
Ultrafast dynamics of strongly
correlated systems

Dissertation

zur Erlangung des Doktorgrades

des Fachbereichs Physik

der Universität Hamburg

vorgelegt von
Viktor Valmispild

Hamburg 2019



ii

Gutachter der Dissertation: Prof. Dr. Alexander I. Lichtenstein
Dr. Frank Lechermann

Zusammensetzung der
Prüfungskommission: Prof. Dr. Alexander I. Lichtenstein

Dr. Frank Lechermann
Prof. Dr. Michael Potthoff
Prof. Dr. Daniela Pfannkuche
Dr. Kirsten von Bergmann

Vorsitzende der
Prüfungskommission: Prof. Dr. Daniela Pfannkuche

Datum der Disputation: 19.12.2019

Vorsitzender Fach-
Promotionsausschusses Physik: Prof. Dr. Günter H.W. Sigl

Leiter des Fachbereichs Physik: Prof. Dr. Wolfgang Hansen

Dekan der Fakultät MIN: Prof. Dr. Heinrich Graener



iii

Zusammenfassung In der Dissertation stelle ich eine theoretische Studie von ul-
traschnellen Prozessen in Systemen mit starken elektronischen Korrelationen vor, die
durch Wechselstromfelder aus dem Gleichgewicht gebracht werden. Es wird beson-
dere Aufmerksamkeit dem Verständnis des Verhaltens von Systemen mit starken elek-
tronischen Korrelationen in externen Feldern zugeteilt, die bereits im Gleichgewicht
reichhaltige Physik demonstriert haben.

Dabei verwende ich die Theorie des dynamischen Nichtgleichgewichtsmolekular-
feldes (NE-DMFT) um die stark korrelierter Vielkörpersysteme im externen Feld
zeitaufgelöst zu simulieren.

Durch die Einstellung von Frequenz, Intensität, Polarisation und Pulsform des
angelegten Feldes in einem breiten Parameterspektrum sowie durch elektronische
Korrelationen erhalten wir Zugang zu einer Reihe neuer Phänomene, die in der vor-
liegenden Arbeit untersucht werden.

Ein solches Phänomen ist die Vorzeichenänderung der effektiven Coulomb - Wech-
selwirkung unter dem Einfluss von Halb-, Mono- und Mehrperiodenpulsen, die auf
ein zweidimensionales Quadratgitter angewendet werden und kann als realistisches
Modell für supraleitende Materialien mit hohem-TC verwendet werden könnten.

Dann verwende ich NE-DMFT, um das Einfangen von Elektronen in einen neuen
metastabilen Zustand zu untersuchen und den Übergang der metallischen Phase
zum Isolator zu demonstrieren. Dieser Übergang wird von einem effektiven Poten-
tial angetrieben, das durch die niederfrequente laserinduzierte Vielkörperdynamik
erzeugt wird. Diese Phase wird als "Kramers-Henneberger-Festkörper" bezeichnet
und in Analogie zum "Kramers-Henneberger-Atom", einem gebundenen elektronis-
chen Zustand, der in einem neuen Potenzial vorliegt, welcher durch die kombinierte
Wirkung des Laserfeldes und des Atomkerns erzeugt wurde, diskutiert.

Das Anlegen eines hochfrequenten externen elektrischen Feldes an ein dissipa-
tionsfreies Ein-Orbital-Hubbard-Modell führt zu einer Änderung der Bandstruktur
und der Impulsverteilung ohne signifikante Übertragung von Teilchen über das Fermi-
Niveau. Diese elektronische topologische Modifikation führt zu einem feldinduzierten
Lifshitz-Übergang.

Um schließlich einen Einblick in die Natur der magnetischer Anregungen in kom-
plexen itineranten Magneten zu erhalten, verwende ich eine realistische zeit-abhängige
Lineare-Antwort-Dichtefunktionaltheorie. Ich wende diese Theorie zur Analyse der
räumlichen und zeitlichen Skalen von Spin-Dichte-Schwankungen in 3d Ferromag-
neten an.
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Abstract In the thesis, I present a theoretical study of ultrafast processes in sys-
tems with strong electronic correlations, driven out of equilibrium by ac fields. The
main point is understanding the behavior of a system with strong electronic correla-
tions in the presence of external fields, besides, already reach physics demonstrated
by such systems even in equilibrium case.

I use the nonequilibrium dynamical mean-field theory (NE-DMFT) as a method
for time-resolved simulation of strongly correlated many-body systems driven out of
equilibrium by the external field.

Tuning the applied field in a wide range of frequency, intensity, polarization, and
pulse shape together with electronic correlations give us access to a number of new
phenomena considered in the present thesis.

First such phenomenon is sign change of the effective Coulomb interaction under
the influence of half- mono- and multi-cycle pulses adopted to a two-dimensional
square lattice, which could be used as a realistic model of high-TC superconducting
materials.

Then I apply NE-DMFT to study the trapping of electrons into a new metastable
state, demonstrating the transition of the metallic phase to the insulator. This tran-
sition is driven by effective potential, generated by the low-frequency laser-induced
many-body dynamics. This phase is called "Kramers-Henneberger solid", and it is
discussed in analogy with "Kramers-Henneberger atom", bound electronic states re-
siding in a new potential generated by the combined action of the laser field and the
atomic core.

Applying a high-frequency external electric field to a one-orbital Hubbard model
without dissipation leads to a change in the band structure and momentum distri-
bution without significant transfer of particles above the Fermi level. This electronic
topological modification leads to field-induced Lifshitz transition.

Finally, in order to gain an insight into the nature of magnetic excitations in
complex itinerant magnets, I use realistic linear response time-dependent density
functional theory. I apply this theory for analysis of spatial and time scales of spin
density fluctuations in 3d ferromagnets.
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Chapter 1

Introduction

In the last decade growth of experimental interest in the field of ultrafast time-
resolved spectroscopies in solids. Where an intense pump laser pulse is used to
drive the system into highly excited states, while another higher frequency probe
pulse is used to observe a temporal evolution of the system. The "pump-probe"
technique has enabled the study of transient and relaxation processes which is crucial
to understanding ultrafast phase transitions, dynamics of various excitations and
many scattering phenomena. This approach has been used to explore a variety of
properties in electron systems and ultracold atoms trapped in an optical lattice.

Our fundamental interest is transient nonequilibrium phenomena in strongly cor-
related electron systems particular on high-TC superconductors. In equilibrium,
strong electronic correlations bring plenty of fascinating phenomena, such as metal-
to-Mott-insulator transitions or high-TC superconductivity and various magnetic
phenomena. If such interacting many-particle systems are driven out of equilibrium,
one can observe rich unexplored variety of dynamics during and after the perturba-
tion. This will help us to get new physical insights into the correlated system that
cannot be discovered in equilibrium.

The fast developments of experimental techniques motivate the progress of the-
oretical methods to study correlated fermions out of equilibrium. Among the many
approaches that have been introduced to study correlated systems, some have al-
ready been extended out of equilibrium. Most successful of them the Dynamical
Mean-Field Theory (DMFT) [58, 96] which provides the exact solution in the limit
of infinite coordination. DMFT approximates only the spatial correlations in a mean-
field manner, but accurately treats local temporal fluctuations that are important for
describing strong-correlation phenomena. Using Kadanoff-Baym formalism, a gen-
eral formulation of the Nonequilibrium Dynamical Mean-Field Theory (NE-DMFT)
[52] was done to describe temporal evolutions of the system from a thermal initial
state.

The goal of this thesis is a theoretical investigation of interacting many-body
systems out of equilibrium by tuning the applied pump field in a wide range of
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frequency, intensity, polarization and pulse shape using NE-DMFT approach.
The structure of the thesis is as follows. In chapter 2, a brief methodological

overview will be given, with an emphasis on NE-DMFT approach and approximations
used in it.

In chapter 3 we investigate changing the sign of the effective Coulomb interaction
under the influence of half- mono- and multi-cycle pulses. The system adopted to a
two-dimensional square lattice, which could be used as a realistic model of high-Tc
superconducting materials.

Than in chapter 4 we will apply NE-DMFT to study the trapping of electrons
into a new metastable state, demonstrating the transition of the metallic phase
to the insulator. This transition is driven by effective potential, generated by the
low-frequency laser-induced many-body dynamics. This phase is called "Kramers-
Henneberger solid", and it is discussed in analogy with "Kramers-Henneberger atom",
bound electronic states residing in a new potential generated by the combined action
of the laser field and the atomic core.

Applying high-frequency external electric field to one-orbital Hubbard model
without dissipation leads to a change in the band structure and momentum dis-
tribution without significant transfer of particles above the Fermi level. This elec-
tronic topological modification leads to field-induced Lifshitz transition and will be
discussed in detail in chapter 5.

In the chapter 6 we will discuss the importance and different ways of including
additional orbital degrees of freedom for an accurate description of the electronic
structure of correlated materials.

Finally in order to gain an insight into the nature of magnetic excitations in
complex itinerant magnets, in the chapter 7 we will discuss a brief methodological
overview to realistic linear response in the framework of time-dependent density
functional theory. We also apply this theory for analysis of spatial and time scales
of spin density fluctuations in 3d ferromagnets.
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Chapter 2

Nonequilibrium many-body theory

A Nonequilibrum Green’s function approach
There are different approaches to account for time dependencies in a quantum me-
chanical system with its advantages and disadvantages. One of the most popular
is a Keldysh formalism for nonequilibrium Green’s functions. Kadanoff and Baym
[54] introduced the concept of two real-time Green functions, thus developing the
standard equilibrium (imaginary-time) formalism [4] to nonequilibrium [164]. In this
work, we use L-shaped Green contour functions, which were introduced by Keldysh
[88] and Danilevich [32]. Many theoretical approaches that have been developed for
the study of strongly correlated systems can be adapted for nonequilibrium systems
using the Keldysh formalism.

A.1 Contour idea

Time-dependent experimental measurements can be related with expectation values
of observables 〈O(t)〉. An expectation value of a quantum mechanical operator O at
time t given by

〈O(t)〉 = Tr[ρ(t)O]. (A.1)

where ρ(t) is a time-dependent density matrix.
Initial (at t = 0) system is in a mixed state represented by a density operator

ρ(0) =
1

Z
e−βH(0), (A.2)

where H(t) - time-dependent Hamiltonian, β = 1/T is the inverse temperature,
Z = Tr e−βH(0) is the thermal equilibrium partition function. At t = 0 we switch on
a driving field, and the system starts to evolve from its initial state. A Neumann
equation describes how the density operator evolves in time and has the following
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expression

i
d

dt
ρ(t) = [H(t), ρ(t)], (A.3)

where the brackets denote a commutator. The solution for the equation can be
written as

ρ(t) = U(t, 0) ρ(0)U(0, t), (A.4)

where the interaction time evolution operator defined as

U(t, t′) =


T exp

(
−i
∫ t

t′
dt̄H(t̄)

)
t > t′

T̄ exp

(
−i
∫ t

t′
dt̄H(t̄)

)
t < t′

. (A.5)

Here T denotes time-ordering and T̄ anti-time-ordering operators. Operator H(t)
odered by operator T such that the time arguments t̄ increase from right to left and
vice versa for T̄ . The density matrix involves one exponent with a forward integration
along the time axis due to U(t, t′), one with a backwards integration due to U(t′, t),
and in initial state with exp(−βH(0)).

0

C1

C2

C3

Re t

Im t

-iß

t

t'

Figure 2.1: L-shaped contour

Finally, the time-dependent expectation value with respect of initial equilibrium
and the time-dependent density matrix can be expressed as

〈O(t)〉 =
1

Z
Tr [U(−iβ, 0)U(0, t)OU(t, 0)] =

Tr
[
TCe

−i
∫
C dt̂H(t̂)O(t)

]
Tr
[
TCe

−i
∫
C dt̂H(t̂)

] (A.6)
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where TC is a contour-ordering operator that organize operators on the contour C
in the order 0 → tmax → 0 → −iβ (Fig. 2.1), O(t) indicates that the operator O is
inserted at time t on the contour C [54].

Such time parametrization along the contour allows us to derive many techniques
from equilibrium many-body theory to nonequilibrium. It should be noted that other
time contours can also be used depending on the physical situation.

A.2 Contur-ordered Green’s functions and self-energy

One particle contour-ordering Green’s functions is defined according to

G(t, t′) ≡ −i〈TC c(t) c†(t′)〉, (A.7)

where c†(c) is a creation (annihilation) operator of particles, and t, t′ ∈ C. Spin
and orbital indices are not shown to simplify writing equations.

The contour C is divided into three branches C1, C2 and C3 as in Fig. 2.1. there
are nine possibilities to distribute the arguments along the contour, which can be
grouped in a (3× 3) matrix [191].

Each component of the Green’s functions satisfies

G11(t, t′) = G12(t, t′) (for t ≤ t′), (A.8a)
G11(t, t′) = G21(t, t′) (for t > t′), (A.8b)
G22(t, t′) = G21(t, t′) (for t < t′), (A.8c)
G22(t, t′) = G12(t, t′) (for t ≥ t′), (A.8d)
G13(t, τ ′) = G23(t, τ ′), (A.8e)
G31(τ, t′) = G32(τ, t′). (A.8f)

Some components can be summarized as

G11(t, t′) +G22(t, t′) = G12(t, t′) +G21(t, t′). (A.9)

But such matrix representation is overcomplete because not all components are
independent. One can reduce (3 × 3) matrix using linear transformation (Keldysh
rotation),

Ĝ =

GR GK
√

2G¬
0 GA 0

0
√

2G ¬ GM

 = Lτ3

G11(t, t′) G12(t, t′) G13(t, τ ′)
G21(t, t′) G22(t, t′) G23(t, τ ′)
G31(τ, t′) G32(τ, t′) G33(τ, τ ′)

L†. (A.10)
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where rotating L and Pauli τ3 matrices,

L =
1√
2

1 −1 0
1 1 0

0 0
√

2

 , τ3 =

1 0 0
0 −1 0
0 0 1

 . (A.11)

Thus, only six linearly independent Greens functions remain. They are called as
retarded (GR), advanced (GA), Keldysh (GK), left-mixing (G¬), right-mixing (G ¬),
and Matsubara Green’s function (GM). They can be parameterized as follows

GR(t, t′) = 1
2
(G11(t, t′)−G12(t, t′) +G21(t, t′)−G22(t, t′))

= −iθ(t− t′)〈[c(t), c†(t′)]∓〉, (A.12a)
GA(t, t′) = 1

2
(G11(t, t′) +G12(t, t′)−G21(t, t′)−G22(t, t′))

= iθ(t′ − t)〈[c(t), c†(t′)]∓〉, (A.12b)
GK(t, t′) = 1

2
(G11(t, t′) +G12(t, t′) +G21(t, t′) +G22(t, t′))

= −i〈[c(t), c†(t′)]±〉, (A.12c)
G¬(t, τ ′) = 1

2
(G13(t, τ ′) +G23(t, τ ′)) = ∓i〈c†(τ ′)c(t)〉, (A.12d)

G ¬(τ, t′) = 1
2
(G31(τ, t′) +G32(τ, t′)) = −i〈c(τ)c†(t′)〉, (A.12e)

GM(τ, τ ′) = −iG33(τ, τ ′) = −〈Tτ c(τ)c†(τ ′)〉. (A.12f)

Correlation functions G> and G< which correspond propagation of a "particle"
and a "hole":

G<(t, t′) = G12(t, t′) = ∓i〈c†(t′)c(t)〉 = 1
2
(GK(t, t′)−GR(t, t′) +GA(t, t′)), (A.13)

G>(t, t′) = G21(t, t′) = −i〈c(t)c†(t′)〉 = 1
2
(GK(t, t′) +GR(t, t′)−GA(t, t′)). (A.14)

Using the above contur-ordered Green’s function one can rewrite as inverse adopt-
ing for noninteracting tight-binding Hamiltonian H0(t) =

∑
k[εk(t)− µ]c†kck:

G−1
0,k(t, t

′) = [i∂t + µ− εk(t)]δC(t, t′) (A.15)

where δC(t, t′) = ∂tθC(t, t′).
It is possible to describe the many-body interactions of a single particle by in-

troducing an energy dependent effective potential called self-energy (Σ). Similar to
the Green’s functions the self-energy is defined on the L-shaped contour and has a
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(3× 3) matrix structure which can be reduced using the Keldysh rotation [191]:

Σ̂ =

ΣR ΣK
√

2Σ¬
0 ΣA 0

0
√

2Σ ¬ ΣM

 = Lτ3

Σ11(t, t′) Σ12(t, t′) Σ13(t, τ ′)
Σ21(t, t′) Σ22(t, t′) Σ23(t, τ ′)
Σ31(τ, t′) Σ32(τ, t′) Σ33(τ, τ ′)

L†. (A.16)

These components are called as retarded (ΣR), advanced (ΣA), Keldysh (ΣK), left-
mixing (Σ¬), right-mixing (Σ ¬), and Matsubara (ΣM).

The self-energy operator is related to the bare G0 and dressed G propagators and
via the Dyson equation:

Ĝ = Ĝ0 + Ĝ0 ∗ Σ̂ ∗ Ĝ. (A.17)

where ∗ denotes convolution. Using a differential form for G−1
0 this expression can

be rewritten for various components as

[i∂t − µ+ εk(t)]G(t, t′)−
∫
C
dt̄Σ(t, t̄)G(t̄, t′) = δC(t, t

′) (A.18)

From the physical point of view, the solutions of this equation describe the time-
dependent single-particle spectrum (GR) and particle distribution (G<).

B Hubbard model
In 1960s the Hubbard model was proposed by Hubbard [75], Gutzwiller [68] and
Kanamori [86] to describe electrons in 3d transition metal monoxides (FeO, NiO,
CoO).

The Hubbard model is one of the most important models in theoretical physics
due to its simplicity and the number of physical phenomena that it can describe.
These phenomena include metal-insulator transition, antiferromagnetism, ferrimag-
netism, ferromagnetism, and superconductivity. Hamiltonian for single-band Hub-
bard model with time-dependent hopping amplitudes and local Coulomb repulsion,

H(t) = Hkin(t) +Hpot(t) (B.1a)

Hkin(t) =
∑
ijσ

tij(t)c
†
iσcjσ (B.1b)

Hpot(t) = U(t)
∑
i

(ni↑ −
1

2
)(ni↓ −

1

2
) (B.1c)
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where c†iσ(cjσ) are creation (annihilation) operators for an electron with the spin σ
in the orbital at the lattice site i, niσ = c†iσcjσ counts the number of electrons with
the spin σ in the orbital at site i. The kinetic energy Hkin(t) allows for tunneling
of particles between sites of the lattice with amplitudes tij(t). Potential term of the
Hamiltonian Hpot(t) corresponds of an on-site Coulomb interaction.

Due to recent growth of experimental interest in the systems driven out of equilib-
rium, such as the ultrafast pump-probe spectroscopies, theoretical methods to study
such correlated systems are necessary. Thus, in later chapters, we will investigate the
behavior of the Hubbard model out of equilibrium under the action of an external
electromagnetic field. To do this, we describe the external spatially uniform electric
field via the vector potential A(t)

E(t) = −∂A(t)/∂t (B.2)

The Peierls substitution [139] is used to account for the electric field in the Hamil-
tonian, so the hopping matrix in the general case elements satisfy

tij(t) = tijexp

(
−
∫ Rj

Ri

drA(r, t)

)
(B.3)

For the tight-binding parametrization of the electronic structure of the CuO
plane, which is a common feature of high-Tc superconducting materials, we use the
following dispersion law for a square lattice in the k-space:

ε1(k, t) = 2t1(cos(kx + Ax(t)) + cos(ky + Ay(t))), (B.4a)
ε2(k, t) = 2t1(cos(kx + Ax(t)) + cos(ky + Ay(t)))

+ 4t2(cos(kx + Ax(t)) · cos(ky + Ay(t))). (B.4b)

where ε1(k, t) corresponds to nearest neighbor (NN) approximation and ε2(k, t) next
nearest neighbor (NNN).

Since the DMFT becomes exact in the limit of lattices with an infinite coordina-
tion we use for benchmarks the Bethe lattice with semielliptic density of states:

ρ(ε) =
2
√

1− (ε/D)2

πD
(B.5)

where D is half-bandwidth.
The model has two extreme cases: 1) Limit with U → 0 is a tight-binding model

which entirely analogous for the investigation of spinless free fermions; 2) Limit with
t → 0 is called atomic limit where the electrons can not move, such case represent
the Mott insulator.
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C Nonequilibrium dynamical mean-field theory
In equilibrium, the DMFT [58] plays a large role in understanding systems with
strong electron correlations. An example of such DMFT success is explanation tran-
sition between a metal and the Mott insulator, and in combination with other theories
for realistic simulation of many correlated materials.

This chapter presents the nonequilibrium dynamical mean-field theory (NE-DMFT)
[11] which allows studying the strongly correlated many-body systems out of equi-
librium.

C.1 Self-consistency loop

An approximation of equilibrium and out of equilibrium DMFT is the local nature
of the self-energy. This means that self-energy is momentum-independent.

Σlat
ij (t, t′) ≈ δijΣ

imp(t, t′). (C.1)

This fact allows mapping of a lattice problem to a self-consistent solution of a quan-
tum impurity model, which is exact in the limit of infinite dimensions. We can write
nonequilibrium single-site action as

Simp = −i
∫
C

dtHpot(t)− i
∑
σ

∫
C

dtdt′c†σ(t)∆i(t, t
′)cσ(t′) (C.2)

where ∆i(t, t
′) is time-dependent hybridization function wich represents the hopping

amplitude from the impurity into the bath [57].
After that we can define the contour-ordered impurity Green’s function

Gimp(t, t
′) = −i〈TCc(t)c†(t′)〉Simp (C.3)

where 〈...〉Simp =
Tr [TCexp(Simp) · · · ]
Tr [TCexp(Simp)]

the expectation value of observables.

