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Abstract

Time imaging methods are important and widely used in industry and academia. A first
guess of a subsurface image can be achieved quickly with time migration. There are several
different techniques which aim to improve the migration result. In this work, I consider
two techniques in more detail, migration denoising and migration velocity analysis (MVA).
I introduce a loop of migration and the inverse process, demigration. These methods are
based on the implicit common-reflection surface (CRS) operator and provide the basis
for the denoising and MVA. The reduction of the noise content in seismic data has been
performed for a long a time. I investigate three different methods, which partly build on
each other, to increase the signal-to-noise ratio (SNR) of the data. The application of the
migration/demigration loop leads to a first noise reduction. This process is used as input
for the migration deconvolution and the deep convolutional neuronal network. All methods
suppress different kinds of noise in the data. The introduced MVA is a two step process.
First a velocity model is automatically calculated using the kinematic wavefield attributes,
which are available after a multi-parameter stack. The second step includes the MVA with
a refinement of the velocities. I suggest using the coherence section of the migrated image
as a mask to identify prominent reflections and weaker diffractions with higher coherence
values. These areas are linked by a subsequent interpolation and smoothing. All presented
methods are applied to a field data set including salt diapirs and complex subsurface
structures. The denoising methods and the MVA significantly improve the migrated image,
especially in the salt area and nearby regions. In addition, some techniques are extended
to 3D to process challenging 3D P-cable data. The characteristic of this special kind of
acquisition are short source-receiver offsets and a high frequency source. This leads to an
increased resolution and makes conventional velocity-model building practically impossible
without additional information. I suggest a method based on diffraction processing to
obtain velocities suitable for time migration. Diffractions are energy that was scattered in
all directions by small-scale objects. This property can be used as a tool for the suggested
velocity-model building even for short, source-receiver offsets. This procedure is the first
consistent approach that leads to a 3D time-migrated image of P-cable data.
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Zusammenfassung

Bildgebende Verfahren im Zeitbereich sind wichtig und finden häufig Anwendung in der
Industrie und im akademischen Bereich. Ein erstes Untergrundbild im Zeitbereich kann
schnell mit einer Zeitmigration erzeugt werden. Es gibt verschiedene Techniken, die dieses
Bild verbessern können. In dieser Arbeit präsentiere ich zwei dieser Techniken. Diese sind
das Entrauschen von Bildern und die Migrationsgeschwindigkeitsanalyse. Dafür entwickle
ich eine Schleife aus Migration und der inversen Methode, der Demigration. Diese Opera-
toren basieren auf der Methode der implizierten gemeinsamen Reflektionsfläche und bilden
die Basis für das Entrauschen und die Migrationsgeschwindigkeitsanalyse. Die Reduzierung
des Rauschens in seismischen Daten ist schon lange ein Part der allgemein durchgeführten
Arbeitsschritte. Ich untersuche drei Methoden zur Verbesserung des Signal zu Rauschen
Verhältnisses in den Daten, die teilweise aufeinander aufbauen. Die Anwendung der Schleife
aus Migration und Demigration führt zu einer ersten Verbesserung des Verhältnisses. Diese
Schleife dient als Eingangsgröße für die Migrationdekonvolution und für das tiefe neuronale
Konvolutionsnetzwerk. Alle Methoden unterdrücken verschiedene Arten von Störsignalen.
Die vorgestellte Migrationsgeschwindigkeitsanalyse ist ein zweistufiger Prozess. Zuerst wird
ein Geschwindigkeitsmodell aus den kinematischen Wellenfeldattributen berechnet. Diese
stehen nach einer Multiparameterstapelung zur Verfügung. Der zweite Schritt beinhal-
tet die Migrationsgeschwindigkeitsanalyse mit einer Verfeinerung der Geschwindigkeiten.
Dafür wird die Kohärenzsektion des migrierten Bildes als Filter verwendet um prominente
Reflektionen und schwache Diffraktionen mit höheren Kohärenzwerten zu identifizieren.
Diese Bereiche werden durch eine Interpolation und Glättung miteinander verbunden. Alle
präsentierten Methoden zur Verbesserung des Signal zu Rauschen Verhältnisses und die
Migrationsgeschwindigkeitsanalyse werden auf Felddaten mit Salzdiapiren und komplexen
Untergrundstrukturen angewendet. Sie verbessern das migrierte Bild deutlich in Bereichen
mit Salz und umliegenden Strukturen. Zusätzlich werden einige dieser Methoden auf drei
Dimensionen erweitert um anspruchsvolle 3D P-cable Daten zu prozessieren. Die Merkmale
dieser speziellen Akquisitionstechnik sind kurze Quell- und Empfängerabstände und eine
hochfrequente Quelle. Dies führt zu einer Verbesserung der Auflösung und macht kon-
ventionelle Migrationsgeschwindigkeitsanalyse ohne Zusatzinformationen fast unmöglich.
Ich schlage eine Methode vor, die auf dem Prozessieren von Diffraktionen beruht, um
Geschwindigkeiten für eine Zeitmigration zu erhalten. Diffraktionen setzen sich aus En-
ergie, die von kleinskaligen Objekte in alle Richtungen gestreut wurde, zusammen. Diese
Eigenschaft wird zur Berechnung eines Geschwindigkeitsmodells auch mit kurzen Quell-
und Empfängerabständen genutzt. Dieser Prozess ist die erste konsistente Vorgehensweise
um 3D zeitmigrierte Bilder von P-cable Daten zu erhalten.
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1 Introduction

