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Chapterone

Introduction

The cerebral cortex is arguably one of the most complex physical systems that exist.
Untangling the intricate relations of the myriad elements of the grey matter is one of
the formidable challenges of science, as already pronounced by Santiago Ramón y
Cajal:

“Devotion to the cerebral hemispheres, enigma of enigmas, was old in me. . . the supreme

cunning of the structure of the grey matter is so intricate that it defies and will continue to

defy for many centuries the obstinate curiosity of investigators. That apparent disorder of

the cerebral jungle, so di�erent from the regularity and symmetry of the spinal cord and of

the cerebellum, conceals a profound organisation of the utmost subtlety which is at present

inaccessible.” — (Cajal, 1937)

Decades later, the picture has become more refined, but a comprehensive understand-
ing of cortical organisation still remains a fundamental scientific challenge.

In the following chapters, I will describe insights we gained into the organisation of
cortico-cortical connectivity in the mammalian brain by exploring the explanatory
power of the architectonic type principle, which was proposed in its current form
by Helen Barbas (1986). By framing the axonal connections between brain areas in
terms of the respective compositions of areas, this principle affords a suitable vantage
point for understanding how multiple dimensions of brain organisation relate to
each other. I will detail evidence from the immature and adult states in the macaque
as well as the adult cat cortex, indicating that the structure and the function of
brain areas are tightly interlinked. I will argue that this interdependence arises from



1.1. Architecture varies throughout the cortex

a combination of the structure of individual areas with the structural features of
the connections linking areas. Importantly, and crucial to its status as a principle,
the architectonic type principle can be grounded in mechanistic explanations of its
emergence, which we probed in simulation experiments.

Most of the work presented in this dissertation has been published in peer-reviewed
journals, and a complete list of the publications I (co-)authored in the context of this
dissertation can be found in Appendix A. The publications from which text has been
excerpted are referenced at the end of each section. Since I accomplished none of
the presented work alone, I will make use of plural verb forms throughout.

1.1 Architecture varies throughout the cortex

A crucial step in understanding the organisation of the cerebral cortex was the recog-
nition that it is locally structured into horizontal compartments (‘layers’) as well as
vertical units (‘columns’) which both may be of functional relevance. Traditionally, the
isocortex has been characterised in the context of a six-layered scheme (Brodmann,
1909; Vogt, 1910; von Economo, 2009), as opposed to three-layered allocortex. This
scheme is, however, subject to substantial variation in the relative prominence of
layers and does not hold in a considerable number of cortical areas. Nonetheless, and
in spite of his acknowledgment that “the distinction of six layers can be both arbitrary
and conventional” (von Economo, 2009), already von Economo himself asserted that
“on practical grounds, we retain the six-layer division” (von Economo, 2009). Indeed,
the simplified concept of a uniformly six-layered isocortex has prevailed (Zilles and
Amunts, 2012a) and become generally accepted.

But instead of all parts of the cortex being uniformly differentiated, architectonic
differentiation changes gradually across the cortex (Brodmann, 1909; Sanides, 1970;
von Economo, 1927, 2009; Zilles and Amunts, 2012b), as illustrated in Figure
1.1A for the human brain. Cortical architecture can be defined by a number of
structural features, including the neuron density of cortical areas, as well as the
number of identifiable cortical layers, myelin density and a number of receptor
markers and specialised inhibitory neurons (Barbas and Pandya, 1989; Dombrowski
et al., 2001; von Economo, 1927, 2009; Zilles and Amunts, 2012b). The spectrum
of differentiation ranges from clearly eulaminate areas, such as striate (primary
visual) cortex in primates, to agranular areas that lack the inner granular layer
(layer 4, L4), and have few identifiable sublayers as well as very low neuron density.

2



1.2. Intrinsic circuitry
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Figure 1.1: Architectonic di�erentiation and laminar patterns of projections. (A) Architec-
tonic di�erentiation varies across the cortex. This lateral view of the human brain shows
broad variations in granule cell presence as described by von Economo (2009). (B) Lami-
nar origin and termination patterns of extrinsic cortico-cortical connections vary accord-
ing to the relative architectonic di�erentiation of the connected areas. Projection origins
(terminations) shift from infragranular to supragranular layers, as the source (target) area
becomes more strongly di�erentiated. This rule results in unilaminar profiles for projec-
tions between areas that are unequal in their di�erentiation, and multilaminar profiles for
areas with more similar di�erentiation. (A) adapted from von Economo (2009), (B) adapted
from Barbas and Rempel-Clower (1997).

In between these two extremes, one can find areas that are still eulaminate, but
without the remarkable clarity of differentiation or dense packing of neurons found
in striate cortex, such as prestriate cortex, as well as dysgranular areas with a lower
density of neurons, a dissolving inner granular layer and fewer identifiable sublayers.
Quantitative differences in many aspects of the structural organisation of cortical
tissue have been extensively demonstrated (e.g. Beaulieu and Colonnier, 1989;
DeFelipe et al., 1999; Dombrowski et al., 2001; Yáñez et al., 2005; Collins et al.,
2010).

Parts of this section have been published in Beul and Hilgetag (2015) and Beul et al.
(2017).

1.2 Intrinsic circuitry

Within cortical areas, the multitude of present neurons are connected across layers by
short-range, intrinsic connections, forming the local microcircuit. The radial organi-
sation of the cortex became a subject of interest when vertical columns spanning all
cortical layers were proposed to exist (Lorente de Nó, 1949; Mountcastle, 1957), with
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uniform columns repeating across the cortex to form an intermediate-level neural
substrate for information processing. Within these columns, connectivity across
cortical layers appeared stereotypical (Szentagothai, 1978; Gilbert and Wiesel, 1983).
While there is still considerable debate about the existence, the precise definition and
the extent of heterogeneity in the cellular composition of cortical columns (Rakic,
2008; da Costa and Martin, 2010; Rockland, 2010; Smith, 2010a,b,c,d; Carlo and
Stevens, 2013; Herculano-Houzel et al., 2013), the concept of radial cortical organi-
sation was later extended to the notion of a ‘canonical’ microcircuit (Douglas et al.,
1989; Douglas and Martin, 1991, 2004), as a generic template of intrinsic cortical
circuitry. The computations performed by such a fundamental neuronal circuit are
thought to be prescribed by the intrinsic circuitry within a cortical column, with
functional specificity added by patterns of axonal inputs and outputs to and from
the column. Substantial work has been devoted to the computational performance
and theoretical properties of the ‘canonical’ microcircuit (e.g. Douglas et al., 1989,
1995; Haeusler and Maass, 2007; George and Hawkins, 2009; Haeusler et al., 2009;
Wagatsuma et al., 2011; Bastos et al., 2012; Habenschuss et al., 2013). In the
primate prefrontal cortex, the ‘canonical’ microcircuit was shown to be subject to
modifications from the striate circuit (Heinzle et al., 2007; Godlove et al., 2014).
More generally, abundant data is available on variants of intrinsic connectivity in
cortical regions such as prefrontal cortex (Melchitzky et al., 2001), somatosensory
cortex (Lübke and Feldmeyer, 2007; Petersen, 2007; Lefort et al., 2009; Feldmeyer
et al., 2013) or auditory cortex (Barbour and Callaway, 2008; Oviedo et al., 2010;
Watkins et al., 2014). Nonetheless, the notion of a ‘canonical’ microcircuit, which has
gained popularity especially in the computational neuroscience community and has
also inspired neuroengineering solutions (e.g. Merolla et al., 2014), is still largely
based on work in one particular cortical area, the striate cortex. Moreover, much of
this work has concentrated on the cat and non-human primate brain (Douglas and
Martin, 2007c). Striate cortex is not only special in the amount of probing it has
undergone, but is also exceptional in its architectonic differentiation. Striate cortex
is the cortical region with the highest neuron density, sporting numbers substantially
higher than the remainder of the cortex (Schüz and Palm, 1989; Collins et al., 2010;
Cahalane et al., 2012; Herculano-Houzel et al., 2013). The number of (sub)layers
that can be identified is also higher in striate cortex than in other regions of the
cortex.

The variation in local cortical structure needs to be taken into account when de-
scribing a ‘canonical’ microcircuit, because it is unlikely for the patterns of inter-
and intra-laminar connections to be uniform in spite of strong variations of their
structural substrate. Indeed, experimental results, for example from rodent barrel
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cortex, demonstrate that intrinsic connectivity is not uniform across the cortex (Sato
et al., 2008; Meyer et al., 2013; Reyes-Puerta et al., 2014).

1.2.1 Intrinsic circuitry in granular cortex

Over the last decades, general features of intrinsic circuitry in striate cortex have
emerged from studies in the cat and non-human primate. Connections are proposed
to form a processing loop across cortical layers, where recurrent excitation and
inhibition are interlinked, which leads to amplification of inputs into the cortical
column and appropriate modulation of the ensuing activity (Markram et al., 2004;
Douglas and Martin, 2004, 2007c; Bannister, 2005; Lübke and Feldmeyer, 2007). To
probe the local microcircuitry, diverse experimental methods with different degrees
of sensitivity and reliability have been used. Two investigations that supplied the
most comprehensive data on cat striate cortex employed electrophysiological and
morphological approaches, respectively. Thomson and colleagues (2002) used dual
intracellular recordings to characterise synaptic connections across cortical layers.
Binzegger and colleagues (2004) reconstructed the morphology of neurons in striate
cortex in three dimensions and estimated the number of synaptic contacts between
different cell types. Both data sets have been adapted and used in various studies,
for example, in the construction of computational models (e.g. Haeusler and Maass,
2007; Haeusler et al., 2009; Bastos et al., 2012; Du et al., 2012; Potjans and Diesmann,
2014). But even though the same model system, cat striate cortex, was considered
across these studies, there currently exists no definite scheme of this area’s intrinsic
circuitry. There are, for example, diverging data on whether recurrent excitation
occurs between layer 3 (L3) and layer 5 (L5) or between L4 and L3 (cf. Thomson
et al. (2002); Thomson and Bannister (2003) versus Binzegger et al. (2004); Douglas
and Martin (2004)).

1.2.2 Interlaminar inhibition in mouse cortex

Such discrepancies may be reconciled by future experimental findings. In contrast,
reports of differences in interlaminar activation patterns across cortical regions point
towards the existence of genuine variations in intrinsic circuitry across the brain.
Kätzel and colleagues (2011) used genetically targeted photostimulation to compre-
hensively map inhibitory-to-excitatory connectivity in three distinct regions of mouse
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Figure 1.2: Interlaminar inhibition varies across mouse cortex. As architectonic di�erenti-
ation becomes weaker, the abundance of interlaminar inhibitory-to-excitatory connectiv-
ity decreases. By contrast, intralaminar connectivity, including intralaminar inhibition,
appears relatively unchanged (Intra-laminar connections, which are all-to-all, are not
shown). Column colors follow the color coding of architectonic di�erentiation in Figure 1.1:
yellow-weakly di�erentiated cortex to dark green-strongly di�erentiated cortex. Adapted
by permission from Macmillan Publishers Ltd: Kätzel and colleagues (2011).

cortex. They assessed intra- and interlaminar connectivity in striate cortex, primary
somatosensory and primary motor cortex. As mentioned before, striate cortex is by far
the most differentiated cortical region, even in the rodent brain (Herculano-Houzel
et al., 2013), where it is less well differentiated than for example in the primate.
Primary somatosensory cortex, although still clearly eulaminate, is already much less
dense and comprises fewer distinguishable sublayers, while primary motor cortex
is even less architectonically differentiated (Collins et al., 2010; Herculano-Houzel
et al., 2013). Primary motor cortex thus ranges in the lower end of the differentiation
spectrum with dysgranular cortical regions, although it is sometimes classified as
agranular (lacking an inner granular layer, L4): see Shipp (2005) and García-Cabezas
and Barbas (2014) for an extensive discussion of this issue. Other than probing
connectivity in three cortical regions processing different modalities, this study can,
therefore, be used to demonstrate potential differences regarding intrinsic circuitry in
three areas occupying different positions in the differentiation spectrum. While Kätzel
and colleagues (2011) report relatively uniform patterns of intralaminar inhibition
across these three cortical regions, interlaminar inhibitory-to-excitatory connectivity
differed substantially (Figure 1.2). In striate cortex, considerable interlaminar inhibi-
tion was observed between all layers (L2/3, L4, L5/6). In primary somatosensory
cortex, a similar pattern of interlaminar inhibition was reported, but without inhibi-
tion between L2/3 and L5/6. In primary motor cortex, in contrast, no substantial
inhibition between L2/3, L4, and L5/6 was evident. Thus, across the three sampled
regions, interlaminar inhibitory-to-excitatory connectivity was progressively weaker
in less architectonically differentiated areas. By interpreting the results this way, we
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assume that they reflect genuine variation in the presence of interlaminar inhibition,
and not the impact of other aspects of structural variation across the studied areas.
For example, systematic differences in cellular morphology across the sampled areas
could lead to skewed results from applying the same measurement approach to all
areas. Nonetheless, these observations support the notion that intrinsic circuitry
cannot be uniform in the face of considerable variation of the structural substrate, as
is the case in regions of the cerebral cortex with profoundly differing architectonic
differentiation.

This section has been published in Beul and Hilgetag (2015).

1.3 Extrinsic circuitry

Brain regions of differing local architecture and intrinsic connectivity are linked by
extrinsic cortico-cortical connections and thus joined into the anatomical substrate for
the elaborate information processing performed in the brain. Structural connections
impose strong constraints on functional interactions among brain areas (Park and
Friston, 2013), and it is thus essential to understand the principles that underlie the
organisation of connections which give rise to the topological properties of the cortex.
Cortico-cortical connections form networks that are neither regular nor random, but
characteristically link specific brain regions.

Evidence accumulated from detailed quantitative studies of the connectome of cat,
monkey and human cerebral cortex (Young, 1992; Scannell et al., 1995, 1999;
Hilgetag et al., 2000a; Kaiser and Hilgetag, 2006; Zamora-López et al., 2010; Bassett
et al., 2010; Modha and Singh, 2010; Harriger et al., 2012; Goulas et al., 2014a)
has revealed a common large-scale topology that has been related to both behavioral
measures and disease conditions in humans (Li et al., 2009; Fang et al., 2012) and
been the subject of further wide-ranging investigations (Modha and Singh, 2010; Xu
et al., 2010; Zamora-López et al., 2010, 2011; Power et al., 2013; Towlson et al.,
2013; Ball et al., 2014; Collin et al., 2014; Crossley et al., 2014; Senden et al., 2014;
Tomasi et al., 2014; Wang et al., 2014; van den Heuvel et al., 2016; Rubinov, 2016).

This topology, observed across several species, is characterised by dense connectivity
among neighbouring areas of the same major processing modules (visual, auditory,
somato-motor, fronto-limbic), with relatively few direct long-range connections be-
tween them (Kaiser and Hilgetag, 2006). Inter-modal integration is largely served
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by a collection of spatially distributed hub-module areas, which possess widespread
connections and are strongly interconnected among themselves, and hence have been
designated a ‘rich-club’ (Colizza et al., 2006; Zamora-López et al., 2011; Bullmore
and Sporns, 2012; Harriger et al., 2012). While the ‘rich-club’ is a costly feature in
several aspects of cortical organisation (Collin et al., 2014), including the dispropor-
tionate occupancy of white matter volume and associated high energy expenditure,
this organisation can also be considered functionally efficient for providing locally
specialised (intra-modal) as well as longer-range (cross-modal) integration, and
has been likened to the complex global infrastructure underlying human social and
transport networks (Bassett and Bullmore, 2006).

While these topological properties concern the existence, that is, the absence or
presence of a connection, another feature of cortico-cortical connections that needs
to be explained is the laminar pattern of their origin and termination, which ex-
hibits striking regularities (Rockland and Pandya, 1979; Pandya and Yeterian, 1985;
Felleman and Van Essen, 1991; Hilgetag et al., 1996).

1.3.1 Laminar projection patterns regulate information processing

The specific laminar composition of connections is crucial to their function, given that
neurons in the different layers, differing in morphology, are endowed with distinct
processing capabilities. In fact, lamination itself may only be relevant to the extent
that it reflects the arrangement of particular types of brain cells (Larkum et al., 2018).
It has been shown that oscillations of particular frequencies dominate in different
cortical layers (Buffalo et al., 2011; Xing et al., 2012; Roberts et al., 2013; Bastos
et al., 2015). Since these oscillations are associated with communication in specific
directions (‘feedforward’ /‘feedback’) (van Kerkoerle et al., 2014; Bastos et al., 2015;
Mejias et al., 2016; Michalareas et al., 2016), they are likely related to the laminar
patterns of cortico-cortical connections (Bastos et al., 2015). Moreover, oscillations
across different frequency bands are a crucial feature in theories of brain function
such as predictive coding (Bastos et al., 2012), they underlie executive processes such
as working memory regulation (reviewed in Miller et al., 2018) and they have been
identified to be causal for self-reflective awareness in humans (Voss et al., 2014).
The laminar specifics of cortico-cortical connections therefore have implications for a
wide spectrum of functions, as certain types of connections are crucial for processes
up to cognition and conscious perception in humans (reviewed in Larkum, 2013).

Hence, integrating the characteristics of cortico-cortical connectivity with intrinsic
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circuitry in source and target areas is important for understanding experimental
results. This integration is, however, also profoundly useful in deriving powerful
models of cortical function. For example, validated regularities can be harnessed to
infer missing data points in empirical data sets and build better performing models
than possible with the incomplete data alone. This approach has, for example, been
gainfully employed in the construction of computational models of cortical network
function (Schmidt et al., 2018a,b).

The presence of nonrandom features in brain networks points to the existence of
organising factors, but the principles that govern the characteristic organisation
of cortico-cortical connectivity remain elusive. We hypothesise that inherent struc-
tural properties of the cortex account for prominent characteristics of the cortical
connectome, as captured by the architectonic type principle (Barbas, 1986).

Parts of this section have been published in Beul et al. (2015), Beul et al. (2017) and
Beul et al. (2018) and submitted for peer-review in Beul and Hilgetag (2019b).

1.4 Possible measures to explain the organisation of cortical
connectivity

1.4.1 Architectonic di�erentiation

One comprehensive framework that captures many aspects of the organisation of
structural connectivity in the mammalian brain is the architectonic type principle
(Barbas, 1986; Barbas and Rempel-Clower, 1997) (reviewed in Barbas, 2015; García-
Cabezas et al., 2019; Hilgetag et al., 2019). It represents connections in terms of
the relative architectonic differentiation between brain areas and has been shown
to account well for multiple features of cortico-cortical projections across the entire
cortex of different mammalian species. To quantify architectonic differentiation, the
property that the architectonic type principle is based on, comprehensive measures
of area composition, such as architectonic type and overall neuron density, have been
employed.

Originally developed qualitatively in the classic studies of Pandya and Sanides (1973),
Barbas and coworkers systematically extended the architectonic type principle in
quantitative studies across a variety of cortical systems and connection targets in

9



1.4. Possible measures to explain the organisation of cortical connectivity

several mammalian species, including prefrontal, parietal, temporal and occipital
projection systems, and contralateral as well as subcortical projections (e.g. Barbas,
1986; Barbas and Rempel-Clower, 1997; Rempel-Clower and Barbas, 2000; Dom-
browski et al., 2001; Barbas et al., 2005; Medalla and Barbas, 2006; Ghashghaei
et al., 2007; Medalla et al., 2007; Hilgetag and Grant, 2010; Goulas et al., 2014c;
Hilgetag et al., 2016; Goulas et al., 2017).

The most intricate property of structural connections that is well captured by the
architectonic type principle are the distributions of projection neurons’ somata and
synaptic connections across cortical layers. These laminar projection patterns have
been shown to vary gradually as the difference in architectonic differentiation be-
tween the two connected areas changes (Barbas, 1986, 2015; García-Cabezas et al.,
2019; Hilgetag et al., 2019), such that graded differences in cortical architecture can
account for the graded patterns observed in the distribution of projection origins
and targets across cortical layers (Barbas, 1986; Barbas and Rempel-Clower, 1997;
Barbas et al., 2005; Medalla and Barbas, 2006; Hilgetag and Grant, 2010; Hilgetag
et al., 2016). Specifically, a positive correlation has been observed, such that the
contribution to a projection from the supragranular layers becomes stronger, the more
differentiated the source area is than the target area. This means that projections from
areas of weaker differentiation are formed increasingly from infragranular layers as
they target areas of increasingly stronger differentiation, while projections from areas
of stronger differentiation are formed increasingly from the supragranular layers
as they target areas of weaker differentiation. These stereotypic laminar patterns
found in non-human primate cortex are illustrated in Figure 1.1B, showing distinctly
infra- and supragranular origins and terminations for projections between areas of
weak differentiation and areas of strong differentiation, while these patterns change
gradually towards multilaminar origin and termination profiles as the difference in
differentiation between the connected areas becomes less pronounced.

In addition to the laminar patterns of projections, other features of cortico-cortical
connectivity have been found to relate to relative architectonic differentiation. For
example, greater similarity in architectonic differentiation of cortical areas has been
found to be associated with higher connection frequency between them, above and
beyond the explanatory power of spatial proximity (Goulas et al., 2017) (for reviews
see Barbas, 2015; Pandya et al., 2015).

The architectonic type principle was originally described for ipsilateral connections
of the macaque prefrontal cortex (Barbas, 1986), but it has since been confirmed
for a considerable number of brain systems and species, as well as contralateral
connections, suggesting a mammalian-general organisational principle. The general
applicability of this principle was further supported in a recent study which performed
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prediction analyses that transferred information across mammalian species (Goulas
and Hilgetag, 2016). Specifically, by training a classifier on the relationship between
cortical structure and connections in a first species, area-to-area connectivity in a
second species could be reliably predicted from structural variations of cortical areas
in the second species without making changes to the classifier.

While architectonic differentiation varies to a certain extent in any mammalian
species, there are notable differences across species both in the highest level of differ-
entiation that occurs in the cortex (in some species, only low levels of differentiation
are present), as well as in the range of variation in differentiation (in some species,
most areas are of similar differentiation, while in others very different levels of
differentiation are present across the cortex). This leads to predictions about the
extent to which the architectonic type principle is apparent in different species, since
shallow gradients in architectonic differentiation appear to go hand in hand with
smaller differences in laminar projection patterns (Goulas et al., 2019b).

1.4.2 Cellular morphological measures

By now it is evident that cortical architecture is intricate and varies considerably
throughout the cortex. The measures of overall area composition used to capture
architectonic differentiation collapse the complex cortical structure into a single
parameter, but of course, diverse aspects of cortical architecture have been measured
at different spatial scales. Such measures comprise macroscopic features, such as
the laminar appearance of cortical areas, including the thickness of cortical layers
and the density and distribution of different types of neurons or glia across layers
(Dombrowski et al., 2001; Barbas, 2015). Further macroscopic features are the
density of receptors of different neurotransmitter systems (Zilles and Amunts, 2009;
Palomero-Gallagher and Zilles, 2017; Zilles and Palomero-Gallagher, 2017) and
myeloarchitecture (Nieuwenhuys et al., 2015; Nieuwenhuys and Broere, 2017). In
addition, cells within cortical areas have been characterised by a large number
of microscopic morphological and physiological measures, such as the density of
synaptic spines (Elston et al., 2005; Ballesteros-Yáñez et al., 2006) or firing patterns
(Cauli et al., 1997; Dégenètais et al., 2002; Otsuka and Kawaguchi, 2008; Oswald
et al., 2013).

Given the abundance of possible features, it remains unclear whether there are aspects
of cortical architecture that carry more weight in determining cortico-cortical connec-
tivity than others, particularly than overall architectonic differentiation. Especially
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well documented are cellular morphological measures obtained for pyramidal cells in
cortical layer 3 (L3), based on extensive immunohistochemical analyses (e.g. Elston
and Rosa, 1997). These measures comprise the cross section of the soma, the total
spine count of an average pyramidal neuron, the peak dendritic spine density, and
the size of the dendritic tree. These measures have been used to quantify ‘pyramidal
complexity’ in a previous report that found a relation to topological measures of the
macaque connectome (Scholtens et al., 2014). Microscopic, cellular morphological
measures appear to be closely correlated with each other, as we also describe below
(Section 3.4.1). In primates, neurons show a tendency to become larger, have more
complex dendritic arbors and be more spiny towards the frontal cortex (reviewed
in Charvet and Finlay, 2014). Characteristics of cellular morphology are crucial for
how an area can process incoming information. Spine morphology and the spatial
arrangement of dendrites directly affect the electrical and biochemical properties
of synapses on pyramidal neurons (reviewed in Spruston, 2008; Yuste, 2010), and
spine number and density affect the opportunity for neuronal interactions (reviewed
in DeFelipe, 2011). These cellular properties, therefore, directly relate to information
processing capabilities of cortical populations, especially with regard to the integra-
tion of information from numerous sources (Charvet and Finlay, 2014). In line with
the areas’ position in the inter-areal circuitry, morphology in prefrontal association
areas allows for a broader integration of inputs (Bianchi et al., 2013; Buckner and
Krienen, 2013). Moreover, variation in cellular morphological characteristics across
species presumably also reflects differences in the complexity of cortical circuits and
specifics of information processing, which plausibly have wide-ranging implications
for cognition, memory and learning (DeFelipe, 2011).

1.4.3 Cortical thickness

One other factor that has received much attention in the study of possible relations
between brain morphology and connectivity is cortical thickness, an attractive pos-
sibility, because thickness can be assessed non-invasively by magnetic resonance
imaging (MRI). Cortical thickness has been related to neuron density (Cullen et al.,
2006; la Fougère et al., 2011) and suggested as an indicator of overall cortical com-
position (Narr et al., 2005; Lerch et al., 2006; He et al., 2007). Cortical thickness
covariations have been treated as a surrogate of anatomical connectivity (but see
Gong et al., 2012). The structural networks inferred from cortical thickness have
been explored with respect to their topological properties, association with functional
connectivity, and relationship to behavioral traits (e.g. Chen et al., 2008, 2011;
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Bernhardt et al., 2014; Tewarie et al., 2014b) (for a review see Evans, 2013). Given
this strong interest in the possible significance of cortical thickness, we assessed this
parameter as an anatomical covariate of structural connectivity, phrasing it as the
‘thickness model’.

1.4.4 Spatial proximity

Since brains are physical objects that exist in space, an inevitable property of the
cortex is spatial proximity between areas. The ‘distance model’ proposes that the
relative spatial position of areas across the cortex systematically influences the
existence (Young, 1992; Klyachko and Stevens, 2003) and strength (Douglas and
Martin, 2007b) of connections between them. Specifically, the model assumes
that connections are more frequent, and more dense, among neighbouring regions
and sparser or absent between remote regions, an arrangement consistent with
minimisation of axonal wiring costs (Young, 1992; Ercsey-Ravasz et al., 2013). Salin
and Bullier (1995) further proposed that the laminar locations of projection origins
and terminations also change gradually according to the physical distance between
connected cortical regions.

1.4.5 Cortical hierarchy

The ‘hierarchical model’ assigns relevance to rankings of cortical areas which have
been constructed from the laminar origin and termination patterns of cortico-cortical
projections (Felleman and Van Essen, 1991; Scannell et al., 1995). These patterns
were interpreted as directional information on projections, for example, ‘forward’,
‘backward’ and ‘lateral’ (Rockland and Pandya, 1979; Felleman and Van Essen, 1991),
and hierarchical rankings were constructed so as to fit projection directions with a
minimal number of constraint violations (Hilgetag et al., 1996, 2000b; Reid et al.,
2009). The level differences separating source and target areas in such hierarchies
were then related to the areas’ connectivity, in particular quantitative measures of
the relative distribution of projection origins in the upper and deep cortical layers
(Barone et al., 2000; Vezoli et al., 2004).

Parts of this section have been published in Beul and Hilgetag (2015), Beul et al.
(2015), Beul et al. (2017), Beul et al. (2018) and Beul and Hilgetag (2019a) and
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submitted for peer-review in Beul and Hilgetag (2019b).

1.5 Connectivity data

As outlined above, the intricate organisation of cortico-cortical connectivity still poses
many questions, both with respect to the fully developed adult state as well as the
developmental processes shaping it. To probe the explanatory power of the different
presented measures regarding this organisation, we employed tract-tracing data
detailing axonal connections in two mammalian species, cat and macaque monkey.
For the cat, connection existence data was available for the adult state (Scannell et al.,
1995), including a categorisation of laminar projection patterns. For the macaque
monkey, we were able to make use of a wealth of data describing the existence of
connections in the adult state (Markov et al., 2014a), as well as the laminar patterns
of projection origins in both the adult (Markov et al., 2014b; Chaudhuri et al., 2015)
and the immature state (Kennedy et al., 1989; Batardière et al., 2002; Magrou et al.,
2018). Moreover, derived from these data, measures of topology were available for
both species. These included the number of maintained connections, also termed area
degree, as well as a division of the network of cortical areas into core and peripheral
areas (Zamora-López et al., 2010; Ercsey-Ravasz et al., 2013) and a clustering of
cortical areas into functional modules (Zamora-López et al., 2010; Goulas et al.,
2014b).

1.6 Possible developmental mechanism underlying the organ-
isation of cortical connectivity

It has been extensively demonstrated empirically that the architectonic type princi-
ple captures much of the regularity in cortico-cortical connectivity by capitalising
on regularities in cortical architecture. Further substantiation of the architectonic
type principle calls for a mechanistic explanation of how the described relationships
between architecture and connectivity may emerge. From early on, the origin of this
relationship has been hypothesised to be linked to developmental events (Barbas,
1986). Specifically, the observed close relationship between variations in cortical
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structure and axonal connections may arise from an interplay between the onto-
genetic time course of neurogenesis and concurrent connection formation (Barbas,
2015; Hilgetag et al., 2016; Barbas and García-Cabezas, 2016). Areas which develop
during different time windows were suggested to be afforded distinct opportunities
to connect, with self-organisation rather than precisely targeted connection formation
leading to the strikingly regular final connectivity patterns (cf. Kaiser, 2017). Put
differently, it has been hypothesised that spatio-temporal interactions in the forming
tissue, and specifically the relative timing of neurogenesis across the cortex, deter-
mine the connectivity patterns between cortical areas. Empirically, such a relationship
has, for example, been observed in the olfactory system of the rat (Bayer and Altman,
1987).

We explored whether this suggested mechanism may be capable of generating cortico-
cortical connectivity consistent with empirical observations and the architectonic type
principle using systematic computational simulation experiments (Figure 1.3). To
this end, we implemented an in silico model of the growing two-dimensional cortical
sheet of a single cerebral hemisphere that was progressively populated by neurons
and divided into cortical areas. Model neurons randomly grew their axons across
the cortical sheet and stochastically formed connections with potential postsynaptic
targets (similar, for example, to simulation experiments in Kaiser and Hilgetag
(2004) and Kaiser et al. (2009)). We assessed the resulting network of simulated
structural connections between cortical areas in the same way as in experimental
studies (e.g. Section 3.2 and Section 3.3) and compared the results to the empirical
observations. Since we constrained the model to a single hemisphere, the simulated
connections represent ipsilateral connectivity. Following this general approach, we
characterised a number of variants of the in silico model of the growing cortical sheet,
which differed in their adherence to empirical observations about developmental
processes, specifically the spatio-temporal sequence of neurogenesis across the cortex.
By comparing the networks generated from these variants, we could infer which
aspects of the proposed mechanistic underpinnings of the architectonic type principle,
particularly, which neurodevelopmental assumptions, were necessary to approximate
empirical ipsilateral cortical connectivity.

We conducted two sets of simulation experiments. In the first set, we probed which
assumptions allowed us to generate networks that were consistent with the architec-
tonic type principle with respect to the existence of connections. After establishing
those, we expanded our in silico model to explore how laminar patterns of projec-
tions origins could emerge that conformed to expectations which were based on the
architectonic type principle.
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Figure 1.3: Neurodevelopmental assumptions and overview of the in silico model. The fig-
ure illustrates the assumptions regarding neurogenesis that were varied in the in silico
model. The spatial growth of the cortical sheet of a single hemisphere was modelled in
three possible ways: First, planar growth, in which the neurons comprising a cortical area
develop at the same time and the cortical sheet expands as more areas materialise. Sec-
ond, radial growth, in which neurons across the entire extent of the final cortical sheet
develop at the same time, and the final complement of neurons is reached by gradual
growth of neurons at a constant rate. Third, no growth, that is, a static cortical sheet on
which the final complement of neurons is already present from the onset. Regarding the
gradients of architectonic di�erentiation, we considered three possible relationships be-
tween the time at which an area was formed (time of neurogenesis) and its architectonic
di�erentiation, approximated by neuron density. First, areas could be more di�erentiated
the later in ontogenesis they were formed (increasingly di�erentiated). This scenario corre-
sponds to the realistically oriented density gradient we incorporated in the in silico model.
Second, areas could be less di�erentiated the later their time of origin was (decreasingly
di�erentiated). This scenario corresponds to the inversely oriented density gradient in the
in silico model. Third, there could be no gradient of di�erentiation aligned with
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Figure 1.3: (cont.) neurogenetic timing, that is, the neuron density of newly formed areas
varied randomly throughout ontogenesis. As a third factor that determined the spatio-
temporal growth trajectory of the cortical sheet, we considered the number of neuroge-
netic origins. There could either be a single origin, such that more recently formed areas
occupied the fringes of the cortical sheet, or there could be two or three origins. In this
case, recently formed areas would be interleaved with areas that were formed earlier, as
the neurogenetic origins were moved apart by addition of areas around them. From these
assumptions on neurogenetic processes shaping the cortical sheet, we set up di�erent
variants of an in silico model in which axons grew randomly across the developing corti-
cal sheet and stochastically formed connections. We translated the resulting neuron-level
connectivity to area-level connectivity and extracted structural measurements from the
simulated cortical sheet. As in previous studies of mammalian connectomes, we consid-
ered the di�erence in architectonic di�erentiation between areas and their spatial dis-
tance. Thus, we simulated sets of measures which we could then analyse in the same
way as the empirical data, and compared the results to empirical findings. Specifically,
we used simulated architectonic di�erentiation and spatial distance to classify whether
a connection existed in the final simulated network; we probed whether there was an as-
sociation between simulated architectonic di�erentiation and the number of connections
maintained by an area; and we used a classifier trained on the simulated data to pre-
dict connection existence in two sets of empirical connectivity data, from the cat and the
macaque cortex.

1.6.1 Aspects of neural development that prescribe spatio-temporal tra-
jectories of cortical growth

We explicitly incorporated three aspects of corticogenesis in our simulations, which
are briefly described here.

Neurogenetic origins

First, the cortical sheet is established through neurogenesis spreading out from spatial
origins, or primordial points (where the earliest neuronal populations are observed
on the developing cortex), so that the surface of the cortex expands over time. This
expansion is accompanied by a gradient in the time of onset of neurogenesis across
the cortical sheet, which we refer to as the planar gradient of time of neurogenesis
(Sidman et al., 1959; Angevine and Sidman, 1961; Hicks and D’Amato, 1968; Cavi-
ness, 1982; Smart and Smart, 1982; McSherry, 1984; McSherry and Smart, 1986;
Bayer and Altman, 1991; Takahashi et al., 1995; Miyama et al., 1997; Shaw et al.,
2008). Developmental studies indicate that neurogenesis proceeds from at least two
points of origin (Bayer and Altman, 1991; Shaw et al., 2008; Gogtay et al., 2006),
with new neurons successively increasing the extent of cortical tissue between these

17



1.6. Possible developmental mechanism underlying the organisation of cortical
connectivity

neurogenetic origins. This progression entails that areas formed earlier become
further separated on the cortical sheet as new areas are generated. Moreover, there
is a superimposed radial gradient in the progression of neurogenesis (Sidman et al.,
1959; Angevine and Sidman, 1961; Caviness, 1982; Kölliker, 1896; Rakic, 1974)
(which was not included in this first set of simulation experiments), resulting in the
characteristic inside-out generation sequence of neurons across layers (meaning that,
with the exception of neurons in layer 1, neurons in lower cortical layers are gen-
erated before neurons in upper cortical layers). In contradistinction to the findings
outlining a planar gradient in the onset of neurogenesis, as described above, it has
also been suggested that the onset of neurogenesis is simultaneous across the cortex
(Rakic et al., 1986; Rakic, 2002). To contrast these two interpretations, we included
both alternatives in our simulation experiments, as described in more detail below.

Temporal gradient in architectonic di�erentiation

Second, cortical areas that are generated later are generally more architectonically
differentiated (Barbas and García-Cabezas, 2016; Shaw et al., 2008; Charvet and
Finlay, 2014; Charvet et al., 2015) (also briefly reviewed in Hilgetag et al. (2016)).
Gradual changes in cortical architecture along two trends were described already
several decades ago (Dart, 1934; Abbie, 1940, 1942; Sanides, 1962, 1972) (reviewed
in Barbas, 2015; Pandya et al., 2015). In brief, the two foci of least differentiated
cortex are the allocortical three-layered archicortex (hippocampus) and paleocortex
(olfactory cortex). These cortices are surrounded by periallocortex, where additional
layers can be discerned, but without the clear laminar organisation found in the
isocortex. Proisocortex, the next stage of differentiation, has a definite laminar
organisation, but is missing a well-developed layer 4. Finally, there are different levels
of isocortex with increasing demarcation of laminar boundaries and prominence of
layer 4. More recently, changes in cell cycle kinetics across the forming cortical sheet
and genetic correlates of the neurogenetic gradients have been described (Takahashi
et al., 1995; Miyama et al., 1997; Suter et al., 2007; Caviness et al., 2008, 2009),
which elucidate how gradual changes in cortical architecture are effected and provide
an association between time of origin and architectonic differentiation. Particularly, a
lengthening in the cell cycle along the planar neurogenetic gradient is accompanied
by a successive increase in the proportion of progenitor cells differentiating into
neurons with each cell cycle. In combination with the mentioned relation between
time of origin and final laminar position of neurons, this mechanism results in a
relatively increased number of supragranular layer neurons in later generated sections
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of the cortical sheet. Thus, a positive correlation can be observed between time of
origin and neuron density across the cortex (Charvet et al., 2015). This link has
been corroborated by findings in the human cortex, which directly traced systematic
architectonic variation of the cortex to the timing of development (Barbas and García-
Cabezas, 2016). A lengthening of the overall developmental time period, and with it
the neurogenetic interval, appears to be responsible for increased neuron numbers
both within the cortex of a given species, as well as across species which differ in
their overall level of architectonic differentiation (Charvet and Finlay, 2014; Charvet
et al., 2015; Finlay and Darlington, 1995). In fact, it has been suggested that cortical
architecture correlates not only with neurogenetic time windows during ontogenesis,
but also with the succession of architectural differentiation observed during brain
evolution (Sanides, 1962; Shaw et al., 2008). This finding suggests that phylogenetic
age has a bearing on architectural gradients. It has repeatedly been reported that
areas at similar points in the architectonic differentiation spectrum, as well as within
the two described trends of architectonic progression, are preferentially linked, even
if they are dispersed throughout the brain (reviewed in Pandya et al., 2015). The
link to phylogeny, added to this correlation between architectonic progression and
associated connectivity, thus, further points towards a developmental origin of the
interrelations captured by the architectonic type principle.

Immediate, unspecific, stochastic formation of connections

The third aspect of neurogenesis which we incorporated into our simulations is that
axon outgrowth starts concurrently with, or immediately after, neuronal migration
(Caviness et al., 2008; Schwartz et al., 1991; Easter et al., 1993; Barnes and Polleux,
2009; Donahoo and Richards, 2009), and appears to be largely unspecific spatially
(Cahalane et al., 2011). We, therefore, assumed that connection formation starts as
soon as neurons were placed in the cortical sheet. Further assumptions derived from
these observations were that axons grow randomly across the cortical sheet (i.e., with
no particular spatial orientation) and that they indiscriminately form connections
once they are close enough to a potential target neuron, a mechanism that has been
named Peters’s Rule (Braitenberg and Schüz, 1998; Binzegger et al., 2004). Thus,
the process of connection formation can be described as stochastic, and has been
simulated in this way in previous computational models of connection development,
for example by Kaiser and colleagues (2009). This mechanism entails that the
probability of a neuron forming a connection is only dependent on the probability
of its axon finding a target neuron. Since neurons that are far apart are separated
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by a larger number of neurons that could accommodate the axon, the probability of
connecting to a specific target neuron is lower, the larger the distance between two
particular neurons is. In effect, there is a positive correlation between the spatial
proximity and connection probability of different neurons.

1.6.2 An in silicomodel for assessing spatio-temporal growth trajectories

The spatio-temporal dynamics of corticogenesis that emerge from the combination of
these empirically grounded assumptions were hypothesised to result in the establish-
ment of realistic cortico-cortical connectivity. In particular, we expected interactions
between the spatial and temporal aspects of neurogenesis to lead to the formation of
connections which are consistent with the predictions of the architectonic type princi-
ple concerning the relationship between areas’ relative architectonic differentiation
and the existence of connections (connection frequencies). Our simulation experi-
ments, thus, contribute the first systematic exploration of the neurodevelopmental
mechanisms that have been hypothesised to underlie the architectonic type principle
(Barbas, 1986, 2015; Hilgetag et al., 2016; Dombrowski et al., 2001).

In summary, we implemented several aspects of neurogenesis in an in silico model of
the growing mammalian cerebral cortex. These aspects were then modified in some
variants of the model, so that they either corresponded to, or violated, empirically
observed phenomena. This strategy allowed us to compare the cortico-cortical
connectivity resulting from hypothetical variants that differed in their assumptions,
where some of these assumptions were empirically grounded and others were not.
The approach enabled us to assess the merits of mechanisms which have been
proposed to link cortical structure and connectivity through the architectonic type
principle.

1.6.3 Expansion of the in silicomodel to probe the emergence of laminar
patterns of projection origins

Observing the developmental events that shape cortico-cortical connectivity during
the course of ontogenesis in sufficient detail to answer the question of how laminar
projection patterns emerge remains challenging at best. Therefore, we extended our
in silico model of cortical development to explore some features that could possibly
be relevant for the formation of laminar projection patterns.
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In the second set of simulation experiments, we tested the effect of adding four
features to the in silico model: a delay in the growth of the infragranular compartment
relative to layer 1, a delay in the growth of the supragranular compartment relative to
the infragranular compartment, a scaling of the neuron density in the supragranular
compartment, and a scaling in the elongation of neurons’ axons. The first three of
these modified spatio-temporal patterns of neurogenesis, while the fourth feature
affected properties of individual neurons.

The two delays in the growth of the laminar compartment straightforwardly mirror
the radial gradient in neurogenesis that can be observed for cortical neurons (Sidman
et al., 1959; Angevine and Sidman, 1961; Rakic, 1974; Caviness, 1982) by assigning
neurons to birth cohortes according to laminar compartments. With the exception
of layer 1 neurons (which are formed first), neurons that are born later come to
populate successively more superficial positions in the cortical sheet. Thus, the
cortical sheet forms in an inside-out manner with infragranular layer neurons at a
particular position of the cortical sheet born before neurons in the supragranular
layers.

As architectonic differentiation becomes stronger and neuron density becomes higher,
density increases especially in the supragranular layers of the mammalian cortex
(Charvet et al., 2015; Finlay and Uchiyama, 2015; Pandya et al., 2015). The cell cycle
kinetics underlying the transition from progenitor cells to differentiated neurons have
been described in detail (Takahashi et al., 1995; Miyama et al., 1997; Suter et al.,
2007; Caviness et al., 2008, 2009; Dehay et al., 2015) and explain this selective
increase. As neurogenesis progresses across the cortical sheet, cell cycles lengthen
and the proportion of progenitor cells that differentiate into neurons successively
increases with each cell cycle. On the level of cortical areas, this results in a positive
correlation between time of origin and neuron density (Cahalane et al., 2014; Charvet
et al., 2015). In addition, since later cycles lengthen the most and yield neurons
destined for the upper layers, as cycles become longer and overall neuron density
increases, the effect is particularly pronounced in the supragranular layers (Finlay
and Darlington, 1995; Charvet and Finlay, 2014). We implemented this notable
increase in relative supragranular neuron density by scaling the neuron density of the
supragranular compartment to be relatively higher than infragranular compartment
neuron density, and this difference to be larger the more differentiated an area was.

As architectonic differentiation becomes stronger, there are many changes beyond an
increase in neuron density. For example, myelination, cellular markers of synaptic sta-
bility and plasticity, as well as neurotransmitter receptor complement change across
the spectrum of architectonic differentiation (Dombrowski et al., 2001; Nieuwen-
huys et al., 2015; García-Cabezas et al., 2017; Zilles and Palomero-Gallagher, 2017;
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Burt et al., 2018; Holley et al., 2018), and properties of cell morphology such as
soma cross section, dendritic tree size and dendritic spine density are correlated
with neuron density (cf. Section 3.4). As a final modification, we therefore probed
which effects on laminar projection patterns could arise from changes to cell-intrinsic
properties across the differentiation spectrum. We chose to manipulate axon elon-
gation, because two observations, detailed below, create a tentative link between
gradual changes in architectonic differentiation and the laminar position of cells
best equipped for maintaining longer projections. First, there is a striking shift in
the laminar distribution of larger neurons across the cortex, which has been termed
externopyramidization (Sanides, 1962, 1970). Depending on whether larger neu-
rons are predominantly found in the infragranular or in the supragranular layers,
areas can be classified as internopyramidal or externopyramidal, respectively. Thus,
in internopyramidal areas the ratio of supragranular neuron size to infragranular
neuron size is smaller than it is in externopyramidal areas. This ratio of neuron sizes
changes gradually across the cortex and coincides with the degree of architectonic
differentiation, such that supragranular neuron size tends to be relatively larger
compared to infragranular neuron size in more differentiated areas (reviewed in
Goulas et al., 2018). Second, multiple lines of evidence suggest that neuron size
is related to axon length (reviewed in Goulas et al., 2018) (although this does not
speak to the direction of the causality, that is, whether larger neurons maintain longer
connections or whether the formation of longer connections induces neuron somata
to become larger). For example, considerations of metabolic cost (Laughlin et al.,
1998; Laughlin and Sejnowski, 2003), attainable conduction velocities (Lawson and
Waddell, 1991; Tomasi et al., 2012) and synaptic efficacy (Germuska et al., 2006;
Medalla and Barbas, 2010; Innocenti et al., 2014; Innocenti and Caminiti, 2017)
suggest that larger neurons are particularly capable of maintaining projections across
larger distances. Taken together, these observations suggest that in areas of different
architectonic differentiation the neurons that are best suited for forming longer pro-
jections are situated in different layers, and thus, as hypothesised before (Goulas and
Hilgetag, 2016; Goulas et al., 2018), that externopyramidization might be associated
with shifts in laminar patterns of projection origins. We therefore constructed our in
silico manipulation of axon elongation to mirror the changes in relative neuron size
observed across the spectrum of architectonic differentiation.

In summary, we expanded our in silico model of cortical sheet development by imple-
menting four features that reflect further neurodevelopmental processes. Through a
series of systematic simulation experiments we then probed which features affected
the simulated laminar patterns of projection origins, drawing inferences about the
likely mechanism underlying the emergence of the architectonic type principle in the
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mammalian cortex.

Parts of this section have been published in Beul et al. (2018) and submitted for
peer-review in Beul and Hilgetag (2019b).

1.7 Overview of performed studies

In the remaining chapters, I will describe in detail the studies we performed to
contribute to the formulation of fundamental organisational principles of the mam-
malian cortex, working towards taming the complexity of cortical organisation. We
related essential features of cortico-cortical connectivity, such as connection existence,
laminar patterns of projection origins, and topological properties, to characteristics
of cortical areas, such as the similarity in architectonic differentiation and spatial
proximity of area pairs, in both adult and immature states. Our analyses further
corroborated the presence of the architectonic type principle and advanced to probing
its mechanistic underpinnings.

1.7.1 Tentative intrinsic circuitry in agranular cortex

Since the variation of architectonic differentiation is an aspect of cortical organisation
that is often insufficiently considered in discussions of intrinsic circuitry, we wanted
to raise awareness of the importance of architectonic differences, by providing a
first approximation of general features of intrinsic circuitry in agranular regions
of the cerebral cortex. We did this by assimilating information from the available
literature on inter- and intralaminar connectivity in the agranular frontal cortex of
the rodent brain, in order to present a tentative model of intrinsic circuitry in cortical
regions on the opposite end of the differentiation spectrum than has previously been
predominantly considered for such models. This variation is crucial for applying
insights gained from such model circuits in a realistic way, for example in the
biological grounding of in silico experiments (e.g. Merolla et al., 2014).

To compile the tentative circuitry, we made use of data that can shed light on the
intrinsic microcircuitry in agranular cortex. We chose to concentrate on the rodent
brain, capitalising on the relative abundance of experimental data available for this
popular animal model. In comparison, fewer studies report on intrinsic circuitry in
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non-human primates, and only a small proportion of those considered agranular
cortical regions, which are relatively infrequent in the primate brain. By focusing on
the rodent brain, we can therefore provide a more detailed sketch of the intrinsic
circuitry in agranular cortex without having to incorporate data across a wide range
of species, which would have been a more uncertain approach.

1.7.2 Testing the architectonic type principle and other frameworks in cat
and macaque

To assess the extent to which the mentioned explanatory frameworks could account
for features of structural cortico-cortical connectivity, we compared how measures of
overall architectonic differentiation and spatial proximity related to the existence,
strength, and laminar patterns of projections as well as to topological properties in
the adult cat and macaque cortex. In the cat cortex, we could additionally probe the
association with cortical hierarchy, while in the macaque cortex, we could additionally
consider cortical thickness.

Importantly, the conceptual frameworks which we examine here have been developed
and tested extensively for connections of the visual (Young, 1992; Barone et al., 2000;
Vezoli et al., 2004; Douglas and Martin, 2007b) and prefrontal cortex of the macaque
monkey (Barbas, 1986; Barbas and Pandya, 1989; Barbas and Rempel-Clower, 1997;
Klyachko and Stevens, 2003; Barbas et al., 2005; Medalla and Barbas, 2006). Thus,
their application to connections spanning the whole cortex in the macaque as well as
one further species, the cat, provides an excellent test of the frameworks’ generality.

1.7.3 Testing the relative merit of multiple measures of cortical structure

The results we report in the cat and macaque cortex corroborate the usefulness of the
architectonic type principle in making sense of cortico-cortical connectivity. However,
as detailed above, cortical architecture is associated with a plethora of features,
which can be condensed to measures of overall architectonic differentiation. Since
it is not inherently obvious whether any of the features are especially relevant to
the organisation of cortico-cortical connectivity, we analysed the relation of multiple
architectonic features to cortical connectivity in the adult macaque cortex, to assess
the features’ inter-dependence and to identify which of them were most frequently
and strongly related to structural cortical connectivity. To be able to evaluate the
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relative merit of the architectonic features, we devised our analyses such that all
features were included conjointly and interrelations between them were taken into
consideration, instead of analysing each measure separately and applying a false
discovery rate correction to the significance threshold.

We considered four essential aspects of connectivity, namely the existence and
strength of projections, the laminar patterns of projection origins, and the num-
ber of connections maintained by an area, the so-called area degree. We probed two
groups of measures of architectonic features for their relation to these aspects of
structural connectivity. The first group comprised the two macroscopic (area-based)
structural features of neuron density and spatial proximity. The second group in-
cluded the four microscopic (cellular) morphological measures of soma cross section,
dendritic spine count, dendritic peak spine density and dendritic tree size. Both
groups of measures have been individually linked to some features of the macaque
connectome in previous reports (e.g. Scholtens et al., 2014; Hilgetag et al., 2016;
Section 3.3), but have not yet been combined in a comprehensive analysis that can
disclose their comparative relevance.

We considered neuron density because it has been shown to consistently relate to
essential aspects of cortico-cortical connectivity, such as the distribution of projection
origins and terminations across cortical layers (i.e., laminar projection patterns), the
existence of projections, or topological properties of cortical connectivity (Barbas,
1986; Barbas and Rempel-Clower, 1997; Barbas et al., 2005; Barbas, 2015; Hilgetag
et al., 2016). Neuron density is an objective, quantifiable measure of overall architec-
tonic differentiation that is characteristic of different cortices (e.g. Dombrowski et al.,
2001).

We also included spatial proximity, not as a measure of cortical architecture, but as an
additional macroscopic feature of physically embedded cortical areas that has been
shown to be related to connection existence (Young, 1992; Markov et al., 2013a) and
strength (Douglas and Martin, 2007b; Ercsey-Ravasz et al., 2013), but not laminar
projection patterns (e.g. Barbas et al., 2005; Hilgetag et al., 2016).

Cortical thickness is appealing as a further macroscopic measure because it is rela-
tively easy to measure, also non-invasively. Its relevance to connectivity in healthy
and diseased brains has been explored widely (e.g. Lerch et al., 2006; He et al.,
2007; Chen et al., 2008, 2011; Tewarie et al., 2014b) (reviewed in Evans, 2013),
and it is known to be inversely related to neuron density in the primate brain (von
Economo, 1927). However, notwithstanding its appeal as a convenient measure,
the usefulness of cortical thickness measures on their own remains open to discus-
sion (Gong et al., 2012) and, rather than considering them individually, thickness
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measures have recently been used as just one of many measures obtained through
MRI to characterise cortical structure (Seidlitz et al., 2018). Moreover, in a direct
multivariate comparison with neuron density performed as part of the analyses in
adult macaque cortex (Section 3.3), we already found cortical thickness to be less
informative regarding structural connectivity. Therefore, we did not include cortical
thickness in these comparative analyses.

In summary, we contrast the relative contribution of each of six measures (neuron
density, spatial proximity, L3 pyramidal cell soma cross section, dendritic spine count,
dendritic peak spine density and dendritic tree size) for characterising inter-areal
connections in the macaque cerebral cortex. Specifically, we considered four essential
features of connectivity: projection existence, projection strength, laminar patterns
of projection origins, and the number of connections maintained by an area. By
employing analyses designed to account for interrelations between the structural
measures, we show that not all measures were equally relevant in predicting con-
nectivity, and that neuron density in particular emerged as the most essential and
informative feature for explaining multiple properties of structural cortico-cortical
connections. These findings suggest that neuron density constitutes a fundamental
architectonic marker of cortical areas that is closely related to diverse macroscopic
and microscopic structural cortical features, with implications for cortical function
and development.

1.7.4 Testing the applicability of the architectonic type principle to the
developing cortex

As described in the preceding, it has been suggested that a principle as widely
applicable as the architectonic type principle should emerge from spatio-temporal
interactions during ontogeny, without the need for sensory input or other major
external influences (Barbas, 1986, 2015; Barbas and García-Cabezas, 2016; Hilgetag
et al., 2016). However, observing the formation of structural connections, which
happens concurrently with the formation of the brain itself, is an onerous endeavour
and only little experimental data is available.

One essential feature of these connections are their laminar patterns of projection
origins, which, as mentioned before, are strikingly regular and well-captured by
the architectonic type principle (Rockland and Pandya, 1979; Barbas, 1986; Barbas
and Rempel-Clower, 1997; Rempel-Clower and Barbas, 2000). They represent a
connectional feature that is important for structure-function brain theories (Friston,
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2010; Feldman Barrett and Simmons, 2015), but how these laminar patterns are
shaped during ontogeny is not entirely clear. Since the architectonic type principle
is the most central predictor of laminar projection patterns in multiple species as
documented so far (cf. Barbas, 2015; Hilgetag et al., 2019), there are two prominent
questions about the origin of this relationship between architectonic differentiation
and laminar patterns. First, it is not clear if the relation of architectonic differentiation
and laminar origin of connections pertains only to the adult state of the cerebral
cortex. It has been shown that the laminar origin of connections is not uniform, but
already biased, across areas early in development (Barone et al., 1995). Hence, does
the architectonic type principle reflect graded differences in the laminar origin of
connections already in prenatal and neonatal states of the connectivity or do the
laminar origin patterns of areas undergo drastic reconfigurations which alter the
initial bias and thereby eventually give rise to the architectonic type principle in the
adult animal? In addition to the extent to which a biased distribution of laminar
origins constitutes a preconfiguration of the adult state, a second question concerns
the mechanisms that effect the refinement of laminar projection patterns. These could
be intrinsic factors, such as apoptosis or plasticity mechanisms, or extrinsic factors,
such as synaptic activity resulting from sensory input. Enucleation experiments allow
inferring the influence of the visual input on the formation of cortical areas and
connections (e.g. Karlen and Krubitzer, 2009), and are thus helpful in deciphering
the influence of external stimuli on the formation of connectional features.

Making use of tract-tracing data detailing laminar patterns of projection origins
obtained in the immature macaque cortex (Kennedy et al., 1989; Batardière et al.,
2002; Magrou et al., 2018), we demonstrate the extent to which the architectonic
type principle applies to connectional data from early development and enucleated
animals, presenting data which indicate that processes very early during ontogenesis
are sufficient to establish laminar projection patterns which are consistent with the
architectonic type principle.

1.7.5 Testing the hypothesised mechanistic underpinnings of the archi-
tectonic type principle

These results, demonstrating the applicability of the architectonic type principle
already in the immature mammalian cortex, encouraged us to search for the mecha-
nisms leading to the emergence of the architectonic type principle in early ontogen-
esis. Given the dearth of pertinent empirical data, we chose to perform simulation
experiments, using an in silico model of the developing cortical sheet to probe the
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hypothesised mechanistic underpinnings of the architectonic type principle. To reiter-
ate, it has been suggested that the architectonic type principle could emerge from
spatio-temporal interactions in the developing brain (Barbas, 1986; Dombrowski
et al., 2001; Barbas, 2015; Hilgetag et al., 2016), where correlations of time of origin
with both distance between cortical areas (and thus their probability to connect to
each other) and with the architectonic differentiation of cortical areas (where areas
that are formed later are of stronger differentiation) would interact to result in the
empirically observed correlations of connectivity with architectonic differentiation.