The time-dependentWeiss Green’s function is the Green’s function of non-interacting
impurity and related with the hybridization function:

G(t, t′) = (i∂t + µ(t))δC(t, t′)−∆(t, t′) (C.4)

The lattice and Weiss Green’s functions need to be determined iteratively.
1) This self-consistent loop starts with the calculation of the impurity Green’s

function Gimp(t, t
′) and G(t, t′).
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2) From impurity Green’s function the self-energy can be extracted using the
Dyson’s equation: Σimp(t, t

′) = G−1(t, t′)−G−1
imp(t, t

′)
3) Due to DMFT approximation, identify the lattice self-energy with the impurity

one, Σk(t, t′) = Σimp(t, t
′). The local lattice Green’s function by integrating over all

k-points in the first Brilluin zone Gloc(t, t
′) =

∫
(dk)[(i∂t + µ(t) − εk(t))δC(t, t′) −

Σimp(t, t
′)]−1

4) The self-consistency condition of the DMFT is Gloc(t, t
′) = Gimp(t, t

′). Use this
definition to define a new Weiss Green’s function G−1(t, t′) = G−1

loc(t, t
′) + Σimp(t, t

′).
To enhance the convergence of the self-consistency loop one can mixed new and old
Weiss field: G−1

new(t, t′) = (1− ξ)G−1
old(t, t

′) + ξ
[
G−1
loc(t, t

′) + Σimp(t, t
′)
]
.

C.2 Equal-time observables

The lattice Green’s functions which we obtain after the NEDMFT iterations allows
us compute physical observables:

Using definition of lesser Green function expression for the number of particles
with spin σ on site i written as:

nσ(t) =
1

L

∑
i

〈
c†iσ(t)ciσ(t)

〉
= −iG<

σ (t, t), (C.5)

here L is the lattice site.
A momentum ocupation we obtain from the k-resolved Green’s function

n(k̃, t) = −iG<
k+A(t),σ(t, t) = −iG̃<

k,σ(t, t) (C.6)

this is the gage invariant form, where wave vector is k̃ = k + A(t) [34].
The current operator [158] is defined as

j(t) =
e

V

∑
kσ

vk(t)nk̃,σ(t) (C.7)

= − ie
V

∑
kσ

vk−A(t)G
<
k,σ(t, t) = − ie

V

∑
kσ

vkG
<
k+A(t),σ(t, t) = − ie

V

∑
kσ

vkG̃
<
k,σ(t, t),

(C.8)

where V is the volume, vk - group velocity (derivative of the dispersion law).
The kinetic energy per lattice site

Ekin(t) =
1

L

∑
kσ

εk,σ

〈
c†kσ(t)ckσ(t)

〉
= − i

L

∑
kσ

εk,σG
<
k,σ(t, t). (C.9)
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The double occupation per lattice site

d(t) =
1

L

∑
i

〈ni↑(t)ni↓(t)〉. (C.10)

The interaction energy

Epot(t) = U(t)
∑
i

〈(
ni↑(t)−

1

2

)(
ni↓(t)−

1

2

)〉
(C.11)

= U(t)

[
d(t)− 1

2
(n↑(t) + n↓(t)) +

1

4

]
. (C.12)

The total energy is a sum of the kinetic and potential energies:

Etot(t) = Ekin(t) + Epot(t). (C.13)

C.3 Spectral function and photoemission spectrum

A pump-probe time-resolved photoemission spectroscopy (TRPES) [see Sec. D] and a
angular-resolved photoemission spectroscopy(TRARPES) allows to probe the excited
state non-equilibrium dynamics of electrons in solids. These methods can provide
data about time-dependent electronic structure of strongly correlated materials.

DMFT based retarded and lesser Green’s functions can give information about the
excitation and occupation spectrum [41], which is closely related with the intensity
in TRPES:

AR(t, ω) = − 1

π
Im

∫ t

0

dseiωsGR(t, t− s), (C.14)

A<(t, ω) =
1

π
Im

∫ t

0

dseiωsG<(t, t− s). (C.15)

The k-resolved spectral function and occupied density of states which is associated
with TRARPES are calculated by the formulas:

AR(t, ω)k = − 1

π
Im

∫ t

0

dseiωsGR
k (t, t− s), (C.16)

A<(t, ω)k =
1

π
Im

∫ t

0

dseiωsG<
k (t, t− s). (C.17)
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The photoemission intensity of emitted electrons under action of a short probe
pulse as a function of energy and time-delay [148]:

I(ω, tp) = −i
∫
dtdt′S(t)S(t′)eiω(t−t′)G<(t+ tp, t

′ + tp) (C.18)

here tp is time-delay between the pump and probe pulses; S(t) - probe envelope.
These TRPES equations has frequancy-time uncertainty. If the probe pulse is very
short one measures the occupation density using Wigner transorm of the lesser
Green’s function I(ω, tp) =

∫
dseiωtpG<(tp + s/2, tp − s/2), but lost good energy

resolution. It is also important to note such an expression of the photoemission
spectrum neglects interactions between the outgoing electron and the bulk (sudden
approximation).

C.4 Impurity solvers

As we discussed earlier, the lattice model of correlated electrons is mapped onto the
Anderson impurity model (AIM) by neglecting the nonlocal electron correlations.

To solve the impurity problem in time-dependent systems numerically is much ex-
pensive compared to equilibrium as one must manipulate the contour-ordered objects
such as Green’s function and self-energy that depends on two-time variables.

The most popular exact time-dependent impurity solvers:
1) Continuous-time quantum Monte Carlo (CT-QMC)[67, 124, 197, 181]. There

are several varieties of this solver, interaction expansion (CT-INT)[196, 151, 66,
197] and hybridisation expansion (CT-HYB)[124, 159, 197]. The disadvantage of
these methods is the high cost of calculations in which the computation time grows
exponentially with simulation time. There is the successful extension of CT-HYB is
Inchworm QMC[28, 7, 37], where the computational time grows polynomially.

2) Density matrix renormalization group (DMRG)[162, 160, 187, 198]. Here the
computation time also grows exponentially with modeling time.

3) Exact diagonalization (ED)[63, 15]. In this method, the simulation time may
be large, but there is a limit of lattice sites.

As well there are many approximate impurity solvers:
1) Iterated perturbation theory (IPT)[43, 41, 182, 85]. Approximation based on

second-order perturbation theory in terms of Coulomb interaction. It works well in a
weak-coupling regime and was found that accidentally reproduce the strong-coupling
limit and is believed to describe moderate and strong-coupling regimes qualitatively.

2) Noncrossing approximation (NCA)[200, 44] and one-crossing approximation
(OCA)[61, 157]. They are conserving approximations and based on strong-coupling
perturbation theory. In this way, one can treat strongly interacting systems.
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In nonequilibrium physics, it is essential to have sufficient simulation time for
presentation observables properties and to understand ultrafast processes. Therefore,
in this thesis, we developed and used some perturbation methods based on weak
coupling expansion, which requires reasonable computational time.

Thus we calculate the momentum independent self-energies for weak coupling
expansion [20]:

Hartree-Fock self-energy:

ΣHF (t) = U(t)n(t) (C.19)

Second order self-energy:

Σ2(t, t′) = iV 2(t, t′)G(t, t′) (C.20)

where potential given by

V 2(t, t′) = U(t)χPH0 (t, t′)U(t′) (C.21)

here bare particle-hole polarization bubble:

χPH0 (t, t′) = −iG(t, t′)G(t′, t) (C.22)

Self-energy for particle-hole channel:

ΣPH(t, t′) = iV PH(t, t′)G(t, t′) (C.23)

where potential of the particle-hole channel has charge and magnetic contributions:

V PH(t, t′) =
1

2

[
Ud(t)

(
χPHd (t, t′)− χPH0d (t, t′)

)
Ud(t

′)
]

+
3

2

[
Um(t)

(
χPHm (t, t′)− χPH0m (t, t′)

)
Um(t′)

]
(C.24)

The total propagators of charge and magnetic parts of the channel have to be
found from RPA-like equation:

χPHd (t, t′) = χPH0d (t, t′) +

∫
C

χPH0d (t, t1)Ud(t1)χPHd (t1, t
′)dt1 (C.25)

χPHm (t, t′) = χPH0m (t, t′) +

∫
C

χPH0m (t, t1)Um(t1)χPHm (t1, t
′)dt1 (C.26)
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bare particle-hole polarization bubbles:

χPH0d (t, t′) = χPH0m (t, t′) = −iG(t, t′)G(t′, t) (C.27)

Self-energy for particle-particle channel:

ΣPP (t, t′) = −iV PP (t, t′)G(t′, t) (C.28)

where a particle-particle potential is given by

V PP (t, t′) = Us(t)
(
χPPs (t, t′)− χPP0s (t, t′)

)
Us(t

′) (C.29)

The total propagator has to be found as:

χPPs (t, t′) = χPP0s (t, t′) +

∫
C

χPP0s (t, t1)Us(t1)χPPs (t1, t
′)dt1 (C.30)

bare particle-particle polarization bubbles:

χPP0s (t, t′) = iG(t, t′)G(t, t′). (C.31)

The Coulomb interaction for different channels is renormalized as Ud(t) = U(t),
Um(t) = −U(t), Us(t) = U(t).

Thus the second order self-energy (SOPT):

ΣSOPT (t, t′) = ΣHF (t) + Σ2(t, t′). (C.32)

The self-energy for the particle-hole T-matrix approximation (TMA-PH):

ΣTMA−PH(t, t′) = ΣHF (t) + Σ2(t, t′) + ΣPH(t, t′). (C.33)

The self-energy for the particle-particle T-matrix approximation (TMA-PP):

ΣTMA−PP (t, t′) = ΣHF (t) + Σ2(t, t′) + ΣPP (t, t′). (C.34)

The self-energy for the fluctuation-exchange approximation (FLEX):

ΣFLEX(t, t′) = ΣHF (t) + Σ2(t, t′) + ΣPH(t, t′) + ΣPP (t, t′). (C.35)

Below we provide calculations for the 2D square lattice Eq. (B.4a), hopping
amplitude t = 1, inverse temperature β = 1/T = 10 and 64× 64 k-grid.

In Fig. 2.2 two density of states representing DMFT+TMA-PH are calculated
using different codes: red line analytic continuation from imaginary axis and blue
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line getting using the real-time Keldysh contour. Both results are fit well.
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Figure 2.2: Comparison of DMFT+TMA-PH spectral functions obtained using dif-
ferent methods (U = 2.88)

In [65] systematic studies of the accuracy calculating the self-energy for the single-
band model was found that in weak-coupling regime second order perturbation theory
is more reliable than performing additional channals summations. It is also known
that the magnetic part of the particle-hole channal has a divergence in the denomina-
tor, which does not allow us to use it in the standard form of the DMFT scheme for
U > 0.3W (W -bandwidth). Based on these, further calculations for the single-band
model in this work will be provide using 2D square lattice and IPT scheme.
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Figure 2.3: (a) IPT spectral function with different Coulomb interaction. (b) IPT
spectral function with different inverse temperatures for U = 4.

In Fig. 2.3a equilibrium IPT spectral functions is characterized by different Coulomb
interactions. Results for U = 0 represent tight-binding model with W = 8. With
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increasing interaction, we observe the disappearance of sharp edges and the gradual
blurring of the density of states, which leads to an increase in the bandwidth. In
a high U = 6, the formation of three peak structures could be observed, which is
present in the U ∼ W region. Decreasing temperature not significantly increase the
peak height at ω = 0 (Fig. 2.3b).

D Appendix: Pump-probe spectroscopy
Ultrafast time scale processes characteristic for a large number of physical phenom-
ena, thereby induce great interest in fundamental and applied physics. The pump-
probe spectroscopy [141, 13, 3] is the powerful and widely used experimental tech-
nique to study such nonequilibrium phenomena. Observation of fast processes is
crucial to understanding ultrafast phase transitions, dynamics of various excitations,
and many scattering processes.

Figure 2.4: Schematic setup of the pump-probe spectroscopy.

In Fig. 2.4, is shown a schematic picture of the pump-probe spectroscopy mea-
surements. To study dynamical processes, the system must be perturbed from an
equilibrium state to an excited one by using the "pump" beam. The excitement of
the sample is possible with various parameters of the pump pulse including duration,
intensity, polarization, and energy. Another higher frequency "probe" pulse is used
to observe a transient response after the pump. Both pulses approach the sample
on different paths determined by the arrangement of mirrors, which allow obtaining
time-resolved data for physical quantities.

The distribution of photoelectrons in energy, angle and time gives information
about the evolution of the electronic structure due to perturbation of the system.
Access to nonequilibrium states of matter attainable through femtosecond IR [138,
167], optical [177, 72] or extreme ultraviolet lasers (EUV) and X-ray free electron
lasers [117, 40, 137, 114]. At the moment, a large number of experiments and studies
has been done for various materials: correlated insulators [60, 207, 194]; graphene [59,
174] and graphitic materials [204, 122, 186, 175]; semiconductors [185, 14]; cuprate
superconductors [140, 29, 170, 81]; topological insulators [193, 209, 171, 192, 69, 80,
126]; ultracold atoms [112, 48, 116].
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Chapter 3

Dynamical repulsive-to-attractive
conversion of interactions

A Introduction
The creation of a population inversion in metallic bands corresponding to a negative
temperature state [146, 147] is one of the ways to control the interparticle interac-
tion. Such investigation was done in the work of [180] for hypercubic lattice, where it
was shown that it is possible to induce the population inversion in metallic systems
using properly shaped half-cycle or monocycle pulses, the system without energy dis-
sipation will thermalize in the negative temperature state after the pulse. Effective
switching of the interaction from repulsive to attractive occurs because a density ma-
trix exp(−H/T ) for a Hamiltonian H with temperature T < 0 corresponds inverted
−H with −T > 0 [149, 181].

In this chapter, we rely on the work [180] taking realistic 2D square lattice and
focused on transient nonequilibrium dynamics with different polarization of the elec-
tric field. By the half-cycle pulse, we induce a shift in the momentum distribution
of the electrons. Selecting the parameters of such pulse we can achieve half of the
Brillouin zone, the system is brought to the negative-T state, this is often (depending
on the value of the interaction) leads to change of the interaction from repulsive to
attractive.

Below we provide calculations for 2D square lattice with hopping amplitude t = 1,
initial inverse temperature β = 1/T = 5 and 32×32 k-grid. Time has units of reverse
hoppings.
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B Population invertion induced by a linear polar-
ized pulse

To investigate the effects of negative temperature state we use a single-band Hubbard
model driven by the half-cycle electric field. The half-cycle pulses with amplitude
of vector potential (Amax) and pulse length (τ) chosen in Y and XY (diagonal)
polarisation directions. In case of Y -polarization, the maximum value of the vector
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Figure 3.1: Vector potential and external electric field: (a),(c) for XY -polarization;
(b),(d) for Y -polarization

potential is as follows Amax = π (Fig. 3.1b). For diagonal polarization the maximum
value of the vector potential Amax = π ∗

√
2 depicted in Fig. 3.1a. The corresponding

electric fields are shown in the Figs. 3.1c,d. This allows to shift the momentum
distribution in the case of Y -polarization from Γ to Y, in the case of XY -polarization
from Γ to M in the Brillouin zone.
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After the pulse excitation the isolated system strives to achieve a thermalized
state with some effective temperature Teff and total energy Etot. A thermal state
with a positive temperature has Etot < 0 at half filling, while Etot > 0 happens at
negative temperature (Teff < 0). Thereby the total energy is an order parameter for
the repulsion-to-attraction transition [180].

To show the effect of the population inversion we choose the half-cycle shape of
the electric field with τ = 4 (red line in Figs. 3.1c,d) and investigate the behavior of
the total energy and double occupancy (Fig. 3.2).
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Figure 3.2: Total energy and double occupancy (τ = 4): (a),(c) for XY direction of
pulse polarization (Amax = π

√
2); (b),(d) for Y -polarization (Amax = π).

From the analysis of Figs. 3.2a,c we can observe a change in the sign of the
interaction in case of field in the XY -polarization, U = 2 and U = 3. Etot > 0
(the total energy has the origin at zero) and the double occupancy docc > 0.25 after
the pulse. Then lower Coulomb interaction than Etot has a bigger value and a more
pronounced effect of the negative temperature state after the pulse. In the case of
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Y -polarization of the electric field, the total energy negative all the time, so the
interaction does not change the sign.
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Figure 3.3: The total energy after the pulse as a function of the magnitude of the
vector potential (τ = 4).

In the Fig. 3.3 is shown the total energy after the pulse for τ = 4 as a function
of the magnitude of the vector potential for both polarizations. For the field in XY -
polarization, there is positive total energy, which means that the sign of interaction
has changed. The value of the total energy is maximum when the value of the
amplitude of the vector potential such that exactly shift momentum distribution in
the case of Y -polarization from Γ to Y points in the Brillouin zone and the case of
XY -polarization from Γ to M. The value of the total energy decreases with increasing
U . In the case of Y -polarization, there is no change in the sign of the interaction for
all values of the vector potential and the Coulomb interaction. These statements are
consistent with the results of the article [180].

The total energy after the half-cycle pulse as a function of pulse width depicted in
Fig. 3.4. For the pulse with τ = 2 (XY -polarization), the total energy has a positive
and maximum value (red and blue lines), this pulse narrowest in the calculations.
With increasing pulse width, the total energy after the pulse can become negative,
as seen on the blue line. This behavior was also demonstrated in the work [180] for
the hypercubic lattice. In the case of a pulse in the Y -polarization, the total energy
is always negative. With increasing pulse width, the total energy goes deep into the
negative region.

Visually change of an electron population can be traced in the time-dependent
momentum distribution. Fig. 3.5 shows the momentum distribution of the interacting
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Figure 3.4: The total energy after the pulse as a function of the pulse width.

system (U = 2) at time t = 0 when the system is in equilibrium and the field does
not affect it.

Figure 3.5: Equilibrium momentum distribution for U = 2 at time = 0.

Under the influence of the half-cycle cosine electric field, the momentum distri-
bution begins to move in the direction of the vector potential (or opposite to the
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(a) (b)

(c) (d)

(e) (f)

Figure 3.6: Momentum distribution for U = 2 at different time ∈ [2,4], τ = 4.
Left column (a),(c),(e) - field in XY -polarization; right column (b),(d),(f) - field in
Y -polarization.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.7: Relaxation of momentum distribution (after pulse) for U = 2 in different
time ∈ [5,10], τ = 4. Left column (a),(c),(e) -XY -polarization; right column (b),(d),(f)
- Y -polarization.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.8: Momentum distribution for U = 3 in different time ∈ [2,4], τ = 4. Left
column (a),(c),(e) - XY -polarization; right column (b),(d),(f) - Y -polarization.
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(a) (b)

(c) (d)

Figure 3.9: Relaxation of momentum distribution (after pulse) for U = 3 in time = 5
and time = 7, τ = 4. Left column (a),(c) - XY -polarization; right column (b),(d) -
Y -polarization.

direction of the electric field). Figs. 3.6 shows the momentum distribution for U = 2
during the action of the pulse. The pulse exists at time ∈ [0,4] (τ = 4).

In the XY -polarization of the field (Figs. 3.6a,c,e), the shift and flattening of the
momentum distribution are seen. This shift leads to an inversion of the population
since the maximum of the momentum distribution at the final instant of time = 4 is
at the corners of the first Brillouin zone and the minimum at the Γ-point. This finite
distribution does not change much after the pulse (Figs. 3.7a,c,e). Also, in Fig. 3.2a
is presented that after the pulse, the total energy is positive.

Under the Y -polarized field, momentum distribution shifts to the value of the
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vector potential (Figs. 3.6b,d,f) and has a long relaxation time (Figs. 3.7b,d,f) in
comparison with the XY -polarization (Figs. 3.7a,c,e).

In Figs. 3.8 is shown momentum distribution for U = 3 during the action of the
pulse. In the XY -polarization (Figs. 3.8a,c,e), the shift which leads to inversion of
the population and flattening of the momentum distribution could be observed (Fig.
3.9a,c). The distribution after exitation does not change. In Fig. 3.2a is presented
that after the pulse the total energy is positive but less than in the case of U = 2.
For Y -polarization there is no population inversion (Figs. 3.8b,d,f) and has a short
relaxation time after pulse (Figs. 3.9b,d).

With increasing interaction, the momentum distribution becomes flattered for
all polarizations. It can be associated not only with the correlation effects, which
together with the electric field change the topology of the momentum distribution
but also with an increase of the effective temperature of the system.

Increasing the value of the Coulomb interaction reduces the relaxation time of
the distribution after radiation. It is clearly seen in comparing with the results of
relaxation for the Y -polarization for different values of the interaction.

In Figs. 3.10 and 3.11 is shown momentum distribution for U = 2 during the
action of the pulse and relaxation. The pulses were used with 0.8Amax. This pulse
shape does not allow to shift the momentum distribution in the case of Y -polarization
from Γ to Y and in the XY -polarization from Γ to M in the Brillouin zone during
the pulse (Figs. 3.10e,f).

In the process of relaxation (Figs. 3.11a,c,e) the minimum of the momentum
distribution shifted to the Γ point for XY -polarization. It takes place because the
system needs to adjust the momentum shift to π

√
2 to achieve a thermal state.

The distribution relax to the thermal states with Teff < 0. As expected, field with
Y -polarization does not turn over distribution of electrons (Figs. 3.11b,d,f).

Thus the geometry of the 2D square lattice gives us the opportunity to investigate
the polarization dependence of physical quantity. Due to this fact, the behavior of
the system under the action of linearly polarized fields in XY and Y -polarization
was considered.

In the case of XY -polarization, many effects have been found that agreed with
the article [180] such as population inversion and the behavior of relaxation of the
momentum distribution to the thermal state in case of the non-optimal vector po-
tential.

