how
the performance of the detected module changes with respect to the two parameters. In
this evaluation, three different window sizes l = {16,32,48} and three different sam-
pling rates f = {50,33.3,25} Hz are selected. That means the tactile data is sampled
every 2, 3, or 4 points to from the tseq. Before the sensitivity analysis, we first construct
different tactile datasets by using the different combinations with the two parameters.
The proposed detection model is then trained on these constructed datasets. The detec-
tion accuracy is used as the performance metric. Table 6.1 shows the detection accuracy
obtained from these comparison experiments concerning different parameters. First, it
can be seen that the accuracy of the slip detection and material detection are improved
as increasing the window size l and keeping a fixed sampling rate. The highest accu-
racy is obtained when l = 48. That may be because the bigger window size contains
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Table 6.1: Performance of the proposed detection model with respect to different pa-
rameters.

Sampling rate
Window size 50 33.3 25

16 96.9% 96.0% 97.6%
32 98.6% 98.6% 97.4%
48 99.0% 99.0% 98.0%

(a) Slip detection

Sampling rate
Window size 50 33.3 25

16 90.2% 90.7% 92.0%
32 94.5% 95.0% 97.2%
48 94.5% 97.2% 93.2%

(b) Material detection

more tactile information that promotes detection. Second, the detection accuracy does
not improve when the sampling rate increases. When f = 33.3 Hz, the detection per-
formance is better than that of the other two sampling rates. At final, the highest slip
detection accuracy of about 99% is obtained when the window size l = 48 and sampling
rate f = 50 Hz or f = 33.3 Hz. The highest material detection accuracy of about 97.2%
is obtained when the l = 32 and f = 25 or the l = 48 and f = 33.3. Since the tactile
data is sampled at 100 Hz in this work, the tactile sequence tseq has a 160 ms, 320 ms,
and 480ms of consecutive reading under the window size is 16, 32, 48. As the window
size increase, the detection delay is increased. To trade-off the real-time of detection
and the high accuracy of detection, we chose the window size l = 32 and the sample
rate f = 33.3Hz for the following real-world experiments.

We further evaluate the performance of the proposed detection model by comparing
the proposed method with a set of machine learning methods. In this work, we use linear
SVM, Random forest and a multi-layer perceptron (MLP) for this comparison. These
machine learning methods have been widely used to solve classification problems [22,
171]. The three machine learning methods are trained with the proposed tactile data
which is constructed under the window size l = 32 and the sampling rate f = 33.3
Hz. The detection accuracy is used as the performance metric. Table 6.2 shows the
detection accuracy of those methods. It can be seen that the proposed detection module
achieves a high slip detection accuracy of 98.6% compared with the other three methods.
The highest material detection accuracy of 95% was achieved by the proposed method.
From the comparison results, we can find that the proposed method obtained a better
performance on slip and material detection. Moreover, the proposed detection model
can detect the contact event and object material simultaneously from tactile data.
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Table 6.2: A comparison of the object and material detection accuracy from different
methods.

Method Slip detection Material detection

Linear SVM 98.1% 67.0%
Random forest 96.2% 59.2%

MLP 99% 78.4%
Ours 98.6% 95.0%
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Figure 6.10: Examples of online slip detection and material detection using the tomato
bottle. (a) The tactile reading is collected from the BioTac sensor. The first part of the
tactile reading only consists of two contact events, i.e., the non-contact and contact. The
second part is the slippage or non-contact. (b) and (c) show the results of slip detection
and material detection, respectively.
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Finally, we show an example where the proposed detection module is used to de-
tect contact events and object materials online. In this experiment, the tomato bottle is
controlled to interact with the thumb finger of the Shadow Dexterous Hand to produce
tactile streaming. During the online detection process, the tactile sequence is continually
sampled from the tactile readings and is sent to the proposed online detection module.
The proposed module outputs the predicted results. Figure 6.10 shows the tactile read-
ings and the detection results. First, Figure 6.10(a) shows the tactile readings recorded
from the BioTac sensor. The truth label of the contact event is shown in Figure 6.10(a)
and the truth label of the object material is 3, i.e., the metal. Figure 6.10(b) illustrates the
results of slip detection. It can be seen that the proposed slip detection method predicts a
correct contact event at each step. It is worth mentioning that there is a delay in the slip
detection. The degree of delay is affected by the window size and sampling rate. The
bigger window size and lower sampling rate would increase the delay of slip detection.
At final, the work performs material detection only when the slip classifier predicts the
contact between the hand and the object. Otherwise, the material detection model output
a value (-1). Figure 6.10(c) shows the results of the material detection. The times that
the object is predicted as the metal is highest. Hence, the proposed detection model can
correctly classify the object. The proposed detection model may predict the wrong ma-
terial for the object since the effect of the sensor noise. A good performance of online
detection is of critical importance for online object stabilization. The proposed detection
module is implemented in python and runs on a 2.50GHz Intel i5 CPU.

6.6.2 Evaluation of Force Estimation
The force estimation method is also evaluated. The force estimated method is used to
compute the contact information (i.e., normal contact force and contact location) from
tactile data. Figure 6.11 illustrates the results of force estimation. In this evaluation, we
control a object manually to contact the fingertip of the shadow hand in order to produce
tactile data. Figure 6.11(a) shows the tactile reading sampling from the BioTac Sensor
on the fingertip. From the Figure 6.11(b), it can be seen that the normal contact force
clearly changes during the robotic hand contacts the object. The contact location is also
computed based on tactile data, as shown in Figure 6.11(c,d). It is worth to mention that
the estimated normal contact force describes the change of the contact state between the
hand and the object.

6.6.3 Real-world Object Stabilization Experiment
We use the Shadow Dexterous Hand with five fingers for this evaluation. BioTac sensors
were mounted on the fingertips of the Shadow Hand. Eight different objects are used,
as shown in Figure 6.12. Each joint of the hand has its independent low-level torque
controller. In this experiment, we considered grasp configuration involving three fingers
(i.e., the thumb finger, the first finger, and the middle finger) of the hand across all
the test objects. The BioTac sensor on each finger can provide tactile data when the
hand contacts an object. The goal of object stabilization control is to stable grasp an
object under physical uncertainties. Hence, in the object stabilization experiment, we
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Figure 6.11: Results of force estimation

adopted the following procedures. (1) The robotic hand in an open-hand configuration is
controlled under position control to reach a specified position. (2) Once contact between
a finger and the object is detected by the online detection module, the object stabilization
controllers were activated.

In a real-world application, a robotic hand may fail to grasp and hold an object by
using a planned configuration due to the slippage and unknown weight of the object.
Hence, we first validate the proposed stabilization strategy on the real robotic hand
that implements object grasping tasks. The eight objects have different materials and
weights. The Shadow hand is controlled to grasp and hold an object positioned by a
human. The grasp configuration with three contact points on the object surface was not
enforced. We recorded ten trails for the eight objects. A grasp was considered stable if
the object was not dropped. The proposed stabilization strategy was able to stabilize all
the eight objects, as shown in Figure 6.12. By using the proposed stabilization strategy,
the contact force between the fingertip and the object was online adjusted to ensure
the grasp stable. The experimental results demonstrated that the proposed stabilization
strategies allow a multi-fingered robotic hand to stably grasp unknown objects without
prior knowledge of their weight and physical properties.
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Figure 6.12: Object grasping with the Shadow hand. The three fingers (i.e., the thumb
finger, the first finger and the middle finger) are used.

6.7 Discussion

This paper aims to explore an object stabilization strategy that combines tactile sensing
technique with feedback control to ensure a stable grasp with a multi-fingered robotic
hand. Object stabilization with a robotic hand is essential for a robot that implements
a manipulation task. However, it is still a challenge owing to the uncertainties arising
from the objects and environments. This work takes advantage of tactile information
to address the contact event detection, material detection and force estimation problems
jointly. In this way, the uncertainties during object stabilization are reduced. The robotic
hand can update the desired contact force automatically and track it. There has been
some previous work that uses tactile data to predict the object material [27] and contact
event [167]. In contrast to these previous methods, we trained a unified detection model
to detect contact event and object material simultaneously from tactile data. Moreover,
the use of the low-dimensional latent representation of the tactile sequence in the de-
tection model helps to reduce the model complexity and enables different classifiers to
share the tactile feature. In real-world robotic applications, it is of critical importance to
build a unified detection model instead of multiple separate detection models for sensory
perception.