In a first set of simulation experiments, we explored the effects of different spatio-
temporal patterns of neurogenesis on the resulting connectivity, with a focus on the
existence of connections. By varying the spatio-temporal trajectory of the simulated
neurogenesis while keeping the rules governing axon outgrowth and connection
formation constant, we were able to create variants of the in silico model which
differed exclusively by the specifics of when and where neurons were generated.
Thus, all differences in the resulting connectivity were due to the variations in
spatio-temporal growth trajectories. Our results demonstrate that a prescribed
targeting of inter-areal connection sites was not necessary for obtaining a realistic
replication of the experimentally observed relation between connection patterns and
architectonic differentiation. Instead, we found that spatio-temporal interactions
within the forming cortical sheet were sufficient if a small number of empirically
well-grounded assumptions were met, namely (i) planar, expansive growth of the
cortical sheet around two points of origin as neurogenesis progressed, (ii) stronger
architectonic differentiation of cortical areas for later neurogenetic time windows,
and (iii) stochastic connection formation. Thus, our results highlight a potential
mechanism of how relative architectonic differentiation and cortical connectivity
become linked during development. Moreover, we successfully predicted connectivity
in two species, cat and macaque, from simulated cortico-cortical connection networks,
which further underscored the general applicability of mechanisms through which the
architectonic type principle can explain cortical connectivity in terms of the relative
architectonic differentiation of cortical regions.

Hence, these simulation experiments provide the first support of the suggested
mechanistic explanation for the emergence of the architectonic type principle by
showing that simple interactions between the time and place of neurogenesis can
result in structural networks that capture many of the relationships concerning
connection existence observed in empirical mammalian cortico-cortical connections.

Obviously, more features of connectivity, beyond their existence, are of interest, and
this first set of simulation experiments did not address how the characteristic laminar
patterns of projection origins arise that originally prompted the formulation of the
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architectonic type principle (Barbas, 1986). Therefore, in a second set of simulation
experiments, we modified the in silico model of the developing cortical sheet, probing
how the distribution of projection origins across laminar compartments was affected
either by changes in the spatio-temporal patterns of neurogenesis or by gradual
changes in cell-intrinsic properties. Our simulation experiments only replicated
the changes in laminar origin patterns, which are observed empirically across the
spectrum of architectonic differentiation, when we introduced cellular heterogeneity,
modifying a cell-intrinsic property. These results suggest that factors beyond spatio-
temporal interactions in the forming cortical sheet mediate the specification of
laminar projection patterns.

Parts of this section have been published in Beul and Hilgetag (2015), Beul et al.
(2015), Beul et al. (2018) and Beul and Hilgetag (2019a) and submitted for peer-
review in Beul and Hilgetag (2019b).
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Methods

2.1 Connectivity data sets

2.1.1 Cat cortex

For the cat cerebral cortex, qualitative measures of cortico-cortical connections were
extracted from an extensive collation of published reports of anatomical tract-tracing
experiments, the traditional standard for measuring cortical connectivity, compiled
by Scannell and colleagues (1995). The data set that was provided for download in
conjunction with the article includes 1,400 projections, which are mapped onto a
parcellation consisting of 65 brain regions. The data set comprises the most complete
summary of cortico-cortical connections in the cat to date. Even close to 25 years
after its publication, this collation from 96 articles still represents the majority of
anatomical tracing data available for this species, since few new tract-tracing results
on the cat cortex have been published in the meantime. The data set has been
widely interrogated (and cited more than 350 times as of September 2019, according
to Web of Science, http://apps.webofknowledge.com), for example to investigate
structural and dynamic properties of the cat cortical connectome (Müller-Linow
et al., 2008; Zamora-López et al., 2009, 2010; Gómez-Gardeñes et al., 2010; Zamora-
López et al., 2011; Tang et al., 2012; Bailey et al., 2013; de Reus and van den
Heuvel, 2013). One reason for this popularity is that the data set collates data from
direct anatomical methods for tracing cortical connections in both anterograde and
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retrograde directions. The spatial resolution (which is at the level of individual cells
and synapses) and reliability of this approach exceed that of indirect diffusion-based
tractography methods (Alger, 2012; Griffa et al., 2013).

Existence of projections

Existence of projections was given qualitatively as either absent (‘0’) or present,
where the presence was described by ordinal weights as sparse (‘1’), intermediate
(‘2’), or dense (‘3’). Importantly, projections weighted as ‘0’ were explicitly reported
to be absent in the original literature, whereas no assumption was made about
unknown projections (67% of all potential projections among the areas). This
distinction between absent and unknown projections was made in the companion
data set provided for download by Scannell and colleagues (1995), but not in the
results published in the article itself. We conducted the majority of analyses on a
version of the data set converted to binary projection status, which rated projections
as either absent or present and discarded information on projection density. This
binarisation enabled us to normalise projection frequencies across the tested variables,
for example controlling for the fact that the data set contained information about a
larger number of connections across shorter distances. An alternative approach for
treating connection weights would have been to normalise projection frequencies
separately for each ordinal density category. This approach would have yielded
separate results for each density class, but not provided a comprehensive picture of
the impact of the structural variables on connectivity overall.

For 954 of the 1,400 projections in the database (218 absent, 736 present) we
were able to assess both spatial proximity and relative architectonic differentiation,
expressed as border distance, ∆dist, and architectonic type difference, ∆type. For a
subset of 308 projections (93 absent, 215 present), we could include additional
information for hierarchical level difference, ∆level, in the analyses (see Section 2.2
for details). An overview of all available cat cortex projection data together with the
associated structural measures is given in Supplementary Table D.2.

Qualitative information on the presence or absence of connections is an undirected
measure, as is the distance between two cortical areas, ∆dist. To meaningfully
correlate these undirected variables with the directed variables ∆type and ∆level, we
reduced the latter two variables to their magnitude, that is, their absolute values,
|∆type| and |∆level|.

We characterised the spatial range of the projections of cortical areas by assessing
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the distances of all afferent and efferent connections to and from each area, by
computing the proportions of its projections formed by short (distance 1 and 2) as
well as long (distance 4 and 5) connections, respectively. These proportions provided
a simplified and robust measure of the projection distance profile of individual areas,
from which we computed aggregate measures of connection ranges for groups of
areas.

Laminar patterns of projections

Laminar projection patterns were available for a subset of 133 projections linking 22
cortical areas of the cat visual system. Scannell and colleagues (1995) classified the
direction of projections as ‘ascending’, ‘lateral’, or ‘descending’ according to criteria
laid out by Felleman and Van Essen (1991). Specifically, projections were classified
as ‘ascending’, if they originated from the supragranular layers or in a bilaminar
pattern from supra- and infragranular layers, and terminated predominantly in
layer 4. ‘Lateral’ projections originated from both supra- and infragranular layers,
and terminated in a columnar pattern throughout all cortical layers. ‘Descending’
projections originated either from infragranular layers or from both supra- and
infragranular layers, and terminated in supra- and/or infragranular layers, avoiding
layer 4 in their terminations (Felleman and Van Essen, 1991, their Figure 3).

Based on this classification of projection directions, Scannell and colleagues derived
an anatomical hierarchy of the cat visual system by arranging cortical areas such
that a maximum number of ‘ascending’ projections pointed to higher levels and a
maximum of ‘descending’ projections pointed to lower levels of the hierarchy.

The projection directions (Scannell et al., 1995; Hilgetag et al., 2000b, their Figure
4) contain information on laminar projection origins and terminations in a pre-
interpreted form. To assess the relationship between laminar projection patterns
and structural factors, we used this set of 133 classified projections to calculate rank
correlations of projection direction with ∆type as well as ∆level. For these calculations,
projection direction was consolidated in three categories: ‘ascending’, ‘lateral’, and
‘descending’. We included all projections whose direction classification had been
marked as unreliable, due to insufficient or contradictory data (Hilgetag et al., 2000b,
their Figure 4), into the laminar categories that were indicated for them.

To relate the projection directions to other measures, we considered them as ordinal
values, by arranging them in the order of (‘ascending’, ‘lateral’, ‘descending’). For one
projection analysed by Scannell and colleagues (1995) and Hilgetag and colleagues
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(2000b), no ∆type was available, because it targeted a region which had not been
assigned an architectonic type. The present analyses were thus conducted on 132
projections.

The relation of projection direction to spatial proximity between cortical areas could
not be evaluated using this data set, because spatial proximity is an undirected
measure. Projection direction classified into three categories as used here, however,
has no magnitude which could be evaluated independent of its direction, so that
no meaningful combination of spatial proximity with an undirected adaptation of
laminar projection patterns could be obtained.

Topological measures

Hubs and modules Zamora-López and colleagues (2010) used the data set provided
by Scannell and colleagues (1995) to analyse the connectivity of the entire cerebral
cortex in the cat from a network-theoretical perspective and identified a ‘rich-club’
module of 11 hub areas, based on the internal density of links between high-degree
nodes. The cortical areas constituting this hub meta-module were part of four
other anatomical modules (visual, auditory, somatosensory-motor, and fronto-limbic)
previously identified by different network-theoretical approaches (Scannell and
Young, 1993; Young, 1993; Young et al., 1994; Hilgetag et al., 2000a; Sporns et al.,
2004). These module classifications provide an opportunity to study the association
between structural measures and connection features at a larger-scale level of cortical
organisation. As Zamora-López and colleagues included only 53 of the 65 cortical
areas of the original data set in their analyses, we restricted our analyses of the
module features to the 48 areas which were both included in their analyses and
possessed an architectonic type rating.

Area degree and weighted area degree The degree of a cortical area is the number of
projections it takes part in, conceptualising individual areas as nodes in the graph-
theoretical sense. Here we added the number of afferent projections (in-degree) to
the number of efferent projections (out-degree) for each area to obtain its overall
degree. Projections commonly comprise a strongly varying number of neurons,
with projection strengths ranging over several orders of magnitude from only a few
neurons to several thousand neurons (Scannell et al., 2000; Hilgetag and Grant,
2000; Markov et al., 2011, 2014a). Therefore, we also computed node strength
(the weighted area degree) by weighting each projection with its strength prior to
summing up the present projections. As projection strength was rated ordinally in
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the data set provided by Scannell and colleagues (1995), we approximated the actual
metric projection strength to vary over three orders of magnitude across sparse,
intermediate and dense projections. We assigned weights of 100, 101, and 102 to
these respective descriptive categories to take into account the typical exponential
distribution of projection densities (Hilgetag and Grant, 2000; Markov et al., 2014a).
Moreover, we separately rank-correlated the number of projections with architectonic
type for the projections of each ordinal strength.

Note that area degree is a connectivity measure that is a property of cortical areas,
rather than of cortico-cortical projections. Therefore, a smaller number of data points
were available than in other analyses, which assessed properties of projections.

2.1.2 Macaque cortex

Existence of projections

We analysed an extensive, up-to-date set of anatomical tract-tracing data in the adult
macaque cortex (Macaca fascicularis and Macaca mulatta) (Markov et al., 2014a).
Based on injections of retrograde tracer in 29 cortical areas (represented in the
accompanying parcellation, the M132 atlas (Markov et al., 2014a)), Markov and
colleagues quantified labelled neurons found in all 91 areas of the M132 atlas that
project to these injected sites. Within each area, labelled neurons ranged from a
minimum of 1 neuron to a maximum of 262,279 neurons. The resulting data set
provided information on 2610 cortico-cortical connections between 91 areas, within
a 91 × 29 subgraph of the complete (91 × 91) connectivity matrix of the M132 atlas.
That is, projections targeting about a third of the cortex are included in this data set.
For projections found to be present, projection strength was given as the fraction of
labelled neurons outside of the injected region (FLNe), thus normalising the number
of projection neurons between two areas to the total number of labelled neurons for
the respective injection, as done previously (e.g. Barbas and Rempel-Clower, 1997;
Medalla and Barbas, 2006). In the data set, projections were included as present
without a threshold on projection strength, that is, even a single labelled axon was
considered to constitute a present projection. Most cortical areas were injected only
once, but controls for consistency between repeated injections were performed in a
few areas.

To assess the relation of the structural measures with projection existence, we trans-
formed projection strength to a binary measure (absent vs. present). To assess
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the relation of the structural measures with projection strength, we considered the
natural logarithm, ln(FLNe). The use of a logarithmic scale was indicated, since
the most extreme FLNe value was more than three standard deviations above the
mean FLNe value (Buzsáki and Mizuseki, 2014). Moreover, while conjointly assessing
the relative predictive power of microscopic and macroscopic structural measures
(Section 3.4), we also considered ranked projection strength, to account for the fact
that areas that receive many afferent projections might have smaller FLNe values per
projection than areas that receive only few afferents. To circumvent this potential bias
whereby projections from areas with many afferents could artifactually be considered
too weak through the normalisation by the number of neurons labelled per injection,
we ranked afferent projections per target area. Specifically, the strongest projection
that targeted each of the injected areas (since retrograde tracers were used, only
injected areas receive projections in the used data set) was ranked highest (as rank
1), and successively weaker projections were ranked accordingly (by increasing rank
number), up to the number of afferents, which differed between areas. This ranking
made projection strength dependent only on the relative strength of a given projec-
tion to projections from the same injection. Thus, ranking projections by strength
allowed us to assess how projection strength was related to the structural measures
independent of the precise strength of a projection in terms of the number of neurons
and the number of afferents an injected area received, alleviating any distortions that
may be caused by these factors.

Laminar patterns of projections

Adult cortex In addition, we analysed the laminar patterns of projection origins for
this data set (Markov et al., 2014b; Chaudhuri et al., 2015), which were published
separately from the main part of the data set (Markov et al., 2014a). The distribution
of projection origins across cortical layers was expressed as the supragranular con-
tribution to a projection, specifically the fraction of labelled neurons originating in
supragranular layers, NSG%. For each projection, NSG% was computed as the number
of neurons labelled in supragranular layers divided by the sum of neurons labelled in
supragranular and infragranular layers. To relate NSG% to the undirected measure
of spatial proximity, we also transformed it to an undirected measure of inequality
in laminar patterns, |NSG%|, where |NSG%| = |NSG%−50| * 2 (cf. Hilgetag and
Grant, 2010). Values of NSG% around 0 and 1 (i.e., 0% and 100% supragranular
contribution), thus, translated to larger values of |NSG%|, indicating a more pro-
nounced inequality in the distribution of origins of projection neurons between infra-
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and supragranular layers and hence deviation from a columnar (bilaminar) pattern
of projection origins.

We based our analyses regarding NSG% on the subset of projections comprising more
than 20 neurons (neuron numbers for each projection are provided in Markov and
colleagues (2014a)). Thus, we excluded very sparse projections for which assessment
of the distribution of projection neurons in cortical layers was not considered reliable,
as was done previously (cf. Barbas et al., 2005). Note that sparse projections were
only excluded from analyses involving NSG%, but not from analyses considering
binary projection existence.

A first subset of laminar projection data was published in Markov and colleagues
(2014b), detailing 625 projections originating in 11 of the 29 injected areas and
targeting all 91 areas. After thresholding, 429 projections with reliable information on
laminar patterns remained. We used this data in our analyses of the relative merit of
different explanatory frameworks in the macaque cortex (Section 3.3). Information
on projection origins for all 29 injected areas was published in Chaudhuri and
colleagues (2015), providing information on all 1602 present projections. After
thresholding, 1132 projections remained. We used this data set in our assessment of
the relative predictive power of microscopic and macroscopic structural measures
(Section 3.4).

Immature cortex Measures of laminar projection patterns in the developing macaque
cortex were taken from three published reports (Kennedy et al., 1989; Batardière
et al., 2002; Magrou et al., 2018). Kennedy and colleagues (1989) injected retrograde
tracers in the neonate and adult striate cortex (area V1) of cynomolgus monkeys
(Macaca irus). They evaluated labelled projection neurons in the posterior bank of the
lunate sulcus (area V2), on the prelunate gyrus (area V4), and in the posterior bank
and fundus of the superior temporal sulcus (STS, which we interpreted to correspond
to areas FST, PGa and STPi in the M132 parcellation (Markov et al., 2014a)). For each
observed projection, they determined the fraction of labelled neurons that originated
in supragranular layers (NSG%). Batardière and colleagues (2002) followed a similar
approach, injecting retrograde tracer in area V4 of macaque monkeys (Macaca
fascicularis) at different fetal stages (embryonic day 112 to embryonic day 140) and
in adult monkeys. They evaluated labelled projections neurons across 10 brain areas
and also determined the contribution from supragranular neurons (NSG%) for each
projection (Batardière et al., 2002, their Figure 7A).

Magrou and colleagues (2018) performed bilateral enucleation (removal of the eyes)
in macaque monkey (Macaca fascicularis) fetuses between embryonic days 58 and
73. Retrograde tracers were injected into areas V2 and V4 postnatally, at postnatal
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day 16 and postnatal month 10, respectively. Labelled projection neurons were
evaluated across 18 and 16 brain areas, respectively, and the fraction of labelled
neurons originating in supragranular layers (NSG%) was determined. We compared
the contribution from supragranular neurons in enucleated monkeys to NSG%-values
from intact adult macaque monkeys reported by Chaudhuri and colleagues (2015).

All NSG%-values that we considered in our analyses of the immature state are sum-
marised in Supplementary Table D.9.

Topological measures

Network core The data set describing cortico-cortical connectivity in the adult macaque
cortex (Markov et al., 2014a) contains a 29 × 29 subgraph of injected areas, which
provides information about all possible connections among the injected areas. This
edge-complete subgraph makes it possible to perform analyses without uncertainty
related to possible connections that were not sampled. Due to the wide distribution of
the injected areas across the cortex, the 29 × 29 subgraph is expected to have similar
properties as the complete network which incorporates all 91 areas (Ercsey-Ravasz
et al., 2013). Ercsey-Ravasz and colleagues (2013) used the edge-complete subgraph
to identify areas belonging to a ‘network core’ with a high density of connections
among areas. This network core is similar to the concept of a rich-club, as discussed
in recent studies (van den Heuvel et al., 2012; Crossley et al., 2013; Tomasi et al.,
2014; Towlson et al., 2013; van den Heuvel and Sporns, 2013b,a; Ball et al., 2014;
Collin et al., 2014; Crossley et al., 2014). Ercsey-Ravasz and colleagues (2013)
identified 17 core areas in the 29 × 29 subgraph, assigning the remaining 12 areas to
the network periphery.

Area degree As mentioned above, the data set (Markov et al., 2014a) contained the
29 × 29 subgraph of injected areas for which all possible connections have been
examined. To assess overall area degree, we considered only areas within this edge-
complete subgraph, computing the overall degree of each area as the sum of the
number of its efferent and afferent projections. While conjointly assessing the relative
predictive power of microscopic and macroscopic structural measures (Section 3.4),
we also separately considered the number of efferent projections, out-degree, and
the number of afferent projections, in-degree. In-degree was computed both within
the 29 × 29 edge-complete subgraph, and cortex-wide, using all reported projections
between the 91 cortical areas (i.e., it was also computed on the 91×29 graph). Please
note that since degree is an area-based measure of connectivity, fewer data points
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were available for area degree than for the projection-based connectivity measures.

Parts of this section have been published in Beul et al. (2015), Beul et al. (2017) and
Beul and Hilgetag (2019a).

2.2 Potential explanatory measures

Multiple frameworks have been investigated as candidates for making sense of
the remarkable complexity that characterises the organisation of cortico-cortical
connections in the mammalian cortex. Each of these frameworks is associated with
one or more empirical measures, which are detailed below. Collectively, I will refer to
these measures as structural measures, because they concern the cortex and not the
connections linking areas, thus referring to the structural substrate of connectivity.

2.2.1 Cortical architecture

Architectonic di�erentiation

In the mammalian cortex, the spectrum of architectonic differentiation ranges from
areas of low overall neuron density, with few layers and lacking an inner granular
layer (agranular areas), to dense areas with six distinct layers (eulaminate areas).
The striate cortex, for example, has a much higher overall neuron density not only
within the cortical visual system, but also among all other parts of the cerebral cortex
(Pandya et al., 1988; Hilgetag et al., 2016; Zilles, 2006; O’Kusky and Colonnier, 1982;
Schüz and Palm, 1989; Collins et al., 2010; Cahalane et al., 2012; Herculano-Houzel
et al., 2013). Intermediate to these two extremes are areas of lower neuron densities
with a sparse inner granular layer (dysgranular areas), and areas with six layers but
without the exceptional clarity of layers and sublayers or remarkable neuron density
of striate cortex. The architectonic type principle is based on this comprehensive
assessment of cortical architecture. To quantify overall architectonic differentiation,
two measures have been used: architectonic type and neuron density.

Architectonic type Architectonic differentiation can be operationalised qualitatively
by ranking cortical areas into architectonic types, an ordinal measure which projects
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Figure 2.1: Architectonic type in the cat cortex. Parcellation of the cat cortex, adapted from
Scannell and colleagues (1995). Areas were assigned to architectonic types 1–5 according
to their level of architectonic di�erentiation. Type n.a.: no architectonic type was assigned.
Abbreviations as in Supplementary Table D.1.

complex cortical structure into a single parameter (e.g. Barbas, 1986; Barbas and
Rempel-Clower, 1997; Rempel-Clower and Barbas, 2000; Barbas et al., 2005; Hilgetag
and Grant, 2010). Thereby, areas are categorised along a spectrum of architectonic
types, ranging from poorly differentiated types, with low neuron densities and few
layers that are hard to demarcate, to highly differentiated types, with numerous,
clearly distinguishable layers and high neuron densities.

Cortical areas were rated on an ordinal scale based on several criteria for their
architectonic differentiation, assigning an architectonic type to each area. One major
feature was the relative width, density and granularisation of layer 4 (cf. Barbas,
1986). Our classification thus follows the classical tradition of using cytoarchitectonic
features for characterising cortical areas as practised since the early 20th century
(Brodmann, 1909; von Economo, 1927).

In the macaque cortex, the rating was performed by Helen Barbas, assigning types
ranging from 1 (least differentiated) to 8 (most differentiated). These architectonic
types for the adult macaque cortex have been published previously for the cortical
areas that we considered in our analyses of connectivity in the immature macaque
cortex (Hilgetag et al., 2016). In the cat cortex, this rating was performed by Simon
Grant, assigning types ranging from 1 (least differentiated) to 5 (most differentiated).
In the ranking procedure, first, areas of highest and lowest architectonic differenti-
ation were identified and assigned to the architectonic types 5 and 1, respectively.
Second, areas in which cortical layers could be distinguished almost as well or as
badly as in areas of types 5 and 1 were assigned the architectonic types 4 and 2,
respectively. All remaining areas, necessarily of an intermediate differentiation, were
assigned to architectonic type 3. For photographic examples of architectonic types
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see Hilgetag and Grant (2010). Using these criteria, 49 areas across the whole
cat cortex were ranked. Figure 2.1 depicts the assigned architectonic types in the
cortical parcellation of Scannell and colleagues (1995). From this architectonic type
ranking, we determined the difference between the architectonic types, ∆type (cf.
Barbas, 1986), of any two of the cortical areas with a defined architectonic type,
where ∆type = type source area − type target area.

Neuron density A quantitative measure that reflects architectonic differentiation is
overall neuron density (Dombrowski et al., 2001). We used an unbiased quantitative
stereologic approach to estimate neuron density in the macaque cortex from coronal
sections that were stained to mark neurons using either Nissl stain or immunohisto-
chemical staining for neuronal nuclei-specific antibody (NeuN), which labels neurons
but not glia, using a microscope-computer interface (StereoInvestigator, MicroBright-
Field Inc., Williston, VT). We verified that there was a close correspondence between
measures derived from both staining methods in a sample of areas for which both
measures were available (r = 0.99, p = 0.001), and accordingly transformed density
measures from different staining methods to a common reference frame. The neuron
density measurements used here have partly been published previously (Dombrowski
et al., 2001; Hilgetag et al., 2016). In total, neuron density measures were available
for 48 of the 91 areas of the M132 parcellation (Figure 2.2). Within the 29 × 29
subgraph of areas injected with retrograde tracer, neuron densities were available for
14 of the 17 core areas and 10 of the 12 non-core areas.

We quantified how similar areas were in their neuron density by computing the
log-ratio of neuron density values for each pair of areas (which is equivalent to the
difference of the logarithms of the area densities). Specifically, loд-ratio density =

ln(density source area/density target area). This procedure enabled us to directly relate
each sampled projection to the density ratio of its source and target area. The use
of a logarithmic scale was indicated, since the most extreme value of the neuron
density measures was more than three standard deviations above the mean of the
considered neuron densities (Buzsáki and Mizuseki, 2014). For analyses which
required considering an undirected equivalent of the actual neuron density ratio,
we used the absolute value of the log-ratio, |log-ratiodensity|. To relate the neuron
density ratio to ranked projections strength, we also ranked the absolute value of
the log-ratio of neuron density, |log-ratiodensity|, separately per target area. That is,
the smallest absolute neuron density ratio was ranked highest (as rank 1) for each
injected area, and successively larger absolute neuron density ratios were ranked
accordingly (increasing rank number). Hence, areas of similar neuron density (small
absolute ratio) were ranked higher than areas of strongly diverging neuron density
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Figure 2.2: Variation of cytoarchitectonic features across the macaque cortex.
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Figure 2.2: Variation of cytoarchitectonic features across the macaque cortex. Variation of
neuron density, L3 neuron soma cross section, L3 dendritic spine count, L3 dendritic spine
density and L3 dendritic tree size depicted on the M132 parcellation (Markov et al., 2014a).
For grey areas, no values were available. See Supplementary Table D.4 for correspondences
between areas in the M132 parcellation and alternative parcellations. Abbreviations as in
Markov et al. (2014a).

(large absolute ratio) relative to each of the injected areas.

From the available neuron density measures we were able to determine the relative
architectonic profile for 1128 of the sampled projections. After applying a threshold
of constituent neurons to exclude potentially unreliable NSG% values (discarding
projections comprising less than 20 neurons), this included 172 projections with an
associated NSG% for the subset of projection published in Markov and colleagues
(2014b) and 521 projections with an associated NSG% for the complete set of injec-
tions published in Chaudhuri and colleagues (2015).

Cellular morphological measures

Measures of cellular morphology characterise individual cells, and thus provide an
impression of an area’s constituting elements, but not of its overall architectonic
differentiation. The measures of cellular morphology we considered were mostly
reported by Elston and colleagues (Elston and Rosa, 1997, 1998a,b; Elston et al.,
1999a,b; Elston, 2000; Elston et al., 2001; Elston and Rockland, 2002; Elston et al.,
2005, 2009, 2010a,b, 2011a,b; Coskren et al., 2015; Gilman et al., 2017). Specifically,
four aspects of L3 pyramidal neuron morphology were measured across the macaque
cortex: the cross section of the cell soma (soma cross section), the average total
spine count on the basal dendritic tree (spine count), the peak density of dendritic
spines (spine density), and the size of the basal dendritic tree (dendritic tree size).
Spine density was measured as the number of spines per 10 µm dendrite segment,
and peak spine density was then calculated as the average density along the five
consecutive 10 µm segments that yielded the highest spine density (see e.g. Elston
and Rosa, 1998b). Supplementary Table D.4 gives an overview of the correspondence
between the parcellations used in the morphological data references and the M132
parcellation, as well as the relevant reports. Specifically, in the M132 parcellation,
soma cross section was available for 30 areas, spine count and spine density for
33 areas, and dendritic tree size for 34 areas (Figure 2.2). The soma cross section
may be related to the overall size of a neuron, which would be characterised by
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further properties such as soma surface area and soma volume. However, given the
varying shapes of somata, inferences from the cross-sectional area to overall soma
size are not straightforward. Such inferences are further impaired by the difficulty of
measuring the cross section at comparable locations across different neurons. For
example, some measures of cross-sectional area that we included in our analyses
were taken at the level of the basal dendritic tree (e.g. Elston et al., 2011b), while
others were taken at the widest point of the cell body (e.g. Elston and Rosa, 1997;
Gilman et al., 2017). To quantify how similar areas were in the four morphological
measures across the cortex, we computed the difference of their values for each
pair of areas, where ∆ morphological measure =measure source area −measure target area. This
resulted in ∆soma cross section, ∆spine count, ∆spine density, and ∆tree size. Each of these dif-
ference measures was converted to an undirected variable by computing its absolute
value, |∆soma cross section|, |∆spine count|, |∆spine density|, and |∆tree size|, where appro-
priate. To relate the four morphological measures to ranked projections strength, we
ranked their absolute difference measures separately per target area, analogous to
the ranking described for the absolute neuron density ratio above. That is, smaller
absolute difference measures were ranked highest (rank 1), and successively larger
absolute difference measures were ranked accordingly (increasing rank number).

2.2.2 Cortical thickness

To evaluate the thickness model in the macaque cortex, we used cortical thickness
data extracted from an anatomical T1-weighted magnetic resonance (MR) brain scan
of one male adult macaque monkey (Macaca mulatta) supplied by Helen Barbas.
Animals were obtained through the New England Primate Research Center (1 Pinehill
Rd, Southborough, MA 01772, USA). Procedures were designed to minimise animal
suffering and to reduce the number of animals used. Detailed protocols of the proce-
dures were approved by the Institutional Animal Care and Use Committee at Harvard
Medical School and Boston University School of Medicine in accordance with NIH
guidelines (DHEW Publication no. [NIH] 80–22, revised 1996, Office of Science and
Health Reports, DRR/NIH, Bethesda, MD, USA). During MR data acquisition, the
animal was anaesthetised with propofol (loading dose, 2.5 - 5mg/kg, i.v.; continuous
rate infusion, 0.25 - 0.4mg/(kg min)). MR data were acquired on a 3 Tesla Philips
Achieva MRI scanner using a three-dimensional magnetisation prepared rapid ac-
quisition gradient-echo (3DMPRAGE) sequence with 0.6mm isotropic voxels (130
slices, TR = 7.09ms, TE = 3.16ms, FOV = 155 × 155mm2). Cortical reconstruction
and volumetric segmentation were performed using the Freesurfer image analysis
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suite (http://surfer.nmr.mgh.harvard.edu/). The resulting surface reconstruction
was registered to the M132 atlas (Markov et al., 2014a) using the Caret software
(Van Essen et al., 2001) (http://www.nitrc.org/projects/caret/). Cortical thickness
was then extracted for all 91 areas in both hemispheres using Freesurfer by Konrad
Wagstyl. We report results for mean thickness values of the left and right hemisphere.
Cortical thickness data (registered to a different atlas) extracted from these MR data
have been used in a previous publication (Wagstyl et al., 2015).

The thickness measurements extracted from MR data were well correlated with
microscopic measurements of histological sections (Dombrowski et al., 2001). Corre-
sponding histological and MR measurements for 33 areas were available, resulting
in r = 0.62, p < 0.001 for the left hemisphere, r = 0.48, p < 0.01 for the right
hemisphere, and r = 0.56, p < 0.001 for mean thickness values of the left and right
hemisphere.

To quantify relative thickness across the cortex in order to compare thickness in
pairs of connected areas, we computed the log-ratio of thickness values for each
pair of areas analogous to the log-ratio of neuron density, where loд-ratio thickness =

ln(thickness source area/thickness target area). We transformed the log-ratio of cortical
thickness to an undirected equivalent, |log-ratiothickness|, where appropriate. Relative
thickness of areas was included for all 2610 projections sampled by Markov and
colleagues (2014a), also encompassing all 429 projections analysed with respect to
NSG% after thresholding for a minimum of 20 constituent neurons (using the subset
of data on laminar projection patterns published in Markov and colleagues (2014b)).

2.2.3 Spatial proximity

To evaluate the distance model, which is based on the spatial proximity of cortical
areas, in the cat and macaque cortex, we relied on three different measures of the
distance between areas.

Border distance

To characterise the spatial separation of areas across the cortical sheet in the cat
cortex, we computed their border distance, which is a pragmatic and widely used
measure (e.g. Young, 1992; Barbas et al., 2005) for estimating inter-areal distance
in the absence of reliable three-dimensional area coordinates (also see Section
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4.1.4.2). As part of their connectivity data collation, Scannell and colleagues (1995)
published a spatial adjacency matrix for their parcellation that indicates common
area borders (their Figure 6). In some cases, there was an apparent mismatch
between the information in this adjacency matrix and the parcellation shown in
the paper (Scannell et al., 1995, their Figure 1). In most of these cases, we gave
priority to information from the matrix, except where the map was unambiguous.
Specifically, the following changes were made to the spatial adjacency matrix: we
removed adjacencies of area 17 with areas CGp and RS; and we added adjacencies
of area 18 with areas 20a and 20b; of area CGa with areas 17, 4 and 6m; of area
SVA with areas 18, 20b and RS; of area SIV with area Ig and of area 4g with area
6m (Supplementary Table D.1 provides a list of abbreviations used for area names,
see Scannell and colleagues (1995) for further details). From the spatial adjacency
relations, we calculated the shortest distances between all pairs of areas, ∆dist; that
is, we determined the minimum number of borders separating any two areas within
the cortical parcellation adopted by Scannell and colleagues.

Euclidean distance

In our analyses of the relative merit of different explanatory frameworks in the
macaque cortex (Section 3.3), we operationalised the spatial proximity of all 91
cortical areas by the Euclidean distance between their mass centers, obtained from
the Scalable Brain Atlas (http://scalablebrainatlas.incf.org). This widely used interval
measure of projection length represents a pragmatic estimate of the spatial proximity
of pre- and postsynaptic neurons located in different brain areas (e.g. Salvador et al.,
2005; Achard et al., 2006; Bassett et al., 2008; Alexander-Bloch et al., 2013; Goñi
et al., 2014; Vértes et al., 2012; Tewarie et al., 2014a).

Geodesic distance

In our assessment of the relative predictive power of microscopic and macroscopic
structural measures (Section 3.4), we quantified the spatial proximity of cortical
areas using the geodesic distance between the mass centers of all 91 areas, which
are provided as supplementary material with the study of Markov and colleagues
(2013a). To relate the spatial proximity to ranked projections strength, we ranked
geodesic distance separately per target area, analogous to the ranking described
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for the absolute neuron density ratio above. That is, the smallest distance was
ranked highest (rank 1), and successively larger distances were ranked accordingly
(increasing rank number).

2.2.4 Hierarchical level

To evaluate the hierarchical model in the cat cortex, we computed the hierarchical
level difference between any two areas within the visual system. This analysis
was confined to the visual module, because no equivalent hierarchical schemes
exist for the other major modules of the cat cortical connectome. We used the
hierarchy of the cat visual system as derived by Scannell and colleagues (1995, their
Figure 2) to determine the difference in hierarchical level, ∆level, where ∆level =

level source area − level target area (as in, e.g., Barone et al., 2000; Hilgetag and Grant,
2010). To exclude the possibility that our results hold only for this particular hierarchy,
we alternatively computed ∆level from the hierarchy of the cat visual system as
proposed by Hilgetag and colleagues (2000b, their Figure 12). In the analyses, we
rectified an oversight in this published hierarchy diagram by reducing the level of
area 17 (area V1) to level 1, placing it on the same level as area 18 (area V2).

Parts of this section have been published in Beul et al. (2015), Beul et al. (2017) and
Beul and Hilgetag (2019a).

2.3 Analysis procedures and statistical tests

If not indicated otherwise, all analyses were performed using Matlab (The MathWorks,
Inc., Natick, MA, USA) and tests and correlations were pre-assigned a two-tailed
significance level α = 0.05.

2.3.1 Tests for group di�erences

To test two groups of ordinal measures for equality of their medians, for example
the structural measures associated with two groups of projections, we computed
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Wilcoxon rank sum test statistics (W).

To test two groups of interval measures for equality of their means, we computed two-
tailed independent samples t-tests and reported the t-statistic t, degrees of freedom
df and the associated measure of effect size r, where r = (t² /(t²+df))1/2.

To test for equality of more than two groups of ordinal as well as interval measures,
we computed Kruskal–Wallis test statistics (H). We calculated Jonckheere–Terpstra
test statistics (JT) to assess trends across multiple groups of ordinal measures. JT
was computed using IBM SPSS Statistics Version 19 (IBM Corporation, Armonk, NY,
USA).

2.3.2 Correlations

To assess relations between interval variables, we computed Pearson’s correlation co-
efficient r and its associated p-value. For ordinal variables, we computed Spearman’s
rank correlation coefficient ρ and its associated p-value.

2.3.3 Relative projection frequency

To characterise the distribution of present and absent projections across the range of
each structural measure, while accounting for differences in sampling, we computed
relative frequencies of projections that were present. Specifically, we partitioned each
structural measure into bins and normalised the number of present projections in each
bin by the total number of studied projections (i.e., absent and present projections
that fell into the respective bin). This procedure allowed us to obtain a measure
of the relative frequency of present projections which is robust against disparities
in sampling across a structural measure’s range (e.g., when more projections were
sampled across a short than a long spatial distance). We verified that results were
robust against changes in bin size.

2.3.4 Classification of connection existence

To assess how well an explanatory framework accounted for patterns in the existence
of cortico-cortical connections, we used a range of classification procedures. By
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evaluating how well the structural measures enabled the classification of connection
existence, individually or in conjunction, we were able to generate insights into the
principles underlying the characteristics of connection existence.

Linear discriminant analysis

To assess the distribution of present and absent projections in the cat cortex across
the variables |∆type| and ∆dist more closely, we performed a linear discriminant
analysis (Klecka, 1980; Burns and Burns, 2008). A linear discriminant analysis
determines a linear combination of predictive variables that optimally separates
distinct classes of a dependent variable. We used |∆type| and ∆dist as predictive
variables, and existence of projections as the dependent variable. Given the non-
significant correlation of relative projection frequencies with |∆level| (see Section
3.2.1), we did not include |∆level| into the linear discriminant analysis. We assumed
uniform prior probabilities for the two classes of the dependent variable (‘absent’ and
‘present’). The linear discriminant analysis then provides a posterior probability for
each combination of |∆type| and ∆dist, which can be used to classify new data points
(unknown connections) as either absent or present.

To account for the fact that not all combinations of the predictive variables can occur
equally often (e.g., combinations of |∆type| = 1 and ∆dist = 1 are frequent in this
cortical parcellation, while combinations of |∆type| = 4 and ∆dist = 4 are not), we
normalised the numbers of absent and present projections of a specific combination
of |∆type| and ∆dist by the maximally possible number of co-occurrences of that
combination. This resulted in proportions %absent and %present of projections at each
point in the predictive variable space. Note that %absent + %present , 100, which
reflects the fact that there is a remaining percentage of projections which have not
been examined. To transform the resulting percentages into cases suitable as input
for the linear discriminant analysis, we constructed, for each combination of |∆type|
and ∆dist, Na = %absent cases with the respective values of the predictive variables
and a dependent variable rating of ‘0’ (absent), and Np = %present cases with the
same predictive variables but a dependent variable rating of ‘1’ (present). Compared
to using the raw data as input for the linear discriminant analysis, this procedure
adjusts the relative importance of examined projections by taking into account how
thoroughly the underlying predictive variable space was sampled.

Cross-validation was performed by randomly excluding 10% of the data from the
training set and using this test set to validate the obtained model. We tested model
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performance at seven different classification thresholds, starting at 0.60 and increas-
ing in 0.05 increments to 0.90. Connections were assigned the status ‘present’, if the
posterior probability for the presence of connections at their associated |∆type| and
∆dist was equal to or larger than the classification threshold, and assigned the status
‘absent’, if their associated posterior probability was equal to or smaller than 1 minus
the classification threshold (i.e., 0.40, decreasing in 0.05 increments to 0.10). We did
not classify the status of connections with associated posterior probabilities that fell
into the intermediate range. We computed prediction accuracy to assess classification
performance, where accuracy equalled the number of correct predictions divided by
the total number of predictions. We calculated this measure separately for predictions
assigning either the status absent (correct absent), the status present (correct present)
or all predictions (correct total). We performed 200 cross-validation cycles and report
averaged results.

Support vector machine

In our analyses of the relative merit of different explanatory frameworks in the
macaque cortex (Section 3.3), we combined the structural measures in a different
probabilistic predictive model for classifying the existence of projections. We built
this model using a binary support vector machine classifier (i.e., used for two-class
learning), which received the structural measures associated with the projections as
independent variables (features) and information about projection existence (i.e.,
projection status ‘absent’ or ‘present’) as the dependent variable (labels, comprising
two classes). Euclidean distance, absolute log-ratio of neuron density and absolute
log-ratio of cortical thickness were used as features in different combinations.

For training the support vector machine classifier, we used a linear kernel function
and standardised the independent variables prior to classification. Moreover, we
assumed uniform prior probabilities for the learned classes and assigned a symmetric
cost function, that is, all types of errors were weighted equally. Classification scores
obtained from the trained classifier were transformed to the posterior probability
that an observation was classified as ‘present’, ppresent. To assess performance of
the classification procedure, we used five-fold cross-validation. To this end, we
randomly partitioned all available observations into five folds of equal size. After
training the support vector machine classifier on a training set comprising four folds,
we used the resulting posterior probabilities to predict the status of the remaining
fold (20% of available observations) that comprised the test set. Similarly to the
procedure followed in the linear discriminant analysis, we used two classification
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rules derived from a common threshold probability. (1) We assigned the status
‘present’ to all observations whose posterior probability exceeded the threshold
probability, that is, observations with ppresent > pthreshold. (2) We assigned the status
‘absent’ to all observations with ppresent < 1−pthreshold. The approach was applied
to thresholds from pthreshold = 0.50 to pthreshold = 1.00, in increments of 0.025. By
increasing the threshold probability, we therefore narrowed the windows in the
feature space for which classification was possible. For thresholds of pthreshold <= 0.50,
the classification windows would overlap. In particular, there would be an overlap
between parts of the feature space corresponding to classification as ‘present’ with
parts corresponding to classification as ‘absent’, and observations would therefore be
classified twice. For this reason, we did not consider thresholds below pthreshold = 0.50.
For each threshold, we computed performance as described below and averaged
results across the five cross-validation folds. To make performance assessment
robust against variability in the partitioning of observations, we report performance
measures averaged across 100 rounds of the five-fold cross-validation.

We assessed classification performance by computing prediction accuracy, the fraction
of correct predictions relative to all predictions. Accuracy was also separately assessed
for positive and negative predictions, yielding precision and negative predictive value
as the fraction of correct positive or correct negative predictions relative to all
positive or negative predictions, respectively. We also computed which fraction
of observations in the test set was assigned a prediction at a given threshold. As
further performance measures, we computed sensitivity (true positive rate) and
specificity (true negative rate) at the evaluated thresholds. We also computed the
false positive rate (1− specificity). To quantify performance based on sensitivity
and specificity, we computed the Youden index J as J = sensitivity + specificity−1
(Youden, 1950; Fluss et al., 2005). J is a measure of how well a binary classifier
operates above chance level, with J = 0 indicating chance performance and J = 1
indicating perfect classification. Since J is defined at each threshold, to obtain a
single summary measure we computed the mean of J across the more conservative
thresholds ppresent = 0.85 to ppresent = 1.00 for all 100 cross-validation runs. Results
did not change if the maximum J across all thresholds was considered instead
(Supplementary Figure C.2B).

To assess statistical null performance of the classification procedure, we performed
a permutation analysis. The analysis was equal to the classification procedure
described above, with the exception of an additional step prior to the partitioning
of observations into cross-validation folds. Here, for each round of cross-validation,
the labels were randomly permuted. Thereby, the correspondence between features
and true labels of observations was removed. In the permutation analysis, we used
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Euclidean distance and the absolute log-ratio of neuron density as features, based
on the feature combination that led to the best results, and averaged performance
measures across 1000 rounds of five-fold cross-validation.

Logistic regression

In our assessment of the relative predictive power of microscopic and macroscopic
structural measures (Section 3.4), we performed multivariate logistic regression
analyses using projection existence as the binary dependent variable and differ-
ent combinations of the relative structural measures as covariates. Specifically,
we considered |log-ratiodensity|, geodesic distance, |∆soma cross section|, |∆spine count|,
|∆spine density|, and |∆tree size|. The relative structural measures were converted to
z-scores, so that the resulting regression coefficients were standardised. We also
included a constant intercept term in each model. All covariates were entered into
the model simultaneously. We report the standardised regression coefficients, the
t-statistic, and its associated p-value.

For the logistic regression, we assessed model classification performance in three
different ways. First, we calculated the generalised coefficient of determination, R²,
adjusted for the number of covariates, which indicates which proportion of the vari-
ance in the dependent variable is explained by the covariates. Second, we computed
the Youden index J (Youden, 1950; Fluss et al., 2005), where J = sensitivity + speci-
ficity−1. As mentioned above, by taking into account both sensitivity (true positive
rate) and specificity (true negative rate), the Youden index is a comprehensive sum-
mary measure of classification performance. We considered values of J below 0.25 to
indicate negligible classification performance, values of 0.25 and above to indicate
weak performance, values of 0.40 and above to indicate moderate performance, and
values of 0.50 and above to indicate good classification performance. Third, we
calculated classification accuracy, that is, which proportion of all predictions was
correct.

Parts of this section have been published in Beul et al. (2015), Beul et al. (2017) and
Beul and Hilgetag (2019a).

51



2.4. Simulating the development of cortico-cortical connections: Existence of
connections

2.4 Simulating the development of cortico-cortical connec-
tions: Existence of connections

To investigate possible mechanistic underpinnings of the architectonic type principle,
we created an in silico model of the developing cortical sheet. In a first set of
simulation experiments, we addressed how the existence of connections could be
influenced by spatio-temporal patterns of neurogenesis. We first describe the variants
of the in silico model we considered and how we simulated the formation of cortico-
cortical connections on a forming cortical sheet, representing a single hemisphere.
We then detail how we analysed the resulting simulated networks.

Connection formation was simulated to take place on a two-dimensional, rectan-
gular cortical sheet, where neuron somata and axon terminals were assigned two-
dimensional coordinates without spatial extent. Somata were arranged in rectangular
cortical areas which differed in their surface density of neurons. Neuron density has
been shown to be a good indicator of a cortical area’s overall degree of architectonic
differentiation (Dombrowski et al., 2001) and has been used previously to relate
differentiation to connectivity in the macaque brain (e.g. Hilgetag et al., 2016).
Hence, we used neuron density as a central marker for architectonic differentiation,
with higher neuron density corresponding to a stronger degree of differentiation. We
did not adjust the absolute magnitude of neuron density to empirical values, but
did choose the range of neuron densities such that it was similar to empirically ob-
served variation in neuron densities across the cortex, with about a five-fold increase
between areas of lowest and highest neuron density (cf. Hilgetag et al., 2016). We
implemented neuron density as number of somata per unit area of cortical sheet
(#/arbitrary unit2). All cortical areas were defined to be of the same size. From these
two constraints on neuron density and area size, it followed that areas of different
densities contained different numbers of neurons. Within an area, somata were
spaced equidistantly.

2.4.1 Variants of the in silico model

The generation of the cortical sheet across time was simulated in a number of
different settings of the in silico model, which we call variants or growth layouts.
These growth layouts systematically differed in where and when neurons were
generated on the forming cortical sheet, that is, they had different spatio-temporal
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growth trajectories. Below, we describe all growth layouts and their correspondence
to neurodevelopmental findings in detail. An overview is provided in Table 2.1, and
Figure 2.3 as well as Supplementary Figure C.3 give a visualisation of cortical sheet
development over time for the different growth layouts.

All considered spatio-temporal growth trajectories were grouped into five sets of
growth layouts. These sets differed with respect to whether cortical areas were
generated by planar, expansive growth, whether there was radial growth, and in the
final gradient of neuron density around neurogenetic origins.

In growth layouts with planar growth, the cortical sheet expanded, as, with each
growth event, new cortical areas emerged around neurogenetic origins. Each new
cortical area was grown within one time step, thus all constituent neurons appeared
on the cortical sheet simultaneously. Neurogenesis occurred on the outer fringes of
the portion of the cortical sheet already generated around each origin of neurogenesis.
For more than one neurogenetic origin, this process entailed that newly generated
areas moved previously generated areas apart on the cortical sheet, increasing the
spatial distance in between them. Thus, planar growth mimicked the empirically
observed planar gradient in onset of neurogenesis (see Section 1.6.1.1).

Radial growth, in contrast, did not expand the cortical sheet over time. Here, the
cortical sheet had its final dimension already at the start of corticogenesis and cortical
areas did not differ with respect to the time of onset of neurogenesis, but instead
in the length of their neurogenetic interval. During each growth event, neurons
were added at a constant rate across the entire cortical sheet. Areas with lower
neuron density finished generating their complement of neurons earlier in time than
areas with a higher neuron density, which needed to generate a larger number of
neurons. Radial growth thus reproduced an alternative interpretation of studies of
neurogenetic timing (see Section 1.6.1.1).

Growth events, during which the cortical sheet was generated, were distributed across
the fixed simulated length of time. For both planar and radial growth, they were
timed in such a manner that all neurons had grown after one third of the simulation
length, and the remaining time steps could be used for connection formation by all
neurons. These three main properties of spatio-temporal growth of the cortical sheet
were combined in the five sets of growth layouts, with each set containing three (or
in one case nine) growth layouts, as follows: The first set, the realistically oriented
density gradient growth layouts, grew by planar growth. Here, newly generated areas
were of higher neuron density than previously grown areas. That is, there was a
positive correlation between time of origin and neuron density, which appeared as
a distinct gradient in neuron density around the neurogenetic origins on the final
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realistically 
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1D 1 row 1 

realistically 
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✓  

25 12 24897   1D-1row-1or 

1D 2 rows 1 50 12 49794   1D-2row-1or 

2D 1 81 5 40838   2D-1or 

1D 1 row 2 26 6 26550   1D-1row-2or 

1D 2 rows 2 52 6 53100   1D-2row-2or 

2D 2 162 5 81676   2D-2or 

1D 1 row 3 27 4 28215   1D-1row-3or 

1D 2 rows 3 54 4 56430   1D-2row-3or 

2D 3 196 4 100248   2D-4or 

inverse 

gradient 

1D 1 row 2 

inverse ✓  
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static 

1D 1 row 2 

realistically 

oriented 
  

26 1 26550   static-1D-1row-2or 

1D 2 rows 2 52 1 53100   static-1D-2row-2or 

2D 2 162 1 81676   static-2D-2or 

random 

1D 1 row 2 

no gradient 

/ random 
✓  

26 6 26550   
random-1D-1row-

2or 

1D 2 rows 2 52 6 53100   
random-1D-2row-

2or 

2D 2 162 5 81676   random-2D-2or 

 

Table 2.1: Summary of growth layouts. This table indicates the set, growth mode and num-
ber of neurogenetic origins for each of the 21 growth layouts. For each set, the determin-
ing properties of the spatio-temporal growth trajectory are indicated. Moreover, for each
growth layout the total numbers of areas, growth events and neurons are included. Ab-
breviations and background colours introduced here are used throughout the figures and
tables.
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Figure 2.3: Developmental trajectories of growth layouts. The figure illustrates the spatio-
temporal growth trajectory for di�erent growth layouts. The successive population of the
cortical sheet with neurons is shown for the first three growth events. For static growth, all
neurons grow simultaneously, hence only one growth event is shown. Here, all growth lay-
outs of growth mode 1D 2 rows are shown. See Supplementary Figure C.3 for an illustration
of the developmental trajectories of all 21 growth layouts.
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cortical sheet. The second set, the inverse neuron density gradient growth layouts,
grew by planar growth like sets 1 and 5. However, in these inverse gradient growth
layouts, newly generated areas were of lower neuron density than previously grown
areas, that is, there was a negative correlation between time of origin and neuron
density. The third set, the radial growth layouts, grew by radial growth. The final
density gradient was identical to sets 1 and 4, but for the radial growth layouts, this
pattern was caused by a positive correlation between length of the neurogenetic
interval and neuron density, instead of a correlation between the time of onset of
neurogenesis and neuron density. The fourth set, static growth layouts, did not in
fact grow at all. All neurons were grown during the first growth event, thus the
cortical sheet was fully formed from the beginning of the simulation. The final density
gradient was identical to sets 1 and 3. Finally, in the fifth set, the random growth
layouts, the cortical sheet grew by planar growth. The resulting final cortical sheet
had no directed gradient of neuron density around the neurogenetic origins. Instead,
each newly generated area was randomly assigned a neuron density. Possible density
values were drawn from the neuron densities found on the final cortical sheet of the
first set, realistically oriented neuron density gradient.

For each of these five sets, we implemented three different growth modes to mitigate
influences of any specific choice of spatial implementation. Each growth mode was
implemented around two neurogenetic origins. The three growth modes were as
follows: First, one-dimensional growth with one row of areas (1D 1row growth lay-
outs), where new areas grew to the left and right of neurogenetic origins (i.e., along
the x-dimension of the cortical sheet) and there was only one row of cortical areas.
Second, we implemented one-dimensional growth with two rows of areas (1D 2rows
growth layouts), where, again, areas were added to the left and right of neurogenetic
origins, but there were two rows of areas stacked in the y-dimension of the cortical
sheet. Third, we implemented two-dimensional growth (2D growth layouts), where
new areas were added on all sides of neurogenetic origins (i.e., in both the x- and
y-direction of the cortical sheet). In this growth mode, each successive growth event
led to an exponentially increasing number of added areas, and for set 1, realistically
oriented density gradient, an unproportionally high number of areas of the highest
neuron density, which did not accurately reflect the composition of the mammalian
cerebral cortex. However, as stated above, we simulated the different growth modes
to alleviate side-effects that might unintentionally arise from any particular spatial
layout. Considering results across these specific implementations vastly reduced the
risk of misinterpretation. We therefore included the two-dimensional growth mode
as a further control, despite its unrealistic rendering of the cortical sheet.

As mentioned before, each of the 15 growth layouts that were described so far was
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implemented around two origins of neurogenesis (5 sets x 3 growth modes x 1 number
of origins). For set 1, realistically oriented neuron density gradient, we additionally
considered two different numbers of origins for each growth mode. Specifically, we
included growth around one neurogenetic origin and growth around three or four
neurogenetic origins for 1D and 2D growth modes, respectively. These further six
growth layouts allowed us to test whether the exact number of neurogenetic origins
meaningfully influenced final connectivity.

Thus, we considered a total of 21 growth layouts (5 sets x 3 growth modes x 1
number of origins + 1 set x 3 growth modes x 2 numbers of origins). We simulated
100 instances of the spatio-temporal development of each of these 21 growth layouts.

Correspondence to empirical observations

The five sets were designed to correspond to some aspects of empirical neurode-
velopmental findings and to violate others. Set 1, which features planar growth
and a realistically oriented density gradient, represents a fiducial reproduction of the
empirically grounded assumptions we described in Chapter 1 and thus mimics the
mechanistic underpinnings that were previously hypothesised to account for the
emergence of the architectonic type principle (Barbas, 1986, 2015; Hilgetag et al.,
2016; Dombrowski et al., 2001). The other four sets deviate from this most realistic
set in different ways. Sets 2 and 5, with inverse and random density gradients,
respectively, test how the specifics of the neuron density gradient affect connectivity
in the presence of planar growth. In set 4, the static growth layouts examine how
the absence of planar growth affects connectivity if the neuron density distribution
remains unchanged. Set 3, with radial growth layouts, contrasts planar growth
with radial growth, while the final distribution of neuron densities again remains
unchanged.

2.4.2 Connection formation

Axons randomly grew across the cortical sheet and stochastically formed synaptic
connections (similar to, e.g., Kaiser et al. (2009); also see Kaiser (2017)). Each
neuron was assigned one axon terminal, which was initially located at the respective
soma position. With each time step of the simulation, the axon extended by a fixed
length at a random angle, and the position of the axon terminal changed accordingly.
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Once axon terminals left the cortical area which their parent soma was located in,
they were free to form a synapse with any neuron soma they encountered. Since both
terminals and somata were defined by point-coordinates, a synapse was formed once
the axon terminal approached a soma closer than a defined maximal distance. Upon
synaptic contact, an axon stopped growing and the now occupied axon terminal
remained at the location of the contacted soma for the remainder of time steps.
To further increase stochasticity, we imposed a connection probability of 90% on
potential synaptic contacts. Thus, in 90% of cases, a synapse successfully formed
once the terminal was close enough to a soma, but in a randomly chosen 10% of
cases, no synapse formed at this time step and the axon continued to grow. If soma
positions changed because the cortical sheet grew, axon terminals (both occupied
and unoccupied) were shifted with the cortical area they found themselves in at
the time, and synaptic contacts were retained. This procedure of axon growth and
synapse formation was not modified across variants of the in silico model.

Different parameters of the axon growth process interacted to determine how fast
axon terminals made synaptic contacts. This included for example the increase in
axon length per time step and the maximal distance for synapse formation. In pilot
runs of the simulation, we calibrated the relevant parameters such that after the
fixed simulated length of time, most axon terminals (>99.9%) had made synaptic
contact and final inter-areal connectivity fell into a range comparable to empirical
reports (Felleman and Van Essen, 1991; Beul et al., 2015; Markov et al., 2014a).
This calibration resulted in slightly different parameter values for 1D and 2D growth
modes, but the same values were used in all simulation instances within these growth
modes.

2.4.3 Properties of the simulated cortical sheet

From the final state of the simulated cortical sheet, we extracted a number of proper-
ties that were analogous to measures used in previous analyses of the mammalian
cortex.

First, we collapsed the axonal connections between individual neurons into a simu-
lated connectome, which contained information about the existence of all possible
area-wise connections. Thus, we constructed a complete binary connectivity matrix
where connections were coded as either absent or present.