In the 20th century reflection seismologists started to image the earth’s interior. First com-
panies (for example, Geological Engineering Company and Seismos) were founded with the
aim of salt body detection, finding petroleum and mining objectives (Sheriff and Geldart,
1995). Until the 1960s processing of the recorded seismic data was a manual process
without the use of advanced techniques in daily data analysis (Claerbout et al., 1996).
Claerbout (1970) introduced an imaging method based on the wave equation and replaced
the ad hoc fashion of image making. The oil and gas industry supported this development
and it became the leading processing technique. Processing improved fast. Claerbout et al.
(1996) formulates the aim of that time as follows: the main goal ’is to make good pictures
of the earth’s interior from the’ measured data. A simplified seismic experiment is shown
in Figure 1.1. It displays how data is measured on the surface. Innumerable new process-
ing techniques have been invented and existing techniques have been improved by means
of computers. Techniques that are important for this work are presented in the following
paragraphs.

Figure 1.1: Simplified sketch of a seismic experiment. The star denotes a seismic source and
the triangles the receivers. Source and receivers are located at the surface and
measure the reflected energy from subsurface structures. Numerous sources and
receivers yield the seismic data. The individual distance between one source
and one receiver is called offset and is important for illumination aspects and
velocity determination.

1.1 Migration

Migration is a process of subsurface imaging and is needed because the recorded data
does not mirror the true subsurface. It has the aim to correct seismic data for geological
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1.1 Migration 1 Introduction

features such as faults, inclined horizons, flanks, and diffractions (e.g. Sheriff and Geldart,
1995). Furthermore, it adjusts object distortions, e.g., adapts length, dip, and curvature
of reflections, and collapses diffractions (see Figure 1.2). Migration can be divided into
depth and time migration, although here only time migration is under consideration. The
advantages of time migration are: it does not require explicit modeling, it is less sensitive
to model errors than depth migration, it improves the signal-to-noise ratio (SNR) and
resolution in comparison with stacking. The disadvantages are that time migration is not
designed to handle complex laterally varying structures (Yilmaz, 2001), and that it suffers
from imperfections from, e.g., the used operator, exhibiting artifacts (Hertweck et al.,
2003), uneven illumination, imperfect acquisition, finite-recording aperture. There are
some underlying assumptions for time migration: the straight ray propagation, regularly
sampled data, and infinite migration aperture. Sufficiently complex data violate these
assumptions. Nevertheless, time migration is a widely used tool in industry and academia
to get a first insight into the data because of the fast and robust processing.

Figure 1.2: Sketch of migration principle. The dashed grey lines show the unmigrated
events. The solid black lines show the migrated events. The hyperbola collapses
to a diffraction point at its apex. The dipped reflection is shortened and moved
up dip after migration. The triplication (x-shaped event) is unfolded into a
syncline. The two unilateral hyperbolae at the end points of the reflection are
collapsed.

Huygens (1690) describes wave propagation as a process where the wavefront is considered
as the sum of spherical wavelets. Furthermore, he states that every point serves as a source
of spherical wavelets. Hagedoorn (1954) applies Huygens principle to geophysics and in-
troduces the first migration method, so-called ’string construction’ or ’ruler-and-compass
method’. Schneider (1978) explains basic migration principles and shows an integral for-
mulation for migration. Another method is the diffraction summation (see Yilmaz, 2001).
Diffractors are small-scale objects, smaller than a quarter of the wavelength, and serve as
Huygens secondary sources. The data is summed along the diffraction hyperbola for every
subsurface point. Kirchhoff migration (e.g. Yilmaz, 2001) adds different factors to the prin-
ciple of the diffraction summation. These factors are: the obliquity, spherical spreading,
and a wavelet shaping factor to account for the amplitude and phase of the data (dynamic
consideration).
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1 Introduction 1.2 Migration velocity analysis

I present a time-migration approach similar to the Kirchhoff migration. The approach
is based on a multiparameter operator, the so-called implicit common-reflection surface
(Schwarz et al., 2014) and uses an apex-based operator for time migration. Here, we
consider kinematic aspects and only use the wavelet shaping factor to partly account for
amplitudes. Furthermore, all migration methods have in common that they require an
appropriate starting velocity model. Migration is often applied iteratively with the goal
of an improved velocity model to obtain a final result. This procedure is called migration
velocity analysis (MVA) and is the topic of the next section. A second feature of migration
is the SNR improvement or denoising ability, which will be investigated, too.

1.2 Migration velocity analysis

The migration velocity model is an important feature because it determines the quality
of the migrated image. The velocity should be appropriate, smooth, and consistent with
the data. The velocity model can serve as a starting model for wavefront-based inversion
methods, e.g. full-waveform inversion, to obtain a subsurface image in depth. In general,
one can observe that the horizontal displacement of events is proportional to the square of
the migration velocity, and proportional to dips (Yilmaz, 2001). Migration with inappro-
priate velocity models leads to artifacts, such as misplaced events, frowns (overestimated
velocities), and smiles (underestimated velocities) (e.g. Zhu et al., 1998). These artifacts
are tackled by MVA to improve the migrated image. Figure 1.3 illustrates the effect (smiles
and frowns) of an incorrect migration velocity.

Figure 1.3: Sketch of a migration velocity analysis with a so-called common-image gather
in time and residual moveout analysis. A flat line (2) indicates an appropriate
migration velocity. A lower velocity (1) in comparison with case (2) leads to a
smile. A higher velocity (3) results in a frown. The discrepancy at the end to
a flat line is the residual moveout (RMO) and can be used as a correction term
in an iterative analysis.