Grasp stability under external perturbations can be maintained by adjusting the con-
tact force [36] or updating the contact point of the fingers on the object surface [104].
In this work, we consider adjusting the contact force for object stabilization, because a
tactile sensor provides local contact information. In the future, it will be beneficial to
simultaneously adjust the contact point and force of the fingers for the stable grasp. In
this case, the global and local information of the objects and environment is required.
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Although tactile sensors can provide critical information about the interactions between
the robotic hand and the objects, tactile sensors only perceive local contact information.
Moreover, tactile information processing must be implemented in real-time to enable
fast responses. Visual sensors are one of the most mainstream sensors in the robotic
community. Visual sensors can provide global information about the target object and
the environments. For example, the visual data can be used for grasp adaptation. There-
fore, it is interesting to fuse visual and tactile modalities for robotic perception.

6.8 Conclusion and Future Work
In this work, we address the tactile sensing problem during object stabilization using a
multi-fingered grasping considering dynamic uncertainties. We propose an object sta-
bilization method for the multi-fingered robotic hand to perceive an unknown object
online. The proposed object stabilization frameworks consist of three components: an
online detection module, a force estimation approach and a force feedback controller.
Our method takes advantage of the spatio-temporal characteristics of tactile data to per-
ceive the interaction with the grasped object. We use a deep learning technique to learn
features from tactile data for detection. The detection module samples a tactile se-
quence online from the tactile readings as input and predicts the object material and
contact event simultaneously. A force estimation method exploiting the spatial property
of tactile data is proposed to extract the contact information (i.e., normal contact force
and contact location). A feedback controller is employed to adjust the grasp force to
enable grasp stability. The effectiveness of the proposed framework was evaluated with
a Shadow Dexterous Hand equipped with BioTac sensors.

Tactile sensors only perceive local contact information. Visual sensors can provide
global information with respect to objects. However, the effectiveness of visual per-
ception is easily affected by lighting conditions or occlusion. Therefore, it is necessary
to explore novel methods to fuse visual and tactile information to improve perception
capability in the future.

105



Chapter 6. Dynamic Object Stabilization through Tactile Sensing

106



Chapter 7

Learning Synergies-based In-hand
Manipulation with Reward Shaping

7.1 Introduction

Implementing in-hand manipulations is an important ability for multi-fingered robotic
hands. To this end, a robotic hand uses its fingers to hold and manipulate an object within
the hand. Owing to the high dimensionality of a robotic hand and intermittent contact
dynamics, effectively programming in-hand manipulation for a robotic hand is still a
challenging problem [130]. Many methods, such as trajectory optimization [122] and
learning from demonstration [59, 138, 179], have been proposed to address this prob-
lem. The performance of these previous methods heavily relies on accurate dynamic
models or high-quality human demonstrations that are difficult to obtain. Recently,
DRL algorithms have achieved state-of-the-art performance in a set of continuous con-
trol tasks [109, 42]. DRL has the potential for learning manipulations directly from in-
teractions with the environment. However, the sample complexity of DRL has become
a key issue in learning complex manipulations [161], such as in-hand manipulation with
a multi-fingered robotic hand.

In-hand manipulation can be understood as a process in which a robotic hand takes
an action sequence using its fingers to move an object from a start pose to a goal pose.
Palli et al. proposed understanding in-hand manipulation as a derivation of a reference
grasping posture [133]. In robotics, the grasping postures of robotic hands are typically
divided into two grasp types, i.e., power and precision grasps, which were first intro-
duced by Napier et al. [125]. Grasp type is a way of representing the manner in which
a hand handles objects. Power grasps use the fingers and palm to hold an object firmly,
and precision grasps only use the fingertips to stabilize an object. Feix et al. extended
Napier’s grasp taxonomy and introduced a novel grasp taxonomy in which 33 different
grasp types are presented [28]. Humans are naturally capable of operating objects by
choosing a feasible grasp type from multiple possible grasp types. Based on the analyses
of grasping behavior [133, 46], some works have used the precision grasp as guidance to
plan in-hand manipulation [118, 129]. In these works, the precision grasp is first sought
in the configuration space of a robotic hand and then used as guidance for the plan-
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ning and control of in-hand manipulation. Using the precision grasp as guidance helps
to reduce the sample complexity of manipulation planning. In this work, we exploit
grasp types as guidance to assist in-hand manipulation learning with DRL. In contrast
to previous work that requires high-quality human demonstrations [95, 59], this work
only requires some grasping postures obtained from human demonstrations. Moreover,
grasp type is exploited as guidance for in-hand manipulation learning. In this way, the
robot is encouraged to explore a specific posture subspace, which reduces the sample
complexity of the DRL.

DRL algorithms learn manipulations in the context of rewards received from inter-
actions with the environment. Reward functions play a central role in specifying how
agents should act. However, the learning of complex manipulations with DRL algo-
rithms is usually slow and unstable when it only uses an extrinsic reward. Reward shap-
ing methods [98] have been widely proposed to assist manipulation learning by intro-
ducing additional reward functions to augment the extrinsic reward. Various additional
reward functions have been previously introduced according to different learning objec-
tives (such as exploiting human demonstrations [135], human advice [26], or intrinsic
motivation [68]). In this work, the agent is expected to achieve two sub-objectives: (1)
exploring a grasping posture subspace under a specific grasp type (such as precision
grasp) instead of the whole configuration space of the robotic hand, and (2) fully explor-
ing this specific posture subspace to avoid local convergence. Accordingly, two addi-
tional reward functions are designed. The additional rewards help to not only improve
the exploration efficiency of DRL but also provide a way to integrate domain-specific
concepts (i.e., the grasp type) into DRL. Optimizing a control policy concerning multi-
ple rewards is a multi-objective optimization problem. In contrast to previous methods
that directly train a control policy with respect to a composite reward [135, 26], this
work proposes a MARL algorithm to scalarize the multi-objective optimization prob-
lem [141].

The objective of this work is to allow a multi-fingered robotic hand to learn in-hand
manipulation effectively. To this end, we propose a MARL algorithm that exploits grasp
types as guidance for in-hand manipulation learning. To exploit grasp types as guidance
for manipulation learning, we first construct a low-dimensional posture subspace based
on the analysis of hand synergies considering six different grasp types. Given the hand
posture subspace, the robotic hand is encouraged to explore a specific posture subspace
fully under a specific grasp type. To realize this goal, we designs three different rewards,
i.e., an extrinsic reward rext , a hand-based reward rhand and an uncertainty-based reward
runc. The rhand is defined based on the analysis of hand synergies, and the runc is com-
puted based on the uncertainty of the state prediction. The three reward functions allow
the robot to know more about its environment and task. Meanwhile, three independent
agents are trained jointly with respect to their rewards and then cooperate to optimize a
control policy. Training each value agent with respect to a single reward helps the policy
model to learn faster and better. The experimental results demonstrated that exploiting a
specific grasp type as guidance helps to improve the exploration efficiency of DRL and
increases the success rate of the task execution.

The rest of this section is organized as follows. Section 7.2 introduces the necessary
background of the DRL. Section 7.3 introduces the construction of hand posture space
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considering six different grasp types. The proposed MARL algorithm is presented in
Section 7.4. The experimental evaluations and results are shown in Section 7.5. Finally,
the conclusion and future works are presented in Section 7.7.