Second, we extracted the two relevant structural measures from the final cortical
sheet. The first measure was each area’s neuron density, and derived from that
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the difference in neuron density between area pairs, where density difference =
density area of origin - density area of termination. For most analyses, we considered the
undirected equivalent, the absolute value of density difference, which indicates
the magnitude of the difference in neuron density between two areas. These two
measures were equivalent to measures of architectonic differentiation previously
used in studies examining mammalian cortical connectivity, such as neuron density
difference (e.g. Hilgetag et al., 2016), the log-ratio of neuron densities (Section
3.3), or difference in architectonic type, which is an ordinal measure of architectonic
differentiation (e.g. Hilgetag and Grant, 2010; Hilgetag et al., 2016). The second
measure was the spatial proximity between pairs of areas, which we calculated as
the Euclidean distance between areas’ centres of mass. This measure was equivalent
to measures of spatial proximity we used in previous empirical studies (e.g. Hilgetag
et al., 2016; Section 3.3). Since distance is an undirected measure, each analysis
that included distance required the use of the undirected measure of neuron density
difference, its absolute value.

2.4.4 Analyses

For each of the 100 instances that were simulated for each growth layout, we
performed the analyses described below and aggregated results across instances. For
the simulations and analyses we used Matlab (The MathWorks, Inc., Natick, MA,
USA).

Relative frequency of present connections

To gain an overview of how present and absent connections were distributed across
the range of possible absolute density differences and distances, we computed the
relative frequency of present connections, similarly to our analyses of connectivity
in the cat and macaque cortex. To do this, we divided the range of each structural
measure in up to 10 bins and computed the fraction of present connections in each
bin as relative frequency = number of present connections /(number of present
connections + number of absent connections). For distance, we always used 10 bins.
For absolute neuron density difference, we used 10 bins where possible, but we had to
chose a lower number of bins if the particular growth layout had been implemented
with a small number of area neuron density tiers. This was for example the case in
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the 2D 4origins growth layout, where the exponential increase in the number of areas
with each growth event caused us to restrict the simulation to four growth events, and
thus four different levels of neuron density. To assess whether there was a systematic
relation between the relative frequency of present connections and the respective
structural measure, we then computed Spearman rank correlations of the computed
fractions across all bins. We show the resulting distribution of correlation coefficients
ρ and report median ρ- and p-values averaged across simulation instances. To
determine whether the rank correlation was consistently significant across instances,
we computed a left-tailed sign test for each growth layout. Specifically, we tested
whether the group of 100 p-values obtained from the rank correlations for each
instance had a median value smaller than a significance threshold, αSpearman = 0.05.
We considered the sign test significant below α sign = 0.05, and in these cases rejected
the null-hypothesis that the median of the group of p-values was not smaller than
αSpearman. For the sign test, we report the test statistic z and the corresponding
p-value.

Prediction of simulated connectivity data

To assess how well density difference and distance accounted for the simulated
inter-areal connectivity, we performed logistic regression analyses, a classification
algorithm for distinction between two classes. That is, we endeavoured to predict the
existence of simulated connections from the structural properties of the corresponding
simulated cortical sheet. We considered four combinations of predicting factors: First,
a null model which included only a constant and amounted to chance performance.
Second and third, we further included either absolute density difference or distance as
predicting factors. Thus, we constructed two models with two predicting factors each,
testing the effect of each individual structural measure on classification performance.
In a fourth model, we included all three predicting factors, that is, a constant and both
structural measures, testing their joint classification performance. Prior to inclusion,
both structural measures were transformed to z-scores, that is, we subtracted the
respective mean and then divided by the respective standard deviation. To evaluate
how much each predicting factor contributed to classification performance, we
computed McFadden’s Pseudo R2 = log-likelihoodmodel /log-likelihoodnull model. The
log-likelihood for each model captures how well its predictions correspond to the
actual data, with larger values indicating a better correspondence. McFadden’s
Pseudo R2 thus indicates how much better prediction performance becomes with the
inclusion of further predicting factors, relative to chance performance. Values of
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McFadden’s Pseudo R2 of 0.10 and above were considered a moderate increase in
prediction performance, values of 0.15 and above were considered adequate, and
values from 0.20 on were considered a very high increase in prediction performance
(McFadden, 1979).

Area degree

We assessed one topological property of areas, their degree, which we found to be
related to architectonic differentiation in the cat and macaque cortex (Sections 3.2
and 3.3). Area degree indicates how many connections are maintained by an area,
and we computed it as the sum of afferent and efferent connections for each area.
Since degree is not a relational property and hence applies to a single area and not a
pair of areas, we related it to neuron density but not to spatial proximity. Analogous
to our previous analyses, we computed a Spearman rank correlation between area
degree and neuron density to assess whether there was a relation between the two.
We show the resulting distribution of correlation coefficients ρ and report median
ρ- and p-values averaged across simulation instances. To determine whether the
rank correlation was consistently significant across instances, we computed a left-
tailed sign test for each growth layout, as described above for relative connection
frequencies. The same significance thresholds applied here.

Prediction of empirical connectivity data

To assess how well the relationships between simulated connectivity and simulated
structural measures translated to empirically observed relations in the mammalian
cortex, we used classifiers trained on the simulated data to predict empirical con-
nectivity data. To this end, we used the two data sets of ipsilateral cortico-cortical
connectivity (i.e., connections within a hemisphere) which we also used for our
analyses of empirical data in the cat and the macaque cortex. These were the most
extensive and up-to-date connectivity data sets available for the macaque (Markov
et al., 2014a) and cat cortex (Scannell et al., 1995), acquired using retrograde tract-
tracing experiments. Here, we considered these connectivity data as a binary measure
of connection existence. For both data sets, measures of architectonic differentiation
and spatial proximity were available. In the macaque, we used the absolute log-ratio
of neuron density and Euclidean distance between areas as the equivalents of the
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absolute density difference and Euclidean distance obtained from the simulations and
included 1128 empirical data points in our analyses. In the cat, these measures were
represented by the absolute difference in architectonic type, an ordinal ranking of
areas by architectonic differentiation, and the border distance between areas, which
quantifies the shortest distance between two areas based on a given parcellation of
the cortex. Here, we included 954 empirical data points in our analyses. To be able to
apply the two simulated structural measures to the empirical measures despite their
different scales, we transformed all three pairs of structural measures (simulated,
macaque, cat) to z-scores by subtracting the respective mean and then dividing by
the respective standard deviation.

For each instance of each growth layout, we trained a classifier to predict simulated
connection existence from the z-scores of simulated relative architectonic differentia-
tion (i.e., absolute density difference) and spatial proximity (i.e., distance), using a
support vector machine with a linear kernel function and the assumption of uniform
prior probabilities for the two learned classes (as described in Section 2.3.4.2 for
classification of connection existence in the macaque cortex). We then applied the
trained classifier to the z-scores of empirical relative architectonic differentiation
(i.e., absolute log-ratio of neuron density and absolute type difference, respectively)
and spatial proximity (i.e., Euclidean distance and border distance, respectively),
separately for the macaque and the cat, and obtained posterior probabilities that a
connection was present, ppresent. Similarly to the procedure followed in the linear
discriminant analysis for the cat cortex and the classification by the support vector
machine classifier in the macaque cortex, we then used two classification rules, de-
rived from a common threshold probability pthreshold, to label empirical data points as
either absent or present. We assigned the status ‘present’ to all empirical connections
whose posterior probability exceeded the threshold probability, that is, data points
with ppresent > pthreshold. Alternatively, we assigned the status ‘absent’ to all empirical
connections whose posterior probability was sufficiently low, that is, data points with
ppresent < 1−pthreshold. These two rules excluded a range of posterior probabilities
where classification was not confident enough to warrant a prediction, which en-
tailed that not all empirical connections were assigned a predicted label for each
simulation instance. Additionally to the measures that we used to quantify prediction
performance, we therefore report the fraction of available empirical data points that
were actually classified. To mitigate influences of any one threshold probability, we
considered ten threshold probabilities, increasing pthreshold in step sizes of 0.025 from
pthreshold = 0.750 to pthreshold = 0.975, and report results averaged across thresholds
for each simulation instance.

Again, we assessed prediction performance through two measures, accuracy and
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the Youden index J. We calculated these measures at each threshold probability
and report results averaged across all ten thresholds. Accuracy was computed as
the fraction of predictions that were correct, that is, accuracy = number of correct
predictions /(number of correct predictions + number of incorrect predictions). The
Youden index J (Youden, 1950; Fluss et al., 2005) is a more comprehensive summary
measure which takes into account both sensitivity (true positive rate) and specificity
(true negative rate), with J = sensitivity + specificity−1. As in our analyses of
empirical data, values of the Youden index below 0.25 were considered to indicate
negligible classification performance, values of 0.25 and above were considered weak
performance, values of 0.40 and above were considered moderate performance, and
values of J above 0.50 were considered to indicate good classification performance.

We show the distribution of resulting mean values of accuracy and Youden index
across the ten threshold probabilities, and report the median values of these dis-
tributions across the 100 instances for each growth layout. In the following, we
describe the procedure that we followed to validate the two classification perfor-
mance measures, assessing how they compared against chance performance. An
overview is provided in Figure 2.4. Within each simulation instance, we performed a
permutation analysis at each threshold probability to determine how the accuracy
or Youden index at this threshold compared to chance performance. To this end,
we randomly permuted the labels of the empirical data points, so that there was
no association any more between the predictive variables and connection existence,
and then applied the classification procedure again, computing accuracy and Youden
index to quantify chance performance. We repeated this for 100 permutations of
the data labels, so that, for both measures, we obtained a distribution of values that
represented chance performance at each threshold probability. To test whether the
corresponding classification performance measure was likely to be from this chance
distribution, we first fit the chance performance distribution to a normal distribution,
obtaining an inferred mean value and standard deviation. We then performed a
two-tailed z-test, which tests whether a particular value comes from a population
with a particular mean, which in this case was the fitted distribution of performance
measures obtained from the permutation analysis. If the test was significant at
αz-test = 0.05, we rejected the null hypothesis that the actual performance measure
at the given threshold probability came from the fitted distribution of chance perfor-
mance. Since the z-statistic was never smaller than 0 if the p-value was below αz-test,
we then inferred that the actual performance was better than chance performance
at a given threshold probability. We then averaged the p-values obtained from the
z-tests across thresholds by computing their median. Thus, for each growth layout,
we obtained distributions of 100 (one per instance) mean performance measures and
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Figure 2.4: Validation procedure for measures of simulation-to-empirical classification
performance. The figure illustrates the general procedure for assessing the performance
of the classification of empirical data from the cat and macaque cortex by classifiers that
were trained on simulated data. We computed median measures of classification per-
formance for each growth layout and compared these measures against chance perfor-
mance, as assessed by a permutation analysis. Specifically, for each of the 21 growth
layouts shown in Figure 3.25 and Supplementary Table D.13, 100 instances were simulated.
For each instance, classification was performed using 10 di�erent classification thresh-
old probabilities. For each threshold probability, a simulation-trained classifier assigned
labels to the empirical data, resulting in an accuracy value Athr. Additionally, a distribu-
tion of chance performance accuracies, Achance, was generated by classifying 100 times
from randomly permuted non-sensical labels. A z-test quantified the probability that Athr
was an element of the distribution of Achance. The corresponding p-value pthr was used
for further calculations. For each simulation instance, classification performance from
all 10 threshold probabilities was averaged, resulting in one mean accuracy value and
one median value of pthr per instance, thus amounting to a total of 100 values each per
growth layout. Figure 3.25 shows the distribution of mean accuracy values from these 100
instances, and indicates the median accuracy. The indication of significance in Figure 3.25
refers to the p-value obtained from a sign-test which assessed whether the median of the
distribution of median values of pthr was larger than the chosen significance threshold
�z-test of 0.05 (with a small value of psign-test indicating that pthr was very unlikely to be
larger than �z-test). Supplementary Table D.13 includes the median accuracy, median z-
test p-value and the result of the sign-test. Shown here for accuracy, the procedure was
analogous for the Youden index J, which is shown in Figure 3.26 and Supplementary Table
D.13.
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as many associated median p-values validating them against chance performance.

To determine whether these median p-values were consistently significant across
instances, we computed a left-tailed sign test for each growth layout. Specifically, we
tested whether the group of 100 median p-values obtained from the z-tests at each
threshold for each instance had a median value smaller than αz-test. We considered
the sign test significant at α sign = 0.05, and in these cases rejected the null-hypothesis
that the median of the group of p-values was not smaller than αz-test. For the sign test,
we report the test statistic z and the corresponding p-value for each growth layout.

Finally, to assess how the two classification performance measures accuracy and
Youden index were affected by the number of origins independent of growth mode
and the considered species, we computed a three-way analysis of variance on the
performance measures from growth layouts with a realistically oriented density gra-
dient (which were the only ones where number of origins ever differed from two).
We included three factors: ‘species’, with the levels macaque and cat; ‘growth mode’,
with the levels 1D 1row, 1D 2rows and 2D; and ‘number of origins’, with the levels 1,
2 and 3 or 4 (for 1D and 2D growth modes, respectively). We report the F-statistic
and associated p-value for each factor and considered a main effect significant at
αANOVA = 0.05. To examine the main effect of ‘number of origins’ in more detail, we
estimated marginal mean values from the analysis of variance model. These reflect
a model estimate of the mean value for each level of ‘number of origins’ across all
levels of the remaining factors. We subsequently performed post-hoc comparisons
between these model estimates of marginal mean values, which revealed specific
differences between levels. The post-hoc comparisons were Bonferroni-corrected for
multiple tests and considered significant at an adjusted threshold of αadj = 0.05/3 =
0.0167.

This section has been published in Beul et al. (2018).

2.5 Simulating the development of cortico-cortical connec-
tions: Laminar patterns of connection origins

In the first set of simulation experiments described in the preceding, we investigated
how realistic patterns of connection existence could arise. To address the emergence
of another crucial property of cortico-cortical connections, the distribution of connec-
tion origins across cortical layers, we expanded our in silico model and performed a
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second set of simulation experiments.

With the model expansion, we did not alter the main characteristics of the in silico
model. Briefly, on a two-dimensional plane, neuron somata developed and were
assigned to cortical areas. Neurons belonging to a single area grew simultaneously,
with sets of areas growing sequentially. Cortical areas were designed to be of the same
size but to exhibit a range of neuron densities (i.e., number of neurons per area),
therefore neuron numbers differed between areas. The specifics of where and when
neuron somata developed were aligned to empirical neurodevelopmental findings.
In this second set of simulation experiments, we employed the model settings that
were previously shown to yield the most realistic connectivity and that corresponded
most closely to observations of actual cortical development in mammals. Specifically,
our in silico model was set to grow expansively around two neurogenetic origins,
such that more recently formed areas separated earlier formed areas, increasing the
spatial distance between them over time. Moreover, it was set to have a positive
correlation between time of neurogenesis and neuron density, such that the earliest
formed areas had the lowest neuron density and the areas that developed last had
the highest neuron density.

Each neuron had one axon which grew by a specific length, at a random angle,
at each time step. Once the axon tip came sufficiently close to a neuron soma, a
connection was formed. Connection formation thus happened concurrently with
neuron development and can be characterised as stochastic.

2.5.1 Model expansion

To probe the origin patterns of cortico-cortical projections across cortical layers,
we extended the previously used in silico model by a radial component, assigning
the neuron somata to one of three laminar compartments (layer 1, supragranular
compartment, infragranular compartment). The cortical sheet remained implemented
in two dimensions, since we did not intend to model the growing out of axons
towards the white matter or the laminar patterns of projection terminations. As
we did previously, we evaluated the existence of projections between cortical areas.
Additionally, we considered how the origins of projections were distributed across
laminar compartments. Similarly to empirical studies, we report the fraction of
projection neurons (for a given projection) which originated in the supragranular
compartment, NSG%.

At the baseline setting, the neuron density of an area’s supragranular compartment
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was equal to the density of the infragranular compartment. Since there are generally
few neurons in layer 1 (Marin-Padilla and Marin-Padilla, 1982; Gabbott and Somogyi,
1986), we chose a lower density for layer 1 and specified layer 1 neuron density as
15% of infragranular compartment density. Moreover, since layer 1 is mainly a target
for long-range projections (reviewed in Larkum, 2013), we included layer 1 neurons
in the in silico model only as connection targets, meaning they could form synapses
with approaching axon tips, but they did not grow out axons themselves.

Features implemented to modulate laminar projection patterns

We introduced four features that possibly affect how the origins of projections are
distributed across laminar compartments and included these features in the in silico
model individually or in conjunction (Figure 2.5). Three of these features changed
the spatio-temporal pattern of neurogenesis, affecting where and when neurons
developed. The fourth feature, in contrast, changed properties of the neurons
themselves.

The first two features were temporal delays between the laminar compartments.
In vivo, cortical neurons develop in an inside-out pattern (with the exception of
layer 1 neurons, which develop first), where earlier born neurons come to reside
in the lower cortical layers and later born neurons migrate upwards and become
positioned successively closer towards layer 1 (Sidman et al., 1959; Angevine and
Sidman, 1961; Rakic, 1974; Caviness, 1982). To simulate this radial gradient in
time of neurogenesis within areas, we introduced two delay parameters, one for the
delay between layer 1 and infragranular compartment neurons and a second for the
delay between infragranular compartment neurons and supragranular compartment
neurons. When one or both of the delay features were included in the in silico
model, whole areas did not grow simultaneously any more, but instead laminar
compartments appeared on the cortical sheet sequentially, with all the neurons of a
laminar compartment appearing simultaneously.

The third feature we introduced was a scaling of the neuron density of the supra-
granular compartment. In the mammalian cortex, increases in overall neuron density
across areas tend to be mediated mostly by increases in supragranular neuron density
(Finlay and Darlington, 1995; Charvet and Finlay, 2014). We therefore introduced a
parameter that modified how much denser the supragranular compartment became
relative to the infragranular compartment. While it left the variation in infragran-
ular compartment density across areas unchanged from the baseline setting, this
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Figure 2.5: Features of the expanded in silico model.
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Figure 2.5: Features of the expanded in silico model. (A) Delay in the growth of laminar
compartments. Without a delay in compartment growth (no delay), all laminar compart-
ments of a given area grow at one single time point. After the growth interval, ∆t, the next
area appears. If growth of the infragranular compartment is delayed relative to layer 1 (de-
lay L1> infra), the infragranular compartment grows a fraction of the growth interval after
layer 1, while the supragranular compartment appears simultaneously with the infragran-
ular compartment. If growth of the supragranular compartment is delayed (delay infra >
supra), it grows a fraction of the growth interval after layer 1 and the infragranular com-
partment, both of which appear simultaneously. If both compartments are delayed (delay
L1 > infra & delay infra > supra), layer 1 appears first, followed by the infragranular com-
partment and finally the supragranular compartment. (B) Scaling in the neuron density
of the supragranular compartment. With a scaling factor for supragranular density larger
than 1, the ratio of supragranular neuron density to infragranular neuron density becomes
larger as infragranular neuron density increases across areas. Additionally, as the scal-
ing factor becomes larger, the divergence between low-density and high-density areas in
their ratio of supragranular to infragranular neuron density increases. (C) Scaling in axon
elongation. We modified how much longer axons became at each time step according to
both the laminar compartments of the neuron somata and the architectonic di�erentia-
tion of the area the neuron somata were positioned in. Axon elongation was gradually
adjusted to shrink to a minimum value (light grey arrow), with the ratio of miminum elon-
gation to baseline elongation given by the elongation scaling factor (see color scale). As
the scaling factor became smaller, the divergence in elongation values became larger. We
implemented two opposing gradients: elongation values in the infragranular compart-
ment (dashed lines) became shorter with increasing source area neuron density, while
elongation values in the supragranular compartment (dotted lines) became longer with
increasing source area neuron density. At a scaling factor of 1, all neurons, regardless of
laminar compartment or source area neuron density, shared the same elongation value
(appears as dash-dotted line).

parameter determined to which level the relative density of laminar compartments
increased for the highest infragranular compartment density. Supragranular com-
partment density was always equal to infragranular compartment density for the
lowest infragranular compartment density and scaled up linearly in between these
two extremes (areas of lowest to highest infragranular compartment density). For
example, at baseline (i.e., with a supragranular compartment density scaling parame-
ter value of 1), supragranular compartment density would be equal to infragranular
compartment density for all areas. At a parameter value of 3, however, the density of
the supragranular compartment would be three times the infragranular compartment
density for the areas with the highest infragranular compartment density, while it
would be double the infragranular compartment density for the areas with an infra-
granular compartment density halfway between lowest and highest infragranular
compartment density.

The fourth feature, axon elongation scaling, did not affect spatio-temporal patterns of
neurogenesis but modified properties of individual neurons while leaving their time
and place of origin unchanged. As architectonic differentiation changes, so do prop-
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erties of individual neurons, for example in morphological and physiological aspects
(Schmidt et al., 2018a; Section 3.4). One striking phenomenon is externopyramidiza-
tion (Sanides, 1962, 1970): the relative sizes of cells in the laminar compartments
shift with architectonic differentiation. Less differentiated areas tend to have their
larger neurons in infragranular layers, but cells become more equal in size between
infra- and supragranular layers for more differentiated areas, while very strongly
differentiated areas, finally, tend to have their largest neurons in the supragranular
layers. Evidence that larger cells are able to maintain longer connections (reviewed
in Goulas et al., 2018) indicates that cell-intrinsic properties play a role in shap-
ing connectivity, even though the question of causality still remains. To generate
differences in the likelihood that neurons will form long-range connections which
arise from properties inherent to the neurons, we varied the elongation of axons,
changing the distance they grow per time step, in a manner similar to the observed
relative cell sizes. Neurons with larger axon elongation were predisposed towards
longer connections, because they traversed a larger distance per time step and were
therefore more likely to have travelled further before encountering a connection
target, relative to neurons with shorter axon elongation. In particular, we set a
default distance that axons travel per time step, and introduced a minimum distance
that the slowest neurons were limited to. In between these two extremes, we varied
the distance that an axon travelled per time step according to the neuron density of
its area, changing the axon elongation of infragranular and supragranular neurons
in a complementary way. Specifically, the default value of axon elongation was
assigned to infragranular compartment neurons in the areas with the lowest neuron
density as well as to the supragranular compartment neurons in the areas with the
highest neuron density, while the minimum value of axon elongation was assigned to
supragranular compartment neurons in the areas with the lowest neuron density as
well as the infragranular compartment neurons in the areas with the highest neuron
density. As the parameter value for the minimum travelled distance decreased, the
divergence between the neurons with shortest and longest axon elongation increased.
At baseline, the minimum axon elongation was equal to the default axon elongation,
and hence axons elongation was equal for all infra- and supragranular neurons and
constant across all source area densities. Independent of whether the elongation
of axons within a given time period is actually a relevant factor in vivo, this manip-
ulation represents one of many possible ways to implement, in silico, differences
in cell-intrinsic properties that covary with architectonic differentiation and that
account for the fact that infragranular and supragranular compartments can contain
neurons with markedly different characteristics (Song and Moyer, 2018; Kroon et al.,
2019).
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We implemented each of the four features at a range of parameter values to systemat-
ically evaluate the sensitivity of the outcome measures of interest to variation in the
respective property of the in silico model. 50 instances of each model implementation
were simulated. Since we considered the baseline setting, seven parameter values for
each of the two temporal delays, four parameter values for the scaling of supragranu-
lar compartment density and six parameter values for the differences in cell-intrinsic
properties, we simulated a total of 1250 instances to probe the features individually.
In addition, we simulated at least 20 instances each to probe (at a reduced range
of parameter values) all pair-wise feature combinations as well as the simultaneous
implementation of all four features.

2.5.2 Analyses of laminar patterns

For each simulation instance, we evaluated the resulting connectivity. As mentioned
above, we assessed the projections between areas with respect to the distribution
of projection origins across laminar compartments, computing which fraction of the
neurons that constituted a projection originated in the supragranular compartment,
NSG%. The main observation from empirical studies that we set out to replicate
was a positive correlation between this supragranular contribution and the relative
differentiation of connected areas (Barbas, 1986, 2015; García-Cabezas et al., 2019;
Hilgetag et al., 2019). Therefore, we correlated the NSG% values and neuron density
differences, computed as density source area − density target area, between connected
areas that were obtained from the in silico model instances, computing Spearman
rank correlation coefficients ρ. Since NSG% is a fraction, its value is quite volatile
for very weak projections. As previously done in empirical studies, we therefore
applied a threshold to projections strengths prior to computing NSG% (Barbas et al.,
2005). We only included projections with a minimum of 10 constituting axons in the
analyses. To determine whether the correlation coefficient was consistently significant
across the distribution resulting from all 50 instances of a model implementation,
we computed a left-tailed sign test. Specifically, we tested whether the group of 50
p-values obtained from the rank correlations for each instance had a median value
smaller than a significance threshold, αSpearman = 0.05. We considered the sign test
significant below α sign = 0.05, and in these cases rejected the null-hypothesis that
the median of the group of p-values was not smaller than αSpearman.
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2.5.3 Analyses of connection existence

In our first set of simulation experiments, addressing connection existence, the two
most comprehensive measures that we report are the correlation between area neuron
density and the number of connections an area maintains (area degree) as well as the
classification performance that a classifier which was trained on simulated networks
reached when it was applied to empirical data. We wanted to monitor whether
the features we introduced in our expanded in silico model changed the simulated
networks with respect to these overarching properties that concern the existence of
connections. Therefore, we also evaluated the two measures correlation of neuron
density with area degree and simulation-to-empirical classification performance for all
implementations of the in silico model. We assessed them as described above (Section
2.4.4). Briefly, for the correlation between neuron density and area degree we report
Spearman rank correlation coefficients ρ and tested the distribution of correlation
coefficients across instances of a given model implementation for significance using a
left-tailed sign test as described above for the correlation between NSG% and neuron
density differences. To assess simulation-to-empirical classification performance for
each simulation instance, we first trained a linear support vector machine to classify
projection existence (absent or present) from the z-scores of simulated relative
architectonic differentiation (i.e., absolute difference in neuron density) and spatial
proximity (i.e., distance) of area pairs. In a second step we used this classifier to
classify projection existence in two empirical data sets, from the cat (Scannell et al.,
1995) and the macaque (Markov et al., 2014a) cortex. To quantify classification
performance, we report the Youden index J (Youden, 1950; Fluss et al., 2005), a
comprehensive summary measure which takes into account both sensitivity (true
positive rate) and specificity (true negative rate), and measures how well a binary
classifier operates above chance level with J = 0 indicating chance performance and
J = 1 indicating perfect classification. Also here, we considered values of J above
0.40 to indicate moderate classification performance and values of above 0.50 to
indicate good performance. In a third step, we validated the Youden index, assessing
how it compared against chance performance by performing permutation analyses.
Similar to the other measures of interest, we show the distribution of resulting values
of J across all 50 instances of a model implementation.

This section has been submitted for peer-review in Beul and Hilgetag (2019b).
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Chapterthree

Results

3.1 Intrinsic circuitry varies with architectonic di�erentiation

The composition of the cortex changes across areas, such that different cell popula-
tions are present and they are arranged in characteristic laminar patterns, as reflected
in measures of architectonic differentiation. This change in the structural substrate
of cortical connectivity is expected to affect intrinsic as well as extrinsic connectivity,
given that distinct complements of elements are available to be connected. Here, we
present a tentative intrinsic circuitry of the agranular cortex in rodents, which differs
from intrinsic circuitry as described in the striate cortex.

Figure 3.1 summarises our review of the available literature on intrinsic interlaminar
circuitry in the agranular frontal cortex of the rodent brain and puts it in comparison
to a recent rendering of the intrinsic circuitry in striate cortex. Excitatory-to-excitatory
connections from L2/3 to L5 have clearly been demonstrated in rat agranular frontal
cortex by measuring excitatory postsynaptic currents (EPSC) in monosynaptically
coupled pyramidal neurons in L5, induced by stimulation in L2/3 (Kang, 1995;
Otsuka and Kawaguchi, 2008, 2009, 2011; Hirai et al., 2012). One of these paired
recording studies (Otsuka and Kawaguchi, 2009) additionally demonstrated the
existence of excitatory-to-inhibitory connections from L2/3 to L5, a finding also
reported by Apicella and colleagues (2012) in mouse motor cortex. The experiments
of Hirai and colleagues (2012) showed that reciprocal connections to the excitatory-
to-excitatory connections from L2/3 to L5 exist from L5 pyramidal cells to L2/3
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Figure 3.1: Intrinsic circuitry in the mammalian cortex. (A) Intrinsic circuitry in granular
cat striate cortex. Adapted from Potjans and Diesmann (2014) who largely based their
diagram on Binzegger and colleagues (2004). (B) Tentative scheme of intrinsic circuitry in
agranular rodent frontal cortex. Intralaminar connectivity in agranular cortex is similar
to that in granular cortex, but interlaminar connectivity di�ers. Column colours follow the
colour coding of architectonic di�erentiation in Figure 1.1: yellow-weakly di�erentiated
cortex to dark green-strongly di�erentiated cortex.

pyramidal cells. This observation is confirmed in medial entorhinal cortex of the
rat (van Haeften et al., 2003), which can be considered agranular since its layer
4 (‘lamina dissecans’) is mainly acellular (Andersen et al., 2007). The microscopy
study of van Haeften and colleagues (2003) traced the processes of pyramidal cells
in the deep layers ramifying in superficial layers, and identified the synaptic contacts
made by those neurons. The analysis revealed excitatory-to-excitatory, as well as
excitatory-to-inhibitory, connections from deep to superficial layers.

Considering the trend of weakening inhibitory-to-excitatory connectivity in architec-
tonically less differentiated areas (Kätzel et al., 2011, see Section 1.2.2), we consider
it likely that there exists no substantial interlaminar inhibition of excitatory neurons
in rodent agranular frontal cortex, which is reflected in our tentative circuit diagram.
The study by van Haeften and colleagues (2003) in medial entorhinal cortex, which
reports an absence of inhibitory-to-excitatory synapses from deep to superficial layers,
supports the same conclusion. Van Haeften and colleagues furthermore report that
only a small percentage of the observed synapses could potentially be classified as
inhibitory-to-inhibitory, thus giving little evidence for such a connection from deep
to superficial layers. Considering the reciprocal inhibitory-to-inhibitory connection
from superficial to deep layers, we could find no studies reporting either on the
absence or presence of such a connection. In the circuit diagram, we did not include
connections which could only be inferred from exclusively morphological results (e.g.
Kawaguchi, 1993, 1995; Kawaguchi and Kubota, 1997; Kubota et al., 2011), since we
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did not consider data on the spatial spread of axon collaterals sufficiently reliable to
demonstrate a functional connection, given that synapse formation has been shown
to be highly specific (e.g. Kozloski et al., 2001; Brown and Hestrin, 2009). For these
reasons, Figure 3.1B indicates no inhibitory interlaminar connections, although the
validity of this assessment of course remains contingent upon further experimental
data.

By contrast, there is abundant evidence for rich intralaminar connectivity including
excitatory-to-inhibitory and inhibitory-to-excitatory connections (Kang, 1995; So-
mogyi et al., 1998; Kawaguchi and Kondo, 2002; Barthó et al., 2004; Otsuka and
Kawaguchi, 2009; Fino and Yuste, 2011; Kätzel et al., 2011). Therefore, we assumed
a stereotypical pattern of connectivity within deep and superficial layers as illustrated
in Figure 3.1B.

The intrinsic circuitry we have sketched here thus comprises interlaminar excitatory
connections that connect neuronal populations from both upper and lower layers to
excitatory as well as inhibitory neuron populations in the complementary cortical
layers. Within upper and lower layers, intralaminar connections reciprocally connect
excitatory and inhibitory neuron populations. This intrinsic interlaminar circuitry is
strikingly similar to the simplified original circuit diagram for the striate cortex of
Douglas and colleagues (1989), and allows for recurrent excitation and inhibition.
These physiological interactions were inferred to underlie essential computational
mechanisms in striate cortex (Douglas et al., 1995; Douglas and Martin, 2007a,
2009). The microcircuitry as we sketch it here should accordingly be able to support
elemental neural functions, such as the amplification of weak inputs through positive
feedback or gain control and signal normalisation through negative feedback.

This section has been published in Beul and Hilgetag (2015).

3.2 Comparison of the architectonic type principle, distance
model and hierarchical model in the cat cortex

To test the architectonic type principle, the distance model, and the hierarchical
model of cortical organisation in the cat cortex, we first assessed how informative
they were regarding the presence or absence of connections between cortical areas,
putting a special focus on the possibility of predicting connectivity. We then explored
how architectonic differentiation may relate to topological properties of cortical
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connectivity, such as membership in a ‘rich-club’ hub module or area degree. Finally,
shifting perspective to further properties of the cortical connectome, we examined
whether laminar projection patterns were well explained by difference in architectonic
type.

3.2.1 Relationship of projection existence to structural measures

We evaluated the association among qualitative projection strength and the variables
border distance, ∆dist, architectonic type difference, ∆type, and hierarchical level
difference, ∆level. Figure 3.2 shows the distribution of present projections for each
structural measure. It also depicts the cumulative percentage of present projections,
where, for each structural measure, the cumulative percentage at each value was
calculated as the sum of the number of present projections found up to this value,
divided by the total number of present projections and multiplied by one hundred.

About 75 % of present connections were found within values of ∆dist = 1–3 (of the
range 1–6 possible in the used cortical parcellation; Figure 3.2A), within |∆type| =
0–1 (of the range 0–4 possible between the 5 types; Figure 3.2B), or within |∆level| =
0–5 (of the range 0–10 occurring in this data set or 0–13 possible in the employed
hierarchy; Figure 3.2C). That is, the great majority of existing connections were short
range and between areas of relatively similar intrinsic architecture and hierarchical
position.

Rank correlation analyses revealed no significant relationship between ∆dist and
|∆type| (ρ = 0.06, p > 0.05, Figure 3.3A), or between ∆dist and |∆level| (ρ = 0.04, p
> 0.05, Figure 3.3B), suggesting that ∆dist was a largely independent factor. However,
there was a strong correlation between ∆type and ∆level (ρ = -0.63, p < 0.001, Figure
3.3C), which we discuss below (Section 4.1.1).

Relative projection frequencies (i.e., relative proportions of present connections)
were maximally negatively correlated with both ∆dist (ρ = -1.00, p < 0.01, Figure
3.4A) and |∆type| (ρ = -1.00, p < 0.05, Figure 3.4B). This monotonic decline for both
factors indicates that the more distant or the more architectonically dissimilar cortical
areas are, the fewer projections are present between them. The results did not change
substantially when the analyses were conducted only on the subset of 308 projections
for which ∆level was available (∆dist: ρ = -1.0, p < 0.05, |∆type|: ρ = -1.00, p <
0.05). By contrast, the relative proportion of present projections was not correlated
with |∆level| (ρ = -0.36, p > 0.05, Figure 3.4C), indicating that the level difference
between areas within the hierarchy proposed by Scannell and colleagues (1995) does

76



3.2. Comparison of the architectonic type principle, distance model and
hierarchical model in the cat cortex

1 2 3 4 5 6
0

50

100

150

200

nu
m

be
r o

f p
re

se
nt

 p
ro

je
ct

io
ns

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 1 2 3 4
0

50

100

150

200

250

300

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 1 2 3 4 5 6 7 8 910
0

10

20

30

40

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

cu
m

ul
at

iv
e 

pe
rc

en
ta

ge
 o

f
 p

re
se

nt
 p

ro
je

ct
io

ns

CA

∆dist                                       |∆type|                                   |∆level|

B

Figure 3.2: Cumulative percentages of present projections in the cat cortex. For each struc-
tural measure, the absolute number of present projections is shown for each of its values
(bars, left axis). Additionally, the cumulative percentage of present projections is indicated
(diamonds, right axis). (A) Border distance ∆dist. (B) Absolute architectonic type di�erence
|∆type|. (C) Absolute hierarchical level di�erence |∆level|.
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Figure 3.4: Correlation of structural measures with relative frequencies of present projec-
tions in the cat cortex. (A), (B) Distance ∆dist and absolute architectonic type di�erence
|∆type| were negatively correlated with relative projection frequency. (C) Absolute hierar-
chical level di�erence |∆level| was not correlated with relative projection frequency.

not contain information about whether two areas are connected by an anatomical
projection. Such a correlation was also absent for an alternative hierarchical ranking
described by Hilgetag and colleagues (2000b) (see Section 2.2.4).

3.2.2 Combining architectonic type di�erence and border distance allows
the classification of connection existence

We performed a linear discriminant analysis to distinguish between present and ab-
sent projections by their associated |∆type| and ∆dist. The linear discriminant analysis
assigned a significant contribution to classification performance to both measures,
with standardised canonical discrimination function coefficients of 0.95 and 0.71 for
|∆type| and ∆dist, respectively. Figure 3.5A depicts the posterior probabilities that
resulted from the linear discriminant analysis across the predictive variable space.
Projections were confidently labelled as ‘present’ (ppresent ≥ 0.75) if both |∆type| and
∆dist were in their lower range, that is |∆type| < 2 and ∆dist ≤ 3, and as ‘absent’
(ppresent ≤ 0.25) if the measures were in their upper range of |∆type| > 2 and ∆dist ≥ 4.

From the posterior probabilities we made predictions about the existence of connec-
tions using different classification thresholds for the assignment of connections into
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Figure 3.5: Results of linear discriminant analysis. (A) Posterior probabilities for pres-
ence of projections across the predictive variable space. Black borders enclose ranges
of ppresent>0.75 and ppresent<0.25. (B) Results of cross-validation at di�erent prediction
thresholds. Mean prediction accuracy for projections that were predicted to be present and
absent (light green) as well as overall mean prediction accuracy (dark green) are shown.
Mean number of predictions at each threshold is shown in black. Error bars indicate stan-
dard deviations. (C) Matrix of cortico-cortical connections in the cat, adapted from Scan-
nell and colleagues (1995). Projections of known status are coded dark red (absent) and
dark blue (present). Additionally, predicted connectivity for 926 unexamined projections
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Figure 3.5: (cont.) is indicated. Projections predicted to be absent are shown in lighter reds,
predictions predicted to be present are shown in lighter blues. Colour saturation indicates
how conservative a prediction threshold a particular prediction survived. White cells are
unexamined connections for which no prediction has been made. The diagonal of intra-
areal connections has been marked black. Projections’ source regions are arranged on
the vertical axis, target regions are arranged on the horizontal axis. Abbreviations as in
Supplementary Table D.1. Note that area labels are split across left/top and right/bottom
axes.

the categories ‘present’ and ‘absent’. Figure 3.5B shows the cross-validated prediction
accuracy of our model within the test sets across the used range of classification
thresholds. Prediction accuracy increased as thresholds became more conservative,
while at the same time the number of connections that were predicted decreased.
A sensible choice for the classification threshold appeared to be ppresent = 0.75 and
ppresent = 0.25 for ‘present’ and ‘absent’ connections, respectively. In this case the
classification accuracy for both prediction categories exceeded 75%, while the num-
ber of predictions remained substantial. These results illustrate how the combination
of the two independent factors of absolute architectonic type difference and distance
allowed us to confidently determine, for the subset of cortical connections that link
cortical areas of appropriate |∆type| and ∆dist, whether two cortical areas were con-
nected. We therefore applied the posterior probabilities resulting from the model
to predict the existence of connections that have not yet been investigated. Figure
3.5C depicts the classification of 926 as yet unexamined projections between cat
cortical areas, where the classification threshold surpassed by the predicted connec-
tions is indicated by cell colour saturation. At a classification threshold of 0.75 for
present connections and 0.25 for absent connections, we made predictions about the
existence of 418 unknown connections.

3.2.3 Relation of architecture with connection topology

Modules of cortical areas

The 11 cortical areas considered to constitute a ‘rich-club’ hub module by Zamora-
López and colleagues (2010) had significantly lower architectonic types than all
the remaining areas not belonging to the ‘rich-club’ (hub-module areas: median =
1.5, non-hub-module areas: median = 3; W = 146.5, z = -2.6, p = 0.01, Figure
3.6A). Furthermore, the modality-specific clusters differed in their architectonic type
medians (visual cluster: median = 3, auditory cluster: median = 3, somatosensory
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Figure 3.6: Distribution of architectonic types across modules of cortical areas in the
cat cortex. (A) Hub-module areas had a lower median architectonic type than non-hub-
module areas. (B) Architectonic type gradually decreased across four anatomical modules
of cortical areas. Markers inside circles indicate median degree, diamonds indicate out-
liers.

cluster: median = 2, fronto-limbic cluster: median = 1; H(3) = 11.1, p < 0.05, Figure
3.6B). Post hoc tests, Bonferroni-corrected for multiple comparisons (resulting in
αadj = 0.0008), revealed that the visual cluster had a higher median architectonic
type than the fronto-limbic cluster (W = 255.0, z = 2.7, p = 0.0006); all other
pairwise differences in architectonic type between the four modality-specific clusters
were not significant after correcting for multiple comparisons. However, architectonic
type decreased gradually from the visual to the auditory, then to somatosensory and
finally to the fronto-limbic cortices (JT = -2.0, p < 0.05).

Area degree and weighted area degree

The node degree (number of maintained projections) of cortical areas was negatively
correlated with their architectonic type (ρ = -0.53, p < 0.001, Figure 3.7A), such
that areas with lower architectonic differentiation had more connections. However,
the weighted area degree (connection strength or density) of cortical areas was
not correlated with their architectonic type (ρ = 0.004, p > 0.05, Figure 3.7B).
When calculated separately for projections of each ordinal projection strength, the
correlation with architectonic type remained unaffected for sparse (ρ = -0.49, p <
0.001) and intermediate (ρ = -0.50, p < 0.001) projections, but disappeared for dense
projections (ρ = 0.06, p > 0.05), thus explaining the lack of an overall correlation
between architectonic type and weighted area degree.
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Figure 3.7: Degree distribution of cortical areas in the cat cortex. (A) Node degree of cor-
tical areas across architectonic types. (B) Weighted node degree of cortical areas across
architectonic types. Area degree was correlated with architectonic type, while weighted
area degree was not. Markers inside circles indicate median degree.

We present this remarkable observation in a different form in Figure 3.8, which depicts
the mean number of dense, intermediate and sparse projections averaged across
areas of a given architectonic type. This representation underlines that the number
of dense projections remains roughly constant, while the number of intermediate
and sparse projections decreases notably with architectonic type, as revealed by the
above correlation analyses.

Since the hub-module areas were originally identified, in part, by their very large
number of connections and were found to be concentrated at the low end of the
architectonic differentiation spectrum, it is possible that the ‘rich-club’ module was
mainly responsible for the strong association between high area degree and low
architectonic type. To examine this possibility, we repeated the analyses with the ‘rich-
club’ areas excluded. While this procedure had a quantitative impact, reducing the
strength of the correlations, the relationship between low architectonic differentiation
and high area degree remained significant (ρ = -0.41, p < 0.01), and there was no
qualitative effect on the lack of correlation with weighted area degree (ρ = 0.29, p >
0.05).

We observed an unexpected correlation between architectonic type and the total
number of projections studied for a cortical area (comprising projections found to
be absent as well as projections found to be present) (ρ = -0.40, p < 0.01). This
effect raises the possibility that the correlation of area degree with architectonic
type was a result of unequally distributed sampling efforts. However, it needs to be
considered what impact additional data could have on the results. If all remaining
unknown projections were to be examined, only a proportion of them would be found
present. We verified that, if this proportion was equal across all architectonic types,
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Figure 3.8: Mean number of projections across architectonic types in the cat cortex. Means
for ordinal projection strengths are indicated separately for each architectonic type. The
maximal standard deviation across all architectonic types is 5 for the number of dense
projections, 7 for the number of intermediate projections, and 9 for the number of sparse
projections.

the correlation we observed between node degree and architectonic type would
remain moderate and significant up to an added proportion of present projections
of 87%. In the current data set, 77% of examined projections were found to be
present, whereas cortical connectivity levels have previously been estimated to
reach about 50% (Felleman and Van Essen, 1991) or 66% (Markov et al., 2014a).
Thus, even assuming the uncommonly high connectivity level of the examined data
set (which likely reflects a lack of probing for absent projections in the literature,
rather than a genuinely increased proportion of present projections), a uniform
increase of present projections would still yield a correlation between area degree
and architectonic type of ρ = -0.37, p < 0.01. A perhaps more probable proportion of
present projections, such as 60%, would result in a correlation of ρ = -0.44, p < 0.01.
Thus, notwithstanding the possible undersampling of areas of high architectonic
type, our results suggest that areas of lower architectonic type are more frequently
interconnected within the cortical connectome, and regardless of whether or not they
are members of the ‘rich-club’ hub module.

3.2.4 Connection range

The connection distance profiles of cortical areas varied across architectonic types.
When we compared aggregate connection ranges for all areas of a given architectonic
type across all five types, we found a positive relation for the proportion of short
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Figure 3.9: Correlation of structural measures with assigned directionalities of projec-
tions. (A) Architectonic type di�erence ∆type was strongly correlated with projection di-
rections and (B) hierarchical level di�erence ∆level. (C) Hierarchical level di�erence ∆level
was strongly correlated with projection directions. Marker size indicates number of pro-
jections.

projections, such that areas of a higher architectonic type had higher proportions of
short-range connections than areas of a lower architectonic type (JT = 3.1, p < 0.01).
We also found an inverse relation between architectonic type and the proportion of
long projections, such that areas of a lower architectonic type had a higher proportion
of long projections than areas of a higher architectonic type (JT = -2.9, p < 0.01). For
example, the average proportions of short- versus long-range connections for areas
of the highest architectonic differentiation (type 5) were 65% and 9%, respectively,
compared to 45% and 25% for those of the lowest differentiation (type 1).

3.2.5 Laminar projection profiles

We investigated the relationship between the laminar projection patterns of connec-
tions, as coded in their assigned directions of ‘ascending’, ‘lateral’, and ‘descending’,
and the associated ∆type, as well as ∆level. The ∆type was strongly correlated with
both projection direction (ρ = -0.53, p < 0.001, Figure 3.9A) and ∆level (ρ = -0.73,
p < 0.001, Figure 3.9B, compare also Figure 3.3C). Projection direction was also
strongly correlated with ∆level (ρ = 0.74, p < 0.001, Figure 3.9C), which was to be
expected, as the hierarchical arrangements, and therefore the level differences, were
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derived from the projection directions in the first place. Results did not change if
all projections classified as less reliable by Scannell and colleagues (1995) were
excluded from the analysis.

This section has been published in Beul et al. (2015).

3.3 Comparison of the architectonic type principle, the dis-
tance model and the thickness model in the macaque cor-
tex

To assess the architectonic type principle, the distance model and the thickness
model in the adult macaque cortex, we examined the association between the
macaque cortical connectome and three structural measures of the macaque cerebral
cortex: architectonic differentiation quantified by neuron density; spatial proximity
quantified by Euclidean distance; and cortical thickness. We tested how well each of
the three structural measures was related to the existence and the laminar patterns of
projection origins between cortical areas, and could predict the presence or absence
of projections. We also probed the extent to which the structural measures accounted
for laminar projection patterns and whether they were linked to topological properties
of brain regions.

3.3.1 Relations among structural measures

To quantify relative structural similarity across the cortex, we computed, for all
pairs of connected areas, the difference in neuron density or cortical thickness as
measured on a log scale. That is, structural (dis-)similarities were expressed as log-
ratios, while spatial proximity was quantified by Euclidean distance between areas.
The structural measures associated with the cortico-cortical projections were not
completely independent. We found a moderate correlation between the undirected
neuron density ratio and the Euclidean distance of area pairs (r = 0.47, p< 0.001),
whereas the correlation of Euclidean distance with the undirected thickness ratio
was significant but of negligible magnitude (r = 0.12, p< 0.001). In contrast, neuron
density ratio and thickness ratio were strongly negatively correlated (r = -0.76,

85



3.3. Comparison of the architectonic type principle, the distance model and the
thickness model in the macaque cortex

p< 0.001), an association which results from a strong inverse correlation between
the neuron density and thickness of brain areas (r = -0.69, p< 0.001).

3.3.2 Relationship of projection existence to structural measures

We used three different approaches to explore how the three structural measures of
neuron density, cortical thickness and distance relate to the absence and presence of
projections.

In an initial comparison, we found that connected areas were closer or more
similar than non-connected areas for all three structural measures (mean |log-
ratiodensity|(absent) = 0.49, mean |log-ratiodensity|(present) = 0.24, t(1126) = 13.8,
p< 0.001; mean distance(absent) = 32.9 mm, mean distance(present) = 25.7 mm,
t(2608) = 15.1, p< 0.001; mean |log-ratiothickness|(absent) = 0.20, mean |log-
ratiothickness| (present) = 0.14, t(2608) = 11.5, p< 0.001). This effect was largest for
the neuron density ratio (effect sizes: |log-ratiodensity|: r = 0.38, distance: r = 0.28,
|log-ratiothickness|: r = 0.22). Results did not change if Welch’s t-test was applied,
which does not assume equal variances across groups.

Then, to assess the distribution of absent and present projections across the three
structural measures in more detail, we plotted the relative frequency of present
projections across neuron density ratio and Euclidean distance in comparison to the
absolute numbers of absent and present projections (Figure 3.10). For all structural
measures, present projections became relatively less frequent with increasing distance
or structural dissimilarity of two potentially connected areas, as also shown by a rank
correlation coefficient, ρ, of the relative frequencies (|log-ratiodensity|: ρ = -1.00,
p< 0.001; distance: ρ = -0.98, p< 0.001; |log-ratiothickness|: ρ = -0.93, p< 0.01).

3.3.3 Combining neuron density ratio and Euclidean distance allows the
classification of connection existence

Finally, to exploit the association of the structural measures with the existence of
cortico-cortical connections, we used them to classify projections as either absent
or present. We predicted projection presence or absence, using a support vector
machine classifier, based on all seven possible combinations of the three structural
measures (each measure individually, three pairwise combinations of the measures,
and the simultaneous inclusion of all three measures).
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Figure 3.10: Comparison of neuron density similarity and distance for projection frequency.
Distribution of absent and present projections across (A) neuron density ratio and (B) Eu-
clidean distance. Absolute numbers of absent and present projections (bars) are depicted
alongside the corresponding relative frequency of present projections (diamonds).

The best classification performance among the six combinations of one or two mea-
sures was obtained from the combination of the log-ratio of neuron density (i.e.,
density similarity) with Euclidean distance. This pairing was superior to all other
combinations; its accuracy, precision and negative predictive value were not ex-
ceeded at comparable thresholds, and overall performance as quantified by the
mean Youden index J was worse for all other combinations (mean ± standard devia-
tion: J(|log-ratiodensity| & distance) = 0.75 ± 0.04; J(distance & |log-ratiothickness|) =
0.51 ± 0.13; J(|log-ratiodensity| & |log-ratiothickness|) = 0.11 ± 0.03; J(|log-
ratiodensity|) = 0.0 ± 0.0; J(distance) = 0.07 ± 0.03; J(|log-ratiothickness|): no pre-
dictions at thresholds above ppresent = 0.775; see Supplementary Figure C.1 for the
underlying distribution of true positive rate and false positive rate and Supplemen-
tary Figure C.2 for a detailed depiction of the Youden index J across all thresholds).
Including all three structural measures as predictive variables did not improve clas-
sification accuracy or overall performance as assessed by the mean Youden index
(J(|log-ratiodensity| & distance & |log-ratiothickness|) = 0.76 ± 0.04, Figure 3.11C). A
Kruskal-Wallis-test showed that the distributions of the Youden index J were signif-
icantly different between the combinations of the structural measures (H = 549.2,
p< 0.001). Post hoc tests (Bonferroni-corrected for multiple comparisons) revealed
that the distributions of the combination of the log-ratio of neuron density and
Euclidean distance (‘density, distance’) and the combination of the log-ratio of neu-
ron density, Euclidean distance and the log-ratio of thickness (‘density, distance,
thickness’) were not significantly different from each other (p> 0.05), while the
combination of the log-ratio of neuron density and Euclidean distance had a higher
mean J than all other combinations (p< 0.01 for all pair-wise tests).
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Figure 3.11: Classification of projection existence in the macaque cortex from neuron den-
sity similarity and Euclidean distance. (A) Posterior probability of a projection being
present resulting from training the support vector machine classifier on all projections.
Black lines are positioned at ppresent = 0.85 and ppresent = 0.15. Also see Supplementary Ta-
ble D.3 for predictions made about unsampled projections at these thresholds. (B) Cross-
validated classification performance at di�erent thresholds. Mean prediction accuracy for
projections that were predicted to be present and absent (light green) as well as overall
mean prediction accuracy (dark green) are shown. Also shown is the fraction of the test set
that was classified at each threshold (black). Error bars indicate standard deviations. (C)
Youden index J for all combinations of structural measures. Distribution of mean J across
thresholds ppresent = 0.85 to ppresent = 1.00 for all 100 rounds of cross-validation. Boxplots
indicate median textitJ by a black bar and outliers by grey circles.

According to these results, we adopted the combination of the absolute log-ratio of
neuron density and Euclidean distance as predictive variables for our probabilistic
model. Figure 3.11A depicts the posterior probability for a projection to be present
across the predictive variable space for this feature combination. Cross-validated
classification performance across the evaluated thresholds is shown in the remainder
of Figure 3.11. As shown in Figure 3.11B, classification accuracy quickly exceeded
80%, with a sizable fraction of the test set being classified. At higher thresholds,
accuracy notably surpassed 90%, although this was accompanied by a decrease
in the fraction of classified observations. As shown in Supplementary Figure C.1,
higher thresholds were associated with a consistent decrease in the rate of false
positive predictions at an overall high rate of true positive predictions, resulting in a
favourable Youden index J (Figure 3.11C).

Classification performance at all thresholds reliably exceeded chance performance as
assessed by a permutation analysis. The permutation analysis revealed a classification
performance from nonsensical labels that showed a relatively uniform accuracy of
about 65% across tested thresholds. True positive rate and false positive rate equalled
1 across all thresholds, resulting in a Youden index J = 0.0 ± 0.0 for all thresholds.

Using the posterior probabilities obtained by the trained classifier (Figure 3.11A), we
were able to make predictions about the status of projections between area pairs that
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were considered as unknown in the considered data set (Markov et al., 2014a). We
classified unknown projections at the threshold pthreshold = 0.85, as indicated by the
black lines in Figure 3.11A. Projections predicted to be absent or present are listed in
Supplementary Table D.3.

3.3.4 Relation of architecture with connection topology

We found that nodal network properties of cortical areas were related to the areas’
architectonic differentiation. Specifically, areas belonging to the structural network
core had lower neuron density than non-core areas (t(22) = 2.9, p< 0.01, r = 0.52,
Figure 3.12A). Note that the difference in density between non-core and core areas
remained significant if the outlier in the non-core areas (which is area V1) was
removed. Given that a major defining feature of core areas is their high degree
(i.e., the large total number of connections), we tested whether this observation
was indicative of a general relationship between architectonic differentiation and
the connectivity of areas. This analysis revealed that neuron density was strongly
correlated with areal degree of connectivity (r = -0.60, p< 0.01, Figure 3.12B). Note
that this correlation remained significant if a rank correlation was computed instead,
removing differences in magnitude (ρ = -0.47, p = 0.019). The correlation reached
the significance threshold if the data point in the lower right of Figure 3.12B (area V1,
same data point as the outlier in Figure 3.12A) was removed (r = -0.41, p = 0.0509).

Additionally, we tested whether the same relationships could be observed for cortical
thickness. Here the results were inconsistent. While cortical thickness did not differ
between core and non-core areas (t(27) = -2.0, p> 0.05, r = 0.35), thickness was
moderately correlated with the area degree of cortical areas (r = 0.38, p< 0.05).

Furthermore, we compared the neuron density and cortical thickness of five structural
network modules that are related to spatial and functional sub-divisions of the cortex
(specifically, comprising frontal, temporal, somato-motor, parieto-motor and occipito-
temporal regions). These modules or clusters are characterised by denser structural
connectivity within than between the modules (Hilgetag et al., 2000a). Module
assignments were reported by Goulas and colleagues (2014b), who delineated the
modules for the edge-complete subgraph of the 29 injected cortical areas (i.e., 29×29
cortical areas)(Markov et al., 2014a) using a spectral decomposition algorithm. We
found that the network modules differed in their neuron density (H = 13.7, p< .01),
but not in their cortical thickness (H = 7.2, p> 0.05). Post hoc tests, Bonferroni-
corrected for multiple comparisons, revealed that the frontal module had a lower
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Figure 3.12: Variation of topological properties with neuron density in the macaque cortex.
(A) Areas that were identified as belonging to a structural core network by Ercsey-Ravasz
and colleagues (2013) had a significantly lower neuron density than non-core areas. (B)
The number of connections maintained by an area (area degree) decreased with increasing
neuron density.

neuron density than the occipito-temporal module (t(13) = -3.8, p = 0.002, r = 0.73,
with a corrected significance threshold of αadj = 0.005); all other pairwise differences
in neuron density between the modules were not significant after correcting for
multiple comparisons.

