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Chapter 1

Introduction

There could not be a better way to start any text concerned with networks than to borrow the follo-
wing very first sentence from a beautiful survey over the vast field of network science:

“Networks are everywhere.”

NEWMAN, BARABÁSI, and WATTS [76]

The structural features of clearly distinguished agents, connections between them, and the ability
to build large entities from small parts – modularity – do, indeed, occur abundantly. The more one
investigates, the more examples can be thought of that have a natural interpretation as a network.
In many scientific fields or fields of application one encounters networks in all sizes, shapes, forms,
and types. In biology we find highly connected sets of neurons that make up a specific region of
the brain, enormous protein interaction networks, food webs, and metabolic systems. On the other
hand, we have rather sparsely connected social networks that can be vast or small in size. These
have additional applications for the investigation of spreading of diseases. Furthermore, think of
small systems of competing species in ecology or of power grids, electrical circuits, distribution net-
works, and traffic flow in engineering and economy. Another prominent field is that of computer
science, where one encounters networks like the Internet (and closely related the World Wide Web
and the Internet of Things), artificial neural networks in machine learning, or paths between lo-
cations in navigation systems. But also not so obvious examples can be thought of. Information
or knowledge can be organized in a network to indicate connections between certain aspects (one
might remember so-called Mind-Maps from school). Furthermore, everyday objects like fishing nets,
weaving patterns in textiles, or spreading cracks in car windshields exhibit comparable structural fe-
atures.

All these applications – and many others that have not been mentioned here – share similar
structural properties as having a collection of cells or nodes (e.g. neurons, locations, humans) that
are connected or communicate (e.g. cell connections, roads, communication between humans). The
abundance of applications with obvious or not so obvious network structure calls for an investiga-
tion of the structural feature itself: What is a network? What properties do networks have? What
implications can be deduced from network structure? As abstraction is one of its driving principles,
mathematical investigation appears to be a natural choice to tackle these questions. The mathema-
tical research of networks takes place in just as many different fields as their applications. The most
obvious one, however, is graph theory. Dating back to Leonhard Euler and his famous Seven Bridges
of Königsberg in 1736, this branch of mathematics is concerned with the investigation of mathema-
tical objects abstractly describing network structure. A graph is used to depict such a structure in a
natural manner: the agents of the network are represented by nodes and their connections by ed-
ges. But, just as the areas of applications which exhibit networks are manifold, so are the questions
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Figure 1.1: The communication of two humans depicted as a network containing two cells and one
interaction.

one might ask in a given scenario: Does the network exhibit additional structure or regularity? Are
there regions in the network of particular interested (e.g. clusters of all-to-all connected nodes, cells
with many connections compared to other cells which are called hubs)? How do the properties of
the network change, when it is varied (e.g. removal or addition of cells or connections)? What is a
shortest path between two cells? How can technical networks be kept under control? Can we un-
derstand properties or behavior of the network from smaller parts of it? How is the overall behavior
impacted by the network structure when the behavior of each node is influenced by that of the cells
it receives inputs from? In effect, while graph theory focuses on investigating the structural pro-
perties of a network itself, many other fields of mathematics encounter the problem to determine
implications of such a structure. Examples include algebra, stochastics, statisctics, control theory,
and dynamical systems.

Here, we focus on the latter of these fields: network dynamical systems. In the investigation
for example of stability of power grids, spreading of diseases, brain activity, or interactions of cells
one deals with time dependent networks. Its cells are evolving agents whose behavior is influen-
ced by that of those cells that provide an input according to the interaction structure. Oftentimes,
the agents are modeled by coupled nonlinear maps or differential equations, where the structure of
couplings is given by the network – we also refer to these systems as coupled cell systems. Other for-
malisms to represent more general types of dynamics are possible as well (see Chapter 2 for a brief
survey). Network dynamical systems exhibit a remarkably rich spectrum of dynamical features. In-
terestingly, knowledge of the governing principles of the dynamics of one cell and of the nature of
the interactions between two nodes is in general not sufficient to understand the dynamics of the
entire network. The global structure has a major effect as well. In particular, even if the dynamics
of individual cells and their interactions ought to be relatively simple and well understood, the net-
work structure may still be the source of remarkable and unexpected dynamics. Note for example
the challenges that interconnectedness of power grids pose in the prevention of blackouts. Some
of the most staggering examples are synchronization and pattern formation. These terms describe
collective behavior of all or some cells of the network. It is observed in social cooperation, coupled la-
sers, simultaneous firing of neurons, cardiac pacemaker cells, seemingly organized movement in fish
schools and bird flocks, or synchronized flashing of fireflies (O’KEEFFE, HONG, and STROGATZ [86] and
PIKOVSKIJ, ROSENBLUM, and KURTHS [89]) and many others. If there are multiple subsets of synchroni-
zed cells, interesting patterns may arise that are sometimes referred to as patterns of synchrony (e.g.
GOLUBITSKY and STEWART [51, 53], GOLUBITSKY, STEWART, and TÖRÖK [59], and STEWART, GOLUBITSKY,
and PIVATO [108]). Other generalizations of synchronization, most notably in networks of oscillators,
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Figure 1.2: A 3-cell non-homogeneous directed circle.

are phase-locked dynamics (ERMENTROUT [33] and GLASS and MACKEY [41]), in which the nodes oscil-
late with the same frequency but out of synchrony by a fixed value, and so-called chimeras (ABRAMS

and STROGATZ [1] and KURAMOTO and BATTOGTOKH [70]), describing localized synchronization of fre-
quencies.

Due to its richness in interesting features, the mathematical analysis of network dynamical sys-
tems is highly challenging. The modern theory of dynamical systems focuses on qualitative features
of dynamics (GUCKENHEIMER and HOLMES [60]). For example synchrony and the information which
cells synchronize is a qualitative property of a given network. The precise state at which these cells
synchronize, however, is not. On a more technical note, qualitative dynamical properties remain
under suitable changes of coordinates. The precise meaning of suitability depends on the context.
For example in network dynamics one considers coordinate changes that respect the underlying
network structure. The standard methodology to detect, describe, and analyze qualitative dyna-
mical features, however, often fails to distinguish between a network dynamical system and one
without such structure. For example, in order to compute suitable changes of coordinates, one has
to consider concatenations of vector fields which govern the right hand side of a system of ordinary
differential equations. Vector fields that respect the simple network structure in Figure 1.2 are of the
form

F (x) =

f1(x1, x3)

f2(x2, x1)

f3(x3, x2)

 . (1.1)

However, concatenating F and G of this form yields a vector field

H(x) =

h1(x1, x3, x2)

h2(x2, x1, x3)

h3(x3, x2, x1)

 =

f1(g1(x1, x3), g3(x3, x2))

f2(g2(x2, x1), g1(x1, x3))

f3(g3(x3, x2), g2(x2, x1))

 ,

which is no longer of the form (1.1). Therefore, it is a serious challenge, to describe the coordinate
changes that leave the network structure intact (GOLUBITSKY and STEWART [56]). From a broader per-
spective, one of the main reasons lays in the fact that network systems behave vastly different from
dynamical systems without additional structure. Characteristics, like synchrony, partial synchrony,
et cetera are unheard of in general dynamical systems. On the other hand, as they are inherent to
the network setting, these features are precisely what one is interested in when investigating net-
work dynamical systems. In particular, one tries to determine what kind of dynamics is dictated
by a specific network structure. Hence, even though the techniques are applicable in the network
context, in order to take the underlying structure into account, they have to be adapted first.

In recent years, numerous approaches and formalisms have been developed to analyze network
dynamical system while addressing the aforementioned issues. Special care has to be taken on how
to encode network structure in the theory of dynamical systems, which also allows for distinction of
the approaches. Furthermore, some formalisms are only suitable or most powerful in certain classes
of networks so that some of the approaches complement each other. The first notable theory is the
algebraically inspired groupoid formalism developed by GOLUBITSKY, STEWART et al. [53, 59, 108] and
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in an essentially equivalent combinatorial definition by FIELD [35]. Among other things, it allows to
characterize all possible configurations of synchrony in the network in terms of so-called balanced
colorings. The introduction of the category-theoretic tool of graph fibrations and their implications
for dynamical systems (see DEVILLE and LERMAN [24, 25, 26]) allowed for the development of a theory
to interpret networks as algebraic structures – semigroup networks – that have a direct connection
to symmetry, so-called hidden symmetry (NIJHOLT and RINK [77], NIJHOLT, RINK, and SANDERS [78, 79],
and RINK and SANDERS [90, 91, 92]). This theory applies to the class of networks with asymmetric
inputs – all incoming arrows into one cell are of different types – and most results focus on homo-
geneous networks – all cells are of the same type. More recently open systems (LERMAN [72], LERMAN

and SPIVAK [73], and SCHULTZ, SPIVAK, and VASILAKOPOULOU [96] only to name a few references) and
asynchronous networks (BICK and FIELD [19, 20, 21]) have been introduced to model networks in more
complex applications especially in engineering. In Chapter 2 we provide a brief survey over some of
these approaches.

Contents and contribution of the thesis

In this thesis we focus mainly on the formalism of homogeneous coupled cell systems with asym-
metric inputs. Our results emerge from the investigation of bifurcations in the context of networks.
One is interested in the determination of changes of the qualitative behavior of a network, if the dy-
namical system itself changes without varying the network structure, for example due to parameter
dependence. Oftentimes, that means analyzing changes in the topology of the set of steady state
or periodic solutions near a fully synchronous solution that changes its stability properties, so-called
synchrony breaking bifurcations. We investigate such bifurcations that are dictated by the network
structure and independent of the specific dynamical system. These are referred to as generic bi-
furcations, which is the main theme of this thesis. The research literature in the field is extensive.
Investigations range from small examples over big networks, to qualitative statements for entire
classes of networks: e.g. AGUIAR et al. [8], ANTONELI, DIAS, and PAIVA [14], DIAS and LAMB [27], ELM-
HIRST and GOLUBITSKY [32], GANDHI et al. [40], GOLUBITSKY and LAUTERBACH [42], GOLUBITSKY, PIVATO,
and STEWART [45], GOLUBITSKY and POSTLETHWAITE [46], GOLUBITSKY, STEWART, and SCHAEFFER [58],
KAMEI [65, 66], LEITE and GOLUBITSKY [71], NIJHOLT and RINK [77], RINK and SANDERS [90, 91], SOARES

[98, 99], and STEWART and GOLUBITSKY [107], without claiming completeness of this list. The main
results in this thesis are concerned with three major topics, that we briefly introduce here in the up-
coming sections: networks and symmetry, dimension reduction, and so-called feedforward networks.
The main part, on the other hand, is separated into only two main parts. We outline its organization
and how the three major topics are divided afterwards.

Generalized symmetry

Symmetries arise frequently in nature and applications. In dynamical systems, symmetries impose
restrictions on the governing equations leading to numerous staggering phenomena such as pat-
tern formation or synchronization of behavior. Just as in the case of networks, the symmetries of
a dynamical system provide the underlying structure that dictates this unexpected behavior. More
technically speaking, they may lead to dynamically invariant subspaces, spectral degeneracies, com-
plicated bifurcations, and many more. Research in this area – which is called equivariant dynamics
– has been highly active in the last decades and lots of remarkable results have been established.
Background and more details on equivariant dynamics can be found, for example, in CHOSSAT and
LAUTERBACH [23], FIELD [36], GOLUBITSKY and SCHAEFFER [49], and GOLUBITSKY, STEWART, and SCHAEF-
FER [58] with no claim of this list being complete. The symmetries in question, throughout all these
results, need to have an underlying structure themselves. In particular, they are required to form a
group, most often a finite one or a compact Lie group. That is the set of symmetries needs to be clo-
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sed under concatenations and, more importantly, all symmetries need to be invertible. This allows
for the introduction of algebraic methods like character theory into dynamical systems.

On the other hand, the rapid development in the field of network dynamical systems has called
for less restrictive classes of symmetries. The unusual phenomena exhibited in network dynamics
that were mentioned before like unexpected and complex bifurcation behavior due to eigenvalues
with high multiplicities and high-dimensional center subspaces resemble those in equivariant dy-
namics. This may come as no surprise, if the network itself exhibits symmetry. Much research,
especially in the early days of network dynamics, explores these effects, as more general networks
seemed out of reach (see for example ASHWIN and SWIFT [17], GOLUBITSKY, LUSS, and STROGATZ [43],
and GOLUBITSKY et al. [57]). However, the observation is not limited to symmetric networks. As a
matter of fact, in some of the mentioned approaches to network dynamics one encounters dynami-
cal systems that are equivariant with respect to linear symmetries as well. These, however, often do
not form a group but less restrictive structures such as a groupoid in the groupoid formalism and a
semigroup or a monoid in semigroup networks.

In this thesis we focus almost exclusively on homogeneous networks with asymmetric inputs.
Under mild additional assumptions, these can be regarded as the restriction of equivariant sys-
tems to some invariant subspace – more precisely to a subspace of partially synchronous states (see
NIJHOLT, RINK, and SANDERS [78] and RINK and SANDERS [90, 91]). After recapping the formalism in
Chapter 3 and some background on representation theory of monoids in Chapter 4, we thoroughly
investigate generic steady state bifurcations in homogeneous coupled cell systems in the remain-
der of Part II. Numerous results on how to exploit symmetry to analyze the dynamics are known:
Lyapunov-Schmidt reduction (RINK and SANDERS [91]), normal forms (RINK and SANDERS [92]), center
manifold reduction (NIJHOLT, RINK, and SANDERS [79]), or determination of bifurcations in the exten-
ded system (NIJHOLT, RINK, and SANDERS [80]). These techniques provide a step-by-step machinery
to determine generic bifurcations in the network. In particular, using Lyapunov-Schmidt and center
manifold reduction, it is standard to find branching solutions (steady state or periodic) within the
center manifold, which is a graph over the center subspace (GUCKENHEIMER and HOLMES [60]). This
is referred to as the bifurcation occurring ‘along the center subspace’.

In Chapters 5 and 6, we recapitulate our results from [97] on generic steady-state bifurcations in
1-parameter families of smooth vector fields that are equivariant with respect to the representation
of a monoid and their implications for homogeneous coupled cell systems. Until this publication,
one important step could not be completely clarified, namely the determination of generic center
subspaces of the equivariant system. In a general 1-parameter family – without any symmetry – the
kernel of the linearization is generically one-dimensional. Hence, a generic steady state bifurcation
occurs along a one-dimensional subspace. In the context of group equivariant dynamics the pic-
ture is more complicated. Symmetry may dictate high multiplicities of eigenvalues leading to high-
dimensional center subspaces. However, it is well-known (see for example the mentioned literature
on equivariant dynamics) that generic steady state bifurcations occur along a so-called absolutely
irreducible subrepresentation. This term refers to a subspace that is invariant under the symme-
tries and does not contain any further nontrivial invariant subspaces while fulfilling an additional
algebraic condition.1

A similar result was only known in a special case for 1-parameter families of systems that are
monoid equivariant. A monoid representation decomposes as a direct sum of subrepresentations
that are indecomposable, meaning they cannot be decomposed any further. Just as in the group
case they can be of three types depending on their algebraic properties. RINK and SANDERS [91] show
that whenever the representation decomposes into indecomposable subrepresentations that are
pairwise nonisomorphic, steady state bifurcations in 1-parameter families generically occur along
an absolutely indecomposable subrepresentation. This is a generalization of the corresponding sta-

1The set of linear maps on this subspace, that commute with the symmetries – its endomorphisms – forms a division
algebra which is isomorphic to the real numbers.
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tement in the group symmetric context. It is already anticipated in their paper that this result holds
in full generality. However, no proof is given. We were able to close this gap by proving

Theorem 1.1 (Theorem 5.11). Steady state bifurcations in 1-parameter families of systems that are equi-
variant with respect to a finite-dimensional representation of a monoid generically occur along an
absolutely indecomposable subrepresentation.

This is the generalization of the aforementioned result in the group context to monoid representati-
ons and can be applied to any monoid equivariant bifurcation problem independent of the network
context.

Shortly after that publication, a further generalization to generic bifurcations in l-parameter fa-
milies of monoid equivariant vector fields has been provided (see the preprint [77]). The authors
address the same question from a more general point of view by determining which configurations
of invariant subrepresentations generically occur as generalized kernel or as center subspace. The
result of our theorem is covered as a special case. The proof, however, is a lot more involved. It is
presented in a highly algebraic setting and makes use of algebraic geometry as well as noncommu-
tative algebra – most importantly in the form of Wedderburn’s structure theorem. Our theorem and
in particular its proof, on the other hand, are presented from the perspective of the application to
homogeneous coupled cell networks. Therefore, it does not provide the result in more generality. It
may, however, serve as lighter introduction into the theory of monoid representations coming from
network dynamical systems.

Networks with high-dimensional internal dynamics

A major issue in determining generic bifurcations in a given network is the computational complex-
ity stemming from high-dimensional phase spaces. The total phase space – i.e. the phase space
of the entire network dynamical system – has spatial components according to the internal phase
space of each cell of the network. Hence, even if the network structure is sufficiently simple and
contains only a few cells (for example the 3-cell network in Figure 1.3), the dimension of the total
phase space can be large. More precisely it is the sum of the dimensions of the internal phase spa-
ces (in the example, if the internal phase space of each cell is 5-dimensional, the total phase space is
15-dimensional). This makes the classification of bifurcations for a given network difficult and com-
putationally costly. In order to reduce this complexity to its minimum one often restricts to the case
where the internal phase space is one-dimensional. This, however, in general means a restriction of
generality so that additional work is required either motivating this restriction or proving that it is
not a restriction after all in a specific setting (see for example LEITE and GOLUBITSKY [71] and RINK and
SANDERS [91]).

In the following example we illustrate in a very simple network an effect high-dimensional inter-
nal dynamics may have on the dynamical analysis compared to one-dimensional internal dynamics.

123

Figure 1.3: A 3-cell homogeneous feedforward chain.

Example 1.1. Consider the 3-cell homogeneous feedforward chain in Figure 1.3. Its dynamics is gover-
ned by the system of ordinary differential equations

v̇1 = f(v1, v2)

v̇2 = f(v2, v3)

v̇3 = f(v3, v3),

10



where vi ∈ V is the state variable of cell i in the internal phase space V . In order to investigate dyn-
amical phenomena – in particular stability – one analyzes spectral properties of linearizations of the
right hand side of such systems. Especially for the investigation of generic steady state bifurcations
one is interested in spectral properties of a generic linear right hand side – that is, a linear admissible
map –, which is of the form

L =

A B 0

0 A B

0 0 A+B

 ,

where A,B ∈ gl(V ) are generic linear maps on V . The spectrum of L is made up of the eigenva-
lues of A and those of A + B, where the eigenvalues of A occur with algebraic multiplicity 2, even
though they are generically simple as eigenvalues of A. This spectral degeneracy – a double eigen-
value is unheard of in a generic linear map without any additional structure – is independent of the
dimension of the underlying space V .

However, the investigation of generic steady state bifurcations also relies on information about
the generalized eigenspaces of the linearization at a bifurcation point. Let us, for simplicity, assume
that A has an eigenvalue 0. In the case V = R this is equivalent to the assumption A = 0. In that
case we also have B 6= 0 generically. The generalized eigenspace of the eigenvalue 0 is spanned by
an eigenvector and a generalized eigenvector as

E0 =

〈1

0

0

 ,

 0
1
B

0

〉 .
If, on the other hand, V = Rd for some d > 1, the eigenvalue 0 of A is generically simple. Hence,

there is an eigenvector v ∈ V such thatAv = 0 and no other (generalized) eigenvector. Furthermore,
generically Bv will not be a scalar multiple of v so that we find an element w ∈ V with

Aw = (1V −B) v.

Then the generalized eigenspace of L is spanned by an eigenvector with corresponding generalized
eigenvector

E0 =

〈v0
0

 ,

wv
0

〉 .
This structure significantly differs from the one in the case V = R. The generalized eigenvector
depends not only on B but also on A. As A and B do not necessarily commute, 0

B−1v

0


is in general not a generalized eigenvector. Summarizing, already this simple 3-cell feedforward
chain produces significantly different spectral properties when the internal dynamics is high-
dimensional. 4

In Chapter 7 we investigate the effects of high-dimensional internal dynamics on generic ste-
ady state bifurcations in homogeneous coupled cell systems, by comparing them to networks with
one-dimensional internal dynamics. We show that issues, such as the one illustrated in Example 1.1,
only have a ‘controllable’ qualitative impact on generic steady state bifurcations in homogeneous
coupled cell systems. Using representation theory and the results from Chapter 5, we show that
critical eigenspaces – center subspaces or kernels – in bifurcation analysis of networks with high-
dimensional internal dynamics are in some sense the same as the ones we encounter in the one-
dimensional case. In Theorem 7.12, we prove that the decomposition of the monoid representation
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related to the network structure with high-dimensional internal dynamics is isomorphic to multiple
copies of the decomposition one obtains for the one-dimensional internal dynamics case. In par-
ticular, this allows for dimension-reduction. Then we investigate implications for possible center
subspaces in steady state or Hopf bifurcation analysis. Together with the knowledge about gene-
ric center subspaces in l-parameter families from NIJHOLT and RINK [77] this allows for statements
about generic bifurcations in the high-dimensional case in comparison to the one-dimensional case.
In Theorems 7.17, 7.18 and 7.22 to 7.24 we formalize these results, by proving that qualitative proper-
ties in 1-parameter bifurcations are the same. In l-parameter bifurcations, however, the situation
can be more complex. Nevertheless, there is a smallest dimension of internal dynamics in which all
generic bifurcations that are inherent to the network can be observed. The contents of Chapter 7
stem from the preprint [83].

We would like to mention that in the very recent preprint GANDHI et al. [40] a similar strategy
to address steady state bifurcations in networks with high-dimensional internal dynamics is em-
ployed. Therein, 1- and 2-parameter bifurcations in fully inhomogeneous networks – all cells are
of pairwise different types – are classified in the one-dimensional case. Then it is shown that this
classification also holds true for networks with high-dimensional internal dynamics. The reason for
this, however, is entirely different. As a matter of fact, the class of fully inhomogeneous networks
allows to interpret a cell with d-dimensional internal dynamics as d cells of different types with one-
dimensional internal dynamics that are all-to-all coupled. The classification of bifurcations in the
one-dimensional case then applies directly to high-dimensional case as well.

Feedforward networks

A common approach to networks is the investigation of additional structure of the network itself.
A prominent example is that of feedforward structure. Broadly speaking a network exhibits feedfor-
ward structure if information only flows in one direction. Information one cell emits cannot become
an input into that same cell, not even indirectly, i.e. there are no feedback effects. A simple network
of this type can always be arranged in way that all arrows approximately point in the same direction,
which provides a nice visual interpretation. The rather simple structure has the convenient effect,
that it induces a natural partition of the cells: the first part receives no inputs from anywhere else in
the network, the second part receives inputs only from the first and so on. This greatly simplifies the
investigation of such networks both in mathematical analysis due to technical simplifications but
also conceptually as it allows to study the network inductively. While feedforward structure and
similar weaker properties are abundant in networks – as a matter of fact, in any network, that is
not (indirectly) all-to-all coupled, we can find feedforward structure between parts of the network
–, they are also a prominent feature in deep learning via artificial neural networks. Therein infor-
mation of some type is passed to the so-called input layer. From there it is passed to and processed
by cells in one or more so-called hidden layers until some output is generated by the so-called out-
put layer. For more information and historical background on this (see SCHMIDHUBER [95] and the
extensive lists of references therein).

The network of feedforward type that was first considered in the network dynamical systems
literature is the 3-cell homogeneous network

(see ELMHIRST and GOLUBITSKY [32], GOLUBITSKY and POSTLETHWAITE [46], and GOLUBITSKY and
STEWART [53]). The first cell is not influenced by any other cell, the second only by the first, and the
last only by the second. We refer to this setting as a feedforward chain. Note that the self-arrow
of the first cell, although it seems to contradict the ‘no-feedback’ assumption, is due to a mere
convention where we allow cells to influence themselves. It was observed that dynamical systems
with the underlying structure of this network exhibit surprising generic Hopf bifurcations: if a fully
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synchronous steady state looses stability through a pair of imaginary eigenvalues the corresponding
system exhibits a Hopf branch of periodic solutions in which the first cell remains in the steady
state, the amplitude of the second cell grows with rate ∼ |λ|

1
2 , and the amplitude of the last cell

grows with rate ∼ |λ|
1
6 , where λ is the bifurcation parameter. In particular the growth in the last

cell is much faster than expected in Hopf bifurcations. The effect is also referred to as amplification
and is forced by the network structure. In RINK and SANDERS [90], the anomalous Hopf bifurcation
result is generalized to feedforward chains of arbitrary length,

. . .

where the amplification is observed to increase the ‘further down in the chain’ the cell is located.
Furthermore, a similar result for steady state bifurcations is proved. Since then, attempts were made
to understand more general classes of feedforward networks, not restricted to chains. In NIJHOLT,
RINK, and SANDERS [80], as an example, the authors introduce so-called ring-feedforward networks
which are feedforward chains where the first cell is replaced by an oriented ring. Most recently, the
amplification in steady state bifurcations (as well as other investigations) has been generalized to
layered feedforward networks:

. . .

(see SOARES [99]). Therein the cells can be partitioned into layers such that the feedforward structure
respects these layers. In particular, if we collapse each layer to one cell, we are left with a feedfor-
ward chain. Note that recently research has also extended to networks that do not exhibit a strict
feedforward structure. In AGUIAR, DIAS, and FIELD [7] the authors investigate the effect of feedback
loops on the synchrony patterns of weighted feedforward networks with additive input structure.
Furthermore, in the preprint GANDHI et al. [40] the feedforward structure of transitive components
is exploited to thoroughly investigate 1- and 2-parameter steady state bifurcations in fully inhomo-
geneous networks. A similar investigation is made in AGUIAR, DIAS, and SOARES [12] for one specific
1-parameter steady-state bifurcation scenario in homogeneous networks with asymmetric inputs.
In this class of networks or respectively in this bifurcation problem, however, amplification is gene-
rically not possible.

Part III is entirely devoted to the investigation of a more general class of feedforward networks.
Interestingly, multiple equivalent definitions are possible, the most general of which only incorpora-
tes the illustrative idea that a feedforward network should not contain any feedback (except for self-
loops). This definition is independent of the class of networks (i.e. homogeneous or otherwise). The
results, in particular concerning generic steady state bifurcations, however, are coined towards ho-
mogeneous coupled cell systems. In this class, we may define feedforward structure equivalently in
a purely algebraic and in an order-theoretic formulation (Theorem 8.35). We investigate the effects
of feedforward structure in its multiple definitions on the corresponding monoid representations
in the case of one-dimensional internal dynamics. In particular, Theorem 9.2 provides a decompo-
sition of the representation space into indecomposable components. Then we combine all insig-
hts to classify generic 1-parameter steady state bifurcations for feedforward networks via hands-on
analysis. As before, we observe the amplification effect for our class of feedforward networks. Ho-
wever, due to the more complicated interaction structures, the picture becomes more complex. In
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particular, some expected amplifying branches may not exist. The main results are Theorems 10.8,
10.20 and 10.21 and Proposition 10.27, which classify all possible branching steady states in different
scenarios and characterize the amplification effect. They are from the preprint [84]. Furthermore,
the investigation of algebraic properties of the monoid representations related to feedforward net-
works have led to some interesting purely algebraic results in the preprint [82] that are not included
in this thesis. Eventually, in Chapter 11, we apply the results on networks with high-dimensional
internal dynamics from Chapter 7 to feedforward networks and obtain the classification of generic
1-parameter steady state bifurcations in such systems with high-dimensional internal dynamics as
Theorem 11.12. In particular, we see that the amplification effect is independent of the dimension of
the internal dynamics. This is part of the preprint [83].

Organization of the thesis

The conclusion of the introductory part (Part I) is made by a brief survey over different formalisms
and approaches to network dynamical systems in Chapter 2. We provide some insight into early
work (Section 2.1), introduce the groupoid formalism (Section 2.2) and the essentially equivalent
combinatorial approach (Section 2.3). Then we review the introduction of graph fibrations into net-
work dynamics (Section 2.4) and how this includes hidden symmetries into homogeneous coupled
cell systems with asymmetric inputs (Section 2.5). As these objects are the main object of research
in this thesis, the introduction will be very short and we will introduce them thoroughly at a later
point in the text. Finally, we give an overview over the newer approaches in asynchronous networks
(Section 2.6) and open systems (Section 2.7).

Part II investigates the implications and effects that representation theory of monoids and se-
migroups has on generic bifurcations in homogeneous coupled cell systems via hidden symmetries.
To that end, we rigorously introduce the formalism and its major results in Chapter 3 as well as the
necessary background on representation theory in Chapter 4. These also include several additio-
nal results that are not contained in the original publications. The first main result of this thesis
is Theorem 5.11 on generic 1-parameter steady state bifurcations in monoid equivariant dynamics,
which is proved in Chapter 5. We start in Section 5.1 by investigating nilpotent endomorphisms of
representations that are direct sums of subrepresentations which are all pairwise isomorphic. These
form building blocks of arbitrary representations and are called isotypic components. In Section 5.2
we complete the proof by reducing the question of generic generalized kernels in an arbitrary repre-
sentation to that of determining the nilpotent endomorphisms of its isotypic components. Some
technical details on submanifolds of matrix spaces are postponed to the appendix (Appendix A).
We then summarize the generalizations to l-parameter bifurcations from NIJHOLT and RINK [77] in
Section 5.3. In Chapter 6 we discuss the implications of Theorem 5.11 and its generalization for bi-
furcation analysis in homogeneous coupled cell systems with asymmetric inputs. Furthermore, we
include an illustrating example in Section 6.2.

Then, we specifically focus on networks with high-dimensional internal dynamics in Chapter 7.
We introduce a notation using tensor products to flexibly encode the attachment of a vector space
to each cell without changing the network structure – which yields that the corresponding monoid
representation is trivial on the internal phase spaces – in Section 7.1. This is used to investigate
algebraic features for the main dimension reduction method (Theorem 7.12). In Section 7.2, we
explore the implications for generic bifurcations in homogeneous coupled cell systems with high-
dimensional internal dynamics. The results are summarized in Theorem 7.17 on 1-parameter steady
state bifurcations, Theorem 7.18 on 1-parameter Hopf bifurcations, and in Theorems 7.22 to 7.24 on
arbitrary l-parameter bifurcations.

In Part III, we combine the results from Part II in order to classify generic 1-parameter steady
state bifurcations in feedforward networks. Chapter 8 explores a characterization of feedforward
structure in a graphical interpretation and a purely algebraic formulation (Section 8.1) as well as
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an order theoretic formalism (Section 8.2). The equivalence of these approaches is proven in The-
orem 8.35. Then, we exploit the algebraic definition in Chapter 9 in order to investigate properties
of the monoid representation associated to a feedforward network. In particular, we find an algo-
rithmic process to decompose the representation space into indecomposable subrepresentations
(Theorem 9.6). In Chapter 10, we analyze generic steady state bifurcations in an arbitrary feedfor-
ward network with one-dimensional internal dynamics by hand. This is done by exploiting the speci-
fic structure that is forced upon the equations by the network. The sections in this chapter describe
different technical scenarios that have to be taken care of separately. The classification of all possi-
ble branching steady state solutions is summarized in Theorems 10.8, 10.20 and 10.21. Some of the
computational details are postponed to Appendix B. Furthermore, Proposition 10.27 characterizes
the amplification effect in these bifurcations. Finally, in Chapter 11, we apply results and techniques
for networks with high-dimensional internal dynamics for Chapter 7 to feedforward networks. This
allows for a translation of the classification results in networks with one-dimensional internal dy-
namics to those with internal dynamics of arbitrary dimension (Theorem 11.12). We illustrate the
result in an example of a 5-cell feedforward network with one-dimensional internal dynamics in
Chapter 12.

We conclude the main body of work with some conclusive remarks in Part IV. Chapter 13 dis-
cusses that the inherently algebraic nature of networks as modular objects reflects severely in the
methods brought forward in the investigation of network dynamics. We conclude in Chapter 14
with a short outlook on how this might be extended to incorporate more structural properties of
networks in an algebraic framework.
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Chapter 2

Network dynamical systems

As laid out in the introduction (Chapter 1), the study of dynamical systems with an underlying net-
work structure comes with severe mathematical challenges. Reasons for this are manifold but can
be summarized in two major points. Firstly, network dynamical systems behave vastly differently
from systems without any additional structure. Examples are plenty. The most striking, however, is
the phenomenon of synchronization: multiple (or even all) agents of the network behave in unison.
This can be observed in many applications such as simultaneous firing of neurons or collective beha-
vior in groups of animals such as bird flocks. Also generalizations can be thought of (and increasingly
gain interest), such as phase-locked dynamics – e.g. rotating waves – or localized synchronization –
called chimeras – in networks of oscillators. However, all these features are next to impossible for
dynamical systems without any additional structure. They can only be found in very specific systems.
For a general dynamical system, however, one can not expect the observables to behave uniformly.
Secondly, the theory of dynamical systems with all its powerful tools that were developed since the
late 19th century are not tailor-made for the study of network dynamical systems. Therefore, many
methods quite simply lose track of the additional structure. For example, it is a challenging task to
characterize coordinate transformations that keep a given network structure intact (see for exam-
ple GOLUBITSKY and STEWART [56]). Such coordinate changes are the main ingredient in computing
for example a normal form and thus the qualitative behavior of a system. It also plays a pivotal role
in determining the so-called generic behavior of a system with given properties. As the established
machinery fails to respect the network structure as inherent property of the system it accordingly
also fails to distinguish qualitative behavior that is due to said structure – such as synchronization
patterns. There are various other, mainly technical reasons, that result in the same issue.

Summarizing, one is mainly able to investigate small networks and determine their dynami-
cal behavior by hand. Yet, insight into the underlying mechanisms by which a network influences
dynamics is still rather limited. Therefore, analytical questions such as determining behavior and
changes therein remain challenging, which also yields problems in applications, as requirements
like prediction and control are not satisfactorily resolved. Since the beginning of this millennium,
when interest in network dynamical systems sparked, several approaches have been put forth to
address these issues. Interestingly, all of which are, in one way or another, algebraic in nature. This,
however, might come as no surprise. Networks, in any suitable definition, are inherently algebraic
objects themselves. They consist of small parts that are connected to form bigger parts which are
then again connected to even larger parts that eventually make up the whole network. This concept
is referred to as modularity which is fundamental in algebra.

Chapter 2 serves as a brief survey over a number of those approaches. It is not aimed at provi-
ding a detailed introduction into different theories but rather to present their underlying ideas. The
collection is ordered chronologically only where possible, as some of the developments happened
simultaneously and even shared some of the authors. We begin in Section 2.1 by briefly reviewing
some major steps in the development of the theory of network dynamics starting with its origins
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until the proposition of more systematic approaches. In Section 2.2 we include the groupoid for-
malism by GOLUBITSKY, STEWART et al. It provides a formal way to write down network dynamical
systems and as a result allows to characterize all patterns of synchrony for a given network. The
essentially equivalent approach via symbolic dynamics by FIELD et al. is recapitulated in Section 2.3.
Section 2.4 contains an approach by DEVILLE and LERMAN that connects the groupoid formalism to
category theory. The keyword here is graph fibrations which are used to exploit the modularity of a
network directly, to gain insight into the global dynamics of the corresponding system. To provide
a quick outlook, we mention semigroup networks or homogeneous coupled cell systems with asym-
metric inputs developed by NIJHOLT, RINK and SANDERS in Section 2.5. It introduces a connection to
equivariant dynamics via hidden symmetries, which serve as an excellent explanation for many of
the staggering phenomena that were mentioned above. Furthermore, graph fibrations allow for
an interpretation of networks as coupled modular control systems that form a beautiful connection
from the hidden symmetry approach to the groupoid formalism. As our own research aims at furt-
her development of this approach, we keep Section 2.5 very brief and provide full details in Chapter 3.
Finally, we briefly review two very recent approaches in Sections 2.6 and 2.7. Asynchronous networks
by BICK and FIELD, that focus on the function of a network, and modular systems by SPIVAK et al.,
which interpret networks as systems of systems, both incorporate the modular nature of a network
and provide additional flexibility in the type of dynamics that can be encoded in the model. Due to
their novelty, the full potential of both of these approaches can not be foreseen yet.

2.1 Early work

In its early days research on network dynamics was not so much focused on the actual network part
of it but rather on the more eye-catching behavioral feature of synchronization. Spectacular occur-
rences were observed throughout applications from nature and engineering so that mathematical
explanations were sought. Most investigations of that time do not care about the specific inte-
raction structures but rather include regular (i.e. all-to-all or arbitrary) or random coupling (see the
more recent WATTS and STROGATZ [114] for a brief discussion of these coupling types). WINFREE [115]
provides what has been called “a breakthrough in the study of synchronization” in O’KEEFFE, HONG,
and STROGATZ [86]. The author derives a mathematical model of circadian rhythms, the mechanism
that serves as inner clock throughout biological beings. Therein cells are modeled by identical sys-
tems of ordinary differential equations that exhibit a stable limit cycle, coining the term oscillator.
A periodic – with respect to the limit cycle – coupling mechanism is introduced, allowing the cells
to communicate with each other if the coupling is strong enough. This leads to spontaneous emer-
gence of synchrony. Later on, this model was further simplified and the equations were rigorously
solved by KURAMOTO [68, 69]. Using an averaging method it is shown that the dynamics of each cell
can be displayed by a system on the unit circle S1 and as a result the dynamics of the entire network
can be represented on the torus T N , where N is the number of oscillators – the averaging method
yields a normal form of the original system. This model has since been referred to as the Kuramoto
model. It has seen countless applications in biology and physics and has sparked enormous interest
in the study of dynamical properties of coupled oscillators. Since then, numerous generalizations of
the model – especially concerning the interactions – have been proposed and applied. See ACEBRÓN

et al. [2] for a summary of the model and its generalizations. PIKOVSKIJ, ROSENBLUM, and KURTHS [89]
extensively surveys research on synchronization and prominently includes the Kuramoto model and
its implications for the field.

The area of coupled oscillators remains highly active to this day with results describing stag-
gering and complex dynamical properties being published every year. The equations in question
governing dynamics of coupled oscillators typically take a form like

ϕ̇i = 1 + εgi(ϕ1, . . . , ϕN ) for ϕi ∈ S1, i = 1, . . . , N (2.1)
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(see for example ASHWIN and SWIFT [17]). Each ϕi ∈ S1 encodes the state of one oscillator. Then gi
characterizes the influence of the state of the other oscillators on the one with index i and ε � 1

accounts for the coupling strength – hence the term weak coupling. Specific interaction structures
can then be modeled via the interaction functions gi.1 Weak coupling is required to guarantee the
stability of the limit cycle in the original system and hence the success of the averaging procedure.

Additionally, further generalizations to describe non-periodic dynamics in individual cells have
been considered as well. If one is willing to drop the assumption of existence of a stable limit cycle in
the uncoupled system of each cell and with it the resulting simplifications one encounters systems
like

ẋi = F (xi) + ε
N∑
j=1

bi,jG(xj) for xi ∈ Rd, i = 1, . . . , N (2.2)

(see PECORA and CARROLL [88]). Here the individual internal dynamics is governed by an arbitrary
ordinary differential equation on a finite-dimensional vector space via the function F . In order to
investigate synchronization one employs variational methods – additional properties guarantee the
dynamical invariance of the synchronous manifold {x1 = . . . = xN}. Such models have for exam-
ple been used to describe synchronized chaos, where two cells synchronize in their chaotic behavior
(PECORA and CARROLL [87]). Note that the functions governing the dynamics in (2.2) are the same for
each cell – the same internal dynamics F , the same coupling G, and the same coupling strength ε.
This reflects the fact that all cells are assumed to be of the same type, the network is homogeneous.
On the other hand, this is not the case in (2.1), the network is non-homogeneous, heterogeneous or
inhomogeneous. The matrix B = {bi,j}Ni,j=1 – also referred to as the adjacency matrix – encodes the
interaction structure of the network. The form (2.2), despite allowing for much more general dyna-
mics than for example the Kuramoto model, imposes restrictions on the dynamics in consideration
– besides the homogeneity –, especially in form of the additive nature of the couplings. The for-
malism does, however, include different interaction structures. More precisely different networks
can be encoded in the same framework, which impose varying dynamical effects. Whereas in the
early coupled oscillator models all-to-all coupling was standard, it is now possible to impose a spe-
cific network structure for example via the coupling functions gi in (2.1) or the adjacency matrixB in
(2.2). WANG [113] reviews the implications of different network topologies on synchronization.

It became clear, that this degree of freedom renders a thorough analysis of dynamical pheno-
mena beyond synchronization impractical. Even for a fixed underlying network structure, results
often seemed out of reach. Hence, the community explored means to reduce the complexity and
identified symmetry as a suitable candidate. The permutations of the cells of a network that le-
ave its interaction structure intact imply strong restrictions in the form of equivariance on possible
functions driving the dynamics of the entire network. For example consider a network with identi-
cal cells that are arranged in a ring with undirected next-neighbor coupling (Figure 2.1). The network
exhibits dihedral DN -symmetry as any rotations and reflections leave the network intact. Note that
it does not have more symmetry (at least forN large enough), for example full permutation symme-
try SN , as an arbitrary permutation of two cells leads to a change in the cells from which they receive
their inputs. These symmetries are reflected in the differential equations governing the dynamics of
the network in Figure 2.1. In their most general form they are

ẋ1 = f(x1, x2, xN )

ẋ2 = f(x2, x3, x1)

...
ẋN = f(xN , x1, xN−1).

(2.3)

1In the original Kuramoto model the equation is similar. The internal dynamics is governed by a constant ωi instead of
1 and the coupling is restricted to εgi(ϕ1, . . . , ϕN ) = K

N

∑N
j=1 sin(ϕj − ϕi) for some constantK .
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Figure 2.1: A homogeneous undirected N -cell ring

Applying any rotation or reflection on the indices of the cells leaves the set of differential equati-
ons unchanged. Using methods from equivariant bifurcation theory, it can be seen that, via Hopf
bifurcation, such systems exhibit phase locked dynamics. That is, the cells oscillate with the same
waveform but with regular phase shifts throughout the ring (see GOLUBITSKY and STEWART [50]).
This example is also considered in GOLUBITSKY, STEWART, and SCHAEFFER [58], which is a milestone
in the theory of equivariant dynamics (more background can be found for example in CHOSSAT and
LAUTERBACH [23] and FIELD [36]). The techniques were applied to a multitude of networks in applica-
tions (animal locomotion, Josephson junctions, binocular rivalry, chemical reactions, and more) and
purely theoretic publications. Lots of interesting phenomena like synchronization, phase-locking,
partial synchrony, pattern formation, synchrony breaking bifurcations, and others have been obser-
ved. See for example ALEXANDER and AUCHMUTY [13], ARONSON, GOLUBITSKY, and KRUPA [16], ASHWIN

and SWIFT [17], DIEKMAN and GOLUBITSKY [29], DIONNE, GOLUBITSKY, and STEWART [30, 31], GOLUBITSKY

and STEWART [52], and HADLEY, BEASLEY, and WIESENFELD [62]. Interestingly, however, the emergence
of such dynamical features is not restricted to symmetric networks. When symmetry assumptions
are violated similar dynamics can still be observed, most notably in the form of synchrony and syn-
chrony breaking, highly complex and unexpected bifurcations but also phase locking. According to
GOLUBITSKY and STEWART [54] credit for this discovery belongs to PIVATO, who around 2002 descri-
bed a 16-cell network with four subsets of nodes, each exhibiting rotating wave solutions related to
Z4-symmetry, even though the network has only trivial symmetry. A nice collection of further ex-
amples can be found in GOLUBITSKY, NICOL, and STEWART [44]. This new development called for more
precise approaches to networks and the implications of their structural properties on dynamics. The
last 15 years have seen intense activity to that end, leading to the development of several forma-
lisms. We use the upcoming sections to provide an overview over some of the resulting theories.

2.2 The groupoid formalism

GOLUBITSKY, STEWART et al. made the crucial observation, that the dynamics of a cell is not directly
influenced by all cells in the network but only by those, that have an arrow pointing at it. Hence, in
order to understand the impact of the networks architecture or topology on its dynamics, one should
investigate the dynamics ‘locally’ on what is called an input set of a cell to deduce global dynamical
properties of the network. By comparing these input sets one gathers insight into which cells might
behave similarly. This is done using algebraic objects called groupoids, which are used to to encode
the local-global nature of the input sets (local: input sets; global: comparison thereof). The theory
was developed in a series of papers (GOLUBITSKY, PIVATO, and STEWART [45], GOLUBITSKY and STEWART
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[53], GOLUBITSKY, STEWART, and TÖRÖK [59], and STEWART, GOLUBITSKY, and PIVATO [108]). Here we
follow the presentation in [53].

The first step is to precisely define the object of study. We want to describe general networks of
cells that exhibit general individual dynamics as well as general couplings. This is reflected in the
fact that self-arrows and multiple arrows are allowed as well as that there are no restrictions on the
functions governing the internal dynamics. However, means to classify nodes and arrows according
to different types are included. In displays of networks as graphs, this is done by choosing various
shapes for types of nodes and different colors for types of arrows. The formalism encodes these in
the form of equivalence classes. Finally, note that all networks are assumed to be directed: cell p
being influenced by cell q does not necessarily imply the converse. However, undirected networks
are also covered by the formalism by including directed arrows both ways. We begin by restating
the definitions of a network, the algebraic concepts relating to symmetry, and the vector fields that
govern the dynamics of a network.

Definition 2.1 (Definition 5.1 in [53]). A coupled cell networkN consists of

(i) a finite set C = {1, . . . , N} of nodes or cells,

(ii) a finite set E = {e1, . . . , en} of edges or arrows,

(iii) an equivalence relation∼C onC , such that the equivalence class [p]C of a cell p ∈ C describes its
type,

(iv) an equivalence relation∼E onE, such that the equivalence class [e]E of an edge e ∈ E describes
its type or color,

(v) two mapsH,T : E → C , such thatH(e) and T (e) are respectively head and tail of e – i.e. e is an
arrow from T (e) to H(e) –,

and fulfills the consistency condition

e ∼E ε =⇒ H(e) ∼C H(ε), T (e) ∼C T (ε).

Definition 2.2 (Definitions 5.2 and 5.3 in [53]). The input set of a cell p ∈ C is the set of arrows pointing
at it

I(p) = {e ∈ E | H(e) = p}

and its elements are called input arrows of p. Two cells are input equivalent, p ∼I q, if and only if
there exists a bijection β : I(p)→ I(q) that preserves arrow types

e ∼E β(e) for all e ∈ I(p).

Any such bijection is called an input isomorphism from p to q and the set B(p, q) denotes all input
isomorphisms from p to q. The set of all input isomorphisms in the network

BN =
⊔
p,q∈C

B(p, q)

is the (symmetry) groupoid of the networkN .

Remark 2.3. The symmetry groupoid BN has the algebraic structure of a groupoid, as two input
isomorphisms can be composed if and only if they are compatible with respect to input equivalence.
That is, for β ∈ B(p, q), β′ ∈ B(p′, q′) we have β ◦ β′ ∈ BN if and only if q′ = p. In particular,
β ◦ β′ ∈ B(p′, q). 4
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Figure 2.2: A 3-cell non-homogeneous network.

Note that input equivalence implies type equivalence due to the consistency condition. The grou-
poid encodes the way in which the inputs of one cell are ‘the same’ as those of another. The for-
malism can be employed to encode many examples of structural features of networks in a concise
manner. For example a network is homogeneous, if and only if all its cells are input equivalent, i.e
B(p, q) 6= ∅ for all p, q ∈ C . It is regular, if additionally all of its arrows are equivalent as well.

Example 2.1. Consider the 3-cell non-homogeneous network with two cell types and three arrow
colors in Figure 2.2. Then cells 1 and 2 are input equivalent as both receive one red arrow and one
grey arrow allowing us to bijectively map the self-loop of cell 1 onto the red arrow from cell 1 to 2. If
for example the self arrow of cell 1 were of a different color, which does not violate the consistency
condition, this would not be true. 4

The next step is to introduce dynamics into these networks. As usual, these are governed by
vector fields, which requires a notation of phase spaces and internal dynamics. These notions need
to respect the structural features as they are encoded in the formalism. That is types of cells and
arrows as well as the interaction structure as described via the equivalence relations and the heads
and tails of edges. Every cell has its own state that is dynamically varied by an ordinary differential
equation. Hence, we attach a finite-dimensional vector space Vp to a cell p ∈ C which is called the
internal phase space. Nodes of the same type exhibit the same type of dynamics – these are not
necessarily equivalent – so that we require

p ∼C q =⇒ Vp = Vq. (2.4)

The total phase space is the phase space of the entire network and is defined as the direct product of
all internal phase spaces ∏

p∈C
Vp.

In order to reflect the network’s composition of individual cells, coordinates

x = (xp)p∈C

with xp ∈ Vp are chosen. More generally, one distinguishes the parts of the phase space that
have an influence on a given cell p. In particular choose an ordering I(p) = (e1, . . . , es) and let
T (I(p)) = (T (e1), . . . , T (es)) be all cells that p receives an input from ordered accordingly. Note that
the same cell might appear multiple times in T (I(p)), if p receives multiple inputs from the same
cell. The coupling phase space and its coordinates are

VT (I(p)) =

s∏
j=1

VT (ej), xT (I(p)) = (xT (ej))
s
j=1.

In order to include the different types of cells and arrows into the dynamics, one describes the effect
of input equivalence on coupling phase spaces in terms of pullback maps. That is, for p ∼I q and
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β ∈ B(p, q), we have

β∗ : VT (I(q)) → VT (I(p)), (β∗x)T (e) = xT (β(e)) for all e ∈ I(p).

Dynamics on networks are then governed by vector fields according to the following definition

Definition 2.4 (Definition 6.1 in [53]). A vector field F :
∏
p∈C Vp →

∏
p∈C Vp isN -admissible, if

(i) the p-th component function fp(x) depends only on the internal phase space variables and the
coupling phase space variables of cell p, meaning there is f̂p : Vp × VT (I(p)) → Vp, such that

fp(x) = f̂p(xp, xT (I(p)));

(ii) for all β ∈ B(p, q)

f̂q(xq, xT (I(q))) = f̂p(xq, β
∗xT (I(q))) for all x ∈

∏
p∈C

Vp.

When it is obvious from the context which network is considered, we also only speak of admis-
sible vector fields. Note that these are entirely defined by one coordinate function for each input
equivalence class due to the second condition. Furthermore it guarantees, that the state variables
of inputs via the same arrow color are passed into the same entries of the internal function, hence,
providing the same coupling influence. In that sense, the dynamical behavior of two cells of the
same type that receive the same inputs are governed by the same mechanisms. Finally, we call a sy-
stem of ordinary differential equations governed by an admissible vector field a coupled cell system.
Even if the conditions in the definition appear rather algebraic and complicated, these are precisely
the ones one would intuitively define for a given network structure.
Remark 2.5. The formalism allows for cells of the same type to receive different types of inputs. As
a result their dynamics are governed by different functions. However, in many applications and in
other formalism, oftentimes, one requires that cells of the same types receive the same types of
inputs so that their dynamics are truly governed by the same mechanisms. In that case the cell type
relation ∼C and the input equivalence relation ∼I are equal. On the other hand, by a slight abuse
of notation, one could artificially relabel cell types according to input equivalence as only cells of the
same type can be input equivalent. 4
Example 2.2. We revisit the example in Figure 2.2. Once an ordering of the input arrows for each cell
is chosen, the admissible vector fields are of the form

F (x) =

f1(x1, x1, x3)

f1(x2, x1, x3)

f3(x3, x2)

 .

4

Example 2.3. If we slightly adapt the network from Figure 2.2 to include multiple arrows of the same
color as in Figure 2.3, condition (ii) does not make any restrictions on the order of the inputs via the
same arrow colors. The corresponding input function is invariant to permutations of these variables:

F (x) =

f1(x1, x1, x2, x3)

f1(x2, x1, x2, x3)

f3(x3, x2)

 ,

with f1(x1, x1, x2, x3) = f1(x1, x2, x1, x3). This is indicated by an line over the corresponding argu-
ments

F (x) =

f1(x1, x1, x2, x3)

f1(x2, x1, x2, x3)

f3(x3, x2)

 .

4
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Figure 2.3: A 3-cell non-homogeneous network with multiple arrows of the same color.

Remark 2.6. Some examples or applications require a model that has internal dynamics that takes
place on more complicated structures. For example recall that the internal phase space in coupled
oscillators is often assumed to be the unit circle S1. These types of dynamics can be encoded in the
groupoid formalism with some extra work as well. However, we chose not to include these parts
here. 4

With the formalism complete, it can be used to systematically investigate dynamical implicati-
ons of network structure. As a matter of fact, it has been proven to be very powerful in that regard,
most importantly in the analysis of patterns of synchrony that are inherent to a given network struc-
ture. That is, all coupled cell systems for that network support these patterns. This is also referred
to as robustness. It can be shown that virtually all synchrony patterns can be encoded in equivalence
relations on the cells that are called balanced colorings. In the remainder of this section, we briefly
summarize the definition and the major results in that context.

A balanced coloring is a refinement of input equivalence. One assigns a color to each cell of the
network. If the input sets of two cells of the same color – more precisely the cells from which they
receive their inputs – are of the same color, while also respecting arrow colors, this coloring is called
balanced.

Definition 2.7 (Definition 7.1 in [53]). A coloring of the cells induces an equivalence relation ./ onC via

p ./ q ⇐⇒ p has the same color as q.

This coloring is called balanced, if and only if for all p ./ q there exists an input isomorphism
β ∈ B(p, q) such that

T (e) ./ T (β(e)) for all e ∈ I(p).

On the other hand, colorings can be used to indicate patterns of synchrony. To that end define
the polysynchronous subspace of the total phase space corresponding to a coloring ./ as

∆./ =

x ∈ ∏
p∈C

Vp

∣∣∣∣∣∣ p ./ q =⇒ xp = xq

 .

Such a subspace describes all states in the total phase space in which two cells are synchronous
when they are of the same color. In the same way we may reverse the order and define a coloring
of cells according to a pattern of synchrony. A synchrony subspace is called robust, if it is flow-
invariant under all admissible vector fields. The same term is used for the corresponding pattern of
synchrony which is then inherent to the network structure. The relation between robust synchrony
and balanced colorings is surprisingly powerful for the understanding of patterns of synchrony in
dynamics of a network. We summarize some of the most staggering results informally in a similar
spirit as in GOLUBITSKY and STEWART [54]. Some of these statements were only proven under some
technical conjectures in GOLUBITSKY and STEWART [53]. However, since then a series of papers has
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successfully closed those gaps. Most notably we mention GOLUBITSKY, ROMANO, and WANG [47, 48]
and STEWART and PARKER [109, 110] and GOLUBITSKY and STEWART [55] for a survey.

Note that, apart from patterns of synchrony, also the existence of hyperbolic equilibria and hy-
perbolic periodic solutions as well as their phase relations are dynamical features that can be inhe-
rent to the network structure. In particular, one of these phenomena is said to be rigid, if it exists
for a given admissible vector field and persists under all small enough admissible perturbations. Let
y = (yp)p∈C ∈

∏
p∈C Vp be a rigid steady state. Then it induces a coloring of cells according to

p ./y q ⇐⇒ p ∼C q and yp = yq.

This induces the corresponding pattern of synchrony associated to y denoted by ∆./y . Note that
similar definitions can be made for synchronous and phase related cells in a rigid periodic orbit. The
associated pattern of synchrony is also said to be rigid.

Theorem 2.8 (Theorem 8.2 in [54]). (i) A synchrony pattern is robust, if and only if the correspon-
ding coloring is balanced.

(ii) In a path-connected network2 the pattern of synchrony associated to a hyperbolic equilibrium is
rigid, if and only if the corresponding coloring is balanced.

(iii) In a path-connected network the pattern of synchrony associated to a hyperbolic periodic solu-
tion is rigid, if and only if the corresponding coloring is balanced.

Hence, patterns of synchrony that are inherent to a specific network structure, can be classified by
balanced colorings.

Example 2.4. The network in Figure 2.2 allows for two balanced colorings determined by 1 ./1 2 and
1 6./2 2. Hence, the only non-trivial pattern of synchrony that can emerge is given by x1 ≡ x2. 4

We close this section with a more in-depth investigation of synchronous dynamics. Once, the
relation between synchrony and balanced colorings is established, one can ask the question, which
dynamical features are possible within one pattern of synchrony. As we have seen before, the cor-
responding polysynchronous subspaces are dynamically invariant for all admissible vector fields, so
that we can investigate dynamics restricted to them. A powerful tool to that end are quotient net-
works (strongly related to quotient graphs from graph theory). A quotient network is a new network
that emerges from the original graph by identifying all cells of the same color – or equivalently all
synchronous cells – while making sure the interaction structure remains by inserting arrows in a
concise manner. This construction makes use of the fact that balanced colorings are equivalence
relations on the cells with a specific relation to the network arrows.

Definition 2.9 (p. 337 in [53]). Let ./ be a balanced coloring on the network N . Define the quotient
networkN./ as follows

(i) The set of cells is
C./ = C/ ./= {p | p ∈ C},

where p is the ./-equivalence class of p.

(ii) Let S ⊂ C be a set of representatives of the ./-equivalence classes. The input arrows e ∈ I(p) of
a cell p for p ∈ S are identified with those of p: e = e. This can be interpreted as a projection of
arrows. The set of arrows of the quotient network is the disjoint union of all input sets

E./ =
⊔
p∈S

I(p).

2A network in which there is a directed path in between any two cells.
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(iii) The arrow type relation is given by the arrow type relation of the original network

p ∼C./ q ⇐⇒ p ∼C q.

(iv) The arrow color relation also follows from the arrow color relation of the original network

e ∼E./ ε ⇐⇒ e ∼E ε.

Note that due to the facts that the coloring is balanced and that a coloring is a refinement of the
cell type relation, the definitions of the relations in the quotient network are well-defined and the
consistency condition is fulfilled.

In order to understand the dynamical implications of the quotient network, it is worth noting
that it emerges by identifying cells that are in synchrony. This mirrors the intuitive approach to the
investigation of the dynamics on the corresponding subspace of reformulating the functions to only
include each argument once. As a matter of fact, the quotient network construction pairs well with
the definition of admissible vector fields.

Theorem 2.10 (Theorem 9.2 in [53]). Let ./ be a balanced coloring on the coupled cell networkN .

(i) The restriction of aN -admissible vector field to ∆./ isN./-admissible.

(ii) Each N./-admissible vector field on the total phase space of the quotient network lifts to an
N -admissible vector field on the total phase space of the original network.

Hence, in order to investigate dynamical features in the pattern of synchrony given by the balan-
ced coloring ./, it suffices to investigate admissible vector fields of the (in general) simpler quotient
network. In particular, this has immediate consequences on the dimension of the problem. Additio-
nally, note that multiple networks might yield the same quotient networks by a suitable pattern of
synchrony. Hence, results for one network might be translated to another.

1

3

Figure 2.4: The quotient network with respect to ./ of the network in Figure 2.2.

Example 2.5. The network in Figure 2.2 admits only one nontrivial coloring ./ in which cells 1 and 2

are of the same color and cell 3 is of a different color. The corresponding quotient network is given
in Figure 2.4. The admissible vector fields are

G(x1, x3) =

(
g1(x1, x1, x3)

g3(x3, x1)

)
,

which can be lifted to admissible vector fields of the original network restricted to the synchrony
subspace

{
x ∈

∏
p∈C Vp | x1 = x2

}
:

F (x1, x1, x3) =

f1(x1, x1, x3)

f1(x1, x1, x3)

f3(x3, x2)

 .

4
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The one-to-one correspondence between robust synchrony balanced colorings has for example
been exploited to derive a beautiful result relating phase relations in rigid periodic orbits to the net-
work structure. It expresses possible phase relations in terms of a symmetry group of the quotient
network with respect to the balanced coloring associated to the periodic orbit.

Theorem 2.11 (Theorem 8.3 in [54]). In a path-connected network with a rigid periodic orbit of period
Θ the phase difference in phase related cells is given by an integer multiple of Θ/k. To determine
k, identify all rigidly synchronous cells. The corresponding quotient network has the cyclic symmetry
group Zk.

Note that, despite its power and use, in particular for the determination of synchrony, the grou-
poid formalism has not yet led to a general theory of synchrony breaking bifurcations. Assuming the
existence of a fully synchronous equilibrium, one would like to characterize generic (i.e. inherent for
a given network) transitions of such a solution when it changes its stability properties. Lots of inte-
resting and highly unusual bifurcations have been described (see for example GOLUBITSKY and POS-
TLETHWAITE [46] for Hopf bifurcations with anomalous growth of the amplitude) and attempts have
been made to set up general results. Examples include a linear theory for the deduction of spectral
properties needed for the classification of branching solutions (GOLUBITSKY and LAUTERBACH [42]) or
the development of lattice theoretic tools to determine existence and directions of branching soluti-
ons from a lattice of subspaces of partial synchrony (KAMEI [65, 66] and STEWART [106]). However, as
is already indicated in Sections 11 and 16 in GOLUBITSKY and STEWART [53], a general theory is hard to
develop. Some additional comments can be found in GOLUBITSKY and STEWART [55]. An issue lays in
the generality of the groupoid formalism – almost any type of network can be realized in this frame-
work. While the groupoid formalism incorporates a natural extension of group symmetries, there
is no representation theory of groupoids that can be extended and, hence, no equivariant dynamics
theory for groupoids either. As a result, in order to obtain general results on synchrony breaking bi-
furcations, one often restricts to smaller classes of networks, as we will see in the remainder of this
thesis.

2.3 A combinatorial formulation of network dynamics

Around the same time as GOLUBITSKY, STEWART et al. worked on the groupoid inspired algebraic ap-
proach to network dynamics (Section 2.2), FIELD et al. developed their own formalism to investigate
coupled dynamical systems (see AGARWAL and FIELD [3, 4], AGUIAR et al. [5], and FIELD [35]). The ob-
jective of their work – or the point of view of it – is slightly different. Instead of building a concise
algebraic framework to capture the structural properties of networks they focused on the combina-
torial nature. While the groupoid formalism encodes a given network structure and can be used for
its dynamical analysis – the groupoid determines the algebraic properties needed for the investiga-
tion –, the combinatorial approach is geared towards the construction of networks with specified
dynamical properties. Interestingly, the resulting formalisms are largely equivalent. In particular,
they generate the same classes of dynamical systems. A discussion of this equivalence as well of the
differences can be found already in the first publication FIELD [35]. Some additional details are stated
in AGUIAR et al. [5]. In our presentation, we mainly follow the slightly more compact formulations
in [5] which is closer to the groupoid formalism. In order to highlight the different scopes – as well
as some special results – we extend it by some parts of the original publication FIELD [35]. However,
due to the similarity to the groupoid formalism, we do not include as many details as in Section 2.2.

The basic objects of study in this approach are once again the cells of a network. Similar to con-
ventions in electrical and computer engineering, these are considered to be black boxes, that receive
certain inputs (of different types) and produce one output (determining the type of the cell). The
output of one cell can then be connected to the input of another cell via so-called patchcords, when
the type of input and output agrees (this can also be reflected in arrow colors). The network in Fi-
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p q

Figure 2.5: A symbolic network with 2 cells patched together.

gure 2.5 consists of two cells each of a different type or class. Each class fixes the types of inputs
corresponding cells can receive. Given these input types there is a consistent way of patching the
cells together by solving the corresponding combinatorial problem. However, if multiple cells of one
type exist, one has more than one choice. This becomes important in the investigation of equiva-
lence of networks. Hence, additional focus is laid upon cell classes. It is worth mentioning that these
correspond to input equivalence classes in the groupoid formalism.

Definition 2.12 (Definition 2.5 in [5]). Let C = {C1, C2, C3, . . . } be a set of cell classes. A coupled cell
networkN modeled on C consists of a finite number of cells with classes in C such that

(i) the cells are patched together according to the combinatorial restrictions imposed by the input-
output type relation and

(ii) there are no unfilled inputs.

In order for this definition to make sense, the set of classes needs to be consistent, i.e. the input types
of each class must again be in C. Note that the interaction structure of the network can equivalently
be characterized in terms of matrices. In AGUIAR et al. [5], these are called adjacency matrices.3 A
similar construction – the connection matrix – is used in FIELD [35]. After choosing a labeling of
the cells {p1, . . . , pN}, one defines an N × N adjacency matrix for each input type (arrow color)
as follows: the entry Bk

ij of Bk is the number of inputs of type k cell j receives from cell i. These
matrices were already used before in order to classify coupled cell networks (see for example AGUIAR

and DIAS [6]).
The introduction of dynamics into the framework is equivalent to that in the groupoid forma-

lism. One attaches an internal phase space to each cell – most commonly a finite-dimensional vector
field, but extensions are possible (see AGARWAL and FIELD [3, 4]) – and considers systems of ordinary
differential equations. In order to respect the network structure, these depend on the state of the
cell as well as on those that it receives an input from. Furthermore, cells of the same type are gover-
ned by the same functions, which are invariant under permutations of inputs of the same type. This
provides the same classes of (admissible) vector fields as in the groupoid formalism.
Remark 2.13. The formalism also includes systems exhibiting discrete dynamics via iteration of ad-
missible maps. Even more so, also hybrid dynamical systems, where some cells evolve continuously
in time while others experience discrete changes of their state, are described. This involves including
the discrete time frame into a continuous one. For more details see the examples in AGUIAR et al. [5].

4
Example 2.6. Dynamics of the network in Figure 2.5 are governed by the system of ordinary differen-
tial equations

ẋp = fp(xp, xq, xq, xq, xp)

ẋq = fq(xq, xp, xq).

In a slight abuse of notation we have identified cells and cell classes in this formulation, as there is
only one cell of each type. 4

3This term is also used in graph theory. Here it is extended to include multiple types of interactions, though.

28



In contrast to the groupoid formalism special emphasis is laid upon the fact that the functions
governing the dynamics of individual cells

ẋpi = fk

(
xpi , xpj1 , . . . , xpjlk

)
,

where pi is of classCk, can be regarded as parameter dependent vector fields – the parameters being
the variables of the cells inputs xpj1 , . . . , xpjlk – shifting the focus more towards the dynamics of an
individual cell. In the original formulation (FIELD [35]) cells are even considered to be synonymous
to their dynamics, which are defined before the notion of a network is made precise. Just as the
explicit mechanism of constructing networks, this indicates a new interpretation of what the basic
feature of a network is. Instead of considering a network to be an entity of individual nodes that are
connected in a predefined way, the key feature is considered to be the constructive flexibility to take
individual units and patch them together in several ways to form new units. This can also be seen
in so-called passive cells in AGARWAL and FIELD [3, 4]. These cells with specific properties – providing
specific transformations of their inputs – can be combined with existing cells in a network to form
new ones. Similarly, if we loosen the consistency condition in the definition of a network by leaving
inputs unfilled we can consider the entire network as a new cell with output computed from the out-
puts of its cells and inputs being the unfilled inputs of its cells. Informally speaking, we simply ‘draw’
a new cell shape containing the entire network. This structural property, which goes by the name
modularity, is clearly closely related to the ‘old’ approach but provides a slightly different viewpoint
that leads back to a question already formulated in the introduction (Chapter 1): Can the dynamical
behavior of a network be understood from knowledge of its building blocks? This, however, is not
thoroughly addressed in the literature using the combinatorial formalism of networks, which is le-
gitimate as the formalism was not intended to answer these kinds of questions. Nevertheless, some
results are available concerned with the construction of networks with specific dynamical properties
(see AGUIAR et al. [5] and FIELD [37, 38] for networks exhibiting heteroclininc dynamics). On the other
hand, some of the newer approaches (see Sections 2.4, 2.6 and 2.7) specifically construct networks
in terms of modularity.

The combinatorial formalism is geared towards the question what influence a (given) network
structure has on its dynamics. We close this section by briefly summarizing some of the main results
in that regard. In particular, once again we are interested in dynamical features that are inherent
to the network and independent of a specific dynamical system on it. For example, as the combina-
torial and groupoid formalisms are equivalent, it may come as no surprise that robust patterns of
synchrony – which are called synchrony classes here – are in one-to-one correspondence with balan-
ced families of subsets of cells (Proposition 3 in FIELD [35]). These, in turn, are essentially balanced
colorings from before.