The population inversion is not observed at the considered parameters of the
laser pulse and the Coulomb interaction for the Y -polarization. It is shown in the
graphs of the total energy, double occupancy, and the momentum distribution. The
distribution has a long relaxation time compared with the results for the XY pulse
polarization.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.10: Momentum distribution for U = 2 and 0.8Amax in different time ∈ [2,4],
τ = 4. Left column (a),(c),(e) - XY field polarization; right column (b),(d),(f) - Y field
polarization.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.11: Relaxation of momentum distribution (after pulse) for U = 2 and
0.8Amax in different time ∈ [5,10], τ = 4. Left column (a),(c),(e) - XY field polariza-
tion; right column (b),(d),(f) - Y field polarization.
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C Population inversion induced by a circularly po-
larized pulse

In the paragraph, we examine in detail how the sign of the interaction changes in
the presence of a circularly polarized field on the 2D square lattice.

Selecting the pulse parameters possible to change interaction from repulsive to
attractive by different scenarios. For this purpose, we use half- mono- and multi-cycle
circularly polarized pulses with different lattice and pulse parameters.

C.1 Monocycle pulse condition

Consider the transition from linear to circular polarization for a half-cycle pulse.
Figs. 3.12 shows the graphs of vector potentials. The trajectory of the center of
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Figure 3.12: Circularly polarized vector potentials with different phases between X
and Y projections: (a) φy = π/4; (b) φy = π/2.

momentum distribution is shown in Fig. 3.13. The trajectory strongly depends on
the polarization and the amplitude of theX and Y component of the vector potential.
The curves with phase between X and Y projections equal to φy = π/4 corresponds
to circular polarization, φy = π/3 and φy = 5π/12 are elliptical and phase equal to
φy = π/2 has linear polarization.

The monocycle condition:

FWHM =
1

ω
(C.1)

were FWHM - full width at half maximum, ω - frequency.
To obtain a more significant population inversion better to apply the pulse with

linear XY -polarization; this can be seen from the graph of the total energy in
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Figure 3.13: Middle point trajectories of the momentum distribution for different
phases between X and Y projections of the vector potential.
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Figure 3.14: Dependence of the total energy (a) and double occupancy (b) for differ-
ent phases between X and Y projections of the vector potential.

Fig. 3.14a. Gradually increasing the polarization from linear to circular, the final
value of the total energy slightly decreases. But the double occupancy (Fig. 3.14b) re-
act to the change of phase between the X and Y components of the field polarization
not significantly.

Next, consider how the physical parameters of the model change under the ac-
tion of half-cycle circularly polarized vector potentials with different frequencies.
Figs. 3.15 shows the graphs vector potentials for these cases.
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Figure 3.15: Vector potentials with different frequencies: (a) ω = 0.25; (b) ω = 2.

Total energy and double occupancy respond strongly to such a frequency change
(Fig. 3.16). The higher the frequency of the pulse, the greater the total energy and
double occupancy, and therefore the greater the population inversion.
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Figure 3.16: Dependence of the total energy (a) and double occupancy (b) from the
frequency of the vector potential.

In Figs. 3.17 depicted the behavior of the momentum distribution in the circular
field at different points in time for U = 2. Distribution moves in the direction of
the vector potential at time = 5.0 to time = 7.0 because electric field is switched
on (Figs. 3.17a-d). After time = 7.0 the distribution stop moving because process of
relaxation starts and until time = 10.0 the topology becomes smoother.
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(a) (d)

(b) (e)

(c) (f)

Figure 3.17: Momentum distribution for U = 2 in different time ∈ [5.5,10] with
ω = 1 and FWHM=1.
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Consider how the properties of the Hubbard model change under the influence of
monocycle pulses at different values of the initial phase (Fig. 3.18).
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Figure 3.18: Vector potentials with different initial phases: (a) φy = 0; (b) φy = π/6;
(c) φy = π/4; (d) φy = π/3.

Moving the maximum of the momentum distribution from Γ point of the Brillouin
zone to the M point is depicted in Fig. 3.19.

Figs. 3.20 shows the total energy and double occupancy for different values of
the initial phases of the vector potential and for various Coulomb interactions U .
Fig. 3.20a depicts the total energy for a pulse at U = 0. The maximum value of the
total energy is reached for φy = π/4. The total energy for φy = π/6 and φy = π/3
are symmetrical relative to the middle of the pulse (time = 7) and graph for φy = 0
symmetrical since it is always equidistant from M points of the Brillouin zone during
the whole pulse time (Fig. 3.19 red line). The double occupancy (Fig. 3.20a) is equal
to 0.25 during all time, which must be in case of U = 0.
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Figure 3.19: Middle point trajectories of the momentum distribution with different
initial phases of the vector potential.

Figs. 3.20b,d show the total energy and double occupancy for a monocycle pulse
at different initial phases in the case of U = 2. The symmetry of the total energy with
respect to the middle of the pulse disappears gradually depending on the magnitude
of interaction.

All considered pulses lead to population inversion. The total energy for φy =
π/6 and φy = π/3 are not any more symmetrical relative to the middle of pulse
time = 7. The curve at φy = π/6 has a bigger maximum of the total energy
comparing to φy = π/3. Increasing the interaction lead to increasing of an energy
absorption by the system and thus it increases the temperature during the pulse. The
temperature rise makes the flatter momentum distribution that reduces the value of
the population inversion, because more electrons are now may extend to the edges of
the "hat" of the momentum distribution. At the same time, as it shown by previous
calculations, the form of the "hat" of the momentum distribution for the correlated
system itself may vary during the pulse. Thus, competition of the effects: inclusion
of correlations that tend to bend the "hat" of the momentum distribution, shifting
the momentum distribution by the vector potential to a more "favorable" position
and heating the system, may explain why we see the maximum value of the total
energy and double occupancy for the pulse with φy = π/3 slightly larger than for
φy = π/4 in Figs. 3.20b,d.
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Figure 3.20: Dependence of total energy and double occupancy from different initial
phases of the vector potential: (a),(c) case of U = 0; (b),(d) case of U = 2.

C.2 Beyond of monocycle condition

It is interesting to explore how the model behaves outside of the monocycle condition.
Fig. 3.21 shows the graphs of half-cycle circularly polarized vector potentials with
different ratios FWHM and ω.

By increasing the frequency of the pulse and leaving the FWHM constant we
move away from the monocycle condition Eq. (C.1). Fig. 3.22 illustrate trajectory of
the center momentum distribution for π-pulse. Line with ω = 1 is a half-cycle pulse
with the monocycle condition.

The total energy of such pulses (Fig. 3.23a) has a different structure during the
excitation, nevertheless the optimal inversion presented at the π-pulse with the mono-
cycle condition. This can be explained by the fact that the monocycle condition has
the shortest way to move the center of momentum distribution from Γ to M point,
which contributes to less heating of the system.
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Figure 3.21: Vector potentials for different frequencies with fixed FWHM: (a) ω = 1.0
monocycle condition; (b) ω = 2.0; (c) ω = 3.0; (d) ω = 4.0.

Beyond of the monocycle condition Eq. (C.1) additional peak appears in the
graphs of total energy and double occupancy (Fig. 3.23). The peak gradient increases
and moves towards greater times. The presence of the peak at these graphs is due to
the fact that the center of momentum distribution in the non-monocycle case passes
near another M point in the first Brillouin zone, thereby creating an inversion on
that part of the trajectory.
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Figure 3.22: Middle point trajectories of the momentum distribution for different
frequencies with fixed FWHM of the vector potentials.
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Figure 3.23: Dependence of the total energy (a) and double occupancy (b) from
different frequencies with fixed FWHM of the vector potentials.

C.3 Multicycle pulse

In this part, we discuss how to create a maximum population inversion during mul-
ticycle circularly polarized pulse. A ramp of the vector potential is depicted in
Fig. 3.24. The maximum amplitude of the vector potential is Amax = 4.44.

This form of vector potential that moves the middle of the momentum distribution
from Γ through all four M points in the 2D square lattice in Brillouin zone (Fig. 3.25).



38 Chapter 3. Dynamical repulsive-to-attractive conversion of interactions

-4

-3

-2

-1

 0

 1

 2

 3

 4

 0  2  4  6  8  10  12  14

A

Time

X

Y

Figure 3.24: The ramp of the multicycle circularly polarized vector potential.
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Figure 3.25: Middle point trajectories of the momentum distribution induced by the
ramp of the multicycle circularly polarized vector potential.

The corresponding total energy and double occupancy are shown in Fig. 3.26.
General patterns characterize results for all frequencies. Initially, the total energy
increases from negative to positive value, then oscillates and finally decreases to the
negative. The behavior of the double occupancy is very similar, except that it can
only be positive and grows to a higher value than 0.25. This corresponds to the
fact that the maximum of the momentum distribution first goes from the Γ point
to a circle close to the M point (Fig. 3.25). Moving in a circle near all four M
points inversion of the population occurs, and over the X and Y points in the BZ it
disappears.
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Figure 3.26: Dependence of the total energy (a-c) left column and corresponded
double occupancy (d-f) right column, at U = 2 from different frequencies (ω = 1;3 and
6) of the multicycle circularly polarized vector potential.

And finally, at the end of the pulse, the maximum of distribution returns to
its initial location at the Γ point, but it has already been changed by the effects
of correlations, external field, and temperature. As the pulse frequency increases,
the total energy tends to oscillate and be in the majority with a positive value.
The higher the field frequency, the longer it remains in transient positive value. The
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double occupancy fully arrives above 0.25 at the time of the excitations for frequencies
above ω = 1.

The total energy and double occupancy at high frequencies of the external field
initially have a change in the amplitude of oscillations. However, after some time,
the mean value and amplitude of oscillations hardly change. This implies that we
detect a transition to a mode where physical observables are periodic in time what
can be connected with the Floquet regime.

D Summary
Thus, summarizing the various options for changing the sign of the interaction in the
Hubbard model under the influence of the external field, we come to the following
conclusions:

1. Creating of the population inversion becomes more efficient in linear pulse
compare to circularly polarized (Fig. 3.14a).

2. Higher pulse frequency helps to significantly increase inversion in the case of
π-pulse (Fig. 3.16).

3. With the circularly polarized vector potential, the maximum positive value of
the total energy depends on the initial phase as well. To create population inversion,
do not necessary to have a phase due to which the middle of momentum distribution
is transferred exactly from the Γ point to M, as previously expected. This case is
shown in Fig. 3.20b.

4. Moving away from the monocycle condition for circular polarization allows cre-
ating controlled peaks of the total energy that can change the sign of the interaction
(Fig. 3.23a).

5. It is important to note how the parameters of the system and the pulse
separately affect the distribution. In equilibrium, correlations and temperature blur
the Fermi step, the electric field used as a vector potential shift the distribution by
the value of this vector potential. In nonequilibrium in the absence of correlations,
the momentum distribution moves in the direction of the vector potential without
changing its shape. The momentum distribution distorted under the action of the
combined effects of correlations, the electric field (for all considered polarization) and
an increasing of the effective temperature.
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Chapter 4

Strongly correlated
Kramers-Henneberger solid

Strong laser electric fields exert forces on an electron comparable to forces binding the
electron to an atomic core. Surprisingly, such strong fields do not always destroy the
atom, but may rather create new bound electronic states residing in a new potential
generated by the combined action of the laser field and the core. This so-called
"Kramers-Henneberger atom" has recently been observed experimentally, settling
decades of debate regarding its existence. Here we show that similar novel electronic
structures can appear in strongly correlated solids. In our system, the effective
potential generated by the laser-induced many-body dynamics traps the electrons,
converting metallic into an insulating phase. The electron interaction is crucial to
establish this Kramers-Henneberger solid. After the pulse is over the system remains
in a state of high electronic temperature, which still has insulating (or rather a bad
metallic) properties. Our finding demonstrates new ways of manipulating phases
of correlated systems with strong, non-resonant low-frequency fields, opening a new
regime of "post-Floquet" engineering of strongly correlated systems.

A Introduction
Light is a powerful and versatile tool for controlling the properties of quantum sys-
tems. Exquisite control over light fields, available today, opens an opportunity to
shape electronic states by tailoring the light field, aiming to obtain "properties on
demand" [17]. Already at modest laser intensities, simple non-resonant shifts of
atomic energy levels offer an extraordinary control tool, leading to optical traps, op-
tical lattices, tweezers, [55] etc. At higher intensities, the concept of a "dressed atom"
embodies the appearance of new light-induced Floquet states, representing "matter
+ light" hybrid states with sidebands separated by the photon energy. These have
led to new phenomena, from efficient laser cooling leading to Bose-Einstein con-
densation, to electromagnetically induced transparency and related phenomena, to
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Floquet engineering of quantum matter, e.g. using light to turn a trivial insulator
into a topological [132, 134, 76]. The Floquet states for time-periodic modulations
are a temporal analog of the Bloch states for spatially periodic potentials.

At still higher laser intensities, the photon-counting inherent in the frequency-
domain Floquet picture loses its simplicity – too many photons are constantly ex-
changed between the field and the system. A welcome alternative is offered by the
time-domain picture, which explicitly incorporates the sub-cycle response of charges
to the oscillating electric field. One example pertinent to our work is the so-called
Kramers-Henneberger (KH) atom, where an intense laser field dominates the elec-
tron motion [143, 71, 56]. The electron oscillates as nearly free so that the field-free
electronic density is changed completely. It acquires a characteristic double-peak
structure, with the peaks concentrated near the turning points of the oscillatory tra-
jectory. The atomic core keeps the electron from drifting away, and the strongest
attraction arises when one of the two turning points is positioned near the core,
leading to the formation of long-lived states with a characteristic double-peaked
structure. The emergence of the Kramers-Henneberger atom leads to spectacular
effects, from accelerating neutral atoms at rates ∼ 1015m/s2 in intense laser fields,
to the exponential amplification of visible radiation generated during propagation of
intense infrared light in dense gases, at the frequencies absent in the spectrum of the
field-free gas [111].

E

E0+ΔE

E0-ΔE

E0

kk0-A0 k0+A0k0

(a)
EE0+ΔEE0-ΔE E0

ρ(E)

(b)

Figure 4.1: Schematic band structure of square lattice. Pulse with vector potential
amplitude A0 drive the electrons with initial momentum k0 from high-density region
E0 to regions with momentum k0 ±A0 and energy E0 ±∆E.

Now we can question what will happen if we turn from an atom to electrons
in solids. Fig.4.1 sketches the qualitative idea of extending the KH perspective to a
correlated solid modeled as a half-filled tight-binding electron model with the hopping
rate tij on a square lattice with the Hubbard-type (on-site) electron-electron repulsion
U . The field-free system is in the correlated metallic phase[58], below a Mott metal-
insulator transition, with the van Hove singularity in the density of states at the



A. Introduction 43

Fermi level (with the crystal momentum k0 = 0, Fig. 4.1a). As the laser is turned
on, it induces a current and drives the electrons away from the van Hove singularity
to the turning points along the dispersion curve k0±A0 and energy E0±∆E where
A0 = F0/ω the amplitude of the field vector-potential (Fig. 4.1a) and F0, ω being
the field amplitude and frequency, respectively, while ∆E defined by complicated
combinations of correlation effects, a band dispersion and pulse parameters.

The mathematical analogy with the Kramers-Henneberger atom is as follows.
The KH atom is described by transforming the Hamiltonian into the reference frame
moving with a free electron, r→ r+a(t), where a(t) describes laser-driven oscillations
of the free electron. This transformation removes the standard laser-matter interac-
tion term in the Hamiltonian while modifying the electron-core interaction potential
U(r) to UKH(r, t) = U(r + a(t)). The new potential exactly incorporates the dom-
inant, laser-induced component of electron dynamics. Next, one expands UKH(r, t)

in Fourier series. The zero-frequency term U
(0)
KH(r), which averages UKH(r, t) over

the laser cycle, is the new effective potential describing the slow dynamics and the
bound states of the new system. Other Fourier components U (N)

KH (r) exp(−iNωt) are
responsible for transitions between the new states. In lattices, the analogue of the
KH-transformation is the Peierls substitution [139], which moves the light-matter
interaction term into the time-dependence of the hopping parameter between cites
i, j,

tij(t) = tij exp(−iRij ·A(t)), (A.1)

with Rij the vector connecting the cites and A(t) the laser vector-potential. The
zero-order term in the Fourier expansion of tij(t), which for A(t) = A0 cosωt is t(0)

ij =
tijJ0(RijA0), is the renormalized hopping rate (here J0(x) is the zero-order Bessel
function, A0 = F0/ω is the amplitude of the vector potential along [11] direction
in the present case, F0 is the electric field amplitude). For one-electron systems,
this reduction of the hopping rate leads to the well-known coherent destruction of
tunneling [39].

In spite of the analogy to the KH atom, the cycle-averaged electronic structure in
a solid without interactions would in general not give rise to a two-peak structure as
illustrated in Fig. 4.1, because a hopping renormalization in all directions implies only
an overall bandwidth renormalization. The essential difference to the atom is that
in solid, the spectrum emerges from a superposition of delocalized momentum states
such as shown in Fig. 4.1. Nevertheless, we will demonstrate below the double-peaked
charge distribution imposed by the laser-driven motion can be established when the
field effect cooperates with the electron interaction. In correlated systems, where the
interplay of the hopping rate and the on-site interaction determines the many-body
state, even modest reduction in the effective hopping rate can change the system
from metallic to Mott-insulating state [11]. Hence, the interaction should cooperate
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with the field to turn a system of delocalized electrons into a KH solid.
In the Floquet formalism, such transition was observed in dynamical mean-field

theory and high-frequency expansion [118, 119]. We will discuss here experimentally
realized cases of low-frequency pulses far from the off-resonant limit, which cannot
be treated in the Floquet scheme.

Note that, just like the KH-atom does not have to be described solely with the
cycle-average potential U (0)

KH(r), the reduction of the hopping rate does not have to
be described solely with the cycle-average t(0)

ij . In general, for laser frequencies the
reduction occurs already on the sub-cycle scale[180] as soon as the laser-induced bias
F0a0 between the neighboring lattice sites (a0 is the lattice constant) becomes compa-
rable to the corresponding next-neighbor hopping rate t1; such sub-cycle perspective
becomes particularly relevant for the relatively low-frequency fields ω � W,U , where
W = 8t1 is the width of the first Hubbard band.

There are, of course, fundamental differences of the KH solid to laser-dressed
atoms. Strong laser pulses in metals typically induce a large excitation density,
which itself can have a substantial effect on the spectrum in correlated electrons.
While there have been proposals to use the field-induced localization of electrons to
enhance specific interaction effects in Mott insulators,[33, 195] where the electrons
are already localized, it is therefore unclear how the KH atom emerges in a system
of initially delocalized electrons. Furthermore, while light-induced effects in atoms
disappear as soon as the light is turned off, the excitations in the solid can imply a
persistent modification of the electronic structure. In insulators or gapped systems,
this photo-excitation can generate non-thermal metastable states [179, 85]. In metals,
excitations typically thermalize within only few hopping times, even in the vicinity
of the Mott transition [105, 42]. It should be emphasized that in correlated systems
this huge increase in electron temperature can transform a metal into a bad metallic
or insulating-like state with a pseudo-gap, and hence imply a modification of the
electronic structure which is typically not accessible in equilibrium (because the
lattice cannot by heated to correspondingly high temperatures).

Highly non-perturbative interaction involving a vast number of photons and gen-
erating new system properties after the end of the pulse offers control beyond Floquet
engineering. In contrast to phonon-driven transitions [50], our mechanism is purely
electronic, with the effect arising within a fraction of the cycle of the driving laser
field.
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B Kramers-Henneberger solid
To demonstrate this qualitative idea quantitatively, we consider a two-dimensional,
half-filled square Fermi-Hubbard lattice interacting with intense, linearly polarized
field. In contrast to previously studied Bethe- or hypercube-lattices [181, 85] or
one-dimensional chains[168], here the field can be applied either along one of the
lattice directions, obtaining a quasi one-dimensional system (studied e.g. by Silva
et al. [168]), or along the diagonal, obtaining the situation similar to the Bethe-
lattice or infinite-dimensional hypercube, but with realistic two-dimensional band
electron dispersion, including the van Hove singularity at the Fermi level and sharp
band step at the edges. To treat the non-perturbative time-dependent problem, we
used the non-equilibrium extension [161, 11] of the Dynamical Mean-Field Theory
(DMFT) [58]. The algorithm and its realization are described in [Sec. B and C of
chapter 2] [41], for technical details. The method was benchmarked against exact
diagonalization of one-dimensional finite chain used in Ref. [168], see Sec. E.

The implementation is based on the NESSi simulation package for non-equilibrium
Green’s functions [163].

The key optical observable encoding the dynamics of the system is the coherent
light emission generated by the laser-induced current. The current operator is defined
as

j(t) = − ie
V

∑
kσ

vkG
<
k,σ(t, t), (B.1)

where V is the volume, e - charge of electron (equal to 1 in our units)[45] . Detecting
coherent light emitted by the system offers excellent diagnostic of the underlying
charge dynamics. Modern light characterization methods such as e.g. frequency-
resolved optical gating (FROG) [178, 87] or spectral shearing interferometry [77]
allow one to characterize both spectral amplitude and spectral phase of the emitted
light. The resulting time- and frequency-resolved spectrograms (known as the FROG
spectrograms) represent the window Fourier (e.g. Gabor) transform favored by the-
orists and allow one to reconstruct the generated current and the underlying charge
dynamics with temporal resolution limited only by the inverse spectral width of the
generated emission, i.e. often far better than one cycle of the driving field. These
techniques are particularly well developed in the IR and visible frequency range,
which we focus on here, see Ref.[74] for a a striking example of about 1 fs temporal
resolution in the experimental measurement of high harmonic emission induced by
THz field.