3.3.5 Laminar patterns of projection origins

We observed a strong correlation between the fraction of labelled neurons originating
in supragranular layers (NSG%) and log-ratiodensity (r = 0.59, p< 0.001, Figure 3.13A),
as well as a moderate correlation between NSG% and log-ratiothickness (r = -0.42,
p< 0.001, Figure 3.13B). Given the strong correlation between the neuron density
ratio and cortical thickness ratio, we computed a partial correlation of NSG%, log-
ratiodensity, and log-ratiothickness to assess the relative contribution of each variable.
The partial correlation revealed that the correlation between thickness ratio and
laminar patterns was mainly driven by the neuron density ratio, since the correlation
did not reach significance when controlled for neuron density similarity (r = 0.06,
p> 0.05). In contrast, the correlation between the neuron density ratio and laminar
patterns was still significant when controlled for the cortical thickness ratio (r = 0.43,
p< 0.001). Additionally, both NSG% (r = 0.09, p> 0.05, Figure 3.13C) and |NSG%|
(r = 0.003, p> 0.05, Figure 3.13D) were independent of distance. Thus, the only
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Figure 3.13: Variation of laminar patterns of projection origins with structural measures in
the macaque cortex. The fraction of labelled projection neurons originating from supra-
granular layers, NSG%, was strongly correlated with log-ratiodensity (A) and moderately cor-
related with log-ratiothickness (B). Neither NSG% nor |NSG%| was correlated with Euclidean
distance (C,D).

structural measure that was systematically associated with laminar projection patterns
was the architectonic similarity of linked areas.

Results did not change qualitatively if a less conservative threshold of 10 constituting
neurons (instead of 20 neurons) was applied to determine which projections were
excluded from the analyses to guard against unreliable information about the laminar
distribution of projection origins.

This section has been published in Beul et al. (2017).

3.4 Neuron density is a better predictor of cortico-cortical
connectivity than cellular morphological measures

Recent studies have suggested that inter-areal connectivity may be related to a va-
riety of macroscopic as well as microscopic architectonic features of cortical areas.
However, it is unclear how these features are inter-dependent and which of them
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 Neuron density  Soma size  Spine count  Spine density 

 r p-value  r p-value  r p-value  r p-value 

Soma size -0.63 0.0005  - -       

Spine count -0.54 0.0028  0.56 0.0016  - -    

Spine density -0.51 0.0056  0.46 0.0130  0.91 <.0001  - - 

Dendritic tree size  -0.57 0.0012  0.55 0.0017  0.57 0.0005  0.32 0.0679 

 

Table 3.1: Correlation between structural measures in the macaque cortex. Pearson cor-
relation coe�cients r and associated p-values for correlations between neuron density
and the morphological measures. Bonferroni correction for multiple tests results in an
adjusted signifiance threshold of �adj = 0.05/10 = 0.005.

most strongly and fundamentally relate to structural cortico-cortical connectivity. We
systematically investigated the relation of a range of microscopic and macroscopic ar-
chitectonic features of cortical organisation, namely layer 3 pyramidal cell soma cross
section, dendritic synapse count, dendritic synapse density and dendritic tree size as
well as area neuron density, to multiple properties of cortico-cortical connectivity. In
addition, we included spatial proximity, quantified as geodesic distance, as a sixth
structural measure. Importantly, relationships were investigated by multi-variate
analyses to account for the interrelations of features.

3.4.1 Macroscopic and microscopic morphological measures are interre-
lated

The macroscopic and microscopic morphological measures were strongly correlated
with each other, with the possible exception of dendritic spine density. When the
standard significance threshold of α = 0.05 was applied, all correlations but one
(dendritic spine density with dendritic tree size) were statistically significant. Using a
Bonferroni correction for multiple tests resulted in an adjusted significance threshold
of αadj = 0.05/10 = 0.005. Under this criterion, the significance of all but two
correlations remained unaffected. Only the correlation of dendritic spine density
with neuron density and with soma cross section lost statistical significance. Table
3.1 summarises these results. Since the morphological measures presented such
strong interrelations, we chose our methods of analysis accordingly in the following
assessment of connectivity features, relying on procedures that took all measures
into account conjointly.
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Figure 3.14: Relative structural measures di�er between connected and unconnected pairs
of areas in the macaque cortex. Box plots show distributions of absolute values of relative
structural measures for area pairs without (absent) and with (present) a linking projection.
Indicated are median (line), interquartile range (box), data range (whiskers) and outliers
(diamonds, outside of 2.7 standard deviations). See Table 3.2 for a summary.

3.4.2 Neuron density is most consistently related to the existence of pro-
jections

To assess whether the six structural measures were distributed differently across
absent and present projections, we computed independent samples t-tests, using
the undirected, absolute values of the structural measures (Figure 3.14 , Table 3.2).
These showed that connected cortical areas had smaller neuron density ratios than
areas that were not linked. Similarly, linked areas were separated by smaller distances
than unconnected areas. The differences between areas in the four morphological
measures were also smaller if areas were connected than if no connection had been
found. Of all the tested structural measures, effect size was largest for neuron density
ratio.

To explore these differences in structural measures in more detail, we used multi-
variate logistic regression analyses to probe how well the structural measures could
account for the existence of projections (Figure 3.15, Table 3.3). First, we tested
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 Absent projections  Present projections  t-statistic p-value Effect size r 

 Mean Group size  Mean Group size     

Area-based measures        

|log-ratiodensity| 0.67 402  0.35 726  t(1126) = 14.1 <.001 0.39 

geodesic distance [mm] 30.9 995  23.4 1615  t(2608) = 20.2 <.001 0.37 

Cellular morphological measures        

|Δsoma size| [µm²] 71.7 190  59.0 332  t(520) = 2.8 0.005 0.12 

|Δspine count| [#] 3525 205  2743 339  t(542) = 4.2 <.001 0.18 

|Δspine density| [#/10µm] 8.9 205  7.4 339  t(542) = 3.0 0.003 0.13 

|Δtree size| [µm²] 48420 220  38060 374  t(592) = 3.8 <.001 0.15 

 

Table 3.2: Structural measures in connected and unconnected pairs of areas in the
macaque cortex. Absolute values of relative structural measures are averaged across area
pairs without (absent) and with (present) a linking projection. T-statistics, p-values and
e�ect size r are results of two-tailed independent samples t-tests comparing the two re-
spective distributions for equal means. See Figure 3.14 for box plots of the underlying
distributions.

Figure 3.15: Classification of connection existence by logistic regression in the macaque
cortex. Projection existence was classified using logistic regression analyses, which in-
cluded di�erent combinations of the structural measures as covariates. The classification
performance measures adjusted R², Youden index J and prediction accuracy are depicted
for all logistic regressions. See Table 3.3 for regression coe�cients and test statistics of
all regression analyses. Enumeration corresponds to Table 3.3.
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Regression 

covariate t-statistic p-value R²adj J accuracy # observations 

 Covariates included individually     

(1) |log-ratiodensity| -0.81 -11.6 0.0000 0.194 0.291 0.723 1128 

(2) geodesic distance -0.86 -17.5 0.0000 0.182 0.207 0.655 2610 

(3) |Δsoma size| -0.25 -2.8 0.0057 0.020 -0.018 0.619   522 

(4) |Δspine count| -0.39 -4.1 0.0000 0.042 0.041 0.621   544 

(5) |Δspine density| -0.28 -3.0 0.0028 0.022 -0.001 0.614   544 

(6) |Δtree size| -0.33 -3.7 0.0002 0.032 0.053 0.635   594 

(7) intercept 0.48 12.0 0.0000 0.000 0.000 0.619 2610 

(8) Covarivates included simultaneously     

 |log-ratiodensity| -0.74 -4.7 0.0000 0.408 0.453 0.766   384 

 geodesic distance -0.90 -5.8 0.0000     

 |Δsoma size| 0.54 3.2 0.0016     

 
|Δspine count| -0.34 -1.3 0.1798     

 
|Δspine density| -0.01 0.0 0.9667     

 
|Δtree size| 0.00 0.0 0.9833     

(9) |log-ratiodensity| excluded     

 geodesic distance -1.06 -8.4 0.0000 0.314 0.327 0.712   476 

 
|Δsoma size| 0.19 1.5 0.1333     

 
|Δspine count| 0.06 0.3 0.7728     

 
|Δspine density| -0.36 -1.9 0.0550     

 |Δtree size| -0.29 -2.3 0.0229     

(10) geodesic distance excluded     

 |log-ratiodensity| -1.00 -7.0 0.0000 0.300 0.403 0.750   384 

 
|Δsoma size| 0.36 2.5 0.0133     

 
|Δspine count| -0.58 -2.4 0.0144     

 
|Δspine density| 0.14 0.7 0.4903     

 
|Δtree size| 0.07 0.5 0.6181     

(11) |Δsoma size| excluded 
    

 |log-ratiodensity| -0.46 -3.6 0.0003 0.376 0.404 0.743   432 

 geodesic distance -0.85 -6.2 0.0000     

 
|Δspine count| -0.20 -0.9 0.3561     

 
|Δspine density| 0.01 0.0 0.9606     

 
|Δtree size| -0.09 -0.6 0.5549     

(12) |Δspine count| excluded 
    

 |log-ratiodensity| -0.72 -4.6 0.0000 0.403 0.448 0.760   384 

 geodesic distance -0.92 -6.1 0.0000     

 
|Δsoma size| 0.50 3.0 0.0025     

 
|Δspine density| -0.23 -1.5 0.1232     

 
|Δtree size| -0.09 -0.6 0.5514     

(13) |Δspine density| excluded 
    

 |log-ratiodensity| -0.74 -4.7 0.0000 0.408 0.453 0.766   384 

 geodesic distance -0.90 -5.9 0.0000     
 

Table 3.3: Classifiation of connection existence by logistic regression. 95
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Regression 

covariate t-statistic p-value R²adj J accuracy # observations 

(13)  |Δsoma size| 0.54 3.2 0.0015     

cont. |Δspine count| -0.35 -2.0 0.0407     

 
|Δtree size| 0.01 0.0 0.9695     

(14) |Δtree size| excluded 
    

 |log-ratiodensity| -0.74 -4.9 0.0000 0.408 0.453 0.766   384 

 geodesic distance -0.90 -5.9 0.0000     

 
|Δsoma size| 0.54 3.2 0.0016     

 
|Δspine count| -0.34 -1.5 0.1424     

 
|Δspine density| -0.01 -0.1 0.9581     

 

Table 3.3: Classification of connection existence by logistic regression (cont.). We per-
formed logistic regression analyses (enumerated in brackets), each including a di�erent
set of the structural measures as covariates and connectivity (grouped into ’absent’ and
’present’ connections) as the dependent variable. Bold-faced covariates significantly con-
tributed to classification performance as indicated by the p-value. Across all regression
analyses, absolute neuron density ratio, geodesic distance and absolute soma cross sec-
tion di�erence emerged as meaningful predictors.

each structural measure individually (logistic regressions 1–6), computing logistic
regressions with either absolute neuron density ratio, geodesic distance, absolute
soma cross section difference, absolute spine count difference, absolute spine density
difference, or absolute dendritic tree size difference as the only covariate (plus an
intercept term). We also computed a null model that contained only the intercept
term (logistic regression 7) and represented chance performance. Second, we in-
cluded all six measures in conjunction as covariates (logistic regression 8). Third,
we removed each measure separately from the conjoint set of covariates (logistic
regressions 9–14), so that we computed six logistic regressions with five of the six
structural measures as covariates. We assessed model classification performance
through the adjusted generalised R², the Youden index J, and prediction accuracy. As
presented in Table 3.3, each measure contributed significantly (as indicated by the
p-value) to the model performance if it was the only covariate. However, all three
performance measures (R², J and accuracy) indicated that classification performance
was essentially at chance level for all four cellular morphological measures. Both
the neuron density ratio and geodesic distance reached weak classification perfor-
mance on their own, as indicated by R² and J. Accuracy was slightly above chance
performance (logistic regression 7) for geodesic distance and clearly above chance
performance for the neuron density ratio.

Furthermore, if all measures were included as covariates simultaneously, both macro-
scopic area-based measures (i.e., neuron density ratio and geodesic distance) con-

96



3.4. Neuron density is a better predictor of cortico-cortical connectivity than
cellular morphological measures

tributed significantly to the model performance, while the only cellular morphological
measure that remained significant was soma cross section difference. Model perfor-
mance increased to moderate levels as indicated by all three performance measures.
From the overall analysis of model performance, the neuron density ratio emerged as
the most important predictive factor for projection existence. This was indicated by
the fact that the decline in model performance was largest for the exclusion of neuron
density ratio (9), compared to the exclusion of the other five measures (10–14).
Logistic regressions 10 and 11 demonstrated that geodesic distance and soma cross
section difference also added meaningful information regarding the existence of
projections. The other three cellular morphological measures did not contribute any
additional information, as can be seen in logistic regressions 12 to 14, where model
performance was essentially identical to the full model, although either spine count
difference, spine density difference or dendritic tree size difference were excluded.
These observations support our conclusion that neuron density was the structural
measure that principally related to the existence of connections.

3.4.3 Distance and dendritic tree size are related to projection strength

The strength of cortical projections has been shown to diminish with greater distance
of the connected areas (e.g. Ercsey-Ravasz et al., 2013). In a next step, we related all
area-based macroscopic as well as cell-based microscopic measures to the strength
of projections, ln(FLNe), using the undirected, absolute values of the structural
measures. Figure 3.16 and Table 3.4 show that each measure individually was
weakly to moderately correlated with projection strength, with the exception of the
absolute soma cross section difference. The strongest correlation was found for
geodesic distance. For the absolute neuron density ratio, the negative correlation
coefficient signified that areas that were similar in their neuron density (i.e., with
a small absolute density ratio) were linked by stronger projections than areas that
were less similar in their density (i.e., with a large absolute density ratio). Since
most measures were correlated with each other, we entered all measures into a
partial Pearson correlation to assess their relative contribution to projection strength
while the other measures were controlled for. As shown in Table 3.4, when all
other measures were controlled for, geodesic distance and absolute dendritic tree
size difference retained their correlation to projection strength, with the respective
correlation coefficients even gaining slightly in magnitude. The third measure that
was significantly correlated with projection strength in the partial correlation was
the absolute soma cross section difference. Neuron density ratio and spine count
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  Individual correlation  Partial correlation 

FLNe  r p-value  r p-value 

|log-ratiodensity|  -0.25 <0.0001  -0.08   0.2158 

geodesic distance  -0.49 <0.0001  -0.53 <0.0001 

|Δsoma size|  -0.10   0.0787    0.14   0.0319 

|Δspine count|  -0.17   0.0014    0.00   0.9716 

|Δspine density|  -0.12   0.0332  -0.13   0.0527 

|Δtree size|  -0.13   0.0094  -0.19   0.0028 

ranked strength   p-value   p-value 

ranked |log-ratiodensity|    0.24 <0.0001    0.11   0.0800 

ranked geodesic distance    0.51 <0.0001    0.52 <0.0001 

ranked |Δsoma size|    0.17   0.0019  -0.12   0.0656 

ranked |Δspine count|    0.15   0.0050  -0.01   0.8921 

ranked |Δspine density|    0.12   0.0256    0.13   0.0533 

ranked |Δtree size|    0.17   0.0013    0.18   0.0047 

 

Table 3.4: Correlation between projection strength and structural measures in the
macaque cortex. Pearson correlation coe�cients r and associated p-values for correla-
tions between projection strength, expressed either as ln(FLNe) or as ranked strengths,
and absolute values of relative structural measures or ranked absolute values of relative
structural measures. Correlations were assessed both for each measure independently (in-
dividual correlation) and while accounting for all other five measures (partial correlation).
See Figure 3.16 for scatter plots of the underlying distributions.

difference did not correlate with projection strength if all measures were considered
simultaneously. The correlation of spine density difference was close to remaining
significant; the magnitude, however, was very weak. These results were mirrored
in our analysis of ranked projection strength (Figure 3.16, Table 3.4), where we
ranked both the strength of projections (i.e., incoming projections were ordered
from strongest to weakest) and the difference measures per target area. Again,
all measures were significantly correlated with projection strength if considered
individually. The strongest association was again observed for geodesic distance.
However, if all other measures were accounted for in a partial correlation, only
ranked geodesic distance and the ranked absolute dendritic tree size difference
remained significant. All significant correlation coefficients were positive, indicating
that weaker projections (with higher rank numbers) were associated with larger
absolute differences in the structural measures (with higher rank numbers) between
connected areas.
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Figure 3.16: Projection strength varies with relative structural measures in the macaque
cortex. (A) Projection strength for individual projections, FLNe, is shown across absolute
values of relative structural measures. (B) Ranked projection strength of individual pro-
jections is shown across ranked absolute values of relative structural measures. See Table
3.4 for correlation statistics.
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3.4.4 Neuron density is consistently related to laminar patterns of pro-
jection origins

Our analyses of the extensive projection origin data provided by Chaudhuri and
colleagues (2015) show that neuron density is consistently related to the laminar
pattern of cortico-cortical projection origins. As seen from Figure 3.17 and Table 3.5,
all directed measures were weakly to moderately correlated with the laminar pattern
of projection origins expressed as supragranular contribution, NSG%. For the neuron
density ratio, the positive correlation coefficient indicated that projections from less
dense areas to denser areas had a more infragranular origin, while projections from
denser to less dense areas had predominantly supragranular origins. For the cellular
morphological measures, the negative correlation coefficient indicated the reverse
relationship. However, in a partial Pearson correlation of NSG% with all measures,
except geodesic distance, only neuron density ratio and spine count difference
retained significance. Although the p-value of the correlation with soma cross section
difference was below the significance threshold, the correlation coefficient changed
its sign while remaining at a weak magnitude, indicating that the correlation was
volatile and not reliable. Geodesic distance, an undirected measure, was tested
for a correlation with an indicator of deviation from bilaminar projection patterns,
|NSG%|. This correlation only reached a weak magnitude. To test the effect of
additionally controlling the partial Pearson correlation for geodesic distance, we
computed a partial Pearson correlation of |NSG%| with geodesic distance as well
as the absolute values of the other five structural measures. Here, absolute neuron
density ratio was the only measure that remained significant, retaining its moderate
magnitude. In conclusion, the variable found to be significantly and most strongly
associated with the laminar pattern of projections across all variations of correlating
the structural measures was the neuron density ratio.

3.4.5 Neuron density is correlated with area degree

Since we previously observed that architectonic differentiation related to the topolog-
ical network property of area degree, we assessed the extent to which this was also
true for the four cellular morphological measures. We decided to perform no further
analyses of rich-club versus periphery nodes here, because our prior analyses showed
that the observed differences in architectonic differentiation between the two sets
of areas generalised to the relation between architectonic differentiation and area
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geodesic

Figure 3.17: Laminar projection patterns vary with relative structural measures in the
macaque cortex. Fraction of supragranularly labelled neurons for individual projections,
NSG%, is shown across relative structural measures. Note that for geodesic distance, the
measure of deviation from columnar laminar patterns, |NSG%|, is shown instead. See Table
3.5 for correlation statistics.

  
Individual correlation 

with NSG% 
 
Partial correlation 

with NSG% 

   Partial correlation 

with |NSG%| 

  r p-value         r p-value    r p-value 

|log-ratiodensity|   0.43 <.0001   0.40 <.0001  |log-ratiodensity|   0.38 <.0001 

geodesic distance*   0.12  0.0001   -/-  -/-  geodesic distance*  -0.07  0.3651 

|Δsoma size|  -0.21  0.0009   0.20  0.0090  |Δsoma size|  -0.03  0.7406 

|Δspine count|  -0.47 <.0001  -0.18  0.0206  |Δspine count|    0.09  0.2708 

|Δspine density|  -0.35 <.0001   0.08  0.2910  |Δspine density|     0.07  0.3658 

|Δtree size|  -0.47 <.0001  -0.11  0.1428  |Δtree size|    0.02  0.7975 

 

Table 3.5: Correlation between laminar projection patterns and structural measures in the
macaque cortex. Pearson correlation coe�cients r and associated p-values for correla-
tions between NSG% and relative structural measures are reported. Correlations were as-
sessed both for each measure independently (individual correlation with NSG%) and while
accounting for four other measures (partial correlation with NSG%). Geodesic distance
could not be correlated with NSG%, because it is an undirected measure. Instead, the indi-
vidual correlation of geodesic distance with laminar patterns (marked ‘*’) was computed
using |NSG%|, which indicates deviation from bilaminar projection patterns. Accordingly,
we also computed a partial correlation accounting for all six structural measures at once,
which had to include the absolute values of the relative structural measures (partial cor-
relation with |NSG%|). See Figure 3.17 for scatter plots of the underlying distributions.
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Figure 3.18: Area degree varies with structural measures in the macaque cortex. The num-
ber of projections an area maintains, area degree, is shown across structural measures
for each area. Depicted are overall degree, out-degree and in-degree on the 29 x 29 edge-
complete subgraph, as well as cortex-wide in-degree. See Table 3.6 for correlation statis-
tics. All data points (black and grey) were considered in the individual correlations re-
ported there, while only black data points were considered in the partial correlation.

degree that we analyse here.

As done previously (Scholtens et al., 2014; Section 3.3), we examined the correlation
of structural measures with overall area degree, the number of connections a cortical
region maintains (within the 29 × 29 edge-complete subgraph). We tested five of the
six measures. Spatial proximity was excluded, because geodesic distance is inherently
relational and cannot be related to a measure pertaining to a single area. Figure
3.18 and Table 3.6 show that of the five tested measures, only neuron density was
significantly correlated with overall area degree (this correlation of neuron density
was reported already in Section 3.3), although the correlation of dendritic tree size
with overall degree was very close to significant. Using a Bonferroni correction for
multiple tests resulted in an adjusted significance threshold of αadj = 0.05/5 = 0.01.
Neuron density remained significantly correlated with overall area degree also under
this criterion. Similarly, in a partial Pearson correlation, only neuron density was
significantly correlated with overall area degree, at a strong magnitude.

In addition to overall area degree, we also considered incoming and outgoing con-
nections separately as in-degree and out-degree (Figure 3.18, Table 3.6). The only
measure that was correlated with out-degree (within the 29 × 29 edge-complete
subgraph), either individually or in a partial correlation, was neuron density, at a
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  Individual correlation  Partial correlation 

Overall degree (29x29)  r p-value         r p-value 

Neuron density  -0.60 0.0020  -0.66 0.0202 

Soma size   0.39 0.1078  -0.16 0.6124 

Spine count   0.12 0.6557  -0.07 0.8181 

Spine density  -0.03 0.9127  -0.27 0.3901 

Dendritic tree size   0.47 0.0515   0.30 0.3403 

Out-degree (29x29)       

Neuron density  -0.61 0.0014  -0.64 0.0260 

Soma size   0.25 0.3104  -0.30 0.3497 

Spine count   0.16 0.5319   0.02 0.9616 

Spine density   0.12 0.6348  -0.13 0.6802 

Dendritic tree size   0.28 0.2628   0.01 0.9784 

In-degree (29x29)       

Neuron density  -0.44 0.0297  -0.44 0.1494 

Soma size   0.38 0.1166   0.03 0.9170 

Spine count   0.05 0.8434  -0.11 0.7262 

Spine density  -0.13 0.6101  -0.26 0.4087 

Dendritic tree size   0.47 0.0484   0.39 0.2129 

In-degree (cortex-wide)       

Neuron density  -0.41 0.0452  -0.27 0.3999 

Soma size   0.43 0.0769   0.19 0.5509 

Spine count   0.15 0.5538   0.07 0.8209 

Spine density  -0.11 0.6749  -0.36 0.2442 

Dendritic tree size   0.53 0.0240   0.28 0.3771 

 

Table 3.6: Correlation between area degree and structural measures in the macaque cortex.
Pearson correlation coe�cients r and associated p-values for correlations between the
structural measures for each area and overall area degree (total number of maintained
connections), out-degree, in-degree or cortex-wide in-degree. Correlations were assessed
both for each measure independently (individual correlation) and while accounting for
the other four measures (partial correlation). Geodesic distance could not be included
because it is a relational property which is not defined for individual areas. Bonferroni
correction for multiple tests results in an adjusted significance threshold of �adj = 0.05/
5 = 0.01 for the individual correlations. See Figure 3.18 for scatter plots of the underlying
distributions.

strong magnitude, mirroring the results for overall area degree. In-degree (both
within the 29 × 29 edge-complete subgraph and cortex-wide across all 91 areas in
the M132 parcellation) was moderately to strongly and significantly correlated with
both neuron density and dendritic tree size if the measures were correlated individ-
ually. However, in a partial correlation no correlation remained significant. Both
neuron density and dendritic tree size retained correlation coefficients of moderate
magnitudes, however.
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3.4.6 Discarding very weak projections does not a�ect observed relation-
ships

To exclude the possibility that the reported results were mainly driven by very weak
projections that are potentially spurious, we repeated all analyses with a smaller
connectivity data set, from which projections that did not have at least five constituent
axons were excluded (Supplementary Tables D.5 through D.8). All analyses reported
in these supplementary tables were performed in the same way as the corresponding
main analyses (see Tables 3.2 through 3.4, and 3.6), but on a reduced connectivity
data set. Results corresponding to Table 3.1 are not presented here, because the
structural measures did not change through applying a cutoff to the connectivity
data set. Results corresponding to Table 3.5 are not presented here, because we
applied a cutoff of 20 constituent axons to the connectivity data set in the main
analyses of laminar projection patterns and no further connections were excluded
by the lower threshold of five constituent axons. None of the reported results was
affected substantially by excluding very weak projections, and the same conclusions
can be drawn as from the main analyses.

This section has been published in Beul and Hilgetag (2019a).

3.5 The architectonic type principle captures laminar projec-
tion patterns early in development

It has been suggested that the architectonic type principle arises in ontogenesis,
hence it would be expected that it can already be observed in early stages of cortical
development. Here, we explore the extent to which the architectonic type principle
is already applicable to laminar patterns of projection origins in immature states of
cortical development. To assess whether laminar patterns of projection origins were
correlated with relative architectonic differentiation of connected areas in the imma-
ture cortex of the macaque monkey, we combined five different resources providing
measures of laminar projection patterns (Kennedy et al., 1989; Batardière et al.,
2002; Chaudhuri et al., 2015; Magrou et al., 2018) and architectonic differentiation
(Hilgetag et al., 2016).

We considered two measures of architectonic differentiation, specifically architectonic
type and neuron density. As mentioned previously, architectonic type is an ordinal

104



3.5. The architectonic type principle captures laminar projection patterns early in
development

measure of differentiation based on a cortical area’s overall appearance in different
types of tissue stains, while neuron density is measured stereologically and has been
shown to be a very distinctive marker (Dombrowski et al., 2001; Section 3.4). Both
measures are strongly correlated with each other (in the sample of areas considered
in the analyses presented here, Spearman rank correlation coefficient ρ = 0.96, p =
3.9e–8). Architectonic type was available for all considered areas, and neuron density
was available for all 4 areas considered by Kennedy and colleagues (1989), for 10 of
the 11 areas considered by Batardière and colleagues (2002), as well as for 14 of the
20 areas considered by Magrou and colleagues (2018). We report results for both
measures to present a more comprehensive set of observations that is more robust
against possible shortcomings of a particular measure.

3.5.1 Immature projection patterns correlate with adult di�erentiation
measures

When immature (i.e., prenatal and neonatal) laminar patterns of projection origins
were compared to their eventual adult composition, a clear correspondence could
be observed, such that the bias in origin layers found in the immature cortex largely
persisted in the adult cortex (Figure 3.19A, Supplementary Table D.10). Consistent
with this observation, immature patterns of laminar origins were strongly correlated
with the difference in architectonic differentiation between connected areas (Figure
3.19B,C, Supplementary Table D.10). For comparison, we also show the relation
between adult NSG%-values and difference in architectonic differentiation in these
panels. Note that the slope of the regression lines becomes steeper for adult laminar
patterns compared to immature patterns, indicating that an initial asymmetry in
laminar contribution becomes more pronounced with maturation. The relation
between immature and adult NSG%-values becomes even clearer in Figure 3.19D
and Figure 3.19E (also see Supplementary Table D.10), though, which show that
the amount of remodelling which a projection undergoes from the immature to
the adult state was also correlated with the connected areas’ relative architectonic
differentiation. This implies that later processes serve to refine a projection’s laminar
origins further towards a laminar bias that was already present from the outset.
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Figure 3.19: Laminar projection patterns in immature macaque cortex. Contribution of
supragranularly labelled neurons (NSG%) to projections targeting areas V1 (K89, neona-
tal) and V4 (B02, fetal) in the immature macaque cortex. (A) Immature NSG% in relation
to the respective adult NSG%. (B) NSG% for both immature and adult cortex in relation
to architectonic di�erentiation measured as di�erence in architectonic type, where type
di�erence = typesource area�typetarget area. (C) NSG% for both immature and adult cortex in
relation to architectonic di�erentiation measured as di�erence in neuron density, where
neuron density di�erence = densitysource area� densitytarget area. (D) Fraction of supragran-
ularly labelled projection neurons observed in the immature cortex that remains in the
adult cortex in relation to di�erence in architectonic type. (E) Fraction of supragranularly
labelled projection neurons observed in the immature cortex that remains in the adult
cortex in relation to di�erence in neuron density. Generally, the supragranular contribu-
tion declines with maturation. That is, in (D) and (E), the value of adult NSG% divided by
immature NSG% is below 1 for most areas. Projection data from K89 (Kennedy et al., 1989)
and B02 (Batardière et al., 2002).
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3.5.2 Loss of visual input does not substantially alter the gradient of pro-
jection patterns

The supragranular contribution to projections in enucleated infant monkeys was
strongly correlated with the respective supragranular contribution in intact adult
monkeys, especially if connections from highly perturbed area V1 (cf. detailed de-
scriptions in Magrou et al., 2018) were excluded (Figure 3.20A, Supplementary Table
D.11). However, there was a tendency towards higher supragranular contribution in
the enucleated infants (as most data points are above the bisecting line), especially
for projections to area V2. Indeed, a permutation test showed the median change in
NSG% (i.e., enucleated NSG% - intact NSG%) to be larger for injections in V2 than in
V4 (p = 0.01, 104 permutations). Since the tracer was injected at different ages for
projections to V2 and V4, the higher supragranular contribution could be explained
by differences in maturation: V2 was injected earlier (at postnatal day 16) than V4
(at postnatal month 10), which may have caused the NSG% values of projections
targeting V4 to be more similar to the intact adult NSG% values. This hypothesis is in
line with the generally higher NSG% values observed for the prenatal and neonate
injections reported by Batardière and colleagues (2002) and Kennedy and colleagues
(1989). In principle, a comparison with neonatal projection patterns in intact mon-
keys would have been preferable to a comparison to adult patterns, but these data are
not available for the projections between areas reported by Magrou and colleagues
(2018). As it is, it might be argued that the projection patterns after enucleation
were even less affected than it appeared here, since the laminar patterns would
likely undergo further postnatal changes, similar to the change already observed for
injections in the neonatal and the infant cortex. Extrapolating from our analyses in
the previous section, a general decline in supragranular contribution with maturation
seems realistic, which would increase the correspondence between the NSG%-values
of intact adults and enucleated infants once they matured to adults.

Despite the drastic effects of enucleation on the organisation of the primary visual
cortex, the gradual changes in laminar projection patterns that have been reported
to align with the relative architectonic differentiation of connected areas could also
be observed in enucleated infant monkeys (Figure 3.20B,C, Supplementary Table
D.11). The laminar patterns of projections were strongly correlated with the relative
architectonic differentiation of two connected areas, both when it was measured as
difference in architectonic type and as difference in neuron density. Thus, despite
possible changes in projection patterns, the previously observed relation between
laminar patterns and relative differentiation still held even after complete loss of
visual input. In line with the drastic changes to the organisation of V1 (cf. Magrou
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A B C

bisecting line

Figure 3.20: Laminar projection patterns in the macaque cortex after enucleation. Contri-
bution of supragranularly labelled neurons (NSG%) to projections targeting areas V2 and
V4 in the cortex of enucleated macaque monkeys. (A) NSG% after enucleation in relation to
the respective NSG% in intact monkeys. (B) NSG% after enucleation in relation to architec-
tonic di�erentiation measured as di�erence in architectonic type, where type di�erence =
typesource area�typetarget area. (C) NSG% after enucleation in relation to architectonic dif-
ferentiation measured as di�erence in neuron density, where neuron density di�erence =
densitysource area� densitytarget area. Data from V2 and V4 were pooled for correlations and
linear regression. Projections originating in V1 were excluded from the linear regression
because V1 was a�ected very strongly by the enucleation and the resulting NSG%-values
are outliers. Projection data from Chaudhuri and colleagues (2015) and Magrou and col-
leagues (2018).

et al., 2018), projections from V1 appeared to be altered most strongly. While the
correlation of supragranular contribution with architectonic type difference or neuron
density became stronger if V1 data points were excluded, it was strong and significant
even if they were included. This implies, that the establishment of regular laminar
projections patterns is largely independent of typical sensory input, with the possible
exception of the directly perturbed areas.

3.6 Mechanistic underpinnings of the architectonic type prin-
ciple explored by simulation experiments: Existence of
connections

We explored possible mechanisms that might underlie the emergence of the archi-
tectonic type principle in the mammalian cortex using an in silico model of cortical
development. To this end, we simulated the growth of cortico-cortical connections
between areas of different neuron density according to a constant set of growth rules.
We evaluated how closely the simulated connectivity corresponded to empirical
observations made in mammalian connectomes, when the physical substrate of the
connections, that is, the simulated cortical sheet, developed along different spatio-
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temporal trajectories. To this end, we systematically varied the settings of our in silico
model to construct a number of variants, which we refer to as spatio-temporal growth
layouts (see Figure 1.3, Figure 2.3 and Table 2.1 for an overview). We considered
five sets of growth layouts: (1: realistically oriented density gradient) planar growth
of the cortical sheet, such that cortical areas were added around neurogenetic origins,
with new areas having an increasingly higher neuron density (i.e., neuron density
increased with distance from a point of origin); (2: inverse density gradient) planar
growth of the cortical sheet, such that cortical areas were added around neurogenetic
origins, but with new areas having increasingly lower neuron density (i.e., neuron
density decreased with distance from a point of origin); (3: radial) no planar growth
of cortical areas on the fringes of the cortical sheet, but gradual addition of neurons
at a constant rate across the cortical sheet, which resulted in an ordered gradient of
area neuron density that was the same as in sets 1 and 4; (4: static) no planar growth
of cortical areas, but the same final gradient of area neuron density as in sets 1 and 3;
(5: random) planar growth of the cortical sheet, such that cortical areas were added
around neurogenetic origins, but with no ordered gradient of area neuron density,
instead neuron density varied randomly between locations on the cortical sheet.
For all five sets, we implemented three growth modes: (1D 1row) one-dimensional
growth implemented with one row of areas; (1D 2rows) one-dimensional growth
implemented with two rows of areas; and (2D) two-dimensional growth. For all
five sets, all three growth modes were implemented with planar growth around two
neurogenetic origins. For set 1 (realistically oriented density gradient), we additionally
implemented each growth mode with one neurogenetic origin as well as three (1D
growth) or four (2D growth) neurogenetic origins. Thus, in total, we considered 21
growth layouts, grouped into five sets according to the spatio-temporal trajectory the
cortical sheet traversed.

We first present some general statistics of the simulated connectivity and then go on
to characterise how well the relationship between connectivity and the two factors of
(relative) neuron density and spatial distance corresponded to previously published
empirical observations for the different growth layouts. Finally, we assess how well
the different growth layouts predicted empirical connectivity, as an indication of
how realistic the simulated connectivity was for a given growth layout (Figure 2.4
provides an outline of this procedure). Table 3.7 gives an overview of all results.
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set 

growth 

mode 

# 

origins 

connectivity 

between areas 

of similar 

neuron density 

classification of 

connections: 

simulation from 

simulation 

number of 

connections 

classification of connections:  

empirical from simulation 

accuracy 

Youden index 

J 
realistically 

oriented 

gradient 

1D 1 row 1 ✓ ✓ ✓ ? ✓ 

1D 2 rows 1 ✓ ✓ ✓ ? ✓ 

2D 1 ✓ ✓  ✓  

1D 1 row 2 ✓ ✓ ✓ ✓ ✓ 

1D 2 rows 2 ✓ ✓ ✓ ✓ ✓ 

2D 2 ✓ ✓  ✓ ✓ 

1D 1 row 3 ✓ ✓ ✓ ✓ ✓ 

1D 2 rows 3 ✓ ✓ ✓ ✓ ✓ 

2D 3 ✓ ✓  ✓ ✓ 

inverse 

gradient 
1D 1 row 2 ✓ ?  ? ? 

1D 2 rows 2 ✓ ?    

2D 2 ✓ ?  ?  

radial 1D 1 row 2    ?  

1D 2 rows 2 ?   ?  

2D 2 ✓     

static 1D 1 row 2      

1D 2 rows 2      

2D 2 ✓   ✓  

random 1D 1 row 2    ?  

1D 2 rows 2    ?  

2D 2 ✓     

corresponding measure   

correlation of 

relative 
connection 

frequency vs 

|density 

difference| 

McFadden's 
Pseudo R² for 

|density 

difference| 

correlation of 
area degree 

vs density 

classification of connection 

existence in cat and macaque 
cortex:  

accuracy Youden index J 

 

Table 3.7: Summary of correspondence between simulation results and empirical obser-
vations. This table provides an estimate of the extent to which the connectivity resulting
from each growth layout corresponds to expectations derived from empirically observed
phenomena. 3: good correspondence, ?: inconclusive, 7: no close correspondence.
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3.6.1 Connection statistics

The cortico-cortical networks resulting from the simulations showed realistic levels
of overall connectivity, with between 39% and 66% of possible connections present
(Figure 3.21A, Supplementary Table D.12). Previously, between 50% and 77% of
connections were reported to be present in the macaque and cat cortex (Felleman
and Van Essen, 1991; Markov et al., 2014a; Section 3.2). Some 2D growth layouts
reached higher levels of connectivity, with up to 87% of possible connections present.
This connection density translated into several hundreds of inter-areal connections
(Figure 3.21B, Supplementary Table D.12), with between 250 and 400 connections
for growth mode 1D 1row and between 900 and 1500 connections for growth mode
1D 2rows. Due to the large number of areas, connection numbers were much higher
for 2D growth layouts, between 8000 and 18600.

3.6.2 Contributions of distance and density di�erence to connectivity pat-
terns

We first checked how well the simulated networks corresponded to the empirical
observation that a larger fraction of connections is present between regions that
are more similar in neuron density, as suggested by the architectonic type principle,
and spatially closer to each other. To this end, we computed the relative frequency
of present connections (Figure 3.22, Supplementary Table D.12). We then exam-
ined how well both factors, absolute density difference and distance, enabled the
reconstruction of the simulated networks using logistic regression. Specifically, we
assessed these relations by computing McFadden’s Pseudo R² statistic, which provides
a measure of the increase in the model log-likelihood with inclusion of either or both
factors compared to a null model (Figure 3.23, Supplementary Table D.12).

Relative frequency of present connections

In general, connections were more likely to be present across smaller distances
(Figure 3.22, Supplementary Figure C.4). The relative frequency of present connec-
tions was very strongly negatively correlated with the distance between areas. The
correlation was significant for all growth layouts, except for the 2D 1origin growth
layout. This effect was due to very weak connections being formed across even
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Figure 3.21: Connection statistics of simulation experiments. (A) Percentage of connected
areas, shown as the fraction of possible connections that are present in the final simulated
network. (B) Total number of connections among all areas. Box plots show distribution
across 100 simulation instances per growth layout, indicating median (line), interquar-
tile range (box), data range (whiskers) and outliers (crosses, outside of 2.7 standard de-
viations). See Supplementary Table D.12 for a summary. Abbreviations and background
colours as in Table 2.1.
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Figure 3.22: Correlation of distance and absolute density di�erence with relative connec-
tion frequency in silico. Spearman rank correlation coe�cients are provided for the cor-
relation between relative connection frequency and distance (blue) or absolute density
di�erence (green). A sign test was used to test whether the distribution of associated
Spearman rank correlation p-values had a median value smaller than � = 0.05. The result
of the sign test is indicated on top; black star: median p < 0.05, red circle: median p�
0.05. See Supplementary Figure C.4 for representative plots of the correlation for individ-
ual simulation instances. Box plots show distribution across 100 simulation instances per
growth layout, indicating median (line), interquartile range (box), data range (whiskers)
and outliers (crosses, outside of 2.7 standard deviations). See Supplementary Table D.12
for a summary. Abbreviations and background colours as in Table 2.1.

the longest distances in this growth layout, which resulted in a moderate positive
correlation that did not reach significance. However, also for this growth layout, the
correlation became strongly negative and significant if connections with fewer than
10 constituent axons were excluded, in line with previous treatment of empirical data
(Barbas et al., 2005).

In contrast, the correlation of relative connection frequency with absolute density
difference was not uniform across all growth layouts. For 1D random, static and radial
growth layouts, the absolute density difference was not significantly or else positively
correlated with relative connection frequency. For 2D growth layouts, however, the
correlation was negative and significant for all three of those sets.

Conversely, the absolute density difference was very strongly negatively correlated
with relative projection frequency for all growth layouts with oriented growth (i.e.,
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Figure 3.23: Logistic regression performance for classification of simulation data from sim-
ulation data. Within each growth layout, a logistic regression was performed to classify
connection existence from three sets of factors: distance (blue), absolute density di�erence
(green), or distance as well as absolute density di�erence simultaneously (purple). To as-
sess whether classification performance was better than chance, McFadden’s Pseudo R2

was computed against performance of a null-model, where a constant was the only factor
included in the logistic regression. Box plots show distribution across 100 simulation in-
stances per growth layout, indicating median (line), interquartile range (box), data range
(whiskers) and outliers (crosses, outside of 2.7 standard deviations). See Supplementary
Table D.12 for a summary. Abbreviations and background colours as in Table 2.1.

realistically oriented density gradient and inverse gradient). The only exceptions here
were the 1D 1row 3origins growth layout and the 2D 4origins growth layout. For
reasons of computational efficiency, these layouts were implemented with only five
and four density difference tiers, respectively. For the 1D 1row 3origins growth layout,
the deviation of relative connection frequency from a perfect negative correlation
in one of the five tiers was, therefore, sufficient to render the rank correlation
insignificant, with a p-value of 0.083. Similarly, for the 2D 4origins growth layout,
the minimal p-value that could be obtained from a rank correlation across the
four tiers was 0.083, which is not low enough to reach significance. However, the
correlation coefficients for both growth layouts consistently indicated a very strong
to perfect negative correlation (cf. also Supplementary Figure C.4).
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Logistic regression

When we predicted connection existence using logistic regression analyses, the inclu-
sion of distance as a predicting factor markedly increased prediction performance as
compared to the constant-only null model, with median McFadden’s Pseudo R2 values
of at least 0.14 (Figure 3.23). This was not true for the 2D growth layouts with planar
growth of the cortical sheet (i.e., the static and radial 2D growth layouts are excepted
here), where distance did not markedly increase prediction performance compared
to the constant-only null model, with median McFadden’s Pseudo R2 values of at
most 0.03. For the radial 2D growth layout, distance performed intermediately with
a median McFadden’s Pseudo R2 value of 0.10, indicating moderate performance.
Absolute density difference as the only predictive factor did not increase predic-
tion performance compared to the constant-only null model for all random, static
and radial growth layouts, with median McFadden’s Pseudo R2 values below 0.03.
However, inclusion of absolute density difference led to an increase in prediction
performance for the growth layouts with oriented growth. For the growth layouts
with a realistically oriented density gradient, the performance increase was moderate
to very high, with median McFadden’s Pseudo R2 values between 0.14 and 0.28. For
growth layouts with an inverse density gradient, in contrast, the performance increase
was very small, with median McFadden’s Pseudo R2 values between 0.04 and 0.08.

Including distance and absolute density difference jointly as predictors for the logistic
regression led to a moderate to very high increase in prediction performance com-
pared to the constant-only null model, with median McFadden’s Pseudo R2 values
of at least 0.13, but mostly above 0.20 and up to 0.75. The only exceptions to this
finding were the random and the inverse 2D growth layouts, which did not reach
median McFadden’s Pseudo R2 of 0.10.

In summary, a logistic regression analysis adequately allowed to predict connection
existence from distance and absolute density difference for the overwhelming majority
of growth layouts. This result was to be expected given the rules of connection growth
that governed the formation of the simulated networks. The notable dissociation that
could be observed in the separate prediction from distance and density difference
was that distance markedly contributed to prediction performance for most growth
layouts, while the contribution of density difference was more specific. Namely,
density difference most strongly predicted connection existence for the layouts with
oriented growth of the cortical sheet and a realistically oriented density gradient.
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Figure 3.24: Correlation of area degree with neuron density in silico. Spearman rank cor-
relation coe�cients for the correlation between area degree (number of connections) and
area neuron density. A sign test was used to test whether the distribution of associated
Spearman rank correlation p-values had a median value smaller than � = 0.05. The result
of the sign test is indicated on top; black star: median p< 0.05, red circle: median p�0.05.
See Supplementary Figure C.5 for representative plots of the correlation for individual sim-
ulation instances. Box plots show distribution across 100 simulation instances per growth
layout, indicating median (line), interquartile range (box), data range (whiskers) and out-
liers (crosses, outside of 2.7 standard deviations). See Supplementary Table D.12 for a sum-
mary. Abbreviations and background colours as in Table 2.1.

3.6.3 Number of connections per area

Another property of the simulated networks that we compared to empirical obser-
vations was area degree (i.e., the number of connections per area). We previously
reported that, in biological cortical networks, the number of connections maintained
by an area is negatively correlated with the area’s architectonic differentiation (Sec-
tions 3.3 and 3.4). Here, we show an analogous analysis for the simulated networks
(Figure 3.24, Supplementary Table D.12, Supplementary Figure C.5). For random,
static and radial growth layouts, area degree was not significantly correlated with
neuron density, with the exception of 2D growth layouts, which showed a positive
and significant correlation in each case.

Growth layouts with realistically oriented density gradients showed a strongly negative,
significant correlation between area degree and neuron density, with median correla-
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tion coefficients between –0.42 and –0.79 for both 1D growth modes. Conversely, for
growth layouts with an inverse density gradient, area degree was strongly positively
correlated with neuron density. For 2D growth along a realistically oriented density
gradient, the observed effect was more variable. Correlation coefficients were of
weak to moderate magnitude, and the correlation was not significant for 2D growth
around one origin (2D 1origin: median ρ = 0.03, median p > 0.05; 2D 2origins:
median ρ = 0.17, median p < 0.05; 2D 4origins: median ρ = 0.34, median p < 0.05).
This observation was in contrast to the strongly positive and significant correlations
observed for the 2D growth layouts without oriented growth, where median corre-
lation coefficients were larger than 0.50 (random 2D: median ρ = 0.54; static 2D:
median ρ = 0.62; radial 2D: median ρ = 0.59). We, therefore, concluded that the
effect of oriented growth along a realistically oriented density gradient on area degree,
as observed for both 1D growth modes, persisted in the 2D growth mode, but that it
was not strong enough to completely abolish the tendency for a positive correlation
between area degree and neuron density inherent to the 2D growth layouts, instead
only diminishing the positive correlation.

In summary, the empirically observed negative correlation between area degree
and neuron density was only reproduced for the growth layouts with a realistically
oriented density gradient. We cannot rule out that there existed a minor contribution
of geometric centrality to this relationship. However, taking into account the results
for the radial and static growth layouts made clear that such an effect, if there was any
in the realistically oriented density gradient growth layouts, could only be secondary.
Without expansive, planar growth, there is no temporal advantage helping earlier-
formed areas to accrue more connections. Any negative correlation between neuron
density and area degree would, thus, be caused by geometric centrality. Figure 3.24
illustrates that no such correlation arises for the radial and static growth layouts,
where instead area degree appears to vary randomly with neuron density.

3.6.4 Prediction of empirical connection existence from simulated net-
works

In the previous sections, we showed that empirically observed regularities, particu-
larly a close relationship between connection existence and the two factors of relative
neuron density and spatial distance, could be reproduced in silico. We further charac-
terised how well the simulation captured this phenomenon by predicting empirical
connectivity using classifiers trained on the simulated networks. Classification perfor-
mance was used as a measure of how well the properties of the artificially generated
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networks reflected the characteristics of empirical brain networks, in particular, the
macaque and cat cortical connectomes. We report two measures of classification
performance, accuracy and the Youden index, J. Accuracy was calculated as the
percentage of predictions that were correct, while the Youden index is a summary
measure that takes into account both the rate of true positives and the rate of true
negatives and indicates divergence from chance performance.

As seen from Figure 3.25 and Figure 3.26, classification performance was generally
higher for the macaque connectome than for the cat connectome. However, the
described differences between growth layouts held for both species. We also provide
the fraction of the available empirical connections that were classified in each species
(Figure 3.27, Supplementary Table D.13). Generally, between 30% and 60% of the
empirical connections were classified, with some growth layouts reaching up to
86%. However, for some growth layouts, nearly no empirical connections reached
posterior probabilities of at least 0.75 (the minimal threshold applied for assigning a
predicted label), and, thus, very low fractions of the available empirical connections
were classified. Specifically, this applied to random growth layouts (median fraction
classified between <0.01 and 0.14) and the inverse 2D growth layout (median fraction
classified macaque: 0.08, cat: 0.05). The overall low posterior probabilities for these
growth layouts and the resulting small fraction of classified empirical connections
already suggested that the properties of those layouts did not correspond well to
the properties of the empirical networks. This impression was corroborated by the
classification performance measures (see below).

Accuracy

While classification accuracy is not a comprehensive measure to quantify classification
performance, we included it to provide an overall impression of prediction quality. As
seen in Figure 3.25 and Supplementary Table D.13, accuracy for most growth layouts
surpassed chance performance, as assessed by a permutation analysis. Only the
random and radial 2D growth layouts did not consistently reach better-than-chance
accuracy. For classification of macaque connectivity, median accuracies that were
better than chance ranged between 0.64 and 0.88, while the range of median accuracy
for classification of cat connectivity was between 0.50 and 0.90. Comparing the
different growth layouts, accuracy was generally higher for layouts with a realistically
oriented density gradient than for random, static, radial or inverse growth layouts. The
accuracies obtained for realistically oriented density gradient growth layouts compared
well to the accuracies we reported for the classification of empirical connectivity from
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Figure 3.25: Classification accuracy for prediction of empirical connection existence from
simulation data. A classifier was trained to predict connection existence of a simulated
network from the associated distance and absolute density di�erence. Classification ac-
curacy for predicting existence of connections in two species (macaque, blue; cat, green)
by this classifier is shown. Accuracy was determined at each classification threshold (see
Section 2.4.4.4); here, we show mean accuracy across thresholds 0.750 to 0.975. Whether
classification accuracy was better than chance was assessed by a permutation test, where
classification accuracy was calculated for prediction from randomly permuted labels and
a z-test was performed. A sign test was used to test whether the distribution of associated
z-test p-values had a median value smaller than � = 0.05. The result of the sign test is indi-
cated on top; black star: performance better than chance with median p< 0.05, red circle:
performance not better than chance with median p�0.05. Box plots show distribution
across 100 simulation instances per growth layout, indicating median (line), interquar-
tile range (box), data range (whiskers) and outliers (crosses, outside of 2.7 standard de-
viations). See Supplementary Table D.13 for a summary. Abbreviations and background
colours as in Table 2.1.

the corresponding empirical structural measures, which were between 0.85 and 0.99
for the thresholds used here (cat: Section 3.2; macaque: Section 3.3). The better
performance of realistically oriented density gradient growth layouts was especially
apparent if corresponding layouts were compared, for instance, in the macaque,
the random 1D 2rows growth layout (median accuracy = 0.80) with the realistically
oriented density gradient 1D 2rows 2origins growth layout (median accuracy = 0.86).
Exceptions were, in the macaque, the random 1D 1row growth layout and the inverse
2D growth layout, as well as, in the macaque and in the cat, the static 2D growth
layout, all of which had higher accuracy than the corresponding realistically oriented
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Figure 3.26: Youden index for prediction of empirical connection existence from simula-
tion data. A classifier was trained to predict connection existence of a simulated network
from the associated distance and absolute density di�erence. Youden index J for predict-
ing existence of connections in two species (macaque, blue; cat, green) by this classifier
is shown. Youden index J was determined at each classification threshold (see Section
2.4.4.4); here, we show mean J across thresholds 0.750 to 0.975. Whether the Youden index
was better than chance was assessed by a permutation test, where J was calculated for pre-
diction from randomly permuted labels and a z-test was performed. A sign test was used
to test whether the distribution of associated z-test p-values had a median value smaller
than � = 0.05. The result of the sign test is indicated on top; black star: performance bet-
ter than chance with median p < 0.05, red circle: performance not better than chance
with median p�0.05. Box plots show distribution across 100 simulation instances per
growth layout, indicating median (line), interquartile range (box), data range (whiskers)
and outliers (crosses, outside of 2.7 standard deviations). See Supplementary Table D.13
for a summary. Abbreviations and background colours as in Table 2.1.

growth layout. However, all three growth layouts appeared inferior when their
Youden index was considered (see below). Specifically, the random 1D 1row growth
layout was very variable in terms of both accuracy and Youden index of classification
performance, in contrast to the narrow distributions obtained for the realistically
oriented density gradient 1D 1row 2origins growth layout. The inverse 2D growth
layout reached a high accuracy for the prediction of macaque connectivity, but the
Youden index showed that this did not lead to an overall prediction performance
that was better than chance. Finally, for the prediction of both macaque and cat
connectivity, the Youden index for the static 2D growth layout was below 0.20,
indicating low overall prediction performance even though the obtained accuracies
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Figure 3.27: Percentage of empirical connectivity data that were classified from simulation
data. A classifier was trained to predict connection existence of a simulated network from
the associated distance and absolute density di�erence. This classifier was then used to
predict connection existence in two species (macaque, blue; cat, green). Here, we show
which fraction of the empirical data set was classified. This fraction di�ers across classifi-
cation thresholds (see Section 2.4.4.4); here, we show the mean fraction across thresholds
0.750 to 0.975. Box plots show distribution across 100 simulation instances per growth lay-
out, indicating median (line), interquartile range (box), data range (whiskers) and outliers
(crosses, outside of 2.7 standard deviations). See Supplementary Table D.13 for a summary.
Abbreviations and background colours as in Table 2.1.

were very high.

Youden index

The Youden index J is a helpful summary measure of overall classification perfor-
mance and affords a clear distinction between growth layouts. As seen in Figure
3.26 and Supplementary Table D.13, for most growth layouts J surpassed chance
performance, as assessed by a permutation analysis. Exceptions here were the
random, radial and inverse 2D growth layouts. Across the growth layouts with better-
than-chance performance, classification performance ranged from poor to good,
generally being somewhat higher for classification of the macaque connectome than
for classification of the cat connectome. The highest values of J were reached for the
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layouts with growth along a realistically oriented density gradient. In both species,
performance for these growth layouts was moderate to good (macaque: median J =
0.53–0.68, cat: median J = 0.47–0.59). The only exception here was the 2D 1origin
growth layout, which reached only weak classification performance (macaque: me-
dian J = 0.27, cat: median J = 0.26). For the macaque, this performance compares
well to the values of J that we previously reported for the classification of empirical
connectivity from the corresponding empirical structural measures, where J equalled
0.75 for the classification thresholds 0.85 through 1.00 (Section 3.3). Inclusion of
the thresholds 0.75 and 0.80 would lower that value somewhat (cf. Supplementary
Figure C.2).

Classification performance for the remaining growth layouts, namely the random,
static, radial and inverse layouts, was low to moderate (median J macaque: generally
< 0.49, median J cat: < 0.35). The difference to growth along a realistically oriented
density gradient was particularly apparent if corresponding layouts were compared.
Growth layouts that reached moderate performance were the static, radial and inverse
1D growth layouts in the macaque. Their median J was still notably smaller than the
median J value of the corresponding layout with growth along a realistically oriented
density gradient (1D 1row 2origins: 0.62, 1D 2rows 2origins: 0.68; static 1D 1row:
0.46, static 1D 2rows: 0.47; radial 1D 1row: 0.41, radial 1D 2rows: 0.44; inverse 1D
1row: 0.49, inverse 1D 2rows: 0.26; all values are for the macaque; cf. Supplementary
Table D.13). The only exception to these observations was the random 1D 1row
growth layout. In the macaque, this growth layout reached a median J of 0.65.
However, the Youden index was also distributed very broadly, with a range of 0.36
to 0.85, indicating that classification performance was not consistently good, but
volatile and strongly dependent on the particular random neuron density patterns
emerging in a given simulation instance.

Classification performance varied with number of simulated growth origins

To assess differences in classification performance in more detail, we compared the
layouts with growth along a realistically oriented density gradient among each other.
Table 3.8 shows the results of a three-way analysis of variance for both accuracy
and Youden index among the nine growth layouts of set 1. We included the factors
‘species’ (macaque, cat), ‘growth mode’ (1D 1row, 1D 2rows, 2D) and ‘number of
origins’ (1, 2, 3/4). For both accuracy and Youden index, the main effects of these
three factors were significant. We performed post-hoc comparisons to describe the
effect of the number of origins in more detail. As can be seen from Table 3.9, the
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Accuracy    
 

Youden index J 

Factor 
 

Sum Sq. d.f. Mean Sq. F Prob>F 
 

Sum Sq. d.f. Mean Sq. F Prob>F 

species  2.00 1 2.00 1847.0 0    4.40 1 4.40 1283.7 0 

origins  1.24 2 0.62   572.8 0    5.52 2 2.76   804.0 0 

growth 

mode 

 
0.28  2 0.14   128.7 0 

 
  8.03 2 4.02 1170.7 0 

Error  1.94 1794 0.00      6.15 1794 0.00   

Total  5.46 1799     24.11 1799    

 

Table 3.8: Analysis of variance on classification performance of realistically oriented den-
sity gradient growth layouts. A three-way analysis of variance was performed for both
classification accuracy (see Figure 3.25, Supplementary Table D.13) and Youden index J (see
Figure 3.26, Supplementary Table D.13), testing for e�ects of the factors ‘species’, ‘number
of origins’, and ‘growth mode’. Sum Sq., Sum of squares; d.f., degrees of freedom; Mean Sq.,
mean squares = Sum.Sq. / d.f.

