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Wir müssen wissen.

Wir werden wissen.

David Hilbert, Königsberg, 1930

iii



Zusammenfassung

Wir untersuchen die Entwicklung kausal erzeugter Magnetfelder, die während und nach einem kosmolo-

gischen Phasenübergang erster Ordnung erzeugt wurden, in der strahlungsdominierten Phase des Uni-

versums. Zusätzlich untersuchen wir das Gravitationswellensignal, das durch magnetohydrodynamische

(MHD) Turbulenz generiert würde. Der Hauptfokus ist dabei ein elektroschwacher Phasenübergang

erster Ordnung, da er das Problem der Baryogenese lösen könnte, von dunkler Materie ausgelöst sein

könnte und primordiale Magnetfelder erzeugen kann, die als Quelle für die heutigen galaktischen und

intergalak-tischen Magnetfelder dienen können.

Bei der Untersuchung des von MHD Turbulenz generierten Gravitationswellen (GW) Spektrum

verbessern wir frühere Schätzungen des GW Spektrums, indem wir die Wahl der Dekorrelationsrate

turbulenter Fluktuationen sinnvoll anpassen. Dabei finden wir, dass das GW Spektrum einen steileren

Hochfrequenz-"Schwanz" hat als vorher vermutet und die Amplitude des Spektrums insgesamt um

bis zu mehrere Größenordnungen reduziert wird. Insgesamt finden wir, dass das Spektrum einen f3

Niederfrequenz-"Schwanz" und einen f−8/3 bis f−5/3 Hochfrequenz-"Schwanz" hat, wobei letzterer Fall

nur bei sehr starken Phasenübergängen auftritt. Darüber hinaus zeigen wir, dass eine Ausrichtung

des elektromagnetischen Vektorpotenzials mit dem Magnetfeld bei nahezu maximaler magnetischer

Helizität zu einem flacheren niederfrequenten Heck mit f2 führt. Weiterhin untersuchen wir den Einfluss

von Wirbeln und Magnetfeldern auf das Gravitationswellenspektrum, welches von Schallwellen erzeugt

wird, und stellen fest, dass jenes Signal ebenfalls teilweise stark reduziert wird, beispielsweise um eine

Größenordnung.

Zusätzlich untersuchen wir die Entwicklung der MHD Turbulenz unter Anwendung der Eddy-

Damped Quasi-Normal Markovian (EDQNM) Näherung und entwickeln einen Code zur Lösung der

resultierenden Gleichungen für den Grenzfall eines inkompressiblen Plasmas. Von besonderem Interesse

sind für uns MHD Kreuzkorrelationen, also relative Ausrichtungen zwischen Magnet- und Geschwindig-

keits- (Kreuz-Helizität) bzw. dem Wirbelfeld (Kreuzskalar) und kinetischer Helizität (Ausrichtung von

Geschwindigkeit- und Wirbelfeld), da diese in diesem Zusammenhang kaum studiert wurden. Im

Rahmen der inkompressiblen MHD Turbulenz stellen wir fest, dass keine dieser drei Größen einen

nachhaltigen Einfluss auf das heutige verbliebene primordiale MHD-Spektrums hat. Dennoch kann

die Kreuzhelizität die Evolution vor der Neutrino-Entkopplung beeinflussen, da sie in dieser Phase zu

einem Einfrieren der Turbulenz führen kann. Darüber hinaus argumentieren wir, dass die Kreuzhelizität

im Rahmen kompressibler MHD Turbulenz sogar einen nachhaltigen Einfluss auf ein möglicherweise

beobachtbares Magnetfeld und das damit verbundene GW Spektrum haben kann.
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Abstract

We study the evolution of causally generated magnetic fields, by a cosmological first order phase

transition, in the radiation dominated phase and essentially towards the present day. Additionally, we

study the gravitational wave signal associated with primordial MHD turbulence. An electroweak first

order phase transition is of particular interest as it could resolve the baryogenesis problem, may be

driven by dark matter and can act seed sufficient primordial magnetic fields that may act as a source

of the present day galactic and intergalactic magnetic fields.

Specifically, we investigate the gravitational wave (GW) spectrum sourced by magnetohydrody-

namic (MHD) turbulence, during and after a phase transition, based on MHD scaling solutions. Therein

we improve earlier estimates of the GW spectrum by adjusting the choice of the rate of decorrelation

of turbulent fluctuations in a meaningful manner. This leads to an overall steeper high-frequency tail,

compared to previous studies, in the GW spectrum and a severe reduction of the GW power spectrum

by up to several orders of magnitudes depending on the basic properties of the turbulence with an

f3 low frequency tail and an f−8/3 to f−5/3 high frequency scaling, where the latter case appears in

very strong phase transitions. Moreover, we show that a near maximal magnetic helicity, an alignment

of the electromagnetic vector potential with the magnetic field, leads to a shallower f2 low frequency

tail. Furthermore, we investigate the impact of vorticity and magnetic fields on the gravitational wave

spectrum produced by acoustic waves and find a significant reduction of the expected signal e.g. by an

order of magnitude depending on the precise properties of the turbulence.

Next, we study the evolution of MHD turbulence primarily in the context of the eddy-damped

quasi-normal Markovian (EDQNM) approximation and develop a code to solve the resulting equation

in the incompressible limit. Of key interest to us are MHD cross correlations i.e. alignments between the

magnetic field and velocity (cross helicity) or vorticity (cross scalar) and the kinetic helicity (alignment

of velocity and vorticity), as these have received barely any attention in this context. In incompressible

MHD turbulence we find that none of these three quantities leads to a lasting effect on the modern-day

MHD spectrum. Nonetheless, the cross helicity can affect the evolution prior to neutrino decoupling,

as it leads to a freeze-out of turbulence. Moreover, for compressible turbulence we anticipate and

expect that cross helicity may even have a lasting influence on a potentially observable magnetic field

and associated GW spectrum today. Lastly, even though kinetic helicity does not lead to an overall

change in the evolution we find that it can produce a substantial magnetic helicity spectrum with a net

zero total or integrated magnetic helicity, that never leads to an inverse cascade in contrast to MHD

turbulence with a significant net total magnetic helicity.
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1 | Introduction

Magnetic fields are present in the universe, from magnetars with field strength of

B ∼ 1015 G (Kaspi & Beloborodov 2017, e.g.) to planets, galaxies and even in in-

tergalactic voids potentially with field strengths of up to B & 10−16 G (Neronov &

Vovk 2010, Taylor et al. 2011). Curiosity drives us to explore the origin of these large

scale magnetic fields and to try to learn as much as possible about the underlying pro-

cesses to complement or even extend our overall understanding of fundamental processes

in nature. There are two types of processes that may produce sufficiently strong void

magnetic fields. On the one hand, magnetic fields may be sourced by astrophysical

processes after recombination (z . 1100, T . 0.3 eV) e.g. by galaxies that amplify

seed fields, which are produced by a battery mechanism (Biermann 1950). The am-

plification of those seed fields is supported by a dynamo mechanism in these galaxies

(Kulsrud 1999a, Brandenburg & Subramanian 2005, e.g.). On the other hand, the mag-

netic fields may have a primordial origin (Turner & Widrow 1988, Vachaspati 1991).

The latter class is of particular interest as it points to new physics. Also, a sufficient

dynamo amplification of astrophysically sourced magnetic fields might be insufficient

to explain sufficiently strong void magnetic fields (Furlanetto & Loeb 2001). Primor-

dial magnetogenesis can also be split into two classes, a production related to first

order phase transitions (Vachaspati 1991) and inflation (Starobinskǐi 1979, Turner &

Widrow 1988). Usually, two particular phase transitions are of interest, the QCD chi-

ral and deconfinement transition at T ∼ 200 MeV (Polyakov 1978, Susskind 1979)

and the electroweak transition at T ∼ 100 GeV (Kirzhnits & Linde 1976). Both the

standard model electroweak (Buchmuller et al. 1994, Chatrchyan et al. 2012) and the

1
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QCD transition (Stephanov 2004) are suspected to be either a second-order or cross-

over transition. A strong magnetogenesis at a phase transition requires the transition

to be a first order phase transition (FOPT). Consequently, magnetogenesis at a FOPT

implies beyond the standard model (BSM) physics. In principle, BSM phase transitions

at the GUT scale or e.g. dark sector phase transitions at T & TeV may exist and

be of first order (Schwaller 2015, e.g.). Also, for sufficiently large neutrino chemical

potentials the QCD phase transition may be of first order (Schwarz & Stuke 2009).

Furthermore, for the electroweak phase transition there are many possible modifica-

tions of the standard model that can lead to a first order electroweak phase transition

(Pietroni 1993, Espinosa et al. 2012, Caprini et al. 2016) that have not been ruled out

and are compatible with constraints by present experiments (Arcadi et al. 2019, e.g.).

A first order electroweak phase transition is particularly attractive as a solution to the

baryogenesis problem, i.e. the appearance of more baryons than anti-baryons (Kuzmin

et al. 1985, Morrissey & Ramsey-Musolf 2012). Inflationary scenarios may provide suf-

ficiently strong magnetic fields, as long as the conformal symmetry is violated during

inflation, otherwise only small scale magnetogenesis during inflation would be possible

(Turner & Widrow 1988, Subramanian 2010). Magnetogenesis during a conformal sym-

metry breaking phase of inflation would differ significantly from magnetogenesis at e.g.

the electroweak phase transition, since during such a phase of inflation magnetic fields

may occur with seemingly acausal correlation lengths, which is not possible for thermal

phase transitions. Unlike for the anticipated production of inflationary primordial den-

sity fluctuations, these magnetic fields are typically not scale / nearly-scale invariant

(Subramanian 2010). Magnetic field spectra produced during inflation will have initially

either a red or a blue-tilted spectrum, depending on the mechanism.

Here, we will focus mostly on causal primordial magnetic fields sourced around the

electroweak scale by a first order electroweak phase transition (EWPT) (Vachaspati

1991, Kamionkowski et al. 1994, Sigl et al. 1997). Typically for most scenarios of inter-

est, these magnetic fields will be turbulent and the magnetic energy cascades towards

smaller scales (Brandenburg et al. 1996, Jedamzik & Sigl 2011, Saveliev et al. 2012).
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The transport to smaller scales leads to a loss of magnetic and kinetic energy that is

primarily due to viscous damping and hence a production of heat, which quickly ther-

malizes at very high redshifts z & 106 (T & keV) (Chluba & Sunyaev 2012). This type of

turbulence is also known as magneto-hydro-dynamic (MHD) turbulence. In a barotropic

plasma, i.e. a plasma for which the pressure is only a function of the density p = p(ρ),

in which no dissipative effects are present, like resistive and viscous damping, the total

kinetic and magnetic energy, as well as the so-called magnetic helicity, i.e. the alignment

of the magnetic field with its vector potential, and the cross helicity, i.e. the alignment

between the plasma velocity and the magnetic field, are conserved (Biskamp 1993). Of

particular interest is a non-vanishing magnetic helicity as its conservation leads to a

transfer of magnetic energy from smaller to larger scales, a so-called inverse cascade

(Frisch et al. 1975, Meneguzzi et al. 1981, Cornwall 1997, Saveliev et al. 2013). It is

generally believed that magnetogenesis at the electroweak scale requires substantial he-

lical magnetic fields in order to explain the potentially present void magnetic fields with

B & 10−16 G (Wagstaff & Banerjee 2016). In the radiation dominated universe turbu-

lence can be possible prior to the decoupling of neutrinos and afterwards and prior to

photon decoupling. Any causally generated kinetic perturbation sourced prior to neu-

trino decoupling should have decayed after neutrino decoupling and one expects that

the only type of sub-horizon perturbation that may survive neutrino decoupling are

magnetic fields with or without magnetic helicity. Therefore, most studies focus on the

impact of the magnetic fields with or without magnetic helicity. However, recent simu-

lations find that an inverse transfer without magnetic helicity is possible (Kahniashvili

et al. 2013, Brandenburg et al. 2015, Brandenburg & Kahniashvili 2017), which increases

the interest in the study of other factors. Particularly, prior to neutrino decoupling cross-

alignments like an alignment between the vorticity and the magnetic field and the cross

helicity, as well as any initial kinetic helicity may affect the evolution of the magnetic

field. Here, we look at the impact of kinetic, magnetic and cross helicity and the cross

scalar on the evolution of primordial MHD turbulence. Furthermore, we study the evo-

lution of magnetic fields using a semi-analytical equation to calculate the evolution of
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spectral correlation function that describe the evolution of primordial magnetic fields,

similarly to previous calculations of incompressible (solenoidal velocity field ∇ · v = 0)

MHD turbulence without (Saveliev et al. 2012) and with magnetic helicity (Saveliev

et al. 2013, Saveliev 2014). In contrast to these calculations, we self-consistently treat

the assumption of incompressibility, account for viscous and resistive effects in the early

universe and include the kinetic and cross helicity and the cross scalar. Additionally,

we discuss compressible effects and show how these have to be included in the subsonic

limit, but we do not include compressible effects when studying the evolution of pri-

mordial magnetic fields in the present computations, which represents one of the major

drawbacks of the present study.

Recently, the first detection of gravitational waves in 2015 (Abbott et al. 2016)

opened another exciting and promising new window beyond cosmic rays, neutrinos and

photons to study the universe. Gravitational waves from the early universe could be

detected in the future and open up another avenue to observe as of yet unobservable but

potentially existing processes in the early universe, e.g. first order phase transitions or

inflation (Starobinskǐi 1979, Witten 1984, Hogan 1986, Kamionkowski et al. 1994, Hu-

ber & Konstandin 2008, Caprini & Figueroa 2018). Here of particular interest are

gravitational waves that are sourced by potential electroweak phase transitions that

can also provide substantial seed magnetic fields. In these thermal phase transition

the most important source of gravitational waves is compressible MHD turbulence, i.e.

sound-waves (Hindmarsh et al. 2014, Hindmarsh et al. 2015), vorticity (Kamionkowski

et al. 1994, Kosowsky et al. 2002) and magnetic fields (Caprini & Durrer 2002, Caprini

et al. 2009). The electroweak phase or TeV phase transitions are of particular interest

as future space-based gravitational wave observatories like the planned detector LISA

(Caprini et al. 2016, Amaro-Seoane et al. 2017) are able to observe the relevant frequency

range 10−4 to 10−1 Hz. In principle, a QCD phase transition can produce signatures

that may be observable by pulsar timing arrays (PTAs) (Caprini et al. 2010), yet even

if these exist they may be obscured by the expected, but still unobserved, gravitational

wave background produced by supermassive black hole inspirals (Sesana 2013, Bonetti
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et al. 2018). Here we discuss the production of gravitational waves during and after

a phase transition due to compressible MHD turbulence, particularly by looking at

incompressible MHD turbulence with and without magnetic helicity and compressible

hydrodynamic turbulence (for simplicity) in a simplified picture (Niksa et al. 2018). One

key factor of importance in studying the generation of gravitational waves from velocity

and magnetic fields are the turbulent unequal time correlation (UTC) functions (Caprini

et al. 2009), i.e. different ansatze for the decorrelation function lead to vastly different

gravitational wave spectra. In turbulence, there are two critical time scales, for once

the Eulerian eddy turnover time, which dictates the rate of decorrelation of Eulerian

fluctuations, and the Lagrangian eddy turnover time, that dictates the rate of energy

transfer and the decorrelation rate for Lagrangian fluctuations, i.e. from the perspective

of individual particle trajectories. The Lagrangian eddy turnover time is generally more

well known, as it allows us to understand the energy transfer of equal time correlations

of velocity and magnetic field fluctuations. It has also been unknowingly ill-applied in

the treatment of the rate of decorrelation of MHD turbulence in studies regarding the

generation of gravitational waves from turbulence (e.g. Kosowsky et al. 2002, Caprini &

Durrer 2006, Kahniashvili, Campanelli, Gogoberidze, Maravin & Ratra 2008a, Kahni-

ashvili, Gogoberidze & Ratra 2008). Therefore, here we look at the differences between

the different choices of the timescale for the unequal time correlation function.

The thesis is structured in the following manner. In the next chapter titled Basics

of GRMHD, chapter 2, we discuss the basic equations that allow us to study MHD tur-

bulence and the generation of gravitational waves by MHD, and we introduce several

key quantities of MHD, the kinetic, magnetic and cross helicity and the cross scalar.

Next, in chapter 3, titled MHD turbulence and GW, we discuss the stochastic quantities

that are the key focus of this study, we discuss the basic equations that govern MHD

turbulence and the defining properties of turbulence. In that chapter, we also discuss

the unequal time correlations, the eddy damped quasi normal equations that forms the

basis of our discussion on the evolution of the primordial MHD turbulence and the gen-

eration of a stochastic gravitational wave background by MHD turbulence. Thereafter,
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in chapter 4 we briefly discuss how magnetic fields can appear and be amplified during

a phase transition, we also discuss viscous and resistive dissipation of kinetic and mag-

netic fluctuations in the radiation dominated phase. Additionally, we briefly discuss the

evolution of primordial MHD turbulence in the matter dominated phase, and present

constraints on large scale magnetic fields. In the penultimate chapter, chapter 5 we

discuss the evolution of the MHD equations and the solution of the GW equation for

different initial conditions. Finally in chapter 6 we summarize and discuss our findings

and results. Throughout, this thesis we use natural Gauss units i.e. c = ~ = kB = 1.



2 | Basics of GRMHD

Here, we begin by reviewing magnetohydrodynamics in a weakly curved space-time

(GRMHD). First we start with an overview of the relevant equation governing electro-

magnetic fields in a plasma with perturbative deviations from a flat space-time.

2.1 GREMHD equations

A general relativistic electro-magnetic hydro-dynamic (GREMHD) system is described

by the Einstein equation

Rµν = 8πG
(
Ttot,µν −

1
2gµνTtot

)
, (2.1)

where G is Newton’s gravitational constant, Rµν is the Ricci tensor, Ttot,µν is the total

stress energy tensor, while Ttot = gµνT
µν
tot is the trace of the total energy momentum

tensor, which contains electromagnetic and the gas/ fluid component. For the metric

signature convention we use (−,+,+,+). The total stress energy tensor is given by

T µνtot = T µνkin + T µνem , (2.2)

where the subscript kin stands for kinetic and em for electromagnetic. The relevant

equations of motion are then given by

∇µT
µν
tot = 0 (2.3)

7
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Then, the evolution of the magnetic field is governed by Maxwell’s equations, where the

derivatives are replaced by their covariant counterparts

∇µF
µν = 0 (2.4)

and

εαβνµ∇βF µν = µ0Jα, (2.5)

where F µν is the electromagnetic field strength tensor and Jα is the electromagnetic 4

current density and µ0 = 4π. In this section, we follow mostly the approach by e.g.

(Ellis 1973, Brandenburg et al. 1996, Banerjee & Jedamzik 2004, Durrer & Neronov

2013, Subramanian 2016, Weinberg 2008).

2.1.1 Stress energy tensors

We model the fluid as a perfect fluid given by the stress energy tensor

T µνkin = (ρ+ p)uµuν + pgµν , (2.6)

where ρ is the energy density of the fluid, p is its pressure, uµ is the four velocity of the

flow. In the presence of electromagnetic fields one also needs to take the electromagnetic

stress energy tensor into account

T µνem = 1
µ0

(
F µαgαβF

νβ − 1
4g

µνFγδF
δγ
)
, (2.7)

where F µν is the electromagnetic field strength tensor.

2.1.2 Perturbative treatment

In the following we will split the metric into a background and perturbative component

gµν = gbµν + hµν , where qµν is the Friedmann-Robertson-Walker metric

gbµν = a2diag (−1, 1, 1, 1) , (2.8)
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where a is the scale factor and hµν is the perturbation. Also, up to first order in h,

one has gµν = gµνb − hµν , since gµαgαν = δµν . Here, the zeroth component corresponds

to the conformal time τ given by dτ=dt/a, where t is the physical time. Similarly,

the four velocity is split as uµ = ubµ + uhµ, where the superscript again b denotes the

background value and the superscript h denotes the perturbation. For an observer

at rest with respect to the expanding background, we have ubµ = (−a,0) and we set

uh0 = −h00/(2a2) at first order in h. Similarly, the kinetic stress energy tensor can be

split into a background

T kin,b
µν =

(
ρb + pb

)
a2δ0

µδ
0
ν + pbgbµν (2.9)

and a perturbative component

T kin,h
µν =

(
ρh + ph

)
ubµu

b
ν + phgbµν +

(
ρb + pb

) (
uhµu

b
ν + ubµu

h
ν

)
+
(
ρb + pb

)
uhµu

h
ν + pbhµν ,

(2.10)

where we also take into account seemingly second order terms like uhµuhν , as these are of

the same order as the perturbation of the energy itself. Note that δνµ is the Kronecker

delta symbol, which is 1 for µ = ν and 0 otherwise. Moreover, we neglect a background

electromagnetic field strength tensor and take only a perturbative electromagnetic field

strength tensor given by

T em,h
µν = 1

µ0

(
Fµαg

αβ
b Fνβ −

1
4g

b
µνFγδF

δγ
)

(2.11)

into account. When solving for the evolution of the electromagnetic fields and the

change in thermal and kinetic energy, we neglect the impact of the metric perturbation,

as it is a higher order term. Here, we are only interest in the production of metric

perturbations from kinetic and magnetic perturbations, as it is in general an observable

of interest in itself.
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2.2 Gravitational Wave equation

First, we discuss the appearance of metric perturbations due to perturbations in the

stress energy tensor. The Ricci-tensor is given as

Rµν = Γλµν,λ − Γλµλ,ν + ΓδµνΓλλδ − ΓδµλΓλνδ, (2.12)

where Γλµν are the Christoffel symbols given by

Γλµν = 1
2g

λδ (gδν,µ + gµδ,ν − gµν,δ) , (2.13)

where X,α = ∂αX. Here, we only require the Ricci-tensor at order O(h) denoted as

Rh
µν . The evolution of the background is governed by the Friedmann equations for a

flat space, which is the solution of the Einstein equation for a perfect fluid at rest with

respect to the background expansion and with purely time-dependent density. Then,

the Einstein equations read

Rh
00 =H

a2

[3
2hkk,0 −

3
2h00,0 + 3Hh00 − hkk,k

]
+ [2h0k,k0 − h00,kk − hkk,00] + hkk

(
a,00

a3 −
H2

a2

)
(2.14)

Rh
0i =H

a2 [hkk,i − h00,i − hki,k] + [hik,k0 + hk0,ik − hkk,i0 − hi0,kk] + hi0

(
a,00

a3 + 2H
2

a2

)
(2.15)

Rij =δij
[

1
2
H
a2 (h00,0 − 2hk0,k) + h00

(
a,00

a3 −
H2

a2

)
− H

2

a2 hkk

]
+ H
a2 [hi0,j − h0j,i − hij,0]

+ 2H
2

a2 hij + 1
2a2 [hik,jk + hjk,ik − hij,kk − hi0,j0 − hj0,i0 + hij,00 + h00,ij − hkk,ij]

(2.16)

where H = a,0/a is the conformal Hubble parameter and the indices i and j can have

the values 1, 2, 3, while the index is summed over the values k = 1, 2, 3. In the following
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it is useful to split the curvature perturbation as follows

h00 = −A (2.17)

h0i = Bi + C,i (2.18)

hij = δijD + Ei,j + Ej,i + F,ij +Hij, (2.19)

where A, C, D, G are scalars, B, E, F are vectors and H is the only non-reducible

two dimensional tensor. These quantities are chosen to fulfill the following conditions

Ei,i = Bi,i = Hij,i = Hii = 0. In particular of interest is (2.16) and the terms involving

Hij

RH
ij = − 1

2a2 [Hij,00 −Hij,kk]−
H
a2Hij,0 + 2H

2

a2 Hij. (2.20)

Thus the left side of the Einstein equation for pure perturbative tensor modes is a simple

wave equation. The tensor RH
ij can be derived from Rij by the transformation

RH
ij = Pijlm(∇)Rij, (2.21)

where

Pijlm(∇) = Pil(∇)Pjm(∇)− 1
2Pij(∇)Plm(∇) (2.22)

is a projection operator and

Pij(∇) = δij −Dij(∇) = δij −
∂i∂j
∇2 . (2.23)

is the solenoidal projection operator, while Dij is the dilatational projection operator.

The spatial Fourier transformation of (2.20) is

RH
ij (k) = 1

2a2

[
Hij,00(k) + k2Hij(k)

]
− H
a2Hij,0(k) + 2H

2

a2 Hij(k). (2.24)

Furthermore, the Fourier transform of the projection operator Pij is

Pij(k) = δij −Dij(k) = δij −
kikj
k2 . (2.25)
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Moreover, the right hand side of(2.1), i.e. the stress energy contribution, also involves

terms which are directly proportional to Hij, due to the appearance of a background

density and pressure term, while this is not the case for the electromagnetic component

as we do not consider background fields. The right hand side of the Einstein equation

at first order in the perturbation for the off-diagonal spatial components (i 6= j) reads

8πG
(
T hij − gbijT h − hijT b

)
= 8πG

(
pbhij + (ρb + pb)uhi uhj −

hij
2
(
3pb − ρb

))
, (2.26)

where we have neglected the electromagnetic component. Using the Friedmann equa-

tions

H2 =8πG
3 a2ρb (2.27)

a,00

a
=4πG

3 a2
(
ρb − 3pb

)
(2.28)

one finds

1
2a2

[
Hij,00 + k2Hij

]
− H
a2Hij,0 +

(
H2

a2 −
a,00

a

)
Hij = 8πGa2

(
ρb + pb

)
Pijlmπlm, (2.29)

where

πlm(k) =
∫ d3q

(2π)3 u
h
l (p)uhm(q), (2.30)

with p = k − q. Lastly, we introduce the conformal strain tensor Hij = a2H̃ij and

include the magnetic contributions to find

H̃ij,00(k, τ) + 2HH̃ij,0(k, τ) + k2H̃ij(k, τ) = 16πGa2
(
ρb + pb

)
Pijlm [πlm(k) + πem

lm (k)] ,

(2.31)

where

πem
lm (k) = 1

µ0a2(ρb + pb)

∫ d3q
(2π)3 Fln(p)Fmn(q). (2.32)

The resulting wave equation then describes the evolution of the conformal strain tensor.

In the following we take a look at the relevant evolution equation for the magnetic and
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kinetic contributions.

2.3 MHD equations in an expanding universe

Here, we describe and discuss the basic equations governing the evolution of magnetic

fields and fluid turbulence in an expanding universe, while we neglect the impact of back-

reaction from metric perturbations seeded by the MHD flow and the impact of metric

perturbations on the flow in general. In particular, gravitational potential fluctuations

can be neglected as the pressure generally dominates on all scales below the sound-

horizon ds ∼ dH and we assume that density perturbations δ � 1 can be treated as

sound waves in the radiation dominated phase without any relevant growing modes.

Also, we will discuss interactions between sound waves and solenoidal fluctuations only

in superficial detail without performing numerical simulations. We primarily focus on

the radiation dominated universe and only comment on the evolution after matter-

radiation equality without a numerical study. First, we look at the Maxwell equations

for an expanding universe, then we look at the dissipative stress energy tensor and

afterwards at the fluid equations.

2.3.1 Maxwell equations in a flat expanding background

In order to study the Maxwell equations we use the field strength tensor in the following

form

Fµν = wµĒν − wνĒµ + εµναβB̄
αwβ, (2.33)

where Ēµ and B̄µ are generalized four vectors of the magnetic and electric fields with

Ēµ = Fµνw
ν , B̄µ = 1

2εµνρλw
νF ρλ, (2.34)

while εµνρλ = Eµνρλ√
−g with Eµνρλ being the fully antisymmetric symbol with E0123 = −a8

and g is the metric determinant. The vector wν denotes a specific observer. Here, we

choose an observer with wµ = (a−1,0). As shown before, (2.4) and (2.5) together with
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(2.33) govern the evolution of electromagnetic fields. Note, that the four magnetic and

electric fields do not directly correspond to the conventional electric and magnetic fields.

However, these are found by evaluating the fields in the basis of a fundamental observer

with basis eµν
gµνe

µ
(a)e

ν
(b) = ηab, ηabeµ(a)e

ν
(b) = gµν , (2.35)

where η = diag(−1, 1, 1, 1) is the Minkoswski metric. Thus, one finds eµ(ν) = a−1δµ(ν).

Then, along such a fundamental observer the magnetic and electric fields are given by

Bi = e(i)
µ B̄

µ = aB̄i, Ei = e(i)
µ Ē

µ = aĒi. (2.36)

Analogously, the charge density is ρc = −Jµwµ and the current density is ji = Jµe
µ
(i)

The generalized Maxwell equations (2.4) and (2.5) in the fundamental frame of reference

read

∇ ·B = 0, (2.37)

∇ · E = 4πaρc, (2.38)

∇× E =− 2HB− ∂τB, (2.39)

∇×B =4πaj + 2HE + ∂τE, (2.40)

where ρc is the electric charge density. For convenience, it is useful to express these

quantities by their comoving counterparts. Therefore, we introduce the following trans-

formation

B̃ = a2B, Ẽ = a2E, j̃ = a3j, ρ̃c = a3ρc. (2.41)
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The comoving and conformal Maxwell equation for an expanding space are then the

same as for flat non-expanding background

∇ · B̃ =0, (2.42)

∇ · Ẽ =4πρ̃c, (2.43)

∇× Ẽ =− ∂τB̃, (2.44)

∇× B̃ =4πj̃ + ∂τ Ẽ. (2.45)

Moreover, we require Ohm’s law which in the non-relativistic limit v � 1 reads

j̃ = ρ̃cv + σ̃
(
Ẽ + v× B̃

)
, (2.46)

where σ̃ = aσ with σ being the electric conductivity of the fluid. Note, that the physical

peculiar velocities v are the same as the comoving peculiar velocities. In the following,

we apply the MHD approximation, which is reasonable for non-relativistic flows, and it

allows to neglect the displacement current ∂τ Ẽ. Thus, we have

∇× B̃ = 4πj̃. (2.47)

Also, it follows from Ohm’s law that

Ẽ = 1
σ̃

j̃− ρ̃c
σ̃

v− v× B̃. (2.48)

Next we look at the dissipative stress energy tensor.

2.3.2 Dissipative stress energy tensor

In the presence of viscous forces one needs to add additionally contributions to the stress

energy tensor, which model the viscous decay i.e. the production of thermal energy by

the decay of ordered kinetic flow. Hence we introduce the following dissipative stress
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tensor (Weinberg 2008)

Tαβvis = − (ρ+ p) νAαγAβδWγδ, (2.49)

where we have neglected heat conduction and bulk viscosity, while ν is the kinematic

shear viscosity, and

Aαβ = gαβ + uαuβ, Wαβ = uα;β + uβ;α −
2
3gαβu

γ
;γ, (2.50)

where the subscript “;” denotes a covariant derivative. Note that the above expression

for the viscous stress tensor is a simple generalization of the flat space stress tensor

presented in (Weinberg 2008). However, the presented viscosity tensor can lead to

acausal behavior for relativistic flows. A proper description of a relativistic viscous fluid

in curved space time requires a first principle calculation of a viscous stress tensor rather

than a simple Lorentz-invariant traceless extension of non-relativistic results. Since, we

are primarily working in the non-relativistic bulk flow limit and with comparably weak

magnetic fields, we do not anticipate that different or more complicated dissipation

stress tensors will change our results in any manner, even if the fluid itself is relativistic.

Together with the dissipation stress tensor the equations of motion of the fluid are

given by

∇µT
µν
tot = ∇µ (T µνkin + T µνem + T µνvis ) = 0, (2.51)

where ∇µ is the covariant derivative. Note that the dissipative stress energy technically

also appears in the gravitational wave equation, yet we neglect it here, as the scales at

the time scales of interest to us are not relevant for this discussion. Next, we look at

the fluid equations.

2.3.3 Fluid equations in a flat expanding background

Now, we look at the fluid equations governing the evolution of a fluid. The fluid ap-

proximation is generally useful for systems, where the mean free path of the particles
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constituting the fluid is smaller than the scales of interest λmfp � L and the particles

constituting the fluid are tightly coupled. In the context of the fluid equations, the

evolution of the fluid is governed by (2.51). As we later discuss in full, there are several

phases where the fluid approximation can technically not be applied, these are phases

where some component of the fluid begins to decouple or has decoupled. In particular

in the context of the radiation dominated phase, the density ρ as discussed here only

constitutes of the tightly coupled relativistic component i.e. neutrinos do not contribute

to the relativistic energy component as defined here after neutrino decoupling. More-

over, here we only discuss the fluid equations for the radiation dominated phase, where

p = ρ/3. For convenience, we introduce the enthalpy density

h = ρ+ p. (2.52)

Analogously, to the previous section we introduce the comoving density ρ̃ = a4ρ, co-

moving pressure p̃ = a4p and comoving viscosity ν̃ = ν/a. Here, we primarily assume

non-relativistic bulk flows v � c. The 0 component of (2.51) gives the equation for the

change of energy

∂τ ρ̃+∇ ·
(
h̃v
)

= Ẽ · j̃ + h̃ν̃∇ ·
(
∇v

2

2 −
2
3v∇ · v

)
, (2.53)

where the evolution equations for the magnetic field have been applied and we have

chosen the four velocity vector as u = aγ(1,v) with γ = (1−v2)−1/2. In (2.53) the terms

involving ν and σ, which implicitly appear due to Ohm’s law, denote contributions where

magnetic and bulk kinetic energy is transformed into radiation energy and perturbations

are damped.

Furthermore, the ν = i components of (2.51) describe the evolution of the velocity
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fluctuations

∂τv +
v · ∇

(
h̃v
)

h̃
=− v

h̃
∂τ p̃−

∇p̃
h̃

+ j̃× B̃
h̃
− v

j̃ · B̃
h̃
− vν̃∇ ·

(
∇v

2

2 −
2
3v (∇ · v)

)

+ ν̃
(
∇2v + 1

3∇ [∇ · v]
)
, (2.54)

where we also applied (2.53). Moreover, we separate the pressure contribution into an

adiabatic and a non-adiabatic component

dp = dpad + dpnad = c2
sdρ+ dpnad, (2.55)

where c2
s = dp/dρ is the sound speed, which for a radiation dominated gas is c2

s = 1/3.

Consequently, one can approximate the enthalpy as

h = ρb + pb + (1 + c2
s)δρ+ δpnad, (2.56)

where the δ marks a small fluctuation, e.g. δρ � ρb around a constant background,

which is denoted by the subscript b. The non-adiabatic component of the pressure is

typically split into two parts (Kodama & Sasaki 1984)

pnad = pint + prel, (2.57)

where pint is the intrinsic non-adiabatic pressure from individual components, e.g. due

to some fluctuating net particle production, while prel is the non-adiabatic pressure

due to entropy fluctuations between different species. The relative pressure fluctuation

corresponds to

dprel = 1
2∂τρ

∑
i,j

[(
c2
i − c2

j

)
(∂τρjdρi − ∂τρidρj)

]
, (2.58)

where ci is the sound speed of species i. Obviously, relative non-adiabatic pressure

fluctuations from relativistic species are negligible in a strongly radiation dominated
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universe. In particular, at high energies, e.g. as long as e+-e− pair production is effective,

we expect that the energy from dissipation quickly thermalizes (Burigana et al. 1991).

Therefore, the entropy production from dissipation is effectively uniform and related

temperature fluctuations are suppressed due to dissipation itself. In principle, we only

expect non-adiabatic terms to be of interest at low temperatures T . 1keV (Chluba &

Sunyaev 2012) or in non-trivial phases of the evolution of the cosmological fluid e.g. a

first order phase transitions or some epoch of inflation and reheating. This term should

be in general only of interest at later times e.g. around matter-radiation equality (Brown

et al. 2012). The most interesting source in the primordial radiation dominated setting

are intrinsic non-adiabatic pressure fluctuations, which one might expect to occur e.g.

in baryogenesis or leptogenesis scenarios, due to a net-production of particles, or around

the end of inflation.

Taking the curl of (2.54) leads us to the rate of change of the vorticity ω̃. For

simplicity, we generally neglect terms involving fluctuations at third order e.g. terms

like ∂τ p̃(v×∇h̃) and viscous contributions. Then we find

∂τ ω̃ =− ω̃∇ · v− v · ∇ω̃ + ω̃ · ∇v− ω̃∂τ p̃
h̃
− v×∇∂τ p̃

h̃
+ ∇h̃×∇p̃

h2

+ j̃ · ∇B̃
h̃
− B̃ · ∇j̃

h̃
. (2.59)

Note, that most of the terms are only non-vanishing if the initial vorticity is nonzero.

The first term on the right hand side describes the enhancement of vorticity in the

presence of dilatational motion (e.g. acoustic modes), the second term describes the

advection of vorticity and the third term effectively describes a change of vorticity

due to an “advection” of the flow along the vorticity vector. Furthermore, there are

several more terms of interest involving the pressure, the first two terms that involve

the pressure do not appear in the classical vorticity equation, while the third term is

the baroclinic vector which describes the production of vorticity in a non-adiabatic flow,

even if the initial vorticity is zero. Besides, the neglected higher order terms that involve

spatial derivatives of h also lead to terms which can, in the context of non-adiabatic and
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adiabatically perturbed flows, produce vorticity even if none is present before. The first

two terms involving the pressure can be understood as follows, for a purely adiabatically

evolving fluid the first term will lead to an increase in the effectiveness of enhancing

initial vorticity by compressible motion

−ω̃∂τ p̃
h̃

+ ω̃∇ · v ≈
(
1 + c2

s

)
ω̃∇ · v, (2.60)

where the ≈ is due to the negligence of the advection term in the energy equation. The

second term is also of interest, as it can modify the efficiency of baroclinic production.

In order to see this, we briefly model a purely dilatational velocity field as having the

following property, assuming a reasonable smooth flow,

v = ∇
∇2∇ · v + v0, (2.61)

where v0 describes some constant background flow. In general the dilatational fluid

component is found by contracting the dilatational projection operator Dij, as defined

in (2.23), with the velocity field. Analogously, the solenoidal component is found by

contracting the solenoidal projection operator Pij as defined in (2.23) with the velocity

field. If the fluctuations in h are only due to acoustic modes and adiabatic, we anticipate

at second order

v×∇∂τp ≈ hc2
sv×∇∇ · v = hc2

sv×∇2v = 0, (2.62)

since ∇2v ‖ v for a purely dilatational flow. However in the case of a non-adiabatic

pressure perturbation we expect this to give a production term for vorticity, even if the

vorticity is zero initially, similar to the baroclinic vector. Moreover, this term also leads

to a non-linear enhancement of the vorticity in case that the initial vorticity is nonzero.