On the other hand, a lot of work has been put into different means to classify networks. Several
notions of equivalence of networks have been developed which allow to determine when two net-
works exhibit the same dynamics. This a non-trivial task, as can be seen for instance in Example
3.4 in AGUIAR et al. [5] where two networks with different architectures induce the same admissible
vector fields – they are ODE-equivalent. However, in DIAS and STEWART [28] it is shown, that ODE-
equivalence is equivalently determined on the linear level which greatly simplifies its investigation.
Another notable notion is that of patch-equivalence, which is informally defined by the possibility to
convert the network N into N ′ and vice versa by repatching the connections between cells accor-
ding to the input-output type relation (Definition 3 in FIELD [35]). This is used to derive a network
normal form. In contrast to the theory of dynamical systems, this is not a reformulation of the dyn-
amical system in ‘simpler’ terms, but rather a method to construct a new network whose dynamics
captures the essential features of the dynamics of the original network. Informally speaking, one
repatches the connections in N to find a network N̂ consisting of the ‘smallest possible’ transitive
components that are pairwise not connected as well as their slaved subnetworks – i.e. subnetworks
that do not provide inputs for any other cells. This network N̂ is called the normal form ofN .
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The normal form ofN contains information about the ‘minimal’ – i.e. the least restrictive – clas-
ses of synchrony the network N supports. They are uniquely determined by the components of N̂
and their slaved subnetworks. That is, in each connected component or in each slaved subnetwork
all cells of the same type can be synchronized. As mentioned before, synchrony classes are in one-to
one correspondence to balanced partitions. Hence, similar constructions can be made to investigate
more general patterns of synchrony (see Section 6 in FIELD [35] and Section 3 in AGUIAR et al. [5]). In
the groupoid formalism synchrony patterns were equivalently characterized by balanced colorings.
Hence, the repatching approach provides a constructive viewpoint for this algebraic tool. For more
details on network equivalence see AGARWAL and FIELD [3, 4], AGUIAR et al. [5], AGUIAR, DIAS, and
RUAN [9], DIAS and STEWART [28], and FIELD [35].

2.4 Category theory and graph fibrations

Another approach to network dynamical systems that is inspired by both, algebraic relations as well
as the modular structure of networks, was developed by DEVILLE and LERMAN [24, 25, 26]. Once again,
the driving question is whether global dynamics of a network can be understood from knowledge
of its building parts. We have seen this notion (explicitly) already in the combinatorial formalism
(Section 2.3). On the other hand, this approach is also clearly inspired by the groupoid formalism
and its approach by local symmetries – this is specifically mentioned in the introduction of DEVILLE

and LERMAN [26]. However, one of the main objectives is to be able to encode more general types
of dynamics in a consistent framework. Instead of setting up a formalism for ordinary differential
equations on finite-dimensional real vector spaces that can be generalized to more general phase
spaces and dynamics with extra work, they use techniques and notions from category theory to de-
fine networks of so-called open systems with dynamics on arbitrary manifolds. As a matter of fact,
key results – as well as the general definition of network dynamical systems from before – follow
from this approach as a special case. The category theoretical tools have the advantage of being able
to describe dynamical systems coordinate-free which facilitates and simplifies proofs. For a compa-
rison with the groupoid formalism see Remark 4.3.3 in DEVILLE and LERMAN [26]. A discussion of the
notion of modularity and its realization in this approach as well as the combinatorial formalism can
be found in the introduction of DEVILLE and LERMAN [25].

The most important feature of this theory is the notion of graph fibrations. These are maps
between graphs or networks that are consistent with the interaction structure. In network dynamics
graph fibrations provide semiconjugacies between admissible vector fields. Similar to the concept
of equivalence of dynamical systems, such semiconjugacies allow to relate the dynamics of induced
flows (this will be made more precise later).

In this summary we follow the most general formulation in DEVILLE and LERMAN [25]. We try to
keep the presentation as simple as possible in order to transport only the main ideas. Therefore, we
often use the language of category theory without precise definitions. New terms will be highligh-
ted on first occasion and can be read as mere names for objects without detailed knowledge of their
definitions and properties. For a more in-depth introduction, the reader should consult the mentio-
ned references. The only thing to keep in mind is that a category is a collection of objects with maps
in between. Furthermore, it helps to think of networks in the groupoid formalism in the version
presented in Section 2.2 as examples for the objects defined here.

Network structure in general is, once again, encoded using (directed) graphs. As these are defi-
ned similarly to those in Definition 2.1, we slightly alter the notation to match the one used previ-
ously. Together with suitable maps in between two graphs, they form a category.

Definition 2.14 (Definitions 2.3, 2.4 and Remark 2.5 in [25]). A graph or network N = {E ⇒ C}
consists of a finite set C of nodes and a finite set E of arrows as well as two maps H,T : E → C

describing the head and tail (source and target) of an arrow. A map of graphs/networks ϕ : N1 → N2
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consists of two maps ϕC : C1 → C2 and ϕE : E1 → E2 such that

ϕC(H(e)) = H(ϕE(e)), ϕC(T (e)) = T (ϕE(e))

for all e ∈ E1. The collection of all graphs together with all maps of graphs forms a category Graph.

Remark 2.15. Contrary to the groupoid formalism, different types or colors (of nodes and arrows)
are not distinguished in this framework. That does not mean, all cells and arrows are strictly of the
same or of different types. This notion is simply not included in the framework. However, a colored
version was proposed as well in DEVILLE and LERMAN [24]. 4

With the definition of networks established, one introduces dynamics into the framework. Once
again, this begins with a choice of possible internal phase spaces (i.e. possible states of each cell)
and suitable interacting dynamical systems. Here the authors choose to allow for the most general
types of dynamics governed by vector fields on manifolds – which might well be (finite or infinite-
dimensional) vector spaces. This comes with severe challenges as the functions governing internal
dynamics in this general setting do not form closed vector fields but rather so-called open or cont-
rol systems known from control theory literature (see for example TABUADA and PAPPAS [111]). The
category theory notation allows to avoid choosing a labeling of nodes as well as coordinates for
the internal manifolds, which provides enough freedom to circumvent these obstacles. As we work
with vector fields on manifolds, we employ the usual notation of denoting the tangent bundle of a
manifold M by TM and the tangent space at a point x ∈M by TxM .

Definition 2.16 (Definitions 2.6 and 2.12 in [25]). A network of manifolds (N ,P) is a pair of a network
N and a functionP : C →Man4 that assigns a manifold to each cell. A map of networks of manifolds
ϕ : (N1,P1)→ (N2,P2) is a map of networks ϕ : N1 → N2 such that

P2 ◦ ϕ = P1.

Networks of manifolds form a category Graph/Man. The total phase space of a network of manifolds
is defined as the categorical product

PN ≡ P(N ,P) = ⊔

p∈C
P(p).

The notation of a categorical product can be regarded as a generalization of the cartesian product to
categories. These are well-defined in the categories in question here. Open dynamical systems are
governed by vector fields that depend on additional control variables from another manifold. The
idea is to assign an open system to each cell of a network and let the state of one be the control
variable of another according to the interaction structure.

Definition 2.17 (Definition 2.23 in [25]). For a manifold M of state variables and a manifold U of
control variables define the vector space of control systems (or open systems)

Control(M × U → TM) = {f : M × U → TM | f(x, u) ∈ TxM for all (x, u) ∈M × U} .

The introduction of the interaction structure into collections of open systems proceeds in a simi-
lar fashion as in the groupoid formalism. However, it requires a lot more notation and machinery
from category theory the details of which we omit here. An important aspect is a generalization of
input sets (compare to Definition 2.2). The input tree encodes all inputs into a cell p in a new graph
centered around p.

4Man is the category of smooth finite-dimensional manifolds and smooth maps.
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Definition 2.18 (Definition 2.26 and Proof of Proposition 2.29 in [25]). The input tree I(p) of a cell
p ∈ C is a graph with cells Cp and edges Ep defined as

Cp = {p} tH−1(p), Ep = {(p, e) | e ∈ E,H(e) = p}.

Head and tail of an arrow (p, e) are defined to be

H(p, e) = p, T (p, e) = e.

The total phase space of the input tree is defined as

PI(p) = P(p)× ⊔

e∈H−1(p)

P(T (e)),

i.e. we assign the internal phase space of the tail cell of each arrow pointing at p to the corresponding
edge.

Locally, interactions can be considered as a control system on the input tree, i.e. an object of
Control(PI(p) → Pp) , where Pp = P(p) is the internal phase space of cell p – here, we slightly
abuse the notation of DEVILLE and LERMAN [25]. Then, one passes the interaction structure of a
network of manifolds to a collection of open systems on the input trees

F = (fp)p∈C ∈ Ctrl(N ,P) = ⊔

p∈C
Control(PI(p)→ Pp).

Interactions of the collection of open systems are realized by an interconnection map J(F ). In parti-
cular, J(F ) realizes a closed system on the total phase space. The precise construction of the map J

can be found in Theorem 2.32 in DEVILLE and LERMAN [25]. Its main property described informally is a
commutativity relation that guarantees the equality of each component of the closed system with
the control system of the corresponding cell. For our purpose it suffices to consider it to contain
the information which cells state variables serve as control variables for others. When restricting to
networks subject to the groupoid formalism, this condition matches the groupoid invariance.

With this highly general framework for network dynamical systems in place one tries to exploit
the structural properties of networks to deduce dynamical properties. In particular, the input struc-
ture of each cell imposes restrictions on possible dynamics. In the groupoid formalism, this observa-
tion was made precise for example in the characterization of robust synchrony in terms of balanced
colorings. However, the authors realized, that more truth can be found / encoded in maps between
networks. Maps that respect the inputs into each cell, called graph fibrations, are of particular inte-
rest. This can be seen as a generalization of the procedure of finding balanced colorings or balanced
partitions in the previous approaches. Graph fibrations were not developed by DEVILLE and LERMAN

but were introduced in BOLDI and VIGNA [22]. However, their implications on network dynamics have
not been investigated previously.

Definition 2.19 (Definition 3.1 in [25]). A map ϕ : N1 → N2 between networks is called a graph fibra-
tion, if for each node p ∈ C1 and each arrow ε ∈ E2 pointing at ϕC(p), that is H(ε) = ϕC(p), there is
a unique arrow e ∈ E1 pointing at p, that is H(e) = p, such that ϕE(e) = ε.

Graph fibrations have severe implications on dynamical systems. Recall that dynamical equiva-
lence is defined by the existence of a map that intertwines two flows. That is, for two vector fields
F : M → TM andG : N → TN with corresponding flows Φt and Ψt respectively does there exist an
invertible map h : M → N such that

h ◦ Φt = Ψt ◦ h ⇐⇒ Dh ◦ F = G ◦ h,
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where Dh is the differential of h.5 If such a map or conjugacy exists, the dynamics induced by the
two vector fields are in some sense the same – they are qualitatively the same. But also if we relax
the invertibility condition of the conjugacy, dynamical features of one can be found within the other
system. For example, if h is surjective, it sends integral curves of one system to integral curves of the
other. We speak of a semiconjugacy. Interestingly, graph fibrations induce (in general non-invertible)
conjugacies between the closed dynamical systems on total phase spaces. The precise formulation
and proof of this result requires several intermediate steps, defining suitable categories and maps
in between. Hence, we summarize only parts of it.

Theorem 2.20 (Theorems 3.8 and 3.11 in [25]). A graph fibration ϕ : N1 → N2 induces a linear map of
control systems on networks of manifolds in the opposite direction

ϕ∗ : Ctrl(N2,P2)→ Ctrl(N1,P1).

Furthermore, it induces a map of total phase spaces Pϕ : PN2 → PN1 given by (Pϕ(xq)q∈C)p = xϕ(p),
which yields a conjugacy between corresponding closed dynamical systems J2(F2) and J1(ϕ∗F2), i.e.

DPϕ ◦ J2(F2) = J1(ϕ∗F2) ◦ Pϕ. (2.5)

The conjugacy between dynamical systems can be exploited to analyze dynamical features of
network dynamical systems by relating different networks via graph fibrations. For example, for a
surjective graph fibration ϕ : N1 → N2 the induced map between total phase spaces is an embed-
ding with the image

∆ϕ = im (DPϕ) = {x ∈ PN1 | xp = xq, if ϕ(p) = ϕ(q)},

(see Lemma 2.20 in DEVILLE and LERMAN [25]). In the language of the groupoid formalism, this is a
polydiagonal that describes a pattern of synchrony. Due to the conjugacy relation (2.5), each network
dynamical system J1(ϕ∗F2) respects this polydiagonal submanifold. Note that the map sending a
network to its quotient by a balanced coloring is an instance of a surjective graph fibration. On the
other hand, an injective graph fibration gives rise to a surjective submersion of total phase spaces
(see Lemma 2.21 in DEVILLE and LERMAN [25]). This can for example be used to encode feedforward-
type structures in networks.

1 1 2
ϕ

Figure 2.6: An injective graph fibration.

Example 2.7 (Compare to Example 5.2.2 in DEVILLE and LERMAN [26]). In Figure 2.6 we depict an in-
jective graph fibration ϕ of a networkN1 consisting of a cell with a self-loop to a 2-cell feedforward
chainN2. It maps cell 1 to 1 and the self-loop onto the self-loop. The corresponding conjugacy maps

Pϕ(x1, x2) = (x1)

which yields
DPϕ(x1, x2) = (x1).

For any F = (F1, F2) ∈ Ctrl(N2,P2) we have

J2(F )(x1, x2) = (F1(x1), F2(x1, x2)) (2.6)
ϕ∗F = (F1)

J1(ϕ∗F )(x1) = (F1(x1)).

5In the language of category theory h is a morphism in the category of dynamical systems.
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We immediately see the conjugacy condition (2.5) is satisfied as

(DPϕ ◦ J2(F )) (x1, x2) = F1(x1) = (J1(ϕ∗F ) ◦ Pϕ(x1, x2)) .

On the other hand, any closed system on P2N2 needs to satisfy this conjugacy condition in order
to respect the network structure of N2. In particular, a closed system can only be admissible if its
component corresponding to cell 1 does not depend on that corresponding to cell 2. This matches the
expectation given the graph has no feedback into cell 1. The semiconjugacy encodes the structural
property that the dynamics ofN2 is driven by cell 1. 4

The example also provides a nice impression of the concept of modularity in this framework. An
integral part of the structure of the larger network is the fact that it ‘contains’ the smaller one, which
can be investigated individually. The usage of open systems – similar to the parameter dependent
vector fields in the combinatorial approach (Section 2.3) – provides the tool to actually incorporate
this structural property into a dynamical system. Further examples of network structure encoded in
graph fibrations can be found in the mentioned references. Finally, we would like to mention, that
also self-fibrations are possible, i.e. a graph fibration from a network to itself. Due to the conjugacy
relation (2.5), these give rise to what can be regarded as a generalization of symmetry. This will be
the main feature of Section 2.5. In general, it can be said, that the implications of graph fibrations
for network dynamical systems are not yet fully understood. It remains to be seen, what kinds of
structural properties of networks can be encoded as graph fibrations so that their impact can be
investigated. Nevertheless, we are given a powerful tool to do just that in future research.

Remark 2.21. As we make use of this approach in the remainder of this thesis, we want to briefly
remark some specifics about the colored version of this theory. In a straightforward manner, one
introduces colors of cells and of arrows into the network (Definition 2.14) using compatible equiva-
lence relations as in the groupoid formalism (see Definition 2.1). More importantly for us, a graph
fibration of colored networks is a graph fibration as in Definition 2.19, that additionally respects co-
lors. In particular, it sends cells and arrows to cells and arrows of the same color. This requires both
networks to be colored with the ‘same’ colors – or at least the colors are identifiable. The crucial
semiconjugacy result (Theorem 2.20) then holds for colored graphs as well. For more details on this
see DEVILLE and LERMAN [24]. 4

2.5 Semigroup networks

A standard method to investigate dynamics without any additional structure locally – for example
in the vicinity of an equilibrium – that has proven to be extremely useful in the analysis of local bi-
furcations and generic properties is that of a normal form (see for example MURDOCK [75]). That is,
a ‘simple’ representation of the vector fields in consideration that includes all the interesting dyn-
amical properties, which is derived via coordinate transformations. Inspired by this powerful tool,
and in particular the way it can be computed in terms of Hamiltonian functions for Hamiltonian
systems, RINK and SANDERS, later joined by NIJHOLT, developed an approach to network dynamics of
their own (see NIJHOLT, RINK, and SANDERS [78] and RINK and SANDERS [90, 91]). In order to compute a
normal form in standard ways, one has to compute concatenations – more specifically Lie brackets –
of admissible vector fields. As we already hinted at in the introduction (Chapter 1), this quickly leads
to the problem that in general the interaction structure of a network is lost by doing so. The authors
decided to restrict to a subclass of networks – (homogeneous) coupled cell systems with asymmetric
inputs – and introduce the algebraic structure of a semigroup which allowed them to avoid this ma-
jor issue. This formalism led to multiple interesting observations that could only be explained later
in relation to techniques from the other formalisms that we introduced in the previous sections. As
all the major results in this thesis are devoted to the development of this formalism, we only illus-
trate some of the main ideas and the chronology of progress in the form of a running example in this
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section. We provide a thorough introduction into semigroup networks in Chapter 3. Let us mention
that the chronological presentation may seem to be wrong at first sight. This is due to the fact that
the theory developed quickly so that results were published seemingly ‘out of order’.

2

3

1 4

5

Figure 2.7: A 5-cell homogeneous coupled cell system with asymmetric inputs.

For the running example consider the homogeneous networkN ′ in Figure 2.7 whose admissible
vector fields are of the form

F (x) =


f(x1, x2, x1)

f(x2, x3, x1)

f(x3, x3, x2)

f(x4, x3, x1)

f(x5, x2, x2)

 , (2.7)

where we have attached the same finite-dimensional vector space to each cell. As was mentioned
before, one would like to be able to derive dynamical features that are inherent to the network struc-
ture, in particular generic bifurcations, locally from a normal form of admissible vector fields. The
standard procedure of its computation requires to derive terms from expressions including conca-
tenations of vector fields. This leads to one of the fundamental problems in the investigation of
network dynamics that we introduced already in the introduction (see (1.1)), which is that conca-
tenations in general do not respect the interaction structure of a network. If we concatenate two
admissible vector fields F and G ofN ′ (as in (2.7)), we obtain

(F ◦G)(x) =


f(g(x1, x2, x1), g(x2, x3, x1), g(x1, x2, x1))

f(g(x2, x3, x1), g(x3, x3, x2), g(x1, x2, x1))

f(g(x3, x3, x2), g(x3, x3, x2), g(x2, x3, x1))

f(g(x4, x3, x1), g(x3, x3, x2), g(x1, x2, x1))

f(g(x5, x2, x2), g(x2, x3, x1), g(x2, x3, x1))

 .

This is no longer admissible, as, for example, the fourth entry does not only depend on the variables
x1, x3 and x4 as is dictated by the network structure, but also on x2. From the technical perspective
this has the effect that the admissible vector fields do not form a Lie algebra, which is needed for the
computation of an admissible normal form.

In terms of combinatorics, we see that by concatenation the set of cells having an input into 4

changes, more precisely it enlarges. However, it does not do so arbitrarily. As a matter of fact, in the
concatenation cell 4 depends on 2 but not on 5. The reason for this is that in the network 4 depends
on 3 which in turn depends on 2. So 2 has what we call an indirect input into cell 4. On the other
hand, cell 5 has no indirect input into 4. One of the key ideas the authors proposed was to regard all
indirect inputs as direct inputs – basically by adding arrows for every indirect input – so as to make
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the class of admissible vector fields closed under concatenations. Note that this is not a trivial task.
In general there is no concise way of adding arrows to a network while respecting cell and arrow
types. For example, cell 4 has an indirect input but cell 2 does not. As both are of the same type,
adding an arrow from cell 2 to cell 4 requires another arrow pointing at cell 2 as well. The question
is, where does this input come from?

This issue can be avoided in networks with asymmetric inputs – every cell receives only one ar-
row of each color. Here we also restrict to homogeneous networks which makes the notation less
heavy but is not crucial for the construction. The indirect input from cell 2 to cell 4 comes via a red
arrow from cell 3 which receives a blue arrow from cell 2. Then we can determine similar ‘indirect’
inputs for the remaining cells in the same way. That is, starting at any cell, we first follow a red
arrow backwards and then a blue one. This determines which cell passes information through that
specific channel – i.e. an indirect input. All inputs derived from a red and a blue arrow in this way
are then depicted by an additional arrow of a new color. Due to the asymmetry in the inputs, this
procedure is well-defined and unique. More precisely it produces new arrow colors – consistent with
the network structure – from existing ones, instead of only providing new arrows. We refer to the
backwards following of arrows while respecting colors as the (backward) concatenation of arrows.
This procedure can be continued to produce all possible new arrow colors – this involves also conca-
tenating arrows of new colors. Note that the procedure stops at some point – when the network is
finite –, if we identify arrow colors which describe the exact same interaction structure on all cells.
That is, when all indirect inputs have been added as direct inputs as new arrow colors. The extended
networkN forN ′ is shown in Figure 2.8. Its admissible vector fields are of the form

γf (x) =


f(x1, x2, x1, x1, x2, x3, x1, x2)

f(x2, x3, x1, x2, x2, x3, x1, x2)

f(x3, x3, x2, x2, x3, x3, x1, x2)

f(x4, x3, x1, x2, x2, x3, x1, x2)

f(x5, x2, x2, x1, x3, x3, x1, x2)

 . (2.8)

The interaction structure of the extended network is a lot more complex. As a matter of fact, al-
ready small networks with only a few arrow colors, may yield to a large collection of arrows in the
extended network. However, it brings the advantage that the admissible networks are closed under
concatenations resulting in the benefits hinted at before.

2

3

1 4

5

Figure 2.8: The (extended) semigroup network ofN ′ in Figure 2.7.

To make the introduction slightly more complete, the mechanism of extending the network to
include indirect inputs can be made precise in mathematical terms. To that end, we state the follo-
wing definition.
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Definition 2.22 (Sections 2 and 3 in [92]). A homogeneous network with asymmetric inputsN ′ con-
sists of a collection of cells C = {1, . . . , N} and a collection of input maps Σ′ = {σ1, . . . , σn}. Each
input map σ : C → C is a map on the set of cells that encodes one arrow color in the sense that p ∈ C
receives an arrow of color σ from the cell σ(p). We attach a finite-dimensional real vector space V to
each cell and consider internal dynamics governed by the same function f : V n+1 → V . A coupled
cell system or network dynamical system is a system of ordinary differential equations governed by
admissible vector fields of the form

γf (x) =

 f(x1, xσ1(1), . . . , xσn(1))
...

f(xN , xσ1(N), . . . , xσn(N))

 .

Note that the characterization of the interaction structure in terms of input maps is only possi-
ble because of the assumption of asymmetric inputs. For example the red arrows in Figure 2.7 are
encoded in the map

σ : {1, . . . , 5} → {1, . . . , 5}, 1 7→ 2, 2 7→ 3, 3 7→ 3, 4 7→ 3, 5 7→ 2.

In general, as σ : C → C , the input maps can be concatenated, which is the formalization of concate-
nation of arrows, i.e. στ = σ ◦ τ produces the new arrow color describing indirect inputs following a
τ -arrow backwards and then a σ-arrow. The closure of Σ′ under these concatenations – the smallest
set closed under concatenations that contains Σ′ – can be computed by adding all possible conca-
tenated input functions. The resulting set has the algebraic structure of a semigroup – informally
speaking a group without inverses and identity –, which we denote by Σ. It is the semigroup gene-
rated by Σ′. This semigroup is the set of input maps of the extended networkN . A network whose
input sets form a semigroup is therefore called a semigroup network. The notation can be made
even more compact. Note that we usually assume that all cells depend on themselves as well. We
could have indicated this by attaching a (black) self-loop to each cell. The corresponding input map
is the identity IdC : C → C . Hence, we assume σ1 = IdC to be part of the generating set and adapt
the admissible vector fields accordingly. In that case, IdC also serves as an identity element in the
semigroup which we denote by Id. Thus, Σ has the structure of a monoid. Note furthermore, that
the class of networks defined here could have been encoded in terms of the groupoid formalism as
well.

It turns out that the additional algebraic structure has enormous benefits for the computations
of normal forms. As a matter of fact, concatenation of admissible vector fields can be expressed
in terms of the internal functions and essentially boils down to multiplication of input maps. This
yields a Lie algebra structure on the space of admissible vector fields that allows for the computation
of normal forms according to the standard methods (see RINK and SANDERS [92]). Together with the
combinatorial interpretation of the network extension, this serves as an argument for the investiga-
tion of (extended) semigroup networks instead of homogeneous networks with asymmetric inputs.
That is, to accept the semigroup extension of a network as its ‘natural state’. The semigroup is an
invariant of a network that carries its interaction structure and encodes it for investigations of its dy-
namic evolution. Additionally, note that the class of admissible vector fields of the original network
is contained in that of the extended network. An admissible vector field for the original network can
be extended by trivial dependence on the additional variables provided by indirect inputs. Finally,
let us remark that the extension has no effect on robust synchrony whatsoever. That is, the original
network and its extension have the same robust patterns of synchrony, the corresponding polydia-
gonals are invariant under the flows induced by all admissible vector fields for both networks (see
Lemma 7.3 in RINK and SANDERS [92]). In particular, normal forms computed for semigroup networks
exhibit the same synchrony patterns as the original (non-extended) network. Hence, this crucial
inherent property of a network is unaffected by the semigroup extension, which supports the idea
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that extended networks are a natural class of networks even further. The normal form of semi-
group networks has successfully been applied to investigate unusual (amplified) Hopf bifurcations
in feed-forward chains RINK and SANDERS [90].

Another staggering property of semigroup networks was discovered by the authors as a bypro-
duct of their investigations of normal forms in RINK and SANDERS [92]. They realized that a purely
algebraic construction produces a second network with interesting properties. It has as many cells
as the semigroup network has input maps and the same input maps. Its interaction structure is
defined by the (left) multiplicative behavior of elements in the semigroup Σ.6 More precisely, we
choose Σ as the set of cells as well as the set of input maps with interaction defined by multiplica-
tion from the left – τ receives an input of color σ from στ . Performing the same construction for this
network results in the same network again. This coins the name fundamental network denoted by
Ñ . The fundamental network of the running example can be seen in Figure 2.9. The arrow colors
were deliberately chosen to be the same as in Figure 2.8 as they are determined by the same input
maps.

σ1σ2

σ3

σ4

σ5 σ6

σ7

σ8

Figure 2.9: The fundamental network of the semigroup networkN in Figure 2.8.7

Once again we have constructed a network that is more complicated than the one we started
with. But also once more we gain additional understanding of network structure in return. As a
matter of fact, the fundamental network has several properties that make it an object worth stu-
dying. First and foremost, besides the interactions being defined by the same maps, there is an
actual relation between the semigroup network and its fundamental network with implications on
dynamics. In particular, the interaction structure allows to attach the same internal phase space
V to the cells of the fundamental network and let their internal dynamics be driven by the same
function f . We denote the admissible vector fields of the fundamental network by Γf and call them
fundamental network vector fields.

Theorem 2.23 (Theorem 10.1 in [92]). Denote the total phase spaces of the semigroup network and its
fundamental network by V N and V n respectively. Then the maps

ϕ∗p : V N → V n, (x1, . . . , xN ) 7→ (xσ1(p), . . . , xσn(p))

6It is constructed as the right Caley graph of Σ.
7Figure 2.9 is essentially Figure 4.1 in SCHWENKER [97].
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conjugate γf to Γf , i.e.
Γf ◦ ϕ∗p = ϕ∗p ◦ γf

for all p ∈ C .

Similar to Section 2.4, this semiconjugacy implies, among other things, that solutions of a network
dynamical system for the semigroup network are mapped to solutions of the corresponding funda-
mental network by the maps πp. But also the other direction is possible, solutions of the semigroup
network can be recovered from solutions of the fundamental network with slightly more effort.
Another interesting observation is, that each of these semiconjugacies ϕ∗p gives rise to a robust sy-
nchrony pattern of the fundamental network, where cells σ and τ are synchronous if σ(p) = τ(p) –
i.e. im

(
ϕ∗p
)

is a robust polydiagonal.
Even though the fundamental network has a more complex interaction structure, studying Γf

instead of γf has certain advantages. Most importantly, the fundamental network vector fields are
entirely characterized by symmetry. At this point we state the following theorem only informally.

Theorem 2.24 (Theorem 3.11 in [91]). (i) There is a representation of the semigroup via linear maps
on the total phase space defined by the multiplicative behavior of its elements:

σ → Aσ ∈ gl(V n), Aσ ◦Aτ = Aστ .

(ii) Every fundamental network vector field commutes with this representation

Γf ◦Aσ = Aσ ◦ Γf , for all σ ∈ Σ. (2.9)

(iii) Every equivariant function is a fundamental network vector field.

In the first publication RINK and SANDERS [92] only the first symmetry statement (ii) was shown,
which already has a major impact as it introduces symmetry into the fundamental network vector
fields. These symmetries are not symmetries of the network in the classical sense. The fundamen-
tal network in general does not exhibit any non-trivial symmetries and the representation maps Aσ
are not invertible. However, the equivariance condition (2.9) imposes strict restrictions on suitable
vector fields just as in the classical equivariant dynamics theory. Furthermore, the fundamental net-
work structure can equally be encoded in terms of this symmetry. Combining this result with Theo-
rem 2.23, we see that these symmetries furthermore have an impact on dynamics of the semigroup
network as well due to the semiconjugacy of the admissible vector fields (see also the discussion
after Theorem 2.23). Hence, we refer to them as hidden symmetries of the original networkN . Since
this discovery, several publications have been devoted to the adaptation of methods from equi-
variant dynamics to the semigroup context. Multiple results were derived such as an equivariant
Lyapunov-Schmidt reduction. This provided the tools for a classification of steady state bifurcations
in all 2- and 3-cell fundamental networks (RINK and SANDERS [91]). Newer results describe center ma-
nifolds (NIJHOLT, RINK, and SANDERS [79, 81]) as well as spectral properties in bifurcation problems in
terms of networks and in terms of equivariance (NIJHOLT and RINK [77], NIJHOLT, RINK, and SANDERS

[80], and SCHWENKER [97]).
Even though, the fundamental network construction proved to be powerful for the investigation

of dynamics of semigroup networks, it required the introduction of graph fibrations (compare to
Section 2.4) to thoroughly clarify the reasons for its existence, its properties, and its relation to the
original networks. In NIJHOLT, RINK, and SANDERS [78] the authors provide a reformulation of their
theory in terms of graph fibrations. It turns out that the semiconjugacy between the fundamental
network and the original network (Theorem 2.23) as well as the symmetries of the fundamental
network (Theorem 2.24) are instances of semiconjugacies that are induced by graph fibrations (see
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Theorem 2.20). There are semiconjugaciesϕ∗p between the fundamental network and the semigroup
network for every cell p ∈ C (Theorem 2.23). They are induced by graph fibrations of the form

ϕp : Σ→ C, σ 7→ σ(p)

which map the fundamental network to the original network (see Theorem 6.4 in NIJHOLT, RINK,
and SANDERS [78]). On the other hand, the symmetries of the fundamental network are induced by
so-called self-fibrations, i.e. graph fibrations of the fundamental network to itself. These are of the
form

ϕσ : Σ→ Σ, τ 7→ τσ

for all σ ∈ Σ (see Theorem 7.2 in NIJHOLT, RINK, and SANDERS [78]). In both cases it is important to
bear in mind, that the cells of the fundamental network are given by Σ. Note that the semiconjugacy
condition (2.5) in Theorem 2.20 in the previous section contains the derivative of the induced map
ϕ∗p. However, in the case of vector spaces as internal phase spaces this is no longer necessary, since
the induced map is linear .

This is an explicit example of the impact of the general tool of graph fibrations on network dyna-
mics as they were already anticipated in DEVILLE and LERMAN [24, 25, 26]. Two rather simple types of
graph fibrations allow us to introduce (or rather adapt) well-established machinery from equivari-
ant dynamics to the analysis of networks. This nicely explains some of the similarities of phenomena
observed in both areas like synchronous states or spectral degeneracies by hidden symmetries. Furt-
hermore, it connects the fundamental network structure and its meaning for semigroup networks
to the groupoid formalism. As we mentioned in Section 2.4, graph fibrations can be seen as a genera-
lization of quotients by balanced colorings. Accordingly, we obtain semigroup networks as generali-
zed quotients of their fundamental networks. We end this section with a small illustrative example
for this idea and postpone any further discussion on semigroup and fundamental networks to the
main body of this thesis.

1

2 3

σ1σ2

σ3

σ4 σ5

σ6

ϕ1 : σ1, σ2 7→ 1

σ3, σ4, σ6 7→ 2

σ5 7→ 3

Figure 2.10: A 3-cell semigroup network that is a quotient by a balanced coloring of its fundamental
network.

Example 2.8. For a cell that receives inputs from every other cell in the network, the graph fibration
ϕp is surjective. As a result the image of the induced semiconjugacy is a robust synchrony subspace
of the fundamental network. The graph fibration is then the same as the quotient map by a balanced
coloring in the groupoid formalism. Hence, the semigroup network is contained in the fundamen-
tal network as a quotient and its dynamics is characterized by the restriction of the fundamental
network vector fields to this polydiagonal. Consider the semigroup network on the left hand side
and its fundamental network on the right hand side of Figure 2.10. Cell 1 receives an input from any
other cell in the network. The corresponding graph fibration ϕ1 maps σ1 and σ2 to 1, σ3, σ4, and σ6
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to 2 and σ5 to 3. As this is clearly surjective, it is in fact a quotient map that identifies the cells in
the fundamental network with the same image. The corresponding coloring can be seen in the right
hand side of Figure 2.10. 4

2.6 Asynchronous networks

The remaining two sections of this part introduce two very recent approaches to network dynamics
that have a similar driving idea – namely modularity – but employ completely different techniques.
As these are, furthermore, quite distinct from (Section 2.6) or geared towards less specialized dyna-
mics (Section 2.7) than the formalism we work with in this thesis, we omit most of the details and
summarize only the main ideas. The concept of modularity, as we have mentioned before, describes
the observation that a network is composed of parts – e.g. nodes, subnetworks, quotients –, often
referred to as building blocks, to form a whole (the same holds for other structures as well). It is de-
sirable to deduce understanding about the dynamics of the entire network from the parts building
it.

In BICK and FIELD [19, 20, 21] the authors approach this concept from an engineering perspective,
by focusing on the function of a dynamical network. That is, given some initialization, what ter-
mination state does the network reach after some finite time. They realized that many real world
problems, even though exhibiting structural properties of a network, cannot be modeled by smooth
dynamical systems on fixed networks as is common in the area of network dynamics. Think for ex-
ample of a parallel computer. Therein, multiple computations are carried out simultaneously, e.g. by
cores that are the nodes, and then processed jointly once all computations are terminated. Hence,
interaction happens only in specific states and the internal dynamics varies accordingly, i.e. the task
carried out by each node during interaction is different from the computation before. Furthermore,
restricted dynamics is necessary. Cells have to wait for others to have completed a certain process
before communication or execution of their own tasks can continue. As a matter of fact, cells in
general do not even share the same time frame. For example, two carriers can only exchange goods
when they are located in the same storage facility. This is independent of starting time, speed, and
route before joining each other at a common location. In order to model such applications, one
needs a framework in which each cell has its own time frame, the interaction structure between
cells varies throughout the process as do the internal dynamics, and restricted dynamics, such as
waiting, needs to be possible. These requirements lead to an extension of the network dynamics
theory to non-smooth dynamics.

The authors develop a theory of asynchronous networks and event driven dynamics. The term
asynchronous refers to the fact that each cell has its own time frame. Nevertheless, two cells may
still synchronize in the classical sense, if they happen to follow the same ‘clock’. The dynamics is
event driven due to the changes in structure as well as in governing functions at certain events. We
summarize the definitions informally.

Definition 2.25 (Definition 4.12 and Section 4.6 in [20]). An asynchronous network consists of

(i) a set of cells each with an internal phase space, i.e. a finite-dimensional vector space or differen-
tiable manifold,

(ii) a collection of interaction structures – there can either be one directed connection or no directed
connection from one cell to another and no self loops –,

(iii) an admissible vector field for each of the interaction structures, for example in the sense of the
groupoid formalism,

(iv) an event map sending each point in the total phase space to one of the interaction structures.
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Restricted dynamics, such as stopping, are governed by one specific constraining node. When there
is a connection to another cell, its dynamics is constrained according to the specific constraint struc-
ture. The admissible vector fields are then given by the interaction structure and the corresponding
admissible vector field determined by the value of the event map.

Non-smoothness is introduced into the model by the event map. It picks an interaction structure as
well as a dynamical system for each state of the network. For a given event, however, everything is
defined according to the known formalisms. The constraint structure can then be used to impose
certain restrictions, e.g. algebraic ones, on the dynamics of a node when it is constrained at a given
event. This induces certain regularity conditions on the possible admissible vector fields in order to
guarantee well-definedness. Furthermore, one may include so-called local times into the framework.
To that end, each strongly connected (i.e. all-to-all coupled) component of the network obtains a
local time. This is driving dynamics according to the admissible vector fields and propagated at a
constant rate that differs throughout the components. As the components vary with the events, so
do the local times. As a result, two cells synchronize their local time, when they are connected at a
given event. Even though the dynamical systems governed by these types of admissible vector fields
are non-smooth and highly complex, under certain regularity conditions – in particular concerning
the event map – they induce semiflows of solutions. That is, each initial condition of the network can
be propagated in forward time by a piecewise smooth (with respect to time) function (Proposition
4.25 in BICK and FIELD [20]).

A large part of the theory revolves around the study of these semiflows in terms of functionality.
To that end, one investigates finite-time dynamics, more precisely the question whether the flows
starting in certain initializing sets reach given termination sets in finite time and, if so, in which points
and what time is required for the transition. An asynchronous network together with initializing
and termination sets is called a functional asynchronous network. Its function is transitioning any
initialization state to the corresponding termination state.

Obviously, not all combinations of these sets are possible. However, a functional network with
suitable initialization and termination sets can be interpreted as a black box fulfilling its function.
As a result, one can build larger functional networks by feeding the termination of one network into
the initialization of another. Other combination methods, such as parallel networks, are possible as
well. Hence, we obtain a modular structure of functional networks in terms of building blocks with
input/output-relations given by their function. The most important feature of this building method
is that the transmission in one building block occurs in forward flowing time. Hence, complicated
combinations such as feedback-loops are prohibited. The authors derive a powerful result on the
dynamics of a functional asynchronous network that captures the spirit of the main question of
modularity: the factorization and modularization of dynamics theorems.

Theorem 2.26 (compare to Theorem 1 in [19]). Under general conditions, a functional asynchronous
network has a unique (up to rearrangement) decomposition into building blocks. Its function can be
expressed in terms of the function of its building blocks.

This theorem provides deep understanding of modularized dynamics. However, certain restrictions
still need to be accepted. In particular, the theorem does not provide general knowledge about the
dynamics of the network from understanding of all its building blocks. On the other hand, not many
results regarding modularity of dynamics in that generality are known. This result is an essential
step in that direction, as it allows to deduce the networks function precisely from that of its buil-
ding blocks, i.e. the transition of initializing states into termination states. If one agrees, that the
function of a network is its key feature – which is certainly the case in the applications presented
in the references –, this result provides all the important information via a modular computation.
Furthermore, it allows for great benefits in the design of networks with a predefined functions which
could prove to be very useful in suitable applications. All the details on the constructions of networks
and their function as well as several examples, including applications of trains on single lane tracks

42



that need to pass each other in certain stations, can be found in the mentioned references that we
recommend for further reading.

2.7 Modular systems and operad algebras

The final approach we introduce focuses strongly on the concept of modularity by introducing ca-
tegory, operad, and sheaf-theory into network dynamics. This abstractly algebraic theory bears re-
semblance to the one developed by DEVILLE and LERMAN (Section 2.4). Once again, we try to keep the
presentation as simple as possible in order to transport only the main ideas. To that end, we use the
language of category theory without precise definitions and highlight new terms on first occasion.
For a more in-depth introduction, the reader should consult the mentioned references.

The main idea in the theory is to consider networks as systems of systems in the sense that a
network consists of smaller parts that are connected, each of which can be considered as a system
in its own right – the authors use the keyword compositionality instead of modularity. These parts
can be single units or nodes of the network but also entire subnetworks. This idea can be thought
of as zooming into a given network to arbitrary depth. This formalism shares its philosophy with
asynchronous networks (Section 2.6). Contrary to the notion therein in which interaction of agents
requires the flow of time – with good reasons from the applications in mind – here communica-
tion between building blocks in general happens instantaneously. This is also implicit in the other
approaches we mentioned.

The theory was developed in a series of papers by SPIVAK and collaborators (RUPEL and SPIVAK

[93], SPIVAK [101, 102], SPIVAK, SCHULTZ, and RUPEL [103], and VAGNER, SPIVAK, and LERMAN [112]) that is
summarized and further extended using sheaf theory in SCHULTZ, SPIVAK, and VASILAKOPOULOU [96].
Parts of it are also presented from a broader perspective in the beautiful book on applied category
theory FONG and SPIVAK [39]. We also recommend this reference for background on the category
theoretic aspects of this section. Furthermore an extension to networks with time-varying topology,
called mode dependent networks by the authors is, is available (see SPIVAK and TAN [104]). The ap-
proach has since been successfully applied to model an Aircraft Collision Avoidance System (ACAS)
inspired by a real-world system that is used in airplanes to prevent in-air collisions (see SPERANZON,
SPIVAK, and VARADARAJAN [100]).

The corner stone of the formalism is the symmetric monoidal category (WC ,⊕, 0) that is called
the category of C-labeled boxes and wiring diagrams (see Definition 2.2.2 in SCHULTZ, SPIVAK, and
VASILAKOPOULOU [96]). The objects of this category are ‘empty’ boxes with collections of input and
output ports p = (I,O) = ({I1, . . . , Ik}, {O1, . . . , Ol})

p

I1

I2

. . .

Ik

O1

O2

. . .

Ol .

Each port is assigned with an element of the typing category C that determines what type of infor-
mation gets passed through a given port into or out of the box X .

These boxes can be connected – or wired – in two different ways to build networks. Parallel
composition turns two boxes into a larger one with the inputs and outputs of both individual boxes
combined. This makes for the monoidal structure ⊕. Secondly, boxes can be nested using the mor-
phisms or maps in the categoryWC . A map ϕ : p → q in the category is called a wiring diagram as
it describes how the box p sits in the box q, i.e. how the inputs of p are connected to the inputs of q
as well as the outputs of p, and how the outputs of p are connected to the outputs of q. Iteratively
combining these methods allows to connect boxes to form arbitrary networks, which completes the
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algebraic framework. An example of this construction method is shown in Figure 2.11. The next step
is to construct dynamical objects that can fill or inhabit the boxes in a way that the algebraic operati-
ons for boxes are respected by the dynamics of its inhabitants. On a technical note, the construction
involves identifying the category WC with its underlying symmetric colored operad to encode the
wiring ofN cells in terms ofN -ary morphisms using the monoidal structure. This identification pro-
vides the technical background in other parts of the formalism as well. However, we do not include
any more details in this text.

q

p

=

p

q

p⊕ q

ϕ(p⊕ q)

Figure 2.11: A wiring of two boxes to build a network.

In order to incorporate dynamics into networks described by wired boxes the authors widely
generalize the notion of dynamical systems. They propose objects describing dynamical behavior
in different time frames to inhabit boxes and exchange inputs and outputs according to wiring di-
agrams. As we have mentioned in the presentation of asynchronous networks, this yields severe
problems, especially when modeling real world systems. In particular, the construction requires to
begin by translating the different notions of time into one, that is suitable for all of the subsys-
tems. A natural way of doing so comes with the description of time dependent behavior in terms of
so-called (continuous) interval sheaves (see Definition 3.2.2 in SCHULTZ, SPIVAK, and VASILAKOPOULOU

[96]). These include a common notion of time for subsystems that interact. Informally speaking,
interval sheaves are functions, mapping intervals into a given set, that can uniquely be glued toget-
her. This property allows for the interconnection of different subsystems. The intervals can then be
interpreted as a notion of time and the sheaf describes flow of information or data, in order to mo-
del evolving processes. We use sheaves to describe states, inputs, and outputs of boxes. Due to their
flexibility, this formalism introduces very general types of dynamics – various types of information
flows can be defined in this language. Interval sheaves together with translations form a category
that we denote by Ĩnt. We omit any further details at this point and refer to SCHULTZ, SPIVAK, and
VASILAKOPOULOU [96] for further information.

In order to include interval sheaves into the network formalism, we let them inhabit boxes in
wiring diagrams. That is, to a box p = (I,O) we assign three sheaves S,S in and Sout together with
a sheaf map s = (sin, sout) : S → S in × Sout – i.e. a span of the input and output sheaves. These
sheaves describe the evolution of the state, the input, and the output respectively. The relation
between input and output is determined by the state sheaf S and the map s. We refer to these
objects as (continuous) machines (see Definition 4.1.1 in SCHULTZ, SPIVAK, and VASILAKOPOULOU [96]).
According to the notation from before, the category of boxes inhabited by machines is denoted by
W

Ĩnt
.

Interval sheaves provide sufficient flexibility to allow for arbitrary wiring, composition and nes-
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ting of machines according to the rules defined for boxes and wiring diagrams. The operations on
boxes and wiring diagrams induce similar ones on machines. One obtains maps transforming state,
input and output sheaves into new ones for the interconnected systems. This provides a new ma-
chine encompassing the behavior of all of its components. This new machine guarantees that inte-
racting components follow the same time frame. Formally speaking, continuous machines form an
algebra for the symmetric colored operad of wiring diagramsW

Ĩnt
(see Proposition 4.1.3 in SCHULTZ,

SPIVAK, and VASILAKOPOULOU [96]).
Certainly, in this generality problems regarding consistency of a network of continuous machi-

nes may arise. In SCHULTZ, SPIVAK, and VASILAKOPOULOU [96] the authors, provide conditions on the
sheaf map s to guarantee totality and determinism of interconnected systems (see Proposition 4.2.1
and Definition 4.2.2 in SCHULTZ, SPIVAK, and VASILAKOPOULOU [96]). These properties denote the per-
sistence of a machines state for a given input/output-configuration when time – and hence also
input – flows over a short period of time. The terms correspond to existence and uniqueness pro-
perties in the theory of ordinary differential equations which is a sufficient way of thinking about
them for the scope of this text. The mentioned conditions are independent of the specific wiring.
They impose restrictions on the sheaves that can be attached to boxes. Hence, they allow only for a
restricted class of dynamics but keep all possible interconnections admissible.

One type of dynamics that can be described in terms of interval sheaves are so-called open sys-
tems (see Definition 2.3.3 in SCHULTZ, SPIVAK, and VASILAKOPOULOU [96]). This formalism from control
theory is used to encode dynamics that is in interaction with its environment similar in spirit to the
control systems from Section 2.4 (Definition 2.17) but slightly more general. The time evolution of
the state variable x ∈ V depends on some (time dependent) input xin ∈ V in. Furthermore, the
system produces an output xout ∈ V out. We only employ internal dynamics in finite dimensional
vector spaces here. However, a generalization to manifolds is also available. The system is denoted
by F = (V, fdyn, f rdt) with smooth dynamics and readout functions{

fdyn : V in × V → V

f rdt : V → V out.
(2.10)

It is to be interpreted as a vector field in V that depends on parameters in V in and furthermore
produces an output in V out. This reflects the idea of black boxes, of which we only know and care
about the input/output relation but not about the internal state. Such open systems offer a class
of dynamical systems that can be interconnected in a natural way. The output of one system can
be plugged into the input of a second one as long as their input and output spaces coincide. This
allows to create networks of systems that can be of diverse types. Especially, their state spaces do
not interfere with coupling. All that matters is the compatibility of input and outputs of individual
systems.

Then we may assign the smooth machine S in sin
←− S sout

−−→ Sout to the open dynamical system
(V, fdyn, f rdt). The sheaf S describes the smooth trajectories and also encompasses the inputs. It
is defined via sections given by

S(`) =

{
(xin, x) : [0, `]→ V in × V

∣∣∣ xin, x are smooth and
dx

dt
= fdyn(xin, x)

}
.

The sheaf maps sin and sout map the section onto the corresponding inputs and outputs via the
output function f rdt:

sin(xin, x) = xin

sout(xin, x) = f rdt(x).

Their images are the input and output sheaves S in and Sout (see Proposition 5.1.2 in SCHULTZ, SPIVAK,
and VASILAKOPOULOU [96]).
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Summarizing, we can define a highly general class of time dependent systems that allows for ar-
bitrary interconnections and nesting. Via construction all subsystems share a common conception
of time when they interact which increases constructability. The systems can describe dynamics in-
duced by ordinary differential equations. But also much more general types of dynamical systems,
such as systems with discrete states such as piecewise constant signals or hybrid versions can be
defined in a similar manner. This flexibility makes for a great potential in real world applications.
We can model highly diverse types of dynamics in which information or data passes through an un-
derlying network structure, such as power grids, transport networks, neuronal networks and many
others. Compositionality, furthermore, allows to investigate such networks from different scales as
it allows to ‘zoom’ in and out of the structure.

Analytically, this comes with its up- and downsides. The formalism – in particular the algebra of
continuous machines for the operad of wiring diagrams – has already proven to be powerful for a
modular analysis of network dynamics. That means, we can analyze a full system made up of smaller
building parts by using knowledge of its parts. The methods of computation are in accordance to the
rules of wiring of building parts. For example in SPIVAK [102], the authors investigate steady states
of interconnected systems as an example. They show that these can be encoded in a generalized
matrix. The steady state matrix of an interconnected system can then be computed from those of
its components using basic matrix arithmetics. The rules of computation are compatible with the
operations of wiring of systems and remain the same for all possible systems. The authors also
provide a short discussion of computational savings from the use of steady state matrices.

On the other hand, the flexibility of the approach potentially leads to the presence of various
different types of data that need to be taken into account in computations. This in turn, makes ana-
lytical investigations of dynamics much more complicated. Furthermore, the compositional com-
putations are not necessarily simpler than classical techniques. So far, no notion of genericity has
been introduced into this formalism. One would like to identify implications that a given network
structure has on any – or at least almost any in some sense – dynamical system with the network
as its underlying structure. This seems to be a difficult task in the present formalism. It is possi-
ble to attach very different kinds of dynamical systems to networks of boxes and wiring diagrams.
Therefore, it is even difficult to coin a common conception of genericity that can be applied to these
diverse dynamics.

Remark 2.27. The formalism presented in this section was developed in parts simultaneously to the
category theory inspired approach to modular dynamics using graph fibrations that we presented
in Section 2.4. It is similar in spirit even though the focus is different. In DEVILLE and LERMAN [25]
the authors refer to VAGNER, SPIVAK, and LERMAN [112] by mentioning the fact that “Open continu-
ous time systems form an algebra over a certain operad”, which they identify in their work as well
as implicitly in the combinatorial approach to networks (Section 2.3). They claim that the relation
between this operad and graph fibrations is not fully understood and postpone a thorough investi-
gation to future work. Recently, attempts have been made to close this gap. In LERMAN [72] (which is
a follow-up of the preprint LERMAN and SPIVAK [73]) the idea of interpreting a network in terms of a
colored operad is used to generalize the framework of networks of control systems previously used
in the approach by DEVILLE and LERMAN. This allows for a natural way of building larger networks
from existing ones – the networks in Section 2.4 are fixed and modularity is restricted to the investi-
gation of subsystems or quotients. Furthermore, a generalized notion of maps between networks of
open systems is proposed. This allows for generalized synchronization results similar to those obtai-
ned by graph fibrations and quotient maps. As a matter of fact, in Section 10 of LERMAN [72], the
author thoroughly discusses how this theory extends the definitions and results from DEVILLE and
LERMAN [24, 25, 26]. On the other hand, it provides new operadic approaches to networks that allow
for further understanding of modularity (in particular of maps of networks), that were not possible
in the setting presented in this section. The general forms of dynamics described in the language of
sheaves, however, is not pursued. 4
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Chapter 3

Hidden symmetry in semigroup networks

This chapter marks the beginning of the main body of this thesis which stretches over Parts II and III.
Our results further develop the formalism of semigroup network dynamical systems – to which we
mostly refer as homogeneous coupled cell systems, homogeneous coupled cell networks, or sim-
ply as networks. In Part II we present the main results regarding bifurcations in parameter depen-
dent systems. We mainly exploit the hidden symmetries introduced in Section 2.5 to use and adapt
techniques from equivariant bifurcation theory. This chapter sets up the underlying formalism more
thoroughly than it was done in the introduction. It was mainly developed in NIJHOLT, RINK, and SAN-
DERS [78] and RINK and SANDERS [91, 92] with some additions given in NOETHEN [85]. Therein one
can also find adaptions of the established techniques of normal forms [92] and Lyapunov-Schmidt
reduction [91]. A network version of the center manifold reduction was later added in NIJHOLT, RINK,
and SANDERS [79, 81]. Additionally, AGUIAR, DIAS, and SOARES [10] investigate properties of the fun-
damental network and NIJHOLT, RINK, and SANDERS [80] describe the impact of certain substructures
of a network on its dynamics. Finally, we would like to mention two pieces of work that focus on
the theoretical aspects of equivariant dynamics with respect to generalized symmetry: NIJHOLT and
RINK [77] and [97] by the author of this text. These results are also part of this thesis and will be
presented in the upcoming chapters. Some overlap with Section 2.5 cannot be avoided. However,
we provide more details at this point. On the other hand, we omit any motivation and historical
background and refer to the introductory section for these information. Our work on semigroup
networks has also led to some additional, mostly technical, results or reformulations that are not
part of the aforementioned references. We chose to include some of these at points were they fit
into the context at the risk of inducing confusion which results are novel. We state results that
were not provided by the author of this thesis and his co-authors without proofs. Furthermore, we
indicate these definitions and statements with references to the literature.

3.1 Semigroup networks, fundamental networks, and hidden symmetry

3.1.1 Homogeneous coupled cell systems with asymmetric inputs

We are interested in homogeneous networks with asymmetric inputs, i.e. networks in which all cells
are of the same type and receive precisely one input of each type. In a graphical interpretation all
nodes have the same shape but all arrows pointing at one cell have different colors. The interaction
structure can be encoded in terms of functions from the set of cells to itself.

Definition 3.1 (Section 2 in [92]). A homogeneous (coupled cell) network with asymmetric inputsN
consists of a finite set of cells or nodesC with #C = N and a finite set of input maps Σ with #Σ = n.1

Each input map Σ 3 σ : C → C can be interpreted as one arrow color, i.e. cell p ∈ C receives an input
of color σ from cell σ(p).

1The symbol # denotes the number of elements in a finite set.
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Note that this notation implicitly requires the identifications of arrow colors that have the same
interaction structure. That is, if σ′ = σ̃ are the same input maps, the corresponding arrow colors
provide the same inputs for each cell. Hence, we interpret them as only one arrow color σ. The
notation of interactions in terms of maps allows for a convenient definition of paths in a network.

Definition 3.2. A (directed) path from p to q for two cells p, q ∈ C is the sequence ωp,q = (p1, . . . , pk),
where p1 = p, pk = q and there exist σ1, . . . , σk−1 ∈ Σ such that σ1(pk) = pk−1, . . . , σk−1(p2) = p1.
If all pi are pairwise different the path does not contain any loops. Denote the set of all paths without
loops from p to q by Ωp,q = {ωp,q | ωp,q has no loops}.

Sometimes it is handy to look only at those parts of a network, that have an input into a given
cell.

Definition 3.3 (Definition 6.5 in [78]). Fix a cell p ∈ C . Its input networkNp has the set of cells

Cp = {p} ∪ {q ∈ C | Ωp,q 6= ∅}

and input maps Σ.

Note that any path into a cell inCp is also a path into p so that the input network is well-defined. Con-
trary to the input tree in the groupoid formalism we do not artificially distinguish inputs according
to arrow colors. A cell might have multiple inputs into p via different arrow colors. Furthermore, by
including all input maps into the input network of p it also contains interactions between q, q′ ∈ Cp
when q, q′ 6= p.

In order to incorporate dynamics into these networks, we attach a finite-dimensional vector
space V to each cell that we call the internal phase space. As the network is homogeneous, this is the
same for all cells. The total phase space, i.e. the phase space of the entire network, is the direct sum⊕

p∈C V
∼= V N . To reflect the networks cells we choose coordinates as x = (xp)p∈C = (xp1 , . . . , xpN )

(the last representation is only reasonable when an ordering of the cells has been chosen). As a cell
receives an input via every input map, the coupling phase space (in the language of the groupoid
formalism) is

⊕
σ∈Σ V

∼= V n. Note that this is not the same as the total phase space of the input
network of a cell. Furthermore, the internal dynamics is governed by the same function for each cell.

Definition 3.4 (Definition 2.1 in [92]). Let f ∈ C∞(
⊕

σ∈Σ V, V ) be a smooth response function – also
referred to as internal dynamics. Then the homogeneous coupled cell vector field – or admissible
vector field – is defined by

γf (x) =


f(xσ1(p1), . . . , xσn(p1))

f(xσ1(p2), . . . , xσn(p2))
...

f(xσ1(pN ), . . . , xσn(pN ))

 , (3.1)

where we have assumed an ordering of the cells and the input maps. A homogeneous coupled cell
system is a system of ordinary equations governed by an admissible vector field

ẋ = γf (x).

Remark 3.5. We focus exclusively on smooth time-continuous dynamics in this thesis. However,
the formalism can readily be adapted to describe systems with less regularity as well as discrete
dynamics. 4

3.1.2 Relations to other formalisms

We have briefly introduced some general concepts for the investigation of network dynamics in
Chapter 2. It turns out, that the formalism of encoding interactions via input maps greatly simplifies
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some of these notations and results. For example, one often describes the network structure in
terms of adjacency matrices. A general notion is that of defining an N ×N -matrix for every type of
input such that the (i, j)-th entry is the number of arrows of that type from cell pj to pi. Here we use
a slightly more general concept by extending this definition to the total phase space.

Definition 3.6. For each σ ∈ Σ define a linear map Bσ :
⊕

p∈C V →
⊕

p∈C V by (Bσ(x))p = xσ(p).
Choosing an ordering of the cells and coordinates according to the cells as before, this is an N × N

matrix with entries from the linear maps on the internal phase space V . We refer to the Bσ as the
adjacency matrix of the arrow color σ.

Remark 3.7. Choosing a basis for V , we may interpret these matrices asN ×N block matrices. Their
structure is independent of the internal phase space:

(Bσ)p,q =

{
1V , if σ(p) = q

0, otherwise,

where 1V , 0 ∈ gl(V ) are the identity and the 0-map respectively. Here gl(V ) denotes the algebra of
linear maps on V . In particular, if the internal phase space is V = R, we may identify gl(R) with R
so that the entries are either 1 or 0. In that case, we obtain the classical adjacency matrices. 4
Usually, we do not make use of the fact that adjacency matrices encode the interaction structure
precisely. However, extending them to linear maps on the total phase space has interesting implica-
tions for linear network vector fields. In particular, the adjacency matrices span the space of linear
admissible maps in the sense that is made precise in the following proposition.

Proposition 3.8. Let L :
⊕

p∈C V →
⊕

p∈C V be linear and admissible, i.e. defined as in (3.1) for some
linear response function. Then L is of the form

(Lx)p =
∑
σ∈Σ

bσ(Bσ(x))p (3.2)

where bσ ∈ gl(V ) are linear maps on V independent of p.

Proof. A linear admissible map L is uniquely defined by a linear response function l :
⊕

σ∈Σ V → V ,
i.e. L = γl. As l is linear and its arguments are labeled by the input maps σ ∈ Σ, we find bσ ∈ gl(V )

such that
l(Y ) =

∑
σ∈Σ

bσYσ,

where Y = (Yσ)σ∈Σ ∈
⊕

σ∈Σ V . Then for x ∈
⊕

p∈C V the p-th entry of Lx depends on the entries
xq such that there is an arrow from q to p, i.e. there is σ ∈ Σ such that σ(p) = q. We obtain

(Lx)p = l(xσ1(p), . . . , xσn(p)) =
∑
σ∈Σ

bσxσ(p) =
∑
σ∈Σ

bσ(Bσ(x))p.

Corollary 3.9. If V = R any linear admissible map L is a linear combination of the Bσ , i.e.

L =
∑
σ∈Σ

bσBσ

for some bσ ∈ R using the identification gl(R) ∼= R.

As we mentioned in Section 2.1, symmetric networks receive a considerable amount of interest.
Broadly speaking, a symmetry of a network is a permutation of its cells that leaves the interaction
structure intact. In particular, the cells that have an input into cell p ∈ C get mapped to cells that
have an input into the image of p via an arrow of the same color. In terms of graph theory a symme-
try is an automorphism of the directed multigraph that depicts the network structure. Such symme-
tries can readily be expressed in terms of input maps (Section 7 in RINK and SANDERS [92]).
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Definition 3.10 (p. 3523 in [92]). A symmetry of the networkN = (C,Σ) is a permutation p : C → C

such that
p ◦ σ = σ ◦ p

for all σ ∈ Σ. The set of all symmetries of a network is called its symmetry group. A network with
non-trivial symmetry group is called a symmetric network.

The symmetry group obviously has the algebraic structure of a group. Note, furthermore, that
the admissible vector fields of a symmetric network are equivariant with respect to the natural re-
presentation of the symmetry group on the total phase space. That is, the maps

Pp :
⊕
p∈C

V →
⊕
p∈C

V, (xp)p∈C 7→ (xp(p))p∈C

satisfy
Pp ◦Pp′ = Pp◦p′

and
γf ◦Pp = Pp ◦ γf (3.3)

for all admissible vector fields. Hence, the dynamics of the network can be investigated by the likes
of the well-established theory of equivariant dynamics (see for example CHOSSAT and LAUTERBACH

[23], FIELD [36], and GOLUBITSKY, STEWART, and SCHAEFFER [58]).
The next aspect to notice is that the definition of homogeneous coupled cell networks and their

admissible vector fields is in accordance with the groupoid formalism presented in Section 2.2 (see
also Section 5 in NIJHOLT, RINK, and SANDERS [78]). In particular, there is precisely one input isomor-
phism between any two cells mapping p to q and any arrow pointing at p onto the unique arrow
of the same color pointing at q. This reflects in the same internal phase space and the same re-
sponse function for each cell. One of the most important features of network dynamics is (partial)
synchrony. That is, a solution of the coupled cell system in which the state variables of certain cells
are equal. Robust patterns of synchrony are those, that are invariant under the dynamics of all ad-
missible vector fields. Recall that these are in one-to-one correspondence to balanced colorings (in
the language of the groupoid formalism (Theorem 2.8)) or balanced partitions (in the combinato-
rial language). We do not restate the details here but rather point out that these results can be
reformulated for homogeneous coupled cell networks in terms of input maps.

Proposition 3.11 (Proposition 7.2 in [92]). LetP = {P1, . . . , Pr} be a partition of the set of cellsC . Then
the following are equivalent

(i) For every f ∈ C∞(
⊕

p∈C V, V ) the subspace

∆P =

x ∈⊕
p∈C

V

∣∣∣∣∣∣ xp = xq, if p, q ∈ Pi for some 1 ≤ i ≤ r


is invariant under the dynamics of γf , i.e. it is a robust synchrony subspace.

(ii) For all σ ∈ Σ and 1 ≤ i ≤ r there exists 1 ≤ j ≤ r such that σ(Pi) ⊂ Pj .

Hence, the condition in (ii) of that proposition determines all balanced partitions in the network.
Finally, we recall another tool for the investigation of dynamics and the influences of network

structure thereon that are inspired by category theory, namely graph fibrations (see Section 2.4).
These maps between networks respect the interaction structure and can be used to encode struc-
tural properties of a network. Examples include dependency relations, subnetworks, quotients,
and balanced partitions. We do not restate the general definition here but rather a reformulation
in terms of input maps. The more restrictive setting allows us to simplify notation compared to
Section 2.4.

54



Definition 3.12 (Proposition 5.3 of [78]). Let N1 = (C1,Σ1) and N2 = (C2,Σ2) be two networks.
Then we call a map ϕ : C1 → C2 a graph fibration ϕ : N1 → N2 if and only if there is a bijection
ϕΣ : Σ1 → Σ2 such that for all input maps σ ∈ Σ1 we have

ϕ ◦ σ = ϕΣ(σ) ◦ ϕ.

Remark 3.13. In particular, a necessary condition for the existence of a graph fibration between two
networks is that both have the same number of input maps. In graphical terms that means, we
can assign the same set of colors to the arrows of both networks so that the bijection ϕΣ is the
identification of arrow colors in different networks. 4

Graph fibrations are of great importance as they do not only relate two networks but also their
corresponding dynamics. We may assign the same internal phase spaces to any two homogeneous
coupled cell networks. If they additionally have the same number of input maps – identified as in the
previous remark – each cell receives the same number of inputs from the same vector space in both
networks. Hence, we can consider dynamics governed by the same response function in both net-
works and compare them. A graph fibration induces a semiconjugacy between the corresponding
admissible vector fields which strongly impacts their dynamics. We restate the following theorem
to make this more precise.

Theorem 3.14 (Theorem 4.3 in [78]2). Let N1 = (C1,Σ1) and N2 = (C2,Σ2) be two networks and
ϕ : N1 → N2 a graph fibration. Then ϕ induces a linear map between the total phase spaces defined
by

ϕ∗ :
⊕
p′∈C2

V →
⊕
p∈C1

V

(ϕ∗y)p = yϕ(p).

(3.4)

This linear map is a semiconjugacy between the corresponding admissible vector fields γN1
f and γN2

f

with the same arbitrary response function f ∈ C∞(
⊕

σ∈Σ1
V, V ):

ϕ∗ ◦ γN2
f = γN1

f ◦ ϕ
∗. (3.5)

In particular, any integral curve y(t) for the network N2 is sent to an integral curve x(t) = ϕ∗y(t).
Furthermore, the graph fibration induces the robust pattern of synchrony

∆ϕ =

x ∈⊕
p∈C1

V

∣∣∣∣∣∣ xp = xq, if ϕ(p) = ϕ(q)

 .

Any robust pattern of synchrony of N1 arises from a graph fibration into some other network in this
way.

Remark 3.15. As we mentioned already in Section 2.4 the balanced partitions in Proposition 3.11 can
be encoded in graph fibrations so that the existence of the corresponding synchrony spaces follows
as a special case from Theorem 3.14. 4
Once a graph fibration between networks is known, the dynamical implications can be investigated
immediately via the induced semiconjugacy. It can also be useful not to seek for graph fibrations
between two different networks. For example dependency between ‘parts’ of a network can be des-
cribed in this language as well (compare to Example 2.7), which can be used to express feedforward
structure entirely in terms of graph fibrations. Furthermore, one might extend a network to one
with nice properties and draw conclusions on the original one via semiconjugacy. This is the under-
lying idea of the fundamental network that we introduce in the next parts which will also be the

2The authors state it as a reformulation of Theorems 3.8 and 3.11 in DEVILLE and LERMAN [25].
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only instance of explicit usage of graph fibrations in this thesis. For more examples see Section 2.4
and consult DEVILLE and LERMAN [24, 25, 26] and NIJHOLT, RINK, and SANDERS [78]. It is not yet com-
pletely clear what other structural features can be encoded in graph fibrations the investigation of
which is due to further research.

3.1.3 Semigroup networks

We make two additional assumptions on the set of input maps. As they are maps on the set of
cells C , they can be concatenated τ ◦ σ : C → C , which we abbreviate by τσ. This concatenation
can be interpreted as another input map. A cell p ∈ C receives an input of color σ from σ(p). This
in turn receives an input of color τ from τ(σ(p)). Hence p receives what we call an indirect input
of color τσ from (τσ)(p). The map τσ describes the indirect input of this color of any cell. We use
the same term – indirect inputs – for this construction following finitely many arrows backwards.
However, in general τσ need not be an element of Σ. Thus, we make the assumption that this is
indeed the case, i.e. τσ ∈ Σ for all σ, τ ∈ Σ. This gives the set of input maps Σ the structure of a
semigroup with multiplication or product given by concatenation of maps. Certainly, not every set
of input maps has this property but it can be extended to a semigroup. There are multiple ways of
doing so, all leading to the same result. The smallest semigroup containing Σ is the intersection of
all semigroups containing Σ. It can be computed by including all possible products of finitely many
elements in Σ. Then the resulting set is necessarily closed under taking products. The resulting set
is also called the closure of Σ or the semigroup generated by Σ. If Σ = {σ1, . . . , σn}we denote it by

〈Σ〉 = 〈σ1, . . . , σn〉 = {σ1, . . . , σn, σn+1, . . . σn′}, (3.6)

where σn+1, . . . , σn′ are all possible products of finitely many elements in Σ. In particular, for every
n + 1 ≤ j ≤ n′ there exist 1 ≤ i1, . . . , ikj ≤ n such that σj = σi1 · · ·σikj . Note that the resulting
semigroup is always finite as there are only finitely many transformations on the finite set C . We
refer to the network with set of cells C and input maps 〈Σ〉 as the (semigroup) extension of the
original network. The inclusion of all products of finitely many input maps means that we consider
all the indirect inputs as direct inputs as well. This is in some sense a natural definition of networks.
We discuss further reasons and implications on network dynamics shortly.