  Accuracy  Youden index J 

model estimates     

  estimated mean standard error est. mean  estimated mean standard error est. mean 

1 origin  0.762 0.0013  0.450 0.0024 

2 origins  0.824 0.0013  0.568 0.0024 

3/4 origins  0.808 0.0013  0.567 0.0024 

post-hoc comparisons     

  difference est. means p-value difference est.  difference est. means p-value difference est. 

1 vs 2  -0.066 0  -0.118 0 

1 vs 3/4  -0.046 0  -0.117 0 

2 vs 3/4    0.016 0    0.001 1 

 

Table 3.9: Post-hoc comparisons for classification performance of realistically oriented
density gradient growth layouts. Post-hoc comparisons were computed to assess how
classification accuracy and Youden index J were a�ected by the factor ‘number of origins’
in the analysis of variance model. The upper section shows the marginal means estimated
from the analysis of variance model. The lower section shows the results of the post-hoc
tests for di�erences between the estimated means.
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comparisons showed that classification performance increased as the number of
origins changed from one to two, but did not markedly increase further with addition
of a third or fourth origin. In fact, for accuracy, there even was a slight decrease in
the model estimate for three or four origins compared to two origins. This suggests
that the network properties generated by growth around two origins were closer to
empirical reality than those of networks grown around one origin, while a third or
fourth origin did not further improve correspondence.

This section has been published in Beul et al. (2018).

3.7 Mechanistic underpinnings of the architectonic type prin-
ciple explored by simulation experiments: Laminar pat-
terns of connection origins

Building on the results presented in the preceding section, which demonstrated that
realistic assumptions about neurogenesis, successive tissue growth and stochastic
connection formation could interact to produce patterns of connection existence that
were similar to empirically observed cortico-cortical connectivity, we expanded our
in silico model to address the emergence of laminar patterns of projection origins.

We systematically explored the effects of including three features affecting spatio-
temporal patterns of neurogenesis, and one feature affecting cell-intrinsic properties,
on the laminar patterns of projection origins in the in silico model of the developing
cortical sheet.

3.7.1 At baseline settings, supragranular contribution was not correlated
with relative di�erentiation

When none of these four features was included in the model, that is, it was imple-
mented at baseline settings, there was no correlation between the relative density of
connected areas and the supragranular contribution to the projection linking them
(Figure 3.28). Instead, for source areas of all neuron densities and connections across
all density differences, the distributions of the contribution from the supragranular
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compartment (NSG%) were similar, with a mean around 50% and about equal vari-
ances (cf. Supplementary Figure C.6A), indicating that there was no preferential
connection formation of either laminar compartment across areas or density differ-
ences. Moreover, the extension of the in silico model by laminar compartments did
not affect the characteristics of inter-areal connection existence (i.e., considering
only the binary status of connections as absent or present) reported previously for
the in silico model (Section 3.6). We still observed a negative correlation between the
neuron density of areas and the number of connections they maintain (area degree)
(cf. Supplementary Figure C.7), consistent with empirical observations (Sections
3.2 and 3.3). The application of classifiers, which were trained on the simulated
networks to predict connection existence from relative differentiation and spatial
proximity, to empirical data also resulted in the good classification performance
reported previously (cf. Supplementary Figure C.8), indicating that our expanded in
silico model captured in vivo relationships between architecture, spatial proximity
and connectivity.

3.7.2 Delay in infragranular compartment growth did not a�ect laminar
projection patterns

When the in silico model implementation included a delay between the time of
origin of the layer 1 compartment and the infragranular compartment (with the
supragranular compartment being formed at the same time as the infragranular
compartment), we did not observe changes in the laminar patterns of projection
origins relative to the implementation of the model at baseline settings (Figure 3.28A,
Supplementary Figure C.6B). However, at very long delays, both the magnitude of
the negative correlation of area density with area degree (Supplementary Figure
C.7A) and the simulation-to-empirical classification performance (Supplementary
Figure C.8A) decreased, indicating that the simulated network became less similar to
empirical connectomes with respect to characteristics of connection existence.
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Figure 3.28: Correlation of supragranular contribution with neuron density di�erence in
silico. Spearman rank correlation coe�cients for the correlation between the supragran-
ular contribution of a projection and the neuron density di�erence between the connected
areas. We used a sign test to determine whether the distribution of associated Spearman
rank correlation p-values had a median value smaller than � = 0.05. The result of the sign
test is indicated on top; black star: median p< 0.05, red circle: median p�0.05. (A) Delays
in infragranular compartment growth did not a�ect the correlation. (B) As the growth of
the supragranular compartment was increasingly delayed, a negative correlation

126



3.7. Mechanistic underpinnings of the architectonic type principle explored by
simulation experiments: Laminar patterns of connection origins

Figure 3.28: (cont.) between supragranular contribution and density di�erence emerged.
(C) An increase in the density of the supragranular compartment relative to the infragranu-
lar compartment resulted in a positive correlation. (D) As the axon elongation scaling fac-
tor decreased and elongation values diverged, a positive correlation emerged. Box plots
show distribution across 50 simulation instances per implementation, indicating median
(line), interquartile range (dark grey box), data range (light grey box) and outliers (circles,
outside of 2.7 standard deviations). Parameter values that correspond to baseline (i.e.,
with no feature implemented), are highlighted in purple.

3.7.3 Delay in supragranular compartment growth resulted in negative
correlation of supragranular contribution with relative di�erentia-
tion

Inclusion of a delay between the growth of the infragranular compartment and the
supragranular compartment substantially changed the laminar patterns of projection
origins, resulting in a negative correlation between the relative density of connected
areas and the supragranular compartment contribution to projections (Figure 3.28B).
The longer the time became between the formation of the infragranular compartment
and the formation of the supragranular compartment of areas, the stronger this
negative correlation became. Moreover, at longer delays, the magnitude of the
negative correlation of area density with area degree (Supplementary Figure C.7B) as
well as the simulation-to-empirical classification performance (Supplementary Figure
C.8B) decreased, again indicating that the simulated network became less similar to
empirical connectomes with respect to characteristics of connection existence.

Unequal opportunities to connect a�ected laminar projection patterns

To explore how the negative correlation between density difference and supragranular
compartment contribution emerged as the temporal delay between the compartments
increased, we considered the distributions of NSG% values for source areas of different
neuron densities and connections across different density differences (Supplementary
Figure C.6C). As the delay increased, the distributions changed from their uniform
appearance at baseline settings and became strongly skewed. At the longest delays,
the supragranular contribution from areas of low neuron density increased as they
connected to areas of successively higher neuron density (i.e., as the density difference
to the target area became smaller), with connections to areas of similar neuron
density constituted largely by infragranular compartment neurons. In contrast, this
pattern shifted for areas of high neuron density, where connections to areas of similar
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neuron density arose evenly from both the infragranular and the supragranular
compartment while connections to areas of lower neuron density became successively
more dominated by the infragranular compartment as the density difference to the
target area increased. We suggest that these changes in laminar patterns of projection
origins arose from consequences of the delay in supragranular compartment growth
as follows: Neurons in areas of lower neuron density, which were the first to appear
on the cortical sheet, started connecting relatively early, while not all target areas
were available, and therefore connected more frequently to areas of similar neuron
density. But at longer delays, this applied only to the infragranular compartment,
because the supragranular compartments in areas of lower neuron density grew
after a large portion of the cortical sheet had already appeared, affording them
the opportunity to connect across a wide range of density differences. Hence, in
low-density areas, connections to higher-density areas (i.e., across larger negative
density differences) originated predominantly in the supragranular compartment,
while connections to areas with more similar density originated predominantly in
the infragranular compartment. This pattern shifted for high-density areas, which
grew after the low-density areas. Here, the infragranular compartment neurons had
the opportunity to connect to most other areas, which were already present when
these neurons appeared. However, at large delays in supragranular compartment
growth, these infragranular neuron axons travelled across a cortical sheet that was
not populated with supragranular neurons yet, increasing the range the neurons’
axons were likely to traverse before encountering a target neuron (relative to baseline
settings). Supragranular neurons in high-density areas, in contrast, appeared once all
other neurons had grown, making them as likely to encounter target neurons in other
areas as at baseline. Thus, in high-density areas, infragranular compartment neurons
were more likely to reach areas of less similar neuron density than supragranular
neurons, resulting in larger infragranular compartment contribution for connections
across relatively large density differences. As these unequal opportunities to connect,
which areas of different neuron density and their laminar compartments encountered,
combined, they resulted in an overall negative correlation between supragranular
compartment contribution and density difference as the delay of supragranular
compartment growth increased.
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3.7.4 Scaling of supragranular density did not result in representative
laminar patterns of projection origins

Another feature that substantially affected the laminar patterns of projection origins
was a scaling of the neuron density of the supragranular compartment relative to
the infragranular compartment. As the relative density became larger, a successively
stronger positive correlation between the relative density of connected areas and
the supragranular compartment contribution to projections resulted (Figure 3.28C).
The characteristics of connection existence which we considered here, namely the
negative correlation of area density with area degree (Supplementary Figure C.7C) as
well as the simulation-to-empirical classification performance (Supplementary Figure
C.8C), were only negligibly affected by a change in the supragranular compartment
neuron density parameter value.

Supragranular contribution increased due to an increase of relative neuron num-
bers in the supragranular compartment

To identify the source of the positive correlation between density difference and
supragranular compartment contribution, which emerged as the relative density of
the supragranular compartments increased, we again considered the distributions of
NSG% values for source areas of different neuron densities and connections across
different density differences (Supplementary Figure C.6D). As the relative neuron
density increased from areas of lower neuron density to areas of higher neuron
density, and as this divergence became stronger with an increasing scaling parameter
value, the distributions of the NSG% values shifted upwards, away from the balanced
contribution observed at baseline settings and for areas of the lowest neuron density
where infragranular and supragranular compartments were of equal neuron density
across the whole range of parameter values. However, this effect arose exclusively
on the level of source areas. The distribution of NSG% values was uniform for
connections to all target areas (i.e., across all density differences) within source areas
of a given neuron density, indicating that the fraction of supragranular contribution
was unaffected by relative differentiation between connected areas. Since areas of
lower neuron density necessarily formed the connections across the smallest density
differences and areas of higher neuron density correspondingly were the source
of connections with the largest density differences, the aggregate profile of NSG%
values exhibited a systematic increase of NSG% with density difference. In sum, the
positive correlation observed for model implementations with pronounced differences
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between relative laminar neuron density across areas resulted from the fact that
areas of different neuron density had uniform profiles of NSG% values for all their
connections, which, however, differed between areas. It did not result from a graded
pattern of NSG% values found within any one area.

To demonstrate that the positive correlation was mediated exclusively by the in-
creased number of supragranular neurons, we computed a partial correlation of
supragranular compartment contribution with relative neuron density of connected
areas while controlling for the ratio of supragranular compartment neurons to total
neurons in the source area. In individual correlations with supragranular compart-
ment contribution, both measures (density difference and neuron ratio) exhibited
a strong positive correlation (Figure 3.29A). However, if all three measures were
included simultaneously in a partial correlation, the correlation between density dif-
ference and supragranular contribution was abolished, while the correlation between
neuron ratio and supragranular contribution was affected only negligibly (Figure
3.29B). Hence, as the value of the supragranular compartment neuron density scaling
parameter became larger, the difference in neuron numbers between infragranular
and supragranular compartments increased, and became especially pronounced for
areas of higher neuron density. This increase in supragranular neurons accounts for
the increase in NSG% values in the supragranular compartment at higher values of
the supragranular density parameter and is the factor that determines the correlation
between density difference and supragranular compartment contribution.

In vivo, the positive correlation of relative di�erentiation with laminar patterns
of projection origins does not result from a relative increase in supragranular
neuron density

In contrast to the results presented here for our in silico model, the positive correlation
between supragranular contribution and relative architectonic differentiation of
connected areas, which is observed in the mammalian cortex, is not the result of
a combination of distributions of supragranular contribution which differ between
source areas but are uniform within source areas of a given differentiation. Instead,
in the macaque cortex, individual areas across the whole spectrum of architectonic
differentiation exhibit the graded pattern of supragranular contribution increase that
has been reported for the aggregate connectomes. In Figure 3.29C, we show this in
the supragranular contribution to cortico-cortical connections of the macaque brain
reported by Chaudhuri and colleagues (2015), with connections grouped according
to the architectonic differentiation of the source areas (using the qualitative ranking
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Figure 3.29: Neuron density scaling did not result in realistic laminar patterns of projection
origins. (A, B) The positive correlation observed for increasing scaling of supragranular
compartment neuron density is abolished by controlling for the number of supragranular
neurons. (A) Individually, both density di�erence and the ratio of supragranular neurons
to total neurons are increasingly correlated with supragranular contribution as the den-
sity scaling factor increases. (B) However, the correlation of density di�erence with supra-
granular contribution decreases to baseline levels when it is included alongside supra-
to-total neuron ratio in a partial correlation, while correlation values for supra-to-total
neuron ratio are hardly a�ected by the inclusion of density di�erence. Note that no cor-
relation coe�cients are shown for a scaling factor of 1, the baseline value, because here
all supra-to-total ratios are 1 and no correlation can be computed. (C) In the macaque
monkey, supragranular contribution is distributed across di�erences in architectonic dif-
ferentiation (see color scale) in a graded manner even within areas of a particular level
of di�erentiation, contrary to the distributions observed in our simulation experiments
(cf. Supplementary Figure C.6C). Projections are grouped according to the architectonic
type of their source area and the type di�erence between the connected areas (see color
scale) and for each column a median is indicated (target). NSG% values from Chaudhuri
and colleagues (2015), architectonic type values from Hilgetag and colleagues (2016).

131



3.7. Mechanistic underpinnings of the architectonic type principle explored by
simulation experiments: Laminar patterns of connection origins

measure of architectonic type, Hilgetag et al., 2016). The profiles of NSG% values
differ markedly from the uniform distributions observed in similar plots of the
simulated networks.

3.7.5 Divergence in axon elongation resulted in laminar patterns of pro-
jection origins that exhibited the empirically observed relation to
relative di�erentiation

Lastly, we introduced a divergence in the elongation of axons, where distances trav-
elled by axons during each time step differed between infragranular and supragranu-
lar compartment neurons and gradually shifted along with neuron density, mirroring
the phenomenon of changing relative cell sizes observed across the mammalian
cortex (externopyramidization). With increasing divergence in axon elongation, we
observed a stronger positive correlation between supragranular contributions to con-
nections and relative differentiation of connected areas (Figure 3.28D). Taking into
account the distributions of NSG% values across connections of varying density differ-
ence and for source areas of different neuron density (Supplementary Figure C.6D),
it became apparent that the NSG% values differed according to density difference and
moreover became more unequal as the divergence in axon elongations between the
slowest and the fastest growing laminar compartments increased. Hence, varying
the axon elongation affected the correlation between supragranular compartment
contribution and relative differentiation on the level of individual areas, as shown in
the macaque monkey (Figure 3.29C), and not only in aggregate across all areas, as
shown for the scaling of supragranular compartment neuron density (Supplementary
Figure C.6D).

Moreover, the considered characteristics of connection existence, that is, the negative
correlation of area density with area degree (Supplementary Figure C.7D) as well as
the simulation-to-empirical classification performance (Supplementary Figure C.8D),
remained essentially unaffected by the changes in axon elongation.

Spatio-temporal interactions were a necessary condition for the emergence of
the positive correlation between laminar patterns and relative di�erentiation

If the correspondence between time of origin and architectonic differentiation was
removed, the effects reported for diverging axon elongations were abolished. This
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Figure 3.30: Abolishing the ordered neuron density gradient decreased the positive cor-
relation observed for axon elongation scaling. Spearman rank correlation coe�cients
for the correlation between the supragranular contribution of a projection and the neu-
ron density di�erence between the connected areas. Here, we implemented the scaling
in axon elongation but assigned area neuron densities randomly across times of origin,
thus removing the ordered gradient of areas with higher neuron density forming at later
points in time that was present in the other implementations. We used a sign test to de-
termine whether the distribution of associated Spearman rank correlation p-values had a
median value smaller than � = 0.05. The result of the sign test is indicated on top; black
star: median p < 0.05, red circle: median p�0.05. Box plots show distribution across
50 simulation instances per implementation, indicating median (line), interquartile range
(dark grey box), data range (light grey box) and outliers (circles, outside of 2.7 standard
deviations).

could be concluded from implementations of the in silico model in which the neuron
density of areas was drawn randomly from the set of neuron densities present in the
baseline setting. We simulated 50 instances of such a random variation of area neuron
density with time of origin for each parameter value at which we evaluated the feature
of axon elongation. Here, as divergence in axon elongation increased, correlation
between supragranular compartment contribution and density difference increased
slightly, but remained at small magnitudes even for large divergences (Figure 3.30).
Moreover, when the neuron density of an area was not correlated with the area’s
time of neurogenesis, there resulted a positive correlation between neuron density
and area degree (Supplementary Figure C.9A), contrary to what has been observed
empirically (Sections 3.2 and 3.3). In addition, simulation-to-empirical classification
performance was dramatically reduced (Supplementary Figure C.9B) and became
quite variable, indicating that it depended strongly on the concrete random layout of
neuron densities that was realised in a particular simulation instance.
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3.7.6 Combinations of features

If any two of the previously presented features (delay in infragranular compartment
growth, delay in supragranular compartment growth, scaling of supragranular com-
partment neuron density, axon elongation) were combined in the in silico model, no
unexpected effects emerged from their co-occurrence (Supplementary Figure C.10).
Instead, the previously described effects superimposed in a straight-forward manner.
Specifically, a delay in supragranular compartment growth resulted in a relative
decrease in the correlation between supragranular compartment contribution and
relative differentiation, caused by the aforementioned mechanisms. Including a delay
in infragranular compartment growth did not modulate the effects caused by the
other two features. The inclusion of an increase in the supragranular density scaling
parameter value resulted in a relative increase in the correlation between supragran-
ular compartment contribution and relative differentiation, but this correlation was
again abolished by controlling for the number of supragranular neurons. Finally,
including diverging levels of axon elongation resulted in a relative increase in this
correlation. If all four features were implemented simultaneously (Supplementary
Figure C.11), the superposition ensued as expected for the three features of delay in
supragranular compartment growth, scaling of supragranular compartment neuron
density and axon elongation. Again, the effect of supragranular compartment neuron
density scaling was abolished by controlling for the number of supragranular neurons.
At longer delays in infragranular compartment growth, correlation coefficients were
comparatively higher, presenting an effect of this delay that was not observed in the
other feature combinations. Given that this effect did not occur in any of the pair-wise
feature combinations and was not affected by the scaling in supragranular compart-
ment neuron density (since it persisted regardless of whether the supra-to-total
neuron ratio was taken into account), it appears to be specific to the combination of
the three features of the two delays and axon elongation. Since including the delay
in supragranular compartment growth resulted in a negative correlation between
supragranular contribution and relative differentiation, the interaction was not suf-
ficient to increase the correlation coefficient relative to the inclusion of only axon
elongation (Figure 3.28D).

This section has been submitted for peer-review in Beul and Hilgetag (2019b).
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Chapterfour

Discussion

We presented extensive evidence corroborating the presence of an architectonic
type principle, which integrates cortical architecture and connectivity across the
mammalian cortex. In this chapter, we will discuss the results, associated caveats,
and their implications.

But first let us return to the question of whether there exists a generic template
of intrinsic microcircuitry in the cortex, despite pronounced regional differences in
architectonic organisation. The answer depends strongly on how broadly the concept
of stereotypy is framed (Silberberg et al., 2002), but even for the cortical region
studied most intensely in this context, striate cortex, there exists as yet no consensus
on a detailed ‘canonical’ microcircuit. Moreover, differences in circuitry have been
reported across the cortex, which are consistent with the changes in the structural
substrate in which intrinsic connectivity is embedded. In order to account for these
structural differences, we proposed a tentative circuit diagram for the agranular
frontal cortex of the rodent brain, an agranular region which is strikingly opposed to
striate cortex in its architectonic organisation. Our review of the existing literature
points to an intrinsic circuit that features excitatory-to-excitatory and excitatory-to-
inhibitory connections from upper layers to lower layers, as well as from lower layers
to upper layers (Figure 3.1B), but shows no interlaminar inhibitory-to-inhibitory or
inhibitory-to-excitatory connections.

Of course, this synthesis of the available literature has to be appraised cautiously.
Our tentative circuit diagram is based on multiple approaches for structural and
functional circuit investigation (such as electrophysiological paired recordings using



microstimulation, anatomical tracing experiments, or examination of morphological
features using light and electron microscopy), with different caveats and varying
levels of reliability. Importantly, the information was drawn from studies whose
primary goal was not necessarily the characterisation of interlaminar circuitry. Our
circuit diagram is therefore subject to debate and should be modified in the light of
future information. In compiling the circuit diagram, we engaged in some common
simplifications regarding the anatomical substrate in which the connections are
placed. In studying intrinsic circuitry, distinct sublayers are often collapsed, as for
example when layers 5A, 5B and 6 are considered collectively as ‘infragranular’
layers. This treatment may be misleading, since different (sub)layers have been
shown to be involved in distinct processing circuits (e.g. Lübke and Feldmeyer,
2007). The same caveat holds for the merging of diverse neuron types into the
two main classes of inhibitory and excitatory neurons. It discards a wealth of
functionally relevant information about morphological and physiological differences
between neuron types, as well as about cell type specific connectivity (Kozloski
et al., 2001; Silberberg et al., 2002; Thomson and Bannister, 2003; Kampa et al.,
2006; Otsuka and Kawaguchi, 2008, 2009, 2011; Brown and Hestrin, 2009; Xu
and Callaway, 2009; Apicella et al., 2012; Hirai et al., 2012). Not to disambiguate
such significant anatomical features introduces additional uncertainty about the
validity of any intrinsic circuit diagram. Moreover, note that a description of general
layer-to-layer connectivity within a column, as we propose here, does not necessarily
reflect synaptic circuits formed by individual neurons across layers, as, for example,
Binzegger and colleagues (2004) have estimated. Thus, there may exist functionally
relevant differences between the average laminar interconnections described here
and the specific laminar microcircuits formed within these average patterns. A
further dimension that is missing from many descriptions of local microcircuitry is
an estimation of connection strength. However, with current technology, structural
measures of strength, such as the frequency of connections from one cell type onto
another or the number of involved synapses and their morphology, can only be
obtained by arduous manual labour. Moreover, the translation of structural into
functional strength, as expressed by the amplitude of evoked postsynaptic currents, is
opaque: number, size, morphology and position of synapses matter, as do numerous
molecular mechanisms regulating synaptic function at both the pre- and postsynaptic
site. In addition, the impact of evoked currents on postsynaptic cell function depends
on many further factors. All these aspects are not static, but can potentially change
on short time scales (Squire et al., 2008; Buonomano and Maass, 2009; Dityatev
et al., 2010; Eroglu and Barres, 2010; Silver, 2010; Ribrault et al., 2011; Arnsten
et al., 2012; Camiré and Topolnik, 2012; Caroni et al., 2012; Cortés-Mendoza et al.,
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2013; Dallérac et al., 2013; Vitureira and Goda, 2013; Chevaleyre and Piskorowski,
2014).

In summary, although the proposed intrinsic circuitry for agranular cortex is still
speculative, the issue we address remains crucial (Marcus et al., 2014). There has to
be variation in intrinsic circuitry across the cerebral cortex, because the composition
of the cortex is not uniform, but highly variable on a number of dimensions. We are
convinced that a better understanding of the intrinsic cortical circuitry is essential for
an improved comprehension of its physiology, and has to take into account differences
in the cortical structural substrate. We hope that we have provided a starting point
for discussion which will lead to the synthesis of new insights from available data
or further experimental efforts to elucidate circuitry outside of striate cortex, taking
structural variation into consideration.

This section has been published in Beul and Hilgetag (2015).

4.1 The architectonic type principle captures cortico-cortical
connectivity across mammalian cortices

Cortico-cortical connectivity, which is neither random nor regular, exhibits a strikingly
complex organisation. We assessed the extent to which different structural measures
are associated with cortico-cortical connectivity, to gain insights into the principles
underlying its organisation. To this end, we used two extensive data sets of anatomical
tract-tracing experiments, performed in the cat (Scannell et al., 1995) and the
macaque monkey (Markov et al., 2014a).

We considered four structural measures: the architectonic differentiation of cortical
areas; distances between areas; the thickness of cortical areas (only in the macaque
cortex); and their positions in an anatomical hierarchy (Felleman and Van Essen,
1991; Scannell et al., 1995) (only in the cat cortex). There were five main findings:
First, the relative architectonic differentiation of areas contained significant informa-
tion about several aspects of inter-areal cortico-cortical connectivity, including the
existence of projections and their laminar patterns. Second, the spatial separation of
areas across the cortical sheet also contained information about whether connections
are present or not. Therefore, a combination of the two structural measures of
relative differentiation and spatial distance allowed us to classify the existence of
connections in the data sets with high accuracy. Third, the relative position of cat
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cortical areas in previously suggested hierarchical orderings was not informative
about their inter-areal connectivity. Fourth, differences in thickness between macaque
cortical areas, while smaller between connected than between unconnected area
pairs, did not provide information about connectivity beyond what could be inferred
from relative architectonic differentiation. Lastly, the architectonic differentiation of
areas was related to two of their topological properties. These were their membership
in a densely connected ‘rich-club’ hub module or network core, as well as the number
of projections maintained by different areas (area degree).

Thus, architectonic differentiation was the structural measure that related most
consistently and strongly to the investigated features of cortico-cortical connectivity.
Figure 4.1 summarises this finding and displays all present projections that were
included in the analyses. Areas are arranged according to their architectonic differen-
tiation, and projections are colour-coded according to the architectonic similarity of
the connected areas. The dominance of projections linking architectonically similar
areas is quite apparent. Moreover, it is noticeable that hub-module and structural
core areas are clustered at the lower end of the architectonic differentiation scale, as
are areas with a relatively large number of connections (marked by their larger node
size).

4.1.1 Relationship among structural measures

Since we draw inferences about the relative merits of different structural measures,
their interrelations need to be considered. The degree to which relative architectonic
differentiation and spatial proximity covary is not immediately evident. While we
observed a moderate correlation of neuron density ratio and Euclidean distance in the
sample of areas we considered in the macaque cortex, in the data set we considered in
the cat cortex, the absolute architectonic type difference and border distance of area
pairs were not correlated. Architectonic differentiation frequently changes gradually
across the cortical surface of cats (Hassler and Muhs-Clement, 1964; Sanides and
Hoffmann, 1969) and primates (Sanides, 1970; Barbas and Pandya, 1989; Zilles
and Amunts, 2012b), which intertwines relative architectonic differentiation with
the spatial distance between areas. However, the gradual change in architectonic
differentiation repeats multiple times across the cortical sheet, for instance, between
primary and more remote ‘association’ areas within modules. In our approach, we
assessed the proximity of areas along all spatial directions, not just along a select axis
(e.g., caudal to rostral), obscuring potential correlations for specific spatial gradients
of architectonic differentiation. The resulting mixed results regarding their correlation
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Figure 4.1: The architectonic basis of the mammalian connectome. (A) Cat cortical con-
nectome based on architectonic type gradients. All present projections between cortical
areas for which an architectonic type was defined (49 of 65 areas) are displayed. Circles
correspond to architectonic types, cortical areas are placed accordingly. Architectonic type
increases from center to periphery. Projections are colour-coded according to the absolute
architectonic type di�erence of the connected areas. Ordinal projection strength (sparse,
intermediate, or dense) is coded by increasing projection width. Nodes are grouped and
colour-coded according to anatomical modules as indicated. Node sizes indicate the
areas’ (unweighted) degree. Hub-module areas, as classified by Zamora-López and col-
leagues (2010), are marked by a white outline. (B) Macaque cortical connectome based
on neuron density gradients. Grey circles correspond to neuron density, increasing from
center to periphery; cortical areas are positioned accordingly (cf. Figure 2.2). Present pro-
jections between cortical areas are displayed colour-coded according to absolute neuron
density ratios of the connected areas from green (small ratios) via blue to purple (large
ratios). Node sizes indicate the areas’ degree (i.e., number of connections). Areas belong-
ing to a structural core, as classified by Ercsey-Ravasz and colleagues (2013), are filled in
red. Abbreviations as in Markov et al. (2014a).
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thus indicates that the two measures of relative architectonic differentiation and
spatial proximity capture largely independent structural aspects at the global cortical
level, justifying our treatment of them as independent variables. Moreover, spatial
proximity and hierarchical level difference were not correlated in the cat cortex data
set, indicating that they, too, describe independent aspects of cortical organisation.

In contrast, relative architectonic differentiation and hierarchical level difference
were found to be interdependent factors. This association arises inevitably from
the fact that relative architectonic differentiation and laminar patterns are strongly
correlated and that cortical hierarchies are constructed from the laminar patterns, so
that differences in hierarchical levels actually emerge from the strong relationship
between architectonic differentiation and laminar projection patterns.

Lastly, cortical thickness has been reported to be inversely related to neuron density
in the primate cortex (von Economo, 1927), and also in our data set these two
measures were negatively correlated. Thus, these two structural measures are not
independent dimensions of cortical organisation.

Because of these possible interrelations between the structural measures, we designed
our analyses, particularly our use of classification procedures, in such a way that they
were able to account for potential interdependencies.

4.1.2 Connection existence can be classified based on architectonic dif-
ferentiation and spatial proximity

We found that the structural measures differed markedly between pairs of cortical
areas, depending on whether they were connected or unconnected. We capitalised
on this association to classify the existence of projections based on the differences in
structural measures between potentially connected areas. Integrating architectonic
similarity and spatial proximity in predictive models made it possible to determine
whether two areas would be connected with high accuracy (Figure 3.5B, Figure
3.11B). The classifiers trained in the cat and macaque cortex showed that a connec-
tion was most likely to exist between areas that are similar in their architectonic
differentiation and spatially close (Figure 3.5A, Figure 3.11A). While there was con-
siderable uncertainty about the status of projections between cortical areas possessing
combinations of intermediate differences in architectonic differentiation and interme-
diate spatial distance, we were able to derive predictions for the existence of as yet
unstudied projections between cortical areas which fall into those ranges of relative
architectonic differentiation and spatial proximity which were confidently associated
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with either absence or presence of projections. We used the trained classifiers to make
predictions about the status of unsampled projections (Figure 3.5C, Supplementary
Table D.3), which provides an opportunity to compare our models’ performance with
future experimental results, allowing further model validation. For example, the data
sets currently contain insufficient information to resolve the question of which of
the structural measures dominates in cases of opposing predictions. Classification
from alternative feature combinations in the macaque cortex revealed that, when
the three structural measures were used as single predictors, architectonic similarity
yielded the highest maximum Youden index J compared to spatial proximity or
thickness similarity on their own (Supplementary Figure C.2B). This suggests that
the performance of the predictive model hinged predominantly on architectonic
similarity and to a lesser extent on spatial proximity. While thickness similarity also
correlated with the relative frequency of present projections, including this feature
into our predictive model did not improve classification performance. Furthermore,
even though the relative thickness of brain areas was strongly correlated with the
areas’ relative neuron density, substituting density similarity for thickness similarity
led to a considerable decrease in our model’s predictive power.

Our models predict symmetric connectivity, that is, connections from areas of weak to
areas of strong differentiation are expected to be as likely as connections from strong
to weak differentiation. This prediction disregards the possibility that mechanisms
may exist which preferentially mediate connections of one direction over the other,
thus leading to asymmetric connectivity profiles. Furthermore, the data sets provided
an unequal sampling of the predictive variable space, which may have biased the
resulting models.

Nonetheless, the predictive models also revealed that, although the likelihood of a
connection decreased across large differences in architectonic differentiation or long
distances, this effect was mitigated if areas were spatially very close or respectively
very similar in their architectonic differentiation. Thus, although connections were
relatively less likely to exist between spatially remote areas, they did occur prefer-
entially when distance was compensated for by similar architectonic differentiation.
Axonal wiring costs are a major constraint on structural connectivity (Bullmore and
Sporns, 2012) but are not strictly minimised in neural networks (Bullmore and
Sporns, 2009; Chen et al., 2006; Kaiser and Hilgetag, 2006), since connections across
longer distances can provide network shortcuts that boost efficiency from a functional
perspective. In the presented results, we did not explore the impact of potential
functional constraints, such as topological path length (which may be related to func-
tional efficiency), on connectivity features. Naturally, our approach for classifying the
existence of connections could be augmented by considering additional functional or
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topological properties that have been explored previously (Jouve et al., 1998; Costa
et al., 2007). Incorporating a broader range of factors could potentially enable us
to reproduce features of cortico-cortical connectivity that are not resolved by our
models in their current form, such as modularity and hub features, which have been
suggested to result from a combination of spatial and topological properties (Chen
et al., 2013).

Notwithstanding possible additions to the predictive models, our results highlight
architectonic differentiation as a key factor for predicting the occurrence of costly
connections between spatially remote areas.

4.1.3 Topological features are related to architectonic di�erentiation

Topological features of areas, such as their degree, have implications for their inter-
action with other areas in cortical networks. We found that areas belonging to the
core or hub-module of the network of cortico-cortical connections were of weaker
architectonic differentiation than areas in the periphery (Figure 3.12A, Figure 3.6A).
This finding complements the observation that there are differences in several aspects
of regional cellular morphology (e.g., dendritic tree size) between core and periphery
areas (Scholtens et al., 2014). One of the main defining features of core areas is their
exceptionally large number of connections (Hagmann et al., 2008; Harriger et al.,
2012). Therefore, we assessed whether there exists a direct relationship between
architectonic differentiation and area degree (i.e., the number of connections main-
tained by an area), without interposing the classification into core or hub-module
and periphery areas. This analysis revealed a strong general relationship between
area degree and architectonic differentiation across the entire cortex in the cat and
the macaque, where areas of weaker differentiation possessed a larger number of
connections (Figure 3.12B, Figure 3.7A), consistent with previous findings (Barbas
and Pandya, 1989). Moreover, a similar association has been observed in the hu-
man brain, where less differentiated agranular or dysgranular areas had the highest
amount of functional connectivity (Wylie et al., 2015).

More specifically, in the cat cortex, areas of a lower type appeared to possess a larger
number of sparse and intermediate projections added to a backbone of dense con-
nections which remained uniform across areas of all architectonic types (Figure 3.8).
In contrast to architectonic differentiation, cortical thickness in the macaque cortex
showed an inconsistent and weaker relationship to membership in the structural
network core and area degree.
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Shifting focus to the levels of architectonic differentiation which are present in the
different modules that have been identified in the cat and the macaque cortex, we
found variation in architectonic differentiation across modules. Specifically, we
observed the weakest differentiation in the fronto-limbic module and the strongest
differentiation in the visual module (Figure 3.6B). It has been suggested that network
modules in the cortex result from a combination of spatial and topological properties
(Chen et al., 2013). Our findings suggest that architectonic differentiation may be
another factor in the formation of structural modules.

The differences observed in average level of architectonic differentiation in different
cortical modules may partly explain their strong intra-modular connections—since
minimal differences in architectonic differentiation were associated with dense con-
nectivity between areas—and ultimately the separation of cortico-cortical connections
into modular subnetworks linking areas of different sensory and motor functions.
However, the actual mechanisms leading to the formation of cortical modules are
still unresolved (Kaiser and Hilgetag, 2007).

Finally, in the cat cortex, we also found a relationship between the architectonic
differentiation and the connection distances profile of areas, such that areas of a
lower architectonic type had larger proportions of long connections and smaller
proportions of short connections than observed in areas of a higher architectonic
type. Thus, areas of weaker architectonic differentiation appear to be more widely
interlinked with other brain regions, both in terms of their number of connections
and in terms of the spatial range of their connections, compared to regions of stronger
architectonic differentiation which typically correspond to the primary sensory and
immediately neighbouring areas of each major uni-modal module.

4.1.4 Methodological considerations

The presented findings hinge on the reliability of the data sets and analyses employed.
Since, in the cat cortex, we considered data on cortico-cortical connectivity that
were collated across a large number of studies, aspects of the execution as well
as the collation of tract-tracing experiments need to be considered. Moreover, we
used multiple measures of cortical structure, each associated with similar questions
concerning their reliability.
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Data sets of adult cortico-cortical connectivity

We highly value the data set of cortico-cortical connectivity in the macaque monkey
by Markov and colleagues (2014a), because the tract-tracing studies have been
performed to a high technical standard. Moreover, results from the considerable
number of injections can be combined easily, since experimental variables have been
controlled very closely across injections.

In contrast, for the cat cortex, the most comprehensive and detailed data set of
cortico-cortical connectivity that is available (Scannell et al., 1995), is a collation
of results from a wide range of experimental conditions. The data set derives from
anatomical studies published between 1968 and 1991 using intracellular transport
of tracers. While this methodology usually enables the unambiguous detection
of direct inter-areal connections, tracing studies are subject to technical caveats,
which affect especially older results. For example, tracer uptake in fibres of passage
can lead to false-positive results, while false-negative results can be caused by
unsatisfactory tracer uptake, transport and/or detection (reviewed in, e.g., Heimer
and Robards, 1981; Lanciego and Wouterlood, 2011). The data set could therefore
diverge from the actual pattern of connectivity especially by erroneous ‘absences’ of
projections, which cannot be detected in a single tracing experiment. Notwithstanding
these limitations, tract-tracing remains the gold-standard technique for evaluating
structural connections, and the caveats associated with older studies do not detract
from the data set’s unique coverage of the cat cortex.

Another potential limitation of this connectivity data set is the adequacy of the
specific cortical parcellation scheme used by the data collators, since alternative
subdivisions have been proposed for all regions of cat cortex to that adopted by
Scannell and colleagues (1995), which we followed here. The determination of area
boundaries directly relates to connectivity patterns, with subtle differences in the
latter often used to demarcate borders between neighbouring areas. However, global
organisational aspects of brain networks appear to be relatively robust to different
parcellation schemes (de Reus and van den Heuvel, 2013). The collators also
necessarily averaged connectivity across areas, thus masking any inhomogeneities
within and between them, such as possible differences in selective connectivity
strengths between areas of the visual module containing ‘over-representations’ of
central versus peripheral or of upper versus lower fields, or between tonotopic and
non-tonotopic areas of auditory cortex. A further related question concerns the
validity of the criteria used by the collators to assess relative inter-areal connection
strengths (including apparent ‘absences’) across tract-tracing experiments that used
techniques with differing sensitivities. While we acknowledge that future resolution
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of these matters may result in changes to our connectional summary (Figure 4.1),
we do not expect them to obscure the systematic properties of the global cortical
connectome that we have identified.

We further note that, because both connectivity data set contains information exclu-
sively about ipsilateral cortico-cortical connections, our findings provide no insight
into principles governing the connectivity across the cortical hemispheres.

Structural measures

Architectonic di�erentiation We employed two ways to quantify the structural mea-
sure of architectonic differentiation, namely an ordinal ranking into architectonic
types and the quantitative empirical measure of neuron density. One caveat applying
to our architectonic type classification is that architectonic differentiation of the mam-
malian cerebral cortex likely forms a gradual continuum (Sanides and Hoffmann,
1969; Sanides, 1970), as do laminar projection patterns, even though they have
been grouped into ordinal classes (e.g. Grant and Hilgetag, 2005). Therefore, a
measure objectively capturing gradual transitions across the cortex would be more
faithful than the discrete architectonic types we assigned to brain regions. One such
measure is neural density, but unlike for the macaque cortex, such stereologically
measured neuron density data were not available for a significant part of the cat cor-
tex. However, neuron densities across cortical layers have previously been reported
to vary systematically between areas classified into architectonic types by the criteria
used here (Dombrowski et al., 2001). We are confident, therefore, that our discrete
architectonic type classification captured genuine and relevant effects of architectonic
differentiation.

Is it justified, then, to assume that neuron density suitably reflects overall architec-
tonic differentiation? Even though it is a measure of but one aspect of cytoarchi-
tecture, we argue that it is, indeed, the most comprehensive individual measure
indicative of architectonic differentiation that has been objectively quantified for a
considerable number of species and cortical areas. Other crucial features of cytoar-
chitecture include the number and distinctiveness of cortical layers and the relative
width and granularity of layer 4. Additionally, features that cannot be observed in
cytoarchitecture, for example myeloarchitectonic properties, contribute to a fuller
characterisation of cortical differentiation (see Barbas and García-Cabezas, 2015).
However, many of these aspects are difficult to quantify. Moreover, there exists no con-
sistent, objective framework for integrating these measures into a one-dimensional
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ranking of architectonic differentiation. In practice, therefore, estimates of the overall
differentiation of brain areas were usually obtained by subjective expert categorisa-
tions, resulting in the assignment of areas to architectonic types, as we also made
use of. In contrast, neuron density can be determined objectively using unbiased
stereologic methods. In a comparison of multiple quantitative features of cortical
architecture, neuron density turned out to be the most discriminating parameter for
identifying cortical areas in the primate prefrontal cortex (Dombrowski et al., 2001).
The features included in that analysis comprised cortical thickness, and density of
different cell markers, including neurons, glia, and neurons labelled with calbindin,
calretinin or parvalbumin, and their respective laminar distributions. Thus, neuron
density is a well established, characteristic measure for quantifying architectonic
differentiation of cortical areas.

Spatial proximity We quantified spatial proximity using three different measures of
spatial distance: border distance, Euclidean distance, and geodesic distance. All three
measures have in common that they only approximate actual lengths of projections.
This is due to two factors: First, we used generic measures of the distance between
cortical areas, not measures associated with specific projections observed in tract-
tracing experiments (which could only measure distance for present projections, but
not absent ones, in any case). Second, even if projections lengths were attempted
to be measured in tract-tracing experiments, it is technically very challenging to
reconstruct the trajectories of individual axons through the brain for a large number
of tracing experiments. Since no such measures of projection lengths were available
for either the cat or the macaque cortex, we therefore employed pragmatic estimates
of the distance between cortical regions which we assume to correlate strongly with
actual projection lengths.

In the cat cortex, we used the ordinal measure of border distance to quantify the
spatial separation of areas, rather than an interval measure such as Euclidean or
geodesic distance. This was mainly due to the fact that for the cat cortex, there is
currently no detailed three-dimensional atlas available which quantifies the absolute
distance between the mass centres of all areas. To obtain all the Euclidean or geodesic
area separations in the absence of such reliable information would thus have necessi-
tated a number of unsubstantiated assumptions, whereas the use of border distance
requires fewer constraints. Border distances are, however, potentially distorted by
unequal area sizes and do not account for the actual projection lengths, as axons
run under gyri and/or around sulci between their origins and destinations. Despite
these complications, border distance generally correlates strongly with Euclidean and
geodesic distance where these latter are known (e.g., in the macaque cortex, border
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distance with Euclidean distance: ρ = 0.57, p = 0; border distance with geodesic
distance: ρ = 0.66, p = 4e–323).

Cortical thickness Lastly, to quantify the thickness of cortical areas, we used measure-
ments of cortical thickness obtained from structural MRI in one macaque monkey.
The MRI measures provided coverage of all cortical areas, and agreed well with the
corresponding microscopic thickness measurements from histological sections (cf.
Section 2.2.2). This finding is in line with similar agreements between histological
and MRI-based thickness measures seen for cortical regions of the human brain
(Scholtens et al., 2015). Therefore, the thickness measurements were considered reli-
able, despite the small sample size. Reliability was further strengthened by averaging
thickness values for corresponding regions of the left and right hemisphere.

4.1.5 Connectivity is not optimised solely for minimal wiring

We showed that spatial proximity is one structural measure that is reliably associated
with the existence of connections, and strongly relates to the strength of connections.
Spatial proximity did not capture how strongly the laminar distribution of projection
origins deviated from a columnar pattern. We found that, in the cat and macaque
cortex, pairs of areas are less frequently interconnected, the further they are separated
across the cortical surface. This result is consistent with a large number of studies
that investigated constraints of brain connectivity and found neural wiring length to
be of critical importance (Bullmore and Sporns, 2012). However, we also observed
that a significant portion of longer projections was in fact present, mostly when a
large spatial distance was counterbalanced by a small difference in architectonic
differentiation. Hence, brain connectivity does not appear to be exclusively optimised
with respect to physical wiring length, because trade-offs exist, for instance, with
minimal topological path length (Kaiser and Hilgetag, 2006; Bullmore and Sporns,
2009). Thus, individually, the distance model appears useful mainly as a predictor of
the numerical neuron strength (high versus low) of connections.

4.1.6 Cortical thickness is not a suitable predictor of connectivity

While thickness measures have the advantage of being accessible non-invasively
using MRI in humans, their relation to other anatomical features and to structural
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connectivity remains unclear. Our findings suggest that, while cortical thickness may
show similarities to neuron density in its variability across the cerebral cortex, it is an
imperfect surrogate and does not capture the fundamental aspects of brain networks
that can be delineated from architectonic differentiation.

4.1.7 A cortical hierarchy is not a suitable predictor of connectivity

In the cat cortex, hierarchical level difference was strongly correlated with the
assigned ‘hierarchical’ direction of projections (Figure 3.9B). But this finding is
neither surprising nor instructive, as the anatomical hierarchy had been constructed
from these connection orientations in the first place (Scannell et al., 1995), so
that the correlation between the two variables was based on a circular approach.
Concerning the absence or presence of projections, the relative position of two areas
within the hierarchical ordering was uninformative (Figure 3.4C), with areas on
adjacent levels of the hierarchy being no more frequently interconnected than those
separated by more levels. This finding is contrary to the common understanding of
hierarchical cortical schemes (Felleman and Van Essen, 1991). It also resonates with
several other shortcomings of hierarchical processing schemes, such as their failure to
account for the level-skipping nature of many cortico-cortical (and thalamo-cortical)
pathways (Symonds and Rosenquist, 1984; Goldman-Rakic, 1988; Mountcastle,
1995; Hilgetag et al., 2000b; Petroni et al., 2001) or physiological features of cortical
processing, in terms of near-synchronous response latencies (Nowak and Bullier,
1997; Schmolesky et al., 1998) and similarities in receptive field size and complexity
for the same stimulus (Hegdé and Van Essen, 2007) at ‘lower’ and ‘higher’ hierarchical
levels. Moreover, an optimal hierarchy has hitherto proven elusive, as large numbers
of different orderings comply equally well with the constraints provided by the
anatomical data (Hilgetag et al., 1996, 2000a). While the great laminar regularity of
inter-areal projection patterns is certainly intriguing, it remains open for discussion
whether elaborate schemes for ordering brain areas hierarchically are fundamentally
helpful for understanding cortical organisation (Hegdé and Felleman, 2007; Markov
et al., 2013b).
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4.1.8 The architectonic type principle is further corroborated

Previous studies, which were restricted largely to fronto-limbic regions of macaque
monkey cortex (Barbas, 1986; Barbas and Rempel-Clower, 1997; Rempel-Clower and
Barbas, 2000; Barbas et al., 2005) or to the visual module in the cat (Hilgetag and
Grant, 2010), have demonstrated strong associations between architectonic differ-
entiation and laminar connectivity. Here, we reported that the laminar projection
patterns across the whole cat and macaque cortex were very well accounted for by
architectonic similarity. In contrast, there was no systematic relationship between
laminar patterns of projection origins and either distance or cortical thickness in the
macaque cortex, when the correlation with relative architectonic differentiation was
accounted for. Moreover, the associations reported between architectonic differentia-
tion and connection existence as well as topological properties of areas suggest that
several features of cortico-cortical connectivity can largely be accounted for by the
underlying architectonic properties of the cerebral cortex. Specifically, the relative
architectonic differentiation of the cortex provides an essential scaffold for explaining
the organisation of structural brain networks.

Both in the cat and the macaque cortex, architectonic similarity integrated with
spatial proximity was highly predictive of the existence of connections between
area pairs. This close association of cortical architecture with connectivity was
observed for areas distributed across the entire cortical surface, and was not con-
tingent on grouping the areas into functional or anatomical modules of any kind.
Furthermore, an inverse relationship between the architectonic differentiation and
the connection degree of areas was observed in both species, such that areas of
weaker differentiation have more connections. Highly connected areas are often
hubs or members of a functionally prominent rich-club, occupying a topologically
special position within networks of structural connections (e.g. Harriger et al., 2012;
van den Heuvel and Sporns, 2013a). Moreover, weakly differentiated areas likely
differ from more strongly differentiated areas in their intrinsic circuitry and signal
processing properties (cf. Section 3.1). Hence, this observation is indicative of differ-
ences in the functional roles performed by areas across the spectrum of architectonic
differentiation.

In summary, there is excellent correspondence of findings across two mammalian
species and across the entire cerebral cortex. Furthermore, these finding were recently
parallelled in the mouse cortex (Goulas et al., 2017). Analyses of comprehensive
global cortico-cortical connectivity thus closely mirror previous findings across a num-
ber of cortical systems and connection targets, including the contralateral hemisphere
and the amygdala, in several species (Barbas, 1986; Barbas and Rempel-Clower,
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1997; Rempel-Clower and Barbas, 2000; Dombrowski et al., 2001; Barbas et al.,
2005; Medalla and Barbas, 2006; Ghashghaei et al., 2007; Medalla et al., 2007;
Hilgetag and Grant, 2010; Hilgetag et al., 2016; Goulas et al., 2017). Our findings,
therefore, show that the architectonic type principle extends across species and from
the local, intra-modal level to the global organisation of the cerebral cortex as a
whole. Combined with evidence from previous studies, our findings suggest that
the reported association between architectonic differentiation of cortical areas and
features of the inter-areal brain network reflects general organisational principles
underlying the formation and maintenance of connections in the mammalian cortex.

Parts of this section have been published in Beul et al. (2015) and Beul et al. (2017).

4.2 Compared to measures of neuron morphology, neuron
density is a superior indicator of connectivity features

The extent to which cortical architecture determines the organisation of structural
connectivity in the cerebral cortex has been examined from a variety of macroscopic
and microscopic perspectives (Hilgetag and Grant, 2010; Scholtens et al., 2014;
Hilgetag et al., 2016) (for a review see Barbas, 2015). In Section 3.4, we explored the
relative explanatory power of six structural measures with regard to the organisation
of cortico-cortical connections in the macaque cortex. These architectonic measures
were examined individually in previous reports (Scholtens et al., 2014; Hilgetag et
al., 2016; Section 3.3) and fall into two broad categories: The first group consists
of the macroscopic measures of architectonic differentiation, measured as neuron
density, and spatial proximity, measured as geodesic distance. The second group
comprises the microscopic cellular morphological measures of soma cross section,
total dendritic spine count, peak dendritic spine density, and dendritic tree size,
all measured in L3 cortical pyramidal neurons. We considered these measures in
conjunction, to assess how they relate to each other as well as to establish which of
them carried the most weight for explaining fundamental organisational aspects of
the macaque cortical connectome.

We found that all morphological measures were strongly correlated with neuron
density as well as mostly interrelated among each other (Table 3.1). Moreover, all six
structural measures diverged depending on whether areas were linked by a projection
or not (Figure 3.14, Table 3.2). This finding raised the question of whether all of these
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measures contribute equally to the discrimination of cortico-cortical connectivity, or
whether some of them are redundant, being dependent on other factors, and supply
no additional information. Systematic analysis by multivariate logistic regression
analyses (Figure 3.15, Table 3.3) revealed that of the six measures, only three carried
significant information allowing the prediction of projection existence. These were
neuron density, geodesic distance and L3 pyramidal cell soma cross section. The
other three cellular morphological measures did not add any information. Of the
three significant predictive factors, neuron density emerged as the most relevant
factor, reaching the best classification performance on its own and resulting in the
largest decline in classification performance if excluded. This finding suggests that
neuron density was the most informative of the five neural measures regarding the
existence of projections, and arguably even the most informative of all six structural
measures.

We further found that, even if all other structural measures were controlled for,
geodesic distance was strongly and dendritic tree size difference was weakly cor-
related with projection strength (Table 3.4). This is in line with previous reports
showing projection strength to decline as distance between connected areas increases
(Ercsey-Ravasz et al., 2013; Markov et al., 2013b).

Additionally, the laminar patterns of projection origins were correlated with the
neuron density ratio (Figure 3.17, Table 3.5), but they were not correlated as strongly
or as consistently with the other five measures. This corroborates previous findings
on the importance of architectonic differentiation regarding the laminar distribution
of projecting neurons (e.g. Barbas, 1986; Beul et al., 2015; Hilgetag et al., 2016).
Figure 4.2 illustrates the observed patterns of projection origins in the context of the
five neural measures. Furthermore, the observed lack of a meaningful correlation
between laminar projection patterns and spatial proximity directly contradicts the
hypothesis that physical distance has a crucial role in affecting laminar patterns
(Salin and Bullier, 1995).

Moreover, neuron density was the only structural measure that was correlated with
the topological measure of overall area degree, that is, the number of afferent and
efferent connections of cortical areas (Figure 3.18, 3.6). Considering in-degree and
out-degree separately revealed a strong negative correlation between out-degree and
neuron density, even if all other measures were controlled for. That is, areas of weaker
differentiation tended to innervate more areas than more strongly differentiated
areas, which would allow the former to supply modulatory input to a large part
of the cortex. For in-degree, we observed a moderate to strong correlation with
both neuron density and dendritic tree size, both within the edge-complete 29 × 29
subgraph and cortex-wide, if the measures were considered individually. These

151



4.2. Compared to measures of neuron morphology, neuron density is a superior
indicator of connectivity features

Figure 4.2: Projection patterns in the context of cortical structural variation. Both macro-
scopic and microscopic structural measures exhibit concurrent and spatially ordered
changes across the cortex. Such cortical gradients have been described for many prop-
erties of the cortical sheet (e.g. Abbie, 1940; Sanides, 1962; Zilles and Palomero-Gallagher,
2017), and are closely tied to the organisation of structural and functional connections (cf.
Figure 4.3). Here we find that less architectonically di�erentiated cortical areas (agranu-
lar, yellow) are characterised by lower neuron density and more elaborate morphology of
layer 3 pyramidal cells than more strongly di�erentiated areas (eulaminate, dark green),
with gradual changes across the spectrum (light green, medium green). Specifically, as
shown in Table 3.1, higher neuron density correlates with smaller cross section of the
soma and smaller size of the dendritic tree as well as with lower total spine count and
lower peak spine density. Laminar patterns of projection origin are indicated as observed
in this report (cf. Table 3.5) and consistent with the architectonic type principle of corti-
cal connectivity (Barbas, 1986, 2015). Connections between areas of similar architectonic
di�erentiation show a bilaminar projection origin pattern (light green to medium green,
medium green to light green), while connections between areas of distinct di�erentiation
show a skewed unilaminar projection pattern, with projections originating predominantly
in the infragranular or supragranular layers (yellow to dark green, representing agranular
to eulaminate projections, and dark green to yellow, representing eulaminate to agranular
projections).
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correlations were not robust enough to remain significant if all other measures were
controlled for. This could be due to an actual lack of a relationship with in-degree,
or, alternatively, added noise from the other three cellular morphological measures
(which were not significantly correlated with in-degree individually) could have
made a relationship indiscernible. In the latter case, areas of weaker differentiation
as well as areas with larger dendritic tree sizes would tend to be targeted by more
projections. This observation would be in line with less differentiated areas being
set up for the integration of sensory inputs over a relatively large part of the cortex
and for meta-processing (e.g. Goldman-Rakic, 1988; Buckner and Krienen, 2013).
Moreover, to accommodate a larger number of incoming afferents, more dendritic
space might be necessary.

Regardless of their interpretation, the results for in-degree within the edge-complete
29 × 29 subgraph were very similar to the results for cortex-wide in-degree. This
observation corroborates a previous proposition (Ercsey-Ravasz et al., 2013) stating
that the edge-complete 29 × 29 subgraph, whose constituent areas were widely
distributed within the complete set of 91 cortical areas, is representative of the
cortex-wide full network of inter-areal connections. Our analysis of in-degree, thus,
indicates that the results for overall degree as well as out-degree, which took into
account only connections within the 29 × 29 subgraph, reflect genuine cortex-wide
relationships between the structural measures and area degree.

In summary, our analyses indicate that, while the cellular morphological measures
and the area-based measure neuron density are closely related, neuron density is a
more essential predictor of three of the four tested basic features of cortico-cortical
connectivity (projection existence, laminar projection patterns and area degree) than
the cellular morphological measures. Thus, our analyses unify various previous
reports that related different aspects of cortical architecture to each other as well as
to features of cortical connectivity. This finding is consistent with previous reports
which demonstrated that neuron density provided a more characteristic ‘fingerprint’
of the architectonic differentiation of cortical areas than other architectonic measures
(Dombrowski et al., 2001), as well as with reports showing that a close relation
between architectonic differentiation and cortico-cortical connectivity could also be
observed in different mammalian species such as the cat (Hilgetag and Grant, 2010;
Section 3.2), the mouse (Rubinov et al., 2015; Goulas et al., 2017), and humans
(van den Heuvel et al., 2015).
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4.2.1 Limitations of the explanatory power of the cellular measures

The present results show that a characteristic indicator of the overall degree of
architectonic differentiation, neuron density, is well suited to account for structural
connections within the global, macro-scale cortical connectome of the primate. In
contrast, more fine-grained structural aspects of the cortex, such as the cellular
morphological features considered here, convey less information on the connectional
features of areas, appearing as derivate properties determined mostly by overall
regional differentiation. However, it should be noted, that the considered morpholog-
ical measures were solely acquired in supragranular cortical layer 3 and characterise
only pyramidal neurons. Hence, these measures were not designed to comprehen-
sively capture the intrinsic architectonic organisation of cortical areas. Considering
such inherent differences between the measures, it is plausible that neuron density,
as an overall characterisation of area architecture, correlates better with the areas’
macroscopic connectivity properties, as found. If a more detailed characterisation of
cellular morphology was available, for example through equivalent morphological
measures obtained from the infragranular layers, the morphology might be captured
by a summary measure (e.g., ratios across different laminar compartments) which
could be used to characterise overall cortical architecture. Such a more detailed char-
acterisation of cellular morphology might then correlate with macroscopic properties
of the connectome as well as neuron density. Moreover, it will be interesting to see
how such findings might vary across the spectrum of mammalian cortical organisa-
tion, considering that the degree to which architectonic gradients exist within the
cortex of a species is variable across mammals (Goulas et al., 2018, 2019a).