Technically, the relativistic ∂τp term corrects for the appearance of h and makes certain

that the frequency remains csk, whereas in the case that p� ρ this term is negligible.

The last two terms involve the magnetic field and the current and generally describe the
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production of vorticity due to the advection of a magnetic field along the current and

the advection of the current along the magnetic field. Thus, magnetic fields generate

bulk vorticity within a plasma, even if no bulk motion is present before. As, we discuss

later on in more detail, the relativistic term is not expected to alter the evolution of

an incompressible or near incompressible flow. Overall, the behavior of non-relativistic

fluid turbulence is expected to be similar to that of a relativistic fluid in the context of

non-relativistic bulk-flows.

Analogously to taking the curl of (2.54), one can also look at its divergence to find

∂τ∇ · v =− v · ∇∇ · v−
∑
ij

(∂ivj)∂jvi + ∇p̃ · ∇h̃
h̃2

− ∇
2p̃

h̃
− ∂τ∇p̃

h̃
∇ · v− v · ∂τ∇p̃

h̃

+ B̃ · (∇× j̃)
h̃

−+ j̃ · (∇× B̃)
h̃

, (2.63)

where we have again neglected terms which are at least of third order in the fluctuating

quantities like the velocity field and or variations of the density and viscous terms. All

terms on the right hand side except for the second term vanish when ∇ · v = 0 and

∇p = 0. Hence, the second term consequently describes the generation of dilatational

motion from solenoidal motion. An incompressible flow is a flow for which ∇·v = 0, yet

due to the second term, this can at most only be satisfied approximately in adiabatic

systems. As is well known, acoustic waves correspond to the linearized solution of the

above equation with an adiabatic equation of state. We will discuss the non-linear

effects later on in more detail, including magnetic effects. Next, we focus on the overall

MHD equations.

2.3.4 MHD equations

Now, we briefly discuss the complete set of equation governing the evolution of a mag-

netized plasma in the fluid and MHD approximation.

The evolution of the magnetic field is described by (2.47) in the MHD approximation
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and together with Ohm’ law (2.48) one finds

∂τB̃ = ρ̃c
σ̃
ω + v

σ̃
×∇ρ̃c −

1
4πσ̃∇×

(
∇× B̃

)
+∇×

(
v× B̃

)
. (2.64)

Here we set ρc = 0, in accordance with constraints on the net charge of the universe

at photon decoupling (Caprini & Ferreira 2005). However, net currents might appear

during certain processes. Also, net charge flows can play a role after recombination and

even prior to reionization due to ambipolar diffusion (Banerjee & Jedamzik 2004) since

the universe has only a slight fractional ionization i.e. electrons will not be strongly

trapped by protons and can diffuse over sufficiently longer length-scales than protons

due to their smaller mass. Furthermore, by applying 2.47 on 2.54 we find for the

evolution of the velocity field in the MHD approximation

∂τv +
v · ∇

(
h̃v
)

h̃
=− v

h̃
∂τ p̃−

∇p̃
h̃

+

(
∇× B̃

)
× B̃

4πh̃
+ ν̃

(
∇2v + 1

3∇ [∇ · v]
)
. (2.65)

and for the energy density one has

∂τ ρ̃+∇ ·
(
h̃v
)

=

(
∇× B̃

)2

(4π)2σ̃
− ρ̃c

4πσ̃v · (∇× B̃) + h̃ν̃∇ ·
(
∇v

2

2 −
2
3v∇ · v

)
, (2.66)

where third order terms in fluctuating quantities like vB∇p have been neglected. Lastly,

a general equation of state for the pressure needs to be specified e.g. for a barotropic

cosmological fluid one has p = c2
sρ. Alternatively, other conditions can be applied, like

only solenoidal bulk motion ∇ · v = 0, which also fixes the pressure and is a common

approximation for sub-sonic systems. Such a flow is also known as a incompressible

flow. Ultimately, the equations (2.64), (2.54) and (2.55) describe MHD turbulence.

Note that in general other modifications to the fluid equations can be of interest in

particular when similar to a net charge different particle species are affected differently

by the magnetic field. In that case further modification to Ohm’s law (2.48) appear,

which modify the overall evolution of magnetic fields. One particular class of modifi-

cations are imbalances in the handedness of e.g. left and right handed particles, e.g.
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the so-called chiral magnetic effect (Boyarsky et al. 2012, Pavlović et al. 2017). These

imbalances can in the presence of magnetic fields grow and affect the evolution of the

magnetic fields in particular by an additional source term for magnetic helicity, which is

an important topological measure as we discuss below. In general these class of imbal-

ances are of relevance for temperatures 10TeV & T & 100MeV, at lower temperatures

other processes that reduce the imbalance become increasingly important. Here, we do

not include this particular effect, however we will also study the impact of magnetic

helicity. For relevant numerical studies on this effect, see (Schober et al. 2019, Bran-

denburg et al. 2017)

In the next section, we will briefly discuss the kinetic, magnetic and gravitational

wave energy density and thereafter we discuss four relevant topological measures of

MHD flows, the kinetic helicity, cross helicity, magnetic helicity and the cross scalar.

For MHD systems of particular interest is the cross helicity and magnetic helicity, since

these are conserved if the system is ideal and barotropic. Nonetheless, both the kinetic

helicity, which is conserved in non-magnetized ideal barotropic flows, and the cross

scalar can be of interest in the evolution of the system and might also play a role, when

source terms for cross and magnetic helicity are present.

2.4 Basic magnetic and velocity field measures in GWMHD

In this section, we describe and briefly discuss some basic quantities in GWMHD. These

are the kinetic, magnetic and gravitational wave energy and the kinetic, cross and

magnetic helicity, and the cross scalar.

2.4.1 Kinetic, magnetic and gravitational wave energy

We define the total comoving kinetic energy

EK = h̃

2

∫
dV 〈v2(x)〉, (2.67)
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where V is the comoving volume over which one integrates and 〈v2〉 is the root mean

square velocity as defined over an ensemble average. The averaging is not necessary in

the volume integration, however typically we are interested in spectral densities and in

the context of turbulence only statistical measures provide valuable information, as we

do not have information about more specific initial conditions. Moreover, we introduce

a dimensionless measure for the comoving kinetic energy

eK = 1
2V

∫
dV 〈v2(x)〉, (2.68)

where V is the total volume over which one integrates, e.g. V ∼ d3
H , where dH is the

size of the horizon. Similarly one can define the magnetic energy density as

EM = 1
8π

∫
dV 〈B̃2(x)〉, (2.69)

where V is the comoving volume over which one integrates. For convenience, we intro-

duce the Alfven velocity

b = B√
4π(h̃)

. (2.70)

Moreover, we introduce a dimensionless measure for the comoving magnetic energy

eM = 1
2V

∫
dV 〈b2(x)〉, (2.71)

We also introduce the total comoving gravitational wave energy (Misner et al. 1973)

EG =
∫

dV ρG = a2

32πG

∫
dV

∑
ij

〈H̃2
ij,0(x)〉, (2.72)

where we average the strain over several length-scales and ρG is the gravitational wave

energy density. We also introduce the GW energy density per log(k) in Fourier space

eG(k) by

1
V

∫
dV ρG =

∫
d log(k)eG(k) = a2

32πG

∫
d log(k) 4πk3

(2π)6

∑
ij

〈|H̃2
ij,0(k)|2〉, (2.73)
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where the factor ∑ij〈|H̃2
ij,0(k)|2〉 only depends on the length scale k in homogeneous

isotropic systems. Additional, the gravitational energy density parameter (today) is

ΩG = a2

12H2
0

∑
ij

〈H̃2
ij,0(x)〉 =

∫
d log(k)PG(k), (2.74)

where H0 is the present Hubble parameter and we used Ωi = ρi/ρc, where ρc =

3H2
0/(8πG). Moreover PG(k) is the gravitational wave power spectrum. In the fol-

lowing we discuss several topological measures of MHD turbulence.

2.4.2 Kinetic helicity

In hydrodynamic incompressible system, there are two basic non-trivial conserved quan-

tities, one is the kinetic energy and the other is the kinetic helicity. The total kinetic

helicity

HK =
∫

dV hK =
∫

dV v · ω (2.75)

measures the cork-screw like motion in a fluid, i.e. the degree of vortical motion of a

fluid particle along its trajectory. Note, that one key assumption that we make here is

the isotropy of the system. Strictly speaking however, helicity breaks isotropy as there

is a sense of rotation in the system and thus the system is no longer invariant under

parity transformations. Nonetheless, we treat the system as effectively “semi”-isotropic

in the sense that there is no mean vorticity 〈ω〉 =, no mean flow 〈v〉 = 0 and no mean

magnetic field B = 0, i.e. there is no preferential direction of motion other than that of

rotation. In barotropic and ideal non-magnetized flows kinetic helicity is conserved, as

long as there are no flows of helicity in or out of the volume V . Further, a transformation

of the type v→ v+∇φ, where φ is some scalar field, which corresponds to the addition

of compressible motion, only leads to hydrodynamic changes in the kinetic helicity if

ω lies within the surface of the volume over which one integrates. Hence, in general

as long as there is no net out- or inflow of vorticity in the volume V the total kinetic

helicity is conserved. As we see later on also for the magnetic helicity, kinetic helicity is

conserved under gauge transformation of the vector potential of the vorticity as long as
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there are no net vorticity in- or out-flows into the system. For convenience, we introduce

the parameter

λK = 〈ω · v〉√
〈v2
s〉〈ω2〉

(2.76)

which measures the amount of kinetic helicity in the system normalized to the kinetic

energy with possible values in the range of [−1, 1]. Where vs is the absolute value of

the solenoidal component of the velocity field vs = P · v, where P is the projection

operator with components Pij. A nonzero baroclinic vector is generally a source of

kinetic helicity if the velocity has a component which is parallel to the baroclinic vector.

Moreover, other parity violating topological quantities like the magnetic helicity can

drive the production of kinetic helicity. Note that technically a hydro-dynamically

viscous flow with HK = 0 and hK 6= 0 can develop into a flow with HK 6= 0 simply

due to dissipation. In that case, hK at smaller scales gets damped away, due to the

more efficient dissipation, whereas hK on larger scales is barely affected by dissipation

and therefore HK would attain a non-zero value. Such a process is in general also of

interest for the total production of other topological measures like cross helicity, cross

current and magnetic helicity, yet a prior spatial imbalance of these topological features

is nonetheless required.

2.4.3 Cross helicity

In incompressible MHD, there are two conserved topological measures, one of those is

the cross helicity. The cross helicity

HC =
∫

dV hC =
∫

dV v · B̃, (2.77)

measures the alignment of magnetic field lines with the velocity field.The change of the

cross helicity density follows from (2.64) and (2.54), and is given by

∂τhC(x, τ) = ∂τ
(
v · B̃

)
= ∇ ·

[
v×

(
v× B̃

)
− B̃

v2

2

]
− B̃ · ∇p̃

h̃
. (2.78)
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Under the assumption that B̃ ⊥ n, where n is a surface normal vector of some enclosing

surface of the volume, then the cross helicity is invariant in ideal systems with an

barotropic equation of state. Therefore, a production of cross helicity is possible when

magnetic fields are present and the system is non-adiabatic. Then, the net rate of

production is

∂τHC ∝ −
∫

dV B̃ · ∇p̃
h̃

∝ −
∫

dV p̃

h̃2
b

B̃ · ∇h̃ ∝ −
∫

dV
[
δp̃nad

h̃2
b

B̃ · ∇p̃ad

]
, (2.79)

where δpad � p is the fluctuating adiabatic component of the pressure and δpnad � p is

the fluctuating non-adiabatic component. The subscript b denotes a spatially constant

background value. In the first proportionality relation we simply dropped the pure

divergence terms, while in the second we applied partial integration and neglected higher

order terms, as these do not impact the conclusion and we generally neglected terms like

pB · ∇p ∝ ∇ · (Bp2) as such terms are pure divergence terms. Ultimately, one arrives

at the final proportionality by neglecting all contributions to the pressure which can be

written as some divergence of some quantity like pad∇pad, and by using ρ ∝ pad. Note

that cross-helicity production from non-adiabatic effects requires some initial magnetic

field and both adiabatic and non-adiabatic fluctuations to be present. Technically, this

is possible if the flow is magnetized and the fluid is non-adiabatic, as inhomogeneous

magnetic fields source adiabatic fluctuations, even if none were present before. The

occurrence of sizable non-adiabatic fluctuations may be a bigger question mark than

the production of initial magnetic fields. Moreover, cross helicity is subject to both

resistive and viscous damping. In general, cross helicity may be relevant around matter

radiation equality, due to the presence of non-adiabatic pressure. Yet it could also

appear in the very early universe due to some as of yet undiscovered processes. Lastly,

we also introduce a dimensionless parameter for the cross helicity

λC = 〈B · v〉√
〈v2〉〈B2〉

. (2.80)

Next, we will briefly discuss the magnetic helicity.
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2.4.4 Magnetic helicity

As mentioned before, there are two basic fundamental topological conserved quantities,

the first being the aforementioned cross helicity and the second is the magnetic helicity.

The magnetic helicity

HM =
∫

dV hM =
∫

dV Ã · B̃ (2.81)

measures the alignment of the magnetic field with its vector potential, similar to the

kinetic helicity albeit with respect to the vorticity rather than the velocity field.In

Coulomb gauge ∇ ·A = 0, one finds

A(r) = ∇×
∫

d3r′
B(r′)

4π|r− r′|
. (2.82)

Magnetic helicity can also be stated as an alignment of B with ∇×B ∝ J, although this

alignment integrated over the volume V is not conserved. Further Maxwell’s equations

(2.44) implies that the production of a non-zero magnetic helicity requires in Coulomb

gauge

∂τ (B̃ · Ã) = ∂τ (B̃ · (
∇
∇2 · B̃) = −B̃ · Ẽ +∇× Ẽ · ∇

∇2 × B̃. (2.83)

This implies that the production of magnetic helicity requires some degree of alignment

between the electric and magnetic field. For example charged flows can lead to a produc-

tion of magnetic helicity and similarly the aforementioned chiral anomaly effect. Given

a constant charge density, the production of magnetic helicity due to some net-charge

density is

∂τ (B̃ · Ã) = ρ̃c
σ̃

[
B̃ · v− B̃ · ∇

∇2∇ · v− ω · (
∇
∇2 × B̃)

]
. (2.84)

Hence, the production of magnetic helicity due to some net charge requires some degree

of correlation between the magnetic and velocity field.

In case that there is no net charge distribution or other variations between the

charges, e.g. chiral imbalance or resistive damping, magnetic helicity is conserved if

B ⊥ n, like the cross helicity in adiabatic flows, where n is again a surface vector.

Besides, the criterion B ⊥ n also ascertains that the defined total magnetic helicity is
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invariant under gauge transformations A → A + ∇φ and hence physical, where φ is

some scalar field, analogously as for the kinetic helicity. Otherwise, there would be a

troubling ambiguity in the defined magnetic helicity. Additionally, we introduce another

dimensionless parameter

λB = 〈B ·A〉√
〈A2〉〈B2〉

, (2.85)

where A is given by (2.82). Next, we discuss the cross scalar which is the only parity-

invariant quadratic topological measure in isotropic and homogeneous MHD turbulence.

2.4.5 Cross scalar

Lastly, we introduce another quadratic measure of MHD turbulence. We construct it

as a combination of v, B and ∇.For near charge neutral flows, one has

∇ · j̃ = 0 = ∇ · (v× B̃) = ω · B̃− v · j̃ (2.86)

where we have used the MHD approximation (2.47). Thus, there is only one unique

way to combine these two vectors and the nabla operator into a scalar (safe for some

additionally powers of ∇2 and arbitrary linear combinations) and we denote it as

EC =
∫

dV eC =
∫

dV v ·
(
∇× B̃

)
=
∫

dV B̃ · (∇× v) . (2.87)

We refer to B · ω as the cross vorticity and j · v as the cross current. As these two

quantities are equal in MHD we will refer to these as the cross scalar. The structure of

this quantity is on the surface quite similar to that of the kinetic and magnetic helicity

(in Coulomb gauge). However, in parity invariant systems (v is a vector and B is a

pseudovector), only the magnetic and kinetic energy spectra and the cross scalar can be

nonzero, whereas the magnetic, kinetic and cross helicity vanish. Therefore, a nonzero

cross scalar even though cannot act as a source term for some helicity density, however

it might still impact the evolution of the different helicities. Cross scalars are generally

appear when there is a component of the electric field e.g. during the magnetogenesis
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process, that has a component which is parallel to the fluid flow, like for net charged

flows. The rate of change of the cross scalar density, where we neglect dissipative and

resistive contributions, is

∂τ (ω · B̃) =B̃ · [∇× (v× ω)] + ω ·
[
∇× (v× B̃)

]
− B̃
h̃
· (v×∇∂τ p̃)− B̃ · ω∂τ p̃

h̃

+ B̃ · ∇ρ̃×∇p̃
h̃2

+ ρ̃c
σ̃
ω2. (2.88)

As mentioned prior, the last term describes the aligning between the magnetic and vor-

ticity field if a net zero charge is present. The second to last term describes a generation

of the cross-scalar due to an alignment of the magnetic field with the baroclinic vector.

Moreover, the first two terms general show the change of the cross-scalar due to the

structure of the MHD flow itself. Lastly, we introduce a dimensionless parameter for

the cross scalar

λJ = 〈B · ω〉√
〈ω2〉〈B2〉

, (2.89)

In the next chapter we look at homogeneous isotropic MHD turbulence with gravita-

tional waves. Generally, we focus only on incompressible systems but we will also touch

upon compressible MHD. We also discuss MHD turbulence and gravitational waves

produced by turbulence.



3 | MHD turbulence and GW

One general information, from here on out we will drop the ˜ from comoving variables

and unless specified otherwise all variables discussed here are comoving in the radiation

dominated phase. In the previous chapter we described MHD in an expanding universe

and some basics about the production of gravitational waves. Here, we focus on a par-

ticular class of problems in MHD, which is homogeneous and isotropic MHD turbulence

and the generation of gravitational waves by MHD turbulence. Also, we mentioned some

particular quantities like topological measures and so forth, where we have already de-

fined stochastic quantities like the dimensional parameters (2.76), (2.80), (2.85), (2.89).

Note that the definition of these parameters is valid without averaging, yet such a defi-

nition is not of interest to us. First, we discuss spectral correlation quantities in MHD

turbulence.

3.1 Spectral correlation functions

As, we discuss in the next section in more detail, turbulent systems are best described

by stochastic measures. Here we primarily assume that the system of interest is homo-

geneous and isotropic in a stochastic sense.

In hydrodynamic turbulence a relevant type of auto-correlation functions are

Sp(r) = 〈|v(x)− v(x + r)|p〉. (3.1)

Note that the 〈〉 denotes a ensemble average e.g. an average over different initial con-

ditions with the same basic stochastic properties e.g. the same initial Sp. Note that

31
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because of stochastic homogeneity the function Sp does not depend on x and because

of stochastic isotropy it only depends on the distance r between the two locations. For

p = 1 one has the one-point function also known as the mean value, for a isotropic

system one has S1 = 0. Next, for p = 2 one has the two point auto-correlation function

and S2, also known as the standard deviation since S1 = 0, vanishes only if there are

no inhomogeneities in the different initialization of the flow v. Furthermore, for p = 3

one has three point function, also known as skewness, which in turbulent evolution is

always non-zero, as we discuss later on in more detail. There are of course several more

stochastic quantities for different p in (3.1) but also for functions involving b and ρ and

mixtures of these different variables. For us the Fourier presentation of these correlation

functions is generally the most useful e.g. functions like 〈v(k)v(−k)〉, where k ∼ 1/r is

the wave number.

In homogeneous isotropic incompressible MHD turbulence there are six fundamental

scalar (three) and pseudo-scalar (three) two-point functions (see the following correla-

tion functions and subsection 3.2.2).Whereas, in compressible MHD turbulence there

are three additional scalar two point functions but no additional pseudo-scalars. Here,

we focus only on those that are sufficient in describing incompressible MHD, while we

briefly discuss the additional compressible two point function later on. These correla-

tion functions are the kinetic, magnetic and cross correlation two-point functions. For

convenience we split a general bulk flow into a dilatational, solenoidal and background

component

v = vd + vs + v0, (3.2)

with the properties ∇ × vd = 0 and ∇ · vs = 0, and the subscript d denotes a dilata-

tional field component, while the subscript s denotes the solenoidal field component.

Additional, the background component v0 = 0 in isotropic systems.

Then, in Fourier-space the equal time velocity two-point function for solenoidal

velocity fluctuations is

〈vis(k, τ)vjs(q, τ)〉 = (2π)6

4πk3 δ(k− q)
[(
δij −

kikj
k2

)
Es(k, τ)− iεiju

ku
k
HK(k, τ)

]
, (3.3)
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where Es(k, τ) is the kinetic energy spectrum for solenoidal motion and HK(k, τ) is a

measure for the kinetic helicity with HK(k, τ) ≤ Ed(k, τ). Next, for dilatational velocity

fluctuations we have

〈vid(k, τ)vjd(q, τ)〉 = (2π)6

2πk3 δ(k− q)kikj
k2 Ed(k, τ), (3.4)

where Ed is the kinetic energy spectrum of dilatational motion. Consequently, we define

the total kinetic energy spectrum as Eu = Ed + Es. Furthermore, in homogeneous and

isotropic turbulence 〈vidvjs〉 = 0, as in that case there is no spectral function Fij(k) with

kjFij = 0 and εimnkmFnj = 0.

Analogously, for magnetic field fluctuations one has

〈bi(k, τ)bj(q, τ)〉 = (2π)6

4πk3 δ(k− q)
[(
δij −

kikj
k2

)
Eb(k, τ)− iεiju

ku
k
Hb(k, τ)

]
, (3.5)

where Eb is the energy spectrum of Alfvenic fluctuations andHb is a measure of magnetic

helicity with Hb(k, τ) ≤ Eb(k, τ).

Moreover we also introduce the two point function for the mixture of Alfvenic and

velocity fluctuations

〈vis(k, τ)bj(q, τ)〉 = (2π)6

4πk3 δ(k− q)
[(
δij −

kikj
k2

)
HC(k, τ)− iεiju

ku
k
EC(k, τ)

]
, (3.6)

whereHC is the cross helicity and EC is the cross scalar. Sine b is solenoidal, correlations

between magnetic and dilatational fluctuations also vanish in homogeneous and isotropic

systems 〈vidbj〉 = 0. Also, the cross helicity density is constrained by HC(k, τ) ≤√
Es(k, τ)Eb(k, τ) and the cross scalar is constrained by EC(k, τ) ≤

√
Es(k, τ)Eb(k, τ).

These are not the only constraints for these different quantities as there are additional

dependencies that we discussing in the next subsection.

The above defined kinetic energy density is related to the total kinetic energy by the

relation

〈eK〉 =
∫

d ln(k)Eu(k) =
∫

d ln(k) [Es(k) + Ed(k)] , (3.7)
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where eK is defined in (2.68). For the magnetic energy one has

〈eM〉 =
∫

d ln(k)Eb(k), (3.8)

where eM is defined in (2.71). Moreover for the cross helicity, one has

〈hC〉 =
√

4π〈ρ〉
∫

d ln(k)HC(k), (3.9)

where hC has been defined in (2.77). Further, the kinetic helicity is

〈hK〉 =
∫

d ln(k)kHK(k), (3.10)

where hK has been defined in (2.75). Next, the magnetic helicity density in Coulomb

gauge is

〈hM〉 = 4π〈ρ〉
∫

d ln(k)Hb(k)
k

, (3.11)

where hM has been defined in (2.81). Lastly, the cross scalar is

〈eC〉 =
√

4π〈ρ〉
∫

d ln(k)kEC(k), (3.12)

where eC has been defined in (2.87). In the following subsection we discuss how the

different topological quantitiesHK ,HM ,HC and EC influence their respective parameter

space.

3.1.1 Interdependencies

Now we look at the allowed range of the different alignments, as the above constraints are

insufficient, e.g. a system extremal cross and magnetic helicity also requires a maximal

cross-scalar and kinetic helicity. First, we introduce several dimensionless parameters

that measure the relative amount of cross helicity, magnetic helicity, kinetic helicity and
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cross scalar. We parameterize the kinetic helicity as

λK(k, τ) = HK(k, τ)
Es(k, τ) . (3.13)

with −1 ≤ λK ≤ 1. Similarly, we parameterize the magnetic helicity as

λB(k, τ) = Hb(k, τ)
Eb(k, τ) , (3.14)

with −1 ≤ λB ≤ 1. The cross helicity is parameterized as

λC(k, τ) = HC(k, τ)√
Es(k, τ)Eb(k, τ)

, (3.15)

with −1 ≤ λC ≤ 1. Lastly, we parameterize the cross current as

λJ(k, τ) = EC(k, τ)√
Es(k, τ)Eb(k, τ)

, (3.16)

with −1 ≤ λJ ≤ 1.

A effective way to analyze helical systems is the helical decomposition of the kinetic

and Alfven velocity (Lesieur 1972). The velocity field can thus be written in terms of

polarized states as

v(k) = v+(k)h+(k) + v−(k)h−(k). (3.17)

Analogously, we can perform such a split for magnetic fields and find

b(k) = b+(k)h+(k) + b−(k)h−(k) (3.18)

where the basis vectors are an orthonormal solution to the eigenvalue equation

ik× h±(k) = kh±(k). (3.19)

The coefficients v± and b± are complex numbers.

Then, the helical decomposition can be used to easily identify the respective energy
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and helicity spectrum with the absolute value of the coefficients of the respective de-

composition. Thus, the energy density is Es(k) = 〈|v+|2 + |v−|2〉 and the normalized

kinetic helicity density corresponds to HK(k) = 〈|v+|2 − |v−|2〉. Analogously for the

magnetic fields one finds for the magnetic energy density is Eb(k) = |b+|2 + |b−|2 and

the normalized magnetic helicity density corresponds to Hb(k) = |b+|2 − |b−|2. Then

one can invert this relation to find the absolute value of the coefficients in terms of the

different spectra

〈|v±|2〉 = Es ±HK

2 = Es
1± λK

2 , 〈|b±|2〉 = Eb ±Hb

2 = Eb
1± λB

2 . (3.20)

Moreover, for the cross helicity one finds

λC = 〈|v+||b+|〉 cosα+ + 〈|v−||b−|〉 cosα−√
EsEb

(3.21)

and for the cross-current one finds

λJ = 〈|v+||b+|〉 cosα+ − 〈|v−||b−|〉 cosα−√
EsEb

, (3.22)

where we did not average over the angles and the angles α± denote the different complex

phases between v± and b± and are here free parameters in [0, π). Applying (3.20) in

(3.21), (3.22), we find

√
1± λK

√
1± λB cosα± = λJ ± λC . (3.23)

The angular dependency can be dropped to find the inequality

√
1± λK

√
1± λB ≥ |λJ ± λC |. (3.24)

Consequently, when choosing a set of initial conditions for helical MHD turbulence one

may need to take the above constraint into account.

In particular a state with |λC | + |λJ | > 1 requires non-zero kinetic and magnetic
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helicity spectra. On the other hand, for system with a zero cross helicity and cross

scalar spectrum, there are no constraints on the magnetic and kinetic helicity spectra.

Also, at scales where the magnetic helicity is extremal, i.e. λB(k) = ±1, it follows

λC(k) = ±λJ(k). Hence, one might expect that a nonzero cross current affects a system

with magnetic helicity, since an extremal magnetic helicity would require that the cross

current has to vanish or a non-trivial cross-helicity would have to be present, which we

will investigate here. As we discuss later on, in homogeneous isotropic turbulence, if

the cross-helicity and cross current spectra are zero, then the cross current spectrum

will remain zero. Consequently, one may wonder if systems with non-zero cross-scalar

exhibit interesting behavior, especially in systems with magnetic helicity. Furthermore,

if both the magnetic and cross helicity are extremal then also the kinetic helicity and

the cross current have to be extremal. In the following we will discuss general basics

about MHD turbulence for incompressible and compressible systems.

3.2 MHD turbulence

MHD turbulence is a form of turbulence which appears in a magnetized plasma. Hy-

drodynamic turbulence is generally describes a solution to the fluid equations which

is chaotic, i.e. minor variations in the initial conditions lead to significant deviations

in the evolution. These solutions generally require that the dissipative term is much

smaller than the self-interaction term. Therefore, turbulence is only possible when

∣∣∣∣∣v · ∇ (hv)
h

+ v
h
∂τp+ ∇p

h
− (∇×B)×B

4πh

∣∣∣∣∣�
∣∣∣∣ν (∇2v + 1

3∇ [∇ · v]
)∣∣∣∣ . (3.25)

Note that the overall equation has the dimension L/T 2, where L is a characteristic

length scale, while T is a characteristic time scale of the system. The right side has the

dimension ν/(LT ). Consequently, multiplying both sides by T 2/L gives the dimension-

less fluid equations where on the right side the numerical scaling factor νT/L2 appears.

The inverse of the scaling factor is also known as Reynolds number Re= L2/(Tν). In

hydrodynamic systems the Reynolds number can also be written as Re= vcL/ν, where
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vc ∼ L/T is a characteristic velocity scale. Note, that the above argument assumes

that the pressure contribution ∇p is not considerably larger than the non-linear veloc-

ity contribution v · ∇v, otherwise the problem may, at least on first sight, be more

complicated. This is in particular of interest in compressible systems. However, in

MHD one also has to take into account an inhomogeneous magnetic field and hence

a better estimate for the Reynolds number Re=max(vc, bc)L/ν. Again this argument

is a slightly more complicated as it also requires a slight adjustment of the relevant

scale L: max(vc, bc) ∼ L/T . A small Reynolds number Re�Rec, where Rec is some

critical Reynolds number, then implies that the damping is dominant and therefore the

nonlinear and chaotic evolution is suppressed. On the other hand Re�Rec implies that

the chaotic nature of the system is dominant and the system is turbulent.

The picture in MHD is even more complicated when one takes the evolution of the

magnetic field itself into account. Magnetic fields themselves can also evolve in a chaotic

manner if ∣∣∣∣ 1
4πσ∇× (∇×B)

∣∣∣∣� |∇× (v×B)| . (3.26)

Analogously, to the hydrodynamic case, one can define a magnetic Reynolds number

Rem = 4πσvcL. For the sake of comparison one typically introduces another number,

the so called magnetic Prandtl number Pm=Rem/Re= ν/η. If, Pm� 1 magnetic fields

undergo less damping than the fluid motion, whereas for Pm� 1 it is the other way

around. For systems with Pm� 1, the estimate for the kinetic Reynolds-number should

be of the order of the max model, however in the opposite case one expects a more in-

termediary estimate for the initial kinetic Reynolds-number if bc � vc. Moreover, if the

kinetic Reynolds number is sub-critical Re�Rec one expects that magnetic turbulence

is typically suppressed even if Rem �Rec. As we discuss explicitly later on, in the early

universe Pm� 1 and Rem � 1 on respective horizon scale with v ∼ cs, but that is not

generally the case for the kinetic Reynolds number.

As already mentioned with respect to the pressure term, technically the nature of

the evolution of the system does not only depend on the Reynolds number but may

also depend on the degree of vortical to dilatational motion in the flow and magnetic
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fields. Hence, there may be different types of turbulent evolution, as we briefly discuss

in the following two subsections. As we discuss later on incompressible MHD turbu-

lence maximally cross-helical systems with e.g. v = b are highly deterministic as the

non-linear evolution is effectively frozen in and the system only undergoes resistive and

viscous dissipation, yet viscous dissipation may lead to the onset of non-linear evolution

later on. Therefore, Re�Rec in general is not a sufficient criteria for the establishment

of turbulence, yet in general it is typically a necessary condition for the appearance of

turbulence. Ultimately, a deterministic analysis of turbulence is generally not useful,

as precise knowledge of the initial conditions of the system of interest is usually not

available. Typically, turbulent systems are compared on the basis of certain stochastic

variables. In the following, we discuss the incompressible MHD equations and incom-

pressible turbulence, thereafter we discuss compressible MHD. Here we also follow in

part the books (Lesieur 2008, Biskamp 1993).

3.2.1 Incompressible MHD equations

Incompressible flows are flows, where the density along a fluid trajectory remains con-

stant. From (2.53) it follows that the total derivative of the energy density is

(∂τ + v · ∇) ρ = −h∇ · v− v · ∇p. (3.27)

Consequently the energy density along the fluid trajectory remains constant if h∇·v =

−v · ∇p. Hence, ∇ · v is in general a higher order term in the fluctuating velocity,

density or magnetic field, if the density along the flow remains unchanged. Therefore,

the incompressibility condition in the perturbative limit reads ∇ · v ≈ 0 and hence an

incompressible flow is purely vortical. Obviously, a barotropic non-magnetized plasma

can never develop into an incompressible or near-incompressible flow. Moreover, the

incompressibility is generally ill-applied to systems with v & cs.
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Taking the divergence of the velocity equation (2.65) one finds

∇ · ∂τv = −∇ · (v · ∇) v− ∇
2p

hb
+ 1
h2
b

∇h · ∇p+ 1
4πhb

∇ · ([∇×B]×B) ≈ 0. (3.28)

Note, that the term ∇h · ∇p is for barotropic flows a second order term in the pressure

fluctuation and can therefore be neglected with respect to the ∇p term. Then, it be-

comes clear that the pressure fluctuations of a near incompressible flow are of O(v2, b2).

The pressure fluctuation for an incompressible flow is

∇2pt = −hb (∇ · [v · ∇]) v + 1
4π (∇ · [B · ∇]) B, (3.29)

where pt = p + B2/(4π). Hence, the incompressibility condition allows us to neglect

variations of the radiation energy density and the specification of an equation of state in

studying the evolution of velocity and magnetic field variations. This type of pressure

has several interesting properties, first and foremost the “turbulent” pressure depends on

the global properties of the flow, rather than just the local flow. Particularly, real space

simulations can be numerically more difficult for incompressible flows than for com-

pressible flows. Note that incompressible turbulence is a highly non-local phenomenon,

as the change of the flow along a particle trajectory in ideal flows only depends on the

pressure gradient, which is non-local. As already mentioned the constraint ∇ · v = 0

is only reasonable at first order in the velocity. For a hydrodynamic ideal flow, energy

conservation together (2.53) with (3.29) gives

∇·v = −∂τρ
h
−v ·∇ ln(h) = ∂τ

c2
s

( ∇
∇2 · [v · ∇]

)
v + 1 + c2

s

c2
s

v ·∇
( ∇
∇2 · [v · ∇]

)
v, (3.30)

where we assumed a barotropic equation of state p = c2
sρ. A dimensional analysis then

yields

∇ · v ∼
(
vc
cs

)2 vc
L
, (3.31)

where L is again a characteristic length scale and vc is a characteristic velocity and we

used ∂τ ∼ vc/L . Consequently, the incompressibility condition can only be reasonable
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for subsonic flows v2 � c2
s. Generally ∇ · v 6= 0, yet for sufficiently subsonic flows

∇ · v = 0 may be a reasonable approximation. Note, that incompressibility is typically

useful in vortical subsonic flows, yet in magnetically dominant MHD turbulence, it

may prove insufficient as magnetic fields seed both solenoidal and dilatational velocity

perturbations.

One interesting aspect of turbulence is that it typically develops in a self-similar

manner and the energy spectrum generally is approximately described by a k−2/3 Kol-

mogorov spectrum in the so-called inertial range in Fourier space (Kolmogorov 1941).

As we mention later on, the energy spectrum of turbulence typically consists of a large

scale tail and an injection scale or integral scale kI , where most of energy scale is lo-

cated, the inertial range and the dissipation scale, where the inertial range describes the

range of scales where energy is transported from the injection to the dissipation scale kd.

The Kolmogorov scaling is found by simple dimensional argument. The kinetic energy

density per enthalpy density has the units L2/T 2. Moreover, the energy dissipation rate

ε has the units L2/T 3, the wave number has dimension L−1 and the viscosity has the

units L2/T . Then, the smallest relevant scale in the system due to dissipation should

be of order

ld ∼
(
ν

ε1/3

)3/4
. (3.32)

Furthermore, assuming that the rate of energy-dissipation is scale independent, the

spectral energy density has to be of order

E(k) ≈ CK

(
ε

k

)2/3
, (3.33)

and we assumed homogeneity and isotropy. The constant CK appearing in (3.33) is the

Kolmogorov constant with a value of ∼ 1.5, 1.6 (Yeung & Zhou 1997) in hydrodynamic

3D turbulence. The Kolmogorov constant in 3D MHD has larger values CK ∼ 3, 4

(Verma & Bhattacharjee 1995, Beresnyak 2011). Kolmogorov’s law can be generalized
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to higher order correlation function, such that

Sp(k) ∝ k−ζ(p), (3.34)

where Sp has been defined in real space in (3.1) and ζ(p) = p/3 in the inertial range. In

general, the energy dissipation rate is not scale-independent and one expects a slightly

steeper spectrum. A correction to the above scaling is usually based on the assumption of

log-normality on the stochastic distribution of the energy dissipation rate (Kolmogorov

1962, Frisch et al. 1978). In particular corrections for ζ2 are minor and generally become

only relevant for p & 4 (Anselmet et al. 1984). This deviation is related to intermittency,

non-Gaussianity, small-scale inhomogeneity and anisotropy of turbulent systems, see

e.g. (Frisch 1991). As we discuss below this is an even bigger issue for compressible

system than it is for incompressible systems, where the deviation towards Kolmogorov’s

law is primarily due to the different nature of energy transfer in strongly compressible

systems. Intermittency is a well known feature of purely compressible initially Gaussian

distributed density fluctuations in the matter dominated phase, where fragmentation

due to gravitational instabilities triggers the appearance of structure in the universe

and the basis of life as we know it (Peebles 1994). In principle such a deviation can

effectively also be understood by the appearance of an additional dimensionless quantity

like (L/ld)β. Then, there is a more direct impact of the small scale component on the

overall energy transfer. Moreover, the influence of non-Gaussianity becomes increasingly

relevant at smaller scales and for higher order correlation function. However, towards

fourth order correlation function and at larger scales, the assumption of Gaussianity is

overall reasonable and will be used later on as the so-called quasi-normal approximation

(Lesieur 2008, ch. 5.8.4, 7.1). Note, that at small scales not only Gaussianity but also

stochastic isotropy and inhomogeneity are questionable assumptions, but typically are

expected too not impact the large-scale behavior in a significant manner.