We usually assume that each cell depends on its own state. This can also be expressed in terms
of input maps. To that end, we assume one of the input maps to be the identity on the set of cells
IdC ∈ Σ. That means each cell receives an input of the same color from itself, as IdC(p) = p for
all p ∈ C (we usually omit the corresponding arrow when depicting networks). Note that this map
also acts as an identity in the semigroup, i.e. IdC ◦σ = σ ◦ IdC = σ for all σ ∈ Σ. Following this
assumption, Σ has the structure of a monoid with identity Id = IdC . Without loss of generality, we
assume σ1 = Id, whenever we choose an ordering of the input maps. Hence, the first argument of
the response function will always be the state variable of the cell itself.

In the remainder of this subsection we want to provide some additional intuition from Sections 3
and 7 in RINK and SANDERS [92] why considering sets of input maps that are closed under concate-
nation is natural. To that end consider the network N = (C,Σ) and its extension N ′ = (C, 〈Σ〉).
In particular, both networks have the same number of cells and, attaching the same internal phase
space, also the same total phase space. This part only considers the extension to a semigroup. As
the difference to a monoid of input maps depends only on a mere convention – Does the state of
a cells depend on itself? –, which holds for the original network as well as its extension, we do not
discuss these effects here. First of all, note that we can also extend admissible vector fields to the
extended network. In particular, for a smooth response function f ∈ C∞(

⊕
σ∈Σ V, V ) we define an

extension f ′ ∈ C∞(
⊕

σ∈〈Σ〉 V, V ) via

f ′(y1, . . . , yn, yn+1, . . . , yn′) = f(y1, . . . , yn),
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where n′ is as in (3.6). Then obviously γN ′f ′ = γNf , since

(γN
′

f ′ )p(x) = f ′(xσ1(p), . . . , xσn(p), xσn+1(p), . . . , xσn′ (p)) = f(xσ1(p), . . . , xσn(p)) = (γNf )p(x)

for all x ∈
⊕

p∈C V and all p ∈ C . Hence, every network vector field of the original network can be
seen as a vector field for the extended network. More precisely, the admissible vector fields of the
original network form a subspace of the space of admissible vector fields for the extension.

Furthermore, the extension of the set of input maps has no effect on some of the most important
structural features of a network, namely symmetry and synchrony. That is, a symmetry of the origi-
nal network is also a symmetry of its extension and vice versa. Accordingly, a pattern of synchrony
is robust for the original network if and only if it is robust for its extension.

Lemma 3.16 (Lemma 7.1 in [92]). Let p : C → C be a permutation. Then p is a symmetry of N if and
only if it is a symmetry ofN ′.

Lemma 3.17 (Lemma 7.3 in [92]). Let P = {P1, . . . , Pr} be a partition of the set of cells C and ∆P the
corresponding synchrony subspace as in Proposition 3.11. Then ∆P is a robust synchrony subspace for
N if and only if it is a robust synchrony subspace forN ′.

Motivated by these facts, from now on, we assume all networks to be homogeneous coupled cell
systems whose input set has the structure of a monoid unless stated otherwise.

Remark 3.18. The input networks in a semigroup network can readily be encoded in terms of input
maps. For a fixed cell p it contains all cells q ∈ C such that there is a path from q to p. This is
equivalent to q having an indirect input into p. As we consider all indirect inputs as direct inputs,
this can be expressed as

Cp = {p} ∪ {σ(p) | σ ∈ Σ}.

When Σ is a monoid we do not need to add p separately

Cp = {σ(p) | σ ∈ Σ}.

4

3.1.4 Fundamental networks

Given a semigroup network, one may construct a second network that is related to the original one
via graph fibrations. Its interaction structure is determined by properties of the monoid of input
maps, i.e. by the multiplicative behavior of its elements.

Definition 3.19 (Section 10 in [92]). Given a semigroup networkN = (C,Σ) we define its fundamental
network Ñ = (Σ,Σ) – i.e. it has cells labeled by Σ – in which input maps act by multiplication from
the left. That is τ ∈ Σ receives an arrow of color σ from στ .

We attach the same internal phase space V and the same internal dynamics to the cells of the fun-
damental network – the coupling phase spaces coincide for both networks. The fundamental network
vector fields are defined as in (3.1) and are of the form

Γf (X) =


f(Xσ1σ1 , . . . , Xσnσ1)

f(Xσ1σ2 , . . . , Xσnσ2)
...

f(Xσ1σn , . . . , Xσnσn)

 , (3.7)

where the coordinates X = (Xσ)σ∈Σ ∈
⊕

σ∈Σ V are chosen accordingly.
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Remark 3.20. The construction of the fundamental network including arrows between monoid ele-
ments according to multiplications from the left is known from algebra where it is called the (left)
Caley graph. More precisely the fundamental network can be defined as Ñ = (C̃, Σ̃), where C̃ = Σ

and σ̃ : C̃ → C̃, τ 7→ στ . One easily verifies

(i) σ̃ ◦ σ̃′ = σ̃σ′ for all σ, σ′ ∈ Σ,

(ii) σ̃(Id) = σ Id = σ 6= σ′ = σ′ Id = σ̃′(Id) for σ 6= σ′ so that σ̃ 6= σ̃′.

Then (i) implies that σ 7→ σ̃ is a surjective homomorphism of semigroups – Σ̃ is defined as its image.
In particular, if Σ is a monoid, so is Σ̃ with identity Ĩd. On the other hand, (ii) shows that σ̃ = σ̃′ if and
only if σ = σ′. As a result, the homomorphism is injective. Hence, it is also bijective, the monoids are
isomorphic and we identify Σ̃ with Σ. 4

Remark 3.21 (Remark 10.9 and Proposition 10.10 in RINK and SANDERS [92]). If we drop the assumption
that Σ is a monoid, we cannot make this identification any more. In particular observation (ii) of
Remark 3.20 depends crucially on the identity element Id in the monoid. The homomorphism σ 7→ σ̃

need not be injective for a semigroup, i.e. σ̃ = σ̃′ even though σ 6= σ′ is possible. This happens if
σ and σ′ have the same left multiplicative behavior: στ = σ′τ for all τ ∈ Σ. As a result, the arrow
colors σ and σ′ exhibit the same interaction structure in the fundamental network. This situation
is not according to the formalism of semigroup networks. Note, however, that this issue can be
avoided, if we assume that the original network has no cells without any outgoing arrows. Then the
homomorphism of semigroups is injective and we may identify Σ̃ and Σ. Note that we may remove
cells without any outgoing arrows from a network as they do not have any impact on the dynamics
of any other cells. This requires slight adaptation of the formalism but does not impose much of a
restriction. As we focus on the case where Σ is a monoid as in Remark 3.20, we do not include any
further details. For more information see the mentioned references and the discussion thereafter.

4

Remark 3.22. The fundamental network construction depends only on the input maps but not on
the cells of a network. Hence, two networks with the same – or isomorphic – semigroups of input
maps have the same fundamental networks. In particular, this holds true in the cases from before
where the semigroup of input maps of a fundamental network can be identified with that of the
original network. We immediately see that the fundamental network is also its own fundamental
network which motivates calling it ‘fundamental’. 4

Corollary 3.23. Reformulating the definitions of adjacency matrices in Definition 3.6 to fundamental
networks is interesting in its own right. For these the adjacency matrices Bσ are defined via multipli-
cation from the left in Σ, i.e. (Bσ(X))τ = Xστ . Additionally, we may compute that the Bσ respect
the multiplicative structure of Σ, i.e. BId = 1

⊕
σ∈Σ V

– the identity on
⊕

σ∈Σ V – and BσBτ = Bτσ .
Once again these adjacency matrices span the subspaces of all linear network vector fields as in Propo-
sition 3.8 and Corollary 3.9.

Not only through its construction, but also in terms of dynamics, the fundamental network is
closely related to the original network. This can be deduced from the following theorem, which
introduces graph fibrations from the fundamental network to the original network and explores
dynamical consequences according to Theorem 3.14.

Theorem 3.24 (Theorem 6.4 in [78]). Let N = (C,Σ) be a network and Ñ = (Σ,Σ) its fundamental
network. For every cell p ∈ C the map ϕp : Ñ → N defined by

ϕp(σ) = σ(p) (3.8)
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where σ ∈ Σ is a cell of Ñ , is a graph fibration. The induced linear semiconjugacy ϕ∗p ◦ γf = Γf ◦ ϕ∗p
mapping the total phase space ofN to that of Ñ is given by

ϕ∗p :
⊕
p∈C

V →
⊕
σ∈Σ

V

(x1, . . . , xN ) 7→ (xσ1(p), . . . , xσn(p))

(3.9)

We briefly summarize some of the main implications for the dynamics of the two networks and
their relations. First of all note that a semiconjugacy maps integral curves – i.e. solutions to the
corresponding homogeneous coupled cell systems – to integral curves. In particular, if x(t) solves
the ordinary differential equation of the original network ẋ = γf (x), then X(t) = ϕ∗p(x(t)) for any
p ∈ C solves the equation for the fundamental network, Ẋ = Γf (X). On the other hand the image
of the graph fibration ϕp is precisely the input networkNp of p, i.e.

im (ϕp) = {σ(p) | σ ∈ Σ} = Cp.

As a matter of fact, we could have used the induced maps ϕ∗p :
⊕

p∈C V →
⊕

σ∈Σ V in order to
define admissible vector fields for the original networks

(γf )p(x) = f(xσ1(p), . . . , xσn(p)) = f(ϕ∗p(x)) = (f ◦ ϕ∗p)(x).

Since input networks are proper subnetworks of N (compare also to Remark 4.15 in AGUIAR, DIAS,
and SOARES [10]), we can also investigate the dynamics ofN restricted toNp. Theorem 3.24 together
with Theorem 3.14 amount to

Corollary 3.25 (Corollary 6.6 in [78]). The dynamics of the input network Np of any cell p ∈ C is em-
bedded in the dynamics of the fundamental networkN as the robust synchrony subspace

∆p = ∆ϕp =

{
X ∈

⊕
σ∈Σ

V

∣∣∣∣∣ Xσ = Xτ , if σ(p) = τ(p)

}
.

Since the evolution of xp depends only on the state variables of cells in the input network Np, this
allows to recover the dynamics of any cell in the original network from solutions in the robust syn-
chrony subspace from Corollary 3.25. More precisely, given initial conditions x(0) ∈

⊕
p∈C V for N

and solutions X(p)(t) with X(p)(0) = ϕ∗p(x(0)) – i.e. initial conditions in the synchrony subspace ∆p

corresponding to the initial conditions inNp – for Ñ , we may compute the solutionx(t) = (xp(t))p∈C
by integration of

ẋp(t) = f(X(p)(t))

for all p ∈ C (compare also to Theorem 10.1 and thereafter in RINK and SANDERS [92]).
A direct consequence of Corollary 3.25, is that the dynamics of the entire original network is

embedded as a robust synchrony pattern in those of the fundamental network, if there is a cell
whose input network is the entire network, i.e. Cp = C for some p ∈ C . More precisely speaking,
this is the case, when there is a cell p ∈ C such that for every q ∈ C there is an input map σ ∈ Σ

with σ(p) = q, meaning p receives an input from any other cell in the network. In that case, it is not
hard to see, that the partition of the cells of the fundamental network according to the synchrony
pattern ∆p is balanced. Hence, the original network is a quotient of the fundamental network in the
sense of the groupoid formalism. On the other hand, it can be shown that this is also the only case in
which the original network is a quotient of its fundamental network (see Proposition 5.7 in AGUIAR,
DIAS, and SOARES [10]). We also recommend that reference for more details on structural properties
of the fundamental network in comparison with the original network. Note that NIJHOLT, RINK, and
SANDERS [78] generalize the notion of quotient networks by callingN1 a quotient ofN2 if there is a
graph fibration ϕ : N2 → N1. In that senseN is always a quotient of its fundamental network Ñ .
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3.1.5 Hidden symmetry

The dynamical relations to the original network are only part of the reason, why fundamental net-
works are an important concept. It turns out, that fundamental networks are subject to generali-
zed symmetries. That is, they are not symmetric in the classical sense, but allow for so-called self-
fibrations, i.e. graph fibrations from the fundamental network to itself – which have similar impli-
cations for their dynamics. Once again, let Ñ denote a fundamental network of a network whose
input maps form a monoid. Recall that Ñ is also its own fundamental network. Hence, we may
apply Theorem 3.24 to Ñ and obtain

Theorem 3.26 (Theorem 7.2 in [78]). Let Ñ = (Σ,Σ) be a fundamental homogeneous coupled cell
network, where Σ is a monoid. For every τ ∈ Σ the map ϕτ : Ñ → Ñ defined by

ϕτ (σ) = στ (3.10)

where σ ∈ Σ is a cell of Ñ , is a graph fibration. The induced linear semiconjugacy

ϕ∗τ ◦ Γf = Γf ◦ ϕ∗τ . (3.11)

is given by

ϕ∗τ :
⊕
σ∈Σ

V →
⊕
σ∈Σ

V

ϕ∗τ (X) 7→ (Xστ )σ∈Σ.

(3.12)

Remark 3.27. Due to their importance in the remainder of this text, we denote the induced linear
maps by Aσ = ϕ∗σ for all σ ∈ Σ. Similar to the adjacency matrices they can be interpreted as n × n
matrices with entries in gl(V ) that are defined by the right multiplicative behavior of in the monoid
(Aσ(X))τ = Xτσ . These could have been used to define the fundamental network vector fields as
before

(Γf )σ(X) = f(Xσ1σ, . . . , Xσnσ) = f(AσX) = (f ◦Aσ)(X).

4

The fundamental network is subject to non-trivial self-fibrations. Contrary to classical symme-
tries, these do not need to be invertible. The corresponding semiconjugacies of the fundamental
network vector fields with themselves, however, amount to the equivariance condition (3.9) in just
the same way as classical symmetries to (compare to (3.3)). Interestingly, the fundamental network
structure is entirely encoded in these symmetries.

Theorem 3.28 (Theorem 3.11 in [91]). Let Ñ = (Σ,Σ) be a fundamental homogeneous coupled cell
network, where Σ is a monoid.

(i) The symmetries satisfy

AId = 1
⊕
σ∈Σ V

AσAτ = Aστ ,

for all σ, τ ∈ Σ, where 1⊕
σ∈Σ V

is the identity on
⊕

σ∈Σ V .

(ii) Each fundamental network Γf is equivariant with respect to these symmetries

Γf ◦Aσ = Aσ ◦ Γf

for all f ∈ C∞(
⊕

σ∈Σ V, V ) and σ ∈ Σ.
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(iii) On the other hand, if F ∈ C∞(
⊕

σ∈Σ V,
⊕

σ∈Σ V ) satisfies

F ◦Aσ = Aσ ◦ F

for all σ ∈ Σ, then F is a fundamental network vector field, i.e. there exists f ∈ C∞(
⊕

σ∈Σ V, V )

such that F = Γf .

The multiplicative behavior of the symmetries Aσ described in (i) yield that σ 7→ Aσ ∈ gl(
⊕

σ∈Σ V )

is a homomorphism of monoids. Hence, (
⊕

σ∈Σ V, σ 7→ Aσ) is a representation of the monoid Σ.
When Σ is a group this matches the well-known definition of a group representation. If the context
is clear, we also refer to the underlying representation space as the representation. Points (ii) and (iii)
yield that the fundamental homogeneous coupled cell systems can entirely be expressed in terms of
these symmetries. More precisely, once one has settled on an internal phase space V , the admissible
vector fields on the total phase space are precisely the ones that are equivariant under the monoid
representation given by σ 7→ Aσ{

Γf

∣∣∣∣∣ f ∈ C∞
(⊕
σ∈Σ

V, V

)}
=

{
F ∈ C∞

(⊕
σ∈Σ

V,
⊕
σ∈Σ

V

) ∣∣∣∣∣ F ◦Aσ = Aσ ◦ F for all σ ∈ Σ

}
.

(3.13)

Remark 3.29. The representation matrices are defined by multiplication from the right in the mo-
noid (Aσ(X))τ = Xτσ . Sometimes we use the term (right) regular representation of Σ on

⊕
σ∈Σ V .

Recall from Corollary 3.23 that the adjacency matrices of the fundamental network are defined by
multiplication from the left (Bσ(X))τ = Xστ and satisfy BId = 1

⊕
σ∈Σ V

as well as BσBτ = Bτσ .
Consequently, these matrices define what we call the (left) regular (anti-)representation. The term
anti highlights the reversed order of the multiplication.

In Corollary 3.23 we have seen that the subspace of linear admissible fundamental network vec-
tor fields are spanned by these adjacency matrices. Moreover, due to the equivalence of admissibi-
lity and equivariance (3.13) these are exactly the linear maps that commute with the representation
matrices. These are of enormous importance in the representation theory of monoids, where they
are called endomorphisms of the representation EndΣ

(⊕
σ∈Σ V

)
. In particular, in the case V = Rwe

have

EndΣ

(⊕
σ∈Σ

R

)
= 〈Bσ | σ ∈ Σ〉

which denotes the real algebra spanned by the adjacency matrices Bσ due to Corollary 3.9. We will
explore the necessary background of monoid representations in Chapter 4. 4

In the very beginning of this thesis we described one of the main problems in network dynamics
as the fact, that network structure is not stable under coordinate transformations. Since qualitative
dynamical features are those that are robust under such transformations, it is difficult to determine
dynamical properties that are inherent to a given network. Symmetry, on the other hand, is not
lost under coordinate transformations, the representation matrices transform accordingly and the
equivariance condition remains intact. The equivalence of network structure and (generalized) sym-
metry of the fundamental network enables us to forego this issue. To that end, we may characte-
rize dynamical features by investigating the restrictions imposed by the symmetries on equivariant
systems. These are inherent to the fundamental network. This even allows for a classification of
network dynamics in terms of their symmetries.

Note that these generalized symmetries do not necessarily act non-trivially on the robust syn-
chrony subspaces that correspond to (the input networks of) the original network N . Hence, their
effect might not be seen directly in the ordinary differential equations of the original network. Ne-
vertheless, they impact the dynamics of the fundamental network altogether which, in turn, re-
stricts the dynamics of the original network due to the graph fibrations. Hence, we refer to the
symmetries of the fundamental network as hidden symmetries of the original network.
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In classical equivariant dynamics one usually considers representations of (finite or compact Lie)
groups and investigates phenomena that are inherent to the imposed restrictions. As monoids have
less structure than groups so do their representations. Nevertheless, many tools from equivariant
dynamics can be adapted to this more general setting. We highlight some techniques that are espe-
cially useful in bifurcation analysis in the upcoming sections.

3.2 Bifurcation problems

The main results of this thesis are involved with the study of bifurcations in network dynamical sy-
stems. Oftentimes, one is not only interested in the dynamical features of a given system but more
so in transitions between them. That is, given a specific solution, what kind of solutions will a slig-
htly varied system exhibit. In most cases, the dynamics are essentially the same in both cases. We
are, however, interested in those situations where qualitative changes – i.e. a bifurcation – occur.
Usually, we assume the existence of a fully synchronous steady state solution that changes its sta-
bility properties and investigate variations in the dynamical behavior – e.g. number of steady states,
emergence of periodic solutions – locally. If newly appearing solutions exhibit less synchrony, we
speak of a synchrony breaking bifurcation. This is according to similar investigations in equivariant
dynamics, where bifurcating solutions are not fully symmetric so that the system undergoes a sym-
metry breaking bifurcation.

Let us fix some notation for this situation. In order to drive variations of the system, we assume
that the internal dynamics additionally depends on a parameter λ ∈ Λ ⊂ Rl, where Λ is an open
subset. As we focus on a local investigation, the extension to Λ = Rl usually imposes no restriction
of generality. If l ≥ 2 we also speak of multiple parameters and interpret every coordinate entry of λ
as a parameter in its own right. Then we extend the response function to f ∈ C∞(

⊕
σ∈Σ V × Λ, V )

so that the admissible vector fields are

γf (x, λ) =


f(xσ1(p1), . . . , xσn(p1), λ)

f(xσ1(p2), . . . , xσn(p2), λ)
...

f(xσ1(pN ), . . . , xσn(pN ), λ)

 . (3.14)

We may express the response functions as a family fλ = f(·, λ). The collection of vector fields
γfλ,λ = γf (·, λ) for all λ ∈ Λ is called an l-parameter family of admissible vector fields. The system
of ordinary differential equations governed by a parameter dependent vector field is a parameter
dependent network coupled cell system. Note that the constructions for fundamental networks are
completely analogous. Hence, we use the notation Γfλ,λ = Γf (·, λ) accordingly. The results on net-
work vector fields and their induced dynamics that we state the previous section hold for parameter
dependent vector fields in the sense that they are true for γfλ,λ or Γfλ,λ for any fixed λ ∈ Λ.

We assume the existence of a fully synchronous equilibrium solution x0 = (v, . . . , v) ∈
⊕

p∈C V

at a parameter value λ0 ∈ Λ:
γf (x0, λ0) = 0. (3.15)

By translation of coordinates, we may assume the point of interest to be the origin without loss of
generality, i.e. x0 = 0 and λ0 = 0. Without explicitly mentioning it, we focus on a small enough neig-
hborhood around x0 that does not contain any other steady state or periodic solutions for λ = λ0.
The (linear) stability properties of x0 are determined by spectral properties of the linearization of the
vector field. In particular, linearization with respect to the spatial directions Dxγf (x0, λ0). If it has
no eigenvalues on the imaginary axis, spec(Dxγf (x0, λ0)) ∩ iR = ∅, the steady state is said to be
hyperbolic. It is well known, that a system is structurally stable near a hyperbolic steady state. In par-
ticular, qualitatively the solutions remain intact under small variations of the parameter λ. Hence, in
order for a bifurcation – a change in qualitative dynamics – to occur, the existence of an eigenvalue
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on the imaginary axis is a necessary condition. In that case, (x0, λ0) is said to be a bifurcation point.
The eigenvalues on iR are also called critical or central.

We distinguish two types of bifurcations. Steady state bifurcations describe changes only in the
number and properties of steady state solutions to the coupled cell system. That is, we wish to
determine solutions to

γf (x, λ) = 0 (3.16)

for (x, λ) close to (x0, λ0) and to describe their properties. If Dxγf (x0, λ) has only non-vanishing ei-
genvalues, the implicit function theorem implies that (3.16) has a unique branch of fully synchronous
solutions (x(λ), λ). Hence, in order to observe non-trivial branches we do not only need eigenvalues
on the imaginary axis, but at least one eigenvalue 0. Most of our results aim at the investigation of
steady state bifurcations.

Secondly, we are interested in determining periodic solutions to

ẋ = γf (x, λ) (3.17)

for (x, λ) close to (x0, λ0). This type of qualitative change in dynamical behavior is also known as
Hopf bifurcation. Due to the Hopf bifurcation theorem, a periodic solution can only occur via a bifur-
cation if the linearization Dxγf (x0, λ0) has a pair of purely imaginary eigenvalues. In both cases we
refer to solutions that emerge through a bifurcation as branching solutions. Furthermore, we may
parameterize a curve describing the branching steady states or the initial conditions of branching
periodic solutions smoothly by the parameter λ. We refer to these curves as (bifurcating) branches.

We are interested in bifurcations that are dictated by the network structure. Hence, we do not fix
a response function f but rather pursue the investigation for all possible internal dynamics. In order
to exclude special cases that only occur for specific choices of internal dynamics, we focus on generic
response functions. Genericity usually denotes an open and dense subset of C∞(

⊕
σ∈Σ V × Λ, V )

in the C∞-topology and can be thought of as a mathematical notion of a ‘normal case’. This will
become more obvious in later parts of the text, where we characterize genericity in terms of cer-
tain expressions of system parameters – i.e. partial derivatives or Taylor coefficients of f –, which
determines a dense open subset of the set of system parameters. The underlying idea in all possible
realizations of this concept is that we want to describe bifurcations that are inherently dictated by
the network structure but are not only possible because of one specific choice of governing functi-
ons.

Certainly, both situations described above can occur simultaneously: Dxγf (x0, λ0) may for ex-
ample have one eigenvalue 0 and a pair of purely imaginary eigenvalues. In that case, we speak of
mode interactions, as both bifurcations, in some sense, occur at the same time and therefore inte-
ract. In 1-parameter bifurcations of systems without any additional structure mode interactions do
not occur generically. Under the given assumptions the linearization either has a simple eigenvalue
0 or a pair of simple eigenvalues on the imaginary axis. Thus, there is either only a steady state bi-
furcation or a Hopf bifurcation. However, additional structure, such as symmetry or an underlying
network, is known to imply spectral degeneracies, e.g. eigenvalues with high multiplicities, so that
phenomena differ substantially.
Remark 3.30. Note that for an l-parameter family of vector fields an open and dense subset of the
bifurcation points (in the subset topology of Rl) essentially only depends on one parameter. That
is, a small perturbation of all but one parameter yields a small variation of the remaining one such
that the critical eigenvalue structure remains the same – 0 has the same multiplicity, pairs of purely
imaginary eigenvalues vary along the imaginary axis but keep their multiplicities as well – due to
the implicit function theorem. This leads to hyperplanes of bifurcation points in which the lineari-
zation has critical eigenvalues that are due to only one parameter. It is only in their intersections,
that critical eigenvalues depend on multiple parameters being in a specific setting and only there
mode interactions can occur. Consequently, we only refer to an intersection of all these hyper-
planes – in a point where the configuration of critical eigenvalues depends on all l parameters –
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as the l-parameter bifurcation point. Thus, in order to describe the full (generic) bifurcation beha-
vior of an l-parameter family of vector fields one has to investigate k-parameter bifurcations for all
k = 1, . . . , l. In particular, the 1-parameter bifurcations can be seen as the elementary constituents
of the full bifurcation picture which makes them specifically important (in GOLUBITSKY and STEWART

[53] they are referred to as “The most important local bifurcations [...]”). As an illustrating example
consider a 2-parameter family of vector fields F : R2 × R2 → R2 with a steady state x(λ) for all
λ ∈ R2 and assume that the linearization is of the form(

λ1 •
0 λ2

)
.

Then this family has eigenvalues λ1 and λ2. In particular, we obtain two curves of bifurcation points
given by (0, λ2) and (λ1, 0) for λ1, λ2 ∈ R. Only in their intersection point (λ1, λ2) = (0, 0) does the
linearization exhibit a critical eigenvalue 0 of multiplicity 2. Whenever only one of the parameters
vanishes this multiplicity is 1 independent of the other parameter. Hence, only in (λ1, λ2) = (0, 0)

a 2-parameter bifurcation occurs, whereas all other points on these curves amount to 1-parameter
bifurcations. 4

A central part of the investigations in the remainder of this thesis is devoted to the investigation
of spectral properties of linearizations. As these are again admissible vector fields for the network
in consideration, this highlights the importance of the results in Proposition 3.8 and Corollary 3.23,
which provide knowledge about how the interaction structure translates into linear admissible net-
work vector fields. In the remainder of this chapter we briefly summarize some of the classical re-
duction methods for bifurcation analysis and their reformulations for semigroup networks.

3.3 Normal forms

A powerful tool for bifurcation analysis as described in Section 3.2 is the so-called normal form re-
duction. The main idea is to find a coordinate transformation that allows to represent the (parame-
ter dependent) vector fields in ‘simpler’ expressions while still capturing all the qualitative dynami-
cal features such as steady state or periodic solutions. This, however, leaves room for interpretation
in particular as to what we mean by ‘simpler’ expressions. However, one way of computing nor-
mal forms is to consecutively set up a transformation via Lie brackets of admissible vector fields
that guarantees for the homogeneous polynomials in a Taylor expansion to only come from specific
subspaces and truncate the procedure at some degree. We only briefly summarize the main results
here, since we do not explicitly use normal forms in this thesis.

Note that the semigroup structure plays a crucial role. In general, admissible vector fields do not
form a Lie algebra so that one cannot expect the normal form computed in this way to be admissible
again. Hence, it is not suitable for the investigation of dynamical behavior that is inherent to the
network structure. On the other hand, admissible vector fields of semigroup networks allow for a
Lie algebra structure which is defined in terms of the response functions. First, we can see that the
concatenation of two admissible vector fields γf and γg yields an admissible vector field as in

γf ◦ γg = γf◦Σg,

where f◦Σg :
⊕

σ∈Σ V → V is defined as

f◦Σg = f ◦ Γg = f ◦ ((g ◦Aσ1)× · · · × (g ◦Aσn))

using Remark 3.27 (see Theorem 4.2 in RINK and SANDERS [92]). This shows that admissible vector
fields for semigroup networks are closed under concatenations. Accordingly, we define a Lie bracket
on response functions as

[f, g]Σ(x) = (df · Γg − dg · Γf )(x) = (df(x)◦Σg)(x)− (dg(x)◦Σf)(x),
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where df(x), dg(x) denote the total derivatives interpreted as linear maps
⊕

σ∈Σ V → V . Then the
classical Lie bracket on admissible vector fields satisfies

[γf , γg](x) = Dγf (x) · γg(x)−Dγg(x) · γf (x) = γ[f,g]Σ(x).

Hence, the homogeneous coupled cell network vector fields are closed under this operation which
provides the structure of a Lie algebra (see Theorem 5.1 and Lemma 5.2 in RINK and SANDERS [92]).
Note that for parameter dependent vector fields the definitions need to be slightly adapted to the
families of vector fields, i.e. for f, g ∈ C∞(

⊕
σ∈Σ V × Λ, V ) define

f◦Σg = fλ ◦ Γgλ and [f, g]Σ(x) = (dfλ(x)◦Σgλ)(x)− (dgλ(x)◦Σfλ)(x)

for the families fλ, gλ :
⊕

σ∈Σ V →
⊕

σ∈Σ V .

Theorem 3.31 (Theorem 6.2 in [92]). Let f ∈ C∞(
⊕

σ∈Σ V ×Λ, V ) be a smooth response function with
f(0, 0) = 0 and Taylor expansion

f = (f−1,1 + f−1,2 + · · · ) + (f0,0 + f0,1 + · · · ) + (f1,0 + f1,1 + · · · ) + · · · ,

where

fi,j ∈ P i,j =

{
P :

⊕
σ∈Σ

V → V

∣∣∣∣∣ homogeneous polynomial of degree i+ 1 in X and j in λ

}
.

Fix r, s ∈ N and for all−1 ≤ i ≤ r and 0 ≤ j ≤ s let N i,j ⊂ P i,j be a subspace such that

N i,j ⊕ im
(

adΣ
f0,0

∣∣∣
Pi,j

)
= P i,j ,

where

adΣ
f0,0

= [f0,0, ·]Σ : C∞
(⊕
σ∈Σ

V × Λ, V

)
→ C∞

(⊕
σ∈Σ

V × Λ, V

)
– in particular adΣ

f0,0
(P i,j) ⊂ P i,j .

Then there exists a polynomial family Φλ of analytic diffeomorphisms for λ close to 0, conjugating
γfλ,λ to γfλ,λ on an open neighborhood of 0. Therein

f = (f−1,1 + f−1,2 + · · · ) + (f0,0 + f0,1 + · · · ) + (f1,0 + f1,1 + · · · ) + · · · ,

where
f i,j ∈ N i,j

for all−1 ≤ i ≤ r and 0 ≤ j ≤ s.

The parameter dependent vector field γf is the normal form of γf around (0, 0) (compare to the
discussion of bifurcation points in Section 3.2). As it is conjugate to the original vector field – for
every parameter value close to the bifurcation point – both exhibit the same qualitative dynamics.
Note that the normal form is defined as an admissible vector field with response function f . In
particular, this implies that the normal form of a fundamental network exhibits the same (monoid)
symmetries as the full system. The function f can be seen as a normal form for the internal dynamics
f . Its Taylor coefficients satisfy f i,j ∈ N i,j ⊂ P i,j . These subspaces determine how much ‘simpler’
this normal form can actually be. As a matter of fact, identifying the subspacesN i,j as complements
of the function given by the Lie bracket of the linearization f0,0 = df(0, 0) requires solving the so-
called homological equations which are the main technical difficulty in the computation of normal
forms. Furthermore, it might not be all that easy to extract the information on bifurcations one is
interested in from the normal form – ‘simpler’ does not necessarily mean simple. Hence, we do not
go into any more detail here but refer to the proof of the stated theorem and the examples provided
in the same reference to obtain more information. Note that normal form computations like these
have been applied to classify Hopf bifurcations in feedforward chains in RINK and SANDERS [90].
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3.4 Lyapunov-Schmidt reduction

Another, easier to apply, method to analyze bifurcations is the Lyapunov-Schmidt reduction. This
technique is well-known for general dynamical systems, where it has proven to be particularly use-
ful in steady state bifurcation analysis.3 It allows to reduce the investigation of bifurcating steady
state solutions (compare to (3.16)) on the full state space to an equation only on the kernel of the
linearization at the bifurcation point – recall that an eigenvalue 0 is a necessary condition for a ste-
ady state bifurcation. In general, this greatly reduces the dimension of the problem which simplifies
computations. All branching steady state solutions can be found in the reduced equations as well
as the direction in which they emerge from the fully synchronous solution – when denoted as a
function of the parameter λ. Their stability properties, on the other hand, can not be determined.
Since we want to investigate bifurcations that are caused by additional structure in the equations,
we need to translate this structure onto the kernel and into the reduced equation. This, however,
is too much to ask in the case of networks. As the kernel of a linear map – even an admissible one
– usually comes with its own coordinates, it is simply not obvious how the network structure can
be expressed in terms of the kernel. On the other hand, it is well known from classical equivariant
dynamics that (group) symmetries can be carried over to the kernel of a linearized equivariant vec-
tor field. The representation matrices leave kernel and its complement, the image, invariant. This
allows to construct the reduced system such that it is equivariant as well.

A similar result can be obtained for monoid equivariant dynamics as well. The technique needs
to be adapted only slightly. Due to the equivariance condition (3.13) it can then be applied directly
to bifurcation problems in fundamental network vector fields. Since the monoid symmetries are
equivalent to the fundamental network structure, this allows to translate the network’s impact to
the kernel and determine bifurcating solutions that are forced by the network. To that end let V

be a finite-dimensional real vector space and Θ a monoid that is represented on V, i.e. there is a
homomorphism of monoids θ 7→ Tθ ∈ gl(V). Furthermore, we reformulate the bifurcation pro-
blem by investigating a parameter dependent equivariant vector field F ∈ C∞(V × Λ,V) with
F (TθX,λ) = TθF (X,λ) for all X ∈ V, λ ∈ Λ, θ ∈ Θ. We seek to determine all solutions to

F (X,λ) = 0

close to (X0, λ0), where F (X0, λ0) = 0 and L = DXF (X0, λ0) has an eigenvalue 0. Furthermore,
we assume that X0 is fully symmetric, meaning TθX0 = X0 for all θ ∈ Θ. One readily sees that L
is equivariant as well, i.e. L ◦ Tθ = Tθ ◦ L for all θ ∈ Θ. For generalized symmetries by a monoid,
the representation does not leave the kernel and image of L invariant. They do, however, leave
generalized eigenspaces invariant. Hence, when we define

ker0(L) = E0, im0(L) =
⊕

µ∈spec(L)\{0}

Eµ,

where Eµ is the generalized eigenspace to the eigenvalue µ of L. We obtain

ker0(L)⊕ im0(L) = V

but more importantly
Tθ ker0(L) ⊂ ker0(L), Tθ im0(L) ⊂ im0(L)

for all θ ∈ Θ. We refer to these subspaces as the generalized kernel and the reduced image of L and
denote the corresponding projections along im0(L) and along ker0(L) respectively by

P c : V→ ker0(L), P h : V→ im0(L).

3It is also central for the proof of the Hopf bifurcation theorem. Its application, however, is not as straightforward as
for steady state bifurcations.
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As the subspaces are invariant under the representation, these projections are equivariant. Any
element X ∈ V can uniquely be split as X = Xc + Xh where Xc = P c(X) ∈ ker0(L) and
Xh = P h(X) ∈ im0(L). Likewise, we see that F (X,λ) = 0 if and only if

F c(Xc +Xh, λ) = P c(F (Xc +Xh, λ)) = 0 and (3.18a)
F h(Xc +Xh, λ) = P h(F (Xc +Xh, λ)) = 0 (3.18b)

and we solve them consecutively. As a matter of fact, F c,h(Xc
0 +Xh

0 , λ0) = 0. We begin with (3.18b)
and note that F h : ker0(L)⊕ im0(L)→ im0(L). The derivative in the direction of im0(L) is given by

DXhF h(X0, λ0) = P h ◦DXhF (X0, λ0) = P h ◦
(
L|im0(L)

)
: im0(L)→ im0(L),

which is clearly invertible, as L is restricted to the direct sum of all its generalized eigenspaces with
non-vanishing eigenvalues and P h is the projection onto that subspace. Hence, we may apply the
implicit function theorem to obtain a smooth function Xh = Xh(Xc, λ) for Xc close to Xc

0 and λ
close to λ0 that uniquely determines all solutions of (3.18b) close to Xh

0 :

F h(Xc +Xh(Xc, λ), λ) = 0.

Thus, we may plug these solutions into (3.18a). The equation that remains to be solved is

r(Xc, λ) = F c(Xc +Xh(Xc, λ), λ) = 0. (3.19)

This completes the reduction as r : ker0(L) × Λ → ker0(L) denotes a bifurcation problem on the
generalized kernel. Equation (3.19) is also called the bifurcation equation. Since the subspaces are
invariant under the monoid representation and the projections involved are equivariant, the same
holds for r

r(TθXc, λ) = Tθr(Xc, λ)

for all (Xc, λ) ∈ ker0(L) × Λ (see Lemma 5.1 in RINK and SANDERS [91]). Hence, we have reduced
the bifurcation problem to an equivalent equivariant bifurcation problem on the generalized ker-
nel. Due to the application of the implicit function theorem this describes solutions for the original
problem only locally in an open neighborhood of (X0, λ0).

The procedure presented here is standard – apart from the slight adaptation to generalized ker-
nel and reduced image. Our presentation follows Section 5 in RINK and SANDERS [91]. This reduction
technique allows to classify all possible branching steady state solutions that are generic in funda-
mental networks in terms of symmetries. As long as one has some information about possible gene-
ralized kernels it suffices to only investigate generic monoid equivariant systems on them. Note that
this does not provide the full bifurcating branches – the im0(L)-component is missing. However,
branching steady state solutions emerge from (X0, λ0) tangentially to ker0(L) in the direction de-
termined by solving the reduced equivariant bifurcation problem on the ker0(L). Lyapunov-Schmidt
reduction has been used in RINK and SANDERS [91] to classify steady state bifurcations in all funda-
mental networks with 2 or 3 cells.

3.5 Center manifold reduction

3.5.1 The reduction method in generic bifurcation problems

The next reduction method we introduce provides a more complete picture but is also technically
more involved. It allows to determine more information about bifurcating solutions than the
Lyapunov-Schmidt reduction – for example stability of steady states – as well as the investigation
of Hopf bifurcations. In general a dynamical system with a steady state at which the linearization
has critical eigenvalues exhibits a – not necessarily unique – manifold, called center manifold, that
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is invariant under the dynamics and contains all solutions that are bounded. In particular, this
includes all steady state and periodic solutions that emerge in a bifurcation problem. Hence, it
suffices to restrict the investigation of local bifurcations to the center manifold. This technique is
well-established in general dynamical systems as well as in (group) equivariant dynamics. However,
it is not well-behaved with respect to network structure. More precisely, the dependencies of cells
according to the interaction structure that is encoded in admissible vector fields can not be found
in the restriction in general. One exception is known: in GANDHI et al. [40] and GOLUBITSKY and
POSTLETHWAITE [46] the center manifold was shown to respect very simple feedforward structure.
Once again, the equivalence of fundamental network structure and monoid symmetry (3.13) provi-
des a means to encode structural features such that they are respected by the reduction method.
Contrary to the Lyapunov-Schmidt reduction, however, this is not possible for arbitrary monoid
equivariant dynamics. In order to guarantee existence of the center manifold while preserving
(monoid) symmetry manipulations of the response functions are necessary. Hence, it depends
crucially on the specific representation that is equivalent to the fundamental network structure.
We introduce the technique similarly to the presentation in NIJHOLT, RINK, and SANDERS [79, 81] and
highlight implications for general semigroup networks (not necessarily fundamental networks) in
Remark 3.33 at the end of this subsection.

We use the notation introduced in Sections 3.2 and 3.4. Consider a smooth bifurcation problem
driven by Γf , where f ∈ C∞(

⊕
σ∈Σ V × Λ, V ). Furthermore, without loss of generality, assume the

bifurcation to occur at (0, 0) ∈
⊕

σ∈Σ V × Λ. In particular, Γf (0, 0) = 0 and L = DXΓf (0, 0) has
eigenvalues on the imaginary axis. This induces a splitting⊕

σ∈Σ

V = X c ⊕X h,

where
X c =

⊕
µ∈spec(L)∩iR

Eµ, X h =
⊕

µ∈spec(L)\iR

Eµ

are center subspace and hyperbolic subspace respectively. These subspaces are left invariant under
the monoid representation

AσX c ⊂ X c, AσX h ⊂ X h,

for all σ ∈ Σ. Once again we denote the projections along X h and X c respectively by

P c :
⊕
σ∈Σ

V → X c, P h :
⊕
σ∈Σ

V → X h,

which are equivariant. These allow to uniquely split any element X ∈
⊕

σ∈Σ V as X = Xc +Xh

with Xc = P c(X) and Xh = P h(X).
Center manifolds in general are not explicitly constructed for bifurcation problems but for vector

fields that are not parameter dependent. They can, however, easily be applied to the bifurcation
setting by extending the system so as to include the parameter as a dynamic variable that does
not evolve in time. To that end, choose coordinates X = (X,λ) ∈

⊕
σ∈Σ V × Λ and redefine the

dynamical system to

Ẋ =

(
Ẋ

λ̇

)
=

(
Γf (X,λ)

0

)
= Γf (X). (3.20)

Solutions of this system are in one-to-one correspondence with solutions of the parameter depen-
dent system. In particular Γf (0, 0) = (0, 0). If we extend the representation matrices accordingly

Aσ : X = (X,λ) 7→ (AσX,λ),

this system, furthermore, remains equivariant Γf ◦Aσ = Aσ ◦ Γf .
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As mentioned before, without loss of generality, we may consider Λ = Rl, as we only investigate
bifurcating solutions locally, i.e. for small values of λ. One readily computes

DΓf (0, 0) = D(X,λ)Γf (0, 0) =

(
DXΓf (0, 0) DλΓf (0, 0)

0 0

)
.

Hence, DΓf (0, 0) has the same eigenvalues as DXΓf (0, 0) joined by l times the additional eigenva-
lues 0 stemming from the λ-directions. Under the bifurcation assumption – eigenvalue 0 or purely
imaginary eigenvalues – the linearization induces a splitting⊕

σ∈Σ

V × Rl = X c ⊕X h

into center subspace and its complement of DΓf (0, 0). These are invariant under the extended
representation as well. Clearly, they are also related to the center and hyperbolic subspaces of the
non-extended system. In particular,

X h = X h × {0},

X c = X c × {0} ⊕
〈

(Xh
1 , λ1), . . . , (Xh

l , λl)
〉
,

(3.21)

where {λ1, . . . , λl} is a basis of Rl and Xh
1 , . . . , X

h
l ∈ X h are chosen suitably (see Lemma 5.3 in NIJ-

HOLT, RINK, and SANDERS [81]). Summarizing, the extended system has the same hyperbolic subspace
as the non-extended system – with a trivial parameter component. The center subspace has addi-
tional spatial directions skewed with the parameter directions. The extended projections along X c

and along X h respectively are denoted accordingly

P h :
⊕
σ∈Σ

V × Rl → X h, P c :
⊕
σ∈Σ

V × Rl → X c,

and allow to uniquely split every X ∈
⊕

σ∈Σ V × Rl as X = Xc + Xh with Xc = P c(X) and
Xh = P h(X).

For later use, we define another projection that ‘forgets’ about the skewed directions of the ex-
tended center subspace. Note that every element in Rl can uniquely be represented in terms of its
basis as λ = α1λ1 + · · · + αlλl with coefficients α1, . . . , αl ∈ R. Thus, every element in X c has a
unique representation as

Xc = (Xc, 0) + α1(Xh
1 , λ1) + · · ·+ αl(X

h
l , λl)

where Xc = P c(X) ∈ X c. Hence, the map

P ′ : X c → X c × Rl

Xc 7→ (Xc, α1λ1 + · · ·+ αlλl) = (Xc, λ)
(3.22)

is a projection. Note that this map satisfies P ′ = (P c × 1Λ)|X c .
After restriction to a suitably small neighborhood around the bifurcation point (0, 0) – this invol-

ves restricting to Λ instead of Rl again – the extended system (3.20) admits a unique center mani-
fold M c, invariant under the dynamics, which locally contains all solutions whose X h component is
bounded.

Theorem 3.32 (Theorems 4.1 and 5.1 in [81]). Under the assumptions made above, there is a Ck-function
ψ : X c → X h for any k ∈ N such that its graph is a manifold that is invariant under the dynamics
induced by Γf . More precisely, it contains all solutions with a bounded X h-component. That is

M c =
{
Xc + ψ(Xc) | Xc ∈ X c

}
=

{
X ∈

⊕
σ∈Σ

V × Λ

∣∣∣∣∣ sup
t∈R
‖P hφt(X)‖ <∞

}
, (3.23)
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where φt is the flow induced by Γf and ‖ · ‖ denotes the Euclidean norm. The function ψ satisfies
ψ(0, 0) = 0 and Dψ(0, 0) = 0 so that the manifold is tangential to the center subspace in the bifur-
cation point. Furthermore, ψ ◦ Aσ = Aσ ◦ ψ for all σ ∈ Σ, where the representation is restricted
to the corresponding subspaces, which yields that the center manifold is invariant under the monoid
representation, Aσ(X,λ) ∈M c for all (X,λ) ∈M c, σ ∈ Σ.

The projection P = P ′ ◦P c :
⊕

σ∈Σ V ×Λ→ X c×Λ with P (X,λ) = (P c(X), λ)4 is equivariant as
well: P ◦ Aσ = Aσ ◦ P for all σ ∈ Σ. Its restriction to the center manifold P |Mc bijectively conjugates
the flow on the center manifold induced by Γf

∣∣
Mc to that induced by a system on X c × Λ given by an

ordinary differential equation of the form

Ẋc = r(Xc, λ),

λ̇ = 0.
(3.24)

That is, r : X c × Λ → X c describes the reduced bifurcation problem on the center subspace of the
linearization and has the following properties:

(i) r(0, 0) = 0.

(ii) The center subspace of DXcr(0, 0) is the full space X c.

(iii) It is equivariant with respect to the monoid representation restricted to X c

r(AσX
c, λ) = Aσr(X

c, λ)

for all σ ∈ Σ and (Xc, λ) ∈ X c × Λ.

The center manifold theorem consists of two parts. The first describes the existence of the center
manifold (3.23) and its properties. It is invariant under the dynamics as well as under the symme-
tries and most importantly contains all the ‘interesting’ dynamics. The second part describes the
actual reduction method. The dynamics restricted to the center manifold are equivalent to those of
a parameter dependent system on the center subspace of the non-extended system X c (3.24). As
the center manifold contains all the dynamical features we are interested in – in particular bran-
ches of steady state and periodic solutions as well as their stability information – the same is to be
said about the reduced system. Hence, this is a powerful tool to investigate bifurcations in a fixed
bifurcation problem – that is, for a fixed response function f . Compared to the Lyapunov-Schmidt
reduction, it provides more information. This, however, comes at the cost of increased computati-
onal difficulty. In general, one cannot determine the center manifold exactly. There are methods
to compute Taylor coefficients of the function ψ whose graph is the center manifold. Then, after a
truncation at some degree, one needs to work with an approximation. This, however, is usually true
for the Lyapunov-Schmidt reduction as well, since the computation of the reduced equation (3.19)
requires application of the implicit function theorem.

Interestingly, both reduction methods yield similar methods to classify generic bifurcations in
fundamental networks. The generic reduced bifurcation problems (3.19) and (3.24) are the same
when investigating steady state bifurcations. Lyapunov-Schmidt reduction can also be applied to ge-
neral monoid equivariant bifurcation problems. The center manifold reduction, on the other hand,
guarantees that more information can be gained. Furthermore, it also applies to Hopf bifurcations.
As a matter of fact, any parameter dependent vector field on the center subspace g : X c × Λ → X c
satisfying points (i)-(iii) – bifurcation point (0, 0), only critical eigenvalues, equivariance – in the se-
cond part of Theorem 3.32 can be obtained as a reduced vector field r of an extended fundamental
network vector field Γf (Theorems 5.4 and 5.5 in NIJHOLT, RINK, and SANDERS [81]). Hence, deter-
mining all these vector fields and classifying their generic bifurcations also gives a classification of
bifurcations for the fundamental network vector fields.

4This projection satisfies P = (P c × 1Λ).
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Remark 3.33. The center manifold reduction cannot be applied directly to non-fundamental net-
works. Nevertheless, it provides information about the dynamics of an original network via a detour
through its fundamental network. Recall that the relation between these two networks is given
by input networks and robust patterns of synchrony (Corollary 3.25). That is, the dynamics of the
input network of a cell p ∈ C of the original network is found in the robust synchrony subspace
∆p ⊂

⊕
σ∈Σ V of the fundamental network. As a matter of fact, the center manifold reduction

method respects robust synchrony subspaces in the sense that

P : {(X,λ) ∈M c | X ∈ ∆p, λ = λ} → {(Xc, λ) ∈ X c × Λ | Xc ∈ ∆p, λ = λ},

is a bijection for every λ ∈ Λ, where P is the projection from Theorem 3.32. Hence, restricting the
reduced system to the synchrony subspace provides a reduced system for the input network. Furt-
hermore, as a generic reduced system on X c determines the dynamics/bifurcations of a fundamen-
tal network for a generic response function f , this restriction also preserves genericity, the response
function is also generic for the input network. In particular, when we are in the situation that the
original network is contained in its fundamental network as a quotient, the generic bifurcations
are entirely determined by the restriction of the reduced system of its fundamental network to the
corresponding synchrony subspace. 4

So far, we have avoided to address the question how to determine which subspaces of
⊕

σ∈Σ V

are possible as center subspaces X c to begin with. As we have mentioned before, restrictions indu-
ced by network structure or equivalently by symmetry have a strong influence on spectral properties
of the linearizations of admissible vector fields. As a result, a generic fundamental network vector
field does not allow for an arbitrary subspace as its center subspace. There are, however, ways to
characterize possible center subspaces in terms of representation theory (Chapter 4), which will be
the topic of Chapter 5.

3.5.2 Reduction by projection blocks

Finally, let us mention that the center manifold can also be used as a powerful theoretical tool to
prove results on (generic) bifurcations. Its existence and the fact that it contains all branching soluti-
ons can be more important than its actual computation in order to derive general statements about
bifurcations of networks. One example is the reduction by so-called projection blocks that was in-
troduced in NIJHOLT, RINK, and SANDERS [80]. This method allows to investigate some generically
occurring bifurcations of a semigroup network in terms of specific quotient networks. The suitable
quotients are determined purely combinatorically.

Definition 3.34 (Definition 6.1 in [80]). A subset B ⊂ C of the cells of N is called a block if there are
no arrows that start at cells outside of B pointing at cells inside of B. In terms of the input maps, this
means σ(B) ⊂ B for all σ ∈ Σ. A block is a projection block, if additionally there exists an input map
κ ∈ Σ such that κ(C) = B and κ(B) = B.

Clearly, not every network contains a projection block. The full network, however, is always an
example of a block. Note that each block B ⊂ C gives rise to a balanced partition. That is,
P = {B, {p1}, . . . , {pk}}, where C \ B = {p1, . . . , pk}, is balanced. Each of the sets in P gets
mapped into only one subset due to the definition of a block, hence, satisfying the condition in
Proposition 3.11. It induces the quotient network NB in which B is identified with a single cell that
has a self-loop of every color. Its total phase space is contained in that of the original network as the
robust synchrony subspace

∆B = ∆P =

x ∈⊕
p∈C

V

∣∣∣∣∣∣ xp = xq, if p, q ∈ B

 .
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In Remark 3.33 we describe how the center manifold reduction behaves in regard to the re-
striction to synchrony subspaces at the example of a networkN that is contained in its fundamental
network Ñ as a quotient. We can determine generic steady state bifurcations of N from reduced
vector fields on its possible center subspaces. Furthermore, the center manifold of the fundamental
network restricts to one of the original network. Hence, generic bifurcations of the fundamental
network restricted to the corresponding synchrony subspace are also generic for its quotient. In-
terestingly, given a network containing a projection block (which is contained in its fundamental
network as a quotient) this propagation of generic behavior can be reversed. As a matter of fact,
any generic center subspace for an extended system ofNB is also a generic center manifold for the
original networkN when considered as a submanifold of ∆B × Rl ⊂

⊕
p∈C V × Rl. More precisely,

for a generic bifurcation problem of the quotientNB governed by the smooth parameter dependent
vector field γ̂g – i.e. γ̂g(0, 0) = 0 and spec(Dxγ̂g(0, 0)) contains critical eigenvalues – let γf be a ge-
neric vector field such that γf |∆B×Λ = γ̂g . Then the locally defined center manifold for γ̂g is also a
local center manifold for γf (both in the sense of Remark 3.33). In particular, as laid out in the previ-
ous subsection, the bifurcations in these generic systems agree. Furthermore, any admissible vector
field forN can be restricted to one forNB via the synchrony subspace and any network vector field
for NB can be realized by such a restriction. Hence, generic behavior for NB is also generic for N
(compare to Corollary 6.8 in NIJHOLT, RINK, and SANDERS [80]).

Note that this method does not necessarily allow to describe all generic bifurcations of the origi-
nal networkN for two reasons. First, if a generic bifurcation problem governed by γf yields a center
subspace that has a trivial intersection with the synchrony subspace corresponding to the block ∆B

the quotient network cannot provide any information on the bifurcations that arise. In this setting
branching occurs in directions that are transversal to the synchrony subspace ∆B . Secondly, only
specific generic bifurcations of NB are also generic for N . In particular, those for which the center
subspace of Dxγ̂f (0, 0) has a trivial intersection with the fully synchronous subspace are suitable.

Nevertheless, the technique shows an interesting application of the center manifold reduction as
a theoretical tool. It allows to describe generic bifurcations by only investigating a suitable quotient
network. Another example can be seen in Chapter 11, where we make heavy use of center manifolds
to prove that certain networks exhibit the same bifurcation patterns independent of their internal
phase space. To that end, we include some additional technical results in the upcoming subsection.

Remark 3.35. The reduction by projection blocks addresses what is also known as the lifting bifur-
cation problem even though it was not developed in this regard. Some research – not restricted to
semigroup networks and their fundamental networks – has been devoted to the question when the
bifurcation behavior of a network is different from that of a quotient. More precisely, given two
networksN ,N ′ such thatN is a quotient ofN ′ by a balanced partition. ThenN ′ is called a lift ofN .
Any bifurcating branch of solutions for a system onN also describes a branch of solutions for a sy-
stem onN ′ with the same center subspace via restriction to the synchrony subspace. The question
remains, whether additional branches can occur from a bifurcation in the lift with the same center
subspace – in particular, branches in which certain cells are not synchronous any longer. The result
in this section gives a partial answer for the restricted case of semigroup networks and quotients
by projection blocks. Generically, the bifurcations observed for the quotient lift to the full network
as described above and no additional branches are possible (see Corollary 6.8 in NIJHOLT, RINK, and
SANDERS [80]). Only when the original network undergoes a bifurcation through a center subspace
that is not compatible to the quotient by a projection block, new bifurcations can be observed. For
more information on the lifting bifurcation problem in different cases see for example AGUIAR et
al. [8], MOREIRA [74], and SOARES [99] and the references therein, without a claim of this list being
complete. 4
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3.5.3 Additional technicalities

For the sake of completeness and especially for later use, we include some additional technicalities
and state some results on the center manifold for fundamental networks that were not explicitly
provided in NIJHOLT, RINK, and SANDERS [81]. First of all we describe the impact of equivariance with
respect to the extended symmetries on an arbitrary map in the following lemma.

Lemma 3.36. Let

F :
⊕
σ∈Σ

V × Rl →
⊕
σ∈Σ

V × Rl

(X,λ) 7→
(
FX(X,λ)

Fλ(X,λ)

)
be equivariant with respect to the extended monoid representation: F ◦ Aσ = Aσ ◦ F for all σ ∈ Σ.
Then the component functions FX and Fλ are parameter dependent maps, which are equivariant and
invariant with respect to the non-extended monoid representation respectively. That is,

FX(AσX,λ) = AσFX(X,λ), Fλ(AσX,λ) = Fλ(X,λ).

Proof. This can be seen directly from the equivariance condition

(F ◦Aσ) (X,λ) =

(
FX(AσX,λ)

Fλ(AσX,λ)

)
=

(
AσFX(X,λ)

Fλ(X,λ)

)
= (Aσ ◦ F ) (X,λ).

Then, we prove two technical results that explicitly describe the parameter-dependence of the
center manifold of the extended systemM c and the maps that define the interconnection between
center manifold and center subspace X c. They can be summarized by stating that the center mani-
fold and the center subspace of the extended system share the same parameter component.

Lemma 3.37 (see also the proof of Lemma 5.3 in [81]). Let

P c :
⊕
σ∈Σ

V × Rl → X c (3.25)

be the equivariant projection onto the center subspace along the hyperbolic subspace. Then P c acts as
the identity on the λ-component, i.e. P c(X,λ) = (P cX(X,λ), λ).

Proof. Fix (X,λ) ∈
⊕

σ∈Σ V × Rl. Recall that⊕
σ∈Σ

V = X c ⊕X h.

Hence, we find a unique representationX = Xc+Xh withXc ∈ X c andXh ∈ X h using projections
Xc = P c(X), Xh = P h(X). From the representation in (3.21), we see that (Xc, 0) ∈ X c. Further-
more, we may represent the parameter as λ = α1λ1 + · · ·+ αlλl, where α1, . . . , αl ∈ R, and it holds
that

α1(Xh
1 , λ1) + · · ·+ αl(X

h
l , λl) ∈ X c.

Lastly, as Xh
1 , . . . , X

h
l ∈ X h we obtain(

Xh − (α1X
h
1 + · · ·+ αlX

h
l ), 0

)
∈ X h.
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Since P c is the projection onto X c, it acts as the identity on X c and maps X h to 0. We obtain

P c : (X,λ) = (Xc +Xh, λ)

= (Xc, 0) + (Xh − (α1X
h
1 + · · ·+ αlX

h
l ), 0) + α1(Xh

1 , λ1) + · · ·+ αl(X
h
l , λl)

7→ (Xc, 0) + 0 + α1(Xh
1 , λ1) + · · ·+ αl(X

h
l , λl)

=
(
Xc + α1X

h
1 + · · ·+ αlX

h
l , λ

)
.

Lemma 3.38. Let ψ : X c → X h be the map, whose graph is the center manifold M c as in (3.23). Then

ψ has a trivial λ-component, i.e. ψ(Xc, λ) =
(
ψ
X

(X,λ), 0
)

.

Proof. This follows directly from the representation of the subspaces given in (3.21)X h = X h × {0}.

Finally, note that we have not made the conjugacy between the system on the center manifold
M c and the reduced system on X c × Λ precise. In particular, so far we have only provided a map
P : M c → X c × Λ. The next two results provide its inverse.

Lemma 3.39 (see also the proof of Theorem 5.4 in [81]). The projection P ′ : X c → X c×Rl is invertible
with inverse given by

Q′ : X c × Rl → X c

(Xc, λ) 7→ (Xc, 0) + α1(Xh
1 , λ1) + · · ·+ αl(X

h
l , λl) = Xc,

(3.26)

where λ = α1λ1 + · · · + αlλl is a representation in the basis Rl = 〈λ1, . . . , λl〉 and Xh
1 , . . . , X

h
l ∈ X h

suitable as in (3.21).

Proof. This follows directly from the definition of P ′ in (3.22).

Corollary 3.40. We can characterize the center manifold as a graph over X c × Λ using the map Q′

from Lemma 3.39:

M c =
{
Q′(Xc, λ) + ψ(Q′(Xc, λ)) | (Xc, λ) ∈ X c × Λ

}
.

Then we have Q′(0, 0) = 0, (ψ ◦Q′)(0, 0) = 0 and D(ψ ◦Q′)(0, 0) = 0. In particular, ψ ◦Q′ is inverse
to the map P from Theorem 3.32 restricted to M c.

3.6 Non-homogeneous networks

In this final section about semigroup networks, we describe how much of the theory explained above
can be generalized to non-homogeneous networks. That is, we allow different types or shapes of
cells. As we mentioned before, homogeneity is not crucial. The assumption of asymmetric inputs
– only one input of each color into a cell –, however, cannot be dropped. The algebraic structure
that encodes these types of networks is that of a semigroupoid – i.e. a semigroup in which not
all products are defined, informally speaking. Most of the general framework has straightforward
generalizations to this case. The investigation of dynamics, on the other hand, is a lot more involved.
This is due to the fact that semigroupoid representations are not as well behaved. Since the notation
needed is a lot heavier and since we do not pursue this generalization any further in this thesis,
we do not give any details but rather provide a brief overview. The semigroupoid approach to non-
homogeneous networks has been proposed in NIJHOLT, RINK, and SANDERS [78] and RINK and SANDERS

[92] without any proofs of the main results. These are mostly direct adaptations of corresponding
results for the homogeneous case. Furthermore, they can be found in NOETHEN [85].
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In order to realize multiple types of cells in the framework, one introduces a partition of the set
of cells according to their types and adapts all definitions in terms of the consistency conditions
as given for example in the groupoid formalism. In particular, all arrows of a given color go from
a cell of type A to a cell of type B. Under the assumptions of asymmetric inputs, these can again
be encoded in terms of input maps that are restricted to suitable cell types (mapping only cells of
type B to cells of type A). Then, an internal phase space and a response function is attached to each
cell which coincide for cells of the same type. We obtain admissible vector fields and coupled cell
systems in just the same way as before.

Furthermore, we may again concatenate input maps. This concatenation has the same interpre-
tation as before: finding indirect inputs by first following back an arrow of color 1 followed by an
arrow of color 2. However, not all concatenations are possible. More precisely, the types of heads
and tails have to be compatible: the input map corresponding to color 2 needs to describe arrows
into cells of the type from which arrows of color 1 emerge. Constructing the closure under concate-
nations – i.e. including indirect inputs that emerge in this manner as direct inputs – gives the set
of input maps the structure of a semigroupoid. Accordingly, we call a network whose set of input
maps is a semigroupoid a semigroupoid network. Some of the basic structural features can be de-
termined in just the same way as in the homogeneous case, i.e. symmetries, graph fibrations, and
robust synchrony patterns are subject to the (adapted) conditions of Definitions 3.10 and 3.12 and
Proposition 3.11 respectively.

We may also construct fundamental networks for semigroupoid networks. The consistency con-
dition and the fact that not all input maps can be multiplied yields a collection of fundamental net-
works, one for each cell type of the original network. Their input structures are defined similar to the
ones before, where special care needs to be taken as to which input maps are contained as cells in
one fundamental network and which can act as input maps thereon. Nevertheless, each cell induces
a graph fibration from the fundamental network corresponding to its type to the original network
as in Theorem 3.24. Hence, once again input networks are contained in fundamental networks as
quotients by a balanced partition.

The equivariance of fundamental network vector fields has its counterpart for non-homo-
geneous networks as well. For this to make sense, we have to consider all fundamental networks
collectively. Every input map gives rise to a graph fibration from one fundamental network to anot-
her according to the rules of concatenation. These, in turn, induce linear semiconjugacies between
the corresponding admissible vector fields, i.e. they map the total phase space of one fundamental
network to that of another and intertwine the fundamental network vector fields thereon as in
Theorem 3.26. Furthermore, these linear semigconjugacies respect the rules of multiplication in
the semigroupoid. Hence, they can be interpreted as a representation of the semigroupoid of input
maps on the collection of total phase spaces. A collection of admissible vector fields on these
total phase spaces is then in some sense equivariant – semigroupoid-equivariant – with respect
to this representation if the individual functions are intertwined as described above. As before,
this generalized equivariance condition is actually equivalent to admissibility for the collection of
fundamental networks. To our knowledge this has only been noted in NOETHEN [85].

Even though fundamental network vector fields can be characterized entirely in terms of gene-
ralized symmetries, it is a lot harder to exploit this property for the investigation of dynamics than
in homogeneous networks. Admissible vector fields and graph fibrations can be generalized quite
directly. Hence, dynamics as well as the implications of the fundamental network structure may be
investigated in ways similar to the homogeneous case. However, in particular some of the reduction
methods introduced in Sections 3.3 to 3.5 pose serious challenges. The semigroupoid extension in-
troduces a Lie algebra structure on the admissible vector fields by a straightforward generalization
of the construction for homogeneous networks. This facilitates a normal form reduction for non-
homogeneous networks as in Theorem 3.31. The other reduction methods – Lyapunov-Schmidt re-
duction and center manifold reduction –, however, rely crucially on the fact that symmetries of the
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fundamental network can be reduced to generalized kernels and center subspaces, when these are
complemented by an invariant subspace themselves. At the moment it is not clear, how this ge-
neralizes to the even more general symmetries induced by semigroupoid networks. In particular,
currently there is no generalization of the results in Sections 3.4 and 3.5 to non-homogeneous net-
works.
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Chapter 4

Representation theory of monoids

In this chapter we provide background and establish notation for the representation theory of mo-
noids. We include only chosen basic results that we require for the upcoming investigations. The full
picture on monoid representation theory is far beyond the scope of this thesis. For more informa-
tion we refer to STEINBERG [105]. This beautiful book aims at making monoid representation theory
accessible to non-experts who wish to apply it in their work and has deeply inspired our research.
For the most part we follow our presentation in SCHWENKER [97] to which we add some additional
results and remarks. We omit most of the proofs of the results in Section 4.1, as they are neatly
presented in RINK and SANDERS [91]. Some further additions can be found in NIJHOLT and RINK [77].

We describe representations of a monoid on finite-dimensional real vector spaces. However,
we do not impose any further restrictions on the monoid. It may be finite or infinite and, there-
fore, includes finite or compact symmetry groups that form the classical symmetries in equivari-
ant dynamics. But also non-compact groups are included in this framework. The proofs in RINK

and SANDERS [91] are stated for finite monoids. However, only the fact that the representations are
finite-dimensional is used, and therefore they also apply in the more general case. The right regular
representation that encodes the fundamental network structure of a semigroup network is one ex-
ample to which we want to apply the derived results. In Section 4.2 we take an abstractly algebraic
look into the representation theory involved.

4.1 The basics

Definition 4.1. The tuple (Θ, ·), where Θ is a set and · : Θ×Θ→ Θ is a map so that

(i) (θ · θ′) · θ̃ = θ · (θ′ · θ̃) for all θ, θ′, θ̃ ∈ Θ, (associativity)

(ii) there exists Id ∈ Θ so that Id ·θ = θ · Id = θ for all θ ∈ Θ, (neutral element)

is called a monoid with multiplication ·. We abbreviate θθ′ = θ · θ′ and call Θ the monoid if the
multiplication is clear from context.

In particular, any group is an example of a monoid in which for every θ ∈ Θ there is an element
θ−1 ∈ Θ such that θθ−1 = θ−1θ = Id. The definition of a representation is well known in the con-
text of groups and we define it accordingly for monoids. To that end, let V be a finite-dimensional
real vector space and gl(V) the real vector space of linear maps from V to itself. We abbreviate
LL′ = L ◦ L′ for L,L′ ∈ gl(V) and interpret it as a multiplication, which gives it the structure of an
algebra – or a monoid if we only consider multiplication. A map

T : Θ→ gl(V), θ 7→ Tθ,

with
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(i) TθTθ′ = Tθθ′ for all θ, θ′ ∈ Θ

(ii) TId = 1V

is a homomorphism of monoids – {Tθ | θ ∈ Θ} ⊂ gl(V) is a submonoid. Any homomorphism
Θ → gl(V) defines a representation of Θ. When the homomorphism is known from context or not
needed in its explicit form we also refer to V as the representation of Θ.

Consider a second representation T ′ : Θ → gl(V′) on a finite-dimensional real vector space V′

and a linear map L : V→ V′. If L intertwines the monoid representations

L ◦ Tθ = T ′θ ◦ L

for all θ ∈ Θ, we call it a homomorphism of representations and write

L ∈ HomΘ(V,V′).