4.2.2 Developmental mechanisms may regulate the covariation of archi-
tectonic measures

Systematic, joint variation of different features of cellular morphology has been
observed between cortical regions within mammalian species. In primates, a higher
number and higher density of spines and more complex dendritic arbors have been
reported in prefrontal cortices compared to motor or sensory cortices (Elston, 2003,
2007; Elston et al., 2011a; Bianchi et al., 2013). In mouse cortex, spine density in
the prelimbic and infralimbic fields is twice as high as in other cortex (Ballesteros-
Yáñez et al., 2010), and spine size varies across the cortex (Benavides-Piccione et al.,
2002). Here, we have shown that these gradual changes in cell morphology are
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aligned with the overall degree of architectonic differentiation observed in cortical
areas, by reporting a negative relationship between architectonic differentiation and
morphological complexity. Figure 4.2 gives an overview of the observed relations
between the five structural measures. Cortical gradients, that is, concurrent and
spatially ordered changes across the cortical sheet, have been described for these and
multiple other macroscopic and microscopic structural measures (e.g. Abbie, 1940;
Sanides, 1962; Zilles and Palomero-Gallagher, 2017), and are closely related to the
organisation of structural and functional connections across the cortex (see Section
4.2.3 below). Moreover, it has been noted that variation in both cellular architecture
and neuron numbers is well aligned with developmental gradients (Charvet and
Finlay, 2014; Charvet et al., 2015). This link has been corroborated by findings in
the human cortex, which directly traced the systematic architectonic variation of
the cortex to the timing of development (Barbas and García-Cabezas, 2016). Thus,
multiple dimensions of cellular morphology appear to be tightly coupled, matching
the overall degree of area differentiation as well as variation in developmental timing.
Together, these observations point towards a precise orchestration of cell specification
during ontogenesis, such that morphological, microscopic features of neurons and
the macroscopic architectonic differentiation of an area as a whole grow attuned.

Additionally, physical self-organisation may play a role in shaping the covariation
of morphological measures and overall architectonic differentiation, which is de-
termined by spatio-temporal developmental gradients. Assuming that neurons and
neuropil are packed into the available cortical volume as tightly as possible, thus
approximating maximum volume packing (e.g., Chklovskii et al., 2002), the cellular
morphological features would be expected to co-vary with neuron density, similar to
what is observed. In particular, a higher density of neurons would be accompanied by
smaller somata, less extensive dendritic arborisation, and potentially dendrites that
are less spiny. Indeed, in the present study we report a negative correlation between
neuron density and soma cross section. However, this finding does not necessarily
provide evidence for a general inverse relationship between neuron density and the
size of neuronal somata. Beyond the questions of which neuronal populations were
evaluated for cellular features and how soma cross section was measured, aspects
other than variations in neuron density are expected to affect soma size. These
aspects include, for example, the phenomenon of externopyramidization (Sanides,
1962; Goulas et al., 2018), which describes a systematic shift across the cortex in
relative soma size, from the largest projection neurons being located in infragranular
layers of mostly less dense internopyramidal areas to the largest neurons being lo-
cated in supragranular layers of neuronally dense externopyramidal areas. However,
the effect of externopyramidization on soma size specifically in layer 3, where the
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presently used morphological data were acquired, is difficult to ascertain. Moreover,
the general hypothesis of a gradual decrease of overall soma size with increasing
architectonic differentiation needs to be reconciled with specific contradictory ob-
servations. For example, many cells observed in the posterior orbitofrontal cortex
of the macaque monkey are noticeably smaller than cells observed in the secondary
somatosensory cortex (Barbas, 1986, their Figure 2).

4.2.3 Local cortical architecture, features of cortico-cortical connections
and areas’ functional roles are tightly interrelated

It appears that local cortical architecture and connection features of a cortical area, as
well as an area’s functional role within the cortical network, are tightly interrelated
(Figure 4.3).

Connection features and functional roles

First, laminar projection patterns place origins and terminations in laminar mi-
croenvironments which are appropriate for the type of information exchange that
occurs between the respective pairs of cortical areas. As noted before, the observed
anatomical distinctions between laminar patterns of projections connecting areas
of varying relative differentiation likely reflect differences in information process-
ing (e.g. Barone et al., 1995). Specifically, projections that propagate information
towards more abstract and multi-modal processing regions show a different laminar
composition than projections that feed back the results of information integration to
areas closer to the sensory periphery, affecting behaviour by modulating information
processing (reviewed in Batardière et al., 1998; Buckner and Krienen, 2013; Harris
and Shepherd, 2015). These anatomical distinctions are accompanied by differences
in electrophysiological signatures associated with the respective pathways (Bastos
et al., 2015). Moreover, neurons in infragranular and supragranular layers have
been shown to possess different physiological (Lagae et al., 1989; Nowak et al.,
1995; Raiguel et al., 1995) as well as histochemical (Hof et al., 1996, 1997) charac-
teristics. These observations are functionally relevant, since even small variations
in cell-intrinsic properties can induce substantial differences in the computations
performed by otherwise similar circuits (Harris and Shepherd, 2015). A large body
of work on hierarchical predictive coding integrates aspects of connectivity such as
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Figure 4.3: Structure and function of brain areas and connections are interlinked. Connec-
tions create functions of brain areas and functional interactions among brain areas from
the structural substrate of the brain, particularly the cortical sheet. In particular, areas
are linked through connections which have a laminar composition that is appropriate for
the laminar microenvironment within the respective areas and the type of information
exchange between these areas. Thus, local cortical architecture, the connection features
of a cortical area, and an area’s functional role within the cortical network are tightly
intertwined. See Section 4.2.3 for an elaboration of the links between these three aspects.

157



4.2. Compared to measures of neuron morphology, neuron density is a superior
indicator of connectivity features

intrinsic, local microcircuitry, laminar projection patterns and oscillatory signatures
of pathways to explain the perception of sensory signals (e.g. Bastos et al., 2012;
Friston et al., 2015; Shipp, 2016). The modulation of information processing is
accomplished through precisely targeted inputs (reviewed in Larkum, 2013), so that
exerting a modulatory effect does not require an accumulation of incoming connec-
tions, but can be achieved by relatively weak inputs. This situation is in contrast
to driving inputs delivered by feedforward projections that originate predominantly
in supragranular layers. In a comparison of feedforward and feedback projections
that were similar in their absolute deviation from bilaminar projection patterns
(i.e., |NSG%|), feedforward projections were reported to be stronger than feedback
projections (Markov et al., 2013b), illustrating diverging requirements for driving
and modulating influences. Similarly, feedforward projections terminating in middle
cortical layers were shown to have larger boutons, and hence potentially stronger
drive, than projections terminating outside the middle layers (Germuska et al., 2006).
Moreover, the stronger, driving effect of feedforward projections is counterbalanced
by their more pronounced capacity to elicit inhibition, as reported by D’Souza and
colleagues (2016), who have shown that the fraction of inhibitory targets is larger
for feedforward than feedback projections. Connection features thus correspond well
to the functional roles of connected areas.

Functional roles and cortical architecture

Second, in a complementary way, the intrinsic processing capabilities of cortical areas
are, to a large extent, determined by local characteristics of cellular morphology, as
detailed in Section 2.2.1.2. Cellular morphological properties and the functional
roles of cortical areas, thus, also appear attuned to each other.

Cortical architecture and connection features

Finally, the relation between cortical architecture and connection features completes
the three interacting aspects. The observations integrated into the architectonic type
principle extensively describe this interrelation. Moreover, the dependence of cortical
connections on relative architectonic differentiation formalised in the architectonic
type principle affords deeper insight into multiple aspects of the organisation of
cortical connectivity (reviewed in Barbas, 2015; Hilgetag et al., 2016). For example,
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the arrangement of areas by relative differentiation is consistent with onset latencies
in the visual system (Petroni et al., 2001) and an ordering of areas inferred from their
functional interactions in different frequency bands (Bastos et al., 2015). Laminar
projection patterns indicate that areas of weak differentiation feed back information
to more strongly differentiated areas (Barbas, 1986; Barbas and Rempel-Clower,
1997), placing them in a central position in the cortical network. This observation is
consistent with their involvement in the default mode network (Raichle, 2011) as
well as a suggested link to functional conscious access (Dehaene et al., 1998, 2011).
The architectonic type principle also pertains to disruptions of specific pathways in
diseases, for example autism (Zikopoulos and Barbas, 2010, 2013).

In summary, the strong correlation between the laminar origins of inter-areal pro-
jections and relative architectonic differentiation is closely intertwined with the
functional relevance of a given projection. It reflects the seamless integration of the
functional interplay of areas with local morphological properties and their associated
intrinsic processing capabilities.

4.2.4 Neuron density is a powerful predictor of connectivity features

Cortical architecture has been shown to relate to fundamental aspects of the organ-
isation of cortico-cortical connections (Barbas, 1986; Barbas and Rempel-Clower,
1997; Barbas et al., 2005; Medalla and Barbas, 2006; Hilgetag and Grant, 2010;
Barbas, 2015; Hilgetag et al., 2016) and appears integral for understanding cortical
connectivity. However, not all structural measures are equally informative on con-
nectivity, as we have shown in conjoint analyses of multiple macro- and microscopic
properties here, and as has been reported previously (Dombrowski et al., 2001;
Hilgetag et al., 2016). We found that neuron density, a basic and classic (Brodmann,
1909) macroscopic indicator of overall architectonic differentiation of cortical ar-
eas, was more consistently related to multiple features of macaque cortico-cortical
connectivity than four microscopic measures of cell morphology. These cellular
measures, moreover, were themselves closely related to neuron density. Thus, it can
be speculated whether these microscopic properties are developmentally attuned
to the overall architectonic differentiation of the cortex. Such an alignment might
result from neurodevelopmental mechanisms combining genetic determination of
regionally specific gradients with processes of physical self-organisation, such as
maximum volume packing, resulting in trade-offs between cell density and cell size
as well as cellular complexity. Neuron density, thus, is a fundamental feature which
links the macroscale and microscale architectonic and connectional organisation
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of cortical areas and allows integrating the overall architectonic differentiation of
areas with features of cellular morphology as well as with the existence and laminar
characteristics of cortico-cortical connections. This insight may be a significant step
towards the development of advanced across-scales models of cortical organisation
and function.

This section has been published in Beul and Hilgetag (2019a).

4.3 The architectonic type principle is already applicable in
the developing cortex

An explanation for the strong relationship between architectonic differentiation
and connectivity features of cortical areas is likely to be found in ontogeny. The
development of the regional architectonic structure may be associated with the
establishment of the connections of an area. One possible mechanism might draw
on the relative timing of the emergence of areas, where areas that appear earlier
might have the opportunity to connect more widely (Dombrowski et al., 2001).
Indeed, a similar process has been suggested to explain the degree distribution of
single neurons in Caenorhabditis elegans (Varier and Kaiser, 2011; Towlson et al.,
2013). The systematic architectonic variation of the cortex, which is at the core of
the architectonic type principle, has recently been shown (in humans) to originate in
cortical development (Barbas and García-Cabezas, 2016). Barbas and García-Cabezas
(2016) also directly linked connectivity of the prefrontal cortex to its time of origin,
thus providing strong support for the hypothesis that relative timing of area formation
is a crucial determinant of cortical connectivity.

It remains unclear, however, by which mechanisms the relationship between ar-
chitectonic differentiation and connectivity, which is the crucial component of the
architectonic type principle, emerges in the developing brain. Compelling sugges-
tions might result from exploring at which point in time the associations can first
be observed. In Section 3.5, we report that the laminar patterns of projection ori-
gins, which have been shown to be closely associated with the relative architectonic
differentiation of cortical areas, are already correlated with (eventual adult) archi-
tectonic differentiation in the immature macaque cortex. This has consistently been
observed in intact fetal and neonate macaque monkeys as well as in enucleated
infant macaque monkeys. Hence, it appears that the processes that determine which
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layers a projection originates from occur early in development, and are relatively
robust to severe changes like the loss of sensory input. Since we report that laminar
projection patterns are consistent with the architectonic type principle soon after
their establishment, processes that occur later during ontogenesis appear to play a
smaller role in the emergence of the architectonic type principle. This applies, for
example, to processes such as pruning, activity-dependent remodelling or selective
apoptosis in the different layers across the cortical gradient. These phenomena may
serve to further refine the laminar patterns of projection origins, but do not appear to
have a crucial role in determining their overall bias towards infra- or supragranular
origin.

These observations about immature laminar patterns can inform attempts to explain
how the architectonic type principle may arise during development. Since early,
robust processes appear to be sufficient for its emergence, later processes could likely
be omitted from a mechanistic explanation without losing much explanatory power.
That is, a mechanism that takes into account only early processes but disregards
later processes should still be able to generate laminar patterns that do not diverge
too much from empirical observations. It has previously been hypothesised that
spatio-temporal interactions in a forming cortical sheet could give rise to connectivity
that is consistent with the architectonic type principle (Barbas, 1986; Barbas and
García-Cabezas, 2016; Hilgetag et al., 2016). The fact that immature projection
patterns are already consistent with the architectonic type principle, as presented
here, implies that such spatio-temporal interactions may be sufficient to generate
the typically observed laminar patterns of projection origins. If the underlying
neurogenetic processes can be captured adequately, this link could be demonstrated
in silico.

To sum up, we draw two main conclusions from the presented results (Figure 4.4).
First, we show that already in the prenatal and neonatal cortex, the laminar patterns
of projection origins correlate with the architectonic differentiation observed in
the adult cortex, and that these laminar patterns are not substantially altered by
complete loss of visual input. Second, it appears that the initially present biases in
laminar projections patterns are progressively strengthened by later developmental
processes. During this sharpening of laminar specificity, the amount of change
that projections undergo in their supragranular contribution varies concurrently
with the relative architectonic differentiation of the connected areas (Figure 4.4C).
These findings have implications for the organisation of structural connectivity,
indicating that early neurogenetic processes are sufficient to establish typical laminar
projection patterns during brain development. We have previously suggested that the
architectonic type principle results from spatio-temporal interactions in the forming
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Figure 4.4: Summary of changes in laminar projection patterns. As the source area of a
projection becomes more di�erentiated than the target area, the two areas’ relative archi-
tectonic di�erentiation increases from a negative to a positive value. (A) The architectonic
type principle describes how imbalances in the laminar origins of projection neurons vary
along this gradient of relative di�erentiation. (B) We show that, already in the immature
cortex, it can be observed that the contribution of supragranular neurons to a given pro-
jection is stronger, the more di�erentiated the source area is relative to the target area
(immature NSG%) (cf. Figure 3.19B,C). (C) This pattern becomes more pronounced as the
initially formed projections are refined by later developmental processes (adult NSG%).
Specifically, we observed that this refinement appears to be proportional to the relative
di�erentiation of connected areas. While the supragranular contribution to projections
mainly decreases, the magnitude of this decrease changes concurrently with relative dif-
ferentiation and eventually reverses into an increase in supragranular contribution. This
results in the progressive strengthening of initially present biases in laminar projection
patterns (cf. Figure 3.19D,E).
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brain. This mechanism is consistent with the determination of laminar patterns
through early neurogenetic processes. Hence, our findings on immature laminar
patterns of projection origins strengthen the support for this mechanistic explanation
of how the architectonic type principle emerges during ontogenesis.

Parts of this section have been published in Beul et al. (2017).

4.4 Possible mechanistic underpinnings of the architectonic
type principle

So how does the architectonic type principle emerge? The findings demonstrating
its applicability in the immature macaque cortex, discussed in the preceding section,
point towards early neurodevelopmental processes. The interaction of spatial and
temporal aspects of neurogenesis has been suggested to underlie the emergence of the
architectonic type principle, and we set up an in silico model of cortical development
to probe this hypothesis.

By performing comprehensive computational simulation experiments of how the
network of inter-areal connections may develop during ontogenesis, we addressed
the question of how cortico-cortical structural connections come to be closely related
to the architectonic differentiation of the underlying structural substrate, an empirical
observation made in multiple species (Barbas, 1986; Barbas and Rempel-Clower,
1997; Rempel-Clower and Barbas, 2000; Dombrowski et al., 2001; Barbas et al., 2005;
Medalla and Barbas, 2006; Ghashghaei et al., 2007; Medalla et al., 2007; Hilgetag
and Grant, 2010; Hilgetag et al., 2016; Goulas et al., 2017). The main component
of our in silico model was a developing two-dimensional cortical sheet, gradually
populated by neurons. To assess potential explanatory mechanisms, we varied the
spatio-temporal trajectory of this simulated corticogenesis. The rules governing axon
outgrowth and connection formation, by contrast, were kept fixed across all variants
of simulated corticogenesis, so that the differences in outcome measures between
spatio-temporal growth trajectories were introduced exclusively by the specifics of
when and where neurons were generated.

As discussed in the preceding section, the architectonic type principle is already
applicable to laminar patterns of projection origins at early stages of development.
Therefore, we limited our exploration to features that would affect patterns of
connectivity early in development and disregarded later occurring processes such
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as regressive events and activity-dependent remodelling of projections. This is
consistent with observations showing that the mouse brain can form in a typical
manner, including initial connectivity, independent of synaptic transmission (Verhage
et al., 2000).

To allow for straightforward interpretation of the simulation results, we applied
network measures that were used in previous empirical studies, which allowed us
to perform analyses on the simulated connectomes in the same way as we did on
the empirical connectomes. Accordingly, the two characteristics of areas that were
considered in the analyses of the final simulated network of inter-areal connections
were their final position on the two-dimensional cortical sheet relative to other areas,
measured as Euclidean distance, and their neuron density, which functioned as a
surrogate for overall architectonic differentiation. Neuron density was expressed
relative to the densities of other areas, that is, as density difference, for most analyses.
We treated the existence of connections between areas as binary, that is, connections
were considered as either absent or present.

4.4.1 Spatio-temporal growth trajectories determine essential properties
of the final connectome

In a first set of simulation experiments, which addressed how patterns of connection
existence could emerge, we considered different spatio-temporal trajectories of
how neurons populated the simulated cortical sheet. To recapitulate, simulated
corticogenesis proceeded according to five different sets of growth rules, with three
to nine specific implementations per set (a total of 21 different growth layouts).
These five sets were (1: realistically oriented density gradient) planar, expansive
growth of the cortical sheet, with newer areas having successively higher neuron
density; (2: inverse gradient) planar, expansive growth of the cortical sheet, with
newer areas having successively lower neuron density; (3: radial) instead of planar
growth, neurons started to populate all areas simultaneously and were added at a
constant rate across the whole cortical sheet until each area reached its predetermined
complement of neurons, with a final neuron density gradient identical to sets 1
and 4; (4: static) all neurons of the cortical sheet formed simultaneously, with a
neuron density gradient identical to the final gradient of sets 1 and 3; (5: random)
planar, expansive growth of the cortical sheet, with no ordered gradient of area
neuron density around the two origins. To exclude effects specific to any particular
implementation of these sets of growth rules, we considered three growth modes for
each set: one-dimensional growth with one row of areas, one-dimensional growth
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with two rows of areas, and two-dimensional growth. For set 1, with a realistically
oriented density gradient, we considered growth around one origin and three or
four origins (for one-dimensional and two-dimensional growth modes, respectively)
additionally to the growth around two origins that was used in all five sets.

These distinct spatio-temporal trajectories of cortical sheet growth led to considerable
differences in the properties of the generated networks of structural connections.
See Table 3.7 for an overall assessment of the results. While all growth layouts
exhibited a clear decline in the relative frequency of present projections across larger
distances, this measure correlated with absolute density difference only for a subset
of growth layouts (Figure 3.22). Particularly, there was no consistent relationship for
the random, static and radial growth layouts, while for oriented growth, both along
a realistically oriented density gradient and along an inverse gradient, the relative
frequency of present connections decreased with larger absolute density differences
between areas.

A more precise assessment of the extent to which distance and density difference
determined connection existence was obtained by predicting simulated connectivity
using logistic regression analysis. Here, a similar picture as for relative connection
frequency emerged from comparing McFadden’s Pseudo R2 values across growth
layouts (Figure 3.23). Distance was a better-than-chance predictor of connection
existence for most growth layouts, as shown by the performance increase compared
to a constant-only null model that is measured by McFadden’s Pseudo R2. In contrast,
inclusion of absolute density difference increased prediction performance only for
the layouts with oriented growth (both along realistically oriented and inverse density
gradients), but not for the random, static or radial growth layouts.

Finally, the growth layouts differed in whether neuron density correlated with area
degree (Figure 3.24). As before, for random, static and radial growth layouts, there
was no consistent effect of neuron density on the measure of interest, in this case
area degree. In contrast, there was a significant correlation with neuron density for
layouts with oriented growth. This correlation was negative, as observed empirically,
for growth layouts with a realistically oriented density gradient, but positive for growth
layouts with an inverse density gradient.

In combination, these results demonstrate that the relation between cortico-cortical
connections and neuron density, which is one crucial feature of the physical substrate
in which connections are embedded, is strongly influenced by the precise spatio-
temporal trajectory of cortex growth, which coincides with the time of connection
formation. By manipulating where and when areas of varying neuron density were
generated, we could observe a change in the extent to which connections of the
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simulated network were accounted for by the two factors of spatial proximity on
the fully formed cortical sheet and the relative neuron density, indicating relative
architectonic differentiation of areas.

4.4.2 Realistic network properties emerge from empirically grounded growth
trajectories

As described above, the extent to which spatial proximity and relative neuron density
determined simulated connectivity strongly depended on the specific spatio-temporal
trajectory of the simulated growth of the cortical sheet. Growth layouts that more
closely mirrored the biological developmental trajectory of the mammalian cor-
tical sheet led to closer correspondence of the simulation results with empirical
observations on adult connectivity. This finding became particularly apparent when
we predicted empirical connectivity in two different mammalian species, cat and
macaque, from regularities that were extracted from the simulated connectivity
generated by the different growth layouts. Applying the regularities that emerged in
our simulations to empirical data afforded a strong test of whether the simulations
adequately captured ontogenetic processes and produced realistic networks. Our
results showed that both of the aspects that were manipulated across growth layouts
(i.e., the temporal trajectory of area growth as well as the direction of the neuron
density gradient) were relevant for how well simulated connectivity allowed to pre-
dict empirical connectivity (Figure 3.25 and Figure 3.26). First, we observed that
growth layouts in which areas appeared successively around origins of neurogenesis
(i.e., the realistically oriented density gradient growth layouts), were much better able
to predict empirical connectivity than growth layouts with the same final neuron
density gradient, but without the observed link between time of origin and neuron
density (i.e., static and radial growth layouts). Second, in the presence of planar
growth around origins, the direction of the neuron density gradient was crucial.
This finding was indicated by the large decrease in prediction performance when
comparing the realistically oriented density gradient growth layouts with the random
and inverse density gradient layouts. These sets of growth layouts both followed
the same time course of cortical sheet expansion as the realistically oriented density
gradient, but with no relationship between time of origin and neuron density or a
negative correlation between time of origin and neuron density, which contradicts
the empirically observed positive correlation of time of origin with neuron density.
Hence, the extent to which neuron density is well suited as a predictor of connectivity
could be due to it reflecting neurodevelopmental time windows.
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increasing differentiation

early to late ontogenesis

empiricalin silico

Figure 4.5: Number and relation of neurogenetic and architectonic gradients. A synthesis
of the simulation results presented here indicates that the presence of two origins of neu-
rogenesis, resulting in two neurogenetic (temporal) and architectonic gradients is neces-
sary for the closer correspondence of the in silico model to the empirical relations between
connectivity and architectonic di�erentiation. Importantly, the empirically observed rela-
tions are replicated in silico only if the less-to-more di�erentiated architectonic gradients
align with early-to-late ontogenetic gradients. Hence, the suggested mechanism is consis-
tent with correspondence of neurogenesis and architectonic di�erentiation (Dombrowski
et al., 2001; Barbas and García-Cabezas, 2016; Goulas et al., 2017) and a dual origin of the
cerebral cortex (Sanides, 1962; Pandya et al., 2015).

Third, our analyses revealed that the number of neurogenetic origins, around which
new areas grew, influenced the correspondence of simulated connectivity to empirical
connectivity (Table 3.8 and Table 3.9). Growth around two origins arguably led
to the best prediction performance: it was superior to growth around one origin
for both accuracy and Youden index, and performed better than growth around
three or four origins in terms of accuracy. For the Youden index, this performance
difference was present, but too small to be meaningful or statistically significant.
Thus, while correspondence between simulated and empirical connectivity clearly
increased with the addition of a second origin of neurogenesis, there was at the
very least no further performance increase with the addition of a third or fourth
origin. Fourth, we observed that the overall level of prediction performance for the
realistically oriented density gradient growth layouts was quite high, indicating that
they afforded a good correspondence with empirical connectivity not only relative
to the other growth layouts, but also in absolute terms. Therefore, a dual origin
of neurogenesis and the resulting architectonic gradients arguably are necessary
components of a developmental mechanism that can generate connectivity for which
empirically observed relations hold (Figure 4.5). These findings stress the importance
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of the theory of the dual origin of the cerebral cortex (Sanides, 1962; Pandya et al.,
2015) and the presence of multiple gradients of neurogenesis (Smart, 1984; Bayer
and Altman, 1991), for the configuration of connectivity in the adult cortex.

Collectively, the presented results suggest that planar growth of the cortical sheet
around two origins of neurogenesis as well as a systematic increase in neuron density
with later time of origin are crucial determinants of the development of realistic
cortico-cortical structural connections. Conversely, assuming that connection forma-
tion is a stochastic process with few constraints, as simulated here, the assumptions
underlying the spatio-temporal growth trajectories of the random, static, radial
and inverse growth layouts were shown not to mirror actual principles of cortical
organisation.

4.4.3 Simulation results validate the mechanistic explanations hypothe-
sised to underlie the architectonic type principle

With the postulation of the architectonic type principle it was suggested that a close
relationship between cortico-cortical connections and architectonic differentiation
of the cortex might arise from the timing of neurogenesis (Barbas, 1986), a process
that occurs in close temporal proximity to the formation of connections. Specifically,
it has been hypothesised that the relative time of generation of areas of different
neuron densities affords them with different opportunities to connect with each
other, thus imposing constraints on stochastically formed connections (Barbas, 2015;
Hilgetag et al., 2016). This mechanism would be in line with findings in Caenorhab-
ditis elegans (Varier and Kaiser, 2011) and rat cortex (Bayer and Altman, 1987).
Moreover, a previous computational study demonstrated that topological features,
such as modular connectivity, may arise from the growth of connectivity within
developmental time windows (Kaiser and Hilgetag, 2007). Thus, the main premise
of our simulation experiments, that spatio-temporal interactions in the forming cor-
tex determine connectivity, has long been under consideration. Here, we provide
the first systematic exploration of the possible mechanistic underpinnings of the
architectonic type principle. We simulated multiple combinations of spatio-temporal
growth trajectories of the cortical sheet and neuron density gradients, to probe from
which of the combinations realistic connectivity emerged. Our results showed that,
indeed, of the wide variety of examined spatio-temporal growth trajectories, the
variant of the in silico model that led to the best correspondence with empirical
observations was the one that was based on the same assumptions as the mechanism
proposed to underlie the realisation of the architectonic type principle. Hence, the
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underlying assumption that differences in neuron density correspond to distinct time
windows was not refuted in the model, and neuron density carried predictive power
with respect to connectivity features only if such a relation between density and
neurogenetic timing held. Our systematic simulation experiments, thus, distinctly
corroborate the previously hypothesised mechanistic underpinnings of the architec-
tonic type principle and contribute a conceptualisation that can be scrutinised for
similarities with, and distinctions from, actual ontogenetic processes. This approach
opens up the possibility of characterising in more detail how correlations between
the structure of the cortex and cortical connections emerge, because all aspects of
the process are observable. Further refinement of the simulation, for example by
introducing species-specific histogenetic time courses, will enable the exploration
of species differences or potentially the demonstration of invariance to changes in
some aspects of ontogenesis. Another factor that could be probed is how robust the
emergence of realistic connectivity is against changes in absolute neuron density,
which varies considerably across species (Charvet and Finlay, 2014; DeFelipe, 2011).

Temporal proximity during neurogenesis appears to be fundamental to the emer-
gence of the architectonic type principle

From our simulations, it appears that temporal proximity of areas during neuroge-
nesis underlies the positive relationship between similar neuron density and high
connection probability. The close correlation between time of origin and architec-
tonic differentiation described empirically (see Section 1.6.1.2) leads to a derivative
correlation between temporal proximity of neurogenetic time windows and relative
differentiation of cortical areas. Independent of this correlation, on a cortical sheet
that expands around the origins of neurogenesis, areas with closer neurogenetic time
windows tend to be spatially closer as well. Assuming that connection formation
is a stochastic process, which implies that connection probability declines with spa-
tial distance, this relationship between temporal and spatial proximity leads to a
higher connection probability between areas that are generated during nearby time
windows. Temporal proximity during neurogenesis would, thus, be the common
antecedent determining both relative architectonic differentiation and connection
probability, while those two factors would only be indirectly related. Temporal
proximity, however, is difficult to measure, and it is, therefore, no surprise that the
correlation between its two direct consequences has been empirically observed first.
This chain of reasoning reveals how our modulation of the relationship between
temporal proximity during neurogenesis and relative architectonic differentiation in
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the considered growth layouts could have caused the vastly different outcomes in
connectivity that we report.

Spatial proximity of areas in the adult cortex is a distorted measure

In our simulations, we observed a relationship between the spatial proximity of areas
and their likelihood to be connected, which appears to be an epiphenomenon of
stochastic connection growth within a physically embedded system (cf. Kaiser et al.,
2009; Lim and Kaiser, 2015). Distance is an inherent property of a spatially embedded
system that cannot be removed from the implementation of spatial growth. However,
in our simulation of cortical growth, the final distance between areas was not always
an accurate measure of their distance during the time period of connection formation,
which would be the factor that mattered principally for determining the likelihood by
which two areas became connected. Since this distance during cortical sheet growth
is correlated with the areas’ final distance, there was also a correlation between final
spatial proximity and connection probability. But this correlation does not genuinely
describe the dependency of the stochastic growth process on distance, because inter-
areal distance was not static, as implied by this measure of final distance. The
distance measure relevant here, namely distance at the time of connection formation,
would be challenging to measure empirically. Therefore, relying on measures of final,
adult distance and assuming a strong correlation between the two distance measures
appears as a pragmatic strategy for empirical analyses.

4.4.4 Simulating the development of laminar projection patterns

The simulation experiments discussed so far were designed to allow for the analysis of
connection existence, that is, whether a possible connection between a pair of areas
is present or absent in the final network. Naturally, axonal connections have many
further properties beyond their simple existence; one prominent feature being the
laminar distribution of the projection neurons’ somata and axon terminals in the areas
of origin and termination, respectively. Laminar patterns of projection origins and
terminations are very well captured by the architectonic type principle (reviewed in,
e.g., Barbas, 2007, 2015; Hilgetag et al., 2019), as has been demonstrated extensively
in different species and cortical systems. These conspicuous regularities most likely
arise from fundamental developmental mechanisms, since they are ubiquitous and
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quite robust. This aspect becomes strikingly apparent in reeler mutant mice, where
laminar connectivity patterns are largely correct (Devor et al., 1975; Caviness and
Yorke, 1976; Caviness and Frost, 1983)(shortly reviewed in Caviness et al., 2008),
despite a systematic inversion (to ‘inside-out’) of neurons’ final laminar positions
relative to the regular order that neurons typically assume according to their time of
origin (‘outside-in’) (Caviness, 1982; Devor et al., 1975; Caviness and Sidman, 1972,
1973; Caviness, 1976; Harsan et al., 2013). However, the precise mechanisms through
which laminar projection patterns become established are still under investigation.

Correspondingly, it remains unclear how the close association between laminar pat-
terns and relative differentiation emerges, which is a central observation that is
captured by the architectonic type principle. Since detailed observations of develop-
mental events, which could answer this question, are difficult to obtain, simulation
experiments are the most feasible way to systematically evaluate hypotheses about
the mechanisms that underlie the emergence of the architectonic type principle.
Therefore, we performed a second set of simulation experiments, building on the
results from the first set, which demonstrated that realistic assumptions about the
spatio-temporal patterns of neurogenesis could lead to simulated networks that com-
plied with the regularities that are described by the architectonic type principle in the
mammalian cortex with respect to the existence of connections between areas. We
extended this in silico model by laminar compartments to probe not only the existence
of connections, but also the distribution of the connecting neurons across layers, that
is, the laminar patterns of projection origins. Moreover, we introduced four features,
three of which changed the spatio-temporal patterns of neurogenesis: a delay in the
growth of the infragranular compartment (relative to layer 1), a delay in the growth
of the supragranular compartment (relative to the infragranuar compartment) and
a scaling in the relative neuron density of the supragranular compartment. The
fourth feature, in contrast, affected cell-intrinsic properties by changing the axon
elongation per time step according to a neuron’s laminar compartment and an area’s
architectonic differentiation. By varying the strength (i.e., the parameter value) with
which each of the four features was included in the in silico model, we tested the
sensitivity of the laminar projection patterns to a given parameter.

Spatio-temporal interactions could not be shown to produce empirically observed
patterns of laminar projection origins

Including the three spatio-temporal features in the in silico model did not induce the
simulated networks to exhibit the empirically observed patterns of projections origins.
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A delay in the growth of the infragranular compartment did not affect the laminar
patterns at all (Figure 3.28A), while a delay in the growth of the supragranular com-
partment resulted in a negative correlation between supragranular contribution to
connections and relative differentiation (Figure 3.28B), which is the opposite of what
has been observed in the mammalian cortex. This negative correlation indicated that
areas of lower density formed their connections increasingly from the supragranular
compartment the more pronounced the difference in neuron density to the target area
became, while areas of higher density formed their connections increasingly from the
infragranular compartment the larger the difference in neuron density became. This
effect was due to unequal opportunities to connect encountered by neurons in the
infragranular and supragranular compartments of lower density and higher density
areas. A combination of both delays, which is the model implementation that most
closely resembles the radial gradient of neurogenesis observed in vivo, did not result
in unexpected effects. Instead, the effects of both delays superimposed without any
interactions. Since the delay in infragranular compartment growth did not affect
laminar patterns of origins, this means that the results for a combination of both
delays were indistinguishable from the results obtained from including the delay in
supragranular compartment growth individually (Supplementary Figure C.10A).

Although including a scaling of supragranular compartment neuron density did result
in a positive correlation between supragranular contribution and relative differentia-
tion for larger parameter values (Figure 3.28C), this correlation was not accompanied
by a graded distribution of supragranular contributions across density differences
between connected areas (Supplementary Figure C.6D). Instead, source areas of
each neuron density level formed their connections at a characteristic supragranular
contribution, which did not differ for connections across different density differences.
The positive correlation emerging overall thus results from the fact that by definition
areas of lower neuron density form projections across the smallest neuron density
differences and areas of highest density form projections across the largest neuron
density differences. This composite correlation is in stark contrast to the patterns
of supragranular contribution that have been observed empirically, where areas of
each level of architectonic differentiation exhibit a graded pattern of supragranular
contributions that varies with the difference in architectonic differentiation to the
target area (Figure 3.29C). Moreover, the aggregate positive correlation could be
abolished by controlling for the ratio of supragranular neurons to total neurons
in the source area (Figure 3.29B). This implies that the shifts that occurred to the
distributions of supragranular compartment contribution for each level of source area
neuron density (which were uniform across density differences) was caused by the
preponderance of supragranular compartment neurons compared to infragranular
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compartment neurons at larger values of the supragranular compartment neuron
density scaling parameter.

Summing up, in our simulation experiments it was not sufficient to modify spatio-
temporal patterns of neurogenesis in order to produce simulated networks in which
the origins of connections were distributed across laminar compartments in a manner
that was similar to the patterns observed empirically in the mammalian cortex.

Di�erences in cell-intrinsic properties that were linked to architectonic di�eren-
tiation produced realistic patterns of projection origins

As a fourth feature, we introduced graded differences in a property that was intrin-
sic to individual neurons, namely the elongation of their axon per time step. This
property was changed in accordance with an area’s neuron density, such that the
divergence in axon elongation between the neurons in the infragranular and in the
supragranular compartment varied systematically along the gradient of architectonic
differentiation (represented by neuron density). Similar to the changes in relative
cell size between the infragranular layers and the supragranular layers that have
been described as externopyramidization (Sanides, 1962, 1970) and that also vary
systematically with architectonic differentiation (reviewed in Goulas et al., 2018),
we varied the relative levels of axon elongation across laminar compartments and
areas. At larger levels of divergence a positive correlation between supragranular
compartment contributions and relative differentiation emerged (Figure 3.28D). This
correlation mirrored empirically observed patterns of supragranular compartment
contributions, as it was realised across connections of differing density differences
already at the level of individual areas (Supplementary Figure C.6D). Moreover,
for the emergence of this positive correlation, the spatio-temporal patterns of neu-
rogenesis, which were previously identified to be sufficient for the emergence of
realistic patterns of connection existence, had to be present. When the underlying
relationship of time of origin to areas’ neuron density (i.e., higher density with later
time of origin) was removed, the positive correlation between relative architectonic
differentiation and supragranular contribution was largely abolished (Figure 3.30).

Thus, in our simulation experiments, differences in cell-intrinsic properties that
varied with architectonic differentiation and spatio-temporal patterns of neurogenesis
interacted, allowing the formation of simulated networks that exhibited a relationship
of laminar patterns of connection origins to relative differentiation of connected areas
which resembled their relationship observed in the mammalian cortex (Figure 4.6).
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Figure 4.6: Realistic laminar patterns can arise from an interaction of spatio-temporal
gradients in neurogenesis with gradients in cell-intrinsic properties. Our in silico model
of the developing cortical sheet included three properties of areas which changed grad-
ually. These were time of origin (red), architectonic di�erentiation (blue) and cellular
heterogeneity, changing the balance of axon elongation in the infragranular compared
to the supragranular compartment (yellow). Axon elongation values changed gradually,
from larger in the infragranular compartment to larger in the supragranular compartment,
yielding an increasing ratio of the supragranular to infragranular value. While realistic
patterns of connection existence can arise from an alignment of the two gradients of time
of origin and architectonic di�erentiation (purple), the inclusion of a gradient in the cell-
intrinsic property of axon elongation, which was aligned to the gradient of architectonic
di�erentiation, was crucial for the emergence of realistic laminar patterns of projection
origins (grey). Bars indicate laminar contributions to projections, with red representing
contribution from the infragranular compartment and orange representing contribution
from the supragranular compartment. Solid colors indicate empirically observed relation-
ships, captured by the architectonic type principle, while dotted colors indicate simulated
patterns.
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Di�erences in cellular properties in silico and in vivo

From our simulation experiments it appears that the establishment of laminar pat-
terns of projection origins does not easily arise from spatio-temporal interactions
in the developing cortical sheet. More specific assumptions about developmental
processes were necessary for our in silico model to generate realistic laminar pro-
jection patterns. By modifying the cell-intrinsic property of axon elongation, we
introduced differences between individual neurons, which were modelled to vary
systematically with the architectonic differentiation of areas and which also modified
properties of infragranular compartment neurons and supragranular compartment
neurons separately. This approach is consistent with a wealth of observations in the
mammalian cortex, demonstrating that many properties of neurons vary both with
architectonic differentiation and laminar position. For example, myelination, cellular
markers of synaptic stability and plasticity, cellular morphological properties, the dis-
tribution and density of neurotransmitter receptors as well as the density of neurons
expressing parvalbumin and calbindin have all been described to change across the
spectrum of architectonic differentiation (Dombrowski et al., 2001; Nieuwenhuys
et al., 2015; García-Cabezas et al., 2017; Zilles and Palomero-Gallagher, 2017; Burt
et al., 2018; Holley et al., 2018)(Section 3.4). Similarly, the expression of many
transcription factors and neurotransmitter receptors as well as the distribution of
neurons expressing proteins such as parvalbumin, calbindin, calretinin and latexin
have been shown to vary across cortical layers (Dombrowski et al., 2001; Bai et al.,
2004; Guy and Staiger, 2017; Palomero-Gallagher and Zilles, 2017; Popovitchenko
and Rasin, 2017; Zilles and Palomero-Gallagher, 2017), as have physiological (Lagae
et al., 1989; Nowak et al., 1995; Raiguel et al., 1995; Song and Moyer, 2018) and
histochemical properties of pyramidal neurons (Hof et al., 1996, 1997). Moreover,
there is ample evidence that axons are guided by attractants and repellants both
on large spatial scales, for example during the establishment of contralateral or
cortico-spinal projections (Morales and Kania, 2017; Stoeckli, 2017; Chédotal, 2019),
and on small spatial scales, for example during the specification of laminar projection
targets (Bolz et al., 1990; Castellani and Bolz, 1997; Sanes and Yamagata, 1999;
Kageyama and Yamamori, 2013). These processes are affected by a multitude of
diffusible and membrane-bound molecules (Tessier-Lavigne and Goodman, 1996),
and an additional layer of complexity is added by the fact that the same guidance
molecule can have opposing effects on different neurons, depending on the receptor
complement that is expressed by the guided neurons (Bagnard et al., 1998; Castellani
et al., 1998). Given this large range in spatial scales documented for axon guidance
mechanisms, it appears plausible that similar mechanisms could cover the whole
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range of spatial scales, that is, also the mesoscopic, medium spatial scale of ipsilateral
cortico-cortical connectivity, thus affecting laminar patterns of projection origins.

Our implementation of differences in cellular properties assumed the existence of
two opposing trends in axon elongation, which changed in opposite directions along
the spectrum of architectonic differentiation in the infragranular and supragranular
compartments. It is conceivable that gene expression patterns across the mammalian
cortex could, in a similar manner, mediate differences in axon elongation and thereby
the growth speed of axons across the differentiation spectrum and cortical layers,
and hence, that our chosen experimental manipulation would mirror an actual
mechanism occurring in the mammalian brain. However, this is not the premise
under which we interpreted our in silico model. Rather, we wanted to probe how
the pattern of two opposing gradients, varying the properties of neurons along the
gradient of architectonic differentiation separately in the two laminar compartments,
affected laminar patterns of projection origins. Unspecific axon outgrowth, following
the pattern of shifting relative cell sizes described as externopyramidization, was
but one of many possible cellular properties to investigate. Other possibilities are
for example the susceptibility of neurons to axon guidance mechanisms. Based
on the fact that architectonic differentiation goes along with marked differences
in the presence and laminar distribution of specific cell types and gene expression
patterns, as described above, such axon guidance could operate both on a general
level, affecting axons’ attractedness to or repulsion from areas based on their degree
of architectonic differentiation, and on a more specific level, affecting projection
patterns towards specific neuron populations.

Although the assumption of two opposing gradients in the infragranular and supra-
granular compartments may appear strong at first, it is plausible when considering
related experimental observations. Concerted changes in macroscopic and micro-
scopic architectonic features mirroring architectonic differentiation are pervasive
in the adult mammalian cortex, as described in the preceding. It has been demon-
strated that common gene expression signatures can distinguish neuron subtypes
and regional identity, which supports a transcriptional basis for differences in cortical
cytoarchitecture (Lake et al., 2016; Nowakowski et al., 2017; Mickelsen et al., 2019).
Obviously, these gradients arise from developmental mechanisms (García-Cabezas
et al., 2019). For example, the time point at which a neuron is formed is flagged by
markers of embryonic age and impacts the trajectory of differentiation the neuron
follows (Telley et al., 2019). The existence of similar gradients prior to the finalisation
of adult levels of differentiation is difficult to observe experimentally, but does not
appear contentious. Is it plausible, then, that two opposing gradients should exist in
the infragranular and the supragranular layers? Distinct molecular mechanisms have
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been identified that are crucial in the specification of infragranular and supragranular
neurons (reviewed in Kennedy and Dehay, 2012). Moreover, infragranular and supra-
granular neurons have been reported to exhibit diverging developmental time courses
(Barone et al., 1995; Batardière et al., 1998, 2002), for example in the modification of
their spatial divergence or whether they display waiting periods. These observations
demonstrate that the two laminar compartments are sufficiently dissociated in their
specification to support opposing gradients, for example in their sensitivity to axon
guidance molecules, across the architectonic differentiation spectrum. Interestingly,
from an evolutionary perspective, more differentiated areas are newer than less
differentiated areas (Pandya et al., 2015; García-Cabezas et al., 2019), and increased
differentiation is mediated by lengthening developmental schedules, which result
in an increase in neuron complement especially in the supragranular layers (Finlay
and Darlington, 1995; Charvet and Finlay, 2014). This specific expansion would
have opened up the supragranular neurons as a new substrate for connecting newly
specified areas and for modification independent of pre-existing circuits involving
infragranular neurons. Indeed, the increased prominence of supragranular layers
has been suggested to be one of the crucial substrates for evolutionary adaptation in
primates (Harris and Shepherd, 2015).

4.4.5 Limitations and future extensions

Our results illustrate how a mechanism linking the temporal order of neurogenesis
across the cortex with the architectonic differentiation of areas could come to shape
cortico-cortical connectivity such that it resembles the empirically observed connec-
tivity of mammalian connectomes. However, simulation experiments, as performed
here, can only assess whether a suggested mechanism is feasible in principle, and
explore what its essential components might be. That is, such computational exper-
iments put a candidate mechanism to the test and allow drawing some inferences
about possible (and, importantly, impossible) ingredients, but they do not establish
biological facts by themselves. Ultimately, only empirical observation of the onto-
genesis of the cortex can establish how this developmental process unfolds. The
possibility cannot be excluded that there may exist an unrelated mechanism working
through features not considered here, which could cause the phenotype of interest,
in our case the close relation between architectonic differentiation and connectivity.
Generally, incorporating more empirical anchor points in a model gives the conclu-
sions of a simulation study more significance. To triangulate a likely solution to the
developmental puzzle of how axonal connections are organised, it is necessary to
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constrain potential mechanisms by as many observable features as possible. More
processes that shape connectivity could be included in our in silico model of cortical
development, such as waiting periods for connection formation, a differential ability
of cortical layers to retain connections (possibly linked to externopyramidization), the
pruning of established connections, or the action of signalling molecules in attracting
and repelling axons during connection formation. By integrating such phenomena,
further insights could be gained into the emergence of connection features such as
laminar patterns of projection origins and terminations or projection strengths.

We constrained our in silico model to represent a single cerebral hemisphere, hence
our results only apply to ipsilateral, intra-hemispheric connections. Contralateral,
inter-hemispheric axonal connections have also been reported to be well represented
by the architectonic type principle (Barbas et al., 2005; Goulas et al., 2017), although
at generally lower connection strengths. The in silico model could be expanded by
a second hemisphere which develops simultaneously. Since similar types of cortex
in the two hemispheres would be formed at nearby points in time, but further
apart in space, this setup would be expected to lead to the observed pattern of
architectonic type principle-consistent, but weaker, connectivity if the principle holds
that spatio-temporal interactions govern patterns of connection existence.

We modelled the developing cortex as a two-dimensional sheet, across which axons
grew until they met a target soma and formed a connection. In reality, the mammalian
cortical sheet is not flat, but becomes at least curved, and often intricately folded,
during corticogenesis. Moreover, axons are not positioned exclusively within the grey
matter, but instead cover large distances through the white matter. These shortcuts
between distant points on the cortical sheet imply that representing projection length
as Euclidean distance between points on a flat cortical sheet is not accurate. Yet,
regardless of how the concurrent processes of neurogenesis, axon formation and
cortical folding affect each other (Hilgetag and Barbas, 2006; Zilles et al., 2013),
measuring the precise lengths of projections in the adult cortex has so far not been
straightforward. Hence, approximate measures have been employed, such as border
distance on a cortical parcellation, Euclidean distance in three-dimensional space,
or geodesic distance which accounts for some of projections’ confinement to white
matter tracts. Euclidean distance on the simulated two-dimensional cortical sheet
may, therefore, be a suitable surrogate measure for these approximate empirical
measures. In line with this assumption, if cortical folding had a strong impact on
our prediction of empirical data, it would be expected that performance in the less
folded cat cortex would be better than in the more strongly folded macaque cortex.
As this was not the case, we suspect that cortical folding and the resulting changes in
projection lengths do not dramatically alter the spatio-temporal interactions which
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we hypothesise link architectonic differentiation and cortical connectivity. To further
test this expectation, it would be interesting to predict connectivity data from a wider
range of species, such as lissencephalic rodents and humans, whose cortex is even
more strongly folded than the macaque cortex.

Lastly, applying the classifier which was trained on simulated network data to predict
empirical connectivity data resulted in better prediction performance for the macaque
cortex than the cat cortex. Ultimately, there might be two reasons for this finding:
Either the architectonic type principle characterises connectivity better in one of
these species than the other, or the empirical measures that were used more faithfully
capture the true structure in one of the species.

Regarding the first possibility, adherence to the architectonic type principle might
not be as pronounced in the smaller cat cortex, where both distances are shorter
and therefore less distinctive, and there is less variation in total neuron number
within the cortex due to a shortened neurogenetic interval (Charvet et al., 2015).
This is in line with previous findings demonstrating a less pronounced alignment
of architectonic differentiation and connectivity for the rodent cortex, where the
divergence in architectonic differentiation is not as strong as in the cat or macaque
cortex (Goulas et al., 2019b). Moreover, we observed an impact of spatial size on the
predictive power of spatial proximity when we simulated the formation of cortical
sheets of varying sizes (Supplementary Figure C.12). As the spatial dimensions of the
cortical sheet increased, and irrespective of whether that expansion was accompanied
by an increase in the number of cortical areas, the contribution of spatial distance
to the classification of connection existence increased. This supports the hypothesis
that larger physical size allows spatial proximity to become more distinctive, as it
can vary across a larger range than in a small cortical sheet.

Regarding the second possible reason, the structural measures from which we pre-
dicted connectivity were more detailed in the macaque cortex (neuron density and
Euclidean distance) than in the cat cortex (architectonic type and border distance).
Further experiments are therefore required to distinguish between these two ex-
planations. Indeed, it would be intriguing to expand the prediction of empirical
connectivity data from simulated networks to other species, preferably to mammals
whose cortex is on either side of cat and macaque on the scales of size and degree
of architectonic differentiation. Just as for assessing the impact of cortical folding,
rodents and humans would be good candidates to identify the source of the observed
difference in prediction performance.
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Simulating laminar patterns in more detail

Our simulation experiments evaluated the laminar patterns of projection origins,
but did not address how projection terminations were distributed across cortical
layers. Termination patterns have also been shown to relate to relative differentiation
of connected areas (Barbas and Rempel-Clower, 1997; Hilgetag et al., 2016) and
thus fall within the scope of the architectonic type principle. Further simulation
experiments could probe which mechanisms possibly mediate their specification.

To address the distribution of both projection origins and terminations across cortical
layers in even more detail, there are potential modifications of the stochastic forma-
tion of connections to be considered. First, the pruning of connections during later
stages of development (Innocenti and Price, 2005) was not taken into account in
the presented simulation experiments. Laminar projection patterns may conceivably
be affected by selective elimination of some axon branches but not others (O’Leary
and Koester, 1993; Price et al., 2006). Moreover, it has been observed that the
time course of connection formation is not the same for all types of cells. Callosal
projection neurons can reach their target areas without actually invading the grey
matter, instead remaining in the white matter for a waiting period of days (Wise
and Jones, 1976; Ivy et al., 1979; Schwartz and Goldman-Rakic, 1991). Similarly,
waiting periods below the grey matter have been described for infragranular neurons
projecting to area V4 from multiple areas in the ipisilateral hemisphere in macaques
(Batardière et al., 2002). In contrast, supragranular neurons in the same tract-tracing
experiments were found to invade the grey matter early, but many of them formed
only transient projections that were subsequently eliminated. More generally, these
and similar tract-tracing experiments have been interpreted to demonstrate different
developmental profiles for axon outgrowth and connection formation in infra- and
supragranular neurons (Barone et al., 1995; Batardière et al., 1998, 2002; Berezovskii
et al., 2011). In ‘feedback’ pathways, which according to the architectonic type prin-
ciple can be conceptualised as projecting towards a relatively more differentiated
area, extensive remodelling of laminar projection patterns until long after birth has
been observed in a number of species (mouse, cat, macaque, human) and target
areas (Price and Blakemore, 1985; Kennedy et al., 1989; Kato et al., 1991; Meissirel
et al., 1991; Burkhalter, 1993; Price et al., 1994; Barone et al., 1995; Batardière
et al., 1998, 2002; Berezovskii et al., 2011; Khalil and Levitt, 2014). This remodelling
has been linked to activity-dependent maturation of pathways and the emergence of
more refined perceptual capabilities (Barone et al., 1995; Dong et al., 2004; Khalil
and Levitt, 2014) (reviewed in, e.g., Polleux, 2005; Buckner and Krienen, 2013).
This observation suggests that not all factors contributing to adult laminar projection
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patterns may be accessible in simulation experiments with time frames that are
restricted to corticogenesis and initial axon outgrowth.

A further potential determining factor in the establishment of laminar projection
patterns that warrants exploration is the possibility of genetic specification. To tie
in with the previous discussion of axon guidance mechanisms, genetically encoded
factors are very likely to play some role in the establishment of laminar projection
patterns. It has been shown that the eventual projection fate is often acquired even
prior to neuron migration (Jensen and Killackey, 1984; McConnell, 1988; Polleux
et al., 2001) and that initial establishment of connectivity is largely independent
of synaptic activity (Verhage et al., 2000). Guidance molecules and their receptors
are often expressed in a cell-type specific manner, with many guidance molecules
having dual actions depending on the type of receptor they bind to (Castellani
and Bolz, 1997; Bagnard et al., 1998; Castellani et al., 1998; Kolodkin and Tessier-
Lavigne, 2011; Seiradake et al., 2016; Morales and Kania, 2017; Stoeckli, 2017),
enlarging the range of potential interactions. For example, Castellani and colleagues
(1998) found that the membrane-bound protein Ephrin-A5 functioned as a repulsive
axonal guidance signal in neurons destined to migrate to layer 2/3, while acting as a
‘branch-promoting’ signal in neurons destined for layer 6.

These combinations of guidance molecules and receptors have been shown to strongly
constrain local, intra-areal connectivity (Bolz and Castellani, 1997; Castellani and
Bolz, 1997). The same principle may apply to longer-range, inter-areal connections.
The expression of guidance molecules and receptors is mediated by transcription
factors, whose spatially and temporally fine-tuned expression gives rise to distinct cell
types with diverse morphological and connectional properties and distinct functions.
For example, corticofugal projection identity is mediated by the transcription factors
encoded by genes such as Fezf2 and Ctip2 (reviewed in, e.g., Molyneaux et al., 2007;
Gaspard and Vanderhaeghen, 2011). The effect of Feszf2 expression is not only
permissive, but also causal, as forced expression of Fezf2 in progenitors destined
for upper layers can induce these cells to atypically project to the pons (Chen et al.,
2005). Another example of the genetic specification of a broad class of projection
neurons are callosally projecting neurons, of which there are both upper and lower
layer populations. Expression of different genes such as Satb2, Hspb3 and Lpl appears
to generally specify callosal projection neurons (Alcamo et al., 2008; Molyneaux
et al., 2009), while there are also genes specific to either upper or lower layer callosal
projection neurons (e.g., Dkk3, Nectin–3 or Plexin-D1 (Molyneaux et al., 2009)).

Thus, numerous layer-specific transcription factors and neurotrophins have been
described, which afford a precise targeting of specific layers or even cell types and
cellular compartments (reviewed in, e.g., Sanes and Yamagata, 1999; Kageyama
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and Yamamori, 2013). Co-culture experiments using cortical explants have shown
that appropriate laminar position of axon terminals can be retained outside of
the ontogenetic growth environment, that is, in the absence of regular temporal
and spatial relationships. Accurate laminar specificity has been demonstrated, for
example, for thalamo-cortical, geniculo-cortical, and cortico-spinal connections in co-
culture (reviewed in, e.g., Sanes and Yamagata, 1999). Similarly, connections formed
in co-culture of rat visual cortex explants were shown to conform to organotypic
laminar distributions (Bolz et al., 1990; Yamamoto et al., 1992). Castellani and Bolz
(1997) elegantly demonstrated that organotypic and cell type specific projection
patterns could be induced by membrane-associated factors through both induction
and prevention of axon ingrowth and branching.

Since there is evidence for the genetic specification of anatomical projection patterns
at small (intrinsic, intra-areal circuits) and large (e.g., corticofugal versus callosal
projections) spatial scales, projections at intermediate spatial scales, such as cortico-
cortical inter-areal projections, are not likely to be an exception from this mode of
connection organisation. For example, it has been shown that while the white matter
of the spinal cord is generally permissive for cortical axon growth, innervation of
sections of the spinal grey matter is specific and topographically correct (Stanfield
and O’Leary, 1985; O’Leary and Stanfield, 1986; Kuang and Kalil, 1994; Kuang et al.,
1994). These observations support our conclusion that laminar projection patterns
may not be entirely explicable by spatio-temporal interactions in the forming tissue,
but are regulated by more prescriptive determinants. Including pertinent aspects of
axon guidance in in silico models of the developing cortex may enable the generation
of realistic laminar projection patterns, with respect to both the position of projection
origins as well as projection terminations.