Note, that Kolmogorov’s law technically can also be applied in flows with a 〈v〉 6= 0,

by simply performing a Lorentz or Galilean transformation. Yet, for magnetic fields the

system there are no similar invariant transformations for a state with non-zero to zero
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mean field. Consequently, the above argument is not applicable to magnetized systems,

especially those with non-zero mean magnetic fields. Kolmogorov’s law tells us about

the scaling in the inertial range, however for us the scaling of the spectrum at scales

much larger than the integral scale is also of particular interest. Furthermore, in the

infrared part of the spectrum a k5 spectrum generally appears in turbulent systems

(Lesieur & Schertzer 1978, Caprini & Durrer 2002, Jedamzik & Sigl 2011), if the initial

infrared tail has a much steeper slope like k6. In principle, less steep infrared tails like

k4 do in general at least not on the largest scales develop into a k5 slope.

For incompressible systems, one can express the MHD equations in a symmetric

manner by introducing Elsässer variables z± = v± b. The MHD equations in terms of

the Elsässer variables are

∂z±

∂t
= −

(
z∓ · ∇

)
z± − ∇pt

ρb + pb
+ ν+∇2z± + ν−∇2z∓ (3.35)

∇2pt = −(pb + ρb)∂i∂jz+
i z
−
j , (3.36)

where ν± = ν ± 1/(4πσ). Elsässer variables are particularly useful in studying systems

with nontrivial stochastic alignments between velocity and Alfven fields. For example

a system with an extremal cross helicity will have either z+ = 0 or z− = 0 and conse-

quently one sees that such a system can only undergo viscous and resistive damping. In

Fourier space the incompressible MHD equations are

∂τz
±
i (k, τ) = iPij(k)

∫ d3q
(2π)3 z∓(p) · qz±j (q)− ν+k

2z±i (k)− ν−k2z∓i (k). (3.37)

Next, we will discuss some aspects of the more general compressible flow.

3.2.2 Compressible MHD

When one does not set ∇ · v = 0, the problem of compressible MHD turbulence arises.

Now, on top of the six scalar and pseudoscalar two point functions that appear in

incompressible MHD turbulence and are shown in section 3.1 there are three additional
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two-point scalar functions that appear in compressible MHD turbulence. For once the

density autocorrelation two point function 〈δδ〉 and the dilatational velocity correlation

function 〈vdvd〉 appear. Moreover, one can also construct the density and dilatational

velocity cross-correlation function 〈δ∇ · v〉 = −〈v · ∇δ〉. The equality is due to the

assumption of isotropy since ∇ · 〈vδ〉 = 0. For convenience we introduce the density

contrast δ defined by ρ = ρb(1 + δ). Explicitly, we define the three additional cross

correlation functions as

〈vid(k)vjd(−k)〉 = (2π)6

2πk3 Dij(k)Ed(k), (3.38)

〈vid(k)δ(k)∗〉 = −iki
k

(2π)6

2πk3
1 + c2

s

cs
Eδv(k), (3.39)

〈δ(k)δ(k)∗〉 = (2π)6

2πk3
(1 + c2

s)2

c2
s

Eδ(k), (3.40)

where we have introduced the factor (1 + c2
s)/cs for convenience for relativistic fluids.

Note, that one cannot construct additional non-reducible non-trivial two point functions

for stochastically homogeneous and isotropic MHD turbulence. Moreover, the evolution

equation for the density contrast is, following from (2.66),

∂τδ = −(1 + c2
s)
[
(1 + δ)∇ · v + v · ∇δ + ν∇ ·

(
∇v

2

2 −
2
3v∇ · v

)
+ (∇× b)2

4πσ

]
. (3.41)

Analogously, to the incompressible case one finds for the Elsässer variables

∂τz± =− z∓ · ∇z± + c2
s∇ · z±

(
z± ∓ z+ − z−

2ca

)
− ca(1− δ)∇δ + ν+∇2z± + ν−∇2z∓

+ ν+ + ν−

3 ∇∇ · z±, (3.42)

where ca = c2
s/(1 + c2

s) = 1/4 for c2
s = 1/3. The dilatational component can be simply

isolated by applying the projector Dij. In particular, for the purely dilatational two

point Elsässer functions one finds

〈ki
k
z±i (k)z±j (−k)〉 = 〈ki

k
z±i (k)z∓j (−k)〉, (3.43)
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meaning that the magnetic component, but also the solenoidal velocity vanishes in the

correlation function of isotropic homogeneous turbulence if one of the components is

dilatational. In compressible systems, the nature of turbulence is overall more compli-

cated. Unlike for incompressible systems, first order terms like δ∇ · v appear in the

fluid equations. These first order terms are responsible for the acoustic nature of the

compressible motion. Hence, on top of the non-linear evolution one also needs to take

acoustic oscillations into account. Consequently, constructive or destructive interference

of waves with similar wave-numbers plays a role in the non-linearity. Therefore, purely

dilatational turbulence should be less chaotic than incompressible turbulence. As we

discuss later on in more detail for non-relativistic super-sonic turbulence we expect for

the spectrum of dilatational motion a spectrum that is stepper than a Kolmogorov’s law

with an inertial range scaling of k−1. Moreover, one expects that due to the interference

that energy transfer is considerably slower and the system remains longer in coherence.

On scales of the order of the CMB horizon (∼ 200Mpc) the cosmological fluid in

the radiation dominated phase is approximately incompressible (density perturbations

δ ∼ 10−5) (Planck Collaboration et al. 2018). Albeit, on small scales these perturbations

are at best only poorly constrained, due to Silk damping (Jeong et al. 2014). Here, we

only consider turbulent fluctuations with v � cs ∼ c, however this does not guarantee

that incompressibility is a reasonable approximation, as one also requires appropriate

initial conditions e.g. Es � Ed. Additionally, incompressibility may not be reasonable

in magnetically dominated MHD turbulence. Furthermore, in the matter dominated

phase the incompressibility constraint becomes unreasonable due to gravitational insta-

bilities. However, this is not a critical issue as the imprint of the evolution in the matter

dominated phase is expected to be negligible. Next, we discuss unequal time correlation

functions.

3.3 Unequal Time Correlations

In section 3.1 we discussed several different two-point correlation functions for isotropic

homogeneous turbulence. However, in all of these cases we only looked at correlation
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functions of the type 〈vi(k, τ)vj(−k, τ)〉 and not at the more generally type of unequal

time correlation functions 〈vi(k, τ)vj(−k, τ ′)〉. Unequal time correlations (UTC) play

a important role in the generation of gravitational waves from MHD turbulence. For

a recent review on UTCs in hydrodynamical turbulence see (He et al. 2017). In gen-

eral the nature of UTCs depends on the type of observer. Here, we generally have a

Eulerian viewpoint when studying MHD turbulence i.e. we are not studying the MHD

turbulence from an observer that is comoving with the flow (Lagrangian viewpoint),

but rather from a fixed viewpoint. Note, that for the structure functions of the equal

time correlation function one only requires the assumption of isotropy and homogeneity.

Yet, decorrelation requires us to solve the fluid equations at different times and com-

pare how much the flow at different times but at the opposite point in Fourier space are

related. Due to the chaotic nature of turbulence, one expects that for ‖τ − τ ′‖ → ∞

〈vi(k, τ)vj(−k, τ ′)〉 → 0, even if turbulent energy is constantly injected into the system.

A general Ansatz for the UTC in homogeneous isotropic turbulence is

〈vi(k, τ)vj(−k, τ ′)〉 = 〈vi(k, τ)vj(−k, τ)〉f(k, τ, τ ′). (3.44)

Hence, the function f(k, τ, τ ′) describes how the system decorrelates. As mentioned

an exact calculation generally requires some solution of the fluid equations, which is

quite difficult. In general we discuss and apply a particular method here, in order to

solve the fluid equations. This method that we discuss later is known as Eddy-Damped-

Quasi-Normal-Markovian approximation (EDQNM). The EDQNM approximation can

be used to evaluate equal time correlation functions. Yet, the approximation does not

possess any memory, i.e. due to the Markovian Ansatz. Generally, other tools or models

are required to gain insight into unequal time correlations, which we will only briefly

mention here.

One of the first partially successful models for handling the chaotic nature of tur-

bulence in a semi-analytical manner is Kraichnan’s Direct Interaction Approximation

(DIA) (Kraichnan 1959) and the Random Coupling Model (RCM) (Kraichnan 1961).

The idea of these approaches lies in not directly solving the Navier-Stokes equation,
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but by introducing a random forcing term f and to solve the appearing stochastic

equations in a perturbative manner for the changes of the velocity δv due to a small

random forcing δf contribution. One famous problem of the DIA is that it predicts

the scaling of the inertial range spectrum as k−1/2, which is in conflict with the ob-

servation of a Kolmogorov scaling k−2/3 in hydrodynamical turbulence. This problem

has been resolved in Kraichnan’s Lagrangian History DIA (LHDIA) (Kraichnan 1965b),

where he studied the problem in terms of flow-comoving variables. Indeed the LHDIA

reproduces the Kolmogorov spectrum, which is somewhat remarkable as the stochas-

tic spatial properties of the flow at a given time should be identical in the different

frameworks. The problem is generally due to the appearance of infrared divergences

(k → 0) in these methods, which in Kraichnan’s DIA is partially resolved due to a

partial re-summation of the divergence. Furthermore, there is one interesting key differ-

ence between the LHDIA and the DIA in that the LHDIA is invariant under so-called

random Galilean transformations (RGT) of the velocity field. The RGT is a transfor-

mation of the type v(k, τ) → exp(−ik · uτ)v(k, τ), where u is some random velocity

with a Gaussian distribution with zero mean and standard deviation U . These trans-

formations are also referred to as sweeping, and in general an invariance under RGT

corresponds to an invariance under random sweeping. Note, that similar problems

generally also plague different semi-analytical approaches, although progress is being

made (Verma 2004, Zhou 2010). Here, and at other points in this thesis, we look at

semi-phenomenological models in studying turbulence. In the following we discuss the

random sweeping approximation as model for decorrelation.

3.3.1 Random sweeping approximation

One important phenomenological model in understanding turbulent decorrelation is

based upon the above mentioned invariance under random sweeping in stochastic in-

compressible, isotropic and homogeneous turbulence. For an ideal hydrodynamic flow

which is being swept by some spatially constant large scale velocity field u, the evolution
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is described by (Kraichnan 1964)

∂τv(k, τ) ≈ −ik · uv(k, τ), (3.45)

where we neglected the self-interaction and pressure term, which are negligible as long

as u� v. Then, one has the simple solution

v(k, τ) = exp [−ik · u(τ − τ0)] v(k, τ0). (3.46)

Therefore, one can now calculate the UTC two point function by plugging the above

expression into 〈vi(k, τ)vj(−k, τ ′)〉. Furthermore, due to the randomness of the trans-

formation one also has to average over the normal distributed velocity u with variance

U2. Consequently, one finds for the general unequal time velocity correlation function

〈vi(k, τ)vj(−k, τ + ∆τ)〉 = exp
(
−1

2k
2U2∆τ 2

)
〈vi(k, τ)vj(−k, τ)〉. (3.47)

We refer to the time scale τE(k) = (kU)−1 as the Eulerian eddy turnover, as it measures

for how long the turbulent system remains coherent. One obvious issue is the as of yet

unspecified velocity scale. The most obvious Ansatz is the rms velocity of the turbulent

flow, and generally best fitting to experiments and simulations is the one-dimensional

rms-velocity e.g. 〈v2
1〉. Hence, we set

〈U2〉 = 2
3

∫ ∞
−∞

EK(k)d ln(k) = 〈v2
1〉. (3.48)

Finally, the Eulerian eddy turnover rate can be approximated as

τE(k) =
[2
3k

2
∫ ∞
−∞

EK(q)d ln(q)
]−1/2

. (3.49)
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Henceforth, the resulting decorrelation function for turbulent velocity fluctuations in

incompressible homogeneous and isotropic turbulence is

fRSA(k, τ, τ ′) = exp
−1

2

(
τ − τ ′

τE

)2
 . (3.50)

The above discussed sweeping effect has already been observed experimentally in the

50s (e.g. Favre 1965) and later also numerically (Rubinstein & He 2003, Dong & Sagaut

2008).

As, mentioned before in the Eulerian and Lagrangian framework decorrelation is

different. In the Lagrangian framework the observer is comoving along a given fluid tra-

jectory and hence the observer will not notice the effect of a Galilean transformation.

Therefore, the random sweeping approximation is not a useful model for Lagrangian

fluctuations. In particular, the overall description of decorrelation is similar, yet the

details differ in several aspects. Firstly, decorrelation of the Lagrangian velocity corre-

lation function can be described by simply replacing the Eulerian eddy turnover time

by the Lagrangian eddy turnover time τE → τL in (3.50). One common approximation

for the Lagrangian eddy turnover time, also known as local straining time, is (Frisch

et al. 1974, Pouquet et al. 1976)

τ−1
L (k) ≈ c1

√∫ k

0
qE(q)dq, (3.51)

where c1 is a coefficient of O(1). Since, the energy spectrum has to be equal in the La-

grangian and Eulerian framework of isotropic and homogeneous turbulence one requires

that the time-scale over which energy transport is effective needs to be the same in

both formulations. Due to the fact that sweeping is not of relevance for the Lagrangian

decorrelation, the local straining time is anticipated to be the relevant time scale for

energy transport in turbulence (Pouquet et al. 1976). The Gaussian decorrelation func-

tion (3.50) is a reasonable model for the initial description of decorrelation, yet becomes

less reliable towards smaller scales k � kI and over longer time scales & τE. For ex-

ample, the above model only allows for positive values f , yet negative values of f are



3 CHAPTER 3. MHD TURBULENCE AND GW 50

also observed in simulations and in particular towards smaller scales the decorrelation

function behaves like a damped oscillation (Rubinstein & He 2003). Note, as we discuss

further below for the solenoidal component of the flow, negative values and oscillatory

behavior may only have a minor relevance, whereas for the dilatational component it is

far more important (Li et al. 2013). However, over the timescales for which f & 0.1, the

above approximation is very reasonable and reliable. Nonetheless, of interest are not

only potential corrections to f but also to τE. The simple model (3.49) is reasonable for

small scales but becomes a less reliable estimate of the decorrelation time-scale towards

larger scales and also towards longer times scales.

Here we use the following correction, which also accounts for the pressure and non-

liner velocity term based on the incompressibility constraint (Kaneda 1993)

U2(k) =
∫ ∞
−∞

h
(
q

k

)
E(q)d ln(q), (3.52)

with

h(x) = 1
24
(
13− 8x2 + 3x4

)
+ 1

16x(1− x2)3 ln
[

1 + x

|1− x|

]
. (3.53)

Note that the above correction, as mentioned, only takes the non-linear contributions

at first order in the energy spectrum into account, factors like kinetic helicity however

cannot be simply replaced by a scale independent sweeping velocity and as we see

later on when explicitly discussing the EDQNM equations, terms like helicity appear

as second order terms, which makes a simple approximation more complicated and

therefore we do not discuss these factors here. More advanced approximations e.g. based

on Pade-approximation (Kaneda et al. 1999) would significantly increase computation

times and hence are not of interest here. However, it has been argued that a non-zero

kinetic helicity leads to a reduction of the sweeping velocity and hence an increase in

the timescale (Rubinstein & Zhou 1999). Next, we briefly discuss how decorrelation

may appear and/or differ from the hydrodynamic description.
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3.3.2 UTCs in MHD

So far we have neglected magnetic fields in the discussion, which further complicate the

picture in several manners. For once, the MHD equations are not invariant under a

Alfvenic Galilean transformation i.e. b→ b + b0, where b0 is a background field. This

break in the invariance led to the assumption that in weak MHD turbulence b2
0 � 〈b2〉,

the inertial range scaling will follow the DIA prediction k−1/2 in the inertial range,

the so called Iroshnikov-Kraichnan spectrum, rather than the Kolmogorov spectrum

(Iroshnikov 1964, Kraichnan 1965a).In particular the dominant time-scale for energy

transfer would be of O(kb0)−1 i.e. magnetic sweeping would dominate energy transfer.

Therefore, one would expect a pile-up of energy at small scales compared to the case of

strong Alfvenic (b2
0 ∼ 〈b2〉) incompressible MHD turbulence. However, the Iroshnikov-

Kraichnan model is still an isotropic model, which is not the case in Alfvenic MHD

turbulence due to the non-zero b0. Here we are only interested in cases where b0 = 0

and we are only interested in cases where the Pm� 1. In particular, Goldreich and

Sridhar (Goldreich & Sridhar 1995) find that even MHD turbulence with (b2
0 ∼ 〈b2〉)

should show a Kolmogorov spectrum in the plane perpendicular to the mean flow, rather

than the Iroshnikov-Kraichnan spectrum, which has also been observed in simulations

(Müller et al. 2003, Müller & Grappin 2005, Brandenburg & Kahniashvili 2017). We will

therefore assume, that the above hydrodynamic decorrelation model based on sweeping

is also reliable for MHD turbulence, although we will account for magnetic sweeping

in the eddy turnover time. Therefore, we also anticipate a Kolmogorov spectrum for

isotropic MHD turbulence, as the magnetic sweeping effect is generally corrected by

locally anisotropic nature of the energy-transfer. In general the nature of the UTCs

in MHD turbulence can be far more variable. For example, the ideal maximally cross

helical MHD equations are trivial, i.e. the flow does not change. In that case, one would

expect that the decorrelation function is given by f(k, τ, 0) = 1. For non-ideal systems

one would still have decorrelation due to viscous and resistive damping for extremal

cross helical states. Also, magnetic helicity will likely end up making the problem

more complicated, since the conservation of magnetic helicity drives an inverse cascade
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of magnetic and henceforth kinetic energy, which should heavily modify the nature of

decorrelation at large scales. Generally, the previously discussed RSA does not take the
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Figure 3.1: The Lagrangian eddy turnover time (3.51) (red, dashed) and the Eulerian eddy turnover
time based on (3.52) (black, solid) and based on (3.49) (blue, dotted) normalized to U = v1 as a
function of the dimensionless wavenumber k/kI for a Kolmogorov spectrum with a k5 large scale tail.

turbulent energy transfer directly into account, yet as mentioned before the Lagrangian

eddy turnover time is relevant for energy transfer and τL � τE as can be seen in figure

(3.1), although as discuss soon energy transfer itself can be effectively incorporated in

a simple manner. However, for an inverse cascade energy transfer may occur on much

shorter timescales than τL at scales k . kI . Consequently, the impact of magnetic

helicity should lead to significant modifications to the decorrelation and time scale, we

will generally use a somewhat simplistic extended model for this purpose, yet we have

not performed any full numerical simulations or experiments to check the reliability of

these simple models in MHD, which is beyond the scope of the present thesis.
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3.3.3 Decorrelation due to forcing

When we study the evolution of MHD turbulence, we are generally concerned with the

free evolution, however when studying the generation of gravitational waves we also

need to account for the generation of MHD turbulence, as we discuss later. Moreover,

the above analysis only applies to freely decaying turbulence. Since we also consider

the build-up of the turbulent spectrum, we require an estimate for the decorrelation at

those times. A simple model is to assume that the turbulence gets produced by a purely

randomized forcing (white noise). Then the change of the velocity is

∂τv(k, τ) = w(k, τ), (3.54)

where w(k, τ) is the random forcing.Since, white noise is uncorrelated we have

〈wi(k, t′)wj(k, t)〉 ∝ Pδ(t− t′), (3.55)

where we assume that P , the average amplitude of the force, is constant in time. This

gives then the decorrelation function for the forcing

fforc(k, τ, τ ′) = τ ′ − τ0

τ − τ0
, (3.56)

for τ ′ < τ and τ0 is the time where the forcing is switched on.The above model is only

applicable when the forcing dominates the non-linear evolution.

3.3.4 Decorrelation of dilatational fluctuations

So far, we have only focused on the incompressible UTC. For the dilatational flow

component and purely compressible flows the problem is slightly more complicated.

As discussed before, due to the primarily wave-like nature of dilatational fluctuations

the non-linear transfer will be suppressed due to destructive interference. However,

in the presence of solenoidal motion and magnetic fields, one generally expects that

non-linear evolution will also affect dilatational motion. Due to the wave-like nature
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the decorrelation function for a purely dilatational flow will be a wave function like

cos(csk∆τ). This is also known as the linear wave propagation model (Lee et al. 1992).

Nonetheless, solenoidal motion will also lead to sweeping of the dilatational fluctuations

and this is described by the swept-wave model (Li et al. 2013). Thus, the resulting

decorrelation function is

fsw(k,∆τ, 0) = exp
−1

2

(
∆τ
τE(k)

)2
 cos [csk∆τ ] , , (3.57)

where the sweeping time scale τE depends only on the solenoidal velocity component

and not on the dilatational component of the flow. As we discuss later, even for purely

compressible turbulence more substantial rates of decorrelation may be present, i.e.

some τE based on dilatational fluctuations and further studies are necessary, especially

for v ∼ cs.

3.3.5 Summary of the different UTC functions

In the present section, we discussed that the decorrelation of velocity and magnetic field

two point function is primarily due to the sweeping effect, which acts typically acts on a

shorter time-scale than the energy-transport related local straining time, τE < τL. Then

the unequal time two point correlation function for solenoidal velocity fluctuations is

〈vsi (k, τ ′)vs∗j (q, τ)〉 = exp
[
− (τ ′ − τ)2

2τ 2
E(k, τ)

]
(2π)6

4πk3 δ(k+q)
[
Pij(k)Es(k, τ)− iεijl

kl

k
HK(k, τ)

]
.

(3.58)

Similarly, the unequal time two point correlation function for Alfvenic fluctuations is

〈bi(k, τ ′)b∗j(q, τ)〉 = exp
[
− (τ ′ − τ)2

2τ 2
E(k, τ)

]
(2π)6

4πk3 δ(k + q)
[
Pij(k)Eb(k, τ)− iεijl

kl

k
Hb(k, τ)

]
,

(3.59)

and for the cross correlation two point function

〈vi(k, τ ′)b∗j(q, τ)〉 = exp
[
− (τ ′ − τ)2

2τ 2
E(k, τ)

]
(2π)6

4πk3 δ(k+q)
[
Pij(k)HC(k, τ)− iεijl

kl

k
EC(k, τ)

]
.

(3.60)
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Furthermore, the two point unequal time dilatational correlation function is

〈vid(k, τ ′)v
j
d(q, τ)〉 = (2π)6

2πk3 exp
[
−(τ ′ − τ)2

τ 2
E(k, τ)

]
cos [csk(τ − τ ′)] δ(k− q)kikj

k2 Ed(k, τ).

(3.61)

Note, that as mentioned before these models are questionable for scenarios with mag-

netic helicity due to the inverse cascade as these models do not account for the energy

transfer. In that case, we suggest the following simple correction for the UTC, e.g.

in (3.58) one should replace Es(k, τ) by
√
Es(k, τ)Es(k, τ ′). Also, for a incompressible

system with maximal cross helicity, one expects τE → ∞, due to the freeze-out of the

flow. Additionally, we choose for the characteristic sweeping time

τ−1
E (k, τ) = k

√∫ ∞
−∞

h
(
q

k

)
max (Es(q), Eb(q)) d ln(q), (3.62)

where h(x) has been defined in (3.53). Moreover, when the turbulence is forced, we

consider for example for the velocity correlations the model

〈vi(k, τ)vj(−k, τ ′)〉 =
[
τ ′ − τ0

τ − τ0
θ(τm − τ) + τ ′ − τ0

τm − τ0
θ(τm − τ ′)θ(τ − τm) + θ(τ ′ − τm)

]
·

exp
−1

2

(
τ − τ ′

τE(k, τ)

)2
 〈vi(k, τ)vj(−k, τ)〉, (3.63)

where τm is the time where the forcing stops and τ > τ ′. In the following section,

we discuss the aforementioned Eddy Damped Quasi Normal Markovian (EDQNM) ap-

proximation. Thereafter, we discuss the production of gravitational waves by MHD

turbulence.

3.4 EDQNM approximation

So far we have discussed several key aspects of MHD turbulence, now we discuss a

key method in studying MHD turbulence. In general, analytical models of turbulence

are rather limited due to the chaotic nature of the problem. Similarly, direct numer-

ical simulations are difficult to handle, as turbulence is a phenomenon which is only
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present for large scales L, since it requires Re= vL/ν � 1, and one has to solve the

equations over many grid-spacing’s lg e.g. L ∼ 1000lg, yet this leads to a significant

limitation in the resolvable scales especially when one is interested in the large scale

dynamics these limitations can be quite problematic. Therefore, one also has to look

at semi-analytical models to study MHD turbulence. These models come with their

own limitations, yet they can be of additional assistance together with other methods

to gain a better understanding of MHD turbulence. Of particular usefulness is the

Eddy-Damped-Quasi-Normal-Markovian (EDQNM) approximation. First, we lay out

the basics of the EDQNM approximation for incompressible systems and discuss later

its generalization for compressible systems.

3.4.1 Incompressible spectral two point evolution functions

Due to the incompressibility, one requires at most 6 evolution functions for the different

two point scalar and pseudo-scalar functions. We begin by looking at the Quasi-Normal

part of the EDQNM approximation, also known as the Quasi-Normal approximation

(Chou 1940, Millionshtchikov 1941) and the relevant spectral equations were for hy-

drodynamic non-helical turbulence were independently first derived by Proudman and

Reid, and Tatsumi (Proudman & Reid 1954, Tatsumi 1957). Here, we generally use

the Elsässer variables with the evolution equations 3.37. For convenience we then in-

troduce the following spectral functions for the Elsässer variables, which are related to

the previously defined two point spectra by

E± = Es+Eb±2HC , ER = Es−Eb, H± = HK+Hb±2EC , HR = HK−Hb. (3.64)
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Then using 3.37 one finds the evolution equations for the different correlation functions

(
∂τ + 2k2ν+

)
E±(k) = 2k3Pib(k)ka

∫ d3q
(2π)8 Im

[
〈z±i (−k)z∓a (p)z±b (q)〉

]
− 2k2ν−E

R(k),

(3.65)(
∂τ + 2k2ν+

)
H±(k) = 2k2εbilklka

∫ d3q
(2π)8 Re

[
〈z±i (−k)z∓a (p)z±b (q)〉

]
− 2k2ν−H

R(k),

(3.66)(
∂τ + 2k2ν+

)
ER(k) = k3kaPib(k)

∫ d3q
(2π)8 Im

[
〈z+
i (k)z+

a (−p)z−b (−q)〉

− 〈z−i (−k)z−a (p)z+
b (q)〉

]
− k2ν−

(
E+(k) + E−(k)

)
, (3.67)

(
∂τ + 2k2ν+

)
HR(k) = k2kaεbilkl

∫ d3q
(2π)8 Re

[
〈z−i (−k)z−a (p)z+

b (q)〉

+ 〈z+
i (k)z+

a (−p)z−b (−q)〉
]
− k2ν−

(
H+(k) +H−(k)

)
, (3.68)

where p = k − q and Im refers to the imaginary part, while Re refers to the real part

of the three point functions. Generally, the transport of energy in turbulence occurs

in triads where energy is shifted between all sets of the three modes p, k and p withc

p + q = k. One obvious observation is that if the fluctuations are purely random i.e.

distributed by a Gaussian function with zero mean, then the above equations reduce to

a system of equations which can be easily solved and only describes resistive and viscous

damping. Consequently, MHD turbulence is not a Gaussian process, yet nonetheless

an initially near Gaussian velocity distribution function remains nearly Gaussian dis-

tributed (Anselmet et al. 1984, Lesieur 2008) in isotropic homogeneous turbulence. In

total four different types of three point correlation functions appear in these equations.

Similarly, one can now derive the evolution equation for the three point functions, which

will require four point function and the evolution equation for the four point function in

principle will require five point function and so on. Thus, one needs to solve an infinite

number of equations, however one typical way of closing such a hierarchy of equations

is to invoke a relation between higher and lower order correlation functions. For zero-

mean Gaussian distributed velocity fields, any even higher order correlation function
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can be expressed in terms of two point functions, while any odd correlation function

vanishes. Here, we invoke such a closure where we express the four point functions,

which appear in the evolution equation of the three point functions, by a product of

two point functions. Since the stochastic properties of the velocity fluctuations can in

general not be described by a normal distribution, this is also known as Quasi-Normal

approximation. The relation between the four-point and two-point function is known

as Isserlis theorem (ISSERLIS 1916) and states

〈ABCD〉 = 〈AB〉〈CD〉+ 〈AC〉〈BD〉+ 〈AD〉〈CB〉. (3.69)

Here, the A,B,C,D are the components of the fields z±.

3.4.2 Schematic of the EDQNM approximation

In a schematic manner the three point functions are

〈vkvqvr〉(τ) =
∫ τ

τ0
dτ ′e−[ν(k2+q2+r2)(τ−τ ′)]∑

s

〈vkvq〉(τ ′)〈vrvs〉(τ ′), (3.70)

where τ0 is the initial time, the subscripts k, q, r and s are the different momenta and one

sums or integrates over the different momenta s. Note that the above schematic is quite

simplistic and neglects several important factors, which we also explore in further detail.

One important thing to note is that in the limit ν → 0, the contributions of the two point

functions at different times τ ′ are weighted in the same manner. The three point function

and hence also the two-point functions have a very long memory, which is incompatible

with the above discussed nature of decorrelations. The resulting equations were first

solved by Ogura (Ogura 1963) for the kinetic energy and O’Brien and Francis for the

evolution of the spectrum of a passive scalar (O’Brien & Francis 1962). In both cases the

solutions became unphysical in that in both cases negative values appeared in the inertial

range for the respective spectra. Hence, the QN approximation is non-realizable. The

problem was first explained and understood by Orszag (Orszag 1970, Orszag 1977), and

is due to over-blown three point functions which is due to the long memory times. And
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the non-Gaussianity in the four point function generally provides a damping for the three

point functions, which is lost in the QN approximation. Other semi-analytical theories

like the aforementioned DIA and LHDIA (Kraichnan 1959, Kraichnan 1965b) which

apply the assumption of Gaussianity to the forcing, are realizable theories although the

DIA fails in reproducing the Kolmogorov spectrum.

Kraichnan’s DIA effectively leads to equations of the type

〈vkvqvr〉(τ) =
∫ τ

τ0
dτ ′e−[ν(k2+q2+r2)(τ−τ ′)]G(τ, τ ′)

∑
s

〈vkvq〉(τ ′)〈vrvs〉(τ ′), (3.71)

where G(τ, τ ′) is the relevant Green’s function which is calculated with the forcing at

linear order in perturbation theory of a small Gaussian distributed forcing and associ-

ated change in the velocity. The approach is relatively extensive and numerically quite

expensive and technically one would have to work with the LHDIA due to the men-

tioned problems of the DIA with respect to random sweeping. A key solution to the

problem with the QN is to use a DIA inspired Ansatz by incorporating an additional

Green’s function into the evolution equations to provide the additional damping. Orszag

(Orszag 1970) proposed a phenomenological model based on the eddy-turnover time to

model the Green’s function as G ∼ exp(−νd(q)(τ − τ ′)), where νd(q) ∼
√
E(q)q2 was

taken as the eddy-turnover time. This model is also known as EDQN approximation,

due to the additionally introduced eddy damping. However, this model still does not

guarantee realizability. Consequently, another modification has been introduced, which

is to markovianize the appearing energy spectra (Orszag 1977). Note that the eddy

turnover time mentioned here is effectively the Lagrangian eddy turnover time, as it

is directly related to the energy transfer. Thus, any significant change in E(k) occurs

within one eddy turnover time, yet the above EDQN model primarily takes contribu-

tions from within a relevant eddy turnover time into account and the eddy turnover

time as defined in (3.51) is a growing function of the wave number. Hence, one can

markovianize the appearing spectral functions with respect to the damping and one
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finds the EDQNM approximation, which is schematically given by

〈vkvqvr〉(τ) =
∫ τ

τ0
dτ ′e−[(ν(k2+q2+r2)+νd(k)+νd(q)+νd(p))(τ−τ ′)]∑

s

〈vkvq〉(τ)〈vrvs〉(τ). (3.72)

The EDQNM is a realizable model and it also reproduces the Kolmogorov spectrum in

hydrodynamic turbulence and it is compared to models like the QN or the DIA and

LHDIA less expensive to compute.

For MHD Pouquet (Pouquet et al. 1976) suggested the following damping factor

νd(k) = c1

√∫ k

0
dq q (E+(q) + E−(q)) + c2

√
k
∫ k

0
dqEB(q), (3.73)

where the first term corresponds to the eddy turnover time with coefficient c1 and the

second term corresponds to the Alfven effect c2, which is related to the Iroshnikov-

Kraichnan spectrum. Since recent numerical simulations suggest that incompressible

isotropic homogeneous MHD turbulence is in several instances, but maybe not for all

degrees of the different topological alignments, best described by a Kolmogorov spectrum

(Müller et al. 2003, Brandenburg & Kahniashvili 2017) we will ignore the Alfven effect

due to the local anisotropic correction in the energy transfer and set c2 = 0. However,

we stress again that a Kolmogorov that these are still not fully resolved issues in MHD

modeling. The first term is the already discussed eddy turnover damping rate. For pure

hydrodynamics, Kolmogorov’s law implies c1 ∼ 0.3 based on a Kolmogorov constant of

1.5 (Pouquet et al. 1976). Yet, as mentioned before in MHD turbulence the Kolmogorov

constant is larger and at the same time equipartition between magnetic and kinetic

energy increases the value of c1 by a factor
√

2 to around 0.42. Nonetheless, this is still

smaller than that potentially expected value of c1 for a Kolmogorov constant of ∼ 3,

hence we apply c1 = 0.45 as an approximation for MHD, rather than c1 ∼ 0.3 to better

accommodate MHD effects.
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3.4.3 Incompressible MHD EDQNM equations

Now, we look at the explicit evolution equations for the three point functions

(
∂τ + ν+(k2 + k′2 + q′2)

)
〈zs1
i (k)zs2

j (k′)zs3
l (q′)〉 =

− ikaPib(k)
∫ d3q

(2π)3 〈z
s2
j (k′)zs3

l (q′)z−s1
a (p)zs1

b (q)〉 − ν−k2〈z−s1
i (k)zs2

j (k′)zs3
l (q′)〉

− ik′aPjb(k′)
∫ d3q

(2π)3 〈z
s1
i (k)zs3

l (q′)z−s2
a (p′)zs2

b (q)〉 − ν−k′2〈zs1
i (k)z−s2

j (k′)zs3
l (q′)〉

− iq′aPlb(q′)
∫ d3q

(2π)3 〈z
s1
i (k)zs2

j (k′)z−s3
a (p′′)zs3

b (q)〉 − ν−q′2〈zs1
i (k)zs2

j (k′)z−s3
l (q′)〉,

(3.74)

where p′ = k′ − q and p′′ = q′ − q, and the signs s1, s2, s3 are either + or − for the

different three point functions. Also, all the appearing Elsässer variables are evaluated

at time τ , as the time-argument has been neglected for the sake of visibility. For

convenience, we neglect the ν− damping term, as ν− ∼ ν+ for the systems of interest

and the deviations shall only have a minor effect on the precise details of the suppression

of non-linear evolution around the damping scale and all the basic properties like the

general suppression of turbulent evolution around the damping scale are still guaranteed,

similar magnetic evolution is also dominated by the transfer of magnetic to kinetic

energy at those scales. Thus, for simplicity we generally set the rate of viscous and

resistive damping for all three point functions as (ν+ + ν−)(k2 + q2 +p2). This approach

is generally not applicable for systems with small Prandtl-numbers, yet we do not look

at such systems here. Taking equation (3.74) together with the eddy damping and

markoviazation and evaluating the four point functions using Isserlis theorem (3.69)

gives the EDQNM equations for the three point functions. Next, these three point

function can be employed to evaluate the two point functions. A brief example, on how

these terms are calculated is found in appendix A.1. For the rate of change of E+(k)
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given by (3.65) one finds

[
∂τ + 2ν+k

2
]
E±(k) = 1

2

∫ ∞
0

dq
∫ k+q

|k−q|
dpγ(k, q, p, τ)k2qp

[
Λ1(k, q, p)Ẽ∓(p)Ẽ±(q)

− Λ2(k, q, p)ẼR(p)ẼR(q) + Λ3(k, q, p)ẼR(p)ẼR(k)− Λ4(k, q, p)Ẽ∓(p)Ẽ±(k)

− Λ3(k, q, p)ẼR(q)Ẽ±(k) + Λ2(k, q, p)ẼR(k)Ẽ±(q)− Λ5(k, q, p)H̃R(p)H̃R(q)

− Λ6(k, q, p)H̃R(p)H̃R(k) + Λ7(k, q, p)H̃R(q)H̃±(k)− Λ8(k, q, p)H̃R(k)H̃±(q)
]

− 2ν−k2ER(k). (3.75)

Similarly, the EDQNM equations for the energy difference (3.67) read

[
∂τ + 2ν+k

2
]
ER(k) = 1

4

∫ ∞
0

dq
∫ k+q

|k−q|
dpγ(k, q, p, τ)k2qp

[
2Λ1(k, q, p)ẼR(p)ẼR(q)

− Λ2(k, q, p)
∑
±
Ẽ∓(p)Ẽ±(q) + Λ3(k, q, p)ẼR(p)

∑
±
Ẽ±(k)− Λ4(k, q, p)ẼR(k)

∑
±
Ẽ∓(p)

− 2Λ3(k, q, p)ẼR(q)ẼR(k) + Λ2(k, q, p)
∑
±
Ẽ∓(k)Ẽ±(q)− Λ5(k, q, p)

∑
±
H̃±(p)H̃∓(q)

− Λ6(k, q, p)H̃R(p)
∑
±
H̃±(k) + 2Λ7(k, q, p)H̃R(q)H̃R(k)− Λ8(k, q, p)

∑
±
H̃±(k)H̃∓(q)

]

− ν−k2∑
±
E±(k). (3.76)

Analogously, one finds for (3.66)

[
∂τ + 2ν+k

2
]
H±(k) = 1

2

∫ ∞
0

dq
∫ k+q

|k−q|
dpγ(k, q, p, τ)k2qp

[
2Λ9(k, q, p)Ẽ∓(p)H̃±(q)

+ Λ10(k, q, p)H̃R(p)ẼR(q) + Λ8(k, q, p)ẼR(p)H̃R(q)− Λ6(k, q, p)H̃R(p)ẼR(k)

+ Λ3(k, q, p)ẼR(p)H̃R(k)− Λ4(k, q, p)H̃±(k)Ẽ∓(p) + Λ7(k, q, p)Ẽ±(k)H̃R(q)

− Λ3(k, q, p)ẼR(q)H̃±(k) + Λ2(k, q, p)Ẽ±(q)H̃R(k)− Λ8(k, q, p)ẼR(k)H̃±(q)
]

− 2ν−k2HR(k). (3.77)
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Lastly, one finds for the helicity difference (3.68)

[
∂τ + 2ν+k

2
]
HR(k) = 1

4

∫ ∞
0

dq
∫ k+q

|k−q|
dpγ(k, q, p, τ)k2qp

[
4Λ9(k, q, p)ẼR(p)H̃R(q)

+ Λ10(k, q, p)
∑
±
H̃∓(p)Ẽ±(q) + Λ8(k, q, p)

∑
±
Ẽ±(p)H̃∓(q)− Λ6(k, q, p)H̃R(p)

∑
±
Ẽ±(k)

+ Λ3(k, q, p)ẼR(p)
∑
±
H̃±(k)− Λ4(k, q, p)H̃R(k)

∑
±
Ẽ∓(p) + 2Λ7(k, q, p)ẼR(k)H̃R(q)

− 2Λ3(k, q, p)ẼR(q)H̃R(k) + Λ2(k, q, p)
∑
±
Ẽ±(q)H̃∓(k)− Λ8(k, q, p)

∑
±
Ẽ∓(k)H̃±(q)

]

− ν−k2∑
±
H±(k). (3.78)

The notation∑± g± is read as g++g−. Additionally, here the˜refers to a spatial rescaling

specifically Ẽ(k) = E(k)/k3. Furthermore, the different scale dependent coefficients are

given by

Λ1(k, q, p) = k2
(
1− c2

pk

) (
1 + c2

qk

)
, Λ2(k, q, p) = k2cqkcpk (cpkcqk − cqp) ,

Λ3(k, q, p) = q2cqkcqp (cqpcqk − cpk) , Λ4(k, q, p) = q2
(
1− c2

qp

) (
1 + c2

qk

)
,

Λ5(k, q, p) = k2 (cpkcqk − cqp) , Λ6(k, q, p) = q2 (cqkcqp − cpk) ,

Λ7(k, q, p) = q2cqp (cpk − cqkcqp) , Λ8(k, q, p) = k2cpk (cqp − cpkcqk) ,

Λ9(k, q, p) = k2
(
1− c2

pk

)
cqk, Λ10(k, q, p) = k2cqk (cqp − cqkcpk) , (3.79)

where the functions cpk, cqk and cqp are the cosines of the interior angles opposite the

triangle sides q, p and k:

cpk(k, q, p) = p2 + k2 − q2

2pk , cqk(k, q, p) = q2 + k2 − p2

2qk , cqp(k, q, p) = k2 − p2 − q2

2qp .