This set has the structure of a real vector space. If V = V′, we call L an endomorphism and write

EndΘ(V) = HomΘ(V,V) = {L ∈ gl(V) | L ◦ Tθ = Tθ ◦ L for all θ ∈ Θ}.

As we may concatenate two endomorphisms, this has the structure of a real algebra. An invertible
homomorphism of representations is called an isomorphism. If there is an isomorphism between V

and V′ we call these representations equivalent or isomorphic denoted by V ∼= V′. The following
remark points out why endomorphisms are especially important for the study of monoid equivariant
dynamics.
Remark 4.2. Assume that F : V → V is a continuously differentiable vector field and X0 ∈ V is a
point such that

(i) X0 is an equilibrium point of F , i.e., F (X0) = 0 ;

(ii) X0 is Θ-symmetric, i.e. TθX0 = X0 for all θ ∈ Θ;

(iii) F is Θ-equivariant, i.e. F ◦ Tθ = Tθ ◦ F for all θ ∈ Θ.

Then differentiation of F (TθX) = TθF (X) at X = X0 = TθX0 yields

L ◦ Tθ = Tθ ◦ L

with L = DF (X0) and hence L ∈ EndΘ(V). This is particularly important for bifurcation analysis.
Assume the vector field additionally depends on a parameter λ ∈ Rl and that X0(λ) denotes a
smooth curve of Θ-symmetric equilibria, i.e. F (X0(λ), λ) = 0 and TθX0(λ) = X0(λ) for all θ ∈ Θ

and for all λ ∈ Rl. Then the linearizations

Lλ = DXF (X0(λ), λ) ∈ EndΘ(V)

describe a smooth family of endomorphisms of V. 4
Remark 4.3. A representation that is of particular interest to us is the right regular representation
σ 7→ Aσ on

⊕
σ∈Σ V given by (Aσ(X))τ = Xτσ that is equivalent to the fundamental network

structure. As was pointed out in Corollary 3.23 and Remark 3.29, the endomorphisms are span-
ned by the generalized adjacency matrices defined as (Bσ(X))τ = Xστ . In particular, for every
L ∈ EndΣ

(⊕
σ∈Σ V

)
there exist linear maps bσ ∈ gl(V ) for every σ ∈ Σ such that

(LX)τ =
∑
σ∈Σ

bσ(BσX)τ

as in Proposition 3.8. In particular, for V = R, we identify gl(R) ∼= R and obtain

EndΣ

(⊕
σ∈Σ

R

)
= 〈Bσ | σ ∈ Σ〉

as a finite-dimensional real algebra. 4
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A subspaceW ⊂ V is called a subrepresentation if it is invariant under the action of the monoid:

TθW ⊂W

for all θ ∈ Θ. The representation V is called irreducible if there exists no proper subrepresentation
W ⊂ V with W 6= {0},V. It is called indecomposable if there are no two proper subrepresenta-
tions W,W ′ with V = W ⊕ W ′. Unlike for group representations, these two properties are not
equivalent. An indecomposable representation need not be irreducible. More precisely, a nontrivial
subrepresentationW of a group representation can always be complemented by another nontrivial
subrepresentation. We say W is complementable. This is not true for monoid representations, ho-
wever. Nevertheless, any monoid representation V decomposes into finitely many indecomposable
subspaces

V = W1 ⊕ · · · ⊕Wm.

This decomposition is unique up to equivalence of subrepresentations, which is stated in the follo-
wing theorem.

Theorem 4.4 (Krull-Schmidt theorem, Theorem 4.9 in [91]). Let V be a finite-dimensional real repre-
sentation of Θ and let

V = W1 ⊕ · · · ⊕Wm

be a decomposition of V into indecomposable subrepresentations. Then this decomposition is unique
up to isomorphisms. That is, if it also holds that

V = W ′1 ⊕ · · · ⊕W ′m′

with indecomposable subrepresentations W ′1, . . . ,W ′m′ then m = m′ and Wi
∼= W ′i for all i after

renumbering the subrepresentations.

Note that endomorphisms give rise to multiple (possibly nontrivial) subrepresentations. For ex-
ample, for L ∈ EndΘ(V) its image and kernel are examples of subrepresentations of V. More
generally, for every eigenvalue µ ∈ spec(L) the eigenspace Eµ is invariant under the representation
which can easily be checked from the equivariance ofL. In particular, the same holds for direct sums
of eigenspaces. These subrepresentations are in general not complementable. The generalized ei-
genspaces Eµ and their direct sums, on the other hand, are

V = Eµ ⊕
⊕

µ′∈spec(L)\{µ}

Eµ′ .

Just as in Sections 3.4 and 3.5 we use this to define generalized kernel and reduced image as

ker0(L) = E0 and im0(L) =
⊕

µ∈spec(L)\{0}

Eµ (4.1)

as well as center subspace and hyperbolic subspace as

X c =
⊕

µ∈spec(L)∩iR

Eµ and X h =
⊕

µ∈spec(L)\iR

Eµ. (4.2)

This allows us to describe subspaces with crucial relevance for bifurcation analysis – via the re-
duction methods mentioned before – in terms of complementable subrepresentations.

For the next results we focus on indecomposable representations altogether. In that case, the
algebra of endomorphisms has interesting properties itself.

Proposition 4.5 (Fitting Lemma, Proposition 4.4 in [91]). Let V be an indecomposable representa-
tion and let L ∈ EndΘ(V). Then L is either invertible or nilpotent (i.e., there exists n ∈ N such that
Ln = 0 ∈ gl(V)).
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As a corollary we obtain that the set of nilpotent endomorphisms of an indecomposable monoid
representation V

Endnil
Θ (V) = {L ∈ EndΘ(V) | L is nilpotent}

is an ideal in EndΘ(V). That is for L ∈ EndΘ(V), N,N ′ ∈ Endnil
Θ (V) and µ ∈ R, we also have that

LN,NL,N + N ′ and µN are nilpotent. Hence, we may consider the quotient algebra by factoring
out this ideal and obtain

Theorem 4.6 (Schur’s lemma, Lemma 4.8 in [91]). Let V be an indecomposable representation. The
quotient

EndΘ(V)/Endnil
Θ (V) (4.3)

is a real division algebra.

Remark 4.7. Schur’s Lemma originally stems from module theory where it describes endomorphisms
of simple modules and is especially important in representation theory of groups. This formulation
is a significant generalization to indecomposable modules. 4

Recall that by the Frobenius theorem (see for example FAITH [34]) any finite-dimensional real asso-
ciative division algebra is isomorphic to either the real numbers R, the complex numbers C, or the
quaternions H. In the first case we say V is a representation of real type – also called an absolutely
indecomposable representation. In the other two cases it is called a representation of complex or of
quaternionic type, respectively. We abbreviate this situation by defining the index of V to be the
dimension of the division algebra from Theorem 4.6:

ind (V) = dim EndΘ(V)/Endnil
Θ (V).

This classification can be made more precise. The fact that EndΘ(V)/Endnil
Θ (V) ∼= R,C, orH implies

that there exists I ∈ EndΘ(V) if V is of complex type and I,J,K ∈ EndΘ(V) if V is of quaternio-
nic type whose equivalence classes generate the complex or quaternionic structure of the quotient
algebra in (4.3). As a matter of fact, we obtain

I2,J2,K2, IJK = −1V +N,

where N ∈ Endnil
Θ (V) describes not necessarily the same nilpotent endomorphism for each left

hand side. Moreover, the quotient structure implies that any L ∈ EndΘ(V) is of the form

L = c11V +N,

L = c11V + cII +N,

L = c11V + cII + cJJ + cKK +N,

(4.4)

where N ∈ Endnil
Θ (V) and c1, cI , cJ , cK ∈ R depending on the representation type of V. This cha-

racterization allows for the following simple restrictions on possible eigenvalues of endomorphisms
of an arbitrary monoid representation.

Proposition 4.8. If V is an absolutely indecomposable Θ-representation, any endomorphism
L ∈ EndΘ(V) has exactly one eigenvalue of multiplicity dim V which is real. On the other hand,
if V is a representation that has a complementable subrepresentation W ⊂ V which is indecom-
posable of complex type, indecomposable of quaternionic type, or the direct sum of two isomorphic
subrepresentations, then there exists an endomorphism L ∈ EndΘ(V) with complex eigenvalues.

Proof. The first part follows almost directly from the well-known fact that two square matrices
A,B of the same size with tr (Am) = tr (Bm) for all m ∈ N have the same eigenvalues with
the same algebraic multiplicities using the representations of endomorphisms in (4.4). We have
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tr ((c11V)m) = tr ((c11V +N)m) as Endnil
Θ (V) is an ideal. Hence, the only eigenvalue of all endo-

morphisms of this form is given by the real coefficient c1 which is not changed by addition of the
nilpotent endomorphism.

Now assume there is a complementable subrepresentation W ⊂ V of complex type, of quater-
nionic type, or consisting of two isomorphic absolutely indecomposable components. In each case
there is an endomorphism I ∈ EndΘ(W ) such that I2 = −1W +N . In the complex and quaternionic
case I = I. If W ∼= W ′ ⊕W ′, where W ′ is absolutely indecomposable, we choose

I =

(
0 1W ′

−1W ′ 0

)
.

Extending I trivially to an endomorphism of V – i.e. I(W ) = 0, where V = W ⊕ W – yields an
endomorphism I ∈ EndΘ(V) which necessarily has complex eigenvalues, once again exploiting the
fact stated in the beginning of this proof.

We have omitted some of the algebraic details and delicacies in these considerations (in particu-
lar of the representation (4.4)) so as to only convey the main points. To obtain the full picture we
recommend to consult NIJHOLT and RINK [77].

One of the main results of this thesis describes generic steady state bifurcations in monoid equi-
variant dynamical systems (Theorem 5.11). We state two technical results that are essential for its
proof. The upcoming proposition is an immediate consequence of the Fitting Lemma. It investigates
endomorphisms of indecomposable representations that arise from concatenations of homomor-
phisms to and from another representation. Such an endomorphism is necessarily nilpotent, if the
two representations are not isomorphic.

Proposition 4.9 (Proposition 4.2 in [91]). Let V and V′ be indecomposable Θ-representations, and
consider two homomorphisms L ∈ HomΘ(V,V′) and K ∈ HomΘ(V′,V). If K ◦ L ∈ EndΘ(V) is
invertible, both L and K are isomorphisms. Conversely, K ◦ L ∈ EndΘ(V) is nilpotent if K or L is not
invertible.

Secondly, the proof of Theorem 5.11 hinges crucially on the application of the Lyapunov-Schmidt
reduction as described in Section 3.4. It allows to restrict the bifurcation problem to an equivalent
one on the generalized kernel of the linearization at the bifurcation point. As we have seen in Re-
mark 4.2, the linearization at a fully synchronous steady state is an instance of an endomorphism of
the representation. The final result of this section discusses perturbations of such endomorphisms
and the implications on the decomposition into generalized kernel and reduced image (4.1).

Lemma 4.10 (Lemma 6.3 in [91]). Let L0 ∈ EndΘ(V) and denote the decomposition into generalized
kernel and reduced image of L0 by

V = ker0(L0)⊕ im0(L0)

as in (4.1). Choosing a basis with respect to this representation allows to represent

L0 =

(
Lc0 0

0 Lh0

)
with Lc0 nilpotent and Lh0 invertible. Then there is an open neighborhood U ⊂ EndΘ(V) of the zero
endomorphism 0 ∈ EndΘ(V) and smooth maps

φc : U → EndΘ(ker0(L0)) and φh : U → EndΘ(im0(L0))

so that every L ∈ U represented as

L =

(
Lc Lch

Lhc Lh

)
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satisfies

L0 + L is conjugate to
(
φc(L) 0

0 φh(L)

)
∈ EndΘ(V).

The conjugacy is realized by elements of EndΘ(V), which guarantees that it preserves equivariance.
Furthermore, it holds that φc(L) = Lc0 + Lc +O(‖L‖2) and φh(L) = Lh0 + Lh +O(‖L‖2).

This lemma proves that locally every endomorphism close to L0 respects a decomposition that is
equivalent to V = ker0(L0) ⊕ im0(L0). Furthermore, up to linear order the action of L on these
components depends only on its ker0(L0)- and im0(L0)-component respectively.
Remark 4.11. In Lemma 3.5 of NIJHOLT and RINK [77], the authors provide a generalization of
Lemma 4.10 to a decomposition into direct sums of arbitrary generalized subspaces of L0. In par-
ticular, this includes the decomposition into center subspace and hyperbolic subspace as in (4.2).

4

4.2 Abstract representation theory for fundamental networks

We end this section with an abstractly algebraic take on the representation that equivalently cha-
racterizes the fundamental network. In particular, we consider the case of one-dimensional internal
dynamics V = R and abbreviate V =

⊕
σ∈ΣR. Recall that the representation is given by σ → Aσ

where (AσX)τ = Xτσ is determined by multiplication from the right in Σ, hence the term right regu-
lar representation. Due to the Krull-Schmidt theorem this representation uniquely decomposes into
indecomposable subrepresentations. Bifurcation analysis requires knowledge of generalized ker-
nels or center subspaces which are subrepresentations themselves, as we have seen in Remark 4.2.
These, in turn, can then uniquely be decomposed into some of the indecomposable components of
V. Hence, it is of great use for the investigation of generic bifurcations to determine the decom-
position of V. If it is known, it allows to characterize all possible generalized kernels and center
subspaces in terms of symmetry. The ideas we present in this section were inspired by STEINBERG

[105].
Note that the existence of a decomposition

V = W1 ⊕ · · · ⊕Wm

into indecomposable subrepresentations is equivalent to the existence of equivariant projections
P1, . . . , Pm ∈ EndΣ (V) with Pk(V) = Wk that satisfy the following conditions

(i) P 2
k = Pk, (projection)

(ii) PkPl = 0 ∈ EndΣ (V), if k 6= l, (direct sum)

(iii) P1 + · · ·+ Pm = 1V ∈ EndΣ (V), (decomposition)

(iv) Pk = Q+Q′ where Q and Q′ satisfy (i) and (ii) implies Q = 0 or Q′ = 0. (indecomposable)

Points (i) and (ii) guarantee that these maps are projections whose images have trivial intersection.
Equivariance, furthermore, implies that the images are subrepresentations. Then, points (iii) and
(iv) show that these form a decomposition of the whole space where none of the components can
be decomposed any further. Hence, in order to decompose V it suffices to find a set of equivariant
projections satisfying (i) to (iv).

In general, this is not an easier problem to solve, than to determine subrepresentations directly.
Yet, we want to present some additional ideas from representation theory that give some more
insight. We define what is called the monoid algebra

RΣ =

{∑
σ∈Σ

aσσ

∣∣∣∣∣ aσ ∈ R for all σ ∈ Σ

}
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of formal linear combinations of the monoid elements over the real numbers. Addition is defined
on coefficients per monoid element and the product structure is given by the distributive law and
the multiplication in Σ. It can be seen as the real algebra with basis Σ. As the monoid is finite, it is
finite-dimensional. This construction is also known in representation theory of groups. It is of great
importance, since every representation can equivalently be expressed as a RΣ-module. As a matter
of fact, it can readily be seen that the real algebra generated by the representation maps together
with addition and multiplication of endomorphisms is isomorphic to the monoid algebra

〈Aσ | σ ∈ Σ〉 ∼= RΣ.

Hence, scalar multiplication by linear combinations of representation maps gives any representation
space the structure of a left RΣ-module. Furthermore, the endomorphisms of a representation are
precisely the endomorphisms of the corresponding module, i.e. those linear maps that respect scalar
multiplication.

On the other hand, the representation space V =
⊕

σ∈ΣR is readily seen to be isomorphic to
RΣ as a vector space as well. As a matter of fact, one can identify the bases τ 7→ (δτ,σ)σ∈Σ, where
V = 〈(δτ,σ)σ∈Σ | τ ∈ Σ〉 is the standard basis expressed using the Kronecker delta δτ,σ = 1 if τ = σ

and 0 otherwise. Thus, the construction mentioned before gives rise to a left RΣ-module structure
onRΣ. Interestingly, this is dual to the rightRΣ-module onRΣ, where scalar multiplication is given
by multiplication in RΣ from the right. It is denoted by RΣRΣ and called the right regular module of
RΣ. Duality of modules in this context can best be understood in the sense that if we denote the
scalar multiplications in terms of representation matrices using the standard basis, the matrix of
the right regular module for each monoid element σ ∈ Σ will be transposed to Aσ . As a matter of
fact, the matrices for the right regular module respect the multiplication in Σ with reversed order so
that we speak of an anti-representation.

The endomorphisms of the right regular module have a simple characterization as well. Every
linear map onRΣ that respects – i.e. commutes with – multiplication from the right is given by mul-
tiplication from the left with some element inRΣ. That is,L(XY ) = L(X)Y for allX,Y ∈ RΣ if and
only if there exists Z ∈ RΣ such that L(X) = ZX for all X ∈ RΣ (see for example Proposition A.20
in STEINBERG [105]). Hence, End(RΣRΣ) ∼= RΣ as vector spaces. In order to keep track of the order of
multiplications, we introduce the opposite algebra RΣop. It contains the same elements as RΣ with
reversed order of multiplication X • Y = Y X . Then we may define the right regular module RΣRΣ

as a the left RΣop-module RΣopRΣ with scalar multiplication given by •. This is due to the fact that
scalar multiplication from the left reverses the order of multiplication of scalars compared to scalar
multiplication from the right. Its endomorphisms then satisfy

End (RΣopRΣ) ∼= RΣ

as algebras. The right hand side is interpreted as multiplication from the left.
This can almost immediately be translated to theRΣ-module structure given by the right regular

representation of the fundamental network. As a matter of fact, the duality reverses the order of
multiplication once more, but respects all the other relations. In particular, we obtain that the left
module structure is given by RΣ, i.e.

〈Aσ | σ ∈ Σ〉 ∼= RΣ

as before, but also
EndΣ (V) ∼= RΣop.

Note that we have derived this second relation already by hand in Remark 4.3, where we show
that the space of endomorphisms is spanned by the adjacency matrices {Bσ | σ ∈ Σ}. Further-
more, we see that BσBτ = Bτσ so that these maps form an anti-representation. In particular
〈Bσ | σ ∈ Σ〉 ∼= RΣop.

83



All this brings us back to the challenge explained in the beginning of this section which is to
determine a decomposition of V in terms of equivariant projections. As we may represent endo-
morphisms in terms of the opposite monoid algebra – in fact the map σ 7→ Bσ extends to an iso-
morphism of algebras –, we can restate this problem. Finding a decomposition of V into indecompo-
sable subrepresentations is equivalent to finding a complete set of primitive orthogonal idempotents
e1, . . . , em ∈ RΣop, where an idempotent is an element that squares to itself. Such a set is defined
by a reformulation of the conditions (i) to (iv) as

(i) e2
k = ek, (idempotent)

(ii) ekel = 0, if k 6= l, (orthogonal)

(iii) e1 + · · ·+ em = 1(= 1 · Id), (complete)

(iv) ek = q + q′ where q and q′ satisfy (i) and (ii) implies q = 0 or q′ = 0. (primitive)

Note that these conditions are symmetric in the indices 1, . . . ,m. Hence, reversing the order does
not change any of the characteristics. Thus, the problem can furthermore be reformulated to finding
a complete set of primitive orthogonal idempotents in RΣ. The image under the extension of the
map σ 7→ Bσ then provides a set of projections onto the indecomposable components of V.

It was this observation that motivated a thorough investigation of the representations of fun-
damental feedforward networks. It turns out that these networks induce monoids with properties
that allow to determine a complete set of primitive orthogonal idempotents in an algorithmic man-
ner. The details of this can be found in Chapter 9 in Part III of this thesis. Furthermore, it has led to a
purely algebraic formulation of this algorithm for so-called R-trivial monoids that is the main result
of the preprint [82]. It is an open question whether other classes of networks correspond to classes
of monoids for which this question can be answered in general exist.
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Chapter 5

Generic monoid equivariant bifurcations

In this chapter we prove one of the main results of this thesis which is Theorem 5.11. It investi-
gates generic steady state bifurcations in 1-parameter families of monoid equivariant dynamical
systems. Recall that 1-parameter bifurcations can be seen as the standard case or the elementary
building blocks of bifurcations. Even in a multi-parameter bifurcation problem generically only one
parameter is responsible for a critical eigenvalue (0 or a pair of imaginary eigenvalues). Then only
this parameter is relevant for the bifurcation which essentially allows to reduce the analysis to a
1-parameter bifurcation problem. The major difference occurs in the situation when multiple pa-
rameters yield critical eigenvalues simultaneously. Informally speaking, this leads to an interaction
of the individual 1-parameter bifurcations, so-called mode interactions. This background motivates
the significance of Theorem 5.11 also for multi-parameter systems. See Remark 3.30 for more on this
consideration. In Section 3.4, we have seen that the Lyapunov-Schmidt reduction allows to reduce
analysis of steady state bifurcations to the generalized kernel of the linearization at the bifurcation
point (see Section 3.4). We also say the bifurcation occurs along that subspace – all branching soluti-
ons lie in the center manifold which is a graph over that subspace (see Section 3.5). Furthermore, this
generalized kernel is a subrepresentation (see (4.1)). Theorem 5.11 makes this characterization more
precise by proving that in a generic 1-parameter bifurcation the generalized kernel is an absolutely
indecomposable subrepresentation. This allows for classification of 1-parameter steady state bifur-
cations in terms of indecomposable subrepresentations. A version for group equivariant dynamics
has been known for a long time and is successfully applied for that same cause (see for example
GOLUBITSKY, STEWART, and SCHAEFFER [58] for an investigation of Rayleigh–Bénard convection). For
monoid equivariant dynamics, however, a similar result was only known in a special case of monoid
representations that decompose into pairwise non-isomorphic indecomposable subrepresentations
(RINK and SANDERS [91]). The generalization in Theorem 5.11 is published in [97]. Correspondingly
Sections 5.1 and 5.2 are essentially Subsections 3.1 and 3.2 of that publication. Furthermore, some
technicalities are postponed to the appendix and correspond to the appendix of the publication.
Since then, a generalization that includes also Hopf bifurcations and bifurcations with arbitrarily
many parameters has been made available. We summarize this result in Section 5.3 and also make
use of it in the remainder of this thesis.

Let us briefly recall the setting and some notation first. Once again, let Θ be a monoid that
acts on a finite-dimensional real vector space V via θ 7→ Tθ ∈ gl(V). Furthermore, we consider
the smooth equivariant steady state bifurcation problem governed by F : V × R → V. As we are
only interested in the local bifurcation behavior we do not restrict the parameter space: Λ = R.
Symmetry is restricted to the spatial coordinate

F (TθX,λ) = TθF (X,λ)

for all X ∈ V, λ ∈ R and θ ∈ Θ. We assume the existence of a Θ-symmetric equilibrium X0 and a
bifurcation to occur at the bifurcation parameter λ0. That is the linearization Lλ0 = DXF (X0, λ0) is
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not invertible, i.e. 0 ∈ spec(Lλ0). Without loss of generality we may assume λ0 = 0. Then Lyapunov-
Schmidt reduction tells us that possible new solution branches locally occur along the generalized
kernel ker0(L0). Since, L0 ∈ EndΘ(V), as was mentioned in Remark 4.2, ker0(L0) is a subrepresen-
tation and symmetry is preserved by this procedure so that the bifurcation problem reduces to an
equivariant steady state bifurcation analysis on ker0(L0). Frequently, a fully symmetric steady state
persists through the bifurcation. Denote it by the smooth curve X0(λ) such that X0(0) = X0. Then
Lλ = DXF (X0(λ), λ) is a one parameter family of endomorphisms of V.

The principal part of the proof is an extension of equivariant transversality theory to generali-
zed symmetries. To that end, we show that all endomorphisms with generalized kernel that is not
absolutely indecomposable are contained in submanifolds with high codimensions. Then, a generic
family of endomorphisms does not intersect these submanifolds. More precisely, any family can be
perturbed so that it does not contain any elements with a generalized kernel that is not absolutely
indecomposable. Note that it does not suffice to show that any endomorphism can be perturbed
so that it does not have a generalized kernel of complex or of quaternionic type. This only guaran-
tees that the a generalized kernel like that can be perturbed away at one isolated parameter value.
However, it does not prevent a bifurcation along a subrepresentation of complex or of quaternionic
type to occur at a different parameter value after perturbation. This proof is a generalization of the
one in RINK and SANDERS [91]. Therefore, its structure is similar and some of the notation is used
similarly. The major difference comes from the fact that multiple indecomposable components that
are isomorphic impose technical challenges in the determination of the submanifolds mentioned
above.

5.1 Isotypic components and nilpotent endomorphisms

As a first step consider the decomposition of V into indecomposable components

V = X1 ⊕ · · · ⊕Xs

which is unique due to the Krull-Schmidt theorem (Theorem 4.4). Furthermore, it yields a partition
of {1, . . . , s} = P1 ∪ . . .∪Pm into indices of isomorphic components, i.e Xi

∼= Xj if i and j are in the
same Pk and Xi 6∼= Xj if i and j are not in the same Pk. Summing up the components according to
that partition

Vk =
⊕
i∈Pk

Xi,

i.e. summing up those components that are isomorphic or equivalent, we obtain a coarser decom-
position

V = V1 ⊕ · · · ⊕ Vm.

This construction is known from representations of groups. Consequently, we use the same no-
menclature by calling the Vk isotypic components. This decomposition is unique up to equivalence
of subrepresentations as well, since it stems directly from the decomposition into indecomposable
subrepresentations. As a matter of fact we may identify each isotypic component with the finite
direct sum of one of its indecomposable subrepresentations

Vk ∼= Xsk
i

with sk = #Pk and some i ∈ Pk.
The version of Theorem 5.11 in RINK and SANDERS [91] is proven for representations in which all

isotypic components consist of precisely one indecomposable subrepresentation, i.e. sk = 1 for all
k = 1, . . . ,m. In order to generalize it to arbitrary isotypic components, we need to generalize the
algebraic understanding of indecomposable representations such as the Fitting Lemma (Proposi-
tion 4.5), Schur’s lemma (Theorem 4.6), and in particular Proposition 4.9 to isotypic components.
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Proposition 5.1 (Lemma 3.1 in [97]). Let X and Y be indecomposable Θ-representations. Furthermore,
let V = Xs and W = Yr for some r, s ∈ N be representations consisting of precisely one isotypic
component. For L ∈ HomΘ(V,W ) and K ∈ HomΘ(W,V ) it holds that KL ∈ EndΘ(V) and we may
represent it as a block matrix with respect to the decomposition:

KL =

B
11 · · · B1s

...
...

Bs1 · · · Bss


so that Bij ∈ EndΘ(X) for all i, j. Suppose that X and Y are non-isomorphic representations, i.e.
X � Y. Then all the Bij are nilpotent.

Proof. As a first step, we present K and L in block matrix form respecting the decompositions of V

and W respectively:

L =

L
11 · · · L1s

...
...

Lr1 · · · Lrs

 and K =

K
11 · · · K1r

...
...

Ks1 · · · Ksr


where Lij ∈ HomΘ(X,Y) and Kij ∈ HomΘ(Y,X) for all i, j. Therefore, the product KL is an s× s
block matrix with entries

(KL)ij =
r∑
l=1

KilLlj (5.1)

which are in EndΘ(X). In particular, this holds for each summand: KilLlj ∈ EndΘ(X) for all i, j, l.
Proposition 4.5 yields that such products are either invertible or nilpotent. Suppose now thatKilLlj

is invertible for some i, j, l. By Proposition 4.9 we obtain that bothKil andLlj are isomorphisms and,
therefore, X ∼= Y. This is a contradiction to our assumptions and therefore KilLlj are nilpotent for
all i, j, l. The fact that Endnil

Θ (X) is an ideal (see Proposition 4.5) yields that finite sums of nilpotent
endomorphisms are again nilpotent. In particular, this holds true for all blockwise entries of the
product KL given by (5.1) which completes the proof.

Remark 5.2. Proposition 5.1 is a generalization of Proposition 4.9 to isotypic components. 4

Next we aim at understanding nilpotent endomorphisms of isotypic components similar to
those of indecomposable representation (see Proposition 4.5). In order to do that we consider a real
finite-dimensional representation consisting of precisely one isotypic component

V = Xs (5.2)

(using the notation from Proposition 5.1) unless stated differently. Presenting the endomorphisms
of V in block matrix form as before we may identify

EndΘ(V) ∼= M (s; EndΘ(X))

where M (s; EndΘ(X)) is the algebra of s×smatrices with entries in EndΘ(X). As this identification
holds for any choice of basis according to the direct sum decomposition (5.2), we usually use it wit-
hout explicit mention. Then we see that the collection Endb−nil

Θ (V) of matrices with only nilpotent
entries

Endb−nil
Θ (V) = M

(
s; Endnil

Θ (X)
)

is an ideal in EndΘ(V). This follows immediately from the fact that Endnil
Θ (X) is an ideal in EndΘ(X)

(see proposition 4.5) and from the rules of matrix summation and multiplication.
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Proposition 5.3 (Lemma 3.3 in [97]). The collection

Endb−nil
Θ (V) = M

(
s; Endnil

Θ (X)
)
⊂ M (s; EndΘ(X)) ∼= EndΘ(V)

is an ideal.

Proof. Let

L =

L
11 · · · L1s

...
...

Ls1 · · · Lss

 ,K =

K
11 · · · K1s

...
...

Ks1 · · · Kss

 ∈ M (s; EndΘ(X)) .

We may readily check the requirements for an ideal using the fact that Endnil
Θ (X) is an ideal.

(i) Obviously 0 ∈ Endb−nil
Θ (V).

(ii) Let L,K ∈ Endb−nil
Θ (V). Then Lij ,Kij ∈ Endnil

Θ (X) for all i, j. As Endnil
Θ (X) is an ideal,

we obtain −Lij ,−Kij ∈ Endnil
Θ (X) as well as Lij − Kij ∈ Endnil

Θ (X) for all i, j. Thus,
L−K ∈ Endb−nil

Θ (V).

(iii) Let L ∈ Endb−nil
Θ (V). Then

(LK)ij =

s∑
l=1

LilK lj

with each summand being an element in Endnil
Θ (X) as this is an ideal. The same holds for the

finite sum and, therefore, LK ∈ Endb−nil
Θ (V). The proof for KL is completely alike.

Remark 5.4. Note that the elements in Endb−nil
Θ (V) are nilpotent themselves. This can be seen using

the fact that after a choice of a basis for X an endomorphism can be represented as real matrices
and

tr
(
Lk
)

= 0

for all k ∈ N, if L ∈ Endb−nil
Θ (V). 4

The endomorphisms in Endb−nil
Θ (V) are all nilpotent. It remains to be seen, what other nilpotent

endomorphisms exist in EndΘ(V). Similar to the consideration in Schur’s lemma (Theorem 4.6), we
may use the fact that Endb−nil

Θ (V) is an ideal in EndΘ(V) – or more precisely in M (s; EndΘ(X)) –
and consider the quotient algebra

M (s; EndΘ(X)) /M
(
s; Endnil

Θ (X)
)
.

It yields the decomposition

M (s; EndΘ(X)) = Endb−nil
Θ (V)⊕Y. (5.3)

where
Y ∼= M (s; EndΘ(X)) /M

(
s; Endnil

Θ (X)
)
.

The isomorphism is the projection map

π : M (s; EndΘ(X))→ M (s; EndΘ(X)) /M
(
s; Endnil

Θ (X)
)

restricted to Y. Note that factoring out Endb−nil
Θ (V) = M

(
s; Endnil

Θ (X)
)

is the same as factoring
out Endnil

Θ (X) entrywise. Therefore,

M (s; EndΘ(X)) /M
(
s; Endnil

Θ (X)
)

= M
(
s; EndΘ(X)/Endnil

Θ (X)
)
.
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These algebras are not only isomorphic but equal.
Remember from the considerations after Schur’s lemma (Theorem 4.6) that we may also identify

EndΘ(X)/Endnil
Θ (X) ∼= K

where K = R,C or H depending on the representation type of X – or equivalently on its index.
Therefore, we may identify

M
(
s; EndΘ(X)/Endnil

Θ (X)
)
∼= M (s;K)

using an isomorphism κ. It is important to bear in mind that, even though we identify the factor
space with complex or even quaternionic matrices, we still treat it as a real algebra, meaning that we
allow scalar multiplication by real numbers only. This allows us to characterize all the nilpotent en-
domorphisms in EndΘ(V) in terms of the reduced algebras M

(
s; EndΘ(X)/Endnil

Θ (X)
) ∼= M (s;K).

Lemma 5.5 (Lemma 3.5 in [97]). Let L ∈ EndΘ(V). Then L is nilpotent if and only if π(L) is nilpotent
in M

(
s; EndΘ(X)/Endnil

Θ (X)
)

and κπ(L) is nilpotent in M (s;K).

Proof. The first direction of the proof follows directly from the fact that π and κ are homomorphisms
of rings. Conversely let L ∈ EndΘ(V) such that π(L) is nilpotent in M

(
s; EndΘ(X)/Endnil

Θ (X)
)

(or
equivalently κπ(L) nilpotent in M (s;K)). Then there exists k ∈ N such that

π(L)k = 0 ∈ M
(
s; EndΘ(X)/Endnil

Θ (X)
)
.

This is the same as
π(Lk) = 0 ∈ M

(
s; EndΘ(X)/Endnil

Θ (X)
)
.

Since π : M (s; EndΘ(X)) → M (s; EndΘ(X)) /M
(
s; Endnil

Θ (X)
)

is the natural projection, this is
equivalent to Lk ∈ Endb−nil

Θ (V). As mentioned in the last remark, the elements of Endb−nil
Θ (V)

are nilpotent themselves, so Lk and therefore L are nilpotent.

Summarizing we have seen that

Endnil
Θ (V) = {L ∈ M (s; EndΘ(X)) | π(L) nilpotent}

= {L ∈ M (s; EndΘ(X)) | κπ(L) nilpotent} .

We can make this characterization even more precise. Recall from (5.3) that we may uniquely
decompose elements L ∈ M (s; EndΘ(X)) as follows

L = L1 + L2, (5.4)

where L1 ∈ Endb−nil
Θ (V) and L2 ∈ Y. As π is the natural projection onto the quotient algebra – in

particular, it is a homomorphism –, we obtain

π(L) = π(L1) + π(L2) = π(L2) ∈ M
(
s; EndΘ(X)/Endnil

Θ (X)
)
.

Therefore, using Lemma 5.5, we obtain

L = L1 + L2 ∈ Endb−nil
Θ (V)⊕Y nilpotent ⇐⇒ π(L) ∈ M

(
s; EndΘ(X)/Endnil

Θ (X)
)

nilpotent

⇐⇒ π(L2) ∈ M
(
s; EndΘ(X)/Endnil

Θ (X)
)

nilpotent

⇐⇒ L2 ∈ Y nilpotent
⇐⇒ κπ(L2) ∈ M (s;K) nilpotent
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and in conclusion

Endnil
Θ (V) = {L1 + L2 | L2 nilpotent}

= {L1 + L2 | κπ(L2) ∈ M (s;K) nilpotent} .
(5.5)

Finally, we investigate the structure of nilpotent endomorphisms of an isotypic component from
a geometric perspective. The algebra of endomorphisms is first and foremost a vector space and we
characterize the nilpotent ones in terms of submanifolds. In particular, their codimensions are of
crucial importance. To that end, we have to investigate nilpotent matrices in M (s;K) due to (5.5).
In the following we continue to identify endomorphisms L ∈ EndΘ(V) with M (s; EndΘ(X)) and
speak of π(L) while remembering that this is the same as π(L2).

First of all, recall that matrices in M (s;K) are non-invertible if they are nilpotent and further-
more that they are invertible if and only if they have full rank over K. The rank is defined to be
the number of (right) linear independent column vectors or equally the number of (left) linear inde-
pendent row vectors. This is well known for real and complex matrices. For the quaternionic case
consult ZHANG [117] and Appendix A. This allows us to decompose Endnil

Θ (V) as follows

Endnil
Θ (V) =

s⋃
i=1

Ji

where Ji = {L ∈ EndΘ(V) | κπ(L) nilpotent, rankκπ(L) = s− i}. Furthermore, we may embed
the Ji into larger collections by dropping the requirement to be nilpotent

Ji ⊂ Λi = {L ∈ EndΘ(V) | rankκπ(L) = s− i} .

Let Mi (s;K) ⊂ M (s;K) denote the submanifold of matrices with rank s− i. Its dimension and codi-
mension are known from Proposition A.1 in Appendix A. The projections π and κ are clearly surjective
linear maps and therefore submersions of manifolds, which can be seen from the decomposition in
(5.3) and (5.5). Hence,

Λi = π−1κ−1(Mi (s;K)) ⊂ EndΘ(V)

is a submanifold of the same codimension as that of Mi (s;K) ⊂ M (s;K):

codim Λi = codim Mi (s;K)

= i2 dimK
= i2 ind (X) .

Recall that i = 1, . . . , s and note that this codimension is 1 if and only if i = 1 and ind (X) = 1

or equivalently i = 1 and K = R. In that case we skip the embedding of J1 into Λ1. As is proven in
Proposition A.2 in Appendix A the real nilpotent matrices of rank s− 1 form an (s2− s)-dimensional
submanifold of M (s;R) that we call Mnil

1 (s;R). Thus, the codimension of J1 is

codim J1 = codim Mnil
1 (s;R)

= s2 − (s2 − s)
= s

using the fact that π and κ are surjective linear maps again. This codimension equals 1 if and only
if s = 1. In this case we are considering 1 × 1 real matrices and the only nilpotent one is 0. We
summarize these results in the following theorem.

Theorem 5.6 (Theorem 3.6 in [97]). Let X be an indecomposable finite-dimensional real representation
of the monoid Θ and V = Xs for some s ∈ N. Then the set of nilpotent endomorphisms Endnil

Θ (V) is
contained in the finite union of submanifolds of EndΘ(V) of codimensions
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(i) s, i2 with i = 2, . . . , s if ind (X) = 1 or

(ii) i2 ind (X) with i = 1, . . . , s if ind (X) = 2 or 4.

Remark 5.7. This codimension equals 1 if and only if the representation X is absolutely indecom-
posable and the isotypic component consists of only one indecomposable summand. That is when
ind (X) = 1 and s = 1. 4

5.2 Generalized kernels in generic 1-parameter families of endomor-
phisms

We now return to arbitrary finite-dimensional real Θ-representations V decomposed into isotypic
components as

V = V1 ⊕ · · · ⊕ Vm.

Similar to before, we may represent endomorphisms as matrices with respect to this coarser decom-
position than the one into indecomposable subrepresentations, i.e. L ∈ EndΘ(V) is equivalently
described by

L =

L11 · · · L1m

...
...

Lm1 · · · Lmm


with Lij ∈ HomΘ(Vj , Vi). In order to characterize the generalized kernels of endomorphisms, we
need the following result on the diagonal elements of this matrix representation.

Lemma 5.8. Let L ∈ Endnil
Θ (V) be represented as

L =

L11 · · · L1m

...
...

Lm1 · · · Lmm


with Lij ∈ HomΘ(Vj , Vi). Then all the Lii ∈ EndΘ(Vi) are nilpotent – Lii ∈ Endnil

Θ (Vi) for all
i = 1, . . . ,m.

Proof. Let L ∈ Endnil
Θ (V) be represented as

L =

L11 · · · L1m

...
...

Lm1 · · · Lmm


and n ∈ N such that Ln = 0. The blockwise entries of Ln are

(Ln)ij =
∑

1≤l1,...,ln−1≤m
Lil1Ll1l2 · · ·Lln−1j .

In particular, for i = j we obtain

0 = (Ln)ii =
∑

1≤l1,...,ln−1≤m
Lil1Ll1l2 · · ·Lln−1i

=
(
Lii
)n

+
∑

1≤l1,...,ln−1≤m
∃r : lr 6=i

Lil1Ll1l2 · · ·Lln−1i.

Proposition 5.1 implies that
Lil1Ll1l2 · · ·Lln−1i ∈ Endb−nil

Θ (Vi)
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whenever there exists an r such that lr 6= i. Then all its blockwise components are nilpotent. As
Endb−nil

Θ (Vi) is an ideal the same holds for(
Lii
)n

= −
∑

1≤l1,...,ln−1≤m
∃r : lr 6=i

Lil1Ll1l2 · · ·Lln−1i

In particular, this implies that
(
Lii
)n is nilpotent and thus the same holds true forLii which comple-

tes the proof.

We have assumed that V splits as a sum of isotypic components. These, furthermore, decom-
pose into indecomposable subrepresentations as follows

Vi ∼= Xji
i

where the Xi ⊂ V are indecomposable and ji ∈ N suitable. If L ∈ EndΘ(V) is an arbitrary endo-
morphism its generalized kernel ker0(L) is a subrepresentation with a complement – the reduced
image im0(L). Hence, by the Krull-Schmidt theorem (Theorem 4.4) it is isomorphic to the direct sum
of some of the indecomposable components of V:

ker0(L) ∼= Xs1
i1
⊕ · · · ⊕Xsk

ik

with k ≤ m, 1 ≤ i1 < . . . < ik ≤ m and suitable 1 ≤ sr ≤ jir ∈ N . We may, therefore, classify
endomorphisms according to their generalized kernels. Renaming isotypic components of ker0(L)

as
Wr = Xsr

ir
,

we denote the set of endomorphisms whose generalized kernel is isomorphic to W1 ⊕ · · · ⊕Wk by

Iso (W1 ⊕ · · · ⊕Wk) = {L ∈ EndΘ(V) | ker0(L) ∼= W1 ⊕ · · · ⊕Wk} .

Using the results from Section 5.1, we may now express the set of all endomorphisms whose ge-
neralized kernel is isomorphic to a given subrepresentation geometrically in terms of submanifolds
the codimensions of which can be determined from the isotypic components.

Theorem 5.9 (Theorem 3.9 in [97]). Suppose the Θ-representation V decomposes as the direct sum of
indecomposables

V ∼= Xj1
1 ⊕ · · · ⊕Xjm

m

where the Xi are pairwise non-isomorphic. Choose k ≤ m, 1 ≤ i1 < . . . < ik ≤ m and 1 ≤ sr ≤ jir
and rename Wr = Xsr

ir
for r = 1, . . . , k. Then Iso (W1 ⊕ · · · ⊕Wk) is contained in the finite union of

submanifolds of codimensions
k∑
r=1

dr (5.6)

where

dr =

sr, p
2 with p = 2, . . . , sr if ind (Xir) = 1

p2 ind (Xir) with p = 1, . . . , sr if ind (Xir) = 2 or 4.

Proof. Choose an arbitrary endomorphism L0 ∈ Iso (W1 ⊕ · · · ⊕Wk) and decompose V into the
generalized kernel and reduced image of L0:

V = ker0(L0)⊕ im0(L0).
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Recall from Lemma 4.10 that for an endomorphism L ∈ EndΘ(V) close enough to the zero endo-
morphism 0 ∈ EndΘ(V) the sum L0 + L is equivariantly conjugate to(

φ11(L) 0

0 φ22(L)

)
with respect to that decomposition. Asφ22(L) = L22

0 +O(‖L‖) andL22
0 invertible, φ22(L) is invertible

as well. The generalized kernel ker0(L0 + L) is therefore isomorphic to ker0(L0) if and only if φ11(L)

is nilpotent. As a matter of fact this means

L0 + L ∈ Iso (W1 ⊕ · · · ⊕Wk) ⇐⇒ φ11(L) nilpotent

for all L in a suitable neighborhood U of 0 ∈ EndΘ(V).
Furthermore,

φ11 : U → EndΘ(ker0(L0)) ∼= EndΘ(W1 ⊕ · · · ⊕Wk)

with φ11(L) = L11
0 + L11 +O(‖L‖2). Hence φ11 is clearly a submersion and it suffices to prove that

Endnil
Θ (W1 ⊕ · · · ⊕Wk)

is contained in the union of submanifolds of EndΘ(W1⊕ · · · ⊕Wk) of the specified codimensions. It
then follows by an argument that has already been used before that

Iso (W1 ⊕ · · · ⊕Wk) ∩ U =
(
φ11
)−1

(
Endnil

Θ (ker0(L0))
)

is contained in the union of submanifolds of the same codimensions.
To prove this let L ∈ EndΘ(W1 ⊕ · · · ⊕ Wk) be arbitrary and decomposed respecting isotypic

components

L =

L
11 · · · L1k

...
...

Lk1 · · · Lkk

 .

As we have seen in Lemma 5.8 the block-diagonal elements are nilpotent ifL is nilpotent. Hence, we
can embed

Endnil
Θ (W1 ⊕ · · · ⊕Wk) ⊂

{
L ∈ EndΘ(W1 ⊕ · · · ⊕Wk) | Lrr ∈ Endnil

Θ (Wr) for all r = 1, . . . , k
}

which we call N. Theorem 5.6 tells us that each Endnil
Θ (Wr) is contained in the finite union of sub-

manifolds of EndΘ(Wr) of codimensions

dr =

sr, p
2 with p = 2, . . . , sr if ind (Xir) = 1

p2 ind (Xir) with p = 1, . . . , sr if ind (Xir) = 2 or 4.
(5.7)

Hence N is contained in the finite union of submanifolds of EndΘ(W1 ⊕ · · · ⊕Wk) of codimensions

k∑
r=1

dr

where the dr are chosen as in (5.7). This completes the proof.

Remark 5.10. Note that none of the dr vanishes. Hence, the sum of codimensions (5.6) is 0 if and only
if k = 0. In that case the union of submanifolds from Theorem 5.9 contains all nonsingular matrices.
The sum of codimensions equals 1 if and only if k = 1, s1 = 1 and ind (W1) = 1. In that case the
nilpotent endomorphisms form a real subspace and hence a proper submanifold. They are not only
contained in one. In all other cases the sum of codimensions is at least 2. 4
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We have now collected all measures to complete the proof of the main result of this chapter.

Theorem 5.11 (Main Theorem in [97]). Steady state bifurcations in one-parameter families of systems
that are equivariant with respect to a finite-dimensional representation of a monoid generically occur
along an absolutely indecomposable subrepresentation.

Proof. Let V be a finite-dimensional real representation of Θ that decomposes as the direct sum of
indecomposables

V ∼= Xj1
1 ⊕ · · · ⊕Xjm

m .

Choose k ≤ m, 1 ≤ i1 < . . . < ik ≤ m and 1 ≤ sr ≤ jir and rename Wr = Xsr
ir

for r = 1, . . . , k.
Theorem 5.9 and the remark thereafter tell us that Iso (W1 ⊕ · · · ⊕Wk) is a submanifold of codi-
mension 0 if and only if k = 0. In that case all endomorphisms in Iso (W1 ⊕ · · · ⊕Wk) are invertible
so that they cannot occur as the linearization at a bifurcation point. Furthermore, it is of codimen-
sion 1 if and only if k = 1, s1 = 1 and Wi1 = Xi1 is absolutely indecomposable. In all other cases
Iso (W1 ⊕ · · · ⊕Wk) is contained in the finite union of submanifolds of codimension 2 or higher. In
particular, this means that

ζ = {L ∈ EndΘ(V) | ker0(L) 6= {0} is absolutely indecomposable}

is the finite union of submanifolds of EndΘ(V) of codimension 1 and

η = {L ∈ EndΘ(V) | ker0(L) 6= {0} is not absolutely indecomposable}

is contained in the finite union of submanifolds of EndΘ(V) of codimension 2 or higher. This is due
to the fact that we only have finitely many possibilities of choosing k ≤ m, 1 ≤ i1 < . . . < ik ≤ m
and 1 ≤ sr ≤ jir .

Thom’s transversality theorem (compare to HIRSCH [63]) then shows that ζ is intersected trans-
versely – especially in isolated points – and η is not intersected at all by a generic one parameter
family of endomorphisms. Together with the considerations at the beginning of this section this
completes the proof.

5.3 Generalization

In the preprint NIJHOLT and RINK [77] the authors prove a more general version of Theorem 5.9. Using
methods from non-commutative algebra – especially Wedderburn’s structure theorem – they are
able to characterize the possible generalized kernels and center subspaces in an l-parameter bifurca-
tion problem for arbitrary l. Furthermore, they obtain additional precision in showing that the set
Iso (W1 ⊕ · · · ⊕Wk) from Theorem 5.9 and its counterpart for center subspaces are submanifolds of
specific codimensions and not only subsets thereof. As we make use of this more general result in la-
ter parts of the thesis and also for completeness we restate a theorem and a remark on bifurcations
from NIJHOLT and RINK [77]. Setting and notation are the same as in the previous sections. In par-
ticular, we consider the finite-dimensional real Θ-representation V that decomposes into isotypic
components. We slightly adapt notation to distinguish the representation types of the indecompo-
sable components, i.e.

V = V R
1 ⊕ · · · ⊕ V R

mR
⊕ V C

1 ⊕ · · · ⊕ V C
mC
⊕ V H

1 ⊕ · · · ⊕ V H
mH
,

where
V R
i
∼=
(
XR
i

)sRi , V C
i
∼=
(
XC
i

)sCi , V H
i
∼=
(
XH
i

)sHi
and XR

i ,X
C
i , and XH

i are indecomposable subrepresentations of real, complex, and quaternionic
type respectively.
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Theorem 5.12 (Theorem 3.2 in [77]). Let U ⊂ V be a subrepresentation satisfying

U ∼=
mR⊕
i=1

(
XR
i

)ρi ⊕ mC⊕
i=1

(
XC
i

)γi ⊕ mH⊕
i=1

(
XH
i

)ιi
with 0 ≤ ρi ≤ sR

i , 0 ≤ γi ≤ sC
i and 0 ≤ ιi ≤ sH

i for every i. Define the quantities

KU =

mR∑
i=1

ρi + 2 ·
mC∑
i=1

γi + 4 ·
mH∑
i=1

ιi, (5.8a)

CU =

mR∑
i=1

dρi/2e+

mC∑
i=1

γi +

mH∑
i=1

ιi, (5.8b)

where d·e denotes the nearest larger or equal integer. As before, denote the set of endomorphisms
whose generalized kernel is isomorphic to U by Iso(U) ⊂ EndΘ(V) and, accordingly, the set of en-
domorphisms whose center subspace is isomorphic to U by Cen(U) ⊂ EndΘ(V). Then Iso(U) and
Cen(U) are unions of finite sets of conjugacy invariant submanifolds of codimension KU or higher
and CU or higher respectively.

Remark 5.13 (Remark 5 in [77]). Just as in the beginning of this chapter, an l-parameter bifurcation
problem induces a smooth family of endomorphisms L : Rl → EndΘ(V) so that L(0) has a non-
trivial generalized kernel or a non-trivial center subspace. By Thom’s transversality theorem such
a family generically intersects Iso(U) and Cen(U) transversely. In particular, if l < KU or l < CU
the family L(λ) does not intersect these submanifolds at all. Hence, U does not occur as a generic
generalized kernel or center subspace respectively. On the other hand, when l ≥ KU or l ≥ CU , the
submanifolds can be intersected by a generic family of endomorphisms so thatU occurs as a generic
generalized kernel or center subspace.

In particular, for a 1-parameter bifurcation Theorem 5.11 follows as a special case. A subrepresen-
tation U can only occur as a generic generalized kernel, if KU ≤ 1. This is only fulfilled, if U consists
of precisely one indecomposable component of real type. On the other hand, consider 1-parameter
Hopf bifurcations. This requires a pair of purely imaginary eigenvalues at the bifurcation point and
shifts the focus to the center subspace. Then a subrepresentation U can only occur as a generic cen-
ter subspace, if CU ≤ 1, which is fulfilled in one of four cases. Either it is isomorphic to precisely
one indecomposable component of any type or it is the direct sum of two isomorphic components
of real type. However, note that the endomorphisms of an indecomposable representation of real
type have only real eigenvalues (see Proposition 4.8). Hence, U being absolutely indecomposable
excludes a pair of purely imaginary eigenvalues and is therefore not possible as the center subspace
of a generic Hopf bifurcation. Only the other three possibilities – indecomposable of complex or
quaternionic type or direct sum of two isomorphic components of real type – remain. In particular,
this implies that mode interactions – in the sense of multiple critical eigenvalues that are not com-
plex conjugate at the bifurcation point – in generic 1-parameter bifurcations are not possible. This
would require U to consist of multiple non-isomorphic components. 4
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Chapter 6

Implications for coupled cell systems

In Chapter 3 we have thoroughly introduced the formalism of semigroup networks and their relati-
ons to generalized symmetry. This includes several methods to investigate dynamical systems with
the underlying structure of a semigroup network. Then we have explored generalized symmetries
in the form of monoid representation theory and how it can be exploited for bifurcation theory in
Chapters 4 and 5. In this chapter we want to return our attention to network dynamics. To that end
we briefly summarize how the dynamical techniques and the structural properties of symmetry can
be joined to investigate bifurcations. Section 6.1 contains a summary of the steps that are needed
to classify bifurcations of steady states in a semigroup network. NIJHOLT, RINK, and SANDERS [78]
propose to take a hidden symmetry perspective on these types of problems. We essentially follow a
similar assembly in NIJHOLT, RINK, and SANDERS [79, 81]. Furthermore, we illustrate the use of Theo-
rem 5.11 by classifying the steady state bifurcations of an 8-cell fundamental network in Section 6.2.

6.1 Bifurcations of steady states in homogeneous coupled cell systems

The hidden symmetries introduced by the fundamental network construction allow us to classify
generic bifurcations of steady states in semigroup networks in terms of symmetry. This means, that
we may classify the bifurcations that are inherent to a given network structure. The steps that need
to be taken can be deduced from the previous chapters in a straightforward manner, the actual ana-
lysis, however, can still be cumbersome. We present the methods here informally without precise
notation and refer to the corresponding parts of the thesis for details.

Assume that we are given a semigroup network with internal phase spaces and want to classify
its generic l-parameter bifurcations of steady states.

Step 1. We begin by computing the fundamental network and the action of the monoid of input
maps on its total phase space as the right regular representation (Definition 3.19 and Remark 3.27).

Step 2. Then, we determine all possible generalized kernels or center subspaces – depending on
which kind of bifurcation we are interested in. To that end, we need to decompose the total phase
space of the fundamental network into its indecomposable subrepresentations. There is no stan-
dard way of doing so. A decomposition has to be found for the right regular representation for each
monoid individually. However, certain classes of monoids exist, for which this issue can be solved in
an algorithmic way, as we will see in Chapter 9. Once a decomposition is found, Theorem 5.11 and Re-
mark 5.13 allow to determine which combinations of indecomposable components can make up the
generalized kernel or center subspace in a generic l-parameter bifurcation. Recall from Remark 5.13
that special care has to be taken in the investigation of Hopf bifurcations, as subrepresentations of
real type only allow for real eigenvalues when they do not occur multiple times.

Step 3. For every possible generalized kernel or center subspace the center manifold reduction shows
that the problem of finding generic bifurcations of the fundamental network can be reduced to
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finding generic equivariant bifurcations on that specific subrepresentation (Theorem 3.32). To that
end, we determine all equivariant vector fields on the generalized kernel or the center subspace
respectively. This can effectively done by projecting all fundamental network vector fields to the
corresponding subrepresentation.

Step 4. Then, we recover the original network from the fundamental network – or at least the in-
put networks of every cell (Section 3.1.4) – by restriction to a dynamically invariant subspace that
emerges from identification of certain coordinates, i.e. a robust synchrony subspace. As the center
manifold reduction respects robust synchrony, this restriction reduces the equivariant bifurcation
problem on the generalized kernel or the center subspace of the fundamental network to a generic
bifurcation problem for the original network. The symmetries are given by restriction to the syn-
chrony subspace that realizes the original network as a quotient of its fundamental network.

Step 5. Finally, we determine generic l-parameter bifurcations in the class of equivariant vector fields
on the generalized kernel or the center subspace of the fundamental network restricted to the syn-
chrony subspace that realizes the original network as a quotient of the fundamental network. That
means to solve the reduced bifurcation problem for steady state or periodic solutions that arises by
restricting a generic equivariant vector field to the original network.

Step 6. In order to classify all possible bifurcations, we repeat Steps 3 to 5 for every possible ge-
neralized kernel or center subspace. Note that isomorphic subrepresentations of the fundamental
network can be converted into each other via an equivariant change of basis. As a result any bifurca-
tion that occurs along one of these subrepresentation equivalently also occurs along the other and
vice versa, as these are fully determined by symmetry. Furthermore, this equivalence respects the
restriction to the original network.

The procedure consists of multiple reduction steps of the fundamental network. A crucial part
of this is the determination of possible generalized kernels and center subspaces, in particular the
decomposition of the right regular representation. In general the dimension of this representation
space is n · d where n is the number of cells in the fundamental network and d the dimension of
the internal phase space. A high-dimensional representation space like this in general allows for a
large number of indecomposable components and their determination is far from trivial. Two of the
main results in the remainder of this thesis are concerned with further simplification of this issue.
In Chapter 7 we investigate how the dimensionality of this problem may be reduced by restriction
to the case of one-dimensional internal dynamics. On a different note, we see how such a decom-
position can be obtained by following an easy to apply algorithm for a specific class of networks –
i.e. feedforward networks – in Chapter 9. First, we present an example of a fundamental network in
which we classify the generic steady state bifurcations. In particular, Steps 1 and 5 can be omitted.

6.2 An example

In this section we illustrate the step-by-step machinery to classify bifurcations from Section 6.1 with
an example. We focus on the use of Theorem 5.11. Hence, we investigate the generic steady state
bifurcations in an 8-cell fundamental network as given in Figure 6.1. Note that this is the fundamen-
tal network of the running example in Section 2.5. Furthermore, this network was also used as an
illustrating example in Section 4 in our publication [97]. Note that the image does not include the
identity Id as an arrow color. Nevertheless, we assume each cell also depends on its own state so
that we have the monoid of input maps Σ = {Id, σ1, . . . , σ7}.

We assume 1-dimensional internal phase spaces V = R and a parameter λ ∈ R so that the
internal dynamics is governed by the smooth response function f : R8 × R → R. We denote the
state of cell σ by Xσ ∈ R. The corresponding parameter dependent vector field is
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Idσ1

σ2

σ3

σ4 σ5

σ6
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σ2
σ3
σ4
σ5
σ6
σ7

Figure 6.1: An 8-cell fundamental network.1

Γf (X,λ) =



f(XId, Xσ1 , Xσ2 , Xσ3 , Xσ4 , Xσ5 , Xσ6 , Xσ7 , λ)

f(Xσ1 , Xσ5 , Xσ3 , Xσ7 , Xσ1 , Xσ5 , Xσ6 , Xσ7 , λ)

f(Xσ2 , Xσ4 , Xσ6 , Xσ2 , Xσ7 , Xσ5 , Xσ6 , Xσ7 , λ)

f(Xσ3 , Xσ1 , Xσ6 , Xσ3 , Xσ7 , Xσ5 , Xσ6 , Xσ7 , λ)

f(Xσ4 , Xσ5 , Xσ2 , Xσ7 , Xσ4 , Xσ5 , Xσ6 , Xσ7 , λ)

f(Xσ5 , Xσ5 , Xσ7 , Xσ7 , Xσ5 , Xσ5 , Xσ6 , Xσ7 , λ)

f(Xσ6 , Xσ7 , Xσ6 , Xσ6 , Xσ7 , Xσ5 , Xσ6 , Xσ7 , λ)

f(Xσ7 , Xσ5 , Xσ6 , Xσ7 , Xσ7 , Xσ5 , Xσ6 , Xσ7 , λ)


.

According to Theorem 3.28, the class of parameter dependent vector fields is fully characterized by
equivariance with respect to the representation σ 7→ Aσ induced by self-fibrations for every element
σ ∈ Σ. That is, a parameter dependent vector field on F : R8 × R8 is admissible if and only it is
equivariant for every fixed value of λ with respect to the Aσ acting on the spatial variable

Fλ ◦Aσ = Aσ ◦ Fλ

for all σ ∈ Σ and λ ∈ R. Furthermore, note that the monoid is generated by Id, σ1, and σ2

Σ = 〈Id, σ1, σ2〉.

Any vector field is equivariant with respect to AId = 1R8 . Hence, in order to verify equivariance
with respect to the Σ-representation it suffices to check for commutativity with respect to Aσ1 and
Aσ2 – equivariance with respect to the remaining elements follows from the multiplicativity of the
representation. The representation on R8 is therefore generated by the maps

Aσ1 : (XId, Xσ1 , Xσ2 , Xσ3 , Xσ4 , Xσ5 , Xσ6 , Xσ7) 7→ (Xσ1 , Xσ5 , Xσ3 , Xσ7 , Xσ1 , Xσ5 , Xσ6 , Xσ7),

Aσ2 : (XId, Xσ1 , Xσ2 , Xσ3 , Xσ4 , Xσ5 , Xσ6 , Xσ7) 7→ (Xσ2 , Xσ4 , Xσ6 , Xσ2 , Xσ7 , Xσ5 , Xσ6 , Xσ7).

1Figure 6.1 is essentially Figure 4.1 in SCHWENKER [97]
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To investigate steady state bifurcations we assume the existence of the trivial branch of soluti-
ons

F (0, λ) = 0

for all parameter values λ ∈ R. Furthermore, we want the bifurcation to occur at λ0 = 0 which
can only happen if DXF (0, 0) is non-invertible due to the implicit function theorem. This means
that the linearization DXF (0, 0) has a non-trivial generalized kernel along which the steady state
bifurcations may occur.

We want to determine all possible generalized kernels (Step 2). To that end, we observe that the
representation of Σ decomposes into four indecomposable components

R8 = X1 ⊕X2 ⊕X3 ⊕X4

where

X1 = {XId = . . . = Xσ7} ,
X2 = {Xσ1 = . . . = Xσ7 = 0} ,
X3 = {XId = Xσ3 , Xσ1 = Xσ4 = Xσ5 = Xσ7 = 0} ,
X4 = {XId = Xσ4 , Xσ2 = Xσ3 = Xσ6 = Xσ7 = 0} .

All of these subrepresentations are of real type. This is trivial for the two one-dimensional compo-
nents. Choosing the basis

(1, 0, 0, 1, 0, 0, 0, 0)T , (0, 0, 1, 0, 0, 0, 0, 0)T , (0, 0, 0, 0, 0, 0, 1, 0)T

for X3 and
(1, 0, 0, 0, 1, 0, 0, 0)T , (0, 1, 0, 0, 0, 0, 0, 0)T , (0, 0, 0, 0, 0, 1, 0, 0)T

for X4 the transformations act as matrices a3, a4 for σ1 and b3, b4 for σ2 on X3 and X4 respectively
where

a3 =

0 0 0

1 0 0

0 0 1

 , a4 =

0 1 0

0 0 1

0 0 1

 , b3 =

0 1 0

0 0 1

0 0 1

 , b4 =

0 0 0

1 0 0

0 0 1

 .

Therefore, X3 and X4 are equivalent as subrepresentations via the isomorphism Φ with matrix re-
presentation  0 −1 1

−1 0 1

0 0 1


for Φ and Φ−1. Furthermore, it can readily be seen that a 3 × 3 matrix commutes with a3 and b3 if
and only if it is a multiple of the identity. Hence, there are no nilpotent endomorphisms and X3 –
and due to equivalence also X4 – is of real type.

Theorem 5.11 tells us that generically branches of steady states bifurcate off the trivial solution
along one of these components meaning that the generalized kernels of linearizations of vector
fields are generically equivalent to one of the components as subrepresentations. In each case we
perform the equivariant Lyapunov-Schmidt reduction or center manifold reduction to restrict to the
bifurcation problem to an equivalent equivariant equation on the subrepresentation.

The subrepresentations X1 and X2 are both one-dimensional and both transformations act tri-
vially on them. On X1 both σ1 and σ2 act as identity whereas σ1 and σ2 both act as zero on X2.
Therefore, generically we observe a transcritical bifurcation in both cases. The transcritical branch
along X1 is fully synchronous. The one on X2 occurs only in cell Id. This is due to the fact that cell Id

has no outgoing arrows into any other cell.
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As X3 and X4 are isomorphic subrepresentations, it suffices to investigate generic bifurcations
along X3. The generic steady state bifurcations along X4 are the same in their specific coordina-
tes. They only differ by their respective choice of a basis. We choose coordinates v1, v2, v3 for X3

according to the basis above and obtain the reduced bifurcation equation

r(v, λ) =

r1(v1, v2, v3, λ)

r2(v1, v2, v3, λ)

r3(v1, v2, v3, λ)

 = 0

with the properties inherited from Γf

r(0, λ) = 0 for all λ ∈ R,
Dvr(0, 0) has an eigenvalue 0.

Furthermore, r is equivariant in its spatial component with respect to the monoid representation
σ 7→ Aσ restricted to X3 – that is it is equivariant with respect to a3 and b3. This provides the
additional properties

r1(0, v1, v3, λ) = 0, r1(v2, v3, v3, λ)= r2(v1, v2, v3, λ),

r2(0, v1, v3, λ) = r1(v1, v2, v3, λ), r2(v2, v3, v3, λ)= r3(v1, v2, v3, λ),

r3(0, v1, v3, λ) = r3(v1, v2, v3, λ), r3(v2, v3, v3, λ)= r3(v1, v2, v3, λ).

These restrictions yield that up to second order we have to solve the equations

αλv1 + βv2
1 + γv1v3 +O(‖(v, λ)‖3) = 0,

αλv2 + βv2
2 + γv2v3 +O(‖(v, λ)‖3) = 0,

αλv3 + (β + γ)v2
3 +O(‖(v, λ)‖3) = 0.

(6.1)

Under the generic conditions that α, β 6= 0 and γ 6= −β this gives eight branches of solutions

v1 = 0 v2 = 0 v3 = 0,

v1 = −α
β
λ+O(λ2) v2 = 0 v3 = 0,

v1 = 0 v2 = −α
β
λ+O(λ2) v3 = 0,

v1 = −α
β
λ+O(λ2) v2 = −α

β
λ+O(λ2) v3 = 0,

v1 = 0 v2 = 0 v3 = − α

β + γ
λ+O(λ2),

v1 = − α

β + γ
λ+O(λ2) v2 = 0 v3 = − α

β + γ
λ+O(λ2),

v1 = 0 v2 = − α

β + γ
λ+O(λ2) v3 = − α

β + γ
λ+O(λ2),

v1 = − α

β + γ
λ+O(λ2) v2 = − α

β + γ
λ+O(λ2) v3 = − α

β + γ
λ+O(λ2).

Returning back to the original system this implies the coexistence of eight solution branches (the
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trivial one and seven transcritical ones) with different cells being synchronous:

XId = Xσ1 = Xσ2 = Xσ3 = Xσ4 = Xσ5 = Xσ6 = Xσ7 = 0,

XId = Xσ3 = −α
β
λ+O(λ2), Xσ1 = Xσ2 = Xσ4 = Xσ5 = Xσ6 = Xσ7 = 0,

XId = Xσ1 = Xσ3 = Xσ4 = Xσ5 = Xσ6 = Xσ7 = 0, Xσ2 = −α
β
λ+O(λ2),

XId = Xσ2 = Xσ3 = −α
β
λ+O(λ2), Xσ1 = Xσ4 = Xσ5 = Xσ6 = Xσ7 = 0,

XId = Xσ1 = Xσ2 = Xσ3 = Xσ4 = Xσ5 = Xσ7 = 0, Xσ6 = − α

β + γ
λ+O(λ2),

XId = Xσ3 = Xσ6 = − α

β + γ
λ+O(λ2), Xσ1 = Xσ2 = Xσ4 = Xσ5 = Xσ7 = 0,

XId = Xσ1 = Xσ3 = Xσ4 = Xσ5 = Xσ7 = 0, Xσ2 = Xσ6 = − α

β + γ
λ+O(λ2),

XId = Xσ2 = Xσ3 = Xσ6 = − α

β + γ
λ+O(λ2), Xσ1 = Xσ4 = Xσ5 = Xσ7 = 0.

Note that the center manifold reduction also allows to deduce linear stability properties of the
branching solutions (in the directions of the center subspace). By differentiating the reduced vector
field in (6.1) we obtain the Jacobian

Dvr(v1, v2, v3, λ) =

µ1 0 •
0 µ2 •
0 0 µ3


with eigenvalues

µ1 = αλ+ 2βv1 + γv3 +O(‖(v, λ)2‖),
µ2 = αλ+ 2βv2 + γv3 +O(‖(v, λ)2‖),
µ3 = αλ+ 2(β + γ)v3 +O(‖(v, λ)2‖).