We use hopping parameters for undoped LaCuO4 (LCO), with the lattice constant
a0 = 3.78 and t1 = 0.43 eV [115]. The width of the non-interacting band dispersion is
W = 8t1 = 3.44 eV. We set the value of Hubbard U = 2.5 eV, close to the estimate of
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Ref.[35]. We use few-cycle pulses, such as shown in Fig. 4.2a, where it has a central
wavelength of λ = 1500 nm (ω = 0.827 eV) and duration of 7.6 fs (full width at
half-maximum, FWHM), with total simulation time 32.8 fs. We found no significant
frequency dependence for the dynamical localization processes described below in the
studied range ω = 0.4...16 eV. Here we focus on the relatively low-frequency regime
ω � W,U but kept ω ≥ t1 and present results for λ = 1500 nm and λ = 3000 nm.
The pulse polarization was parallel to the lattice diagonal ([11] direction), to ensure
that both lattice directions are equally affected by the laser field.

One of the key parameters governing system response is the maximal value of
vector potential A0. For ω = 0.827 eV the range A0 = 0.37, ..., 2.3 corresponds
to the laser field intensity range from I0 = 8.3 × 1010W/cm2 (F0 = 0.08 V/A) to
I0 = 3.5 × 1012W/cm2 (F0 = 0.5 V/A). The voltage across the unit cell approaches
the hopping rate, a0F0 ' V1, at I0 ' 1.6 × 1011W/cm2 (F0 ' 0.1 V/A). Thus, in
our system fields at the level of F0 ' 0.1 V/A enable strong modification of the
effective hopping rate and thus can alter the structure of the correlated system. The
relation between the maximal pulse intensity I0 and the maximal strength of the
pulse electric field F0 is given by I0 =

cε0F 2
0

2
, where c is the speed of light and ε0 is

the permittivity of free space.
Our results are summarized in Figs. 4.2-4.4. Fig. 4.2a shows the electric field of

the pulse carried at 1500 nm, while Fig. 4.3b shows the electric field of the pulse
carried at 3000 nm. The dynamical response is very similar in these two cases.

Fig. 4.2(b-d) show the time-dependent population densities [Eq.(C.15) in Sec. C.3
of chapter 2] for increasing field strength. Transfer of spectral weight from the van
Hove singularity (located at the zero energy E = 0) to the Hubbard bands becomes
prominent as soon as the field approaches 0.1 V/A. The response is manifestly sub-
cycle, within about 1 fs. At lower fields (Fig. 4.2b) the system stays predominantly
in the lower Hubbard band during the whole interaction. It also does not return to
the original distribution near the van Hove singularity once the pulse is over. At
higher fields (Fig. 4.2c), we see substantial population transfer from the lower to
the upper Hubbard band (situated at E = 1.25 eV) with the spectral gap opening.
Blurring the graphs of occupied states within 5 femtoseconds is due to the lack of
data for the Fourier transform from time to frequency. The sub-cycle nature of the
nonlinear response remains evident, including the splitting of the population between
the upper and the lower bands as the electric field rapidly goes through its maxima,
with the transient return of small spectral weight near zero energy as the electric
field goes through zero. Crucially, the double-band Mott-type structure survives well
after the end of the pulse, Fig. 4.2(b-d), signifying the transition from a metallic to
an insulating-type structure, induced by the laser field and stabilized by correlation.
The gap formation is confirmed by Fig. 4.3, which shows that the total energy in the
system increases in steps synchronized with the instantaneous maxima in the laser
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Figure 4.2: Light-induced transition from the metallic to the Mott-insulating state.
(a) The electric field for the Gaussian pulse carried at ω = 0.827 eV used in the
simulations. (b-d) Time-dependent population density for the field amplitude F0 = 0.1
V/A (b), 0.5 V/A (c), and 2.0 V/A (d).

electric field. This is true for both λ = 1500 nm and λ = 3000 nm drivers. Note that
the steps for both frequencies are very similar in height, showing that the transitions
are in the quasi-static low-frequency regime.

Such frequency-independent step-wise behavior is characteristic of the tunneling
limit in non-adiabatic excitation across a bandgap, be it in an atom or a solid. In
this regime the instantaneous transition amplitude across the energy gap is A ∝
exp(−Fthr/F (t)). Here F (t) is electric field with Gaussian envelop (Fig. 4.2a), Fthr is
the characteristic "threshold" field. In a Mott insulator with a gap ∆, Fthr ' ∆/2ξ
[133, 131, 130, 129], where ξ ∼ a0 is the correlation length. In our system, an
estimate for Fthr along the lattice direction is Fthr ∼ U/2a0 = 0.33V/A, implying the
threshold electric field amplitude of F ' Fthr

√
2 = 0.47 V/A along the [11] direction.

This estimate is in excellent agreement with the observed behavior of Etot(t), where
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Figure 4.3: Time-resolved energy absorption by the driven system with different peak
field strengths (from F0 = 0.1 V/A to F0 = 0.8 V/A) for 1500 nm (a) and 3000 nm
(b). For guide we also show the shape of electric field.

the fields with amplitude F > 0.4− 0.5 V/A lead to saturation of excitation within
a field cycle.

As expected in the low-frequency regime, the transition from the metallic phase to
dynamical localization with a gap is very similar for 3000 nm driver, and occurs as the
instantaneous electric field exceeds ∼ 0.1−0.2 V/A. An example is shown in Fig. 4.4,
for the peak amplitude of the driving field F0 = 0.8 V/A. Fig. 4.4(upper panel) shows
the driving electric field (blue) and the generated current (red). Fig. 4.4(middle
panel) shows the time-resolved formation of the lower Hubbard band and the gap,
as tracked by I(ω, tp). In Fig. 4.4(middle panel), the gap opens around 7-8 fs, when
the instantaneous field reaches ∼ 0.1− 0.2 V/A. The excitations across the bandgap
into the upper Hubbard band occur near the maxima of the instantaneous field, most
notably at ∼ 12− 13 fs and ∼ 16− 17 fs. Excitation is accompanied by suppression
of the current, which is fully quenched at ∼ 18 fs, when the excitation of the upper
Hubbard band saturates and the insulating state is established.

The time-resolved optical signatures of charge dynamics are encoded in the in-
duced current and the coherent emission it generates (given by the Fourier transform
of the current). As we have already pointed out, time-resolved characterization of
the emission is feasible with about 1 fs accuracy. The emergence of the gap and the
step-wise injection of charge across the gap inevitably lead to bursts of current near
the field maxima. Their Fourier transform produces characteristic odd harmonics
(dominated by 3rd and fifth), often referred to as the Brunel harmonics [26]. Thus,
we expect that efficient harmonic generation would start with the formation of the
Mott gap and cease when the excitation across the gap is saturated.

The harmonics generation in Fig. 4.4 not coincide with odd frequencies of the
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Figure 4.4: Upper panel: A gaussian pulse at a central frequency ω = 0.413 eV, width
d = 7.7 fs, and intensity F0 = 0.8 V/A, polarization along [11]. The generated current
is shown in red. Middle panel: Time-dependent PES, dash lines denotes positions of
Hubbard bands ±U/2 (with U = 2.5). Lower panel: Gabor transform of the current the
dash line denotes position of odd ω harmonics generation in case of constant ac-field.

pulse with limitation low-frequency external field by the Gaussian envelope. In
Fig. 4.5 situation changing due to increasing the pulse frequency.

These expectations are confirmed in Fig. 4.4(bottom panel), which shows the
FROG-type spectrogram of the emission, obtained using the Gabor transform with
a 3-fs (full width at half-maximum) Gaussian window. Indeed, the spectrogram
contains clear information about the laser-induced reshaping of the many-body state
and the formation of the Mott gap. When the system is in the metallic state, the field
generates a strong current at the driving frequency. Harmonics are synchronized with
the formation of the gap and cease when light-induced step-wise transitions across
the bandgap are saturated.
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Figure 4.5: Upper panel: A gaussian pulse at a central frequency ω = 0.827 eV, width
d = 7.7 fs, and intensity F0 = 0.8 V/A, polarization along [11]. The generated current
is shown in red. Middle panel: Time-dependent PES, dash lines denotes positions of
Hubbard bands ±U/2 (with U = 2.5). Lower panel: Gabor transform of the current the
dash line denotes position of odd ω harmonics generation in case of constant ac-field.

C Summary
Modification of the electronic properties of quantum systems with light opens new op-
portunities for using light to tailor the ultrafast electronic response. Our work brings
the strong-field concepts developed for atomic systems in the context of strongly cor-
related metals.

We show how many-body correlations help to establish the field-induced transient
insulator out of delocalized electrons. After the pulse, the system is transferred into a
state of high electron temperature, which is inaccessible under equilibrium conditions
and remains more insulating than the initial state, with a pseudo-gap. The dynamics
in time-domain is resolved via harmonic generation spectroscopy, which encodes the
formation of the Mott gap, excitation dynamics across it, and the establishment
of the insulating state. Our findings demonstrate the possibility of manipulating
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phases of correlated systems with strong, non-resonant fields in a manner that is
extremely robust with respect to the specific frequency of the driving field, with the
time-domain mechanisms opening a new regime of "beyond-Floquet" engineering of
strongly correlated systems.

D Appendix: Beyond-Floquet parametrization.
To show the difference of regimes in current article calculations and high-frequency
Floquet behavior we would like to demonstrate how much the dependence of the
band narrowing on the magnitude of the vector potential. Here we use vector po-
tential with [11] polarization limited by Gaussian envelope. The mean value of the
vector potential Ã selected in the range from -FWHM to FWHM. Below we provide
calculations for 2D square lattice with initial inverse temperature β = 1/T = 5 and
50 × 50 k-grid. For convenient comparison with other theoretical works all results
in units of hopping. Where t = 1 = 0.43eV; U = 5.81t = 2.5eV; W = 8t = 3.44eV;
ω = 1.92t = 0.827eV.
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Figure 4.6: Dependence of intensity (a) and FWHM (b) of lower Hubbard band on
the average value of vector potential Ã in the middle of the pulse.

We consider two quantities: Intensity of lower Hubbard band(LHB) (Fig. 4.6a)
and FWHM (Fig. 4.6b) of lower Hubbard band in the middle of the pulse where
the value of vector potential equal zero. Both graphs were calculated using the
photoemission spectrum and were also compared with data obtained from DOS. The
purple line corresponds to the position of zeros in zero-order Bessel function J0(Ax).
One can expect that in the Floquet regime intensity of LHB will be maximum at
positions of J0(Ãx) = 0. For high-frequency regime (ω = 10.47 and ω = 20.94) the
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Figure 4.7: Dependence of total energy (a) and double occupancy (b) on the average
value of vector potential Ã in the middle of the pulse.

maximum of LHB achieve J0(Ãx) = 0. For low pulse frequency, the intensity of LHB
ceases to be consistent with the behavior of the J0(Ax).

Fig. 4.7a,b show dependence of total energy and double occupancy on the Ã in
the middle of the pulse. Energy absorption is significantly lager for low frequency
(ω = 1.92 and ω = 5.24) as well as the number of excitations.

E Appendix: Benchmark of IPT results and exact
diagonalization

We performed a benchmark of our IPT on square lattice to the code Ref. [168],
performing exact diagonalization for the finite 12-site one-dimensional chain. The
hoppings t = 1 eV, on-site Coulomb repulsion U = 6 eV, pulse vector potential
amplitude A0 = 5, pulse FWHM is 3 fs, pulse central frequency ω = 10 eV. In order
to compare our two-dimensional lattice model to one-dimensional chain, we choose
linear pulse polarization along [10] direction and relatively large field amplitude.

Although the physics of 1D and 2D systems is different in sense of possibility
of closed loops and additional scattering channels in two-dimensional lattice, the
resulting HHG spectra are looking qualitatively similar (see Figs. 4.8 and 4.9).
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Figure 4.8: Higher harmonic generation on square lattice for gaussian pulse with
central frequency ω = 10 eV, FWHM = 3 fs, and A0 = 5, polarization along [10]
direction. Upper panel: vector potential (blue) and current (green); middle panel:
Gabor transform of the current; Lower panel: spectra of incoming pulse (blue) and
current (green).
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Figure 4.9: Higher harmonic generation on 12-sites chain for gaussian pulse with
central frequency ω = 10 eV, FWHM = 3 fs, and A0 = 5, polarization along the
chain. Upper panel: vector potential (blue) and current (green); middle panel: Gabor
transform of the current; Lower panel: spectra of incoming pulse (blue) and current
(green, red, cyan).
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Chapter 5

Nonequilibrium-induced Lifshitz
transitions

A Introduction
In this chapter, we introduce time-dependent light-induced engineering of the Fermi
surface (FS) for materials with strong electronic correlations.

An external electric field changes the band structure [145], and as a result a change
in the FS occurs. Such an electronic topological transition called Lifshitz transition.
We address nonequilibrium-induced Lifshitz transition caused by the applied external
electric field in a case one-band Hubbard model on a 2D square lattice.

The Lifshitz transition can be also induced by doping, external pressure or exter-
nal magnetic field and has been experimentally observed in many real systems, such
as heavy-fermion systems [19, 142, 10], iron-based superconductors [125, 113, 203,
90, 107, 106], cuprate high-temperature superconductors [128, 100, 18, 23, 135].

We take the single-band Hubbard model driven by an electric field with the
Hamiltonian:

H(t) =
∑
ij,σ

tijexp

(
−i
∫ Ri

Rj

dr ·A(t)

)
c†iσcjσ

+ µ
∑
i,σ

niσ + U
∑
i

ni↑ni↓,

(A.1)

where tij is electron hopping amplitudes between sites i and j, U is the on-site
Coulomb interaction, c†iσ creates an electron at site i and spin σ, and niσ = c†iσciσ is
the number operator. We incorporate the effect of an external electric field E(t) =
−∂A(t)/∂t in terms of the Peierls substitution [139] for the vector potential A into
the hopping [181, 85].

Exploiting this property, we can direct the electric field along one of the crystal-
lographic axes, which gives a quasi-one-dimensional model, or along the diagonal of
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the square lattice, which gives physics similar to the hypercubic lattices but with the
2D band structure that includes the van Hove singularity.

In order to treat the time-dependent problem, we use non-equilibrium IPT which
was discussed in Sec. C.4 of chapter 2 in detail.

We consider the square lattice with the band dispersion,

ε(k, t) = 2t [cos(kx + Ax(t)) + cos(ky + Ay(t))]

+ 4t′cos(kx + Ax(t))cos(ky + Ay(t)),
(A.2)

where t = 1 is the nearest-neighbor (NN) and t′ = −0.32 is next nearest-neighbor
(NNN) hopping amplitude. Time has units of reverse hoppings. DMFT based re-
tarded and lesser Green’s functions can give information about excitation and occu-
pation spectrum Eq. (C.14),(C.15) in Sec. C.3 of chapter 2. The k-resolved spectral
function and occupied density of states diven by Eq. (C.16),(C.17) in Sec. C.3 of
chapter 2. The shape of the vector potential is depicted in Fig. 5.1. and is expressed

-1

-0.5

 0

 0.5

 1

 0  2  4  6  8  10  12  14

A

time

Figure 5.1: Shape of vector potential (ω = 21, t0 = 6.85).

by the formula:

A(t) = Amaxexp

[
−(t− t0)2

2σ2

]
sin(ω(t− t0)), (A.3)

where parameters are: σ = d
2
√

2ln2
; pulse duration with d; full-width at half-maximum

(FWHM); amplitude of the vector potential Amax; frequency of the vector potential
ω; peak time of the pulse t0. Below we provide calculations for β = 5 and 32 × 32
k-grid.
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B Case of the NN-hopping

B.1 FS parameters selection

Calculating the FS we have to move from k-independent local quantities to k-
resolved. In the first part of the chapter, we consider a square lattice with the
nearest neighbors hopping whose FS is represented by a dashed line in the Fig. 5.2.
Using the Green’s functions on the Keldysh contour for a finite-dimensional lattice

Y M

X

M/2

Г kx

ky

-M/2

Figure 5.2: Brillouin zone for a square lattice

is computationally expensive and heavily limits the time of the simulations. In this
chapter, we focus on transient dynamics and states immediately after the pulse. Also,

(a) (b)

Figure 5.3: Local G<(t, t′) for Amax = 1.75 and U = 6 with different polarizations of
vector potential: (a) XY - polarization; (b) Y -polarization.
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we define the model parameters to be the most suitable for the FS interpretation.
In the presence of a particle-hole symmetry, the challenge is to achieve a decay of

the Green’s functions inside considered simulation time. In the case of local Green’s
functions, the damping occurs rather quickly for all considered polarizations of the
external field (Fig. 5.3). Such attenuation in time will give a quantitatively correct
result for the frequency dependence quantities obtained via Fourier transform.
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Figure 5.4: GR(t, t − s)k (time = 6.85) with different U values for Amax = 1.5 and
XY -polarization: (a) Y-point of BZ; (b) M/2-point of BZ.

In the case of k-resolved Green’s functions, the damping is much slower for par-
ticular k-points. In Fig. 5.4 the dependence of the Green’s function on time for
different U is shown for Y and M/2-points in the Brillouin zone (BZ). Increasing
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Figure 5.5: GR(t, t − s)k (time = 6.85) with different Amax values for U = 6 and
XY -polarization : (a) Y-point of BZ; (b) M/2-point of BZ.
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Coulomb interaction the dumping of the Green’s function becomes stronger. These
highly symmetrical points were chosen due to the fact that they belong to the FS
and have the highest intensity of the spectral function at a frequency equal to zero
and the smallest attenuation of the corresponding two-time Green’s function.

In the Fig. 5.5 the dependence of the Green’s function on time for different values
of vector potential for XY -polarization of vector potential is shown. An increase of
the vector potential leads to a faster decay of the Green’s function.
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Figure 5.6: Spectrum of the full number of states AR(t = 6.85, ω)k=Y (a) and oc-
cupied states A<(t = 6.85, ω)k=Y (b) with different Amax values for U = 6 and XY -
polarization.

The corresponding spectral functions are shown in the Fig. 5.6. Some of them
have negative values [184, 183, 51, 165] that partially appear as a result of the
particular form of the Fourier transform used on the work.

As can be seen from Fig. 5.7, similar dependence of the attenuation of the Green’s
functions on the magnitude of the vector potential takes place for the case of Y -
polarization. Also, similar to the XY -polarization case, Y -polarized pulse trans-
fers states (Fig. 5.8a) and particles (Fig. 5.8b) from the low-frequency to the high-
frequency region.

In order to understand how the redistribution of electrons occurs due to increasing
of the magnitude and direction of the pulse, we consider the local lesser Green’s func-
tions (Fig. 5.9). For all pulse polarizations, the maximum pumping of the Hubbard
bands occurs in the region around the maximum of the pulse (time = 6.85) due to
the transfer of electrons to higher energy regions at U/2. The higher the value of the
vector potential becomes stronger the intensity of the Hubbard band and less in the
low-frequency region for the Y -the direction of the vector potential (Figs. 5.9b,d,f).
In the case of XY -polarization, the electron population of the low-frequency region
can oscillate depending on the renormalized hopping value in accordance with the
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Figure 5.7: GR(t, t − s)k (time = 6.85) with different Amax values for U = 6 and
Y -polarization: (a) Y-point of BZ; (b) M/2-point of BZ.
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Figure 5.8: Spectra of full number of states AR(t = 6.85, ω)k=Y (a) and occupied
states A<(t = 6.85, ω)k=Y (b) for different Amax values with U = 6 and Y -polarization.

zero-order Bessel function [181]. The van Hove singularity nearly disappears in the
pulse maximum at the Amax = 3.0 for all polarizations. Thus, for these parameters
of the system, it is prudent to use a Amax = 1.75 in which the convergence of the
two-time Green’s function is good and at the same time, there is a high density of
states at the Fermi level during the pulse.

It is worth noting the behavior of the peak at low frequency for the XY pulse
polarization. For all considered values of the Amax the number of electrons and
states at the Fermi level increases during the second half of the pulse (Figs. 5.10 and
5.9a,b,c,d). For the XY -polarization the intensity becomes even greater than it was
in the equilibrium case before pulse (Fig. 5.10a) for values of Amax < 2.0.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.9: Occupied states A<(t, ω) for U = 6: (a) Amax = 1.5 XY -polarization;
(b) Amax = 1.5 Y -polarization; (c) Amax = 1.75 XY -polarization; (d) Amax = 1.75
Y -polarization; (e) Amax = 3.0 XY -polarization; (f) Amax = 3.0 Y -polarization.

After choosing the optimal lattice and pulse parameters, we have to make sure
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Figure 5.10: The intensity of the occupied states at zero frequency A<(t, ω = 0) (a)
XY -polarization; (b) Y -polarization.

(a) (b)

(c) (d)

Figure 5.11: G<(t, t′)k for Amax = 1.75, U = 6, Y - pulse polarization and different
k-points of BZ: (a) M; (b) Y; (c) M/2; (d) X.
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that the A<(t, ω)k decays within the simulation time. Fig. 5.11 shows the values
of the two-time Green’s function for various points of the Brillouin zone for the
optimal parameters. Starting from time = 6 the Green’s functions decays to nearly
zero values rather quickly, giving the correct results after Fourier transforms in the
frequency domain.

(a) (b)

Figure 5.12: Equilibrium band structure (a) and occupied states (b).

Consider how the band structure and occupied states change under the influence
of the external field. Fig. 5.12 shows the equilibrium band structure and occupied
states at the high-symmetry points of the first Brillouin zone.

(a) (b)

Figure 5.13: Band structure (a) and occupied states (b) in the middle of pulse for
Amax = 1.75 and XY - pulse polarization.
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The maximum intensity at the Fermi level is caused by the presence of a van
Hove due to the geometry of the system. The blurring that distinguishes this elec-
tronic structure from tight-binding is caused by the large influence of the electronic
correlations.