(3.80)

These coefficients result from the product of the different projection operators scale

dependent coefficients. This set of equations constitutes the full EDQNM approximation

in incompressible MHD and its different solutions are one of the key focuses of this thesis.
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Moreover, the function γ(k, q, p, τ) is the integrated damping function

γ(k, q, p, τ) = 1− exp [− (νd(k) + νd(p) + νd(q)) (τ − τ0)]
νd(k) + νd(p) + νd(q)

, (3.81)

where τ0 is the time at which the free decay of turbulence begins and at time τ0 the

three point functions vanish and the stochastic nature of the velocity fluctuations is

perfectly described by a normal distribution.

3.4.4 Large scale behavior of the EDQNM equations

Now, we also investigate the k → 0 behavior for the scaling of the large scale tail of

the spectrum. In the limit k → 0, p → q ∼ kI � k provide the largest contributions.

Consequently, one can neglect all terms where one of the spectral functions depends on

k and this gives

∂τE
±(k) ≈ k3

2

∫ ∞
0

dq
∫ k+q

|k−q|

dp
k
γ(0, q, p, τ)qp

[
Λ1(k, q, p)Ẽ∓(p)Ẽ±(q)

− Λ2(k, q, p)ẼR(p)ẼR(q)− Λ5(k, q, p)H̃R(p)H̃R(q)
]
. (3.82)

Note that the large-scale tail of the energy spectra is not affected by the cross scalar

and E+(q)E−(p) ∼ E+(q)E−(q) ∼ E2
s + E2

b + 2EsEb − 4H2
C(q). Therefore, maximal

cross helicity in a system with equipartition ER = 0 and HR = 0 implies that on large

scales there is no change in the large scale tail. Next, we introduce the transformation

p = q + εk and use that in the limit k → 0 cqp ≈ −1, cqk ≈ −cpk ≈ ε and find

∂τE
±(k) ≈ k5

2

∫ ∞
0

dq
∫ 1

−1
dεγ(0, q, q, τ)q2

[
(1− ε4)Ẽ∓(q)Ẽ±(q)

+ (1− ε2)ε2ẼR(q)ẼR(q) + (1− ε2)H̃R(q)H̃R(q)
]
. (3.83)

Performing the ε integration finally yields

∂τE
±(k) ≈ k5

∫ ∞
0

dqγ(0, q, q, τ)q2
[4
5
(
Ẽ+(q)Ẽ−(q)

)
+ 2

15[ẼR(q)]2 + 2
3[H̃R(q)]2

]
. (3.84)
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One clear observation is that the large scale spectrum always develops a k5 spectrum

and that it only has a nonlinear growing mode, and in the limit k → 0 it can never

decay, as viscous or resistive decay becomes increasingly negligible towards large scales.

Secondly, the large scale cross helicity has an even steeper spectrum than a k5 large

scale tail, since ∂τE+(k) = ∂τE
−(k) at large scales at O(k5). This also implies that on

the largest scales, totally maximal cross helical turbulence never appears by turbulent

evolution itself. A similar analysis can be performed for the other spectra. For the

energy difference at large scales one finds

∂τE
R(k) ≈ k5

∫ ∞
0

dqγ(0, q, q, τ)q2
[4
5[ẼR(q)]2 + 2

15
(
Ẽ+(q)Ẽ−(q)

)
+ 2

3
(
H̃+(q)H̃−(q)

)]
.

(3.85)

The rate of change of the energy difference is overall comparable to that of the E±

spectra. Here we neglected all the terms that involve a spectral function at k, which is

in general naive as one may have terms which scale in k as E(k), however the cosine at

zeroth order in k lead to vanishing coefficients for all the terms involving a spectrum

at scale k and thus the above discussion does not change, when taking such terms into

account. For the spectraH± andHR this discussion is insufficient as all the ε integration

at O(k5) vanishes and one needs to take terms up to O(k) in the different cosine into

account. At O(k) the cosines are cqp ≈ −1, cqk ≈ ε+(k/q)ε2/2 and cpk ≈ −ε+(k/q)ε2/2

in the limit k → 0. Secondly, one can no longer neglect all terms which involve a spectral

function at scale k and one requires to lowest order in k at least the terms with the

coefficient Λ6 and Λ7. Thirdly, the term with spectral functions at p and q also give

additional contribution due to Taylor series approximation of the spectral function at

wave number p. Henceforth, we find for (3.77) in the limit k → 0

∂τH
±(k) = 2

15k
6
∫ ∞

0
dqγ(0, q, q, τ)q

[
6Ẽ∓(q)H̃±(q)− 2H̃R(q)ẼR(q)

+ q
(
2∂qẼ∓(q)H̃±(q) + ∂qH̃

R(q)ẼR(q)− ∂qẼR(q)H̃R(q)
)]

+ 1
3k
[
ER(k)− E±(k)

] ∫ ∞
0

dqγ(0, q, q, τ)q3H̃R(q). (3.86)
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One general thing to note is that the spectra H± and HR (as we see below) develop a

k6 large scale spectrum, since the energies develop at most a k5 and no shallower large

scale tail as long as the initial spectra do not possess shallower large scale tails, which

we assume here. Also, ∂τH+ 6= ∂τH
− implies that the large scale tail of the cross scalar

also has a k6 scaling. In particular, the appearance of a scaling term which is directly

proportional to the energy spectra at wave-number k is noteworthy, since a trailing

solution of the helicity with respect to the energies implies an exponential growth or

decay. Now, for (3.78) we explicitly find

∂τH
R(k) = 1

15k
6
∫ ∞

0
dqγ(0, q, q, τ)q

[
12ẼR(q)H̃R(q)− 2

∑
±
H̃±(q)Ẽ∓(q)

+ q

(
4∂qẼR(q)H̃R(q) +

∑
±
∂qH̃

±(q)Ẽ∓(q)−
∑
±
∂qẼ

±(q)H̃∓(q)
)]

+ 2
3Eb(k)k

∫ ∞
0

dqγ(0, q, q, τ)q3H̃R(q). (3.87)

The large scale estimate of the cross helicity spectrum also requires higher order cor-

rections, yet a calculation with the above first order corrections indicates that the large

scale tail of the cross helicity has a steeper scaling than k6. However, we anticipate e.g.

simply due to the appearance of second derivatives that the symmetry between ∂τE+

and ∂τE− for k → 0 is broken at the k7 level. Hence, cross helicity without an initially

shallower spectrum may develop a k7 large scale tail, while the cross scalar, magnetic

and kinetic helicity may develop a k6 large scale tail and the kinetic and magnetic en-

ergy may develop a k5 large scale tail. Consequently all the pseudo-scalar functions

appearing in MHD have a steeper large scale spectrum by a factor k than their associ-

ated scalar. Similarly, the cross scalar and the cross helicity have a steeper scaling by

a factor k compared to respectively the other scalar and pseudo-scalar functions. Fur-

thermore, the change of the magnetic helicity directly proportional to E(k) corresponds

to

∂τHb(k) ∝ −1
3Eb(k)k

∫ ∞
0

dqγ(0, q, q, τ) (HK(q)−Hb(q)) . (3.88)
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Also, on large scale (k → 0) one has Eb(k, τ)k = ζ(τ)|Hb(k, τ)|. Of particular interest is

the case ζ(τ0) ∼ 1, which effectively corresponds to near maximal magnetic helicity. Due

to the maximal helicity and helicity conservation constraint one anticipates ζ(τ) ∼ 1 at

later times. Consequently, one anticipates in the case of near maximal helicity

∂τHb(k) ∝ 1
3 |Hb(k)|

∫ ∞
0

dqγ(0, q, q, τ) (Hb(q)−HK(q)) , (3.89)

such that

Hb(k, τ) ∝ exp
[
sgn[Hb(k, τ)]

∫ τ

τ0

dτ ′
3

∫ ∞
0

dqγ(0, q, q, τ ′) (Hb(q, τ ′)−HK(q, τ ′))
]
.

(3.90)

Note, that for HK(k) = Hb(k) there is no change in the large scale magnetic helicity.

Since the timescale for energy transfer scales as v(kI)kI ∝ τ−1 and all the factors in the

integral primarily depend on the quantities at kI , one expects that the integral scales

with
∫

dτ/τ and the large scale magnetic helicity follows a power law Hb(k, τ) ∝ τβ.

For an inverse cascade one explicitly requires

sgn[Hb(k, τ)]
∫ ∞

0
dqHb(q, τ ′) & sgn[Hb(k, τ)]

∫ ∞
0

dqHK(q, τ ′). (3.91)

Therefore, if both the kinetic helicity and magnetic helicity have the same sign, than

at first the kinetic helicity would have to either change sign or decay substantially, in

case of a prior dominance, in order for an inverse cascade to be established Next, we

briefly discuss one important aspect of the spectral evolution in turbulence, which is

self-similarity in the evolution, i.e. in high Reynolds number systems, the spectrum at

a given point can be related to the spectrum at a later time by scaling relations.

3.4.5 Self-similar Evolution

As discussed before, due to viscous dissipation and turbulent energy transport the dif-

ferent turbulence spectra evolve and the overall energy decays, as long as there is no

injection of energy. In particular, this evolution can become self-similar (de Karman
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& Howarth 1938, Lesieur & Schertzer 1978). Thus, the early and late evolution of the

spectra are related by scaling laws and the energy spectrum at a given time, as soon as

the evolution is self-similar, may be written as

E(k, τ) = EA

(
τ

τD

)a
F

(
k

kI(τ)

)
(3.92)

where kI(τ) is the evolving integral scale, EA is the initial amplitude of the energy

spectrum, F is a spectral function that describes the shape of the spectrum, a is a power

law index, τD is the effective evolution time scale, i.e. the initial local straining time.

Additionally, the rate of change of the energy for incompressible systems corresponds

to terms of the type

∂τv
2 ∼ v · kv2 ∼ kv3. (3.93)

Furthermore v2 ∼
∫

d log(k)E(k) and one finds roughly

kI(τ) ∼ kI(τ0)
(
τ

τD

)−(1+a/2)
. (3.94)

Now, we look at (3.84) and define

∂τCLS(τ) = k−5∂τE
±(k)

≈
∫ ∞

0
dqγ(0, q, q, τ)q2

[4
5
(
Ẽ+(q)Ẽ−(q)

)
+ 2

15[ẼR(q)]2 + 2
3[H̃R(q)]2

]
, (3.95)

which is scale independent for large scales and only depends on time. Therefore, we

expect the following relation to hold for self-similar evolution

CLS(τ) = CLS(τ0)
(
τ

τD

)γ
, (3.96)

with

γ = ∂ log(CLS)
∂ log(τ) . (3.97)
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Then we have

(
kI(τ)
k

)s
E(k, τ) ∝

(
kI(τ)
k

)s
τaF±(k/kI) ∝ τ−s(1+a/2)+a ∝ τ γ, (3.98)

where s = 5 and k � kI . Thus we find the scaling relations

kI(τ) ∝ τ−b = τ−(2+γ)/(s+2) (3.99)

E(k, τ) ∝ τa = τ 2(γ−s)/(s+2)F (k/kI(τ)), (3.100)

where we used b = 1 +a/2 In the case that the initial large scale tail follows a shallower

power law kc than k5, we have γ = 0 and s = c < 5. As mentioned before, one has

γ > 0 in cases where the large scale tail appears due to the turbulent evolution. For the

normal cascade, one usually finds γ ∼ 0, as we see later, is a reasonable approximation,

yet for an inverse cascade this is not the case. In particular, for γ = 0, corresponding

to the conservation of the Loitsiansky constant (Batchelor & Proudman 1956), and

s = 5, we find b = 2/7 and a = −10/7. The conservation of magnetic helicity implies

b2/kI ∝const and leads to a = −2/3 and b = 2/3. Therefore, for a system with extremal

magnetic helicity and s = 5 we expect γ ≈ 8/3. One particular case where the above

considerations are likely not applicable is that of extremal cross helicity, since there is

no evolution and one expects a ∼ b = 0 and the evolution is practically only due to

direct decay, although as noted before the natural occurring large scale tail of the cross

helicity spectra is expected to follow a k7 rather than a k5 slope and thus there is the

potential for a deviation, as such a system is not expected to evolve in a purely extremal

manner over all large scales. Often, γ = 0 is chosen and one varies s to accommodate the

different scenarios (Brandenburg & Kahniashvili 2017, e.g.). For example, the scaling

behavior of extremal magnetic helicity corresponds also to s = 1 and γ = 0. Next,

we use some of the tools discussed here and apply them in part to a discussion about

compressible systems.
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3.4.6 Compressible contributions

In the previous sections, we primarily looked at the case ∇·v ≈ 0, although we also dis-

cussed some basics about compressible systems in subsection 3.2.2. As mentioned before

in the context of the fluids and flows discussed here, the incompressibility constraint

may be substantially violated even if v � cs particularly for a radiation dominated

magnetized fluid. Note, that here we primarily focus on incompressible flows, but it is

nonetheless important to have a better grasp on potential flaws of this approximation

and their impact. Again one important difference between compressible and incom-

pressible systems are additional linear terms in the evolution equations other than the

dissipative terms. These terms are responsible for the wave-like nature of dilatational

modes and generally the implied comparably short interference times of O(1/(csk)),

which for subsonic systems are always much smaller than the relevant eddy turnover

time. Hence, in subsonic purely compressible systems energy transfer is dominated by

acoustic oscillations and interference generally suppresses the non-linear transfer.

In incompressible hydrodynamical turbulence and also in several instances in MHD

turbulence, one expects that the inertial range of the energy spectra has a k−2/3 Kol-

mogorov spectrum. Yet, for compressible hydrodynamic energy spectra, this may not

be the case. The rate of the non-linear energy transfer is effectively of the order kv(k)

at scale k and the frequency of a sound wave is csq at scale q. A substantial non-linear

energy transfer requires at least kv(k) & csq. For supersonic flows this can be easily

satisfied for a large range of modes k for a given q. Yet, for subsonic flows k � q is

a criteria for the modes involved in a comparably substantial transfer of energy. Note

that the largest possible value of q of relevance for energy transfer is that of the dis-

sipation scale kd. This implies for purely compressible turbulence that any somewhat

substantial non-linear energy transfer requires a inertial range with a length of about

kd/kI ∼ cs/v(kd). Furthermore, one expects a scale dependent suppression of the energy

transfer rate of O(v(k)/cs). This implies that the energy transfer rate of strongly com-

pressible systems behaves as ε → ε(k) ∝ ε0v(k)/cs, where ε0 is some scale independent

energy transfer rate. Plugging this re-scaling of the energy transfer rate into (3.33) gives
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v2 ∝ k−1 for strongly compressible systems. Note, that by this argument the value of

ε0 may also directly depend on the Reynolds number and the ratio cs/v(kI).

Now, we take a more detailed look on the overall dynamics. The solutions for the

linearized ideal compressible MHD equations (3.41) and (3.42) for v, b� cs are

vd(k, τ) = vd,0(k) cos (cskτ + φ0) , (3.101)

δ(k, τ) = δ0(k) sin (cskτ + φ0) , (3.102)

where δ0, vd,0 and φ0 are dependent initial conditions for the amplitudes and phase.

Note that the dynamically relevant timescale for nonlinear transfer is kv(k)� csk and

so any substantial subsonic purely dilatational flow is at most only mildly affected by

deviations to the above solution. The only effective type of transfer is that of resonant

interactions of the compressible modes and as we discuss these may play an important

role in partially vortical or magnetized flows. If we neglect non-linearity in the evolution,

the solutions for the three compressible two point functions (3.38), (3.39) and (3.40) are

Ed(k, τ) = Ēd(k, τ) cos2 (cskτ + ζ(k, τ)) , (3.103)

Eδv(k, τ) = 1
2Ēd(k, τ) sin (2cskτ + 2ζ(k, τ)) , (3.104)

Eδ(k.τ) = Ēd(k, τ) sin2 (cskτ + ζ(k, τ)) , (3.105)

where Ēd(k) is the envelope spectrum for the dilatational energy spectrum. We expect

that these relations hold for substantially subsonic flows with v, b � cs, and that the

above relation holds even in the presence of vorticity, as non-linear effects act on much

larger time-scales. Note that we have introduced two time dependent parameters, since

not only the envelope spectrum may develop due to non-linear evolution but also an

overall phase-shift ζ(k, τ) due to the non-linear terms may appear. Here, we assume that

the above relations hold and the problem of compressible MHD reduces from 9 → 8

partially independent two point functions. If we further neglect the phase shift we

have another reduction down to effectively seven relevant evolution equations. We also
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introduce φ(k, τ) = cskτ + ζ(k, τ). The relevant evolution equation for the envelope

spectrum is then given by

∂τ Ēd = ∂τ (Ed + Eδ). (3.106)

For the envelope spectrum the relevant Green’s function is effectively the same as for

the solenoidal spectra, i.e. it only represents damping. Although, as we see below the

problem for the appearing and relevant three-point functions is more complicated and

involves many more equations, although mostly due to only minor variations. Analo-

gously, for the phase shift one finds

∂τζ = sin(4φ)
4 ∂τ Ēd + cos(2φ)∂τEδv + sin(2φ)∂τ (Eδ − Ed). (3.107)

In the discussion here, we will neglect the phase shift ζ(k, τ) for now and assume that

it will not have any relevant impact on the dynamics. The different equations, that

involve purely compressible components, are of the type

∂τoi = iΩijoj + gi(τ), (3.108)

where Ωij can be a symmetric or anti-symmetric matrix depending on the choice of

the oi which is a vector e.g. of the different three point functions and gi is some

source vector of the different four point functions in the case that the oi are three point

functions. The matrix Ωij simply describes the linear coupling between the different

types of compressible n-point functions, as we discuss below. For an initially Gaussian

system, e.g. for the case that the oi represent three point function which initially vanish

at time τ0, one finds

oi(τ) = S−1
ij exp (−iωj(τ − τ0))

∫ τ

τ0
dτ ′ exp (iωj(τ ′ − τ0))Sjmgm(τ ′). (3.109)

For the case that the oi only consist of three point functions which only involve the
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compressible components δ and vd the unique eigenvalues up to a sign are

ω1 = cs(k+q+p), ω2 = cs(k−q+p), ω3 = cs(k+q−p), ω4 = cs(k−q−p) (3.110)

and the number of the independent purely compressible three-point equations is 8 (=

2 · 3 + 2). The other four eigenvalues correspond to the negative frequencies of the

already shown, e.g. ω5 = −ω1 and so on. Explicitly, the components of the oi are

three point functions of the type 〈vd(k)vd(q)vd(p)〉, 〈δ(k)δ(q)δ(p)〉, 〈vd(k)vd(q)δ(p)〉

and 〈vd(k)δ(q)δ(p)〉, where the last two appear effectively threefold due to the three

distinguishable permutations of the wave-vector arguments. Another class of solutions

are three point functions where one component is solenoidal, like 〈vs(k)vd(q)vd(p)〉,

〈vs(k)δ(q)vd(p)〉 and 〈vs(k)δ(q)δ(p)〉. Note that there are several different three point

functions of this type e.g. also 〈b(k)δ(q)δ(p)〉 and with permutations of the different

wave-vectors. However, each of the different cases of this type can be expressed as a

four dimensional system with eigenvalues ±cs(q − p) and ±cs(q + p). Lastly, one also

has the case that only one of the appearing components in the three point functions is

dilatational e.g. the oi are of the type 〈vs(k)vs(q)vd(p)〉 and 〈vs(k)vs(q)δ(p)〉. Then,

the frequency is ±csp and the dimension of this system is 2. As before there are several

different oi like 〈b(k)vs(q)δ(p)〉 and with permutations of the wave-vectors. Similarly,

for oi that contain different compressible two point functions Ed(k), Eδ(k) and Eδv(k),

the eigenvalues of the system are ±csk and the dimension of the system is 3, and one

may need to add oi(τ0) to the right hand side of (3.109) as the two point functions may

have a non-trivial initial condition. Moreover, purely solenoidal three point functions

are treated as for the incompressible and only the related four point functions differ.

In order to markovize and deal with non-physical features, as for the incompressible

case, one also needs to introduce an additional damping term. Thus, the above Green’s

function has to be modified to

exp [−(ν(k, q, p) + iωj)(τ − τ0)]
∫ τ

τ0
dτ ′ exp [(ν(k, q, p) + iωj)(τ ′ − τ0)] , (3.111)
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where ν(k, q, p)−1 measures the effective turbulent correlation time at the wave numbers

k, q, p. The markovization should only be applied to the function Ēd and not to the

cos and sin functions. We assume that ν(k, q, p) ∼ νd(k, q, p) as for the incompressible

case, yet it now also needs to include a factor based on the dilatational velocity (with

potentially different coefficients).

No. Triple Correlation related four point functions

T0 〈[vs,b][vs,b][vs,b]〉 〈[vs,b][vs,b]〉〈[vs,b][vs,b]〉

T1 〈[vd, δ][vs,b][vs,b]〉 〈[vs,b][vs,b]〉〈[vs,b][vs,b]〉,〈[vd, δ][vd, δ]〉〈[vs,b][vs,b]〉

T2 〈[vd, δ][vd, δ][vs,b]〉 〈[vd, δ][vd, δ]〉〈[vd, δ][vd, δ]〉,〈[vd, δ][vd, δ]〉〈[vs,b][vs,b]〉

T3 〈[vd, δ][vd, δ][vd, δ]〉 〈[vd, δ][vd, δ]〉〈[vd, δ][vd, δ]〉

Table 3.1: Types of three point functions (second row) and their assoicated Gaussian four point func-
tions (thrid row) in compressible isotropic, homogeneous and barotropic MHD turbulence. The bracket
e.g. [vd, δ] is a place-holder for either δ or vd.

For the rest of this subsection, we discuss qualitatively the different types of three

point functions that appear in compressible MHD turbulence as listed in table 3.1 and

focus on the types T1, T2 and T3. First, the type T3 only appears in the evolution

of compressible two point functions and a significant energy transfer may be possible

for triads with e.g. ωi − cs(k ± q) ≈ 0 or if the oscillatory behavior after temporal

integration of the three point function is e.g. of the type cos2(cskτ) and without an

effectively canceling complement like − sin2(cskτ), such that on average the contribution

does not vanish. The former criteria can only be fulfilled if one of the wave-numbers

involved is sufficiently small and the other two are sufficiently large or in certain cases

where p ∼ k ∼ q. In the first case, one expects relevant contributions for wave-numbers

k ∼ O(kIcs/v(kI)) for a range of wave-numbers cs|q − p| ∼ qv(q) (or permutations of

k, q, p). While in the latter case one may have conditions of the type |2k−2q+p| ∼ kv(k)

for k ∼ q ∼ p. One thing to note is that the range of relevant wave numbers that involve

significant non-linear contributions in purely compressible systems is much smaller than

in the incompressible case for v � cs. Furthermore, terms of the type T3 should not lead

to an effective transport of energy in substantially subsonic systems. Note that due to
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the reduced range of modes that contribute, the rate of energy transfer in compressible

turbulence is roughly smaller by a factor v(k)/cs compared to the rate in incompressible

turbulence.

When the system is initially purely incompressible, the generation of dilatational

motion is due to three point functions of the type T1 i.e. a compressible component at

scale k and two solenoidal components appear in the relevant three-point function. As

mentioned before, in that case one has ωi = csk. Consequently, the initial generation of

dilatational motion can only be effective at large scales k . kIcs/v(kI) in substantially

subsonic systems. Thereafter, a significant amplification is possible, as terms involving

e.g. 〈vdvd〉(k)〈vsvs〉(q) can lead to resonant contributions e.g. oscillatory functions of

the type sin2(csk(τ − τ0)) which do not trivially vanish on average and contribute as

an important channel for a transfer of solenoidal to dilatational energy. These types of

three point functions also contribute to the other direction, i.e. a transfer of dilatational

to solenoidal energy in an efficient manner. Such transfer terms imply that the incom-

pressibility condition ∇·v . (v/cs)2kIv(kI) may not be realistic, and one has to expect

considerably larger fractions of dilatational to solenoidal energy even for v � cs with

respect to the incompressibility constraint. Lastly, one also has to consider the other

mixed three point function T2. As for T1, T2 can appear in all two-point evolution

equations, however four point functions that are quadratic in the purely compressible

two point functions e.g. EdEδ that appear in the evolution of T2 cannot contribute

to the rate of change of the two point functions. This is due to the fact that an irro-

tational and non-magnetized barotropic MHD system cannot generate any vorticity or

magnetic fields. The appearance of such terms would otherwise imply that there is a

back-reaction contribution from dilatational on solenoidal motion which leads to either

a generation of magnetic or vortical energy or to a dilatational energy transfer, which is

forbidden. Hence, three point functions of the type T2 do not impact the evolution of

the different two point functions by four point functions of the type Ē2
d . However, three

point functions of the type T2 can still impact the evolution of the two point functions

by four point functions of the type ĒdEs. Note, these functions suffer from similar
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structural constraints as those of type T3, meaning they may at most be relevant for

only a relatively small range of wave-numbers q or p or on very large scales. Therefore,

only the type T1 may have a substantial impact on compressible turbulence in addition

to the purely solenoidal three point functions T0. Note that the impact of functions

of type T1 on the evolution of Ēd is of the type ∂τ Ēd(k) ∝ Ēd(k)c(k, τ), where c(k, τ)

depends on the solenoidal spectra. Consequently, these terms do not directly provide

any non-linear coupling between the dilatational spectra at different scales and these

terms cannot act as an initial source of dilatational motion, which is due to less-efficient

three-point functions like T2 and T3 and the other class of contributions from T1, i.e.

the purely solenoidal four point functions. Overall, this indicates that it may suffice

to only take three point functions of the type T0 and T1 and some sufficiently small

generic source term for Ēd(k), e.g. based on a k−1 spectrum, into account, as well as

a sink term for the solenoidal energies, in order to ascertain energy conservation, into

account.

In conclusion, even in substantially subsonic turbulence compressible factors can play

a role in the evolution, due to an effective transfer of energy between dilatational and

solenoidal modes, and they may even play an important role at large scales. However, in

this thesis we will mostly neglect these compressible effects and focus primarily on the

incompressible system, yet we note that compressible effects may play a nontrivial and

important role even in substantially subsonic homogeneous and isotropic MHD. In the

following we briefly discuss the large scale behavior of purely compressible turbulence

as an example.

3.4.7 Compressible Large Scale Behavior

The case of a purely compressible turbulent system can be studied self-consistently for

MHD turbulence, as no magnetic fields and vorticity are generated if none is previously

present. For convenience we introduce

δ̄ = cs
1 + c2

s

δ, vd(k) = k
k
vd(k) (3.112)
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with v∗d(k) = −vd(−k). Explicitly for this case the vector oi for the relevant three point

functions can be constructed as

o =
(
vd(p)vd(q)v∗d(k), δ̄(p)vd(q)v∗d(k), vd(p)δ̄(q)v∗d(k), δ̄(p)δ̄(q)v∗d(k)

vd(p)vd(q)δ̄∗(k), δ̄(p)vd(q)δ̄∗(k), vd(p)δ̄(q)δ̄∗(k), δ̄(p)δ̄(q)δ̄∗(k)
)

(3.113)

and the matrix Ωij is symmetric and given by

Ω = cs

 A k14

k14 A

 , A = −



0 p q 0

p 0 0 q

q 0 0 p

0 q p 0


,

where 14 is the 4 × 4 identity matrix. The rate of change of the dilatational energy

corresponds to (see (3.106))

∂τ 〈vd(k)v∗d(k) + δ̄(k)δ̄∗(k)〉 =
∫ d3q

(2π)3 cqk

[
(cqpq − c2

sp)Im〈o1〉

+ (1 + c2
s) (kIm〈o7〉 − qIm〈o4〉)

]
, (3.114)

where the different oi are given in (3.113). Note that unlike for the incompressible

equations, the compressible equations have an explicit dependence on c2
s and thus a

relativistic plasma may behave differently than a non-relativistic gas or plasma cs � 1.

In the limit k � kI we find (also see subsection 3.4.4)

∂τ Ēd(k) ∝k3
∫ ∞

0
dq
∫ 1

−1
dε qpε

[
−(q + c2

sp)Im〈o1〉

+ (1 + c2
s) (kIm〈o7〉 − qIm〈o4〉)

]
. (3.115)

In order to estimate the large scale behavior we have to look at the functions gi in detail,

as is done in appendix A.2. The key takeaway there is that one expects Ēd(k) ∝ k5

at large scales (k � kI). One potential and important difference in particular for
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supersonic systems should be the appearance of an effective evolution equation of the

type ∂τ Ēd(k) ∝ Ēd(k). Otherwise, as argued before, in appendix A.2 we do not find

other terms that could suggest important non-linear energy transfer in substantially

subsonic purely compressible turbulence. Thus as discussed in subsection 3.3.4, we also

expect that the discussed decorrelation model for compressible correlations should be

reliable in substantially subsonic turbulence, but not necessarily for v & cs.

3.5 Quasi-normal GW equation

In the following we focus on the generation of a stochastic background of gravitational

waves by MHD turbulence. First, we briefly look at the rate of change of gravitational

wave energy density.

3.5.1 Gravitational wave energy density

The strain of the gravitational wave is as discussed before described by (2.31)

∂2
τ H̃ij(k, τ) + 2H∂τH̃ij(k, τ) + k2H̃ij(k, τ) = 16πGa−2

(
ρb + pb

)
Pijlm [πlm(k) + πem

lm (k)] ,

(3.116)

where πlm and πem
lm are given by (2.30) and (2.32) respectively. We fix the initial condi-

tions, such that the initial strain vanishes Hij(k, τ0) = 0 and there are no initial source

terms present ∂τHij(k, τ0) = 0. This equation has the following solution

Hij(k, τ) = 16πG
[
Aij(k, τ)sin(kτ)

kτ
−Bij(k, τ)cos(k, τ)

kτ

]
, (3.117)

where

Aij(k, τ) =
∫ τ

τ0
a−2(τ ′) cos(kτ ′)τ ′πTij(k, τ ′)dτ ′ (3.118)

and

Bij(k, τ) =
∫ τ

τ0
a−2(τ ′) sin(kτ ′)τ ′dπTij(k, τ ′)τ ′ (3.119)
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with

πTij(k, τ) = Pijlm(k)(ρb + pb)
∫ d3q

(2π)3 [vl(q, τ)vm(p, τ) + bl(q, τ)bm(p, τ)] , (3.120)

where

Pijlm(k) = Pil(k)Pjm(k)− 1
2Pij(k)Plm(k) (3.121)

is the Fourier transform of the quadratic projector (2.22). Then the change of the strain

is

∂τHij(k, τ) = 16πG
kτ 2 [Aij(k, τ) (kτ cos(kτ)− sin(kτ)) +Bij(k, τ) (kτ sin(kτ) + cos(kτ))] .

(3.122)

Consequently, one finds for the two point correlation function of the temporal rate of

change of the strain tensor

〈|∂τHij(k, τ)|2〉 =
(16πG
kτ 2

)2 [
〈|Aij(k, τ)|2〉 (kτ cos(kτ)− sin(kτ))2

+ 〈|Bij(k, τ)|2〉 (kτ sin(kτ) + cos(kτ))2

+ (〈Bij(k, τ)Aij(−k, τ)〉+ 〈Aij(k, τ)Bij(−k, τ)〉) ·

(kτ cos(kτ)− sin(kτ)) (kτ sin(kτ) + cos(kτ))
]
, (3.123)

where the averaging only affects the Aij and Bij and specifically only the πTij element

there. Hence, this can be restated more clearly as

〈|∂τHij(k, τ)|2〉 =
(16πG

τ

)2 ∫ τ

τ0

dτ ′ τ ′
a2(τ ′)

∫ τ

τ0

dτ ′′ τ ′′
a2(τ ′′)FO(k, τ, τ ′, τ ′′)〈πTij(k, τ ′)πTij(−k, τ ′′)〉,

(3.124)

where

FO(k, τ, τ ′, τ ′′) = cos(k[τ − τ ′]) cos(k[τ − τ ′′]) + 1
k2τ 2 sin(k[τ − τ ′]) sin(k[τ − τ ′′])

− 1
kτ

[cos(k[τ − τ ′]) sin(k[τ − τ ′′]) + cos(k[τ − τ ′′]) sin(k[τ − τ ′′])] .

(3.125)
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Here, we are only interested in modes which are well within the horizon such that the

averaging procedure in the definition of the energy is applicable. Consequently, we focus

on the case kτ � 1 and thus the oscillatory function can be approximated as

FO(k, τ, τ ′, τ ′′) ≈ cos(k[τ − τ ′]) cos(k[τ − τ ′′]) ≈ 1
2 cos(k[τ ′ − τ ′′]), (3.126)

where we averaged over a few kτ in the last step. Note, that the correlation function

〈πTij(k, τ ′)πTij(−k, τ ′′)〉 is a four point function in the velocity and magnetic fluctuations,

yet unlike the four point functions appearing in the quasi-normal MHD approximation,

this one involves unequal time velocity and magnetic correlation functions. In the QN

MHD approximation magnetic and velocity variations are described by a multivariate

Gaussian distribution at fourth order, which allows us to apply Isserlis theorem (3.69)

. As discussed before, the fluctuations are not Gaussian and this may play an even

bigger role for the unequal four point functions. Here, we assume that the assumption

of Gaussianity is also a reasonable approximation for higher order unequal time corre-

lation functions, which as discussed before is reasonable for the two point function, and

that Isserlis theorem is also to the unequal time correlation function, even though the

prerequisites are not fully met. We suspect that deviations due to non-Gaussianity in

the unequal time four point correlation functions will be minor or at most relevant at

small scales k � kI , that are usually of less interest to us. The appearing four point

correlation function corresponds to

〈πTij(k, τ ′)πTij(−k, τ ′′)〉 = (ρb + pb)2Pmngh(k)
∫ d3q

(2π)3

∫ d3q′

(2π)3 ·

〈[vm(q, τ ′)vn(p, τ ′) + bm(q, τ ′)bn(p, τ ′)] [vg(q′, τ ′′)vh(p′, τ ′′) + bg(q′, τ ′′)bh(p′, τ ′′)]〉,

(3.127)
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where p = k−q and p′ = k−q′. Next, we apply Isserlis theorem together with (3.58),

(3.59), (3.60) and (3.61) to find

〈πTij(k, τ ′)πTij(−k, τ ′′)〉 = (ρb + pb)2 (2π)4

4

∫ d3q
(qp)3

[
E2
t (q, p, τ ′)S+(k, q, p)

+ 4H2
t (q, p, τ ′)cqkcpk + S−(k, q, p)

(
4Ed(q, τ ′)Ed(p, τ ′) cos [csq(τ ′ − τ ′′)] cos [csp(τ ′ − τ ′′)]

)
+ 2

(
D(k, q, p)Es(q, τ ′)Ed(p, τ ′) cos [csp(τ ′ − τ ′′)]

+D(k, p, q)Es(p, τ ′)Ed(q, τ ′) cos [csq(τ ′ − τ ′′)]
)]
, (3.128)

where cpk and cqk are the cosine of the interior angles as defined in (3.80) and

E2
t (q, p, τ) = Es(q, τ)Es(p, τ) + Eb(q, τ)Eb(p, τ) + 2HC(q, τ)HC(p, τ) (3.129)

H2
t (q, p, τ) = Hb(q, τ)Hb(p, τ) +Hk(q, τ)HK(p, τ) + 2EC(q, τ)EC(p, τ) (3.130)

S±(k, q, p) =
(
1± c2

qk

) (
1± c2

pk

)
(3.131)

D(k, q, p) = (1 + c2
qk)(1− c2

qp). (3.132)

The gravitational wave density power spectrum then becomes

PG(k, τ) = 2H2
0 Ω̄r

2

3π
a2k3

τ 2

∫ d3q
(qp)3

∫ τ

τ0

dτ ′ τ ′
a2(τ ′)

∫ τ

τ0

dτ ′′ τ ′′
a2(τ ′′) cos (k[τ ′ − τ ′′]) ·

fRSA(q, τ ′, τ ′′)fRSA(p, τ ′, τ ′′)
[
E2
t (q, p, τ ′)S+(k, q, p) + 4H2

t (q, p, τ ′)cqkcpk

+ 2
(
D(k, q, p)Es(q, τ ′)Ed(p, τ ′) cos [csp(τ ′ − τ ′′)]

+D(k, p, q)Es(p, τ ′)Ed(q, τ ′) cos [csq(τ ′ − τ ′′)]
)

+ 4S−(k, q, p)
(
Ed(q, τ ′)Ed(p, τ ′)·

cos [csq(τ ′ − τ ′′)] cos [csp(τ ′ − τ ′′)]
)]
, (3.133)

where we used ρb + pb = (4/3)ρcΩ̄r in the radiation dominated phase and Ω̄r is the

modified radiation energy density parameter, and the function fRSA is the decorrelation

function as defined in (3.50). The modified radiation energy is Ω̄r = Ωr(g0/g(T0))1/3,

where g(τ0) represents the initial relativistic degrees of freedom at time τ0 and g0 = 3.36

represents the present day relativistic degrees of freedom. Above, one has to perform
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two time integrations from τ0 to τ and the appearing times τ ′ and τ ′′ are not ordered

e.g. one has the two cases τ ′ > τ ′′ and τ ′ ≤ τ ′′ for the unequal time correlation function.