The first step is always to determine a starting-velocity model and account for velocity
errors with a MVA. Different techniques can be applied. A simple method is a constant-
velocity scan (for example Yilmaz, 2001), where different velocities are tested. This is
followed by a picking of flat events, which means an appropriate velocity for the event
under consideration. Residual moveout (RMO) analysis of common-image gathers (CIG)
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1.3 Migration denoising 1 Introduction

is another technique to account for velocity errors. Data is sorted to a common-midpoint
(CMP) and the flatness of events along the offset is investigated and corrected for with
a lower or higher velocity for the event under consideration (e.g. Yilmaz, 2001). Another
technique is introduced by Gardner et al. (1974) and compares different common-offset
images to improve the velocity model. Shurtleff (1984) introduces a constant-velocity mi-
gration in the frequency - wavenumber (f-k) domain. A focusing analysis, introduced by
Yilmaz and Chambers (1984), uses a double-square-root (DSR) operator in the Fourier
transform domain. The velocity-independent prestack migration (Fowler, 1985) relates
dip-dependent stacking velocities with dip-independent dip-moveout corrected (DMO) ve-
locities, followed by picking and interpolation to obtain a velocity model. Yilmaz (2001)
describes a common-offset migration of DMO corrected gathers. The equivalent offset
migration (Bancroft et al., 1998) focuses common-scatterpoint (CSP) gathers with a sim-
plified Kirchhoff migration. Fomel (2003) uses velocity continuation in CIG in combination
with iterative RMO. Based on this method, Schleicher et al. (2008) presents the image-
wave propagation with an enhanced RMO correction taking vertical and lateral movements
into account. Another MVA technique is the migration of common-reflection-point (CRP)
gather before the stack, followed by the analysis of flat events (Yilmaz, 2001). Dell et al.
(2012) introduces the common-migrated-reflector-element stack of CSP gather with an au-
tomatic velocity update. Another method, presented by Spinner (2007), uses kinematic
wavefield attributes (Hubral, 1983) to calculate velocities and perform a Kirchhoff-like
migration.

I use kinematic wavefield attributes, which are determined automatically from the implicit
CRS operator (Schwarz, 2011), to calculate a time-migration-velocity model. In contrast
to other presented methods in the preceding paragraph, no prior velocity information is
necessary. I derive a Kirchhoff-like time-migration operator based on the implicit CRS
operator. Furthermore, I present a MVA technique based on a coherence weighting. Co-
herence describes local similarity of wavefronts along the data trace. Values are large in
areas with appropriate migration velocities and serve as a filter. These areas are linked
with interpolation to obtain an improved migrated image. This refinement also reduces
migration noise.

1.3 Migration denoising

Noise is a part of seismic data. Generally, noise can be divided in two parts: random and
coherent noise (Yilmaz, 2001). Random noise includes temporal direction and spatially
uncorrelated noise. Coherent noise covers reverberations, multiples, and linear noise, e.g.,
guided waves, ground roll, and swell noise. Figure 1.4 shows an example for denoising
by stacking. Here, an additional regularization of traces is also included and leads to an
improved and denoised image.

A lot of different techniques have been invented to denoise data. Treitel (1974) uses the
Wiener filter for deconvolution, which is a process of wavelet shortening. Canales (1984)
introduces spatial prediction filtering in the form of a spiking deconvolution operator to
account for noise. There are some standard techniques to increase the signal-to-noise ratio
overall, namely f-k filtering, � -p transform, or Radon transform techniques (for example
Yilmaz, 2001). Furthermore, more advanced techniques exist, e.g. non-local-means filter
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1 Introduction 1.3 Migration denoising

(Bonar and Sacchi, 2012), and dictionary learning (Beckouche and Ma, 2014). In addition,
techniques from other image denoising disciplines, e.g. medical imaging, can be applied
to seismic data. Often machine learning (ML) algorithms are used to denoise images (e.g.
Goodfellow et al., 2016). Vincent et al. (2010) uses ML to denoise natural scene images and
hand-written numbers. Agostinelli et al. (2013) applies ML algorithms in medical image
denoising. These techniques can be adapted for denoising seismic images.
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(b) Denoised data.

Figure 1.4: Example for denoising data with the so-called partial stack (Baykulov and
Gajewski, 2009). This special technique is able to improve the SNR and fill
acquisition gaps. The example shows the original data a) from a land data set
with gaps due to ,e.g. streets, missing permissions, erroneous channels. The
denoised data b) are regularized and events are visible. The land data example
is the same as later used in chapters 2 and 3.

I investigate three denoising methods with the aim to improve the migrated image. The first
denoising approach makes use of the duality of modeling and imaging operators (Hubral
et al., 1996; Tygel et al., 1996). I introduce a migration/demigration method based on
the implicit CRS operator to denoise the data. The application of demigration itself leads
to noise reduction, which mainly manifests in a smoother image under the assumption of
an appropriate velocity model. Another investigated denoising method is the migration
deconvolution. The operator duality of migration and demigration (Claerbout et al., 1996)
allows a least-squares formulation for the migration. Therefore, an inverse, so-called de-
convolution operator (Hu et al., 2001), has to be approximated to correct for amplitudes
and improve the SNR. The result is a decrease of the noise content in the migrated image.
The last denoising technique presented here is based on a ML algorithm, a supervised
autoencoder. I use a deep convolutional neuronal network to denoise the migrated image.
The trained network is applied to the migrated image to obtain a denoised image. The
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advantage of such networks is that no assumptions are made concerning the medium or
operator. For example, the CRS operator is hyperbolic and leads to inaccuracies for strong
lateral varying structures, and heterogeneous mediums.