7.2 Background

In this section, we briefly introduced preliminaries for RL. A RL setting is typically
modeled as a Markov Decision Process (MDP) given by a tuple: M = {S,A,R,P,ρ0}.
S ∈ Rn and A ∈ Rm denote the state and action, respectively. R : s× a→ r is a reward
function. P : s× a → s′ is a transition dynamics model that outputs the probability
distribution of the next state s′ given the current state s and action a. ρ0 is the initial
probability distribution of the state. At the time step t, the agent executes an action at
given a current state st . Then the agent observes the next state st+1 and receives a reward
rt . The objective of the RL is to optimize a control policy π : s→ a by maximizing an
expected discounted return, as defined in Eq. 7.1. Where τ = {s0,a0, ...,sT ,aT} denotes
a rollout data obtained from the interaction with an environment.

π
∗← max

θπ

Eτ∼π [
T

∑
t=0

γ
tr(st ,at)] (7.1)

RL defines a state-value V (s), a Q-value Q(s,a) and an advantage A(s,a) function as
follows:

V (s) = Eτ∼π [
T

∑
t=0

γ
trt |s0 = s]

Q(s,a) = Eτ∼π [
T

∑
t=0

γ
trt |s0 = s,a0 = a]

A(s,a) = Q(s,a)−V (s)

In this work, we use Proximal Policy Optimization (PPO) algorithm [151], a state-
of-the-art policy gradient method, as a baseline to learn in-hand manipulation. The PPO
algorithm maintains two functions: a value function Vθv(s) and a policy function πθπ

(s).
Policy gradient methods typically suffer from catastrophically large updates. To stably
update control policies, the PPO limits the magnitude of updates to the policy weight
θπ by imposing constrains on the difference between the new policy πθ and old policy
πθold . The policy function is optimized by maximizing the clipped surrogate objective
as defined in Eq. 7.2. The objective constructs a trust region around the old policy πθold

by posing a lower bound on the improvement induced by an update.

Lclip(θπ) = Êt [min(rt(θπ)Ât ,clip(rt(θπ),1− ε,1+ ε)Ât)] (7.2)

where Êt denotes the empirical expectation over time steps. Ât represents the esti-
mated advantage at time step t. ε is a clip parameter which clips the estimated advantage
Ât . rt(θ) =

πθ (at |st)
πθold (at |st )

is a ratio between the probability of action under current policy πθ
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Figure 7.1: Six commonly used grasp types [28] for the construction of hand posture
space.

and the probability of the action under previous policy πθold .

7.3 Construction of Low-dimension Hand Posture Space

Humans are capable of operating objects by choosing a feasible grasp type from multi-
ple possible grasp types. Grasp type is a way to represent how a hand handles objects.
Once a feasible grasp type is selected, the robotic hand can make sense of how to used
its fingers to operate the object. Feix et al. [28] introduced a GRASP taxonomy in which
33 different grasp types used by humans are presented. Considering the kinematic lim-
itations of the robotic hand as well as Feix’s GRASP taxonomy, this work consider six
commonly used grasp types (i.e., large wrap, small wrap, power, pinch, precision and
tripod), as shown in Figure 7.1. Precision grasp is defined as the operation of a object
using fingertip contacts alone. Moreover, this work exploit the precision grasp type as
guidance for in-hand manipulation learning. Hence, the robotic hand is encouraged to
explore the hand posture under the precision grasp type in the configuration space of the
robotic hand.

To construct the hand posture space, we need to collect a set of grasping postures,
considering the six different grasp types. During data collection, a user is supposed
to perform object grasping tasks considering the six grasp types. This work utilizes
a tracking system to record human grasping posture, as shown in Figure 7.2(a). The
tracking system uses a data glove with active markers to record 3D positions of the
markers. These 3D marker positions are used to compute the grasping posture of the
human hand. Twelve household objects are selected to collect the grasping postures, as
shown in Figure 7.2(b).

After data collection, the grasping postures of the human hand is further mapped
to a robotic hand. In this work, we use a Shadow Dexterous Hand, i.e., a five-fingered
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(a) Collection of human grasping data (b) Twelve objects for data collection

Camera

Data glove 

with marker

Figure 7.2: Collection of human grasping data. (a) Data collection with a tracking
system. (b) Twelve household objects

robotic hand, for in-hand manipulation experiments. The mapping process is achieved
by using the inverse kinematic method from [147]. The Shadow Dexterous Hand has
20 actuated degrees of freedom and a further four under-actuated movements for a total
of 24 joints. Hence, the whole configuration space of the Shadow Hand for in-hand
manipulation is a high dimension. Studies from neuroscience suggested that the central
nerves system (CNS) adopts a simplified strategy to coordinate a large number of de-
grees of freedom in motor control [37]. Synergies have been introduced as a strategy
to understand the control of movement involving multiple degrees of freedom. In the
past decade, synergies have also been widely used to analyze the behavior of the human
hand [114] and design grasp planning methods [29]. Ciocarlie et al. [29] used Principal
Components Analysis (PCA) algorithm to process hand poses recorded during human
hand grasping. This work demonstrated that the first two principal components contain
more than 80% of hand posture information. This work exploits the concept of synergies
to construct a low-dimension hand posture space for a robotic hand.

This work also employs PCA to analyze the hand posture synergies and build the
hand posture space for the Shadow hand. The PCA algorithm is employed to compute
the principal components for all the mapped hand postures. This work defines the hand
posture of the robotic hand as a vector of joint angles, i.e., c = {θi}i=1:24. Using the
PCA, a hand posture c is expressed as a linear combination of uncorrelated variables
{ei}i=1:n, as defined in Eq. 7.3. Here, we use the first two principal components to form
the hand posture space, i.e., n = 2. As a result, the hand posture of Shadow Hand could
be represented completely with the amplitude vector A = [a1,a2].

c = cm +
n

∑
i=1

aiei (7.3)

where cm denotes a nominal hand posture. {ei}i=1:n are the principal components of the
PCA algorithm, which defines the principal directions of variance. n is the number of
principal components.
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Figure 7.3: Low-dimension hand posture space under the six grasp types. The first two
principal components (a1,a2) of the PCA is used to represent the posture space. The
red cross denotes the cluster center of grasp posture under each grasp type.

At final, a low-dimension posture space of the robotic hand could be constructed
through hand synergies. Figure 7.3 shows the low-dimension hand posture space con-
sidering six different grasp types. The start posture is an open-hand configuration. From
this figure, it can be seen that the hand postures under different grasp types locate in the
different subspace of the hand posture space. The hand postures under the same grasp
type cluster together. For effective manipulation learning, the robotic hand is encour-
aged to explore the posture subspace under the precision grasp type.

7.4 Multi-agent Reinforcement Learning with Reward
Shaping

This section presents the MARL algorithm exploiting a specific grasp type as guidance
for a multi-fingered robotic hand to learn in-hand manipulation. Two additional reward
functions are first introduced based on the analysis of hand posture synergies and its
learning history. In-hand manipulation is then learned using a proposed MARL algo-
rithm. Figure 7.4 shows the schematic diagram of the MARL algorithm.

7.4.1 Reward Shaping for Efficiency Exploration of DRL
This work takes advantage of the information extracted from both the analysis of hand
posture synergies and the learning history for assisting manipulation learning. Two ad-
ditional reward functions are designed to encode the extracted information. In this work,
the proposed MARL algorithm use three different reward functions: (1) An extrinsic re-
ward rext that specifies the task goal. (2) A hand-based reward rhand that encourages the
agent to explore the state subspace under a specific grasp type (such as precision). (3)
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Figure 7.4: The schematic diagram of the proposed MARL algorithm.

An uncertainty-based reward runc that used to balance the trade-off between exploration
and exploitation of the MARL algorithm. The extrinsic reward is generated accord-
ing to the task requirement and the environment, which is defined in Section 7.5. The
following subsections present the computation of the hand-based reward rhand and the
uncertainty-based reward runc.

r := {rext ,rhand,runc} (7.4)

Hand-based Reward Based on the Analysis of Hand Synergies

This work exploits the precision grasp type as guidance for in-hand manipulation learn-
ing. Hand postures required for implementing in-hand manipulations are understood as
a derivation from the precision grasp. As shown in Figure 7.3, the hand posture space
is divided into different regions according to six different grasp types. The posture sub-
space under the precision grasp type is a partial region of the whole posture space. To
reduce the sample complexity of the DRL, the robot is preferred to explore the specific
posture subspace under the precision grasp type and ignore some infeasible states in
other posture subspace (such as the subspace under the pinch grasp type) .