For us it is more convenient to bring the above equation into a time ordered form, by

differentiating and reintegrating, as the integrand does not explicitly depend on time τ

and a(τ)/τ ∼const. Therefore we take the temporal derivative of (3.133)

∂τPG(k, τ) = 4H2
0 Ω2

r

3π
k3

τ

∫ d3q
(qp)3

∫ τ

τ0

dτ ′ τ ′
a2(τ ′) cos (k[τ − τ ′]) fRSA(q, τ, τ ′)fRSA(p, τ, τ ′)·[

E2
t (q, p, τ)S+(k, q, p) + 4H2

t (q, p, τ)cqkcpk + 2
(
D(k, q, p)Es(q, τ)Ed(p, τ) cos [csp(τ − τ ′)]

+D(k, p, q)Es(p, τ)Ed(q, τ) cos [csq(τ − τ ′)]
)

+ 4S−(k, q, p)
(
Ed(q, τ)Ed(p, τ)·

cos [csq(τ − τ ′)] cos [csp(τ − τ ′)]
)]
, (3.134)

and reintegration gives the time-ordered equation, where we also apply a(τ) = H0τ
√

Ω̄r.

PG(k, τ) = 4Ω̄rk
3

3π

∫ d3q
(qp)3

∫ τ

τ0

dτ ′
τ ′

∫ τ ′

τ0

dτ ′′
τ ′′

cos (k[τ ′ − τ ′′]) fRSA(q, τ ′, τ ′′)fRSA(p, τ ′, τ ′′)·[
E2
t (q, p, τ ′)S+(k, q, p) + 4H2

t (q, p, τ ′)cqkcpk + 2
(
D(k, q, p)Es(q, τ ′)Ed(p, τ ′)·

cos [csp(τ ′ − τ ′′)] +D(k, p, q)Es(p, τ ′)Ed(q, τ ′) cos [csq(τ ′ − τ ′′)]
)

+ 4S−(k, q, p)
(
Ed(q, τ ′)Ed(p, τ ′) cos [csq(τ ′ − τ ′′)] cos [csp(τ ′ − τ ′′)]

)]
. (3.135)

Note, that we generally neglect the evolution Ω̄r as it is typically quite sudden, such

that an overall scaling factor suffices. This equation describes the generation of energy

in the form of gravitational waves at a given wave number k from stochastic velocity and

magnetic field spectra, that are described by a normal distribution. Next, we discuss

some of the basic properties of this solution for typical causal turbulence spectra.

3.5.2 Scaling behavior of the MHD-GW-equation

Here, we look at the basic behavior of the MHD-GW-equation at large and intermediary

scales. Similar to the discussion in the subsections 3.4.4 and 3.4.5 we apply the same type

of approximation for the large scales, i.e. we neglect contributions from scales k � kI
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and look at the overall scaling behavior. As before we look at the angular factors e.g.

cqk at lowest non-trivial level in k and we resolve the p-Integration in the same manner.

We also neglect helicities and the cross scalar and assume that the solenoidal component

dominates. Thus we have q ∼ p = q + εk � k, cqk = −cpk = ε and cqp = −1, where ε

takes values in the range [−1, 1]. Consequently, in the limit k → 0 we find the following

shape for the large scale GW spectrum

PG(k, τ) ≈ 8Ω̄rk
3

3

∫ ∞
0

dq
q4

∫ τ

τ0

dτ ′
τ ′

∫ τ ′

τ0

dτ ′′
τ ′′

fRSA(q, τ ′, τ ′′)2·[56
15E

2
t (q, q, τ ′)−

8
3H

2
t (q, q, τ ′) + 64

15Ed(q, τ
′)2 cos2 [csq(τ ′ − τ ′′)]

]
. (3.136)

Thus, at large scales the spectrum scales with k3 and therefore less steeply than the

large scale tails of the different MHD turbulence spectra. Furthermore, the mixture term

involving dilatational and solenoidal fluctuations EdEs does not affect the evolution of

the large scale tail in the limit k → 0. Now, we look at how the spectrum scales with

basic properties of the turbulence flow, like the initial amplitude of the inertial scale

e.g. max[v2(kI), b2(kI)] ∼ EA, see (3.92), and the value of the integral scale kI itself.

Here, we assume that the turbulence is dominated by solenoidal motion. Note that the

initial Eddy turnover rate is approximated as τ−1
E (q) ∼ O(q

√
EA) � τ−1

0 for q & kI .

Then, the τ ′′ integration can be approximated as

∫ τ ′

τ0

dτ ′′
τ ′′

exp
[
− τ

τE(q, τ ′)

]
≈ τE(q, τ ′)

τ ′
(3.137)

and this leads to

PG(k, τ) ≈ 8Ω̄rk
3

3

∫ ∞
0

dq
q4

∫ τ

τ0

dτ ′
τ ′2

τE(q, τ ′)
[56
15E

2
t (q, q, τ ′)−

8
3H

2
t (q, q, τ ′) + 64

15Ed(q, τ
′)2
]
.

(3.138)

Moreover, the final integration over time will effectively only be required over a timescale

[τ0, τ0 + ατE(q, τ0)], where α is some constant of O(1). We also introduce K = k/kI and

Q = q/kI and τE(k) ∼ kIK ¯v(k). If we ignore the details of the temporal evolution of
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the different spectra like Es and the time τE, one finds for k � kI

PG(k, τ) ≈ 16Ω̄rK
3

3k2
I (τ0)

∫ ∞
−∞

d log(Q)
Q5

56α
15EA(τ0)τ 2

0
E2
A(τ0)F 2(Q), (3.139)

where we assumed equipartition between magnetic and kinetic energy. Therefore, one

has approximately for k � kI

PG ∝ k3EA(τ0)/k2
I (τ0). (3.140)

Note that this Ansatz neglects the build-up of the turbulent spectrum. As, we discuss

later the scaling with regards to EA is more steeper and i.e. ∝ E
3/2
A , which implies

that the estimate in the second temporal integration is off. In particular the build-

up of the turbulent spectrum has been neglected which introduces another time-scale

into the system τb over which the turbulence is initially forced and it is not directly

related to the energy scale EA. The GW spectrum generated due to the build up can

be estimated as follows, first we have E(k, τ) ∝ (τ − τ0)(τb) for τ0 + τb ≥ τ ≥ τ0. The

unequal time correlation function, as previously discussed, can be accordingly estimated

as fRSA(q, τ ′, τ ′′) = (τ ′′ − τ0)/(τ ′ − τ0), and take τ = τ0 + τb we find

PG(k, τ0 + τb) ≈
16Ω̄rK

3

3

∫ ∞
−∞

d log(Q)
Q3

56
15

[
1
2
τ0

τb
+O

(
τ 0
b

τ 0
0

)]
E2
A(τ0)F 2(q/kI(τ0)),

(3.141)

where we restrict ourselves to the case τb � τ0, note that the used forcing does not

depend on the scale and hence a factor k−2
I does not explicitly appear and interestingly

for small build up times τb � τ0 the efficiency of the generation of a GW background

increases. Note, that this also implies that for τb → 0 there is a singularity, hence a

correct treatment of the buildup and the decorrelation around the buildup as shown in

(3.63) is necessary in order to ascertain that no non-realizable features appear. However,

this expression also now depends on E2
A rather than EA. Both of these features, i.e. the

buildup and the decay will have an impact on the shape of the spectrum and we will

specifically analyze these cases numerically.
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Now, we also look at the scaling behavior in the respective inertial range i.e. at scales

kd � k � kI , where kd is the dissipative scale. The energy spectra generally decrease

towards smaller scale e.g. they may follow Kolmogorov’s k−2/3 law in the inertial range.

Moreover, contributions from scale q and p are effectively suppressed by a factor q−2

and p−2 respectively. Similarly, the spectra scale as k5 on large scale k � kI and hence

they are again strongly suppressed. Therefore, the dominant contributions appear from

around the integral scale. Hence, terms involving q ∼ k � p ∼ kI and p ∼ k � q ∼ kI

contribute significantly. We simply use the symmetry in p↔ q to introduce a factor of

2 and fix p = k + εq � q. The angular functions up to and including are

cpk ≈ 1−
(
q

k

)2
(1− ε2), cqp = cqk ≈ −ε, (3.142)

where we neglect other higher order corrections in q/k in the latter two function, as

these are not of relevance. Consequently, one finds by performing the p-Integration

PG(k, τ) = 16Ω̄r

3

∫ dq
q

∫ τ

τ0

dτ ′
τ ′

∫ τ ′

τ0

dτ ′′
τ ′′

cos (k[τ ′ − τ ′′]) fRSA(k, τ ′, τ ′′)·[16
3 E

2
t (q, k, τ ′) + 8 q

k
H2
t (q, k, τ ′)− 8q

3 ∂kH
2
t (q, k, τ ′) + 16

5

(
Es(q, τ ′)Ed(k, τ ′)·

cos [csk(τ ′ − τ ′′)] + Es(k, τ ′)Ed(q, τ ′) cos [csq(τ ′ − τ ′′)]
)

+ 32
5
q2

k2

(
Ed(q, τ ′)Ed(k, τ ′)·

cos [csq(τ ′ − τ ′′)] cos [csk(τ ′ − τ ′′)]
)]
. (3.143)

As long as τE � τ in solenoidal dominated turbulence, we can approximate the cosine

as cos[k(τ ′ − τ ′′)] ∼ 1 in the integration range and as before the integration range is

effectively one Eddy turnover time in the τ ′′ integration at scale k. For a system with

dominating solenoidal energy, we have to account for the damping term damping and

hence as before the second integration is occurs over a time τE(k, τ0) � τ0, while the

second time integration is over a time scale that is dominated by the flow at the integral

scale and hence does not introduce another k-dependence, consequently one expects in
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the inertial range kd � k � kIthat

PG(k, τ) ∝ 1
k

max(Es(k, τ0 + τb), Es(k, τ0 + τb)). (3.144)

However, when dilatational motion is dominant, the above argument cannot be directly

applied as the contributions are suppressed by a factor q2/k2 and hence one has to

account for contributions with k ∼ q ∼ p for which the coefficient S− ∼ 1 is possible in

contrast to S− ∼ q2/k2 for q � k. Since, one expects Ed ∝ k−1 in the inertial range and

the τ ′′ integration also gives another factor 1/k due to the cosine, we anticipate a scaling

of Ed(k, τ)/k2 in dilatational dominated turbulence in the inertial range. Summarizing,

for a Kolmogorov spectrum, that is typical for solenoidal dominated turbulence, we

expect a k−5/3, potentially also a k−8/3 spectrum, while in "dilatational turbulence"

with a k−1 spectrum we expect a k−3 scaling in the inertial range. This concludes

our discussion on magneto-hydrodynamics and associated gravitational waves in the

radiation dominated phase. In the next chapter, we briefly discuss magnetogenesis

scenarios in the early universe, the viscous and resistive evolution and aspects of the

matter dominated phase.



4 | Magnetogenesis and Dissipation in

the Early Universe

In this chapter, we discuss mechanisms which may occur in the early universe, that

can produce a sizable stochastic background of magnetic fields on large scales in the

early universe. We refer to the early universe as the radiation dominated epoch and

other preceding phases like inflation or even intermittently varying phases like runaway-

phase transitions, i.e. a radiation dominated phase preceding an inflationary phase

which precedes a radiation dominated phase (potentially several such phases may have

occurred). We focus primarily on scenarios where turbulent evolution is of importance

in the overall prediction of the large scale tail of the MHD turbulent spectra. Scenarios

which can drive the production of large scale tails with k5−α, where α > 0 are steeper

than what can occur due to free evolution of the MHD turbulence, will not be discussed

here. Shallower tails are possible at least for some substantial subrange e.g. [kmin, kI ]

with kmin � kI if a substantial long-lasting forcing of the initial turbulence is present

or if the coherent magnetic fluctuations are quickly expanded over large scales during a

conformal symmetry breaking inflationary phase (Turner & Widrow 1988), comparably

to the appearance of the near scale-invariant large scale power spectrum of density

fluctuations

〈|δ|2(k)〉 ≈ As

(
k

ks

)ns−1

, (4.1)

with ns ≈ 0.96 and As ≈ 2 · 10−9 (Planck Collaboration et al. 2018) that is thought

to occur as a result of inflation (Bardeen et al. 1983). Here, we generally neglect the

impact of primordial density perturbations on the evolution of the magnetic field, since,

87
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as we discuss later, for the scenarios of interest primordial density fluctuations at most

affect the fluctuations in a negligible manner (Wagstaff et al. 2014). Therefore, we

primarily look only at thermally sourced MHD turbulence or at the very least at MHD

turbulence that has undergone thermalization within the radiation dominated phase. In

particular we focus on thermal first order phase transitions, especially the electroweak

phase transition, although the discussion for the evolution of the initial MHD turbulence

applies for any causal scenarios. Note, that as the temperature decreases, due to the

expansion, the effective particle degrees of freedom g contributing to the radiation energy

density ρr ∝ gT 4 shrinks, as the pair production of pairs / the pairs annihilate with

mi & T ceases. Furthermore, the conservation of the entropy density during adiabatic

expansion implies g(aT )3 =const. and thus ρr ∝ g−1/3 during adiabatic expansion. At

present g0 = 3.38, while in the SM g(T ) → 106.75 for T � mt (Planck Collaboration

et al. 2018), where mt ≈ 175 GeV is the top mass (Tanabashi et al. 2018). Furthermore,

we look at the dissipative properties of the early universe, e.g. resistive damping of

magnetic fluctuations and viscous damping of MHD fluctuations due to photons and left-

handed neutrinos. Lastly, we briefly discuss how the evolution in the matter dominated

phase may impact present day traces of primordial magnetic fields, as we otherwise

primarily focus on the radiation dominated phase.

4.1 Magnetogenesis

In the context of the MHD approximation, any initial state without magnetic fields,

will remain non-magnetized at later stages. Consequently, magnetic fields cannot be

produced under the assumptions of the neutral MHD approximation. Technically, the

production of magnetic fields requires vortical electric fields. This may occur in the

context of charged flows with a non-zero solenoidal component i.e. vortical currents. Of

particular interest as a source of magnetic fluctuations are substantially coherent charge

fluctuations on or near the horizon scale of the respective epoch paired with baroclinity,

which enables the generation of vorticity. As noted before, baroclinity requires that

the pressure has a non-adiabatic component. One important non-adiabatic component
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is the pressure fluctuation due to entropy fluctuations and and the related baroclinity

follows from (2.58)

∇ρ×∇prel = 1
2∂τρ

∑
i,j,k

[(
c2
i − c2

j

)
(∂τρj∇ρk ×∇ρi − ∂τρi∇ρk ×∇ρj)

]
. (4.2)

Note, that in any multi-component fluid with ci 6= cjand∇ρi ∦ ∇ρj the pressure is partly

non-adiabatic , even if every component by itself is described by a barotropic equation

of state pi = c2
i ρi. For different massive components i and j or for a massive component

i and an effectively massless component j one has ci 6= cj or if the different components

have differing and significant chemical potentials µi . mi/T . Consequently, as long

as Re� 1 there is generally some minor amount of vorticity present. As discussed in

subsection 3.4.6, compressible motion generally leads to a growth of vorticity if some

vorticity is initially present. For example, primordial density fluctuations can cause

an amplification of the initial vorticity on scales where kδ(k) & H(τ) with a potential

amplitude of ω(k) ∼ kδ(k). In a similar manner, any initially present magnetic field

can be amplified by either solenoidal or dilatational velocity fluctuations, if Re� 1

and Rem � 1. Thus, primordial density fluctuations should lead to the appearance of

magnetic fields with potential amplitudes of b(k) ∼ δ(k), if some non-zero magnetic field

is initially present. This is possible if there are charge fluctuations on sufficiently large

scales k with Re(k)� 1. However, viscous damping is an important factor that reduces

the range of scales where this mechanism can be important. Furthermore, subsequent

turbulent decay, in the case that Re� 1, should lead to a reduction of b(k), δ(k) and

ω(k) on smaller scales.

Initially magnetic fields can be produced by a battery mechanism. The Euler equa-

tion with a net charge in a relativistic plasma is

∂τv + v · ∇v =− v
h
∂τp−

∇p
h

+ j×B
h
− ρc
h

(E + v×B) . (4.3)

At first order in p, v and B, we assume that the flow is balanced due to the net neutrality
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assumption and find

E = −∇p
ρc
. (4.4)

Thus, (2.44) with (4.4) gives

∂τB = −∇ρc ×∇p
ρ2
c

. (4.5)

This mechanism, in the context of an electron-ion plasma, is known as the Biermann

battery (Biermann 1950) . The above equation cannot be applied for a charged single

component fluid, as the assumption of ∂τv ≈ 0 at first order would not be justifiable

due to the global net charge. Obviously, this quantity is strongly related to the afore-

mentioned baroclinity, with ρ being replaced by ρc. Terms like ∇ρc,i × ∇pi vanish for

barotropic components. However mixture terms involving different species with differ-

ent sound speeds do not vanish. In the early universe, two particular important charged

species are quarks and charged leptons, which then act as a generic source of seed mag-

netic fields. Therefore, one indeed expects that independently of the precise detail that

as long as Re� 1 primordial density fluctuations source magnetic fields and vorticity of

a comparable order of magnitude δ ∼ vs ∼ b on scales δk & H(τ). Note, that magnetic

fields from the scale-invariant primordial density fluctuations are not of interest to us,

as these are generally quite small and are mostly seeded on small scales. The general

existence of some initial source term for vorticity and magnetic fields, which can undergo

further amplification, is nonetheless important and simplifies the following arguments

significantly as no detailed discussion on the precise source terms of vorticity and mag-

netic fields is required if there is already a significant source term for strong dilatational

motion present. The problem is then just if sufficient e-folds can be realized. In the

following we look at cosmological first order phase transitions as a source of kinetic and

magnetic fluctuations.
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4.1.1 Cosmological Phase Transitions

The universe evolves in different phases, e.g. the dark energy dominated phase which

began a few billion years ago and was preceded by a matter dominated phase and piror

to that by a radiation dominated phase. These particular cosmological phases are phases

in an asymptotic sense and the transition between these phases is smooth. Other types

of smooth transitions are recombination and reionization, as even after recombination

and prior to reionization some minor degree of ionization is present.Moreover, there is

another type of cosmological phase transition which may not be smooth and these appear

when the fundamental interaction of the quantum fields undergo a symmetry breaking.

Particular examples are the chiral and deconfinement transition at the QCD scale ∼200

MeV (Polyakov 1978, Susskind 1979) and the electroweak symmetry breaking at ∼100

GeV (Kirzhnits & Linde 1976). In the standard model, these transitions are smooth or at

most of second order (Buchmuller et al. 1994, Chatrchyan et al. 2012, Stephanov 2004).

A classical example of an effective potential in which symmetry breaking can appear is

that of a real scalar field

V (φ) = Aφ4 +B|φ|3 + Cφ2 (4.6)

with real valued A, B and C.

The potential is shown for two different classes of coefficients A, B and C in figure

4.1. On the left panel a first order phase transition is illustrated for a single scalar field

that drives the transition and on the second the same case is illustrated for a second

order phase transition. In general, the picture can be far more complex due to addi-

tional higher order couplings e.g. Dφ5 and there may be additional fields appearing in

the potential, e.g. in the context of the electroweak transition, some theories predict

additional scalar fields other than just the one Higgs-field and the additional fields could

even be vector fields. Cosmological first order phase transitions are of particular interest

as these can provide the necessary condition for the appearance of baryon asymmetry

(Kuzmin et al. 1985) or may appear due to dark sector physics e.g. dark matter cou-



4 CHAPTER 4. MAGNETOGENESIS AND DISSIPATION IN THE EARLY
UNIVERSE 92

−2 −1 0 1 2
ϕ

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

V(
ϕ)

T≫ Tc
T≳Tc
T≳ Tc
T≫ Tc

−2 −1 0 1 2
ϕ

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

V(
ϕ)

T> Tc
T= Tc
T≲Tc
T≲ Tc

Figure 4.1: Examples of real scalar field phase transition. On the left panel, one sees a typical example of
a first order phase transition mediated either exactly or effectively by a real scalar field. At temperatures
bigger than some critical temperature T � Tc (solid) the potential only has a minimum at the present
vacuum expectation value, while at lower temperatures but with T & T0 (dashed), a slight extremum
or saddle point can appear. Then, at the critical temperature T = Tc (dotted) the system has now
two minima with the same energy level that are separated by a potential barrier. Lastly, at even lower
temperatures T < Tc (dash-dotted) the system has a new energetic minimum with a potential barrier
that separates the old vacuum expectation value from the new vacuum expectation value. The original
ground state is symmetric in φ→ −φ, while the scalar field now settles in one of the two new ground
states and thus breaks this symmetry. Additional, there is no direct transition from the old state to
the new state and the scalar field tunnels between the two states, where the tunneling probability
depends on the energy difference between the two ground states and the height of the barrier. On
the right panel, the case of a smooth phase transition is shown. Note, that for T � Tc (solid) and
T = Tc (dashed), there is only one minimum present, while for T < Tc (dotted and dash-dotted) a new
minimum appears to which the scalar field will settle. In contrast to the case on the left panel there
is no potential barrier and hence the scalar field immediately settles into the new ground state and as
in the other case symmetry is broken. A first order phase transition generally requires in (4.6) A > 0,
C > 0 and B <

√
32C/9, while a second order phase transition is possible when C < 0 and/or B < 0

and A > 0.
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plings (Schwaller 2015). For every photon there are roughly ηB ≈ 6.1 · 10−10 baryons

around (Cyburt et al. 2016). Note, that the number density of charged leptons is com-

parable to the baryon asymmetry as the universe is practically charge-free (Caprini &

Ferreira 2005), but the lepton asymmetry may be much larger than the baryon asym-

metry due to neutrinos (Serpico & Raffelt 2005, e.g). Hence, one anticipates that

initially there has been nearly an equivalent amount of baryons and antibaryons around

which annihilate and leave a trace amount of baryons. Any process that can lead to

a baryon-number asymmetry needs to fulfill the Sakharov conditions (Sakharov 1967),

that require baryon-number violation, C (particle-antiparticle- or charge-symmetry)and

CP (P: left-right-symmetry) violation, and the process needs to be out of thermal equi-

librium, which is in principal guaranteed to a small degree due to the cosmological

expansion. First order phase transitions are not in thermal equilibrium and thermal

FOPTs are out of equilibrium over shorter timescales and in a more severe manner than

the cosmological expansion. Moreover, first order phase transition source fluid motion

which can drive the evolution of magnetic fields and vorticity, but also generate mag-

netic fields and vorticity on its own (Vachaspati 1991, Cutting et al. 2019). During a

first order phase transition, a new vacuum state appears to which a probabilistic tran-

sition is possible, as described before. Then, regions of the fluid transform into the

new phase and begin to expand outward with a velocity vw, also known as bubble wall

velocity. These bubbles form and collide until the entire fluid is in the new energeti-

cally favorable state. The rate at which the bubbles appear is effectively of the type

Γ ∝ exp [−βτ ] and the duration of the transition is roughly β−1 (Turner et al. 1992).

Thus, the typical size of a bubble is D = 2vwβ−1. Another important quantitative

measure of the transition is the latent heat normalized to the radiation energy density

α, which parameterizes the strength of the transition. For a thermal phase transition

α . ρ(τpt) and β & H(τpt), where τpt is the time at the onset of the phase transition.

Note that a part of the latent heat is converted into kinetic and magnetic energy i.e.

the expansion of the bubbles, while the other part is simply transformed into thermal

energy of the cosmological plasma. Then, due to non-linear evolution the kinetic energy
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is gradually transformed into heat in the radiation dominated phase. We parameterize

the total kinetic energy that can be produced in a thermal phase transition by κvα,

similarly one can define κb for the initially seeded magnetic energy. Such a split is in

generally difficult to define, as kinetic and magnetic energy is constantly transformed

into kinetic and magnetic energy. Here, we assume that κb = 0 and assume that the

magnetic energy is provided primarily by the kinetic energy due to MHD turbulence.

Furthermore, the different types of first order phase transitions can be distinguished

by vw. If vw � cs the transition is a deflagration and solenoidal motion can quickly

appear (Cutting et al. 2019). For vw ∼ cs, compressible effects become important

and this type of phase transition is known as a hybrid. Lastly, for vw � cs one has

detonations and solenoidal motion is initially barely produced (Cutting et al. 2019).

The efficiency parameter κv strongly depends on the bubble wall velocity and on the

phase transition strength α. This is illustrated in figure 4.2, which is based on solving

the Clausius-Clapeyron equations for a relativistic gas (Espinosa et al. 2010) without

electromagnetic fields and background expansion. If background expansion is neglected,

the value of β does not impact the efficiency, however when the background expansion

becomes relevant e.g. β . H(τpt), κv becomes even smaller (Cai & Wang 2018). As

can clearly be seen, κv peaks in the hybrid phase. The peak is roughly given by the

intermediary velocity in the hybrid case

vmax
w ∼

2cs +
√
α2 + 2

3α

2(1 + α) . (4.7)

Furthermore, for deflagrations and detonations κv ∝ α and for hybrid PTs κv ∝
√
α,

for α � 1. In table 4.1, we show some possible phase transition parameters for some

potential first order thermal phase transition scenarios. The bubble wall velocity is

not shown, as for some scenarios it may vary significantly depending on the exact

parameters. For models, that involve strong phase transitions e.g. α & 0.1 it will

typically be large 0.1 . vw . 0.9 (Mégevand & Sánchez 2010). Baryogenesis FOPT

models generally require small velocities vw . 0.01 − 0.1 due to temporal constraints,
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Figure 4.2: Here we show the efficiency parameter for the generation of kinetic energy κv as a function
of vw (bubble wall velocity) for different α (latent heat) in a first order phase transition based on
calculations by (Espinosa et al. 2010). The two thin solid black lines separate the different regimes,
where the bubble evolves as a deflagration, hybrid or as a detonation and correspond to the lower
and upper Chapman-Jouguet points. Note that for α > 1/3 there are only solutions for some vw &
1− (3α)−10/13.
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Model β/H(τpt) α Tpt [GeV] Refs

Higgs-Portal 6.4 0.2 56 (Espinosa et al. 2008)

MSSM singlet extension 6 0.14 76 (Huber et al. 2016)

Higgs doublet 660 0.11 52 (Huber et al. 2016)

SM plus Dim 6 160 0.13 63 (Huber et al. 2016)

Table 4.1: Examples of parameter sets for BSM thermal first order phase transitions scenarios with
different duration β−1, strength α, and Tpt. Note, that for the different models also vastly different
parameters are possible and also the precise vw are often not known, as it may also vary quite strongly
with the coupling strength and temperature (Mégevand & Sánchez 2010). This list is not exhaustive
and only focuses on potentially thermal FOPTS at GeV scales, serving as an illustration.

although values with 0.2 . vw . cs may also be sufficient for baryogenesis (Kozaczuk

2015). Note, that vacuum phase transition typically have α � 1 and the duration

is much longer than the then-age of the universe i.e. β � H(τpt). Additionally, the

bubble wall velocity is not necessarily constant and it is possible that vw → 1 (Bödeker

& Moore 2009, Caprini et al. 2016), i.e. the bubbles may run away. Here, we assume

that the bubbles do not run away, and that the bubble wall velocity is near constant.

4.1.2 MHD topology from a FOPT

So far we have discussed that cosmological first order phase transitions can act as a

source of significant magnetic fields and vortical fluid motion. Now, we focus on specific

quadratic quantities, like the cross- and magnetic helicity. As we discuss later on, a

system with a non-trivial cross- and magnetic helicity spectrum also acts as a source for

kinetic helicity and cross scalar spectra. In ideal MHD, the total magnetic helicity is

conserved and in barotropic or incompressible ideal MHD the cross helicity is conserved.

One quantity that may easily and readily appear in such magnetogenesis scenarios is a

non-trivial cross-scalar, as it requires that

∇ρ×∇p ∝ ∇ρc ×∇p, (4.8)
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which is usually satisfied to some degree. The appearance of parity violating correlations

like the magnetic helicity is less trivial. Of particular interest are phase transitions that

also lead to baryogenesis and/or leptogenesis as these require CP violation and should

lead to the appearance of some magnetic helicity (Cornwall 1997, Vachaspati 2001,

Wagstaff & Banerjee 2016). The appearance of magnetic helicity is strongly tied to

a non-trivial kinetic helicity spectrum and similarly the appearance of cross helicity

is strongly tied to magnetic or kinetic helicity and the cross scalar. In baryogenesis

scenario only a small fractional magnetic helicity may be sourced (Vachaspati 2001).

Another process, that is of interest in the generation of the magnetic helicity is the chiral

anomaly (Boyarsky et al. 2012, Pavlović et al. 2016, Pavlović et al. 2017, Brandenburg

et al. 2017). Right handed and left handed particles are affected slightly differently

in a magnetic field and this leads to an additional effective contribution in Ohm’s law

known as the chiral magnetic effect. Similarly, magnetic helicity also directly impact the

number density of left- and right-handed particles. Furthermore, at finite temperature

another effect is of interest, the chiral vortical effect, where a non-trivial kinetic helicity

can source a substantial chiral anomaly due to the so-called gravitational anomaly in the

thermal field theory (Kharzeev et al. 2016, e.g.). This is important, since a substantial

chiral anomaly is required to generate a substantial total net magnetic helcitiy. Here

we will not study the impact of the chiral anomaly on the MHD turbulence. Note that

in contrast to the previous discussion, the precise initially generated total magnetic

and or cross helicity during the magnetogenesis phase e.g. the phase transition is of

importance, as e.g. compressible turbulent energy cannot drive a significant generation

of total magnetic and cross helicity after the phase transition as for the magnetic energy

itself. In the next section we discuss the resistive and viscous properties of the early

universe.
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4.2 Viscous and Resistive Damping in Radiation Domi-

nated Universe

One major factor in the evolution of MHD turbulence is viscous and resistive decay

(Biskamp 1993). Direct decay of magnetic fluctuations occurs only by resistive dissi-

pation, but also indirect decay in systems with Re& 1 is possible. The indirect decay

channel dominates magnetic dissipation in systems with Pm� 1. Kinetic fluctuations

undergo direct decay due to viscous damping, yet indirect decay of kinetic fluctuations

in systems with Pm� 1, Re� 1 Rem � 1 is also important. In the early universe,

in the context of the standard model, viscous decay dominates i.e. Pm� 1 (Wagstaff

et al. 2014, Jedamzik et al. 1998). Here we discuss the key factors that drive viscous

dissipation in the radiation dominated phase i.e. neutrinos and photons, and those

that govern resistive decay i.e. leptons and quarks (Baym & Heiselberg 1997). In the

standard model, at sufficiently high temperatures T � 1 MeV, all standard model

particles are tightly coupled by the electroweak interaction, with the exception of the

gluons which are coupled to the quarks by the strong interaction and thus couple only

indirectly to the other SM particles by the electroweak force. Due to the small baryon

asymmetry and charge neutrality, the electromagnetic cross section decreases as soon

as the thermal bath can no longer support the production of e+e−-pairs and later when

the atoms recombine. Additionally, due to the large mass of the W± and Z0 bosons

the weak interaction becomes too weak to sufficiently couple the neutrinos to the other

particles. However, as temperature decreases, as the universe expands, the cross-section

decreases, due to a suppression of pair-production and later on due to gradual recombi-

nation. In general the evolution of MHD turbulence in the radiation dominated universe

can be split into 4 different phases, that we discuss in detail in the following subsections.

For T � 10 MeV the fluid may be turbulent, while for temperatures 40 MeV& T & 2

MeV neutrino decoupling suppresses turbulent transport and leads to a significant di-

rect decay of the kinetic flow. Thereafter, at temperatures 1 MeV& T & 10 keV, the

system may again freely evolve. Then, towards last scattering at T ∼ 0.3 eV, the system
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undergoes significant viscous damping due to the free-streaming of photons. First we

look at viscous damping by neutrinos.

4.2.1 Viscous damping by neutrinos

For temperatures T & 2 MeV, the thermal movement of coupled neutrinos damp fluc-

tuations on length scales L & λmfp,ν , where λmfp,ν is the mean free path of neutrinos.

At smaller temperatures neutrinos do no longer couple, at least not significantly, to

the cosmological fluid and thus no longer impact the evolution of fluctuations in the

radiation dominated phase. The physical mean free path of neutrinos for T . 100 GeV

is approximately (Jedamzik et al. 1998)

λmfp,ν = 1
G2
FT

2(nl + nq)
, (4.9)

where GF is the Fermi constant, and nl and nq are the physical lepton and quark number

densities given by nl,q = 6gl,qζ(3)T 3/(7π2) and gl,q count the lepton and quark degrees

of freedom. Consequently the neutrino viscosity

ν(T ) ∝ gν
g(T )

λmfp,ν(T )
5a(T ) (4.10)

grows quickly with a4, where gν represents the degrees of freedom of the neutrinos. The

neutrinos decouple from the cosmic fluid when λmfp,ν(T ) ∼ H−1(T ), which corresponds

to T ≈ 2 MeV, prior to e+e− annihilation at T . me. Consequently, at T . 2 MeV pre-

viously present kinetic fluctuations in the plasma have been dissipated and the Reynolds

number on the horizon scale for a flow with v ∼ 1 is Re∼ 1. Note, that on smaller scales

a different Reynolds number would apply i.e. related to the free streaming of neutrinos

and the diffusing photons. Therefore, after neutrino diffusion damping the only traces

of subhorizon MHD fluctuations is the magnetic energy and magnetic helicity spectrum

with kIb(kI , 2 MeV) ∼ H(2 MeV). On scales k−1 . λmfp,ν , the above treatment cannot

be applied anymore, as the neutrinos do not substantially couple with the other relevant

particles, e.g. photons and electrons, and the fluid approximation breaks down. This
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is can be effectively resolved in the context of the fluid approximation by introducing a

drag term α, such that νk2 → α ∼ λ−1
mfp,ν for k & λ−1

mfp,ν (Banerjee & Jedamzik 2004).

4.2.2 Viscous damping by photons

After the neutrino decoupling and electron-positron annihilation, the mean free path of

photons is dominated by Compton scattering with the electrons and positrons. Thus,

the physical mean free path of photons is approximately (Jedamzik et al. 1998)

λmfp,γ ≈
1

σKN
√
n2

pair + n2
e

, (4.11)

where σKN is the Klein-Nishima cross section and npair is the physical density e+e− pairs

in the plasma (Wagstaff et al. 2014), which is of relevance prior to electron-positron

annihilation. For T � 1 MeV npair � ne and for T � 1 MeV npair � ne. The number

density of pairs is approximately (Jedamzik & Fuller 1994)

npair ≈
(2meT

π

)3/2
exp

[
−me

T

] (
1 + 15

8
T

me

)
, (4.12)

for T . 140 MeV. While the number density of free electrons is

ne = Xe
Ωbρc
mp

(
T

T0

)3
, (4.13)

where Xe ≈ 1 in most of the radiation dominated phase and Ωbρc is the density of

baryons today, while T0 ≈ 2.35 · 10−4 eV is the present CMB temperature. However, as

soon as the electrons together with the protons form hydrogen atoms, as other atoms re-

combine earlier, Xe drastically shrinks and is approximately given by the Saha equation

X2
e

1−Xe

= 2.38 · 1016
(

eV
T

)3/2

exp
[
−13.6 eV

T

]
(4.14)

for T & 0.3 eV. For T . 0.3 eV and roughly till reionization the processes that drive

recombination are slower than the overall expansion and a residual ionization Xe ∼
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10−4 remains (Peebles 1968), which the above approximation does not account for.

Ultimately, in the temperature range 0.3 eV. T . 1 MeV recombination is the major

driver in the increase of the viscosity. The photon viscosity is

ν(T ) ∝ gγ
g(T )

λmfp,γ(T )
5a(T ) , (4.15)

which grows with a2 significantly slower than the neutrino viscosity, where gγ represents

the degrees of freedom of the photons. Analogously to the neutrino case, photons

decouple at T ∼ 0.3 eV and practically the only causally produced fluctuations that

are not dissipated by then are magnetic fluctuations with or without magnetic helicity

with kIb(kI , 0.3 eV) ∼ H(0.3 eV). As for the neutrino case, we also introduce a drag

term for the photons based on the mean free path. For the total dissipative factor

we use a simple composite model to interpolate between the free-streaming and scale

independent viscosity regime

νk2 →
νγk

2
γ + αγ

k2

k2
γ(

kγ
k

)2
+
(
k
kγ

)2 θ(T − 0.3 eV) +
ννk

2
ν + αν

k2

k2
ν(

kν
k

)2
+
(
k
kν

)2 θ(T − 2 MeV), (4.16)

where kγ = 2π/λmfp,γ and kν = 2π/λmfp,ν .

4.2.3 Viscous damping above the electroweak scale

For temperatures T & mW , the electromagnetic and weak interactions are comparable

and the neutrinos cannot decouple. Therefore, at temperatures above the electroweak

scale T & 100 GeV, free streaming does not dominate viscous dissipation in the standard

model. Thus, the viscosity is dominated by collisions due to the electroweak interaction

in the symmetric phase. The comoving viscosity is (Arnold et al. 2000)

ν = 5335

2a(T )π4
1

9π2 + 224(5 + 1
2)

1
g′4 log

(
1
g′

) , (4.17)
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where g′ is the electroweak coupling constant and g′2 ∼ α around the electroweak scale.

In general the viscosity is of the order g−4. Further, the above viscosity is comparable

to the neutrino free streaming viscosity at T ∼ 50 GeV.