4.4.6 Realistic networks of inter-areal connections can be generated from
an in silicomodel realising spatio-temporal interactions in the form-
ing tissue

The architectonic type principle conceptualises structural connections between brain
areas in terms of their relative architectonic differentiation, providing a mammalian-
general principle for the organisation of cortico-cortical connections (Barbas, 2015;
García-Cabezas et al., 2019; Hilgetag et al., 2019). How the empirically observed
relationship between cortical architecture and features of connectivity emerges has
not yet been elucidated by empirical developmental studies, but it has been suggested
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to result from spatio-temporal interactions during neurogenesis (Barbas, 1986; Dom-
browski et al., 2001; Barbas, 2015; Hilgetag et al., 2016). We demonstrated in silico
that, given an empirically grounded relationship between the time of formation of
areas and their architectonic differentiation (of which neuron density is a very good
surrogate measure), spatio-temporal interactions between forming cortical areas
were sufficient to give rise to patterns of connection existence that conformed to the
architectonic type principle, as it has been observed in mammalian cortico-cortical
connectivity.

We further expanded our in silico model of the developing cortical sheet to include
laminar compartments and probed which factors might shape the laminar patterns of
projection origins. Our results indicate that while the emergence of typical laminar
patterns is indeed affected by spatio-temporal interactions during neurogenesis, the
specifics of where and when neurons are formed are not the exclusive determinants
of laminar patterns. A further specification of neuron identity, varying a cell-intrinsic
property across the gradient of architectonic differentiation, was sufficient to enable
our in silico model to generate realistic laminar patterns of projection origins. This
suggests that future research should consider the intricacies of how neuron identity
is specified developmentally, to identify the mechanistic underpinnings of the archi-
tectonic type principle and thereby advance our understanding of how connectivity
in the mammalian cortex is organised.

Parts of this section have been published in Beul et al. (2018) and Beul and Hilgetag
(2019a) and submitted for peer-review in Beul and Hilgetag (2019b).

4.5 Conclusions

We examined empirical and simulated data to gain insights into the organisation of
cortico-cortical connections in the mammalian cortex. Our analyses corroborate the
existence of a fundamental organising principle, the architectonic type principle, and
support the hypothesis that this principle emerges from spatio-temporal interactions
in the developing brain during ontogenesis.
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4.5.1 Architecture and intrinsic connectivity vary across the cortex

Based on regularities in the intrinsic microcircuitry of cortical areas, variants of a
‘canonical’ cortical microcircuit have been proposed and widely adopted, particularly
in computational neuroscience and neuroinformatics. However, this circuit is founded
on striate cortex, which manifests perhaps the most extreme instance of cortical or-
ganisation, in terms of a very high density of cells in highly differentiated cortical
layers. Most other cortical regions have a less well differentiated architecture, with
the gradient in differentiation ranging from the very dense eulaminate primary corti-
cal areas to the other extreme of dysgranular and agranular areas of low density and
poor laminar differentiation. It is unlikely for the patterns of inter- and intra-laminar
connections to be uniform in spite of strong variations in their physical substrate. This
assumption is corroborated by reports of divergence in intrinsic circuitry across the
cortex. Consequently, it remains an important goal to define local microcircuits for a
variety of cortical types, in particular, agranular cortical regions. As a counterpoint
to the striate microcircuit, which may be anchored in an exceptional architecture,
we outlined a tentative microcircuit for agranular cortex. The circuit is based on a
synthesis of the available literature on the local microcircuitry in agranular cortical
areas of the rodent brain, investigated by anatomical and electrophysiological ap-
proaches. A central observation of these investigations is a weakening of interlaminar
inhibition as cortical architecture becomes less differentiated. Thus, our study of
agranular microcircuitry revealed deviations from the well-known ‘canonical’ micro-
circuit established for striate cortex, suggesting variations in intrinsic circuitry across
the cortex that are functionally relevant.

4.5.2 The architectonic type principle comprehensively accounts for fea-
tures of connectivity in the mammalian cortex

Architectonic differentiation, which encompasses characteristic differences of local
cortical organisation (Zilles and Amunts, 2012b), has previously been shown to
account for laminar patterns of cortico-cortical connections (e.g. Barbas, 1986;
Barbas and Rempel-Clower, 1997). It is the central measure of cortical structure upon
which the architectonic type principle is based, which links structural connections
to the architectonic differentiation of cortical areas (reviewed in Barbas, 2015;
García-Cabezas et al., 2019; Hilgetag et al., 2019). Our studies assessed models
of cortico-cortical connectivity in the adult cat and macaque cortex across a more
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comprehensive set of cortical areas and more functional modules than previous
studies. Our findings underscore the significance of architectonic differentiation as
a fundamental factor that captures multiple aspects of the organisation of cortico-
cortical connectivity. This conclusion is based on the observations that architectonic
differentiation of cortical areas is closely associated with the presence or absence of
connections, with the number of connections of a cortical area, as well as with the
laminar patterns of present connections. By contrast, other structural measures, such
as spatial proximity, cortical thickness (in the macaque) and hierarchical level (in the
cat), are not that consistently related to connection features.

Moreover, we directly compared the extent to which neuron density, spatial proximity
and four measures of cellular morphology in layer 3 pyramidal neurons (i.e., soma
cross section, spine count, peak spine density and dendritic tree size) were associated
with cortico-cortical connectivity in the macaque cortex. The classical architectonic
measure of neuron density most strongly and consistently related to essential features
of cortical connectivity (specifically, the existence of projections and their laminar
patterns, as well as area degree), and in conjoint analyses largely abolished effects
of cellular morphological measures. These observations imply that neuron density
and the considered measures of cellular morphology contain redundant information,
with neuron density capturing most of the regularities that can be extracted from
all of the four morphological measures. These results confirm neuron density as a
central architectonic indicator of the primate cerebral cortex that is closely related
to essential aspects of structural connectivity and is also highly indicative of further
aspects of the architectonic organisation of cortical areas, such as the considered
cellular morphological measures. Neuron density, and by extension architectonic
differentiation, therefore integrates several aspects of cortical micro- and macroscopic
organisation.

The architectonic type principle was originally developed qualitatively, in the classic
studies of Sanides and Pandya (e.g. Pandya and Sanides, 1973), and systematically
extended into quantitative studies by Barbas and colleagues, particularly through
studies of prefrontal connectivity in the primate, but also of cat and mouse cortex
(Barbas, 1986; Barbas and Rempel-Clower, 1997; Rempel-Clower and Barbas, 2000;
Barbas et al., 2005; Medalla and Barbas, 2006; Medalla et al., 2007; Hilgetag and
Grant, 2010; Goulas et al., 2014c; Hilgetag et al., 2016; Goulas et al., 2017). By
exploring this principle for comprehensive connectivity and architectonic data sets in
the cat and macaque cortex, we further corroborated the architectonic type principle,
which has been developed by experimental and theoretical neuroanatomists over
several decades.

To conclude, the applicability of the architectonic type principle across different
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mammalian species and cortical systems suggests that it captures fundamental organ-
isational principles underlying the global structural connectivity of the mammalian
cerebral cortex. In humans, connections cannot be measured directly by tract-tracing
studies for ethical reasons, but brain architecture can be studied post mortem. Thus,
the likely applicability of the architectonic type principle in humans also has im-
portant implications for understanding the structural connectivity of the human
brain, since it enables inferences from brain architecture (which can be measured in
humans) to structural connectivity (which cannot be measured directly).

4.5.3 The architectonic type principle may emerge from spatio-temporal
interactions during brain development

One prominent characteristic of structural connections are the laminar patterns of
projection origins, which vary in a graded manner with the relative architectonic
differentiation of connected areas in the adult brain. We showed that the architec-
tonic type principle is already applicable to the laminar origins of cortico-cortical
projections in the immature cortex of the macaque monkey. We found that prenatal
and neonatal laminar patterns correlate with architectonic differentiation, and that
the relation of laminar patterns to relative architectonic differentiation of connected
areas is not substantially altered by complete loss of visual input. Moreover, we
showed that the laminar patterns of projections change with maturation, such that
the amount of change in supragranular contribution varies concurrently with the
relative architectonic differentiation of the connected areas. Hence, it appears that
biases in laminar projection patterns that are present initially become progressively
strengthened by later developmental processes. These findings have significance for
efforts to understand how structural connectivity is organised, the implication being
that early neurogenetic processes during the formation of the brain are sufficient to
establish typical laminar projection patterns. This conclusion is in line with mechanis-
tic explanations previously suggested to underlie the emergence of the architectonic
type principle and provides constraints for explorations of the fundamental factors
that shape structural connectivity in the mammalian brain.

Guided by these results, which demonstrate the applicability of the architectonic type
principle already during development, we performed simulations of cortical sheet
growth and the concurrent formation of cortico-cortical connections, systematically
varying the spatio-temporal trajectory of neurogenesis as well as the relation between
architectonic differentiation and time of origin of neural populations. Our results
showed that, for realistic assumptions about neurogenesis, successive tissue growth
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and stochastic connection formation interacted to produce realistic cortico-cortical
connectivity. This finding illustrated the fact that precise targeting of inter-areal
connection terminations was not necessary for obtaining a realistic replication of
connection existence within a cortical hemisphere. Instead, spatio-temporal interac-
tions within the structural substrate were sufficient if a small number of empirically
well-grounded assumptions were met, namely (i) planar, expansive growth of the cor-
tical sheet as neurogenesis progressed, (ii) stronger architectonic differentiation for
later neurogenetic time windows, and (iii) stochastic connection formation. We, thus,
demonstrated a possible mechanism of how relative architectonic differentiation and
connectivity become linked during development. These findings support hypotheses
advanced previously about the mechanistic underpinnings of the architectonic type
principle (Barbas, 1986; Dombrowski et al., 2001; Barbas, 2015; Hilgetag et al.,
2016). Moreover, they point towards a central role of time of neurogenesis, which
appears to prescribe both areas’ architectonic differentiation and their spatial proxim-
ity (which is directly related to their connection probability). The implication is that
time of origin could mediate a secondary correlation between relative architectonic
differentiation and connection probability, which, in contrast to the two primary
correlations, can be observed empirically in the adult cortex.

While these results demonstrated that spatio-temporal interactions between the time
and place of neurogenesis could underlie projection existence as observed empirically
in the mammalian cortex, and similar simulation experiments point towards a link
between spatio-temporal interactions and the distribution of projection strengths
(Goulas et al., 2019a), so far, no mechanistic explanation for the emergence of
typically observed laminar patterns of projection origins and terminations had been
tested. We therefore expanded our in silico model of the developing cortical sheet to
explore which factors could potentially constrain the development of laminar projec-
tion patterns. We showed that manipulations which rely solely on spatio-temporal
interactions, namely the relative density of laminar compartments, a delay in the
growth of infragranular layers relative to layer 1, and a delay in the growth of supra-
granular layers relative to infragranular layers, do not result in the striking correlation
between supragranular contribution to projections and the relative differentiation of
areas that is typically observed in the mammalian cortex. In contrast, we found that
if we introduced systematic variation in cell-intrinsic properties, coupling them with
architectonic differentiation, the resulting laminar projection patterns closely mirror
the empirically observed patterns. We also find that the spatio-temporal interactions
posited to occur during neurogenesis are necessary for the formation of the character-
istic laminar patterns. Hence, our results indicate that the specification of the laminar
patterns of projection origins may result from systematic variation in a number of
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4.5. Conclusions

cell-intrinsic properties, superimposed on the previously identified spatio-temporal
interactions which are sufficient for the emergence of the architectonic type principle
on the level of inter-areal connectivity in silico.

Thus, although our results arguably point towards fundamental mechanisms that
could underlie the emergence of the architectonic type principle, further details of
these mechanistic underpinnings remain to be worked out before we can comprehend
how all features of cortico-cortical connectivity are determined.

Parts of this section have been published in Beul and Hilgetag (2015), Beul et al.
(2015), Beul et al. (2017), Beul et al. (2018) and Beul and Hilgetag (2019a) and
submitted for peer-review in Beul and Hilgetag (2019b).
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Chapterfive

Summary

5.1 English Summary

Structural connections mediate information processing in the brain, synaptically
linking neurons across a range of spatial scales. The mammalian cortex exhibits a
strikingly complex organisation, both in terms of its architecture, that is, its con-
stituent cellular elements and their arrangement, and in terms of its connectivity,
which is neither random nor regular. Untangling the principles that govern the
organisation of structural connectivity in the brain, and within the cortex more
specifically, is a formidable challenge. One candidate organisational framework is the
architectonic type principle, which links structural connections to the architecture
of cortical areas. It has previously been reported that regularities of cortico-cortical
connections are well captured by the architectonic type principle.

We provide further support for the existence of the architectonic type principle by
expanding the scope of empirical investigation. We show that the architectonic type
principle is applicable to the entire cat and macaque cortex, and that laminar patterns
of projection origins in the macaque cortex are captured by the architectonic type
principle both in immature and adult stages. Our findings thus corroborate the archi-
tectonic type principle as a fundamental organising principle of cortical connectivity
in the mammalian cortex, which is able to integrate cortical characteristics across
spatial scales. This has implications for our understanding of functional interactions
in the mammalian brain, which are strongly constrained by structural connectivity.



5.2. Deutsche Zusammenfassung

Moreover, the applicability of the architectonic type principle across mammalian
species enables inferences about the organisation of connectivity in species where
reliable connectivity data are difficult to obtain, as for example humans.

In addition, we explore the mechanistic underpinnings which have been hypothesised
to result in the emergence of the architectonic type principle. Through systematic
simulation experiments, we demonstrate that patterns of connection existence that
are consistent with the architectonic type principle could emerge from simple spatio-
temporal interactions in the developing cortex. Specifically, it appears that the
time of origin prescribes both areas’ architectonic differentiation and the spatial
distance between them, and hence their connection probability. Based on these
two fundamental associations, time of origin could thereby mediate a secondary
correlation between relative architectonic differentiation and connection probability,
which can be observed empirically.

However, for the characteristic, empirically observed, laminar patterns of projection
origins to emerge, our in silico model of the developing cortical sheet needs to include
cellular heterogeneity, where cell-intrinsic properties vary systematically along the
gradient of architectonic differentiation.

Our results thus suggest that spatio-temporal interactions in a homogeneous develop-
ing cortical sheet can be sufficient to shape patterns of connection existence, while
more specific constraints govern the establishment of more detailed connectivity
features such as laminar projection patterns.

5.2 Deutsche Zusammenfassung

Strukturelle Verbindungen, die Neurone über verschiedene räumliche Skalen synap-
tisch miteinander in Kontakt treten lassen, sind die physische Grundlage für Infor-
mationsverarbeitung im Gehirn. Der Kortex von Säugetieren bildet eine erstaunlich
komplexe Organisation aus, sowohl in Bezug auf seine Architektur, also die Charak-
teristiken und die Anordnung seiner Zellen, als auch bezüglich seiner Konnektivität,
die weder zufällig noch regelmäßig ist. Die Prinzipien aufzudecken, die die Organ-
isation struktureller Verbindungen im Gehirn bestimmen, insbesondere im Kortex,
ist eine enorme Herausforderung. Ein mögliches erklärendes Modell ist das Prinzip
des architektonischen Typs, welches strukturelle Verbindungen zur architektonis-
chen Differenzierung von Arealen in Bezug setzt. Frühere Studien haben gezeigt,
dass das Prinzip des architektonischen Typs Regelmäßigkeiten in kortiko-kortikalen
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5.2. Deutsche Zusammenfassung

Verbindungen gut repräsentiert.

Wir untermauern die Existenz des Prinzips des architektonischen Typs, indem wir den
Umfang empirischer Studien erweitern. Wir zeigen, dass das Prinzip des architek-
tonischen Typs auf Verbindungen im gesamten Kortex der Katze und des Makaken
anwendbar ist, sowie, dass die laminaren Muster von Verbindungsursprüngen sowohl
im erwachsenen als auch im sich entwickelnden Kortex des Makaken vom Prinzip des
architektonischen Typs gut repräsentiert werden. Unsere Ergebnisse bestätigen daher
das Prinzip des architektonischen Typs als fundamentales Organisationsprinzip kor-
tikaler Konnektivität in Säugetieren, welches Eigenschaften des Kortex über räumliche
Skalen hinweg integriert. Dies hat Auswirkungen auf unser Verständnis funktioneller
Interaktionen im Säugetiergehirn, die stark von struktureller Konnektivität bestimmt
werden. Außerdem ermöglicht die generelle Anwendbarkeit des Prinzips des architek-
tonischen Typs auf das Säugetiergehirn Rückschlüsse auf die Organisation kortikaler
Konnektivität in Spezies, für die zuverlässige Konnektivitätsdaten nur schwer erhoben
werden können, wie zum Beispiel den Menschen.

Des Weiteren untersuchen wir mögliche Mechanismen, die zum Auftreten des Prinzips
des architektonischen Typs führen könnten. Anhand systematischer Simulationsexper-
imente demonstrieren wir, dass durch einfache raumzeitliche Interaktionen im sich
entwickelnden Kortex Muster von Verbindungsexistenz entstehen können, die dem
Prinzip des architektonischen Typs genügen. Aus unseren Simulationen schließen
wir, dass der Zeitpunkt, zu dem ein Areal entsteht, sowohl seine architektonische
Differenzierung bestimmt, als auch seine räumliche Nähe zu anderen Arealen, und
damit die jeweilige Verbindungswahrscheinlichkeit. Diese beiden grundlegenden
Zusammenhänge könnten sich überlagern, so dass der Entstehungszeitpunkt von
Arealen eine sekundäre Korrelation zwischen relativer architektonischer Differen-
zierung und Verbindungswahrscheinlichkeit herbeiführt, die empirisch beobachtet
werden kann.

Damit jedoch die charakteristischen laminaren Muster von Verbindungsursprüngen
auftreten, wie sie empirisch beobachtet werden, muss unser in silico Modell des sich
entwickelnden Kortex zelluläre Heterogenität beinhalten, wobei sich den Zellen intrin-
sische Eigenschaften systematisch entlang des Differenzierungsgradienten verändern.

Unsere Ergebnisse deuten demzufolge darauf hin, dass raumzeitliche Interaktionen
in einem sich entwickelnden homogenen Kortex ausreichen können, um realistische
Muster von Verbindungsexistenz zu formen, während stärkere Einschränkungen die
Entstehung detaillierterer Verbindungseigenschaften, wie zum Beispiel laminarer
Muster, regulieren.
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Figure C.1: True positive rate and false positive rate for classification of projection existence
from all possible combinations of parameters in the macaque cortex. Distribution of rates
across all 100 rounds of cross-validation is shown for all threshold probabilities. Over-
all performance was best for the combination of |log-ratiodensity| and Euclidean distance.
Note that the addition of |log-ratiothickness| to these two parameters did not improve per-
formance. Boxplots indicate median rates by a black bar and outliers by grey circles.
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Figure C.2: Youden index J for classification of projection existence from all possible com-
binations of parameters in the macaque cortex. (A) Distribution of J across all 100 rounds
of cross-validation is shown for all threshold probabilities. Overall performance was best
for the combination of |log-ratiodensity| and Euclidean distance. Note that the addition of
|log-ratiothickness| to these two parameters did not improve performance. (B) Distribution
of maximum J (across all threshold probabilities) for all 100 rounds of cross-validation.
Kruskal-Wallis-test showed that the distributions were significantly di�erent (H = 661.0,
p < .001). Post hoc tests (Bonferroni-corrected) revealed that the distributions of ‘den-
sity, distance, thickness’ and ‘density, distance’ were not significantly di�erent from each
other (p > .05), while all other pair-wise tests reached statistical significance (all p < .05).
Boxplots indicate median J by a black bar and outliers by grey circles.
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Figure C.3: Developmental trajectories of all 21 growth layouts.
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Figure C.3: Developmental trajectories of all 21 growth layouts (cont.). Illustration of the
spatio-temporal growth trajectory for each growth layout. The successive population of
the cortical sheet with neurons is shown for the first three growth events. For static growth,
all neurons grow simultaneously, hence only one growth event is shown. Abbreviations
and background colours as in Table 2.1.
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Figure C.4: Correlation of relative connection frequency with distance and absolute density
di�erence for all growth layouts. Distribution of absent and present connections across
distance (left panels) and absolute density di�erence (right panels) for all growth layouts.
Absolute numbers of absent and present projections (bars) are depicted alongside the cor-
responding relative frequency of present connections (diamonds). Simulation instances
were chosen to be representative of the median values shown in Figure 3.22. Spearman
rank correlation results for each particular instance are shown on top of each plot. A.u.:
arbitrary unit. Abbreviations and background colours as in Table 2.1.
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Appendix C. Supplementary figures
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Figure C.5: Correlation of area degree with neuron density for all growth layouts.
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Figure C.5: Correlation of area degree with neuron density for all growth layouts (cont.).
Variation of area degree (number of connections) across areas’ neuron density is shown.
Simulation instances were chosen to be representative of the median values shown in
Figure 3.24. Spearman rank correlation results for each particular instance are shown on
top of each plot. A.u.: arbitrary unit. Abbreviations and background colours as in Table
2.1.
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Figure C.6: Supragranular contribution across source area densities.
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Figure C.6: Supragranular contribution across source area densities (cont.).
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density scaling factor: 1
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Figure C.6: Supragranular contribution across source area densities (cont.).
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Figure C.6: Supragranular contribution across source area densities (cont.). Box plots show
the distribution of supragranular contribution (NSG%) across density di�erences (ranked,
see color scale) categorised according to the neuron densities of the source areas (ranked).
For each feature ((A) delay infragranular compartment, (B) delay supragranular compart-
ment, (C) supragranular compartment neuron density scaling, (D) axon elongation), pro-
jections are shown for each implemented parameter value. Thus, one row of box plots
corresponds to one box in Figure 3.28. Box plots show distribution across 50 simulation
instances (projections for all 50 instances are collapsed), indicating median (target), in-
terquartile range (box), data range (whiskers) and outliers (circles, outside of 2.7 standard
deviations). Parameter values that correspond to baseline are highlighted in purple.
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Figure C.7: Correlation of area degree with neuron density. Spearman rank correlation
coe�cients for the correlation between area degree (number of connections) and area
neuron density. We used a sign test to determine whether the distribution of associated
Spearman rank correlation p-values had a median value smaller than � = 0.05. The result
of the sign test is indicated on top; black star: median p < 0.05, red circle: median p�0.05.
Box plots show distribution across 50 simulation instances per implementation, indicating
median (line), interquartile range (dark grey box), data range (light grey box) and outliers
(circles, outside of 2.7 standard deviations). Parameter values that correspond to baseline
(i.e., with no feature implemented), are highlighted in purple.
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Figure C.8: Simulation-to-empirical classification performance.
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Figure C.8: Simulation-to-empirical classification performance. We trained a classifier on
simulated data and used it to classify connection existence from relative di�erentiation
and spatial proximity in the macaque (blue) and cat (green) cortex. Classification per-
formance is indicated by the Youden index J for the four implemented features. Whether
the classifier performed better than chance was assessed by a permutation test, where J
was calculated for prediction from randomly permuted labels and a z-test was performed.
We used a sign test to determine whether the distribution of associated z-test p-values
had a median value smaller than � = 0.05. The result of the sign test is indicated on top;
black star: performance better than chance with median p < 0.05, red circle: performance
not better than chance with median p�0.05. Box plots show distribution across 50 sim-
ulation instances per implementation, indicating median (line), interquartile range (dark
grey box), data range (light grey box) and outliers (circles, outside of 2.7 standard devia-
tions). Parameter values that correspond to baseline (i.e., with no feature implemented),
are highlighted in purple.
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Figure C.9: Axon elongation without ordered succession of neuron density values. Results
for implementation of scaling in axon elongation with randomly assigned area neuron
densities. That is, this implementation lacked the ordered gradient of areas with higher
neuron density forming at later points in time that was present in the other implementa-
tions. (A) Spearman rank correlation coe�cients for the correlation between area degree
(number of connections) and area neuron density, as in Figure C.7. (B) Classification perfor-
mance for simulation-to-empirical classification performance from relative di�erentiation
and spatial proximity, as in Figure C.8. The results of sign tests are indicated on top; black
star: performance better than chance with median p < 0.05, red circle: performance not
better than chance with median p� 0.05. Box plots show distribution across 50 simula-
tion instances per implementation, indicating median (line), interquartile range (dark grey
box), data range (light grey box) and outliers (circles, outside of 2.7 standard deviations).
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Figure C.10: Pairwise combination of features. Spearman rank correlation coe�cients for
the correlation between the supragranular contribution of a projection and the neuron
density di�erence between the connected areas. We simulated implementations of all
pairwise combinations of features at a reduced set of parameter values.
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Figure C.11: Combination of all features. Spearman rank correlation coe�cients for the
correlation between the supragranular contribution of a projection and the neuron den-
sity di�erence between the connected areas. We simulated implementations of all four
features simultaneously, at a reduced set of parameter values. (A) Correlation coe�cients
for the correlation of supragranular contribution values with neuron density di�erence
between connected areas. (B) Partial correlation coe�cients for the correlation of supra-
granular contribution value with neuron density di�erence, controlling for the supra-to-
total neuron ratio (as in Figure 3.29B).
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Figure C.12: Classification of connection existence using logistic regression in simulated
cortical sheets of di�erent sizes. We simulated at least 50 instances of seven implementa-
tions of the realistically oriented density gradient 1D 2rows 2origins growth layout. Across
seven di�erent implementations of the in silico model we varied the number of neurons
populating the simulated cortical sheet, thereby changing its spatial extent. For four im-
plementations (A), we scaled the number of cortical areas with the square root of the num-
ber of neurons (specifically, number of areas equalled the square root of the number of
neurons divided by 5, to reach an appropriate range for the number of areas), as suggested
by Braitenberg (2001) for a hypothetical scheme of cortical connectivity. For three further
implementations (B), we kept the number of areas constant and e�ectively increased area
sizes by adding more neurons. Number of areas, approximate number of neurons and
approximate width of the cortical sheet for each implementation are given below the ab-
scissa. The logistic regressions were performed analogous to those shown in Figure 3.23,
as described in Section 2.4.4.2. While spatial distance (blue) did not contribute substan-
tially to the classification of connection existence in small cortical sheets, its contribution
to classification performance increased as the spatial extent (denoted here by arbitrary
units, a.u.) of the simulated cortical sheet increased. The rise in spatial proximity’s predic-
tive power occurred irrespective of whether the expansion of the cortical sheet coincided
with an increase in the number of cortical areas (A) or not (B).
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1 area 1 

2 area 2 

4 area 4 

7 area 7 

17 area 17 

18 area 18 

19 area 19 

35 area 35 

36 area 36 

20a area 20a 

20b area 20b 

21a area 21a 

21b area 21b 

3a area 3a 

3b area 3b 

4g area 4γ 

5al lateral area 5a 

5am medial area 5a 

5bl lateral area 5b 

5bm medial area 5b 

5m medial area 5 

6l lateral area 6 

6m medial area 6 

AAF anterior auditory field 

AES anterior ectosylvian sulcus 

AI primary auditory field 

AII secondary auditory field 

ALG anterolateral gyrus 

ALLS anterolateral lateral suprasylvian area 

AMLS anteromedial lateral suprasylvian area 

Amyg amygdala 

CGa anterior cingulate cortex 

CGp posterior cingulate cortex 

DLS dorsolateral suprasylvian area 

DP dorsoposterior auditory field 

EPp posterior part of the posterior ectosylvian gyrus 

ER entorhinal cortex 

Hipp hippocampus proper 

Ia agranular insula 

Ig granular insula 

IL infralimbic area 

LA anterior limbic cortex 

P posterior auditory field 

PFCdl dorsolateral prefrontal cortex 

PFCdm dorsomedial prefrontal cortex 

PFCr rostral prefrontal cortex 

PFCv ventral prefrontal cortex 

PL prelimbic area 

PLLS posterolateral lateral suprasylvian area 

PMLS posteromedial lateral suprasylvian area 

POA presylvian oculomotor area 

PS posterior suprasylvian area 

pSb 
presubiculum, parasubiculum, and postsubicular 

cortex 

RS retrosplenial cortex 

Sb subiculum 

SII second somatosensory area 

SIV fourth somatosensory area 

SSAi inner (deep) suprasylvian sulcal region of area 5 

SSAo outer suprasylvian sulcal region of area 5 

SSF suprasylvian fringe 

SVA splenial visual area 

Tem temporal auditory field 

V ventral auditory field 

VLS ventrolateral suprasylvian area 

VP ventroposterior auditory field 

 

Table D.1: Anatomical abbreviations in the cat cortex.
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17 18 3 1 0 -1 

17 PS 0 3 4 -3 
17 VLS 2 4 2 -2 

17 19 3 2 1 -3 

17 PMLS 3 3 1 -4 

17 SVA 0 1 3 -4 

17 21a 2 3 1 -6 

17 PLLS 1 4 2 -5 

17 ALLS 0 4 2 -7 

17 AMLS 2 3 2 -8 

17 20a 3 2 4 -7 

17 DLS 0 4 2 -8 

17 21b 2 3 2 -8 

17 20b 0 2 4 -9 

17 7 0 2 3 -10 

17 AES 0 5 3 -9 

17 ALG 0 3 - - 

17 4g 0 3 3 - 

17 6m 0 2 3 - 

17 5Am 0 3 3 - 
17 5Al 0 4 3 - 

17 5Bm 0 3 3 - 

17 5Bl 0 3 2 - 

17 5m 0 2 - - 

17 SSAo 0 4 3 - 

17 SSAi 0 4 3 - 

18 17 3 1 0 1 

18 PS 0 2 4 -2 

18 VLS 1 3 2 -1 

18 19 3 1 1 -2 

18 PMLS 3 2 1 -3 

18 SVA 0 1 3 -3 

18 21a 2 2 1 -5 

18 PLLS 1 3 2 -4 

18 ALLS 1 3 2 -6 

18 AMLS 3 2 2 -7 

18 20a 2 1 4 -6 
18 DLS 0 3 2 -7 

18 21b 2 2 2 -7 

18 20b 0 1 4 -8 

18 7 1 1 3 -9 

18 AES 0 5 3 -8 

18 ALG 0 2 - - 

18 4g 0 3 3 - 

18 5Am 0 3 3 - 

18 5Al 0 3 3 - 

18 5Bm 0 2 3 - 

18 5Bl 1 2 2 - 

18 5m 0 2 - - 

18 SSAo 0 3 3 - 

18 SSAi 0 3 3 - 

PS 17 0 3 -4 3 

PS 18 0 2 -4 2 

PS 19 1 2 -3 0 
PS PMLS 1 3 -3 -1 

PS SVA 1 2 -1 -1 

PS 21a 1 2 -3 -3 

PS PLLS 3 3 -2 -2 

PS ALLS 0 3 -2 -4 

PS AMLS 1 4 -2 -5 

PS 20a 2 1 0 -4 

PS 21b 1 1 -2 -5 

PS 20b 2 1 0 -6 

PS 7 1 3 -1 -7 

PS CGA 1 3 0 -8 

PS AES 2 3 -1 -6 

PS 35 1 2 0 -9 

PS 36 2 1 0 -9 

PS SSF 2 2 - - 
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PS PFCr 0 4 - - 

PS PFCdl 1 3 -2 - 
PS PFCv 1 3 0 - 

PS PFCdm 1 4 -1 - 

PS IG 2 2 0 - 

PS LA 1 4 - - 

VLS 17 0 4 -2 2 

VLS 18 1 3 -2 1 

VLS 19 1 2 -1 -1 

VLS PMLS 3 1 -1 -2 

VLS 21a 0 1 -1 -4 

VLS PLLS 0 2 0 -3 

VLS 20a 2 2 2 -5 

VLS DLS 2 1 0 -6 

VLS 7 0 2 1 -8 

VLS CGA 1 3 2 -9 

VLS AES 1 4 1 -7 

VLS EPp 1 2 0 - 

19 17 3 2 -1 3 

19 18 3 1 -1 2 
19 PS 0 2 3 0 

19 VLS 2 2 1 1 

19 PMLS 3 2 0 -1 

19 SVA 3 2 2 -1 

19 21a 3 1 0 -3 

19 PLLS 2 3 1 -2 

19 ALLS 1 3 1 -4 

19 AMLS 2 2 1 -5 

19 20a 3 1 3 -4 

19 DLS 2 2 1 -5 

19 21b 1 1 1 -5 

19 20b 1 2 3 -6 

19 7 2 1 2 -7 

19 CGP 0 3 3 -7 

19 CGA 0 2 3 -8 

19 AES 0 5 2 -6 

19 ALG 3 1 - - 
19 SSF 1 3 - - 

19 EPp 1 2 1 - 

19 4g 0 4 2 - 

19 6l 1 4 3 - 

19 6m 0 3 2 - 

19 5Am 0 3 2 - 

19 5Al 1 3 2 - 

19 5Bm 1 2 2 - 

19 5Bl 2 2 1 - 

19 5m 0 2 - - 

19 SSAo 0 3 2 - 

19 SSAi 0 3 2 - 

19 IA 0 4 - - 

19 IG 0 4 3 - 

PMLS 17 3 3 -1 4 

PMLS 18 2 2 -1 3 

PMLS PS 0 3 3 1 
PMLS VLS 3 1 1 2 

PMLS 19 3 2 0 1 

PMLS SVA 0 3 2 0 

PMLS 21a 1 1 0 -2 

PMLS PLLS 2 1 1 -1 

PMLS ALLS 0 2 1 -3 

PMLS AMLS 2 1 1 -4 

PMLS 20a 3 3 3 -3 

PMLS DLS 0 2 1 -4 

PMLS 21b 1 2 1 -4 

PMLS 20b 0 3 3 -5 

PMLS 7 0 1 2 -6 

PMLS CGA 1 2 3 -7 

PMLS AES 1 4 2 -5 

PMLS 35 1 4 3 -8 
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PMLS ALG 0 2 - - 

PMLS 6l 1 4 3 - 
PMLS 5Am 0 3 2 - 

PMLS 5Al 0 3 2 - 

PMLS 5Bm 0 2 2 - 

PMLS 5Bl 2 2 1 - 

PMLS 5m 0 2 - - 

PMLS SSAo 0 2 2 - 

PMLS SSAi 0 2 2 - 

PMLS PFCr 0 5 - - 

PMLS PFCdl 0 5 1 - 

PMLS IA 1 4 - - 

PMLS IG 1 4 3 - 

SVA 17 0 1 -3 4 

SVA 18 0 1 -3 3 

SVA 19 3 2 -2 1 

SVA PMLS 1 3 -2 0 

SVA 21a 0 3 -2 -2 

SVA PLLS 1 4 -1 -1 

SVA AMLS 1 3 -1 -4 
SVA 20a 2 2 1 -3 

SVA DLS 0 4 -1 -4 

SVA 20b 2 1 1 -5 

SVA 7 3 2 0 -6 

SVA CGP 2 1 1 -6 

SVA CGA 2 1 1 -7 

SVA SSF 1 4 - - 

SVA 5Am 0 3 0 - 

SVA 5Al 1 4 0 - 

SVA 5Bm 0 3 0 - 

SVA 5Bl 2 3 -1 - 

SVA 5m 1 2 - - 

SVA SSAo 2 4 0 - 

SVA LA 1 2 - - 

21a 17 3 3 -1 6 

21a 18 3 2 -1 5 

21a PS 0 2 3 3 
21a VLS 0 1 1 4 

21a 19 3 1 0 3 

21a PMLS 1 1 0 2 

21a SVA 0 3 2 2 

21a PLLS 1 2 1 1 

21a ALLS 0 3 1 -1 

21a AMLS 2 2 1 -2 

21a 20a 2 2 3 -1 

21a DLS 0 2 1 -2 

21a 21b 2 1 1 -2 

21a 20b 0 3 3 -3 

21a 7 2 1 2 -4 

21a AES 0 5 2 -3 

21a 35 2 4 3 -6 

21a 36 1 3 3 -6 

21a ALG 0 1 - - 

21a EPp 1 2 1 - 
21a 5Am 0 3 2 - 

21a 5Al 1 3 2 - 

21a 5Bm 0 2 2 - 

21a 5Bl 2 2 1 - 

21a 5m 0 2 - - 

21a SSAo 0 3 2 - 

21a SSAi 0 3 2 - 

PLLS 17 1 4 -2 5 

PLLS 18 2 3 -2 4 

PLLS PS 3 3 2 2 

PLLS VLS 1 2 0 3 

PLLS 19 1 3 -1 2 

PLLS PMLS 1 1 -1 1 

PLLS SVA 0 4 1 1 

PLLS 21a 0 2 -1 -1 

Table D.2: Projection data and structural measures in the cat cortex. 259
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PLLS ALLS 2 1 0 -2 

PLLS AMLS 1 2 0 -3 
PLLS 20a 2 3 2 -2 

PLLS DLS 3 1 0 -3 

PLLS 21b 0 2 0 -3 

PLLS 20b 0 4 2 -4 

PLLS 7 1 2 1 -5 

PLLS CGA 1 3 2 -6 

PLLS AES 3 3 1 -4 

PLLS 35 1 5 2 -7 

PLLS ALG 0 3 - - 

PLLS EPp 2 2 0 - 

PLLS 6l 1 5 2 - 

PLLS 6m 1 4 1 - 

PLLS 5Am 0 4 1 - 

PLLS 5Al 0 3 1 - 

PLLS 5Bm 0 3 1 - 

PLLS 5Bl 1 3 0 - 

PLLS 5m 0 3 - - 

PLLS SSAo 0 2 1 - 
PLLS SSAi 0 2 1 - 

PLLS PFCr 0 6 - - 

PLLS PFCdl 1 5 0 - 

PLLS PFCv 0 5 2 - 

PLLS PFCdm 1 5 1 - 

PLLS IA 1 4 - - 

PLLS IG 2 3 2 - 

ALLS 17 0 4 -2 7 

ALLS 18 0 3 -2 6 

ALLS PS 0 3 2 4 

ALLS VLS 1 3 0 5 

ALLS 19 1 3 -1 4 

ALLS PMLS 0 2 -1 3 

ALLS 21a 0 3 -1 1 

ALLS PLLS 2 1 0 2 

ALLS AMLS 1 1 0 -1 

ALLS 20a 0 4 2 0 
ALLS DLS 2 2 0 -1 

ALLS 20b 0 4 2 -2 

ALLS 7 1 2 1 -3 

ALLS CGA 1 3 2 -4 

ALLS AES 2 3 1 -2 

ALLS SSF 1 1 - - 

ALLS EPp 1 2 0 - 

ALLS 6m 1 4 1 - 

ALLS 5Am 0 3 1 - 

ALLS 5Al 0 2 1 - 

ALLS 5Bm 0 3 1 - 

ALLS 5Bl 2 2 0 - 

ALLS 5m 2 3 - - 

ALLS SSAo 0 1 1 - 

ALLS SSAi 0 2 1 - 

ALLS PFCr 0 6 - - 

ALLS PFCdl 1 5 0 - 
ALLS PFCv 0 5 2 - 

ALLS PFCdm 1 5 1 - 

ALLS IG 2 3 2 - 

AMLS 17 3 3 -2 8 

AMLS 18 3 2 -2 7 

AMLS PS 0 4 2 5 

AMLS 19 2 2 -1 5 

AMLS PMLS 3 1 -1 4 

AMLS SVA 1 3 1 4 

AMLS 21a 2 2 -1 2 

AMLS PLLS 0 2 0 3 

AMLS ALLS 1 1 0 1 

AMLS 20a 0 3 2 1 

AMLS DLS 0 3 0 0 

AMLS 20b 1 3 2 -1 
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AMLS 7 2 1 1 -2 

AMLS CGA 1 2 2 -3 
AMLS AES 1 3 1 -1 

AMLS ALG 1 2 - - 

AMLS 4g 1 4 1 - 

AMLS 4 1 3 2 - 

AMLS 6m 1 3 1 - 

AMLS 5Am 1 3 1 - 

AMLS 5Al 2 2 1 - 

AMLS 5Bm 1 2 1 - 

AMLS 5Bl 2 2 0 - 

AMLS 5m 1 2 - - 

AMLS SSAo 0 1 1 - 

AMLS SSAi 1 1 1 - 

AMLS PFCr 0 5 - - 

AMLS PFCdl 0 5 0 - 

AMLS LA 1 3 - - 

20a 17 3 2 -4 7 

20a 18 2 1 -4 6 

20a PS 0 1 0 4 
20a VLS 2 2 -2 5 

20a 19 3 1 -3 4 

20a PMLS 3 3 -3 3 

20a SVA 0 2 -1 3 

20a 21a 2 2 -3 1 

20a PLLS 1 3 -2 2 

20a ALLS 0 4 -2 0 

20a AMLS 0 3 -2 -1 

20a DLS 0 2 -2 -1 

20a 21b 2 1 -2 -1 

20a 20b 3 1 0 -2 

20a 7 2 2 -1 -3 

20a CGP 2 3 0 -3 

20a AES 0 4 -1 -2 

20a 35 2 2 0 -5 

20a 36 1 2 0 -5 

20a ALG 0 2 - - 
20a SSF 1 3 - - 

20a EPp 2 2 -2 - 

20a 6m 1 3 -1 - 

20a 5Am 0 4 -1 - 

20a 5Al 1 4 -1 - 

20a 5Bm 0 3 -1 - 

20a 5Bl 0 3 -2 - 

20a 5m 0 3 - - 

20a SSAo 0 4 -1 - 

20a SSAi 0 4 -1 - 

20a PFCr 0 5 - - 

20a PFCdl 1 4 -2 - 

20a PFCv 1 4 0 - 

20a PFCdm 0 4 -1 - 

20a IA 1 3 - - 

20a IG 1 3 0 - 

20a RS 2 2 -1 - 
DLS 17 0 4 -2 8 

DLS 18 0 3 -2 7 

DLS VLS 2 1 0 6 

DLS 19 0 2 -1 5 

DLS PMLS 0 2 -1 4 

DLS SVA 0 4 1 4 

DLS 21a 0 2 -1 2 

DLS PLLS 3 1 0 3 

DLS AMLS 0 3 0 0 

DLS 20a 0 2 2 1 

DLS 21b 1 1 0 0 

DLS 20b 0 3 2 -1 

DLS 7 0 3 1 -2 

DLS CGA 1 4 2 -3 

DLS AES 2 3 1 -1 
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DLS EPp 2 1 0 - 

DLS IA 2 3 - - 
DLS IG 2 3 2 - 

21b 17 2 3 -2 8 

21b 18 2 2 -2 7 

21b VLS 1 1 0 6 

21b 19 1 1 -1 5 

21b PMLS 1 2 -1 4 

21b 21a 2 1 -1 2 

21b PLLS 0 2 0 3 

21b AMLS 0 3 0 0 

21b 20a 2 1 2 1 

21b DLS 1 1 0 0 

21b 20b 0 2 2 -1 

21b 7 2 2 1 -2 

21b 35 2 3 2 -4 

21b 36 1 2 2 -4 

21b EPp 1 1 0 - 

21b 5Am 0 4 1 - 

21b 5Al 1 4 1 - 
21b 5Bm 0 3 1 - 

21b 5Bl 2 3 0 - 

21b 5m 0 3 - - 

21b SSAo 0 4 1 - 

21b SSAi 0 3 1 - 

20b 17 0 2 -4 9 

20b 18 0 1 -4 8 

20b PS 2 1 0 6 

20b VLS 0 3 -2 7 

20b 19 1 2 -3 6 

20b PMLS 0 3 -3 5 

20b SVA 2 1 -1 5 

20b 21a 0 3 -3 3 

20b PLLS 0 4 -2 4 

20b ALLS 0 4 -2 2 

20b AMLS 1 3 -2 1 

20b 20a 3 1 0 2 
20b DLS 0 3 -2 1 

20b 7 2 2 -1 -1 

20b CGP 2 2 0 -1 

20b CGA 1 2 0 -2 

20b AES 1 4 -1 0 

20b 35 2 1 0 -3 

20b 36 1 1 0 -3 

20b SSF 1 3 - - 

20b EPp 2 2 -2 - 

20b 6m 1 3 -1 - 

20b 5Am 0 4 -1 - 

20b 5Al 1 4 -1 - 

20b 5Bm 0 3 -1 - 

20b 5Bl 0 3 -2 - 

20b 5m 0 3 - - 

20b SSAo 0 4 -1 - 

20b SSAi 0 4 -1 - 
20b PFCr 0 4 - - 

20b PFCdl 1 3 -2 - 

20b PFCv 1 3 0 - 

20b PFCdm 0 4 -1 - 

20b IA 1 2 - - 

20b IG 1 3 0 - 

20b LA 1 3 - - 

20b RS 2 1 -1 - 

7 17 0 2 -3 10 

7 18 1 1 -3 9 

7 PS 0 3 1 7 

7 VLS 0 2 -1 8 

7 19 2 1 -2 7 

7 PMLS 0 1 -2 6 

7 SVA 3 2 0 6 

Table D.2: Projection data and structural measures in the cat cortex (cont.). 260
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7 21a 2 1 -2 4 

7 PLLS 1 2 -1 5 
7 20a 1 2 1 3 

7 DLS 0 3 -1 2 

7 21b 1 2 -1 2 

7 20b 0 2 1 1 

7 CGP 3 2 1 0 

7 CGA 1 1 1 -1 

7 AES 0 4 0 1 

7 35 1 3 1 -2 

7 ALG 3 1 - - 

7 SSF 2 3 - - 

7 EPp 2 3 -1 - 

7 4g 1 3 0 - 

7 6l 2 3 1 - 

7 6m 3 2 0 - 

7 5Am 1 2 0 - 

7 5Al 2 2 0 - 

7 5Bm 2 1 0 - 

7 5Bl 3 1 -1 - 
7 5m 3 1 - - 

7 SSAo 2 2 0 - 

7 SSAi 2 2 0 - 

7 PFCr 1 4 - - 

7 PFCdl 1 4 -1 - 

7 PFCv 0 4 1 - 

7 PFCdm 1 3 0 - 

7 IA 1 3 - - 

7 IG 1 4 1 - 

7 LA 1 2 - - 

7 RS 2 3 0 - 

CGP 20a 1 3 0 3 

CGP 20b 1 2 0 1 

CGP 7 3 2 -1 0 

CGP CGA 3 1 0 -1 

CGP AES 1 5 -1 1 

CGP DP 2 5 - - 
CGP P 2 5 -2 - 

CGP SSF 1 5 - - 

CGP EPp 3 4 -2 - 

CGP 6m 3 2 -1 - 

CGP POA 2 4 - - 

CGP PFCr 3 4 - - 

CGP PFCdl 3 4 -2 - 

CGP PFCv 3 4 0 - 

CGP PFCdm 3 3 -1 - 

CGP IA 2 3 - - 

CGP IG 2 4 0 - 

CGP LA 2 2 - - 

CGP RS 1 1 -1 - 

CGP PL 1 3 - - 

CGP pSb 1 2 - - 

CGA 20a 2 2 0 4 

CGA 20b 2 2 0 2 
CGA AES 1 4 -1 2 

CGA ER 2 3 - - 

CGA 35 2 3 0 -1 

CGA 36 1 3 0 -1 

CGA DP 2 5 - - 

CGA P 2 5 -2 - 

CGA SSF 1 4 - - 

CGA EPp 1 4 -2 - 

CGA 6m 2 1 -1 - 

CGA 5Am 1 2 -1 - 

CGA 5Al 1 3 -1 - 

CGA 5Bm 2 2 -1 - 

CGA 5Bl 1 2 -2 - 

CGA 5m 1 1 - - 

CGA SSAo 2 3 -1 - 
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CGA SSAi 1 3 -1 - 

CGA PFCr 3 3 - - 
CGA PFCdl 3 3 -2 - 

CGA PFCv 2 3 0 - 

CGA PFCdm 3 2 -1 - 

CGA IA 2 2 - - 

CGA IG 2 3 0 - 

CGA LA 2 1 - - 

CGA RS 2 2 -1 - 

CGA PL 1 2 - - 

CGA pSb 1 3 - - 

AES 17 0 5 -3 9 

AES 18 0 5 -3 8 

AES PS 2 3 1 6 

AES 19 0 5 -2 6 

AES PMLS 1 4 -2 5 

AES 21a 1 5 -2 3 

AES PLLS 3 3 -1 4 

AES ALLS 2 3 -1 2 

AES AMLS 1 3 -1 1 
AES 20a 2 4 1 2 

AES DLS 2 3 -1 1 

AES 20b 2 4 1 0 

AES 7 0 4 0 -1 

AES CGP 2 5 1 -1 

AES CGA 2 4 1 -2 

AES 35 1 3 1 -3 

AES 36 1 3 1 -3 

AES SSF 1 2 - - 

AES EPp 1 3 -1 - 

AES SIV 2 1 0 - 

AES 4g 2 5 0 - 

AES 4 1 5 1 - 

AES 6l 1 4 1 - 

AES 6m 2 5 0 - 

AES POA 2 3 - - 

AES 5Am 2 4 0 - 
AES 5Al 2 3 0 - 

AES 5Bm 2 5 0 - 

AES 5Bl 0 4 -1 - 

AES 5m 2 4 - - 

AES SSAo 2 3 0 - 

AES SSAi 1 2 0 - 

AES PFCr 1 4 - - 

AES PFCdl 2 3 -1 - 

AES PFCv 0 3 1 - 

AES IA 1 2 - - 

AES IG 2 1 1 - 

ER 20a 2 2 - - 

ER 20b 2 1 - - 

ER CGP 1 3 - - 

ER CGA 1 3 - - 

ER 35 3 1 - - 

ER 36 2 2 - - 
ER 6m 1 3 - - 

ER PFCr 1 4 - - 

ER PFCv 2 3 - - 

ER PFCdm 1 3 - - 

ER LA 2 3 - - 

ER RS 1 2 - - 

ER PL 3 2 - - 

ER IL 2 1 - - 

ER pSb 2 1 - - 

ER Sb 2 2 - - 

35 PMLS 1 4 -3 8 

35 PLLS 1 5 -2 7 

35 ALLS 1 5 -2 5 

35 AMLS 1 4 -2 4 

35 20a 1 2 0 5 
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35 20b 1 1 0 3 

35 7 1 3 -1 2 
35 CGP 1 3 0 2 

35 CGA 2 3 0 1 

35 ER 3 1 - - 

35 36 3 1 0 0 

35 AI 1 4 -4 - 

35 AII 2 3 -3 - 

35 DP 2 4 - - 

35 P 2 4 -2 - 

35 SSF 1 4 - - 

35 EPp 1 3 -2 - 

35 Tem 1 2 0 - 

35 3a 1 3 -2 - 

35 3b 1 2 -3 - 

35 1 1 3 -2 - 

35 2 1 3 -2 - 

35 SII 1 3 -1 - 

35 SIV 2 3 -1 - 

35 6m 2 4 -1 - 
35 5Am 0 4 -1 - 

35 5Al 0 4 -1 - 

35 5Bm 1 4 -1 - 

35 5Bl 0 4 -2 - 

35 5m 1 3 - - 

35 SSAo 0 4 -1 - 

35 SSAi 0 4 -1 - 

35 PFCr 1 3 - - 

35 PFCdl 1 2 -2 - 

35 PFCv 2 2 0 - 

35 PFCdm 1 3 -1 - 

35 IA 3 1 - - 

35 IG 1 2 0 - 

35 LA 2 4 - - 

35 RS 1 2 -1 - 

35 PL 2 3 - - 

35 IL 2 2 - - 
35 pSb 2 2 - - 

35 Sb 2 3 - - 

36 PS 2 1 0 9 

36 PMLS 1 4 -3 8 

36 SVA 1 2 -1 8 

36 PLLS 1 4 -2 7 

36 ALLS 1 4 -2 5 

36 AMLS 1 4 -2 4 

36 20a 1 2 0 5 

36 20b 1 1 0 3 

36 CGP 1 3 0 2 

36 CGA 1 3 0 1 

36 AES 2 3 -1 3 

36 ER 2 2 - - 

36 35 3 1 0 0 

36 AI 1 3 -4 - 

36 AII 2 2 -3 - 
36 DP 1 3 - - 

36 P 0 3 -2 - 

36 SSF 1 3 - - 

36 EPp 2 2 -2 - 

36 Tem 3 1 0 - 

36 3a 1 3 -2 - 

36 3b 1 2 -3 - 

36 1 1 3 -2 - 

36 2 1 3 -2 - 

36 SII 1 3 -1 - 

36 SIV 1 3 -1 - 

36 6m 1 4 -1 - 

36 5Am 0 4 -1 - 

36 5Al 0 4 -1 - 

36 5Bm 1 4 -1 - 
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36 5Bl 0 4 -2 - 

36 5m 1 3 - - 
36 SSAo 0 4 -1 - 

36 SSAi 0 4 -1 - 

36 PFCr 1 3 - - 

36 PFCdl 1 2 -2 - 

36 PFCv 2 2 0 - 

36 PFCdm 1 3 -1 - 

36 IA 1 1 - - 

36 IG 3 2 0 - 

36 LA 2 4 - - 

36 RS 1 2 -1 - 

36 PL 2 3 - - 

36 IL 2 3 - - 

36 pSb 2 2 - - 

ALG 17 0 3 - - 

ALG 18 0 2 - - 

ALG 19 3 1 - - 

ALG PMLS 0 2 - - 

ALG 21a 0 1 - - 
ALG PLLS 0 3 - - 

ALG AMLS 1 2 - - 

ALG 7 3 1 - - 

AI CGP 0 6 4 - 

AI 35 1 4 4 - 

AI AII 2 1 1 - 

AI AAF 3 1 3 - 

AI DP 2 1 - - 

AI P 2 1 2 - 

AI VP 2 2 3 - 

AI V 3 2 - - 

AI SSF 1 1 - - 

AI EPp 1 2 2 - 

AI Tem 1 2 4 - 

AII CGP 0 5 3 - 

AII AES 1 1 2 - 

AII 35 2 3 3 - 
AII 36 1 2 3 - 

AII AI 3 1 -1 - 

AII AAF 2 2 2 - 

AII P 2 1 1 - 

AII SSF 2 2 - - 

AII EPp 2 2 1 - 

AII PFCr 1 4 - - 

AII PFCdl 1 3 1 - 

AII PFCv 1 3 3 - 

AII PFCdm 1 4 2 - 

AII IA 2 2 - - 

AII IG 2 1 3 - 

AAF CGP 0 5 1 - 

AAF CGA 0 4 1 - 

AAF AES 1 1 0 - 

AAF 36 2 4 1 - 

AAF AI 3 1 -3 - 
AAF AII 2 2 -2 - 

AAF DP 2 2 - - 

AAF P 2 2 -1 - 

AAF VP 1 3 0 - 

AAF V 2 3 - - 

AAF SSF 2 1 - - 

AAF EPp 1 2 -1 - 

AAF Tem 1 3 1 - 

DP 20a 1 3 - - 

DP 20b 1 3 - - 

DP CGP 2 5 - - 

DP CGA 2 5 - - 

DP 35 2 4 - - 

DP 36 1 3 - - 

DP AII 2 2 - - 
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DP P 2 1 - - 

DP VP 1 2 - - 
DP RS 2 4 - - 

P 20a 1 3 2 - 

P 20b 1 3 2 - 

P CGP 2 5 2 - 

P CGA 2 5 2 - 

P 35 2 4 2 - 

P 36 0 3 2 - 

P AI 3 1 -2 - 

P AII 3 1 -1 - 

P AAF 1 2 1 - 

P DP 2 1 - - 

P VP 2 1 1 - 

P V 2 1 - - 

P EPp 2 1 0 - 

P Tem 1 2 2 - 

P RS 2 4 1 - 

VP CGP 1 5 1 - 

VP 36 1 2 1 - 
VP AI 2 2 -3 - 

VP AII 2 2 -2 - 

VP AAF 1 3 0 - 

VP DP 2 2 - - 

VP P 2 1 -1 - 

VP V 2 1 - - 

VP EPp 2 1 -1 - 

VP Tem 2 1 1 - 

V EPp 1 2 - - 

SSF PS 2 2 - - 

SSF 7 1 3 - - 

SSF CGP 2 5 - - 

SSF CGA 2 4 - - 

SSF AES 2 2 - - 

SSF AII 1 2 - - 

SSF EPp 2 1 - - 

SSF SIV 2 2 - - 
SSF 4g 1 5 - - 

SSF 4 1 5 - - 

SSF 6l 1 5 - - 

SSF 5Am 0 4 - - 

SSF 5Al 2 3 - - 

SSF 5Bm 0 4 - - 

SSF 5Bl 1 3 - - 

SSF 5m 1 4 - - 

SSF SSAo 1 2 - - 

SSF SSAi 2 1 - - 

SSF PFCr 1 5 - - 

SSF PFCdl 1 4 - - 

SSF PFCv 1 4 - - 

SSF PFCdm 1 5 - - 

SSF LA 1 5 - - 

EPp PS 2 1 2 - 

EPp 21a 1 2 -1 - 
EPp 20a 2 2 2 - 

EPp 21b 1 1 0 - 

EPp 20b 2 2 2 - 

EPp 7 1 3 1 - 

EPp CGP 1 4 2 - 

EPp CGA 1 4 2 - 

EPp AES 1 3 1 - 

EPp 35 2 3 2 - 

EPp 36 1 2 2 - 

EPp AI 1 2 -2 - 

EPp AII 1 2 -1 - 

EPp P 2 1 0 - 

EPp VP 2 1 1 - 

EPp V 1 2 - - 

EPp SSF 2 1 - - 
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EPp 6m 2 5 1 - 