Under the influence of an external electric field in the XY -polarization a redis-
tribution of states occurs. The spectral weight from the van Hove singularity goes
symmetrically to the energy regions −U/2 and U/2 (Fig. 5.13a). Since the pulse
frequency is significantly higher than the bandwidth, the electronic structure is rear-
ranged to be more correlated with almost no electron transfer beyond the Fermi level
(energy absorption for high-frequency pulse discussed in Sec. E). The last statement
can be observed on the density of occupied states (Fig. 5.13b) that stays below the
Fermi level during a pulse.

(a) (b)

(c) (d)

Figure 5.14: (a) Band structure Amax = 1.75; (b) occupied states Amax = 1.75; (c)
band structure Amax = 3.0; (d) occupied states Amax = 3.0 in the middle of pulse for
Y - pulse polarization.
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In the case of the Y -polarization of the field, the Hubbard bands are also get
populated (Fig. 5.14a), but they are not as localized in energy as in case of XY -
polarization. Due to the influence of the Y -polarization, some points in BZ become
no longer equivalent. The symmetry breaks for [11] direction. The FS portion gets
a bend as can be seen in Fig. 5.14a,b along Y to X path. With an increase in the
vector potential to Amax = 3.0 the number of states at ω = 0 decays since they are
moving to higher energies than −U/2 and U/2.

It should be noted that all time-dependent band structures are built at the time =
6.85 when the Gaussian envelope has maximum (the middle of the pulse) and the
value of the oscillating vector potential is equal to zero.

B.2 Lifshitz transitions (NN - hopping)

Although the nonequilibrium distribution function during the pulse substantially
differs from the Fermi-Dirac one, we can still keep track of the FS. In order to do so,
we can introduce an extended definition of FS for out-of-equilibrium situations.

Since our aim is a study of the evolution of initial FS, we focus on the electron
density at the energy equal to equilibrium chemical potential. We have a direct access
to this quantity via the Green’s function ImG<(t, ω)k (see chapter 2 Eq. C.17).

The Fig. 5.15 shows FS for Y -polarization. In the equilibrium case, the maximum
intensities are distributed evenly as shown in the Fig. 5.15a. The action of the field
renormalizes the intensity, thereby changing the structure. The maximum intensity
is collected near the Y point and decreases significantly at the X point (Fig. 5.15b)
as shown on the occupied band structure in Fig. 5.14b.

Like time-dependent band structures, FS are built at the time when the Gaussian
envelope has maximum, and the value of the vector potential is equal to zero.

Qualitatively similar behavior has been observed for the Floquet stationary states
Fig. 5.16 (the calculation method will be discussed in more detail in the next part of
the chapter). After the external field is turned off, the FS restores its original shape
with a lower intensity (Fig. 5.15c). The destruction of the FS in time of a pulse is
possible when a sufficiently large vector potential is applied (Fig. 5.15d).

The application of the field in the XY -polarization does not lead to a substantial
rearrangement of the FS. There is a transfer of intensity from the diagonal -Y-X to
YX depending on the direction of the vector potential (Fig. 5.17a). After the pulse
(Fig. 5.17b), by analogy with Y -polarization, a decrease in intensity is observed.
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Figure 5.15: FS for Y -pulse polarization: (a) equilibrium; (b) Amax = 1.75 in the
middle of the pulse (time = 6.85); (c) Amax = 1.75 after the pulse (time = 13.7); (d)
Amax = 3.0 in the middle of the pulse.
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Figure 5.16: Equilibrium FS with renormalized hopping according to Amax = 1.75
and Y pulse polarization.
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Figure 5.17: FS for XY pulse polarization and Amax = 1.75: (a) in the middle of
the pulse (time = 6.85); (b) after the pulse (time = 13.7).
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C Case of the NNN-hopping

C.1 FS parameters selection

In this chapter we consider a square lattice (Eq. A.2) with the presence of the next
neighbors hopping t′ = −0.32. Adding next neighbor hopping we leave the partial-
hole symmetry what leads to non-conservation of the number of particles during the
pulse. The Fig. 5.18 shows the filling n for various values vector potential Amax, and
polarization. In general, the number of particles in the system is better preserved at
small vector potentials and in the middle of the pulse have more or less satisfactory
values. In the following, we consider the properties of the system for Amax = 1.75.
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Figure 5.18: Particle conservation: (a) n = 0.5 XY -polarization; (b) n = 0.425
XY -polarization; (c) n = 0.5 Y -polarization; (d) n = 0.425 Y -polarization.

In the Fig. 5.19a is depicted local retarded Green’s function oscillations of which
damping very quickly. But the same k-resolved function decays much more slowly
as it is shown in Fig. 5.19b.
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Figure 5.19: GR(t, t− s)k in the middle of the pulse for Amax = 1.75: (a) local; (b)
in Y-point of BZ.

(a) (b)

(c) (d)

Figure 5.20: G<(t, t′)k=Y for Amax = 1.75: (a) n = 0.5 XY -polarization; (b) n =
0.425 XY -polarization; (c) n = 0.5 Y -polarization; (d) n = 0.425 Y -polarization.
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The attenuation of the k-resolved lesser Green’s function is noticeably slower in
the presence of the next neighbor hopping for all considered polarizations of the field
and fillings n (Fig. 5.20).

Due to the presence of the next neighboring hopping, the van Hove singularity in
the equilibrium case is shifted more to negative energy values. With an increase in
the Coulomb interaction, the position of the singularity is closer to the Fermi level
[104]. This effect is now possible to observe in dynamics. Because the vector poten-
tial renormalizes hopping, an effective increase of the Coulomb interaction occurs.
On half-filled cases in Figs. 5.21a,c, this effect is especially visible. In the pulse max-
imum, the lower Hubbard band gets populated and at the same time, the van Hove
singularity is shifted toward positive frequencies. With doping n = 0.425, there is a
slight movement of the singularity, but the transition of its weight to higher energies
does not occur (Figs. 5.21b,d).

(a) (b)

(c) (d)

Figure 5.21: Occupied states A<(t, ω) for Amax = 1.75: (a) n = 0.5 XY -polarization;
(b) n = 0.425 XY -polarization; (c) n = 0.5 Y -polarization; (d) n = 0.425 Y -
polarization.



C. Case of the NNN-hopping 71

In the graphs of the density of occupied states at zero frequency two peaks are
visible (Fig. 5.22a). The first peak is related to the repulsion of the van Hove sin-
gularity and the lower Hubbard band. The second peak is also observed on the
lattice without next neighbor hopping and is possibly associated with a narrowing
of the band [33]. The temperature dependence on the value of total energy for the
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Figure 5.22: (a) The intensity of the occupied states at zero frequency A<(t, ω = 0)
for Amax = 1.75; (b) The temperature dependence of the total energy.

considered systems is shown in the Fig. 5.22b.

C.2 Lifshitz transitions (NNN - hopping)

FS corresponding to optimally doped Y Ba2Cu3O6.85 (n = 0.425) [6] is depicted
in Fig. 5.23. In the absence of a field, the equilibrium FS has pronounced arches
(Fig. 5.23a), and the formation of gaps in the X and Y high-symmetry points appears
due to the movement of the plateau which forms the van Hove singularity in the region
of negative frequencies under the action of NNN-hopping.

The Y -direction of the field leads to closing the gap at the Y and -Y points and
increasing the gap at X and -X (Fig. 5.23b).

In the case of XY -polarization, the renormalization of the weight of the arches
along the direction of the vector potential is visible in Fig. 5.23c. The lines per-
pendicular to the direction of the vector potential slightly straighten and equally
reduce their intensity. After the pulse, the FS returns equal curvature and intensity
(Fig. 5.23d).

In this work, we use pulse frequency much higher than the Coulomb interaction
and the band-width. Thus, it allows us to see how the equilibrium FS changes taking
into account the hopping renormalization in accordance with the zero-order Bessel
function J0(Ay).
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Figure 5.23: FS for Amax = 1.75 and n = 0.425: (a) equilibrium; (b) in the middle
of the pulse for Y -polarization; (c) in the middle of the pulse for XY -polarization; (d)
after the pulse (time = 13.7) for XY -polarization.

As an benchmark, we calculated the FS in equilibrium (Fig. 5.24) with the renor-
malized hopping to imitate action of the vector potential. Thus, dispersion low for
Y -polarization renormalization:

ε(k) = 2 · t1x · cos(kx) + 2 · t1y · cos(ky)
+ 4 · t2y · (cos(kx) · cos(ky))

(C.1)

where t1x = t, t1y = t · J0(Ãy), t2y = t′ · J0(Ãy), Ã - the mean value of the vector
potential for a Gaussian envelope selected in the range from −3σ to 3σ.
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Figure 5.24: Equilibrium FS with renormalized hopping according Amax = 1.75 and
n = 0.425: (a) Y pulse polarization; (b) XY pulse polarization.

Dispersion low for XY -polarization renormalization:

ε(k) = 2 · t1xy · (cos(kx) + cos(ky))

+ t2p · (2 · cos(kx) · cos(ky)− 2 · sin(kx) · sin(ky))

+ t2m · (2 · cos(kx) · cos(ky) + 2 · sin(kx) · sin(ky))

(C.2)

where t1xy = t · J0(
1√
2
Ã), t2p = t′ · J0(

1√
2
Ãx +

1√
2
Ãy), t2m = t′ · J0(0).

The equilibrium FS for both hopping renormalization according to Amax = 1.75
depicted in Fig. 5.24. FS lines constructed in this way have the same intensity.
These equilibrium results reflect a qualitative change in the topology of FS with
nonequilibrium calculation (Fig. 5.23) such as a closing gap in Y/-Y points for Y -
polarization dispersion and straightening lines of FS perpendicular to the vector
potential for XY -polarization dispersion.

The FS for Y -polarization also coincides with the results of Floquet engineering
presented in Ref. [89].

D Summary
Thus, we considered the Hubbard model taking into account the nearest and next
neighbor’s hoppings. The system was perturbed by a pulse whose frequency is much
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larger than the Coulomb interaction and the bandwidth. Such a field-effect leads to
the appearance of a number of effects in the correlated system:

1. An increase in the intensity of the van Hove singularity at small values of the
vector potential in the XY -polarization (Fig. 5.10a and 5.22a).

2. In the presence of NNN-hopping dynamical repulsion of the van Hove singular-
ity from the lower Hubbard band appears which was early investigated in Ref. [104]
in static case. This effect caused by the effective renormalization of the Coulomb
interaction [181] in transient regime (Figs. 5.20 and 5.22a).

3. We presented the possibility of constructing a Fermi surface out of equilibrium
for the high-frequency pulse. Current results can be compared with studies in the
Floquet mode. Also, nonequilibrium-induced Lifshitz transition, which exists in
transient mode, has been shown to occur for a global ramp of the repulsive Hubbard
interaction (Fig. 5.15, 5.17 and 5.23).

E Appendix: Energy absorption
We examine the energy absorption by a closed system due to the application of an
external electric field. We consider a 2D square lattice (W = 8t). We describe the
external spatially uniform electric field via the vector potential. Pulse shape depicted
in the Figs. 5.25. We consider two extreme cases, low-frequency (ω = 1.4 � W )
(Fig. 5.25a) and high-frequency (ω = 50 � W )(Fig. 5.25b) pulses with FWHM=3
and β = 10. Time has units of reverse hoppings.
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Figure 5.25: Shape of the vector potential: (a) ω = 1.4; (b) ω = 50.

Example of time-dependent total energy is shown in Figs. 5.26. The system
is closed and has no relaxation mechanisms due to which has a change of total
energy only during the pulse action. Low-frequency pulse leads to significant energy
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absorption compared to high-frequency and achieves close to Etot = 0 for the maximal
value of vector potential projection Ax = 4. The absorption of the total energy is also
associated with an effective temperature change of the system under the influence of
external perturbations. Etot = 0 is an origin and corresponds to infinity temperature.
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Figure 5.26: Total energy of the system as function on time in case of U = 2 for
different pulse frequencies: (a) ω = 1.4; (b) ω = 50.

Double occupancy decreases in the case of ω = 1.4 (Fig. 5.27a) and increases for
ω = 50 (Fig. 5.27b).
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Figure 5.27: Double occupancy of the system as function on time in case of U = 2
for different pulse frequencies: (a) ω = 1.4; (b) ω = 50.

The difference between the initial and final values of the total energy 4Etot =
Einitial − Efinal displays absorption for systems with different interactions. The
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Fig. 5.28 shows the dependence of 4Etot on the magnitude of the maximum projec-
tion of the vector potential Ax. The nonlinear dynamics of adsorption with increasing
Coulomb interaction is visible.
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Figure 5.28: Difference between the initial and final values of the total energy4Etot =
Einitial − Efinal as function on Ax: (a) ω = 1.4; (b) ω = 50.
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Figure 5.29: Difference between the initial and final values of the kinetic and potential
energies as function on Ax: (a) ω = 1.4; (b) ω = 50.

Contributions of potential and kinetic energy to absorption are shown in Fig. 5.29.
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Chapter 6

Multi-orbital extension of FLEX
self-energy

A Introduction
An accurate description of the electronic structure of correlated materials has yet
to be developed in equilibrium. Generally, in strongly correlated materials, several
orbitals are falling into the low-energy region around the Fermi level. A description
of these materials requires an extension of the Hubbard model to the multiorbital
one. Even in high-Tc cuprates, where orbitals other than the one that forms the
Fermi surface are neglected in many cases, the orbital degrees of freedom play an
essential role [155, 154, 120].

The multiorbital FLEX approach has already been applied to iron and nickel
in self-consistent and non-self-consistent forms in equilibrium. In this chapter, we
write about multiorbital DMFT+FLEX and DMFT+PP based on real-time Keldysh
contour technic which later on gives the possibility to investigate nonequilibrium
effects. We use the Hubbard model in a paramagnetic state with density-density type
interaction and degenerate orbitals [38]. Multiorbital time-independent Hamiltonian
has a form

H =
∑

Rλ,R′λ′

tRλ,R′λ′c
†
RλcR′λ′

+ 1/2
∑

R,λ,λ′,λ′′,λ′′′

〈Rλ,Rλ′|V |〈Rλ′′,Rλ′′′〉c†R,λc
†
R,λ′cR,λ′′′cR,λ′′ (A.1a)

where R is lattice site coordinates and λ = (lσ) is spin-orbital indices. The hopping
term tRλ,R′λ′ is determined from ab-initio electronic structure calculations and will
be replaced in this comparison study with a model dispersion relation diagonal in
the spin-orbital indices. The electron interaction is usually considered only between
the d electrons, since the effect of the lower orbitals is assumed to be described well
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with the density functional theory (DFT) technic. The interaction was taken in the
form of a Kanamori matrix.

B FLEX self-energy
The effects of the electron interaction on one-particle states are described by the
self-energy Σ:

ΣFLEX
λ (t, t′) = ΣHF

λ (t, t′)δ(t, t′)−2Σ2
λ(t, t

′)+ΣPH
λ (t, t′)+ΣPP

λ (t, t′)+ΣINT
λ (t, t′) (B.1)

where self energies: ΣHF (t, t′) - Hartree-Fock, Σ2(t, t′) - second order perturbation
theory, ΣPH(t, t′) - particle-hole, ΣPP (t, t′) - particle-particle, Σint(t, t′) - "interac-
tion" self energy.

ΣHF
λ (t) =

∑
λ′

Uλλ′(t)nλ′(t)δ(t, t
′) (B.2)

where n -number of particle
The simplest approximation to the vertex function for the self energy is the bare

interaction Uλλ′ . Such an approximation corresponds to second-order perturbation
theory (SOPT).

Σ2
λ(t, t

′) = −i
∑
λ′

U(t)χPH0
λλ′ (t, t′)U(t′)Gλ′(t, t

′) (B.3)

where electron-hole polarisation bubble is

χPH0
λλ′ (t, t′) = iGλ(t, t

′)Gλ′(t
′, t) (B.4)

Full particle-hole self energy: This chahhal can be separeted into particle-hole
and interaction parts:

ΣPH
λ (t, t′) = −i

∑
λ′

Vλλ′(t, t
′)Gλ′(t, t

′) (B.5)

V PH
λλ′ (t, t′) = Uλλ′(t)χ

PH
λλ′ (t, t

′)Uλλ′(t
′) (B.6)

When we sum ladder particle-hole diagrams we obtain for the vertex function:

χPHλλ′ (t, t
′) = χPH0

λλ′ (t, t′) +

∫
C

χPH0
λλ′ (t, t1)U(t1)χPHλλ′ (t1, t

′)dt1 (B.7)
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Two-particle scatterings is the interaction channel:

ΣINT
λ (t, t′) = iGλ(t, t

′)V INT
λλ (t, t′) (B.8)

V INT
λλ (t, t′) = Uλλ(t)χ

INT
λλ (t, t′)Uλλ(t

′) (B.9)

χINTλλ (t, t′) = χINT0
λλ (t, t′) +

∫
C

χINT0
λλ (t, t1)U(t1)χINTλλ (t1, t

′)dt1 (B.10)

χPHint0λλ′ (t, t′) = 0 if λ 6= λ′;

χPHint0λλ′ (t, t′) = χPHint0λλ (t, t′) = −iGλ(t, t
′)Gλ(t

′, t) if λ = λ′.
(B.11)

Analogously we can construct an approximation with multiple electron-electron
scatterings where the self-energy can be represented as:

ΣPP
λ (t, t′) = −i

∑
λ′

V PP
λλ′ (t, t′)Gλ′(t

′, t) (B.12)

V PP
λλ′ (t, t′) = Uλλ′(t)χ

PP
λλ′ (t, t

′)Uλλ′(t
′) (B.13)

χPPλλ′ (t, t
′) = χPP0

λλ′ (t, t′) +

∫
C

χPP0
λλ′ (t, t1)U(t1)χPPλλ′ (t1, t

′)dt1 (B.14)

where particle-particle polarisation bubble is

χPP0
λλ′ (t, t′) = iGλ(t, t

′)Gλ′(t, t
′) (B.15)

We can treat each channel independently or add all three to assess the effect of
dynamical fluctuations on the electron self-energy. In the latter case, however, we
have to subtract twice the contribution from the second-order, since it is identical in
all three channels.

It is known that FLEX has a divergence in the particle-hole channel. To get rid
of this divergence, we introduce a screened interaction (Uscr), which we use instead
of U in particle-hole and interaction channels. Uscr was calculated in imaginary and
real-time using particle-particle channel [144, 61, 190].
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C Equilibrium multi-orbital Hubbard model
Calculations were performed on infinitely dimensional Bethe lattice with semi-elliptic
density of states ρ0(E) = 2

π

√
1− E2. We tested electron-hole and electron-electron

channels. DMFT type of self-consistency used in this work. All approximations were
calculated in real-time in Keldysh contour.

We calculated the analytical approximations for small to an intermediate value of
the interaction strength. All energies are given in units of the half-bandwidth of the
non-interacting DOS, D = 1. In calculation used 2000 points in Matsubara branch
of the contour, up to 3000 points in real-time color with h = 0.02 time-step, inverse
temperature λ′ = 16, the error value of DMFT convergence is 1× 10−10.

In Fig. 6.1a is shown interaction dependece of two-orbital DOS calculated with
particle-particle self energy (DMFT+PP) in half-filling and corresponding self energy
Fig. 6.2a. In DOS is seen tendension to formation Hubbard bands with increasing
Coulomb interaction. Spectral function for U = 2 has Hubbard bands located in -2
and 2 in energy axis, this result is consistent with work Drchal et al. [38]. Dependence
of relarion JH/U = q for U = 2 presented in Fig. 6.1b for DOS and Fig. 6.2b self
energy. Increasing q Hubbard bands decreases with saving thairs positions.
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Figure 6.1: DOS two-orbital DMFT+PP n = 0.5 (half-filled): (a) Interaction depen-
dence with JH = 0, (b) q-dependence with fixed U = 2.

Fig. 6.3 demonstrates DOS with partially filled band calculated using particle-
particle self energy. The density of states has a broad peak in zero energy and creates
another slim peak in the side of positive energies. This high energy peak reacted for
changing Coulomb interaction or relation of interaction to Hund coupling q, while
the low-energy peak almost does not change. Self energies for this cases are shown
in Fig. 6.4.
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Figure 6.2: Self energy two-orbital DMFT+PP n = 0.5 (half-filled): (a) Interaction
dependence with JH = 0, (b) q-dependence with fixed U = 2.
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Figure 6.3: DOS two-orbital DMFT+PP n = 0.2: (a) Interaction dependence with
JH = 0, (b) q-dependence with fixed U = 1.8.

In Fig. 6.5a is shown interaction dependence of two-orbital DOS calculated with
FLEX self energy (DMFT+FLEX) in half-filling. DOS has a trend in the formation
of Hubbard bands with increasing Coulomb interaction. Hubbard peaks less pro-
nounced compared to particle-particle self-energy case. Also it is seen the formation
of low energy shoulders with increasing U in quasiparticle peak. Dependence of q for
U = 1.5 presented in Fig. 6.5b for DOS and Fig. 6.2b for self energy. Increasing q
Hubbard bands decreases.

Self-energy (Fig. 6.6a) has a significantly different shape and has a positive value
in zero energy in comparison with particle-particle self-energy.

Fig. 6.7 demonstrates DOS for partially filled band calculated using FLEX self
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Figure 6.4: Self energy two-orbital DMFT+PP n = 0.2: (a) Interaction dependence
with JH = 0, (b) q-dependence with fixed U = 1.8.
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Figure 6.5: DOS of two-orbital DMFT+FLEX n = 0.5 (half-filled): (a) Interaction
dependence with JH = 0, (b) q-dependence with fixed U = 1.8.

energy. The density of states has a broad peak in zero energy and a second slim peak
in the side of positive energies. This high energy peak reacted for changing Coulomb
interaction or relation of interaction to Hund coupling q, while the low-energy peak
almost does not change. FLEX self energies shown in Fig. 6.8. Thus, the behavior
of DOS and self-energy in FLEX and PP are similar. PP cases have slightly bigger
amplitudes.
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Figure 6.6: Self-energy of two-orbital DMFT+FLEX n = 0.5 (half-filled): (a) Inter-
action dependence with JH = 0, (b) q-dependence with fixed U = 1.5.
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Figure 6.7: DOS of two-orbital DMFT+FLEX n = 0.2: (a) Interaction dependence
with JH = 0, (b) q-dependence with fixed U = 1.6.