Thus, plugging in the solutions in the same order as before, we obtain eigenvalues

µ1 = +αλ+O(λ2) µ2 = +αλ+O(λ2) µ3 = +αλ+O(λ2),

µ1 = −αλ+O(λ2) µ2 = +αλ+O(λ2) µ3 = +αλ+O(λ2),

µ1 = +αλ+O(λ2) µ2 = −αλ+O(λ2) µ3 = +αλ+O(λ2),

µ1 = −αλ+O(λ2) µ2 = −αλ+O(λ2) µ3 = +αλ+O(λ2),

µ1 = +
β

β + γ
αλ+O(λ2) µ2 = +

β

β + γ
αλ+O(λ2) µ3 = −αλ+O(λ2),

µ1 = − β

β + γ
αλ+O(λ2) µ2 = +

β

β + γ
αλ+O(λ2) µ3 = −αλ+O(λ2),

µ1 = +
β

β + γ
αλ+O(λ2) µ2 = − β

β + γ
αλ+O(λ2) µ3 = −αλ+O(λ2),

µ1 = − β

β + γ
αλ+O(λ2) µ2 = − β

β + γ
αλ+O(λ2) µ3 = −αλ+O(λ2).

Summarizing we can say that the trivial branch always switches full stability. More precisely, it ex-
changes stability with either branch 5 or branch 8 depending on the signs of α and β

β+γ . All the other
branches are always saddles. The steady state bifurcations along X4 are the same in the respective
basis.
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Chapter 7

Networks with high-dimensional internal
dynamics

In this final chapter of Part II we take a closer look at the influence of the choice of internal phase
spaces on bifurcations of steady states and the surrounding algebraic mechanisms that we presen-
ted in the previous chapters. An issue that imposes computational difficulties in the analysis of
network dynamics is the (usually) high dimension of the problem. In particular, for a semigroup net-
work with cells C = {p1, . . . , pN} and input maps Σ = {σ1, . . . , σn}with internal phase space V the
dimension of the total phase space is N · d where d = dimV . Hence, commonly one restricts the
investigation to the case of one-dimensional internal dynamics to reduce the dimension to its mi-
nimum while keeping the network structure intact. The results of this chapter can be summarized
in the statement that the loss of generality of this restriction on the analysis of generic bifurcations
of steady state is in some sense controllable. In particular, for 1-parameter steady state bifurcations
the restriction to one-dimensional internal dynamics does not impose any loss of generality. To that
end, we prove that the indecomposable subrepresentations of the right regular representation that
is equivalent to the fundamental network are the same, independent of the dimension of the inter-
nal phase space. Each component occurs d times (Theorem 7.12). In particular, the building blocks
of generalized kernels and center subspaces in generic bifurcations as in Step 2 in the step-by-step
procedure to determine generic bifurcations described in Section 6.1 are the same in both cases. In
Section 7.2 we investigate how this observation can be exploited to gain information on bifurcati-
ons in the high-dimensional case from those in the one-dimensional case. Sections 7.1 and 7.2 are
essentially Sections 2 and 3 in our preprint [83].

Throughout this chapter we frequently compare properties of dynamical systems with the same
underlying network structure with one- and d-dimensional internal dynamics, where d > 1. To avoid
confusion when setting them side by side we introduce some notational conventions. In general, we
distinguish these two settings by referring to them as the cases 1D and DD respectively. We denote
the internal phase spaces by V = R or V = W ∼= Rd. If we do not want to specify one of the
two cases – i.e. if an observation holds for both cases simultaneously – we keep on denoting the
internal phase space by V . In particular, we have coordinates in the total phase spaces given by
(vp)p∈C ∈

⊕
p∈C R, (wp)p∈C ∈

⊕
p∈CW and (xp)p∈C ∈

⊕
p∈C V . The majority of the investigations

in this chapter focuses on fundamental networks. For these we drop the convention of denoting
coordinates with capital letters as we did in Section 3.1.4. However, we abbreviate the total phase
spaces by V1 =

⊕
σ∈ΣR and VD =

⊕
σ∈ΣW . Consequently the coordinates on these spaces are

given by v = (vσ)σ∈Σ ∈ V1, ω = (wσ)σ∈Σ ∈ VD and x = (xσ)σ∈Σ ∈
⊕

σ∈Σ V . Finally, recall that
the total phase space of the fundamental network is the representation space of the right regular
representation of the monoid of input maps Σ. We denote the linear maps by which its elements
act on V1 and VD by A1

σ and AD
σ respectively. They are defined by

(A1
σv)τ = vτσ, (AD

σω)τ = wτσ.
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7.1 Dimension reduction in fundamental networks

We begin by investigating the relation of the right regular representations of Σ in the cases 1D

and DD. In particular, we show that the indecomposable components are the same in both cases
which leads to ‘the same’ generalized kernels and center subspaces in bifurcation analysis. One of
the main tools in this section is a representation of the total phase space in the case DD in tensor
product notation. To that end, we may identify

⊕
p∈C

W ∼=

⊕
p∈C

R

⊗W. (7.1)

This can best be seen using the standard basis⊕
p∈C

R = 〈(δq,p)p∈C | q ∈ C〉

encoded in the Kronecker delta as before. Then we may split each (wp)p∈C ∈
⊕N

i=1W as a sum of
vectors that have precisely one non-vanishing coordinate entry: (wp)p∈C =

∑
q∈C(δq,pwq)p∈C . This

can be represented as a sum of pure tensors∑
q∈C

(δq,p)p∈C ⊗ wq. (7.2)

Note that this notation as the sum of pure tensors is not unique, since multiple sums of pure tensors
can represent the same element (wp)p∈C ∈

⊕
p∈CW . For example

(δp,q)p∈C ⊗ swp = s(δp,q)p∈C ⊗ wp

for a scalar s ∈ R. However, in critical cases like this the tensors are identified via an equivalence
relation. Hence, the representation via tensors in (7.2) is unique. For more on this see the details and
definitions of tensor products of vector spaces (e.g. in JACOBSON [64]). This formalism allows for a
graphical interpretation of attaching a vector space to each cell instead of using vectors of vectors
and block matrices. It has been used in AGUIAR and RUAN [11], DIAS and LAMB [27], GOLUBITSKY and
LAUTERBACH [42], and LEITE and GOLUBITSKY [71] to describe adjacency matrices and their spectral
properties for networks with high-dimensional internal dynamics. Note that the isomorphism in
(7.1) is only an identification of different notations.

Remark 7.1. The representation (7.2) relies on the fact that for two finite-dimensional vector spaces
V and V′ with bases {bi}i∈I and {b′j}j∈J the elements {bi ⊗ b′j}i∈I,j∈J form a basis for the ten-
sor product V ⊗V′. In particular, given a basis {b1, . . . , bd} for W , we can represent each element
(wp)p∈C ∈

⊕
p∈CW as

∑
p∈C

(δp,q)q∈C ⊗ wp =
∑
p∈C

d∑
i=1

(δp,q)q∈C ⊗ αpi · bi =
∑
p∈C

d∑
i=1

αpi · (δp,q)q∈C ⊗ bi,

where wp = αp1b1 + · · ·+ αpdbd. 4
The tensor product formalism allows to give a precise characterization of linear admissible maps

in the case DD. Recall from Proposition 3.8 that any linear admissible map L :
⊕

p∈C V →
⊕

p∈C V

can be represented using the generalized adjacency matrices Bσ defined by (Bσ(xp)p∈C)q = xσ(q).
Using the tensor notation, we see that these matrices from the case 1D are sufficient to represent
linear admissible maps also in the case DD.
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Proposition 7.2. Define the 1D linear map B1
σ :
⊕

p∈C R →
⊕

p∈C R via (B1
σ(vp)p∈C)q = vσ(q) for all

σ ∈ Σ. Then any linear admissible map in the case DD L :
⊕

p∈CW →
⊕

p∈CW is of the form

L =
∑
σ∈Σ

B1
σ ⊗ bσ (7.3)

for suitable linear maps bσ ∈ gl(W ).

Proof. Let L :
⊕

p∈CW →
⊕

p∈CW be a linear admissible map. According to Proposition 3.8 there
are linear maps bσ ∈ gl(W ) for each σ ∈ Σ such that

(L((wq)q∈C))p =
∑
σ∈Σ

bσ(BD
σ (wq)q∈C)p =

∑
σ∈Σ

bσ(wσ(p))

in the non-tensor notation, where (BD
σ (wq)q∈C)p = wσ(p). In the tensor notation (7.2), L((wq)q∈C)

can therefore be represented as

L((wq)q∈C) =
∑
p∈C

(δp,q)q∈C ⊗
∑
σ∈Σ

bσ(wσ(p)) =
∑
p∈C

∑
σ∈Σ

(δp,q)q∈C ⊗ bσ(wσ(p)). (7.4)

On the other hand
(
B1
σ(δp,q)q∈C

)
r

= δp,σ(r), which equals 1 if r ∈ σ−1(p) and 0 otherwise. In parti-
cular,

B1
σ(δp,q)q∈C =

∑
r∈σ−1(p)

(δr,q)q∈C .

Using the tensor notation (7.2), i.e. representing (wq)q∈C as∑
p∈C

(δp,q)q∈C ⊗ wp,

we compute[∑
σ∈Σ

B1
σ ⊗ bσ

]∑
p∈C

(δp,q)q∈C ⊗ wp

 =
∑
σ∈Σ

∑
p∈C

B1
σ(δp,q)q∈C ⊗ bσ(wp)

=
∑
σ∈Σ

∑
p∈C

∑
r∈σ−1(p)

(δr,q)q∈C ⊗
(
bσwσ(r)

)
=
∑
σ∈Σ

∑
r∈C

(δr,q)q∈C ⊗
(
bσwσ(r)

)
. (7.5)

Therein the last equation holds since
{
σ−1(p) | p ∈ C

}
forms a partition of C for all σ ∈ Σ. As (7.4)

and (7.5) agree, this completes the proof.

Remark 7.3. Note that the tensor notation is also applicable in the case 1D. Then in (7.2) and (7.3) we
tensor with a scalar. Furthermore, gl(R) ∼= R so that application of a linear map can be identified
with scalar multiplication. This only plays a role in cases where we do not explicitly distinguish
between 1D and DD. 4

Furthermore, we may also describe synchrony subspaces in the tensor notation. We use the
characterization of robust synchrony patterns in terms of balanced partitions from Proposition 3.11.

Proposition 7.4. Let P = {P1, . . . , Pr} be a balanced partition of the cells C and let

∆1
P =

(vp)p∈C ∈
⊕
p∈C

R

∣∣∣∣∣∣ vp = vq, if p, q ∈ Pi for some 1 ≤ i ≤ r

 ,

∆D
P =

(wp)p∈C ∈
⊕
p∈C

W

∣∣∣∣∣∣ wp = wq, if p, q ∈ Pi for some 1 ≤ i ≤ r


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be the corresponding synchrony subspaces for one- and for high-dimensional internal dynamics re-
spectively. Then

∆D
P
∼= ∆1

P ⊗W.

Proof. The result follows almost directly from the characterization of bases of tensor products in Re-
mark 7.1. The synchrony subspace ∆1

P is spanned by elements {(v1
p)p∈C , . . . , (v

r
p)p∈C}, where vip = 1

if p ∈ Pi and vip = 0 otherwise. Hence,{
(vip)p∈C ⊗ bj

∣∣ i = 1, . . . , r and j = 1, . . . , d
}

(7.6)

is a basis of ∆1
P ⊗W , when {b1, . . . , bd} is a basis of W .

On the other hand, let p1, . . . , pr ∈ C be a set of representatives of the partition P , i.e. pi ∈ Pi.
Then every element (wp)p∈C ∈ ∆D

P can be represented as

(wp)p∈C =
r∑
i=1

(vip · wpi)p∈C

using the basis of ∆1
P , since wp = wpi if p ∈ Pi. Furthermore, every element wpi is of the form

wpi =
d∑
j=1

αij · bj

using the basis of W . Hence, we obtain

(wp)p∈C =
r∑
i=1

d∑
j=1

αij · (vip · bj)p∈C .

In particular, we see that {
(vip · bj)p∈C

∣∣ i = 1, . . . , r and j = 1, . . . , d
}

(7.7)

is a basis of ∆D
P . Representing these basis elements in their respective tensor notation (7.2) shows

that (7.7) agrees with (7.6) which completes the proof.

From now on, we focus on fundamental networks. We want to understand the structure of the
regular representation and its decomposition into indecomposable subrepresentations⊕

σ∈Σ

V = W1 ⊕ · · · ⊕Wm. (7.8)

As it turns out, this decomposition in the case DD is strongly related to that in the case 1D. Our
choice of bases for the total phase spaces reflects the network structure. As in Remark 3.27 the repre-
sentation maps A1

σ, A
D
σ can be interpreted as n× n-matrices with entries in R or gl(W ) respectively

in these bases. Obviously A1
σ and AD

σ have a very similar structure. The matrices A1
σ have an entry

1 per row and all the other entries equal to 0. The matrices AD
σ can be interpreted as matrices with

the same structure with entries in gl(W ). Hence, whenever A1
σ has an entry 1, AD

σ has an entry 1W .
Accordingly an entry 0 in A1

σ corresponds to an entry 0 ∈ gl(W ) of AD
σ . The following proposition

further explores the relation between these two representations using the tensor formalism (7.1).

Proposition 7.5. The Σ-representation {AD
σ }σ∈Σ on VD is isomorphic to V1 ⊗W on which σ ∈ Σ acts

as A1
σ ⊗ 1W .
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Proof. The main idea for the proof is the interpretation of the total phase space VD as having the
vector space W attached to each cell of the network. These are in 1-to-1 correspondence to the
coordinates in (vσ)σ∈Σ ∈ V1 =

⊕
σ∈ΣR. Hence, we assign a vector wσ ∈ W to each coordinate vσ

which is reflected in the tensor notation V1 ⊗W .
First, note that both vector spaces have dimension n·dimW . Hence, they are isomorphic as such.

An isomorphism can be defined as

Φ: V1 ⊗W → VD

(vσ)σ∈Σ ⊗ w 7→ (vσw)σ∈Σ,

which is linearly extended to non-pure tensors (sums of elements (vσ)σ∈Σ ⊗ w). Note that this
isomorphism coincides with the often used identification of (vσ)σ∈Σ ⊗ w with the outer product
(vσ)σ∈Σw

T = (vσw
T )σ∈Σ, except for the transposition in the W -component.

As in (7.2), we may uniquely split each ω = (wσ)σ∈Σ ∈ VD as a sum of vectors that have precisely
one non-vanishing coordinate entry: (wσ)σ∈Σ =

∑
τ∈Σ(δσ,τwσ)σ∈Σ. Hence, the map

Ψ: (wσ)σ∈Σ 7→
∑
τ∈Σ

(δσ,τ )σ∈Σ ⊗ wτ

is inverse to Φ. In particular,

Ψ (Φ((vσ)σ∈Σ ⊗ w)) = Ψ ((vσw)σ∈Σ)

= Ψ

(∑
τ∈Σ

(δσ,τvσw)σ∈Σ

)
=
∑
τ∈Σ

(δσ,τ )σ∈Σ ⊗ (vσw)

=
∑
τ∈Σ

(δσ,τvσ)σ∈Σ ⊗ w

= (vσ)σ∈Σ ⊗ w,

which extends linearly to non-pure tensors. Recall that the basis {(δσ,τ )σ∈Σ}τ∈Σ ⊂ V1 corresponds
to the cells of the network. Therefore, we may interpret Ψ as the map that picks the vectorwσ in the
σ-entry and attaches it to cell σ via the tensor product.

It remains to be checked that Φ intertwines the two Σ-representations. In order to do so, we
compute

Φ
(
[A1

τ ⊗ 1W ]((vσ)σ∈Σ ⊗ w)
)

= Φ((vστ )σ∈Σ ⊗ w) = (vστw)σ∈Σ

but also
AD
τ Φ((vσ)σ∈Σ ⊗ w) = AD

τ (vσw)σ∈Σ = (vστw)σ∈Σ.

Equivariance on non-pure tensors follows from linearity of the representation matrices. This proves
equivalence of the representations.

Remark 7.6. Propositions 7.2 and 7.5 allow for a characterization of endomorphisms of the right regu-
lar representation that is equivalent to the fundamental network structure as in Corollary 3.23 and
Remark 4.3. For those networks the adjacency matrices are defined by multiplication from the left
in Σ as (B1

σ(v))τ = vστ . As the linear admissible maps are precisely those linear maps that commute
with the representation, we know in the tensor notation any endomorphism L ∈ EndΣ

(
V1 ⊗W

)
is of the form (7.3), i.e.

L =
∑
σ∈Σ

B1
σ ⊗ bσ

for linear maps bσ ∈ gl(W ). 4
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The tensor notation relates the representation VD corresponding to the fundamental network
with d-dimensional internal dynamics in a straightforward way to V1 in the case 1D. Understan-
ding the structure of the representation, especially its decomposition into subrepresentations, is
essential for the investigation of generic dynamics. The following results relate the decomposition
of V1⊗W to that of V1. The first lemma serves as a reminder of a well-known result on the decom-
position of tensor products of vector spaces.

Lemma 7.7. Let V and V′ be vector spaces with V = V1⊕V2. Then V⊗V′ = (V1⊗V′)⊕ (V2⊗V′).

Proof. The decomposition V = V1 ⊕ V2 is equivalent to the existence of projection operators
π1, π2 ∈ gl(V) such that

im (π1) = V1,

im (π2) = V2,

π1 + π2 = 1V and
π1 ◦ π2 = π2 ◦ π1 = 0 ∈ gl(V).

It is easy to check that π1 ⊗ 1V′ , π2 ⊗ 1V′ ∈ gl(V ⊗V′) are projections as well with

im (π1 ⊗ 1V′) = V1 ⊗V′,

im (π2 ⊗ 1V′) = V2 ⊗V′.

Furthermore, we have

π1 ⊗ 1V′ + π2 ⊗ 1V′ = (π1 + π2)⊗ 1V′ = 1V ⊗ 1V′

and

(π1 ⊗ 1V′) ◦ (π2 ⊗ 1V′) = ((π1 ◦ π2)⊗ 1V′) = 0⊗ 1V′ = 0,

(π2 ⊗ 1V′) ◦ (π1 ⊗ 1V′) = ((π2 ◦ π1)⊗ 1V′) = 0⊗ 1V′ = 0.

Hence, V ⊗V′ = (V1 ⊗V′)⊕ (V2 ⊗V′).

Remark 7.8. The same argumentation proves V′ = V′1 ⊕V′2 =⇒ V⊗V′ = (V⊗V′1)⊕ (V⊗V′2).
4

Remark 7.9. If, in the above setting, V1 = Y1 ⊕ Y2 where Y1 and Y2 are subrepresentations, the
projections π1 and π2 in the previous proof are equivariant with respect to {A1

σ}σ∈Σ. Then π1 ⊗ 1W

and π2⊗1W are equivariant with respect to {A1
σ⊗1W }σ∈Σ. Thus, V1 ⊗W = (Y1 ⊗W )⊕ (Y2 ⊗W )

as a decomposition into subrepresentations. The same constructions works for a decomposition of
W . 4

Lemma 7.10. Suppose Y ⊂ V1 is a subrepresentation with respect to {A1
σ}σ∈Σ and letw ∈W \ {0} be

an arbitrary element. Then Y ⊗ 〈w〉 ⊂ V1 ⊗ V is a subrepresentation with respect to {A1
σ ⊗ 1W }σ∈Σ.

Furthermore, Y ⊗ 〈w〉 ∼= Y as subrepresentations.

Proof. We first note

y1 ⊗ r1w + · · ·+ yk ⊗ rkw = r1y1 ⊗ w + · · ·+ rkyk ⊗ w
= (r1y1 + · · ·+ rkyk)⊗ w

for an arbitrary formal sum in Y ⊗ 〈w〉, i.e. y1, . . . , yk ∈ Y and r1, . . . , rk ∈ R. Hence, every element
in Y ⊗ 〈w〉 can uniquely be expressed as a pure tensor y ⊗ w with y = (r1y1 + · · · + rkyk) ∈ Y .
Therefore, we may identify y ⊗ w with y which is equivariant by definition of the representation
maps. This proves the claim.
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Remark 7.11. In particular, if Y is indecomposable of a specific type, the same holds for Y ⊗ 〈w〉, due
to equivalence of the representations. 4

We obtain the main result of this section as a corollary of the above.

Theorem 7.12. Suppose V1 = Y1⊕· · ·⊕Ys is a decomposition into indecomposable subrepresentations
with respect to {A1

σ}σ∈Σ. Let {b1, . . . , bd} be a basis for W . Then

VD ∼= V1 ⊗W =

s⊕
i=1

d⊕
j=1

Yi ⊗ 〈bj〉 (7.9a)

∼=
s⊕
i=1

Y d
i (7.9b)

as a decomposition into indecomposable subrepresentations with respect to {Aσ ⊗ 1W }σ∈Σ.

Remark 7.13. Note that the first isomorphism in (7.9a) is only an identification of different notati-
ons. The second relation however is an equality. Hence, we may identify the fundamental network
representation space VD in the case DD with the decomposition given in that equation without
changing the coordinates. In particular the network structure is preserved by this identification.
On the other hand, not every decomposition of VD is of the form (7.9a). By the Krull-Schmidt the-
orem (Theorem 4.4) every indecomposable component Wi ⊂ VD is isomorphic to one of V1, i.e.
Wi
∼= Yi ⊗ 〈w〉 ∼= Yi after relabeling the indices, but they are not necessarily equal. Nonetheless,

every decomposition of V1 gives rise to a decomposition of VD as in Theorem 7.12. 4

Corollary 7.14. LetW 1 andW 2 be two finite-dimensional real vector spaces that we choose as internal
phase spaces of a fundamental network. Furthermore, assume dimW 1 ≤ dimW 2. Then there is a
subrepresentation U ⊂

⊕
σ∈ΣW

2 such that

U ∼=
⊕
σ∈Σ

W 1.

Proof. This follows directly from (7.9b).

Finally, we show that the identification of indecomposable subrepresentations in the cases 1D

and DD respects synchrony subspaces. This is particularly relevant in the analysis of bifurcations,
as it implies that the restriction to the case 1D does not change patterns of synchrony. More pre-
cisely, recall from Remark 3.33 that the center manifold reduction respects synchrony subspaces.
Hence, restriction to one of these synchrony subspaces yields a reduced bifurcation problem within
the corresponding pattern of synchrony. In particular, this holds true for those patterns of synchrony
that provide (the input networks of) the original network as a quotient of the fundamental network
(compare to Step 4 of the step-by-step procedure to classify generic bifurcations in a semigroup net-
work system in Section 6.1). We need the following technical result on subspaces of tensor product
spaces.

Lemma 7.15. Let V and V′ be finite-dimensional real vector spaces and let V1,V2 ⊂ V and
V′1,V

′
2 ⊂ V′ be subspaces. Then (V1 ⊗V′1) ∩ (V2 ⊗V′2) = (V1 ∩V2)⊗ (V′1 ∩V′2) as a subspace of

V ⊗V′.

Proof. This result follows from the representation of a basis of the tensor product space in terms of
bases of the components in Remark 7.1. Let {bi}i∈I and {b′j}j∈J be bases of V and V′ respectively
and let I1, I2 ⊂ I and J1, J2 ⊂ J be subsets such that

V1 = 〈bi | i ∈ I1 〉 , V2 = 〈bi | i ∈ I2 〉
V′1 =

〈
b′j | j ∈ J1

〉
, V′2 =

〈
b′j | j ∈ J2

〉
.
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Note that I1 and I2 can be constructed by completing a basis of V1∩V2 to bases of V1 and V2. Then
the set of all basis elements of V1 and V2 is completed to a basis of V. Accordingly we construct
J, J1, and J2 for V′ from a basis of V′1 ∩V′2. In particular, we obtain

V1 ∩V2 = 〈bi | i ∈ I1 ∩ I2 〉 , V′1 ∩V′2 =
〈
b′j | j ∈ J1 ∩ J2

〉
.

Hence, using Remark 7.1 we see

(V1 ∩V2)⊗ (V′1 ∩V′2) =
〈
bi ⊗ b′j | i ∈ I1 ∩ I2 and j ∈ J1 ∩ J2

〉
.

On the other hand

V1 ⊗V′1 =
〈
bi ⊗ b′j | i ∈ I1 and j ∈ J1

〉
, (V2 ⊗V′2) =

〈
bi ⊗ b′j | i ∈ I2 and j ∈ J2

〉
.

Thus,
(V1 ⊗V′1) ∩ (V2 ⊗V′2) =

〈
bi ⊗ b′j | i ∈ I1 ∩ I2 and j ∈ J1 ∩ J2

〉
which completes the proof.

As a corollary of Proposition 7.4 and Lemma 7.15 we obtain

Proposition 7.16. LetP = {P1, . . . , Pr} be a balanced partition of the cells Σ and let ∆1
P and ∆D

P denote
the corresponding robust synchrony subspaces in the case 1D and DD respectively. Furthermore, let
Y ⊂ V1 be an indecomposable component and U ⊂ VD such that U ∼= Y ⊗ 〈w〉 ∼= Y . Then

∆D
P ∩ U ∼= (∆1

P ⊗W ) ∩ (Y ⊗ 〈w〉) = (∆1
P ∩ Y )⊗ 〈w〉.

7.2 Implications for bifurcations of steady states

In Theorem 7.12 we describe the relation between the algebraic structures of fundamental networks
in the cases 1D and DD. In particular, decomposing the regular representation into indecomposable
subrepresentations in the case 1D provides a decomposition in the case DD by choosing a basis for
W . In this section we want to investigate how this allows us to reduce the investigation of bifur-
cations in fundamental networks with high-dimensional internal dynamics to that in fundamental
networks with one-dimensional internal dynamics. In particular, we discuss how Theorem 7.12 can
be used in Step 2 of the step-by-step procedure to classify generic bifurcations in a semigroup net-
work system (see Section 6.1) to reduce the bifurcation problem in the case DD to one in the case
1D (or some other lower dimension of the internal dynamics).

We begin by briefly recalling the setting of a bifurcation of steady states independent of the
dimension of the internal phase space V . To that end, we assume that the fundamental network
vector fields depend on real parameters λ ∈ Rl as in Section 3.2:

Γf (x, λ) =

f(xσ1σ1 , . . . , xσnσ1 , λ)
...

f(xσ1σn , . . . , xσnσn , λ)

 . (7.10)

Once again, without loss of generality we assume the bifurcation point to be the origin and the
bifurcation to occur for λ = 0. That is, we assume

Γf (0, 0) = 0.

and DxΓf (0, 0) to have eigenvalues on the imaginary axis. We are interested in steady states
and periodic solutions close to this bifurcation point for a generic smooth response function
f :
⊕

σ∈Σ V × Rl → V . Slightly more precisely a steady state bifurcation requires vanishing eigen-
values and a Hopf bifurcation requires purely imaginary eigenvalues of the linearization at the
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bifurcation point. In either case DxΓf (0, 0) induces a decomposition of the right regular represen-
tation into subrepresentations given by its generalized kernel and reduced image or its center and
hyperbolic subspaces respectively, i.e.⊕

σ∈Σ

V = ker0(DxΓf (0, 0))⊕ im0(DxΓf (0, 0)) or⊕
σ∈Σ

V = X c ⊕X h

in the notation of Section 3.2.
The bifurcation problem can be reduced to an equivalent one on the generalized kernel or the

center subspace. In particular, branching steady state or periodic solutions of the original system
lie on the center manifold over the corresponding subspace (see Section 3.5). Furthermore, they are
fully characterized by symmetry of the subrepresentation. Hence, in order to classify all bifurcati-
ons of steady states that may occur in the fundamental network, one has to determine all possible
subrepresentations of

⊕
σ∈Σ V that can form center subspaces by decomposing the right regular

representation space into indecomposable subrepresentations⊕
σ∈Σ

V = W1 ⊕ · · · ⊕Wm.

The generalized kernel or center subspace is isomorphic to the direct sum of a suitable collection of
the components Wi. Theorem 7.12 shows that it is sufficient to determine this decomposition in the
case 1D – i.e. to decompose V1 – as each indecomposable component of VD is also an indecompo-
sable component of V1. In particular, knowing the decomposition of V1 and if the dimension of the
internal phase space W (in the case DD) is d, we immediately obtain the decomposition of VD in
the form of d copies of the components of V1.

In order to properly describe generic generalized kernels and center subspaces we need the clas-
sification results in Theorem 5.11, Theorem 5.12, and Remark 5.13. We make the decomposition more
precise by writing⊕

σ∈Σ

V = V R
1 ⊕ · · · ⊕ V R

mR
⊕ V C

1 ⊕ · · · ⊕ V C
mC
⊕ V H

1 ⊕ · · · ⊕ V H
mH
,

where
V R
i
∼=
(
XR
i

)sRi , V C
i
∼=
(
XC
i

)sCi , V H
i
∼=
(
XH
i

)sHi
are the isotypic components and XR

i ,X
C
i , and XH

i are indecomposable subrepresentations of real,
complex, and quaternionic type respectively. Then we may determine, which configurations of in-
decomposable components are possible as generalized kernels or center subspaces for a generic
l-parameter family of equivariant vector fields. In particular, let

U ∼=
mR⊕
i=1

(
XR
i

)ρi ⊕ mC⊕
i=1

(
XC
i

)γi ⊕ mH⊕
i=1

(
XH
i

)ιi
with 0 ≤ ρi ≤ sR

i , 0 ≤ γi ≤ sC
i , 0 ≤ ιi ≤ sH

i for every i. Then U can only occur as a generalized kernel
– i.e. ker0(DxΓf (0, 0)) ∼= U –, if

KU =

mR∑
i=1

ρi + 2 ·
mC∑
i=1

γi + 4 ·
mH∑
i=1

ιi ≤ l, (7.11)

and as a center subspace – i.e. X c ∼= U –, if

CU =

mR∑
i=1

dρi/2e+

mC∑
i=1

γi +

mH∑
i=1

ιi ≤ l. (7.12)
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Here dae denotes the nearest larger or equal integer. The conditions (7.11) and (7.12) have simpler
interpretations for the case of one-parameter bifurcations (see Remark 5.13).

In the upcoming subsections we investigate the interplay of Theorem 7.12 with the classification
of generalized kernels and center subspaces in generic bifurcation problems. This allows to relate
generic bifurcations of a fixed fundamental network with high-dimensional internal dynamics to
those of the same network with one-dimensional internal dynamics. We begin with a discussion of
the 1-parameter case, before before turning to general l-parameter families.

7.2.1 Generic 1-parameter steady state bifurcations

When focusing on steady state bifurcations, we want to characterize solutions to

Γf (x, λ) = 0

close to the bifurcation point (x0, λ0) = (0, 0). As we mentioned before, Lyapunov-Schmidt re-
duction and center manifold reduction allow us to reduce the investigation of generic steady state
bifurcations to a generic equivariant bifurcation problem on the generalized kernel ker0(DxΓf (0, 0)).
From (7.11), we know that this center subspace generically is an absolutely indecomposable subre-
presentation.

Let us turn to the case DD, i.e. to a bifurcation problem on VD. Applying Theorem 7.12 (especially
(7.9b)), we obtain that the generalized kernel in a given network in the case DD is isomorphic as a
subrepresentation to one of the indecomposable subrepresentations one computes for V1 in the
case 1D. That is

ker0(DωΓf (0, 0)) ∼= Yi ⊂ V1

in the notation of Theorem 7.12. As the dynamics – in particular the generic steady state bifurcations
– on these subrepresentations is entirely classified by symmetry, the reduced bifurcation problem in
the case is equivalent to one on the subrepresentation Yi. Hence, the generic steady state bifurcati-
ons in the case DD occur generically also in the case 1D. On the other hand, as every component Yi
can occur as a generalized kernel ker0(DωΓf (0, 0)) in this way, any generic steady state bifurcation
in the case 1D occurs generically in the case DD as well. Summarizing, we have shown

Theorem 7.17. The generic 1-parameter steady state bifurcations in a fundamental network with
d-dimensional internal dynamics are qualitatively the same as those for the same network with
1-dimensional internal dynamics in the sense that the reduced bifurcation problems are equivalent in
both cases.

We cannot expect a more precise comparative result. The generalized kernels are the same in both
cases so that the reduced bifurcation problems are the same. However, the full system has different
dimensions and requires different coordinate systems. Therefore, the branching solutions for the
full systems in general cannot be ‘equal’ in a stricter sense.

7.2.2 Generic 1-parameter Hopf bifurcations

Similar to Section 7.2.1, we investigate Hopf bifurcations in a generic 1-parameter family of funda-
mental network vector fields. In order to do so, we have to investigate possible center subspaces
corresponding to non-vanishing purely imaginary eigenvalues. As in Remark 5.13, in combination
with condition (7.12) only three cases can occur generically:

X c ∼= XC
i , X c ∼= XH

i , X c ∼=
(
XR
i

)2
.

That is, either X c is isomorphic to precisely one indecomposable component of complex or of
quaternionic type or it is the direct sum of two isomorphic components of real type. In the case
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DD Theorem 7.12 shows that the existence of two isomorphic components of real type in VD can
occur in two different situations. Either V1 contains two isomorphic components of real type – i.e.
X c ∼= Y 2

i ⊂ V1 in the notation of Theorem 7.12 – or d ≥ 2 and we obtain two copies of the same
component of V1 due to the high-dimensional internal dynamics – i.e. X c ∼= Y 2

i 6⊂ V1. Moreover,
the latter choice is the only center subspace for a generic 1-parameter Hopf bifurcation in the case
DD that does not occur in the case 1D. The other three cases are possible independent of d.

The solutions to the reduced bifurcation problem on X c are entirely classified by symmetry. In
particular, in the cases that are independent of d the reduced bifurcation problem is equivalent for
each choice of d. The bifurcations are qualitatively the same as in the case 1D. Furthermore, note
that these cases describe all possible center subspaces in a generic 1-parameter Hopf bifurcation in
the case 1D. Hence, all generic 1-parameter Hopf bifurcations in the case 1D can also be observed
generically in the case DD. Conversely, the center subspace that is due to the high-dimensional in-
ternal dynamics – i.e. X c ∼= Y 2

i 6⊂ V1 – can only occur as a generic center subspace for d ≥ 2. Hence,
in general there is no equivalent reduced bifurcation problem in the case 1D and the corresponding
Hopf bifurcations can only be observed in the case DD. The discussion of this subsection can be
summarized as

Theorem 7.18. (i) All center subspaces in generic 1-parameter Hopf bifurcations in the case 1D are
generic as center subspaces in a 1-parameter Hopf bifurcation in the case DD for any d. The
branching periodic solutions corresponding to one center subspace are qualitatively the same for
all values of d in the sense that the reduced bifurcation problems are equivalent.

(ii) Let V1 = Y1 ⊕ · · · ⊕ Ys be a decomposition into indecomposable subrepresentations and as-
sume Yi to be of real type such that Yi 6∼= Yj for all j 6= i. If the internal dynamics is at least
two-dimensional, i.e. d ≥ 2, Yi yields a center subspace X c ∼= Y 2

i of a generic 1-parameter Hopf
bifurcation in the case DD. The corresponding branching periodic solutions cannot be obser-
ved in the case 1D. All remaining generic 1-parameter Hopf bifurcations in the case DD are as
described in (i).

Remark 7.19. Note that in both situations the indecomposable component of V1 can be high-
dimensional due to symmetry. Hence, in general Theorem 7.18 does not describe a standard Hopf
bifurcation with 2-dimensional center manifold. 4

Corollary 7.20. Assume that the specific network structure forces the fundamental network to decom-
pose into only components of real type that are pairwise non-isomorphic. Then Hopf bifurcations in
generic 1-parameter families are only possible in networks with internal dynamics of dimension grea-
ter or equal to 2.

Remark 7.21. In particular both conditions of Corollary 7.20 hold true if the network structure forces
the linear admissible maps to only have real eigenvalues. An example of this phenomenon is the
class of feedforward networks that we investigate in Part III. 4

7.2.3 Generic l-parameter bifurcations

The situation for l-parameter bifurcations is a lot more involved than in Sections 7.2.1 and 7.2.2. Si-
milar precise statements relating the case DD to 1D are not possible in full generality, as conditions
(7.11) and (7.12) allow for greater flexibility in the composition of generalized kernel or the center sub-
space the larger the value of l is. Nevertheless, the underlying mechanism that made the two diffe-
rent characterizations in Theorem 7.18 possible, applies to l-parameter bifurcations (with l > 1) as
well. In the case DD the representation space VD decomposes into the indecomposable subrepre-
sentations of V1, each occurring d times. These subrepresentations can be components of generali-
zed kernels or center subspaces. Hence, there are potentially numerous possibilities to find suitable
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combinations of components that satisfy (7.11) and (7.12). Nonetheless, any combination of subre-
presentations that occurs in a generic l-parameter bifurcation in the case 1D – i.e. one that does
not make use of extra copies – also occurs as a generalized kernel or center subspace in a generic
l-parameter bifurcation in the case DD. Once again, the reduced bifurcation problems are equiva-
lent due to symmetry. They can be seen as the ones that are inherent to the network structure and
independent of the internal dynamics. On the other hand, in general a generalized kernel or center
subspace in a generic l-parameter bifurcation in the case DD with d ≥ 2 contains multiple copies
of the same indecomposable component of V1. Then there is no equivalent reduced bifurcation
problem in the case 1D. We summarize these results as

Theorem 7.22. Generic l-parameter bifurcations in a fundamental network with 1-dimensional inter-
nal dynamics are also generic in the same network with d-dimensional internal dynamics.

More generally, Theorem 7.22 follows almost directly from Corollary 7.14. The total phase space
V1 is a subrepresentation of VD. Hence, any combination of indecomposable components of V1

that make up a generalized kernel in a generic l-parameter bifurcation in the case 1D also occur
in a generic l-parameter bifurcation problem in the case DD. This yields the previous result. Even
more so, it can be generalized to compare bifurcations in the same network with internal dyna-
mics of arbitrary dimension. If dimW 1 ≤ dimW 2 the total phase space

⊕
σ∈ΣW

1 is isomorphic
to a subrepresentation of

⊕
σ∈ΣW

2. Hence, every generalized kernel or center subspace in a gene-
ric l-parameter bifurcation in

⊕
σ∈ΣW

1 also occurs as a generalized kernel or center subspace in a
generic l-parameter bifurcation in

⊕
σ∈ΣW

2.

Theorem 7.23. Generic l-parameter bifurcations in a fundamental network with d1-dimensional inter-
nal dynamics are also generic in the same network with d2-dimensional internal dynamics, whenever
d1 ≤ d2.

On the other hand, for a fixed number of parameters l conditions (7.11) and (7.12) impose restricti-
ons on the maximal number of indecomposable components of V1 that can occur as a generalized
kernel or as a center subspace in a generic l-parameter bifurcation for any value of d. More precisely
the generalized kernel can at most be composed of l components of real type, of bl/2c components
of complex type, or of bl/4c components of quaternionic type. Here bac denotes the nearest smaller
or equal integer. Likewise, the center subspace can at most be composed of 2l components of real
type, of l components of complex type, or of l components of quaternionic type. In particular, the to-
tal number of indecomposable components is always less than or equal to l for generalized kernels
and less than or equal to 2l for center subspaces. Recall that increasing the dimension of the internal
dynamics d yields additional copies of the indecomposable components of V1 in the decomposition
of VD. In particular, we find all possible combinations of l or 2l indecomposable components in the
case that d = l or d = 2l respectively. Increasing d beyond these critical values does not provide any
further solutions to the combinatorial problems (7.11) and (7.12). As a result, all possible generalized
kernels in a generic l-parameter bifurcation problem with internal dynamics of dimension d′ > l can
also be observed in the case d = l. Likewise, all possible center subspaces in a generic l-parameter
bifurcation problem with internal dynamics of dimension d′ > 2l can also be observed in the case
d = 2l. Once again, the reduced bifurcation problems are therefore equivalent to those in the cases
d = l and d = 2l respectively. In combination with Theorem 7.23 we obtain

Theorem 7.24. (i) All generic l-parameter steady state bifurcations that can occur in a fundamental
network can be investigated in the case of an internal phase space of dimension d = l.

(ii) All generic l-parameter Hopf bifurcations that can occur in a fundamental network can be inves-
tigated in the case of an internal phase space of dimension d = 2l.

Remark 7.25. The minimal values of the dimension of the internal phase space d stated in Theo-
rem 7.24 are optimal in the sense that there is a combination of indecomposable subrepresentations
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of V1 that can only occur in a generic l-parameter bifurcation problem if d ≥ l or d ≥ 2l respectively.
To that end, let

∆0 =
{

(vσ)σ∈Σ ∈ V1
∣∣ vσ = vτ , for all σ, τ ∈ Σ

}
⊂ V1

be the fully synchronous subspace in the case 1D. In particular, ∆0 is a (not necessarily comple-
mentable) subrepresentation on which each representation map A1

σ acts as the identity. Assume
Y ⊂ V1 is a subrepresentation with Y ∼= ∆0. Then all A1

σ act as the identity on Y as well. That is,
for all y = (yσ)σ∈Σ ∈ Y we have (A1

τy)σ = yστ = yσ for all σ, τ ∈ Σ by definition of the right regular
representation. In particular, for σ = Id we see

yId = yσ

for all σ ∈ Σ. As ∆0 is one-dimensional, we obtain y ∈ ∆0 and therefore Y = ∆0. In particular,
there is no subrepresentation in V1 that is isomorphic but not equal to ∆0. This observation de-
pends crucially on the fact that the internal dynamics are one-dimensional. In general, there is an
indecomposable component of V1 that contains the fully synchronous subspace Y ⊃ ∆0. If a se-
cond subrepresentation Y ′ ⊂ V1 is isomorphic to Y the consideration above implies that Y and Y ′

contain ∆0. Hence, Y ∩ Y ′ ⊃ ∆0 6= ∅.
As a result, any decomposition of V1 into indecomposable components contains precisely one

component isomorphic to Y where ∆0 ⊂ Y . Consequently, in the case of d-dimensional internal
dynamics there is a subrepresentation U ⊂ VD with U ∼= Y l only if d ≥ l by Theorem 7.12. Likewise,
a subrepresentation U ⊂ VD with U ∼= Y 2l exists only if d ≥ 2l. 4

Remark 7.26. In the case of 1-parameter bifurcations Theorem 7.24 shows that all generic steady
state bifurcations can be observed in the network with 1-dimensional internal dynamics and all
Hopf bifurcations can be observed in the case of 2-dimensional internal dynamics. This matches
the results in Sections 7.2.1 and 7.2.2. 4

7.2.4 Beyond qualitative statements using center manifold reduction

Sections 7.2.1 to 7.2.3 describe how to determine qualitative bifurcations in homogeneous coupled
cell systems with (possibly) high-dimensional internal dynamics. In particular, how (parts of) the
branching pattern in the case DD can be observed in the case 1D. The reason why the restriction
to qualitative statements needs to be made is the fact that the relation between the two cases
is made in terms of the reduced bifurcation problems. The reduction methods require coordinate
changes so that whatever information is stored in the precise choice of coordinates is lost when
applying Theorems 7.17, 7.18 and 7.22. Most importantly, in the investigation of network dynamics
this includes the possibility to distinguish individual cells from the coordinates of the total phase
space variables. However, Theorem 7.12 allows for slightly more precise statements about the case
DD, if more knowledge about bifurcations in the case 1D is available. We can explicitly construct
bifurcating branches in the case DD from those in the case 1D, capturing the spirit of Theorem 7.22,
without losing all information about each cell’s behavior.

To that end, we make use of some of the technicalities of the center manifold reduction from
Section 3.5 from where we also reuse some notation. Recall that we investigate the extended system

ẋ =

(
ẋ

λ̇

)
=

(
Γf (x, λ)

0

)
= Γf (x) (7.13)

as in (3.20) in order to apply the center manifold reduction to bifurcation problems. Under the bifur-
cation assumption adapted to the extended system it admits a center manifold

M c =
{
Q′(xc, λ) + ψ(Q′(xc, λ)) | (xc, λ) ∈ X c × Λ

}
⊂
⊕
σ∈Σ

V × Rl (7.14)
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as in Corollary 3.40 which contains all branching solutions near the bifurcation point. In a slight
abuse of notation we have denoted the subrepresentation that forms the corresponding generalized
kernel or center subspace by X c without distinction. In particular, the dynamics of a generic system
of the form (7.13) restricted to the center manifold is bijectively conjugate to a generic system of the
form

ẋc = r(xc, λ),

λ̇ = 0
(7.15)

on X c × Rl, where

(i) r(0, 0) = 0.

(ii) The center subspace of Dxcr(0, 0) is the full space X c.

(iii) It is equivariant with respect to the monoid representation restricted to X c.

The conjugation is realized by the maps P (x, λ) = (P c(x), λ) and ψ ◦Q′, where P c :
⊕

σ∈Σ V → X c
is an equivariant projection.

Assume that we know the branching behavior of each cell in a branch of a generic bifurcation
of steady states 1D. That is, we have a smooth curve of steady states or of initial conditions for
periodic solutions (vσ(λ))σ∈Σ for small absolute values of λ. We denote the subrepresentation that
forms the corresponding generalized kernel or center subspace byX c1 ⊂ V1. Due to the conjugation
of the dynamics on the center manifold and the reduced system (7.15), we obtain that

P c1 ((vσ(λ))σ∈Σ)

– where P c1 is the projection onto the generalized kernel or center subspace X c1 in the case 1D – is
the branching solution of a generic reduced bifurcation problem corresponding to (vσ(λ))σ∈Σ. As
the center subspace in general is a proper subspace, not every cell’s coordinate entry vσ(λ) can be
found in the projected solution branch. For example the projection might map coordinates to zero or
sum multiple coordinate entries together. Nevertheless, as long as the projection P c1 is known, this
method provides a method to represent the qualitative branching solutions of the reduced system
while respecting the coordinates that are chosen according to the cells of the network. This pro-
jection operator, however, is often computed while classifying the generic bifurcations in the case
1D as a byproduct.

Furthermore, Theorem 7.22 shows that any bifurcating branch in the case 1D occurs generi-
cally in the same network in the case DD as well. Theorem 7.12 allows us to transform a generic
1D-branch into a generic DD-branch. In particular, there is a generic l-parameter bifurcation pro-
blem in VD whose generalized kernel or center subspace is isomorphic to X c1 in the case 1D. Furt-
hermore, from (7.9a) we see that this generalized kernel or center subspace X cD ⊂ VD is of the form

X cD ∼= X c1 ⊗ 〈w〉, (7.16)

where w ∈ W \ {0}. Denote the equivariant isomorphism in (7.16) by Ψ: X c1 ⊗ 〈w〉 → X cD. Conse-
quently, the branch (vσ(λ))σ∈Σ can be represented as a generic branch on the center subspace X cD
as

Ψ(P c1 (vσ(λ))σ∈Σ ⊗ w).

In more general terms, there exists a directionw ∈W \{0} such that the generic bifurcation pattern
– that is all generic bifurcating solutions – restricted to the center subspace in the 1-dimensional
case is reflected in the d-dimensional case, where internal dynamics is restricted to this direction
w. This interpretation, however, is only fully accurate in the case that Ψ is the identity – after iden-
tifying notations. In general it yields only qualitatively the same bifurcation diagram in the case
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DD. Nevertheless, as the coordinates for the center subspace in the case DD reflect the cells of the
network, we can read off cell-by-cell information from this representation. Finally, using the conju-
gacy between center manifold and reduced system once more, this time in the case DD, we find the
representation of the branch (vσ(λ))σ∈Σ in the center manifold of the DD-system as

ψD
(
Q′D (Ψ(P c1 (vσ(λ))σ∈Σ ⊗ w), λ)

)
.

Due to Theorem 7.22 this branch occurs in a generic bifurcation problem with generalized kernel or
center subspace isomorphic to X c1 ⊗ 〈w〉.

In theory this procedure provides a mechanism to translate generic branching solutions in the
case 1D to generic solutions in the case DD. As long as information about the maps P c1 , Q′D, ψ

D and
Ψ is available it also transforms information about the branching behavior of each individual cell.
However, this latter part is not to be expected in general. The results in this chapter aim at simpli-
fying the investigations of generic steady state bifurcations in the case DD by restricting to the case
1D. In particular, we do not want to determine a generic center manifold in the high-dimensional
case. As a result knowledge about these maps is not available in general. Nevertheless, the ob-
servations in this subsection provide a theoretical tool to relate generic branching solutions in the
case DD to those of the case 1D. In Chapter 11 we investigate how additional structure in the net-
work – in particular feedforward structure – provides information about the mapsP c1 , Q′D, ψ

D and Ψ

without explicitly computing them. This suffices to exploit this mechanism to characterize generic
branching solutions in the case DD from those in the case 1D including the behavior of each cell
without computing the center manifolds.

Remark 7.27. The method presented in this section can also be used in the spirit of Theorem 7.24
to translate a bifurcating branch of steady state or periodic solutions in a fundamental network
with d1-dimensional internal dynamics into one for the same network with d2-dimensional internal
dynamics whenever the corresponding generalized kernel or center subspace occurs in both cases
generically. In particular, when a branch exhibits a robust pattern of synchrony – i.e. coordinate
entries corresponding to a balanced partition of the cells coincide – then the representation of that
branch exhibits the same synchrony for internal dynamics of any dimensions for which it exists
generically. This follows from Proposition 7.16. 4
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Chapter 8

Four equivalent definitions

In Part III of this thesis we apply the methods introduced and derived in Part II to the class of feed-
forward networks. This structural property of a network is characterized by the absence of any feed-
back indicating some sort of ordering or regularity. This has multiple simplifying effects. As a result
feedforward networks are often found in the sciences and in particular in modeling thereof. For
example in artificial neural networks data is fed into a group nodes of the networks. After proces-
sing, they pass it on to some other group which, in turn, process it and feed the information to
other cells. In doing so, a cell never receives inputs twice. Thus, the information gets processed in
‘forward’ direction only until it reaches some final cells which generate the output of the neural net-
work. Furthermore, feedforward networks have also been studied in network dynamics where they
exhibit interesting phenomena such as amplification effects in bifurcations. Usually these investi-
gations are restricted to feedforward chains or layered feedforward networks. Here we consider a
more general framework. It includes feedforward chains and layered feedforward networks as an
example. To that end, we define feedforward structure in a very general formulation in this chap-
ter. We explore the implications of this definition on semigroup networks by relating it to algebraic
properties of the corresponding monoid of input maps as well as to order theoretic properties of the
network cells. We then use these connections to provide multiple equivalent definitions of feedfor-
ward networks. In Chapter 9 we characterize the algebraic properties of the fundamental network
of a feedforward network as well as the hidden symmetries it induces. In particular, we prove that
the regular representation of the monoid can be decomposed into indecomposable subrepresenta-
tions by means of an algorithm. We also exploit the different definitions to thoroughly investigate
generic 1-parameter steady state bifurcations in Chapters 10 and 11 (for one-dimensional and high-
dimensional internal dynamics). We show that in both cases these networks exhibit an amplifica-
tion effect similar – but more complex – to that observed before. In particular, branching solutions
can be determined by an inductive procedure that essentially only depends on the network struc-
ture. Interestingly, different regions of the space of Taylor coefficients of the response function may
exhibit different patterns of branching solutions. Finally, we illustrate the results in an example in
Chapter 12. For background information and further motivation see the introduction Chapter 1.

8.1 Loop-free networks

We begin with the first – highly general – definition of feedforward structure and some algebraic
observations. We remain in the setting of semigroup networks as introduced in Chapter 3. This
chapter is essentially Section 2 of our preprint [84].

Definition 8.1. A homogeneous coupled cell network is called a feedforward network if it has no di-
rected loops involving 2 or more nodes (consisting of arrows not necessarily of the same type). Put
differently, a network is a feedforward network if the only directed loops are self-loops.
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Remark 8.2. The name feedforward network is natural in the sense that all the feedback a cell can
receive is via a self-arrow. This definition can naturally be extended to networks outside of the
semigroup network framework. 4

Remark 8.3. Note that the property of being a feedforward network does not change if the set of
input maps is completed to a monoid. In particular, this property can be checked by looking only at
the generators of Σ. For, if there is a directed loop of 2 or more nodes consisting of generator-arrows,
then this loop still exists if we add concatenations of these arrows to the network.

Conversely, suppose we have a directed loop of any arrows. Then by expressing these arrows
as concatenations of generators, we get a directed loop consisting of only generators (or possibly
multiple directed loops, one of which connects all the nodes involved). In particular, adding all con-
catenations of arrow-types to a network (i.e. ‘completing the monoid’) does not change whether or
not the network is a feedforward network. 4

In the case that the input maps form a monoid, we relate the structural property defined above
to an algebraic property of the corresponding monoid of input maps of the network.

Definition 8.4 (p. 7 in [105]). A monoid Θ is called L-trivial if the sets Θθ = {κθ | κ ∈ Θ} are different
for all θ ∈ Θ. In other words, if for θ, θ′ ∈ Θ we have that Θθ = Θθ′ implies θ = θ′.

A useful lemma in determining if a monoid is L-trivial is the following.

Lemma 8.5. Let Θ be a (not necessarily L-trivial) monoid. For θ, θ′ ∈ Θ we have Θθ ⊂ Θθ′ if and only
if there exists an element κ ∈ Θ such that θ = κθ′. Hence, we have Θθ = Θθ′ if and only if there exist
κ, ι ∈ Θ such that θ = κθ′ and θ′ = ιθ.

Proof. If Θθ ⊂ Θθ′ holds then we have θ = Id θ ∈ Θθ ⊂ Θθ′. Hence we see that θ = κθ′ for some
κ ∈ Θ. Conversely, from θ = κθ′ we get Θθ = Θκθ′ ⊂ Θθ′, where we have used that Θκ ⊂ Θ. This
proves the first part of the lemma. The second follows immediately from this equivalence.

The following lemmas show that the monoid of input maps of a feedforward network is L-trivial.
For the sake of convenience, and motivated by Remark 8.3 above, we assume from now on that the
input maps of any network considered form a monoid. Then the condition on the input structure of
a feedforward network reads σ(p) = q and τ(q) = p together imply p = q in terms of input maps.
Strictly speaking, this only excludes loops involving exactly 2 nodes. However, by concatenation of
arrows – or equivalently of input maps – we see that a loop consisting of arbitrary many cells induces
loops of any two cells involved. Hence, it is excluded by this definition as well.

Lemma 8.6. A (semigroup) network N = (C,Σ) is a feedforward network if and only if for all nodes
p, q ∈ C the sets Σ(p) = {σ(p) | σ ∈ Σ} are different, i.e. we have Σ(p) = Σ(q) implies p = q.

Proof. Let p and q be two different nodes such that Σ(p) = Σ(q). Then p = Id(p) ∈ Σ(p) = Σ(q).
Hence, there exists an element σ ∈ Σ such that p = σ(q). Analogously, we find an element τ ∈ Σ

such that τ(p) = q and we conclude that there is a directed loop in the network connecting the two
nodes p and q. This proves that the network is not a feedforward network whenever Σ(p) = Σ(q) for
some p 6= q.

Conversely, suppose the network is not a feedforward network, so that there is a directed loop
connecting 2 or more nodes. By picking two different nodes in the loop and by concatenating arrows
if necessary, we see that there exist nodes p, q ∈ C , p 6= q and elements σ, τ ∈ Σ such that p = σ(q)

and q = τ(p). It follows that Σ(p) = Σ(σ(q)) = Σσ(q) ⊂ Σ(q), and likewise Σ(q) ⊂ Σ(p). Hence, we
have Σ(p) = Σ(q) for some nodes p 6= q. This proves the lemma.

As the nodes in the fundamental network are given by the monoid Σ (with the action of the
input maps given by left-multiplication), we immediately find:
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Corollary 8.7. A fundamental network is a feedforward network if and only if the underlying monoid
is L-trivial.

Remark 8.8. Note that L-triviality can easily be checked from the multiplication table of a monoid
Θ; the inequality Θθ 6= Θθ′ for θ 6= θ′ simply implies different columns in the multiplication table
have a different set of monoid elements appearing. Likewise, for a general network the inequality
Σ(p) 6= Σ(q) for different nodes p 6= q simply means the set of nodes that p depends on is different
from those that q depends on (this includes the self-loop given by Id ∈ Σ). 4

Next, we investigate how feedforward structure behaves under constructing the fundamental
network.

Lemma 8.9. A network is a feedforward network if and only if its fundamental network is a feedfor-
ward network.

Proof. Suppose the fundamental network is not a feedforward network, so that we have Σσ = Στ

for some different σ, τ ∈ Σ. As we have σ 6= τ , there exists at least one node p such that σ(p) 6= τ(p).
We therefore find Σ(σ(p)) = Σσ(p) = Στ(p) = Σ(τ(p)) where σ(p) and τ(p) are two different nodes.
This proves that the original network is not a feedforward network.

Conversely, suppose the original network is not a feedforward network, and therefore has a di-
rected loop consisting of multiple nodes. It follows that in particular, we have two different nodes p
and q and monoid elements σ, τ ∈ Σ such that σ(p) = q and τ(q) = p. As Σ has only finitely many
elements, we see that for some positive integers s and twe have (τσ)s = (τσ)s+t. We will focus our
attention on the two monoid elements κ = (τσ)s and ι = σ(τσ)s. First of all, it clearly holds that

ι = σκ,

so that Σι ⊂ Σκ due to Lemma 8.5. Moreover, we find

[(τσ)t−1τ ]ι = (τσ)t−1τσ(τσ)s = (τσ)t+s = (τσ)s = κ

showing that Σκ ⊂ Σι. We conclude that Σκ = Σι. However, by construction we have
κ(p) = (τσ)s(p) = p, whereas we also find ι(p) = σκ(p) = σ(p) = q. As p 6= q by assumption,
we see that κ and ι are two different elements in the monoid. This shows that the fundamental
network is not a feedforward network, proving the lemma.

Remark 8.10. Note that in Lemma 8.9 we do not assume the original network to be a quotient of the
fundamental network. In other words, we do not require the existence of a node in the network that
‘feels’ all the other nodes. 4
Corollary 8.7 and Lemma 8.9 can be summarized as

Corollary 8.11. A network is a feedforward network if and only if the underlying monoid of input maps
Σ is L-trivial.

Lastly, we show that feedforward structure behaves well under taking quotients.

Lemma 8.12. The quotient of a feedforward network by a balanced partition is again a feedforward
network.

Proof. As is often the case with feedforward networks, it is easier to prove the contrapositive: if the
quotient network is not a feedforward network, then neither is the original network. Let us write [p]

for the equivalence class of a node p in the original network under the relevant balanced partition.
The assumption that the quotient network is not a feedforward network means that there exist
nodes p and q such that [p] 6= [q] and monoid elements σ, τ ∈ Σ such that σ[p] = [q] and τ [q] = [p]. As
in the proof of Lemma 8.9, we may define κ = (τσ)s ∈ Σ and ι = σ(τσ)s ∈ Σ for some large enough
s and it follows that Σκ = Σι. Moreover, as κ sends the equivalence class [p] to itself whereas ι
sends [p] to [q] 6= [p], we have that κ 6= ι. We conclude that Σ is not L-trivial. By Lemma 8.9 we see
that the original network is not a feedforward network either. This proves the lemma.
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Now that we have established a ‘visual’ interpretation of the algebraic notion of L-triviality, we
can start exploiting the technical consequences of this definition. We choose a labeling of the nodes
C = {p1, . . . pN} such that it holds that

#Σ(p1) ≥ #Σ(p2) ≥ . . . ≥ #Σ(pN ). (8.1)

Recall that we denote the algebra of linear maps on the internal phase space of the coupled cell
system by gl(V ).

Lemma 8.13. Choosing the ordering of cells according to (8.1) for a feedforward network yields that
any linear admissible map can be represented by an upper triangular matrix with entries in gl(V ). In
particular, if V = R we identify gl(V ) ∼= R to see that the linear admissible maps can be represented
by real upper triangular matrices.

Proof. We claim that pi can only be an element of Σ(pj) if i ≥ j. Indeed, if we have pi ∈ Σ(pj)

then Σ(pi) ⊂ ΣΣ(pj) = Σ(pj). In particular then, we have #Σ(pi) ≤ #Σ(pj). If it also holds that
i < j then #Σ(pi) ≥ #Σ(pj), and so #Σ(pi) = #Σ(pj). From Σ(pi) ⊂ Σ(pj) it now follows that
Σ(pi) = Σ(pj), directly contradicting that the network is a feedforward network (note that i < j

implies in particular that pi 6= pj).
Now the set Σ(p) consists of exactly those nodes that (the variable of) p depends on. We see that

p2 does not depend on p1, p3 does not depend on p1 and p2 etc. This shows that all linear admissible
maps are indeed in upper triangular form with respect to this ordering.

Remark 8.14. In Remark 8.20 we use a partial order on the nodes inherited from the network struc-
ture which induces upper triangularity of linear admissible maps as well. 4

Lemma 8.13 has immediate consequences for generic 1-parameter Hopf bifurcations in feedforward
networks. These can only occur, when the internal dynamics is at least 2-dimensional (compare to
Section 7.2).

Theorem 8.15. In a feedforward network a 1-parameter Hopf bifurcation can only occur if the internal
dynamics is at least 2-dimensional.

Proof. In order for a Hopf bifurcation to occur, a 1-parameter family of linear admissible maps has
to have a pair of complex conjugate eigenvalues at the bifurcation point (see Section 3.2). In the case
V = R all linear admissible maps are real upper triangular matrices. Their eigenvalues are the dia-
gonal elements which are real. Hence, a Hopf bifurcation is not possible. On the other hand, when
the internal dynamics is in V ∼= Rd with d ≥ 2, linear admissible maps are upper triangular with en-
tries in gl(V ). Thus the eigenvalues of a linear admissible map are the union of the eigenvalues of all
diagonal elements which are arbitrary elements in gl(V ). In particular, there are possible diagonal
elements with complex eigenvalues so that Hopf bifurcation is generically possible.

In the case V = R the linear admissible maps are real upper triangular matrices. These in turn
have their eigenvalues on the diagonal. We investigate further algebraic and spectral properties in
Chapter 9. First, we introduce the following definition that turns out to be useful for determining
diagonal entries of linear admissible maps.

Definition 8.16. Given a homogeneous coupled cell network (not necessarily of feedforward type), we
define an equivalence relation� on the nodes as follows: p� q if

{σ ∈ Σ | σ(p) = p} = {σ ∈ Σ | σ(q) = q}. (8.2)

We denote the sets by Lp = {σ ∈ Σ | σ(p) = p}. If p� q then we say that p and q have the same
loop-type. In a network, two nodes have the same loop-type if and only if they have the same self-loops
(of the same colors given by Lp).
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To define loop-types on an arbitrary network we do not require that the set of input maps Σ is a
monoid. However, passing to the smallest monoid containing Σ might make the loop-type relation
finer. Nevertheless, for feedforward networks this relation remains the same, as the next lemma
shows.

Lemma 8.17. In a feedforward network with monoid Σ generated by the elements σ1, . . . , σm, we have
p� q if and only if

{i ∈ {1, . . . ,m} | σi(p) = p} = {i ∈ {1, . . . ,m} | σi(q) = q} . (8.3)

Proof. If p and q have the same loop-type, then they are fixed by the same elements of Σ. In parti-
cular then, they are fixed by the same generators σi. This proves that equation (8.3) holds.

Conversely, assume (8.3) holds true. Suppose we have a general element τ ∈ Σ such that
τ(p) = p. If τ equals the identity then we also have τ(q) = q. Therefore, we may assume that
τ equals a product of generators σi1 · · ·σik for some k ≥ 1. Defining r = σik(p), we see that
σi1 · · ·σik−1

(r) = σi1 · · ·σik(p) = p. As we also have r = σik(p), it follows from the feedforward
structure of the network that r = p. We therefore find p = σik(p) as well as σi1 · · ·σik−1

(p) = p.
Continuing this way, we find σi1(p) = . . . = σik(p) = p. By the assumption that (8.3) holds, it follows
that σi1(q) = . . . = σik(q) = q, and so τ(q) = σi1 · · ·σik(q) = q. Repeating this argument with the
roles of p and q reversed, we find that indeed p� q. This proves the lemma.

Remark 8.18. The loop-type of a node p can easily be read off from the admissible vector fields of a
network; it is given by those entries of the response function through which the variable xp depends
on xp. 4

8.2 A partial order in the network

Next, we take an order-theoretic perspective on networks. We introduce a preorder on the set of
cells induced by the network structure and relate it to the structural features discussed in Section 8.1.
Consider the preorder

p E q ⇐⇒ there is an arrow from q to p.

Using the input maps this means there exists an input map sending cell p to cell q:

p E q ⇐⇒ there exists σ ∈ Σ with σ(p) = q.

As every cell is coupled to itself via the internal dynamics the preorder is obviously reflexive. On the
other hand if there is an arrow from cell q to cell p and an arrow from cell r to cell q the concatenated
arrow goes from r to p. Concatenation of arrows is precisely the operation performed when the set
of input maps is completed to a monoid. From now on, we assume this to be done which makes the
preorder transitive as well. However, in the definition we do not exclude the possibility of an arrow
from q to p and one from p to q for two different cells p and q. In that case we have p E q and q E p

even though p 6= q. Thus, in general the preorder is no partial order. We encode the situation that
p E q and q E p using p M q. Furthermore, p E q but p 6= q is denoted by p C q.

Proposition 8.19. The preorderE is a partial order if and only if the network is a feedforward network.

Proof. Assume the network is not a feedforward network. Then there is a loop {p1, . . . , pk}
with k ≥ 2 in the network, meaning there are input maps σ1, . . . , σk such that σ1(p1) = pk and
σi(pi) = pi−1 for 2 ≤ i ≤ k. For τ = σ2 · · ·σk we have τ(pk) = p1 which implies pk E p1. On the
other hand, we also have p1 E pk from σ1(p1) = pk. As p1 6= pk, this shows the preorder is no partial
order.
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Now assume that the preorder is not a partial order. Then there are cells p 6= q with p E q and
q E p. This implies the existence of input maps σ and τ such that σ(p) = q and τ(q) = p. This is
the same as an arrow from q to p and one from p to q making these cells a loop of size 2. Thus, the
network is not a feedforward network.

Remark 8.20. Note that we can use the partial order E to label the cells in such a way, that the
admissible linear maps are upper triangular – compare to Lemma 8.13. We choose a labeling of the
nodes {p1, . . . , pN} such that whenever pi E pj it also holds that i ≤ j – this is not unique as some
elements may not be related by the partial order. By definition for an input σ(p) of cell p it holds
that σ(p) D p and therefore its index is greater than or equal to that of p. This shows that the linear
admissible maps are upper triangular.

Conversely, given a labeling {p1, . . . , pN} such that all linear admissible maps are upper triangu-
lar. Suppose pi E pj and pj E pi. Then there exist σ, τ ∈ Σ such that σ(pi) = pj and τ(pj) = pi. These
maps describe the input structure that is reflected by the linear admissible maps. Hence, there ex-
ists such a map with non-zero values in the (i, j)-th as well as in the (j, i)-th entry. Due to the upper
triangular structure, this can only be true for i = j and therefore pi = pj . HenceE is a partial order.
Summarizing, the upper triangular structure of linear admissible maps is equivalent to E being a
partial order on C . We could have used this as a definition for feedforward networks as well. 4

Note that, since the network contains only finitely many cells, there are well-defined maximal
elements with respect to the partial order E. By definition, these are cells that do not receive any
inputs from other cells. This characterization has some immediate useful consequences that we
collect here.

Lemma 8.21. A cell p ∈ C is maximal if and only if it is fixed by the entire monoid, i.e. σ(p) = p for all
σ ∈ Σ. In particular, a maximal cell receives all its inputs from itself.

Proof. This follows almost directly from the definition of the partial order E. We prove the state-
ment by contraposition. Assume, σ(p) 6= p for some σ ∈ Σ. Then there is an arrow from σ(p) to p.
This yields σ(p) B p so that p is not maximal. On the other hand, if q B p then there is an arrow from
q to p and equivalently an input map σ ∈ Σ with σ(p) = q. As q B p implies q 6= p, this shows that p
is not fixed by the entire monoid.

Corollary 8.22. From Lemma 8.21 we obtainLp = Σ for all maximal p ∈ C (compare to Definition 8.16).
In particular, for p maximal, p� q, if and only if q is maximal.

The following three corollaries characterize the relation of the notions of paths (Definition 3.2)
and blocks (Definition 3.34) to that of the partial orderE.

Corollary 8.23. Stating the definition of a maximal element in terms of arrows in the network imme-
diately proves that every cell p is either maximal itself or there is a path from a maximal cell p to p.
Furthermore, it is obvious that q B p implies that q is on some path from a maximal cell to p, i.e. there
is a maximal cell p such that q ∈ ω ∈ Ωp,p (the set of paths from p to p as in Definition 3.2).

Corollary 8.24. There is an element κ ∈ Σ mapping every cell p ∈ C to a maximal one simultaneously,
i.e. κ(p) is maximal for all p ∈ C .