This work use similarity measure to define the hand-based reward rhand , which drives
the robot to explore the specific posture subspace under the precision grasp. The rhand

is defined based on the Euclidean distance dhand between the amplitude vector A of
the explored configuration c and the amplitude vector Aprecision

center of the reference grasp
configuration cprecision

center , as shown in Eq.7.5. Where the Aprecision
center is obtained by clustering

in the hand posture space, as shown in Figure 7.3. Eq. 7.5 shows the computation of the
rhand . We take the explored hand posture as a precision grasp if dhand < 0.4 and set a
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high value to encourage the agent to execute the precision grasps.

rhand =


1.5 ifdhand < 0.4
−dhand−0.4

1.4−0.4 if0.4 6 dhand 6 1.4
−10 otherwise

with dhand = ||A−Aprecision
center ||22, A = [a1,a2]

(7.5)

Uncertainty-based Reward Based on Uncertainty Measure

The rhand encourages the robot to explore a specific hand posture subspace under the
precision grasp. At the same time, the agent is also preferred to explore this posture
subspace fully to avoid a local convergence. Inadequate exploration could result in fail-
ing to find an effective control policy. Although this work adds random Gaussian noise
to action selections, random exploration is not efficiency, particularly for learning com-
plex manipulations. Different heuristic exploration approaches have been previously
proposed to improve exploration efficiency. Intrinsic motivated RL [157, 68, 2] is a
popular method that defines different intrinsic motivation rewards to improve the ex-
ploration efficiency of the DRL. This work proposes to measure the uncertainty of the
explored state as an intrinsic motivation of the agent. The uncertainty measure guides
the robot to explore new states.

The uncertainty of explored states is approximated by the prediction error of a
transitional dynamic model. This work approximates the transitional dynamic model
fθ f (st ,at) by training a neural network, where the θ f denotes the weights of the net-
work. The dynamic model fθ f (st ,at) takes current state st and action at as inputs and
predicts the next state st+1, i.e., fθ f : st × at → ŝt+1 ≈ st+1. The dynamic model fθ f is
trained by minimize a mean squared error loss, as defined in Eq. 7.6. Where || · ||2 is the
L2 norm. D is a minibatch dataset received from the interactions with its environment.

L(θ f ) =
1
|D| ∑

(st ,at ,st+1)∈D
||st+1− fθ f (st ,at)||22 (7.6)

In this work, the uncertainty of the state is measured based on the prediction error
of the dynamic model. At each time step t, given the collected state stand action at , the
dynamic model fθ f predict the next state st+1. We measure the Euclidean distance dunc

between the explored next state st+1 and the predicted next state ŝt+1 to estimate the
state uncertainty. Eq. 7.7 shows the computation of the uncertainty-based reward runc.
The learning history described by the transitional dynamic model is used to design the
runc. The runc encourages the robot to try unexplored states with high prediction error
of the dynamic model.

runc =


1.5 ifdunc < 0.2
dunc−0.2
25−0.2 if0.2 6 dunc 6 25
−10 otherwise

with dunc = ||st+1− fθ f (st ,at)||22

(7.7)
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Figure 7.5: Network architecture of the value functions. Three independent functions
are trained jointly concerning their reward function.

7.4.2 Multi-agent Reinforcement Learning with Multiple Rewards

Different rewards could drive the robot to achieve different learning behavior. Manip-
ulation learning concerning multiple rewards is usually formulated as a multi-objective
optimization problem. Different from previous methods that train the robot directly con-
cerning a composition reward, this work formulates manipulation learning as a MARL
problem. In the MARL setting, three independent agents represented by value functions
are trained jointly concerning their reward, and then cooperate to optimize a control
policy. In this way, each value agent captures different learning behavior concerning
its reward. For example, a hand-based agent learns the formation of a precision grasp
for in-hand manipulation; at the same time, and the uncertainty-based agent aims to try
unexplored states to avoid local convergence.

In the MARL setting, according to the three rewards r := {rext ,rhand,runc}, this work
jointly trains three agents represented by three value functions Vθv := {V ext ,V hand,V unc}.
The value function Vθv is approximated by training a deep neural network, where the θv
denotes the weight of the network. The value function Vθv takes current state st and
predicted the state value vt = {vext ,ehand,vunc}, i.e., Vθv : st → v̂t ≈ vt . In this work,
each value function shares the low-level layers of neural network and owns a separate
high-level layers. Figure 7.5 shows the network architecture of the value functions. The
first two fully-connected layers is used to extract the state feature and the last two in-
dependent fully-connected layer is trained to achieve different learning behavior. The
parameters θv := {θv,0,θv,ext ,θv,hand,θv,unc} of the value function are optimized by min-
imizing the following objective that is a linear combination of the three loss functions
concerning the three value functions.

L(θv) = Lext
v +Lhand

v +Lunc
v

with Lo = Eπ [||yo− v̂o||22], o := {ext,hand,unc}
(7.8)
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where Lext ,Lhand and Lunc denote the loss functions of the three value agents, respec-
tively. yo denote the estimated value of a value agent computed with the TD-λ method.
v̂o is the predicted value of a value agent.

Then, the three value functions cooperate to compute the advantage A to optimize
the control policy. The composition value Vcomp is first computed based on the three
value functions. The Vcomp is a linear combination of the predicted values of the three
value functions, as defined in Eq. 7.9. Where β1,β2 and β3 denote the weights that
determine the important of the value functions during manipulation training.

Vcomp(s) = β1V ext(s)+β2V hand(s)+β2V unc(s) (7.9)

We also can demonstrate that the policy optimization with respect to the Vcomp is con-
sistent to the optimization with respect to the composition reward function rcomp =
β1rext +β2rhand +β3runc, as defined in Eq. 7.10. However, in the multi-agent setting,
the multi-objective optimization of the value function is scalalized and the there value
functions are easily trained.

Vcomp(s) : = β1V ext(s)+β2V hand(s)+β2V unc(s)

= β1E[
T

∑
t=1

γ
trext(st)]+β2E[

T

∑
t=1

γ
trhand(st)]

+β3E[
T

∑
t=1

γ
trunc(st)]

= E[
T

∑
t=1

γ
t(β1rext(st)+β2rhand(st)+β3runc(st))]

= E[
∞

∑
t=1

γ
trcomp(st)|st = s]

(7.10)

Next, this work uses the GAE-λ method to estimate the advantage A. Given the compo-
sition value Vcomp and composition reward rcomp, the advantage A is estimated by

AGAE(γ,λ )
t =

k−1

∑
l=0

(γλ )l(rcomp,t +λVcomp(st+1)−Vcomp(st))

In the proposed MARL setting, the control policy πθπ
, the value function Vθv and the

transitional dynamic model fθ f are jointly optimized by minimize the following loss,
as defined in Eq. 7.11. The Lclip(θπ), L(θv) and L(θ f ) denote the loss function of the
policy function, the value function and the dynamic model, respectively.

min
θπ ,θv,θ f

Lclip(θπ)+L(θv)+L(θ f ) (7.11)

The pseudocode of the proposed MARL algorithm with reward shaping is shown
in Algorithm 6. Initially, the agent collects rollout data by running the current policy
πθπ

. The two additional rewards (i.e., rhand and runc) together the extrinsic reward rext
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are computed at each time step. After collecting the data, the policy function, value
function, and dynamic model are jointly updated with the sampled rollout data.