4.2.4 Resistive damping

In contrast to the viscosity in the early universe, the resistivity does not vary as substan-

tially as the viscosity and remains only relevant on small scales k � H(T ) and/or for

small field strengths. Prior to the QCD transition but after the electroweak transition

at 100 GeV& T & 100 MeV quarks and leptons contribute to the conductivity, while

at smaller temperatures T & 1 MeV electron-positron pairs and protons (negligibly)

contribute. However, due to the strong interaction the impact of quarks on the conduc-

tivity is less relevant compared to the leptons even above the QCD scale. For T . 1

MeV, the residual electrons provide the conduction. At even higher higher temperatures

T & mW ≈ 80 GeV, the W± bosons contribute to the conductivity and above the elec-

troweak symmetry breaking temperature, the conductivity depends on the electroweak

interaction. Since the viscosity significantly dominates, the precise details of the resis-

tive damping are less important and hence we focus on a simplified approximation for

the conductivity. The physical conductivity can be estimated as

σ ∼ ne2τc
T

, (4.18)

where τc is the physical collision time, q is the charge and n is the physical number

density of particles involved in the collisions (Banerjee & Jedamzik 2004, Baym &

Heiselberg 1997). The collision time can be estimated as τc ∼ 1/(nσt), where the cross

section is approximately given by

σt ∼
(
e2

T

)2

log ΛC , (4.19)
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where ΛC is the Coulomb logarithm. Thus, the physical conductivity can be approxi-

mated as

σ ∼ T

e2 log ΛC

(4.20)

and it is independent of the density. Then, the comoving resistivity is

η ∼ α log ΛC

4πaT (4.21)

for T & me and α = e2 is the fine-structure constant and the Coulomb logarithm can

be estimated as ΛC ∼ α−1. Therefore, the comoving resistivity is nearly constant for

mW & T & me except for variations of ΛC and variations in g(T ). For non-relativistic

charged particles T < mi the above estimate is not applicable and the conductivity is

given by the Drude model. In particular, in (4.18) T is replaced by me, similarly σt is

adjusted. Therefore, for T . me one finds (Banerjee & Jedamzik 2004)

η ≈ ne

XeηB
√
n2
e + n2

pair

α log ΛC

4πame

(
πme

2T

)3/2
(4.22)

where the prefactor ∝ ne appears due to the reduction in the ionization degree with

ΛC ∼
1

6
√
απ

√
m3
e

ne

T

me

, (4.23)

where ne is given in (4.13) for T � me. In the next subsection we look at the respective

Reynolds numbers e.g. at the comoving horizon scale for v = 1, as these represent the

maximally relevant Reynolds numbers.

4.2.5 Cosmological Reynolds numbers

In the previous subsections we discussed the relevant viscosities and the resistivity in

the very early universe, now we look at the Reynolds numbers in the early universe,

some particularly relevant scales are v = 1 and the cosmological horizon. We also

partly summarize the previous subsections. The physical cosmological horizon at a
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given temperature can be estimated as

dH,ph ≈
(

MeV
T

)2 (
g0

g

)1/2

1021MeV−1 ≈
(

MeV
T

)2 (
g0

g

)1/2

2 · 105 km, T � 1 eV.

(4.24)

This scale is considerably larger than the inverse temperature and thus implicates gen-

erally quite large Reynolds-numbers, as long as decoupling is negligible. Furthermore

the comoving (today) horizon scale is

dH ≈
MeV
T

(
g0

g

)1/6

5 ·1030MeV−1 ≈ MeV
T

(
g0

g

)1/6

30 pc = 1 MeV
T

(
g0

g

)1/6

3 ·109 Hz−1,

(4.25)

for T � 1 eV. Then, we can calculate the cosmological relevant Reynolds-number and

these are shown in figure 4.3. In principle, in a turbulent system the relevant Reynolds

number will always be smaller, even if the initial state is a turbulent flow with v = 1

and kI ∼ H, due to turbulent energy transport. Technically, as a consequence of free

streaming the relevant Reynolds number can be more complicated on scales smaller

than the largest relevant mean free path of some coupled particle species. In such a

case a larger Reynolds-number corresponding to the next largest mean free path in

the fluid is relevant or a Reynolds number related to the free streaming coefficient α.

However, we expect that processes on scales smaller than the largest relevant mean

free path are irrelevant for the evolution of the large scale magnetic fields and phase

transition remnants. As one can clearly see, resistive damping is mostly negligible

compared to viscous dissipation and at high temperatures T & 1011 GeV both Reynolds

numbers increase with temperature and the Prandtl number is near constant. In fact,

the conductivity scales as σ ∝ g−2T−1 and the viscosity as g−4T . Therefore, Pm∝ g−6

(Durrer & Neronov 2013) at high temperatures and it primarily depends on variations

in the coupling strength and variations in the relevant species, e.g. quarks do not

contribute significantly due to the strong interaction, yet become more relevant at higher

temperatures e.g. at a potential GUT scale. Below the electroweak scale, the viscosity

increases considerably as the neutrinos begin to decouple from the rest of the fluid,
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Figure 4.3: Magnetic (solid black) and kinetic (blue dashed) Reynolds-numbers and Prandtl number
(red dotted) for v = 1 and L = dH (see (4.25) plus deviation in matter dominated phase), i.e. the
maximally possible Reynolds numbers. The viscosity is given by (4.15), (4.10) and (4.17) and the
resistivity is given by (4.22) with additional coefficients (O(1)) given in (Baym & Heiselberg 1997).
For T & 50 GeV, Rem ∝ Re and for 1 MeV. T . 50 GeV neutrino free streaming dominates. In the
temperature range 20 keV. T . 1 MeV electron positron pairs are annihilated and photon decoupling
dominates the viscosity and at around T ∼ 0.3 eV the plasma recombines with a residual ionization
Xe ∼ 10−4. Note, that for all temperatures in the radiation dominated phase Pm� 1. Also, the
transition at T ∼ 1 MeV is in reality not a step function and the variations in g(T ) are also not
instantaneous. Similarly, the bump in conductivity at T ∼ 1 MeV is an artifact of the modeling,
which in by itself is not critical for the following calculations since Pm� 1. Additionally, we did not
include ambipolar and hydrogen diffusion which becomes important after photon decoupling (Banerjee
& Jedamzik 2004).
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yet the neutrinos do not contribute to the conductivity and hence it is not affected by

the decoupling. At around T ∼ 1 MeV electrons and positrons annihilate leading to a

decrease in the density of charged particles and thus a reduction in the conductivity.

Similarly, the viscosity, which is now dominated by free streaming photons after the

neutrinos have fully decoupled, increases as the photons can diffuse over longer distances

due to a decrease in the number of Compton scattering events. After the pairs are

annihilated, the conductivity grows again and only falls slightly after recombination,

while the viscosity increases until the photons have decoupled at T ∼ 0.3 eV. Around

this time, at T ∼ 1 eV, the universe transitions into the matter dominated phase,

which we briefly discuss later on. The charged particles that sustain the magnetic

field do not fully recombine and a residual ionization remains until reionization, due

to star formation, where the universe becomes strongly ionized again, which is roughly

indicated by the still large magnetic Reynolds number at T . 0.3 eV (Peebles 1994).

Similarly, after recombination and prior to reionization viscous and resistive damping are

dominated by ambipolar and hydrogen diffusion of free electrons and protons, and the

Reynolds number increases again potentially allowing turbulent transport on certain

scales (Banerjee & Jedamzik 2004) (not sketched in figure 4.3). In principle, in a

turbulent system the relevant Reynolds number will always be smaller than those shown

in figure 4.3, even if the initial state is a turbulent flow with v = 1 with kI ∼ H due

to turbulent energy transport. Technically, due to free streaming this can be even

more complicated, as on scales smaller than the largest relevant mean free path, free

streaming and/or the next largest mean free path of some particle species determines the

Reynolds number. However, we expect that processes on scales smaller than the largest

relevant mean free path are irrelevant for the evolution of the large scale magnetic fields

and phase transition remnants (neglecting topological defects). In the next section, we

discuss how the matter dominated phase will impact the evolution of large scale MHD

turbulence.
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4.3 Impacts of matter dominated phase on the Evolution

of primordial magnetic fields

MHD turbulence evolves differently in the matter dominated phase than in the radiation

dominated phase. For example τ ∝ a in the radiation dominated phase, while τ ∝ a1/2

in the matter dominated phase. Additionally, the equations describing the evolution of

a cosmological fluid differ in the matter dominated phase from those in the radiation

dominated phase and an additional Hubble drag term appears in the velocity equation

Hv that damps fluctuations on large scales. Therefore, the velocity for which no drag

term appears now corresponds to ṽ ∝ av and is no longer constant with respect to the

background evolution. Due to this, turbulent transport is less efficient in the matter

dominated phase compared to the radiation dominated phase. Moreover, density fluc-

tuations lead to gravitational potential fluctuations and clustering, since the pressure

is significantly smaller, which is responsible for structure formation: stars, galaxies,

galaxy clusters (Peebles 1994). The resulting formation of stars leads to a reionization

of the universe and can help sustain relatively strong magnetic fields potentially even on

large scales. Also, a causal magnetic field spectrum will have an effective eddy turnover

rate of kIb(kI) ∼ H after recombination, due to viscous decay and energy transfer,

and thus the non-linear evolution will be strongly affected by the Hubble drag term,

as the rates are of the same order. As before kI ṽ(kI) ∝ τ−1, but with ṽ rather than

v and specifically kIv(kI) ∝ (aτ)−1 which grows faster than the corresponding Hubble

rate. Thus, the turbulent transport on these large scales for causally produced primor-

dial magnetic fields appears negligible. Consequently in the matter dominated phase,

primordial MHD turbulence is expected to barely evolve. Nonetheless, viscous and re-

sistive effects can play an important role. After recombination ambipolar diffusion, i.e.

the diffusion of electrons through the slightly ionized medium, and hydrogen diffusion

dominate resistive and viscous damping respectively prior to reionization (Banerjee &

Jedamzik 2004). In particular for weak magnetic fields ambipolar diffusion may be an

important source of magnetic dissipation. Here we do not focus on these cases and
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hence neglect ambipolar diffusion and and for the previously discussed reasons only fo-

cus on the radiation dominated phase. Since the magnetic energy scales like radiation,

we also have b ∝ a−1/2 in the matter dominated regime, i.e. the Alfven velocity of the

magnetic fields that evolved till the matter radiation equality are further reduced by a

factor a1/2
eq ∼ 1.7 · 10−2. In principal one may also express the Alfven velocity of pri-

mordial magnetic fields simply in terms of the radiation energy density. To summarize,

the evolution of MHD turbulence on the largest scales in the matter dominated phase

should be rather simple and mostly corresponds to near frozen-in turbulence for suffi-

ciently strong magnetic fields. The evolution of MHD turbulence on small CMB scales

will be more complicated as a result of structure formation. Since b2 nearly constant

(energy conservation) due to gravitational collapse, the magnetic field strength grows as

B ∝
√

1 + δ, where δ is the the collapsing density perturbation δ � 1. These initial pri-

mordial seed fields or battery post-recombination batteries (Takahashi et al. 2005) can

thus be responsible for providing the seed fields of galaxies, that are further amplified by

a dynamo (Kulsrud 1999a). Particularly around and after reionization these structures

can act as a source of magnetic fields and may dominate the magnetic field spectrum at

smaller scales. Also, strong magnetic outflows from active galactic nuclei may also be

present (Hoyle 1969, Daly & Loeb 1990). Furthermore, cosmic ray currents may source

and sustain even substantial intergalactic magnetic fields (Miniati & Bell 2011). In the

next section we discuss on established constraints on large scale magnetic fields in the

present universe.

4.4 Constraints

As we have mentioned before, some correlated magnetic fields should be present on

all causally possible scales or even beyond on seemingly acausally correlated scales for

inflationary magnetogenesis. However, thus far there is, to our present knowledge, no

confirmed detection of cosmological large-scale inter-galactic magnetic fields (IGMF),

yet their strength can be constrained (Durrer & Neronov 2013, Subramanian 2016). For

a good overview on present constraints see also (Subramanian 2016, Table 1). Direct
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detections or estimates of IGMF so far are not possible as there are many effects that can

mimic the effects of IGMF and a sufficient distinction is as of yet not possible. Secondly,

even a direct detection of an IGMF would not directly allow, at least at the present,

to distinguish its origin. On very small scales IGMF are dissipated due to resistive

damping, while above the horizon an observation of super horizon correlations is not

possible and any superhorizon magnetic field would appear as a nearly homogeneous

background field that introduces a preferred direction and would be a clear indication of

an inflationary sourced magnetic field. In between these scales, experiments to constrain

IGMF are required to assess the potential strengths of primordial magnetic fields, if

possible.

Some of the most important processes for constraints on these magnetic fields are

Zeeman splitting, Faraday rotation and synchrotron radiation. Moreover, several cos-

mological key observables like the CMB are also affected by primordial magnetic fields

and their presence would produce signatures in the CMB. Additionally, charged par-

ticles, in particular cosmic rays, are directly affected by cosmological magnetic fields.

Typically, magnetic field strengths are not expressed in natural units and not in terms

of the present day Alfven velocity, which we generally use here, but rather in terms of

the often for magnetic fields used unit Gauss

B(k) ≈ b(k)
√

4πρb = b(k)10−4 G, (4.26)

where we used h2Ωb = 0.0224 (Planck Collaboration et al. 2018). Note that with respect

to the Alfven velocity at mater radiation equality one effectively finds

B(k) ≈ beq(k)
√

4πρr ≈ beq(k)1.72 · 10−6 G. (4.27)

First we look at the impact of magnetic fields on atomic emissions in particular the

Zeeman effect.



4 CHAPTER 4. MAGNETOGENESIS AND DISSIPATION IN THE EARLY
UNIVERSE 110

4.4.1 Zeeman Effect

The Zeeman effect describes the split of an atomic transition into distinguishable sub-

states depending on the magnetic field strength and magnetic moment of the atom.

Then, the energy levels change, depending on the spin and angular momentum of the

electron in the atom, linearly dependent on ∆E ∝ B, where the proportionality factor

is known and it depends on the angular momenta and spins. The most common element

in the universe is atomic hydrogen. Due to the primordial density perturbations, the

atomic hydrogen collected into clouds. If the cloud of atomic gas can substantially

contract, hydrogen molecules can form (Peebles 1994, Loeb & Furlanetto 2013). This is

possible if the gas does not have a too large angular momentum and the gravitational

attraction can overcome the pressure of the gas. The formation of stars, produces

ionizing radiation that can ionize these atomic clouds. However, dust can shield the

outer regions of large atomic clouds and can suppress a substantial ionization of these

clouds. One generally finds that the intergalactic medium was not fully reionized till

around z ∼ 6 (Becker et al. 2001). Additionally, as mentioned, in higher density regions

hydrogen is primarily present as molecular hydrogen H2. Yet, stars do not only produce

ionizing but also molecular dissociating radiation which can keep the clouds atomic.

Furthermore, H2 molecule dissociating radiation has an energy level ∼4.5 eV that is

below the Gunn-Peterson trough & 10.2 eV and hence can only be shielded against in

high density H2 clouds (Stecher & Williams 1967). Stars with a hot spectrum, i.e. blue

stars (massive stars or white dwarfs) produce more ionizing radiation 13.6 eV∼ 105K

than red stars (low mass to average or old stars), that produce considerable dissociating

radiation (Kaufmann 1991). These atomic low density clouds are particular of interest

as the atoms can remain substantially long in the ground state, assuming the gas had

enough time to cool, or the gas has a temperature T . 8000K upon formation. Such

clouds can exist in the ISM at present (Cox 2005), the IGM at high redshift and still also

in the present IGM in high density regions where sufficient shielding is possible. In that

case, a transition between the spin up and down state of the bound electron becomes

likely in cold atomic hydrogen clouds, which produces radiation with a narrow line at
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21 cm, the so called 21 cm line. However, a red-shift due to cosmic expansion leads

to a decrease of the energy and thus making the assessment non-trivial. The Zeeman

effect specifically splits the degeneracy of the different hyperfine-structure transition,

which can be analyzed in the frequency difference of right and left handed polarized

photons (Wolfe et al. 2008) . Due to the additional information from shifts in the

polarization, the redshift can be distinguished from the Zeeman effect. This method led

to an observation of fields strengths of about 10−4 G in atomic clouds, which are also

present in the inter-galactic medium (IGM) (Wolfe et al. 2008) and hence stronger large

scale fields in the IGM are excluded, due to non-observation. Note that the Zeeman

effect can only tell us something about the field-strength in the respective gas cloud but

it cannot provide information about the integral scale of magnetic field and its origin,

yet we can at least infer that large scale coherent IGMF have at most a field strength

of 10−4 G.

4.4.2 Faraday-Rotation

Another important signature of magnetic fields is Faraday rotation. Photons that pass

an ionized medium that is imbued by a magnetic field will undergo a change in their

polarization. Note, that this is only relevant if the light has a non-vanishing average

polarization. One very important source of polarized light in the universe are blazars

(Angel & Stockman 1980), i.e. active galactic nuclei that emit a jet of highly energetic

particles in our line of sight. These accelerated particles emit polarized photons due to

synchrotron radiation in the magnetic field of the AGN/jet. Faraday rotation differs

from Zeeman splitting in the way it can be used to constrain magnetic fields, since

the degree of Faraday rotation depends on the distance the photon travels through the

coherently magnetized medium. The degree of rotation of the polarization corresponds

to the rotation measure (Durrer & Neronov 2013)

RM = e3

2πm2
e

∫ L

0
ne(l)B‖(l)dl, (4.28)
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where B‖ is the comoving line of sight magnetic field strength and the angle of the

rotation is λ2RM, where λ is the wavelength of the rotated photon (Durrer & Neronov

2013). Then, one needs to look at several wave-lengths to extract the initial polarization

of the light. An estimate of the magnetic field strength is in generally not straightforward

possible, as the free electron density in the region of interest is unknown and may vary

strongly over the line of sight. A first order estimate for the electron density is the

average free electron density in the universe and this leads to present constraints of

B . 2 · 10−9
(

l

dH,ph

)−1/2

G, (4.29)

where l = 2π/k is the correlation length (Blasi et al. 1999, Durrer & Neronov 2013).

Then, one may also look at other signatures that can be used to estimate the charged

density variations in the IGM. Of particular interest is the Lyman alpha forest. As

discussed before in the universe there are many hydrogen clouds are present. Cold

atomic hydrogen gas clouds emit the 21 cm line, yet in warm or hot atomic hydrogen

gas louds other quantized transitions dominate, particularly the Lyman alpha transition.

The Lyman alpha transition is a sign of a warm hydrogen gas cloud, where the variation

of the line position allows an estimate of the distance towards a given gas cloud and the

intensity of the line allows an estimate of the density and hence a more precise estimate

of the free electron density (Blasi et al. 1999), that imply slightly tighter constraints at

small scales. These estimates have been further improved with more modern simulations

and the constraints became tightened to around 0.65 nG at the horizon and 1.7 nG at

a Mpc scale (Pshirkov et al. 2016). Additionally, the magnetic field in more dense

structures like gas clouds and/or galaxies may be significantly stronger than the IGMF

in low density regions, which also would have to be effectively accounted for. Another

important problem is that the galactic magnetic fields leads to a significant rotation

measure itself that can overshadow IGMF, due to the much larger electron densities

even though the relevant distances may be considerably smaller. In theory a subtraction

of the rotation measure by the galactic magnetic field may suffice to get an improved

estimate of the extragalactic component to the rotation measure, yet the models of the
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cosmological magnetic field still require considerable improvement (Jansson & Farrar

2012a, Jansson & Farrar 2012b). In principle Faraday rotation measurements from

discrete sources like a blazar can be cross-correlated with the observation of synchrotron

emission, that scale with B2 from diffuse sources, e.g. cosmic rays that propagate

through a magnetized medium, to estimate the strength of intergalactic magnetic fields

(Lazarian & Pogosyan 2016, e.g.).

4.4.3 CMB

The CMB is still the best testing bed for pristine signatures of the very early universe.

And as such, CMB observations allow constraints on primordial magnetic fields (Durrer

2007, Shaw & Lewis 2012). Magnetic fields impact the CMB in several different ways,

first magnetic fields source velocity (especially vorticity) and density fluctuations in

the CMB at smaller scales and the turbulent evolution also sources thermal energy

due to viscous dissipation. Also, primordial density fluctuations are nearly Gaussian

distributed, yet magnetic fluctuations source non-Gaussianity in the density correlation

functions. Moreover, magnetic fields also change the polarization of the CMB due to the

aforementioned Faraday rotation. Furthermore, spectral distortions i.e. deviations of

the CMB from a black body are driven by primordial magnetic fields and a shift of the

acoustic peaks in the CMB, corresponding to a change of the effective speed of sound

due to the Alfven velocity c2
s → c2

s + b2, are a consequence of primordial IGMF. One

of the most well studied CMB observables are anisotropies in the temperature auto-

correlation function. The maximal size of the temperature anisotropies ∆T ∼ 10−5T

can then be used to constrain magnetic fields, as these also produce anisotropies in the

CMB and corresponds to 4.27

∆T
T

& 10−5
(

B

10−7G

)2
, (4.30)

since b & 1 corresponds to ρB & ργ. Note that this estimate is only of relevance on

scales above the Silk damping scale ∼ 1 Mpc. Therefore, the CMB allows to easily set

constraints on large scale intergalactic magnetic field at a level of 10−8−10−9 G. Another
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type of constraint comes from correlations that involve polarization of the CMB. Due

to temperature anisotropies and Thomson scattering, the CMB develops so-called E-

modes (linear polarization) at the 10% level of temperature anisotropies (Rees 1968). Of

particular interest for magnetic fields are the so-called B-modes (circular polarization)

e.g. as produced by Faraday rotation. There are many other astrophysical sources

of CMB B-modes e.g. dust re-emission, gravitational lensing and gravitational waves,

that also need to be taken into account. Temperature and Polarization data together

provide at present constraints for magnetic fields B(1 Mpc) . 2 · 10−9 G on Mpc scales

(Planck Collaboration et al. 2016, Sutton et al. 2017) based on data provided by the

Planck satellite and BICEP2 / Keck Array. Present continuing and near-future CMB

polarization observations are expected to provide tighter constraints by factors of 2−10

(Sutton et al. 2017). Those analysis are generally based on two point functions, yet one

can also look at the theoretical imprint of primordial magnetic fields in higher order

CMB correlation functions. In particular, a study of three point functions provides

slightly stronger constraints of B . 0.6 G (Trivedi et al. 2014). For specific models

i.e. specific power laws of the magnetic auto correlation function, the above constraints

become even tighter.

4.4.4 Gamma Rays

Gamma-ray astronomy may be able to already detect the presence of IGMF and thus

provide lower limits on the strength of IGMF (Neronov & Vovk 2010, Durrer & Neronov

2013). Again, one of the objects of major interest are blazars. The high energy photons

produced by the blazar will interact with the lower energy photons that constitute

the extragalactic background light and can produce a charged secondary emission of

highly energetic e+e− pairs (Gerasimova et al. 1962). These electron and positrons will

predominantly move in the same direction as the incident high energy photon, if no

magnetic fields are present. In a magnetic field, electrons and positrons are deflected

and the beam essentially broadens. Furthermore, these charged particles also up-scatter

photons via inverse Compton scattering to higher energies, which should produce a
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significant flux of GeV photons. Hence the non-observation of a correlated beam of

GeV photons from a blazar that emits TeV photons indicates that either due to some

mechanism the up-scattering of GeV photons is suppressed or that a sufficiently strong

magnetic field is present which deflects the electrons and positrons sufficiently such

that the photons are up-scattered in a more broader region, such that the Fermi space

telescope can no longer detect the respective flux. Then, the angle over which no

sufficient strong flux was detected (i.e. the telescope aperture and sensitivity) gives an

lower limit on the strength of large scale magnetic field B & 10−16 G (Taylor et al. 2011)

or even lower corresponding to more conservative assumptions B & 10−19 G (Finke et al.

2015) on Mpc scales. The key assumption is that the electron positrons pairs primarily

cool by upscattering CMB photons, however instabilities in the plasma may provide a

more effective energy loss mechanism (Broderick et al. 2012, Schlickeiser et al. 2012).

These instabilities however may not become substantially important for cooling and

depends strongly on the angular momentum and energy distribution in the e+e− beam

(Miniati & Elyiv 2013, Durrer & Neronov 2013, Kempf et al. 2016). Thus the lower

constraints are thus far still contested. There are other observations that are related

to those gamma ray observations that also indicate the presence of helical primordial

magnetic fields (Tashiro et al. 2014, Chen et al. 2015) with B & 10−14 G at 10 Mpc

scales based on three-point functions of γ-ray arrival directions. At smaller scales, these

constraints become even tighter roughly scaling with k−1
I .

4.4.5 Potential future constraints

In the near or not-so-distant future, gravitational waves and an extragalactic cosmic ray

source and composition identification may open up new avenues to constrain causally

generated primordial magnetic fields. At present gravitational waves can already con-

strain inflationary magnetogenesis (Barrow et al. 1997, Caprini & Durrer 2002) based

on nucleosynthesis constraints on the energy density parameter of gravitational waves

(Kernan et al. 1996). There are currently two classes of detectors or surveys that either

already detected or are expected to detect gravitational waves. Earth based detectors
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have gained particular attention as these led to the first detection of gravitational waves

in a frequency window of 10− 104 Hz and the observation of a black hole merger event

(Abbott et al. 2016). In the future an array of pulsars that is monitored by present

and future earth based radio telescope, which observe correlations in the variations of

arrival times of the pulsed light from pulsars (Verbiest et al. 2016, e.g.), is expected

to detect gravitational waves at nHz frequencies (Bonetti et al. 2018), which may also

provide constraints on first order QCD phase transitions and related magnetic fields

(Caprini et al. 2010). However in the future another class of gravitational wave ob-

servatories, space based detectors, may become available. Of particular interest is the

planned detector LISA that could observe gravitational waves in the frequency range

10−4− 10−1 Hz, as these may constrain gravitational waves from first order phase tran-

sition at T ∼ 10 GeV to T ∼ 10 TeV (see (4.25)), which also include electroweak phase

transitions (Caprini et al. 2016, Amaro-Seoane et al. 2017). In the far future µHz grav-

itational waves may also become observable (Sesana et al. 2019) and provide a window

in between the QCD and electroweak transition and may also be of interest for strong

helical magnetic fields from an electroweak transition as we discuss in subsection 5.2.2.

Another interesting prospect for constraints on IGMF are cosmic rays. The deviation

of the arrival direction of cosmic rays from their source may be used to constrain in-

tergalactic magnetic fields, yet a substantially certain source identification is not yet

possible. However, cosmic rays may already provide constraints which are comparable

to the CMB constraints (Bray & Scaife 2018) based on potential source identification

due to correlations between the anisotropy in the arrival directions of cosmic rays and

extragalactic objects (Aab et al. 2018).



5 | Evolution of primordial magnetic fields

and associated gravitational waves

So far, we have discussed and derived the basic equations that describe MHD turbu-

lence (primarily incompressible) in the early universe and the generation of gravitational

waves by MHD turbulence. Now, we will present and discuss solutions to those equa-

tions. First we take a look at the EDQNM equation and thereafter we look at the

simulated gravitational wave spectra.

5.1 Solutions to the EDQNM equations

Here we discuss solutions of the previously discussed EDQNM equations for different

initial conditions. We solve the equations on a logarithmic grid and in a manner that

ascertains near numerically total energy, cross and magnetic helicity conservation in the

nonlinear component of the evolution equations. Nonetheless, numerical problems led

us to introduce a routine which in general does violate said evolution at some occasions

(see section B.3). For details on the numerical treatment, we refer to the appendix B.

One general thing to note is that we introduce an additional viscous damping term to

speed up the computation and it fixes the inertial maximal length of the inertial to

around three orders in magnitude, for details have a look at the section B.3. Otherwise,

we will only briefly discuss aspects of the numerical approach here. First we look at the

special case of a mirror-symmetric system i.e. all helicities vanish.

117
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5.1.1 Reflectional-Symmetric MHD

For non-helical MHD, the EDQNM equations (3.75),(3.76), (3.77) and (3.78) greatly

simplify and one finds for (3.75)

[
∂τ + 2ν+k

2
]
E(k) = 1

2

∫ ∞
0

dq
∫ k+q

|k−q|
dpγ(k, q, p, τ)k2qp

[
Λ1(k, q, p)Ẽ(p)Ẽ(q)

− Λ2(k, q, p)ẼR(p)ẼR(q) + Λ3(k, q, p)ẼR(p)ẼR(k)− Λ4(k, q, p)Ẽ(p)Ẽ(k)

− Λ3(k, q, p)ẼR(q)Ẽ(k) + Λ2(k, q, p)ẼR(k)Ẽ(q)
]
− 2ν−k2ER(k). (5.1)

For 3.76 one finds for non-helical systems

[
∂τ + 2ν+k

2
]
ER(k) = 1

4

∫ ∞
0

dq
∫ k+q

|k−q|
dpγ(k, q, p, τ)k2qp

[
2Λ1(k, q, p)ẼR(p)ẼR(q)

− 2Λ2(k, q, p)Ẽ(p)Ẽ(q) + 2Λ3(k, q, p)ẼR(p)Ẽ(k)− 2Λ4(k, q, p)ẼR(k)Ẽ(p)

− 2Λ3(k, q, p)ẼR(q)ẼR(k) + 2Λ2(k, q, p)Ẽ(k)Ẽ(q) + 2Λ5(k, q, p)H̃(p)H̃(q)

+ 2Λ8(k, q, p)
∑
±
H̃(k)H̃(q)

]
− 2ν−k2E(k). (5.2)

Lastly, for 3.77 one finds for parity invariant MHD turbulence

[
∂τ + 2ν+k

2
]
H(k) = 1

2

∫ ∞
0

dq
∫ k+q

|k−q|
dpγ(k, q, p, τ)k2qp

[
2Λ9(k, q, p)Ẽ(p)H̃(q)

− Λ4(k, q, p)H̃(k)Ẽ(p)− Λ3(k, q, p)ẼR(q)H̃(k)− Λ8(k, q, p)ẼR(k)H̃(q)
]
, (5.3)

where we have fixed E = E+ = E−, HR = 0 and H = H+ = −H− and the Λi are given

in (3.79). Note that these choices are self-consistent e.g. ∂τHR = 0. The rate of change

of the total cross scalar in the ideal case is

∫ ∞
0

dk
k

∂H

∂τ
=1

2

∫ ∞
0

dk
k

∫ ∞
0

dq
∫ k+q

|k−q|
dpγ(τ, k, q, p)k2qp

[(
2Λ9(p, k, q)

− Λ4(k, p, q)
)
Ẽ(q)H̃(k)− (Λ3(k, q, p) + Λ8(q, k, p)) ẼR(q)H̃(k)

]
. (5.4)
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Furthermore,

∫ k+q

|k−q|
dpp (Λ3(k, q, p) + Λ8(q, k, p)) ≤

∫ k+q

|k−q|
dpp (2Λ9(p, k, q)− Λ4(k, p, q)) ≤ 0, (5.5)

for all k, q, which indicates that for ER ≤ 0 (magnetic domination), the cross scalar

only decays. Note, that a significant absolute cross scalar is only possible for near

equipartition |ER| � E. Generally, one also has |ER(q)| ≤ E(q) meaning the cross

color, with the same sign on all scales, is also likely to undergo decay in many cases,

although a generation of the cross scalar is possible. Therefore, at least within the

context of the EDQNM approximation any stochastic alignment between the current

and velocity field decays and hence in non-helical incompressible MHD there is no

growing mode for the total cross-scalar. Hence, one expects that non-helical turbulence

with and without some initial cross-scalar in particular in system with Pm� 1 should

evolve without any considerable difference, as the cross scalar is expected to decay.

Furthermore, the cross scalar only directly impacts the energy difference but not the

total energy as it does not explicitly appear in (5.1). However, it should be noted that

the above argument is not directly applicable when the cross-scalar spectrum is more

complicated e.g. when it has multiple roots. For the simulation we generally use an

initial spectrum of the type

f(k) = C
kn

a+ knb
e−k/kd , (5.6)

where we choose a = (nb − n)/n, while the value of C depends on the initial total

energy chosen and we generally set kd = 10kI as the integral scale. For the kinetic

and magnetic energy we generally choose nb/2 = n = 5 and for the cross scalar we set

n = 6 and nb = 11. The choice of the already initially chosen large scale tail is based

on the discussion in subsection 3.4.4. For example a initial choice of n = 5 for the

cross scalar is not justifiable based on turbulent non-linear evolution alone. Table 5.1

shows the different mirror symmetric scenarios that we discuss here, where an energy of

0.1 corresponds to a velocity of ∼ 0.4. These parameters are chosen to represent some
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ID v2/2 b2/2 λJ
S1 0.1 0.1 0
S2 0 0.1 0
S3 0.1 0.1 0.9

Table 5.1: Reflection-Symmetric Scenarios: The value λJ denotes the amount of cross-scalar by a
constant ratio as defined in (3.16), and v2/2 and b2/2 are the total kinetic and magnetic energy that
is initialized. We use as initial condition (5.6) with n = nb/2 = 5 for the cross scalar n = 6 an nb = 11
and hyperviscous damping as described in appendix B.3.

rather extreme scenarios. The simulations are initialized at T = 150 GeV, which reflects,

up to a factor of O(1), typical electroweak phase transition scales. Furthermore, we

assume here an initial integral scale of LI = 0.3dH(150 GeV). Therefore, these scenarios

correspond to a phase transition with vw ∼ cs, α ∼ 0.2 − 0.3 and β−1 ∼ LI . We

integrate the system up to around a temperature of T ∼ 1 eV corresponding to matter-

radiation equality. Additional, all energy densities and topological quantities plotted are

dimensionless comoving quantities (c2 = 1), as defined in section 3.1. First, in figure 5.1

we show the evolution of the system S1 (see table 5.1). Initially the turbulent energy

spectra develop a near-Kolmogorov spectrum with a spectral index of −0.63 to then

undergoes more significant decay at T . 100 MeV until turbulent transfer of magnetic

to kinetic energy is suppressed due to the expansion. Here, the maximal length of

the inertial range is limited by the introduction of an additional damping term, that

allows reduces the range of scales we would otherwise have to take into account and

also reduces the integration time significantly. The kinetic energy at T = 3 MeV shows

the transition between the free-streaming and dissipative regime, where at larger scales

kinetic energy is still dissipated while at smaller scales kinetic energy is re-excited by

the magnetic field in the free-streaming regime, which leads to the reemergence of an

inertial range. For T . 10 keV, photon decoupling sets in and at around T . 10 eV,

prior to matter-radiation equality and last scattering, turbulence may restart again.

Note that the MHD spectra will undergo further evolution. As can be seen in figure 4.3

Rem ∼ 1013 with v = 1 and L = dH . Here we have b ∼ 10−6 and LI/dH ∼ 10−7, which

means that Rem(b, kI) ∼ 1 at recombination. Taking (4.27) into account, the range
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Figure 5.1: Evolution of a magnetic field spectrum sourced at T = 150 GeV with an equipartition
between kinetic and magnetic energy (solid lines) corresponding to S1 in table 5.1, where the color
black represents the kinetic spectrum, while the color grey represents the magnetic energy spectrum.
The spectra are shown for T = 90 GeV (short dashed), T = 50 GeV (dotted), T = 15 GeV (long dashed
dotted), T = 1.5 GeV (long dashed double dotted), T = 75 MeV (long dashed), T = 3 MeV (triple
dotted), T = 10 keV (short dashed dotted) and T = 2 eV (short double dashed). The x-axis denotes the
comoving wave-number (today) and the y-axis the energy spectra in units 1/2. Hyperviscous damping
B.3 limits the inertial range in the high temperature regime to around three orders of magnitude in k.
The inertial range scaling differs slightly from Kolmogorov’s −2/3 law and has an effective power law
index of −0.63. At around T ∼ 100 MeV to T ∼ 1 MeV neutrino decoupling impacts the evolution,
while at temperatures T . 10 keV photon decoupling becomes relevant and at a T ∼ 1 eV turbulence
may reemerge on smaller scales. In this particular case, magnetic dissipation will become important
after recombination and the peak of the spectrum will be dissipated by resistive damping, yet this is
not of importance for the large scale tail at Mpc or even kpc scales.

where magnetic dissipation may be important, prior to reionization, for electroweak

seeded magnetogenesis is roughly B(kI) . 10−13G. This means that the last spectrum

shown at T ∼ 2 eV does not correspond to the present day spectrum, however the large

scale component of the spectrum, should remain nearly constant, while other factors like

galactic magnetic outflows and cosmic rays may be of bigger importance at small scales

regardless. Next, in figure 5.2 we show in the left panel the evolution of an initially purely

magnetic system S2 and find no significant deviation from the scenario S1 other than a

slightly smaller amplitude, as there is overall less turbulent energy sourced initially. On

the right panel, we look at incompressible MHD turbulence with a non-zero cross-scalar
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Figure 5.2: Evolution of a magnetic field spectrum sourced at T = 150 GeV with only magnetic energy
according to S2 (left panel) and with an equipartition between kinetic and magnetic energy and a near
maximal purely positive cross scalar according to S3 (right panel) in table 5.1. On the left panel,
the color black represents the kinetic spectrum, while the color grey represents the magnetic energy
spectrum. On the right panel the color blue represents the absolute value of the cross scalar spectrum
and the other lines (thinner) are again the magnetic (grey) and kinetic energy (black) spectrum. The
spectra are shown at T = 90 GeV (short dashed), T = 50 GeV (dotted), T = 15 GeV (long dashed
dotted), T = 1.5 GeV (long dashed double dotted), T = 75 MeV (long dashed), T = 3 MeV (triple
dotted), T = 10 keV (short dashed dotted), T = 3 eV (short double dashed). Note, that the x-axis
denotes the comoving wave-number (today) and the y-axis the different spectra. Also, the inertial
range scaling of the cross scalar is k−1, which differs from the near Kolmogorov spectrum which is
still present for energy spectra. Moreover, the large scale tail of the cross scalar follows a k6 slope as
discussed in sub-subsection 3.4.4.