Proof. Let p1 ∈ C be any cell. Due to Corollary 8.23 there is a maximal cell p1 such that
there exists a path from p1 to p. In particular, there are input maps σ1, . . . , σk such that
σk(σk−1(. . . (σ1(p1) . . . ))) = p1. Hence, setting κ1 = σk · · ·σ1, we have κ1(p1) = p1. If p1 is
maximal, we may choose κ1 = Id. Then choose p2 ∈ C \ {p1} and construct κ2 accordingly as the
map such that κ2(κ1(p2)) = p2 is maximal. As p1 is maximal, we have σ(p1) = p1 for all σ ∈ Σ.
In particular, κ2(p1) = κ2(κ1(p1)) = p1. Thus, we see that κ2 ◦ κ1 maps p1 7→ p1 and p2 7→ p2
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which are both maximal. Continuing recursively, we construct a map κi for each pi ∈ C so that
(κi ◦ · · · ◦ κ1)(pj) = pj is maximal for all j ≤ i. As there are only finitely many cells, setting

κ = κN ◦ · · · ◦ κ1

completes the proof.

Corollary 8.25. In the context of feedforward networks, a block B ⊂ C is defined by the property that
p ∈ B implies q ∈ B for all q B p. This, in turn, yields that every block contains at least one maximal
cell.

In the remainder of this section, we investigate some properties of the preorderE on the funda-
mental network. We do not assume it to be a partial order. Note that the preorder on the funda-
mental network boils down to a preorder on the monoid Σ, as the input maps Σ act on the cells Σ

via multiplication from the left. That is,

σ E τ ⇐⇒ there exists σ′ ∈ Σ with σ′σ = τ.

This can be defined for any monoid and does not require L-triviality. As a network is feedforward if
and only if its fundamental network is (see Lemma 8.9), we obtain

Corollary 8.26. The preorderE on the original network is a partial order if and only if the corresponding
preorder on the fundamental network is a partial order.

To understand the structure of a given monoid Θ, one often investigates the so called Green’s
relations of which we only introduce one at this point. That is, two elements θ, θ′ ∈ Θ are L-related,
denoted by θLθ′, if and only if they generate the same left ideals in the monoid: Θθ = Θθ′. Recall
from Definition 8.4 that the monoid is L-trivial if and only if this relation is equal to the identity
relation. The L-relation can also be defined using the so called Green’s-L-preorder ≤L where

θ ≤L θ′ ⇐⇒ Θθ ⊂ Θθ′.

Then

θLθ′ ⇐⇒ θ ≤L θ′ and θ′ ≤L θ

We can easily see that Green’s-L-preorder is the order dual to the preorder E. Note a similar result
in Remark 2.7 in BERG et al. [18].

Lemma 8.27. Green’s-L-preorder is order dual to the preorderE.

Proof. For two elements θ, θ′ ∈ Θ assume θ ≤L θ′, i.e. Θθ ⊂ Θθ′. According to Lemma 8.5 this is
equivalent to the existence of an element κ ∈ Θ such that κθ′ = θ. This, in turn, is equivalent to
θ′ E θ.

Remark 8.28. It follows immediately from the definition of≤L that the monoid is L-trivial if and only
if≤L is a partial order. Therefore, we could have used this formalism to prove the equivalence of the
definitions of feedforward networks and that of the partial orderE for fundamental networks. 4

We provide further results concerning least and greatest elements of a finite monoid Θ with
respect toE and bear in mind that these can directly be applied to fundamental networks. Therein,
we call an element θ ∈ Θ a greatest element if θ D θ for all θ ∈ Θ and θ E θ implies θ = θ. Similarly,
it is a least element if θ E θ for all θ ∈ Θ and θ E θ implies θ = θ. When E is a partial order the
second condition in both cases is redundant and we obtain the usual definition of greatest and least
elements in a partially ordered set.
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Lemma 8.29. An element z ∈ Θ is a greatest element with respect toE if and only if it is a (two-sided)
zero element in the monoid.

Proof. Suppose z ∈ Θ is a greatest element with respect toEwhich means z D θ for all θ and z E θ
implies θ = z. Using the definition of the preorder, the second condition implies θz = z for all θ ∈ Θ,
as θz D z by definition. Therefore, z is a right zero element. Using the first condition we obtain for
every θ ∈ Θ there exists θ′ ∈ Θ such that θ′θ = z. In particular, for arbitrary θ ∈ Θ there is θ′ ∈ Θ

such that θ′(zθ) = z and since z is a right zero element z = θ′(zθ) = (θ′z)θ = zθ. Thus, z is also a
left zero element.

On the other hand, let z ∈ Σ be a zero element. We immediately obtain zθ = z for all θ ∈ Θ and
therefore z D θ for all θ ∈ Θ. Next, assume there is an element θ ∈ Θ such that z E θ. Then there
exists θ′ ∈ Θ such that θ′z = θ. As z is a zero element this implies z = θ. Therefore z is a greatest
element.

Remark 8.30. As a monoid can have at most one zero element, we get that greatest elements with
respect toE in the fundamental network are unique, even ifE is not a partial order. 4

The following lemma serves as a reminder that left- and right-inverses are equal – and therefore
two-sided inverses – in a finite monoid.

Lemma 8.31. If the element θ of the finite monoid Θ has a left-(right-)inverse θ′, then θ′ is the unique
two-sided-inverse of θ.

Proof. Assume θ′θ = Id. We deduce for κ, ι ∈ Θ such that θκ = θι

θκ = θι =⇒ θ′(θκ) = θ′(θι) =⇒ κ = ι.

Hence, the map κ 7→ θκ is injective and by finiteness of Θ also bijective. Therefore, there exists an
element θ̂ such that θ̂ 7→ Id which means θθ̂ = Id. Thus, θ̂ is right-inverse to θ. From associativity we
obtain

θ′ = θ′(θθ̂) = (θ′θ)θ̂ = θ̂.

The proof for θ′ being right-inverse is analogous.

Lemma 8.32. An element u ∈ Θ satisfies u E θ for all θ ∈ Θ if and only if it is invertible.

Proof. Assume u E θ for all θ ∈ Θ. Especially u E Id which means there is an element u′ with
u′u = Id. Thus, u′ is left-inverse to u which is invertible due to Lemma 8.31. On the other hand,
assume there is an inverse u′ to u. Then (θu′)u = θ(u′u) = θ for all θ ∈ Θ. Hence, u E θ.

Corollary 8.33. IfE is a partial order, the identity Id is the unique least element in Θ.

Proof. The identity Id is obviously invertible and therefore satisfies Id E θ for all θ ∈ Θ. Then assume
θ E Id for some θ ∈ Θ. This implies θ = Id, sinceE is a partial order. Hence, Id is a least element. As
least elements are unique in a partially ordered set, this completes the proof.

Remark 8.34. Corollary 8.33 implies that the fundamental network of a feedforward network has
the unique least element Id which receives an input from any other cell in the network. 4

8.3 Equivalence

In the previous sections, we investigated different network structures and their relations. Combi-
ning Definition 8.1, Corollary 8.7, Lemma 8.9 and Proposition 8.19, we see that all of them describe
the same structural features.
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Theorem 8.35. A homogeneous coupled cell network is a feedforward network if and only if it satisfies
one of the following equivalent conditions:

(i) There are no directed loops involving 2 or more nodes in the network.

(ii) The preorderE is a partial order.

(iii) The monoid of input maps Σ is L-trivial.

(iv) The fundamental network is a feedforward network.

Definition 8.36. From now on, we call a network a feedforward network if it satisfies one of the equi-
valent conditions in Theorem 8.35.

In the remainder of this text, we therefore switch freely between the definitions and the terms with
which we refer to the networks.

Remark 8.37. As mentioned in the introduction, an often considered generalization of feedforward
chains is that of so-called layered feedforward networks. In such a network the cells are partitioned in
layers and the feedforward structure is only with respect to these layers, i.e. if we collapse each layer
to a single node we obtain a feedforward chain. Most notably we would like to mention SOARES [99].
Therein, layered feedforward networks, their quotients and lifts as well as the lifting bifurcation
problem are investigated thoroughly. It is shown that these networks exhibit similar steady state
bifurcations as the ones presented in Chapter 10. As a matter of fact, completing the set of input
maps for the networks considered in [99], we obtain networks that are included in our framework
of feedforward networks. However, no self-loops (except for the internal dynamics governed by
Id ∈ Σ and for the maximal cells) are possible. As a result, the branching patterns in the more
general case considered in Chapter 10 are more complex. Note that in our more general definition of
feed-forward networks, we may also group nodes together in layers, where we allow for self-loops
and arrows that skip layers. In fact, it can be shown that we may give a definition in terms of layers
that is equivalent to the definitions in Theorem 8.35. However, we decided not to include the precise
definition here, as we deemed the ‘graphical’ and ‘order theoretic’ definitions to be more natural.4
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Chapter 9

Algebraic Structure of the Regular
Representation

In this chapter we use the equivalent characterizations of feedforward structure provided in Theo-
rem 8.35 in order to investigate spectral properties of network maps. Furthermore, we gather insight
into the symmetries of the fundamental network. In particular, the additional structure of the net-
work allows us to characterize the decomposition of the regular representation into indecomposable
components. Recall that this solves the issue of the crucial Step 2 in the classification of all generic
bifurcations of steady states as described in Section 6.1 for feedforward networks. Theorem 5.11,
Theorem 5.12, and Remark 5.13 allow to deduce all possible generalized kernels and center subspa-
ces in a generic bifurcation of steady states of a fundamental network from the indecomposable
components of the right regular representation. This chapter is Section 3 of our preprint [84].

From now on, we restrict to the case V = R so that the total phase spaces are
⊕

p∈C R ∼= RN

and
⊕

σ∈ΣR ∼= Rn for the original and the fundamental network respectively. The first result shows
why we are interested in the loop-type relation: there is a one-to-one correspondence between loop-
types and eigenvalues of a linear admissible map.

Theorem 9.1. In a feedforward network, the number of different loop-types of the nodes (that is, the
number of equivalence classes under�) equals the maximal number of different eigenvalues a linear
admissible map can have.

Proof. Recall from Lemma 8.13 that a linear admissible map for a feedforward network is upper
triangular. Hence, the maximal number of eigenvalues is just the maximal number of distinct values
the diagonal entries can attain. Similar to Section 4.2, we define the standard basis of the total
phase space using the Kronecker delta δp,q – which equals 1 if p = q and 0 otherwise – as {Y q}q∈C
given by (Y q

p )p∈C = (δp,q)p∈C ∈
⊕

p∈C R. Note that this basis respects the labeling of cells chosen
as in Lemma 8.13 or Remark 8.20 so that the linear admissible maps with respect to this basis are
upper triangular. Recall furthermore from Corollary 3.9 that the algebra of linear admissible maps is
spanned by the adjacency matricesBσ for σ ∈ Σ, defined by (Bσ(x))p = xσ(p) for p ∈ C . That is, any
linear admissible map is of the form ∑

σ∈Σ

bσBσ,

with bσ ∈ R for all σ ∈ Σ. For a node p ∈ C , the (p, p)-entry of this matrix is given by[∑
σ∈Σ

bσBσ(Y p)

]
p

=
∑
σ∈Σ

bσY
p
σ(p) =

∑
σ∈Σ

bσδp,σ(p) =
∑
σ(p)=p

bσ .

Hence, for two nodes p, q ∈ C the (p, p)-entry and the (q, q)-entry are always the same – i.e. for
any choice of coefficients bσ ∈ R –, if and only if p � q. This shows that the number of different
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eigenvalues is at most the number of loop-types. If p and q do not have the same loop-type, then
for a dense open set of values (bσ)σ∈Σ, the p-th and q-th diagonal entries of

∑
σ∈Σ bσBσ are distinct.

Intersecting these sets for all pairs of nodes with a different loop-type, we find a dense open set of
values (bσ)σ∈Σ for which

∑
σ∈Σ bσBσ has as many different eigenvalues as there are loop-types. This

proves the theorem.

In the remainder of this chapter we focus on fundamental networks. For these, the upper tri-
angular structure of linear admissible maps and in particular Theorem 9.1 provide insight into the
decomposition of the total phase space into indecomposable components. As in Remark 3.29, a
general linear fundamental network map is of the form L =

∑
σ∈Σ bσBσ ∈ EndΣ

(⊕
σ∈ΣR

)
with

bσ ∈ R for all σ ∈ Σ. Here Bσ is given by (BσX)τ = Xστ for σ, τ ∈ Σ and X ∈
⊕

σ∈ΣR. This
characterization will frequently be used without explicit mention.

Theorem 9.2. The regular representation of an L-trivial monoid decomposes into all non-isomorphic
indecomposable representations of real type. The number of indecomposable subrepresentations in a
decomposition equals the number of different loop-types in the fundamental network.

Proof. As the linear admissible maps for the fundamental network are all upper triangular, they
only have real eigenvalues. Recall from Proposition 4.8 that an indecomposable component of com-
plex or quaternionic type, as well as multiple isomorphic indecomposable components, would imply
some admissible maps have imaginary eigenvalues, as the linear admissible maps are precisely the
endomorphisms of the right regular representation EndΣ

(⊕
σ∈ΣR

)
. Therefore, all components are

necessarily non-isomorphic and of real type.
The second part of the theorem follows almost immediately from the first. As all indecompo-

sable subrepresentations are pairwise non-isomorphic and of real type, the number of components
equals the maximal number of eigenvalues a linear admissible map for the fundamental network
can have. By Theorem 9.1 this number equals the number of different loop-types in the fundamental
network.

Remark 9.3. One can easily determine the number of indecomposable representations from the mul-
tiplication table of an L-trivial monoid. To that end label the columns by elements of the monoid and
relate them by stating that columns σ and τ are related if the places where the element σ appears in
column σ are the same as the places where the element τ appears in column τ . The size of a maximal
set of unrelated columns is then the number of indecomposable representations in a decomposition
of the regular representation. 4

The remainder of this chapter is devoted to deepening our understanding of the decomposi-
tion of the regular representation or, more notably, of possible center subspaces of linear network
maps. Using the considerations from before – in particular the upper triangularity of the endomor-
phisms – we introduce a procedure to compute equivariant projections onto each component of the
decomposition into indecomposable subrepresentations. These projections fully determine the de-
composition of the regular representation (compare to Section 4.2). A general linear fundamental
network map is of the form L =

∑
σ∈Σ bσBσ . If Σ is an L-trivial monoid, its eigenvalues are given by

the diagonal elements

λσ(L) =
∑
τσ=σ

bτ (9.1)

(note that λσ(Bτ ) = (Bτ )σ,σ = 1 if τσ = σ and 0 otherwise). We see that λσ(L) = λτ (L) for all
L ∈ EndΣ

(⊕
σ∈ΣR

)
if and only if σ ∈ Σ and τ ∈ Σ have the same loop-type: σ� τ (see the proof

of Theorem 9.1). After choosing a suitable ordering of the elements of Σ, we know that L may be
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written as

L =


λσ1(L) • . . . •

0 λσ2(L)
. . . ...

... . . . . . . •
0 . . . 0 λσn(L)

 . (9.2)

Next, we choose a decomposition of
⊕

σ∈ΣR into indecomposable representations:⊕
σ∈Σ

R = W1 ⊕ · · · ⊕Wm. (9.3)

As stated before, from the fact that the eigenvalues of any admissible mapL are all real, we conclude
that W1, . . . ,Wm are all of real type and mutually non-isomorphic (see Theorem 9.2). Furthermore,
we have seen that m equals the maximal number of different eigenvalues any admissible map can
have. There are values of (bσ)σ∈Σ for which the eigenvalues λσ(L) =

∑
τσ=σ bτ take different values

for monoid elements σ with different loop-type. Hence,m also equals the number of different loop-
types, that is, the number of equivalence classes under the loop-type relation. For later use let us
denote by τ1, τ2, . . . , τm ∈ Σ a full set of representatives for the loop-type relation. Note that the
standard basis – which corresponds to the cells of the network – does not respect the decomposition
on the right hand side of Equation (9.3). Nevertheless, there is a basis of

⊕
σ∈ΣR respecting the

decomposition and an equivariant isomorphism ψ :
⊕

σ∈ΣR→
⊕

σ∈ΣR that exchanges the bases.
In particular, with respect to the decomposition on the right hand side of (9.3) we may write

Ψ(L) = ψ ◦ L ◦ ψ−1 =


c11W1 +N1 L1,2 . . . L1,m

L2,1 c21W2 +N2
. . . ...

... . . . . . . Lm−1,m

Lm,1 . . . Lm,m−1 cm1Wm +Nm

 (9.4)

for some real numbers c1, . . . , cm. Here Ni is an equivariant nilpotent map from Wi to itself
(Ni ∈ Endnil

Σ (Wi)) and every Li,j (i 6= j) is an equivariant map between non-isomorphic indecom-
posable representations (Li,j ∈ HomΣ(Wj ,Wi)). Note that the form of the matrix in (9.4) relies
crucially on the fact that the Wi are mutually non-isomorphic and of real type.

Lemma 9.4. The numbers ci in (9.4) are the eigenvalues of L, i.e. we have ci = ci(L) = λτi(L) for all
i ∈ {1, . . . ,m}, possibly after a reordering of the indices.

Proof. The proof relies mainly on techniques presented in Chapter 5 and their generalizations in
NIJHOLT and RINK [77] – in particular, the result follows from Proposition 4.5 in NIJHOLT and RINK

[77] and the representation of endomorphisms of an indecomposable representation of real type
in (4.4). Proposition 4.5 in [77] makes use of the well-known fact that two quadratic matrices A,B
of the same size with tr

(
Ak
)

= tr
(
Bk
)

for all k ∈ N have the same eigenvalues with the same
algebraic multiplicities (compare to the proof of Proposition 4.8) which is also crucial here. From
the fact that Endnil

Σ (Wi) ⊂ EndΣ (Wi) is an ideal, it follows that the invertible parts of the diagonal
entries in the representation (9.4) are multiplicative when taking powers. More precisely

(
Ψ(L)2

)
j,j

= c2
j1Wj +

2cjNj +
∑
i 6=j

Lj,iLi,j

 ,
where j = 1, . . . ,m. Due to the fact that the nilpotent endomorphisms form an ideal and due to
Proposition 4.9 all terms in the parenthesis are nilpotent and so is their sum. This again relies on the
fact that the Wi are pairwise non-isomorphic. Inductively, we obtain(

Ψ(L)k
)
j,j

= ckj1Wj + Ñk
j
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where k ∈ N and Ñk
j ∈ Endnil

Σ (Wj). Writing

Ψ(L) = D +N =


c11W1 0 . . . 0

0 c21W2

. . . ...
... . . . . . . 0

0 . . . 0 cm1Wm

+


N1 L1,2 . . . L1,m

L2,1 N2
. . . ...

... . . . . . . Lm−1,m

Lm,1 . . . Lm,m−1 Nm

 ,

where 0 ∈ HomΣ(Wj ,Wi) is the trivial equivariant map, we obtain

tr
(

Ψ(L)k
)

= tr
(
Dk
)

for all k ∈ N, since addition of a nilpotent operator does not change the trace. Therefore, the ei-
genvalues and their algebraic multiplicity of Ψ(L) and those of D coincide. The eigenvalues of D,
however, are precisely the entries c1, . . . , cm. As L has the same eigenvalues with equal algebraic
multiplicity as Ψ(L), this completes the proof.

The following lemma shows that the reordering in the previous lemma may be done for all L simul-
taneously.

Lemma 9.5. There exists a reordering of the Wi in equation (9.3) so that we have ci = ci(L) = λτi(L)

for all i ∈ {1, . . . ,m} and for all linear admissible maps L (simultaneously). In particular, the number
of σ ∈ Σ that are loop-type equivalent to τi (i.e. the number of times λτi(L) appears on the diagonal)
equals dimWi.

Proof. We prove this result by going back and forth between the two representations (9.2) and (9.4)
of a single operator L. For i ∈ {1, . . . ,m} we denote by Pi ∈ EndΣ

(⊕
σ∈ΣR

)
the map such that

Ψ(Pi) is the projection onto Wi along the decomposition (9.3). By the equality of the space of linear
admissible maps and the space of endomorphisms of the regular representation, we see that the Pi
are linear network maps. As Pi is a (non-zero) projection operator, it has only eigenvalues 0 and 1,
with 1 appearing at least once. We therefore have λτj (Pi) = 1 for some values of j ∈ {1, . . . ,m},
say for j ∈ Ωi ⊂ {1, . . . ,m}. In particular then, we have λτj (Pi) = 0 for j ∈ {1, . . . ,m} \ Ωi.

Next, it follows from the upper triangular shape that λσ(LL′) = λσ(L)λσ(L′) for all admissible
maps L and L′ and for all σ ∈ Σ. In particular, we see that λτl(Pi)λτl(Pj) = λτl(PiPj) = λτl(0) = 0

for all i, j, l ∈ {1, . . . ,m} with i 6= j. This means that λτl(Pi) and λτl(Pj) cannot be simultaneously
equal to 1, and we conclude that Ωi ∩ Ωj = ∅ whenever i 6= j. To summarize, we have m subsets
(Ωi)

m
i=1 of {1, . . . ,m}, each one is non-empty and they are all pairwise disjoint. Hence, the Ωi are

all one-point sets, and we may reorder the indices in equation (9.3) so that Ωi = {i}. Therefore, we
may relate loop-type to indecomposable representations and Pi has diagonal entries 1 at the (σ, σ)

position if σ is of the loop-type that corresponds to the subrepresentation Wi and 0 in all other
diagonal entries.

Lastly, we use that LPi and Ψ(LPi) = Ψ(L)Ψ(Pi) have the same eigenvalues. Because
λσ(LPi) = λσ(L)λσ(Pi) for all σ ∈ Σ, we see that the eigenvalues of LPi are given by {0, λτi(L)}
(or simply {λτi(L)} if m = 1). On the other hand, as Ψ(Pi) is the projection onto Wi, we see that
the eigenvalues of Ψ(L)Ψ(Pi) are given by {0, ci(L)} (or {ci(L)} for k = 1). Hence, we see that
necessarily λτi(L) = ci(L). As the ci(L) and the λτi(L) both denote the eigenvalues of L, choosing
an operator L such that all the ci(L) are distinct proves that the number of σ ∈ Σ that are loop-type
equivalent to τi (so the number of times λτi(L) appears on the diagonal) equals dimWi (see the
proof of Lemma 9.4).

Recall that we fixed a set of representatives τ1, τ2, . . . , τm ∈ Σ for the loop-types, and suppose
furthermore that the components in (9.3) are ordered as in Lemma 9.5. In other words, we may
assume that ci = ci(L) = λτi(L) for all i ∈ {1, . . . ,m} and for all maps L. As the numbers λτi(L)
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denote the eigenvalues of L, and as the form (9.4) for Ψ(L) implies there are no relations between
the eigenvalues of L, we see that the λτi(L) are necessarily linearly independent. In particular, the
equations λτi(L) = δi,j (the Kronecker delta) for all i ∈ {1, . . . ,m} and for some given j have a
solution (and often more than one). This observation motivates the following theorem.

Theorem 9.6. Fix j ∈ {i, . . . ,m}. Suppose the numbers (bσ)σ∈Σ are such that∑
ττi=τi

bτ = δi,j (9.5)

for all i ∈ {1, . . . ,m}. Setting Rj =
∑

σ∈Σ bσBσ we have that Qj = 1 − (1 − Rnj )n is an equivariant
projection with image isomorphic to Wj , where we abbreviate 1 = 1

⊕
σ∈Σ R ∈ EndΣ

(⊕
σ∈ΣR

)
.

More generally, fix some subset J ⊂ {1, . . . ,m} and assume the numbers (bσ)σ∈Σ are such that∑
ττi=τi

bτ = δi∈J , (9.6)

where δi∈J is a generalization of the Kronecker delta with δi∈J = 1 if i ∈ J and 0 otherwise. Then
setting RJ =

∑
σ∈Σ bσBσ makes QJ = 1− (1−RnJ)n a projection onto

⊕
j∈JWj .

We will need the following lemma.

Lemma 9.7. Let L be a linear fundamental network map for an L-trivial monoid. If L has only zeroes
and ones on its diagonal, then C = 1− (1− Ln)n is a projection with the same diagonal as L.

Proof. AsL has only zeroes and ones on its diagonal, it follows thatL(1−L) has vanishing diagonal.
Therefore, we see that L(1− L) is nilpotent and we get

[L(1− L)]n = Ln(1− L)n = 0,

where n = #Σ = dim
⊕

σ∈ΣR. Another fact that we will need is that

1− Ln = (1− L)(1 + L+ L2 + · · ·+ Ln−1).

Setting R(L) = (1 + L+ L2 + · · ·+ Ln−1) we get

1− Ln = (1− L)R(L) = R(L)(1− L).

Replacing L with (1− Ln), we see that 1− (1− Ln)n is divisible by Ln and we write

1− (1− Ln)n = LnS(L) = S(L)Ln

Using these representations and the commutativity relations, we calculate C − C2:

C − C2 = [1− (1− Ln)n]− [1− (1− Ln)n]2

= [1− (1− Ln)n][1− (1− (1− Ln)n)]

= [1− (1− Ln)n][(1− Ln)n]

= S(L)Ln(1− L)n︸ ︷︷ ︸
=0

R(L)n

= 0.

This shows that C2 = C , so that C = 1− (1− Ln)n is indeed a projection.
To show that L and C have the same diagonal, we write L = D + N for D the diagonal of L

and with N some strictly upper triangular map (i.e. N has a vanishing diagonal). As D consists of
only zeroes and ones, we see that D2 = D and likewise (1 −D)2 = 1 −D. Moreover, any product
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involving N has again a vanishing diagonal. For this reason, we will write N , N1, . . . for any term
with vanishing diagonal. Using this notation we get

1− (1− Ln)n = 1− (1− (D +N)n)n = 1− (1−Dn +N1)n

= 1− (1−D +N1)n = 1− (1−D)n +N2

= 1− (1−D) +N2 = D +N2.

This shows that L and C indeed have the same diagonal D which finishes the proof.

Proof of Theorem 9.6. As the eigenvalues of Rj are exactly given by λτi(Rj) =
∑

ττi=τi
bτ = δi,j

(see (9.1)), we see that Rj has only zeroes and ones on its diagonal. By Lemma 9.7, the map
Qj = 1− (1−Rnj )n is a projection with the same diagonal, so that λτi(Qj) = δi,j . The map Qj is
furthermore equivariant by construction.

Next, we consider Ψ(Qj). By Lemma 9.5, Ψ(Qj) is of the form (9.4) with ci = λτi(Qj) = δi,j
(and with the Ni and Li,j not necessarily vanishing). As Ψ(Qj) is a projection, we know that the
dimension of its image is given by the number of non-zero eigenvalues of Ψ(Qj). Apparently, this
number equals dimWj , as only the cj are non-zero. We conclude that

dim im (Qj) = dimWj . (9.7)

Next, we construct the equivariant map Ξj = Ψ(Qj) ◦ Ij from Wj into the image of Ψ(Qj), where
Ij denotes the inclusion of Wj into

⊕
σ∈ΣR in the decomposition of (9.3). Writing Ψ(Qj) as in (9.4)

with ci = δi,j , we see that Ξj is given by

Ξj(Y ) = (Lj,1Y, . . . , Lj,j−1Y, Y +NjY,L
j,j+1Y, . . . , Lj,kY )T (9.8)

for Y ∈ Wj . Solving the equation Ξj(Y ) = 0 gives Y + NjY = 0, or NjY = −Y . As Nj is nilpotent,
we conclude that Y has to vanish. Therefore Ξj is injective, and so ψ−1Ξj : Wj → im (Qj) is injective
as well. From (9.7) we conclude that indeed Wj

∼= im (Qj).
The generalization, constructing QJ for J ⊂ {1, . . . ,m}, works almost exactly the same.

Once again Ψ(QJ) is of the form (9.4) with cj = 1 for j ∈ J and 0 otherwise. In particular
dim im (QJ) = dim

⊕
j∈JWj as in (9.7). Let IJ be the inclusion of

⊕
j∈JWj into

⊕
σ∈ΣR in the

decomposition of (9.3) and PJ the corresponding projection. Then the map

ΞJ = PJ ◦Ψ(QJ) ◦ IJ :
⊕
j∈J

Wj →
⊕
j∈J

Wj

is of the form

ΞJ =


cj11Wj1

+Nj1 Lj1,j2 . . . Lj1,jk

Lj2,j1 cj21Wj2
+Nj2

. . . ...
... . . . . . . Ljk−1,jk

Ljk,j1 . . . Ljk,jk−1 cjk1Wjk
+Njk


for the labeling J = {j1, . . . , jk} (compare to (9.4)). Once again, the eigenvalues are given by the
values cji for all i ∈ {1, . . . , k}. As ji ∈ J , these eigenvalues are all equal to 1 so that ΞJ and
ψ−1ΞJ :

⊕
j∈JWj → im (QJ) are both injective (more precisely even bijective). As before we con-

clude
⊕

j∈JWj
∼= im (QJ).

Constructing projections In order to obtain a projection onto the indecomposable component Wj

from Theorem 9.6, we need to solve the equations (9.5)∑
ττi=τi

bτ = δi,j
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simultaneously for all i ∈ {1, . . . ,m}. This step, however, can be performed implicitly by directly
constructing linear maps with the ‘correct’ diagonal following an easy algorithm. To this end, we
define Λi = {τ | ττi = τi} = Lτi as the set of those elements appearing in the sum in (9.5). Equiva-
lently, Λi denotes those types of arrows that form a loop from a node to itself, for any node with the
same loop-type as τi. Note that all Λi contain the identity element Id.

For any σ ∈ Σ not equal to Id, we define the operator

Dσ = BId −Bσ . (9.9)

Note that by construction we have

λτi(Dσ) =

{
1 if σ /∈ Λi

0 if σ ∈ Λi
(9.10)

as in (9.1). Likewise, we have

λτi(Bσ) =

{
0 if σ /∈ Λi

1 if σ ∈ Λi.
(9.11)

Therefore, we may simply set
Rj =

∏
σ∈Λj

Bσ
∏
τ /∈Λj

Dτ , (9.12)

where the product is taken in any order. It follows that

λτi(Rj) =
∏
σ∈Λj

λτi(Bσ)
∏
τ /∈Λj

λτi(Dτ ) , (9.13)

which equals 1 precisely when any σ in Λj is also in Λi and when any σ not in Λj is also not in Λi. In
other words, precisely when Λi = Λj , and so when i = j. This shows that the ‘pre-projections’ Rj
can indeed be constructed explicitly.

For the generalization to a projection onto
⊕

j∈JWj for an arbitrary subset J ⊂ {1, . . . ,m} note
that solving (9.6) simultaneously for all i ∈ {1, . . . ,m} is equivalent to solving the equations (9.5)
for all j ∈ J simultaneously for all i ∈ {1, . . . ,m}. Hence, we may define

RJ =
∑
j∈J

Rj

where the Rj are defined as above.

Remark 9.8. The dual notion to L-triviality is called R-triviality. A monoid Θ is R-trivial if the sets
θΘ are different for all θ ∈ Θ. In other words, if for θ, θ′ ∈ Θ we have θΘ = θ′Θ then θ = θ′.
Using classification results from SAITO [94], one can see that the input monoid Σ of a network in
our formalism – not necessarily a fundamental network – is R-trivial if and only if for every two
input maps σ, τ ∈ Σ the connected components of the network with only input maps σ and τ are
the same as the connected components in the network with only input map στ . In contrast to the
feedforward structure for L-trivial monoids, there is, to our knowledge, no easily accessible way of
describing networks with R-trivial monoids of input maps. However, a sufficient condition is that all
the maps in the monoid have a different image, because if σΣ ⊂ τΣ then σ = τκ for some κ ∈ Σ so
im (σ) ⊂ im (τ).

The duality of notions, however, allows us to compute algebraic properties in a similar way. As
a matter of fact, the opposite monoid Σop– with reversed order of multiplication – of an R-trivial
one is L-trivial. Hence, we may compute projections onto indecomposable subrepresentations in a
similar way. The sets Λi need to be determined from Σop. The rest of the construction remains the
same. 4
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Remark 9.9. The problem of decomposing regular representations of monoids – or their monoid
algebras as in Section 4.2 – is open and actively studied in algebraic representation theory (an over-
view can be found in STEINBERG [105]). It turns out, that the algorithm for determining projections
onto indecomposable components presented here can significantly be generalized. As a matter of
fact, for an L-trivial (or R-trivial in the spirit of the previous remark) monoid a similar decomposition
can be derived for regular modules of monoid algebras over any ring for which we know a complete
set of primitive orthogonal idempotents (in particular over any field). This has led to the preprint
NIJHOLT, RINK, and SCHWENKER [82] inspired by a similar result in BERG et al. [18]. We decided not to
include the details here, as full generality (at least as far as we are aware of) in the algebraic setting
is beyond the scope of this thesis. 4
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Chapter 10

Amplified Steady State Bifurcations in
Feedforward Networks

In this chapter, we classify generic 1-parameter steady state bifurcations in feedforward networks.
That is, we consider a network with cells C = {p1, . . . , pN} and input maps Σ = {σ1, . . . , σn} that
satisfies the equivalent definitions in Theorem 8.35. It turns out, that instead of going through the
process of Section 6.1 this classification can effectively be done by explicitly solving the bifurcation
equations for a generic response function without the application of any reduction methods. In par-
ticular, the partial orderE onC induces a partial order of the equations to be solved. This procedure
has the advantage that we compute branching solutions in the original coordinates. In particular,
the distinction of the cells is respected so that we can precisely see how the state of each individual
cell varies in the bifurcation depending on some Taylor coefficients of the response function. We
perform these computations in the case of one-dimensional internal dynamics. The methods intro-
duced in Chapter 7 then show that steady state bifurcations for arbitrary finite-dimensional internal
dynamics exhibit qualitatively the same branching patterns in the sense that the state of every cell
branches with the same asymptotics. The explicit dependence on Taylor coefficients can obviously
not be recovered from the one-dimensional internal dynamics case. These investigations will be
made in Chapter 11. This chapter is Section 4 in our preprint [84].

We begin by recalling the setting of a bifurcation problem. Assuming the labeling of no-
des is according to Remark 8.20, the parameter-dependent dynamics on the total phase space⊕

p∈C V
∼= V N is governed by

ẋ = γf (x, λ) =


f(xσ1(p1), . . . , xσn(p1), λ)

f(xσ1(p2), . . . , xσn(p2), λ)
...

f(xσ1(pN ), . . . , xσn(pN ), λ)

 , (10.1)

where λ ∈ R and γf (x, λ)p depends only on those q ∈ C with q D p.
We aim at investigating generic bifurcations from a fully synchronous steady state. Without

loss of generality, we assume this to be the origin and the bifurcation to occur for λ = 0. Hence, we
assume

γf (0, 0) = 0,

which implies f(0, 0) = 0.
As before, a steady state bifurcation can only occur if the linearization Dxγf (0, 0) is non-

invertible. As the inputs of f are labeled by the elements σ ∈ Σ, we may define

aσ = ∂σf(0, 0),

which is an arbitrary linear map on V , i.e. aσ ∈ gl(V ). Furthermore, recall the definition

Lp = {σ ∈ Σ | σ(p) = p}
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as in Definition 8.16. Then p and q are of the same loop-type, p � q, if and only if Lp = Lq . We
compute the linearization to be the block-triangular matrix

Dxγf (0, 0) =



∑
σ∈Lp1

aσ • . . . •

0
∑

σ∈Lp2
aσ

. . . ...
... . . . . . . •
0 . . . 0

∑
σ∈LpN

aσ

 . (10.2)

Hence,Dxγf (0, 0) is non-invertible, if and only if there is a node p ∈ C such that 0 ∈ spec(
∑

σ∈Lp aσ).
Note that

∑
σ∈Lp aσ =

∑
σ∈Lq aσ , if p � q. Thus, 0 ∈ spec(

∑
σ∈Lp aσ) for all p � p. We call

these nodes critical. Furthermore, as aσ ∈ gl(V ) arbitrary, generically
∑

σ∈Lp aσ does not have an
eigenvalue 0 if p is not of the same loop-type as p. Hence, we call the loop-type of p critical and all
other loop-types non-critical.

Remark 10.1. In the tensor notation from Proposition 7.2 this linear map has the form

Dxγf (0, 0) =
∑
σ∈Σ

Bσ ⊗ aσ,

Here the maps Bσ are the upper triangular adjacency matrices in the case V = R. However, as we
are only interested in the diagonal elements, the non-tensor notation is more convenient. 4

The steady state bifurcation problem is to find solutions to

γf (x, λ) = 0 (10.3)

locally around (0, 0) ∈
⊕

p∈C V × R for a generic f satisfying the bifurcation assumptions (B)

(B.i) f(0, 0) = 0;

(B.ii) there exists p ∈ C such that 0 ∈ spec(
∑

σ∈Lp aσ).

Lemma 10.2. Maximal cells are either all critical or all non-critical.

Proof. This follows from the fact that every maximal cell p is fixed by the entire monoid, i.e. Lp = Σ

– compare to Lemma 8.21 and Corollary 8.22.

Hence, when the maximal cells are critical all non-maximal cells may be assumed not to be and vice
versa when a non-maximal cell is critical all maximal cells may be assumed not to be.

We explicitly compute the generic steady state bifurcation behavior in individual cells in the
case of one-dimensional internal dynamics, that is V = R. The results and their proofs are rather
notation heavy. However, the branching solutions can be summarized informally as follows:

(i) Maximal cells evolve asymptotically as∼ λ if they are non-critical and as∼ ±
√
λ otherwise.

(ii) Non-critical cells are, up to lowest order, linear in their inputs. Hence up to lowest order they
have the same asymptotics as the lowest possible order of their inputs.

(iii) Critical cells are, up to lowest order, the square root of their lowest order inputs. We refer to
this phenomenon as amplification.

These results follow from an inductive investigation of the bifurcations in individual cells with re-
spect toE. We have to carefully distinguish when a bifurcation occurs for positive or negative values
of λ. Furthermore, taking square roots of inputs is only possible if the signs of inputs are suitable.
This results in restrictions on system parameters, i.e. Taylor coefficients or partial derivatives of the
governing function f .
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The key part in the computations in this chapter is the fact that for an arbitrary cell p ∈ C the
function γf (x, λ)p = f(xσ1(p), . . . , xσn(p), λ) depends only on those q ∈ C with q D p. Together with
the bifurcation assumptions (B) this allows us to Taylor expand the governing function as

0 = f(xσ1(p), . . . , xσn(p), λ) =
∑

σ,τ∈Lp

fστx
2
p +

∑
σ∈Lp

aσxp +
∑
σ∈Lp

fσλλxp

+
∑

pCq=τ(p) :
τ /∈Lp

aτxq + `λ+
∑

pCq=τ(p) :
τ /∈Lp

fτλλxq

+ 2
∑
σ∈Lp
τ /∈Lp :
pCq=τ(p)

fστxpxq +
∑

σ,τ /∈Lp
pCq,s=σ(p),τ(p)

fστxqxs + fλλλ
2

+O
(
‖((xq | q D p), λ)‖3

)
.

(10.4)

The constants fστ , fτλ, `, and fλλ are defined to be partial derivatives of f in directions labeled by
the input functions σ ∈ Σ, similar to the aσ before, or by the parameter λ:

fστ =
1

2
∂στf(0, 0) (hence fστ = fτσ), ` = ∂λf(0, 0),

fτλ = ∂τλf(0, 0) = ∂λτf(0, 0), fλλ =
1

2
∂λλf(0, 0).

Note that in the case V = R all these constants are real numbers and especially (B.ii) becomes∑
σ∈Lp aσ = 0 for a critical cell p.

It turns out that inductively solving (10.4) results in significantly different solutions depending on
the two possible cases presented in Lemma 10.2 – either the maximal cells are critical or not. Even
though the computations follow the general idea outlined above in both cases, it is convenient to
separate the investigations.

Remark 10.3. In Chapter 9 we introduce a method to determine all possible (generic) center subspa-
ces for the bifurcation problem in the fundamental network. However, it turns out that the form
of the equations (10.4) together with the partial order E are sufficient to determine generic steady
state bifurcations for a (not necessarily fundamental) feedforward network with one-dimensional
internal dynamics. This has the additional advantage that the bifurcation behavior of each indi-
vidual cell can be determined as outlined above. The hidden symmetries from the fundamental
network in turn explain much of the underlying mechanisms, even if we do not use them explicitly
here. Moreover, more complicated bifurcation problems may be investigated using the hidden sym-
metry formalism, such as pertaining to Hopf bifurcations, connecting orbits, multiple bifurcation
parameters and higher dimensional internal dynamics. 4

10.1 Maximal cells are critical

We start with the simpler case by assuming the maximal cells to be critical. From Lemma 10.2 we
know that this is equivalent to

∑
σ∈Σ aσ = 0 and to all non-maximal cells not being critical generi-

cally. This greatly simplifies the computations as there are fewer cases to take care of. Furthermore,
the bifurcation condition (B.ii) is equivalent to∑

σ∈Lp

aσ = −
∑
τ /∈Lp

aτ (10.5)

for every cell p ∈ C , which is a useful identity. We start by computing the bifurcation behavior of
(10.4) for maximal cells, where we detect a saddle node bifurcation. Then we proceed inductively
with respect toE to all non-maximal cells, whose state variables mimic the bifurcation behavior of
their inputs.
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Lemma 10.4. Let p ∈ C be maximal. The state variable xp generically bifurcates as in one of the
following two cases:

(i)
xp(λ) = D±p ·

√
λ+O(|λ|)

for λ > 0 small, if
`∑

σ,τ∈Σ fστ
< 0.

Here

D±p = ±
√
− `∑

σ,τ∈Σ fστ
6= 0.

(ii)
xp(λ) = D±p ·

√
−λ+O(|λ|)

for λ < 0 small, if
`∑

σ,τ∈Σ fστ
> 0.

Here

D±p = ±
√

`∑
σ,τ∈Σ fστ

6= 0.

The bifurcating solutions are the same for all maximal cells.

Proof. As a maximal cell p only receives inputs from itself (see Lemma 8.21), the equations to be
solved (10.4) only depend on the state variable of that specific cell. Hence, the bifurcation behavior
is exactly the same for all maximal cells. As

∑
σ∈Σ aσ = 0 it becomes

0 =
∑
σ,τ∈Σ

fστx
2
p + `λ+O(|λ|2 + |xp|3 + |xp||λ|). (10.6)

In both cases of the lemma we employ the standard method to detect saddle node bifurcations (see
for example MURDOCK [75]). Assume `/

∑
σ,τ∈Σ fστ < 0. We introduce a new variable xp = µy where

µ =
√
λ for small λ > 0, hence µ > 0. Equation (10.6) transforms into

0 =
∑
σ,τ∈Σ

fστµ
2y2 + `µ2 +O(|µ|4 + |µ|3|y|).

As µ > 0, we may divide by µ2 and obtain

0 =
∑
σ,τ∈Σ

fστy
2 + `+O(|µ|2 + |µ||y|) = g(y, µ).

For µ = 0 this is equation is solved by

y± = ±
√
− `∑

σ,τ∈Σ fστ
.

Furthermore, ∂
∂yg(y±, 0) = 2

∑
σ,τ∈Σ fστy

±, which, generically, does not equal 0. Hence, by the
implicit function theorem, we obtain two branches of solutions

Y
±

(µ) = y± +O(|µ|).
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Transforming back into the original variables we obtain two branches

xp(λ) = ±
√
− `∑

σ,τ∈Σ fστ
·
√
λ+O(|λ|)

for small λ > 0, which completes the proof for the first case.
The case `/

∑
σ,τ∈Σ fστ < 0 is very similar. We introduce xp = µy with µ =

√
−λ for λ < 0 with

small absolute value. The equation to be solved becomes

0 =
∑
σ,τ∈Σ

fστy
2 − `+O(|µ|2 + |µ||y|) = g(y, µ),

where we have divided by µ2 again. For µ = 0 this has two solutions

y± = ±
√

`∑
σ,τ∈Σ fστ

and ∂
∂yg(y±, 0) = 2

∑
σ,τ∈Σ fστy

± 6= 0 generically. Once more we obtain two branches of solutions

Y
±

(µ) = y± +O(|µ|)

by the implicit function theorem. Transforming back into the original coordinates, we obtain

xp(λ) = ±
√

`∑
σ,τ∈Σ fστ

·
√
−λ+O(|λ|)

for λ < 0 with small absolute value, which completes the proof.

Remark 10.5. (i) The critical maximal cells simultaneously undergo a saddle node bifurcation,
that is two steady state branches exist for either only positive or only negative values of λ.
The sign of λ for which branching solutions occur is the same for all maximal cells. We refer
to the former as the supercritical and to the latter as the subcritical case. Note that a generic
response function f satisfying the bifurcation conditions (B) always fulfills one of the two
assumptions from the previous lemma, as generically `,

∑
σ,τ∈Σ fστ 6= 0. However, we see

that the generic bifurcation behavior is different in different regions of system parameter
space, i.e. the space of partial derivatives of f .

(ii) Note, furthermore, that in both cases the equations for maximal cells are completely uncou-
pled. Hence, for a specific branch of solutions not all maximal cells need to evolve according to
the same branch. In particular the choice of sign inD±p may differ in different maximal cells. As
a result, globally, when restricting only to maximal cells, we obtain 2m branches of solutions
where m is the number of maximal cells. 4

For the non-maximal cells, we proceed inductively. We assume to know a specific branching
pattern for all cells above a given cell p and compute the solutions for that cell. Hence, we need to
distinguish between the super- and subcritical cases.

Lemma 10.6 (supercritical case). Let p be non-maximal. Assume for all q B p

xq(λ) = dq ·
√
λ+O(|λ|)

for small λ > 0 and some dq ∈ R \ {0}. Then

xp(λ) = Dp ·
√
λ+O(|λ|)

for small λ > 0, where

Dp = −
∑

τ /∈Lp aτdτ(p)∑
σ∈Lp aσ

=

∑
τ /∈Lp aτdτ(p)∑
τ /∈Lp aτ

6= 0.
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Proof. As the maximal cells are critical and p is non-maximal, p is non-critical. Using the assumption
on all q B p, (10.4) becomes

0 =
∑
σ∈Lp

aσxp +
∑

pCq=τ(p) :
τ /∈Lp

aτdq
√
λ+O

(
|xp|2 + |λ|+ |xp| ·

√
|λ|
)
.

Since p is non-critical,
∑

σ∈Lp aσ 6= 0. Thus, by the implicit function theorem, we obtain that this
equation is uniquely solved by

xp(λ) = −
∑

τ 6∈Lp aτdτ(p)∑
σ∈Lp aσ

·
√
λ+O (|λ|) .

The second representation of the coefficient follows from (10.5) which completes the proof.

Lemma 10.7 (subcritical case). Let p be non-maximal. Assume for all q B p

xq(λ) = dq ·
√
−λ+O(|λ|)

for small λ < 0 and some dq ∈ R \ {0}. Then

xp(λ) = Dp ·
√
−λ+O(|λ|)

for small λ < 0, where

Dp = −
∑

τ 6∈Lp aτdτ(p)∑
σ∈Lp aσ

=

∑
τ /∈Lp aτdτ(p)∑
τ /∈Lp aτ

6= 0.

Proof. The proof is completely analogous to the previous one.

The maximal cells simultaneously determine whether a bifurcation in the entire network occurs
super- or subcritically. The non-maximal cells have no further influence, as we have seen in the pre-
vious two lemmas. We may, therefore, perform an inductive proof with respect to E, summarizing
Lemmas 10.4, 10.6 and 10.7, to obtain

Theorem 10.8. Under the bifurcation assumption (B) and assuming the maximal cells in C to be criti-
cal, the state variables xp bifurcate according to one of the following two cases.

(i) (supercritical)

xp(λ) = Dp ·
√
λ+O(|λ|) for small λ > 0, if

`∑
σ,τ∈Σ fστ

< 0;

(ii) (subcritical)

xp(λ) = Dp ·
√
−λ+O(|λ|) for small λ < 0, if

`∑
σ,τ∈Σ fστ

> 0.

Therein the coefficients Dp generically do not vanish. They are defined recursively. For p maximal they
are

(i) (supercritical)

Dp ∈

{
+

√
− `∑

σ,τ∈Σ fστ
,−
√
− `∑

σ,τ∈Σ fστ

}
;

(ii) (subcritical)

Dp ∈

{
+

√
`∑

σ,τ∈Σ fστ
,−
√

`∑
σ,τ∈Σ fστ

}
.
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The remaining ones are defined via

Dp = −
∑

τ /∈Lp aτDτ(p)∑
σ∈Lp aσ

=

∑
τ /∈Lp aτDτ(p)∑

τ /∈Lp aτ
.

Globally, there are 2m, with m = #{p ∈ C | p maximal}, different branches of steady states in both
cases that are determined by the choices of Dp for p maximal.

The branching solutions in Theorem 10.8 are the same as the ones described in Proposition 5.1 in
SOARES [99] for layered feedforward networks (compare to Remark 8.37) and in Proposition 5.7 of
AGUIAR, DIAS, and SOARES [12] investigating feedforward structure of transitive components. Here
we extend these results by the explicit computation of the lowest order coefficients.

Remark 10.9. Note that by restriction to the invariant fully synchronous subspace, we obtain a fully
synchronous saddle node bifurcation similar to the proof of Lemma 10.4. This will be made more
precise in the case of non-critical maximal cells (see Lemma 10.17 in Section 10.2) where it is of great
importance. Hence, two of the branching solutions provided by Theorem 10.8 necessarily describe
this branch. It can easily be seen from the recursive formulas using (10.5) that these are exactly the
ones where the coefficients of all maximal cells have the same sign. This is also to be expected, as in
all other cases not even the maximal cells are synchronous. 4

Remark 10.10. The results of Theorem 10.8 are only accurate if none of the Dp vanish. This can be
seen to be true generically. The system parameter ` does not vanish generically. Hence, Dp 6= 0 for
pmaximal. In particular, the coefficients of the fully synchronous branching solutions do not vanish
generically. Hence, consider a branch for which the coefficients Dp for p maximal have different
signs. From the inductive formulas in both cases, we see that the coefficient Dp for a non-maximal
cell p is a fraction with denominator a finite product of terms

∑
σ/∈Lq aσ timesDp for pmaximal and

nominator a polynomial in the aσ . Hence, it suffices to show that the nominator does not identically
vanish for all values of the aσ . To that end recall from Corollary 8.24 that there is an input map
κ ∈ Σ such that κ(p) is maximal for all p ∈ C . Let aId = −1, aκ = 1 and all the other aσ = 0.
Then

∑
σ∈Σ aσ = 0 so that this is a suitable choice of coefficients for critical maximal cells. Note that

Id ∈ Lp for all p ∈ C so that aId is not a part of any of the terms in the recursive formula (in its second
formulation). For p non-maximal κ /∈ Lp and we compute Dp = Dκ(p) 6= 0 as κ(p) is maximal. That
means the coefficients do not vanish identically for all choices of aσ which implies that they do not
vanish for a generic choice. This observation holds true independent of the direction of branching –
i.e. it holds for super- and subcritical bifurcations. 4

10.2 Maximal cells are non-critical

Next, we assume that the maximal cells are non-critical. In particular,
∑

σ∈Σ aσ 6= 0 under the con-
dition of genericity. The general strategy for finding branching solutions remains the same as in the
previous part. We solve (10.4) for a given cell p assuming knowledge of its inputs. However, the
considerations, especially for non-maximal cells, become more involved, as we have to distinguish
whether a cell is critical in each step. Inductively, this provides all possible solutions for all cells. As
a result of the multitude of different cases, the explicit bifurcation patterns – governed by simulta-
neous solutions of (10.4) for all cells – become a lot more complex than in the previous case. Once
again, we have to distinguish branching solutions that exist for positive and negative values of the
bifurcation parameter λ. We refer to these cases as super- and subcritical, as before. The result for
the subcritical case, however, can be obtained as a corollary from the supercritical case, as we see in
Theorem 10.21.
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10.2.1 Solving Equation (10.4)

We begin by solving (10.4) in different settings: first for maximal cells, then for non-maximal cells
under specific assumptions on the branching solutions for cells above with respect toE. This allows
to set up the inductive proof of the bifurcation result for the entire network.

Lemma 10.11. Let p ∈ C be maximal. Equation (10.4) generically has a unique solution

xp(λ) = Dpλ+O(|λ|2)

for |λ| small with

Dp = − `∑
σ∈Σ aσ

6= 0.

Proof. Equation (10.4) becomes

0 =
∑
σ∈Σ

aσxp + `λ+O(|xp|2 + |xp||λ|+ |λ|2).

The implicit function theorem yields a unique branch of steady states with

xp(λ) = − `∑
σ∈Σ aσ

λ+O(|λ|2),

for small absolute values of λ, since
∑

σ∈Σ aσ 6= 0. Note that ` 6= 0 generically as well which comple-
tes the proof.

Remark 10.12. The non-critical maximal cells do not undergo a bifurcation. The steady state solu-
tion to their respective ordinary differential equation persists for all parameter values close to zero
depending smoothly on λ. This holds true simultaneously for all maximal cells. 4

Similar to Section 10.1, we investigate the non-maximal cells inductively. We focus on λ ≥ 0 and
assume the following input scenarios for a fixed non-maximal cell p ∈ C as a hypothesis:

(H) For all q B p and small λ > 0 the state variable evolves as

xq(λ) = dq · λ2−ξq +O
(
|λ|2

−(ξq−1)
)
,

where dq ∈ R \ {0} and the ξq are integers with 0 ≤ ξq that define the square root order of the
branching solution of cell q.

Under the assumption (H) we define
ξp = max

qBp
ξq, (10.7)

to be the largest square root order of inputs into cell p. Then, ξp = 0 if and only if all inputs into cell
p evolve linearly in λ up to lowest order. To further simplify we denote the set of cells q B p which
are of highest possible square root order in λ by Qp. That is

Qp =
{
q B p

∣∣∣ xq(λ) = dq · λ2−ξp +O
(
|λ|2

−(ξp−1)
)}

. (10.8)

In the case ξp = 0 all state variables xq for q B p evolve linearly in λ up to lowest order. Hence,
Qp = {q B p}. Note that ξp and Qp are only defined for p non-maximal.

The case ξp = 0 has to be treated slightly differently than the others. More precisely, we need to
distinguish two cases

(L) ∑
τ 6∈Lp

aτdτ(p) + ` 6= 0,
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(T) ∑
τ 6∈Lp

aτdτ(p) + ` = 0.

In all other cases – i.e. for ξp > 0 – we formulate the following non-degeneracy condition:

(SN) ∑
τ : τ(p)∈Qp

aτdτ(p) 6= 0.

The conditions (L) and (T) in the case ξp = 0 and (SN) in all other cases describe whether the lowest
order terms in λ in (10.4) vanish. We will see later (Theorem 10.20) that we may focus on (L) for non-
critical cells with ξp = 0. On the other hand, the seemingly non-generic condition (T) turns out to be
generically satisfied, for critical cells with ξp = 0. Furthermore, (SN) can generically be assumed to
be true, when ξp > 0.

Under the given assumptions, we prove statements providing branching solutions to (10.4) for
non-maximal cells. We start with the case that p non-maximal is non-critical.

Lemma 10.13. Let p ∈ C be non-maximal and non-critical. Under assumption (H) with additional
assumption (L) or (SN), if ξp = 0 or ξp > 0 respectively, (10.4) has the unique solution

xp(λ) = dp · λ2−ξp +O
(
|λ|2

−(ξp−1)
)

for λ > 0 small, where dp 6= 0 and

dp =


−
∑

τ /∈Lp aτdτ(p) + `∑
σ∈Lp aσ

, if ξp = 0;

−
∑

τ : τ(p)∈Qp aτdτ(p)∑
σ∈Lp aσ

, if ξp > 0.

Proof. The proofs for both cases are very similar and analogous to the proofs for Lemmas 10.6
and 10.7. Hence, we only sketch them here. We assume (H), ξp = 0, and (L) first. Equation (10.4)
becomes

0 =
∑
σ∈Lp

aσxp +
∑

pCq=τ(p) :
τ /∈Lp

aτdqλ+ `λ+O
(
|xp|2 + |λ||xp|+ |λ|2

)
.

As
∑

σ∈Lp aσ 6= 0 this is uniquely solved by

xp(λ) = −
∑

τ /∈Lp aτdτ(p) + `∑
σ∈Lp aσ

· λ+O
(
|λ|2
)

for small λ > 0, due to the implicit function theorem. Note that, because of assumption (L), the
linear coefficient does not vanish.

Next, assume (H), ξp > 0, and (SN). Equation (10.4) becomes

0 =
∑
σ∈Lp

aσxp +
∑
τ /∈Lp :

τ(p)=q∈Qp

aτdqλ
2−ξp +O

(
|xp|2 + |λ|2

−ξp |xp|+ |λ|2
−(ξp−1)

)
.

By the same argument as before, this is uniquely solved by

xp(λ) = −
∑

τ : τ(p)∈Qp aτdτ(p)∑
σ∈Lp aσ

· λ2−ξp +O
(
|λ|2

−(ξp−1)
)

for small λ > 0 with non-vanishing lowest order coefficient.
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The corresponding result for critical non-maximal cells is proved in multiple lemmas. We distin-
guish between the cases (L), (T) and (SN) for corresponding values of ξp.

Lemma 10.14. Let p ∈ C be non-maximal and critical. Assume (H) to hold true. Furthermore, assume
ξp = 0 and the additional assumption (L) to hold true as well. The solutions to (10.4) generically bifur-
cate as in one of the following two cases:

(i) If ∑
τ /∈Lp aτdτ(p) + `∑

σ,τ∈Lp fστ
> 0,

there are no branching solutions.

(ii) If ∑
τ /∈Lp aτdτ(p) + `∑

σ,τ∈Lp fστ
< 0,

the solutions undergo a saddle node bifurcation

xp(λ) = d±p ·
√
λ+O (|λ|)

for λ > 0 small, where

d±p = ±

√√√√−∑τ /∈Lp aτdτ(p) + `∑
σ,τ∈Lp fστ

6= 0.

Proof. The proof is analogous to the one for Lemma 10.4, except for slightly varied coefficients. Once
again it uses the standard technique for detecting saddle node bifurcations as in MURDOCK [75]. As
ξp = 0, (10.4) becomes

0 =
∑

σ,τ∈Lp

fστx
2
p +

∑
τ 6∈Lp

pCq=τ(p)

aτdqλ+ `λ+O
(
|xp|3 + |λ||xp|+ |λ|2

)
.

We introduce a new variable xp = µy where µ =
√
λ for small λ > 0. The equation to be solved

transforms into

0 =
∑

σ,τ∈Lp

fστµ
2y2 +

∑
τ 6∈Lp

aτdτ(p)µ
2 + `µ2 +O

(
|µ|3|y|+ |µ|4

)
.

As µ > 0, we may divide by µ2 and obtain

0 =
∑

σ,τ∈Lp

fστy
2 +

∑
τ 6∈Lp

aτdτ(p) + `+O
(
|µ||y|+ |µ|2

)
= g(y, µ).

If
(∑

τ /∈Lp aτdτ(p) + `
)
/
∑

σ,τ∈Lp fστ > 0, the equation g(y, 0) = 0 has no real solutions. If, on the

other hand,
(∑

τ /∈Lp aτdτ(p) + `
)
/
∑

σ,τ∈Lp fστ < 0, there are two solutions to g(y, 0) = 0

y± = ±

√√√√−∑τ 6∈Lp aτdτ(p) + `∑
σ,τ∈Lp fστ

.

Furthermore, ∂
∂yg(y±, 0) = 2

∑
σ,τ∈Lp fστy

±, which does not vanish, due to assumption (L). Hence,
by the implicit function theorem, we obtain two branches of solutions

Y
±

(µ) = y± +O(|µ|).
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Transforming back into the original variables, we obtain the two branches

xp(λ) = ±

√√√√−∑τ 6∈Lp aτdτ(p) + `∑
σ,τ∈Lp fστ

√
λ+O(|λ|)

for small λ > 0.

In order to formulate the corresponding result in the case (T), we refine the hypothesis (H) only
in the case ξp = 0 to be

(H) For all q B p and small λ > 0 the state variable evolves as

xq(λ) = dq · λ+Rq · λ2 +O
(
|λ|3
)
,

where dq, Rq ∈ R and dq 6= 0.

The only difference is the specification of the second order coefficient Rq , which is not needed for
the computations whenever ξp > 0.

Lemma 10.15. Let p ∈ C be non-maximal and critical. Assume the induction assumption (H) to hold
true. Furthermore, assume ξp = 0 and the additional assumption (T) to hold true as well. Define

A =
∑

σ,τ∈Lp

fστ ,

B =
∑
σ∈Lp

fσλ + 2
∑

σ∈Lp,τ /∈Lp

fστdτ(p),

C =
∑
τ /∈Lp

aτRτ(p) +
∑
τ /∈Lp

fτλdτ(p) +
∑

σ,τ /∈Lp

fστdσ(p)dτ(p) + fλλ.

The solutions to (10.4) generically bifurcate as in one of the following two cases:

(i) If
B2 − 4AC < 0,

there are no branching solutions.

(ii) If
B2 − 4AC > 0,

the solutions undergo a transcritical bifurcation

xp(λ) = d±p λ+O
(
|λ|2
)
,

for λ > 0 small, where

d±p =
−B ±

√
B2 − 4AC

2A
6= 0.

Proof. Under the assumptions (10.4) becomes

0 =
∑

σ,τ∈Lp

fστx
2
p +

∑
σ∈Lp

fσλλxp +
∑
τ 6∈Lp

pCq=τ(p)

aτdqλ+ `λ

︸ ︷︷ ︸
=0

+
∑
τ 6∈Lp

pCq=τ(p)

aτRqλ
2

+
∑
τ 6∈Lp

pCq=τ(p)

fτλdqλ
2 + 2

∑
σ∈Lp
τ /∈Lp :
pCq=τ(p)

fστdqλxp +
∑

σ,τ /∈Lp
pCq,s=σ(p),τ(p)

fστdqdsλ
2 + fλλλ

2

+O
(
|xp|3 + |xp|2|λ|+ |xp||λ|2 + |λ|3

)
= Ax2

p +Bλxp + Cλ2 +O
(
|xp|3 + |xp|2|λ|+ |xp||λ|2 + |λ|3

)
.
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Similar to the previous proofs, we employ the standard method to detect transcritical bifurcations
(see for example MURDOCK [75]) by introducing a new variable xp = λy. The equation becomes

0 = Aλ2y2 +Bλ2y + Cλ2 +O
(
|y||λ|3 + |λ|3

)
= λ2

(
Ay2 +By + C +O (|y||λ|+ |λ|)

)
= λ2g(y, λ).

Note that the coefficients A,B and C are composed of the second order partial derivatives of f .
Hence, generically A,B2 − 4AC 6= 0. If B2 − 4AC < 0 there are no solutions to g(y, 0) = 0 – this
proves the first case. If, on the other hand, B2 − 4AC > 0 we obtain two solutions:

y± =
−B ±

√
B2 − 4AC

2A
.

Furthermore, ∂
∂yg(y±, 0) = 2Ay± + B which, generically, does not vanish. Hence, by the implicit

function theorem, we obtain two branches of solutions

Y
±

(λ) = y± +O(|λ|)

for small λ > 0. Transforming back into the original coordinates, we obtain

xp(λ) =
−B ±

√
B2 − 4AC

2A
· λ+O

(
|λ|2
)
,

which completes the proof.

Finally, we turn to the branching solutions for critical cells p with ξp > 0 with the additional
non-degenericity condition (SN).

Lemma 10.16. Let p ∈ C be non-maximal and critical. Assume the induction hypothesis (H) to hold
true. Furthermore, assume ξp > 0 and the additional non-degenericity condition (SN) to hold true as
well. The solutions to (10.4) generically bifurcate as in one of the following two cases:

(i) If ∑
τ : τ(p)∈Qp aτdτ(p)∑

σ,τ∈Lp fστ
> 0,

there are no branching solutions.

(ii) If ∑
τ : τ(p)∈Qp aτdτ(p)∑

σ,τ∈Lp fστ
< 0,

the solutions undergo a saddle node bifurcation as

xp(λ) = d±p · λ2−(ξp+1)

+O
(
|λ|2

−ξp
)
,

for λ > 0 small, where

d±p = ±

√√√√−∑τ : τ(p)∈Qp aτdτ(p)∑
σ,τ∈Lp fστ

6= 0.

Proof. Under the given assumptions (10.4) becomes

0 =
∑

σ,τ∈Lp

fστx
2
p +

∑
τ /∈Lp

τ(p)=q∈Qp

aτdqλ
2−ξp +O

(
|xp|3 + |xp||λ|2

−ξp
+ |λ|2

−(ξp−1)
)
.

152



Similar to previous proofs, we introduce new coordinates xp = µy, where µ =
√
λ2−ξp = λ2−(ξp+1)

for small λ > 0. The equation becomes

0 =
∑

σ,τ∈Lp

fστµ
2y2 +

∑
τ /∈Lp

τ(p)=q∈Qp

aτdqµ
2 +O

(
|y||µ|3 + |µ|4

)
.

As µ > 0, we may divide by µ2 to obtain

0 =
∑

σ,τ∈Lp

fστy
2 +

∑
τ /∈Lp

τ(p)=q∈Qp

aτdq +O
(
|y||µ|+ |µ|2

)
= g(y, µ).

If
(∑

τ : τ(p)∈Qp aτdτ(p)

)
/
∑

σ,τ∈Lp fστ > 0 there are no solutions to g(y, 0) = 0 – this proves the

first case. If, on the other hand,
(∑

τ : τ(p)∈Qp aτdτ(p)

)
/
∑

σ,τ∈Lp fστ < 0, there are two solutions to
g(y, 0) = 0, as

∑
σ,τ∈Lp fστ 6= 0 generically:

y± = ±

√√√√−∑τ : τ(p)∈Qp aτdτ(p)∑
σ,τ∈Lp fστ

.

Furthermore, ∂
∂yg(y±, 0) = 2

∑
σ,τ∈Lp fστy

±, which, by the same argument, generically does not
vanish. Hence, by the implicit function theorem, we obtain two branches of solutions

Y
±

(µ) = y± +O(|µ|).

Transforming back into the original coordinates, we obtain

xp(λ) = ±

√√√√−∑τ : τ(p)∈Qp aτdτ(p)∑
σ,τ∈Lp fστ

· λ2−(ξp+1)

+O
(
|λ|2

−ξp
)
,

for small λ > 0, which completes the proof.

10.2.2 Branches of steady states for the entire network

We have now collected all the pieces that are needed for the inductive proof of existence – and non-
existence – of branching solutions to the bifurcation problem (B) with non-critical maximal cells.
This, in turn, allows us to describe the complete branching pattern. Some subtleties arise while
investigating which cases from Lemmas 10.11 and 10.13 to 10.16 can generically occur, when (10.4)
is solved for all p ∈ C simultaneously, and in proving that, generically, there are no other possible
solutions. We investigate a specific fully synchronous branch of steady states first.

Lemma 10.17. Under the bifurcation assumption (B) with non-critical maximal cells, there exists a fully
synchronous branch of steady states

xp(λ) = X(λ) = Dλ+Rλ2 +O
(
|λ|3
)

(10.9)

for |λ| small and all p ∈ C . Therein

D = − `∑
σ∈Σ aσ

, (10.10)

R = −
∑

σ,τ∈Σ fστ `
2 −

∑
σ∈Σ aσ

∑
σ∈Σ fσλ`+

(∑
σ∈Σ aσ

)2
fλλ(∑

σ∈Σ aσ
)3 , (10.11)

which generically do not vanish.
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Proof. Consider the fully synchronous subspace ∆0 = {xp1 = . . . = xpN } ⊂
⊕

p∈C R. This can
readily be seen to be invariant under the flow induced by network vector fields of the form (10.1).
Choosing a coordinate y for this subspace, the bifurcation problem becomes the same for all cells
p ∈ C . The Taylor expanded equation (10.4) is

0 =
∑
σ∈Σ

aσy + `λ+O(|y|2 + |y||λ|+ |λ|2).

This is precisely the same equation as the one in the proof of Lemma 10.11. With the same argumen-
tation we obtain a unique branch of solutions

xp(λ) = y(λ) = − `∑
σ∈Σ aσ

λ+O
(
|λ|2
)

for f(y, . . . , y, λ) = 0 with |λ| small. Performing second order implicit derivation – for which we omit
the details –, we compute

y′′(λ) = −2 ·
∑

σ,τ∈Σ fστ `
2 −

∑
σ∈Σ aσ

∑
σ∈Σ fσλ`+

(∑
σ∈Σ aσ

)2
fλλ(∑

σ∈Σ aσ
)3 .

As both derivatives generically do not vanish, this completes the proof.