In Fig. 6.9 is depicted quasiparticle weight (Z) as function on Couloumb interac-
tion. Z was calculated using formula:

Z =

(
1− ∂ReΣ(ω)

∂ω

∣∣∣∣
ω→0

)−1

(C.1)

There are lines correspond to different self-energy contributions using in DMFT
scheme: red - second-order perturbation theory (SOPT), blue - particle-particle chan-
nel, FLEX0 - fluctuation exchange approximation without interaction channel, purple
- full FLEX, black line - QMC data obtain from [38]. Comparison of data with QMC
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Figure 6.8: Self-energy two-orbital DMFT+FLEX n = 0.2: (a) Interaction depen-
dence with JH = 0, (b) q-dependence with fixed U = 1.6.

result it is seen that SOPT work good in regime with small interaction until U = 1.7
and further underestimate Z, PP stable during all considered interaction and over-
estimate Z, which does not agree with [38]. FLEX0 and FLEX have relatively good
agreement with QMC data until U=1.7 and after Z drastically increases.
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Figure 6.9: Quasiparticle weight as function of Coulomb interaction for DMFT with
different contribution in self energy.

In the Fig. 6.10 is shown the results for quasiparticle weight as a function of



D. Multi-orbital Hubbard model with full rotationally invariant Hamiltonian 85

Coulomb interaction for FLEX self-energy with different Hund coupling. FLEX self-
energy was chosen because it gives the best overlap with QMC data. Fig. 6.10a
represents data for q-dependence with n = 0.5, the higher Hund coupling (or q
relation) then bigger Z for considered U . Such growth of Z occurs until q = 0.2,
q = 0.3 repeated results of the previous q at least in small U range.

Similar result occur for q-dependence with n = 0.25 Fig. 6.10b and rising of Z
till q = 0.3.

In comparing these two graphs seen that in general doping of the system raises
Z.
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Figure 6.10: Quasiparticle weight as function of Coulomb interaction for FLEX self
energy: (a) q-dependence with n = 0.5, (b) q-dependence with n = 0.25.

Thus, we considered paramagnetic two degenerate orbitals with the density-
density type interaction Hubbard model. This model has significant advantages:
simple to implement, extremely cheap in computational resources compare to other
multiorbital models and gives reasonable results in certain parameter ranges. Dis-
advantages: for all considered types of self-energies, it overestimates positions of
Hubbard peaks. It is known that with an increase in the number of orbitals, the
results deteriorate.

D Multi-orbital Hubbard model with full rotation-
ally invariant Hamiltonian

The logical extension of the model, which was considered in the previous section,
is avoiding degenerate model and density-density type interaction. This work was
done in equilibrium for materials containing correlate d or f electrons using local



86 Chapter 6. Multi-orbital extension of FLEX self-energy

approximation [102]. In this section, we derive these equations in a time-dependent
way.

Such Hamiltonian for the Hubbard model is:

H = Ht +HU (D.1)

Kinetic part:
Ht =

∑
1,2,σ

t12c
†
1σc2σ (D.2)

where numbers=im is a combination of index for site number (i) and the orbital (m).
Interaction part is:

HU =
1

2

∑
1,2,3,4,σ,σ′

U1234c
†
1σc
†
2σ′c4σ′c3σ (D.3)

Coulomb interaction matrix defined in the following way:

U1234 =

∫
drdr′ψ∗1(r)ψ∗2(r′)u(r − r′)ψ3(r)ψ4(r′) (D.4)

where u(r − r′) - Coulomb interactions, ψ∗n(r) - localized on-site basis functions.
First symmetrize the bare coulomb interaction over different fluctuation channels:

the particle-hole (density - Ud and magnetic - Um) and particle-particle (singlet U s

and triplet U t) vertex matrices:

Ũ1234 = U1324 (D.5)

Ud
1234 = 2U1324 − U1342 (D.6)

Um
1234 = −U1342 (D.7)

U s
1234 =

1

2
[U1243 + U1234] (D.8)

U t
1234 =

1

2
[U1243 − U1234] (D.9)

For the Coulomb energy parameterization corresponds to the following matrix
elements:

U1234 = U if(1 = 2 = 3 = 4) (D.10)
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U1234 = U ′ if(1 = 3 6= 2 = 4) (D.11)

U1234 = JH if(1 = 2 6= 3 = 4) (D.12)

U1234 = JH if(1 = 4 6= 2 = 3) (D.13)

For fully rotationally invariant Hamiltonian we assume U ′ = U − 2JH . Now the
interaction matrix for different channels are

U =


U 0 0 JH
0 U − 2JH JH 0
0 JH U − 2JH 0
JH 0 0 U



Ud =


U 0 0 2U − 5JH
0 JH 4JH − U 0
0 4JH − U JH 0

2U − 5JH 0 0 U



Um =


−U 0 0 −JH
0 −JH −U + 2JH 0
0 −U + 2JH −JH 0
−JH 0 0 −U



U t =


0 0 0 0
0 3JH−U

2
U−3JH

2
0

0 U−3JH
2

3JH−U
2

0
0 0 0 0


We use the following definition of for component of Green’s function,

G12(t, t′) = −i < TCc1(t)c†2(t′) > (D.14)

Calculation of Hartree-Fock self-energy (ΣHF ):
The Hartree-Fock self-energy can be written as

ΣHF
12 (t, t′)δ(t, t′) = Ud ∗ n =

∑
34

Ud
1234n34 (D.15)



88 Chapter 6. Multi-orbital extension of FLEX self-energy

where * means matrix multiplication, n - occupation matrix.

Calculation of second order self-energy (Σ2):
The second order self-energy written as

Σ2
12(t, t′) = i

∑
34

V1342(t, t′)G34(t, t′) (D.16)

Where V matrix is given by

V1234(t, t′) =
∑
5678

Ũ1256(t)χ0,ph
5678(t, t′)Ud

7834(t′) (D.17)

The second-order potential for the nonmagnetic case is

V (t, t′) = Ũ(t) ∗ χ0,ph(t, t′) ∗ Ud(t′) (D.18)

Where particle-hole bubble susceptibility:

χ0,ph
1234(t, t′) = −iG41(t′, t)G23(t, t′) (D.19)

Calculation of particle-hole channel of self-energy (ΣPH):
The particle-hole channel of self-energy written as

ΣPH
12 (t, t′) = i

∑
34

V PH
1342(t, t′)G34(t, t′) (D.20)

Where the particle-hole potential (V PH) is expressed through the density and
magnetic fluctuations:

V PH(t, t′) =
1

2
[Ud(t) ∗ (D(t, t′)− χ0,ph(t, t′)) ∗ Ud(t′)]

+
3

2
[Um(t) ∗ (M(t, t′)− χ0,ph(t, t′)) ∗ Um(t′)] (D.21a)

Where the total channel propagators D and M have to be found from the RPA-
like matrix inversion:

D = χ0,ph + χ0,ph ∗ Ud ∗D (D.22)

M = χ0,ph + χ0,ph ∗ Um ∗M (D.23)

Calculation of particle-particle channel of self-energyΣPP :
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The particle-particle channel of self-energy is written as

ΣPP
12 (t, t′) = −i

∑
34

V PP
1342(t, t′)G43(t′, t) (D.24)

Where V PP is given by

V PP (t, t′) = [U s(t) ∗ (S(t, t′)− S0(t, t′)) ∗ U s(t′)]

+ 3[U t(t) ∗ (T (t, t′)− T 0(t, t′)) ∗ U t(t′)] (D.25a)

Where singlet and triplet bare propagators (S0 and T 0) is given by

S0
1234 =

1

2
[π0,pp

1234 + π0,pp
2134] (D.26)

T 0
1234 =

1

2
[π0,pp

1234 − π
0,pp
2134] (D.27)

The total channel propagator S and T have to be found from:

S = S0 + S0 ∗ U s ∗ S (D.28)

T = T 0 + T 0 ∗ U t ∗ T (D.29)

Where particle-particle bubble susceptibility (π0,pp) is given by

π0,pp
1234(t, t′) = iG14(t, t′)G23(t, t′) (D.30)

FLEX time-dependent self-energy ΣFLEX is written as sum of all channels:

Σ(t, t′)FLEX = ΣHF (t, t′)δ(t, t′) + Σ2(t, t′) + ΣPH(t, t′) + ΣPP (t, t′) (D.31)

This form of multiorbital DMFT with FLEX self-energy will significantly extend
the field of applicability of the model but at the same time will increase the com-
putational cost compared density-density degenerate model. The open question is
about the limits of applicability of such self-energy, depending on the magnitude
of the Coulomb interaction. This issue can be resolved by entering a screened in-
teraction for the particle-hole channel. Such a study was carried out and obtained
spin-polarized equilibrium results for realistic electronic structure calculations of f -
electron systems in [144].
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E Summary
In this chapter, we have studied the multiband Hubbard model in equilibrium using
time-dependent dynamical mean-field theory.

1. We implement a multiorbital dynamical mean-field theory with SOPT, PP and
FLEX impurity solvers based on real-time Keldysh contour technique. Derivation of
formulas for the impurity problem for degenerate orbitals with density-density type
interaction is located in section B.

2. The equilibrium results for the two-orbital Hubbard model in the case of an
infinitely-dimensional Bethe lattice is presented in section C. The results of the model
for the density of states, self-energy, and quasiparticle weight for the wick coupling
regime and various Hund coupling in half-filling and doped cases are presented.
Comparing the results of the multiorbital model for various impurity solvers, it is
seen that FLEX is the best approximation (Fig. 6.9), unlike the single-orbital model,
where the SOPT in the vast majority of cases is the best approximation of the model
in paramagnetic mode [65].

3. Further development of the multiorbital problem comes down to moving away
from the density-density type of Coulomb interaction. Equations for such a model
were derived from the Ref. [102] in time-dependent way in section D.
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Chapter 7

Spin-density fluctuations in 3d
ferromagnetic metals

A Introduction
The physics of spin density fluctuations[123, 205] (SDF) in metallic magnets is very
rich and complex. SDF determines the magnetic excitation spectrum and plays
an important role in the magnetic dynamics. In addition, they can strongly affect
numerous static magnetic and nonmagnetic properties at zero and finite tempera-
tures[46, 91]. SDF can be especially important near phase transitions points where
they can stabilize new ground states [24].

The key quantity characterizing SDF in metals is the spin correlator (SC) which
represents the equal-time on-site connected spin correlation function and plays a
crucial role in spin fluctuation theories (see, e.g., Ref. [205]). According to the
fluctuation-dissipation theorem[97] (FDT), SC can be evaluated by integrating the
imaginary part of the dynamic spin susceptibility over all wavevectors and energies.
Such integration is, however, a highly nontrivial task both for the experiment and
theory, which makes reliable calculations of SC in real materials very difficult.

For instance, experimentally, SDF are traditionally studied using the neutron
scattering technique. This method may be used to obtain the imaginary part of the
dynamic spin susceptibility for certain points in the Brillouin zone (BZ) when energies
are below ∼0.3-0.4 eV [31]. While from this information SC has been evaluated for
many systems,[46] such estimates are not very accurate due to small number of
wavevectors and limited energy range used in the calculations. In addition, despite
the clear itinerant nature of magnetic metals, in most studies the experimental results
have been compared with the conclusions of a localized spin model (Heisenberg).
Independently, fast and ultrafast spin dynamical experiments also detect the presence
of SDF at very different frequency ranges [49, 21]. However, those studies are usually
not related, and so far, no consistent experimental measurements of the full SDF
spectra in a wide energy range have been performed.
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Theoretically, SDF in real materials can be explored from first principles using
linear response technique based on density functional theory[156, 176, 30, 25, 150,
110] or many-body perturbation methods [153, 95]. However, these calculations con-
sidered only limited energy and wavevector ranges. Consequently, proper evaluation
of SC for magnetic metals is currently missing in the literature.

In addition to linear response studies of SDF, numerous theories including SDF
in calculations of ground state or thermodynamic properties of materials were de-
veloped. These methods, however, have also been restricted to narrow bands energy
scale and/or limited parts of the BZ. In particular, spin fluctuation models which
were widely used to study effects of SDF in 3d ferromagnets[166, 108, 172, 46, 173,
9] employ long wavelength and low-frequency approximations. On the other hand,
dynamical mean-field theory[96] (DMFT) or single-site many-body perturbation the-
ory[208] include only pure intra-atomic SDF on a limited energy range. These ap-
proximations can especially affect the accuracy of SC values calculated using DMFT
[103, 206, 79]. While the above mentioned approaches have been successful in the
description of many systems, their essentially adjustable nature and uncontrollable
approximations do not allow us to understand the relative roles of the different spatial
or time scales of SDF in determining materials properties.

A comprehensive study of the full structure of SDF in metallic magnets is neces-
sary for a rigorous evaluation of SC. Besides, such analysis would provide valuable
insight about the scales of SDF that should be included in electronic structure calcu-
lations. We recently addressed this issue in 3d paramagnetic metals[202] where it was
shown that itinerant SDF are present throughout BZ and a wide energy range. Using
FDT SC was evaluated resulting in a strong effective fluctuating moment that was
found to be determined solely by the 3d band population. For ferromagnetic metals,
however, it is unclear how local moments interact with such itinerant SDF. Theo-
ries based on the localized Heisenberg model, which are very successful in magnetic
insulators, are no longer applicable because of this intrinsic itinerancy. Therefore,
a proper quantum-mechanical treatment is crucial in order to establish quantitative
description of SDF in magnetic metals.

A primary goal of this work is to present such analysis by using realistic electronic
structure calculations. We focus on prototype 3d ferromagnets including Fe, Co
(fcc), and Ni, where the degree of moment localization is changing gradually. We
use two independent computational techniques one of which time-dependent density
functional theory (TDDFT), which will be discussed further in more detail. We
determine the strength and the character of such SDF as well as establish their
spatial and energy scales. SC is properly evaluated using FDT and the dependence
of the results on the 3d band populations is studied.

The current chapter is based on article [201].
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B Time-dependent density functional theory

B.1 The Many-Body Problem

Ab-initio determination material properties of condensed matter systems represent
a great challenge in theoretical physics. In quantum mechanics, the state |Ψ〉 of a
given system accommodates the complete information of the system. To compute
ground state properties one would find solutions of the Schrödinger equation:

Ĥmb|Ψ〉 = E|Ψ〉 (B.1)

For a system containing Ne moving electrons and Nnuc nuclei at positions Rα the
Hamiltonian can be written as

Ĥmb = T̂ + V̂ + Û + Ûnuc (B.2)

where operators are T̂ - sum of electrons kinetic energy, V̂ - electron-nuclei attraction,
Û - electron-electron repulsion, Ûnuc - nuclei-nuclei repulsion.

Since the electron mass much less than the nucleon mass and therefore electrons
can respond almost instantaneously to displacements of the nuclei and it is assumed
that the charge distribution adjusts immediately to the slow motion of the nuclei.
Therefore it is convenient to fix the nuclear positions and solve the Schrödinger
equation for the electrons of a fixed ion core. This is known as the Born-Oppenheimer
approximation [22].

Considering this the energy operators are decrypted below:

T̂ = − ~2

2me

∑
i

∫
d3rψ̂†i (r)∇2ψ̂i(r), (B.3a)

V̂ =
N∑
i=1

∫
d3rψ̂†i (r)Vext(ri)ψ̂i(r), Vext = − 1

4πε0

Nnuc∑
α=1

Zαe
2

|ri −Rα|
, (B.3b)

Û =
1

8πε0

N∑
i 6=j

∫
d3rd3r′ψ̂†i (r)ψ̂

†
j(r
′)

e2

|ri − rj|
ψ̂j(r

′)ψ̂i(r), (B.3c)

Ûnuc =
1

8πε0

Nnuc∑
α6=β

ZαZβe
2

|Rα −Rβ|
. (B.3d)

where Vext - external potential, Zα/β - atomic number, Rα/β and ri/j are positions of
nuclei and electrons.
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This problem still can not be solved exactly for more than a few particles, because
the Hilbert space grows exponentially. Therefore, it is necessary to introduce more
approximations. Principally, two complementary approaches to the problem exist,
which can be called the ab-initio and model Hamiltonian approaches.

The first approach attempts to solve the problem for real systems in nature
by applying methods and approximations to the real Hamiltonian of molecules or
crystals, while the main task of the second method reduces nature to the most
important interactions and take into account these most important terms into a
model Hamiltonian. An example of an ab-initio method is density functional theory
[93], while the model Hamiltonian approach can be analyzed with lattice or impurity
models like the Anderson or Hubbard models.

B.2 The basic of DFT

Today DFT and their time-dependent extension one of the most promising ap-
proaches for describing the dynamics of interacting many-electron systems. The
basic foundation of DFT [84] are two Hohenberg-Kohn theorems. Hohenberg-Kohn
theorems provide electronic density n(r) as the basic variable instead of the elec-
tronic wave function and claim that based on electronic density is the possible exact
formulation of the many-body problem.

Consider N electrons moving in an external potential described by Ĥe = T̂ + Û +
V̂ext. For any N -electron state |Ψ〉, the density n(r) given by

n(r) = 〈Ψ|
N∑
i=1

δ(r − r̂i)|Ψ〉 = N

∫
dr2 . . . drN |Ψ(r, dr2 . . . drN)|2 (B.4)

Hohenberg-Kohn Theorem 1: The ground state energy E0 of an interacting elec-
tron system is a functional of the electron density.

E0 = E[n0] (B.5)

We can write the ground state energy of the system as a unique functional of the
density using the first Hohenberg-Kohn theorem

E[n] = F [n] +

∫
n(r)Vext(r)d

3r (B.6)

where F [n] is Hohenberg-Kohn functional that contains the universal parts of the
energy functional:

F [n] = T [n] + U [n] (B.7)
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The second Hohenberg-Kohn theorem provides the variational principle to for-
mally solve equation (B.6). Hohenberg-Kohn Theorem 2 said that the energy of an
electron system written as functional electron density has a minimum. This minimum
is equal to ground state energy.

E[n] > E0 (B.8)

It is important to note that this formalism also extends to spin degrees of freedom
and leads to the energy functional E[n,m], where m-magnetization density. The
derivations of the theorems can be found in the papers [73, 94, 101].

Reformulation of the problem, where electronic density used as the basic variable,
allows computing the ground state energy of a system without knowledge of the
full many-body wavefunction. This implies simplifications since the sought function
reduces from a 3N dimensional wave function to a three-dimensional density.

The applications of Hohenberg-Kohn theorems to physics and chemistry have
been made possible through the Kohn–Sham (KS) method [94], in which the real
system of particles is mapped into a fictitious system of non-interacting particles
moving in an effective potential. With chosen effective potential, interacting original
density n(r) is equal the density of auxiliary system nS(r):

ns(r) =
∑
i

|ϕi(r)|2 = n(r) (B.9)

The sum in above equation runs over all states i ofN electrons. The energy functional
for this system corresponds to equation (B.6).The Hohenberg-Kohn functional in this
case should be rewritten using the auxiliary system in the following form

E[n] = Ts[n] + EH [n] + Eext[n] + Exc[n] + Enuc (B.10)

where

Ts[n] = −1

2

occ∑
i

∫
ϕ∗i (r)∇2ϕi(r)d

3r, (B.11a)

EH [n] =
1

2

∫
n(r)n(r′)

|r − r′|
d3rd3r′, (B.11b)

Eext[n] =

∫
n(r)Vext(r)d

3r. (B.11c)

The term Enuc responsible for the interaction of the atomic nuclei. The universal
exchange-correlation functional Exc[n] on the one particle level contains all exchange
and correlation many-body effects [84].
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In order to minimize the energy the Kohn-Sham orbitals ϕi(r) have to obey the
Schrödinger-like equations[

−1

2
∇2 + Veff (r)

]
ϕi(r) = εi(r)ϕi(r) (B.12)

The functional variation of the total energy (B.10) that yielded the Kohn-Sham
equations (B.12) leads to the effective potential

Veff (r) = VH(r) + Vext(r) + Vxc(r) (B.13)

where Hartree and exchange-correlation potentials written as

VH(r) =

∫
n(r′)

|r − r′|
d3r′ (B.14a)

Vxc(r) =
δExc
δn(r)

(B.14b)

We are also interested in the spin-polarized case. For this one need to use spin
dependent Kohn-Sham orbitals [16, 136]. For collinear spin structure the states can
be chosen either spin-up or -down contributions:

ϕi(r) =

[
ϕi↑(r)

0

]
, ϕi(r) =

[
0

ϕi↓(r)

]
(B.15)

and the charge per spin channel can be written

nσ(r) =
∑
i

|ϕiσ(r)|2 (B.16)

Taking into account the spin degrees of freedom, we write Kohn-Sham system of
equations [

−1

2
∇2 + Veff (r) +

1

2
µBgσBxc(r)

]
ϕiσ(r) = εiσ(r)ϕiσ(r) (B.17)

where σ = ±1, µB - Bohr magneton, g - Lande factor. The exchange-correlation
magnetic field [127, 62] defined as

Bxc(r) = −δExc[n,m]

δm(r)
. (B.18)
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Thus, the independent Kohn-Sham electrons are moving in the mean-field potential
Veff and couple to the effective magnetic field Beff = Bxc +Bext.

The success of DFT depends on the effectiveness of the modelling functional
Exc[n,m]. Without this functional the Kohn-Sham system reduce to the Hartree. In
the Local Spin-Density Approximation (LSDA) exchange-correlation functional has
a form

Exc[n] =

∫
n(r)εxc(n↑(r), n↓(r))dr (B.19)

where εxc(n,m) exchange-correlation energy per particle. Energy is separated

εxc(n,m) = εx(n,m) + εc(n,m). (B.20)

into two contributions an exchange εx(n,m) which is known analitically, and a cor-
relation εc(n,m) which is has been obtained by adapting Monte Carlo calculations
[27, 189].