1.4 Structure of the thesis

The first paper ’Velocity-estimation improvements and migration/demigration using the
common-reflection surface with continuing deconvolution in the time domain’ by Glöckner
et al. (2019a) presented in Chapter 2 includes all aspects of migration, MVA, and denoising
without ML explained in the introduction. The automatic velocity-model building with the
subsequent refinement (MVA) is explained. Two of the mentioned denoising methods fol-
low, namely denoising by demigration and based on this, the migration deconvolution. The
denoising techniques are applied to synthetic and field data to investigate their denoising
ability.

Chapter 3 contains the paper ’Denoising migrated data with a deep neuronal network’
by Glöckner et al. (2019b). The third denoising method, the supervised autoencoder, is
presented here. The method is applied to field data and the denoising ability is described.
Furthermore, this paper investigates data augmentation. It can be used in the case of too
little usable data and increase the amount of meaningful data by , e.g. rotation, flipping,
contrast and saturation changes.

Chapter 4 shows the application and extension of some presented techniques to challenging
3D P-cable data and the paper is titled ’Imaging zero-offset 3D P-cable data with CRS
method’ by Glöckner et al. (2019c). This special marine acquisition system includes a high-
frequency source and short cable lengths (offset). The comparably cheap 3D acquisition
leads to an improved resolution and is mostly used in academia. The calculation of the
velocity model is not possible with conventional approaches. I present a diffraction-based
work flow for a 3D multi-parameter stack, utilizing the kinematic wavefield attributes for a
highly automated subsequent velocity-model refinement (MVA). 3D time migration results
are presented for this special kind of data.

The conclusions are drawn in Chapter 5. The outlook, Chapter 6, contains more research
about my work with the P-cable data and presents possible future work.

1.5 Contribution of Co-authors

In the following, I point out the contributions of my co-authors for each paper separately
in the order they are presented in this work.

Sergius Dell provided the migration deconvolution. He, as well as Benjamin Schwarz,
Claudia Vanelle and Dirk Gajewski, contributed with proof-reading and helpful discussions
on the general structure. The velocity calculation and refinement, as well as migration and
demigration with the data application were performed by myself.

Jan Walda provided the neuronal network framework. Sergius Dell and Dirk Gajewski
gave strategic hints for publication. Training, data augmentation, and data application
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were performed by myself.

Jan Walda provided the 3D code for stacking and further contributed with continuous dis-
cussion. Sergius Dell performed the 3D time migration. Dirk Gajewski gave valuable hints
and discussion contributions. The colleagues from the GEOMAR, Dirk Kläschen, Jens
Karstens and Christian Berndt provided the 3D P-cable data and did the preprocessing.
They answered all questions concerning the data acquisition. The further development and
application of the 3D code, as well as, the migration velocity analysis in 3D were performed
by myself.
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2 Velocity-estimation improvements and
migration/demigration using the
common-reection surface with continuing
deconvolution in the time domain

2.1 Abstract

To obtain an image of the earth’s subsurface, time-imaging methods can be applied, as they
are reasonably fast, less sensitive to velocity model errors than depth-imaging methods and,
usually, easy to parallelize. A powerful tool for time-imaging consists of a series of prestack
time-migrations and demigrations. We apply multi-parameter stacking techniques to ob-
tain an initial time-migration velocity model. The velocity model building proposed here
is based on the kinematic wavefield attributes of the common-reflection surface method. A
subsequent refinement of the velocities uses a coherence filter which is based on a prede-
termined threshold, and followed by an interpolation and smoothing. Then, we perform a
migration deconvolution to obtain the final time-migrated image. The migration deconvo-
lution consists of one iteration of least-squares migration with an estimated Hessian. We
estimate the Hessian by non-stationary matching filters, i.e., in a data-driven fashion. The
model building uses the framework of the common-reflection-surface , and the migration
deconvolution is fully automated. Therefore, minimal user interaction is required to carry
out both the velocity model refinement and the image update. We apply the suggested
approaches of velocity refinement and migration deconvolution to complex synthetic and
field data.

2.2 Introduction

Time migration is an attractive tool to produce subsurface images because it is reasonably
fast, less sensitive to the model errors than depth migration and, usually, a massively paral-
lelized technique. A highly focused time image is, however, achievable only with sufficiently
well-determined migration velocities. Thus, a refinement of the initial time-migration ve-
locities is often applied to obtain an improved final image. Also, time migration is derived
by considering many assumptions, among others a straight ray propagation, regularly sam-
pled seismic data and an infinite migration aperture. However, these assumptions are vio-
lated when sufficiently complex subsurface structures and field data are considered. Thus,
time-migrated images usually suffer from imperfections of the operator, exhibiting artifacts
(Hertweck et al., 2003), such as the commonly observed migration swings. Conventionally,
a residual moveout (RMO) analysis is used to reduce the impact of the model errors on the
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2.2 Introduction Velocity improvements and migration deconvolution

image, (e.g., Yilmaz (2001)). The RMO analysis is an iterative approach to update veloc-
ities based on the analysis of the flattening of events in the common-image gathers (CIG)
after time migration. Another approach to perform the velocity update after prestack time-
migration is common-offset migration followed by application of inverse normal moveout
(NMO) and subsequent velocity analysis on the newly generated gathers. The obtained
gathers contain time-migrated reflections with approximately hyperbolic moveout and are
therefore suitable for classical one-dimensional or multi-dimensional velocity analysis Dell
et al. (2012). To reduce migration artifacts, several image-enhancement techniques, e.g.,
dip- or structure-oriented filters, are usually applied after time migration. These methods,
however, can introduce a certain smoothing into the migrated images, which may increase
uncertainties in fault interpretation.