S3. In the incompressible parity-invariant QN MHD equations, the cross scalar remains

always 0 if the cross scalar spectrum vanishes at some point, thus the scenario with

non-zero cross scalar may lead to distinct properties in the evolution. Yet, there are no

relevant deviations and as discussed before, one generally expects that the cross-scalar

is simply dissipated. Due to neutrino decoupling most of the cross scalar spectrum

is dissipated at around T & 1 MeV, however the large scale component of the cross-

scalar drives the evolution of a small scale cross scalar in the free-streaming regime and

hence neutrino decoupling does not completely damp any initially present cross scalar

(see the cross scalar spectrum at T = 3 MeV), nonetheless it still undergoes significant

decay and is nearly completely dissipated prior to photon decoupling. Additionally,

the cross scalar spectrum shows a steeper inertial range spectrum with spectral index

∼ −1. Furthermore, there appears to be a very important deviation in the spectral

index of the large scale tail of the cross scalar spectrum. As discussed in subsection

3.4.4, the cross-scalar should develop a k6 large scale tail which appears to be the case
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for around three orders of magnitude in k, but at even larger scales a k5 spectrum

develops. This is a numerical artifact and has to do with an averaging procedure that

we employ to ascertain energy and helicity conservation in the numerical calculation

of the nonlinear component of the EDQNM equations. In particular, the difference in

scaling between the cross scalar and energy spectra at large scales is due to the fact

that the coefficients Λi, that appear in the cross scalar evolution equation, vanish at

the O(k2) level for terms like E(q)H(p) or O(k0) level for terms like E(k)H(q) only in

the p-integration. Whereas, for the energy integration this is not the case. Here, we

average over an allowed grid (k + q + p = 0) for different k, q, p prior to integration

over p with a logarithmic distribution of sampling points, as is discussed in detail in

appendix B. Then, it turns out that the averaged Λi do not exactly vanish at lowest

possible order in k, but a residual contribution due to the non-linear grid average leads

to the appearance of a k5 large scale tail for the cross scalar at large scales. Luckily

this does not appear to impact the overall evolution, so we do not devote any time

on resolving this issue. Also, at small scales for an inertial range with less than three

orders of magnitude in k, we do not expect this to be a problem for the turbulent small

scale evolution. Lastly, in figure 5.3 we look at the overall temporal scaling behavior of

the total turbulent energy (right panel) and the integral scale (left panel). Initially, the

integral scale increases rather quickly as the system settles into the self-similar phase.

Next, towards neutrino decoupling the integral scale freezes in. After the free-streaming

affects the turbulent spectra, i.e. LI � λmfp,ν another self-similar phase of turbulent

evolution begins. Thereafter at T ∼ 10 keV photon decoupling affects the turbulent

evolution. Photon decoupling leads to a significant deviation from the typical temporal

power law scaling, due to the fact that the relative growth of the free mean path of

photons is slower than that of the neutrinos. The turbulent spectra may still undergo

decay in photon freestreaming regime until the effective Lagrangian eddy turnover time

is compatible to the Hubble time. However, for the specific field strengths and integral

scale magnetic dissipation becomes of relevance around recombination for these cases,

as previously discussed. Regardless, the large scale tail of the spectrum will remain
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Figure 5.3: Evolution of total turbulent energy and integral scale, relative to the initial integral scale
e.g. at the phase transition, for the different scenarios S1 (red, dashed), S2 (blue, dotted) and S3 (dot-
dashed, grey) as represented in table 5.1 as a function of the temperature T . Note that the different
scenarios barely differ from each other. The power laws correspond to the scaling laws for the total
energy and integral scale as discussed in subsection 3.4.5 with γ = 0. The two plateau like phases
at T ∼ 10 GeV and 10 eV. T . 104 eV correspond to neutrino and photon decoupling respectively,
note that the respective phases remain slightly longer and primarily affect the turbulence due to free
streaming e.g. at T ∼ 10 eV. The overall evolution of the spectra is best described by γ ∼ 0.085−0.1 i.e.
a slight growth of the large scale tail. This corresponds to (γ = 0.1) E ∝ τ−1.4 and kI ∝ τ−0.3 rather
than power law indices of −1.429 and −0.286 (γ = 0) respectively. After last scattering turbulence
may be quickly reestablished and then frozen in due to ambipolar diffusion.

frozen and only the overall expansion is of interest. Overall, the energy loss rate τ−7/5

is slightly smaller than the often-discussed τ−10/7 scaling (see subsection 3.4.5). While

for the integral scale the scaling corresponds to τ 3/10 and is slightly faster than the τ 2/7

scaling. This corresponds to γ ∼ 0.1 in subsection 3.4.5. In summary, incompressible

MHD turbulence evolves effectively in only one very simple manner and other factors like

cross scalar or initial magnetic dominance do not impact the evolution in any relevant

way, except for minor initial variations. In the following subsection we discuss our

findings regarding helical MHD.

5.1.2 Helical MHD

In incompressible helical MHD, the overall system is more complex, not only due to

the fact that three more spectral functions are of interest, but specifically due to the

appearance of two more ideal invariants. These other topological measures may impact

how the cross scalar and the different energies evolve. In general, due to the conser-

vation of magnetic and cross helicity, one at least expects that there are also growing
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modes for the cross scalar present. Moreover, in ideal or Pm= 1 MHD one expects

that the conservation of cross helicity dominates that of magnetic helicity and the sys-

tem should hence at some time become trivial, i.e. the rates of change of the different

spectra should become negligible as soon as cross helicity attains its maximal value.

As is well known, the presence of magnetic helicity leads to a drastic change in the

large scale tail of the energy spectra, where turbulent energy is shifted to larger scales

(see 3.4.5). Another interesting quantity is the kinetic helicity, which is conserved in

ideal hydrodynamic turbulence. Kinetic helicity is one of the key components in the

generation and the sustaining of galactic magnetic fields by the so-called α-dynamo

(Parker 1970, Kulsrud 1999b). Consequently, it is also of interest to wonder and study

in what manner kinetic helicity may impact isotropic and homogeneous MHD turbu-

lence. Typical, kinetic helicity is expected to undergo a simple and direct cascade in

hydrodynamic turbulence, yet even there the properties of the specific spectrum may

lead to different behavior (Waleffe 1992). As already seen, in the previous section

neutrino decoupling damps cross scalar and hence it will also damp kinetic and cross

helicity, however turbulent processes can lead to a small cross and kinetic helicity being

present on smaller scales. Moreover, magnetic helicity can source kinetic helicity, if

none is present prior, while kinetic helicity also sources a non-trivial magnetic helicity

spectrum. Table 5.2 shows the key parameters for the different helical scenarios that

we will discuss here. As before, the simulations are initialized at T = 150 GeV with an

initial integral scale of LI = 0.3dH (150 GeV). We integrate the system up to around a

temperature of T ∼ 1 eV corresponding to matter-radiation equality. Here, we will only

look at some of these cases in detail and look at the other in terms of their temporal

scaling properties. In figure 5.4, we show an MHD system with magnetic helicity ac-

cording to H2 in table 5.2. On the left panel, one sees the evolution of the kinetic and

magnetic energy spectra. One key difference to the non-helical scenarios is a significant

shift of the large scale tail of the spectrum towards smaller k. This is an inverse cascade

and as discussed in subsection 3.4.5 occurs due to the conservation of magnetic helicity.

Thus, the large scale tail is effectively parallel shifted by four orders of magnitude in k
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ID v2/2 b2/2 λJ λK λB λC
H1 0.1 0.1 0 0.9 0.9 0
H2 0.1 0.1 0 0 0.1 0
H3 0.1 0.1 0 0 0.01 0
H4 0.1 0.1 0.4 0 0.4 0
H5 0.1 0.1 0.1 0.1 0.1 10−3

H6 0.1 0.1 0 0 10−4 0
H7 0.1 0.1 0 0.9 0 0
H8 0.1 0.1 0.4 0.4 0 0
H9 0.1 0.1 0 0 10−8 0

Table 5.2: Helical Scenarios: The value λJ denotes the amount of cross-scalar in the system given by a
constant ratio as defined in (3.16). The value λK denotes the amount of normalized kinetic helicity by
a constant ratio as defined in (3.13). The value λB denotes the amount of cross-scalar by a constant
ratio as defined in (3.14). The value λC denotes the amount of cross-scalar by a constant ratio as
defined in (3.15). We generally use as initial condition (5.6) with n = nb/2 = 5 for the energy spectra.
For the helicities, except the cross helicity, and the cross scalar spectra we use n = 6 and nb = 11,
while for the cross helicity we apply n = 7 and nb = 12 as discussed in subsection 3.4.4.

up to around matter-radiation equality. As we discuss soon, the integral scale grows as

LI ∝ τ 2/3 up to around T ∼ 100 eV. After last scattering, unlike for the specific non-

helical cases discussed here, turbulence can recommence in the photon free-streaming

regime and magnetic dissipation remains negligible. The inverse cascade can then ef-

fectively proceed until kIb(kI) ∼ H(τ), as the eddy turnover rate grows slower than the

Hubble rate. Next, in figure 5.5 we showcase an MHD system with kinetic helicity ac-

cording to H7 in table 5.2. On the right panel one sees the development of the magnetic

and kinetic helicity. Immediately after initialization a non-trivial magnetic helicity spec-

trum is generated with
∫

dkHb(k)/k2 ≈ 0. The magnetic helicity spectrum traces the

kinetic helicity spectrum. However, here the magnetic helicity does not drive an inverse

cascade, at least not initially. And the system behaves in the same manner as parity

invariant turbulence. Also, at temperatures . 100 MeV, a net total magnetic helicity

seems to appear. In principal, kinetic helicity produces a magnetic helicity spectrum

and the magnetic helicity then decays at the small scales due to resistive damping. Thus,

net magnetic helicity can be produced by resistive damping. Moreover, this is only an

effective method if Re� 1 and Rem & 1. Therefore, the net magnetic helicity found

here is primarily the result of a smoothing and cut-off procedure to ascertain numerical
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Figure 5.4: Evolution of a magnetic field spectrum sourced at T = 150 GeV with an equipartition
between kinetic and magnetic energy and near maximal magnetic helicity according to H2 in table 5.2
(solid lines). On the left panel we show the evolution of the magnetic (grey) and kinetic (black) energy
spectra and on the right panel we show the absolute magnetic (grey) and absolute kinetic (black)
helicity spectrum. Note that here the cross scalar and helicity always remain zero, however the kinetic
helicity, even though it is initially zero, attains a non-trivial spectrum. The spectra are shown for
T = 90 GeV (dotted), T = 15 GeV (dashed dotted), T = 1.5 GeV (dashed double dotted), T = 75 MeV
(dashed), T = 3 MeV (triple dashed), T = 10 keV (short dashed dotted), T = 2 eV (double dashed).
Note, that the x-axis denotes the comoving wave-number (today) and the y-axis denotes the relevant
spectra. One clearly finds a significantly different evolution of the MHD turbulence for magnetic helicity
dominated turbulence compared to parity invariant MHD. In particular, the large scale tail does not
remain nearly constant but is shifted to larger scales (smaller k), by around four orders of magnitude
in k. Secondly, since the total magnetic helicity is conserved only a slight amount of magnetic energy is
dissipated due to neutrino decoupling. Prior to last scattering, the MHD turbulence is effectively frozen
in at T ∼ 102 eV. Note that the kinetic helicity that is excited by the magnetic helicity has the same
sign as the magnetic helicity, and traces the magnetic helicity spectrum at most scales except around
the integral scale. The energy spectra follow a near Kolmogorov spectrum, while the two helicities
have a k−1 scaling in the inertial range. The large scale tail of the energy spectra has the k5, while
the helicities show the k6 behavior. Also, the magnetic helicity leads to a more distinctive peak of the
magnetic energy spectrum due to the k6 scaling of the magnetic helicity. This spectrum at T ∼ 2 eV
does not represent the present day spectrum and in this particular case turbulence can restart in the
photon freestreaming regime and shift the peak of the spectrum until kIb(kI) ∼ H(τ).

stability of the solver, and in principle this can be further improved (see appendix B.3

for details). Nonetheless, this method of magnetic helicity production is quite intriguing

and could even be an important source of magnetic helicity in the very early or present

day universe. Furthermore, this indicates that a magnetic field spectrum with roots will

at most lead to a delayed inverse cascade due to the smaller total net magnetic helicity.

Now, in figure 5.6 we show the impact that a relatively small cross helicity (similar for

larger cross helicities) has on the MHD turbulence evolution according to H5 in table

5.2. Initially, the energy spectra and also the cross helicity undergo an inverse cascade

due to the also initialized magnetic helicity. However, the cross helicity remains nearly
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Figure 5.5: Evolution of a magnetic field spectrum sourced at T = 150 GeV with an equipartition
between kinetic and magnetic energy and near maximal kinetic helicity according to H7 in table 5.2
(solid lines). On the left panel we show the evolution of the magnetic (grey) and kinetic (black) energy
spectra and on the right panel we show the absolute magnetic (grey) and absolute kinetic (black) helicity
spectra. Note that here the cross scalar and helicity always remain zero, however the magnetic helicity,
even though it is initially zero, attains a non-trivial spectrum. The spectra are shown at T = 90 GeV
(short dashed), T = 50 GeV (dotted), T = 15 GeV (long dashed dotted), T = 1.5 GeV (long dashed
double dotted), T = 75 MeV (long dashed), T = 3 MeV (triple dotted), T = 10 keV (short dashed
dotted), T = 2 eV (short double dashed). Note, that the x-axis denotes the comoving wave-number
(today) and the y-axis the different spectra. Initially, the system evolves similarly to the non-helical
case i.e. the kinetic helicity does not affect the evolution. However, after neutrino decoupling an inverse
cascade seems to appear, resulting from the appearance of some minor total non-zero magnetic helicity∫

dkHb(k)/k2 6= 0. In fact kinetic helicity sources a magnetic helicity spectrum with
∫

dkHb(k)/k2 = 0
and due to resistive decay and numerical artifacts, e.g. due to smoothing, some non-zero total magnetic
helicity appears that drives an inverse cascade. Another interesting observation is that the sourced
magnetic helicity seeds significant kinetic helicity after neutrino decoupling i.e. kinetic helicity has an
effect on the turbulence even after neutrino decoupling. The magnetic helicity sourced by a purely
positive kinetic helicity spectrum, gains positive values around kI and negative values for k � kI and
k � kI .

conserved like the magnetic helicity even during the inverse cascade and as soon as it

becomes maximal the turbulence freezes in, i.e. the system is dominated by the direct

dissipative terms in the evolution equation even though Rem �Re� 1. The decou-

pling of the neutrinos leads to a complete decay of the cross helicity and in contrast

to the non-helical case (see right panel in figure 5.2) the cross scalar is also completely

dissipated as the cross helicity suppresses a quick reappearance of turbulence on small

scales in the free-streaming regime. Therefore, any causally produced cross helicity,

that appears at temperatures T & 100 GeV and becomes maximal, is dissipated and is

unlikely to even produce an imprint in the cosmological neutrino background. Smaller

cross helicities could become relevant due to generation of a cross scalar, when magnetic

helicity is present, that may survive neutrino decoupling, as shown in the right panel of
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Figure 5.6: Partial evolution of a magnetic field spectrum sourced at T = 150 GeV with an equipartition
between kinetic and magnetic energy and with magnetic, kinetic and cross helicity and cross scalar
according to H5 in table 5.2 (solid lines). Here we focus on the impact of the cross helicity on a
system with magnetic and kinetic helicity and a non-trivial cross-scalar. We only look at a part of the
evolution where the relatively small cross helicity becomes of interest. On the left panel we show the
evolution of the magnetic (grey) and kinetic (black) energy spectra. On the right panel we showcase
the evolution of the cross helicity (black). The spectra are shown at T = 90 GeV (dashed), T = 15
GeV (long dashed dotted), T = 1.5 GeV (long dashed double dotted), T = 150 MeV (double dashed),
T = 75 MeV (long dashed), T = 30 MeV (dotted), T = 3 MeV (short triple dashed) and T = 10 keV
(left) or T = 10 MeV (right) (dashed-dotted). Note, that the x-axis denotes the comoving wave-number
(today). The magnetic helicity leads to the appearance of an inverse cascade. At around T ∼ 200 MeV
cross helicity becomes dominant and the turbulent evolution halts. Then, energy losses are only due
to direct dissipation. Afterwards, the cross helicity is being completely dissipated by the decoupling of
the neutrinos and the inverse cascade can restart again. Similarly, the cross scalar is also completely
dissipated, unlike for systems without cross helicity, after neutrino decoupling. The cross helicity also
develops a k7 large scale tail as discussed in subsection 3.4.4. Also, when the cross helicity is maximal
the energy spectrum develops a k−1 inertial range. Moreover, initially the total positive cross helicity
develops a negative valued inertial range and gains more power at the integral scale. Note, that the
small bump for the cross helicity in the dissipative range shows another sign-change in the spectrum.

figure 5.2. The stalling effect of cross helicity could however have an impact on gravi-

tational waves from MHD turbulence that is dominated by a non-trivial cross-helicity.

Note, that similar to magnetic helicity only the total value of the cross helicity is of

relevance. Additionally, as discussed in subsection 3.4.4, we observe a k7 large scale tail

for the cross helicity spectrum.

Lastly, we look at the evolution of the integral and energy scale in the radiation

dominated phase. In figure 5.7, we show the temporal scaling for the different helical

scenarios as given in table 5.2. As discussed in subsection 3.4.5 the integral scale in

magnetic helicity driven MHD turbulence grows as τ 2/3 and the energy scale decays

with τ−2/3. In all scenarios, except for H7 and H8, a total net magnetic helicity is ini-

tially present. The scenario H1 represents MHD turbulence with initially near maximal
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Figure 5.7: Evolution of total turbulent energy and integral scale, relative to the initial integral scale
e.g. at the phase transition, for the different scenarios H1 (red, dashed), H2 (blue, dotted), H3 (yellow,
dot-dashed), H4 (orange, double dot-dashed), H5 (green, long dashed), H6 (dark-red, triple dashed), H7
(dark-blue, short dashed-dotted), H8 (brown, double dashed) and H9 (dark-grey, solid) as represented
in table 5.2 as a function of the temperature T . The black and grey solid lines indicate the normal
MHD cascade and the magnetic helicity driven inverse cascade (see subsection 3.4.5 with γ = 0). There
are several interesting processes to note, but also numerical difficulties and modeling problems e.g. due
to hyper-viscous damping that come to the forefront, as we discuss in the sub-subsection here.

magnetic and kinetic helicity. With the exception of the neutrino and photon decou-

pling phase the magnetic energy follows an inverse cascade. Scenario H5 includes all

topological measures from the beginning with a small total cross helicity. As soon as

the cross helicity attains a maximal state, turbulence also stalls. This behavior is also

observed in the case with magnetic (H4) or kinetic helicity (H8) and a non-trivial cross

scalar. However, in these cases there is no initial net cross helicity present. Immedi-

ately after the start of the turbulent evolution, a net cross scalar is produced due to

dissipation of the cross helicity spectrum at small scales and the total cross helicity is of

the order kI/kdEtot, where kd is the dissipative wave number. Here, the precise effect is

probably too large due to the hyperviscous damping and in realistic scenarios we would

anticipate a much smaller cross helicity production, yet as for the magnetic helicity pro-

duction it is generally an interesting process when the Reynolds number is somewhat

small i.e. Re∼ 100 for a brief time during the magnetogenesis phase. Furthermore,

in these scenarios also magnetic helicity is dissipated. This is a problem of the solver

that we apply, as we also cutoff small spectral values for stability reasons, however cross

helicity does suppress the evolution of turbulence quite strongly even during the phase

where the cross helicity is nearly fully dissipated and so the magnetic helicity trans-
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fer is strongly suppressed and it gets now easily dissipated by these cutoff effects (see

appendix B.3). This numerical effect also affects scenarios with some initial magnetic

helicity and without cross correlations. We illustrate the problem in the left panel of

figure 5.8, where we show the change of the total magnetic helicity Hb and the change

of the total cross helicity HC . Moreover, here the numerical loss of the total magnetic

helicity in particular is not continuous but step wise. As discussed before, the magnetic

helicity remains preserved for most of the evolution if it is initially sufficiently large, i.e.

very small initial magnetic helicities cannot drive a sufficient inverse cascade prior to

the resistive dissipation becoming important e.g. kIHb(kI) . 10−13 at the electroweak

horizon. Afterwards, in the matter dominated phase, turbulent evolution with Pm� 1

and Re� 1 can proceed again and as discussed before the large scale tail is further

shifted to larger scales. Generally, in none of the scenarios discussed here cross helicity

will have an impact on the strength or the spectrum of magnetic fields today.
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Figure 5.8: Here we show the total magnetic (left panel) and cross helicity (right panel) evolution. On
the left panel, one finds for the scenarios H4 and H5 a decay of magnetic helicity during the maximally
cross helical phase. The decay occurs in a step-wise manner following the τ−2/3 scaling and indicates
that it is primarily due to numerical artifacts.. In the other scenarios, this problem is, to a lesser
extent, also observed and becomes more problematic for small magnetic helicities. The problem is due
to an introduced cut-off procedure that keeps the solution stable, and is explained in appendix B.3.
On the right panel, we show the evolution of the total cross helicity HC that initially appears in the
scenarios H4 and H8, that contain no initial cross helicity. In contrast to the magnetic helicity, the
cross helicity varies slightly over time and is then gradually dissipated during neutrino decoupling. The
cutoff issue that impacts the magnetic helicity does not appear to impact the cross helicity evolution
in a significant manner. For further details see the caption of figure 5.7.
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5.2 Solutions to the GW equation

Here we focus on the solutions of (3.135), which gives the gravitational wave energy

density parameter spectrum originating from MHD turbulence. We do not solve the

EDQNM equations in order to calculate the GW spectrum, rather we use the temporal

and spatial scaling laws to solve for the GW spectrum, which is significantly less expen-

sive to calculate than solving the coupled system of equations, for details see appendix

C. Also, we express the spectra as a function of the frequency rather than the wave

number. The peak frequency of the gravitational wave spectrum is given by (Caprini &

Figueroa 2018)

fGW = 2.6 · 10−8xk

[
gpt
100

] 1
6
(
Tpt

GeV

)
Hz, (5.7)

where xk = 2πkI/Hpt with kI/Hpt representing the normalized integral scale of the grav-

itational wave spectrum at the phase transition characterized by apt and temperature

Tpt. Moreover, we focus on somewhat extreme scenarios. As is shown in figure 4.2, in

first order phase transitions most fluid motion can be produced in a hybrid scenario i.e.

vw between the Chapman-Jouguet points. Here, we will look predominantly at cases

with vw = cs for which (Espinosa et al. 2010).

κv(cs, α) ≈ α2/5

0.017 + (1 + α)2/5 . (5.8)

For most of the time, we assume that the turbulence is linearly produced within the

duration of the phase transition and we integrate the system typically over a timespan

of 20τpt. This timespan is generally sufficient, since due to the turbulent cascade and the

overall expansion the rate of gravitational wave production quickly becomes negligible,

an exception that we also discuss is the low-frequency tail for MHD turbulence that

undergoes a maximal magnetic helical inverse cascade.
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5.2.1 Different Unequal Time Correlations

In the literature, there have been several different approaches applied to treating the

decorrelation function in the GW equation, as discussed in (Caprini et al. 2009) that are

based on the Lagrangian eddy turnover time and on an simple top-hat-Ansatz, that only

takes modes into account with |τ−τ ′| . k−1 and the previously discussed Eulerian eddy

turnover time (Niksa et al. 2018). In figure 5.9 we compare different approaches for the
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Figure 5.9: The gravitational wave spectrum for the Higgs portal scenario with α = 0.17, β/Hpt = 12.5,
Tpt ≈ 60 GeV (Espinosa et al. 2008, Caprini et al. 2016). The lines denote the LISA sensitivity
curve (black, solid), the top hat UTC model (dark-red, dotted), the Lagrangian UTC (Lagrangian 1,
red, dotted), the Lagrangian UTC with a temporal cutoff (Lagrangian 2, blue dash-dotted) i.e. only
contributions with τL(k) ≤ τ are counted, and the Eulerian UTC model (green, dashed). At observable
frequencies our calculations based on the sweeping model lead to an amplitude that is a factor of 10
smaller compared to the top hat model at the peak. This is primarily due to the shorter correlation
time at small scales. Furthermore, we have assumed that the turbulence is linearly sourced during the
phase transition with the duration β−1. At small frequencies, the spectra scale with f3, while at high
frequencies the top-hat model leads to a f−5/3 tail and for the Eulerian and Lagrangian UTC model
to a f−8/3 high frequency tail.

choice of the UTC and look at a particular scenario for a Higgs portal with α = 0.17,

β/Hpt = 12.5, Tpt ≈ 60 GeV (Espinosa et al. 2008, Caprini et al. 2016). One interesting

finding here is that for the Lagrangian eddy turnover time, at least for these specific

parameter sets, we do not observe negative energies, as have been reported in (Caprini
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et al. 2009). The reason as to why we do not find partially negative gravitational wave

energy spectra is the introduction of the decorrelation function scaled to the forcing,

see sub-subsection 3.3.3. In fact, without this correction we would indeed reproduce

negative values for the Lagrangian decorrelation rate, although this is less of an issue

for the Eulerian UTC Ansatz. One clear observation is, that the Eulerian UTC Ansatz,

which is the appropriate Ansatz here, leads to an overall much smaller total gravitational

wave energy and the peak of the spectrum is shifted towards smaller frequencies in

contrast to the other two models. On smaller frequencies the Eulerian UTC leads to an

overall larger amplitude than the Lagrangian Ansatz, albeit still mostly smaller than

the amplitude for the top-hat Ansatz. Another important observation is that the top-

hat model and the Eulerian UTC model nearly agree at high frequencies. Moreover,

the high frequency tail differs significantly between the Eulerian (same for Lagrangian)

f−8/3 and the Top-Hat model f−5/3. For the Lagrangian model, we have also looked at a

cutoff from contributions in the integral of τL(q) ≤ τ noted as Lagrangian 2, which leads

to an overall smaller spectrum at low frequencies. Nonetheless, a similar cutoff however

has no effect on the Eulerian model results. The solid black line indicates the optimal

LISA sensitivity curve as used in Caprini & Figueroa (2018) and based on (Thrane &

Romano 2013, Moore et al. 2015, Amaro-Seoane et al. 2017).

5.2.2 Parametric Dependence of GW spectrum

Now, we look at the overall dependence of the spectrum on the total initially seeded

turbulent energy density, which we parameterize as

Ωturb = ακv/Ωr = 2/3(v2 + b2)/Ωr, (5.9)

and the initial integral scale LI = 2vwHpt/β. Additionally, we generally assume equipar-

tition v = b. At first we focus only on incompressible turbulence. The left panel in figure

5.10 shows an L2
I scaling of the overall energy spectrum and an associated shift of the

peak frequency towards higher frequencies for smaller LI . The shape of the spectrum

itself is effectively invariant under variations of LI . There is a clear deviation towards
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Figure 5.10: On the left panel, we show the dependence of the GW spectrum, produced by incompress-
ible MHD turbulence, on the initial integral scale LI , where Ωturb = 0.2 (α ∼ 0.3) is the initial energy
density parameter and Tpt = 100 GeV has been chosen. From top to bottom the lines correspond to
LIHpt = 0.4, 0.2, 0.1, 0.05, 0.025, 0.01, 0.005 (dark-orange, blue, green, brown, orange, red, dark-red),
which we denote as LIHt for a bit more brevity in the panel. On the right panel, we show the depen-
dence on the initial total turbulence density parameter Ωturb for LIHpt = 0.1 (β/Hpt ∼ 10), where the
lines from top to bottom correspond to Ωturb = 0.4, 0.3, 0.2, 0.1, 0.05, 0.025, 0.01 (blue, dark-blue, green,
orange-yellow, brown, dark-red, dark-orange). One noteworthy observation is that the amplitude of
the GW spectrum scales with L2

I . The dependence on Ωturb is more complicated, the peak of the
spectrum roughly scales as with Ω2

turb.4. The small frequency tail has a scaling which scales between
Ωturb and Ω1.5

turb for high to low Ωturb. Additional, the large frequency tail itself has for large Ωturb a
f−5/3 dependence and for Ωturb . 0.1 one finds a f−8/3 law, as for the top-hat filter UTC function.

large values of LptHpt in the shape of the spectrum. Interestingly, the small frequency

tail is barely shifted, when LI is shifted. On the right panel, the dependence on Ωturb is

shown and here the impact is far more complicated. In particular, there appears to be

no simple power law scaling of ΩGW(f) with Ωturb. For large Ωturb & 0.2 (corresponding

to Ωkinetic & 0.1) the high frequency tail scales as f−5/3, while for Ωturb . 0.1 it scales

as f−8/3. Furthermore, the small frequency tail and also the peak of the spectrum scale

differently with Ωturb in particular the peak grows with Ω2.4
turb while at small frequencies

the spectrum scales Ωturb to Ω1.5
turb for high to low Ωturb. For intermediary frequencies a

plateau develops in the spectrum, that compensates for the difference in scaling.

Next, we study the impact that a turbulent spectrum with maximal magnetic helic-

ity will have on the gravitational waves spectrum. Of particular relevance is the inverse

cascade, due to the strong dependence on LI . On the left and right panel in figure 5.11

one sees that the helical magnetic inverse cascade induces a severe deviation in the scal-

ing at small frequencies, where one finds a f 2 spectral tail, rather than an f 3 tail. For

typical electroweak scenarios, this difference will likely not be relevant, yet for higher
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Figure 5.11: On the left panel, we show the dependence of the spectrum on the initial value LI for
maximally magnetic helical MHD systems, where Ωturb = 0.2 (α ∼ 0.3) and Tpt = 100 GeV have been
chosen. From top to bottom the lines correspond to LIHpt = 0.4, 0.2, 0.1, 0.05, 0.025, 0.01, 0.005, which
we denote as LIHt for a bit more brevity in the panel, where blue lines denote the helical case, while
orange lines denote the non-helical case. On the right panel, we show the dependence on Ωturb for
LIHpt = 0.1 (β/Hpt ∼ 10). As for the left panel we also show both the helical (blue) and nonhelical
(orange) scenario. From top to bottom the lines correspond to Ωturb = 0.4, 0.3, 0.2, 0.1, 0.05, 0.025. The
high frequency tail is nearly identical in the helical and non-helical cases. However, the small frequency
spectra differ i.e. for the magnetic helical inverse cascade a f2, rather than a f3 tail appears. Note,
that we integrated the system over 100τpt in order to properly count the contribution from the inverse
cascade.

temperature phase transitions e.g. Tpt ∼ 1−10 TeV could provide detectable signatures

in the low frequency tail that may otherwise not be detectable. Note, that since helicity

breaks parity it also induces a net polarization in the graviational waves (Kahniashvili,

Campanelli, Gogoberidze, Maravin & Ratra 2008b), which would be another clear sig-

nature of helicity. Note that unlike for non-helical systems the spectrum appears to

scale also non-trivially with LI . For small LI a more pronounced secondary peak seems

to appear, however we suspect that this is primarily an artifact of the transition from

the generation of gravitational waves during the build up of the initial turbulence and

the subsequent inverse cascade, which appears more pronounced at small times as the

for small LI the time-scale for the turbulent cascade is much shorter than that of the

build up. The precise details of the build up and the exact spectra of magnetic and

kinetic helicity and magnetic and kinetic energy may be of critical importance here and

as discussed in subsection 3.3.2 one expects variations in the decorrelation function for

helical systems that we do not account here. Overall the spectra scale in the same way

with LI . On the other hand the Ωturb dependence in the small frequency tail differs
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significantly from the behavior for non-helical systems. Here, the spectra now effec-

tively scale with Ω8/3
turb at small frequencies, which is nearly the same as around the peak

frequency.

5.2.3 GWs from compressible MHD turbulence

So far we have only focused on gravitational waves from incompressible MHD turbulence.

However, compressible MHD turbulence can have a substantial impact on the shape of

GW energy spectrum, as we will discuss in the following. Here we generally assume

that there is some type of transfer of solenoidal to dilatational turbulent energy and

we look at the impact of different transfer models on the appearing gravitational wave

spectrum for different initial fractions of dilatational to solenoidal energy densities. Here

we generally denote the amount of dilatational energy by a fraction fd and the solenoidal

kinetic energy by a fraction fs of the total energy density, such that fs + fd = 1. For

convenience, we neglect magnetic fields as one would have to take into account another

parameter, yet the precise behavior should not differ significantly. Now, we consider

several different models for the temporal evolution of the dilatational mode fraction fd.

First, we assume that the dilatational fluid motion immediately decays into acoustic

modes over a time τD given in (C.8) even during the phase transition

fd(τ) = fd,i


1− τ−τ0

τD
, τ < τ0 + τD

0, τ > τ0 + τD,

(5.10)

where fd,i is the initial dilatational energy fraction and we refer to this as model A.

Next, in model B we assume that fs and fd are constant.

fd(τ) = fd,i. (5.11)

Another simple model is constructed by assuming that during the phase transition the

dilatational fraction is constant and then soon afterwards decays over some time sτD.
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We refer to this as model Cs and it is given by

fd(τ) = fd,i



1, τ < τb + τ0

1− τ−τ0−τb
sτD

, τ0 + τb < τ < τ0 + sτD + τb

0, τ > τ0 + sτD + τb.

(5.12)

In particular, we will look at this model with s = 1 (C1) and s = 2 (C2). These scenarios

take into account many reasonable cases. We generally integrate the system over a time

τpt, as the acoustic contribution is not sufficiently decorrelated over longer times and

this induces difficulties in the calculation e.g. nonphysical energy spectra for a purely

dilatational system. For the phase transition parameters studied here, the differences

will be minor.

Here we look at two different cases Ωturb = 0.2 and Ωturb = 0.1 (for fluid motion

only), as the right panel in figure 5.10 indicates a strongly different behavior in the

high frequency tail (the factor of 2 is due to the lack of magnetic energy here) for the

purely solenoidal scenario. First we look at the extreme case with very high turbulent

energy densities which corresponds to the appearance of an f−5/3 high frequency tail. In

figure 5.12 we show the gravitational waves from compressible turbulence for different

dilatational energy fractions fd,i = 0.1 (top left panel), fd,i = 0.5 (top right panel) and

fd,i = 0.9 (bottom left panel) and for the different scenarios A, B, C1 and C2. For

fd,i = 0.1 the impact of dilatational motion on the GW spectrum is rather subtle and

only affects the spectrum between 10−4 Hz and 10−2 Hz. A larger dilatational energy

fraction fd,i = 0.5 shows an a significantly bigger, yet still relatively not very large,

difference. For fd,i = 0.9 the difference between the different models become substantial

and in particular for the case that the dilatational energy fraction fd remains constant,

the high frequency tail develops an f−3 tail. One general observation is that in any of

the compressible scenarios the power at the peak of the spectrum is larger than for the

purely incompressible case. In the lower right panel, we compare different scenarios,

and in particular for fd,i = 0.5 and fd,i = 0.9 with the model C1 one only finds a
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Figure 5.12: The gravitational wave power spectrum for different values of the initial fraction of dilata-
tional modes fd,i = 0.1 in the top left, fd,i = 0.5 in the top right and fd,i = 0.9 in the bottom left panel.
Here we assume a kinetic energy density parameter of Ωtot = 0.2. The different lines correspond to the
different scenarios: model A (5.10) (green, dashed), model B (5.11) (orange, thick-dotted), model C1
(5.12) (dark-red, thin-dotted) and model C2 (blue, dot-dashed) for the temporal evolution of fd. Each
model is also compared with the case fd = 0 (dark-blue, dot-dashed). In the bottom right panel, we
show the cases fd = 0 (brown, thin-dotted), fd,i = 0.5 with model C1 (orange, dashed), fd,i = 0.9 (red,
dot-dashed) with model C2 and τb = β−1, fd,i = 0.999 (blue, long dashed) with model B and extrap-
olated fitted DNS results (green, double dot-dashed) from Caprini & Figueroa (2018) via (Hindmarsh
et al. 2015).
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difference in the high frequency tail. The blue dashed line indicates a scenario in which

the turbulent spectrum with fd = 0.999 does not undergo any turbulent energy transfer

and one finds a deviation of the low-frequency tail in contrast to the other cases. We

also show an extrapolated fitted DNS results (green, double dot-dashed) from Caprini

& Figueroa (2018) via (Hindmarsh et al. 2015) for purely dilatational systems. This

is accurately overlapping with the fd = 0.999 line at most frequencies, however in the

small frequency tail there is a considerable deviation. We assume, that this is primarily

due to taking contributions into account that impact the system over times longer than

the Hubble time at the phase transition. Note, that for the compressible non-constant

scenarios for fd,i = 0.9 a f−2 high frequency tail appears, rather than the f−5/3 tail for

incompressible turbulence with Ωturb & 0.2, which corresponds to strongly compressible

turbulence since v ∼ cs. Next, we look at the similar figure 5.13. Here, for fd,i = 0.1

the difference between the different models is more significant than the case fd = 0.5

with Ωturb = 0.2. Interestingly for fd = 0.5 the different compressible models differ only

slightly. For fd = 0.9 also variations of the large scale tail become relevant, although

less significantly than for incompressible turbulence. The bottom right panel in figure

5.13 is quite similar to the bottom right panel in figure 5.12. The key difference are

the steeper high frequency slopes of the mixed compressible and the incompressible

scenarios. In general for smaller Ωturb the difference between compressible turbulence

and incompressible turbulence becomes more significant at the peak, although still less

relevant in the small frequency tail. Note that the high frequency tail for fd,i = 0.9 for

Ωturb = 0.1 is still f−2, yet for Ωturb � 0.1 we expect an f−3 tail. Nonetheless even

a small solenoidal energy density fraction leads to a significant reduction of the peak

power by a factor ∼ 3−4. All these scenarios for the dilatational energy fraction assume

a near time-independent dilatational spectrum. In general even for purely dilatational

turbulence one anticipates a more involved decorrelation rate, due to the nonlinear

evolution, and some energy transfer, which we do not consider here. This concludes

our discussion on different turbulent initial conditions and the associated gravitational

waves spectra.
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Figure 5.13: The gravitational wave power spectrum for different values of the initial fraction of dilata-
tional modes fd,i = 0.1 in the top left, fd,i = 0.5 in the top right and fd,i = 0.9 in the bottom left panel.
Here we assume a kinetic energy density parameter of Ωtot = 0.1. The different lines correspond to the
different scenarios: model A (5.10) (green, dashed), model B (5.11) (orange, thick-dotted), model C1
(5.12) (dark-red, thin-dotted) and model C2 (blue, dot-dashed) for the temporal evolution of fd. Each
model is also compared with the case fd = 0 (dark-blue, dot-dashed). In the bottom right panel, we
show the cases fd = 0 (brown, thin-dotted), fd,i = 0.5 with model C1 (orange, dashed), fd,i = 0.9 (red,
dot-dashed) with model C2 and τb = β−1, fd,i = 0.999 (blue, long dashed) with model B and extrap-
olated fitted DNS results (green, double dot-dashed) from Caprini & Figueroa (2018) via (Hindmarsh
et al. 2015).
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6.1 Summary

Here we have studied the evolution of magnetic fields in the early universe that may

originate from a first order electroweak phase transition and the generation of associ-

ated gravitational waves. In chapter 2 we discussed the basic equations that govern the

evolution of magnetohydrodynamic (MHD) turbulence and the generation of gravita-

tional waves and key quantities like the magnetic and cross helicity. Then, in chapter 3

we looked at the corresponding spectral correlation functions of these quantities in the

context of isotropic homogeneous MHD turbulence and described the interdependencies

between the different topological measures. Next, we discussed turbulent unequal time

correlations (see section 3.3) that are of key importance in the evaluation of gravita-

tional wave spectra from MHD turbulence and we discussed the difference between the

Eulerian and Lagrangian eddy turnover time and the impact of vorticity and magnetic

fields on the decorrelation rate of acoustic modes in weakly compressible MHD turbu-

lence (v . cs). Thereafter, we presented the eddy damped quasi normal Markovian

(EDQNM) approximation (see section 3.4) self-consistently for the incompressible case,

which are spectral evolution equations and are computationally of great interest, as the

spatially 3D problem is reduced to a 1D problem, under the assumption of stochastic

homogeneity and isotropy.