Algorithm 6 : Leaning synergies-based in-hand manipulation
1: Input: Number of epochs N, Length of epoch Nepc, Number of optimization steps

Nopt
2: Output: policy πθπ

(a|s)
3: Initialize the agent state as s0 ∼ ρ0(s0)
4: for i = 1 to N do
5: for t = 1 to Nepc do Training data collecting
6: Sample and execute the action at ∼ πθπ

(a|s)
7: Receive the next state st+1 and the rext

t
8: Compute the rhand

t using Eq. 7.5 and the runc
t using Eq. 7.7.

9: Add the tuple < st ,at ,st+1,rext
t ,rhand

t ,runc
t > to replay memory M

10: t+= 1
11: end for
12: for j = 1 to Nopt do Optimization
13: Sample a minibatch B from replay memory M
14: Optimize the policy πθπ

, value function Vθv and dynamic model fθ f using
Eq. 7.11

15: j+= 1
16: end for
17: i+= 1
18: end for

7.5 Experiments
This section first introduces the experiment setup and then presents the experiment re-
sults and its discussion.

7.5.1 Implementation

Environments: To evaluate the proposed MARL algorithm, we used the robotic envi-
ronments from OpenAI Gym 1. The robotic environments are built based on the MuJoCo
physic simulator 2, as shown in Figure 7.6. Object rotation tasks were used for the eval-
uation. In this experiment, two objects (i.e., a block and an egg) were used. A Shadow
Dexterous Hand 3 was used to manipulate an object from an initial pose to a target pose
by using its fingers. The Shadow Hand is a 24-DoF manipulator which five fingers with
22 joints and a wrist with two joints.

1https://gym.openai.com/envs/classiccontrol
2http://www.mujoco.org/
3https://www.shadowrobot.com/products/dexterous-hand/
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a) Block rotation task b) Egg rotation task

Figure 7.6: Two object rotation tasks in the OpenAI Gym robotic environment. Two
objects, i.e., a block and an egg, are used for the evaluation.

In the MARL setting, the state of the robotic hand is 68 dimension variable which
includes the hand joint angles, the joint velocity, the object pose, the object velocity and
the object target pose. The action was a 24-dimensional variable which was the relative
angle of hand joints w.r.t. the current angle. The initial state of the agent and the target
object pose were randomly chosen at the beginning of each episode. The objective is
to manipulate the object to reach the desired orientation. Hence, the external reward
rext was computed based on the difference dext between current object orientation and
the target object orientation, as defined in Eq. 7.12. Where the object orientation was
represented as a quaternion q. The qcurr 	 qtarget denoted the different between the
current quaternion qcurr and the target quaternion qtarget . The two rotation tasks used
the same rext which encourage the agent to manipulate an object to reach the target
pose. We take that the object reaches the goal pose if dext > −0.1 and set a high value
to encourage the robot to implement the object rotation tasks successfully.

rext =


50 ifdext >−0.1

−dext−(−0.1)
−5−(−0.1) if −5 6 dext 6−0.1

−10 Otherwise

with dext =−qcurr	qtarget

(7.12)

Training details: The control policy πθπ
was also approximated by training a neural

network, where the θπ denotes the weight of the network. The policy πθπ
taken the

current state st and outputted the predicted action at , i.e., πθπ
: st → at . The policy

network used three fully-connected layers. Each layer had 256 hidden units and used
the tanh activation function for all the hidden units. The training parameters of the
proposed MARL algorithm were set as follows. The number of epochs N was 2500.
The number of optimization steps Nopt was 10. The length of rollout Nrollout was 2048.
The length of each episode Nepi was 100. During the policy training, the batch size was
set as 256. The initial learning rate was set as 0.0001, and it was linearly decreased
as the learning process. The discount factor γ was 0.99, and the clip parameter ε was
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0.2. The two parameters of the GAE method are set as λ = 0.95 and γ = 0.99. The
Stochastic Gradient Descent (SGD) method with a momentum rate of 0.9 was employed
to optimize the weights of the neural networks. The three parameters were set as β1 =
1, β2 = 0.5 and β3 = 0.1, which weighted the importance of the rext , rhand and runc,
respectively.

7.5.2 Experimental Results
Firstly, the overall performance of the proposed MARL algorithm concerning object
rotation tasks was evaluated. We compare our results with four categories of baselines,
as defined as follows.

• PPO algorithm: The PPO algorithm was used as a baseline for this evaluation.
This algorithm only used the extrinsic reward rext for policy optimization.

• ppo+ hand algorithm: This algorithm used the hand-based reward rhand and the
extrinsic reward rext . Two independent value agents trained jointly and cooperated
to optimize the control policy.

• ppo+ unc algorithm: This algorithm used the uncertainty-based reward runc and
the extrinsic reward rext . Two independent value agents trained jointly and coop-
erated to optimize the control policy.

• Our proposed MARL algorithm: This algorithm used all the three reward func-
tion.

The four algorithms were evaluated in the two rotation tasks mentioned above. Fig-
ure 7.7 shows the performance curve of the four algorithms in the object rotation tasks.
The learning performance of these algorithms was evaluated through the number of suc-
cesses in each rollout. The high number of successes meant that the robot has a high
chance of achieving object rotation tasks successfully. Firstly, from the learning results,
it can be seen that the PPO algorithm failed to obtain a high success rate in the block ro-
tation task. The manipulation learning with the PPO is relatively slow. Secondly, it can
be seen that the ppo+hand and ppo+unc algorithm performed better than the PPO al-
gorithm because the two algorithms obtained a higher success rate. The two additional
reward functions all helped to improve exploration efficiency of the PPO algorithm.
Meanwhile, we also noticed that the learning speed of the ppo+ hand algorithm was
faster than that of the ppo+unc algorithm. The reason was that the hand-based reward
rhand drives the robot to use the feasible hand configurations for rotating the objects.
Hence, the learning time required by the ppo+ hand algorithm was reduced. Finally,
compared with the three other algorithms, the proposed algorithm obtained the best
learning performance because it obtained the highest success rate. The robot with the
guidance of the rhand had a high chance to try the states with high probability success.
The action selection in the exploration process was adjusted according to the predicted
uncertainty of the dynamic model. As a result, the learning agent explored new states
to balance the trade-off between exploration and exploitation. The incorporating of the
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Figure 7.7: A comparison of the results from four algorithms concerning object rotation
tasks.

domain knowledge and information extracted from the learning history helped to re-
duce sample complexity and improve the exploration efficiency. The comparison results
demonstrated that the proposed MARL algorithm enabled the Shadow Hand to learn
in-hand manipulations effectively.

In this work, the precision grasp configuration was taken as guidance for in-hand
manipulation learning. The hand-based reward rhand is designed to encode the grasp
type information to assist the manipulation learning. The average episode returns Rhand
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Figure 7.8: The collected average episode return concerning the hand-based reward
during running the two algorithms.

concerning the rhand could be used to evaluate the manipulation ability of the robotic
hand. The high rhand meant that the agent had a strong ability to form the precision
hand configuration. Figure 7.8 shows the average episode return Rhand during running
the two algorithms (i.e., the ppo+hand and the proposed algorithm). The return Rhand

was increasing as the learning progress. That meant the robot was to form and use
the precision hand configuration which produced a high success rate of object rotation.
It can be seen that our proposed algorithm obtained a faster learning speed than the
ppo+hand algorithm. It showed that the rhand encouraged the agent to explore the state
space where the states had a high hand-based reward opportunity. It also can understand
that the use of domain knowledge helped the agent to quickly learn how to control its
fingers to achieve the object rotation tasks successfully. Hence, given the hand-based
reward rhand as a guidance, the Shadow Hand had a high chance to find feasible hand
configuration for in-hand manipulation.

Next, we further evaluated the effectiveness of the MARL setting for in-hand ma-
nipulation learning. In the proposed algorithm, three independent agents represented by
value functions were jointly trained concerning their reward function and then cooper-
ated to optimize the control policy. We want to demonstrate the necessity of learning
independent value agents. This work compared the proposed algorithm with another
baseline.

• Single Agent Reinforcement Learning (SARL) algorithm: This algorithm is also
based on the PPO algorithm, but it used a composition reward that is a linear
combination of the three rewards defined in Section 7.4. Previous methods mainly
used a composition reward computed from multiple rewards to learn a control
policy [87].