A comprehensive imaging theory based on migration and demigration in the depth domain
is presented by Hubral et al. (1996) and Tygel et al. (1996). In their work, Huygens sur-
faces and isochrons form the central ingredients, and are combined with proper amplitude
weighting to preserve amplitudes. Similar to the works mentioned above, Iversen et al.
(2012) presented a time-based approach. They used reflection times, slopes, and curva-
tures as parameters to perform migration and demigration. Here, we propose a technique
to solve both time-migration problems mentioned earlier, i.e., migration artifacts and ve-
locity analysis. Our method is based on the duality of modeling/imaging operators (see
Claerbout et al., 1996). For one thing, time migration can be achieved by summation over
traces (amplitude stacking) which aims to focus events, correct dips, unfold triplications,
and collapse diffractions. Following Yilmaz (2001), a corresponding migration operator can
be described by a double-square-root equation. While for the other thing, time demigration
can be carried out by performing a semicircle superposition (amplitude spreading) which
aims to restore (model) seismic data based on provided reflectivity models. The smear-
ing (demigration) of the amplitudes can be described by a single-square-root equation.
In this case, we use the same traveltimes for both steps. The advantage of the cascaded
forward and backward transformation is data enhancement and regularization due to the
incorporated summation of the migration, which reduces noise. Furthermore, a general
conflicting dip handling is naturally incorporated in the migration process. On the one
hand, a correctly migrated image should not contain conflicting dips with the exception of
multiples. On the other hand, the demigration reconstructs the dips in the original unmi-
grated domain. A condition to perform these steps is a suitable velocity model, which can
be automatically generated via, e.g., the common-reflection-surface (CRS) method (Jäger
et al., 2001).

In the first part of the paper, we suggest an efficient strategy to calculate an original starting
velocity model and introduce a refinement of the migration velocities. The method utilizes
kinematic wavefield attributes of the CRS method, i.e., angles and curvatures of wavefronts
(Hubral, 1983) and also uses a coherence filtering of the velocities, which further conditions
the final velocity model for migration. In the second part, we describe the migration and
demigration in terms of traveltimes. Furthermore, we briefly review the theory of least-
squares migration and show that our time-migration/demigration approach can also be
used for migration deconvolution. To do this, we estimate matching filters, which are
convolved with the migrated image to enhance image quality. Finally, we demonstrate
the applicability of the suggested fully automated workflow for complex synthetic and
field-data examples.

11



Velocity improvements and migration deconvolution 2.3 Conceptual framework

2.3 Conceptual framework

2.3.1 Automatic velocity model building using CRS

We perform a multidimensional coherence analysis using the implicit CRS method (Vanelle
et al., 2010) to extract kinematic wavefield attributes (Hubral, 1983). In principle, any
double-square-root (DSR) expression (e.g., Walda et al., 2017) can be used instead of
implicit CRS. An automated local coherence analysis employing the normalized semblance
coefficient (Neidell and Taner, 1971) picks at every data point a subset of CRS attributes,
and determines by optimization the best set consistent with the data (Nelder and Mead,
1965). The obtained kinematic wavefield attributes are described as different order terms
of a Taylor series expansion of the squared hyperbolic traveltime (Müller, 1999):

t2(∆x;∆h) = (t0 + p∆x)2 + 2t0(N∆x2 +M∆h2) : (2.1a)

p =
@t

@x

����
x0;h0

; N =
@2t

@x2

����
x0;h0

; M =
@2t

@h2

����
x0;h0

(2.1b)

p =
2 sin�

v0
; ; M =

cos2 �

v0RNIP
; N =

cos2 �

v0RN
(2.1c)

The displacement between the point under consideration (xm; h) ,denoting midpoint and
half-offset, and a central point (x0; h0) is ∆x = xm � x0;∆h = h � h0. The traveltime at
the expansion point x0; h0 is denoted by t0 and the derivatives are p;M; and N . The near-
surface velocity v0 has to be provided. An exploding-reflector experiment can be used to
illustrate the physical meaning of the CRS attributes (see Figure 2.1). The angle � denotes
the incidence angle of the emerging ray from a fictitious source at the normal-incident-point
(NIP). RNIP is the radius of curvature of the emerging wavefront at the surface from a
point source at NIP. RN is the radius of curvature of the emerging wavefront at the surface
of an exploding-reflector segment around NIP.