B.3 Full-potential linearized augmented plane wave method

In order to solve the Kohn-Sham equations, equations (B.17), one needs to calculate
matrix elements of the Hamilton operator for a chosen basis set.

One of the simplest set of basis functions is a plane-waves:

φkG(r) =
1√
V
ei(k+G)r (B.21)

where G - reciprocal lattice vector, r - position vector.
Plane-waves and their derivatives are analytically orthogonal and straightforward.

However, close to the nucleus oscillations of the charge density and wavefunctions
become too frequent and required a large number of plane-waves, which makes them
inefficient in this region.

Exist a way to solve such a problem by separation of basic functions for different
regions of space: muffin-tin (MT) centered at each atom site and interstitial (INT)
regions. This method has been proposed by Slater [169, 83] and called the augmented
plane wave (APW) approach. In the INT region plane waves are used to represent
the wave functions, while inside the MT-spheres used products of spherical harmonics
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Ylm and radial basis functions ul. In this way, the APW basis functions are

φGσ(r) =


1

V
ei(k+G)r r ∈ IS∑

l,m

aGσlmµulm(r, Elµσ)Ylm(r̂) r ∈MTµ
. (B.22)

where aGσlmµ coefficients which claim wavefunctions to be continuous on the MT-sphere
boundaries, µ - label of MT-spheres, Elµσ - energy.

The radial MT-function ul is solution of a radial Schrödinger equation:{
−1

2

∂2r

∂r2
+

1

2

l(l + 1)

r2
+ Vµ − Elµσ

}
rulµσ(r, Elµσ) = 0 (B.23)

where Vµ - spherically symmetric potential.
When energy E kept fixed and used only for the basis composition, Hamiltonian

can be established from the point of view of this basis. However, it turns out that the
APW basis functions do not offer enough variational freedom, i.e., they are to rigid
to correctly represent the actual Kohn-Sham orbitals. An accurate description can
be accomplished if they are set to the corresponding band energies. This leads to the
main problem of this method that such non-linearity makes APW computationally
expensive.

To avoid the energy dependence problems of the Hamiltonian in the APWmethod,
Andersen proposed to linearize non-linear problem by using linear combinations of
the radial functions ulµ and its derivatives u̇lm with respect to energy in such that
the basis function and their first derivatives are continuous at the boundary of MT-
sphere. This method is called as linearized augmented plane waves (LAPW) [5] and
given by

φGσ(r) =


1

V
ei(k+G)r r ∈ IS∑

l,m

[
aGσlmµulm(r, Elµσ) + bGσlmµu̇lm(r, Elµσ)

]
Ylm(r̂) r ∈MTµ

. (B.24)

where blmµ is coefficient requiring that derivatives of basis functions continuous at
the sphere boundaries. The energy derivative u̇lm obtained by taking the energy
derivative of (B.23):{

−1

2

∂2r

∂r2
+

1

2

l(l + 1)

r2
+ Vµ − Elµσ

}
ru̇lµσ(r, Elµσ) = rulµσ(r, Elµσ) (B.25)
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Since LAPW functions are in general not orthogonal to the core states and treated
separately in the method. This can lead to problems in case of high lying core states.

Generally APW and LAPW methods use restricted shape-approximations on the
potential (constant in the interstitial region and a spherically symmetric inside each
MT sphere):

V (r) =

V
0
IS = const IS

V 0
MT (r) r ∈MT

. (B.26)

where V is one of the potentials VH , Vext, Vxc, Veff .
The next step is to make a full expansion of the density and the potential including

their non-spherical contributions analogous to the wave functions. This approach
called full-potential linearized augmented plane wave (FLAPW) method [199, 70,
82]. Here abandoned the shape-approximations in the IS and inside of MT regions.
This possible due to relaxing the constant IS and the spherical MT potentials, such
that IS term is warped and inside of MT spheres non-spherical terms [92, 53, 121]:

V (r) =


∑
G

V G
ISe

iGr IS∑
L

V L
MT (r)YL(r̂) r ∈MT

. (B.27)

Representation for charge density similar as potentials:

n(r) =


∑
G

nGISe
iGr IS∑

L

nLMT (r)YL(r̂) r ∈MT
. (B.28)

In general case charge density also spin-dependent.

B.4 Time-dependent extension of DFT

Extension of ground-state DFT to handle time-dependent phenomena lead to time-
dependent density-functional theory (TDDFT). Unlike time-dependent quantum me-
chanics that rely on wavefunctions and the many-body Schrödinger equation, TDDFT
is based on one-body electron density [2].

In general there are distinguishable two regimes: In first time-dependent poten-
tial is weak, in this case acceptable to use linear-response theory to study the system
which results will be shown in this work. It is the simplest approximation to the
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time-dependent Kohn-Sham potential and results are in a good agreement with ex-
perimental. In the second case, time-dependent potential considered as strong. A
complete solution of the time-dependent Kohn-Sham equations is necessary. In this
regime, one can simulate time-dependent experiments with present strong electro-
magnetic fields.

Time-dependent Hamiltonian is not a conserved quantity in time-dependent sys-
tems. But quantum mechanical action is a quantity analogous to the energy and
does not change in time:

A [Ψ(t)] =

∫ t1

t0

dt〈Ψ(t)|i d
dt
− Ĥ(t)|Ψ(t)〉 (B.29)

Analog of Hohenberg-Kohn theorem in time-dependent theory is Runge-Gross
theorem [152]. The theorem establish a one-to-one correspondence between the den-
sity n(r, t) and the external potential V (r, t). That means that time-dependent exter-
nal potential and many-body Hamiltonian considered as a functional of the density
n(r, t).

In this case, these Kohn-Sham electrons obey the time-dependent Schrödinger
equation:[

−1

2
∇2 + Veff (r, t) +

1

2
µBgσBxc(r, t)

]
ϕiσ(r) = i

d

dt
ϕiσ(r, t) (B.30)

From the nonstationary Kohn-Sham orbitals, the density of the interacting system
can be obtained:

n(r, t) =
∑
i,σ

|ϕiσ(r, t)|2 (B.31)

The time-dependent effective potential is

Veff (r, t) = Vext(r, t) + VH(r, t) + Vxc(r, t) (B.32)

The external contribution to the effective magnetic field is

Beff (r, t) = Bext(r, t) +Bxc(r, t) (B.33)

Exist a way that allows the use of the ground-state xc functionals in the time-
dependent theory. This adiabatic approximation writen as

V ALSDA
xc [n,m] = V LSDA

xc [n,m]| n(r)=n(r,t)
m(r)=m(r,t)

. (B.34)
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evaluating the same functional form at each time with the density n(r, t) makes the
functional local in time. This approximation contain problems which present in the
L(S)DA. However, many works [127, 2] notice that the AL(S)DA provide reasonable
excitation energies.

B.5 SDF formalism

SDF in solids are described by the imaginary part of the dynamic spin susceptibility
tensor

χαβ(r, r′,q, ω) = − i
~
∑
R

e−iq·R

×
∫ ∞

0

dt〈[ŝα(r + R, t), ŝβ(r′)]〉ei(ω+iη)t. (B.35)

Here, α, β = x, y, z, 0 denote components of the tensor, r and r′ are position vectors
inside the crystal unit cell, q is the wavevector in the Brillouin zone, ω is the fre-
quency, R is the lattice vector, 〈...〉 denotes the thermal and quantum-mechanical
expectation value, η → 0+, and ŝα(r, t) is the density operator when α = 0, oth-
erwise it is the α component of the spin density operator. For collinear magnetic
states and in the absence of spin-orbit coupling, many of the tensor elements are
zero. In particular, if one chooses the z axis along the magnetization direction (or
sublattice magnetization in the case of antiferromagnets), the susceptibility tensor
in the matrix notation becomes

χ̌ =


χxx χxy 0 0
−χxy χxx 0 0

0 0 χzz χ0z

0 0 χ0z χ00

 , (B.36)

where the dependence on r, r′, q, and ω variables is not shown explicitly. It is
convenient to express the transverse components (χxx and χxy) in terms of the circular
susceptibilities

χ+− = 2 (χxx − iχxy) (B.37)
χ−+ = 2 (χxx + iχxy) . (B.38)

Note that the transverse components are decoupled from the longitudinal sus-
ceptibility (χzz). On the other hand, χzz is coupled to the density response (χ00)
through the spin-density susceptibility function χ0z.
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For SDF analysis, it is often not necessary to resolve intra-atomic fluctuations.
Therefore, for each nonequivalent atom it is convenient to introduce the SDF spectral
function

Aαβ(q, ω) = −~
π

∫
dr

∫
dr′ Imχαβ(r, r′,q, ω), (B.39)

where r and r′ variables are integrated over the atomic sphere. Correspondingly, the
density of on-site SDF can be defined by integrating Aαβ(q, ω) over the BZ

Nαβ(ω) =
1

ΩBZ

∫
ΩBZ

dqAαβ(q, ω). (B.40)

where ΩBZ is the BZ volume. In order to better analyze the distribution of SDF in
the BZ, one can also consider the partial-q density of on-site SDF defined as

Nαβ
Ωq

(ω) =
1

ΩBZ

∫
Ωq

dqAαβ(q, ω). (B.41)

Here, the integration is over a Γ-point-centered sphere with the volume Ωq (Ωq <
ΩBZ). Further, we introduce the on-site number of transverse SDF nt(ω) as well as
longitudinal SDF nl(ω),

nt(ω) =
1

2

∫ ω

0

dω′
[
N+−(ω′) +N−+(ω′)

]
(B.42)

nl(ω) =

∫ ω

0

dω′N zz(ω′). (B.43)

FDT plays a crucial role in the physics of SDF since it allows to find a number
of useful properties that characterize the SDF spectrum. In particular, it can be
used to evaluate SC which is defined as an energy integral of the dynamic on-site
connected spin correlation function and is an important measure of the strength of
SDF in solids. According to FDT, the transverse and longitudinal contributions to
the SC are given by 〈

s2
〉t
ω

=
1

2

∫ ω

0

dω′ coth (βω′/2) (B.44)

×
[
N+−(ω′) +N−+(ω′)

]
, (B.45)

and 〈
s2
〉l
ω

=

∫ ω

0

dω′ coth (βω′/2)N zz(ω′), (B.46)



B. Time-dependent density functional theory 103

respectively. Note that since SC is defined as a connected correlation function, the
longitudinal contribution doesn’t contain the term proportional to the equilibrium
local moment. At T = 0, SDF originate purely from the spin zero-point motion and
we have 〈s2〉t,lω = nt,l(ω). Therefore, the spin zero-point motion contribution to the
SC is given by nt,l(ω). SC is related to the effective fluctuating moment that is given
by

meff(ω) =

√
(mt

eff(ω))2 +
(
ml

eff(ω)
)2
. (B.47)

Here, transverse and longitudinal contributions to meff(ω) are given by

mt,l
eff(ω) =

gµB
~

√
〈s2〉t,lω , (B.48)

where g is the electron g-factor and µB is the Bohr magneton. Note that according
to the above equations, the evaluation of the full (ω → ∞) values of SC and the
effective fluctuating moment involves integrals over all ranges of q’s and ω’s which
makes such studies computationally demanding.

FDT can be also used to evaluate the value of the equilibrium local moment
m ≡ gµB

∫
dr〈ŝz(r)〉 (the spatial integration is over the atomic sphere). This leads

to the following sum rule:

m = ma(ω →∞), (B.49)

where we defined an auxilary function

ma(ω) =
gµB
4~2

∫ ω

0

dω′
[
N+−(ω′)−N−+(ω′)

]
. (B.50)

B.6 Linear response TDDFT and dynamic susceptibility cal-
culations

The dynamic spin susceptibility tensor was evaluated using the linear response time-
dependent density functional theory (TDDFT) within the local spin density approxi-
mation (LSDA) [64]. This technique has been employed for dynamic spin susceptibil-
ity calculations in a number of systems[156, 176, 30, 25, 150, 110]. In this formalism,
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one first considers the Kohn-Sham (bare) susceptibility function given by

χαβ0 (r, r′,q, ω) =
BZ∑
k

∑
n,m

∑
σσ′

(
fσnk − fσ

′

mk+q

)
×σασσ′σ

β
σ′σ

ψσ∗nk(r)ψσ
′

mk+q(r)ψσ
′∗

mk+q(r′)ψσnk(r′)

~ω + εσnk − εσ
′
mk+q + i~η

, (B.51)

where σ0
σσ′ = δσσ′ and σx,y,zσσ′ are elements of the Pauli matrices. The Kohn-Sham

eigenfunctions ψσnk and eigenenergies εσnk (the n, k, and σ indices denote band,
wavevector, and spin quantum number, respectively), are obtained from standard
LSDA calculations. Finally, fσnk ≡ f(εσnk) is the Fermi-Dirac distribution function.

The (enhanced) susceptibility is then given by the Dyson-like equation

χαβ(r, r′,q, ω) = χαβ0 (r, r′,q, ω) +
∑
γδ

∫
dr1dr2

×χαγ0 (r, r1,q, ω)fγδHxc(r1, r2,q)χδβ(r2, r
′,q, ω). (B.52)

Here,

fαβHxc(r, r
′,q) = e2δα0δβ0

∑
R

exp(−iq ·R)

|R + r− r′|

+fαβxc (r)δ(r− r′), (B.53)

where fαβxc (r) is the adiabatic local density approximation to the exchange-correlation
kernel [64]. For numerical calculations, some finite basis must be chosen to represent
the spatial dependence of χαβ, χαβ0 , and αβ

Hxc functions. Eq. (B.52) can be then
solved by matrix inversion. The quantities defined in the previous section can be
subsequently evaluated using both χαβ and χαβ0 . In the latter case, we refer to them
as "bare" quantities and denote them by using subscript 0.

From the computational point of view, the convergence with respect to the basis
size as well as an accurate evaluation of the bare susceptibility at high energies
are major challenges. For this reason, the calculations were performed using two
independent computational techniques (see below). Also, we ensured the reliability
of the results by checking the sum rule in Eq. (B.49). Note that both χαβ0 and
χαβ satisfy the sum rule with the same LSDA local moment [47]. This allows us to
independently gauge accuracy of both χαβ0 and χαβ calculations.

First computational method (below as Method I) is based on the real space
finite temperature Matsubara technique. In this formalism, one does not evaluate
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χαβ0 (r, r′,q, ω) from Eq. (B.51) since it is computationally demanding due to presence
of the summation over unoccupied states that is entangled with the BZ summation.
Instead, one considers the Kohn-Sham susceptibility in the Matsubara time domain.
This function can be efficiently evaluated in the real space according to

χαβ0 (r, r′,q, τ) =
∑
R

e−iq·R
∑
σσ′

σασσ′σ
β
σ′σ

Gσ
R(r, r′, τ)Gσ′

−R(r′, r, β − τ). (B.54)

Here, τ is the Matsubara time (0 ≤ τ ≤ β) and Gσ
R(r, r′, τ) is the imaginary-time

Kohn-Sham Green’s function given by

Gσ
R(r, r′, τ) = −

∑
nk

fσnkψ
σ
nk(r)ψσ∗nk(r′)eik·Reε

σ
nkτ/~. (B.55)

Then, the Kohn-Sham susceptibility is transformed into the Matsubara frequency
domain [χαβ0 (r, r′,q, iωk) with ωk = 2πk

~β being a bosonic Matsubara frequency and
k being an integer] according to the prescription from Ref. [99]. Subsequently, the
enhanced susceptibility in Matsubara frequency domain was found from Eq. (B.52).

The calculations were based on the full-potential linear augmented plane waves
(FLAPW) method as implemented in our in-house electronic structure code [98].
The spatial dependence of the susceptibility functions is represented using the mixed
product basis set that consists of numerical functions inside the muffin-tin spheres
and plane/dual-plane waves in the interstitial region.[12] The specific expressions for
χαβ0 (r, r′,q, τ) in the product basis are analogous to those used for calculations of
the polarizability in Ref. [99].

The Matsubara time real space formalism allows for very efficient susceptibility
calculations. In addition, the frequency integrals up to infinity [e.g., Eqs. (B.45)
and (B.46)] can be very accurately evaluated on the imaginary frequency axis (see
Ref. [99]). The real frequency axis (with a small imaginary part η = 1 meV) results
need to be obtained by analytical continuation. We employ an analytical continuation
based on the continued fraction expansion method [188]. It is designed to obtain an
accurate representation of the low-energy spectrum but may become unstable at
higher energies. Therefore, it is important to check the results of our calculations
against an alternative approach.

For this reason the most important results were recalculated using the second
method (below as Method II). In this approach the susceptibility is found using the
technique implemented in the FLAPW elk code.[1] Here, χαβ0 (r, r′,q, ω) is evaluated
directly from Eq. (B.51) and the spatial dependence of the susceptibility functions
is represented using the plane-wave basis. Since it works on the real frequency axis
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(with a small imaginary part), Method II does not involve analytical continuation.
However, it is difficult to converge the results especially at high energies. In addition,
many plane waves are needed to obtain an accurate description of the spatial depen-
dence. Consequently, Method II is significantly more computationally expensive than
Method I.

B.7 Computational Details

We consider Fe (bcc), Co (fcc), and Ni (fcc) 3d ferromagnets with experimental
lattice parameters. A 16 × 16 × 16 k-point mesh was used. For the FLAPW basis
the energy cutoff in the interstitial region was set to at least 12 Ry and the angular
momentum cutoff inside the muffin-tin sphere was set to Lmax = 8. In addition, the
local orbitals were included in order to ensure an accurate description of the excited
states which is crucial for SDF studies. We found that inclusion of local orbitals for
the 3s, 3p, and 4d states was sufficient to obtain converged results.

For Method I, T = 300 K and we used 158 nonuniformly distributed (see Ref.
[99] for details) mesh points on the imaginary Matsubara time axis. The mixed
product basis set was constructed using the interstitial energy cutoff 16.5 Ry and
the muffin-tin angular momentum cutoff LPB

max = 4.
For Method II, the G vector cutoff for the plane-wave basis was set to 9.6 A−1.

For the bare susceptibility calculations, all unoccupied states up to 3.2 Ry above the
Fermi energy were included.

For both methods, we ensured that the results are well converged with respect to
the computational parameters.

C Spin-density fluctuations

C.1 Small wavevector SDF

Let us first consider SDF for small wavevectors. Fig. 7.1 shows the transverse spectral
function (top) and the "bare" spectral function (bottom) for a fixed low magnitude
q as a function of the frequency for Fe, Co, and Ni calculated using Method I. For
all materials, A+−(q, ω) has a well defined peak at low energies (below 0.1 eV).

As we increase the number of 3d electrons moving from Fe to Co and then to Ni,
the peak moves to higher energies, its amplitude decreases, and its width increases.
This is in agreement with previous studies.[25] At higher energies (above 0.5 eV)
A+−(q, ω) is very small. On the other hand, A+−

0 (q, ω) is negligible at low energies
but it has a nontrivial structure at higher energies. In particular, we observe a broad
maximum at around 0.75 eV, 1.75 eV, and 2.5 eV for Ni, Co, and Fe, respectively.
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Figure 7.1: Small wavevector transverse SDF for Fe, Co, and Ni calculated using
Method I. Top: transverse spectral function. The inset shows the low-energy part of
the plot. Bottom: "bare" transverse spectral function. We used q = (0, 0, 0.125)2π/a.
Vertical axis units are ~2/eV. Well-defined spin wave excitations exist at low energies.

This maximum originates from single-particle Stoner excitations that correspond to
spin-flip electronic transitions between majority and minority bands. Our results
indicate that many-body correlations suppress these high-energy Stoner excitations
and instead produce low-energy collective spin wave modes that are responsible for
the A+−(q, ω) peaks. The nonzero width of the peaks indicates a finite lifetime of the
spin waves due to interaction with Stoner excitations (Landau damping). Indeed,
while it is not explicitly seen in the figure, the A+−

0 (q, ω) weight in the low energy
region increases with the number of 3d electrons and leads to the corresponding
increase of the width of the spin wave peaks.

An important feature of ferromagnetic systems in the absence of external mag-
netic field and spin-orbit coupling is the presence of a uniform (q = 0) zero frequency
Goldstone mode. It is well known, however, those numerical calculations based lin-
ear response TDDFT method produce a spurious finite frequency of the Goldstone
mode due to inconsistency between the calculations of the exchange-correlation ker-
nel and the Kohn-Sham susceptibility [25, 150, 109]. In particular, our calculations
yield the Goldstone mode frequency of 10-40 meV and, consequently, the energies
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Figure 7.2: Small wavevector longitudinal SDF for Fe, Co, and Ni calculated using
Method I. Top: longitudinal spectral function. Bottom: "bare" longitudinal spectral
function. We used q = (0, 0, 0.125)2π/a. Vertical axis units are ~2/eV. Low-q longitu-
dinal SDF are significantly smaller than the transverse one.

of low-q excitations (Fig. 7.1 top) are overestimated. In order to cure this prob-
lem, several correction schemes have been designed based on a modification of the
exchange-correlation kernel[25, 109] or Kohn-Sham susceptibility[150] such that the
zero-frequency Goldstone mode is recovered. While such a procedure is crucial for
spin wave dispersion studies, in this work we focus on BZ-integrated quantities at
much larger energy scales and, therefore, the presence of finite excitation gap of the
order of few tens meV has a small effect on these results.