Furthermore, we need the following technical statements whose proofs consist of technical
computations only. Hence, we prove them as Lemmas B.1 and B.2 in Appendix B.

Lemma 10.18. Let p ∈ C be non-maximal and non-critical. Assume

dq = − `∑
σ∈Σ aσ

,

for all q B p. Then

−
∑

τ /∈Lp aτdτ(p) + `∑
σ∈Lp aσ

= − `∑
σ∈Σ aσ

.

In particular, this computation holds for the coefficient dp in Lemma 10.13 if all q B p bifurcate accor-
ding to the fully synchronous state.

Lemma 10.19. Let p ∈ C be non-maximal and critical. Assume (H) with

dq = − `∑
σ∈Σ aσ

, Rq = −
∑

σ,τ∈Σ fστ `
2 −

∑
σ∈Σ aσ

∑
σ∈Σ fσλ`+

(∑
σ∈Σ aσ

)2
fλλ(∑

σ∈Σ aσ
)3

for all q B p and define

A =
∑

σ,τ∈Lp

fστ ,

B =
∑
σ∈Lp

fσλ + 2
∑

σ∈Lp,τ /∈Lp

fστdτ(p),

C =
∑
τ /∈Lp

aτRτ(p) +
∑
τ /∈Lp

fτλdτ(p) +
∑

σ,τ /∈Lp

fστdσ(p)dτ(p) + fλλ,

E =
∑
σ∈Lp

fσλ − 2 · `∑
σ∈Σ aσ

∑
σ∈Σ
τ∈Lp

fστ .
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Then generically
B2 − 4AC = E2 > 0

and
−B + E

2A
= − `∑

σ∈Σ aσ
,

−B − E
2A

= M

with

M =
`∑

σ∈Σ aσ
·

(
1 + 2

∑
σ∈Lp,τ /∈Lp fστ∑
σ,τ∈Lp fστ

)
−
∑

σ∈Lp fσλ∑
σ,τ∈Lp fστ

.

In particular, these computations hold for the coefficients d±p in Lemma 10.15 if all q B p bifurcate
according to the fully synchronous state.

The main result follows inductively from Lemmas 10.11 and 10.13 to 10.16, by carefully investiga-
ting which cases and assumptions can hold true, if all equations are solved simultaneously. To that
end recall that Ωp,p denotes the set of all paths from p to pwithout any loops (Definition 3.2) and that
a block is a subset of cells B ⊂ C that does not receive any inputs from outside of B, i.e. σ(B) ⊂ B

for all σ ∈ Σ (Definition 3.34).

Theorem 10.20 (Supercritical branches). Under the bifurcation assumption (B) with non-critical max-
imal cells, generically,1 all bifurcating branches of steady states for λ > 0 are as follows: There is a
maximal block B ⊂ C such that the state variable xp for each p ∈ B remains in the fully synchronous
state xp(λ) = X(λ) as in (10.9). Maximality means that there is no block with the same properties
containing B.

The state variables of all p /∈ B bifurcate as

xp(λ) = Dpλ
2−µp +O

(
|λ|2

−(µp−1)
)
,

where Dp 6= 0 and
µp = max

p∈B
max
ω∈Ωp,p

# {q ∈ ω | q critical, q /∈ B} − 1

is the maximal number of critical cells q /∈ B along paths from any cell in B to p.
The branch exists, if and only if∑

τ /∈Lp aτDτ(p) + `∑
σ,τ∈Lp fστ

< 0,

∑
τ : τ(p)∈Qp aτDτ(p)∑

σ,τ∈Lp fστ
< 0

for all critical cells pwith µp = 1 or µp > 1 respectively. Therein,Qp is defined analogous to (10.8) with
ξp replaced by µp.

The Dp are chosen according to the inductive rules:

Dp Case

−
∑

τ /∈Lp aτDτ(p) + `∑
σ∈Lp aσ

p non-critical, µp = 0

−
∑

τ : τ(p)∈Qp aτDτ(p)∑
σ∈Lp aσ

p non-critical, µp > 0

`∑
σ∈Σ aσ

·

(
1 + 2

∑
σ∈Lp,τ /∈Lp fστ∑
σ,τ∈Lp fστ

)
−
∑

σ∈Lp fσλ∑
σ,τ∈Lp fστ

p critical, µp = 0

±

√
−
∑

τ /∈Lp aτDτ(p) + `∑
σ,τ∈Lp fστ

p critical, µp = 1

±

√
−
∑

τ : τ(p)∈Qp aτDτ(p)∑
σ,τ∈Lp fστ

p critical, µp > 1

1i.e. for an open and dense subset of system parameters {aσ, fστ , fσλ, `, fλλ | σ, τ ∈ Σ}
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Proof. First, let us note that the fully synchronous branch of steady states (see Lemma 10.17) is cove-
red by the statement of the theorem for λ > 0. In that case B = C , which is obviously a block, and
there are no further cells for which coefficients Dp have to be chosen. Hence, for the remainder of
the proof we may assume B ( C . It consists of two inductive proofs that have overlaps in some of
the computations. The first constructs a block B containing cells that remain in the fully synchro-
nous state. The second iteratively investigates the remaining cells. It shows that the corresponding
state variables bifurcate as stated in the proposition and that, generically, no other branching solu-
tions exist. Throughout the proof, we indicate major steps for cross-referencing. Furthermore, we
refer to cells being ‘above’ or ‘below’ others. This is meant to be understood in the sense of the
partial orderE.

Construction of B For computational reasons we construct a second maximal block B contai-
ning those cells p that branch as

xp(λ) = − `∑
σ∈Σ aσ

λ+O
(
|λ|2
)
.

This implies B ⊂ B but not necessarily that all cells in B branch synchronously, due to the higher
order terms. Eventually, however, we see that the other inclusion holds as well.

Step 1. As was shown in Lemma 10.11, the state variables xp for p maximal have unique solutions.
By Lemma 10.17, this must be the same as in the fully synchronous state – the computation in
Lemma 10.11 for Dp also matches. Hence, the maximal cells are always contained in B and B.

Step 2. We consider a non-maximal cell p ∈ C such that q ∈ B ⊂ B for all q B p. Such a cell exists
due to the finiteness of C and the fact that E is a partial order. There are two possible cases: p can
be critical or non-critical. Let us consider the latter case first. If p is non-critical∑

τ 6∈Lp

aτ 6=
∑
σ∈Σ

aσ

generically. Thus, using τ(p) B p for all τ /∈ Lp, we obtain

∑
τ 6∈Lp

aτDτ(p) = −
∑

τ 6∈Lp aτ∑
σ∈Σ aσ

` 6= −`

and condition (L) is fulfilled. By Lemma 10.13, we know that (10.4) has a unique solution for such p

xp(λ) = Dpλ+O
(
|λ|2
)
.

In Lemma 10.18 we show
Dp = − `∑

σ∈Σ aσ
.

As we assume B to be maximal, we immediately obtain p ∈ B. If, furthermore, p is such that all
cells above p are maximal it receives the same input for all branches. Due to Step 1 the equation
for maximal cells is uniquely solved by the fully synchronous state. Hence, there is no choice of
coefficients Dq for q B p leading to different inputs. As (10.4) has a unique solution for p, we know
that this must be the fully synchronous one as well, i.e. xp(λ) = X(λ). Therefore, p ∈ B in this case.
Inductively, this consideration can be extended to any cell p such that all q B p are non-critical by
repeated application of this first part of Step 2.

Assume now, that p is critical, i.e.
∑

σ∈Lp aσ = 0. Then∑
τ 6∈Lp

aτ =
∑
σ∈Σ

aσ
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which, using τ(p) B p for τ /∈ Lp, yields

∑
τ 6∈Lp

aτDτ(p) = −
∑

σ∈Σ aσ∑
σ∈Σ aσ

` = −`

so that condition (T) is satisfied. As all q B p asymptotically grow as λ, all solutions of (10.4) for p are
described by Lemma 10.15. Furthermore, using the computational results in Lemma 10.19, we are in
the second case described in Lemma 10.15. This tells us that (10.4) generically has two solutions

xp(λ) = D±p λ+O
(
|λ|2
)
. (10.12)

In Lemma 10.19 we show

D+
p = − `∑

σ∈Σ aσ
,

D−p =
`∑

σ∈Σ aσ
·

(
1 + 2

∑
σ∈Lp,τ /∈Lp fστ∑
σ,τ∈Lp fστ

)
−
∑

σ∈Lp fσλ∑
σ,τ∈Lp fστ

.

(10.13)

Generically, these two coefficients are not equal. Hence, choosing the positive sign in (10.12) yields
p ∈ B. The negative sign gives p /∈ B. Once again, if p is such that there are no critical cells above
it, (10.4) is uniquely solved by the fully synchronous branch for all q B p. Hence, there is no choice
of coefficients Dq for which p receives different inputs – (10.4) for p is independent of the solution
branch for the entire network. Therefore, the coefficient D+

p must provide the fully synchronous
branch xp(λ) = X(λ) and we obtain p ∈ B in this case.

Step 3. Next, we consider an arbitrary cell p that has critical cells above it. We assume that q B p

critical implies s ∈ B for all s B q and that all q B p branch as

xq(λ) = Dqλ+O
(
|λ|2
)
, (10.14)

with 
Dq = −

∑
τ /∈Lq aτDτ(q) + `∑

σ∈Lq aσ
for q non-critical,

Dq ∈
{
− `∑

σ∈Σ aσ
, D−q

}
for q critical,

where D−q is as in (10.13). Note that this assumption is valid for q ∈ B maximal as well – then∑
τ /∈Lq aσ = 0. Furthermore, assume q ∈ B, if and only if either q is maximal or s ∈ B for all s B q,

where, additionally, Dq = − `∑
σ∈Σ aσ

, in the case that q is critical. Under these assumptions, we
investigate the branching solutions of xp and whether p ∈ B.

Given the assumptions above, we may partition the cells q B p according to three cases:

(i) q ∈ B,

(ii) q /∈ B critical,

(iii) q /∈ B non-critical.

We split Σ\Lp = L0tL1tL2 according to which of these cases τ(p) falls into for τ /∈ Lp. In particular,
for τ ∈ L0 ∪ L1, we have s ∈ B for all s B τ(p) according to the assumptions. Furthermore, note
that for τ ∈ L2 there exist η /∈ Lτ(p) such that η(τ(p)) /∈ B. Repeating this argument inductively for
η(τ(p)) we eventually reach a critical cell η1(. . . ηk(τ(p))) /∈ B. Thus, setting η = η1 · · · ηk, we may
assume η(τ(p)) /∈ B to be critical – i.e. τ ∈ L2 implies there exists s B τ(p) such that s /∈ B and s is
critical. In particular, this means ητ ∈ L1 so that L1 = ∅ implies L2 = ∅.
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The recursive assumption on the coefficients allows us to expressDq for all q B p in terms of the
coefficients of cells in B – which all equal − `∑

σ∈Σ aσ
– and possibly also of critical cells not in B if

q = τ(p) and τ ∈ L2. In particular, in the latter case we compute

Dq = −
∑

τ /∈Lq aτDτ(q) + `∑
σ∈Lq aσ

= −Aq ·
`∑

σ∈Σ aσ
+

∑
sBq

s critical
s/∈B

Bs
q ·D−s + Cq · `.

Therein the coefficients Aq, Bs
q , Cq are rational expressions in aσ1 , . . . , aσn where the denominator

is a product of terms of the form
∑

σ∈Lq aσ that do not vanish. For q = τ(p) with τ ∈ L0 ∪ L1 we
have that s ∈ B for all s B q so that we may express Dq in terms of the coefficients of cells in B
exclusively.

For the cell p in consideration we then obtain∑
τ /∈Lp

aτDτ(p) = −
∑
τ∈L0

aτ
`∑
σ∈Σ

+
∑
τ∈L1

aτD
−
τ(p)

+
∑
τ∈L2

aτ

−Aτ(p)
`∑

σ∈Σ aσ
+

∑
sBτ(p)
s critical
s/∈B

Bs
τ(p)D

−
s + Cτ(p)`


= −

∑
τ∈L0

aτ +
∑
τ∈L2

aτAτ(p)

 `∑
σ∈Σ aσ

+
∑
τ∈L2

aτCτ(p)`

+
∑
τ∈L1

aτ +
∑
η∈L2

τ(p)Bη(p)

aηB
τ(p)
η(p)

D−τ(p),

(10.15)

where we have used that for η ∈ L2 and s B η(p) critical also s B p and there is τ ∈ L1 such that
τ(p) = s by transitivity ofE. The sum in (10.15) generically equals−` – i.e. condition (T) is fulfilled –,
if and only if

−
(∑

τ∈L0
aτ +

∑
τ∈L2

aτAτ(p)

)∑
σ∈Σ aσ

+
∑
τ∈L2

aτCτ(p) = −1 (10.16)

∑
τ∈L1

aτ +
∑
η∈L2

τ(p)Bη(p)

aηB
τ(p)
η(p)

D−τ(p) = 0,

due to the second order derivatives of f in a term in D−q that does not depend on `. The second
equation is generically fulfilled, only if

∑
τ∈L1

aτ +
∑
η∈L2

τ(p)Bη(p)

aηB
τ(p)
η(p)

 = 0.

As the Bτ(p)
η(p) are rational expressions in aσ1 , . . . , aσn with denominator that generically does not

equal aη , this can only hold true if

aτ +
∑
η∈L2

τ(p)Bη(p)

aηB
τ(p)
η(p) = 0
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for all τ ∈ L1. Using the same argument, this can only be true, if L1 = ∅ which also implies L2 = ∅
as mentioned before.

Assuming this, we obtain from (10.16) that (10.15) generically equals−`, if and only if

−
∑

τ∈L0
aτ∑

σ∈Σ aσ
= −1. (10.17)

For L1 = L2 = ∅we have that L0 = Σ \ Lp. Hence, (10.17) is satisfied if and only if∑
τ /∈Lp

aτ =
∑
σ∈Σ

aσ

which is equivalent to p being critical. Summarizing, under the given assumptions, condition (T) is
fulfilled generically, if and only if p is critical and q ∈ B for all q B p. In all other cases – i.e. when p is
non-critical or when p is critical and there exists q B p such that q /∈ B – condition (L) is fulfilled.

We start the investigation of branching solutions of xp for the case that condition (L) is fulfilled.
If p is non-critical, the setting is the same as in the first part of Step 2. Using Lemma 10.13 we obtain

xp(λ) = Dpλ+O
(
|λ|2
)
,

where

Dp = −
∑

τ /∈Lp aτDτ(p) + `∑
σ∈Lp aσ

.

With a similar argument as before, using Lemma 10.18, we obtain that Dp = − `∑
σ∈Σ aσ

, and there-
fore p ∈ B, generically, if q ∈ B for all q B p, and p /∈ B otherwise.

If p is critical, condition (L) implies the existence of a cell q B p such that q /∈ B. According to the
assumptions, this implies either q critical with Dq = D−q or q non-critical and

Dq = −
∑

τ /∈Lq aτDτ(q) + `∑
σ∈Lq aσ

6= − `∑
σ∈Σ aσ

.

The situation is as in Lemma 10.14. If ∑
τ /∈Lp aτDτ(p) + `∑

σ,τ∈Lp fστ
< 0,

the state variable xp undergoes a saddle node bifurcation as

xp(λ) = D±p ·
√
λ+O (|λ|) ,

where

D±p = ±

√√√√−∑τ /∈Lp aτDτ(p) + `∑
σ,τ∈Lp fστ

,

which generically does not vanish. If, on the other hand,∑
τ /∈Lp aτDτ(p) + `∑

σ,τ∈Lp fστ
> 0,

(10.4) for p has no solutions. In that case, this specific branch for the entire network does not exist.
More precisely, the choices of coefficients Dq for q B p were not admissible for the given system
parameters. Furthermore, note that ∑

τ /∈Lp aτDτ(p) + `∑
σ,τ∈Lp fστ

6= 0
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generically, using the condition (L). Hence, there are no other branching solutions. Moreover, the
lowest order in λ in solution branches that are possible is 2−1. Hence, we obtain p /∈ B implying
p /∈ B if p is critical and there is q B p such that q /∈ B.

Next, we investigate the case that condition (T) is fulfilled. Then p is critical and q ∈ B for all
q B p. The setting is as in the second part of Step 2. That is, from Lemma 10.15 we obtain

xp(λ) = D±p λ+O
(
|λ|2
)

with

D+
p = − `∑

σ∈Σ aσ
,

D−p =
`∑

σ∈Σ aσ
·

(
1 + 2

∑
σ∈Lp,τ /∈Lp fστ∑
σ,τ∈Lp fστ

)
−
∑

σ∈Lp fσλ∑
σ,τ∈Lp fστ

.

(10.18)

Once again, the choice D+
p yields p ∈ B and D−p yields p /∈ B.

Step 4. We may now combine Steps 2 and 3 in order to inductively add cells to B. The maximal cells
all belong to B. Next, assume p non-maximal, with q ∈ B for all q B p. This, in turn, is true for
precisely one choice of coefficients Dq for all q B p, that is Dq = − `∑

σ∈Σ aσ
. If there is one cell above

pwith a different coefficient, we obtain p /∈ B and, in consequence, also p /∈ B. Hence, the only case,
that can provide the fully synchronous solution is q ∈ B for all q B p. If p is non-critical, this follows
immediately from the unique solution with suitable coefficient Dp. If p is critical, this is true for the
suitable choice of the coefficient, i.e. Dp = D+

p . In both cases p ∈ B as well. This inductive process
terminates at critical cells p with q ∈ B for all q B p, for which the coefficient Dp = D−p has been
chosen. Then this inductively filled set of cells has the structure of a block. It remains to be seen,
that after this process has stopped, no cells, lower in the network with respect to E, remain in the
fully synchronous state.

The remaining cells The remainder of the proof is devoted to the investigation of branching
solutions of cells p /∈ B. This is done via induction over µp which describes the maximal number of
critical cells along paths from B to p that are not in B.
Step 5. In Step 4 we have inductively added cells toB starting at the maximal cells. The process ends
at cells such that p /∈ B but q ∈ B for all q B p. In particular, this implies p critical and

xp(λ) = Dpλ+O
(
|λ|2
)

withDp = D−p as in (10.18). As these cells are critical and all their inputs are from insideB, we obtain
µp = 0, which matches the square root order of their branching solution.

So far, we have used the results from Step 3 only to construct the block B as in Step 4. However,
the computations of branching solutions therein apply to all cells p such that q B p critical implies
s ∈ B for all s B q. In particular, they hold for all p /∈ B with µp = 0, if p is non-critical, and µp = 1, if
p is critical – the definition of µp implies that q B p critical implies s ∈ B for all s B q in these cases.
In Step 3 we compute

xp(λ) =


Dpλ+O

(
|λ|2
)

for p non-critical,

D±p
√
λ+O (|λ|) for p critical,

where

Dp = −
∑

τ /∈Lp aτDτ(p) + `∑
σ∈Lp aσ

(
6= − `∑

σ∈Σ aσ

)
,

D±p = ±

√√√√−∑τ /∈Lp aτDτ(p) + `∑
σ,τ∈Lp fστ
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for such cells – this is only true for admissible choices of Dq for all q B p, i.e. choices such that
the square roots are real. These coefficients can be computed iteratively for non-critical cells p with
the above properties until we reach a critical cell. For a critical cell with these properties we have
µp = 1 and xp grows asymptotically as 2−1. Then, every cell lower in the network receives an input
of such a critical cell, i.e. of lowest order 2−1 in λ. Thus, the proof of Step 3 does not apply any
longer. Furthermore, µp ≥ 1 for these cells lower in the network so that the considerations above
fully describe the case µp = 0 (and additionally the case µp = 1 when p is critical).
Step 6. We investigate cells p /∈ B with µp > 0 inductively. Assume

xq(λ) = Dqλ
2−µq +O

(
|λ|2

−(µq−1)
)

(10.19)

with Dq 6= 0 for all q B p with q /∈ B. For q D p define

ξq = max
sBq

µs

– setting µq = 0 for q ∈ B – and
Qq = {s B q | µs = ξq}

(compare to (10.8)). Note that µq = ξq , if q is non-critical, and µq = ξq + 1, if q is critical. In particular,
Step 5 characterizes the bifurcating solutions in all cells p /∈ B with ξp = 0. Furthermore, assume
that the coefficients Dq for q B p are chosen according to

Dq



as in Step 5 for ξq = 0

= −
∑

τ(q)∈Qq aτDτ(q)∑
σ∈Lq aσ

for q non-critical with ξq > 0

= ±

√
−
∑

τ(q)∈Qq aτDτ(q)∑
σ,τ∈Lq fστ

for q critical with ξq > 0.

(10.20)

As these rules are not consistent, we assume the choice of coefficients to be done such that square
roots are real for all q B p, once again. Furthermore, assume

∑
τ /∈Lq

τ(q)∈Qq

aτDτ(q) 6=


−` for ξq = 0,

0 for ξq > 0,

(10.21)

for all q B p such that there exists s B q with s /∈ B. This assumption guarantees that conditions
(L) and (SN) from before are fulfilled for all these cells. In Step 3 we have seen that (10.21) generically
holds for all p ∈ B as well. Summarizing, we assume that conditions (L) and (SN) are satisfied for
all q B p except for those q /∈ B that are critical and s ∈ B for all s B q – i.e. the ones where
the inductive process of adding cells to B from Step 4 stops. For these condition (T) is satisfied. In
particular, this implies Dq 6= 0 for all q B p generically.

The case p critical with µp = 1, i.e. ξp = 0, is as in Step 5. We obtain

xp(λ) = D±p λ
2−1

+O(|λ|)

with

D±p = ±

√√√√−∑τ /∈Lp aτDτ(p) + `∑
σ,τ∈Lp fστ

,

which matches the assumptions.
The remaining cells p /∈ B with µp > 0 all satisfy ξp > 0. By definition, µq = ξp for all q ∈ Qp.

If q ∈ Qp is non-critical, s ∈ Qq implies µs = ξq = µq = ξp. Hence, s ∈ Qp by transitivity of E. If
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q ∈ Qp is critical on the other hand, µs = ξq = µq − 1 = ξp − 1 for all s ∈ Qq , which implies s /∈ Qp.
Summarizing, we see Qq ⊂ Qp for q B p non-critical and Qq ∩ Qp = ∅ for q critical. Repeating this
consideration and inductively applying assumption (10.20), this implies that the coefficients Dq for
all q ∈ Qp are determined by those for q ∈ Qp critical. That is, we have

D±q ∈



{
±

√
−
∑

τ /∈Lq aτDτ(q) + `∑
σ,τ∈Lq fστ

}
, if µq = µp = 1,{

±

√
−
∑

τ(q)∈Qq aτDτ(q)∑
σ,τ∈Lq fστ

}
, if µq = µp > 1,

if q ∈ Qp is critical and
Dq =

∑
q∈Qp critical

AqqDq,

if q ∈ Qp is non-critical. The coefficients Aqq are inductively computed using assumption (10.20) on
non-critical cells with ξq > 0 starting from the critical cells q ∈ Qp. They may be zero, but Dq 6= 0 by
assumption.

We may split Qp = Q1 tQ2 into non-critical and critical cells respectively and obtain∑
τ /∈Lq :
τ(p)∈Qp

aτDτ(p) =
∑

τ : τ(p)∈Q1

aτ
∑

q∈Qp critical

A
τ(p)
q Dq +

∑
τ : τ(p)∈Q2

aτDτ(p).

Due to the inductive computation of the coefficients Aτ(p)
q , which contain fractions of system para-

meters aσ , this sum generically only equals 0, if both summands vanish simultaneously. The coef-
ficients aτ for τ ∈ L2 = {τ /∈ Lp | τ(p) ∈ Q2} offer enough freedom to show that this generically
implies Dτ(p) = 0 for all τ ∈ L2 or L2 = ∅. Both cannot hold true, due to the induction assumption.
Hence, the sum generically does not vanish and condition (SN) is satisfied. In particular, this proves
(10.21) holds true for p as well.

Next, we compute the branching solutions for cell p under the induction assumptions (10.19),
(10.20) and (10.21). If p is non-critical, Lemma 10.13 shows that (10.4) for p has the unique branching
steady states

xp(λ) = −
∑

τ : τ(p)∈Qp aτDτ(p)∑
σ∈Lp aσ

· λ2−ξp +O
(
|λ|2

−(ξp−1)
)
.

As ξp = µp for p non-critical, this proves the steady states for cell p branch as in (10.19) with coeffi-
cients as in (10.20).

Consider p critical. As we have investigated the case µp = 1 already, we may assume µp > 1 and
therefore ξp > 0. The setting is as in Lemma 10.16. If∑

τ : τ(p)∈Qp aτDτ(p)∑
σ,τ∈Lp fστ

< 0,

the state variable xp undergoes a saddle node bifurcation as

xp(λ) = D±p λ
2−(ξp+1)

+O
(
|λ|2

−ξp
)

with

D±p = ±

√√√√−∑τ : τ(p)∈Qp aτDτ(p)∑
σ,τ∈Lp fστ

,

which generically does not vanish. As µp = ξp + 1, this proves the steady states for cell p branch as
in (10.19) with coefficients as in (10.20).
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If, on the other hand, ∑
τ : τ(p)∈Qp aτDτ(p)∑

σ,τ∈Lp fστ
> 0,

(10.4) for p has no solutions. In this case the choices for coefficientsDq for q B pwere not admissible
for the given system parameters. Furthermore, note that∑

τ : τ(p)∈Qp aτDτ(p)∑
σ,τ∈Lp fστ

6= 0

generically, using condition (SN). Hence, there are no other possible branching solutions.

Step 7. Steps 5 and 6 serve as an inductive proof for the xp-coordinates of branching steady states
for cells p /∈ B. Starting with cells such that µp = 0, it applies to all p such that there exists q B p

with q /∈ B. We see that all these cells bifurcate as in (10.19)

xp(λ) = Dpλ
2−µp +O

(
|λ|2

−(µp−1)
)

with coefficients as in (10.20). Replacing ξp = µp, if p is non-critical, and ξp = µp − 1, if p is critical,
yields the coefficients stated in the theorem. In particular, this also proves that p /∈ B. In turn, this
means that p ∈ B implies q ∈ B for all q B p, completing the proof that B is a block. If no choice of
coefficients Dq for q B p according to the inductive rules (10.20) is possible, the specific branch does
not exist. In particular, the choice of the block B is not admissible. This completes the proof for the
branching steady states as stated in the proposition.

Correspondingly, we obtain an analogous result for λ < 0 as a corollary of Theorem 10.20.

Theorem 10.21 (Subcritical branches). Under the bifurcation assumption (B) with non-critical maxi-
mal cells, generically,2 all bifurcating branches of steady states for λ < 0 are as follows: There is a
maximal block B ⊂ C such that the state variable xp for each p ∈ B remains in the fully synchronous
state xp(λ) = X(λ) as in (10.9). Maximality means that there is no block with the same properties
containing B.

The state variables of all p /∈ B bifurcate as

xp(λ) = Dp · (−λ)2−µp +O
(
|λ|2

−(µp−1)
)
,

where Dp 6= 0 and
µp = max

p∈B
max
ω∈Ωp,p

# {q ∈ ω | q critical, q /∈ B} − 1

is the maximal number of critical cells q /∈ B along paths from any cell in B to p.
The branch exists, if and only if∑

τ 6∈Lp aτDτ(p) − `∑
σ,τ∈Lp fστ

< 0,

∑
τ : τ(p)∈Qp aτDτ(p)∑

σ,τ∈Lp fστ
< 0

for all critical cells pwith µp = 1 or µp > 1 respectively. Therein,Qp is defined analogous to (10.8) with
ξp replaced by µp.

2i.e. for an open and dense subset of system parameters {aσ, fστ , fσλ, `, fλλ | σ, τ ∈ Σ}
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The Dp are chosen according to the inductive rules:

Dp Case

−
∑

τ /∈Lp aτDτ(p) − `∑
σ∈Lp aσ

p non-critical, µp = 0

−
∑

τ : τ(p)∈Qp aτDτ(p)∑
σ∈Lp aσ

p non-critical, µp > 0

− `∑
σ∈Σ aσ

·

(
1 + 2

∑
σ∈Lp,τ /∈Lp fστ∑
σ,τ∈Lp fστ

)
+

∑
σ∈Lp fσλ∑
σ,τ∈Lp fστ

p critical, µp = 0

±

√
−
∑

τ 6∈Lp aτDτ(p) − `∑
σ,τ∈Lp fστ

p critical, µp = 1

±

√
−
∑

τ : τ(p)∈Qp aτDτ(p)∑
σ,τ∈Lp fστ

p critical, µp > 1

Proof. Substituting the parameter µ = −λ and the system parameters ι = −`, θσλ = −fσλ, the
governing function Taylor expands as

f(xσ1(p), . . . , xσn(p), λ) =
∑
σ∈Σ

aσxσ(p) + ιµ+
∑
σ,τ∈Σ

fστxσ(p)xτ(p) +
∑
σ∈Σ

θσλµxσ(p) + fλλµ
2 + h.o.t.,

as in (10.4). The result follows immediately from Theorem 10.20 for µ > 0.

The branching solutions in Theorems 10.20 and 10.21 contain those that are described in Section 6 in
SOARES [99] for layered feedforward networks as a special case. Therein, generically all non-maximal
cells are critical if the maximal cells are non-critical. This generalization is due to the fact that the
class of feedforward networks satisfying the equivalent definitions in Theorem 8.35 contains layered
feedforward networks (compare to Remark 8.37).

Remark 10.22. We refer to branches for λ > 0 as supercritical and for λ < 0 as subcritical. 4

Remark 10.23. The proofs of Theorems 10.20 and 10.21 provide a constructive method to determine all
branching solutions for the bifurcation problem (B). The first step is to determine all blocks B ⊂ C

such that p /∈ B with q ∈ B for all q B p implies p is critical. A solution branch is computed as
xp staying in the fully synchronous state for all p ∈ B and the states of the remaining cells being
determined by the number of critical cells in between p and B where the lowest order coefficients
Dp are chosen according to the inductive rules in the statements. Note that the asymptotic order
can also be determined inductively by setting µp = 0 for all p ∈ B and

µp =

{
maxqBp µq for p non-critical,
maxqBp µq + 1 for p critical.

This will be made more precise in Proposition 10.27 below. 4

Remark 10.24. Note that the conditions determining the existence of branching solutions in The-
orems 10.20 and 10.21 depend only on the system parameters – the partial derivatives of f . This
implies the existence of different branches in different regions of system parameter space which
may also vary according to the direction of branching – super- or subcritical. 4

Remark 10.25. Finally, we remark that the possible choices of a block B ⊂ C of cells that remain in
the fully synchronous state (as in Remark 10.23) are independent of super- or subcritical branching.
Choosing the same block in Theorems 10.20 and 10.21, we see that within B the solutions exist for
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both signs of λ. Similarly, when µp = 0 there is always a pair of coefficients with opposite signs for
super- and subcritical branches. Furthermore, investigating (10.4) from that perspective, we see that
the higher order terms match as well and the solutions in these cells are truly transcritical. However,
cells lower in the network may still prohibit the existence of a particular solution branch for one or
both signs of λ. 4

10.3 The amplification effect

We conclude this chapter by making the notion of the amplification effect in generic steady state
bifurcations of feedforward networks precise. That is, in both major cases observed in Sections 10.1
and 10.2 the branching solution in a given cell has a steeper slope the lower the cell is in the network
with respect toE. The discussion in this section essentially consists of a summary of Theorems 10.8,
10.20 and 10.21 similar to that in the beginning of this chapter while taking a slightly different per-
spective.

A large part of Sections 10.1 and 10.2 is devoted to not only characterize generic steady state bi-
furcations of a feedforward network but also to provide formulas to precisely compute the lowest
order coefficients depending on the Taylor coefficients of the response function. As we indicated be-
fore, in bifurcation analysis one is often not interested in the explicit expression describing how to
compute the branching state state for every parameter value but rather in the qualitative behavior.
To that end, we consider the asymptotics of the state variable for each cell separately in a gene-
ric steady state bifurcation. As existing branches may differ over regions in system parameter space,
these asymptotics may vary accordingly. However, whenever two branches differ only by the explicit
expression for its lowest order coefficients the asymptotics of each cell are the same for both bran-
ches. In particular, this is the case on open subsets of the parameter space. That is why we choose
to encode the qualitative bifurcation information of each individual cell in its the asymptotics of its
state variable. We introduce some notation to make these ideas more precise.

Consider a generic branch of steady states for a parameter dependent feedforward network vec-
tor field (xp(λ))p∈C ⊂

⊕
p∈C R for small λ > 0, λ < 0 or |λ| as provided in Theorems 10.8 and 10.20

or Theorem 10.21. Recall from Theorems 10.20 and 10.21 that in the case of non-critical maximal cells
there is a block B ⊂ C of cells that remain in the fully synchronous state

X(λ) = Dλ+O
(
|λ|2
)

(10.22)

as in Lemma 10.17. The lowest order in λ of the branching states of the remaining cells is determined
by the constant µp as

xp(λ) = Dpλ
2−µp +O

(
|λ|2

−(µp−1)
)

(10.23)

(if the branch is subcritical reverse the sign of λ). The definition of µp can readily be extended to
reflect the lowest order in λ also for cells p ∈ B by defining µp = 0 in that case. Furthermore, recall
from Theorem 10.8 that the state of each cell p ∈ C is given by

xp(λ) = Dp · λ2−1
+O(|λ|) (10.24)

(once again reverse the sign of λ if the branch is subcritical) in the case of critical maximal cells.
Hence, we may extend the definition of µp to reflect the lowest order in λ for all cells when the
maximal cells are critical by µp = 1 for all p ∈ C in that case. Summarizing, we see that

xp(λ) = Dpλ
2−µp +O

(
|λ|2

−(µp−1)
)

with some suitable coefficient Dp 6= 0 for all p ∈ C in any generic branch of steady states of a
feedforward network. This motivates the following definition.
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Definition 10.26. Let (xp(λ))p∈C ⊂
⊕

p∈C R be a branch of steady states for a parameter dependent
feedforward network vector field for small λ > 0, λ < 0 or |λ| as provided in Theorem 10.8, Theo-
rem 10.20, and Theorem 10.21. Then we say that a cell p ∈ C has the square root order µp in λ or that
it grows asymptotically as λ2−µp where µp is as defined above.

The main qualitative characteristic of steady state bifurcations in feedforward networks – na-
mely the amplification effect – can now comfortably be described using Definition 10.26. The fol-
lowing proposition shows that only critical cells have an amplifying effect as they have a higher
square root order than the cells they receive an input from. This can almost directly be seen from
the original definition of µp in Theorems 10.20 and 10.21 (compare also to Remark 10.23).

Proposition 10.27. Let (xp(λ))p∈C ⊂
⊕

p∈C R be a branch of steady states for a parameter dependent
feedforward network vector field for small λ > 0, λ < 0 or |λ| as provided in Theorem 10.8, Theo-
rem 10.20, and Theorem 10.21 with cell-by-cell asymptotics xp ∼ λ2−µp for all p ∈ C . Then the square
root orders are amplified by critical cells. That is, for p maximal we have µp = 1 or µp = 0 when the
maximal cells are critical or non-critical respectively. For p non-maximal we obtain

µp =


maxqBp µq for p non-critical,
maxqBp µq for p critical and q ∈ B for all q B p,
maxqBp µq + 1 for p critical and there exists q B p such that q /∈ B.

(10.25)

In particular, the square root orders of the cells are partially ordered with respect toE, i.e.

p E q implies µp ≥ µq. (10.26)

Hence, if p E q, then xp has at least the same asymptotic order as xq .

Proof. In the case of critical maximal cells, only the maximal cells are critical. Furthermore all cells
have square root order 1, i.e. xp ∼

√
λ as seen from (10.24). Hence, nothing is to be shown.

If, on the other hand, the maximal cells are non-critical, we obtain a block of cells B ⊂ C such
that all cells in B have square root order 0: xp ∼ λ – or µp = 0 – for all p ∈ B as seen in (10.22).
In particular, B contains all maximal cells. Furthermore, if p is critical and q ∈ B for all q B p then
also xp ∼ λ. This matches the definition of µp in Theorems 10.20 and 10.21. The state variable of the
remaining cells p /∈ B bifurcate as in (10.23) with square root order

µp = max
p∈B

max
ω∈Ωp,p

# {q ∈ ω | q critical, q /∈ B} − 1.

We immediately see that this definition implies

µp =

{
maxqBp µq for p non-critical,
maxqBp µq + 1 for p critical.

for all p /∈ B where additionally there exists a cell q B p such that q /∈ B if p is critical. This completes
the proof of (10.25). From this (10.26) follows directly.

In particular, Proposition 10.27 shows that an actual amplification can only be observed when the
maximal cells are non-critical. Then only the critical cells outside of the block of cells that remain in
the fully synchronous state have an amplifying effect.
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Chapter 11

Steady state bifurcations in feedforward
networks with high-dimensional internal
dynamics

This chapter investigates generic 1-parameter steady state bifurcations in feedforward networks
with high-dimensional internal dynamics. In Theorems 10.8, 10.20 and 10.21 we give a precise charac-
terization of all generic branching solutions in the one-dimensional case. Theorem 7.17 then implies
that the generic steady state bifurcations in the case of high-dimensional dynamics are the same
qualitatively – when we restrict ourselves to fundamental networks. In particular, coordinate free
bifurcation diagrams in both cases look the same. As we laid out in Section 10.3 the most important
feature of the bifurcations in feedforward networks is the amplification effect. This is a qualita-
tive property of each solution branch. However, it is not qualitative in the sense that it remains
under arbitrary coordinate transformations but rather a qualitative property of each individual cell.
Hence, one should be able to observe it in a generic steady state bifurcation in all coordinates that
reflect individual cells. In this chapter we show that feedforward structure can be used to observe
the amplification effect also in generic steady state bifurcations when the internal dynamics is high-
dimensional. The most important tools are the partial order on the cells and the fact that the ad-
missible maps are upper triangular – or more precisely respect the partial order. As the center ma-
nifold reduction for fundamental networks respects monoid symmetry, this in particular holds for
the maps involved in the procedure that allows to translate a generic branch in the one-dimensional
case into a generic branch in the high-dimensional case in Section 7.2.4. As equivariance is equiva-
lent to admissibility, this has the convenient effect that whenever we compute some property of
the state variable xp of cell p it only depends on the state variables of cells q D p. This observation
proves to be powerful enough to translate the amplification effect into the high-dimensional case
without having to determine center manifolds explicitly. As the results in Chapter 7 only apply to
fundamental networks, we restrict ourselves to fundamental feedforward networks and note that
the bifurcation results Theorems 10.8, 10.20 and 10.21 apply to this case nonetheless. We use the
same notational conventions as in Chapter 7. In particular, we refer to the two cases as 1D and
DD respectively. Furthermore, when distinction is necessary we denote the internal and total phase
space by V = R and V1 =

⊕
σ∈ΣR in the case 1D and V = W ∼= Rd and VD =

⊕
σ∈ΣW in the case

DD with respective coordinates v = (vσ)σ∈Σ ∈ V1 and ω = (wσ)σ∈Σ ∈ VD. If an observation holds
true in both cases we keep using x = (xσ)σ∈Σ ∈

⊕
σ∈Σ V . Once again, we drop the convention of

denoting coordinates in the phase spaces of a fundamental network by capital letters. The results
in this chapter are from Section 4 in our preprint [83].

The amplification effect in Proposition 10.27 is described in terms of the square root order of
individual cells in a given branch of bifurcating steady state solutions. In order to be able to cha-
racterize similar phenomena in feedforward networks with high-dimensional internal dynamics we
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generalize Definition 10.26 to that case. Even more so the following definition is independent of
the feedforward network structure. It could also have been formulated for branching solutions in
arbitrary networks.

Definition 11.1. Let (xσ(λ))σ∈Σ ⊂
⊕

σ∈Σ V , for small λ > 0, λ < 0 or |λ| small, be a branch of steady
states for a parameter dependent fundamental network vector field, i.e.

Γf ((xσ(λ))σ∈Σ, λ) = 0. (11.1)

We say that a cell σ ∈ Σ has the square root order ξσ ≥ 0 in λ or that it grows asymptotically as λ2−ξσ

if ‖xσ(λ)‖ = dσ · λ2−ξσ +O
(
|λ|2−(ξσ+1)

)
with dσ 6= 0 for ξσ ≥ 1,

‖xσ(λ)‖ = O (|λ|) for ξσ = 0.

Therein ‖ · ‖ denotes the euclidean norm on V . If the branch only exists for λ < 0 replace λ by−λ. We
denote this situation by xσ ∼ λ2−ξσ .

Remark 11.2. Note that ξσ = 0 summarizes all cases in which xσ does not actually grow with any
square root order. That is, it grows at least linearly, up to lowest order in λ. 4
Remark 11.3. The situation xσ ∼ λ2−ξσ with ξσ > 0 is equivalent to

xσ(λ) = λ2−µσ · ϑσ +Rσ(λ),

where ϑσ ∈ V \ {0} suitable and Rσ : R → V – restricted to the suitable neighborhood of λ0 = 0 –
such that ‖Rτ (λ)‖ = O

(
|λ|2−(µτ−1)

)
. 4

A crucial part of this chapter contains technical investigations of the maps that are needed to
define the center manifold reduction as in Section 3.5 and their interaction with branching steady
state solutions. In particular, we will make heavy use of the technicalities proved in Section 3.5.3. We
begin by briefly reformulating the setting and recalling some necessary notation from Sections 3.5
and 7.2.4. In the remainder of this chapter we consider fundamental feedforward networks. In par-
ticular E is a partial order. We investigate steady state solutions of Γf :

⊕
σ∈Σ V × R →

⊕
σ∈Σ V ,

which is an admissible vector field for a feedforward fundamental network as in (10.1) that depends
on a real parameter λ ∈ R close to the bifurcation point (x0, λ0) = (0, 0). That is, we are interested
in solutions to

Γf (x, λ) = 0,

close to (0, 0), where
DxΓf (0, 0)

is non-invertible. Once again, this singular linear admissible map induces a splitting⊕
σ∈Σ

V = ker0(DxΓf (0, 0))⊕ im0(DxΓf (0, 0))

into generalized kernel and reduced image with corresponding projections

P c :
⊕
σ∈Σ

V → ker0(DxΓf (0, 0))

P h :
⊕
σ∈Σ

V → im0(DxΓf (0, 0))

that are equivariant with respect to the right regular representation. As stated before, for technical
reasons, we focus on the extended system as in (3.20)

ẋ =

(
ẋ

λ̇

)
=

(
Γf (x, λ)

0

)
= Γf (x) (11.2)
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on
⊕

σ∈Σ V × R. Solutions of (11.2) are in one-to-one correspondence with those of (11.1). Further-
more, the extended system is equivariant with respect to the extended right regular representation
σ 7→ Aσ where

Aσ : x = (x, λ) 7→ (Aσx, λ).

Under the bifurcation assumption the linearization of the extended system induces a splitting of⊕
σ∈Σ V × R into subrepresentations

X h = im0(DxΓf (0, 0))× {0},

X c = ker0(DxΓf (0, 0))× {0} ⊕
〈

(xh, 1)
〉
,

(11.3)

where xh ∈ im0(DxΓf (0, 0)) suitable, as in (3.21). These subspaces are generalized kernel and redu-
ced image of DΓf (0) = D(x,λ)Γf (0, 0) respectively. The corresponding equivariant projections are
denoted by

P c :
⊕
σ∈Σ

V × R→ X c

P h :
⊕
σ∈Σ

V × R→ X h.
(11.4)

In particular, every element xc ∈ X c can be represented as

xc = (xc, 0) + λ(xh, 1),

where xc ∈ ker0(DxΓf (0, 0)) and λ ∈ R. Furthermore, there is an isomorphism of monoid represen-
tations P ′ : X c → ker0(DxΓf (0, 0))× R given by

P ′(xc) = (P c(xc + λxh), λ) = (xc, λ) (11.5)

with inverse
Q′(xc, λ) = (xc, 0) + λ(xh, 1) = xc. (11.6)

Then the extended system admits the local center manifold

M c =
{(
1X c + ψ

)
(xc) | xc ∈ X c

}
=
{(
1X c + ψ

)
(Q′(xc, λ)) | (xc, λ) ∈ ker0(DxΓf (0, 0))× R

}
,

(11.7)
which is represented as a graph over either X c or equivalently over ker0(DxΓf (0, 0)) × R by the
equivariant map ψ.

The center manifold contains all solutions of the extended system with initial conditions close
to the bifurcation point whose X h-component is bounded. In particular, for any branch of steady
states of the bifurcation problem we have ((xσ(λ))σ∈Σ, λ) ⊂M c – we will not include the restriction
of λ to a suitable neighborhood of 0 in the remainder but assume it to be present nevertheless.
Furthermore, the dynamics restricted to the center manifold is bijectively conjugate to dynamics on
the center subspaceX c or on ker0(DxΓf (0, 0))×R (compare to Theorem 3.32). Hence, any branch can
uniquely be represented in coordinates of these subspaces using the projections P c or P = P ′ ◦ P c

such that

P c ((xσ(λ))σ∈Σ, λ) ⊂ X c,
P ′ (P c ((xσ(λ))σ∈Σ, λ)) ⊂ ker0(DxΓf (0, 0))× R

(compare to Section 7.2.4). Recall from (3.22) and Lemmas 3.36 to 3.39 that all maps required to
switch between the three representation of a branch of steady states – i.e. P c, P ′, Q′ andψ leave the
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λ-coordinate unchanged (the third representation is the original representation ((xσ(λ))σ∈Σ, λ)).
Hence, we see that the parameter of each representation remains the same and we may write

((yσ(λ))σ∈Σ, λ) = P c ((xσ(λ))σ∈Σ, λ) ⊂ X c,
((zσ(λ))σ∈Σ, λ) = P ′ (P c ((xσ(λ))σ∈Σ, λ)) ⊂ ker0(DxΓf (0, 0))× R.

(11.8)

Note that the second representation of (11.8) is of particular interest as it describes the branch of
steady states in the corresponding reduced bifurcation problem on ker0(DxΓf (0, 0))× R (see Theo-
rem 3.32).

We investigate to what extent cell-by-cell asymptotics are respected when switching between
the different representations. In particular, we answer the following question: Under the assump-
tion of square root orders of individual cells that are partially ordered as in Proposition 10.27 for
feedforward networks – more precisely as in (10.26) – in either one of the representations, can we
recover the square root order of each cell in any of the other representations? As the distinction of
cells is reflected in the choice of coordinates, this is done by analyzing the projection operators in
the original coordinates.

Lemma 11.4. (i) Let ((xσ(λ))σ∈Σ, λ) ⊂M c be a branch of steady states of (11.2). Assume cell-by-cell
asymptotics xσ ∼ λ2−µσ that are partially ordered as in (10.26), i.e. σ D τ implies µσ ≤ µτ . Then
the representation in the generalized kernel of the extended system

((yσ(λ))σ∈Σ, λ) = P c ((xσ(λ))σ∈Σ, λ) ⊂ X c

exhibits the same cell-by-cell asymptotics, i.e.

yσ ∼ λ2−µσ for all σ ∈ Σ.

(ii) Let ((yσ(λ))σ∈Σ, λ) ⊂ X c be the representation of a branch of steady states of (11.2) in the ge-
neralized kernel of the extended system. Assume cell-by-cell asymptotics yσ ∼ λ2−µσ that are
partially ordered as in (10.26), i.e. σ D τ implies µσ ≤ µτ . Then the representation in the full
space

((xσ(λ))σ∈Σ, λ) =
(
1X c + ψ

)
((yσ(λ))σ∈Σ, λ) ⊂M c

exhibits the same cell-by-cell asymptotics, i.e.

xσ ∼ λ2−µσ for all σ ∈ Σ.

Proof. The central observation to prove both parts of the lemma is the fact that the maps
P c|Mc : M c → X c and

(
1X c + ψ

)
: X c → M c are mutually inverse bijections between the

center manifold M c and the generalized kernel of the extended system X c. The properties of these
maps are well-understood from Lemmas 3.36 to 3.38. We know that

P c(x, λ) = (P cx(x, λ), λ) ,

where P cx can be interpreted as a parameter dependent linear map on
⊕

σ∈Σ V that is equivari-
ant with respect to the non-extended monoid representation, i.e. P cx(Aσx, λ) = AσP

c
x(x, λ) for all

x ∈
⊕

σ∈Σ V, λ ∈ R and σ ∈ Σ. Due to the equivalence of equivariance and admissibility, it is the-
refore a parameter-dependent linear admissible map of the fundamental network vector field. In
particular, it respects the partial orderE

(P cx(x, λ))τ = `τ ((xσ | σ D τ), λ) , (11.9)

where `τ is a linear map that depends only on the entries xσ for σ D τ and the parameter λ. The
parameter-dependence is linear as well.

170



A similar observation holds for the other direction. Denote elements of the generalized ker-
nel of the extended system by (y, λ) = ((yσ)σ∈Σ, λ) ∈ X c ⊂

⊕
σ∈Σ V × R. Then we know

ψ(y, λ) = (ψ
x
(y, λ), 0), where ψ

x
is a parameter-dependent admissible map of the fundamental

network. That is (
ψ
x
(y, λ)

)
τ

= qτ ((yσ | σ D τ), λ) . (11.10)

As ψ(0, 0) = 0 and Dψ(0, 0) = 0, we also obtain qτ (0, 0) = 0 and dqτ (0, 0) = 0.
We may now prove both cases separately beginning with (ii). Let ((yσ(λ))σ∈Σ, λ) ⊂ X c be the re-

presentation of a branch of steady states in the generalized kernel of the extended system. Assume
cell-by-cell asymptotics yσ ∼ λ2−µσ that satisfy the ordering assumption (10.26), i.e. σ D τ implies
µσ ≤ µτ . First, we fix a cell τ ∈ Σ with µτ ≥ 1. By definition yτ ∼ λ2−µτ is equivalent to

yτ (λ) = λ2−µτ · ϑτ +Rτ (λ),

where ϑτ ∈ V \ {0} suitable and ‖Rτ (λ)‖ = O
(
|λ|2−(µτ−1)

)
. Combining the partial order of the

cell-by-cell asymptotics with the form of the map whose graph is the center manifold (11.10), we
compute (

ψ
x

((yσ(λ)σ∈Σ, λ))
)
τ

= qτ ((yσ(λ) | σ D τ), λ) = λ2−(µτ−1) · ητ + ρτ (λ), (11.11)

where ητ ∈ V suitable and ‖ρτ (λ)‖ = O
(
|λ|2−(µτ−1)

)
.

As we obtain the representation of the branch on the center manifold ((xσ(λ))σ∈Σ, λ) from

((xσ(λ))σ∈Σ, λ) =
(
1X c + ψ

)
((yσ(λ)σ∈Σ, λ)) =

(
(yσ(λ))σ∈Σ + ψ

x
((yσ(λ))σ∈Σ, λ), λ

)
,

we directly see

xτ (λ) = λ2−µτ · ϑτ +Rτ (λ) + λ2−(µτ−1) · ητ + ρτ (λ) = λ2−µσ · ϑτ + κτ (λ),

where ‖κτ (λ)‖ = O
(
|λ|2−(µτ−1)

)
. Hence, xτ ∼ λ2−µτ , since ϑτ 6= 0.

On the other hand, consider a cell τ ∈ Σ with µτ = 0. By the partial order of the square root
orders (10.26) we also obtain µσ = 0 for all σ D τ . By definition this is equivalent to ‖yσ(λ)‖ = O(|λ|)
for all σ D τ including τ . Thus, using (11.10) as before, we compute

‖xτ (λ)‖ = ‖yτ (λ) + qτ ((yσ(λ) | σ D τ), λ)‖ = O(|λ|),

which proves xτ ∼ λ and, therefore, completes the proof for (ii).
Next we turn to the proof of the first statement (i). This is slightly more complicated as we have

to make sure that the projection onto the generalized kernel of the extended system does not ‘loose’
information about the asymptotics of a given cell. Assume that ((xσ(λ))σ∈Σ, λ) ⊂M c is a branch of
steady states whose cell-by-cell asymptotics satisfy the ordering assumption (10.26). Then, fixing a
cell τ ∈ Σ with µτ ≥ 1, we obtain

xτ (λ) = λ2−µτ · ϑτ +Rτ (λ),

with ϑτ ∈ V \ {0} suitable and ‖Rτ (λ)‖ = O
(
|λ|2−(µτ−1)

)
. Combining the partial order of the

cell-by-cell asymptotics with the specific form of the projection onto X c (11.9), we obtain

(P cx ((xσ(λ)σ∈Σ, λ)))τ = `τ ((xσ(λ) | σ D τ), λ) = λ2−µτ · ητ + ρτ (λ), (11.12)

where ητ ∈ V suitable and ‖ρτ (λ)‖ = O
(
|λ|2−(µτ−1)

)
. The representation of the branch in the

generalized kernel of the extended system ((yσ(λ))σ∈Σ, λ) is computed as

((yσ(λ))σ∈Σ, λ) = P c ((xσ(λ))σ∈Σ, λ) = (P cx ((xσ(λ))σ∈Σ, λ) , λ) .
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Thus, we see that yτ ∼ λ2−µτ , if ητ 6= 0.1

However, as ((yσ(λ))σ∈Σ, λ) ⊂ X c is the representation of a branch of steady states in the ge-
neralized kernel of the extended system, we may apply the results from (ii) to it and receive its cor-
responding representation on the center manifold ((x̃σ(λ))σ∈Σ, λ) ⊂ M c with the same cell-by-cell
asymptotics. As in the proof of part (ii), we compute its x-component to be

x̃τ (λ) = yτ (λ) + ψ
x
((yσ(λ))σ∈Σ, λ) = λ2−µτ · ητ + κτ (λ), (11.13)

where ητ ∈ V is as in (11.12) and ‖κτ (λ)‖ = O
(
|λ|2−(µτ−1)

)
. Furthermore, P c|Mc and

(
1X c + ψ

)
are

mutually inverse bijections between M c and X c. Hence,

((xσ(λ))σ∈Σ, λ) =
((
1X c + ψ

)
◦ P c|Mc

)
((xσ(λ))σ∈Σ, λ)

=
(
1X c + ψ

)
((yσ(λ))σ∈Σ, λ)

= ((x̃σ(λ))σ∈Σ, λ) .

Using (11.13), we obtain

xτ (λ) = λ2−µτ · ϑτ +Rτ (λ) = λ2−µτ · ητ + κτ (λ) = x̃τ (λ).

In particular, ητ = ϑτ 6= 0, which proves yτ ∼ λ2−µσ .
On the other hand, µτ = 0 implies µσ = 0 and therefore ‖xτ (λ)‖ = O(|λ|) for all σ D τ (which

includes τ ). Thus we compute

‖yτ (λ)‖ = ‖`τ ((xσ(λ) | σ D τ), λ)‖ = O(|λ|),

which shows yτ ∼ λ, completing the proof of (i).

Remark 11.5. The proof for Lemma 11.4 allows for a slightly more precise statement when relaxing
the ordering assumption on the cell-by-cell asymptotics (10.26). That is, for every cell τ for which the
ordering assumption is fulfilled, µσ ≤ µτ for all σ D τ , we obtain that the τ -component exhibits the
same asymptotics in the full representation of the solution branch and in its representation in the
generalized kernel of the extended system, i.e. xτ ∼ λ2−µτ and yτ ∼ λ2−µτ . This does not require the
square root orders of all cells to be ordered. 4

In the previous lemma we have shown that, under the ordering assumption (10.26), cell-by-cell
asymptotics agree in the representation of a steady state branch on the center manifold with those
in the representation in the generalized kernel of the extended system. A similar result holds true
when comparing representations in X c and in ker0(DxΓf (0, 0)) × R even without the ordering as-
sumption, i.e. yτ ∼ zτ with yτ and zτ as in (11.8). This follows from the properties of the mutually
inverse isomorphisms P ′ and Q′.

Lemma 11.6. (i) Let ((yσ(λ))σ∈Σ, λ) ⊂ X c be the representation of a branch of steady states of (11.2)
in the generalized kernel of the extended system. Assume cell-by-cell asymptotics yσ ∼ λ2−µσ .
Then the representation

((zσ(λ))σ∈Σ, λ) = P ′ ((yσ(λ))σ∈Σ, λ) ⊂ ker0(DxΓf (0, 0))× R

exhibits the same cell-by-cell asymptotics, i.e.

zσ ∼ λ2−µσ for all σ ∈ Σ.

1The opposite case ητ = 0 is what we refer to as ‘loosing’ information about the asymptotics in cell τ .
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(ii) Let ((zσ(λ))σ∈Σ, λ) ⊂ ker0(DxΓf (0, 0))×R be the representation of a branch of steady states of
(11.2) in ker0(DxΓf (0, 0)). Assume cell-by-cell asymptotics zσ ∼ λ2−µσ . Then the representation
in the generalized kernel of the extended system

((yσ(λ))σ∈Σ, λ) = Q′ ((zσ(λ))σ∈Σ, λ) ⊂ X c

exhibits the same cell-by-cell asymptotics, i.e.

yσ ∼ λ2−µσ for all σ ∈ Σ.

Proof. We prove (i) and (ii) similarly to the proof of Lemma 11.4. The maps P ′ : (y, λ) 7→ (P c(y), λ)

as in (11.5) and Q′ : (z, λ) 7→ (z + λxh, λ) as in (11.6) form equivariant isomorphisms between X c

and ker0(DxΓf (0, 0)) × R. In particular, due to Lemma 3.36 we know that P c is equivariant with
respect to the non-extended representation σ 7→ Aσ . Hence, it is a linear, admissible map for the
fundamental network and we obtain

(P c ((yσ)σ∈Σ))τ = `τ (yσ | σ D τ) .

Let ((yσ(λ))σ∈Σ, λ) ⊂ X c be the representation of a branch of steady states of (11.2) in the gene-
ralized kernel of the extended system and assume cell-by-cell asymptotics yσ ∼ λ2−µσ . For a cell τ
with µτ ≥ 1, this is equivalent to

yτ (λ) = λ2−µτ · ϑτ +Rτ (λ),

where ϑτ ∈ V \ {0} and ‖Rτ (λ)‖ = O
(
|λ|2−(µτ−1)

)
. As ((zσ(λ))σ∈Σ, λ) = (P c ((yσ(λ))σ∈Σ) , λ), we

compute
zτ (λ) = `τ (yσ(λ) | σ D τ) = λ2−ξτ · ητ + ρτ (λ),

where ητ ∈ V, ξτ = maxσDτ µσ and ‖ρτ (λ)‖ = O
(
|λ|2−(ξτ−1)

)
. Furthermore, note that

Q′ ((zσ(λ))σ∈Σ, λ) =
(

(zσ(λ))σ∈Σ + λ · (xhσ)σ∈Σ, λ
)
.

Therein
zτ (λ) + λ · xhτ = λ2−ξτ · ητ + λ · xhτ + ρτ (λ) = λ2−ξτ · ητ + κτ (λ),

where ‖κτ (λ)‖ = O
(
|λ|2−(ξτ−1)

)
, since µτ ≥ 1. As P ′ and Q′ are mutually inverse, we obtain

yτ (λ) = λ2−µτ · ϑτ +Rτ (λ) = zτ (λ) + λ · xhτ = λ2−ξτ · ητ + κτ (λ).

Thus, ητ = ϑτ 6= 0 and ξτ = µτ so that zτ ∼ λ2−µτ . If on the other hand µτ = 0, we obtain µσ = 0

and therefore yσ ∼ λ for all σ D τ , including τ . We compute

‖zτ (λ)‖ = ‖`τ ((yσ(λ) | σ D τ), λ)‖ = O(|λ|),

which shows zτ ∼ λ, completing the proof of (i).
Conversely, consider the representation of a branch of steady states in ker0(DxΓf (0, 0))× R gi-

ven by ((zσ(λ))σ∈Σ, λ) with cell-by-cell asymptotics zσ ∼ λ2−µσ . Fix a cell τ ∈ Σ with µτ ≥ 1 first.
Then

zτ (λ) = λ2−µτ · ϑτ +Rτ (λ)

with ϑτ ∈ V \ {0} and ‖Rτ (λ)‖ = O
(
|λ|2−µτ−1

)
. As before, we compute the representation in the

generalized kernel of the extended system to be

yτ (λ) = zτ (λ) + λ · xhτ = λ2−µτ ϑτ + λ · xhτ +Rτ (λ).

As ϑτ 6= 0, this implies yτ ∼ λ2−µτ . On the other hand, assume µτ = 0, which implies
‖zτ (λ)‖ = O(|λ|) as before. In particular, we compute

‖yτ (λ)‖ =
∥∥∥zτ (λ) + λ · xhτ

∥∥∥ = O(|λ|),

which shows yτ ∼ λ and therefore completes the proof of (ii).
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Corollary 11.7. In feedforward fundamental networks, the cell-by-cell asymptotics of the full re-
presentation of branches of steady states of (11.2), agree with those of the representation in
ker0(DxΓf (0, 0))× R, if they respect the ordering relation (10.26). That is the cell-by-cell asymp-
totics are invariant under the bijective conjugation P = P ′ ◦ P c : M c → X c × R.

Remark 11.8. Similar to Remark 11.5 a slightly more precise statement relaxing the ordering assump-
tion on the cell-by-cell asymptotics (10.26) is possible. For every cell τ for which the ordering as-
sumption is fulfilled, µσ ≤ µτ for all σ D τ , we obtain that the τ -component exhibits the same
asymptotics in every representation of the solution branch. Here we do not require the square root
orders of all cells to be ordered. 4

These technical results put us in the position to prove the main theorems of the investigation of
1-parameter steady state bifurcations in fundamental feedforward networks with high-dimensional
internal dynamics. For bifurcation problems in which the generalized kernel at the bifurcation point
fulfills an additional condition, cell-by-cell asymptotics turn out to be the same as in the case 1D.
This follows almost directly from Corollary 11.7. In an arbitrary generic bifurcation problem only a
slightly weaker statement holds. That is, the amplification effect as in Proposition 10.27 is the same
in both cases. The precise square root order of each cell, however, is not necessarily the same in both
cases. In order to properly formulate the results we make use of the tensor notation introduced
in Section 7.1. In particular, we use indices and superscripts 1 and D with objects that have been
defined before to indicate one-dimensional or d-dimensional internal dynamics respectively without
explicitly defining them. For example Γ1

φ is a fundamental network vector field with internal phase
space R and response function φ, while ΓD

f is an admissible vector field of the same network with
internal phase space W and response function f . Furthermore, recall that the bifurcation setting
in the form of assumption (B) in Chapter 10 is formulated independent of the dimension of the
internal phase space, even if we only classify bifurcations in the case 1D there. Hence, we refer to
this assumption in the case DD as well.

Theorem 11.9. Consider a feedforward fundamental network with one-dimensional internal dynamics
and a generic 1-parameter family of admissible vector fields satisfying the bifurcation assumption (B)
from Chapter 10 with the absolutely indecomposable subrepresentation Y ⊂ V1 =

⊕
σ∈ΣR as the

generalized kernel at the bifurcation point. Denote the set of all 1-parameter families of admissible
vector fields satisfying the bifurcation assumption (B) from Chapter 10 with Y as the generalized kernel
at the bifurcation point by

F =
{

Γ1
φ : V1 × R→ V1 | ker0(DxΓ1

φ(0, 0)) = Y
}
.

Furthermore, consider a generic 1-parameter family ΓD
f : VD × R→ VD of admissible vector fields on

the same network with internal phase spaceW ∼= Rd with d > 1 satisfying the bifurcation assumption
(B) from Chapter 10 and the additional condition

ker0(DωΓD
f (0, 0)) = Y ⊗ 〈w〉 (11.14)

on the kernel in tensor notation, wherew ∈W \{0} (see Theorem 7.12).2Then there is a generic Γ1
φ ∈ F

such that ΓD
f exhibits the same pattern of local branches of steady states with the same cell-by-cell

asymptotics.
More precisely, the branches of steady states of Γ1

φ are known from Theorems 10.8, 10.20 and 10.21.
Denote them by (vσ(λ))σ∈Σ ⊂ V1. In particular, each cell σ ∈ Σ is of square root order µσ , i.e.
vσ ∼ λ2−µσ with µσ as in Definition 10.26. Then each branch of steady states (wσ(λ))σ∈Σ ⊂ VD of
ΓD
f uniquely corresponds to a branch (vσ(λ))σ∈Σ of Γ1

φ and square root orders are the same in both
branches, i.e. wσ ∼ λ2−µσ for all σ ∈ Σ.

2In the original coordinates this means for any basis (b1σ)σ∈Σ, . . . , (b
k
σ)σ∈Σ of Y the elements (biσw)σ∈Σ span

ker0(ΓD
f (0, 0)).
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Proof. Let ΓD
f : VD × R → W be a generic 1-parameter family of admissible vector fields with

ΓD
f (0, 0) = 0 and

ker0(DωΓD
f (0, 0)) = Y ⊗ 〈w〉,

where Y ⊂ V1 is an absolutely indecomposable subrepresentation. Due to the center manifold
reduction, the dynamics of ΓD

f on its center manifoldM c is bijectively conjugate to that of a generic
vector field

F : ker0(DωΓD
f (0, 0))× R→ ker0(DωΓD

f (0, 0)).

In particular, all bifurcating branches of steady states of ΓD
f can uniquely be represented as branches

of steady states ofF in ker0(DωΓD
f (0, 0))×R. As the center manifold reduction preserves symmetry,

the generic steady state bifurcations of the reduced system are entirely classified by Σ-equivariance.
The same observation holds true for a generic 1-parameter steady state bifurcation in the case

1D. Let Γ1
φ : V1 × R → R be a generic 1-parameter family of admissible vector fields satisfying

the bifurcation assumption (B) from Chapter 10. Its dynamics on the center manifold is bijectively
conjugate to that of a generic equivariant system

G : ker0(DvΓ
1
φ(0, 0))× R→ ker0(DvΓ

1
φ(0, 0))

In particular, if Γ1
φ ∈ F the generalized kernel satisfies

ker0(DvΓ
1
φ(0, 0)) = Y

Once again, dynamics on Y is classified by Σ-symmetry. As a result, there is a generic choice Γ1
φ ∈ F

such that
F (y ⊗ w, λ) = G(y, λ)⊗ w (11.15)

(recall that every element in Y ⊗ 〈w〉 can be represented as a pure tensor y ⊗ w from the proof of
Lemma 7.10).

On the other hand, from Theorems 10.8, 10.20 and 10.21, we know all branching solutions for a
generic Γ1

φ. In particular, for any branch (xσ(λ))σ∈Σ ⊂ V1 we know that xσ ∼ λ2−µσ , where the µσ
are as in Definition 10.26 and satisfy the ordering (10.26). Corollary 11.7 shows that the representation
(yσ(λ))σ∈Σ on Y has the same cell-by-cell asymptotics yσ ∼ λ2−µσ . For this representation we have
G((yσ(λ))σ∈Σ, λ) = 0 for all λ with small absolute value.

Applying (11.15) this directly implies

F ((yσ(λ))σ∈Σ ⊗ w, λ) = G((yσ(λ))σ∈Σ, λ)⊗ w = 0.

Hence, we obtain a branch of steady states of the generic equivariant vector field F on Y ⊗ 〈w〉 by
attaching the vector w ∈W \ {0} to each coordinate of the branch y(λ):

(yσ(λ))σ∈Σ ⊗ w ⊂ ker0(DωΓD
f (0, 0)).

Furthermore, as the dynamics on Y × R and Y ⊗ 〈w〉 × R are determined by symmetry, we obtain
all branches of steady states of F in this way (the representation on VD via {Aσ ⊗ 1W }σ∈Σ is trivial
in the 〈w〉-component). In the original coordinates this branch is denoted by

(zσ(λ))σ∈Σ = (yσ(λ) · w)σ∈Σ

(see (7.2)). In particular zσ ∼ λ2−µσ . Due to the center manifold reduction, this branch uniquely
corresponds to a branch (wσ(λ))σ∈Σ of the full system governed by ΓD

f . As (yσ(λ))σ∈Σ satisfies the
ordering (10.26) on its cell-by-cell asymptotics, Corollary 11.7 implies wσ ∼ λ2−µσ . Note that all steps
in this proof require the application of bijective maps. Hence, we indeed have a one-to-one corre-
spondence between branches in the 1D-case and branches in the DD-case.
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Figure 11.1: A 3-cell homogeneous feedforward chain.

Remark 11.10. Note that condition (11.14) imposes a restriction of generality. In general, due to Theo-
rem 7.12, the generalized kernel is isomorphic – as a subrepresentation – but not equal to Y ⊗ 〈w〉.