Figure 7.9 shows the performance curve of the two algorithms in the two object rota-
tion tasks. The learning performance of the two algorithms was evaluated through the
number of successes in each rollout. From the figure, it can be seen that the proposed al-
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Figure 7.9: Comparison between the proposed MARL algorithm and the SARL algo-
rithm.

gorithm obtained a clear performance boost over the SARL algorithm. The optimization
concerning a composition reward was a multi-objective optimization problem. Training
three independent value functions jointly helped to scalarize the multi-objective opti-
mization. Each reward function typically represented an individual desirable learning
behavior of the agent. Experimental results showed that the training of the agent (i.e.,
the optimization of the value function) concerning individual rewards could be fast.

7.6 Discussion

This work aims to explore a learning method that exploits meaning abstraction to assist
manipulation learning (such as object rotation with a multi-fingered robotic hand). Ma-
nipulation learning using DRL algorithms is usually a time-consuming process. DRL
algorithms in the context of an extrinsic reward are usually slow and unstable, especially
when the extrinsic reward is sparse. Previous work has demonstrated that the use of do-
main knowledge helps to improve the performance of manipulation learning using DRL
algorithms [7, 89]. However, it is still a challenging problem to represent and use do-
main knowledge in DRL algorithms. In this work, we exploited an abstraction of hand
grasping posture (i.e., grasp type) as guidance to assist in-hand manipulation learning.
Grasp types convey important information that represents the manner in which a hand
handles objects. We extract information from both the analysis of hand posture synergies
and the learning history. Two additional rewards were designed to encode the extracted
information. The two additional reward functions encourage the robot to achieve multi-
ple learning behaviors (such as the formation of a precision grasp and the execution of
an unexplored state). A reward shaping method is used to integrate these rewards into
a DRL algorithm. Domain knowledge then encourages the agent to attempt reasonable
actions. The experimental results showed that the use of such domain knowledge helped
the agent to improve the performance of in-hand manipulation learning.
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7.7 Conclusion and Future Work
This work presents a MARL algorithm for a multi-fingered robotic hand to learn in-hand
manipulation. Information extracted from both the analysis of hand posture synergies
and the learning history is used to guide in-hand manipulation learning. Two addi-
tional reward functions (i.e., a hand-based reward and an uncertainty-based reward) are
designed to encode the extracted information into a DRL algorithm. The hand-based
reward drives the robot to explore the specific hand posture subspace with high success
probability. The uncertainty-based reward encourages the robot to try unexplored states
to balance the trade-off between exploration and exploitation. Meanwhile, three inde-
pendent agents represented by value functions are trained jointly with respect to their
reward and then cooperate to optimize a control policy. The two additional rewards
not only improve the exploration efficiency of the DRL algorithm, but also provide a
way to incorporate domain knowledge. The performance of the proposed MARL algo-
rithm was evaluated with object rotation tasks. The experimental results showed that
the proposed MARL algorithm enabled the robot to achieve the object rotation tasks ef-
fectively. Moreover, this work demonstrated that exploiting domain knowledge (such as
grasp type) is powerful for learning in-hand manipulations with a multi-fingered robotic
hand.

Effectively learning in-hand manipulation is far from a solved problem. In this work,
the robot is allowed to explore all the states in the configuration space. However, this
is impractical for a real physical robotic system, because some unreasonable state may
break the system. Safety constraints should be considered in the DRL algorithm, which
restricts the agent in exploring the reasonable states.
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Chapter 8

Conclusion and Future Work

In this chapter, we first present a summary of the thesis. Furthermore, the advantages
and limitations of the proposed approaches are discussed. Finally, we introduce some
potential directions for future research.

8.1 Summary of the Thesis

The overall objective of this thesis was to empower a robot to achieve human-like grasp-
ing and manipulation abilities. Throughout this thesis, we proposed a variety of ap-
proaches for the robotic hands to implement dexterous grasping and manipulations. The
development of these approaches aimed to address four open challenges relevant to dex-
terous grasping and manipulation. The four challenges were stable grasping during
manipulation tasks, generalization of grasp planning, stability of grasps under uncer-
tainties and complexity of in-hand manipulation learning. In relation to the four chal-
lenges, we summarize the thesis as follows.

First, we studied stable grasping when implementing manipulation tasks. RTG tasks
were considered in this work, which is an essential ability of a robot. For a stable imple-
mentation of RTG tasks, Chapter 3 proposed an optimization framework that combines
stable grasp planning with trajectory generation. The proposed optimization framework
covered the complete path from perception to decision-making in RTG tasks. In this
framework, the object of interest was first localized and recognized by using the pro-
posed object detection model. A Bayesian-based search algorithm was used to find
the grasp configuration with the highest grasp quality computed by a trained quality
network. A model-based trajectory generation approach inspired by the human inter-
nal model theory was presented to compute constraint-satisfied trajectories for reaching
movements. The effectiveness of the proposed framework was demonstrated and vali-
dated through comparative analysis and in real-world experiments. Experimental results
demonstrated that the proposed learning framework allows robots to implement RTG
tasks effectively.

Second, we addressed the challenge of generalization of grasp planning. In Chap-
ter 5, we proposed a general-purpose grasp planning approach that suits various robotic
hands with an arbitrary number of fingers. The novel definition of pregrasping opposi-
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tion was introduced, which was taken as a waypoint for grasp formation. Additionally,
in Chapter 4, we proposed an attention-based visual analysis framework that computed
grasp-relevant information (i.e., grasp type and grasp attention point) directly from vi-
sual data. The grasp type and grasp attention point on an object segment presented
in the ROI were then computed using a grasp type detection model. The pregrasping
opposition was then used to encode the computed grasp-relevant information. Finally,
a dual-stage grasp planning method was proposed to plan feasible grasps for various
robotic hands with an arbitrary number of fingers. The final grasp configuration involv-
ing a set of contact points was planned with the guidance of the pregrasping opposition.
In this framework, the use of the pregrasping opposition not only incorporated the grasp-
relevant information into grasp planning but also provided a way to generalize the grasp
planning approach to various robotic hands with an arbitrary number of fingers. Com-
pared to previous methods without grasp-relevant information as guidance, the infor-
mation generated from the visual analysis can significantly accelerate grasp planning .
Moreover, the success rate of the grasping was also increased by exploiting the detected
grasp type as guidance. The performance of the proposed framework was evaluated on
a real-world robotic platform. The experimental results demonstrated that the proposed
framework allowed various robotic hands to implement grasping tasks effectively.

Third, we proposed an object stabilization framework for a multi-fingered robotic
hand to enable the grasp stability under uncertainties. The object stabilization frame-
work combined tactile sensing with feedback control. We used deep learning to learn
features from tactile data. A detection module sampled a tactile sequence online from
the tactile readings as input and predicted the object material and contact event simul-
taneously. A force estimation method exploiting the spatial property of tactile data was
proposed to compute the contact information (i.e., contact normal force and contact lo-
cation). The spatio-temporal characteristics of tactile data were exploited for perception.
An object stabilization controller was employed to adjust the grasp force for object sta-
bilization. The effectiveness of the proposed framework was evaluated using a Shadow
Dexterous Hand equipped with BioTac tactile sensors.

Fourth, in-hand manipulation was also an important ability for a multi-fingered
robotic hand interacting with its environment. In Chapter 7, we proposed a MARL algo-
rithm for a multi-fingered robotic hand to learn in-hand manipulations. The information
extracted from both the analysis of hand posture synergies and the learning history was
used to guide in-hand manipulation learning. Two additional reward functions (i.e., a
hand-based reward and an uncertainty-based reward) were designed to encode the ex-
tracted information into the DRL. Three independent value agents represented by value
functions were trained jointly with respect to their reward and then cooperate to optimize
a control policy. In this way, the two additional rewards not only improved the explo-
ration efficiency of the DRL algorithm but also provided a way to incorporate domain-
specific knowledge. The performance of the proposed MARL algorithm was evaluated
in a physical simulator with object rotation tasks. The experimental results showed that
the proposed algorithm allowed a robotic hand to achieve object rotation tasks effec-
tively. Moreover, this work demonstrated that exploiting domain-specific knowledge
(e.g., grasp type) was effective for learning in-hand manipulations with multi-fingered
robotic hands.
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8.2 Discussion
The research presented in this thesis aimed at addressing the performance of robotic
grasping and manipulation systems. To this end, we have proposed a variety of ap-
proaches in this thesis. Detailed discussions of these proposed approaches were intro-
duced in each chapter. Here, we summarize them as follows.