CRS

Figure 2.1: Kinematic wavefield attributes (modified after Schwarz et al. (2014)). A wave
originates at the normal-incident point (NIP) and strikes the recording surface
at the central zero-offset point x0 with the emergence angle �. The radius of
wavefront curvature of the NIP wave at the surface is RNIP . The same applies
for a wave starting at the CRS, and can be measured at the surface as radius
of wavefront curvature of normal (N) wave RN .
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Then, �;RNIP and RN , extracted by local coherence analysis are used to calculate the
initial (original) time-migration velocities (Schwarz et al., 2014):

V =
vNMOr

1 +
v2

NMO

v2
0

sin2 �

with vNMO =

r
2v0RNIP
t0 cos2 �

: (2.2)

In total, the migration velocity V depends on four parameters: �, RNIP , the considered
time t0, and the velocity near the surface v0, and V is calculated for every time sample
and common-midpoint. As we also consider the incidence angle �, we directly obtain dip-
corrected migration velocities. Furthermore, equation 2.2 determines the normal moveout
(NMO) velocity, vNMO. The near-surface velocity is an important component of the mi-
gration velocity and the choice of its locally constant value is usually based on a priori
information. However, the formulation of migration velocity as in equation 2.2 allows a
near-surface velocity scan. This is an attractive complementary benefit of equation 2.2,
particularly for data acquired in regions with very complex near-surface geology, e.g., in
deserts. As a new step, we apply a coherence filter to the obtained velocity field. We
perform a coherence analysis similar to the one mentioned above to obtain the semblance
for the migrated image. Therefore, the semblance coefficient (equation 2.3) is calculated
for every sample. It is normally described as normalized ratio of output energy to input
energy (Neidell and Taner, 1971).

S =

MP
i=1

� NP
j=1

Aij

�2

N
MP
i=1

NP
j=1

A2
ij

; (2.3)

where M is the number of samples in the coherence window, N is the number of traces,
and A is the amplitude of the i’th sample and j’th trace. The coefficient has values between
zero (low semblance) and one (high semblance) due to the normalization. The coherence
amplitude for the sample under consideration depends on the migration velocity. High
coherence values mean appropriate migration velocities for this sample. In contrast to the
local coherence analysis for the stacking described above, no optimization is performed,
because we suppose that with the previously determined kinematic wavefield attributes
an appropriate velocity is calculated. This leads to generally lower values of the migrated
coherence in contrast to coherence obtained after stacking. The migrated coherence is
calculated during the normal migration and is available afterwards for the velocity refine-
ment. With the new generated attribute, we can define a threshold for the coherence that
depends on the data set under consideration to eliminate noise and weak events. Only
velocity values with sufficiently high semblance norm are considered for the construction of
the refined velocity model. Subsequently, gaps arising from this thresholding are filled by
interpolation. We use an interpolation method based on a least-squares approach, where
a discrete Laplacian is used to fill the gaps. Known values are not modified with this
interpolation. Afterwards, we smooth the interpolated model to obtain a smooth velocity
distribution, which is necessary for time migration. As a result, areas with large coherence
imply a reliable migration velocity and the subsequent interpolation connects these areas
to obtain an improved migration velocity model. Furthermore, diffractions are enhanced in
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the suggested strategy, because they are naturally described by the used migration equa-
tion (introduced in the next subsection), whereas reflection events are merely repositioned.
The migration method is designed to emphasize diffractions by summing their energy along
the whole hyperbola, whereas reflections only sum over a relatively small contribution on
the apex of the hyperbola. Although amplitudes of reflections are higher, coherence values
of diffractions are increased a lot with this method. The procedure can be applied itera-
tively in such a way that the interpolated model is used again for coherence filtering, but
our tests revealed that this just leads to further smoothing without improving the velocity
information.

2.3.2 Migration and demigration with CRS

Generally, geophysical modeling uses linear operators that predict data from models (Claer-
bout et al., 1996). The inverse of modeling, inversion, aims to find models from the data
and also uses linear operators. The modeling operator with respect to reflectivity is con-
ventionally referred to as demigration. The inverse, in turn, is referred to as true-amplitude
migration operator. In this paper, we formulate the time-migration and demigration based
on a high-order paraxial traveltime approximation. We use implicit CRS (Schwarz et al.,
2014), as it belongs to the DSR equations. As the implicit CRS method is developed to
perform local coherence analysis and stacking, it is parametrized by the two-way traveltime
along the central zero-offset ray . To apply it for time-migration, we rewrite the implicit
CRS traveltime in terms of apex coordinates (xapex; tapex). These are defined by local co-
ordinates of implicit CRS (see Appendix). We re-parametrize the diffraction subset of the
implicit CRS in terms of apex coordinates:

t =

s
t2apex

4
+

(∆xa � h)2

V 2
+

s
t2apex

4
+

(∆xa + h)2

V 2
; (2.4)

where ∆xa = xm � xapex is the midpoint displacement, h is the half-offset, V is the time-
migration velocity from equation 2.2 (Glöckner et al., 2016). This DSR expression 2.4
resembles a conventional Kirchhoff migration traveltime expression Yilmaz and Claerbout
(1980) and represents the summation in our cascaded approach of migration and demigra-
tion. In equation 2.4, the traveltime t is expressed as a function of apex time tapex and
lateral deviation from the apex location ∆xa. To obtain the corresponding demigration
expression, we find it convenient to solve equation 2.4 for tapex:

tapex =

r
t2 � 4(∆x2

a + h2)

V 2
+

16∆x2
ah

2

t2V 4
; (2.5)

which is a single-square-root expression and represents the smearing in our cascaded ap-
proach. Both processes, migration and demigration, are likewise valid for the poststack
case, where the half offset h vanishes and the equations simplify.