The low q longitudinal spectral functions calculated using Method I is shown
in Fig. 7.2. For all materials Azz(q, ω) (Fig. 7.2 top) has a broad peak structure
that slowly decays with energy. The "bare" longitudinal spectral function (Fig. 7.2
bottom) has the majority of weight in the same energy range as Azz(q, ω) with only
a slightly lower amplitude. Since Azz0 (q, ω) describes electronic transitions within
the same spin channel, we can conclude that the low q longitudinal SDF originate
predominantly from the spin-conserving single-particle excitations. However, the
overall magnitude of Azz(q, ω) is substantially smaller from A+−(q, ω). This indicates
that for small q values the longitudinal SDF can be neglected and only transverse
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SDF play an important role.

C.2 Density of SDF

Let us now analyze the density of SDF. According to Eq. (B.40), this function in-
cludes SDF from the entire BZ. We focus on transverse SDF. Fig. 7.3 shows N+−(ω)
and N+−

0 (ω) for all considered materials calculated using Method I. The same quan-
tities but calculated using Method II are shown in Fig. 7.4. For all materials, both
methods produce similar N+−(ω) curves although some differences in linewidths can
be observed. In the case of N+−

0 (ω) overall, we also have a reasonable agreement
except for ω > 3.5 eV where we have some deviation. This is the energy region where
the adopted analytical continuation procedure may be inaccurate.
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Figure 7.3: On-site transverse SDF spectrum for Fe, Co, Ni calculated using Method
I. Top: density of transverse SDF. The inset shows the low energy part of the plot for
Fe (the red curve denoted as "full") compared with the partial-q density of transverse
SDF [see Eq. (B.41), different curves are denoted by the value of the Ωq/ΩBZ ratio].
Bottom: "bare" density of transverse SDF. Vertical axis units are ~2/eV. Transverse
SDF in 3d ferromagnets show a generic two-peak structure.

We find that most of the N+−(ω) weight exists for ω < 1 eV. On the other hand,
N+−

0 (ω) (that describes the spectrum of single-particle Stoner excitations) is much
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Figure 7.4: On-site transverse SDF spectrum for Fe, Co, Ni calculated using Method
II. Top: density of transverse SDF. Bottom: "bare" density of transverse SDF. Vertical
axis units are ~2/eV. Spectra calculated using method II are in a good agreement with
the results obtained using Method I.

smaller in this energy range but instead it extends to much higher energies with the
majority of the spectrum residing up to an energy of the order of the 3d electronic
bandwidth (Wel ' 5− 6 eV). Therefore, similarly as in the case of small q SDF, we
conclude that many-body interactions suppress the high-energy Stoner excitations
and transform them into low-energy collective modes.

For Fe, N+−(ω) has a two-peak structure with the smaller narrow low-energy
peak at 50 meV and the larger broad high-energy peak at 0.4 eV. While for Co
and Ni only the high-energy peak can be clearly seen, for both materials we can
also identify a low-energy shoulder at ∼ 50 meV. This indicates that the two-peak
structure is a generic feature for the 3d magnets. We emphasize that the shape of
N+−(ω) is, thus, distinctly different from the single-peak structure of the spectral
function. This indicates that transverse excitations with large wavevectors play an
important role. This point is quantitatively illustrated in the inset of Fig. 7.3 in the
case of Fe. Here, the partial-q density of transverse SDF, Eq. (B.41), is shown for
different values of the Ωq/ΩBZ ratio. As seen, for ω < 0.1 eV, SDF with a small
q that correspond to traditional spin wave excitations are dominant and they are
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responsible for the low-energy peak. For higher energies, however, SDF with a large
q are crucial. In particular, the large high-energy peak originates exclusively from
collective excitations with large q values that are localized in the real space. Analysis
of N+−

Ωq
(ω) for Co and Ni shows that the origin of the two-peak structure is similar

for all considered systems.
The above discussion indicates that in order to properly include SDF in calcula-

tions of ground state and thermodynamic properties, one needs to take into account
excitations for all q. Therefore, restriction to SDF from only limited parts of the
BZ (for instance the long wave approximation commonly used in spin fluctuation
theories or the DMFT single-site approximation) can lead to an inaccurate material
description and misleading results.

C.3 Local moment sum rule

In this section we analyze the local moment sum rule in Eq. (B.49). Fig. 7.5 shows
ma(ω) for Fe, Co, and Ni evaluated from both χαβ and χαβ0 .
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Figure 7.5: Local moment sum rule (see Eq. (7.5)) evaluated using Method I. Red,
blue, and green curves correspond to Fe, Co and Ni, respectively. Horizontal dashed
lines denote the LSDA value of the local moment. Full and dotted line denote ma(ω)
and ma,0(ω), respectively. Vertical axis units are µB. For all materials the sum rule is
satisfied by including SDF up to energy of the order of Wel.

The LSDA values of the local moment are shown as dashed horizontal lines. The
same plot but obtained using Method II is shown in Fig. 7.6. As seen, the sum
rule is almost perfectly satisfied in both sets of calculations. The shapes of the
ma(ω) curves are also very similar in both methods (even at high energies). This is
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Figure 7.6: Local moment sum rule (see Eq. (7.5)) evaluated using Method II. Red,
blue, and green curves correspond to Fe, Co and Ni, respectively. Horizontal dashed
lines denote the LSDA value of the local moment. Full and dotted line denote ma(ω)
and ma,0(ω), respectively. Vertical axis units are µB. Method II produce results similar
to Method I even at high energies.

especially true for the enhanced susceptibility. These results demonstrate that our
calculations maintain high level of accuracy up to very high energies. In particular,
we can conclude that different independent basis sets used in both methods are well
converged and analytical continuation is quite reliable.

Note that for Fe, ma(ω) becomes close to the LSDA local moment value already
at the energies of the order ofWel. On the other hand, for the "bare" SDF spectrum,
energies up to 13 eV are required to obtain a similar level of accuracy. In the case of
system with smaller moment (like Ni and Co) such convergence is obtained for lower
energies.

C.4 Number of SDF

Let us now consider the number of SDF. The number of transverse SDF calculated
using Method I is shown in Fig. 7.7 as a function of energy for different ferromagnetic
metals. As expected from the above analysis of N+−(ω), the most of transverse SDF
exist for ω < 1 eV with the high-energy peak providing the major contribution.
Nevertheless, for ω > 1 eV, nt(ω) still shows a sizable increase up to ω ∼ Wel. For
ω > Wel, only a slow increase of nt(ω) is observed that corresponds to excitations
involving semicore and/or high-energy unoccupied states.

The number of longitudinal SDF is shown in Fig. 7.7 (bottom). As seen, longitu-
dinal SDF exist at all energies with the majority of the spectrum being accumulated
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Figure 7.7: Energy dependence of the number of on-site transverse SDF for Fe, Co,
and Ni calculated using Method I. Top: number of on-site transverse SDF. Bottom:
"bare" number of on-site transverse SDF. Vertical axis units are ~2. The inset shows
the energy dependence of the adiabaticity parameter α defined as twice the ratio of
nl(ω) to nt(ω).

for ω < Wel. While at low energies (ω < 1 eV) nl(ω) << nt(ω), for ω ∼ Wel both
functions have the same order of magnitude. Indeed, the longitudinal SDF do not
disappear when local moments are present, but rather they are shifted to higher
energies. Thus, our study naturally addresses the validity of the adiabatic approxi-
mation[8] in spin dynamics which neglects the longitudinal spin dynamics. Quality
of this approximation can be characterized by the adiabaticity parameter α defined
as twice the ratio of nl(ω) to nt(ω). The energy dependence of this quantity is shown
in the inset of Fig. 7.7. For Fe and Co, the adiabatic criterion [8] is well fulfilled
(α < 0.1 up to ω ∼ 1 eV) so pure transversal spin dynamics is valid in this energy
region. We emphasize, however, that in our case of magnetic metals there is an
important difference with a spin dynamics in magnetic insulators due to a presence
of strong non spin wave transversal SDF of itinerant nature. In addition, for Ni
α is significantly larger and the adiabatic criterion is not fulfilled so the itinerant
longitudinal SDF play an important role in spin dynamics.



114 Chapter 7. Spin-density fluctuations in 3d ferromagnetic metals

We emphasize that for both transverse and longitudinal SDF, the majority of
excitations lie at energies much higher than those accessible from inelastic neutron
scattering experiments. Therefore, different experimental techniques (high-energy
spin resolved spectroscopies [49]) are required to probe the full spectrum. Both nt(ω)
and nl(ω) are continuous steadily increasing functions of energy and therefore, it is
not possible to rigorously introduce any energy cutoff when including SDF in studies
of metals. Thus, with a temperature increase for instance, more SDF are excited
and contribute to the magnetic properties of the itinerant metal. This feature is
in stark contrast with the traditional magnetic insulator picture where excitations
for energies above the spin wave spectrum do not exist and all SDF are excited at
corresponding temperatures.

C.5 Fluctuation-dissipation theorem

In this section we use FDT in order to evaluate SC and the related effective fluctuat-
ing moment. The calculations were made using Method I that allows for an efficient
evaluation of the infinite energy integrals.

Effective fluctuating moment meff(ω) provides a useful measure of the strength of
SDF at a given energy since it can be compared with local moment values in magnetic
materials. Note thatmeff(ω) is directly related to SC through Eqs. (B.47) and (B.48).
Since the main contribution to SC arises from the spin zero-point motion SDF (except
when ω < 1/β where thermal SDF are important), the energy dependence of mt,l

eff(ω)
follows roughly the square root of nt,l(ω). Therefore, meff(ω) is an ever increasing
smooth function of energy. For this reason, it is sufficient to provide meff(ω) at
several characteristic energy scales, see Table 7.1. Here, the values of meff(ω) as
well as mt

eff(ω) and ml
eff(ω) calculated both from χαβ and χαβ0 using Method I are

shown. At low energies (ω ' 0.1 eV), meff(ω) originates mainly from traditional
long-wavelength spin waves (low-energy peak in top panel of Fig. 7.3) and it is much
smaller than m. For ω ' 1 eV, the main part of the SDF spectrum that consists
of localized in real space large q collective transverse excitations (high-energy peak
in top panel of Fig. 7.3) is also included and meff(ω) becomes comparable to m. A
further energy increase up to ω ' Wel includes all excitations within the 3d band
and meff(ω) is increased by 20-70%. A large part of this enhancement originates from
longitudinal SDF. For higher energies, only a slow increase of meff(ω) is observed.
However, this accumulates to a significant contribution for ω =∞.

In Fig. 7.8 we plotmeff ≡ meff(ω =∞) andmeff,0 ≡ meff,0(ω =∞) as a function of
the number of 3d electrons. In addition to the considered materials, we also included
the data for 3d paramagnetic metals from Ref. [202]. Interestingly, both meff and
meff,0 seem not to be affected by the presence of local moments, but they are rather
determined by the 3d band population. Indeed, the dependence of both quantities
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Table 7.1: Effective fluctuating moment (µB) calculated using Method I at different
energies for all considered materials. Note that meff(ω) does not contain contribution
from the equilibrium local moment. The zero values correspond to the calculated values
that are less than 0.1 µB.

ω (eV) 0.1 1 5 12 ∞
Fe: mt

eff(ω) 0.8 2.2 2.7 2.8 3.1
mt

eff,0(ω) 0.0 0.3 1.8 2.2 2.6
ml

eff(ω) 0.1 0.5 1.2 1.3 1.6
ml

eff,0(ω) 0.0 0.2 1.1 1.2 1.5
meff(ω) 0.8 2.3 2.9 3.1 3.5
meff,0(ω) 0.0 0.4 2.1 2.5 3.1

Co: mt
eff(ω) 0.2 1.5 2.1 2.3 2.7

mt
eff,0(ω) 0.0 0.3 1.7 2.0 2.4

ml
eff(ω) 0.0 0.3 1.0 1.2 1.5

ml
eff,0(ω) 0.1 0.3 1.0 1.2 1.5

meff(ω) 0.2 1.6 2.3 2.6 3.1
meff,0(ω) 0.1 0.5 2.0 2.3 2.9

Ni: mt
eff(ω) 0.1 0.9 1.6 1.8 2.2

mt
eff,0(ω) 0.0 0.5 1.3 1.6 2.1

ml
eff(ω) 0.0 0.4 0.9 1.1 1.5

ml
eff,0(ω) 0.1 0.3 0.9 1.1 1.4

meff(ω) 0.1 1.0 1.8 2.1 2.7
meff,0(ω) 0.1 0.6 1.6 1.9 2.5

on the 3d electron number is reminiscent of the Slater Pauling curve. Below the
half-filling, their values increase with the 3d electron number. Above the half-filling,
an opposite trend is observed. This behavior follows from the well-known universal
dependence of the imaginary part of a "bare" response function on the electronic
population which shows maximum for the Fermi level in the middle of the band.
The enhanced susceptibility shows the same qualitative structure with additional
enhancement that is the strongest close to half-filling. Note that similar curve was
obtained for magnetic adatoms on metallic surfaces [78].

In the inset of Fig. 7.8, we show meff as a function of the number of 3d carriers
as n3d = min

(
ne3d, n

h
3d

)
. Here, ne3d and nh3d is the number of 3d electrons and holes,

respectively. We find that meff shows approximately a linear dependence on n3d. The
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Figure 7.8: The full effective fluctuating magnetic moment (meff) calculated using
Method I as a function of the the number of 3d electrons (red). Note that meff does
not contain contribution from the equilibrium local moment. The blue curve denotes
the "bare" meff evaluated using the Kohn-Sham susceptibility. The inset shows meff as
a function of n3d = min

(
ne3d, n

h
3d

)
, where ne3d and nh3d is the number of 3d electrons

and holes, respectively. The line in the inset is the linear fit of the data. The effective
fluctuating moment is independent on the presence of local moment and is determined
solely by the 3d band population.

fitting to a linear function results in the following empirical formula:

meff ≈ 0.4n3d + 1.8. (C.1)

Note that the same equation was obtained in Ref. [202] using only 3d param-
agnets. This indicates that every 3d electron or hole contributes approximately the
moment of 0.4µB to meff. The nonzero intercept corresponds to meff for a completely
filled or completely empty 3d band. It originates from electronic transitions involv-
ing semicore levels and high-energy unoccupied states. We are not familiar with any
theoretical or experimental discussion of such large contribution from semicore and
high-energy states.

While meff is a useful quantity that characterizes the overall strength of SDF, it is
the difference between m2

eff and m2
eff,0 that determines the corresponding correlation

energy (see, for instance, the recent review Ref. [36]). Indeed, the SDF correlation
energy can be roughly estimated as a magnetic energy required to form the moment
∆m =

√
m2

eff −m2
eff,0. It follows then from Fig. 7.8 that the SDF correlation en-

ergy is the largest close to the half-filling where the many-body enhancement is the
strongest. In particular, ∆m is equal to 1.7 µB, 1.1 µB, and 0.9 µB for Fe, Co, and Ni,
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Figure 7.9: Difference between the number and the "bare" number of transverse
(top) and longitudinal (bottom) SDF calculated using Method I. Vertical axis units are
~2. Transverse SDF up to energy of the order of Wel should be explicitly included in
electronic structure calculations.

respectively. Clearly, ∆m is comparable to m for all 3d ferromagnets and, therefore,
SDF should be included in electronic structure calculations for these materials. For
Ni SDF are expected to be particularly important since the ∆m/m ratio is roughly
twice as large as for Fe or Co. Note that for early 3d paramagnets SDF should have
even stronger effect on materials properties since the local moment is zero.[202] In
order to understand the energy distribution of SDF that contribute to the correlation
energy, in Fig. 7.9 we plotted the energy dependence of ∆nt,l(ω) = nt,l(ω) − nt,l0 (ω)
(this quantity correspond to the ∆m2 at T = 0). As seen, for all 3d ferromagnets
∆nt(ω) converges for ω ∼ Wel and, therefore, all SDF up to this energy should be
included on equal footing in electronic structure calculations of these materials. Note
that ∆nl(ω) << ∆nt(ω) so the contribution of longitudinal SDF to the correlations
energy can be neglected.
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D Summary
SDF in 3d ferromagnetic metals were analyzed for all spatial and time scales using
first principles electronic structure calculations of the dynamic spin susceptibility
tensor. The accuracy of the results were carefully tested by using two independent
calculation methods and ensuring that the local moment sum rule is satisfied both
for enhanced and bare susceptibilities.

We demonstrated that the SDF are spread continuously over the entire BZ as
well as the wide energy range extending far above the 3d bandwidth. Thus, no
well-defined wavevector and frequency cutoffs (as often assumed) can be reliably
introduced in such materials. Since the majority of excitations lie at energies much
higher than those accessible by inelastic neutron scattering measurements, different
experimental techniques, like spin-polarized high-energy spectroscopies, are required
to probe the full SDF spectrum.

It was shown that the on-site SDF spectrum of 3d ferromagnets has a generic
structure that consists of two main constituents. One, at low energies (for instance,
for Fe at ∼ 50 meV) is a minor contribution due to traditional low-q spin wave
excitations, while the second, much larger high-energy (for instance, for Fe at ∼
0.4 eV) component, corresponds to localized in real space large wavevector spin
excitations. In addition, our analysis of different polarizations of the susceptibility
tensor demonstrated that for Fe and Co the adiabatic approximation is well justified
and spin dynamics in these materials has nearly pure transversal character at least
up to 1 eV energy range. On the other hand, for Ni longitudinal SDF are shown to
be more significant.

Using FDT, spin correlator, a major quantity characterizing SDF in metals, has
been carefully evaluated by using the complete spectrum of SDF. The related effective
fluctuating moment was found to be of the order of several Bohr magnetons with a
significant generic contribution (∼ 1.8µB) from excitations that involve semicore and
high-energy states. A unique linear dependence of the effective fluctuating moment
on the electronic population has been determined. Overall, our results indicate that
the value of the effective fluctuating moment does not depend on the presence of
equilibrium local moments.

Finally, we estimated the SDF correlation energy for all 3d ferromagnets and
found that it it the largest close to half-filling. It was shown that for all materials
this correlation energy is comparable to the mean-field magnetic energy and, thus,
it should be included in electronic structure calculations. We demonstrated that
all excitations below energy of the order of 3d electronic bandwidth are equally
important and should be included on the same footing without usage of any long
wavelength or atomistic approximations.
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Chapter 8

Summary and outlook

The mainline of this thesis is the investigation of correlated electron systems driven
out of equilibrium by ac-electric fields using the NE-DMFT approach. Tuning the
external electric field in a wide range of frequency, intensity, polarization and pulse
shape together with electronic correlations gives us access to a number of new phe-
nomena.

Also, we discussed the nature of magnetic excitations in complex itinerant mag-
nets using time-dependent density functional theory.

Thus, we summarize the results below:

• Dynamical band flipping with repulsion-to-attraction transition in
correlated electron systems

We calculate the time evolution of the isolated Hubbard model on 2D square
lattice driven by the ac field using the time-dependent IPT. In chapter 3 we show
specific conditions for diagonal and circular ac field polarisation wich flips the band
structure. This leads to a negative effective temperature and inverted momentum
distribution. These results coincide with previous investigations in hypercubic lattice
[180]. As a result, the interelectron interaction is effectively converted from repulsive
to attractive. This has been numerically confirmed by an increase of the double
occupancy beyond the noninteracting value and the total energy above its origin.

• Strongly correlated Kramers-Henneberger solid
In chapter 4 we have brought the strong-field concepts developed for atomic sys-

tems in the context of strongly correlated solids. Altering the effective potential for
the electron motion with intense pulse light we convert the system from a metal-
lic state to the state with a Mott gap using the IPT approach. The dynamics in
time-domain is resolved via harmonic generation spectroscopy, which encodes the
formation of the Mott gap, excitation dynamics across it, and the establishment
of the insulating state. Our findings demonstrate the possibility of manipulating
phases of correlated systems with strong, non-resonant fields in a manner that is
extremely robust with respect to the specific frequency of the driving field, with the
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time-domain mechanisms opening a new regime of "beyond-Floquet" engineering of
strongly correlated systems.

• Nonequilibrium-induced Lifshitz transitions
In chapter 5, we have introduced a time-dependent field-induced topological tran-

sition of the Fermi surface for materials with strong electronic correlations. To do
so we apply time-dependent IPT to one-orbital Hubbard model taking into account
the nearest and next neighbor’s hoppings driven by high-frequency ac field.

As well we discovered the transient increase of the van Hove singularity and in
presents of next neighbor’s hopping appearing dynamical repulsion of the van Hove
singularity from the lower Hubbard band.

• Multi-orbital extension of FLEX self-energy
We have discussed in the chapter 6 different implementation schemes of orbital

degrees of freedom to the NE-DMFT+FLEX approach. Using the multi-orbital ex-
tension of NE-DMFT gives us to rise to rich and more complex physics that cannot
be assigned to a single-band representation. We compared two-orbital FLEX self-
energy approximation in the framework of DMFT with another weak-coupling im-
purity solvers in equilibrium. Thus FLEX gives better agreement with QMC result,
in contrast to a one-orbital case where SOPT the best for half-filling [65].

• Spin-density fluctuations in 3d ferromagnetic metals
Finally to gain an insight into the nature of magnetic excitations in complex itin-

erant magnets (Fe, Co, Ni) in the chapter 7 we have applied linear response in the
framework of time-dependent density functional theory. SDF in 3d ferromagnetic
metals were analyzed. The accuracy of the results was tested by applying two inde-
pendent calculation methods and establish that the sum rule for the local moment
is satisfied both for bare and enhanced susceptibilities. We demonstrated that the
SDF are spread continuously over the entire Brillouin zone.

In pump-probe spectroscopy experiments, one usually uses a pulsed pump light
with a finite duration. In this work, we carry out calculations for the one-orbital
Hubbard model taking into account the pulsed form of the ac field. Generally in
strongly correlated materials, several orbitals are falling into the low-energy region
around the Fermi level. A description of these materials requires an extension of
the Hubbard model to the multi-orbital one. Thus we believe the development of
real-time multi-orbital DMFT+FLEX with avoiding degenerate orbitals and density-
density type interaction which was studied in equilibrium [102, 144] will significantly
extend the field of applicability of the model.
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