8.2.1 Visual/tactile Perception for Robotic Grasping
In this thesis, we proposed an attention-based visual analysis framework that allows the
robots to choose the most feasible grasp type from multiple grasp types to operate ob-
jects. In this work, six commonly used grasp types are considered, while the previous
approaches only consider two grasp types. Moreover, the proposed framework learns
features directly from raw sensor data, while most of the previous approaches use hand-
crafted features. This work only considered object attributes during grasp type detection.
Because grasp planning is also affected by human preferences and task requirements, it
is interesting to consider these constraints in grasp and manipulation planning.

In addition, we trained a deep neural network to learn a grasp quality metric that
evaluates the performance of grasps from depth images. Different computational models
based on deep neural networks have been trained for different applications (such as grasp
quality measure and grasp type detection). However, humans typically use the two-
stream hypothesis for visual analysis where a ventral stream recognizes object properties
while a dorsal stream simultaneously interprets the geometric relationship to implement
object grasping [164]. Hence, it is interesting to make use of deep learning techniques
to train a unified model that measures the quality of grasps as well as detecting the grasp
type.

In this thesis, we developed a tactile sensing method for robotic hands to detect con-
tact events and object materials, and to estimate the contact force between a robotic hand
and a grasped object. Although tactile sensors can provide critical information about in-
teractions between the robotic hand and the object, they only perceive local contact
information. Moreover, tactile information must be processed in real-time to enable
fast responses. Visual sensors are among the most mainstream sensors in the robotics
community. Visual sensors can provide global information with respect to objects and
environments. However, the effectiveness of visual perception is easily affected by light-
ing conditions and occlusion. Therefore, it is necessary to explore novel methods to fuse
visual and tactile information to improve perception capability.

8.2.2 Robotic Grasp Planning
This thesis addressed the stable grasping problem when implementing RTG tasks. We
proposed an optimization framework that solved the grasp planning and trajectory gen-
eration problem when implementing RTG tasks. By using the optimization framework,
the grasp planning module determined the feasible grasp configuration. The trajectory
generation module took the planned grasp configuration as inputs and computed the
constraint-satisfied reaching movement. In the proposed framework, the grasp planning
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and trajectory generation were considered separately. It will be possible to develop a
unified framework that jointly learns the grasping skill and motion moving. One pos-
sible way is to use a hierarchical deep RL algorithm to learn multiple control policies
simultaneously. This way, we could achieve complex tasks that involve multiple sub-
tasks.

Generalization of grasp planning is important for intelligent robots. This work also
studied the general-purpose problem of grasp planning. The motivation of this work
includes two points: (1) To enable robotic hands to grasp objects using a feasible grasp
type as humans do. (2) To design a grasp planning method that suits various robotic
hands with an arbitrary number of fingers. In terms of motivation 1, previous grasp plan-
ning methods only consider two grasp types (i.e., Power and Precision). Moreover, the
grasp types are determined manually for robotic hands. We proposed taking advantage
of deep learning techniques to detect grasp types directly from visual data. The exper-
imental results demonstrated that the proposed methods enabled robotic hands to grasp
objects with different grasp types. In terms of motivation 2, most of the previous grasp
planning methods were designed for one specific hand. We designed a dual-stage grasp
planning method beginning with the pregrasping opposition. Complex grasp configura-
tions, such as precision grasps, were generated from a simple pregrasping opposition. In
the proposed general-purpose grasp planning approach, we designed an analysis-based
quality metric to evaluate the performance of candidate grasps. However, the perfor-
mance of the analysis-based quality metric could easily be affected by sensor noise. For
stably measuring grasp quality, we hope to use deep learning to learn a quality metric for
dexterous grasping. Hence, a dataset including the object’s point clouds and exampled
grasps should be collected.

8.2.3 Effective In-hand Manipulation Learning

The problem of effective learning in-hand manipulation is far from solved. DRL al-
gorithms in the context of an extrinsic reward are usually slow and unstable, especially
when the extrinsic reward is sparse. Previous work has demonstrated that the use of prior
knowledge helped to improve the performance of manipulation learning using DRL al-
gorithms [7, 89]. However, it is still a challenge to represent and use prior knowledge
in DRL algorithms. In this work, we exploited an abstraction of hand grasping posture
(i.e., grasp type) as guidance to assist in-hand manipulation learning. We extracted the
information from both the analysis of hand posture synergies and the learning history.
Two additional rewards were designed to encode the extracted information. The ex-
perimental results demonstrated that this information helped robotic hands to improve
the performance of in-hand manipulation learning. However, the proposed algorithm
does not consider safety constraints to restrict the robot to explore promising states.
It is essential for a real physical robotic system to consider safety constraints in DRL
algorithms, because certain unreasonable states may break robotic systems.
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8.3 Directions for Future Research

The implementation of dexterous grasping and manipulations with a multi-fingered
robotic hand in daily-life environments still requires further investigation. Here we iden-
tify several interesting directions for future researches as follows.

• Crossmodal perception for robotic manipulation: Humans are capable of per-
ceiving objects using multiple sensory modalities, such as vision, tactility, audio,
and smell. Based on rich sensory information, humans can effectively interact
with their environment. Previous work has used sensory data collected from a
single modal sensor to accomplish various tasks (such as pose estimation, shape
reconstruction, and material recognition). In Chapter 6, we used tactile data to
detect a contact event and recognize the object material. However, a single modal
sensor does not always provide enough information to perceive and understand the
objects. Naturally, it is interesting to endow robots with the ability of human-like
crossmodal perception. Currently, with the development of sensor technologies,
robots could be equipped with multiple sensors that capture multimodal infor-
mation (such as vision, sound, and tactile information). In the future, it will be
important to explore fusion methods to integrate features from multiple sources
effectively. In recent years, deep learning methods have achieved good results in
a set of tasks, such as object recognition, audio separation, and texture detection.
It is interesting to make use of deep learning techniques to develop multimodal
feature learning methods to address complex perception tasks. Moreover, it is
also an important ability for robots to transfer knowledge across different sensor
modalities. For example, the effectiveness of visual perception is easily affected
by lighting conditions and occlusion. The tactile modality can provide useful in-
formation about the contact between the robots and their environment. When one
sensory modality (e.g., vision) is missing, we expect to use another (e.g., tactility)
to carry out perception tasks. One of the possible methods is to formulate the
transfer across different sensory modalities as a domain adaptation problem.

• Learning abstractions from sensory data: Humans construct some high-level
abstractions (such as object affordance, task goal, and human preference) from
sensory data to ground an object and tool in daily-life environments. The con-
structed abstractions can account for the interactive dynamic and continuous na-
ture of the everyday human environment. Low-level sensory is are not enough
to describe manipulation tasks because they cannot capture the invariant of ma-
nipulations. Robots need to reason on a high-level to efficiently understand the
object and the manipulation tasks. In the future, it will be interesting to solve two
problems: (1) How to learn high-level abstractions from multi-sensory data. (2)
How to exploit the learned abstractions to assist in robotic manipulation learn-
ing. Recently, some works learn these abstractions (such as object affordance and
human preference) separately from sensory data. In Chapter 4, we predicted the
grasp type (i.e., a grasping affordance) directly from visual data. In the future, it
is essential to learn multiple abstractions from sensory data jointly. Meanwhile,
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we expect that the learned abstractions can be further exploited to guide the im-
plementation of robotic grasping and manipulation in new situations.