2.3.3 Migration deconvolution

Seismic time migration aims to map recorded data into a structural image of the earth’s
discontinuities. However, complex geological settings along the raypaths, uneven illumina-
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tion, and imperfect acquisition with irregular surface sampling, finite recording aperture,
and aliased seismic data frequently lead to seismic images which are improperly recov-
ered by migration techniques. The migrated events appear to lose high frequencies, reveal
decreased amplitudes, are erroneous in terms of shape and location, and exhibit migra-
tion swings. As a result, least-squares migration (LSM) techniques have been proposed to
achieve a better matching of amplitudes in the migrated images (Schuster, 1993; Nemeth
et al., 1999). The basic idea of the LSM techniques is to exploit the migration/demigration
operator duality. In operator notation it reads:

d = Lm ; (2.6a)

m = L�1d ; (2.6b)

where d are the seismic data, m is the reflectivity model (migration image), L is the linear
modeling operator, and L�1 is the inverse (true-amplitude migration) operator. Usually,
adjoint (transposed) instead of inverse operators are used for migration as they tolerate
data imperfections and do not demand that the data provide full information (Claerbout
et al., 1996).

The operator duality expressed in equation 2.6 allows us to formulate migration as a least-
squares problem. If we consider the functional

J(m) =
1

2
(Lm� d)2 ; (2.7)

we immediately see that the gradient rmJ yields the least-squares estimate of the reflec-
tivity model

@J

@m
= 0 =) m̂ = (L0L)�1L0d ; (2.8)

where we use the adjoint operator L0 instead of the inverse operator L�1. The quantity
(L0L)�1 in equation 2.8 represents the Hessian and m̂ denotes the improved migrated
image. In the literature, this inverse is frequently referred to as the resolution matrix or
deconvolution operator (Hu et al., 2001), i.e., we can also use this inverse to perform a
deconvolution of the migrated image L0d in order to correct the amplitudes. Due to the
higher-order complexity of the modeling and migration operators, the Hessian generally
cannot be inverted for directly, and iterative procedures such as the conjugate gradient
(CG) or the Newton method are often used (Lambaré et al., 1992). As an alternative,
we use a method suggested by Guitton (2004) to approximate the effects of the Hessian
with nonstationary matching filters. Apart from a convenient implementation, the method
simulates the effects of least-squares inversion at a much reduced cost compared to an
iterative approach. According to Guitton (2004), this strategy is set up as follows:

� Compute a first migrated image m1 = L0d.

� Compute a second image m2 = L0Lm1.

� Estimate a bank of nonstationary matching filters B0 such that m1 = B0m2.

� Convolve B0 with m1 to arrive at an improved image m̂ = B0m1.

Convolution of the nonstationary matching filters with the first migrated image is equal
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to so-called one-iteration least-squares migration or migration deconvolution. The forward
modeling (time demigration) is given by equation 2.5 and represents semi-circle superposi-
tion. The DSR migration is defined in equation 2.4 and implies hyperbolic summation. We
note that the formulation of the demigration also requires a semi-circle-type superposition
for migration as only this type satisfies the correctness of the adjoint migration (Ji, 1994).
However, we decided to use the hyperbolic approach instead of the semicircle method be-
cause it is computationally efficient and even accounts for some potential artifacts in the
image resulting from the hyperbolic summation. These artifacts usually show up for highly
dipping events and are known to be caused by operator aliasing.

In the following, we investigate the applicability of the suggested strategy of automated
velocity model building and migration deconvolution in the time domain using complex
synthetic and field data examples.

2.4 Synthetic data example

First, we apply the presented method to the complex Sigsbee2A synthetic data. It is a
constant-density acoustic data set released in 2001 by the Subsalt Multiple Attenuation
Team Joint Venture (SMAART JV (Paffenholz et al., 2002)). The SMAART JV has
created several 2D synthetic data sets. One of the objectives was to better understand the
imaging issues contributing to the poor signal-to-noise ratio observed subsalt in deep water
environments such as the Sigsbee Escarpment in the Gulf of Mexico. Prestack data were
modeled with a 2D acoustic finite-difference approach with a dominant frequency of 20 Hz.
The CMP spacing is 11:43 m and the offset spacing is 34:29 m. The following figures show
the left part of the model containing faults and diffractor lines.

Figure 2.2 illustrates the individual steps of the velocity refinement. Figure 2.2 (a) shows
the original model calculated with the CRS kinematic wavefield attributes. Its structure
is dominated by laterally continuous reflections, and higher as well as lower velocities are
present. Higher velocities can occur because intersecting events lead to incorrect attributes
and, therefore, erroneous velocities. Figure 2.2 (b) shows the result of the coherence fil-
tering, performed on the initial velocity estimate. We have defined a threshold for the
wavefield’s semblance of the time-migrated image, which depends on the data quality. The
aim is to suppress noise and keep the coherence values of the events by choosing an ap-
propriate value of the semblance coefficient. We use this as a mask for the velocity model.
Here, gray corresponds to values below the threshold. Mostly reflections due to higher
amplitudes in comparison to diffractions are chosen with the coherence threshold of 0.01.
Figure 2.2 (c) presents the result of the interpolation of the gaps from the image in Figure
2.2 (b). Perturbations are present where gaps in the data are comparably large, especially
in the right and lower part of the image due to the interpolation. Figure 2.2 (d) shows
the final smoothed velocity model. Additional smoothing is necessary to fulfill the require-
ments for time migration. This is the reason for the decreased resolution of the refined
velocity model in comparison with the original model in Figure 2.2 (a).
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Figure 2.2: Synthetic data. Different steps of velocity refinement, where the colorbar ap-
plies to all images. Starting with the original velocity model (a), we masked
the section with the weighted coherence (b). Afterwards, interpolation of gaps
(c) and smoothing (d) is applied to obtain the refined model.
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For a further comparison of the results for the velocity re�nement, Figure 2.3 shows
common-image gathers (CIG) for CMP 210. The CIG is almost at for the original velocity
model (see Figure 3(a)). Improvements with the re�nement Figure 3(b) lead to a reduction
of noise at larger o�sets, and a more continuous gather. The noise content for larger o�sets
in Figure 3(a) is due to the calculation of the original velocity model (see equation 2.2),
which calculates the velocity for ZO with t0 and is therefore biased for larger o�sets.