Moreover, we have discussed the basic large scale behavior of the EDQNM equations,

in particular we have shown that the dimensionless (unit c2 = 1) kinetic and magnetic

helicity and the cross scalar develop a k6 large scale tail, rather than the k5 large scale

142
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tail that the energy spectra develop, that means even if MHD turbulence develops into

a maximal magnetic helical state, the coherent large scale magnetic field in the large

scale tail only have at most a fractional magnetic helicity of the order k/kI for k � kI .

For MHD turbulence with a maximal cross helicity, the large scale tail is even steeper

and develops a k7 slope. One also finds that unlike for the energy spectra the large

scale tail of the magnetic helicity will undergo an exponential growth for k � kI , which

represents the inverse cascade. For incompressible non-helical turbulence such terms

are only present at O(k6) corresponding to a weak growth on small scales. Afterwards,

we discussed the well-known nature of self-similar evolution in incompressible MHD

turbulence focusing on the non-helical case and on the case of extremal magnetic helicity.

Next, we looked at some key properties of subsonic compressible turbulence v � cs. We

note that in substantially subsonic purely compressible turbulence nonlinear evolution

is suppressed. However, as has been particularly discussed in subsection 3.4.7 and

appendix A.2 growth modes like ∂τ Ēd(k) ∝ Ēd(k) may become important on large

scales. There, we have derived the EDQNM equations for purely compressible subsonic

turbulence for radiation dominated gases or plasmas. Furthermore, we note that a

nonlinear transfer of dilatational energy is suppressed even when vorticity and magnetic

fields are present, yet vorticity and magnetic fields may lead to a substantial decay or

growth of an already established dilatational energy spectrum. Here we did not further

discuss these problems.

Following we discussed the equations that describe the generation of gravitational

waves by homogeneous isotropic compressible MHD turbulence. We noted that turbu-

lence leads to an f 3 low frequency tail in the GW energy spectrum and that the power

in the gravitational wave spectrum scales with L2
I (the integral scale squared), but the

dependence on the energy density is more complicated. Similarly, we also discussed

the "inertial range" of the GW energy spectrum and anticipate for purely compressible

systems a f−3 high frequency tail and in incompressible turbulence a f−5/3 to f−8/3 high

frequency tail. In the following chapter 4, we first discuss basic properties of thermal

first order phase transitions, that may have occurred in the early universe and look



6 CHAPTER 6. SUMMARY, CONCLUSIONS AND OUTLOOK 144

briefly and conceptually at related magnetogenesis. Next, we presented the viscous

and resistive history in the radiation dominated universe in the context of the standard

model and in particularly we discussed the impact of the different viscosity-dominated

phase on the evolution of primordial MHD and argued that in principle a non-trivial

cross scalar and cross helicity as well as kinetic helicity sourced at a phase transition

should no longer be present in the system after neutrino decoupling (see in particu-

lar figure 4.3). Since one key focus of the discussion here is the radiation dominated

phase, we also discussed how the matter dominated phase may have affected the evolu-

tion of primordial magnetic fields, and briefly the well-known freeze-out of turbulence

with correlation times that have grown to be of the order of the Hubble time at some

point in the matter dominated phase, due to turbulent decay. Then, we have briefly

discussed our present-day knowledge about correlated magnetic fields on Mpc scales,

noting the non-detection, but also the apparent somewhat strong lower limits related

to the non-observation of a possibly present and significant GeV photon flux. Also, we

mentioned future developments on ways to constrain primordial magnetic fields, noting

in particular the potential of future and present gravitational wave detectors, in partic-

ular LISA (Amaro-Seoane et al. 2017) as it may allow the observation of a gravitational

wave background from a first order phase transitions at GeV and TeV scales.

Finally, in chapter 5, we have shown explicit numerical simulations on the evolu-

tion of MHD turbulence in the radiation dominated phase, based on the incompressible

EDQNM equations. First, we have looked at mirror-symmetric incompressible MHD

turbulence and noted that the large-scale tail remains nearly unchanged, i.e. the comov-

ing magnetic field strength produced by a non-helical magnetogenesis on Mpc scales is

constant through the entire evolution, as long as we ignore more complicated feed back

in the matter dominated phase as related to structure formation. These simulations il-

lustrated the entire evolution of primordial MHD turbulence in the radiation dominated

phase, showcasing the impact of the viscous phases on the evolution in detail (see figure

5.1, 5.2 and 5.3). We find that a nontrivial cross scalar does not substantially affect the

evolution of non-helical incompressible MHD turbulence. Secondly, we studied several
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different scenarios of helical primordial MHD turbulence. For once, we have discussed

the well known inverse cascade driven by near extremal magnetic helicity (see figure

5.4). Figure (5.5) showcased a scenario with magnetic and kinetic energy with near

maximal kinetic helicity and we do not observe, except for purely numerical artifacts

that lead to the appearance of a net total magnetic helicity, any substantial difference

in the evolution compared to the nonhelical evolution. Interestingly, the kinetic helicity

leads to lasting signatures in the helical MHD turbulence spectrum even after neutrino

decoupling. Moreover, we have also studied a scenario with some minor degree of cross

helicity (see figure 5.6). The cross helicity can have a substantial impact on the evo-

lution of the primordial magnetic field prior to neutrino decoupling, since it leads to a

stall of the turbulent cascade and inverse cascade, in case extremal magnetic helicity

is present or develops prior to the appearance of a near-maximally cross helical state.

Thus in incompressible MHD turbulence, maximally cross helical MHD turbulence is

not affected by nonlinear evolution and only direct viscous and resistive decay impacts

the energy spectra. After neutrino decoupling led to a dissipation of the cross scalar,

the system evolves according to its magnetic helicity and energy density. Consequently,

cross helicity may be only of interest for more direct and pristine probes of the early

universe prior to neutrino decoupling. In figure 5.7 and 5.8 we discuss the overall evolu-

tion of the different scenarios and note some numerical problems in particular related to

magnetic helicity conservation during the final neutrino and photon decoupling stages,

for which we have not yet developed a satisfying solution. This problem is particularly

apparent in the presence of the cross scalar and cross helicity.

Ultimately, we present numerical studies on the expected primordial gravitational

wave background by compressible MHD turbulence in the early universe. First we

discussed and showed in figure 5.9, how different assumptions of the unequal time cor-

relation for incompressible MHD turbulence can lead to vastly different gravitational

wave energy spectrum, noting in particular that for the Eulerian decorrelation rate, that

most accurately describes the relevant decorrelation, the power at higher frequencies will

be the smallest compared to the other models by at least 2 orders in magnitude. There-
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after, we showed a parametric dependence on the gravitational wave energy spectrum

for different initial integral scales and turbulent energy densities for MHD turbulence

without, see figure 5.10 and with helicity, see figure 5.11. We note a simple depen-

dence of the gravitational wave energy density on the initial integral scale of turbulence

∝ L2
I (related to the duration of the phase transition) and a more complex and rich

dependence on the turbulent energy density. The inverse cascade generally leads to

significantly more power on very small frequencies as a f 2 small frequency tail appears.

Lastly, we looked at possible and probable gravitational wave spectra from compressible

turbulence assuming different scenarios for the transfer of dilatational to solenoidal en-

ergy, noting that generally a higher degree of dilatational motion in fluid leads to more

power at the peak of the GW spectrum.

6.2 Conclusions and Outlook

To conclude this thesis, we contemplate what our findings tell us, what we may still

miss or overlook and what we deem necessary and vital to understand, or as aptly put

by John F. Kennedy "The greater our knowledge increases the greater our ignorance

unfolds". Regarding the evolution of MHD turbulence, we find that cross correlations do

not affect pristine present traces of present-day primordial magnetic fields in the, so far,

visible universe. However one key shortcoming of the numerical study performed here, to

trace the evolution of primordial magnetic fields, is the assumption of incompressibility.

In particular, in the simulations performed here, even in cases where magnetic energy

is dominant, we do not observe a significant inverse transfer in nonhelical turbulence,

except for scenarios where a maximally magnetic helicity state develops, as observed

and discussed in (Kahniashvili et al. 2013, Brandenburg et al. 2015, Brandenburg &

Kahniashvili 2017) for MHD turbulence with b� v. In these studies it has been found

that the comoving integral scale grows with LI ∝ τ 1/2 and the energy correspondingly

decays with τ−1 in MHD turbulence, which is clearly not present in the incompressible

MHD turbulence studied here. Thus, we expect that this type of transfer is related to

compressible contributions, particular related to potential exponential growth of dilata-
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tional fluctuations at large scales (see subsection 3.4.7 and appendix A.2). Therefore,

we believe that a concise semi-analytical study as performed here in the case of incom-

pressible MHD turbulence is of considerable interest also for the full set of equations in

compressible MHD turbulence. Nonetheless, such an inverse transfer process may still

not be sufficient in producing substantial magnetic fields compatible with the gamma-

ray constraints (Kahniashvili et al. 2013) for an electroweak FOPT, unlike a substantial

inverse cascade by the magnetic helicity (Saveliev et al. 2013, Ellis et al. 2019, e.g.).

Additionally, cross helicity conservation combined with compressible inverse transfer

may lead to an even more significant inverse cascade, since the dilatational energy

spectra should scale shallower at large scales and maximal cross helicity suppresses any

small scale transfer and potentially even the conversion of dilatational to solenoidal

energy, while still enabling the inverse transfer. On the other hand, it may suppress the

inverse transfer at least partially prior to neutrino decoupling. Of similar interest are

also the usual suspects, kinetic and magnetic helicity in compressible MHD turbulence.

Also, we did not take the chiral magnetic effect and the chiral vortical effect (Kharzeev

et al. 2016, e.g.), in particular the gravitational anomaly contribution to the chiral

vortical effect, into account, which can drive a substantial generation of magnetic helicity

(Boyarsky et al. 2012, Pavlović et al. 2016, Pavlović et al. 2017). In the presently

presented numerical simulations, substantial numerical artifacts are present, particularly

related to magnetic helicity non-conservation and due to a slight issue the evolution was

primarily driven to the matter-radiation equality, rather than recombination, thus the

full impact of the photon decoupling is not shown here. Hence, we deem it important

to fully and substantially control these numerical issues in the future.

Regarding the generation of GWs from MHD turbulence, there are several key is-

sues that warrant further investigation. Here we have assumed a linear build up of

MHD turbulence, however the bubble wall velocity and also the bubble nucleation rate

is typically not constant leading to relevant variations in the build up of the turbulent

spectra (Hindmarsh & Hijazi 2019, e.g.). In slight contrast to (Niksa et al. 2018), we

assumed that turbulence is generally generated within the duration of phase transition



6 CHAPTER 6. SUMMARY, CONCLUSIONS AND OUTLOOK 148

and that the turbulence evolves as in the purely incompressible case, whereas in (Niksa

et al. 2018) the inverse transfer of e.g. (Brandenburg & Kahniashvili 2017) was as-

sumed. Thus, these details are specifically of interest in particular for the more general

compressible cases. Additionally, we neglect other sources of gravitational waves e.g.

as related to scalar field dynamics which are typically sub-dominant in thermal phase

transitions (Caprini et al. 2016, e.g.). Furthermore, as discussed in subsection 3.3.2 gen-

eration of gravitational wave energy spectra for helical MHD likely requires a modified

model for the unequal time correlation function and the precise GW spectra especially

around the peak may in reality differ from the presently presented result, potentially

even in a substantial manner. Nonetheless, we believe that the appearance of an f 2

low frequency tail and the overall shape to give a rough estimate of the anticipated

gravitational wave spectra from helical MHD turbulence.

When studying purely compressible turbulence, we only integrate the system over

one Hubble time, and as previously noted by (Caprini et al. 2009, e.g.), for highly

coherent turbulence highly oscillatory GW spectra appear in the high frequency tail,

even leading to an additional suppression of power in the high frequency tail. This may

not only be of importance for the GW signal from purely compressible turbulence but

also for the signal of maximally cross-helical MHD turbulence. As noted before, it is thus

also crucial to better understand the evolution of compressible cross-correlated MHD

turbulence. Solenoidal motion is of most importance in deflagration phase transitions

(subsonic bubbles vw . cs) and recent simulations indicate that the overall efficiency

parameter κv in these scenarios may be substantially smaller than assumed here (Cutting

et al. 2019), which would further reduce the overall power of the GW energy spectrum,

but also the initial integral scale strength of primordial magnetic fields. Furthermore,

as discussed here solenoidal motion and magnetic fields lead to a smaller efficiency in

the generation of gravitational waves in the high frequency tail. Recent studies indicate

that the vorticity is initially produced during the phase transition and afterwards the

vortical energy density remains constant, while the dilatational energy is dissipated

(Cutting et al. 2019), which appears best represented by the discussed model C1,see
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(5.12). Still, the details regarding the transfer require substantially more attention.

Concluding, there are still many interesting open question that need to be resolved

in order to better understand the signatures of primordial gravitational waves and large

scale magnetic fields from a cosmological first order phase transition.



A | Supplement to EDQNM derivation

A.1 Example on Calculation of the EDQNM equations

Here we briefly discuss as an explicit example a partial derivation of the evolution

equation for E±(k) (see (3.75))

(
∂τ + 2k2ν+

)
E±(k) = 2k3Pib(k)ka

∫ d3q
(2π)8 Im

[
〈z±i (−k)z∓a (p)z±b (q)〉

]
− 2k2ν−E

R(k).

(A.1)

For convenience we neglect the ν− damping term and the above three point function is

explicitly given as

(
∂τ + ν+(k2 + q2 + p2)

)
〈z±i (−k)z∓a (p)z±l (q)〉 =

ikcPid(k)
∫ d3q′

(2π)3 〈z
∓
a (p)z±b (q)z∓c (−p′)z±d (−q′)〉

− ipcPad(p)
∫ d3q′

(2π)3 〈z
±
i (−k)z±b (q)z±c (p′′)z±d (q′)〉

− iqcPbd(q)
∫ d3q′

(2π)3 〈z
±
i (−k)z∓a (p)z∓c (p′′′)z±d (q′)〉, (A.2)
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where p′ = k − q′, p′′ = p − q′ and p′′′ = q − q′. This can be directly integrated by

markovizing the four point functions

〈z±i (−k)z∓a (p)z±l (q)〉(τ) = γ(k, q, p, τ)

ikcPid(k)
∫ d3q′

(2π)3 〈z
∓
a (p)z±b (q)z∓c (−p′)z±d (−q′)〉(τ)

− ipcPad(p)
∫ d3q′

(2π)3 〈z
±
i (−k)z±b (q)z±c (p′′)z±d (q′)〉(τ)

− iqcPbd(q)
∫ d3q′

(2π)3 〈z
±
i (−k)z∓a (p)z∓c (p′′′)z±d (q′)〉(τ), (A.3)

where

γ(k, q, p, τ) = 1− exp [−ν+(k2 + q2 + p2)(τ − τ0)]
ν+(k2 + q2 + p2) . (A.4)

Furthermore, one introduces an additional eddy damping rate by adjusting the viscosity

ν+k
2 → νd(k) + ν+k

2 (see 3.73).

As an example, we look only at the line ∝ kcPid in (A.3) and evaluate the four point

correlations via Isserlis theorem (3.69). This leads to

iγ(k, q, p, τ)kcPid(k)
∫ d3q′

(2π)3

[
〈z∓a (p)z∓c (p′)〉〈z±b (q)z±d (q′)〉+ 〈z∓a (p)z±d (q′)〉〈z±b (q)z∓c (p′)〉

]
.

(A.5)

Then, we can apply the correlation functions (3.5) and (3.5) gives, while we neglect the

helicities and the cross scalar,

(2π)7

4p3q3 ikcPid(k)
[
E∓(p)Pac(p)E±(q)Pbd(q) + ER(p)Pad(p)ER(q)Pbc(q)

]
. (A.6)

Then the first two coefficients are given by

Λ1 = kaPib(k)kcPid(k)Pac(p)Pbd(q) = k2(1− c2
pk)(1 + c2

qk) (A.7)

and

Λ2 = −kaPib(k)kcPid(k)Pad(p)Pbc(q) = −k2cqkcpk(cqp − cqkcpk), (A.8)
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and note that we have absorbed a − sign into Λ2. Therefore the contribution of these

terms on the right hand side of (A.1) is

1
2k

3
∫ d3q

(2π)p3q3

[
Λ1E

∓(p)E±(q)− Λ2E
R(p)ER(q)

]
. (A.9)

This procedure needs to be applied for all other terms as well, including helical contri-

butions and the cross scalar, to fully reproduce (3.75).

A.2 Nonlinear compressible functions

Here we explicitly give the functions gi as described in (3.108) in subsection 3.4.6 and

3.4.7 for purely compressible three point functions given by (3.112) and 3.113. For con-

venience we introduce the notation ev = 〈vv∗〉, ed = 〈δδ∗〉 and em = 〈vδ∗〉. Additionally,

we introduce the functions

Λ11 = cqpΛ14 − c2
s(pcqk + qcpk), Λ12 = cqkΛ15 − c2

s(qcpk + kcqp), Λ14 = cqkq + cpkp

Λ13 = cpkΛ16 − c2
s(pcqk + kcqp), Λ15 = cpkk + cqpq, Λ16 = cqkk + cqpp. (A.10)

Note, that the terms ∝ c2
s appearing in Λ11, Λ12 and Λ13 are only of importance in

relativistic gases, fluids or plasmas, otherwise these terms are negligible for cs � 1.

Thus one finds

g1 = i

(2π)3

[
ev(p)ev(q)Λ11 + ev(k)ev(q)Λ12 + ev(p)ev(k)Λ13

+
(
1 + c2

s

)
(em(q)em(k)Λ15 + em(p)em(k)Λ16 − em(q)em(p)Λ14)

]
, (A.11)

g2 = i

(2π)3

[
em(p)ev(q)Λ11 − ev(k)em(p)Λ13 +

(
1 + c2

s

)(
ed(p)em(k)Λ16

− ed(p)em(q)Λ14 − em(q)ev(k)cpkp+ em(k)ev(q)cqpp
)]
, (A.12)
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g3 = i

(2π)3

[
em(q)ev(p)Λ11 − ev(k)em(q)Λ12 +

(
1 + c2

s

) (
ed(q)em(k)Λ15

− ed(q)em(p)Λ14 − em(p)ev(k)cqkq + em(k)ev(p)cqpq
)]
, (A.13)

g4 = i

(2π)3

[
em(q)em(p)Λ11 −

(
1 + c2

s

)(
ed(q)ed(p)Λ14 + ed(q)ev(k)pcpk

− ev(k)ed(p)qcqk + em(q)em(k)cqpp+ em(k)em(p)cqpq
)]
, (A.14)

g5 = i

(2π)3

[
em(k)ev(p)Λ13 + em(k)ev(q)Λ12 +

(
1 + c2

s

) (
ev(q)em(p)kcqk

+ ev(p)em(q)kcpk + em(q)ed(k)Λ15 + ed(k)em(p)Λ16

)]
, (A.15)

g6 = i

(2π)3

[
−em(k)em(p)Λ13 +

(
1 + c2

s

)(
em(q)em(p)kcpk + ev(p)ed(q)kcqk

+ ed(p)ev(k)Λ16 − em(q)em(k)pcpk + ed(k)ev(q)cqpp
)]
, (A.16)

g7 = i

(2π)3

[
−em(k)em(q)Λ12 +

(
1 + c2

s

)(
em(q)em(p)kcqk + ev(q)ed(p)kcpk

+ ed(q)ev(k)Λ15 − em(p)em(k)qcqk + ed(k)ev(p)cqpq
)]
, (A.17)

g8 =1 + c2
s

(2π)3 i
[
ed(p)em(q)kcqk + ed(q)em(p)kcpk − em(p)ed(k)qcqp

− ed(p)em(k)cqkq − em(q)ed(k)pcqp − em(k)ed(q)cpkp
]
. (A.18)

Here, the functions g1, g4, g6 and g7 are purely complex, while the other functions are real

valued, since the em as defined here are purely complex. Note that the Greens function

(3.109) has a real and imaginary part and in the end only the imaginary part of the

three point functions affects the evolution of the purely compressible energy spectrum.

That means, the complex gi only appear with the real part of the Greens function, while
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the real valued gi appear only with the imaginary component of the Greens function.

This has the consequence that there should be no oscillation free contributions to the

purely compressible three point functions. In these complex valued functions terms

like ∝ emem likely dominate in substantially subsonic strongly compressible turbulence,

as these introduce wave function of the type sin (2csk(τ ′)) which may provide more

significant contributions, when synchronized with terms like sin(ωi(τ ′)) on certain scales.

In order to grasp the solutions, one technically needs to perform the full diagonalization

to ascertain that no substantial sufficiently long-lasting positive interference becomes

relevant, which we have not yet done due to temporal constraints. At large scales k � q

and p = q + εk ≥ 0, the above coefficients become

Λ11 ≈ ε2(1− c2
s)k, Λ12 ≈ −εq − ε2k + c2

s(qε+ k), Λ14 ≈ −ε2k

Λ13 ≈ εq − c2
s(pε− k), Λ15 ≈ −εk − q, Λ16 ≈ −q. (A.19)

Again the large scale tail of the compressible spectra evolves according to

∂τ Ēd(k) ∝k3
∫ ∞

0
dq
∫ 1

−1
dε qpε

[
−(q + c2

sp)Im〈o1〉

+ (1 + c2
s) (kIm〈o7〉 − qIm〈o4〉)

]
. (A.20)

In g1 and g4 the coefficients ∝ e(q)e(p) scale at least as ∝ ε2k, and for g6 and g7 these

scale with εk, and analogously for e.g g2. We assume, that at large scales the three point

function oi is primarily driven by gi. Thus, one expects Ed(k) ∝ k5 for k � kI as for the

solenoidal case. One interesting observation is that unlike for the solenoidal case terms

∝ Ēd(k) can appear, whereas for solenoidal modes there are no linear growth terms

at large scales at O(Es(k)). Nonetheless, in purely substantially subsonic compressible

turbulence we do not expect that these terms are of significant important.



B | Numerical Treatment of EDQNM

equations

Here we briefly describe the numerical scheme used to solve the quasinormal equations.

First we start by discussing the discretization and the symmetrization and lastly we dis-

cuss the time integration. The scheme is based on a scheme first developed by Kraichnan

and Leith (Kraichnan 1967, Leith 1971, Leith & Kraichnan 1972) and further improved

by Bowman (Bowman 1996). Here we apply this method and show how total energy,

cross helicity and magnetic helicity can be conserved at the same time. Nontheless, for

stability reasons we implement readjust the spectra by introducing a cutoff which leads

to a slight violation of energy and cross and magnetic helicity conservation.

B.1 Discretization and Symmetrization scheme

We discretize the spectrum on an exponentially distributed grid ki = kmin2i/F , where F

controls the density of points in logarithmic intervals. Also we define kmax = kmin2N/F ,

where N + 1 is the total number of points that are being sampled. We apply a 2D

mid-point rule for the numerical integration of the two dimensional integral (see e.g.

(EDQNM1)). Then, the integration measure for a mode kl becomes

∫ ∞
0

dq
∫ k+q

|k−q|
dp→

N∑
n=0

N∑
m=0

θ (pm − |qn − kl|) θ (|qn + kl| − pm) pmqn∆2vlnm, (B.1)

155



B APPENDIX B. NUMERICAL TREATMENT OF EDQNM EQUATIONS 156

where

vlnm =
∫ kl,+

kl,−
dk
∫ qn,+

qn,−
dq
∫ pm,+

pm,−
dpθ (p− |q − k|) θ (|q + k| − p) , (B.2)

and ∆ = 21/(2F )− 2−1/(2F ), kn,− = 2−1/(2F )k and kn,+ = 21/(2F )k. The above volume ele-

ment with the additional integration in k assures that the integration remains symmetric

in the modes k, q and p. Otherwise the triads will not be conserved. We include a factor

θ (pm − |qn − kl|) θ (|qn + kl| − pm) to assure that only triads with center values e.g. qn
that are in the triad itself are taken into account. This is necessary, since the inclusion

of modes with non-zero vlnm, yet without e.g. pm in the triad itself, drive instabilities

in the evolution of the equation. We did not find a softer method to deal with these

problems, e.g. Kraichnan and Leith (cite here) introduced an symmetric reduction fac-

tor for these modes ∝ min(kl, qn, pm)/max(kl, qn, pm), yet this does not suffice for large

Reynolds numbers and non-Kolmogorov like initial conditions, hence we neglect those

terms altogether. Note that the volume element vlnm is symmetric under permutations

in all three indices. Therefore it is sufficient to only compute v̄(a − b, a − c) = vabc

for a ≥ b and a ≥ c. Moreover the coefficients Λi and Λh
i strongly vary in the p, q-

plane, hence these need to be averaged over the volume element. The average of these

coefficients reads

Λi(kl, qn, pm)→ fi(l, n)Λ̃i(l, n,m) = 1
vlnm

∫ kl,+

kl,−
dk
∫ qn,+

qn,−
dq
∫ pm,+

pm,−
dp

θ (p− |q − k|) θ (|q + k| − p) Λln
i (k, q, p) .
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The coefficients Λln
i (k, q, p) are defined as

Λln
1 (k, q, p) = k2

k2
l

(
1− c2

pk

) (
1 + c2

qk

)
, Λln

2 (k, q, p) = k2

k2
l

cqkcpk (cpkcqk − cqp) ,

Λln
3 (k, q, p) = q2

q2
n

cqkcqp (cqpcqk − cpk) , Λln
4 (k, q, p) = q2

q2
n

(
1− c2

qp

) (
1 + c2

qk

)
,

Λln
5 (k, q, p) = k2

k2
l

(cpkcqk − cqp) , Λln
6 (k, q, p) = q2

q2
n

(cqkcqp − cpk) ,

Λln
7 (k, q, p) = q2

q2
n

cqp (cpk − cqkcqp) , Λln
8 (k, q, p) = k2

k2
l

cqk (cqp − cpkcqk) ,

Λln
9 (k, q, p) = k2

k2
l

(
1− c2

pk

)
cqk, Λln

10(k, q, p) = k2

k2
l

cpk (cqp − cqkcpk) .

Moreover, the coefficients fi(l, n) are given as

fi(l, n) =


k2
l , i = 1, 2, 5, 8, 9, 10

q2
n, i = 3, 4, 6, 7

.

As before one only needs to compute Λ̃i(a, b, c) = ¯̃Λi(a−b, a−c). In general one one needs

to compute the differences from 0 to 2N−1 and also ¯̃Λi(a−b, a−c) 6= ¯̃Λi(a−c, a−b). The

damping factors γ(k, q, p) are symmetric by construction and there is no need to further

alter these. The simplistic integration scheme based on the midpoint rule generally

implies errors of the order 10% for F = 4. This is sufficient since the Gaussian closure

scheme, that is applied here, limits the overall precision regardless to a similar level.

Note that for the equations involving the evolution of H±(k) and HR(k) we apply a

slightly adjusted average

Λi,H(kl, qn, pm)→ fi(l, n)Λ̃i,H(l, n,m) = 1
vlnm

∫ kl,+

kl,−
dk
∫ qn,+

qn,−
dq
∫ pm,+

pm,−
dp

θ (p− |q − k|) θ (|q + k| − p) Λln
i (k, q, p) kl

k
.

We find this to be necessary in order to ascertain that magnetic helicity remains con-

served up to errors on the level of the machine precision.

The choice of the additional scaling comes from the fact thatHb(k)/k is the conserved
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quantity. Note one particular downside is that for helical hydrodynamical turbulence,

conservation of the dimensional kinetic helicity HK(k)k is not covered by this scaling,

and in fact a factor k/kl rather than kl/k would have to be introduced to ascertain

the numerical conservation of the hydrodynamical conserved kinetic helicity. Hence the

present approach is ill suited in handling helical MHD systems with small magnetic

Reynolds numbers Rem . 1 and large kinetic Reynold’s numbers Re� 1, although

we note that kinetic helicity is suspected to generally undergo a cascade and hence

viscous decay might sufficiently hide any inadequacies in properly handling the purely

numerical turbulent decay of kinetic helicity in hydrodynamic or quasi-hydrodynamic

systems. Anyway in the present study we do not expect that these inadequacies will

have any relevant impact on the system, yet again we cannot fully exclude the possibility

that the evolution of non-conserved quantities may be contaminated by larger numerical

errors or even by instabilities.

Furthermore, the code does not conserve quantities like

∫ ∞
0

dk
k
E±(k), (B.3)

but rather it conserves these quantities as defined by the trapezoidal rule

1
2

N∑
i=1

(ki − ki−1)
(
E±(ki)
ki

+ E±(ki−1)
ki−1

)
. (B.4)

for the cross helicity and total energy. Besides, the code conserves for the magnetic

heliciy the following quantity

1
8

N∑
i=1

(ki − ki−1)
(∑

±H
±(ki)− 2HR(ki)

k2
i

+
∑
±E

±(ki−1)− 2HR(ki−1)
k2
i−1

)
. (B.5)

As discussed by the example of a zero net dimensional magnetic helicity, the approach

is fully self-sufficient in that a system with a zero magnetic helicity as defined above

behaves differently than a system with some net non-zero magnetic helicity as defined

above.
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B.2 Time integration

In order to solve for the integration in time we use a backwards differentiation formula.

We use a modified time step that in case of a trapezoidal rule has the following shape

for hydrodynamic turbulence

yn+1
l = exp

[
−2νk2

l ∆n+1
]
ynl + 1− exp [−2νk2

l ∆n+1]
2νk2

l

[
F n+1
l (yn+1) + F n

l (yn)
]
, (B.6)

where F (y, tn) = y′ν→0(tn) and the tn has been dropped for an upper index n. Such

schemes have the advantage, that the diffusion equation is solved exactly with arbitrary

large timesteps and the size of a timestep only depends on the nonlinear part of the

equation. In the case of the MHD equations in terms of the Elsaesser variables, we

need to rotate the equations in order to perform a step according to (B.6). For MHD

yn+1
l → yl is a six dimensional vector

yl =
{
E+
l , E

−
l , E

R
l , H

+
l , H

−
l , H

R
l

}
. (B.7)

The transformation of these is then given by

M =



0 −1 0 −1 0 1

0 1 0 −1 0 1

0 0 0 1 0 1

−1 0 −1 0 1 0

1 0 −1 0 1 0

0 0 1 0 1 0
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and the back-transform is given by

M−1 =



0 0 0 −1/2 1/2 0

−1/2 1/2 0 0 0 0

0 0 0 −1/4 −1/4 1/2

−1/4 −1/4 1/2 0 0 0

0 0 0 1/4 1/4 1/2

1/4 1/4 1/2 0 0 0



The eigenvalues of the transformation corresponding to the viscosity in (B.6) are

ν = {ν+, ν+, ν+ − ν−, ν+ − ν−, ν+ + ν−, ν+ + ν−}T . (B.8)

Then the analogue of (B.6) for MHD is

yn+1
l = M−1 exp

[
−2νk2

l ∆n+1
]

Mynl +M−1 1− exp [−2νk2
l ∆n+1]

2νk2
l

M
[
Fn+1
l (yn+1) + Fn

l (yn)
]
.

(B.9)

This can be generalized towards higher order schemes in an analogues manner. Techni-

cally ν depends on the scale factor, hence we take ν(tn) for a predictor step and ν(tn+1)

for the corrector step.

B.3 Cleaning, hyper-viscosity and hyper-resistivity

In order to stabilize the numerical evaluation and to decrease computation times, we

deploy several adjustments and tricks. One important factor is the implementation

of an additional viscosity term, the so called hyper-viscosity in order to decrease the

inertial range and to increase the length of time-steps which scale with k−αd , where α > 0

depends on the scaling of the inertial range i.e. a large kd implies shorter time-steps.

Another important numerical aspect of this is the reduction of points that needs to be
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sampled. The viscosity is then redefined accordingly

νk2 → νk2 + νhk
6, (B.10)

where νh is the hyper-viscosity coefficient which we choose adaptively to correspond to

Re . 104 based on the integral scale variables and a Kolmogorov inertial range scaling

with the key assumption that at the hyper-viscosity damping scale we have Re(kd,h) = 1.

Explicitly, we choose νh = vIRe−17/5k
−21/5
I , where vI = v(kI). While for a k−1 scaling

in the inertial range one should set νh = vIRe−3k−5
I . Note that these choices are only a

rough approximation and the system does not behave like a fully turbulent state with

Re = 104 as the hyper-viscosity does not affect the inertial range in the same manner due

to the steeper scaling. This approach is only reasonable whenever Pm� 1, however if

hyper-resistive damping is relevant, one also needs to add a resistive damping coefficient.

In general we choose for the hyper resistivity ηh ∼ νh/Pm1/3, where Pm = ν/η is still

based on microphysical rather than hyper-damping terms. Here we do not apply a

hyper-resistive damping term in order to ascertain magnetic helicity conservation.

Furthermore, the hyper-viscosity term not only helps in increasing timesteps but it

also helps in somewhat suppressing the growth of small scale instabilities. Nonetheless,

this itself is not sufficient, to ascertain stability of the system at small scales without

excruciatingly small time steps. In order to increase stability we cut the tail of the en-

ergy and other spectra at the small scales, where the value of the spectrum has dropped

to roughly 10−10 (E+(kI) + E−(kI)). Around this point we generally apply a mixture a

of strict cut-off i.e. setting all spectral values at smaller scales to 0 and averaged power-

law exponential extrapolation in order to control the system, where the hard-cut off is

used when the values of the energy spectrum are not monotonously decreasing towards

smaller scales. In general this procedure is reiterated until a monotonous small scale be-

havior with the aforementioned cut-off persists. We emphasize that the aforementioned

problems are not physical but purely numerical, e.g. negative energies appear, which is

not a feature of the EDQNM approximation.

Lastly, in order to further improve of the efficiency energy and cross- and magnetic
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helicity conservation, we evaluate the numerical error in the derivatives and readjust

either the maximal or minimal value of the derivative of either the energies, cross- or

magnetic helicity, such that the numerical error gets further reduced, which generally

improves conservation of the total energy spectral distribution or the two helicities

above machine precision, where the width of a spectral interval is otherwise another

limiting factor in precision. We repeat this procedure 4 times, which leads to a further

reduction of the error. Note that the aforementioned cutoff and extrapolation violates

magnetic helicity conservation in cross helicity dominated MHD turbulence and is in

general a significant source for a violation in magnetic and cross helicity and energy

conservation. An improvement of the cut-off and extrapolation to account for magnetic

helicity conservation in these instances is still work in progress.



C | Assumptions in Solving the GWMHD

equations

Here we model the spectra of solenoidal MHD turbulence using the von Karman model

(von Kármán 1948)

E(k) = CE
K5

(c+K2)17/6 θ(LI/λ−K), (C.1)

where K = kLI/(2π), kd = λ/(2π) and c = 5/12 corresponds to E(k)/k having a

maximum at K = 1. The factor CE is fixed by the following normalization conditions

3
2Ωturb =

∫ ∞
−∞

d ln(K)E(K), (C.2)

where Ωturb is the density parameter of either the solenoidal kinetic or magnetic compo-

nent or the sum of both relative to the radiation energy density parameter Ωr. Therefore,

we arrive at

CE = − 3
2π3/2

(10
3

)1/3 Γ(17/6)
Γ(−2/3) ≈ 0.172 Ωturb, (C.3)

where we assume LI � λ and hence neglected the cutoff scale in the normalization. We

assume that the fields evolve in equipartition, thus Es = Eb. For compressible MHD

turbulence we use slightly different spectra. We assume a k−2 inertial range, if the

turbulence is driven by dilatational (purely compressible) modes (e.g. Sun 2017),

ED(k) = CD
K5

(cD +K2)3 θ(LI/λ−K), (C.4)
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where cD = 1/2 and

CD = 9
32
√

2
Ωturb ≈ 0.2Ωturb. (C.5)

Note, that technically a factor cos2(cskτ) appears in the dilatational spectrum, however

here we average and normalize this factor, in the limit kτ � 1, away. For the velocity

spectrum we then have

EV (k) = fdCD
K5

(cD +K2)3 θ(LI/λ−K) + fsCE
K5

(c+K2)17/6 θ(LI/λ−K), (C.6)

where fd and fs denote the fraction of dilatational and solenoidal modes, respectively

with fd + fs = 1.

We assume a purely self-similar evolution according to sub-subsection 3.4.5 and

section 5.1

LI(τ) = Lpt


1, τ ≤ τ0 + τb(
τ−τ0−τb+τD

τD

)b
, τ > τ0 + τb

(C.7)

where τD is a decay time constant and we set

τD = Lpt

2
√
〈v2

1〉
= Lpt√

2Ωturb,t
, (C.8)

where v1 is given by (3.48). Also τb is the build-up timescale e.g. τb = β−1 is the

duration of the phase transition. Subsequently, we assume for the energy the following

temporal evolution

Ωturb(τ) = Ωturb,pt


1−

(
τb−(τ−τ0)

τb

)
, τ0 ≤ τ ≤ τ0 + τb(

τD
τ−τb+τD

)a
, τ ≥ τb + τ0.

(C.9)

where a = 1.4 and b = 0.3 for a normal cascade and a = b = 2/3 for a magnetic helicity

driven inverse cascade. Here Lpt is the initial turbulent integral scale and Ωturb,pt is the

peak turbulent density parameter after the turbulence has been excited. We use these

spectra and scaling relations to calculate the gravitational wave spectra.
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