4

Example 11.1. We illustrate the previous remark by recalling Example 1.1 from the introduction. The
network in Figure 11.1 is the network in Figure 1.3 after its input maps have been completed to a
monoid. It is easy to see, that it is also a feedforward fundamental network. Similar to before,
we observe that the linearization of a 1-parameter family of admissible vector fields satisfying the
bifurcation assumption (B) from Chapter 10 is of the form

L =

A B C

0 A B + C

0 0 A+B + C

 ,

where A,B,C ∈ gl(V ). Under the assumption of non-critical maximal cells, we have a (generically
simple) eigenvalue 0 of A – i.e. A = 0 in the case 1D – and we compute

ker10(L1) =

〈1

0

0

 ,

 0
1
B

0

〉 , kerD0 (LD) =

〈Y0
0

 ,

Y ′Y
0

〉 ,
where Y, Y ′ ∈W are such that AY = 0 and AY ′ = (1V −B)Y . Hence, we see

kerD0 (LD) 6=

〈Y0
0

 ,

 0
1
BY

0

〉 ∼= ker10(L1)⊗ 〈Y 〉.

Nevertheless, it can easily be verified that

AD
σ2

Y ′Y
0

 =

Y0
0

 , AD
σ3

Y ′Y
0

 = 0

AD
σ2

 0
1
BY

0

 =

 1
BY

0

0

 , AD
σ3

 0
1
BY

0

 = 0.

In particular the actions of σ2 and σ3 on (Y ′, Y, 0)T and on (0, 1
BY, 0)T are conjugate. Hence, we have

indeed

kerD0 (LD) ∼=

〈Y0
0

 ,

 0
1
BY

0

〉 ∼= ker10(L1)⊗ 〈Y 〉.

4

Theorem 11.9 describes generic steady state bifurcations in a DD-feedforward network only
in the special case that the generalized kernel of the vector field is essentially equal to one that
also occurs generically in the 1D-case. For a generic feedforward fundamental network with high-
dimensional internal dynamics the result is slightly weaker. Here we only obtain the same cell
asymptotics as in the 1D-case for cells σ ∈ Σ for which µσ > µσ . In particular, this is the case
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for cells that are critical in the 1D-setting. In cells that are non-critical the square root order in
the case DD is less than or equal to that in the case 1D. However, as amplification in the case
1D is only visible in the critical cells – µσ increases only in critical cells (see Proposition 10.27) –,
this can be interpreted as the same amplifying effect in steady state bifurcations in networks with
high-dimensional internal dynamics. In order to make the notion of genericity precise, we need to
make the following remark first.

Remark 11.11. Consider a generic 1-parameter family of admissible vector fields for a feedforward
fundamental network ΓD

f : VD×R→ VD satisfying the bifurcation assumption (B) from Chapter 10
in the case DD. As generic steady state bifurcations occur along absolutely indecomposable subre-
presentations, we know that ker0(DωΓD

f (0, 0)) is absolutely indecomposable. Furthermore, due to
Theorem 7.12, there is a decomposition into indecomposable subrepresentations

V1 = Y1 ⊕ · · · ⊕ Ys

such that
ker0(DωΓD

f (0, 0)) ∼= Yj ⊗ 〈w〉 ∼= Yj

for some 1 ≤ j ≤ s. Furthermore, any subrepresentation Yi can occur in a generic 1-parameter
steady state bifurcation in the case 1D – according to Theorems 9.1 and 9.2 the subrepresentati-
ons are all absolutely indecomposable and in one-to-one correspondence with the eigenvalues of a
generic linear admissible map. That is, there is a generic 1-parameter family of admissible vector
fields for the same fundamental feedforward network Γ1

φ : V1 × R→ V1 satisfying the bifurcation
assumption (B) from Chapter 10 in the case 1D such that

ker0(DvΓ
1
φ(0, 0)) ∼= Yj ∼= ker0(DωΓD

f (0, 0)),

where the isomorphisms are isomorphisms of subrepresentations. 4

Theorem 11.12. Consider a feedforward fundamental network with internal phase spaceW ∼= Rd with
d > 1. Let ΓD

f : VD × R → VD be a generic 1-parameter family of admissible vector fields satisfying
the bifurcation assumption (B) from Chapter 10. Then ΓD

f exhibits the same amplification effect in its
branching steady state solutions as a generic 1-parameter family of admissible vector fields for the
same network with one-dimensional internal dynamics Γ1

φ : V1 × R→ V1.
That is, any branch (wσ(λ))σ∈Σ of steady states of ΓD

f uniquely corresponds to a branch (vσ(λ))σ∈Σ

of Γ1
φ. These are known from Theorems 10.8, 10.20 and 10.21. In particular, each cell σ ∈ Σ is of square

root order µσ , i.e. vσ ∼ λ2−µσ with µσ as in Definition 10.26. Then

wσ ∼ λ2−ξσ for all σ ∈ Σ,

where

ξσ

= µσ for σ critical,

∈ {0, . . . , µσ} for σ non-critical.

Here, criticality is to be understood with respect to Γ1
φ – the definition of criticality depends on a non-

invertible linearization of a 1-parameter family of admissible vector fields.

Proof. The general idea of the proof is similar to that of Theorem 11.9. Therefore, we omit some of
the details and focus on the difficulties that arise when condition (11.14) is violated. Once again, dyna-
mics restricted to the center manifold of a generic parameter dependent system ΓD

f : VD × R→ VD

satisfying the bifurcation assumption (B) from Chapter 10 is bijectively conjugate to that given by a
generic equivariant vector field

F : ker0(DωΓD
f (0, 0))× R→ ker0(DωΓD

f (0, 0)).
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Due to Theorem 7.12, we know that

VD ⊃ ker0(DωΓD
f (0, 0)) ∼= Y ⊗ 〈w〉, (11.16)

where w ∈ W \ {0} and Y ⊂ V1 is an absolutely indecomposable subrepresentation. Remark 11.11
implies, that there is a generic 1-parameter family of admissible vector fields Γ1

φ : V1 × R→ V1 for
the same network with one-dimensional internal dynamics such that

ker0(DvΓ
1
φ(0, 0)) ∼= Y ⊂ V1. (11.17)

Generic dynamics – most importantly steady state bifurcations – on Y is uniquely determined
by symmetry. On the other hand, the same holds for generic dynamics on ker0(DvΓ

1
φ(0, 0)). As in

the proof of Theorem 11.9, these are also determined by the reduction of the generic system Γ1
φ to

its generalized kernel by the center manifold reduction. In particular, using Theorems 10.8, 10.20
and 10.21 and Corollary 11.7, we obtain a unique representation (yσ(λ))σ∈Σ ⊂ ker0(DvΓ

1
φ(0, 0)) of

each branch of Γ1
φ such that yσ ∼ λ2−µσ , where µσ is defined as in Definition 10.26. In the same

manner we obtain all branching steady state solutions of a generic A1
σ ⊗ 1W -equivariant system

G : ker0(DvΓ
1
φ(0, 0))⊗ 〈w〉 × R→ ker0(DvΓ

1
φ(0, 0))⊗ 〈w〉

as
(yσ(λ))σ∈Σ ⊗ w ⊂ ker0(DvΓ

1
φ(0, 0))⊗ 〈w〉.

This is due to the obvious observation

ker0(DvΓ
1
φ(0, 0))⊗ 〈w〉 ∼= ker0(DvΓ

1
φ(0, 0))

as representations with respect to σ 7→ A1
σ ⊗ 1W and σ 7→ A1

σ respectively. In the remainder of
this proof it is convenient not to use the tensor notation but to rely on the original coordinates
(yσw)σ∈Σ ∈ ker0(DvΓ

1
φ(0, 0)) ⊗ 〈w〉. In particular, the generic branch in ker0(DvΓ

1
φ(0, 0)) ⊗ 〈w〉

becomes (yσ(λ)w)σ∈Σ. It satisfies
yσ(λ)w ∼ λ2−µσ

for all σ ∈ Σ as w is fixed.
Using (11.16) and (11.17) we see that there is an isomorphism of subrepresentations

Ψ: ker0(DωΓD
f (0, 0))→ ker0(DvΓ

1
φ(0, 0))⊗ 〈w〉.

with inverse Ξ. This isomorphism conjugates generic dynamics on the two spaces as it respects
symmetry. In particular all branches of steady states of the generic reduced system F are of the
form

(zσ(λ))σ∈Σ = Ξ ((yσ(λ))σ∈Σw) ⊂ ker0(DωΓD
f (0, 0)).

Similar to the proof of Theorem 11.9 we have found a relation of the generic branches of steady
states in the case DD to those in the case 1D. However, due to the characterization of (zσ(λ))σ∈Σ

using the isomorphism Ξ it is not as obvious what the square root orders of each cell are in this
representation. Hence, we cannot apply Corollary 11.7 directly to obtain square root orders of the
corresponding branches of ΓD

f . Hence, we begin by investigating the effect of the isomorphism Ψ

on cell-by-cell square root orders similarly to Lemmas 11.4 and 11.6. To that end, we extend Ψ and Ξ

trivially to the full space, i.e. Ψ,Ξ: VD → VD. Hence, both maps are equivariant maps with respect
to σ 7→ AD

σ (they are, however, only invertible when restricted to the respective subrepresentations).
Due to the equivalence of equivariance and admissibility, they are therefore linear admissible maps
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for the feedforward fundamental network with internal phase space W . In particular, both maps
respect the partial orderE so that we may write

(Ψ((Zσ)σ∈Σ))τ = `τ (Zσ | σ D τ) = `yτ (Zσ | σ D τ) · w, (11.18a)

(Ξ((Yσw)σ∈Σ))τ = lτ (Yσw | σ D τ) =
∑
σDτ

Yσl
σ
τ (w), (11.18b)

where `τ : W#{σDτ} → W , `yτ : W#{σDτ} → R as well as lτ : : W#{σDτ} → W and lστ : W → W are
suitable linear maps.

Similar to the proofs of Lemmas 11.4 and 11.6, we investigate the implications of this structure
of the linear maps Ψ and Ξ on the cell-by-cell asymptotics of (zσ(λ))σ∈Σ = Ξ ((yσ(λ))σ∈Σw). By
definition

yσ(λ) =

ασ · λ2−µσ +O
(
|λ|2−(µσ−1)

)
if µσ ≥ 1,

O(|λ|) if µσ = 0,

where ασ ∈ R\{0}. Consider a cell τ ∈ Σ with µτ = 0 first. By definition µσ = 0 for all σ D τ . Hence,
using (11.18b) we obtain

‖zτ (λ)‖ =

∥∥∥∥∥∑
σDτ

yσ(λ)lστ (w)

∥∥∥∥∥ = O(|λ|)

and, therefore, zτ ∼ λ. In particular τ is of square root order ιτ = 0 in that representation.
Next, consider a cell τ ∈ Σ with µτ ≥ 1. Then (11.18b) gives

zτ (λ) =
∑
σDτ

yσ(λ)lστ (w) = λ2−µτ · ητ + κτ (λ),

where ητ ∈W and ‖κτ (λ)‖ = O
(
λ2−(µτ−1)

)
. In particular, zτ ∼ λ2−ιτ with

ιτ

{
= µτ if ητ 6= 0,

∈ {0, . . . , µτ − 1} if ητ = 0.
(11.19)

The second case can be avoided, if additionally τ is a critical cell with respect to Γ1
φ. By definition,

this implies µσ < µτ for all σ B τ . Hence, (11.19) gives

ισ ≤ µσ < µτ for all σ B τ. (11.20)

As Ψ and Ξ are mutually inverse on the respective subrepresentations, we obtain

yτ (λ)w =
(
ατ · λ2−µτ +O

(
|λ|2−(µτ−1)

))
· w

= (Ψ((zσ(λ))σ∈Σ))τ

= `yτ (zσ(λ) | σ D τ) · w

=
(
βτ (ητ ) · λ2−µτ +O

(
|λ|2−(µτ−1)

))
· w,

where βτ : W → R linear. Therein, the last equation holds due to (11.20). Hence, βτ (ητ ) = ατ 6= 0

which implies ητ 6= 0. Hence, due to (11.19), ιτ = µτ so that zτ ∼ λ2−µτ .
Summarizing, we have shown that the representation (zσ(λ))σ∈Σ of the generic branch of steady

states (yσ(λ)w)σ∈Σ in ker0(DωΓD
f (0, 0)) has cell-by-cell asymptotics zσ ∼ λ2−ισ . These do not satisfy

the ordering (10.26) on all cells. However, for a cell τ that is critical with respect to Γ1
φ, we have that

ισ < ιτ for all σ B τ . This follows from (11.20) and the fact that ιτ = µτ for such τ . Due to the bijective
conjugation between the dynamics of F and those of the generic original system ΓD

f restricted to its
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center manifold, each branch (zσ(λ))σ∈Σ of steady states of F uniquely corresponds to a branch of
steady states (wσ(λ))σ∈Σ ⊂ VD of ΓD

f . It can be computed as in (11.7)

((wσ(λ))σ∈Σ, λ) =
(
1X c + ψ

) (
Q′ ((zσ(λ))σ∈Σ, λ)

)
(11.21)

using the map whose graph is the center manifoldM c. It remains to be investigated, how the square
root orders translate to this representation. From Corollary 11.7 and Remark 11.8 we immediately
obtain

wτ ∼ λ2−ιτ = λ2−µτ (11.22)

for all cells τ ∈ Σ that are critical with respect to Γ1
φ, as the ordering (10.26) is satisfied for these cells

as well as ιτ = µτ .
We cannot apply Corollary 11.7 to cells that are not critical with respect to Γ1

φ. However, using
Lemma 11.6, we may take an intermediate step in (11.21) as

((Xσ(λ))σ∈Σ, λ) = Q′ ((zσ(λ))σ∈Σ, λ) ⊂ X c ⊂ VD × R,

where X c is the generalized kernel of the linearization of the extended system at the bifurcation
point DΓD

f (0, 0) and Q′ : ker0(DωΓD
f (0, 0)) × R → X c is the isomorphism of Σ-representations gi-

ven in (11.6). Then ((Xσ(λ))σ∈Σ, λ) is the unique representation of ((zσ(λ))σ∈Σ, λ) in X c. Due to
Lemma 11.6, the X-component of this representation exhibits the same cell-by-cell asymptotics as
(zσ(λ))σ∈Σ, i.e.

Xσ ∼ λ2−ισ

for all σ ∈ Σ.
Finally, as in (11.21) we have

((wσ(λ))σ∈Σ, λ) =
(
1X c + ψ

)
((Xσ(λ))σ∈Σ, λ) .

Hence, it remains to investigate what impact the map
(
1X c + ψ

)
has on the square root orders

of each cell. Lemma 11.4 does not apply to this situation, as the square root orders for the branch
(Xσ(λ))σ∈Σ are given by ισ for all σ ∈ Σ which do not respect the partial order E as in (10.26).
Nevertheless, a proof similar to that of Lemma 11.4 allows for a characterization of the square
root orders of the branch (wσ(λ))σ∈Σ. Recall from (11.10) that ψ is trivial in the λ-component, i.e.
ψ(X,λ) = (ψ

X
(X,λ), 0), and ψ

X
is a parameter-dependent admissible map of the fundamental

network. That is (
ψ
X

(X,λ)
)
τ

= qτ ((Xσ | σ D τ), λ) .

In particular, we compute

wτ (λ) = Xτ (λ) + qτ ((Xσ(λ) | σ D τ), λ), (11.23)

for all τ ∈ Σ, where qσ(0, 0) = 0 and dqσ(0, 0) = 0.
Fix a cell τ ∈ Σ with ιτ = 0. Then ισ = 0 for all σ B τ . Hence, we have ‖Xσ(λ)‖ = O(|λ|) for all

σ D τ (which includes τ ). Therefore, from (11.23) we obtain

‖wτ (λ)‖ = ‖Xτ (λ) + qτ ((Xσ(λ) | σ D τ), λ)‖ = O(|λ|),

which is equivalent to wτ ∼ λ. That is τ has square root order 0 = ιτ = µτ .
On the other hand, consider a cell τ ∈ Σ with ιτ ≥ 1. We may focus on the case that τ is non-

critical with respect to Γ1
φ, as we have investigated the other case already in (11.22). By definition

Xσ(λ) = λ2−ισ · ϑσ + ρσ(λ),

180



for all σ ∈ Σ, where ϑσ ∈W \ {0} and ‖ρσ(λ)‖ = O
(
|λ|2−(ισ−1)

)
. Hence, using (11.23) we obtain

wτ (λ) = Xτ (λ) + qτ ((Xσ(λ) | σ D τ), λ) = λ2−ισ · ϑσ + λ2−Υτ ·$τ +Ωτ (λ),

where$τ ∈W , ‖Ωτ (λ)‖ = O
(
|λ|2−(ιτ−1)

+ |λ|2−(Υτ−1)
)

and Υτ = maxσDτ ισ−1. Recall that ισ ≤ µσ
for all σ ∈ Σ. Furthermore,

µτ = max
σBτ

µσ,

as τ is non-critical for Γ1
φ. Hence, we obtain

Υτ = max
σDτ

ισ − 1 ≤ max
σDτ

µσ − 1 = µτ − 1 < µτ .

This proves wτ ∼ λ2−ξτ where ξτ ≤ ιτ ≤ µτ .

Remark 11.13. In Theorems 11.9 and 11.12 we show that the 1-parameter family of admissible vector
fields ΓD

f in the case DD admits branching steady states that exhibit the same amplification effect
as those of Γ1

φ in the case 1D. In particular, cells that are critical with respect to Γ1
φ exhibit the same

asymptotics in both cases – the same holds for cells τ ∈ Σ with µτ = 0.
On the other hand, consider a cell τ with µτ ≥ 1 that is non-critical with respect to ΓD

f . Assume,
furthermore, that for a specific branch of steady states (wσ(λ))σ∈Σ, we knowwσ ∼ λ2−ισ with ισ ≥ 0

for all σ B τ . In order to determine the τ -coordinate of this branch, the equation to be solved is

0 = f(wσ1τ , . . . , wσnτ , λ).

Note that for all σ ∈ Σ either στ = τ or στ B τ . In particular, we may fill in the coordinates of the
branch wσ(λ) for all σ B τ . The τ equation reduces to a bifurcation equation on W

0 = g(wτ , λ).

Due to the bifurcation assumption (B) in Chapter 10, we have

Dwτ g(0, 0) = Dwτ f(0, 0) =
∑
σ∈Lτ

aσ

which is invertible as τ is assumed not to be critical. Therefore, we may apply the implicit function
theorem to obtain

wτ (λ) = G((wσ(λ) | σ B τ), λ)

such that
0 = g(wτ (λ), λ) = f(wσ1τ (λ), . . . , wσnτ (λ), λ)

for all λ close to 0. As G is at least linear up to lowest order in all its arguments, we immediately
obtain

wτ ∼ λ2−ιτ

with ιτ ≤ maxσBτ ισ . In particular, no amplification may occur in a cell that is non-critical with
respect to ΓD

f . As a result, all cells that provide an amplification must be critical. Since these are
precisely the ones that are critical with respect to Γ1

φ, we obtain that the set of critical cells is the
same in both cases. 4
Remark 11.14. The bifurcation results in the case 1D in Chapter 10 are proven by bare-hands analysis
exploiting the partial order in the network. The fact that the equation for cell σ depends only on
the state variables of cells τ D σ, allows for inductive computations of solutions. A similar appro-
ach is possible in the case DD as well. Computations in non-critical cells can be solved using the
implicit function theorem (compare to Remark 11.13), critical cells require application of the Lyapu-
nov-Schmidt reduction. However, taking care of the numerous different cases of branching patterns,
depending on a large number of parameters in the equations, and in particular investigating gene-
ricity is at least tedious if not factually impossible, due to the arbitrary dimension of the internal
phase space. 4
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Chapter 12

Example: A feedforward network with 5

cells

We close our investigation of feedforward networks with an example for which we classify the ge-
neric 1-parameter steady state bifurcations as predicted by Theorems 10.8, 10.20 and 10.21. In par-
ticular, this illustrates the algorithmic computation method in Remark 10.23 and highlights the pe-
culiarities mentioned in Remarks 10.24 and 10.25. We perform the computations for the case of
one-dimensional internal dynamics. The results of Chapter 11 imply that the same qualitative bran-
ching pattern is generic for arbitrary finite dimensions. In particular the same amplification effect
– with the same amplifying cells – can be observed independent of the dimension of the internal
phase space. The majority of this chapter is from Section 4.3 in [84].

Consider the feedforward network given by the graph in Figure 12.1. Each arrow color corresponds

1

2

3

45

Figure 12.1: A 5-cell feedforward network.

to one input map σ : C → C . Note that we have not drawn an arrow for σ = Id corresponding to
the internal dynamics which we implicitly assume to be there. This network is clearly a feedforward
network as it does not contain any loops besides self-loops. Its only maximal cell is cell 5. Further-
more, it possesses two different loop-types L5 = Σ and L1 = L2 = L3 = L4 = {Id}. Assuming a
one-dimensional internal phase space xi ∈ V = R and additional dependence on a real parameter
λ ∈ R, the corresponding dynamics is governed by

ẋ = γf (x) =


f(x1, x2, x3, x4, x5, λ)

f(x2, x5, x4, x5, x5, λ)

f(x3, x4, x5, x5, x5, λ)

f(x4, x5, x5, x5, x5, λ)

f(x5, x5, x5, x5, x5, λ)

 .

We want to investigate bifurcations of steady states as in the bifurcation scenario (B) described in
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Chapter 10. That is, we assume
γf (0, 0) = 0.

The linearization at this steady state is

Dxγf (0, 0) =


aId aσ2 aσ3 aσ4 aσ5

0 aId 0 aσ3 aσ2 + aσ4 + aσ5

0 0 aId aσ2 aσ3 + aσ4 + aσ5

0 0 0 aId aσ2 + aσ3 + aσ4 + aσ5

0 0 0 0 aId + aσ2 + aσ3 + aσ4 + aσ5

 .

Therein we define aσ = ∂σf(0, 0) (see (10.2)). Furthermore, we follow our convention σ1 = Id. The
other partial derivatives are abbreviated accordingly again:

fστ =
1

2
∂στf(0, 0), fσλ = ∂σλf(0, 0),

` = ∂λf(0, 0), fλλ =
1

2
∂λλf(0, 0).

According to Theorem 9.1 the eigenvalues of the linearization are in one-to-one correspondence
with the loop types of the network. This can also easily be read off of the matrix. As a matter of
fact the linearization has two eigenvalues

∑
σ∈L5

aσ = aId + aσ2 + aσ3 + aσ4 + aσ5 , which is simple,
and

∑
σ∈L1

aσ = aId which has algebraic multiplicity 4. For a steady state bifurcation to occur, the
linearization has to have an eigenvalue 0. Generically – i.e. for a generic choice of system parameters
–, in such a point only one of the two eigenvalues vanishes. Under these assumptions we investigate
generic solutions to

γf (x, λ) = 0

close to the bifurcation point.
Let us investigate the case

∑
σ∈L5

aσ = aId + aσ2 + aσ3 + aσ4 + aσ5 = 0 and
∑

σ∈L1
aσ = aId 6= 0

first. In particular, this means the maximal cell is critical while all other cells are not. As a result,
all branches of steady state solutions are given in Theorem 10.8. As there is only one maximal cell,
necessarily all branches are fully synchronous. We obtain two different saddle node branches de-
pending on the system parameters. If

`∑
σ,τ∈Σ fστ

< 0

we compute

xi = ±
√
− `∑

σ,τ∈Σ fστ
·
√
λ+O(|λ|).

for i = 1, . . . , 5. Note that therein the choice of sign is the same for all cells simultaneously yielding
exactly two fully synchronous branches. On the other hand, if

`∑
σ,τ∈Σ fστ

> 0

we obtain

xi = ±
√

`∑
σ,τ∈Σ fστ

·
√
−λ+O(|λ|).

for i = 1, . . . , 5 accordingly. These branches exists for |λ| small. Generically, no other cases are
possible so that no other branching solutions exist.

Next, we turn to the caseK=
∑

σ∈L5
aσ=aId +aσ2+aσ3+aσ4+aσ5 6= 0 and

∑
σ∈L1

aσ = aId = 0.
Equivalently the maximal cells are not critical but all the other cells are. Theorems 10.20 and 10.21
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provide all generic branching solutions. As a first step, we have to determine all possible blocks
B ⊂ C such that p /∈ B but q ∈ B for all q B p implies p critical (see Remark 10.23). The possible
choices are {5}, {4, 5}, {3, 4, 5}, {2, 4, 5}, {2, 3, 4, 5}, {1, 2, 3, 4, 5}. For each solution branch the cells
in exactly one of these blocks are in the fully synchronous state X(λ) as in Lemma 10.17 while all
others are not. The solutions for the variables of the remaining cells are computed iteratively with
respect to the partial order E according to the rules in Theorems 10.20 and 10.21. If for a cell p the
existence condition in these theorems is not satisfied for all choices of coefficients for cells q B p,
this implies that the entire solution branch does not exist. We describe the branches as briefly as
possible starting with the most simple case.

Assume B = {1, 2, 3, 4, 5}. All cells remain in the fully synchronous state, i.e.

xi(λ) = X(λ) = − `

K
λ+O

(
|λ|2
)

for i = 1, . . . , 5. This branch exists for |λ| small independent of the sign and without any further
restrictions on the system parameters.

Next, assume B = {2, 3, 4, 5}. We obtain

x5(λ) = x4(λ) = x3(λ) = x2(λ) = X(λ) = − `

K
λ+O

(
|λ|2
)
.

As cell 1 is critical but not in the fully synchronous state, this leaves

x1(λ) =

(
`

K

(
1 + 2

fIdσ2 + fIdσ3 + fIdσ4 + fIdσ5

fId Id

)
− fIdλ

fId Id

)
λ+O

(
|λ|2
)
.

This branch exists without any further restrictions on the system parameters as well.
Consider B = {3, 4, 5} and focus on λ > 0. We obtain

x5(λ) = x4(λ) = x3(λ) = X(λ) = − `

K
λ+O

(
|λ|2
)

and abbreviate D5 = D4 = D3 = −`/K . As cell 2 is critical but 2 /∈ B, we obtain

x2(λ) =

(
`

K

(
1 + 2

fIdσ2 + fIdσ3 + fIdσ4 + fIdσ5

fId Id

)
− fIdλ

fId Id

)
λ+O

(
|λ|2
)

= D2λ+O
(
|λ|2
)
.

Then cell 1 is critical and receives an input from a cell not in B. Thus, we have to distinguish two
cases. If

(∗) = (aσ2D2 + aσ3D3 + aσ4D4 + aσ5D5 + `) fId Id < 0,

we obtain

x1(λ) = ±

√
−aσ2D2 + aσ3D3 + aσ4D4 + aσ5D5 + `

fId Id
·
√
λ+O(|λ|).

If, on the other hand, (∗) > 0, there is no solution branch with B = {3, 4, 5}. However, for this
choice of B we obtain the same solutions for cells 2, 3, 4, 5 for λ < 0. They can be written as
xi(λ) = Ei · (−λ) +O(|λ|2), where Ei = −Di (compare to Remark 10.25). The condition for the
existence of a branching solution for cell 1 is

(aσ2E2 + aσ3E3 + aσ4E4 + aσ5E5 − `) fId Id < 0.

Note that the left hand side of this inequality is−(∗). Hence, if (∗) > 0, we obtain

x1(λ) = ±

√
aσ2D2 + aσ3D3 + aσ4D4 + aσ5D5 + `

fId Id
·
√
−λ+O(|λ|).
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If (∗) < 0 there is no solution for cell 1 for λ < 0. Summarizing we see that depending on the sign
of (∗), the branching solutions for cell 1 exist for precisely one sign of λ. Hence, a branch of steady
states for B = {3, 4, 5} exists either only for λ > 0 or only for λ < 0.

The considerations for B = {2, 4, 5} are almost identical to those made for B = {3, 4, 5}. Ex-
changing cells 2 and 3 as well as the input maps σ2 and σ3 provides the solution branches.

The case B = {4, 5} is very similar as well. Cells 4 and 5 remain in the fully synchronous state
X(λ). More precisely for cells i = 2, . . . , 5 we obtain

xi(λ) = Diλ+O
(
|λ|2
)

= Ei · (−λ) +O
(
|λ|2
)

with

D5 = −E5 = D4 = −E4 = − `

K
,

D3 = −E3 = D2 = −E2 =
`

K

(
1 + 2

fIdσ2 + fIdσ3 + fIdσ4 + fIdσ5

fId Id

)
− fIdλ

fId Id

for λ > 0 and λ < 0 respectively. Similar to before we obtain

x1(λ) = ±

√
−aσ2D2 + aσ3D3 + aσ4D4 + aσ5D5 + `

fId Id
·
√
λ+O(|λ|) or

x1(λ) = ±

√
aσ2D2 + aσ3D3 + aσ4D4 + aσ5D5 + `

fId Id
·
√
−λ+O(|λ|)

for λ > 0 or λ < 0 respectively, if

(aσ2D2 + aσ3D3 + aσ4D4 + aσ5D5 + `) fId Id < 0 or > 0.

Once again, a solution branch for this choice of B exists for precisely one sign of λ.
Finally, we investigate the case B = {5}. The mechanism that relates the two cases – i.e. bran-

ching solutions for λ > 0 and λ < 0 – is the same as in the previous cases. Therefore we omit the
computational details. Cell 5 remains in the fully synchronous state

x5(λ) = X(λ) = D5λ+O
(
|λ|2
)

= − `

K
λ+O

(
|λ|2
)
.

For cell 4 we obtain

x4(λ) = D4λ+O
(
|λ|2
)

=

(
`

K

(
1 + 2

fIdσ2 + fIdσ3 + fIdσ4 + fIdσ5

fId Id

)
− fIdλ

fId Id

)
λ+O

(
|λ|2
)
.

Considering cell 3, we obtain

x3(λ) = ±

√
−aσ2D4 + (aσ3 + aσ4 + aσ5)D5 + `

fId Id
·
√
λ+O(|λ|) or

x3(λ) = ±

√
aσ2D4 + (aσ3 + aσ4 + aσ5)D5 + `

fId Id
·
√
−λ+O(|λ|),

if
(∗) = (aσ2D4 + (aσ3 + aσ4 + aσ5)D5 + `) fId Id < 0 or > 0
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respectively. In particular, B = {5} does not provide a solution branch for λ > 0, if (∗) > 0, or for
λ < 0, if (∗) < 0. Similarly, we obtain

x2(λ) = ±

√
−aσ3D4 + (aσ2 + aσ4 + aσ5)D5 + `

fId Id
·
√
λ+O(|λ|) or

x2(λ) = ±

√
aσ3D4 + (aσ2 + aσ4 + aσ5)D5 + `

fId Id
·
√
−λ+O(|λ|),

if
(∗∗) = (aσ3D4 + (aσ2 + aσ4 + aσ5)D5 + `) fId Id < 0 or > 0

respectively. In particular, B = {5} does not provide a solution branch for λ > 0, if (∗∗) > 0, or for
λ < 0, if (∗∗) < 0. Hence, if (∗) and (∗∗) have opposite signs, neither of the two branches exists.
If both have the same sign, we abbreviate the lowest order coefficients as ±D3,±D2,±E3,±E2 as
before. We only need to investigate cell 1 in that case. Consider (∗), (∗∗) < 0. If

(∗ ∗ ∗) = (±aσ2D2 ± aσ3D3) fId Id < 0,

we obtain

x1(λ) = ±

√
−±aσ2D2 ± aσ3D3

fId Id

√√
λ+O

(√
|λ|
)
.

If (∗ ∗ ∗) > 0, the solution branch does not exist. Note that (∗ ∗ ∗) depends on the choice of signs for
the coefficients in cells 2 and 3. Therefore not all of them might be admissible to provide a solution
branch. More precisely, exactly half of the possible choices yields a negative sign of (∗ ∗ ∗) while the
other half yields a positive sign. This is due to the fact that (∗ ∗ ∗) and −(∗ ∗ ∗) are both possible
choices, while (∗ ∗ ∗) 6= 0 generically. Similarly, for (∗), (∗∗) > 0 we obtain

x1(λ) = ±

√
−±aσ2D2 ± aσ3D3

fId Id

√√
−λ+O

(√
|λ|
)
,

if
(±aσ2D2 ± aσ3D3) fId Id < 0

for admissible choices of signs.
We have therefore computed all branches of steady states in a generic 1-parameter bifurcation

in the case of one-dimensional internal dynamics. Note that the network in Figure 12.1 is its own
fundamental network. Hence, from Theorems 11.9 and 11.12 we see that the generic steady state bi-
furcation branches for high-dimensional internal dynamics are qualitatively essentially the same. In
particular, for a branch of steady states in a generic steady state bifurcation with high-dimensional
internal dynamics we obtain that each cell has the same square root order as in one of the branches
we have computed for the one-dimensional case before. Only for the non-critical cells, the square
root order might be lower.

Finally we make some remarks about the peculiarities concerning existence and non-existence
of certain branches of steady states. We see that there are numerous ways in which a solution
branch with B = {5} fails to exist. These ultimately depend on the system parameters. Hence,
there are different solutions in different regions of system parameter space. We briefly introduce
two cases to illustrate that already this simple network produces unexpected – compared to the
informal introduction of the amplification effect – bifurcation scenarios.

Consider the bifurcation scenario as before with aσ3 = −2aσ2 as well as aσ3 = aσ4 = 0 and
investigateB = {5}. We compute (∗∗) = −2 ·(∗) proving that generically (∗) and (∗∗) have opposite
signs. Therefore, there are no branching solutions with B = {5}, as cell 2 forces the branch to exist
for λ > 0 and cell 3 forces it to exist for λ < 0 or the other way around. This implies the existence
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of an open region in parameter space for which this issue occurs. The reason lies in the structure of
the network. The two cells 2 and 3 receive the same inputs. However, the input from cell 4 comes
via different arrow types. As these types reflect various types of interactions, this can lead to one
cell only amplifying its inputs ‘before’ the bifurcation point and the other one ‘after’ the bifurcation
point λ = 0.

On the other hand, whenever (∗) and (∗∗) have the same sign, there is also a suitable choice of
coefficients in cells 2 and 3 such that (∗ ∗ ∗) < 0, as was mentioned before. Hence, there is also
generically a branching solution for cell 1 and the resulting in the generic existence of the entire
solution branch with B = {5}.

In Figure 12.2 we illustrate the steady state bifurcations for two different choices of parameter
values. The qualitative bifurcation scenario is depicted for each cell separately. Note that for a non-
maximal cell certain branches are only possible if cells above it are in a suitable state. This fact is
not displayed in the figures. Both choices of parameters are generic but display different behavior.
The amplification effect can be seen in both. However, in Figure 12.2a the strongest amplification is
∼
√
λ in cell 1, whereas we also find a branch∼ 4

√
λ in cell 1 in Figure 12.2b.
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(a) Parameters: aσ1
= 0, aσ2

= 1, aσ3
= −2, aσ4

= 1, aσ5
= 1, ` = 1, fId Id = −1, fIdλ = 1, fIdσ2

+ fIdσ3
+

fIdσ4
+ fIdσ5

= 1
2 .

(b) Parameters: aσ1
= 0, aσ2

= 2, aσ3
= 1, aσ4

= −1, aσ5
= 0, ` = −1, fId Id = 1, fIdλ = 0, fIdσ2

= 0, fIdσ3
=

0, fIdσ4
= 0, fIdσ5

= 0.

Figure 12.2: Depiction of the qualitative steady state bifurcations of the network in Figure 12.1 with
different parameter values. The diagrams describe each cells behavior separately. However, the
branching is not independent of the other cells as described in Chapter 12.
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Chapter 13

The algebra in network dynamics

In this thesis we have seen how the usage of algebraic techniques can help to address the issues –
or at least certain aspects thereof – that emerge in the investigation of network dynamical systems
(see Chapter 1) and to characterize dynamical phenomena that are inherent to a given network. This
is of course not surprising as networks are inherently algebraic objects. Most notably, they are mo-
dular in nature – i.e. naturally made up of smaller building blocks. In particular, groupoids allow to
characterize robust patterns of synchrony in terms of balanced equivalence relations, the classical
reduction methods leave the structure of semigroup networks intact, graph fibrations relate the dy-
namical properties of different networks and, as a result, introduce hidden symmetries, and operad
and sheaf theory flexibly encode the modular nature of networks.

We focus our work on the formalism of semigroup networks. These prove to be particularly
powerful due to their well-behavedness. An abundance of algebraic properties and objects can be
related to networks of this type which provide tools to encode certain aspects of the network struc-
ture in ways that are respected by classical methods of dynamical analysis. Most importantly, the
interaction structure is entirely encoded in a semigroup or monoid of input maps. Hence, investi-
gation of structural properties of a network amounts to an algebraic investigation of the structure
of the corresponding monoid. For example feedforward structure is equivalent to the monoid being
L-trivial which yields a class of monoids that is also studied in the algebraic field of monoid theory.
Furthermore, the fundamental network construction, which exclusively relies on the monoid of in-
put maps, gives rise to hidden symmetries that, unlike the classical interpretation, are not actual
symmetries of the (fundamental) network but more general transformations. Nevertheless, they
introduce equivariance of the admissible vector fields in the same way as classical symmetries do.
However, in this case equivariance respects the more general transformations which are encoded
in a representation of the monoid of input maps. First and foremost this observation has led to a
significant generalization of the theory of equivariant dynamics which focused on finite or compact
groups before. Fortunately, most of the well-established machinery has – more or less direct – gene-
ralizations to more general types of symmetries. Most notably, we mention the reduction methods
in terms of normal forms, the Lyapunov-Schmidt reduction, and the center manifold reduction. Inte-
restingly, the latter can only be generalized to monoid equivariant systems in the context of funda-
mental networks as it crucially depends on the response function that drives the internal dynamics
of each cell. Nonetheless, all of these methods can be applied to a fundamental network and addi-
tionally, via graph fibrations, also have their impact on the original network. These relations allow
to classify the synchrony breaking bifurcations that are inherent to a given semigroup network –
i.e. forced by the network structure but not by a specific choice of governing functions – following
a standardized step-by-step machinery (see Section 6.1). We were able to provide the crucial step of
classifying spectral properties in synchrony breaking steady state bifurcations in terms of monoid
representations in Theorem 5.11.

The implications of the algebraic nature of networks go beyond exploiting hidden symmetries
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for the classification of synchrony breaking bifurcations. Once again, consider feedforward networks
as an example. This structural property is not only equivalent to the monoid of input maps being
L-trivial but also the existence of a partial order of the cells of the network in terms of mutual de-
pendence. This is reflected in the system of ordinary differential equations as well, so that using
knowledge about finite partially ordered sets allows for an easy (conceptually, but technically com-
plex) classification of synchrony breaking steady state bifurcations by solving suitable equations
inductively with respect to the partial order. On the other hand, the partial order can equivalently
be observed in the (L-trivial) monoid of input maps which allows for a new classification of the alge-
braic property L-triviality.

In general, not only are algebraic methods necessary tools in the analysis of network dynamics
but observations from network dynamics can also stimulate development in the corresponding
areas of algebra. One of the driving mechanisms behind this is the fact that the fundamental net-
work can equivalently be characterized as the regular module of the monoid algebra of the monoid
of input maps (see Section 4.2). The monoid algebra is an object that is commonly studied in re-
presentation theory of monoids to deduce algebraic properties of a given representation while the
regular module allows to investigate an algebra as a module. Most importantly, we currently under-
stand this construction as the algebraic explanation of the hidden symmetries of the fundamental
networks as well as the structure of its linear admissible maps – i.e. the endomorphisms of the
corresponding representation space. This observation has motivated the approach to characterize
possible generalized kernels in bifurcation problems in terms of equivariant projection operators.
It is currently an open question whether it can furthermore provide insight into other parts of the
analysis of network dynamics – in particular synchrony breaking bifurcations. It was also the regular
module of the monoid algebra that inspired the most apparent example of a purely algebraic result
induced by network dynamics. Using the fact that the monoid representation of a feedforward fun-
damental network can be decomposed into subrepresentations exploiting the partial order mentio-
ned above as well as the duality of notions of L- and R-trivial monoids, one can deduce an algorithm
to find a complete system of primitive orthogonal idempotents in an R-trivial monoid algebra (see
Remark 9.9). This is a purely algebraic result in monoid representation theory. Even if the algorithm
does not solve an open problem therein, the fact that it has been addressed before reveals that it is
a relevant observation nonetheless. Furthermore, the network inspired approach allows for simpler
computation in a more general setting, underlining its worth possibly also for the specialists in the
field.

Summarizing, we have seen how the introduction of purely algebraic methods into the study of
network dynamical systems – not restricted to semigroup networks – has proven to be a success-
ful strategy to tackle the issues and problems that network structure imposes. Many results have
already been proven, phenomena have been explained and recast in algebraic language, and more
results in that general direction are to be expected. On the other hand, taking the network point
of view into algebra can also provide new insight into known or previously unexplored problems
therein. New structures are being investigated or known ones gain importance from applications in
network dynamics. We conclude, that the investigation of synergy between networks and algebra
is certainly worth further pursuit and provide an outlook into one possible direction in the following
final chapter.
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Chapter 14

Outlook: Encoding network structure in
quiver representations

An objective of investigation in a current joint research project with Bob Rink and Eddie Nijholt is
to determine which ‘types’ of interaction structures can be encoded algebraically in terms of ge-
neralized symmetry. Throughout this thesis we have seen – and used at many points – that the
fundamental network structure of a semigroup network is equivalent to a specific representation
of a monoid – which is a generalization of classical (compact or finite) group symmetries. This con-
struction, however, is only applicable to the class of (homogeneous) networks with asymmetric in-
puts whose input maps form a monoid. This suggests the question whether even less restrictive
algebraic objects can be used to model more general network structures – or at least parts of it such
as the information which cells a given one depends on. Promising objects to study in this regard
are quiver representations. As we have seen in Section 2.4, graph fibrations – that is maps sending
one network to another while respecting interaction structure – can be used encode all kinds of
structural properties of a network. We have used these maps almost exclusively for the relation be-
tween a network and its fundamental network as well as for the symmetries of the latter in terms
of self-fibrations. But more general features can be displayed as well. In Example 2.7 we encode
feedforward structure in terms of an injective graph fibration of a maximal cell – in the language
of Part III – into the 2-cell feedforward chain. The corresponding semiconjugacy then encodes the
fact that the first cell does not depend on the second in the admissible vector fields. Note that this
can be generalized to general feedforward structure. A quiver representation allows to describe all
these relations in terms of a single algebraic object.

Let us make this slightly more precise by restating some definitions from the nice introduction
KRAUSE [67] to which we also refer for background on the matter (we thank Eddie Nijholt for making
us aware of this text).

Definition 14.1. A quiver Q = (Q0,Q1, s, t) is a finite directed graph where Q0 are the vertices, Q1

are the arrows, and the two maps s, t : Q1 → Q0 are such that an arrow α ∈ Q1 starts at s(α) and
terminates at t(α).

Informally speaking, the objects we are interested in are finite directed graphs without any further
restrictions. In particular, there are no ‘types’ or ‘colors’ of cells or arrows. Nevertheless, a quiver is
in some sense a network itself. However, they are used with an entirely different intention.

Definition 14.2. A representation of the quiverQ is a collection

V = (Vi, Lα)i∈Q0,α∈Q1 ,

where Vi is a (finite-dimensional) vector space assigned to each vertex i ∈ Q0 and Lα : Vs(α) → Vt(α)

is a linear map from the vector space assigned to the starting vertex of α to the one assigned to the
terminating vertex of α.
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Contrary to the total phase spaces of networks – or more precisely the collection of internal phase
spaces –, a quiver representation contains information about interactions in terms of the linear
maps Lα which relate the vector spaces that are attached to the vertices of the quiver with respect
to its arrows. Note that it is also the linear mapsLα for each arrow that make the collection of vector
spaces an actual representation. In a more classical representation, say of a monoid, each element
acts as a linear map on the representation space of which there is only one. Conversely, in a quiver
representation each arrow acts via a linear map. Due to the flexibility induced by different represen-
tation spaces for each vertex, these now have to map one of these space to another according to the
direction of the arrow.

This is also what makes quiver representations relevant for the investigation of network dyna-
mics. However, perhaps surprisingly, instead of describing one network and its internal phase spaces
in these terms we encode multiple networks and their relations as a quiver representation. That is,
it turns out to be convenient to define a network of networks as a quiver and the collection of to-
tal phase spaces as its representation. Recall from Section 2.4 and Chapter 3 that a graph fibration
ϕ : N1 → N2 gives rise to a a linear map ϕ∗ : VN2 → VN1 , where we abbreviate the total phase
spaces as VN1 and VN2 . Then we may define a quiver Q as follows: the vertices are given by the
networksN1 andN2 and there is one arrow αϕ in the opposite direction of ϕ, i.e. fromN2 toN1. Re-
versing the direction of the arrow is necessary in order to be consistent with the definition of a quiver
representation. It is easy to see that the collection of total phase spaces VN1 ,VN2 together with the
linear map Lαϕ = ϕ∗ satisfies the condition of Definition 14.2. That is, it is a representation of the
quiverQ = ({N1,N2}, {αϕ}, s : αϕ 7→ N2, t : αϕ 7→ N1). This observation is visualized in Figure 14.1.
The formalism has the convenient feature that the quiver Q – and with it its representation – can
readily be extended to include more vertices. If there is another graph fibration ϕ : N2 → N3, we
may extend Q to also include the arrow αϕ. The corresponding semiconjugacy extends the repre-
sentation accordingly. Hence, if we investigate a networkN we may encode graph fibrations to any
network in terms of the quiver representation. But we can also only include specific ones. This is
particularly important, as usually not all possible graph fibrations of a given network into another
one (or the other way around) are known.

...

N2

...

...
N1

ϕ

Q = N2 N1
αϕ

VN2
VN1

ϕ∗

Figure 14.1: Visualization of a quiver representation induced by a graph fibration.

Apart from encoding structural properties of networks, quiver representations also have an im-
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pact on dynamical systems on the corresponding representation spaces. In particular, the linear map
induced by a graph fibration is not only a map between the total phase spaces but most importantly
it induces a linear semiconjugacy of admissible vector fields. In the above setting let γN1

f and γN2
f be

admissible vector fields ofN1 andN2 respectively that are governed by the same response function
– this is possible as the existence of a graph fibration implies that both networks have the same
input trees / input networks. Then

ϕ∗ ◦ γN2
f = γN1

f ◦ ϕ
∗. (14.1)

This motivates the generalized definition of equivariance.

Definition 14.3. LetQ be a quiver and let V = (Vi, Lα)i∈Q0,α∈Q1 be a representation ofQ. A collection
of smooth vector fields

F = (Fi)i∈Q0

with Fi : Vi → Vi is called equivariant with respect to the representation, if

Lα ◦ Fs(α) = Ft(α) ◦ Lα (14.2)

for all arrows α ∈ Q1. That is, a collection of smooth vector fields, one for each vertex, that are semi-
conjugate by the representation maps.

The linear semiconjugacies induced by graph fibrations satisfy this definition (compare (14.1) and
(14.2)). Furthermore, note that we may define homomorphisms, endomorphisms, and isomorphisms
of quiver representations accordingly each time consisting of a collection of linear maps of the vector
spaces attached to each vertex.

Without explicit mention we have encountered quiver representations and equivariant vector
fields in the context of non-homogeneous networks with asymmetric inputs (Section 3.6). For these
we compute a collection of fundamental networks – one for each type of cells in the original net-
work – and a collection of graph fibrations in between. Then a collection of vector fields on the
total phase spaces is admissible for the fundamental networks if and only if it is equivariant as in
Definition 14.3 with respect to the collection of graph fibrations. Particular importance of this ob-
servation stems from the equivalence part. The fundamental network structure can equivalently be
encoded in terms of equivariance with respect to generalized symmetries. This is also what makes
the fundamental network construction for semigroup networks so powerful. In the more general
context when a quiver encodes relations between different networks we cannot expect to obtain
an equivalent characterization of admissibility in terms of equivariance. Especially since we do not
necessarily encode all structural properties in terms of graph fibrations. Nevertheless, equivariance
of a collection of vector fields with respect to the quiver representation is equivalent to the fact that
these vector fields respect all structural features that are encoded in the quiver. To make this more
tangible recall Example 2.7. We are interested in the networkN1 in Figure 14.1 and observe the graph

1 2

N1

1

N2
ϕ

Figure 14.2: The injective graph fibration that encodes a 2-cell feedforward chain.

fibration ϕ : N2 → N1 that sends cell 1 to cell 1 and its self-loop to the self-loop. The networks are
homogeneous. Hence we attach a finite-dimensional internal phase space V to each cell. Then the
total phase spaces are VN1 = V 2 and VN2 = V and the graph fibration ϕ induces the linear map

ϕ∗ : V 2 → V

(x1, x2) 7→ xϕ(1) = x1.
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As before, (V 2, V, ϕ∗) is a representation of the quiver

Q = ({N1,N2}, {αϕ}, s : αϕ 7→ N2, t : αϕ 7→ N1).

In this simple example it is easy to compute the admissible vector fields forN1 andN2 and to check
that they are equivariant with respect to the representation in the sense of Definition 14.3. Nevert-
heless, consider an arbitrary collection of smooth vector fields on the total phase spaces of both
networks F = (F1, F2) : V 2 → V 2 and G = G1 : V → V . Then equivariance with respect to the
representation given by ϕ∗ as in (14.2) yields

ϕ∗ ◦ F (x1, x2) = ϕ∗
(
F1(x1, x2)

F2(x1, x2)

)
= F1(x1, x2)

G ◦ ϕ∗(x1, x2) = G1(ϕ∗(x1, x2)) = G1(x1)

so that
F1(x1, x2) = G1(x1).

In particular, the first component function of F does not depend on x2. Summarizing, equivariance
with respect to this quiver representation is equivalent to the fact that in the networkN1 the state
of cell 1 does not depend on that of cell 2. Here, this is essentially all the structural information one
needs to describe the networkN1, Once more, it is encoded in terms of generalized symmetry.

It remains to be seen how useful the usage of these algebraic objects turns out to be for the
analysis of network dynamics. The two most pressing questions at the moment are

(i) Which properties of network structure can be encoded using graph fibrations and as a result
in quiver representations?

(ii) Can the theory of equivariant dynamics be extended to quiver representations?

These questions are under investigation in the research project mentioned above. Regarding (i), the
examples mentioned above are only a partial answer. In the publications that introduced graph
fibrations to the network dynamics community (DEVILLE and LERMAN [24, 25, 26]) one finds more ex-
amples of structural features that are encoded in different types of graph fibrations. Nevertheless,
if the constructions presented in this chapter turn out to be useful for dynamical analysis a more
thorough investigation appears to be necessary. In regard to the second question, it is desirable to
determine dynamical properties that are inherent to a given structure. If that given structure is a
quiver representation that encodes a structural feature of some network we would like to be able to
determine behavior that is generic within the class of equivariant systems. As we have seen throug-
hout this thesis, this requires dynamical systems machinery to respect generalized symmetries. As
quiver representations are related to monoid representations, we are optimistic that we will be able
to generalize some of the results – in particular regarding reduction methods – to this generalized
setting. Nevertheless, this is beyond the scope of this thesis and shall be part of future research.
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Appendix A

Submanifolds of matrix spaces

We want to prove the results on submanifolds of the space M (n;K) of n×nmatrices overK = R,C
or H that were left out in Section 5.1. We treat M (n;K) as a real vector space meaning that we
restrict scalar multiplication to real numbers. The result in the first proposition is well-known in
the cases K = R or K = C. The necessary arguments for the real case are sketched as an exercise
in the equally known book GUILLEMIN and POLLACK [61]. We state them here especially for the case
K = H even though the same proof holds true for all three cases. For additional background on
quaternionic matrices consult ZHANG [117].

We begin with a brief summary of some facts and definitions that are particularly important for
our considerations. Consider scalar multiplication by quaternions for a moment. As multiplication of
quaternions is not commutative we have to distinguish between left and right scalar multiplication
and left and right linear (in)dependence (overH). The rank of a quaternionic matrix A is the number
of right linear independent column vectors or equally the number of left linear independent row
vectors of A. A quadratic matrix A ∈ M (n;H) is invertible (there exists B ∈ M (n;H) such that
AB = BA = 1) if and only if it has full rank n. Furthermore, rankPAQ = rankA for any invertible
matrices P and Q of suitable dimensions.

Proposition A.1. Let K = R,C or H and M (n;K) be the space of all n × n matrices with entries in K
considered as a real vector space. Then

Mr (n;K) = {A ∈ M (n;K) | rankA = r}

with r = 0, . . . , n is a submanifold of codimension (n− r)2 dimK.

Proof. As M0 (n;K) = {0} and Mn (n;K) = {A ∈ M (n;K) | A invertible}, the special cases r = 0

and r = n are clear. Hence, let r ∈ {1, . . . , n − 1} and L ∈ Mr (n;K). Then L has r (right) linear
independent column vectors v1, . . . , vr. Without loss of generality (by exchanging columns of L) we
may assume that these are the first r columns of L. The n× r matrix (v1, . . . , vr) consisting of those
column vectors still has rank r. Hence it has r (left) linear independent row vectors. Exchanging rows
of that matrix allows us to assume that the first r rows are (left) linear independent. Applying the
same exchange of rows to the full matrix L allows us to assume

L =

(
A B

C D

)
where A ∈ M (r;K) is invertible – especially rankA = r – and B ∈ M (r × (n− r);K),
C ∈ M ((n− r)× r;K) and D ∈ M ((n− r);K). Consider the matrix

L0 =

(
1 −A−1B

0 1

)
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where the dimensions of the identity matrices are suitably chosen. Then

LL0 =

(
A 0

C −CA−1B +D

)
.

As L0 is clearly invertible

r = rankL = rankLL0 = rankA+ rank
(
−CA−1B +D

)
.

But already rankA = r and thus

rank
(
−CA−1B +D

)
= 0

which is only fulfilled by the zero matrix 0 ∈ M ((n− r);K). Furthermore, these considerations show
that any block matrix

K =

(
α β

γ δ

)
whose upper left block α ∈ M (r;K) is invertible has rank r if and only if

−γα−1β + δ = 0.

We may now choose a suitably small neighborhood U around L in a suitable topology such that
every K ∈ U is of the form

K =

(
α β

γ δ

)
with α ∈ M (r;K) invertible. If K is close to L then α is close to A and hence is invertible as well. To
see this in the quaternionic case we may use Theorem 7.3 in ZHANG [117] which dates back to WOLF

[116] and connects the rank of a quaternionic matrix to that of its complex adjoint matrix. On the
neighborhood U we define a map

f : U → M ((n− r);K)

K 7→ −γα−1β + δ.

This map is smooth and we have seen that K ∈ U has rank r if and only if f(K) = 0.
We have to check that the derivative of f atK = L is surjective on tangent spaces. As the target

space of f is a linear space, its tangent space is the same space M ((n− r);K). To prove surjectivity
let X ∈ M ((n− r);K) be arbitrary and consider the smooth curve

ν(t) = L+ t

(
0 0

0 X

)
with t being restricted to an interval around 0 so that ν(t) ∈ U for all t. Then

f(ν(t)) = −γα−1β + δ + tX

and
d

dt
f(ν(0)) = X.

This proves surjectivity of Df . Hence Mr (n;K) ∩ U = f−1(0) is a submanifold of codimension

codim Mr (n;K) = dim M ((n− r);K) = (n− r)2 dimK

which completes the proof.
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The next Proposition treats nilpotent real matrices whose rank is reduced by one. Embedding
them into all matrices of that rank would yield a codimension 1 submanifold using the last proposi-
tion. The proof relies on the normal form of matrices presented in ARNOLD [15].

Proposition A.2. The collection of real nilpotent matrices of rank n− 1 is a submanifold of M (n;R) of
codimension n.

Proof. Let L ∈ M (n;R) be nilpotent and rankL = n− 1. This directly yields that the Jordan normal
form of L consists of precisely one Jordan block

0 1
. . . . . .

. . . 1

0

 .

In ARNOLD [15] a matrix normal form is presented that depends smoothly on the matrix – more preci-
sely speaking a versal deformation. Any suitably small perturbation K of L is conjugate to a matrix

0 1
. . . . . .

0 1

a1 . . . . . . an

 (A.1)

with a1, . . . , an ∈ R depending smoothly on K . As K is an n × n matrix it is nilpotent if and only if
Kn = 0. However, Kn is conjugate to 

a1 . . . . . . an
• . . . . . . •
...

...
• . . . . . . •


which can only be 0 if ai = 0 for all i = 1, . . . , n. This yields thatK close toL is nilpotent (and of rank
n− 1) if and only if it is conjugate to L. The deformation in (A.1) is constructed to have the minimal
number of parameters which is n. It equals the codimension of the conjugacy orbit of L. Therefore
the collection of matrices conjugate to L is a submanifold of M (n;R) of codimension n.

This appendix is nearly identical to Appendix A in our publication [97].
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Appendix B

Computations for steady state bifurcations
of feedforward networks

In this appendix we fill the gaps left in Chapter 10 by proving Lemmas 10.18 and 10.19. Recall that
Lp = {σ ∈ Σ | σ(p) = p}.

Lemma B.1 (Lemma 10.18). Let C be the set of cells of a feedforward network and p ∈ C be non-
maximal. Assume ∑

σ∈Lp

aσ 6= 0

and

dq = − `∑
σ∈Σ aσ

,

for all q B p. Then

−
∑

τ /∈Lp aτdτ(p) + `∑
σ∈Lp aσ

= − `∑
σ∈Σ aσ

.

Proof. Let p ∈ C be non-maximal. Assume

dq = − `∑
σ∈Σ aσ

for all q B p. Then ∑
τ /∈Lp

aτdτ(p) + ` = −

(∑
τ /∈Lp aτ∑
σ∈Σ aσ

− 1

)
· `.

Furthermore, ∑
τ /∈Lp aτ∑
σ∈Σ aσ

− 1 =

∑
τ /∈Lp aτ −

∑
σ∈Σ aσ∑

σ∈Σ aσ
= −

∑
σ∈Lp aσ∑
σ∈Σ aσ

.

Hence, we obtain

−
∑

τ /∈Lp aτdτ(p) + `∑
σ∈Lp aσ

=
1∑

σ∈Lp aσ
·

(∑
τ /∈Lp aτ∑
σ∈Σ aσ

− 1

)
· ` = − `∑

σ∈Σ aσ
.
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Lemma B.2 (Lemma 10.19). Let C be the set of cells of a feedforward network and p ∈ C be non-
maximal. Assume ∑

σ∈Lp

aσ = 0

and

dq = − `∑
σ∈Σ aσ

, Rq = −
∑

σ,τ∈Σ fστ `
2 −

∑
σ∈Σ aσ

∑
σ∈Σ fσλ`+

(∑
σ∈Σ aσ

)2
fλλ(∑

σ∈Σ aσ
)3

with fστ = fτσ for all q B p. Define

A =
∑

σ,τ∈Lp

fστ ,

B =
∑
σ∈Lp

fσλ + 2
∑

σ∈Lp,τ /∈Lp

fστdτ(p),

C =
∑
τ /∈Lp

aτRτ(p) +
∑
τ /∈Lp

fτλdτ(p) +
∑

σ,τ /∈Lp

fστdσ(p)dτ(p) + fλλ,

K =
∑
σ∈Σ

aσ,

E =
∑
σ∈Lp

fσλ − 2 · `
K

∑
σ∈Σ
τ∈Lp

fστ .

Then generically
B2 − 4AC = E2 > 0

and
−B + E

2A
= − `∑

σ∈Σ aσ
,

−B − E
2A

= M

with

M =
`∑

σ∈Σ aσ
·

(
1 + 2

∑
σ∈Lp,τ /∈Lp fστ∑
σ,τ∈Lp fστ

)
−
∑

σ∈Lp fσλ∑
σ,τ∈Lp fστ

.

Proof. Let p ∈ C be non-maximal. Assume

dq = − `∑
σ∈Σ aσ

and Rq = −
∑

σ,τ∈Σ fστ `
2 −

∑
σ∈Σ aσ

∑
σ∈Σ fσλ`+

(∑
σ∈Σ aσ

)2
fλλ(∑

σ∈Σ aσ
)3

for all q B p. A key observation is ∑
τ /∈Lp

aτ =
∑
σ∈Σ

aσ,

as
∑

σ∈Lp aσ = 0. We denote this sum by K . Hence,

∑
τ /∈Lp

aτRτ(p) = −
∑

σ,τ∈Σ fστ `
2 −K

∑
σ∈Σ fσλ`+K2fλλ

K2

= − `2

K2

∑
σ,τ∈Σ

fστ +
`

K

∑
σ∈Σ

fσλ − fλλ.

Note that ∑
σ,τ∈Σ

fστ =
∑

σ,τ∈Lp

fστ + 2
∑
σ∈Lp
τ /∈Lp

fστ +
∑

σ,τ /∈Lp

fστ ,
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where we have used fστ = fτσ . Similar considerations occur frequently in the remainder of this
proof. We use them without explicitly mentioning them. Furthermore, we compute

∑
τ /∈Lp

fτλdτ(p) = − `

K

∑
τ /∈Lp

fτλ,

∑
σ,τ /∈Lp

fστdσ(p)dτ(p) =
`2

K2

∑
σ,τ /∈Lp

fστ .

Thus, we obtain

C =
∑
τ /∈Lp

aτRτ(p) +
∑
τ /∈Lp

fτλdτ(p) +
∑

σ,τ /∈Lp

fστdσ(p)dτ(p) + fλλ

= − `2

K2

∑
σ,τ∈Σ

fστ +
`

K

∑
σ∈Σ

fσλ − fλλ −
`

K

∑
τ /∈Lp

fτλ +
`2

K2

∑
σ,τ /∈Lp

fστ + fλλ

= − `2

K2

 ∑
σ,τ∈Lp

fστ + 2
∑
σ∈Lp
τ /∈Lp

fστ

+
`

K

∑
σ∈Lp

fσλ.

Next, we compute

B2 =

∑
σ∈Lp

fσλ + 2
∑
σ∈Lp
τ /∈Lp

fστdτ(p)


2

=

∑
σ∈Lp

fσλ − 2 · `
K

∑
σ∈Σ
τ∈Lp

fστ + 2 · `
K

∑
σ,τ∈Lp

fστ


2

=

∑
σ∈Lp

fσλ − 2 · `
K

∑
σ∈Σ
τ∈Lp

fστ


2

+ 4 · L

with

L =
`

K

∑
σ∈Lp

fσλ − 2 · `
K

∑
σ∈Σ
τ∈Lp

fστ

 ∑
σ,τ∈Lp

fστ +
`2

K2

 ∑
σ,τ∈Lp

fστ

2

=
∑

σ,τ∈Lp

fστ ·

 `

K

∑
σ∈Lp

fσλ −
`2

K2

2 ·
∑
σ∈Σ
τ∈Lp

fστ −
∑

σ,τ∈Lp

fστ




=
∑

σ,τ∈Lp

fστ ·

 `

K

∑
σ∈Lp

fσλ −
`2

K2

 ∑
σ,τ∈Lp

fστ + 2 ·
∑
σ∈Lp
τ /∈Lp

fστ


 = A · C.
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Hence,

B2 − 4AC =

∑
σ∈Lp

fσλ − 2 · `
K

∑
σ∈Σ
τ∈Lp

fστ


2

+ 4L− 4AC

=

∑
σ∈Lp

fσλ − 2 · `
K

∑
σ∈Σ
τ∈Lp

fστ


2

= E2.

Generically, this expression is positive, which allows us to compute

−B + E = 2 · `
K

∑
σ∈Lp
τ /∈Lp

fστ −
∑
σ∈Σ
τ∈Lp

fστ


= −2 · `

K

∑
σ,τ∈Lp

fστ = −2A · `
K
,

proving
−B + E

2A
= − `∑

σ∈Σ aσ
.

On the other hand

−B − E = −
∑
σ∈Lp

fσλ + 2 · `
K

∑
σ∈Lp
τ /∈Lp

fστ −

∑
σ∈Lp

fσλ − 2 · `
K

∑
σ∈Σ
τ∈Lp

fστ



= 2 ·

 `

K

 ∑
σ,τ∈Lp

fστ + 2
∑
σ∈Lp
τ /∈Lp

fστ

− ∑
σ∈Lp

fσλ

 ,

proving
−B − E

2A
=

`∑
σ∈Σ aσ

·

(
1 + 2

∑
σ∈Lp,τ /∈Lp fστ∑
σ,τ∈Lp fστ

)
−
∑

σ∈Lp fσλ∑
σ,τ∈Lp fστ

= M.
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Anhang





Summary

This thesis deals with the investigation of dynamical properties – in particular generic synchrony
breaking bifurcations – that are inherent to the structure of a semigroup network as well the nume-
rous algebraic structures that are related to these types of networks. Most notably we investigate
the interplay between network dynamics and monoid representation theory as induced by the fun-
damental network construction in terms of hidden symmetry as introduced in RINK and SANDERS

[92].
After providing a brief survey of the field of network dynamics in Part I, we thoroughly introduce

the formalism of semigroup networks, the customized dynamical systems theory, and the necessary
background from monoid representation theory in Chapters 3 and 4. The remainder of Part II inves-
tigates generic synchrony breaking bifurcations and contains three major results. The first is Theo-
rem 5.11, which shows that generic symmetry breaking steady state bifurcations in monoid equivari-
ant dynamics occur along absolutely indecomposable subrepresentations – a natural generalization
of the corresponding statement for group equivariant dynamics. Then Theorem 7.12 relates the de-
composition of a representation given by a network with high-dimensional internal phase spaces to
that induced by the same network with one-dimensional internal phase spaces. This result is used
to show that there is a smallest dimension of internal dynamics in which all generic l-parameter
bifurcations of a fundamental network can be observed (Theorem 7.24).

In Part III, we employ the machinery that was summarized and further developed in Part II to
feedforward networks. We propose a general definition of this structural feature of a network and
show that it can equivalently be characterized in different algebraic notions in Theorem 8.35. These
are then exploited to fully classify the corresponding monoid representation for any feedforward
network and to classify generic synchrony breaking steady state bifurcations with one- or high-
dimensional internal dynamics.
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Zusammenfassung

Die vorliegende Dissertationsschrift analysiert dynamisches Verhalten – insbesondere generische
Bifurkationen von synchronen Ruhelagen – von dynamischen Systemen mit der zugrundeliegenden
Struktur eines Halbgruppennetzwerks (semigroup network), die von der Netzwerkstruktur diktiert
werden. Ein Schwerpunkt liegt dabei auf der Untersuchung des Zusammenspiels von Netzwerkdy-
namik und der Darstellungstheorie von Monoiden, welche über die Konstruktion eines Fundamen-
talnetzwerks und versteckte Symmetrien Eintritt erhält (siehe RINK und SANDERS [92]).

Nachdem Teil I einen Überblick über die Entwicklung der Netzwerkdynamik und der dafür ent-
wickelten Zugänge gibt, stellen wir Halbgruppennetzwerke, die darauf angepasste klassische Theo-
rie der dynamischen Systeme sowie die notwendigen Grundlagen aus der Darstellungstheorie von
Monoiden vor (Kapitel 3 und 4). Darüberhinaus untersuchen wir in Teil II generische Bifurkationen
von synchronen Ruhelagen. Dieser Teil enthält drei Hauptresultate. Zunächst beweist Theorem 5.11,
dass symmetriebrechende Bifurkationen in Systemen, die äquivariant bezüglich der Darstellung ei-
nes Monoiden sind, generischerweise entlang von absolut unzerlegbaren Unterdarstellungen auf-
treten – dies stellt eine natürliche Verallgemeinerung des zugehörigen Resultats für Gruppendar-
stellungen dar. Außerdem verbinden wir in Theorem 7.12 die Zerlegung der Darstellung, die von ei-
nem Netzwerk mit hochdimensionaler interner Dynamik erzeugt werden, mit der, die vom selben
Netzwerk mit eindimensionaler interner Dynamik erzeugt wird. Dieses Resultat verwenden wir, um
zu beweisen, dass es eine kleinstmögliche Dimension interner Dynamik gibt, in der alle generischen
l-Parameter Bifurkationen eines Fundamentalnetzwerks auftreten (Theorem 7.24).

In Teil III wenden wir die Methoden und Techniken, die in Teil II vorgestellt und weiterentwickelt
wurden, auf Netzwerke mit feedforward Struktur an. Wir definieren diese strukturelle Eigenschaft
von Netzwerken allgemein und zeigen, dass sie äquivalent durch verschiedene algebraische Defini-
tionen dargestellt werden kann (Theorem 8.35). Anschließend nutzen wir diese Darstellungen, um
die zugehörige Monoiddarstellung eines beliebigen Netzwerks mit feedforward Struktur vollständig
zu charakterisieren sowie generischerweise auftretenden Bifurkationen von synchronen Ruhelagen
zu klassifizieren, sowohl im Fall eindimensionaler wie auch im Fall hochdimensionaler interner Dy-
namik.
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