(a) Original (b) Re�ned

Figure 2.3: Synthetic data. Close-up of CIG for CMP 210. Image (a) shows the CIG with
the original used velocity model. After velocity re�nement is applied (b) the
CIG is cleaner and more homogeneous.

In Figure 2.4 the migration results for the original migrated image (a), the one obtained
with the re�ned velocity model (b), and with the migration deconvolution (c) are shown.
Improvements are in particular visible in the fault area. Generally, it can be observed that
our suggested strategy for time-migration velocity model building and migration decon-
volution results in an improved localization and imaging of faults and a more continuous
appearance of reecting structures. Furthermore, the images of two di�ractors are now
better focused and clearly recognizable against the image background. For this synthetic
data set the advantage of the migration deconvolution is minor, e.g., improved di�raction
focusing. Here, we are pushing the limits of time-migration resolution, which is not the
case for the �eld data application. Finally, note that the improved velocity model building
and the migration deconvolution were performed in a fully automated fashion.
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(a) moriginal (b) m1 (c) m̂

Figure 2.4: Synthetic data. Di�erent migrated sections. The �rst image (a) shows the
migration result with the original used velocity model. Velocity re�nement (b)
and migration deconvolution (c) improve the image quality.

2.5 Field data examples

We applied the proposed velocity enhancement and migration/demigration loop to a marine
and a land data example. The �rst data set was acquired by TGS in the Levantine
basin in the eastern Mediterranean Sea. The Levantine Basin shows a complex seismic
stratigraphy of the basinal succession. The deformation patterns of the intraevaporitic
sequences include folds and thrust faulting, which provides evidence for extensive salt
tectonics and shortening during the depositional phase. Previous works have shown that
postdepositional gravity gliding caused salt rollers in the extensional marginal domain,
as well as compressional folds, and faults within the Levantine Basin (Netzeband et al.,
2006). A subset of the data consisting of around 2000 common midpoint (CMP) gathers
with a total line length of approximately 25 km, a shot/receiver spacing of 25 m, a CMP
spacing of 12.5 m, and maximum o�sets of 7325 m was chosen. The maximum CMP fold
corresponds to about 120 traces. The record length was 8 s with a 2-ms sample rate.

Figure 2.5 shows the di�erent steps of the velocity re�nement for a subset of the data.
Figure 2.5 (a) shows the original velocity distribution calculated from the CRS wavefront
attributes. The sedimentary layering is visible, and interrupted by the �rst ocean-bottom
multiple. The image in Figure 2.5 (b) shows the velocity model after application of the
coherence �lter with a threshold of 0.005. Here, gray corresponds to values below the
threshold. In the following step, the interpolation is executed and the result is shown in
Figure 2.5 (c). Perturbations caused by the interpolation are less in comparison with the
synthetic data due to the more homogeneous distribution of events after �ltering. A �nal
smoothing (Figure 2.5 (d)) of the interpolated velocities has to be carried out to perform
time migration.
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(a) Original (b) Masked

(c) Interpolated (d) Final smoothed

Figure 2.5: Marine data. Di�erent steps of velocity re�nement, where the colorbar applies
to all images. Starting with the original velocity model (a), we masked the
section with the weighted coherence (b). Afterwards, interpolation of gaps (c)
and smoothing (d) is applied to obtain the re�ned model.
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Figure 2.6 shows an overlay plot of the automatically generated velocity model and the
prestack time-migrated image. The velocity model obtained by coherence �ltering and
interpolation is smooth and the velocities increase with time except for the �rst ocean-
bottom multiple, which produces lower velocities at larger times, between 2 and 3 s in the
lower left corner. The white and red colors indicate higher salt velocities for the triangular
structures. There is noticeable consistency of the velocity model with the migrated section
not only for the sedimentary layering but also for faults, which start from the triangular
structures and continue to the sea oor. The sedimentary layering is horizontally ruptured
by a chaotic pattern, which coincides with a slid slump complex (H•ubscher and Netzeband,
2007). We also observe low velocities on the bottom of the model. These are likely caused
by ocean-bottom multiples which were picked by our unconstrained automatic velocity
update.

Figure 2.6: Marine data. An overlay plot of the re�ned velocity model and the correspond-
ing prestack time-migrated section.

To evaluate the results of the demigration, we compare common-o�set sections of the
original and the demigrated data. Following Hubral et al. (1996), we choose the same
apertures and velocity models for forward and backward transformation. The midpoint
aperture ranges from 1500 m to 2500 m and the o�set aperture from 1000 m to 7000
m. Figure 2.7 shows common-o�set sections forh = 1000 m, where the original data is
presented on the left and the demigrated data on the right. The demigration enhances
the data quality and the events are imaged with improved continuity. The second dipping
reection, starting at 1.8 s and the connected di�raction events are both enhanced. Fur-
thermore, structures below this reection are more visible in the demigrated section. The
�rst ocean-bottom multiple (approximately 2.2 s at CMP 90) is more pronounced too, but
reections below, which are masked in the original data section, become clearly visible in
the demigrated section. The automated scheme was able to reconstruct the original data,
and improved the resolution of deeper events.
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