• Manipulation learning with active and safe exploration: The efficiency of ma-
nipulation learning usually can be improved by exploiting prior knowledge or
integrating active exploration. Prior knowledge is difficult to obtain in real-world
applications. Active exploration during manipulation learning could help robots
to acquire new manipulation skills effectively. Exploration can be understood
as the act of gathering information about the environment. Through passive ex-
ploration, robots gather information by executing random policy/actions (such as
ε-greedy policy) to interact with the environment. Passive exploration is usually
time-consuming and not safe for robots and their environment. As robots need to
address increasingly complex tasks, active exploration is of critical importance for
the robots to learn manipulations. During active exploration, robots take advan-
tage of their own learning experiences to adjust their exploration policy actively.
Active exploration could be achieved in the following two ways: (1) By learning
an intrinsic reward function that measures learning progress to guide the com-
putation of exploration actions. This method is typically called as intrinsically
motivated exploration. (2) By selecting the task goal for active exploration. In
this way, robots can avoid spending too much time on unreachable or trivial goals
and progressively optimize control policies.

The problem of effective learning complex manipulations is far from solved. The
robots are usually allowed to explore all the states in the configuration space dur-
ing the process of manipulation learning. However, this is impractical for a real
physical robotic system, because some unreasonable state may break the system.
Safety constraints should also be considered in the DRL algorithm, which restricts
the agent in exploring the reasonable states. Hence, it is essential to develop a ac-
tive and safe exploration algorithm for manipulation learning.

• Sim-to-Real domain adaptation for dexterous manipulation learning: Robots
should have the ability to perform dexterous manipulation to achieve complex
manipulation tasks, such as writing and tool usage. However, owing to the high
dimensionality of robotic hands and intermittent contact dynamics, effectively
programming a robotic hand for in-hand manipulations remains a challenge. Ma-
nipulation learning using DRL algorithms is usually a time-consuming process.
Simulations are attractive environments for training agents because they provide
an abundant source of samples for model training. In Chapter 7, we developed
a MARL algorithm for a robotic hand to learn in-hand manipulation. The per-
formance of the proposed algorithm was only evaluated in a physical simulation.
In the future, it is essential to explore methods that transfer the control policies
learned in a simulator to a real-world environment. The control policies are first
learned in a physics simulator and then deployed on real robots. It is also essential
to ensure the safety of real-world robotic systems during manipulation learning.
Safe reinforcement learning algorithms could be designed by modifying the op-
timization objectives of the DRL or by modifying the exploration policies of the
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DRL by incorporating external knowledge.

8.4 Conclusion
This thesis contributes to the field of dexterous grasping and manipulation by exploring
approaches aiming to improve the performance of robotic grasping and manipulation
systems. We integrate visual/tactile perception with optimization methods to address
four open challenges relevant to dexterous grasping and manipulation.

In conclusion, the proposed optimization framework achieves a stable grasp during
manipulation tasks. The optimization framework combines stable grasp planning and
model-based trajectory generation. Then, we propose a general-purpose grasp plan-
ning approach to improve the generalization of grasp planning. The proposed general-
purpose grasp planning approach suits various robotic hands with a different number of
fingers. Additionally, we address the challenge of how to enable grasp stability under
uncertainties. An object stabilization framework through tactile sensing is proposed.
Finally, we introduce a multi-agent reinforcement learning algorithm based on the anal-
ysis of hand synergies to reduce the complexity of in-hand manipulation learning. All
these proposed approaches have been evaluated on simulation experiments or real-word
robotic experiments.
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Appendix A

List of Abbreviations

CNN Convolutional Neural Network

CNS Central Nervous System

DMP Dynamic Movement Primitive

RL Reinforcement Learning

DRL Deep Reinforcement Learning

GMM Gaussian Mixture Model

GP Gaussian Process

GTD Grasp Type Dataset

ICP Iterative Closest Point

IoU Intersection-over-Union

iLQR iteration Linear-Quadratic Regulator

LSTM Long Short Term Memory

MARL Multi-agent Reinforcement Learning

MC Monte Carlo

MDP Markov Decision Process

MPC Model Predictive Control

PCA Principal Components Analysis

PID Proportional Integral Derivative

PPO Proximal Policy Optimization

ROI Region of Interest

RTG Reach-to-grasp
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SGD Stochastic Gradient Descent

SVM Support Vector Machine

TWS Task Wrench Space

UCB Upper Confidence Bound

VF Virtual Finger

134



Appendix B

Publications

The following publications formed part of this research. The list is ordered by date.

• Deng, Z., Gao, G., Frintrop, S., Sun, F., Zhang, C., Zhang, J. (2019). Attention
based visual analysis for fast grasp planning with a multi-fingered robotic hand.
Frontiers in neurorobotics, 13, 60.

• Yan, W., Deng, Z., Chen, J., Nie, H., Zhang, J. (2019). Precision Grasp Planning
for Multi-Finger Hand to Grasp Unknown Objects. Robotica, 37(8), 1415-1437.

• Mi, J., Tang, S., Deng, Z., Goerner, M., Zhang, J. (2019). Object affordance
based multimodal fusion for natural Human-Robot interaction. Cognitive Systems
Research, 54, 128-137.

• Deng, Z., Zheng, X., Zhang, L., Zhang, J. (2018). A learning framework for se-
mantic reach-to-grasp tasks integrating machine learning and optimization. Robotics
and Autonomous Systems, 108, 140-152.

• Han, D., Nie, H., Chen, J., Chen, M., Deng, Z., Zhang, J. (2018). Multi-modal
haptic image recognition based on deep learning. Sensor Review, 38(4), 486-493.

• Deng, Z., Guan, H., Huang, R., Liang, H., Zhang, L., Zhang, J. (2017). Com-
bining Model-Based Q-Learning With Structural Knowledge Transfer for Robot
Skill Learning. IEEE Transactions on Cognitive and Developmental Systems,
11(1), 26-35.

• Liu, J., Deng, Z., Sun, Y., Hu, Y. (2017, October). An Eye Movement Simula-
tor Based on 3-DOF Parallel Mechanism With Flexure Joint. In 2017 Design of
Medical Devices Conference. American Society of Mechanical Engineers Digital
Collection.

• Deng, Z., Mi, J., Chen, Z., Einig, L., Zou, C., Zhang, J. (2016, December). Learn-
ing human compliant behavior from demonstration for force-based robot manip-
ulation. In 2016 IEEE International Conference on Robotics and Biomimetics
(ROBIO) (pp. 319-324). IEEE.

• Zou, C., He, B., Zhang, L., Zhang, J., Deng, Z. (2016, December). An automatic
calibration between an omni-directional camera and a laser rangefinder for dy-
namic scenes reconstruction. In 2016 IEEE International Conference on Robotics
and Biomimetics (ROBIO) (pp. 1528-1534). IEEE.

135



Appendix.Publications

• Mi, J., Sun, Y., Wang, Y., Deng, Z., Li, L., Zhang, J., Xie, G. (2016, December).
Gesture recognition based teleoperation framework of robotic fish. In 2016 IEEE
International Conference on Robotics and Biomimetics (ROBIO) (pp. 137-142).
IEEE.

136



Appendix C

Acknowledgements

In performing this research, I have greatly benefited from the supports and encourage-
ments of many people. I would like to express my very great appreciation to all of
them.

First and foremost, I would like to thank my advisor Prof. Dr. Jianwei Zhang for
all his support throughout my doctoral studies. He gives me the opportunity to study
at Universität Hamburg. His assistance helped me in the development of this research
work and writing of the thesis.

Besides my advisor, I would like to thank my co-supervisor Prof. Dr. Stefen
Wermter, for his valuable and constructive suggests and advice. His willingness to give
his time has been a great help in creating this thesis.

I am also grateful to all the members of our TAMS group. It was wonderful working
with you. In particular, I owe many thanks to Tatjana Lu Tetsis and Wiebke Noeske
for their time and helping me a lot during the past four years. I would like to thank
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