EPp PFCr 0 4 - - 
EPp PFCdl 1 3 0 - 

EPp PFCv 0 3 2 - 

EPp PFCdm 1 4 1 - 

EPp IA 2 2 - - 

EPp IG 2 2 2 - 

EPp LA 1 5 - - 

Tem AII 2 1 -3 - 

Tem EPp 2 1 -2 - 

Tem PFCr 1 3 - - 

Tem PFCdl 1 2 -2 - 

Tem PFCv 1 2 0 - 

Tem IA 2 1 - - 

Tem IG 2 1 0 - 

Tem PL 2 3 - - 

3a AES 1 4 1 - 

3a 3b 2 1 -1 - 

3a 1 2 2 0 - 

3a 2 2 2 0 - 
3a SII 3 3 1 - 

3a 4g 3 1 1 - 

3a 4 2 1 2 - 

3a 6l 2 1 2 - 

3a 5Am 3 3 1 - 

3a 5Al 3 3 1 - 

3a 5Bm 0 3 1 - 

3a 5Bl 0 3 0 - 

3a 5m 0 2 - - 

3a SSAo 1 3 1 - 

3a SSAi 2 3 1 - 

3b AES 1 3 2 - 

3b 3a 2 1 1 - 

3b 1 2 1 1 - 

3b 2 2 1 1 - 

3b SII 3 2 2 - 

3b 4g 2 2 2 - 
3b 4 2 2 3 - 

3b 6l 2 2 3 - 

3b 5Am 2 2 2 - 

3b 5Al 3 2 2 - 

3b 5Bm 1 2 2 - 

3b 5Bl 1 3 1 - 

3b 5m 1 1 - - 

3b SSAo 1 2 2 - 

3b SSAi 1 2 2 - 

1 3a 2 2 0 - 

1 3b 2 1 -1 - 

1 2 2 1 0 - 

1 SII 3 2 1 - 

1 4g 2 3 1 - 

1 4 1 3 2 - 

1 6l 2 3 2 - 

1 6m 1 3 1 - 
1 5Am 3 1 1 - 

1 5Al 1 2 1 - 

1 5Bm 2 2 1 - 

1 5Bl 0 3 0 - 

1 5m 2 1 - - 

1 SSAo 1 2 1 - 

1 SSAi 2 2 1 - 

2 3a 2 2 0 - 

2 3b 2 1 -1 - 

2 1 2 1 0 - 

2 SII 3 1 1 - 

2 4g 2 3 1 - 

2 4 1 3 2 - 

2 6l 2 3 2 - 

2 6m 1 3 1 - 
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2 5Am 2 2 1 - 

2 5Al 2 1 1 - 
2 5Bm 0 3 1 - 

2 5Bl 2 2 0 - 

2 5m 2 2 - - 

2 SSAo 2 1 1 - 

2 SSAi 1 1 1 - 

2 IA 1 2 - - 

2 IG 1 1 2 - 

SII AES 2 1 0 - 

SII 35 1 3 1 - 

SII 36 1 3 1 - 

SII 3a 3 3 -1 - 

SII 3b 3 2 -2 - 

SII 1 3 2 -1 - 

SII 2 3 1 -1 - 

SII SIV 1 1 0 - 

SII 4g 3 4 0 - 

SII 4 3 4 1 - 

SII 6l 2 4 1 - 
SII 6m 1 4 0 - 

SII POA 2 3 - - 

SII 5Am 2 3 0 - 

SII 5Al 1 2 0 - 

SII 5Bm 2 4 0 - 

SII 5Bl 0 3 -1 - 

SII 5m 2 3 - - 

SII SSAo 0 2 0 - 

SII SSAi 3 1 0 - 

SII IA 1 2 - - 

SII IG 1 1 1 - 

SIV CGA 1 4 1 - 

SIV AES 2 1 0 - 

SIV 35 1 3 1 - 

SIV 36 2 3 1 - 

SIV SSF 2 2 - - 

SIV 3b 1 3 -2 - 
SIV 4g 1 5 0 - 

SIV 4 1 5 1 - 

SIV 6l 2 4 1 - 

SIV 6m 2 5 0 - 

SIV POA 2 3 - - 

SIV 5Am 2 4 0 - 

SIV 5Al 2 3 0 - 

SIV 5Bm 2 5 0 - 

SIV 5Bl 0 4 -1 - 

SIV 5m 2 4 - - 

SIV SSAo 1 3 0 - 

SIV SSAi 2 2 0 - 

SIV PFCr 0 4 - - 

SIV PFCdl 1 3 -1 - 

SIV PFCv 1 3 1 - 

SIV PFCdm 1 4 0 - 

SIV IA 2 2 - - 
SIV IG 2 1 1 - 

SIV LA 1 5 - - 

4g CGA 2 2 1 - 

4g AES 1 5 0 - 

4g 3a 2 1 -1 - 

4g 3b 2 2 -2 - 

4g 1 2 3 -1 - 

4g 2 2 3 -1 - 

4g SII 2 4 0 - 

4g 4 2 1 1 - 

4g 6l 2 1 1 - 

4g 6m 2 1 0 - 

4g 5Am 3 4 0 - 

4g 5Al 3 4 0 - 

4g 5Bm 3 4 0 - 
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4g 5Bl 2 4 -1 - 

4g 5m 2 3 - - 
4g SSAo 2 4 0 - 

4g SSAi 2 4 0 - 

4g LA 2 2 - - 

4 CGA 2 1 0 - 

4 AES 1 5 -1 - 

4 ER 1 4 - - 

4 35 1 4 0 - 

4 36 1 4 0 - 

4 3a 2 1 -2 - 

4 3b 2 2 -3 - 

4 1 2 3 -2 - 

4 2 2 3 -2 - 

4 SII 2 4 -1 - 

4 4g 2 1 -1 - 

4 6l 2 2 0 - 

4 5Am 2 3 -1 - 

4 5Al 1 4 -1 - 

4 5Bm 2 3 -1 - 
4 5Bl 1 3 -2 - 

4 5m 2 2 - - 

4 SSAo 1 4 -1 - 

4 SSAi 1 4 -1 - 

4 LA 2 2 - - 

6l 20a 1 4 0 - 

6l 20b 1 4 0 - 

6l 7 2 3 -1 - 

6l CGA 3 2 0 - 

6l EPp 1 4 -2 - 

6l SIV 2 4 -1 - 

6l 6m 3 1 -1 - 

6l 5Am 0 4 -1 - 

6l 5Al 2 4 -1 - 

6l 5Bm 1 4 -1 - 

6l 5Bl 2 4 -2 - 

6l 5m 1 3 - - 
6l SSAo 1 4 -1 - 

6l SSAi 1 4 -1 - 

6l PFCr 1 1 - - 

6l PFCdl 2 1 -2 - 

6l PFCv 1 2 0 - 

6l PFCdm 1 2 -1 - 

6l LA 2 2 - - 

6l PL 2 2 - - 

6m 7 3 2 0 - 

6m CGP 3 2 1 - 

6m CGA 3 1 1 - 

6m AES 1 5 0 - 

6m ER 1 3 - - 

6m 35 1 4 1 - 

6m 36 1 4 1 - 

6m EPp 1 5 -1 - 

6m SIV 2 5 0 - 
6m 4g 1 1 0 - 

6m 6l 3 1 1 - 

6m 5Am 1 3 0 - 

6m 5Al 1 4 0 - 

6m 5Bm 1 3 0 - 

6m 5Bl 2 3 -1 - 

6m 5m 1 2 - - 

6m SSAo 2 4 0 - 

6m SSAi 0 4 0 - 

6m PFCr 1 2 - - 

6m PFCdl 2 2 -1 - 

6m PFCv 0 2 1 - 

6m PFCdm 2 1 0 - 

6m IA 2 3 - - 

6m IG 2 4 1 - 
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6m LA 2 1 - - 

6m PL 2 1 - - 
6m IL 2 2 - - 

POA 20a 1 4 - - 

POA 20b 1 3 - - 

POA 7 2 4 - - 

POA CGP 2 4 - - 

POA AES 2 3 - - 

POA SII 1 3 - - 

POA SIV 2 3 - - 

POA 6m 2 2 - - 

POA IA 1 1 - - 

POA IG 2 2 - - 

5Am 7 1 2 0 - 

5Am CGA 1 2 1 - 

5Am AES 1 4 0 - 

5Am SIV 2 4 0 - 

5Am 4g 2 4 0 - 

5Am 4 2 3 1 - 

5Am 6l 0 4 1 - 
5Am 6m 1 3 0 - 

5Am 5Al 1 1 0 - 

5Am 5Bm 3 1 0 - 

5Am 5Bl 0 2 -1 - 

5Am 5m 2 1 - - 

5Am SSAo 2 2 0 - 

5Am SSAi 2 3 0 - 

5Am PFCr 0 5 - - 

5Am PFCv 0 4 1 - 

5Am PFCdm 0 4 0 - 

5Am IA 1 3 - - 

5Am LA 1 3 - - 

5Al 19 1 3 -2 - 

5Al 20a 1 4 1 - 

5Al 20b 1 4 1 - 

5Al 7 2 2 0 - 

5Al CGA 1 3 1 - 
5Al AES 1 3 0 - 

5Al SII 1 2 0 - 

5Al SIV 2 3 0 - 

5Al 4g 2 4 0 - 

5Al 4 1 4 1 - 

5Al 6l 2 4 1 - 

5Al 6m 1 4 0 - 

5Al 5Am 2 1 0 - 

5Al 5Bm 1 2 0 - 

5Al 5Bl 2 1 -1 - 

5Al 5m 2 2 - - 

5Al SSAo 2 1 0 - 

5Al SSAi 0 2 0 - 

5Al PFCr 0 5 - - 

5Al PFCdl 1 4 -1 - 

5Al PFCv 0 4 1 - 

5Al PFCdm 0 5 0 - 
5Al IA 1 3 - - 

5Al LA 1 4 - - 

5Bm 19 1 2 -2 - 

5Bm 7 2 1 0 - 

5Bm CGA 1 2 1 - 

5Bm AES 1 5 0 - 

5Bm SII 2 4 0 - 

5Bm SIV 2 5 0 - 

5Bm 4g 2 4 0 - 

5Bm 4 2 3 1 - 

5Bm 6l 1 4 1 - 

5Bm 6m 1 3 0 - 

5Bm 5Am 3 1 0 - 

5Bm 5Al 2 2 0 - 

5Bm 5Bl 2 1 -1 - 
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5Bm 5m 2 1 - - 

5Bm SSAo 2 2 0 - 
5Bm SSAi 2 3 0 - 

5Bm PFCr 0 5 - - 

5Bm PFCdl 0 4 -1 - 

5Bm PFCv 0 4 1 - 

5Bm PFCdm 0 4 0 - 

5Bm IA 1 3 - - 

5Bm LA 1 3 - - 

5Bl 19 1 2 -1 - 

5Bl 7 2 1 1 - 

5Bl CGA 1 2 2 - 

5Bl SSF 1 3 - - 

5Bl 4g 2 4 1 - 

5Bl 4 1 3 2 - 

5Bl 6l 2 4 2 - 

5Bl 6m 2 3 1 - 

5Bl 5Am 0 2 1 - 

5Bl 5Al 3 1 1 - 

5Bl 5Bm 2 1 1 - 
5Bl 5m 2 2 - - 

5Bl SSAo 2 1 1 - 

5Bl SSAi 1 2 1 - 

5Bl PFCr 0 5 - - 

5Bl PFCdl 1 5 0 - 

5Bl PFCv 0 5 2 - 

5Bl PFCdm 0 4 1 - 

5Bl IA 1 4 - - 

5Bl LA 1 3 - - 

5m 7 2 1 - - 

5m CGA 1 1 - - 

5m AES 1 4 - - 

5m SSF 1 4 - - 

5m SIV 1 4 - - 

5m 4g 2 3 - - 

5m 4 2 2 - - 

5m 6l 1 3 - - 
5m 6m 1 2 - - 

5m 5Am 2 1 - - 

5m 5Al 2 2 - - 

5m 5Bm 2 1 - - 

5m 5Bl 0 2 - - 

5m SSAo 1 3 - - 

5m SSAi 1 3 - - 

5m PFCr 0 4 - - 

5m PFCdl 0 3 - - 

5m PFCv 0 3 - - 

5m PFCdm 0 3 - - 

5m IA 1 2 - - 

5m LA 1 2 - - 

SSAo 7 2 2 0 - 

SSAo CGA 1 3 1 - 

SSAo AES 1 3 0 - 

SSAo SSF 1 2 - - 
SSAo 3b 1 2 -2 - 

SSAo SIV 1 3 0 - 

SSAo 4g 2 4 0 - 

SSAo 4 1 4 1 - 

SSAo 6l 1 4 1 - 

SSAo 6m 2 4 0 - 

SSAo 5Am 3 2 0 - 

SSAo 5Al 3 1 0 - 

SSAo 5Bm 1 2 0 - 

SSAo 5Bl 2 1 -1 - 

SSAo 5m 2 3 - - 

SSAo SSAi 2 1 0 - 

SSAo PFCr 0 5 - - 

SSAo PFCdl 0 4 -1 - 

SSAo PFCv 0 4 1 - 
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SSAo PFCdm 0 5 0 - 

SSAo IA 1 3 - - 
SSAo LA 1 4 - - 

SSAi 7 1 2 0 - 

SSAi CGA 1 3 1 - 

SSAi AES 1 2 0 - 

SSAi SSF 2 1 - - 

SSAi 3b 1 2 -2 - 

SSAi SII 2 1 0 - 

SSAi SIV 2 2 0 - 

SSAi 4g 2 4 0 - 

SSAi 4 1 4 1 - 

SSAi 6l 1 4 1 - 

SSAi 5Am 2 3 0 - 

SSAi 5Al 2 2 0 - 

SSAi 5Bm 2 3 0 - 

SSAi 5Bl 1 2 -1 - 

SSAi 5m 2 3 - - 

SSAi SSAo 1 1 0 - 

SSAi PFCr 0 5 - - 
SSAi PFCdl 0 4 -1 - 

SSAi PFCv 0 4 1 - 

SSAi PFCdm 0 5 0 - 

SSAi IA 1 3 - - 

SSAi LA 1 4 - - 

PFCr 7 1 4 - - 

PFCr CGP 3 4 - - 

PFCr CGA 3 3 - - 

PFCr AES 1 4 - - 

PFCr SSF 1 5 - - 

PFCr 5Am 0 5 - - 

PFCr 5Bm 0 5 - - 

PFCr 5m 0 4 - - 

PFCr SSAo 0 5 - - 

PFCr SSAi 0 5 - - 

PFCr PFCdl 2 1 - - 

PFCr PFCv 1 1 - - 
PFCr PFCdm 2 1 - - 

PFCr IA 2 2 - - 

PFCr IG 2 3 - - 

PFCr LA 1 3 - - 

PFCr RS 2 5 - - 

PFCdl PS 1 3 2 - 

PFCdl 20a 1 4 2 - 

PFCdl 20b 1 3 2 - 

PFCdl 7 1 4 1 - 

PFCdl CGP 3 4 2 - 

PFCdl CGA 3 3 2 - 

PFCdl AES 1 3 1 - 

PFCdl SSF 1 4 - - 

PFCdl EPp 1 3 0 - 

PFCdl 5Am 0 4 1 - 

PFCdl 5Al 1 4 1 - 

PFCdl 5Bm 0 4 1 - 
PFCdl 5Bl 1 5 0 - 

PFCdl 5m 0 3 - - 

PFCdl SSAo 0 4 1 - 

PFCdl SSAi 0 4 1 - 

PFCdl PFCr 3 1 - - 

PFCdl PFCv 1 1 2 - 

PFCdl PFCdm 2 2 1 - 

PFCdl IA 2 1 - - 

PFCdl IG 2 2 2 - 

PFCdl LA 2 3 - - 

PFCdl RS 1 4 1 - 

PFCdl PL 2 2 - - 

PFCv PS 1 3 0 - 

PFCv 20a 1 4 0 - 

PFCv 20b 1 3 0 - 
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PFCv CGP 3 4 0 - 

PFCv CGA 2 3 0 - 
PFCv ER 1 3 - - 

PFCv SSF 1 4 - - 

PFCv EPp 1 3 -2 - 

PFCv 5Am 0 4 -1 - 

PFCv 5Bm 0 4 -1 - 

PFCv 5m 0 3 - - 

PFCv SSAo 0 4 -1 - 

PFCv SSAi 0 4 -1 - 

PFCv PFCr 2 1 - - 

PFCv PFCdl 2 1 -2 - 

PFCv PFCdm 2 1 -1 - 

PFCv IA 2 1 - - 

PFCv IG 1 2 0 - 

PFCv LA 1 2 - - 

PFCv RS 1 4 -1 - 

PFCv IL 1 2 - - 

PFCdm PS 1 4 1 - 

PFCdm 7 1 3 0 - 
PFCdm CGP 3 3 1 - 

PFCdm CGA 3 2 1 - 

PFCdm ER 1 3 - - 

PFCdm SSF 1 5 - - 

PFCdm EPp 1 4 -1 - 

PFCdm 5Am 0 4 0 - 

PFCdm 5Bm 0 4 0 - 

PFCdm 5m 0 3 - - 

PFCdm SSAo 0 5 0 - 

PFCdm SSAi 0 5 0 - 

PFCdm PFCr 2 1 - - 

PFCdm PFCdl 2 2 -1 - 

PFCdm PFCv 1 1 1 - 

PFCdm IA 2 2 - - 

PFCdm IG 2 3 1 - 

PFCdm LA 2 2 - - 

PFCdm RS 1 4 0 - 
PFCdm PL 2 1 - - 

PFCdm IL 1 2 - - 

IA 17 0 3 - - 

IA 18 0 3 - - 

IA PS 1 2 - - 

IA PLLS 1 4 - - 

IA ALLS 1 4 - - 

IA CGP 2 3 - - 

IA CGA 2 2 - - 

IA AES 1 2 - - 

IA ER 1 2 - - 

IA 35 3 1 - - 

IA 36 1 1 - - 

IA AI 1 3 - - 

IA AII 1 2 - - 

IA EPp 2 2 - - 

IA SII 1 2 - - 
IA SIV 1 2 - - 

IA 6m 2 3 - - 

IA 5Am 1 3 - - 

IA 5Al 2 3 - - 

IA 5Bm 1 3 - - 

IA 5Bl 1 4 - - 

IA 5m 1 2 - - 

IA SSAo 1 3 - - 

IA SSAi 1 3 - - 

IA PFCr 2 2 - - 

IA PFCdl 2 1 - - 

IA PFCv 2 1 - - 

IA PFCdm 2 2 - - 

IA LA 2 3 - - 

IA PL 3 2 - - 

Table D.2: Projection data and structural measures in the cat cortex (cont.). 264
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IA IL 1 3 - - 

IG 17 0 4 -4 - 
IG 18 0 4 -4 - 

IG PS 3 2 0 - 

IG PLLS 1 3 -2 - 

IG ALLS 1 3 -2 - 

IG 7 1 4 -1 - 

IG CGP 2 4 0 - 

IG CGA 2 3 0 - 

IG AES 2 1 -1 - 

IG ER 1 3 - - 

IG 35 2 2 0 - 

IG 36 3 2 0 - 

IG AI 1 2 -4 - 

IG AII 1 1 -3 - 

IG EPp 2 2 -2 - 

IG SII 1 1 -1 - 

IG SIV 2 1 -1 - 

IG 4g 1 4 -1 - 

IG 4 1 4 0 - 
IG 6l 1 3 0 - 

IG 6m 2 4 -1 - 

IG 5Am 1 3 -1 - 

IG 5Al 2 2 -1 - 

IG 5Bm 1 4 -1 - 

IG 5Bl 1 3 -2 - 

IG 5m 1 3 - - 

IG SSAo 1 2 -1 - 

IG SSAi 1 2 -1 - 

IG PFCr 2 3 - - 

IG PFCdl 3 2 -2 - 

IG PFCv 1 2 0 - 

IG PFCdm 2 3 -1 - 

IG LA 2 4 - - 

IG PL 2 3 - - 

IG IL 2 4 - - 

LA CGP 2 2 - - 
LA CGA 2 1 - - 

LA P 0 6 - - 

LA 5Am 1 3 - - 

LA 5Al 1 4 - - 

LA 5Bm 2 3 - - 

LA 5Bl 1 3 - - 

LA 5m 1 2 - - 

LA SSAo 2 4 - - 

LA SSAi 1 4 - - 

LA PFCr 2 3 - - 

LA PFCdl 2 3 - - 

LA PFCv 1 2 - - 

LA PFCdm 2 2 - - 

LA IA 2 3 - - 

LA IG 2 4 - - 

LA RS 2 3 - - 
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LA PL 2 1 - - 

LA IL 2 2 - - 
RS 20a 2 2 1 - 

RS 20b 2 1 1 - 

RS CGP 1 1 1 - 

RS CGA 2 2 1 - 

RS ER 2 2 - - 

RS 35 2 2 1 - 

RS 36 1 2 1 - 

RS DP 2 4 - - 

RS P 2 4 -1 - 

RS PFCr 2 5 - - 

RS PFCdl 1 4 -1 - 

RS PFCv 1 4 1 - 

RS PFCdm 1 4 0 - 

RS LA 2 3 - - 

RS PL 1 4 - - 

PL CGP 2 3 - - 

PL CGA 1 2 - - 

PL ER 1 2 - - 
PL 35 2 3 - - 

PL 36 1 3 - - 

PL 6m 2 1 - - 

PL 5Am 0 4 - - 

PL 5Bm 0 4 - - 

PL 5m 0 3 - - 

PL SSAo 0 5 - - 

PL SSAi 0 5 - - 

PL PFCr 2 2 - - 

PL PFCdl 1 2 - - 

PL PFCv 1 1 - - 

PL PFCdm 1 1 - - 

PL IA 2 2 - - 

PL LA 2 1 - - 

PL IL 2 1 - - 

PL Sb 1 4 - - 

IL CGP 2 4 - - 
IL CGA 2 3 - - 

IL ER 2 1 - - 

IL 35 2 2 - - 

IL 36 1 3 - - 

IL PFCr 1 3 - - 

IL PFCdl 1 3 - - 

IL PFCv 1 2 - - 

IL PFCdm 1 2 - - 

IL IA 1 3 - - 

IL LA 2 2 - - 

IL PL 2 1 - - 

IL Sb 2 3 - - 

pSb 20a 1 2 - - 

pSb 20b 1 1 - - 

pSb CGP 1 2 - - 

pSb CGA 2 3 - - 
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pSb ER 3 1 - - 

pSb 35 2 2 - - 
pSb 36 2 2 - - 

pSb PFCr 1 5 - - 

pSb PFCv 1 4 - - 

pSb PFCdm 1 4 - - 

pSb LA 2 4 - - 

pSb PL 2 3 - - 

pSb IL 1 2 - - 

pSb Sb 2 1 - - 

Sb 20a 1 3 - - 

Sb 20b 1 2 - - 

Sb CGA 1 4 - - 

Sb ER 2 2 - - 

Sb PFCr 1 6 - - 

Sb PFCdl 1 5 - - 

Sb PFCv 1 5 - - 

Sb PFCdm 0 5 - - 

Sb IA 2 4 - - 

Sb IG 1 5 - - 
Sb LA 2 5 - - 

Sb RS 2 2 - - 

Sb PL 3 4 - - 

Sb IL 3 3 - - 

Hipp ER 3 3 - - 

Hipp 35 1 4 - - 

Hipp pSb 2 2 - - 

Hipp Sb 2 1 - - 

Amyg 20a 1 3 - - 

Amyg 20b 1 2 - - 

Amyg CGA 1 4 - - 

Amyg ER 2 1 - - 

Amyg 35 2 1 - - 

Amyg 36 2 2 - - 

Amyg Tem 1 3 - - 

Amyg SII 1 4 - - 

Amyg SIV 1 4 - - 
Amyg 4g 1 4 - - 

Amyg 4 1 4 - - 

Amyg 6l 2 4 - - 

Amyg 6m 2 3 - - 

Amyg PFCr 2 4 - - 

Amyg PFCdl 2 3 - - 

Amyg PFCv 2 3 - - 

Amyg PFCdm 2 3 - - 

Amyg IA 2 2 - - 

Amyg IG 2 3 - - 

Amyg LA 1 3 - - 

Amyg PL 3 2 - - 

Amyg IL 2 1 - - 

Amyg pSb 2 2 - - 

Amyg Sb 2 3 - - 

 

Table D.2: Projection data and structural measures in the cat cortex (cont.). Projection
data collation for the cat cortex published in Scannell and colleagues (1995) and struc-
tural measures associated with each projection. See Supplementary Table D.1 for a list of
abbreviations.
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Projections 

predicted to be 

absent 

 

Source 

area 

Target 

area 

V1 9 

V2 9 

V1 11 

V1 12 

V1 13 

V1 14 

V1 25 

V1 32 

V2 32 

V1 24a 

V1 24d 

V1 46v 

V1 8r 

V1 F3 

V1 F4 

V1 F6 

V1 OPAI 

V1 OPRO 

  

Projections 

predicted to be 

present 
 

Source 

area 

Target 

area 

10 9 

11 9 

12 9 

13 9 

14 9 

25 9 

32 9 

24a 9 

24c 9 

24d 9 

46d 9 

46v 9 

8b 9 

8m 9 

8r 9 

9/46d 9 

9/46v 9 

F2 9 

F3 9 

F6 9 

F7 9 

9 11 

Source 

area 

Target 

area 

10 11 

12 11 

13 11 

14 11 

25 11 

32 11 

24a 11 

24c 11 

24d 11 

46d 11 

46v 11 

8b 11 

8l 11 

8m 11 

8r 11 

9/46d 11 

9/46v 11 

F6 11 

F7 11 

9 12 

10 12 

11 12 

13 12 

14 12 

25 12 

32 12 

24a 12 

24c 12 

24d 12 

46d 12 

46v 12 

8b 12 

8l 12 

8m 12 

8r 12 

9/46d 12 

9/46v 12 

F5 12 

F6 12 

F7 12 

OPAl 12 

OPRO 12 

9 13 

10 13 

11 13 

12 13 

14 13 

25 13 

32 13 

24a 13 

Source 

area 

Target 

area 

24c 13 

24d 13 

46d 13 

46v 13 

8b 13 

8l 13 

8m 13 

8r 13 

9/46d 13 

9/46v 13 

F3 13 

F4 13 

F5 13 

F6 13 

F7 13 

OPAl 13 

OPRO 13 

9 14 

10 14 

11 14 

12 14 

13 14 

25 14 

32 14 

24a 14 

24c 14 

24d 14 

46d 14 

46v 14 

8r 14 

9/46d 14 

9/46v 14 

F6 14 

OPAl 14 

24d 23 

8b 23 

8l 23 

8m 23 

F1 23 

F2 23 

F3 23 

F4 23 

9 25 

10 25 

11 25 

12 25 

13 25 

14 25 

32 25 

24a 25 

Source 

area 

Target 

area 

24c 25 

24d 25 

46d 25 

46v 25 

8b 25 

8m 25 

9/46d 25 

9/46v 25 

F3 25 

F6 25 

OPAl 25 

OPRO 25 

9 32 

10 32 

11 32 

12 32 

13 32 

14 32 

25 32 

24a 32 

24c 32 

24d 32 

46d 32 

46v 32 

8b 32 

8m 32 

9/46d 32 

F3 32 

F4 32 

F6 32 

F7 32 

OPAl 32 

OPRO 32 

9 24a 

11 24a 

12 24a 

13 24a 

14 24a 

25 24a 

32 24a 

24c 24a 

24d 24a 

46d 24a 

46v 24a 

8b 24a 

8m 24a 

9/46d 24a 

F2 24a 

F3 24a 

F4 24a 

Source 

area 

Target 

area 

F6 24a 

F7 24a 

OPAl 24a 

OPRO 24a 

9 24d 

11 24d 

12 24d 

13 24d 

14 24d 

23 24d 

25 24d 

32 24d 

24a 24d 

24c 24d 

46d 24d 

46v 24d 

8b 24d 

8l 24d 

8m 24d 

8r 24d 

9/46d 24d 

9/46v 24d 

F2 24d 

F3 24d 

F4 24d 

F6 24d 

F7 24d 

9 46v 

10 46v 

11 46v 

12 46v 

13 46v 

14 46v 

25 46v 

32 46v 

24a 46v 

24c 46v 

24d 46v 

46d 46v 

8b 46v 

8l 46v 

8m 46v 

8r 46v 

9/46d 46v 

9/46v 46v 

F3 46v 

F6 46v 

F7 46v 

2 8r 

9 8r 

Table D.3: Classification of unsampled projections in the macaque cortex. 266
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Source 

area 

Target 

area 

11 8r 

12 8r 

13 8r 

14 8r 

24c 8r 

24d 8r 

46d 8r 

46v 8r 

8b 8r 

8l 8r 

8m 8r 

9/46d 8r 

9/46v 8r 

F2 8r 

F3 8r 

F4 8r 

F5 8r 

F6 8r 

F7 8r 

OPRO ento 

peri ento 

TEad ento 

TEav ento 

TH/TF ento 

9 F3 

13 F3 

23 F3 

25 F3 

Source 

area 

Target 

area 

32 F3 

24a F3 

24c F3 

24d F3 

46d F3 

46v F3 

8b F3 

8l F3 

8m F3 

8r F3 

9/46d F3 

F1 F3 

F2 F3 

F4 F3 

F6 F3 

F7 F3 

13 F4 

23 F4 

32 F4 

24a F4 

24d F4 

8b F4 

8l F4 

8m F4 

8r F4 

9/46d F4 

F1 F4 

F2 F4 

Source 

area 

Target 

area 

F3 F4 

F5 F4 

F6 F4 

F7 F4 

OPAl F4 

OPRO F4 

9 F6 

10 F6 

11 F6 

12 F6 

13 F6 

14 F6 

25 F6 

32 F6 

24a F6 

24c F6 

24d F6 

46d F6 

46v F6 

8b F6 

8l F6 

8m F6 

8r F6 

9/46d F6 

9/46v F6 

F2 F6 

F3 F6 

F4 F6 

Source 

area 

Target 

area 

F7 F6 

5 LIP 

7a LIP 

7m LIP 

DP LIP 

STPi LIP 

V3a LIP 

12 OPAl 

13 OPAl 

14 OPAl 

25 OPAl 

32 OPAl 

24a OPAl 

8b OPAl 

F4 OPAl 

OPRO OPAl 

12 OPRO 

13 OPRO 

25 OPRO 

32 OPRO 

24a OPRO 

ento OPRO 

F4 OPRO 

F5 OPRO 

OPAl OPRO 

peri OPRO 

2 peri 

ento peri 

Source 

area 

Target 

area 

F5 peri 

OPRO peri 

TEad peri 

TEav peri 

TH/TF peri 

ento TEad 

peri TEad 

TEav TEad 

TEO TEad 

TH/TF TEad 

2 TEav 

ento TEav 

peri TEav 

TEad TEav 

teo TEav 

TH/TF TEav 

ento TH/TF 

peri TH/TF 

TEad TH/TF 

TEav TH/TF 

7m V3a 

DP V3a 

LIP V3a 

MT V3a 

V2 V3a 

V4 V3a 

 

TableD.3: Classification of unsampled projections in the macaque cortex (cont.). The status
of projections not sampled in the adult macaque data set was predicted from the posterior
probabilities resulting from the trained classifier (Figure 3.11). Projections were predicted
to be absent if their associated |log-ratiodensity| and Euclidean distance yielded a posterior
probability for a projection to be present of ppresent� 0.15, and predicted to be present if
ppresent� 0.85.
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Label in 

M132 

Label in 

reference 
Description of sampling site in morphological measures reference Reference 

3 3b  ER02 

5 5 
corresponding to I-II of 

Preuss and Goldman-  
ER02 

7a 7a 
 

ER97 

7b 7b  ER02 

7m 7m of Cavada and Goldman-Rakic; PGm of Pandya and Seltzer; PE of von Bonin and 

 

E99a 

8l, 8m FEF 
arcuate sulcus, which corresponds to the 

 
ER98b 

9 9 
-

anterior medial portion of the superior frontal gyrus (area 9m of Preuss and 

Goldman-Rakic,  

E11a 

9/46d 46 
or Preuss and Goldman-  

E11a 

10 10 
the rostral sulcus (corresponding to area 10 of Walker, Preuss and Goldman-Rakic 

and  

E00, E11a 

11 11 -  E00 

12 12 
-

and Goldman-  
E00 

13 13 sulcus, inferior to the intermediate orbital sulcus (area 12orb of Preuss and Goldman-

 

E11a 

23 
Posterior 

cingulate 
 E05 

24a, 24b, 

24c, 24d 

Anterior 

cingulate 
 E05 

45A 12 
45A or Preuss and Goldman-  

E11a 

46d, 46v 46  
C15, 

GML17 

core A1  E10b 

F1 4 
 

ER02 

F4 6 premotor area PMv of Strick (Strick, 1985) or F4 of Matelli and colleagues (Matelli et 

 

ER02 

LIP LIPv  ER97 

MT MT 
 

ER97 

STPi STP 

Bruce et 

al. (1981), rSTP of Hikosaka et al. (1988), STPp of Felleman & Van Essen (1991) and 

TPOr of Cusick et al.  

E99b 

TEad TE 
 

E99b 

TEav TEav 
 of Saleem et al. (2000), including area 36c of Suzuki and Amaral (1994; 

 
E11b 

TEO TEO  
ER98a, 

E10a 

Table D.4: Correspondence of areas in the macaque cortex across parcellations.
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Label in 

M132 

Label in 

reference 
Description of sampling site in morphological measures reference Reference 

TEpd TEpd 

cytoarchitectural area TEa of Seltzer and Pandya, 1978; TEad(s) of Yukie, 1997; PIT 

of Felleman 

posterior middle temporal sulcus, corresponding to area TEpd of Yukie et al. (1990) 

gyrus immediately anterior to the posterior middle temporal sulcus (TE, TEp of 

 

E05, E09, 

E10a 

V1 V1 

8° 

in the visual field representation in the primary visual cortex (V1) (Daniel and 

 

ER97, 

ER98a, 

E05, E09, 

E10a 

V2 V2 

inferior occipital sulcus (V2; corresponding approximately to 

the central 1--2 degrees) (Gattass et al. 1981; Levitt, Kiper, and Movshon 1994; Roe 

 

ER97, 

ER98a, 

E01, E10a 

V4 V4 
 gyrus (V4; corresponding approximately to 10--20 

 

ER98a, 

E10a 

Table D.4: Correspondence of areas in the macaque cortex across parcellations (cont.).
Connectivity data were published in the M132 parcellation (Markov et al., 2014a), while
the morphological measures were published in reports using alternative parcellations of
the macaque cortex. This table shows how areas were matched across parcellations and
indicates which references the morphological measures were collated from. See main text
for references. C15, Coskren et al. (2015); ER97, Elston and Rosa (1997); ER98a, Elston and
Rosa (1998b); ER98b, Elston and Rosa (1998a); E99a, Elston et al. (1999a); E99b, Elston et al.
(1999b); E00, Elston (2000); E01, Elston et al. (2001); ER02, Elston and Rockland (2002); E05,
Elston et al. (2005); E09, Elston et al. (2009); E10a, Elston et al. (2010a); E10b, Elston et al.
(2010b); E11a, Elston et al. (2011a); E11b, Elston et al. (2011b), GML17, Gilman et al. (2017).

 Absent projections  Present projections  t-statistic p-value Effect size r 

 Mean Group size  Mean Group size     

Area-based measures        

|log-ratiodensity| 0.67 402  0.33 641  t(1041) = 14.5 <.001 0.41 

geodesic distance [mm] 30.9 995  22.6 1410  t(2403) = 22.0 <.001 0.41 

Cellular morphological measures        

|Δsoma size| [µm²] 71.7 190  58.8 288  t(476) = 2.7 0.007 0.12 

|Δspine count| [#] 3525 205  2687 290  t(493) = 4.3 <.001 0.19 

|Δspine density| [#/10µm] 8.9 205  7.3 290  t(493) = 3.1 0.002 0.14 

|Δtree size| [µm²] 48420 220  37191 323  t(541) = 4.0 <.001 0.17 

 

Table D.5: Structural measures in connected and unconnected pairs of macaque cortex
areas in reduced data set. A cuto� was applied to the macaque connectivity data, removing
connections with less than five constituent axons. Absolute values of relative structural
measures are averaged across area pairs without (absent) and with (present) a linking
projection. T-statistics, p-values and e�ect size r are results of two-tailed independent
samples t-tests comparing the two respective distributions for equal means.
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Regression 

covariate t-statistic p-value R²adj J accuracy # observations 

 Covariates included individually     

(1) |log-ratiodensity| -0.89 -11.7 0.0000 0.220 0.338 0.721 1043 

(2) geodesic distance -0.97 -18.5 0.0000 0.223 0.266 0.657 2405 

(3) |Δsoma size| -0.25 -2.7 0.0073 0.020 0.045 0.603 478 

(4) |Δspine count| -0.41 -4.2 0.0000 0.048 0.169 0.634 495 

(5) |Δspine density| -0.30 -3.1 0.0021 0.026 0.061 0.590 495 

(6) |Δtree size| -0.36 -3.9 0.0001 0.038 0.118 0.624 543 

(7) intercept 0.35 8.4 0.0000 0.000 0.000 0.586 2405 

(8) Covarivates included simultaneously     

 |log-ratiodensity| -0.76 -4.5 0.0000 0.466 0.518 0.777 350 

 geodesic distance -1.07 -6.3 0.0000     

 |Δsoma size| 0.61 3.4 0.0007     

 
|Δspine count| -0.31 -1.2 0.2451     

 
|Δspine density| -0.07 -0.3 0.7547     

 
|Δtree size| -0.02 -0.1 0.9083     

(9) |log-ratiodensity| excluded     

 geodesic distance -1.22 -8.7 0.0000 0.376 0.414 0.728 434 

 
|Δsoma size| 0.24 1.8 0.0667     

 
|Δspine count| 0.08 0.4 0.7263     

 
|Δspine density| -0.44 -2.2 0.0272     

 |Δtree size| -0.30 -2.2 0.0296     

(10) geodesic distance excluded     

 |log-ratiodensity| -1.05 -7.0 0.0000 0.329 0.445 0.749 350 

 
|Δsoma size| 0.38 2.5 0.0108     

 
|Δspine count| -0.60 -2.4 0.0150     

 
|Δspine density| 0.13 0.6 0.5371     

 
|Δtree size| 0.08 0.5 0.6016     

(11) |Δsoma size| excluded 
    

 |log-ratiodensity| -0.46 -3.3 0.0010 0.428 0.478 0.761 394 

 geodesic distance -1.00 -6.8 0.0000     

 
|Δspine count| -0.15 -0.7 0.5082     

 
|Δspine density| -0.03 -0.1 0.8808     

 
|Δtree size| -0.12 -0.7 0.4636     

(12) |Δspine count| excluded 
    

 |log-ratiodensity| -0.75 -4.4 0.0000 0.463 0.485 0.766 350 

 geodesic distance -1.09 -6.5 0.0000     

 
|Δsoma size| 0.58 3.3 0.0010     

 
|Δspine density| -0.27 -1.7 0.0902     

 
|Δtree size| -0.10 -0.6 0.5328     

(13) |Δspine density| excluded 
    

 |log-ratiodensity| -0.77 -4.6 0.0000 0.466 0.518 0.777 350 

Table D.6: Classification of connection existence by logistic regression in reduced data set.
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Regression 

covariate t-statistic p-value R²adj J accuracy # observations 

(13)  geodesic distance -1.06 -6.3 0.0000     

cont. |Δsoma size| 0.62 3.4 0.0006     

 |Δspine count| -0.37 -2.0 0.0423     

 
|Δtree size| 0.00 0.0 0.9869     

(14) |Δtree size| excluded 
    

 |log-ratiodensity| -0.77 -4.7 0.0000 0.466 0.518 0.777 350 

 geodesic distance -1.07 -6.3 0.0000     

 
|Δsoma size| 0.61 3.4 0.0007     

 
|Δspine count| -0.32 -1.3 0.1895     

 
|Δspine density| -0.06 -0.3 0.7712     

 

Table D.6: Classification of connection existence by logistic regression in reduced data set
(cont.). A cuto� was applied to the macaque connectivity data, removing connections with
less than five constituent axons. We performed binary logistic regression analyses (enu-
merated in brackets), each including a di�erent set of the structural measures as covari-
ates and connectivity (grouped into ’absent’ and ’present’ connections) as the dependent
variable. Bold-faced covariates significantly contributed to classification performance as
indicated by the p-value. Across all regression analyses, absolute neuron density ratio,
geodesic distance and soma size di�erence consistently emerged as meaningful predic-
tors.

  Individual correlation  Partial correlation 

FLNe  r p-value  r p-value 

|log-ratiodensity|  -0.19 <0.0001  -0.05    0.4487 

geodesic distance  -0.47 <0.0001  -0.51 <0.0001 

|Δsoma size|  -0.11    0.0516   0.09    0.1965 

|Δspine count|  -0.17    0.0028   0.00    0.9467 

|Δspine density|  -0.12    0.0468  -0.13    0.0610 

|Δtree size|  -0.13    0.0197  -0.19    0.0056 

ranked strength   p-value   p-value 

ranked |log-ratiodensity|   0.20 <0.0001   0.13    0.0690 

ranked geodesic distance   0.44 <0.0001   0.46 <0.0001 

ranked |Δsoma size|   0.15    0.0116  -0.14    0.0528 

ranked |Δspine count|   0.12    0.0372  -0.02    0.7246 

ranked |Δspine density|   0.09    0.1112   0.12    0.0836 

ranked |Δtree size|   0.15    0.0053   0.20    0.0052 

 

Table D.7: Correlation between projection strength and structural measures in reduced
data set. A cuto� was applied to the macaque connectivity data, removing connections
with less than five constituent axons. Pearson correlation coe�cients and associated p-
values for correlations between projection strength, expressed either as ln(FLNe) or as
ranked strengths, and absolute values of relative structural measures or ranked absolute
values of relative structural measures. Correlations were assessed both for each measure
independently (individual correlation) and while accounting for all other five measures
(partial correlation).
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  Individual correlation  Partial correlation 

Overall degree (29x29)  r p-value         r p-value 

Neuron density  -0.61 0.0017  -0.62 0.0328 

Soma size   0.45 0.0631  -0.02 0.9467 

Spine count   0.14 0.5915  -0.02 0.9388 

Spine density   0.01 0.9574  -0.26 0.4107 

Dendritic tree size   0.43 0.0729   0.17 0.5994 

Out-degree (29x29)       

Neuron density  -0.65 0.0006  -0.61 0.0354 

Soma size   0.34 0.1666  -0.22 0.4893 

Spine count   0.24 0.3455   0.05 0.8787 

Spine density   0.19 0.4627  -0.14 0.6691 

Dendritic tree size   0.35 0.1535   0.01 0.9710 

In-degree (29x29)       

Neuron density  -0.45 0.0258  -0.44 0.1501 

Soma size   0.43 0.0777   0.16 0.6215 

Spine count   0.03 0.9226  -0.08 0.8089 

Spine density  -0.13 0.6196  -0.27 0.3981 

Dendritic tree size   0.40 0.1033   0.23 0.4635 

In-degree (cortex-wide)       

Neuron density  -0.41 0.0488  -0.22 0.4839 

Soma size   0.48 0.0457   0.35 0.2704 

Spine count   0.14 0.5915   0.11 0.7302 

Spine density  -0.10 0.6998  -0.38 0.2277 

Dendritic tree size   0.46 0.0552   0.14 0.6741 

 

Table D.8: Correlation between area degree and structural measures in reduced data set.
A cuto� was applied to the macaque connectivity data, removing connections with less
than five constituent axons. Pearson correlation coe�cients and associated p-values for
correlations between the structural measures for each area and overall area degree (to-
tal number of maintained connections), out-degree, in-degree or cortex-wide in-degree.
Correlations were assessed both for each measure independently (individual correlation)
and while accounting for the other five measures (partial correlation). Geodesic distance
could not be included because it is a relational property not defined for individual areas.
Bonferroni correction for multiple tests results in an adjusted significance threshold of
�adj = 0.05/5 = 0.01 for the individual correlations.
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Immature NSG% vs. adult NSG% Source Area Target area Immature NSG% Adult NSG% 

Neonatal NSG% [K89]          

      STS V1 0.36 0.05 

 V2 V1 0.68 0.53 

      V4 V1 0.63 0.24 

Fetal NSG% [B02]     

      V1 V4 0.85 1.00 

 V2 V4 0.96 0.95 

 V3A V4 0.73 0.63 

      MT V4 0.65 0.56 

 FST V4 0.47 0.11 

 LIP V4 0.55 0.17 

 TEO V4 0.69 0.30 

 TE V4 0.43 0.29 

 TH-TF V4 0.06   0.002 

 FEF V4 0.73 0.75 

Enucleated NSG% vs. intact NSG% Source area Target area 
Enucleated infant 

NSG% [M18] 

Intact adult NSG% 

[C15] 

 entorhinal V2 0.00 -/- 

 FEF V2 0.33 -/- 

 FST V2 0.14 0.07 

 LIP V2 0.37 0.05 

 MST V2 0.08 0.02 

 MT V2 0.60 0.27 

 peri V2 0.02 0.04 

 PGa V2 0.22 0.02 

 PIP V2 0.33 0.01 

 STP V2 0.15 0.16 

 subiculum V2 0.00 -/- 

 TE V2 0.06 0.02 

 TEO V2 0.39 0.09 

 TH/TF V2 0.00 0.01 

 V1 V2 1.00 0.74 

 V3 V2 0.59 0.32 

 V3A V2 0.49 0.03 

 V4 V2 0.41 0.25 

 7A V4 0.05 0.04 

 FEF V4 0.44 -/- 

 FST V4 0.20 0.17 

 LIP V4 0.24 0.22 

 MST V4 0.16 0.04 

 MT V4 0.35 0.46 

 peri V4 0.00     0.0004 

 PIP V4 0.44 0.15 

 STP V4 0.04 0.02 

 TE V4 0.05 0.09 

 TEO V4 0.45 0.43 

 TH/TF V4 0.05 0.01 

 V1 V4 0.00 0.98 

 V2 V4 0.83 0.93 

 V3 V4 0.65 0.66 

 V3A V4 0.63 0.00 

 

Table D.9: Projection data in the immature macaque cortex. Values for Batardière and
colleagues (2002) extracted from their Figure 7A. K89, Kennedy et al. (1989); B02, Batardière
et al. (2002); M18, Magrou et al. (2018); C15, Chaudhuri et al. (2015).
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  p-value R² 

adult NSG% vs. immature NSG%         

          Neonate (K89) 1.00 0.3333 0.77 

          Fetal (B02) 0.94 0.0000 0.75 

immature NSG% vs. architectonic type difference         

          Neonate (K89) 1.00 0.3333 0.95 

          Fetal (B02) 0.87 0.0011 0.74 

adult NSG% vs. architectonic type difference    

          Neonate (K89) 1.00 0.3333 0.92 

          Fetal (B02) 0.87 0.0009 0.74 

immature NSG% vs. neuron density difference    

          Neonate (K89) 1.00 0.3333 0.82 

          Fetal (B02) 0.73 0.0311 0.37 

adult NSG% vs. neuron density difference    

          Neonate (K89) 1.00 0.3333 1.00 

          Fetal (B02) 0.72 0.0369 0.54 

adult NSG% / immature NSG% vs. architectonic type difference    

          Neonate (K89) 1.00 0.3333 0.91 

          Fetal (B02) 0.77 0.0093 0.62 

adult NSG% / immature NSG% vs. neuron density difference    

          Neonate (K89) 1.00 0.3333 0.99 

          Fetal (B02) 0.58 0.1080 0.38 

 

Table D.10: Correlations of laminar projection patterns and architectonic di�erentiation
in the immature macaque cortex. See Figure 3.19 for scatter plots of the underlying data.
� and p-value: Spearman rank-correlation; R²: coe�cient of determination for a linear
regression model. Please note that the p-value for K89 correlations cannot be lower
than 0.33 because only three data points are available. K89, Kennedy et al. (1989); B02,
Batardière et al. (2002).

  Individual correlation  Partial correlation 

   p-value R²          p-value R² 

NSG% enucleated vs. NSG% intact   0.47 0.0083 0.27   0.58 0.0013 0.48 

NSG% enucleated vs. architectonic type difference   0.73 1.2e-6 0.44   0.86 4.2e-10 0.62 

NSG% enucleated vs. neuron density difference   0.48 0.0185 0.21   0.60 0.0033 0.47 

 

Table D.11: Correlations with laminar projection patterns after enucleation. See Figure 3.20
for scatter plots of the underlying data. � and p-value: Spearman rank-correlation; R²:
coe�cient of determination for a linear regression model. Projections originating in V1
were excluded because V1 was a�ected very strongly by the enucleation and the resulting
NSG%-values are outliers.
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Appendix D. Supplementary tables

Table D.12: Summary of connectivity statistics, correlation with relative projection fre-
quency, classification performance logistic regression, and correlation with area degree in
silico. This table lists the median values indicated by the box plots in Figures 3.21 through
3.24. Where applicable, the table additionally lists the associated median p-value of Spear-
man rank correlations as well as the z-value and p-value of a left-tailed sign test testing
the distribution of rank correlation p-values for a median of � = 0.05. Background colours
as in Table 2.1.

    Accuracy 
    macaque  cat 

growth layouts  

prediction 

performance  

validation of 

'median p-value 

against chance 

performance': sign 

test  

prediction 

performance  

validation of 

'median p-value 

against chance 

performance': sign 

test 

set 

growth 

mode 

# 

origins 

 

median 

accuracy 

median 

p-value 

against 

chance 

perf. 

 

z-val p-value 

 

median 

accuracy 

median 

p-value 

against 

chance 

perf. 

 

z-val p-value 

realistically 

oriented 

gradient 

1D 1 row 1  0.805 0.0E+00  -9.90 2.08E-23  0.699 6.37E-18  -9.90 2.08E-23 

1D 2 rows 1  0.781 4.54E-43  -9.90 2.08E-23  0.640 6.45E-19  -9.90 2.08E-23 

2D 1  0.811 3.14E-24  -9.90 2.08E-23  0.830 2.57E-10  -9.90 2.08E-23 

1D 1 row 2  0.854 0.0E+00  -9.90 2.08E-23  0.820 6.03E-17  -9.90 2.08E-23 

1D 2 rows 2  0.860 0.0E+00  -9.90 2.08E-23  0.797 1.89E-16  -9.90 2.08E-23 

2D 2  0.841 4.61E-35  -9.90 2.08E-23  0.767 7.93E-15  -9.90 2.08E-23 

1D 1 row 3  0.837 0.0E+00  -9.90 2.08E-23  0.796 2.92E-17  -9.90 2.08E-23 

1D 2 rows 3  0.843 0.0E+00  -9.90 2.08E-23  0.757 4.00E-17  -9.90 2.08E-23 

2D 3  0.847 5.33E-41  -9.90 2.08E-23  0.767 6.32E-16  -9.90 2.08E-23 

inverse 

gradient 

1D 1 row 2  0.782 7.70E-40  -9.90 2.08E-23  0.586 3.59E-15  -9.90 2.08E-23 

1D 2 rows 2  0.744 3.48E-35  -9.90 2.08E-23  0.500 1.84E-13  -9.90 2.08E-23 

2D 2  0.852 1.65E-22  -9.90 2.08E-23  0.667 3.10E-06  -9.90 2.08E-23 

radial 1D 1 row 2  0.739 7.89E-33  -9.90 2.08E-23  0.671 4.24E-10  -9.90 2.08E-23 

1D 2 rows 2  0.751 1.38E-34  -9.90 2.08E-23  0.682 2.60E-11  -9.90 2.08E-23 

2D 2  0.644 3.20E-01  5.50 1.0E+00  0.771 3.20E-01  5.90 1.0E+00 

static 1D 1 row 2  0.701 1.89E-39  -9.90 2.08E-23  0.602 1.28E-11  -9.90 2.08E-23 

1D 2 rows 2  0.703 1.12E-39  -9.90 2.08E-23  0.602 6.91E-12  -9.90 2.08E-23 

2D 2  0.869 1.40E-39  -9.90 2.08E-23  0.897 6.17E-13  -9.90 2.08E-23 

random 1D 1 row 2  0.880 1.70E-23  -9.90 2.08E-23  0.722 4.65E-04  -9.70 1.51E-22 

1D 2 rows 2  0.801 1.05E-19  -9.90 2.08E-23  0.556 8.81E-03  -9.90 2.08E-23 

2D 2  1.000 4.05E-02  0.71 7.60E-01  1.000 6.10E-02  3.88 1.0E+00 

Table D.13: Summary classification of empirical connectivity from simulated connectivity.
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    Youden index J 
    macaque  cat 

growth layouts  

prediction 

performance  

validation of 

'median p-value 

against chance 

performance': sign 

test  

prediction 

performance  

validation of 

'median p-value 

against chance 

performance': sign 

test 

set 

growth 

mode 

# 

origins 

 

median 

accuracy 

median 

p-value 

against 

chance 

perf. 

 

z-val p-value 

 

median 

accuracy 

median 

p-value 

against 

chance 

perf. 

 

z-val p-value 

realistically 

oriented 

gradient 

1D 1 row 1  0.805 0.0E+00  -9.90 2.08E-23  0.699 6.37E-18  -9.90 2.08E-23 

1D 2 rows 1  0.781 4.54E-43  -9.90 2.08E-23  0.640 6.45E-19  -9.90 2.08E-23 

2D 1  0.811 3.14E-24  -9.90 2.08E-23  0.830 2.57E-10  -9.90 2.08E-23 

1D 1 row 2  0.854 0.0E+00  -9.90 2.08E-23  0.820 6.03E-17  -9.90 2.08E-23 

1D 2 rows 2  0.860 0.0E+00  -9.90 2.08E-23  0.797 1.89E-16  -9.90 2.08E-23 

2D 2  0.841 4.61E-35  -9.90 2.08E-23  0.767 7.93E-15  -9.90 2.08E-23 

1D 1 row 3  0.837 0.0E+00  -9.90 2.08E-23  0.796 2.92E-17  -9.90 2.08E-23 

1D 2 rows 3  0.843 0.0E+00  -9.90 2.08E-23  0.757 4.00E-17  -9.90 2.08E-23 

2D 3  0.847 5.33E-41  -9.90 2.08E-23  0.767 6.32E-16  -9.90 2.08E-23 

inverse 

gradient 

1D 1 row 2  0.782 7.70E-40  -9.90 2.08E-23  0.586 3.59E-15  -9.90 2.08E-23 

1D 2 rows 2  0.744 3.48E-35  -9.90 2.08E-23  0.500 1.84E-13  -9.90 2.08E-23 

2D 2  0.852 1.65E-22  -9.90 2.08E-23  0.667 3.10E-06  -9.90 2.08E-23 

radial 1D 1 row 2  0.739 7.89E-33  -9.90 2.08E-23  0.671 4.24E-10  -9.90 2.08E-23 

1D 2 rows 2  0.751 1.38E-34  -9.90 2.08E-23  0.682 2.60E-11  -9.90 2.08E-23 

2D 2  0.644 3.20E-01  5.50 1.0E+00  0.771 3.20E-01  5.90 1.0E+00 

static 1D 1 row 2  0.701 1.89E-39  -9.90 2.08E-23  0.602 1.28E-11  -9.90 2.08E-23 

1D 2 rows 2  0.703 1.12E-39  -9.90 2.08E-23  0.602 6.91E-12  -9.90 2.08E-23 

2D 2  0.869 1.40E-39  -9.90 2.08E-23  0.897 6.17E-13  -9.90 2.08E-23 

random 1D 1 row 2  0.880 1.70E-23  -9.90 2.08E-23  0.722 4.65E-04  -9.70 1.51E-22 

1D 2 rows 2  0.801 1.05E-19  -9.90 2.08E-23  0.556 8.81E-03  -9.90 2.08E-23 

2D 2  1.000 4.05E-02  0.71 7.60E-01  1.000 6.10E-02  3.88 1.0E+00 

 

    % classified 
growth layouts  macaque  cat 

set 

growth 

mode 

# 

origins 

 median fraction 

classified 

 median fraction 

classified 

realistically 

oriented 

gradient 

1D 1 row 1  0.548  0.471 

1D 2 rows 1  0.493  0.438 

2D 1  0.423  0.414 

1D 1 row 2  0.510  0.409 

1D 2 rows 2  0.409  0.328 

2D 2  0.346  0.309 

1D 1 row 3  0.551  0.451 

1D 2 rows 3  0.461  0.384 

2D 3  0.392  0.343 

inverse 

gradient 

1D 1 row 2  0.376  0.341 

1D 2 rows 2  0.300  0.274 

2D 2  0.077  0.049 

radial 1D 1 row 2  0.743  0.723 

1D 2 rows 2  0.730  0.701 

2D 2  0.500  0.500 

static 1D 1 row 2  0.827  0.861 

1D 2 rows 2  0.817  0.834 

2D 2  0.426  0.393 

random 1D 1 row 2  0.137  0.139 

1D 2 rows 2  0.116  0.133 

2D 2  0.000  0.000 

Table D.13: Summary classification of empirical connectivity from simulated connectivity
(cont.). This table lists the median values for classification accuracy, Youden index J and
fraction of empirical connections classified as indicated by the box plots in Figures 3.25
through 3.27. For accuracy and Youden index, it additionally lists the associated median
p-value of a z-test against chance performance as assessed by permutation analysis, as
well as the z-value and p-value of a left-tailed sign test testing the distribution of z-test
p-values for a median of � = 0.05. Background colours as in Table 2.1.
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